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Abstract

This thesis studies composite structures hosting distributed piezoelectric elements. It
consists of three major parts dealing with beam modelling, modal analysis, and passive
vibration control with electric circuits. Beam modelling analyzes the influence of 3D ef-
fects on 1D models of layered beams including thickness-polarized piezoelectric laminae
and proposes a corrected Euler-Bernoulli model based on a mixed variational formula-
tion. Modal analysis studies numerical and experimental methods for the identification
of an electromechanical modal model of a stepped beam including multiple piezoelec-
tric segments. These results are applied to the optimization of resistive-inductive electric
networks for vibration control through distributed piezoelectric shunting. Each part in-
cludes theoretical analysis, numerical works, and experimental validation. In particular,
the first experimental implementation of distributed piezoelectric shunting with multi-
terminal electric networks is presented.

Keywords: piezoelectricity, vibration control, laminated beams, smart structures,
modal analysis, Euler-Bernoulli beam, mixed variational formulation, distributed control,
stepped beam.

Résumé

Cette thése a pour objet la modélisation de poutres composites piézoélectriques et
I‘application au controle passif des vibrations. Une premiére partie présente un modéle
de poutre du type Euler-Bernoulli électromécanique. Le modeéle est construit a partir
d’un principe variationel mixte qui, sans introduire des degrés de liberté supplémentaires,
tienne compte des effets 3D des champs électromécaniques et du potentiel électrique induit.
Une deuxiéme partie propose des techniques numériques et expérimentales pour ’analyse
modale et la déduction d’un modeéle d’ordre réduit pour des poutres avec actionneurs
piézoélectriques distribués. Enfin, des applications au controle passif de vibrations au
moyen de circuits électriques sont étudiées. Dans de tels systémes, I’énergie mécanique
est dissipée dans des réseaux résistifs-inductifs. Chaque partie comprend des validations
numériques et expérimentales. Un premier prototype d’un systéme pour le controle passif
distribué est proposé.

Mots-clés: piézoélectricité, contrdle de vibrations, poutres multicouches, structures intel-
ligentes, analyse modale, poutre d’Euler-Bernoulli, formulation variationelle mixte, con-
trole distribué
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Chapter 1

Introduction

1.1 Motivations

Many modern structural systems include electric and electronic devices to improve safety,
comfort, and performance. The electric and electronic devices are digital or analog mi-
croprocessor with power conditioning electronics that exploit networks of sensors and
actuators to sense the state of the structure and exert specific control actions. Systems
with these characteristics are called smart or intelligent. The integrated control systems
make them able to adapt to varying environmental conditions, loadings, and user require-
ments. They can monitor the structural integrity and promptly detect early-stage damages
(damage identification), impose desired shapes (shape control), reduce vibrations and the
structural-borne noise (noise and vibration control). Current industrial applications range
from advanced structural elements for the aerospace and automotive industries to medical
devices, micropositioners, sport goods, etc.

In late 80’s the requirement of efficient damping systems for lightweight structures
in space applications was a first motivation for the development of the research field of
smart materials and structures. Vibrations are undesirable because they decrease comfort,
limit structural lifetime, affect working precision of machine tools, generate and transmit
noise. Nowadays, vibration suppression systems using piezoelectric materials with active
or passive electric controllers are widespread in engineering applications. Their advantages
with respect to traditional solutions are reduced mass and weight, high performances, and
adaptability. Specific applications include the control of rotor-blade vibrations or fixed-
wing flutter (Loewy, 1997), the reduction of structurally radiated and transmitted noise
in transportation vehicles (Boller, 1996), the control of hard-disk drives with increased
performances (Guo et al., 1998). Moreover, tennis rackets and smart skis that electrically
damp mechanical vibrations through shunted piezoelectric transducers are commercially
available (see e.g. www.head.com).

Active materials are a primary need of a smart structure. Extensively used active
materials include piezoelectric materials, shape-memory-alloys, electrostrictive and mag-
netostrictive materials (Giurgiutiu et al., 1996). Among them, piezoelectric materials, and
in particular piezoelectric ceramics, are the most diffused, mainly thanks to the first-order
linearity in their response and their large operating band-width (0.1 Hz +~ GHz). Piezo-
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electric ceramics are stiff and heavy. When added to lightweight structures, they can
significantly affect the mass and stiffness distribution. They do not only provide the sens-
ing and actuating functions, but also carry the structural loads, becoming an integrated
part of a composite structure. This raises the need for modelling and design tools which,
by including the active material, are able to accurately estimate the mechanical, electric,
and coupling properties of the composite structure as a whole.

The research in the area of smart structures received an enormous attention in the
last twenty-years. As pointed-out by Chopra in its comprehensive review about the state-
of-the art of smart structures (Chopra, 2002), the main barriers to further industrial
applications include the limited actuator stroke, the lack of accurate modelling tools,
the little information available about reliability and lifetimes, and the need for robust
distributed control strategies.

1.2 Objectives

This thesis focuses on theoretical, numerical, and experimental techniques for modelling
structures hosting piezoelectric elements used for vibration control. It consists of three
major components:

e Beam modelling of piezoelectric laminates;
e Numerical and experimental modal analysis of stepped piezoelectric beams;

e Passive vibration control with distributed piezoelectric shunting.

It includes experimental works for the validations of the theoretical models and the nu-
merical techniques, and experimental tests on prototypes of the vibration-damping devices
that assess their technical feasibility and effectiveness.

The theoretical and numerical parts look for the best trade-off between modelling accu-
racy and manageability. The models account for the two-fold electromechanical coupling
and accurately describe the mechanical and electric properties of the composite struc-
tures. These are primary needs of vibration control applications. Beam modelling focuses
on an accurate description of 3D cross-sectional warping effects and on the electromechan-
ical coupling that, although usually neglected in the technical literature, are relevant for
getting a satisfactory agreement with experiments. On the other hand, the use of mate-
rial or geometric properties that are difficult or impossible to experimentally determine
is avoided. Based on numerical and experimental comparisons, a critical analysis of the
available approaches gives a further insight into the main issues of beam modelling of
piezoelectric laminates.

The part on modal analysis faces the problem of the experimental and numerical de-
termination of the electromechanical modal properties and reduced-order modal-models
of beams with multiple piezoelectric transducers. This is a required step towards control
applications. In this framework, the main objectives include: to propose reliable methods
to find exact natural frequencies and mode shapes; to provide comments and suggest pos-
sible improvements of standard approximate methods such as assumed modes and finite-
element; to propose procedures for an easy and reliable experimental identification of the
electromechanical modal parameters. In the comparative analysis between experimental
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and numerical results, efforts are made to distinguish among the errors due to inaccurate
modeling, approximate numerical solutions, and improper experimental estimations.

The part on vibration damping develops the concept of passive electric damping with
distributed piezoelectric shunting. This is an extension toward distributed control of the
passive damping technique that uses a piezoelectric element shunted with a resistive-
inductive circuit to dissipate the mechanical vibrational energy in the electric form. In
this context, the main objectives are to look for optimal shunting network for multimodal
control and to develop a first experimental validation.

1.3 Outline

The material of this thesis is organized with an introductory part (Chapters 1 and 2), a
core part reporting the theoretical and numerical work (Chapter 3 to 5), an experimental
part (Chapter 6), and a closure (Chapter 7). Each chapter of the core part includes a
specific introduction and a dedicated literature review.

Chapter 2 provides a general backgrounds about piezoelectricity and piezoelectric
transducers. Especially, it introduces the governing equations of 3D piezoelectricity and an
associated mixed variational formulation. The 3D field distribution in single-layer piezo-
electric transducers in extension and bending is briefly described, by underlying the main
phenomena.

Chapter 3 is devoted to beam modelling of piezoelectric laminates with thickness po-
larized piezoelectric ceramics. It presents an original beam model that includes the effect
of cross-sectional warping due to the in-plane isotropy of the piezoelectric actuation. Nu-
merical comparisons with standard modelling approaches and 3D finite-element results
obtained with a commercial code are shown.

Chapter 4 deals with numerical modal analysis of stepped piezoelectric beams. On
the basis of the beam model of Chapter 3, it develops and compares several methods for
determining the electromechanical modal properties and establishing reduced order modal
models of beams including multiple piezoelectric transducers.

Chapter 5 reports theoretical and numerical results about vibration control with shunted
piezoelectric transducers. After a detailed analysis of the classical resistive and resistive-
inductive single-shunts, it extends the main results to distributed passive shunts using
multiple piezoelectric transducers and multi-terminal electric networks.

Chapter 6 resumes the experimental works about strain analysis on a beam with
surface-bonded piezoelectric transducers, experimental modal analysis of stepped piezo-
electric beams, and modal control with distributed resistive and resistive-inductive piezo-
electric shunts. Comparisons with the theoretical results assess the accuracy of the propos-
ing modelling approaches and the effectiveness of the vibration-damping techniques.

Finally, Chapter 7 is left for conclusions and suggestions for possible extensions of the
present work.






Chapter 2

Piezoelectricity

Contents

2.1 Piezoelectric materials . ... ... .. ... ... . 00000, 6
2.2 Mathematical formulations for 3D linear piezoelectricity . . . . 6

2.2.1 Kinematics and balance . . . . . . . .. .. ... ... .. ....

2.2.2 Piezoelectric constitutive e