

ETUDE DES PHENOMENES ELECTROTHERMIQUES LIES A L'AMORPHISATION ET A LA CRISTALLISATION D'UN MATERIAU A CHANGEMENT DE PHASE POUR APPLICATION AUX MEMOIRES NON VOLATILES

Vincent GIRAUD

Mercredi 26 Octobre 2005

Laboratoire Mémoires, Nanodispositifs et Optique CEA - LETI

Introduction

- 1. Principe de fonctionnement et fabrication des mémoires PC-RAM
- 2. Propriétés des phases cristalline et amorphe
- 3. Etude de la transition amorphe \rightarrow cristal en régime quasi-statique
- 4. Etude en régime dynamique

Conclusion et perspectives

<u>Contexte de l'étude</u> : microélectronique pour l'informatique et le stockage de données numériques

Avantages des PC-RAM
 PC-RAM : Mémoires universelles ?
 non volatilité des FLASH (cartes mémoires)

- rapidité des DRAM (mémoires vives de PC)
- grande cyclabilité (> 10¹²)
- faible consommation énergétique \rightarrow applications portables possibles

 réalisées au-dessus des transistors = mémoires embarquées (grande densité, faible coût, potentiel 3D)

But de la thèse :

- étudier les phénomènes électrothermiques en amorphisation et cristallisation
- montrer l'effet mémoire (basculements réversibles) et étudier les bénéfices du passage des points mémoires à l'échelle submicronique

Introduction

- 1. Principe de fonctionnement et fabrication des mémoires PC-RAM
- 2. Propriétés des phases cristalline et amorphe
- 3. Etude de la transition amorphe \rightarrow cristal en régime quasi-statique
- 4. Etude en régime dynamique

Conclusion et perspectives

Les mémoires PC-RAM utilisent un matériau actif à changement de phase, qui bascule réversiblement d'un état amorphe (forte R) à un état cristallin (faible R).

Choix d'un matériau CP :

Expérience dans le domaine de :

- stockage optique (CD et DVD réinscriptibles)
- stockage haute densité sous micropointe

Cahier des charges pour les mémoires :

- non volatilité : T_g élevée
- rapidité : transition de phase rapide

Meilleur compromis obtenu avec des chalcogénures (colonne VI) ternaires, situés sur la ligne GeTe-Sb₂Te_{3.}

• Ge₂Sb₂Te₅ standard

• $Ge_2Sb_2Te_5$ dopé Sn : cristallisation + rapide

Recherche actuelle dans le domaine de :

- systèmes cognitifs
- mémoires PC-RAM

at

Ce matériau peut se présenter sous trois états : amorphe, cristal cfc, cristal hc

et 2005

> C'est la phase cfc qu'on aura dans le fonctionnement dynamique (la plus rapide et la plus facile à former)

Principe des mémoires PC-RAM : basculer réversiblement un volume de matériau CP entre la phase amorphe et la phase cristalline cfc par impulsion électrique

21 2005

Lecture : détermination de la résistance du point mémoire

Fabrication : état de l'art

- Intel & Ovonyx : démonstrateur 4 Mb (2001). Points de taille 0,24 $\mu m \times$ 0,24 μm
- ST : démonstrateur 8 Mb (2004). Points de taille 0,4 $\mu m \times$ 0,8 μm
- Samsung : démonstrateur 64 Mb (2004). Points de taille 0,56 μ m imes 0,9 μ m

Fabrication : échantillons fabriqués dans cette étude

Introduction

- 1. Principe de fonctionnement et fabrication des mémoires PC-RAM
- 2. Propriétés des phases cristalline et amorphe
- 3. Etude de la transition amorphe \rightarrow cristal en régime quasi-statique
- 4. Etude en régime dynamique

Conclusion et perspectives

Différences morphologiques

CRISTAL

Cas idéal : $Ge_2Sb_2Te_4$ En réalité : $Ge_2Sb_2Te_5$ Donc 10 at% de lacunes sur le système Ge-Sb-Te Caractère ionique dominant **AMORPHE**

Si chacolgène pur : C_2° (Lone Pairs) T_e T_e T_e T_e T_e T_e T_e T_e T_e Si composé (pontage par Ge et Sb) : $C_2^{\circ} + C_3^{\circ}$ Singularités de coordinance (VAP) $C_3^{+} + C_1^{-}$

œ

2005

Différences de diagrammes de bandes

 E_{C} E_{V} VB E_{F} VB E_{F} CB Acceptor-like TrapsVacancies)

CRISTAL

Conduction de type N

Les lacunes du cristal sont des pièges accepteurs

BV sans étalement

Conduction de type P

Les VAP sont des pièges à porteurs accepteurs (C_1^-) ou donneurs (C_3^+)

BV avec fort étalement à cause des LP

Les LP ont un comportement négligeable pour la conduction devant celui des VAP

œ

21 2005

Caractérisation électrique des deux phases

et1

Un seul régime de conduction :

Linéaire (ohmique)

Trois régimes de conduction :

- 1. Linéaire (ohmique)
- 2. Exponentiel
- 3. Hyperexponentiel

Activation thermique : CRISTAL

eti 2005

Diagrammes d'Arrhenius

Energie d'activation de Sn:GST T recuit GST conduction Ea (eV). 180℃ 0,081 0,011 $\sigma = \sigma_0 \exp\left(\frac{-E_a}{kT}\right)$ 250℃ 0,048 0.015 320℃ 0,021 0,018 400℃ -0,008 Faible : phase semimétallique

Activation thermique : AMORPHE

Diagramme d'Arrhenius

Energie d'activation de

conduction Ea (eV).

$$\sigma = \sigma_0 \exp\left(\frac{-E_a}{k T}\right)$$

structuré		Pleine tranche	
GST	Sn : GST	GST	Sn : GST
0,38	0,32	0,49	0,32

Forte : phase semi-conduc-

— trice. Eg / 2 : intrinsèque

œ

eti 2005

Détermination de la conductivité thermique en couche mince

<u>Méthode 3 ω </u> : mesure de la conductivité thermique λ perpendiculaire

ett

Ligne supérieure en Ti-Au qui sert de ligne chauffante et de thermomètre Courant imposé : $I = I_0 cos(\omega t)$ Variation de température : $\Delta T = \Delta T_0 cos(2 \omega t + \varphi)$ Tension aux plots intérieurs :

$$V(t) = R_0 I_0 \cos(\omega t) + \frac{R_0 I_0}{2} \alpha_R \Delta T_0 \cos(\omega t + \varphi) + \frac{R_0 I_0}{2} \alpha_R \Delta T_0 \cos(3\omega t + \varphi)$$

Composante en 3 ω à extraire

$$\lambda = \frac{Re}{2b\Delta T_0}$$

 $Ge_2Sb_2Te_5$ amorphe : 0,24 W.m⁻¹.K⁻¹ $Ge_2Sb_2Te_5$ cristallin : 0,28 W.m⁻¹.K⁻¹

Introduction

- 1. Principe de fonctionnement et fabrication des mémoires PC-RAM
- 2. Propriétés des phases cristalline et amorphe
- 3. Etude de la transition amorphe \rightarrow cristal en régime quasi-statique
- 4. Etude en régime dynamique

Conclusion et perspectives

Etude de la phase amorphe (OFF) en régime QS

eti

Etude de la phase amorphe (OFF) en régime QS

Modèle d'Adler

Le modèle d'Adler (1980) est un modèle de conduction électrique pour les semi-conducteurs amorphes présentant un basculement.

Basé sur le couplage entre :

- Génération par impact
- Piégeage / dépiégeage des porteurs à partir des VAP

Loi de conduction du modèle :

$$j(E) = \frac{p_0 q \mu_p}{1 - A \exp\left(\frac{E}{E_0}\right) \tau_p} E$$

Caractérisation expérimentale du basculement:

leti

2005

D'une façon générale :

Influence du diamètre sur la tension seuil

et1

Pas d'influence du diamètre de pt mémoire

Influence de l'épaisseur sur la tension seuil

 $V_{th} \text{ augmente} \\ \text{avec e. Mais pas} \\ \text{de loi simple pour} \\ V_{th} = f(e) \\ E_{th} = f(e) \\ \end{array}$

Influence de la température

eti 2005

 V_{th} diminue lorsque T augmente : les conditions expérimentales de mesure vont influer sur la détermination de V_{th}

et1 2005

> 10 pts/décade 25 pts/décade 50 pts/décade

- vitesse de balayage 凶
- E cumulée injectée avant basculement 7
- T du matériau CP 7

■ V_{th} 凶

Discussion sur la nature de l'amorphe conducteur : la transition amorphe résistif → amorphe conducteur est-elle de nature volumique ou bien filamentaire (localisée) ?

2 arguments en faveur d'une transition localisée :

 basculements multiples observés : différents basculements successifs avec des tensions seuils de plus en plus faibles → création de plusieurs filaments successifs en parallèles

et1

2) observations morphologiques : sur des points mémoires ayant subi des balayages aller-retour en courant de plus en plus amples

27

Introduction

- 1. Principe de fonctionnement et fabrication des mémoires PC-RAM
- 2. Propriétés des phases cristalline et amorphe
- 3. Etude de la transition amorphe \rightarrow cristal en régime quasi-statique
- 4. Etude en régime dynamique

Conclusion et perspectives

<u>But des tests dynamiques (ou impulsionnels)</u> : montrer l'effet mémoire sur des cellules PC-RAM de type PCPT, en appliquant des impulsions de tension et de durée adaptées.

4. Etude en régime dynamique

eti

Avant et après chaque impulsion (amorphisation ou cristallisation) :

• lecture dynamique : faible tension pour ne pas modifier l'état du point mémoire (typiquement 0,5 V ; 200 ns).

- Si créneau en V₄: courant important donc cristal
- Si signal V₄ plat : courant très faible donc amorphe ou circuit ouvert
- lecture en mode QS pour identifier la phase et déterminer la R du point

Dyn : créneau ; QS : linéaire ; R faible

Dyn : plat ; QS : non linéaire ; R grande

Lots microniques :

et1

Vérification électrique du lot en test paramétrique :

- faible dispersion des valeurs de résistances
- phase cristalline obtenue en fin de fab
- influence de la taille du point mémoire OK

En test dynamique, seuls les plus petits points ouverts (1 et 1,2 µm) montrent des changements de phase

Durée d'amorphisation : 10 à 15 ns

Courant mesuré : 20 à 40 mA

Mise en évidence d'amorphisations partielles : la résistance du point mémoire augmente avec des impulsions successives

leti

33

Cyclabilité

Mise en évidence de transformations OFF \leftrightarrow ON réversibles : amorphisations et cristallisations successives

Bon contraste de lecture entre les deux phases (facteur 100)

Encore loin des exigences industrielles

et1 2005

Explication des temps de cristallisation longs : passage par la phase liquide.

Mauvais contrôle thermique \rightarrow T > Tf \rightarrow amorphe si impulsion courte, ou cristal si impulsion longue

200

Les éléments en faveur du passage par la phase liquide

1) En tests rapides, Tc s'approche de Tf

Plus la vitesse de montée en T augmente, plus la Tc augmente, donc plus l'écart Tf-Tc diminue. Ici, chauffage très rapide.

2) Emballement thermique

Let1 2005

Modélisation de la cristallisation en partant d'un filament amorphe conducteur (germe).

Surchauffe en cristallisation : T_c au bord \Rightarrow T>T_f au centre.

Surchauffe toujours plus importante avec PCPT qu'avec TINPT

eti

Lots submicroniques : masque en résine pour le point mémoire

Problème : dispersion très importante des valeurs de résistances mise en évidence aux tests paramétriques.

<u>Analyse</u>: oxydation du GST liée au stripping résine (plasma d'O) en fin de gravure du point mémoire.

Solution : remplacer le masque résine par un masque dur (SiO₂ amorphe)

Lots submicroniques : masque dur en SiO₂

Test paramétrique :

et1

- nombreux points en court-circuit (maîtrise de la techno ? , rendement de fabrication ?)
- faible dispersion des valeurs de R pour les points fonctionnels
- influence de la taille sur R peu évidente

Cyclabilité

eti

2005

Quelques étapes partielles (amorphisations ou cristallisations) Mauvaise cyclabilité : arrêt en phase cristalline, ou court-circuit Faible contraste de lecture entre les deux phases (facteur 6 max)

Problème de maîtrise technologique sur ce lot submicronique

CONCLUSIONS

	AMORPHE	CRISTAL
I(V)	3 domaines :	1 soul domaine :
	 meane exponentiel 	linéaire
	hyperexponentiel	
Ea	Eg/2 (≅ 0,4 eV)	≅ 0
Comportement	Comportement Semi-Conducteur intrinsèque Rôle des pièges (VAP)	

Cristallisation en 2 temps

1) <u>Transition électronique localisée</u> pour $V=V_{th}(T)$: remplissage des pièges et formation d'un filament amorphe conducteur)

2) <u>Transition thermique</u> croissance cristal cfc à partir du filament

 $\gamma \gamma \gamma$

	MICRONIQUE	SUBMICRONIQUE
Amorphisation	10 ns	10 ns
Cristallisation	1µs (problème d'optimisation thermique)	100 ns
Cyclage	Démontré pour les points les plus petits (< 1,2 µm)	Problème de maîtrise technologique

diminuer la taille améliore le comportement dynamique des PC-RAM

- 1) Résolution des problèmes mis en évidence :
 - optimisation thermique pour :
 - éviter le passage par la phase liquide (limiter la surchauffe, éviter l'emballement thermique)

- diminuer les puissances mises en jeu
- problèmes technologiques des lots submicroniques (lithographie et gravure du point mémoire)
- 2) Intégration des transistors de commande

