

Dysfonctionnement de la NADPH oxydase des phagocytes dans la granulomatose septique chronique de type X+ Modèle d'étude: les cellules PLB-985 CGD X

Xing Jun Li

► To cite this version:

Xing Jun Li. Dysfonctionnement de la NADPH oxydase des phagocytes dans la granulomatose septique chronique de type X+ Modèle d'étude : les cellules PLB-985 CGD X. Sciences du Vivant [q-bio]. Université Joseph-Fourier - Grenoble I, 2005. Français. NNT : . tel-00010978

HAL Id: tel-00010978 https://theses.hal.science/tel-00010978

Submitted on 28 Dec 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNIVERSITE JOSEPH FOURIER-GRENOBLE 1 SCIENCES & GEOGRAPHIE

N°

THESE

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE JOSEPH FOURIER-GRENOBLE 1

Discipline : Biologie

Soutenue publiquement le 29 Septembre 2005 par

Xing Jun LI

Dysfonctionnement de la NADPH oxydase des phagocytes dans la

granulomatose septique chronique de type X⁺

Modèle d'étude : les cellules PLB-985 CGD X

COMPOSITION DU JURY

Professeur Philippe Gaudin	Président
Professeur Nicolas Demaurex	Rapporteur
Docteur Jamel El Benna	Rapporteur
Docteur Franck Fieschi	Examinateur
Professeur Guan Xiang Qian	Examinateur
Docteur Marie José Stasia	Co-Directeur de thèse
Professeur Françoise Morel	Directeur de thèse

Thèse préparée au sein du Groupe de Recherche et d'Etude du Processus Inflammatoire

GREPI EA 2938 / CHU Grenoble

Remerciements

Ce travail a été réalisé au sein du GREPI sous la responsabilité de Madame le Docteur Marie José Stasia. Je la remercie chaleureusement pour son investissement professionnel et personnel dans le cadre de mon travail. Durant ces trois années, elle a su me faire bénéficier de sa compétence.

Je remercie Monsieur le Professeur Philippe Gaudin sans qui cette thèse n'aurait pas pu exister. Son soutien tant financier qu'humain m'a permis de mener à bien ce travail. Enfin, je veux le remercier d'avoir accepté la Présidence de mon jury de thèse.

Je remercie très sincèrement Madame le Professeur Françoise Morel pour m'avoir accueilli au sein de son laboratoire. Elle a su me transmettre son savoir ainsi que la maturité nécessaire pour poursuivre ce travail.

Je remercie Monsieur le Professeur Nicolas Demaurex d'avoir accepté d'être membre de mon jury de thèse et pour le début de collaboration qu'il a bien voulu établir.

Je remercie très sincèrement Monsieur le Docteur Jamel El Benna pour avoir accepté de participer à ce jury de ma thèse.

A Monsieur le Docteur Franck Fieschi, je tiens ici à exprimer ma gratitude pour l'honneur qu'il me fait en acceptant d'être membre du jury de ma thèse. J'ai particulièrement apprécié le travail que nous avons réalisé ensemble.

Un grand merci à Monsieur le Docteur Didier Grunwald et Monsieur le Docteur Jacques Mathieu pour avoir réaliser les expériences de microscopie confocale ainsi que le tri cellulaire de nos clones.

Un grand merci à Monsieur le Professeur Arthur Hadjian, Marie Hélène Paclet, Yannick Campion, Rachel Tetaz, Emilie Pez, Michèle Guillot et Elisabeth Maquet pour leurs aides et leurs conseils amicaux.

Enfin je remercie très sincèrement l'ensemble de l'équipe des chercheurs du GREPI et de les membres de l'unité fonctionnelle d'Enzymologie, pour leur soutien et leur attention à mon égard.

Contents

		Pages
Li	<u>st of the abbreviations</u>	1
<u>Sı</u>	<u>immary</u>	3
In	troduction	5
En	anglais	
1.	Bacterial killing mechanism	5
	1.1 Reactive oxygen species production (ROS)	5
	1.2 Electron transfer and compensation of charge mechanism	7
2.	NADPH oxidase	8
	2.1 Cytochrome b_{558}	8
	2.2 Cytosolic components of NADPH oxidase	11
	▶ P47 <i>phox</i> (NCF1, neutrophil cytosolic factor 1; NoxO2)	11
	▶ P67 <i>phox</i> (NCF2, neutrophil cytosolic factor 2; NoxA2)	13
	▶ Rac	13
	► P40phox	14
	2.3 Rap1A	14
3.	Gp91 <i>phox</i> (β-subunit, Nox2)	15
	3.1 Haem-binding site	15
	3.2 FAD-binding site	16
	3.3 NADPH-binding site	17
	3.4 Glycosylation and maturation	19
	3.5 Proton channel	20
	3.6 Homologues of Nox2	20
	► Nox-2S	23
4.	Activation and assembly of NADPH oxides	23
	4.1 NADPH oxidase assembly during activation	25
	4.1.1 Interaction between cytosolic components	25
	4.1.2 Interaction between cytosolic factors and cytochrome b ₅₅₈	26
	• p47 <i>phox</i> with cytochrome b_{558}	26
	• P67 <i>phox</i> with cytochrome b_{558}	27
	4.2 Interaction between oxidase cytosolic components and membrane lipids	28
5.	Chronic granulomatous disease (CGD)	29

	1 1 Autosomal CGD (A-CGD)	30	
	1.2 X-CGD	31	
2.	Cellular models	36	
<u> </u>	The objective of our work	44	
En	français	46	
1.	La production de dérivés toxiques de l'oxygène (ROS)	46	
2.	NADPH oxidase	47	
2.1	Le Cytochrome b_{558}	47	
2.2	Facteurs cytosoliques	49	
2.3	Rap1A	50	
3.	La granulomatose septique chronique (CGD)	50	
3.1	CGD X	50	
3.2	CGD AR	51	
4.	Modèles cellulaires d'étude du complexe oxydase	52	
4.1	Les lymphocytes B immortalisés par le virus d'Esptein-Barr (LB-EBV)	52	
4.2	Les cellules K562	52	
4.3	Les cellules CD34 ⁺	52	
4.4	Les cellules PLB-985	52	
4.5	Les cellules fibroblastiques	53	
5.	Objectifs du travail	53	
<u>Re</u>	esults	56	
Ch	apter 1: Functional analysis of two-amino acid substitutions in gp91 ^{phox}	57	
	in a patient with X-linked flavocytochrome b ₅₅₈ -positive chronic granulomatous disease by means of transgenic PLB-985 cells		
Ré	sumé en français	57	
Ré	sumé en anglais	59	
►I	Background	59	
• (Construction of gp91 <i>phox</i> transfected PLB-985 cells	59	
۱	Detection of NADPH oxidase activity in transfected PLB-985 cells		
► Study of NADPH oxidase assembly in transfected PLB-985 cells			
► I	• Analysis of the 3D-model of the cytosolic C-terminal of gp91 <i>phox</i> Article 1		
Ar			
Ch	apter 2: Crucial role of two potential cytosolic regions of Nox2	73	

-¹⁹¹TSSTKTIRRS²⁰⁰ and ⁴⁸⁴DESQANHFAVHHDEEKD⁵⁰⁰

-on NADPH oxidase activation

Résumé en français		
Résumé en anglais		
▶ Background		
► General methodology to obtain the mutant gp91 ^{<i>phox</i>} PLB-985 cells		
and tostudy the impact of each mutation on NADPH oxidase		
activity and complex assembly		
► Validity of the approach	79	
▶ Role of the D loop region of Nox2 and Nox1, Nox3 and Nox4	79	
Role of the C-terminal α-helical loop of Nox2	80	
Article 2	81	
Chapter 3: Leu505 of neutrophil Nox2 is crucial in the NADPH	93	
binding process during NADPH oxidase activation		
Résumé en français	93	
Résumé en anglais	97	
▶ Background	97	
► The reconstitution and functional study of Leu505Arg X ⁺ -CGD		
In the A-COD FLB-965 cen line	08	
WT and L au505 Arg Nov2 autochrome have	90	
• Fifteet of increasing amount of $p67^{phox}$ on NADPH oxidese	00	
activity reconstituted in a simplified cell free system assay	22	
• Analysis of the Leu505 position in the 3D model of the	00	
γ margins of the Leasos position in the 3D model of the cytosolic C-terminal region of $gn91^{phox}$		
Article 3	101	
Chapter 4: Study of the cytochrome b_{558} biosynthesis defect	134	
in an X^- CGD case (S193F Nox2) reproduced in		
X-CGD PLB-985 and COS-7 cell lines		
Résumé en français	134	
Résumé en anglais	136	
1. Background	136	
2. Study of the biosynthesis of S193F mutated Nox2-cytochrome b_{558}	137	

1.1 Strategy	137
1.2 Results and discussion	137
▶ S193F Nox2 mRNA amount in X-CGD PLB-985 and COS-7 cells	137
▶ S193F Nox2 amount in X-CGD PLB-985 and COS-7 cells	138
• Detection of H_2O_2 production in the intact cells	140
En français	142 143
En anglais	148
References	153

List of the abbreviations

bp	base pair
cDNA	complementary deoxyribonucleic acid
CGD	chronic granulomatous disease
CSF	cell-free system
DFP	diisopropylfluorophosphate
DMF	dimethylformamide
DNA	deoxyribonucleic acid
EDTA	ethylenediaminetetraacetic acid
FACS	flow cytometry
FAD	flavin adenine dinucleotide
fMLP	formyl-methionyl-leucyl-phenylalanine
FNR	ferredoxin-NADP ⁺ reductase
GST	glutathione S-transferase
GTPγS	guanosine 5'-3-O-(thio) triphosphate
H_2O_2	hydrogen peroxide
HRPO	horse-radish peroxidase
INT	iodonitrotetrazolium
K _m	constant of Michaélis-Menten
mAb	monoclonal antibody
MPO	myeloperoxidase
mRNA	messenger ribonucleic acid
MW	molecular weight
NAD(P)H	Reduced form of nicotinamide-adenine dinucleotide (phosphate)
O_2^{-}	superoxide anion
PBS	phosphate-buffered saline
PCR	polymerase chain reaction
Phox	phagocyte oxidase
РКС	protein kinase C
PMA	phorbol 12-myristate 13-acetate
PMN	polymorphonuclear neutrophils
PMSF	phenylmethyl sulfonyl fluoride
GDI	GDP dissociation inhibitor
RLU	relative luminescence unit
ROS	reactive oxygen species
RP	recombinant protein
SDS	sodium dodecyl sulfate
SDS-PAGE	SDS-polyacrylamide gel electrophoresis
SOD	superoxide dismutase
STZ	serum-treated zymosan
TLCK	tosyl-L-lysine chloromethyl ketone

Summary

Chronic granulomatous disease (CGD) is a rare immuno-deficiency syndrome in which phagocytes lack NADPH oxidase activity. The most common form resulted from mutations in the *CYBB* gene encoding gp91^{*phox*} or Nox2, which is the redox center of the oxidase complex. Very few mutations, referred as X⁺-CGD, led to a normal expression of gp91^{*phox*} with a defective oxidase activity. X⁻-CGD is another rare variant, characterized by a diminished gp91^{*phox*} expression with a weak or absent oxidase activity. The study of these rare variants is useful to establish relationships between a sequence of gp91^{*phox*} and a specific function. The X-CGD PLB-985 cellular model, in which the *CYBB* gene encoding gp91^{*phox*} was interrupted, exhibits an X⁰-CGD phenotype (Zhen et al. 1993).

Mutagenesis approach and stable transfection in X-CGD PLB-985 cells were used to study the defective molecular mechanisms of three X91⁺-CGD mutations, one X91⁻-CGD mutation, and the structure-function analysis of two essential domains of $gp91^{phox}$. WT-Nox2 transfected PLB-985 cells exhibited the same oxidase activity as the original WT PLB-985 cells. Phenotypes of all the studied X⁺ or X⁻-CGD were the same as those of the neutrophils from the patients.

The impact of an X⁺-CGD double mutation His303Asn/Pro304Arg and of its each mutation on NADPH oxidase functions was carefully dissected in this cellular model. Although the His303Asn mutation has a more severe inhibitory effect on NADPH oxidase assembly and activity than the Pro304Arg mutation, neither mutation can be considered as a polymorphism. Leu505Arg mutation originated from a second X⁺-CGD was supposed to be located in the potential adenine-binding site (${}^{504}GLKQ^{507}$). According to the Taylor's 3D model of the C-terminus of Nox2 (Taylor et al. 1996), this mutation is localized at the end of an α -helical loop, a potential cytosolic factors binding site which could regulate the NADPH access to its binding site. In a simplified cell-free system using purified mutated cytochrome b_{558} , this mutation diminished the affinity for NADPH and NADH (K_m-mutant=3×K_m-WT). In optimal conditions, this system needs much more $p67^{phox}$ to reach the maximal turn over of the oxidase. Leu505Arg mutation seems to alter the structure of α -helical loop affecting the p67^{phox} binding and the NADPH access to its binding site. However no evidence was found for a direct binding of Leu⁵⁰⁵ to NADPH. The study of a third X⁺-CGD case due to an Asp500Gly mutation in the same α -helical loop and reproduced in the X-CGD PLB-985 cell model, pointed out the importance of this region on assembly process and electron transfer from NADPH to FAD.

The crucial role of two potential cytosolic domains of $gp91^{phox}$ ¹⁹¹TSST<u>K</u>TI<u>RR</u>S²⁰⁰ (D-loop) and ⁴⁸⁴<u>D</u>ESQAN<u>H</u>FAVHH<u>D</u>EEK<u>D</u>⁵⁰⁰ (α -helical loop) were investigated using the same cellular model as above. The RR9192EE-gp91^{phox} mutation, known to inhibit oxidase activity and oxidase assembly, was used to validate the methodology (Biberstine-Kinkade et al. 1999). We found that the charged residues in the D-loop (Lys¹⁹⁵, Arg¹⁹⁸, Arg¹⁹⁹) are essential to maintain oxidase activity, but are not involved in oxidase assembly process nor in electron transfer from NADPH to FAD. The same region of Nox1/3/4 is totally functional for oxidase activity, suggesting the existence of a common mechanism underlying the activation of Nox family. Two super-mutants (R199Q, D-loop_{Nox4}) were observed to produce more H₂O₂ activated by PMA or fMLP. The charged residues (Asp⁴⁸⁴, His⁴⁹⁰, Asp⁵⁰⁰) in the C-terminal region (residues 484-500) are essential to support oxidase activity, the oxidase complex assembly, and electron transfer from NADPH to FAD.

Finally an X⁻-CGD case (Ser193Phe) reproduced in the X-CGD PLB-985 cellular model demonstrated that the low cytochrome b_{558} synthesis was related to a defect in glycosylation process of gp91^{*phox*}.

Key words: $X^{+/-}$ -CGD, gp91^{phox} or Nox2, cytochrome b₅₅₈, NADPH oxidase, X-CGD PLB-985 cells