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au vu des rapports de M. Yuri GOLUBEV, Université de Provence
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Introduction

1. Objet de la thèse

1.1. Motivations. Dans cette thèse, nous étudions l’estimation non-paramétrique

d’une fonction à partir de données bruitées spatialement inhomogènes. Le mot in-

homogène est utilisé ici pour souligner le fait que la quantité de données peut varier

plus ou moins fortement sur le domaine d’estimation. Le but est de mieux cerner ce

problème dans le cadre de la théorie minimax.

Considérons les deux simulations suivantes. Les points correspondent aux ob-

servations dont on dispose pour reconstruire le signal (représenté par la courbe

continue).
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Fig. 1. Observations homogènes, observations inhomogènes

Sur la simulation de gauche, la quantité de données varie peu : il y a à peu près

autant d’information partout. On s’attend donc à ce qu’un estimateur basé sur ces

données ait une précision constante sur [0, 1]. Sur la simulation de droite, il y a peu

d’observations au milieu de l’intervalle, et il y en a beaucoup plus vers les extrémités.

Si un estimateur est basé sur ces données, on s’attend à ce qu’il estime mieux vers

les extrémités de [0, 1] qu’en son milieu. C’est cette remarque évidente qui motive le

sujet de cette thèse. Nous travaillons avec le modèle suivant.

1.2. Le modèle. On suppose que l’on observe des couples (Xi, Yi) ∈ [0, 1]×R,

1 6 i 6 n, issus du modèle

Yi = f(Xi) + ξi, (1.1)

9



10 INTRODUCTION

où les couples (Xi, Yi) sont indépendants. La fonction f : [0, 1] → R est le paramètre

à estimer. On se place dans un cadre asymptotique, c’est-à-dire que l’on suppose

que n→ +∞. Le bruit ξi est gaussien centré de variance σ2 et indépendant des Xi.

Les variables Xi sont distribuées selon une densité commune µ à support dans [0, 1].

Dans la suite, on notera P
n
f,µ la loi jointe des (Xi, Yi), 1 6 i 6 n et E

n
f,µ l’espérance

par rapport à cette loi.

Ce modèle, dit de régression avec plan d’expérience (ou design) aléatoire est un

modèle classique très étudié en statistique non-paramétrique. On pourra voir par

exemple Korostelev and Tsybakov (1993), Efromovich (1999), Nemirovski (2000),

parmi beaucoup d’autres. Cependant, ce modèle a été le plus souvent étudié avec

Xi = i/n ou Xi uniformes sur [0, 1]. Lorsque la densité µ n’est pas uniforme, les

données ne sont pas réparties de façon homogène sur [0, 1]1. On peut faire l’analogie

entre le modèle de régression (1.1) et le modèle de bruit blanc hétéroscédastique

dY n
t = f(t)dt+

σ√
nµ(t)

dBt, t ∈ [0, 1], (1.2)

où B est un mouvement Brownien, voir Brown and Low (1996a), Brown et al. (2002).

Ce modèle est en quelque sorte une version ”idéalisée” de (1.1). On peut lire sur le

terme stochastique que la quantité de données est ”́egale” à nµ(t) au point t : µ

a une influence du même ordre que n sur la quantité locale de données. Lorsque

µ n’est pas uniforme, on s’attend alors à ce que la précision d’un estimateur basé

sur des données issues de (1.1) varie sur le domaine d’estimation, et dépende du

comportement de µ.

2. Démarche

Il y a plusieurs façons de mesurer la qualité d’un estimateur f̂n. Lorsque l’objet

à estimer n’est pas de dimension finie (ou non-paramétrique), une approche consiste

à fixer un ensemble F , et à supposer que f ∈ F . Dans la plupart des cas, on choisit

un ensemble caractérisant la régularité et l’intégrabilité de f (F ne doit pas être

”trop grand”). Puis, on choisit une perte d pour mesurer l’écart entre f et f̂n. Pour

prouver l’efficacité de f̂n sur F , on montre que son risque maximal

sup
f∈F

E
n
f,µ

{
d(f̂n, f)

}

tend vers 0 lorsque n → +∞. La qualité de f̂n sur F est alors mesurée par la rapi-

dité de cette convergence. On se demande alors quelle est la vitesse de convergence

1Dans la figure 1, nous avons simulé des données issues de (1.1). Sur la gauche, le design est

uniforme de densité µ(x) = 1[0,1](x) et sur la droite µ(x) = 1/12(x − 1/2)21[0,1](x).
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optimale sur F . On définit le risque minimax

Rn(F , d) = inf
bfn

sup
f∈F

E
n
f,µ

{
d(f̂n, f)

}
, (2.1)

où l’infimum en f̂n porte sur tous les estimateurs, et on calcule l’ordre de grandeur

de cette quantité : on cherche une suite ψn > 0 telle que

Rn(F , d) ≍ ψn, (2.2)

où an ≍ bn signifie 0 < lim infn an/bn 6 lim supn an/bn < +∞. La suite ψn est la

vitesse minimax sur F pour la perte d. Elle mesure la difficulté du problème d’esti-

mation associé à (F , d). Il s’agit donc en quelque sorte d’une notion de complexité.

La notion de risque minimax remonte à Wolfowitz (1950) et est toujours très utilisée

aujourd’hui, puisqu’elle fournit une méthode simple de comparaison d’estimateurs.

Pour étudier les conséquences du caractère inhomogène des données sur le pro-

blème d’estimation, nous calculons les vitesses minimax locales et globales dans le

modèle (1.1).

2.1. Point de vue local. Du point de vue local, nous nous intéressons à l’esti-

mation de f en un point où la quantité de données dégénère : on a peu, ou beaucoup

de données en ce point. On considère la perte dx(f, g) = |f(x) − g(x)| où x ∈ (0, 1)

est un point fixé. Dans le modèle (1.1) avec µ strictement positive et bornée, Stone

(1980) montre pour F une boule de Hölder de régularité s que le risque minimax

vérifie

Rn(F , dx) ≍ n−s/(2s+1).

Ce résultat est l’un des premiers (avec les travaux de Ibragimov and Hasminski

(1981)) à montrer que la difficulté d’estimation est liée à la régularité de l’objet

à estimer, et qu’en particulier, l’estimation est d’autant plus aisée que l’objet est

régulier. Nous pouvons poser une première question :

(Q1) Que devient cette vitesse dans les cas extrêmes où µ(x) = 0 et

limy→x µ(y) = +∞ ?

En effet, lorsque µ(x) = 0 (ou limy→x µ(y) = +∞), on se retrouve dans une situation

ou l’on a peu (ou beaucoup) de données au point x. Nous disons dans ce cas que

le design (ou µ) dégénère. Si s = 2 et µ(y) est équivalente à |y − x|β, β > 0 quand

y → x, Hall et al. (1997) montrent que la vitesse minimax est n−2/(5+β). Dans Guerre

(2000), on peut retrouver l’exemple du design de Hall et al. (1997) avec cette fois-ci

β > −1 et la régularité s = 1. On obtient dans ce cas que la vitesse minimax est

n−1/(3+β).

Avec ces résultats, on voit que la vitesse minimax peut dépendre également du

comportement du design, et que cela arrive dès que le celui-ci dégénère. Dans le
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chapitre 1 de cette thèse, nous étudions ce problème de manière plus systématique,

avec l’objectif d’avoir une compréhension quantitative de l’influence de µ sur la

vitesse minimax.

2.2. Point de vue global. Du point de vue global, nous nous intéressons à l’es-

timation de f avec la perte uniforme d∞(f, g) = ‖f−g‖∞ où ‖g‖∞ = supx∈[0,1] |g(x)|.
Le risque minimax s’écrit alors

Rn(F , d∞) = inf
bfn

sup
f∈F

E
n
f,µ

{
‖f̂n − f‖∞

}
.

L’avantage de cette norme est qu’elle ”force” un estimateur à bien se comporter

partout. Naturellement d’autres choix de pertes sont possibles, on peut penser en

particulier aux pertes intégrées dp(f, g) =
∫ 1
0 |f(x) − g(x)|pdx avec p > 0.

Si µ est strictement positive et bornée, pour F une boule de Hölder de paramètre

s, Stone (1982) montre que

Rn(F , d∞) ≍ ψn,

où ψn = (log n/n)s/(2s+1). On sait ainsi que l’estimation globale de f avec la perte

uniforme est légèrement plus difficile au sens minimax que l’estimation ponctuelle :

on doit en effet rajouter le terme (log n)s/(2s+1) dans la vitesse ponctuelle. Si µ ne

dégénère pas, on observe donc que ψn n’est pas sensible au design (aux ordres de

grandeurs près), et donc au caractère inhomogène des données. Pour remédier à cela,

nous considérons un risque de la forme

sup
f∈F

E
n
f,µ

{
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

}
,

où rn(·) > 0 est une suite de vitesses dépendantes de l’espace, qu’on appelle norma-

lisation. Si ce risque reste borné quand n → +∞, on dira que rn(·) est une borne

supérieure sur F . Puisqu’on a ”rentré” la vitesse dans la perte uniforme, et que cette

vitesse peut maintenant dépendre de l’espace, on pourra illustrer la sensibilité d’un

estimateur à l’inhomogénéité des données.

Si on cherche de telles normalisations lorsque µ ne dégénère pas, on se rend

compte immédiatement que si rn(x) ≍ ψn pour tout x, alors rn(·) est une borne

supérieure : il suffit en effet d’appliquer le résultat de Stone. Pour trouver de ”bonnes”

normalisations lorsque µ ne dégénère pas, nous devons donc nous placer dans un

cadre d’étude plus fin. En effet, on peut raffiner le calcul de la vitesse minimax (2.2)

en cherchant la constante C(F , d) > 0 vérifiant

lim
n→+∞

Rn(F , d)/ψn = C(F , d).
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On dit alors que C(F , d) est la constante minimax exacte (asymptotique) associée

au problème (F , d). Un estimateur f̂n vérifiant

limsupn sup
f∈F

E
n
f,µ

{
d(f̂n, f)

}
6 C(F , d) (2.3)

est dit asymptotiquement exact. Pour notre problème, nous allons donc chercher

rn(·) telle que

limsupn sup
f∈F

E
n
f,µ

{
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

}
6 C(F , d∞). (2.4)

Naturellement, une telle normalisation n’est pas unique : il nous faudra donc égale-

ment définir et montrer son optimalité.

On doit le premier résultat donnant la constante minimax exacte à Pinsker

(1980). Ce résultat est écrit dans le modèle de bruit blanc gaussien, pour F une boule

de Sobolev et la perte d2(f, g) = ‖f − g‖2
2 où ‖f‖2 = (

∫
f(x)2dx)1/2. Pour la perte

d∞, Korostelev (1993) calcule la constante exacte dans le modèle de régression (1.1)

avec un design déterministe équidistant Xi = i/n et F est une boule de Hölder de

paramètre s ∈ (0, 1]. Il s’agit du premier résultat d’estimation exacte pour la perte

uniforme. Ce résultat a été généralisé à tout s > 0 dans le modèle de bruit blanc

par Donoho (1994). Lorsque s > 1, on ne connâıt pas la valeur explicite (sauf pour

s = 2) de la constante minimax associée à une boule de Hölder. Elle est alors définie

comme solution d’un certain problème d’optimisation.

Depuis les résultats de Korostelev et de Donoho, d’autres travaux ont été effec-

tués sur le problème d’estimation exacte ou de test asymptotiquement exact d’hypo-

thèses en norme uniforme. On citera Lepski and Tsybakov (2000) sur les tests non-

paramétriques asymptotiquement exacts, Korostelev and Nussbaum (1999) pour

l’estimation exacte dans le modèle de densité (où on cherche à estimer la densité

f commune à un n-échantillon) et Bertin (2004a) en bruit blanc dans le cas d’un

signal multidimensionnel anisotrope.

Un résultat plus directement lié à notre problème est celui de Bertin (2004b), qui

étend le résultat de Korostelev (1993) aux Xi aléatoires, avec une densité µ continue

et strictement positive. On a en effet dans ce cas

lim
n→+∞

Rn(F , d∞)/vn = C(F , d∞),

où

vn =
( log n

n infx µ(x)

)s/(2s+1)
, (2.5)

avec la même constante minimax C(F , d∞) que dans Korostelev (1993). Ce résultat

implique que parmi toutes les normalisations constantes, la meilleure est vn. Il est

alors naturel de se demander :
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(Q2) Peut-on remplacer inf µ par µ(x) dans cette vitesse ?

Autrement dit, peut-on montrer que

rn(x) =
( log n

nµ(x)

)s/(2s+1)

est une borne supérieure au sens de (2.4). Si oui, s’agit-il de la meilleure normali-

sation ? dans quel sens ? Si on se souvient que dans le modèle (1.1), on a ”nµ(x)”

observations au point x, ces questions paraissent raisonnables. On obtiendrait ainsi

une normalisation adaptée au caractère inhomogène de l’information dans le modèle.

Dans le chapitre 3, nous apportons de nouveaux éléments de réponse à ces questions.

Lorsque µ dégénère, nous savons que l’ordre de la vitesse minimax ponctuelle

est différent de l’ordre classique. Une question naturelle est alors :

(Q3) Pour l’estimation globale, que se passe-t-il si µ(x) = 0 pour certains x ?

Il n’existe pas à notre connaissance de réponse à cette question. Nous allons chercher

dans ce cas des normalisations sans déterminer la valeur de la constante minimax

asymptotique. On imagine en effet que comme avec l’estimation locale, si rn(·) est

une normalisation adaptée aux données inhomogènes, la vitesse rn(y) pour y proche

d’un un point x tel que µ(x) = 0 est plus lente que la vitesse ψn classique de Stone,

et que pour d’autres y, on doit retrouver le même ordre que ψn. On cherche alors la

”forme” d’une telle normalisation. Nous répondons dans une certaine mesure à (Q3)

dans le chapitre 4.

2.3. Estimation adaptative. Nous évoquons maintenant le problème de l’es-

timation adaptative. En effet, un estimateur ”simple” dépend typiquement de la

classe F considérée, par le biais du paramètre de régularité s par exemple. Na-

turellement, un tel paramètre n’est pas connu en pratique. Depuis les travaux de

Efromovich (1985) et de Lepski (1988, 1990, 1992), une littérature très riche sur ce

sujet est apparue, notamment grâce à l’essor des méthodes non-linéaires en par-

tie liées aux bases d’ondelettes (le seuillage dans des bases d’ondelettes, initié par

Donoho and Johnstone (1994) et Donoho et al. (1995)).

Il faut donc fournir un effort supplémentaire pour construire un estimateur adap-

tatif, qui converge à la ”bonne” vitesse simultanément sur une réunion de classes

indexées par un paramètre de régularité. Les méthodes adaptatives se répartissent

essentiellement en trois parties : estimation non-linéaire (seuillage) par méthodes

d’ondelettes (ou autres méthodes de décomposition d’un signal), méthodes de sélec-

tion de modèle, et estimation à noyaux avec sélection adaptative du paramètre de

lissage (la méthode de Lepski). Sur l’estimation adaptative dans le modèle de régres-

sion avec design irrégulier ou aléatoire, nous citons les travaux de Antoniadis et al.
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(1997), Antoniadis and Pham (1998), Brown and Cai (1998), Delouille et al. (2001,

2004), Kerkyacharian and Picard (2004) pour les méthodes d’ondelettes, Baraud

(2002), Birgé (2002) pour les méthodes de sélection de modèle. La méthode adapta-

tive que nous proposons dans cette thèse est basée sur les travaux de Lepski (1988,

1990, 1992), Goldenshluger and Nemirovski (1997), Lepski et al. (1997), Lepski and

Spokoiny (1997) et Spokoiny (1998).

3. Résultats

3.1. Estimation ponctuelle. En fonction de la régularité locale de f et du

comportement local de µ, nous obtenons dans le chapitre 1 toute une gamme de

vitesses minimax, comprenant des vitesses très lentes et des vitesses très rapides.

Nous calculons le risque minimax ponctuel en un point x fixé pour deux types de

comportements de µ. Le premier type de comportement, dit à variation régulière,

contient des comportements en |y − x|β pour y proche de x. Le deuxième type de

comportement, dit à Γ-variation, décrit des comportements où µ tend vers 0 au

point x plus vite que |y − x|β pour n’importe quel β. Dans le premier cas, si f a

localement une régularité de type Hölder de paramètre s, on obtient des vitesses

minimax de la forme

n−s/(1+2s+β)ℓ(1/n),

où ℓ est un terme lent (typiquement ℓ(1/n) = (log n)γ) et β est l’indice de variation

régulière de µ, qui quantifie en quelque sorte la quantité d’information au point x.

En particulier, lorsque β = −1 (on a beaucoup d’information), la vitesse minimax

devient

n−1/2ℓ(1/n),

ce qui est quasiment la vitesse d’estimation paramétrique (au terme lent près). Sur

ces exemples, on peut retrouver en particulier les résultats de Hall et al. (1997) et de

Guerre (2000). Dans le deuxième type de comportement, on peut donner un exemple

où µ(y) se comporte comme exp(−1/|y−x|α) avec α > 0 (prolongé par 0 en x) pour

y proche de x. Si f a une régularité s, on obtient alors la vitesse minimax

(log n)−s/α,

qui est une vitesse très lente. Ces résultats répondent ainsi à la question (Q1) énoncée

plus haut.

Dans le chapitre 2, nous proposons une procédure adaptative en la régularité

de f et qui ne dépend pas dans sa construction de µ. Cette méthode est basée sur

les travaux de Lepski (1988, 1990, 1992), Goldenshluger and Nemirovski (1997),

Lepski et al. (1997), Lepski and Spokoiny (1997) et Spokoiny (1998). Lorsque µ a
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de nouveau un comportement du type variation régulière d’indice β, et que f a une

régularité s, nous montrons que cette procédure converge avec la vitesse

(log n/n)s/(1+2s+β)ℓ(log n/n),

qui est la vitesse minimax au terme log n près. Nous montrons que dans un certain

sens, on ne peut pas se dispenser de la pénalisation log n pour l’estimation ponctuelle

avec un estimateur adaptatif. Ce phénomène, dit de ”prix pour l’adaptation”, est

spécifique au risque ponctuel. Il a été mis en évidence dans le modèle de bruit blanc

par Lepski (1990), voir aussi Lepski and Spokoiny (1997), et expliqué à l’aide d’autres

techniques dans Brown and Low (1996b) dans le modèle de régression avec design

équidistant.

3.2. Estimation globale. Dans les chapitres 3 et 4, nous étudions l’estimation

globale de f en norme uniforme. Dans le chapitre 3, si µ est strictement positive et

continue, nous proposons un estimateur asymptotiquement exact sur une boule de

Hölder F de paramètre s > 0 arbitraire, qui converge avec la vitesse

rn(x) =
( log n

nµ(x)

)s/(2s+1)
.

Ce résultat s’écrit

limsupn sup
f∈F

E
n
f,µ

{
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

}
6 P (F), (3.1)

où P (F) > 0 est une constante définie avec un certain problème d’optimisation (op-

timal recovery), de la même manière que dans Donoho (1994). Dans le chapitre 4,

nous proposons une hypothèse stipulant que µ est continue et strictement positive

sur [0, 1], excepté en un nombre fini de points où elle varie régulièrement à gauche

et à droite. Sous cette hypothèse, où µ peut s’annuler, nous montrons que la nor-

malisation

rn(x) = hn(x)s,

où hn(·) vérifie pour tout x ∈ [0, 1]

hn(x)s =
( log n

n
∫ x+hn(x)
x−hn(x) µ(t)dt

)1/2
, (3.2)

est une borne supérieure sur F . Un exemple où le calcul de cette normalisation est

explicite correspond au choix s = 1 et µ(x) = |x− 1/2|1[0,1](x) :
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rn(x) =





( log n
n(1−2x)

)1/3
si x ∈

[
0, 1

2 −
( log n

21/2n

)1/2
]
;

1
2

{(
(x− 1

2 )4 + 4 log n
n

)1/2 − (x− 1
2 )2

}1/2

si x ∈
[

1
2 −

( log n
21/2n

)1/2
, 1

2 +
( log n

21/2n

)1/2
]
;

( log n
n(2x−1)

)1/3
si x ∈

[
1
2 +

( log n
21/2n

)1/2
, 1

]
,

que nous représentons pour différentes valeurs de n dans la figure 2 ci-dessous. Ces

bornes supérieures répondent à moitié aux questions (Q2) et (Q3) ci-dessus : en effet,

nous devons prouver leur optimalité, dans un sens que nous allons devoir déterminer.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

rn with n = 100
n = 1000

n = 10000
µ

Fig. 2. rn(·) pour n = 100, 1000, 10000

Pour montrer que ψn est optimale sur une classe F au sens minimax, on montre

liminfn inf
bfn

sup
f∈F

E
n
f,µ

{
w(ψ−1

n ‖f̂n − f‖∞)
}
> 0.

Cette borne inférieure implique qu’aucun estimateur ne peut converger à une vitesse

plus rapide que ψn sur la classe F pour la perte d∞. Pour montrer l’optimalité d’une

normalisation, c’est-à-dire d’une vitesse ”non constante”, cette définition n’est plus

satisfaisante. En effet, si on montre

liminfn inf
bfn

sup
f∈F

E
n
f,µ

{
w

(
sup

x∈[0,1]
ρn(x)−1|f̂n(x) − f(x)|

)}
> 0, (3.3)

on n’obtient qu’une propriété d’optimalité faible pour ρn(·) : elle n’exclut pas l’exis-

tence d’une autre borne supérieure ϑn(·) telle que pour certains x, ϑn(x) < ρn(x).

Pour remédier à cela, nous montrons des résultats renforçant (3.3). L’idée est de
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remplacer le supremum en x ∈ [0, 1] par un supremum en x ∈ In, où In est un inter-

valle quelconque dans [0, 1], éventuellement petit (de longueur qui tend vers 0 avec

n). Dans le chapitre 3, nous montrons que pour n’importe quel intervalle In ⊂ [0, 1]

”petit” (mais pas trop), on a

liminfn inf
bfn

sup
f∈F

E
n
f,µ

{
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
}

> P (F),

où rn(·) et P (F) sont les mêmes que dans la borne supérieure (3.1). On obtient ainsi

un résultat d’optimalité satisfaisant pour la normalisation rn(·). Nous montrons un

résultat similaire dans le cas du design dégénéré dans le chapitre 4.

Dans le chapitre 3, nous proposons également une bande de confiance inhomo-

gène Cα(·) pour f , qui vérifie à un niveau α fixé,

inf
f∈F

P
n
f,µ

{
f(x) ∈ Cα(x), pour tout x ∈ [0, 1]

}
> 1 − α,

dès que n est assez grand. La construction de cette bande de confiance ne dépend

pas de µ, et sa longueur varie sur le domaine d’estimation en fonction de la quantité

locale de données.

Dans le chapitre 4, nous proposons un estimateur adaptatif qui estime f glo-

balement avec une perte uniforme discrète. Nous montrons que pour cette perte, il

converge simultanément sur plusieurs classes de fonctions avec une régularité spa-

tialement inhomogène. Sur une boule de Hölder, il converge avec la normalisation

optimale rn(·). Cet estimateur est similaire à celui du chapitre 2.

4. Perspectives

On peut généraliser le modèle de régression (1.1) en considérant un niveau bruit

hétéroscédastique. Le modèle s’écrit alors

Yi = f(Xi) + σ(Xi)ξi,

où les ξi sont des gaussiennes centrées réduites, et σ : [0, 1] → R
+. On pourrait

calculer la vitesse minimax en un point avec un design qui dégénère et un niveau

de bruit qui dégénère. On imagine en effet qu’un phénomène de compensation entre

un niveau de bruit élevé et le fait d’avoir beaucoup de données pourrait avoir lieu,

et qu’on doit pouvoir lire cet effet sur la vitesse minimax.

Il serait également intéressant de savoir si les résultats d’équivalence asympto-

tiques de Brown and Low (1996a) et Brown et al. (2002) restent vrais dans le cas

d’un design fortement inhomogène, voir dégénéré.

Si K est un opérateur sur une classe F et si f ∈ F , on peut considérer le

problème ”inverse”

Yi = K(f)(Xi) + ξi.
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Typiquement, K est un opérateur de convolution qui régularise f . On a alors un

effet de lissage sur f , auquel s’ajoute l’inhomogénéité des données. Que devient

la vitesse minimax dans ce cas ? A-t-on un effet de compensation entre la perte

d’information liée à l’observation indirecte de f , et un possible gain d’information lié

à la concentration de données en certains points ? Enfin, l’extension de nos résultats

à des dimensions supérieures (notamment la dimension 2, en vue d’une application

au traitement de l’image) est importante.
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Les chapitres 1, 2 et 3 font l’objet d’articles soumis à des revues. Tous les cha-

pitres peuvent être lus indépendamment les uns des autres, d’où la présence inévi-

table de quelques répétitions dans les définitions.



CHAPTER 1

Convergence rates for pointwise curve estimation with a

degenerate design

In this chapter, we want to recover the regression function at a point x0 where

the design density is vanishing or exploding. Depending on assumptions on the

local regularity of the regression function and the local behaviour of the design, we

find several minimax rates. These rates lie in a wide range, from slow ℓ(1/n) rates,

where ℓ is slowly varying (for instance (log n)−1), to fast n−1/2ℓ(1/n) rates. If the

continuity modulus of the regression function at x0 can be bounded from above by

an s-regularly varying function, and if the design density is β-regularly varying, we

prove that the minimax convergence rate at x0 is n−s/(1+2s+β)ℓ(1/n).

1. Introduction

1.1. The model. Suppose that we have n independent and identically dis-

tributed observations (Xi, Yi) ∈ [0, 1] × R from the regression model

Yi = f(Xi) + ξi, (1.1)

where f : [0, 1] → R, where the variables (ξi) are centered Gaussian of variance

σ2 and independent of X1, . . . ,Xn (the design) and the Xi are distributed with

density µ. We want to recover f at a chosen x0 ∈ (0, 1). For instance, if we take the

variables (Xi) distributed with density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

|x− x0|β1[0,1](x),

for x0 ∈ [0, 1] and β > −1, this density clearly models a lack of information at

x0 when β > 0, and conversely a very large amount of information when −1 <

β < 0. We want to understand the influence of the parameter β on the amount of

information at x0 in the minimax setup.

1.2. Motivation. The pointwise estimation of the regression function is a well-

known problem, which has been intensively studied by many authors. The first

authors who computed the minimax rate over a nonparametric class of Hölderian

functions were Ibragimov and Hasminski (1981) and Stone (1980). Over the class

of Hölder functions with smoothness s, the local polynomial estimator converges

23
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with the rate n−s/(1+2s) (see Stone (1980)) and this rate is optimal in the minimax

sense. Many authors worked on related problems: see, for instance, Korostelev and

Tsybakov (1993), Nemirovski (2000), Tsybakov (2003).

Nevertheless, these results require the design density to be non-vanishing and

finite at the estimation point. This assumption roughly means that the information

is spatially homogeneous. The next logical step is to look for the minimax risk at a

point where the design density µ is vanishing or exploding. To achieve such a result,

it seems natural to consider several types of behaviours at x0 for the design density,

and to compute the corresponding minimax rates. Such results would improve the

statistical description of models (here in the minimax setup) with inhomogeneous

information.

When f has a Hölder type smoothness of order 2 and if µ(x) ∼ xβ near 0, where

β > 0, Hall et al. (1997) show that a local linear procedure converges with the rate

n−4/(5+β) when estimating f at 0. This rate is also proved to be optimal. In a more

general setup for the design and if the regression function is Lipschitz, Guerre (1999)

extends the result of Hall et al. (1997). Here, we intend to develop the estimation

of the regression function for degenerate designs in a systematic way.

1.3. Organisation of the chapter. In section 2, we present two theorems

giving the pointwise minimax convergence rates in the model (1.1) for different

design behaviours (theorems 1 and 2). In section 3, we construct an estimator and

we give upper bounds for this estimator in section 4 (propositions 4 and 5). In

section 5 we discuss some technical points. The proofs are delayed until section 6

and well-known facts about regular and Γ-variation are given in section 7.

2. Main results

All along this study we are in the minimax setup. We define the pointwise

minimax risk over a class Σ by

Rn(Σ, µ) ,
(
inf
Tn

sup
f∈Σ

E
n
f,µ

{
|Tn(x0) − f(x0)|p

})1/p
, (2.1)

where infTn is taken among all estimators Tn based on the observations (1.1), with

x0 the estimation point and p > 0. The expectation E
n
f,µ in (2.1) is taken with

respect to the joint probability distribution P
n
f,µ of the pairs (Xi, Yi), 1 6 i 6 n.

2.1. Regular variation. The definition of regular variation definition and its

main properties are due to Karamata (1930). On this topic, we refer to Bingham

et al. (1989), Geluk and de Haan (1987), Resnick (1987) and Senata (1976).
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Definition 1 (Regular variation). A function ν : R
+ → R

+ is regularly varying

at 0 if it is continuous and such that there exists β ∈ R satisfying

∀y > 0, lim
h→0+

ν(yh)/ν(h) = yβ. (2.2)

We denote by RV(β) the set of all such functions. A function in RV(0) is slowly

varying.

Remark. Roughly, a regularly varying function behaves as a power function

times a slower term. Typical examples are xβ, xβ(log(1/x))γ for γ ∈ R, and more

generally any power function times a log or a composition of log-functions to some

power. For other examples, see the references cited above.

2.2. The function class.

Definition 2. If δ > 0 and ω ∈ RV(s) with s > 0, we define the class Fδ(x0, ω)

of functions f : [0, 1] → R such that

∀h 6 δ, inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x− x0)| 6 ω(h),

where k = ⌊s⌋ (the largest integer smaller than s) and Pk is the set of all the real

polynomials with degree k. We define ℓω(h) , ω(h)h−s, the slow variation term

of ω. If α > 0 we define

U(α) ,
{
f : [0, 1] → R such that ‖f‖∞ 6 α

}
.

Finally, we define

Σδ,α(x0, ω) , Fδ(x0, ω) ∩ U(α).

Remark. If we take ω(h) = rhs for some r > 0, we find back the classical Hölder

regularity with radius r. In this sense, the class Fδ(x0, ω) is a slight generalisation

of Hölder regularity.

Assumption M. In what follows, we assume that there exists a neighbourhood

W of x0 and a continuous function ν : R
+ → R

+ such that:

∀x ∈W, µ(x) = ν(|x− x0|). (2.3)

This assumption roughly means that close to x0, there are as many observations

on the left of x0 as on the right. All the following results can be extended easily to

the non-symmetrical case, see section 5.1.
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2.3. Regularly varying design density. Theorem 1 gives the minimax rate

over the class Σ (see definition 2) for the estimation problem of f at x0 when the

design is regularly varying at this point.

We denote by R(x0, β) the set of all the densities µ such that (2.3) holds with

ν ∈ RV(β) for a fixed neighbourhood W .

Theorem 1. If

• (s, β) ∈ (0,+∞) × (−1,+∞) or (s, β) ∈ (0, 1] × {−1},
• Σ = Σhn,αn(x0, ω) with ω ∈ RV(s), αn = O(nγ) for some γ > 0 and hn

given by (2.5),

• µ ∈ R(x0, β),

then we have

Rn(Σ, µ) ≍ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(n
−1) as n→ +∞, (2.4)

where ℓω,ν is slowly varying and where ≍ stands for the equality in order, up to

constants depending on s, β and p (see (2.1)) but not on σ. Moreover, the minimax

rate is equal to ω(hn) where hn is the smallest solution to

ω(h) =
σ√

2n
∫ h
0 ν(t)dt

. (2.5)

Example. The simplest example is the non-degenerate design case (0 < µ(x0) <

+∞) with Σ a Hölder ball (ω(h) = rhs, see definition 2). This is the common case

found in the literature. In particular, in this case, the design is slowly varying (β = 0

with slow term constant and equal to µ(x0)). Solving (2.5) leads to the classical

minimax rate

Cσ,rn
−s/(1+2s),

where Cσ,r = σ2s/(1+2s)r1/(1+2s).

Example. Let β > −1. We consider ν such that
∫ h
0 ν(t)dt = hβ+1(log(1/h))α

and ω(h) = rhs(log(1/h))γ where α, γ are any real numbers. In this case, we find

that the minimax rate (see section 6.5 for the details) is

Cσ,r(n(log n)α−γ(1+β)/s)−s/(1+2s+β), (2.6)

where Cσ,r = σ2s/(1+2s+β)r(β+1)/(1+2s+β).

We note that this rate has the form given by theorem 1 with the slow term

ℓω,ν(h) = (log(1/h))(γ(β+1)−sα)/(1+2s+β) . When γ(1 + β) − sα = 0, there is no slow

term in the minimax rate although there are slow terms in ν and ω. If β = 0 and

γ = sα, we find back the minimax rate of the first example, although the terms ν

and ω do not have classical forms.
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Example. Let β = −1, α > 1 and ν(h) = h−1(log(1/h))−α. Let ω be the same

as in the previous example with 0 < s 6 1. Then the minimax convergence rate is

σn−1/2(log n)(α−1)/2.

This rate is almost the parametric estimation rate, up to the slow log factor. This

result is natural since the design is very ”exploding”: we have a lot of information at

x0 thus we can estimate f(x0) very fast. Also, we note that the regularity parameters

of the regression function (r, s and γ) have (asymptotically) disappeared from the

minimax rate.

2.4. Γ-varying design density. The regular variation framework includes any

design density behaving close to the estimation point as a power function times a

slow term. For instance, it does not include a design with a behaviour similar to

exp(−1/|x − x0|) and defined as 0 at x0, since this function goes to 0 at x0 faster

than any power function.

Such a local behaviour can model the situation where we have very little infor-

mation. This example naturally leads us to the framework of Γ-variation. In fact,

such a function belongs to the following class introduced by de Haan (1970).

Definition 3 (Γ-variation). A function ν : R
+ → R

+ is Γ-varying if it is

non-decreasing and continuous, and such that there exists a continuous function

ρ : R
+ → R

+ with

∀y ∈ R, lim
h→0+

ν(h+ yρ(h))/ν(h) = exp(y). (2.7)

We denote by ΓV(ρ) the class of all such functions. The function ρ is the auxiliary

function of ν.

Remark. A function behaving like exp(−1/|x − x0|) close to x0 satisfies as-

sumption M with ν(h) = exp(−1/h), and we have ν ∈ ΓV(ρ) with ρ(h) = h2.

Theorem 2. If

• Σ = Σhn,αn(x0, ω) where ω ∈ RV(s) with 0 < s 6 1, hn is given by (2.5)

and αn = O(r−γ
n ) for some γ > 0 where rn , ω(hn),

• µ satisfies assumption M with ν ∈ ΓV(ρ),

then

Rn(Σ, µ) ≍ ℓω,ν(n
−1) as n→ +∞, (2.8)

where ℓω,ν is slowly varying. Moreover, as in theorem 1, the minimax rate is equal

to ω(hn) where hn is the smallest solution to (2.5).
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Example. Let µ satisfy assumption M with ν(h) = exp(−1/hα) for α > 0 and

ω(h) = rhs for 0 < s 6 1. It is an easy computation to see that ν belongs to the

class ΓV(ρ) for the auxiliary function ρ(h) = α−1hα+1. In this case, we find that

(see section 6.5 for the details) the minimax rate is

r(log n)−s/α.

As shown by theorem 2, we find a very slow minimax rate in this example. We note

that the parameters s and α are on the same scale.

3. Local polynomial estimation

3.1. Introduction. For the proof of the upper bound in theorem 1 we use

a local polynomial estimator. The local polynomial estimator is well-known and

has been intensively studied (see Stone (1980), Fan and Gijbels (1996), Spokoiny

(1998), Tsybakov (2003), among many others). When f is a smooth function at x0,

it is close to its Taylor polynomial. A function f ∈ Ck(x0) (the space of k times

differentiable functions at x0 with a continuous k-th derivative) is such that for any

x close to x0

f(x) ≈ f(x0) + f
′

(x0)(x− x0) + · · · + f (k)(x0)

k!
(x− x0)

k. (3.1)

Let h > 0 (the bandwidth) and k ∈ N. We define φj,h(x) ,
(

x−x0
h

)j
and the space

Vk,h , Span{(φj,h)j=0,...,k}.

For a fixed non-negative functionK (the kernel) we define the weighted pseudo-inner

product

〈f , g〉h,K ,
n∑

i=1

f(Xi)g(Xi)K
(Xi − x0

h

)
, (3.2)

and the corresponding pseudo-norm ‖ · ‖h,K ,
√

〈· , ·〉h,K (K > 0). In view of (3.1)

it is natural to consider the estimator defined as the closest polynomial with degree

k to the observations (Yi) in the least square sense, that is:

f̂h = argmin
g ∈ Vk,h

‖g − Y ‖2
h,K . (3.3)

Then f̂h(x0) is the local polynomial estimator of f at x0. A necessary condition for

f̂h to be the minimiser of (3.3) is to be solution of the linear problem

find f̂ ∈ Vk,h such that ∀φ ∈ Vk,h, 〈f̂ , φ〉h,K = 〈Y , φ〉h,K . (3.4)

Then, f̂h is given by

f̂h = Pbθh
, (3.5)
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where

Pθ = θ0φ0,h + θ1φ1,h + · · · + θkφk,h, (3.6)

with θ̂h the solution, whenever it makes sense, of the linear system

XK
h θ = YK

h , (3.7)

where XK
h is the symmetrical matrix with entries

(XK
h )j,l = 〈φj,h , φl,h〉h,K , 0 6 j, l 6 k, (3.8)

and YK
h is the vector defined by

YK
h = (〈Y , φj,h〉h,K ; 0 6 j 6 k).

We assume that the kernel K satisfies the following assumptions:

Assumption K. Let K be the rectangular kernel KR(x) = 1
21|x|61 or a non-

negative function such that:

• Supp K ⊂ [−1, 1],

• K is symmetrical,

• K∞ , supxK(x) 6 1,

• There is some ρ > 0 and 0 < κ 6 1 such that

|K(x) −K(y)| 6 ρ|x− y|κ; x, y > 0.

The assumption K is satisfied by all the classical kernels used in nonparametric

curve smoothing. Let us define

Nn,h = #{Xi such that Xi ∈ [x0 − h, x0 + h]}, (3.9)

the number of observations in the interval [x0 − h, x0 + h], and the random matrix

XK
h , N−1

n,hX
K
h .

Let us denote the σ-algebra Xn , σ(X1, . . . ,Xn) generated by the design. Note that

XK
h is measurable with respect to Xn. The matrix XK

h is a ”renormalisation” of XK
h .

We show in lemma 6 below that this matrix is asymptotically non-degenerate with

a large probability when the design is regular varying.

For technical reasons, we introduce a slightly different version of the local poly-

nomial estimator. Indeed, we introduce a ”correction” term in the matrix XK
h .

Definition 4. For a given h > 0, we consider f̂h defined by (3.5) with θ̂h the

solution of the linear system

X̃K
h θ = YK

h , (3.10)
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when it makes sense (otherwise, we take f̂h = 0 if Nn,h = 0) where

X̃K
h , XK

h +N
1/2
n,h Ik+11λ(XK

h )6N
1/2
n,h

,

with λ(M) being the smallest eigenvalue of a matrix M and Ik+1 denoting the

identity matrix in R
k+1.

Remark. We can understand the definition of X̃K
h as follows: in the ”good”

case, that is when XK
h is non-degenerate in the sense that its smallest eigenvalue

is not too small, we solve the system (3.7), while in the ”bad” case we still have a

control on the smallest eigenvalue of X̃K
h , since we always have λ(X̃K

h ) > N
1/2
n,h .

3.2. Bias-variance equilibrium. A main result on the local polynomial es-

timator is the bias-variance decomposition. This is a classical result, presented

many times in different forms: see Cleveland (1979), Goldenshluger and Nemirovski

(1997), Korostelev and Tsybakov (1993), Spokoiny (1998), Stone (1977), Tsybakov

(1986, 2003). The version in Spokoiny (1998) is close to the one presented here.

The differences are mostly related to the fact that the design is random and that

we consider a modified version of the local polynomial estimator (see definition 4).

We introduce the event

ΩK
h , {X1, . . . ,Xn are such that λ(XK

h ) > N
−1/2
n,h and Nn,h > 0}. (3.11)

Note that the matrix XK
h is invertible on ΩK

h .

Proposition 1 (Bias-variance decomposition). Under assumption K and if f ∈
Fh(x0, ω), the following inequality holds on the event ΩK

h :

|f̂h(x0) − f(x0)| 6 λ−1(XK
h )

√
k + 1K∞

(
ω(h) + σN

−1/2
n,h |γh|

)
, (3.12)

where conditionally on Xn, γh is centered Gaussian with E
n
f,µ{γ2

h|Xn} 6 1.

Remark. Inequality (3.12) holds conditionally on the design, on the event ΩK
h .

We will see that this event has a large probability in the regular variation framework.

3.3. Choice of the bandwidth. Now, like with any linear estimation proce-

dure, the problem is: how to choose the bandwidth h? In view of inequality (3.12),

a natural bandwidth choice is

Hn , argmin
h∈[0,1]

{
ω(h) >

σ√
Nn,h

}
. (3.13)

Such a bandwidth choice is well known, see for instance Guerre (2000). This choice

is sensitive to the design, thus it stabilises the procedure. The estimator is then

defined by

f̂n(x0) , f̂Hn(x0),
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where f̂h is given by definition 4 andHn is defined by (3.13). The random bandwidth

Hn is close in probability to the theoretical deterministic bandwidth hn defined by

(2.5) in view of the following proposition.

Proposition 2. Under assumption M, and if ω ∈ RV(s) for any s > 0, we can

find 0 < η 6 ε for any 0 < ε 6 1/2 such that

P
n
µ

{∣∣∣Hn

hn
− 1

∣∣∣ > ε
}

6 4 exp
(
− η2

1 + η/3
nFν(hn/2)

)
,

where Fν(h) ,
∫ h
0 ν(t)dt.

When nFν(hn/2) → +∞ as n→ +∞, this inequality entails

Hn = (1 + oPn
f,µ

(1))hn,

where oP(1) is a sequence going to 0 in probability under P.

Proposition 3 below motivates the choice of a regularly varying design. It makes

a link between the behaviour of the counting process Nn,h (which appears in the

variance term of (3.12)) and the behaviour of µ close to x0. Actually, the regular

variation property naturally appears under appropriate assumptions on the asymp-

totic behaviour of Nn,h. Let us denote by P
n
µ the joint probability of the random

variables (Xi).

Proposition 3. If assumption M holds with monotone ν, then the following

properties are equivalent :

(1) ν is regularly varying of index β > −1;

(2) There exist sequences (λn) > 0 and (γn) > 0 such that limn γn = 0,

lim infn nλ
−1
n > 0, γn+1 ∼ γn as n → +∞ and a continuous function

φ : R
+ → R

+ such that for any C > 0:

E
n
µ{Nn,Cγn} ∼ φ(C)λn as n→ +∞;

(3) There exist (λn), (γn) and φ as before such that for any C > 0 and ε > 0:

lim
n→+∞

n

λn
P

n
µ

{∣∣∣Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

= 0.

The proof is delayed until section 6. Is is mainly a consequence of the sequence

characterisation of regular variation (see section 7).

4. Upper bounds for f̂Hn(x0)

4.1. Conditionally on the design. When no assumption on the behaviour

of the design density is made, we can work conditionally on the design. For λ > 0

we define the event

Eλ , {λn > λ},
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where λn , λ(XK
Hn

). Note that Eλ ∈ Xn. We define also the constant

m(p) ,
√

2/π

∫

R+

(1 + t)p exp(−t2/2)dt.

Proposition 4. Under assumption K, if λ is such that λ2Nn,Hn > 1 and n >

k + 1, we have on Eλ:

sup
f∈FHn (x0,ω)

E
n
f,µ

{
|f̂n(x0) − f(x0)|p|Xn

}
6 m(p)λ−pKp

∞(k + 1)p/2Rp
n,

where Rn , ω(Hn).

4.2. When the design is regularly varying. Proposition 5 below gives an

upper bound for the estimator f̂Hn(x0) when the design density is regularly varying.

This proposition can be viewed as a deterministic counterpart to proposition 4.

Let λβ,K be the smallest eigenvalue of the symmetrical and positive matrix with

entries

(Xβ,K)j,l =
β + 1

2

(
1 + (−1)j+l

) ∫ 1

0
yj+l+βK(y)dy, (4.1)

for 0 6 j, l 6 k. Note that we have λβ,K > 0 in view of lemma 6 below.

Proposition 5. Let ̺ > 1 and hn be defined by (2.5). Let (αn) be a sequence

of positive numbers such that αn = O(nγ) for some γ > 0. If µ ∈ R(x0, β) with

β > −1 and ω ∈ RV(s), we have for any p > 0:

lim sup
n

sup
f∈Σ̺hn,αn(x0,ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p} 6 Cλ−p
β,K, (4.2)

where rn , ω(hn) satisfies

rn ∼ σ2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n→ +∞,

where ℓω,ν is slowly varying and where C = 4s/(1+2s+β)(k + 1)p/2m(p)Kp
∞.

Remark. If f is s-Hölder with radius r, we have

rn ∼ σ2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n→ +∞.

5. Discussion

5.1. About assumption M. As stated previously, assumption M means that

the design distribution is symmetrical around x0 close to this point. When it is not

the case, and if there are two functions ν− ∈ RV(β−), ν+ ∈ RV(β+) for β−, β+ > −1

and η−, η+ > 0 such that for any x ∈ [x0 − η−, x0 + η+]:

µ(x) = ν+(x− x0)1x06x6x0+η+ + ν−(x0 − x)1x0−η−6x<x0
,

we can prove that the minimax convergence rate is the fastest among the two ones,

which is (2.4) for the choice β = β− ∧ β+. To prove the upper bound, we can use
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the same estimator as in section 3 with a non-symmetrical choice of the bandwidth,

or more roughly, we can ”throw away” the observations on the side of x0 with the

largest index of regular variation (when µ is known).

5.2. About theorem 1 and propositions 4, 5. Since we are interested in the

estimation of f at x0, we need only a regularity assumption in some neighbourhood

of this point. Note that the minimax risks are computed over a class where the

regularity assumption holds in a decreasing interval as n increases.

It appears that a natural choice of this interval size is the theoretical bandwidth

hn, since it is the minimum needed for the proof of the upper bounds. To prove an

upper bound with the ”design-adaptive” estimator f̂Hn(x0) – in the sense that its

construction does not depend on the design density behaviour close to x0 (via the

parameter β for instance) – we need a smoothness control in a neighbourhood with

a size slightly larger than hn (see the parameter ̺ in proposition 5).

More precisely, to prove that rn is an upper bound in proposition 5, we use in

particular proposition 2 with ε = ̺ − 1 in order to control the random bandwidth

Hn by hn. Thus, the parameter ̺ is unavoidable for the proof of proposition 5. Note

that we do not need such a parameter in theorem 1 since we use the estimator with

the deterministic bandwidth hn to prove the upper bound part of the theorem. Of

course, this estimator in unfeasible from a practical point of view since hn heavily

depends on µ, which is hardly known in practice. This is reason why we state

proposition 5 which tells us that the estimator with the data-driven bandwidth Hn

converges with the same rate.

5.3. About theorem 2. In the Γ-variation framework, for the proof of the

upper bound part of theorem 2, we use an estimator depending on µ. Such an

estimator is again unfeasible from a practical point of view. Anyway, this framework

is considered only for theoretical purposes, since from a practical point of view

nothing can be done in this case: there is no observations at the point of estimation.

This is precisely what theorem 2 and the corresponding example show : the minimax

rate is very slow.

5.4. About the Γ-varying design. For the proof of the upper bound part in

theorem 2, we can consider another estimator (see the proof of the theorem). If K

is a kernel satisfying assumption K, we define

f̃n(x0) ,

∑n
i=1 Yi

(
K

(
Xi−hn−x0

ρ(hn)

)
+K

(
Xi+hn−x0

ρ(hn)

))
∑n

i=1K
(

Xi−hn−x0
ρ(hn)

)
+K

(
Xi+hn−x0

ρ(hn)

) ,

where hn is defined by (2.5). The point is that since Supp K ⊂ [−1, 1], this estimator

makes a local average of the observations Yi such that Xi ∈ [x0 − h− ρ(h), x0 − h+
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ρ(h)] ∪ [x0 + h − ρ(h), x0 + h + ρ(h)], which does not contain the estimation point

x0 for n large enough, since limh→0+ ρ(h)/h = 0 (see section 7). In spite of this, we

can prove that f̃n(x0) converges with the rate rn. We can understand this curious

fact as follows: since there is no information at x0, the procedure actually ”catches”

the information ”far” from x0. This fact shows that again, the Γ-varying design is

an extreme case.

5.5. More technical remarks. About assumption K, the first assumption is

used to make the kernel K localise the information around the point of estimation

x0 (see (3.2)). The last one is technical and used in the proof of lemma 6. The two

other ones are used for the sake of simplicity, since we only really need the kernel

to be bounded from above.

When β = −1, theorem 1 holds only for small regularities 0 < s 6 1. For

technical reasons, we were not able to prove the upper bound when s > 1 and

β = −1. More precisely, we have k = 0 in this case and in view of (3.4) the local

polynomial estimator is a Nadaraya-Watson estimator defined by

f̂n(x0) =

∑n
i=1 YiK

(
Xi−x0

hn

)
∑n

i=1K
(

Xi−x0
hn

) .

When s > 1 we have to use a local polynomial estimator. The problem is then in

the asymptotic control of the smallest eigenvalue of XK
hn

(see lemma 6) and to do

so, we use an average (Abelian) transform property of regularly varying functions,

which is (see section 7):

lim
h →0+

1

ℓν(h)

∫
yαK(y)ℓν(yh)

dy

y
=





∫
yα−1K(y)dy when α > 0,

+∞ when α = 0.

Thus, the only way to have a limit in both cases is to assume that K(y) = O(|y|η)
for some η > 0, but the obtained upper bound rate in this case would be slower

than the lower bound.

6. Proofs

6.1. Proof of the main results.

Proof of theorem 1. First, we prove the upper bound part of equation (2.4)

for β > −1. We consider the estimator f̂n(x0) = f̂hn(x0) where f̂h is given by

definition 4 with hn given by equation (2.5), and we define rn = ω(hn). Let 0 < ε 6

1/2. We introduce the event

Bn,ε ,
{
|λ(XK

hn
) − λβ,K | 6 ε

}
∩

{∣∣∣ Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}
.
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Since limn nFν(hn) = +∞ (see for instance lemma 4), we have Bn,ε ⊂ ΩK
hn

for n

large enough (see (3.11)) and in particular the matrix XK
hn

is invertible on the event

Bn,ε. Then, using proposition 1 and since f ∈ Fhn(x0, ω), we get:

|f̂n(x0) − f(x0)|1Bn,ε

6 (λβ,K − ε)−1
√
k + 1K∞

(
ω(hn) +

σ√
(2 − ε)nFν(hn)

|γhn |
)

6 (λβ,K − ε)−1
√
k + 1K∞ω(hn)(1 + |γhn |),

where we last used the definition of hn. Since conditionally on Xn, γhn is centered

Gaussian such that E
n
f,µ{γ2

hn
|Xn} 6 1, we get for any p > 0:

sup
f∈Fhn (x0,ω)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bn,ε |Xn} 6 (λβ,K − ε)−p(k + 1)p/2Kp
∞m(p),

where m(p) is defined in section 4. Now we work on the complement Bc
n,ε. We use

lemmas 2 and 6 to control the probability of Bn,ε and we recall that αn = O(nγ) for

some γ > 0. When Nn,hn = 0 we have f̂n(x0) = 0 by definition and then

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

} 6 (αnr
−1
n )pP

n
f,µ{Bc

n,ε} = on(1).

When Nn,hn > 0 we use lemma 3 below to obtain:

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Bc
n,ε

}

6 2pr−p
n

(√
E n

f,µ{|f̂n(x0)|2p} + αp
n

)√
Pn

µ{Bc
n,ε}

6 2p(αnr
−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Bc
n,ε} = on(1),

thus we have proved that rn is an upper bound of the minimax risk (2.4) when

β > −1.

When β = −1 and 0 < s 6 1, we have k = 0 and the matrix XK
hn

is 1 × 1

sized and equal to Kn,hn,0 (see equation (6.5)). The bias-variance equation (3.12)

becomes

|f̂n(x0) − f(x0)| 6 (Kn,hn,0)
−1K∞(ω(hn) + σN

−1/2
n,hn

|γhn |).

We consider the event

Cn,ε =
{∣∣∣ Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}
∩

{∣∣∣ Kn,hn,0

2nFν(hn)
−K(0)

∣∣∣ 6 ε
}
,

and we note that the probability of Cn,ε is controlled by lemma 2 and equation (6.8)

in lemma 5. Then, we can proceed as previously to prove that rn is an upper bound

for β = −1. We have proved that rn is an upper bound for the left-hand side of

(2.4). Using proposition 6, we have that rn is also a lower bound. The remaining of

the theorem follows from lemma 4. �
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Proof of theorem 2. The proof is similar to that of theorem 1. For the proof

of the upper bound part in (2.8), we use the regressogram estimator defined by

f̂n(x0) ,





∑n
i=1 Yi1|Xi−x0|6hn

Nn,hn

if Nn,hn > 0,

0 if Nn,hn = 0.

Let 0 < ε 6 1/2. On the event

Dn,ε ,
{∣∣∣ Nn,hn

2nFν(hn)
− 1

∣∣∣ 6 ε
}
,

we clearly have Nn,hn > 0, and since f ∈ Fhn(x0, ω), we have

|f̂n(x0) − f(x0)| 6 ω(hn) + σN
−1/2
n,hn

|vn| 6 ω(hn)(1 − ε)−1/2(1 + |vn|),

where vn , 1
σ
√

Nn,hn

∑n
i=1 ξi1|Xi−x0|6hn

is, conditionally on Xn, standard Gaussian.

Then we get

sup
f∈Fhn (x0,ω)

E
n
f,µ{|f̂n(x0) − f(x0)|p1Dn,ε} 6 rp

n(1 − ε)−p/2m(p).

Now we work on Dc
n,ε. If Nn,hn = 0 we get using lemma 2 and since αn = O(r−γ

n ):

sup
f∈U(αn)

E
n
f,µ{|f̂n(x0) − f(x0)|p1Dc

n,ε
} 6 αp

nP
n
µ{Dc

n,ε}

= O(r−γp
n ) exp

(
− ε2σ2

1 + ε/3
r−2
n

)

= on(rp
n).

If Nn,hn > 0, since |f̂n(x0)| 6 αn + σ|vn|, we get

sup
f∈U(αn)

E
n
f,µ{|f̂n(x0) − f(x0)|p1Dc

n,ε
} 6 2pαp

n(1 +
√
Cσ,0,p)

√
Pn

µ{Dc
n,ε} = on(rp

n),

where Cσ,0,p is the same as in the proof of theorem 1. Thus, rn is an upper bound.

The lower bound is given by proposition 6, and the conclusion follows from lemma 4.

�

We need to introduce some notations: 〈· , ·〉 is the Euclidean inner product on

R
k+1, e1 = (1, 0, . . . , 0) ∈ R

k+1, ‖ · ‖∞ is the sup norm in R
k+1 and ‖ · ‖ is the

Euclidean norm in R
k+1.

Proof of proposition 1. On ΩK
h , we have in view of definition 4 that X̃K

h =

XK
h and that XK

h is invertible. Let 0 < ε 6 1/2, and n > 1. We can find a

polynomial Pn,ε
f of order k such that

sup
|x−x0|6h

|f(x) − Pn,ε
f (x)| 6 inf

P∈Pk

sup
|x−x0|6h

|f(x) − P (x− x0)| +
ε√
n
.
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In particular, with h = 0 we get |f(x0) − Pn,ε
f (x0)| 6 ε√

n
. Defining θh ∈ R

k+1 such

that Pn,ε
f = Pθh

(see (3.6)) we get

|f̂h(x0) − f(x0)| 6
ε√
n

+ |〈θ̂h − θh , e1〉| =
ε√
n

+ |〈(XK
h )−1XK

h (θ̂h − θh) , e1〉|.

Then we have for j ∈ {0, . . . , k} by (3.4) and (1.1):

(XK
h (θ̂h − θh))j = 〈f̂h − Pn,ε

f , φj,h〉h,K

= 〈Y − Pn,ε
f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈Y − f , φj,h〉h,K

= 〈f − Pn,ε
f , φj,h〉h,K + 〈ξ , φj,h〉h,K

, Bh,j + Vh,j,

thus XK
h (θ̂h − θh) = Bh + Vh. In view of assumption K and since f ∈ Fh(x0, ω) we

have:

|Bh,j| = |〈f − Pn,ε
f , φj,h〉h,K | 6 ‖f − Pn,ε

f ‖h,K‖φj,h‖h,K

6 Nn,hK∞(ω(h) +
ε√
n

),

thus ‖Bh‖∞ 6 Nn,hK∞(ω(h) + ε√
n
). Moreover, since λ−1(Xh) 6 N

1/2
n,h 6 n1/2 on

Ωh,K, we have:

|〈(XK
h )−1Bh , e1〉| 6 ‖(XK

h )−1‖‖Bh‖
6 ‖(XK

h )−1‖
√
k + 1‖Bh‖∞

6 λ−1(XK
h )

√
k + 1K∞ω(h) +

√
k + 1K∞ε,

where we last used the fact that ‖M−1‖ = λ−1(M) for any positive symmetrical

matrix M . The variance term Vh is clearly conditionally on Xn a centered Gaussian

vector, and its covariance matrix is equal to σ2XK2

h . Thus the random variable

〈(XK
h )−1Vh , e1〉h,K is, conditionally on Xn, centered Gaussian of variance:

v2
h = σ2〈e1 , (XK

h )−1XK2

h (XK
h )−1e1〉 6 σ2〈e1 , (XK

h )−1XK
h (XK

h )−1e1〉
= σ2〈e1 , (XK

h )−1e1〉
6 σ2‖(XK

h )−1‖ = σ2N−1
n,hλ

−1(XK
h ),

since K 6 1. Then

λ(XK
h ) = inf

‖x‖=1
〈x , XK

h x〉 6 ‖XK
h e1‖ 6

√
k + 1,

since XK
h is symmetrical and its entries are smaller than 1 in absolute value. Thus:

v2
h 6 σ2N−1

n,hλ
−1(XK

h ) 6 σ2N−1
n,h(k + 1)λ−2(XK

h ),
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and the proposition follows. �

Proof of proposition 2. The proposition is a direct consequence of lemmas 1

and 2 below. �

Proof of proposition 3. (2) ⇒ (1): In view of assumption M one has for n

large enough

E
n
µ{Nn,Cγn} = 2n

∫ Cγn

0
ν(x)dx = 2nFν(Cγn),

thus (2) entails 2nλ−1
n Fν(Cγn) ∼ φ(C) as n → +∞ and then Fν ∈ RV(α) in view

of the characterisation (7.8) of regular variation. Since Fν(0) = 0 we have more

precisely Fν ∈ RV(α) for α > 0 and since ν is monotone we have ν ∈ RV(α−1) (see

section 7).

(3) ⇒ (2): Let ε > 0. We define the event

An(C, ε) =
{∣∣∣Nn,Cγn

φ(C)λn
− 1

∣∣∣ 6 ε
}
.

Then:

λ−1
n E

n
µ{Nn,Cγn} = λ−1

n E
n
µ

{
Nn,Cγn(1An(C,ε) + 1Ac

n(C,ε))
}

6 (1 + ε)φ(C) + nλ−1
n P

n
µ

{
Ac

n(C, ε)
}
,

and then lim supn λ
−1
n E

n
µ{Nn,Cγn} 6 (1 + ε)φ(C). On the other hand,

λ−1
n E

n
µ{Nn,Cγn} > λ−1

n E
n
µ{Nn,Cγn1An(C,ε)} > (1 − ε)φ(C)Pn

µ{An(C, ε)},

and then lim infn λ
−1
n E

n
µ{Nn,Cγn} > (1 − ε)φ(C).

(1) ⇒ (3): Let ν ∈ RV(β) and 0 < ε 6 1/2. If β > −1 we have Fν ∈ RV(β + 1) (see

in section 7) thus we can write Fν(h) = hβ+1ℓF (h) where ℓF is slowly varying. We

define γn = n−1/(2(β+1)) when β > −1 and γn = n−1 if β = −1. When β = −1 we

have Fν ∈ RV(0) (see section 7). We note that in both cases we have limn γn = 0

and γn+1 ∼ γn as n→ +∞. In view of lemma 2 we get for n large enough

P
n
µ

{∣∣∣Nn,Cγn

φ(C)λn
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
φ(C)λn

)
,

where we used the fact that ℓF is slowly varying and where we defined λn , 2nFν(γn)

and φ(C) , Cβ+1. Then we clearly have limn nλ
−1
n = +∞ and the proposition

follows. �
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6.2. Proof of the upper bounds for f̂Hn(x0).

Proof of proposition 4. Since Eλ ⊂ ΩK
Hn

, (3.13) and proposition 1 entail

that uniformly in f ∈ FHn(x0, ω), we have

|f̂n(x0) − f(x0)| 6 λ−1
√
k + 1K∞Rn(1 + |γHn |),

where γHn is conditionally on Xn centered Gaussian with E
n
f,µ{γ2

Hn
|Xn} 6 1. The

result follows by an integration with respect to P
n
f,µ(·|Xn). �

Proof of the proposition 5. Let us define ε , ̺− 1. We can assume with-

out loss of generality that ε < 1
2 ∧ λβ,K . We consider the event An,ε from lemma 6.

In view of this lemma we have An,ε ⊂ Eλβ,K−ε ∩ {(1 − ε)hn 6 Hn 6 (1 + ε)hn} and

then F̺hn(x0, ω) ⊂ FHn(x0, ω). Thus, using proposition 4 we get

sup
f∈F̺hn (x0,ω)

E
n
f,µ{|f̂n(x0) − f(x0)|p1An,ε |Xn}

6 m(p)(λβ,K − ε)−pKp
∞(k + 1)p/2Rp

n

6 m(p)(λβ,K − ε)−pKp
∞(k + 1)p/2(1 + ε)p(s+1)rp

n,

where we used (6.1) in the same way as in the proof of lemma 1 to obtain that on

An,ε, we have ω(Hn) 6 (1 + ε)s+1ω(hn). On the complement Ac
n,ε, using inequality

(6.11) and lemma 3, and since αn = O(nγ) for some γ > 0, we get

sup
f∈U(αn)

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Ac
n,ε

}

6 2p(αnr
−1
n )p(

√
npCσ,k,2p + 1)

√
Pn

µ{Ac
n,ε} = on(1),

and (4.2) follows. The equivalent of rn is given by lemma 4. �

6.3. Lemmas for the proof of the upper bounds.

Lemma 1. If ω ∈ RV(s) for any s > 0, we can find 0 < η 6 ε for any 0 < ε 6 1
2

such that
{∣∣∣

Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 η
}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 η
}
⊂

{∣∣∣Hn

hn
− 1

∣∣∣ 6 ε
}
.

Proof. In view of (3.13) we have

{Hn 6 (1 + ε)hn} = {Nn,(1+ε)hn
> σ2ω−2((1 + ε)hn)}.

Define ε1 , 1− (1− ε2)−2(1 + ε)−2s. For ε small enough, it is clear that ε1 > 0. We

recall that ℓω stands for the slowly varying term of ω (see definition 2). Since (7.1)

holds uniformly on each compact set in (0,+∞), we have for n large enough that

for any y ∈ [12 ,
3
2 ]:

(1 − ε2)ℓω(hn) 6 ℓω(yhn) 6 (1 + ε2)ℓω(hn), (6.1)
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so using (6.1) with y = 1 + ε (ε 6 1
2), we obtain in view of (2.5):

2(1 − ε1)nFν((1 + ε)hn) > (1 − ε2)−2(1 + ε)−2sσ2ω−2(hn)

= σ2
(
(1 + ε)hn

)−2s
(1 − ε2)−2ℓ−2

ω (hn)

> σ2ω((1 + ε)hn)−2,

and then

{Nn,(1+ε)hn
> 2(1 − ε1)nFν((1 + ε)hn)} ⊂ {Hn 6 (1 + ε)hn}.

Using again (6.1) with y = 1 − ε, we get in the same way

{Nn,(1−ε)hn
< 2(1 + ε1)nFν((1 − ε)hn)} ⊂ {Hn > (1 − ε)hn},

then:

{∣∣∣
Nn,(1−ε)hn

2nFν((1 − ε)hn)
− 1

∣∣∣ 6 ε1

}
∩

{∣∣∣
Nn,(1+ε)hn

2nFν((1 + ε)hn)
− 1

∣∣∣ 6 ε1

}

⊂
{∣∣∣Hn

hn
− 1

∣∣∣ 6 ε
}
,

and the result follows for the choice η = ε ∧ ε1. �

Lemma 2. Under assumption M, we have for any ε, h > 0:

P
n
µ

{∣∣∣ Nn,h

2nFν(h)
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
nFν(h)

)
.

Proof. It suffices to use Bernstein inequality to the sum of independent random

variables Zi = 1|Xi−x0|6h − P
n
µ{|X1 − x0| 6 h} for i = 1, . . . , n. �

Lemma 3. For any p > 0 and h > 0, the estimator f̂h (see definition 4) satisfies

sup
f ∈ U(α)

E
n
f,µ{|f̂h(x0)|p|Xn} 6 Cσ,k,p(α

√
n)p,

where Cσ,k,p , (k + 1)p/2
√

2/π
∫

R+(1 + σt)p exp(−t2/2)dt.

Proof. When Nn,h = 0 we have by definition f̂h = 0 and the result is obvious,

so we assume Nn,h > 0. Using the fact that λ(A + B) > λ(A) + λ(B) when

A and B are symmetrical and non-negative matrices we get λ(X̃K
h ) > N

1/2
n,h > 0

thus X̃K
h is invertible. Equation (3.10) entails |f̂h(x0)| = |〈(X̃K

h )−1X̃K
h θ̂h , e1〉| =

|〈(X̃K
h )−1Yh , e1〉|. In view of (1.1) we can decompose for j ∈ {0, . . . , k}:

(Yh)j = 〈Y , φj,h〉h,K = 〈f , φj,h〉h,K + 〈ξ , φj,h〉h,K , Bh,j + Vh,j.
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Since f ∈ U(α) we have under assumption K that |Bh,j| 6 αNn,h, thus ‖Bh‖∞ 6

αNn,h. As in the proof of proposition 1 we have that 〈(X̃K
h )−1Vh , e1〉 is, condition-

ally on Xn, centered Gaussian with variance

v2
h = σ2〈e1 , (X̃K

h )−1XK2

h (X̃K
h )−1e1〉 6 σ2〈e1 , (X̃K

h )−1XK
h (X̃K

h )−1e1〉

6 σ2‖(X̃K
h )−1‖2‖XK

h ‖.

Assumption K entails that all the elements of the matrix XK
h are smaller than Nn,h,

thus ‖XK
h ‖ 6 (k+1)Nn,h. Since X̃K

h is symmetrical we get ‖(X̃K
h )−1‖ = λ−1(X̃K

h ) 6

N
−1/2
n,h , and then v2

h 6 σ2(k + 1). Finally, we have

|f̂h(x0)| 6 |〈(X̃K
h )−1Bh , e1〉| + |〈(X̃K

h )−1Vh , e1〉|

6 ‖(X̃K
h )−1‖‖Bh‖ + σ

√
k + 1|γh| 6

√
k + 1(α

√
n+ σ|γh|),

where γh is, conditionally on Xn, centered Gaussian with variance smaller than 1.

The result follows by integrating with respect to P
n
f,µ(·|Xn). �

Lemma 4. If ν ∈ RV(β) for β > −1, ω ∈ RV(s) for s > 0, and the sequence

(hn) is defined by (2.5), then the rate rn = ω(hn) satisfies

rn ∼ cs,βσ
2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n→ +∞, (6.2)

where ℓω,ν is slowly varying and cs,β = 4s/(1+2s+β). When ω(h) = rhs (Hölder

regularity) for r > 0, we have more precisely :

rn ∼ cs,βσ
2s/(1+2s+β)r(β+1)/(1+2s+β)n−s/(1+2s+β)ℓs,ν(1/n) as n→ +∞, (6.3)

where ℓs,ν is slowly varying. It is noteworthy that when β = −1, the result becomes:

rn ∼ 2σn−1/2ℓω,ν(1/n) as n→ +∞.

When ν ∈ ΓV(ρ) we have

rn ∼ ℓω,ν(1/n), (6.4)

where ℓω,ν is slowly varying.

Proof. We denote Fν(h) ,
∫ h
0 ν(t)dt and G(h) = ω2(h)Fν(h). When β > −1

we have Fν ∈ RV(β + 1) (see the section 7) and when β = −1, Fν is slowly varying.

ThusG ∈ RV(1+2s+β) for any β > −1. The function G is continuous and such that

limh→0+ G(h) = 0 in view of (7.2) since 1+2s+β > 0. Then, for n large enough hn is

given by hn = G←(σ2/(4n)), where G←(h) , inf{y > 0|G(y) > h} is the generalised

inverse ofG. Then, we haveG← ∈ RV(1/(1+2s+β)) and ω◦G← ∈ RV(s/(1+2s+β))
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(see section 7). Thus we can write ω ◦ G←(h) = hs/(1+2s+β)ℓω,ν(h) where ℓω,ν is a

slowly varying function. Thus:

rn = ω
(
G←

(σ2

4n

))
= cs,βσ

2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν

(σ2

4n

)

∼ cs,βσ
2s/(1+2s+β)n−s/(1+2s+β)ℓω,ν(1/n) as n→ +∞,

since ℓ is slowly varying. When ω(h) = rhs we can write more precisely hn =

G←(σ2/(4r2n)) where G(h) = h2sFν(h) so (6.2) and (6.3) follow.

Let y ∈ R. Using (7.9) and the uniformity in (7.1) we get limh→0+ ℓω(h +

yρ(h))/ℓω(h) = 1, thus limh→0+ ω(h + yρ(h))/ω(h) = 1. Moreover, since ΓV(ρ) is

closed under integration (see section 7) we have Fν ∈ ΓV(ρ), thus limh→0+ G(h +

yρ(y))/G(h) = exp(y) and then G ∈ ΓV(ρ). For n large enough, hn is well defined

and given by hn = G←(σ2/(4n)). Since G← ∈ ΠV(ℓ) for ℓ = ρ ◦ ν← ∈ RV(0)

(see section 7), G← belongs in particular to RV(0) in view of (7.11) and then rn =

ω ◦G←(σ2/(4n)) where ω ◦G← ∈ RV(0). Thus rn ∼ ω ◦G←(n−1) as n→ +∞ and

(6.4) follows with ℓω,ν = ω ◦G←. �

Study of the terms λ(XK
hn

) and λ(XK
Hn

). We recall that the matrix Xh,K is

defined as the symmetrical and non-negative matrix with entries (Xh,K)j,l = Kn,h,j+l

for 0 6 j, l 6 k where

Kn,h,α ,
1

Nn,h

n∑

i=1

(Xi − x0

h

)α
K

(Xi − x0

h

)
, (6.5)

for α ∈ N. Define Kn,h,α , Nn,hKn,h,α and

Kα,β , (1 + (−1)α)

∫ 1

0
yα+βK(y)dy. (6.6)

We define for any ε > 0 the event

Dn,h,α,K,ε ,
{∣∣∣ Kn,h,α

nFν(h)
− (β + 1)Kα,β

∣∣∣ 6 ε
}
.

Lemma 5. Let α ∈ N and ε > 0. Under assumption K and if µ ∈ R(x0, β) with

β > −1, we have for any sequence (γn) > 0 going to 0 that for n large enough,

P
n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.7)

When β = −1 we have

P
n
µ

{∣∣∣ Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}

6 2 exp
(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (6.8)
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Proof. First, we prove (6.7). We define Qi,n,α ,
(

Xi−x0
γn

)α
K

(
Xi−x0

γn

)
, Zi,n,α ,

Qi,n,α − E
n
µ{Qi,n,α}. Since µ ∈ R(x0, β) we have for i = 1, . . . , n:

1

nFν(γn)
E

n
µ{Qi,n,α} =

γnν(γn)

Fν(γn)

1 + (−1)α

ℓν(γn)

∫ 1

0
yα+βK(y)ℓν(yγn)dy,

where we used assumption K and the fact that [x0 − γn, x0 + γn] ⊂ W for n large

enough. Then, equations (7.3) and (7.4) entail:

lim
n

1

nFν(γn)
E

n
µ{Qi,n,α} = (β + 1)Kα,β ,

and for n large enough:

Dc
n,γn,α,K,ε ⊂

{∣∣∣ 1

nFν(γn)

n∑

i=1

Zi,n,α

∣∣∣ > ε/2

}
. (6.9)

In view of assumption K we have E
n
µ{Zi,n,α} = 0, |Zi,n,α| 6 2 and

b2n ,

n∑

i=1

E
n
µ{Z2

i,n,α} 6 nE
n
µ{Q2

1,n,α} 6 2nFν(γn).

Since the Zi,n,α are independent we can apply Bernstein inequality. If τn , ε
2nFν(γn)

equation (6.9) and Bernstein inequality entail:

P
n
µ

{
Dc

n,γn,α,K,ε

}
6 2 exp

( −τ2
n

2(b2n + 2τn/3)

)
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
,

thus (6.7). The proof of equation (6.8) is similar. When β = −1 we have ν(t) =

t−1ℓν(t). We define Zi,n , Qi,n,0 − E
n
f,µ{Qi,n,0}. In view of (7.5) we have:

lim
n→+∞

1

Fν(γn)
E

n
µ{Qi,n,0} = lim

n→+∞
2

Fν(γn)

∫ 1

0
K(t/h)ℓν(t)dt/t = 2K(0) > 0.

Then, we have for n large enough

{∣∣∣ Kn,γn,0

nFν(γn)
− 2K(0)

∣∣∣ > ε
}
⊂

{∣∣∣ 1

nFν(γn)

n∑

i=1

Zi,n

∣∣∣ > ε/2
}
.

The Zi,n are independent and centered and |Zi,n| 6 2. Moreover, in view of assump-

tion K we have as before b2n ,
∑n

i=1 E
n
µ{Z2

i,n} 6 2nFν(γn) and using again Bernstein

inequality we get (6.8). �

Lemma 6. Let assumption K holds. Assume that ω ∈ RV(s) with s > 0, µ ∈
R(x0, β) with β > −1 and λβ,K is defined by equation (4.1). We have λβ,K > 0 and

for any 0 < ε 6 1
2 we can find an event An,ε such that for n large enough

An,ε ⊂ {|λ(XK
hn

) − λβ,K | 6 ε} ∩ {|λ(XK
Hn

) − λβ,K | 6 ε} ∩
{∣∣∣Hn

hn
− 1

∣∣∣ 6 ε
}
, (6.10)

and

P
n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− cβ,σ,εr

−2
n

)
, (6.11)
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where cβ,σ,ε > 0.

Proof. Since λβ,K is the smallest eigenvalue of XK
β we have λβ,K > 0 otherwise

defining p(y) = (1, y, . . . , yk) and since XK
β is symmetrical we should have

0 = λβ,K = inf
‖x‖=1

〈x , XK
β x〉 = 〈x0 , XK

β x0〉 =

∫ 1

−1

(
tx0p(y)

)2
yβK(y)dy,

where x0 6= 0 is the normalised eigenvector associated to the eigenvalue λβ,K and

where we used the fact that

λ(M) = inf
‖x‖=1

〈x , Mx〉, (6.12)

for any symmetrical matrix M . Then ∀y ∈ Supp K we have tx0p(y) = 0 which

leads to a contradiction since y 7→ tx0p(y) is a polynomial. For any h, ε > 0 we

introduce the events:

An,h,ε =
{
|λ(XK

h ) − λβ,K | 6 ε
}
, Bn,h,α,ε =

{∣∣∣Kn,h,α − β + 1

2
Kα,β

∣∣∣ 6 ε
}
. (6.13)

Using the characterisation (6.12) we can prove easily that

2k⋂

α=0

Bn,h,α,ε/(k+1)2 ⊂ An,h,ε. (6.14)

Since

Kn,Hn,α −Kn,hn,α = Kn,Hn,α

(
1 − Nn,Hn

Nn,hn

(Hn

hn

)α)

+
1

Nn,hn

n∑

i=1

(Xi − x0

hn

)α(
K

(Xi − x0

Hn

)
−K

(Xi − x0

hn

))
,

we have when K is the rectangular kernel KR

|Kn,Hn,α −Kn,hn,α| 6
∣∣∣Nn,Hn

Nn,hn

(Hn

hn

)α
− 1

∣∣∣ +
1

2

(Hn

hn
∨ 1

)α∣∣∣Nn,Hn

Nn,hn

− 1
∣∣∣,

and otherwise under assumption K

|Kn,Hn,α−Kn,hn,α| 6
∣∣∣Nn,Hn

Nn,hn

(Hn

hn

)α
−1

∣∣∣+ Nn,Hn

Nn,hn

(Hn

hn

)α
ρ
∣∣∣Hn

hn
−1

∣∣∣
κ
+ρ

∣∣∣ hn

Hn
−1

∣∣∣
κ
.

Let us introduce for ε > 0 the event

Fn,ε ,
{∣∣∣Nn,Hn

Nn,hn

− 1
∣∣∣ 6 ε

}
.

Then, for a good choice of ε1 6 ε we have |Kn,Hn,α − Kn,hn,α| 6 ε
2(k+1)2

on the

event Cn,ε1 ∩Fn,ε1, since K 6 1 we have Kα,β 6 2
β+1 and noting that Dn,h,0,KR,ε1

=
{∣∣ Nn,h

2nFν(h) − 1
∣∣ 6 ε1

}
we have for any α ∈ N

Dn,h,0,KR, ε
3(k+1)2+ε

∩ Dn,h,α,K, ε
3(k+1)2+ε

⊂ Bn,h,α, ε
2(k+1)2

.
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Using (6.14) we get for η , 2ε
3(k+1)2+2ε

:

Dn,hn,0,KR,η ∩
2k⋂

α=0

Dn,hn,α,K,η ⊂ An,hn,ε. (6.15)

We take 0 < ε2 6 ε1 such that (1+ε2)β+3

1−ε2
6 1 + ε1 (for ε1 small enough). Since

h 7→ Nn,h is increasing we have

Cn,ε2 ⊂ {Nn,(1−ε2)hn
6 Nn,Hn 6 Nn,(1+ε2)hn

},

and in view of lemma 1 we can take 0 < ε3 6 ε2 such that

Dn,(1−ε2)hn,0,KR,ε3
∩ Dn,(1+ε2)hn,0,KR,ε3

⊂ Cn,ε2.

Using (7.1) with the slowly varying function ℓF (h) , Fν(h)h−(β+1) we have for n

large enough that uniformly in y ∈ [12 ,
3
2 ]

(1 − ε1)ℓF (hn) 6 ℓF (yhn) 6 (1 + ε1)ℓF (hn), (6.16)

and in particular for y = 1 − ε1 and y = 1 + ε1 we get by the definition of ε2 and

since ε3 6 ε2 6 ε1:

Dn,(1−ε2)hn,0,KR,ε3
∩ Dn,(1+ε2)hn,0,KR,ε3

∩ Dn,hn,0,KR,ε3
⊂ Fn,ε1.

Then we define for ε4 , ε3 ∧ ε
3(k+1)2+ε

the event

An,ε , Dn,(1−ε2)hn,0,KR,ε4
∩ Dn,(1+ε2)hn,0,KR,ε4

∩ Dn,hn,0,KR,ε4
∩

2k⋂

α=0

Dn,hn,α,K,ε4,

which satisfies (6.10) in view of the previous embeddings. Using inequality (6.7) in

lemma 5 and since ε4 6 ε2 6 ε1 6 1
2 ,

P
n
µ{Ac

n,ε} 6 4(k + 2) exp
(
− 2−(β+3)ε4σ

2

8(2 + ε4/3)
r−2
n

)
,

where we used (6.16) and (2.5). �

6.4. Proof of the lower bounds. We recall that the Kullback-Leibler distance

between two probabilities P and Q is defined by

K(P,Q) =





∫
log

(
dP
dQ

)
dP when P ≪ Q,

+∞ otherwise,

where P ≪ Q means that P is absolutely continuous with respect to Q.

Lemma 7. If there are 2 elements f0 and f1 in a class Σ such that

K(P0,P1) < Q < +∞,
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where P0 = P
n
f0,µ and P1 = P

n
f1,µ and if for some c > 0,

|f0(x0) − f1(x0)| > 2crn,

then the pointwise minimax risk Rn(Σ, µ) (defined by (2.1)) over Σ in the model (1.1)

satisfies

Rn(Σ, µ) > C(c,Q, p)rn,

where C(c,Q, p) , c
21/p

(
e−Q ∨ 1−

√
Q/2

2

)1/p
.

Proof. This result is classical. We use arguments which can be found in Tsy-

bakov (2003). Using Markov inequality,

E
n
f,µ

{
r−p
n |Tn − f(x0)|p

}
> cpP

n
f,µ{|Tn − f(x0)| > crn},

and since f0, f1 ∈ Σ and |f0(x0) − f1(x0)| > 2crn, we have:

sup
f∈Σ

P
n
f,µ{|Tn − f(x0)| > crn} > max

j=0,1
Pj{|Tn − fj,n(x0)| > crn}

> max
j=0,1

Pj{φ∗ 6= j},

where

φ∗ = argmin
j=0,1

{
|Tn − fj(x0)|

}
.

Hence,

inf
Tn

sup
f∈Σ

E
n
f,µ

{
r−p
n |Tn − f(x0)|p

}
>
cp

2
inf
φ

(
P0{φ 6= 0} + P1{φ 6= 1}

)

=
cp

2

(
P0{φML 6= 0} + P1{φML 6= 1}

)
,

where φML is the maximum likelihood test defined by φML = 1p0<p1 where p0 =

dP0/dx and p1 = dP1/dx (dx is the Lebesgue measure on R
n). Then,

Rn(Σ, µ)p >
cp

2

∫
dP0 ∧ dP1 =

cp

2

(
1 − ‖P0 − P1‖TV

)
,

where ‖ · ‖TV is the total variation distance between measures, defined by

‖P −Q‖TV = sup
A

|P (A) −Q(A)|.

Thus, using the following classical inequalities between measure distances (see for

instance in Tsybakov (2003)):

‖P0 − P1‖TV 6
√

K(P0,P1)/2,

∫
dP0 ∧ dP1 6 exp

(
−K(P0,P1)

)
/2,

the lemma follows. �



6. PROOFS 47

Proposition 6. Let hn be defined by (2.5), a sequence (αn) > 0 going to +∞
and rn = ω(hn). If Σ = Σhn,αn(x0, ω) is the class given by definition 2, we have

lim inf
n

r−1
n Rn(Σ, µ) > Cs,p. (6.17)

Proof. We use lemma 7. All we have to do is to find two functions f0,n and

f1,n such that:

(1) There is some 0 < Q < +∞ such that K(Pn
0 ,P

n
1 ) 6 Q;

(2) f0,n, f1,n ∈ Σhn,αn(x0, ω);

(3) |f0,n(x0) − f1,n(x0)| > 2crn for some constant c > 0.

We choose the two following hypotheses:

f0,n(x) = ω(hn)1|x−x0|6hn
, f1,n(x) = ω(|x− x0|)1|x−x0|6hn

.

(1) Since the ξi are centered Gaussian with variance σ2 and independent of Xn we

have

K(Pn
0 ,P

n
1 |Xn) =

1

2σ2

n∑

i=1

(
f0,n(Xi) − f1,n(Xi)

)2
,

then in view of (2.5):

K(Pn
0 ,P

n
1 ) =

n

2σ2
‖f0,n − f1,n‖2

L2(µ) 6 nω2(hn)Fν(hn)/σ2 = 1/2.

(2) For h ∈ [0, hn], taking P as the constant polynomial equal to ω(hn) we have that

the continuity modulus of f0,n is 0, and taking P = 0 we obtain that the continuity

modulus of f1,n is bounded by ω(h). Moreover, for n large enough, we have clearly

f0,n, f1,n ∈ U(αn) since αn → +∞.

(3) If we take c = 1/2 we have |f1,n(x0) − f0,n(x0)| = ω(hn) = 2crn. �

6.5. Computations of the examples. For a given design density, we compute

the minimax rate rn by giving an equivalent of rn = ω(hn), where hn is the smallest

solution to

ω(h) =
σ√

nFν(h)
.

6.5.1. Regularly varying design example. For the regularly varying design exam-

ple, we find the equivalent of hn using the following proposition.

Proposition 7. Let γ > 0 and α ∈ R. If G(h) = hγ(log(1/h))α we have:

G←(h) ∼ γα/γh1/γ(log(1/h))−α/γ as h→ 0+.

Proof. When α = 0 the result is obvious, hence we assume α ∈ R − {0}. We

look for h such that hγ(log(1/h))α = x, when x > 0 is small. If α > 0 we define

t = log(hγ/α), so this equation becomes

t exp(t) = −γx1/α/α, (6.18)
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where t 6 0. The equation (6.18) has two solutions for x small enough, but they

cannot be written in an explicit way. Let us consider the Lambert functionW defined

as the function satisfying W (z)eW (z) = z for any z ∈ C, see for instance Corless

et al. (1996). We are only interested here by its real branches. This function has

two branches W0 and W−1 in R. We denote by W0 the one such that W0(0) = 0 and

W−1 the one such that limh→0− W−1(h) = −∞. The two solutions of (6.18) are then

t0 = W−1(−γx1/α/α) and t1 = W0(−γx1/α/α), and h0 , exp
(
αW−1(−γx1/α/α)/γ

)

is the smallest one. By the definition of W we have for −1/e < x < 0 and a ∈ R

that eaW−1(x) = (−x)a(−W−1(x))
−a, and since W−1 satisfies W−1(−x) ∼ log(x) as

x→ 0+, we have

h0 = (γx1/α/α)α/γ(−W−1(−γx1/α/α))−α/γ ∼ γα/γx1/α(log(1/x))−α/γ ,

as x→ 0+. When α < 0 we proceed similarly. We have t > 0 and (6.18) has a single

solution t = W0(−γx1/α/α), thus h , exp(−αW0(−γx1/α/α)/γ). By the definition

of W0 we have for any x > 0 and a ∈ R that eaW0(x) = xaW−a
0 (x), and since W0 sat-

isfies W0(x) ∼ log(x) as x→ +∞ we find again h ∼ γα/γx1/α(log(1/x))−α/γ as x→
0+. �

For the second example of regularly varying design, using proposition 7, we find

that an equivalent to the sequence hn defined by (2.5) is

(1 + 2s+ β)(α+2γ)/(1+2s+β)
(σ
r

)2/(1+2s+β)
(n(log n)α+2γ)−1/(1+2s+β),

and since ω(h) = rhs(log(1/h))γ , we find that an equivalent of rn (up to a constant

depending on s, β, γ, α) is

σ2s/(1+2s+β)r(β+1)/(1+2s+β)(n(log n)α−γ(1+β)/s)−s/(1+2s+β).

The computation for the third example (β = −1) is similar to the second example,

since Fν(h) = (log(1/h))1−α.

6.5.2. Γ-varying design example. For the example ν(h) = exp(−1/hα), we first

use the fact that when ν ∈ ΓV(ρ) we have Fν(h) ∼ ρ(h)ν(h) as h → 0+ (see

section 7). Recalling that ρ(h) = hα+1/α, we solve

h1+2s+α exp(−1/hα) = yn, (6.19)

where yn , σ2α/(r2n). Defining t , h−α, equation (6.19) becomes

t−(1+2s+α)/α exp(−t) = yn,

that we rewrite x exp(x) = α/(1 + 2s + α)y
−α/(1+2s+α)
n for x , α/(1 + 2s + α)t.

Then we have x = W0

(
α/(1 + 2s + α)y

−α/(1+2s+α)
n

)
, where W0 is defined in the

proof of proposition 7. Using the fact that W0(x) ∼ log(x) as x → +∞, we get
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x ∼ α
1+2s+α log n as n → +∞, thus hn ∼ (log n)−1/α and the result holds since

rn , rhs
n.

7. Some facts on regular and Γ-variation

Here, we recall some results about regularly and Γ-varying functions. These

results can be found in Bingham et al. (1989), Geluk and de Haan (1987) and

Senata (1976).

7.1. Regular variation. Let ℓ be a slowly varying function throughout the

following. An important result is that the property

lim
h→0+

ℓ(yh)/ℓ(h) = 1, (7.1)

holds uniformly for y in any compact set in (0,+∞). If R1 ∈ RV(α1) and R2 ∈
RV(α2) one has

• R1 ×R2 ∈ RV(α1 + α2),

• R1 ◦R2 ∈ RV(α1 × α2).

If R ∈ RV(γ) for γ ∈ R − {0}, we have as h→ 0+:

R(h) →





0 if γ > 0,

+∞ if γ < 0.
(7.2)

The asymptotic behaviour of integrals of regularly varying functions, usually called

Abelian theorems, plays a key role in the proofs.

• If γ > −1 we have

∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h→ 0+, (7.3)

and in particular h 7→
∫ h
0 t

γℓ(t)dt ∈ RV(γ + 1). This result is known as the

Karamata theorem.

• When γ = −1 and if
∫ η
0 ℓ(t)

dt
t < +∞ for some η > 0 then h 7→

∫ h
0 ℓ(t)

dt
t ∈

RV(0) and we have

lim
h→0+

1

ℓ(h)

∫ h

0
ℓ(t)

dt

t
= +∞.

• If R is a positive and monotone function such that h 7→
∫ h
0 R(t)dt ∈ RV(γ)

for some γ > 0, then R ∈ RV(γ − 1).

• If K is a function such that
∫ 1
0 t
−δK(t)dt < +∞ for some δ > 0 then

∫ 1

0
K(t)ℓ(th)dt ∼ ℓ(h)

∫ 1

0
K(t)dt as h→ 0+. (7.4)
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Moreover, when
∫ η
0 ℓ(t)dt/t < +∞ for some η > 0, and K is such that

∀t > 0, |K(t) −K(0)| 6 ρ|t|κ for some ρ > 0 and 0 < κ 6 1 one has
∫ 1

0
K(t/h)ℓ(t)dt/t ∼ K(0)

∫ 1

0
ℓ(t)dt/t as h→ 0+. (7.5)

If R is defined and bounded on [0,+∞), we define the generalised inverse

R←(y) = inf{h > 0 such that R(h) > y}. (7.6)

If R ∈ RV(γ) for some γ > 0, then there exists R− ∈ RV(1/γ) such that

R(R−(h)) ∼ R−(R(h)) ∼ h as h→ 0+, (7.7)

and R− is unique up to an asymptotic equivalence. Moreover, one version of R− is

R←.

If (δn)n>0 and (λn)n>0 are sequences of positive numbers such that δn+1 ∼ δn

as n → +∞, limn δn = 0, and if there is a positive and continuous function φ such

that for any y > 0:

lim
n
λnR(yδn) = φ(y), (7.8)

then R varies regularly.

7.2. Γ-variation. Now, we describe the properties of Γ-varying functions and

Π-varying functions (see below). The results are due to de Haan. The references

are the same as for regular variation. All the following results can be found therein.

A first result states that if ν is a function such that (2.7) holds for all y ∈ R,

then (2.7) holds uniformly on each compact set in R. If ρ is such that (2.7) holds,

then:

lim
h→0+

ρ(h)/h = 0. (7.9)

The auxiliary function ρ in definition 3 is unique up to within an asymptotic equiv-

alence and can be taken as h 7→
∫ h
0 ν(t)dt/ν(h).

The class ΓV(ρ) is closed under integration. If ν ∈ ΓV(ρ) then Fν(h) =∫ h
0 ν(t)dt ∈ ΓV(ρ), and we have

Fν(h) ∼ ρ(h)ν(h) as h→ 0+.

We have seen that the class of regularly varying functions RV is closed under

the operation of functional inversion. In the case of Γ-variation, the inversion maps

the class ΓV in another class of functions, namely the de Haan class ΠV.

Definition 5 (Π-Variation). A function ν is in the de Haan class ΠV if there

exists a slowly varying ℓ and c > 0 such that

∀y > 0, lim
h→0+

(ν(yh) − ν(h))/ℓ(y) = c log(y). (7.10)
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The class of all such functions is denoted by ΠV(ℓ).

• If ν ∈ ΓV(ρ) then ℓ = ρ ◦ ν← is slowly varying and ν← ∈ ΠV(ℓ).

• If ν ∈ ΠV(ℓ) for some ℓ ∈ RV(0) then ν← ∈ ΓV(ρ) with ρ = ℓ ◦ ν←.

In both senses the inverses and their auxiliary functions are asymptotically

unique. The following inclusion shows that Π-variation can be viewed as a re-

finement of slow variation. Actually, any Π-varying function is slowly varying: for

any ℓ ∈ RV(0) we have

ΠV(ℓ) ⊂ RV(0). (7.11)
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CHAPTER 2

On pointwise adaptive curve estimation with a

degenerate random design

In this chapter, we are interested in the adaptive estimation of the regression

function at a point x0 where the design is degenerate. When the design density is

β-regularly varying at x0 and f has a smoothness s in the Hölder sense, we know

from chapter 1 that the minimax rate is equal to

n−s/(1+2s+β)ℓ(1/n),

where ℓ is slowly varying. Here, we provide an estimator which is adaptive both

on the design and the smoothness of the regression function, and we show that it

converges with the rate

(log n/n)s/(1+2s+β)ℓ(log n/n).

The procedure consists of a local polynomial estimator with a Lepski type data-

driven bandwidth selector similar to the one in Goldenshluger and Nemirovski (1997)

or Spokoiny (1998). Moreover, we prove that the payment of a log in this adaptive

rate compared to the minimax rate is unavoidable.

1. Introduction

1.1. The model. We observe n pairs of random variables (Xi, Yi) ∈ [0, 1] × R

independent and identically distributed satisfying

Yi = f(Xi) + ξi, (1.1)

where f : [0, 1] → R is the unknown signal to be recovered, the variables (ξi) are

centered Gaussian with variance σ2 and independent of the design X1, . . . ,Xn. The

variables Xi are distributed with respect to a density µ. We want to recover f at a

fixed point x0.

The classical way to consider the nonparametric regression model is to take a

deterministic and equispaced design Xi = i/n. In this case, the observations are

homogeneously distributed over the unit interval. If we take the Xi random we can

modelize cases with inhomogeneous observations as the design distribution is ”far”

from the uniform law. We allow here the density µ to be degenerate (vanishing or

53



54 2. POINTWISE ADAPTIVE CURVE ESTIMATION WITH RANDOM DESIGN

exploding) and we are more precisely interested in the adaptive estimation of f at

a point where the design is degenerate, namely a point with very inhomogeneous

data.

1.2. Motivation. The adaptive estimation of the regression function is a well-

developed problem. Several adaptive procedures can be applied for the estimation of

a function with unknown smoothness: nonlinear wavelet estimation (thresholding),

model selection, kernel estimation with a variable bandwidth (the Lepski method),

and so on.

Recent results dealing with the adaptive estimation of the regression function

when the design is random or not equispaced include Antoniadis et al. (1997), Brown

and Cai (1998), Wong and Zheng (2002), Maxim (2003), Delouille et al. (2004),

Kerkyacharian and Picard (2004), among others. A natural question arises: what

happens if we want to estimate adaptatively the regression function at a point where

the design is degenerate? In chapter 1, when µ varies regularly at x0, we have proved

that the minimax rate ψn over a Hölder type class with smoothness s (around x0)

satisfies

ψn ≍ n−s/(1+2s+β)ℓ(1/n),

where β is the regular variation index of µ at x0 (see definition 2 below) and ℓ is

slowly varying (the notation an ≍ bn means 0 < lim infn an/bn 6 lim supn an/bn <

+∞). For the proof of the upper bound, a (non adaptive) linear procedure was

used. The next logical step is then to find a procedure able to recover f with as

less prior knowledge as possible on its smoothness and on the design density. On

pointwise adaptive curve estimation (in the regression or the white noise model) see

Lepski (1990), Lepski and Spokoiny (1997), Lepski et al. (1997), Spokoiny (1998)

and Brown and Cai (1998) for wavelet methods.

1.3. Organisation of the chapter. We introduce the estimator in section 2.

In section 3, we give upper bounds for this estimator, first conditionally on the

design, see theorem 1, and then in the regular variation framework, see theorem 2.

In section 4 we prove that the obtained convergence rate is optimal, see theorem 3

and its corollary. We present numerical illustrations in section 5 for several datasets

and we discuss into details some points in section 6. Section 7 is devoted to the proofs

and we recall some well-known facts on regularly varying functions in section 8.
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2. The procedure

2.1. Local polynomial estimation. Let κ ∈ N and h > 0 (the bandwidth).

We define

Nn,h , #{Xi such that Xi ∈ [x0 − h, x0 + h]},

and we introduce the pseudo-inner product

〈f , g〉h ,
1

Nn,h

∑

|Xi−x0|6h

f(Xi)g(Xi),

and ‖ · ‖h the corresponding pseudo-norm. Let φj(x) = (x − x0)
j for j = 0, . . . , κ.

We introduce the matrix Xh and the vector Yh with entries

(Xh)j,l = 〈φj , φl〉h and (Yh)j = 〈Y , φj〉h, (2.1)

for 0 6 j, l 6 κ.

Definition 1. Let

f̂h,κ =




θ̂h,0φ0 + θ̂h,1φ1 + · · · + θ̂h,κφκ when Nn,h > 0,

0 when Nn,h = 0,

where θ̂h is the solution of the linear system

X̃hθ = Yh, (2.2)

where

X̃h , Xh +N
−1/2
n,h Iκ+11λ(Xh)6N

−1/2
n,h

,

with λ(M) standing for the smallest eigenvalue of a matrix M and Iκ+1 for the

identity matrix in R
κ+1.

This procedure is slightly different from the classical version of the local poly-

nomial estimator. We note that the correction term in X̃h entails λ(X̃h) > N
−1/2
n,h .

On local polynomial estimation, see Stone (1980), Fan and Gijbels (1995) Fan and

Gijbels (1996), Spokoiny (1998) and Tsybakov (2003) among many others.

2.2. Adaptive bandwidth selection. The procedure selects the bandwidth

h in a set H called the grid, which is a tuning parameter of the adaptive procedure.

We can choose either an arithmetical or a geometrical grid

H =





Harith
a =

[(n−2)/a]⋃

i=1

{h2+[ia]} for a > 1, or

Hgeom
a =

[loga n]⋃

i=1

{h[ai]} for a > 1,
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where hi , |X(i) −x0| and where |X(i) −x0| 6 |X(i+1) −x0| for any i = 1, . . . , n− 1.

Note that [x] stands for the integer part of x. We define

Hh , {h′ ∈ H such that h
′

6 h}.

The bandwidth is selected as follows:

Ĥn , max
{
h ∈ H such that ∀h′ ∈ Hh, ∀0 6 j 6 κ,

|〈f̂h,κ − f̂h′,κ , φj〉h′ | 6 σ‖φj‖h′Tn,h′,h

}
,

(2.3)

where f̂h,κ is given by definition 1 and where the threshold Tn,h′,h is equal to

Tn,h′,h ,




Cκ

√
CpN

−1
n,h′ logNn,h +

√
(Nn,h − a)−1 log n if H = Harith

a ,

Cκ

√
CpN

−1
n,h′ logNn,h +

√
(1 + a)N−1

n,h log n if H = Hgeom
a ,

(2.4)

with Cκ , 1 +
√
κ+ 1, Cp = 8(1 + 2p) where p fits with the loss function in (3.1)

and a is the grid parameter. The estimator is then

f̂n(x0) , f̂ bHn,κ(x0). (2.5)

The selection rule (2.3) is similar to the method by Lepski (1990), Lepski et al.

(1997) and Lepski and Spokoiny (1997) and is additionally to the original Lepski

method sensitive to the design. This procedure is close to the one in Spokoiny

(1998). See section 6.2 for more details on existing procedures in the literature.

3. Upper bounds

We assess a procedure f̃n over a class Σ (to be specified in the following) with

the maximal risk (
sup
f∈Σ

E
n
f,µ{|f̃n(x0) − f(x0)|p}

)1/p
, (3.1)

where x0 is the estimation point and p > 1. The expectation E
n
f,µ in (3.1) is taken

with respect to the joint law P
n
f,µ of the observations (1.1).

3.1. Regular variation. The definition of regular variation and its main prop-

erties are due to Karamata (1930). On this topic, we refer to Senata (1976), Geluk

and de Haan (1987), Resnick (1987) and Bingham et al. (1989).

Definition 2 (Regular variation). A function ν : R
+ → R

+ is regularly varying

at 0 if it is continuous and such that there exists β ∈ R satisfying

∀y > 0, lim
h→0+

ν(yh)/ν(h) = yβ. (3.2)

We denote by RV(β) the set of all such functions. A function in RV(0) is slowly

varying.
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Remark. Roughly speaking, a regularly varying function behaves as a power

function times a slower term. Typical examples of such functions are xβ, xβ(log(1/x))γ

and more generally any power function times a log or compositions of log to some

power. For other examples, see in the references.

Definition 3. If δ > 0 and ω ∈ RV(s) with s > 0 we define the class Fδ(x0, ω)

of all the functions f : [0, 1] → R such that

∀h 6 δ, inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x− x0)| 6 ω(h),

where k = ⌊s⌋ (the largest integer smaller than s) and Pk is the set of all the real

polynomials with degree k. We define ℓω(h) , ω(h)h−s the slow variation term of

ω. If α > 0 we define

U(α) ,
{
f : [0, 1] → R such that ‖f‖∞ 6 α

}
.

Finally, we define

Σδ,α(x0, ω) , Fδ(x0, ω) ∩ U(α).

Remark. If ω(h) = rhs for r > 0, we find back the classical Hölder regularity

with radius r. In this sense, the class Fδ(x0, ω) is a slight generalisation of Hölder

regularity.

3.2. Conditionally on the design. When nothing is known on the design

density behaviour we can work conditionally on the design. Let Xn be the sigma-

algebra generated by X1, . . . ,Xn. We define

Hn,ω , min
{
h ∈ [0, 1] such that ω(h) > σ

√
N−1

n,h log n
}
, (3.3)

which is well-defined for n large enough (when ω(1) > σ
√

log n/n). The quantity

Hn,ω makes the balance between the bias and the log-penalised variance of f̂h,κ

(see lemma 1) and therefore can be understood as the ideal adaptive bandwidth,

see Lepski and Spokoiny (1997) and Spokoiny (1998). The log term in (3.3) is the

payment for adaptation, see section 4.1. Let us define

H∗n,ω , max{h ∈ H|h 6 Hn,ω},

and

Rn,ω , σ
√
N−1

n,H∗
n,ω

log n. (3.4)

We define the diagonal matrix Λh , diag(‖φ0‖−1
h , . . . , ‖φκ‖−1

h ), the symmetrical

matrix Gh , ΛhX̃hΛh and λn,ω , λ(GH∗
n,ω

). We define the event

Ωh , {X1, . . . ,Xn are such that λ(Xh) > N
−1/2
n,h and Nn,h > 2}. (3.5)
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We note that Ωh ∈ Xn and that Xh is invertible on Ωh. The next result shows that,

conditionally on Xn, f̂n(x0) = f̂ bHn,κ(x0) converges with the rate Rn,ω simultaneously

over any Σ(x0, ω) when ω ∈ RV(s) with 0 < s 6 κ+ 1.

Theorem 1. If ω ∈ RV(s) for 0 < s 6 κ+ 1 and α > 0, we have on ΩH∗
n,ω

for

any n > κ+ 1:

sup
f∈ΣH∗

n,ω,α(x0,ω)
E

n
f,µ

{
R−p

n,ω|f̂n(x0) − f(x0)|p|Xn

}
6 c1λ

−p
n,ω + c2(α ∨ 1)p(log n)−p/2,

where c1 = c1(p, κ, a) and c2 = c2(p, κ, a, σ).

We will see that the probability of ΩH∗
n,ω

is large, and that λn,ω is positive with

a large probability, when the design density is regularly varying (see lemma 9).

Note that the upper bound in theorem 1 is non-asymptotic since it holds for any

n > κ + 1. The random normalisation Rn,ω is similar to the one in Guerre (1999),

see section 6.2 for more details.

3.3. Regularly varying design.

Definition 4. For β > −1 and a neighbourhood W of x0 we define

R(x0, β) ,
{
µ density such that ∃ν ∈ RV(β)∀x ∈W, µ(x) = ν(|x− x0|)

}
.

In the following, we assume that µ ∈ R(x0, β) for β > −1. Let hn,ω be the

smallest solution to

ω(h) = σ

√
log n

2n
∫ h
0 ν(t)dt

, (3.6)

and

rn,ω , ω(hn,ω). (3.7)

Equation (3.6) can be viewed as the deterministic counterpart to the equilibrium

in (3.3). We define Cα,β , (1+ (−1)α) β+1
α+β+1 and the matrix G with entries (G)j,l ,

Cj+l,β√
C2j,βC2l,β

for 0 6 j, l 6 κ and λκ,β , λ(G). It is easy to see that λκ,β > 0. If (an)

and (bn) are sequences of positive numbers, an ∼ bn means limn→+∞ an/bn = 1.

Theorem 2. If

• κ ∈ N, β > −1, α > 0 and ̺ > 1,

• ω ∈ RV(s) for 0 < s 6 κ+ 1,

then the estimator f̂n(x0) = f̂κ, bHn
(x0) with the grid H = Harith

1 satisfies

∀µ ∈ R(x0, β), lim sup
n

sup
f∈Σ̺hn,ω,α(x0,ω)

E
n
f,µ

{
r−p
n,ω|f̂n(x0)−f(x0)|p

}
6 Cλ−p

κ,β, (3.8)

where C = C(p, κ). Moreover, we have

rn,ω ∼ σ2s/(1+2s+β)(log n/n)s/(1+2s+β)ℓω,ν(log n/n), (3.9)
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where ℓω,ν is slowly varying.

Remark. When ω(h) = rhs (Hölder regularity) we have more precisely

rn,ω ∼ Cσ,r(log n/n)s/(1+2s+β)ℓs,ν(log n/n),

where Cσ,r = σ2s/(1+2s+β)r(1+β)/(1+2s+β). Note that ℓ1(h) = ℓω,ν(h log(1/h)) is also

slowly varying, thus ℓ1(1/n) = ℓω,ν(log n/n) is a slow term.

3.4. Convergence rates examples. Let β > −1, r, s be positive and α, γ ∈ R.

If ν is such that
∫ h
0 ν(t)dt = hβ+1(log(1/h))α and ω(h) = rhs(log(1/h))γ , we find

that (see section 7.3)

rn,ω ∼ Cσ,r

(
n(log n)α−1−γ(1+β)/s

)−s/(1+2s+β)
, (3.10)

where Cσ,r = σ2s/(1+2s+β)r(β+1)/(1+2s+β). This rate has to be compared with the

minimax rate from chapter 1 (see page 26):

Cσ,r

(
n(log n)α−γ(1+β)/s

)−s/(1+2s+β)
,

where the only difference is the α instead of α− 1 in the log exponent. This loss is

the payment for adaptation and is unavoidable in view of theorem 3 below and its

corollary, see section 4.

In the classical case, namely when the design is non-degenerate and f is Hölder

(ω(h) = rhs and α = β = γ = 0) we find the usual pointwise minimax adaptive rate

(see Lepski (1990), Brown and Low (1996)):

σ2s/(1+2s)r1/(1+2s)(log n/n)s/(1+2s).

When the design is again non-degenerate and the continuity modulus is equal to

ω(h) = rhs(log(1/h))−s, we find a convergence rate equal to

σ2s/(1+2s)r1/(1+2s)n−s/(1+2s),

which is the usual minimax rate, without the log term for payment for adaptation.

Actually, this is a ”toy” example since we have asked for more regularity than in the

Hölder regularity. Note that in the degenerate design case, when α and γ are such

that α = 1 + γ(1 + β)/s, there is again no extra log factor.

4. Optimality

4.1. Payment for adaptation. The convergence rate of a linear estimator

with an adaptive bandwidth choice can be well explained by a balance equation

between its bias and variance terms. In our context, this equation is

ω(h) =
σ√
Nn,h

,
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(see lemma 1) and a deterministic counterpart of this equilibrium is

ω(h) =
σ√

2n
∫ h
0 ν(t)dt

, (4.1)

see lemma 5. We proved in chapter 1 that the minimax rate ψn,ω over Σδ,α(x0, ω)

is given by

ψn,ω = ω(γn,ω), (4.2)

where γn,ω is the smallest solution to (4.1). In a model with homogeneous informa-

tion (the white noise or the regression model with an equidistant design) we know

that such a balance equation cannot be realized: an adaptive estimator to the un-

known smoothness without loss of efficiency is not possible for pointwise estimation,

even if we know that the function belongs to one of two Hölder classes, see Lepski

(1990), Brown and Low (1996) and Lepski and Spokoiny (1997). This means that

local adaptation cannot be achieved for free: we have to pay an extra log factor

in the convergence rate, at least of order (log n)2s/(1+2s) when estimating a Hölder

function with smoothness s. The authors call this phenomenon payment for adap-

tation. We intend here to generalise this result to the regression with a degenerate

random design model.

4.2. Superefficiency. Let s, r′ < r, be positive and δ 6 1, p > 1. We take

ω(h) = rhs, ω′(h) = r′hs and the minimax rate ψn,ω defined by (4.2). In view of

lemma 6, we have

ψn,ω ∼ Cσ,rn
−s/(1+2s+β)ℓs,ν(1/n) as n→ +∞. (4.3)

We recall that in view of theorem 2, the ”adaptive” rate rn,ω defined by (3.7)

is attained by the adaptive procedure f̂n(x0) simultaneously over several classes

Σδ,α(x0, ω) with ω ∈ RV(s) for any regularity s ∈ (0, κ + 1] and that

rn,ω ∼ Cσ,r(log n/n)s/(1+2s+β)ℓs,ν(log n/n) as n→ +∞. (4.4)

Theorem 3. If an estimator f̂n based on (1.1) is asymptotically minimax over

Fδ(x0, ω), that is

lim sup
n

sup
f ∈ Fδ(x0, ω)

ψ−p
n,ω E

n
f,µ{|f̂n(x0) − f(x0)|p} < +∞,

and if this estimator is superefficient at a function f0 ∈ Fδ(x0, ω
′) in the sense that

there is γ > 0 such that

lim sup
n

ψ−p
n,ω n

γp
E

n
f0,µ{|f̂n(x0) − f0(x0)|p} < +∞, (4.5)
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then we can find a function f1 ∈ Fδ(x0, ω) such that

lim inf
n

r−p
n,ω E

n
f1,µ{|f̂n(x0) − f1(x0)|p} > 0.

This theorem is a generalisation of a result by Brown and Low (1996) for the

degenerate random design case. Of course, when the design is non-degenerate

(0 < µ(x0) < +∞) the theorem remains valid and the result is barely the same

as in Brown and Low (1996) with the same rates.

Theorem 3 is a lower bound for a superefficient estimator. Actually, the most

interesting result for our problem is the next corollary.

4.3. An adaptive lower bound. Let 0 < r2 < r1 < +∞ and 0 < s1 < s2 <

+∞ be such that ⌊s1⌋ = ⌊s2⌋ = k. If ωi(h) = rih
si we denote Fi , Fδ(x0, ωi).

Let ψn,i be the minimax rate defined by (4.2) over Fi for i = 1, 2 and rn,1 be

defined by (3.7) with ω = ω1 (the ”adaptive” rate when the class is F1). Note that

ψn,i satisfies (4.3) with s = si and rn,1 satisfies (4.4) with s = s1.

Corollary 1. If an estimator f̂n is asymptotically minimax over F1 and F2,

that is for i = 1, 2:

lim sup
n

sup
f∈Fi

ψ−p
n,i E

n
f,µ{|f̂n(x0) − f(x0)|p} < +∞, (4.6)

then this estimator also satisfies

lim inf
n

sup
f∈F1

r−p
n,1 E

n
f,µ

{
|f̂n(x0) − f(x0)|p

}
> 0. (4.7)

Note that (4.7) contradicts (4.6) for i = 1 since limn ψn,1/rn,1 = 0, thus there

is no pointwise minimax adaptive estimator over two such classes F1 and F2 and

the best achievable rate is rn,i. The corollary 1 is an immediate consequence of

theorem 3. We have clearly F2 ⊂ F1, thus equation (4.6) entails that f̂n is su-

perefficient at any function f0 ∈ F2. More precisely, f̂n satisfies (4.5) with γ =
(s2−s1)(β+1)

2(1+2s1+β)(1+2s2+β) > 0 since n−γℓ(1/n) → 0 where ℓ , ℓs1,ν/ℓs2,ν and ℓ ∈ RV(0).

5. Simulations

5.1. Implementation of the procedure. For the estimation at a point x,

the procedure (2.3) selects the best symmetrical interval I = [x − h, x + h] among

several h in the grid H. We have implemented this procedure with non-symmetrical

intervals, which is a procedure similar to the one in Spokoiny (1998). First, we

define for any I ⊂ [0, 1] the inner product

〈f , g〉I ,
∑

Xi∈I

f(Xi)g(Xi),
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(it is convenient in this part to remove the normalisation term Nn,h from the def-

inition of the inner product) and similarly to (2.1) we define the matrix XI with

entries (XI)j,l = 〈φj , φl〉I for 0 6 j, l 6 κ. We define in the same way YI , and θ̂I is

defined as the solution to

XIθ = YI .

Note that if J ⊂ [0, 1], the vector FI,J with coordinates

(FI,J)j = 〈f̂I,κ − f̂J,κ , φj〉J/‖φj‖J ,

for 0 6 j 6 κ, satisfies

FI,J = HJ(θ̂I − θ̂J),

where HJ is defined as the matrix with entries

(HJ)j,l ,

∑
Xi∈J(Xi − x)j+l

√∑
Xi∈J(Xi − x)2j

,

for 0 6 j, l 6 κ. The main steps for the estimation at a point x are then:

(1) choose parameters a > 1, κ ∈ N and m > κ+ 1;

(2) sort the (Xi, Yi) in (X(i), Y(i)) such that X(i) 6 X(i+1);

(3) find j such that x ∈ [X(j),X(j+1)] and #{Xi|Xi ∈ [X(j),X(j+1)]} = m;

(4) build

G =

[loga(j+1)]⋃

p=0

[loga(n−q)]⋃

q=0

[
X(j+1−[ap]),X(j+[aq ])

]
;

(5) compute θ̂I and HI for all I ∈ G;

(6) if Nn,I , #{Xi|Xi ∈ I}, find

Î = argmax
I∈G

{
Nn,I such that ∀J ⊂ I, J ∈ G, ‖HJ(θ̂I − θ̂J)‖∞ 6 TI,J

}
;

where ‖ · ‖∞ stands for the sup norm in R
κ+1 and

TI,J = σ̂(1 +
√
κ+ 1)

√
logNn,I +

√
(1 + a)

√
(Nn,J/Nn,I) log n,

with σ̂ is an estimator of σ, given for instance by (6.3);

(7) return the first coordinate of θ̂bI .

This procedure uses a geometrical grid, thus it is computationally feasible for

reasonable choices of a (a = 1.05 is used for the illustrations in the next section).

The main steps of the procedure with an arithmetical grid are the same with a

modification of the threshold, see (2.4). The procedure is implemented in C++ and

is quite fast: it takes few seconds to recover the whole function at 300 points on a

modern computer.
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5.2. Numerical illustrations. For our simulations, we use the target func-

tions from Donoho and Johnstone (1994). These functions are commonly used as

benchmarks for adaptive estimators. We show in figure 1 the target functions and

datasets with an uniform random design. The noise is Gaussian with σ chosen to

have root signal-to-noise ratio 7. The sample size is n = 2000. We show the es-

timates in figure 2. For all estimates we take κ = 2, a = 1.05 and m = 25. We

estimate at each point x = j/300 with j = 0, . . . , 300.

Note that these estimates can be slightly improved with case by case tuned

parameters: for instance, for the first dataset (blocks), the choice κ = 0 gives a

slightly better looking estimate (the target function is constant by parts).

In figure 3 we show datasets with the same signal-to-noise ratio and sample size

as in figure 1, but the design is non-uniform (we plot the design density on each

of them). We show the estimates based on these datasets in figure 4. The same

parameters as for figure 2 are used.

In figures 5 and 6 we give a local illustration of the heavysine dataset. We keep

the same signal-to-noise ratio and sample size. We consider the design density

µ(x) =
β + 1

xβ+1
0 + (1 − x0)β+1

∣∣x− x0

∣∣β1[0,1](x), (5.1)

for x0 = 0.2, 0.72 and β = −0.5, 1.
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Figure 1. Blocks, bumps, heavysine and doppler with Gaussian

noise and uniform design.
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Figure 2. Estimates based on the datasets in figure 1.



5. SIMULATIONS 65

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-6

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

Figure 3. Blocks, bumps, heavysine and doppler with Gaussian

noise and non-uniform design.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-1

 0

 1

 2

 3

 4

 5

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-6

-4

-2

 0

 2

 4

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.2  0.4  0.6  0.8  1
 0

 1

 2

 3

 4

 5

 6

 7

Figure 4. Estimates based on the datasets in figure 3.
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Figure 5. Heavysine datasets and estimates with design den-

sity (5.1) with x0 = 0.2 and β = −0.5 at top, β = 1 at bottom.
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Figure 6. Heavysine datasets and estimates with design den-

sity (5.1) with x0 = 0.72 and β = −0.5 at top, β = 1 at bottom.
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6. Discussion

6.1. On the procedure. It is important to note that on the event Ωh, the

estimator f̂h,κ is equal to the classical local polynomial estimator defined by

f̂h,κ = arg min
g ∈ Vκ

‖g − Y ‖2
h, (6.1)

where Vκ = Span{(φj)j=0,...,κ}. A necessary condition for f̂h,κ to minimise (6.1) is

to be solution of the linear problem

find f̂ ∈ Vκ such that ∀φ ∈ Vκ, 〈f̂ , φ〉h = 〈Y , φ〉h. (6.2)

The main idea of the procedure is the following: if h is a good bandwidth, then for

any h′ 6 h and for all φ ∈ Vκ we should have in view of (6.2):

〈f̂h − f̂h′ , φ〉h′ = 〈f̂h − Y , φ〉h′ ≈ 〈ξ , φ〉h′ ,

which means that the difference f̂h−f̂h′ is mainly noise, in the sense that σ−1‖φ‖−1
h′ 〈f̂h−

f̂h′ , φ〉h′ is close in law to a standard Gaussian.

• The procedure (2.3) looks like the Lepski procedure: in a model where the es-

timators can be well sorted by their respective variances (this is the case with kernel

estimators in the white noise model, see Lepski and Spokoiny (1997)), the Lepski

procedure selects the largest bandwidth such that the corresponding estimator does

not differ significantly from estimators with a smaller bandwidth. Here, the idea is

the same, but the proposed procedure is additionally sensitive to the design.

• The estimator f̂n(x0) only depends on κ and on the grid H (to be chosen by

the statistician). It does not depend on the regularity of f nor any assumption on

µ. In this sense, this estimator is adaptive in both regularity and design.

• Note that Xh = tFhFh where Fh is the matrix of size n × (κ + 1) with entries

(Fh)i,j = (Xi − x0)
j for 0 6 i 6 n and 0 6 j 6 κ, and that kerXh = ker Fh. Thus,

Xh is not invertible when n < κ+ 1 since its kernel is not zero, and Ωh = ∅. This is

the reason why theorem 1 is stated for n > κ+ 1 and in the step 3 of the procedure

(see section 5.1) we must take m > κ+ 1 so that each interval in G contains at least

κ+ 1 observations Xi.

• The reason why we need to take the grid H = Harith
1 in theorem 2 is linked

with the control of λn,ω. We can prove the theorem with a geometrical grid if we

additionally assume λn,ω > λ for λ > 0, but we preferred to work only under the
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regularly varying design assumption with a restricted grid choice without extra as-

sumption on the model.

• The fact that the noise level σ is known is of little importance. If it is unknown,

we can plug-in some estimator σ̂2
n in place of σ2. Following Gasser et al. (1986) or

Buckley et al. (1988) we can consider

σ̂2
n =

1

2(n − 1)

n−1∑

i=1

(Y(i+1) − Y(i))
2, (6.3)

where Y(i) is the observation at the point X(i) where X(1) 6 X(2) 6 · · · 6 X(n).

6.2. Comparison with previous results. In Guerre (1999), for the estima-

tion of the regression function at x0 = 0 in a more general setup for the design, the

author works conditionally on Xn and gives an upper bound with a data-driven rate

similar to (3.4). The author considers then as an example the case of an i.i.d. design

with density µ such that µ(x) ∼ xβ close to 0 for β > −1, which is a particular

case of regularly varying density at 0 of index β. Here, the approach is the same:

under the regular variation assumption we derive from theorem 1 an asymptotic

upper-bound with a deterministic rate (theorem 2).

Bandwidth selection procedures in local polynomial estimation can be found in

Fan and Gijbels (1995), Goldenshluger and Nemirovski (1997) or Spokoiny (1998).

In this last paper the author is interested in the regression function estimation

near a change point. The main idea and difference between the work by Spokoiny

(1998) and the previous work by Goldenshluger and Nemirovski (1997) is to solve

the linear problem (6.2) in a non symmetrical neighbourhood of x0 not containing

the change point. Our adaptive procedure (2.3) is mainly inspired from the work

of Spokoiny and adapted for the degenerate random design problem. We have also

made improvements, for instance we do not need to bound the estimator and the

function at x0 by some known constant.

7. Proofs

In the following, we denote by Pk,h the projection in the space Vk (the set of

all polynomials with degree k) for the inner product 〈· , ·〉h. We denote respectively

by 〈· , ·〉 and by ‖ · ‖ the Euclidean inner product and the Euclidean norm in R
κ+1.

We denote by ‖ · ‖∞ the sup norm in R
κ+1. We define e1 , (1, 0, . . . , 0), the first

canonical basis vector in R
κ+1.
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7.1. Preparatory results and proof of theorem 1. The next lemma is a

version of the local polynomial estimator bias-variance decomposition, which is clas-

sical: see Cleveland (1979), Tsybakov (1986), Korostelev and Tsybakov (1993), Fan

and Gijbels (1995, 1996), Goldenshluger and Nemirovski (1997), Spokoiny (1998)

and Tsybakov (2003), among others. The version given by lemma 1 is close to the

one in Spokoiny (1998). Let us introduce for any positive integer k the continuity

modulus

ωf,k(x0, h) = inf
P∈Pk

sup
|x−x0|6h

|f(x) − P (x− x0)|.

Note that if k1 6 k2 we clearly have ωf,k2(x0, h) 6 ωf,k1(x0, h).

Lemma 1 (Bias variance decomposition). On the event Ωh the estimator f̂h,κ

from definition 1 satisfies for any k 6 κ,

|f̂h(x0) − f(x0)| 6 λ−1(Gh)
√
κ+ 1

(
ωf,k(x0, h) + σN

−1/2
n,h |γh|

)
, (7.1)

where γh is, conditionally on Xn, centered Gaussian with E
n
f,µ{γ2

h|Xn} 6 1.

Proof. On Ωh we have X̃h = Xh and λ(Xh) > N
−1/2
n,h > 0, then Xh is invert-

ible. Since Λh is clearly invertible on this event, Gh is also invertible. Let 0 < ε 6 1
2 .

By definition of ωf,κ(x0, h) we can find a polynomial P ε
f,h ∈ Pκ such that

sup
x∈[x0−h,x0+h]

|f(x) − P ε
f,h(x)| 6 ωf,κ(x0, h) +

ε√
n
.

In particular we have |f(x0)−P ε
f,h(x0)| 6 ε√

n
and if we denote by θh the coefficients

vector of P ε
f,h then

|f̂h,κ(x0) − f(x0)| 6 |〈Λ−1
h (θ̂h − θh) , e1〉| +

ε√
n

= |〈G−1
h ΛhXh(θ̂h − θh) , e1〉| +

ε√
n
.

Then in view of (6.2) one has for j = 0, . . . , κ:

(Xh(θ̂h − θh))j = 〈f̂h,κ − P ε
f,h , φj〉h

= 〈Y − P ε
f,h , φj〉h = 〈f − P ε

f,h , φj〉h + 〈ξ , φj〉h,

thus we can decompose Xh(θ̂h − θh) , Bh + Vh and then:

|f̂h,κ(x0) − f(x0)| 6 |〈G−1
h ΛhBh , e1〉| + |〈G−1

h ΛhVh , e1〉| +
ε√
n

, A+B +
ε√
n
.

We have

A 6 ‖G−1
h ΛhBh‖ 6 ‖G−1

h ‖‖ΛhBh‖ 6 ‖G−1
h ‖

√
κ+ 1‖ΛhBh‖∞,
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and

|(ΛhBh)j | = ‖φj‖−1
h |〈f − P ε

f,h , φj〉h| 6 ‖f − P ε
f,h‖h 6 ωf,κ(x0, h) +

ε√
n
.

For any symmetrical and positive matrix M we have λ−1(M) = ‖M−1‖ then since

‖Λ−1
h ‖ 6 1 we have on the event Ωh:

‖G−1
h ‖ = ‖Λ−1

h X−1
h Λ−1

h ‖ 6 ‖X−1
h ‖ = λ−1(Xh) 6 N

1/2
n,h 6

√
n.

Thus A 6 ‖G−1
h ‖

√
κ+ 1ωf,κ(x0, h) + ε

√
κ+ 1 6 ‖G−1

h ‖
√
κ+ 1ωf,k(x0, h) + ε

√
κ+ 1

since k 6 κ. Conditionally on Xn, the random vector Vh is centered Gaussian

with covariance matrix σ2N−1
n,hXh. Thus G−1

h ΛhVh is again centered Gaussian, with

covariance matrix

σ2N−1
n,hG−1

h ΛhXhΛhG−1
h = σ2N−1

n,hG−1
h ,

and B is then centered Gaussian with variance

σ2N−1
n,h〈e1 , G−1

h e1〉 6 σ2N−1
n,h‖G−1

h ‖.

Since Gh is positive symmetrical and its entries are smaller than one in absolute

value we get ‖G−1‖ = λ−1(Gh) and λ(Gh) = inf‖x‖=1〈x , Ghx〉 6 ‖Ghe1‖ 6
√
κ+ 1.

Thus ‖G−1
h ‖ 6

√
κ+ 1‖G−1

h ‖2, and the proposition follows. �

Let us introduce the events

Ah′,h,j ,
{
|〈f̂h,κ − f̂h′,κ , φj〉h′ | 6 σ‖φj‖h′Tn,h′,h

}
,

Ah′,h ,
⋂κ

j=0 Ah′,h,j and Ah ,
⋂

h′∈Hh
Ah′,h. The following lemma shows that

if some bandwidth h is good in the sense that h 6 Hn,ω (h is smaller than the

ideal adaptive bandwidth) then h can be selected by the procedure with a large

probability.

Lemma 2. Let f ∈ Fδ(x0, ω) for ω ∈ RV(s) with 0 < s 6 κ + 1. If h is such

that h 6 Hn,ω ∧ δ we have on Ωh for any n > κ+ 1:

P
n
f,µ

{
Ah|Xn

}
> 1 − (κ+ 1)N−2p

n,h .
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Proof. Let j ∈ {0, . . . , κ} and h′ ∈ Hh. On Ωh we have in view of (6.1) that

f̂h,κ = Pκ,h(Y ) thus using (6.2) we can decompose:

〈f̂h′,κ − f̂h,κ , φj〉h′ = 〈Y − f̂h,κ , φj〉h′

= 〈f − f̂h,κ , φj〉h′ + 〈ξ , φj〉h′

= 〈f − Pκ,h(f) , φj〉h′ + 〈Pκ,h(f) − f̂h,κ , φj〉h′ + 〈ξ , φj〉h′

= 〈f − Pκ,h(f) , φj〉h′ + 〈Pκ,h(f − Y ) , φj〉h′ + 〈ξ , φj〉h′

= 〈f − Pκ,h(f) , φj〉h′ − 〈Pκ,h(ξ) , φj〉h′ + 〈ξ , φj〉h′

, A+B + C.

The term A is a bias term. By the definition of ωf,k(x0, h) we can find a polynomial

Pn
f,h ∈ Vk such that

sup
x∈[x0−h,x0+h]

|f(x) − Pn
f,h(x)| 6 ωf,k(x0, h) + εn,

where εn , Cκσ
2

√
Cp log 2

n (see (2.4)). Since h′ 6 h 6 δ, f ∈ Fδ(x0, ω) and Pn
f,h ∈

Vk ⊂ Vκ we get

|A| 6 ‖f − Pκ,h(f)‖h′‖φj‖h′ 6 ‖f − Pn
f,h − Pκ,h(f − Pn

f,h)‖h‖φj‖h′

6 ‖f − Pn
f,h‖h‖φj‖h′

6 ‖φj‖h′(ωf,k(x0, h) + εn) 6 ‖φj‖h′(ω(h) + εn),

since Pκ,h is a projection with respect to 〈· , ·〉h. If h < Hn,ω we have in view of

(3.3) that ω(h) 6 σ
√
N−1

n,h log n. When h = Hn,ω two cases can occur. If the graphs

of h 7→ σ
√
N−1

n,h log n and h 7→ ω(h) cross each other we have ω(h) = σ
√
N−1

n,h log n.

When these graphs do not cross we introduce H−n,ω = max{h ∈ H|h < Hn,ω} and

H+
n,ω = min{h ∈ H|h > Hn,ω}. If H = Harith

a we have Nn,Hn,ω 6 Nn,H+
n,ω

6

Nn,H−
n,ω

+ a while when H = Hgeom
a we get Nn,Hn,ω 6 Nn,H+

n,ω
6 (1 + a)Nn,H−

n,ω
.

Then for any h 6 Hn,ω:

|A| 6




‖φj‖h′(σ

√
(Nn,h − a)−1 log n+ εn) if H = Harith

a ,

‖φj‖h′(σ
√

(1 + a)N−1
n,h log n+ εn) if H = Hgeom

a .
(7.2)

Conditionally on Xn, B and C are centered Gaussian. The conditional variance of

C is

σ2N−1
n,h′‖φj‖2

h′ ,

and conditionally on Xn the vector Pκ,h(ξ) is centered Gaussian with covariance

matrix

σ2Pκ,h
tPκ,h = σ2Pκ,h,
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since Pκ,h is a projection. Thus B is centered Gaussian with variance

E
n
f,µ{〈Pκ,h(ξ) , φj〉2h′ |Xn} 6 ‖φj‖2

h′E
n
f,µ{‖Pκ,h(ξ)‖2

h′ |Xn}
= N−1

n,h′‖φj‖2
h′tr(Var(Pκ,h(ξ)|Xn))

= σ2N−1
n,h′‖φj‖2

h′tr(Pκ,h)

6 σ2N−1
n,h′‖φj‖2

h′ dim(Vκ) 6 σ2N−1
n,h′‖φj‖2

h′(κ+ 1),

where we last used that Pκ,h is the projection in Vκ. Then conditionally on Xn,

B + C is centered Gaussian with variance

E
n
f,µ{(B + C)2|Xn}

6 E
n
f,µ{B2 + 2BC + C2|Xn}

6 E
n
f,µ{B2|Xn} + 2

√
E n

f,µ{B2|Xn}E n
f,µ{C2|Xn} + E

n
f,µ{C2|Xn}

6 σ2(1 +
√
κ+ 1)2N−1

n,h′‖φj‖2
h′C2

κ.

Using (7.2) and since 2 6 Nn,h 6 n on Ωh we have

Ac
h′,h,j ⊂

{ |B + C|
σN
−1/2
n,h′ ‖φj‖h′Cκ

>
√
Cp logNn,h/2

}
,

and using a standard Gaussian large deviation inequality we get

P
n
f,µ

{
Ac

h′,h,j

∣∣Xn

}
6 exp

(
−(1 + 2p) logNn,h

)
= N

−(1+2p)
n,h .

Since #(Hh) 6 Nn,h we finally have

P
n
f,µ{Ac

h|Xn} 6 P
n
f,µ

{ ⋃

h′∈Hh

κ⋃

j=0

Ac
h′,h,j

∣∣Xn

}
6 (κ+ 1)N−2p

n,h . �

Lemma 3. Let h ∈ H and h′ ∈ Hh. On the event Ωh′ ∩ Ah′,h one has:

|f̂h(x0) − f̂h′(x0)| 6 Cp,κ,a‖G−1
h′ ‖σ

√
N−1

n,h′ log n,

where Cp,κ,a ,
√
κ+ 1(

√
1 + a+ Cκ

√
Cp).

Proof. In view of definition 1 and since Gh′ is invertible on Ωh′ we have

|f̂h(x0) − f̂h′(x0)| = |〈Λ−1
h′ (θ̂h − θ̂h′) , e1〉|

6 ‖Λ−1
h′ (θ̂h − θ̂h′)‖

= ‖G−1
h′ Λh′Xh′(θ̂h − θ̂h′)‖

, ‖G−1
h′ Λh′Dh′,h‖ 6 ‖G−1

h′ ‖
√
κ+ 1‖Λh′Dh′,h‖∞.

On Ah′,h we have for any j ∈ {0, . . . , κ}:

|(Dh′,h)j | = |〈f̂h − f̂h′ , φj〉h′ | 6 σ‖φj‖h′Tn,h′,h,
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thus ‖Λh′Dh′,h‖∞ 6 σTn,h′,h. Since h′ 6 h and Nn,h 6 n we have when H = Hgeom
a

Tn,h′,h 6 (Cκ

√
Cp +

√
1 + a)

√
Nn,h′ log n, (7.3)

and when H = Harith
a we have by construction Nn,h > 1 + a thus (Nn,h − a)−1 6

(1 + a)N−1
n,h and (7.3) holds again. �

Lemma 4. For any p, α > 0 and 0 < h′ 6 h 6 1 the estimator f̂h′ given by

definition 1 satisfies:

sup
f ∈ U(α)

E
n
f,µ

{
|f̂h′(x0)|p|Xn

}
6 Cσ,p,κ(α ∨ 1)pN

p/2
n,h ,

where Cσ,p,κ = (κ+ 1)p/2
√

2
π

∫
R+(1 + σt)p exp(−t2/2)dt.

Proof. If Nn,h′ = 0 we have f̂h′ = 0 and the result is obvious, thus we assume

Nn,h′ > 0. Since λ(X̃h′) > N
−1/2
n,h′ > 0, X̃h′ and Λh′ are invertible and also Gh′ .

Thus,

f̂h′(x0) = 〈Λ−1
h′ θ̂h′ , e1〉 = 〈G−1

h′ Λh′X̃h′ θ̂h′ , e1〉 = 〈G−1
h′ Λh′Yh′ , e1〉.

For any j ∈ {0, . . . , κ} we have (Λh′Yh′)j = ‖φj‖−1
h′ (〈f , φj〉h′ + 〈ξ , φj〉h′) , Bh′,j +

Vh′,j. Since f ∈ U(α) we have

|Bh′,j| 6 ‖φj‖−1
h′ |〈f , φj〉h′ | 6 ‖f‖h′ 6 α,

thus ‖Bh′‖∞ 6 α. Since Vh′ is, conditionally on Xn, a centered Gaussian vector

with variance σ2N−1
n,h′Λh′Xh′Λh′ we have that G−1

h′ Λh′Vh′ is also centered Gaussian,

with variance

σ2N−1
n,h′G−1

h′ Λh′Xh′Λh′G−1
h′ = σ2N−1

n,h′Λ
−1
h′ X̃−1

h′ Xh′X̃−1
h′ Λ−1

h′ .

The variable 〈G−1
h′ Vh′ , e1〉 is then conditionally on Xn centered Gaussian with vari-

ance

v2
h′ , σ2N−1

n,h′〈e1Λ−1
h′ X̃−1

h′ Xh′X̃−1
h′ Λ−1

h′ , e1〉 6 σ2N−1
n,h′‖Λ−1

h′ ‖2‖X̃−1
h′ ‖2‖Xh′‖,

and since clearly ‖Xh′‖ 6 κ+1, ‖Λ−1
h′ ‖ 6 1 and ‖X̃−1

h′ ‖ = λ−1(X̃h′) 6 N
1/2
n,h′ we have

v2
h′ 6 σ2(κ+ 1) and ‖G−1

h′ ‖ 6 ‖Λ−1
h′ ‖‖X̃−1

h′ ‖‖Λ−1
h′ ‖ 6 N

1/2
n,h′. Finally we have

|f̂h′(x0)| 6 |〈G−1
h′ Bh′ , e1〉| + |〈G−1

h′ Vh′ , e1〉|
6 ‖G−1

h′ ‖(‖Bh′‖ + σ
√
κ+ 1|γh′ |)

6
√
κ+ 1N

1/2
n,h′(‖Bh′‖∞ + σ|γh′ |)

6
√
κ+ 1(α ∨ 1)N

1/2
n,h (1 + σ|γh′ |),

where γh′ is, conditionally on Xn, centered Gaussian with variance v2
h′ 6 1. The

lemma follows by integrating with respect to P
n
f,µ(·|Xn). �
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Proof of theorem 1. First, we work on the event {Ĥn < H∗n,ω}. By defini-

tion of Ĥn we have {Ĥn < H∗n,ω} ⊂ Ac
H∗

n,ω
. Uniformly for f ∈ U(α) we have using

lemmas 2 and 4:

E
n
f,µ

{
R−p

n,ω|f̂n(x0) − f(x0)|p1 bHn<H∗
n,ω

|Xn

}

6 (2p ∨ 1)R−p
n,ω

(√
E n

f,µ{|f̂ bHn
(x0)|2p|Xn} + |f(x0)|p

)√
Pn

f,µ{Ac
H∗

n,ω
|Xn}

6 (2p ∨ 1)σ−p(α ∨ 1)p(
√
Cσ,2p,κ + 1)

√
κ+ 1(log n)−p/2 = on(1).

Now we work on the event {H∗n,ω 6 Ĥn}. By definition of Ĥn we have

{H∗n,ω 6 Ĥn} ⊂ A
H∗

n,ω , bHn
,

and using lemma 3 we get on ΩH∗
n,ω

:

|f̂ bHn
(x0) − f̂H∗

n,ω
(x0)| 6 Cp,κ,a‖G−1

H∗
n,ω

‖Rn,ω. (7.4)

Since s 6 κ + 1 we have k = ⌊s⌋ 6 κ and ωf,κ(x0, h) 6 ωf,k(x0, h). In view of

lemma 1 and since f ∈ FH∗
n,ω

(x0, ω) one has on ΩH∗
n,ω

:

|f̂H∗
n,ω

(x0) − f(x0)| 6 ‖G−1
H∗

n,ω
‖
√
κ+ 1

(
ω(H∗n,ω) + σN

−1/2
n,H∗

n,ω
|γH∗

n,ω
|
)
,

where γH∗
n,ω

is, conditionally on Xn, centered Gaussian with E
n
f,µ{γ2

H∗
n,ω

|Xn} 6 1.

When H∗n,ω < Hn,ω we have ω(H∗n,ω) 6 σ
√
N−1

n,H∗
n,ω

log n. When H∗n,ω = Hn,ω we

proceed as in the proof of lemmas 2 and 3 to prove that

ω(H∗n,ω) 6 σ
√

(1 + a)N−1
n,H∗

n,ω
log n,

in both cases H = Harith
a or H = Hgeom

a . Then

|f̂H∗
n,ω

(x0) − f(x0)| 6 Rn,ω‖G−1
H∗

n,ω
‖
√
κ+ 1

(√
1 + a+ |γH∗

n,ω
|
)
. (7.5)

Finally, (7.4) and (7.5) together entail:

R−1
n,ω|f̂n(x0) − f(x0)|1H∗

n,ω6 bHn,ω

6 ‖G−1
H∗

n,ω
‖(Cp,κ,a +

√
κ+ 1(

√
1 + a+ |γH∗

n,ω
|)),

and the result follows by integrating with respect to P
n
f,µ(·|Xn). �

7.2. Preparatory results and proof of theorem 2. Let us denote by P
n
µ

the joint probability of the variables (Xi)i=1,...,n. We define Fν(h) ,
∫ h
0 ν(t)dt.

Lemma 5. If µ ∈ R(x0, β) one has for any ε, h > 0:

∀ε > 0, P
n
µ

{∣∣∣ Nn,h

2nFν(h)
− 1

∣∣∣ > ε
}

6 2 exp
(
− ε2

1 + ε/3
nFν(h)

)
.

Proof. It suffices to use Bernstein inequality to the sum of independent random

variables Zi = 1|Xi−x0|6h − P
n
µ{|X1 − x0| 6 h} for i = 1, . . . , n. �
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Lemma 6. If µ ∈ R(x0, β) for β > −1, ω ∈ RV(s) for s > 0 and (hn,ω) is

defined by (3.6) then rn,ω = ω(hn,ω) satisfies

rn,ω ∼ cs,βσ
2s/(1+2s+β)(log n/n)s/(1+2s+β)ℓω,ν(log n/n) as n→ +∞, (7.6)

where ℓω,ν is slowly varying and cs,β = 2s/(1+2s+β). When ω(h) = rhs (Hölder

regularity) for r > 0 we have more precisely :

rn,ω ∼ cs,βσ
2s/(1+2s+β)r(β+1)/(1+2s+β)(log n/n)s/(1+2s+β)ℓs,ν(log n/n), (7.7)

where ℓs,ν is again slowly varying.

Proof. Let us defineG(h) = ω2(h)Fν(h). Since β > −1 we have Fν ∈ RV(β+1)

(see section 8) and G ∈ RV(1+2s+β). The function G is continuous and such that

limh→0+ G(h) = 0 in view of (8.2), since 1 + 2s + β > 0. Then for n large enough

hn is given by hn = G←(σ2 log n/2n) where G←(h) , inf{y > 0|G(y) > h} is the

generalised inverse of G. Since G← ∈ RV(1/(1 + 2s + β)) (see section 8) we have

ω ◦G← ∈ RV(s/(1 + 2s+ β)) and we can write ω ◦G← = hs/(1+2s+β)ℓω,ν(h) where

ℓω,ν is slowly varying. Thus

rn = ω ◦G←
(
σ2 log n

2n

)

= cs,βσ
2s/(1+2s+β)

( log n

n

)s/(1+2s+β)
ℓω,ν

(σ2 log n

2n

)

∼ cs,βσ
2s/(1+2s+β)

( log n

n

)s/(1+2s+β)
ℓω,ν

( log n

n

)
as n→ +∞,

since ℓω,ν is slowly varying. When ω(h) = rhs we can write more precisely hn =

G←
(σ2 log n

2r2n

)
where G(h) = h2sFν(h), so (7.6) and (7.7) follow. �

Let us introduce the following notations: if α ∈ N and h > 0 we define

Nn,h,α ,
∑

|Xi−x0|6h

(Xi − x0

h

)α
.

Note that Nn,h,0 = Nn,h. For ε > 0, we define the event:

Dn,h,α,ε ,
{∣∣∣ Nn,h,α

nFν(h)
− Cα,β

∣∣∣ 6 ε
}
,

where Cα,β is given in section 3.3.

Lemma 7. For any α ∈ N, ε > 0 and if µ ∈ R(x0, β) we have for any positive

sequence (γn) going to 0 and when n is large enough:

P
n
µ

{
Dc

n,γn,α,ε

}
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
. (7.8)
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Proof. Let us defineQi,n,α ,
(

Xi−x0
γn

)α
1|Xi−x0|6γn

, Zi,n,α , Qi,n,α−E
n
µ{Qi,n,α}.

Since µ ∈ R(x0, β), we have for n large enough that [x0 − γn, x0 + γn] ⊂ W and

i ∈ {1, . . . , n}:

1

Fν(γn)
E

n
µ{Qi,n,α} = (1 + (−1)α)

γβ+1
n ℓν(γn)∫ γn

0 tβℓν(t)dt

∫ γn

0 tα+βℓν(t)dt

γα+β+1
n ℓν(γn)

,

where ℓν(h) = h−βν(h) is slowly varying (see section 8) and in view of (8.3) we have

lim
n→+∞

1

Fν(γn)
E

n
µ{Qi,n,α} = Cα,β.

Then for n large enough,

{∣∣ Nn,γn,α

nFν(γn)
− Cα,β

∣∣ > ε
}
⊂

{∣∣∣ 1

nFν(γn)

n∑

i=1

Zi,n,α

∣∣∣ > ε/2

}
. (7.9)

We have E
n
µ{Zi,n,α} = 0, |Zi,n,α| 6 2. Since

b2n,α ,

n∑

i=1

E
n
µ{Z2

i,n,α} 6 nE
n
µ{Q2

i,n,α} 6 2nFν(γn),

and the Zi,n,α are independent we can apply Bernstein inequality. If τn , ε
2nFν(γn),

(7.9) and Bernstein inequality entail:

P
n
µ

{
Dc

n,γn,α,ε

}
6 2 exp

( −τ2
n

2(b2n,α + 2τn/3)

)
6 2 exp

(
− ε2

8(2 + ε/3)
nFν(γn)

)
. �

Let us introduce for ε > 0 the event

Cn,ε , {(1 − ε)hn,ω < Hn,ω 6 (1 + ε)hn,ω},

where hn,ω is given by (3.6).

Lemma 8. If ω ∈ RV(s) for s > 0, then for any 0 < ε2 6 1/2 there exists

0 < ε3 6 ε2 such that for n large enough

Dn,(1−ε2)hn,ω ,0,ε3
∩ Dn,(1+ε2)hn,ω ,0,ε3

⊂ Cn,ε2.

Proof. By the definition (3.3) of Hn,ω we have

{Hn,ω 6 (1 + ε2)hn,ω} = {Nn,(1+ε2)hn,ω
> σ2ω−2((1 + ε2)hn,ω) log n}.

It is clear that ε3 , 1 − (1 − ε22)
−2(1 + ε2)

−2s ∧ ε2 > 0 for ε2 small enough. We

recall that ℓω stands for the slow term of ω (see definition 3). Since (8.1) holds

uniformly over each compact set in (0,+∞) we have when n is large enough that

for any y ∈ [12 ,
3
2 ]:

(1 − ε22)ℓω(hn,ω) 6 ℓω(yhn,ω) 6 (1 + ε22)ℓω(hn,ω), (7.10)
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so (7.10) with y = 1+ ε (ε 6 1/2) entails in view of (3.6) and since Fν is increasing:

2(1 − ε3)nFν((1 + ε2)hn,ω) > (1 − ε22)
−2(1 + ε2)

−2sσ2ω−2(hn,ω) log n

= σ2
(
(1 + ε2)hn,ω

)−2s
(1 − ε22)

−2ℓ−2
ω (hn,ω) log n

> σ2ω−2((1 + ε2)hn,ω) log n.

Thus

{Nn,(1+ε2)hn,ω
> 2(1 − ε3)nFν((1 + ε2)hn,ω)} ⊂ {Hn,ω 6 (1 + ε2)hn,ω},

and similarly on the other side we have for n large enough

{Nn,(1−ε2)hn,ω
6 2(1 + ε3)nFν((1 − ε2)hn,ω)} ⊂ {(1 − ε2)hn,ω < Hn,ω},

thus the lemma. �

Let us denote Gn , GHn,ω and introduce the events

An,ε ,
{
|λ(Gn) − λκ,β| 6 ε

}
,

for ε > 0 and for α ∈ N

Bn,α,ε ,
{∣∣∣ 1

nFν(hn)

∑

|Xi−x0|6Hn

(Xi − x0

hn

)α
− Cα,β

∣∣∣ 6 ε
}
.

Lemma 9. If ω ∈ RV(s) for s > 0 and µ ∈ R(x0, β) for β > −1 we can find for

any 0 < ε 6 1
2 an event An,ε ∈ Xn such that for n large enough

An,ε ⊂ An,ε ∩ Bn,0,ε ∩ Cn,ε, (7.11)

and

P
n
µ{Ac

n,ε} 6 4(κ+ 2) exp
(
− cβ,σ,εr

−2
n

)
. (7.12)

Proof. Using the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical ma-

trix M and since Gn and G are symmetrical we get

2κ⋂

α=0

{∣∣(Gn)j,l − (G)j,l
∣∣ 6

ε

(1 + κ)2

}
⊂ An,ε.

Since |(G)j,l| 6 1 we can find easily 0 < ε1 6 ε such that for any 0 6 j, l 6 κ

Bn,j+l,ε1 ∩ Bn,2j,ε1 ∩ Bn,2l,ε1 ⊂
{∣∣(Gn)j,l − (G)j,l

∣∣ 6
ε

(1 + κ)2

}
,

and then
2κ⋂

α=0

Bn,α,ε1 ⊂ An,ε.

We define ε2 , 2κ

5×3κ ε1 and ε3 such that (2+ε3)(1+ε3)β+2

2−ε3
= 1 + ε2. Since h 7→ Nn,h is

increasing we have

Cn,ε3 ⊂ {Nn,(1−ε3)hn
6 Nn,Hn 6 Nn,(1+ε3)hn

},
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and using lemma 8 we can find ε4 6 ε3 such that

Dn,(1−ε3)hn,0,ε4
∩ Dn,(1+ε3)hn,0,ε4

⊂ Cn,ε3.

In view of (8.1) and since ℓν(h) , Fν(h)h−(β+1) is slowly varying we have for n large

enough and any 0 < ε3 6 1/2

ℓν((1 + ε3)hn) 6 (1 + ε3)ℓν(hn) and ℓν((1 − ε3)hn) > (1 − ε3)ℓν(hn), (7.13)

thus

Dn,(1−ε3)hn,0,ε4
∩ Dn,(1+ε3)hn,0,ε4

∩ Dn,hn,0,ε3 ⊂ En,ε2 ,
{∣∣∣Nn,Hn

Nn,hn

− 1
∣∣∣ 6 ε2

}
,

and on Dn,(1−ε3)hn,0,ε4
∩ Dn,(1+ε3)hn,0,ε4

∩ Dn,hn,0,ε3 we have

1

nFν(hn)

∣∣∣
∑

|Xi−x0|6Hn

(Xi − x0

hn

)α
−Nn,hn,α

∣∣∣

6
(Hn ∨ hn

hn

)α Nn,hn

nFν(hn)

∣∣∣Nn,Hn

Nn,hn

− 1
∣∣∣

6 (1 + ε3)
α(2 + ε3)ε2 6 ε1/2,

since ε3 6 1/2. Then we have since ε4 6 ε3 6 ε2 6 ε1
2

Dn,(1−ε3)hn,0,ε4
∩ Dn,(1+ε3)hn,0,ε4

∩ Dn,hn,0,ε4 ∩ Dn,hn,α,ε4 ⊂ Bn,α,ε1,

and finally

An,ε , Dn,(1−ε3)hn,0,ε4
∩ Dn,(1+ε3)hn,0,ε4

∩ Dn,hn,0,ε4 ∩
2κ⋂

α=0

Dn,hn,α,ε4

⊂ An,ε ∩ Bn,0,ε ∩ Cn,ε,

thus (7.11). Using lemma 7 we obtain easily in view of (7.13) and (3.6) for n large

enough

P
n
µ{Ac

n,ε} 6 4(κ+ 2) exp
( −ε24

4(2 + ε4/3)
2−(β+2)σ2r−2

n log n
)
,

thus (7.12) and the lemma follows. �

Proof of theorem 2. Since H = Harith
1 we have Hn,ω = H∗n,ω and λn,ω =

λ(GHn,ω ). We can assume without generality loss that ε , ̺ − 1 6 1
2 ∧ λκ,β. We

consider the event An,ε from lemma 9. Clearly, we have for n large enough An,ε ⊂
ΩHn,ω and F̺hn,ω(x0, ω) ⊂ FHn,ω (x0, ω). In view of (7.11) and theorem 1 we have

uniformly for f ∈ Σ:

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1An,ε}

6 (1 − ε)−p/2
E

n
f,µ{R−p

n |f̂n(x0) − f(x0)|p1ΩHn
}

6 (1 − ε)−p/2c1(λκ,β − ε)−p(1 + on(1)).
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Now we work on the complement Ac
n,ε. Using lemma 4 and equation (7.12) we get

since f ∈ U(α) and Nn,h 6 n:

E
n
f,µ{r−p

n |f̂n(x0) − f(x0)|p1Ac
n,ε

}

6 (2p ∨ 1)r−p
n

(√
E n

f,µ{|f̂n(x0)|2p} + αp
)√

Pn
µ{Ac

n,ε}

6 (2p ∨ 1)(α ∨ 1)p(
√
Cσ,2p,κ + 1)np/2r−p

n

√
Pn

µ{Ac
n,ε} = on(1),

thus we have proved (3.8) and (3.9) follows from lemma 6. �

7.3. Computation of the example.

Lemma 10. Let a ∈ R and b > 0. If G(h) = hb(log(1/h))a, then we have

G←(h) ∼ ba/bh1/b(log(1/h))−a/b as h→ 0+.

The proof of this lemma can be found in chapter 1 (see page 47). Using this

lemma, we obtain that an equivalent of hn,ω (see (3.6)) is

(1 + 2s+ β)(α+2γ)/(1+2s+β)
(σ
r

)2/(1+2s+β)(
2n(log n)α+2γ−1

)−1/(1+2s+β)
,

and since ω(h) = rhs(log(1/h))γ we find that an equivalent of rn,ω (up to a constant

depending on s, β, γ, α) is (3.10).

7.4. Proof of the lower bound. The proof of theorem 3 is similar to that of

theorem 3 in Brown and Low (1996). It is based on the next theorem which can be

found in Cai et al. (2004). This result is a general constrained risk inequality and is

useful for several statistical problems, for instance superefficiency, adaptation and

so on.

Let p > 1 and q be such that 1
p + 1

q = 1 and X be a real random variable with

distribution Pθ and density fθ. The parameter θ can take two values θ1 or θ2. We

want to estimate θ based on X. For any estimator δ based on X we define its risk

by

Rp(δ, θ) , Eθ{|δ(X) − θ|p}.

We define s(x) = fθ2(x)/fθ1(x) and ∆ = |θ2 − θ1|. Let

Iq = Iq(θ1, θ2) ,
(
Eθ1{sq(X)}

)1/q
.

Theorem 4 (Cai, Low and Zhao (2004)). If δ is such that Rp(δ, θ1) 6 εp and if

∆ > εIq, we have

Rp(δ, θ2) > (∆ − εIq)
p > ∆p

(
1 − pεIq

∆

)
.
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Proof.

Rp(δ, θ2) = Eθ2|δ(X) − θ2|p > |Eθ2δ(X) − θ2|p

>
(
|θ2 − θ1| − |Eθ2δ(X) − θ1|

)p
,

and

|Eθ2δ(X) − θ1| 6
(
Eθ1|δ(X) − θ1|p

)1/p(
Eθ1s(X)q

)1/q
6 εIq,

thus Rp(δ, θ2) > (∆−εIq)p and the result follows, since (1−x)p > 1−px, if 0 6 x 6 1

and p > 1. �

Proof of theorem 3. Since lim supn ψ
−p
n nγp

Ef0,µ{|f̂n(x0) − f0(x0)|p} = C <

∞ we have for n > N

Ef0,µ{|f̂n(x0) − f0(x0)|p} 6 2Cψp
nn
−γp.

Let g be k times differentiable with support in [−1, 1], g(0) > 0 and such that for

any |x| 6 δ, |g(k)(x) − g(k)(0)| 6 k!|x|s−k. Such a function clearly exists. We define

f1(x) , f0(x) + (r − r′)ρs
ng

(x− x0

ρn

)
,

where ρn is the smallest solution to

rhs = σ

√
b log n

2nFν(h)
,

where b = 2g−2
∞ (p − 1)γ and g∞ , supx |g(x)|. We clearly have f1 ∈ Fδ(x0, ω). Let

P
n
0 ,P

n
1 be the joint laws of the observations (1.1) when respectively f = f0 or f = f1.

A sufficient statistic for {Pn
0 ,P

n
1} is given by Tn , log

dP
n
0

dPn
1

, and

Tn ∼




N

(
− vn

2
, vn

)
under P

n
0 ,

N
(vn

2
, vn

)
under P

n
1 ,

where N(m,σ2) is the Gaussian law with mean m and variance σ2, and

vn =
n

σ2
‖f0 − f1‖2

L2(µ) =
n

σ2

∫
(f0(x) − f1(x))

2µ(x)dx 6 2(p − 1)γ log n.

An easy computation gives Iq = exp(vn(q−1)
2 ) 6 nγ thus taking in theorem 4 δ =

f̂n(x0), θ2 = f1(x0), θ1 = f0(x0) and ε = ψn entails

Rp(δn, θ2) >
(
(r − r′)ρs

ng(0) − 2Cψnn
−γnγ

)p
> (r − r′)pρsp

n g
p(0)(1 − on(1)),

since limn ψn/ρ
s
n → 0, and the theorem follows. �
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8. Some facts on regular variation

We recall here briefly some results about regularly varying functions. The results

stated in this section can be found in Senata (1976), Geluk and de Haan (1987) and

Bingham et al. (1989).

Let ℓ be in all the following a slowly varying function. An important result is

that the property

lim
h→0+

ℓ(yh)/ℓ(h) = 1 (8.1)

actually holds uniformly for y in any compact set of (0,+∞). If R ∈ RV(α1) and

R ∈ RV(α2) we have

• R1 ×R2 ∈ RV(α1 + α2),

• R1 ◦R2 ∈ RV(α1 × α2).

If R ∈ RV(γ) with γ ∈ R − {0} then as h→ 0+ we have

R(h) →





0 if γ > 0,

+∞ if γ < 0.
(8.2)

If γ > −1, one has:
∫ h

0
tγℓ(t)dt ∼ (1 + γ)−1h1+γℓ(h) as h→ 0+, (8.3)

and then h 7→
∫ h
0 t

γℓ(t)dt is regularly varying of index 1 + γ. This result is known

as the Karamata theorem. If R is continuous we define the generalised inverse as

R←(y) = inf{h > 0 such that R(h) > y}.

If R ∈ RV(γ) for some γ > 0 then there exists R− ∈ RV(1/γ) such that

R(R−(h)) ∼ R−(R(h)) ∼ h as h→ 0+, (8.4)

and R− is unique up to an asymptotic equivalence. Moreover, one version of R− is

R←.
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CHAPTER 3

Sharp estimation in sup norm with random design

The aim of this chapter is to recover the regression function with sup norm loss.

We construct an asymptotically sharp estimator which converges with the spatially

dependent rate

rn,µ(x) = P
(
log n/(nµ(x))

)s/(2s+1)
,

where µ is the design density, s the regression smoothness, n the sample size and P

is a constant expressed in terms of a solution to a problem of optimal recovery as

in Donoho (1994). We prove this result under the assumption that µ is positive and

continuous. This estimator combines kernel and local polynomial methods, where

the kernel is given by optimal recovery, which allows to prove the result up to the

constants for any s > 0. Moreover, the estimator does not depend on µ. We prove

that rn,µ(x) is optimal in a sense which is stronger than the classical minimax lower

bound. Then, an inhomogeneous confidence band is proposed. This band has a non

constant length which depends on the local amount of data.

1. Introduction & main results

1.1. The model. Suppose we observe (Xi, Yi), 1 6 i 6 n, from

Yi = f(Xi) + ξi, (1.1)

where ξi are i.i.d. centered Gaussian with variance σ2 and independent of Xi,

with Xi i.i.d. with density µ on [0, 1], which is bounded away from 0. We want to

recover f . In this model, when µ is not the uniform law, we say that the information

is spatially inhomogeneous.

1.2. Methodology. There are several ways to assess the quality of an estima-

tion procedure. A first approach is local: we focus on recovering f at a fixed point

x0 ∈ [0, 1]. Over a function class Σ, the minimax risk is given by

Rn(Σ, x0) = inf
bfn

sup
f∈Σ

En
f

{
|f̂n(x0) − f(x0)|

}
,

where the infimum is taken among all estimators. We say that ρn(x0) > 0 is the

minimax convergence rate at x0 if

0 < lim inf
n

Rn(Σ, x0)

ρn(x0)
6 lim sup

n

Rn(Σ, x0)

ρn(x0)
< +∞.

85
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In this chapter, we are interested in recovering f globally. We consider the loss with

sup norm defined by ‖g‖∞ = supx∈[0,1] |g(x)|. In this case, the minimax risk is

Rn(Σ) = inf
bfn

sup
f∈Σ

En
f

{
‖f̂n − f‖∞

}
, (1.2)

and we say that ψn is the minimax convergence rate if

0 < lim inf
n

Rn(Σ)

ψn
6 lim sup

n

Rn(Σ)

ψn
< +∞.

An advantage of this norm is that it is exacting: it forces an estimator to behave

well at every point simultaneously. In the regression model (1.1) with Σ a Hölder

ball with smoothness s > 0, we have when µ is positive and bounded that ψn ≍
(log n/n)s/(2s+1) (see Stone (1982)), where an ≍ bn means 0 < lim infn an/bn 6

lim supn an/bn < +∞.

However, when µ is positive and bounded, ψn is not sensitive to the variations

in the amount of data. An improvement is to consider instead of (1.2) the spatially

dependent risk

sup
f∈Σ

En
f

{
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

}
,

where f̂n is some estimator and rn(·) > 0 a family of spatially dependent normal-

isation factors. If this quantity is bounded as n goes to infinity, we say that rn(·)
is an upper bound over Σ. If we look for such upper bounds, we clearly find that

rn(x) ≍ ψn for any x, thus we must sharp this upper bound up to constants. Here,

we consider indeed the latter approach in the asymptotic minimax context. In this

chapter, we develop the consequences of inhomogeneous data within this framework.

1.3. Upper and lower bounds. If s, L > 0, we define the Hölder ball Σ(s, L),

which is the set of all the functions f : [0, 1] → R such that for any x, y ∈ [0, 1],

|f (k)(x) − f (k)(y)| 6 L|x− y|s−k,

where k = ⌊s⌋ is the largest integer k < s. If Q > 0, we denote by ΣQ(s, L) the set

of functions f ∈ Σ(s, L) such that ‖f‖∞ 6 Q, and we denote simply Σ = ΣQ(s, L).

All along this study, we suppose:

Assumption D. For some 0 < ν 6 1 and ̺, q > 0, we have

µ ∈ Σ(ν, ̺) and µ(x) > q, for all x ∈ [0, 1].

In the following, a loss function w(·) is any non negative and nondecreasing

function such that w(x) 6 A(1 + |x|b) for some A, b > 0 (an example is w(·) = | · |p
for p > 0). Let us consider

rn,µ(x) =
( log n

nµ(x)

)s/(2s+1)
. (1.3)
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We denote by E
n
f,µ the integration with respect to the joint law P

n
f,µ of the observa-

tions (Xi, Yi), 1 6 i 6 n. Our first result shows that rn,µ(·) is, up to the constants,

an upper bound over Σ.

Theorem 1 (Upper bound). Under assumption D, if f̂n is the estimator defined

in section 3, we have for any s, L > 0,

lim sup
n

sup
f∈Σ

E
n
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x) − f(x)|

)}
6 w(P ), (1.4)

where

P = σ2s/(2s+1)L1/(2s+1) ϕs(0)
( 2

2s+ 1

)s/(2s+1)
(1.5)

and ϕs is defined as the solution of the optimisation problem

ϕs , argmax
ϕ∈Σ(s,1;R),
‖ϕ‖261

ϕ(0), (1.6)

where Σ(s, L; R) is the extension of Σ(s, L) to the whole real line.

In the same fashion as in Donoho (1994), the constant P is defined via the

solution of an optimisation problem which is connected to optimal recovery. For

further details, see in sections 2 and 6. The next theorem shows that rn,µ(·) is

indeed optimal in an appropriate sense. In what follows, the notation |I| stands for

the length of an interval I.

Theorem 2 (Lower bound). Under assumption D, if In ⊂ [0, 1] is any interval

such that for some ε ∈ (0, 1),

|In|nε/(2s+1) → +∞ as n→ +∞, (1.7)

we have

lim inf
n

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x) − f(x)|
)}

> w
(
(1 − ε)P

)
,

where P is given by (1.5) and the infimum is taken among all estimators. A conse-

quence is that if In is such that (1.7) holds for any ε ∈ (0, 1), we have

lim inf
n

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup
x∈In

rn,µ(x)−1|f̂n(x) − f(x)|
)}

> w(P ). (1.8)

This result is discussed in details in section 2.4. Now, we construct a confidence

band which is adapted to inhomogeneous data. Indeed, its length varies depending

on the local amount of data.
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1.4. An inhomogeneous confidence band. We define the empirical design

sample distribution

µ̄n =
1

n

n∑

i=1

δXi ,

where δ is the Dirac mass, and for h > 0, x ∈ [0, 1], we consider the intervals

I(x, h) =





[x, x+ h] when 0 6 x 6 1/2,

[x− h, x] when 1/2 < x 6 1.
(1.9)

The choice of non symmetrical intervals allows to skip boundaries effects. Then, we

define the ”bandwidth” at x by

Hn(x) , argmin
h∈[0,1]

{
hs >

( log n

nµ̄n

(
I(x, h)

)
)1/2

}
, (1.10)

which makes the balance between the bias and the variance of a certain kernel

estimator (more in section 3 below). We consider the sequence of points

xj = j∆n, ∆n = (log n)−2s/(2s+1)n−1/(2s+1), (1.11)

for j ∈ Jn , {0, . . . , [∆−1
n ]} where [a] is the integer part of a with xMn = 1, Mn =

|Jn| (the notation |A| stands also for the size of a finite set A). If x ∈ [xj , xj+1), we

define

Rn(x) = Hn(xj)
s,

and for any x ∈ [0, 1], β > 0, we consider the band

Cn,β(x) =
[
f̂n(x) − (1 + β)P Rn(x), f̂n(x) + (1 + β)P Rn(x)

]
, (1.12)

where P is defined by (1.5). The next proposition provides a control over the

coverage probability of this band, uniformly over [0, 1].

Proposition 1. Given a confidence level α ∈ (0, 1), Cn,β with

β = β(n, α) =
( log(1/α)

Dc(log n)2s/(2s+1)

)1/2

(where Dc is some positive constant), is under assumption D, a confidence band of

asympotic level 1 − α, namely :

inf
f∈Σ

P
n
f,µ

{
f(x) ∈ Cn,β(x), for all x ∈ [0, 1]

}
> 1 − α, (1.13)

for n large enough. Moreover, we have for any x ∈ [0, 1],

sup
f∈Σ

E
n
f,µ{|Cn,β(x)|}/rn,µ(x) → 2P as n→ +∞. (1.14)
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In figures 1 and 2, we give a numerical illustration of this confidence band. We

consider the function f(x) = 0.3(1 − |x − 0.5|/0.3)+, where a+ = max(a, 0). The

first dataset is simulated with an uniform design and the second dataset with design

density µ(x) = 0.05 + 11.4|x − 0.5|2. In this example s = L = 1, the sample size is

n = 500 and the root-signal-to-noise ratio is 7.
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Figure 1. Confidence band with homogeneous data.
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Figure 2. Confidence band with inhomogeneous data.

When the data is homogeneous (uniform design), the length of the confidence

band is almost constant, see figure 1. In the non-uniform case, the band is confined

at the boundaries of [0, 1] and more spaced at the middle, see figure 2.

1.5. Outline. The remainder of the chapter is organised as follows. In section 2

we discuss our results in details and compare them with former results. In section 3,

we construct the estimator used in theorem 1. The proofs are delayed until sections 4

and 5. In section 6, we recall some well known facts on optimal recovery, which are

useful for the construction of our estimator and for the proofs.
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2. Discussion

2.1. Motivation. In most cases, the models considered in curve estimation do

not allow situations where the data is inhomogeneous, in so far as the amount of data

is implicitly assumed constant over space (or time). However, an increasing literature

works in models where the data can be inhomogeneously distributed. Recent results

deal with the estimation of the regression function when the observation points are

not equispaced or random, see for instance Antoniadis et al. (1997), Brown and

Cai (1998), Wong and Zheng (2002), Maxim (2003), among others. The estimators

proposed in these papers present good minimax properties, but the results are always

stated in a way in which the following basic principle does not appear: an estimator

shall behave better at a point where there is much data than where there is little

data. For instance, upper bounds are usually stated with the minimax rate, which

is not sensitive to the variations in the local amount of data nor to the information

distribution in the considered model.

At this stage, it is also natural to look for confidence bands when the data is

inhomogeneous, and especially distributed with an unknown density. Following the

above principle, a striking question is that of the construction of a confidence band

with a length which depends on the local amount of data: such a band should be

more confined where there is much data than where there is little data. The aim of

this chapter is to develop this new approach.

2.2. Literature. When the design is equidistant, that is Xi = i/n, we know

from Korostelev (1993) the exact asymptotic value of the minimax risk for sup norm

error loss. If

ψn =
( log n

n

)s/(2s+1)
,

we have for any 0 < s 6 1 and Σ = Σ(s, L),

lim
n→+∞

inf
bfn

sup
f∈Σ

Ef

{
w(ψ−1

n ‖f̂n − f‖∞)
}

= w(C),

where

C = σ2s/(2s+1)L1/(2s+1)
(s+ 1

2s2

)s/(2s+1)
. (2.1)

This result was the first of its kind for sup norm error loss. The exact asymptotic

value of the minimax risk was only known for square integrated norm error loss,

see Pinsker (1980).

In the white noise model

dY n
t = f(t)dt+ n−1/2dWt, t ∈ [0, 1], (2.2)

where W is a standard Brownian motion, Donoho (1994) extends the result by Ko-

rostelev (1993) to any s > 1. In this paper, the author makes a link between
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statistical sup norm estimation and the theory of optimal recovery (see section 6).

It is shown for any s > 0 and Σ = Σ(s, L) that the minimax risk satisfies

lim
n→+∞

inf
bfn

sup
f∈Σ

Ef

{
ψ−1

n ‖f̂n − f‖∞
}

= w(P1), (2.3)

where P1 is given by (1.5) with σ = 1. When s ∈ (0, 1], we have P = C, see for

instance in Leonov (1997).

Since the results by Korostelev and Donoho, many other authors worked on

the problem of sharp estimation (or testing) in sup norm. On testing, see Lepski

and Tsybakov (2000), see Korostelev and Nussbaum (1999) for density estimation

and Bertin (2004a) for white noise in an anisotropic setting.

While most papers on sharp estimation work in models with homogeneous infor-

mation, the paper by Bertin (2004c) works in the model of regression with random

design (1.1). When µ satisfies assumption D and Σ = ΣQ(s, L) for 0 < s 6 1, it is

shown that

lim
n→+∞

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

= w(C), (2.4)

where C is given by (2.1) and

vn,µ =
( log n

n infx µ(x)

)s/(2s+1)
. (2.5)

Note that the rate vn,µ differs from (and is larger than) ψn when µ is not uniform. A

disappointing fact is that vn,µ depends on µ only via its infimum, which corresponds

to the point in [0, 1] where we have the least information. This rate does not take

into account the regions with more data. It seems natural to wonder if we can

improve this result, namely: can we replace inf µ by µ(x) ? Note that in section 1,

we have answered positively to this question.

In this chapter, we extend the result by Donoho (1994) to the model of regression

with random design and we improve the result by Bertin (2004c) in several ways:

our result holds for any s > 0, we construct an estimator which does not depend

on µ, and when the design is not uniform, our convergence rate rn,µ(·) is better

(smaller) than vn,µ at the order of constants. More importantly, this rate is adapted

to the local amount of information of the model.

2.3. About theorem 1. We can understand the result of theorem 1 heuris-

tically. Following Brown and Low (1996) and Brown et al. (2002) we can find an

”idealised” statistical experiment which is equivalent (in the sense that the LeCam

deficiency goes to 0) to the model (1.1). The model (1.1) is clearly equivalent to

Yi = f(G−1
µ (Ui)) + ξi, 1 6 i 6 n,
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with independent and uniform Ui where Gµ(x) =
∫ x
0 µ(t)dt. Under appropriate

conditions on f and µ, we know from Brown et al. (2002) that this model is equivalent

to

dZn
t = f(G−1

µ (t))dt +
σ√
n
dWt, t ∈ [0, 1],

where W is a Brownian motion. Informally, if µ is known we obtain by the time

change t = Gµ(u),

dZ̃n
u = f(u)µ(u)du+ σ

√
µ(u)

n
dW̃u, u ∈ [0, 1],

where Z̃u = ZGµ(u) and W̃ is a Brownian motion. Finally, we obtain that (1.1) is

equivalent to the heteroscedastic white noise model

dY n
u = f(u)du+

σ√
nµ(u)

dBu, u ∈ [0, 1], (2.6)

where B is a Brownian motion. In view of the result by Donoho (1994) (see (2.3))

which is stated in the model (2.2) and comparing the noise levels in the models (2.2)

and (2.6) (with σ = 1) we can explain informally that our rate rn,µ(·) comes from

the former rate ψn where we replace n by nµ(x).

2.4. About theorem 2. From Bertin (2004c), we know when s ∈ (0, 1] that

lim inf
n

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w(v−1

n,µ‖f̂n − f‖∞)
}

> w(P ),

where vn,µ is given by (2.5). An immediate consequence is

lim inf
n

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup

x∈[0,1]
rn,µ(x)−1|f̂n(x) − f(x)|

)}
> w(P ), (2.7)

where it suffices to use rn,µ(x) 6 vn,µ for any x ∈ [0, 1]. This entails that rn,µ(·) is

optimal in the classical minimax sense, but this notion of optimality is weaker than

ours. Indeed, to prove the optimality of rn,µ(·) we need a more ”localised” version

of the lower bound, hence theorem 2.

In theorem 2, if we choose In = [0, 1] we find back (2.7) and if In = [x̄ −
(log n)γ , x̄+(log n)γ ]∩[0, 1] for any γ > 0 and x̄ ∈ [0, 1] such that µ(x̄) 6= infx∈[0,1] µ(x),

then obviously vn,µ does not satisfy (1.8).

2.5. About proposition 1. The confidence band Cn,β(·) is ”design adaptive”,

in the sense that it does not depend on µ, but it depends on the smoothness of f

via the parameters s and L. The construction of adaptive confidence bands is more

involved. We know from Low (1997) that the construction of an adaptive confidence

band without extra assumption is not feasible. However, if extra assumptions on

the smoothness of f are supposed, it is possible to construct such confidence bands,

see Picard and Tribouley (2000), Hoffmann and Lepski (2002) and Cai and Low
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(2004a,b). Here, we only focus on the inhomogeneous aspect of the confidence

band. Adaptation with respect to the smoothness is beyond the scope of this study,

and we would encounter the same limitations.

2.6. About assumption D. In assumption D, µ is supposed to be bounded

from below, and from above since it is continuous over [0, 1]. When µ is vanishing or

exploding at a fixed point, we know from chapter 1 that a wide range of pointwise

minimax rates can be achieved, depending on the behaviour of µ at this point. In this

case, we expect the optimal space dependent convergence rate (whenever it exists)

to be different from the classical minimax rate ψn not only up to the constants but

in order, see chapter 4.

3. Construction of an estimator

3.1. Main idea. The estimator f̂n described below is using both kernel and

local polynomial methods. Its construction is divided in two parts: first, at the

discretisation points xj defined by (1.11), we use a Nadaraya-Watson estimator

with a design data driven bandwidth. This part of the estimator is used to attain

the minimax constant. Between the discretisation points, the estimator is defined

by a Taylor expansion where the derivatives estimates are done by local polynomial

estimation.

3.2. The estimator at points xj. We consider the bandwidth Hn(x) defined

by (1.10) and we define

HM
n = max

j∈Jn

Hn(xj),

where xj and Jn are defined in section 1.4. From Leonov (1997, 1999) we know that

the function ϕs defined by (1.6) is even and compactly supported. We denote by

[−Ts, Ts] its support and τn , min(2csTsH
M
n , δn) where δn = (log n)−1 and

cs ,
(σ
L

)2/(2s+1)( 2

2s+ 1

)1/(2s+1)
. (3.1)

As usual with the estimation of a function over an interval, there is a boundary

correction. We decompose the unit interval into three parts [0, 1] = Jn,1∪Jn,2∪Jn,3

where Jn,1 = [0, τn], Jn,2 = [τn, 1 − τn] and Jn,3 = [1 − τn, 1]. We also define

Ja,n = {j|xj ∈ Ja,n} for a ∈ {1, 2, 3}. If ϕs is defined by (1.6), we consider the

kernel

Ks =
ϕs∫
R
ϕs
. (3.2)
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The ”sharp” part of the estimator is defined as follows: at the points xj , we define

f̂n by

f̂n(xj) ,





1

nHn(xj)

n∑

i=1

YiKs

( Xi − xj

csHn(xj)

)

max
[
δn,

1

nHn(xj)

n∑

i=1

Ks

( Xi − xj

csHn(xj)

)] if j ∈ J2,n,

f̄n(xj) if j ∈ J1,n ∪ J3,n.

(3.3)

This estimator is (up to the correction near the boundaries) a Nadaraya-Watson

estimator with the optimal kernel Ks and a bandwidth adjusted to the local amount

of data. The boundary estimator f̄n is defined below.

3.3. Between the points xj – local polynomial estimation. We recall

that k = ⌊s⌋ where s is the smoothness of the unknown signal f . For any interval

I ⊂ [0, 1], we define the inner product

〈f , g〉I =
1

µ̄n(I)

∫

I
fg dµ̄n,

where
∫
I f dµ̄n =

∑
Xi∈I f(Xi)/n. If I = I(x, h) – see (1.9) – for some x ∈ [0, 1] and

h > 0, we define φI,m(y) = (y−x)m and we introduce the matrix XI and vector YI

with entries

(XI)p,q = 〈φI,p , φI,q〉I and (YI)p = 〈Y , φI,p〉I ,

for 0 6 p, q 6 k. Let us define

X̄I = XI +
1√

nµ̄n(I)
Ik+1 1Ωn,I

,

where Ωn,I =
{
λ(XI) 6 1/

√
nµ̄n(I)

}
and λ(M) is the smallest eigenvalue of a

matrix M and Ik+1 is the identity matrix on Rk+1. Note that the correction term

in X̄I entails λ(X̄I) > 1/
√
nµ̄n(I). When µ̄n(I) > 0, the solution θ̂I of the system

X̄Iθ = YI ,

is well defined. If µ̄n(I) = 0, we take θ̂I = 0. Then, for any 1 6 m 6 k, a natural

estimate of f (m)(xj) is

f̃ (m)
n (xj) , m!(θ̂I(xj ,hn))m,

where

hn = (σ/L)2/(2s+1)(log n/n)1/(2s+1),

and the estimator at the boundaries of [0, 1] is given by

f̄n(xj) , (θ̂I(xj ,tn))0,
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where tn = (σ/L)2/(2s+1)n−1/(2s+1). Note that the boundary estimator is a local

polynomial estimator with the pointwise bandwidth of estimation tn. If we define

Γn,I =
{

min
16m6k

‖φI,m‖I >
1√
n

}
, (3.4)

where ‖ · ‖2
I = 〈· , ·〉I , then for x ∈ [xj, xj+1), j ∈ Jn, we take

f̂n(x) , f̂n(xj) +
( k∑

m=1

f̃
(m)
n (xj)

m!
(x− xj)

m
)
1Γn,I(xj ,hn)

. (3.5)

4. Proof of theorem 1 and proposition 1

The proof of theorem 1 needs several preliminary results. In section 4.1 we state

the most important lemmas while section 4.2 is devoted to useful results concerning

local polynomial estimation. We delay the proofs of these lemmas until section 4.4,

since they can be skipped in a first reading. The proofs of theorem 1 and proposi-

tion 1 are given in section 4.3. We define the risk

En,f = sup
x∈[0,1]

rn,µ(x)−1|f̂n(x) − f(x)|,

and the discretised risk E∆
n,f = supj∈Jn

rn,µ(xj)
−1|f̂n(xj) − f(xj)|.

In the following, the notation o(1) stands for a deterministic and positive quan-

tity going to 0 as n → +∞ indepedent of f while O(1) stands for a quantity

bounded by a positive quantity independent of f . If A is non negative, we also

define O(A) = O(1) × A. We denote a ∨ b = max(a, b) and a ∧ b = min(a, b). We

consider the norms ‖g‖∞ = supx∈[0,1] |g(x)|, ‖g‖2 = (
∫ 1
0 g

2(x)dx)1/2, and ‖x‖∞ =

max06m6k |xm|, ‖x‖2 = (
∑

06m6k x
2
m)1/2 when x ∈ R

k+1.

Since µ̄n(I(x, h))/h is close to µ(x) in probability, we have that Hn(x) is close

to

hn,µ(x) ,
( log n

nµ(x)

)1/(2s+1)
.

To avoid overloaded notations, it is convenient to write K instead of Ks and to

introduce for j ∈ Jn,

Hj = Hn(xj), hj = hn,µ(xj), µj = µ(xj), rj = rn,µ(xj),

Ki,j = K
(Xi − xj

cshj

)
, K̄i,j = K

(Xi − xj

csHj

)
, Wi,j =

K̄i,j∑n
i=1 K̄i,j

,

and qj = ncshjµj , q̄j = ncsHjµj where cs is given by (3.1). We denote by Xn the

sigma algebra generated by the observations Xi, 1 6 i 6 n.
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4.1. Preparatory results. We define

An,j ,
{∣∣(

n∑

i=1

K̄i,j

)
/q̄j − 1

∣∣ 6 L1δ
s∧1
n

}
,

where L1 is a positive constant, and

Bn,j ,
{∣∣(

n∑

i=1

Ki,j

)
/qj − 1

∣∣ 6 δn

}
, Cn,j ,

{
|Hj/hj − 1| 6 δn

}
,

En,j ,
{∣∣(

n∑

i=1

K̄2
i,j

)
/qj − ‖K‖2

2

∣∣ 6 L2δ
s∧1
n

}
,

where L2 is a fixed positive constant and

Bn =
⋂

j∈J2,n

(
An,j ∩ Bn,j ∩ En,j

)
∩

⋂

j∈Jn

Cn,j. (4.1)

A control over the probability of this event is given in lemma 7 below. Let us denote

Zn = maxj∈J2,n |Zn,j | where Zn,j = r−1
j

∑n
i=1 ξiWi,j. Informally, the variable Zn

corresponds to the variance term of E∆
n,f . We recall that Mn is equal to the cardinal

of Jn.

Lemma 1 (variance term). For any ε > 0,

sup
f∈ΣQ(s,L)

P
n
f,µ

{
Zn1Bn > (1 + ε)Lcss‖K‖2

}
6 2(log n)2s/(2s+1)n−ε/(2s+1).

Proof. Conditionally on Xn, Zn,j is centered Gaussian with variance

v2
j = σ2r−2

j

n∑

i=1

W 2
ij .

On Bn, we have for any j ∈ J2,n and n large enough

n∑

i=1

W 2
i,j =

∑n
i=1 K̄

2
i,j

(
∑n

i=1 K̄i,j)2
6 (1 + o(1))

‖K‖2
2

qj
= (1 + o(1))

‖K‖2
2r

2
j

cs log n
,

where we used the definition of hn(x), thus v2
j 6 (1 + ε)σ2‖K‖2

2/(cs log n). Using

the standard Gaussian deviation, we obtain

P
n
f,µ{|Zn,j|1Bn > (1 + ε)Lcss‖K‖2}

6 2 exp
(
− (1 + ε)L2c2s+1

s

2σ2
log n

)

= 2exp
(
− (1 + ε)

2s+ 1
log n

)
= 2n−(1+ε)/(2s+1),

and bounding from above the probability of ∪j∈J2,n{|Zn,j |1Bn > (1 + ε)Lcss‖K‖2}
by the sum of the probabilities, and since |J2,n| 6 Mn 6 (log n)2s/(2s+1)n1/(2s+1),

the lemma follows. �
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For any j ∈ Jn,2, we define

bn,f = max
j∈J2,n

|bn,f,j| and Un,f = max
j∈J2,n

|Un,f,j|,

where bn,f,j = E
n
f,µ{Bn,f,j1Bn}, Un,f,j = Bn,f,j − bn,f,j and

Bn,f,j = r−1
j

n∑

i=1

(f(Xi) − f(xj))Wi,j.

The quantities bn,f and Un,f correspond to bias terms of the risk E∆
n,f .

Lemma 2 (first bias term). We have

lim sup
n

sup
f∈Σ(s,L)

bn,f 6 LcssB(s, 1),

where B(s, L) is defined by (6.2).

Lemma 3 (second bias term). There is a constant DU > 0 such that for any

ε > 0,

sup
f∈Σ(s,L)

P
n
f,µ

{
Un,f1Bn > ε

}
6 exp

(
−DU ε(1 ∧ ε)n2s/(2s+1)

)
.

The proofs of these lemmas are delayed until section 4.4.

4.2. Local polynomial estimation. In this section we give results concerning

local polynomial estimation. This well known estimation procedure provides an

efficient method for recovering both a function and its derivatives. The lemma 4

below is one version of the bias variance decomposition of the local polynomial

estimator, which is classical: see Korostelev and Tsybakov (1993), Fan and Gijbels

(1995, 1996), Spokoiny (1998) and Tsybakov (2003), among many others. To a

vector θ ∈ R
k+1 we associate the polynomial

Pθ(y) = θ0 + θ1y + · · · + θky
k.

If θ̂I is the solution of the system X̄Iθ = YI (see section 3.3) for I = I(x, h), we

define f̂I(y) = PbθI
(y − x). If VI,k = Span{φI,m; 0 6 m 6 k}, we note that on Ωn,I ,

f̂I satisfies

〈f̂I , φ〉I = 〈Y , φ〉I , ∀φ ∈ VI,k. (4.2)

By definition, we have f̃
(m)
n (xj) = f̂

(m)
I(xj ,hn)(xj), where f̂

(m)
I is the derivative of order

m of f̂I , and f̄n(xj) = f̂I(xj ,tn)(xj), see section 3.3. We introduce the diagonal

matrix ΛI with entries

(ΛI)m,m = ‖φI,m‖−1
I ,

for 0 6 m 6 k, where ‖ · ‖2
I , 〈· , ·〉I , the symmetrical matrix

GI , ΛIX̄IΛI ,
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where X̄I is introduced in section 3.3 and G the matrix with entries

(G)p,q =
χp+q√
χ2p χ2q

,

for 0 6 p, q 6 k, where χm = (1+(−1)m)/(2(m+1)). It is easy to see that λ(G) > 0

(we recall that λ(M) is the smallest eigenvalue of a matrix M). We define the event

Ωn =
⋂

j∈Jn

Ωn,I(xj ,hn) ∩
⋂

j∈Jn

Ωn,I(xj ,tn),

where Ωn,I is defined in section 3.3 and

Ln =
⋂

j∈Jn

Ln,I(xj ,hn) ∩
⋂

j∈Jn

Ln,I(xj,tn),

where if I = I(x, h) for some x ∈ [0, 1], h > 0,

Ln,I = {|λ(GI ) − λ(G)| 6 δn}.

For 0 6 m 6 2k an interval I ⊂ [0, 1] and δ > 0, we define

D̄n,m,I,δ ,

{∣∣∣ 1

µ̄n(I)|I|m
∫

I
φj,m dµ̄n − χm

∣∣∣ 6 δ

}
,

and

Dn =

2k⋂

m=0

( ⋂

j∈Jn

D̄n,m,I(xj ,hn),δn
∩

⋂

j∈Jn

D̄n,m,I(xj ,tn),δn

)
.

We define

Nn =
⋂

j∈Jn

Nn,I(xj ,hn) ∩
⋂

j∈Jn

Nn,I(xj ,tn),

where

Nn,I(x,h) =
{∣∣∣ µ̄n(I(x, h))

µ(x)h
− 1

∣∣∣ 6 δn

}
.

Finally, we introduce

Cn = Ωn ∩ Ln ∩ Dn ∩ Nn. (4.3)

A control on the probability of this event is given in lemma 7 below. We recall that

Mn is the cardinal of Jn.

Lemma 4. There exists a centered Gaussian vector W ∈ R
(k+1)Mn with

E
n
f,µ{W 2

p } = 1, 0 6 p 6 (k + 1)Mn,

such that on Cn, one has for any 0 6 m 6 k and f ∈ Σ(s, L):

max
j∈Jn

|f̃ (m)
n (xj) − f (m)(xj)| 6 (1 + o(1))CLhs−m

n (1 + (log n)−1/2WM ), (4.4)

where

WM , max
06p6(k+1)Mn

|Wp|,
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and C = Cλ,m,q,k where Cλ,m,q,k = λ−1(G)(k + 1)m!
√

2m+ 1
(
1 ∨ q−1/2

)
. For the

estimator near the boundaries, we have for a = 1 and a = 3:

max
j∈Ja,n

|f̄n(xj) − f(xj)| 6 (1 + o(1))C̄Ltsn(1 +W (a)), (4.5)

where

W (1) = max
06p6(k+1)|J1,n|

|Wp|

W (3) = max
(k+1)(|J1,n|+|J2,n|)+16p6(k+1)Mn

|Wp|,

and C̄ = Cλ,0,q,k.

Lemma 5. For any interval I ⊂ [0, 1] and p > 0 we have

E
n
f,µ

{
|(θ̂I)0|p|Xn

}
= O(np/2).

Moreover, for any 1 6 m 6 k, we have on Γn,I (see section 3.3)

E
n
f,µ

{
|(θ̂I)m|p|Xn

}
= O(np).

The proofs of these lemmas are delayed until section section 4.4. The following

two lemmas are needed for the proof of theorem 1.

Lemma 6. If w(x) 6 A(1 + |x|)b for some A, b > 0, we have

sup
f∈ΣQ(s,L)

E
n
f,µ

{
w2(En,f )

}
= O

(
n2b(1+s/(2s+1))

)
. (4.6)

We define Γn = ∩j∈JnΓn,I(xj ,hn) where Γn,I is defined by (3.4). The probability

P
n
µ stands for the joint law of the X1, . . . ,Xn.

Lemma 7. There exists an event An ∈ Xn such that for n large enough, under

assumption D

P
n
µ{Ac

n} 6 exp(−DAns/(2s+1)), (4.7)

where DA > 0 and

An ⊂ Bn ∩ Cn ∩ Γn, (4.8)

where Bn is defined by (4.1) and Cn is defined by (4.3).

4.3. Proofs of the main results. The next proposition is a deviation inequal-

ity for the discretised risk E∆
n,f . This proposition is of special importance in the proof

of theorem 1 and proposition 1.
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Proposition 2. There is DE > 0 such that for any ε > 0, we have

sup
f∈ΣQ(s,L)

P
n
f,µ{E∆

n,f1An > (1 + ε)P}

6 exp
(
−DE ε(1 ∧ ε)(log n)2s/(2s+1)

)
, (4.9)

for n large enough. Moreover,

sup
f∈ΣQ(s,L)

E
n
f,µ

{
w2(E∆

n,f1An)
}

= O(1). (4.10)

Proof. We decompose the risk into three parts

E∆
n,f = E∆,1

n,f + E∆,2
n,f + E∆,3

n,f , (4.11)

where E∆,a
n,f = supj∈Ja,n

r−1
j |f̂n(xj)− f(xj)|. For a = 1 and a = 3, the quantity E∆,a

n,f

is the risk at the boundaries of [0, 1]. Note that on Bn, we have
∑n

i=1 K̄i,j/(nHj) >

csµj(1 − L1δ
s∧1
n ) > csq(1 − L1δ

s∧1
n ) > δn for n large enough. Hence, since An ⊂ Bn

(see lemma 7) we can decompose on An the middle risk into bias and variance terms

as follows:

E∆,2
n,f 6 bn,f + Un,f + Zn. (4.12)

In view of lemma 2 we have for n large enough bn,f 6 (1 + 2ε)LcssB(s, 1) and using

equation (6.3) we obtain

{E∆,2
n,f 1An > (1 + 2ε)P}

⊂ {Zn1Bn > (1 + ε)Lcss‖K‖2} ∪ {Un,f1Bn > εLcss‖K‖2}.

Then, in view of the lemmas 1 and 3, it is easy to find D2 > 0 such that for any

f ∈ ΣQ(s, L) and n large enough,

P
n
f,µ

{
E∆,2

n,f 1An > (1 + 2ε)P
}

6 exp
(
−D2 ε(1 ∧ ε) log n

)
. (4.13)

Using lemma 4, we obtain

E∆,1
n,f 1An 6 L3δ

s/(2s+1)
n (1 +W (1)), (4.14)

where W (1) = max06p6(k+1)×|J1,n| |Wp| and L3 = C̄‖µ‖s/(2s+1)
∞ . Since W is a cen-

tered Gaussian vector such that E
n
f,µ{W 2

p } = 1 for 0 6 p 6 (k + 1)Mn it is well

known (see for instance in Ledoux and Talagrand (1991)) that

E
n
f,µ{W (1)} 6

√
2 log((k + 1)|Jn,1|) = O(

√
log log n),

since |J1,n| = O(log n), and that for any λ > 0,

P
n
f,µ

{
W (1) − E

n
f,µ{W (1)} > λ

}
6 2 exp(−λ2/2).
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Then, when n is large enough,

P
n
f,µ

{
E∆,1

n,f 1An > 2εP
}

6 P
n
f,µ

{
W (1) − E

n
f,µ{W (1)} > εPδ−s/(2s+1)

n /L3

}

6 2 exp
(
− ε2P 2δ−2s/(2s+1)

n /(2L2
3)

)
.

The same result holds for E∆,3
n,f . Hence, together with (4.13), for a good choice of

DE we obtain (4.9). It is easy to prove (4.10) from (4.9). For any f ∈ ΣQ(s, L) and

p > 0, when n is large enough,

E
n
f,µ{(E∆

n,f )p1An} = p

∫ +∞

0
tp−1

P
n
f,µ{E∆

n,f1An > t}dt

6 (2P )p + peDE

∫ +∞

2P
tp−1 exp

(
−DE t/P

)
dt = O(1),

thus (4.10), since w(x) 6 A(1 + |x|b). �

Proof of theorem 1. Let x ∈ [xj , xj+1). Since µ ∈ Σ(ν, ̺) with 0 < ν 6 1

we have clearly µs/(2s+1) ∈ Σ(sν/(2s+ 1), ̺s/(2s+1)) and using assumption D,

sup
x∈[xj,xj+1]

|rn,µ(x)−1 − r−1
j | 6 r−1

j

(̺
q

)s/(2s+1)
∆sν/(2s+1)

n = o(1)r−1
j . (4.15)

Since f ∈ ΣQ(s, L), writing the Taylor expansion of f at x ∈ [xj, xj+1) we obtain:

|f̂n(x) − f(x)| 6 |f̂n(xj) − f(xj)|

+
k∑

m=1

(f̃ (m)
n (xj) − f (m)(xj))

(x − xj)
m

m!
+ L∆s

n,

and in view of (4.15),

En,f 6 (1 + o(1))
(
E∆

n,f + max
j∈Jn

r−1
j

k∑

m=1

|f̃ (m)
n (xj) − f (m)(xj)|

∆m
n

m!

)
+O(δs

n).

We consider the event An from lemma 7. Since An ⊂ Cn we have that on An, in

view of lemma 4 and for any 1 6 m 6 k,

max
j∈Jn

r−1
j |f̃ (m)

n (xj) − f (m)(xj)|
∆m

n

m!

6 (1 + o(1))δm
n ‖µ‖s/(2s+1)

∞ C(1 + (log n)−1/2WM ),

and then

En,f1An 6 (1 + o(1))E∆
n,f1An +O(1)δn(1 + δ1/2

n WM) + o(1).

We define Wn , {|WM − E
n
f,µ{WM}| 6 δ−1

n }. Since WM = max06p6(k+1)Mn
|Wp|,

we know in the same way as in the proof of proposition 2 that E
n
f,µ{WM} 6

√
2 log((k + 1)Mn) = O(δ

−1/2
n ) and

P
n
f,µ{Wc

n} 6 2 exp(−δ−2
n /2). (4.16)
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Thus

En,f1An∩Wn 6 (1 + o(1))E∆
n,f1An + o(1), (4.17)

and since w is non-decreasing, we have for any ε > 0

E
n
f,µ{w(En,f )}

6 E
n
f,µ{w(En,f )1An∩Wn} + E

n
f,µ{w(En,f )1Ac

n∪Wc
n
}

6 w((1 + 2ε)P ) +
(
E

n
f,µ{w2(En,f )}P

n
f,µ{Ac

n ∪Wc
n}

)1/2

+
(
E

n
f,µ

{
w2

(
(1 + 2ε)E∆

n,f1An

)}
P

n
f,µ{E∆

n,f1An > (1 + ε)P}
)1/2

6 w((1 + 2ε)P ) +O
(
nb(1+s/(2s+1)) exp(−(log n)2/4)

)

+O
(
exp(−DE ε(1 ∧ ε)(log n)2s/(2s+1))

)
= w((1 + 2ε)P ) + o(1),

where we used proposition 2, lemmas 6, 7 and the fact that w is continuous. Thus,

lim sup
n

sup
f∈ΣQ(s,L)

E
n
f,µ{w(En,f )} 6 w((1 + 2ε)P ),

which concludes the proof of theorem 1 since ε can be chosen arbitrarily small. �

Proof of proposition 1. We consider the event Wn defined in the proof of

theorem 1. Since An ⊂ Bn ⊂ Cn,j for any j ∈ Jn we have

(1 − o(1))rj 6 Rn(xj) 6 (1 + o(1))rj (4.18)

on An. In view of (4.15) and (4.17) we have for any j ∈ Jn, x ∈ [xj , xj+1) on

An ∩Wn

Rn(x)−1|f̂n(x) − f(x)| =
rn,µ(x)

Rn(xj)
rn,µ(x)−1|f̂n(x) − f(x)|

6 (1 + o(1))En,f 6 (1 + o(1))E∆
n,f + o(1).

Thus, if Fn,f,β =
{

supx∈[0,1]Rn(x)−1|f̂n(x) − f(x)| 6 (1 + β)P
}

lemma 7, proposi-

tion 2 and (4.16) entail for any f ∈ ΣQ(s, L),

P
n
f,µ{Fc

n,f,β} 6 P
n
f,µ{Fc

n,f,β ∩ An ∩Wn} + P
n
f,µ{Ac

n ∪Wc
n}

6 P
n
f,µ{E∆

n,f1An > (1 + β/2)P} + P
n
f,µ{Ac

n ∪Wc
n}

6 exp(−Dc β(2 ∧ β)(log n)2s/(2s+1)
)
,

for a good choice of Dc. When n is large enough, the choice β = β(n, α) makes

the last part of the above inequality equal to α, hence (1.13). Using again (4.18),

lemma 7 and (4.15) it is easy to obtain (1.14). �
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4.4. Proof of lemmas 2, 3, 4, 5, 6 and 7. Since bn,f and Un,f only depend

on f via its values in [0, 1], we have

sup
f∈Σ(s,L)

bn,f = sup
f∈Σ(s,L;R)

bn,f , sup
f∈Σ(s,L)

Un,f = sup
f∈Σ(s,L;R)

Un,f . (4.19)

Here, it is convenient to introduce Pj ,
∑n

i=1(f(Xi)−f(xj))K̄i,j andQj ,
∑n

i=1 K̄i,j .

Proof of lemma 2. On An,j ∩ Cn,j we have (1 − o(1))qj 6 Qj 6 (1 + o(1))qj

and since Bn ⊂ An,j ∩ Cn,j for any j ∈ J2,n, we have

|bn,f,j | = r−1
j |E n

f,µ{(Pj/Qj)1Bn}| 6 (1 + o(1))(rjqj)
−1|E n

f,µ{Pj1Bn}|.

Recalling that K = ϕs/
∫
ϕs with ϕs ∈ Σ(s, 1; R) we have for any x, y ∈ R

|K(x) −K(y)| 6 κ|x− y|s1 ,

where s1 = s ∧ 1 and κ = (
∫
ϕs)
−1 when s ∈ (0, 1] and κ = ‖K ′‖∞ when s > 1.

Since Supp K = [−Ts, Ts], we have for n large enough on Bn:

|K̄i,j −Ki,j | 6 κ
∣∣∣Xi − xj

csHj

∣∣∣
s1

∣∣∣Hj

hj
− 1

∣∣∣
s1

1|Xi−xj |6csTs(Hj∨hj)

6 κT s1
s

( δn
1 − δn

)s1

1|Xi−xj |6csTs(1+δn)hj
= o(1)1Mi,j ,

(4.20)

where Mi,j , {|Xi − xj| 6 csTs(1 + δn)hj}. We introduce νf,j(x) = 1f(x)>f(xj ) −
1f(x)<f(xj ), Ri,j = (f(Xi) − f(xj))Ki,j , Si,j = νf,j(Xi)(f(Xi) − f(xj))1Mi,j , Rj =
∑n

i=1Ri,j and Sj =
∑n

i=1 Si,j. Then,

1

rjqj
|E n

f,µ{Pj1Bn}
∣∣

6
1

rjqj

(
|E n

f,µ{Rj}| + o(1)|E n
f,µ{Sj}|

)

6
1

rjµj

(∣∣
∫

(f(xj + ycshj) − f(xj))K(y)µ(xj + ycshj)dy
∣∣

+ o(1)
∣∣
∫

|y|6(1+δn)Ts

(f(xj + ycshj) − f(xj))νf,j(xj + csyhj)µ(xj + ycshj)dy
∣∣
)
,

and since µ ∈ Σq(ν, ̺) we have

bn,f,j 6
1 + o(1)

rj

∣∣
∫

(f(xj + ycshj) − f(xj))K(y)dy
∣∣

+
o(1)

rjq

∫

|y|62Ts

|f(xj + ycshj) − f(xj)|dy.
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Using (4.19) and the fact that Σ(s, L; R) is invariant by translation,

sup
f∈Σ(s,L;R)

bn,f,j 6 (1 + o(1)) sup
f∈Σ(s,L;R)

max
j∈J2,n

1

rj

(∣∣
∫

(f(cshjy) − f(0))K(y)dy
∣∣

+ o(1)

∫

|y|62T
|f(cshjy) − f(0)|dy

)
. (4.21)

Now we use an argument which is known as renormalisation, see Donoho and Low

(1992). We introduce the functional operator Ua,bf(·) = af(b ·). We have that

f ∈ Σ(s, L; R) is equivalent to Ua,bf ∈ Σ(s, Labs; R). Then, choosing a = (Lcssh
s
j)
−1

and b = cshj entails

sup
f∈Σ(s,L;R)

bn,f 6 (1 + o(1))LcssB(s, 1) + o(1) sup
f∈Σ(s,1;R)

∫

|y|62T
|f(y) − f(0)|dy,

where B(s, 1) is given by (6.2) and where we recall that rj = hs
j . We define fk(y) =

f(0) + f
′

(0)y+ · · ·+ f (k)(0)yk/k!. Since f ∈ Σ(s, L; R), we have f − fk ∈ Σ(s, L; R)

and finally

sup
f∈Σ(s,L;R)

bn,f 6 (1 + o(1))LcssB(s, 1) + o(1)

∫

|y|62T
|y|sdy. �

Proof of lemma 3. We recall that Un,f,j , r−1
j (Bj − E

n
f,µ{Bj1Bn}). We use

the same notations as in the proof of lemma 2. On Bn we have (1− o(1))qj 6 Qj 6

(1 + o(1))qj , and since E
n
f,µ{P 2

j } 6 4Q2‖K‖2
∞n

2 we obtain in view of lemma 7:

1

rjqj
|E n

f,µ{Pj1Bc
n
}| 6

1

rjqj

√
E n

f,µ{P 2
j }

√
Pn

µ{Bc
n} = o(1).

Then, it is easy to see that on Bn,

|Un,f,j| 6
1

rjqj

(
(1 + o(1))

∣∣Pj − E
n
f,µ{Pj}

∣∣ + o(1)
∣∣E n

f,µ{Pj1Bn}
∣∣
)

+ o(1),

and we know from the proof of lemma 2 that

1

rjqj
|E n

f,µ{Pj1Bn}| 6 sup
f∈Σ(s,L)

max
j∈J2,n

1

rjqj
|E n

f,µ{Pj1Bn}| 6 (1 + o(1))LcssB(s, 1),

thus |Un,f,j| 6 (1 + o(1))(rjqj)
−1|Pj − E

n
f,µ{Pj}| + o(1) on Bn. From the proof of

lemma 2, we know that (rjqj)
−1|E n

f,µ{Sj}| = O(1), and using (4.20) it is an easy

computation to obtain that on Bn,

|Pj − E
n
f,µ{Pj}| 6 |Rj − E

n
f,µ{Rj}| + o(1)|Sj − E

n
f,µ{Sj}| + o(1)|E n

f,µ{Sj}|.

Then we have for n large enough

P
n
f,µ{|Un,f,j |1Bn > ε} 6 P

n
f,µ

{
|Rj − E

n
f,µ{Rj}| >

εrjqj
3

}

+ P
n
f,µ

{
|Sj − E

n
f,µ{Sj}| >

εrjqj
3

}
.
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We use Bernstein inequality to the sum of variables R̄i,j , Ri,j − E
n
f,µ{Ri,j} and

S̄i,j , Si,j−E
n
f,µ{Si,j}, 1 6 i 6 n. The variables (R̄i,j)16i6n are clearly independent,

centered and satisfy |R̄i,j| 6 4QK∞. In view of (4.19) and since µ ∈ Σq(ν, ̺), it is

easy to prove with the same arguments as in the end of the proof of lemma 2 that

E
n
f,µ{R̄2

i,j} 6 E
n
f,µ{R2

i,j}

6 (1 + o(1))cshjµj

∫
(f(xj + cshjy) − f(xj))

2K2(y)dy

6 (1 + o(1))cshjµj sup
f∈Σ(s,L;R)

∫
(f(xj + cshjy) − f(xj))

2K2(y)dy

6 (1 + o(1))L2(cshj)
2s+1µj sup

f∈Σ(s,L;R)

∫
(f(y) − f(0))2K2(y)dy

6 (1 + o(1))L2(cshj)
2s+1µj

∫
y2sK2(y)dy/(k!)2.

Then
∑n

i=1 E
n
f,µ{R̄2

i,j} = O(r2j qj) and the Bernstein inequality entails that for n

large enough, there is a constant D4 > 0 such that

P
n
f,µ{|Rj − E

n
f,µ{Rj}| > εrjqj/3} 6 2 exp(−D4ε(1 ∧ ε)ns/(2s+1)).

The variables (S̄i,j)16i6n are independent, centered and such that |S̄i,j | 6 4Q, and

in the same way as previously we can prove
∑n

i=1 E
n
f,µ{S̄2

i,j} = O(r2j qj). Using again

Bernstein inequality, it is easy to find D5 such that

P
n
f,µ{|Sj − E

n
f,µ{Sj}| > εrjqj/3} 6 2 exp(−D5ε(1 ∧ ε)ns/(2s+1)),

and since |J2,n| 6 Mn, we have for any f ∈ ΣQ(s, L),

P
n
f,µ{|Un,f |1Bn > ε} 6

∑

j∈J2,n

P
n
f,µ{|Un,f,j|1Bn > ε}

6 4Mn exp
(
− (D4 ∧D5) ε(1 ∧ ε)ns/(2s+1)

)
.

Since 4Mn exp(−(D4∧D5)ε(1∧ε)ns/(2s+1)/2) goes to 0 as n goes to +∞, the lemma

follows with DU = (D4 ∧D5)/2. �

Proof of lemma 4. We take I = I(x, h) for some x ∈ [0, 1], h > 0 and define

the vector θI with coordinates (θI)m = f (m)(x)/m! for 0 6 m 6 k. Since X̄I = XI

on Ωn,I , we have Λ−1
I (θ̂I − θI) = G−1

I ΛIXI(θ̂I − θI). If fI(y) = PθI
(y − x), we have

in view of (4.2) for any 0 6 m 6 k:

(XI(θ̂I − θI))m = 〈f̂I − fI , φI,m〉I = 〈Y − fI , φI,m〉I
= 〈f − fI , φI,m〉I + 〈ξ , φI,m〉I ,

thus XI(θ̂I − θI) , BI + VI . Since f ∈ Σ(s, L),

(ΛIBI)m 6 ‖φI,m‖−1
I |〈f − fI , φI,m〉I | 6 ‖f − fI‖I 6 Lhs/k!,
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then we can write

Λ−1
I (θ̂I − θI) = G−1

I

Lhs

k!
u+

σ√
nµ̄n(I)

G−1/2
I γI ,

where u ∈ R
k+1 is such that ‖u‖∞ 6 1 and γI = (σ

√
nµ̄n(I))−1G−1/2

I ΛIDIξ , TIξ,

where DI is the matrix of size nµ̄n(I) × (k + 1) with entries (DI)i,m = (Xi − x)m,

so that XI = (nµ̄n(I))−1D′IDI . Since T′ITI = σ−1Ik+1, we obtain that γI is,

conditionally on Xn, centered Gaussian with covariance equal to Ik+1.

Consider I = I(xj , h) for some j ∈ Jn, h > 0. From the inequality ‖ · ‖∞ 6

‖ · ‖ 6
√
k + 1‖ · ‖∞ and since ‖G−1/2

I ‖ 6
√
k + 1‖G−1

I ‖ (GI is symmetrical with

entries smaller than 1 in absolute value) we get

‖Λ−1
I (θ̂I − θI)‖∞ 6 ‖G−1

I

Lhs

k!
u‖∞ +

σ√
nµ̄n(I)

‖G−1/2
I γI‖∞

6 ‖G−1
I ‖(k + 1)

(
Lhs +

σ√
nµ̄n(I)

‖γI‖∞
)

= λ−1(GI)(k + 1)
(
Lhs +

σ√
nµ̄n(I)

max
06m6k

|W(k+1)j+m|
)
,

where W , (γI(x0,h), . . . , γI(xMn ,h))
′. If T , (TI(x0,h), . . . ,TI(xMn ,h))

′ we have W =

Tξ, thus W is a centered Gaussian vector and for any (k+ 1)j 6 m 6 (k+ 1)j + k,

j ∈ Jn we have

E
n
f,µ{W 2

m} = (Var{W})m,m = (Var{γI(xj ,h)})m−(k+1)j,m−(k+1)j = 1,

since Var{γI(xj ,h)} = Ik+1. Then, we have proved that on ∩j∈JnΩn,I(xj ,h),

max
j∈Jn

‖Λ−1
I(xj ,h)(θ̂I(xj ,h) − θI(xj ,h))‖∞

6 λ−1(GI(xj ,h))(k + 1)
(
Lhs +

σ√
nµ̄n(I(xj , h))

WM
)
,

where WM = max06m6(k+1)|Jn| |Wm|. Since Cn ⊂ Nn ∩ Ωn ∩ Ln, we have on Cn for

h = hn or h = tn,

max
j∈Jn

‖Λ−1
I(xj ,h)(θ̂I(xj ,h) − θI(xj ,h))‖∞

6 (1 + o(1))λ−1(G)(k + 1)
(
Lhs +

σ√
nhµj

WM
)
.

Since Cn ⊂ Dn, we have for any j ∈ Jn, 0 6 m 6 k,

Cn ⊂ D̄n,2m,I(xj ,hn),δn
∩ D̄n,2m,I(xj ,tn),δn

,

thus on Cn, when h = hn or h = tn, we clearly have

(ΛI(xj ,h))m,m = ‖φI(xj ,h),m‖−1
I(xj ,h) 6 (1 + o(1))h−m

√
2m+ 1.
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Since f̃
(m)
n (xj) − f (m)(xj) = m!

(
(θ̂I(xj ,hn))m − (θI(xj ,hn))m

)
, it follows that on Cn:

|f̃ (m)
n (xj) − f (m)(xj)|

6 (1 + o(1))λ−1(G)m!
√

2m+ 1(k + 1)h−m
n (Lhs

n +
σ√
nhnµj

WM)

6 (1 + o(1))CLhs−m
n (1 + (log n)−1/2WM),

thus (4.4). Inequality (4.5) is obtained similarly. �

Proof of lemma 5. If µ̄n(I) = 0 we have θ̂I = 0 and the result is obvious,

thus we assume µ̄n(I) > 0. In this case, ΛI , X̄I and GI are invertible, and by

definition of θ̂I ,

θ̂I = ΛIΛ
−1
I θ̂I = ΛIG−1

I ΛIX̄I θ̂I = ΛIG−1
I ΛIYI = ΛIG−1

I (BI + VI),

where (BI)m = ‖φI,m‖−1
I 〈f , φI,m〉I and (VI)m = ‖φI,m‖−1

I 〈ξ , φI,m〉I . Since ‖f‖∞ 6

Q we have |(BI)m| = ‖φI,m‖−1
I |〈f , φI,m〉I | 6 ‖f‖I 6 Q, thus ‖BI‖∞ 6 Q.

Conditionally on Xn, VI is centered Gaussian and it is an easy computation to

see that its covariance matrix is equal to σ2(nµ̄n(I))−1ΛIXIΛI . Then ΛIG−1
I VI is

conditionally on Xn centered Gaussian with covariance matrix σ2(nµ̄n(I))−1X̄−1
I XIX̄

−1
I .

If em is the canonical vector with coordinates (em)p = 1p=m, we have

|(θ̂I)m| = |〈θ̂I , em〉| = |〈ΛIG−1
I BI , em〉| + σ

√
k + 1 γ,

where γ = (σ
√
k + 1)−1〈ΛIG−1

I VI , em〉. By definition, we have ‖X̄−1
I ‖ = λ−1(X̄I) 6√

nµ̄n(I), and clearly ‖XI‖ 6 k + 1 and ‖Λ−1
I ‖ 6 1. Then, conditional on Xn, γ is

centered Gaussian with variance

〈em , X̄−1
I XIX̄

−1
I em〉

(k + 1)nµ̄n(I)
6

‖X̄−1
I ‖2‖XI‖

(k + 1)nµ̄n(I)
6 1.

Since ‖G−1
I ‖ 6 ‖Λ−1

I ‖‖X̄−1
I ‖‖Λ−1

I ‖ 6
√
nµ̄n(I) 6

√
n and (ΛI)0,0 = 1, we have

E
n
f,µ

{
|(θ̂I)0|p|Xn

}
6 (k + 1)p/2np/2(Q ∨ 1)pE

n
f,µ{

(
1 + σ|γ|)p|Xn

}
= O(np/2),

for any I ⊂ [0, 1], and since ‖ΛI‖ 6
√
n on Γn,I , it follows that

E
n
f,µ

{
|(θ̂I)m|p|Xn

}
6 (k + 1)p/2np(Q ∨ 1)pE

n
f,µ{

(
1 + σ|γ|)p|Xn

}
= O(np),

for any 1 6 m 6 k. �

Proof of lemma 6. We show that for any p > 0,

sup
f∈ΣQ(s,L)

E
n
f,µ{Ep

n,f} = O(np(1+s/(2s+1))), (4.22)



108 3. SHARP ESTIMATION IN SUP NORM WITH RANDOM DESIGN

which entails (4.6). By definition of Hn(x), we have Hn(x) > (log n/n)1/(2s) for any

x ∈ [0, 1]. Since ‖f‖∞ 6 Q, we have for any j ∈ J2,n,

|f̂n(xj)| 6 δ−1
n (n/ log n)1/(2s)(Q+ |ξ̄n|/

√
n)‖Ks‖∞,

where ξ̄n =
∑n

i=1 ξi/
√
n is standard Gaussian. Then,

E
n
f,µ

{
|f̂n(xj)|p|Xn

}
6 δ−p

n ((n/ log n)p/(2s)(Q ∨ 1)pE
n
f,µ{(1 + |ξ̄n|)p|Xn}‖Ks‖∞

= O(np/(2s)(log n)p(1−1/(2s))).

When j ∈ Jn,1 ∪ Jn,3, we have f̂n(xj) = θ̂I(xj ,tn) and in view of lemma 5,

E
n
f,µ

{
|f̂n(xj)|p|Xn

}
= O(np/2).

For any j ∈ Jn, since f̃
(m)
n (xj) = m!(θ̂I(xj ,hn))m, we have in view of lemma 5 that

on Γn,I(xj ,hn),

E
n
f,µ

{
|f̃ (m)

n (xj)|p|Xn

}
= O(np),

for any 1 6 m 6 k. Then, we obtain that for any ‖f‖∞ 6 Q,

En,f = O((n/ log n)s/(2s+1))
(

sup
x∈[0,1]

|f̂n(x)| +Q
)
,

and since

sup
x∈[0,1]

|f̂n(x)| 6 max
j∈Jn

(
|f̂n(xj)| +

( k∑

m=1

|f̃ (m)
n (xj)|
m!

)
1Γn,I(xj ,hn)

)
= O(np),

thus (4.22) and (4.6). �

Proof of lemma 7. The proof is divided in several steps. We recall that

qj = ncshjµj and q̄j = ncsHjµj.

Step 1. We prove that for any j ∈ J2,n and n large enough,

P
n
µ{Bc

n,j} 6 2 exp(−D1δ
2
nn

2s/(2s+1)), (4.23)

where D1 is a positive constant. Consider the sequence of i.i.d variables ζi,j ,

Ki,j − E
n
µ{Ki,j}, 1 6 i 6 n. Since µ ∈ Σq(ν, ̺) and

∫
K = 1, we have for n

large enough |En
µ{K1,j}/qj − 1| 6 δn/2, thus Bc

n,j ⊂
{
|∑n

i=1 ζi,j|/qj 6 δn/2
}
. Since

|ζi,j| 6 2‖K‖∞ and for n large enough
∑n

i=1 E
n
µ{ζ2

i,j} 6 (1 + δn)qj
∫
K2, the Bern-

stein inequality entails (4.23).

Step 2. We prove that for any j ∈ Jn,2,

P
n
µ{Ac

n,j ∩ Cn,j} 6 2 exp(−D2δ
2
2,n n

2s/(2s+1)), (4.24)
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where D2 is a positive constant and δ2,n , δs1
n , s1 = s ∧ 1. In view of (4.20), we

have on Cn,j

|K̄i,j −Ki,j| 6 κT s1
s

( δn
1 − δn

)s1

1Mi,j (4.25)

where we recall that Mi,j = {|Xi − xj | 6 csTs(1 + δn)hj}. We define ηi,j , 1Mi,j −
P

n
µ{Mi,j}. On Cn,j we have for n large enough 2csTsH

M
n 6 δn, and since xj ∈

[τn, 1 − τn],

xj 6 1 − τn = 1 − 2csTsH
M
n 6 1 − 2csTsHj

6 1 − 2csTs(1 − δn)hj 6 1 − csTs(1 + δn)hj

for n large enough. On the other hand we have similarly xj > csTs(1+ δn)hj . Thus,

since µ ∈ Σq(ν, ̺) we have

∣∣∣
P

n
µ{Mi,j}

(1 + δn)cshjµj
− 2Ts

∣∣∣ 6
1

q

∫

|y|6T
|µ(xj + csy(1 + δn)hj) − µj |dy = O(hν

n). (4.26)

Since xj ∈ [csTs(1 + δn)hj , 1 − (1 + δn)csTshj ] ⊂ [csTshj , 1 − csTshj ], we have for n

large enough on Cn,j,

∣∣∣
E

n
f,µ{K1,j}
csHjµj

− 1
∣∣∣ 6

hj

Hjµj

∫
|K(y)||µ(xj + ycshj) − µj|dy +

∣∣∣ hj

Hj
− 1

∣∣∣

6 O(hν
n) +

δn
1 − δn

.

(4.27)

Then, combining (4.25), (4.26) and (4.27) we obtain that on Cn,j and for n large

enough,

∣∣∣
∑n

i=1 K̄i,j

q̄j
− 1

∣∣∣ 6
o(1)

q̄j
|

n∑

i=1

ηi,j| +
κT s1δs1

n

(1 − δn)s1

P
n
µ{M1,j}
csHjµj

+
1

q̄j
|

n∑

i=1

ζi,j| +O(hν
n) +

δn
1 − δn

6
o(1)

qj
|

n∑

i=1

ηi,j| +
1 + o(1)

qj
|

n∑

i=1

ζi,j| + 2(2κT s1+1 + 1)δs1
n ,

and taking L1 , 4(κT s1+1 + 1), we obtain

P
n
f,µ{Ac

n,j ∩ Cn,j} 6 P
n
µ

{
|

n∑

i=1

ηi,j | > δs1
n qj

}
+ P

n
µ{|

n∑

i=1

ζi,j| > δs1
n qj/2}.

Then, applying Bernstein inequality to the sum of variables ηi,j and ζi,j, 1 6 i 6 n,

we obtain (4.24). We can prove

P
n
µ{Ec

n,j ∩ Cn,j} 6 2 exp(−D3δ
2
2,nn

2s/(2s+1)), (4.28)
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where D3 is a positive constant in the same way as for the proof of (4.24) with a

good choice for L2.

Step 3. We define the event

Dn,m,I(x,h),δ ,

{∣∣∣ 1

µ(x)hm+1

∫

I(x,h)
φI(x,h),m dµ̄n − χm

∣∣∣ 6 δ

}
,

and we prove that if δ1,n , 1 − (1 + δn)−(2s+1),

Dn,0,I(xj ,(1−δn)hj),δ1,n
∩ Dn,0,I(xj ,(1+δn)hj),δ1,n

⊂ Cn,j. (4.29)

From the definitions of Hj and hj (see section 1.4) we obtain

{(1 − δn)hj < Hj} =
{
(1 − δn)2sh2s

j < log n/
(
nµ̄n(I(xj , (1 − δn)hj))

)}

=
{ µ̄n(I(xj , (1 − δn)hj))

µj(1 − δn)hj
6 (1 − δn)−(2s+1)

}
,

and then

Dn,0,I(xj ,(1−δn)hj),δ1,n
⊂ {(1 − δn)hj < Hj}.

We can prove in the same way that on the other hand,

Dn,0,I(xj ,(1+δn)hj),δ1,n
⊂ {(1 + δn)hj > Hj},

hence (4.29).

Step 4. We prove (4.8). If δ3,n = δn/(2 − δn), we clearly have for any interval I,

Dn,m,I,δ3,n ∩ Dn,0,I,δ3,n ⊂ D̄n,m,I,δn .

Using the fact that λ(M) = inf‖x‖=1〈x , Mx〉 for any symmetrical matrix M and

since GI , G, XI are symmetrical, it is easy to see that

⋂

06p,q6k

{
|(GI − G)p,q| 6

δn
(k + 1)2

}
⊂ Ln,I , (4.30)

and that

2k⋂

m=0

D̄n,m,I, δn
(k+1)2

⊂
⋂

06p,q6k

{∣∣(XI − X)p,q

∣∣ 6
δn

(k + 1)2

}

⊂ {|λ(XI) − λ(X)| 6 δn}.

Recalling that if I = I(xj , h),

(GI)p,q =
〈φI,p , φI,q〉I
‖φI,p‖I‖φI,q‖I

=

1
µjhm+1

∫
I φI,p+q dµ̄n

√
1

µjhm+1

∫
I φI,2p dµ̄n

√
1

µjhm+1

∫
I φI,2q dµ̄n

,
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it is easy to see that if δ4,n = δn/
(
(2 − δn)(2k + 1)(k + 1)2

)
,

Dn,2p,I,δ4,n ∩ Dn,2q,I,δ4,n ∩ Dn,p+q,I,δ4,n ⊂
{
|(GI − G)p,q| 6

δn
(k + 1)2

}
,

thus
2k⋂

m=0

Dn,m,I,δ4,n ⊂ Ln,I ,

and clearly for n large enough, if I = I(xj , hn) or I = I(xj , tn),

2k⋂

m=0

Dn,m,I,δ4,n ⊂ {|λ(XI) − λ(X)| 6 δn} ∩
{∣∣∣ µ̄n(I)

|I|µj
− 1

∣∣∣ 6 δn

}
⊂ Ωn,I . (4.31)

Moreover, if I = I(xj , hn), we have on D̄n,2m,I,δn for any 1 6 m 6 k and n large

enough,

‖φI,m‖I > (1 − o(1))hm
n

√
2m+ 1 > 1/

√
n. (4.32)

We define

Dn,m ,
⋂

j∈Jn

(
Dn,m,I(xj ,hn),δ5,n

∩ Dn,m,I(xj ,tn),δ5,n

∩ Dn,0,I(xj ,(1−δn)hj),δ5,n
∩ Dn,0,I(xj ,(1+δn)hj),δ5,n

)
,

where δ5,n = δ4,n ∧ δ3,n ∧ δ1,n, Dn =
⋂2k

m=0 Dn,m and we choose

An , Dn ∩ An ∩ Bn ∩ En.

In view of (4.29), (4.30), (4.31), (4.32) we have An ⊂ Cn ∩ Ωn ∩ Ln ∩ Γn and since

Dn,0,I,δ = Nn,I we obtain (4.8).

Step 5. We prove (4.7). Using Bernstein inequality, it is easy to show that for n

large enough, if h = hn, h = tn, h = (1 − δn)hj or h = (1 + δn)hj ,

P
n
µ{Dc

n,m,I(xj ,h),δ5,n
} 6 2 exp(−D4δ

2
5,nnh) 6 2 exp(−D5n

s/(2s+1)),

with D4,D5 positive constants, where we used the fact that δ25,nn
s/(2s+1) > 1 for n

large enough and nh > D6n
2s/(2s+1). In view of (4.29) we have Dn ⊂ Cn, hence

P
n
µ{Ac

n} 6 P
n
f,µ{Dc

n} + P
n
f,µ{Ac

n ∩ Cn} + P
n
f,µ{Bc

n ∩ Cn}
+ P

n
f,µ{Ec

n ∩ Cn} + 3P
n
f,µ{Cc

n}
6 4 P

n
f,µ{Dc

n} + P
n
f,µ{Ac

n ∩ Cn} + P
n
f,µ{Bc

n ∩ Cn} + P
n
f,µ{Ec

n ∩ Cn}

6 2(8k + 7)Mn exp(−2DAn
s/(2s+1)) 6 exp(−DAns/(2s+1)),

for n large enough, where DA , (D1∨D2∨D3∨D5)/2, where we used (4.23), (4.24)

and (4.28). �
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5. Proof of theorem 2

The proof of the lower bound is heavily based on arguments found in Korostelev

(1993), Donoho (1994), Korostelev and Nussbaum (1999) and Bertin (2004c). It is

mainly a modification of the former proof in Bertin (2004c). It consists in a classical

reduction to the Bayesian risk over an hardest cubical subfamily of functions, see

for instance Donoho (1994). The main difference with the former proofs is that the

subfamily of functions depends on the design via the bandwidth hn,µ(x), which is

adapted to the local amount of data.

5.1. Preparatory results. We begin with some definitions. We recall that

ϕs is defined by (1.6) and that it has a compact support [−Ts, Ts]. Let hI
n ,

maxx∈In hn,µ(x) and

Ξn = 2Tscs(2
1/(s−k) + 1)hI

n.

If In = [an, bn], Mn = [|In|Ξ−1
n ], we define the points

xj = an + j Ξn, j ∈ Jn , {1, . . . ,Mn}. (5.1)

In order to unload the notations, we denote again µj = µ(xj), hj = hn,µ(xj).

Lemma 8. Let define the event

Hn,j ,
{∣∣∣ 1

ncshjµj

n∑

i=1

ϕ2
s

(Xi − xj

cshj

)
− 1

∣∣∣ 6 ε
}
,

and Hn , ∩j∈JnHn,j. We have

lim
n→+∞

P
n
µ{Hn} = 1.

Proof. We use Bernstein inequality to the sum of variables ϕ2
s((Xi−xj)/(cshj)),

for 1 6 i 6 n, where we use the fact that ‖ϕs‖2 = 1 (see section 6) and we derive a

deviation inequality for the events Hc
n,j. Then, bounding from above the probability

of ∪j∈JnHc
n,j by the probabilities sum, the result follows easily. �

The subfamily of functions is defined as follows. We consider an hypercube

Θ ⊂ [−1, 1]Mn , and for θ ∈ Θ we define the functions

f(x; θ) =
∑

j∈Jn

θjfj(x), fj(x) = Lcssh
s
jϕs

(x− xj

cshj

)
.

Clearly, fj ∈ Σ(s, L). Let us show that f(· ; θ) ∈ Σ(s, L). We note that

Supp
(
ϕs

( · − xj

cshj

))
=

[
xj − csTshj , xj + csTshj

]
, Ij .
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If x, y ∈ Ij then f(x; θ) = θjfj(x), f(y; θ) = θjfj(y) and the result is obvious. To

complete the proof, it suffices to consider the case x ∈ Ij and y ∈ Ij+1. In this case,

we have

|f (k)(x;θ) − f (k)(y; θ)|

= |θjf
(k)
j (x) − θj+1f

(k)
j+1(y)|

6 |f (k)
j (x) − f

(k)
j (xj + csTshj)| + |f (k)

j+1(xj+1 − csTshj+1) − f
(k)
j+1(y)|

6 L
(
|x− xj − csTshj |s−k + |xj+1 − csTshj+1 − y|s−k

)

6 L
(
(2csTshj)

s−k + (2csTshj+1)
s−k

)
6 2L(2csTsh

I
n)s−k.

Moreover, since x ∈ Ij and y ∈ Ij+1 we have

|x− y| > xj+1 − xj − csTs(hj + hj+1) > Ξn − 2csTsh
I
n = 21/(s−k)(2csTsh

I
n),

and finally

|f (k)(x; θ) − f (k)(y; θ)| 6 L|x− y|s−k, (5.2)

thus f(· ; θ) ∈ Σ(s, L). For any j ∈ Jn, we define the statistics

yj =

∑n
i=1 Yifj(Xi)∑n
i=1 f

2
j (Xi)

.

Lemma 9. Conditionally on Xn, the yj are Gaussian and independent. More-

over, if v2
j = E

n
f,µ{y2

j |Xn}, we have on Hn,j

E
n
f,µ{yj|Xn} = θj,

2s + 1

2(1 + ε) log n
6 v2

j 6
2s+ 1

2(1 − ε) log n
. (5.3)

In the model (1.1) with f(·) = f(· ; θ), conditionally on Xn, the likelihood function

of (Y1, . . . , Yn) can be written on Hn in the form

dP
n
f,µ

dλn
|Xn(Y1, . . . , Yn) =

n∏

i=1

gσ(Yi)
∏

j∈Jn

gvj (yj − θj)

gvj (yj)
,

where gv is the density of N (0, v2), and λn is the Lebesgue measure over R
n.

Proof. By construction the fj have disjoint supports, thus it is easy to see

that conditionally on Xn the yj are Gaussian independent with conditional mean θj.

Using the definition of Hn and since

E
n
f,µ{y2

j |Xn} =
σ2

∑n
i=1 f

2
j (Xi)

,
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it is an easy computation to see that on Hn, we have (5.3). The last part of the

lemma follows from the following computation:

n∏

i=1

gσ(Yi)
∏

j∈Jn

gvj (yj − θj)

gvj (yj)

=
1

σn(2π)n/2

n∏

i=1

exp
(
− Y 2

i /(2σ
2)

) ∏

j∈Jn

exp
(
(2θjyj − θj)/(2v

2
j )

)

=
1

σn(2π)n/2

n∏

i=1

[
exp

(−Y 2
i +

∑
j∈Jn

(
2Yjθjfj(Xi) − θ2

j fj(Xi)
2
)

2σ2

)]

=
1

σn(2π)n/2

n∏

i=1

exp
(
− (Yi − f(Xi; θ))

2

2σ2

)
=

dP
n
f,µ

dλn
|Xn(Y1, . . . , Yn). �

5.2. Proof of theorem 2. We denote in the following Σ = Σ(s, L) and EI
n,f,T =

supx∈I rn,µ(x)−1|T (x) − f(x)|. Since w is nondecreasing and f(· ; θ) ∈ Σ for any

θ ∈ Θ, we have for any distribution B on Θ by a minoration of the minimax risk by

the Bayesian risk,

inf
T

sup
f∈Σ

E
n
f,µ

{
w(EI

n,f,T )
}

> w
(
(1 − ε)P

)
inf
T

sup
f∈Σ

P
n
f,µ

{
EI

n,f,T > (1 − ε)P
}

> w
(
(1 − ε)P

)
inf
T

∫

Θ
P

n
θ

{
EI

n,f,T > (1 − ε)P
}
B(dθ),

where P
n
θ = P

n
f(· ;θ),µ. Since by construction f(xj ; θ) = rjθjP and xj ∈ In, we obtain

inf
T

∫

Θ
P

n
θ

{
EI

n,f,T > (1 − ε)P
}
B(dθ)

> inf
bθ

∫

Θ

∫

Hn

P
n
θ

{
max
j∈Jn

|θ̂j − θj| > 1 − ε|Xn

}
dP

n
µB(dθ),

>

∫

Hn

inf
bθ

∫

Θ
P

n
θ

{
max
j∈Jn

|θ̂j − θj| > 1 − ε|Xn

}
B(dθ)dP

n
µ,

where infbθ
is taken among any measurable vector (with respect to the observa-

tions (1.1)) in R
Mn . Then, theorem 2 follows from lemma 8 if we prove that on

Hn,

inf
bθ

∫

Θ
P

n
θ

{
max
j∈Jn

|θ̂j − θj| > 1 − ε|Xn

}
B(dθ) > 1 − o(1),

or equivalently, that on Hn

sup
bθ

∫

Θ
P

n
θ

{
max
j∈Jn

|θ̂j − θj| < 1 − ε|Xn

}
B(dθ) = o(1). (5.4)

To prove (5.4), we choose

Θ = ΘMn
ε , Θε = {−(1 − ε), 1 − ε}, B =

⊗

j∈Jn

bε, bε =
1

2

(
δ−(1−ε) + δ1−ε

)
,
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where δ stands for the Dirac mass. Note that using lemma 9, the left hand side

of (5.4) is smaller than
∫ ∏n

i=1 gσ(Yi)∏
j∈Jn

gvj (yj)

( ∏

j∈Jn

sup
bθj∈R

∫

Θε

1|bθj−θj |<1−ε
gvj (yj − θj)dbε(θj)

)
dY1 . . . dYn,

and an easy argument shows that

θ̂j = (1 − ε)1yj>0 − (1 − ε)1yj<0

are strategies attaining the maximum. Thus, it suffices to prove the lower bound

among estimators θ̂ with coordinates θ̂j ∈ Θε and measurable with respect to yj

only. Since the yj are independent with distribution density gvj (· − θj), the left

hand side of (5.4) is smaller than

∏

j∈Jn

max
bθj∈Θε

∫

Θε

∫

R

1|bθj(uj)−θj |<1−ε
gvj (uj − θj)duj dbε(θj)

=
∏

j∈Jn

(
1 − inf

bθj∈Θε

∫

Θε

∫

R

1|bθj(u)−θj |>1−ε
gvj (u− θj)du dbε(θj)

)
,

and if Φ(x) =
∫ x
−∞ g1(t)dt and D1 is a positive constant,

inf
bθj∈Θε

∫

Θε

∫

R

1|bθj(u)−θj |>1−ε
gvj (u− θj)du dbε

> inf
bθj∈Θε

1

2

∫

R

(
1bθj>0

+ 1bθj<0

)
gvj (u− (1 − ε)) ∧ gvj (u+ (1 − ε))du

=
1

vj

∫ 0

−∞
g1

(y − (1 − ε)

vj

)
du

= Φ
(
− 1 − ε

vj

)
>

D1√
log n

n−(1−ε)2(1+ε)/(2s+1),

where we used lemma 9 and the fact that for x > 0, Φ(−x) = (1+o(1)) exp(−x2/2)

x
√

2π
. It

follows that the left hand side of (5.4) is smaller than

(
1 − D1√

log n
n−(1−ε)2(1+ε)/(2s+1)

)Mn

6 exp
(
|In|Ξ−1

n log
(
1 −D1n

−(1−ε)2(1+ε)/(2s+1)(log n)−1/2
))
,

and if D2 is a positive constant,

|In|Ξ−1
n n−(1−ε)2(1+ε)/(2s+1)(log n)−1/2

= D2|In|nε/(2s+1) × nε2(1−ε)/(2s+1)(log n)−1/2−1/(2s+1) → +∞

as n→ +∞, since |In|nε/(2s+1) → +∞, thus the theorem. �
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6. Well known facts on optimal recovery

6.1. Explicit values. To our knowledge, the function ϕs is only known for

s ∈ (0, 1] ∪ {2}. We recall that the optimal recovery kernel is defined by

Ks =
ϕs∫
R
ϕs
,

where ϕs is given by (1.6). The kernel Ks for s ∈ (0, 1] was found by Korostelev

(1993) and Fuller (1961) for s = 2. See also Leonov (1997, 1999), Lepski and

Tsybakov (2000) and Bertin (2004b). When s ∈ (0, 1],

Ks(t) =
s+ 1

2s
ϕ−1/s

s (0)
(
1 − ϕ−1

s (0)|t|s
)
+
,

where x+ = max(0, x), and

ϕs(0) =
((2s + 1)(s + 1)

4s2

)s/(2s+1)
.

When s = 2, we have

ϕs(t) = θ−2/5g2(θ
−2/5t),

where for t > 0

g2(t) =
∑

j>0

(
(−1)jqj +

1

2
(−1)j+1(t− t2j)

2
)
1t∈[t2j−1 ,t2j+1],

q =
1

16

(
3 +

√
33 −

√
26 + 6

√
33

)2
,

θ =
2(23q2 − 14q + 23)

√
1 + q

30(1 − q5/2)
,

and t−1 = t0 = 0, t1 =
√

1 + q and for any j ∈ N − {0}, t2j = 2
√

1 + q
∑j−1

i=0 q
i/2,

t2j+1 = t2j+q
j/2√1 + q. Note that ϕ2 is piecewise quadratic and infinitely oscillating

around 0 at the boundaries of its support. For these values of s,

P = Ps =





(s+ 1

2s2

)s/(2s+1)
when s ∈ (0, 1],

(2

5

)2/5
θ−2/5 when s = 2.

In figure 3 we give an illustration of the kernel Ks for s = 1/2, s = 1 and s = 2.

6.2. Optimal recovery. The next results are well known and can be found

in Donoho (1994), Leonov (1997, 1999), Lepski and Tsybakov (2000) and Bertin

(2004b). The problem consists in recovering f from

y(t) = f(t) + εz(t), t ∈ R, (6.1)

where ε > 0, z is an unknown deterministic function such that ‖z‖2 6 1 and

f ∈ C(s, L; R) , Σ(s, L; R) ∩ L
2(R). This problem is well known, and the link
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Figure 3. Optimal recovery kernels Ks for s = 1/2, s = 1 and s = 2.

between this problem and the statistical estimation in sup norm in the white noise

model

dY ε
t = f(t)dt + εdWt, t ∈ R,

was made by Donoho (1994), see also Leonov (1999). The minimax error for the

problem of optimal recovery of f at 0 in the model (6.1) is defined by

Es(ε, L) , inf
T

sup
f∈C(s,L;R)
‖f−y‖26ε

|T (y) − f(0)|,

where infT is taken among all continuous and linear forms on L
2(R). We know from

Micchelli and Rivlin (1977), Arestov (1990) that

Es(ε, L) = inf
K∈L2(R)

(
sup

f∈C(s,L;R)

∣∣∣
∫
K(t)(f(t) − f(0))

∣∣∣ + ε‖K‖2

)

= sup
f∈Σ(s,L;R)
‖f‖26ε

f(0).

Note that ϕs satisfies ϕs(0) = Es(1, 1). For any s > 0, we know from Leonov (1997)

that ϕs is well defined and unique, that it is even and compactly supported and that

‖ϕs‖2 = 1. A renormalisation argument from Donoho (1994) shows that

Es(ε, L) = Es(1, 1)L
1/(2s+1)ε2s/(2s+1),
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thus it suffices to know Es(1, 1). If we define

B(s, L) , sup
f∈C(s,L;R)

∣∣∣
∫
Ks(t)(f(t) − f(0))

∣∣∣, (6.2)

we have the decomposition

Es(1, 1) = B(s, 1) + ‖K‖2,

and in particular if P is given by (1.5) and cs by (3.1) we have

P = Lcss
(
B(s, 1) + ‖K‖2

)
. (6.3)
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CHAPTER 4

Global estimation in sup norm with a degenerate design

In this chapter, we want to recover the regression function with sup norm error

loss when the design is degenerate at several points. We determine an optimal

spatially dependent normalisation factor rn(·) of the minimax risk over a Hölder

ball with smoothness s > 0 and radius L. We show that rn(x) = Lhn(x)s, where

hn(x) satisfies for any x

L2hn(x)2s

∫ x+hn(x)

x−hn(x)
µ(t)dt = σ2 log n/n,

where µ is the design density, n the sample size and σ the noise level. Indeed, we

show that rn(·) is an upper bound and that, in an appropriate sense, this rate cannot

be improved. Then, we propose a procedure which is adaptive both in design and

smoothness of the regression function, and we show that it converges over a class of

functions with inhomogeneous smoothness.

1. Introduction

1.1. The model. We observe data (Xi, Yi), 1 6 i 6 n, from

Yi = f(Xi) + ξi,

where ξi are i.i.d. centered Gaussian with variance σ2 and independent of Xi, with

Xi i.i.d. with density µ on [0, 1]. In this chapter, we want to recover the whole

signal f when µ vanishes at several points. We measure the error of estimation in

sup norm ‖g‖∞ = supx∈[0,1] |g(x)|.

1.2. Motivation. When µ is not the uniform law (the data are ”inhomoge-

neous”), it is clear that the performance of an estimator shall vary depending on the

local amount of data, which is drawn with respect to µ. In chapter 3, this fact has

motivated the choice of spatially dependent normalisation factors for the assessment

of the accuracy of an estimator. Therein, when µ is continuous and bounded away

from zero (the ”non-degenerate” case), we have shown that

ρn(x) = P (σ, s, L)
(
log n/(nµ(x))

)s/(2s+1)
, (1.1)

where P (σ, s, L) > 0, is an upper bound for the sup norm risk. We also have

proved the optimality of this normalisation in an appropriate sense. These results

121
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have been stated up to the exact minimax constants, thus the factor µ(·) and the

constant P (σ, s, L) in this rate are optimal.

The main drawback of this result is that it does not hold when µ is vanishing

since, roughly, ρn(x) = +∞ when µ(x) = 0. From chapter 1, when µ(y) behaves as

|y − x|β when y → x, we know that the pointwise minimax rate vn(x) at x over a

Hölder ball with smoothness s satisfies

vn(x) ≍ n−s/(1+2s+β), (1.2)

where an ≍ bn means 0 6 lim infn an/bn 6 lim supn an/bn < +∞. Moreover, it is

well known since the pioneer results by Stone (1980) and Ibragimov and Hasminski

(1981) (resp. in the regression with non-degenerate design and white noise models)

that the pointwise minimax rate over this function class is of order n−s/(1+2s).

Hence, it appears that the pointwise minimax rate is different from the classical

one at points where the design is degenerate, and that its order depends on the local

behaviour of µ. A natural extension of these results is then to find the optimal global

minimax normalisation rn(·) when the design is degenerate. This normalisation shall

be equivalent to ρn(·) when the design is non-degenerate, and at a point x where µ

is vanishing, we expect rn(x) to be close to vn(x).

1.3. Outline. In section 2, we prove that rn(·) is an upper bound over the

Hölder class (see theorem 1), and we show that in some sense, this normalisation is

optimal (see theorem 2 and its corollary). In section 3, we construct an adaptive

procedure, and we give upper bounds for this procedure in section 4, see theorems 3

and 4. We discuss some technical points in section 5, and the proofs are delayed

until sections 6 and 7.

2. Upper and lower bounds over an Hölder ball

The aim of this section is to prove that in some sense, rn(·) is an optimal nor-

malisation over a Hölder ball. If s, L > 0, we define the Hölder ball Σ(s, L), which

is the set consisting of all the functions f such that for any x, y ∈ [0, 1],

|f (k)(x) − f (k)(y)| 6 L|x− y|s−k,

where k = ⌊s⌋ is the largest integer k < s. If Q > 0, we denote by ΣQ(s, L) the set

of functions f ∈ Σ(s, L) such that ‖f‖∞ 6 Q. In this section only, we denote for

brevity Σ = ΣQ(s, L). We define

rn(x) = Lhn(x)s, (2.1)
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where hn(·) is defined as the curve satisfying for any x ∈ [0, 1]

Lhn(x)s = σ
( log n

nµ([x− hn(x), x+ hn(x)])

)1/2
, (2.2)

where we denote µ(I) =
∫
I µ(x)dx. In this equation, the ”bandwidth” hn(x) makes

the balance between the bias and variance terms of a certain linear estimator at x.

If µ is continuous and vanishing only at a finite number of points, h 7→ h2sµ([x −
h, x + h]) is increasing for any x, thus hn(·) is well defined and unique for n large

enough. Moreover, when µ is continuous, hn(·) is clearly continuously differentiable.

When µ is bounded away from 0 and continuous, we have

rn(x) = (1 + o(1))ρn(x) (2.3)

for any x ∈ [0, 1], where o(1) is going to 0 as n → +∞. When µ(x) = 0, the

equivalence (2.3) does not hold anymore.

For a uniform design (µ(x) = 1[0,1](x)), the ”classical” minimax rate over Σ is

given by

ψn = P (σ, s, L)(log n/n)s/(2s+1), (2.4)

(this is ρn(·) where we replace µ(x) by 1). While the orders of ρn(·) and ψn are the

same when µ does not vanish (they differs only up to the term µ(x)), the order of

rn(x) differs to that of ψn when µ vanishes at x, in the sense that ψn/rn(x) goes to

0 as n→ +∞ (see the example below).

2.1. Upper bound. To state the upper bound, we assume that µ satisfies

assumption D below. First, we recall the definition of regular variation. The regular

variation definition and main properties are due to Karamata (1930). On this topic,

we refer to Senata (1976), Geluk and de Haan (1987), Resnick (1987) and Bingham

et al. (1989).

Definition 1 (Regular variation). A function g : R
+ → R

+ is regularly varying

at 0 if it is continuous, and if there is a real number β ∈ R such that

∀y > 0, lim
h→0+

g(yh)/g(h) = yβ.

We denote by RV(β) the set of all such functions. We say that a function in RV(0)

is slowly varying.

Assumption D. The density µ is continuous, and there is a finite set Bµ ⊂
[0, 1] such that µ is positive on [0, 1] − Bµ. Moreover, for any x ∈ Bµ, there exist

β+(x), β−(x) > 0, and α(x) ∈ [0,+∞] such that

µ(x+ ·) ∈ RV(β+(x)), µ(x− ·) ∈ RV(β−(x)),
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and

lim
h→0+

µ(x+ h)/µ(x− h) = α(x).

In other words, assumption D means that µ is continuous and positive on [0, 1],

excepted for a finite number of points where it varies regularly on the left and

right hand sides of these points. The function x 7→ (β−(x), β+(x)) quantifies the

degenerated behaviour of µ. Note that if x ∈ [0, 1] − Bµ we have (β−(x), β+(x)) =

(0, 0) and α(x) = 1.

In what follows, a loss function w(·) is any function R
+ → R

+ nondecreasing,

continuous, such that w(0) = 0 and satisfying w(x) 6 A(1 + x)p for some A, p > 0.

Definition 2. If F is a function class, we say that a sequence vn(·) > 0 of

normalisations is an upper bound over F if there is an estimator f̂n such that for

any loss function w,

lim sup
n

sup
f∈F

E
n
f,µ

{
w

(
sup

x∈[0,1]
vn(x)−1|f̂n(x) − f(x)|

)}
< +∞.

Theorem 1. Under assumption D, the normalisation rn(·) defined by (2.1) is

an upper bound over Σ .

In the proof of this theorem, we use an estimator which depends on s, L and µ.

In section 3, we propose an estimator which does not depend on these parameters,

since they are hardly known in practice.

2.2. Lower bound. In the previous section, we have proved that rn(·) is an

upper bound over the Hölder class Σ. Here, we show that in some sense, it is optimal.

First, we give a criterion for comparing upper bounds. If (an) and (bn) are positive

sequences, we write xn ≪ yn when limn→+∞ yn/xn = +∞. In what follows, |I|
stands for the length of an interval I.

Definition 3. Let ρn(·) and vn(·) be upper bounds over some function class F ,

and (αn) be a sequence of positive numbers going to 0. We say that ρn(·) is better

than vn(·) over F at the order αn if there exists an interval In ⊂ [0, 1] with

|In| ≫ αn,

such that

lim
n→+∞

sup
x∈In

ρn(x)/vn(x) = 0.

Definition 3 means that in some interval In, with a size which is larger in order

than αn, ρn(·) is uniformly better than vn(·).
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Theorem 2. If µ is continuous, and if there exist β > 0 and Lµ > 0 such that

for any x ∈ [0, 1] and h > 0,

µ([x− h, x+ h]) > Lµh
β+1, (2.5)

then for any interval In ⊂ [0, 1] such that

|In| ≍ n−α

where 0 < α < 1/(1 + 2s+ β), we have

lim inf
n

inf
bfn

sup
f∈Σ

E
n
f,µ

{
w

(
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
)}

> 0,

where rn(·) is given by (2.1).

In theorem 2, equation (2.5) means that µ can be vanishing on [0, 1], but not

faster than a power function of order β. It is easy to see that assumption D from

the upper bound entails (2.5) with a good choice of β and Lµ. A consequence of

theorem 2 is the following.

Corollary 1. Under the same assumptions as that of theorem 2, no conver-

gence rate is better than rn(·) in the sense of definition 3 over the class Σ at the

order n−1/(1+2s+β).

Remark. The reason why we were not able to prove that rn(·) is optimal at

smaller orders than n−1/(1+2s+β) is technical. Ideally, we shall prove that no rate

can improve rn(·) at any single point, but we cannot say if this is true or false, or

technical.

We provide an explicit computation of the normalisation factor rn(·) for s =

L = σ = 1 and the design density µ(x) = |x− 1/2|1[0,1](x). Solving (2.2) leads to

rn(x) =





( log n
n(1−2x)

)1/3
if x ∈

[
0, 1

2 −
( log n

21/2n

)1/2
]
;

1
2

{(
(x− 1

2 )4 + 4 log n
n

)1/2 − (x− 1
2 )2

}1/2

if x ∈
[

1
2 −

( log n
21/2n

)1/2
, 1

2 +
( log n

21/2n

)1/2
]
;

( log n
n(2x−1)

)1/3
if x ∈

[
1
2 +

( log n
21/2n

)1/2
, 1

]
.

The order (log n/n)1/3 of rn(·) near the boundaries coincides with that of the classi-

cal minimax rate ψn (see (2.4)) for s = 1. At the middle of the interval, the design

is vanishing with polynomial order β = 1, and the order (log n/n)1/4 of rn(·) corre-

sponds to that of the pointwise minimax rate (1.2) with β = 1, up to the log n term,

which is due to the sup norm loss. As expected, we obtain in this example that the
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value of rn(·) is smaller in order at the middle of the interval (where µ is vanishing)

than near the boundaries. We illustrate rn(·) for several n in figure 1 below.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.2  0.4  0.6  0.8  1

rn with n = 100
n = 1000

n = 10000
µ

Figure 1. rn(·) for n = 100, 1000, 10000

3. A design and smoothness spatially adaptive estimator

In the previous section, for the proof of theorem 1, we need to know the smooth-

ness of the signal f and the design density µ to build an estimator converging with

the rate rn(·). In practical situations, we do not know µ nor the smoothness of f ,

thus we propose in this section an adaptive procedure which does not depend on

these parameters. We define the design sample measure

µ̄n =
1

n

n∑

i=1

δXi ,

where δ is the Dirac mass. In what follows, we fix S > 0, which corresponds to the

maximal smoothness index of f , and we define κ = ⌊S⌋. The integer κ is then used

as a degree of complexity in the method described below.

3.1. Local polynomial estimation. As in the previous chapters, we consider

a modified version of the local polynomial estimator. If I ⊂ [0, 1], we consider the

inner product

〈f , g〉I =
1

µ̄n(I)

∫

I
fg dµ̄n,

where
∫
I g dµ̄n = n−1

∑
Xi∈I f(Xi). Suppose that we want to recover f at a point

x ∈ [0, 1]. We choose an interval I ⊂ [0, 1] such that x ∈ I (the adaptive selection of
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I is described below). We consider the functions φm(y;x) = (y−x)m where m ∈ N.

We introduce the matrix XI(x) and the vector YI(x) with entries

(XI(x))p,q = 〈φp(·;x) , φq(·;x)〉I , (YI(x))p = 〈Y , φp(·;x)〉I ,

for 0 6 p, q 6 κ. Then, we define

X̄I(x) = XI(x) +
1√

nµ̄n(I)
Iκ+11Ωc

I (x),

where ΩI(x) =
{
λ(XI(x)) >

(
nµ̄n(I)

)−1/2}
and λ(M) is the smallest eigenvalue of

a matrix M and Iκ+1 is the identity matrix on R
κ+1. When µ̄n(I) > 0, the solution

θ̂I(x) of the system

X̄I(x) θ = YI(x) (3.1)

is well defined. When µ̄n(I) = 0, we take θ̂I(x) = 0. If I is well chosen, the first

coordinate (θ̂I(x))0 of the vector θ̂I(x) shall be close to f(x).

The interval I is a smoothing parameter which is, theoretically, given by a bal-

ance equation between the bias and the variance terms of the estimator (see equa-

tion (4.3) below).

3.2. Where to choose the interval? For the estimation at x, the method

starts to build a set In(x) of intervals containing x. If

In(x; I) = {J ∈ In(x), such that J ⊆ I},

we assume that In(·) satisfies the following property.

Assumption I. For any x ∈ [0, 1] and I ∈ In(x) we have x ∈ I, and there exists

a > 1 such that for any I∗ satisfying

I∗ = argmax
J∈In(x;I)

{
µ̄n(J) such that µ̄n(J) < µ̄n(I)

}
,

we have

µ̄n(I∗) > µ̄n(I)/a. (3.2)

Moreover, we assume that there is A > 0 such that for any x ∈ [0, 1] and I ∈ In(x),

#
(
In(x; I)

)
6 (nµ̄n(I))A, (3.3)

where #(E) denotes the cardinal of a finite set E.

Example. One way of building In(x) is the following. First, we sort the (Xi, Yi)

into (X(i), Y(i)) such that X(i) 6 X(i+1), and we take j satisfying x ∈ [X(j),X(j+1)]

(if necessary, we take X(0) = 0 and X(n+1) = 1). Then, we consider

Ia
n(x) =

[loga(j+1)]⋃

p=0

[loga(n−j)]⋃

q=0

[
X(j+1−[ap]),X(j+[aq ])

]
, (3.4)
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where a > 1. This set satisfies assumption I: the condition (3.2) is clearly satisfied

and (3.3) is satisfied with a small A since for any x ∈ [0, 1] and I ∈ In(x) we have

#(In(x; I)) = O
((

loga(nµ̄n(I))
)2)

.

Example. Another example is the ”maximal” set. This set would provide a

more efficient estimator, but it is computationally more expensive. If j is such that

x ∈ [X(j),X(j+1)], it consists of all the intervals with boundaries at design points

containing x:

Imax
n (x) =

j⋃

p=0

n−j⋃

q=1

[X(j−p),X(j+q)].

This set satisfies assumption I since we have µ̄n(I∗) > µ̄n(I) − 1 and #(In(x, I)) =

O((nµ̄n(I))2).

3.3. Adaptive selection of the interval. If ‖g‖I = 〈g , g〉1/2
I , we define the

diagonal matrix ΛI(x) with entries

(ΛI(x))p,p = ‖φp(·;x)‖−1
I ,

for 0 6 p 6 κ and the matrix HI(x) = ΛI(x)X̄I(x), which has entries

(HI(x))p,q =
〈φp(·;x) , φq(·;x)〉I

‖φp(·;x)‖I
,

for 0 6 p, q 6 κ. Let ‖x‖∞ = max06p6κ |xp| for x ∈ R
κ+1. For the estimation at x,

the interval I is selected in the following way:

În(x) = argmax
I∈In(x)

{
µ̄n(I) such that for all J ∈ In(x; I),

‖HJ(x)(θ̂I(x) − θ̂J(x))‖∞ 6 Tn(I, J)
}
,

where the threshold term is

Tn(I, J) = σn−1/2
[
DI

(
µ̄n(I)−1 log n

)1/2
+DI,wCκ

(
µ̄n(J)−1 log(nµ̄n(I))

)1/2
]
,

with Cκ = (1 + (κ+ 1)1/2), DI,w = 2
√

2(A + 2p) (we recall that w(x) = O(1 + xp))

and DI > 0 is a tuning parameter depending on the choice of In(·), to be specified

below. The estimator of f(x) is then given by the first coordinate of θ̂bIn(x)(x),

namely

f̂n(x) = (θ̂bIn(x)
(x))0.

This adaptive selection of the smoothing parameter is barely the same as the

one from chapter 2. This method is mainly inspired from the methods by Lepski
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and Spokoiny : see Lepski (1990), Lepski and Spokoiny (1997), Lepski et al. (1997)

and Spokoiny (1998).

4. Upper bounds for the adaptive estimator

A common way of measuring the smoothness of a function is to consider its local

oscillation, defined for any interval I ⊂ [0, 1] by

osck f(I) = inf
P∈Vk

sup
x∈I

|f(x) − P (x)|, (4.1)

where Vk is the set of all real polynomials with degree at most k. Obviously, when

k 6 κ, we have oscκ f(I) 6 osck f(I) for any I ⊂ [0, 1] and f . We denote for brevity

osc f = oscκ f . When f ∈ Σ(s, L) for s 6 S, we have clearly

osc f([x− h, x+ h]) 6 Lhs/k! (4.2)

for any x ∈ [0, 1]. Note that the right hand side of this inequality only depends on

h, and not on the point x. In this section, we consider a larger class of functions,

consisting of signals f satisfying for any x ∈ [0, 1] and h > 0,

osc f([x− h, x+ h]) 6 ω(x, h),

where ω(·, ·) is fixed and satisfies some assumptions, see below. This condition

includes signals with spatially inhomogeneous smoothness, which are signals with a

non-constant Hölder index s over [0, 1].

4.1. A conditional on the design upper bound. When no assumption is

made on the behaviour of µ, we can work conditional on the design. We denote by

Xn the sigma-algebra generated by the random variables Xi, 1 6 i 6 n. Among all

the intervals in In(x), an ideal oracle interval is given by

In(x; f) = argmax
I∈In(x)

{
µ̄n(I) such that osc f(I) 6 σDI

(
̺nµ̄n(I)

)−1/2}
, (4.3)

where ̺n = n/ log n, and DI > 0 (this constant appears in the threshold term

Tn(I, J)). This interval is not necessarily unique. This oracle interval is used in the

next theorem to define the normalisation factor assessing the adaptive procedure.

We need to introduce some notations. We define the matrix

GI(x) = ΛI(x)X̄I(x)ΛI(x), (4.4)

and for α,Q > 0 we define Cα = DI + DI,w + (2α)1/2 + 2p1/2 + 1 and CQ =

σ−p(2p + 1)(Q ∨ 1)(κ + 1)p/2(κ + 2)c(2p, σ)1/2 where c(p, σ) = (2/π)1/2
∫

R+(1 +

σt)p exp(−t2/2)dt.

Theorem 3. If
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• ‖f‖∞ 6 Q for some Q > 0;

• α > 0, ∆n = n−α and xj = j∆n for j ∈ Jn = {0, . . . , [∆−1
n ]};

• Ij = In(xj ; f) where In(x; f) is the oracle interval defined by (4.3);

• Rn(xj) = σ
(
log n/(nµ̄n(Ij))

)1/2
;

then on the event

Ln =
⋂

j∈Jn

{
λ
(
XIj(xj)

)
>

(
nµ̄n(Ij)

)−1/2} ∩
{
µ̄n(Ij) > 0

}
,

we have for any n > κ+ 1,

E
n
f,µ

{
w

(
max
j∈Jn

Rn(xj)
−1|f̂n(xj) − f(xj)|

)∣∣Xn

}

6 Cα max
j∈Jn

λ(Gj)
−1 + CQ(log n)−p/2,

where Gj = GIj (xj).

Remark. On Ln, we have λ(Gj) > 0 for any j ∈ Jn. Note that in this theorem,

the constant α can be arbitrary large, thus the discretisation step ∆n can be of any

polynomial order.

4.2. Upper bound under assumption D. In this section, when µ satisfies

assumption D, we prove that the adaptive estimator converges simultaneously over

several classes F of functions with inhomogeneous smoothness. The rate of conver-

gence of the procedure is described below, and it is equal to (2.1) when f ∈ Σ(s, L).

We recall that S > 0 is a fixed maximal smoothness index and that κ = ⌊S⌋
is the degree of the local polynomials, see section 3.1. If S = [ν, S] for some small

ν > 0 fixed, we define the set R(S) of all the functions w(·, ·) : [0, 1] × R
+ → R

+

such that for any x ∈ [0, 1], ω(x, ·) is nondecreasing and ω(x, ·) ∈ RV(s(x)) where

s(x) ∈ S.

Then, for any Q > 0 and ω ∈ R(S), we consider the set F(ω,Q) of all the

functions f : [0, 1] → R such that ‖f‖∞ 6 Q and for any x ∈ [0, 1] and h > 0,

oscκ f([x− h, x+ h]) 6 ω(x, h),

where oscκ is defined by (4.1). Then, we define the bandwidth hn(·) = hn(· ;ω, µ)

satisfying for any x ∈ [0, 1]

ω(x, hn(x)) = σ
(
̺n µ([x− hn(x), x+ hn(x)])

)−1/2
, (4.5)

where ̺n = n/ log n, and the rate rn(·) = rn(· ;ω, µ) defined by

rn(x) = ω(x, hn(x)). (4.6)

Note that in the Hölder case (ω(x, h) = Lhs) (4.5) is the same as (2.2).
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Theorem 4. If

• µ satisfies assumption D;

• the points xj for j ∈ Jn are chosen as in theorem 3;

• λ∗ > 0 and

Ln =
⋂

j∈Jn

{
λ
(
XIj(xj)

)
> λ∗

}
∩

{
nµ̄n(Ij) > λ−2

∗
}
,

• f̂n(·) is the estimator with In(·) = Ia
n(·) for a > 1 (see (3.4)) and DI >

√
2

(see section 3.3);

then we have for any ω ∈ R(S) and Q > 0

lim sup
n

sup
f∈F(ω,Q)

E
n
f,µ

{
w

(
max
j∈Jn

rn(xj ;ω, µ)−1|f̂n(xj) − f(xj)|
)
1Ln

}
6 C∗,

where rn(· ;ω, µ) is given by (4.6) and C∗ > 0 depends on λ∗,I, w, α,Q,S. Moreover,

we have for any x ∈ [0, 1]

rn(x;ω, µ) = (1 + on(1))σ2γ(x)(log n/n)γ(x)ℓx(log n/n),

where ℓx is slowly varying and

γ(x) =
s(x)

1 + 2s(x) + min(β−(x), β+(x))
.

When f ∈ Σ(s, L) and µ is positive, we have s(x) = s and β−(x) = β+(x) = 0

for any x ∈ [0, 1], and we find

rn(x) ≍ σ2s/(2s+1)L1/(2s+1)(log n/n)s/(2s+1),

which is the classical minimax rate for sup norm risk. We discuss the result of

theorem 4 in the next section.

5. Discussion

5.1. About theorem 2. In theorem 2, we show the optimality of rn(·) up

to the order αn = n−1/(1+2s+β) (see definition 3 and corollary 1), and we cannot

improve this order. We are not able to say if for orders smaller than αn the result

is false, or more technical. It is noteworthy that in theorem 2 from chapter 3 (see

page 87), the same phenomenon occurs: therein, we prove the lower bound up to

the order n−1/(2s+1) (β = 0 since the design is positive), and if we want to achieve

the exact minimax constant, we must restrict to logarithmic orders.

Actually, the sequence (αn) corresponds to the ”worst” bandwidth over [0, 1],

or in other words, to the maximum of hn(·) (see (2.2)). The general method for

proving lower bounds is to exhibit a critical parametric subfamily of functions in

the parameter space (here Σ), and to randomise them in an appropriate way. The
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problem for the proof of these lower bounds is then to make the support of the

critical functions fit in the interval In. Consequently, we cannot take In too small,

and more precisely not smaller that the worst bandwidth.

5.2. About theorems 3 and 4. When considering the adaptive estimator

with In(x) = Imax
n (x) (see section 3.2), using similar techniques as in chapter 2 (see

for instance the proof of lemma 9, page 77), we can prove under assumption D that

the probabilities of Ln and Ln (for λ∗ well chosen) are going to 1 exponentially.

When f belongs to some Hölder class Σ(s, L) for s ∈ S, we can prove theorems 3

and 4 with risk norm ‖ · ‖∞ instead of the considered discretised maximal risk. In

this case, the convergence rate is equal to rn(·) (see (2.1)) and we know that it is

indeed optimal in the sense of definition 3, see theorem 2. However, over the class

F(ω,Q), the optimality of rn(·;ω, µ) is not proved. The proof of the upper bound

over Σ(s, L) for the adaptive estimator with sup norm loss shall be close to that of

theorem 1, with an estimator defined as a Taylor expansion between discretisation

points xj with a sufficiently small step ∆n. Note that the coefficients of the vector

θ̂bI(x)(x) provide good estimates of both f(x) and its derivatives.

The reason why we can take ∆n of any polynomial order is linked with the fact

that the variance of the estimator is bounded by
(
nµ̄n(I)

)−1/2
WM where WM is

the maximum of a centered Gaussian vector of size ∆−1
n = nα. But a well known

fact is that

E{WM} = O(log ∆−1
n ) = O(α log n),

which fits with the log n term in the definition of hn(x), see (2.2). This is roughly

the reason why for sup norm risks, we pay a log term in the minimax rate.

5.3. About the class F(ω,Q). In the class F(ω,Q), we assume that for any

x ∈ [0, 1], the local oscillation at x of f is bounded by a s(x)-regularly varying

function, which is a function behaving as a s(x) power function times a slower term.

If s(x) is not constant, then f has a spatially inhomogeneous smoothness. Note that

if ω(x, h) = Lhs/k!, we have ΣQ(s, L) ⊂ F(ω,Q), see the beginning of section 4.

Another example of functional space with inhomogeneous smoothness is the

Besov space Bs
p,∞, which is characterised by the property

sup
06h61

h−sp

∫ 1

0
ω(x, h)pdx < +∞,

when s > 1/p. Note that however, when p < +∞, this space is well adapted for

integrated error risks (Lq, q < +∞ risks) but not for sup norm risks.
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6. Proofs of the upper bounds

We recall that GI(x) = ΛI(x)X̄I(x)ΛI(x), ΩI(x) =
{
λ(XI(x)) >

(
nµ̄n(I)

)−1/2}

(see section 3.1) and that ̺n = n/ log n. We need the following lemmas.

Lemma 1. Let I be an interval in [0, 1]. If PI ∈ Vκ is such that

‖f − PI‖I 6 osc f(I) + ε,

then we have on ΩI(x),

‖Λ−1
I (x)(θ̂I(x) − θI)‖∞

6 λ(GI(x))
−1(κ+ 1)1/2

(
osc f(I) + ε+ σ(̺nµ̄n(I))−1/2‖γI‖∞

)
,

where θI is the coefficients vector of PI and γI = TIξ, where TI is such that T′ITI =

σ−1Iκ+1 (this entails that conditional on Xn, γI is centered Gaussian and such that

E
n
f,µ{γ2

I,m|Xn} 6 1).

For any interval I ⊂ [0, 1] and a point x ∈ [0, 1], we define the event Γn,I(x) ={
min16m6κ ‖φm(· ;x)‖I > n−1/2

}
.

Lemma 2. When ‖f‖∞ 6 Q, for any J ⊂ I, x ∈ [0, 1] and p > 0, we have

E
n
f,µ

{
|(θ̂J(x))0|p|Xn

}
6 (κ+ 1)p/2(Q ∨ 1)pc(p, σ)(nµ̄n(I))p/2, (6.1)

where c(p, σ) = (2/π)1/2
∫

R+(1+σt)p exp(−t2/2)dt. Moreover, when 1 6 m 6 κ, we

have on Γn,I(x),

E
n
f,µ

{
|(θ̂I(x))m|p|Xn

}
= O(np). (6.2)

Lemma 3. If hn(·) is defined by (2.2), when µ is continuous and satisfies (2.5),

we have

inf
x∈[0,1]

hn(x) >
(
σ2/(2L2‖µ‖∞)(log n/n)

)1/(2s+1)
, (6.3)

‖hn‖∞ 6 (σ/(L1/2
µ L))2/(1+2s+β)(log n/n)1/(1+2s+β). (6.4)

Moreover,

‖(r−1
n )′‖∞ 6 ‖µ‖∞ ‖h−(1+s+β)

n ‖∞/(LµL). (6.5)

6.1. Proof of theorem 1. In view of assumption D, we can write at any point

x ∈ Dµ µ(x + h) = hβ+(x)ℓ+(h) and µ(x − h) = hβ−(x)ℓ−(h) where ℓ+ and ℓ− are

slowly varying functions. Recalling that for any slowly varying ℓ and α > 0 we have

limh→0+ hαℓ(h) = 0 and
∫ h
0 t

αℓ(t)dt ∼ hα+1ℓ(h)/(α+ 1) as h→ 0+ (see for instance

section 7 from chapter 1), we can find β > 0 (for instance β = 1 + maxx∈Dµ β
−(x)∨

β+(x)) and Lµ > 0 such that (2.5) holds. We consider

∆n = inf
x∈[0,1]

hn(x) ∧ ‖(rn(·)−1)′‖−1
∞ ,
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and the points xj = j∆n, j ∈ Jn , {0, . . . ,Mn + 1}, where Mn , [∆−1
n ] with

xMn+1 = 1. Since (2.5) holds, and

Mn = O(∆−1
n ) = O

((
inf

x∈[0,1]
hn(x)

)−1 ∨ ‖(rn(·)−1)′‖∞
)
,

we obtain easily from lemma 3 that

logMn = O(log n). (6.6)

We define the intervals Ij = [xj −hn(xj), xj +hn(xj)] and θ̂j = θ̂Ij(xj), where θ̂I(x)

is given by (3.1), with order κ = k. Then, at x ∈ Ij we define the estimator f̂n

(hn(·) is known) by

f̂n(x) = θ̂j,0 +
( k∑

m=1

θ̂j,m(x− xj)
m

)
1Γn,j ,

where Γn,j = Γn,Ij(xj). We need to introduce some notations: we define φj,m(x) =

(x− xj)
m, Γn = ∩j∈JnΓn,j, Ωn = ∩j∈JnΩIj(xj), and the events

Dn,m,j =
{∣∣∣ 1

hm
j µ(Ij)

∫

Ij

φj,m dµ̄n − χµ(xj;m)
∣∣∣ 6 ε

}

where 0 < ε 6 1/2. If β(x) , β−(x) ∧ β+(x), we define

χµ(x;m) ,





(β(x)+1)(α(x)+(−1)m )
m+β(x)+1 if α(x) < +∞;

β(x)+1
m+β(x)+1 if α(x) = +∞;

(see assumption D) and Dn = ∩j∈Jn ∩06m62k Dn,m,j. We need the following lemma.

Lemma 4. There is an event An ∈ Xn such that

An ⊂ Γn ∩ Ωn ∩ Dn ∩j∈Jn {λ(GIj ) > λµ}, (6.7)

where λµ is some positive constant, and for some DA > 0,

P
n
µ{Ac

n} 6 exp(−DAn2s/(1+2s+β)). (6.8)

The proof of this lemma is given below. Let us denote θj,m = f (m)(xj)/m! and

the vector θj with coordinates θj,m. We introduce also rj = rn(xj), hj = hn(xj).

From now on, we work on the event An. Using f ∈ Σ(s, L), and since An ⊂ Γn, we

obtain from the Taylor expansion of f at x ∈ Ij

|f̂n(x) − f(x)| 6

k∑

m=0

|θ̂j,m − θj,m||x− xj |m + L∆s
n,

thus, since |rn(x)−1 − r−1
j | 6 ‖(rn(·)−1)′‖∞∆n 6 1, we obtain for any x ∈ Ij,

rn(x)−1|f̂n(x) − f(x)| 6 (r−1
j + 1)

k∑

m=0

|θ̂j,m − θj,m|∆m
n + 1.
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When f ∈ Σ(s, L), it easy to check that for any interval I ⊂ [0, 1],

osc f(I) 6 L|I|s/k!, (6.9)

thus, since An ⊂ Ωn, we know from lemma 1 that

‖Λ−1
Ij

(θ̂j − θj)‖∞ 6 λ(GIj )
−1(k + 1)1/2

(
Lhs

j + σ(̺nµ̄n(Ij))
−1/2‖γj‖∞

)
,

where γj = Tjξ is a centered Gaussian vector such that E
n
f,µ{γ2

j,m|Xn} 6 1, for

any 0 6 m 6 k. Since An ⊂ Dn,2m,j for any 0 6 m 6 k, and An ⊂ Dn,0,j =

{|µ̄n(Ij)/µ(Ij) − 1| 6 ε} we have

‖φj,m‖Ij =
( ∫

Ij

φj,2m dµ̄n/µ̄n(Ij)
)1/2

>
(∫

Ij

φj,2m dµ̄n/((1 + ε)µ(Ij))
)1/2

> hm
j

(
(χµ(xj ; 2m) − ε)/(1 + ε)

)1/2
,

thus, by definition of ΛI(x) and since An ⊂ {λ(GIj ) > λµ}, we obtain for any

0 6 m 6 k,

|θ̂j,m − θj,m| = O(Lhs−m
j )(1 + (log n)−1/2‖γj‖∞),

and since ∆n 6 hj for any j ∈ Jn, we obtain for any x ∈ Ij,

rn(x)−1|f̂n(x) − f(x)| = O
(
1 + (log n)−1/2‖γj‖∞

)
.

The vector W , (γ′I0 , . . . , γ
′
IMn+1

)′ satisfies W = Tξ, where

T = (T′I0, . . . ,T
′
IMn+1

)′,

(see lemma 1), thus conditional on Xn, W is a centered Gaussian vector such that

E
n
f,µ{W 2

m} 6 1 for any 0 6 m 6 (k+ 1)Mn. Let us define WM , maxj∈Jn ‖γj‖∞ =

max06m6(k+1)Mn
|Wm|, and the event Wn =

{
WM − E

n
f,µ{WM} 6 DW (log n)1/2

}
,

where DW > 0 is chosen below. We recall the following classical result about

Gaussian vector (see for instance in Ledoux and Talagrand (1991)):

E
n
f,µ{WM} 6

(
2 log

(
(k + 1)Mn

))1/2
, (6.10)

and

P
n
f,µ{Wc

n} 6 exp(−D2
W log n/2) = n−D2

W /2. (6.11)

Together with (6.6), (6.10) entails E
n
f,µ{WM} = O

(
(log n)1/2

)
. Thus, we obtain on

An ∩Wn, uniformly for f ∈ Σ(s, L) and x ∈ [0, 1],

rn(x)−1|f̂n(x) − f(x)|

= O(1)
(
1 + (log n)−1/2(WM − E

n
f,µ{WM} + E

n
f,µ{WM})

)
= O(1),

and using w(x) 6 A(1 + xp), we obtain

sup
f∈Σ

E
n
f,µ

{
w

(
sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|

)
1An∩Wn

}
= O(1).
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Now we work on Ac
n ∪Wc

n. Using lemma 2, lemma 4 and (6.11) for a choice of DW

large enough, we obtain

sup
f∈Σ

E
n
f,µ{w( sup

x∈[0,1]
rn(x)−1|f̂n(x) − f(x)|)1Ac

n∪Wc
n
}

= O(1)
(

E
n
f,µ{‖f̂n(·)‖2p

∞} +Q2p
)1/2(

P
n
f,µ{Ac

n ∪Wc
n}

)1/2
= o(1),

and the statement of the theorem follows. �

6.2. Lemmas on the adaptive procedure. We define the event

TJ,I(x) =
{
‖HJ(x)(θ̂I(x) − θ̂J(x))‖∞ 6 Tn(I, J)

}
,

and TI(x) = ∩J∈In(x;I)TJ,I(x). We define

f̂I(y;x) =
κ∑

m=0

(θ̂I(x))m(y − x)m,

and f̂I(x) = f̂I(x;x) = (θI(x))0. It is useful to remark that for 0 6 m 6 κ,

(
HJ(x)(θ̂I(x) − θ̂J(x))

)
m

= 〈f̂I(·;x) − f̂J(·;x) , φm(·;x)〉J/‖φm(·;x)‖J . (6.12)

Lemma 5. If I ∈ In(x) is such that

osc f(I) 6 σDI
(
̺nµ̄n(I)

)−1/2
,

we have on ΩI(x)

P
n
f,µ{T c

I (x)|Xn} 6 (κ+ 1)(nµ̄n(I))−2p.

Lemma 6. Let I ∈ In(x) and J ∈ In(x; I). On the event TJ,I(x) ∩ ΩJ(x), we

have

|f̂I(x) − f̂J(x)| 6 (κ+ 1)1/2λ−1(GJ (x))σ(DI +DI,wCκ)
(
log n/(nµ̄n(J))

)1/2
,

where we recall that GI(x) is given by (4.4).

6.3. Proof of theorem 3. It is convenient to introduce Îj = În(xj), Ij =

In(xj ; f) and Rj = Rn(xj). We denote Gj = GIj(xj), and Tj =
{
µ̄n(Ij) 6 µ̄n(Îj)

}
.

Note that we for any j ∈ Jn we have Ln ⊂ ΩIj(xj). By definition of În(xj) we have

Tc
j ⊂ T c

Ij
, and since ‖f‖∞ 6 Q we obtain using lemmas 2 and 5

E
n
f,µ

{
R−p

j |f̂n(xj) − f(xj)|p1Tc
j
|Xn

}

6 (2p ∨ 1)R−p
j

((
E

n
f,µ{|f̂n(xj)|2p}

)1/2
+Qp

)(
P

n
f,µ{T c

Ij
|Xn}

)1/2

6 σ−p(2p ∨ 1)(Q ∨ 1)p(κ+ 1)1+p/2(c(2p, σ)1/2 ∨ 1)(log n)−p/2.

By the definition of În(xj), we have

Tj ⊂ TIj ,bIj
,
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thus using lemma 6 we obtain that on Tj,

R−1
j |f̂bIj

(xj) − f̂Ij(xj)| 6 λ−1(Gj)(DI +DI,wCκ).

Using lemma 1, and in view of the definition (4.3) of Ij = In(xj ; f), we obtain

|f̂Ij(xj) − f(xj)| 6 λ(Gj)
−1(κ+ 1)1/2

(
osc f(Ij) + σ(nµ̄n(Ij))

−1/2|γj |
)

6 Rjλ(Gj)
−1(κ+ 1)1/2

(
1 + (log n)−1/2|γj |

)
,

where γj = Tjξ is such that E
n
f,µ{γ2

j |Xn} 6 1. Then, we have on Tj

R−1
j |f̂n(xj) − f(xj)| 6 λ−1(Gj)(κ+ 1)1/2

(
DI +DI,wCκ + 1 + (log n)−1/2|γj |

)
.

We define WM = maxj∈Jn |γj | and the event

Wn =
{
WM − E

n
f,µ{WM} 6 2(p log n)1/2

}
.

It is well known that (see for instance in Ledoux and Talagrand (1991))

E
n
f,µ{WM} 6

(
2 log([∆−1

n ])
)1/2

6 (2α log n)1/2,

and

P
n
f,µ{Wc

n|Xn} 6 exp(−2p log n) = n−2p.

Thus, on Tj ∩Wn we have

max
j∈Jn

R−1
j |f̂n(xj) − f(xj)|

6 max
j∈Jn

λ(Gj)
−1(DI +DI,wCκ + 1 + (log n)−1/2WM)

6 max
j∈Jn

λ(Gj)
−1(DI +DI,wCκ + 1 + (2α)1/2 + 2p1/2),

and on Wc
n, we have using lemma 2 in the same fashion as above,

E
n
f,µ

{
R−p

j |f̂n(xj) − f(xj)|p1Wc
n
|Xn

}

6 σ−p(2p ∨ 1)(Q ∨ 1)p(κ+ 1)p/2(c(2p, σ)1/2 ∨ 1)(log n)−p/2,

thus the theorem. �

6.4. Proof of theorem 4. Let ω ∈ R(S). We define

Hn(x) = argmin
h∈[0,1]

{
ω(x, h) > σ

(
̺nµ̄n(Ix,h)

)−1/2}
, (6.13)

where Ix,h = [x− h, x+ h]. We define also

I∗n(x; f) = argmax
I∈[0,1]

{
µ̄n(I) such that osc f(I) 6 σDI

(
̺nµ̄n(I)

)−1/2}
,
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where the difference with (4.3) is that the infimum is taken among any interval

I ⊂ [0, 1]. In particular, we have µ̄n

(
In(x; f)

)
6 µ̄n

(
I∗n(x; f)

)
. We denote IH

n (x) =

Ix,Hn(x). Since f ∈ F(ω,Q), we have by definition of Hn(x) either

osc f(IH
n (x)) 6 ω(x,Hn(x)) = σ

(
̺nµ̄n(IH

n (x))
)−1/2

,

or

osc f(IH
n (x)) 6 ω(x,Hn(x)) 6 σ

( µ̄n(IH
n (x)) − 1

log n

)−1/2
.

Then, since DI >
√

2, we obtain that in both cases,

osc f(IH
n (x)) 6 σDI

(
̺nµ̄n(IH

n (x))
)−1/2

,

thus µ̄n

(
IH
n (x)

)
6 µ̄n

(
I∗n(x; f)

)
. We take j(x) such that x ∈ [Xj(x),Xj(x)+1], where

X(i) < X(i+1) for any 1 6 i 6 n (eventually X(0) = 0 and X(n+1) = 1). We

consider the largest interval I−n (x; f) in Ia
n(x) such that I−n (x; f) ⊂ I∗n(x; f). Since

osc f(I)2µ̄n(I) increases as I increases, we have

osc f(I−n (x; f)) 6 σDI
(
̺nµ̄n(I−n (x; f))

)−1/2
,

thus µ̄n

(
I−n (x; f)

)
6 µ̄n

(
In(x; f)

)
. If p and q are such that

I−n (x; f) = [X(j(x)+1−[ap]),X(j(x)+[aq ])],

(see (3.4)), and if u, v are such that [X(u),X(v)] ⊂ I∗n(x; f) and µ̄n([X(u),X(v)]) =

µ̄n(I∗n(x; f)), we have

µ̄n

(
[X(j(x)+1−[ap]),X(j(x)+[aq ])]

)
6 µ̄n

(
[X(u),X(v)]

)

6 µ̄n

(
[X(j(x)+1−[ap+1]),X(j(x)+[aq+1])]

)
,

thus µ̄n

(
I∗n(x; f)

)
6 a2µ̄n

(
I−n (x; f)

)
6 a2µ̄n

(
In(x; f)

)
, and finally

µ̄n

(
IH
n (x)

)
6 a2µ̄n

(
In(x; f)

)
.

We need the following lemma.

Lemma 7. If ω ∈ R(S) and Hn(x) is given by (6.13), we can find for any

0 < ε 6 1/2 some 0 6 η 6 ε such that if

Mn,ε(x) ,
{∣∣∣
µ̄n(Ix,(1−ε)hn(x))

µ(Ix,(1−ε)hn(x))
− 1

∣∣∣ 6 η
}
∩

{∣∣∣
µ̄n(Ix,(1+ε)hn(x))

µ(Ix,(1+ε)hn(x))
− 1

∣∣∣ 6 η
}
,

we have for n large enough

Mn,ε(x) ⊂
{
|Hn(x)/hn(x) − 1| 6 ε

}
.

Moreover, if (2.5) holds, there is DM > 0 such that if Mn,ε = ∩j∈JnMn,ε(xj), we

have

P
n
µ{Mc

n,ε} 6 exp
(
−DM η2n2s/(1+2s+β)

)
.
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In view of lemma 7, we have on Mn,ε(x) that (1−η)µ(Ix,(1−ε)hn(x)) 6 µ̄n(Ix,(1−ε)hn(x)) 6

µ̄n(IH
n (x)), thus

µ(Ix,(1−ε)hn(x)) 6 (1 − η)−1a2µ̄n(In(x; f)).

Under assumption D, for any 0 < ε 6 1/2, we can find Cµ > 0 such that for any

x ∈ [0, 1] and h > 0 small enough, µ(Ix,h) 6 Cµµ(Ix,(1−ε)h). Then, uniformly for

j ∈ Jn, since ‖hn‖∞ goes to 0, we have µ(Ixj ,hn(xj)) = O(µ̄n(Ij)), thus rn(xj)
−1 =

O(Rn(xj)
−1). Since Ln ⊂ Ln, we can apply theorem 3, and we obtain

sup
f∈F(ω,Q)

E
n
f,µ

{
w

(
max
j∈Jn

rn(xj)
−1|f̂n(xj) − f(xj)|

)
1Ln∩Mn,ε

}

6 Cα max
j∈Jn

λ(Gj)
−1 + CQ(log n)−p/2,

where we recall that Gj = GIj(xj) = ΛIj (xj)XIj(xj)ΛIj (xj) (on Ln, we have

X̄Ij(xj) = XIj(xj)). Since Gj is symmetrical and positive definite, we have on

Ln that

λ(Gj)
−1 = ‖G−1

j ‖ = ‖ΛIj (xj)
−1‖‖XIj (xj)

−1‖‖ΛIj (xj)
−1‖

6 ‖XIj(xj)
−1‖ = λ(XIj (xj))

−1 6 λ∗,

thus

lim sup
n

sup
f∈F(ω,Q)

E
n
f,µ

{
w

(
max
j∈Jn

rn(xj)
−1|f̂n(xj) − f(xj)|

)
1Ln∩Mn,ε

}
< +∞.

Now we work on Mc
n,ε. Since assumption D entails (2.5) for well chosen Lµ > 0 and

β > 0, and since ‖f‖∞ 6 Q, using together lemmas 2, 3 and 7, we obtain

sup
f∈F(ω,Q)

E
n
f,µ

{
w

(
max
j∈Jn

rn(xj)
−1|f̂n(xj) − f(xj)|

)
1Ln∩Mc

n,ε

}
= o(1),

which concludes the proof of the upper bound.

Let x ∈ [0, 1] be fixed, and assume that α(x) = +∞, which entails that

β+(x) 6 β−(x). In what follows, we use some properties concerning regularly vary-

ing functions, see section 7 from chapter 1. We define G(x, h) = ω(x, h)2µ(Ix,h). We

have G(x, h) = G−(x, h) + G+(x, h), where G−(x, h) = ω(x, h)2
∫ h
0 µ(x − t)dt and

G+(x, h) = ω(x, h)2
∫ h
0 µ(x+t)dt. Since ω(x, ·) ∈ RV(s(x)) and assumption D holds,

we have G−(x, ·) ∈ RV(1 + 2s(x) + β−(x)) and G+(x, ·) ∈ RV(1 + 2s(x) + β+(x)).

Thus, if we define gn = G−(x, hn(x))/G+(x, hn(x)), we have limn→+∞ gn = 0. Then

G(x, hn(x)) = G+(x, hn(x))(1 + gn) = σ2̺−1
n , and hn(x) = G−1

+ (x, σ2/(̺n(1 + gn))),

where G−1
+ is the inverse (eventually the pseudo-inverse) of G+. Then, rn(x) =

ω(x, hn(x)) = ω(x,G−1
+ (x, σ2/(̺n(1 + gn))), and since

ω(x,G−1
+ (x, ·)) ∈ RV

(
s(x)/(1 + 2s(x) + β+(x)

)
,
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we obtain

rn(x) = σ2γ(x)̺−γ(x)
n (1 + gn)−γ(x)ℓx(σ2/(̺n(1 + gn))),

where ℓx is slowly varying, and then

rn(x) = (1 + on(1))σ2γ(x)(log n/n)γ(x)ℓx(log n/n).

The cases α(x) = 0 and 0 < α(x) < +∞ are similar. �

6.5. Proofs of lemmas.

Proof of lemma 1. The proof of this lemma is similar to that of lemma 4

from chapter 3, see page 105. �

Proof of lemma 2. The proof is similar to that of lemma 5 in chapter 3, see

page 107. For the proof of (6.1), the only difference is that we bound ‖G−1
I ‖ 6

(nµ̄n(I))1/2 instead of ‖G−1
I ‖ 6 n1/2. The proof of (6.2) is the same, see page 107.

�

Proof of lemma 3. Let us define G(x, h) = h2s
∫ x+h
x−h µ(t)dt. Equation (6.3)

follows from

(σ/L)2(log n/n) = G(x, hn(x)) 6 2‖µ‖∞hn(x)2s+1.

In view of (2.5) we obtain

(σ/L)2(log n/n) = G(x, hn(x)) > Lµhn(x)1+2s+β,

thus (6.4). Since

0 =
∂G(x, hn(x))

∂x
= 2sL2hn(x)2s−1h′n(x)M(x, hn(x))

+ L2hn(x)2s ∂M(x, hn(x))

∂x
,

where M(x, h) =
∫ x+h
x−h µ(t)dt, and

∂M(x, hn(x))

∂x
= µ(x+ hn(x)) − µ(x− hn(x))

+ h′n(x)(µ(x+ hn(x)) + µ(x− hn(x))),

we obtain

h′n(x) =
µ(x− hn(x)) − µ(x+ hn(x))

2sM(x, hn(x))/hn(x) + µ(x− hn(x)) + µ(x+ hn(x))
.

Using (2.5), we obtain for any x ∈ [0, 1]

|h′n(x)| 6 ‖µ‖∞hn(x)−β/(sLµ),

and (6.5) follows from

|(rn(x)−1)′| = sh′n(x)hn(x)−(s+1)/L. �
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Proof of lemma 4. If Ix,h = [x− h, x+ h], we define the events

Dn,m,h,η(x) =
{∣∣∣ 1

µ(Ix,h)

∫

Ix,h

( · − x

h

)m
dµ̄n − χµ(x;m)

∣∣∣ 6 η
}
,

where 0 6 m 6 2k and η > 0, and define

An =

2k⋂

m=0

⋂

j∈Jn

Dn,m,hj ,η(xj).

Note that if η 6 ε, we have Dn,m,hj ,η(xj) ⊂ Dn,m,j, thus An ⊂ Dn for η small

enough. We define the matrix Gµ(x) with entries

(Gµ(x))p,q =
χµ(x; p + q)

(
χµ(x; 2p)χµ(x; 2q)

)1/2
,

for 0 6 p, q 6 k, and we consider

λµ = min
x∈Dµ

λ(Gµ(x)) ∧ λ(Gµ(x0)),

for x0 ∈ [0, 1] − Dµ. It is easy to verify that λµ > 0. Similarly to the proof of

lemma 7 (see step 4, page 110), we can prove that for η small enough we have

An ⊂ Ωn ∩j∈Jn {λ(GIj ) > λµ},

and since on An we have ‖φj,m‖Ij > (χµ(xj ; 2m) − η)1/2hm
j > n−1/2 for any 0 6

m 6 k as n is large enough (see lemma 3), we obtain

An ⊂ Γn,

thus (6.7). Now we prove (6.8). First, we show that for any x ∈ [0, 1],

lim
h→0+

1

µ(Ix,h)

∫

Ix,h

(y − x

h

)m
µ(y)dy = χµ(x;m), (6.14)

as h→ 0+. Since

1

µ(Ix,h)

∫

Ix,h

(y − x

h

)m
µ(y)dy =

∫ 1
0 y

m(µ(x+ yh) + (−1)mµ(x− yh))dy
∫ 1
0 (µ(x+ yh) + µ(x− yh))dy

,

and since h 7→ µ(x + h) is β+(x)-regularly varying, and h 7→ µ(x − h) is β−(x)-

regularly varying, we have
∫ 1
0 y

mµ(x + yh)dy ∼ µ(x + h)/(m + β+(x) + 1) and∫ 1
0 y

mµ(x− yh)dy ∼ µ(x−h)/(m+β−(x)+1) as h→ 0+ (see for instance section 7

from chapter 1). Thus, when α(x) = 0, which means that µ(x + h)/µ(x − h) goes

to 0, we have β−(x) 6 β+(x) and

lim
h→0+

1

µ(Ix,h)

∫

Ix,h

(y − x

h

)m
µ(y)dy =

(−1)m(β−(x) + 1)

m+ β−(x) + 1
.
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When α(x) = +∞, we have that µ(x+h)/µ(x−h) goes to +∞, thus β+(x) 6 β−(x)

and

lim
h→0+

1

µ(Ix,h)

∫

Ix,h

(y − x

h

)m
µ(y)dy =

β+(x) + 1

m+ β+(x) + 1
.

When 0 < α(x) < +∞, we have µ(x+ h) ∼ α(x)µ(x− h), thus β−(x) = β+(x) and

lim
h→0+

1

µ(Ix,h)

∫

Ix,h

(y − x

h

)m
µ(y)dy =

(α(x) + (−1)m)(β+(x) + 1)

m+ β+(x) + 1
.

Thus we have proved (6.14).

Now we prove that for any sequence γn going to zero, if In = [x − γn, x + γn],

we have for any x ∈ [0, 1], 0 6 m 6 2k,

P
n
f,µ

{
Dc

n,m,γn,η(x)
}

6 exp
(
−D1nµ(In)

)
, (6.15)

where D1 > 0. In view of (6.14), if Qi,m = ((Xi − x)/γn)m1Xi∈In , we have

lim
n→+∞

E
n
µ{Qi,m} = lim

n→+∞
1

µ(In)

∫

In

(y − x

γn

)m
µ(y)dy = χµ(x;m),

thus, if Zi,m , Qi,m − E
n
µ{Qi,m}, we have

Dc
n,m,γn,η(x) ⊂

{
|

n∑

i=1

Zi,m| > ηnµ(In)/2
}
.

Since E
n
µ{Zi,m} = 0, |Zi,m| 6 2 and E

n
µ{Z2

i,m} 6 E
n
µ{Q2

i,m} 6 µ(In), (6.15) follows

from Bernstein inequality.

Since nµ([xj −hj, xj +hj]) = log nh−2s
j , we obtain from (6.4) (see the beginning

of the proof of theorem 1) and (6.15) that

P
n
f,µ

{
Dc

n,m,hj ,η(xj)
}

6 exp
(
−D2η

2n2s/(1+2s+β)
)
,

where D2 > 0, thus

P
n
µ{Ac

n} = O(Mn) exp
(
−D2η

2n2s/(1+2s+β)
)
,

and (6.8) follows for the choice DA = D2/2. �

In this section, we omit de dependence on x in order to avoid overloaded no-

tations. We denote by PI the projection in Vκ (the space of all polynomials with

degree at most κ) with respect to the inner product 〈· , ·〉I . Then, since on ΩI we

have X̄I = XI , it is easy to see that on ΩI the estimator f̂I satisfies

〈f̂I , φ〉I = 〈Y , φ〉I , φ ∈ Vκ, (6.16)

and that

f̂I = PIY. (6.17)
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Proof of lemma 5. Let 0 6 m 6 κ and J ∈ In(x; I). In view of (6.16)

and (6.17), we have on ΩI

〈f̂J − f̂I , φm〉J = 〈Y − f̂I , φm〉J
= 〈f − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PIf − f̂I , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J + 〈PI(f − Y ) , φm〉J + 〈ξ , φm〉J
= 〈f − PIf , φm〉J − 〈PIξ , φm〉J + 〈ξ , φm〉J
, A+B + C.

The term A is a bias term. By the definition of osc f(I) we can find a polynomial

Pκ ∈ Vκ such that

sup
x∈I

|f(x) − Pκ(x)| 6 osc f(I) + εn,

where εn , σn−1/2DI,wCκ(log 2)/2. Thus, since J ⊂ I, Pκ ∈ Vκ and PI is a

projection with respect to 〈· , ·〉I ,

|A| 6 ‖f − PIf‖J‖φm‖J 6 ‖f − Pκ − PI(f − Pκ)‖I‖φm‖J

6 ‖f − Pκ‖I‖φm‖J 6 (osc f(I) + εn)‖φm‖J ,

and

|A| 6 ‖φm‖J

(
σDI(̺nµ̄n(I))−1/2 + εn

)
.

Conditional on Xn, B and C are centered Gaussian. Clearly, C is centered Gaussian

with variance

σ2‖φm‖2
J/(nµ̄n(I)).

Since PIξ has covariance matrix σ2PIP
′
I = σ2PI (PI is a projection), the variance

of B is equal to

E
n
f,µ

{
〈PIξ , φm〉2J |Xn

}
6 ‖φm‖2

JE
n
f,µ{‖PIξ‖2

J |Xn}
= ‖φm‖2

J Tr
(
Var(PIξ|Xn)

)
/(nµ̄n(J))

= σ2‖φm‖2
J Tr(PI)/(nµ̄n(J)),

where Tr(M) stands for the trace of a matrix M . Since PI is the projection on Vκ,

it follows that Tr(PI) 6 κ+ 1, and the variance of B is smaller than

σ2‖φm‖2
J(κ+ 1)/(nµ̄n(J)).

Then,

E
n
f,µ{(B + C)2|Xn} 6 σ2‖φm‖2

JC
2
κ/(nµ̄n(J)),
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where Cκ =
(
(κ+ 1)1/2 + 1

)
. Now, in view of (6.12) we obtain

T c
J,I =

{
‖HJ (θ̂I − θ̂J)‖∞ > Tn(I, J)

}

=
κ⋃

m=0

{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}
,

and since the choice of εn entails

{
‖φm‖−1

J |〈f̂I − f̂J , φm〉J | > Tn(I, J)
}

⊂
{ ‖φm‖−1

J |B + C|
σ(nµ̄n(J))−1/2Cκ

> DI,w
(
log(nµ̄n(I))

)1/2
/2

}
,

using the standard Gaussian deviation and in view of (3.3) we obtain

P
n
f,µ{T c

I |Xn} 6
∑

J∈In(x;I)

κ∑

m=0

exp(−D2
I,w log(nµ̄n(I))/8)

6 #(In(x; I))(κ + 1)(nµ̄n(I))−D2
I,w/8

= (κ+ 1)(nµ̄n(I))−2p,

since DI,w = 2
√

2(A + 2p). �

Proof of lemma 6. Since on ΩJ ,

|f̂I(x) − f̂J(x)| = |(θ̂I(x) − θ̂J(x))0|

6 ‖Λ−1
J (x)(θ̂I(x) − θ̂J(x))‖∞

6 ‖G−1
J (x)HJ(x)(θ̂I(x) − θ̂J(x))‖∞

6 (κ+ 1)1/2λ−1(GJ (x))‖HJ (x)(θ̂I(x) − θ̂J(x))‖∞,

we obtain that on TJ,I(x), using J ⊂ I,

|f̂I(x) − f̂J(x)| 6 (κ+ 1)1/2λ−1(GJ (x))Tn(I, J)

6 (κ+ 1)1/2λ−1(GJ (x))σ(DI +DI,wCκ)
(
log n/(nµ̄n(J))

)1/2
,

thus the lemma. �

Proof of lemma 7. We recall that for any x ∈ [0, 1], we have s(x) ∈ S =

[ν, S]. We choose η = min(ε, 1 − (1 − ε2)−2(1 + ε)−2ν). By definition of Hn(x), we

have

{
Hn(x) 6 (1 + ε)hn(x)

}
=

{
µ̄n(Ix,(1+ε)hn(x)) > σ2̺−1

n ω
(
x, (1 + ε)hn(x)

)−2}
.

Since ω ∈ RV(s(x)), we have ω(x, h) = hs(x)ℓω,x(h), where ℓω,x is slowly varying.

This entails that for h small enough,

(1 − ε2)ℓω,x(h) 6 ℓω,x((1 + ε)h).
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Then, we have

(1 − η)µ(Ix,(1+ε)hn(x)) > (1 − η)µ(Ix,hn(x))

= (1 − η)σ2̺−1
n ω(x, hn(x))−2

> (1 − ε2)(1 + ε)−2s(x)σ2̺−1
n ω(x, hn(x))−2

= σ2̺−1
n

(
(1 + ε)hn(x)

)−2s(x)(
(1 − ε2)ℓω,x(hn(x))

)−2

> σ2̺−1
n ω

(
x, (1 + ε)hn(x)

)−2
.

Thus,
{∣∣∣
µ̄n(Ix,(1+ε)hn(x))

µ(Ix,(1+ε)hn(x))
− 1

∣∣∣ 6 η
}
⊂

{
Hn(x) 6 (1 + ε)hn(x)

}
,

and we have similarly

{∣∣∣
µ̄n(Ix,(1−ε)hn(x))

µ(Ix,(1−ε)hn(x))
− 1

∣∣∣ 6 η
}
⊂

{
Hn(x) > (1 − ε)hn(x)

}
.

The remaining of the lemma easily follows from Bernstein inequality and (2.5). �

7. Proof of the lower bounds

Proof of corollary 1. Assume that there exists ϑn(·) better than rn(·) in

the sense of definition 3. With the choice of the loss function w(x) = |x|, since ϑn(·)
is an upper bound, we can find an estimator f̂n such that

lim sup
n

sup
f∈Σ

E
n
f,µ

{
sup

x∈[0,1]
ϑn(x)−1|f̂n(x) − f(x)|

}
< +∞. (7.1)

Since ϑn(·) is better than rn(·), we can find an interval In ⊂ [0, 1] with |In| ≫
n−1/(1+2s+β) such that

lim
n→+∞

sup
x∈In

ϑn(x)/rn(x) = 0. (7.2)

Then, it follows from

E
n
f,µ

{
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
}

6 sup
x∈In

ϑn(x)

rn(x)
E

n
f,µ

{
sup
x∈In

ϑn(x)−1|f̂n(x) − f(x)|
}

that

sup
f∈Σ

E
n
f,µ

{
sup
x∈In

rn(x)−1|f̂n(x) − f(x)|
}

= o(1),

which contradicts the statement of theorem 2. �
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Proof of theorem 2. We choose a function φ ∈ Σ(s, L; R) (where Σ(s, L; R)

is the extension of Σ(s, L) to the whole real line) such that Supp (φ) = [−1, 1] and

φ(0) > 0. Such a function clearly exists. We define the constant

c = min
[(( 1

1 + 2s + β
− α

)
‖φ‖−2

∞
)1/(2s)

, 1
]
,

and

Ξn = 2(1 + 21/(s−k))c‖hn‖∞.

If In = [an, bn] we consider the points

xj = an + j Ξn,

for j ∈ Jn = {0, . . . , [Ξ−1
n ]} and we denote Mn = |Jn| and hj = hn(xj) where hn(x)

is given by (2.2) and Ij = [xj − hj , xj + hj ]. For j ∈ Jn and 0 < δ < 1, we define

the event

Hn,j =
{∣∣∣ µ̄n(Ij)

µ(Ij)
− 1

∣∣∣ 6 δ
}
,

and Hn = ∩j∈JnHn,j . Using Bernstein inequality, it is easy to obtain for any δ > 0

P
n
µ{Hc

n,j} 6 2 exp
(
− δ2nµ(Ij)

2(1 + δ/3)

)
.

Moreover, since (2.5) holds, using (6.4) we have for any j ∈ Jn

nµ(Ij) = (σ/L)2 log nh−2s
j > (σ/L)2 log n‖hn‖−2s

∞

> D2(log n)(β+1)/(1+2s+β)n2s/(1+2s+β),

where D2 > 0, and in view of (6.3), we have Mn = O(n1/(2s+1)). With a majoration

of the reunion ∪j∈JnHc
n,j by the sum of the probabilities, we obtain P

n
µ{Hc

n} =

O
(
n1/(2s+1) exp(−D3n

2s/(1+2s+β))
)
, thus

lim
n→+∞

P
n
µ{Hn} = 1. (7.3)

If θ ∈ [−1, 1]Mn we consider the family of functions

f(x; θ) =
∑

j∈Jn

θjfj(x), fj(x) = Lcshs
jφ

(x− xj

chj

)
.

Note that with the same argument to that of chapter 3 (see page 113), we can

prove that f(· ; θ) ∈ Σ(s, L) for any θ ∈ [−1, 1]Mn . We take C = csφ(0). Since

by construction xj ∈ In and f(xj ; θ) = rjθjC, we have for any distribution B on
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Θn ⊂ [−1, 1]Mn ,

inf
bfn

sup
f∈Σ

E
n
f,µ{w(E

n,f, bfn
)}

> w(C) inf
bfn

sup
f∈Σ

P
n
f,µ{En,f, bfn

> C}

> w(C) inf
bθ

∫

Θn

P
n
θ

{
max
j∈Jn

|θ̂j − θj| > 1
}
B(dθ)

> w(C)

∫

Hn

inf
bθ

∫

Θn

P
n
θ

{
max
j∈Jn

|θ̂j − θj| > 1|Xn

}
B(dθ)dP

n
µ,

where infbθ
is taken among any measurable vector in R

Mn . Thus, if we prove that

on Hn,

sup
bθ

∫

Θn

P
n
θ{max

j∈Jn

|θ̂j − θj| < 1|Xn}B(dθ) = o(1), (7.4)

then, in view of (7.3), it follows that

inf
bfn

sup
f∈Σ

E
n
f,µ{w(E

n,f, bfn
)} > (1 − o(1))w(C)Pn

f,µ{Hn} = (1 − o(1))w(C) > 0,

which entails the theorem. We consider the following bayesian measure and hyper-

cube

Θn = ΘMn , Θ = {−1, 1}, B =
⊗

j∈Jn

b, b =
1

2
(δ1 + δ−1),

where δ is the Dirac measure. To prove (7.4), we use the same arguments as in the

proof of theorem 2 in chapter 3 (see from page 114), and we obtain in the same

fashion that

sup
bθ

∫

Θn

P
n
θ{max

j∈Jn

|θ̂j − θj| < 1|Xn}B(dθ) 6
∏

j∈Jn

(
1 − Φ(−1/vj)

)
,

where Φ(x) is the distribution function of a standard Gaussian and where v2
j =

σ2/(
∑n

i=1 f
2
j (Xi)). Since c 6 1 and Supp (φ) = [−1, 1], if Ij = [xh − hj , xj + hj ],

fj(Xi) = Lcshs
jφ

(Xi − xj

chj

)
6 Lcshs

j‖φ‖∞1Xi∈Ij ,

thus on Hn,j, we obtain by definition of hn(·),

v2
j =

σ2

∑n
i=1 f

2
j (Xi)

>
σ2

‖φ‖2∞L2c2sh2s
j nµ̄n(Ij)

>
σ2

(1 − δ)‖φ‖2∞L2c2sh2s
j nµ(Ij)

=
1

(1 − δ)‖φ‖2∞c2s log n
.
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Since Φ(−x) > exp(−x2/2)/(
√

2π(x+ 1)), we obtain for any j ∈ Jn

Φ(−1/vj) >
D4√
log n

exp(−(1 − δ)‖φ‖2
∞c

2s log n) = D4n
−(1−δ)c2s‖φ‖2∞(log n)−1/2,

where D4 is a positive constant. Then, it follows that
∏

j∈Jn

(
1 − Φ(−1/vj)

)
6

(
1 −D4n

−(1−δ)c2s‖φ‖2∞(log n)−1/2
)Mn

= exp
(
|In|Ξ−1

n log
(
1 −D4n

−(1−δ)c2s‖φ‖2∞(log n)−1/2
))
,

and replacing c by its value, and in view of (6.4),

|In|Ξ−1
n n−(1−δ)c2s‖φ‖2∞(log n)−1/2 > D5n

1/(1+2s+β)−α−(1−δ)c2s‖φ‖2∞(log n)−1/2

= D5n
δ(1/(1+2s+β)−α)(log n)−1/2 → +∞

as n→ +∞, where D5 > 0. Hence (7.4), and the theorem. �

Bibliography

Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1989). Regular Variation. Ency-

clopedia of Mathematics and its Applications, Cambridge University Press.

Geluk, J. L. and de Haan, L. (1987). Regular Variations, Extensions and Tauberian

Theorems. CWI Tract.

Ibragimov, I. and Hasminski, R. (1981). Statistical Estimation: Asymptotic Theory.

Springer, New York.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach spaces, vol. 23 of Ergeb-

nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related

Areas (3)]. Springer-Verlag, Berlin. Isoperimetry and processes.

Lepski, O. V. (1990). On a problem of adaptive estimation in Gaussian white noise. Theory

of Probability and its Applications, 35 454–466.

Lepski, O. V., Mammen, E. and Spokoiny, V. G. (1997). Optimal spatial adapta-

tion to inhomogeneous smoothness: an approach based on kernel estimates with variable

bandwidth selectors. The Annals of Statistics, 25 929–947.

Lepski, O. V. and Spokoiny, V. G. (1997). Optimal pointwise adaptive methods in

nonparametric estimation. The Annals of Statistics, 25 2512–2546.

Resnick, S. I. (1987). Extreme Values, Regular Variation and Point Processes. Applied

Probability, Springer-Verlag.

Senata, E. (1976). Regularly Varying Functions. Lecture Notes in Mathematics, Springer-

Verlag.

Spokoiny, V. G. (1998). Estimation of a function with discontinuities via local polynomial

fit with an adaptive window choice. The Annals of Statistics, 26 1356–1378.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. The

Annals of Statistics, 8 1348–1360.





Résumé : Nous étudions l’estimation non-paramétrique d’un signal à partir de données brui-
tées spatialement inhomogènes (données dont la quantité varie sur le domaine d’estimation).
Le prototype d’étude est le modèle de régression avec design aléatoire. Notre objectif est
de comprendre les conséquences du caractère inhomogène des données sur le problème
d’estimation dans le cadre d’étude minimax. Nous adoptons deux points de vue : local
et global. Du point de vue local, nous nous intéressons à l’estimation de la régression en
un point avec peu ou beaucoup de données. En traduisant cette propriété par différentes
hypothèses sur le comportement local de la densité du design, nous obtenons toute une
gamme de nouvelles vitesses minimax ponctuelles, comprenant des vitesses très lentes et
des vitesses très rapides. Puis, nous construisons une procédure adaptative en la régula-
rité de la régression, et nous montrons qu’elle converge avec la vitesse minimax à laquelle
s’ajoute un coût minimal pour l’adaptation locale. Du point de vue global, nous nous inté-
ressons à l’estimation de la régression en perte uniforme. Nous proposons des estimateurs
qui convergent avec des vitesses dépendantes de l’espace, lesquelles rendent compte du ca-
ractère inhomogène de l’information dans le modèle. Nous montrons l’optimalité spatiale de
ces vitesses, qui consiste en un renforcement de la borne inférieure minimax classique pour
la perte uniforme. Nous construisons notamment un estimateur asymptotiquement exact
sur une boule de Hölder de régularité quelconque, ainsi qu’une bande de confiance dont la
largeur s’adapte à la quantité locale de données.

Mots-clés : Régression non-paramétrique, Design aléatoire, Design dégénéré, Risque mi-
nimax, Estimation adaptative, Estimation asymptotiquement exacte, Méthode de Lepski,
Estimation à noyaux, Polynômes locaux, Optimal recovery.

Discipline : Mathématiques

Abstract : We study the nonparametric estimation of a signal based on inhomogeneous
noisy data (the amount of data varies on the estimation domain). We consider the model of
nonparametric regression with random design. Our aim is to understand the consequences
of inhomogeneous data on the estimation problem in the minimax setup. Our approach
is twofold : local and global. In the local setup, we want to recover the regression at a
point with little, or much data. By translating this property into several assumptions on
the design density, we obtain a large range of new minimax rates, containing very slow and
very fast rates. Then, we construct a smoothness adaptive procedure, and we show that it
converges with a minimax rate penalised by a minimal cost. In the global setup, we want
to recover the regression with sup norm loss. We propose estimators converging with rates
which are sensitive to the inhomogeneous behaviour of the information in the model. We
prove the spatial optimality of these rates, which consists in an enforcement of the classical
minimax lower bound for sup norm loss. In particular, we construct an asymptotically sharp
estimator over Hölder balls with any smoothness, and a confidence band with a width which
adapts to the local amount of data.

Key words : Nonparametric regression, Random design, Degenerate design, Minimax risk,
Adaptive estimation, Asymptotically sharp estimation, Lepski method, Kernel estimation,
Local polynomial estimation, Optimal recovery.
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