
HAL Id: tel-00010935
https://theses.hal.science/tel-00010935

Submitted on 11 Nov 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rupture et instabilités : sismicité et mouvements de
terrain

Agnès Helmstetter

To cite this version:
Agnès Helmstetter. Rupture et instabilités : sismicité et mouvements de terrain. Géophysique
[physics.geo-ph]. Université Joseph-Fourier - Grenoble I, 2002. Français. �NNT : �. �tel-00010935�

https://theses.hal.science/tel-00010935
https://hal.archives-ouvertes.fr


Thèse de Doctorat de
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Agnès HELMSTETTER

Ruptures et instabilités :
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Résumé

On s’intéresse à la rupture associée à deux classes de phénomènes naturels, les séismes et les

instabilités gravitaires.

Pour les séismes, on étudie un modèle stochastique de sismicité, basé sur les deux lois les

mieux établies pour la sismicité, la décroissance en loi de puissance du taux de sismicité après un

séisme, et la distribution en loi de puissance des énergies des séismes. Dans ce modèle, on suppose

que chaque séisme déclenche d’autres séismes, dont le nombre augmente avec l’énergie du choc

principal. Le taux de sismicité global résulte de la cascade de déclenchements de séismes directs

et indirects. On analyse l’organisation spatiale et temporelle de la sismicité dans les différents

régimes sous- et sur-critiques du modèle. Ce modèle permet de reproduire un grand nombre

de propriétés de l’activité sismique, telles que la variabilité de la décroissance des séquences

d’afteshocks, l’augmentation de l’activité sismique avant un séisme, la diffusion des aftershocks,

la migration des foreshocks et la modification de la distribution des magnitudes avant un séisme.

On obtient avec ce modèle une bonne prédictabilité d’une fraction des séismes qui sont déclenchés

à court terme après un grand séisme. Nos résultats démontrent le rôle essentiel des cascades de

déclenchement de séismes à toutes les échelles dans l’organisation de l’activité sismique.

Concernant l’étude des instabilités gravitaires, une étude statistique de plusieurs catalogues

d’éboulements rocheux montre que la distribution des volumes de roches suit une loi de puissance.

On propose que cette distribution en loi de puissance résulte soit de l’hétérogénéité initiale de

la matrice rocheuse, soit de la dynamique d’un système critique auto-organisé.

Certains glissements de terrains sont précédés par une accélération de la vitesse de glissement

avant la rupture finale. On peut reproduire l’évolution temporelle du glissement à l’aide d’un

modèle de bloc rigide avec une loi de friction dépendante de la vitesse de glissement et de l’état

de contact entre le bloc et sa surface de glissement. L’analyse de deux glissements de terrains

avec ce modèle permet de distinguer une accélération du glissement dans le régime stable, d’une

accélération instable qui évolue vers une rupture catastrophique.





Abstract

We analyze the rupture associated with two natural phenomena, earthquakes and landslides.

In the first part, we study a simple stochastic model of seismicity, based on the two best-

established empirical laws for earthquakes, the power law decay of seismicity after an earthquake

and the power law distribution of earthquake energies. This model assumes that each earthquake

can trigger aftershocks, with a rate increasing with its magnitude. The seismicity rate is in this

model the result of the whole cascade of direct and secondary aftershocks. We analyze the space-

time organization of the seismic activity in the different sub- and super-critical regimes of the

model. We show that this simple model can reproduce many properties of real seismicity, such as

the variability of the aftershocks decay law, the acceleration of the seismic activity before large

earthquakes, the diffusion of aftershocks, the migration of foreshocks, and the modification of

the magnitude distribution before large earthquakes. We find that this model provides a good

predictability for a fraction of earthquakes that are triggered by a previous large event. We

demonstrate the essential role played by the cascades of earthquake triggering at all scales in

controlling the seismic activity.

The second part is devoted to the analysis of landslides. A study of several catalogs of rock

falls shows that the distribution of rockfall volumes follows a power-law distribution, arising

either from the scale invariant heterogeneity of the rock-mass, or from the dynamics of a self-

organized critical system.

We propose that the precursory acceleration of the displacement before some catastrophic

landslides can be reproduced using a slider block model with a rate-and-state dependent friction

law. Application of this model to two landslide slip histories suggests that we can distinguish an

acceleration of the sliding velocity in the stable regime from an unstable acceleration leading to

a catastrophic collapse.
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2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Mesure du nombre d’aftershocks en fonction de la magnitude du mainshock . . . 35
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5.6 Appendix : dérivation de la solution analytique . . . . . . . . . . . . . . . . . . . 95

6 Singularité en temps fini dans un modèle stochastique de sismicité 103
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8.3 Correspondance entre les modèles ETAS et CTRW . . . . . . . . . . . . . . . . . 165

8.4 Résultats dans le régime critique n = 1 . . . . . . . . . . . . . . . . . . . . . . . . 172

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9 Observations de la diffusion des aftershocks 193

9.1 Limites de l’approche analytique . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
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Introduction générale

La rupture des objets géologiques existe à toutes les échelles, depuis l’échelle des liaisons

interatomiques (10−9 m) jusqu’à des ruptures de 1000 km associées aux plus gros séismes. La

rupture est responsable d’un grand nombre de risques naturels : séismes, éruptions volcaniques,

instabilités gravitaires. Comprendre l’organisation de la rupture dans l’espace et dans le temps

revêt donc une importance fondamentale.

Deux types de modèles génériques de physique statistique ont été proposés pour décrire la

rupture. Les modèles de point-critique considèrent la rupture globale d’un système comme un

point critique, au sens des transitions de phase, et décrivent l’approche vers la rupture globale

d’un matériau hétérogènes soumis à un chargement externe (augmentation de la force appliquée

ou de la déformation). Le concept de système critique auto-organisé (CAO) décrit au contraire

l’auto-organisation d’un système dans un état stationnaire hors équilibre, caractérisé par des

avalanches (rupture instantannées d’éléments du système) en lois de puissances.

A l’échelle globale, la dynamique des objets géologiques semble s’organiser dans un état

stationnaire, caractérisé par des ruptures (séismes, éruptions volcaniques, éboulements rocheux,

glissement de terrains) de toutes tailles, souvent distribuées en loi de puissance. Ce comportement

est caractéristique des systèmes critiques auto-organisés.

Les ingrédients essentiels d’un système CAO sont [Bak et al., 1987 ; Vespignani et Zapperi,

1998] :

– un chargement externe constant du système aux temps longs,

– une dynamique à seuil, caractérisée par la rupture instantanée d’un élément quand son

énergie dépasse un seuil,

– une redistribution quasi-instantanée (par rapport au temps long du chargement externe)

de l’énergie due à la rupture d’un élément, qui peut induire des phénomènes d’avalanches

lorsque la rupture d’un élément se propage aux sites voisins,

– un guérissement immédiat après la rupture d’un élément, qui peut immédiatement être

rechargé (pas d’endommagement),

– l’absence d’inertie.

Un système critique auto-organisé est caractérisé par [Bak et al., 1987 ; Vespignani et Zapperi,

1998] :

– l’évolution spontanée du système vers un état stationnaire hors d’équilibre,
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– une distribution en loi de puissance de la taille des avalanches induites par la rupture

quasi-simultanée de plusieurs éléments,

– des corrélations spatiales à longue portée.

Il est important de noter ici que la simple observation de distributions en lois de puissance

ne suffit pas à caractériser un système comme étant un système critique auto-organisé, car de

nombreux autres phénomènes peuvent générer des distribution en loi de puissance (cf chapitre

14 de [Sornette, 2000a]).

Le concept de systèmes critique auto-organisé a été appliqué pour décrire les séismes [Bak

et Tang, 1989 ; Sornette et Sornette, 1989], les éruptions volcaniques [Lahaie et Grasso, 1998] et

les mouvements de terrains [Noever, 1993 ; Hergarten et Neugebauer, 1998 ; et chapitre 14 de ce

travail].

Le premier modèle de système critique auto organisé a été proposé par Bak et al. [1987]

(voir Figure 1). Ils considèrent une grille à d dimensions. Chaque site i est caractérisé par une

variable zi, qui représente la hauteur locale du tas de sable, ou la contrainte sur chaque élément

dans le contexte des séismes. On charge le système en choisissant un site aléatoirement et en

augmentant son énergie d’une unité zi → zi + 1, reflétant par exemple l’ajout d’un grain de

sable sur le tas ou l’augmentation de la contrainte sur une portion de la faille due au chargement

tectonique. Lorsqu’un site atteint le seuil de rupture zc = 2d, on relaxe le système en redistri-

buant équitablement l’énergie aux sites voisins. Les cites voisins peuvent alors devenir instables

à leur tour s’ils atteignent le seuil de rupture, et engendrer ainsi une avalanche de redistribu-

tion d’énergie. Le système dissipe de l’énergie uniquement sur les bords du système quand des

grains sortent de la grille. Ce modèle est quasiment imprédictible (les avalanches sont quasiment

indépendantes), dû au chargement stochastique du système. N’importe quelle avalanche peut

dégénérer en une avalanche majeure.

Suite aux travaux de [Bak et al., 1987], de nombreuses variantes du modèle de plus en plus

complexes ont été proposées. On citera ici simplement le modèle d’Olami et al. [1992] qui diffère

du modèle de Bak et al. [1987] par un chargement continu et uniforme sur tout le système, et une

dissipation de l’énergie lors de la rupture d’un élément du système. La dissipation introduite

dans ce modèle induit une variation de l’exposant de la distribution des tailles d’avalanches

par rapport au modèle de Bak et al. [1987], qui devient une fonction continue de la dissipation

[Christensen et Olami, 1992]. Ce modèle produit aussi des intéractions temporelles à longue

portée [Christensen et Olami, 1992], et une plus grande prédictabilité des plus grandes ava-

lanches [Pepke et Carlson, 1994] que dans le modèle de Bak et al. [1987]. La prédictabilité de ce

modèle reste néanmoins très faible. Ces modèles ont aussi été utiliés pour modéliser les systèmes

biologiques ou économiques, pour rationaliser les distributions en lois de puissances observées.

Si dans les modèles d’état critique auto-organisé la dynamique du système est (quasiment)

imprédictible (il n’existe pas de phénomène précurseur des plus grosses avalanches), de nom-
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Fig. 1 – (a) Illustration des régles de redistribution de l’énergie entre plus proches voisins pendant une

avalanche dans le modèle de Bak et al. [1987]. (b) évolution du système vers un état stationnaire. En

partant d’un état intial déchargé zi = 0, l’énergie moyenne du système (nombre de grains moyen par case)

évolue vers un état stationnaire avec des avalanches de toutes tailles. (c) distribution (différentielle) des

tailles d’avalanches dans le régime stationnaire. La taille d’une avalanche est définie comme le nombre

total de relaxations. La ligne continue est un fit par une loi de puissance P (s) ∼ s−1.06. La coupure pour

les grandes tailles est due à la taille finie du système (grille de taille 128 × 128).
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breuses catastrophes naturelles (séismes, eruptions, mouvements de terrains) sont parfois précédées

par une accélération de la déformation ou de l’activité sismique. Les mêmes phénomènes précurseurs

sont parfois aussi observés dans les expériences de rupture ou de fluage en laboratoire [Anifrani

et al., 1995 ; Guarino et al., 2002]. Cette accélération de la déformation peut être interprétée

comme l’approche vers un point critique en physique statistique. Dans ces modèles, la rupture

d’un matériau hétérogène est précédée d’avalanches dont le nombre et la taille moyenne di-

vergent au moment de la rupture (point critique). De nombreux modèles mécaniques (réseaux

de ressorts, par exemple) reproduisent un comportement critique de la déformation précédant la

rupture macroscopique du système [cf Sammis et Sornette, 2002, pour une revue]. Le modèle le

plus simple de rupture critique est le modèle démocratique de fibres illustré sur la Figure 2. La

différence fondamentale entre ces modèles de rupture critique et les modèles de systèmes CAO

décrits plus haut vient du fait que dans les modèles de point critique il y a un endommagement

permament d’un élément après chaque rupture. Un élément qui atteint le seuil de rupture ne

peut plus soutenir de charge, ce qui produit une augmentation de la contrainte sur les autres

éléments, et conduit à une accélération de la déformation jusqu’à la rupture globale du système

si on augmente la force exercée sur le système.

Ce modèle de point critique a été appliqué aux séismes par Sornette [1994] et Sornette et

Sammis [1995], et largement utilisé par la suite pour essayer de prédire les plus gros séismes

[Sornette et Sammis, 1995 ; Bowman et al., 1998 ; Jaumé et Sykes, 1999 ; Sammis et Sornette,

2002]. Néanmoins, ces études sont pour la plupart des “prédictions” réalisées à postériori, et la

validité statistique de ces “prédictions” reste encore à prouver [Zöller et al., 2002]. La prédiction

d’un séisme particulier en terme de date, position et magnitude est pour le moment inaccessible.

Les deux concepts de point critique et de système CAO ne sont pas contradictoires, mais

peuvent coexister dans un même système. Par exemple, le modèle numérique de sismicité étudié

par Huang et al. [1998], caractérisé par une géométrie fractale des failles, présente à la fois un

comportement CAO aux grandes échelles de temps (état stationnaire avec une distribution en

loi de puissance des tailles de séismes), et un comportement caractéristique de l’approche vers

un point critique avant les plus gros séismes (accélération en loi de puissance de l’énergie dissipée

avant les séismes dont la taille est comparable à celle du système).

On s’intèresse dans ce travail aux tremblements de terre et aux instabilités gravitaires, mais

les mêmes modèles ou concepts utilisés dans ce travail pourraient aussi s’appliquer à d’autres

objets géologiques, comme les éruptions volcaniques, ou de façon plus générique à la modélisation

de la rupture en laboratoire.
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Fig. 2 – Illustration du modèle démocratique de fibres. On augmente la force appliquée sur un réseau de

fibres élastiques en parrallèle. On considère une distribution initiale de seuils de rupture de chaque fibre.

La contrainte est distribuée démocratiquement sur les fibres intactes. La rupture d’une fibre augmente

instantannément la contrainte sur les autres fibres, et peut donc déclencher une avalanche de ruptures. Le

nombre de ruptures accelélère jusqu’à la rupture globale du système. Si le matériau est peu hétérogène,

la rupture de la première fibre provoque la rupture matériau. Pour une distribution de seuils de rupture

suffisamment large, la rupture globale du système est précédée d’avalanches, dont le nombre et la taille

moyenne augmentent en loi de puissance avant la rupture.
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Observations et modélisations des intéractions entre séismes et

de leur déclenchement

La sismicité existe à toute les échelles, depuis les ruptures à l’échelle du monocristal, jusqu’à

des tailles de rupture qui atteignent 1000 km pour les plus gros séismes. Ces plus gros séismes

sont heureusement beaucoup moins fréquents que les plus petits séismes. Spécifiquement, la

distribution des magnitudes P (m) suit la loi de Gutenberg-Richter P (m) ∼ 10−bM , avec b ≈ 1.

Cette loi correspond à une distribution en loi de puissance des énergies des séismes ou des

longueurs de rupture.

La distribution de la sismicité n’est pas uniforme ni en temps en espace, mais présente de

fortes concentrations. Les plus gros séismes sont toujours suivis d’une augmentation de sismicité

(“aftershocks”), et parfois précédés d’une accélération du nombre de séismes (“foreshocks”). Le

nombre d’aftershocks décrôıt en loi de puissance en fonction du temps après le choc principal.

Cette loi a été observée par Omori dès 1894, et a été validée sur de nombreuses séquences

depuis. La même loi (“loi d’Omori inverse”) a aussi été proposée pour décrire l’accélération de

l’activité sismique avant un choc principal [Papazachos, 1975a,b ; Kagan et Knopoff, 1978 ; Jones

et Molnar, 1979].

On montre dans le deuxième chapitre que les aftershocks et la loi d’Omori existent à toutes les

échelles ; les séquences d’aftershocks des plus gros séismes étant plus facilement observées parce

que le nombre d’aftershocks augmente avec la magnitude du choc principal. On montre pour un

catalogue de sismicité de la Californie que l’augmentation du nombre de séismes P (m) lorsque la

magnitude m diminue (loi de Gutenberg-Richter, P (m) ∼ 10−bm avec b ≈ 1) est plus rapide que

l’augmentation du nombre d’aftershocks avec la magnitude du mainshock (Naft. ∼ 10αm, avec

α ≈ 0.8). Ce résultat implique que le déclenchement de la sismicité est dominé par les plus petits

séismes. Les plus petits séismes déclenchent individuellement moins d’aftershocks que les plus

gros séismes, mais ils déclenchent globalement plus d’aftershocks parcequ’ils sont beaucoup plus

nombreux. Ce résultat remet en cause un certain nombre d’études qui tentent de comprendre et

de modéliser les intéractions entre évènements en prenant en compte uniquement les plus gros

séismes.

Le troisième chapitre est une synthèse des mécanismes physiques qui permetent de reproduire

la loi d’Omori pour les aftershocks. Les observations ne permetent pas d’identifier le modèle

physique le plus pertinent pour décrire la sismicité. Ces modèles font intervenir un grand nombre

de propriétés mécaniques qui ne sont pas accessibles par les observations, surtout pour les plus

petits séismes, qui sont trop petits pour être enregistrés mais qui dominent le déclenchement

des séismes.

A cause du grand nombre de modèles physiques qui reproduisent les deux principales lois de

la sismicité, la loi de Gutenberg-Richter et la loi d’Omori, et de l’impossibilité de tenir compte des

intéractions à toutes les échelles dans ces modèles mécaniques, on utilise dans ce travail un modèle
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stochastique de sismicité qui utilise la loi d’Omori et la loi de Gutenberg-Richter pour décrire

la sismicité et les intéractions entre séismes à toutes les échelles. On utilise le modèle ETAS

(“Epidemic Type Aftershock Sequence”) de déclenchement de sismicité introduit par [Hawkes,

1971 ; Kagan et Knopoff, 1987 ; Ogata, 1988 ; Kagan, 1991]. Ce modèle est basé uniquement sur

la loi de Gutenberg-Richter pour décrire la distribution des magnitudes, et la loi d’Omori pour

modéliser les séquences d’aftershocks. La loi d’Omori est introduite pour décrire les intéractions

“locales” directes, entre un séisme et les séismes déclenchés par ce séisme (“aftershocks”). On

suppose que chaque séisme déclenche sa propre séquence d’aftershocks suivant la “loi locale” qui

décrôıt en temps suivant la loi d’Omori, et dont le nombre augmente avec la magnitude du séisme.

On suppose aussi que la magnitude de chaque séisme suit la loi de Gutenberg-Richter. Le taux

de sismicité est la somme d’un taux de sismicité constant qui modélise le chargement tectonique,

des séismes directement déclenchés par un séisme et de toutes les cascades de sismicité prenant

en compte les “aftershocks secondaires” déclenchés par tous les séismes de la séquence. Ce

modèle est le modèle statistique de déclenchement le plus parsimonieux permettant de prendre

en compte les propriétés de l’activité sismique. Ce modèle, introduit il y a plus de 30 ans, a été

surtout utilisé pour décrire l’activité sismique et pour fournir des prédictions à court terme.

Connaissant les intéractions locales entre séismes (distributions des temps et distances entre

un séisme et ses aftershocks), on cherche à caractériser la distribution temporelle et spatiale de

la sismicité globale. Le modèle présente différents régimes en fonction des paramètres du modèle,

qui permettent de reproduire de nombreuses propriétés de l’activité sismique. On démontre le

rôle essentiel des cascades de déclenchement à toutes les échelles dans l’organisation de l’activité

sismique. Ces cascades de déclenchement induisent une renormalisation de la loi d’Omori locale

qui décrit les intéractions directes entre évenements : la loi d’Omori globale prenant en compte

les cascades de déclenchement est fondamentalement différente de la loi locale. Le paramètre

essentiel du modèle est le taux de branchement n (nombre moyen de séismes déclenchés par

séisme), qui contrôle la transition entre un régime sous-critique pour n < 1 et le régime sur-

critique pour n > 1. Avant ce travail très peu d’études ont tenté de comprendre analytiquement

ce modèle pour caractériser les différents régimes. Un premier pas a été réalisé par Kagan [1991]

qui a estimé le taux de branchement n en fonction des paramètres du modèle. Sornette et

Sornette [1999a] ont ensuite étudié analytiquement un cas particulier du modèle ETAS sans

dépendance en magnitude, en considérant uniquement le régime sous-critique n < 1.

Les chapitres 5 et 6 décrivent les différents régimes sous-critique et sur-critique de la sismicité

dans le modèle ETAS à l’aide d’études analytiques et numériques. Dans le chapitre 7, on étudie

la prédictabilité du modèle, et on propose une méthode de prédiction prenant en compte les

cascades de sismicité déclenchées par chaque séisme. Cette méthode améliore sensiblement les

méthodes précédentes [Kagan et Jackson, 1998, 2000 ; Vere-Jones, 1998] qui négligeaient les

aftershocks secondaires.

Le chapitre 8 généralise les resultats obtenus dans le chapitre 5 au modèle ETAS temporel
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et spatial. On montre en particulier que les cascades de sismicité induisent un couplage entre les

distributions spatiales et temporelles de la sismicité et peuvent induire dans certains régimes une

diffusion des séquences d’aftershocks par rapport au choc principal comparable aux observations.

Dans le chapitre 10, on étudie l’évolution de la sismicité avant un séisme majeur. On montre

que la loi d’Omori inverse observée par [Papazachos, 1975a,b ; Kagan et Knopoff, 1978 ; Jones et

Molnar, 1979] résulte de la loi d’Omori directe introduite pour décrire les aftershocks. D’autres

propriétés souvent observées pour les foreshocks, telles que la diminution apparente du paramètre

b de la loi de Gutenberg-Richter avant un séisme majeur, ou la migration de l’activité sismique

vers le choc principal, sont aussi reproduites par le modèle ETAS. Le chapitre 12 généralise

les résultats obtenus dans le chapitre 10 aux systèmes à mémoire, dans le but de distinguer la

réponse d’un système à un choc endogène ou exogène.

Les prédictions du modèle ETAS, concernant la diffusion de la sismicité et les propriétés des

foreshocks, sont comparées aux données de sismicité de la Californie dans les chapitres 9 et 11.

Observation et modélisation des instabilités gravitaires

Les instabilité gravitaires partagent un certain nombre de propriétes avec les séismes : des

tailles de ruptures à toutes les échelles, depuis des éboulements rocheux ou des glissement de

terrains de moins d’un m3 jusqu’à des ruptures qui impliquent tout un massif rocheux (1010 m3),

et un chargement externe (tectonique et érosion) très lent par rapport à la durée d’une rupture.

De plus, les glissements de terrains résultent comme les séismes d’instabilités de glissement.

L’analogie entre les glissement de terrains et les séismes a dejà été notée par Gomberg [1995].

Dans le chapitre 14, on étudie la distribution des tailles d’éboulement rocheux, pour plusieurs

jeux de données à différentes échelles de temps et d’espace. On montre que les 3 catalogues

étudiés sont charactérisés par une distribution en loi de puissance des volumes de roches, avec le

même exposant. Cette distribution en loi de puissance avait auparavant été observée uniquement

pour des éboulements rocheux sur des falaises artificielles en bordure des routes, ou pour des

glissements de terrain sur des pentes beaucoup plus faibles. Cette distribution en loi de puissance

des éboulements rocheux permet d’extrapoler la distribution des volumes pour des volumes plus

grands que ceux observés, et donne ainsi une estimation du temps de retour d’un évenement

en fonction de son volume. On propose ensuite différents modèles pour expliquer la distribution

en loi de puissance des volumes d’éboulements rocheux. Cette distribution en loi de puissance

peut provenir de la distribution initiale de l’hétérogénéité de la matrice rocheuse (distribution

en loi de puissance de la taille des fragments) ; ou elle peut résulter de la dynamique d’un sytème

critique auto-organisé.

Comme pour les séismes, ils existent parfois un certain nombre de phénoménes précur- seurs

ou d’intéractions entre évenements, qui permettent d’aller au delà de l’estimation du risque

indépendante du temps. En particulier, de nombreux exemples de glissements de terrains “ca-
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tastrophiques” (glissements très rapides pouvant atteindre 20 m/sec) ont été précédés par une

accélération du glissement pendant une période de quelques jours à plusieurs dizaines d’années

avant la rupture finale. Dans le chapitre 15, on propose d’utiliser un modèle de bloc avec une loi

de friction dépendante de la vitesse pour modéliser les mouvements de terrains, et distinguer un

glissement stable d’un glissement instable qui risque d’évoluer vers une rupture catastrophique.

La loi de friction qu’on utilise a été établie en laboratoire [Dieterich, 1978 ; Ruina, 1983] et large-

ment utilisée pour modéliser les séismes (voir [Scholz, 1998] pour une revue). On montre que ce

modèle permet de décrire l’accélération du glissement qui a précédé l’effondrement du glissement

de terrain de Vaiont en 1963 (Alpes italiennes). Ce modèle permet de prédire la rupture 20 jours

à l’avance, et justifie par un modèle physique le fit par une loi de puissance de la vitesse de

glissement v ∼ 1/(tc − t) qui était utilisée avant empiriquement pour prédire les glissements de

terrain [Voight, 1988]. Appliquée au glissement de terrain de La Clapière (Alpes françaises), le

modèle suggère que l’accélération transitoire du déplacement pendant la période 1983-1988 était

dans le régime stable de la loi de friction. Le modèle ne permet pas de décrire la restabilization

du système depuis 1989, à moins d’invoquer une variation de la géométrie du glissement ou une

variation des paramètres de la loi de friction.
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Chapitre 1

Introduction

In its richness and complexity, seismicity has been compared with the turbulence of solids

[Kagan, 1992, 1994] and is in fact arguably more varied, multi-faceted and complicated. What are

the space-time characteristics of seismicity ? What are the physical mechanisms controlling the

space-time properties of seismicity ? How does past seismicity influence seismicity in the future ?

Is there a significant degree of space-time dependence in seismicity and can we understand

it to provide useful skills for earthquake forecasting ? How can we reduce the societal risk of

earthquake hazard ?

There are only a few solidly documented stylized facts in seismicity :

– spatial clustering of earthquakes,

– power law Gutenberg-Richter distribution of released seismic energies and

– clustering in time following large earthquakes, quantified by Omori’s ≈ 1/tp law for after-

shocks (with p ≈ 1) [Omori, 1894].

These “laws” are however only the beginning of a full model of seismic activity and earthquake

triggering. It is not an exaggeration to state that a major portion of research in seismology deals

with various ways formulated in different forms of characterizing and understanding the nature

of earthquakes, their space-time organization and their inter-dependence.

The question addressed here is to describe, to model and to understand how earthquakes

interact and how past seismicity impacts on future seismicity. The target of this work is thus 1)

to develop a class of simple but powerful physically-based models of spatio-temporal seismicity

and 2) to apply and test it against seismicity data, in order to provide a basis for further

improvements and for testing of new hypotheses.

1.1 Earthquake triggering

This is a growing awareness and an intense research activity based on the fact that a signi-

ficant fraction of earthquakes are events triggered (in part) by preceding events. In the simple

textbook view of a single isolated fault loaded at a constant stress rate, characteristic earth-
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quakes occur periodically by rupturing the whole fault, with a period equal to the ratio of the

stress drop divided by the rate of stress loading. These earthquakes are “witnesses” or signatures

of the tectonic loading.

However, a look at any geological map confirmed by sophisticated statistical tools (multi-

fractal, wavelets, geostatistics) show that faults are complex structures organized into complex

networks (see [Bonnet et al., 2001] for a review). There are many evidences that such faults (and

therefore earthquakes) interact, as suggested by calculations of stress redistribution (see Har-

ris [2000] for a review), elastodynamic propagation of ruptures using laboratory-based friction

law [Dieterich, 1994; Cochard and Madariaga, 1994; Ben-Zion and Rice, 1993, 1995 ; Rice and

Ben-Zion, 1996; Lapusta et al., 2000], simplified models of multiple faults [Cowie et al., 1993;

Miltenberger et al., 1993; Cowie et al., 1995; Sornette et al., 1994, 1995 ; Panza et al., 1997; So-

loviev et al., 1999, 2000 ; Gorshkov et al., 1997; Lee et al., 1999; Ben-Zion et al., 1999; Robinson

and Benites, 1995; Narteau et al., 2000], as well as general constraints of kinematic and geometric

compatibility of the deformations [Gabrielov et al, 1996]. This dependence between earthquakes

implies that any earthquake may have a (partial) role of triggering other earthquakes.

The existence of earthquake triggering is particularly obvious after large shallow earthquakes,

for which the seismicity rate increases strikingly for time period up to one hundred years [Utsu

et al., 1995], and distances up to several hundred km [Tajima and Kanamori, 1985a,b; Steeples

and Steeples, 1996; Kagan and Jackson, 1998; Meltzner and Wald, 1999; Dreger and Savage,

1999]. The rate of the triggered events usually decays in time as the modified Omori law n(t) =

K/(t + c)p [Omori, 1894], where the p exponent is found to vary between 0.3 and 2 [Davis and

Frohlich, 1991a; Kisslinger and Jones, 1991; Guo and Ogata, 1995; Utsu et al., 1995] and is often

close to 1 (see however [Kisslinger, 1993; Gross and Kisslinger, 1994] for alternative decay laws

such as the stretched exponential).

These triggered events are usually called aftershocks if their magnitude is smaller than the

first event. However, the definition of an aftershock contains unavoidably a degree of arbitra-

riness because the qualification of an earthquake as an aftershock requires the specification of

time and space windows. In this spirit, several alternative algorithms for the definition of after-

shocks have been proposed [Gardner and Knopoff, 1974; Reasenberg, 1985; Davis and Frohlich,

1991a; Molchan and Dmitrieva, 1992] and there is no consensus. Since the underlying physical

processes are not fully understood, the qualifying time and space windows are more based on

common sense than on hard science. Particularly, there is no agreement about the duration

of the aftershock sequence and the maximum distance between aftershock and mainshock. If

one event occurs with a magnitude larger than the first event, it becomes the new mainshock

and all preceding events are retrospectively called foreshocks. Thus, there is no way to identify

foreshocks from usual aftershocks in real time. There is also no way to distinguish aftershocks

from individual earthquakes [Hough and Jones, 1997]. The aftershock magnitude distribution

follows the Gutenberg-Richter distribution with similar b-value as other earthquakes [Ranalli,
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1969; Knopoff et al., 1982]. They have also similar rupture process. Moreover, an event can be

both an aftershock of a preceding large event, and a mainshock of a following larger earthquake.

For example, the M=6.5 Big Bear event is usually considered as an aftershock of the M=7.3

Landers event, and has clearly triggered its own aftershock sequence. One can trace the difficulty

of the problem from the long-range nature of the interactions between faults in space and time

resulting in a complex self-organized crust.

These observations taken together pose many challenging questions. What is the role of

earthquake interactions and triggering compared with the underlying tectonic driving forces ?

Specifically, is there a way to define and distinguish triggered earthquakes from untriggered

ones ? Can one use the physics of earthquake triggering to understand the spatio-temporal

seismicity beyond the narrow definition of aftershocks ? Can it be used to distinguish foreshocks

from mainshocks and from aftershocks ? Can it be useful for improving the forecast of future

seismicity ? What are the fundamental limits of predictability imposed by the interplay between

the physics of triggering, of tectonic loading and of their interplay ?

These questions are essential because there is growing evidence that a large fraction of

earthquakes in seismic catalogs are triggered events. The identification of aftershocks is often

driven by the need to “decluster” catalogs. This obviously provides only a lower bound to the

total fraction of triggered events. Gardner and Knopoff [1974] propose to detect aftershocks

according to a windowing method. Applied to the Southern California catalog, they find that

2/3 of the events in the catalog are aftershocks. Reasenberg [1985] analyzes the central California

catalog over the period 1969-1982, and identifies aftershocks from the constraint of obtaining a

declustered catalog with a constant seismic rate. In this way, he finds that 48% of the events

belong to a seismic cluster. Davis and Frolich [1991a] use a single link cluster analysis to identify

aftershocks in the ISC catalog. They obtain a smaller proportion of dependent events equal to

30%. Kagan [1991a] estimates the ratio of dependent events in various catalogs (California and

worldwide) using an inversion by the maximum likelihood method of a simple cascade model

of aftershock seismicity. The proportion of dependent earthquakes of the first generation that

he estimates ranges between 0.1% for deep events to 90%, but is often close to 20%. Knopoff

[2000] revisits a windowing method applied to the Southern California catalog over the period

1944-1990, for magnitudes M ≥ 4. He finds again that clustered events constitute about 2/3 of

the whole catalog.

Among an aftershock sequence, a large proportion of aftershocks may be triggered indirectly

by the mainshock, that is, they may be secondary aftershocks of the mainshock triggered by

a previous aftershock. Secondary aftershock sequences are often observed following major af-

tershocks. For instance, the M = 6.5 Big-Bear earthquake occurred a few hours following the

Landers M = 7.3 event and has clearly triggered its own aftershock sequence. Smaller after-

shocks at any scale may also trigger their own aftershocks, but may be much more difficult to

observe. Therefore, it is very difficult to distinguish between direct and secondary aftershocks
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and to quantify the proportion of secondary aftershocks.

Correig et al. [1997] study the aftershock sequence of a M = 5.2 mainshock in eastern Py-

renees. They separate aftershocks as either leading aftershocks or cascades. Leading aftershocks

represent only 10% of the aftershocks sequences. Cascade aftershocks are clusters of aftershocks

following these leading aftershocks. If we identify leading aftershocks with direct aftershocks

of the mainshock, we obtain a proportion of secondary aftershocks equal to 90%. Felzer et al.

[2002] estimated the rate of secondary aftershocks from a comparison of the Landers aftershock

sequence with numerical simulations of a simple model of aftershock sequence. They find that

about 85% of the aftershocks of the Landers event where secondary aftershocks. They concluded

that the 1999 MW 7.1 Hector Mine earthquake was triggered, not by the 1992 MW 7.3 Landers

earthquake itself [Felzer et al., 2002], but by some of its aftershocks.

There is a large evidence that aftershocks occur at all scales, from the laboratory scale to

the worldwide seismicity. However, common belief is that aftershock triggering is controlled by

the largest earthquakes, which trigger more aftershocks that smaller earthquakes. Using the

SCEC catalog for the time 1932-2001, we show in section 2 that all earthquakes, whatever their

magnitudes M in the range 3−7, trigger aftershocks with the same Omori law, but with a rate nM

that increases exponentially with the mainshock magnitude M as nM ∼ 10αM , with α = 0.8. This

exponent α is therefore significantly smaller than the exponent of the magnitude distribution

P (M) ∼ 10−bM , with b = 0.95 for the southern California seismicity. The finding that α < b

for the southern California seismicity implies that small earthquakes are more important than

large earthquakes in triggering aftershocks. Small earthquakes taken individually have a very

low probability of triggering a larger earthquake. But because they are much more numerous

that larger earthquakes, collectively, they trigger more aftershocks.

To sum up, there seems to be overwhelming evidence that seismicity can only be understood

by taking into account earthquake interactions at all scales and their mutual triggering. We

propose here to explore a hierarchy of increasingly realistic models of earthquake triggering. In

order to define our research strategy, we must first ponder over the possible underlying physical

mechanisms.

1.2 Physical mechanisms for earthquake interactions and trig-

gering

It is fair to state that there is no consensus on the underlying cause(s) of aftershocks and more

generally of earthquake triggering. A review of the mechanisms proposed either for aftershocks

and/or for foreshocks is presented in chapter 3, and include weakening processes, rate and state

dependent friction law, dynamics of stress distribution on pre-existing hierarchical structures of

faults or tectonic blocks, visco-elastic response of the crust and on delayed transfer of fluids.

All these mechanisms are fundamentally based on processes associated with or activated by
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stresses changes, both static and dynamical [see for a review Harris, 2000] associated with a

given earthquake modeled as a set of dislocations or cracks. In this simple mechanical view,

earthquakes cast stress shadows [Harris and Simpson, 1992, 1996, 1998 ; Harris, 2000] in lobes of

stress unloading and advance the clock towards rupture in zones of stress increase, according to

the laws of elasticity [Harris et al., 1995]. These calculations have large uncertainties stemming

from the poorly known geometry of the rupture surfaces, the unconstrained homogeneity and

amplitude of the stress drop, the use of simplified models of the crust (3D semi-infinite, or

thin elastic plate, or plate coupled to a semi-infinite visco-elastic asthenosphere, etc.), and the

unknown direction and amplitude of the absolute stress field that pre-existed before the event.

These models are mostly limited to direct influences and, apart from rare exceptions, have

not attempted to develop of a consistent description of seismicity taking into account of the

succession of earthquake triggering processes.

Most of these mechanisms, apart from rare exceptions, give an Omori exponent equal to

one, while observations of aftershock decay suggest that the Omori exponent ranges between

0.3 and 2. What determines the variability of p value ? Is p universal, as proposed by many

physical models of aftershocks, or a function of the material properties of the crust, which are

different from one location to another ? We discuss in chapter 4 possible mechanisms to explain

the variability of p-value, and we propose two new mechanisms to reproduce a variability of the

Omori exponent.

In the following, we describe a stochastic model of earthquake triggering and then describe

the results that we have obtained using this model. We also compare our numerical and analytical

studies of this model with observations of seismic activity. Finally, we propose possible extensions

and applications of this model.

1.3 The simplest statistical model of earthquake triggering

Why should we consider statistical models ? Should not mechanical models such as those

discussed above be preferred ? The answer is an emphatic yes, ..., if (1) we knew precisely what

are the relevant physical processes and (2) we could adequately account for the effect of the

multitude of small earthquakes. With respect to the first point, as we recalled in section 1.2, we

have a list of reasonable mechanisms and a partial understanding of them but are far from fully

understanding their relative importance and even further from being able to develop a consistent

formulation of their interplay, if any. In the face of this stalemate, a coarse-grained description

of the lumped effect of the different possible mechanisms seems to be a reasonable way to make

progress for understanding the space and time organization of earthquakes. With respect to the

second point, there is growing evidence, as we discuss in section 2, that the numerous small

and intermediate-sized earthquakes may have a significant effect on the future seismicity, when

taken together. A systematic counting of them using mechanical calculations seems completely
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out of range in the near future and in addition this operation would be poorly constrained. The

standard strategy in this case, inherited from the celebrated approach of statistical physics and

condensed-matter theory to tackle the so-called many-body problem, is to coarse-grained the

dynamics and obtain an effective physical representation at the scale of an individual event,

allowing us to investigate the consequences of the interaction between earthquakes.

As we said above, the best-documented law of earthquake interaction and triggering is the

Omori’s decay rate K/(t + c)p of aftershocks following a mainshock. This law provides an effec-

tive statistical description of what is sometimes considered to be a special type of earthquake

triggering (mainshock → aftershocks). In view of the difficulties in classifying sometimes an ear-

thquake as a foreshock, a mainshock or an aftershock, it is natural to investigate the parsimonious

hypothesis in which this distinction is removed and to study its observable consequences. We

thus take the Omori’s law as our coarse-grained physical formulation of earthquake interactions.

Specifically, we assume that the rate of aftershocks following a mainshock of magnitude m decays

according to the local law Ψm(t) defined by

Ψm(t) =
K 10αm

(t + c)1+θ
. (1.1)

We assume that all earthquakes whatever their magnitude trigger aftershocks with a rate increa-

sing with their magnitude. The seismicity rate is the sum of all direct and secondary aftershocks

sequences triggered by all events. We also assume that all earthquake magnitudes follow the

Gutenberg-Richter distribution, independently of the previous history of seismicity. This very

simple model is nothing but the so-called epidemic type aftershock (ETAS) model [Kagan and

Knopoff, 1987; Ogata, 1988], which was initially introduced for modeling temporal seismic cluste-

ring. We prefer call this model “triggering model” instead of ETAS model, because this model is

not restricted to the description of aftershock sequences, but can also describe general seismicity

and foreshock sequences, as we shall see in chapter 10.

In this model, all earthquakes can be simultaneously mainshocks, aftershocks and possibly

foreshocks. An observed “aftershock” sequence is the result of the activity of all events triggering

events triggering themselves other events, and so on, taken together. The background seismicity

rate is often modeled by a stationary Poisson process with a constant occurrence rate. This

provides a structureless source term describing the average effect of tectonic loading. In this des-

cription, the observed spatio-temporal richness results from the cascade of triggering processes.

As data is going to accumulate with the present quality of recording stations, the previously

discussed evidences strongly suggest that such scenarios are going to be recognized as more and

more ubiquitous and essential in order to make sense of the observed spatio-temporal seismicity.

The situation is not unlike the fault slips inverted from seismograms, which become more and

more heterogeneous and complex as the quality of the recordings improve. The model we use is

described in more details in chapter 5.
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1.4 Description of the new results obtained with the triggered-

seismicity model

This triggering model has been used to give short-term probabilistic forecast of seismic

activity [Kagan and Knopoff, 1987; Kagan and Jackson, 2000], to describe temporal and spatial

clustering of seismic activity [Ogata, 1988; Kagan, 1991a; Guo and Ogata, 1997; Console and

Murru, 2001; Felzer et al., 2002] and to identify periods of precursory quiescence [Ogata, 1989,

1992, 2001]. However, no attempt has been made until our work to study this model analytically

in order to obtain a deeper understanding of the model. The key parameter of this model is the

average number n of daughter-earthquakes created per mother-event. This average is performed

over time and over all possible mother magnitudes. For α < b and θ > 0, n is finite and given by

n = K
θcθ

b
b−α , where the parameters K, α, c and θ are parameters of the local law (1.1) and b is

the parameter of the magnitude dsitribution. This parameter controls the nature of the seismic

activity. The different regimes and the full analytical solutions for α < b are given in section 5

and illustrated in Figure 1.1.

We summarize below the main results :

– For n < 1 (sub-critical regime), a crossover from an Omori exponent p = 1 − θ for t < t∗

to p = 1 + θ for t > t∗ is found [Sornette and Sornette, 1999a; Helmstetter and Sornette,

2002a], where t∗ ∼ c/(1 − n)1/θ is a characteristic time controlled by the distance from n

to 1. For n = 1, t∗ → +∞ and only the early times t < t∗ Omori exponent p = 1 − θ is

observed.

– For n > 1 and θ > 0 (super-critical regime), one finds a transition from an Omori decay

law with exponent p = 1− θ to an explosive exponential increase of the seismicity rate. Of

course, the super-critical process can only be transient and has to cross-over to another

regime, due to energy conservation.

In the case θ < 0, n becomes formally infinite. However, the model stills describes an interesting

seismicity which initially decays after a mainshock according to an Omori law with exponent

1 − |θ| similar to the local law and then grows exponentially at large times.

The case b < α requires a special attention. In absence of truncation or cut-off in the GR

distribution, it leads to a power law acceleration culminating in a finite-time singularity due to

the interplay between long-memory and extreme fluctuations [Sornette and Helmstetter, 2002].

This case in described in section 6. It is more common to introduce a truncation or roll-off of the

GR law at an upper “corner” magnitude, such as given by a power-law distribution tapered by

an exponential tail [Kagan, 1999b; Sornette and Sornette, 1999b]. Then, n becomes finite again

and the above classification holds. However, a transient power-law acceleration of the seismicity

rate still holds when the maximum observed magnitude is smaller than the corner magnitude.

A stationary seismicity corresponds to n < 1 such that any sequence triggered by an earth-

quake eventually dies out. A value n < 1 should not lead to the belief that n gives the typical
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Fig. 1.1 – Seismicity rate N(t) for the temporal triggering model calculated for θ = 0.3 and c = 0.001

day. The local law Ψ(t) ∝ 1/t1+θ, which gives the probability distribution of times between an event

and its (first-generation) aftershocks is shown as a dashed line. The global law N(t), which includes all

secondary and successive aftershocks generated by all the aftershocks of the first event, is shown as a

solid line for the three regimes, n < 1, n = 1 and n > 1. We have chosen for pedagogical purpose values

of n = 0.9997 < 1 and n = 1.0003 > 1 very close to 1 such that the crossover time t∗ = 109 days is very

large.

number of daughters to a given earthquake, because this ρ(m) number is extremely sensitive

to the specific value of its magnitude m, as seen from the dependence ρ(m) ∝ 10αm. As an

example, for α = 0.8, b = 1, m0 = 0 and n = 0.9, a mainshock of magnitude M = 7 will have on

average 80000 direct aftershocks, compared to only 2000 direct aftershocks for an earthquake of

magnitude M = 5 and less than 0.2 aftershocks for an earthquake of magnitude M = 0.

In section 7 we give two observable meanings to n as the ratio of triggered events over total

seismicity and the ratio of secondary aftershocks over all aftershocks. We also offer an analytical

approach to account for the yet unobserved triggered seismicity adapted to the problem of

forecasting future seismic rates at varying horizons from the present.

The triggering model can be extended to describe the spatio-temporal distribution of seismic

activity. In section 8 we study numerically and analytically the spatio-temporal model and

we present an exact mapping between the triggering model and a class of continuous time
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random walk (CTRW) models. We provide a classification of the different regimes of diffusion

of seismic activity triggered by a mainshock. Specifically, we derive the relation between the

average distance between aftershocks and the mainshock as a function of the time from the

mainshock and the joint probability distribution of the times and locations of the aftershocks.

We show that the triggering model can account for the (non-systematic) observation of seismicity

diffusion [Mogi, 1968; Imoto and Kishimoto, 1977; Imoto, 1981; Chatelain et al., 1983; Tajima

and Kanamori, 1985a,b; Wesson, 1987; Ouchi and Uakawa, 1986; Noir et al., 1997; Di Luccio

et al., 1997; Jacques et al., 1999]. Our theory predicts that seismic diffusion or sub-diffusion

should be observable only when the observed Omori’s exponent is less than 1, because this

signals the operation of the renormalization of the bare Omori’s law Ψ(t) (1.1) due to multiple

cascades, which can be shown to be also at the origin of seismic diffusion in the triggering model

[Helmstetter and Sornette, 2002b]. The mechanism for the diffusion relies on the cascade process

of events triggering their aftershocks which trigger their own aftershocks, and so on. This is a

remarkable example where a simple model with decoupled space and time leads to a non-trivial

coupled process. These results are compared with real seismicity data in section 9.

An even more remarkable property concerning foreshocks can be derived in a very economical

way from the triggered-seismicity model in the normal sub-critical stationary regime n < 1

(see section 10). Recall that the inverse Omori’s law for foreshocks discovered in the 1970s

[Papazachos, 1973; Kagan and Knopoff, 1978; Jones and Molnar, 1979] states that the rate of

earthquakes prior to a mainshock increases on average as a power law ∝ 1/(tc − t)p
′

of the

time to the mainshock occurring at tc. Our work [Helmstetter et al., 2002] shows that the

inverse Omori’s law for foreshocks emerges as the expected (in a statistical sense) trajectory of

seismicity, conditioned on the fact that it leads to the burst of seismic activity accompanying

the mainshock. In other words, a power law acceleration of seismicity does not require the super-

critical regime, the singular regime α > b or even the critical earthquake concept, but may result

from intermittent cascades of triggered earthquakes in the normal sub-critical regime. However,

this inverse Omori law is an average statistical law, that is clearly observed only when averaging

the seismicity rate over a large number of foreshock sequences. We also show that the often

documented apparent decrease of the b-value of the GR law at the approach to the main shock

results straightforwardly from the conditioning of the path of seismic activity culminating at the

mainshock. However, we predict that the GR law is not modified simply by a change of b-value

but that a more accurate statement is that the GR law gets an additive (or deviatoric) power

law contribution with exponent smaller than b and with an amplitude growing as a power law of

the time to the mainshock. In the space domain, we predict that the phenomenon of aftershock

diffusion must have its mirror process reflected into an inward migration of foreshocks towards the

mainshock. Using this model, we show that foreshock sequences are special aftershock sequences

which are modified by the condition to end up in a burst of seismicity associated with the

mainshock. Foreshocks are not just statistical creatures, they are genuine forerunners of large
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shocks as shown by the large prediction gains obtained using several of their qualifiers. These

results are in good agreement with observations of foreshocks and aftershocks presented in section

11.

In section 12, we use a generalization of the triggering model to describe systems with

long-range persistence and memory, such as financial crashes, biological extinctions or climate

change. We show that the existence of long memory processes may lead to specific signatures in

the precursory and in the relaxation/recovery/adaptation of a system after a large fluctuation

of its activity, after a profound shock or even after a catastrophic event, that may allow one to

distinguish an endogenous origin from an exogenous source. The recovery after an endogenous

shock is in general slower than after an exogenous perturbation. The difference between recovery

following endogenous and exogenous shocks results from the same mechanism than the difference

between the direct Omori’s law and the inverse Omori’s law for earthquakes described in section

10. This offers the possibility of distinguishing between an endogenous versus exogenous cause

of a given shock even when there is no “smoking gun”.
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Abstract

Using a seismicity catalog for California, we measure how the number of triggered earth-

quakes increases with the earthquake magnitude. The trade-off between this scaling and the

distribution of earthquake magnitudes controls the relative role of small compared to large ear-

thquakes. We show that seismicity triggering is driven by the smallest earthquakes, which trigger

fewer aftershocks than larger earthquakes, but which are much more numerous. We propose that

the non-trivial scaling of the number of aftershocks emerges from the fractal spatial distribution

of aftershocks.

2.1 Introduction

Large shallow earthquakes are always followed by aftershocks, that are due to the redistri-

bution of the stress induced by the mainshock. The number of aftershocks nM triggered by a

mainshock of magnitude M has been proposed to scale with M as [Utsu, 1969; Kagan and Kno-

poff, 1987; Kagan, 1991a; Reasenberg, 1985; Reasenberg, 1999; Singh and Suarez, 1988; Ogata,

1988; Reasenberg and Jones, 1989; Yamanaka and Shimazaki, 1990; Davis and Frohlich, 1991b;
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Molchan and Dmitrieva, 1992; Hainzl et al., 2000; Drakatos et al., 2001; Felzer et al., 2002]

nM ∼ 10αM . (2.1)

This relation accounts for the fact that large earthquakes trigger much more aftershocks than

small earthquakes. A similar relation holds for the distribution of earthquake magnitudes [Gu-

tenberg and Richter, 1949] given by

ρ(M) ∼ 10−bM , (2.2)

with b ≈ 1, which implies that small earthquakes are much more frequent than large earthquakes.

Because large earthquakes release more energy and trigger more aftershocks than smaller

earthquakes, it is usually accepted that interactions between earthquakes and earthquake trig-

gering are dominated by the largest earthquakes. However, because they are much more frequent

that larger earthquakes, small earthquakes are also just as important as large earthquakes in

redistributing the tectonic forces if b = 1 [Hanks, 1992]. Other quantities, such as the Benioff

strain ε ∼ 100.75M , are dominated by small earthquakes.

The α-exponent is an important parameter of earthquake interaction that is used in many

stochastic models of seismicity or prediction algorithms [Kagan and Knopoff, 1987; Kagan,

1991a; Reasenberg, 1985; Reasenberg, 1999; Ogata, 1988; Reasenberg and Jones, 1989; Console

and Murru, 2001; Felzer et al., 2002]. The parameter controls the nature of the seismic activity,

that is, the relative role of small compared to large earthquakes. While there is a significant

amount of literature on the b-value, very few studies have measured accurately the α exponent

in real seismicity data. Many studies use α = b without justification [Kagan and Knopoff, 1987;

Reasenberg and Jones, 1989; Davis and Frohlich, 1991b; Console and Murru, 2001; Felzer et al.,

2002]. In this case, small earthquakes are just as important as large earthquakes for the triggering

process. Using (2.1) and (2.2), the global number of aftershocks triggered by all earthquakes of

magnitude M scales as

N(M) ∼ ρ(M) nM ∼ 10(α−b)M , (2.3)

and is indeed independent of M in the case α = b. In the case α < b, aftershock triggering is

controlled by the smallest earthquakes, while the largest earthquakes dominate if α > b.

A few studies measured directly α from aftershocks sequences, using a fit of the number

of aftershocks as a function of the mainshock magnitude [Singh and Suarez, 1988; Yamanaka

and Shimazaki, 1990; Molchan and Dmitrieva, 1992; Drakatos et al., 2001]. These studies yield

α-value close to 1, but the limited range of the mainshock magnitude considered and the large

scatter of the number of aftershocks per mainshock do not allow an accurate estimation of α. The

case α = b also explains another well documented property of aftershocks, known as Bath’s Law

[Bath, 1965; Drakatos et al., 2001; Felzer et al., 2002], which states that the difference between

the mainshock magnitude and its largest aftershock is on average equal to 1, independently

of the mainshock magnitude. Again, the limited range of mainshock magnitudes used in these
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studies and possible biases in the method of data selection [Vere-Jones, 1969] does not allow one

to test the dependence of the magnitude difference as a function of the mainshock magnitude.

Other studies measured α indirectly using the ETAS stochastic triggering model [Ogata,

1988; Kagan, 1991a; Guo and Ogata, 1997] based only on the Gutenberg-Richter and Omori

laws [Kagan and Knopoff, 1987; Ogata, 1988]. This model assumes that each earthquake above

a magnitude threshold m0 can trigger aftershocks, with a rate that increases with its magnitude

according to (2.1), and decays with time according to Omori’s law [Omori, 1894]. In this model,

the seismicity rate is the result of the whole cascade of direct and secondary aftershocks, that

is, aftershocks of aftershocks, aftershocks of aftershocks of aftershocks, and so on. Using this

model, α can be measured using a maximum likelihood method [Ogata, 1988; Kagan, 1991a;

Guo and Ogata, 1997. The α-values obtained from the inversion of the this model are not well

constrained and show large fluctuations from one sequence to another. For instance, one study

[Guo and Ogata, 1997] analyzed 34 aftershock sequences in Japan and measured α in the range

[0.2-1.9] with a mean value of 0.86.

The behavior of the ETAS model model is controlled by the branching ratio ν, defined as the

average over all mainshock magnitudes of the number of aftershocks per mainshock [Helmstetter

and Sornette, 2002a]. The sub-critical regime ν < 1 is a stable stationary regime, while the

seismicity blows up exponentially in the super-critical regime if 1 < ν < ∞. The case α ≥ b

yields ν = ∞ [Helmstetter and Sornette, 2002a]. In this singular regime, the seismicity rate goes

to infinity in finite time tc as 1/(tc − t)m [Sornette and Helmstetter, 2002]. Such a power-law

increase of seismic activity can describe the acceleration of the deformation preceding material

failure, as well as a starquake sequence [Sornette and Helmstetter, 2002]. This explosive regime

cannot however describe a stationary seismic activity. Thus, the α-value should not be fixed

equal to b in order to predict or to model seismic activity. Because α is a crucial parameter of

stochastic seismicity models, it is very important to have an accurate estimation of α. In the

sequel, we propose a new efficient method to measure α directly from earthquake catalogs.

2.2 Estimation of α for California seismicity

We use a superposed epoch analysis [Davis and Frohlich, 1991a] to estimate the rate of

aftershocks triggered on average by a mainshock of magnitude between M and M + ∆M , for

different ranges of the mainshock magnitude M . In each magnitude range [M,M + ∆M ], we

superpose all aftershock sequences whose mainshock magnitude is in the range [M,M + ∆M ].

We use the seismicity catalog of Southern California Data Center, which covers the time period

1932-2000, and which is almost complete above M = 3 for this time period.

The definition of an aftershock contains unavoidably a degree of arbitrariness because the

qualification of an earthquake as an aftershock requires the specification of time and space

windows. Since there is no widely accepted criteria to define aftershocks [Gardner and Knopoff,
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1974; Reasenberg, 1985; Davis and Frohlich, 1991b; Molchan and Dmitrieva, 1992], we test

different proposed criteria.

1. We select all earthquakes that occurred at a distance from the mainshock less than R,

where R is independent of M . This method has the advantage of not introducing by hand

any scaling between the aftershock zone and the mainshock magnitude. However, it may

overestimate of the number of aftershocks of the smallest mainshocks if R is too large, or

underestimate the number of aftershocks of the largest mainshock if R is too small.

2. We use a distance R increasing with the mainshock magnitude, because the aftershock

zone is usually found to scale with the rupture length [Utsu, 1961; Kagan, 2002]. We use

R = 0.01 100.5M km, which is close to the rupture length of a mainshock of magnitude

M . For small mainshock magnitudes, this choice would lead to unacceptable values of R

smaller than the location error, and thus underestimate the number of aftershocks of small

mainshocks. Therefore, we impose R > 10 km, larger than the location error.

There is also no consensus on the definition of an earthquake as a mainshock. We need to select

aftershocks triggered directly or indirectly by a mainshock, but not affected by the seismic

activity preceding this mainshock. Therefore, we do not consider as a mainshock an earthquake

which was preceded by a larger earthquake in a time T and at a distance smaller than D. We

use the same time window T to define aftershocks and mainshocks. The results are not sensitive

to the choice of T in the range 0.1-1 year. The value of D is fixed equal to 50 km, roughly the

size of the aftershock zone of the largest earthquake in the catalog, to remove the influence of all

large earthquakes that have occurred before the mainshock. We do not reject mainshocks that

are followed by a larger event, and which would usually be considered as a foreshock, because it

would lead to underestimate the number of aftershocks of small mainshocks.

The results obtained for T = 1 year, R = 0.01 100.5M km and D = 50 km are presented on

Figure 2.1. We estimate the aftershock rate nM(t) using all earthquakes that occurred in the

space-time window R, T after an earthquake of magnitude in the range [M,M + 0.5]. The same

decay rate with time is observed for all magnitudes, but the number of aftershocks increases

exponentially with M . All the curves for different magnitudes can be collapsed onto a single

master curve by dividing the seismicity rate by the factor 10αM with α = 0.81. This confirms that

the scaling of the rate of aftershocks with M follows (2.1). This method is much more accurate

than previous studies which determined the scaling of nM with M using the cumulative number

of aftershocks [Singh and Suarez, 1988; Yamanaka and Shimazaki, 1990; Molchan and Dmitrieva,

1992; Drakatos et al., 2001]. Selecting aftershocks within a disk of fixed raduis R = 50 km for all

mainshock magnitudes yields a slightly smaller value α = 0.75. Decreasing R leads to a smaller

value of α because it underestimates the number of aftershocks of the largest mainshocks. When

increasing R between 5 and 100 km, the value of α first increases with R and then saturates

around α = 0.75 for R ≥ 30 km.

In order to test our method of estimation of α, and the effect of the selection rules for
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Fig. 2.1 – Aftershock rate nM (t) before (a) and after (b) collapse of the curves for different values of

the mainshock magnitude between 3 (dark line, small circles) and 7 (grey line, large symbols) with a

magnitude step ∆M = 0.5. The best collapse in the time range 0.01-100 days is obtained for α = 0.81.

The roll-off of the seismicity rate for M ≥ 7 mainshocks at times smaller than 1 day is due to the

incompleteness of the catalog after large mainshocks, caused by the saturation of the seismic network.

aftershocks and mainshocks, we have generated synthetic catalogs of seismicity following the

ETAS model, which incorporate most properties of aftershocks sequences. We find that using a

value of R independent of M leads to a slight underestimation of α. On the other hand, using

R proportional to the rupture length leads to a slight overestimation of α. This explains the

variability of α obtained with the real seismicity data, when using different methods of aftershock

selection. Based on our tests on synthetic catalogs, and our results for real seismicity data, we

propose that α is in the range 0.8 ± 0.05 for the Southern California seismicity. This parameter

is therefore significantly smaller than the value b = 0.95±0.05 of the exponent of the magnitude

distribution.

2.3 Model

We now propose a simple explanation for this non-trivial scaling of the number of aftershocks

with the mainshock magnitude, and we suggest that α can be related to the fractal structure of

the spatial distribution of aftershocks. It is widely accepted that the aftershock zone scales with

the rupture length [Utsu, 1961; Kagan, 2002]. Indeed, the aftershock zone is often taken as an

estimate of the rupture length. This relationship can be rationalized by the expression of the

stress change induced by the mainshock. While the area affected by the stress variation induced

by an earthquake increases with the rupture length, the stress drop is independent of the main-
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shock magnitude [Kanamori and Anderson, 1975]. The stress variation at a distance from the

mainshock proportional to the fault length L is thus independent of the mainshock magnitude,

neglecting the effect of the finite width of the crust and the visco-elastic deformation in the

lower-crust. Therefore, assuming that aftershocks are triggered by the stress change induced by

the mainshock, the density of aftershocks triggered at a distance R ∼ L from the mainshock is

independent of the mainshock magnitude. The increase of the number of aftershocks with the

mainshock magnitude results only from the increase in the aftershock zone size with the rupture

length.

The rupture length is related to the magnitude by [Kanamori and Anderson, 1975]

L ∼ 100.5M . (2.4)

The same relation thus holds between the aftershock zone size R and the mainshock magnitude.

In order to estimate the scaling of the number of aftershocks with the rupture length, we

need to make an assumption about the spatial distribution of aftershocks around the mainshock.

Assuming that aftershocks are uniformly distributed on the fault plane, and using (2.4), the

number of aftershocks triggered by a mainshock of magnitude M is given by [Yamanaka and

Shimazaki, 1990]

nM ∼ L2 ∼ 10M (2.5)

and thus leads to α = 1. The value α = 0.5 obtained for a numerical model of seismicity

suggests that in this model aftershocks are triggered mostly on the edge of the fracture area

of the mainshock [Hainzl et al., 2000]. Our result α = 0.8 for the California seismicity implies

that aftershocks are distributed neither uniformly on the rupture plane nor on the edge of the

rupture, but rather on a fractal structure. Using the definition of the capacity fractal dimension,

the number of aftershocks is

nM ∼ RD , (2.6)

where R is the characteristic length of the aftershock zone. Using (2.4) and (2.6), we obtain the

scaling of the number of aftershocks with the mainshock magnitude

nM ∼ 100.5DM (2.7)

which gives α = 0.5D. Our estimation α = 0.8 for the California seismicity thus suggests D = 1.6.

This value of the fractal dimension of aftershocks hypocenters has never been measured for the

California seismicity. Our estimate of D is significantly smaller than the value measured in the

range [2-2.8] for aftershock sequences in Japan [Guo and Ogata, 1997]. This fractal dimension

of the spatial distribution of aftershocks results in part from the fractal structure of the fault

system [Bonnet et al., 2001], but it may also reflect the non-uniformity of the distribution of the

aftershocks on the fault due to the heterogeneity of stress or strength on the fault. The fractal

dimension of the aftershock distribution may thus be smaller than the fractal distribution of the

fault system.
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2.4 Conclusion

While the energy release and the total slip on faults is controlled by the largest earthquakes,

the finding that α < b implies that small earthquakes are more important than large earthquakes

in triggering aftershocks. Recent studies [Felzer et al., 2002; Helmstetter and Sornette, 2002a]

have proposed that secondary aftershocks dominate an aftershock sequence, so that subsequent

large aftershocks are more likely to be triggered indirectly by a previous aftershock of the

mainshock. Our study further shows that the smallest aftershocks will dominate the triggering

of following aftershocks. Therefore large aftershocks cannot be predicted, because they are likely

to be triggered by the smallest aftershocks below the detection threshold of the seismic network.

Small earthquakes taken individually have a very low probability of triggering an earthquake.

But because they are much more numerous that larger earthquakes, collectively, they trigger

more aftershocks. This result requires the existence of a small magnitude cut-off m0, below which

earthquakes may occur but cannot trigger aftershocks larger than m0, or a change of the scaling

of N(M) given by (2.3) for small earthquakes, otherwise the seismicity at all scales would be

controlled by infinitely small earthquakes.
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Chapitre 3

Physical mechanisms for earthquake

interactions and triggering

Aftershocks following large earthquakes are evidences that the stress change induced by an

earthquake can trigger earthquakes. There is however no consensus on the underlying cause(s) of

aftershocks and more generally of earthquake triggering. The rate of aftershocks usually decays

with the time from the mainshock as Omori’s law

N(t) ∼ 1/(t + c)p , (3.1)

with p ≈ 1 [Omori, 1894]. This law is observed at all scales, from the dynamics of acoustic

emissions in creep experiments [Scholz, 1968a], to the worldwide seismicity. We review here

possible mechanisms of earthquake triggering that can reproduce Omori’s law 3.1. Most of these

mechanisms may describe both foreshock and aftershock sequences.

3.1 Stress-weakening processes

Sub-critical crack growth, stress corrosion, damage laws, and fatigue laws, are different laws

describing the quasi-static growth of a crack or the creation of new cracks close to the crack

tip. These mechanisms imply a time-dependent strength when subjected to a constant load.

The rupture arises when the strength has decreased to the rupture level. These different laws,

expressed either in terms of crack growth rate, slip velocity or stress, or assuming a distribution of

time to failure, lead to the same Omori law decay of the seismicity following a large earthquake.

Sub-critical crack growth

Sub-critical crack growth has been observed in laboratory experiments [Atkinson, 1979].

This mechanism has been first proposed by Das and Scholz [1981] to explain the behavior of

foreshocks and aftershocks.
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The Griffith criterion states that a crack of length x becomes unstable when the stress

intensity factor K given by

K ≈ σ
√

x , (3.2)

where σ is the stress, reaches a critical value K = Kc. However, before reaching the Griffith

instability K = Kc a crack can grow sub-critically at velocity much less than the dynamic

rupture velocity of the medium. This behavior results from stress corrosion or microplasticity

at the crack tip. Laboratory experiments have shown that the velocity of crack lengthening ẋ

increases with the stress intensity factor K as

ẋ ∼ Kn , (3.3)

where the stress-corrosion index n is a material constant, which varies between 10 and 100

[Atkinson, 1984]. An alternative exponential law has also been proposed [Wiederhorm and Bolz,

1970 ; Atkinson, 1984] :

ẋ ∼ eCK , (3.4)

where C is a constant. Because the corrosion n exponent in (3.3) is very large, these two laws

(3.3) and (3.4) are nearly indistinguishable.

Das and Scholz [1981] assume that aftershocks are due to small patches on the fault of the

mainshock that have been loaded by the mainshock. They assume that following the mainshock

these patches have a uniform distribution of stress-intensity factor K0 in the range [Kmin,Kc].

They derived Omori’s law with p = 1 using the exponential form of the sub-critical crack growth

law (3.4). Inserting (3.2) in (3.4) and integrating (3.4) gives the time to failure tc as a function

of the stress intensity factor K0 following the mainshock [Wiederhorm and Bolz, 1970]

tc ∼ exp(−C ′K0) , (3.5)

where C ′ is a constant. Assuming a uniform distribution of stress-intensity factor in the range

[Kmin,Kc], the seismicity rate r(tc) at time tc following the mainshock can be evaluated as

r(tc) = P (K0)
dK0

dtc
∼ 1

t
, (3.6)

where P (K0) is the initial distribution of K after the mainshock.

An Omori law also arises when using equation (3.3), with an exponent p depending on the

stress-corrosion index n. Shaw [1993] derives the Omori law decay of aftershocks from (3.3),

assuming as in [Das and Scholz, 1981] an initial uniform distribution of stress intensity factor

K0 following the mainshock. The sites that have the highest stress after the mainshock will fail

before the others, while those at lower stress will take longer to rupture. The power-law decay

of the rate of aftershocks following a mainshock occurs because a distribution uniform in stress

gets stretched by the acceleration dynamics (3.3) into a non-uniform distribution in time.

Using (3.3) and (3.2), the stress intensity factor K evolves with time according to

σ2 Kn−1 = CK̇ , (3.7)
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where C is a constant. Integrating (3.7) and assuming a constant stress σ, we obtain

K(t) ∼ 1(
tc − t

) 1
n−2

, (3.8)

where the failure time tc is given by

tc =
K0

2−n

C(n − 2)
, (3.9)

where K0 is the initial value of K.

The rate of aftershocks r(tc) at time tc following the mainshock can be evaluated as

r(tc) = P (K0)
dK0

dtc
∼ 1

tc
1+ 1

n−2

. (3.10)

This relation gives an Omori law decay of aftershocks with an exponent p = 1+ 1
n−2 , slightly

larger than 1 for large n. This results retrieves as a special case for n = ∞ the 1/t Omori

law decay derived by Das and Scholz [1981] using (3.4). Other choices of the initial state of

the patches following the mainshock will lead to different forms of the rate of aftershocks and

different values of the Omori exponent.

This law (3.3) has also been used by Yamashita and Knopoff [1987] and Reuschlé [1990] to

model aftershocks behavior, and by Yamashita and Knopoff [1989] and Shaw [1993] to model

foreshock sequences.

Yamashita and Knopoff [1987, 1992] also assume a power-law distribution of crack lengths.

As a consequence, the Omori exponent p depends both on the corrosion exponent n and on the

exponent of the crack length distribution.

Stress corrosion, damage laws.

Stress corrosion cracking is a consequence of fluid-induced corrosion at crack tips. Laboratory

experiments show that the presence of water in a rock sample alter the mechanical properties of

the sample and decrease its strength. The stress corrosion is thought to be the main mechanism

of sub-critical crack growth. The presence of fluid can also have a chemical effect on minerals

directly, without the need for pre-existing cracks [see for a review Sornette, 1999a].

We study here a particular stress-corrosion law used by [Lee and Sornette, 2000] to model

aftershocks. In contrast with the sub-critical crack growth law (3.3), this law is not derived from

laboratory experiments. Lee and Sornette [2000] assume that the material strength B decreases

with time when subjected to a stress σ as

dB

dt
∼ −σn . (3.11)

This law is justified by the fact that fluids subjected to a static stress can alter the mechanical

properties of rocks at microscopic scales by hydrolitic weakening. This law describes damage and
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stress-weakening induced by stress-corrosion at microscopic scales in the absence of fractures,

while the law (3.3) describes the macroscopic effect of stress-corrosion on a pre-existing fault.

The stress-corrosion can be modeled either by a decreasing strength as in (3.11) or by an

increasing damage or inelastic deformation.

Introducing the stress corrosion law (3.11) in the cellular automata model of Christensen

and Olami [1992], Lee and Sornette [2000] reproduce a 1/t power-law decay of aftershocks, deco-

rated by log-periodic oscillations. Note that the model of Christensen and Olami [1992] without

weakening process displays some temporal correlations, which are more important for larger

dissipation. However, this simple model is not able to reproduce realistic aftershock sequences.

Lee and Sornette [2000] assume that the material strength B(t) evolves according to (in

dimensionless units)

B(t) = B0 − σn

B0
(t − t0) , (3.12)

where B0 is the strength at time t0. A rupture occurs when the strength B decreases to the

stress level. Using a mean-field approximation, replacing the stress in one point by the average

stress, they derive an analytical solution for the seismicity rate that is in very good agreement

with numerical simulations. Assuming that the strength B0 at time t0 is much larger than the

stress, the time tc needed for an isolated element to reach failure is given by

tc ≈ B2
0

σn
. (3.13)

Over this interval tc, essentially one event occurs on average per site and, as a consequence, the

average stress goes from σ to (1 − γ)σ, corresponding to a stress drop γσ. We can thus write

dσ

dt
∼ −γσ

tc
≈ γσ1+n

B2
0

, (3.14)

whose solution is

σ(t) ∼ (t + c)−1/n , (3.15)

where c is a constant determined from the initial state. The seismicity rate r(t) is proportional

to 1/tc because tc is the average time between two ruptures on each site. Inserting (3.15) in

(3.13) gives Omori’s law decay of aftershocks with p = 1. The fundamental difference between

this model and the sub-critical growth law used by e.g. Das and Scholz [1981] or the rate-and-

state model of Dieterich [1994] is that, in the model of Lee and Sornette [2000], the Omori law

decay of aftershocks arises from the sum of the stress drops induced by all aftershocks, while

in the models of [Das and Scholz, 1981 ; Dieterich, 1994] Omori’s law is due only to the stress

step induced by the mainshock, neglecting the interactions between earthquakes. The Omori

law derived by Lee and Sornette [2000] is the “global” law taking into account all aftershocks

triggered indirectly by the mainshock. Das and Scholz [1981] and Dieterich [1994] derived in

their model the “local” Omori law which describes the number of aftershocks directly triggered

by the mainshock, neglecting the secondary aftershocks triggered by other aftershocks.
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Fig. 3.1 – Time history of the stress and strength of an element subjected to static stress perturbations

at two different times t0earlier
and t0later

. The crack length evolves according to the stress-corrosion law

(equation 3.11). For the earlier perturbation the change in strength rate ∆(dB/dt) is smaller than for

the later perturbation because the strength B(t0) at the time of the stress change is higher, and it takes

more time to reach failure. However, the clock-advance time ∆t is larger for the fault perturbed earlier

in its cycle.

We can also use the stress-corrosion law (3.11) used by Lee and Sornette [2000] to derive the

local Omori law in their model. Different choices of the initial conditions after the mainshock

will give different forms of the aftershock decay rate.

First, the relation (3.13) between the time to failure and the stress is very close to the

expression (3.9) of tc derived using the sub-critical crack growth law (3.3). Therefore, if we assume

that the effect of the mainshock is to redistribute uniformly the stress between a minimum value

and the strength B, we obtain an Omori law decay of aftershocks with an exponent p = 1+1/n.

We can derive another form of the aftershock decay rate assuming a constant seismicity rate

before the mainshock, instead of a uniform distribution of stress following the mainshock. We

model here the effect of the mainshock by a uniform stress step. The effect of a stress step

induced by the mainshock is to “clock-advance” the failure. Indeed, looking at equation (3.11)

shows that the strength decreases faster for a higher applied stress, and therefore the failure

time decreases with increasing stress. Figure 3.1 illustrates the effect of a stress step on a fault

which evolves according to (3.12). The failure clock advance ∆t is larger if the stress step is

applied earlier in the loading cycle.

For a constant applied stress σ0, the failure time tc is given by

tc =
B0(B0 − σ0)

σ0
n

, (3.16)
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where B0 is the strength at the beginning of the loading cycle at time t = 0.

If a stress step from σ0 to σ1 is applied at time t0, the failure time is advanced from tc to t′c

t′c = t0 + t if t > 0 else t′c = t0 , (3.17)

where the time t between the static stress change and the rupture is given by

t =
(B0 − σ0

n t0/B0)(B0 − σ0
n t0/B0 − σ1)

σ1
n

. (3.18)

Assuming a population of faults with a uniform distribution of initial states P (t0) in the interval

[0, tc] the seismicity rate following the stress step applied at time t = 0 is given by

r(t) = P (t0)
dt0
dt

. (3.19)

Using the relation (3.18) for t, we obtain

r(t) ∼ 1√
c + t

for t < tmax ,

= 0 for t > tmax , (3.20)

where the crossover time c is given by

c =
σ0

n−1

4σ1
n−2

, (3.21)

and tmax is the duration of the aftershock sequence, given by the time to failure t′c of a fault

perturbed at time t0 = 0

tmax = t′c(t0 = 0) =
(B0 − σ1)B0

σ1
n

. (3.22)

Expression (3.20) gives a crossover between a constant seismicity rate for times t < c and

a power-law decay with an exponent p = 0.5 at times c < t < tmax. Therefore, a stress step

induced by a mainshock leads to a power law decay of aftershocks at larges times t > c with

an exponent p < 0.5 smaller than the exponent p = 1 of the global law taking into account the

multiple interactions between aftershocks. The faster decay obtained when taking into account

the stress changes induced by the aftershocks is due to the fact that aftershocks decrease the

stress on average (because of the stress dissipation in the lattice and at the boundary of the

lattice) and therefore decreases the rate of following aftershocks.

The damage law (3.11) can also be used to model an inverse Omori law acceleration of

foreshock rate before a mainshock [Sornette et al., 1992].

Fatigue laws, Arrhenius processes

Static fatigue laws describe the time dependent failure under a constant load of a broad

variety of materials. The static fatigue of materials under uniaxial tension has been described

by the law [Zhurkov, 1965]

tc ∼ exp
(U − γσ

RT

)
, (3.23)
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where tc is the average time to failure, σ is the stress, T is the absolute temperature, R is the

universal gas constant, U is an activation energy (proportional to the strength in absence of

corrosion) and γ is a constant. This law has been shown to derive from a sub-critical crack

growth law (3.4) by Wiederhorm and Bolz [1970].

Scholz [1968b] first suggested this mechanism to explain aftershocks. He derived Omori’s law

with p = 1 using a static fatigue law and assuming that

– a uniform initial distribution of stress,

– all ruptures are independent,

– each element fails only once.

He also used the same model in [Scholz, 1968a] to reproduce the creep in brittle rocks.

Equation (3.23) corresponds to a probability of failure per unit time under a stress σ given

by

µ(σ) ∼ exp
( γσ

RT

)
. (3.24)

The fraction of elements subjected to a stress σ that fails between time t and t + dt is given by

n(σ, t)dt = µ e−µ(σ)t dt . (3.25)

To obtain the global rate of failure r(t) for the whole populations of elements, we integrate

equation (3.25) over the population of initial stress P (σ).

r(t) =
∫

µ(σ) e−µ(σ)t P (σ) dσ (3.26)

Scholz [1968b] assumes a uniform distribution of initial stress P (σ) in the interval [0, S]. In this

case, the seismicity rate r(t) given by (3.26) is

r(t) ∼ 1
t

[e−µ(0)t − e−µ(S)t] , (3.27)

which gives an Omori law decay of the rate of activity with p = 1 for 1/µ(S) � t � 1/µ(0).

Each element subjected to a stress σ has an exponential decay of the probability of failure given

by (3.25), with a characteristic time depending of the stress (3.23). The power-law decay of the

global seismic activity arises from the superposition of exponential decay rates with a power-

law distribution of characteristic times P (tc). Indeed, a uniform distribution of stress gives a

power-law distribution of times tc

P (tc) = P (σ)
dσ

dtc
∼ 1

tc
. (3.28)

We can generalize the model of Scholz [1968] to other choices of the distribution of initial

stress P (σ). We consider here the same model as in Scholz [1968] but with an exponential

distribution of energies E = U − γσ [Helmstetter and Sornette, in preparation]

P (E) ∼ e
− E

E0 , (3.29)
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corresponding to an exponential distribution of stress barriers U/γ −σ. In order to evaluate the

rate of activity r(t), we transform (3.26) into

r(t) =
∫

µ e−µt P (µ) dµ . (3.30)

where P (µ) is given by

P (µ) = P (E)
dE

dµ
= µθ−1 , (3.31)

where θ is given by θ = RT
E0

. Putting (3.31) in (3.30) we obtain

r(t) ∼ 1
t1+θ

, (3.32)

which gives an Omori law decay of the rate of activity with p = 1+ θ = 1+ RT
E0

. In this case, the

power law decay comes from the competition between the exponential distribution of energies

P (E) and the exponential relation between µ and E (see chapter 14.2.2 in [Sornette, 2000a]).

The model of Scholz [1968b] can be seen as a special case of our model for E0 = ∞, corresponding

to θ = 0 and thus p = 1.

Marcellini [1995, 1997] uses the same fatigue law (3.23) to describe aftershocks but with a

very different model. He assumes that each aftershock decreases the stress in the fault zone.

In this model, there is no disorder on the stress or strength field. The seismicity rate decreases

with time due to the stress decrease induced by all aftershocks. He finds that the cumulative

energy release increases as E ∼ log(t)+ constant. This law corresponds to Omori’s law decay of

the seismicity rate with p = 1 if the distribution of aftershock energies is independent of time.

Assuming that all events have the same stress drop ∆σ, and starting from a stress σ0 at the

time of the mainshock, the time interval between two aftershocks i and i + 1 is given by

ti+1 − ti ∼ e−
γσ0−(i+1)γ∆σ

RT − e−
γσ0−iγ∆σ

RT ∼ e−
iγ∆σ
RT ∼ ti . (3.33)

Therefore, the seismicity rate at time ti is given by

r(ti) = (ti+1 − ti)−1 ∼ 1
ti

, (3.34)

which decays with time according to Omori’s law with p = 1. This analysis considers only stress

decrease induced by all aftershocks and neglects the stress increase due to each aftershock.

The models of Scholz [1968b] and Marcellini [1995, 1997] use the same law (3.23) to reproduce

Omori’s law, but with very different mechanisms. In Scholz’s model, the stress decreases with

time because the weaker elements fail earlier, but this model neglects the stress changes induced

by aftershocks. In Marcellini’s model, the stress decreases with time due to the stress drop

induced by all aftershocks.

Moreno et al. [2001] used another fatigue law proposed by [Coleman, 1957] to reproduce

aftershock behavior in a cellular automata model [Christensen and Olami, 1992]. They assume

that the characteristic time-to-failure tc increases with the stress barrier ∆σ as

tc ∼
(
∆σ
)n

, (3.35)
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Fig. 3.2 – Time history of the growth rate of a crack subjected to static perturbations at two different

times. The crack length evolves according to the rate and state friction law (equation 3.36). For the

earlier perturbation the incremented growth rate ∆(dx/dt) is smaller than for the later perturbation

because dx(t0)/dt is smaller, and it takes more time to reach failure. However, relative to the rate with

no perturbation, the crack perturbed earlier spends a greater fraction of its total time to failure at an

elevated rate and thus experiences a greater change in its failure time ∆t (adapted from Figure 3 of

[Gomberg, 2001]). Although this example is for Rate-and-state dependent friction law, the same negative

correlation between ∆t and the time of the stress perturbation applies to all accelerating failure models,

such as the sub-critical crack growth.

where ∆σ is the distance to the failure threshold, and the n-exponent is in the range [2 − 50].

For large n values, this law is very similar to the exponential law (3.23) used by [Scholz, 1968b ;

Marcellini, 1995, 1997]. They obtained aftershock sequences obeying Omori’s law with p = 1 (or

close to 1) independently of the n-exponent and of the dissipation.

3.2 Rate-and-state dependent friction

Rate and state friction laws have been proposed by Dieterich [1994] to explain the clustering

of seismicity and the pattern of aftershocks. The rate-and-state friction law is defined by [Ruina,
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1983]

τ = σ[µ0 + A ln(v/v0) + B(θ/θ0)] , (3.36)

where τ and σ are shear and normal stress respectively, v is slip velocity, and θ is a state variable.

The state variable θ evolves according to

dθ

dt
= 1 − θv

Dc
, (3.37)

where Dc is the characteristic sliding distance for evolution of fault state. These laws lead to an

unstable slip if B > A, because in this regime the steady-state friction coefficient decreases with

increasing slip velocity. Preceding an earthquake, the slip velocity goes to infinity in finite time

tc. Close to the instability, the velocity evolves as [Dieterich, 1994]

v ∼ 1
tc − t

, (3.38)

where tc is determined by the initial conditions and the friction parameters.

The effect of a stress step induced by a mainshock on a fault will be to increase the slip

rate on the fault and to advance the time to failure tc, as illustrated in Figure 3.2. The effect of

increasing the shear stress by δτ is to increases the slip velocity from v to v′ according to

v′ = v exp(
δτ

Aσ
) , (3.39)

where A is a parameter of the friction law (3.36) and σ is the normal stress. Therefore, a stress

step induced by a mainshock will trigger aftershocks by advancing their failure time. The new

failure time t′c following a stress step is given by t′c = tc−∆t. The advance of the failure time ∆t

is more important for faults which were far from the rupture before the stress step, as illustrated

by Figure 3.2

Assuming an infinite population of faults with the same properties and with a uniform seis-

micity rate before the mainshock, the stress step induced by the mainshock triggers aftershocks

with a rate given by Omori’s law (3.1) with p = 1. This result has been derived analytically

by Dieterich [1994] This analysis neglects the multiple interactions between aftershocks. The af-

tershocks are triggered by a single stress step induced by the mainshock, and subsequent stress

changes induced by the aftershocks are neglected.

The duration of the aftershock sequence Ta is much smaller than the duration of the seismic

cycle Tr. The aftershock duration for a mainshock stress ∆τ is given by

Ta =
AσTr

∆τ
. (3.40)

The assumption of a constant seismicity rate before the mainshock implies a uniform distri-

bution of initial times 0 < t0 < tc measured from the last rupture. The seismicity rate r(t) can

be evaluated from the expression of the clock advance ∆t as a function of the initial state t0 of
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the fault. Following a stress step applied at time t = 0, the rate of failure at time t = t′c − t0 is

given by [Gomberg et al., 2000]

r(t) = −P (t0)
dt0
dt

∼ P (t0)
1 − d∆t

dt0

. (3.41)

The power-law distribution of aftershock times with p = 1 derives from the non-linear depen-

dence of ∆t on the initial state t0. Rather than fixing the state of the faults following the stress

step as done by [Das and Scholz, 1981], we can use (3.41) to compute the seismicity rate r(t)

depending on the initial state P (t0) of the fault before the mainshock.

Introducing a spatial dependence of the stress released by the mainshock modifies the decay

law of the aftershock rate, which decays as an apparent power-law with an exponent p ≈ 0.8

when considering only aftershocks at a fixed distance from the mainshock [Dieterich, 1994].

Ziv and Rubin [2002] use a numerical model of seismic activity on a fault, closely based on

the numerical model of Dieterich [1995], which incorporates the rate and state friction law, in

order to test the effect of multiple interactions between earthquakes on the decay of aftershocks.

They obtained the same 1
t decay law of aftershocks following a mainshock than Dieterich [1994]

when taking into account the multiple interactions between aftershocks. The duration of the

aftershock sequence is longer when taking into account these multiple interactions. They also

derived analytical solutions for the seismicity rate following a mainshock and taking into account

the stress changes induced by all aftershocks, which are in good agreement with the numerical

simulations.

Dieterich and Kilgore [1996] suggest that the rate and state friction law may also reproduce

foreshock sequences. In the rate and state friction model proposed by Dieterich [1994], foreshocks

can be generated by two mechanisms :

– By the same mechanism leading to aftershock sequences following a stress step induced by

a mainshock, this model can generate foreshocks if an aftershock becomes larger that its

triggering event. An aftershock can be larger that the triggering event, but with a small

probability, because all magnitudes are determined in the GR law independently of the

magnitude of the triggering event.

– Foreshock may be triggered by the strain changes of the mainshock nucleation process.

The accelerating slip due to the mainshock nucleation perturbs the stressing rate at a fore-

shock nucleation source and therefore increases the seismicity rate. They derive analytical

solutions for the foreshock rate induced by this mechanism.

3.3 Visco-elastic relaxation of the lower crust

Viscous relaxation as been proposed by [Mikumo and Miyatake, 1979 ; Hainzl et al., 1999,

2000 ; Pelletier, 2000] to explain aftershock behavior.

Mikumo and Miyatake [1979] used a numerical model of a fault with a uniform distribution
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of relaxation times. They also introduce a weakening and healing of the strength following an

earthquake. They obtained an Omori law decay with 1.1 < p < 1.4 for the same time range

than the distribution of relaxation times. The p-exponent is found to decrease with increasing

heterogeneity of the frictional strength, and to increase if the healing time decreases.

Hainzl et al. [1999, 2000] used a cellular automata similar to the model of Christensen

and Olami [1992]. They introduce post-seismic transient creep at the vicinity of the rupture.

They assume that the stress dissipated during the rupture is then relaxed by the viscous crust.

Following at earthquake, the visco-elastic relaxation of the crust leads to an exponential increase

of the stress ∆σ according to

∆σ ∼ 1 − e−t/T , (3.42)

where T is the characteristic time of the viscous relaxation. The only heterogeneity in their model

is the initial distribution of the stress. They obtain both foreshock and aftershock sequences,

with the same p-exponent for foreshocks and aftershocks, but for very limited time intervals of

the order of the relaxation time. The p value increases if the relaxation time T decreases. The

p-value is also found to increase with the spatial coupling length of the viscous relaxation.

Pelletier [2000] has extended the previous model to include a distribution of static coefficient

of friction in order to model structural heterogeneity, and obtained similar results.

Therefore, this mechanism cannot explain the Omori’s law decay observed for very long time

ranges, unless assuming a wide heterogeneity of the viscous relaxation time.

3.4 Pore fluid flow

Shallow earthquakes can induce changes in the fluid pore pressure that are comparable

to stress drops on faults. The subsequent redistribution of pore pressure as a result of fluid

flow slowly decreases the strength of rock and may result in delayed fracture. This mechanism

has been proposed by Nur and Booker [1972] to reproduce aftershock behavior. Following an

earthquake, pore fluid flows from regions of compression to regions of dilatation. This flow causes

an increase of pore pressure and a consequent decrease in the strength in the regions of dilatation.

Aftershocks occur if the strength drops to the level of the shear stress. The initial pore pressure

P (r, 0) is given by the hydrostatic stress σ(r) induced by the mainshock

P (r, 0) ∼ sin θ/r (3.43)

in a coordinate system r, θ around the end of the crack. The initial pore pressure field (3.43) is

characterized by a compression on one side of the fault tip and by a dilatation on the other side.

After the mainshock, the fluid will flow from regions of compression toward those of dilatation.

The pore pressure P diffuses according to

∂P (r, t)
∂t

= c∇2P (r, t) , (3.44)
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which gives

P (r, t) ∼ 1 − e−
r2

4ct

r
sin θ , (3.45)

where c is the hydraulic diffusivity. The peak of the fluid pressure diffuses with time as t1/2. The

pressure at the peak decays as t−1/2. Nur and Booker [1972] suggests that the rate of aftershocks

is proportional to the time-derivative of the pore pressure, integrated over the volume

r(t) ∼
∫

∂P

∂t
dv ∼ 1

t1/2
. (3.46)

This mechanism reproduces an Omori law decay of the aftershock rate but with an unrealistic

exponent p = 0.5 smaller than the usual value p ≈ 1.

Moreover, the pore-fluid flow mechanism cannot be the sole explanation for aftershock trig-

gering because aftershocks occur predominantly at the edge of the mainshock high-slip regions,

while the fluid flow mechanism implies a diffusion of the aftershock activity with time that is

not always observed in aftershock sequences [Mendoza and Hartzell, 1988 ; Scholz, 1990 ; and

chapter 9 of this work].

3.5 Dynamics of stress redistribution on a hierarchical fault net-

work

Many studies have proposed that the fault networks are scale-invariant (see for a review

[Bonnet et. al., 2001]). This fractal pattern may result from fragmentation models [e.g. Redner,

1990a, Cowie et al., 1993, 1995]. Some studies have proposed that the dynamics of stress distri-

bution on pre-existing hierarchical structures of faults or tectonic block can reproduce foreshock

and aftershock patterns [Blanter et al., 1997 ; Huang et al., 1998 ; Narteau et al., 2000 ; Gabrielov

et al., 2000].

Huang et al. [1998] use a cellular automata model with a pre-existing fractal cell structure

to model both foreshock and aftershock sequences. The loading and the redistribution of stress

following an earthquake are controlled by the size of the fault. The system is loaded by adding

particles at random sites, with a probability proportional to the cell area. The rupture threshold

is also proportional to the cell area. The number of particles redistributed to an adjacent cell

is proportional to the length of the cell. This model thus introduces coupling between cells of

different sizes, mimicking the multi-scale interactions between faults. This system self-organizes

in a stationary regime, with foreshock and aftershock sequences preceding and following cha-

racteristic earthquakes involving the largest cells. They obtained a p-value close to 0.9, with

small fluctuations between 0.85 and 1.05. All mechanisms previously discussed involve a delay

mechanism between a stress change and the rupture. In this model, this delay arises from the

spatial heterogeneity of the loading rate and from the hierarchical structure.

Gabrielov et al. [2000] also reproduce foreshocks and aftershocks using a hierarchical model

which incorporates
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– a direct cascade of loading : the stress is applied to the largest elements and then redistri-

buted to the smaller scales ;

– an inverse cascade of fracturing, which goes up the hierarchy, from the smaller to the larger

elements.

Blanter et al. [1997] use a hierarchical model of blocks that reproduces aftershocks and

foreshocks. Four blocks at a given level compose a block of the upper level. A memory effect

is introduced at the smaller scale. Present states are determined by previous states of blocks

at the same level. The perturbation then moves from the lower levels to the higher ones. This

model reproduce Omori’s law decay of aftershocks with 0.8 < p < 1.2 depending on the model

parameters.

Narteau et al. [2000] consider a hierarchical system made of embedded cells of increasing

levels. This model includes

– a direct cascade of stress redistribution after each event (from higher to lower levels). An

event of scale k affects the stress in all the smallest-scale cells located in their neighborhood.

– a inverse cascade of fracturing (from lower to higher levels). An earthquake of a given

scale k is associated with the moving state of a cell of level k and results from the coherent

self-organization of fractures of lower scales.

– a constant healing rate following a rupture.

This model reproduces Omori’s law decay of aftershocks with the exponent p in the range [1.1-

1.5]. The power-law decay of aftershock rate is due to the heterogeneity of the stress field. An

inverse Omori’s law is also observed with a smaller exponent 0.6 < p′ < 0.9.

3.6 Are earthquakes triggered by static or dynamic stress changes ?

Most models of seismicity triggering assume that earthquakes are triggered by static stress

changes. However, the dynamic stress change induced by the mainshock is larger than the

static stress change, especially at large distances from the mainshock, because it decays more

slowly than the static stress change. Static stress changes may trigger earthquakes both (i) by

permanently incrementing the tectonic load acting on a fault and (ii) by altering properties of

the fault. Dynamic stress changes can only trigger by the latter mechanism because they are

transient.

Gomberg [2001] suggests that aftershock sequences cannot be triggered by the dynamic stress

field for a large class of triggering mechanisms. All mechanisms, such as sub-critical crack growth

or rate and state dependent friction, characterized by a non-linear acceleration of the sliding

velocity under a constant stress rate, cannot explain the triggering of aftershocks by the dynamic

stress at times significantly longer than the mainshock duration. Contrary to the case of a static

stress step, the failure advance ∆t induced by a dynamic stress perturbation is larger for the

faults which were closer to the rupture before the perturbation (see Figure 3.3). Therefore, a
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Fig. 3.3 – Time history of the growth rate of a crack subjected to dynamic perturbations at two different

times. The crack length evolves according to the theory of sub-critical crack growth (equation 3.3). For

the earlier perturbation the incremented growth rate ∆(dx/dt) is smaller than for the later perturbation

because dx(t0)/dt is smaller. The dynamic stress step advances the failure time tc by a time ∆t. This

clock-advance time ∆t increases if the time when the stress step is applied increases(adapted from Figure

2 of [Gomberg, 2001]).

dynamic perturbation increases the seismicity rate only for a time equal to the duration of the

transient, and then the seismicity rate becomes equal to or smaller than the background rate.

While there are some evidences that dynamic stress change may trigger aftershocks [Gomberg

et al., 2001; Harris et al., 2002], the physical mechanisms are not yet understood. Possible me-

chanisms to explain dynamic triggering must induce a permanent decrease of the fault strength

under a transient stress change, for example by cyclic fatigue.

3.7 Conclusion

Many physical mechanisms can reproduce Omori’s law decay of aftershocks.

– These triggering mechanisms are either deterministic (almost all mechanisms) or stochastic

(fatigue laws) ;
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– These mechanisms either introduce explicitly a time delay between a static stress step and

the failure (sub-critical crack-growth, pore fluid flow, damage laws, fatigue laws, viscous

relaxation), or this delay arises from the multi-scale interactions between faults and the

spatial heterogeneity of the loading rate [Huang et al., 1998].

– These mechanisms assume different initial conditions, either before or immediately after

the mainshock. The effect of the mainshock is either to redistribute uniformly the stress

between a minimum value and the rupture threshold [Scholz, 1968b ; Das and Scholz, 1981 ;

Shaw, 1993], or to increment the stress by a static step [Nur and Booker, 1972 ; Dieterich,

1994]. In the last case, the initial conditions before the mainshock are fixed by assuming

a constant seismicity rate before the mainshock [Dieterich, 1994] or a uniform stress [Nur

and Booker, 1972].

– The Omori law decay of aftershock is either local, taking into account only the direct

aftershocks triggered by the stress step induced by the mainshock [Scholz, 1968b ; Nur

and Booker, 1972 ; Das and Scholz, 1981 ; Dieterich, 1994], or global, resulting from the

multiple interactions between aftershocks [Lee and Sornette, 2000 ; Marcellini, 1995, 1997 ;

Ziv and Rubin, 2002].



Chapitre 4

Possible mechanisms for the

variability of the aftershock decay

law

We have shown in section 3 that many mechanisms lead to Omori’s law decay of aftershocks

following a stress step induced by a mainshock.

Observations of aftershock decay suggest that the Omori exponent is not always equal to 1,

but ranges between 0.3 and 2 [Davis and Frohlich, 1991a; Kisslinger and Jones, 1991; Guo and

Ogata, 1995; Utsu et al., 1995]. What determines the variability of p value ? Is p universal, as

proposed by many physical models of aftershocks, or a function of the material properties of the

crust, which are different from one location to another ?

Most mechanisms discussed in section 3 give either p = 1, or an unrealistic small exponent

p = 0.5 [Nur and Booker, 1972]. A few models reproduce a variability of p-value. The p exponent

is found to vary as a function of the corrosion index n when using the sub-critical growth law

(3.3) to model aftershocks [Shaw, 1993]. However, p is very close to one in these models because

the stress-corrosion index n is very large. Hainzl et al. [2002] propose that p value increases if

the relaxation time T decreases. The p-value is also found to increase with the spatial coupling

length of the viscous relaxation. However, their model fail to reproduce a power-law decay of

the aftershock rate over more than one order of magnitude, and is therefore not able to account

for observed aftershock sequences. Dieterich [1994] obtains an apparent exponent p ≈ 0.8 when

including a decrease of the stress with the distance from the mainshock in his model of rate

and state friction. A variability of p-value around 1 is observed by all models that impose a

hierarchical fault structure [Yamashita and Knopoff, 1987 ; Blanter et al., 1997 ; Huang et al.,

1998 ; Narteau et al., 2000]. In [Yamashita and Knopoff, 1987], the p-value is a function of the

corrosion index n and of the exponent of the fault length distribution. The three other papers

[Blanter et al., 1997 ; Huang et al., 1998 ; Narteau et al., 2000] do not explain the variability of p
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found in their numerical models. In the previous section, we have derived an analytical solution

of the Arrhenius model of aftershocks coupled with an exponential distribution of stress. This

analysis predicts an increase of p with the temperature T . In this model the deviation of p from

1 measures the ratio of the stress heterogeneity over the thermal agitation.

Are there others mechanisms that induce a variability of p-value ?

Lee [1999] claimed that his cellular automata model including stress-corrosion (3.11) was

able to reproduce a realistic variability of p by two mechanisms :

– p-value decreases below 1 for small values of the corrosion index n < 1 ;

– p can be smaller than 1 if only a fraction of the elements of the lattice is subjected to the

stress-corrosion mechanism.

We have made numerical simulations using the same model as the one used by Lee [1999] and we

have not been able to reproduce a variability of p-value with these mechanisms. In contrast, we

found that either a small value of the corrosion index or a small fraction of elements subjected to

stress corrosion leads to an increase in the crossover time c in (3.1) that can be interpreted as an

apparent decrease of p-value at early times, due to the crossover between a constant seismicity

rate at small times and the 1/t power-law decrease of the seismicity rate at large times.

Marcellini [1995] claims that the p-value increases with the temperature in his Arrhenius

model of aftershocks. This result is however incorrect. The correct analysis we derived in the

previous section gives p = 1 independently of the temperature.

We study below two mechanisms to explain the variability of p-value

– we show that a variability of p-value can be obtained in the model of Lee [1999] when

introducing a disorder in the corrosion index n ;

– we obtain a variability of p-value with the temperature using a fatigue law (3.23). Using

numerical simulations of a cellular automata model including the Arrhenius law (3.23) we

obtain a decrease of p with the temperature T , in contrast with the increase of p with T

obtained analytically when neglecting the interactions between aftershocks.

4.1 Stress-corrosion model

We consider the same model as in [Lee and Sornette, 2000]. This model is similar to the

cellular automata of Christensen and Olami [1992] with an additional stress-corrosion process

described by equation 3.12. As in [Lee and Sornette, 2000], the system is loaded by increasing

uniformly the stress. When the system reaches the stationary state, we stop the external loading

and study the relaxation of the system. An initial stress threshold B is assigned to each cell

from a uniform distribution in the interval [1 − r, 1 + r].

In this model, a element can fail by 3 mechanisms :

– when its stress σ reaches its threshold B due to the external loading µ = dσ
dt ;

– when its stress σ reaches its threshold B because of the stress redistributed by a neighbor
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during an avalanche ;

– by stress-corrosion when the strength decreases to the stress level.

When an element i, j fails, its stress σi,j is redistributed to the neighboring sites according

to

σ′
i,j = (1 − γ) σi,j (4.1)

σ′
i,j±1 = σi,j±1 +

(1 − β)
4

γσi,j (4.2)

σ′
i±1,j = σi±1,j +

(1 − β)
4

γσi,j , (4.3)

where β is the stress dissipation and γ is the relative stress drop. When an element fails, its

threshold B is reassigned uniformly in the interval [1 − r, 1 + r]. Between two avalanches, the

strengths B of all sites decay with time according to (3.12). When the external loading is stopped,

the system relaxes to an equilibrium of zero stress due to the stress dissipation induced by the

avalanches (”aftershocks”).

Our preliminary results show that heterogeneities in strength, stress drop or stress dissipation

still yield a universal p = 1 exponent for Omori’s law in agreement with the mean field analysis of

Lee and Sornette [2000], while any disorder in the exponent n of the stress corrosion mechanism

relating the damage rate dB/dt ∝ σn to the local stress σ gives p < 1 which becomes a continuous

function of the heterogeneity of the corrosion index. If n is heterogeneous, the p-value also

depends on the stress drop γ and on the dissipation β, while it is independent of γ and β if n is

homogeneous.

Figure 4.1 compares different simulations with β = 0.1, γ = 1, r = 0.75, a lattice size L = 50

and with n ranging between 0.1 and 10 without heterogeneity on n. In all cases, we obtain p = 1

but the lower cut-off increases if n decreases. This may explain the decrease of p with n found

by Lee [1999]. We have also tested that p is independent on the dissipation β, the stress drop γ

and the heterogeneity of the strength field r.

If we introduce a disorder in the distribution of the stress corrosion index n, p becomes a

continuous function of the stress drop γ, of the heterogeneity of n and of the dissipation β. It

is however independent of the heterogeneity r of the strength field. The heterogeneity of n also

introduces a crossover in the decay of the average stress. Figure 4.2 shows the seismicity rate

and the average stress for a numerical simulation with n uniformly distributed between 1 and 5.

The variability of p with the heterogeneity on n is shown on Figure 4.3a. The p-value also

depends on the stress drop γ and in the dissipation β as shown in Figure 4.3b,c, while it is

independent of γ and β if n is homogeneous.

We have also performed simulations with an external loading µ = dσ/dt. In this case, follo-

wing a transient Omori decay, the seismicity rate goes to a stationary regime characterized by

a constant seismicity rate. The distribution of avalanches sizes is different from the power-law

distribution of avalanches obtained without stress corrosion, as illustrated in Figure 4.4. By
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Fig. 4.1 – Rate of aftershocks for different simulations with β = 0.1, γ = 1, r = 0.75, a lattice size L = 50

and with n ranging between 0.1 and 10 without heterogeneity on n. In all cases, we obtain p = 1 but the

lower cut-off increases if n decreases. The average stress (b) decays with time as t−1/n in agreement with

the mean-field analysis of Lee and Sornette [2000].
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Fig. 4.2 – Rate of aftershocks (a) and average stress (b) for a simulation with β = 0.1, γ = 1, r = 0.75,

a lattice size L = 50 and with n uniformly distributed in the range [1, 5] The seismicity rate decays as

a power-law with an exponent p = 0.905 without crossover. In contrast, the average stress presents a

crossover at time t ≈ 107 between a power-law decay with exponent p1 = 0.282 for t < 105 and a smaller

exponent p2 = 0.229 for t > 1010. The exponent of the stress decay is close to 1/nmax = 0.2. The stress

decay is mostly controlled by the sites which have the larger corrosion index n = nmax = 5.
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Fig. 4.3 – Variability of the Omori exponent for different simulations with r = 0.75, a lattice size L = 20

and with n uniformly distributed in the range [1, nmax] (a) for different values of nmax with γ = 1 and

β = 0, (b) for different values of γ with nmax = 10 and β = 0, (c) for different values of β with nmax = 5

and γ = 1. We obtain a variability of p in the range [0.8, 1] depending on γ, β and nmax.
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Fig. 4.4 – Avalanche size distribution in the stationary regime for numerical simulations with (circles)

and without stress corrosion (crosses). The parameters for the 2 simulations are a matrix length L = 128,

a stress drop γ = 1, a dissipation β = 0.1, an external loading µ = 1, a strength heterogeneity r = 0.75

and a corrosion index n = 10. For the two cases, the avalanche size follow a power-law distribution for

small sizes with an exponent of the non-cumulative distribution close to 1.4, corresponding to a b-value of

the magnitude distribution b = 0.4. This exponent increases with the dissipation β. The cut-off at large

avalanches sizes is not a finite size effect but is controlled by the dissipation in absence of stress-corrosion.

This cut-off is much smaller when a stress-corrosion process is added.

comparison with the size distribution without stress-corrosion, the proportion of large events is

much smaller. The average stress obtained in the stress-corrosion model in the stationary state

is also smaller that the average stress reached in the cellular automata without stress-corrosion.

The stress-corrosion process destroys the self-organization of the system observed without stress-

corrosion. Because there are no large avalanches in this model, there are no large fluctuations

of the stress field which may trigger aftershocks.

4.2 Arrhenius model

Another possible model of the local Omori’s law involves the activation of rupture over a

local energy barrier by thermal or other sources of agitation (which we shall refer generically as

the thermal agitation T ). This Arrhenius process has been involved by Scholz [1968b], Marcellini
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[1995, 1997] and Moreno et al. [2001] to explain aftershock behavior. The model we study here

is very similar to the cellular automata model used by Moreno et al. [2001] except that we use

Arrhenius law (3.23) of failure rate instead of the power-law dependence between the stress and

the failure rate (3.35) used by Moreno et al. [2001].

We consider the cellular automata of Christensen and Olami [1992] with the same rules of

stress distribution (4.3) than described previously. We start with an initial uniform distribution

of stress 0 < σi,j < 1 and we study the relaxation of the system without tectonic loading (µ = 0)

due to aftershocks triggered by static fatigue. We take a constant strength Bi,j = 1. In this

model, an element can fail either

– due to the stress redistribution during an avalanche if its stress σi,j reaches the failure

threshold Bi,j = 1 ;

– or by static fatigue.

The failure rate by static fatigue under a stress σ is given by

λ(σ) = K e
1−σ

T , (4.4)

where T is the thermal agitation and K is a constant.

We obtain a power-law decay of the aftershocks rate with p decreasing if the temperature

increases, between two crossover times tmin < t < tmax. The lower-cutoff tmin is close to 1

independently of the temperature, while the upper cut-off tmax decreases if T increases. Thus

the duration of an aftershock sequence is longer is T is smaller. The Omori exponent p decreases

from 1 to 0.2 as the temperature increases from 0.001 to 1 (Figure 4.6). The negative correlation

between p and T obtained in the numerical simulations are in disagreement with the positive

correlation predicted by the analytical results presented in section 3. This implies that the

multiple interactions between aftershocks due to the stress changes induced by all aftershocks

have a fundamental importance to control the rate of aftershock activity and cannot be neglected.

At large times t 
 tmax, the seismicity rate reaches a constant level without fluctuations.

The average stress decreases exponentially for t 
 tmax, while it decays slower at early times

t < tmax as seen in Figure 4.5e,f. In large times regime t 
 tmax, there are very few large

avalanches (almost all avalanches involve a single site). Thus there are no aftershocks in this

regime because there are no large fluctuations of the stress field.
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Fig. 4.5 – Rate of aftershocks and variation of the average stress with time for two simulations with

β = 0, γ = 1, K = 1, a lattice size L = 20 and for different values of the temperature (a,c,e) T = 0.1 and

(b,d,f) T = 0.01.
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Abstract

We present an analytical solution and numerical tests of the epidemic-type aftershock (ETAS)

model for aftershocks, which describes foreshocks, aftershocks and mainshocks on the same foo-

ting. In this model, each earthquake of magnitude m triggers aftershocks with a rate proportio-

nal to 10αm. The occurrence rate of direct aftershocks triggered by a single mainshock decreases

with the time from the mainshock according to the “local” modified Omori law K/(t + c)p with

p = 1 + θ. Contrary to the usual definition, the ETAS model does not impose an aftershock to

have a magnitude smaller than the mainshock. Starting with a mainshock at time t = 0 that

triggers aftershocks according to the local Omori law, that in turn trigger their own aftershocks

and so on, we study the seismicity rate of the global aftershock sequence composed of all the



68 Regimes sous-critiques et sur-critiques dans un modele de sismicite

secondary and subsequent aftershock sequences. The effective branching parameter n, defined as

the mean aftershock number triggered per event, controls the transition between a sub-critical

regime n < 1 to a super-critical regime n > 1. A characteristic time t∗, function of all the ETAS

parameters, marks the transition from the early time behavior to the large time behavior. In

the sub-critical regime, we recover and document the crossover from an Omori exponent 1 − θ

for t < t∗ to 1 + θ for t > t∗ found previously in [Sornette and Sornette, 1999a] for a special

case of the ETAS model. In the super-critical regime n > 1 and θ > 0, we find a novel transition

from an Omori decay law with exponent 1 − θ for t < t∗ to an explosive exponential increase

of the seismicity rate for t > t∗. The case θ < 0 yields an infinite n-value. In this case, we find

another characteristic time τ controlling the crossover from an Omori law with exponent 1− |θ|
for t < τ , similar to the local law, to an exponential increase at large times. These results can

rationalize many of the stylized facts reported for aftershock and foreshock sequences, such as

(i) the suggestion [Liu, 1984 ; Bowman, 1997] that a small p-value may be a precursor of a large

earthquake, (ii) the relative seismic quiescence sometimes observed before large aftershocks, (iii)

the positive correlation between b and p-values, (iv) the observation that great earthquakes are

sometimes preceded by a decrease of b-value and (v) the acceleration of the seismicity preceding

great earthquakes.

5.1 Introduction

It is well known that the seismicity rate increases after a large earthquake, for time period

up to one hundred years [Utsu et al., 1995], and distances up to several hundred km [Tajima and

Kanamori, 1985a ; Steeples and Steeples, 1996 ; Kagan and Jackson, 1998 ; Meltzner and Wald,

1999 ; Dreger and Savage, 1999]. The rate of the triggered events usually decays in time as the

modified Omori law n(t) = K/(t + c)p, where the exponent p is found to vary between 0.3 and 2

[Davis and Frohlich, 1991 ; Kisslinger and Jones, 1991 ; Guo and Ogata, 1995 ; Utsu et al., 1995]

and is often close to 1 (see however [Kisslinger, 1993 ; Gross and Kisslinger, 1994] for alternative

decay laws such as the stretched exponential).

These triggered events are called aftershocks if their magnitude is smaller than the first event.

However, the definition of an aftershock contains unavoidably a degree of arbitrariness because

the qualification of an earthquake as an aftershock requires the specification of time and space

windows. In this spirit, several alternative algorithms for the definition of aftershocks have been

proposed [Gardner and Knopoff, 1974 ; Reasenberg, 1985 ; Molchan and Dmitrieva, 1992] and

there is no consensus.

Aftershocks may result from several and not necessarily exclusive mechanisms (see [Har-

ris, 2001] and references therein) : pore-pressure changes due to pore-fluid flows coupled with

stress variations, slow redistribution of stress by aseismic creep, rate-and-state dependent fric-

tion within faults, coupling between the viscoelastic lower crust and the brittle upper crust,



5 Introduction 69

stress-assisted micro-crack corrosion [Yamashita and Knopoff, 1987 ; Lee and Sornette, 2000],

slow tectonic driving of a hierarchical geometry with avalanche relaxation dynamics [Huang et.

al, 1998], dynamical hierarchical models with heterogeneity, feedbacks and healing [Blanter et

al., 1997], etc.

Since the underlying physical processes are not fully understood, the qualifying time and

space windows are more based on common sense than on hard science. Particularly, there is no

agreement about the duration of the aftershock sequence and the maximum distance between

aftershock and mainshock. If one event occurs with a magnitude larger than the first event, it

becomes the new mainshock and all preceding events are retrospectively called foreshocks. Thus,

there is no way to identify foreshocks from usual aftershocks in real time. There is also no way

to distinguish aftershocks from individual earthquakes [Hough and Jones, 1997]. The aftershock

magnitude distribution follows the Gutenberg-Richter distribution with similar b-value as other

earthquakes [Ranalli, 1969 ; Knopoff et al., 1982]. They have also similar rupture process. Mo-

reover, an event can be both an aftershock of a preceding large event, and a mainshock of a

following earthquake. For example, the M=6.5 Big Bear event is usually considered as an after-

shock of the M=7.3 Landers event, and has clearly triggered its own aftershock sequence. One

can trace the difficulty of the problem from the long-range nature of the interactions between

faults in space and time resulting in a complex self-organized crust.

In view of the difficulties in classifying sometimes an earthquake as a foreshock, a mainshock

or an aftershock, it is natural to investigate models in which this distinction is removed and

to study their possible observable consequences. In this spirit, the epidemic type aftershock

(ETAS) model introduced by Kagan and Knopoff [1981, 1987] and Ogata [1988] provides a

tool for understanding the temporal clustering of the seismic activity without distinguishing

between aftershocks, foreshocks and mainshock events. The ETAS model is a generalization of

the modified Omori law, which takes into account the secondary aftershock sequences triggered

by all events. In this model, all earthquakes are simultaneously mainshocks, aftershocks and

possibly foreshocks. An observed “aftershock” sequence is in the ETAS model the result of

the activity of all events triggering events triggering themselves other events, and so on, taken

together. The ETAS model aims at modeling complex aftershock sequences and global seismic

activity. The seismicity rate is given by the superposition of aftershock sequences of all events.

Each earthquake of magnitude m triggers aftershock with a rate proportional to 10αm with the

same coefficient α for all earthquakes. The occurrence rate of aftershocks decreases with the time

from the mainshock according to the modified Omori law K/(t + c)p. The background seismicity

rate is modeled by a stationary Poisson process with a constant occurrence rate µ. Contrary

to the usual definition, the ETAS model does not impose an aftershock to have a magnitude

smaller than the mainshock. This way, the same law describes both foreshocks, aftershocks

and mainshocks. This model has been used to give short-term probabilistic forecast of seismic

activity [Kagan and Knopoff, 1987 ; Kagan and Jackson, 2000 ; Console and Murru, 2001], and
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to describe the temporal and spatial clustering of seismic activity [Ogata, 1988, 1989, 1992,

1999, 2001 ; Kagan, 1991 ; Felzer et al, 2001]. Allthough the elementary results on the stability

of the process have been known for many years [Kagan, 1991], no attempt has been made to

study this model analytically in order to characterize its different regimes and obtain a deeper

understanding of the combined interplay between the model parameters (b, α, p, K, c and µ) on

the seismic activity. We stress below the contrast between previous works in the mathematical

statistical literature and our results.

It should be noted that the ETAS model suffers from an important defect : it is fundamentally

a “branching” model [Harris, 1963 ; Vere-Jones, 1977], with no “loops”. What this means is that

an event has a unique “mother-mainshock” and not several. In the real case, we can expect that

some events may be triggered by the combined loading and action at distance in time and space

of several previous earthquakes. Hence, events should have several “mothers” in general. This

neglecting of “loops” is known in statistical physics as a “mean-field” approximation and allows

us to simplify the analysis while still keeping the essential physics in a qualitative way, even if

the details may not be precisely recovered quantitatively.

Sornette and Sornette [1999a] studied analytically a particular case of the ETAS model, in

which the aftershock number does not depend on the mainshock magnitude, i.e., for α = 0.

Starting with one event at time t = 0 and considering that each earthquake generates an

aftershock sequence with a “local” Omori exponent p = 1 + θ, where θ is a positive constant,

they studied the decay law of the “global” aftershock sequence, composed of all secondary

aftershock sequences. They found that the global aftershock rate decays according to an Omori

law with an exponent p = 1 − θ, smaller than the local one, up to a characteristic time t∗, and

then recovers the local Omori exponent p = 1 + θ for time larger than t∗.

Here, we generalize their analysis in the more general case α > 0 of the ETAS model, which

includes a realistic magnitude distribution. We study the decay law of the global aftershock

sequence as a function of the model parameters (local Omori law parameters and magnitude

distribution). In addition to giving more complete analytical results, we present numerical si-

mulations that test these predictions. We also generalize the investigation and analysis into the

“super-critical” regime. Indeed, depending on the branching ratio n, defined as the mean after-

shock number triggered per event, and on the sign of θ, three different regimes for the seismic

rate N(t) are found :

1. For n < 1 (sub-critical regime), we recover the results of [Sornette and Sornette, 1999a],

i.e. we find a crossover from an Omori exponent p = 1−θ for t < t∗ to p = 1+θ for t > t∗.

2. For n > 1 and θ > 0 (super-critical regime), we find a transition from an Omori decay law

with exponent p = 1 − θ to an explosive exponential increase of the seismicity rate.

3. In the case θ < 0, we find a transition from an Omori law with exponent 1− |θ| similar to

the local law, to an exponential increase at large times, with a crossover time τ different

from the characteristic time t∗ found in the case θ > 0.
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As we show below, these results can rationalize many properties of aftershock and foreshock

sequences.

5.2 The model

We assume that a given event (the “mother”) of magnitude mi ≥ m0 occurring at time ti

gives birth to other events (“daughters”) in the time interval between t and t + dt at the rate

φmi(t − ti) =
K 10α(mi−m0)

(t − ti + c)1+θ
H(t − ti) H(mi − m0), (5.1)

where H is the Heaviside function : H(t− ti) = 0 for t < ti and 1 otherwise, m0 is a lower bound

magnitude below which no daughter is triggered.

This temporal power law decay follows the same mathematical law as Omori’s law for the

rate of aftershocks following a mainshock, albeit with the modification that we do not specify

that aftershocks (daughter earthquakes) have to be smaller than the triggering event (mother

earthquake). The exponential term 10α(m−m0) describes the fact that the larger the magnitude

m of the mother event, the larger is the number of daughters. The exponent p = 1 + θ of the

“local” Omori’s law, describing direct triggering of first generation daughters by a given mother,

has no reason a priori to be the same as the one measured macroscopically which is usually

found between 0.8 and 1.2 with an often quoted median value 1. This is in fact the question we

address : assuming the form (5.1) for the “local” Omori’s law, is the global Omori’s law still a

power law and, if yes, how does its exponent depend on p ? What are the possible regimes of

aftershocks as a function of the parameters of the model ?

This model can be extended to describe the spatio-temporal distribution of seismic activity.

Following Kagan and Knopoff [1981], we can introduce a spatial dependence in (5.1) of the form

φmi(t − ti, �r − �ri) =
K 10α(mi−m0)

(t − ti + c)1+θ
ρ(�r − �ri) H(t − ti) H(mi − m0) , (5.2)

where ρ(�r − �ri) describes the probability distribution for an earthquake occurring at position �ri

to trigger an event an position �r. This term takes into account the spatial dependence of the

stress induced by an earthquake, and enable us to model the spatial distribution of aftershocks

clustered close to the mainshock. In this paper, we restrict our analysis to the temporal ETAS

model without spatial dependence because we are mainly interested in describing the temporal

evolution of seismic activity. The complete model with both spatial and temporal dependence

(5.2) has been studied in [Helmstetter and Sornette, 2002] to derive the joint probability dis-

tribution of the times and locations of aftershocks including the whole cascade of secondary

aftershocks. When integrating the rate of aftershocks calculated for the spatio-temporal ETAS

model over the whole space, we recover the results given in this paper for the temporal ETAS

model. Therefore, the results given here for the temporal ETAS model can be compared with real

aftershock sequences when using all aftershocks whatever their distance from the mainshock.
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time

Fig. 5.1 – Schematic representation of the bran-

ching process associated with the ETAS model de-

fined by (10.1) and (8.12). In this example, the thi-

ckest dashed line is the time arrow associated with

the main shock indicated as ‘1’. This main shock

triggered five direct aftershocks (of first generation)

denoted ‘11’, ‘12’, ‘13’, ‘14’ and ‘15’ whose magni-

tudes are proportional to the length of their vertical

lines (their position above or below the thickest da-

shed line is arbitrary and chosen to ensure a better

visibility of the diagram). The aftershock ‘11’ trig-

gered three (secondary) aftershocks denoted ‘111’,

‘112’ and ‘113’. The aftershock ‘12’ triggered four af-

tershocks denoted ‘121’, ‘122’, ‘123’ and ‘124’. The

aftershock ‘13’ triggered a single aftershock denoted

‘131’. The aftershock ‘14’ also triggered a single af-

tershock denoted ‘141’. The aftershock ‘15’ did not

trigger any aftershock. The observable catalog is the

superposition of all these events which are projected

on the thick dashed line at the bottom of the figure,

keeping the thickness as a code for the generation

number of each event.

The model (5.1) is a branching process because each daughter has only one mother and not

several, as shown in Figure 5.1. As we said in the introduction, this “mean-field” assumption

simplifies considerably the complexity of the process and allows for an analytical solution that we

shall derive in the sequel. The key parameter is the average number n of daughter-earthquakes

created per mother-event. Assuming that the distribution P (m) of earthquake sizes expressed

in magnitudes m follows the Gutenberg-Richter distribution P (m) = b ln(10) 10−b(m−m0), the

integral of φm(t) over time and over all magnitudes m ≥ m0 gives

n ≡
∫ +∞

0
dt

∫ +∞

m0

dm P (m) φm(t) = n0

∫ ∞

0

dt

(t + 1)1+θ
, (5.3)

where

n0 ≡ K

cθ

b

b − α
, (5.4)

which is finite for b > α. Three cases are analyzed below : n < 1, n = 1 and n > 1. The case

n = 1 corresponds to an average conservation of the number of events and can be associated

with a brittle elastic crust without dissipation. The “dissipative” case n < 1 can be interpreted

as corresponding to a crust possessing a visco-elastic component and/or a partial coupling with

a lower ductile layer, such that a part of the energy is released aseismically. The case n > 1

corresponds to a process in which an earthquake sequence triggers an in-flow of energy from

surrounding regions that may lead to a local self-exciting amplification. It can also correspond
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to a coupling with other non-mechanical modes of energy storage, such as proposed in [Sornette,

2000b ; Viljoen et al., 2002] which can be triggered by an event and feed the ensuing earthquake

sequence for a while. Of course, the super-critical process can only be transient and has to

cross-over to another regime.

The case b < α requires a special attention. In absence of truncation or cut-off, it leads to

a finite-time singularity due to the interplay between long-memory and extreme fluctuations

[Sornette and Helmstetter, 2002]. However, it is more common to introduce a truncation or roll-

off of the Gutenberg-Richter law at an upper magnitude. We can for example use a Gamma

distribution of energies, which is a power-law distribution tapered by an exponential tail. In this

case, the branching ratio has been calculated by Kagan [1991] and is given by the approximate

analytical expression valid for a corner magnitude mc significantly larger than m0,

n0 =
K

cθ

b

b − α

10b(mc−m0) − 10α(mc−m0)

10b(mc−m0) − 1
. (5.5)

For a corner magnitude mc 
 m0, and for α < b, we recover the expression (5.4) for n0 obtained

for the Gutenberg-Richter distribution without roll-off.

Note that n is defined as the average over all mainshock magnitudes of the mean number

of events triggered by a mainshock. It is thus grossly misleading to think of the branching ratio

as giving the number of daughters to a given earthquake, because this number is extremely

sensitive to the specific value of its magnitude. Indeed, the number of aftershocks to a given

mainshock increases exponentially with the mainshock magnitude as given by (5.1), so that

large earthquakes will have many more aftershocks than small earthquakes. From (5.1) and

(5.3), we can calculate the mean number of aftershocks N(M) triggered directly by a mainshock

of magnitude M

N(M) = n
(b − α)

b
10α(M−m0) . (5.6)

As an example, take α = 0.8, b = 1, m0 = 0 and n = 1. Then, a mainshock of magnitude M = 7

will have on average 80000 direct aftershocks, compared to only 2000 direct aftershocks for an

earthquake of magnitude M = 5 and less than 0.2 aftershocks for an earthquake of magnitude

M = 0.

When θ > 0,
∫∞
0

dt
(t+1)1+θ = 1/θ and the branching ratio n = n0/θ is finite. In this regime, n

is an increasing function of the rate K and a decreasing function of θ, c and b − α.

Even for b > α and θ > 0, the average number of daughters per mother can be larger than

one : n > 1. This regime corresponds to the super-critical regime of branching processes [Harris,

1963 ; Sornette, 2000a] in which the total number of events grows on average exponentially with

time. If n < 1, there is less than one earthquake triggered per earthquake on average. This

is the sub-critical regime in which the number of events following the first main shock decays

eventually to zero. The critical case n = 1 is at the borderline between the two regimes. In this

case, there is exactly one earthquake on average triggered per earthquake and the process is

exactly at the critical point between death on the long run and exponential proliferation.
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There is another scenario, occurring for θ ≤ 0, in which the seismicity blows up exponentially

with time. In this case, the integral
∫∞
0

dt
(t+1)1+θ becomes unbounded. In principle, n becomes

infinite : this does not invalidate the ETAS model per se. It only reflects the fact that the

calculation of an average number of daughters per mother has become meaningless because of

the anomalously slow decay of the kernel φ(t). This mechanism is reminiscent of that leading to

anomalous diffusion and to aging in quenched random systems and spinglasses (see [Sornette,

2000a] for an introduction). As in these systems, any estimation of the averages depend on the

time scale of study : due to the extremely slow decay of φ(t), the number of daughters created

beyond any time t far exceeds the number of daughters created up to time t. Notwithstanding

the decay, its cumulative effect creates this dominance of the far future. This regime is the

opposite of the situation where θ > 0 where most of the daughters are created at relatively early

times. Since the number of daughters born up to time t is an unbounded increasing function of

t, it is intuitively appealing, as we show in the appendix, that this regime should be similar to

the super-critical regime n > 1 discussed above in the case θ > 0.

Until now, we have discussed three issues related to the convergence of the ETAS sequences :

(i) the condition θ > 0 ensures convergence at large times ; (ii) the convergence at short times is

obtained by the introduction of the regularization constant c in the generalized Omori’s law ; (iii)

the condition α < b is a necessary condition for the finiteness of the number of daughters. Finally,

we should stress the role of the “ultra-violet” cut-off m0 on the magnitudes. In the ETAS model,

only earthquakes of magnitude m ≥ m0 are allowed to give birth to aftershocks, while events

of smaller magnitudes are lost for the epidemic dynamics. If such a cut-off is not introduced

and no cut-off is put on the Gutenberg-Richter toward small magnitudes, the dynamics becomes

completely dominated by the swarms of very tiny earthquakes, which individually has very

low probability to generate aftershocks but become so numerous that their collective effect

becomes overwhelming in the dynamics. We would thus have the unphysical situation in which

a magnitude 7 or 8 earthquake may be triggered by tiny earthquakes of magnitudes −2 or less.

We stress that the introduction of such a cut-off m0 is a simple way to prevent such a situation

to occur, but it does not mean that small earthquakes of magnitude below m0 do not have

their own aftershocks. It only means that such small earthquakes create aftershocks that can

not participate in the epidemic process leading to significantly larger earthquakes ; these small

earthquakes live their separate life. This is why they are not registered by the ETAS model. This

formulation is of course only an end-member of many possible regularization procedures, which

are well-known to be an ubiquitous requisite in mechanical models of rupture. An improvement

of the ETAS model would be for instance to replace this abrupt cut-off m0 by introducing a

roll-off in the Gutenberg-Richter law for the aftershocks with a characteristic corner magnitude

decreasing with the magnitude of the mother earthquake. This and other schemes will not be

explored here, as we want to analyze the simplest version possible.

We now describe briefly the connection with previous works in the mathematical statistics
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literature. As we said above, the model (5.1) belongs to the general class of branching models

[Moyal, 1962 ; Harris, 1963]. The elementary results on the stability of the process, such as the

condition n < 1, have been known for many years, and go back to the origin of the ETAS model

as a special case (for discrete magnitudes) or extension (for continuous magnitudes) of the class

of “mutually exciting point processes” introduced in [Hawkes, 1971 ; 1972 ; Hawkes and Ada-

mapoulos, 1973]. A convenient mathematical overview is in Chapter 5 of Daley and Vere-Jones

[1988], especially Example 5.5(a) and associated exercises 5.5.2-5.5.6. For the ETAS model, the

equations governing the probability generating functional, the probability of extinction within

a given number of generations, the expectation measure for the total population, the second

factorial moment (related to the covariance of the population) and their Fourier transform can

be derived as special cases of results summarized there. In particular, the process initiated with

a single event at the origin corresponds to the total progeny process for a general branching

process model with time-magnitude state space and a single ancestor at time t = 0 ; Exercise

5.5.6 gives the equations of the above cited variables for the case of fixed magnitudes (i.e.,

α = 0). This direct probabilistic analysis in terms of generating functions effectively replaces the

Wiener-Hopf theory in the present paper and mentioned also in [Hawkes, 1971 ; 1972 ; Hawkes

and Oakes, 1974]. However, there is not explicit solutions given to these equations and there

is no discussion of the change of regime from an effective Omori’s law 1/t1−θ at early times to

1/t1+θ at long times, nor mention of the interesting super-critical case, as done in the present

work.

Hawkes [1971 ; 1972] and Hawkes and Adamapoulos [1973] use what is in effect an ETAS

model with an exponential “bare” Omori’s law rather than the power law 1/(t + c)1+θ defined

in (5.1). Hawkes and Adamapoulos [1973] use it in an early study of earthquake data. The

introduction of magnitudes is similar to the introduction of a marked process associated with a

single point process [Hawkes, 1972] ; however, the impact of magnitudes on the seismicity rate

is assumed to be linear in [Hawkes, 1972] while it is multiplicative in the ETAS model. Our

derivation presented in the appendix of the solution of the ETAS model for the mean rate of

earthquakes in terms of its Laplace transform recovers previous results. For instance, equation

(17) in [Hawkes and Oakes, 1974] is the same as our equation (5.29) in our Appendix (up to a

factor β stemming from taking the cumulative number in [Hawkes and Oakes, 1974]). The key

factor Q(β) in (5.30) corresponds to the quantity G1(0) in equation (5) of [Hawkes, 1972]. The

link between Hawkes’ “mutually exciting point processes” and branching processes was made

explicit in [Hawkes and Oakes, 1974].

Some average properties of the ETAS model have been derived in the Master thesis of Ram-

selaar [1990]. Specifically, using the theory of Markov processes applied to branching processes,

Ramselaar [1990] proves that, in the supercritical regime n > 1 (where n is the average branching

ratio defined in (5.5)), the average number of aftershocks stemming from a common ancestor

grows exponentially as ∼ et/t∗ where t∗ is the solution of nR(c/t∗) = 1 and the function R is
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defined in (5.32). The solution of this equation nR(c/t∗) = 1 for t∗ is the same as our t∗ given by

(5.12) and the exponential growth of Ramselaar is therefore the same as our result (5.17). We

add on this asymptotic result, which is valid only at large times, by exhibiting the solution for

the aftershock decay at early times. In addition, contrary to the incorrect claim of Ramselaar

[1990] that “the Ogata earthquake process is critical or supercritical but is never subcritical,”

we demonstrate that the subcritical regime exhibits a rich phenomenology.

5.3 Analytical solution

We analyze the case where there is an origin of time t = 0 at which we start recording the

rate of earthquakes, assuming that the largest earthquake of all has just occurred at t = 0 and

somehow reset the clock. In the following calculation, we will forget about the effect of events

preceding the one at t = 0 and count aftershocks that are created only by this main shock.

Let us call Nm(t) the rate of seismicity at time t and at magnitude m, that is, Nm(t)dtdm

is the number of events in the time/magnitude interval dt × dm. We define its expectation

λm(t)dtdm ≡ E[Nm(t) dt dm], as the mean number of earthquakes occurring between t and

t + dt of magnitude between m and m + dm. λm(t) is the solution of a self-consistency equation

that formalizes mathematically the following process : an earthquake may trigger aftershocks ;

these aftershocks may trigger their own aftershocks, and so on. The rate of seismicity at a given

time t is the result of this cascade process. The self-consistency equation that sums up this

cascade reads

λm(t) ≡ E[Nm(t)] = E

[∫ ∞

m0

dm′
∫ t

−∞
dτ φm′(t − τ)P (m)Nm′(τ)

]
(5.7)

=
∫ ∞

m0

dm′
∫ t

−∞
dτ φm′(t − τ) P (m) E[Nm′(τ)] (5.8)

=
∫ ∞

m0

dm′
∫ t

−∞
dτ φm′(t − τ) P (m) λm′(τ) . (5.9)

If there is an external source S(t,m), it should be added to the right-hand-side of (5.9).

The mean instantaneous rate λm(t) at time t is the sum over all induced rates from all

earthquakes of all possible magnitudes that occurred at all previous times. The rate of events at

time t induced per earthquake that occurred at an earlier time τ with magnitude m′ is equal to

φm′(t − τ). The term P (m) is the probability that an event triggered by an earthquake of ma-

gnitude m′ is of magnitude m. We assume that this probability is independent of the magnitude

of the mother-earthquake and is nothing but the Gutenberg-Richter law. This hypothesis can

be easily relaxed if needed and P (m) can be generalized into P (m|m′) giving the probability

that a daughter-earthquake is of magnitude m conditioned on the value m′ of the magnitude of

the mother-earthquake. However, we do not pursue here this possibility as this hypothesis seems

well-founded empirically [Ranalli, 1969 ; Knopoff et al., 1982]. The term S(t,m) is an external

source which is determined by the physical process. We consider the case where a great earth-
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quake occurs at the origin of time t = 0 with magnitude M . In this case, the external source

term is

S(t,m) = δ(t) δ(m − M) , (5.10)

where δ is the Dirac distribution. Other arbitrary source functions can be chosen.

By construction of the kernel (10.1), it is natural to search the solution for λm(t) as

λm(t) = P (m)λ(t) , (5.11)

which makes explicit in the solution the hypothesis of a separation of the variables magnitude

and time. Helmstetter et al. [2002] have shown that (5.11) is a correct ansatz for α ≤ b/2, which

is the regime considered here. For α ≥ b/2, large fluctuations prevent the decoupling between

time and magnitude to hold and lead to corrections to the predictions presented here, which,

due to their complexity, will be described elsewhere. The ETAS model assumes that the time

response and the magnitude response are independent at each generation. In reality and more

generality, we can envision that the rate of activation of new earthquakes will depend on 1)

the magnitude of the “mother” (which the ETAS model takes into account multiplicatively in

(10.1)), 2) on the magnitude of the daughter (which is neglected in the ETAS model) and 3)

on the time since the mother was born. Rather than having a very general kernel combining

these three parameters nonlinearly, equations (10.1) is based on an hypothesis of independence

between these different factors. In addition, assuming that the cascade of secondary aftershocks

does not spoil this independence, this allows us to factorize them, leading to (5.11).

The problem is then to determine the functional form of λ(t), assuming that φ is given

by (5.1). The integral equation (5.9) is a Wiener-Hopf integral equation [Feller, 1971]. It is

well-known [Feller, 1971 ; Morse and Feshbach, 1953] that, if φ(τ) decays no slower than an

exponential, then λ(t) has an exponential tail λ(t) ∼ exp[−rt] for large t with r solution of∫
φ(x) exp[rx] dx = 1. This result implies that a global Omori’s law cannot be obtained by the

epidemic ETAS branching model with, for instance, local exponential relaxation rates. In the

present case, φ(τ) decays much slower than an exponential and a different analysis is called for

that we now present. The solution of (5.9) is derived in the Appendix and is summarized in the

following sections. For the sequel, it is useful to define the characteristic time

t∗ ≡ c

(
n Γ(1 − θ)
|1 − n|

) 1
θ

, (5.12)

where Γ(x) is the Gamma function : Γ(z) =
∫∞
0 du uz−1 e−u which is nothing but (z − 1)! for

positive integers z.

The sub-critical regime n < 1 and θ > 0

An approximation is made in the analytical solution so that the results presented below are

only valid for t 
 c.
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We define the parameter S0 that describes the external source term

S0 =
(b − α)

b
10α(M−m0) . (5.13)

Two cases must be distinguished.

• For c � t � t∗, we get

λt<t∗(t) ∼ S0

Γ(θ)|1 − n|
t∗−θ

t1−θ
for c � t � t∗ . (5.14)

• For t 
 t∗, we obtain

λt>t∗(t) ∼ S0

Γ(θ)(1 − n)
t∗θ

t1+θ
for t 
 t∗ . (5.15)

We verify the self-consistency of the two solutions λt>t∗(t) and λt<t∗(t) by checking that

λt>t∗(t∗) = λt<t∗(t∗). In other words, t∗ is indeed the transition time at which the “short-time”

regime λt<t∗(t) crosses over to the “long-time” regime λt>t∗(t).

The full expression of λ(t) valid at all times t 
 c is given by

λ(t) =
S0

1 − n

t∗−θ

t1−θ

∞∑
k=0

(−1)k
(t/t∗)kθ

Γ((k + 1)θ)
(5.16)

Expression (5.16) provides the solution that describes the cross-over from the 1/t1−θ Omo-

ri’s law (5.14) at early times to the 1/t1+θ Omori’s law (5.15) at large times. The series∑∞
k=0(−1)k (t/t∗)kθ

Γ((k+1)θ) is a series representation of a special Fox function [Glöckle and Nonnenma-

cher, 1993] (see the Appendix for details).

The ETAS model has been simulated numerically using the algorithm described in [Ogata,

1998, 1999]. Starting with a large event of magnitude M at time t = 0, events are then simulated

sequentially. After each event, we calculate the conditional intensity λ(t) defined by

λ(t) =
∑
ti≤t

K 10α(mi−m0)

(t − ti + c)1+θ

where t is the time of the last event and ti and mi are the times and magnitudes of all preceding

events that occurred at time ti ≤ t. The time of the following event is then determined according

to the non-stationary Poisson process of conditional intensity λ(t), and its magnitude is chosen

in a Gutenberg-Richter distribution with parameter b. These simulations are compared to the

theoretical predictions in Figure 5.2, which shows the aftershock seismic rate λ(t) in the sub-

critical regime triggered by a main event of M = 6.8, for the parameters K = 0.024 (constant

in (5.1)), the threshold m0 = 0 for aftershock triggering, c = 0.001, α = 0.5, a b-value b = 1.0

and θ = 0.2 (corresponding to a local Omori’s exponent p = 1.2). These parameters lead to

a branching ratio n = 0.95 (equation (5.3)) and a characteristic cross-over time t∗ = 4500

(equation (5.12)). The noisy black line represents the seismicity rate obtained for the synthetic

catalog. The local Omori law with exponent p = 1+ θ = 1.2 is shown for reference as the dotted

line. The analytical solution (5.16) is shown as the thick line. The two dashed lines represent

the approximation solutions (5.14) for t < t∗ and (5.15) for t > t∗.
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Fig. 5.2 – Seismicity rate N(t) in the sub-critical regime with n = 0.95. The noisy black line represents

the seismicity rate obtained for a synthetic catalog generated using K = 0.024, M = 6.8, m0 = 0,

c = 0.001 day, α = 0.5, b = 1.0 and θ = 0.2, giving the characteristic time is t∗ = 4500 days. The local

Omori law with exponent p = 1 + θ = 1.2 is shown for reference (dotted line). The analytical solution

(5.16) is shown as the thick line. The two dashed lines represents the asymptotic solutions (5.14) for

t < t∗ and (5.15) for t > t∗.

The super-critical regime n > 1 and θ > 0

From the definition of the branching ETAS model for n > 1, it is clear that the number

of events λ(t) blows up exponentially for large times as n − 1 to a power proportional to the

number t of generations. We shall show below that the rate of the exponential growth can be

calculated explicitly, which yields λ(t) ∼ et/t∗ , where t∗ has been defined in (5.12). However,

there is an interesting early and intermediate time regime in the situation where a great event

of magnitude M has just occurred at t = 0. In this case, the total seismicity is the result

of two competing effects : (1) the total seismicity tends to decay according to the Omori’s law

governing the rate of daughter-earthquakes triggered by the great event ; (2) since each daughter

may in turn trigger grand-daughters, grand-daughters may trigger grand-grand daughters and

so on with a number n > 1 of children per parent, the induced seismicity will eventually blow

up exponentially. However, before blowing up, one can expect that seismicity will first decay
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because it is mainly controlled by the large rate ∼ 10α(M−m0) directly induced by the great

earthquake which decays according to its “local” Omori’s law. This decay will be progressively

perturbed by the proliferation of daughters of daughters of ... and will cross-over to the explosive

exponential regime.

At early times c � t � t∗, the early decay rate of aftershocks is the same ≈ (S0/Γ(θ)(n −
1)) (t∗−θ/t1−θ) as for the sub-critical regime (5.14) (see the Appendix). However, as time in-

creases, the Appendix shows that the decay of aftershock activity can be represented as a power

law with an effective apparent exponent θapp > θ increasing progressively with time. The seismic

rate will thus decay approximately as ∼ 1/t1−θapp(t). Quantitatively, the large time behavior is

(see the Appendix)

λ(t) ∼ S0

(n − 1)t∗θ
et/t∗ (5.17)

exhibiting an exponential growth at large times. Expression (5.12) shows that 1/t∗ ∼ |1 − n| 1θ .

Thus, as expected, the exponential growth disappears as n → 1+.

The full expression of λ(t) valid at times t 
 c is

λ(t) =
S0

(n − 1)
t∗−θ

t1−θ

∞∑
k=0

(t/t∗)kθ

Γ((k + 1)θ)
(5.18)

Expression (5.18) provides the solution that describes the cross-over from the 1/t1−θ Omori’s

law at early times (5.14) to the exponential growth (5.17) at large times.

Figure 5.3 tests these predictions by comparing them with direct numerical simulation of the

ETAS model, in the case of a main shock of magnitude M = 6. The parameters of the synthetic

catalog are K = 0.024 (constant in (5.1)), the threshold m0 = 0 for aftershock triggering,

c = 0.001 day, α = 0.5, a b-value b = 0.75 and θ = 0.2 (corresponding to a local Omori’s

exponent p = 1.2). These parameters lead to a branching ratio n = 1.43 (equation (5.3)) and

a characteristic cross-over time t∗ = 0.85 day (equation (5.12)). The noisy black line represents

the seismicity rate obtained for the synthetic catalog. The local Omori law with exponent p =

1 + θ = 1.2 is shown for reference as the dotted line. The analytical solution (5.18) is shown

as the thick line. The two dashed lines correspond to the approximative analytical solutions

(5.14) and (5.17). At early times c < t < t∗, the decay of N(t) is initially close to the prediction

(5.14). For t > t∗, we observe that the analytical equation (5.18) is very close to the exponential

solution (5.17), so as to be almost indistinguishable from it.

Case θ < 0 corresponding to a local Omori’s law exponent p < 1

We have already remarked that, in this case, the integral
∫∞
0

dt
(t+1)1+θ in the definition (5.3)

of the branching ratio n becomes unbounded : the number of daughters created beyond any time

t far exceeds the number of daughters created up to time t.

The appendix shows that the general equation (5.9) still holds and the general derivation

starting with (5.24) up to (5.29) still applies.



5 Solution analytique 81

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

time (days)

se
is

m
ic

ity
 r

at
e 

c 
t* 

Fig. 5.3 – Seismicity rate N(t) in the super-critical regime. Same legend as in Figure 5.2. The synthetic

catalog was generated using the same parameters as for Figure 5.2, except for a lowest b-value of b = 0.75

and a smallest mainshock magnitude M = 6, leading to a branching number n = 1.43 and a characteristic

time t∗ = 0.85 day. The analytical solution (thick line) is calculated from equation (5.18). The two dashed

lines correspond to the approximative analytical solutions (5.14) and (5.17).

Similarly to the super-critical case n > 1 of the regime θ > 0, we find a crossover from a

power-law decay at early times to an exponential increase of the seismicity rate at large times.

The characteristic time τ that marks the transition between these two regimes is given by

τ = c

(
n0Γ(|θ|)
1 + n0

|θ|

)− 1
|θ|

. (5.19)

In contrast with the case θ > 0, the early time behavior (i.e., c � t � τ) of the global decay

law in the case θ < 0 is similar to the local Omori law :

λ(t) =
S0

(1 + n0
|θ|)Γ(|θ|)

τ−|θ|

t1−|θ| (5.20)

Similarly to the super-critical case n > 1 of the regime θ > 0, the long time dependence of

the regime θ < 0 is controlled by a simple pole 1/τ leading to a long-time seismicity growing

exponentially

λ(t) =
S0

(1 + n0
|θ|)τ |θ|

et/τ (5.21)
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Fig. 5.4 – Seismicity rate N(t) in the case θ < 0 corresponding to a local Omori’s law exponent p < 1.

Same legend as in Figure 5.2. The synthetic catalog was generated using K = 0.02, M = 7, m0 = 0,

c = 0.01 day, α = 0.5, b = 1.0 and θ = −0.1, giving the characteristic time is τ = 105 days. The

analytical solution (thick line) is calculated from equation (5.22). The two dashed lines correspond to the

approximative analytical solutions (5.20) and (5.21).

This result is in agreement with the fact that the number of daughters born up to time t is

an unbounded increasing function of t, and we should thus recover a regime similar to the

super-critical case of θ > 0.

The full expression of λ(t) valid at times t > c is

λ(t) =
S0

(1 + n0
|θ|)

1
t

∞∑
k=1

(t/τ)k|θ|

Γ(k|θ|) (5.22)

Expression (5.22) provides the solution that describes the cross-over from the local Omori law

1/t1−|θ| at early times to the exponential growth at large times.

Figure 5.4 compares these predictions to a direct numerical simulation of the ETAS model,

in the case of a main shock of magnitude M = 7. The parameters of the synthetic catalog

are K = 0.02, m0 = 0, c = 0.01 day, α = 0.5, b = 1 and θ = −0.1 (corresponding to a local

Omori’s exponent p = 0.9). These parameters lead to a characteristic cross-over time τ = 105 day

(equation (5.19)). The noisy black line represents the seismicity rate obtained for the synthetic
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catalog. The local Omori law with exponent p = 1+ θ = 0.9 is shown for reference as the dotted

line. The analytical solution (5.22) is shown as the thick line. The two dashed lines correspond to

the approximative analytical solutions (5.20) and (5.21). At early times c < t < τ , the decay of

λ(t) is initially close to the prediction (5.20). For t > τ , we observe that the analytical equation

(5.22) is very close to the exponential solution (5.21), so as to be almost indistinguishable from

it.

5.4 Discussion

Assuming that each event triggers aftershock sequences according to the local Omori law

with exponent 1 + θ, we have shown that the decay law of the global aftershock sequence is

different from the local one. Depending on the branching ratio n, which is a function of all

ETAS parameters, we find two different regimes, the sub-critical regime for n < 1 and the

super-critical regime for n > 1 and θ > 0. For the two regimes in the case θ > 0, a characteristic

time t∗, function of c, n and θ, appears in the global decay law λ(t) and marks the transition

between the early time behavior and the large time behavior. In the sub-critical regime (n < 1),

the global decay law is composed of two power laws. At early times (t < t∗), λ(t) decays like

t−1+θ. At large times (t > t∗) the global decay law recovers the local law N(t) ∼ t−1−θ. In

the super-critical regime (n > 1 and θ > 0), the early times decay law is similar to that of

the sub-critical regime, and the seismicity rate increases exponentially for large times. The case

θ < 0 leads to an infinite n-value, due to the slow decay with time of the local Omori law. In this

case, we find a transition from an Omori law with exponent 1−|θ| similar to the local law, to an

exponential increase at large times, with a crossover time τ different from the characteristic time

t∗ found in the case θ > 0. Thus, the Omori law is only an approximation of the global decay

law valid for some time periods and parameter values. The value of the local Omori exponent

p = 1 is the only one for which the local and the global decay rate are similar, and are both

power-laws without any characteristic time. For small n, t∗ is very small so that in real data we

should observe only the behavior t > t∗ characteristic of large times. The global decay law then

appears similar to the local Omori law. On the contrary, for n close to 1, t∗ is very large by

comparison with the time period available in real data, and we should observe only the power-

law behavior λ(t) ∼ t−1+θ characteristic of early times, with a global p-value smaller than the

local one. Changing n thus provides an important source of variability of the exponent p.

Estimation of n and t∗ in earthquake data

In real earthquake data, it is possible to evaluate the branching value n in order to determine

if the seismic activity is either in the sub- or the super-critical regime. The values of n and t∗

can be evaluated from equations (5.3) and (5.12) as a function of the ETAS parameters b,

p = 1 + θ, c, K and α. The parameters of the ETAS model and their standard error can be
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inverted from seismicity data (time and magnitudes of each event) using a maximum likelihood

method [Ogata, 1988]. We now discuss the range of the different parameters obtained from such

inversion procedure.

– The parameter α is found to vary between 0.35 to 1.7, and is often close to 0.5 [Ogata,

1989, 1992 ; Guo and Ogata, 1997]. An α-value of 0.5 means that a mainshock of magnitude

M will have on average 10 times more aftershocks than a mainshock of magnitude M − 2,

independently of M . Note that our definition of α is slightly different from that used by

Ogata and we have divided his α-values by ln(10) to compare with our definition.

For some seismicity sequences, Ogata [1989, 1992] and Guo and Ogata [1997] found α >

b. According to (5.3), this leads to an infinite n-value if we use a Gutenberg-Richter

magnitude distribution. As we said, a truncation of the magnitude distribution is needed

to obtain a physically meaningful finite n-value because the seismicity rate is controlled

by the largest events.

A large α-value can be associated with seismic activity called “swarms”, while a small

α-value is observed for aftershock sequences with a single mainshock and no significant

secondary aftershock sequences [Ogata, 1992, 2001].

– The parameter c is usually found to be of the order of one hour [Utsu et al., 1995]. In

practice, the evaluation of c is hindered by the incompleteness of earthquake catalogs just

after the occurrence of the mainshock, due to overlapping aftershocks on the seismograms.

A large c is often an artifact of a change of the detection threshold. Notwithstanding

these limitations, well-determined non-zero c-value have been obtained for some aftershock

sequences [Utsu et al., 1995]. Note that a non-zero c is required for the aftershocks rate to

be finite just at the time of the mainshock.

– The “local” p-value, equal to 1 + θ, describes the decay law of the aftershock sequence

triggered by a single earthquake. The local Omori law is the law φ(t) obtained by inverting

the ETAS model on the data. The “global” p-value describes the decay law of the whole

aftershock sequence, composed of all secondary aftershocks triggered by each aftershock.

We have shown that the Omori law is only an approximation of the global decay law, so

that in the subcritical regime the global p-value will change from 1 − θ at early times to

1+θ at large times. [Guo and Ogata, 1997] measured both the local and global p-values for

34 aftershock sequences in Japan, and found that the local p-value is usually slightly larger

than the global p-value [Guo and Ogata, 1997]. This is in agreement with our prediction

when identifying the local p-value with 1 + θ (recovered at large times) and the global p-

value with 1− θ found at early times. Guo and Ogata [1997] and Ogata [1992, 1998, 2001]

found a local p-value smaller than one for some aftershocks sequences in Japan. Within

the confine of the ETAS model, this corresponds to the case θ < 0 discussed above and in

the appendix.

– The parameter K measures the rate of aftershocks triggered by each earthquake, inde-



5 Discussion 85

pendently of its magnitude. Recall that the branching ratio n is proportional to K. It is

usually found of the order of K ≈ 0.02 [Ogata, 1989, 1992 ; Guo and Ogata, 1997], but

large variations of K-value from 0.001 to 5 are reported by Ogata [1992].

– The parameter µ measures the background seismicity rate that is supposed to arise from

the tectonic loading. µ  0 for an aftershock sequence triggered by a single mainshock.

This parameter has no influence on the branching ratio n. In real catalogs, the background

seismicity only accounts for a small part of the seismic activity.

We have computed the branching ratio n and the cross-over time t∗ from the ETAS para-

meters measured by Ogata [1989, 1992] for several seismicity sequences in Japan and elsewhere.

The ETAS parameters and the n and t∗ values are given in Table 5.1. When the b-value is not

given in the text, we have computed n and t∗ assuming a b-value equal to 1. We find that the

n-value is either smaller or larger than 1. This means that the seismicity can be interpreted to be

either in the sub- or in the super-critical regime. An infinite n-value is found if the local p-value

is smaller than one (θ < 0) or if the α-value is larger than the b-value. For the same area, the

ETAS parameters and the n and t∗ values are found to vary in time, sometimes changing from

the sub- to the super-critical regime. The characteristic time t∗ shows large spatial and temporal

variability, ranging from 0.4 days to 1022 days. Large t∗ values are related to a branching ratio

n close to one, i.e., close to the critical point n = 1. The ETAS model thus provides a picture

of seismicity in which sub-critical and super-critical regimes are alternating in an intermittent

fashion. As we shall argue, the determination of the regime may provide important clues and

quantitative tools for prediction.

Implications of the ETAS model in the sub-critical regime n < 1

In the sub-critical regime, the ETAS model can explain many of the departures of the global

aftershock decay law from a pure Omori law.

The ETAS model contains by definition (and thus “explains”) the secondary aftershock

sequences triggered by the largest aftershocks that are often observed [Correig et al., 1997 ; Guo

and Ogata, 1997 ; Simeonova and Solakov, 1999 ; Ogata, 2001]. In the ETAS model, the fact that

secondary aftershock sequences of large aftershocks can stand out above the overall background

aftershock seismicity results from the factor 10α(mi−m0) in (5.1).

Our analytical results may rationalize why some alternative models of aftershock decay work

better than the simple modified Omori law. In the sub-critical regime, we predict an increase of

the apparent global p-value from 1− θ at early times to 1 + θ at large times. To our knowledge,

this change of exponent has never been observed. This change of power law may be approximated

by the stretched exponential function proposed by [Kissinger, 1993 ; Gross and Kisslinger, 1994]

to fit aftershock sequences. In the stretched exponential model, the rate of aftershocks λ(t) is

defined by

λ(t) = K tq−1e−(t/t0)q
, (5.23)
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Tab. 5.1 – ETAS parameters, branching ratio n and characteristic time t∗ for the sequences studied

by Ogata [1989, 1992]. We have computed n and t∗ using equations (8.7) and (5.12) from the ETAS

parameters K, α, c, p = 1 + θ and µ calculated by Ogata [1989, 1992] using a maximum likelihood

method. For most sequences, we have assumed b = 1 to evaluate n and t∗ because b-value is not given in

[Ogata, 1989, 1992]. Thus, there is a large uncertainty in the n and t∗ values in the case where α is close

to 1.

Ref seismicity data M0 b µ K c p α n t∗

day−1 day day

1 Japan, 1895-1980 6.0 1.0 0.005 0.087 0.02 1.0 0.7 Inf a

1 Rat-Island 1963-1982 4.7 1.0 0.0 0.072 0.167 1.35 0.63 1.04 4600

1 Nagano, 1978-1986 2.5 0.9 0.021 0.008 0.017 0.85 0.94 Inf b

1 Nagano aft., 1986 2.9 1.2 0.0 0.032 0.038 1.14 0.73 0.92 4.106

2 worldwide shallow eqs. 7.0 1.0 0.019 0.018 0.21 1.03 0.53 1.49 1017

2 Aleutian, 10 yrs 4.7 1.0 0.008 0.042 0.03 1.13 0.62 1.34 2200

2 Tohoku, 95 years 6.0 1.0 0.0054 0.98 0.02 1.0 0.70 Infa

2 Tokachi-Oki aft., 1 yr 4.8 1.0 0.14 0.015 0.23 1.28 0.98 4.03 1.5

2 Niigata aft., 150 days 4.0 1.0 0.075 0.0005 0.15 1.37 1.26 Inf b

2 Niigata aft., 150 days 2.5 1.0 0.47 0.0002 1.10 1.72 1.34 Inf b

2 Izu Islands, 55 years 4.0 1.0 0.0038 0.062 0.012 1.14 0.16 0.96 108

2 Izu Peninsula, 7 years 2.5 1.0 0.022 0.035 0.003 1.35 0.17 0.91 7.3

2 Izu, 33 days 2.9 1.0 0.59 0.016 0.009 1.73 0.31 1.00 346.

2 Matsushiro, 20 yrs 3.9 1.0 0.0006 0.092 0.13 1.14 0.27 1.21 2200

2 Kanto, 1904-1916 5.4 1.0 0.028 0.010 0.010 1.00 0.62 Inf a

2 Kanto, 1916-1923 5.4 1.0 0.025 0.001 0.010 1.02 1.31 Inf b

2 Hachijo, 1938-1969 5.4 1.0 0.013 0.008 0.004 1.02 0.85 3.0 5.106

2 Hachijo, 1969-1973 5.4 1.0 0.016 0.001 0.013 1.00 1.11 Inf a

2 Tonankai, 1933-1939 5.2 1.0 0.050 0.010 0.065 1.02 0.90 5.28 4.103

2 Tonankai, 1939-1944 5.2 1.0 0.031 0.009 0.011 1.01 0.83 5.54 107

2 Tokachi, 1926-1945 5.0 1.0 0.047 0.013 0.065 1.32 0.83 0.57 0.40

2 Tokachi, 1945-1952 5.0 1.0 0.041 5.20 11.6 3.50 1.37 Inf b

2 Tokachi, 1952-1961 5.0 1.0 0.032 0.021 0.059 1.10 0.72 0.99 1022

2 Tokachi, 1961-1968 5.0 1.0 0.014 0.014 0.005 0.86 0.43 Inf 7.105 c

1 Ogata [1989] ; 2 Ogata [1992]
a t∗ cannot be evaluated because p = 1
b t∗ cannot be evaluated because α > b

c τ is given instead of t∗ because θ < 0
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where q, K and t0 are constants. At early times, this function decays as a power law 1/t1−q with

apparent Omori’s exponent 1 − q. For times larger than the relaxation time t0, the seismicity

rate decays exponentially in the argument (t/t0)q. For q < 1, this decay is much slower than

exponential and can be accounted for by an apparent power law with larger exponent. Figure

5.5 compares the stretched exponential function with the analytical solution of the ETAS model

(5.16) with parameters t∗ = t0 and θ = q, and with the Omori law of exponent p = 1 − q.

These three laws have the same power-law behavior at early times, and then both the stretched

exponential and the analytical solution (5.16) decay faster than the Omori law at large times. The

fact that it is very difficult to distinguish the decay laws described by power laws and by stretched

exponential has been illustrated in [Laherrère and Sornette, 1998] in many examples including

earthquake size and fault length distributions. Kissinger [1993] and Gross and Kisslinger, 1994]

compared this function to the modified Omori law λ(t) = K (t + c)−p for several aftershock

sequences in southern California. They found that the stretched exponential fit often works

better for the sequences with a small p-value or a large q-value, indicative of a slow decay for

small times. This is in agreement with our result that in the sub-critical regime a slowly decaying

aftershock sequence (global p-value smaller than one) will then cross-over to a more rapid decay

for time larger than t∗. The relaxation time t0 ranges between 2 days and 380 days for the

sequences that are better fitted by the stretched exponential [Kissinger, 1993]. This parameter

is analogous to t∗ found in our model, because these two parameters define the transition from

the early time power-law decay to another faster decaying behavior for large times. To further

validate our results, these aftershock sequences should be fitted using equation (5.16) to compare

our results with the stretched exponential function and determine if the transformation of the

early time power law decay is better fitted by a stretched exponential fall-off or an increase in

the apparent Omori exponent from 1 − θ to 1 + θ as predicted by our results.

The ETAS model can also rationalize some correlations found empirically between seismicity

parameters. It may explain the rather large variability of the global empirical p-value. Guo and

Ogata [1995] have reported a positive correlation between the Gutenberg-Richter b-value and

the p-value (exponent of the global Omori law) for several aftershock sequences in Japan. A

similar correlation has also been found by [Kisslinger and Jones, 1991] for several aftershock

sequences in southern California, but this correlation was detectable only if the earthquake

sequences were separated into thrust and strike slip events. This positive correlation between b

and global p values is expected from our analysis. From equation (5.3), we see that a small b-

value is associated with a large n value. For n  1, the characteristic time t∗ is very large, so that

the global aftershock rate decays as a power law with exponent 1− θ over a large time interval.

For n > 1 and θ > 0, we see an apparent global p-value smaller than 1− θ which decreases with

time. In contrast, for large b-values, the branching ratio n is small and the characteristic time

t∗ is very small. In this case, only the large time behavior is observed with a larger exponent

1 + θ. Consequently, in the subcritical regime, our results predict a change of the global p-value
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Fig. 5.5 – Comparison between the three decay laws of aftershock sequences : Omori law with p = 0.7

(dashed line), stretched exponential with q = 0.3 and t0 = 10 days (thin black line) and our analytical

solution in the sub-critical regime (5.16) for θ = q = 1 − p = 0.3 and t∗ = t0 = 10 days (solid gray line).

At early times t << t∗, the three functions are similar and decay as t−0.7. At large times, the stretched

exponential function and the analytical solution of the ETAS model decay more rapidly than the Omori

law. For times up to t = 10 t∗, the stretched exponential function is a good approximation of the ETAS

model solution, and describes the transition from a power law decay at early times to a faster decay law.

from 1− θ for small b-value and times t � t∗ to 1 + θ for large b-values. There is also a positive

correlation between p-value and b-value in the super-critical regime. For n > 1 or θ < 0, the

global aftershock sequence is characterized by an apparent exponent p smaller than 1−|θ| which

decreases with time. Then, we expect the apparent exponent p to be all the smaller, the smaller

is the b-value, because the characteristic times t∗ for θ > 0 or τ for θ < 0 decreases with b.

The variability of the global p exponent reported by Guo and Ogata [1995] and Kisslinger and

Jones [1991] may thus be explained by a change of b-value and a constant local p exponent.

However, the results of Guo and Ogata [1997] contradict this interpretation. Guo and Ogata

[1997] studied the same aftershock sequences than Guo and Ogata [1995] but they measured the

local p-value of the ETAS model. They still found a large variability in the local p-value, and a

positive correlation between this local p-value and the b-value.
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Implications of the ETAS model in the super-critical regime and in the case

θ < 0

In the regime where the mean number of aftershocks per mainshock is larger than one

(i.e., n > 1), the mean rate of aftershocks increases exponentially for large times. However,

because of the statistical fluctuations, the aftershock sequence has a finite probability to die.

This probability of extinction can be evaluated for the simple branching model without time

dependence [Harris, 1963]. Therefore, a branching ratio larger than 1 does not imply necessarily

that the number of aftershocks will be infinite. If n is not too large, and if the number of

aftershocks is small, there is a significant probability that the aftershock sequences will die,

as observed in numerical simulations of the ETAS model. If the characteristic time t∗ is very

large, the aftershock sequence may not remain supercritical long enough for the exponential

increase to be observed. Even if the large time exponential acceleration is rarely observed in real

seismicity, it may explain the acceleration of the deformation before material failure. The early

times behavior of the seismic activity preceding the exponential increase has also important

possible implications for earthquake prediction, and can rationalize some empirically proposed

seismic precursors, such as the low p-value [Liu, 1984 ; Bowman, 1997], or the relative seismic

quiescence preceding large aftershocks [Matsu’ura, 1986 ; Drakatos, 2000].

It is widely accepted that about a third to a half of strong earthquakes are preceded by fo-

reshocks [e.g., Jones and Molnar, 1979 ; Bowman and Kisslinger, 1984 ; Reasenberg, 1985, 1999 ;

Reasenberg and Jones, 1989 ; Abercrombie and Mori, 1996], i.e., are preceded by an unusual

high seismicity rate for time periods of the order of days to years, and distance up to hundreds

kilometers. However, there is no reliable method for distinguishing foreshocks from aftershocks.

Indeed, the ETAS model makes no arbitrary distinctions between foreshocks, mainshocks and

aftershocks and describes all earthquakes with the same laws. While this seems a priori para-

doxical, our analysis of the ETAS model provides a useful tool for identifying foreshocks, i.e.,

earthquakes that are likely to be followed by a larger event, from usual aftershocks that are

seldom followed by a larger earthquake. The characterization of foreshocks will be performed

in statistical terms rather than on a single-event basis. In other words, we will not be able to

say whether any specific event is a precursor. It is the ensemble statistics that may betray a

foreshock structure.

The crux of the method is that, when seismicity falls in the regime with a branching ratio

n > 1, the corresponding earthquake sequences can be identified as foreshocks. This is because

the super-critical regime corresponds to an exponentially accelerating seismicity for times larger

than t∗ : by a pure statistical effect, the larger number of earthquakes of any size will sample

more and more the branch of the Gutenberg-Richter law toward large events. Thus by the sheer

weight of numbers, larger and larger earthquakes will occur as time increases. Of course, we are

not implying any precise deterministic growth law, but statistically, the largest events should

indeed grow significantly, the more so, the more within the super-critical regime, the larger the
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branching ratio n > 1. Conversely, this argument implies that, in the subcritical regime, the

triggered events are usual aftershocks, because a mainshock is unlikely to be followed by a larger

triggered event. Foreshock sequences can thus be identified by evaluating the branching ratio n

from the inversion of seismic data (times and magnitudes of an earthquake sequence) for the

ETAS parameters. There is however a finite probability that a triggered event in the subcritical

regime be larger than the triggering event, and thus the triggering event will be a foreshock of

the triggered event. Therefore, foreshocks can be observed even in the sub-critical regime, but

they are less frequent than aftershocks.

A note of caution is in order : the direct estimation of n and t∗ or τ may be quite imprecise

if the number of events is small. Based on our analysis and our results, the foreshock regime

can be nevertheless identified with relatively good confidence if one assumes an upper bound

for the local exponent p. Let us assume for instance that the local p-value is smaller than 1.3

(i.e., θ < 0.3) ; according to our results, the global exponent p cannot become smaller than

1 − θ = 0.7 in the sub-critical regime. In contrast, in the supercritical regime, we have shown

that the apparent exponent is smaller than or at most equal to 1 − θ. Therefore, a measure of

the global p-value yielding a value smaller than 0.7, is always associated with the super-critical

regime. As we said above, Guo and Ogata [1997] and Ogata [1992, 1998, 2001] found a local p-

value smaller than one for some aftershocks sequences in Japan corresponding to the case θ < 0.

A small global p-value can thus also result from a small local p-value. In sum, a small global

p-value results either from a larger than one local p-value in the supercritical regime n > 1 or

from a small (smaller than 1) local p-value before the exponential growth regime.

Such a small p-value precursor was first proposed empirically by Liu [1984], who studied

several aftershock sequences of moderate earthquakes that have been followed by a large earth-

quake. He proposed that a p-value smaller than 1 is a signature of a foreshock sequence, whereas

p > 1 is associated with normal aftershock sequences with a single mainshock in the past. He

suggested that p-values close to one characterize double-mainshock sequences. These empirical

rules are part of the earthquake prediction method used in China [Liu, 1984 ; Zhang et al., 1999].

The small precursory p-value has been used with other precursors to predict the occurrence of

a M = 6.4 earthquake in China following another M = 6.4 earthquake three months later

[Zhang et al., 1999]. A precursor associated with a small global p-value has also been observed

by Bowman [1997] for a sequence in Australia. In 1987, several M = 4− 5 earthquakes occurred

in a region that was not seismically active before, and triggered a large number of aftershocks

characterized by an abnormally low p-value of 0.3. A sequence of three M ≥ 6 occurred one year

later, followed by an aftershock sequence with a more standard p-value of 1.1. Simeonova and

Solakov [1999] have also reported a very low p-value of 0.5, for one sequence of aftershocks in

Bulgaria, that was followed one year latter by a larger earthquake. The first part of the aftershock

sequence was well fitted by a modified Omori law, and then a significant deviation occurred with

an abnormally high aftershock rate by comparison with the prior trend. This departure from an
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Omori law is expected from our results for an aftershock sequence in the super-critical regime

and the very low value of the exponent p can be interpreted as the apparent exponent within

the cross-over from the 1/t1−θ decay (5.14) at early times to the exponential explosion (5.17) at

times t > t∗ (see Figure 5.3).

In addition to the small precursory p-value predicted in the regime n > 1, we have shown

that this regime is also characterized by a decrease of the apparent global p-value with time.

Such a decrease of p-value has also been identified as a precursor by Liu [1984].

Other patterns may be a signature of the super-critical regime. The relative precursory

quiescence suggested by Drakatos [2000] may also be explained by our results. In contrast to

the “absolute” quiescence which detects changes in the background seismicity after removing

the aftershocks from the catalog [e.g. Wyss and Habermann, 1988], the “relative” quiescence

[Matsu’ura, 1986 ; Drakatos, 2000] takes into account the aftershocks and detects changes in

seismic activity after a large mainshock by comparison with the usual Omori law decay of

aftershocks. Drakatos [2000] studied several aftershock sequences in Greece which contains large

aftershocks, i.e. aftershock with magnitude no smaller than M − 1.2, where M is the mainshock

magnitude. For each sequence, he fitted the aftershock sequence by a modified Omori law up

to the time of the large aftershock using a maximum likelihood method. He found that large

aftershocks were often preceded by a relative quiescence by comparison with an Omori law, with

an increase of the seismicity rate just before the large mainshock occurrence. Such a departure

from an Omori law is predicted by our results in the super-critical regime. Indeed, in the super-

critical regime, large aftershocks are likely to occur when the earthquake rate N(t) changes from

an Omori law to the exponential explosion for times close to t∗.

To illustrate this concept, we have performed a simulation of the ETAS model in the super-

critical regime and have applied the same procedure as used by Drakatos [2000] to fit the synthetic

aftershock sequence by an Omori law up to the time of the first large aftershock. The parameters

of the synthetic catalog are K = 0.024, m0 = 0, c = 0.001 day, α = 0.5, b = 0.8 and θ = 0.2,

yielding n = 1.27 and t∗ = 4.6 day. Figure 5.6 represents the cumulative aftershock number as

a function of time for the synthetic catalog and the fit with a modified Omori law. From this

figure, we see a clear relative seismic quiescence, as defined by a cumulative aftershock number

smaller than that predicted by the fit. The aftershock activity recovers the level predicted by

the fit at the time of the large aftershock. All theses results are similar to those obtained by

Drakatos [2000].

In the case n > 1, our results predict an exponential increase of the seismicity rate at large

times. Because we assume that the magnitude distribution is independent of time, the same

exponential acceleration is expected for both the cumulative energy release and the cumulative

number of earthquakes. Sykes and Jaumé [1990] found that several large earthquakes in the

San-Francisco Bay area where preceded by an acceleration of the cumulative energy release that

can be fitted by an exponential function, as predicted by our results. In laboratory experiments
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Fig. 5.6 – Cumulative aftershock number in the super-critical regime from a synthetic catalog generated

using a branching ratio n = 1.27, θ = 0.2 and t∗ = 4.6 days. The mainshock magnitude is M = 7.0.

The thin line is a fit by an Omori law evaluated for time before the occurrence of the first M ≥ 6.0

aftershock. This fit gives an apparent global p-value of 0.58. Relative seismic quiescence (by comparison

with an Omori law) is observed before the occurrence of the M = 6.0 aftershock, due to the transition

from an Omori law decay with exponent p = 1 − θ = 0.8 for time t << t∗ to an exponential increase of

the seismicity rate for time t >> t∗.

of rupture, several studies have also observed an exponential acceleration of the seismic energy

release before the macroscopic rupture [Scholz, 1968b ; Meredith et al., 1990 ; Main et al., 1992].

More recently, many studies have reported an acceleration of seismicity prior to great events

(see [Sammis and Sornette, 2002 ; Vere-Jones et al., 2001] for reviews) but they used a power-law

instead of an exponential law to fit the acceleration of seismicity. A power-law increase of the

seismicity before rupture is predicted by several statistical models of rupture in heterogeneous

media, which consider the global rupture or the great earthquake as a critical point (see [Sornette,

2000a] for a review). Note that it is often difficult to distinguish in real data an exponential

increase from a power-law increase, especially with a small number of points and for times far

from the rupture time. No systematic study has been undertaken that compares these two laws

to test if the acceleration of the seismicity is better fitted by a power-law rather than by an

exponential law (see however [Johansen et al., 1996]).
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We have stressed that the ETAS model is fundamentally a mean field approximation (bran-

ching process) which neglects “loops”, i.e., multiple interactions. An important consequence of

this approximation is that the super-critical regime cannot lead to a growth rate faster than

exponential. Indeed, recall that an exponential growth is characterized by a time derivative of

the number of events proportional to the number of events dN/dt = N/t∗, i.e., is fundamen-

tally a linear process. In a sequel to the present work [Sornette and Helmstetter, 2002], we show

however that for b < α, the impact of the largest earthquake induces an effective nonlinearity

which leads to a faster-than-exponential growth rate, possibly leading to a finite-time singularity

[Sammis and Sornette, 2002]. A faster-than-exponential growth rate may also be obtained by

introducing multiple interactions between earthquakes and positive feedback : rather than the

linear law dN/dt = N/t∗ expressing the condition that each “daughter” has only one “mother”,

we may expect an effective law dN/dt ∼ N δ, with δ > 1 providing a measure of the effective

number of ancestors impacting directly on the birth of a daughter. We may thus expect that an

improvement of the ETAS model beyond the “mean-field” approximation would lead to power

law acceleration of seismicity in some regions of the parameter space.

Other precursory patterns may also be related to the super-critical regime : they comprise the

precursory earthquake swarm or burst of aftershocks [Evison, 1977 ; Keilis-Borok et al., 1980a,

1980b ; Molchan et al., 1990 ; Evison and Rhoades, 1999]. Swarms are earthquake sequences

characterized by high clustering in space and time and the occurrence of several large events

with magnitude larger than M − 1, where M is the magnitude of the largest event. A burst of

aftershocks is a sequence of one or more mainshocks with abnormally large number of aftershocks

at the beginning of their aftershock sequences [Keilis-Borok et al., 1980a]. From our results, an

abnormally high aftershock rate or a sequence with several large events are expected in the

super-critical regime.

Temporal change of n-value and transition from one regime to the other one

It is often reported that the b and p values vary in space and time [e.g., Smith, 1981 ; Guo

and Ogata, 1995, 1997 ; Wiemer and Katsumata, 1999]. We have documented that a part of

the observed variation of the exponent p may not be genuine but result from an inadequate

parameterization of a more complex reality. Because n and t∗ are function of b, p and the other

ETAS parameters, we expect the fundamental parameters of the ETAS model, namely n and

t∗, to vary significantly in space and time. The branching ratio n plays the role of a “control”

parameter quantifying the distance from the critical point n = 1 between the sub-critical and

the super-critical regime ; t∗ is a cross-over time and is sensitive to details of the systems. As

a consequence, it is very reasonable to expect that the Earth’s crust will change from the sub-

critical to the super-critical regime and vice-versa, as a function of time and location.

Equation (5.3) shows that the branching ratio n is a decreasing function of b. Accordingly,

this may rationalize the observation that large earthquakes are sometimes preceded by a decrease
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of the b-value [e.g. Smith, 1981]. A decrease of the b-value leads to an increase of the n-value,

that can move the seismicity from the sub-critical to the super-critical regime, and thus increase

the probability to observe a large earthquake. Other ETAS parameters (α, K, p and c) may also

change in time and move the seismicity from one regime to the other one. Ogata [1989] measured

the ETAS model parameters before and after the 1984 Western Nagano Prefecture earthquake

(M = 6.8). He found that the seismic activity preceding the mainshock was characterized by

a lower b, c, K parameters and local p values than the seismicity following the mainshock. He

also obtained a larger α-value for the seismicity preceding the mainshock. All these changes of

parameters, except the change in K, lead to a larger n-value before the mainshock than after.

Before the mainshock, n is in principle infinite because the local p-value is smaller than one. As

we already discussed, this corresponds to an explosive super-critical regime of growing seismicity.

After the mainshock, we find n = 0.92 and t∗ = 106 days, using the determination of the ETAS

parameters. The seismicity has thus changed from a super-critical regime before the mainshock

to a sub-critical regime after the mainshock.

5.5 Conclusion

We have provided analytical solutions of the ETAS model, which describes foreshocks, after-

shocks and mainshocks on the same footing. Each event triggers an aftershock sequence with a

rate that decays according to the local Omori law with an exponent p = 1 + θ. The number of

aftershocks per event increases with its magnitude. We suggest that the Earth’s crust at a given

time and location may be characterized by its branching ratio n, quantifying its regime. We pro-

pose that n is a fundamental parameter for understanding and characterizing the organization

of the seismicity within the Earth’s crust. In the sub-critical regime (n < 1), the global rate of

aftershocks (including secondary aftershocks) decays with the time from the mainshock with a

decay law different from the local Omori law. We find a crossover from an Omori exponent 1− θ

for t < t∗ to 1+θ for t > t∗. The modified Omori law is thus only an approximation of the decay

law of the global aftershock sequence. In the super-critical regime (n > 1 and θ > 0), we find a

novel transition from an Omori decay law with an exponent 1− θ at early times to an explosive

exponential increase of the seismicity rate at large times. The case θ < 0 leads to an infinite

n-value, due to the slow decay with time of the local Omori law. In this case, we find a transition

from an Omori law with exponent 1 − |θ| similar to the local law, to an exponential increase

at large times, with a crossover time τ different from the characteristic time t∗ found in the

case θ > 0. These results can rationalize many of the stylized facts reported for foreshock and

aftershock sequences, such as the suggestion that a small p-value may be a precursor of a large

earthquake, the relative seismic quiescence preceding large aftershocks, the positive correlation

between b and p-values, the observation that great earthquakes are sometimes preceded by a

decrease of b-value and the acceleration of the seismicity preceding great earthquakes.
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Finally, we would like to mention that our analysis can be generalized to various other choices

of the local Omori law and of the magnitude distribution. The ETAS model can also be extended

to describe the spatial distribution of the seismicity [Helmstetter and Sornette, 2002].

5.6 Appendix : technical derivation of the analytical solution

In this appendix, we provide the technical derivation of the results used in the main text for

the sub-critical and super-critical regimes. We start from equation (5.9).

General derivation for θ > 0

The integral over τ is the convolution of λm′ with φm′ . Since there is an origin of time and we

have a convolution operator, the natural tool is the Laplace transform f̂(β) ≡ ∫ +∞
0 f(t)e−βtdt.

Applying the Laplace transform to (5.9) yields

λ̂m(β) = Ŝ(β,m) + P (m)
∫ ∞

m0

dm′ φ̂m′(β) λ̂m′(β) . (5.24)

where the r.h.s. has used the convolution theorem that the Laplace transform of a convolution

of two functions is the product of the Laplace transform of the two functions. Let us now apply

the integral operator
∫∞
m0

dm φ̂m(β) on both sides of (5.24) and define

λ(β) ≡
∫ ∞

m0

dm φ̂m(β) λ̂m(β) , (5.25)

Q(β) ≡
∫ ∞

m0

dm φ̂m(β) P (m) , (5.26)

and

S(β) ≡
∫ ∞

m0

dm φ̂m(β) Ŝ(β,m) . (5.27)

Then, expression (5.24) yields

λ(β) = S(β) + Q(β)λ(β) , (5.28)

whose solution is

λ(β) =
S(β)

1 − Q(β)
. (5.29)

This expression gives λm(t) after inversion of the integral operator
∫∞
m0

dm φ̂m(β) and of the

Laplace transform.

The key quantity controlling the dependence of λm(t) is

Q(β) =
K

θcθ

(∫ ∞

m0

dm 10α(m−m0) P (m)
) (

θ

∫ ∞

0
dt

e−βct

(t + 1)1+θ

)
, (5.30)

obtained by replacing the expression of φm(t) defined in (5.1) and normalizing t/c → t. Using

P (m) = ln(10) b 10−b(m−m0), we obtain

Q(β) = n R(βc), (5.31)
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where we have used the expression (5.3) of n and defined

R(β) ≡ θ

∫ ∞

0
dt

e−βt

(t + 1)1+θ
= θ eβ βθ Γ(−θ, β) = 1 − eβ βθ Γ(1 − θ, β) , (5.32)

where

Γ(a, x) =
∫ ∞

x
dt e−t ta−1 (5.33)

is the (complementary) incomplete Gamma function [Abramowitz and Stegun, 1964] and we have

used Γ(1+a, x) = aΓ(a, x)+xa e−x obtained by integration by part. Using the expansion of the

incomplete Gamma function [Olver, 1974]

Γ(a, x) = Γ(a) −
+∞∑
k=0

(−1)k xa+k

k! (a + k)
, for a > 0 , (5.34)

we obtain

R(β) = 1 − Γ(1 − θ) βθ +
1

1 − θ
β + O(β1+θ, β2, β2+θ, β3, ...) . (5.35)

It is possible, using the full expansion of the incomplete Gamma function, to estimate the value

of λ(β) when the second term 1
1−θ β of the expansion cannot be neglected anymore compared

with the term proportional to βθ. Thus, the expansion (5.35) using the first two terms only

R(β) = 1 − Γ(1 − θ) βθ becomes invalid for β > [Γ(1 − θ)(1 − θ)]1/(1−θ), i.e., for times smaller

than [Γ(2− θ)]−1/(1−θ). For all practical purpose, this is a small value and we can use safely the

expansion (5.35) in the following calculations.

Let us now make explicit λ(β) :

λ(β) =
K

θcθ
R(βc)

∫ ∞

m0

dm 10α(m−m0)

∫ ∞

0
dt λm(t) e−βt . (5.36)

Using the definition of λ(t) given by (5.11) and the factorization of the times and magnitudes

in (5.36), we obtain

λ(β) = nR(βc)λ̂(β) , (5.37)

where

λ̂(β) =
∫ ∞

0
dt λ(t) e−βt . (5.38)

Replacing (5.37) in (5.29) gives

λ̂(β) =
S(β)

nR(βc) (1 − nR(βc))
. (5.39)

When a great earthquake occurs at the origin of time t = 0 with magnitude M , S(t,m) =

δ(t) δ(m − M), expression (5.27) gives

S(β) =
K

θcθ
10α(M−m0) R(βc) . (5.40)

Thus, expression (5.39) becomes

λ̂(β) =
b − α

b

10α(M−m0)

(1 − nR(βc))
. (5.41)

The dependence of λ̂(β) on β is uniquely controlled by the denominator 1 − nR(βc).
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The sub-critical regime n < 1

The analysis proceeds exactly as in [Sornette and Sornette, 1999a]. For 0 < θ < 1, and for

small β (large times), λ̂(β) given by (5.41) is

λ̂(β) =
S0

1 − n[1 − d(βc)θ]
=

S0

(1 − n)

(
1

1 + (βt∗)θ

)
, (5.42)

where t∗ is defined by (5.12) and the external source term S0 is defined by (5.13). We retrieve

equation (13) of [Sornette and Sornette, 1999a] with the correspondence t0 → c.

Two cases must be distinguished.

• βt∗ < 1 corresponds to t > t∗ by identifying as usual the dual variable β to t in the Laplace

transform with 1/t. In this case, we can expand 1
1+(βt∗)θ , which leads to

λ̂t>t∗(β) ∼ S0

1 − n
[1 − (βt∗)θ]. (5.43)

We recognize the Laplace transform of a power law of exponent θ, i.e.

λt>t∗(t) ∼ S0

Γ(θ)(1 − n)
t∗θ

t1+θ
for t > t∗ . (5.44)

• For t < t∗, βt∗ > 1 and (5.42) can be written with a good approximation as

λ̂t<t∗(β) =
S0

(1 − n)(βt∗)θ
∼ β−θ. (5.45)

Denoting Γ(z) ≡ ∫ +∞
0 dt e−t tz−1, we see that

∫ +∞
0 dt e−βt tz−1 = Γ(z)β−z. Comparing with

(5.45), we thus get

λt<t∗(t) ∼ S0

Γ(θ)(1 − n)
t∗−θ

t1−θ
for t < t∗ . (5.46)

We verify the self-consistency of the two solutions λt>t∗(t) and λt<t∗(t) by checking that

λt>t∗(t∗) = λt<t∗(t∗). In other words, t∗ is indeed the transition time at which the “short-time”

regime λt<t∗(t) crosses over to the “long-time” regime λt>t∗(t).

We now calculate the full expression of λ(t) valid at all times. We expand

1
(βt∗)θ + 1

=
1

(βt∗)θ
1

(βt∗)−θ + 1
=

1
(βt∗)θ

∞∑
k=0

(−1)k(βt∗)−kθ , (5.47)

Thus, by taking the inverse Laplace transform

λ(t) =
S0

1 − n

1
2πi

∫ c+i∞

c−i∞
dβ eβt

∞∑
k=0

(−1)k(βt∗)−(k+1)θ . (5.48)

The inverse Laplace transform of β−(k+1)θ is t(k+1)θ−1/Γ((k + 1)θ). This allows us to write

λ(t) =
S0

1 − n

t∗−θ

t1−θ

∞∑
k=0

(−1)k
(t/t∗)kθ

Γ((k + 1)θ)
(5.49)
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Expression (5.49) provides the solution that describes the cross-over from the 1/t1−θ Omo-

ri’s law (5.46) at early times to the 1/t1+θ Omori’s law (5.44) at large times. The series∑∞
k=0(−1)k (t/t∗)kθ

Γ((k+1)θ) is a series representation of a special Fox function [Glöckle and Nonnenma-

cher, 1993] and it is also related to the generalized Mittag-Leffler function.

For large times t >> t∗, a direct numerical evaluation of λ(t) from equation (5.49) is impos-

sible due to the very slow convergence of the series. The padé summation method [Bender and

Orzag, 1978] can be used to improve the convergence of this series and to evaluate numerically

(5.49) for all times.

The super-critical regime n > 1

We can analyze this regime by putting n > 1 in (5.41) which can be written under a form

similar to (5.42) :

λ̂(β) =
S0

(1 − nR(βc))
=

S0

dn(βc)θ − (n − 1)
=

S0

(n − 1)

(
1

(βt∗)θ − 1

)
, (5.50)

In the second and third equalities of (5.50), we have used the small β-expansion (5.35) of R(βc)

valid for 0 < θ < 1.

At early times c � t � t∗, i.e., βt∗ 
 1, λ̂(β) ≈ S0

(n−1)(βt∗)θ which is the Laplace transform

of (5.46) : thus, the early decay rate of aftershocks is the same ∼ 1/t1−θ as for the sub-critical

regime (5.46). However, as time increases, the dual β of t decreases and λ̂(β) grows faster than

∼ (βc)−θ due to the presence of the negative term −(n − 1). This can be seen as an apparent

exponent θapp > θ increasing progressively such that dn(βt∗)θ − 1 ≈ C(βt∗)θapp , where C is

a constant. Note that θapp > θ for the pure power law C(βc)θapp to mimic the acceleration

induced by the negative correction −(n− 1). The seismic rate will thus decay approximately as

∼ 1/t1−θapp(t).

The large time behavior is controlled by the pole at β = 1/t∗ of λ̂(β). Close to 1/t∗,

λ̂(β) ≈ S0

(n − 1)θ
1

βt∗ − 1
. (5.51)

The inverse Laplace transform is thus

λ(t) = (2πi)−1

∫ c+i∞

c−i∞
dβ eβt λ̂(β) ∼ S0

(n − 1)t∗θ
et/t∗ (5.52)

exhibiting the exponential growth at large times. Expression (5.12) shows that 1/t∗ ∼ |1 − n| 1θ .

Thus, as expected, the exponential growth disappears as n → 1+.

We now calculate the full expression of λ(t) valid at all times. We expand

1
(βt∗)θ − 1

=
1

(βt∗)θ
1

1 − (βt∗)−θ
=

1
(βt∗)θ

∞∑
k=0

(βt∗)−kθ , (5.53)

Thus

λ(t) =
S0

(n − 1)
1

2πi

∫ c+i∞

c−i∞
dβ eβt

∞∑
k=0

(βt∗)−(k+1)θ . (5.54)
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The inverse Laplace transform of 1/β(k+1)θ is t(k+1)θ−1/Γ((k + 1)θ). This allows us to write

λ(t) =
S0

(n − 1)
t∗−θ

t1−θ

∞∑
k=0

(t/t∗)kθ

Γ((k + 1)θ)
(5.55)

Expression (5.55) provides the solution that describes the cross-over from the 1/t1−θ Omori’s

law at early times to the exponential growth at large times. Note that the solution (5.55) can be

obtained directly from (5.49) by removing the alternating sign (−1)k in the sum. The solution

(5.55) retrieves the two regimes discussed before.

1. For t < t∗, the sum in (5.55) is close to 1/Γ(θ), which leads to

λ(t) ≈ S0

Γ(θ)(n − 1)
t∗−θ

t1−θ
. (5.56)

2. For t ≥ t∗, the sum dominates. The sum is very similar to the series expansion of et/t∗ and

is actually proportional to et/t∗ for large t. This result is obvious for θ = 1 since the series

expansion becomes identical to that of et/t∗ . This can be justified for other values of θ as

follows. For θ → 0, the discrete sum transforms into a continuous integral of the type∫ ∞

0
dx tx/Γ(x) . (5.57)

A saddle-node approximation, performed using the Stirling approximation (which already

gives a very good precision for small z) Γ(z) ≈ √
2π e−z zz− 1

2 , shows that the saddle-node

of the integrant occurs for x ≈ t/t∗, which then gives λ(t) ∼ et/t∗ . For arbitrary θ, we can

use the Poisson’s summation rule

+∞∑
r=−∞

f(r) =
∫ +∞

−∞
du f(u) +

+∞∑
q=1

∫ +∞

−∞
du f(u) cos[2πqu] , (5.58)

on the function defined by

f(r) ≡ (t/t∗)rθ

Γ(rθ + θ)
, for r ≥ 0 (5.59)

and f(r) = 0 for r < 0. The left-hand-side of (5.58) is nothing but the semi-infinite sum

in (5.55). The first term in the right-hand-side retrieves the integral (5.57) encountered

for the case θ → 0. This term thus contributes a term proportional to et/t∗ . All the other

terms contribute negative powers of t and are thus negligible compared to the exponential

for t > t∗. This can be seen from the fact that each term with q ≥ 1 is similar to the

sum in (5.49) for the subcritical case with alternating signs. The larger q is, the faster is

the frequency of alternating signs and the smaller is the integral. The leading dependence

λ(t) ∼ et/t∗ valid for any 0 ≤ θ ≤ 1 retrieves the limiting behavior already given in (5.52)

from a different approach for large times t >> t∗. It has also been proved rigorously in

[Ramselaar, 1990].
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Case θ < 0 corresponding to a local Omori’s law exponent p < 1

The general equation (5.9) still holds in this case and the general derivation starting with

(5.24) up to (5.29) still applies. The key quantity controlling the dependence of λm(t) is still

Q(β) defined by (5.30). Writing θ = −|θ|, we have

Q(β) = n0 R′(βc), (5.60)

where n0 is defined by (5.4) and

R′(β) ≡
∫ ∞

0
dt

e−βt

(t + 1)1−|θ| = eβ β−|θ| Γ(|θ|, β) (5.61)

where Γ(a, x) is the (complementary) incomplete Gamma function defined by (5.33). Using the

exact expansion (5.34), we obtain

Q(β) = n0 eβc (βc)−|θ|
(

Γ(|θ|) −
+∞∑
k=0

(−1)k (βc)|θ|+k

k! (|θ| + k)

)
. (5.62)

For small β’s (i.e., large times), expression (5.62) has the following leading behavior

Q(β) = n0 Γ(|θ|) (βc)−|θ| − n0

|θ| + n0Γ(|θ|) (βc)1−|θ| + h.o.t. (5.63)

where h.o.t. stands for higher-order terms in the expansion in increasing powers of βc.

The source term S(β) in the denominator of λ̂(β) given by (5.29) is now given by

S(β) = K c|θ| 10α(M−m0) R′(βc) . (5.64)

Expression (5.29) for λ̂(β) then yields

λ̂(β) =
S0

1 − Q(βc)
, (5.65)

where R′(βc) is given by (5.61), n0 is defined by (5.4) and S0 is defined by (5.13). The dependence

of λ̂(β) on β is uniquely controlled by the denominator 1 − Q(βc) = 1 − n0R
′(βc).

Using (5.63), we get the leading behavior for small βc

λ̂(β) =
S0

1 + n0
|θ| − n0Γ(|θ|) (βc)−|θ|

=
S0

(1 + n0
|θ|)

1
(1 − (βτ)−|θ|)

(5.66)

where the characteristic time τ is given by (5.19).

At early times c < t < τ , (βτ)−|θ| < 1 so that

λ̂(β) ≈ S0

(1 + n0
|θ| )

(
1 + (τβ)−|θ|

)
. (5.67)
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By applying the inverse Laplace transform, the constant term contributes a Dirac function δ(t)

which is irrelevant as the calculation is valid only for t > c. The other term (τβ)−|θ| gives

λ(t) =
S0

(1 + n0
|θ|)Γ(|θ|)

τ−|θ|

t1−|θ| . (5.68)

The early time behavior of λ(t) is thus similar to the local Omori law 1/t1−|θ|.

Similarly to the super-critical case n > 1 of the regime θ > 0, the long time dependence of

the regime θ < 0 is controlled by a simple pole β∗ = 1
τ .

Thus, the long-time seismicity is given by

λ(t) =
S0

(1 + n0
|θ|)τ |θ|

et/τ (5.69)

We can also calculate the full expression of λ(t) valid at all times t > c. We expand

1
1 − (βτ)−|θ| =

∞∑
k=0

(βτ)−k|θ| , (5.70)

Removing the constant term, which by the inverse Laplace transform contributes a Dirac function

δ(t) which is irrelevant as the calculation is valid only for t 
 c, we get

λ(t) =
S0

(1 + n0
|θ|)

1
2πi

∫ c+i∞

c−i∞
dβ eβt

∞∑
k=1

(βτ)−k|θ| . (5.71)

The inverse Laplace transform of 1/βk|θ| is tk|θ|−1/Γ(k|θ|). This allows us to write

λ(t) =
S0

(1 + n0
|θ| )

1
t

∞∑
k=1

(t/τ)k|θ|

Γ(k|θ|) (5.72)

Expression (5.72) provides the solution that describes the cross-over from the local Omori law

1/t1−|θ| at early times to the exponential growth at large times.
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Abstract

We present a new kind of critical stochastic finite-time-singularity, relying on the interplay

between long-memory and extreme fluctuations. We illustrate it on the well-established epidemic-

type aftershock (ETAS) model for aftershocks, based solely on the most solidly documented

stylized facts of seismicity (clustering in space and in time and power law Gutenberg-Richter

distribution of earthquake energies). This theory accounts for the main observations (power law

acceleration and discrete scale invariant structure) of critical rupture of heterogeneous materials,

of the largest sequence of starquakes ever attributed to a neutron star as well as of earthquake

sequences.



104 Singularite en temps fini dans un modele stochastique de sismicite

A large portion of the current work on rupture and earthquake prediction is based on the

search for precursors to large events in the seismicity itself. Observations of the acceleration

of seismic moment leading up to large events and “stress shadows” following them have been

interpreted as evidence that seismic cycles represent the approach to and retreat from a cri-

tical state of a fault network [Sornette and Sammis, 1995 ; Saleur et al., 1996]. This “critical

state” concept is fundamentally different from the long-time view of the crust as evolving spon-

taneously in a statistically stationary critical state, called self-organized criticality (SOC) [Bak

and Tang, 1989 ; Sornette and Sornette, 1989]. In the SOC view, all events belong to the same

global population and participate in shaping the self-organized critical state. Large earthquakes

are inherently unpredictable because a big earthquake is simply a small earthquake that did not

stop. By contrast, in the critical point view, a great earthquake plays a special role and signals

the end of a cycle on its fault network. The dynamical organization is not statistically stationary

but evolves as the great earthquake becomes more probable. Predictability might then become

possible by monitoring the approach of the fault network towards the critical state. This hy-

pothesis adsvi proposed in [Sornette and Sammis, 1995 ; Saleur et al., 1996] is the theoretical

induction of a series of observations of accelerated seismicity [Sykes and Jaumé, 1990 ; Bufe and

Varnes, 1993] which has been later strengthened by several othervobservations [Harris and Simp-

son, 1996 ; Knopoff et al., 1996 ; Jones and Hauksson, 1997 ; Bowman et al., 1998 ; Brehm and

Braile, 1998 ; Jaumé and Sykes, 1999 ; Ouillon and Sornette, 2000 ; Zoller et al., 2001 ; Yin, 2001]

Theoretical support has also come from simple computer models of critical rupture [Sornette and

Vanneste, 1992 ; Vanneste and Sornette, 1992 ; Sornette et al., 1992 ; Sahimi and Arbabi, 1996 ;

Andersen et al., 1997] and experiments of material rupture [Anifrani et al., 1999 ; Lamaignère et

al., 1996 ; Garcimartin et al., 1997 ; Johansen and Sornette, 2000], cellular automata, with [An-

ghel et al., 1999 ; Sà Martins et al., 2001] and without [Huang et al., 1998 ; Sammis and Smith,

1999] long-range interaction, and from granular simulators [Mora et al., 2000 ; Mora and Place,

2001]. Models of regional seismicity with more faithful fault geometry have been developed that

also show accelerating seismicity before large model events [Heimpel, 1997 ; Bowman and King,

2001a ; Ben-zion and Lyakhovsky, 2001].

There are at least five different mechanisms that are known to lead to critical accelerated

seismicity of the form

N(t) ∝ 1/(tc − t)m (6.1)

ending at the critical time tc, where N(t) is the seismicity rate (or acoustic emission rate for

material rupture). Such finite-time-singularities are quite common and have been found in many

well-established models of natural systems, either at special points in space such as in the Euler

equations of inviscid fluids, in vortex collapse of systems of point vortices, in the equations of

General Relativity coupled to a mass field leading to the formation of black holes, in models
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of micro-organisms aggregating to form fruiting bodies, or in the more prosaic rotating coin

(Euler’s disk). They all involve some kind of positive feedback, which in the rupture context can

be the following (see [Sammis and Sornette, 2002] for a review) : sub-critical crack growth [Das

and Scholz, 1981], geometrical feedback in creep rupture [Krajcinovic, 1996], feedback of damage

on the elastic coefficients with strain dependent damage rate [Ben-Zion and Lyahkovsky, 2001],

feedback in a percolation model of regional seismicity [Sammis and Sornette, 2002], feedback in

a stress-shadow model for regional seismicity [Bowman and King, 2001a ; Sammis and Sornette,

2002].

While these mechanisms are plausible, their relevance to the earth crust remains unproven.

Here, we present a novel mechanism leading to a new kind of critical stochastic finite-time-

singularity in the seismicity rate, using the well-established epidemic-type aftershock sequence

(ETAS) model for aftershocks, introduced by [Kagan and Knopoff, 1981 ; 1987 ; Ogata, 1988],

based solely on the most solidly documented stylized facts of seismicity mentioned above. The

adjective “stochastic” emphasizes the fact that the critical time tc is determined in large part

by the specific sets of innovations of the random process. We show that, in a finite domain of its

parameter space, the rate of seismic activity in the ETAS model diverges in finite time according

to (6.1). The underlying mechanism relies on large deviations occurring in an explosive branching

process. One of the advantage of this discovery is to be able to account for the observations

of accelerated seismicity and acoustic emission in material failure, without invoking any new

ingredient other than those already well-established empirically. We apply this insight to quantify

the longest available starquake sequence of a neutron star soft γ-ray repeaters.

We shall use the example of earthquakes but the model applies similarly to microcracking

in materials. The ETAS model is a generalization of the modified Omori law, in that it takes

into account the secondary aftershock sequences triggered by all events. The modified Omo-

ri’s law states that the occurrence rate of the direct aftershock-daughters from an earthquake

decreases with the time from the mainshock according to the “bare propagator” K/(t + c)p.

In the ETAS model, all earthquakes are simultaneously mainshocks, aftershocks and possibly

foreshocks. Contrary to the usual definition of aftershocks, the ETAS model does not impose

an aftershock to have an energy smaller than the mainshock. This way, the same law describes

both foreshocks, aftershocks and mainshocks. An observed “aftershock” sequence of a given ear-

thquake (starting the clock) is the result of the activity of all events triggering events triggering

themselves other events, and so on, taken together. The corresponding seismicity rate (the “dres-

sed propagator”), which is given by the superposition of the aftershock sequences of all events,

is the quantity we derive here.

Each earthquake (the “mother”) of energy Ei ≥ E0 occurring at time ti gives birth to

other events (“daughters”) of any possible energy, chosen with the Gutenberg-Richter density

distribution P (E) = µ/(E/E0)1+µ with exponent µ  2/3, at a later time between t and t + dt
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at the rate

φEi(t − ti) = ρ(Ei) Ψ(t − ti) . (6.2)

ρ(Ei) = K (Ei/E0)a gives the number of daughters born from a mother with energy Ei, with

the same exponent a for all earthquakes. This term accounts for the fact that large mothers have

many more daughters than small mothers because the larger spatial extension of their rupture

triggers a larger domain. E0 is a lower bound energy below which no daughter is triggered.

Ψ(t − ti) = θ cθ

(t−ti+c)1+θ is the normalized waiting time distribution (local Omori’s law or “bare

propagator”) giving the rate of daughters born a time t − ti after the mother.

The ETAS model is fundamentally a “branching” model [Vere-Jones, 1977] with no “loops”,

i.e., each event has a unique “mother-mainshock” and not several. This “mean-field” or random

phase approximation allows us to simplify the analysis while still keeping the essential physics

in a qualitative way. The problem is to calculate the “dressed” or “renormalized” propagator

(rate of seismic activity) that includes the whole cascade of secondary sequences [Sornette and

Sornette, 1999a]. The key parameter is the average number n (or“branching ratio”) of daughter-

earthquakes created per mother-event, summed over all possible energies. n is equal to the

integral of φEi(t−ti) over all times after ti and over all energies Ei ≥ E0. This integral converges

to a finite value n < ∞ for θ > 0 (local Omori’s law decay faster than 1/t) and for a < µ (not

too large a growth of the number of daughters as a function of the energy of the mother). The

resulting average rate N(t) of seismicity is the solution of the Master equation [Helmstetter and

Sornette, 2002a]

N(t) =
∫ t

0
dτ N(τ)

∫ Emax(t)

E0

dE′ P (E′) φE′(t − τ) (6.3)

giving the number N(t)dt of events occurring between t and t + dt of any possible energy. We

have made explicit the upper bound Emax(t) equal to the typical maximum earthquake energy

sampled up to time t. For a < µ, this upper bound has no impact on the results and can be

replaced by +∞ [Helmstetter and Sornette, 2002a]. There may be a source term S(t) to add to the

r.h.s. of (6.3), corresponding to either a constant background seismicity or to a large triggering

earthquake. In this last case, the rate N(t) solution of (6.3) is the “dressed” propagator giving

the renormalized Omori’s law. A rich behavior, which has been fully classified by a complete

analytical treatment [Helmstetter and Sornette, 2002a], has been found : sub-criticality n < 1

[Sornette and Sornette, 1999a] and super-criticality n > 1 [Helmstetter and Sornette, 2002a],

where n depends on the control parameters µ, a, θ, K and c. With a single value of the exponent

1 + θ of the “bare” propagator Ψ(t) ∼ 1/t1+θ, we obtain a continuum of apparent exponents

for the global rate of aftershocks [Helmstetter and Sornette, 2002] which may account for the

observed variability of Omori’s exponent p around p = 1 reported by many workers.

Here, we explore the regime a ≥ µ, for which n is infinite. This signals the impact of large

earthquake energies, suggesting the relevance of the upper bound Emax(t) in (6.3). This case

is actually observed in real seismicity by Drakatos et al. [2001] who obtained a > µ for some
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aftershock sequences in Greece, and by Guo and Ogata [1997] who found a > µ for 13 out

of 34 aftershock sequences in Japan. This case a > µ also characterizes the seismic activity

preceding the 1984 M = 6.8 Nagano Prefecture earthquake [Ogata, 1989]. After the mainshock,

the seismicity returned in the sub-critical regime θ > 0, a < µ and n < 1.

This case a ≥ µ is similar to that found underlying various situations of anomalous transport

[Bouchaud and Georges, 1990 ; Sornette, 2000a] : in this regime of large fluctuations, the integral

over earthquake energies is dominated by the upper bound. The maximum energy Emax(t)

sampled by N(t)∆t earthquakes is given by the standard condition N(t)∆t
∫ Emax(t)
E0

dE′ P (E′) ≈
1. This yields the robust median estimate Emax(t) ∼ [N(t)∆t]1/µ. Actually, Emax(t) is itself

distributed according to the Gutenberg-Richter distribution and thus exhibits large fluctuations

from realization to realization, as we can see in Fig. 1. Putting this estimation of Emax(t) in

(6.3), we get

N(t) ∝
∫ t

0
dτ

N(τ)
(t − τ + c)1+θ

[N(τ)∆τ ](a−µ)/µ . (6.4)

Let us note the appearance of the new term [N(τ)∆τ ](a−µ)/µ resulting from the contribution

of the upper bound in the integral
∫

dE′P (E′). This term replaces the constant found for the

case a < µ. Equation (6.4) shows that the exploration of larger and larger events in the tail in

the Gutenberg-Richer distribution transforms the linear Master equation (6.3) into a non-linear

equation : the non-linearity expresses a positive feedback according to which the larger is the

rate N(t) of seismicity, the larger is the maximum sampled earthquake, and the larger is the

number of daughters resulting from these extreme events. This process self-amplifies and leads

to the announced finite-time singularity (6.1). However, to complete the derivation, we need to

determine the yet unspecified time increment ∆τ . If N(τ) obeys (6.1), ∆τ is not a constant

that can be factorized away : it is determined by the condition that, over ∆τ , N(τ) does not

change “significantly” in the interval [τ, τ + ∆τ ], i.e., no more than by a constant factor. Using

the assumed power law solution (6.1), this gives ∆τ ∝ tc − τ . Using this and inserting (6.1) into

(6.4), we get,

m =
a/µ

(a/µ) − 1
, tc − t � c

m =
(a/µ) − 1 − θ H(−θ)

(a/µ) − 1
, tc − t 
 c , (6.5)

where H is the Heaviside function. Note that (6.5) predicts an exponent m > 1 which is in-

dependent of θ close to the critical time tc. This is due to the fact that the time decay of the

Omori’s kernel is not felt for tc − t ≤ c, where c acts as an ultraviolet cut-off. It is also inter-

esting to find that m = 1 independently of a and θ in the regime θ > 0 (with of course a > µ)

for which Omori’s kernel ∼ 1/t1+θ decays sufficiently fast at long times that the predominant

contributions to the present seismic rate come from events in the immediate past of the present

time of observation. In contrast, the case θ < 0 is analogous to the anomalous long-time memory

regime [Bouchaud and Georges, 1990 ; Sornette, 2000a] which keeps for ever the impact of past
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events on future rates.

This prediction, based on the careful analysis of the integral in (6.4), has been verified by

direct numerical evaluation of the equation (6.4). We have also checked that numerical Monte

Carlo simulations of the ETAS model generates catalogs of events following this prediction, in

an ensemble or median sense. Figure 6.1 shows the cumulative number N (t) =
∫ t
0 dτ N(τ) of

events for a typical realization of the ETAS model and compares it with Emax(t) to illustrate

that N (t) is mostly controlled by the sampling of Emax(t), as discussed in the derivation of

expression (6.4) leading to the finite-time-singularity (6.1). For the value µ = 1 chosen here,

Emax(t) follows the same power law as the cumulative number, as observed. The dashed line is

the power law prediction (6.1) with (6.5) for a/µ = 1.5 and θ = −0.2 with slope m−1 = 0.4. We

have also generated 500 such catalogs and report in the inset the distribution p(m) of exponents

m obtained by a best fit of N (t) for each of the 500 catalogs to a power law 1/(tc − t)m−1. The

median of p(m) is exactly equal to the prediction shown by the vertical thin line while the mode

is very close to it. Note however a rather large dispersion which is expected from the highly

intermittent dynamics characteristic of this extreme-dominated dynamics. We now report a few

comparisons between the prediction (6.5) and the median value of the exponent m obtained

from 500 simulations for the following parameters : θ = −0.2, a = 1.1, µ = 1, predicted m = 3.,

median m = 1.93 ; θ = −0.2, a = 1.3, µ = 1, predicted m = 1.67, median m = 1.61 ; θ = −0.1,

a = 1.5, µ = 1, predicted m = 1.20, median m = 1.29 ; θ = −0.3, a = 1.5, µ = 1, predicted

m = 1.60, median m = 1.62. θ = −0.2, a = 1.7, µ = 1, predicted m = 1.29, median m = 1.37 ;

For a > 1.8µ and for θ > 0, the fluctuations are so large that a reliable determination of the m

becomes questionable.

Figure 6.1 shows that the power law singularities are decorated by quite strong steps or

oscillations, approximately equidistant in the variable ln(tc − t). This log-periodicity has been

previously proposed as a possibly important signature of rupture and earthquake sequences

approaching a critical point [Sornette and Sammis, 1995 ; Saleur et al., 1996 ; Anifrani et al.,

1999 ; Lamaignère et al., 1996 ; Garcimartin et al., 1997 ; Johansen and Sornette, 2000]. Here,

we present a simple novel mechanism for this observation, based on a refinement of the previous

argument leading to Emax(t) ∼ [N(t)∆t]1/µ. Indeed, the most probable value for the energy En

of the n-th largest earthquake ranked from the largest E1 = Emax to the smallest one is given by

En(t) = {[N (t)µ+1]/[nµ+1]}1/µ [Sornette et al., 1996], where N (t) =
∫ t
0 N(t′)dt′. Let us assume

that the last new record was broken at time t1 leading to E1(t1) = {[N (t1)µ+1]/[µ+1]}1/µ. The

next record will occur at a time t2 > t1 whose typical value is such that E2(t2) = E1(t1) (the

last record E1(t1) becomes the second largest event E2(t2) when a new record E1(t2) occurs).

For large N (t), this gives N (t2)
N (t1) = (2µ + 1)/(µ + 1). The preferred scaling ratio of the average

log-periodicity is λ ≡ (tc − t1)/(tc − t2) = [(2µ+1)/(µ+1)]1/(m−1). For µ = 1, θ = −0.2,m = 1.4

corresponding to figure 1, we obtain λ ≈ 2.3, which is compatible with the data.

The prediction (6.5) rationalizes the “inverse” Omori’s law close to 1/(tc − t) that has been
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Fig. 6.1 – Cumulative number of events (scale on the left) as a function of the time from the critical

point tc for the starquake sequence (solid black line) and one typical simulation of the ETAS model

(solid thin line) generated with θ = −0.2, a/µ = 1.5 and c = 0.001 day. For the starquakes, tc is the

time of the strongest observed starquake in the sequence. The dashed line shows the theoretical exponent

m − 1 = 0.4 (6.5) for tc − t > c. The crosses ’×’ joined by straight segments give the time evolution of

Emax(t) (scale on the right). The inset gives the distribution of exponent measured for 500 numerical

simulations. The median (vertical line) of the distribution of m-values is equal to the theoretical exponent

m = 1.4 (formula (6.5)).

documented for earthquake foreshocks [Jones and Molnar, 1976, 1979 ; Kagan and Knopoff,

1978]. The prediction (6.5) as well as the log-periodicity offers a general framework to rationa-

lize several previous experimental reports of precursory acoustic emissions rates prior to global

failures [Anifrani et al., 1999 ; Lamaignère et al., 1996 ; Garcimartin et al., 1997 ; Johansen and

Sornette, 2000]. In this case, the energy release rate e(t) is found to follow a power law finite-time

singularity. According to our theory, e(t) ∝ N(t)Emax(t) ∝ 1/(tc − t)m+(m−1)/µ.

Finally, we also show that this could explain starquakes catalogs. Starquakes are assumed

to be ruptures of a super-dense 1-km thick crust made of heavy nuclei stressed by super-strong

stellar magnetic field. They are observed through the associated flashes of soft γ-rays radiated

during the rupture. Starquakes exhibit all the main stylized facts of their earthly siblings [Kos-

sobokov et al., 2000]. The thick line in figure 6.1 shows the cumulative number of starquakes of

the SGR1806-20 sequence, which is the longest sequence (of 111 events) ever attributed to the
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same neutron star, as a function of the logarithm of the time tc−t to failure. The starquake data

is compatible with µ = 1 [Kossobokov et al., 2000], a = 1.5 and θ = −0.2, leading to m = 1.4.

Acknowledgments

We are grateful to V. Keilis-Borok and V. Kossobokov for sharing the starquake data with us

and W.-X. Zhou for discussions and help in a preliminary analysis of the data.



Chapitre 7

Predictability in the ETAS Model of

Interacting Triggered Seismicity

Agnès Helmstetter
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Abstract

As part of an effort to develop a systematic methodology for earthquake forecasts, we use

a simple model of seismicity based on interacting events which may trigger a cascade of ear-

thquakes, well-known as the Epidemic-Type Aftershock Sequence model). The ETAS model is

constructed on a (bare) Omori’s law, the Gutenberg-Richter law and the idea that large events

trigger more numerous aftershocks. We demonstrate the essential role played by the cascade of

triggered seismicity in controlling the rate of aftershocks decay as well as the overall level of

seismicity in the presence of a constant external seismicity source. The key parameter of this

model, which controls the different regimes of the seismic activity, is the branching ratio, defined

as the average number of triggered event per earthquake. This parameter is given two observable

meanings as the ratio of triggered events over total seismicity and the ratio of secondary after-

shocks over total aftershocks. We offer an analytical approach to account for the yet unobserved

triggered seismicity adapted to the problem of forecasting future seismic rates at varying hori-



112 Predictabilite dans le modele ETAS de declenchement de seismes

zons from the present. Tests presented on synthetic catalogs validate strongly the importance

of taking into account all the cascades of still unobserved triggered events in order to predict

correctly the future level of seismicity beyond a few minutes. We find a very strong predictability

gain if one accepts to predict less than typically 25% of the large-magnitude targets. However,

the probability gains degrade fast when one attempts to predict more than 30% of the targets.

This results from the fact that a significant fraction of events remain uncorrelated from past

seismicity. This delineates the fundamental limits underlying forecast skills, stemming from an

intrinsic stochastic component in these interacting triggered seismicity models

7.1 Introduction

There are several solidly documented stylized facts in seismicity : (1) spatial clustering of

earthquakes at many scales, (2) Gutenberg-Richter (GR) distribution of earthquake magnitudes

and (3) clustering in time following large earthquakes, quantified by Omori’s ≈ 1/tp law for

aftershocks (with p ≈ 1). These “laws” are however only the beginning of a full model of seismic

activity and earthquake triggering. In principle, if one could obtain a faithful representation

(model) of the spatio-temporal organization of seismicity, one could use this model to develop

algorithms for forecasting earthquakes. The ultimate quality of these forecasts would be limited

by the quality of the model, the amount of data that can be used in the forecast and its relia-

bility and precision, and the stochastic component of seismic activity. However, any earthquake

prediction algorithm based on past seismicity explicitly or implicitly formulates assumptions on

the physical mechanisms at the origin of the spatio-temporal organization of earthquakes. To

simplify the discussion, two end-members can be considered. At one extreme, earthquakes are

considered as “witnesses” of the organization of driving fields such as stress, fluid, underlying

visco-elastic crust, and possibly others, driven themselves by tectonic forces and by their own

internal dynamics. This view applies for instance to the simple textbook view of a single isolated

fault loaded at a constant stress rate, in which characteristic earthquakes occur periodically by

rupturing the whole fault, with a period equal to the ratio of the stress drop divided by the

rate of stress loading. These earthquakes are “witnesses” or signatures of the tectonic loading.

Then, successful earthquake forecasts can only be obtained by understanding and characteri-

zing these fields and how they drive earthquakes. At the other extreme, earthquakes are the

“actors,” which by their interactions and self-organization, transform a featureless (constant or

white noise) tectonic driving force field into a complex structured seismicity. In this view, all the

observed complexity can be understood from the interaction between earthquakes and their mu-

tual triggering. For instance, the critical earthquake model belongs to this class as earthquakes

progressively develop a long-range correlation in the stress field by smoothing it out to prepare

the stage for a strong earthquake [Sornette and Sammis, 1995 ; Jaumé and Sykes, 1999].

Here, we analyze a simpler model of earthquake “actors”, and use it to test the fundamental
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limits of predictability of this class of models. We restrict our analysis to the time domain, that

is, we neglect the information provided by the spatial location of earthquakes which could be

used to constrain the correlation between events and should be expected to improve the forecast

skills. Our results should thus give lower bounds of the achievable predictive skills. This exercise

can be considered as rather constrained but turns out to provide meaningful and useful insights.

Before presenting the model and developing the tools necessary for the prediction of future

seismicity, we briefly summarize in the next section the evidence for triggered seismicity, that

will help us justify and formulate the model. In section 3, we present and summarize the sa-

lient properties of the model of interacting triggered seismicity used in our analysis. Section 4

explains the two physical meanings of the average branching ratio n, that allows one to retrieve

it from empirical catalogs. Section 5 develops and presents the formal solution of the problem of

forecasting future seismicity rates conditioned on the knowledge of past seismicity quantified by

a catalog of times of occurrences and of magnitudes of earthquakes. Section 6 gives the results

of an intensive series of tests, which quantify in several alternative ways the quality of fore-

casts (regression of predicted versus realized seismicity rate, error diagrams, probability gains,

information-based binomial scores). Comparisons with the Poisson null-hypothesis give a very

significant success rate. However, only about 25% of the large-magnitude targets can be shown

to be successfully predicted while the probability gain deteriorates rapidly when one attempts

to predict more than 1/3 of the targets. We provide a detailed understanding of these results.

Section 7 concludes.

7.2 Triggered seismicity and prediction

Interactions between faults and earthquakes

A look at any geological map confirmed by sophisticated statistical tools (multifractal, wa-

velets, geostatistics) show that faults are complex structures organized into complex networks

[Scholz and Mandelbrot, 1989 ; Sornette, 1991]. There are many evidences that such faults (and

therefore earthquakes) interact, as suggested by calculations of stress redistribution [King et al.,

1994 ; Stein, 1999 ; Bowman and King, 2001 ; Sammis and Sornette, 2002], elastodynamic pro-

pagation of ruptures using laboratory-based friction law [Rice and Ben-Zion, 1996], simplified

models of multiple faults [Sornette et al., 1994 ; Robinson and Benites, 1995 ; Gorshkov et al.,

1997 ; Lee et al, 1999 ; Ben-Zion et al., 1999 ; Narteau et al., 2000], as well as general constraints of

kinematic and geometric compatibility of the deformations [Gabrielov et al., 1996]. This depen-

dence between earthquakes implies that any earthquake may have a (partial) role of triggering

other earthquakes.
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Aftershocks ?

The existence of earthquake triggering is particularly obvious after large shallow earthquakes,

for which the seismicity rate increases strikingly for time periods up to one hundred years [Utsu

et al., 1995 ; Ebel et al., 2000], and distances up to several hundred km [Tajima and Kanamori,

1985 ; Steeples and Steeples, 1996 ; Kagan and Jackson, 1998 ; Meltzner and Wald, 1999 ; Dreger

and Savage, 1999]. The rate of the triggered events usually decays in time as the modified

Omori law n(t) = K/(t + c)p, where the exponent p is found to vary between 0.3 and 2 [Davis

and Frohlich, 1991 ; Kisslinger and Jones, 1991 ; Guo and Ogata, 1995 ; Utsu et al., 1995 ; Huang

et al., 2000] and is often close to 1.

These triggered events are usually called aftershocks if their magnitude is smaller than the

first event. However, the definition of an aftershock contains unavoidably a degree of arbitrari-

ness because the qualification of an earthquake as an aftershock requires the specification of time

and space windows. In this spirit, several alternative algorithms for the definition of aftershocks

have been proposed [see for a review Molchan and Dmitrieva, 1992] and there is no consen-

sus. Since the underlying physical processes are not fully understood, the qualifying time and

space windows are more based on common sense than on hard science. Particularly, there is no

agreement about the duration of the aftershock sequence and the maximum distance between

aftershock and mainshock. If one event occurs with a magnitude larger than the first event,

it becomes the new mainshock and all preceding events are retrospectively called foreshocks.

Thus, there is no way to identify foreshocks from usual aftershocks in real time. There is also

no way to distinguish aftershocks from individual earthquakes [Hough and Jones, 1997]. The

aftershock magnitude distribution follows the Gutenberg-Richter (GR) distribution with similar

b-value as other earthquakes [Ranalli, 1969 ; Knopoff et al., 1982]. They have also similar rupture

process. Moreover, an event can be both an aftershock of a preceding large event, a foreshock

of a following large earthquake or even the mainshock of many other subsequent aftershocks.

For example, the M=6.5 Big Bear event is usually considered as an aftershock of the M=7.3

Landers event, and has clearly triggered its own aftershock sequence. One can trace the difficulty

of the problem from the long-range nature of the interactions between faults in space and time

resulting in a complex self-organized crust.

Proportion of aftershocks

These observations taken together are part of the growing evidence that a significant fraction

of earthquakes in seismic catalogs are triggered events. The identification of aftershocks is often

driven by the need to “decluster” catalogs. This obviously provides only a lower bound to the

total fraction of triggered events. Gardner and Knopoff [1974] propose to detect aftershocks

according to a windowing method. Applied to the Southern California catalog, they find that

2/3 of the events in the catalog are aftershocks. Reasenberg [1985] analyzes the central California
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catalog over the period 1969-1982, and identifies aftershocks from the constraint of obtaining a

declustered catalog with a constant seismic rate. In this way, he finds that 48% of the events

belong to a seismic cluster. Davis and Frolich [1991] use the ISC catalog and, out of 47500

earthquakes, find that 30% belong to a cluster, of which 76% are aftershocks and 24% are

foreshocks. Kagan [1991] estimates the ratio of dependent events in various catalogs (California

and worldwide) using an inversion by the maximum likelihood method of a simple cascade model

of aftershock seismicity. The proportion of dependent earthquakes of the first generation that

he estimates ranges between 0.1% for deep events to 90%, but is often close to 20%. Kagan

[1991] also estimates the theoretical ratio of dependent events for the same catalogs, which is a

function of the parameters of the cascade model. He finds that about 60% of the earthquakes are

dependent events. Knopoff [2000] revisits a windowing method applied to the Southern California

catalog over the period 1944-1990, for magnitudes M ≥ 4. He finds again that clustered events

constitute about 2/3 of the whole catalog.

Proportion of secondary aftershocks

Among an aftershock sequence, a large proportion of aftershocks may be triggered indirectly

by the mainshock, that is, they may be aftershocks of aftershocks triggered by the mainshock.

Such secondary aftershock sequences are often observed following major aftershocks. For ins-

tance, the M = 6.5 Big-Bear earthquake occurred a few hours following the Landers M = 7.3

event and has clearly triggered its own aftershock sequence, as we already pointed out. Smaller

aftershocks at any scale may also trigger their own aftershocks, but may be much more difficult

to observe. Therefore, it is very difficult to distinguish between direct and secondary aftershocks

and to quantify the proportion of secondary aftershocks.

Correig et al. [1997] analyze the secondary aftershocks of a M = 5.2 mainshock in the

eastern Pyrenees mountains between France and Spain. They separate aftershocks as being

either leading aftershocks or cascades. Leading aftershocks represent only 10% of the aftershocks

sequences. In their definition, cascade aftershocks are clusters of aftershocks following these

leading aftershocks. If we identify leading aftershocks with direct aftershocks of the mainshock,

the proportion of direct aftershocks equal to 10% allows us to give an estimation of the total

fraction ≈ 0.9 of secondary aftershocks. Felzer et al. [2002] estimate the rate of secondary

aftershocks, from a comparison of the Landers aftershock sequence with numerical simulations

of a simple model of aftershock sequence. They find that about 85% of the aftershocks of the

Landers event where secondary aftershocks. This implies that the 1999 MW 7.1 Hector Mine

earthquake was triggered, not by the 1992 MW 7.3 Landers earthquake itself [Felzer et al., 2002],

but more likely by some of its aftershocks.

To sum up, aftershocks represent a large part, if not the majority, of catalogs of seismicity.

Among an aftershock sequence, a large part of aftershocks are secondary aftershocks of the main-

shock resulting from a cascade of aftershock triggering. There thus seems to be overwhelming
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evidence that seismicity can only be understood by taking into account earthquake interactions

at all scales and their mutual triggering.

A rapid tour of methods of earthquake forecasts based on past seismicity

All the algorithms that have been developed for the prediction of future large earthquakes

based on past seismicity rely on their characterization either as witnesses or as actors. In other

words, these algorithms assume that their occurrence is related in some way to the approach of

a large scale rupture.

Pattern recognition (M8)

The use of premonitory patterns of seismic activity, such as a decrease of b-value, an increase

in the rate of activity, an anomalous number of aftershocks, etc, has been codified mathematically

by Gelfand et al. [1976] (see [Keilis-Borok and Kossobokov, 1990a,b] for useful reviews). In

these algorithms, an alarm is defined when several precursory patterns are above a threshold

calibrated in a training period. Predictions are updated each 6 months as new data becomes

available. Most of the patterns used by this class of algorithms are reproduced by the model of

triggered seismicity known as the ETAS (epidemic type aftershock seismicity) model [Sornette

and Sornette, 1999 ; Helmstetter and Sornette, 2002a ; Helmstetter et al., 2002].

In the sequel, we shall use the term ETAS for the specific version studied here, which was

formulated by [Ogata, 1988 ; 1989]. We stress that it is not just a model of aftershocks but of

interacting triggered earthquakes. The prediction gain G of the M8 algorithm, defined as the

ratio between the fraction of predicted events over the fraction of time occupied by alarms, is

usually in the range 3 to 10 (recall that a random predictor would give G = 1 by definition). A

preliminary forward test of the algorithm for the time period July 1991 to June 1995 performed

no better than the null hypothesis using a reshuffling of the alarm windows [Kossobokov et al.,

1997]. Later tests indicated however a statistical significance level of 92% for the prediction of

M7.5+ earthquakes by the algorithm M8-MSc for real-time intermediate-term predictions in the

Circum Pacific seismic belt, 1992-1997, and above 99% for the prediction of M ≥ 8 earthquakes

[Kossobokov et al., 1999]. Our use of the statistical level must be understood as 1 minus the

probability of observing a predictability at least as good as what was actually observed, under

the null hypothesis that everything is due to chance alone. As of July 2002, the scores (counted

from the formal start of the global test initiated by this team since July 1991) are as follows : For

M8.0+, 8 events occurred, 7 predicted by M8, 5 predicted by M8-MSc ; for M7.5+, 25 events

occurred, 15 predicted by M8 and 7 predicted by M8-MSc.

Short term forecast of aftershocks

Reasenberg and Jones [1989] and Wiemer [2000] have developed algorithms to predict the rate
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of aftershocks following major earthquakes. The rate of aftershocks of magnitude m following

an earthquake of magnitude M is estimated by the expression

NM (m) =
k 10b(M−m)

(t + c)p
, (7.1)

where b is the b-value of the Gutenberg-Richter (GR) distribution. This approach neglects the

contribution of seismicity prior to the mainshock, and does not take into account the specific

times, locations and magnitudes of the aftershocks that have already occurred. In addition, this

model (7.1) assumes arbitrarily that the rate of aftershocks increases with the magnitude M of

the mainshock as ∼ 10bM , which may not be correct. A careful measure of this scaling for the

southern California seismicity gives a different scaling ∼ 10αM with α = 0.8 [Helmstetter, 2002].

Moreover, an analytical study of the ETAS model [Sornette and Helmstetter, 2002] shows that

the case α ≥ b leads to an explosive seismicity rate, which is unrealistic to describe the seismic

activity.

Branching models

Simulation in branching models as a tool for predicting earthquake occurrence over large time

horizons was proposed in [Kagan, 1973], and first implemented in [Kagan and Knopoff, 1977].

In a recent work, Kagan and Jackson [2000] use a variation of the ETAS model to estimate the

rate of seismicity in the future but they neglect the seismicity that will be triggered between

the present time and the horizon and which may dominate the future activity. Therefore, these

predictions are only valid at very short terms, when very few earthquakes have occurred between

the present and the horizon.

To solve this problem and to extend the predictions further in time, Kagan and Jackson

[2000] propose to use Monte-Carlo simulations to generate many possible scenarios of the future

seismic activity. However, they do not use this method in their forecasting procedure. These

Monte-Carlo simulations will be implemented in our tests, as we describe below. This method

has already been tested by Vere-Jones [1998] to predict a synthetic catalog generated using

the ETAS model. Using a measure of the quality of seismicity forecasts in terms of a mean

information gain per unit time, they obtain scores usually worse than the Poisson method. We

use below the same class of model and implement a procedure taking into account the cascade

of triggering. We find, in contrast with the claim of Vere-Jones [1998], a very strong probability

gain. Notwithstanding serious attempts to understand Vere-Jones [1998]’s methodology (and

numerous direct exchanges with the author), we confess that we do not understand the origin

of the poor scores reported in [Vere-Jones, 1998] (see below).

In [Helmstetter et al., 2002], the forecast skills of algorithms based on three functions of the

current and past seismicity (above a magnitude threshold) measured in a sliding window of 100

events have been compared. These functions are (i) the maximum magnitude Mmax of the 100

events in that window, (ii) the apparent Gutenberg-Richter exponent β measured on these 100
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events by the standard Hill maximum likelihood estimator and (iii) the seismicity rate r defined

as the inverse of the duration of the window. For each function, an alarm was declared for the

target of an earthquake of magnitude larger than 6 when the function is either larger (for Mmax

and r) or smaller (for β) than a threshold. These functions Mmax, β and r are similar and

in some cases identical to precursors and predictors that have been studied by other authors.

Helmstetter et al. [2002] found that these three predictors are considerably better than those

obtained for a random prediction, with the prediction based on the seismicity rate r being by

far the best. This is a logical consequence of the model of interacting triggered seismicity used in

[Helmstetter et al., 2002] and also in the present work, in which any relevant physical observable

is slaved to the seismicity rate. At least in the class of interacting triggered seismicity, the largest

possible amount of information is recovered by targeting the seismicity rate. All other targets

are derived from it as linear or non-linear transformations of it. Our present study refines and

extend the preliminary tests of [Helmstetter et al., 2002] by using the full model of seismicity

rather than the coarse-grained measure r. We note also that the forecasting methods of Rundle

et al. [2001 ; 2002] are based on a calculation of the coarse-grained seismicity above a small

magnitude threshold, which is then simply projected to the future.

7.3 The model of triggered seismicity

In this first investigation, we limit ourselves to the time domain, studying time series of past

seismicity summed over an overall spatial region, without taking account of the information on

earthquake positions. It is easy to check that this approach will always lead to underestimating

the predictive skills that could be achieved with a full spatio-temporal treatment. However, the

problem is sufficiently complex that we find it useful to go through this first step and develop

the relevant concepts and first tests using only information on seismic time sequences. We shall

present elsewhere the corresponding results for the general spatio-temporal problem.

The present parametric form that defines the ETAS model used in this paper was formulated

in [Ogata, 1985, 1987, 1988]. See [Ogata, 1999] and [Helmstetter and Sornette, 2002a] for reviews

of its origins, a description of the different versions of the model and of its applications to model

or predict seismic activity. It is important to stress that the ETAS model is not only a model of

aftershock sequences as the acronym ETAS (Epidemic-Type Aftershock Sequence) would make

one to believe but is fundamentally a model of triggered interacting seismicity.

In addition to the strict definition of the ETAS model used by Ogata [1985, 1987, 1988,

1989, 1999], there were and still are a variety of alternative parametric forms of the extended

“mutually exciting point processes” with marks (that is, magnitudes) introduced by Hawkes

[1971, 1972], which have been applied to earthquakes, including [Kagan and Knopoff, 1987 ;

Kagan, 1991] and [Lomnitz, 1974]. [Kagan and Knopoff, 1987] differs from [Ogata, 1985, 1987,

1988] in replacing the role played by the parameter c in the modified Omori law (7.1) by an
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abrupt cut-off which models the duration of the mainshock. They think that a non-zero value of

c is merely the artifact of the missing events immediately after the mainshock In contrast, based

on the observation of the records of seismic waves, Utsu [1970, 1992] considers that the parameter

c is not merely due to such artifact but also possesses some physical meaning. The analysis of

[Helmstetter and Sornette, 2002a] shows that the choice of a non-zero c value [Ogata, 1988] or an

abrupt cut-off [Kagan and Knopoff, 1987] does not lead to any detectable differences in simulated

catalogs at time scales beyond c (which is usually very small). Thus, from the point of view of the

collective behavior of the model, both formulations lead to essentially indistinguishable catalogs

and statistical properties. [Lomnitz, 1974]’s model (that he called the “Klondike model”) was

also directly inspired by [Hawkes, 1971] and is similar to the ETAS model, but assumes different

parametric forms : in particular, the number of triggered events is taken proportional to the

magnitude, and not to the exponential of the magnitude. Kagan and Jackson [2000] use also a

formulation of the same class but with again another more complex specification of the time,

space and magnitude dependence of the triggering process and propagator.

Definitions

The ETAS model of triggered seismicity is defined as follows [Ogata, 1985 ; 1987 ; 1988 ; 1989 ;

1992 ; 1999]. We assume that a given event (the “mother”) of magnitude mi ≥ m0 occurring at

time ti gives birth to other events (“daughters”) in the time interval between t and t + dt at the

rate

φmi(t − ti) = Φ(t − ti) ρ(mi) , (7.2)

where Φ(t) is the direct Omori’s law normalized to 1

Φ(t) =
θ cθ

(t + c)1+θ
H(t) , (7.3)

where θ > 0, H(t) is the Heaviside function, and c is a regularizing time scale that ensures

that the seismicity rate remains finite close to the mainshock. ρ(m) gives the total number of

aftershocks triggered directly by an event of magnitude m

ρ(m) = k 10α(m−m0) , (7.4)

where m0 is a lower bound magnitude below which no daughter is triggered. The adjective

“direct” refers to the events of the first generation triggered in first-order lineage from the

mother event. The combination of (7.3) and (7.4) is originally due to Utsu [1970].

The model is complemented by the Gutenberg-Richter (GR) law which states that each

earthquake has a magnitude chosen according to the density distribution

P (m) = b ln(10) 10−b(m−m0) . (7.5)

P (m) is normalized :
∫∞
m0

dm P (m) = 1. When magnitudes are translated into energies, the GR

law becomes the (power law) Pareto law.
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Definition of the average branching ratio n

The key parameter of model (7.2) is the average number (or “branching ratio”) n of daughter-

earthquakes created per mother-event. This average is performed over time and over all possible

mother magnitudes. This average branching ratio n is a finite value for θ > 0 and for α < b for

which it is equal to

n ≡
∫ ∞

0
dt

∫ ∞

m0

dm P (m) ρ(m) Φ(t) =
kb

b − α
. (7.6)

The normal regime corresponds to the subcritical case n < 1 for which the seismicity rate decays

after a mainshock to a constant background (in the case of a steady-state source) decorated by

fluctuations in the seismic rate.

Since n is defined as the average over all mainshock magnitudes of the mean number of events

triggered by a mainshock, it is thus grossly misleading to think of the branching ratio as giving

the number of daughters to a given earthquake, because this number is extremely sensitive to

the specific value of its magnitude as shown by (7.4). As an example, take α = 0.8, b = 1,

m0 = 0 and n = 1. Then, a mainshock of magnitude M = 7 will have on average 80000 direct

aftershocks, compared to only 2000 direct aftershocks for an earthquake of magnitude M = 5

and less than 0.2 aftershocks for an earthquake of magnitude M = 0.

Formulation of the global seismicity and renormalized Omori’s law

We define the “bare propagator” φ(t) of the seismicity as the integral of (7.2) over all ma-

gnitudes

φ(t) =
∫ ∞

m0

dm P (m) ρ(m) φm(t) = nΦ(t) , (7.7)

which is normalized to n since Φ(t) is normalized to 1. The meaning of the adjective “bare”

will become clear below, when we explain that cascades of triggered events renormalize φ(t)

into an effective (that we call “renormalized” or “dressed”) propagator K(t). This terminology

is borrowed from statistical and condensed-matter physics which deal with physical phenomena

occurring at multiple scales in which similar cascades of fluctuations lead to a renormalization

of “bare” into “dressed” properties when going from small to large scales. It seems natural to us

to use the same terminology in order to capture the fundamental effect of cascades of triggered

seismicity that modify/decorate/dress/renormalize the initial (bare) laws put in the model at

the level of individual events. See also [Sornette and Sornette, 1999 ; Helmstetter and Sornette,

2002a] where this terminology was introduced in the present context.

The total seismicity rate λ(t) at time t is given by the sum of an “external” source s(t) and

the aftershocks triggered by all previous events

λ(t) = s(t) +
∑
i|ti≤t

φmi(t − ti) , (7.8)

where φmi(t − ti) is defined by (7.2). Here, “external” source refers to the concept that s(t) is
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the rate of earthquakes not triggered by other previous earthquakes. This rate acts as a driving

force ensuring that the seismicity does not vanish and models the effect of the tectonic forcing.

Taking the ensemble average of (7.8) over many possible realizations of the seismicity (or

equivalently taking the mathematical expectation), we obtain the following equation for the

first moment or statistical average N(t) of λ(t) [Sornette and Sornette, 1999 ; Helmstetter and

Sornette, 2002a]

N(t) = s(t) +
∫ t

−∞
dτ φ(t − τ) N(τ) . (7.9)

The average seismicity rate is the solution of this self-consistent integral equation, which em-

bodies the fact that each event may start a sequence of events which can themselves trigger

secondary events and so on. The cumulative effect of all the possible branching paths of activity

gives rise to the net seismic activity N(t). In words, expression (7.9) means that the seismic

activity at time t may be due to a possible external source s(t) plus the sum over all past times

τ of the total previous activities N(τ) that may trigger an event at time t according to the bare

Omori’s law φ(t − τ).

The global rate of aftershocks including secondary aftershocks triggered by a mainshock of

magnitude M occurring at t = 0 is given by ρ(M)K(t)/n, where the renormalized Omori’s law

K(t) is obtained as a solution of (7.9) with the general source term s(t) replaced by the Dirac

function δ(t) :

K(t) = δ(t) +
∫ t

0
φ(t − τ) K(τ) dτ . (7.10)

The solution for K(t) can be obtained as the following series [Helmstetter and Sornette, 2002a]

K(t) = δ(t) +
1

1 − n

t∗−θ

t1−θ

k=∞∑
k=0

(−1)k
(t/t∗)kθ

Γ((k + 1)θ)
. (7.11)

The infinite sum expansion is valid for t > c, and t∗ is a characteristic time measuring the

distance to the critical point n = 1 defined by

t∗ = c
(nΓ(1 − θ)

|1 − n|
)1/θ

. (7.12)

t∗ is infinite for n = 1 and becomes very small for n � 1. The leading behavior of K(t) at short

times reads

K(t) =
1

1 − n

1
Γ(θ)

t∗−θ

t1−θ
, for c < t < t∗ , (7.13)

showing that the effect of the cascade of secondary aftershocks renormalizes the bare Omori’s

law Φ(t) ∼ 1/t1+θ given by (7.3) into K(t) ∼ 1/t1−θ, as illustrated by Figure 7.1.

Once the seismic response K(t) to a single event is known, the complete average seismicity

rate N(t) triggered by an arbitrary source s(t) can be obtained using the theorem of Green

functions for linear equations with source terms [Morse and Feshbach, 1953]

N(t) =
∫ t

−∞
dτ s(τ) K(t − τ) . (7.14)

Expression (7.14) provides the general solution of (7.9).
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Fig. 7.1 – A realization of the HKKO-ETAS model shows the seismicity rate (open circles) as a function

of time after a large earthquake. This illustrates the differences between the observed seismicity rate λ(t)

(open circle), the average renormalized (or dressed) propagator K(t) (solid line), and the local propagator

Φm(t) (thin line) . This aftershock sequence has been generated using the HKKO-ETAS model with

parameters n = 0.91, α = 0.5, b = 1, θ = 0.2, m0 = 0 and c = 0.001 day, starting from a mainshock of

magnitude M = 8 at time t = 0. The global aftershock rate is significantly higher than the direct (or first

generation) aftershock rate, described by the local propagator Φm(t). The value of the branching ratio

n = 0.915 implies that about 91.5% of aftershocks are triggered indirectly by the mainshock. The global

aftershock rate N(t) decreases on average according to the dressed propagator K(t) ∼ 1/t1−θ for t < t∗,

which is significantly slower than the local propagator φ(t) ∼ 1/t1+θ.

7.4 Physical meaning of the average branching ratio n

The branching ratio defined by (7.6) is the key parameter of this model, which controls the

different regimes of seismic activity. We give below two observable meanings for this parameter

as the ratio of triggered events over total seismicity and the ratio of secondary aftershocks over

total aftershocks.
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Response of the seismicity to a constant source rate

Let us consider the situation in which s(t) corresponds to a constant Poisson source process

with intensity µ, representing the effect of tectonic loading. Then, the observed seismicity results

both from this constant background seismicity source rate and from the direct and indirect

aftershocks triggered by this background seismicity. In the regime n < 1, the global seismicity

is stationary, with large fluctuations following large earthquakes due to the triggered aftershock

sequences. Taking the background seismicity rate to be equal to µ, the rate of aftershocks

r0 triggered directly by the background seismicity is on average r0 = µn because each single

background event triggers on average n events, when averaging over all magnitudes. The rate

of second generation aftershocks, triggered by aftershocks of the background events, is r1 =

nr0 = µn2. At the ith generation, the rate of aftershocks triggered indirectly by the background

seismicity rate µ is given by ri = µni. Summing over all generations, the global rate Raft of

direct and indirect aftershocks of the background seismicity in the sub-critical regime n < 1 is

given by

Raft. =
i=∞∑
i=0

ri = µ

i=∞∑
i=1

ni =
µn

1 − n
. (7.15)

The global seismicity rate R is given by the sum of the background seismicity rate µ and of the

rate of aftershocks Raft. :

R = µ + Raft. = µ +
µn

1 − n
=

µ

1 − n
. (7.16)

This result (7.16) shows that the effect of the cascade of aftershocks of aftershocks and so on is

to renormalize the average background seismicity µ to a significant higher level, the closer n is

to the critical value 1. This result is well-known in branching process literature [Harris, 1963 ;

Daley and Vere-Jones, 1988] and has also been derived by Kagan [1991] for the slightly modified

modified version of the ETAS model using c = 0 and replacing it by an abrupt cut-off at early

times. This concept is illustrated in Figure (7.2).

The proportion of aftershocks (of any generation) is thus equal to

raft. =
Raft.

R
= n . (7.17)

This expression (7.17) shows that the average branching ratio n can be directly observed from a

suitable analysis of seismicity catalogs. Indeed, clustering algorithms for detecting and counting

aftershocks provide a direct estimation (and in general a lower bound) of n as discussed above

in the section of the proportion of aftershocks.

The result (7.17) can be derived directly from the master equation (7.9). Inserting s(t) = µ

in (7.9) and taking the expectation R = 〈N(t)〉 gives the global average seismicity rate

R = µ + R

∫ t

−∞
φ(t − τ) dτ = µ + nR , (7.18)

which recovers expression (7.16).
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Fig. 7.2 – Rate of seismic activity for a synthetic catalog generated using the HKKO-ETAS model with

parameters µ = 1 source events per day, c = 0.001 day, n = 0.8, θ = 0.2, b = 1 and α = 0.5. The average

seismicity rate is close to the expected value µ∗ = µ/(n − 1) predicted by (7.16) shown as a thin dashed

line. The seismicity rate is always significantly larger than the background rate µ shown as the thick

dashed line, due to the direct and indirect aftershocks triggered by the external source, which represent

here 80% of the catalog for the value n = 0.8.

Proportion of secondary aftershocks

Let us now give another meaning for n as well as an additional empirical tool to estimate it.

For this, we calculate the total number of aftershocks nt triggered by a mainshock of magnitude

M , including all the generations of secondary aftershocks, as follows. The number of direct

aftershocks is given by n0 = ρ(M) using the definition (7.2). The average number of second

generation aftershocks n1 is given by the product of n0 with the average number of aftershocks

per earthquake defined by n. Therefore n1 = ρ(M)n. The number of grand-grand-daughters of

the mainshock is n2 = ρ(M)n2. The number of aftershocks for the ith generation is ni = ρ(M)ni.

The total number of aftershocks triggered by a mainshock of magnitude M is thus given by

S =
∞∑
i=0

ni = ρ(M)
∞∑
i=0

ni =
ρ(M)
1 − n

. (7.19)

For n � 1, S ≈ ρ(M), i.e., most aftershocks are directly triggered by the mainshock. For n ≈ 1,

S 
 ρ(M), i.e., most aftershocks are secondary aftershocks of the mainshock. The proportion

of secondary aftershocks is given by

rsec.aft. =
S − n0

S
=

ρ(M)
1−n − ρ(M)

ρ(M)
1−n

= n . (7.20)

This result (7.20) shows that the average branching ratio n is nothing but the fraction among all

aftershocks of the aftershocks triggered indirectly by the mainshock. This fraction of indirectly
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triggered aftershocks is therefore known as soon as n can be calculated from the knowledge of

the ETAS parameters α, b, k, c and θ using for instance a maximum likelihood method [Ogata,

1988 ; Kagan, 1991].

We can also derive the result (7.20) from the master equation (7.9). Inserting s(t) = δ(t)ρ(M)

in (7.9) and taking the integral of (7.9) gives the global number of direct and indirect aftershocks

S =
∫ ∞

0
N(t)dt

= ρ(M) +
∫ ∞

0
dt

∫ t

0
N(τ) φ(t − τ) dτ

= ρ(M) +
∫ ∞

0
dτ N(τ)

∫ ∞

τ
φ(t − τ) dt

= ρ(M) + n

∫ ∞

0
N(τ) dτ

= ρ(M) + n S , (7.21)

which recovers expression (7.19) for S.

7.5 Formal solution of the earthquake prediction problem

Having stressed the importance of the indirect triggered seismicity in determining both the

overall level (7.15) of seismicity and its decay law (7.11,7.13), we now formulate the task of

earthquake prediction within this model of triggered seismicity restricted to the time domain. In

this paper, we do not address the delicate issue related to the fact that not all earthquakes are

observable or observed. Indeed, calibrations of the ETAS parameters using the magnitude cut-

offs dictated by the requirement of seismic catalogs completeness rather than by the physics of

triggered seismicity may lead to misleading results, as unobserved events may play a significant

role (in their sheer number) in triggering observable seismicity. To our knowledge, all previous

calibrations of real seismic catalogs have bypassed this problem, which will be studied using a

technique derived from our renormalized Omori’s law in a subsequent paper.

We thus assume that seismicity that occurred in the past until the “present” time u and which

does trigger future events is observable. The seismic catalog is constituted of a list of entries

{(ti,mi), ti < u} giving the times ti of occurrence of the earthquakes and their magnitude mi.

Our goal is to set up the best possible predictor for the seismicity rate for the future from time u

to time t > u, based on the knowledge of this catalog {(ti,mi), ti < u}. The time difference t−u

is called the horizon. In the ETAS model studied here, magnitudes are determined independently

of the seismic rate, according to the GR distribution. Therefore, the sole meaningful target for

predictions is the seismic rate. Once its forecast is issued, the prediction of strong earthquakes

is obtained by combining the GR law with the forecasted seismic rate.

The average seismicity rate N(t) at time t > u in the future is made of two contributions :

– the background source of seismicity of intensity µ at time t plus the background events
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that occurred between u and t and their following aftershocks that may trigger an event

at time t ;

– the earthquakes that have occurred in the past at times ti < u and all the events they

triggered between u and t and their following aftershocks that may trigger an event at

time t.

We now examine each contribution in turn.

Seismicity at times t > u triggered by a constant source µ active from u to t

Using the background seismicity source µ to predict the seismicity in the future would un-

derestimate the seismicity rate because it does not take into account the aftershocks of the

background seismicity. On the contrary, using the “renormalized” seismicity rate µ/(1−n) deri-

ved in (7.15) would overestimate the seismicity rate because the earthquakes that were triggered

before time u by the background seismicity would be counted twice, since they are registered in

the catalog up to time u. The correct procedure is therefore to evaluate the rate of seismicity

triggered by a constant source µ starting at time u to remove the influence of earthquakes that

have been recorded at times less than u, whose influence for times larger than u is examined

later.

The response Kµ(t) of the seismicity to a constant source term µ starting at time u is

obtained using (7.14) as

Kµ,u(t) = µ

∫ t

u+

dτ [K(t − τ) − δ(t − τ)] = µ K(t − u) , (7.22)

where K(t) is the integral of K(t) − δ(t) given by (7.11) :

K(t) =
1

1 − n

( t

t∗
)θ

k=∞∑
k=0

(−1)k
(t/t∗)kθ

Γ((k + 1)θ + 1)
. (7.23)

For times larger that t 
 t∗, Kµ(t) reaches its asymptotic value Kµ = µ
1−n , derived in (7.16).

Expression (7.22) takes care of both the background source seismicity of intensity µ at time t

and of its aftershocks and their following aftershocks from time u to t that may trigger events

at time t.

Hypermetropic renormalized propagator

We now turn to the effect of the past known events prior to time u on future t > u seismicity,

taking into account the direct and secondary aftershocks of each earthquakes that have occurred

in the past at times ti < u counted from time u. Since the ETAS model is linear in the rate

variable, we consider first the problem of a single past earthquake at time ti < u and will then

sum over all past earthquakes.

A first approach for estimating the seismicity at t > u due to event i that occurred at time

ti < u is to use the bare propagators Φ(t − ti), as done e.g. by Kagan and Jackson [2000]. This
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extrapolation leads to an underestimation of the seismicity rate in the future because it does not

take into account the secondary aftershocks. This is a quite bad approximation when n is not

very small, and especially for n > 0.5, since the secondary aftershocks are then more numerous

that direct aftershocks.

An alternative would be to express the seismicity at t > u due to an earthquake that occurred

at ti < u by the global propagator K(t − ti). However, this approach would overestimate the

seismicity rate at time t because of double counting. Indeed, K(t−ti) takes into account the effect

of all events triggered by event i, including those denoted j’s that occurred at times ti < tj < u

and which are directly observable and counted in the catalog. Thus, using K(t − ti) takes into

account these events j, that are themselves part of the sum of contributions over all events in

the catalog.

The correct procedure is to calculate the seismicity at t > u due to event i by including all

the seismicity that it triggered only after time u. This defines what we term the “Hypermetropic

renormalized propagator” K∗
u(t − ti). It is “renormalized” because it takes into account secon-

dary and all subsequent aftershocks. It is “Hypermetropic” because this counting of triggered

seismicity starts only after time u such that this propagator is oblivious to all the seismicity

triggered by event i at short times from ti to u.

We now apply these concepts to estimate the seismicity triggered directly or indirectly by a

mainshock with magnitude M that occurred in the past at time ti while removing the influence

of the triggered events j occurring between ti and u. This gives the rate

SM(t) =
ρ(M)

n
K∗

u(t − ti) , (7.24)

where the Hypermetropic renormalized propagator K∗
u is given by

K∗
u(t) =

∫ t

u
φ(τ) K(t − τ) dτ . (7.25)

K∗
u(t) defined by (7.25) recovers the bare propagator Φ(t) for t ≈ u, i.e., when the rate of

direct aftershocks dominates the rate of secondary aftershocks triggered at time t > u. Indeed,

taking the limit of (7.25) for u → t gives

K∗
u→t(t) =

∫ t

u→t
dτ φ(τ) K(t − τ)

=
∫ t

u→t
dτ φ(τ) δ(t − τ) = φ(t) . (7.26)

This result simply means that the prediction of future seismicity in the near future is mostly

dominated by the sum of the direct Omori’s laws of all past events. This limit recovers procedures

used by [Kagan and Jackson, 2000].

In the other limit, u ≈ ti, i.e., for an event that occurred at a time ti just before the present

u, K∗
u(t) recovers the dressed propagator K(t) (up to a Dirac function) since there are no other
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registered events between ti and t and all the seismicity triggered by event i must be counted.

Using equation (7.10), this gives

K∗
u→0(t) =

∫ t

u→0
dτ φ(τ) K(t − τ) = K(t) − δ(t) . (7.27)

Using again (7.10), we can rewrite (7.25) as

K∗
u(t) = K(t) −

∫ u

0
K(t − τ) φ(τ) dτ . (7.28)

Putting (7.11) in (7.25) we obtain for t ≥ c

K∗
u(t) =

θ

Γ(θ) Γ(1 − θ)

∫ t−u

0

1
(t − x + c)1+θ

1
x1−θ

∞∑
k=0

(−1)k
(x/t∗)kθ

Γ((k + 1)θ)
dx , (7.29)

where x = t − τ . Appendix A presents useful asymptotics and approximations of K∗
u(t).

We have performed numerical simulations of the ETAS model to test our predictions on the

Hypermetropic renormalized propagator K∗
u(t) (7.25,7.29). We first consider the unrealistic case

where α = 0, i.e., all events trigger the same number of aftershocks whatever their magnitude.

Figure 7.3 shows the result of a simulation using a synthetic catalog generated by a large event

that happened at time t = 0, using the parameters n = 0.1, c = 0.001 day, α = 0, θ = 0.1 and

µ = 0. The seismic activity K∗
u(t) is obtained by removing, the influence of aftershocks that

were triggered in the past 0 < ti < u where the present is taken equal to u = 10 days. The

simulation shows a very good agreement between the results obtained by averaging over 1000

synthetic catalogs and the theoretical prediction (7.25,7.29). The Hypermetropic renormalized

propagator K∗
u(t) is significantly larger than the bare Omori’s law Φ(t) but smaller than the

renormalized propagator K(t) as expected. Note that K∗
u(t) first increases with the horizon t−u

up to horizons of the order of u and then crosses over to a decay law K∗
u(t) ∼ 1/t1−θ parallel

to the dressed propagator K(t). Figure 7.4 is similar to Figure 7.3, but uses more realistic

parameters : n = 1, θ = 0.2 and α = 0.5. At early times t ≈ u, the measured seismicity rate is in

good agreement with the Hypermetropic renormalized propagator K∗(t) defined by (7.25). At

large times however, the observed seismicity rate decays significantly faster than the predictions.

In the averaging performed in all previous calculations and which allowed us to derive the

Master equation for K(t), we made the assumption that one can neglect the coupling between

the fluctuations of the local rates and the realized magnitudes of earthquakes. This assumption

turns out to be unwarranted for α > 1/2 in the case of K(t) [Helmstetter et al., 2002]. For

K∗(t), the effect seems to be even stronger and is observed for smaller α’s as shown in Figure

7.4. The full analytical quantification of this effect can be obtained using the exact mapping

to CTRW (continuous-time random walks) developed in [Helmstetter and Sornette, 2000b] and

will be reported elsewhere. In the mean time, in order to test the skills of forecasts based on
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Fig. 7.3 – Seismicity rate (blinded renormalized propagator) following a large event that happened

at time t = 0, removing the influence of aftershocks that were triggered in the past 0 < ti < u with

u = 10 days. We have averaged over 1000 simulations starting at time u = 10 days after a large event of

magnitude m = 6, using the parameters n = 0.9992, c = 0.001 day, α = 0, θ = 0.2 and m0 = 0. There is

a very good agreement between the observed blind seismicity rate (open circles) and the predicted K∗(t)

shown as the continuous line. The dashed (respectively dotted-dashed) line represents the bare Omori’s

propagator φ(t) (respectively the renormalized propagator K(t).

cascades of triggered seismicity over a finite time horizon, we shall resort below to what amounts

to numerical calculations of K(t) and K∗
u(t) obtained by generating many seismic catalogs based

on the known seismicity up to time u. Each such catalog synthesized for times t > u constitutes

a possible scenario for the future seismicity. Averaging over many such scenarios provides the

expected mean seismicity. As a bonus, this will allow us to define confidence intervals.

7.6 Prediction tests

Knowing the times ti and magnitude mi of all events that occurred in the past up to the

present u, the mean seismicity rate Nu(t) predicted for the future t > u by taking into account
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Fig. 7.4 – Same as Figure 7.3 for n = 1, θ = 0.1 and α = 0.5. At early times t ≈ u, the measured blind

seismicity rate is in good agreement with the blinded renormalized propagator K∗(t) defined by (7.25).

At large times however, the observed seismicity rate decays significantly faster than the predictions, due

to the coupling between the fluctuations of the times and magnitudes of triggered events that are not

taken into account by the master equation (7.9) used to estimate K∗(t).

all triggered events and the seismicity background µ is given formally by

Nu(t) = µK(t − u) +
∑

i|ti<u

ρ(mi)
n

K∗
u(t − ti) , (7.30)

where K∗
u(t − ti) is given by (7.25) and K(t) is given by (7.23). In the language of the statistics

of point processes, expression (7.30) amounts to using the conditional intensity function. The

conditional intensity function indeed gives an unequivocal answer to the question of what is the

best predictor of the process. All future behaviors of the process, starting from the present time

u and conditioned by the history up to time u, can be simulated exactly once the form of the

conditional intensity is known. To see this, we note that the conditional intensity function, if

projected forward on the assumption that no additional events are observed (and assuming no

external variables intervene), gives the hazard function of the time to the next occurring event

past u. So if the simulation proceeds by using this form of hazard function, then by recording

the time of the next event when it does occur, and so on, ensures that one is always working
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with the exact formula for the conditional distributions of the inter-event times. The simulations

then truly represent the future of the process, and any functional can be taken from them in

whatever form is suitable for the purpose at hand.

In practice, we thus use the catalog of known earthquakes up to time u and generate many

different possible scenarios for the seismicity trajectory that each take into account all the

relevant past triggered seismicity up to the present u. For this, we use the thinning simulation

method, as explained by Ogata [1999]. We then define averages over these scenarios to obtain

the forecasted seismicity Nu(t).

Fixed present and variable forecast horizon
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Fig. 7.5 – Rate of seismic activity for a synthetic catalog (black dots) generated with the parameters

n = 0.8, θ = 0.2, α = 0.8, b = 1, c = 0.001 day, m0 = 3 and µ = 1 event per day. We compare different

methods of prediction of the seismicity rate following a large event M = 7 that has occurred at the time

of the large peak shown in the figure. Using the data up to the present time ti ≤ u, where u is the

“present” taken fixed just after the the M = 7 earthquake, we try to predict the future activity up to

1 year in the future. We use two predictions algorithms : the sum of the bare propagators of all past

events ti ≤ u (crosses), and the median of the seismicity rate obtained over 500 scenarios generated with

the HKKO-ETAS model, using the same parameters as for the synthetic catalog we want to predict, and

taking into account the specific realization of the synthetic catalog up to the present.

Figure 7.5 illustrates the problem of forecasting the aftershock seismicity following a large

M = 7 event. Imagine that we have just witnessed the M = 7 event and want to predict

the seismic activity afterward over a varying horizon from days to years in the future. In this
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Fig. 7.6 – Same as Figure 7.5 but as a function of the logarithm of the time after the mainshock. At early

time t−u < 10−2 days, the predicted seismicity rate is correctly predicted by the naive bare Omori’s law

shown by the crosses which is indistinguishable from the more elaborate scheme involving all cascades of

triggered events. At larger times, the cascade of triggered seismicity renormalizes the seismicity rate to a

significantly higher level, which is correctly forecasted by the mean over the 500 scenarios.

simulation, u is kept fixed at the time just after the M = 7 event and t is varied. A realization

of the instantaneous rate of seismic activity (number of events per day) of a synthetic catalog

is shown by the black dots. This simulation has been performed with the parameters n = 0.8,

α = 0.8, b = 1, c = 0.001 day, m0 = 3 and µ = 1 event per day. This single realization is

compared with two prediction algorithms : the sum of the bare propagators of all past events

ti ≤ u (crosses), and the median of the seismicity rate obtained over 500 scenarios generated

with the ETAS model, using the same parameters as used for generating the synthetic catalog

we want to predict, and taking into account the specific realization of events in each scenario up

to the present. Figure 7.6 is the same as Figure 7.5 but shows the seismic activity as a function of

the logarithm of the time after the mainshock. These two figures illustrate clearly the importance

of taking into account all the cascades of still unobserved triggered events in order to predict

correctly the future rate of seismicity beyond a few minutes. The aftershock activity forecast

gives a very reasonable estimation of the future activity rate, while the extrapolation of the bare

Omori’s law of the strong M = 7 event together with the past seismicity under-estimates very
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badly the future seismicity beyond half-an-hour after the strong event.

Varying “present” with fixed forecast horizon
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Fig. 7.7 – Comparison between the seismicity rate (solid black line) observed for a 5 days time period,

with the predicted seismicity rate using either the sum of the bare propagators of the past seismicity

(dots) or using the median of 100 scenarios (crosses) generated with the same parameters as for the

synthetic catalog we want to predict, n = 0.8, θ = 0.2, c = 0.001 day, µ = 1 event per day, M0 = 3, b = 1

and α = 0.8. The thin solid lines indicate the first and 9th deciles of the set of 100 scenarios : there is 80%

probability that the predicted seismicity over the next 5 days falls within these two lines. Stars indicate

the occurrence of a large M ≥ 7 earthquake. Forecasts are updated every 5 days.

Figure 7.7 compares a single realization of the seismicity rate (solid black line) observed and

summed over a 5 days period and divided by 5 so that it is expressed as a daily rate, with the

predicted seismicity rate using either the sum of the bare propagators of the past seismicity

(dots) or using the median of 100 scenarios (crosses) generated with the same parameters as

for the synthetic catalog we want to predict : n = 0.8, c = 0.001 day, µ = 1 event per day,

m0 = 3, b = 1 and α = 0.8. The predictions calculate the total number of events over each

5 day period lying ahead of the present, taking into account all past realized seismicity up to

the present including the still unobserved triggered seismicity. This total number of forecasted

events is again divided by 5 to express the prediction as daily rates. The thin solid lines indicate

the first and 9th deciles of the distributions of the number of events observed in the pool of 100

scenarios. Stars indicate the occurrence of large M ≥ 7 earthquakes. Only a small part of the
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whole time period used for the prediction is shown, including the largest M = 8.5 earthquake

of the catalog, in order to illustrate the difference between the observed seismicity rate and the

different methods of predictions.

The observed seismicity rate is always larger than the seismicity rate predicted using the sum

of the bare propagators of the past activity. This reflects the fact that the seismicity, that will

occur up to 5 days in the future, is dominated by the seismicity that will be triggered in the near

future that is still unobserved but must be taken into account. The observed seismicity rate is

close to the median of the scenarios (crosses), and the fluctuations of the observed seismicity rate

are in good agreement with the expected fluctuations measured by the deciles of the distributions

of the seismicity rate over all generated scenarios.
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Fig. 7.8 – Comparison between the seismicity rate observed for a 5 days time period from the present

with the predicted seismicity rate over the same 5 days period using either the sum of the bare propagators

of the past seismicity (crosses) or using the median of 100 scenarios (circles), corresponding to the same

data shown in Figure 7.7 but using a long synthetic catalog of N = 200000 events over a time period

of 150 yrs. The dashed line corresponds to the perfect prediction when the predicted seismicity rate is

equal to the observed seismicity rate. This figure shows that the best predictions are obtained using the

median of the scenarios rather than using the bare propagator, which always underestimates the observed

seismicity rate. The meaning of two clusters (along the diagonal and lying horizontally at small predicted

seismicity) are discussed in the text. Forecasts are updated every 5 days. A faster rate of updating does

not change the fraction of predictable events lying close to the diagonal.

Figure 7.8 compares the predictions of the seismicity rate over a 5 day horizon with the
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realized seismicity of a typical synthetic catalog, of which a small fraction of the history has

been shown in Figure 7.7. This comparison is performed by plotting the predicted number of

events in each 5 day horizon window as a function of the corresponding realized number of

events. The open circles (respectively crosses) correspond to the forecasts using the median of

100 scenarios (respectively the sum of the bare Omori’s propagators of the past seismicity).

This Figure uses a synthetic catalog of N = 200000 events of magnitude larger than m0 = 3

covering a time period of 150 yrs. The dashed line corresponds to the perfect prediction when

the predicted seismicity rate is equal to the observed seismicity rate. This Figure shows that

the best predictions are obtained using the median of the scenarios rather than using the bare

propagator, which always underestimates the observed seismicity rate, as we have already shown.

The most striking feature of Figure 7.8 is the existence of several clusters, reflecting two

mechanisms underlying the observed seismicity.

1. cluster LL with large predicted seismicity and large observed seismicity ;

2. cluster SL with small predicted seismicity and large observed seismicity ;

3. cluster SS with small predicted seismicity and small observed seismicity ;

Cluster LL along the diagonal reflects the predictive skill of the triggered seismicity algorithm :

this is when future seismicity is triggered by past seismicity. Cluster SL lies horizontally at

low predicted seismicity rates and reflect the fact that large realized seismicity rates can also be

triggered by an unforecasted strong earthquake, which occurs by chance, even when the seismicity

background is rather low. This mechanism expresses a fundamental limit of predictability since

the ETAS model allows for strong events even with low prior seismicity, as the earthquake

magnitudes are drawn from the GR, independently of any process. The occurrence of large events

in periods of low seismicity is a rather improbable event but is not excluded as we observe in

the simulations and as outlined by the second horizontal cluster in Figure 7.8. About 20% of

the large values of the observed seismicity rate above 10 events per day fall in the LL cluster,

corresponding to a good predictability of about 20% of the large peaks of observed seismic

activity. The cluster SS is consistent with a predictive skill but small seismicity is not usually

an interesting target. Note that there are no cluster of large predicted seismicity associated with

small observed seismicity.

Figure 7.9 is the same as Figure 7.7 for a longer time window of 50 days, which stresses the

importance of taking into account the yet unobserved future seismicity in order to accurately

predict the level of future seismicity. Figure 7.10 is the same as Figure 7.8 for the prediction

time window of 50 days with forecasts updated each 50 days. Increasing the time window T of

the prediction from 5 to 50 days leads to a smaller variability of the predicted seismicity rate.

However, fluctuations of the seismicity rate of one order of magnitude can still be predicted with

this model. The ETAS model therefore performs much better than a Poisson process for large

horizons of 50 days.
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Fig. 7.9 – Same as Figure 7.7 but for a larger horizon t = 50 days.

Error diagrams and prediction gains

In order to quantify the predictive skills of different prediction algorithms for the seismicity

of the next five days, we use the error diagram [Molchan, 1991 ; 1997 ; Molchan and Kagan,

1992]. The predictions are made from the present to 5 days in the future and are updated each

0.5 day. Using a shorter time between each prediction, or updating the prediction after each

major earthquake, will obviously improve the predictions, because large aftershocks occur often

just after the mainshock. But in practice the forecasting procedure is limited by the time needed

to estimate the location and magnitude of an earthquake. Moreover, predictions made at very

short term in advance (a few minutes) are not very useful.

An error diagram requires the definition of a target, here M ≥ 6 earthquakes, and plots

the fraction of targets that were not predicted as a function of the fraction of time occupied by

the alarms (total durations of the alarms normalized by the duration of the catalog). We define

an alarm when the predicted seismic rate is above a threshold. Recall that the seismic rate is

the physical quantity that embodies completely all the available information on past events. All

targets one might be interested in derive from the seismic rate.

Figure 7.11 presents the error diagram for M ≥ 6 targets, using a time window T = 5 days to

estimate the seismicity rate, and a time dT = 0.5 days between two updates of the predictions.
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Fig. 7.10 – Same as Figure 7.8 but for a larger horizon t = 50 days. For such large horizons, taking into

account the cascade of triggered seismicity makes a huge difference on the performance of the predicted

seismicity rate.

We use different prediction algorithms, either the bare propagator (dots), the median (circles) or

the mean (triangles) number of events obtained for the 100 scenarios already generated to obtain

Figures 7.7 and 7.8. Each point of each curve corresponds to a different threshold ranging from

0.1 to 1000 events per day. The results for these three prediction algorithms are considerably

better than those obtained for a random prediction, shown as a dashed line for reference.

Ideally, one would like the minimum numbers of failures and the smallest possible alarm

duration. Hence, a perfect prediction corresponds to points close to the origin. In practice, the

fraction of failure to predict is 100% without alarms and the gain of the prediction algorithm

is quantified by how fast the fraction of failure to predict decreases from 100% as the fraction

of alarm duration increases. Formally, the gain G reported below is defined as the ratio of the

fraction of predicted targets (= 1− number of failures to predict) divided by the fraction of time

occupied by alarms. A completely random prediction corresponds to G = 1.

We observe that about 50% of the M ≥ 6 earthquakes can be predicted with a small fraction

of alarm duration of about 20%, leading to a gain of 2.5 for this value of the alarm duration. The

gain is actually significantly stronger for shorter fractions of alarm duration : as shown in panel
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Fig. 7.11 – Error diagram of different prediction algorithms, using either the bare propagator (dots),

the median (circles) or the mean (triangles) number of events obtained for the scenarios. The synthetic

catalog and the prediction methods are the same as for Figures 7.7 and 7.8. We use a time horizon

(window size) of T = 5 days to estimate the seismicity rate but we update the predictions each 0.5 day.

Target events are M ≥ 6 earthquakes. An alarm is defined when the predicted seismicity rate is above a

threshold. Each point of the curve corresponds to a different threshold ranging from 0.1 to 1000 events

per day. The quality of the predictions is measured by plotting the ratio of failures to predict as a function

of the total durations of the alarms normalized by the duration of the catalog. The results for these three

algorithms are considerably better than those obtained for a random prediction, shown as a dashed line

for reference. This Figure shows that about 20% of large peaks of seismic activity can be predicted with

a very small alarm duration of about 1%. Panel (b) is a magnification of panel (a) close to the origin

of the alarm duration showing the very fast increase of the success fraction (= 1− failure to predict) as

the alarm duration increases from 0. Panel (c) shows that the predicted gain, defined as the ratio of the

success fraction over the alarm duration, is approximately an inverse power law with exponent slightly

larger than 1/2 as a function of the alarm duration.
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Fig. 7.12 – Same as Figure 7.11 but for targets with lower magnitudes M ≥ 5. Panel (c) shows that the

predicted gain is again approximately an inverse power law with exponent close to 1/2 as a function of

the alarm duration.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

alarm duration

fa
ilu

re
 to

 p
re

di
ct

0 0.01 0.02
0.6

0.8

1

alarm duration

fa
ilu

re
 to

 p
re

di
ct

10
−4

10
−2

10
0

10
0

10
2

10
4

alarm duration

pr
ed

ic
tio

n 
ga

in

(a) (b) 

(c) 

Fig. 7.13 – Same as Figure 7.11 but for targets with larger magnitudes M ≥ 7. Panel (c) shows that

the predicted gain is again approximately an inverse power law with exponent slightly smaller than 1

as a function of the alarm duration. Comparing this figure with Figures 7.11 and 7.12 suggests that the

exponent defined in panel (c) is slowly increasing with the magnitude of the targets.
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(b) of Figure 7.11, 25% of the M ≥ 6 earthquakes can be predicted with a small fraction of alarm

duration of about 2%, leading to a gain of 12.5. The origin of this good skill for only a fraction

of the targets has been discussed in relation with Figure 7.8, and is associated with those events

that occur in times of large seismic rate (cluster along the diagonal in Figure 7.8). Panel (c) of

Figure 7.11 shows the dependence of the prediction gain G as a function of the alarm duration :

the three prediction schemes give essentially the same approximately power law increase with

exponent close to 1/2 of the gain as the duration of alarm decreases. For small alarm duration,

the gain reaches values of several hundreds. This saturation at very small values of the alarm

duration is due to the finite-size effect that only a few targets are sampled ultimately. Figures

7.12 and 7.13 are similar to Figure 7.11, respectively for smaller targets of magnitudes larger

than 5 and larger targets of magnitudes larger than 7.

Table 7.1 presents the results for the prediction gain and for the number of successes using

different choices of the time window T and of the update time dT between two predictions, and

for different values of the target magnitude between 5 and 7. The prediction gain decreases if

the time between two updates of the prediction increases, because most large earthquakes occur

at very short times after a previous large earthquake. In contrast, the prediction gains do not

depend on the time window T for the same value of the update time dT .

The prediction gain is observed to increase significantly with the target magnitude, especially

in the range of small fraction of alarm durations (see Table 7.1 and Figures 7.11-7.13). However,

Tab. 7.1 – Prediction gain for different choices of the alarm duration, and/or different values of the

time interval T , of the update time dT , and of the target magnitude Mt. N1 is the number of targets

M ≥ Mt ; N2 is the number of intervals with at least one target. Gmax is the maximum prediction gain,

which is realized for an alarm duration A (in proportion of the total duration of the catalog), which is

also given in the table. All three prediction algorithms used here provide the same gain as a function of

the alarm duration, corresponding to different choices of the alarm threshold on the predicted seismicity

rate. Ns is the number of successful predictions, using the alarm threshold that provides the maximum

predictions gain Gmax for an alarm duration A (we count only one success when two events occur in

the same interval). This number Ns is always very small, but a much larger number of successes can be

obtained with a larger alarm duration. N1%, N10%, N50% are the number of successes corresponding to

an alarm duration (in proportion of the total duration of the catalog) of 1%, 10% and 50% respectively,

corresponding to the prediction gains G1%, G10% and G50%. The values of G50% show a saturation in

the predictive power when increasing the fraction of alarm time, reflecting the fundamental limitation

stemming from the fraction of large earthquakes not associated with a large seismic rate. Reading for

instance of the last line of this table, we observe that, out of 26 time windows of 50 days that contained a

M ≥ 7 earthquake, we are able to predict 7 of them with only 1% of the time occupied by alarms. Only

two additional ones are predicted when using 10% of the time occupied by alarms. And only another

four are predicted by increasing the time of alarms to half the total duration of the catalog. We use non-

overlapping time intervals for the predictions of length T , with a time dT ≤ T between two predictions.

The catalog spans 150 years corresponding to a little more than 105 half-day periods.
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T dT Mt N1 N2 Gmax A Ns N1% N10% N50% G1% G10% G50%

1.0 1.0 5.0 2003 1332 40.4 3.2 × 10−4 17 120 332 806 9.01 2.49 1.21

1.0 1.0 5.5 637 461 117. 7.4 × 10−5 4 58 136 303 12.6 2.95 1.31

1.0 1.0 6.0 198 159 339. 3.7 × 10−5 2 30 56 94 18.9 3.52 1.18

1.0 1.0 6.5 66 55 979. 1.9 × 10−5 1 10 15 28 18.2 2.73 1.02

1.0 1.0 7.0 29 27 665. 5.6 × 10−5 1 7 11 14 25.9 4.07 1.04

5.0 0.5 5.0 2003 1389 77.5 1.1 × 10−4 12 155 382 853 11.2 2.75 1.23

5.0 0.5 5.5 637 483 223. 7.4 × 10−5 8 72 155 320 14.9 3.21 1.33

5.0 0.5 6.0 198 164 656. 1.9 × 10−5 2 35 64 106 21.3 3.90 1.29

5.0 0.5 6.5 66 57 1889. 9.3 × 10−6 1 12 18 32 21.0 3.16 1.12

5.0 0.5 7.0 29 28 3847. 9.3 × 10−6 1 8 12 17 28.6 4.29 1.21

5.0 5.0 5.0 2003 1172 9.2 6.5 × 10−4 7 53 222 652 4.52 1.89 1.11

5.0 5.0 5.5 637 420 25.6 3.7 × 10−4 4 30 93 253 7.14 2.21 1.20

5.0 5.0 6.0 198 145 74.3 2.8 × 10−4 3 16 38 85 11.0 2.62 1.17

5.0 5.0 6.5 66 53 203. 1.9 × 10−4 2 7 12 30 13.2 2.26 1.13

5.0 5.0 7.0 29 26 414. 1.9 × 10−4 1 6 9 14 23.1 3.46 1.08

10. 10. 5.0 2003 1067 5.1 5.6 × 10−4 3 32 167 584 3.00 1.57 1.09

10. 10. 5.5 637 400 13.5 3.7 × 10−4 2 19 77 229 4.75 1.93 1.15

10. 10. 6.0 198 137 39.3 1.9 × 10−4 1 10 30 78 7.30 2.19 1.14

10. 10. 6.5 66 50 107. 1.9 × 10−4 1 5 8 26 10.0 1.60 1.04

10. 10. 7.0 29 24 224. 1.9 × 10−4 1 5 7 13 20.8 2.92 1.08

50. 50. 5.0 2003 701 1.5 0.016 17 11 84 370 1.57 1.20 1.06

50. 50. 5.5 637 329 3.3 9.3 × 10−4 1 8 43 181 2.43 1.31 1.10

50. 50. 6.0 198 123 8.8 9.3 × 10−4 1 5 20 62 4.07 1.63 1.01

50. 50. 6.5 66 48 22.4 9.3 × 10−4 1 4 7 32 8.33 1.46 1.33

50. 50. 7.0 29 22 48.9 9.3 × 10−4 1 4 5 16 18.2 2.27 1.45

50. 5. 5.0 2003 1172 9.2 6.5 × 10−4 7 53 209 657 3.37 1.78 1.12

50. 5. 5.5 637 420 25.6 3.7 × 10−4 4 27 89 251 4.76 2.12 1.20

50. 5. 6.0 198 145 74.3 2.8 × 10−4 3 13 37 82 7.24 2.55 1.13

50. 5. 6.5 66 53 203. 1.9 × 10−4 2 7 11 24 8.49 2.08 0.91

50. 5. 7.0 29 26 414. 1.9 × 10−4 2 7 9 13 15.4 3.46 1.00
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this increase of the prediction gain does not mean that large earthquakes are more predictable

than smaller ones, in contrast with for instance the critical earthquake theory [Sornette and

Sammis, 1995 ; Jaumé and Sykes, 1999 ; Sammis and Sornette, 2002]. In the ETAS model, the

increase of the prediction gain with the target magnitude is solely the result of decreasing

statistics, i.e., is due to the decrease of the number of target events with the target magnitude.

Indeed, choosing N events at random in the catalog independently of their magnitude gives on

average the same prediction gain as for the N largest events. This demonstrates that the larger

predictability of large earthquakes is solely a size effect. We now clarify the statistical origin of

this size effect.

Let us consider a catalog of total duration D with a total number N of events analyzed

with D/T time windows with horizon T . These D/T windows can be sorted out by decreasing

seismicity r1 > r2 > ... > rn > ..., where ri is the i-th largest number of events in a window of size

T . There are n1, n2, ..., ni, ... windows of type 1, 2, ..., i, ... respectively, such that
∑

i ri ni = N .

Then, the frequency-probability that an earthquake drawn at random from the catalog falls

within a window of type i is

pi =
ri ni

N
. (7.31)

We have found that, over more than three decades spanning from 1 event to 103−104 events per

window, the cumulative distribution of these pi’s is a power law with exponent approximately

equal to κ = 0.4. This power law is found for the observable realized seismicity as well as for the

seismicity predicted by the different methods discussed above. Such a small exponent κ implies

that the few windows that happen to have the largest number of events contain a significant

fraction of the total seismicity. It can be shown [Feller, 1971] that, in absence of any constraint,

the single window with the largest number of events contains on average 1 − κ = 60% of the

total seismicity. This would implies that there is a 60% probability that an earthquake drawn

at random within the catalog (of 150 years) belongs to this single window of 5 days. Actually

this effect of extreme values is smaller because the random variables pi have to sum up to 1

by definition. This can be shown to entail a roll-off of the cumulative distribution depleting the

largest values of pi. Empirically, we find that the most active window out of the approximately

54, 000 daily windows of our 150 years long catalog contains only 3% of the total number of

events. While this value of 3% is smaller than the prediction of 60% in absence of normalization,

it is considerably larger than the “democratic” result which would predict a fraction of about

0.002% of the seismicity in each window. Since a high seismicity rate implies strong interactions

and triggering between earthquakes and is usually associated with recent past high seismicity,

the events in such a window are highly predictable. When the number of targets increases,

one starts to sample statistically other windows with smaller seismicity which have therefore a

weaker relation with triggered seismicity and thus present less predictive power.

In our previous discussion, we have not distinguished the skills of the three algorithms,

because they perform essentially the same with respect to the assigned targets. This is very
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Fig. 7.14 – Analysis of the prediction methods, using the same synthetic catalog and predictions methods

as for Figures 7.7-7.13. We use a time window T = 5 days to estimate the predicted seismicity rate, and

a time dT = 0.5 days between two updates of the prediction. Target events are M ≥ 6 earthquakes. The

duration of alarms normalized by the total duration of the catalog is shown in panel (a) as a function of

the alarm threshold for the three predictions methods : bare propagator (dots), the median (circles) and

the mean (triangles) number of events obtained for the scenarios. The proportion of successes is shown in

panel (b). The prediction gain shown in panel (c) is defined by the ratio of the proportion of successes (b)

over the duration of alarms (a). The prediction gain for large values of the alarm threshold is significantly

higher that the random prediction gain equal to 1.
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surprising from the perspective offered by all our previous analysis showing that the naive use of

the direct Omori’s law without taking into account the effect of any indirect triggered seismicity

strongly underestimate the future seismicity. We should thus expect a priori that this prediction

scheme should be significantly worse than the two others based on a correct counting of all

unobserved triggered seismicity. The explanation for this paradox is given by examining Figure

7.14, which presents further insight in the prediction methods applied to the synthetic catalogs

used in Figures 7.5-7.13. Figure 7.14 shows three quantities as a function of the threshold in

seismicity rate used to define an alarm, for each of the three algorithms. These quantities are

respectively the duration of alarms normalized by the total duration of the catalog shown in panel

(a), the fraction of successes (= 1− failure to predict) shown in panel (b) and the prediction gain

shown in panel (c). These three panels tell us that the incorrect level of seismic activity predicted

by the bare Omori’s law approach can be compensated by the use of a lower alarm threshold. In

other words, even if the seismicity rate predicted by the bare Omori’s law approach is very wrong

in absolute values, its time evolution in relative terms contains basically the same information

as the full-fledged method taking into account all unobserved triggered seismicity. Therefore,

an algorithm that can adjust the alarm threshold to the incorrect level of seismicity and detect

a relative change of seismicity can perform as well as the complete approach for the forecast

of the assigned targets. This example is a remarkable illustration of the fact that predictions

of different targets can have very different skills which depend on the targets. Here, there is

no doubt that using the full-fledged renormalized approach is the correct and only method to

get the best possible predictor of future seismicity rate. However, other simpler and more naive

methods can perform almost as well for more restricted targets, such as the prediction of only

strong earthquakes.

Information gain

We now follow Kagan and Knopoff [1977] who introduced the entropy/information concept

linking the likelihood gain to the entropy per event and hence to the predictive power of the

fitted model and Vere-Jones [1998] who suggests to use information gain to compare different

models and to estimate the predictability of a process.

Our forecast algorithm provides the average seismicity rate λi above m0 in the time interval

(ti, ti + T ). Assuming a constant magnitude distribution given by (7.5), the probability pi to

have at least an event above the target magnitude Mt in the time interval (ti, ti + T ) can be

evaluated from the average seismicity rate λi by

pi = 1 − exp
(
−λi 10−b(Mt−m0)

)
. (7.32)

Figure 7.15 shows the probability pi obtained for different choices of the target magnitude Mt,

for the same sequence as in Figure 7.7.

The binomial score B compares the prediction pi with the realization Xi, with Xi = 1 if a
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Tab. 7.2 – Binomial scores B for several prediction algorithms and different choices of the time interval

T and the target magnitude Mt. Bmed is evaluated from the median of the seismicity rate of the scenarios ;

Bmean from the average seismicity rate ; Bmeanl using the exponential λ = exp(log < n >) of the average

of the logarithm of the seismicity rate ; Bφ is measured using the bare propagator to estimate the seismicity

rate ; Bpois using a Poisson process with a seismicity rate equal to the average value of the catalog. N1 is

the number of target events M ≥ Mt ; N2 is the number of intervals with at least one target event. Note

that Bmed seems to be often the best for the smaller magnitudes while Bmean is often the best for the

largest magnitudes.

T (days) Mt N1 N2 Bmed Bmeanl Bmean Bφ Bpois

1. 5.0 2003 1332 -5997.7 -5995.1 -6341.0 -6057.3 -6361.8

1. 5.5 637 461 -2512.4 -2511.7 -2614.6 -2545.0 -2678.7

1. 6.0 198 159 -1007.8 -1006.9 -1042.2 -1023.2 -1089.4

1. 6.5 66 55 -409.9 -409.3 -420.5 -416.8 -434.3

1. 7.0 29 27 -217.8 -216.6 -218.1 -224.0 -233.3

5. 5.0 2003 1172 -3626.3 -3632.5 -3851.7 -3717.8 -3862.8

5. 5.5 637 420 -1720.0 -1719.1 -1774.8 -1765.4 -1810.7

5. 6.0 198 145 -732.1 -731.9 -748.9 -752.8 -776.7

5. 6.5 66 53 -321.2 -320.5 -322.0 -331.3 -335.4

5. 7.0 29 26 -171.3 -170.5 -168.1 - 179.3 -183.5

10. 5.0 2003 1067 -2651.0 -2662.7 -2822.4 -2736.0 -2852.4

10. 5.5 637 400 -1391.3 -1393.0 -1438.9 -1439.9 -1465.4

10. 6.0 198 137 -621.1 -621.2 -637.3 -640.3 -648.6

10. 6.5 66 50 -276.6 -276.2 -280.1 -286.1 -285.2

10. 7.0 29 24 -147.2 -146.4 -145.3 -155.3 -154.3

50. 5.0 2003 701 -699.0 -717.3 -787.3 -758.7 -817.2

50. 5.5 637 329 -658.9 -666.0 -698.8 -702.7 -706.2

50. 6.0 198 123 -379.6 -381.1 -392.5 -398.5 -395.5

50. 6.5 66 48 -192.2 -191.5 -192.5 -204.3 -197.9

50. 7.0 29 22 -104.5 -103.5 -102.3 -113.3 -107.5
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Fig. 7.15 – Probability pM (t) of having at least an event of magnitude larger than M in the time interval

(t, t+T ) with T=5 days. We have evaluated pM for M between 5 and 7, from the seismicity rate predicted

by the median of 100 scenarios, and using equation (7.32) to estimate the probability pM (t) from the

average seismicity rate λ(t) in the time interval (t, t + T ). pM (t) is plotted for the sequence shown in

Figure 7.7. Stars indicate the occurrence of a large M ≥ 7 earthquake. The largest M = 8.55 event of

the sequence occurs at time t = 164 days when the seismicity rate is close to the average value. Thus,

this event cannot be predicted. Six large M > 7 earthquakes occur in the following 500 days when the

seismicity rate is still above its average value, including three M > 7 events in the 5 days immediately

following the great event.

target event occurred in the interval (ti, ti + T ) and Xi = 0 otherwise. For the whole sequence

of intervals (ti, ti + T ), the binomial score is defined by

B =
∑

i

Xi log(pi) + (1 − Xi) log(1 − pi) , (7.33)

where the sum is performed over all (non-overlapping) time windows covering the whole duration

of the catalog. The first term represents the contribution to the score from those intervals which

contain an event, and the second term the contribution to the score from those intervals which

contain no event. In order to test the performance of a forecast algorithm, we compare the

binomial score B of the forecast with the binomial score of a Poisson process. The results for

different choices of the time interval T and of the target magnitude Mt are listed in Table 2. We

evaluate the binomial score B for different prediction algorithms (i) the average of the seismicity

rate over all scenarios, (ii) the exponential of the average of the logarithm of the mean of the
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seismicity rate, (iii) the median of the seismicity rate and (iv) the sum of the bare propagators

of the past seismicity. The results for all forecasting methods are in general better than the

Poisson process, i.e., the binomial score for the forecasting algorithms are larger than the score

obtained with a Poisson process. The scores of the forecasting methods which take into account

the cascade of secondary aftershocks (Bmed, Bmean and Bmeanl in Table 2 are significantly better

than the score Bφ obtained with the bare propagator, even for short time intervals T . For large

times intervals T ≥ 10 days, and for large target magnitudes, the results for the bare propagator

are even worse than the results obtained with a Poisson process.

Our tests show that the prediction skills depend strongly on all the parameters α, b, n, θ and

µ. The larger α is, the better the predictability is as the triggered seismicity is very active in

this case because strong and large aftershock time series occur. The impact of the b-value is

felt relative to α through its influence in the branching ratio n : the larger n is (i.e., closest to

the critical value 1), the better is the predictability as the triggered seismicity is the strongest.

The larger θ is, the faster is the decay of the bare Omori’s propagator. If n < 1, the larger θ is,

the shorter is t∗ and the faster is also the decay of the renormalized Omori’s propagator K(t),

hence the weaker is the cascade of secondary aftershocks, and the worse is the predictability.

Lastly, the background rate of seismicity µ controls the “noise” level and the time over which a

triggered sequence of events is above it and can thus be identified as a useful signal for predicting

the future seismicity rate : thus, the larger µ is, the poorer is the predictive skill.

Our results are in complete disagreement with those reported in [Vere-Jones, 1998] on the

same ETAS model : we conclude that the ETAS model has a significantly higher predictive

power than the Poisson process while Vere-Jones [1998] concludes that the forecasting perfor-

mance of the ETAS model is worse than the Poisson. Vere-Jones and Zhuang confirm (private

communication) that their simulations reported in [Vere-Jones, 1998] does take into account

the seismicity triggered from the present u till the advent of the large earthquake target. This

is particularly important as the real seismicity is much higher than predicted in absence of

the cascade of triggering events as we have shown here. Its neglect is expected to have serious

consequences in the scores. But, as far we can understand from [Vere-Jones, 1998] and private

communications, Vere-Jones and Zhuang’s procedure and ours are very similar, if not indistin-

guishable and the discrepancy cannot be accounted in this way. The tests of [Vere-Jones, 1998]

have been performed using a α/b ratio of 0.57/1.14 = 0.5 smaller than the value α/b = 0.8 used

in our simulations. This discrepancy may lead to a smaller predictability for the simulations

of [Vere-Jones, 1998] because there are fewer large aftershock sequences. The branching ratio

n = 0.78 used by [Vere-Jones, 1998] is very close to our value n = 0.8. However, the difference

in the ETAS parameters cannot explain why Vere-Jones [1998] obtains a better predictability

for a Poisson process than for the ETAS model.

Figures 7.8 and 7.10 and our tests show unambiguously that the ETAS model has a significant

degree of predictability above the Poisson process. We thus caution that a suitable assessment of
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the forecasting skills of a model requires several complementary quantitative measures, such as

the predicted versus observed seismicity rates, the error diagram and predictability gain and the

entropy-information gains, and a large number of target events. We hope that the present work

will stimulate a quantitative reassessment of [Vere-Jones, 1998]’s results by the New-Zealand

group in the goal of assessing the ultimate limit of the ETAS model as a good model of genuine

seismicity.

7.7 Conclusions

Using a simple model of triggered seismicity, the ETAS model, based on the (bare) Omori’s

law, the Gutenberg-Richter law and the idea that large events trigger more numerous after-

shocks, we have demonstrated the essential role played by the cascade of triggered seismicity

in controlling the rate of aftershock decay as well as the overall level of seismicity in the pre-

sence of a constant external seismicity source. We have developed an analytical approach to

account for the triggered seismicity adapted to the problem of forecasting future seismic rates

at varying horizons from the present. Tests presented on synthetic catalogs have validated the

use of interacting triggered seismicity to forecast large earthquakes in these models. This work

provides what we believe is a useful benchmark from which to develop real prediction tests of

real catalogs. These tests have also delineated the fundamental limits underlying forecast skills,

stemming from an intrinsic stochastic component in the seismicity models. Our results offer a

rationale for the fact that pattern recognition algorithms may perform better for strong earth-

quakes than for weaker events. Although the predictability of an earthquake is independent of

its magnitude in the ETAS model, the prediction gain is better for the largest events because

they are less numerous and it is thus more probable that they are associated with periods of

large seismicity rates, which are themselves more predictable.

We have shown in [Helmstetter et al., 2002] that most precursory patterns used in prediction

algorithms, such as a decrease of b-value or an increase of seismic activity can be reproduced by

the ETAS model. If the physics of triggering is fully characterized by the class of models discussed

here, this suggests that detection of patterns and precursory indicators are sub-optimal compared

with the prediction based on a full modeling of the seismicity. The calibration of the ETAS model

or some of its variants on real catalogs as done in [Kagan and Knopoff, 1987 ; Kagan and Jackson,

2000 ; Console and Murru, 2001] ; Ogata, 1988, 1989, 1992, 1999, 2001 ; Kagan, 1991 ; Felzer et

al, 2001] represent important steps in this direction. However, in practical terms, the issue of the

model errors associated with the use of an incorrect model calibrated on an incomplete data set

with not fully known parameters may make this statement weaker or even turn it on its head.

This needs to be seriously investigated in the future.
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7.8 Appendix A : Hypermetropic renormalized propagator K∗
u(t)

in various limits

Hypermetropic renormalized propagator for t � t∗

Putting the asymptotic expansion of K(t) for t < t∗ (7.13) in (7.25) we obtain for t 
 c and

t > u

K∗
u<t<t∗(t) =

1
Γ(θ) Γ(1 − θ)

(t + c − u)θ

(u + c)θ (t + c)
, (7.34)

which recovers K(t) for u = 0.

Hypermetropic renormalized propagator for t 
 u

In the regime t 
 u, we can rewrite (7.28) as

K∗
u(t) ≈ K(t) − K(t)

∫ u

0
φ(τ) dτ

≈ K(t)
(
1 − n

(
1 − cθ

(u + c)θ
))

(7.35)

Hypermetropic renormalized propagator for t ≈ u

In the regime t ≈ u and t − u 
 c, we can rewrite (7.25) as

K∗
u(t) ≈ φ(t)

∫ t

u
K(t − τ) dτ

≈ φ(t) (K(t − u) + 1) , (7.36)

where K(t) is the integral of K(t)− δ(t) given by (7.23). The second term in (7.36) comes from

the Dirac δ(t) in the expression (7.10) of K(t).
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Abstract

The epidemic-type aftershock sequence model (ETAS) is a simple stochastic process modeling

seismicity, based on the two best-established empirical laws, the Omori law (power law decay

∼ 1/t1+θ of seismicity after an earthquake) and Gutenberg-Richter law (power law distribution

of earthquake energies). In order to describe also the space distribution of seismicity, we use

in addition a power law distribution ∼ 1/r1+µ of distances between triggered and triggering

earthquakes. The ETAS model has been studied for the last two decades to model real seismicity

catalogs and to obtain short-term probabilistic forecasts. Here, we present an exact mapping
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between the ETAS model and a class of CTRW (continuous time random walk) models, based

on the identification of their corresponding Master equations. This mapping allows us to use the

wealth of results previously obtained on anomalous diffusion of CTRW. After translating into

the relevant variable for the ETAS model, we provide a classification of the different regimes of

diffusion of seismic activity triggered by a mainshock. Specifically, we derive the relation between

the average distance between aftershocks and the mainshock as a function of the time from the

mainshock and of the joint probability distribution of the times and locations of the aftershocks.

The different regimes are fully characterized by the two exponents θ and µ. Our predictions are

checked by careful numerical simulations. We stress the distinction between the “bare” Omori

law describing the seismic rate activated directly by a mainshock and the “renormalized” Omori

law taking into account all possible cascades from mainshocks to aftershocks of aftershock of

aftershock, and so on. In particular, we predict that seismic diffusion or sub-diffusion occurs and

should be observable only when the observed Omori exponent is less than 1, because this signals

the operation of the renormalization of the bare Omori law, also at the origin of seismic diffusion

in the ETAS model. We present new predictions and insights provided by the ETAS to CTRW

mapping that suggest novel ways for studying seismic catalogs. Finally, we discuss the present

evidence for our predicted sub-diffusion of seismicity triggered by a main shock, stressing the

caveats and limitations of previous empirical works.

8.1 Introduction

The spatio-temporal complexity of earthquakes is often invoked as an illustration of the phe-

nomenon of critical self-organization with scale-invariant properties [Sornette, 1991; Rundle and

Klein, 1995; Main, 1996; Sornette, 1999a; Turcotte, 1999]. This concept points to the importance

of developing a system approach in which large scale properties can emerge from the repeating

interactions occurring at smaller scales. Such ideas are implemented in models proposing links

between the physics of earthquakes and concepts of statistical physics, such as critical points,

self-organized criticality, spinodal decomposition, critical depinning, etc., in order to explain the

most solidly established facts in the phenomenology of earthquakes, of which we cite the three

most important.

– LAW 1 : The Gutenberg-Richer law [Gutenberg and Richter, 1944] states that the cu-

mulative distribution of earthquake magnitudes m sampled over broad regions and large

time intervals is proportional to 10−bm, with a b-value b ≈ 1. Translating into energies E

with the correspondence m = (2/3) log10 E+ constant leads to a power law ∼ 1/EB with

B ≈ 2/3.

– LAW 2 : Omori law for aftershocks [Omori, 1894] states that the rate of earthquakes

triggered by a mainshock decays with time according to an inverse power 1/tp of time

with an exponent p ≈ 1.
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– LAW 3 : The earthquakes are clustered in space along hierarchical fault structures [Ouillon

et al., 1996] and their spatial distribution over long times can be approximately described

by a fractal dimension close to 2.2 (in three dimensions) [Kagan and Knopoff, 1980].

There are many other empirical “laws” but these three characterize the very fundamentals of

seismicity in size, time and space.

We should immediately point out that these three laws come with significant caveats.

1. There have been on-going controversies on the universality of the exponent B or b-value

of the Gutenberg-Richter law [Pisarenko and Sornette, 2002; Kagan, 1999b].

2. The exponent p of Omori law exhibits a large variability from one aftershock sequence to

another aftershock sequence and is found typically in the range from 0.3 to 2. We note

however that not all these values, especially the extreme ones, automatically reflect a bona-

fide power law decay and one should exert caution in attributing too much confidence to

them.

3. The view that geological faults and earthquake hypocenters are fractal objects is now

recognized to be a naive description of a much more complex reality in which a hierarchy

of scales occur with possibly different organizations at different scales [Ouillon et al., 1996].

In addition, a major difficulty for making progress in modeling and predicting earthquakes

is that these three and other laws may be “explained” by a large variety of models, with many

different mechanisms. For instance, with respect to the first two laws, we observe the following.

– There are many mechanisms that create a power law distribution of earthquake sizes (see

for instance the list of mechanisms described in Chapter 14 of [Sornette, 2000a].

– Omori law is essentially a slowly decaying “propagator” describing a long-time memory of

past events impacting on the future seismic activity. Such slow power law time decay of

the Omori propagator may result from several and not necessarily exclusive mechanisms

(see [Harris, 2000] and references therein) : pore-pressure changes due to pore-fluid flows

coupled with stress variations, slow redistribution of stress by aseismic creep, rate-and-

state dependent friction within faults, coupling between the viscoelastic lower crust and the

brittle upper crust, stress-assisted micro-crack corrosion [Yamashita and Knopoff, 1987;

Lee and Sornette, 2000], slow tectonic driving of a hierarchical geometry with avalanche

relaxation dynamics [Huang et al., 1998], etc.

The zeroth order description of earthquakes is to consider a single isolated homogeneous fault

on which earthquakes are recurrent to accommodate the long-term slow tectonic loading. But

faults are not isolated and the most conspicuous observation is that earthquakes interact and

influence each other on complex fault structures. Understanding these interactions is essential for

understanding earthquakes and fault self-organization. However, the full impact of interactions

between earthquakes is still far from being well understood. The simplest and clearest observation

of earthquake interaction is provided by aftershocks whose phenomenology is captured by Omori

law (LAW 2). Indeed, aftershocks are the most obvious and striking signature of the clustering
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of the seismicity in time and space, and are observed after all large shallow earthquakes. Most

aftershocks are triggered a few hours or days after the mainshock. However, due to the very slow

power law decay of the rate of aftershock, known as the Omori law [Omori, 1894], aftershocks can

be triggered up to a hundred years after the mainshock [Utsu et al., 1995]. Aftershocks often occur

near the rupture zone of the mainshock with a variety of focal mechanisms suggesting that they

are actually on separate structures [Bath and Richter, 1958; Beroza and Zoback, 1993]. They are

also sometimes triggered at very large distances from the mainshock [Hill et al., 1993; Steeples

and Steeples, 1996; Kagan and Jackson, 1998; Meltzner and Wald, 1999; Dreger and Savage,

1999]. As an example, Hill et al. [1993] observed aftershocks of the Landers earthquake as far as

1250 km from the epicenter. Similarly to the temporal distribution of aftershocks, a power-law

distribution seems to describe well the distribution of distances between pairs of events [Kagan

and Jackson, 1998]. Since a power-law decays slowly, it describes a slow decay of the probability

of observing aftershocks at large distances to the mainshock.

Thus, Omori law can be considered as the simplest and best established description of ear-

thquake interactions of a certain kind. The question we investigate is whether it can be used

fruitfully to explain a larger variety of earthquake interactions beyond the class of observations

that were used to establish it. In a series of papers [Sornette and Sornette, 1999a; Helmstetter

and Sornette, 2002a; Sornette and Helmstetter, 2002], we find that Omori law for aftershocks

plus the constrain that aftershocks are distributed according to the Gutenberg-Richter power

law for earthquake size distribution independently of the magnitude of their progenitor is enough

to derive many of the other empirical “laws,” as well the variability of the p-exponent. Here,

we test the potential of this approach to account for and to quantify observations on aftershock

diffusion.

Aftershock diffusion refers to the phenomenon of expansion or migration of aftershock zone

with time [Mogi, 1968; Imoto, 1981; Chatelain et al., 1983; Tajima and Kanamori, 1985a,b;

Wesson, 1987; Ouchi and Uakawa, 1986; Noir et al., 1997; Jacques et al., 1999]. Immediately

after the mainshock occurrence, most aftershocks are located close to the rupture plane of the

mainshock, then aftershocks seem to migrate away from the mainshock, at velocity ranging from

1 km/h to 1 km/year [Jacques et al., 1999; Rydelek and Sacks, 2001]. Note that this expansion

is not universally observed, but is more important in some areas than in others [Tajima and

Kanamori, 1985a,b].

The diffusion of aftershocks is usually interpreted as a diffusion of the stress induced by the

mainshock, either by a viscous relaxation process [Rydelek and Sacks, 2001], or due to fluid

transfer in the crust [Nur and Booker, 1972; Hudnut et al., 1989; Noir et al., 1997]. Another

interpretation of the expansion of aftershocks is given by Dieterich [1994], who reproduces the

Omori law decay of aftershocks and the expansion of the aftershock zone with time, using a rate

and state friction law and assuming that the rate of aftershocks is proportional to the stress

rate. In his model, the expansion of aftershock zone arises from the non-uniform stress induced
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by the mainshock. Another alternative explanation is that the diffusion of aftershocks is mainly

due to the occurrence of large aftershocks, and to the localization of secondary aftershock close

to the largest aftershocks, as observed by Ouchi and Uakawa [1986]. The apparent diffusion of

the seismicity may thus result from a cascade process ; the mainshock triggers aftershocks that

in turn trigger their own aftershocks, and thus lead to an expansion of the aftershock zone.

In the present paper, we investigate the epidemic time aftershock sequence model (ETAS),

and show that the cascade of secondary aftershocks can indeed explain the reported diffusion of

aftershocks. The ETAS model was introduced by Kagan and Knopoff [1987] and Ogata [1988] to

describe the temporal and spatial clustering of seismicity. This model provides a tool for unders-

tanding the clustering of the seismic activity, without arbitrary distinction between aftershocks,

foreshocks and mainshocks. In this model, all earthquakes are assumed to be simultaneously

mainshocks, aftershocks and possibly foreshocks. Each earthquake generates aftershocks that

decay with time according to Omori law, which will in turn generate their own aftershocks. The

seismicity rate at any given time and location is given by the superposition of aftershock se-

quences of all events impacting that region at that time according to space-time “propagators.”

The additional ingredient in the version of the ETAS model that we study is that the num-

ber of aftershock per earthquake increases exponentially ∝ 10αm with the magnitude m of the

mainshock (i.e., as a power law ∝ E2α/3 of the energy released by the mainshock), in agreement

with the observations [Yamanaka and Shimazaki, 1990; Drakatos et al., 2001]. Since the energy

of an earthquake is a power law of its rupture length, this law expresses the very reasonable

idea that the number of events related to a given earthquake is proportional to a power of its

volume of influence. The value of the exponent α controls the nature of the seismic activity,

that is, the relative role of small compared to large earthquakes. Few studies have measured α

in seismicity data [Yamanaka and Shimazaki, 1990; Guo and Ogata, 1997; Helmstetter, 2002].

This parameter α is often found close to b [Yamanaka and Shimazaki, 1990] or fixed arbitrarily

equal to b [Kagan and Knopoff, 1987; Felzer et al., 2002]. In the case where α is close to the

Gutenberg-Richter b-value, this law also reproduces [Felzer et al., 2002] the self-similar empirical

Bath’ s law [Bath, 1965], which states that the average difference mM − mA in size between a

mainshock and its largest aftershock is 1.2 magnitude units, regardless of the mainshock magni-

tude : mA = mM − 1.2. If α < b, small earthquakes, taken together, trigger more aftershocks

than larger earthquakes. In contrast, large earthquakes dominate earthquake triggering if α ≥ b.

This case α ≥ b has been studied analytically in the framework of the ETAS model by Sornette

and Helmstetter [2002] and has been shown to eventually lead to a finite time singularity of the

seismicity rate. This explosive regime cannot however describe a stationary seismic activity.

A natural way to tame this singular behavior is to introduce an upper cut-off for the ma-

gnitude distribution at large magnitudes, mirroring the cut-off m0 used for the low-magnitude

range. The physical argument for introducing this cut-off is based on the finiteness of the maxi-

mum earthquake that the earth is capable of carrying. The specific way of introducing such



156 Diffusion des aftershocks

a cut-off (abrupt or smooth with a transition to a power law with larger exponent or to an

exponential taper) is not very important qualitatively because all these laws will regularize the

singular behavior and make the average branching ratio n finite. Such regularization with a

maximum upper magnitude then allows α ≥ b. The special case α = b required for Bath’s law

to hold exactly can not therefore be excluded.

However, based on a recent re-analysis of seismic catalogs using the powerful collapse tech-

nique, one of us [Helmstetter, 2002] has presented strong evidence that α is strictly smaller

than b. In this paper, we will therefore consider only the case α < b and take α = 0.5 speci-

fically in our numerical simulations. In this regime α < b, Bath’ s law cannot be reproduced

because the average difference in size between a mainshock and its largest aftershock increases

with the mainshock magnitude. For α < b, it is easy to show that Bath’s law is replaced by

mA = (α/b)mM− constant, where mM and mA are the magnitudes of the mainshock and of

the largest aftershock. Tests of this prediction will be reported in a future publication but we

expect that distinguishing this modified Bath’s law from Bath’s law will be a difficult task due

to the limited range of the studied magnitudes as well as the dependence of the distribution

of mM − mA on the magnitude thresholds chosen for the mainshocks and for the aftershocks

[Console et al., 2002].

We assume that the distribution of all earthquakes follow the Gutenberg-Richter distribu-

tion and take this distribution of aftershock sizes to be independent of the magnitude of the

mainshock. Therefore, an earthquake can trigger a larger earthquake, albeit with a small pro-

bability. This model can thus describe a priori both aftershock and foreshock sequences. The

ETAS model has been calibrated to real seismicity catalogs to retrieve its parameters [Ogata,

1988, 1989, 1992, 1999, 2001, Kagan, 1991a; Guo and Ogata, 1997; Felzer et al., 2002] and to

give short-term probabilistic forecast of seismic activity by extrapolating past seismicity into the

future via the use of its space-time propagator [Kagan and Knopoff, 1987; Kagan and Jackson,

2000; Console and Murru, 2001].

The ETAS model is a branching model which exhibits different regimes [Helmstetter and

Sornette, 2002a] depending upon the value of the branching ratio n, defined by the average

number of primary aftershocks per earthquake. The critical case n = 1 corresponds to exactly

one primary aftershock per earthquake, when averaging over all mainshock magnitudes larger

than a threshold m0. Let us stress that n is an average quantity which does not reflect adequately

the large variability of the number of aftershocks per main shock, as a function of its magnitude.

Indeed, the number of aftershocks per mainshock increases exponentially fast as a function of the

mainshock magnitude, so that large mainshocks will have significantly more than n aftershocks.

For α = 0.5, a magnitude 7-earthquake gives typically 10 times more direct aftershocks than a

magnitude 5, and 100 times more direct aftershocks than a magnitude 3-earthquake. The increase

in triggered seismic activity with the magnitude of the mainshock is obviously stronger for a

larger value of α. Note that these numbers refer to aftershocks of the first generation ; the total
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number of triggered events is larger by the factor 1/(1 − n) ∼ 10 (for n ≈ 0.9 which is typical),

due to the cascades of secondary aftershocks. Notwithstanding this large variability, the average

number n of primary aftershocks per earthquake controls the global regime. For n exactly equal

to 1, seismicity is at the border between death and growth. In the sub-critical regime n < 1,

since each earthquake triggers on average less that one aftershock, starting from a large event,

the seismicity will decrease with time and finally die out. The super-critical n > 1 corresponds to

more that one primary aftershock per earthquake on average. Starting from a large earthquake,

after a transient regime, the average seismicity will finally increase exponentially with time

[Helmstetter and Sornette, 2002a], but there is still a finite probability for aftershock sequences

to die out.

The numerical simulations reported below have been performed with α = 0.5. It is probable

that a good fit to seismic data is obtained by using a value of α ≈ 0.8 larger that the value 0.5,

as reviewed and documented recently by one of us [Helmstetter, 2002]. We have checked that

results similar to those presented below hold true qualitatively for larger values 0.5 < α < 1.

Such larger values of α lead however to stronger fluctuations which are more difficult to handle

numerically because the variance of the number ρ(m) of direct triggered aftershocks defined

below in (8.3) becomes undefined for α > 0.5. A full understanding of this regime requires a

special treatment that will be reported elsewhere.

Sornette and Sornette [1999a] studied analytically a particular case of this model, without

magnitude and spatial dependence, and they considered only the subcritical regime n < 1.

Starting with one event at time t = 0 and considering that each earthquake generates an

aftershock sequence with a “local” Omori exponent p = 1 + θ, where θ > 0, they studied the

decay law of the “global” aftershock sequence, composed of all secondary aftershock sequences,

i.e., by taking into account that the primary aftershocks can create secondary aftershocks which

themselves may trigger tertiary aftershocks and so on. They found that the global aftershock

rate decays according to an Omori law with an exponent p = 1 − θ < 1, up to a characteristic

time [Sornette and Sornette, 1999a; Helmstetter and Sornette, 2002a]

t∗ = c

(
n Γ(1 − θ)
|1 − n|

)1/θ

, (8.1)

and then recovers the local Omori exponent p = 1 + θ for time larger than t∗. Helmstetter and

Sornette [2002a] extended their analysis to the general ETAS model with magnitude dependence,

and considered both the sub- and the super-critical regime, but still restricted the analysis to the

temporal distribution of the seismicity, without spatial dependence. In the sub-critical regime,

they recovered the crossover found by Sornette and Sornette [1999a]. In addition, Helmstetter

and Sornette [2002a] give the explicit mathematical formula for the gradual transition between

the Omori law with exponent p = 1− θ for t � t∗ to the Omori law with exponent p = 1+ θ for

t 
 t∗. This smooth transition can be observed in Figure 8.1 on the line calculated for t∗ = 109

with n < 1. t∗ can thus be viewed as the time where the apparent exponent p of the Omori
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law is approximately in between the two asymptotic values 1 − θ and 1 + θ. A more rigorous

mathematical definition [Helmstetter and Sornette, 2002a] is that t∗ is the characteristic time

scale such that βt∗ is the dimensionless variable of the Laplace transform (with variable β) of

the seismicity rate.

In the super-critical regime, Helmstetter and Sornette [2002a] found a novel transition bet-

ween a power-law decay with exponent p = 1 − θ at early times, similar to the sub-critical

regime, to an exponential increase of the seismicity at large times. The regime where α > b or

equivalently 2α/3 > B has been found to lead to a new kind of critical stochastic finite-time-

singularity [Sornette and Helmstetter, 2002], relying on the interplay between long-memory and

extreme fluctuations. Recall that the number of aftershocks per earthquake increases as a po-

wer law ∝ E2α/3 of the energy released by the mainshock whereas the number of earthquakes

of energy E decreases as the Gutenberg-Richter law ∝ 1/E1+B . Intuitively, when 2α/3 > B,

the increase in the rate of creation of aftershocks with the mainshock energy more than com-

pensate the decrease of the probability to get a large mainshock when the mainshock energy

increases. This theory based solely on the ETAS model has been found to account for the main

observations (power law acceleration and discrete scale invariant structure) of critical rupture of

heterogeneous materials, of the largest sequence of starquakes ever attributed to a neutron star

as well as of some earthquake sequences [Sornette and Helmstetter, 2002].

In the sequel, we extend the analytical study of the temporal ETAS model [Sornette and

Sornette, 1999a; Helmstetter and Sornette, 2002a; Sornette and Helmstetter, 2002] to the spatio-

temporal domain. To model the spatial distribution of aftershocks, we assume that the distance

between a mainshock and each of its direct aftershock is drawn from a given distribution, in-

dependently of the magnitude of the mainshock and of the delay between the mainshock and

its aftershocks. For illustration but without loss of generality for the mapping to the continuous

time random walks model (CTRW) discussed later, we shall take a power law distribution of

distances between earthquakes. We take the simplest and most parsimonious hypothesis that

space, time and magnitude are decoupled in the earthquake propagator. Our first result is to es-

tablish a correspondence between the ETAS model and the CTRW, first introduced by Montroll

and Weiss [1965] and used to model many physical processes. We then build on this analogy

to derive the joint probability distribution of the times and locations of aftershocks. We show

analytically that, for sufficiently short times t < t∗, the average distance between a mainshock

and its aftershock increases subdiffusively as R ∼ tH , where the exponent H depends on the

local Omori exponent 1 + θ and on the distribution of the distances between an earthquake and

its aftershocks. We also demonstrate that the local Omori law is not universal, but varies as a

function of the distance from the mainshock. Due to the diffusion of aftershocks with time, the

decay of aftershock is faster close to the mainshock than at large distances. These non-trivial

space-time couplings occur notwithstanding the decoupling between space, time and magnitude

in the “bare” propagator, and is due to the existence of cascades of aftershocks.
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Fig. 8.1 – Seismicity rate N(t) for the temporal ETAS model calculated for θ = 0.3 and c = 0.001 day.

The local law φ(t) ∝ 1/t1+θ, which gives the probability distribution of times between an event and its

(first-generation) aftershocks is shown as a dashed line. The global law N(t), which includes all secondary

and successive aftershocks generated by all the aftershocks of the first event, is shown as a solid line for

the three regimes, n < 1, n = 1 and n > 1. In the critical regime n = 1, the seismicity rate follows

a renormalized or dressed Omori law ∝ 1/tp for t > c with an exponent p = 1 − θ, smaller than the

exponent of the local law 1 + θ. In the sub-critical regime (n < 1), there is a crossover from an Omori

law 1/t1−θ for t < t∗ to 1/t1+θ for t > t∗. In the super critical regime (n > 1), there is a crossover from

an Omori law 1/t1−θ for t < t∗ to an exponential increase N(t) ∼ exp(t/t∗) for t > t∗. We have chosen

on purpose values of n = 0.9997 < 1 and n = 1.0003 > 1 very close to 1 such that the crossover time

t∗ = 109 days given by (8.1) is very large. In real data, such large t∗ would be undistinguishable from an

infinite value corresponding to the critical regime n = 1. This representation is chosen for pedagogical

purpose to make clear the different regimes occurring at times smaller and larger than t∗. In reality, we

can expect n to be significantly smaller or larger than 1, such that t∗ becomes maybe of the order of

months, years to decades and the observed Omori law will thus lie in the cross-over regime, given an

apparent Omori exponent anywhere from 1 − θ to 1 + θ.
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A recent work of Krishnamurthy et al. [2000] substantiates the general modeling strategy used

here of representing the space-time dynamics of earthquakes by an effective stochastic process

(the ETAS model) entirely defined by two exponents (corresponding to our µ and H(θ, µ) defined

below), where µ is the exponent of the power law distribution of jumps between successive active

sites and H is the (sub-)diffusion exponent. Indeed, Krishnamurthy et al. [2000] show that the

Bak and Sneppen model and the Sneppen model of extremal dynamics (corresponding to a

certain class of self-organized critical behavior [Sornette, 2000a]) can be completely characterized

by a suitable stochastic process called “Linear fractional stable motion.” Beyond recovering

the scaling exponents of this model, the stochastic process strategy predicts the conditional

probabilities of successive activations at different sites and thus offers novel insights. We note

that this approach with the Linear fractional stable motion is extremely close in spirit as well

as in form to our approach mapping the ETAS model to the CTRW model. The ETAS model

can thus be taken to represent an effective stochastic process of the complex self-organization of

seismicity.

8.2 The epidemic-type aftershock (ETAS) model

Definitions and specific parameterization of the ETAS model

We assume that a given event (the “mother”) of magnitude mi occurring at time ti and

position �ri gives birth to other events (“daughters”) of any possible magnitude chosen with

some independent Gutenberg-Richter distribution at a later time between t and t + dt and at

point �r ± �dr to within d�r at the rate

φmi(t − ti, �r − �ri) = ρ(mi) Ψ(t − ti) Φ(�r − �ri) . (8.2)

We will refer to φmi(t − ti, �r − �ri) both as the seismic rate induced by a single mother or as the

“bare propagator”. It is the product of three independent contributions :

1. ρ(mi) gives the number of daughters born from a mother with magnitude mi. This term

will in general be chosen to account for the fact that large mearthquakes have many more

triggered events than small earthquakes. Specifically, we take

ρ(mi) = K 10α(mi−m0) , (8.3)

which, as we said earlier, is justified by the power law dependence of the volume of stress

perturbation as a function of the earthquake size. α quantifies how fast the average number

of daughters per mother increases with the magnitude of the mother.

2. Ψ(t−ti) is a normalized waiting time distribution giving the rate of daughters born at time

t − ti after the mother. The normalization condition reads
∫ +∞
0 dt Ψ(t) = 1. Ψ(t − ti)dt

can thus be interpreted as the probability for a daughter to be born between t and t + dt
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from the mother that was born at time ti. Ψ(t− ti) embodies Omori law : it is the “bare”

or “direct” Omori law

Ψ(t) =
θ cθ

(t + c)1+θ
H(t) , (8.4)

where θ > 0 and H(t) is the Heaviside function.

3. Φ(�r − �ri) is a normalized spatial “jump” distribution from the mother to each of her

daughter, quantifying the probability for a daughter to be triggered at a distance |�r − �ri|
from the mother. Specifically, we take

Φ(�r) =
µ

d( |	r|d + 1)1+µ
, (8.5)

which has the form of an (isotropic) elastic Green function dependence describing the

stress transfer in an elastic upper crust. The exponent µ is left adjustable to account

for heterogeneity and the possible complex modes of stress transfers. The normalization

condition reads
∫

d�r Φ(�r) = 1 where the integral is carried out over the whole space.

The physical justification for this decoupled model (8.2) in which φmi(t − ti, �r − �ri) is the

product of three independent distributions is that elastic waves propagate at kilometers per

second and thus almost instantaneously reset the stress field after a large main shock. In other

words, there is a well-defined separation of time scales between the time of propagation of seismic

waves (seconds to minutes) which control the convergence to a new mechanical equilibrium after

the main shock and the time scales involved in aftershock sequences (hours, days, months to

many years). The spatial dependence in (8.2) reflects the stress redistribution. This new stress

field then relaxes slowly and more or less independently from point to point leading to the

local Omori law Ψ(t − ti). Notwithstanding this argument, the decoupling in (8.2) between the

local responses in magnitudes, space and time is mostly performed because of its simplicity. It

constitutes an approximation that should be checked and relaxed in future studies.

We assume a distribution P (m) of earthquake sizes expressed in magnitudes m which follows

the Gutenberg-Richter distribution

P (m) = b ln(10) 10−b(m−m0) , (8.6)

with a b-value usually close to 1. m0 is a lower bound magnitude below which no daughter is

triggered.

The branching ratio n

A key parameter of the ETAS is the average number n of daughter-earthquakes created per

mother-event, summed over all possible magnitudes. As we shall see, it is also natural to call it the

“branching ratio”. To see this, consider the integral of the seismic rate φmi(t− ti, �r−�ri) induced

by one earthquake over all times after ti, over all spatial positions and over all magnitudes
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mi ≥ m0, which must give by definition the average number n of direct (or primary) daughter-

earthquakes created per mother-event independently of its magnitude. For α < b and using

(8.2), (8.3) and (8.6), it is exactly given by

n ≡
∫

d�r

∫ +∞

ti

dt

∫ +∞

m0

dmi P (mi) φmi(t − ti, �r − �ri)

=
∫ +∞

m0

dmi P (mi) ρ(mi) =
K b

b − α
, (8.7)

since the two integrals over time and space contribute each a factor 1 by the normalization of Ψ

and Φ. This result (8.7) is identical to that found in absence of spatial dependence of φmi(t− ti)

with respect to �r − �ri due to the factorization of the rate ρ, time Ψ and space Φ dependences

[Helmstetter and Sornette, 2002a]. The branching ratio has also been evaluated in the case where

the magnitude distribution follows a gamma distribution [Kagan, 1991a].

We stress again that n is an average quantity which does not reflect the large fluctuations

in the number of aftershocks from events to events. Indeed, large events with magnitudes M

produce in general many more aftershocks than small events with magnitude m < M , simply

because ρ(M) 
 ρ(m) if M > m (see the exponential dependence (8.3) of ρ(m) on the magnitude

m).

Numerical simulation of the spatial ETAS model

The ETAS model has been simulated numerically using the algorithm described in [Ogata,

1998, 1999]. Starting with a large event of magnitude M at time t = 0, events are then simulated

sequentially. At any given time t, we calculate the conditional seismic rate λ(t) defined by

λ(t) =
∑
ti≤t

K 10α(mi−m0) θcθ

(t − ti + c)1+θ
(8.8)

where K = n(b − α)/b, and ti and mi are the times and magnitudes of all preceding events

that occurred at time ti ≤ t. Note that we use the bare propagator because the sum in (8.8) is

performed exhaustively on the complete catalog of past events. The time of the following event

is then determined according to the non-stationary Poisson process of conditional intensity λ(t),

and its magnitude is chosen according to the Gutenberg-Richter distribution with parameter

b. To determine the position in space of this new event, we first choose its mother randomly

among all preceding events with a probability proportional to their rate of aftershocks φmi(t−ti)

evaluated at the time of the new event. Once the mother has been chosen, we generate the

distance r between the new earthquake and its mother according to the power-law distribution

Φ(�r) given by (8.5). The location of the new event is determined by assuming an isotropic

distribution of aftershocks. By this rule, it is clear that new events tend to be close in general

to the last large earthquakes, leading to space clustering.

Note that this two-steps procedure is equivalent to but more convenient for a numerical

implementation than the one-step method, consisting of calculating at each point on a fine
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Fig. 8.2 – Maps of seismicity generated by the ETAS model with parameters b = 1, θ = 0.2, µ = 1, d = 1

km, α = 0.5, c = 0.001 day and a branching ratio n = 1. The mainshock occurs at the origin of space

with magnitude M = 7. The minimum magnitude is fixed at m0 = 0. The distances between mainshock

and aftershocks follow a power-law with parameter µ = 1 and the local (or bare) Omori law is ∝ 1/t1+θ.

According to the theory developed in the text, the average distance between the first mainshock and

the aftershocks is thus expected to grow as R ∼ t0.2 (equation (8.53)). The two plots are for different

time periods of the same numerical simulation, such that the same number of earthquakes N = 3000

is obtained for each graph : (a) time between 0 and 0.3 days ; (b) time between 30 and 70 yrs. Real

aftershock sequences are indeed observed to last decades up to a century. Large black dots indicate large

aftershocks around which other secondary aftershocks cluster. The mainshock is shown by a black star.

At early times, aftershocks are localized close to the mainshock, and then diffuse and cluster around the

largest aftershocks.

space-covering grid the seismic rate, equal to the sum over all preceding mothers weighted by

the bare space Φ(�r) and time Ψ(t) propagators given by (8.5) and (8.4) ; after normalizing,

these rates then provide to each grid point a probability for the event to occur on that point.

The equivalence between our two-step procedure and the direct calculation of the seismic rates

is based on the law of conditional probabilities : probability of next event (A) = probability

of next event conditioned on its mother (event B) × probability of choosing the mother, i.e.,

P (A,B) = P (A|B) × P (B).

Figure 8.2 shows the result of a numerical simulation of the ETAS model which exhibits a

diffusion of the seismic activity. We simulate a sequence of aftershocks and secondary aftershocks

starting from a mainshock of magnitude M = 7, with the following parameters : θ = 0.2, b = 1,

α = 0.5, n = 1 and µ = 1. At early times, aftershocks are localized close to the mainshock, and

then diffuse and cluster close to the largest aftershocks. This (sub-)diffusion is extremely slow,

as we shall quantify in the sequel. Our purpose is to provide a theory for this process based on
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Fig. 8.3 – Plot of the correlation function of the 3.000 epicenters generated in the time interval [30, 70]

yrs and shown in the right panel of figure 8.2, calculated following Grassberger-Procaccia’s algorithm

[18], as a function of scale r, in double-logarithmic scales.

the ETAS model. This theory will be tested by numerical simulations.

The different regimes are illustrated by Figure 8.1 which shows the seismicity rate N(t) for

the temporal ETAS model studied by [Sornette and Sornette, 1999a; Helmstetter and Sornette,

2002a] obtained by summing the seismic activity over all space, for the 3 cases n < 1 (sub-

critical), n = 1 (critical) and n > 1 (super-critical). The sub-critical regime is characterized by

the existence of the time scale t∗ given by (8.1). There is no difference between the critical case

n = 1 and the sub-critical case for t < t∗ (see Figure 8.1). Indeed, the difference between the

sub-critical regime and the critical regime can be observed only for t > t∗. A simple way to see

this is to realize that the critical regime n = 1 gives t∗ = +∞, meaning that, in the critical

regime, one is always in the situation t < t∗.

It is interesting to note that the spatial distribution of epicenters shown in the right panel of

Figure 8.2 has the visual appearance of a fractal set of points. This is confirmed by the calculation

of the correlation dimension of this set of N = 3000 points generated in the time interval [30, 70]

yrs, which is found approximately equal to D2 = 1.5±0.05 over more than two decades in spatial

scales, as shown in Figure 8.3. If we use instead all 30, 000 events of the simulation performed up
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to time t = 70 yrs, we find D2 = 1.85 ± 0.05 while the correlation dimension of the geometrical

set made of the epicenters of the 10, 000 last events (time interval [7, 70] yrs) is D = 1.7 ± 0.05,

also over more than two decades in scale. These values are similar to those reported for 2D

maps of active fault systems [Scholz and Mandelbrot, 1989; Sornette et al., 1993; Barton and

Lapointe, 1995; Ouillon et al., 1996], and are in good agreement with D2 values in the range

[1.65, 1.95] measured for aftershocks epicenters [Nanjo et al., 2000]. The fractal clustering of the

earthquake epicenters, according to the ETAS model, occurs because of a self-similar process

taking place on many different scales. However, the description of this multi-scale process solely

in terms of a single fractal dimension fails to fully embody the complex spatial superposition

of local “singularities” associated with each aftershock on the one hand and finite-size effects

(stemming from the finite lifetime of each aftershock sequence) on the other hand. Each event

indeed creates its cloud of direct aftershocks which can be characterized by its singular exponent

1−µ for µ ≤ 1 and 0 for µ > 1, defined by the scaling ∝ ∫ R
0 rdr/r1+µ ∝ R1−µ of the “mass” of the

cloud with its radius R. Finite-size effects and randomness have been documented to generate

realistic but sometimes spurious fractal signatures [Ouillon and Sornette, 1996; Hamburger et

al., 1996; Eneva, 1996; Malcai et al., 1997]. This problem requires a special study which is left

for another work.

Relationship with the space-independent ETAS model

The spatial ETAS model reduces to the space-independent ETAS model solved in [Helmstet-

ter and Sornette, 2002a] by integrating the dressed propagator obtained below over all space. In

the Fourier representation (see expression (8.21)), this corresponds to putting the wavenumber

k to zero. Indeed, for k = 0, the Fourier transform amounts to perform a simple integration

over all space. Since Φ̂(�k = �0) = 1, expression (8.21) derived below reduces to the form studied

at length in [Helmstetter and Sornette, 2002a]. Therefore, all results reported previously hold

also for the version of the space-dependent ETAS model studied here, when averaging over the

whole space. This is an important property that all the solutions discussed below must obey.

8.3 Mapping of the ETAS model on the CTRW model

In order to study the space-time properties of the ETAS model, it is very useful to use a

correspondence between the ETAS model and the continuous time random walk (CTRW) that

we establish here. In this way, we can adapt and use the wealth of results previously derived

for the CTRW. But first, let us demonstrate the correspondence between the ETAS and CTRW

models. For this, our strategy is to derive the Master equation for both models and show that

they are identical.
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The Master equation of the ETAS model

The ETAS model can be rephrased by defining the rate φmi→m(t− ti, �r−�ri) at which a given

event (the “mother”) of magnitude mi ≥ m0 occurring at time ti and position �ri gives birth

to other events (“daughters”) of specified magnitude m at a later time between t and t + dt

and at point �r to within an infinitesimal volume |d�r|. Note that the only difference with respect

to the previous definition (8.2) is that we now specify also the magnitude m of the daughter.

φmi→m(t − ti, �r − �ri) is given by

φmi→m(t − ti, �r − �ri) = ρ(mi → m) Ψ(t − ti) Φ(�r − �ri) , (8.9)

where Ψ(t − ti) and Φ(�r − �ri) are the same as previously while

ρ(mi → m) = P (m) ρ(mi) . (8.10)

With the parameterization (8.3) and (8.6), this reads

ρ(mi → m) = n ln(10) (b − α) 10α(mi−m0) 10−b(m−m0) . (8.11)

Let us consider the case where there is an origin of time t = 0 at which we start recording the

rate of earthquakes, assuming that a large earthquake has just occurred at t = 0 and somehow

reset the clock. In the following calculation, we will forget about the effect of events at times

prior to t = 0 and count all aftershocks that are created only by this main shock.

Let us call Nm(t, �r)dt dm d�r the number of earthquakes occurring between t and t + dt of

magnitude between m and m + dm inside of box of volume |d�r| centered at point �r. Nm(t, �r) is

the solution of a self-consistency equation that formalizes mathematically the following process :

an earthquake may trigger aftershocks ; these aftershocks may trigger their own aftershocks, and

so on. The rate of seismicity at a given time t and position �r is the result of this cascade process.

The self-consistency equation that sums up this cascade reads

Nm(t, �r) = S(t, �r,m) +
∫

�dr
′
∫ ∞

m0

dm′
∫ t

0
dτ φm′→m(t − τ, �r − �r′) Nm′(τ, �r′) . (8.12)

The rate Nm(t, �r) at time t and position �r is the sum over all induced rates from all earthquakes

of all possible magnitudes that occurred at all previous times and locations propagated to the

present time t and to the position �r of observation by the corresponding bare propagator. The

induced rate of events per earthquake that occurred at an earlier time τ and position �r′ is equal

to φm′→m(t−τ, �r−�r′). The source term S(t, �r) is the main shock plus the background seismicity,

if any. In absence of background seismicity, a main earthquake which occurs at the origin of time

t = 0 at position �r = �0 with magnitude M gives

S(t, �r,m) = δ(t) δ(m − M) δ(�r) (8.13)

where δ is the Dirac distribution. Other arbitrary source functions can be chosen.
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The source term corresponding to a single mainshock is indeed the delta function (8.13)

rather than the direct Omori law created by this mainshock in direct lineage. To see this, notice

that the direct Omori law is recovered from (8.12) by replacing Nm′(τ, �r′) in the integral by

S(t, �r,m) given by (8.13). This shows that the difference between the renormalized and the direct

Omori laws comes from taking into account the secondary, tertiary, etc., cascade of aftershocks.

As we have seen, a key assumption of the ETAS model is that the daughters born from

a given mother have their magnitude drawn independently of the magnitude of the mother

and of the process that give them birth, with a probability given by the Gutenberg-Richter

distribution (8.6). The consequences resulting from relaxing this hypothesis will be reported

elsewhere. Keeping this assumption, it can be shown [Helmstetter et al., 2002] that, for α ≥ b/2,

an ensemble of realizations will obey

Nm(t, �r) = P (m) N(t, �r) , for t > 0 , (8.14)

which makes explicit the separation of the magnitude from the time and space variables. N(t, �r)

is the number of events at position �r at time t of any possible magnitude. Expression (8.14) means

that the Gutenberg-Richter distribution is preserved at all times. That (8.14) holds exactly for

the ETAS model stems from the fact that the waiting time Ψ(t) distribution (8.4) and jump

size Φ(�r) distribution (8.5) are independent of the magnitudes, and that fluctuations in the

seismicity rate are not too strong for α ≤ b/2. Note that, in a more complex model in which

time, space and magnitudes are interdependent, expression (8.14) would become a mean-field

approximation, in which the fluctuations of the rates induced by the fluctuations of the realized

magnitudes of the daughters factorize from the process.

Putting (8.14) in (8.12), for t > 0 when the source term S(t, �r,m) is identically zero, one

can simplify by P (m) and obtain

N(t, �r) =
∫

d�r′
∫ t

0
dτ φ(t − τ, �r − �r′) N(τ, �r′) , t > 0 , (8.15)

where

φ(t − τ, �r − �r′) =
∫ ∞

m0

dm′ P (m′)φm′(t − τ, �r − �r′) . (8.16)

Equation (8.15) is nothing but the expectation (or statistical average, i.e., average over

an ensemble of realizations) of expression (8.8), with the definition N(t, �r) ≡ E[λ(t) Φ(�r)].

Therefore, the Master equation obtained here gives us only the first moment of the space-time

dynamics of seismicity. It is not difficult to derive the equations for the variance and covariance

of the seismic rate as well as higher moments.

The value of the source term at t = 0 that should be incorporated in (8.15) requires more

care. Indeed, a naive treatment would give a source term δ(t)δ(m −M)δ(�r)/P (M) obtained by

simply dividing by P (m), expressed at m = M due to the Dirac distribution δ(m−M). However,

this source term still depends on m via the Dirac distribution δ(m −M) and is thus unsuitable
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as a source term of the equation (8.15) which is independent of m. In order to circumvent this

difficulty, one has to get rid of the Dirac distribution δ(m − M). The corresponding procedure

has been described in details in [Helmstetter and Sornette, 2002a] and consists in applying the

integral operator
∫∞
m0

dm φ̂(β,�r) to (8.12), where φ̂(β,�r) is the Laplace transform with respect to

the time variable of φ(t, �r). In this way, the Dirac distribution δ(m−M) is regularized. Identifying

with the results of [Helmstetter and Sornette, 2002a], we obtain that N(t, �r) is solution of (8.15)

with a source term

SM(t, �r) = δ(r)δ(t)ρ(M)/n , (8.17)

where ρ(M) is defined in (8.3) and n is given by (8.7). Thus, the complete Master equation for

the number N(t, �r) of events at position �r at time t of any possible magnitude is solution of

N(t, �r) = SM (t, �r) +
∫

d�r′
∫ t

0
dτ φ(t − τ, �r − �r′) N(τ, �r′) , t > 0 , (8.18)

N(t, �r) is the “dressed” or “renormalized” propagator, obtained by summing the bare Omori

propagator over all possible aftershock cascades. N(t, �r) can also be called the renormalized

Omori law [Sornette and Sornette, 1999a].

The essential assumption used to derive (8.12) is that the fluctuations of the earthquake

magnitudes in a given sequence can be considered to be decoupled from those of the seismic

rate. This approximation can be shown to be valid for α ≤ b/2 [Helmstetter et al., 2002], for

which the random variable ρ(mi) has a finite variance. In this case, any coupling between the

fluctuations of the earthquake energies and the instantaneous seismic rate provides only sub-

dominant corrections to the equation (8.12). For α > b/2, the variance of ρ(mi) is mathematically

infinite or undefined as ρ(mi) is distributed according to a power law with exponent b/α < 2.

In this case, the Master equation (8.12) is not completely correct as an additional term must

be included to account for the effect of the dependence between the fluctuations of earthquake

magnitudes and the instantaneous seismic rate. Our results are presented below for α = 0.5

which belongs to the first regime α ≤ b/2. For α > b/2, Helmstetter et al. [2002] have shown

that the renormalization of the bare propagator into the dressed propagator is weaker than for

α ≤ b/2, all the more so as α → b. Preliminary numerical simulations for α > b/2 shows that our

results presented below hold qualitatively but with a reduction of the observed spatial diffusion

exponent compared to the value predicted from the Master equation approach developed here.

This regime α > b/2 is probably relevant to the real seismicity [Yamanaka and Shimazaki, 1990;

Guo and Ogata, 1997; Helmstetter, 2002], even if a precise estimation of α is very difficult.

A Master equation of the CTRW model

We now demonstrate that the self-consistent mean field equation (8.18) is identical to the

Master equation of a continuous-time random walk (CTRW). Random walks underlie many

physical processes and are often the basis of first-order description of natural processes. The
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CTRW model, which is a generalization of the naive model of a random walker which jumps by

±1 spatial step on a discrete lattice at each time step, was introduced by [Montroll and Weiss,

1965] and investigated by many other workers [Montroll and Scher, 1973; Sher and Montroll,

1975; Kenkre et al., 1973; Shlesinger, 1974; Weiss, 1994]. The CTRW considers a continuous

distribution of spatial steps as well as time steps (which can be seen either as waiting times

between steps or as durations of the steps). The CTRW model is thus based on the idea that the

length of a given jump, as well as the waiting time τi = ti − ti−1 elapsing between two successive

jumps are drawn from a joint probability density function (pdf) φ(�r, t), which is usually referred

to as the jump pdf. From a mathematical point of view, a CTRW is a process subordinated to

random walks under the operational time defined by the process {ti}.
From φ(�r, t), the jump length pdf Φ(�r) =

∫ +∞
0 dt φ(�r, t) and the waiting time pdf Ψ(t) =∫

d�r φ(�r, t) can be deduced. Thus, Φ(�r)d�r produces the probability for a jump length in the

interval (�r,�r + d�r) and Ψ(t)dt the probability for a waiting time in the interval (t, t + dt). When

the jump length and waiting time are independent random variables, this corresponds to the

decoupled form φ(�r, t) = Ψ(t) Φ(�r). If both are coupled, a jump of a certain length involves a

time cost or, vice versa in a given time span the walker can only travel a maximum distance.

With these definitions, a CTRW process can be described through a Master equation (see [Weiss,

1994; Hughes, 1995; Meltzner et al., 2000] for a review and references therein) which turns out

to be given by an equation which is identical to (8.18).

This connection between the ETAS model of earthquakes and a model of random walks

provides an important advance for the understanding of spatio-temporal earthquake processes,

as it allows one to borrow for the deep knowledge accumulated in past decades on random walks.

In the same spirit, polymer physics acquired its status as a fundamental physical problem from

its previous status of an applied field of research in chemistry when Flory, Edwards, de Gennes,

des Cloizeaux and others showed how to formulate problems in polymer physics in the language

of random walks and how to extract novel results. In the sequel of this article, we use this analogy

to provide a wealth of new predictions as well as new questions for earthquake aftershocks.

In the context of the CTRW, we have the following correspondence.

– N(t, �r) is the pdf for the random walker to just arrive at position �r at time t.

– The source term SM(t, �r) given by (8.17) denotes the initial condition of the random walk,

here chosen to be at the origin of space at time t = 0. The constant ρ(M)/n adds the

possibility via the parameter M to have more than one initial walker at the origin.

– In the CTRW context, the Master equation (8.18) states that the pdf N(t, �r) of just having

arrived at position �r at time t comes from all possible paths in number N(τ, �r′) having

crossed a position �r′ at an earlier time τ , weighted by a transfer or propagator function

φ(t − τ, �r − �r′) describing all the possible steps of the random walker from (τ, �r′) to (t, �r).

It is important to stress that N(t, �r) defined above is different from the standard quantity

W (t, �r) usually studied in random walk problems, defined as the probability to find the random
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walk at position �r at time t. The relationship between N(t, �r) and W (t, �r) is

W (t, �r) =
∫ t

0
dt′
[
1 −
∫ t−t′

0
dt′′ Ψ(t′′)

]
N(t′, �r) . (8.19)

The term 1− ∫ t−t′
0 dt′′ Ψ(t′′) in bracket is the probability for the walker not to jump in the time

interval [t′, t] and the integral in the right-hand-side of (8.19) means that the probability W (t, �r)

for the random walker to be at position �r at time t is the sum over all possible scenarios in

which the walker just arrives at �r at an earlier time t′ and then does not jump until time t. In

the context of earthquake aftershocks, W (t, �r) is the probability that an event at �r has occurred

at a time t′ ≤ t and that the whole system has remained quiescent from t′ to t.

In the Fourier-Laplace domain (see below), expression (8.19) reads

Ŵ (β,�k) =
1 − Ψ̂(β)

β
N̂(β,�k) . (8.20)

In general, the CTRW models transport phenomena in any heterogeneous media. It has for

instance been used successfully for describing the behavior of chemical species as they migrate

through porous media [Margolin et al., 2000; Berkowitz and Scher, 2001]. In insight, it is rather

natural that it can be applied to the “transport of stress” through the heterogeneous crust and

thus to the description of the anomalous diffusion of seismic activity. Table 8.1 synthesizes the

correspondence between the ETAS and CTRW models and then draws its consequences.

Experimental verifications of the cross-over between the two power law Omori

decays

The crossover from an Omori law 1/t1−θ for t < t∗ to 1/t1+θ for t > t∗ found in [Sornette

and Sornette, 1999a; Helmstetter and Sornette, 2002a] with t∗ given by (8.1) has actually a

counterpart in the CTRW. This behavior was first studied by Scher and Montroll [1975] in

a CTRW with absorbing boundary condition to model photoconductivity in amorphous semi-

conductors As2Se3 and an organic compound TNF-PVK finding θ ≈ 0.5 and θ = 0.8 respectively.

In a semiconductor experiment, electric holes are injected near a positive electrode and then

transported to a negative electrode where they are absorbed. The transient current follows

exactly the transition 1/t1−θ for t < t∗ to 1/t1+θ for t > t∗ found for Omori law for earthquake

aftershocks in the ETAS model. In the semiconductor context, the finiteness of t∗ results from

the existence of a force applied to the holes while in the ETAS model it results from a finite

distance 1 − n to the critical point n = 1 in the subcritical regime. When the force goes to zero

or n → 1, t∗ → +∞.

A similar transition has been recently proposed to model long-term time series measurements

of chloride, a natural passive tracer, in rainfall and runoff in catchments [Sher et al., 2002]. The

quantity analogous to the dressed Omori propagator is the effective travel time distribution h(t)

which governs the global lag time between injection of the tracer through rainfall and outflow to
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Tab. 8.1 – Correspondence between the ETAS (Epidemic-type aftershock sequence) and CTRW

(continuous-time random walk) models. ‘pdf’ stands for probability density function.

ETAS CTRW

Ψ(t) pdf for a “daughter” to be born at time t pdf of waiting times

from the mother that was born at time 0

Φ(�r) pdf for a daughter to be triggered pdf of jump sizes

at a distance �r from its mother

m earthquake magnitude tag associated with each jump

ρ(m) number of daughters local branching ratio

per mother of magnitude m

n average number of daughters created per control parameter of the random

mother summed over all possible magnitudes walk survival (branching ratio)

n < 1 subcritical aftershock regime subcritical “birth and death”

n = 1 critical aftershock regime the standard CTRW

n > 1 supercritical exponentially explosive regime of the

growing regime “birth and death” CTRW

N(t, �r) number of events of any possible pdf of just having

magnitude at �r at time t arrived at �r at time t

W (t, �r) pdf that an event at �r has occurred at a time t′ ≤ t pdf of being at �r at time t

and that no event occurred anywhere from t′ to t
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the stream. h(t) has been shown to have a power-law form h(t) ∼ 1/t1−m with m between -0.3

and 0.2 for different time series [Kirchner and Weil, 1998]. This variability may be due to the

transition between an exponent 1 − θ at short times to 1 + θ at long times [Sher et al., 2002],

where θ is the exponent of the bare distribution of individual transition times.

General and formal solution of the spatial ETAS model

Let us solve (8.18) for the number N(t, �r) of events at position �r at time t of any possible

magnitude. Recall that N(t, �r) can also be interpreted as the dressed Omori propagator. Ex-

tending [Helmstetter and Sornette, 2002a] to the spatial domain and also in analogy with the

standard approach to solve the CTRW, the Laplace-in-time Fourier-in-space transform N̂(β,�k)

of N(t, �r) is given by

N̂(β,�k) =
ŜM(β,�k)

1 − nΨ̂(β)Φ̂(�k)
, (8.21)

where ŜM (β,�k) is the Laplace Fourier transform of the source SM(t, �r) given by (8.17) and Ψ̂(β)

(respectively Φ̂(�k)) is the Laplace (respectively Fourier) transforms of Ψ(t) (respectively Φ(�r)).

For a mainshock of magnitude M occurring at time t = 0 and position �r = 0, the source term

is thus ŜM(β,�k) = ρ(M)/n. The only difference between expression (8.21) and the Laplace-

Fourier transform of the pdf of the CTRW of just having arrived at �r at time t occurs when the

branching ratio n is different from 1. In general, solutions of CTRW models are expressed for

n = 1 and for the variable W (t, �r) which is simply related to N(t, �r) according to (8.19). Using

(8.19) and (8.21) leads to

Ŵ (β,�k) =
1 − Ψ̂(β)

β

ŜM (β,�k)

1 − nΨ̂(β)Φ̂(�k)
, (8.22)

In the following, we exploit (8.22) to obtain analytical solutions of the spatial ETAS model in

different regimes, that provide specific predictions on the conditions necessary for observing af-

tershock diffusion. In addition, we provide specific predictions on the exponent H of the diffusion

law R ∼ tHH that are tested by numerical simulations.

8.4 Critical regime n = 1

Classification of the different regimes

Numerous works on the CTRW have investigated many possible forms for Ψ(t) and Φ(�r)

and have provided the asymptotic long time and large scale dependence of W (t, �r) (see [Weiss,

1994; Hughes, 1995; Meltzner et al., 2000; Berkowitz and Scher, 2001] and references therein).

Here, we restrict our discussion to the cases where both Ψ(t) and Φ(�r) have power law tails as

given by (8.4) and (8.5). The long-time and large scale behavior of the ETAS and CTRW are

controlled by the behavior of the Laplace-Fourier transforms for small β and small |�k|.
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Two cases must be distinguished depending on the exponent µ controlling the weight of the

tail of Φ(�r).

– For µ > 2, the variance 〈(�r)2〉 = σ2 of the jump size distribution exists. To leading order

in k = |�k|, Φ̂(�k) can be expanded as

Φ̂(�k) = 1 − σ2k2 + O(ko) , with o > 2 . (8.23)

– For µ ≤ 2, the variance 〈(�r)2〉 is infinite. This regime of “long jumps” leads to so-called

Lévy flights. In this case, to leading order in k = |�k|, Φ̂(�k) can be expanded as

Φ̂(�k) = 1 − σµkµ + O(ko) , where 0 < µ ≤ 2, with o > µ , (8.24)

where σ is a characteristic distance defined by

σ =

{
d [Γ(1 − µ)]1/µ, 0 < µ < 1 ,

d π
µ Γ(µ−1) sin(πµ/2) , 1 < µ < 2 .

(8.25)

For a distribution Ψ(t) of waiting times of the form of a local Omori law (8.4) with exponent

θ < 1, Ψ̂(β) can be expanded for small β as

Ψ̂(β) = 1 − (βc′)θ + O(βω) , with ω ≥ 1 . (8.26)

where c′ is proportional to c up to a numerical constant c′ = c (Γ(1 − θ))1/θ in the case θ < 1.

Putting the leading terms of the expansions of Φ̂(�k) for small |�k| and of Ψ̂(β) for small β in

(8.21) gives

N̂(β,�k) =
ŜM(β,�k)

1 − n + n(βc′)θ + nσµkµ
. (8.27)

The corresponding Ŵ (β,�k) is obtained from (8.22) by

Ŵ (β,�k) = ŜM (β,�k)
(β)θ−1c′θ

1 − n + n(βc′)θ + nσµkµ
. (8.28)

The critical regime n = 1 gets rid of the constant term 1 − n in the denominator of (8.27)

and (8.28). This case is analyzed in details below.

The regime n �= 1 introduces a characteristic time t∗ given by (8.1). In the sub-critical regime,

equation (8.27) can be rewritten as

N̂(β,�k) =
ŜM (β,�k)
(1 − n)

1
1 + (βt∗)θ + (kr∗)µ

. (8.29)

where r∗ is defined by

r∗ = σ

(
n

1 − n

)1/µ

. (8.30)

For t < t∗ and r < r∗, the dressed propagator is given by the same expression as for the critical

case and all our results below hold. For large times t > t∗ and large distances r > r∗, we can

factorize (8.29) as a product of a function of time and a function of space

N̂(β,�k)  ŜM (β,�k)
(1 − n)

1
(1 + (βt∗)θ)

1
(1 + (kr∗)µ)

. (8.31)
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Thus, there is no diffusion in the sub-critical regime for t > t∗ and r > r∗. We shall not analyze

further this trivial regime n < 1 and t > t∗ and will only analyze the case t < t∗. If there is the

need, the cross-over can be calculated explicitly using (8.27).

In order to get the leading behavior of N(t, �r) from that of W (t, �r), we see from (8.21) and

(8.22) that N̂(β,�k) = β

1−Ψ̂(β)
Ŵ (β,�k) ≈ β1−θc′−θ Ŵ (β,�k). The inverse Laplace transform of

1/βθ is 1/[Γ(θ) t1−θ]. Using the fact that the Laplace transform of df/dt is β times the Laplace

transform of f(t) minus f(0), we get N(t, �r) as the derivative of a convolution

N(t, �r) =
c′−θ

Γ(θ)
d

dt

∫ t

0
dt′

W (t′, �r)
(t − t′)1−θ

= c′−θ
0D

1−θ
t W (t, �r) . (8.32)

In (8.32), we have dropped the Dirac function coming from the inverse Laplace transform of

the constant term f(0), which provides a contribution only at the origin of time t = 0. Note

that the operator 1
Γ(θ)

d
dt

∫ t
0 dt′ W (t′,	r)

(t−t′)1−θ is nothing but the so-called fractional Riemann-Liouville

derivative operator of order 1−θ applied to the function W (t, �r) of time t and is usually denoted

0D
1−θ
t W (t, �r).

The standard diffusion case θ > 1 and µ > 2

The standard diffusion process is recovered for θ ≥ 1 (for which the average waiting time

is finite) and for µ ≥ 2 (for which the variance of the jump length is finite). In this case,

N̂(β,�k) = ŜM (β,	k)
βc′+σ2k2 . For an impulsive source leading to ŜM (β,�k) = constant, this is the Laplace-

Fourier transform of the standard diffusion propagator

N(t, �r) ∝ 1
(Dt)d/2

exp[−(�r)2/Dt] , where D = σ2/c′ , (8.33)

where d is the space dimension. This solution is valid for |�r|/√Dt not too large. For larger

values, large deviations lead to corrections with the power law tail of the input jump distribution

Φ(�r) ∼ 1/|�r|1+µ defined in (8.5), along the lines presented for instance in [Sornette, 2000a (section

3.5)]. This regime is not relevant to the aftershock problem for which usually 0 < θ < 1.

Long waiting times (θ < 1) and finite variance of the jump sizes (µ > 2)

Putting the leading terms of the expansions of Φ̂(�k) (8.23) and of Ψ̂(β) (8.26) in (8.21) gives

N̂(β,�k) =
1

(βc′)θ + (σk)2
(8.34)

The expression (8.34) can be inverted with respect to the Fourier transform, and then inverted

with respect to the Laplace transform using Fox functions [Meltzner et al., 2000; Barkai et al.,

2000]. The solution for W (t, �r) in one dimension is given for instance in [Meltzner et al., 2000]

in terms of an infinite sum

W (t, �r) =
1

2D
1

t
θ
2

∞∑
k=0

(−1)k z−k

k! Γ(1 − θ(k + 1)/2)
(8.35)
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where

z =
D tθ/2

|�r| (8.36)

and D = σ/c′θ/2.

Expression (8.35) and many others below involve the Gamma function of negative arguments.

We recall that the Gamma function Γ(u) can be analytically continued to the whole complex

plane, except for the simple poles u = 0,−1,−2,−3, ... Thus, Γ(u) is defined everywhere but at

these poles. In order to get the expression of the Gamma function for negative arguments, one

can use two formulae : Γ(1−u)×Γ(u) = π/ sin(πu) and Γ(1 + u) = uΓ(u). Both these formulae

are valid for all points with the possible exception of the arguments at poles 0,−1,−2, ... For

instance, Γ(−θ) = Γ(1 − θ)/(−θ) = −[π/θ sin(πθ)]/Γ(θ), for 0 < θ < 1.

Expression (8.35) can be rewritten as a Fox-function [Mathai and Saxena, 1978]

W (t, z) =
1

2D
1

t
θ
2

H1,0
1,1

[
1
z

∣∣∣∣∣ (1 − θ/2, θ/2)

(0, 1)

]
(8.37)

whose asymptotic dependence for large z, obtained from a standard theorem of the Fox function

(equation (1.6.3) of [Mathai and Saxena, 1978)],

W (t, z) ∼ 1

D t
θ
2

1

z
1−θ
2−θ

exp

(
−
(

1 − θ

2

)(
θ

2

) θ
2−θ

z
2

2−θ

)
(8.38)

is in agreement with the result of Roman and Alemany [1994] and Barkai et al. [2000] for a

space dimension df = 1, including the dependence in the power law prefactor to the exponential.

The exponential dependence W (t, r) ∼ exp
(
−const (r/Dtθ/2)

2
2−θ

)
in (8.38) holds in arbitrary

dimensions df , the only modification occurring in the prefactor whose power of z change with

the space dimension df as [Roman and Alemany, 1994; Barkai et al., 2000]

Wdf
(t, z) ∼ 1

D t
θ
2

1

z
df (1−θ)

2−θ

exp

(
−
(

1 − θ

2

)(
θ

2

) θ
2−θ

z
2

2−θ

)
. (8.39)

The expression of N(t, �r) can be obtained from W (t, �r) using the fractional Riemann-Liouville

derivation (8.32) of order 1− θ. Inserting expression (8.35) in (8.32) and using the expression of

the fractional Riemann-Liouville derivative operator 0D
α
t applied to an arbitrary power tµ, i.e.,

0D
α
t tµ = Γ(1+µ)

Γ(1+µ−α) tµ−α, we obtain

N(t, �r) =
c′−θ

2Dt1−
θ
2

∞∑
k=0

(−1)k zk

k! Γ((1 − k)θ/2)
. (8.40)

Expression (8.40) can be used to evaluate N(t, �r) for small z, but the numerical evaluation of

(8.40) is impossible for large z. In order to obtain the asymptotic behavior of N(t, �r), expression

(8.40) can be rewritten as a Fox-function [Mathai and Saxena, 1978]

N(t, �r) =
c′−θ

2Dt1−
θ
2

H1,0
1,1

[
1
z

∣∣∣∣∣ (θ/2, θ/2)

(0, 1)

]
. (8.41)
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Employing again the standard theorem of the Fox function (equation (1.6.3) of [Mathai and

Saxena, 1978]), the asymptotic behavior of N(t, r) for large distances r such that r > Dtθ/2 is

given by

N(t, r) ∼ c′−θ

Dt1−
θ
2

( |�r|
Dtθ/2

) 1−θ
2−θ

exp

(
−
(

1 − θ

2

)(
θ

2

) θ
2−θ
( |�r|

Dtθ/2

) 2
2−θ

)
. (8.42)

The exponential dependence N(t, r) ∼ exp
(
−const (r/Dtθ/2)

2
2−θ

)
in (8.42) holds in arbitrary

dimensions.

This expression becomes incorrect for very large distances because it would predict an expo-

nential or slightly super-exponential decay with r. This cannot be true as the global law cannot

decay faster than the local law (8.5). The reason for (8.42) to become incorrect at large distances

is that the expansion of N̂(β,�k) for small |�k| (large distances) given by (8.34) has been truncated

at the order k2. There is however a subdominant term ∝ kµ that describes the power law tail of

the local law (8.5) and also of the global law asymptotically. A similar situation occurs in the

application of the central limit theorem for sums of N random variables with power law distri-

butions with exponents µ > 2 [Sornette, 2000a] : the distribution of the sum S is a Gaussian in

its bulk for |S| <
√

N ln N and crosses over to a power law with tail exponent µ for larger S. In

a similar way, the cross-over of N(t, r) to the asymptotic local power law (8.5) can be recovered

by an analysis including the subleading correction ∝ kµ to the expansion (8.34).

Expression (8.40) shows that the global rate of seismicity cannot be factorized as a product

of a distribution of times and a distribution of distances. This space-time coupling implies that

the seismic activity diffuses with time, and that the decay of the rate of aftershocks depends on

the distance from the first mainshock. This coupling of space and time stems from the cascade of

aftershocks, from the primary aftershocks to the secondary aftershocks to the tertiary aftershocks

and so on.

Figure 8.4 presents the decay of the seismic activity N(r, t) obtained using expression (8.40)

for small z and expression (8.42) for large z, as a function of the time from the mainshock and

as a function of the distances r. Close to the mainshock epicenter, expression (8.40) predicts

that the global seismicity rate decays with time as the renormalized Omori law

N(t, 0) ∼ 1
t1−θ/2

. (8.43)

The same decay is found at any fixed point �r for times t > (|�r|/D)2/θ. At all times, the same decay

1/t1−θ/2 is also obtained by measuring the aftershock seismicity in a local box at a distance from

the main shock origin increasing with time as r ∼ t
θ
2 (this is nothing but putting z = constant

in (8.40)). At large distances r > Dtθ/2, the global decay law is different from a power-law

decay. Figure 8.4 shows that the rate of aftershocks presents a truncation at early times, which

increases as the distance r increases. At large times, the rate of aftershocks recovers the 1/t1−θ/2

power-law decay (8.43). We stress that a fit of the global law N(r, t) over the whole time interval

by an Omori law would yield an apparent exponent p < 1 − θ/2 that decreases with r.
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Fig. 8.4 – Rate of seismicity N(t, r) in the critical regime n = 1 for θ = 0.2, µ > 2, c′ = 1 day and σ = 1

km, evaluated from expressions (8.40) and (8.42), plotted as a function of the time (a) for different values

of the distance r between the mainshock and its aftershocks, and (b,c) as a function of r (logarithmic

scale for r in (b) and linear scale for r in (c)) for different values of the time between the mainshock

and its aftershocks. The temporal decay of seismicity with time is characterized by a power-law decay

N(r, t) ∼ 1/t1−θ/2 close to the mainshock epicenter or at large times for r � Dtθ/2. For large distances

r 
 Dtθ/2, there is a truncation of the power-law decay at early times tθ/2 � r/D, because the seismicity

has not yet diffused up to the distance r. Although the distribution of distances between a mainshock and

its direct aftershocks Φ(r) follows a power-law distribution with exponent 1 + µ, the log-linear graph (c)

shows that the global rate of aftershocks N(�r, t) decreases approximately exponentially as a function of the

distance from the mainshock, with a characteristic distance that increases with time. This is in agreement

with expression (8.42) which predicts N(t, r) ∼ exp
[(|�r|/Dtθ/2

) 2
2−θ

]
, i.e., N(t, r) ∼ exp (C(t)|�r|q) with

an exponent q = 2/(2 − θ) close to 1 within the exponential.
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Integrating (8.40) over the whole one-dimensional space, we recover the global Omori law

N(t) =
∫

drN(t, r) ∼ 1
t1−θ

(8.44)

found in [Sornette and Sornette, 1999a; Helmstetter and Sornette, 2002a]. Thus, we have found

an additional source of variability of the exponent p of the Omori law : if measured over the

whole catalog, we should measure p = 1 − θ in the critical regime n = 1 while p = 1 − θ/2 is

slightly larger when measured in certain time- and space-windows, as described above. Thus, in

this regime, pruning of catalogs may lead to continuous change from the value 1− θ to 1− θ/2.

In addition, as we have mentioned, the cross-over in time may lead to still smaller apparent

exponents, thus enhancing the impression of variability of the exponent p. In reality, this range

of p-values are seen to result from the complex spatio-temporal organization of the aftershock

seismicity of the ETAS model. These results should lead us to be cautious when analyzing real

catalogs with respect to the conditions and regimes under which the analysis is performed.

There is another observable that characterizes how an aftershock sequence invades space as

a function of time. Expression (8.40) indeed predicts a sub-diffusion process quantified by

〈|�r|2〉 ∼ t2H , (8.45)

with H = θ/2 since the natural variable is z given by (8.36). Indeed, expression (8.40) tells us

that, up to a global rescaling function of time, the rate of aftershocks is identical for a fixed

value of z. Thus, any aftershock structure diffuses according to (8.45).

This prediction is checked in Figure 8.5 by numerical simulations. 1000 synthetic catalogs

have been generated with µ = 3, θ = 0.2 and n = 1. The average distance between the first

mainshock and its aftershocks as a function of the time from the mainshock has been averaged

over these 1000 simulations. The theoretical diffusion exponent is H = θ/2 = 0.1, in good

agreement with the asymptotic behavior observed in the numerical simulation. In practice, in

order to minimize the effect of fluctuations and optimize the speed of convergence, we estimate

numerically exp[〈ln |�r|〉] which is also expected to scale as exp[〈ln |�r|〉] ∼ tθ/2 due to the simple

scaling form of (8.41).

This problem has also been solved exactly in [Barkai, 2001a] in the context of the so-called

fractional Fokker-Planck equation, which amounts to replace the distribution Φ(�r) of jumps

(8.5) by a Gaussian function. This fractional Fokker-Planck equation allows one to introduce

the possibility of bias or drift in the CTRW and therefore in the aftershock sequence.

Exponential waiting time distribution and long jump size Lévy distribution

(µ < 2)

This case with an exponential distribution

Ψ(t) = λ e−λt (8.46)
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Fig. 8.5 – Average distance between the first mainshock and its aftershocks as a function of the time

from the mainshock, for numerical simulations of the ETAS model in the critical regime n = 1, generated

with the parameters θ = 0.2, d = 1 km, µ = 3 and c = 10−3 day. The theoretical prediction for the

diffusion exponent is thus H = θ/2 = 0.1. We observe a crossover from a larger exponent at early times

when the mean distance is close to the characteristic scale d = 1 km of the distribution of distances

between an aftershock and its progenitor, to a sub-diffusion with an exponent close to the theoretical

prediction at large times. The solid line is a fit of the numerical data for times t > 10 days, which gives

an exponent H = 0.12 slightly larger than the predicted value H = 0.1.

of waiting times with a Lévy distribution Φ(�r) = Lµ(|�r|) of jump sizes with tail exponent µ < 2

has been investigated by Budde et al. [Bude et al., 2001]. One finds

〈|�r|2〉1/2 ∼ t1/µ , (8.47)

corresponding to a superdiffusion regime with Hurst exponent H = 1/µ > 1/2. The full distri-

bution function W (t, �r) corresponding to the critical regime n = 1 is known for λt >> 1 :

W (t, �r) ∝ 1
(λt)1/µ

Lµ

( |�r|
(λt)1/µ

)
. (8.48)

The corresponding N(t, �r) is obtained from (8.20). The Laplace transform of the exponential

distribution (8.46) is Ψ̂(β) = λ/(β + λ). We thus get

N̂(β,�k) = (β + λ) Ŵ (β,�k) , (8.49)

and thus

N(t, �r) =
∂W (t, �r)

∂t
+ λ W (t, �r) . (8.50)
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Expression (8.50) together with (8.48) predicts a diffusion law r ∼ tH with H = 1/µ which is in

good agreement with our simulations. At large times |�r| � (λt)1/µ, N(t, �r) ≈ λ W (t, �r) ∼ 1/t1/µ,

given an apparent local Omori exponent θ = 1−1/µ. This offers a new mechanism for generating

Omori law for aftershocks from purely exponential local relaxation but with a heavy distribution

of jump sizes. This power-law decay should be observed only at a fixed distance r or over a limited

domain from the mainshock in the regime of large times.

Integrating over the whole space,
∫

d�r W (t, �r) = 1 which gives N(t) = δ(t) + λ equal to a

constant seismic rate. This results from an initial mainshock at t = 0 leading to the cascade of

aftershocks adjusting delicately to this constant rate for the critical value n = 1 of the branching

parameter. In the sub-critical regime n < 1, the Omori law integrated over space gives instead

N(t) ∝ exp[−(1 − n)λt], showing that the characteristic decay time 1/(1 − n)λ of the dressed

Omori propagator N(t) becomes much larger (much longer memory) that the decay time 1/λ of

the bare Omori propagator.

For µ > 2, we recover the standard diffusion corresponding to θ > 1 and µ > 2 discussed in

section 8.4.

Long waiting times (θ < 1) and long jump sizes (Lévy flight regime for µ ≤ 2)

Putting the leading terms of the expansions of Φ̂(�k) and of Ψ̂(β) in (8.21) gives

N̂(β,�k) = ŜM (β,�k)
1

(βc′)θ + (σk)µ
. (8.51)

The corresponding Ŵ (β,�k) is given by

Ŵ (β,�k) = ŜM (β,�k)
(β)θ−1c′θ

(βc′)θ + (σk)µ
. (8.52)

Equation (8.52) has been studied extensively in the context of the CTRW model as a long

wavelength |�k| → 0 and long time β → 0 approximation to investigate the long time behavior

of the CTRW. Kotulski [1995a] has developed a rigorous approach, based on limit theorems, to

classify the asymptotic behaviors of different type of CTRWs and justifies the approximation

(8.52) for the long time behavior. Barkai [2001b] has studied the quality of the long wavelength

|�k| → 0 and long time β → 0 approximation (8.52) by solving the exact CTRW problem for

the case when the waiting time distribution Ψ(t) is a one-sided stable Lévy law of index θ

with the same tail as (8.4) and the distribution Φ(�r) of jumps is a symmetric stable Lévy of

index µ with the same tail as (8.5). Their Laplace and Fourier transforms, that appear in the

denominator of (8.22), are respectively Ψ̂(β) = exp[−βθ] and Φ̂(�k) = exp[−|�k|µ/2]. Note that the

long wavelength |�k| → 0 and long time β → 0 approximation gives 1−exp[−(c′β)θ] exp[−|σ�k|µ] =

(c′β)θ + |σ�k|µ, which recovers (8.51). By comparing the exact solution of (8.21) for Ψ(t) and

Φ(�r) of the above Lévy form with that of the long wavelength |�k| → 0 and long time β → 0

approximation (8.52), Barkai [2001b] finds that certain solutions of (8.52) diverge on the origin,
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Fig. 8.6 – Average distance between the first mainshock and its aftershocks as a function of the time

from the mainshock, for a numerical simulation of the ETAS model in the critical regime n = 1, with

θ = 0.2, µ = 0.9, c′ = 1 day and σ = 1 km. The solid line is a fit of the data which gives an exponent

H = 0.25 in good agreement with the predicted value H = 0.22.

a behavior not found for the corresponding solutions of (8.21). In addition, certain solutions

of the full equation (8.21) converge only very slowly for µ < 1 to the solutions of the long-

time approximation (8.52). These results validate our use of the asymptotic long time behavior

with respect to the scaling laws but provide a note of caution if one needs more precise non-

asymptotic information. In this case, such information can be obtained by a suitable analysis of

the full equation (8.21).

Using power counting, expression (8.52) predicts a diffusion process (8.45) with exponent

H =
θ

µ
. (8.53)

This prediction is checked by numerical simulation of the ETAS model in the critical regime n =

1, with θ = 0.2, µ = 0.9, shown in Figure 8.6. The average distance between the first mainshock

and its aftershocks as a function of the time from the mainshock indeed increases according to

(8.45) with an exponent H in very good agreement with the prediction H = θ/µ = 0.22. As the

form of the denominator in (8.52) is independent of the space dimension, the prediction (8.53)

is valid in any space dimension.
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The natural variable for the expansions given below allowing to compute N(t, �r) is

z =
D tθ/µ

|�r| , (8.54)

where D = σ/c′θ/µ and c′ = c (Γ(1 − θ))1/θ.

z-expansion of the solution

W (t, �r) can be obtained as the following sum (equation (5.10) of [Saichev and Zaslavsky,

1997])

W (t, �r) =
1

π|�r|
+∞∑
m=0

(−1)m zmµ Γ(mµ + 1)
Γ(mθ + 1)

cos
[π
2
(mµ + 1)

]
. (8.55)

Applying (8.32) to (8.55) term by term in the sum, we get

N(t, �r) =
c′−θ

Dπ t1−θ+θ/µ

+∞∑
m=0

(−1)m z1+mµ Γ(mµ + 1)
Γ((m + 1)θ)

cos
[π
2
(mµ + 1)

]
, (8.56)

The asymptotics

Γ(mµ + µ + 1) Γ(mθ + 1)
Γ(mθ + θ + 1) Γ(mµ + 1)

∼ Γ(mµ + µ + 1) Γ((m + 1)θ)
Γ((m + 2)θ) Γ(mµ + 1)

∼ mµ−θ (8.57)

show that the series (8.55) and (8.56) exist only for µ < θ. It can be shown that these series

exist for all z in this case. This series converges very slowly for large z but the Padé summation

method [Bender and Orzag, 1978] can be used to improve the convergence of (8.56) in the case

µ < θ, and can also be used to estimate (8.56) in the case µ > θ for which the series diverges.

The space integral
∫

dr N(t, r) over the whole one-dimensional volume V , with N(t, r) given

by (8.56), recovers the global Omori law∫
V

dr N(t, r) ∼ 1
t1−θ

. (8.58)

Note the non-trivial phenomenon in which the superposition of all aftershock activities trans-

forms the local Omori law or “bare propagator” (8.4) Ψ(t) ∼ 1
t1+θ into the global Omori law or

“dressed propagator” 1
t1−θ . This effects was predicted in [Sornette and Sornette, 1999a; Helm-

stetter and Sornette, 2002a] in the version of the ETAS model without space dependence. These

results are consistent with the claim of section 8.2 according to which all results reported pre-

viously for the version of the ETAS model without space dependence hold also for the version

of the space-dependent ETAS model studied here, when averaging over the whole space.

The asymptotic behavior for |�r| 
 D t
θ
µ (i.e., z � 1) and µ < θ is obtained by keeping only

the first non-zero term (m = 1) in (8.56) which is convergent for all z in the case µ < θ

N(t, �r) =
sin
(πµ

2

)
σc′ π

Γ(1 + µ)
Γ(2θ)

(
c′

t

)1−2θ ( σ

|�r|
)1+µ

, for |�r| 
 D t
θ
µ . (8.59)

At fixed large |�r| and for t < |�r/D|µ
θ , this predicts a local Omori law with exponent p = 1− 2θ.
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1/z-expansion of the solution

We use the theory of Fox functions [Mathai and Saxena, 1978] to obtain N(t, �r) as an infinite

series in 1/z. For this, we first rewrite expression (8.56) as a Fox function [Mathai and Saxena,

1978]

N(t, �r) =
c′−θ

D µ π t1−θ+θ/µ
R

(
H1,2

2,2

[
z eiπ/2

∣∣∣∣∣ (1/µ, 1/µ), (1, 1)

(1/µ, 1/µ), (θ/µ − θ + 1, θ/µ)

])
, (8.60)

where R(z) indicates the real part of z.

The 1/z expansion of N(t, �r) can be obtained using the dual expansion of the Fox function

(8.60) (expression (3.7.2) of [Mathai and Saxena, 1978])

N(t, �r) =
c−θ

D π µ t1−θ+θ/µ

+∞∑
m=0

(−1)m
[
µ z1−µ−mµ Γ(1 − (m + 1)µ) sin((m + 1)µπ/2)

Γ(−mθ)

+
z−m

m!
π cos(mπ/2)

sin((m + 1)π/µ) Γ(θ − (m + 1)θ/µ)

]
. (8.61)

This expansion exists only for µ > θ (conditions of page 71 below eq. (3.7.2) of [Mathai and

Saxena, 1978]). This is easily checked by the behavior of an asymptotics similar to (8.57). Note

that the series (8.61) is not defined in the special case µ = 1 due to the presence of the ill-defined

ratio Γ(0)/Γ(0) and a different approach is required, such as the integral representation of W (t, �r)

developed in [Saichev and Zaslavsky, 1997]. The global Omori law obtained by integrating over

the whole space (8.61) is again N(t) ∼ 1/t1−θ as expected from the analysis of the ETAS model

without space dependence [Helmstetter and Sornette, 2002a].

Keeping only the largest term of (8.61) for large z, we obtain the asymptotic behavior for

small distances r < D tθ/µ

N(t, r)  Γ(1 − 2µ) Γ(1 + θ) sin(πµ) sin(πθ)
c′σ π2 (r/σ)1−2µ (t/c′)1+θ

for µ < 0.5

N(t, r)  c′−θ

c′σ µ Γ(θ − θ/µ) sin(π/µ)
1

(t/c′)1−θ+θ/µ
for 0.5 < µ < 2. (8.62)

Note that for r < D tθ/µ and 0.5 < µ < 2, the leading behavior of N(t, r) is independent of r.

Equation (8.62) thus predicts an apparent exponent

p = 1 + θ for µ < 0.5

p = 1 − θ + θ/µ for 0.5 < µ < 2 (8.63)

for small distances r < D tθ/µ. This prediction is valid only in the case µ > θ for which the

series (8.61) is convergent. However, the same asymptotic results are also obtained by different

methods in the case µ < θ, for instance expression (8.63) is recovered for all µ < 2 using the

integral representation of [Saichev and Zaslavsky, 1997] [A. Saichev, private communication].

The numerical evaluation of (8.56), which converges for µ < θ, also recovers the asymptotic
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Fig. 8.7 – Rate of seismicity N(t, r) for θ = 0.2, µ = 0.2, c′ = 1 day and σ = 1 km, evaluated from

expressions (8.56) and (8.62), plotted as a function of the time (a) for different values of the distance

r between the mainshock and its aftershocks, and (b) as a function of r for different values of the

time between the mainshock and its aftershocks. We stress again that the time scales shown here do

not necessarily correspond to real observable time scales but are presented to demonstrate clearly the

existence of the two regimes. The dashed lines give the predicted asymptotic dependence in each regime.
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Fig. 8.8 – Rate of seismicity N(t, r) for θ = 0.2, µ = 0.9, c′ = 1 day and σ = 1 km, evaluated from

expressions (8.56) and (8.62), plotted as a function of the time (a) for different values of the distance

r between the mainshock and its aftershocks, and (b) as a function of r for different values of the time

between the mainshock and its aftershocks. The dashed lines give the predicted asymptotic dependence

in each regime.
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results (8.62). The two regimes µ < 0.5 and 0.5 < µ < 2 are illustrated in Figures 8.7 and 8.8

respectively. The seismicity rate N(t, �r) is evaluated from expression (8.56) for small z and from

expression (8.61) for large z.

We also performed numerical simulations of the ETAS and CTRW models and the results

are in good agreement with expression (8.56) and (8.61) for N(�r, t) for t 
 c and r 
 d. For

very small times t � c, or for very small distances r � d, expressions (8.56) and (8.61) are not

valid because they are based on a long wavelength |�k| → 0 and long time β → 0 approximation.

Numerical simulations of the ETAS model in the case θ = 0.2 and µ = 0.9 are presented in

Figure 8.9, and are in good agreement with the analytical solutions (8.56) and (8.61) shown in

Figure 8.8 for the same parameters, except from the truncation of N(t, r) for times t � c and

distances r � d that are not reproduced by the analytical solution.

A simple non-separable joint distribution of waiting times and jump sizes :

coupled spatial diffusion and long waiting time distribution

Consider the choice for φmi(t − ti, �r − �ri) replacing (8.2) by

φmi(t − ti, �r − �ri) = ρ(mi) Ψ(t − ti) Φ(|�r − �ri|/
√

Dt) , (8.64)

where ρ(mi) and Ψ(t) are again given by (8.3) and (8.4) while (8.5) is changed into

Φ(|�r − �ri|/
√

Dt) =
1√
2Dt

exp
(−|�r − �ri|2/Dt

)
. (8.65)

The spatial diffusion of seismic activity is now coupled to the waiting time distribution. Ex-

pression (8.65) captures the effect that, in order for aftershocks to spread over large distances

by the underlying physical process, they need time. In fact, returning to the discussion in the

introduction on the various proposed mechanisms for aftershocks, expression (8.65) embodies a

microscopic diffusion process.

In this case, (8.21) must be replaced by

N̂(β,�k) =
ŜM(β,�k)

1 − nφ̂(β,�k)
, (8.66)

where φ̂(β,�k) is the Laplace-Fourier transform of the product Ψ(t) Φ(|�r|/√Dt). For large times

and long distances for which the first terms in the expansion in β and k are sufficient, and for

n = 1, we obtain

φ̂(β,�k) ∝ ŜM (β,�k)
(β + Dk2)θ

. (8.67)

The inverse Laplace-Fourier transform of (8.66) is

N(t, �r) ∼ 1
t1−θ

1√
2πDt

exp
(−|�r|2/Dt

)
. (8.68)

As expected, expression (8.68) recovers the dressed Omori propagator in the case of absence

of space dependence [Helmstetter and Sornette, 2002a]. At finite r and long times, the dressed
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Fig. 8.9 – Rate of seismicity N(t, r) obtained from numerical simulations of the ETAS model generated

with the same parameters as in Figure 8.8 (θ = 0.2, µ = 0.9, c′ = 1 day and d = 1 km). N(r, t)

is computed by averaging over 500 numerical realizations of the ETAS model. (a) aftershock rate as

a function of the time from the mainshock for several distances |�r| ranging from 0.01 to 104 km. (b)

Apparent Omori exponent measured for times t > 10 as a function of the distance from the mainshock.

The aftershock decay rate (with time) is larger close to the mainshock epicenter than at large distances

from the mainshock. The asymptotic values for small and large distances are in agreement with the

predictions (8.63) for r � Dtθ/µ and (8.59) for r 
 Dtθ/µ, which are shown as the horizontal dashed

lines. (c) Rate of seismicity N(t, r) as a function of the distance between aftershocks and mainshock

for various times. The theoretical prediction for large distances is shown as the dashed line with slope

−(1 + µ).
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Omori law also decay as 1/t1−θ. The diffusion of aftershocks is normal with the standard diffusion

exponent H = 1/2.

8.5 Discussion

Using the analogy between the ETAS model and the CTRW model established here, we have

derived the relation between the average distance between aftershocks and the mainshock as a

function of the time from the mainshock, and the joint probability distribution of the times and

locations of aftershocks.

We have assumed that each earthquake triggers aftershocks at a distance r and time t

according to the bare propagator φ(r, t), which can ! be factorized as Ψ(t)Φ(r). This means that

the distribution Φ(r) of the distances between an event and its direct aftershocks is decoupled

from the distribution Ψ(t) of waiting time. Hence, the direct aftershocks triggered by a single

mainshock do not diffuse in space with time. Notwithstanding this decoupling in space and time

of the bare propagator φ(r, t), we have shown that the global law or dressed propagator N(t, �r)

defined as the global rate of events at time t and at position �r, cannot be factorized into two

distributions of waiting times and space jumps. This joint distribution of waiting times and

positions of the whole sequence of aftershocks cascading from a mainshock is different from the

product of the bare time and space propagators.

The mean distance between the mainshock and its aftershocks, including secondary after-

shocks, increases with the time from the mainshock, due to the cascade process of aftershocks

triggering aftershocks triggering aftershocks, and so on. In the critical case n = 1, this diffusion

takes the form of a power-law relation R ∼ tH of the average distance R between aftershocks and

the mainshock, as a function of the time t from the mainshock. If the local Omori law is charac-

terized by an exponent 0 < θ < 1, and if the space jumps follow a power law Φ(r) ∼ 1/(r+d)1+µ,

the diffusion exponent is given by H = θ/µ in the case µ < 2 and H = θ/2 in the case µ > 2.

Depending on the θ and µ values, we can thus observe either sub-diffusion (H < 1/2) or super-

diffusion (H > 1/2), as summarized in Figure 8.10. In the sub-critical (n < 1) and super-critical

(n > 1) regimes, this relation is still valid up to the characteristic time t∗ given by (8.1) and for

distances smaller than r∗ ∝ Dt∗H given by (8.30). For t > t∗ and r > r∗ in the sub-critical re-

gime, the global distributions of times and distances between the mainshock and its aftershocks

are decoupled and there is therefore no diffusion. In the super-critical regime, the aftershock

rate increases exponentially for t > t∗ and the aftershocks diffuses more rapidly than before t∗.

In the critical regime, the cascade of secondary aftershocks introduces a variation of the

apparent Omori exponent as a function of the distance from the mainshock. The asymptotic

values of the Omori exponent in the different regimes are summarized in Table 8.2. In the regime

µ < 2, we observe a transition from an Omori law decay with an exponent p = 1 − 2θ at early

times tH � r/D to a larger exponent at large times. This provides another mechanism to explain



8 Discussion 189

R~t θ/µ

R~t 0.5

R~t θ/2

2

subdiffusionsuperdiffusion

or subdiffusion

µ

θ

0

1

Brownian 
diffusion

R~t 1/µ

superdiffusion

Fig. 8.10 – Classification of the different regime of the diffusion of aftershocks in space as a function of

time from the main shock. The bare Omori law for aftershocks decay with time as 1/t1+θ. The jump size

distribution between the earthquake “mother” and its “daughters” is proportional to 1/r1+µ. R(t) is the

average distance between all aftershocks triggered up to time t after the mainshock.

the observed variability of the Omori exponent. In the regime µ > 2, a power-law decay of the

seismicity with time is observed only at large times tH 
 r/D. At early times, or at large

distances r 
 DtH , the seismicity rate is very small, because the seismicity as not yet diffused

up to the distance r.

We should emphasize that our theoretical analysis of aftershock diffusion predicts the be-

havior of the ensemble average of aftershock sequences. Individual sequences may depart from

this ensemble average, especially for sequences with few earthquakes and limited durations. For

long sequences (20,000 events say), we have verified that the exponent H measured on indivi-

dual sequences does not deviate from the ensemble average value by more than about 20%. As

already discussed, the impact of fluctuations becomes however more effective as the parameter

α increases above b/2.

The diffusion of the seismicity also renormalizes the spatial distribution of the seismicity,

which is very different from the local distribution Φ(r) of distances between a triggering event and

its direct aftershocks. In the regime µ > 2, the global seismicity rate N(t, �r) decays exponentially

with the distance from the mainshock, whereas the local distribution of distances Φ(r) is a power-

law distribution. In the regime µ < 2, the local law Φ(r) ∼ r−1−µ is recovered at large distances,

but a slower decay for 0.5 < µ < 2 or a constant rate for µ < 0.5 is observed at small distances
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Tab. 8.2 – Asymptotic values of the (renormalized) Omori exponent (of the dressed propagator) in the

different regimes for z � 1 and z 
 1 where z ≡ D tHH

r .

large z small z

r � D tH r 
 D tH

µ < 0.5 p = 1 + θ p = 1 − 2θ

0.5 ≤ µ < 2 p = 1 − θ + θ/µ p = 1 − 2θ

2 ≤ µ p = 1 − θ/2 not defined 1

1 The Omori exponent is not defined in this case because the dependence of N(t, �r) with respect to

time given by expression (8.42) and represented in Figure 8.4 has a contribution from the exponential

asymptotics which is different from a power-law for large distances r 
 D tH .

r � DtH .

These predictions on the decrease of the Omori exponent with r have not yet been observed in

earthquake catalogs, but an expansion of the aftershock zone has been reported in many studies

[Mogi, 1968; Imoto, 1981; Chatelain et al., 1983; Tajima and Kanamori, 1985a,b; Wesson, 1987;

Ouchi and Uakawa, 1986; Noir et al., 1997; Jacques et al., 1999]. However, very few studies

have quantified the diffusion law. Noir et al. [1997] show that the earthquake Dobi sequence

(central Afar, August 1989) composed of 22 M > 4.6 earthquakes presented a migration that

was in agreement with a diffusion process due to fluid transfer in the crust, characterized by a

normal diffusion process with exponent H = 0.5. Tajima and Kanamori [1985a,b] studied several

aftershock sequences in subduction zone and observed a much slower logarithmic diffusion,

which is compatible with a low exponent H close to 0.1. In some cases, the aftershock sequence

displays no expansion with time. For instance, Shaw [1993] studied several aftershock sequences

in California and concluded that the distribution of distances between the mainshock and its

aftershocks is independent of time. This can be explained by the fact that the 0mori exponent

measured in [Shaw, 1993] is very close to 1, thus θ is very small and our prediction is that the

exponent H should be very small.

In fact, the ETAS model predicts that diffusion should be observed only for aftershock

sequences with a measured Omori exponent p significantly smaller than 1, which can only occur

according to our model when the bare Omori propagator with exponent 1+θ is renormalized into

the dressed propagator with global exponent 1 − θ. We have shown that this renormalization

of the exponent only occurs at times less than t∗, while for longer times in the sub-critical

regime n < 1 the dressed Omori propagator recovers the value of the bare exponent 1 + θ > 1

(see Figure 8.1). Therefore, identifying an empirical observation of p < 1 with our prediction

p = 1− θ indicates that the aftershock sequence falls in the “good” time window t < t∗ in which

the renormalization operates. We have also shown that the dressed propagator gives a diffusion
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only for t < t∗. We can thus conclude that, according to the ETAS model, the observation of

an empirical Omori exponent larger than 1 is indicative of the large time t > t∗ behavior in the

sub-critical regime n < 1, for which there is no diffusion. This provides a possible explanation

for why many sequences studied by [Tajima and Kanamori, 1985a,b; Shaw, 1993] do not show

a diffusion of the aftershock epicenters. Reciprocally, a prerequisite for observing diffusion in a

given aftershock sequence is that the empirical p-value be less than 1 in order to qualify the

regime t < t∗.

An alternative model has been discussed by Dieterich [1994] who showed that the spatial

variability of the stress induced by a mainshock, coupled with a rate and state friction law,

results in an expansion of the aftershock zone with time. This expansion does not take the form

of a diffusion law as observed in the ETAS model, the relation between the characteristic size

of the aftershock zone does not grow as a power law of the time from the mainshock (equation

(22) and Figure 6 of [Dieterich, 1994]).

Marsan et al. [1999, 2000] and Marsan and Bean [2001] studied several catalogs at different

scales, from the scale of a deep mine to the world-wide seismicity, and observed that the average

distance between two earthquakes increases as a power-law of the time between them, with an

exponent often close to 0.2, indicative of a sub-diffusion process. They interpreted their results

as a mechanism of stress diffusion, that may be due to fluid transfer with heterogeneous permea-

bility leading to sub-diffusion. Their analysis is quite different from those used in other studies,

because they consider all pairs of events, without distinction between aftershocks and main-

shocks. This analysis can however lead to spurious diffusion, and in some cases this method does

not detect diffusion in synthetic data set with genuine diffusion. We have tested their analysis

on a synthetic catalog generated by superposing a background seismicity with uniform spatial

and temporal distribution, and 10 mainshocks with poissonian distribution in time and space,

and with a power-law distribution of energies. Each of these mainshocks generates only direct

aftershocks, without secondary cascades of aftershocks, and the number of aftershocks increases

exponentially with the magnitude of the mainshock. This way, we generate a synthetic cata-

log without any physical process of diffusion, and which includes all the other well-established

characteristics of real seismicity : clustering in space and time superposed to a seismicity back-

ground. Applying the analysis of [Marsan et al., 1999, 2000 ; Marsan and bean, 2001] to this

synthetic data set leads to an apparent diffusion process with a well-defined exponent H = 0.5.

However, this apparent diffusion does not reflect a genuine diffusion but simply describes the

crossover from the characteristic size of an aftershock zone at early times to the larger average

distance between uncorrelated events at large times. In plain words, the apparent power law

R ∝ tH is nothing but a cross-over and is not real. Furthermore, applying this analysis to a

synthetic catalog generated using the ETAS model, without seismicity background, and with a

theoretical diffusion exponent H = 0.2, the method yields H = 0.01 if we use all the events of

the catalog. If we select only events up to a maximum distance rmax to apply the same proce-
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dure as in [Marsan et al., 1999, 2000 ; Marsan and bean, 2001], we obtain larger values of H

which are more in agreement with the theoretical exponent H = 0.2 but with large fluctuations

that are function of rmax. Therefore, it is probable that the diffusion reported in [Marsan et

al., 1999, 2000 ; Marsan and bean, 2001] is not real and results from a cross-over between two

characteristic scales of the spatial earthquake distribution. It may be attributed to the analyzing

methodology which mixes up uncorrelated events. We are thus reluctant to compare the results

of [Marsan et al., 1999, 2000 ; Marsan and bean, 2001] with the predictions obtained with the

ETAS model.

One can similarly question the results on anomalous diffusion of seismicity obtained by

Sotolongo-Costa et al. [2000], who considered 7500 micro-earthquakes recorded by a local spanish

network from 1985 to 1995. They interpret the sequence of earthquakes as a random walk process,

in which the walker jumps from an earthquake epicenter to the next in sequential order. The

time between two successive events is seen as a waiting time between two jumps and the distance

between these events is taken to correspond to the jump size. Since the distributions of time

intervals and of distances between successive earthquakes are both heavy-tailed (approximately

power laws), their model is a CTRW. We cannot stress enough that their CTRW model of

seismicity has nothing to do with our results on the mapping of the ETAS model onto a CTRW.

Their procedure is ad-hoc and their results depend obviously strongly on the space domain of the

analysis since distant earthquakes that are completely unrelated can be almost simultaneous !

We also stress that our mapping of the ETAS model onto the CTRW model does not correspond

to identifying an earthquake sequence as a single realization of a CTRW, as assumed arbitrarily

by Sotolongo-Costa et al. [2000].

Our predictions obtained here are thus difficult to test on seismicity data, due to the small

number of events available and the restricted time periods and distance ranges, and because the

seismicity background can strongly affect the results. New methods should hence be developed

to investigate if there is a real physical process of diffusion in seismic activity and to compare the

observations of real seismicity with the quantitative predictions of the ETAS model. Preliminary

study of aftershock sequences in California leads to the conclusion that most aftershock sequences

are characterized by an Omori exponent p > 1, indicative of the sub-critical regime with t > t∗.

As expected from our predictions in this regime, we do not observe an expansion of the aftershock

zone. However, a few sequences give a value p < 1 and also exhibit an increase of the average

distance between the mainshock and its aftershocks consistent with our predictions. A detailed

report of this analysis will be reported elsewhere.

8.6 Conclusion

We have studied analytically and numerically the ETAS (epidemic-type aftershock) model,

which is a simple stochastic process modeling seismicity, based on the two best-established
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empirical laws for earthquakes, the power law decay of seismicity after an earthquake and a

power law distribution of earthquake energies. This model assumes that each earthquake can

trigger aftershocks, with a rate increasing with its magnitude. In this model, the seismicity rate

is the result of the whole cascade of direct and secondary aftershocks.

We have first established an exact correspondence between the ETAS model and the CTRW

(continuous-time random walk) model. We have then used this analogy to derive the joint

probability of times and distances of the seismicity following a large earthquake and we have

characterized the different regimes of diffusion.

We have shown that the diffusion of the seismicity should be observed only for times t <

t∗, where t∗ is a characteristic time depending on the model parameters, corresponding to an

observed Omori exponent smaller than one. Most aftershock sequences have an observed Omori

exponent larger than one, corresponding to the subcritical regime of the ETAS model, for which

there is no diffusion. The diffusion of the seismicity produces a decrease of the Omori exponent

as a function of the distance from the mainshock, the decay of aftershocks being faster close to

the mainshock than at large distances. The spatial distribution of seismicity is also renormalized

by the cascade process, so that the observed distribution of distances between the mainshock

and its aftershocks can be fundamentally different from the bare propagator Φ(r) which gives

the distribution of the distances between triggered and triggering earthquakes. We have also

noted that the ETAS model generates apparent but realistical fractal spatial patterns.

Assuming that the distances between triggering and triggered events are independent of the

time between them, this model generates a diffusion of the whole sequence of aftershocks with the

time from the mainshock, which is induced by the cascade of aftershocks triggering aftershocks,

and so on. Our results thus provides a simple explanation of the diffusion of aftershock sequences

reported by several studies, which was often interpreted as a mechanism of anomalous stress

diffusion. We see that no such “anomalous stress diffusion” is needed and our theory provides

a parsimonious account of aftershock diffusion resulting from the minimum physical ingredients

of the ETAS model.
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Chapitre 9

Observations of diffusion of

aftershocks epicenters

We present here preliminary results on an analysis of aftershock sequences in California

and a comparison with the predictions of the diffusion of seismic activity in the ETAS model

derived in the precedent chapter. We want to characterize the temporal and spatial distribution

of aftershocks triggered directly or indirectly by a large earthquake, and the coupling between

the spatial and temporal distributions.

The analysis of real data is much more difficult that the study of synthetic sequences, due to

the smaller number of earthquakes available, the presence of background activity, and problems

of catalog completeness especially just after large mainshocks.

In addition, real seismicity is much more complicated than the ETAS model. Several pro-

perties of seismicity and aftershock sequences are not taken into account in the ETAS model.

We first present the limitations of the ETAS model and of the analytical analysis presented in

the previous section. Due to the limitations of the seismicity data and of the analytical analysis,

it is difficult to obtain reliable quantitative results on the diffusion exponent. However, some

qualitative predictions of the ETAS model should be observed in real data :

– only sequences in the early time regime t < t∗ characterized by an Omori exponent p < 1

should diffuse ;

– the diffusion of seismic activity should be related to a decrease of the p Omori exponent

as the distance r from the mainshock increases ;

– the characteristic size of the cluster is expected to grow as R ∼ tH , with the diffusion

exponent H positively correlated with the θ-value.

We present the method of analysis of real sequences, and point out the problems of previous

analysis of diffusion in real data. We present the results for several aftershock sequences in

California and compare these results with the predictions of the ETAS model.
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9.1 Limits of the analytical study

One dimensional analysis.

We have derived analytical results for the one dimensional ETAS model, which is not rea-

listic to describe real aftershock sequences. Real seismicity is localized on a fractal structure,

intermediate between a two dimensional space (the fault plane of the mainshock) and a three

dimensional space. However, the main characteristic of diffusion, the scaling of the characteristic

size R with time as R ∼ tH , is correct in any dimension with the same expression for H. Other

results concerning the full spatio-temporal distribution of aftershocks will be slightly dependent

on the dimension of the model. In particular, we have performed numerical simulations of the

ETAS model in 2 dimensions which give the same scaling R ∼ tH , and the same form of the

spatio-temporal distribution (exponential distribution of distances r for µ > 2 and power-law

distribution if µ < 2) but the value of the Omori exponent for r = 0 depends on the dimension

of the system. Moreover, the ETAS model does not take into account the spatial extension of

an earthquake and its finite duration, but consider an earthquake as a point in space and time

at the location of the hypocenter.

The analytical solutions are correct only for α < b/2.

The essential assumption used in the analytical study is that the fluctuations of the ear-

thquake magnitudes in a given sequence can be considered to be decoupled from those of the

seismic rate. This approximation can be shown to be valid for α ≤ b/2 [Helmstetter et al., 2002],

for which the random variable ρ(mi) has a finite variance. This regime is maybe not adapted

to real aftershock sequences, as shown in chapter 2 where we have measured α = 0.8 for the

southern California seismicity, using a superposed epoch analysis. For α > b/2, the variance of

ρ(mi) is mathematically infinite or undefined as ρ(mi) is distributed according to a power law

with exponent b/α < 2. In this case, an additional term must be included to account for the ef-

fect of the dependence between the fluctuations of earthquake magnitudes and the instantaneous

seismic rate. For α > b/2, we show in section 10 that the renormalization of the bare propagator

into the dressed propagator is weaker than for α ≤ b/2, all the more so as α → b. Numerical

simulations for α > b/2 show that our results presented in the previous section hold qualitatively

but with a reduction of the observed spatial diffusion exponent compared to the value predicted

from the master equation. Numerical simulations performed with θ = 0.2, n = 1, b = 1, µ = 1

and α = 0.8 yield an Omori exponent of the global sequence p = 1 instead of p = 1 − θ = 0.8

predicted by the analytical solution of the master equation, and a diffusion exponent H = 0.11

instead of the value H = 0.2 expected for α < b/2.
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Independence between the mainshock size and the aftershock cluster size.

Another limitation of our analytical approach is that we assume the distribution of distances

between a mainshock and its aftershocks to be independent of the mainshock magnitude. Howe-

ver, it is a well established property of aftershock sequences [Utsu, 1961 ; Kagan, 2002] that the

size of the aftershock area is proportional to the mainshock rupture length. This property can be

included in the ETAS model, by assuming that the characteristic distance d of the mainshock-

aftershock distance distribution (8.5) is proportional to the rupture length. This model can be

studied using Monte-Carlo simulations of the ETAS model, but is much more difficult to study

analytically than the decoupled model. Using numerical simulations of the coupled model, with

d related to the magnitude M of the mainshock by d ∼ 100.5M , we obtain a slower diffusion

that in the decoupled model. The diffusion exponent of the coupled model is about half the

exponent of the decoupled model at early times. The two models give similar results with the

same diffusion exponent at large times, when the characteristic size R of the cluster is larger

than the mainshock rupture length. The difference between the two models is more important

for large mainshock magnitudes, because it takes more time for the aftershock cluster to reach

a size larger than the mainshock length.

9.2 Method

The major problem when analyzing real seismicity data comes from the background seismi-

city. It can significantly alter the evaluation of the characteristic distance of the aftershock, even

for a very small proportion of background events. To illustrate this problem, we analyze in Figure

9.1 a synthetic catalog generated by superposing an aftershock sequence with a constant seismi-

city background. The background seismicity induces an increase of the characteristic distance

with time, that is very similar to a real diffusion when using limited time and space scales.

Marsan et al. [1999, 2000, 2001] have proposed a method to remove the influence of the

background seismicity. A major difference between their analysis and this work is that they

consider all pairs of events, independently of their magnitude. They study the average distance

between all points as a function of the time between them. Therefore, there is no causal relation

between the events they consider. In order to remove the influence of the uncorrelated seismicity,

they use the global catalog to estimate the average distance between two points, and they remove

the contribution of the average seismicity to estimate the spatio-temporal distribution of the

correlated seismicity. The major assumption they make it to consider that the average seismicity

is dominated by the uncorrelated seismicity. This assumption is however not reasonable for real

seismicity which is dominated by the triggered seismicity (see section 7 for a discussion of

the proportion of aftershocks in seismicity catalogs). Marsan et al. [1999, 2000, 2001] studied

several catalogs at different scales, from the scale of a mine to the world-wide seismicity, and

observed that the average distance between two earthquakes increases as a power-law of the time
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Fig. 9.1 – Analysis of a synthetic aftershock sequence. We have superposed a synthetic aftershock

sequence with a uniform and constant seismicity background. This sequence has been generated without

secondary aftershocks and without diffusion : all aftershocks are determined according to a power-law

distribution of times with exponent p = 1. The spatial distribution of aftershocks is isotropic, with a

power-law distribution of distances from the mainshock with an exponent µ = 0.5. Panel (a) shows a

map of seismicity with the background events shown as small black dots and the aftershocks shown

as large gray dots. The mainshock is shown as a star at the center. Panel (b) shows the characteristic

distance R of the cluster measured by R = exp(< log(r) >) for a moving time window. The increase of

R with time is due to the transition between the aftershock sequence at early times and the background

seismicity at large times.

between them, with an exponent often close to 0.2, indicative of a sub-diffusion process. They

interpreted their results as a mechanism of stress diffusion, that may be due to fluid transfer

with heterogeneous permeability leading to sub-diffusion.

We believe that their results are strongly affected by the background seismicity. Because

they do not take correctly into account the background seismicity, the diffusion they observe

may reflect the transition between the correlated seismicity at early times and the uncorrelated

seismicity at large times. As already discussed in the previous section, we have tested their

method on synthetic catalogs and we found that their analysis can lead to spurious diffusion,

and in some cases this method does not detect diffusion in synthetic data set with genuine

diffusion. The spurious diffusion observed with their analysis is due to the background seismicity.

The failure of their analysis to detect diffusion on synthetics catalogs generated with the ETAS

model is due to their methods of estimation of the characteristic size between two events. They

use the mean distance between all points, while the mean distance between two points was

infinite in the catalog (µ = 1 in (8.5)). A more stable estimate of the characteristic distance
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when using power-law distribution of distances is to use the exponential R = exp(< log(r) >)

of the mean of the logarithm of the distance, as done in this work, or the median of the distance

distribution. When truncating the catalog at a maximum distance rmax as done in real data,

their analysis detects a diffusion of aftershocks with a reasonable exponent, but their method

displays much larger fluctuations than our method, and is very sensitive to the choice of rmax.

In this study, we analyze individual aftershock sequences, and we consider the diffusion of

the seismicity triggered directly or indirectly by the mainshock. We adjust the values of the time

T and the space D windows used to select aftershocks so that the rate of background activity is

negligible in comparison with the aftershock rate. The background seismicity rate is estimated

by the average seismicity before the mainshock. We also adjust the minimum magnitude m0 and

the minimum time tmin used in the analysis in order to obtain a catalog that is complete for

tmin < t < T and m > m0. We estimate the average size of the aftershocks area as a function

of the time from the mainshock in order to estimate the diffusion exponent H. We measure the

Omori exponent by plotting the rate of activity as a function of time in a log-log plot, and by

measuring the slope p by a linear regression for tmin < t < T . We have also used a maximum

likelihood method to estimate both the Omori exponent p and the c-value in (3.1). In most

cases, the two methods provide similar values of p. We also estimate the variation of p with

the distance r between the mainshock and its aftershocks by selecting aftershocks at different

distances between the mainshock. Another prediction of the ETAS model is the modification

of the distribution of distances r with time. We plot the distribution of distances r between

the mainshock and its aftershock for several time windows to test if there is an expansion of

the aftershock area with time. We have tested this method using synthetic catalogs generated

with the ETAS model, including a constant seismicity background. We have checked that our

method provides a reliable estimate of the diffusion exponent and is almost not affected by the

background activity.

9.3 Seismicity data

We study two different catalogs, (i) the catalog of Southern California seismicity provided

by the Southern California Seismic Network for the period 1932-2000, and (ii) the catalog of

Northern California seismicity provided by the Northern California Seismic Network since 1968.

The minimum magnitude for completeness ranges from M = 4 in 1932 to M < 2 for the two

catalogs since 1980. The average error on earthquake location is about 1 km for epicenters, but

is larger for hypocenters. Therefore we consider only the spatial distribution of epicenters.
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9.4 Results

We have analyzed 20 aftershock sequences of major earthquakes in California with a number

of aftershocks larger than 500. The results for all sequences are listed in Table 9.1.

The results for the largest aftershock sequence following the 1992 M = 7.3 Landers event

are shown in Figure 9.2. For this sequence we obtain an Omori exponent p = 1.1, which is stable

Tab. 9.1 – Analysis of aftershock sequences of California. M is the mainshock magnitude, T and R are

the temporal and spatial windows used to select aftershocks, M0 is the minimum magnitude of aftershocks,

p is the Omori exponent measured for tmin < t < T , N is the number of aftershocks, H is the diffusion

exponent, p1 and p2 are the Omori exponent measured for small distance and larges distances respectively.

earthquake date M T R M0 tmin N p H p1 p2

dd/mm/yy days km days

Kern-County 21/07/52 7.5 5478 70 2.5 300 1300 1.12 0.04 1.25 1.13

01/08/75 5.7 1826 15 2.0 1.0 785 1.09 -0.00 1.13 1.09

Imperial Valley 15/10/79 6.4 36 80 2.5 0.2 677 1.44 -0.04 0.71 1.58

Westmorland 26/04/81 5.7 73 20 1.7 0.2 587 1.41 0.15 2.30 0.82

Coalinga 02/05/83 6.7 1826 22 2.0 1.0 3133 1.03 0.03 1.12 0.94

Morgan-Hill 24/04/84 6.2 182 30 1.5 1.0 633 0.59 0.00 0.61 0.74

Round-Valley 23/11/84 6.1 182 15 2.0 0.1 1398 0.93 0.04 0.95 0.89

North Palm Springs 8/07/86 5.6 365 15 1.5 1.0 2331 1.11 0.05 1.19 0.92

Oceanside 13/07/86 5.4 3650 20 2.0 0.5 1926 0.80 0.03 0.88 0.69

Chalfant Valley 21/07/86 6.4 1826 20 2.0 1.0 2985 1.16 0.03 1.12 0.98

Superstition-Hill 24/11/87 6.6 18 50 1.8 0.4 794 1.22 0.11 1.47 0.90

Loma-Prieta 18/10/89 7.0 36 50 2.0 0.1 728 1.06 0.06 1.09 0.69

Joshua-Tree 23/04/92 6.1 36 30 1.6 3.0 3658 1.11 0.11 1.20 0.73

Cape Mendocino 25/04/92 6.5 36 70 2.0 0.6 1197 1.20 -0.04 1.11 1.31

Landers 28/06/92 7.3 365 60 2.2 3.0 7278 1.09 0.00 1.07 1.02

Big Pine 17/05/93 6.2 365 25 1.5 2.0 780 1.25 0.02 1.29 1.31

Northridge 17/01/94 6.7 1826 30 2.0 2.0 3254 1.13 0.01 1.11 0.97

Nevada 12/09/94 5.5 365 25 2.5 5.0 502 1.10 -0.03 0.90 0.97

15/05/99 5.6 735 10 1.5 0.2 1570 0.85 0.05 1.05 0.78

Hector-Mine 16/10/99 7.1 1826 35 2.5 1.0 1812 1.14 0.01 1.18 1.13
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when looking at different distances r. The characteristic cluster size is also stable over more than

two orders of magnitude in time (H ≈ 0). The analysis of the distance distribution at different

times also confirms that there is no diffusion of seismic activity. This sequence is interpreted

according to our results as belonging to the sub-critical regime n < 1 with t > t∗. Therefore,

the results are in agreement with the predictions of the ETAS model that no diffusion should

be observed if the Omori exponent is larger than 1. Many other sequences yield results similar

to the Landers sequence, with p > 1 and almost no diffusion (H ≈ 0) (see Table 9.1).

A few aftershock sequences are characterized by a small p < 1 exponent, but do not show

a significant diffusion (H < 0.05), in disagreement with our analysis of the ETAS model. For

example, the aftershock sequence of the M = 5.4 July 13, 1986 Oceanside earthquake has a

low p = 0.8 Omori exponent, which decreases as a function of the distance from the mainshock,

but the diffusion exponent H = 0.03 is much smaller than expected by the theory (see Figure

9.3). A global p-value of 0.8 implies that the θ-value is equal to or larger than 0.2. Therefore,

the diffusion exponent should not be smaller than H = 0.1 from our results (see Figure 8.10).

However, these are several limitations of the analytical study discussed previously that may

explain the H-value smaller than expected. Both the fact that α > b/2 and the dependence of

the aftershock area with the mainshock magnitude tend to decrease the diffusion exponent by

comparison to the analytical predictions based on the master equation (8.12).

In contrast with our predictions, the largest value of the diffusion exponent H = 0.15 (see

Table 9.1 and Figure 9.4) is obtained for the April 26, 1981 Westmorland earthquake which has

the largest value of the Omori exponent p = 1.4. For this sequence, we clearly see an expansion of

the aftershock area when comparing the distance distribution at different times, and a decrease

of p with r. A significant diffusion exponent H > 0 with p > 1 may be observed in the ETAS

model in the crossover regime for t ≈ t∗ where p is already larger than 1, but where a diffusion

of seismic activity is still observed. Indeed, when looking at numerical aftershock sequences in

the sub-critical regime, a diffusion of seismic activity persists up to t ≈ 100 t∗ even if the Omori

exponent in larger 1. But the diffusion exponent in the crossover regime for t ≈ t∗ should be

smaller than in the early time t < t∗ regime when p is smaller than 1.

Figure 9.5 summarizes the results for p and H listed in Table 9.1. All values of the diffusion

exponent H are very small when compared to previous studies [Marsan et al., 1999, 2000 ; Marsan

and Bean, 2001]. This suggests that their results were affected by the background seismic activity,

and were not due to a real diffusion process. We do not obtain a negative correlation between

the diffusion exponent and the Omori exponent, as expected by the theory.

9.5 Conclusion

We have analyzed 20 aftershock sequences of California and we found that the diffusion

of seismic activity is very weak, when compared to previous studies. The finding that most
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Fig. 9.2 – Analysis of the June, 28, 1992, M = 7.3 Landers aftershock sequence. (a) map of aftershocks,

the mainshock is shown by a star ; (b) rate of seismic activity as a function of the distance from the

mainshock for different times after the mainshock (increasing time from top to bottom (blue to red)). The

background activity preceding the mainshock is shown as a dashed line. The whole aftershock sequence

is shown as a solid black line ; (c) rate of aftershocks for the whole sequence (black line at the top), and

for different distances from the mainshock (increasing distance from blue to red) ; (d) variation of the

Omori exponent with the distance from the mainshock ; (e) characteristic size of the aftershock cluster

as a function of the time from the mainshock.
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Fig. 9.3 – Analysis of the July 13, 1986, M = 5.4 Oceanside earthquake. Same legend as in Figure 9.2.
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Fig. 9.5 – Diffusion exponent H as a function of the Omori exponent p for the aftershock sequences

described in Table 9.1.

aftershock sequences do not diffuse, but that a few other sequences display a significant diffusion,

suggests that the diffusion of seismic activity is not due to a mechanism of stress transfer as

suggested previously [Noir et al., 1997; Marsan et al., 1999; Marsan et al., 2000; Marsan and

Bean, 2001], but can be explained by the cascade of secondary aftershocks. This process is very

sensitive to small changes in the parameters of the seismic activity such as the branching ratio

n and the local Omori exponent θ. This variability of n and θ may thus explain the variability

of the diffusion exponent from one sequence to another one. The expected variability of the

diffusion exponent with the Omori exponent (see Figure 9.5) is however not in agreement with

the observations : some aftershock sequences with p < 1 do not show a significant diffusion,

as expected by the theory, while a sequence with a very high p-value of 1.4 displays a large

value of the diffusion exponent equal to 0.15. These discrepancies between the theory and the

observations may be due to the small number of events available in each sequence, which can

induce high statistical fluctuations of the measured diffusion exponent. The estimation of H is

also difficult due to the limited range of time and space scales available, by comparison to the

synthetic data studied in chapter 8. The presence of background activity may also significantly

bias the estimation of H. Moreover, we have assumed in the ETAS model that the mainshock

can be represented by a point. This is obviously incorrect at small distances from the mainshock

epicenter by comparison with the mainshock rupture length. But the results at large distances

from the mainshock epicenter should be in agreement with the ETAS model. If there was a

significant diffusion of aftershock with time, we should observe an expansion of the aftershock
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area, which should be much larger than the mainshock rupture length at large times after

the mainshock. This is not what we observe in the aftershock sequences studied here, except

maybe for the Westmorland sequence which shows a significant expansion of the aftershock

area with time. For most sequences, the spatial distribution of aftershocks is mostly limited to

the mainshock rupture area. The rate of aftershocks is very small at distances larger than the

rupture length, even at large times after the mainshock.
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Université Joseph Fourier, BP 53X, 38041 Grenoble Cedex, France.

2 Laboratoire de Physique de la Matière Condensée, Université de Nice-Sophia Antipolis, and
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Abstract

The inverse Omori law for foreshocks discovered in the 1970s states that the rate of earth-

quakes prior to a mainshock increases on average as a power law ∝ 1/(tc − t)p
′
of the time to the

mainshock occurring at tc. Here, we show that this law results from the direct Omori law for af-

tershocks describing the power law decay ∼ 1/(t−tc)p of seismicity after an earthquake, provided

that any earthquake can trigger its suit of aftershocks. In this picture, the seismic activity at any

time is the sum of the spontaneous tectonic loading and of the activity triggered by all preceding

events weighted by their corresponding Omori law. The inverse Omori law then emerges as the
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expected (in a statistical sense) trajectory of seismicity, conditioned on the fact that it leads to

the burst of seismic activity accompanying the mainshock. In particular, we predict and verify

by numerical simulations on the Epidemic-Type Aftershock Sequence (ETAS) model that p′ is

always smaller than or equal to p and a function of p, of the b-value of the Gutenberg-Richter

law (GR) and of a parameter quantifying the number of direct aftershocks as a function of the

magnitude of the mainshock. The often documented apparent decrease of the b-value of the GR

law at the approach to the main shock results straightforwardly from the conditioning of the

path of seismic activity culminating at the mainshock. However, we predict that the GR law is

not modified simply by a change of b-value but that a more accurate statement is that the GR

law gets an additive (or deviatoric) power law contribution with exponent smaller than b and

with an amplitude growing as a power law of the time to the mainshock. In the space domain,

we predict that the phenomenon of aftershock diffusion must have its mirror process reflected

into an inward migration of foreshocks towards the mainshock. Using this model, we show that

foreshock sequences are special aftershock sequences which are modified by the condition to end

up in a burst of seismicity associated with the mainshock. Foreshocks are not just statistical

creatures, they are genuine forerunners of large shocks as shown by the large prediction gains

obtained using several of their qualifiers.

10.1 Introduction

Large shallow earthquakes are always followed by an increase in seismic activity, defined as

an aftershock sequence. It is also well-known that large earthquakes are sometimes preceded by

an unusually large activity rate, defined as a foreshock sequence. Omori law describing the power

law decay ∼ 1/(t − tc)p of aftershock rate with time from a mainshock that occurred at tc has

been proposed more than one century ago [Omori, 1894], and has since been verified by many

studies [Kagan and Knopoff, 1978 ; Davis and Frohlich, 1991 ; Kisslinger and Jones, 1991 ; Utsu

et al., 1995]. See however [Kisslinger, 1993 ; Gross and Kisslinger, 1994] for alternative decay

laws such as the stretched exponential and its possible explanation [Helmstetter and Sornette,

2002a].

Whereas the Omori law describing the aftershock decay rate is one of the few well-established

empirical laws in seismology, the increase of foreshock rate before an earthquake does not follow

such a well-defined empirical law. There are huge fluctuations of the foreshock seismicity rate,

if any, from one sequence of earthquakes to another one preceding a mainshock. Moreover, the

number of foreshocks per mainshock is usually quite smaller than the number of aftershocks.

It is thus essentially impossible to establish a deterministic empirical law that describes the

intermittent increase of seismic activity prior to a mainshock when looking at a single foreshock

sequence which contains at best a few events. Although well-developed individual foreshock

sequences are rare and mostly irregular, a well-defined acceleration of foreshock rate prior to a



10 Introduction 209

mainshock emerges when using a superposed epoch analysis, in other words, by synchronizing

several foreshock sequences to a common origin of time defined as the time of their mainshocks

and by stacking these synchronized foreshock sequences. In this case, the acceleration of the

seismicity preceding the mainshock clearly follows an inverse Omori law of the form N(t) ∼
1/(tc−t)p

′
, where tc is the time of the mainshock. This law has been first proposed by Papazachos

[1973], and has been established more firmly by [Kagan and Knopoff, 1978 ; Jones and Molnar,

1979].

A clear identification of foreshocks, aftershocks and mainshocks is hindered by the difficulties

in associating an unambiguous and unique space-time-magnitude domain to any earthquake

sequence. Identifying aftershocks and foreshocks requires the definition of a space-time window.

All events in the same space-time domain define a sequence. The largest earthquake in the

sequence is called the mainshock. The following events are identified as aftershocks, and the

preceding events are called foreshocks.

Large aftershocks show the existence of secondary aftershock activities, that is, the fact that

aftershocks may have their own aftershocks, such as the M = 6.5 Big Bear event, which is

considered as an aftershock of the M = 7.2 Landers Californian earthquake, and which clearly

triggered its own aftershocks. Of course, aftershocks of aftershocks can be clearly identified

without further insight and analysis as obvious bursts of transient seismic activity above the

background seismicity level, only for the largest aftershocks. But because aftershocks exist on

all scales, from the laboratory scale e.g. [Mogi, 1967 ; Scholz, 1968], to the worldwide seismicity,

we may expect that all earthquakes, whatever their magnitude, trigger their own aftershocks,

but with a rate increasing with the mainshock magnitude, so that only aftershocks of the largest

earthquakes are identifiable unambiguously.

The properties of aftershock and foreshock sequences depend on the choice of these space-

time windows, and on the specific definition of foreshocks [e.g. Ogata et al., 1996], which can

sometimes be rather arbitrary. In the sequel, we shall consider two definitions of foreshocks for

a given space and time window :

1. we shall call “foreshock” of type I any event of magnitude smaller than or equal to the

magnitude of the following event, then identified as a “main shock”. This definition implies

the choice of a space-time window R, T used to define both foreshocks and mainshocks.

Mainshocks are large earthquakes that were not preceded by a larger event in this space-

time window. The same window is used to select foreshocks before mainshocks ;

2. we shall also consider “foreshock” of type II, as any earthquake preceding a large ear-

thquake, independently of the relative magnitude of the foreshock compared to that of

the mainshock. This second definition will thus incorporate seismic sequences in which

a foreshock could have a magnitude larger than the mainshock, a situation which can

alternatively be interpreted as a mainshock followed by a large aftershock.

The advantage of this second definition is that foreshocks of type II are automatically defined
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as soon as one has identified the mainshocks, for instance, by calling mainshocks all events of

magnitudes larger than some threshold of interest which can be 6, 7 or 8. Foreshocks of type

II are thus all events preceding these large magnitude mainshocks. In contrast, foreshocks of

type I need to obey a constraint on their magnitude, which may be artificial, as suggested from

the previous discussion. All studies published in the literature deal with foreshocks of type I.

Using a very simple model of seismicity, the so-called ETAS (epidemic-type aftershock) model,

we shall show that the definition of foreshocks of type II is also quite meaningful and provides

new insights for classifying earthquake phenomenology and understanding earthquake clustering

in time and space.

The exponent p′ of the inverse Omori law is usually found to be smaller than or close to 1

[Papazachos et al., 1967 ; Papazachos et al., 1975b ; Kagan and Knopoff, 1978 ; Jones and Molnar,

1979 ; Davis and Frohlich, 1991 ; Shaw, 1993 ; Ogata et al., 1995 ; Maeda, 1999 ; Reasenberg, 1999],

and is always found smaller than or equal to the direct Omori exponent p when the 2 exponents

p and p′ are measured simultaneously on the same mainshocks [Kagan and Knopoff, 1978 ; Davis

and Frohlich, 1991 ; Shaw, 1993 ; Maeda, 1999 ; Reasenberg, 1999]. Shaw [1993] suggested in a

peculiar case the relationship p′ = 2p− 1, based on a clever but slightly incorrect reasoning (see

below). We shall recover below this relationship only in a certain regime of the ETAS model

from an exact treatment of the foreshocks of type II within the framework of the ETAS model.

Other studies tried to fit a power law increase of seismicity to individual foreshock sequences.

Rather than the number of foreshocks, these studies usually fit the cumulative Benioff strain

release ε by a power-law ε(t) = εc − B(tc − t)z with an exponent z that is often found close to

0.3 (see [Jaumé and Sykes, 1999 ; Sammis and Sornette, 2002] for reviews). Assuming a constant

Gutenberg Richter b-value through time, so that the acceleration of the cumulative Benioff strain

before the mainshock is due only to the increase in the seismicity rate, this would argue for a p′-

value close to 0.7. These studies were often motivated by the critical point theory [Sornette and

Sammis, 1995], which predicts a power-law increase of seismic activity before major earthquakes

(see e.g. [Sammis and Sornette, 2002] for a review). However, the statistical significance of such a

power-acceleration of energy before individual mainshock is still controversial [Zöller and Hainzl,

2002].

The frequency-size distribution of foreshocks has also been observed either to be different

from that of aftershocks, b′ < b, e.g. [Suyehiro, 1966 ; Papazachos et al., 1967 ; Ikegami, 1967 ;

Berg, 1968], or to change as the mainshock is approached. This change of magnitude distribution

is often interpreted as a decrease of b-value, first reported by [Kagan and Knopoff, 1978 ; Li

et al., 1978 ; Wu et al., 1978]. Others studies suggest that the modification of the magnitude

distribution is due only to moderate or large events, whereas the distribution of small magnitude

events is not modified [Rotwain et al., 1997 ; Jaumé and Sykes, 1999]. Knopoff et al. [1982] state

that only in the rare cases of catalogs of great length, statistically significant smaller b-value for

foreshocks than for aftershocks are found. Nevertheless they believe the effect is likely to be real
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in most catalogs, but at a very low level of difference.

On the theoretical front, there have been several models developed to account for foreshocks.

Because foreshocks are rare and seem the forerunners of large events, a natural approach is to

search for physical mechanisms that may explain their specificity. And, if there is a specificity, this

might lead to the use of foreshocks as precursory patterns for earthquake prediction. Foreshocks

may result from a slow sub-critical weakening by stress corrosion [Yamashita and Knopoff,

1989, 1992 ; Shaw, 1993] or from a general damage process [Sornette et al., 1992]. The same

mechanism can also reproduce aftershock behavior [Yamashita and Knopoff, 1987 ; Shaw, 1993].

Foreshocks and aftershocks may result also from the dynamics of stress distribution on pre-

existing hierarchical structures of faults or tectonic blocks [Huang et al., 1998 ; Gabrielov et al.,

2000a,b ; Narteau et al., 2000], when assuming that the scale over which stress redistribution

occurs is controlled by the level of the hierarchy (cell size in a hierarchical cellular automaton

model). Dodge et al. [1996] argue that foreshocks are a byproduct of an aseismic nucleation

process of a mainshock. Other possible mechanisms for both aftershocks and foreshocks are

based on the visco-elastic response of the crust and on delayed transfer of fluids in and out of

fault structures [Hainzl et al., 1999 ; Pelletier, 2000].

Therefore, most of these models suggests a link between aftershocks and foreshocks. In the

present work, we explore this question further by asking the following question : is it possible to

derive most if not all of the observed phenomenology of foreshocks from the knowledge of only

the most basic and robust facts of earthquake phenomenology, namely the Gutenberg-Richter

and Omori laws ? To address this question, we use what is maybe the simplest statistical model of

seismicity, the so-called ETAS (epidemic-type aftershock) model, based only on the Gutenberg-

Richter and Omori laws. This model assumes that each earthquake can trigger aftershocks,

with a rate increasing as a power law Ea with the mainshock energy E, and which decays

with the time from the mainshock according to the “local” Omori law ∼ 1/(t − tc)1+θ, with

θ ≥ 0. We stress that the exponent 1 + θ is in general different from the observable p-value, as

we shall explain below. In this model, the seismicity rate is the result of the whole cascade of

direct and secondary aftershocks, that is, aftershocks of aftershocks, aftershocks of aftershocks

of aftershocks, and so on.

In two previous studies of this model, we have analyzed the super-critical regime [Helmstetter

and Sornette, 2002a] and the singular regime [Sornette and Helmstetter, 2002] of the ETAS

model and have shown that these regimes can produce respectively an exponential or a power

law acceleration of the seismicity rate. These results can reproduce an individual accelerating

foreshock sequence, but they cannot model the stationary seismicity with alternative increasing

and decreasing seismicity rate before and after a large earthquake. In this study, we analyze the

stationary sub-critical regime of this branching model and we show that foreshock sequences

are special aftershock sequences which are modified by the condition to end up in a burst of

seismicity associated with the mainshock. Using only the physics of aftershocks, all the foreshock
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phenomenology is derived analytically and verified accurately by our numerical simulations. This

is related to but fundamentally different from the proposal by Jones et al. [1999] that foreshocks

are mainshocks whose aftershocks happen to be big.

Our analytical and numerical investigation of the ETAS model reveals many of the properties

of real foreshocks sequences.

– The rate of foreshocks increases before the mainshock according to the inverse Omori law

N(t) ∼ 1/(tc − t)p
′
with an exponent p′ smaller than the exponent p of the direct Omori

law. The exponent p′ depends on the local Omori exponent 1 + θ, on the exponent β of

the energy distribution, and on the exponent a which describes the increase in the number

of aftershocks with the mainshock energy. In contrast with the direct Omori law, which

is clearly observed after all large earthquakes, the inverse Omori law is a statistical law,

which is observed only when stacking many foreshock sequences.

– While the number of aftershocks increases as the power Ea of the mainshock energy E,

the number of foreshocks of type II is independent of E. Thus, the seismicity increases on

average according to the inverse Omori law before any earthquake, whatever its magnitude.

For foreshocks of type I, the same results hold for large mainshocks while the conditioning

on foreshocks of type I to be smaller than their mainshock makes their number increase

with E for small and intermediate values of the mainshock size.

– Conditioned on the fact that a foreshock sequence leads to a burst of seismic activity

accompanying the mainshock, we find that the foreshock energy distribution is modified

upon the approach of the mainshock, and develops a bump in its tail. This result may

explain both the often reported decrease in measured b-value before large earthquakes and

the smaller b-value obtained for foreshocks compared with other earthquakes.

– The modification of the Gutenberg-Richter distribution for foreshocks is shown analytically

to take the shape of an additive correction to the standard power law, in which the new

term is another power law with exponent β − a. The amplitude of this additive power

law term also exhibits a kind of inverse Omori law acceleration upon the approach to the

mainshock, with a different exponent. These predictions are accurately substantiated by

our numerical simulations.

– When looking at the spatial distribution of foreshocks, we find that the foreshocks mi-

grate towards the mainshock as the time increases. This migration is driven by the same

mechanism underlying the aftershock diffusion [Helmstetter and Sornette, 2002b].

Our presentation is organized as follows. In the next section, we define the ETAS model,

recall how the average rate of seismicity can be obtained formally from a Master equation and

describe how to deal with fluctuations decorating the average rate. Section 10.3 provides the

full derivation of the inverse Omori law, first starting with an intuitive presentation followed

by a more technical description. Section 10.4 contains the derivation of the modification of the

distribution of foreshock energies. Section 10.5 describes the migration of foreshock activity.
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Section 10.6 is a discussion of how our analytical and numerical results allows us to rationalize

previous empirical observations. In particular, we show that foreshocks are not just statistical

creatures but are genuine forerunners of large shocks that can be used to obtain significant

prediction gains. Section 10.7 concludes.

10.2 Definition of the ETAS model and its master equation for

the renormalized Omori law

Definitions

The ETAS model was introduced by Kagan and Knopoff [1981, 1987] and Ogata [1988] to

describe the temporal and spatial clustering of seismicity and has since been used by many other

workers with success to describe real seismicity. Its value stems from the remarkable simplicity

of its premises and the small number of assumptions.

Contrary to the usual definition of aftershocks, the ETAS model does not impose an after-

shock to have an energy smaller than the mainshock. This way, the same underlying physical

mechanism is assumed to describe both foreshocks, aftershocks and mainshocks. The abandon

of the ingrained concept (in many seismologists’ mind) of the distinction between foreshocks,

aftershocks and mainshocks is an important step towards a simplification and towards an un-

derstanding of the mechanism underlying earthquake sequences. Ultimately, this parsimonious

assumption will be validated or falsified by the comparison of its prediction with empirical data.

In particular, the deviations from the predictions derived from this assumption will provide

guidelines to enrich the physics.

In order to avoid problems arising from divergences associated with the proliferation of small

earthquakes, the ETAS model assumes the existence of a magnitude cut-off m0, or equivalently

an energy cut-off E0, such that only earthquakes of magnitude m ≥ m0 are allowed to give

birth to aftershocks larger than m0, while events of smaller magnitudes are lost for the epidemic

dynamics. We refer to [Helmstetter and Sornette, 2002a] for a justification of this hypothesis

and a discussion of ways to improve this description.

The ETAS model assumes that the seismicity rate (or “bare Omori propagator”) at a time

between t and t + dt, resulting in direct “lineage” (without intermediate events) from an earth-

quake i that occurred at time ti, is given by

φEi(t − ti) = ρ(Ei) Ψ(t − ti) , (10.1)

where Ψ(t) is the normalized waiting time distribution (that we shall take later given by (10.4)

and ρ(Ei) is defined by

ρ(Ei) = k (Ei/E0)a (10.2)

gives the average number of daughters born from a mother with energy Ei ≥ E0. This term
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ρ(Ei) accounts for the fact that large mothers have many more daughters than small mothers

because the larger spatial extension of their rupture triggers a larger domain. Expression (10.2)

results in a natural way from the assumption that aftershocks are events influenced by stress

transfer mechanisms extending over a space domain proportional to the size of the mainshock

rupture [Helmstetter, 2002]. Indeed, using the well-established scaling law relating the size of

rupture and the domain extension of aftershocks [Kagan, 2002] to the release energy (or seismic

moment), and assuming a uniform spatial distribution of aftershocks in their domain, expression

(10.2) immediately follows (it still holds if the density of aftershocks is slowly varying or power

law decaying with the distance from the mainshock).

The value of the exponent a controls the nature of the seismic activity, that is, the relative

role of small compared to large earthquakes. Few studies have measured a in seismicity data

[Yamanaka and Shimazaki, 1990 ; Guo and Ogata, 1997 ; Helmstetter, 2002]. This parameter a is

often found close to the β exponent of the energy distribution [e.g., Yamanaka and K. Shimazaki,

1990] or fixed arbitrarily equal to β [e.g., Kagan and Knopoff, 1987 ; Reasenberg and Jones, 1989 ;

Felzer et al., 2001]. For a large range of mainshock magnitudes and using a more sophisticated

scaling approach, Helmstetter [2002] found a = 0.8β for the Southern California seismicity. If

a < β, small earthquakes, taken together, trigger more aftershocks than larger earthquakes.

In contrast, large earthquakes dominate earthquake triggering if a ≥ β. This case a ≥ β has

been studied analytically in the framework of the ETAS model by Sornette and Helmstetter

[2002] and has been shown to eventually lead to a finite time singularity of the seismicity rate.

Previous studies performed in this regime a ≥ β have not found this result because of their focus

on limited time series restricted to end prior to the predicted singularity. This explosive regime

cannot however describe a stationary seismic activity. In this paper, we will therefore consider

only the case a < β.

An additional space-dependence can be added to φEi(t − ti) [Helmstetter and Sornette,

2002b] : when integrated over all space, the prediction of the space-time model retrieves those of

the pure time-dependent model. Since we are interested in the inverse Omori law for foreshocks,

which is a statement describing only the time-dependence, it is sufficient to use the time-only

version of the ETAS model for the theory.

The model is complemented by the Gutenberg-Richter law which states that each aftershock

i has an energy Ei ≥ E0 chosen according to the density distribution

P (E) =
βEβ

0

E1+β
, with β  2/3 . (10.3)

P (E) is normalized
∫∞
E0

dE P (E) = 1.

In view of the empirical observations that the observed rate of aftershocks decays as a power

law of the time since the mainshock, it is natural to choose the “bare” modified Omori law (or

the normalized waiting time distribution between events) Ψ(t− ti) in (10.1) also as a power law

Ψ(t − ti) =
θ cθ

(t − ti + c)1+θ
. (10.4)
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Ψ(t − ti) is the rate of daughters of the first generation born at time t − ti from the mother-

mainshock. Here, c provides an “ultra-violet” cut-off which ensures the finiteness of the number

of aftershocks at early times. It is important to recognize that the observed aftershock decay

rate may be different from Ψ(t − ti) due to the effect of aftershocks of aftershocks, and so on

[Sornette and Sornette, 1999a ; Helmstetter and Sornette, 2002a]

The ETAS model is a “branching” point-process [Harris, 1963 ; Daley and Vere-Jones, 1988]

controlled by the key parameter n defined as the average number (or “branching ratio”) of

daughter-earthquakes created per mother-event, summed over all times and averaged over all

possible energies. This branching ratio n converges to a finite value for θ > 0 and for a < β for

which it is equal to

n ≡
∫ ∞

0
dt

∫ ∞

E0

dE P (E) φE(t) =
kβ

β − a
. (10.5)

The normal regime corresponds to the subcritical case n < 1 for which the seismicity rate decays

after a mainshock to a constant background (in the case of a steady-state source) decorated by

fluctuations in the seismic rate.

The total rate of seismicity λ(t) at time t is given by

λ(t) = s(t) +
∑

i | ti≤t

φEi(t − ti) (10.6)

where φEi(t−ti) is defined by (10.1). The sum
∑

i | ti≤t is performed over all events that occurred

at time ti ≤ t, where Ei is the energy of the earthquake that occurred at ti. s(t) is a stationary

Poisson background stemming from plate tectonics and provides a driving source to the process.

The second term in the right-hand-side of expression (10.6) is nothing but the sum of (10.1)

over all events preceding time t.

Note that there are three sources of stochasticity underlying the dynamics of λ(t) : (i) the

source term s(t) often taken as Poissonian, (ii) the random occurrences of preceding earthquakes

defining the time sequence {ti} and (iii) the draw of the energy of each event according to the

distribution P (E) given by (10.3). Knowing the seismic rate λ(t) at time t, the time of the

following event is then determined according to a non-stationary Poisson process of conditional

intensity λ(t), and its magnitude is chosen according to the Gutenberg-Richter distribution

(10.3).

The Master equation for the average seismicity rate

It is useful to rewrite expression (10.6) formally as

λ(t) = s(t)+

∫ t

−∞
dτ

∫ +∞

E0

dE φE(t − τ)
∑

i | ti≤t

δ(E − Ei) δ(τ − ti) , (10.7)



216 Mainshocks are aftershocks of conditional foreshocks

where δ(u) is the Dirac distribution. Taking the expectation of (10.7) over all possible statistical

scenarios (so-called ensemble average), we obtain the following Master equation for the first

moment or statistical average N(t) of λ(t) [Helmstetter and Sornette, 2002a]

N(t) = s(t) +
∫ t

−∞
dτ φ(t − τ) N(τ) , (10.8)

where

φ(t) ≡
∫ ∞

E0

dE′ P (E′) φE′(t) . (10.9)

By virtue of (10.5),
∫∞
0 φ(t)dt = n. We have used the definitions

N(t) = 〈λ(t)〉 = 〈
∑
ti≤t

δ(t − ti)〉 , (10.10)

and

P (E) = 〈δ(E − Ei)〉 , (10.11)

where the brackets 〈.〉 denotes the ensemble average. The average is performed over different

statistical responses to the same source term s(t), where s(t) can be arbitrary. N(t)dt is the

average number of events occurring between t and t + dt of any possible energy.

The essential approximation used to derive (10.8) is that

〈ρ(Ei)δ(E − Ei) δ(τ − ti)〉 = 〈ρ(Ei)δ(E − Ei)〉 〈δ(τ − ti)〉 (10.12)

in (10.7). In words, the fluctuations of the earthquake energies can be considered to be decoupled

from those of the seismic rate. This approximation is valid for a < β/2, for which the random

variable ρ(Ei) has a finite variance. In this case, any coupling between the fluctuations of the

earthquake energies and the instantaneous seismic rate provide only sub-dominant corrections to

the equation (10.8). For a > β/2, the variance of ρ(Ei) is mathematically infinite or undefined as

ρ(Ei) is distributed according to a power law with exponent β/a < 2 (see chapter 4.4 of [Sornette,

2000]). In this case, the Master equation (10.8) is not completely correct as an additional term

must be included to account for the dominating effect of the dependence between the fluctuations

of earthquake energies and the instantaneous seismic rate.

Equation (10.8) is a linear self-consistent integral equation. In the presence of a stationary

source of average level 〈s〉, the average seismicity in the sub-critical regime is therefore

〈N〉 =
〈s〉

1 − n
. (10.13)

This result (10.13) shows that the effect of the cascade of aftershocks of aftershocks and so on

is to renormalize the average background seismicity 〈s〉 to a significantly higher level, the closer

n is to the critical value 1.

In order to solve for N(t) in the general case, it is convenient to introduce the Green function

or “dressed propagator” K(t) defined as the solution of (10.8) for the case where the source term
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is a delta function centered at time t = 0 corresponding to a single mainshock :

K(t) = δ(t) +
∫ t

0
dτ φ(t − τ) K(τ) . (10.14)

Physically, K(t) is nothing but the “renormalized” Omori law quantifying the fact that the event

at t = 0 started a sequence of aftershocks which can themselves trigger secondary aftershocks

and so on. The cumulative effect of all the possible branching paths of activity gives rise to

the net seismic activity K(t) triggered by the initial event at t = 0. Thus, the decay rate of

aftershocks following a mainshock recorded in a given earthquake catalog is described by K(t),

while Ψ(t) defined by (10.4) is a priori unobservable (see however [Helmstetter and Sornette,

2002a]).

This remark is important because it turns out that the renormalized Omori law K(t) may be

very different from the bare Omori law Ψ(t−ti), because of the effect of the cascade of secondary,

tertiary, ..., events triggered by any single event. The behavior of the average renormalized

Omori law K(t) has been fully classified in [Helmstetter and Sornette, 2002a] (see also [Sornette

and Sornette, 1999a]) : with a single value of the exponent 1 + θ of the “bare” propagator

Ψ(t) ∼ 1/t1+θ defined in (10.4), one obtains a continuum of apparent exponents for the global

rate of aftershocks. This result may account for the observed variability of Omori exponent p

in the range 0.5 − 1.5 or beyond, as reported by many workers [Utsu et al., 1995]. Indeed, the

general solution of (10.14) in the subcritical regime n < 1 is

K(t) ∼ 1/t1−θ , for c < t < t∗ ,

K(t) ∼ 1/t1+θ , for t > t∗ , (10.15)

where

t∗ ≈ c(1 − n)−1/θ . (10.16)

Thus, in practice, the apparent p exponent can be found anywhere between 1 − θ and 1 + θ.

This behavior (10.15) is valid for a < β/2 for which, as we explained already, the fluctuations

of the earthquake energies can be considered to be decoupled from those of the seismic rate.

In the case a > β/2, this approximation is no more valid and the problem is considerably

more difficult due to the coupling between the fluctuations in the sequence of earthquake energies

and the seismic rate. We have not been able to derive the detailed solution of the problem in

this regime but nevertheless can predict that the apparent exponent for the dressed propagator

K(t) should change continuously from 1 − θ to 1 + θ as a increases towards β from below. The

argument goes as follows. Starting from (10.7), it is clear that the larger a is, the larger is the

dependence between the times of occurrences contributing to the sum over δ(τ − ti) and the

realizations of corresponding earthquake energies contributing to the sum over δ(E − Ei). This

is due to the fact that very large earthquakes trigger many more aftershocks for large a, whose

energies influence subsequently the time of occurrences of following earthquakes, and so on. The

larger is the number of triggered events per shock, the more intrically intertwined are the times
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of occurrence and energies of subsequent earthquakes. This dependence can be captured by the

following ansatz, which corrects (10.12) :

〈ρ(Ei)δ(E − Ei) δ(τ − ti)〉 ≈

〈ρ(Ei)δ(E − Ei)〉 〈δ(τ − ti)〉 + f(a)[δ(τ − ti)]2 , (10.17)

where f(a) = 0 for a < β/2 and increases with a > β/2. The quadratic term just expresses

the dependence between ρ(Ei)δ(E − Ei) and δ(τ − ti), i.e., ρ(Ei)δ(E − Ei) has a contribution

proportional to δ(τ − ti). Indeed, recall that if two random variables X and Y are (linearly)

correlated, this means that one can regress one with respect to the other and write Y = fX +x,

where f is simply related to the correlation coefficient between X and Y and x is an idiosyncratic

noise uncorrelated with X. Then,

〈XY 〉 = f〈X2〉 + 〈X〉 〈x〉 . (10.18)

The mechanism leading to the quadratic term 〈X2〉 is at the source of [δ(τ − ti)]2 in (10.17).

This new contribution leads to a modification of (10.14) according to

K(t) ∼
∫ t

0
dτ φ(t − τ) K(τ) + f(a)

∫ t

0
dτ φ(t − τ) [K(τ)]2 . (10.19)

Dropping the second term in the right-hand-side of (10.19) recovers (10.14). Dropping the first

term in the right-hand-side of (10.19) yields the announced result K(t) ∝ 1/t1+θ even in the

regime t < t∗. We should thus expect a cross-over from K(t) ∝ 1/t1−θ to K(t) ∝ 1/t1+θ as a

increases from β/2 to β. This prediction is verified accurately by our numerical simulations.

Once we know the full (ensemble average) seismic response K(t) from a single event, the

complete solution of (10.8) for the average seismic rate N(t) under the action of the general

source term s(t) is

N(t) =
∫ t

−∞
dτ s(τ) K(t − τ) . (10.20)

Expression (10.20) is nothing but the theorem of Green functions for linear equations with source

terms [Morse and Feshbach, 1953]. Expression (10.20) reflects the intuitive fact that the total

seismic activity at time t is the sum of the contributions of all the external sources at all earlier

times τ which convey their influence up to time t via the “dressed propagator” (or renormalized

Omori law) K(t − τ). K(t − τ) is the relevant kernel quantifying the influence of each source

s(τ) because it takes into account all possible paths of seismicity from τ to t triggered by each

specific source.

Deviations from the average seismicity rate

Similarly to the definition (10.14) of the average renormalized propagator K(t), let us in-

troduce the stochastic propagator κ(t), defined as the solution of (10.6) or (10.7) for the source
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term s(t) = δ(t). The propagator κ(t) is thus the seismicity rate initiated by a single earthquake

at the origin of times, which takes into account the specific sequence of generated earthquakes.

Since the earthquakes are generated according to a probabilistic (generalized Poisson) process,

repeating the history leads in general to different realizations. κ(t) is thus fundamentally reali-

zation specific and there are as many different κ(t)’s as there are different earthquake sequences.

In other words, κ(t) is a stochastic function. Obviously, 〈κ(t)〉 ≡ K(t), that is, its ensemble

average retrieves the average renormalized propagator.

From the structure of (10.6) or (10.7) which are linear sums over events, an expression similar

to (10.20) can be written for the non-average seismic rate with an arbitrary source term s(t) :

λ(t) =
∫ t

−∞
dτ s(τ) κ{τ}(t − τ) , (10.21)

where the subscript {τ} in the stochastic kernel κ{τ}(t − τ) captures the fact that there is

a different stochastic realization of κ for each successive source. Taking the ensemble average

of (10.21) recovers (10.20). The difference between the stochastic kernel κ{τ}(t − τ), the local

propagator φE(τ) and the renormalized propagator K(τ) is illustrated on Figure 10.1 for a

numerical simulation of the ETAS model.

We show in the Appendix A that λ(t) can be expressed as

λ(t) = N(t) +
∫ t

−∞
dτ η(τ) K(t − τ) , (10.22)

where η(τ) is a stationary noise which can be suitably defined. This is the case because the

fluctuations δP (E) of the Gutenberg-Richter law and of the source s(t) are stationary processes,

and because the fluctuations of δκ are proportional to K(t). The expression of η(τ) can be

determined explicitly in the case where the fluctuations of the energy distribution P (E) dominate

the fluctuations of the seismicity rate κ(τ) (see Appendix A).

10.3 Derivation of the inverse Omori law and consequences

Synthesis of the results

The normal regime in the ETAS model corresponds to the subcritical case n < 1 for which

the seismicity rate decays on average after a mainshock to a constant background (in the case

of a steady-state source) decorated by fluctuations. How is it then possible in this framework

to get an accelerating seismicity preceding a large event ? Conceptually, the answer lies in the

fact that when one defines a mainshock and its foreshocks, one introduces automatically a

conditioning (in the sense of the theory of probability) in the earthquake statistics. As we shall

see, this conditioning means that specific precursors and aftershocks must precede and follow

a large event. In other words, conditioned on the observation of a large event, the sequence of

events preceding it cannot be arbitrary. We show below that it in fact follows the inverse Omori
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Fig. 10.1 – An example of a realization of the ETAS model, which illustrates the differences

between the observed seismicity rate κ(t) (noisy solid line), the average renormalized (or dressed)

propagator K(t) (solid line), and the local propagator φE(t) (dashed line). The magnitude of

each earthquake are shown in panel (b). This aftershock sequence has been generated using

the ETAS model with parameters n = 1, a = 0.8β, θ = 0.2, m0 = 2 and c = 0.001 day,

starting from a mainshock of magnitude M = 7 at time t = 0. The global aftershock rate κ(t) is

significantly higher than the direct (or first generation) aftershock rate, described by the local

propagator φE(t). The global aftershock rate κ(t) decreases on average according to the dressed

propagator K(t) ∼ 1/t1−θ, which is significantly slower than the local propagator φ(t) ∼ 1/t1+θ.

The best fit to the observed seismicity rate κ(t) is indistinguishable from the average dressed

propagator K(t). Large fluctuations of the seismicity rate corresponds to the occurrence of large

aftershocks, which trigger their own aftershock sequence. Third-generation aftershocks can be

easily observed.
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Fig. 10.2 – Typical foreshock (a) and aftershock (b) sequences generated by the ETAS model, for

mainshocks of magnitude M = 5.5. We show 11 individual sequences in each panel. The solid black line

represents the mean seismicity rate before and after a mainshock of magnitude M = 5.5, estimated by

averaging over 250 sequences. The synthetic catalogs have been generated using the parameters n = 1,

θ = 0.2, and a = 0.5β, with a minimum magnitude threshold m0 = 2. In contrast with the direct Omori

law, which is clearly observed after any large mainshock, there are large fluctuations from one foreshock

sequence to another one, and the inverse Omori law (with accelerating seismicity) is only observed when

averaging over a large number of foreshock sequences.

law in an average statistical sense. Figure 10.2 presents typical realizations of foreshock and

aftershock sequences in the ETAS model as well as the direct and inverse Omori law evaluated by

averaging over many realizations. The deceleration of the aftershock activity is clearly observed

for each individual sequence as well as in their average. Going to backward time to compare with

foreshocks, the acceleration of aftershock seismicity when approaching the main event is clearly

visible for each sequence. In contrast, the acceleration of foreshock activity (in forward time) is

only observable for the ensemble average while each realization exhibits large fluctuations with

no clearly visible acceleration. This stresses the fact that the inverse Omori law is a statistical

statement, which has a low probability to be observed in any specific sequence.

Intuitively, it is clear that within the ETAS model, in order for an event to occur, one needs

a relatively large increase both in seismicity rate and in magnitudes of the earthquakes, so that

this increase of seismicity can trigger an event with a non-negligible probability. Indeed, within

the ETAS model, all events are the result of the sum of the background seismicity (due to

tectonic forces) and of all other earthquakes that can trigger their aftershocks.

How does the condition that an earthquake sequence ends at a mainshock impact on the
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seismicity prior to that mainshock ? How does this condition create the inverse Omori law ?

Since earthquake magnitudes are independently drawn from the Gutenberg-Richter law, the

statistical qualification of a mainshock, that we place without loss of generality at the origin of

time, corresponds to imposing an anomalous burst of seismic activity λ(0) = 〈N〉 + λ0 at t = 0

above its average level 〈N〉 given by (10.13).

The question then translates into what is the path taken by the noise η(τ) in (10.22) for

−∞ < τ < 0 that may give rise to this burst λ0 of activity. The solution is obtained from the key

concept that the set of η(τ)’s for −∞ < τ < 0 is biased by the existence of the conditioning, i.e.,

by the large value of λ(0) = 〈N〉+λ0 at t = 0. This does not mean that there is an unconditional

bias. Rather, the existence of a mainshock requires that a specific sequence of noise realizations

must have taken place to ensure its existence. This idea is similar to the well-known result that

an unbiased random walk W (t) with unconditional Gaussian increments with zero means sees

its position take a non-zero expectation

〈W (τ)〉|c = [W (t) − W (0)]
τ

t
, (10.23)

if one knows the beginning W (0) and the end W (t) position of the random walk, while the

unconditional expectation 〈W (τ)〉 is identically zero. Similarly, the conditional increment from

τ to τ + dτ of this random walk become not non-zero and equal to (in non-rigorous notation)

dτ
W (t) − W (0)

t
, (10.24)

in contrast with the zero value of the unconditional increments.

In the ETAS model which is a marked point process, the main source of the noise on λ(t) is

coming from the “marks”, that is, the energies drawn for each earthquake from the Gutenberg-

Richter power law distribution (10.3). Expression (10.2) shows that the amplitude ητ of the

fluctuations in the seismic rate is proportional to Ea
τ , where Eτ is the energy of a mother-

earthquake occurring at time τ . Since the energies are distributed according to the power law

(10.3) with exponent β, ητ ∝ Ea
τ is distributed according to a power law with exponent m = β/a

(see for instance chapter 4.4 of [Sornette, 2000]).

We first study the subcritical regime n < 1 for times tc − t < t∗, where t∗ is defined by

(10.16). Two cases must then be considered.

– For a < β/2, m > 2, the variance and covariance of the noise ητ exist and one can use

conditional covariances to calculate conditional expectations. We show below that the

inverse Omori law takes the form

E[λ(t)|λ0] ∝ λ0

(tc − t)1−2θ
, (10.25)

that is, p′ = 1 − 2θ.

– for a ≥ β/2, m = β/a ≤ 2 and the variance and covariance of ητ do not exist : one needs

a special treatment based on stable distributions. In this case, neglecting the coupling
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between the fluctuations in the earthquake energies and the seismic rate, we find that the

inverse Omori law takes the form

E[λ(t)|λ0] ∝ λ0

(tc − t)1−mθ
. (10.26)

Taking into account the dependence between the fluctuations in the earthquake energies

and the seismic rate, the exponent p′ progressively increases from 1−2θ towards the value

1 + θ of the bare propagator as a goes from β/2 to β (see figure 10.6). The increase of p′

is thus faster than the dependence 1 − mθ predicted by (10.26).

In the large times limit tc − t > t∗ (far from the mainshock) of the subcritical regime, we also

obtain an inverse Omori law which takes the form

E[λ(t)|λ0] ∝ λ0

(tc − t)1+θ
, for a < β/2 (10.27)

and

E[λ(t)|λ0] ∝ λ0

(tc − t)1+(m−1)θ
, for β/2 ≤ a ≤ β . (10.28)

The direct and inverse Omori laws are clearly observed in numerical simulations of the ETAS

model, when stacking many sequences of foreshocks and aftershocks, for various mainshock

magnitudes (Figures 10.3 and 10.4). Our main result shown in Figure 10.3 is that, due to

conditioning, the inverse Omori law is different from the direct Omori law, in that the exponent

p′ of the inverse Omori law is in general smaller than the exponent p of the direct Omori law.

Another fundamental difference between aftershocks and foreshocks found in the ETAS model is

that the number of aftershocks increases as a power Ea of the mainshock energy E as given by

(10.2), whereas the number of foreshocks of type II is independent of the mainshock energy (see

Figures 10.3 and 10.4). Because in the ETAS model the magnitude of each event is independent

of the magnitude of the triggering events, and of the previous seismicity, the rate of seismicity

increases on average according to the inverse Omori law before any earthquake, whatever its

magnitude. beginfigure

The number of foreshocks of type I increases with the mainshock magnitude, for small and

intermediate mainshock magnitudes and saturates to the level of foreshocks of type II for large

mainshocks because the selection/condition acting of those defined foreshocks becomes less and

less severe as the magnitude of the mainshock increases (see Figure 10.5). The conditioning

that foreshocks of type I must be smaller than their mainshock induces an apparent increase

of the Omori exponent p′ as the mainshock magnitude decreases. The predictions (10.15) and

(10.25) on the p and p′-value of type II foreshocks are well-verified by numerical simulations of

the ETAS model up to a/β ≤ 0.5, as presented on Figure 10.6. However, for a/β > 0.5, both p

and p′ are found larger than predicted by (10.15) and (10.26) respectively, due to the coupling

between the fluctuations in the earthquake energies and those of the seismic rate. This coupling

occurs because the variance of the number ρ(E) of direct aftershocks of an earthquake of energy

E is unbounded for a > β/2, leading to strong burst of seismic activity coupled with strong
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Fig. 10.3 – Direct and inverse Omori law for a numerical simulation with a = 0.5β and θ = 0.2 showing

the two exponents p = 1−θ for aftershocks and p′ = 1−2θ for foreshocks of type II. The rate of aftershocks

(crosses) and foreshocks (circles) per mainshock, averaged over a large number of sequences, is shown as a

function of the time |tc−t| to the mainshock, for different values of the mainshock magnitude between 1.5

and 5, with a step of 0.5. The symbol size increases with the mainshock magnitude. The truncation of the

seismicity rate for small times |tc−t|  0.001 is due to the characteristic time c = 0.001 in the bare Omori

propagator Ψ(t), and is the same for foreshocks and aftershocks. The number of aftershocks increases

with the mainshock energy as N  Ea, whereas the number of foreshocks of type II in independent of

the mainshock energy.

fluctuations of the earthquake energies. In this regime, expression (10.19) shows that p changes

continuously between 1− θ for a/β = 0.5 to 1 + θ for a = β in good agreement with the results

of the numerical simulations. In this case a ≥ β/2, the exponent p′ is also observed to increase

between p′ = 1 − 2θ for a = β/2 to p′ = 1 + θ for a = β, as predicted below.

The dissymetry between the inverse Omori law for foreshocks and the direct Omori law

(10.15) for aftershocks stems from the fact that, for foreshocks, one observes a seismic rate

conditional on a large rate at the time tc of the mainshock while, for the aftershocks, one

observes the direct response K(t) to a single large shock. The later effect stems from the term

ρ(E) given by (10.2) in the bare Omori propagator which ensures that a mainshock with a

large magnitude triggers aftershocks which dominates overwhelmingly the seismic activity. In
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Fig. 10.4 – Same as Figure 10.3 for a = 0.8β, showing the larger relative ratio of foreshocks to aftershocks

compared to the case a = 0.5β.

the special case where one take the exponent a = 0 in (10.2), a mainshock of large magnitude has

no more daughters than any other earthquake. As a consequence, the observed Omori law stems

from the same mechanism as for the foreshock and the increasing foreshock activity (10.25) gives

the same parametric form for the aftershock decay, with tc − t replaced by t − tc (this is for

instance obtained through the Laplace transform of the seismic rate). This gives the exponent

p = p′ = 1− 2θ for a = 0 as for the foreshocks, but the number of aftershocks is still larger than

the number of foreshocks. This result is born out by our numerical simulations (not shown).

These results and the derivations of the inverse Omori law make clear that mainshocks are

more than just the aftershocks of their foreshocks, as sometimes suggested [Shaw, 1993 ; Jones

et al., 1999]. The key concept is that all earthquakes are preceded by some seismic activity and

may be seen as the result of this seismic activity. However, on average, this seismic activity

must increase to be compatible statistically with the occurrence of the main shock : this is an

unavoidable statistical certainty with the ETAS model, that we derive below. The inverse Omori

law is fundamentally a conditional statistical law which derives from a double renormalization

process : (1) the renormalization from the bare Omori propagator Ψ(t) defined by (10.4) into the

renormalized or dressed propagator K(t) and (2) the conditioning of the fluctuations in seismic

activity upon a large seismic activity associated with the mainshock. In summary, we can state
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Fig. 10.5 – Foreshock seismicity rate per mainshock for foreshocks of type II (circles) and foreshocks of

type I (crosses), for a numerical simulation with n = 1, c = 0.001, θ = 0.2, a = 0.5β and m0 = 2. For

foreshocks of type I, we have considered mainshock magnitudes M ranging from 3 to 6. We have rejected

from the analysis of foreshocks of type I all mainshocks which have been preceded by a larger event in

a time interval extending up to t = 1000 days preceding the mainshock. The rate of foreshocks of type

II is independent on the mainshock magnitude M , while the rate of foreshocks of type I increases with

M . For large mainshock magnitudes, the rate of foreshocks of type I is very close to that of foreshocks

of type II. The conditioning that foreshocks of type I must be smaller than their mainshock induces an

apparent increase of the Omori exponent p′ as the mainshock magnitude decreases. It induces also an

upward bending of the seismicity rate at times t ≈ 1000, especially for the small magnitudes.
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that mainshocks are aftershocks of conditional foreshocks. We stress again that the statistical

nature of foreshocks does not imply that there is no information in foreshocks on future large

earthquakes. As discussed below, foreshocks are genuine forerunners of large shocks.

The inverse Omori law ∼ 1/t1−2θ for a < β/2

Let us call X(t) = λ(t) − N(t) given by (10.22) and Y = λ(0) − N(0). It is a standard

result of stochastic processes with finite variance and covariance that the expectation of X(t)

conditioned on Y = λ0 is given by [Jacod and Shiryaev, 1987]

E[X(t)|Y = λ0] = λ0
Cov(X(t), Y )

E[Y 2]
, (10.29)

where E[Y 2] denotes the expectation of Y 2 and Cov(X(t), Y ) is the covariance of X and Y .

Expression (10.29) recovers the obvious result that E[X(t)|Y = λ0] = 0 if X and Y are uncor-

related.

Using the continuous limit in which the noise η(τ) converges to a centered Gaussian noise
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Fig. 10.6 – Exponents p′ and p of the inverse and direct Omori laws obtained from numerical simulations

of the ETAS model. The estimated values of p′ (circles) for foreshocks and p (crosses) for aftershocks are

shown as a function of θ in the case α = 0.5 (a), and as a function of a/β in the case θ = 0.2 (b). For a/β

not too large, the values of p′ for foreshocks are in good agreement with the predictions p′ = 1 − 2θ for

a/β < 0.5 (10.32) and p′ = 1 − β θ/a for a/β > 0.5 (10.41). The theoretical values of p′ are represented

with dashed lines in each plot, and the theoretical prediction for p is shown as solid lines. For a/β not too

large, the measured exponent for aftershocks is in good agreement with the prediction p = 1− θ (10.15).

For a/β > 0.5, both p and p′-values are larger than the predictions (10.15) and (10.41). For a/β close to

1, both p and p′ are found close to the exponent 1 + θ = 1.2 of the bare propagator ψ(t). See text for an

explanation.
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by the virtue of the central limit theorem, we obtain

Cov(X(t), Y ) =
∫ t

−∞
dτ K(t − τ) K(−τ) , (10.30)

and

E[Y 2] =
∫ 0

−∞
dτ [K(−τ)]2 . (10.31)

E[Y 2] is thus a constant while, for |t| < t∗ where t∗ is defined in (10.16), Cov(X(t), Y ) ∼ 1/|t|1−2θ.

Generalizing to a mainshock occurring at an arbitrary time tc, this yields the inverse Omori law

E[λ(t)|λ(tc) = 〈N〉 + λ0] = 〈N〉 + C
λ0

(tc − t)1−2θ
, (10.32)

where C is a positive numerical constant.

Expression (10.32) predicts an inverse Omori law for foreshocks in the form of an average

acceleration of seismicity proportional to 1/(tc−t)p
′
with the inverse Omori exponent p′ = 1−2θ,

prior to a mainshock. This exponent p′ is smaller than the exponent p = 1−θ of the renormalized

propagator K(t) describing the direct Omori law for aftershocks. This prediction is well-verified

by numerical simulations of the ETAS model shown in Figure 10.3.

As we pointed out in the introduction, Shaw [1993] derived the relationship p′ = 2p − 1,

which yields p′ = 1 − 2θ for p = 1 − θ, based on a clever interestingly incorrect reasoning that

we now clarify. Actually, there are two ways of viewing his argument. The most straightforward

one used by Shaw himself consists in considering a single aftershock sequence starting at time

0 from a large mainshock. Let us consider two aftershocks at time t − τ and t. Forgetting any

constraint on the energies, the earthquake at time t − τ can be viewed as a foreshock of the

earthquake at time t. Summing over all possible positions of these two earthquakes at fixed time

separation τ then amounts to constructing a kind of foreshock count which obeys the equation∫ +∞

0
dt K(t − τ) K(t) , (10.33)

where K(t) is the number of aftershocks at time t. This integral (10.33) recovers equation (12)

of [Shaw, 1993]. If K(t) ∼ 1/tp, this integral predicts a dependence 1/τ2p−1 for the effective

foreshock activity. This derivation shows that the prediction p′ = 2p − 1 results solely from the

counting of pairs at fixed time intervals in an aftershock sequence. It is a pure product of the

counting process.

We can also view this result from the point of view of the ETAS model. In the language of

the ETAS model, Shaw formula (12) uses the concept that a mainshock is an aftershock of a

cascade of aftershocks, themselves deriving from an initial event. To implement this idea, he uses

(what corresponds to) the dressed propagator K(t) for the probability of an aftershock resulting

from the initial event and also for the rate of mainshocks deriving from an aftershock of the

initial event. From our previous studies [Sornette and Sornette, 1999a ; Helmstetter and Sornette,

2002a], one can see that this corresponds to an illicit double counting or double renormalization.
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This danger of double counting is illustrated by comparing the formulas (10.8, 10.14) with

(10.20) : either the direct tectonic source of seismicity s(t) impacts in future seismicity via the

renormalized or dressed propagator as in (10.20), or we can count all past seismic activity as

in (10.8, 10.14), but then they must be accounted for in the future seismicity only through the

bare propagator. What is then the reason for the correct value derived by Shaw [1993] ? It turns

out that his double counting recovers the mathematical form resulting from the effect of the

conditioning on the source term leading to s(t) ∼ K(t) valid for a ≤ β/2 as derived below in

(10.37). This proportionality s(t) ∼ K(t) is physically at the origin of (10.30) leading to our

formula (10.30) at the origin itself of the inverse Omori law, which takes the same form as the

expression (12) in [Shaw, 1993]. The limited value of this derivation (10.33) is also made clear

by its failure for a > β/2, as already explained.

The inverse Omori law ∼ 1/t1−θβ/a for a ≥ β/2

Expression (10.22) defines the fluctuating part X(t) = λ(t)−N(t) of the seismic rate as a sum

of random variables η(τ) with power law distributions weighted by the kernel K(t − τ). These

random variables η(τ), which are mainly dominated by the fluctuations in event magnitudes but

also receive contributions from the intermittent seismic rate, are conditioned by the realization

of a large seismicity rate

X(0) = λ0 =
∫ 0

−∞
dτ η(τ) K(−τ) , (10.34)

which is the correct statistical implementation of the condition of the existence of a large shock at

t = 0. Since the conditioning is performed on X(0), that is, upon the full set of noise realizations

acting up to time t = 0, the corresponding conditional noises up to time t < 0 contribute all to

E[X(t)|X(0) = λ0]t<0 by their conditional expectations as

E[X(t)|X(0) = λ0]t<0 =
∫ t

−∞
dτ E[η(τ)|X(0)] K(t − τ) . (10.35)

In Appendix B, it is shown that, for identically independently distributed random variables

xi distributed according to a power law with exponent m = β/a ≤ 2 and entering the sum

SN =
N∑

i=1

Kixi (10.36)

where the Ki are arbitrary positive weights, the expectation E[xi|SN ] of xi conditioned on the

existence of a large realization of SN is given by

E[xi|SN ] ∝ SN Km−1
i . (10.37)

To apply this result to (10.35), it is convenient to discretize it. Some care should however

be exercised in this discretization (1) to account for the expected power law acceleration of
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E[X(t)|X(0) = λ0] up to t = 0 and (2) to discretize correctly the random noise. We thus write∫ 0

−∞
dτ η(τ) K(−τ) ≈

∑
τi<0

∫ τi+1

τi

dτ η(τ) K(−τ)

∼
∑
τi<0

(τi+1 − τi) K(−τi) xi , (10.38)

where xi ∼ ηi(τi+1 − τi) is the stationary discrete noise distributed according to a power law

distribution with exponent m = β/a. The factor (τi+1 − τi) ∝ |τi| in front of the kernel K(−τi)

is needed to regularize the discretization in the presence of the power law acceleration up to

time 0. In the notation of Appendix B, (τi+1 − τi) K(−τi) ∝ |τi| K(−τi) ∼ 1/|τi|−θ plays the

role of Ki. We also need an additional factor (τi+1 − τi) to obtain a regularized noise term :

thus, ηi(τi+1 − τi) ∝ ηi|τi| plays the role of xi. This discretization procedure recovers the results

obtained by using (10.29) and the variance and covariance of the continuous integrals for the

case a < β/2 where they are defined. Note that the last expression in equation (10.38) does not

keep track of the dimensions as we are only able to obtain the leading scaling behavior in the

discretization scheme.

Using (10.37), we thus obtain E[ηi|τi| |X(0) = λ0] ∝ λ0

|τi|−θ(m−1) and thus

E[ηi|X(0) = λ0] ∝ λ0

|τi|1−θ(m−1)
. (10.39)

Similarly to (10.38), the discrete equivalent to (10.35) reads

E[X(t)|X(0) = λ0]t<0 (10.40)

≈
∑
τi<t

(τi+1 − τi) K(t − τi) E[ηi|τi| |X(0) = λ0]

∼
∫ t

−∞
dτ

1
|t − τ |1−θ

λ0

|τ |1−θ(m−1)
∼ λ0

|t|1−mθ
,

where we have re-introduced factors τi+1 − τi to reverse to the continuous integral formulation

and have use the definition m = β/a. Expression (10.40) gives the inverse Omori law

E[X(t)|X(tc) = λ0]t<0 ∝ λ0

(tc − t)1−θβ/a
(10.41)

for foreshock activity prior to a mainshock occurring at time tc. Note that the border case

m = β/a = 2 recovers our previous result (10.32) as it should.

The problem is that this derivation does not take into account the dependence between the

fluctuations in the earthquake energies and the seismic rate, which become prominent precisely

in this regime β/2 ≤ a ≤ β. We have not been able yet to fully solve this problem for arbitrary

values a but can nevertheless predict that (10.41) must be replaced by

E[X(t)|X(0) = λ0]t<0 ∝ λ0

|t|1+θ
, for a → β . (10.42)

We follow step by step the reasoning from expression (10.35) to (10.40), with the following

modifications imposed by the regime β/2 ≤ a ≤ β.
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1. The conditional expectations given by (10.37) must be progressively changed into E[xi|SN ] ∝
SN Ki as a → β, due to the coupling between energy and seismic rate fluctuations (leading

to (10.17) via the mechanism (10.18)). Indeed, the coupling between energy and seismic

rate fluctuations gives rise to the dependence E[xi|SN ] ∝ Ki which becomes dominant over

the conditional expectations given by (10.37) for m < 2.

2. As shown with (10.19), the dependence between the fluctuations in the earthquake energies

and the seismic rate leads to change K(t) ∝ 1/t1−θ into K(t) ∝ 1/t1+θ as a → β even in

the regime t < t∗.

This leads finally to changing expressing (10.40) into

E[X(t)|X(0)] ∼
∫ t

−∞
dτ

1
|t − τ + c|1+θ

λ0

|τ |1+θ
, (10.43)

where we have re-introduced the regularization constant c to ensure convergence for τ → t.

Taking into account the contribution ∝ tθ at this upper bound t of the integrand ∝ 1/|t−τ+c|1+θ,

we finally get (10.42). This result is verified numerically in Figure 10.6.

The inverse Omori law in the regime tc − t > t∗

The inverse Omori laws derived in the two preceding sections are valid for tc− t < t∗, that is,

sufficiently close to the mainshock. A similar inverse Omori law is also obtained for tc−t > t∗. In

this goal, we use (10.15) showing that the propagator K(t− τ) ∝ 1/(t− τ)1−θ must be replaced

by K(t − τ) ∝ 1/(t − τ)1+θ for time difference larger than t∗. It would however be incorrect to

deduce that we just have to change −θ into +θ in expressions (10.32) and (10.41), because the

integrals leading to these results behave differently : as in (10.43), one has to re-introduced the

regularization constant c to ensure convergence for τ → t of 1/|t−τ +c|1+θ. The final results are

thus given by (10.32) and (10.41) by changing −θ into +θ and by multiplying these expressions

by the factor tθ stemming from the regularization c. Thus, in the large time limit tc − t > t∗

(far from the mainshock) of the subcritical regime, we also obtain an inverse Omori law which

takes the form (10.27) for a < β/2 and the form (10.28) for β/2 ≤ a ≤ β. These predictions are

in good agreement with our numerical simulations.

10.4 Prediction for the Gutenberg-Richter distribution of fore-

shocks

We have just shown that the stochastic component of the seismic rate can be formulated as

a sum of the form (10.36) of variables xi distributed according to a power law with exponent

m = β/a and weight Ki. It is possible to go beyond the derivation of the conditional expectation

E[xi|SN ] given by (10.37) and obtain the conditional distribution p(xi|SN ) conditioned on a large

value of the realization of SN .
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For this, we use the definition of conditional probabilities

p(xi|SN ) =
p(SN |xi)p(xi)

PN (SN )
, (10.44)

where PN (SN ) is the probability density function of the sum SN . Since p(SN |xi) is simply given

by

p(SN |xi) = PN−1(SN − Kixi) , (10.45)

we obtain

p(xi|SN ) = p(xi)
PN−1(SN − Kixi)

PN (SN )
. (10.46)

This shows that the conditional Gutenberg-Richter distribution p(xi|SN ) is modified by the

conditioning according to the multiplicative correcting factor PN−1(SN − Kixi)/PN (SN ). For

Large N , PN and PN−1 tend to stable Lévy distributions with the same index m but different

scale factors equal respectively to
∑

j Km
j and

∑
j �=i K

m
j . The tail of p(xi|SN ) is thus

p(xi|SN ) ∼
(

1 − Km
i∑

j Km
j

)
1

x1+m
i

1
(1 − (Kixi/SN ))1+m . (10.47)

Since Kixi � SN , we can expand the last term in the right-hand-side of (10.47) and obtain

p(xi|SN ) ∼
(

1 − Km
i∑

j Km
j

)[
1

x1+m
i

+ (1 + m)(Ki/SN )
1

xm
i

]
. (10.48)

Since xi ∼ Ea
i , we use the transformation property on distribution functions p(xi)dXi =

p(Ei)dEi to obtain the pdf of foreshock energies Ei. Going back to the continuous limit in

which Ki/SN ∼ (tc − t)−(1−θ)/(tc − t)−(1−βθ) = 1/(tc − t)(β−1)θ, we obtain the conditional

Gutenberg-Richter distribution for foreshocks

P (E|λ0) ∼ Eβ
0

E1+β
+

C

(tc − t)θ(β−a)/a

Eβ′
0

E1+β′ (10.49)

where

β′ = β − a , (10.50)

and C is a numerical constant. The remarkable prediction (10.49) with (10.50) is that the

Gutenberg-Richter distribution is modified upon the approach of a mainshock by developing a

bump in its tail. This modification takes the form of an additive power law contribution with

a new “b-value” renormalized/amplified by the exponent a quantifying the dependence of the

number of daughters as a function of the energy of the mother. Our prediction is validated very

clearly by numerical simulations reported in Figures 10.7 and 10.8.

10.5 Migration of foreshocks towards the mainshock

By the same mechanism leading to (10.32) via (10.29) and (10.30), conditioning the foreshock

seismicity to culminate at a mainshock at time tc at some point �r taken as the origin of space
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Fig. 10.7 – Magnitude distribution of foreshocks for two time periods : tc − t < 0.1 (crosses) and

1 < tc− t < 10 (circles), for a numerical simulation of the ETAS model with parameters θ = 0.2, β = 2/3,

c = 10−3, m0 = 2 and a = β/2 = 1/3. The magnitude distribution P (m) shown on the first plot (a)

has been build by stacking many foreshock sequences of magnitudes M > 2.5 mainshocks. The observed

magnitude distribution is in very good agreement with the prediction (10.49), shown as a solid line for

each time period, that the magnitude distribution is the sum of the unconditional Gutenberg-Richter

law with an exponent b = 1.5β = 1, shown as a dashed black line, and a deviatoric Gutenberg-Richter

law dP (m) with an exponent b′ = b − α = 0.5 with α = 1.5a = 0.5. The amplitude of the perturbation

increases if tc − t decreases as expected from (10.49). The observed deviatoric magnitude distribution

dP (m) is shown on plot (b) for the same time periods, and is in very good agreement with the prediction

shown as a dashed black line. We must stress that the energy distribution is no more a pure power law

close to the mainshock, but the sum of two power laws. The panel on the right exhibits the second power

law which is created by the conditioning mechanism underlying the appearance of foreshocks. See text.

must lead to a migration towards the mainshock. The seismic rate λ(�r, t) at position �r at time

t < tc conditioned on the existence of the mainshock at position �0 at time tc is given by

E[λ(�r, t)|λ(�0, tc)] ∼
∫ t

−∞
dτ

∫
d�ρ K(�r − �ρ, t − τ) K(�ρ, tc − τ) . (10.51)

K(�r − �ρ, t− τ) is the dressed spatio-temporal propagator giving the seismic activity at position

�r and time t resulting from a triggering earthquake that occurred at position �ρ at a time τ in

the past. Its expression is given in [Helmstetter and Sornette, 2002b] in a variety of situations.

Assuming that the probability distribution for an earthquake to trigger an aftershock at a

distance r is of the form

ρ(r) ∼ 1/(r + d)1+µ , (10.52)
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Fig. 10.8 – Same as Figure 10.7 but for a = 0.8β. In this case, the deviatoric Gutenberg-Richter

contribution is observed only for the largest magnitudes, for which the statistics is the poorest, hence the

relatively large fluctuations around the exact theoretical predictions.

[Helmstetter and Sornette, 2002b] have shown that the characteristic size of the aftershock

area slowly diffuses according to R ∼ tH , where the time t is counted from the time of the

mainshock. For simplicity, d is taken independent of the mainshock energy. H is the Hurst

exponent characterizing the diffusion given by

H =
θ

µ
for µ < 2 , H =

θ

2
for µ > 2 . (10.53)

This diffusion is captured by the fact that K(�r− �ρ, t− τ) depends on �r− �ρ and t− τ essentially

through the reduced variable |�r−�ρ|/(t−τ)H . Then, expression (10.51) predicts that this diffusion

must be reflected into an inward migration of foreshock seismicity towards the mainshock with

the same exponent H.

These results are verified by numerical simulations of the ETAS model. Figure 10.9 pre-

sents the migration of foreshock activity for two numerical simulations of the ETAS model,

with different parameters. As for the inverse Omori law, we have superposed many sequences

of foreshock activity to observe the migration of foreshocks. For a numerical simulation with

parameters n = 1, θ = 0.2, µ = 1, d = 1, c = 0.001, a = 0.5β and m0 = 2, we see clearly

the localization of the seismicity as the mainshock approaches. We obtain an effective migration

exponent H = 0.18, describing how the effective size R of the cloud of foreshocks shrinks as

time t approaches the time tc of the main shock : R ∼ (tc − t)H (see Figure 10.9a,c). This result

is in good agreement with the prediction H = 0.2 given by (10.53). The spatial distribution of

foreshocks around the mainshock is similar to the distribution of aftershocks around the main-
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Fig. 10.9 – Migration of foreshocks, for superposed foreshock sequences generated with the ETAS model

for two choices of parameters, (a) n = 1, θ = 0.2, a = 0.5β, µ = 1, d = 10, c = 0.001, m0 = 2 and (b)

n = 1, θ = 0.02, a = 0.5β, µ = 3, d = 1, c = 0.001, m0 = 2. The distribution of foreshock-mainshock

distances is shown on panel (a) and (b) for the two simulations, for different time periods ranging between

10−4 to 104 days. The distribution of mainshock-aftershock distances given by (10.52) describing direct

lineage is shown as a dashed line for reference. On panel (a), we see clearly a migration of the seismicity

towards the mainshock, as expected by the significant diffusion exponent H = 0.2 predicted by (10.53).

In contrast, the distribution of the foreshock-mainshock distances shown in panel (b) is independent of

the time from the mainshock, as expected by the much smaller exponent diffusion H = 0.01 predicted by

(10.53). The characteristic size of the foreshock cluster is shown as a function of the time to the mainshock

on panel (c) for the two numerical simulations. Circles correspond to the simulation shown in panel (a)

and crosses correspond to the simulation shown in panel (b). The solid line is a fit of the characteristic

size of the foreshock cluster by R ∼ tH . For the simulation generated with θ = 0.2 and µ = 1 (circles),

we obtain H = 0.18 ± 0.02 in very good agreement with the prediction H = θ/µ = 0.2 (10.53). The

simulation generated with θ = 0.02 and µ = 3 (crosses) has a much smaller exponent H = 0.04± 0.02, in

good agreement with the expected value H = θ/2 = 0.01 (10.53). A faster apparent migration is observed

at large times for this simulation, due to the transition from the uniform background distribution for

large times preceding the mainshock to the clustered seismicity prior to the mainshock.
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shock. Figure 10.9b,c presents the migration of foreshock activity for a numerical simulation

with θ = 0.01, µ = 1, d = 1, c = 0.001 leading to a very small diffusion exponent H = 0.01.

The analysis of this foreshock sequence gives an effective migration exponent H = 0.04 for short

times, and a faster apparent migration at longer times due to the influence of the background

activity. See [Helmstetter and Sornette, 2002b] for a discussion of artifacts leading to apparent

diffusions of seismicity resulting from various cross-over phenomena.

10.6 Discussion

It has been proposed for decades that many large earthquakes were preceded by an unusually

high seismicity rate, for times of the order of weeks to months before the mainshock [Omori,

1908 ; Richter, 1958 ; Mogi, 1963]. Although there are large fluctuations in the foreshock patterns

from one sequence to another one, some recurrent properties are observed.

(i) The rate of foreshocks increases as 1/(tc − t)p
′
as a function of the time to the main shock

at tc, with an exponent p′ smaller than or equal to the exponent p of direct Omori law ;

(ii) the Gutenberg-Richter distribution of magnitudes is modified as the mainshock approaches,

and is usually modeled by a decrease in b-value ;

(iii) The epicenters of the foreshocks seem to migrate towards the mainshock.

We must acknowledge that the robustness of these three laws decreases from (i) to (iii). In

previous sections, we have shown that these properties of foreshocks derive simply from the two

most robust empirical laws of earthquake occurrence, namely the Gutenberg-Richter and Omori

laws, which define the ETAS model. In this ETAS framework, foreshock sequences emerge on

average by conditioning seismicity to lead to a burst of seismicity at the time of the mainshock.

This analysis differs from two others analytical studies of the ETAS model [Helmstetter and

Sornette, 2002b ; Sornette and Helmstetter, 2002], who proposed that accelerating foreshock

sequences may be related either to the super-critical regime n > 1 or to the singular regime

a > β (leading formally to n → ∞) of the ETAS model. In these two regimes, an accelerating

seismicity sequence arises from the cascade of aftershocks that trigger on average more than

one aftershock per earthquake. Here we show that foreshock sequences emerge in the stationary

sub-critical regime (n < 1) of the ETAS model, when an event triggers on average less than one

aftershock. In this regime, aftershock have a low probability of triggering a larger earthquake.

Nonetheless, conditioning on a high seismicity rate at the time of the mainshock, we observe,

averaging over many mainshocks, an increase of the seismicity rate following the inverse Omori

law. In addition, as we shall show below, this increase of seismicity has a genuine and significant

predictive power.
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Difference between type I and type II foreshocks

Our results applies to foreshocks of type II, defined as earthquakes preceding a mainshock in

a space-time window preceding a mainshock, independently of their magnitude. This definition

is different from the usual definition of foreshocks, which imposes a mainshock to be larger

than the foreshocks (foreshocks of type I in our terminology). Using the usual definition of

foreshocks in our numerical simulations of the ETAS model, our results remain robust but there

are quantitative differences introduced by the somewhat arbitrary constraint entering into the

definition of foreshocks of type I :

1. a roll-off in the inverse Omori-law,

2. a dependence of the apparent exponent p′ on the time window used to define foreshocks

and mainshocks and

3. a dependence of the rate of foreshocks and of p′ on the mainshock magnitude.

As seen in Figure 10.5, these variations between foreshocks of type I and type II are observed

only for small mainshocks. Such foreshocks are less likely the foreshocks of a mainshock and

are more likely to be preceded by a larger earthquake, that is, to be the aftershocks of a large

preceding mainshock. These subtle distinctions should attract the attention of the reader on the

arbitrariness underlying the definition of foreshocks of type I and suggest, together with our

results, that foreshocks of type II are more natural objects to define and study in real catalogs.

This will be reported in a separate presentation.

Inverse Omori law

Conditioned on the fact that a mainshock is associated with a burst of seismicity, the inverse

Omori law arises from the expected fluctuations of the seismicity rate leading to this burst of

seismicity. Depending on the branching ratio n and on the ratio a/β, the exponent p′ is found to

vary between 1−2θ and 1+θ, but is always found to be smaller than the exponent p of the direct

Omori law. Our results thus reproduce both the variability of p′ and the lower value measured for

p′ than for p reported by [Papazachos, 1973, 1975b ; Page, 1986 ; Kagan and Knopoff, 1978 ; Jones

and Molnar, 1979 ; Davis and Frohlich, 1991 ; Shaw, 1993 ; Utsu et al., 1995 ; Ogata et al., 1995 ;

Maeda, 1999]. In their synthesis of all p and p′ values Utsu et al. [1995] report p′-value in the

range 0.7-1.3 , while p of aftershocks ranges from 0.9 to 1.5. The few studies that have measured

simultaneously p and p′ using a superposed epoch analysis have obtained p′ either roughly equal

to p [Kagan and Knopoff, 1978 ; Shaw, 1993] or smaller than p [Davis and Frohlich, 1991 ; Ogata

et al., 1995 ; Maeda, 1999]. The finding that p ≈ p′ ≈ 1 suggested by [Shaw, 1993 ; Reasenberg,

1999] for the California seismicity can be interpreted in our framework as either due to a very

small value θ, or due to a large a/β ratio close to 0.8, as shown in Figures 10.4 and 10.6. The

result p′ < p reported by [Maeda, 1999] for the Japanese seismicity and by [Davis and Frohlich,

1991] for the worldwide seismicity can be related to a rather small a/β ratio, as also illustrated
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in Figures 10.3 and 10.6.

In contrast with the direct Omori law, which is clearly observed after all large shallow earth-

quakes, the inverse Omori law is an average statistical law, which is observed only when stacking

many foreshock sequences. Simulations reported in Figure 10.2 illustrate that, for individual fo-

reshock sequences, the inverse Omori law is difficult to capture. Similarly to what was done

for real data [Kagan and Knopoff, 1978 ; Jones and Molnar, 1979 ; Davis and Frohlich, 1991 ;

Shaw, 1993 ; Ogata et al., 1995 ; Maeda, 1999 ; Reasenberg, 1999], the inverse Omori law emerges

clearly in our model only when using a superposed epoch analysis to average the seismicity rate

over a large number of sequences. Our results are thus fundamentally different from the critical

point theory [Sammis and Sornette, 2002] which leads to a power-law increase of seismic acti-

vity preceding each single large earthquake over what is probably a larger space-time domain

[Keilis-Borok and Malinovskaya, 1964 ; Bowman et al., 1998]. Our results can thus be considered

as providing a null-hypothesis against which to test the critical point theory.

Foreshock occurrence rate

In term of occurrence rate, foreshocks are less frequent than aftershocks (e.g. [Kagan and

Knopoff, 1976, 1978 ; Jones and Molnar, 1979]). The ratio of foreshock to aftershock numbers is

close to 2-4 for M = 5 − 7 mainshocks, when selecting foreshocks and aftershocks at a distance

R = 50−500 km from the mainshock and for a times T = 10−100 days before or after the main-

shock [Kagan and Knopoff 1976 ; 1978 ; Jones and Molnar, 1979 ; von Seggern et al., 1981 ; Shaw,

1993]. In our simulations, large mainshocks have significantly more aftershocks than foreshocks,

in agreement with observations, while small earthquakes have roughly the same number of fore-

shocks (of type II) and of aftershocks. The ratio of aftershocks to foreshock of type II increases

if the ratio a/β decreases, as observed when comparing the case a = 0.5β shown in Figure 10.3

with the results obtained in the case a = 0.8β represented in Figure 10.4. This may be explained

by the relatively larger weights of the largest earthquakes which increase with increasing a, and

by our definition of aftershocks and foreshocks : recall that aftershock sequences are conditioned

on not being preceded by an event larger than the mainshock, whereas a foreshock of type II

can be larger than the mainshock. Thus, for large a/β < 1, most “mainshocks”, according to our

definition, are aftershocks of a preceding large earthquake, whereas aftershock sequences cannot

be preceded by an earthquake larger than the mainshock.

The retrospective foreshock frequency, that is, the fraction of mainshocks that are preceded

by a foreshock, is reported to range from 10% to 40% using either regional or worldwide catalogs

[Jones and Molnar, 1979 ; von Seggern et al., 1981 ; Yamashina, 1981 ; Console et al., 1983 ; Jones,

1984 ; Agnew and Jones, 1991 ; Lindh and Lim, 1995 ; Abercrombie and Mori, 1996 ; Michael and

Jones, 1998 ; Reasenberg, 1999]. The variability of the foreshock rate is closely related to the

catalog threshold for the magnitude completeness for the small events [Reasenberg, 1999]. These

results are in line with our simulations.
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The observed number of foreshocks per mainshock slowly increases with the mainshock

magnitude [e.g. data from Kagan and Knopoff, 1978 ; Shaw, 1993 ; Reasenberg, 1999]. In our

model, the number of foreshocks of type II is independent of the mainshock magnitude, because

the magnitude of each earthquake is independent of the previous seismicity history. An increase

of the number of foreshocks of type I as a function of the mainshock magnitude is observed in

our numerical simulations (see Figure 10.5) because, as we explained before, the constraint on

the foreshock magnitudes to be smaller than the mainshock magnitude is less severe for larger

earthquakes and thus filter out less foreshocks. Therefore, our results can explain the increase

in the foreshock frequency with the mainshock magnitude reported using foreshocks of type I.

The slow increase of the number of foreshocks with the mainshock magnitude, if any, is different

from the predictions of both the nucleation model [Dodge et al., 1996] and of the critical point

theory [Sammis and Sornette, 2002] which predict an increase of the foreshocks rate and of the

foreshock zone with the mainshock size.

Magnitude distribution of foreshocks

Many studies have found that the apparent b-value of the magnitude distribution of fore-

shocks is smaller than that of the magnitude distribution of the background seismicity and of

aftershocks. Case histories analyze individual foreshock sequences, most of them being chosen a

posteriori to suggest that foreshock patterns observed in acoustic emissions preceding rupture in

the laboratory could apply to earthquakes [Mogi, 1963 ; 1967]. A few statistical tests validate the

significance of reported anomalies on b-value of foreshocks. A few others studies use a stacking

method to average over many sequences in order to increase the number of events.

A b-value anomaly, usually a change in the mean b-value, for earthquakes preceding a main-

shock has been proposed as a possible precursor on many retrospective case studies [Suye-

hiro,1966 ; Papazachos et al., 1967 ; Ikegami, 1967 ; Berg, 1968 ; Bufe, 1970 ; Fedotov et al., 1972 ;

Wyss and Lee, 1973 ; Papazachos, 1975a,b ; Ma, 1978 ; Li et al., 1978 ; Wu et al. 1978 ; Cagnetti

and Pasquale, 1979 ; Stephens et al., 1980 ; Smith, 1981, 1986 ; Imoto 1991 ; Enescu and Kito,

2001]. Most case histories argue for a decrease of b-value, but this decrease, if any, is sometimes

preceded by an increase of b-value [Ma, 1978 ; Smith, 1981, 1986 ; Imoto 1991]. In a couple of

cases, temporal decreases in b-value before Chinese earthquakes were used to issue successful

predictions [Wu et al., 1978 ; Zhang et al., 1999].

Because of the paucity of the foreshock numbers, most of the study of individual sequences

does not allow to estimate a robust temporal change of b-values before mainshocks, nor to

characterize the shape of the magnitude distribution. A few studies have demonstrated the

statistical significance of decreases of b-value when the time to the mainshock decreases using a

superposed epoch analysis [Kagan and Knopoff, 1978 ; Molchan and Dmitrieva, 1990 ; Molchan

et al., 1999]. Using 200 foreshocks sequences of regional and worldwide seismicity, Molchan et

al. [1999] found that the b-value is divided by a factor approximately equal to 2 a few days or
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hours before the mainshock. Knopoff et al. [1982] found no significant differences between the

b-value of aftershocks and foreshocks when investigating 12 individual sequences of California

catalogs. When all the aftershocks and foreshocks in a given catalog are superposed, the same

study showed for catalogs of large durations (e.g. ISC, 1964-1977 ; NOAA, 1965-1977) that the

b-value for foreshocks is significantly smaller than the b-value for aftershocks [Knopoff et al.,

1982]. The same pattern being simulated by a branching model for seismicity, Knopoff et al.

[1982] surmise that the observed and simulated changes in magnitude distribution value arises

intrinsically from the conditioning of aftershocks and foreshocks and from the smaller numbers

of foreshocks relatively to aftershocks numbers when counted from the mainshock time. The

result of [Knopoff et al., 1982] is often cited as disproving the reality of a change of b-value. Our

results find that a change in b-value in the ETAS branching model of seismicity is a physical

phenomenon with real precursory content. This shall be stressed further below in association

with Figure 10.10. Therefore, the fact that a change in b-value can be reproduced by a branching

model of seismicity cannot discredit the strong empirical evidence of a change of b-value [Knopoff

et al., 1982] and its genuine physical content capturing the interactions between and triggering

of earthquakes.

The observed modification of the magnitude distribution of foreshocks is usually interpreted

as a decrease of b-value as the mainshock approaches. However, some studies argue that the

Gutenberg-Richter distribution before a mainshock is no more a pure power-law distribution,

due to an apparent increase of the number of large events relatively to the Gutenberg-Richter

law, while the rate of small earthquakes remains constant. Such pattern is suggested by Rotwain

et al. [1997] for both acoustic emission preceding material failure, and possibly for Californian

seismicity preceding large earthquakes. Analysis of seismicity before recent large shocks also

argue for an increase in the rate of moderate and large earthquakes before a mainshock [Jaumé

and Sykes, 1999]. Knopoff et al. [1982] also suspected a deviation from a linear Gutenberg-Richter

distribution for foreshocks. Our study of the ETAS model confirms that such a modification of

the magnitude distribution before a mainshock must be expected when averaging over many

foreshock sequences.

Intuitively, the modification of the magnitude distribution arises in our model from the

increase of the aftershock rate with the mainshock magnitude. Any event has thus a higher

probability to occur just after a large event, because this large event induces an increase of the

seismicity rate. The novel properties that we demonstrate is that, before a mainshock, the energy

distribution is no more a pure power-law, but it is the sum of the unconditional distribution

with exponent β and an additional deviatoric power-law distribution with a smaller exponent

β′ = β − a as seen from expression (10.49). In addition, we predict and verify numerically

in figures 10.7 and 10.8 that the amplitude of the deviatoric term increases as a power-law

of the time to the mainshock. A similar behavior has been proposed as a precursory pattern

termed “pattern upward bend” [Keilis-Borok et al., 2001] or alternatively providing “pattern



10 Discussion 241

γ” measured as the difference between the slope of the Gutenberg-Richter for low and for large

magnitudes. According to our results, pattern γ should increase from 0 to the value a.

According to the ETAS model, the modification of the magnitude distribution is independent

of the mainshock magnitude, as observed by [Kagan and Knopoff, 1978 ; Knopoff et al. 1982 ;

Molchan and Dmitrieva, 1990 ; Molchan et al., 1999]. Therefore, all earthquakes, whatever their

magnitude, are preceded on average by an increase of the rate of large events. Although the

foreshock magnitude distribution is no more strictly speaking a pure power-law but rather the

sum of two power laws, a single power-law distribution with a decreasing b-value as the time of

the mainshock is approached is a simple and robust way to quantify the increasing importance

of the tail of the distribution, especially for the short foreshock sequences usually available. This

rationalizes the suggestion found in many works that a decrease in b-value is a (retrospective)

signature of an impending mainshock. The novel insight provided by our analysis of the ETAS

model is that a better characterization of the magnitude distribution before mainshocks may be

provided by the sum of two power law distributions expressed by equation (10.49) and tested

in synthetic catalogs in Figures 10.7 and 10.8. This rationalizes both the observed relatively

small b-values reported for foreshocks and the apparent decrease of b-value when the mainshock

approaches. Similarly to the inverse Omori law, the modification of the magnitude distribution

prior the mainshock is a statistical property which yields a unambiguous signal, only when

stacking many foreshock sequences. This may explain the variability of the patterns of b-value

observed for individual foreshock sequences.

A modification of the magnitude distribution before large earthquakes is also expected from

the critical point theory [Sammis and Sornette, 2002]. The energy distribution far from a critical

point is characterized by a power-law distribution with an exponential roll-off. As the seismi-

city evolves towards the critical point, the truncation of the energy distribution increases. At

the critical point, the average energy becomes infinite (in an infinite system) and the energy

distribution follows a pure power-law distribution. This modification of the seismicity predicted

by the critical point theory is different from the one reported in this study, but the two models

yield an apparent decrease of b-value with the time from the mainshock. Therefore, it is difficult

to distinguish the two models in real seismicity data. However, the difference between the two

models is that a modification of the energy distribution should only be observed before major

earthquakes according to the critical point theory. Of course, one can not exclude that both

mechanisms occur and are mixed up in reality.

Implications for earthquake prediction

The inverse Omori law and the apparent decrease of b-value have been derived in this study

as statistical laws describing the average fluctuations of seismicity conditioned on leading to

a burst of seismicity at the time of the mainshock. This does not mean that there is not a

genuine physical content in these laws. We now demonstrate that they may actually embody an
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Fig. 10.10 – Results of prediction tests for synthetics catalogs generated with the parameters a = 0.5β,

n = 1, β = 2/3, θ = 0.2 and a constant source µ = 0.001. The minimum magnitude is m0 = 3 and the

target events are M ≥ 6 mainshocks. We have generated 500 synthetics catalogs of 10000 events each,

leading to a total of 4735 M ≥ 6 mainshocks. We use three functions measured in a sliding window

of 100 events : (i) the maximum magnitude Mmax of the 100 events in that window, (ii) the apparent

Gutenberg-Richter exponent β measured on these 100 events by the standard Hill maximum likelihood

estimator and (iii) the seismicity rate r defined as the inverse of the duration of the window. For each

function, we declare an alarm when the function is either larger (for Mmax and r) or smaller (for β) than

a threshold. Once triggered, each alarm remains active as long as the function remains larger (for Mmax

and r) or smaller (for β) than the threshold. Scanning all possible thresholds constructs the continuous

curves shown in the error diagram. The quality of the predictions is measured by plotting the ratio of

failures to predict as a function of the total durations of the alarms normalized by the duration of the

catalog. The results for these three functions are considerably better than those obtained for a random

prediction, shown as a dashed line for reference. The best results are obtained using the seismicity rate.

Predictions based on the Gutenberg-Richter β and on the maximum magnitude observed within the

running window provide similar results.
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important part of the physics of earthquakes and describe the process of interactions between

and triggering of earthquakes by other earthquakes. For this purpose, we use the modification

of the magnitude frequency and the increase of the seismicity rate as predicting tools of future

individual mainshocks. In the present work, we restrict our tests to the ETAS branching model

used as a playing ground for our ideas.

Using numerical simulations of the ETAS model generated with b = 1, a = 0.5β, n = 1,

m0 = 3 and θ = 0.2, we find that large earthquakes occur more frequently following a small

locally estimated b-value. We have measured the b-value using a maximum likelihood method for

a sliding window of 100 events. For instance, we find that 29% of the large M > 6 mainshocks

occur in a 11% time period where β is less than 95% of the actual b-value (that is b < 0.95). This

leads a significant prediction gain of g = 2.7, defined as the ratio of the successful prediction

(29%) over the duration of the alarms (11%) [Aki, 1981]. A random prediction would lead g = 1.

A much larger gain can be obtained using other precursory indicators related to the inverse

Omori law. First, a large earthquake is likely to occur following another large earthquake. For

the same simulation, fixing an alarm if the largest event within the 100 preceding earthquakes

is larger that M = 6 yields a probability gain g = 10 for the prediction of a mainshock of

magnitude equal to or larger than M = 6. Second, a large seismicity rate observed at a given

“present” time will lead on average to a large seismicity rate in the future, and thus it increases

the probability of having a large earthquake. Measuring the seismicity rate over a sliding window

with flexible length imposed to contain exactly 100 events and fixing the alarm threshold at 0.05

events per day, we are able to predict 20% of the M ≥ 6 events with just 0.16% of the time

period covered by the alarms. This gives a prediction gain g = 129.

Figure 10.10 synthesizes and extends these results by showing the so-called error diagram

[Molchan, 1991 ; 1997] for each of three functions measured in a sliding window of 100 events : (i)

the maximum magnitude Mmax of the 100 events in that window, (ii) the apparent Gutenberg-

Richter exponent β measured on these 100 events by the standard Hill maximum likelihood

estimator and (iii) the seismicity rate r defined as the inverse of the duration of the window.

For each function, an alarm is declared for the next event when the function is either larger (for

Mmax and r) or smaller (for β) than a threshold. Scanning all possible thresholds constructs

the continuous curves shown in the figure. The results on the prediction obtained by using these

three precursory functions are considerably better than those obtained for a random prediction,

shown as a dashed line for reference. We have not tried at all to optimize any facet of these

prediction tests, which are offered for the sole purpose of stressing the physical reality of the

precursory information contained in the foreshocks.

Migration of foreshocks

Among the proposed patterns of foreshocks, the migration of foreshocks towards the main-

shocks is much more difficult to observe than either the inverse Omori law or the change in
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b-value. This is due to the limited number of foreshocks and to the location errors. Similarly to

other foreshock patterns, a few case-histories have shown seismicity migration before a main-

shock. When reviewing 9 M > 7 shallow earthquakes in China, Ma et al. [1990] report a migra-

tion of M > 3 − 4 earthquakes towards the mainshock over a few years before the mainshock

and at a distance of a few hundreds of kilometers. Less than 20 events are used for each case

study. While the case for the diffusion of aftershocks is relatively strong [Kagan and Knopoff,

1976, 1978 ; von Seggern et al., 1981 ; Tajima and Kanamori, 1985] but still controversial, the

migration of foreshocks towards the mainshock area, suggested using a stacking method [e.g.,

Kagan and Knopoff, 1976, 1978 ; von Seggern et al., 1981 ; Reasenberg, 1985] is even less clearly

observed.

Using the ETAS model, Helmstetter and Sornette [2002b] have shown that the cluster of

aftershocks diffuses on average from the mainshock according to the diffusion law R ∼ tH ,

where R is the typical size of the cluster and H is the so-called Hurst exponent which can be

smaller or larger than 1/2. In the present study, we have shown analytically and numerically that

this diffusion of aftershocks must be reflected into a (reverse) migration of seismicity towards

the mainshock, with the same diffusion exponent H (defined in (10.53)). We should however

point out that this predicted migration of foreshocks, as well as the diffusion of aftershocks,

is significant only over a finite domain of the parameter space over which the ETAS model is

defined. Specifically, a significant spatio-temporal coupling of the seismicity leading to diffusion

and migration is expected and observed in our simulations only for sufficiently large θ’s and for

short times |tc − t| < t∗ from the mainshock, associated with a direct Omori exponent p smaller

than 1. This may explain why the diffusion of aftershocks and the migration of foreshocks is

often difficult to observe in real data.

An additional difficulty in real data arises from the background seismicity, which can induce

a spurious diffusion of aftershocks or migration of foreshocks (see Figure 10.9c). As for the other

foreshock patterns derived in this study, the migration of foreshocks towards the mainshock

and the spatial distribution of foreshocks are independent of the mainshock magnitude. These

results disagree with the observations of [Keilis-Borok and Malinovskaya, 1964 ; Bowman et al.,

1998] who suggest that the area of accelerating seismicity prior a mainshock increases with the

mainshock size. An increase of the foreshock zone with the mainshock size may however be

observed in the ETAS model when using foreshocks of type I (conditioned on being smaller

than the mainshock) and introducing a characteristic size of the aftershock zone d in (10.52)

increasing with the mainshock size.

10.7 Conclusion

We have shown that the ETAS (epidemic-type aftershock) branching model of seismicity,

based on the two best established empirical Omori and Gutenberg-Richter laws, contains es-
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sentially all the phenomenology of foreshocks. Using this model, decades of empirical studies

on foreshocks are rationalized, including the inverse Omori law, the b-value change and seismi-

city migration. For each case, we have derived analytical solutions that relates the foreshock

distributions in the time, space and energy domain to the properties of a simple earthquake

triggering process embodied by aftershocks. We find that all previously reported properties of

foreshocks arises from the Omori and Gutenberg-Richter law when conditioning the spontaneous

fluctuations of the rate of seismicity to end with a burst of activity, which defines the time of the

mainshock. The foreshocks laws are seen as statistical laws which are clearly observable when

averaging over a large number of sequences and should not be observed systematically when

looking at individual foreshock sequences. Nevertheless, we have found that foreshocks contain

genuine important physical information of the triggering process and may be used successfully to

predict earthquakes with very significant probability gains. Taking these results all together, this

suggests that the physics of aftershocks is sufficient to explain the properties of foreshocks, and

that there is no essential physical difference between foreshocks, aftershocks and mainshocks.

10.8 Appendix A : Deviations from the average seismicity rate

Using the definition of λ(t) (10.7), in the case where the external s(t) source term is a Dirac

δ(t), we obtain the following expression for the stochastic propagator

κ(t) = δ(t) +
∫ t

−∞
dτ

∫ +∞

E0

dE φE(t − τ)
∑

i | ti≤t

δ(E − Ei) δ(τ − ti) , (10.54)

We now express the deviation of κ(t) from its ensemble average K(t). This can be done by

using (10.11), which means that the distribution density of earthquake energies is constructed by

recording all earthquakes and by counting the frequency of their energies. Thus, δ(E −Eτ ) can

be seen as the sum of its average plus a fluctuation part, namely, it can be formally expressed

as δ(E − Eτ ) = P (E) + δP (E), where δP (E) denotes the fluctuation of δ(E − Eτ ) around its

ensemble average P (E). Similarly, κ(t) =
∑

ti≤t δ(t − ti) = K(t) + δκ(t), where δκ(t) is the

fluctuating part of the seismic rate around its ensemble average K(t).

We can thus express the sum of products of Dirac functions in (10.54) as follows :

∑
i | ti≤t

δ(E − Ei)δ(t − ti) = P (E)K(t) + δ(Pκ)(E, t) . (10.55)

As a first illustration, we can use the approximation that the fluctuations of the product δ(E −
Eτ )

∑
ti≤t δ(t − ti) can be factorized to write

δ(E − Et)
∑
ti≤t

δ(t − ti) = (P (E) + δP (E)) (K(t) + δκ(t))

≈ P (E)K(t) + P (E) δκ(t) + K(t) δP (E) . (10.56)
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Using expression (10.54) for κ(t) and expression (10.14) for K(t), and putting (10.56) in (10.54),

we then obtain

κ(t) = K(t) +
∫ t

0
dτ

∫ +∞

E0

dE φE(t − τ)δ(Pκ)(E, τ) , (10.57)

where

δ(Pκ)(E, τ) ≡ δP (E)K(τ) + P (E)δκ(t) . (10.58)

By construction, the average of the double integral in the r.h.s. of (10.57) is zero. The double

integral thus represents the fluctuating part of the realization specific seismic response κ(t) to a

triggering event. Inserting (10.57) in (10.21), we obtain

λ(t) = N(t)+∫ t

−∞
dτ s(τ)

∫ t−τ

0
du

∫ +∞

E0

dE φE(t − τ − u)δ(Pκ)(E, u) . (10.59)

Using
∫ t
−∞ dτ

∫ t−τ
0 du =

∫ +∞
0 du

∫ t−u
−∞ dτ , expression (10.59) reads

λ(t) = N(t)+∫ +∞

E0

dE

∫ +∞

0
du δ(Pκ)(E, u)

∫ t−u

−∞
dτ s(τ) φE(t − τ − u) . (10.60)

For instance, let us consider the first contribution δP (E)K(τ) of δ(Pκ)(E, τ) given by

(10.58). Denoting

ε ≡
∫ +∞

E0

dE ρ(E) δP (E) , (10.61)

λ(t) given by (10.60) is of the form (10.22) with

η(τ) = ε

∫ +∞

0
dx s(τ − x) Ψ(x) , (10.62)

where Ψ(x) is the bare Omori propagator defined in (10.4).

The only property needed below is that the stochastic process η(τ) be stationary. This is the

case because the fluctuations of δP (E) and of the source s(t) are stationary processes. Similarly,

the second contribution P (E)δκ(τ) of δ(Pκ)(E, τ) given by (10.58) takes the form (10.22) if

δκ(τ) is a noise proportional to K(t). At present, we cannot prove it but this seems a natural

assumption. More generally, one could avoid the decomposition of δ(Pκ)(E, τ) given by (10.58)

and get the same result as long as δ(Pκ)(E, t) is equal to a stationary noise multiplying K(t).

10.9 Appendix B : Conditioning weighted power law variables

on the realization of their sum

Consider i.i.d. (identically independently distributed) random variables xi distributed accor-

ding to a power law p(xi) with exponent m ≤ 2. Let us define the sum

SN =
N∑

i=1

Kixi , (10.63)
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where the Ki’s are arbitrary positive weights. Here, we derive that the expectation E[xi|SN ] of

xi conditioned on the existence of a large realization of SN is given by (10.37).

By definition, E[xi|SN ] = N/D where

N =
∫

dx1 ...

∫
dxN xi p(x1)...p(xN ) δ


SN −

N∑
j=1

Kjxj


 , (10.64)

and D is the same expression without the factor xi. The Fourier transform of (10.64) with respect

to SN yields

N̂(k) =


∏

j �=i

p̂(kKj)


 1

ik

dp̂(kKi)
dKi

=
1
ik

d

dKi


∏

j=1

p̂(kKj)


 . (10.65)

We have used the identity
∫

dxi xi p(xi) eikKixi = 1
ik

dp̂(kKi)
dKi

and p̂(k) is the Fourier transform

of p(x). Note that
∏N

j=1 p̂(kKj) is nothing but the Fourier transform P̂S(k) of the distribution

PN (SN ). Using the elementary identities of derivatives of Fourier transforms and by taking the

inverse Fourier transform, we thus get

N =
d

dKi

∫ +∞

SN

dX PN (X) . (10.66)

By definition, the denominator D is identically equal to PN (SN ). This yields the general result

E[xi|SN ] =
1

PN (SN )
d

dKi

∫ +∞

SN

dX PN (X) . (10.67)

In the special case where all Ki’s are equal, this gives the “democratic” result E[xi|SN ] = SN/N .

For power law variables with distribution p(x) ∼ 1/x1+m with m < 2, we can use the

generalized central limit theorem to obtain that PN (X) converges for large N to a stable Lévy law

Lm with index equal to the exponent m and scale factor
∑N

j=1 Km
j [Gnedenko and Kolmogorov,

1954 ; Sornette, 2000] :

PN (SN ) →N→∞ Lm


 SN(∑N

j=1 Km
j

)1/m


 . (10.68)

The only dependence of PN (SN ) in Ki is found in the scale factor. Putting the expression (10.68)

into (10.67) yields the announced result (10.37). In particular, for m = 2, this recovers the stan-

dard result for Gaussian variables that E[xi|SN ] ∼ SNKi, because the stable Lévy law of index

m = 2 is the Gaussian distribution.
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Chapitre 11

Observations of the inverse Omori’s

law for foreshocks

In the previous chapter we have shown that a simple stochastic model including only the

properties of aftershocks, (i) the direct Omori law, (ii) the Gutenberg-Richter distribution of

magnitudes with a constant b for all events and (iii) an increase of the number of triggered

events with the mainshock magnitude, reproduces most properties of foreshocks sequences : (i)

the inverse Omori law for foreshocks, (ii) an apparent decrease of b-value before a mainshock

and (iii) a migration of seismicity toward the mainshock. These precursory patterns are observed

only when averaging over a large number of sequences, and are independent of the mainshock

magnitude.

We present here a preliminary analysis of real seismicity data and a comparison with the

predictions of the model presented in chapter 10.

11.1 Seismicity data

We use the catalog of the Southern California Data Center over the period 1932-2000, which

is almost complete above M = 3 for this time period. More than 22000 M ≥ 3 earthquakes

have been recorded over this period. The largest event of the catalog is the M = 7.5 1952

Kern-County earthquake.

11.2 Selection of foreshocks and aftershocks

We have used several methodologies to construct foreshock and aftershock sequences. We

consider both type I and type II foreshocks, as defined in chapter 10.
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Aftershocks

We use the same procedure as in chapter 2 to select aftershocks after a mainshock. For each

magnitude interval (M,M + ∆M), a mainshock is defined as an earthquake in the magnitude

range (M,M + ∆M) that was not preceded by a larger event in a space-time window R2, T

before the mainshock. The distance R2 is chosen as the maximum size of the clusters in the

catalog, i.e. close to 50 km for the California seismicity, in order to remove the influence of large

earthquakes that occurred before the mainshock. We then select as aftershocks all events which

occurred in a space-time window R, T after each mainshock.

Foreshocks of type II

We first select those earthquakes that have a recorded magnitude in the interval between

M and M + ∆M . These events are called “mainshocks” of magnitude M . In contrast with the

previous definition of mainshocks used to select aftershocks, we consider here all events with

magnitude in the interval between (M,M + ∆M) as mainshocks, even if they were preceded

by larger events. For each of these mainshocks, we define as foreshocks of type II all events

that occurred over a time T before the mainshock and at a distance smaller than R from the

mainshock.

Foreshocks of type I

We use the same restrictions in the definition of mainshocks for the selection of type I

foreshocks as for the selection of aftershocks, i.e., we consider as mainshocks all events in the

magnitude range (M,M +∆M) that were not preceded by a larger event in a space-time window

R2, T . The foreshocks are then selected in a space-time window R, T before each mainshock.

In contrast with type II foreshocks defined above, the selection of type I foreshocks is rather

arbitrary and is very sensitive to the choice of the space-window R2, T used to select mainshocks.

11.3 Inverse Omori’s law

We use a superposed epoch analysis to stack all foreshock and aftershock sequences syn-

chronized at the time of the “mainshocks” in different mainshock magnitude intervals, and for

different choices of the space-time window R, T used to define foreshocks and aftershocks. We

use larger magnitude intervals ∆M for larger mainshock magnitudes, because there is not en-

ough data for large mainshock magnitudes. Previous studies of foreshocks using superposed

epoch analysis [Papazachos, 1975a,b ; Jones and Molnar, 1976, 1979 ; Kagan and Knopoff, 1978 ;

Shaw, 1993 ; Reasenberg, 1999] have considered type I foreshocks. We have shown in the previous

chapter that the analysis of type II foreshocks may be also quite meaningful and less arbitrary

than the study of type I foreshocks. These two definitions of foreshocks should lead to the same
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results for large mainshocks.

Type II foreshocks

Figure 11.1 shows the results obtained for type II foreshocks selected using a space-time

window T = 1 yr and R = 50 km. The results are very similar to the results shown in Figure

10.4 for numerical simulations of the ETAS model generated with n = 1, α = 0.8, θ = 0.2,

b = 1 and c = 0.001. We see clearly a power-law acceleration of the seismicity rate before

a mainshock with a similar exponent p ≈ 0.8 as for the decrease of the rate of aftershocks

following a mainshock. The exponent p′ for foreshocks is roughly equal to the p-exponent of

aftershocks, in agreement with the results obtained with numerical simulations with α = 0.8

(see Figure 10.4 and 10.6). A significantly smaller exponent for foreshocks than for aftershocks

is expected from our results only for large θ and small α < b/2 (see section 10.3).
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Fig. 11.1 – Rate of seismic activity per mainshock before (type II foreshocks, circles) and after a

mainshock (aftershocks, crosses) occurring at time tc, obtained by stacking many earthquake sequences

for different mainshock magnitude intervals between 3 and 7. The foreshock rates have thus been folded

back onto the aftershock sequences for better comparison. Foreshocks and aftershocks have been selected

using a space-time window T = 1 yr and R = 50 km. The rate of aftershocks per mainshock increases

with the mainshock magnitude as N(M) ≈ 100.8M while the rate of type II foreshocks is independent of

the mainshock magnitude.
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Fig. 11.2 – Rate of aftershocks for mainshock magnitudes in the range (4.5, 5), and for different choices

of the distance R used to select aftershocks around the mainshock. We use a distance R2 = 50 km and a

time window T = 1 yr to select as mainshocks earthquakes in the magnitude range (4.5, 5) that were not

preceded by a larger earthquake in the space-time window T , R2.
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Fig. 11.3 – Rate of type II foreshocks for mainshock magnitudes in the range (4, 4.5), and for different

choices of the distance R used to select foreshocks around the mainshock.
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The large fluctuations obtained for real data when comparing to synthetic catalogs (Figures

10.3 and 10.4) are due to the smaller number of events, 23000 events in the catalog of California

seismicity compared to 5 × 106 events generated for the synthetic catalogs. The number of

foreshocks is smaller than the number of aftershocks, except for small mainshock magnitudes

and large times from the mainshock. The rate of aftershocks per mainshock increases with the

mainshock magnitude as N(M) ≈ 100.8M while the rate of type II foreshocks is independent of

the mainshock magnitude, as predicted by the ETAS model.

The truncation of the seismicity rate for small times |tc−t| < 1 day, especially for aftershocks

of large M > 7 mainshocks and for foreshocks, is due to the incompleteness of the catalog at

very short times. The catalog is incomplete at early times following large M > 6 mainshocks

due to the saturation of the seismic network. The truncation is also observed for foreshocks

because a large fraction of type II foreshocks occur at early times after a large earthquake, when

the seismicity rate is very high and the seismic network is saturated. At large times from the

mainshock the seismicity rate decreases to the level of the background seismicity, as seen clearly

in Figure 11.1 for the rate of aftershocks following small M = 3 mainshocks. Large fluctuations

are observed for the rate of foreshocks of M > 7 mainshocks due to the small number of sequences

in the catalog.

Both the direct and the inverse Omori laws can be observed up to 10 yrs after and before

the mainshock, when using a small distance R to select foreshock and aftershocks around the

mainshock. Figures 11.2 and 11.3 show the rate of aftershocks and foreshocks respectively, for

mainshock magnitudes between 4 and 4.5, and for different values of the distance R used to select

aftershocks and foreshocks. For the selection of aftershocks, mainshocks have been selected with

R2 = 50 km. The direct and the inverse Omori laws are observed up to the largest distance

R = 500 km, but the duration of the foreshock and aftershock sequences decreases if R increases

due to the increase of the effect of the background seismicity.

Type I foreshocks

The results for type I foreshocks are presented in Figure 11.4. There are much larger fluctua-

tions for the rate of type I foreshocks than for type II foreshocks (Figure 11.1) due to the smaller

number of type I foreshocks. A large fraction of type II foreshocks are usual “aftershocks” of

large M > 6 earthquakes and are therefore rejected from the analysis of type I foreshocks, which

are contrainted to be smaller that their mainshock. However, we see clearly a power-law accele-

ration of the seismicity before a mainshock for type I foreshocks. This result implies that large

mainshocks can be triggered by smaller earthquakes. The exponent p′ of the inverse Omori law

is roughly equal to the Omori exponent of type II foreshocks and to the exponent p of the direct

OMori law of aftershocks. The rate of type I foreshocks increases slowly with the mainshock

magnitude. This increase is however not due to a larger predictability of larger earthquakes, as

expected for example in the critical point theory [Sammis and Sornette, 2002] and as observed
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window R1 = R2 = 50 km and T = 1 yr. The rate of type I foreshocks increases slowly with the

mainshock magnitude, due to the rules used to define type I foreshocks, which lead to a more drastic

selection and pruning for smaller mainshock magnitudes. For large mainshock magnitudes M , the inverse

Omori’s law is independent of M , as for type II foreshocks.
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Fig. 11.5 – Same as Figure 11.3 for type I foreshocks selected using a space-time window R2=50 km

and T = 1 yr.
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in a numerical model of seismicity [Huang et al., 1998]. The increase of the number of type I

foreshocks with the mainshock magnitude is similar to the results obtained for the numerical

simulations of the ETAS model shown in Figure 10.5, and can be explained by the rules used to

define type I foreshocks, which lead to a more drastic selection and pruning for smaller main-

shock magnitudes. As expected by our study of the triggering model, the inverse Omori’s law

becomes independent of the mainshock magnitudes M for large M .

The results for different values of the distance R used to select foreshocks are shown in Figure

11.5. The apparent exponent p′ of the inverse Omori law decreases if the distance R increases,

due to the increase of the background seismic activity with R. This variation of the Omori

exponent p′with R may also result in part from the migration of the seismic activity towards

the mainshock discussed in section 11.5.

11.4 Modification of the magnitude distribution before a main-

shock

In section 10.4 we have shown that the conditioning of a seismicity sequence to lead to a

mainshock results in a modification of the magnitude distribution. We predict that the foreshock

magnitude distribution P (m) gets an additive (or deviatoric) power law contribution dP (m) with

an exponent smaller than b and with an amplitude growing as a power law of the time to the

mainshock.

The magnitude distribution at time tc − t before the mainshock is given by (10.49)

P (m) = (1 − q)P0(m) + q dP (m) , (11.1)

where P0(m) is the average magnitude distribution P0(m) ∼ 10−bm and dP (m) is another GR

law with a smaller exponent b′ = b−α. The amplitude q of the deviatoric distribution in (11.1)

increases as a power-law of the time from the mainshock according to

q ∼ (tc − t)−θ (b−α)
α . (11.2)

This analytical result is in very good agreement with the numerical simulations (Figure 10.7 and

10.8). There are however large statistical fluctuations of the foreshock magnitude distribution,

even for the large number 5 × 106 of events used in the synthetic catalog. We test here the

predictions of the model using the SCEC catalog, with only 22000 events, and with additional

difficulties coming from the incompleteness of the catalog for small magnitudes at early times

after a large earthquake.

We have considered type II foreshocks of M > 3 “mainshocks” selected using R = 20 km and

T = 1 yr. We have evaluated the magnitude distribution at different times from the mainshock

and we have fitted this distribution to our prediction (11.1). For each time window we have

estimated the exponent b′ of the deviatoric GR distribution dP (m) and the amplitude q of the
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Fig. 11.6 – Magnitude distribution (a) of type II foreshocks, for “mainshocks” of magnitude M ≥ 3,

using a space-time window R = 20 km and T = 1 yr and deviatoric distribution (b) for two time periods :

for times less than 1 day before the mainshock (crosses) and between 10 days and 1 yr before the

mainshock (circles). The dashed line in panel (a) is the reference Gutenberg-Richter distribution P0(m)

with b = 0.95 measured for the whole catalog. The dashed line in panel (b) is the deviatoric distribution

dP (m) obtained by fitting P (m) in panel (a) for the two time periods by P (m) = qP (m)+ (1− q)dP (m)

where dP (m) ∼ 10−b′m with b′ ≈ 0.55 for the two time periods.

deviatoric component. The exponent b of the average distribution P0(m) is fixed to b = 0.95

estimated using the whole catalog.

The results presented in Figures 11.6 and 11.7 are in rather good agreement with our pre-

dictions. The foreshock magnitude distribution is well fitted in the magnitude range 4 ≤ M ≤ 7

by the sum of two power-laws (11.1), with an exponent b′ ≈ 0.6 independently of the time from

the mainshock (see Figure 11.7d). However, the b′-exponent of the deviatoric distribution is

significantly larger than the prediction b′ = b−α with b = 0.95 measured for the whole catalog,

and α = 0.8 obtained in chapter 2. The truncation for small magnitudes m < 4 is due to the

incompleteness of the catalog just after large earthquakes. The amplitude q of the deviatoric

distribution increases when the mainshock approaches, in rather good agreement with a power

law increase (11.2) with an exponent of 0.3 (see Figure 11.7b). The quantitative value of this

exponent is however very poorly constrained.

11.5 Migration of foreshocks

We study the space-time distribution of type II foreshocks, in order to investigate how the

spatial distribution of the seismicity evolves before a mainshock. We use a superposed epoch
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Fig. 11.7 – Magnitude distribution P (m) (a) and deviatoric distribution dP (m) (c) measured for 10

times windows of equal number of events. The color of each curve in (a) and (c) ranges from gray to black

as the time from the mainshock tc − t decreases from 1 yr to 0.01 day. We consider as mainshocks all

events whatever their magnitude M > 3. The type II foreshocks are selected using a space-time window

R = 20 km and T = 1 yr before each earthquake. The exponent b′ of the deviatoric distribution dP (m)

is shown in panel (d), and is rather constant around 0.6 for all times periods, exepted at very long times

before the mainshock. The amplitude q of the deviatoric distribution is shown in panel (b). The solid line

in (b) if a fit of q(tc − t) by a power-law of exponent 0.3.

analysis to stack all foreshock sequences synchronized at the time of the mainshock and with a

common origin of space at the location of each mainshock. Our results obtained with the ETAS

model (section 10.5) predict an inverse diffusion of the seismic activity toward the mainshock

similar to the diffusion of aftershocks presented in chapter 8. The characteristic size R of the

foreshock cluster is expected to decrease before the mainshock according to

R ∼ (tc − t)θ/µ , (11.3)
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where µ is the exponent of the distribution of distances between triggering and triggered earth-

quakes (8.5) and θ is a parameter of the bare Omori’s law Ψ(t) ∼ 1/(t + c)1+θ (8.4). This law

(11.3) describes the localization of the seismicity as the mainshock approaches. The analysis of

the California seismicity presented in Figure 11.8 shows clearly a migration of the seismicity

towards the mainshock, as confirmed by the significant diffusion exponent H = 0.27 shown in

Figure 11.9. It is however difficult to state if the inverse diffusion of foreshock activity shown in

Figures 11.8 and 11.9 reflects a real process of diffusion described by (11.3) or if this migration

is an artifact of the background seismicity. Indeed, the transition between the foreshock acti-

vity clustered around the mainshock at early times before the mainshock and the background

activity at large times may induce an apparent inverse diffusion of the seismicity rate similar to

the observations. This problem as already been discussed in section 9.2 in the case of aftershock

diffusion.
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Fig. 11.8 – Rate of type II foreshocks before M ≥ 4.5 mainshocks as a function of the distance from

the mainshock for different values of the time before the mainshock. We use logarithmic bins for the

time windows. We evaluate the seismicity rate for different distances from the mainshock by counting

the number of events in each interval (r, r + ∆r). The seismicity rate is normalized by the number of

mainshocks, the duration of the time window and the width of the space window ∆r used to estimate

the seismicity rate.
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Fig. 11.9 – Characteristic size of the foreshock cluster preceding M ≥ 4 earthquakes, measured by

the median of the distance between all foreshock-mainshock pairs, as a function of the time before the

mainshock. Foreshocks have been selected at a distance less than 200 km around the mainshock. The

solid line is a fit by a power-law R ∼ tH with H = 0.27.

The spurious diffusion observed in Figure 9.1 when superposing a constant and uniform

background seismicity with an aftershock sequence in not however able to reproduce a clear

power-law diffusion as given by (11.3) over more than three orders of magnitude in time, as

observed for foreshock data (Figure 11.9). But the case of real seismicity is more complicated

than the simple synthetic catalog generated in section 9.2, because the background seismicity

is neither uniform in time nor in space. The superposition of foreshock sequences with a non-

uniform background distribution may induce a spurious diffusion over a larger time interval than

shown in Figure 9.1.

Interactions between foreshocks and mainshocks are very long range both in time and in

space. At short distances from the mainshock r < 5 km, we see an increase of the seismicity

rate up to 10 yrs before the mainshock. Foreshocks are triggered at distances as large as 200 km

from the mainshock at very short times tc − t < 1 day before the mainshock.
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11.6 Conclusion

Most properties of the foreshock sequences analyzed here are in very good agreement with

the predictions of the triggering model. It is however difficult to obtain reliable quantitative

measurements of the parameters of the inverse Omori’s law and of the GR law of foreshocks due

to the small number of events in the catalog and due to the incompleteness of the catalog at

early times after large earthquakes. A power-law acceleration of the seismicity is clearly observed

both for type I and type II foreshocks. We obtain a significant modification of the magnitude

distribution before a mainshock. This modification of the magnitude distribution is well predicted

by our result (11.1), but the quantitative value of the exponent b′ of the deviatoric distribution

is larger than expected by the model. We also clearly see a localization of the seismicity close

to the mainshock, but this inverse diffusion of the seismic activity may be an artifact of the

background seismic activity.

The main result of this analysis is that the precursory modification of the seismic activity

before a mainshock is independent of the mainshock magnitude, as expected by the triggering

model. Therefore large earthquakes are not more predictable than smaller earthquakes on the

basis of the power-law acceleration of the seismicity before a mainshock or using the modifica-

tion of the magnitude distribution. The increase of the number of type I foreshocks with the

mainshock magnitude can be explained by the rules used to select type I foreshocks, which are

more drastic for smaller mainshocks.
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Abstract

Systems with long-range persistence and memory are shown to exhibit different precursory

as well as recovery patterns in response to shocks of exogenous versus endogenous origins. By

endogenous, we envision either fluctuations resulting from an underlying chaotic dynamics or

from a stochastic forcing origin which may be external or be an effective coarse-grained des-

cription of the microscopic fluctuations. In this scenario, endogenous shocks result from a kind

of constructive interference of accumulated fluctuations whose impacts survive longer than the

large shocks themselves. As a consequence, the recovery after an endogenous shock is in general

slower at early times and can be at long times either slower or faster than after an exogenous

perturbation. This offers the tantalizing possibility of distinguishing between an endogenous ver-

sus exogenous cause of a given shock, even when there is no “smoking gun”. This could help in

investigating the exogenous versus self-organized origins in problems such as the causes of major

biological extinctions, of change of weather regimes and of the climate, in tracing the source of
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social upheaval and wars, and so on. Sornette et al. [2002] have already shown how this concept

can be applied concretely to differentiate the effects on financial markets of the Sept. 11, 2001

attack or of the coup against Gorbachev on Aug., 19, 1991 (exogenous) from financial crashes

such as Oct. 1987 (endogenous).

12.1 Introduction

Most complex systems around us exhibit rare and sudden transitions, that occur over time

intervals that are short compared to the characteristic time scales of their posterior evolution.

Such extreme events express more than anything else the underlying “forces” usually hidden by

almost perfect balance and thus provide the potential for a better scientific understanding of

complex systems. These crises have fundamental societal impacts and range from large natu-

ral catastrophes such as earthquakes, volcanic eruptions, hurricanes and tornadoes, landslides,

avalanches, lightning strikes, meteorite/asteroid impacts, catastrophic events of environmental

degradation, to the failure of engineering structures, crashes in the stock market, social unrest

leading to large-scale strikes and upheaval, economic drawdowns on national and global scales,

regional power blackouts, traffic gridlock, diseases and epidemics, and so on. It is essential to

realize that the long-term behavior of these complex systems is often controlled in large part

by these rare catastrophic events [Sornette, 1999b]. The outstanding scientific question is how

such large-scale patterns of catastrophic nature might evolve from a series of interactions on

the smallest and increasingly larger scales [Sornette, 2002], or whether their origin should be

searched from exogenous sources.

Starting with Hurst’s study of 690 time series records of 75 geophysical phenomena, in

particular river flow statistics, documenting the so-called “Hurst effect” of long term persistence

[Hurst, 1951], many studies in the last decades have investigated the existence of long memory

effects in a large variety of systems, including meteorology (wind velocity, moisture transfer

in the atmosphere, precipitation), oceanography (for instance wave-height), plasma turbulence,

solar activity, stratosphere chemistry, seismic activity, internet traffic, financial price volatility,

cardiac activity, immune response, and so on.

The question addressed here is whether the existence of long memory processes may lead

to specific signatures in the precursory and in the relaxation/recovery/adaptation of a system

after a large fluctuation of its activity, after a profound shock or even after a catastrophic event,

that may allow one to distinguish an internal origin from an exogenous source. Let us put this

question in perspective with regards to the extinction of biological species as documented in the

fossil record. During the past 550 million years, there have been purportedly five global mass

extinctions, each of which had a profound effect on life on Earth. The last end-Cretaceous mass

extinction (with the disappearance of 39−47% of fossilizable genera and perhaps 75% of species)

marking the Cretaceous/Tertiary (K/T) boundary about 65 millions ago is often attributed to
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the impact of a huge meteor in the Yucatan peninsula [Kyte, 1998]. Another scenario is that

a burst of active volcanism was the real origin of the extinction [Courtillot, 1990; Courtillot,

1999]. It has been suggested that this extinction was actually driven by longer-term climatic

changes, as evidence by the fact that certain species in the Late Maastrichtian disappeared a

distinctive time before the K/T boundary [Marshall, 1998; Marshall and Ward, 1996]. A com-

pletely endogenous origin has also been proposed, based on the concepts of nonlinear feedbacks

between species [Milton and Belair, 1990; Allen et al., 1993] illustrated by self-organized criti-

cality and punctuated equilibrium [Bak, 1996; Sole et al., 1997] (see [Kirchner and Weil, 1998]

for a rebuttal). The situation is even murkier for the extinctions going further in the past, for

which the smoking guns, if any, are not observable (see however the strong correlation between

extinctions and volcanic traps presented in [Courtillot, 1999]). How can we distinguish between

an exogenous origin (meteorite, volcanism, abrupt climate change) and endogenous dynamics,

here defined as the progressive self-organizing response of the network of interacting species that

may generate its own demise by nonlinear intermittent negative feedbacks or in response to the

accumulation of slowly varying perturbations in the environment ? Is it possible to distinguish

two different exogenous origins, one occurring over a very short time interval (meteorite) and

the other extending over a long period of time (volcanism), based on the observations of the

recovery and future evolution of diversity ?

The aviation industry provides another vivid illustration of the question on the endogenous

versus exogenous origin of a crisis. Recently, airlines became the prime industry victim of the

September 11, 2001 terrorist attacks. The impact of the downturn in air travel has been severe

not just on the airlines but also on lessors and aircraft manufacturers. The unprecedented drop

in air travel and airline performance prompted the US government to provide $5 billion in

compensation and to make available $10 billion in loan guarantees. This seems a clear-cut case

for an exogenous shock. However, the industry was deteriorating before the shock of September

11. In the first eight months of 2001, passenger traffic for US carriers rose by an anemic 0.7

percent, a sharp fall from annual growth of nearly 4 percent over the previous decade [Costa et

al., 2002], illustrated by the record levels of the earned profits of $39 billion and of delivery of

more than 4,700 jetliners from 1995 to 2000. The US airlines’ net profits dropped from margins

of nearly 4 percent during 1998-2000 to losses of greater than 3 percent during the first half of

2001, despite aggressive price cuts as airlines tried to fill seats and profits vanished.

Many other examples are available. We propose to address this general question of exogenous

versus endogenous origins of shocks by quantifying how the dynamics of the system may differ

in its response to an exogenous versus endogenous shock. We start with a simple “mean field”

model of the activity A(t) of a system at time t, viewed as the effective response to all past

perturbations embodied by some noisy function η(τ),

A(t) =
∫ t

−∞
dτ η(τ) K(t − τ) , (12.1)
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where K(t− τ) can be called the memory kernel, propagator, Green function, or response func-

tion of the system at a later time t to a perturbation η(τ) that occurred at an earlier time

τ . Notwithstanding the linear structure of (12.1), we do not restrict our description to linear

systems but take (12.1) as an effective coarse-grained description of possible complex nonlinear

dynamics. For instance, it has been shown [Krishnamurth et al., 2000] that the extremal nonli-

near dynamics of the Bak and Sneppen model and of the Sneppen model of extremal evolution

of species, which exhibit a certain class of self-organized critical behavior [Sornette, 2000a], can

be accurately characterized by the stochastic process called “Linear fractional stable motion”,

which has exactly the form (12.1) for the activity dynamics.

Expression (12.1) contains for instance the fractional Brownian motion (fBm) model intro-

duced by Mandelbrot and Van Ness [Mandelbrot and Ness, 1968] as a simple extension of the

memoryless random walk to account for the Hurst effect. From an initial value BH(0), we recall

that the fBm is defined by

BH(t) − BH(0) =
1

Γ(H + (1/2))

∫ t

−∞
dτ η(τ) K(t − τ) , (12.2)

where dτ η(τ) = dWτ is usually taken as the increment of the standard random walk with white

noise spectrum and Gaussian distribution with variance E[dWτ ] = dτ and the memory kernel

K(t − τ) is given by

K(t − τ) = (t − τ)H− 1
2 , for 0 ≤ τ ≤ t (12.3)

= (t − τ)H− 1
2 − (−τ)H− 1

2 , for τ < 0 . (12.4)

For H > 1/2, the fBm BH(t) exhibits long term persistence and memory, since the effect of past

innovations of dWτ is felt in the future with a slowly decaying power law weight K(t − τ). For

our purpose, the fBm is non-stationary and it is more relevant to consider globally statistically

stationary processes.

Here, we consider processes which can be described by an integral equation of the form

(12.1) and (12.2) but with possibly different forms for the noise innovations η and for the

memory kernel K. Simple viscous systems correspond to K(t − τ) ∝ exp[−(t − τ)/T ], where

T is a characteristic relaxation time. Complex fluids, glasses, porous media, semiconductors,

and so on, are characterized by a memory kernel K(t − τ) ∝ e−a(t−τ)β
, with 0 < β < 1, a law

known under the name Kohlrausch–Williams–Watts law [Phillips, 1996]. It is also interesting

to consider fractional noise motion (fNm) defined as the time derivative of BH(t), which does

possess the property of statistical stationarity. A fNm is defined by (12.1) with

KfNm(t − τ) =
1

(t − τ)
3
2
−H

=
1

(t − τ)1−θ
, (12.5)

for H = 1/2 + θ. Persistence 1/2 < H < 1 (respectively antipersistence 0 < H < 1/2) corres-

ponds to 0 < θ < 1/2 (respectively −1/2 < θ < 0). Such a memory kernel describes also the

renormalized Omori’s law for earthquake aftershocks [Sornette and Sornette, 1999a; Helmstetter

and Sornette, 2002a].
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12.2 Exogenous versus endogenous shock

In the following, we consider systems described by a long memory integral (12.1) with ker-

nel K(t) decaying faster than 1/
√

t at large times, so as to ensure the condition of statistical

stationarity. This excludes the fBm which are non-stationary processes but includes the fNm.

Exogenous shock

An external shock occurring at t = 0 can be modeled in this framework by an innovation

which takes the form of a jump A0 δ(τ). The response of the system for t > 0 is then

A(t) = A0 K(t) +
∫ t

−∞
dτ η(τ) K(t − τ). (12.6)

The expectation of the response to an exogenous shock is thus

Eexp[A(t)] = A0 K(t) + n〈η〉 , (12.7)

where 〈η〉 is the average noise level and n =
∫ +∞
0 dτ K(τ) is the average impact of a perturbation

which is usually smaller than 1 to ensure stationarity (this corresponds to the sub-critical regime

of branching processes [Harris, 1963]).

The time evolution of the system after the shock is thus the sum of the process it would

have followed in absence of shock and of the kernel K(t). The response A0 K(t) to the jump

A0 δ(τ) exemplifies that K(t) is the Green function or propagator of the coarse-grained equation

of motions of the system. Expression (12.6) simply expresses that the recovery of the system to

an external shock is entirely controlled by its relaxation kernel.

Endogenous shock

Conditional response function

Let us consider the natural evolution of the system, without any large external shock, which

nevertheless exhibits a large burst A(t = 0) = A0 at t = 0. From definition (12.1), it is clear

that a large “endogenous” shock requires a special set of realization of the innovations {η(t)}.
To quantify the response in such case, we recall a standard result of stochastic processes with

finite variance and covariance that the expectation of some process X(t) conditioned on some

variable Y taking a specific value Y0 is given by [Jacod and Shiryaev, 1987]

E[X(t)|Y = A0] − E[X(t)] = (A0 − E[Y ])
Cov(X(t), Y )

E[Y 2]
, (12.8)

where E[Y 2] denotes the expectation of Y 2, Cov(X(t), Y ) is the covariance of X and Y , E[X(t)]

and E[Y ] are the (unconditional) average of X(t) and of Y . Expression (12.8) recovers the obvious

result that E[X(t)|Y = A0] = E[X(t)] if X and Y are uncorrelated. A result generalizing (12.8)
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holds when η(τ) has an infinite variance corresponding to a distribution with a power law tail

with exponent smaller than 2 [Helmstetter et al., 2002].

Let us assume that the process A(t) and the innovations η’s have been defined with zero mean,

which is always possible without loss of generality by a translation. Let us call X(t > 0) = A(t)

and Y = A(0). Under the assumption that the noise η(τ) has a finite variance, we obtain from

(12.1)

Cov(A(t), A(0)) =
∫ 0

−∞
dτ K(t − τ) K(−τ) , (12.9)

and

E[A(0)2] =
∫ 0

−∞
dτ [K(−τ)]2 . (12.10)

For stationary processes such that K(t) decays faster than 1/
√

t so as to make the integral in

(12.10) convergent, E[A(0)2] is a constant. We thus obtain the posterior (t > 0) response (above

the stationary average) to an endogenous shock occurring at time t = 0 under the form of a

conditional expectation of A(t), conditioned by the existence of this shock :

Eendo[A(t)|A(0) = A0] ∝ A0

∫ +∞

0
du K(t + u) K(u) , (12.11)

for large A0. This relaxation of the activity after an endogenous shock is in general significantly

different from that given by (12.7) following an exogenous shock.

Conditional noise trajectory

What is the source of endogenous shocks characterized by the response function (12.11) ?

To answer, let us consider the process W (t) ≡ ∫ t
−∞ dτ η̂(τ), where η̂(t) = η(t) − 〈η〉 defines the

centered innovations forcing the system (12.1). Using property (12.8), we find that for t < 0

Eendo[W (t)|A(0) = A0] =
Cov[W (t), A(0)]

Var[A(0)]
· (A0 − E[A]) ∝ (A0 − E[A])

∫ t

−∞
dτ K(−τ) ,

(12.12)

where Eendo[W (t)|A(0) = A0] = 0 for t > 0 since the conditioning does not act after the shock.

Expression (12.12) predicts that the expected path of the continuous innovation flow prior to the

endogenous shock (i.e., for t < 0) grows like ∆W (t) = η̂(t)∆t ∼ K(−t)∆t upon the approach to

the time t = 0 of the large endogenous shock. In other words, conditioned on the observation of

a large endogenous shock, there is specific set of trajectories of the innovation flow η(t) that led

to it. These conditional innovation flows have an expectation given by (12.12).

Inserting expression (12.12) for the average conditional noise in definition (12.1) of the pro-

cess, we obtain an expression proportional to (12.11). This shows that the precursory activity

preceding and announcing the endogenous shock follows the same time dependence as relaxation

(12.11) following the shock, with the only modification that t (for t > 0 counting time after the

shock at t = 0) is changed into −t (for t < 0 counting time before the shock at t = 0). We

can also use (12.12) into (12.1) and calculate the activity after the endogenous shock to recover
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(12.11). These are two equivalent ways of arriving at the same result, the one using (12.12)

illuminating the fundamental physical origin of the endogenous response.

These results allow us to understand the distinctive features of an endogenous shock com-

pared to an external shock. The later is a single very strong instantaneous perturbation that is

sufficient in itself to move the system significantly according to (12.6). In contrast, an “endoge-

nous” shock is the result of the cumulative effect of many small perturbations, each one looking

relatively benign taken alone but, when taken all together collectively along the full path of

innovations, can add up coherently due to the long-range memory of the dynamical process. In

summing, the term “endogenous” is used here to refer to the sum of the contribution of many

“small” innovations adding up according to a specific most probable trajectory, as opposed to

the effect of a single massive external perturbation.

Numerical simulation of an epidemic branching process with long-range me-

mory

To illustrate our predictions (12.7) and (12.11), we use a simple epidemic branching model

defined as follows. The model describes the time evolution of the rate of occurrence of events as a

function of all past history. What is called “event” can be the creation of a new species or a new

family of organisms as in [Courtillot and Gaudemer, 1996], the occurrence of an earthquake as in

[Sornette and Sornette, 1999a; Helmstetter and Sornette, 2002a], the amplitude of the so-called

financial volatility as in [Sornette et al., 2002] or of aviation traffic, a change of weather regime,

a climate shift and so on. The rate λ(t) of events at time t is assumed to be a function of all

past events according to

λ(t) =
∑

i | ti<t

φ(t − ti) , (12.13)

where the sum is carried over all past events that occurred at times ti prior to the present t.

The influence of such an event at a previous time ti is felt at time t through the bare propagator

φ(t − ti). In our present illustration, we consider a process equivalent to a fNm with Hurst

exponent H = 1/2 + θ, which can be shown to correspond to the choice φ(t) = θ cθ/(t + c)1+θ,

where c is an ultra-violet regularization time embodying a delay process at early times in the

activity response after an event. Indeed, the Master equation corresponding to the process (12.13)

can be shown [Sornette and Sornette, 1999a; Helmstetter and Sornette, 2002a] to be nothing

but (12.1) with the renormalized or dressed propagator K(t) ∝ 1/(t + c)1−θ.

Numerical simulations of the epidemic branching process are performed by drawing events

in succession according to a non-stationary Poisson process with instantaneous rate (12.13).

Figures 12.1 and 12.2 show successive magnifications of time series of the activity rate after

an exogenous shock and around an endogenous shock, respectively, in order to visualize the

precursory and relaxation activities. In figure 12.2, an external source of activity necessary for

seeding has been added as a Poisson process of rate µ = 10−3 corresponding on average to one
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external event over a time interval of 1000. The most striking visual difference is the existence

of the precursory signal occurring at many time scales for the endogenous shock.

Figure 12.3 quantifies the precursory and relaxation rates associated with activity shocks.

The top panel shows the relaxation of the activity (rate of events) following an external shock

compared to that after an endogenous shock, for a single realization. tc is the time of the shock.

The horizontal axis is t − tc for the relaxation of the activity after the shock. The precursory

activity prior to the shock is also shown for the endogenous shock as a function of tc − t. The

bottom panel shows the same three activity functions after averaging over many realizations,

translating time in the averaging so that all shocks occur at the same time denoted tc. The

prediction (12.7) states that the relaxation of the activity after an exogenous shock should

decay as K(t) ∝ 1/(t− tc + c)1−θ while the decay after an endogenous shock should be given by

(12.11) which predicts the law ∝ 1/(t − tc + c)1−2θ , that is, a significantly smaller exponent for

θ > 0. Similarly, we predict that the precursory activity prior to an endogenous shock should

increase as ∝ 1/(tc − t + c)1−2θ . These predictions are verified with very good accuracy, as seen

in figure 12.3.

These simulations confirm that there is a distinctive difference in the relaxation after an endo-

genous shock compared to an exogenous shock, if the memory kernel is sufficiently long-ranged.

For a single realization, there are unavoidable fluctuations that may blur out this difference.

However, we see a quite visible precursory signal (foreshock activity) that is symmetric to that

relaxation process in the case of an endogenous shock. This follows from the model used here

which obeys the time-reversal symmetry. This may be used as a distinguishing signature of an

endogenous shock.

12.3 Classification of the distinctive responses for different classes

of memory kernels

The family of power law kernels used in the simulations presented in figures 12.1, 12.2 and

12.3 are only one possibility among many. Our formalism allows us to classify the distinctive

properties of the relaxation and precursory behaviors that can be expected for an arbitrary

memory kernel. We now provide this classification by studying (12.7) and (12.11).

Short-time response

We compare the initial slopes of the relaxations after the occurrence of the shock at t = 0.

Thus, by short-time, we mean the asymptotic decay law just after the shock. For this, we expand

(12.7) to get

Eexo[A(t)] = A0 K(0)
[
1 +

K ′(0)
K(0)

t + O(t2)
]

= A0 K(0)
[
1 +

d ln K

dt
|t=0 t + O(t2)

]
, (12.14)

where K ′(t) denotes the derivative of K(t) with respect to time.
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Fig. 12.1 – Rate of activity following an exogenous shock in a numerical simulation of the epidemic

branching model (12.13) generated with a memory kernel decaying as a power law φ(t) ∼ 1/(t + c)1+θ

with parameters θ = 0.1 and c = 0.001 without a constant source term (µ = 0). The rate of activity

following an exogenous shock that occurred at t = 0 is shown at increasing magnification from top to

bottom. It is evaluated using a bin size decreasing by factors of 10 from δt = 10 (a) to δt = 0.01 (d).

Averaging over many such realizations would yield the average power law decay K(t) ∼ 1/(t + c)1−θ

predicted by (12.7).
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Fig. 12.2 – Rate of activity prior to and after an endogenously generated major burst of activity

generated by a numerical simulation of the epidemic branching model (12.13) with a power law kernel

with the same parameters θ = 0.1 and c = 0.001 as in figure 12.1 with in addition a constant Poisson

source term with rate µ = 0.001 corresponding, on average, to one event added from an external source

per 1000 time units. Most of the observed activity is thus the result of interactions between events. The

rate of activity close to the largest peak of activity is shown at increasing magnifications from top to

bottom and is evaluated as in figure 12.1. Both precursory and relaxational processes can be observed at

many time scales.
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Fig. 12.3 – Rate of activity for a single sequence (a) of the epidemic branching model defined by (12.13)

generated with a memory kernel decaying as a power law of time with the parameters θ = 0.2 and

c = 10−3 and averaged over many sequences (b). The exogenous relaxation is shown with diamonds, the

endogenous relaxation is shown as crosses and circles are for the precursory activity in the endogenous

case. Large fluctuations are observed in the precursory activity and in the endogenous relaxation when

looking at a single sequence, due to the small number ≈ 100 of observed events. Averaging over 50

realizations, we see clearly the faster decay rate ∼ 1/t1−θ for the exogenous relaxation predicted by

(12.7) compared with the endogenous one predicted by (12.11). The same decay rate ∼ 1/t1−2θ predicted

by (12.11) is observed for both the endogenous precursory and post-event relaxation.
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Similarly, expanding the integral in (12.11) for short times, we obtain

Eendo[A(t)|A(0) = A0] ∝ A0F (0)
[
1 +

1
2

d ln F

dt
|t=0 t + O(t2)

]
, (12.15)

where

F (t) ≡
∫ +∞

t
du[K(u)]2 (12.16)

is a monotonically decreasing function of time.

It is convenient to use the parameterization

F (t) = e−g(t) , (12.17)

where g(t) is an monotonously increasing function of time. Inserting (12.17) in (12.14) and

(12.15) leads to

Eexo[A(t)] = A0 K(0)
[
1 −
(

1
2
g′(0) − 1

2
g′′(0)
g′(0)

)
t + O(t2)

]
, (12.18)

and

Eendo[A(t)|A(0) = A0] ∝ A0F (0)
[
1 − 1

2
g′(0) t + O(t2)

]
. (12.19)

1. For g′′(0) = 0, that is, g(t) = 2αt corresponding to a pure exponential relaxation K(t) ∝
exp[−αt], the velocities of the responses to an exogenous and to endogenous shock are

identical ;

2. for g′′(0) > 0 corresponding to a super-exponential relaxation K(t) ∝ exp[−αtc] with

c > 1, the exogenous relaxation is slower than the endogenous one ;

3. for g′′(0) < 0 corresponding to a sub-exponential relaxation such as a stretched exponential

K(t) ∝ exp[−αtc] with c < 1 or to the family of regularly varying functions such as power

laws, the exogenous relaxation is faster than the endogenous one.

The exponential relaxation thus marks the boundary between two opposite regimes. As is intui-

tive, a sub-exponential relaxation betraying a long memory process leads to a slower short-time

recovery after an endogenous shock, because it results from a long preparation process (12.12).

Asymptotic long-time response

Since K(t) is a monotonously decaying function, K(t + u) ≤ K(t) for any u ≥ 0. This leads

to the following inequality

Eendo[A(t)|A(0) = A0] ≤ A0K(t)
∫ +∞

0
du K(u) , (12.20)

which is valid if the integral
∫ +∞
0 du K(u) exists, that is, if K(t) decays faster than 1/t at large

times. This shows that, as soon as K(t) � C/t for any positive constant C, Eendo[A(t)|A(0) =

A0] < Eexo[A(t)]. But the difference may be small and unobservable. For instance, for K(t) ∝
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1/t1+θ with θ > 0, a careful examination of the integral in (12.11) shows that, due to the

contribution of the conditional noise close to the shock, we have

Eendo[A(t)|A(0) = A0] ∝ A0

t1+θ
∼ Eexo[A(t)] . (12.21)

Thus, there is no qualitative difference in the relaxation rates of an endogenous shock and

exogenous shock in this case : the contributions of all the conditional activity prior to the

endogenous shock is equivalent to that of the shock itself. A more elaborate and analysis specific

to the problem at hand must be performed to predict the prefactors that will be different in the

endogenous and exogenous cases.

In contrast, for memory kernels K(t) ∝ 1/t1−θ with θ > 0 decaying slower than 1/t, as for a

stationary fNm of the form (12.5), we obtain

Eendo[A(t)|A(0) = A0] ∝ A0

t1−2θ

 Eexo[A(t)] ∝ A0

t1−θ
. (12.22)

In this case, the relaxation following an endogenous shock decays significantly more slowly than

for an exogenous shock. This case is exemplified in figure 12.3. In the long time limit, the decay

law 1/t thus marks the boundary between two opposite regimes.

Illustration

An illustration of this critical behavior is provided by the response of the price volatility σ∆t

at scale ∆t defined as the amplitude (absolute value) of the return rDt(t) ≡ ln[p(t)/p(t−∆t)] =

ε(t) ·σ∆t(t) = ε(t) · eω∆t(t). of a financial asset. ε(t) is a random sign. Indeed, financial price time

series have been shown to exhibit a long-range correlation of their log-volatility ω∆t, described

by a model [Muzy et al., 2000; Sornette et al., 2002] in which ω∆t(t) follows the process (12.1)

with

K∆t(t) ∼ K0

√
λ2T

t
for ∆t � t � T , (12.23)

where T ≈ 1 year is a so-called integral time scale. This form (12.23) corresponds to paramete-

rization (12.5) with θ = 1/2. Sornette et al. [2002] have shown that there is a clear distinction

between the relaxation of stock market volatility after an exogenous event such at the Septem-

ber 11, 2001 attack or the Aug., 19, 1991 coup against Gorbachev and that after an endogenous

event such as the October 19, 1987 crash. In this model, the long-range memory acting on the

logarithm of the volatility induces an additional effect, namely the exponent of the power law

relaxation after an endogenous shock is a linear function of the amplitude of the shock.

Synthesis of the asymptotic short and long time regimes

We have found two special functional forms for the response kernel K(t) ∝ 1/t and K(t) ∝
exp[−αt], which are “invariant” or indifferent with respect to the endogenous versus exogenous
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origin of a shock. Thus, for normal exponential relaxation processes as well as for power relaxa-

tion ∝ 1/t, the functional form of the recovery does not allow one to distinguish between an

endogenous and an exogenous shock.

These two invariants K(t) ∝ exp[−αt] and K(t) ∝ 1/t delineate two opposite regimes, the

first one for short time scales and the second one for long-time scales :

1. for K(t) ∝ 1/t1−θ with θ > 0, the endogenous response decays more slowly than the

exogenous response, at all time scales ;

2. for exp[−αt] � K(t) � 1/t for any positive α, the endogenous response decays more

slowly than the exogenous response at short time scales and has the same dependence as

the exogenous response at long time scales ; this regime describes for instance the stretched

exponential relaxation of complex fluids alluded to above ;

3. for K(t) � exp[−αt] for any positive α, the endogenous response decay faster than the

exogenous response at all time scales.

More complicated behaviors can occur when the memory kernel K(t) exhibits a change of

regime, crossing the exponential and/or 1/t boundaries at certain time scales. Each situation

requires a specific analysis which yields sometimes surprising non-intuitive results [Helmstetter

et al., 2002].

12.4 Conclusion

We think that the conceptual framework presented here may be applied to a large variety

of situations, beyond those alluded to in the introduction. For instance, the result (12.12) has

been shown to explain the so-called inverse Omori’s law for earthquake foreshock activity before

a mainshock, in a simple model of earthquake triggering [Helmstetter et al., 2002]. The same

mechanism may explain the premonitory seismicity pattern known as “burst of aftershocks”

[Keilis-Borok et al., 1978] : a mainshock with an abnormally large number of aftershocks has

been found to be a statistically significant precursor to strong earthquakes [Molchan et al., 1990].

Many dynamical systems in Nature, such as geophysical and biological systems (immune

network, memory processes in the brain, etc.), or created by man such as social structures

and networks (Internet), States and so on, exhibit long-memory effects due to a wealth of

possible mechanisms. For instance, Krishan Khurana at UCLA has suggested to us that the

concept proposed here could explain that endogenous civil wars have long-lasting effects with

slow reconstruction compared with the fast recovery after exogenous wars (that is, imposed or

coming from the outside). The increasing emphasis on the concepts of emergence and complexity

has emphasized an endogenous origin of the complicated dynamical behavior of complex systems.

In reality, most (so-called) complex systems are the result of their internal dynamics/adaptation

in response to a flow of external perturbations, but some of these external perturbations are rare

extreme shocks. What is the role of these exogenous shocks in the self-organization of a complex
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system ? Can one distinguish the impact of extreme exogenous shocks from an endogenous

organization at different time scales ? Our present analysis has just scratched the surface of these

important and deep questions by suggesting an angle of attack based on the conditional historical

process at the basis of strong endogenous fluctuations. Extensions of the present simplified

framework involve the generalization to multidimensional coupled processes such as in [Jefferies

et al., 2002] and to nonlinear spatio-temporal processes.

We are grateful to A.B. Davis. V. Keilis-Borok and V.F. Pisarenko for useful exchanges.
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Chapitre 13

Conclusions

We now summarize our main results :

– We have measured the scaling of the number of aftershocks with the mainshock size, and

showed that seismicity triggering is driven by the smallest earthquakes.

– We have investigated several physical mechanisms underlying the local Omori’s law to

explain its observed variability.

– We have classified the different regimes of triggered seismicity in the ETAS model.

– We have proposed an improvement of the prediction methods based on point processes,

by taking into account the secondary cascades of aftershocks.

– We have shown how these cascades of triggered seismicity may lead to aftershock dif-

fusion and foreshock migration and compared our numerical and analytical results with

observations of real seismicity.

– We have discovered that the inverse Omori’s law for foreshocks may derive from the direct

Omori’s law for aftershocks as the most probable trajectory of seismicity, conditioned

on the fact that it leads to a burst of seismic activity accompanying the mainshock.

Observations of real seismicity are in good agreement with the results derived for the

ETAS model.

– We have shown that the often documented apparent decrease of the b-value of the GR law

at the approach to the mainshock results straightforwardly from the conditioning of the

path of seismic activity culminating at the mainshock. In the ETAS model, the magnitude

distribution is not modified by a decrease of b-value, but by a deviatoric distribution with

a constant exponent b′ < b and with an amplitude growing as a power-law of the time to

the mainshock. Analysis of seismicity data using a superposed epoch analysis are in good

agreement with the results obtained with the ETAS model.

The ETAS model discussed here can be improved to take into account the following features

– The possible dependence between the magnitude of a mainshock and its aftershocks. Is

the magnitude of an aftershock limited by the size of the mainshock ? Or can any small

event trigger a larger earthquake ?
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– The anisotropy of the seismic activity. We can for example introduce a dependence of the

aftershock rate on the focal mechanism of the mainshock to reproduce the anisotropy of

the Coulomb stress.

– The possible decrease of seismic activity following a large event, in the regions where the

stress change induced by the mainshock is negative. This decrease of seismic activity in

“stress shadows” is however still controversial.

– The localization of the seismicity on faults. The seismicity can be constrained by existing

fault geometry, when the fault network is known. Alternatively, we can include a non-

uniform seismicity background, deduced from the past seismicity, to obtain a realistic

spatial distribution of seismicity.

Is the physics of triggering fully characterized by the class of models discussed here ? Or are

there other processes that lead to large earthquakes ? If yes, this would imply that earthquakes

are not only actors speaking to and influencing each other. Some of them may be also witnesses

of “forces” beyond their realm. It is thus particularly interesting to develop a methodology to

test the limits of the triggered-seismicity models, specifically to identify what processes and

patterns can not be reproduced and/or explained.

A possible alternative, still controversial, is the critical earthquake concept that requires

interactions or rather influences beyond what seems reasonable within the strict confine of elastic

stress redistribution. In this context, observations of the acceleration of seismic moment leading

up to large events and “stress shadows” following them have been interpreted as evidence that

seismic cycles represent the approach to and retreat from a critical state of a fault network

(see [Sammis and Sornette, 2002] for a review). Predictability might then become possible by

monitoring the approach of the fault network toward the critical state.

The outstanding question is thus the following : are the often reported precursory patterns of

seismic activity (b-value decrease, power-law acceleration of the seismic activity, ...) completely

explained by the ETAS model used in this work ? In this case, the ETAS model would provide

a significant predictability of earthquake activity, as shown in chapter 7, but the accurate pre-

diction of a single event (in time, space and magnitude) would be impossible because of the

inherent stochasticity of the model. If some precursory patterns are not completely reproduced

by the ETAS model, these precursors may provide a higher predictability of large earthquakes.

The ETAS model should therefore be used as a null hypothesis to test precursory patterns and

prediction algorithms, and may be improved to take into account some seismicity patterns that

are not yet reproduced by the simple ETAS model used in this work.
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Abstract

We analyse the volume distribution of natural rock falls on different geological settings,

i.e. calcareous cliffs in the French Alps, Grenoble area, and granite Yosemite cliffs, California

sierra, and different volume ranges, i.e. regional and world wide catalogs. Contrary to previous

studies that included several types of landslides, we restrict our analysis to rock fall sources

which originated on sub vertical cliffs. For the three data sets, we find that the rock fall volumes

follow a power law distribution with a similar exponent value, within error bars. This power-law

distribution was also proposed for rock fall volumes that occurred along road cuts. All these

results argue for a recurrent power law distribution of rock fall volumes on sub vertical cliffs,

for a large range of rock fall sizes (102 − 1010 m3), regardless of the geological settings and of

the pre-existing geometry of fracture patterns that are drastically different on the three studied
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areas. The power law distribution for rock fall volumes could emerge from two types of processes.

First, the observed power law distribution of rock fall volumes is similar to the one reported

for both fragmentation experiments and fragmentation models. This argues for the geometry

of rock mass fragment sizes to possibly control the rock fall volumes. This way neither cascade

nor avalanche processes would influence the rock fall volume distribution. Second, without any

requirement of scale invariant quenched heterogeneity patterns, the rock mass dynamics can

arise from avalanche processes driven by fluctuations of the rock mass properties, e.g. cohesion

or friction angle. This model may also explain the power-law distribution reported for landslides

involving unconsolidated materials. We find that the exponent values of rock fall volume on

sub vertical cliffs, 0.5 ±0.2, is significantly smaller than the 1.2 ± 0.3 value reported for mixed

landslide types. This change of exponents can be driven by the material strength, that controls

the in-situ topographic slope values, as simulated in numerical models of landslides [Densmore

et al., 1998 ; Champel et al., 2002].

14.1 Introduction

Rock falls, rockslides and rock avalanches are defined as rapid movements of rocks driven

by global gravity forces, having their origin on steep rock slopes, including sub vertical cliffs.

These phenomena are a subset of the more general landslide phenomena, which can include falls,

slumps and slides in all kind of ground material from stiff rock mass to unconsolidated or poorly

cemented materials [Varnes, 1978 ; Keefer, 1999]. The word rock fall is usually used to describe

small phenomena, ranging in size from block falls of a few dm3 up to 104 m3 events. Rockslides

sometimes involve more than 105 m3 and rock avalanches can reach several million cubic meters

[Varnes, 1978 ; Keefer, 1984 ; 1999]. In this study we will use the rock fall label without any

volume distinction, nor distinction in the failure mechanism.

As for floods, earthquakes or volcanic eruptions, evaluating rock fall dynamics means ana-

lysing the location, size and time patterns of rock fall events. Here we focus on the distribution

of rock fall volumes. For some natural phenomena, including floods and earthquakes, statistical

analysis are used to derive the recurrence rate of an event of a given size. The flood sizes are

proposed to follow an exponential distribution [e.g.Guillot and Duband, 1967 ; U.S. Water Re-

sources Council, 1982], whereas the earthquake sizes are best fitted by a power law distribution

[Gutenberg and Richter, 1949]. On the first hand, the size distribution can be used for hazard

assessment, if we hypothesize the distribution to be stationary over time. On the other hand, the

type of distribution can provide routes to further investigate the underlying physical processes.

Power law distributions have been suggested to characterize rock fall distributions triggered

along road-cuts [Noever, 1993 ; Hungr et al., 1999], or natural cliffs [Gardner, 1970 ; Wieczorek

et al., 1995]. In this study we analyse the volume distributions of rock falls from natural cliffs,

in different geological settings, different volume ranges and different time scales. Contrary to
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earthquakes, rainfalls, or floods, few if any natural slopes or cliffs are continuously monitored

in order to provide the exact time of occurrence, location and size of rock fall events. Due to

the lack of instrumental monitoring of rock falls, the available inventories are weak compared

to some other natural phenomena, with several possible biases induced by non homogeneous

sampling in time, space and size domains. We test how reports of rock fall activity can be used

to investigate rock fall volume distribution, the way other scientists used historical catalogs to

further constrain contemporary, short time, instrumental catalogs e.g. [Wesnousky et al., 1983 ;

1984].

We compare volume distributions of natural rock falls that occurred on Grenoble cliffs,

French Alps [RTM, 1996], Yosemite cliffs, Sierra Nevada, California [Wieczorek et al., 1992] and

a worldwide inventory of large rockslides [Couture, 1998]. The first two case studies investigate

the same temporal scale, about one century, and the same spatial scale, roughly 100 km of cliff

length. The main difference between these 2 case studies is the involved rock masses, layered

calcareous cliffs and massive granite rock cliffs, for Grenoble and Yosemite catalogs respectively.

For each area, we validate statistically the power law distribution function as an estimate for

the observed rock fall volume distribution. Exponent values are similar, within error bars, for

the three data sets. This suggests that the distribution law for rock fall volume does not depend

on either the geological setting or the scale of observation. These results are similar to analysis

of rock falls that occurred along road cuts [Noever, 1993 ; Hungr et al., 1999]. We show how this

distribution law can be used for rock fall hazard assessment, by analysing the validity domains

and limits of this approach. We investigate the possible mechanical models that can reproduce

this power law distribution of rock fall volumes.

14.2 Data

Measurement techniques for rock fall inventories

Concerning the study of earthquakes, rainfalls or floods, instrumental monitoring provides

direct or indirect estimates of events occurrence in size, time, and space domains. Few instru-

mental measurements exist for the study of the rock fall activity, especially concerning natural

cliffs. One study uses a continuous seismic monitoring to detect rock fall events and to size up

rock fall volumes on a single, well defined cliff [Rousseau, 1999]. Rousseau [1999] uses a seismic

model to derive the volume of a rock fall event from the amplitude of the recorded seismic

signals. Generally, data about rock falls are mainly reported by forest guards or road surveyors

without the help of any quantifying tool. Due to this lack of instrumental monitoring, the rock

fall volumes inventories suffer several possible biases.

First, the sampling in time domain is driven by the visit rate of the field survey observer,

this survey being usually part of a forestry or road survey (not specific to rock fall observation).

For some events, the field evidences can disappear within the laps time of two visits. For other
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events, the visit rate can induce a cumulative effect on rock fall volumes estimates, i.e. all the

rock falls which occurred at the same place are estimated as one single event at the sampling

rate resolution.

Second, in size domain, rock fall events are reported mainly when they induce damages

to natural or anthropic entities. Impacts on forest trees, trails, roads and housing are the main

criteria to report the occurrence of a rock fall event. Therefore the rock falls which did not induce

damages are seldom reported. This induces a censoring effect for the so-called small events. Small

volumes are also under sampled because of the screening effect due to man made protective

structures, such as rock fences or forests. As a consequence, non-instrumental inventories are

obviously incomplete for the small events.

Another possible bias emerges from the inaccuracy of volume estimates, which are based on

the observation of the deposit area, sometimes coupled with the observation of the visible scar

on the slope. Error bars for volumes are thus large and difficult to quantify. For large rock fall

volumes, i.e. volumes greater than a few hundreds of cubic meters, the volume estimate comes

from the area covered with new rock material and its thickness. For smaller rock falls the sum of

the volumes of the largest blocks is usually used as a volume estimate. When visible, the surface

of the cliff scar that is induced by the rock fall is further used, its thickness being more difficult

to assess.

The Grenoble rock fall inventory, French Alps

The first data set reports rock falls that occurred on subvertical cliffs surrounding the urban

area of Grenoble city, French Alps [RTM, 1996]. These cliffs are part of the Chartreuse and Ver-

cors subalpine massifs, made of sedimentary rocks from upper Jurassic and lower Cretaceous age

(limestone and marls). Initial bedding is folded and faulted due to alpine horizontal compressive

stresses, resulting mostly in subvertical fractures across gently inward dipping stratification (Fi-

gure 14.1). The cliffs dimensions are 50 m to 400 m in height, 120 km in length, as cumulative

values on two successive rocky walls (Figure 14.1). The cliffs elevation ranges from 800 m to

2000 m. For such an altitude, in the French Alps, the climatic conditions correspond to wet

springs and falls seasons and frozen conditions in wintertime. The area is suggested to have a

slow tectonic deformation rate, i.e. less than a few mm/yr either for horizontal or for vertical

displacements [Martinod et al., 1996]. Historical and instrumental seismicity rates are low, with

a few M=4 earthquakes reported in the area during the last 5 centuries [Fréchet, 1978 ; Grasso

et al., 1992]. There is no report on rock falls possibly triggered by earthquakes. One possible

change in loading conditions is the last glacial unloading (Würm, dated 104 yrs before present).

Rock fall activity that occurred in the Grenoble calcareous Alps from 1248 to 1995 was

reported by the Restauration des Terrains de Montagnes Office (RTM), a forestry office in

charge of natural risks in the French Alps, since 1870 [RTM, 1996]. As the RTM office was c

reated in 1870, the 1870-1890 period is the threshold between archive reports for rock fall events
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Fig. 14.1 – East face of the Chartreuse massif, Grenoble, France. (a) Subvertical calcareous cliffs are

separated into two levels ; the intermediate, less steep, slope is associated to marly levels. The maximum

height of each level is 350-400 m and the total length of cliffs is 120 km. Note the sub-urban area of

Grenoble at the bottom of the cliffs. The photograph, by J.M. Vengeon, is roughly 5% of the total

area covered by the Grenoble rock fall inventory [ RTM, 1996]. (b) Geometry of the fracture pattern, as

detailled from top of the cliff on (a). It is roughly characterized by a subhorizontal bedding and subvertical

orthogonal joints.
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and the specific survey of mountain slopes. For each event the available data from the Grenoble

catalog are (i) the location of the rock fall, (ii) the date of occurrence, (iii) the volume and the

induced damages. Most of this information has been reported by forest guards as described in

the previous section, with a sampling rate of once every a few weeks. For some roughly estimated

volumes, we provide new volume estimates on the basis of in-situ observation and re-analysis

of reports. Reported volumes range from 3.10−2 m3, i.e. typical of a slight damage on a single

house, to 5.108 m3. The largest event of this data set is the 1248 Mt Granier rock avalanche, 40

km north of Grenoble, with a volume of 5.108 m3 [Goguel and Pachoud, 1972].

For this data set, we know that rock fall volumes smaller than a few tens of m3 are not always

reported because of the sampling procedure. On the other hand, volumes greater than 500 m3 are

always damaging events by their impact either on infrastructures or on forests and they induce

changes in the cliff pattern (scars, change in colour, geometry), that are rarely invisible. We

thus assume the Grenoble inventory to be complete for volumes greater than 500 m3. Because

of the non-uniform temporal sampling (Figure 14.2), one large event in 1248 and just a few ones

reported in the 17th - 19th centuries period, we select events within the 1935-1995 time window

only. This period is a trade off between a minimum number of available events and a period

for which the sampling can be considered as uniform. On such a basis, the Grenoble catalog we

used involves 87 events.

The Yosemite Valley rock fall inventory, California

The second data set we use gathers rock falls that occurred in the Yosemite Valley, Sierra

Nevada, California [Wieczorek, 1992]. It concerns cliffs of massive granite from Cretaceous age.

The total area covers almost 100 km of cliff length. Cliffs have a maximum height of 1000 m,

with a mean value of 300 m, and an elevation ranging from 1000 to 2300 m (Figure 14.3). The

climatic setting is roughly a dry and warm spring and summer, and cold wet falls and winter.

Rock falls result partly from exfoliation and sheeting processes that are induced by the release

of pressure of previously buried rocks (Figure 14.3). The resulting sheets tend to be mainly

parallel to the topography [Huber, 1987]. This area is subjected to a moderate to strong tectonic

loading, induced by the subduction of the Pacific plate beneath the North American plate.

Resulting tectonic deformations are of the order of 5 mm/yrs for uplift rate and 5 mm/yr for

horizontal compression. Roughly, 5% of the rock falls are reported as triggered by earthquakes

[Wieczorek, 1992]. Last glacial unloading corresponds to the end of the Tioga epoch, 15000 years

BP at relatively low elevation [Huber, 1987].

The historical Yosemite rock fall inventory reports 395 events in the 1850-1992 period [Wiec-

zorek, 1992]. Most of them are reported by either National Park Rangers or USGS geologists. As

for the Grenoble inventory, there are large uncertainties on reported volumes, and a non-uniform

sampling of small volume rock falls over time. The sampling rate is globally shorter than one

month, observed data being collected in the Superintendent Monthly report. This sampling rate
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Fig. 14.2 – Occurrence rate for rock falls for Grenoble area, RTM inventory [1996]. a) volumes and time

of occurrence in the 1200-1995 period. b) Occurence rate in the 1935-1995 period for volume larger than

50 m3. Due to the non uniform temporal and volume samplings, the studied catalog is restricted to the

1 935-1995 period, involving 87 events with volumes ranging from 10−2 to 106 m3.
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Fig. 14.3 – Cliffs surrounding the Yosemite Valley, California Sierra. (a) Subvertical granitic cliffs,

maximum height 800-1000 m, total length 100 km ; photograph by G. Wieczorek. (b) Detailed view of the

Fairview dome : the fracture pattern is roughly characterized by a sheeting process giving joints parallel

to the topography, and spaced subvertical joints ; photograph by J.R. Grasso.
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has been much shorter in the last ten years [Wieczorek, personal communication]. The threshold

for the inventory completeness for the small events is not estimated.

There are two classes of volume estimates in the Yosemite inventory. For one class of rock

falls, roughly one quarter of the inventory, the reports allow a quantitative estimate of volumes.

For the second class, only qualitative estimates are given. Following the same criterion as for

the Grenoble catalog, we select events with quantitative volume estimates in the 1915-1992

period (Figure 14.4). We obtain 101 events, with volumes ranging from 1 to 6.105 m3. Because

qualitative volume estimates exist in the inventory for volumes as large as a few thousands

cubic meters, this volume catalog is not complete up to large volumes. We will consider this

volume inventory as a subset of the genuine volumes of the Yosemite rock fall population, for

the 1915-1992 period.

A worldwide rock falls inventory

The last data set we use is a worldwide collection of large rockslides and rock avalanches,

as old as the last glacial epoch [Couture, 1998]. Contrary to the two previous data sets of

rock falls that occurred within homogeneous geological setting, e.g. calcareous and granite cliffs

respectively, Couture [1998] is an overview of the phenomenology of rock avalanches on Earth

and other planets. Therefore the geological setting of these events is obviously heterogeneous,

and the sampling method just comes out from a bibliographic study.

From the Couture inventory, we selected 142 Earth events. Estimated volumes are provided

by historical reports, based on observations of cliff scars and deposits or on geomorphological

patterns for the oldest events. The collection is not supposed to be exhaustive [Couture, 1998].

The sampling is neither uniform in time, recent events being more often reported than older

ones, nor in space domain. Also, the sampling is not uniform in size, the largest events being

preferentially reported in historical reports. Like the Yosemite inventory, this data set is one

subset of the complete worldwide catalog.

14.3 Statistical analysis of volume distribution

For the three data sets, we test which distribution function best describes the rock fall volume

data. For each catalog, the selected events correspond to the time window for which the catalog

is supposed to be homogeneous in the time domain. Because of the censoring effect, there is an

under sampling of small volume events. For the largest observed volumes, with a size comparable

to the cliff height, the distribution may be truncated because of finite size effects. Accordingly,

we select only rock fall events above a given volume. This minimum volume is a-priori unknown,

and will be estimated from the adjustment of distribution laws to the data. First we search

which distribution functions may describe our data. Second, using the χ2 criterion, we test if

the rock fall volume distribution is consistent with the hypothesized distribution functions.
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Fig. 14.4 – Occurrence rate for rock falls from the Yosemite Valley data set [Wieczorek, 1992]. a) Volume

and occurence for the 1850-1992 period. b) Occurence rate in the the 1915-1992 period for volume larger

than 50 m3. Due to the non uniform temporal sampling shown on the 1850-1992 period, the time window

selected for the study is 1915-1995, involving 101 events with volumes ranging from 1 to 106 m3 .
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Tab. 14.1 – Characteristics of rock fall volume distributions for the 3 studied data sets. N is the total

number of events in the catalog, Nfit is the number of events with volume above V0 used for the fit.

data time N Vobs m3 V0 m3 Nfit blr bml χ2
r

RTM 1935-1995 87 10−2 − 106 40 55 0.40 0.41 ± 0.06 0.58

Yosemite 1915-1992 101 1 − 106 50 55 0.46 0.45 ± 0.06 0.72

Worldwide 10 000 yrs 142 103 − 2 × 1010 3.1 × 107 54 0.58 0.51 ± 0.07 1.07

Grenoble inventory

The observed cumulative distribution for the Grenoble cliffs is evaluated for the 87 rock

fall events in the 1935-1995 period (Figure 14.5). The distribution is almost linear in a log-log

plot for volumes larger than 40 m3. For volumes smaller than 40 m3, we observe a downward

departure from the linear behavior that is typical of a censoring effect. Accordingly, we test how

the observed cumulative volume distribution may be adjusted by a power-law distribution for

the 55 events of volume above 40 m3, i. e.,

N(V ) ∼ V −b , (14.1)

with V the rock fall volume, N(V ) the number of events greater than V and b a constant

parameter. First we use the maximum likelihood method [Aki, 1965] and linear regression to

estimate the b-value. The maximum likelihood estimate for b is

b =
1

ln(10) (< log(V ) > − log(V0))
, (14.2)

in the case of a pure power law distribution, with a standard deviation determined by,

σ =
b√
N1

, (14.3)

where V0 is the minimum volume used in the power law fit, < log(V ) > is the average of log(V )

for events larger than V0 and N1 the number of events with volume larger than V0. A more

complex equation is necessary when the distribution is bounded to a given Vmax value. This is

not the case of the data we fit, i.e. we have no a-priori bound on the maximum volume size.

For the Grenoble inventory, these two techniques provide similar values, b ∼ 0.40 (Table

14.1). The standard deviation of b given by (14.3) is 0.06, as estimated from the maximum

likelihood method. These values are not sensitive to either a V0 value increase above 40 m3 or

a change in the analysed time period. Second, we use the χ2 test to validate the hypothesis

that the observed volume distribution follows a power law distribution for volumes larger than

40 m3. The χ2 test compares an observed histogram to a histogram obtained by sampling the

hypothesized distribution function [e.g. Press et al., 1992 ; Taylor, 1997]. The χ2 value measures
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Fig. 14.5 – Cumulative volume distributions for rock falls. (a) Grenoble area. Rock falls occur on a

calcareous cliffs of 120 km of length. We used the 87 events of the 1935-1995 time window. The straight

line is the power law fit, with b=0.40, estimated by linear regression in the 40-106 m3 volume range ; the

reduced χ2 is 0.58 (b) Yosemite Valley. Rock falls occur on a granite cliffs of 100 km length. We used 101

events on the 1915-1992 time window. The straight line is the power law fit, with b= 0.46, estimated by

linear regression in the 50− 106 m3 volume range. The reduced χ2 is 0.72. (c) World wide inventory, 142

records in the last 10.000 years. The straight line is the power law fit, with b=0.58, estimated by linear

regression in the 3 107-2 1010 m3 volume range. The reduced χ2 is 1.07. See text for details.
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a distance between these two histograms, as defined by,

χ2 =
k∑

i=1

(ni − n∗
i )

n∗
i

, (14.4)

where ni is the observed number of events in the ith bin, and n∗
i is the expected number for the

hypothesized distribution function. Equation (14.4) follows a so-called χ2 probability law, that

allows evaluating the probability to overpass the χ2 value when the tested hypothesis is true.

We use the reduced χ2 value [Press et al., 1992 ; Taylor, 1997], obtained by dividing the χ2 value

by the number of degrees of freedom of the system, nf defined by,

nf = (number of bins) − c , (14.5)

where c is the number of constraints applied for the χ2 test. For our application, c = 2, with

one constrain for the parameter of the law in the case of the power law, and one for the binning

of the data in equiprobable classes [Press et al., 1992 ; Taylor, 1997]. A reduced χ2 >> 1 rejects

the tested distribution as a possible description of the data.

Because the χ2 test requires Gaussian-distributed numbers of objects per bin, we have a

trade off between the appropriate number of bins and the number of objects within each class.

Using 11 bins, corresponding to 5 events per bin, we obtain a reduced χ2 value of 0.58. The

power-law distribution is thus accepted by the test with a 95% confidence value. We have tested

different values of bin numbers between 5 and 18. The reduced χ2 value is always close to 1,

so that the power-law distribution is always accepted at the 95% confidence level. With the

same type of analysis, we reject other distribution functions, such as the exponential, Weillbull

and Gumbel distributions, to fit the Grenoble rock fall volume distribution in the same volume

range.

Yosemite inventory

The rock fall volume distribution from the Yosemite inventory is built with 101 events that

occurred in the 1915-1992 period (Figure 14.5). As for the Grenoble data set, we recover (i) a

roughly linear pattern on a log-log plot for volumes larger 50 m3, (ii) a downward departure

from the linear pattern for small volumes. For the 56 events of volume above 50 m3, we obtain

b=0.45 from a linear regression of the cumulative volume distribution, with a standard deviation

of 0.06. Using the maximum likelihood method we recover a similar b-value (Table 14.1). The

b-value is not sensitive to changes in either the time period or the minimum volume above 50

m3.

Using 11 bins, corresponding to 5 events per bin, we obtain a reduced χ2 value of 0.72.

Therefore, the hypothesis that the rock fall volumes follow a power law is accepted at the 90%

confidence level.
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World wide inventory

The 142 events of the worldwide inventory range in size from 104 to 1010 m3. The cumulative

volume distribution shown in Figure 14.5 mimics the 2 previously analysed data sets. For the

54 events with a volume greater than 3 107 m3, the observed distribution is well fitted by a

power law distribution with b=0.51, in agreement with the other data sets ( Table 14.1). Using

10 bins, corresponding to 5 events per bin, we obtain a reduced χ2 value of 1.07. Therefore, the

hypothesis that the rock fall volumes follow a power law distribution above 107 m3 is accepted

at the 90% confidence level. Similar results are obtained when testing different bin numbers

between 5 and 10.

14.4 Discussion

Synthesis of observed rock falls volume distributions

The three originally analysed data sets display power law distributions of rock fall vo-

lumes,with similar power law exponents, i.e., close to 0.45 ± 0.06. The Yosemite and Grenoble

cliffs have similar global morphological patterns, with common lengths of steep cliffs made of

strong rock matrix. The geometries of the discontinuity patterns are different for the two cliffs.

Sub-vertical fractures across gently dipping stratification characterize the Grenoble sedimentary

cliffs, while exfoliation and sheeting of granitic domes are reported for Yosemite cliffs. This sug-

gests that the geometry of the fracturing pattern does not influence the exponent of the power

law distribution of rock fall volumes.

When taking together the three catalogs studied here, and the other results for rock falls on

subvertical cliffs, including natural rock slopes and road-cuts (Table 14.2), it suggests that rock

fall volume distributions follow a power law distribution, with an average exponent of 0.5 ± 0.2

on a 10−3 m3 to 1010 m3 volume range. For the data sets listed on Table 14.2, even the largest

events fit the power law distribution, without any cut-off. No finite size effect is thus observable.

However, a possible finite size effect would come from the finite geometry of the rock slopes or

cliffs. In particular, the height of cliff is a saturation length for the maximum available rock fall

volumes on any given site.

Except for the seismically instrumented cliff on the Reunion island [Rousseau, 1999], all the

reported rock fall volumes come from field evaluation (Table 14.2). As events are reported mainly

when they induce damage to man-build or natural structures, the sampling is not uniform in

the size domain. This sampling bias results in an underestimation of the number of small events.

This bias is the best candidate to account for the re-currently observed deficit of small events

relatively to the power law distribution for large volumes (Figure 14.5). There is no evidence

that this bias may induce spurious power law behavior. However, it may lead to underestimate

the exponent of the power law [e.g. Stark and Hovius, 2001 ; for tests on landslides].
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Tab. 14.2 – Characteristics of Rock Fall Volume Distributions on subvertical cliffs

Site Geological Setting Duration N Vfit m3 ba Ref

Grenoble, Calcareous 1935-1995 87 40 − 106 0.41 61

French Alps Cliffs

Yosemite, Granitic 1915-1992 101 50 − 106 0.45 62

California Cliffs

Worldwide Undifferentiated 10 000 yrs 142 3 × 107− 0.51 63

Cliffs 2 × 1010

Reunion Island, Basaltic May−Aug. 370 ≤ 9 × 106 0.5b − 1b 1, 5

Indian Ocean Cliffs 1998

Himalaya, Road cuts 200 10 − 106 0.19 4

India

Himalaya, Road cuts 200 10 − 107 0.23 4

India

Alberta, Calcareous and 2 summers 409 10−2 − 10 0.72 2

Canada quartzitic Cliffs

B. Columbia, Massive felsic rock, 30 yrs 389 10−2 − 107 0.43 3c1

Canada road cutsc1

B.Columbia, Massive felsic rock, 13 yrs 123 1 − 107 0.40 3c2

Canada road cutsc2

B.Columbia, Jointed metamorphic, 64 1 − 107 0.70 3c3

Canada rock, road cutsc3

B.Columbia, Jointed metamorphic, 22 yrs 122 1 − 107 0.65 3c4

Canada rock, road cutsc4

Reference : 1, Aki [personnal communication, 2002] ; 2, Gardner [1970] ; 3, Hungr et al. [1999] ; 4, Noever

[1993] ; 5, Rousseau [1999] ; 6, (This study), data from 1RTM [1996] ; 2Wiezoreck [1992] ; 3Couture [1998].
a Exponent for cumulative volume distribution.
b Exponent deduced from amplitude of seismic signals usng different models, see text for details ;

accordingly the absolute volumes are dependent of the exponent values for each of the seismic model.
c Studies on different locations in the same area : c1Highway 99, bands A and B, c2BCR, c3Highway 1,
c4CP.
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As noted above, one study uses a continuous seismic monitoring to detect rock fall events

and to size up rock fall volumes on a single, well defined cliff [Rousseau, 1999]. This sampling

method and the measurement technique provide a catalog that is not affected by the same biases

as the data previously described. The volume distribution derived from Rousseau’s catalog also

follows a power law distribution (Table 14.2). First, this result supports the hypothesis that the

power-law derived from volumes estimated by field evaluations is not a measurement artifact.

Second, it shows that a single cliff displays a power law volume distribution. It argues against the

power law distribution to result from a geometrical effect, i.e. the power law does not result from

an integration process over cliffs of different heights. Using the seismic monitoring technique,

the exponent value of the power law is the largest reported value in the available catalogs for

rock falls on sub-vertical cliffs (Table 14.2). It may be due to the assumption made to derive the

rock fall volume from the seismic amplitude. Seismological volume estimates are supposed to

scale with the amplitude of seismic signals [Rousseau, 1999], but this relation may be incorrect.

Assuming that seismic amplitude scales with the square root of the rock fall volume, as also

proposed by Aki [personal communication, 2002], the exponent of rock fall volume distribution

would be 0.5 instead of 1, in agreement with other studies reported on Table 14.2. Comparisons

of both seismological signals and rock falls volumes are necessary to validate the relation between

volumes and amplitudes of seismic signals.

The power-law distribution has also been reported for mixed landslides (Table 14.3 and

references therein). From our study, which focus on the rock fall volumes that occurred o n

sub vertical cliffs of stiff rock mass, we derive a b-value that is significantly smaller than the

1.2± 0.3 average exponent value estimated from studies that mixed different types of landslides

(Table 14.3). For all the cases listed on Table 14.3, reported landslides occur either on less steep

topography or involve softer unconsolidated material than rockfalls reported in Table (14.2).

Implication for rock fall hazard

From the examples analysed in the previous sections, the hypothesis that the volume dis-

tributions of natural rock falls follow a power law distribution is accepted at a 90% confidence

level. This distribution law provides the probability of occurrence of a given volume in a given

time period on a given area, and has been used for hazard assessment by Hungr et al. [1999] for

rock falls on man made slopes. Using the Grenoble data set as a test example, we can derive the

occurrence rate of a given volume range by using the power law,

dN(V )
dt

=
N0

T

(
V

V0

)−b

, (14.6)

N(V ) being the number of events with a volume larger than V during a time period t. N0 is

the number of events with a volume larger than V0. For the Grenoble inventory, V0 = 40 m3,

N0 = 55, the time period we analysed is T=60 yrs.
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Tab. 14.3 – Characteristics of volume distributions for mixed landslide types

Site Geological Setting N V m3 ba Ref.

Southern Alps, 35o mean slope 4984 106-3 × 107 0.8 4

New Zealand

Japan, 650 3 ×104-3 × 107 0.66 4

Akaishi Mountains, non vertical 3243 104-106 0.64 4

Japan slope

Akaishi Mountains, non vertical 3243 104-106 1.25 5,7

Japan slope

Challana Valley, non vertical 1130 1.07 5,7

Bolivian Andes slope

Challana Valley, non vertical 1130 1.25 5

Bolivian Andes slope

Northridge, California, uncons. earth 11000 0.86 5

earthquake triggered & debris materials

Northridge, California uncons. earth 11000 1.07 7

earthquake triggered & debris materials

Eden Canyon 10-35o slope, uncons. 709 1.4 5

USA materials

Reference : 1, Blodgett et al., [1996] ; 2, Fuyii, [1969] ; 3, Harp and Jibson,[1995] ; 4, Hovius et al., [1997] ;

5, Malamud and Turcotte, [1999] ; 6, Nielsen et al., [1975] ; 7, Pelletier et al., [1997] ; 8, Sugai et al, [1994].
a All the exponent values are for the cumulative volume distributions. They are derived from surface size

distributions according to the rule that thickness scales with Area1/2 [Hovius et al., 1997]. Accordingly,

b = (cumulative surface exponent) ×2/3. When there is no data is the it Volume column it corresponds

to catalogs where just surface sizes are available. It corresponds to aerial landslide mapping on medium

steep slope.
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The return period of a fall of volume larger than or equal to V is given by,

t(V ) =
1

N(V )
, (14.7)

We obtain a 10 years return period for a 104 m3 event, or an average of four 105 m3 events within

a century. The largest historical event reported in the last thousand years in the Grenoble area

is the 1248 Mt Granier rock avalanche of 5.108 m3. From the power law distribution based on

the 1935-1995 data, we derive a return period of 870 yrs for a Mt Granier size event. Therefore

the largest observed event on a thousand-year period agrees with the return period for this

volume. For this region the saturation volume for which the scaling law could change is roughly

(hmax)3, hmax being the maximum cliff height, with (hmax)3 ∼ 109 m3 for Grenoble cliffs. This

value is a first order estimate which includes the two levels of the Grenoble cliffs (Figure 14.1).

Accordingly, the distribution must not be extrapolated to volumes larger than 109 m3. Regarding

the space domain, the presently limited number of data does not allow us to investigate spatial

variations of rock fall occurrence rate. We can just provide the probability of occurrence for the

whole studied area [Vengeon et al., 2001].

Possible models for power law distributions of rockfall volumes

There has not been yet any model which simulates specifically rock fall dynamics. One class

of numerical models examines erosion ; it can also apply to rock fall or landslide simulations

[Hergarten and Neugebauer, 1998 ; Densmore et al., 1998]. The second class of models includes

generic models that can apply to a large range of phenomena that exhibit scale invariant beha-

vior, i.e. fragmentation and sand piles models.

Erosion type model

Densmore et al. [1998] proposed a numerical model that uses a slope stability criterion to

simulate mechanics of hill slope failures. They obtain a power law distribution of volumes of mass

movements. The exponent value of the simulated cumulative distribution varies as a function of

the mechanical properties of the rock mass (cohesion and friction angle), from 1.2 for soft rock

to 0.8 for hard rock. The authors suggest in their numerical simulation that a higher strength

leads to steeper critical hill slope heights. Because in this model [Densmore et al., 1998 ; Champel

et al., 2002] a higher strength corresponds to a steeper topography, simulations with stiff rock

parameters may be related to rock fall circumstances on a sub vertical cliffs. Alternatively,

we propose that other landslide types, which occurred on gentler slopes could be related to

simulations with low strength materials that induce a lower exponent value for the power law

distribution of volumes.

For mixed landslide types, the observed b-values (the exponents of the cumulative volume

distributions), are in the range 0.7-1.3, with an average value b = 1.2 ± 0.3 (Table 14.3). These
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values are significantly larger than those reported for rock falls on sub vertical cliffs. For rock

fall settings (Table 14.2), i.e. stiff rock on sub vertical cliffs characterized by a friction angle

close to 35-45o [Hoek and Brown, 1980], the corresponding b-values range from 0.2 to 1, with

an average value of 0.5 ± 0.2. Therefore, the models of [Densmore et al., 1998 ; Champel et al.,

2002] qualitatively predict the observed changes in exponents between mixed landslide types that

occurred on gentle slope topography (Table 14.3) and rock falls on sub vertical cliffs (Table 14.2).

According to this model, the change in exponent values is driven by changes in the mechanical

properties (e.g. internal friction angle or cohesion) of the involved rock mass. Stiff rocks, with a

higher friction angle, generate steeper topographic slopes and lower exponent values than softer

rocks.

Fragmentation model

From a generic point of view, the rock fall volume distributions are also similar to the observed

fragment distributions. A power law distribution is admitted to characterize the distribution of

fragments for a variety of rocks in laboratory experiments [e.g. Turcotte, 1986, and references

therein]. Observed exponent values for cumulative volume distributions of fragments range from

0.5 to 1.2, with 0.8 as an average value. A generic model of fragmentation generates a power

distribution of fragments, with a b exponent of the cumulative volume distribution defined by,

b =
log(8p)
log(8)

, (14.8)

where p is the probability of a given cell of size l to break in 8 fragments of size l/2. This

breaking rule is scale invariant, i.e. each sub cell whatever its size has the same probability p to

break in 8 smaller cells [Turcotte, 1986]. Tuning of p values allows recovering observed exponent

values for rock fragmentation with b < 1 for p ranging from 0 to 1. In this way, the power law

distribution of rock fall volumes, with an exponent value ranging from 0.2 to 1 (Table 14.2), can

be reproduced by this generic fragmentation model. Note that the observed exponents for rock

falls, 0.5 ± 0.2, are in the same ranges of those reported for fragmentation.

Using the fragmentation model, the rock fall exponent value would correspond to a lower

p value, hence a less brittle behavior for rock cliffs than for rock fragmentation experiments.

This is in agreement with the weaker geomechanical values proposed by Hoek and Brown [1980]

for in situ rock masses when compared to rock samples. It argues for the rock fall sizes to

be possibly driven by the fragmentation process of the cliff, i.e. the pre-existing discontinuity

pattern. Accordingly, the rock mass fragment size should control the rock fall volume size,

while neither cascade nor avalanche process should influence the rock fall volume distribution.

This model can reproduce the observed rock fall volume distribution if the largest fragment is

larger than the rock fall volume considered. Although the pre-existing discontinuity pattern that

controls the fragment size distribution is not extensively known for the studied cliffs, we observe

that the number of rock blocks cut by discontinuities decreases rapidly when their size increases.



300 Analyse statistique des eboulements rocheux

It argues for possible large fragment sizes on our studied cliff.

Sand-pile type model

Another alternative to generate power law distributions is the conceptual sand-pile model

of Bak et al. [1987]. For rock fall dynamics, the scale invariant rock fall distribution could arise

solely from the dynamic of mechanical processes without requiring any pre-existing scale inva-

riant heterogeneity. Cellular automata models simulate avalanches on a sand-pile. 3D numerical

simulations yield an exponent value of 0.37 [Bak et al., 1987 ; 1989], close to those we report for

natural rock falls. However this 3D model generates avalanches which take place in the bulk of

a volume. Accordingly the mapping on the whole rock avalanches is difficult. The model that

is usually interpreted in terms of sand pile is the 2D version of the model which yields a power

law distribution with an exponent close to zero [Bak et al., 1987 ; 1989]. This later exponent

value is further away from the observed rock fall size distribution. However, a variety of cellular

automata models can account for a change in exponent value when modifying the interaction

rules or the loading rules of the generic sand pile model from Bak et al. [1987], e.g. Olami et al.

[1992], Amaral and Lauritsen [1997]. Therefore these models could explain the b-value observed

for the distribution of rock fall volumes.

Contrary to the fragmentation model, the sand-pile model simulates a power law distribution

of volumes that emerges solely from the dynamics without any input of quenched heterogeneity

[e.g. Bak et al., 1987]. This model can be applied to any dynamic system characterized by a

threshold dynamic, a stationary state, a slow exogeneous driving when compared to the energy

released, and a power law distribution of energy released. Within this context, the driven forces

for a rock fall dynamical system are both the slow tectonic uplift rate, the fluvial down cutting

and the constant gravity force. They have characteristic time scales, which are well separated

from the time life of one single rock fall event. On such a basis, the dynamics of rock fall process

share the same properties as the one proposed for earthquakes, i.e. a slow driving relatively to

the relaxation process and a power distribution of relaxed energy [Bak et al., 1989 ; Sornette

and Sornette, 1989 ; Main, 1996 ; Grasso and Sornette, 1998, Vespignani and Zapperi, 1998].

As suggested for landslides of unconsolidated material on moderate slope by Hergarten and

Neugebauer, [1998], it argues for rock fall dynamics to be another example of out of equilibrium,

scale free phenomena that could be generic to earth crust deformation processes.

As a tentative mapping of each class of models on rock fall dynamics from sub vertical cliffs

and other landslide types respectively, we summarize the advantages and drawbacks of each

model (14.4). If a fragmentation model is generically acceptable for rock falls on sub-vertical

cliffs, including simulated exponent values, it is rejected as a model for the soft unconsolidated

material involved in other landslide types. Similarly, the soil erosion model of Hergarten and

Neugebauer, [1998] is well suited to simulate landslides of layered soft material, but the exponent

value and the layered model assumption itself reject the possibility for this model to reproduce
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Tab. 14.4 – Possible conceptual models for rock fall and landslide distributions

Generic type Model inputs Model output

Ref Loading Breaking rules b-valuea mapping

Rock erosion 2 Tectonic uplift, Slope stability = 0.8 rock fall

2 gravity, fluvial cut f(friction, cohesion) 1.2 landslide

Soil erosion 3 Tectonic uplift Slope Gradient = 0.73 landslide

(layered) gravity, fluvial cut. f(layer thickness)

Sand-pile 1 Additional sand Critical slope ≈ 0 (2D) landslide

grains angle 0.37 (3D) and rock fall

Fragmentation 4 no loading Fragmentation < 1 rock fall

probability law (p) f(p)

Reference : 1, Bak et al., [1987] ; 2, Densmore et al., [1998] ; 3, Hergarten and Neugebauer [1998] ; 4,

Turcotte., [1986].
a All the exponent values are cumulative exponents of volume distributions.

rock falls dynamics of sub vertical cliffs. The erosion model from Densmore et al. [1998] is able

to reproduce a change in exponent values that is observed when switching from events which

originate on sub vertical cliffs of stiff rock to event occurring on gentle slopes of softer materials

[Densmore et al., 1998 ; Champel et al., 2002].

14.5 Conclusion

We have analysed three rock fall data sets on sub vertical cliffs and we have shown that the

rock fall volume distribution follows a power-law distribution for volumes ranging from 102 to

1010 m3, with the same exponent b = 0.45± 0.07 for the three catalogs. This exponent is also in

agreement with previous studies of rock falls along road-cuts. We suggest two classes of models

than can reproduce the power-law distribution of rock fall volumes.

First, the conceptual sand-pile model of [Bak et al., 1987 ; 1989] can reproduce the avalanche-

like behavior of the rock fall activity. Accordingly the power-law distribution of rock fall volumes

is the avalanche like response to a slow loading rate, as driven by tectonic deformation and fluvial

incision rates, when compared to the time scales of rock avalanches. This argues for the rock

fall dynamics to be another class of out of equilibrium, scale free phenomena as suggested for a

large variety of earth crust deformation processes. In this context, the power-law distribution of
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rock fall volumes would arise solely from the dynamic of the system, and would not be affected

by the pre-existing heterogeneity pattern.

Second, the observed power law distribution of rock fall volumes is similar to the one reported

for both fragmentation experiments and fragmentation models. This argues for the in-situ rock

mass fragment sizes to possibly control the rock fall volumes. In this context, the rock fall

volume distribution should be similar to the fragment size distribution, and neither cascade nor

avalanche processes would influence the rock fall volume distribution.

When comparing our observations of rock falls on sub-vertical cliffs with different types of

landslides, the exponent of the volume distribution is smaller for rock falls than for landslides

involving unconsolidated material occurring on less steep slopes. It argues for the rock mass

properties, which constrain the topography slope in numerical simulation [Densmore et al.,

1998 ; Champel et al., 2002], to drive the change in exponent values for different landslide types

and geomechanical settings.
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Abstract

Accelerating displacements preceding some catastrophic landslides has been found empiri-

cally to follow a time-to-failure power law, corresponding to a finite-time singularity of the ve-
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locity v ∼ 1/(tc − t) [Voight, 1988]. Here, we provide a physical basis for this phenomenological

law based on a slider-block model using a state and velocity dependent friction law established

in the laboratory and used to model earthquake friction. This physical model accounts for and

generalizes Voight’s observation : depending on the ratio B/A of two parameters of the rate and

state friction law and on the initial frictional state of the sliding surfaces characterized by a redu-

ced parameter xi, four possible regimes are found. Two regimes can account for an acceleration

of the displacement. For B/A > 1 (velocity weakening) and xi < 1, the slider block exhibits an

unstable acceleration leading to a finite-time singularity of the displacement and of the velocity

v ∼ 1/(tc− t), thus rationalizing Voight’s empirical law. An acceleration of the displacement can

also be reproduced in the velocity strengthening regime, for B/A < 1 and xi > 1. In this case, the

acceleration of the displacement evolves toward a stable sliding with a constant sliding velocity.

The two others cases (B/A < 1 and xi < 1, and B/A > 1 and xi > 1) give a deceleration of the

displacement. We use the slider-block friction model to analyze quantitatively the displacement

and velocity data preceding two landslides, Vaiont and La Clapière. The Vaiont landslide was

the catastrophic culmination of an accelerated slope velocity. La Clapière landslide was cha-

racterized by a strong slope acceleration over a two years period, succeeded by a restabilizing

phase. Our inversion of the slider-block model on these data sets shows good fits and suggest to

classify the Vaiont (respectively La Clapière) landslide as belonging to the velocity weakening

unstable (respectively strengthening stable) sliding regime. We cannot however exclude that La

Clapière might also belong to the unstable velocity weakening regime ; its deceleration observed

after 1988 may then be interpreted as a change of surface properties that modifies the friction

law parameters. For the Vaiont landslide, this model provides good predictions of the critical

time of failure up to 20 days before the collapse. Tests are also presented on the prediction of

the time of the change of regime for la Clapière landslide.

15.1 Introduction

Landslides constitute a major geologic hazard of strong concern in most parts of the world.

The force of rocks, soil, or other debris moving down a slope can devastate anything in its path.

In the United States for instance, landslides occur in all 50 states and cause $1-2 billion in

damages and more than 25 fatalities on average each year. The situation is very similar with

similar costs and casualty rates in the European Union. Landslides occur in a wide variety of

geomechanical contexts, geological and structural settings, and as a response to various loading

and triggering processes. They are often associated with other major natural disasters such as

earthquakes, floods and volcanic eruptions.

Landslides sometimes strike without discernible warning. There are however well-documented

cases of precursory signals, showing accelerating slip over time scales of weeks to decades (see

[Voight (ed), 1978] for a review). While only a few such cases have been monitored in the past,
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modern monitoring techniques are bound to provide a wealth of new quantitative observations

based on GPS and SAR (synthetic aperture radar) technology to map the surface velocity field

[Mantovani et al., 1996 ; Fruneau et al., 1996 ; Malet et al., 2002 ; Parise, 2001] and seismic

monitoring of slide quake activity [Gomberg et al., 1995 ; Xu et al., 1996 ; Rousseau, 1999 ;

Caplan-Auerbach et al., 2001]. Derived from the civil-engineering methods developed for the

safety of human-built structures, including dams and bridges, the standard approach to slope

instability is to identify the conditions under which a slope becomes unstable [e.g. Hoek and

Bray, 1997]. In this class of approach, geomechanical data and properties are inserted in finite

elements or discrete elements numerical codes to predict the possible departure from static

equilibrium or the distance to a failure threshold. The results of such analyses are expressed

using a safety factor F , defined as the ratio between the maximum retaining force to the driving

forces. According to this approach, a slope becomes unstable when F < 1. This approach is at

the basis of landslide hazard maps.

By their nature, standard stability analysis cannot account for acceleration in slope move-

ment [e.g. Hoek and Brown, 1980]. The problem is that this modeling strategy gives a nothing-

or-all signal. In this view, any specific landslide is essentially unpredictable, and the focus is on

the recognition of landslide prone areas. This approach is very similar to the practice in seismo-

logy called “time-independent hazard” where earthquake prone areas are located in association

with active faults for instance, while the prediction of individual earthquake is recognized to be

much more difficult if not unattainable. This “time-independent hazard” essentially amounts to

assume that landslides are a random (Poisson) process in time, and uses geomechanical modeling

to constrain the future long-term landslide hazard. The approaches in terms of a safety factor do

not address the preparatory stage leading to the catastrophic collapse, if any. In contrast,“time-

dependent hazard” would accept a degree of predictability in the process, in that the landslide

hazard varies with time, maybe in association with varying external forcing (rain, snow, earth-

quake, volcano). The next level in the hierarchy would be “landslide forecasting”, which require

significant better understanding to allow for the prediction of some of the features of an impen-

ding landslide, usually on the basis of the observation of precursory signals. Practical difficulties

include identifying and measuring reliable, unambiguous precursors, and the acceptance of an

inherent proportion of missed events or false alarms. Other studies of landslides analyze the pro-

pagation of a landslide and try to predict the maximum runout length of a landslide [Heim, 1932,

Campbell, 1989 ; 1990]. These studies do not describe the initiation of a catastrophic collapse.

To account for a progressive slope failure, i.e., a time dependence in stability analysis, pre-

vious works have taken a quasi-static approach in which some parameters are taken to slowly

vary to account for slow changes of external conditions and/or external loading. For instance,

the accelerated motions have been linked to pore pressure changes [e.g. Vangenuchten and De-

rijke, 1989 ; Van Asch et al., 1999]. According to this approach, an instability occurs when the

gravitational pull on a slope overpass the resistance of a particular subsurface level. This resis-
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tance on a subsurface level is controlled by the friction coefficient of the interacting surfaces.

Since pore pressure acts at the level of submicroscopic to macroscopic discontinuities, which

themselves control the global friction coefficient, circulating water can hasten chemical altera-

tion of the interface roughness, and pore pressure itself can forces adjacent surface apart. Both

effect can lead to a reduction in the friction coefficient that leads, when constant loading applies,

to accelerating movement. However, this explanation has not yielded quantitative method for

forecasting slope movement.

Other studies proposed that (i) rates of slope movements are controlled by microscopic slow

cracking, and (ii) when a major failure plane is developed, the abrupt decrease in shear resistance

may provide a sufficiently large force imbalance to trigger a catastrophic slope rupture [Kilburn

and Petley, 2002]. Such a mechanism, with a proper law of input of new cracks, may reproduce

the acceleration preceding the collapse that occurred at Vaiont, Mt Toc, Italy [Kilburn and

Petley, 2002].

An alternative modeling strategy consists in viewing the accelerating displacement of the

slope prior to the collapse as the final stage of the tertiary creep preceding failure [Saito and

Uezawa, 1961 ; Saito, 1965, 1969 ; Kennedy and Niermeyer, 1971 ; Kilburn and Petley, 2002].

Further progress in exploring the relevance of this mechanism requires a reasonable knowledge

of the geology of the sliding surfaces, their stress-strain history, the mode of failure, the time-

dependent shear strength and the piezometric water level values along the surface of failure

[Bhandari, 1988]. Unfortunately, this information is not available. This mechanism is therefore

used mainly as a justification for the establishment of empirical criteria of impending landslide

instability. Controlled experiments on landslides driven by a monotonic load increase have been

quantified by a scaling law relating the surface acceleration dδ̇/dt to the surface velocity δ̇

according to

dδ̇/dt = Aδ̇α , (15.1)

where A and α are empirical constants [Fukozono, 1985]. For α > 1, this relationship predicts

a divergence of the sliding velocity in finite time at some critical time tc. The divergence is of

course not to be taken literally : it signals a bifurcation from accelerated creep to complete slope

instability for which inertia is no more negligible. Several cases have been quantified ex-post

with this law, usually for α = 2, by plotting the time tc − t to failure as a function of the inverse

of the creep velocity (see for a review [Bhandari, 1988]). Indeed, integrating (15.1) gives

tc − t ∼
(

1
δ̇

) 1
α−1

. (15.2)

These fits suggest that it might be possible to forecast impending landslides by recording ac-

celerated precursory slope displacements. Indeed, for the Mont Toc, Vaiont landslide revisited

here, Voight [1988] mentioned that a prediction of the failure date could have been made more

than 10 days before the actual failure, by using a linear relation linking the inverse velocity and

the time to failure, as found from (15.2) for α = 2. Our goal will be to avoid such an a priori
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postulate by calibrating a more general physically-based model for the purpose of forecasting.

Voight [1988, 1989] proposed that the relation (15.1), which generalizes damage mechanics laws

[Rabotnov, 1969 ; Gluzman and Sornette, 2001], can be used with other variables (including strain

and/or seismic energy release) for a large variety of materials and loading conditions. Expression

(15.1) seems to apply as well to diverse types of landslides occurring in rock and soil, including

first-time and reactivated slides [Voight, 1988]. It may be seen as a special case of a general

expression for failure [Voight, 1988, 1989]. Recently, such time-to-failure laws have been inter-

preted as resulting from cooperative critical phenomena and have been applied to the prediction

of failure of heterogeneous composite materials [Anifrani et al., 1995] and to precursory increase

of seismic activity prior to main shocks [Sornette and Sammis, 1995 ; Jaume and Sykes, 1999 ;

Sammis and Sornette, 2002]. See also [Sornette, 2002] for extensions to other fields.

Here, we focus on two case studies, La Clapière sliding system in the French Alps and

the Vaiont landslide in the Italian Alps. The latter landslide led to a catastrophic collapse

after 70 days of recorded velocity increase. In the former case study, decades of accelerating

motion aborted and gave way to a slow down of the system. First, we should stress that, as for

earthquakes for instance, it is extremely difficult to obtain all relevant geophysical parameters

that may be germane to a given landslide instability. Furthermore, it is also a delicate exercise

to scale up the results and insights obtained from experiments performed in the laboratory

to the scale of mountain slopes. Having said that, probably the simplest model of landslides

considers the moving part of the landslide as a block sliding over a surface endowed with some

given topography. Within such a conceptual model, the complexity of the landsliding behavior

emerges from (i) the dynamics of the block behavior (ii) the dynamics of interactions between

the block and the substratum, (iii) the history of the external loading (e.g. rain, earthquake). In

the following, we test how the friction law of a rigid block driven by constant gravity force can

be useful for understanding the apparent transition between slow stable sliding and fast unstable

sliding leading to slope collapse. We develop a simple model of sliding instability based on rate

and state dependent solid friction laws and use it to assess the degree to which such events can

be forecasted.

Previous modeling efforts of landslides in terms of a rigid slider-block have taken either a

constant friction coefficient or a slip- or velocity-dependent friction coefficient between the rigid

block and the surface. A constant solid friction coefficient (Mohr-Coulomb law) is often taken to

simulate bed- over bed-rock sliding. Heim [1932] proposed this model as an attempt to predict

the propagation length of rock avalanches. In this pioneering study to forecast extreme runout

length, the constant friction coefficient was interpreted as an effective average friction coefficient.

In contrast, a slip-dependent friction coefficient model is taken to simulate the yield-plastic

behavior of a brittle material beyond the maximum of its strain-stress characteristics. For rock

avalanches, Eisbacher [1979] suggested that the evolution from a static to a dynamic friction

coefficient is induced by the emergence of a basal gouge. Studies using a velocity-dependent
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friction coefficient have mostly focused on the establishment of empirical relationships between

shear stress τ and block velocity v, such as v ∼ exp(aτ) [Davis et al., 1990] or v ∼ τ1/2 [Korner,

1976], however with not definite understanding of the possible mechanism [see for instance

Durville, 1992].

Compared to previous models, the innovation considered here is to account for the interaction

between the block and the underlying slope by a solid friction law encompassing both state and

velocity dependence, as established by numerous laboratory experiments (see for instance [Scholz,

1990, 1998 ; Marone, 1998 ; Gomberg et al., 2000] for reviews). The sliding velocities used in

laboratory to establish the rate and state friction laws are of the same order, 10−4 − 102 µm/s,

than those observed for landslides before the catastrophic collapse. On the one hand, state-

and velocity-dependent friction laws have been developed and used extensively to model the

preparatory as well as the elasto-dynamical phases of earthquakes. On the other hand, analogies

between landslide faults and tectonic faults have been noted [Gomberg et al., 1995] and the

use of the static friction coefficient is ubiquitous in the analysis of slope stability. However, to

our knowledge, no one has yet pushed any further the analogy between sliding rupture and

earthquakes and no one has used the physics of state- and velocity-dependent friction to bear

on the problem of landslides and their precursory phases. Such standard friction laws have

been shown to lead to an asymptotic time-to-failure power law with α = 2 in the late stage

of frictional sliding motion between two solid surfaces preceding the elasto-dynamic rupture

instability [Dieterich, 1992]. This model therefore accounts for the finite-time singularity of the

sliding velocity (15.2) observed for landslides and rationalizes the empirical time-to-failure laws

proposed by Voight [1988, 1989]. In addition, this model also describes the stable sliding regime,

the situation where the time-to-failure behavior is absent.

In the first section, we derive the four different sliding regimes of this model which depend on

the ratio B/A of two parameters of the rate and state friction law and on the initial conditions

of the reduced state variable. Sections 3 and 4 analyze the Vaiont and La Clapière landslides,

respectively. In particular, we calibrate the slider-block model to the two landslide slip data and

invert the key parameters. Of particular interest is the possibility of distinguishing between an

unstable and a stable sliding regime. We also test the predictability of the failure time using

different methods, and how long in advance a prediction could have been issued. The results

suggest the Vaiont landslide (respectively La Clapière landslide) as belonging to the velocity

weakening unstable (respectively strengthening stable) sliding regime. We also investigate the

alternative possibility that La Clapière might also belong to the unstable velocity weakening

regime ; its deceleration observed after 1988 may then be interpreted as a change of surface

properties that reset the state variable from x < 1 to x > 1. Section 5 concludes.



15 Modele de bloc avec une loi de friction dependante de la vitesse 309

15.2 Slider-Block model with state and velocity dependent fric-

tion

Basic formulation

Following [Heim, 1932 ; Korner, 1976 ; Eisbacher, 1979 ; Davis et al., 1990 ; Durville, 1992],

we model the future landslide as a block resting on an inclined slope forming an angle φ with

respect to the horizontal. In general, the solid friction coefficient µ between two surfaces is a

function of the cumulative slip δ and the slip velocity δ̇. There are several forms of rate/state-

variable constitutive law that have been used to model laboratory observations of solid friction.

The version currently in best agreement with experimental data, known as the Dieterich-Ruina

or ‘slowness’ law [Dieterich, 1978 ; Ruina, 1983], is expressed as

µ = µ0 + A ln
δ̇

δ̇0

+ B ln
θ

θ0
, (15.3)

where the state variable θ is usually interpreted as proportional to the surface of contact between

asperities of the two surfaces. µ0 is the friction coefficient for a sliding velocity δ̇0 and a state

variable θ0. The state variable θ evolves with time according to

dθ

dt
= 1 − θδ̇

Dc
, (15.4)

where Dc is a characteristic slip distance, usually interpreted as the typical size of asperities.

Expression (15.4) can be rewritten as

dθ

dδ
=

1
δ̇
− θ

Dc
. (15.5)

As reviewed in [Scholz, 1998], the friction at steady state is :

µS = µ̂0 + (A − B) ln
δ̇

δ̇0

, (15.6)

where µ̂0 = µ0+B ln Dc

θ0δ̇0
. Thus, the derivative of the steady-state friction coefficient with respect

to the logarithm of the reduced slip velocity is A−B. If A > B, this derivative is positive : friction

increases with slip velocity and the system is stable as more resistance occurs which tends to

react against the increasing velocity. In contrast, for A < B, friction exhibits the phenomenon

of velocity-weakening and is unstable.

The primary parameter that determines stability, A−B, is a material property. For instance,

for granite, A−B is negative at low temperatures and becomes positive for temperatures above

about 300o C. In general, for low-porosity crystalline rocks, the transition from negative to

positive A−B corresponds to a change from elastic-brittle deformation to crystal plasticity in the

micro-mechanics of friction [Scholz, 1998]. For the application to landslides, we should in addition

consider that sliding surfaces are not only contacts of bare rock surfaces : they are usually lined
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with wear detritus, called cataclastic or fault gouge. The shearing of such granular material

involves an additional hardening mechanism (involving dilatancy), which tends to make A − B

more positive. For such materials, A − B is positive when the material is poorly consolidated,

but decreases at elevated pressure and temperature as the material becomes lithified. See also

section 2.4 of Scholz’s book [Scholz, 1990].

The friction law (15.3) with (15.4) accounts for the fundamental properties of a broad range

of surfaces in contact, namely that they strengthen logarithmically when aging at rest, and

weaken (rejuvenate) when sliding [Scholz, 1998].

To make explicit the proposed model, let us represent schematically a mountain flank as a

system made of a block and of its basal surface in which it is encased. The block represents the

part of the slope which may be potentially unstable. For a constant gravity loading, the two

parameters controlling the stability of the block are the dip angle φ between the surface on which

the block stands and the horizontal and the solid friction coefficient µ. The block exerts stresses

that are normal (σ) as well as tangential (τ) to this surface of contact. The angle φ controls the

ratio of the shear over normal stress : tan φ = τ/σ. In a first step, we assume for simplicity that

the usual solid friction law τ = µσ holds for all times, expressing that the shear stress τ exerted

on the block is proportional to the normal stress with a coefficient of proportionality defining

the friction coefficient µ. This assumption expresses a constant geometry of the block and of the

surface of sliding. For the two landslides that we study in this paper, a rigid block sliding on a

slope with a constant dip angle is a good first order approximate of these landslide behaviors.

Solution of the dynamical equation

Asymptotic power law regime for A − B < 0

As the sliding accelerates, the sliding velocity becomes sufficiently large such that δ̇ 
 Dc/θ

and we can neglect the first term 1/δ̇ in the right-hand-side of (15.5) [Dieterich, 1992]. This

yields

θ = θ0 exp (−δ/Dc) , (15.7)

which means that θ evolves toward zero. The friction law then reads
τ

σ
= µ0 + A ln

δ̇

δ̇0

− Bδ

Dc
, (15.8)

where we have inserted (15.7) into (15.3). In this equation, τ and σ result from the mass of the

block and are constant. The solution of (15.8) is [Dieterich, 1992]

δ(t) = −ADc

B
ln


Bδ̇0 e

τ
σ −µ0

A

ADc
(tc − t)


 , (15.9)

where tc is determined by the initial condition δ(t = 0) ≡ δi :

tc =
ADc

Bδ̇0

e
−

„
Bδi
ADc

+
τ
σ −µ0

A

«
(15.10)
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The logarithmic blow up of the cumulative slip in finite time is associated with the divergence

of the slip velocity

δ̇ =
ADc

B

1
tc − t

, (15.11)

which recovers (15.2) for α = 2.

The complete solution for the frictional problem

The solution (15.9) is valid only for A − B < 0 and sufficiently close to tc for which the slip

velocity δ̇ is large, ensuring the validity of the approximation leading to (15.7). However, even in

the unstable case A−B < 0, the early time behavior, far from tc, cannot be described by using

the approximation established for t close to tc and requires a description different from (15.9)

and (15.11). Furthermore, we are interested in different situations, in which the sliding may not

result always into a catastrophic instability, as for instance for the mountain slope La Clapière,

which started to slip but did not reach the full instability, a situation which can be interpreted

as the stable regime A − B > 0. The complete solution for the frictional problem is derived in

Appendix A.

Synthesis of the different slipping regimes

The block sliding displays different regimes as a function of the friction law parameters and of

the initial conditions. These regimes are controlled by the value of the friction law parameters,

i.e., m = B/A (by definition (15.17)), of the initial condition xi on θ and of the material

parameter S. A and B are defined in (15.3) and are determined by material properties. xi is

the initial value of the reduced state variable θ defined in (15.19). The parameter S is defined

by (15.16) and is independent of the initial conditions. As derived from the complete solution

in Appendix A, the different regimes are summarized below and in Table 15.1 and illustrated in

Figure 15.1.

For 0 < m < 1

the sliding is always stable. Depending of the initial value for t = 0 of the reduced state

variable xi, the sliding velocity either increases (if xi > 1) or decreases (if xi < 1) toward a

constant value.

For m > 1

the sliding is always unstable. When xi < 1, the sliding velocity increases toward a finite-time

singularity. The slip velocity diverges as 1/(tc − t) corresponding to a logarithmic singularity of

the cumulative slip. For xi > 1, the velocity decreases toward a vanishingly small value.
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Fig. 15.1 – Schematic classification of the different regimes of sliding discussed in the text. The left

column of three panels correspond to the stable regime m = B/A < 1 and the right column of three

panels describes the unstable regime m = B/A > 1. In each case, the displacement, velocity and state

variables are shown as a function of time. Each regime (stable and unstable) are divided into two cases,

depending on the dimensionless initial value xi ∝ θi of the state variable. The thick lines corresponds to

decreasing velocities and increasing state variables. The thin lines correspond to increasing velocities and

decreasing state variables.
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Tab. 15.1 – Synthesis of the different regimes of slip as a function of m = B/A (by definition (15.17)),

of the initial condition xi on θ and of the material parameter S. A and B are defined in (15.3) and are

determined by material properties. xi is the initial value of the reduced state variable θ defined in (15.19).

FTS stands for “finite-time singularity.” The parenthesis (xi) and (S) in the first column indicates which

is the control parameter determining the nature of the slip. The parameter S is defined by (15.16) and

is independent of the initial conditions. While A is always found positive in laboratory experiments,

negative B-values are sometimes found [Blanpied et al., 1995] leading to the possibility of having m < 0 :

this rather special case corresponds to a friction coefficient decreasing with the increase of the surface of

contacts.

xi, S < 1 xi, S > 1

m > 1 (xi) FTS (15.9,15.10,15.11) power law plasticity hardening (15.26)

m = 1 (S) δ̇ ∼ 1/t and δ ∼ ln t FTS (15.9,15.10,15.11)

0 < m < 1 (xi) θ ↓ const, δ̇ ↑ const θ ↑ const, δ̇ ↓ const

m < 0 (xi) θ ↓ const, δ̇ ↓ const θ ↑ const, δ̇ ↑ const

Analysis of landslide observations

In the sequel, we test how this model can reproduce the observed acceleration of the displa-

cement for Vaiont and La Clapière landslides. The Vaiont landslide was the catastrophic culmi-

nation of an accelerated slope velocity over a two months period [Muller, 1964]. La Clapière

landslide was characterized by a strong slope acceleration over a two years period, succeeded by

a restabilizing phase [Susella and Zanolini, 1996]. An acceleration of the displacement can arise

from the friction model in two regimes, either in the stable regime with m < 1 and xi > 1 or in

the unstable regime with m > 1 and xi < 1. In the first case, the acceleration evolves toward

a stable sliding. In the unstable case, the acceleration leads to a finite-time singularity of the

displacement and of the velocity. However, these two regimes are very similar in the early time

regime before the critical time (see Figure 15.1). It is therefore very difficult to distinguish from

limited observations a landslide in the stable regime from a landslide in the unstable regime

when far from the rupture.

We assume that the friction law parameters, the geometry of the landslide and the gravity

forces are constant. Within this conceptual model, the complexity of the landsliding behavior

solely emerges from the friction law. We are aware of neglecting in this first order analysis

any possible complexity inherent either to the geometry and rheology of a larger set of blocks,

or the geometry and rheology of the substratum or the history of the external loading (e.g.

earthquake, rainfalls). We invert the friction law parameters from the velocity and displacement

data of the Vaiont and La Clapière landslides. Our goal is (i) to test if this model is useful for

distinguishing an unstable accelerating sliding characterized by B > A from a stable accelerating

regime occurring for B < A and (ii) to test the predictive skills of this model and compare with
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other methods of prediction.

15.3 The Vaiont landslide

Historical and geo-mechanical overview

On October 9, 1963, a 2 km-wide landslide initiating at an elevation of 1100-1200 m, that

is 500-600 m above the valley floor, on the Mt Toc slope in the Dolomite region in the Italian

Alps about 100 km north of Venice, ended up 70 days later in a 20 m/s run-away of about 0.3

km3 of rocks sliding into a dam reservoir. The high velocity of the slide triggered a water surge

within the reservoir, overtopping the dam and killing 2000 people in the village downstream.

This landslide has a rather complex history. The landslide concerned a portion of the moun-

tain above a newly built dam reservoir. The first attempt to fill up the reservoir dam was made

between March and November 1960. It induced recurrent observations of creeping motions of a

large mass of rock above the reservoir, and led to several small and rather slow slides [Muller,

1964]. Lowering the reservoir water level induced the rock mass velocities to drop from the order

of 40 mm/day to less than 1 mm/day. A progressive step by step approach to slowly raise the

water level as well as cycling of the water level were performed in order to slowly and cautiously

fill the reservoir. A second peak of creeping velocity, at about 10 mm/day, that is four time less

that the first 1960 peak, was induced by the 1962 filling cycle. The 1963 filling cycle started in

April 1963. From May 1963, recurrent increases of the creep velocity was measured. It ended up

abruptly in the 20 m/s downward rush of a volume of 0.3 km3 of rocks slipping in the reservoir.

The Landslide geometry is a rough rectangular shape, 2 km wide and 1.3 km in length.

Velocity measurements are available for four benchmarks, corresponding to four different posi-

tions on the mountain slope, respectively denoted 5, 50, 63 and 67 in the Vaiont nomenclature.

Benchmarks 63 and 67 are located at the same elevation in the upper part of the landslide a few

hundred meters from the submittal scarp. The distance between the 2 benchmarks is 1.1 km.

The benchmark 5 and 50 are 700 m downward the 63-67 benchmark level.

Figure 15.2 shows the velocity of the four benchmarks on the block as a function of time

prior to the Vaiont landslide. For these four benchmarks, the deformation of the sliding zone

prior to rupture is not homogeneous, as the cumulative displacement in the period from August

2nd, 1963 to October 8, 1963 ranges from 0.8 to 4 m. However, the low degree of disintegration

for distal deposit [Erisman and Abele, 2000] argue for a possible homogeneous block behavior

during the 1963 sliding collapse.

It was recognized later that limestones and clay beds dipping into the valley provide condi-

tions favorable for dip-slope failures [Muller, 1964, 1968 ; Broili, 1967]. There is now a general

agreement on the collapse history of the 1963 Vaiont landslide (see e.g., [Erismann and Abele,

2000]). The failure occurred along bands of clays within the limestone mass at depths between
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Fig. 15.2 – Benchmarks 5 and 63 exhibit almost the same strong acceleration. Benchmark 50 is the

only one which shows only a relatively small acceleration in absolute values at the end of the 60 days

accelerating phase. Its acceleration is however significant in relative values, as seen in Figure 15.4. Data

from [Muller, 1964].

100-200 m below the surface [Hendron and Patton, 1985]. Raising the reservoir level increased

water pore pressure in the slope flank, that triggered the clays layer failure. Final sliding oc-

curred after 70 days of down-slope accelerating movement. The rock mass velocity progressively

increased from 5 mm/day to more than 20 cm/day, corresponding to a cumulative displacement

of a few meters over this 70 days period [Muller, 1964].

Analysis of the cumulative displacement and velocity data with the slider-

block model parameters.

Figure 15.3 shows the inverse of the velocity shown in Figure 15.2 to test the finite-time-

singularity hypothesis (15.2,15.11). Note that this figure does not require the knowledge of the

critical time tc and is not a fit to the data. The curves for all benchmarks are almost linear in

this representation, in agreement with a finite-time singularity of the velocity (15.2) with α = 2.

It was the observations presented in Figure 15.2 that led Voight to suggest that a prediction

could have been issued more than 10 days before the collapse [Voight, 1988]. We note that the
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Fig. 15.3 – Same as Figure 15.2 by plotting the inverse of the velocity as a time t. All curves are

approximately linear, showing that the velocity exhibits a finite-time singularity v ∼ 1/(tc − t) with

tc ≈ 69.5 days for all benchmarks, estimated as the intercept of the extrapolation of these curves with

the horizontal axis.

law δ̇ ∝ 1/(tc − t) requires the adjustment of α to the special value 2 in the phenomenological

approach [Voight, 1988] underlying (15.2) while it is a robust and universal result in our model

leading to (15.11) in the velocity-weakening regime B > A, m > 1 and for a normalized initial

state variable larger than 1 (see equation (15.11) and Table 15.1).

In order to invert the parameters m, D, T of the friction model and the initial condition

of the state variable xi from the velocity data, we minimize the rms (root-mean-square) of the

residual between the observed velocity δ̇obs and the velocity δ̇ from the friction model (15.22)

and (15.21). The constant D in (15.21) is obtained by taking the derivative of the rms with

respect to D

D =

∑
ti

δ̇(ti)δ̇obs(ti)∑
ti

δ̇(ti)
2 (15.12)

where the velocity δ̇ in (15.12) is evaluated for D = 1 in (15.21). We use a simplex algorithm

(matlab subroutine) to invert the three other parameters. For each data set, we use different

starting points (initial parameter values for the simplex algorithm) in the inversion to test for

the sensitivity of the results on the starting point.
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Fig. 15.4 – For each of the four Vaiont benchmarks, the velocity data of Figure 15.2 is fitted with the

slider-block model with the state and velocity friction law (15.22) and (15.21) by adjusting the set of

parameters m, D, T and the initial condition of the state variable xi. The data is shown as the crosses

linked by straight segments and the fit is the thin continuous line. The fitted m are respectively m = 1.35

(benchmark 5), m = 1.24 (benchmark 63), m = 0.99 (benchmark 67) and m = 1.00 (benchmark 50).
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Figure 15.4 shows the fits to the velocity data using the slider-block model with the state

and velocity friction law (15.21) and (15.22). The values of m = B/A are respectively m = 1.35

(benchmark 5), m = 1.24 (benchmark 63), m = 0.99 (benchmark 67) and m = 1.00 (benchmark

50). Most values are larger than or equal to 1, which is compatible with the finite-time-singularity

regime summarized in Table 15.1. The parameters of the friction law are very poorly constrained

by the inversion. In particular, even for those benchmarks were the best fit gives m > 1, other

models with m < 1 provide a good fit to the velocity with only slightly larger rms.

We have also tried to invert the friction law parameters using only data up to a time tmax

smaller than the last available point to mimic a real-time situation. Changing tmax between 30

and 70 days, we obtain a large variability of the parameters. Most values m are found larger

than 1 for 30 < tmax < 55 days, and then become smaller than one, and return to m ≥ 1 for

3 benchmarks when using the full velocity data. Similar fluctuations are found when using a

synthetic data set generated with the friction model. We have generated a synthetic data set

using the same parameters as those of the best fit of benchmark 5, and added a white noise

with the same standard deviation as that of the residue of the fit of benchmark 5. Although

this synthetic data set was generated with m = 1.35, both m > 1 and m < 1 (for 2 points over

15 points) values are obtained when inverting the parameters up to tmax and changing tmax

between 30 and 70 days. However, values with m < 1 for this synthetic data set are much less

frequent than for the Vaiont velocity data in relative terms.

Figure 15.5 gives another representation of Figure 15.4 showing the inverse of the velocity

as a function of time. A saturation of the velocity before the critical time can be observed for

all benchmarks, which may explain the values m < 1 sometimes obtained by the inversion.

It is instructive to contrast these results with those obtained by fitting the cumulative dis-

placement (rather than the velocity) with the slider-block model with the state and velocity

friction law (15.21) and (15.22). The results are shown in Figure 15.6. The fitted m are res-

pectively m = 0.99 (benchmark 5), m = 0.85 (benchmark 63), m = 0.68 (benchmark 67) and

m = 0.17 (benchmark 50). These values differ significantly from those obtained by the inversion

of the velocity data and, to make things worse, they all correspond to the velocity-strengthening

regime m < 1. At first sight, these results are quite surprising since we fit the same data, the

only difference being that the cumulative displacement is the integral of the velocity. We think

that the reason for these discrepancies lies in the fact that, assuming that the velocity-weakening

regime m > 1 holds, the corresponding logarithmic dependence (15.9) of the displacement δ is

extremely degenerate in that it predicts an acceleration of the displacement which is significant

only very close to the critical time tc. Therefore, a cross-over from a low velocity to a larger

velocity described by the regime m < 1 may be selected by the inversion, as we witness here.

This is the curse of logarithmic singularities, which are so weak as providing poor constraints,

notwithstanding the a priori reduction of noise obtained by constructing a cumulative quantity.

It may actually be the case that the red noise deriving from the integral of the velocity is en-
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Fig. 15.5 – Same as Figure 15.4 but showing the inverse of the velocity. The upward bending of the

curve for benchmark 67 reflects the saturation of the velocity in the stable regime B < A. The fit for the

three other benchmarks characterized by m ≥ 1 is very close to the asymptotic solution v ∼ 1/(tc − t)

(15.11).
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Fig. 15.6 – For each of the four Vaiont benchmarks, the cumulative displacement data is fitted with

the slider-block model with the state and velocity friction law (15.22) and (15.21) by adjusting the set of

parameters m, D/T and the initial condition of the state variable xi. The data is shown as the crosses

linked by straight segments and the fit is the thin continuous line. The fitted m are respectively m = 0.99

(benchmark 5), m = 0.85 (benchmark 63), m = 0.68 (benchmark 67) and m = 0.17 (benchmark 50). The

fits with the slider-block model obtained by imposing the value m = 1.5 are shown with the dashed line

for comparison.



15 Glissement de terrain de Vaiont 321

ough to spoil the weak logarithmic singularity : the resulting correlated noise seems to select

a milder behavior. We are thus led to conclude that fits to the sliding velocity which involves

stronger power law singularities should be more reliable and we shall use them exclusively in

our prediction tests reported below.

The alternation of phases of accelerating and decelerating velocity in the 1960-1962 period

implies that some friction parameters have changed, maybe due to changes in water level, re-

sulting in a change of sliding regime. The change of water level may have modified the material

properties of the underlying solid contacts at the base of the moving rock mass [e.g. Erismann

and Abele, 2000], therefore changing the parameter A/B from the stable to the unstable regime.

Another possibility is that changes in water level have modified the population of contacts at the

basis of the rock mass, therefore changing the parameters of the friction law, and changing the

sliding regime from the decelerating regime to to the accelerating regime. One possible simple

change of the parameters of the friction law correspond to a change of the initial condition on

the state variable xi, which may induce a change of the sliding regime from the decelerating

regime for m > 1 and xi > 1 to the accelerating regime for m > 1 and xi < 1 and vice-versa.

Predictions and ex-post skills

We present a series of attempts at predicting in advance the critical time tc of the catastrophic

Vaiont landslide instability. These attempts rely solely on the analysis of the four benchmarks

velocity data up to various times tmax < tc mimicking a real-time situation. Therefore, we

truncate the data at some time tmax < tc and use only the data up to tmax. Our goal is i)

to investigate whether a prediction in advance could have been issued, as suggested by Voight

[1988], ii) to establish the reliability and the precision limits of such predictions and iii) to test

various prediction schemes that we have developed in the recent past for other applications or

specifically for this problem. We use and compare 3 methods to predict the critical time tc = 69

days of the collapse

– the slider block model with the state and velocity friction law described above ;

– an approximation of the slider block model based on the functional renormalization method

described below ;

– a simple finite-time singularity (15.2) with α = 2 as proposed by Voight [1988].

Prediction using the slider-block model with the state and velocity friction law

The prediction of the critical time tc is obtained by fitting the slider-block model on the

velocity time series of the four benchmarks up to a time tmax. For m ≥ 1, tc is the time of the

divergence. The divergence of the velocity exists only in the unstable regime m > 1. Therefore,

we choose the best fit with m > 1, even if the best model gives sometimes m < 1.
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Functional renormalization of the friction law

We are dealing with noisy time series with relatively few data points for which the detection

of a singularity is a difficult task. Rather than using the full solution of a model assumed to be

a good representation of reality as done in the previous sections, it may be profitable to develop

prediction schemes that are less constrained by the necessarily restricting physical assumptions

underlying the model and that are more specifically designed from a mathematically point of

view to be resilient to noise and to the scarcity of data. Such a method is the so-called functional

renormalization method, which constructs the extrapolation for future time t > tmax from a re-

summation of the time series represented by a simple polynomial expansion in powers of time

t. Its mathematical foundation has been developed in a series of papers [Yukalov and Gluzman,

1997 ; Gluzman and Yukalov, 1997, 1998]. The application of this method to detect and predict

finite-time singularities has been already investigated by Gluzman et al. [2001] and Gluzman and

Sornette [2002]. We refer to these papers for a presentation of the method and restrict ourselves

here to the concrete application of the method to the friction law (15.21) and (15.22).

The first input of the functional renormalization approach is an expansion of the variable

to be predicted in increasing powers of time. In our case, we use the functional renormalization

approach to provide an approximate analytical solution of the differential equation of the friction

model (15.18). This method is much more efficient numerically than the numerical resolution of

the differential equation (15.18). The friction model (15.18) gives the time evolution of the state

variable from which the sliding velocity δ̇ derives using (15.15).

The needed expansion of y ≡ θ/θ0 in powers of time t is obtained from a Taylor expansion

whose coefficients are derived from successive differentiation of (15.18). Up to fourth order t4,

calling y0 = θ(t = 0)/θ0, we obtain

yk(t) 
k∑

n=0

antn, t → 0, k = 1, 2, 3, 4, (15.13)

where the coefficients an are given in the Appendix B as a function of the friction parameters

and of the initial condition.

The functional renormalization approach is in principle able to derive an extrapolation to the

future from the form (15.13). However, in order to obtain an optimal stabilization, it is essential

to incorporate as much available information as possible. In particular, in our case, we know the

functional form of the dependence of the state variable as a function of time in the asymptotic

regime (large times for m < 1 and close to the singularity for m > 1). Therefore, the second

input of our implementation of the functional renormalization approach is the following. For

m < 1, in a long-time limit, it is easy to show that equation (15.18) has an asymptotic solution

in the form,

yt→∞(t)  y∗ + A1 exp
(
− t

t∗

)
+ A2 exp

(
−2t

t∗

)
+ h.o.t. (15.14)

where 1/t∗ = (1−m)/T = (1−m)(Sθ0)1/(1−m) was already defined in (15.29) and h.o.t. stands
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for higher-order terms. The coefficients A1and A2 are unspecified at this stage and can be

determined using the crossover technique of Gluzman and Yukalov [1998], in order to optimize

the stability of the solution. For m ≥ 1, the asymptotic expression as t → tc is of the form

(15.24), but we shall allow the prefactor and tc to be adjusted to ensure maximum stability.

Specifically, the determined value of tc will be a primary result of the crossover technique.

Our goal is thus to construct a function y(t) which incorporates the short and long time

asymptotics of the solution as given by expressions (15.13) and (15.14) for m < 1 and by (15.13)

and (15.24) for m ≥ 1, while possibly departing from it at intermediate times to allow for a

maximum stability. The general mathematical formulas that are solution of this problem are

given in Appendix B for the two cases m < 1 and for m ≥ 1 respectively.

For the application to the Vaiont landslide, and for each “present time” tmax, we assume that

m > 1 so that tc exists and we fit the expression of the fourth-order approximate y∗4(t) given

by (15.47) to the velocity of each of the four benchmarks, extract the corresponding parameters

and put them in equation (15.48) for the critical time tc4. We stress that the function thus

reconstructed is essentially indistinguishable with the naked eye from the fit with the slider-

block friction model. Solving (15.48) for tc4 allows us to construct the predicted critical time as

a function of the “present time” tmax. We also estimate the value of m as a function of tmax.

Apart from some large jumps that may be attributed to the sensitivity of specific noisy points

as tmax is scanned, we observe that most fits are compatible with a value of m in the range

1.3 − 1.5.

Finite-time singularity (15.2) with α = 2

We use a simple linear regression of the inverse of the velocity as a function of time, as

proposed by Voight [1988]. We have found that, in order to have more stable parameters, it is

necessary to give less weight to the early times where the velocity is small and contains little

information on the critical time. We find that weighting each data point proportionally to its

velocity seems close to optimal. The critical time tc is then given as the time at which the fitted

straight line of the 1/δ̇ data intersects with the time axis. Recall that a linear relation between

1/δ̇ and time t is equivalent to a power law singularity of the velocity δ̇ ∼ 1/(tc− t), as discussed

previously, which is expected asymptotically close to tc for the friction model in the case m > 1

and xi < 1.

Comparison of three different methods of prediction of tc as a function of the

“present time” tmax

The predictions of the critical time obtained from the three methods are shown in Figure

15.7. A prediction for tc with an uncertainty of a few days is obtained for the 4 benchmarks

within 20 days before the catastrophic failure. The reliability of the prediction is confirmed by
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Fig. 15.7 – Predicted critical time tc as a function of the “present time” tmax (last point used for the fit)

for all four benchmarks of the Vaiont landslide, using three different methods of prediction described in

the text : renormalization method (circles), numerical evaluation of the friction model (15.22) (crosses),

and linear regression of the inverse velocity as a function of time performed by removing the first point

(early time) of the curve and using a weight proportional to the velocity (dots). The horizontal dashed

line indicated the true critical time tc = 69.5 days (for an arbitrary origin of time from which the fits are

performed to the catastrophic landslide. All methods impose m > 1, but in some cases a better fit may

be obtained in the stable regime m < 1.
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the coherence and agreement between the three methods. Starting approximately at tmax = 45

days, one can observe that, using the friction model, all four time series provide a reasonable

tc prediction which however tends to increase and to follow the value of the “present time”

tmax. This is unfortunately a common feature of fits to power law singularities in which the last

data points close to the “present” tends to dominate the rest of the time series and produce

a predicted time of singularity close to the “present time” tmax [Huang et al., 2000 ; Sornette

and Johansen, 2001]. The tc value obtained using the fourth-order approximate is always a little

smaller than the tc estimated from the exact friction model. The renormalization method is

therefore a little better at early times, but the exact friction model works better at the end. The

tc value obtained by the linear regression of 1/δ̇ is too large for small tmax, because it is only an

asymptotic solution of the friction model for t ≈ tc. However, this method provides very good

estimates of tc close to tc.

To test whether the relative value of these three methods result from a genuine difference in

their stability with respect to noise or rather reflects an inadequacy of the slider-block friction

model to fit the data, we have generated a synthetic velocity time series obtained by using the

slider-block friction equations with the same parameters as found in the fit to the full data set of

benchmark 5 and adding white noise with the same standard deviation as that of the real data

set. We then applied the three prediction methods to this synthetic data set. In principle and

by construction, we should expect a priori that the prediction based on the slider-block friction

model should always perform best since it is the true model. This is not what we find, as shown

in Figure 15.8. At times far from tc, i.e. 40 days < tmax < 60 days, the friction model is the

best, as expected. However, the prediction based on the asymptotic linear relation between 1/δ̇

and time t is slightly better than the friction model, starting approximately 9 days before the

landslide.

The overall conclusion is that the least sophisticated approach, that is the linear regression

of 1/δ̇, seems to perform as well as or slightly better than the sophisticated renormalization

method or the exact friction model for “present times” sufficiently close to the critical time

tc. For times further away from tc, the renormalization method and the exact friction model

are better. Although the corresponding power-law is only an asymptotic solution of the friction

model for times close to tc, the linear regression of 1/δ̇ gives significantly better predictions

than the exact model or the renormalization method. However, we must keep in mind that the

use of the linear regression of 1/δ̇ as a function of time contains two hidden and rather strong

assumptions : the power law and the value of its exponent. Without the slider-block friction

model, these assumptions are just guesses and are a priori unjustified.



326 Loi de friction et modelisation des glissements de terrain

30 40 50 60 70
40

50

60

70

80

90

t
max

 (days)

t c (
da

ys
)

renorm.
num.
lin.

60 62 64 66 68
67

68

69

70

71

t
max

 (days)

t c (
da

ys
)

renorm.
num.
lin.

(b) (a) 

Fig. 15.8 – Same as Figure 15.7 for a synthetic data set with the same parameters and noise as those

obtained for benchmark 5 of the Vaiont landslide, using the same three different methods of prediction.

The right panel is a zoom of the left panel close to tc. The horizontal dashed line indicated the true

critical time tc = 69.8 of the catastrophic landslide.

15.4 La Clapière landslide : the aborted 1986-1987 peak accele-

ration

We now report results on another case which exhibited a transient acceleration which did

not result in a catastrophic failure but re-stabilized. This example provides what is maybe an

example of the m < 1 stable slip regime, i.e. B < A, as interpreted within the friction model.

Historical and geo-mechanical overview

Geo-mechanical setting and Displacement history : 1950-2000

La Clapière landslide is located at an elevation between 1100 m and 1800 m on a slope that

culminates at 3000 m high and has a width of about 1000 m. The summit of the main scarp

ranges in elevation between 1550 and 1735 m. Figure 15.9 shows La Clapière landslide in 1979

before the acceleration of the displacement, and in 1999 after the end of the crisis. The volume

of mostly gneiss rocks implied in the landslide is estimated to be around 50 × 106 m3. At an

elevation of about 1300 m, a 80 m thick bed provides a more massive and relatively stronger level

compared with the rest of relatively weak and fractured gneiss. The two lithological entities are

characterized by a change in mica content which is associated with a change of the peak strength
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(a)1979

(b)1999

100 m

Fig. 15.9 – a) Picture of La Clapière landslide taken in 1979. It is located at an elevation between 1100

m and 1800 m on a slope that culminates at 3000 m high and has a width of about 1000 m. The summit of

the main scarp ranges in elevation between 1550 and 1735 m. The volume of mostly gneiss rocks implied

in the landslide is estimated to be around 50× 106 m3. The summit scarp are not connected. b) Picture

of La Clapière landslide taken in 1999. Geomorphological criteria allow one to distinguish three distinct

sub-entities within the landslide, NW, Central and SW respectively [Follacci et al., 1988]. The global

surfacial pattern is preserved. The main feature related to the 1982-1988 crisis is a new summit scarp

with a total displacement of about 100 m in 1999, indicated by an arrow in panel (b).
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Fig. 15.10 – Velocity in meters/year of the side of La Clapière mount over almost 50 years, showing

that the dangerous velocity peak in 1987 was preceded by a progressing build-up extending over several

decades. Before 1982, the velocity is inferred from aerial photographs in 1951, 1964, 1974 and 1982. After

1982, the velocity is obtained from automated triangulation and geodesy. Data from CETE [1999].

and of the elastic modulus by a factor two [Follacci et al., 1990, 1993]. Geomorphological criteria

allow one to distinguish three distinct sub-entities within the landslide, NW, Central and SW

respectively [Follacci et al., 1988].

There is some historical evidence that the rock mass started to be active before the beginning

of the 20th century. In 1938, photographic documents attest the existence of a scarp at 1700

m elevation [Follacci, 2000]. In the 1950-1980 period, triangulation and aerial photogrametric

surveys provide constraints on the evolution of the geometry and the kinematics of the landslide

(Figure 15.10). The displacement rate measured by aerial photogrametric survey increased from

0.5 m/yrs in the 1950-1960 period to 1.5 m/yrs in the 1975-1982 period [Follacci et al., 1988].

Starting in 1982, the displacements of 43 benchmarks have been monitored on a monthly basis

using distance meters [Follacci et al., 1988, 1993 ; Susella and Zanolini, 1996]. The displacement

data for the 5 benchmarks in Figure 15.9 is shown in Figure 15.11. The velocity is shown in

Figure 15.12. The rock mass velocities exhibited a dramatic increase between January 1986 and

January 1988, that culminated in the 80 mm/day velocity during the 1987 summer and to 90

mm/day in October 1987. The homogeneity of benchmark trajectories and the synchronous

acceleration phase for most benchmark, attest of a global deep seated behavior of this landslide

[e.g. Follacci et al., 1988]. However, a partitioning of deformation occurred, as reflected by the



15 Glissement de terrain de la Clapiere 329

1984 1986 1988 1990 1992 1994 1996
0

10

20

30

40

50

60

70

80

90

100

time (years)

di
sp

la
ce

m
en

t (
m

)

6
22
23
24
10

Fig. 15.11 – Displacement for the 5 benchmarks on La Clapière site shown in Figure 15.9.

difference in absolute values of benchmark displacements (Figure 15.11). The upper part of the

landslide moved slightly faster than the lower part and the NW block. The observed decrease in

displacement rate since 1988 attest of a change in landsliding regime at the end of 1987 (Figure

15.11) .

Correlations between the landslide velocity and the river flow

The velocity displays large fluctuations correlated with fluctuations of the river flow in the

valley as shown in Figure 15.13. There is a seasonal increase of the slope velocity which reaches

a maximum Vmax of the order of or less than 30 mm/days. The slope velocity increases in the

spring due to snow melting and over a few days after heavy precipitations concentrated in the

fall of each year [Follacci et al., 1988 ; Susella and Zanolini, 1996]. During the 1986-1988 period,

the snow melt and rainfalls were not anomalously high but the maximum value of the velocity,

Vmax = 90 mm/day, was much larger that the velocities reached during the 1982-1985 period for

comparable rainfalls and river flows [Follacci et al., 1988 ; 1993]. This strongly suggests that the

hydrological conditions are not the sole control parameters explaining both the strong 1986-1987

accelerating and the equally strong slowdown in 1988-1990. During the interval 1988-1990, the

monthly recorded velocities slowed down to a level slightly higher than the pre-1986 values.

Since 1988, the seasonal variations of the average velocity never recovered the level established

during the 1982-1985 period [Follacci et al., 1993 ; David and ATM, 2000]. Rat [1988] derives a

relationship between the river flow and the landslide velocity by adjusting an hydrological model
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to the velocity data in the period 1982 to 1986. This model tuned to this time period does not

reproduce the acceleration of the velocity after 1986.

In order to study quantitatively the effect of the precipitations on the landslide velocity, we

need to remove the long-term fluctuations of the velocity that may not correlated to changes

in the precipitations. We divide the data of benchmark 10 of La Clapière into three different

intervals : [1982.917, 1987.833], [1987.833, 1991.25] and [1991.25, 1995.5. The initial values of the

time and of the displacement are fixed to 0 at the beginning of each time period. In the first

interval, the velocity rises (with fluctuations) ; in the second interval, the velocity decreases (with

fluctuations) ; in the third interval, the velocity fluctuates around a constant. We used non-linear

Least-Square fits with different fitting functions separately within each interval. The results of

the fits are the following.

1. In the first interval [1982.917, 1987.833], we fit the displacement by d(t) = a(|1−t/t0|−b−1)

with a = 8.96, b = 1.01 and t0 = 6.26 years.

2. For the second interval [1987.833, 1991.25], we use the same functional form with a =

10.42, b = 0.4106 and t0 = −0.1081. The negative value of t0 implies a decay of the

displacement.
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Fig. 15.12 – Velocity for the same data as shown in Figure 15.11. Annual fluctuations of the velocity is

due to the seasonal variations of the precipitations.
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Fig. 15.13 – Velocity pattern for benchmark 10 of La Clapière landslide (solid line and dots) and flow

rates (thin solid line) of the Tinée river on the 1982-1995 period. Because the Tinée river runs at the basis

of the La Clapière landslide, the river flow rate reflects the water flow within the landslide [Follacci et

al., 1993 ; Susella and Zanolini, 1996]. The flow rates are measured at St Etienne village, 2 km upstream

the landslide site. There is no stream network on the landslide s ite. The Tinée flow drains a 170 km2

basin. This tiny basin is homogeneous both in terms of slopes and elevation (in the 1000-3000 m range).

Accordingly the seasonal fluctuations of the river flow is admitted to reflect the evolution of the amount

of water that is available within the landslide slope due to rainfalls and snow melting. Data from CETE,

[1996].

3. For the third interval [1991.25, 1995.5], we use a fit by d(t) = atb which has only two

parameters a = 7.4687 and b = 0.989.

The goodness of fit is very good in all three regimes : the standard deviations of the residuals

being of the order of 0.4 while the magnitude of the displacement is about 30, this yields a

signal-over-noise ratio of 75, which is very good.

Figure 15.14 compares the the Burg’s power spectrum of the flow rates of the Tinée river and

of the detrended velocity residuals. The Burg spectrum is a kind of smoothed FFT (fast-Fourier

transform) obtained by approximating the true spectrum by that of an autoregressive process

of a finite order. The top panel of figure 15.14 exhibits the Burg’s power spectrum of the flow

rates of the Tinée river on the 1982-1988 and on the 1988-1996 periods, which are proxies of

the cycle of precipitations and snow melting. The bottom panel of figure 15.14 shows the Burg’s

power spectrum of the detrended velocity residuals for these two periods.

In the first time interval 1982-1988, a strong peak at the period of 1 year appears both

for the velocity residuals and for the river flow. This correspondence is confirmed by the strong



332 Loi de friction et modelisation des glissements de terrain

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2
river flow

frequency (1/year)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (

re
la

tiv
e 

un
its

) 1982−1988
1988−1996

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2
landslide velocity

frequency (1/year)

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 (

re
la

tiv
e 

un
its

) 1982−1988
1988−1996

(a) 

(b) 

Fig. 15.14 – Top panel : Burg’s power spectrum of the flow rates of the Tinée river on the 1982-1988 and

on the 1988-1996 periods which are aggregated from the periods shown in Figure 15.13. Bottom panel :

Burg’s power spectrum of the detrended velocity residuals for the same two periods.
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cross-correlation between the river flow and the landslide velocity, which is also directly apparent

visually in Figure 15.13. Let us use the language of system theory and consider the river flow as

an input (or a forcing) and the landslide velocity as an output of the system. These observations

of a common spectral peak and of a strong cross-correlation are then compatible with a view of

the system as being linear or only weakly non-linear.

In contrast, the (linear) correlation between the river flow input and the landslide velocity

output disappears in the second time interval 1988-1996, as can been seen from the absence of a

spectral peak at the period of 1 years and a very weak peak at the period 6 months (f = 2 year−1)

in the (output) landslide velocity spectrum compared with the two strong peaks at the same

periods of 1 years and 6 months observed in the (input) river flow spectrum. This breakdown

of linear correlation seems to be associated with the birth of a strong peak close to the sub-

harmonic period of 2 years (f = 0.5 year−1), which is absent in the river flow rate. This suggests

the following interpretation. Frequency doubling or more generally frequency multiplications

are the results of simple nonlinearities. Indeed, higher frequency overtones in river runoff is very

common feature of hydrological regime (see for instance [Pisarenko et al., 2002]). In contrast,

the creation of sub-harmonics requires bifurcations or period-doubling, for instance involving

nonlinear processes with time delays. It thus seems that the input of rain and snow melting

is transformed by the system during the second time interval via the process of such delayed

period-doubling nonlinearities. It is intriguing that the change of sliding regime to a reduction

of velocity in the second time interval seems here to be associated with such a sub-harmonic

non-linearity, which could be the result of a change of topology of the block structures (through

fragmentation) and of the solicitation of novel fresh surfaces of sliding.

Fracturing patterns contemporary to the 1986-1987 accelerating regime

In 1985-1986, a transverse crack initiated in the upper part of the NW block. It reaches 50

m of vertical offset in 1989. The maximum rate of change of the fracture size and of its opening

occurred in 1987 [Follacci et al., 1993]. This new transverse crack uncoupled the NW block from

the upper part of the mountain, which moved at a much smaller velocity below 1 mm/day since

1985-86 [Follacci et al., 1993] (Figures 15.9 and 15.15). Since summer 1988, an homogenization

of the surface morphological faces and a regression of the main summit scarp were reported.

The regression of the summit scarp was observed as a new crack started to open in September

1988. Its length increased steadily to reach 500 m and its width reached 1.75 m in November

1988. Accordingly, the new elevation of main scarp in the SE block reaches 1780 m. This crack,

which defined a new entity, that is the upper SE block, has remained locked since then (Figures

15.9 and 15.15).
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Fig. 15.15 – Schematic structural interpretation of one possible mechanism involved in the 1986-1988

crisis. The 3 schematic cross sections are the proposed landslide geometries, before 1986 (a), during the

1987 acceleration (b), and after 1988 (c). Follacci et al. [1993] argue for the failure of the strong gneiss

bed (F2 fault) in the NW block as the driving force behind the 1986-1987 accelerating phase (b). In the

same period, the development of the upper NW crack, (F1 fault on central cross section), that released

the landslide from its head driving force, appears as the key parameter to slow down the accelerating

slide. Note that for the global landslide structural pattern. Guglielmi and Vengeon. [2002] argue for all

the surface faulting patterns to converge at shallow depth as listric faults that define a decollement level

which is the sliding surface. The arrow shows the location of benchmark 10 (adapted from [Follacci et

al., 1993]).

Current understanding of the La Clapière acceleration

On the basis of these observations and simple numerical models, an interpretative model for

the 1986-1988 regime change was proposed by Follacci et al., [1993] [see also for a review Susella

and Zanolini, 1996]. In fact, these models do not explain the origin of the acceleration but rather

try to rationalize kinematically the different changes of velocity and why the acceleration did

not lead to a catastrophic sliding but re-stabilized. The reasoning is based on the fact that the

existing and rather strong correlation between the river flow in the valley at the bottom and the

slope motion (see Figure 15.13) is not sufficient to explain both the de-stabilizing phase and its

re-stabilization. This strongly suggests that the hydrological conditions are not the sole control

parameters explaining both the strong 1986-1987 accelerating and the equally strong slowdown

in 1988-1990.

Follacci et al. [1988, 1993] argue that the failure of the strong gneiss bed in the NW block

was the main driving force of the acceleration in 1986-1987. According to this view, the failure
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of this bed induced changes in both the mechanical boundary conditions and in the local hydro-

geological setting (Figure 15.15). Simultaneously, the development of the upper NW crack, that

freed the landslide from its main driving force, appears as a key parameter to slow down the

accelerating slide. The hypothesized changes in hydrological boundary conditions can further

stabilize the slide after the 1986-1987 transient leak off.

Several works have attempted to fit the velocity time series of La Clapière landslide and

predict its future evolution, in a spirit similar to the Vaiont landslide discussed above. The dis-

placement of different benchmarks over the 1982-1986 period has been analysed. An exponential

law has been fitted to the 1985-1986 period [Vibert et al., 1988]. Using the exponential fit and a

failure criterion that the landslide will collapse when the velocity reaches a given threshold, the

predicted collapse time for the landslide ranges from 1988 for NW benchmark to 1990 for the

SE benchmarks. Plotting the inverse of the velocity as a function of time as in (15.2) has been

tried, hoping that this law holds with α = 2 providing a straightforward estimation of tc. This

approach applied to La Clapière velocity data predicts a collapse in 1990 for the upper NW part

and in 1988-1989 for the SE part of the landslide. To remove the fluctuations of the velocity

induced by changes in river flow, an ad-hoc weighting of the velocity data was used by [Vibert

et al., 1988]. An attempt to more quantitatively estimate the relation between the river flow

and the landslide velocity was proposed by [Rat, 1988]. Rat [1988] stresses the importance of

removing the fluctuations of the velocity induced by changes in the river flow before any attempt

to predict the collapse time.

Analysis of the cumulative displacement and velocity data with the slider-

block model

The simple rigid block model defined with a single block and with velocity and state de-

pendent friction law cannot account for what happened after the velocity peak, without invoking

additional ingredients. Departure from the model prediction can be used as a guide to infer in-situ

landslide behavior. Recall that, during the interval 1988-1990, the monthly recorded velocities

slowed down to velocity 6 times smaller than the 1987 peak values. This deceleration cannot be

explained with the friction model using constant friction parameters. Indeed, for B/A = m < 1,

under a constant geometry and fixed boundary conditions, the velocity increases and then satu-

rates at its maximum value. In order to explain the deceleration of the landslide, one needs to

invoke either a change of material properties embodied for example in the parameter m = B/A

or a change of the state variable θ that describes the duration of frictional contacts, maybe due

to a change in the sliding surfaces.

We have not attempted in this study to fit both the accelerating and the decelerating phases

with the slider-block model due to the large number of free parameters it will imply relatively

to the small number of points available. Further modeling would allow block partitioning, fluc-

tuations of the slope angle and change with time of the friction parameters. Our purpose is
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Fig. 15.16 – Displacement for benchmark 10 of la Clapière landslide (crosses) and fit using the friction

model. The best fit gives m = 0.98 (black line). The gray line shows the best fit obtained when imposing

m = 1.5 for comparison.

here to point out how different landsliding regimes can be highlighted by the introduction of

a velocity and state friction law in this basic rigid block model. It would also be interesting

to add a periodic forcing to our models to better capture the time-dependence of the velocity

and study its possible nonlinear consequences. This is left for a future work, together with a

complete description of the three time intervals by the slider-block friction model.

La Clapière sliding regime : 1982-1987

We fit the monthly measurements of the displacement of several representative benchmarks

with the slider-block friction model. In the sequel, we will show results for benchmark 10 which

is located in the central part of the landslide (Figure 15.9), and which is representative of the

average landslide behavior during the 1982-1995 period [Follacci, personal communication 2001].

We have also obtained similar results for benchmark 22.

We consider only the accelerating phase in the time interval [1982.92; 1987.9]. As for the

Vaiont landslide, the inversion provides the values of the parameters m, T , D, and the initial

condition xi of the state variable. The best fit to the displacement of benchmark 10 is shown
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Fig. 15.17 – Predicted value of the time tc of the inflection point of the velocity for La Clapière

landslide, using a fit of the displacement data with the friction model. All points correspond to the stable

regime m < 1. In this regime there is no finite-time singularity of the velocity but a transition from an

accelerating sliding to a stable sliding for times larger than the inflection point tc. This parameter is

poorly constrained by the fit and increases with the time of the last point tmax used in the fit.

in Figure 15.16. The model parameters are m = B/A=0.98 and the initial value of the reduced

state variable is xi = 39. While m is very close to one, the value of xi significantly larger than

1 argues for La Clapière landslide to be in the stable regime (see Figure 15.1 and Table 15.1).

Similar results are obtained for the other benchmarks. Since the landslide underwent different

regimes, it is important to perform these inversions for different time periods, that is, the fits are

done from the first measurement denoted time t = 0 (year 1982.92) to a later t = tmax, where

tmax is increased from approximately 2 years to 5 years after the initial starting date. This last

time t ≈ 5 years (end of 1987) corresponds to the time at which the slope velocity reached its

peak. For all inversions except the first two point with tmax ≈ 2 yrs, the best fit always select an

exponent 0 < m < 1 and an initial state variable xi 
 1, corresponding to a stable asymptotic

sliding without finite-time singularity. For tmax < 4 years (that is, using data before the end

of 1986), a few secondary best solutions are found with very different values, from m = −3000

to m = 29, indicating that m is poorly constrained. We have also performed sensitivity tests

using synthetic data sets generated with the friction model with the same parameters as those

obtained for La Clapière. These tests show that a precise determination of m is impossible but

that the inversion recovers the true regime m < 1.
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Fig. 15.18 – Velocity for benchmark 10 of la Clapière landslide (crosses) and fit of the velocity data

with the friction model. The best fit gives m = 0.99 (black line).
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Fig. 15.19 – Same as Figure 15.18 showing the inverse of the velocity.
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The transition time (defined by the inflection point of the velocity) is found to increase with

tmax (see Figure 15.17). This may argue for a change of regime from an acceleration regime to

a restabilization before the time t = 1988 of the velocity peak. The parameters S and xi are

also not well constrained. Similar results are obtained for different benchmarks as well as when

fitting the velocity data instead of the displacement. A fit to the velocity of benchmark 10 is

shown in Figures 15.18 and 15.19. The velocity data show large fluctuations, in part due to

yearly fluctuations of the precipitations. The inversion if therefore even more unstable than the

inversion of the displacement, but almost all points give m < 1 and xi > 1. Such fluctuations

of the inverted solution may indicate that the use of constant friction parameters to describe a

period where 2 regimes interact, i.e., an accelerating phase up to 1987 followed by a decrease in

sliding rate since 1988, does not describe adequately the landslide behavior for the whole time

period 1983-1988. Observed changes in morphology as suggested in Figure 15.15 provide evidence

for changes both in driving forces and in the geometry of the landslide, including possible new

sliding surfaces.

An alternative interpretation

While a fit to the displacement or to the velocity data for the whole time period 1983-1988

suggests that the landslide was in the stable regime m < 1, an alternative interpretation is that

the early acceleration was in the unstable regime m > 1 but did not reach the instability due to

a change of morphology, block partition and the creation of new active surfaces of sliding. This

interpretation is suggested by the plot of the inverse of the velocity shown in Figure 15.19, which

is close to linear at early times. Over the route toward the finite-time singularity, the landslide did

not succeed in accommodating the velocity increase and degenerated by changing geometry and

loading conditions (block partitioning). In other words, the solution shown in Figure 15.16 with

m < 1 may rather describe a transient from an unstable state to a stable regime. In particular,

we cannot exclude the possibility that the surfaces have been all along characterized by the

regime B > A and then a change of geometry and surfaces of sliding may have reset the reduced

state variable x given by expression (15.19). Another possibility is that the friction parameter

m has changed from m > 1 to m < 1, leading to a stable deceleration of the displacement

after 1988. It is not unreasonable to conjecture that the internal stresses associated with and

created by the accelerating phase may have led to its fragmentation into several sub-entities,

creating fresh surfaces and resetting the state variable or the m-value characterizing the surfaces

of contact. This is in qualitative agreement with field observations of new faulting patterns since

1987, which signal a change in the geometry of the landslide involving the regression of the main

scarp and locked sub-entities (Figure 15.15). These observations provide evidence for a change

in both the head driven force (mass push from the top) and the activated basal surfaces. These

morphological changes suggest that the 1987-1988 period has been a transition period for the

evolution of La Clapière sliding system over the last 50 years. In the block-slider model, this



340 Loi de friction et modelisation des glissements de terrain

amounts to modifying the variables S and θi and thus to reset x. In this interpretation, the

change of regime observed for La Clapière could then be due to a change from xi < 1 (unstable

acceleration) to xi > 1 (stable deceleration) (see Figure 15.1). This change from xi < 1 to xi > 1

may be interpreted as either an increase of applied shear stress, a decrease of normal stress, or

an increase of the surface of contacts between the sliding surfaces. Thus, within the slider-block

model, one can characterize the post 1988 landslide evolution in terms of new sliding surfaces

being mobilized which are more stable that the previous ones due to more numerous and/or

efficient contacts.

Appendix C explores what would have been the predicted critical time tc estimated in real

time prior to the velocity peak, according to this scenario of an unstable acceleration towards

a finite-time singularity. We have seen that, while the slider-block model as well as the power

law formula (15.2) provide excellent fits to the data, they do not lead to very stable predictions

of the critical time tc on the Vaiont data as well as on synthetic tests generated in the unstable

regime m > 1. It may thus be valuable to test the approach of [Gluzman et al., 2001] in terms

of a version of the functional renormalization approach already discussed in relation with the

Vaiont landslide. It is our hope that this approach could provide in a more robust determination

of tc.

Figure 15.20 compares the prediction of a fit using a polynomial of order two in time to the

inverse of the velocity (panel (a)) with the prediction of the renormalization approach (panel

(b)). In each panel, two curves are presented corresponding to two different starting points of

the data taken into account in the predictions : the leftmost points correspond to the first date

taken into account in the predictions ; therefore, the predictions corresponding to the crosses

× use approximately two years fewer data than the predictions shown with the open circles.

This allows us to compare the effect of missing data or alternatively the effect of a non-critical

behavior at the beginning of the time series. The abscissa tmax is the running “present time”,

that is, the last time of the data taken into account to issue a prediction. The prediction with the

polynomial shown in panel (a) of Figure 15.20 can be seen as an improvement in methodology

over the Voight formula (15.2) which corresponds to a linear fit of the inverse velocity with

time for α = 2. Comparing panels (a) and (b), the renormalization method seems to present a

smaller dispersion and better convergence : in particular, about half-a-year prior to the time of

the maximum realized velocity indicated by the horizontal dashed line, the prediction of this date

by the renormalization method using the longer time series becomes very precise. Thus, a critical

time close to the time of the velocity peak would have been predicted starting approximately

half-a-year year from it. It is then not unreasonable to consider the velocity peak as a proxy

for the ghost critical time, since on the approach of the later the largest internal stresses may

develop and may fragment the block and modify the morphology of the landslide, thus resetting

the geometry and some of the parameters of the model. In this scenario, we would thus expect

that the time of the peak velocity should be not far from what would have been the critical time
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Fig. 15.20 – Panel (a) : prediction of a critical time using a fit with a polynomial of order two

in time to the inverse of the velocity ; panel (b) : prediction of the renormalization approach

described in Appendix C. In each panel, two curves are presented corresponding to two different

starting points of the data taken into account in the predictions : the leftmost points correspond

to the first date taken into account in the predictions ; the predictions corresponding to the

crosses × use approximately two years fewer data than the predictions shown with the open

circles. The abscissa tmax is the running “present time”, that is, the last time of the data taken

into account to issue a prediction. The maximum realized velocity occurred at a time indicated

by the horizontal dashed line. This time is thus a proxy for the ghost-like critical time of the

landslide.
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of catastrophic failure of the landslide.

We should however point out that the functional renormalization method used in this Appen-

dix C does not work for the Vaiont landslide because of a technical instability whose fundamental

origin is not understood by these authors. Technically, the numerical instability comes from the

absence of alternating signs in the polynomial expansion at early times. This technical problem

thus casts some shadow on the usefulness of the approach described here which is unable to

tackle the regime which is undoubtedly unstable. This limitation suggests again the importance

of working with several alternative and competing models, as further discussed in the following

concluding section.

15.5 Discussion and conclusion

We have presented a quantitative analysis of the displacement history for two landslides,

Vaiont and La Clapière, using a different set of techniques. We have tried to go beyond the

time-independent hazard analysis provided by the standard stability analysis to include time

dependent predictions. While our present inversion methods provide a single estimate of the

critical time tc of the collapse for each inversion, a better formulation should be to translate

these results in terms of a probability of failure, as for instance done by Vere-Jones et al. [2001].

A first innovative concept proposed here was to apply to landslides the state and velocity

dependent friction law established in the laboratory and used to model earthquake friction.

Our inversion of this simple slider-block friction model shows that the observed movements can

be well reproduced with this simple model and suggest the Vaiont landslide (respectively La

Clapière landslide) as belonging to the velocity weakening unstable (respectively strengthening

stable) regime. Our friction model assumes that the material properties embodied in the key

parameters m = B/A and/or the initial value of the state variable of the friction law control

the sliding regime.

Our purpose was here to point out how different landsliding regimes can be highlighted by

the introduction of a velocity and state friction law in a basic rigid block model. Even if the

displacement is not homogeneous for the two landslides, the rigid block model provides a good

fit to the observations and a first step towards a better understanding of the different sliding

regimes and the potential for their prediction.

For the Vaiont landslide, this physically-based model suggests that this landslide was in the

unstable regime. The friction model provides good predictions of the time-to-failure up to 20

days before the collapse. A pure phenomenological model suggested by Voight [1988] postulating

a power law finite-time singularity v ∼ 1/(tc− t) with unit exponent obtains similar results. Our

approach can be seen as providing a physically-based derivation of this phenomenological model

as well as a generalization to capture three other possible regimes.

For la Clapière landslide, the inversion of the displacement data for the accelerating phase
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1983-1888 up to the maximum of the velocity gives m < 1, corresponding to the stable regime.

The deceleration observed after 1988 implies that, not only is la Clapière landslide in the stable

regime but in addition, some parameters of the friction law have changed, resulting in a change

of sliding regime from a stable regime to another one characterized by a smaller velocity, as

if some healing process was occurring. Possible candidates for a change in landsliding regime

include the average dip slope angle, the partitioning of blocks, new sliding surfaces and changes in

interface properties. However, another possible interpretation is that this landslide was initially

in the unstable regime, but did not reach the instability due to a change of geometry and of

sliding surfaces. The best fit obtained with m < 1 for the accelerating phase 1983-1988 would

then describe a transient regime between the unstable regime and the stable regime, due to a

progressive change in the model parameters. This second scenario seems less parsimonious but

cannot be completely excluded.

The present work has offered the important insight and novel conceptual framework and

language of the slider-block model, which can be used to classify the relative merits and perfor-

mance of other models. For an assessment in real time of the upcoming risks of a catastrophic

failure, one should then consider both scenarios (stable versus unstable which are encoded res-

pectively by the range of parameters m < 1 and m > 1 in the slider-block model) and test the

data using the available associated theoretical models, some of which have been presented in

this paper. Such an approach in terms of multiple scenarios [Smith et al., 1999 ; Yukalov and

Gluzman, 1999 ; Ziehmann et al., 2000] can add a contribution to the assessment of societal

risks. A systematic exploration of such approaches will extend the preliminary investigation and

results offered here. In this spirit, the major innovation of the frictional slider-block model that

should be explored further is to embody the two regimes (stable versus unstable) in the same

physically-based framework, and to offer a way of distinguishing empirically between the two

regimes, as shown by our analysis of the two cases provided by the Vaiont and La Clapière

landslides.

15.6 Appendix A : Derivation of the full solution of the frictional

problem

Complete solution

We now provide the full solution of the frictional problem. First, we rewrite (15.3) as

δ̇ = S Dc

(
θ

θ0

)−m

, (15.15)

where

S ≡ δ̇0 e
τ
σ −µ0

A

Dc
(15.16)
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and

m ≡ B

A
. (15.17)

Putting (15.15) in (15.4) gives

d(θ/θ0)
dt

=
1
θ0

− S (θ/θ0)1−m . (15.18)

The case m = 1 requires a special treatment since the dependence in θ disappears in the right-

hand-side of (15.18) and dθ
dt is constant.

For m �= 1, it is convenient to introduce the reduced variables

x ≡ (Sθ0)1/(1−m) θ

θ0
, (15.19)

and

D ≡ Dc (Sθm
0 )

1
1−m . (15.20)

Then, (15.15) reads
δ̇

δ̇0

= D x−m . (15.21)

Putting (15.15) in (15.4) to eliminate the dependence in δ̇, we obtain

dx

dt′
= 1 − x1−m , (15.22)

where t′ = t/T with

T =
Dc

D
=

[
Dc

δ̇0θm
0

]1/(1−m)

e
τ
σ −µ0
B−A . (15.23)

In the sequel, we shall drop the prime and use the dimensionless time t′, meaning that time is

expressed in units of T except stated otherwise.

The block sliding behavior is determined by first solving the equation (15.22) for the nor-

malized state variable x(t) and then by inserting this solution in (15.21) to get the slip velocity.

Equation (15.22) displays different regimes as a function of m and of the initial value xi compared

to 1 that we now classify.

Case m = B/A > 1

For m > 1 and xi < 1, the initial rate of change dx
dt of the state variable is negative. The

initial decay of x accelerates with time and x reaches 0 in finite time. Expression (15.21) shows

that δ(t) continuously accelerates and reaches infinity in finite time. Close to the singularity,

we can neglect the first term 1 in the right-hand-side of (15.22) and we recover the asymptotic

solution (15.9,15.10,15.11) :

x(t)  m
1
m (tc − t)

1
m , (15.24)

where the critical time tc is determined by the initial condition x(t = 0) = xi

tc =
xm

i

m
. (15.25)
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For m > 1 and xi > 1, the initial rate of change dx
dt of the state variable is positive, thus

x initially increases. This growth goes on, fed by the positive feedback embodied in (15.22).

At large times, x increases asymptotically at the constant rate dx
dt = 1 leading to x(t) ≈ t.

Integrating equation (15.21) gives

δ(t) = δ∞ − δ̇0D

m − 1
1

tm−1
, (15.26)

at large times. The asymptotic value of the displacement δ∞ is determined by the initial condi-

tion. This regime thus describes a decelerating slip slowing down as an inverse power of time. It

does not correspond to a de-stabilizing landslide but to a power law plasticity hardening.

Case m = B/A = 1

In this case, the variables (15.19) and (15.20) are not defined and we go back to (15.4) (which

uses the unnormalized state variable θ and time t) to obtain

dθ

dt
= 1 − Sθ0 , (15.27)

where S is defined by (15.16) and depends on the material properties but not on the initial

conditions. If Sθ0 > 1, θ decays linearly and reaches 0 in finite time. This retrieves the finite-

time singularity, with the slip velocity diverging as 1/(tc − t) corresponding to a logarithmic

singularity of the cumulative slip. If Sθ0 < 1, θ increases linearly with time. As a consequence,

the slip velocity decays as δ̇ ∼ 1/t at large times and the cumulative slip grows asymptotically

logarithmically as ln t. This corresponds to a standard plastic hardening behavior.

Case m = B/A < 1

For xi > 1, the initial rate of change dx
dt of the state variable is negative, thus x decreases

and converges to the stable fixed point x = 1 exponentially as

x = 1 + ae−
t

t∗ , (15.28)

where the relaxation time t∗ is given by

t∗ =
1

1 − m
(15.29)

in units of T and a is a constant determined by the initial condition. Starting from some initial

value, the slip velocity increases for 0 < m < 1 (respectively decreases for m < 0) and converges

to a constant, according to (15.15,15.21).

For xi < 1, the initial rate of change dx
dt of the state variable is positive, and x converges

exponentially toward the asymptotic stable fixed point x = 1. As θ increases toward a fixed

value, this implies that the slip velocity decreases for 0 < m < 1 (respectively increases for

m < 0) toward a constant value
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15.7 Appendix B : Functional renormalization group formulas

for the friction law (15.21) and (15.22)

Consider an expansion as in (15.13) of an observable x(t) in powers of a variable u given by

xk(u) =
∑k

n=0 an un. The method of algebraic self-similar renormalization constructs so-called

“approximants”, which are reconstructed functions that best satisfy the imposed asymptotic

constraints while obeying criteria of functional self-similarity and of maximum stability in the

space of functions [Yukalov and Gluzman, 1997 ; Gluzman and Yukalov, 1997 ; 1998]. These

approximants are given by the following general recurrence formula for the approximate x∗
k(u)

of order k as a function of the expansion xk−1(u) up to order k − 1 :

x∗
k(u) =

[
x
−k/s
k−1 (u) − k ak

s
uk

]−s/k

. (15.30)

The crossover index s is determined by the condition that the leading terms of the expansion of

x∗
k(t) as t → 0 must agree with the expansion of xk(u).

For the friction model (15.21) and (15.22), the coefficients ak in (15.13) and (15.30) are

determined by the friction parameters and the initial conditions

a0 = y0, (15.31)

a1 = θ−1
0 − S y1−m

0 , (15.32)

a2 =
1
2
S (m − 1) a1y

−m
0 , (15.33)

a3 =
1
6
α(m − 1)

[−m a2
1 y−m−1

0 + 2a2 x−m
0

]
, (15.34)

a4 =
1
24

S(m − 1) [(1 + m) m a3
1 y−m−2

0

−6m a2 a1y
−m−1
0 + 6a3 y−m

0 ] . (15.35)

Case m < 1

As we see from (15.14), the natural expansion variable is u = exp
(− t

t∗
)
.

The first-order and simplest approximate is

x∗
1(u) = x∗ (1 + cu)−s = x∗

(
1 + c exp

(
− t

t∗

))−s

, (15.36)

with x∗ = 1/T where T is given by (15.23). The crossover amplitude c and the crossover index

s are determined by the condition that the expansion of x∗
1(t) as t → 0 must agree with the first

two terms of expression (15.13), leading to the following system of equations,

x∗ (1 + c)−s = x0 , (15.37)

x0s c
1

t∗(1 + c)
= a1 . (15.38)
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The crossover index s is then given by

s = − ln (x0/x
∗)

ln (1 + c)
, (15.39)

while the crossover amplitude c satisfies the following equation :

ln (x0/x
∗)

ln (1 + c)
c

(1 + c)
= −a1t

∗

x0
. (15.40)

The second-order approximate is given by

x∗
2(u) = x∗ [(1 + c2u)−s2 + c1u

2
]−s1

= x∗
[(

1 + c2 exp
(
− t

t∗

))−s2

+ c1 exp
(
−2t

t∗

)]−s1

. (15.41)

The crossover amplitudes c1, c2 and crossover index s1 and s2 are obtained from the condition

that the expansion of x∗
2(t) as t → 0 must recover the first four terms of expression (15.13). The

corresponding expressions are rather long and will not be presented here explicitly. Interestingly,

for m = 0, the second-order approximate recovers the exact solution.

Case m ≥ 1

In this case, the natural variable in the expansion is u = t. Our goal is to obtain the critical

time tc as a function of m. Using the crossover technique of [Gluzman and Yukalov, 1998]

for the two asymptotic expressions (15.13) at short time and (15.24) close to tc, we obtain a

sequence of approximants x∗
1(t), x∗

2(t), x
∗
3(t) and x∗

4(t) associated with a sequence of improving

approximations for the critical time, tc1(m), tc2(m), tc3(m) and tc4(m). All approximants agree

term-by-term with the corresponding short time expansion and lead to the critical behavior

(15.24) as t goes to the corresponding critical time. The first-order approximate is

x∗
1(t) = x0

(
1 +

a1

x0
m t

)1/m

, with tc1 = − x0

m a1
. (15.42)

Interestingly, x∗
1(t) coincides with the exact solution in the limit m → ∞, which takes the form

x = x∗ ((x0/x
∗)m − (t/t∗))

1
m .

In the next order, we obtain the second-order approximate

x∗
2(t) = x0

[(
1 +

a1

x0
t

)m

+
m a2

x0
t2
]1/m

, (15.43)

and tc2 is solution of the following equation(
1 +

a1

x0
tc2

)m

+
m a2

x0
t2c2 = 0 . (15.44)

The third order approximate reads

x∗
3(t) = x0

[(
1 +

a1

x0
t +

a2

x0
t2
)m

+
m a3

x0
t3
]1/m

, (15.45)
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and tc3 satisfies the following equation(
1 +

a1

x0
tc3 +

a2

x0
t2c3

)m

+
m a3

x0
t3c3 = 0 . (15.46)

The fourth-order approximate is given by

x∗
4(t) = x0

[(
1 +

a1

x0
t +

a2

x0
t2 +

a3

x0
t3
)m

+
m a4

x0
t4
]1/m

, (15.47)

with tc4 solution of the equation(
1 +

a1

x0
tc4 +

a2

x0
t2c4 +

a3

x0
t3c4

)m

+
m a4

x0
t4c4 = 0 . (15.48)

Note that for m = 1, all approximants are identical and equal to the exact solution.

15.8 Appendix C : Functional renormalization of polynomials

expansions for the prediction of tc as a function of the

“present time” tmax for La Clapière landslide

This appendix present tests of the prediction of the time at which the velocity peaked,

following the hypothesis discussed in the main text that the ensuing deceleration resulted from

a change from xi < 1 to xi > 1 in the velocity weakening regime B > A. According to this

interpretation, the first accelerating phase should be described by an increasing velocity ∝
1/tc − t). The critical time tc can be approximated by the time of the peak of the velocity, in

other words, tc is close to the inflection point of the displacement as a function of time.

Rather than using the version of the functional renormalization method described for the

Vaiont landslide based on the slider-block equations of motion, we use here a simpler version that

has been tested earlier in another rupture problem [Gluzman et al., 2001]. This choice is governed

by the fact that we can not rely entirely on the friction model with fixed parameters since we

know that a change of regime occurred. We thus follow a more general approach which is not

dependent upon a specialized specification of the equations of motion. The previous investigation

on a model system [Gluzman et al., 2001] developed theoretical formulas for the prediction of

the singular time of systems which are a priori known to exhibit a critical behavior, based solely

on the knowledge of the early time evolution of an observable. From the parameterization of

such early time evolution in terms of a low-order polynomial of the time variable, the functional

renormalization approach introduced by Yukalov and Gluzman [1997] allows one to transform

this polynomial into a function which is asymptotically a power law. The value of the critical time

tc, conditioned on the assumption that tc exists, can then be determined from the knowledge of

the coefficients of the polynomials. Gluzman et al. [2001] have tested with success this prediction

scheme on a specific example and showed that this approach gives more precise and reliable
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predictions than through the use of the asymptotic power law model, but is probably not better

than the true model when the later is known.

The input of the method is the inverse of La Clapière block velocity δ̇ as a function of time up

to the “present time” tmax. One starts with a simple polynomial fit of 1/δ̇ as a function of time

from some starting time up to tmax. One then applies the functional renormalization method

explained in Gluzman et al. [2001] to this polynomial expansion. We restrict our analysis to

expansions of up to second-order in time :

1/δ̇ = 1 + b1t + b2t
2 , (15.49)

where the zeroth-order coefficient b0 has been put equal to 1 by a suitable normalization of the

data.

The first order approximant for the inverse velocity reads [Gluzman et al., 2001]

F ∗
1 (t) =

(
1 − b1

s1
t

)−s1

. (15.50)

The second order approximant is

F ∗
2 (t) = 1 + b1t

(
1 − b2

b1s2
t

)−s2

. (15.51)

The exponents s1 and s2 are control parameters that are determined from an optimal stability

criterion. We follow [Gluzman et al., 2001] and impose s1 = s2 = s, which is a condition of

consistency between the two approximants. s is now the single control parameter, and plays the

role of the critical exponent at the critical point tc. The condition of the existence of a critical

point is that both approximants F ∗
1 (t) and F ∗

2 (t) of the inverse velocity should vanish at t = tc.

This yields two equations determining tc and s, which can be solved numerically.

The numerical estimates of (tc, s) depends on the time interval over which the polynomial

coefficients b1 and b2 are determined. Let tmax denote the last point used in the polynomial fit.

Figure 15.20 shows the numerical estimate of tc as a function of tmax. More precisely, Figure

15.20 compares the prediction of a fit using a polynomial of order two in time to the inverse of

the velocity (panel (a)) with the prediction of the renormalization approach (panel (b)).

We have also fitted a power law to the data to extract an estimate of tc as a function of tmax

and find an extremely unstable prediction where tc fluctuates wildly ranging from two years

before the end of 1987 to 25 years after 1987. Clearly, predicting the change of regime from a

power law fit of the acceleration in the first phase of La Clapière is completely unreliable. In

contrast, the renormalized approximants provide a more reasonable stable estimate.
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Conclusion générale et perspectives

On présente ici des conclusions et perspectives globales relatives aux séismes et aux insta-

bilités gravitaires. Une conclusion plus détaillée de la première partie sur le déclenchement des

séismes est présentée dans le chapitre 13.

Prédictabilité des risques naturels

L’étude des tremblements de terre et des instabilités gravitaires réalisée dans ce travail montre

qu’il existe une certaine prédictabilité de ces catastrophes naturelles, qui permet d’aller au delà

de l’estimation du risque indépendante du temps couramment utilisée. Ces deux instabilitées sont

précédées, au moins pour certains exemples, d’une accélération de la déformation qui diverge

en loi de puissance au moment de la rupture finale (séisme majeur ou glissement de terrain

catastrophique). Cette accélération peut-être liée à des processus physiques très différents.

Pour les séismes, on propose dans ce travail une alternative au modèle de point critique

invoqué pour décrire l’accélération de l’activité sismique avant un séisme majeur. On montre

que la loi d’Omori inverse (accélération en loi de puissance du nombre de séismes avant un

choc principal) résulte d’un modèle simple de déclenchement de séismes (ETAS) qui incorpore

uniquement les propriétés des aftershocks. La loi d’Omori inverse apparâıt comme la trajectoire

moyenne de la sismicité quand on conditionne l’activité sismique à conduire à un pic d’activité

sismique au moment du choc principal. La principale différence entre cette approche et les

modèles de point critique est que, dans le modèle ETAS la loi d’Omori inverse est une loi

statistique moyenne, observée uniquement en superposant un grand nombre de séquences. De

plus, la loi d’Omori inverse est observée dans le modèle ETAS avant n’importe quel évènement

indépendamment de sa taille. Les analyses préliminaires de catalogues de sismicité semblent

être en accord avec nos résultats théoriques : on observe en superposant un grand nombre

de séquences une accélération en loi de puissance avant chaque séisme indépendamment de sa

taille. Une étude plus poussée doit être réalisée pour tester le modèle de point critique et les

algorithmes de prédiction basés sur la reconnaissance de précurseurs, pour mettre en évidence ou

rejetter l’existence de précurseurs sismiques non reproduits par le modèle ETAS. En particulier,

certaines études suggèrent l’existence de précurseurs à des échelles de temps et d’espace bien

plus grandes que les distances et les temps d’intéractions entre un séisme et ses aftershocks,
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qui ne peuvent donc pas être expliqués par le modèle étudié ici. On propose pour poursuivre

ce travail d’utiliser le modèle ETAS comme une hypothèse nulle pour tester la validité d’autres

modèles ou l’existence de précurseurs. L’objectif est de complexifier le modèle pour le rendre le

plus réaliste possible et pour incorporer toutes les propriétés de l’activité sismique observées,

tout en gardant un modèle le plus parcimonieux possible. L’étude de la prédictabilité du modèle

ETAS réalisée dans le chapitre 7 donne une borne inférieure de la prédictabilité de l’activité

sismique, qui est déjà très significative et bien meilleure que pour un processus poissonien. On

devrait obtenir une prédictabilité beaucoup plus forte en incorporant la distribution spatiale

de la sismicité dans la méthode de prédiction présentée dans le chapitre 7. La prédictabilité de

l’activité sismique peut être plus forte que celle du modèle ETAS, s’ils existent des phénomènes

précurseurs non pris en compte par ce modèle.

Pour les instabilités gravitaires, on a montré qu’un modèle de bloc avec une loi de friction

dépendante de la vitesse permet de reproduire l’accélération des glissements de terrains précédant

l’instabilité finale (chapitre 15). Ce modèle permet de reproduire l’accélération en loi de puissance

de la vitesse de glissement qui a précédé l’effondrement du glissement de terrain de Vaiont en

1963 (Alpes italiennes). Ce modèle permet de prédire la rupture 20 jours à l’avance, et justifie

par un modèle physique le fit par une loi de puissance de la vitesse de glissement v ∼ 1/(tc − t)

qui était utlisée avant empiriquement pour prédire les glissements de terrain [Voight, 1988].

Validation des modèles et inversion des paramètres

La validation des modèles étudiés tant pour les séismes que pour les instabilités gravitaires et

l’estimation des paramètres de ces modèles sont très difficiles à cause de la pauvreté des données.

En conséquence, des modèles très différents donnent une description satisfaisante des données,

sans qu’il soit possible de les distinguer.

Pour les séismes, nous n’avons pas abordé dans ce travail le problème de l’estimation des

paramètres du modèle ETAS. Deux problèmes restent à résoudre avant d’aborder l’inversion des

paramètres du modèle dans les catalogues de sismicité, afin de pouvoir utiliser le modèle ETAS

pour faire des prédictions de l’activité sismique :

– Comment tenir compte des séismes les plus petits, qui ne sont pas observés mais qui ont

un rôle prépondérant dans le déclenchement de la sismicité (chapitre 2) ? Ce problème se

pose pour l’estimation des paramètres du modèle ETAS à partir d’un catalogue incomplet

pour les plus petits séismes, et ultérieurement pour la prédiction du taux de sismicité.

La méthode d’inversion couramment utilisée [Ogata, 1988 ; Kagan, 1991] néglige le rôle

des petits séismes en dessous du seuil de détection. Nous avons réalisés des tests sur des

catalogues synthétiques qui montrent que cette méthode est incorrecte et ne permet pas

de retrouver les paramètres du modèle quand le seuil de détection est plus élevé que la

magnitude minimum des évènements dans le catalogue synthétique. L’approche analytique

développée ici devrait nous permettre de développer une nouvelle méthode d’inversion
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prenant en compte les séismes en dessous du seuil de détection. Notre approche devrait

aussi nous permettre de prendre en compte l’influence de ces petits séismes dans l’activité

sismique future dans le but de prédire l’activité sismique.

– Les résultats théoriques dérivés dans ce travail ne sont valables que pour certaines valeurs

des paramètres du modèle (α < b/2), qui ne sont pas réalistes pour décrire la sismicité

(chapitre 2). Les résultats obtenus dans le régime b/2 < α < b pour des simulations

numériques montrent que le phénomène de renormalisation de la loi d’Omori et le rôle

des aftershocks secondaires sont plus faibles que dans le régime α < b/2, mais que les

résultats obtenus analytiquement pour α < b/2 sont encore qualitativement valables dans

le régime b/2 < α < b. Des résultats analytiques ont été obtenus dans ce régime qui

donnent les comportements limites pour α = b/2 et α = b (chapitre 10), en bon accord

avec les résultats numériques. Ces résultats sont un premier pas vers l’étude analytique du

modèle ETAS dans le régime b/2 < α < b et l’application du modèle à la sismicité.

Pour les glissement de terrain, le seul paramètre accessible par l’analyse du déplacement

est la valeur du rapport B/A des paramètres de la loi de friction. L’inversion de ce paramètre

B/A est très mal contrainte par les données, des valeurs très différentes de ce paramètre B/A

donnant des résultats très semblables pour l’évolution temporelle du glissement. L’analyse de

deux glissements de terrains suggère que ce modèle est quand même capable de distinguer une

accélération dans le régime stable (B/A < 1, cas du glissement de la Clapière) d’une accélération

instable (B/A < 1, cas du glissement de terrain de Vaiont). On espère pouvoir étudier un plus

grand nombre de glissements de terrains pour valider le modèle. Une perspective pour mieux

contraindre le modèle et pour améliorer l’accord entre le modèle et les observations est d’inclure

dans ce modèle l’effet des précipitations sur la vitesse de glissement, en reliant les paramètres

de la loi de friction au niveau d’eau dans le glissement. Des mesures précises et plus nombreuses

que celles étudiées dans ce travail devrait permettre de caler la relation entre les précipitations

et les paramètres de la loi de friction, et de mieux contraindre le modèle.
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Ruptures et instabilités : sismicité et mouvements gravitaires

Résumé - On s’intéresse à la rupture associée à deux classes de phénomènes naturels, les séismes et les
instabilités gravitaires.
Pour les séismes, on étudie un modèle stochastique de sismicité, basé sur les deux lois les mieux établies pour
la sismicité, la décroissance en loi de puissance du taux de sismicité après un séisme, et la distribution en loi de
puissance des énergies des séismes. Dans ce modèle, on suppose que chaque séisme déclenche d’autres séismes,
dont le nombre augmente avec l’énergie du choc principal. Le taux de sismicité global résulte de la cascade de
déclenchements de séismes directs et indirects. On analyse l’organisation spatiale et temporelle de la sismicité dans
les différents régimes sous- et sur-critiques du modèle. Ce modèle permet de reproduire un grand nombre de pro-
priétés de l’activité sismique, telles que la variabilité de la décroissance des séquences d’afteshocks, l’augmentation
de l’activité sismique avant un séisme, la diffusion des aftershocks, la migration des foreshocks et la modification
de la distribution des magnitudes avant un séisme. On obtient avec ce modèle une bonne prédictabilité d’une
fraction des séismes qui sont déclenchés à court terme après un grand séisme. Nos résultats démontrent le rôle
essentiel des cascades de déclenchement de séismes à toutes les échelles dans l’organisation de l’activité sismique.
Concernant l’étude des instabilités gravitaires, une étude statistique de plusieurs catalogues d’éboulements rocheux
montre que la distribution des volumes de roches suit une loi de puissance. On propose que cette distribution en loi
de puissance résulte soit de l’hétérogénéité initiale de la matrice rocheuse, soit de la dynamique d’un système cri-
tique auto-organisé. Certains glissements de terrains sont précédés par une accélération de la vitesse de glissement
avant la rupture finale. On peut reproduire l’évolution temporelle du glissement à l’aide d’un modèle de bloc rigide
avec une loi de friction dépendante de la vitesse de glissement et de l’état de contact entre le bloc et sa surface
de glissement. L’analyse de deux glissements de terrains avec ce modèle permet de distinguer une accélération du
glissement dans le régime stable, d’une accélération instable qui évolue vers une rupture catastrophique.

Mots-clés - Sismicité, Prédiction, Modèle statistique, Déclenchement, Foreshock, Aftershock, Rupture,
Instabilités gravitaires.

Rupture and instabilities : seismicity and landslides

Abstract - We analyze the rupture associated with two natural phenomena, earthquakes and landslides.

In the first part, we study a simple stochastic model of seismicity, based on the two best-established empirical
laws for earthquakes, the power law decay of seismicity after an earthquake and the power law distribution of
earthquake energies. This model assumes that each earthquake can trigger aftershocks, with a rate increasing
with its magnitude. The seismicity rate is in this model the result of the whole cascade of direct and secondary
aftershocks. We analyze the space-time organization of the seismic activity in the different sub- and super-critical
regimes of the model. We show that this simple model can reproduce many properties of real seismicity, such as
the variability of the aftershocks decay law, the acceleration of the seismic activity before large earthquakes, the
diffusion of aftershocks, the migration of foreshocks, and the modification of the magnitude distribution before
large earthquakes. We find that this model provides a good predictability for a fraction of earthquakes that are
triggered by a previous large event. We demonstrate the essential role played by the cascades of earthquake
triggering at all scales in controlling the seismic activity.

The second part is devoted to the analysis of landslides. A study of several catalogs of rock falls shows
that the distribution of rockfall volumes follows a power-law distribution, arising either from the scale invariant
heterogeneity of the rock-mass, or from the dynamics of a self-organized critical system.

We propose that the precursory acceleration of the displacement before some catastrophic landslides can be
reproduced using a slider block model with a rate-and-state dependent friction law. Application of this model to
two landslide slip histories suggests that we can distinguish an acceleration of the sliding velocity in the stable
regime from an unstable acceleration leading to a catastrophic collapse.

Keywords - Seismicity, Prediction, Statistical model, Triggering, Foreshock, Aftershock, Rupture, Landslide.


