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Abstract

This thesis studies composite structures hosting distributed piezoelectric elements. It
consists of three major parts dealing with beam modelling, modal analysis, and passive
vibration control with electric circuits. Beam modelling analyzes the influence of 3D ef-
fects on 1D models of layered beams including thickness-polarized piezoelectric laminae
and proposes a corrected Euler-Bernoulli model based on a mixed variational formula-
tion. Modal analysis studies numerical and experimental methods for the identification
of an electromechanical modal model of a stepped beam including multiple piezoelec-
tric segments. These results are applied to the optimization of resistive-inductive electric
networks for vibration control through distributed piezoelectric shunting. Each part in-
cludes theoretical analysis, numerical works, and experimental validation. In particular,
the first experimental implementation of distributed piezoelectric shunting with multi-
terminal electric networks is presented.

Keywords: piezoelectricity, vibration control, laminated beams, smart structures,
modal analysis, Euler-Bernoulli beam, mixed variational formulation, distributed control,
stepped beam.

Résumé

Cette thèse a pour objet la modélisation de poutres composites piézoélectriques et
l‘application au contrôle passif des vibrations. Une première partie présente un modèle
de poutre du type Euler-Bernoulli électromécanique. Le modèle est construit à partir
d’un principe variationel mixte qui, sans introduire des degrés de liberté supplémentaires,
tienne compte des effets 3D des champs électromécaniques et du potentiel électrique induit.
Une deuxième partie propose des techniques numériques et expérimentales pour l’analyse
modale et la déduction d’un modèle d’ordre réduit pour des poutres avec actionneurs
piézoélectriques distribués. Enfin, des applications au contrôle passif de vibrations au
moyen de circuits électriques sont étudiées. Dans de tels systèmes, l’énergie mécanique
est dissipée dans des réseaux résistifs-inductifs. Chaque partie comprend des validations
numériques et expérimentales. Un premier prototype d’un système pour le contrôle passif
distribué est proposé.

Mots-clés: piézoélectricité, contrôle de vibrations, poutres multicouches, structures intel-
ligentes, analyse modale, poutre d’Euler-Bernoulli, formulation variationelle mixte, con-
trôle distribué
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Chapter 1

Introduction

1.1 Motivations

Many modern structural systems include electric and electronic devices to improve safety,
comfort, and performance. The electric and electronic devices are digital or analog mi-
croprocessor with power conditioning electronics that exploit networks of sensors and
actuators to sense the state of the structure and exert specific control actions. Systems
with these characteristics are called smart or intelligent. The integrated control systems
make them able to adapt to varying environmental conditions, loadings, and user require-
ments. They can monitor the structural integrity and promptly detect early-stage damages
(damage identification), impose desired shapes (shape control), reduce vibrations and the
structural-borne noise (noise and vibration control). Current industrial applications range
from advanced structural elements for the aerospace and automotive industries to medical
devices, micropositioners, sport goods, etc.

In late 80’s the requirement of efficient damping systems for lightweight structures
in space applications was a first motivation for the development of the research field of
smart materials and structures. Vibrations are undesirable because they decrease comfort,
limit structural lifetime, affect working precision of machine tools, generate and transmit
noise. Nowadays, vibration suppression systems using piezoelectric materials with active
or passive electric controllers are widespread in engineering applications. Their advantages
with respect to traditional solutions are reduced mass and weight, high performances, and
adaptability. Specific applications include the control of rotor-blade vibrations or fixed-
wing flutter (Loewy, 1997), the reduction of structurally radiated and transmitted noise
in transportation vehicles (Boller, 1996), the control of hard-disk drives with increased
performances (Guo et al., 1998). Moreover, tennis rackets and smart skis that electrically
damp mechanical vibrations through shunted piezoelectric transducers are commercially
available (see e.g. www.head.com).

Active materials are a primary need of a smart structure. Extensively used active
materials include piezoelectric materials, shape-memory-alloys, electrostrictive and mag-
netostrictive materials (Giurgiutiu et al., 1996). Among them, piezoelectric materials, and
in particular piezoelectric ceramics, are the most diffused, mainly thanks to the first-order
linearity in their response and their large operating band-width (0.1Hz÷GHz). Piezo-
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electric ceramics are stiff and heavy. When added to lightweight structures, they can
significantly affect the mass and stiffness distribution. They do not only provide the sens-
ing and actuating functions, but also carry the structural loads, becoming an integrated
part of a composite structure. This raises the need for modelling and design tools which,
by including the active material, are able to accurately estimate the mechanical, electric,
and coupling properties of the composite structure as a whole.

The research in the area of smart structures received an enormous attention in the
last twenty-years. As pointed-out by Chopra in its comprehensive review about the state-
of-the art of smart structures (Chopra, 2002), the main barriers to further industrial
applications include the limited actuator stroke, the lack of accurate modelling tools,
the little information available about reliability and lifetimes, and the need for robust
distributed control strategies.

1.2 Objectives

This thesis focuses on theoretical, numerical, and experimental techniques for modelling
structures hosting piezoelectric elements used for vibration control. It consists of three
major components:

• Beam modelling of piezoelectric laminates;

• Numerical and experimental modal analysis of stepped piezoelectric beams;

• Passive vibration control with distributed piezoelectric shunting.

It includes experimental works for the validations of the theoretical models and the nu-
merical techniques, and experimental tests on prototypes of the vibration-damping devices
that assess their technical feasibility and effectiveness.

The theoretical and numerical parts look for the best trade-off between modelling accu-
racy and manageability. The models account for the two-fold electromechanical coupling
and accurately describe the mechanical and electric properties of the composite struc-
tures. These are primary needs of vibration control applications. Beam modelling focuses
on an accurate description of 3D cross-sectional warping effects and on the electromechan-
ical coupling that, although usually neglected in the technical literature, are relevant for
getting a satisfactory agreement with experiments. On the other hand, the use of mate-
rial or geometric properties that are difficult or impossible to experimentally determine
is avoided. Based on numerical and experimental comparisons, a critical analysis of the
available approaches gives a further insight into the main issues of beam modelling of
piezoelectric laminates.

The part on modal analysis faces the problem of the experimental and numerical de-
termination of the electromechanical modal properties and reduced-order modal-models
of beams with multiple piezoelectric transducers. This is a required step towards control
applications. In this framework, the main objectives include: to propose reliable methods
to find exact natural frequencies and mode shapes; to provide comments and suggest pos-
sible improvements of standard approximate methods such as assumed modes and finite-
element; to propose procedures for an easy and reliable experimental identification of the
electromechanical modal parameters. In the comparative analysis between experimental
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and numerical results, efforts are made to distinguish among the errors due to inaccurate
modeling, approximate numerical solutions, and improper experimental estimations.

The part on vibration damping develops the concept of passive electric damping with
distributed piezoelectric shunting. This is an extension toward distributed control of the
passive damping technique that uses a piezoelectric element shunted with a resistive-
inductive circuit to dissipate the mechanical vibrational energy in the electric form. In
this context, the main objectives are to look for optimal shunting network for multimodal
control and to develop a first experimental validation.

1.3 Outline

The material of this thesis is organized with an introductory part (Chapters 1 and 2), a
core part reporting the theoretical and numerical work (Chapter 3 to 5), an experimental
part (Chapter 6), and a closure (Chapter 7). Each chapter of the core part includes a
specific introduction and a dedicated literature review.

Chapter 2 provides a general backgrounds about piezoelectricity and piezoelectric
transducers. Especially, it introduces the governing equations of 3D piezoelectricity and an
associated mixed variational formulation. The 3D field distribution in single-layer piezo-
electric transducers in extension and bending is briefly described, by underlying the main
phenomena.

Chapter 3 is devoted to beam modelling of piezoelectric laminates with thickness po-
larized piezoelectric ceramics. It presents an original beam model that includes the effect
of cross-sectional warping due to the in-plane isotropy of the piezoelectric actuation. Nu-
merical comparisons with standard modelling approaches and 3D finite-element results
obtained with a commercial code are shown.

Chapter 4 deals with numerical modal analysis of stepped piezoelectric beams. On
the basis of the beam model of Chapter 3, it develops and compares several methods for
determining the electromechanical modal properties and establishing reduced order modal
models of beams including multiple piezoelectric transducers.

Chapter 5 reports theoretical and numerical results about vibration control with shunted
piezoelectric transducers. After a detailed analysis of the classical resistive and resistive-
inductive single-shunts, it extends the main results to distributed passive shunts using
multiple piezoelectric transducers and multi-terminal electric networks.

Chapter 6 resumes the experimental works about strain analysis on a beam with
surface-bonded piezoelectric transducers, experimental modal analysis of stepped piezo-
electric beams, and modal control with distributed resistive and resistive-inductive piezo-
electric shunts. Comparisons with the theoretical results assess the accuracy of the propos-
ing modelling approaches and the effectiveness of the vibration-damping techniques.

Finally, Chapter 7 is left for conclusions and suggestions for possible extensions of the
present work.
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Piezoelectricity
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2.1 Piezoelectric materials

In 1880 Pierre and Jacques Curie, during their former experimental work on crystallogra-
phy, show that some crystalline materials, such as Rochelle salt, generate electric charges
when subjected to mechanical stresses (direct piezoelectric effect). The inverse effect
(i.e. that an applied electric field induces a mechanical deformation) was mathematically
predicted by Lippman1 in 1881 from basic thermodynamic principles and successively ver-
ified experimentally by the Curie’ brothers. The first technically relevant application of
the piezoelectric effect was seen during the first world-war, when Paul Langevin devel-
oped a piezoelectric ultrasonic transducer (1917) assembling piezoelectric crystals. The
piezoelectric effect shown by natural material is very weak. Intensive research from the
second world-war to the present day was aimed at the development of materials with
enhanced electromechanical properties. In current applications, the most used materials
are polycrystalline ferroelectric ceramics, such as Lead Zirconate Titanium (PZT), and
piezoelectric polymers, such as Polyvinylidene fluoride (PVDF). PZTs furnish a stronger
electromechanical coupling but are brittle and heavy, whereas PVDFs are conformable ma-
terials conveniently used as sensors. In this work I will be considering only piezoelectric
ceramics.

Piezoelectricity is a result of the material properties at microscopic level. Piezoelectric
ceramics are crystalline materials whose basic cell, below a given temperature (Curie
Temperature), has an asymmetric distribution of charge giving a permanent polarization.
A macroscopic block of crystalline material is made up of an assembly of grains and
domains. Each domain has a direction of prevalent polarization. However, in normal
conditions, the domains are randomly oriented and the overall polarization of the block
is statistically null. If a strong electric field (2000 V/mm) is applied for a sufficiently
long time, the domains tend to statistically orient in the direction of the electric field and
a net polarization is recognized. The polarization (at least a part of it) remains when
the polarizing field is removed. The obtained material block is a polarized piezoelectric
ceramic. The coupling between deformation and electric field is due to the geometric
effects related to domain re-orientation caused by an applied electric field. Similar effects
are at the basis of the electromechanical coupling shown by piezoelectric polymers. In this
case the elemental dipole is a polymeric chain.

Further details about piezoelectric materials can be found in many specialized text
(Ikeda, 1990; Mason, 1950; Jordan and Ounaies, 2001; Standard, 1988).

2.2 Mathematical formulations for 3D linear piezoelectric-
ity

At phenomenological level, piezoelectricity is the linear constitutive coupling between me-
chanical and electrostatic fields in a moving deformable dielectric body. This Section
presents a mathematical model for linear 3D piezoelectricity. Also an alternative mixed
variational formulation is illustrated. The latter is particularly useful for deducing struc-
tural models.

1Gabriel Lippman (Nobel prize in 1908) was the thesis’ advisor of Marie Skłodowska-Curie. Marie was
introduced to Pierre Curie when looking for a laboratory for her experiments. They married in 1895 and
won the nobel prize for their joint research on the radiation phenomena in 1903.
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2.2.1 Kinematics and balance

Consider a piezoelectric body which is identified by means of its reference configuration B.
The governing equations of linear piezoelectricity are established by supposing that B is a
deformable dielectric, where the electric phenomena take place in the quasi-static regime
(i.e. currents generated by magnetic induction are neglected). Here and henceforth, a
fully linearized theory is accepted2. The actual kinematical state of a generic point p ∈ B
is determined by the mechanical displacement u(p) with respect to the reference configu-
ration and by the electric potential ϕ(p), referred to ground. The associated generalized
deformations are the linearized strain S and the electric field E, which are expressed as a
function of u and ϕ through the following equations of kinematical compatibility:

S = Sym(∇u) = 1

2
(∇u+∇ut) (2.1a)

E = −∇ϕ (2.1b)

where ∇(·) denotes the spatial gradient with respect to the reference position and the
superposed t denotes the transpose.

The corresponding generalized stresses are the (symmetric) Cauchy stress tensor T
and the electric displacement vector D. They satisfy the following localized version of
force and charge balance on the interior of B

∇ ·T+ b = 0 (2.2a)

∇ ·D = 0 (2.2b)

where b is the force per unit volume acting on B and ∇· ( ) is the divergence operator. If
dynamical phenomena are considered, in addition to external forcing terms, the force per
unit volume b includes a contribution bin = −ρü due to inertial actions, where ρ is the
mass density per unit volume and the superimposed dots indicate time derivatives. The
density of electric charge is supposed to be zero on the interior of B because piezoelectric
bodies are dielectric.

Denoting by ∂uB and ∂fB the parts of the boundary of B where the displacements
u0 and the traction f0 are imposed, and by ∂ϕB and ∂qB the parts on which the electric
potential ϕ0 and the charge density q0 are imposed3, the essential and natural boundary
conditions are given respectively by

u = u0 on ∂uB (2.3a)

ϕ = ϕ0 on ∂ϕB (2.3b)

and

Tn = f0 on ∂fB (2.4a)

Dn = q0 on ∂qB (2.4b)

2 In particular, linearized strain measures are considered and the actual configuration is confused with
the reference one when imposing the equilibrium conditions. The interested reader can find information
on the non-linear theory of electromechanical materials and the related linearization process in (Eringen
and Maugin, 1990).

3∂uB ∪ ∂fB = ∂ϕB ∪ ∂qB = ∂B and ∂uB ∩ ∂fB = ∂ϕB ∩ ∂qB = ∅
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The equations above can be rationally deduced by a fundamental principle (such as
the virtual power principle), after linearization around a stress-free reference configuration
(Eringen and Maugin, 1990). Considering the symmetries of S and T, they are a set of
13 first order partial differential equations in 22 unknowns. The system is closed by the
constitutive equations.

2.2.2 Piezoelectric constitutive equations

Different forms of the linear constitutive equations

The piezoelectric constitutive equations can assume different forms depending on the cho-
sen state fields, but they are always characterized by an energy density which is a quadratic
form in the electromechanical state fields. When assuming S and E as state-variables, the
constitutive relations are given by (constitutive equations in the S−E form)

T =
∂W
∂S

= cES− etE (2.5a)

D = −∂W
∂E

= eS+ εSE (2.5b)

where the so-called electric enthalpy is introduced

W(S,E) = 1

2
cES · S− eS ·E− 1

2
εSE ·E (2.6)

and cE is a forth-order tensor of mechanical stiffnesses at constant electric field, εS is a
second-order tensor of electric dielectric constants at constant mechanical stress, e is a
third-order piezoelectric coupling tensor.

The constitutive equations can also be given in three equivalent forms, which can be
derived from Legendre transformations of the electric enthalpy (Ikeda, 1990; Mason, 1950)
or by direct inversion of (2.5):

• T−E form:

S =
∂G
∂S

= sET+ dtE (2.7)

D =
∂G
∂E

= dT+ εTE (2.8)

which is characterized by the complementary energy function (or Gibbs function)

G [T,E] = 1

2
sET ·T+ dT ·E+ 1

2
εTE ·E

• S−D form:

T =
∂U
∂S

= cDS− htD (2.9)

E =
∂U
∂E

= −hS+ βSD (2.10)
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which is characterized by the internal energy function

U [S,D] = 1

2
cDS · S− hS ·D+ 1

2
βSD ·D

• T−D form:

S =
∂F
∂T

= sDT+ gtD (2.11a)

E = −∂F
∂D

= −gT+ βTD (2.11b)

which is characterized by the elastic enthalpy function

F [T,D] = 1

2
sDT ·T+ gT ·D− 1

2
βTD ·D (2.12)

The numerical values of the material data are usually given in the T−E form, because
the corresponding constitutive parameters are easier to be determined experimentally.
The formulas for establishing relations between the constitutive tensors appearing in two
different forms are easily obtained. They are explicitly given in (Ikeda, 1990; Standard,
1988).

Voigt notation and material symmetries

The tensors appearing in the piezoelectric constitutive equations can be conveniently rep-
resented in the so-called Voigt notation, which exploits the material symmetries to re-
duce the number of constitutive constants. The tensor quantities are firstly referred to
a Cartesian reference triad {e1, e2, e3} having the e3 axis oriented along the direction of
polarization. The corresponding components are denoted by

Tij , Sij, Dh, Ek with i, j = 1, ..., 6; h, k = 1, 2, 3. (2.13)

Hence, these components are listed into suitable arrays by adopting the following index
correspondence

(1, 1)→ 1 (2, 2)→ 2 (3, 3)→ 3
(2, 3), (3, 2)→ 4 (3, 1), (1, 3)→ 5 (1, 2), (2, 1)→ 6

(2.14)

For example, the constitutive equation in the T−D form becomes

Si = sDijTj + gikDk (2.15a)

Eh = −gjhTj + βThkDk (2.15b)

where ( i, j = 1, ..., 6; h, k = 1, 2, 3) and second-order symmetric tensors, as T and S,
become 6-component vectors, forth-order tensors, as sD, become 6 × 6 matrices, and
so on. Because of the material symmetries characterizing the PZT ceramics (transverse
isotropy), the matrices (sDij , gik, β

T
hk) are not full. It can be shown (Ikeda, 1990; Standard,
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1988; Eringen and Maugin, 1990) that the symmetry conditions impose the following form

£
βT
¤
=

⎡⎣ βT11 0 0
0 βT11 0
0 0 βT33

⎤⎦ ,

£
sD
¤
=

⎡⎢⎢⎢⎢⎢⎢⎣

sD11 sD12 sD13 0 0 0
sD12 sD11 sD13 0 0 0
sD13 sD13 sD33 0 0 0
0 0 0 sD44 0 0
0 0 0 0 sD44 0
0 0 0 0 0 2

¡
sD11 − sD12

¢

⎤⎥⎥⎥⎥⎥⎥⎦ , (2.16)

[ g ] =

⎡⎣ 0 0 0 0 g15 0
0 0 0 g15 0 0
g31 g31 g33 0 0 0

⎤⎦ .
The constitutive matrices that characterize the constitutive equations in the other alter-
native forms have similar expressions. In particular they present the same symmetries in
the mechanic, electric, and coupling constitutive matrices.

2.2.3 Mixed Variational Formulation

A mixed variational formulation of the Hellinger-Prange-Reissner type (Reissner, 1984;
Reissner, 1986) for linear piezoelectricity is briefly presented below. This is a useful tool
to deduce reduced structural models from the 3D descriptions by introducing apriori hy-
pothesis on the distribution of both displacement-like and stress-like variables. This point
is fully illustrated in Section 3.1.1. In Chapter 3 the mixed variational formulation is used
to establish a beam model of piezoelectric laminates via a deductive approach.

Hellinger-Prange-Reissner mixed variational principle for linear piezoelectric-
ity

Let us define the affine space Vu of kinematically admissible displacement and strain
tensors and the space Vϕ of admissible electric potential and electric field vectors as follows

Vu ≡ {(u,S) : u = u0 on ∂uB and S = Sym(∇u) on B} (2.17a)

Vϕ ≡ {(ϕ,E) : ϕ = ϕ0 on ∂ϕB and E = −∇ϕ on B} (2.17b)

Moreover, let us denote by VT and VD the vector spaces of symmetric stress tensor fields
and of electric displacements vector fields defined on B.

The electric and mechanic kinematic fields in Vu and Vϕ respect the kinematic com-
patibility equations (2.1) and the essential boundary conditions (2.3). A variational for-
mulation of the equilibrium equations (2.2), the natural boundary conditions (2.4), and
the constitutive equations (2.11), is found by introducing the Hellinger-Prange-Reissner
mixed functional for piezoelectricity
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Θ[(u,S) , (ϕ,E) ,T,D] = (2.18)Z
B
(F(T,D)−T · S+D ·E+ b · u) dB +

Z
∂fB
f0 · u dS +

Z
∂qB

q0ϕ dS,

which is defined over the space

V = Vu × Vϕ × VT × VD. (2.19)

The Hellinger-Prange-Reissner mixed variational principle can be stated as follows.

Theorem 2.1 (Mixed Variational Principle) Mixed Variational Principle. Un-
der suitable regularity conditions, the solution of the problem of linear piezoelectricity is
characterized by rendering stationary the Hellinger-Prange-Reissner functional (2.18) over
V. In particular, the Euler equations with respect to u and ϕ are equivalent to the me-
chanical and electrical equilibrium equations (2.2) and natural boundary conditions (2.4);
the Euler equations with respect to T and D correspond to the piezoelectric constitutive
equations (2.11).

Proof. The variation of the Hellinger-Prange-Reissner functionalΘ[(u,S) , (ϕ,E) ,T,D]
with respect to u in Vu can be expressed as follows

(δuΘ) [ũ] :=
d

dε
Θ[(u+ εũ, sym (∇(u+ εũ))) , (ϕ, E) , T, D]|ε=0

=

Z
B
−T ·∇ũ+ b · ũ dB +

Z
∂fB
f0 · ũ dS (2.20)

=

Z
B
∇T · ũ+ b · ũ dB−

Z
∂B
Tn · ũ dS +

Z
∂fB
f0 · ũ dS

=

Z
B
(∇T+ b) · ũ dB+

Z
∂fB
(f0 −Tn) · ũ dS

where the symmetry of the stress tensor and the divergence theorem are used. Moreover it
is considered that admissible variations ũ satisfy the homogeneous version of the essential
boundary conditions (ũ = 0 on ∂uB). The variation of (2.18) with respect to the electric
potential ϕ in Vϕ gives

(δϕΘ) [ϕ̃] :=
d

dε
Θ[(u,S) , (ϕ+ εϕ̃,−∇ (ϕ+ εϕ̃)) , T, D]|ε=0 (2.21)

=

Z
B
−D ·∇ϕ̃ dB +

Z
∂qB

q0ϕ̃ dS

=

Z
∂B
(−D · n) ϕ̃ dB +

Z
B
(∇ ·D) ϕ̃ dB +

Z
∂qB

q0ϕ̃ dS

=

Z
B
(∇ ·D) ϕ̃ dB +

Z
∂qB

(q0 −D · n) ϕ̃ dS,

which is obtained again by applying the divergence theorem and considering that the
admissible variations ϕ̃ are such that ϕ̃ = 0 on ∂ϕB. Finally, the variations of (2.18) with
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respect to T and D in VT and VD are rewritten as

(δTΘ) [T̃] :=
d

dε
Θ[(u,S) , (ϕ,E) ,T+ εT̃,D]

¯̄̄
ε=0

=

Z
B

³
δTF(T,D)[T̃]− T̃ · S

´
dB (2.22)

=

Z
B

¡
sDT+ gtD− S

¢
· T̃ dB

and

(δDΘ) [D̃] :=
d

dε
Θ[(u,S) , (ϕ,E) , T, D+ εD̃]

¯̄̄
ε=0

=

Z
B

³
δDF(T,D)[D̃]− D̃ ·E

´
dB (2.23)

=

Z
B

¡
−βTD+ gT+E

¢
· D̃ dB.

The expressions above show immediately that if
©¡
ū, S̄

¢
,
¡
ϕ̄, Ē

¢
, T̄, D̄

ª
is a solution of

the equations of linear piezoelectricity, then it is also a stationary point of the Hellinger-
Prange-Reissner functional (2.18) in V. On the other hand, if

©¡
ū, S̄

¢
,
¡
ϕ̄, Ē

¢
, T̄, D̄

ª
in V,

is a stationary point of (2.18), then it satisfies exactly the compatibility conditions (2.1)
and the essential boundary conditions (2.3) (because of the definition of V) and, in a weak
form, the equilibrium equations (2.2) and natural boundary conditions (2.4).

Following a standard Galerkin method, one can look for an approximate solution of
the variational problem in a given subspace V̂ = V̂u × V̂ϕ × V̂T × V̂D of V̂. In structural
modelling the mixed variational principle above is useful to obtain reduced models by
independently introducing a priori hypotheses on kinematic (mechanical displacement and
electric potential) and dynamic (mechanical stress and electric displacement) fields (see
Chapter 3).

2.3 Piezoelectric transducers

Piezoelectric transducers are usually made of a thin sheet of piezoelectric ceramic whose
surfaces are covered by a conductive film serving as electrode. They are manufactured by
sintering a PZT powder and then applying thin metal electrodes, usually by electrodepo-
sition. Thus they are polarized by applying a potential difference across the electrodes
under proper thermal cycling. Depending upon the geometrical shape, the direction of
polarization, and the direction along which the electric field is applied, there are a great
variety of PZT transducers. They can couple the applied electric field with the mechanical
shear or normal modes. For the vibration control applications the most common config-
uration is the one in Figure 2.1 where the transducer is constituted by a thin sheet of
PZT material polarized along its thickness. The piezoelectric effect couples mechanical
deformations to the intensity of the electric field. In applications the transducer thickness
is limited by the maximum acceptable value for the electric field and the electric potential
and it is usually between 0.1 and 0.5mm.
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2.3 Piezoelectric transducers

Figure 2.1: Thickness-polarized piezoelectric transducer with electroded surfaces.

2.3.1 3D solution for bending and extension with applied electric po-
tential: global relations and local field distributions

The main phenomenological aspects revealed experimentally are described sufficiently well
by the linear theory of piezoelectricity presented in the Section 2.2.

Let us introduce a reference frame oriented as in Figure 2.1 and placed with the
origin at the central point of th piezoelectric transducer; let (x, y, z) be the corresponding
coordinate. Consider that the piezoelectric transducer is loaded with the following external
actions (i.e. in uniform bending-extension with applied electric potential): 1) an electric
voltage difference V between the two electric terminals; 2) affine pressure distributions on
the surfaces z = ±l/2, having the following force and moment resultant

F+l/2 = +Fe1, M+l/2 = −Me2 at z = +l/2 (2.24a)

F−l/2 = −Fe1, M−l/2 = +Me2 at z = −l/2 (2.24b)

The balance equations and the boundary conditions are satisfied by a stress tensor
and an electric displacement vector having the following non-vanishing components (Voigt
notation is adopted):

T1(x, y, z) = T̄ (z) = σ − zζ = −12M
h3

z, (2.25a)

D3(x, y, z) = D̄(x, y) (2.25b)

where
σ = F/ (ha) , ζ = 12M/h3. (2.26)

From the constitutive equations in the T-E form one finds:

S1(x, y, z) = sD11σ − zsD11ζ + g31D̄(x, y) (2.27a)

S2(x, y, z) = sD12σ − zsD12ζ + g31D̄(x, y) (2.27b)

S3(x, y, z) = sD13σ − zsD13ζ + g33D̄(x, y) (2.27c)

E3(x, y, z) = −g31σ − zg31ζ + βT33D̄(x, y) (2.27d)

13



Piezoelectricity

The other components of the strain tensor and the electric fields are null. These electro-
mechanical fields are the exact solution of the 3D problem. They verify the equilibrium,
the constitutive equations, and the boundary conditions. It can be easily shown that
they are also compatible (i.e. that there exists a regular displacement field u(x, y, z) and
electric potential ϕ(x, y, z) that verify the relation (2.1), with the strain and electric field
components given in (2.27)).

The electric voltage difference between the electrodes is given by

V =

Z h/2

−h/2
E3dz = −g31hσ + hβT33D̄(x, y)

and the following expression for the electric displacement is found

D̄(x, y) = D̄ =
1

hβT33
V +

g31

βT33
σ (2.28)

where, since the electrodes are equipotential, V is independent of (x, y). By denoting by
(ε1, ε2) and by (κ1, κ2) the through-the-thickness constant and linear part of the normal
strains (S1, S2), such that

Sι = εi − zκi, i = 1, 2, (2.29)

and being

Q =

Z a/2

−a/2

Z l/2

−l/2
D̄(x, y)dxdy = alD̄, (2.30)

the total charge at the electrodes, one finds∙
ε1
Q/l

¸
=

∙
sE11/ha d31/h
d31/h εT33a/h

¸ ∙
F
V

¸
(2.31a)

κ1 = −12sD11/h3 M (2.31b)

where

sE11 = sD11

µ
1 +

g231
sD11β

T
33

¶
, d31 =

g31

βT33
, εT33 =

1

βT33
.

Moreover, the deformations along 2 are given by

ε2 =
1

ha
sE12F +

1

h
d31V (2.32a)

κ2 = −
12sD12
h3

M (2.32b)

where

sE12 = sD12

µ
1 +

g231
sD12β

T
33

¶
(2.33)

In the equations above the through-the-thickness linear parts of the electromechanical
fields are related to the bending motion, the constant ones to the extensional motion. The
exact 3D solution displays some important properties on the piezoelectric coupling and
the distributions of the electromechanical fields in thickness-polarized PZT transducers:
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2.4 Piezoelectric laminates

Figure 2.2: Cross-section of a sandwich piezoelectric beam with piezoelectric layers elec-
trically connected in parallel and counter-phase.

1. There is a piezoelectric coupling only between the transducer extension and the
applied electric potential. The transducer bending is uncoupled with the applied
electric potential and electric charge at the electrodes (Eqns. (2.31)).

2. When the transducer is loaded only with an applied electric potential (M = 0, F =
0), it undergoes an isotropic deformation in the e1 − e2 plane, as shown by Eqns.
(2.31) and (2.32).

3. The extensional deformations (ε1, ε2) are associated with the elastic compliance at
constant electric field (sE11), the bending deformations (κ1, κ2) with the elastic com-
pliance at constant electric displacement (sD11).

4. The electric displacement is constant along the thickness direction. It is a conse-
quence of the charge conservation law (2.2b).

5. The electric field has the same dependence on z as the mechanical fields, as shown by
Eqn. (2.27d). This is a consequence of point 4. In particular bending strains induce a
linear contribution to the electric field and a quadratic one to the electric potential.
This is the so-called induced electric potential (see e.g. Krommer and Irschik, 1999)

6. The constant part of the electric field is independent of (x, y). This constraint is
imposed by the condition of having equipotential electrodes.

7. As a consequence of point 6 and Eqn. (2.28), the constant part of the electric dis-
placement has the same dependence on (x, y) as the mechanical fields. In this partic-
ular case this contribution is constant because the transducer undergoes a uniform
deformation.

The above remarks are fundamental for a correct deduction of beam models of piezo-
electric laminates (see Chapter 3).

2.4 Piezoelectric laminates

The previous Section shows that with a single layer piezoelectric transducer it is not
possible to electrically induce bending motion. In this way, piezoelectric laminates are
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Piezoelectricity

conceived. They are formed by stacking up several piezoelectric and elastic layers. They
are usually obtained by surface bonding one or more piezoelectric layers on an elastic
substrate.

The most common configurations are the piezoelectric sandwich and the piezoelectric
bimorph. The cross-sectional geometry of a sandwich piezoelectric beam is shown in Figure
2.2. It is composed of two identical piezoelectric layers bonded on a central elastic layer.
In the configuration shown in Figure 2.2 the piezoelectric layers are polarized along the
same direction and their electrodes are electrically interconnected in parallel and counter-
phase to two external electric terminals. This interconnection is conceived to couple the
voltage and the charge at the electric terminals to the beam bending, without introducing
central axis extension. A piezoelectric bimorph is obtained when the thickness h2 of the
elastic layer vanishes. A detailed description of laminated beams including thickness-
polarized piezoelectric layers is given in the following Chapter 3 (models) and Chapter 6
(experiments).
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Chapter 3

Beam models of piezoelectric
laminates
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Object of the Chapter

The design of devices including active piezoelectric materials requires, as a preliminary step, an
efficient modelling of the electrical, mechanical and coupling properties of the host structure, the
piezoelectric elements and their interactions. Piezoelectric materials, when integrated in structural
elements, besides providing the electromechanical coupling that is exploited for sensing and/or
actuating, modify also the structural properties by adding mass and stiffness, material discontinu-
ities, and new electric properties (such as the equivalent electrical capacitance). In this Chapter,
after introducing the main problems associated with one-dimensional modelling of piezoelectric
laminates, an extended Euler-Bernoulli model of layered piezoelectric beam is presented. Its main
features are:

• to introduce the effect of 3D cross sectional deformations and transverse (chordwise) inter-
actions between different layers

• to include the effect of the quadratic contribution of the electric potential associated with
flexural strains (induced electric potential)

• to account for two-fold electromechanical coupling by introducing both mechanic and electric
degrees-of-freedom.

• to provide handy analytical relations for the beam constitutive coefficients, whose evaluation
requires the knowledge of a small number of 3D material constants.

Numerical comparisons with results from standard beam models and 3D FE simulations vali-
date the proposed approach. A detailed discussion of the results and the role played by different
electromechanical phenomena in the estimate of the global properties of laminated piezoelectric
beams is provided.



3.1 Introduction and literature review

3.1 Introduction and literature review

3.1.1 Approaches to structural modelling

An overview

Beam modelling requires to condense on a line the properties of slender three-dimensional
objects having one dimension prevailing on the others. It is more complex than plate
modelling, which is based on a two-dimensional description. But beam models evaluate
the system response to given loading by solving a 1D boundary value problem, which is
much simpler than the 2D one associated with plate models.

Beam models can be established following either direct or deductive approaches. In
direct approaches, the system is regarded from the beginning as a one-dimensional object,
endowed with some microstructure. The balance equations are derived by basic principles
and the constitutive equations are found by ad-hoc constitutive theories in terms of beam
generalized deformations and forces. In deductive approaches, the reduced models are
derived from parent three-dimensional theories. This can be done by following two different
paths: by asymptotic methods or by variational methods introducing a priori hypotheses
on the field distribution. In asymptotic methods, the unknown distributions of the 3D
fields are expanded as series in the small parameters (typically the cross-sectional diameter
over the characteristic wavelength) and the 1D beam equations are found as asymptotic
limits of the 3D equations. When using a priori hypotheses, the distributions 3D fields
across a cross-section are prescribed as function of the 1D fields defined on the beam axis.
The introduction of these hypotheses in 3D variational principles automatically leads to
consistent 1D variational formulation. Beam equations are found as the corresponding
stationary conditions.

The main advantage of deductive approaches is that the properties of the 1D object
(and in particular the constitutive properties) are explicitly expressed in terms of the 3D
material and geometrical data. Asymptotic methods are rigorous, but, when considering
anisotropic and non-homogeneous structures, the deduction of the reduced models becomes
very cumbersome. On the other hand, methods using variational principles and a priori
assumptions are simple and logical, but arbitrary in the choice of the basic hypotheses.

An interesting approach, which combines asymptotic and variational methods, is the
Variational Asymptotic Method proposed in (Berdichevsky, 1979) and (Giavotto et al.,
1983). It applies the asymptotic analysis to decompose the 3D problem into a 1D vari-
ational problem and a 2D variational problem on the cross-section. The solution of the
latter furnishes the cross-sectional deformations and determines asymptotically exact con-
stitutive equations for the axial problem. This method is used for the design of complex
composite beams as helicopter blades or airplane wings (Giavotto et al., 1983; Friedman
and Kosmatka, 1992). A similar decomposition of the 3D problem in a cross-sectional
problem and in a 1D beam problem is found with the so-called Exact Beam Theory pro-
posed by (Ladevèze and Simmonds, 1998), and successively studied in (El Fatmi and
Zenzri, 2002). These methods appear very promising. However, in the case of composite
beams, they still require 2D numerical solutions for each specific cross-sectional geometry
and material data in order to establish beam constitutive parameters. They can be consid-
ered more a computationally cheap alternative to 3D FEM simulations, than a substitute
of the simple beam models based on a priori hypotheses.
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Beam models of piezoelectric laminates

Use of mixed variational principles

Deductive approaches based on a priori hypotheses and mixed variational formulations
include independent hypotheses on different state fields. For example, the modelling ap-
proaches based on the functionals of the Hellinger-Prange-Reissner type (Reissner, 1986)
include hypotheses on the generalized displacements and stresses and they consequently
provide the equilibrium and constitutive equations of the reduced model. Similarly, with
the so-called Hu-Washizu (Washizu, 1982) mixed functionals, it is possible to introduce
hypotheses on displacements, strains and stresses, and obtain equilibrium, compatibil-
ity, and constitutive equations. These mixed methods are easily extended to include the
electromechanical coupling.

An example of application to plate models The advantages of mixed variational
approaches with respect to other modelling techniques are clearly illustrated by analyzing
some problems arising in the derivation of the well-known Kirchhoff-Love plate model
(Teresi and Tiero, 1997).

The Kirchhoff-Love plate model assumes that transverse fibers move as rigid bodies
remaining orthogonal to the midplane. With these kinematical hypotheses the plate model
is straightforwardly deduced from the 3D elasticity by using the principle of the minimum
potential energy (or equivalently, the virtual work principle). A so-obtained model system-
atically overestimates the plate stiffness. It is well known that this stiffening phenomenon
is due to blocking the extension and shrinking of the vertical fibers, which are actually
free to deform. A consistent method to correctly estimate the plate stiffness consists in
the removal of the rigid-fiber hypothesis and in the enrichment of the plate kinematics.
This is done for example in Di Carlo et al. (2001), where transversal fibers are allowed
to stretch and shrink, remaining straight segments. But this leads to a plate model that
is more complex than the Kirchhoff-Love, inasmuch as it includes additional kinematical
descriptors and balance equations. A similar model accounts for the shear energy due to
non-uniform fiber deformations and thickness waves. This approach is efficient at high
frequency. But it turns out to be too complex for describing the structural behavior at
low frequencies, where these phenomena stay negligible.

In practice a different procedure is followed. It is recognized that normal stress along
the thickness direction, say T33, must vanish. Thus, even if the transversal fibers are
assumed to be rigid, the 3D internal energy is calculated under the plane-stress condition.
The rigorous logical proceeding of the variational principle is somehow altered to introduce
at the same time hypotheses on displacements and stresses. But the so-obtained model is
asymptotically exact and in agreement with experimental results.

The rational argument to modify the 3D constitutive equations and internal energy
when introducing a priori hypotheses on the kinematic fields is provided by Podio-Guidugli
(1989). The reasoning is the following. Kinematic hypotheses are constraints to possible
motions and change the constitutive nature of the body. To enforce the kinematical con-
straints reactive stresses arise. These reactive stresses do not obey the 3D constitutive
equations. Hence, it is not any more correct to calculate the internal energy by intro-
ducing the constrained fields in the 3D constitutive equations of the unconstrained body.
Better estimates of the actual energy content can be achieved by introducing additional
assumptions on the stress distribution fields.

The mixed variational principles of the Hellinger-Reissner type provide a variational
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tool for deducing reduced model by introducing assumptions on both generalized displace-
ments and stresses. They have been shown to be very useful for improving, in the frame-
work of rigorous variational methods, the accuracy of standard models without adding
extra degrees of freedom. As shown by Teresi and Tiero (1997), when using a mixed prin-
ciple, a Kirchhoff-Love or Mindlin plate models with correct bending and stiffnesses is co-
herently deduced from 3D elasticity without any "variational crime". Hellinger-Reissner’s
principles are extensively used also to correct the distribution of shear stresses and the
estimates of shear stiffnesses in Mindlin models of laminated plates (Carrera, 1999; Car-
rera, 2003). This was the first application of mixed variational principles when proposed
by Reissner (Reissner, 1984; Reissner, 1986). They are also a popular tool in finite element
modelling.

3.1.2 Beam modelling of piezoelectric laminates

General review

Slender beam-shaped structures incorporating piezoelectric materials are often used in en-
gineering applications (robotic arms, airplane wings, rotor blades, etc.). The literature on
structural modelling of piezoelectric laminates is huge and several review papers tempted
to resume and classify the main contributions. In the following I focus on the analysis of
the works on 1D beam modelling. Details about 3D analytical and numerical solutions,
and about plate and shells models are found in the following literature reviews (Saravanos
and Heylinger, 1999; Gopinathan et al., 2000; Chee et al., 1998; Benjeddou, 2000).

A first classification of structural models of piezoelectric laminates distinguishes be-
tween (i) coupled and uncoupled models and (ii) equivalent-single-layer and layerwise
models. Coupled models account for the two-fold electromechanical coupling by intro-
ducing both mechanical and electric degrees-of-freedom. Uncoupled models consider only
either the actuating or the sensing function, by supposing that the distribution of either
the electric or the mechanical state variables is assigned. Equivalent single-layer models
regard the laminate as a single-layer structure characterized by non-homogeneous prop-
erties. Layerwise approaches treat each layer as a separate beam or plate with specific
through-the-thickness distribution of the state fields and impose continuity conditions at
interfaces.

Early works are based on the uncoupled induced-strain theories. The strains due to
the actuation effect of surface-bonded or embedded piezoelectric elements are treated in
analogy to thermal strains and effective forces and moments are used to schematize the
actuation effect. The simplest model is the so-called uniform strain (or Pin-Force) model.
It accounts only for the membranal behavior of the piezoelectric elements, by assuming
that the strain is constant through the actuator thickness (Crawley and de Luis, 1987).
This model gives reasonable results only if the thickness-ratio between the actuator and
the host beam is small. For thick piezoelectric layers the flexural stiffness of the actuator
must be included in the model and the equivalent-single-layer Euler-Bernoulli theory must
be adopted (Crawley and Anderson, 1990).

The through-the-thickness distribution of the electric potential is a critical point which
is often neglected when modelling thick piezoelectric layers in bending. Many models
assume that the electric field is layerwise constant (i.e. that the electric potential is
though-the-thickness linear). This constant contribution is completely determined by the
potential difference between the upper and lower electrodes. As discussed in Section 2.3.1,
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3D solutions show that flexural strains naturally induce linear contributions to the electric
field (i.e. quadratic to the electric potential). This is due to the conservation of charge,
which imposes a through-the-thickness constant electric displacement. The main effect
of the so-called induced electric potential is to modify the flexural stiffness of the beam.
Its influence can be included in the beam constitutive equations without introducing any
additional electric degrees-of-freedom (Krommer and Irschik, 1999; Krommer, 2001).

Coupled electromechanical modelling is preferable for several reasons. On one hand,
if some electrical effects are discarded, significant errors are introduced also in purely me-
chanical properties (such as in the flexural stiffness when neglecting the induced potential).
On the other hand, the design of piezoelectric composites with integrated electric devices
requires an accurate knowledge of both the electric and mechanical properties of the over-
all structure. This happens, for example, in the applications to passive shunt damping
(see Chapter 5). Among the others, completely coupled models including both electric and
mechanical d.o.f. are given by (Hagood et al., 1990; Benjeddou et al., 2000; Costa Branco
and Dente, 2004; Kusculuoglu et al., 2004; Kapuria et al., 2003).

Many interesting works increase the accuracy of the simple Euler-Bernoulli model
for beam bending-electric coupling by introducing additional state variables to describe
higher-order effects. Layerwise theories are formulated by Robbins and Reddy (1991) and
Saravanos and Heyliger (1995). Benjeddou et al. (2000) and Kusculuoglu et al. (2004)
consider sandwich piezoelectric beams and assume a layerwise theory with a Timoshenko
model for the core and an Euler-Bernoulli for the surface layers. Gaudenzi (1998) improves
equivalent-single-layer models by including third-order displacements and edge effects.
Kapuria et al. (2005) use a zigzag approximation for the axial displacement to satisfy the
continuity of transverse shear stresses at the interface between different layers.

The effect of the bonding layer in the strain transfer between piezoelectric trans-
ducers and host structures is analyzed in theoretical and experimental works (Crawley
and de Luis, 1987; de Faria, 2003; Moylet et al., 1999; Peelamedu et al., 2003). Shear-
lag approaches (Crawley and de Luis, 1987) or finite elements numerical simulations
(de Faria, 2003; Luo and Tong, 2004) are used to describe the main phenomena. It
is recognized that the shear-transfer is governed by a dimensionless shear-lag parameter,
which is proportional to the ratio between the shear stiffness and the thickness of the bond-
ing layer. A perfect bonding condition corresponds either to a bonding layer with infinite
stiffness or negligible thickness. An accurate numerical prediction of the real bonding-
layer efficiency is very difficult because of the high uncertainties both on the bonding layer
shear modulus and thickness. However, experimental studies (Moylet et al., 1999; Pee-
lamedu et al., 2003), have shown that the effects of the shear-transfer phenomenon on
the beam properties are not very sensitive to the bonding layer properties, being mainly
influenced by beam and actuator geometry and material characteristics. This suggests to
consider the models including the bonding-layer effect useful more for giving a qualitative
understanding of the shear-transfer and of the limit of the perfect-bonding assumption,
than for providing quantitative estimations. As a rule of thumb, for a reasonable-quality
bonding, the actuating and sensing effect is reduced by about 10% with respect to the
value calculated by assuming perfect bonding (de Faria, 2003).

A number of works provide basic tools for the electromechanical analysis of two-layer
bimorph and three-layer sandwich benders. These configurations are the most commonly
used in sensors and actuators. A coupled model for the constitutive behavior of a bending
bimorph is given by Smits et al. (1991). It is based on simple Euler-Bernoulli theory
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and it neglects the influence of the induced potential. It has the merit to introduce both
electric and mechanical degrees-of-freedom and to provide simple analytical expressions
for the electromechanical constitutive parameters. For these reasons it is an important
and useful reference in the field. Wang and Cross (1999) and Park and Moon (2005)
extend this analysis to the case of three-layer sandwich beams and to different boundary
conditions. The dynamic response is studied in (Smits et al., 1991) and (Lu and Lee,
2003). Fernandes and Pouget (2003) study the behavior of these structures as plates
in cylindrical bending. He (2000) and Lim and He (2004) propose a three-dimensional
approach to two-layer bimorphs and three-layer sandwiches. They combine state form
formulation of 3D piezoelasticity with asymptotic methods to get an analytical solution
for the thickness distribution of the electromechanical fields as a function of the midplane
motion. Essentially, they develop an electromechanical plate theory via an asymptotic
approach.

Most of the works consider piezoelectric transducers polarized along the thickness and
bending modes. A shear actuation mechanism is obtained in in-plane polarized piezoelec-
tric transducers, as studied in (Trindade et al., 1999; Benjeddou et al., 1999; Benjeddou
et al., 2000).

Cross-sectional warping

In beam modelling of piezoelectric laminates, the hypotheses of uniaxial stress state is
usually accepted, see e.g. (Smits et al., 1991; Wang and Cross, 1999; Park and Moon, 2005;
Trindade et al., 1999; Crawley and Anderson, 1990; Lu and Lee, 2003; Krommer, 2001).
In these references, it is assumed that the stress tensor is in the form1 (see Figure 3.1 for
the reference orientation)

T = T11e1 ⊗ e1. (3.1)

In particular, transverse normal stresses in the beam width direction, T22, are neglected.
This hypothesis is accepted also in more accurate 2D approaches which develop either
analytical or numerical solutions in the e1 − e3 plane (i.e. axis-thickness plane) under
the plane-stress assumption. The motivations for the neglecting transverse stress are in
general similar to those reported explicitly in (Costa Branco and Dente, 2004):

"Stresses T33 and T22 can be considered of the order of any loading forces
possibly imposed in the x3− and x2−directions. Since in our structure we are
not considering significant loading forces in these directions, stresses T33 and
T22 can be disregarded, T33 = T22 = 0".

The reasoning above is physically grounded in the theory of single-layer elastic and
piezoelectric beams. However, when beams composed of multiple layers are considered,
the relations between axial and transverse (along the width) deformations can be different
layer by layer and transverse stresses can be non-negligible also if transverse loads are
not present. In particular, in thickness-polarized piezoelectric layers, the deformations
induced by an applied electric potential are isotropic in the e1 − e2 plane (see Section
2.3.1). On the contrary, in elastic layers, an axial extension is usually associated with
a transverse shrinking by the classical Poisson effect. When elastic and piezoelectric

1Shearable theories add the shear term T13, keeping the hypotheses of vanishing normal stress T22 and
T33.
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layers are bonded together, these different behaviors must be reconciled and non-negligible
transverse stresses T22 arise.

Other authors (e.g. Kusculuoglu et al., 2004) assume a plane-strain condition by set-
ting to zero the displacement along the width direction. For layered piezoelectric beams
this hypothesis does not correspond to any physical situation and, as shown in the fol-
lowing sections, it introduces several inaccuracies to the estimate of the electromechanical
constitutive coefficients.

Beckert and Pfundtner (2002) show that the actual stress and strain state of a layered
beam with thickness polarized ceramics is typically three-dimensional, being in between
the plane-stress and plane-strain conditions. In their paper, they study the strain transfer
from piezoelectric to elastic layers by taking into account the effect of the transverse stress
and the influence of the bonding layer. They compare the results obtained for the axial
bending induced by an applied potential when assuming three different conditions on the
transverse strains and stresses: (i) plane-strain; (ii) plane-stress with a stress distribution
of the type (3.1); (iii) free-bending, which is realized when the layered beam is left free
to bend in the transverse direction. Numerical results show that the latter condition is in
better agreement with 3D finite element solutions. However, the analysis in (Beckert and
Pfundtner, 2002) is limited to relatively thin piezoelectric layers and it focuses mainly on
the strain transfer analysis. In particular, the effect of the transverse deformations and
stresses on purely electrical properties of the composite systems, such as the equivalent
piezoelectric capacitance, is not considered.

More recently, in the framework of 2D and 3D modelling of piezoelectric bimorphs,
Wang (2004) discussed the correctness of performing numerical simulation for plates in the
cylindrical bending condition, arguing that, due to the in-plane isotropy of the piezoelectric
effect, the plane-strain condition cannot be realized in practice. By comparing 3D and 2D
numerical results, he showed that the plane-strain hypothesis can lead to significant errors
in the estimate of the mechanical displacement induced by an applied electric potential.

Sectional warping effects are included in some advanced modelling techniques used
for complex beam-like structures such as airplane-wing and helicopter-blades, where an
accurate prediction of the torsion-bending-extension coupling is important. Chopra and
co-workers (Chandra and Chopra, 1993; Park et al., 1996; Bernhard and Chopra, 2001)
underline the influence of transverse bending considering skewed piezoelectric transducers
in torsion-bending-extension coupled actuation. They propose a Vlasov-like beam model
for thin-walled beams (Gjelsvik, 1981) which includes the effect of cross-sectional warp-
ing. But the analysis was limited again to the actuation function (uncoupled model)
and does not include the influence of the induced potential. Moreover, the model they
propose is more complex than the Euler-Bernoulli one, because it introduces several addi-
tional mechanical degrees of freedom. More accurate semi-analytical modelling techniques
(Berdichevsky, 1979; Giavotto et al., 1983) exploit a variational asymptotic approach to
split up the 3D problem in a 2D cross-sectional model and a 1D axial model. The cross-
sectional problem is solved numerically and its solution provides the constitutive behavior
of the axial problem. Variational asymptotic methods are applied to piezoelectric com-
posite by Cesnik and Shin (2001) and Ghiringhelli et al. (1997).

In general, not enough attention has been paid to the difference between the plane-
stress and plane-strain conditions and the real three-dimensional stress and deformation
state. For this reason, the errors between three-dimensional numerical results and esti-
mates from simple beam models were often entirely imputed to neglecting the quadratic
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3.1 Introduction and literature review

Figure 3.1: Cross-section of a laminated piezoelectric beam.

contribution of the electric potential (Lim and He, 2004).

3.1.3 Conclusions

From the above literature review it seems that an accurate electromechanical Euler-
Bernoulli beam model is still missing and that the consequences of neglecting 3D effects
on the strain and stress distributions are not fully understood. The present work is aimed
at filling this gap. In this framework, the analysis of the existing works suggest that an
efficient and reliable beam model should meet the following requirements:

• To introduce both mechanical and electric degrees of freedom to account for the two-
fold electromechanical coupling and correctly describe, at once, mechanical, electri-
cal, and coupling properties.

• To harmonize the hypotheses on the mechanical and electric fields in order to avoid
internal inconsistencies (in particular bent piezoelectric layers should include the
effect of the induced electric potential).

• To account for the effects of cross-sectional warping.

• To limit the total number of the degrees of freedom to those strictly required for the
description of the fundamental phenomena.

The latter point is crucial for applications. Structural design requires simple, possibly
analytically manageable, models. Complex models allow getting a deeper insight into some
phenomena and understanding the limit of simple approaches. However, relying on an
accurate knowledge of much material and geometrical data, they are often unserviceable in
applications, where some properties are either unknown or affected by large uncertainties2.

2This is the case, for example, of models of laminated structures including the effect of the bonding lay-
ers. Although a non-perfect bonding can remarkably influence the global structural properties, information
on bonding layer thickness and stiffness are always vague.
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Beam models of piezoelectric laminates

For this reason, notwithstanding the different developments and improved theories, the
basic Euler-Bernoulli (or Timoshenko) model are the most diffused in structural control
applications.

3.2 Proposed enhanced Euler-Bernoulli model

This section presents an original coupled Euler-Bernoulli model where the electromechan-
ical constitutive coefficients account for the influence of the cross-warping and the induced
electric potential. To this end I adopted a deductive approach based on the Hellinger-
Reissner mixed variational formulation presented in Section 2.2.3. By exploiting the
peculiar geometry of a laminated beam, a priori hypotheses on the distribution of the
mechanical displacement, the electric potential, the mechanical stress and the electric
displacement are introduced.

3.2.1 Geometry and notation

A beam is defined as a slender body B having two dimensions relatively small with respect
to the third one. Taking A as a straight-line parameterized by the abscissa x referred to
an origin o ∈ A, and e1 a unit vector parallel to A, the generic point p of a straight-axis
beam B is located by

p = o + xe1 + d, d ⊥ A (3.2)

where d is an arbitrary vector orthogonal to A. The set where

S(x̄) ≡ {p ∈ B : p = pa + d}, (3.3)

for a fixed pa = o+ x̄e1, is the beam cross-section at the axial point pa. The straight line
A is the beam axis.

Laminated beams are composed by stacking up n rectangular cross-section layers. Let
C = {o, e1, e2, e3} be a Cartesian reference system with the e3-axis aligned to the stacking
direction. The corresponding coordinates are denoted by (x, y, z). The rectangular domain
corresponding to the part of the cross-section S(x̄) occupied by the i-th layer is denoted by
Si(x̄). It is regarded as the Cartesian product of a thickness-segment Ti of length hi and
a width-segment Wi of length ai. Moreover, n local reference frames Ci = {oi, e1, e2, e3},
with oi = o+ z̄ie3, are introduced and the corresponding local coordinates are denoted by
(x, y, zi) where zi = z − z̄i (see Figure 3.1). The local origins are chosen so as to satisfyZ

Ti
zidz = 0. (3.4)

The overall beam thickness and width are defined as T = ∪iTi andW = ∪iWi, respectively.
Let be I = {1...n} and Ie and Ip the subset of I containing the indices corresponding to

elastic and piezoelectric layers, respectively. To geometrically describe a beam composed
of layers with different dimensions, for each x and y, I introduce also the set I(x, y). It is
defined as the subset of I containing only those indices corresponding to layers intersected
by the z− line of coordinate (x, y). Also the set I(x, y) is further partitioned in the set of
the indices corresponding to elastic and piezoelectric layers. They are denoted by Ie(x, y)
and Ip(x, y),respectively
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3.2 Proposed enhanced Euler-Bernoulli model

The following geometric and material properties are assumed:

1. Each layer is materially homogeneous and either orthotropic or transversely isotropic
with respect to an axis oriented along the stacking direction (in particular the piezo-
electric layers are polarized along the thickness).

2. The cross-section of the laminate is assumed to be symmetric with respect to the
e3-axis and only the beam axis motion in the e1 − e3 is considered.

3. The upper and lower surfaces of the piezoelectric layers are covered by a conductive
layer with negligible mechanical properties, the lateral ones are bared;

4. The electrodes of different piezoelectric layers are pairwise connected in parallel. The
whole beam is electrically accessible only through two external electric terminals;
the electric connection scheme of each piezoelectric layer to the external terminals is
characterized by a constant, say ωi, which is equal to 1 if the electrodes are connected
in-phase to the external terminal, −1 in they are connected in counter-phase;

Dealing with a laminated beam, in addition to the standard beam geometrical hypoth-
esis (i.e. that the ratio length(A)/diameter(S) is high), we assume also that for each
lamina both the ratios length(A)/length(Wi) and length(Wi)/length(Ti) are high.

By considering a beam of finite length l, the following external actions will be included
in the formulation:

• a force distribution on the beam terminal bases having a force resultant F = N̄e1+
T̄e3 and a moment resultant M = −M̄e2;

• a body force per unit of volume b(x, y, z) having cross sectional force and moment
resultants bR(x) = bN (x)e1 + bT (x)e3 and mR(x) = −bM(x)e2, respectively;

• either a voltage V̄ or a total charge Q̄ imposed at the electric terminals of the
piezoelectric layers.

3.2.2 Hypotheses

The beam model is derived by 3D piezoelectricity by adopting the mixed variational for-
mulation associated with the Hellinger-Reissner functional (2.18). In the mixed variational
setting, the system mechanical and electrical equilibrium equations are determined by the
hypotheses on the kinematic fields (mechanical displacement and electric potential). The
corresponding constitutive prescriptions are influenced by the hypotheses on the dynamic
fields (mechanical stress and electric displacement). I exploited this property to introduce
the effect of 3D stresses and strains and of the induced electric potential in a coupled
Euler-Bernoulli model of laminated piezoelectric beams.

Assumptions on the distribution of the electromechanical fields

The proposed beam model is obtained by introducing the following hypotheses on the
distributions of the kinematic (u,ϕ) and dynamic (T,D) electromechanical fields in the
mixed variational principle presented in Section 2.2.3:
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(K1) Mechanical displacement. Basic equivalent-single-layer Euler-Bernoulli kinematics:

u(x, y, z) =
¡
u(x)− zw0(x)

¢
e1 +w(x)e3, (3.5)

(K2) Electric potential. Layerwise linear distribution of the electric potential, which, when
the different layers are electrically interconnected in parallel (either in-phase, ωi = 1,
or in counter-phase, ωi = −1), is given by the following expression

ϕ(x, y, z) =

µ
1

2
+ ωi

zi
hi

¶
V, (3.6)

where V is the electric potential difference across the two external electric terminals.

(D1) Mechanical stress. A stress tensor composed of axial and transverse normal stresses,
having constant (σα,i) and linear (ζα,i) contributions through the thickness of each
layer,

T(x, y, z) = (σ1,i(x, y)− ziζ1,i(x, y)) (e1 ⊗ e1) + (σ2,i(x, y)− ziζ2,i(x, y)) (e2 ⊗ e2) ,
(3.7)

and respecting the following conditions on the through-the-thickness force (n2) and
moment (m2) resultants of transverse (chordwise) stresses⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n2(x, y) =
X

i∈I(x,y)

R
Ti T(x, y, z)e2 · e2dz = 0

m2(x, y) =
X

i∈I(x,y)

R
Ti −zT(x, y, z)e2 · e2dz = 0

(3.8)

(D2) Electric displacement. Layerwise constant distribution along the thickness direction:

D(x, y, z) = Di(x, y)e3, (3.9)

where Di(x, y) is the function giving the e3 component of the electric displacement
in the i-th layer.

As results of the machinery of the adopted mixed variational formulation, the hypothe-
ses above lead to a model where:

• Each cross-section moves remaining plane and orthogonal to the beam axis (Euler-
Bernoulli hypothesis).

• Each cross-section deforms in its own plane (in-plane warping) with chordwise bend-
ing and thickness distension, so as to respect conditions (3.7-3.8).

• Shear effects are neglected.

• In each piezoelectric layer the electric displacement is oriented along the thickness
and its module is constant in the thickness coordinate.

• In each piezoelectric layer the electric potential has a through-the-thickness quadratic
distribution, including the induced electric potential. Only its linear part, determined
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3.2 Proposed enhanced Euler-Bernoulli model

by the potential difference across the electrodes, appears explicitly in the beam equa-
tions. The quadratic part is automatically determined as a function of the flexural
strains, so as to ensure that condition (3.9), i.e. that the electric displacement is
constant (see Section 2.3.1).

The present model, and in particular hypothesis (D1), relies on the assumption that the
beam is composed of a stack of laminae. In other words, the proposed model is applicable
to a beam having a cross-sectional geometry as in Figure 3.1, where the thickness hi, the
width ai, and the length li of each layer are such that li À ai À hi. As a rule of thumb,
the results derived with the present model are accurate if li > αai and ai > αhi with
α ' 5.

Comments and further details about the different hypotheses and the role they play
in the mixed variational formulation are summarized in the next Section 3.2.8.

3.2.3 1D mixed formulation with conditions on transverse stresses

With the conditions (3.5-3.9), the distributions of the three-dimensional state fields (u, ϕ,
T, D) are uniquely determined by the fields

{u(x), w(x), V, σα,i(x, y), ζα,i(x, y),Di(x, y)} , (3.10)

where the electric voltage V is independent of x and y because the surfaces of the trans-
ducers are completely covered by a single electrode. Here and henceforth, the mute indices
α and i are intended to vary from 1 to 2 and from 1 to n, respectively.

The substitution of the hypotheses (3.5), (3.6), (3.7), and (3.9) into the functional
(2.18) leads to the following beam mixed functional

Θbeam[u,w, V, σα,i, ζα,i,Di] =Z
A
Fbeam [σα,i, ζα,i,Di] dx−

Z
A×W

¡
n1 [σ1,i]u

0(x) +m1 [σ1,i, ζ1,i]w
00(x)

¢
dxdy−

−
Z
A×W

χ [Di]V dxdy +

Z
A

¡
bNu+ bMw0 + bTw

¢
dx+

£
N̄u+ M̄w0 + T̄w

¤
∂A + Q̄V,

(3.11)

where

Fbeam [σα,i, ζα,i,Di] =

Z
S
F [T,D] dxdy =Z

W

1

2

µ
hisαβ,iσα,iσβ,i +

h3i
12

sαβ,iζα,iζβ,i

¶
dy+

+

Z
W

X
i∈Ip(x,y)

hig3α,iσα,iDidy −
Z
W

X
i∈Ip(x,y)

1

2
hiβ

T
33,iD

2
i dy (3.12)

is the 1D elastic enthalpy, defined as the cross-sectional integral of the 3D elastic enthalpy
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(2.12). Moreover,

χ [Di] =
X
i∈Ip

ωi
hi

Z
Ti
D(x, y, z) · e3dz =

X
i∈Ip

ωiDi(x, y)dxdy (3.13a)

n1 [σ1,i] =
X

i∈I(x,y)

Z
Ti
T(x, y, z)e1 · e1dz =

X
i∈I(x,y)

hiσ1,i(x, y) (3.13b)

m1 [σ1,i, ζ1,i] =
X

i∈I(x,y)

Z
Ti
−zT(x, y, z)e1 · e1dz =

X
i∈I(x,y)

µ
h3i
12

ζ1,i(x, y)− z̄ihiσ1,i(x, y)

¶
(3.13c)

are the beam internal actions representing, at the z-line of coordinates (x, y), the total
charge per unit surface χ(x, y), the axial force resultant n1(x, y), and the axial moment
resultantm1(x, y). The definition of the external actions (bN , bM , bT , N̄ , M̄ , T̄ , Q̄) is given
at the end of Section 3.2.1. The expression (3.12) of the beam elastic enthalpy implies an
implicit summation over α, β ∈ {1, 2}. The constitutive coefficients sαβ,i, g3α,i, and βT33,i
are defined with the standard notation for piezoelectric materials except for dropping the
superscript D (null electric displacement) on s and for adding a subscript i to distinguish
the constitutive properties of different layers. The material symmetries of transversely
isotropic piezoelectric (and elastic) layers give the following relations

g32,i = g31,i, s11,i = s22,i. (3.14)

The mixed functional (3.11) is defined over the functional space of admissible beam state
fields (3.10), which must be regular and respect the kinematic boundary conditions on u
and w. This space will be denoted by W.

The integral conditions on transverse stresses (3.8) are implemented in the varia-
tional formulation by the Lagrange multiplier methods. Thus the Lagrange multiplier
fields λ(x, y) and μ(x, y) and the following extended functional are introduced:

ΘΛ
beam[u,w, σα,i, ζα,i,Di, V, λ, μ] =

Θbeam[u,w, σα,i, ζα,i,Di, V ]−
Z
A×W

n2[σ2,i]λdxdy −
Z
A×W

m2[σ2,i, ζ2,i]μdxdy.

The Lagrange multipliers λ(x, y) and μ(x, y) enforce, along each z-line identified by the
coordinates (x, y), the conditions (3.8) of vanishing transverse force and moment resul-
tants. The variational formulation of the beam model assuming the hypotheses (3.5-3.9)
is finally stated as follows: find the beam state fields in W and the admissible Lagrange
multipliers (λ, μ) that render stationary the functional ΘΛ

beam.

3.2.4 Euler-Lagrange equations of the mixed functional

The Euler-Lagrange equations of the variational problem are obtained by imposing the
stationary conditions on the mixed functional ΘΛ

beam for all the admissible beam state
fields and for all the admissible Lagrange multiplier fields of ΘΛ

beam with respect to (u, w,
V, σα,i, ζα,i, Di) and (λ, μ) are null. These conditions produce the following equations.
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3.2 Proposed enhanced Euler-Bernoulli model

Beam balance equations and boundary conditions
(Stationary conditions with respect to kinematical fields)

The stationary conditions with respect to the generalized kinematic variables (u, w, V )
corresponds to the beam balance equations⎧⎪⎪⎨⎪⎪⎩

bN (x) +N 0
1(x) = 0

b0M(x)− bT (x) +M 00
1 (x) = 0R

q(x)dx− Q̄ = 0

for3 x ∈ A (3.16)

and the associated variational conditions for the natural boundary conditions£¡
N1 − N̄

¢
δu
¤
∂A = 0, (3.17a)£¡

M1 − M̄
¢
δw0 +

¡
T̄ +M 0

1 + bM
¢
δw
¤
∂A = 0, (3.17b)

where (δu, δw) are admissible variations (respecting the homogeneous version of the pre-
scribed boundary conditions) of (u,w),

N1(x) =

Z
W
n1 [σ1,i(x, y)] dy (3.18a)

M1(x) =

Z
W
m1 [σ1,i(x, y), ζ1,i(x, y)] dy (3.18b)

q(x) =

Z
W
χ [Di(x, y)] dy (3.18c)

are the cross sectional force and moment resultants of axial normal stresses, and the electric
charge per unit line at the electrodes, respectively.

Remark 3.1 In the adopted mixed variational formulation the hypotheses on the kine-
matical fields determine the mechanical equilibrium equations. Because of the assumed
kinematics, the mechanical equilibrium equations are those of a standard Euler-Bernoulli
beam, while the electric equilibrium is the Kirchhoff ’s law at the external electric terminals.

Local constitutive equations
(Stationary condition with respect to dynamic fields)

The stationary condition with respect to the generalized force-like variables σ(α)i (x, y),

ζ
(α)
i (x, y), and Di(x, y) gives the following layerwise constitutive equations

in piezoelectric layers
for (x, y) ∈ A×Wi, i ∈ Ip

:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sDαβσβ,i + g3αD3,i = εα,i

sDαβζβ,i = κα,i

−g3ασα,i + βT33D3,i = E
(l)
3,i

, (3.19a)

in elastic layers
for (x, y) ∈ A×Wi, i ∈ Ie

:

⎧⎨⎩ sαβσβ,i = εα,i

sαβζβ,i = κα,i
, (3.19b)

3Here and in similar expressions I abuse of notation by writing x ∈ A instead that xe1 ∈ A.
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where εβ,i and κβ,i are the constant and linear contributions to the mechanical axial
(ε1,i, κ1,i) and transverse (ε2,i, κ2,i) deformations through the i− th layer; E3,i is the con-
stant part of the e3-component of the electric field. They are defined as follows:

ε1,i(x) = u0(x)− z̄iw
00(x), κ1,i(x) = w00(x),

ε2,i(x, y) = λ(x, y)− z̄iμ(x, y), κ2,i(x, y) = μ(x, y),

E3,i = − (ωi/hi)V.
(3.20)

Conditions on transverse stresses
(Stationary condition with respect to Lagrange multipliers)

The stationary conditions with respect to the Lagrange multipliers (λ(x, y), μ(x, y)) lead
to the conditions on the transverse stress:

n2(x, y) = 0 for (x, y) ∈ A×W (3.21a)

m2(x, y) = 0 for (x, y) ∈ A×W (3.21b)

Remark 3.2 The constitutive equations (3.19) and the definitions (3.20) show that the
Lagrange multipliers λ and μ are the transverse analogs of the axial deformations u0 and
w00. They can be interpreted as constant (λ) and linear (μ) contributions to the e2−normal
strain throughout the z-line identified by coordinates (x, y). They explicitly depend not only
on x, but also on y (the in-plane cross-sectional deformations can be non-uniform)

3.2.5 Beam constitutive equations

Simple algebraic manipulations of the stationary conditions that express the local con-
stitutive equations (3.19) and the constraints on transverse stresses (3.21) furnish: (i)
the constitutive equations at the beam level, which gives (N1,M1, q) as a function of
(u0, w00, V ); (ii) the generalized transverse deformations as a function of the axial defor-
mations and the electric potential. This is detailed below.

Local constitutive equations in the S-E form

By inverting the local constitutive equations (3.19) one obtains:

in piezoelectric layers
for (x, y) ∈ A×Wi, i ∈ Ip

:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σα,i = c̃Eαβεβ,i + ẽ3αE3,i

ζα,i = c̃Dαβκβ,i

D3,i = −ẽ3βεβ,i + S̃
33E3,i

, (3.22a)

in elastic layers
for (x, y) ∈ A×Wi, i ∈ Ie

:

⎧⎨⎩ σα,i = c̃αβεβ,i

ζβ,i = c̃αβκβ,i
. (3.22b)

The coefficients appearing in the equations above are the constitutive coefficients of
piezoelectric and elastic materials in plane-stress (in the e1−e2 plane). Their expressions
as a function of 3D material properties are given in Appendix, Eqns. (A.1) and (A.3).
In particular, c̃Eαβ and c̃Dαβ correspond to plane-stress mechanical stiffnesses at constant
electric field and electric displacement, respectively.
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3.2 Proposed enhanced Euler-Bernoulli model

Remark 3.3 The coefficients appearing in the local constitutive equations (3.22a) show
that in piezoelectric layers the constant contributions to the mechanical deformations
(ε1,i, ε2,i) are associated with the mechanical stiffnesses at constant electric field (c̃Eαβ),
while the linear contributions (κ1,i, κ2,i) are associated with the stiffnesses at constant

electric displacement
³
c̃Dαβ

´
. This is due to the hypothesis (3.9) of constant electric dis-

placement, which allows us to include the influence of the induced electric potential in the
mechanical stiffness (see also Section 2.3.1).

Axial-transverse-electric constitutive equations at a z-line

Let us collect the axial and transverse force and moment resultants, and generalized de-
formations in the following vectors

d1(x) =

∙
u0(x)
w00(x)

¸
, d2(x, y) =

∙
λ(x, y)
μ(x, y)

¸
, (3.23)

r1(x, y) =

∙
n1(x, y)
m1(x, y)

¸
, r2(x, y) =

∙
n2(x, y)
m2(x, y)

¸
. (3.24)

The substitution of the local constitutive equations (3.22) in the definitions (3.13) and
(3.8) of nα(x, y) and mα(x, y) leads to the following constitutive equations at the z-line of
coordinates (x, y) :

r1(x, y) = k̃11(x, y)d1(x) + k̃12(x, y)d2(x, y)− ẽtχd(x, y)V, (3.25a)

r2(x, y) = k̃12(x, y)d1(x) + k̃11(x, y)d2(x, y)− ẽtχd(x, y)V, (3.25b)

χ(x, y) = ẽχd(x, y) (d1(x) + d2(x, y)) + ε̃χV (x, y)V, (3.25c)

where

k̃11(x, y) =

∙
A11 C11
C11 B11

¸
, (3.26a)

k̃12(x, y) =

∙
A12 C12
C12 B12

¸
, (3.26b)

ẽχd(x, y) =

∙ P
i∈Ip(x,y)

ωiẽ31
P

i∈Ip(x,y)
ωiẽ31z̄i

¸
, (3.26c)

ε̃χV (x, y) =
X

i∈Ip(x,y)

S̃
33

hi
, (3.26d)

with

Aαβ =
X

i∈Ip(x,y)
hic̃

E
αβ +

X
i∈Ie(x,y)

hic̃αβ, (3.27a)

Bαβ =
X

i∈Ip(x,y)

µ
hiz̄

2
i c̃

E
αβ +

1

12
h3i c̃

D
αβ

¶
+

X
i∈Ie(x,y)

c̃αβ

µ
hiz̄

2
i +

1

12
h3i

¶
, (3.27b)

Cαβ =
X

i∈Ip(x,y)
hiz̄ic̃

E
αβ +

X
i∈Ie(x,y)

hiz̄ic̃αβ. (3.27c)
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Transverse deformations

The conditions (3.21) on transverse stresses read as r2(x, y) = 0. With these conditions,
Eqn. (3.25b) can be solved for the transverse deformations as a functions of axial defor-
mations and applied voltage:

d2(x, y) = −k̃−111 (x, y)k̃12(x, y)d1(x) + k̃−111 (x, y)ẽtχd(x, y)V (3.28)

Remark 3.4 Even if the generalized axial deformations are constant across a cross section
(from the Euler-Bernoulli hypotheses), the generalized transverse deformations depend on
y, because the material properties depend on y.

Constitutive equations at the beam level

The substitution of the expression for the transverse deformation (3.28) in the constitutive
equations for the axial resultants (3.25a) and the electric charge per unit surface (3.25c)
gives the following constitutive equations in terms of axial deformations and electric voltage
only:

r1(x, y) = k11(x, y)d1(x)− etχd(x, y)V, (3.29a)

χ(x, y) = eχd(x, y)d1(x) + εχV (x, y)V, (3.29b)

with

k11(x, y) = k̃11(x, y)− k̃12(x, y)k̃−111 (x, y)k̃12(x, y), (3.30a)

eχd(x, y) = ẽχd(x, y)− ẽχd(x, y)k̃−111 (x, y)k̃12(x, y), (3.30b)

εχV (x, y) = ε̃χV (x, y) + ẽχd(x, y)k̃
−1
11 (x, y)ẽ

t
χd(x, y). (3.30c)

The integration over the cross-sectional width furnishes the effective constitutive equa-
tions for the cross-sectional axial force and moment resultants (N1, M1), and the charge
per unit line q defined in Eqns. (3.18). They appear in the form⎡⎣ N1

M1

q

⎤⎦ =
⎡⎣ kNu kNw eNV

kNw kMw −eMV

−eNV eMV εqV

⎤⎦⎡⎣ u0

w00

V

⎤⎦ , (3.31)

where

K(x) =

∙
kNu kNw

kNw kMw

¸
=

Z
W
k11(x, y)dy (3.32a)

eqd(x) =
£
−eNV eMV

¤
=

Z
W
eχd(x, y)dy (3.32b)

εqV (x) =

Z
W
εχV (x, y)dy (3.32c)

3.2.6 Beam equations in the final form

The governing equations of the presented model are in the format of a standard electro-
mechanical Euler-Bernoulli model for piezoelectric beams. They are given by the following
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elements.
The mechanical and electrical equilibrium equations (3.16):⎧⎪⎪⎨⎪⎪⎩

bN(x) +N 0
1(x) = 0

b0M(x)− bT (x) +M 00
1 (x) = 0

Q− Q̄ = 0

for x ∈ A (3.33)

for which the mechanical natural boundary conditions are obtained from the variational
relations (3.17).

The beam constitutive equations (3.31):⎡⎣ N1
M1

q

⎤⎦ =
⎡⎣ kNu kNw eNV

kNw kMw −eMV

−eNV eMV εqV

⎤⎦⎡⎣ u0

w00

V

⎤⎦ . (3.34)

The present model differs from standard approaches for giving more accurate estimates
of the constitutive coefficients appearing in Eqns. (3.34). In particular, the constitutive
coefficients calculated by the formulas given in Eqns. (3.26), (3.30), and (3.32) include the
effect of the induced electric potential (see Remark 3.3) and of the transverse deformations
given by Eqns. (3.28).

3.2.7 Recovery of 3D fields

For a given boundary value problem, the solution of the beam equations (3.33) and (3.34)
with proper boundary conditions provides the distribution of the beam axis displacements
u(x) and w(x) and the electric potential V. Eqn. (3.28) furnishes the corresponding dis-
tributions of the Lagrange multipliers.

The beam constitutive equations (3.31) imply that the 3D energy is evaluated with
the following 3D fields:

• The mechanical stress tensor T and the electric displacement D vector prescribed
by equations (3.7) and (3.9), where the distributions of σα,i(x, y), ζα,i(x, y), and
Di(x, y)} are given by equations (3.22);

• The strain tensor S̄ and the electric field vector Ē associated with the stress tensor
T and the electric displacement D by the constitutive equations in the T−D form
(2.11).

The mechanical deformations S̄ include the effect of the in-plane cross-sectional warp-
ing (chordwise bending and thickness distension); the electric field Ē is through-the-
thickness linear and includes the induced electric potential. In particular the normal
axial and transversal strains S̄11 and S̄22 are given by the following expressions:

S11(x, y, z) = u0(x)− zw00(x), (3.35a)

S22(x, y, z) = λ(x, y)− zμ(x, y). (3.35b)

These deformations are not compatible with the mechanical displacement and electric
potential assumed in the kinematical hypotheses (3.5) and (3.6). This is typical of models
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derived by mixed variational principle of the Hellinger-Reissner type (see e.g. Carrera,
1999). Further comments are given in the next Section.

3.2.8 Comments

The mixed variational approach and the different kinematic (K1-K2) and dynamic (D1-
D2) hypotheses on the electromechanical fields presented in Section 3.2.2 deserve some
comments and remarks:

• At first sight, the hypothesis (D1) on the transverse stress appears to be incompat-
ible with hypothesis (K1), which assumes rigid cross-sections. Moreover, for bent
piezoelectric layers, the hypothesis (D2) of constant electric displacement appears
to be incompatible with hypothesis (K2) of linear electric potential. The mixed
variational formulation conciliates these contrasting hypotheses: the kinematic ones
determine the beam equilibrium equations; the dynamic ones control the field distri-
bution used to estimate the internal energy and the beam constitutive coefficients.
In this context, the constitutive coefficients of a model with poor kinematics (K1
and K2) can account for a more realistic field distribution, which is specified through
the hypotheses on the dynamic fields (D1 and D2).

• The integral conditions (3.8) on transverse stresses are enforced in the mixed vari-
ational formulation through the Lagrange multiplier method. The physical inter-
pretation of the Lagrange multipliers shows that the conditions (3.8) introduce the
effect of non-uniform transverse bending and extension of the beam cross-sections
(see Section 3.2.7).

• The two hypotheses on the dynamic fields (D1-D2) enable a better agreement with
3D models for two reasons:

(i) Notwithstanding the elementary Euler-Bernoulli kinematics in hypothesis (K1),
the beam constitutive relations include the influence of cross-sectional deforma-
tions through the hypotheses on transverse stresses (D1). Indeed, the influence
of a sectional distension along the thickness is implicitly taken into account
by enforcing null normal stress T33. The influence of sectional extensional de-
formations along e2 is introduced by constraining the admissible transverse
normal stress T22 with the integral conditions (3.8). These conditions make the
cross-sections free to extend and bend in the transverse direction, respecting
the bonding condition between the different layers.

(ii) The linear distribution of the electric potential assumed in (K2) specifies the
electric kinematics only as a function of the potential difference V . However,
because of the hypothesis (D2), the beam constitutive equations account for the
through-the-thickness linear contribution to the electric field (quadratic electric
potential), which is associated with flexural strain.

• The mixed variational approach with the hypotheses (3.5-3.9) introduces in a sim-
ple way the effects of cross-sectional deformations and the quadratic contributions
to the electric potential in the beam constitutive equations. However, it neglects
the shear-like effects that are present when two adjacent cross-sections experience
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3.2 Proposed enhanced Euler-Bernoulli model

different transverse deformations. Moreover, it ignores that, when the quadratic
contribution of the electric potential is not constant inside a piezoelectric layer, the
electric field and electric displacement become more complex than those in (3.6) and
(3.9) (components in the e1−e2 plane appear). Finally it disregards the influence of
the boundary conditions on the cross sectional deformations (e.g. that at a clamped
end the cross-sectional deformations should vanish).

• In hypothesis (3.7) the shear terms of the stress tensor are set to zero. This as-
sumption, although very far from being verified in a 3D model, does not imply any
error in the resulting Euler-Bernoulli beam model, because: (i) the displacement
field (3.5) automatically accounts for an infinite shear stiffness (the cross sections
remain orthogonal to the beam axis); (ii) in orthotropic materials the assumptions
on the shear stresses have no influence on the constitutive relations between normal
stresses and strains, because they are constitutively uncoupled.

3.2.9 Formulas for the constitutive coefficients

Sandwich beam

Let us consider the particular layer arrangement of a piezoelectric sandwich shown in
Figure 2.2. For this configuration, simple formulas for the beam constitutive parameters
appearing in Eqns. (3.34) are found. The case of a beam having piezoelectric and elas-
tic layers with different widths is considered explicitly. For a sandwich beam with thin
piezoelectric layers, simplified expressions are derived.

Complete expressions For a piezoelectric sandwich beam, because of the material and
geometric symmetry, beam extension and bending are decoupled and the stiffness matrices
k̃11 and k̃12 defined in equations (3.26) are diagonal (C11 = C12 = 0). Moreover, due to
the electric interconnection of the two piezoelectric layers, the first term of the coupling
vector ẽχd is null, and an imposed electric potential V induces only a bending moment
with a vanishing force resultant. Hence, the constitutive equations (3.34) for the bending
moment M1 and the electric charge per unit line q, being uncoupled from the extensional
problem, assume the simplified form∙

M1

q

¸
=

∙
kMw −eMV

eMV εqV

¸ ∙
w00

V

¸
. (3.36)

Moreover, since stiffness matrices are diagonal, the calculation implied by equations (3.30)
and (3.32) can easily be carried out explicitly. The following expressions for the constitu-
tive coefficients are found

kMw = a1K11

µ
1− K2

12

K2
11

¶
+ (a2 − a1)

1

12
h32c̃11

¡
1− ν2

¢
, (3.37a)

eMV = a1ẽ31 (h1 + h2)

µ
1− K12

K11

¶
, (3.37b)

εqV =
2a1

S̃
33

h1
+

a1 (ẽ31 (h1 + h2))
2

K11
, (3.37c)
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where the stiffness parameters K11, K12 are defined as follows (see also the definition in
(A.1) Appendix)

Kαβ =
c̃Eαβh

3
1

12

Ã
6

µ
1 +

h2
h1

¶2
+ 2

c̃Dαβ

c̃Eαβ
+

c̃αβ

c̃Eαβ

h32
h31

!
. (3.38)

Remark 3.5 The stiffness parameters Kαβ are composed of three contributions: the first
one, proportional to c̃Eαβ, is associated with the flexural stiffness due to piezoelectric layer
extension, the second one, proportional to c̃Dαβ, is due to piezoelectric layers bending, and
the third one, proportional to c̃αβ, to elastic layer bending.

Remark 3.6 The electromechanical constitutive coefficients eMV and εqV are equal to
those of a sandwich beam having the width of the piezoelectric layers. The only contribution
due to the purely elastic parts of the beam cross-section is the second term in the right hand
side of equation (3.37a) for the bending stiffness kMw.

Remark 3.7 The numerical evaluation of the beam constitutive constants (3.37) requires
only four piezoelectric material coefficients (see Appendix A.1): the piezoelectric in-plane
Young modulus Y E, Poisson coefficient νE (at constant electric field), the coupling coeffi-
cient d31, and the electric constant βT33.

Approximation for thin piezoelectric layers When the piezoelectric layers are thin
with respect to the central elastic one, the constitutive coefficients (3.37) can be approxi-
mated by their first order Taylor expansions in the small parameter

τ = h1/h2

and the following simplified expressions are found4

k
(τ)
Mw = c̃11(1− ν)

a2h
3
2

12
+ τ

c̃E11h
3
2a1
2

¡
1 + ν2 − 2ννE

¢
, (3.39a)

e
(τ)
MV = a1ẽ31h2 (1− ν) + τa1ẽ31h2

µ
1− ν + 6(ν − νE)

c̃E11
c̃11

¶
, (3.39b)

ε
(τ)
qV =

2a1ε̃
S
33

τh2

µ
1 + 6γ2

c̃E11
c̃11

τ

¶
. (3.39c)

In the linear approximations only the membranal behavior of the piezoelectric layers is
considered. The contribution to the mechanical stiffness due to the bending of the piezo-
electric layers is not present and the bending stiffness is independent of the mechanical
compliances at constant electric displacement c̃D11 and c̃D12. This proves that the influence
of the induced electric potential is negligible for thin piezoelectric layers. On the other
hand, the effect of the transverse interactions between different layers is important also in
this approximation. This is shown by the non-trivial dependence on the Poisson effects
on the terms of k(τ)Mw and e

(τ)
MV linear in τ .

4Since the piezoelectric capacitance εqV is singular for τ = 0, its approximation has been found by
expanding up to the first order εqV ∗ h1, the piezoelectric capacitance per unit thickness.
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Bimorph beam

The interesting case of the bimorph bender made of two piezoelectric layers connected in
parallel and in counter phase is obtained by letting the thickness of the central elastic layer
vanish. The corresponding constitutive coefficients are obtained by substituting h2 = 0 in
expressions (3.37):

k
(b)
Mw =

4(2 + γ2 + 2νE)

(4 + γ2)(1 + νE)

a1h
3
1Y

E

3
, (3.40a)

e
(b)
MV =

4

4 + γ2
a1d31Y

Eh1, (3.40b)

ε
(b)
qV =

2a1

h1βT33

µ
1− d231Y

EβT33
5 + 2γ2 − 3νE
(4 + γ2) (1− νE)

¶
. (3.40c)

In the expressions above, Y E and νE are in-plane Young modulus and Poisson ratio
of the piezoelectric material at constant electric field, respectively; γ is a dimensionless
electromechanical coupling coefficient whose definition is given in Appendix A.1.

3.3 Standard Euler-Bernoulli models

Coupled equivalent single-layer Euler-Bernoulli models of piezoelectric laminates are char-
acterized by the balance (3.33) and the constitutive equations (3.34). However, depending
on the hypotheses on the cross-sectional distribution of mechanical and electric fields,
different modelling approaches can lead to different estimates of the beam constitutive
coefficients appearing in the equations (3.34). The different models adopted in the liter-
ature are mainly characterized by: (i) the assumptions on the electric field and electric
displacement (including the induced potential or not); (ii) the assumptions on the chord-
wise normal strains and stress (the most common hypotheses are either null transverse
deformation or null transverse stress). In the following, the corresponding estimates of the
beam constitutive coefficients are compared.

3.3.1 Null transverse Stress (NS) models

Model including the influence of the induced electric potential

In Euler-Bernoulli models many authors assume a uniaxial stress-state in the form (3.1).
In these models the integral constraints (3.8) on the transverse stress are replaced by
the hypothesis of pointwise vanishing transverse stress. By keeping the hypothesis (3.9),
which imposes that the electric displacement is constant through-the-thickness of each
piezoelectric layer, the corresponding local constitutive equations (3.22) becomes

in piezoelectric layers
(i ∈ Ip)

:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1,i = ĉE11ε1,i + ê31E3,i

ζ1,i = ĉD11κ1,i

D3,i = −ê31ε1,i + Ŝ
33E3,i

(3.41a)

in elastic layers
(i ∈ Ie)

:

(
σ1,i = ĉ11ε1,i

ζ1,i = ĉ11κ1,i
. (3.41b)
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where the constitutive coefficients with the superimposed hat are calculated under the
uniaxial stress hypothesis and are given in Appendix (Eqns. A.4) and (A.5). Hence, for
a piezoelectric sandwich, the following expressions for beam constitutive coefficients are
found (from the definitions of the force resultants in Eqns. (3.18a) and (3.13))

k
(NS)
Mw = Y E(1 + γ2)

a1h
3
1

6
+ Y E a1h1 (h1 + h2)

2

2
+ Y

a2h
3
2

12
, (3.42a)

e
(NS)
MV = −d31Y Ea1 (h1 + h2) , (3.42b)

ε
(NS)
qV =

2a1
h1

1

βT33

¡
1− d231Y

EβT33
¢
. (3.42c)

They account for the bending deformation of the piezoelectric layers and the so-called
full electromechanical coupling, by including the stiffness contribution due to the induced
electric potential.

In this model, since transverse normal stresses are assumed to be null (T22 = 0), each
layer is left free to deform in the transverse direction independently of the others. The
bonding condition between different layers is respected only in the axial direction.

Model neglecting the influence of the induced electric potential

Basic models neglect the influence of the induced electric potential by assuming that the
through-the-thickness constant (σ1,i) and the linear (ζ1,i) contributions to the mechanical
stress are characterized by the same stiffness coefficient (the stiffness at constant electric
field ĉE11). In this case the local constitutive equations are given by:

in piezoelectric layers
(i ∈ Ip)

:

⎧⎨⎩ T11 = ĉE11S11 + ê31E3

D3,i = −ê31S11 + Ŝ
33E3

(3.43a)

in elastic layers
(i ∈ Ie)

: T11 = ĉ11S11. (3.43b)

The corresponding expressions for the beam constitutive coefficients of a piezoelectric
sandwich coincide with those in Eqns. (3.42) for the coupling coefficient eMV and the
piezoelectric capacitance per unit line εqV . But the mechanical stiffness neglects the stiff-
ness correction due to the influence of the induced electric potential and becomes

k
(NS1)
Mw = Y Ea1

Ã
h1 (h1 + h2)

2

2
+

h31
6

!
+ Y

a2h
3
2

12
. (3.44)

For very thin piezoelectric layers (h1/h2 ¿ 1) the expressions (3.42a) and (3.44) have a
common limit which is given by

k
(NS2)
Mw = Y E a1h1h

2
2

2
+ Y

a2h
3
2

12
. (3.45)

This is the mechanical stiffness obtained when accounting only for the membranal behavior

of the piezoelectric layers. In this case the linear contribution to the mechanical stress
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(ζ1,i) is negligible and the so-called induced electric potential has no influence on the
mechanical stiffness.

The constitutive coefficients k(NS1)
Mw and e

(NS)
MV are those given by Crawley and Ander-

son (Crawley and Anderson, 1990) in their Euler-Bernoulli model. The opportunity of
correcting the flexural stiffness with the expression (3.42a) to include the influence of the
induced electric potential is discussed in detail in (Benjeddou, 2000), (Krommer, 2001),
and (Sze et al., 2004). Complete electromechanical constitutive equations are provided by
(Smits et al., 1991), (Wang and Cross, 1999), and (Park and Moon, 2005) in works on
cantilevered sandwich and bimorph benders. However, these authors neglect the influence
of the induced electric potential and their constitutive coefficients correspond to k

(NS1)
Mw ,

e
(NS)
MV , and ε

(NS)
qV .

3.3.2 Null transverse Deformation (ND) model

In standard beam modelling, the alternative to the uniaxial stress-state condition (3.1) is
to remove the hypotheses on the transverse stress T22 and to assume vanishing transverse
deformations S22. In this case, the local constitutive equations are given by the expressions
(3.22), where

ε2,i = κ2,i = 0. (3.46)

Thus, the following expressions for beam constitutive coefficients are found

k
(ND)
Mw = c̃D11

a1h
3
1

6
+ c̃E11

h1 (h1 + h2)
2

2
+ c̃11

a2h
3
2

12
, (3.47a)

e
(ND)
MV = a1ẽ31 (h1 + h2) , (3.47b)

ε
(ND)
qV =

2a1ε̃
S
33

h1
. (3.47c)

The null transverse deformation (ND) hypothesis corresponds to the plane-strain condition
in the e1−e3 plane which is adopted by some authors (e.g. Kusculuoglu et al., 2004). The
expressions (3.47) include the influence of the electric potential. As for the NS model,
in many cases this contribution is neglected. The mechanical stiffnesses associated with
the constant and linear contributions of the mechanical stress are not distinguished and
further approximations are introduced.

3.4 3D Finite Elements

Results from 3D finite elements are useful to provide a numerical reference for the different
beam models. In this work, finite elements simulations are performed for two geometrical
configurations under electromechanical loading:

• A simply-supported piezoelectric sandwich beam with different thickness ratios be-
tween piezoelectric and elastic layers, by including the limit case of simply supported
bimorph beam;

• A cantilever piezoelectric bimorph.
In the first configuration, the boundary conditions and the distribution of the external

forces are optimized to reduce the influence of the boundary effects and approximate a
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Figure 3.2: Simply supported piezoelectric beam in simple bending. For 3D FEM nu-
merical simulations, two different loading conditions are considered: (i) applied electric
potential V ; (ii) a pair of applied bending momentsM at the hinges. In the latter case the
bending moments are applied as through-the-thickness linear pressure distribution on the
beam bases, in order to approximate an ideal uniform-bending test.

uniform bending test. The corresponding results are used to provide a numerical reference
for the estimates of the beam constitutive coefficients and the through-the-thickness field
distribution. The second configuration is exploited to analyze the influence of the boundary
effects as a function of the beam slender ratio for a case of interest to applications.

The numerical simulations are performed using the commercial code Ansys 8.0, which
contains several 3D and 2D finite elements with piezoelectric capabilities. The 3D coupled-
field solid element SOLID5 with piezoelectric option, is adopted. The element has 8
nodes and 4 d.o.f. per node (the three components of the mechanical displacement and
the electric potential). For each numerical simulation, a mapped mesh is chosen and
the elements are forced to be brick-shaped. In the FEM model, the different layers are
supposed to be perfectly bonded, by constraining corresponding displacements at the
interface. The electrodes of the piezoelectric layers are modelled by assigning a single
electric degree of freedom (the electrode potential) to all the nodes on the corresponding
surface; the corresponding mechanical properties are neglected. Further details on how
the numerical results are obtained for the specific boundary conditions and loadings are
given below.

Simply-supported sandwich beam in uniform bending

For this configuration (see Figure 3.2) two different loading conditions are considered:

1. Moment loading (M = M̄, V = 0). By setting the electric voltage V to zero, a
through-the-thickness linear pressure distribution having null force resultant and
moment resultant M̄ is imposed on the beam bases.

2. Voltage loading (M = 0, V = V̄ ). By setting the pressure on the beam bases to
zero, a voltage difference V̄ is applied at the electric terminals of the beam.

In the first case the bending moments on the beam bases are applied by imposing an
equivalent through-the-thickness linear distribution of surface pressure (see also Figure
3.2). This choice is aimed at the reduction of the boundary effects.
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Figure 3.3: Cantilever bimorph with applied voltage and tip force.

If equivalent loadings and boundary conditions are applied to the beam model char-
acterized by equations (3.33) and (3.36), the axis deflection w0 at the midspan point and
the electric charge Q at the electric terminals are related to the applied moment M̄ and
voltage V̄ by:

w0(M̄, V̄ ) = − l2

8kMw
M̄ − l2eMV

8kMw
V̄ , (3.48)

Q(M̄, V̄ ) =
leMV

kMw
M̄ − l

µ
εqV +

e2MV

kMw

¶
V̄ . (3.49)

Hence, the beam constitutive coefficients can be evaluated by the following expressions:

kMw = −
l2

8

M̄

w0(M̄, 0)
, (3.50a)

eMV = −
l

8

Q(M̄, 0)

w0(M̄, 0)
=

w0(0, V̄ )

w0(M̄, 0)

M̄

V̄
, (3.50b)

εqV = −
Q2(M̄, 0)

8w0(M̄, 0)

1

M̄
− Q(0, V̄ )

l

1

V̄
. (3.50c)

These formulas are used to identify the beam constitutive coefficients kMw, eMV , εqV from
the 3D finite element simulations, by detecting w0 and Q for moment loading and voltage
loading.

Several numerical simulations were performed by varying, for a fixed beam length, the
thickness ratio between piezoelectric and electric layers. The element dimensions were
adjusted to get the desired accuracy level, after refinement essays. In particular, the
element thickness was chosen to have at least 4-5 elements along the thickness of each
layer5; the element length was determined to limit the maximum element aspect ratio
to 10 ÷ 15, which gave accurate results for the considered loading conditions. Typically,
the total number of used elements is about 5000-10000, depending on the cross-sectional
geometry.
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Cantilever bimorph

For the case of the cantilever bimorph beam reported in Figure 3.3, numerical simulations
are performed for fixed values of the layer thickness and width (h and a), by varying the
beam length in the range 2a÷ 20a. Also in this case two different loading conditions were
considered: (i) applied electric potential and null tip force (V = V̄ , F = 0); (ii) null
electric potential and applied tip force (V = 0, F = F̄ ).

After refinement essays, a mapped mesh composed of 5 elements through the thickness
of each layer and 8 elements through the width was adopted. The element length in the
axial direction was chosen as a function of the total beam length to fix the element length
to thickness aspect ratio to 2.5. For example, for a beam having a/h = l/a = 10, the
mesh is composed of 16000 elements. The two layers are assumed to be perfectly bonded
and the mechanical properties of the electrodes are neglected. For the loading condition
(V = 0, F = F̄ ), the shear force at the beam free end was applied by imposing an
equivalent uniform distribution of nodal forces on the beam basis.

3.5 Numerical comparisons

This Section reports numerical comparisons between the proposed beam model, standard
Euler-Bernoulli models (NS and ND models), and 3D FE results, which are taken as
reference. By considering piezoelectric sandwich and bimorph beams, the comparative
analysis of the results focuses on the following points:

• The estimates of the electromechanical constitutive coefficients appearing in Eqns. (3.36)
as a function of the thickness ratio between piezoelectric and elastic layers;

• The through-the-thickness distribution of the 3D electromechanical fields;

• The relations between the applied tip force, the electric voltage, the tip displacement,
and the electric charge in a cantilever piezoelectric bimorph, as a function of the beam
slender ratio.

The constitutive properties of the piezoelectric and elastic materials considered for the
numerical evaluation of Eqns. (3.37-3.47) are reported in Appendix A.2, together with the
full 3D constitutive matrices for the piezoelectric material used in the Finite Element code.
These data refer to the materials used in experimental tests (see Chapter 6). Details about
the numerical simulations performed with 3D FEs are reported in the next subsection.

3.5.1 Constitutive coefficients

Figures 3.4 and 3.5 report the coefficients appearing in the bending-electric constitu-
tive equations (3.36) for a sandwich bender as a function of the thickness ratio between
the elastic and the piezoelectric layers. The bending stiffness kMw, the coupling coeffi-
cient eMV , and the electric capacitance per unit line εqV found with the present NSR
model (Eqns. (3.37)), the NS model (Eqns. (3.42)), and the ND model (Eqns. (3.47)),
are compared. The results obtained with 3D FE simulations in uniform bending through
Eqns. (3.50) are taken as reference. For the mechanical stiffness the values obtained with

5This condition must be satisfied in order to fit, with the adopted 8-node elements, the actual through-
the-thickness distributions of the electromechanical fields (e.g. quadratic electric potential).
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the expression (3.44) (i.e. when neglecting the induced electric potential, NS1 model) are
also considered.

In Figure 3.4 the thickness of the piezoelectric layers h1 is varied for τ = h1/h2 going
from 0 to 1, when assuming a1 = 10mm, a2 = 12mm, h2 = 2mm (see Figure 3.1 for
notation). In Figure 3.5 the thickness of the elastic layer h2 is varied for η = 1/τ = h2/h1
going from 0 to 1, with a1 = a2 = 10mm, h2 = 0.5mm. Finite element results refer to the
values obtained through the expressions (3.50) for a beam of length l = 100mm. Figure
3.4 reports the estimates given by Eqns. (3.39) corresponding to the linearized version
(with respect to τ) of the coefficients of the NSR model (3.37). The analysis of the results
reported in Figures 3.4 and 3.5 leads to the following comments:

• The values given by the present model are in excellent agreement with the 3D FE
results for uniform bending. In particular, they correctly follow the dependence of
the equivalent electric capacitance on the thickness ratio between different layers.

• For thin piezoelectric layers (τ < 0.1), the simplified constitutive coefficients given
in equations (3.39) are in good agreement with FE results. They were obtained
as linear approximations (first order Taylor expansions in τ) of the full expressions
(3.37). They provide handy formulas which can be useful for applications, where the
piezoelectric layers are often very thin with respect to the elastic core.

• When using standard modelling approaches, major errors are revealed for the equiv-
alent electric capacitance per unit line6 εqV . The models with null transverse stresses
(NS) and the model with null transverse deformations (ND) expect two different
values, given by equations (3.42c) and (3.47c). Both of them are independent of the
thickness ratio between the different layers. The FE results show that the actual
capacitance, being always comprised between these two values, can significantly dif-
fer from both. These errors are explained by keeping in mind that the equivalent
capacitance of a piezoelectric sheet depends on the conditions on mechanical stresses
and strains. The standard models associate to piezoelectric layers either the value
for null transverse strain or for null transverse stress. The actual capacitance corre-
sponds to a more complex stress and strain distribution and differs from both. In
particular, like the distribution of transverse strains and stresses, it depends on the
cross sectional geometry.

• The ND model overestimates the bending stiffness and the coupling coefficient. It
correctly predicts only the piezoelectric capacitance for very thin piezoelectric layers.

• For thin piezoelectric layers, the NS model gives good estimates of the mechanical
stiffness and of the coupling coefficients. However, it also implies appreciable errors
on these quantities when thin and moderately thin elastic layers are considered.

• The errors on the bending stiffness introduced when discarding the influence of the
induced potential (expression (3.2.9)), are negligible for thin piezoelectric layers. On
the other hand, although for thin and moderately thin elastic layers, the errors with
respect to FE results become important, they are of the same order of magnitude as
the error due to the neglect of the transverse stresses.

6For thin piezoelectric layers the capacitance per unit length and per unit thickness εqV /h1 is considered,
so eliminating the singularity of εqV for τ → 0.
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Beam models of piezoelectric laminates

Figure 3.4: Electromechanical constitutive coefficients for a sandwich piezoelectric beam
as a function of the thickness ratio between piezoelectric and elastic layers τ = h1/h2 for
h2 = 2mm, a2 = 12mm, a1 = 10mm. Legend: (–) present model, complete expressions
(3.37); (− · −) present model, approximations for thin piezoelectric layers (3.39); (· · ·)
model with null transverse stress (3.42); (−−−) model with null transverse deformations
(3.47); (− · ·−) model with null transverse stress neglecting the induced potential (3.44),
(N) 3D finite elements.
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3.5 Numerical comparisons

Figure 3.5: Electromechanical constitutive coefficients for a sandwich piezoelectric beam
as a function of the thickness ratio between elastic and piezoelectric layers η = h2/h1
for h1 = 0.5mm, a1 = a2 = 10mm. Legend: (–) present model, complete expressions
(3.37); (· · ·) model with null transverse stress (3.42); (−− −) model with null transverse
deformations (3.47); (− · ·−) model with null transverse stress neglecting the induced
potential (3.44), (N) 3D finite elements.

47



Beam models of piezoelectric laminates

Stiffness (kMw) Coupling coefficient (eMV ) Capacitance (εqV )
(10−3Nm2) (10−6Nm /V) (μF /m)

FEM 3D 56.11 83.33 0.9171

Present model
NSR - Eqn. (3.37) 56.16 (+0.08%) 82.83 (−0.60%) 0.9116 (−0.60%)

Standard models
NS - Eqns. (3.42) 61.89 (+10.3%) 99.20 (+19.0%) 1.0918 (+19.05%)
NS1 - Eqn. (3.44) 51.67 (−7.93%) ” ”

ND - Eqns. (3.47) 68.46 (+22.0%) 143.8 (+72.5%) 0.6097 (−33.52%)

Table 3.1: Electromechanical constitutive coefficients for a two layer bimorph with a1 =
a2 = 10mm, h1 = 0.5mm. Comparison between the values given by the present model,
the ND model, the NS model, and the NS model neglecting the influence of the induced
potential (NS1) is given. The coefficients found by 3D FE simulations are taken as reference
and the corresponding relative errors are reported in brackets.

Figure 3.6: Cross-sectional distribution of transverse normal stress (T22) in a simply-
supported sandwich beam under voltage loading.

Special attention must be given to the case of the two-layer bending bimorph obtained
when h2 → 0. For this configuration the values given by in Smits et al. (1991) are usually
taken as reference. The corresponding constitutive coefficients for a particular numerical
example are reported in Table 3.1; the values calculated as in Smits et al. (1991) (which
correspond to those of NS model neglecting the influence of the induced potential) are
also marked by a star in Figure 3.5. The comparisons with the 3D FE results show that
only the present model gives accurate estimates. For piezoelectric bimorphs, the models
assuming null transverse stresses, which are usually accepted in technical literature, not
only miss the value of the piezoelectric capacitance, but also imply substantial errors on
the bending stiffness and the coupling coefficient, even if the influence of the induced
potential is taken into account.
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3.5 Numerical comparisons

3.5.2 Field distribution

A beam model deduced from a parent 3D theory associates with the beam kinematical
fields (u(x), w(x), V ) given distributions of the 3D state fields (T,D,S,E) and conse-
quently furnishes the solution of given boundary value problems. The differences in the
3D fields for given beam kinematics are revealed by the discrepancies in the beam con-
stitutive coefficients reported in the previous Figures 3.4 and 3.5. The analysis of the
through-the-thickness 3D field distribution allows for a deeper understanding of the fea-
tures of the proposed model and of the limits of standard modelling approaches. To this
end I considered two specific boundary value problems for simply supported sandwich and
bimorph beams in uniform bending (Figure 3.2): the moment loading and the voltage
loading (see Section 3.3.2).

Figure 3.6 reports a typical contour plot of the distribution of the transverse stress
T22 obtained with the 3D finite elements for the midspan cross-section of the simply-
supported sandwich beam in Figure 3.2 under the voltage loading. It shows that, for
imposed electric potential, important transverse stresses are induced in the three-layer
region. These stresses vanish in the single-layer regions, with an edge effect around the
ends of the piezoelectric layers.

The plots in Figures 3.7-3.10 compare the through-thickness field distributions associ-
ated with the proposed NSR model, the NS model, and the ND model. These distributions
are taken at the central z− line of the midspan cross-section of the sandwich beam in Fig-
ure 3.2. The solution obtained by 3D FE simulations as detailed in Section 3.3.2 is taken
as reference. Figures 3.7 and 3.8 report the results for a sandwich piezoelectric beam with
h2 = 2mm, a2 = 12mm, h1 = 0.4mm, a1 = 10mm. Figures 3.9 and 3.10 provide similar
plots for a bimorph beam (h2 = 0) with h1 = 0.5mm, a1 = 10mm. The FE results are
obtained for a beam of length l = 100mm. From the analysis of these plots the following
comments can be made:

1. Neither the null transverse strain nor the null transverse stress hypotheses are physi-
cally grounded. 3D FE solutions show that axial and transverse normal stresses (T11
and T22) are of the same order of magnitude when imposing an electric potential
and that the in-plane bending of the beam cross-section is not negligible.

2. The proposed NSR beam model faithfully follows the distributions found by 3D
FE simulations for the beam in uniform bending. In particular, it correctly fits
the distributions of the transverse normal stresses (T22) and strains (S22) and of
the electric potential (E3). The formers are introduced through the condition on
transverse stress (3.8) the latter through the condition of the electric displacement
(3.9).

3. The NS model, by assuming null transverse stress, neglects the transverse inter-
actions between different layers. In each layer the transverse normal strains are
determined only by imposing that the conditions of T22 = 0 is verified pointwise.
In this way, different layers, although assumed to be perfectly bonded, slide one on
each other along the beam width (see the plots of S22, where the continuity at the
interfaces is not verified).

4. The ND model does not consider the transverse-stress transfer between different
layers. In each layer the transverse normal stresses are determined only to enforce
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Figure 3.7: Through-the-thickness distribution of the electromechanical fields for the
simply supported piezoelectric sandwich beam in Figure 3.2 under voltage loading (V =
1 Volt, M = 0). Legend: (–) present model; (· · ·) model with null transverse stress;
(−−−) model with null transverse deformations; (N) 3D finite elements. The distributions
are taken at the central z−line of the midspan cross-section.
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Figure 3.8: Through-the-thickness distribution of the electromechanical fields for the
piezoelectric sandwich beam in Figure 3.2 under moment loading (M = 0.01 Nm, V = 0).
See Figure 3.7 for testing geometry and plot legend.
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Figure 3.9: Through-the-thickness distribution of the electromechanical fields for a
simply-supported bimorph piezoelectric beam (layer arrangement as in Figure 2.2 with
h2 = 0) under voltage loading (V = 1 Volt, M = 0). See Figure 3.7 for the plot legend.

52



3.5 Numerical comparisons

-100 -50 0 50 100

h1

0

-h1

D3 HmCêm2L

-6000 -4000 -2000 0 2000 4000 6000

h1

0

-h1

E3 HVêmL-7.5 -5 -2.5 0 2.5 5 7.5

h1

0

-h1

S11 HmeL

-3 -2 -1 0 1 2 3

h1

0

-h1

S22 HmeL-0.6 -0.4 -0.2 0 0.2 0.4 0.6

h1

0

-h1

T11 HMPaL

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

h1

0

-h1

T22 HMPaL

Figure 3.10: Through-the-thickness distribution of the electromechanical fields for
simply-supported bimorph piezoelectric beam under moment loading (M = 0.001 Nm,
V = 0). For testing geometry, refer to Figure 3.9, for plot legend to Figure 3.7.
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Figure 3.11: Skecth of the cross-sectional deformations associated to the different models
for applied electric potential.

the condition S22 = 0 (see the plots for T22). Blocking transverse, Poisson-like,
deformations in addition to a well known stiffening phenomenon (see the plot of
kMw plots in Figures 3.4-3.5), leads also to an overestimate of the axial-electric
electromechanical coupling (see eMV plots in Figures 3.4-3.5). This effect is caused
by ignoring the elastic energy stored in the transverse deformations.

5. Although the NSR, the NS, and the ND models are based on the same hypotheses
on the electric fields (including the influence of the induced electric potential), the
errors on the distributions of the mechanical fields of the NS and ND models are
revealed also in the electric ones. This is due to the piezoelectric coupling and causes
the errors on the estimates of the equivalent piezoelectric capacitance εqV .

6. For the two-layers bending bimorphs (Figures 3.9 and 3.10) the amplitude of trans-
verse stresses is comparable to that of axial ones also for moment loading also.
Moreover, the transverse stresses are of the same order of magnitude throughout
the beam thickness. The NS model, by neglecting these contributions, introduces
remarkable inaccuracies in the estimate of the elastically stored energy, thereby lead-
ing to the errors in the bending stiffness and in the coupling coefficients reported in
Table 3.1.

In conclusion, Figure 3.11 presents an illustrative sketch of the cross-sectional defor-
mations for applied electric potential associated with the ND, NS, and NSR models. It
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3.5 Numerical comparisons

Figure 3.12: Axial and transverse strains at the center of the upper surface of the piezo-
electric bimorph as a functions of the axial coordinate x. Present model: ε1 and ε2 coincide
(−); model with null transverse stress (NS): ε1 (− −) and ε2 (· · ·) ; FEM 3D: ε1 (4) and
ε2 ( ).

emphasizes that the NSR includes non-uniform cross-sectional in-plane bending (synclastic
bending in the three-layer region, anticlastic bending in the single-layer region7).

3.5.3 Static deflection of a cantilever bimorph

Analytic expressions of the global constitutive equations

Let us consider a cantilever bimorph beam as shown in Figure 3.3. In a linear model, the
tip-displacement δ and total electric charge Q are expressed as a function of the static
applied voltage V and the tip-force F as follows∙

δ
Q

¸
=

∙
fδF fδV
fδV fQV

¸ ∙
F
V

¸
. (3.51)

When assuming the Euler-Bernoulli beam model, the coefficients appearing in equations
(3.51) are found by solving the simple boundary value problem for the electromechanical
system:

fδF =
l3

3kMw
, fδV = −

eMV l
2

2kMw
, fQV = lεqV

µ
1 +

e2MV

kMwεqV

¶
. (3.52)

Depending on the hypotheses introduced in the beam model, the constitutive para-
meters (kMw, eMV , εqV ) can have different expressions. Smits et al. (Smits et al., 1991)
proposed a model assuming uniaxial stress (T22 = T33 = 0) neglecting the effect of the

7Synclastic: with the same curvature in all the directions. Anticlastic: curved longitudinally in one
direction and transversely in the opposite direction, as the surface of a saddle.
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Smits et al. (1991) NS NSR (Present)
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´

Table 3.2: Analytic expressions of the coefficients appearing in the constitutive equations
(3.51) of a piezoelectric bimorph. Comparisons between the different beam models: Smits
et al. (1991) assumes uniaxial stress and neglects the induced potential; (NS) assumes
uniaxial stress but includes the effect of the induced potential; the present (NSR) model
assumes transverse stress resultants and includes the effect of the induced potential.

induced potential (Eqns. (3.42) for the constitutive coefficients with the NS1 mechanical
stiffness given by Eqn. (3.2.9)). Similar approaches are followed in (Lu and Lee, 2003; Smits
and Ballato, 1994; Wang and Cross, 1999; Park and Moon, 2005). Table 3.2 compares the
analytic expressions for (fδF , fδV , fQV ) given by Smits, to those obtained by a model in
plane-stress but accounting for the quadratic contribution of the electric potential (NS),
and to those found with the expressions (3.40) associated with the present NSR model
assuming null transverse stress resultants.

Boundary effects as a function of the beam slender ratio

3D FE results provide a numerical reference for the constitutive coefficients reported in
Table 3.2 and are useful also for analyzing the influence of the boundary effects. Due to
the 3D effects associated with the clamping conditions, beam models are expected to be
accurate only for sufficiently high aspect ratios (length to cross-sectional diameter).

Numerical simulations for a cantilever bimorph are performed for a fixed cross-sectional
geometry, by varying the beam length and considering both voltage and force loading as
in Figure 3.3. Tables 3.3-3.5 report the numerical results obtained for the constitutive co-
efficients (fδF , fδV , fQV ) as a function of the length-to-width aspect ratios, by presenting
comparisons with the corresponding estimates given by the different beam models. The
numerical values refer to a bimorph beam made of layers of thickness h = 0.5mm and
width a = 10h.

For applied electric potential, Figure 3.12 also reports the distributions of axial and
transverse strains at the center line of the upper surface of the upper piezoelectric trans-
ducer as a function of the axial coordinate. The axial (ε1(x, 0, h)) and transverse (ε2(x, 0, h))
strains found with a FE simulation are compared to those obtained with the present model
and the NS model.

Comments

The analysis of the numerical results shows that:
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Equivalent Capacitance (fQV )
l/a 3DFEM Smits NS NSR (Present)

nF % diff % diff % diff
2 5.122 +25.27% +22.29% +1.03%
4 10.36 +23.84% +20.89% −0.13%
6 15.56 +23.40% +20.38% −0.48%
8 20.83 +23.19% +20.17% −0.65%
10 26.07 +23.06% +20.05% −0.76%
20 52.25 +22.80% +19.80% −0.96%

Table 3.3: Equivalent piezoelectric capacitance at constant force of a piezoelectric bi-
morph as a function of the aspect ratio l/a (length over width). Comparisons between
the results from the different beam models and 3D FE simulations: null transverse stress
without the induced potential; (NS): null transverse stress with induced potential; Present
(NSR): null transverse stress resultants with induced electric potential)

Compliance (fδF )
l/a 3DFEM Smits NS NSR (Present)

μm /N % diff % diff % diff
2 11.02 17.04% −2.25% 7.69%
4 91.03 13.39% −5.30% 4.33%
6 311.4 11.88% −6.56% 2.95%
8 743.4 11.08% −7.23% 2.20%
10 1456 10.59% −7.647% 1.75%
20 11770 9.57% −8.49% 0.82%

Table 3.4: Tip displacement for applied unit tip force under the short-circuit condition
(i.e. mechanical compliance at constant potential) of a piezoelectric bimorph as a function
of the aspect ratio l/a (length over width). Comparisons between results from different
beam models and 3D FE simulations

Piezoelectric Coupling (fδV )
l/a 3DFEM Smits NS NSR (Present)

μm /V % diff % diff % diff
2 0.0785 22.10% 2.01% −6.13%
4 0.3090 23.80% 3.24% −4.80%
6 0.6907 25.09% 4.47% −3.87%
8 1.221 25.81% 5.07% −3.32%
10 1.900 26.28% 5.47% −2.96%
20 7.539 26.33% 5.63% −2.15%

Table 3.5: Tip displacement for unit potential difference and null tip force (piezoelectric
coupling coefficient) of a piezoelectric bimorph as a function of the aspect ratio l/a (length
over width). Comparisons between the results from the different beam models and 3D FE
simulations.
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• For slender beams (l/a ≥ 10) the one-dimensional models are supposed to be in
good agreement with the 3D theory. However, only the present NSR model gives
good results for all the electromechanical coefficients appearing in equations (3.36).
In models assuming the uniaxial stress condition, the equivalent piezoelectric ca-
pacitance presents substantial errors. The comparison between the NS model and
the Smits’ model shows that the introduction of the induced potential implies a re-
duction of the mechanical stiffness and the piezoelectric coupling. However, while
introducing the induced potential improves the estimate of the coupling coefficient,
it leaves approximately the same error on the mechanical stiffness, changing only
the sign (from an overestimate to a underestimate).

• For short beams, the boundary effects have an influence. In particular, the clamping
condition, blocking the sectional deformations, leads to a stiffening phenomenon and
to an increase of the axial-electric coupling. In the present model, as expected for a
beam theory, the lower the slender ratio l/a, the lower the model accuracy (the errors
are still under 5% for l/a = 4). On the contrary, the NS model takes advantage of
the boundary stiffening and the relative errors on the compliance and the coupling
coefficient becomes smaller for shorter beams. This is due more to a cancellation of
error effect than to an effective catching of the distribution of the electromechanical
3D energy. This is clearly shown by the errors on the piezoelectric capacitance,
which increase.

• Tables 3.1-3.5 can help to distinguish between the errors due to plane-strain and
plane-stress hypotheses and the neglect of the induced potential. They can also
partially explain why the substantial errors shown for the model with null transverse
stress in Table 3.1 for the mechanical stiffness and the coupling coefficient have not
been revealed in experimental and numerical works focusing on the analysis of the
electrically induced deformations and displacements.

3.6 Conclusions

A beam model of laminated piezoelectric beam including the effect of the cross-sectional
warping and induced electric potential was presented. The model was validated through
comparisons with standard modelling approaches and results from 3D finite element nu-
merical simulations in simple bending. A detailed discussion on the influence and the
plausibility of possible assumptions in beam modelling of piezoelectric laminates was car-
ried out and a deeper understanding of the main phenomena was achieved. Focusing on
sandwich and bimorph benders, the comparisons were made in terms of the estimates
of the electromechanical beam constitutive coefficients and the associated through-the-
thickness distributions of the three-dimensional fields. The analysis led to the following
conclusions:

1. The proposed model accurately predicts all the relevant electromechanical constitu-
tive parameters and correctly follows the field distributions found by 3D finite ele-
ment analysis, independently of the thickness ratio between piezoelectric and elastic
layers.

2. For piezoelectric sandwiches and bimorphs, the standard models fail to predict the
equivalent piezoelectric capacitance.
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3. For piezoelectric sandwiches with thin elastic layers and for bimorph benders, the
standard models introduce appreciable errors not only on the piezoelectric capaci-
tance, but also on the bending stiffness and the coupling coefficient.

4. If transverse stresses are neglected, including the effect of quadratic contribution to
the electric potential a better estimate of some quantities is obtained (for examples
the compliance at and the electromechanical coupling of a piezoelectric bimorph).
But this is due more to a cancellation-of-error effect that to an effective agreement
with the 3D solution. Other quantities (such as the equivalent piezoelectric ca-
pacitance and the mechanical stiffness at constant voltage) are still not correctly
estimated.

5. Boundary effects locally affect the distributions of cross-sectional strains and stresses.
However, for typical cross-sectional geometry, their influence on global properties is
shown to be negligible for relatively slender bodies also (see Table 3.3-3.5).
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Numerical Methods for Modal
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Object of the Chapter

Piezoelectric laminates are usually obtained by surface bonding piezoelectric patches on an
elastic beam. A beam with multiple surface-bonded piezoelectrics may be regarded as a stepped
beam composed of multiple regular segments. Each segment is either purely elastic or piezoelectric,
being, in general, a piezoelectric laminate. Chapter 3 established an accurate Euler-Bernoulli model
of the generic elementary segment. This chapter deals with the numerical modal analysis of stepped
piezoelectric beams. This is an intermediate step between beam modelling and vibration control
applications. Experimental methods for modal analysis and comparisons between experimental
and numerical results are given in Chapter 6.



4.1 Introduction and literature review

4.1 Introduction and literature review

4.1.1 Statement of the problem

A beam with distributed piezoelectric patches is an electromechanical system including
a beam with material and geometric discontinuities coupled to a set of electric capaci-
tances (the inherent piezoelectric capacitances). Systems with distributed piezoelectric
transducers are used for control of lightweight structures. In this context, reduced order
finite dimensional models are required. In the low and medium frequency range, the ex-
pansion of the solution on a truncated modal basis gives an accurate approximation of
the system response using a limited number of degrees of freedom. The precise knowl-
edge of the modal properties represents the starting point for the design of controllers
(Zhou et al., 1996), and accurate tools for their theoretical prediction and experimental
identification are needed.

The numerical computation of the exact natural frequencies and mode shapes of a
beam with multiple piezoelectric elements is not trivial. Piezoelectric elements introduce
material and geometrical discontinuities by adding several steps to the initially homoge-
neous beam. In lightweight structures, these additional mass and stiffness contributions
significantly affect the system modal properties and cannot be neglected.

The formulation of the eigenvalue problem requires the choice of a model for layered
piezoelectric beams and to write the frequency domain version of the equations of motion
with vanishing external loads. Two main approaches can be followed for its numerical
solution:

i) Exact solution. One retains the continuous nature of the system and tries to solve
the exact eigenvalue problem for the infinite-dimensional system composed of several
regular substructures.

ii) Finite dimensional approximation. The stepped beam is discretized with one of
the methods available (e.g. finite elements and assumed modes) to obtain a linear
eigenvalue problem for the resulting finite-dimensional system.

The first approach demands the solution of a transcendental eigenvalue problem and
implies several numerical difficulties to find corresponding natural frequencies (root finding
for transcendental equations) and mode shapes (inversion of ill-conditioned matrices).
However, it is based on an exact formulation and avoid the errors associated with the
discretization of the system. The second approach leads to a linear eigenvalue problem
that is easily solved with standard algorithms. However, attention must be paid to choose
the discretization strategy and the number of d.o.f.s.

4.1.2 Literature review

Modal models of piezoelectric beams are usually derived either by the assumed modes
method (Hagood and von Flotow, 1991) or by the finite-element method (Kusculuoglu
et al., 2004; Lin and Huang, 1999). In the assumed modes method, the solution is expanded
on a truncated series of mode shapes of an homogeneous beam. In the finite element
method a finite number of local basis functions are used. Both the methods are based on
a finite dimensional approximation of the continuous beam.

63
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The problem of finding exact modal properties of a stepped piezoelectric beam is
formulated in (Yang and Lee, 1994a; Yang and Lee, 1994b; Maxwell and Asokanthan,
2002; Lee et al., 2002). Yang and Lee (1994a) study the modal properties of a cantilever
beam with a single piezoelectric element. They prove the significative difference in the
modal properties of the beam with and without the piezoelectric materials. The analysis
of the modal properties show that the effects of the shear stiffness and the rotary inertia
stay negligible at law frequencies and that the properties of the bonding layer have only
a minor influence on the beam natural frequencies. Maxwell and Asokanthan (2002)
consider a cantilever stepped beam with a tip mass. They discuss the influence of the
position of piezoelectric patches on the beam modal properties and compare the accuracy
of the Timoshenko and Euler-Bernoulli models.

Both the papers (Yang and Lee, 1994a) and (Maxwell and Asokanthan, 2002) use stan-
dard methods for determining system eigenproperties (i.e. eigenvalues as roots of the char-
acteristic equations obtained when assuming harmonic-type solutions). This method is not
reliable when considering beams comprised of multiple regular segments. The associated
transcendental eigenvalue problem presents well-known numerical difficulties. A method
for safely locating the eigenfrequencies of a transcendental eigenvalue problems has been
proposed by Wittrick and Williams in early seventies (Wittrick and Williams, 1970; Wit-
trick and Williams, 1971). The so-called Wittrick-Williams algorithm is based on the
definition of a function (mode-count) that calculates how many natural frequencies lie
below a given trial frequency. It provides an useful tool for establishing system natural
frequencies but does not solve the problem of finding the associated mode shapes. Re-
cently Zhaohui et al. (2004) proposed an efficient method to accurately determine also the
system eigenvectors. Lee et al. (2002) applied the Wittrick-Williams algorithm to stepped
piezoelectric beams. But they did not address the problem of the beam mode shapes.

From the literature review on modal analysis of stepped piezoelectric beams, I noticed
that:

• Several papers adopt a Timoshenko model to study the modal properties of stepped
piezoelectric beams. But they are based on crude approximations for the corre-
sponding constitutive coefficients. They do not consider neither the effect of the
induced potential nor that of the transverse stresses (see previous Chapter). These
phenomena may imply larger errors than those associated to the neglecting of the
shear effects and the rotatory inertia. For this reason an accurate Euler-Bernoulli
model can be preferable.

• The eigenvalue problem for stepped piezoelectric beams is rarely formulated in terms
of the full mechanical and electrical state variables. In particular, the accuracy of
the estimates of the electric modal properties (as piezoelectric capacitance) has not
been discussed.

• Some authors present comparisons between experimental and theoretical results
(Park, 2003; Maxwell and Asokanthan, 2002; Kusculuoglu et al., 2004; Zhang and
Kirpitchenko, 2002). But they do not discuss neither the accuracy of the numerical
techniques used for computing the structural modal properties, nor the reliability
of the experimental methods used for their identification. Hence, it is often difficult
to understand if the discrepancies between theoretical predictions and experimen-
tal measurements should be ascribed to inadequate theoretical models, to inaccurate
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Figure 4.1: Sketch of the stepped piezoelectric beam.

numerical algorithms, to imprecise measurements, or to unreliable identification pro-
cedures.

4.1.3 Objectives

By dealing with numerical modal analysis of stepped piezoelectric beams, the goals of this
Chapter are the following:

• to propose reliable methods to find exact modal frequencies and mode shapes and
consequently determine electromechanical reduced order modal models;

• to discuss the errors introduced by standard approximate methods such as assumed
modes and finite-element, by suggesting possible improvements.

In this framework, four different methodologies are analyzed. The first one is based
on the reliable and efficient method recently proposed in (Zhaohui et al., 2004) to solve
the exact transcendental eigenvalue problem, once formulated in terms of the dynamic
stiffness matrix: it will be denoted as Last Energy Norm (LEN) method. Hence, three
different Galerkin methods for obtaining a discretized finite-dimensional version of the
systems are proposed and compared, by assessing their accuracies with respect to results
form the LEN method. Namely, besides the standard and popular Assumed Modes (AM)
method and Finite-Element (FE) method, a novel enhanced version of the assumed modes
method is tested. This method (Enhanced Assumed Modes, EAM ) includes special jump
functions (Krongauz and Belytshchko, 1998) to enrich the standard basis functions.

The numerical methods and results presented herein are completed by the experimental
ones given in Chapter 6.

4.2 Problem formulation

4.2.1 Geometry

Let us consider a straight beam of length l where two sets of piezoelectric elements are
symmetrically bonded side by side to form np bimorph pairs (see Figure 4.1). This is
an example of a stepped piezoelectric beam with n = 2np + 1 regular segments. Each
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segment is a beam with a constant cross-section. Purely elastic segments alternate with
three-layered segments including one elastic core and two identical piezoelectric laminae.
The three-layer piezoelectric segments are connected in the sandwich bender configuration
(see Figure 2.2). Arrangements similar to that one in Figure 4.1 are frequently used for
structural control applications. This system is used to fix the idea to a simple but quite
general example of a stepped piezoelectric beam. The generic material point of the beam
axis is named by the abscissa x. The generic beam node is indicated by Xh and the beam
segment of length lh between Xh and Xh+1 is indicated by Sh. The list of segment indices
J ≡ {1, 2.., n} is partitioned in the subsets Je and Jp corresponding to purely elastic and
layered piezoelectric segments, respectively.

4.2.2 Equations of motion

Weak formulation

Each segment Sh of the stepped beam is regarded as an Euler-Bernoulli beam by adopting
the NSR model presented in Section 3.2. The electromechanical state variables in Sh (i.e.
x ∈ [Xh,Xh+1]) are the bending displacement w(x, t) and the electric voltage difference
Vh(t) across the electric terminals. The associated generalized forces are the bending
momentMh(x, t) and the charge per unit line qh(x, t). The electric variables are introduced
only if Sh is piezoelectric (h ∈ Jp). Beam axis extension is not considered.

Let H20[0, l] be the Hilbert space of the test fields w̃(x) having square integrable second
derivatives and respecting the homogenous version of the essential boundary conditions.
Moreover, let V0 be the vector space of voltage vectors V = {Ṽh}h∈Jp , whose components
are arbitrary except for being zero if the electric potential is imposed at the corresponding
segment. A weak formulation of the electromechanical equilibrium equations is found by
imposing that the following virtual working balance holdsX
h∈J

Z
Sh

Mh(x, t)w̃
00(x)dx+

X
h∈Jp

Z
Sh

qh(x, t)Ṽhdx =

Z
Sh

X
h∈J

bh(x, t)w̃(x)dx+
X
h∈Jp

Qh (t) Ṽh,

(4.1)
for each

w̃(x) ∈ H20[0, l] and] {Ṽh}h∈Jp ∈ V0.

The Eqn. (4.1) imposes that the sum of the inner mechanical working done by the bending
moment Mh and the inner electric working done by the lineic charge density qh(x, t) is
balanced by the external mechanical and electric working done by the imposed vertical
load bh(x, t) and the imposed total charges Qh at the electric terminals.

In elastic segments, the constitutive equations for the bending moment are simply
given by

Mh(x, t) = khw
00(x), kh = YhIh (4.2a)

where Yh is the axial Young modulus of the elastic material and Ih is the moment of
inertia of the cross-section of Sh. In multilayer piezoelectric segments, the beam consti-
tutive equations couples electric and mechanical variables. They are in the form given by
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Eqns. (3.36):

Mh(x, t) = khw
00(x, t)− ehVh (t) , (4.3a)

qh(x, t) = ehw
00(x, t) + εhVh (t) . (4.3b)

The Eqns. (3.37) of the previous Chapter1 provide accurate expressions for the constitutive
coefficients (kh, eh, εh) as a function of the cross-section geometry and the material
properties.

Basic effect of inertial forces are introduced by assuming

bh(x, t) = −ρhẅh (x, t) + b0(x, t), (4.4)

where b0(x, t) is the applied external transverse load per unit line; the superimposed dot
stands for the time derivative and ρh is the linear mass density of the h-th segment. The
influence of the rotatory inertia of the beam cross sections is neglected. The linear mass
density is easily expressed as a function of the volume mass density for the elastic and
piezoelectric materials

¡
ρ(b), ρ(p)

¢
and the cross sectional areas (A(b)h , A

(p)
h ) that they

occupy in Sh:
ρh = ρ(b)A

(b)
h + 2ρ(p)A

(p)
h (4.5)

Strong formulation

A strong formulation of the beam equations of motion is found by localization of the weak
formulation (4.1) after a double integration by part of the first term. In elastic segments
they are simply given by

khw
IV (x, t) + ρhẅ (x, t) = b0h(x, t). (4.6)

In piezoelectric segments the mechanical equilibrium given by Eqn. (4.6) is completed by
the following balance of electric charge

eh
£
w0(Xh+1, t)− w0(Xh, t)

¤
+ εhlhVh (t) = Qh (t) (4.7)

where the term proportional to eh is the piezoelectric generated charge. This equation is
found by imposing that the working balance (4.1) with the electric charge density (4.3b)
is verified for all the admissible electric test fields Ṽh. The piezoelectric generated charge
is proportional to the average curvature in the Sh.

The electric effect on the mechanical equations appears only in the continuity condi-
tions for the internal actions between two different segments. These conditions are found
by imposing that the boundary terms obtained after the double integration by parts of
the first addendum of (4.1) vanish for all admissible mechanical test fields w̃(x). At the
generic interface between the h-th and the h+1-th segments (the former is assumed to be
piezoelectric, the latter elastic), they are in the form:

Mh (Xh+1, t) =Mh+1 (Xh+1, t)⇒ khw
00
(Xh+1, t)− ehVh (t) = kh+1w

00 (Xh+1, t) , (4.8a)

M
0
h (Xh+1, t) =M 0

h+1 (Xh+1, t)⇒ khw
000 (Xh+1, t) = kh+1w

000 (Xh+1, t) . (4.8b)

1 In the present Chapter a different notation is adopted (kMw → kh, eMV → eh, εqV → εh).
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These conditions correspond to the continuity of bending momentsMh (Xh+1, t) and shear
forces Th (x, t) = −M

0
h (x, t).

4.2.3 Eigenvalue problem

Weak formulation

The eigenvalue problem for the stepped piezoelectric beam is posed by looking for harmonic
solutions in the form

w(x, t) = w (x, ω) eiωt, Vh(t) = Vh (ω) e
iωt. (4.9)

The corresponding weak formulation is found after substitution of the constitutive equa-
tions in the virtual working principle (4.1). It consists of looking for the frequencies ω
(eigenvalues) and the electromechanical modes (eigenvectors)

{w(x, ω), {Vh (ω)}h∈Jp} (4.10)

for which the following equality holds for all the test fields w̃(x) ∈ H20[0, l] and {Ṽh}h∈Jp ∈
V0X

h∈J

Z
Sh

khw
00(x, ω)w̃00(x)dx+

X
h∈Jp

lhεhVh (ω) Ṽh+

+
X
h∈Jp

h
eh
¡
w0(Xh+1)− w0(Xh)

¢
Ṽh − Vh (ω)

¡
w̃0(Xh+1)− w̃0(Xh)

¢i
=

= −ω2
Z
Sh

X
h∈J

ρhw(x, ω)w̃(x)dx+
X
h∈Jp

Qh (ω) Ṽh. (4.11)

The complex-valued functions Qh (ω) express the total charges at the piezoelectric seg-
ments as a function of the voltages {Ṽh}h∈Jp for a given frequency2 ω. If an electric
network of admittance matrix Yhk(ω) interconnects the different segments, the charge
Qh(ω) is given by

Qh(ω) =
1

jω

X
k

Yhk(ω)Vk(ω) (4.12)

where j is the imaginary unit.
If a piezoelectric segment Sh is short-circuited, the corresponding voltage Vh (ω) must

be set to zero. On the other hand if Sh is left open-circuited, then the charge Qh (ω) is
zero. The open-circuit condition implies that

Vh = −
eh
Ch

¡
w0(Xh+1)− w0(Xh)

¢
(4.13)

where Ch = εhlh is the piezoelectric capacitance of Sh. This is a consequence of the electric
charge balance (4.7).

For a beam in which the piezoelectric segments are either short-circuited or open-

2Qh(ω) is zero is the corresponding segment is short-circuited.
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circuited the working balance (4.11) is rewritten as

X
h∈J

Z
Sh

khw
00(x, ω)w̃00(x)dx+

X
h∈JOC

p

(eh)
2

Ch

¡
w0(Xh+1)− w0(Xh)

¢ ¡
w̃0(Xh+1)− w̃0(Xh)

¢
=

= −ω2
Z
Sh

X
h∈J

ρhw(x, ω)w̃(x)dx. (4.14)

where J OC
p is the list collecting the indices corresponding to open-circuited segments. In

this instance the eigenvalue problem is purely mechanical and consists of looking for ω
and the non-vanishing w(x, ω) ∈ H2[0, l] respecting (4.14) for all the w̃(x) ∈ H20[0, l].

Strong formulation

Let us introduce local displacement functions for each segment Sh

wh(ξh) = w(x), for x ∈ Sh, (4.15)

where

ξh =
x−Xh

lh
(4.16)

is a normalized local abscissa. For a beam with either short-circuited or open-circuited
piezoelectric elements, and with nw constraints on the admissible displacements and its
derivatives (including at least 4 boundary conditions at the beam-ends), the eigenvalue
problem can be stated in the following strong form.

Find the frequencies ω and the segment displacement functions {wh(ξh)}h=1...n such
that:

1. Each wh(ξh) satisfies the governing equation in the corresponding segment (for h =
1...n)

wIVh (ξh)− λ4h(ω)wh(ξh) = 0, λh = lh
√
ω 4

r
ρh
kh

. (4.17)

2. The following continuity conditions between adjacent segments are verified (for h =
1...n− 1)

wh(1) = wh+1(0), (4.18a)

w0h(1) = w
0
h+1(0), (4.18b)

khw
00
h(1)− ehVh = kh+1w

00
h+1(0)− eh+1Vh+1, (4.18c)

khw
000
h (1) = kh+1w

000
h+1(0), (4.18d)

where for the short-circuited piezoelectric elements and for purely elastic segments¡
h ∈ J SC

p ∪ Jb
¢

Vh = 0, (4.19)

while for the open-circuited segments
¡
h ∈ J OC

p

¢
Vh = −

eh
Ch

¡
w0h(1)− w0h(0)

¢
. (4.20)
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3. The wh(ξh)0s satisfy the nw constraints on the mechanical displacement, which in-
clude at least the 4 boundary conditions at the beam-ends.

A similar formulation can be given also when the piezoelectric transducers are shunted
on electric networks of given admittance matrix.

4.3 Last Energy Norm (LEN) method

This Section applies the method recently proposed by (Zhaohui et al., 2004) for the solution
of the exact transcendental eigenvalue problem for the stepped piezoelectric beam. The
corresponding solution gives natural frequencies and modal shapes of the stepped piezo-
electric beam, without introducing any finite-dimensional approximation. The method
requires, as a preparatory step, the formulation of the problem in terms of the so called
dynamic stiffness matrix i.e. in the form

K(ω)w = 0, (4.21)

where w is a vector of nodal displacements.

4.3.1 Dynamic stiffness formulation

Local relations

In the dynamic stiffness formulation the eigenvalue problem is stated in terms of nodal
variables.

In each regular segment Sh, the displacement field is expanded as the general solution
of the ordinary space differential equation (4.17):

wh(ξh) = A
(h)
1 cos(λhξh) +A

(h)
2 sin(λhξh) +A

(h)
3 cosh(λhξh) +A

(h)
4 sinh(λhξh). (4.22)

The constants A(h)i are expressed as a function of the components of the segment nodal
displacement vector

wh =
£
wh (0) w0h (0) wh (1) w0h (1)

¤T
. (4.23)

Hence, the displacement field in Sh is written in the form

wh(ξh) = f
(h)
1 (ξh)wh (0) + f

(h)
2 (ξh)w

0
h (0) + f

(h)
3 (ξh)wh (l) + f

(h)
4 (ξh)w

0
h (l) (4.24)

where f (h)i are transcendental functions of ξh.
The dual vector of the segment nodal displacement vector wh is the segment nodal

force vector
fh =

£
−M0h (0) −Mh (0) M0h (1) Mh (1)

¤T
. (4.25)

The beam constitutive equations relate nodal forces and nodal displacement vectors.
These relations depend on the specific properties and shunting conditions of each segment.

Purely elastic and short-circuited segments For purely elastic segments and short-
circuited piezoelectric segments, the constitutive equations (4.2) and (4.3) lead to a relation
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between nodal force and nodal displacement vectors of the type

fh =Khwh, (4.26)

where Kh is the segment dynamic stiffness. Simple calculations give the following expres-
sions for Kh

Kh =
kh
r

⎡⎢⎢⎣
a −c f −d
−c b d g
f d a c
−d g c b

⎤⎥⎥⎦ (4.27)

where a, b, c, d, f, g, r functions of λh and lh:

a = −λ3h (cosh (λh) sin (λh) + cos (λh) sinh (λh)) ,
b = l2hλh (− cosh (λh) sin (λh) + cos (λh) sinh (λh)) ,
c = lhλ

2
h sin (λh) sinh (λh) ,

d = l2hλh (cosh (λh)− cos (λh)) , (4.28)

f = λ3h (sin (λh) + sinh (λh)) ,

g = l2hλh (sin (λh)− sinh (λh)) ,
r = l3h (−1 + cos (λh) cosh (λh)) .

Piezoelectric segments with imposed voltage In piezoelectric segments with a non-
vanishing electric voltage Vh,the relation between nodal forces and displacements becomes

fh = Khwh + ehVh, (4.29)

where the segment coupling vector eh is given by

eh =
£
0 −eh 0 eh

¤T
. (4.30)

Piezoelectric segments with imposed charge and open-circuited segments In
open circuited piezoelectric segments the electric voltage is given by Eqn. (4.20). Thus,
from Eqn. (4.29), the mechanical stiffness in open-circuit condition is

fh =

µ
Kh +

1

Ch
ehe

T
h

¶
wh. (4.31)

This shows that the open-circuit condition adds to the segment stiffness matrix an addi-
tional contribution due to the piezoelectric effect.

Global relations

The continuity conditions (4.18) between adjacent elements lead to external nodal forces
and the nodal displacements of the entire beam. A 2 (n+ 1)-component global displace-
ment vector collects the displacements and the rotations of all the nodes of the stepped
beam. This is denoted by ŵ. The global balance for a steeped beam with vanishing ex-
ternal loads and including piezoelectric segments in the open-circuit and the closed-circuit
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conditions is written as
K̂ (ω)ŵ = 0, (4.32)

where K̂ is a 2 (n+ 1) × 2 (n+ 1) global stiffness matrix. The global stiffness matrix is
obtained by assembling the segment matrices with standard procedures (completely anal-
ogous to those used in FE analysis). When introducing the nw mechanical constraints, the
dynamic stiffness and coupling matrices are modified by the elimination of the correspond-
ing degrees of freedom3. Thus, the following constrained version of (4.32) is obtained

K(ω)w = 0, (4.33)

where w and K(ω) are constrained global displacement vector and stiffness matrix. The
vectorw has (2n+ 2− nw) components andK(ω) is (2n+ 2− nw)×(2n+ 2− nw)matrix.

Eigenvalue problem in terms of the dynamic matrix

For a stepped beam with open-circuited or short-circuited piezoelectric segments the eigen-
value problem formulated is stated in terms of the dynamic stiffness matrix by looking for
the frequencies ω̄ and the displacement vectors w̄ that satisfy Eqn. (4.33). These frequen-
cies are the natural frequencies of stepped beam. The segment deflection fields wh(x) of
the associated mode shapes are found from the nodal vectors w by Eqn. (4.24).

4.3.2 Solution of the transcendental eigenvalue problem

For a stepped beam and, in general, for any infinite-dimensional system, the elements of
the dynamic stiffness matrix K(ω) are transcendental function of ω. Finding the system
natural frequencies requires to find the roots of the characteristic equation associated to
eigenvalue problem (4.33):

detK(ω) = 0. (4.34)

Many well-established methods for solving linear eigenproblems of the type

(A− ω2B)w = 0 (4.35)

are available. But it is more difficult to find reliable algorithms to solve the transcenden-
tal eigenvalue problem (4.33), especially when considering a system composed of many
continuous substructures. The problem is to isolate the different roots, before lunching
standard root-finding algorithms (as the bisection method) in frequency intervals where
exactly one root is present. Moreover, whenever a modal frequency is found, standard al-
gorithms generally fail in determining the associated mode shape(s), because they require
the inversion of ill-conditioned matrices.

A reliable method for solving the root-finding problem is the so-calledWittrick-Williams
method proposed in (Wittrick and Williams, 1970) and (Wittrick and Williams, 1971).
An interesting extension of this method recently proposed by Zhaohui et al. (2004) allows
also to accurately determine the associated modal shape without any matrix inversion. I

3For instance, for a cantilever beam with the left side clamped one has to delete the first two rows
and column and remove the first two mechanical nodal displacements. More general constraints may be
considered by properly reducing the appearing matrices and degrees of freedom.
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refer to this latter method as Last Energy Norm method. The main ingredients of the
Wittrick-Williams and the Last-Energy norm methods are given below.

LU decomposition and sign-count

For a single frequency ω̄, the symmetric matrix K can be decomposed in terms of a non
singular lower triangular matrix L with unit diagonal elements and a diagonal matrix D
by the standard LU decomposition (Press et al., 1992):

K = LDLT. (4.36)

Thus the upper triangular matrix
P = L−T, (4.37)

is such that
PTKP = D, (4.38)

where D is diagonal. If P̃ and P̆ are two different congruent transformations of K to a
diagonal form, i.e.

P̃TKP̃ = D̃, P̆
T
KP̆ = D̆ (4.39)

the number of negative elements along the diagonal of D̃ and D̆ is the same (Sylvester’s
law of inertia). Hence, for each frequency ω̄, it is possible to introduce the sign-count
function

s (K (ω̄)) (4.40)

of the symmetric matrix K. The sign-count function is defined as the number of negative
elements along the diagonal of D. It can be calculated by any of the possible congruent
transformations (4.39) of K (ω̄) to the diagonal form.

Mode-count and Wittrick-Williams algorithm

The Wittrick-Williams algorithm for locating the system eigenfrequencies relies on the
definition of a function of the frequency ω, named the mode-count function J(ω). The
mode-count J(ω̄) gives the number of roots of the characteristic equation below a given
trial frequency ω̄. Wittrick and Williams have shown that, by considering a structure
composed of n continuous substructures and characterized by a dynamic stiffness K (ω),
the mode-count is given by

J (ω̄) =
nX

h=1

Jh (ω̄) + s (K (ω̄)) (4.41)

where s (K (ω̄)) is the sign-count of K (ω̄) and the term Jh (ω̄) is the number of natural
frequencies of the h − th substructure which would be exceeded by ω̄ if its ends were
clamped (i.e. the nodal displacements set to zero). For Euler-Bernoulli beams a simple
formula for Jh may be derived (Wittrick and Williams, 1970):

Jh = j − 1
2

³
1− (−1)j sign (1− coshλh cosλh)

´
, (4.42)
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where

λh = lh
√
ω 4

r
ρh
kh

, (4.43)

and j is the largest integer such that j < λh/π; sign(·) gives the argument sign.
The mode-count J (ω) is used to establish frequency intervals

Ii =
h
ω
(i)
l , ω(i)u

i
(4.44)

where
J
³
ω(i)u

´
− J

³
ω
(i)
l

´
= 1. (4.45)

In any of such intervals there is exactly one root and standard root finding algorithm (the
simplest being the bisection method) can be safely lunched to locate the corresponding
natural frequency with the desired accuracy.

Last Energy Norm and its properties

The Wittrick-Williams algorithm does not provide any criterion to accurately evaluate the
eigenvector (mode shapes). An efficient solution of this problem is given by Zhaohui et al.
(2004). They exploit the properties of last entry of D, which they name last energy norm.
From equation (4.38) the last energy norm is defined as

dn = P
T
nKPn, (4.46)

where Pn is the last column vector of P (in this section the matrix subscript k indicates
the k-th column when applied to a matrix, the k-th component when applied to a vector).
Since

P = L−T and K = LDLT (4.47)

then
KP = LD (4.48)

and
KPn = (KP)n = (LD)n . (4.49)

Thus, by using that L is lower triangular with unit diagonal elements and D is diagonal,
it is found that

KPn = dnIn, (4.50)

where I is the n-dimensional identity matrix. The last relation is at the basis of the last
energy norm method for finding natural frequencies and mode-shapes. It implies that if
dn vanishes at ω̄, then

KPn|ω=ω̄ = 0. (4.51)

In other words, if dn vanishes at ω̄, then ω̄ is a natural frequency. It follows that if ω̄ is
a root of the last energy norm, then it is an eigenfrequency and Pn is the corresponding
eigenvector. The inverse statement is not generally true. However with this criterion miss
only the eigenvalues related to eigenvectors having zero displacement on the last node.
Indeed, if ω̄ is an eigenfrequency and v̄ the corresponding eigenvector, it means that

Kv̄ = 0; (4.52)
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from the decomposition (4.36) it follows that

dnv̄n = 0 (4.53)

since (Kv̄)n = dnv̄n. Hence if v̄n is an eigenvector and dn (ω̄) 6= 0, then the n-th nodal
displacement of the eigenvector v̄n must be zero. Zhaohui et al. (2004) show in details
how to determine these particular eigenvalues by re-numbering the nodes or, for modes
characterized by zero displacement at each node, by introducing additional nodes.

Evaluation of the last energy norm and eigenproperties finding strategy

The evaluation of the last energy norm for a given trial frequency ω̄ by using the equation
(4.46) requires to compute Pn for the corresponding frequency. This can be done through
the following recursive relations (Zhaohui et al., 2004), which correspond to a standard
algorithm used for the LU decomposition (Press et al., 1992):

P1 = I1, F1 = K1

Pk = Ik −
k−1X
i=1

Fki

Fii
Pi, Fk = Kk −

k−1X
i=1

Fki

Fii
Fi

(4.54)

where F is a lower triangular matrix defined by

F = P−TD = KP. (4.55)

The n − th step of the algorithm (4.54) gives Pn. This allows for the evaluation of the
last energy norm by its definition (4.46).

Once a routine that uses this algorithm to calculate Pn and dn is available, the roots
of the last energy norm must be found. It is possible to show that dn is a monotonically
decreasing function of the frequency ω and its graph is composed of infinite branches
separated by singular points where the function is approaching −∞ from the left and +∞
from the right. Therefore, for each branch there is a unique root of dn which can be easily
found by applying standard root-searching algorithms (e.g. bisection). To this end, the
procedure proposed in (Zhaohui et al., 2004) can be conveniently followed:

1. Use the Wittrick-Williams mode-count function determine intervals Ii =
h
ω
(i)
l , ω

(i)
u

i
for which J

³
ω
(i)
u

´
− J

³
ω
(i)
l

´
= 1.

2. Control that4 dn(ω
(i)
l ) > 0 and d(ω

(i)
u ) < 0. If this condition is not verified, then

restrict the interval until to Ĩi =
h
ω̃
(i)
l , ω̃

(i)
u

i
until dn(ω̃

(i)
l ) > 0 and d(ω̃

(i)
u ) < 0, being

still J
³
ω̃
(i)
u

´
− J

³
ω̃
(i)
l

´
= 1.

3. Apply a root finding routine in Ĩi (I used the bisection method) to determine a root
of the last energy norm with the desired numerical accuracy.

4Since the graph of the last energy norm is composed of several regular branches and in each branch
dn is a monotonically decreasing function of ω, standard root finding methods can be safely applied only
in intervals Ii where dn(ω

(i)
l ) > 0 and d(ω

(i)
u ) < 0.
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4. If the root finding algorithm converges, the corresponding root is the eigenfrequency
and the associated Pn is the eigenvector.

5. It is also possible (but extremely rare for stepped beams) that one cannot find any

root of the last energy norm although J
³
ω
(i)
u

´
− J

³
ω
(i)
l

´
= 1. This is the case in

which the eigenfrequency in Ii is associated to an eigenvector having a null displace-
ment on the n-th component. In this occurrence, one should repeat the procedure
from the beginning by either changing the node numbering or by introducing some
additional nodes (Zhaohui et al., 2004).

After steps 1-4 (and, eventually, 5) all the eigenfrequencies and mode shapes in the
chosen frequency interval are found. The mode shapes are in terms of nodal displacement.
They are expressed in terms of displacement functions by the relations (4.24). Here and
henceforth, the mode shape w(i) (x) are normalized to satisfy

nX
h=1

Z
Sh

ρh

³
w(i) (x)

´2
dx = m, (4.56)

where m is the total mass of the stepped beam.

4.4 Galerkin methods

Approximate solutions for the natural frequencies and mode shapes of the considered
stepped beam can be found by starting from the weak formulation (4.14), and using stan-
dard Galerkin methods. The continuous system is approximated by a finite dimensional
one. The mechanical displacement is assumed to be a linear combination of N basis func-
tions. By looking for approximate harmonic solutions of the eigenvalue problem with the
mechanical displacement in the form

w(x, ω) =
NX
i=1

φi(x)Wi(ω) (4.57)

the weighting coefficients {Wi(ω)}Ni=1 become the unknown of the problem. In the fol-
lowing, they are collected in the vectorW. The basis functions {φi(x)}Ni=1 are chosen to
satisfy the kinematic boundary conditions5.

The substitution of Galerkin expansion (4.57) in the weak formulation (4.11) leads to
the following system of algebraic equation inW

−ω2MGW+KGW = 0, (4.58)

where the modal mass matrix is given by

(MG)ij =
nX

h=1

ρh

Z
Sh

φi(x)φj(x)dx, (4.59)

5Here I assume that the boundary conditions are homogeneous. If not, the problem can be easily
reformulated to satisfy this condition.
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and the stiffness matrix is

(KG)ij =
nX

h=1

kh

Z
Sh

φ00i (x)φ
00
j (x)dx+

X
h∈IOCp

e2h
Ch

¡
φ0i(Xh+1)− φ0i(Xh)

¢ ¡
φ0j(Xh+1)− φ0j(Xh)

¢
,

(4.60)
The indices i, j vary in {1, ...,N} . The second contribution to the stiffness matrix is the
additional stiffness of the open-circuited piezoelectric elements.

The eigenvalue problem (4.58) is linear in ω2 and can be easily solved with standard
techniques (Press et al., 1992). As the number N of basis functions increases, the solution
becomes more accurate. Nevertheless, ad-hoc choices of the basis functions may lead to
fast convergence of the approximate solutions to the exact one. In the following, three
different methods for generating valuable basis functions are analyzed in details. The
first method is very common and relies on the mode shapes of the homogeneous beam,
i.e. the beam without the piezoelectric elements (assumed mode method). The second
method completes the simple beam basis function with special jump functions, which allow
grasping the curvature discontinuities at the end of each segment. The third method is
nothing else than the standard Finite-Element method for Euler-Bernoulli beams, and is
based on Hermitian basis functions.

4.4.1 Assumed Modes (AM) method

In the assumed mode method approximate natural frequencies and mode shapes of stepped
piezoelectric beams are found by considering the expansion (4.57), where the basis func-
tions are the mode shapes of a continuous beam without the array of piezoelectric elements.
In other words, the basis function are found as solutions of:

φIV (ξ)− λ4φ(ξ) = 0, λ = l
√
ω 4

r
ρb
kb
, ξ =

x

l
(4.61)

with the considered mechanical boundary conditions. For a cantilever beam the eigenvalues
λ are the roots of the following transcendental equation:

1 + coshλ cosλ = 0. (4.62)

The numerical values for the eigenvalues λi and the corresponding mode shapes φi can be
found in several books as (e.g. Meirovitch, 1986). In the following, the φ’s are normalized
to satisfy

nX
h=1

Z
Sh

ρh (φ (x))
2 dx = m. (4.63)

This approach is very simple and frequently adopted (Hagood and von Flotow, 1991;
Park, 2003). However, the resulting approximate mode shapes, being linear combinations
of smooth basis function, are smooth. In particular, they neglect the curvature disconti-
nuities at the interphase between elastic and piezoelectric segments. This causes a slow
convergence to the exact solution of the eigenvalue problem of the infinite dimensional
system when increasing the number of basis functions N.
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4.4.2 Enhanced Assumed Modes (EAM) method

A refined Galerkin-type solution of the eigenvalue problem is found by adding to the basis
functions of the AM method suitable jump functions. These jump functions introduce
in the mode shapes the effects of material discontinuities. The enhanced version of the
assumed modes method uses the following Galerkin expansion

w(x, ω) =
N0X
i=1

φi(x)Wi(ω) +

nWX
j=1

θj(x)WN0+j(ω) (4.64)

where {φi}N0i=1 are the first N0 mode shapes of the homogeneous beam and {θj}
nW
j=1 are the

special jump functions. The total number of degrees of freedom is N = N0 + nW . The
number nW of the jump functions is the number of steps between elastic and piezoelectric
segments. There is a jump function for each step. The generic one, θj , is chosen so as to
satisfy the boundary condition, be continuous with its first derivative, and have a jump
on the second derivatives at the j − th step. For a given boundary value problem, such
a function is generated as the static deflection of a homogenous beam for a concentrated
bending moment M applied at the j − th step.

For a left cantilevered beam of length l, the solution of the simple static problem for
a concentrated moment applied at the j − th step (.i.e. at x = Xj+1) is

θj =

⎧⎪⎨⎪⎩
αj

x2

2l
, x ∈ [0,Xj+1]

αj
Xj+1

2l
(2x−Xj+1) , x ∈ [Xj+1, l]

, (4.65)

where the constant αj is proportional to the applied moment and can be chosen in order
to normalize the special jump functions with the condition (4.63). The function defined
in (4.65) satisfies the boundary conditions, is continuous with its first derivative, and its
second derivative jumps at Xh+1 from αj to 0.

4.4.3 Finite-Element (FE) method

In the Finite-Element work each beam segment h is divided into a number of disjoint
elements. The trial solution in the generic element is constructed from the values of
the deflection and rotation at the element nodes (nodal displacements) by using classical
Hermite polynomials. Therefore W contains the amplitudes of the nodal displacements
and rotations at all the beam nodes. For the h− th elastic or short-circuited piezoelectric
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segment, the mass and stiffness matrices of the e− th element are:

Me = ρh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

13

35
le

11

210
l2e

9

70
le − 13

420
l2e
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210
l2e

1

105
l3e

13

420
l2e − 1

140
l3e

9

70
le

13

420
l2e

13

35
le − 11

210
l2e

− 13
420

l2e −
1

140
l3e − 11

210
l2e

1

105
l3e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.66)

Ke = kh

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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l3e

6

l2e
−12
l3e
− 13
420

l2e

6

l2e

1

105
l3e − 6

l2e

2

le

−12
l3e

− 6
l2e

12

l3e
− 6
l2e

− 13
420

l2e
2

le
− 6
l2e

4

le

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.67)

where le is the element size. For an element belonging to an open-circuited piezoelectric
segment, the stiffness matrix is modified by adding the following contribution

1

leεh
ehe

T
h , (4.68)

where the coupling vector is defined in (4.30). The global stiffness and mass matrices are
computed by assembling the element matrices and by imposing the kinematic constraints.

4.5 Reduced order modelling

The solution of the eigenvalue problem for a stepped piezoelectric beam gives a set of beam
mode shapes w(i)(x) and natural frequencies ωi. This Section shows how these information
are used to deduce reduced order modal models of stepped piezoelectric beams.

4.5.1 Modal models

Generic modal model

Reduced order models are based on a Galerkin-like approximation, where the basis func-
tions are the mode shapes of the stepped piezoelectric beam with short-circuited piezo-
electric elements. The first NM mode shapes {w(i)(x)}NM

i=1 and the corresponding natural
frequencies {ωi}NM

i=1 can be found with any one of the methods discussed in the previous
Section. Hence, the beam deflection field is approximated as follows

w(x, t) ∼=
NMX
i=1

wi(x)yi(t) (4.69)
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where {yi(t)}NM
i=1 are the time coefficients of the modal expansion. These coefficients are

collected in the vector y. The substitution of the expression (4.69) in the electromechanical
power balance (4.1) for a beam with np piezoelectric segments leads to the following system
of ordinary differential equations for the time coefficients y

MM ÿ +KMy − eMV = F, (4.70a)

CV + eTMy = Q, (4.70b)

whereV andQ are the np-vectors collecting the nodal voltages {Vh}h∈Jp and total charges
{Qh}h∈Jp of the piezoelectric segments. MM , KM , and C are diagonal matrices defined
by

(MM)ii = m, (KM)ii = mω
2
i , i = 1, ..., NM

(C)rr = Cr, r ∈ Jp
(4.71)

The NM × np coupling matrix eM is given by:

(eM)ir = er

µ³
w(i)

´0
(Xr+1)−

³
w(i)

´0
(Xr)

¶
, i = 1, ..., NM , r ∈ Jp. (4.72)

Its generic element represents the coupling between the i-th mode and the voltage at the
r − th segment. The vector F models the external mechanical forcing term, through its
modal components:

Fi =
nX

h=1

Z
Sh

b0h(x, t)w
(i)(x)dx. (4.73)

For a generic piezoelectric segment one can impose either a voltage or a charge by
blocking the corresponding entry in the voltage or charge vector. In this, it is possible to
account for open-circuiting and short-circuiting conditions, and for actuating and sensing
functions as well6. Alternatively, if the piezoelectric segments are interconnected via a
lumped network, a constitutive relation between the voltage and charge vectors must be
introduced (Newcomb, 1966).

Non-dimensional form

The previous set of equations is non-dimensionalized as follows:

ξ̈ +Λξ − γυ = z (4.74a)

υ + γTξ = χ (4.74b)

These expressions introduce the non-dimensional mechanical modal coefficient ξi(t), the
non-dimensional electric voltage υr, the non-dimensional charge χr, and the non-dimensional
force zi (the superimposed dot is used also to indicate the non-dimensional time deriva-
tive). In order to preserve the anti-symmetric form of the coupling, the generic voltage Vr

6An actuator can be regarded as a generalization of a short-circuited segment, where the voltage is
imposed to a non-vanishing constant value or function of time; a sensor is an open-circuited element,
where the nodal voltage is read as sensor output.
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is scaled with respect to the dimensional one by the parameter

V0r =

r
m
Cr

y0
t0
, (4.75)

where y0 is the common scaling factor for the modal displacement, t0 is the characteristic
time. The diagonal matrix Λ and the rectangular coupling matrix γ are defined by:

(Λ)ii = t20ω
2
i γir = (γ)ir =

(eR)ir t0√
mCr

. (4.76)

Moreover, the scaling factor for the electric charge Qr is V0rCr, i.e.

χr =
1

V0rCr
Qr =

t0

y0
√
mCr

Qr.

The key parameters of the introduced reduced order model (4.74) are the dimensionless
modal couplings γir’s, the resonance frequencies ωi’s and the electric capacitances Cr’s. γir
represents the non-dimensional coupling between the i−th mode and the r−th (piezoelec-
tric) segment. Although the capacitances do not appear explicitly in the dimensionless
governing equations, they determine the magnitude of the voltages at the piezoelectric
elements.

Remark 4.1 If the piezoelectric elements are shunted with a linear capacitive electric
network, the nodal charges Q are given as a function of the nodal voltages and voltages V
by a linear relation of the type

Q = NV (4.77)

where N is a np-dimensional square matrix. The corresponding relation between non-
dimensional charges and voltages is given by

χ = Nυ, (4.78)

with
(N )rs =

1√
CrCs

(N)rs (4.79)

One mode approximation

In the neighborhood of a resonance frequency ωi the effects of other mechanical modes
are neglected by setting ξj = 0 for j 6= i, and the system can be modelled with a single
mechanical degree of freedom as follows:

ξ̈i + ξi −
X
r∈Jp

γirυr = zi,

υr + γirξi = χr, r ∈ Jp,
(4.80)

where the scaling time is set to t0 = 1/ωi. More complex and accurate models may be
used to account for the effects of the neighboring modes (Moheimani and Heath, 2002).
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Figure 4.2: Four modes equivalent circuit representation of a stepped beam with two
piezoelectric segments.
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4.5.2 Equivalent circuit representation

When designing electric circuits for specific control purposes a purely electric model of
the stepped beam is valuable (Kagawa et al., 2001). It can be used to perform numerical
simulations via standard circuit simulation software. An equivalent circuit representation
of the modal model (4.70), may be obtained by paralleling the modal velocities and modal
forces to currents and voltages, respectively. As an illustrative example. Figure 4.2 reports
a four modes circuit representation of a stepped beam with two piezoelectric segments.
It is easy to check that the application of Kirchhoff laws together with the use of the
inductor, capacitor and transformer constitutive laws yield the set of equations (4.70).
Before assigning numerical values to circuital components, the units of the mechanical
quantities appearing in the circuit equivalent should be “translated” from mechanical into
electrical units: force from newton to volt, mass from kilogram to henry, modal com-
pliance from meter/newton to farad, modal coupling from newton/volt to dimensionless
turns-ratio. Vice-versa, the modal velocities are read from the corresponding branch-
currents after conversion from ampere to meter/second. When more modes are accounted
for, or more piezoelectric segments are present, the equivalent circuit representation is
straightforwardly obtained.

4.6 Case study and comparisons

4.6.1 Geometry

The different methods for the modal analysis are tested and compared for the cantilever
beam in Figure 4.3. This is an aluminum beam hosting two surface bonded bimorph pairs
of thickness-polarized piezoelectric transducers. The system is a stepped piezoelectric
beam including three elastic and two piezoelectric segments. Table 4.1 reports the corre-
sponding geometric properties. The numerical values used for the material constants are
those given in Appendix A.2. These data correspond to the experimental set-up described
in Section 6.3. In three-layer piezoelectric segments, the beam constitutive coefficients for
the Euler-Bernoulli model are calculated by using the NSR model presented in Chapter 3,
Eqns. (3.37). The so-found numerical values for the bending stiffness, coupling coefficient,
piezoelectric capacitance per unit line, and linear mass density are reported in Table 4.2.

4.6.2 Numerical results

This section reports the natural frequencies and the mode shapes for the beam in Figure
4.3 with short-circuited piezoelectric segments. When using the LEN method, they are
calculated as the eigenvalues and the eigenvectors of the dynamic stiffness matrix K(ω).
For the beam in Figure 4.3 the dynamic stiffnessK(ω) is a ten by ten matrix whose entries
are transcendental functions of ω (there are five elements and six nodes with two degrees
of freedom per node; the total number of degrees of freedom becomes ten after eliminating
the two degrees of freedom corresponding to the clamping condition). When using the
other three Galerkin methods, the beam modal properties for short-circuited piezoelectric
elements are found by solving the linear eigenvalue problem posed by equation (4.58),
where the second contribution to the stiffness matrix (4.60) is not present. The reported
results are calculated with the following choices of degrees of freedom for the different
cases:
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Dimensions (mm)

l1 = 5.0 l2 = 36.5 l3 = 6.0 l4 = 36.5 l5 = 117.0
l = 201.0 wp = 1.76 wb = 2.0 hp = 0.267 hb = 2.85

Table 4.1: Dimensions of the stepped piezoelectric beam in Figure 4.3

Figure 4.3: Geometry of the stepped beam considered in numerical examples and exper-
imental tests.

Piezoelectric segments Elastic segments

k
(h)
Mw = 4.10Nm

2 e
(h)
MV = −1.08× 10−3Nm /V k

(h)
Mw = 2.66Nm

2

ρ(h) = 0.228 kg /m ε
(h)
qv = 2.62μF /m ρ(h) = 0.154 kg /m

Table 4.2: Numerical values of the beam constitutive coefficients in piezoelectric and
elastic segments
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1. AM method: 8 d.o.f.s given by the first 8 mode shapes of the homogeneous cantilever
beam;

2. EAM method: 12 d.o.f.s, given by the first 8 mode shapes of the homogeneous
cantilever beam and the 4 jump functions {θi}i=1...4 defined as in (4.65);

3. FE method: 26 d.o.f.s given by the nodal displacement and rotation at the 13 nodes
obtained by subdividing each of the beam segment into subelements of the same
length with 1 subelement in the first and third segment, 3 subelements in the second
and fourth segment, and 5 subelements in the fifth segment.

Figure 4.5 shows the four special jump functions and the corresponding second deriv-
atives used in the EAM method. Figure 4.4 reports the plots of the mode-count function
J(ω) and the Last Energy Norm dn(ω) defined in Eqns. (4.41) and (4.46). It shows the
characteristic graph of the dn is composed of several regular branches where the function
is monotonically decreasing. Each branch has a single root of the Last Energy Norm,
which corresponds to a natural frequency of the system, as shown also by the mode-count
function.
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Figure 4.4: Mode Count function and Last Energy Norm for the beam in Figure 4.3 with
short-circuited piezoelectrics.
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Figure 4.5: Special jumps functions used in the EAMmethod and their second derivatives.
The functions are normalized to satisfy condition (4.56).

Natural Frequencies

Table 4.3 reports the first four natural frequencies for short-circuited piezoelectric elements
computed with the four methods presented in this Chapter. The natural frequencies of the
homogeneous aluminum cantilever beam without the piezoelectric transducers explicitly
show the influence of the piezoelectric elements in the stepped beam modal properties.
The values computed with the LEN method are chosen as a reference for the approx-
imate methods and the relative errors are tabulated in brackets. The LEN method is
based on the exact formulation of the transcendental eigenvalue problem for the infinite
dimensional stepped piezoelectric beam. Its errors are limited to those implied by the
numerical accuracy used for computed the roots of the last energy norm and can be easily
controlled. On the other hand, the results obtained by the other methods, in addition to
the numerical errors implied by the computation of the solution of the associated (linear)
eigenvalue problems, are affected by the approximation of the infinite dimensional system
with a finite dimensional one.
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f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

LEN 66.6859 363.59 1001.24 1954.99

AM 67.28 365.742 1007.76 1969.53
(+0.89%) (+0.592%) (+0.650%) (+0.744%)

EAM 66.68 +363.60 1001.33 1955.19

(+6.79× 10−4%) (+2.79× 10−3%) (+8.25× 10−3%) (+0.0101%)

FE 66.69 363.61 1001.49 1957.06

(+2.12× 10−4%) (+4.24× 10−3%) (+0.0242%) (+0.106%)

Unif. beam 57.61 361.02 1010.86 1980.88
(−13.6%) (−0.708%) (+0.960%) (+1.32%)

Table 4.3: First four natural frequencies of the stepped beam in Figures 4.3 with short-
circuited piezoelectric transducers. Comparisons among the numerical values obtained
with the different methods. The percent differences with respect to the values found with
the LEN method are indicated. Also the frequencies of the aluminum beam without the
transducers (uniform beam) are reported as a reference

Mode shapes

Figure 4.6 plots the mode shapes and curvatures as obtained with the different numerical
methods. For the FE method, I report the nodal displacement and the average element
curvatures, obtained by the nodal rotations of each element.

Comments

Table 4.4 summarizes the characteristic features of the presented numerical methods, based
on the analysis of the achieved results and on the efforts required to get the numerical
solution. Although the assumed modes method is the most popular, it exhibits several
drawbacks. Because of the excessive smoothness of the assumed basis functions it fails to
capture the curvature jumps at the material discontinuities. This causes a poor estimation
of the beam natural frequencies. On the other hand, the special jump functions introduced
in its enhanced version allow simultaneously increasing the frequencies’ accuracies and ac-
counting for the effects of the beam segmentation. The finite-element method provides
accurate estimates of the lowest natural frequencies. However, the mode shapes are not
accurately computed, due to the lack of continuity of the curvatures at the element junc-
tions. It is remarkable that, while the errors implied by the finite-element estimations is
rapidly increasing with the mode number, the enhanced assumed modes method provides
good estimates also for higher natural frequencies.
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LEN AM EAM FE

Accuracy on frequencies – Fair High High

Accuracy on mode shapes – Poor High Medium

Basis functions – Modes of the
hom. beam

Modes of the
hom. beam
+ jump func-
tions

Hermite
polynomials

Stiffness matrix Transcendental
with the fre-
quency,
symmetric,
banded

Symmetric,
not-banded

Symmetric,
not-banded

Symmetric,
banded

Assembly of matrices Easy Not needed Not needed Easy

Accuracy on mode curvatures Very High Poor High High, but re-
quires post-
processing

Table 4.4: Comparison between the four methods for numerical modal analysis.
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Figure 4.6: Mode shapes and mode curvatures of the stepped cantilever beam computed
with the presented algorithms (continuous line: LEN; dashed line: AM; dotted line: EAM;
dots: FE nodal displacements and average element curvatures; dash-dotted line: modes of
the homogeneus beam).
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Chapter 5

Passive vibration control through
distributed piezoelectric
transducers and electric networks
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Object of the Chapter

This Chapter considers beams including multiple piezoelectric elements shunted with resistive
or resistive-inductive electric circuits. The electric circuits, which include the inherent piezoelectric
capacitances, are used to electrically dissipate the mechanical vibrational energy, serving as passive
vibration absorbers. The main objectives of this work are to deeply analyze the passive shunting
damping technique when using a single piezoelectric element and to study the extensions toward
distributed passive control. The material is organized as follows. Section 1 discusses the main
concepts of passive electric damping and presents a review of the main literature on the subject.
Section 2 shows how the modelling techniques presented in Chapters 3 and 4 are applied to beams
with multiple piezoelectric transducers shunted with resistive-inductive circuits. The main results
for a single piezoelectric element shunted with a resistive or resistive-inductive circuit are shown
in Section 3. This point, albeit well-known in the technical literature, is treated in detail to
clearly illustrate the main phenomena. Moreover, the optimization problems of the simple 1 d.o.f.
resistive and resistive-inductive electric circuits serves as a master problems for the rest of the
Chapter. Section 4 studies distributed passive electric control in infinite beams with uniform
arrays of piezoelectric elements by using homogenized models and a wave approach. Performing
resistive-inductive and purely resistive electric networks for wave absorption are shown. Section
5 presents a refined analysis of the distributed electric damping in a finite beam with a finite
number of piezoelectric elements. The optimization and the damping performances of a resistive
network and a resistive-inductive network are studied. These systems are chosen for their damping
performance and for being viable solutions for a first experimental validation. A numerical case
study is studied in details. It will be also used as a numerical reference for the experimental results
presented in the following Chapter. Section 6 resumes the main results.



5.1 Introduction and literature review

5.1 Introduction and literature review

Passive electric damping exploits piezoelectric transducers to couple mechanical structures
to passive electric systems, where the vibration energy is absorbed. A classical application
of this concept is the resonant-shunted piezoelectric transducer studied by Hagood and
von Flotow (1991). The damping device is a piezoelectric element positioned on the host
structure and shunted with an inductor and a resistor. The external shunt forms, with
the inherent piezoelectric capacitance, a RLC circuit that can be tuned to a resonance
frequency of the mechanical structure. An electromechanical beating phenomenon is es-
tablished and the electric resistance is optimized to maximize the electric dissipation of
the mechanical energy. This system is the electric analog of the well-known mechanical
vibration absorber studied by Den Hartog (1956). Series and parallel configurations of the
external shunt are possible, leading to similar results. The advantages of this damping
technique are manifold:

- The electric systems are easily tunable. Adaptive versions of the damping device are
conceived (Hollkamp and Starchville, 1994).

- Very high damping is introduced around a selected resonance frequency.

- The additional weight and size are small.

- The control system, being passive, is unconditionally stable.

The main drawback of this passive control strategy is the requirement of high-value
inductors working at high-voltage and low-frequency. For typical values of the inherent
piezoelectric capacitances (10÷ 100 nF), tuning the electrical resonance frequency to the
structural ones (10 ÷ 100Hz) requires 10 ÷ 1000H. Furthermore, the large internal par-
asitic dissipation of such large inductors may exceed the optimal design dissipation for
low frequency vibration suppression. Active electronic filters are usually required to sim-
ulate the needed impedances. The advantages of a completely passive control system are
partially lost, because the active components require an external feeding and limit the
maximum allowable voltage. However, unconditional stability is still guaranteed and the
energy consumption is relatively low. Some authors (Fleming et al., 2003; Park and In-
man, 2003) propose to add to the resonant shunt a parallel capacitor to reduce the value of
the required inductance. However, as emphasized by Caruso (2001), this can dramatically
decrease the damping performances. Alternatively, one can remove the inductance and
consider only a resistive shunt, which is completely passive and extremely simple. But
the damping performance are reduced because the system does not take advantage of a
resonance phenomenon for the amplification of the electromechanical energy exchange.
Comparisons between the resonant shunt and the purely resistive shunt are provided by
Hagood and von Flotow (1991). Lesieutre (1998) reviewed the different shunting tech-
niques, including active shunting, like the negative capacitive shunting, and the non-linear
shunting, like the switching technique.

The single resonant shunt is efficient only in a narrow frequency band and for a single
structural mode (unimodal damping). Developments toward multimodal resonant damp-
ing are proposed by Hollkamp (1994) and Niederberger et al. (2004). They propose to
use a multi-degrees-of-freedom shunting circuit for a single piezoelectric transducer. The
circuit includes multiple inductors, resistors and capacitors, to form several RLC branches.
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The multiple electric resonances are tuned to multiple structural modes. However, using
a single piezoelectric element and additional external capacitors reduces the damping per-
formances. Moreover, the placement of a single piezoelectric transducer cannot be optimal
for multiple modes. Some authors (Forward, 1979; Wu, 2000) use a negative capacitors as
shunting circuit. This technique introduces a high multimodal damping, but is a purely
active technique and suffers of dangerous stability issues. Tsai and Wang (1999) studied
active-passive shunts, where passive circuits are used to enhance the action authority of
active controllers. Ozer and Royston (2003) studied the optimization and the damping
performance of RL shunts for reducing the sound-radiation of plates.

Juang and Phan (1992) provided an interesting viewpoint for passive shunts. They an-
alyze virtual passive controllers, defined as particular control systems characterized by a
second-order dynamics with symmetric, non—negative definite, mass, stiffness, and damp-
ing matrices. Virtual passive controllers are intrinsically stable control systems and can
be regarded as a generalization of passive shunts.

An alternative approach for wide-band passive damping is the distributed passive elec-
tric control originally proposed by dell’Isola and Vidoli (1998). Distributed passive elec-
tric damping extends the concept of piezoelectric shunting to continuum systems. Instead
of using a single piezoelectric element shunted with a two-terminal electric network, it
considers structures with multiple piezoelectric transducers and multi-terminal shunting
networks. The piezoelectric elements are uniformly distributed throughout the host struc-
ture to form a modular system. The electric network is assumed to be modular, being
composed of inductors and resistors interconnecting each piezoelectric transducer to the
neighboring modules and to ground. The electric part of the system, comprised of the RL
network and the inherent piezoelectric capacitances, plays the role of a distributed electric
absorber of the mechanical energy. Distributed electric networks which are able to simul-
taneously damp multiple mechanical modes are shown in (Alessandroni et al., 2002; Porfiri
et al., 2004; Andreaus et al., 2004) for beams, and in (Alessandroni et al., 2004; Alessan-
droni et al., 2005) for plates. Complete reviews about the main results obtained with this
method are given in (dell’Isola et al., 2003) and (dell’Isola et al., 2005). (Kader et al., 2003)
studied, in the framework of active control, optimal control laws for similar devices, which
include uniformly distributed piezoelectric sensors and actuators.

My work in this area was focused on the analysis of the damping performances of
different network topologies serving as distributed passive controllers for beam vibrations
(Maurini et al., 2004; dell’lsola et al., 2003) and on the experimental validation of the
concept of distributed passive damping (dell’Isola et al., 2004).

5.2 Beams with piezoelectric transducers shunted with pas-
sive electric networks

The previous Chapters discussed 1D models, modal analysis, and reduced order models of
beams with multiple piezoelectric elements. In the following, these results are applied to
investigate the dynamic properties and the damping performances of piezoelectric beams
shunted with passive, inductive-resistive, electric networks.
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5.2.1 RL Electric Networks

A mathematical model for a beam with n piezoelectric elements is given by the weak
formulation (4.1). Shunting the piezoelectric transducers on a resistive-inductive network
means to interconnect the n electric terminals of the piezoelectric elements1 to a n-terminal
ground-referred RL network. A voltages vector V and a charge vector Q, representing
voltages and charges at the n electric terminals, determine the state of the RL network.
It is assumed that the shunting network is characterized by a constitutive law of the type

Q̈ = −NRV̇−NLV, (5.1)

where NR is a conductance matrix and NL is an inductive-susceptance matrix. If the
electric network is reciprocal and passive, NR and NL are symmetric, positive-definite
matrices. The effect of the shunting network on a piezoelectric beam is accounted for by
introducing the constitutive law (5.1) in the weak formulation (4.1).

In the following analysis the electric state variables Q and V are replaced with the
electric current vector I and the electric flux-linkage vector φ, which are defined by2

I = Q̇, φ̇ = V. (5.2)

In these new state variables, the constitutive equation (5.1) takes the form

I = −NRφ̇−NLφ. (5.3)

It gives the currents flowing through the terminals of the shunting network as a function
of the nodal flux-linkages.

5.2.2 Modal model of the coupled system

In dynamic applications, a reduced order modal model provides an accurate and simple
approximation of the dynamical behavior of a beam with multiple piezoelectric elements.
In this model, the mechanical deflection field is expanded on a truncated modal basis of the
beam with short-circuited piezoelectric transducers. As shown in the previous Chapter,
Eqns. (4.70), the corresponding electromechanical equations of motion are in the form:

MM ÿ+KMy − eM φ̇ = F, (5.4a)

Cφ̈+ eTM ẏ = I, (5.4b)

whereMM and KM are diagonal modal mass and stiffness matrices, eM is a coupling ma-
trix, and C is the diagonal matrix of the inherent piezoelectric capacitances, as defined in
Eqns. (4.71-4.72). Eqn. (5.4b) is the time derivative of equation (4.70b). The substitution
of the constitutive equation of the shunting network (5.3) for the external current I leads

1 I consider piezoelectric elements having one electrode connected to ground and the other one free for
being shunted with a ground-referred circuit.

2This allows avoiding integro-differential in time for modelling a RLC electric network.
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to

MM ÿ +KMy− eM φ̇ = F, (5.5a)

Cφ̈+NRφ̇+NLφ+ e
T
M ẏ = 0. (5.5b)

This system can be recast in a non-dimensional form as done in Section 4.5.1:

ξ̈ + Λξ − γψ̇ = z, (5.6a)

ψ̈ +NRψ̇ +NLψ + γTξ̇ = 0, (5.6b)

where, being t0 and y0 the scaling time and mechanical displacement, the non-dimensional
quantities are defined as follows

ξi = yi/y0, ψr = φr/φ0r, zi =
t20
my0

Fi,

(Λ)ii = t20ω
2
i , γir = (γ)ir =

(eM)ir t0√
mCr

(NL)rs =
t20√
CrCs

(NL)rs , (NR)rs =
t0√
CrCs

(NR)rs

(5.7)

To preserve the symmetry of the electromechanical coupling, different piezoelectric trans-
ducers have different scaling flux-linkages, depending on the corresponding capacitance.
For the generic r-th transducer of capacitance Cr

φ0r =

r
m
Cr

y0, (5.8)

where m is the beam total mass which is used for normalizing the mechanical mode shapes.

The electric resistive and inductive operatorsNR andNL, being symmetric and positive
definite, have real eigenvectors and eigenvalues. The r-th eigenvectors v(r) and u(r) of NR

and NL are such that
NRv

(r) = νrv
(r), NLu

(r) = μru
(r), (5.9)

where νr and μr are the corresponding (positive) eigenvalues. Each one of the two sets
{u(r)}npr=1 and {v(r)}

np
r=1 forms an orthogonal basis for the np-dimensional electric state-

space. When the two operators share the same eigenvectors, they define a coordinate
system which decouples the electric equations of motion for null mechanical displacements.
In this instance, if U is the matrix whose columns are the common eigenvectors of NR

and NL, the change of coordinates

ψ = Uη, UTU = I (5.10)

transforms the system (5.6) into

ξ̈ + Λξ − Γη̇ = 0, (5.11a)

η̈ + ΛRη̇ + ΛLη + Γ
Tξ̇ = 0. (5.11b)
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where ΛR and ΛL are diagonal matrices defined by

ΛR = U
TNRU = diag(ν1, ...νnp),

ΛL = U
TNLU = diag(μ1, ...μnp).

The new non-dimensional coupling matrix Γ is given by

Γ = γU . (5.12)

The columns of U are the modes of the electric network for blocked mechanical displace-
ments. The square root of the eigenvalues μr’s are the corresponding natural frequencies,
the νr’s are proportional to the modal damping ratios. In general, Γ is a full matrix and
all the electric modes are coupled to all the mechanical ones3. In some cases, it is possible
to consider the coupling between a pair of mechanical and electric modes, by neglecting
the influence of other modes. This happens when a resonance phenomenon between a
mechanical and an electric mode is established.

If NR and NL do not share the same eigenvectors, one can always operate the co-
ordinate transformation (5.10) by taking as columns of U the eigenvectors of NL. This
diagonalizes the matrix ΛL, but ΛR remains full.

5.3 Single shunted piezoelectric transducer

5.3.1 Governing equation

Figure 5.1: Cantilever beam with a single RL-shunt.

Consider a beam with a single piezoelectric transducer of capacitance C shunted with
a parallel RL circuit as the cantilever beam in Figure 5.1. The RL parallel shunt is a
one-terminal ground-referred network. The current I and the electric flux-linkage φ are
related by the constitutive relation

I = − 1
R
φ̇− 1

L
φ (5.13)

3Here and henceforth, for mechanical modes I mean the mechanical modes at constant electric flux-
linkage. Similarly, for electric modes I mean the electric modes at blocked mechanical displacement.
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Hence the equations (4.70) read as

MM ÿ+KMy − eM φ̇ = F, (5.14a)

Cφ̈+
1

R
φ̇+

1

L
φ+ eTM ẏ = 0. (5.14b)

The single RL-shunted transducer is used for damping a single structural mode, say the
i-th one, by tuning the electrical resonance to the target frequency. A single mechanical
d.o.f. (the i-th modal coordinate) is sufficient for estimating the system response in a small
neighborhood of the natural frequency ωi. The corresponding non-dimensional equations
for the mechanical modal coordinate ξi and the electric voltage ψ̇ of the piezoelectric
transducer are

ξ̈ + ξ − γψ̇ = ϕ, (5.15a)

ψ̈ + δψ̇ + βψ + γξ̇ = 0. (5.15b)

The scaling time is set to t0 = 1/ωi and the tuning and damping parameters β and δ
depend on the inductance and the resistance of the shunt:

β =
1

ω2iLC
, δ =

1

ωiRC
. (5.16)

The non dimensional coupling coefficient is given by

γ =
(eM)i√
mC

. (5.17)

The equations for a purely resistive shunt are obtained by letting L→∞ in Eqns. (5.14)
and setting β = 0 in Eqns. (5.15).

Remark 5.1 The coupling coefficient γ is always smaller than 1, as shown by Ikeda
(1990). Its typical value in structural applications is 0.1÷ 0.5.

5.3.2 Optimization and damping performances: RL shunt

The RL-shunted piezoelectric transducer is used as damped electric absorber of mechanical
vibration. The inductance L and the resistance R of the shunting circuit are optimized to
maximize the electric damping. This subsection shows two different criteria for the choice
the electric tuning (β) and damping (δ) parameters and to consequently find the optimal
values of L and R. The first criterion minimizes the decay time of the free oscillations by
suitably placing the system poles (eigenvalues); the second criterion reduces the maximum
value of the beam mobility function. Both the methods rely on the 2 d.o.f.’s models
given by Eqns. (5.15). Analytical formulas for the optimality conditions are obtained
by revisiting classical results on mechanical vibrations absorbers (e.g. Den Hartog, 1956).
Further details on the optimization of resonant shunted piezoelectric transducers are found
in Hagood and von Flotow (1991) and Caruso (2001).
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(a)

(b)

Figure 5.2: RL-Shunt. Qualitative root locus (a) and absolute value of the mechanical
mobility as a function of δ for optimal tuning parameter (β = 1). The mechanical mobilities
are for γ = 0.2
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Pole Placement (PP) criterion

The system (5.15) is a set of two second order differential equations in the time domain.
The exponential solutions of the homogeneous version (ϕ = 0)∙

ξ
ψ

¸
=

∙
ξ̂

ψ̂

¸
eλt (5.18)

must satisfy the following system∙
λ2 + 1 −λγ
λγ λ2 + λδ + β

¸ ∙
ξ̂

ψ̂

¸
=

∙
0
0

¸
. (5.19)

Thus admissible λ0s are solution of the characteristic equation

λ4 + λ3δ + λ2
¡
γ2 + β + 1

¢
+ λδ + β = 0, (5.20)

whose four roots (λ1, λ2, λ3, λ4) are either real or complex conjugate in pairs. For each
root λj there is at least one electromechanical eigenvector {ξ̂(j), ψ̂(j)}T . Hence, when the
roots are all distinct4, the general solution for the free evolution is given by∙

ξ
ψ

¸
=

4X
i=1

∙
ξ̂(j)

ψ̂(j)

¸
eλjt (5.21)

Each term is characterized by an exponential decay rate5 |Re(λj)|. For pairs of complex
conjugate roots the evolution is oscillatory with circular frequency |Im(λj)| and exponential
decay rate |Re(λj)|. The whole solution (5.21) is characterized by the system decay rate

D(β, δ) = min
i=j...4

(|Re(λj(β, δ))|), (5.22)

where the dependence of the system eigenvalues and the decay rate on the electric para-
meters β and δ is explicitly underlined. An alternative damping measure, which is defined
only on the oscillatory part of the solution, is the system damping ratio

ζ(β, δ) = min
j=1...4

|Im(λj)|6=0

¯̄̄̄
Re(λj(β, δ))

Im(λj(β, δ))

¯̄̄̄
(5.23)

The optimization based on the Pole Placement criterion chooses β and δ to maximize
the decay rate of the free evolution D(β, δ). This condition is realized (Hagood and von
Flotow, 1991) when the roots appear as two coincident complex conjugate pairs

λ1,2 = a+ ib, λ3,4 = a− ib (5.24)

and the characteristic polynomial is

(λ− λ1)
2(λ− λ4)

2 = λ4 − 4aλ3 + λ2
¡
6a2 + 2b2

¢
− 4λa

¡
a2 + b2

¢
+ (a2 + b2)2 (5.25)

4A similar expression is found when multiple roots are present if the corresponding geometric multiplicity
coincides with the algebraic multiplicity. Otherwise terms of the type tkeλit appear.

5The system is dissipative and Re(λi) ≤ 0 for each root of the characteristic polynomial.
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(a) (b)

Figure 5.3: Time evolution of the RL-Shunt optimized with the Pole Placement method
for initial conditions on the mechanical displacement (2 d.o.f. model). (a) Electrical (red,
dashed) and mechanical (blue, continuous) modal coordinates. (b) Total energy partitioned
in mechanical (blue) and electric (red) contribution. The total electric and mechanical
energies are additionally subdivided in kinetic and potential parts. The plots are with
γ = 0.2

By imposing that the characteristic polynomial (5.20) is in the desired form (5.25), the
following optimal damping and tuning parameters are found

βopt = 1, δopt = 2γ. (5.26)

The associated decay rate is
Dopt = γ/2 (5.27)

The condition (5.26) is optimal also for the maximization of the system damping ratio
(5.23). Figure 5.2a displays the qualitative root locus of the characteristic polynomial
(5.20) when varying δ for β = 1. The optimal point is marked with a red cross. Figure
5.3 reports the optimal time evolution of the system (5.15) for initial conditions on the
mechanical displacement. The energy evolution in Figure 5.3b shows that part of the
mechanical energy is converted in the electric form, where dissipation occurs.

Criterion on the mobility function and Fixed Point (FP) method

An alternative criterion for optimization of the shunting circuit is based on the reduction
of the maximum amplitude of the system forced response, i.e. on an H∞ minimization
of the absolute value of the mechanical mobility function. By considering a frequency
domain version of the system (5.15), one finds that the mechanical mobility (velocity over
applied force) is

HRL (ω, β, δ) :=
F
h
ξ̇
i
(ω, β, δ)

F [ϕ̇] (ω, β, δ) = −
jω
¡
−ω2 + β + jωδ

¢
−ω4 + ω3jδ + ω2 (β + 1 + γ2)− jωδ − β

(5.28)
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where ω is the dimensionless angular frequency and F [·] denotes the Fourier Transform.
The cost function of this optimization criterion is

H(β, δ) = kHRLk∞ = max
ω
|HRL (ω, β, δ)| . (5.29)

The optimal values of β and δ are those for which H is minimum.
As suggested by Den Hartog (1956), the related optimization problem is solved ana-

lytically by exploiting some peculiar properties of the transfer function. For a fixed value
of the tuning parameter β, the graph of the amplitude of the mobility function value is
characterized by two fixed points (see Figure 5.2b)

S = (ωS, |HRL (ωS , β)|) and T = (ωT , |HRL (ωT , β)|) (5.30)

that are independent of the parameter δ. The frequency ωS and ωT are found by looking
for the intersection of the frequency response for δ = 0 and δ →∞ :

ωS,T =
1

2

r
2 + 2β + γ2 ±

q
−16β + (2 + 2β + γ2)2 (5.31)

Hence, the optimization is done in two steps:

1. Select the tuning parameter β to the value βopt for which the transfer function attains
the same amplitude at the two frequencies ωS and ωT . This can be done for any
value of δ because the amplitude at ωS and ωT is independent of δ. The simplest
relation is found by imposing

lim
δ→∞

|HRL (ωS , β, δ)| = lim
δ→∞

|HRL (ωT , β, δ)| . (5.32)

2. Set the dissipation parameter δ to the value δopt by imposing that the transfer
function with β = βopt has horizontal tangents at ωS and ωT , i.e. satisfies the
following condition:

d

dω
|HRL (ω, βopt, δ)|

¯̄̄̄
ω=ωT

=
d

dω
|HRL (ω, βopt, δ)|

¯̄̄̄
ω=ωS

= 0. (5.33)

The conditions above make the graph of the transfer function flat in the neighborhood
of the mechanical resonance and minimize its maximum amplitude H(β, δ) (see black-
continuous curve in Figure 5.2b).

The solution of the system formed by Eqns. (5.32) and (5.33) gives the following
optimal values for the tuning and damping parameters

βopt = 1, δopt =
p
3/2γ. (5.34)

The corresponding H∞ norm of the mobility function is

H(βopt, δopt) =

√
2

γ
. (5.35)
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Remark 5.2 When β = βopt = 1,

ωT − ωS =
γ√
2
. (5.36)

Equation (5.36) is used in Chapter 6 for the experimental identification of the dimension-
less coupling coefficients appearing in the modal model (5.6).

5.3.3 Optimization and damping performances: R shunt

By referring to the 2 d.o.f’s model (5.15), for a purely resistive shunt β is equal to zero
and the sole free parameter is the damping coefficient δ. The optimization criteria and
methods used for the RL shunt can be adapted to this case. The expression for the system
characteristic polynomial and mobility function are immediately obtaining by setting β = 0
in Eqns. (5.20) and (5.28). Figure 5.4 reports the corresponding qualitative root locus and
the absolute value of the mobility function for different values of the damping parameter.

Pole Placement (PP) criterion

For a resistive shunt the characteristic polynomial is third order in λ (the trivial root
in λ = 0 is not considered). It has non-positive real root (λ1 = −c ≤ 0) and a pair of
complex conjugate roots with non-positive real part (λ2,3 = −a± ib, a ≥ 0). Imposing the
corresponding factorization of the characteristic polynomial gives a system of non linear
equations for a, b, c ∈ R+

δ = c(a2 + b2), (5.37a)

1 + γ2 = a2 + b2 + 2ac, (5.37b)

δ = 2a+ c. (5.37c)

The elimination of b and δ leads to the following expressions for a as a function of c

a = γ2
c

2(1 + c2)
< c (5.38)

The last inequality holds because γ ≤ 1. It shows that the minimization of the system
decay rate (5.22) is equivalent to the maximization of a, which is the absolute value of the
real part of the less damped root.

The elimination of b and c from the system (5.37) results in the following equation in
a and δ

2a(1 + 4a2 + γ2 + δ2)− (8a2 + γ2)δ = 0 (5.39)

The implicit function theorem gives the derivative of a with respect to δ. It vanishes for

δopt = 1 +
γ2

2
' 1 (5.40)

This is the value of electric damping δ which maximizes the system decay rate. The
corresponding values of a, b, c are

a =
γ2

4
, b =

p
1 + γ2/2− γ4/4, c = 1 (5.41)
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(a)

(b)

Figure 5.4: R-Shunt. Qualitative root locus (a) and absolute value of the mechanical
mobility (b) as a function of the damping parameter δ. The mechanical mobilities are for
γ = 0.2.
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The optimal decay rate is

Dopt = a =
γ2

4
(5.42)

Figure 5.4a shows the qualitative root locus of the system as a function of δ (only the
upper half of the complex plane is shown). The roots’ locations for the optimal damping
are marked with the red crosses.

Criterion on the mobility function and Fixed Point (FP) method

The mechanical mobility of a purely resistive shunt is immediately evaluated as

HR (ω, δ) = HRL (ω, 0, δ) (5.43)

When varying the damping coefficient δ, the graph of the absolute value of the me-
chanical mobility function shows a single fixed point F = (ωF , |HR (ωF , δ)|), with

ωF =

r
1 +

γ2

2
, |HR (ωF , δ)| = |HR (ωF )| =

s
2(2 + γ2)

γ4
. (5.44)

This is found by looking for the intersections of |HR (ω, 0)| and |HR (ω,∞)|. The same
minimization criterion adopted for the RL-network yields

δopt =

s
8 + 10γ2 + 3γ4

8 + 2γ2
. (5.45)

This result is derived by imposing

d

dω
|HR (ω, δ)|

¯̄̄̄
ω=ωF

= 0.

The corresponding maximum value of the HR (ω, δopt) is

Hopt = HR (ωF , δopt) =

s
2(2 + γ2)

γ4
' 2

γ2
. (5.46)

5.3.4 Comments and comparisons

R-shunt vs RL-shunt

Table 5.1 resumes the results on the optimization of the single RL and R shunts with
the pole placements and fixed point methods. Figure 5.5 reports the performance indices
associated with the pole placement criterion and the H∞ norm of the mechanical mobility
function of the RL-shunt, defined in Eqns. (5.22) and (5.29). The relevant comments
about these results are listed below:

• Sensitivities6. The contour plots in Figure 5.5 show that, for both the criteria, the
damping performances of the RL shunt are very sensitive on the tuning parameter

6A detailed analytical study of this point is carried out by Porfiri (2005).
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(a) (b)

Figure 5.5: RL-Shunts: Contour plots of the performance indexes of the two optimization
methods (Pole Placement and Fixed Point) as a function of the damping (δ) and tuning
(β) parameters. Optimal conditions for the (PP) and the (FP) methods are marked with
a "circle" and a "star", respectively. The plots are for γ = 0.2

LR - shunt R - shunt

(PP) (FP) (PP) (FP)

βopt 1 1 − −

δopt 2γ
p
3/2γ 1 +

γ2

2
' 1

q
8+10γ2+3γ4

8+2γ2
' 1 + γ2

2

H(βopt, δopt) 2/γ

√
2

γ
' 2

γ2

q
2(2+γ2)

γ4 ' 2

γ2

D(βopt, δopt) γ/2 ' 0.306γ − 0.121γ2 γ2

4
' γ2

4

Table 5.1: Comparisons of optimal parameters and optimal performances for the RL and
the R shunts when using the Pole Placement (PP) and Fixed Points (FP) methods. The
(PP) method maximizes D(β, δ), the (FP) method minimizes H(β, δ).
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5.4 Distributed wave absorbers for infinite beams

β. The effectiveness of this damping device is based on the amplification of the
electromechanical energy exchange with an internal resonance. A small mistuning
between the natural frequencies of the electrical and the mechanical subsystems
strongly reduces the damping. For these reasons adaptive versions of the resonant
shunts have been conceived (Hollkamp and Starchville, 1994; Niederberger et al.,
2004). On the other hand, moderate deviations of the damping parameter δ from
its optimal value do not sensibly affect the system performances. This holds also for
the purely resistive shunts, whose performances are stable with respect to δ.

• Pole-placement vs Fixed points. The optimizations based on the two methods
lead to similar results. For the RL shunt, the optimal value of the tuning coefficient
is always that one for which the natural frequencies of the mechanical and electric
subsystems coincide (β = 1). The optimal damping required by the (PP) method is a
slightly bigger than the damping required by the (FP) method. But the performances
measured with the criterion of one of the two methods, when applying the optimal
damping of the other method, are close to the optimum (see Table 5.1 and Figures
5.5 and 5.2b). For the purely resistive shunt this difference is negligible.

• R-shunt vs RL-shunt. Referring to the results of the (FP) method, the ratio
between the maximum amplitude of the optimal response of the resonant and the
purely resistive shunts is

HRL
opt

HR
opt

=
γp

(2 + γ2)
'
√
2

2
γ (5.47)

This shows that the RL shunt is particularly convenient when γ is small. If a higher
piezoelectric coupling is available (i.e. γ is closer to 1), the resistive shunt may be
preferable to the RL shunt because it is much simpler. The pole placement criterion
leads to similar conclusions.

5.4 Distributed wave absorbers for infinite beams

Resonant shunted or purely resistive shunted piezoelectric elements are effective vibration
absorbers for a single structural mode. The present Section extends the same concept
to continuum systems. Beams with uniformly distributed piezoelectric elements shunted
with resistive-inductive and purely resistive networks are considered. The piezoelectric
beam with the distributed shunt is regarded as an electromechanical continuum, where
electric and mechanical waves are coupled. The piezoelectric elements and the shunting
network form a distributed electric absorber of the mechanical energy. The goal is to find
distributed shunts that are effective for dissipating mechanical energy for a wide range of
frequencies and wavelengths. The design process includes the choice of an interconnection
scheme between the piezoelectric transducers and the optimization of the corresponding
circuital components. This is done in the following steps:

1. Regard the whole system as an electromechanical continuum by assuming a homog-
enized model. In this phase, the electric network is a black-box, mathematically
modelled by an unknown differential operator. The mechanical and electric proper-
ties are assumed to be homogeneous (i.e. independent of the axial coordinate).
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2. Consider the coupled electromechanical dynamics of the so-obtained system and
choose the electrical operators that guarantee a performing electric damping of me-
chanical energy.

3. Show modular lumped electric networks that, in the homogenized continuum models,
are modelled by the desired differential operator.

5.4.1 Continuum modelling of modular beams with shunted piezoelec-
tric elements

Figure 5.6: Modular beam with distributed piezoelectric transducers shunted with a
generic RL electric network.

Consider a beam with distributed piezoelectric transducers as in Figure 5.6. The
piezoelectric elements are uniformly spaced; the beam and the piezoelectric elements form
a modular electromechanical system. The shunting network is a linear passive inductive-
resistive circuit.

If the length of the basic module in Figure 5.6 is sufficiently smaller than the charac-
teristic wavelength of the considered phenomena, it is appropriate to adopt a homogenized
continuum model of the electromechanical system. In this framework, the mechanical and
electric proprieties and state variables are averaged over the basic module. The kinemati-
cal descriptors are a homogenized displacement field wH(x, t) and a homogenized electric
flux-linkage ψH(x, t). The corresponding force-like variables are the homogenized bending
momentMH(x, t) and the current to ground per unit line IH(x, t). The constitutive equa-
tions for the homogenized variables reflect the linear bending-electric coupling introduced
by the piezoelectric elements. They are assumed to be in the form

MH = KHw
00
H − eHψ̇H (5.48a)

IH = eHw
00
H + εH ψ̈H (5.48b)

where KH , eH , and εH are homogenized bending stiffness, piezoelectric coupling, and
piezoelectric capacitance per unit line. The balance equations are the standard moment
balance and the distributed version of the Kirchhoff’s law

M 00
H − bT = 0 (5.49a)

IH = I
(Net)
H (5.49b)

where bT is the applied transverse force per unit line and I
(Net)
H is the current per unit
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5.4 Distributed wave absorbers for infinite beams

line flowing from the shunting network to the piezoelectric beam7. Basic inertia actions
are introduced by prescribing the following constitutive behavior for bT

bT = −ρHẅH + b0

where ρH is the homogenized lineic mass density and b0 is the non-inertial external force.
The electric network, being a linear passive inductive-resistive distributed circuit, is mod-
elled by the following constitutive equation

I
(Net)
H = − 1

l0
L[ψH ]−

1

r0
R[ψ̇H ] (5.50)

where L[·] and R[·] are linear non-negative definite, self-adjoint space-differential8 oper-
ators modelling electric stiffness-like and damping-like properties; l0 and r0 are positive
constants representing characteristic values of the inductance per meter and resistance per
meter of the electric network (their physical dimensions are H×m and Ω×m). Finally,
the equations of motions for the electromechanical system are found by substituting the
constitutive equations (5.48) and (5.50) in the equilibrium equations (5.49):

ρHẅH +KHw
0000
H − eHψ̇

00
H = b0 (5.51a)

εH ψ̈H +
1

l0
L[ψH ] +

1

r0
R[ψ̇H ] + eHẇ

00
H = 0 (5.51b)

Remark 5.3 The phenomenological model sketched above can be made rigorous and quan-
titative. The interested reader can refer to (Maurini et al., 2004) for a rough micro-macro
identification procedure for deriving simple expressions for the homogenized coefficients.
When excluding the shunting network, the two-scale convergence of a refined beam model
to this homogenized limit and quantitatively accurate estimates for the homogenized coeffi-
cients ρH , KH , eH , εH are shown in (Porfiri, 2005). The homogenization of structures with
distributed piezoelectric elements is studied also in (Kader et al., 2003). This problem is
not faced here, where the homogenized model is used only for a qualitative analysis and pre-
liminary design. A refined design of experimental set-ups and the numerical-experimental
comparisons rely on the accurate modal model (5.6).

5.4.2 Wave propagation and optimal homogenized properties of shunt-
ing networks

k-waves

Let us consider the propagation of electromechanical waves of non-dimensional wavenum-
ber k in the infinite electromechanical system. This is done by studying the behavior of

7The electric current balance (5.49b) states that the current per unit line flowing from the piezoelectric
beam to ground is equal to the current per unit line flowing from the shunting network to the piezoelectric
beam.

8 It is assumed that the constitutive behavior of the electric network is local, i.e. the current I(ext)H (x, t)
depends only on (ψH(x, t), ψ̇H(x, t)) and their space-derivatives up to a fixed order, which is not specified
at this stage.
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solutions of Eqns. (5.51) in the form of k-waves :∙
wH(x, t)
ψH(x, t)

¸
=

∙
WH(k, t)
ΨH(k, t)

¸
eikx (5.52)

The substitution of the expression above in Eqns. (5.51) for b0 = 0 leads to the following
system of time-differential equations for the mechanical and electric amplitudes of k-waves

ρHẄH + k4KHWH + k2eHΨ̇H = 0 (5.53a)

εHΨ̈H +
1

l0
l(k)ΨH +

1

r0
r(k)Ψ̇H − eHk

2ẆH = 0 (5.53b)

The scalars l(k) and r(k) are unknown non-dimensional positive-valued functions of the
wavenumber k. They represent the spectra of the linear operators L[·] and R[·] and they
will be denoted characteristic functions of L[·] and R[·].

The system (5.53) can be recast in the non-dimensional form9

ẄH +WH + γΨ̇H = 0 (5.54a)

Ψ̈H + β(k)ΨH + δ(k)Ψ̇H − γẆH = 0 (5.54b)

with the following choice of the scaling time t0 and electric flux-linkage ΨH0

t0(k) = k2
r

KH

ρH
, ΨH0 =

r
ρH
εH

WH0 (5.55)

The corresponding non-dimensional parameters are

γ =
eH√
KHεH

, β(k) =
1

l0

l(k)

εHk4
ρH
KH

, δ(k) =
1

r0

r(k)

εHk2

r
ρH
KH

This shows that for any wavenumber k, the time evolution of the propagating waves looks
like the time evolution of the two d.o.f.’s system (5.15). The distributed electric network
plays the role of an absorber of mechanical waves.

The equations of motion for a purely resistive distributed network are given by Eqns. (5.51)
in the limit l0 →∞. The corresponding time evolution of k-waves is governed by the sys-
tem (5.54) with β = 0.

Remark 5.4 The homogenized model provides accurate results only for sufficiently small
wavenumbers k. As a rule of thumb, the results of the homogenized model obtained for a
k̄-wave are physically meaningful only if the length of the basic module of the system in
Figure 5.6 is less than 1/(2k̄).

Optimization for a selected wavenumber k̄

The optimization problem for damping waves with a single wavenumber k = k̄ coincides
with the optimization problem of the single shunted piezoelectric transducers. The opti-

9The same notation is used for the dimensional and the non-dimensional state-variables (WH ,ΨH) and
time-derivatives (superscripted dot).
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mal tuning and damping parameters are immediately obtained by exploiting the analogy
between the system (5.15) and the system (5.54). By looking for the maximization of the
decay rate of k̄-waves10, the optimal electric parameters are those found in Section 5.3.2
for the RL-network and in Section 5.3.3 for the R-network.

Therefore, to satisfy the optimality condition (5.26), any distributed resistive-inductive
network, independently of its characteristic functions l(k) and r(k), is optimized for the
wavenumber k̄ by setting

l0 =
l(k̄)

εH k̄4
ρH
KH

, r0 =
1

2eH

r(k̄)

k̄2

r
ρH
εH

(5.56)

For a distributed purely resistive network the conditions (5.40) on the optimal damping
is met by setting, for the wavenumber k̄

r0 =
r(k̄)

k̄2

√
KHρH

2KHεH + e2H
' r(k̄)

k̄2
1

εH

r
ρH
KH

(5.57)

Optimal RL-network: fourth order electric network with second order dissipa-
tion (FS-Network)

Let x0 be a scaling length. A careful analysis of the relations (5.56) shows the following
crucial properties.

Proposition 5.1 If the characteristic function of L[·] and R[·] are

l(k) = x40k
4, r(k) = x20k

2 (5.58)

the optimal l0 and r0 in Eqns. (5.56) become independent of the wavenumber k̄. This means
that a distributed absorber having the characteristic functions (5.58) is optimized for all
the wavenumbers at the same time. Its damping performances become independent of the
wavenumber. Their measure is the optimal system decay-rate

D
(RL)
opt =

γ

2

Proposition 5.2 The optimal characteristic functions (5.58) are obtained if

L[·] = Lopt[·] = x40
∂4[·]
∂x4

(5.59a)

R[·] = Ropt[·] = −x20
∂2[·]
∂x2

(5.59b)

This shows that the distributed electric networks governed (in the homogenized limit)
by a differential equations where the inductive term appears with a fourth-order space-
derivative and the resistive term with a second-order space-derivative is an "optimal" dis-
tributed absorber of bending waves. The word "optimal" means that the components of
such a resistive-inductive electric network can be tuned to a single value, which is optimal
for damping bending waves of any arbitrary wavenumber.
10The decay-rate of k-waves is scaled with the scaling time t0(k) defined in Eqn. (5.55). k1-waves and

k2-waves have the same decay-rate if they reduce to 1/e of their initial value in the same number of cycles
(and not in the same time).
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Remark 5.5 If the optimization criterion for the minimal forced response formulated in
Section 5.3.2 was adopted, the same results would have been obtained. The only modifica-
tion is a slightly different optimal value for r0.

Remark 5.6 This result is valid only if the homogenized model is valid. A lumped electric
network respecting the optimal conditions (5.59) on the homogenized differential operators
effectively damps waves with a given wavenumber only if the basic module of the system
in Figure 5.6 is sufficiently small.

Optimal R-network: purely resistive network with second order dissipation
(S-Network)

Similar results are shown for the purely resistive networks, for which Eqn. (5.57) shows
the following property:

Proposition 5.3 If
r(k) = x20k

2, (5.60)

the optimal r0 in Eqn. (5.57) becomes independent of the wavenumber k̄. The corresponding
optimal decay rate is

D
(R)
opt =

γ2

4
(5.61)

Thus:

Proposition 5.4 The optimal characteristic function (5.60) is obtained if

R[·] = Ropt[·] = −x20
∂2[·]
∂x2

(5.62)

The operator Ropt[·] is the optimal one for purely resistive networks. It introduces an
optimal damping for any wavenumber with a single value of the resistance per unit line.

Comparisons with other networks

The optimal network operators for passive damping of propagating bending waves have
been established. However, obtaining physical systems with these optimal properties can
be difficult from the technological point of view, especially for the synthesis of the fourth-
order network. This motivates the analysis of the damping performances of alternative
RL networks, namely:

• A second order network with second order dissipation (SS), characterized by the
constitutive operators

L[·] = −x20
∂2[·]
∂x2

, R[·] = −x20
∂2[·]
∂x2

(5.63)

• A zeroth order network with second order dissipation (ZS), characterized by the
constitutive operators

L[·] = · , R[·] = −x20
∂2[·]
∂x2

(5.64)

112



5.4 Distributed wave absorbers for infinite beams

Figure 5.7: Non-dimensional system decay-rate for k-waves in systems optimized for the
wave number k̄. Comparisons of (FS), (SS), (ZS), and (S) networks. The numerical plot
is for γ = 0.2.

These networks can be optimized only for a single wavenumber, say k̄. The optimal
values of l0 and r0 are prescribed by the relations (5.56) where

l(k̄) = x20k̄
2, r(k̄) = x20k̄

2 (5.65)

for the (SS)-network and
l(k̄) = 1, r(k̄) = x20k̄

2 (5.66)

for the (ZS)-network.
The optimal damping for k = k̄ equates that of the (FS) network. But it is interesting

to analyze how this damping varies with k in systems optimized for the wavenumber k̄.
Figure 5.7 reports the damping performances (the system decay-rate) of the (SS) and (ZS)
networks as a function k/k̄ and compares them to those of the (FS) and (S) networks. It
shows that:

• The damping performances of the (FS) and (S) network are independent of k/k̄.
Their decay-rates are γ/2 and γ2/4, respectively.

• The damping performances of the (SS) and (ZS) networks are almost coincident.
For k̄-waves they also coincide with those of the (FS)-network. But the damping
performances rapidly decrease for k 6= k̄. For k > k̄ the system decay-rate tends to
the decay-rate of the (S)-network.

5.4.3 Lumped circuits with the desired homogenized limits

The shunting networks were regarded as continuum systems. They were characterized by
a differential constitutive relation between the homogenized current per unit line flowing
into the piezoelectric elements, I(Net)

H , and the homogenized flux-linkage field, ϕH . In
the real system, there is a discrete set of piezoelectric elements and the electric network
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Figure 5.8: Shunting networks for distributed passive damping.

is characterized by a constitutive relation between discrete sets of nodal currents and
nodal flux-linkages. This poses a further problem after the optimization of the continuum
system: to find lumped electric networks having the desired behavior in the continuum
limits. Similar problems were studied in the 50’s and 60’s, where lumped electric networks
emulating the behavior of continuous structures were used for analog computing (Karplus
and Soroka, 1959). From a different context, also the book of Brillouin (Brillouin, 1946)
about waves propagation in periodic structures provides useful information.

The solution is not unique: different lumped circuits can have the same continuum
limit when the distance ∆x between two contiguous nodes tends to zero. Lumped circuits
leading to zeroth-order and second-order networks are well-known (e.g. electric transmis-
sion lines and telegrapher’s equation). Fourth-order networks are less common. Figure
5.8 shows lumped RL circuits that approximate the constitutive behavior of the (FS), (S),
(ZS), and (SS) networks. For the (FS) network two solutions are shown. One uses only two
terminals components, but requires negative inductors (Alessandroni et al., 2002; Mau-
rini et al., 2004). The other comprises only passive components, but it introduces two-
port transformers. Systematic synthesis procedures for these networks were developed in
(Porfiri et al., 2004) and (Porfiri, 2005). In the following, I show how the lumped networks
approximate the desired continuum systems. The results on the optimal homogenized co-
efficients are translated in terms of discrete circuital components.

A simple circuital analysis of the five networks in Figure 5.8 shows that the current Ii
flowing-out from the i-th node is given as a function of the flux linkage of the node i and
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of the neighboring nodes as follows11:

(S) : Ii =
1

R
D(2) [ϕ̇i] (5.67a)

(ZS): Ii =
1

R
D(2) [ϕ̇i]−

1

L
ϕi (5.67b)

(SS): Ii =
1

R
D(2) [ϕ̇i] +

1

L
D(2) [ϕi] (5.67c)

(FS): Ii =
1

R
D(2) [ϕ̇i]−

1

L
D(4) [ϕi] (5.67d)

where

D(2) [ϕi] = ϕi+1 − 2ϕi + ϕi−1 (5.68a)

D(4) [ϕi] = ϕi+2 − 4ϕi+1 + 6ϕi − 4ϕi−1 + ϕi−2 (5.68b)

As well known in lattice theory (Brillouin, 1946) and finite-difference techniques (Tichonov
and Samarkij, 1981), the difference operators (5.68) on the nodal flux-linkages ϕi’s approx-
imate the second order and fourth order differential operators on the field ϕH as follows

∂2[ϕH ]

∂x2
=

D(2) [ϕi]

∆x2
+ o

¡
∆x2

¢
,

∂4[ϕH ]

∂x4
=

D(4) [ϕi]

∆x4
+ o

¡
∆x4

¢
(5.69)

Let us assume that, in the continuum limit (∆x→ 0), the homogenized current per unit
line I

(Net)
H flowing-out from a generic point of the continuum model of the network is

approximated in terms of the current Ii of the lumped network as

I
(Net)
H = Ii/∆x (5.70)

Hence, the substitution in Eqns. (5.67) of the inverse relations between difference operators
and differential operators shows that the following equations characterize the homogenized
models of the different networks:

(S) : I
(Net)
H =

∆x

R

∂2[ϕH ]

∂x2
+ o (∆x) (5.71a)

(ZS): I
(Net)
H =

∆x

R

∂2[ϕH ]

∂x2
− 1

L∆x
ϕi + o (∆x) (5.71b)

(SS): I
(Net)
H =

∆x

R

∂2[ϕH ]

∂x2
− ∆x

L

∂2[ϕH ]

∂x2
+ o (∆x) (5.71c)

(FS): I
(Net)
H =

∆x

R

∂2[ϕH ]

∂x2
− ∆x

3

L

∂4[ϕH ]

∂x4
+ o (∆x) (5.71d)

These expressions associate, for ∆x→ 0, the optimal homogenized parameters l0 and
r0 given in Eqns. (5.56) and (5.57) to optimal values of the circuital components in Figure
5.8. Table 5.2 reports the optimal inductances and resistances of the different networks as
a function of the homogenized material parameters, the scaling length x0, the wavenumber

11The two (FS)-networks are characterized by the same relations between the currents to ground and the
nodal flux-linkages. The transformers are assumed to have a unitary turn-ratio. Otherwise an amplification
factor on the inductances will appear.
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(FS) (S) (SS) (ZS)

Lopt
1

n3
ρH

εHKH

1

k̄3
− 1

n

ρH
εHKH

1

k̄3
ρH

εHKH

1

k̄3

Ropt
1

n

p
ρH/εH
2eH

1

k̄

1

n

√
KHρH

2KHεH + e2H

1

k̄

1

n

p
ρH/εH
2eH

1

k̄

1

n

p
ρH/εH
2eH

1

k̄

Table 5.2: Optimal values of the inductors and the resistors for the networks in Figure
5.8

k̄, and the number of piezoelectric elements in the characteristic length which is defined
by

n = x0/∆x. (5.72)

The scaling length x0 is set to 1/k̄.
The optimal inductance is an important parameter12. The results in Table 5.2 de-

serve some comments about the optimal inductance and its dependence on the number of
piezoelectric elements in the characteristic length13 n:

• When increasing n, the optimal inductances are reduced as 1/n3 in the (FS) network
and as 1/n in the (SS) network. Vice versa, they are independent of n in the (ZS)
network.

• The total inductance per characteristic length, which is proportional to Loptn, de-
creases as 1/n2 in the (FS) network, is constant in the (SS) network, and increases
as n in the (ZS) network.

• In the (FS) and (SS) networks, the optimal inductance can be reduced by using
more, smaller, piezoelectric elements. This makes the waves absorber based on the
(FS) and (SS) networks suitable for the miniaturization of the basic element.

• The (FS)-networks shown in Figure 5.8 need, in addition to positive inductors, either
negative inductors or two-port transformers. This partially cancels out the advantage
of the strong reduction of Lopt when increasing n14.

• Because of the dependence of Lopt on n, the (ZS) is not competitive with the (SS)-
network. The latter, having the same performances, requires smaller inductors (at
least for sufficiently big n). The (ZS)-network is not suited for distributed damping
because the total required inductance increases when increasing n.

12The main technological limit of the resonant shunting technique is the need of huge inductors to tune
the electric frequencies to the structural ones.
13 In the following, increasing the number of modules n means to reduce at the same time the length of

the basic module by keeping constant the total amount of piezoelectric material.
14Negative inductors are active components and can be realized (but with stability issues) by using

Active RC circuits with operational amplifiers. The ideal transformer is a passive component. But efficient
transformers correctly behaving for a wide band at law frequencies are difficult to manufacture. For this
reason it is often preferable to simulate them with active circuits. This makes the (FS)-networks quite
complex and expensive for experimental set-ups, especially for large n.
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5.4.4 Refined models, finite beams, and optimal boundary conditions

Optimal electric networks for distributed passive damping have been designed referring to
wave propagation in infinite systems. This allows a simple analysis of the essential phe-
nomena and to find performing network topologies. These results are directly applicable
to real structural problems only if special hypotheses are satisfied. Namely:

• The considered wavelength is sufficiently shorter than the characteristic structural
dimensions, so that the influence of the boundary conditions on the dynamical be-
havior is negligible;

• The basic module of the modular system must be smaller than the characteristic
wavelength, in such a way that the design strategy based on the homogenized model
holds.

This strategy led to interesting solutions for the development of "smart materials"
with high inherent damping, which is obtained through a proper electrical microstruc-
ture. These results can be extended to plates (Vidoli and dell’Isola, 2001; Alessandroni
et al., 2004). However, manufacturing materials with the desired properties is technically
involving. The critical point is the need of performing multi-terminal electric networks
with unusual properties.

Applications also point out the need for controlling the first few structural modes with
a limited number of piezoelectric elements. The adaptation of the proposed design strategy
to this framework poses further problems, as:

• The choice of the boundary modules of the electric networks, which specifies the
electric boundary conditions.

• The analysis of the effect of the lumped nature of the electric network on the damping
performances.

The first point requires to formulate the problem in terms of boundary value prob-
lems and modal coupling instead that in terms of wave propagations in infinite systems.
The second point requires to validate the preliminary design obtained with the continuous
model by using refined beam models and precise numerical modal analysis. The following
Section treats these issues for the second-order networks, which are those used for exper-
imental testing (see Chapter 6). Detailed numerical studies on fourth-order networks are
found in (Andreaus et al., 2004) and (Porfiri, 2005). The problem of adapting the optimal
fourth-order network with second-order dissipation for multi-modal vibration control of
finite structures is not presented here, being specifically studied in (Porfiri, 2005).

5.5 Modal control with second-order networks

The analysis based on wave propagation and homogenized models shows that the second-
order (S)-network is the optimal resistive network. The (SS)-network, albeit it is not
the optimal inductive-resistive network, has a interesting two-fold damping behavior (see
Figure 5.7): for a selected wavelength (or frequency) it behaves as an optimal RL network
exploiting resonance phenomena to enhance the electric dissipation of the mechanical
energy; for higher wavelengths (or frequencies) it behaves as an optimal R network. These
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Figure 5.9: Cantilever beam with 5 piezoelectric elements shunted with a RL second-order
network.

damping properties, the relative simplicity of the required circuitry, and the dependence
of the optimal inductance on the number of piezoelectric elements, make the (S) and (SS)
networks in Figure 5.8 the best candidates for a first experimental validation of passive
distributed electric control. Experimental results are reported in the following Chapter.
This Section shows an accurate design procedure for the optimal circuital components,
including those determining the electric boundary conditions. The systems are optimized
for controlling a single mode, even though additional, resistive-like, damping is also shown
on higher modes. This is proven by a numerical example, which also provides a reference
for comparison between experimental and numerical results.

5.5.1 Governing equations

Consider a system similar to the one in Figure 5.9, where an array of piezoelectric elements
is uniformly distributed on a beam and shunted with a network of the (SS)-type or of the
(S)-type. The following analysis, which is based on a modal model of the system, is valid
for any boundary condition and number of piezoelectric elements. The value of the line-
inductors and line-resistors is common for all the components. But the inductors and
the resistors of the boundary modules can take different values. They specify the electric
boundary conditions. They influence the resonance frequencies and the mode shapes of the
RLC electric circuit formed by the inherent piezoelectric capacitances and the shunting
network. The purely resistive (S)-network is obtained by letting the inductances going
to infinity. For the resistive-inductive (SS)-network, I assume that the ratio between line
and boundary resistances coincides with the ratio between line and boundary inductances.
The resistances (R0, Rn) and the inductances (L0, Ln) are specified as function of R and
L through the following relations

(R0, L0) =
1 + α0
1− α0

(R,L), (Rn, Ln) =
1 + αn
1− αn

(R,L) (5.73)

which are defined to span all possible values of (R0, L0, Rn, Ln) for (α0, αn) ∈ [−1, 1) ×
[−1, 1).

A refined modal model for the beam with the piezoelectric elements and RL shunting
network was given in Section 5.2.2, Eqns. (5.5). It remains to specify the shunting-network
constitutive matrices.
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Network constitutive equations

For a second order RL network as the one in Figure 5.9, the matrices appearing in the
network constitutive equations (5.3) are in the form

NR(α0, αn) =
1

R
N(α0, αn), NL(α0, αn) =

1

L
N(α0, αn), (5.74)

with

N(α0, αn) =

⎡⎢⎢⎢⎢⎣
2

1+α0
−1 0 ... 0

−1 2 −1 ... ...
0 −1 ... ... 0
... ... ... 2 −1
0 ... 0 −1 2

1+αn

⎤⎥⎥⎥⎥⎦ , (5.75)

The matrix of the inherent piezoelectric capacitances is

C = C χ, χ =

⎡⎢⎢⎢⎢⎣
χ1 0 0 0 0
0 χ2 0 0 0
0 0 .. 0 0
0 0 0 χn−1 0
0 0 0 0 χn

⎤⎥⎥⎥⎥⎦ (5.76)

where the constants χr’s are defined as the ratio between the r-th piezoelectric capacitance
Cr and the average capacitance C.

Due to hypothesis (5.73), the electric damping operator NR is proportional to the
electric stiffness operator NL. As shown in Section 5.2.2, the mode shapes of the electric
network for blocked mechanical displacements are found as the eigenvectors of the matrix

(N )rs =
1

√
χrχs

(N)rs , (5.77)

which coincides with N when all the piezoelectric capacitances take the same value.

2 d.o.f. modal model

Consider the coupling between a pair of selected electric and mechanical modes, say the
i-th mechanical mode and j-th electric mode. If the influence of other electrical and me-
chanical modes is neglected, the procedure detailed in Section 5.2.2 leads to the following
non-dimensional system of two ODE’s in the mechanical (ξi) and electrical (ηj) modal
coordinates:

ξ̈i + ξi − γη̇j = 0, (5.78a)

η̈j + δη̇j + βηj + γξ̇i = 0. (5.78b)

Being λj(α0, αn) and u(j)(α0, αn) the j-th eigenvalue and eigenvector of N (α0, αn), and
ωj the mechanical natural frequency, the non-dimensional tuning and damping parameters
are given by

β =
λj(α0, αn)

ω2i LC0
, δ =

λj(α0, αn)

ωiRC0
. (5.79)
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The coupling constant γ is the scalar product of the first raw of γ, say γ(i), and u(j):

γ(α0, αn) = γ(i) · u(j) =
X

r=1...np

γir u
(j)
r (α0, αn). (5.80)

The electric eigenvector is assumed to be normalized to respect the following condition°°°u(j)°°° =pu(j) · u(j) = 1. (5.81)

5.5.2 Optimization

The purely resistive and resistive-inductive second-order electric networks are optimized
to damp a single structural mode with a single electric mode. In particular, the numerical
applications consider the damping of the first mechanical mode with the first electric mode
(i = j = 1). The optimization is performed on the basis of the 2 d.o.f. model (5.78). This
allows for using the results of the single shunt obtained in Section 5.3.2. The optimization
criterion based on the minimization of the system forced response is chosen. This leads a
simple comparison between numerical and experimental results.

RL network

For a RL network, when choosing the criterion for the minimization of the system forced
response, the optimal values of β and δ in Eqns. (5.78) are given by Eqns. (5.34). The
corresponding optimal L and R are

Lopt(α0, αn) =
λj(α0, αn)

ω2iC0
, Ropt(α0, αn) =

r
2

3

λj(α0, αn)

ωiC0γ(α0, αn)
. (5.82)

The associated norm of the system forced response is

H̄opt = Hopt(α0, αn) =

√
2

γ(α0, αn)
. (5.83)

The dependence of the system norm (5.83) on the modal coupling γ shows that the electric
boundary conditions (α0, αn) must be selected to maximize γ. This poses an auxiliary
optimization problem on the boundary conditions:

Problem 5.1 Find (α0, αn) ∈ [−1, 1) × [−1, 1) which maximize the modal coupling
γ(α0, αn) defined in Eqn. (5.80).

The function γ(α0, αn) is easily evaluated numerically when the values of the coupling
constants γir’s are known. The parameters (α0, αn) are defined in a bounded interval.
A simple numerical optimization of γ(α0, αn) furnishes the optimal boundary conditions
(ᾱ0, ᾱn). The corresponding maximum amplitude of the optimal response is

Hopt(ᾱ0, ᾱn) =

√
2

γ(ᾱ0, ᾱn)
. (5.84)

Hence, Eqns. (5.82) computed for the optimal (α0, αn) give the optimal line inductances
and resistances. The associated optimal values of (R0, Rn) and (L0, Ln) are obtained
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through the definitions (5.73).

Remark 5.7 The performance index γ(α0, αn) has the upper bound15

γUB =
°°°γ(i)°°° . (5.85)

In general, this upper bound is not attainable for any value of (α0, αn). The relative cou-
pling coefficient

γ(α0, αn)/γUB (5.86)

evaluates how much a tentative solution (α0, αn) deviates from the "ideal" boundary con-
ditions.

R network

In a purely resistive second-order network, the inductive part of the network constitutive
equations is null:

NL(α0, αn) = 0. (5.87)

The electric modes for blocked mechanical displacement are the eigenvectors ofNR(α0, αn).
When the influence of higher modes is neglected, the coupled dynamics of the first electric
mode and the first mechanical mode is governed by Eqns. (5.78) with β = 0. The optimal
value of the damping parameter δ for the minimization of the system response is the same
shown in Section 5.3.3 for the single resistive shunt. Thus, the optimal line resistance is

Ropt(α0, αn) =
λj(α0, αn)

ωiC0

s
8 + 2γ2(α0, αn)

8 + 10γ2(α0, αn) + 3γ4(α0, αn)
' λj(α0, αn)

ωiC0
. (5.88)

The corresponding norm of the mechanical mobility function is

Hopt(α0, αn) =

s
2(2 + γ2)

γ4(α0, αn)
' 2

γ2(α0, αn)
. (5.89)

The optimal values of (α0, αn) and the optimal boundary resistances are found exactly as
for the RL network with the auxiliary optimization problem on the modal coupling.

Remark 5.8 For the purely resistive network, the influence of other electric modes on
the coupled evolution between the selected pair of mechanical and electric modes may be
not negligible. In this case, there are not resonance phenomena which amplify the energy
exchanges between the selected modes, as for the resistive-inductive network. Nevertheless,
the simple 2 d.o.f. model is retained for getting simple analytical results. This is reasonable
because the low sensitivity of the optimal performances on the resistance allows for the use
of a rough model for the optimization.

15By the Schwartz’s inequality and the normalization condition (5.81):

γ(α0, αn) = γ(i) · u(j) ≤ γ(i) u(j) = γ(i) .
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Figure 5.10: Cantilever beam with 5 piezoelectric elements used for experimental test-
ing and numerical case study for the second-order R and RL networks. The additional
piezoelectric transducer is used for excitation.

l wb hb lp wp hp d da
273.6mm 19.5mm 1.90mm 35.6mm 17.8mm 0.27mm 10.0mm 5.0mm

Table 5.3: Geometry of the beam with five piezoelectric transducers in Figure 5.10

5.5.3 Numerical example

The optimization procedure based on the 2 d.o.f. modal model is tested numerically for a
specific case study, corresponding to the beam used for experimental tests in Section 6.4:
the cantilever aluminum beam with 5 surface-bonded piezoelectric elements reported in
Figure 5.10. The geometric properties are listed in Table 5.3; for the material properties
refer to Appendix A.2. The beam is equipped with an additional piezoelectric transducer,
which is used for giving the excitation. This additional exciting transducer is included
in the model. For this structure the electric networks are optimized to damp the first
mechanical mode with the first electric mode.

The LEN method (see Chapter 5) for the numerical modal analysis provides an ac-
curate reduced-order electromechanical modal model for the beam with the piezoelectric
elements. In this instance, taking into account the piezoelectric element used for the ex-
citation, the piezoelectric beam is comprised of 13 regular segments, 7 being piezoelectric
and 6 elastic. Among the 7 piezoelectric segments, 6 are two-layered, 1 is three-layered
(the beam segment where both the exciting and the shunting piezoelectric elements are
present). The beam constitutive coefficients of the different segments (the bending stiffness
kMw, the piezoelectric coupling eMV , and the piezoelectric capacitance per unit line εqV )
are evaluated by using the NSR beam model developed in Chapter 3. This model includes
the effect of transverse stress and shows a good agreement with 3D results. Table 5.4
lists the so-found numerical values for the constitutive coefficients of single-layered, two-
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kMw (Nm2) eMV (Nm /V) εqV (μF /m)

Single-layered 0.769 − −
Two-layered 1.05 −4.10× 10−4 1.41

Three-layered 1.48 −4.12× 10−4 1.54

Table 5.4: Electromechanical constitutive coefficients for the single-layered, two-layered,
and three-layered segments of the beam in Figure 5.10. For the three-layered segments, the
piezoelectric coupling and the capacitance are those of each one of the two piezoelectric
layers.

Natural frequencies (Hz)

f1 f2 f3

20.80 125.6 348.0

Coupling coefficients for the first mode
γ11 γ12 γ13 γ14 γ15 γ1e

0.136 0.128 0.0786 0.0374 0.00976 0.142

Table 5.5: Natural frequencies (for the first three modes) and non-dimensional coupling
coefficients (for the first mode) of the cantilever beam in Figure 5.10

layered, and three-layered segments16. In the three-layered segments, the two piezoelectric
segments are used independently (without any cross-sectional electrical interconnections
between the non-grounded terminals). The piezoelectric coupling and piezoelectric ca-
pacitances reported in Table 5.4 are for each one of the two piezoelectric layers. All the
piezoelectric transducers of length lp are nominally identical and their common inherent
piezoelectric capacitance for blocked axis deflection is

C = εqV lp = 51.0 nF . (5.90)

Table 5.5 shows the first three mechanical resonance frequencies for short-circuited piezo-
electric elements and the non-dimensional modal coupling coefficients for the first mode.
The coefficient γ1e is the non-dimensional piezoelectric coupling of the additional piezo-
electric element used for excitation.

Figure 5.11 reports the contour plot of γ(α0, α5)/γUB as a function of (α0, α5) com-
puted from Eqn.(5.80) by using the modal coupling coefficients in Table 5.5. A simple
numerical optimization gives the following optimal boundary conditions for damping the

16 In this instance the cross-sectional layer arrangement is not symmetric and the electric potential is
coupled to both beam extensions and flexion. However, in the low frequency range, it is reasonable to
assume that the extensional motion takes place in the quasi-static regime. Hence extensional variables,
i.e. the beam axis extension u0 and the axial force resultant N1, are eliminated by setting, N1 = 0. This
condition is motivated by the axial equilibrium equations and boundary conditions for negligible inertial
forces.
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Figure 5.11: Contour plot of the relative coupling coefficient (γ/γUB) as a function of
the boundary impedances.

first mode of the cantilever beam with the first electric mode:

ᾱ0 = 1 ⇒ R̄0 = L̄0 =∞,

ᾱ5 = −1 ⇒ R̄5 = L̄5 = 0.

This corresponds to leaving open node 0 and short-circuiting to ground node 5. For these
optimal boundary conditions

γ(1,−1) = 0.206, γ(1,−1)/γUB = 99.56%. (5.91)

The value of the relative coupling coefficient γ/γUB shows that the performances associated
to these boundary conditions are very close the ideal ones (see Remark 5.7).

The first eigenvalue of the matrix N (1,−1) = N(1,−1) is

λ1(1,−1) = 0.1204. (5.92)

Hence, the optimal values of the line inductors and resistors are found from Eqns. (5.82)
and (5.88):

SS -Network : Lopt = 138.3H, Ropt = 71.7 kΩ;

S - Network : Ropt = 17.7 kΩ .
(5.93)

The numerical results on the optimal parameters are obtained with the 2 d.o.f. model
including only one mechanical mode and one electric mode. Figure 5.12 plots the frequency
response for beam with the so-obtained optimal networks when considering a more accu-
rate model. This model is a 10 d.o.f. model, including all the five electric degrees of
freedom and the first five mechanical modes. The reported frequency response is the ratio
between the tip velocity of the beam and the voltage applied at the additional piezoelec-
tric element, which is the quantity measured in experimental tests (see Section 6.4). The
zooms on the first three modes show that:
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• The optimization based on the two d.o.f. model is effective also when including the
influence of higher modes. Both the R and RL network approximately maintain their
optimality properties. This is shown by the fixed point of the frequency response
plots (see Sections 5.3.2 and 5.3.3). In particular, for the RL network, the S and T
points are at the same height and have horizontal tangents; for the R network, the
F point has a horizontal tangent. There is only a small detuning effect in the RL
network (T -point higher than the S-point), which is due to the influence of the tails
of higher modes around the first resonance frequency. But this effect is practically
negligible.

• Both the R and RL networks, even if optimized for the first mode, show a resistive-
like damping also for higher modes. This is in agreement with the results based
on the wave approach and the homogenized model (Figure 5.7). But differing the
refined modal model shows that the damping of the R network is even higher that
the damping of the RL network. This corrects the result of Figure 5.7.

Further details and comments are given in Section 6.4, where comparisons with exper-
imental results are presented.

Figure 5.12: Frequency response (absolute value of the mechanical mobility) of optimal
second order RL and R networks. Zooms around the first, second, and third mode are
reported. The responses are calculated numerically by assuming a reduced order modal
model for the beam (5 modes). The modal parameters are evaluated with the LENmethod.
Structural damping is neglected. The dashed lines on the zoom around the first mode show
the responses for different values of the resistances (Ropt/2 and 2Ropt).
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5.6 Conclusions

This Chapter studied vibration damping through distributed piezoelectric transducers and
passive electric networks. The single-shunted piezoelectric transducers with R or parallel
RL circuit was analyzed thoroughly. Analytical formulae for the optimal damping and
tuning parameters were obtained with two methods: one based on the maximization of the
free-oscillation decay-rate, the other based on the minimization of the forced responses.
The corresponding results show that:

• The two optimization methods provide similar results. The optimization for the
forced response requires a slightly smaller damping than the optimization for the
free response.

• The optimal damping performances depend only on a dimensionless coupling coeffi-
cient γ < 1;

• The damping performances of the RL-shunt and the R-shunt are proportional to γ
and γ2, respectively. The RL shunt is effective also for very small couplings. The
R shunt can be considered as an alternative to the RL-shunt when high coupling
is available. Its advantage is the extreme simplicity and robustness of the damping
device.

• The damping performances are very sensitive to the inductance and a fine-tuning is
required; on the other hand the sensitivity on the resistance is low.

The results on the single-shunt were extended to distributed passive vibration control in
beams including an array of piezoelectric elements shunted with a resistive-inductive multi-
terminal electric network. The analysis was performed by adopting a homogenized model
of the modular electromechanical system and by studying the properties of electromechan-
ical waves propagating in an infinite beam. In this framework, the following conclusions
are drawn:

• The time evolution of waves with a single wavenumber is analogous to the time evo-
lution of the single-shunted piezoelectric transducer. The same optimization proce-
dures can be applied to establish, for a single k, optimal resistances and inductances
for any distributed network.

• There are an optimal resistive network and an optimal resistive-inductive network.
The optimal parameters and damping performances of these networks are indepen-
dent of the wavenumber. The optimal resistive network is the (S)-network where the
resistive term appears with a second-order space-derivative; the optimal resistive-
inductive network is the (FS)-network where the resistive term appears with second-
order space-derivative and the inductive-terms appears with a fourth-order space-
derivative.

• The (SS)-network, where both the resistive and inductive terms appear with second-
order space-derivatives, shows an interesting two-fold behavior. It behaves as a
optimal RL network for a single wavenumber; for greater wavenumbers it behaves as
an optimal R network. Also the (ZS)-network, where the resistive term appears with
a second-order space-derivative and the inductive term without space-derivatives,
shows similar properties.
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• Lumped networks that approximate, in the continuum limit, the (S), (FS), (SS) and
(ZS) networks were shown. The analysis of the optimal circuital parameters as a
function of the modules in a characteristic length n proves the following behavior
for increasing n:

— the optimal inductors of the (FS) network are reduced as 1/n3;

— the optimal inductors of the (SS) network are reduced as 1/n:

— the optimal inductors of the (ZS) network is constant.

• By considering the technical problems for obtaining high values inductors, the (S),
(FS), and (SS) networks are suitable for the miniaturization of the basic module (i.e.
for having big n’s). The (ZS) network is not.

• The (FS) network requires either negative inductors or two-port transformers in
addition to positive inductors. This complicates making a prototype of the required
circuit, although the optimal inductors can be significantly reduced by increasing
the number of modules n.

From the results obtained with homogenized models and wave-propagation analysis, I
concluded that the best-suited systems for a first experimental validation of the concept
of distributed passive damping are the (S)-network, as a purely resistive network, and the
(SS)-network, as a resistive-inductive network. Hence, a detailed analysis of the appli-
cations of these systems to modal control is developed. To this end, an accurate modal
model of the electromechanical systems is considered. It accounts for the lumped nature
of the electric network and the effect of the material discontinuities introduced by the
piezoelectric elements. The lumped shunting networks were optimized to damp a single
mechanical mode with a single electric mode. The optimal inductors and resistors are
found by using the analogy with the single-shunt. But distributed modal control in finite
beams posed a further optimization problem on the terminal inductors and resistors of
the networks, which specify the electric boundary conditions. They were chosen to max-
imize the modal coupling parameter, which is shown to be determinant for the damping
performances. Finally, the results found with a simple two d.o.f. model are validated by
numerical simulations based a more complete model including multiple mechanical modes
and all the electric degrees of freedom. A numerical case study, which is based on the
geometrical and material parameters of a experimentally tested beam, shows that both
the (SS) and (S) networks, when optimized for a single mode, introduce a resistive-like
damping also on higher modes.
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Object of the Chapter

This Chapter reports the results of the experimental works related to beam modelling (Section
2), experimental modal analysis (Section 3), and distributed electric control (Section 4). The set-
ups for the experiments on strain analysis, system identification, and vibration control have several
common elements: surface-bonded piezoelectric transducers, analog active circuits for inductance
simulation, data acquisition and signal processing tools. A general description of these common
elements is given in the next Section.



6.1 Technical details about the experimental set-ups

6.1 Technical details about the experimental set-ups

6.1.1 Materials

Several metallic structures including piezoelectric patches were manufactured for experi-
mental testing. All the structures were made of aluminum Al6061-T6. The used piezo-
electric elements are the piezoelectric sheets with nickel electrodes T110-H4E-602 from
Piezo System, Inc. They are made of a thickness-polarized thin (thickness hp= 0.267mm)
layer of Lead Zirconate Titanate PSI-5H-S4-ENH. The corresponding material properties
are reported in the Appendix A.2 (Table A.2). The upper and lower surfaces of the layer
of ceramic material are cover by a thin nickel film serving as electrode. The electrode
mechanical properties (mass and stiffness) are negligible. The thickness and the material
properties of the piezoelectric sheets were chosen to obtain relatively high induced-strains
with low voltages.

6.1.2 Surface-bonding of piezoelectric transducers

The piezoelectric patches were bonded on aluminum laminae by using a two-component
structural epoxy curing at ambient temperature. A small spot of electrically conductive
epoxy was applied at the center of the bonding region, where interfacial stresses are low,
as shown by stress-transfer analysis (Crawley and de Luis, 1987; de Faria, 2003). The
conductive adhesive guarantees the electric contact between the electrode bonded on the
beam and the beam itself, which is grounded. When multiple transducers are bonded on
the same grounded metallic structure, the structure becomes a common grounded terminal
for all the transducers. For each piezoelectric patch there is a single piezoelectric terminal
available for applying a ground-referred electric potential.

6.1.3 Analog active circuits for inductor simulation

The electric circuits for resonant shunting comprise inductors and resistors. In particular,
they require high-value (1 − 100H), high-quality-factor, tunable inductors. This need is
the main technological issue of the resonant shunting techniques. The simpler shunting
circuits need only ground-referred inductors. Others circuits, as the second order RL net-
work, require also floating inductors. In this work, active electronic RC-circuits including
operational amplifiers served as synthetic inductors. Synthetic grounded inductors are
quite common in electronics. The circuits for the simulation of the floating inductors are
more complex.

Grounded inductor

The synthetic inductor exploits the two operational-amplifiers RC-circuit depicted in Fig-
ure 6.1. This is a modified Antoniou’s circuit (Senani, 1996). The ideal analysis of the
RC-circuit shows that the equivalent inductance is given by:

L =
R1R4R6

R2
C5. (6.1)

Fine-tuning is achieved by varying R6. The resistance R3 adds to the equivalent impedance
a series negative resistance. It can be exploited to cancel out parasitic losses and improve
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(a) (b)

Figure 6.1: Modified Antoniou’s circuit for simulating grounded inductors. Schematic
(a) and board integrating two tunable Antoniou’s circuits used for experiments.

the inductor quality-factor, as shown by Senani (1996).

Floating inductor

The floating inductor is simulated with the three operational amplifiers RC-circuit pro-
posed by Deboo (1967) and reported in Figure 6.2. The use of high-precision resistors
reduces the circuit non-idealities, and guarantees a two-terminal behavior of the simu-
lated inductor. A careful dimensioning of the circuit components may yield very high
quality-factors, without affecting the maximum allowed voltage. The ideal analysis of the
RC-circuit shows that it is equivalent to a floating inductance L, where

L = R2C. (6.2)

Adjusting the equivalent inductance requires either the simultaneous change of all the 13
resistances or the variation of the single capacitance C. From a practical point of view,
the only viable solution is the latter.

Components

The experimental prototypes of the synthetic inductors included high-voltage FET-input
operational amplifiers Burr-Brown OPA445AP driven by a dual-output power-supply TTi
EX752M at ±30 V and high-precision resistors (±1%). The circuital components reported
in the schematics of Figures 6.1-6.2 were dimensioned to obtain high-value high-quality-
factor inductors at low frequencies. Table 6.1 lists the values of the resistors and the
capacitors used for the application to electric vibration control with the resistive-inductive
second-order network (see Section 6.4). Different values of the equivalent inductances were
obtained by changing the capacitor C of the Deboo’s circuit and the resistor R6 of the
Antoniou’s circuit.

6.1.4 FRF measurements: data acquisition and signal processing

The experimental set-up for the measure of the structural frequency response was designed
to reduce the influence of the testing instrumentation on the structural dynamics. The

132



6.1 Technical details about the experimental set-ups

(a) (b)

Figure 6.2: Deboo’s circuit for simulating floating inductors. Schematic (a) and circuit
board used for experiments (b).

Deboo’s Circuit (L = 7. 29C H /μF = 130.5 H)

R = 2.7 kΩ C = 17.9 μF

Antoniou’s Circuit (L = 100R6H / kΩ = 19.01 H)

R1 = 3 kΩ R2 = 1 kΩ R3 = 0 kΩ R4 = 1 kΩ R6 = 198 Ω C5 = 32 μF

Table 6.1: Nominal values of the electric components of the grounded and floating in-
ductors in Figures 6.1-6.2. These specific values are used for the experiments on passive
vibration control with the second-order inductive-resistive network. Polyester capacitors
are used.
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Figure 6.3: Experimental set-up for strain analysis. Two two-element 90◦ tee-rosettes
were positioned at the center of each piezoelectric patch. The strain gages capture axial and
transverse strains and are interconnected to detect only anti-symmetric bending strains.

mechanical mobility of the beams was measured by exciting the structure with a dedicated
piezoelectric element and by detecting the response by a laser velocimeter (Polytec OFV
350), targeted at a fixed point. The excitation was given in the form of a frequency-sweep.
The input signal for the exciting piezoelectric element was generated digitally in Labview,
converted by the D/A converter National Instruments AT-MIO-16E-10, and amplified by
ad-hoc designed voltage amplifier. The analog output of the laser and the voltage applied
at the exciting transducer were measured by the A/D converter National Instruments
PCI-4452 and a personal computer was used for digital signal processing. System natural
frequencies and damping ratios were identified from experimental data by using a MatLab
frequency-domain identification toolbox.

6.2 Strain analysis of a beam with piezoelectric transducers

Chapter 2 discussed the effect of cross sectional warping and transverse (width direction)
stress in beam models of piezoelectric laminates. This Section reports the results of the
experimental strain analysis for piezoelectric patches bonded on an aluminum beam. Axial
and transverse bending strains on the surface of piezoelectric elements bonded on a can-
tilever beam in the sandwich configuration were detected for different loading conditions.
These data provide a reference for the validation of the different beam models.

6.2.1 Experimental set-up

A pair of identical piezoelectric patches were bonded on a cantilever aluminum beam
(Al6061-T6) as shown in Figure 6.3. The transducers are electrically connected in parallel
and counter-phase to form, with the aluminum layer, a sandwich beam with electric-
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6.2 Strain analysis of a beam with piezoelectric transducers

bending coupling. Each transducer was instrumented with a strain gage CEA-06-062UT-
350. This is a two-element 90 degrees tee-rosette. The strain-gages were surface-bonded at
the center of the piezoelectric elements and oriented to measure longitudinal and transverse
strains. The strain gages on the lower and the upper piezoelectric patches were connected
in the half-bridge configuration to sense only antisymmetric bending strains. Two different
signal conditioners HBM Scout 55 were used as Wheatstone bridges and signal amplifiers.
The analog outputs of the signal conditioners were recorded on a personal computers after
A/D conversion. The axial and transverse strains were measured for two different loadings
(see Figure 6.3): i) a voltage difference V applied between the grounded beam and the
electric terminal of the piezoelectric sandwich; ii) a displacement imposed at the tip of
the beam. In the first case, the beam was left free to deform and the voltage was applied
through an amplifier suitably designed for the high-impedance piezoelectric transducers.
In the second case, a controlled static tip displacement was imposed by a micrometer and
the pair of piezoelectric transducers was shorted to ground.

6.2.2 Results

Applied voltage

Figure 6.4 reports the axial and transverse strains at the surfaces of the piezoelectric
transducers measured when imposing the electric voltage V . Two sets of measurements
were taken. The first set is in static condition, the second set is in quasi-static conditions.
The static tests are affected by the well-known drift phenomenon, i.e. a slow increase
of the strain with time after the application of the DC field (Sirohi and Chopra, 2000).
In the present tests, each strain value was recorded after holding the corresponding DC
voltage for about one minute. The voltage where increased from 0 to 45 Volt with steps of
5 Volt and then decreased again to 0 Volt. Quasi-static1 tests were performed by applying
harmonic voltage at the frequency of 6Hz, for 16 different peak-to-peak amplitudes in the
range between 3.4 and 32.8 Volt. The strain values induced by these voltage levels are
quite small (in the range 1÷ 50με) and at the limit of the sensitivity of strain gauges and
the related measurement chain.

Applied displacement

Figure 6.5 reports the axial and transverse strains measured when applying a tip displace-
ment with short-circuited piezoelectric transducers. The tip displacement is applied with
increments of 0.2mm, reaching the maximum amplitude of 2mm.

6.2.3 Comments and comparisons with beam models

Table 6.2 resumes the experimental results for the axial and transverse strains and com-
pares them with the numerical estimates given by the different beam models: the proposed
NSR model, which includes 3D effects by assuming vanishing transverse stress resultants;
and the standard NS model, which assumes null transverse stresses. The values are re-
ported as microstrain per volt and microstrain per millimeter. For the two loading condi-
tions, applied voltage and applied displacement, the experimental results are extrapolated

1The first resonance frequency of the beam is at 47.3Hz .
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Figure 6.4: Bending strain on the surfaces of the piezoelectric transducers for applied
electric potential. Axial (a) and transverse (b) strains and corresponding linear trends are
reported for measures taken in the static and quasi-static (6Hz) conditions.
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Figure 6.5: Axial and transverse strains for applied tip displacement under the short-
circuit condition. Experimental values and corresponding linear trends are reported.

Applied Voltage Applied Displacement

ε1/V ε2/V ε2/ε1 ε1/d ε2/d ε2/ε1
(με/V ) (με/V ) (με/mm) (με/mm)

Exp.Static 0.72± 0.05 0.75± 0.03 1.04 57.2± 0.5 −18.0± 0.3 −0.32
Exp.Quasi-Static 0.69± 0.01 0.66± 0.01 0.96 − − −
NSR Model 0.60 0.65 1.08 58.2 −18.7 −0.32
NS Model 0.61 1.36 2.23 58.2 −19.9 −0.34

Table 6.2: Axial and transverse strain at the surface of the piezoelectric element measured
either for applied electric voltage or for applied tip displacement. Experimental values are
compared to the estimates of the present model and the NS model. The intervals are the
95 per cent confidence intervals found from the experimental data reported in Figures 6.4
and 6.5.
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from regression analysis of the data reported in Figure 6.4 and 6.5. The theoretical esti-
mates refer to the nominal values of the geometric and constitutive parameters given in
Figure 6.3 and in Appendix A.2. The analysis of Table 6.2 leads to the following comments:

• The NSR model presented in Chapter 3 correctly predicts the ratio between trans-
verse and axial strains for both the loading conditions. The standard NS model gives
good estimates for applied displacement. But it fails the prediction of the transverse
strain for applied electric potential. This is consistent with the theoretical and nu-
merical analysis of Chapter 3 (see e.g. the plots in Figures 3.7 - 3.12).

• The discrepancy between measured strains and theoretical estimates of the NSR
model is reasonable. The theoretical analysis assumes a perfect bonding conditions
and completely neglects the influence of the bonding layer. As expected, this leads
to the underestimate of the strain for applied displacement and the overestimate of
the strain for applied voltage.

• The strain for applied voltage measured in the static condition is bigger than the
strain measured in the quasi-static condition. This is explained by the drift phe-
nomenon. However, the experimental data reveal an unexpected difference between
the reductions of the axial and transverse strains. More accurate tests should be
performed to assess if it is due to a bias in the measure of the quasi-static axial
strain or if it is a real effect.

6.3 Experimental modal analysis of stepped piezoelectric
beams

This Section presents experimental procedures to identify the relevant mechanics, electric,
and coupling parameters of reduced order modal models of beams with multiple piezoelec-
tric elements. The comparisons with the numerical results obtained in Chapter 4 provides
a validation of the beam models discussed in Chapter 3.

6.3.1 Identification methods

Section 4.5 shows that the NM -th order reduced modal model (4.74) of a beam with
np piezoelectric segments is characterized by the following parameters: NM natural fre-
quencies of the beam with short-circuit piezoelectric elements, NM × np dimensionless
couplings parameters between each mode and each piezoelectric element, and np piezo-
electric capacitances for blocked mechanical deflections. While standard methods serve
for the identification of the resonance frequencies, an easy and accurate estimate of the
piezoelectric couplings and capacitances requires special techniques. The inherent struc-
tural damping was neglected in the theoretical analysis. The problem of its experimental
identification, being part of any standard identification technique, is not faced here.

The identification techniques presented below are immediately applicable to the ex-
perimental identification of the modal model of any type of structure with multiple piezo-
electric elements. The only hypothesis is the linearity of the dynamical behavior.
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6.3 Experimental modal analysis of stepped piezoelectric beams

Coupling parameters

Referring to the stepped piezoelectric beam in Figure 4.1, two methods for the identifica-
tion of the coupling parameters between the i-th mode and the r-th piezoelectric segment,
γir, are shown. The first one (Open-circuit vs Short-circuit ) is a standard method adopted
in several papers (e.g. Hagood and von Flotow, 1991). The second one (Resonant shunt
vs Short-circuit) is original. Both the methods assume a 1 d.o.f. model around each
natural frequency of the beam and compare the dynamic properties for different shunting
conditions.

Open-circuit vs Short-circuit (OS) The (OS)-method is based on the measurements
of the following quantities:

• i-th resonance frequency ωi of the beam with every piezoelectric segment short-
circuited,

• i-th resonance frequency ω̊
(r)
i of the beam with every piezoelectric segment short-

circuited except of the r − th segment, which is left open-circuited.

The difference between ω̊
(r)
i and ωi depends on the coupling coefficient. The substi-

tution of the open circuit condition (χr = 0) in Eqns. (4.80) shows that the open-circuit
frequency is given by

ω̊
(r)
i = ωi

q
1 + γ2ir (6.3)

Hence, the coupling coefficient is estimated by the following formula

¯̄̄
γ
(OS)
ir

¯̄̄
=

vuutÃ ω̊
(r)
i

ωi

!2
− 1. (6.4)

With this method, by assuming that the frequencies are measured with an uncertainty
σω, the uncertainty of the coupling estimate is

σ
³¯̄̄
γ
(OS)
ir

¯̄̄´
¯̄̄
γ
(OS)
ir

¯̄̄ =
1¯̄̄

γ
(OS)
ir

¯̄̄
vuuut⎛⎝d

¯̄̄
γ
(OS)
ir

¯̄̄
dω̊

(r)
i

⎞⎠2 +
⎛⎝d

¯̄̄
γ
(OS)
ir

¯̄̄
dωi

⎞⎠2σω
=

ω̊
(r)
i¯̄̄

γ
(OS)
ir

¯̄̄
(ωi)

2

vuuuut(ωi)
2 +

³
ω̊
(r)
i

´2
³
ω̊
(r)
i

´2
− (ωi)2

σω '
1³

γ
(OS)
ir

´2 σωωi . (6.5)

The last approximation holds for small differences between the two frequencies, i.e. for
small coupling. It shows that, for small couplings, the amplification factor of the uncer-
tainty is very large. Since this condition is usually met, the achieved precision is poor.

Resonant shunt vs Short-circuit (RS) An alternative identification method exploits
the properties of the mechanical frequency response when a resonant shunt is applied at
the r-th piezoelectric segment. Section (5.3.2) shows that the mechanical mobility function
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of a beam with a single RL shunt is characterized by two fixed points, the S and T points
in Figure 5.2b. These points are independent of the value of the shunting resistance. When
the S and T points are at the same height, the following conditions are verified:

• The shunting circuit is optimally tuned and the short-circuited mechanical resonance
frequency ωi, the inherent piezoelectric capacitance, and the shunting inductance,
verify the following relation

ω2i LCr = 1 (6.6)

• The difference between the frequencies ωS and ωT of the S and T points is

ωT − ωS =
|γir|√
2
ωi (6.7)

The latter relation shows that the non-dimensional coupling coefficient, γir, is esti-
mated by ¯̄̄

γ
(RS)
ir

¯̄̄
=
√
2
(ωT − ωS)

ωi
(6.8)

With this method when the frequencies are measured with an uncertainty σω, the
uncertainty of the estimated coupling is

σ
³¯̄̄
γ
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¯̄̄ σω
ωi

, (6.9)

the last approximation holding only for small coupling.

Piezoelectric capacitances

The inherent piezoelectric capacitance is an important parameter of the piezoelectric trans-
ducers. It determines the electrically stored energy per unit voltage. The value of the
inherent piezoelectric capacitance strongly influences the design of control systems us-
ing structurally-integrated piezoelectric transducers. In passive controllers based on the
resonant-shunt concept, it determines the value of the optimal circuital parameters (shunt-
ing inductances and resistances). In active controllers, as the negative-capacitance shunt
analyzed by Wu (2000), it influences also the controller’s stability. But the technical lit-
erature paid very little attention to the experimental identification of the piezoelectric
capacitance (and also to its theoretical estimate, as shown in Chapter 3). Very often the
following quantities are confused:

• The capacitance C(1)r of a standing-alone piezoelectric transducer, measured with a
multimeter or an impedance bridge when leaving the piezoelectric element free to
deform.

• The capacitance C(2)r of the piezoelectric transducer bonded on the structure, mea-
sured with a multimeter or an impedance bridge when leaving the whole structure
free to deform.
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6.3 Experimental modal analysis of stepped piezoelectric beams

• The capacitance Cr of the piezoelectric transducer appearing in the modal model
(4.70).

These three values can significantly differ because the capacitance of a piezoelectric
element depends on the mechanical conditions at which it is measured. The first value
C
(1)
r is the quantity usually provided in the producer’s datasheets. This is the capacitance
of a piezoelectric elements for constant mechanical stress (in the 3D sense, i.e. at constant
Cauchy stress tensor). The second value, C(2)r , is the capacitance of the whole system
comprised of the piezoelectric transducer and the host structure. It differs from C

(1)
r

because the interactions with the host structure induce mechanical stresses inside the
piezoelectric elements. The last value, Cr, is the one to take into account in the controller’s
design based on the reduced order modal model. This value differs from C

(2)
r . As shown

by Eqns. (4.70), Cr is the piezoelectric capacitance at constant axial deflections, while
C
(2)
r is for the structure free to deform.
When using a reduced order modal model for the piezoelectric structure the only

interesting value is that of Cr. This capacitance can be directly estimated by exploiting
the same resonant shunting technique used for the coupling coefficients. From the relation
(6.6), when the S and T fixed points of the mobility plot are at the same height, the
capacitance is expressed as a function of the mechanical resonance frequency in short-
circuit condition (ωi) and the shunting inductance (L) by

C(RS)r =
1

ω2iL
(6.10)

The accuracy of the estimate of Cr with C
(RS)
r is affected only by assuming a 1 d.o.f.

reduced order model of the type (4.80) for the beam with the piezoelectric elements. The
influence of other modes, which is present in reduced order modal model of order greater
than one, is neglected by setting to zero the corresponding modal coordinates. This can be
eventually improved by introducing the effect of higher modes. However, the capacitance
C
(RS)
r of Eqn. (6.10) provides a simple and reasonably accurate estimate.

6.3.2 Experimental set-up

A cantilever aluminum beam hosting two surface-bonded pairs of piezoelectric transduc-
ers in sandwich configuration was built (see Figure 6.6). This system forms a stepped
piezoelectric beam comprised of 5 regular segments, three elastic and two piezoelectric
segments. The system corresponds to the numerical case study analyzed in Section 4.6.
Figure 4.3 and Table 4.1 display the details about the geometry. The material properties
are those listed in Appendix A.2.

6.3.3 Experimental results

The beam frequency response was determined by exciting the structure with a frequency
sweep signal at one of the two piezoelectric pairs and measuring the beam tip velocity by
a laser velocimeter (Polytec OFV 350), as shown in Figure 6.7. The identification method
based on the resonant-shunting technique requires an adjustable high-value grounded in-
ductor. The Antoniou’s circuits presented in Section 6.1.3 served to this purpose.
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Figure 6.6: Picture of the beam with the two pairs of piezoelectric elements in the
sandwich configuration used for experimental modal analysis. The superimposed numbers
on the piezoelectric segments follow the segment numbering used in Chapter 4.

Figure 6.7: Experimental set-up for modal analysis of stepped piezoelectric beams.

f1 (Hz) f2 (Hz) f3 (Hz) f4 (Hz)

Experimental 66.25 360.2 990 1943

LEN Method 66.69 (+1.56%) 363.6 (+1.54%) 1001 (+1.79%) 1955 (+1.37%)

Table 6.3: First four natural frequencies of the stepped beam in Figure 6.7 with short-
circuited piezoelectric transducers. Comparisons between experimental values and numer-
ical values obtained in Section 4.6 with the LEN method.
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6.3 Experimental modal analysis of stepped piezoelectric beams

Figure 6.8: Experimental and numerical mobility functions of the stepped beam in Figure
6.6 obtained by applying a frequency sweep at one piezoelectric segment, the other being
short-circuited.
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Table 6.3 lists the measured natural frequencies of the first four structural modes, by
showing comparisons with the results from the numerical modal analysis obtained with
the LEN method in Section 4.6. Figure 6.8 shows the experimental mobility functions
obtained either by short-circuiting the first piezoelectric pair and exciting the second one
(V2 = 0 and V4 = V̄ ) or vice-versa (V2 = V̄ and V4 = 0). The same figure reports also the
numerical frequency response. The numerical data are based on a 8-mode reduced order
model obtained with the LEN method and the NSR beam model (see Chapters 3 and 4).

Figure 6.9a reports the mobility functions obtained when exciting the structure at
the fourth segment (V4) and shunting the second segment (V2) with an RL circuit. The
shunting inductor is tuned to have the fixed point, S and T, at the same height (optimal
tuning on the first mode). Responses for different shunting resistors and for the open-
circuit condition are displayed. Figure 6.9b shows similar results when inverting the roles
of the two piezoelectric segments. The shunting inductances used for the second and the
fourth segments were, respectively,

L
(2)
opt = 57.6H, L

(4)
opt = 58.1H .

The plots in Figure 6.9 provide all the quantities required for the identification of the
coupling coefficients. The corresponding coupling coefficients identified by formulas (6.4)
and (6.8) with the (OS) and the (RS) methods are reported in Table 6.4. These values are
compared with those found with the numerical modal analysis based on the LEN method
and the NSR beam model.

The (RS) identification method evaluates also the piezoelectric capacitances C2 and
C4. They are reported in Table 6.5 and compared with other possible estimates: the capac-
itances calculated2 from the producer’s datasheet (C(1)r ) and the capacitances measured
with a multimeter for free structural displacements (C(2)r ).

6.3.4 Comments and comparisons

Identification methods

The (RS)-method based on the resonant shunting technique is a useful method to exper-
imentally characterize a structure including piezoelectric elements. It allows to properly
identify the key parameters appearing in an electromechanical reduced order modal model:
the resonance frequencies, the coupling coefficient, and also the piezoelectric capacitances.

In the technical literature the modal-model piezoelectric capacitances Cr appearing
in Eqns. (4.70) are estimated either by direct multimeter measurements or by the value
given by the producers for a standing alone piezoelectric sheet. Both these values are not
appropriate estimates, as shown by Table 6.7. The capacitance Cr corresponds to the
capacitance of a piezoelectric segment when the blocking the mechanical deflection of the
beam.

The results about the uncertainties in the evaluation of the coupling parameters re-
ported in Eqns. (6.5) and (6.9) assess that the (RS) method is more accurate than the
(OS) method. At the same time the (RS) method relies on a more complicated experi-
mental setup (a simulated inductor is required) and more complete experimental data (the

2The capacitance of a pair of piezoelectric elements in sandwich configuration and parallel electric
connection is calculated as the sum of the capacitances of the single piezoelectric sheets.
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6.3 Experimental modal analysis of stepped piezoelectric beams

(a) (b)

Figure 6.9: Experimental mobility function of the stepped beam in Figure 6.6 around the
first mechanical natural frequency. One piezoelectric elements is shunted with an optimally
tuned RL circuit for different resistances: shunting on the segment 2 with excitation on
segment 4 (a) and viceversa (b).

(RS) - method (OS) - method Beam model (NSR)

γ12 0.187 0.184 0.217 (+16.0%)

γ14 0.122 0.122 0.142 (+16.4%)

Table 6.4: Coupling parameters for the piezoelectric segments 2 and 4 of the beam in
Figure 6.7. Exerimental results from the two identification methods and numerical results
from the NSR beam model and LEN method.

(RS) - method (C(RS)r ) Datasheet (C(1)r ) Multimeter (C(2)r )

C2 100 nF 152 nF 114 nF

C4 99 nF 152 nF 112 nF

Table 6.5: Piezoelectric capacitances of the piezoelectric segments 2 and 4 of the beam
in Figure 6.7. The capacitances measured with the proposed (RS) identification technique
are compared with the capacitances measured with a multimeter in a static condition and
leaving the beam free to deform, and the capacitances given by the producer datasheet for
standing-alone piezoelectric elements.
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OS - method RS - method

Measured quantities
Natural frequencies

(ω̊(r)i and ωi)

½
Frequency responses
Shunting inductance

Identifiable variables Coupling coefficient γ
(OS)
ir

(
Coupling coefficient: γ

(RS)
ir

Capacitance: C(RS)r

Accuracy Poor Good

Difficulty Little Considerable

Table 6.6: Comparison between the two identification methods

RS-method Proposed beam model (NSR) Standard beam model (NS)

C2 100 nF 95.8 nF (−4.2%) 132.5 nF (+32.5%)

C4 99 nF 95.8 nF (−3.2%) 132.5 nF (+33.8%)

Table 6.7: Piezoelectric capacitances of the piezoelectric segments 2 and 4 of the beam in
Figure 6.7. The capacitances measured with the proposed (RS) identification technique are
compared with the capacitance estimated by the NSR beam model (proposed in Chapter
3) and the standard NS beam model.

whole frequency response around the natural frequency is necessary). The (OS) method
is very simple. But it is quite inaccurate and it does not provide any method for a reliable
estimate of the modal-model piezoelectric capacitances.

Table 6.6 summarizes the comments, the features, and the requirements of the two
identification methods.

Numerical-experimental comparisons

Table 6.3 and Figure 6.8 assess the accuracy of the simple Euler-Bernoulli model to esti-
mate the natural frequencies and the frequency response of a stepped piezoelectric beam.
The differences between the experimental and numerical values of the first four natural
frequencies are within 1.8%; the frequency responses in Figure 6.8 are nearly overlapping.
Moreover, the percentage errors in estimating the first four frequencies are almost con-
stant. The ratios between the different natural frequencies are correctly predicted. These
results validate the Euler-Bernoulli beam model and show that neglecting shear effects and
rotatory inertia is reasonable for thin beams with surface bonded piezoelectric transducers.
This is confirmed by the numerical results about the comparisons between Timoshenko
and Euler-Bernoulli models shown in (Maxwell and Asokanthan, 2002).

Tables 6.4 and 6.7 compare the numerically computed and the experimental identified
capacitances and coupling coefficients. The experimental values are based on the RS
identification method. The numerical results are obtained with the LEN method for
numerical modal analysis and the NSR beam model. For the capacitances, also the values
given by the standard NS beam model are reported. The NSR model is in good agreement
with the experimental results for the piezoelectric capacitances. A systematic error is
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Figure 6.10: Picture of the cantilever beam with 5 piezoelectric elements used for ex-
periements on distributed passive control. An additional piezoelectric element is positioned
on the bottom-face of the beam and it is used for excitation. The device on the left-end of
the beam serves to limit the maximum tip-displacement.

revealed for the coupling coefficients, which are overestimated. Most likely this error is
due to the non perfect bonding of the piezoelectric elements on the beam surface (effects
of the bonding layers are studied by Crawley and de Luis (1987), Yang and Lee (1994b),
de Faria (2003)). Table 6.7 displays that the standard (NS) beam model introduces high
errors on the piezoelectric capacitances (see Chapter 3).

6.4 Passive vibration with second-order networks

Chapter 5 studied passive vibration damping by piezoelectric elements shunted with
resistive-inductive electric networks. The theoretical and numerical analysis concludes
that the second-order purely resistive (S) and resistive-inductive (SS) networks are the
best candidates for a first experimental validation of the concept of distributed passive
damping. This Section reports the experimental works for the validation of the theoret-
ical and numerical results and proves the technical feasibility of the distributed shunting
technique.

6.4.1 Experimental set-up

A beam corresponding to the numerical case study reported in Section 5.5.3 was experi-
mentally tested. This is a thin cantilever aluminum beam including five surface-bonded
piezoelectric transducers. A picture of the experimental setup is reported in Figure 6.10.
The geometric parameters of the beam are those reported in Figure 5.10 and Table 5.3.
The bottom face of the beam hosts an additional piezoelectric patch that is used for ex-
citation. Figure 6.11 shows the chain of measurement for the evaluation of the beam
frequency response (mechanical mobility). The additional piezoelectric element gives a
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Piezoelectric capacitances at blocked displacements (nF)

C1 C2 C3 C4 C5
51.30 53.73 53.36 52.92 52.90

Coupling coefficients for the first mode

γ11 γ12 γ13 γ14 γ15
0.122 0.0954 0.0577 0.0298 0.0083

Table 6.8: Piezoelectric capacitances and first-mode modal coupling coefficients of the
five piezoelectric transducers of the beam in Figure 6.10. These values are identified with
the (RS) method of Section 6.3.1

voltage-excitation; a fixed point laser-velocimeter detects the tip velocity of the beam.
The experimental set-up minimizes the influence of the testing apparatus on the struc-
tural dynamics. Moreover, it provides reliable measurements for any shunting condition
at the five piezoelectric elements.

6.4.2 Experimental results

Purely resistive and resistive-inductive second-order networks are optimized to damp the
first bending mode of the cantilever beam. The experimental optimization follows the
method developed in Section 5.5. The resistances and the inductances are selected to
minimize with the first electric mode the system forced response around the first mechani-
cal natural frequency. The electric boundary conditions of the lumped networks are chosen
to maximize the modal coupling. A first step of the experimental work comprises the iden-
tification of the modal model of the beam with the piezoelectric transducers. Thus, the
numerical optimization procedure shown in Section 5.5.3 furnishes the optimal circuital
components for the identified modal parameters. Starting from the so-found tentative val-
ues, an iterative experimental fine-tuning leads to the electric parameters that effectively
meet the optimality conditions on the frequency response.

Experimental modal model and numerical optimization

The numerical optimization of Section 5.5.3 requires a one d.o.f. modal model for the
beam with the piezoelectric transducers. The first mechanical natural frequency for short-
circuited piezoelectric is

ωn = 2π × 20.44Hz (6.11)

Table 6.8 reports the experimentally identified piezoelectric capacitances and dimension-
less modal-couplings of the five piezoelectric elements. These values are found with the
(RS) identification-method of Section 6.3.1. Because of bonding defects and manufacturing
tolerances, the nominally identical piezoelectric elements have slightly different piezoelec-
tric capacitances. Thus, the χr’s constants in Eqns. (5.76-5.77) are not any more identical.
And the N matrix which used for the definition of the electrical eigenproperties slightly
differs from the network matrix N (see Section 5.2.2).
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6.4 Passive vibration with second-order networks

Figure 6.11: Experimental set-up for distributed passive control with second-order net-
works. The inductor L5 is used for fine-tuning the shunting network. The resistor R5 is
chosen to maintain proportional damping (R5/R = L5/L).

The mechanical natural frequency (6.11), the modal couplings, and the piezoelectric
capacitances in Table 6.8 determine the optimal shunting parameters on the basis of the
experimental modal model. The modal coupling γ of the first electric mode with the first
mechanical mode is evaluated by the definition (5.80), by considering the experimental
coupling coefficients γ1r’s and the modified network matrixN . The same electric boundary
conditions found in the numerical case-study maximize also the modal coupling found on
the basis of the experimental modal model. By using the same notation of Section 5.5,
they are ᾱ0 = 1 and ᾱ5 = −1, which correspond to the optimal boundary inductors and
resistors

R̄0 = L̄0 =∞, R̄5 = L̄5 = 0. (6.12)

The associated maximum value of the modal coupling coefficient is

γ(1,−1) = 0.166 (6.13)

With the optimal boundary conditions (6.12), the substitution in Eqns. (5.82) and (5.88) of
the experimental modal parameters of Table 6.8 gives the expected optimal line-inductances
and line-resistances. They are

(SS) - Network: Lopt = 139.0H, Ropt = 87.5 kΩ; (6.14a)

(S) - Network: Ropt = 17.6 kΩ . (6.14b)

Fine-tuning of the resistive-inductive (SS) network

The tuning and damping parameters of the (SS)-network are optimal when the frequency

149



Experiments

response in a neighborhood of the first mechanical resonance frequency looks like Figure
5.2b. Starting from the tentative values of Eqns. (6.14a), the final experimental optimiza-
tion requires two steps:

(T1) Fine-tune the inductors to set the S and T fixed points of the experimental FRF are
at the same height;

(T2) Fine-tune the resistors to obtain an horizontal tangent at the S and T points.

The RL second-order network for the cantilever beam with 5 piezoelectrics and the
electric boundary conditions (6.12) includes 4 high-value floating inductors. The Deboo’s
circuit described in Section 6.1.3 serves to this end. The experimental optimization re-
quires a simultaneous fine-tuning of the four inductors. This is difficult to achieve with the
Deboo’s circuits (see Section 6.1.3). But the numerical plots in Figure 6.12 show that the
optimal condition L5 = L̄5 = 0 can be forced without affecting the damping performances.
And the addition of a ground-referred inductor at node 5 allows for changing the tuning
parameter β (5.79) with a fixed value of the line inductances. The experimental opti-
mization exploits these properties. The Antoniou circuit (Figure 6.1) served as tunable
inductor L5 (see Figure 6.11). The Deboo’s circuits were dimensioned once for all to an
equivalent inductance of

LDeboo = 130.5H (6.15)

Thus the fine-tuning is obtained by acting on L5. The value of L5 to meet the tuning
condition (T1) was

L5 = 19.01H (6.16)

Figure 6.13 reports the experimental mobility plot around the first natural frequency for
the values of the inductances (6.15-6.16) and for different line-resistances R. The optimal
value of the line-resistance meeting the condition (T2) is

R = 115 kΩ . (6.17)

Fine-tuning of the purely-resistive (S) network

The experimental implementation of the (S) network is trivial. It needs only resistive
elements, which interconnect adjacent piezoelectric elements. The resistances are set to
the optimal value when the mobility plot looks like Figure 5.4b, with an horizontal tangent
at the fixed point F. Figure 6.14 reports the experimental frequency responses for different
values of R. The optimal resistance is about

R = 18 kΩ . (6.18)

Effect on higher modes

The R and RL second-order networks were optimized to damp the first bending mode
of the beam. But they introduce a damping effect also on higher modes. This is shown
for the second and third structural modes by Figures 6.15 and 6.16. They report the
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6.4 Passive vibration with second-order networks

Figure 6.12: Tuning parameter and coupling coefficient as a function of the inductor L5
for the line inductances set to 130.5H . The coupling coefficient is relative to the optimal
coupling coefficient γ0 obtained for L5 = 0.

frequency response for the beam with short-circuited piezoelectrics, for the beam with
the RL-network, and for the beam with R-network. For higher modes the RL and the
R networks have a similar behavior. The second-order RL network looses the resonant
coupling shown for the first mode and behaves as a purely resistive network.

6.4.3 Comments and comparisons

Experimental modal model vs numerical modal model

The experimental mechanical natural frequency (6.11) and the piezoelectric capacitances in
Table 6.8 are in good agreement with the results obtained in Section 5.5.3. This is a further
experimental validation of the results of the beam model and the modal analysis techniques
and confirms the experimental work of Section 6.3. On the other hand, the differences
between the numerical and the experimental non-dimensional coupling coefficients in Table
5.5 and in Table 6.8 (around 30%) are higher than those obtained with the experimental
set-up of Section 6.3. These errors are mainly due to the effect of the bonding layers,
which can vary from one experimental set-up to the other.

Damping performances

The electric networks are optimized to damp the first structural mode, but non-negligible
damping is achieved also on higher modes. Table 6.9 resumes the results of Figures 6.13-
6.16 about the reduction of the peak-value of the forced response of the R and RL networks.
They validate the theoretical findings of Chapter 5. The (SS) network is very effective
on the first structural mode, selected for the optimization. On higher modes it behaves
as the purely resistive network. The efficiency of the (S) network is almost constant for
the first three structural modes. The damping of the resistive network on the second
and the third mode is even higher than the damping of the resistive-inductive network.
These data and the plots of Figures 6.13-6.16 are in close agreement with the numerical
results of Section 5.5.3 and the plot of Figure 5.12, although the experimental frequency
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Figure 6.13: Second order inductive-resistive (SS) network. Experimental mobility func-
tion around the first mechanical mode for the optimally tuned network (S and T at the
same heigth) with different line-resistances.
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1st mode 2nd mode 3rd mode

Resistive-inductive (SS) network 95.8% 65.9% 47.1%

Resistive (S) network 71.1% 69.9% 69.8%

Table 6.9: Reduction of the peak-value of the forced response with respect to the beam
with short-circuited piezoelectrics. The results are extracted from the plots of Figures
6.13-6.16.

response includes the inherent structural damping of the beam, which was neglected in
the theoretical analysis.

Optimal inductors and resistors

Table 6.10 compares the optimal values of the resistors and the inductors of the (SS)
network and the optimal resistor of the (S) network found with three different ways:

• by the numerical optimization based on the one-mode numerical modal model for
the beam and on the one-mode model for the electric network (Section 5.5.3 and
Eqns. 5.93);

• by the numerical optimization based on the one-mode experimental modal model
for the beam and on the one-mode model for the electric network (Section 6.4.2 and
Eqns. 6.14);

• by the experimental fine-tuning procedure to meet the optimality conditions on the
frequency response (see the plots in Figures 6.13 and 6.14).

The predictions of the experimental and numerical modal models are very close one
to each other. This assesses the accuracy of the modelling techniques. The difference in
the optimal resistances for the (SS)-network is due to the errors in the modal coupling
coefficients. For the purely resistive networks, there is a good agreement also with the
resistors that experimentally verify the optimality condition on the frequency response.
On the other hand, for the (SS) network the resistances that meet the optimality condition
on the experimental frequency response are bigger than those predicted by the numerical
optimizations. This is due to the parasite losses of the synthetic inductors.

The values of the optimal inductances obtained after the experimental fine-tuning
are not directly comparable with those of the numerical optimization. The experimental
procedure exploits the terminal inductor for the fine-tuning. This is set to zero in the
numerical optimization. When including a 19.0H terminal inductor, the numerical opti-
mization based on the experimental modal model predicts an optimal line-inductance of
130.6H, which practically coincides with the experimental value.
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(SS)-Network (S)-Network

L (H) R (kΩ) R (kΩ)

Num. modal model, Eqns. (5.93) 138.3 71.7 17.7

Exp. modal model, Eqns. (6.14) 139.0 87.5 17.6

Exp. fine-tuning, Eqns. (6.15-6.18) 130.5 (L5= 19.0) 115 18

Table 6.10: Optimal inductors and the resistors for the beam in Figure 6.11. Compar-
isons of the optimal values found after the experimental fine-tuning (Exp.fine-tuning) with
the values predicted by the numerical optimization based on the 2 d.o.f. experimental
(Exp.modal model) and numerical (Num.modal model) modal models. The experimental
fine tuning uses also the additional inductor L5, which is set to zero in the modal models.
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Chapter 7

Conclusions

7.1 Summary

This work presented numerical and experimental studies on piezoelectric beams, starting
with beam modelling, passing through modal analysis, and concluding with passive vi-
bration control with distributed piezoelectric shunts. The vibration control application
was a primary motivation that, after a critical analysis of the available literature, showed
the need of more accurate modelling tools. The development of a beam model including
cross sectional warping effect and of specific method for numerical and experimental modal
analysis led to a good agreement between theoretical predictions and experimental find-
ings. A summary of the main results and the specific original contributions is presented
below.

7.1.1 Beam modelling

Models of piezoelectric laminated beams accounting for two-fold electromechanical cou-
pling were analyzed in Chapter 3. Three-dimensional effects as cross-sectional warping
were shown to be an important issue in beams including thickness polarized piezoelec-
tric layers. The in-plane isotropy of the piezoelectrically induced strains causes complex
cross-sectional deformations and stress patterns. Standard modelling approaches assume a
uniaxial stress state and miss many features of the actual 3D strain and stress distribution.
In particular, they completely neglect the transverse normal stresses (width direction). On
the contrary, 3D solutions show that the transverse normal stresses induced by voltage
loading are of the same order of magnitude as the axial ones. This causes a coarse estimate
of the beam constitutive coefficients.

An Euler-Bernoulli-like beam model including the effect of the transverse normal stress
and the related cross-sectional warping was presented. It is based on a deductive approach
exploiting a mixed variational formulation. It accounts for the two-fold electromechanical
coupling. The mixed approach allows for hypotheses on the mechanical stresses and the
electric displacement that improve the standard models without any additional kinemat-
ical descriptor. The beam governing equations in their final form fit into the format of a
standard electromechanical Euler-Bernoulli model with a single electric degree of freedom.
On the other hand, the beam constitutive coefficients include the effects of the trans-
verse stresses and strains and of the quadratic contribution to the electric potential. The
transverse stresses were supposed to be layerwise linear. They were determined through
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integral conditions imposing free transverse bending (null through-the-thickness force and
moment resultants). For sandwich and bimorph benders, simple analytical expressions of
the bending stiffness, the coupling coefficient, and the inherent piezoelectric capacitance
were provided. Their evaluation requires the knowledge of a small number of material
properties. These expressions can be promptly used in applications to replace standard
formulas.

The beam model was validated numerically and experimentally. The numerical vali-
dation relies on 3D finite element numerical solutions obtained with a commercial code.
Comparisons of the beam constitutive coefficients and of the field distribution in sand-
wich and bimorph benders show that the proposed model faithfully fits the 3D solution.
Standard models lead to incorrect estimates of the beam constitutive coefficients. Major
discrepancies are revealed for the inherent piezoelectric capacitance. Particularly critical
is the bimorph configuration, for which the standard models introduce high errors also
on the mechanical stiffness and on the piezoelectric coupling coefficient. A detailed dis-
cussion on the influence and the plausibility of different assumptions in beam modelling
of piezoelectric laminates concludes that the effect of the transverse stress is of primary
importance and cannot be neglected.

The experimental strain analysis on beams with surface-bonded piezoelectric transduc-
ers confirmed the numerical results. The experiments on modal analysis and passive vibra-
tion control provide a further validation of the proposed beam model. They show a good
agreement with the numerical results for the resonance frequencies and the piezoelectric
capacitances. But theoretical models overestimate the piezoelectric coupling coefficient.
This is due to the perfect bonding assumption.

7.1.2 Modal analysis

Methods for experimental and numerical modal analysis of stepped piezoelectric beams
were discussed. Finding the exact natural frequencies and mode shapes requires the so-
lution of a transcendental eigenvalue problem for a system composed of many continuum
subsystems. This poses numerical difficulties due to root-finding of transcendental equa-
tions and inversion of ill-conditioned matrices. In Chapter 4, an improvement of the
Wittrick-Williams algorithm, the Last Energy Norm method, was successfully applied to
this case. The corresponding results are compared to those found by standard Galerkin-
like methods as the Finite Element method and the Assume Modes method. The AM
method is the simplest and most popular method, but was shown to be inaccurate. It
fails to include the effect of material and geometry discontinuities on the mode shapes and
introduces non-negligible errors on the natural frequencies. The addition of special jump
functions to the standard basis functions of the AM method led to the original Enhanced
Assumed Methods. The special jump functions introduce the required discontinuities on
the modal shapes. The corresponding results are shown to be in close agreement with the
exact solution from the LEN method. The comparative analysis leads to the conclusion
that the EAM is preferable even to the FE method. Its implementation is easier and with
a smaller number of degrees of freedom it leads to better results, especially for higher
modes.

In Chapter 6, two techniques for the experimental identification of the electromechan-
ical modal properties (resonance frequencies, modal couplings, and piezoelectric capaci-
tances) were compared. A sensitivity analysis assessed the associated accuracy. A first
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technique, well known in the literature, relies on the measures of the resonance frequencies
with open and short-circuited piezoelectric transducers. Its implementation is simple but
it does not allow for the determination of the piezoelectric capacitance. Moreover, the
accuracy of the corresponding modal coupling estimate is poor. An alternative original
method, based on resonant piezoelectric shunting, was presented. It relies on the mea-
sure of the beam frequency response when the piezoelectric segment is shunted with an
optimal inductive circuit. This method is capable of accurately estimating the piezoelec-
tric capacitance and the modal coupling coefficient. It is an accurate and complete tool
for the identification of modal models of piezoelectric structures. As a drawback, it re-
quires the use of a tunable high-value inductor. To validate the proposed beam model
and the experimental identification techniques, an experimental setup consisting of a can-
tilever beam hosting two bimorph pairs of piezoceramic transducers was considered. The
numerically predicted and experimentally identified electromechanical modal parameters
showed a good agreement. Non-negligible errors are found only for the modal couplings,
for which the beam models predicts higher values. Nevertheless, the overall results provide
an experimental validation of the Euler-Bernoulli beam model and the experimental and
numerical modal analysis tools. An experimental setup for distributed passive vibration
control gives a further assessment of these results.

7.1.3 Passive vibration control through piezoelectric shunting

The work on passive vibration control included the following points:

• A detailed analysis of the classical resistive and resistive-inductive shunting of a
single piezoelectric transducer and the related optimization techniques;

• Design and performance analysis of resistive and resistive-inductive electric networks
for passive wave-damping and modal control with distributed piezoelectric transduc-
ers;

• Experimental validation of the distributed passive damping technique with resistive
and resistive-inductive networks.

Two different strategies for the optimization of the single resistive and the resistive-
inductive shunts were compared. One is for the minimization of the maximum amplitude
of the forced response, the other minimizes the decay-time of free oscillations. Analytical
results were obtained by using a single d.o.f. modal model for the piezoelectric beam and
by exploiting the peculiar properties of the system root locus. These results were then
extended to distributed passive control, which considers vibration damping with multi-
terminal electric networks. Beams including uniformly distributed piezoelectric transduc-
ers were analyzed. Homogenized modelling and wave propagation analysis determined op-
timal resistive and resistive-inductive distributed shunts. The optimal shunting networks
damp-out flexural waves of any frequency and wavenumber. They correspond to electric
waveguides having second-order space-derivatives on the resistive term and fourth-order
space-derivatives on the inductive term. These optimal resistive and resistive-inductive
networks are the S and FS networks. Alternative performing resistive-inductive shunting
networks include the SS-network characterized by second-order derivatives on the both the
resistive and inductive terms. This network behaves as an optimal resonant wave absorber
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for a single wavenumber and an optimal purely resistive damper at higher wavenumbers.
After the performance analysis and system optimization based on continuum modelling,
lumped electric networks leading to the desired continuum limit were shown. This re-
sulted in the following conclusions: the FS-network requires either negative inductors or
two-port transformers; the optimal values of the inductors of the FS and SS networks
are decreasing when increasing the number of piezoelectric elements in the characteristic
length (quadratically in the FS-network and linearly in the SS-network). The SS and the
S network were recognized as the best candidates for a first experimental validation with
applications to modal control. Thus, a refined analysis and optimization of these systems
were performed on the basis of accurate modal models. These included the effect of the
material and geometric discontinuities and the lumped nature of the electric network. The
optimization for modal control required also the choice of electric boundary conditions.
They were determined with an auxiliary optimization problem for the maximization of the
modal coupling, which is shown to be the key parameter for the damping performances.

The experimental work was reported in Chapter 6. Experimental prototypes of the S
and SS networks were manufactured and tested on a cantilever beam including an array
of five piezoelectric transducers. These networks comprise floating inductors and resistors
that interconnect the adjacent piezoelectric elements (second order networks). The SS
network required high-value grounded and floating inductors. Synthetic inductances made
of active circuits including operational amplifiers served to this purpose. The resistive and
resistive-inductive networks were optimized for damping the first structural mode by ad-
hoc optimization techniques based on frequency response measures. Experimental results
were in very close agreement with the theoretical predictions. The comparative analysis of
the S and SS networks concludes that both the damping systems, although optimized for
a single mode, are effective also on higher modes. The SS network behaves as a resonant
absorber on a single mode and a purely-resistive damper on higher modes. The S network
introduces an uniform damping on the different modes and is competitive with the SS
network when high piezoelectric coupling is available.

7.2 Original contributions

The main original contributions of this thesis to the existing literature are listed below.

• Critical analysis of the effect of transverse stress, cross-sectional warping, and in-
duced electric potential on beam models of piezoelectric laminates

• Development of a Euler-Bernoulli-like coupled model that fits the 3D field distri-
bution and correctly estimates the mechanical stiffness, coupling coefficient, and
piezoelectric capacitance for any thickness ratio between piezoelectric and elastic
layers. The model is derived by the use of a mixed variational formulation and
Lagrange multipliers method.

• Experimental results on strain analysis of surface bonded piezoelectric transducers
with voltage and displacement loading, in static and quasi-static conditions.

• Comparisons among results from beam models, 3D finite elements, and experimental
strain analysis of beams with surface bonded piezoelectric transducers.
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• Application of the Last Energy Norm method for the solution of the exact transcen-
dental eigenvalue problem for a beam including multiple piezoelectric segments.

• Improvement of the Assumed Mode method for numerical modal analysis by intro-
ducing special jump functions as basis function (Enhanced Assumed Modes method).

• Comparisons of the available techniques for numerical modal analysis of stepped
piezoelectric beams, including Assumed Modes, 1D Finite Elements, Enhanced As-
sumed Modes, and Last Energy Norm.

• Using resonant shunting as identification method for the piezoelectric coupling coeffi-
cient and the inherent piezoelectric capacitances. The technique is directly applicable
also to complex structures other than beams.

• Discussion of the different numerical and experimental tools for modal analysis and
reduced order modelling of stepped piezoelectric beams.

• Deduction of optimal resistive and resistive-inductive networks for distributed pas-
sive wave-damping in infinite beams with arrays of piezoelectric transducers.

• Optimization of electric networks for modal control with distributed resistive and
resistive-inductive shunts

• Experimental set-up for distributed passive modal control including the experimental
testing of the second-order resistive and resistive inductive networks.

• Comparisons between theoretical and experimental results on distributed passive
vibration control.

7.3 Suggestions for future works

The numerical and experimental analysis proved that the 3D effects are of primary impor-
tance in beam modelling. A corrected Euler-Bernoulli-like model for beam extension and
bending was proposed. This points-out the need for corrected beam models other than the
Euler-Bernoulli one, eventually including the torsion and secondary bending. Moreover
the experimental results show that the main limit of the analytical models is the bonding
layer effect. This point merits further investigations which can include the extensions of
the classical shear-lag approach to account for the cross-sectional warping. Moreover, the
high uncertainties on the data available for the thickness and the material properties of
the bonding layer can suggest the development of probabilistic or possibilistic approaches
for the estimate of the influence of the bonding layer on the piezoelectric coupling. This
will result useful for control applications.

The results of numerical modal analysis of stepped piezoelectric beams show that the
use of inaccurate numerical techniques for the solution of the eigenvalue problem can lead
to non-negligible errors. The numerical problems are more complex in the case of plates
and need a similar analysis. The extension to the 2D case of the exact LEN method poses
many problems. But the EAM method can be easily extended to the 2D problem and it
could provide an extremely useful tool.

The work on distributed passive control opens to many extensions. The experimen-
tal tests of resistive-inductive networks were limited to second order networks. Further
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works should be addressed in the direction of multimodal resonant damping. The theo-
retical analysis showed that the fourth-order network can increase the performances for
multimodal damping. Its experimental implementation requires additional efforts for the
development of the associated circuitry. A further extension can include control strategies
for multimodal damping with a limited number of piezoelectric elements shunted on multi-
terminal networks. In this framework, the combination of the electromechanical modal
modelling and the optimization techniques developed for wave propagation in infinite sys-
tem provide a well-grounded starting point. Moreover, applications to the reduction of the
structurally radiated and transmitted noise are expected. Theoretical results showed that
proposed distributed damping strategy is prone to extensions towards micromechanics.
For example, smart materials including a microstructure with resistively-shunted piezo-
electric microactuators are theoretically feasible.

7.4 Publications

The material presented in this thesis was partially published in the following journal papers
and conference proceedings.

Journal papers

1. C. Maurini, F. dell’Isola, D. Del Vescovo, Comparison of piezoelectronics networks
acting as distributed vibration absorbers, Mechanical Systems and Signal Processing
18, 1243-1271 (2004).

2. F. dell’Isola, C. Maurini, M. Porfiri, Passive damping of beam vibrations through
distributed electric networks and piezoelectric transducers: prototype design and
experimental validation, Smart Materials and Structures 13, 299-308 (2004).

3. C. Maurini, J. Pouget, F. dell’Isola, On a model of layered piezoelectric beams
including transverse stress effect, International Journal of Solids and Structures 41,
4473-4502 (2004).

4. C. Maurini, J. Pouget, F. dell’Isola, Extension of the Euler-Bernoulli model of piezo-
electric laminates to include 3D effects via a mixed approach, accepted for publica-
tion in Computers & Structures.

5. C. Maurini, M. Porfiri, J. Pouget, Numerical and experimental methods for modal
analysis of stepped piezoelectric beams, submitted to Journal of Sound and Vibra-
tion.

Conference proceedings

1. F. dell’Isola, D. Del Vescovo, C. Maurini, Distributed electric absorbers of beam
vibrations, SPIE conference on Smart Materials and Structures, 2-6 March 2003,
San Diego (U.S).

2. F. dell’Isola, D. Del Vescovo, C. Maurini, M. Porfiri, Passive electric damping of
structural vibrations through distributed piezoelectric coupling: critical analysis,
ISEM 2003, Versailles (France).
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3. C. Maurini, F. dell’Isola, J. Pouget, On models of layered piezoelectric beams for
passive vibration control, 7th European Mechanics of Materials Conference, Adap-
tive Systems and Materials, Journal de Physique IV 115 (2004), pgg. 307-316, May
2003, Frejus (France)

4. C. Maurini, J. Pouget and F. dell’Isola, Beam models of piezoelectric laminates, Pro-
ceedings of the 7th International Conference on Computational Structures Technol-
ogy, Sept. 2004, Lisbon (Portugal), B.H.V Topping and C.A. Mota Soares (Editors),
Civil-Comp press, CD-ROM, Paper N.6.

5. C. Maurini, F. dell’Isola, J. Pouget, On a model of piezoelectric beams including
transverse interactions between different layers, XXI International Congress of The-
oretical and Applied Mechanics, 15—21 August 2004, Warsaw (Poland), CD-ROM,
Paper N.12552.

6. C. Maurini, M. Porfiri, J. Pouget, Modal analysis of stepped piezoelectric beams
with applications to electric vibration damping, Twelfth International Congress on
Sound and Vibration, 11—14 july 2005, Lisbon (Portugal), Paper N.356.

7. C. Maurini, J. Pouget, F. dell’Isola, Corrections to the constitutive equations of
piezoelectric laminated beams through a mixed variational approach, II ECCOMAS
Thematic Conference On Smart Structures and Materials, C.A. Mota Soares et al.
(Eds.), 18-21 July 2005, Lisbon (Portugal).
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Appendix A

Constitutive coefficients

A.1 Constitutive coefficients for plane-stress and uniaxial-
stress conditions

Plane stress

The local constitutive equations (3.22) show special constitutive coefficients. They corre-
spond to the 3D piezoelectric constitutive coefficient in the S−E form for a plane-stress
condition in the e1 − e2 plane and a uniaxial electric displacement along e3. Given the
in-plane mechanical compliances at constant electric field sE11 and sE12, the piezoelectric
coupling coefficient d31, and the inverse of the electric permittivity at constant stress βT33,
they are calculated as follows

c̃E11 =
sE11¡

sE11
¢2 − ¡sE12¢2 =

Y E

1− (νE)2
, (A.1a)

c̃E12 = −
sE12¡

sE11
¢2 − ¡sE12¢2 = νE

Y E

1− (νE)2
, (A.1b)

ẽ31 = −
d31

sE11 + sE12
=

Y Ed31
(1− νE)

, (A.1c)

ε̃S33 =
1

βT33
− 2 d231

sE11 + sE12
= εT33

µ
1− 2

(1− νE)

d231Y
E

εT33

¶
, (A.1d)

c̃D11 = c̃E11 + ẽ231/ε̃
S
33 = c̃E11

¡
1 + γ2

¢
, (A.1e)

c̃D12 = c̃E12 + ẽ231/ε̃
S
33 = c̃E12

¡
1 + γ2/νE

¢
. (A.1f)

The formulas above provide also the expressions in terms of the constants usually given in
the datasheets of the piezoelectric materials: the in-plane Young-modulus Y E = 1/sE11 and
Poisson-ratio νE = −sE12/sE11 at constant electric field; the piezoelectric coupling constant
d31; and the permittivity at constant electric field εT33 = 1/βT33. The constant γ is an
in-plane non-dimensional piezoelectric coupling defined by

γ =

s
ẽ231

c̃E11 ε̃
S
33

=

s
d231 Y

E

εT33

s
(1 + νE)

(1− νE)− 2 d231Y E/εT33
(A.2)
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In isotropic linear elastic layers the required stiffness coefficients are

c̃11 =
s11

(s11)
2 − (s12)2

= Y
1

1− ν2
(A.3a)

c̃12 = ν c̃11 = Y
ν

1− ν2
(A.3b)

where Y is the Young modulus and ν the Poisson-ratio.

Uniaxial-stress

The local constitutive equations (3.41) of the NS model require the constitutive coefficients
for an uniaxial stress along e1 and an uniaxial electric displacement along e3 appear. The
are given by

ĉE11 = c̃E11

³
1−

¡
c̃E12/c̃

E
11

¢2´
=

1

sE11
= Y E , (A.4a)

ê31 = ẽ31
¡
1− c̃E12/c̃

E
11

¢
= −d31

sE11
= −d31Y E, (A.4b)

ˆS33 = ˜
S
33

µ
1 +

ẽ231
c̃E11

S̃
33

¶
=

1

βT33

µ
1− βT33d

2
31

sE11

¶
= εT33

µ
1− d231Y

E

εT33

¶
, (A.4c)

ĉD11 = c̃D11

³
1−

¡
c̃D12/c̃

D
11

¢2´
= ĉE11 + ê231/ε̂

S
33 = Y E

µ
1− 1

1− εT33/d
2
31Y

E

¶
. (A.4d)

for piezoelectric layer and by

ĉ11 =
1

s11
= Y (A.5)

for elastic layers.

A.2 Numerical Values

All the numerical simulations are based on the constants of the materials used in the
experimental set-ups. The nominal values of these constants are reported below.

A.2.1 Elastic Materials

Aluminum Al6061-T6 is used. The material is isotropic and used in the regime of linear-
elasticity. The relevant material constant are given in Table A.1

Symbol Value Unit

Density ρ 2700 kg /m3

Young modulus Y 69× 109 Pa
Poisson-ratio ν 0.33

Table A.1: Nominal material properties of Aluminum Al6061-T6.
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A.2.2 Piezoelectric materials

The piezoelectric material used in the experimental set-ups is the Lead Zirconate Titanate
PSI-5H-S4-ENH from Piezo System, Inc. Table A.2 reports the material properties given
in the datasheet.

Symbol Value Unit

PIEZOELECTRIC

Dielectric Constant (at 1KHz) εT33 3800ε0

Piezoelectric Strain Coefficient d33 650× 10−12 m /V
d31 −320× 1012 m /V

Polarization Field Ep 1.5× 106 V /m
Initial Depolarization Field Ec 3.0× 105 V /m

MECHANICAL

Density 7800 kg /m3

Elastic Modulus Y E
3 50× 109 Pa

Y E
1 62× 109 Pa

Poisson’s Ratio νE ˜ 0.31

THERMAL

Thermal Expansion Coefficient ˜ 3 ×106 m /m ◦C
Curie Temperature TC 250 ◦C

Table A.2: Material properties of the used piezoelectric material (Lead Zirconate Tita-
nium PSI-5H-S4-ENH) as provided in the producer’s datasheets (Part N. T110-H4E-602
from Piezo System, Inc.)

Considering the 3D piezoelectric constitutive equations in the T−E form and standard
Voigt notation (see Standard, 1988),

Si = sEijTj + dikEk

Dh = djhTj + εThkEk

the 3D finite-element numerical simulations of Chapter 3 assume the following numerical

175



Constitutive coefficients

values for the constitutive matrices

£
sE
¤
=

⎡⎢⎢⎢⎢⎢⎢⎣

16.13 −5.0 −8.164 0 0 0
−5.0 16.13 −8.164 0 0 0
−8.164 −8.1642 20.0 0 0 0
0 0 0 42.52 0 0
0 0 0 0 42.52 0
0 0 0 0 0 42.56

⎤⎥⎥⎥⎥⎥⎥⎦× 10
−12m

2

N

[d] =

⎡⎣ 0 0 0 0 865.4 0
0 0 0 865.4 0 0

−320.0 −320.0 650.0 0 0 0

⎤⎦× 10−12m
V

£
εT
¤
=

⎡⎣ 30.97 0 0
0 30.97 0
0 0 33.64

⎤⎦× 10−9 C

Vm

The beam models presented in Chapter 3 requires only a subset of these constitutive
coefficients, which are resumed in Table A.3. All the numerical results of Chapter 4-6 are
based only on these values.

Elastic Layers

Y = 1/s11 = 69× 109N /m2 ν = −s11/s12 = 0.33

Piezoelectric Layers

Y E = 1/sE11= 62× 109N /m2 νE = −sE11/s
E
12= 0.31

d31 = −320× 10−12m /V βT33 = 1/ε
T
33= 2.97× 107m /F

Table A.3: Constitutive properties of the considered piezoelectric (PZT-5H) and elastic
(aluminum) materials required by the beam model of Chapter 3.
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