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Résumé. Le modèle de dimères est un système de mécanique statistique qui modélise
l’adsorption de molécules diatomiques sur la surface d’un cristal, représentée par un
réseau périodique plan biparti. On attribue à chaque type d’arête une énergie, corre-
spondant à la facilité avec laquelle une molécule va pouvoir s’y fixer. il existe une famille
à deux paramètres de mesures de Gibbs, dont les comportements sont classifiés en trois
phases : gazeuse, liquide, solide.

La première partie de cette thèse est consacrée à l’étude d’un tel système près de la
transition de phase liquide-solide. En examinant le cas du réseau hexagonal, nous ex-
hibons deux types de comportements limites. Le premier est une collection de chemins
aléatoires conditionnés à ne pas se toucher. Le deuxième, appelé le modèle du collier
de perles, est un processus ponctuel sur Z ×R. Ces comportements limites possèdent
tous les deux des marginales données par le processus déterminantal sur R avec noyau
sinus, décrivant aussi les statistiques des valeurs propres des grandes matrices aléatoires
de l’ensemble GUE. Le modèle du collier de perles est universel : nous montrons qu’il
apparâıt comme la limite de tout modèle de dimères sur un graphe planaire biparti
périodique.

Dans une deuxième partie, on s’intéresse à la statistique des motifs dessinés par des
dimères. Nous montrons que les fluctuations de densité d’un motif convergent à la limite
d’échelle vers un champ gaussien. Dans le cas liquide, l’objet limite est la somme d’une
dérivée du champ libre et d’un bruit blanc indépendant. Pour une mesure gazeuse, la
limite est un bruit blanc.

Dans le dernier chapitre, on aborde un problème de dénombrement de chemins sur
le graphe-échelle, lié à l’étude du noyau de la chaleur sur le groupe de l’allumeur de
réverbères, ainsi qu’à celle des opérateurs de Schrödinger aléatoires.

Mots-clés. mécanique statistique, dimères, pavages, transitions de phase, marches
aléatoires, groupe de l’allumeur de réverbères, opérateurs de Schrödinger aléatoires.

MSC2000. 82B20, 82B41, 82B44, 60B15.





Abstract. The dimer model is a system from statistical mechanics modelizing the ad-
sorption of diatomic molecules on the surface of a crystal, represented by a bipartite
biperiodic planar graph. A weight is assigned to every type of edge. This weight is
related to the energy needed for a molecule to settle at a particular place. For such a
distribution of weights, there exists a two-parameter family of Gibbs measures on config-
urations. The behaviour of these measures can be classified into phases: gaseous, liquid
or solid.

The first part of this thesis is devoted to the study of such a system near the liquid-solid
phase transition. Considering first the case of the honeycomb lattice, we exhibit two
sorts of limit behaviours. The first one is an infinite collection of non-colliding random
paths. The second one, called the bead model, is described by a point random field on
Z×R. They both have marginals given by the determinantal point random field on R
with the sine kernel, describing also the eigenvalues statistics in the bulk of the spectrum
of large random matrices of the GUE ensemble. Then, we prove that the bead model
is universal: it appears as the limit of any dimer model on a bipartite planar periodic
graph.

In the second part, we study the statistics of patterns made of a finite number of dimers.
We prove that the fluctuations of pattern density converge in the scaling limit to a
Gaussian random field. When the measure is liquid, the limiting object is a linear
combination of a derivative of the massless free field and an independent white noise. In
the case of a gaseous measure, the limit is simply a white noise.

In the last chapter, we solve a counting problem of paths on the ladder graph. This
problem is related to the asymptotics of the heat kernel on the lamplighter’s group, as
well as to spectral theory of Schrödinger operators with random potential.

Keywords. statistical mechanics, dimer models, tilings, phase transitions, random walks,
lamplighter’s group, random Schrödinger operators.
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mes travaux. Je te dois beaucoup.

I would like to thank Nikolai Reshetikhin and Scott Sheffield to have accepted to report
my thesis and to give me some of their precious time.

Wendelin, je te remercie d’avoir toujours été là pour répondre à mes questions, sans
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Introduction

La mécanique statistique cherche à décrire l’état d’un système complexe composé d’un
très grand nombre de constituants élémentaires. Le but est de donner une descrip-
tion probabiliste globale pour le sytème à partir de la combinatoire locale qui régit
l’arrangement des configurations microscopiques de celui-ci.

Des exemples de tels systèmes sont:

- un gaz formé d’atomes identiques dont le volume, la pression, la température
décrivent l’état macroscopique. Ces grandeurs sont la traduction à grande échelle
du mouvement cahotique des atomes.

- un aimant, modélisé par un cristal sur les sites duquel se trouvent des spins qui,
malgré l’agitation thermique, cherchent à s’aligner avec leurs voisins.

Le formalisme canonique de la mécanique statistique consiste à attribuer à chaque confi-
guration micorscopique du système C une énergie E(C), calculée à partir des interactions
microscopiques. Une configuration est d’autant plus favorisée que son énergie est basse.
Pour traduire ce fait, la probabilité p(C) associée à chaque configuration est

p(C) =
1

Z(β)
e−βE(C) (1)

où β désigne l’inverse de la température. Cette mesure de probabilité est appelée mesure
de Boltzmann. Le coefficient de normalisation,

Z(β) =
∑

C

e−βE(C) (2)

est appelé fonction de partition. Cette fonction de partition joue un rôle très important
puisqu’à partir de celle-ci, il est possible de calculer des grandeurs macroscopiques telles
que la pression dans le cas du gaz, ou bien l’aimantation dans le cas de l’aimant.

Il n’existe que peu de modèles non triviaux pour lequels on connâıt une formule exacte
pour la fonction de partition. Parmi ces rares exemples, on trouve le modèle des dimères,
qui est l’objet d’étude principal de cette thèse. Ce modèle possède en effet une structure
sous-jacente très riche, qui rend son étude tout à fait intéressante.
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Introduction

Le modèle des dimères

Le modèle des dimères fut introduit la première fois en 1937 dans la littérature par
les physiciens Fowler et Rushbrooke [15] pour modéliser l’adsorption de molécules di-
atomiques sur la surface d’un cristal. Les premiers calculs exacts sur ce modèle sont dus
à Kasteleyn [24] et Temperley et Fisher [60] qui obtiennent indépendemment la fonction
de partition. Le modèle des dimères a fait l’objet de nombreux travaux, non seulement
pour son intérêt propre, mais aussi, grâce à des bijections, comme outil d’étude d’autres
modèles : modèle d’Ising [14, 39], arbres couvrants [59, 5], fonte de cristal [44, 13],
marches aléatoires annihilantes [38], . . .

À partir des années 1990, les mathématiciens s’approprient le sujet. Citons entre autres
les travaux de Thurston [62], Cohn, Kenyon et Propp [8], et Kenyon [27], qui posent les
bases d’une étude mathématique systématique de ce modèle.

Récemment, le modèle des dimères connâıt un nouveau gain d’intérêt en théorie topolo-
gique des cordes, grâce notamment aux travaux d’Okounkov, Reshetikhin et Vafa [45],
qui proposent une dualité entre les cordes topologiques du A-modèle sur une variété de
Calabi-Yau de dimension 3 et un modèle de dimères sur lequel on impose des contraintes
aux bords.

Définitions et notations

Dans le lexique des chimistes, un dimère est une molécule constituée de deux atomes liés
par une liaison chimique. Par analogie, nous emploierons ce terme pour désigner parfois
les arêtes d’un graphe G : une arête e représente la liaison chimique entre deux atomes,
modélisés par les sommets extrémités de e.

Une configuration de dimères C est un sous-ensemble d’arêtes de G tel que chaque som-
met de G est incident à exactement une arête de ce sous-ensemble. En théorie des
graphes, elle est appelée aussi couplage parfait.

Supposons que le graphe G est fini et qu’il admet au moins une configuration de dimères.
Une mesure de probabilité sur l’ensemble des configurations de dimères M(G) est con-
struite de la manière suivante : on attribue à chaque arête e une énergie E(e). La
fonction d’énergie est ensuite étendue à une configuration de dimères comme la somme
de l’énergie des dimères qu’elle contient

E(C) =
∑

e∈C

E(e). (3)

On associe alors à la configuration C la probabilité

PE [C] =
1

Z(E)
e−E(C) (4)

14
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où Z(E) est la fonction de partition

Z(E) =
∑

C∈M(G)

e−E(C). (5)

La mesure de probabilité ainsi obtenue est appelée mesure de Boltzmann. La quantité
νe = e−E(e) est appelée poids de l’arête e.

Lorsque le graphe G est planaire, Kasteleyn a montré que la fonction de partition Z(E)
s’exprime comme le pfaffien d’une matrice d’adjacence orientée de G. Lorsque le graphe
est biparti, la structure du modèle est plus riche. Z(E) peut s’écrire plus simplement
sous la forme du déterminant d’un opérateur K, appelé opérateur de Kasteleyn (voir
par exemple [27]). Par ailleurs, les configurations de dimères sont en bijection avec
des fonctions de hauteurs, ce qui permet d’interpréter le modèles de dimères comme un
modèle de surface aléatoire discrète.

Quand le graphe G est infini, la fonction de partition en général est infinie, et on ne
peut définir simplement de mesure de Boltzmann. Cette notion est remplacée par celle
de mesure de Gibbs. Pour une telle mesure, une fois la configuration fixée dans une
région annulaire, la configuration à l’intérieur et à l’extérieur sont indépendantes, et la
mesure induite à l’intérieur est la mesure de Boltzmann. Dans [34], Kenyon, Okounkov
et Sheffield généralisent les résultats de [8, 27] et étudient l’ensemble des mesures de
Gibbs sur les configurations de dimères des graphes planaires bipartis Z2-périodiques.
Elles forment une famille paramétrée par le champ magnétique B = (Bx, By) . Le
comportement de ces mesures peut être décomposé en trois catégories ou phases : gazeux,
liquide ou solide suivant la vitesse de décroissance des corrélations entre les dimères.

On donne maintenant un aperçu des questions abordées dans cette thèse.

Transitions de phase et comportement limites

Un dimère e d’un graphe biparti planaire Z2-périodique se comporte en quelque sorte
comme un petit dipôle magnétique, dont la direction est celle de son arête duale e∗. En
présence d’un champ magnétique B, le système privilégie les arêtes dont les dipôles sont
alignés avec le champ.

Un des exemples les plus simples de graphes planaires bipartis Z2-périodiques est le
réseau hexagonal H, dont le graphe dual est le réseau triangulaire T . Un dimère peut être
vu comme un lien entre deux faces adjacentes de T , formant ainsi un losange. Le fait que
chaque sommet de H est couvert par un seul dimère implique que les losanges constitués
de cette façon forment un pavage du plan. Le modèle de dimères sur H s’interprète par
dualité comme un modèle de pavages aléatoires du plan par des losanges.

On distingue trois types de losanges, a, b, c, caractérisés par leur orientation, et représentés
sur la figure 2.

Si l’on affecte une énergie nulle aux arêtes de H, en l’absence de champ magnétique les
trois types de losanges sont équiprobables.
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Figure 1: Un morceau de configuration de dimères sur H et le pavage par losanges correspondant.

Lorsqu’on augmente progressivement la composante verticale de B, la proportion de
losanges de type a augmente progressivement jusquà atteindre 1 pour une valeur critique
finie de B. Pour cette valeur de B, le graphe de cette proportion n’est plus dérivable :
on assiste à une transition de phase. Le système est passé d’un état liquide où tous les
types de losanges apparaissent avec une probabilité positive, à un état solide où un seul
type de losanges est présent avec probabilité 1. Ce modèle peut représenter un cristal
de glace qui se fissure et qui fond progressivement.

Peut-on donner une description quantitative du comportement
des fissures lorsque la glace commence juste à fondre ?

Au contraire, lorsqu’on applique un champ magnétique très fortement dirigé vers le bas,
la probabilité d’apparition des losanges de type a, même si elle décrôıt avec l’amplitude
de B, reste toujours strictement positive. Elle n’atteint 0 que quand la composante
verticale de B tend vers −∞. Dans ce cas, on n’a pas à proprement parler de transition
de phase. En revanche, le comportement limite des losanges horizontaux est tout à fait
intéressant.

Quelle est, à la limite, la distribution des losanges horizontaux ?

(a) (b) (c)

Figure 2: Les différents types de losanges d’un pavage correspondant à une configuration de dimères
sur H, ainsi que les directions des dipôles associés.

16



Introduction

Une partie de cette thèse est consacrée à l’étude détaillée de ces phénomènes, ainsi que
leur généralisation à des graphes plus complexes, et qui se trouve reliée à la statistique
des valeurs propres des matrices aléatoires.

Densités de motifs

Depuis [27], on sait, pour un champ magnétique fixé, calculer la densité moyenne
de n’importe quel motif dessiné par un nombre fini de dimères dans une configura-
tion aléatoire. Le nombre moyen de motifs dans une grande boule est alors donné
grossièrement par le nombre de domaines dans la boule fois la densité du motif. Il nous
parut intéressant d’essayer de comprendre les fluctuations de ce nombre autour de sa
valeur moyenne, du moins à la limite d’échelle : tout en gardant la taille de la boule
fixée, on fait tendre la maille du réseau vers 0, de sorte que le nombre de domaines
fondamentaux dans la boule tend vers l’infini.

Comment se comportent à la limite d’échelle les fluctuations des densités de motifs ?

Combinatoire des chemins

Les méthodes de la mécanique statistique peuvent aussi s’appliquer à des problèmes plus
proches de la combinatoire, comme par exemple le dénombrement de grands chemins
sur des graphes. L’étude de la marche aléatoire simple ou de la marche aléatoire auto-
évitante sur Z2 en sont des exemples.

Un raisonnement élémentaire sur la marche aléatoire simple montre que, sur Z, la pro-
portion de chemins de longueur 2n qui reviennent à leur point de départ est de l’ordre
de 1√

πn
. On se pose ici une question similaire, qui est la suivante :

Sur un graphe en forme d’échelle, quel est le nombre de chemins de
longueur n passant un nombre pair de fois par chaque barreau ?

Il se trouve que cette question, d’apparence pourtant anodine, et ses généralisations, ont
de profondes conséquences en théorie des groupes.

Contenu de la thèse

Cette thèse est composée de huit chapitres dont les sept premiers sont consacrés aux
modèles de dimères. Le dernier chapitre aborde le problème du dénombrement d’une
certaine classe de chemins. Les résultats principaux, présentés dans les chapitres 4 à 8,
sont expliqués brièvement à la fin de cette section.
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Le chapitre 1 présente en détails le modèle des dimères sur un graphe fini G. Après
avoir rappelé dans le cas général la définition de configuration de dimères ainsi que
celle de mesure de Boltzmann, nous discutons plus en détails le cas particulier des
graphes planaires bipartis pour lesquels la fonction de partition, ainsi que les statistiques
locales s’expriment en termes de déterminants d’un opérateur K, apparenté à la matrice
d’adjacence du graphe, et de son inverse K

−1. L’opérateur K est appelé opérateur de
Kasteleyn.

Dans le chapitre 2, il est question du modèle de dimères sur des graphes planaires bipartis
et Z2-périodiques. Dans le cas d’un graphe infini, la mesure de Boltzmann telle qu’elle
est définie dans le chapitre 1 n’a plus de sens. Elle est remplacée par la notion de mesure
de Gibbs qui en est une extension naturelle. Nous résumons les travaux de Kenyon,
Okounkov et Sheffield [34] dans lesquels ils montrent que pour un tel graphe, il existe
une famille à deux paramètres de mesures de Gibbs. Le comportement de ces mesures
peut être divisé en trois catégories ou phases : gazeux, liquide, solide, suivant la vitesse
de décroissance des corrélations. Le diagramme de phase est donné par l’amibe de la
courbe spectrale. La théorie générale est appliquée au cas particulier du réseau hexagonal
H.

On trouve dans le chapitre 3 des éléments de la théorie des champs aléatoires déterminan-
taux ou fermioniques. Une présentation plus complète peut être trouvée dans [56]. Un
exemple de tels champs est donné par la distribution des valeurs propres d’une matrice
hermitienne aléatoire de l’ensemble GUE.

Le contenu des chapitres de 4 à 8 est décrit dans les paragraphes suivants.

Un modèle de chemins auto-évitants

Le chapitre 4 présente une étude de la transition de phase que subit le modèle des dimères
sur le réseau hexagonal H, lorsque le champ magnétique, dirigé vers le haut, approche
sa valeur critique par valeurs inférieures.

La riche structure algébrique du modèle permet d’étudier en détails cette transition.
Un pavage est décrit complètement par les chemins que dessinent les losanges de type
b et c de gauche à droite. Lorsque l’intensité du champ magnétique suivant la verticale
augmente, les chemins s’écartent de plus en plus. En effectuant le changement d’échelle
brownien, nous montrons que lorsque le champ magnétique tend vers cette valeur cri-
tique, la distribution de ces chemins converge vers une distribution de courbes alátoires.

Théorème 1. La famille de chemins aléatoires de losanges converge faiblement dans la
limite d’échelle vers le processus sinus étendu.

Le processus sinus étendu est un processus déterminantal qui décrit un système station-
naire et invariant par translation de chemins browniens soumis à une force de rappel vers
l’origine, et conditionnés à ne pas se toucher. À un instant fixé, les corrélations entre les
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positions des différents chemins s’expriment comme un déterminant du noyau sinus

sin(x − y)

π(x − y)

et sont donc données par les mêmes formules que celles des valeurs propres des grandes
matrices aléatoires de l’ensemble GUE.

Ce système homogène de chemins aléatoires a été étudié par Spohn [58], Osada [46],
Nagao et Forrester [42], et plus récemment par Katori, Nagao et Tanemura [26], comme la
limite lorsque le nombre de particules tend vers l’infini du cœur du modèle de Dyson [12].

Notons que dans cette même limite, la distribution du premier chemin est donnée par
le processus d’Airy. Ce processus, introduit par Prähofer et Spohn [50], se retrouve
aussi dans l’étude de pavages aléatoires auxquels on impose certaines contraintes aux
bords [13, 22], ainsi que dans d’autres modèles de mécanique statistique, tels que le
modèle de croissance polynucléaire (PNG) [50].

Alors que dans les précédentes études, le processus sinus étendu est obtenu en partant
d’un nombre fini de chemins – continus ou discrets – puis en faisant tendre ce nombre
vers l’infini, notre modèle de départ décrit déjà une famille infinie de chemins discrets,
ce qui constitue l’originalité de notre approche.

Le modèle du collier de perles

Dans le chapitre 5, nous présentons un modèle de mécanique statistique que nous ap-
pelons le modèle du collier de perles. Les configurations pour ce modèle sont des collec-
tions de points (les perles) sur Z ×R représentant une succession de brins sur lesquels
les perles sont enfilées, qui vérifient les deux conditions suivantes

- Les configurations de points sont localement finies : sur un morceau fini de fil, il
n’y a qu’un nombre fini de perles.

- Entre deux perles successives sur un même fil, on doit trouver exactement une
perle sur le fil situé juste à gauche, ainsi que sur celui situé juste à droite.

Un exemple de configuration de perles est présenté sur la figure 3.

Si nous avions seulement un nombre fini de fils de longueur finie avec un nombre fixé
N de perles, l’espace des configurations serait un convexe borné de RN et la mesure
uniforme sur ce domaine définirait une mesure de probabilité. Nous nous proposons dans
ce chapitre de construire des mesures de probabilité sur l’espace Ω de ces configurations
qui sont uniformes en un certain sens. Elles doivent :

- être ergodiques sous l’action de Z×R par translation,

- posséder la propriété suivante : si l’on conditionne une configuration sur un anneau,
la mesure de probabilité induite à l’intérieur est la mesure uniforme.
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Figure 3: Un exemple de configuration de perles.

De telles mesures sont appelées des mesures de Gibbs. On prouve le théorème suivant :

Théorème 2. À densité moyenne de perles fixée, il existe une famille (Pγ)γ∈]−1,1[ à
un paramètre de mesures de Gibbs sur Ω. Pour chaque valeur de γ, (Ω,Pγ) est un
processus ponctuel déterminantal, dont la marginale sur chacun des brins est le processus
déterminantal à noyau sinus.

Idée de la démonstration:

Les mesures de Gibbs sont contruites commes limites de mesures sur des modèles de
perles discrétisés pour lesquels les perles dont contraintes à occuper des sites d’un réseau
dont on fait tendre la maille vers 0.

Le point-clé est la bijection que nous construisons entre les configurations de perles et les
pavages du plan par losanges présentés plus haut : étant donné un pavage par losanges,
on place une perle au centre de chaque losange de type a. La famille à deux paramètres
de mesures de Gibbs sur les pavages par losanges se transporte aux configurations de
perles discrétisées. Pour conserver la densité de perles lorsque la maille tend vers 0, il
faut dans le modèle de pavages pénaliser les losanges horizontaux, en dirigeant fortement
le champ magnétique vers le bas.

À la limite, la grandeur γ paramétrant la famille de mesures correspond à la composante
horizontale du champ magnétique : en favorisant ou en pénalisant les losanges de type b
par rapport à ceux de type c, elle influence la position relative d’une perle par rapport à
ses deux voisines sur le fil à sa droite, comme on peut le voir sur la figure 5.2, page 75. ¤

Le modèle du collier de perles décrit donc la statistique limite des losanges de type a
dans un pavage aléatoire, lorsque leur densité tend vers zéro, c’est-à-dire lorsque le champ
magnétique est très fortement dirigé vers le bas. En fait, il se trouve que les liens entre
le modèle du collier de perles et le modèle des dimères ne sont pas limités au réseau
hexagonal, comme on l’explique dans le chapitre 6.

En effet le diagramme de phase d’un modèle de dimères sur un graphe planaire bipartite
bipériodique, dans l’espace des paramètres (Bx, By), est représenté par l’amibe d’une
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certaine courbe algébrique, associée au modèle. L’amibe présente sur son bord extérieur
des tentacules qui séparent la phase liquide des différentes phases solides. Lorsque le
champ magnétique tend vers l’infini, en restant dans l’une de ces tentacules, la probabilité
d’apparition de certains types d’arêtes, dits rares tend vers 0. Le théorème que l’on
démontre dans le chapitre 6 peut être formulé de la manière suivante :

Théorème 3. Lorque la densité des arêtes rares tend vers 0, leur distribution est décrite
à la limite par le modèle de perles.

Idée de la démonstration:

Les corrélations entre les arêtes s’écrivent sous forme de déterminants de l’opérateur in-
verse de Kasteleyn K

−1

B , dépendant du champ magnétique. L’essentiel de la démonstration
réside dans la dérivation des asymptotiques des coefficients de cet opérateur lorsque le
champ magnétique s’enfonce dans une tentacule, qui fait appel de manière non triviale
aux propriétés algébriques des courbes de Harnack dont la courbe spectrale fait partie. ¤

Les corrélations déterminantales avec un noyau sinus (discret) avaient déjà été remarquées
dans des cas particuliers par Johansson [21], Baik et al. [1]. Nous fournissons ici une
méthode systématique pour obtenir des sous-ensembles d’arêtes dont les corrélations sont
arbitrairement proches du processus déterminantal sinus, et ce à partir de n’importe quel
modèle de dimères sur un graphe périodique planaire biparti.

Densités de motifs

Dans le chapitre 7, nous étudions la limite d’échelle de champs aléatoires construits à
partir d’un modèle de dimères sur un graphe G planaire biparti et bipériodique, appelés
champs de densités de motifs.

Ces champs fournissent une alternative au point de vue adopté précédemment dans
les études par Kenyon [29, 31] et de Tilière [10] des limites d’échelle de dimères, qui
utilisaient la fonction de hauteur dont les fluctuations à la limite sont décrites par le
champ libre sans masse [54].

On appelle motif tout sous-ensemble d’arêtes de G. Si Ψ est un plongement de G dans
le plan, pour tout ε > 0 on définit Gε comme étant l’image de G par le plongement εΨ.
Gε représente le graphe G vu à l’échelle ε.

Étant donnés un facteur d’échelle ε et un motif P, on construit un champ aléatoire N ε
P

qui
associe à tout domaine borné du plan D, le nombre aléatoire N ε

P
(D) de motifs observés

dans une configuration de dimères aléatoire de Gε dans la région D. Ces champs peuvent
être étendus en distributions aléatoires en s’appliquant à des fonctions-tests ϕ lisses et à
support compact . On s’intéresse aux fluctuations de ces distributions alátoires autour
de leurs valeurs moyennes, lorsque ε tend vers 0.
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Alors que l’espérance de N ε
P
(ϕ) est de l’ordre de ε−2, ses fluctuations

Ñ ε
P(ϕ) = N ε

P(ϕ) −E [N ε
P(ϕ)]

sont de l’ordre de ε−1. Nous montrons que dans le cas d’une mesure de Gibbs fluide –
c’est-à-dire liquide ou gazeuse – les fluctuations, correctement normalisées, convergent
vers un champ aléatoire continu complètement explicite :

Théorème 4. Pour une mesure de Gibbs fluide, εÑ ε
P

converge faiblement,au sens des
distributions, vers un champ gaussien NP dont la structure de covariance a la forme
suivante

E [NP(ϕ)NP(ψ)] =
1

π

∫

R2×R2

∂P∗ϕ(u)G(u, v)∂P∗ψ(v)|du||dv| + BP

∫

R2

ϕ(u)ψ(u)|du|. (6)

La fonction G(u, v) est le noyau de Green sur le plan − 1
2π log

∣
∣u − v

∣
∣, et l’opérateur

∂P∗ désigne la dérivation selon un vecteur qui dépend du motif P et de la mesure de
Gibbs. Pour une mesure liquide et un motif formé d’une seule arête, ce vecteur coincide
avec l’image de l’arête duale par un plongement bien adapté. C’est le vecteur nul si la
mesure est gazeuse, car comme les corrélations décroissent exponentiellement vite, elles
ne persistent pas à la limite d’échelle.

Cette structure de covariance peut être interprétée physiquement comme l’énergie d’inter-
action magnétique entre deux dipôles macroscopiques, pointant dans la direction P∗,
soumis en plus à une interaction à courte distance pénalisant leur interpénétration. Ceci
pousse donc un peu plus loin l’analogie entre dimères et dipôles déjà relevée plus haut.

Idée de la démonstration:

Bien que les arguments soient différents suivant le type de mesure et la complexité du mo-
tif, la structure de la démonstration reste la même. Dans un premier temps, on montre
par l’analyse que le deuxième moment converge en utilisant notamment les asympto-
tiques de l’opérateur de Kasteleyn inverse K

−1 obtenus dans [34]. Ensuite, la deuxième
partie de la démonstration, plus combinatoire, consiste à vérifier à la limite la formule
de Wick, donnant les moments d’un champ gaussien en fonction de sa covariance. Les
raisons pour lesquelles la formule est vérifiée à la limite sont non triviales et dépendent
fondamentalement des propriétés de chaque phase. ¤

Dans la suite du chapitre, on étudie aussi les corrélations entre les champs de densités
correspondant à différents motifs. Nous montrons que leurs corrélations sont elles-aussi
données par la formule de Wick. Les résultats sont alors appliqués à deux cas particuliers
: le graphe Z2 et le réseau régulier aux faces carrées et octogonales.

Chemins dénoués et l’allumeur de réverbères

Le chapitre 8 aborde un problème de combinatoire de chemins. Sur un graphe en forme
d’échelle, quel est le cardinal de l’ensemble Pn de chemins fermés passant un nombre
pair de fois par chacun des barreaux ?
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Il se trouve que cette question est liée au problème d’estimation du noyau de la chaleur
pour le groupe de l’allumeur de réverbères. Ce groupe fait partie de la classe des groupes
engendés par des automates [19], qui est aujourd’hui un sujet très actif de la théorie des
groupes. Obtenu comme le produit en couronne Z2 ≀ Z, il modélise une rue avec une
infinité de lampes indexées par Z, dont seulement un nombre fini est allumé, ainsi qu’un
allumeur qui peut se déplacer le long de cette rue et allumer ou éteindre les réverbères
devant lesquels il se trouve. Le groupe est engendré par les éléments correspondant aux
trois mouvements élémentaires de l’allumeur : se déplacer d’une lampe vers la gauche,
d’une lampe vers la droite, et changer l’état de la lampe devant laquelle il se tient.
Dans la configuration correspondant à l’élément neutre du groupe, toutes les lampes
sont éteintes et le l’allumeur de réverbères se tient en face de la lampe 0.

La proportion de chemins de longueur n sur le graphe en échelle appartenant à Pn donne
la probabilité pn que l’allumeur réussisse en n actions à ramener les lampes à leur état
initial, et revenir à sa position de départ.

On donne une estimation asymptotique de cette probabilité :

Théorème 5.

pn =
|Pn|
3n

³ n
1
6 e−

(3π log 2
2

) 2
3 n

1
3

(7)

où le symbole ³ signifie que le quotient des deux membres est borné loin de 0 et de
l’infini.

Ce résultat avait déjà été obtenu par Revelle [53], sous une forme légèrement plus précise,
mais pour d’autres générateurs du groupe Z2 ≀ Z et par une autre méthode que celle
employée ici.

Idée de la démonstration:

Le principe de la preuve se fonde sur le fait combinatoire suivant : si on affecte des
poids aux arêtes d’un graphe, on peut définir la matrice d’adjacence M du graphe qui
reflète les propriétés de connectivité de celui-ci. En particulier, l’élément (i, j) de Mn

est la somme des poids des chemins de longueur n allant de i à j. En combinant les
contributions obtenues pour diférents poids bien choisis – en l’occurence, ici on attribue
des poids ±1 sur les barreaux et 1 ailleurs – on arrive à sélectionner uniquement la con-
tribution des chemins qui nous intéresse. Lorsque n est grand, les asymptotiques de Mn

sont données en première approximation par λn
1 , où λ1 est la plus grande valeur propre

de M . En analysant finement la matrice pour chaque donnée de poids ±1, on obtient
une valeur approchée de λ1. Ces estimations sont ensuite recombinées pour obtenir les
asympotiques de |Pn|. ¤

Le chapitre s’ouvre ensuite sur une généralisation de ce probème en dimension 2, en
faisant le lien avec les opérateurs de Schrödinger avec potentiel aléatoire. La résolution
de ce problème permettrait d’évaluer la croissance du sous groupe de F2, le groupe libre
à deux générateurs, engendré par les commutateurs de commutateurs.
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1 Combinatorics of the dimer model

The goal of this chapter is to give a combinatorial presentation of the dimer model on a
graph G. Following Kasteleyn [24, 25], we explain how to compute the partition function
of this model in particular cases, including the case when G is planar, using the so-called
Pfaffian-Hafnian method. We then specialize the study to the case of bipartite graphs,
and discuss some aspects of the dimer model related to the homology of the graph.

1.1 Dimer configurations of a graph

Dimer configurations and partition function

Let G = (V, E) be a connected graph with no multiple edge and no loop. A dimer
configuration or perfect matching of G is a subset of edges C ⊂ E such that every vertex
v ∈ V is incident with exactly one edge of C.

1

3

8

7

2

45

6

Figure 1.1: An example of a dimer configuration on a graph G.

We will always suppose in what follows that G has at least one dimer configuration. If
positive weights are assigned to edges by the mean of a weight function ν : E → R+,
then one can define the weight of a dimer configuration C as

ν(C) =
∏

e∈C

νe

These weights on dimer configurations can be used to define a Boltzmann probability
measure on the set of all dimer configurations: the probability that the random dimer
configuration Cω is equal to a given configuration C0 is given by

P [Cω = C0] =
ν(C0)

Z(G, ν)
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1.1. Dimer configurations of a graph

where the normalizing coefficient Z(G, ν) equals the sum of the weights of all the dimer
configurations of G

Z(G, ν) =
∑

C

ν(C) =
∑

C

∏

e∈C

νe.

Z(G, ν) is called the partition function.

In fact, the role played by the partition function in the dimer model — and in every sta-
tistical mechanical model in general — is much greater than just the role of a normalizing
constant. Notice that

νe

∂ν(C)

∂νe

is equal to ν(C) if the edge e belongs to C, and 0 if not. Therefore,

νe

∂Z(G, ν)

∂νe

is the sum of the weights of the dimer configurations containing the edge e. Hence, the
probability of seeing the edge e in the random configuration is given by

P [e ∈ Cω] =
νe

Z(G, ν)

∂Z(G, ν)

∂νe

=
∂ log Z(G, ν)

∂ log νe

.

More generally, the probability of seeing k edges e1, . . . , ek is given by the following
formula

P [e1, . . . , ek ∈ Cω] =
νe1 · · · νek

Z(G, ν)

∂kZ(G, ν)

∂νe1 · · · ∂νek

.

As the elementary events “e ∈ Cω” generate the algebra of all events, the probability of
any event can be expressed in terms of derivatives of Z(G, ν). Therefore, the partition
function plays the role of a generating function for the Boltzmann probability measure.

Dimer configurations as tilings

If the graph G is embedded on an orientable compact surface Σ, one can give a dual
description of dimer configurations of G in terms of tilings of Σ. The embedding of G on
Σ induces a cellular decomposition D of Σ. One can define a dual cellular decomposition1

D∗ of Σ: the dual vertices correspond to faces of D, and there is a dual edge between
two dual vertices if the corresponding faces in D share an edge. The vertices v of D
correspond to the dual faces v∗ of D∗. To an edge e = (v1, v2) of G is associated a
compact domain Te = v∗1 ∪ v∗2 of Σ. The fact that in a dimer configuration C every
vertex is incident with exactly one edge implies that (Te)e∈C satisfies

∀ e, e′ ∈ C,
◦
Te ∩

◦
Te′= ∅ (1.1)

⋃

e∈C

Te = Σ (1.2)

1This dual cellular decomposition is not unique.
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and hence (Te)e∈C is a tiling of Σ. Reciprocally, if a subset C of edges is such that
(Te)e∈C is a tiling of Σ, then C is a dimer configuration of G. Dimer models can be seen
as particular cases of random tiling models. Two cases are particularly important:

• Dimer configurations of a piece of the square grid Z2 are dual to tilings with 2× 1
rectangles, also known as dominos.

• Dimer configurations of a piece of the honeycomb lattice H are dual to tilings with
rhombi with a 60◦ angle, also known as lozenges.

When these dimer models are discussed as examples, it will be useful to have in mind
their dual interpretation.

(a) rhombi (b) dominos

Figure 1.2: Two examples of dimer configurations on bipartite graphs and the corresponding tilings.

1.2 The dimer model on planar graphs

In this section we explain how to compute the partition function of the dimer model on
a planar graph. A planar graph is a graph that can be embedded on the plane. This
means that one can draw the graph on a sheet of paper in such a way that no edge
intersects an other edge.

A dimer configuration of G is a particular case of a partition of the set of its vertices
into parts of length 2. An obvious necessary condition for G to have a perfect matching
is to have an even number, say 2n, of vertices.

For instance, the dimer configuration represented in figure 1.1 corresponds to the parti-
tion

{
{i1, j1}, . . . , {in, jn}

}
=

{
{1, 8}, {2, 4}, {3, 7}, {5, 6}

}
.
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Such a partition can be conveniently encoded by a permutation of S2n with the two
following constraints:

∀ k ∈ {1, . . . , n} σ(2k − 1) < σ(2k)

∀ k ∈ {1, . . . , n − 1} σ(2k − 1) < σ(2k + 1).

The images of two successive integers σ(2k − 1) and σ(2k) correspond to a component
of the partition. The permutation encoding the dimer configuration of figure 1.1 is

σ =

(
1 2 · · · 2n − 1 2n
i1 j1 · · · in jn

)

=

(
1 2 3 4 5 6 7 8
1 8 2 4 3 7 5 6

)

.

This point of view yields a new expression for the partition function

Z(G, ν) =
∑

σ

′
Aσ(1),σ(2) · · ·Aσ(2n−1),σ(2n).

where the sum is performed over the partitions with the restrictions indicated above and
Ai,j is equal to νe if i and j are the ends of the edge e, and is 0 if not. This expression
is sometimes called the Hafnian of the matrix A.

Given an orientation of G, the weighted adjacency matrix K is defined as follows: if the
edge e is oriented from vertex i to vertex j, then

Ki,j = νe and Kj,i = −νe.

If there is no edge between i and j, then Ki,j = 0. The partition function, expressed in
terms of the matrix K as

Z(G, ν) =
∑

σ

′∣
∣Kσ(1),σ(2) · · ·Kσ(2n−1),σ(2n)

∣
∣

is very similar to the Pfaffian of K defined by the following formula

Pfaff K =
∑

σ

′
sgn(σ)Kσ(1),σ(2) · · ·Kσ(2n−1),σ(2n). (1.3)

The Pfaffian of a matrix is much easier to compute than the Haffnian. In particular, it
is a square root of the determinant. If there exists an orientation for which all the terms
in the sum defining the Pfaffian have the same sign, then the partition function is equal
to the Pfaffian of the adjacency matrix K for this orientation, up to a global sign

Z(G, ν) =
∣
∣Pfaff K

∣
∣. (1.4)

An orientation for which equation (1.4) is satisfied is called an admissible orientation or
Pfaffian orientation, and the corresponding adjacency matrix K is called the Kasteleyn
matrix.
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1. Combinatorics of the dimer model

Kasteleyn proved that if the graph G is planar, then there exists an admissible orien-
tation. Such an orientation is given by the odd clockwise rule: around every face, the
number of edges oriented clockwise is odd.

The reason why the odd clockwise rule gives an admissible orientation is the following:
if we superimpose two dimer configurations C and C′ encoded by permutations σ and σ′

respectively, then we see a collection of cycles of even length and double edges, represent-
ing graphically the decomposition in cycles of the permutation σ′ ◦σ−1, the double edges
corresponding to the fixed points of this permutation. Consider one of these nontrivial
cycles. Its length is even and, up to reindexation of the vertices of G, we can suppose
that the vertices of this cycles are labelled from 1 to 2m counterclockwise. It is formed by
edges (1, 2), . . . , (2m−1, 2m) from C and edges (1, 2m), (2, 3), . . . , (2m−2, 2m−1) from C′,
and represents thus an even cycle of σ′◦σ−1. Besides, the odd-clockwise rule is preserved
by deletion of edges, so the number of edges oriented clockwise is odd along any cycle
of G, and in particular, the one we consider. Consequently, the number of edges with
negative orientation among (1, 2), . . . , (2m − 1, 2m) has the same parity as the number
of edges with negative orientation among (1, 2m), (2, 3), . . . , (2m− 2, 2m− 1). It follows
that the contribution of each of these cycles in sgn(σ)

∏

j Kj,σ(j) and sgn(σ′)
∏

j Kj,σ′(j)

have the same partity, and therefore, all the terms in the sum (1.3) have the same sign.

Let us now explain how to compute probabilities with Pfaffians in the dimer model on
the planar graph G. Let e1 = (v1, w1), . . . , ek = (vk, wk) be k disjoint edges of G. The
graph G̃ obtained from G by removing the edges e1, . . . , ek has an admissible orientation
that is induced by that of G. Therefore the Pfaffian of the matrix K̃ obtained from K by
deleting rows and columns corresponding to the vertices vi, wi represents the partition
function of the dimer model on G̃ (which can be zero). The following expression

νe1 · · · νek

∣
∣Pfaff K̃

∣
∣

is then the sum of the weights of the dimer configurations of G containing the edges
e1, . . . , ek. The probability of seeing e1, . . . , ek in a random dimer configuration of G is
thus given by

P [e1, . . . , ek] = νe1 · · · νek

∣
∣Pfaff K̃

∣
∣

∣
∣Pfaff K

∣
∣
.

what can be rewritten, using the correspondance between Pfaffians of submatrices K

and that of K−1, as

P [e1, . . . , ek] = νe1 · · · νek

∣
∣Pfaff(K−1)e1...ek

∣
∣

where (K−1)e1...ek
is the restriction of K−1 to the vertices vi, wi.

In general, if the graph is drawn on an orientable surface of genus g ≥ 1, the situation
is more complicated: some cycles are not homotopic to zero, and the odd-clockwise rule
does not work directly any more, and some terms in (1.3) come with the wrong sign.
However, the partition function can be written as a linear combination of 4g Pfaffians
obtained from different orientations [61, 11].
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1.3. The dimer model on bipartite graphs

1.3 The dimer model on bipartite graphs

In this section, we assume that the graph G is bipartite, i.e that we can color the vertices
of G in black and white such that any two adjacent vertices have different colors. Since
an edge links a white vertex with a black vertex, an obvious necessary condition for G to
have a dimer condition is to have the same number, say n, of white and black vertices.

If the vertices of G are labelled in such a way that in the Kasteleyn matrix, the first n
lines and colums refer to white vertices and the last n to black vertices, then K has the
following form

K =

(
0 K•→◦

K◦→• 0

)

where

K•→◦ : Cblack vertices → Cwhite vertices

acts on functions defined on black vertices and K◦→• is the transpose of −K•→◦. For
simplicity, we will denote the operator K•→◦ simply by K. In this particular context, a
dimer configuration can be encoded by a permutation σ ∈ Sn. For all i ∈ {1, . . . , n}, σ(i)
is the label of the black vertex with which wi is incident in the configuration represented
by σ.

The partition function of the dimer model can be expressed only in terms of K

Z(G, ν) =
∑

σ∈Sn

∣
∣K(w1,bσ(1)) · · ·K(wn,bσ(n))

∣
∣

Like in the previous section, a simpler expression for Z can be given if G is planar, i.e. if
it can be embedded in the plane, whereas the situation is more intricate if G can only
be embedded on surfaces of higher genus.

If G is planar, and more generally if it admits a Pfaffian orientation, then the partition
function is, up to a sign, the determinant of K

Z(G, ν) =
∣
∣detK

∣
∣.

The odd-clockwise rule in this particular case introduces minus signs in the matrix K

when comparing with the natural orientation of the edges of G (from white to black
vertices). The number of minus signs around a face is even if the face is borded by
2 mod 4 edges, and odd if it is borded by 0 mod 4. Thanks to correspondance between
determinants of submatrices of K and that of K

−1, the probability of seeing k edges
e1 = (w1,b1), . . . , ek = (wk,bk) in a random configuration is given by a determinant of
a submatrix of K

−1 of size k:

P [e1, · · · , ek ∈ C] =





k∏

j=1

νej



det
[
K

−1(bi,wj)
]

= det
[
νejK

−1(bi,wj)
]
. (1.5)
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1. Combinatorics of the dimer model

Using multilinearity of the determinant and an inclusion-argument argument, one can
also express as a determinant the probability of the following events:

P [e1, . . . , ek /∈ C ; ek+1, . . . , ek+l ∈ C]

= det

([

1k

0l

]

+

[

−νejK
−1(bi,wj) −νejK

−1(bi,wj)

νejK
−1(bi,wj) νejK

−1(bi,wj)

])

(1.6)

where the diagonal square blocks of the matrices have size k and l. 1k and 0l are the
identity matrix of size k and the null matrix of size l.

The superposition of two dimer configurations of the planar graph G is a collection of
cycles and double edges. One can pass from one configuration to another by performing a
succession of elementary operations [51], reducing gradually the length of the non-trivial
cycles. If G is not planar but can be embedded on a torus, the situation is different:
in such a superposition, some of the cycles are not homotopic to zero. There are in
fact four equivalence classes of dimer configurations, coinciding with the homology class
in H1(T2,Z/2Z) of the collection of cycles obtained from the superimposition with a
reference dimer configuration C0, i.e. the horizontal and vertical winding number of this
collection of cycles modulo 2. Let K be a Kasteleyn matrix as above. Configurations
in different classes give terms with different signs in detK. One can chose properly the
orientation so that the class (0, 0) give positive terms and the others negative terms. Let
γx and γy, and denote by K

(θτ) the matrix obtained from K by multiplying the entries
corresponding to edges crossing γx (resp. γy) by (−1)θ (resp. by (−1)τ ). The expression
of the partition function is given by the following linear combination:

Z =
1

2

(
−Z(00) + Z(01) + Z(10) + Z(11)

)
(1.7)

where Z(θτ) = detK
(θτ). The expression for the probability of seeing e1, . . . , ek in a

random dimer configuration of G is

P [e1, . . . , ek] =

(
k∏

l=1

Kwlbl

)

× 1

2

(

−Z(00)

Z
det(K(00))−1

bi,wj
+

Z(10)

Z
det(K(10))−1

bi,wj
+

Z(01)

Z
det(K(01))−1

bi,wj
+

Z(11)

Z
det(K(11))−1

bi,wj

)

(1.8)

where ej = (wj ,bj).

1.4 Dimers on bipartite graphs and flows

In the case of a bipartite graph, interesting interpretations of a dimer configuration can
be given in terms of flows.
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1.4. Dimers on bipartite graphs and flows

1.4.1 Forms on a graph embedded in an orientable surface

The embedding of G in an orientable compact closed surface Σ yields a cellular decom-
position of Σ. For k ∈ {0, 1, 2}, a k-chain is a formal combination of oriented k-cells
with integer coefficients, and a k-form is a function on k-chains. Let Ωk(G) be the linear
space of the k-forms2. The coupling between k-chains and k-forms will be denoted by
the integral sign.

The spaces Ωk(G) come with the standard exterior derivative d, the adjoint of the border
operator ∂ on chains: if f is a 0-form and e is an oriented edge from v to w, then

∫

e

df = df(e) = f(∂e) = f(v) − f(w).

Similarly, if α is a 1-form and f is a positively oriented face, bordered by edges e1, . . . , em

oriented counterclockwise, then

∫∫

f

dα =

∮

∂f

α =
m∑

i=1

∫

ei

α.

Finally, the derivative dω of a 2-form ω is 0.

One can associate to the graph G embedded in Σ a dual graph G∗ embedded in Σ. The
vertices of G∗ are the faces of G and there is an edge e∗ between f∗

1 and f∗
2 of G∗ if the

two corresponding faces of G, f1 and f2, share an edge e. The faces of G∗ are associated
to vertices of G. This duality extends to oriented chains: an orientation of e induces an
orientation of e∗ so that (e, e∗) is a direct frame. Note that for 0-chains and 2-chains,
the duality operator is an involution

(v∗)∗ = v (f∗)∗ = f ,

whereas it is an anti-involution on 1-chains

(e∗)∗ = −e.

This *-operator induces a bijection between Ωk(G) and Ω2−k(G∗) for k ∈ {0, 1, 2}, also
noted by ∗. For any k-chain γ and any k-form α,

∗α(γ) = (−1)kα(γ∗)

2Note that whereas Ω0(G), C0(G), Ω1(G) and C1(G) depend only on the structure of the graph G,
the spaces Ω2(G) and C2(G) depends strongly on the embedding in the surface Σ, since it is the
embedding that defines the faces of G.
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1. Combinatorics of the dimer model

1.4.2 Unit white-to-black flows and height function

A dimer configuration C defines a unit white-to-black flow ω, i.e a flow with divergence
+1 at every white vertex, and −1 at every black vertex: the amount of flow

∫

e
ω in the

edge e equals 1 if e belongs to C, and 0 if not.

Let C0 be a reference dimer configuration of G with flow ω0. For any dimer configuration
C with flow ω, The difference ω−ω0 is a divergence-free flow: its dual is a closed 1-form.

• If the surface in which the graph is embedded is a sphere, then the dual closed
form is exact : there exists a function on faces of G, h ∈ Ω2(G), such that the flux
of ω − ω0 across any dual 1-chain γ from face f1 to face f2 is

∫

γ
∗(ω − ω0) = h(f2) − h(f1).

This function h is called the height function.

• If the graph G is embedded in a torus, the form ∗(ω − ω0) is not always exact.
If γx and γy are dual paths with respective homology class (1, 0) and (0, 1), then
∗(ω − ω0) can have periods along these paths: after m horizontal and n vertical
winds, the change in height is

∮

mγx+nγy

∗(ω − ω0) = mhx + nhy.

(hx, hy) is called the height change of C. It is an element of Z2,and can be identified
with the homology class in H1(T2,Z) of the flow ω − ω0.

1.4.3 Gauge transformation and magnetic field

The edges of the bipartite graph G have a natural orientation: from their white end to
their black end. The functions on edges can be identify with the 1-forms of G. Similarly,
we identify the functions on the vertices and on the faces of G with the elements of
Ω0(G) and Ω2(G) respectively.

Define the energy E as the logarithm of the weight function ν

E = − log ν.

If a dimer configuration is identified with the sum of the edges it contains, the energy of
a configuration is given by

E(C) =

∫

C

E =
∑

e∈C

∫

e

E.
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1.4. Dimers on bipartite graphs and flows

When superposing two dimer configurations C1 and C2, one sees double edges and a
union of cycles γj . The difference of energy between the two configurations is therefore
the (alternate) sum of the energy of edges of each cycle γj

E(C1) − E(C2) =
∑

j

∮

γj

E.

The relative weights of dimer configurations are determined by the flux of energy through
cycles

∮

γ E. In particular, adding to the energy the derivative df of a 0-form, i.e replacing

the energy of an edge e = (w,b) by

∫

e

E + df = E(e) + f(w) − f(b)

will not affect the Boltzmann probability measure. Such a transformation is called a
gauge transformation.

• When the graph G is planar, the set of gauge equivalence classes is parameterized
RF−1, where F is the number of faces of G: An equivalence class [E] is represented
by the element dE ∈ Ω2(G) ≃ RF giving the flux of energy through faces, and
subject to the relation that the sum of all the fluxes is zero. Following [34], we will
refer to the element dE ∈ Ω2(G) as Bz.

• When the graph is embedded in a torus, the situation is different for topological
reasons. The set of gauge equivalence classes is parameterized by RF−1 ⊕R2: in
addition to the previous fluxes through the faces of G, there are also the fluxes
through the non trivial cycles γx and γy, that are controlled by the last two param-
eters, Bx and By. Bx represents an extra energy that is added (resp. substracted)
to edges crossing γx from left to right (resp. from right to left). Similarly, By is
the amount of energy that is added (resp. substracted) to edges crossing γy from
left to right (resp. from right to left). Modifying the magnetic field B by

B′ = B + (0, ∆Bx, ∆By)

will affect the energy of a configuration C. The change in energy depends linearly in
the magnetic modification through the height change (hx, hy) of the configuration:

EB′(C) − EB′(C0) = EB(C) − EB(C0) + ∆Bxhx + ∆Byhy (1.9)

This influence of the magnetic field on the relative weight of a configuration through
its height change will be used in the next chapter to classify the translation invari-
ant probability measures on dimer configurations of a planar Z2 periodic graph.
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2 Dimers and Amœbæ

The title of this chapter is borrowed from an article written by Kenyon, Okounkov and
Sheffield [34]. In that article, the authors describe the set of all translation invariant
Gibbs measures for the dimer model of a planar bipartite periodic graph, as well as its
phase diagram. That is what we propose to explain in this chapter.

Let G be a bipartite Z2-periodic planar graph: the vertices of G are colored in black
and white such that any two adjacent vertices have different colors, and Z2 acts on G by
color-preserving translations. For a chain α and x ∈ Z2, we will denote by αx the image
of α by the translation of x. We denote also by Gn the quotient of G by the action of
(nZ)2.

Fix a white-to-black unit flow ω0 on G1. This flow can be lifted to any Gn and to G and
will serve as a reference flow to define the height function. We will suppose that this
flow corresponds to a dimer configuration C0 of G1.

Let E be an energy function on edges of G1, which defines also a periodic energy function
on edges of Gn and G. We define like in the previous chapter a probability measure µn

on the set M(Gn) of dimer configurations of Gn by the formula

∀C ∈ M(Gn) µn(M) =
e−E(C)

Z(Gn, E)

The graphs Gn are naturally embedded in a torus, and therefore dimer configurations
on Gn have a height change. For a fixed (s, t) ∈ R2, we also define Ms,t(Gn) be the
set of dimer configurations of Gn with a height change (⌊ns⌋, ⌊nt⌋) and µn(s, t) be the
conditional measure induced by µn on Ms,t(Gn).

2.1 Gibbs measures on dimer configurations

Since G is an infinite graph, the notion of Boltzmann measure as presented in the
previous chapter cannot be applied here. It is replaced by the notion of Gibbs measure,
which is a natural extension of it:

Definition 2.1. A probability measure µ on dimer configurations of G is a Gibbs mea-
sure if it has the property that if we fix the matching in an annular region, the dimer
configurations outside and inside the region are independent, and the probability of any
interior matching is proportionnal to the weight of this matching. Moreover, if µ is in-
variant and ergodic under the action of Z2, then µ is said to be an ergodic Gibbs measure
(EGM).
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2.2. Spectral curve and related objects

For an EGM µ, let s = E
[
h(f(1,0)) − h(f)

]
and t = E

[
h(f(0,1)) − h(f)

]
be respectively the

expected horizontal and vertical height changes. (s, t) is called the slope of µ. Sheffield
proved in [55] a theorem about unicity of ergodic Gibbs measures

Theorem 2.1 ([55]). For each (s, t) for which Ms,t(Gn) is non empty for n sufficiently
large, µn(s, t) converges as n goes to +∞ to a EGM µ(s, t) of slope (s,t). Moreover, µn

itself converges to a EGM µ(s0, t0), where (s0, t0) is the limit of the slopes of µn.

If (s0, t0) lies in the interior of the set of (s, t) for which Ms,t(Gn) is non empty for n
sufficiently large, then every EGM of slope (s, t) is of the form µ(s, t) as above: that is
µ(s, t) is the unique EGM of slope (s, t).

The surface tension or free energy per fundamental domain of a measure µ(s, t) is defined
to be the following limit

σ(s, t) = − 1

n2
log

∑

C∈Ms,t(Gn)

e−E(C). (2.1)

This quantity describes how fast the number of dimer configurations of a given slope
grows with n. The slope of the measure µ(s0, t0) is the slope that realizes the minimum
of σ. The minimum is unique since the surface tension σ is strictly convex [55].

2.2 Spectral curve and related objects

Since the weights on G are periodic, a Kasteleyn operator on G can be defined by lifting
that of the finite graph G1.

The Kasteleyn operator K commutes with the translation action of Z2. In particular,
it preserves the Z2-eigenspaces, that are indexed by multipliers (z, w) ∈ (C∗)2. These
eigenspaces are finite-dimensional, and a basis (δv) is given by the functions supported
on a single Z2-orbit, and taking value 1 on a vertex v inside a fixed fundamental domain.
Let K(z, w) be the matrix of the retriction of K to the Z2-eigenspace indexed by (z, w)
in the basis (δv).

This matrix can also be viewed as the magnetically altered Kasteleyn operator of the
graph G1, that is a Kasteleyn operator for weights modified as follows: let γx and γy be
dual paths in G1 avoiding edges of C0, with respective homology class (1, 0) and (0, 1),
and whose lifts delimit the fundamental domain of G. The weight of an edge crossing
γx from left to right (resp. from right to left) is multiplied by z (resp. by z−1). The
weight of an edge crossing γy from left to right (resp. from right to left) is multiplied by
w (resp. by w−1).

The polynomial
P (z, w) = detK(z, w)

is called the characteristic polynomial of the graph G. The spectral curve is the locus of
the zeros of P in (C∗)2. The partition function of the dimer model on G1 in presence of a
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2. Dimers and Amœbæ

magnetic field (Bx, By), given by formula (1.7), is expressed in terms of the characteristic
polynomial P :

Z(G1) =
1

2

(
−P (eBx , eBy) + P (−eBx , eBy) + P (eBx ,−eBy) + P (−eBx ,−eBy)

)
(2.2)

The Newton polygon N(P ) of the polynomial P is the convex hull in R2 of the set of
integer exponents of monomials in P

N(P ) = Conv
{

(j, k) ∈ Z2 | zjwk is a monomial in P (z, w)
}

.

The interest of the Newton polygon in the dimer context is given by the following
proposition:

Proposition 2.1 ([34]). N(P) is the set of all possible slopes for an EGM on dimer
configurations of G.

A choice of another reference configuration C0 will lead to another characteristic poly-
nomial, differing from P just by a multiplicative term of the form zkwl, whose Newton
polygon is obtained from N(P ) by a translation. The spectral curve is invariant by this
modification.

The amœba A(P ) of the polynomial P is the image of the curve P (z, w) = 0 by the
application

Log :(C∗)2 → R2

(z, w) 7→ (log |z|, log |w|) .

A related object is the Ronkin function F (x, y) of the polynomial P , defined by the
following integral

F (x, y) =

∫∫

|z|=ex

|w|=ey

log P (z, w)
dz

2iπz

dw

2iπw
(2.3)

These objects coming from algebraic geometry have a direct probabilistic interpretation,
as we will see in the following sections. It is important to note that the integral in (2.3) is
singular if and only if (x, y) ∈ A(P ). The Ronkin function is linear over each component
of the amœba’s complement, and strictly convex over the interior of the amœba [40].

The locus of the zeros of P define an algebraic curve in C2 of a very special kind. More
precisely, it is a Harnack curve. The consequences of this algebraic fact will be explained
in section 2.4.

2.3 Changing the magnetic field and computing. . .

Theorem 2.1 states that the set of EGMs for a given periodic energy function E on the
Z2-periodic graph G is a two-parameter family. To obtain one of these measures, instead
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2.3. Changing the magnetic field and computing. . .

of taking limits of the conditioned measures µn(s, t), one can fix a value (Bx, By) for
the magnetic field, and take the limit of the Boltzmann measures on M(Gn) for the
magnetically modified weights: let γ̃n

x be a lift of n · γx to Gn and γ̃n
y a lift of n · γy.

Multiply the weight of an edge of Gn crossing γ̃n
x (resp. of γ̃n

y ) to by e±nBx (resp. by

e±nBy) according to its orientation.

Let Kn,B be a Kasteleyn operator on Gn for these weights.

2.3.1 . . . the partition function

The partition function of the dimer model on Gn for these weights can be computed
from formula (1.7).

Z(Gn, B) =
1

2

(
−detK

(00)
n,B + detK

(01)
n,B + detK

(10)
n,B + detK

(11)
n,B

)
(2.4)

where K
(θτ)
n,B are the four modifications of Kn,B where the entries of Kn,B corresponding

to edges crossing γ̃n
x (resp.γ̃n

x ) are multiplied by (−1)θ (resp. by (−1)τ ). Using the

action of (Z/nZ)2 by translation, the operators K
(θτ)
n,B can be diagonalized by blocks by

discrete Fourier transform: the diagonal blocks are of the form K(ζ, ξ) where ζ and ξ
are nth roots of (−1)τenBx and (−1)θenBy respectively. The different determinants can
be computed in terms of P :

detK
θτ
n,B =

∏

ζn=(−1)τ enBx

ξn=(−1)θenBy

P (ζ, ξ). (2.5)

The normalized logarithm of such a determinant is thus a Riemann sum on the torus

1

n2
log detK

θτ
n,B =

1

n2

∑

ζn=(−1)τ enBx

ξn=(−1)θenBy

log P (ζ, ξ) (2.6)

approximating the integral

F (Bx, By) =

∫∫

|z|=eBx

|w|=eBy

log P (z, w)
dz

2iπz

dw

2iπw
. (2.7)

In fact, one can show that the asymtotics of the four terms in (2.4) are the same, and
by a standard subadditivity argument [8] that

lim
n→∞

1

n2
log Z(Gn, B) = F (Bx, By). (2.8)

Thus, the Ronkin function gives the free energy of the model for the measure µ(Bx, By).
On the other hand, from formula (1.9) and the definition of the free energy, we have

F (Bx, By) = max
s,t

(−σ(s, t) + sBx + tBy) (2.9)
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2. Dimers and Amœbæ

since the slope of the limit measure µ(Bx, By) minimizes the surface tension correspond-
ing to the magnetically modified weights. In other words, the Ronkin function is the
Legendre transform of the surface tension σ. Since the surface tension is strictly convex,
the Legendre transform is involutive, and σ is the Legendre transform of the Ronkin
function F .

The gradient of F maps R2 to the Newton polygon N(P ). the facets of F correspond
to the cusps of σ. The slopes of the facets of F are integer points of N(P ) [40].

2.3.2 . . . the local statistics

One may also want to compute the local statistics for the measure µ(Bx, By). What is
the probability that k given edges e1 = (w,b1), . . . , ek = (wk,bk) appear in the random
dimer configuration ? For the finite graph Gn, the answer is given by formula (1.8).

µn(Bx, By)
[
e1, . . . , ek

]
=

(
k∏

l=1

Kwlbl

)

× 1

2

(

−
Z

(00)
n,B

Zn,B
det(K

(00)
n,B )−1

bi,wj
+

Z
(10)
n,B

Zn,B
det(K

(10)
n,B )−1

bi,wj
+

Z
(01)
n,B

Zn,B
det(K

(01)
n,B )−1

bi,wj
+

Z
(11)
n,B

Zn,B
det(K

(11)
n,B )−1

bi,wj

)

(2.10)

where Z
(θτ)
n,B = det K

(θτ) and Zn,B = 1
2(−Z

(00)
n,B + Z

(00)
n,B + Z

(01)
n,B + Z

(10)
n,B + Z

(11)
n,B ) and the

indices i and j in the determinants range from 1 to k.

The inverses of the operators K
(θτ)
n,B can be also explicitly computed by discrete Fourier

transform. Their entries are Riemann sums. Let w and b be respectively a white and
a black vertex in G1. Denote by wx,y the lift of w in the fundamental domain (x, y) of

Gn, and bx′,y′ the lift of b in fundamental domain (x′, y′). The entry of K
(θτ)
n,B between

bx′,y′ and wx,y is

(
K

(θτ)
n,B

)−1

bx′,y′ ,wx,y
=

1

n2

∑

ζn=(−1)τ enBx

ξn=(−1)θenBy

(
K(ζ, ξ)−1

)

b,w
ζ−(y′−y)ξx′−x

=
1

n2

∑

ζn=(−1)τ enBx

ξn=(−1)θenBy

Qbw(ζ, ξ)

P (ζ, ξ)
ζ−(y′−y)ξx′−x (2.11)

where Qb,w(z, w) is the cofactor of the matrix K(z, w) obtained after removing the line
corresponding to white vertex w and the column corresponding to black vertex b. When

n goes to +∞, the entries
(
K

(θτ)
n,B

)−1

bx′,y′ ,wx,y
converge to the integrals

K
−1

B (bx′,y′ ,wx,y) =

∫

|z|=eBx

|w|=eBy

z−(y′−y)wx′−xQbw(z, w)

P (z, w)

dz

2iπz

dw

2iπw
(2.12)

38



2.3. Changing the magnetic field and computing. . .

The operator K
−1

B is the inverse of the operator K over the space ℓ2
B(G), the completion

of the space of functions with finite support for the scalar product

〈f, g〉B =
∑

x,y

(
e−xBy+yBx

)2 ∑

v∈fund.
domain

f(vxy)g(vxy) (2.13)

and the probability converges to

µ(Bx,By) [e1, . . . , ek] =

(
k∏

l=1

Kwlbl

)

det
(
K

−1

B (bi,wj)
)

(2.14)

A natural topology on the set M(G) of dimer configurations of G is the product topology,
for which two dimer configurations are close if they coincide on a large ball around the
origin. For this topology, M(G) is compact and the convergence of finite dimensional
distributions is equivalent to the weak convergence of probability measures µn(Bx, By)
to µ(Bx,By).

The way we chose to compute the correlations in presence of a magnetic field leads to a
nice interpretation of the magnetic field, as the size of the torus over which we integrate
to get the expression of the free energy and of the operator K

−1 giving the correlations.
However, the drawback of this procedure is that the entries of the operator K

−1

B are
unbounded for a non-zero magnetic field.

Another way to get local statistics for the measure µ(Bx,By) is to take limits of Boltzmann
measures on Gn for weights in the same equivalence class, but for another gauge. The
magnetically modified weights are defined as follows: we multiply the original weights
of an edge crossing any lift of γx (resp. γx) to Gn by e±Bx (resp. by e±Bx ) according
to its orientation. We get then the following expression for the (new) inverse Kasteleyn
operator K

−1

B

K
−1

B (bxy,w) =

∫

T2

z−ywxQbw(eBxz, eByw)

P (eBxz, eByw)

dz

2iπz

dw

2iπw
(2.15)

where T2 is the unit torus. This expression for the entries of K
−1

B differs from (2.12) by
a factor eyBx−xBy . However, the special expression of this factor implies that formula
(2.14) used to compute local statistics are unchanged, thanks to their determinantal
form. The entries of this new operator are bounded for any value of the magnetic field.
The price to pay to use this expression is that we have to modify the Kasteleyn operator
itself: in presence of a magnetic field, every edge crossing a lift of the horizontal cycle γx

(resp. the vertical cycle γy) has its weight multiplied by e±Bx (resp. by e±By), leading
to a new Kasteleyn operator KB. Following [34], we will in fact adopt this second point
of view and use (2.15) to compute K

−1

B .
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2. Dimers and Amœbæ

2.4 Harnack curves and consequences of maximality

As we said briefly in section 2.2, the curves arising as spectral curves of bipartite dimer
models are algebraic real curves of a special kind. They are called Harnack curves or
maximal curves. While all complex curves of a given degree have the same topology,
the number and the position of ovals of real curves can be different. Harnack curves
are the curves with the largest number of ovals in the “best possible” position. A
precise topological definition can be found in [40]. Recently, Mikhalkin and Rullg̊ard
gave alterative characterizations of Harnack curves

Theorem 2.2 ([41]). Let P a polynomial with real coefficients whose Newton polygon
N(P ) has positive area. Then the three following assertions are equivalent

i) The real curve {P (z, w) = 0} is a Harnack curve.

ii) The mapping from the complex curve {P (z, w) = 0} to its amœba is at most1

2-to-1.

iii) AreaA(P ) = π2 AreaN(P )

The right hand side of iii) is in fact an upper bound for the area of the amœba of a curve
with a given Newton polygon [47]. Harnack curves have thus the property that the area
of their amœba is maximal among those of the curves with the same Newton polygon.
This explains why Harnack curves are also called maximal curves. Several proofs of
maximality of spectral curves of bipartite planar dimer models were given [32, 34, 36].

The 2-to-1 property implies that, generically, the polynomial P has 2 or 0 roots on the
torus {|z| = eBx , |w| = eBy} depending on wether (Bx, By) lies in the amœba or in its
complement. The number of roots of P on this torus has an influence on the asymptotics
of K

−1

B , that has an impact on the decay of correlations between dimers.

One distinguishes three phases, depending on the behavior of the correlations at long
range:

• in the gaseous phase, the correlations decay exponentially fast,

• in the liquid phase, the correlations decay as a power law,

• in the solid phase, there exist edges arbitrary far from each other such that the
correlation between them is 1.

The relation between the magnetic field and the phase of the corresponding measure
µ(Bx,By) has been investigated in [34] and is summarized in the theorem:

Theorem 2.3 ([34]). The measure µ(Bx,By) is gaseous, liquid or solid respectively when
(Bx, By) is in the closure of a bounded complementary component of A(P ), in the interior
of A(P ), or in the closure of an unbounded complementary component of A(P ).

1This mapping is 2-to-1 over the interior of the amœba except at the real nodes of the curve.
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2.5. The gaseous phase

The components of the boundary of the amœba are the curves separating the different
phases of the dimer model. They form the phase diagram of the model.

Another consequence of the 2-to-1 property is that to any lattice point of the New-
ton polygon corresponds either a bounded component of the amœba complement or an
isolated real node of the spectral curve. In particular, the number of gaseous phases
of a dimer model equals the genus of the spectral curve [34]. For a generic choice of
weights, the dimer model has a gaseous phase for every lattice point in the interior of
the Newton polygon N(P ) and a frozen phase for every lattice point on the boundary
of N(P ). When the curve has the maximal possible number of real nodes, the amœba
has no holes. The spectral curve has genus 0 and therefore corresponds to an isoradial
dimer model [30, 32, 10], that have particular properties of locality.

The next three sections describe more in details the quantitative behaviour of the dif-
ferent phases. We will use short notations for magnetically altered quantities

PB(z, w) = P (eBxz, eByw), KB(z, w) = K(eBxz, eByw), QB(z, w) = Q(eBx , eByz).

As introduced before, KB and K
−1

B will stand for the Kasteleyn operator and its inverse
in presence of the magnetic field B = (Bx, By).

2.5 The gaseous phase

When (Bx, By) belongs to a bounded complementary component of the amœba, the
polynomial PB(z, w) = P (eBxz, eByw) has no root on the unit torus. For any choice of
black and white vertices b and w, the rational fraction

QB
bw(z, w)

PB(z, w)
(2.16)

is analytic over the unit torus. Therefore, the coefficients K
−1

B (bx,w) decay exponentially
when |x| → ∞. As a consequence, the height variance Var(h(f1) − h(f2)) stays bounded
independently from the distance between f1 and f2.

2.6 The liquid phase

We suppose in this section that (Bx, By) is in the interior of the amœba. When (Bx, By)
is a generic point in the interior of the amœba, the polynomial PB(z, w) has two roots
on the unit torus. We describe some features of liquid measures assuming that (Bx, By)
is such a generic point. Similar statements can be given when (Bx, By) is a real node.
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2. Dimers and Amœbæ

2.6.1 Map from G∗ to R2

When given a liquid measure on dimer configurations of G, there is a natural application
Ψ from the dual graph G∗ to R2, described by the following lemma. This application
seems to give the good geometry to study liquid dimer models. In particular, when
dimer weights are critical, Ψ coincides with the isoradial embedding of G∗ [30].

Lemma 2.1. Let (z0, w0) be a root of the characteristic polynomial on the unit torus.
The 1-form

e = (w,b) 7→ iKB
wb(z0, w0)Q

B
bw(z0, w0) (2.17)

is a divergence-free flow. Its dual is therefore the gradient of a mapping from G∗ to
R2 ≃ C.

This mapping Ψ is Λ-periodic, where Λ is the two -dimensional lattice generated by
x̂ = iz0∂1P (z0, w0) and ŷ = iw0∂2P (z0, w0).

Proof:

The divergence of the 1-form ω : e 7→ iKB
wb(z0, w0)Q

B
bw(z0, w0) at some black vertex b

is given by

(divω)(b) =
∑

w′∼b

iKB
w′b(z0, w0)Q

B
bw′(z0, w0)

= i
(
QB(z0, w0) · KB(z0, w0)

)

b,b
= iPB(z0, w0) = 0

Similarly, one can check that the divergence of this flow is 0 at every white vertex w.
Thus, since G is planar, there exists an application Ψ : G∗ → C such that ω = dΨ.

The fact that Ψ is periodic is a consequence of the fact that G and the Kasteleyn operator
are both periodic. There exist two complex numbers x̂ and ŷ such that for every v ∈ G∗

and every (x, y) ∈ Z2, the difference between the image of vx,y the translated of v by
(x, y) and that of v itself is given by

Ψ(vx,y) − Ψ(v) = xx̂ + yŷ. (2.18)

Define α and β to be the partial derivatives of PB at the root (z0, w0) with respect to
the first and the second variable respectively

α = ∂1P
B(z0, w0), β = ∂2P

B(z0, w0). (2.19)

Let us prove now that the numbers x̂ and ŷ are given by iz0α and iw0β respectively. Let
γ̃x and γ̃y be respectively the lift of γx and γy starting at the same face of G. The complex
number x̂ equals the sum of the complex numbers ±ω(e) over all edges e crossing γ̃x (see
figure 2.1). These are exactly the edges of G1 whose weights have been multiplied by
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2.6. The liquid phase

~

~γx

γy

Figure 2.1: A piece of a planar bipartite periodic graph. The shaded zone represents its fundamental
domain, delimited by the two paths γx and γy.

z±1 in the magnetically altered Kasteleyn operator KB(z, w), and the sign of the power
of z is the same as that in front of ω(e). Noticing that

z
∂

∂z
zm = m zm =







z if m = 1

−z−1 if m = −1

0 if m = 0

(2.20)

we can write

x̂ =
∑

w,b∈G1

i
(
z0∂1K

B
wb(z0, w0)

)
QB

bw(z0, w0)

= iz0 tr
(
∂1K

B(z0, w0) · QB
bw(z0, w0)

)
.

On the other hand, recall that the characteristic polynomial PB(z, w) is the determinant
of KB(z, w). Therefore if the black and white vertices of G1 are labeled from 1 to n,
then

iz0α = iz0∂1P (z0, w0) = iz0

n∑

j=1

det(KB
b1

(z0, w0), . . . , ∂1K
B
bj

(z0, w0), . . . , K
B
bn

(z0, w0))

(2.21)
where KB

bj
(z, w) is the jth column of the matrix KB(z, w). Expanding each determinant

with respect to the column containing derivatives, we get

iz0α = iz0

n∑

j=1

n∑

k=1

∂1K
B
wkbj

(z0, w0)×

Cofwkbj

(
KB

b1
(z0, w0), . . . , ∂1K

B
bj

(z0, w0), . . . , K
B
bn

(z0, w0)
)

(2.22)

43



2. Dimers and Amœbæ

Since the cofactor Cofwkbj (K
B
b1

, . . . , ∂1Kbj (z0, w0), . . . ,K
B
bn

(z0, w0)) does not depend

on the jth column, we can replace it by KB
bj

(z0, w0). This cofactor by definition is

QB
bjwk

(z0, w0). Thus,

iz0α = iz0

n∑

j=1

n∑

k=1

∂1K
B
wkbj

(z0, w0)Q
B
bjwk

(z0, w0) (2.23)

= iz0 tr(∂1K
B(z0, w0) · QB(z0, w0)) = x̂. (2.24)

The same argument applied to γ̃y gives the formula

iw0β = ŷ. (2.25)

¤

In what follows, to construct the application from G∗ to R2, we will choose between the
root (z0, w0) on the unit torus for which the frame (x̂, ŷ) is direct. This is equivalent to
requiring that

Im

(
w0β

z0α

)

> 0 (2.26)

2.6.2 Asymptotics of K
−1

B (b,w)

The coefficients of K
−1

B decays linearly. More precisely, if b and w are in the same
fundamental domain, and bx,y is a translate of b by (x, y), then we have the following
asymptotics for K

−1

B (bx,y,w):

Lemma 2.2. Let (z0, w0) the root of PB on the unit torus satisfying (2.26). Then the
asymptotic expresion for the coefficients of K

−1 are given by

K
−1

B (bx,y,w) = −Re

(

z−y
0 wx

0QB
b,w(z0, w0)

π
(
xx̂ + yŷ

)

)

+ O

(
1

|x|2 + |y|2
)

(2.27)

The proof of this lemma is given in [34].

Note that the geometry of the map from G∗ to R2 appears in this analytical result.
The denominator up to a factor π is the vector separating the image of the fundamental
domains of bx,y and w under this mapping. Moreover, if b and w are the ends of an
edge e then (2.27) can be rewritten as

KB(w,b) K
−1

B (bx,y,w) = Re

(

z−y
0 wx

0 ie∗

π
(
xx̂ + yŷ

)

)

+ O

(
1

|x|2 + |y|2
)

(2.28)

In particular, this lemma implies that the correlations between two distant dimers e1

and e2 decays as dist(e1, e2)
−2. As a consequence, the variance of the difference of height

between two faces grows like the logarithm of the distance between the images of the
two faces by Ψ.
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2.7. The solid phase

2.7 The solid phase

Let ω0 be a periodic white-to-black unit flow. Since a probability measure µ on dimer
configurations of G gives also rise to a periodic white-to-black unit flow ωµ, by the
formula

ωµ(e) = Pµ [e] , (2.29)

the difference ωµ −ω0 is a divergence-free flow and the corresponding flux is the average
height function h.

For f1 and f2 two adjacent faces of G and ~e the (oriented) edge having face f1 on its left
and f2 on its right, define d(f1, f2) to be the maximal possible amount of flow ωµ − ω0

through the edge ~e. Thus quantity is called the capacity of the edge ~e.

For two any faces f and f ′, define D(f , f ′) as

D(f , f ′) = min
γ

n∑

j=1

d(fγ(j), fγ(j+1)) (2.30)

where the minimum is taken over all dual paths γ =
(
fγ(1), fγ(2), . . . , fγ(n)

)
from f = fγ(1)

to f ′ = fγ(n).

The max flow-min cut theorem states that the quantity D(f , f ′) is equal to the maximum
flux through any dual path from f to f ′. This theorem can be stated as follows:

Theorem 2.4 (max flow-min cut). For any dimer configuration C, the difference of
height between faces f and f ′ satisfies

h(f ′) − h(f) ≤ D(f , f ′) (2.31)

If there exist no dimer configuration with slope (s, t), then there exists a face f and a
translated of it fx,y such that

D(f , fx,y) < sx + ty (2.32)

In this case, there exists a dual path γ = (f1, . . . , fk) between f = f1 and fx′,y′ = fk a
translated of f (maybe different from fx,y) using at most once each type of face, such
that

Dγ(f , fx′,y′) =
k−1∑

j=1

d(fj , fj+1) < sx′ + ty′ (2.33)

There is a finite number of such paths, and each paths of this type gives a constraint on
the slope of a height function. In particular, the Newton polygon representing the set
of all possible slopes is the convex set defined by the intersection of the half-planes

{
(s, t) | Dγ(f , fx′,y′) ≥ sx′ + ty′

}
(2.34)
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2. Dimers and Amœbæ

when γ runs through the set of such paths. The case of equality in the inequality
corresponding to a path γ means that the flux through this dual path is maximal: the
amount of flow ωµ through an edge crossing γ is either 0 or 1. In other words, the state
of the edges crossing γ is completely deterministic. The path γ is called a frozen path.
One can always manage to deform slightly γ so that any edge crossing γ appears with
probability zero in the random configuration.

−1z

w−1
1

1

−1
z

1

(a) weighted graph

-4 -2 2 4
Bx

-4

-2

2

4

By

(b) phase diagram

Figure 2.2: The graph and the phase diagram of a dimer model comporting a non-frozen solid phase.
The multipliers used to compute the Fourier transform of K are indicated on the graph.
On the phase diagram are drawn the type of edges appearing with probability 1 in each
frozen solid phase. The fourth solid phase is not completely frozen. The frozen paths
corresponding to this phase are represented by dotted lines.

Every weighted bipartite graph is equivalent2 to a honeycomb graph with a n×n funda-
mental domain. Generically, all the weights are non zero, and the Newton polygonal is
an isoceles right triangle. It has 3n lattice points on the boundary, each corresponding
to a solid phase of the model. These different solid phases are easily described. For
example, the vertical side of the Newton polygon corresponds to n frozen paths in the
x̂-direction. The strips between two neighbouring frozen paths admit only two dimers
configurations (see fig.) with generically different energy, given by a succession of edges
in one of the two directions allowed. The choice between the two directions depends
on the magnetic field. The transition from a solid phase to another happens when the
magnetic field makes one of these strips switch from one direction to another.

A typical tiling with a height lying on this side of the Newton polygon will be a succession
of rows of edges of the same type separated by frozen paths. Two solid phases will differ
from each other by the direction each rows has.

In this generic situation the solid phases are really frozen: every edge appears in the
random dimer configuration with probability 1 or 0.

2The equivalence relation for dimer graphs means that one can pass from one graph to another by a
succesion of elementary moves that preserves dimer properties. See [52]
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2.8. The dimer on the honeycomb lattice

This is however not always the case, as shows the following example. Let us consider
the dimer model presented on figure 2.2.

This model presents 4 solid phases, 3 of them being completely frozen. The fourth one
is of a different kind: between two neighbouring vertical frozen paths, the strips admit
an infinity of dimer configurations corresponding to tilings of infinite strips of width 2
by 2 × 1 dominos. Dimer configurations in different strips are independent.

2.8 The dimer on the honeycomb lattice

In this section we discuss the different aspects introduced in this chapter on a particular
graph: the honeycomb lattice H. The dual graph of H is the triangular lattice, and a
dimer configuration can be seen by duality as a rule to glue the triangular faces of H∗

by pairs, leading to a tiling of the plane by rhombi.

Every edge of the lattice is assigned a weight equal to 1. A system of coordinates (x, y)
is chosen to label fundamental domains of the graph consisting of a white and a black
vertex.

x

ŷ

^

ĉ

Figure 2.3: A piece of the honeycomb lattice. The shaded area represents the fundamental domain of
this lattice. The unit vectors x̂ and ŷ drawn with solid lines define the system of coordinates
(x, y) we use to label vertices. Another system of coordinates (c, y) is used, using vector ĉ
in dotted lines.

The characteristic polynomial for this model is P (z, w) = 1 + z + 1
w . For a given choice

of magnetic field (Bx, By), the inverse Kasteleyn operator is given by the formula

K
−1

B (bx,y,w) =

∫∫

T2

z−ywx

1 + eBxz + e−By 1
w

dz

2iπz

dw

2iπw
. (2.35)

If the three inequalities

eBx + e−By > 1, 1 + eBx > e−By , 1 + e−By > eBx , (2.36)
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2. Dimers and Amœbæ

are fullfilled, the polynomial PB(z, w) = P (eBxz, eByw) has two zeros on the unit torus
T2 and the corresponding Gibbs measure is liquid. If one of these inequalities is not
statisfied, the Gibbs measure is frozen: with probability 1, we will see only one type of
edge. All the Gibbs measures have the conditional uniform property: the probability
measure induced by conditionning on an annular region on the tilings inside this region
is the uniform probability measure.

Imposing a magnetic field in this case is in fact equivalent to assigning different weights
to edges according to their orientation, as in figure 2.4.

c

a
b

Figure 2.4: The weights assigned to edges of the honeycomb lattice, according to their orientation.

These weights a, b and c are related to the magnetic field by

Bx = log
( c

a

)

By = − log

(
b

a

)

(2.37)

This is the point of view we adopt in this section.

-4 -2 2 4
logJ c
�����

a
N

-4

-2

2

4

-logJ b
�����

a
N

Figure 2.5: The amœba of the dimer model on the honeycomb lattice. The connected complement of
the complementary represent the solid phases of the model. The type of edge appearing
with probability 1 in each of these phases are represented.
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2.8. The dimer on the honeycomb lattice

The spectral curve of this dimer model is a Harnack curve of genus zero, whose amœba
is represented on figure 2.5. The dimer model has only two phases, instead of three:
there is no gaseous phase. It belongs thus to the class of the isoradial dimer model with
critical weights introduced in [30] by Kenyon: there is an embedding of H∗ in the plane
such that every face is inscribable in a circle of radius 1, and the length of any dual edge
is proportional to the weight of the corresponding primal edge3. The faces of H∗ are
triangles with side length proportional to a, b and c.

A dimer configuration on H can be interpreted as a surface in R3 through the height
function: the corresponding tiling is the projection of a landscape of unit cubes in the
plane perpendicular to (1, 1, 1) direction, and the height function is the coordinate in
the direction (1, 1, 1).

It is sometimes more convenient to use another system of coordinates to label vertices
of H. We decide to use (c, y) where c = x + y labels the columns of hexagons of H. The
inverse Kasteleyn operator in these new coordinates is given by

K
−1(bc

y,w) =

∫

T2

u−ywc

a + 1
w (b + cu)

du

2iπu

dw

2iπw
.

In the special case when c = 0, this integral can be completely computed by the method

of residues. If y 6= 0, K
−1(b

(0)
y ,w) equals

K
−1(b(0)

y ,w) =
sin(θ0y)

πay
.

where θ0 = Arccos
(

a2−b2−c2

2bc

)

. The inverse Kasteleyn operator, restricted to a column

is a discrete sine kernel. In the continuous framework, the sine kernel describes the
statistics of eigenvalues in the bulk the spectrum of large random Hermitian matrices.
Several between random tilings and discrete sine process have been presented in [21]

In chapters 4 and 5, we will see that in some particular limit cases, the distributions
of dimers in a column converge to that of the eigenvalues of large Hermitian random
matrices. In chapter 4, we discuss the case when θ0 converges to π. The case when θ0

goes to 0 is developped in chapter 5 and generalized in chapter 6.

Before that, we introduce in the next chapter some definitions and basic facts about
determinant random fields, giving the necessary framework to describe the two examples
of such random processes discussed here, namely the dimer model on a bipartite planar
graph, and the statistics of the eigenvalues of large Hermitian random matrices.

3The usual embedding of the trianglular lattice H∗ with equilateral triangles is a case of isoradial
embedding, corresponding to equal weights a = b = c.
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3 Determinant random point fields

In the random dimer model on a bipartite planar graph, the probabilistic quantities of
interest, like the correlations between edges, are given by determinants. It is an example
of a determinant random point field.

In this chapter, we present some background on the theory of determinant random point
fields. Here are collected definitions and basic properties about these objects that will
be necessary in the sequel. These facts as well as an exposition of some recent results
can be found in [56].

3.1 Definitions

Let E be a separable Hausdorff space, called the one-particle space and Ω be a space
of countable configurations of particles in E. In our examples, E will be a product
∏m

j=1 Ej , with Ej = R or Z, or the set of edges of an infinite biperiodic graph G.

To a Borel set B of E and to a configuration ω ∈ Ω is associated an integer NB(ω)
representing the number of particles in B. We assume that each configuration ω =
(xi)i∈Z of X is locally finite, i.e. that NK(ω) in any compact set K ⊂ E is finite.

We refer to a set of the form

Cn
B =

{
ω ∈ Ω | NB(ω) = n

}

as a cylinder set. The σ-algebra F of measurable subset of Ω is the σ-algebra generated
by the cylinder sets.

Definition 3.1. A random point field is a triplet (Ω,F,P) where P is a probability
measure on (X, Ω).

Such a probability measure can be constructed, at least in the cases we will consider, by
Kolmogorov extension theorem [37]. Suppose we are able to construct a joint distribution
of non-negative integer-valued random variables NB for a sufficiently large class R of sets
B1 such that the following finite-additivity condition holds: if B1, . . . , Bm are disjoint
sets of the class R and B =

⋃m
j=1 Bj , then

NB =
∑

j=1

NBj almost surely. (3.1)

1When E = Rd for instance, it is sufficient to consider the class R of all finite unions of open, closed
or semi-closed rectangles with rational integers.
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3.1. Definitions

The joint distribution of random variables NB, B ∈ R determines uniquely a probability
distribution on (Ω,F).

We now define the correlation functions.

Definition 3.2. Locally integrable function ρn : En → R+ is called the n-point cor-
relation function of the random point field (Ω,F,P) is for any disjoint bounded Borel
subset B1, . . . , Bk of E and any integers n1, . . . , nk, the following holds

E





k∏

j=1

NBj !

(NBj ! − nj)!



 =

∫

B
n1
1 ×···×B

nk
k

ρn(x1, . . . , xn)dx1 · · ·dxn (3.2)

where n =
∑k

j=1 nj and E is the mathematical expectation with respect to P.

The probabilistic interpretation of ρn is the following: for j ∈ {1, . . . , k}, if [xj , xj +dxj ]
is an infitesimally small bax around xj of volume dxj , the probability to find a particle
in each box is

ρn(x1, . . . , xn)dx1 · · ·dxn (3.3)

One can construct from these correlation functions a generating function for the joint
distribution of (NB1 , . . . , NBk

). If

n = (n1, . . . , nk), z = (z1, . . . , zk), B = (B1, . . . , Bk),

it will be convenient to use following multi-index notations

n! =

k∏

j=1

nj !, |n| =

k∑

j=1

nj , Bn = Bn1
1 × · · · × Bnk

k , zn = zn1
1 · · · znk

k .

The generating function QB(z) is given by the formula

QB(z) = E





k∏

j=1

(1 − zj)
NBj



 =
∑

n∈Nk

(−z)n

n!
E





k∏

j=1

NBj !

(NBj − nj)!





=
∑

n∈Nk

(−z)n

n!

∫

Bn

ρn(x1, . . . , xn)dx1 . . .dxn

The probability to find exactly nj particles in Bj for every j is obtained from QB(z) by
differentiation

P
[
∀j ∈ {1, . . . , k} NBj = nj

]
=

(−1)|n|

n!

∂n

∂zn
QB(z)

∣
∣
∣
∣
z=(1,...,1)

(3.4)
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3. Determinant random point fields

where ∂n

∂zn stands for the differential operator ∂n1

∂z1
· · · ∂nk

∂zk
. In particular, the probability

of having no particle in a Borel set B is given by the alternating series

P [NB = 0] =

∞∑

n=0

(−1)n

n!

∫

· · ·
∫

Bn

ρn(x1, . . . , xn)dx1 . . .dxn. (3.5)

We now introduce the notion of determinantal random point field, which will be useful
in the next chapters:

Definition 3.3. A random point field in E is called determinantal or fermionic if its
n-point correlation functions are given by

ρn(x1, . . . , xn) = det
1≤i,j≤n

[
J(xi, xj)

]
(3.6)

where J(x, y) is the integral kernel of a non-negative locally trace class operator on
L2(E), also denoted by J .

For a determinantal random point field (Ω, F,P), the generating function of the distri-
bution of the number of particles NB in a bounded Borel set B equals the Fredholm
determinant2 of Id − zJB, with JB : f 7→

∫

B J(·, y)f(y)dy, whose expression is

QB(z) = Det(Id − zJB) =
+∞∑

n=0

(−z)n

n!

∫

· · ·
∫

Bn

det
[
J(xi, xj)

]
dx1 · · ·dxn. (3.7)

Similar formulæ exist for the generating function of the joint distribution of the numbers
of particles NB1 , . . . , NBk

in disjoint bounded Borel:

QB(z) = Det(Id −
k∑

j=1

zj · JBj )

=
∑

n∈Nk

(−z)n

n!

∫

· · ·
∫

B
n1
1 ×···×B

nk
k

det
[
J(xi, xj)

]
dx1 · · ·dxn (3.8)

If the kernel J(x, y) is bounded, say by M , then the series QB(z1, . . . , zn) is an entire
function of z ∈ Ck. Indeed, Hadamard’s inequality states that the determinant of a
matrix is bounded by the product of the ℓ2-norms of its columns:

2Fredholm determinants are used to solve integral equation of the form

ϕ(x) − λ

Z

J(x, y)ϕ(y)dy = f(x).

The coefficient
1

n!

Z

· · ·

Z

Bn

det
ˆ

J(xi, xj)
˜

dx1 · · · dxn

is in fact the trace of the operator JB acting on functions on the n-th exterior power of E. This
formula is thus a generalization of the usual formula det(I − A) for matrices.
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3.1. Definitions

Lemma 3.1. Hadamard’s inequality

∀ A ∈ Mn(R),
∣
∣det(A)

∣
∣ ≤

n∏

j=1

( n∑

i=1

A2
ij

)1/2
(3.9)

Consequently, the nth term in the series (3.8) is bounded in absolute value by

∣
∣
∣
∣

(−z)n

n!

∫

Bn

det
[
J(xi, xj)

]
dnx

∣
∣
∣
∣
≤ |z|n

n!

∫

Bn

[
J(xi, xj)

]
dnx

≤ |z|n
n!

∫

Bn

(|n|M2)|n|/2d2x ≤
( k∏

j=1

(M |Bj ||zj |)nj

nj !

)

|n||n|/2.

The series QB(z1, . . . , zn) converges normally on every compact set of Ck and is thus an
entire function of z. In particular, the joint distribution of NB1 , . . . , NBk

is completely
determined by the correlation functions.

The generating functions QB(z) can be useful to prove weak convergence of random
point fields. Indeed, the space NE of all locally-finite, integer-valued measures on E
is usually endowed with the topology defined by the usual notion of convergence for
measures: a sequence (µn) converges to µ if for all functions f with compact support in
E,

lim
n→+∞

∫

f dµn =

∫

f dµ. (3.10)

With this topology on NE , weak convergence of random point fields, or equivalently,
of probability measures on NE , is equivalent to the convergence of finite dimensional
distributions [9].

Let (µn) be a sequence of determinantal random point fields with kernel J (n). Suppose
we can prove that for every finite collection of Borel sets B = (B1, . . . , Bk), the series

Q
(n)
B (z) = Det

(
Id −

k∑

j=1

zj · J (n)
Bj

)
(3.11)

converges to a Fredholm determinant

Det
(
Id −

k∑

j=1

zj · J (∞)
Bj

)
, (3.12)

and that this series has a positive radius of convergence around z = (1, . . . , 1). Then by
a standard argument [4], the joint distribution of (NB1 , . . . , NBk

) converges, and thus
the determinantal random field µn converges to a random point field µ with a kernel
J (∞).
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3. Determinant random point fields

3.2 Examples of determinantal random point fields

3.2.1 Eigenvalues of Random matrices

The archetypical example in random matrix theory is the so-called Gaussian Unitary
Ensemble. See for example [16] for a review. Gaussian ensembles belong both to the
family of invariant ensembles – for which the probability measure is invariant under
the action of some continuous symmetry group – and to the family of ensembles with
independent identically distributed entries.

Let HN be the set of Hermitian matrices of size N . A matrix H ∈ HN has N2 real
degrees of freedom: one can chose arbitrarily the N real entries on the diagonal, and
the real and imaginary part of the N(N−1)

2 complex entries above the diagonal. HN can

de identified with Rn2
, and we define a probability measure νN on HN by giving the

expression of its density with respect to the Lebesgue measure on RN2
, denoted by dH.

If f is a measurable function on HN , its expectation with respect to this probability
measure is

EνN [f(H)] =
1

ZN

∫

HN

f(H)e−
1

2N
tr(H2)dH (3.13)

where ZN is a renormalization factor to ensure we deal with a probability measure. The
denomination of Gaussian Unitary ensemble is justified by the fact that 1

2N tr(H2) is a
positive definite quadratic form invariant under the transformation H → U−1HU , where
U is a unitary matrix, implying that the probability measure νN is a Gaussian measure
preserved by the action of U(N). With respect to µN , the different degrees of freedom
(hii, Re(hij) and Im(hij) for j > i) are independent random variables with Gaussian
distribution.

The U(N) invariance can be used to “integrate out” the dependence on the eigenvectors
of the random matrix HN , and to get a probability measure µN on eigenvalues λ =
(λ1, . . . , λN )

EµN [g(λ)] =
1

Z ′
N

∫

RN

g(λ)
∏

i<j

(
λj − λi)

2e−
1

2N
(λ2

1+···+λ2
N )dNλ (3.14)

Rewriting the square of the Vandermonde of λ as an exponential

∏

i<j

(
λj − λi)

2 = e
P

i6=j log |λi−λj |

one can give a new interpretation of µN as a Boltzmann measure of a system with N
particles with mass 1

N , repelling each other by Coulomb interaction.

The statistics of the eigenvalues of the random matrix H can be studied, making use of
the method of orthogonal polynomials, involving in this case Plancherel-Rotach asymp-
totics of Hermite polynomials.

54



3.2. Examples of determinantal random point fields

The empirical measure

MN =
1

N

N∑

j=1

δλj
(3.15)

converges weakly when N goes to +∞ to a probability measure with support [−2, 2]
whose density d∞ with respect to Lebesgue’s measure is

d∞(x) =
1

2π

√

4 − x21[−2,2](x). (3.16)

This is the Wigner semicircle law. This tells us that roughly, the spacing between
two neighbouring eigenvalues in the bulk is is of order 1

N . If we rescale properly the
eigenvalues λ around x0 ∈ (−2, 2) by posing

ξ = πNd∞(x0)
(
λ − x0

)
, (3.17)

then letting N going to infinity, we get the convergence of the distribution of the random
points ξ to a determinantal random point field whose correlation functions are

ρk(ξ1, . . . , ξk) = det

[
sin(ξi − ξj)

π(ξi − ξj)

]

. (3.18)

The kernel sin(x−y)
π(x−y) is called the sine kernel.

At the edge of the spectrum, the density goes to zero. The typical distant between two
successive eingevalues is of order N−1/3 and the scaling needs to be modified. At the
edge of the spectrum, the distribution of the rescaled eigenvalues

ζ = N2/3
(
λ − 2

)
, (3.19)

converges when N goes to infinity to a determinantal random point field with the Airy
kernel

A(x, y) =
Ai(x)Ai′(y) − Ai(y)Ai′(x)

x − y
(3.20)

where the Ai(x) is the Airy function

Ai(x) =
1

π

∫ +∞

−∞
eixt+i t3

3 dt. (3.21)

The GUE ensemble furnishes two examples of determinantal random point fiels with
hermitian kernels. If an evolution of the system in time is wanted, one can replace the
Gaussian random variables by Gaussian stochastic processes, like Brownian motion or
Ornstein-Uhlenbeck processes. The eigenvalues depend now on time, modelling the mo-
tion of charged particles, not allowed to cross each other. Determinantal expressions for
probabilities involving non intersecting paths is a well know phenomenon in probability
theory [23] as well as in combinatorics [17].
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3. Determinant random point fields

In a suitable scaling limit, the distribution of the time-dependent eigenvalues converge
to a generalization of the determinantal random point fields described above, with the
so-called extended sine kernel and extended Airy kernel. Note that these kernel are not
hermitian any more. The distribution in time of the first eigenvalue of the random
matrix, referred to as the Airy process, introduced in [50], appears as the scaling limit of
random growth system, crystal melting or also in random tilings of the so-called Aztec
diamond [22]. The extended sine kernel will be discussed more in details in the following
chapter.

3.2.2 Dimer models

The dimer model is another example of determinantal random point field. Let G be a
Z2-periodic, with positive weights on edges, and K the associated Kasteleyn operator.
If µ is a probability measure on dimers configuration of G as described in the previous
chapter: µ is a Boltzmann measure if G is finite, and a Gibbs measure if G is Z2-periodic.

The one-particle space is the set of edges of E, endowed with the discrete topology

The correlation functions are given by determinants. In this discrete setting, the expres-
sion of the n-point correlation function ρn evaluated at edges e1 = (wn,bn), . . . , en =
(w1,b1) is

ρn(e1, . . . , en) = Pµ [e1, . . . , en ∈ C] =
( n∏

k=1

K(wk,bk)
)

det
1≤i,j≤n

[
K

−1(bj ,wi)
]

(3.22)

= det
1≤i,j≤n

[
J(ej , ei)

]
(3.23)

where J(ej , ei) = K(wj ,bj)K
−1(bj ,wi).

If an explicit embedding of the graph G in the plane is used, the dimer model can
be interpreted as a determinant random point field on the plane. Suppose that the
fundamental domain of G contains n edges, whose translates define n classes of edges.
A dimer of a configuration is identified with the image under the embedding of its white
end, labelled with the class of edges it belongs to. The probability distribution of the
position of the labelled points is a (multitype) determinantal random field. The kernel
of this random field is singular, since the particles are forced to sit on a set of Lebesgue
measure 0 (the image of the white vertices).

We would like to indicate that the dimer model is not the only model from statistical
physics whose correlations have a determinantal form. We cite the example of the random
uniform spanning tree model [5]. A spanning tree of a graph G is a connex subgraph
without cycles covering all the vertices of G. For a finite graph, the number of spanning
trees equals the determinant of the discrete Laplacian of the graph. The probability that
k edges appear in a uniform spanning tree is the determinant of a matrix whose entries
are transfert impedances, which are combinations of Green functions. Temperley [59]
discovered a bijection between the uniform spanning tree model on (a piece of) Z2 and
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3.2. Examples of determinantal random point fields

the random tilings with dominos. This correspondence has been widely extended to
other graphs [35, 36].
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4 Lozenge tilings and the Dyson model

A dimer configuration on the honeycomb lattice H is, by duality, in correspondence
with a tiling of the plane with three different types of rhombi, which can be viewed as
a three-dimensional landscape made of cubes piled up.

This three-dimensional interpretation of dimer configurations on subgraphs of H has
been used for example to modelize a melting crystal corner [7, 44]. A dimer configura-
tion of H with asymptotic constraints on the slope of the height function, as the one
represented on figure 4.1 can be viewed as the corner of an infinitely large crystal from
which some atoms (small cubes) escaped.

Figure 4.1: A melting crystal corner.

This crystal corner can be described by the family of paths formed by rhombi with
a vertical side, separating zones tiled with horizontal rhombi. Using the techniques
of [44], Ferrari and Spohn [13] studied the fluctuations of the first ledge, separating the
frozen region and the temperated one. The fluctuations of this first ledge are related in
the scaling limit (when the size of the atoms goes to zero) to the Airy process, which
describes the fluctuation of the upper path in a family of N Ornstein-Uhlenbeck processes
conditionned not to intersect, also known as the Dyson model, in the limit when N goes
to +∞.

58



4.1. Non colliding random paths

In the limit of an infinity large crystal corner, the local statistics are given by the Gibbs
measure with a slope equal to that of the asymptotic height function [31]. We consider
the Gibbs measure corresponding to the local statistics in the neighbourhood of this
first ledge. In the random configuration, edges of type b and c form a infinite family of
non-intersecting paths. In this chapter, we study the scaling limit of this family of paths
and prove that their distribution in the limit coincide with the so-called sine process
describing the bulk of the Dyson model in the stationary regime.

4.1 Non colliding random paths

A dimer configuration of the honeycomb lattice is in correspondance by duality with a
tiling of the plane with rhombi of three different types. The type of a rhombi refers to
the orientation – and therefore to the weight a, b or c – of the corresponding edge.

(a) (b) (c)

Figure 4.2: The different types of rhombi in a tiling corresponding to a dimer configuration on the
honeycomb lattice.

In such a tiling, rhombi of type b and c form infinite paths from left to right that cannot
cross each other. This collection of paths characterizes completely the whole tiling.
In this chapter, we are interested in the limiting distribution of these paths when the
probabilities of apparition of b- and c-rhombi are equal to each other and tend to zero.
This is achieved for example by taking b = c = 1 and letting a go to 2 from below.
Recall that if a is greater than 2, then the system is frozen, and with probability 1, we
will see only a-rhombi. To label vertices of the graph, we use the system of coordinates
(c, y) described in section 2.8.

Let ε > 0 be small. The inverse Kasteleyn operator K
−1
ε for the weights a = 2 cos

(
ε
2

)
,

b = c = 1 between w and black vertex b
(c)
y

K
−1
ε (b(c)

y ,w) =

∫∫

T2

z−ywx

a + b/w + cz

dz

2iπz

dw

2iπw
=

∫∫

T2

(zw)−ywx+y

a + 1
w (1 + zw)

dz

2iπz

dw

2iπw

=

∫ π

−π

∫

S1

e−iyθwc

a + 1
w (1 + eiθ)

dw

2iπw

dθ

2π

=

∫ π

−π
eiθ(−y+c/2)

(∫

S1

uc

2 cos(ε/2)u + 2 cos(θ/2)

du

2iπ

)
dθ

2π
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4. Lozenge tilings and the Dyson model

The pole at u = − cos(θ/2)
cos(ε/2) is outside of the unit disk if and only if 2 cos(θ/2) > a, i.e. if

and only if θ ∈ (−ε, ε). The integral over u in the definition of K
−1
ε can be computed

using residues, and we get the following expressions for the entries of that operator

K
−1
ε (bc

y,w) =







(−1)c+1

2 cos(ε/2)

∫

[−ε,ε]

(
cos(θ/2)
cos(ε/2)

)c

eiθ(−y+c/2) dθ
2π if c < 0

(−1)c

2 cos(ε/2)

∫

[−π,π]\[−ε,ε]

(
cos(θ/2)
cos(ε/2)

)c

eiθ(−y+c/2) dθ
2π if c ≥ 0

(4.1)

Since a is close to 2, one sees in a typical configuration large zones tiled by rombi of type
a, separated by paths made of tiles of type b and c, the distance between paths being
larger and larger as a gets closer to 2.

As the paths become more and more distant, they should behave like simple random
walks since they do not feel the presence of other paths. Indeed, if we condition on
having a path passing trough a given point, one can compute the law of the n first
steps of the path from this point. The probability that a path of rhombi passes through
vertices labelled by (0, y0), . . . , (n, yn), given that the horizontal edge (wc0

0 ,bc0
0 ) is not

covered by a dimer, is given by the following expression

P

[
0,y0)(c

∣
∣
∣
∣
∣

0,y0)(c

]

=
1

1 − aK
−1
ε (b0,w0)

det






K
−1
ε (b0,w1) · · · K

−1
ε (bn−1,w1)

...
. . .

...
K

−1
ε (b0,wn) · · · K

−1
ε (bn−1,wn)




 (4.2)

where bj and wj are shortcuts for b
cj

j and w
cj

j .

Since K
−1(bj ,wj) = 1

2 + o(1), and K
−1(bj ,wi) = ε

2 + O(ε) if j < i, the determinant in
(4.2) equals up to terms of smaller order

det











0 1
2 ⋆ · · · ⋆

0 0 1
2

. . .
...

...
. . .

. . . ⋆

0 0 1
2

ε
2 0 · · · · · · 0











=
ε

2n
(4.3)

and hence, the probability (4.2) equals

1

ε + o(ε)

( ε

2n
+ o(ε)

)

=
1

2n
+ o(1) (4.4)

When ε goes to zero, this conditional probability converges to the corresponding prob-
ability for a simple random walk. In the limit we are left with an infinite collection of
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4.2. The Dyson model and the sine process

random paths that individually behave like a random walk, but that are conditionned
not to intersect with each other. This looks like a discretized version of the so-called
Dyson model, modelizing the diffusion of particles conditionned not to collide, when the
number of particles goes to infinity.

4.2 The Dyson model and the sine process

The Dyson model [12] is a random process on Hermitian n × n matrices H , where
the independent coefficients of each matrix H independently undergo diffusion. More
precisely, they execute independently Brownian motion subject to a harmonic restoring
force. When n = 1, this is the so-called Ornstein-Uhlenbeck process. Dyson observed
that the equilibrium measure is the Gaussian Unitary Ensemble (GUE) measure of
random matrix theory. In a Dyson process, one is generally interested in the distribution
of the eigenvalues of the matrix, seen as curves parameterized by time. Given τ1 < · · · <
τk and a sequence of subsets (Ij)

k
j=1 of R, the distribution of the number of curves

crossing subset Ik at time τk for every k can be expressed in terms of determinants of
the extended Hermite kernel, a space-time extension of the Hermite kernel appearing in
the GUE. In particular, the probability that all the curves avoid all the subsets is given
by the Fredholm determinant of this kernel.

If we scale the Dyson process in the bulk when n goes to infinity, we get the sine process
associated with the extended sine kernel given by

S(t − t′, y′ − y) =







∫ 1

0
e−(t′−t)φ2/2 cos

(
φ(y′ − y)

)dφ

π
if t′ ≤ t

−
∫ +∞

1
e−(t′−t)φ2/2 cos

(
φ(y′ − y)

)dφ

π
if t′ > t

(4.5)

When t = t′, this reduces to the usual sine kernel sin(y′−y)
π(y′−y) .

The sine process describes an infinite system of particles repulsing each other by Coulomb
force, and which is homogeneous both in space and time. Such a system has been studied
by [12, 58, 26]

The probability that the number NIj (τj) of curves crossing Ij equals nj at time τj is
given by the following expression

P
[
∀ j ∈ {1, . . . , k} NIj (τj) = nj

]

=
∑

p∈Nk

(−1)|p|

p! n!

∫

· · ·
∫

(τ1,I1)n1×···×(τk,Ik)nk

det|n+p|
(
S(ξi − ξj)

)
dn+pξ (4.6)

where ξi stands for the variables (τ, y) ranging over the ith factor of the cartesian product
(τ1, I1)

n1 × · · · × (τk, Ik)
nk . In this expression, we used multi-index notations:

n! =
k∏

j=1

nj !, |n| =
k∑

j=1

nj .
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4. Lozenge tilings and the Dyson model

4.3 Convergence to the sine process

For a fixed ε, we represent our paths of rhombi by continuous functions as follows. We
first embed the honeycomb lattice H in the plane such that every white vertex with
coordinates (c, y) is mapped to the point

(
ε2

8 c, ε
2(2y − c)

)
. This diffusive scaling seems

natural since the paths of rhombi behave like random walks at small scales.

A path of rhombi is then encoded by the piecewise linear path joining all the white
vertices covered by this path. We get a bi-infinite family of paths (Xε

n(t))n∈Z, indexed
by time t ∈ R. By convention, the path correponding to the index 0 is the one passing
the closest to y = 0 at time 0.

Such a family of paths is in bijection with a random tiling with rhombi. The Gibbs
measure on tilings (or equivalently on dimer configurations of H) can therefore be viewed
as a probability measure on C(R∞), the set of continuous functions on R with values in
R∞ =

{
x̄ = (xj)j∈Z |∀j ∈ Z xj ∈ R

}
. The space R∞ is a complete separable metric

space with the metric

dist(x̄, ȳ) =
+∞∑

k=−∞

1

2|k|
|xk − yk|

1 + |xk − yk|

The topology induced by this distance is the topology of coordinatewise convergence,
and the sets

Bk,ε(x̄) =
{
ȳ ; ∀ j ∈ {−k, . . . , k} |yj − xj | < ε

}

form a basis for this topology.

The aim of this section is to prove the following theorem

Theorem 4.1. The probability measures (Pε), as measures on bi-infinite families of
continuous paths on R, converge weakly in C(R∞) to the sine process.

The proof of the convergence of the ensemble of paths to the sine model is based on
precise asymptotics of the inverse Kasteleyn operator when ε goes to zero, that are proven
in lemma 4.1. These asymptotics allow us to prove the finite dimensional distributions
of Pε to those for the sine process in proposition 4.1. Then we prove that (Pε) is tight
in proposition 4.2. A key point of the proof of this proposition is a simple comparision
between probability for paths of rhombi and for simple random walks given by lemma
4.2.

Since the proofs of proposition 4.1 and 4.2 are rather long and technical, they are exposed
separetely in section 4.4 and 4.5 respectively.

Let us begin with the asymptotics of the kernel in the scaling regime described above,
when ε goes to zero.

Lemma 4.1. For every ε > 0, let (cε, yε) ∈ Z2 such that

lim
ε→0

1

8
ε2

cε = T ∈ R, lim
ε→0

1

2
ε(2yε − cε) = Y ∈ R. (4.7)
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• If T 6= 0, then

lim
ε→0

(−1)cε+1

ε
aK

−1
ε (cε, yε) = eT S(T, Y ). (4.8)

• If cε = 0 and yε 6= 0 for ε small enough,

lim
ε→0

−a

ε
K

−1
ε (0, yε) =

sin(Y )

πY
= e0S(0, Y ). (4.9)

• If cε = 0 and yε = 0 for ε small enough,

lim
ε→0

1 − aK
−1
ε (0, 0)

ε
=

1

π
= e0S(0, 0). (4.10)

Moreover, the quantities aK
−1
ε (cε,yε)

ε (or 1−aK
−1
ε (0,0)
ε if (cε, yε) = (0, 0)) are uniformly

bounded in ε.

This lemma shows that the discrete kernel for the dimer model on the honeycomb lattice
converges, up to a factor eT and except for the third case, to the extended sine kernel.

Proof:

Suppose first that T < 0. In this case, for ε small enough, cε < 0 and

K
−1
ε (cε, yε) =

(−1)cε+1

a

∫ ε

−ε

(
2 cos(θ/2)

a

)cε

ei(−yε+cε/2)θ dθ

2π

=
(−1)cε+1

a

∫ ε

−ε

(
cos(θ/2)

cos(ε/2)

) 8T
ε2

(1+o(1))

e−iθ Y
ε

(1+o(1)) dθ

2π

=
ε(−1)cε+1

a

∫ 1

−1

(

cos
( εφ

2

)

cos
(

ε
2

)

) 8T
ε2

(1+o(1))

e−iY φ(1+o(1)) dφ

π

=
ε(−1)c+1

a

∫ 1

−1

(

1 − ε2(φ2 − 1)

8
+ o(ε2)

) 8T
ε2

(1+o(1))

e−iY φ+o(1) dφ

2π

When ε goes to zero, the integrand converges to eT e−φ2T e−iY φ. A simple application of
Lebesgue dominated convergence theorem shows then that

lim
ε→0

(−1)c+1

ε
aK

−1
ε (cε, yε) = eT

∫ 1

−1
e−φ2T e−iY φ dφ

2π

= eT

∫ 1

0
e−φ2T cos(Y φ)

dφ

π
= S(T, Y ). (4.11)
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4. Lozenge tilings and the Dyson model

When T > 0, cε > 0 for ε small enough, we have

K
−1
ε (cε, yε) =

(−1)cε

a

∫

[−π,π]\[−ε,ε]

(
2 cos(θ/2)

a

)cε

ei(−yε+cε/2)θ dθ

2π
(4.12)

=
(−1)cε

a

∫ π

ε

(
2 cos(θ/2)

a

)cε

cos
(
(−y + c/2)θ

)dθ

π
. (4.13)

(4.14)

If we change the variable in the integral, defining φ = εθ, we get

K
−1
ε (cε, yε) =

ε(−1)c

a

∫ π/ε

1

(

cos
( εφ

2

)

cos
(

ε
2

)

) 8T
ε2

(1+o(1))

cos(Y φ + o(1))
dφ

π

=
ε(−1)c

a

∫ A

1

(

cos
( εφ

2

)

cos
(

ε
2

)

) 8T
ε2

(1+o(1))

cos(Y φ + o(1))
dφ

π

+
ε(−1)c

a

∫ π/ε

A

(

cos
( εφ

2

)

cos
(

ε
2

)

) 8T
ε2

(1+o(1))

cos(Y φ + o(1))
dφ

π

for a given large number A. The second integral can be bounded by

∣
∣
∣
∣
∣
∣

ε(−1)c

a

∫ π/ε

A

(

cos
( εφ

2

)

cos
(

ε
2

)

) 8T
ε2

(1+o(1))

cos(Y φ + o(1))
dφ

π

∣
∣
∣
∣
∣
∣

≤ Ce−T (A−1)+o(1) (4.15)

uniformly in ε for ε small enough. A domination argument shows that the first integral
converges to

eT

∫ A

1
e−φ2T cos(Y φ)

dφ

π
(4.16)

As a consequence, letting A go to ∞, we get

lim
ε→0

(−1)c

ε
aK

−1
ε (y, c) = eT

∫ +∞

1
e−φ2T cos(Y φ)

dφ

π
. (4.17)

When cε = 0, K
−1(cε, yε) given by

K
−1
ε (0, yε) =

1

a

∫ π

ε
cos(yεθ)

dθ

π
. (4.18)

If yε 6= 0, then

(−1)a

ε
K

−1
ε (0, yε) = −a

ε

sin(πyε) − sin(yεε)

aπ
=

sin(Y )

πY
+ o(1). (4.19)
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4.3. Convergence to the sine process

However, if yε = 0 for ε small enough, K
−1
ε (0, 0) = π−ε

aπ and thus

lim
ε→0

1 − aK
−1
ε (0, 0)

ε
=

1

π
. (4.20)

The uniform bounds are obtained directly form the expression of K
−1
ε given by (4.1).

When T < 0,
∣
∣
∣
a

ε
K

−1
ε (cε, yε)

∣
∣
∣ =

∣
∣
∣
∣

1

ε

∫ ε

−ε

(
2 cos(θ/2)

a

)c

eiθ(−y+c/2) dθ
2π

∣
∣
∣
∣
≤ 1

π

(

1 −
(

ε
2

)2
)−cε/2

≤ C. (4.21)

When T > 0,

∣
∣
∣
a

ε
K

−1
ε (cε, yε)

∣
∣
∣ =

∣
∣
∣
∣
∣

1

ε

∫

[−π,π]\[−ε,ε]

(
2 cos(θ/2)

a

)c

eiθ(−y+c/2) dθ
2π

∣
∣
∣
∣
∣

≤ 1

π

(

1 −
(

ε
2

)2
)−cε/2

∫ π
ε

1
e−

ε2cε
8

t2dt ≤ C. (4.22)

When cε = 0, the bound is obtained by a direct evalution of (4.1). ¤

As in the case of the sine process, for given times τ1, . . . , τk and unions of intervals
I1, . . . , Ik, we can compute for every ε the probability that for every j, the number
N ε

Ij
(τj) of paths in Ij at time τj . equals nj . The following proposition states that these

probabilities converges to the corresponding probabilities for the sine process.

Proposition 4.1. The finite dimensional distributions of Xε converge to that of the
extended sine process.

For all τ1, . . . , τm ∈ R, and I1, . . . , Im ⊂ R finite unions of intervals,

lim
ε→0

Pε

[
N ε

I1(t1) = n1, . . . , N
ε
Ik

(tk) = nk

]
= P [NI1(t1) = n1, . . . , NIk

(tk) = nk] (4.23)

We prove also tightness of the family of probability measures (Pε) in C(R∞). Since R∞

is a nice complete separable metric space, tightness is characterized by the following two
properties [3] we have to check:

Proposition 4.2.

i) The sequence of distributions of (Xε(0)) is tight: for each η > 0, there exists a
sequence of closed intervals ([−ak, ak])k∈Z such that

∀ε, Pε [∃ k ∈ Z, Xk(0) /∈ [−ak, ak]] < η (4.24)

ii) For each L > 0, for each positive δ and η, there exists an α ∈ (0, L) such that

∀ε, Pε




 sup
−L/2<s,t<L/2

|s−t|<α

dist
(
(X(s), X(t)

)
> δ




 < η (4.25)
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4. Lozenge tilings and the Dyson model

Tightness and convergence of finite dimensional distributions of the family (Pε) imply
the weak convergence of this family to a probability measure on C(R∞) whose finite
distributions coincide with that of the sine process. The family of discrete random paths
therefore converges weakly to the family of random continuous paths described by the
sine process.

4.4 Proof of proposition 4.1

This section is devoted to the proof of the convergence of finite dimensional distributions
of the family (Pε). It makes use of standard objects in the theory of random point fields,
described in the previous chapter.

We denote by τ ε the quantity ⌊ τ
8ε2 ⌋ and (I)ε

τ the set of integers
{
y ∈ Z |ε(y− 1

2τ ε) ∈ I
}
.

The set of white vertices with coordinates (c, y) ∈ {τ ε}× (I)ε
τ are the white vertices the

closest to {τ} × I.

The function Qε of the variable z = (z1, . . . , zk) ∈ Ck defined by

Qε(z) = Eε





k∏

j=1

(
1 − zj)

NIj
(τj)



 =
∑

n∈Nk

Eε





k∏

j=1

N ε
Ij

!
(
N ε

Ij
− nj

)
!




(−z)n

n!
(4.26)

where zn =
∏k

j=1 z
nj

j , is a generating function for the probabilities we are interested in.
Indeed, an inclusion-exlusion argument shows that

Pε

[
N ε

I1(t1) = n1, . . . , N
ε
Ik

(tk) = nk

]
=

∑

p∈Nk

(−1)p

n! p!
Eε





k∏

j=1

N ε
Ij

!
(
N ε

Ij
− (nj + pj)

)
!



 (4.27)

=
(−1)n

n!

∂n

∂zn
Qε(z)

∣
∣
z=(1,...,1)

. (4.28)

We will show that Qε converges to the corresponding generating function for the sine

process. For this, we first compute the quantities Eε

[

∏k
j=1

Nε
Ij

!
(
Nε

Ij
−nj

)
!

]

and their limit

when ε goes to 0. Up to smaller terms, these quantities are given by the sum over all
distinct nj-tuples of white vertices in {τ ε

j } × (Ij)
ε
τj

for j ∈ {1, . . . , k} of the probability
that these white vertices are covered by a path of rhombi, or equivalently, that the
horizontal edges with weight a incident with these vertices are not present in the random
dimer configuration. We have

Eε





k∏

j=1

N ε
Ij

!
(
N ε

Ij
− nj

)
!



 =
∑

j=1,...,k
y(j,1),...,y(j,nj)∈(Ij)

ε
τj

distinct

Pε

[

aτε
1 ,y(1,1)

, . . . ,aτε
1 ,y(1,n1)

, . . . ,aτε
k ,y(k,nk)

/∈ C

]

(4.29)
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4.4. Proof of proposition 4.1

where ac,y is the horizontal edge with weight a incident with the white vertex with
coordinates (c, y).

Using the multilinearity of the determinant, one can write each of these probabilities

Pε

[

aτε
1 ,y(1,1)

, . . . ,aτε
1 ,y(1,n1)

, . . . ,aτε
k ,y(k,nk)

/∈ C

]

(4.30)

as a determinant by formula (1.6)

det
(
δi,j − aK

−1
ε (τ ε

〈i〉 − τ ε
〈j〉, yi − yj)

)
=

det|n|












1−aK
−1
ε (τε

1−τε
1 ,y(1,1)−y(1,1)) ··· −aK

−1
ε (τε

k−τε
1 ,y(k,nk)−y(1,1))

...
...

...
. . .

...
...

...
−aK

−1
ε (τε

1−τε
k ,y(1,n1)−y(k,nk)) ··· 1−aK

−1
ε (τε

k−τε
k ,y(k,nk)−y(k,nk))












(4.31)

where i and j belong to the following list of indices

(
(1, 1), . . . , (1, n1), . . . , (k, 1), . . . , (k, nk)

)
(4.32)

and the angular brackets of a couple 〈(i, j)〉 represent its first factor i.

The determinant is unchanged if we multiply each column i by e−τ〈i〉(−1)
τε
〈i〉 and each

line by eτ〈j〉(−1)
−τε

〈j〉 It follows from lemma 4.1 that this determinant is asymptotic to

ε|n| det
(
S(τ〈i〉−〈j〉, Y

ε
i − Y ε

j )
)

(4.33)

where Y ε
j = ε(yj − τ ε

〈j〉) ∈ Ij . The sum (4.29) becomes a Riemann sum converging as ε
goes to zero to the following integral

∫

· · ·
∫

(τ1,I1)n1×···×(τk,Ik)nk

det
(
S(ξi − ξj))d

nξ. (4.34)

Therefore, the coefficients of Qε(z) converge to those of Q(z), the generating function
for the sine process. By lemma 4.1, the entries of the matrix in (4.31) are uniformly
bounded, say by M . By applying Hadamard’s lemma , we bound the sum (4.29) by

∣
∣
∣
∣
∣
∣

Eε





k∏

j=1

N ε
Ij

!

(N ε
Ij
− nj)!





∣
∣
∣
∣
∣
∣

≤





k∏

j=1

∣
∣Ij

∣
∣nj



 (|n|M2)|n|/2 (4.35)

uniformly in ε. Thus, by Lebesgue’s dominated convergence theorem, all the derivatives
of the series Qε(z) converge uniformly on compact sets of Ck to the corresponding
derivatives of the generating function Q(z) for the sine process. In particular,

lim
ε→0

Pε

[
N ε

I1(t1) = n1, . . . , N
ε
Ik

(tk) = nk

]
= P [NI1(t1) = n1, . . . , NIk

(tk) = nk] .
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4. Lozenge tilings and the Dyson model

4.5 Proof of proposition 4.2

This section is devoted to the proof of the tightness of the family of probability measures
(Pε)ε>0.

First, we check the the first point i) of proposition 4.2. Let η > 0. We look for a sequence
of segments such that

∀ε, Pε [∃ k ∈ Z, Xk(0) /∈ [−ak, ak]] < η

is satisfied. If we take a sequence verifying that

∀ k ∈ N ak = a−k and ak+1 > ak (4.36)

then the condition (4.24) is equivalent to

∀ε > 0 Pε [∃ k ∈ N, Nak
< 2k + 1] < η (4.37)

where Nak
= N[−ak,ak](0) is the number of paths crossing the interval [−ak, ak] at time

0. We will use Chebyshev inequality to get a bound on the probability (4.37). For this,
we need first to estimate and bound the average and the variance of the random variable
NL = N ε

[−L,L](0) for any L > 0.

The average of NL under Pε is given by

Eε [NL] =
∑

y∈[−L
ε

, L
ε
]∩Z

Pε [∃ a path crossing at (0, εy)] (4.38)

=
∑

y∈[−L
ε

, L
ε
]∩Z

(1 −Pε [ay ∈ C]) (4.39)

=

(

2

⌊
L

ε

⌋

+ 1

)
ε

π
=

2L

π

(
1 + o(1)

)
(4.40)

Moreover, the variance of NL is given by

Varε(NL) =Eε

[
N2

L

]
−Eε [NL]2 (4.41)

=Eε [NL(NL − 1)] −Eε [NL]2 +Eε [NL] < Eε [NL] (4.42)
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Indeed, Eε [NL(NL − 1)] −Eε [NL]2, given by the following expression

∑

y,y′∈[−L
ε

, L
ε
]∩Z

y 6=y′

Pε

[
ay,ay′ /∈ C

]
−






∑

y∈[−L
ε

, L
ε
]∩Z

Pε [ay /∈ C]






2

= (4.43)

=
∑

y,y′∈[−L
ε

, L
ε
]∩Z

y 6=y′

det

[
1−aK

−1
ε (0,0) −aK

−1
ε (0,y−y′)

−aK
−1
ε (0,y′−y) 1−aK

−1
ε (0,0)

]

−
(

∑

y∈[−L
ε

, L
ε
]∩Z

1−aK
−1
ε (0,0)

)2

(4.44)

= −
∑

y,y′∈[−L
ε

, L
ε
]∩Z

y 6=y′

a2
K

−1(0, y − y′)2 − (1 − aK
−1
ε (0, 0))2

(
2
⌊

L
ε

⌋
+ 1

)
< 0 (4.45)

is a sum of negative terms. By Chebyshev inequality, we get

Pε

[

NL <
L

π

]

≤ Pε

[
∣
∣NL −Eε [NL]

∣
∣ <

L

π

]

≤ Varε(NL)

(L/π)2
≤ 2π

L
+ o(1) (4.46)

Thus, for η ≤ π2

6 ,taking ak = π3(k+1)2

3η , we finally get that

Pε [∃ k ∈ N, Nak
< k] ≤

+∞∑

k=0

Pε [Nak
< k] (4.47)

≤
+∞∑

k=0

Pε

[

Nak
<

π2(k + 1)2

6η

]

(4.48)

≤
+∞∑

k=0

6η

π2(k + 1)2
= η (4.49)

Therefore, the family of distributions of (X(0)) under Pε is tight.

The proof of point ii) goes as follows. First, as the topology on R∞ is that of coordi-
natewise convergence, the condition (4.25) is equivalent to

∀ L > 0, ∀ η > 0, ∀ k ∈ N, ∃ α ∈ (0, L),

∀ ε > 0, ∀ j ∈ {−k, . . . , k} Pε







sup
s,t∈(−L

2
, L
2
)

|s−t|<α

|Xj(s) − Xj(t)| > δ







< η (4.50)

It is therefore sufficient to check this condition for each path separately. It is well-kown
that this property is true for simple random walks: for any δ > 0, there exists an α > 0
such that the number of properly rescaled walks (Y ε) with N = ⌊L/ε⌋ steps such that

sup
s,t∈(−L

2
, L
2
)

|s−t|<α

|Y (s) − Y (t)| > δ (4.51)
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is less than η2N uniformly in ε. Therefore, by the following, rather technical lemma 4.2,
since the probability of a sequence of steps of Xj is bounded by a constant times the
same probability for a simple random walk, we get by decomposing the event realisation
by realisation of the path Xj from 0 to L,

Pε







sup
s,t∈(−L

2
, L
2
)

|s−t|<α

|Xj(s) − Xj(t)| > δ







< Cst · η (4.52)

where the constant Cst depends only in L.

Lemma 4.2. Let L > 0. There exists a cL > 0 such that for every ε small enough and
every (ωn)0≤n≤⌊L/ε⌋ sequence of upward and downward steps, the probability that the
first ⌊L/ε⌋ steps of a path of rhombi Xε

j , conditionned on its starting position (x0, y0),
is bounded by

Pε

[

first

⌊
L

ε

⌋

steps of Xε
j coincide with (ωn)

∣
∣
∣
∣
Xε

j starts at (x0, y0)

]

≤ cL

2⌊L/ε⌋ (4.53)

Proof:

Define

g(c, y) =
1

2

∫ ε

−ε

(
cos θ

2

)c
eiθ(−y+c/2) dθ

2π
. (4.54)

Since

∫ π

−π

(
2 cos(θ/2)

)c
eiθ(−y+c/2) dθ

2π
=

c∑

k=0

(
c

k

)∫ π

−π
ei θ

2
(2k−c)ei θ

2
(−2y+c) dθ

2π
=

(
c

y

)

, (4.55)

K
−1(c, y) can be rewritten as

K
−1
ε (c, y) =

{(
− 2

a

)c+1
g(c, y) if c < 0,

(
− 2

a

)c+1
(

g(c, y) − 1
2c+1

(
c

y

))

if c ≥ 0
(4.56)

Let N =
⌊

L
ε

⌋
. Suppose that the sequence (ωn) corresponds to a path covering the

vertices

b0 = b(0)
y0

,w1 = w(1)
y1

,b1 = b(1)
y1

, . . . ,bN−1 = b(N−1)
yN−1

,wN = w(N)
yN

(4.57)

with yi+1 − yi = 1+ωi
2 .

The probability that a path goes through these vertices is given by

Pε [∃ path through b0,w1, . . . ,bN−1,wN ] = det
(
K

−1
ε (bj−1,wi)

)

= det
(
K

−1
ε ((j − 1) − i, yj−1 − yi)

)
(4.58)
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where the indices i and j refer to white and black vertices respectively and range from 1
to N . Multiplying simultaneously each row of the matrix (4.58) i by (−a)−i and each line
j by (−a)j does not affect the determinant. This manipulation cancels the coefficients
(−1

a

)(j−1)−i+1
in the expression of K

−1(bj−1,wi), leading to a simpler expression for the
determinant (4.58)

Pε [∃ path through b0,w1, . . . ,bN−1,wN ]

= det

[

g((j − 1) − i, yj−1 − yi) −
δj>i

2j−i

(
j − 1 − i

yj−1 − yi

)]

(4.59)

where δj>i = 1 is j > i and 0 otherwise. The matrix, the determinant of which we want
to compute, is the sum of a matrix with entries g(c, y) = O(ε), and a strictly upper
triangular matrix.

We have now to find an upper bound for the value of this determinant to get the estimate
stated in the lemma. We will use the Hadamard inequality, but a direct application of it
would give too approximative a bound. We will have to make some more manipulations
on the rows and columns of this matrix.

First, note that for every c ∈ {−N, . . . , N}, and y′ = y or y + 1,

g(c + 1, y′) − g(c, y) =
1

2

∫ ε

−ε

(
cos θ

2)cei θ
2
(−2y+c)

(
e±i θ

2 cos θ
2 − 1

)dθ

2π
= O(ε3) (4.60)

uniformly in c. Therefore, replacing for j ∈ {2, . . . , N}, column Cj by Cj −Cj−1, we get
on the diagonal and under it entries that are O(ε3) (except in the first column). It is
important to observe that after these operations, the module of the entries (i, j) strictly
above the diagonal does not increase, at least at the leading order in ε, and are bounded
from above by a constant times (j − i)−1/2, since

∣
∣
∣
∣

1

2c+1

(
c

y

)

− 1

2c

(
c − 1

y′

)∣
∣
∣
∣
≤ 1

2c+1

(
c

y

)

≤ 1

2c+1

(
c

⌊c/2⌋

)

≤ 1√
2πc

. (4.61)

Now, we use the second column to put 0 instead of the first entries of colums Cj , j > 2 by
making the subtitution Cj ← Cj +αj,2C2 for a suitable value of αj,2 in the determinant.
From the bound on coefficients, we see that |αj,2| = O

(
(j − 2)−1/2

)
and that therefore,

the module of the entries of column Cj , j ≤ 3 does not increase more than by

O
(
(j − 2)−1/2ε3

)
= o(1). (4.62)

We then continue this procedure, and for 3 ≤ k ≤ N − 1, we use column Ck to eliminate
the entries of the k − 1th row on columns Cj , j > k.

After this succession of operations, the entries (i, j) of the matrix with j > i + 1 are 0.
The module of the other entries of column Cj , j ≤ 2 inscreased at most by

O
( ε3

√
j − 2

)
+ O

( ε3

√
j − 3

)
+ · · · + O

( ε3

√

j − (j − 1)

)
= O(ε3

√

j) (4.63)
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4. Lozenge tilings and the Dyson model

The probability we are interested is given by the determinant

det












O(ε) 1
2 + O(

√
2ε3) 0 · · · 0

O(ε) O(
√

2ε3) 1
2 + O(

√
3ε3)

...
...

. . . 0
...

...
. . . 1

2 + O(
√

Nε3)

O(ε) O(
√

2ε3) · · · O(
√

Nε3)












. (4.64)

Hadamard inequality states that a determinant is bounded by the product of the ℓ2-norm
of its rows. In this particular case, it gives

Pε [∃ path through b0,w1, . . . ,bN−1,wN ]

≤
N−1∏

j=1

(

O(ε)2 +

j
∑

k=2

O(
√

kε3)2 + (
1

2
+ O(

√

j + 1ε3)2

) 1
2

×
(

O(ε)2 +
N∑

k=1

O(
√

kε3)2

) 1
2

(4.65)

From the fact that we have for j ∈ {1, . . . , N − 1}

(

O(ε)2 +

j
∑

k=2

O(
√

kε3)2 + (
1

2
+ O(

√

j + 1ε3)2

) 1
2

=
1

2
+ O(ε)2 (4.66)

and
(

O(ε)2 +
N∑

k=1

O(
√

kε3)2

) 1
2

= O(ε), (4.67)

it follows that finally

Pε [∃ path through b0,w1, . . . ,bN−1,wN ] ≤
(

1

2
+ O(ε2)

)N−1

× O(ε) = O
( ε

2N

)

.

(4.68)
Since the probability that there is a path of rhombi starting from b0 is of order ε, we
obtain the wanted bound for the confitionnal probability

Pε

[

first
⌊

L
ε

⌋
steps of Xε

j coincide with (ωn)

∣
∣
∣
∣
Xε

j starts at (x0, y0)

]

≤ cL

2N
. (4.69)

for some constant cL depending on L. ¤
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5 The bead model

In this chapter, we construct Gibbs measures on configurations of points on Z × R
respecting a simple geometric condition. These probability measures are ergodic under
the action of Z ×R by translation, and it turns out that the distribution of points on
each factor R is described by the determinant random field with the sine kernel, also
known as the sine random point field.

The construction provided of these measures is based on approximation by dimer models
on the honeycomb lattice.

5.1 Presentation of the bead model

We consider the collection of configurations of beads strung on an infinite collection of
parallel threads lying on the plane. A bead configuration on these threads gives a config-
uration of points on Z×R. We impose the following constraints on the configurations:

• The configuration must be locally finite : the number of beads in each finite inter-
vall of a thread must be finite.

• Between two consecutive beads on a thread, there must be exactly one bead on
each neighboring thread.

Let Ω be the set of bead configurations satisfying these two conditions.

Figure 5.1: A bead configuration.
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5. The bead model

If there were only a finite number of threads of finite length, and a fixed number of beads
on each thread, then the set Ω would be a bounded convex set of RN , where N is the
total number of beads. Therefore the normalized Lebesgue measure on Ω would give a
uniform probability measure.

The aim of this chapter is to construct probability measures for our infinite system Ω
that are uniform in a certain sense. More precisely, we look for probability measures
that satisfy the two following properties:

• they are ergodic under the action of Z×R by translation

• conditioned in an annular region, they induce the uniform measure on allowed
configurations inside this region.

Such a probability measure is called an ergodic Gibbs measure. When endowed with an
ergodic measure, the set Ω is called a bead model.

We now define the σ-algebra of events for our probability measures. To each bounded
Borel set B of Z × R and to each bead configuration ω ∈ Ω is associated an integer
XB(ω). Let F be the smallest σ-algebra such that all the maps XB : Ω → N are
measurable. F is generated by the elementary events

{
ω ∈ Ω | XB(ω) = n

}
.

If P is a Gibbs measure on (Ω, F), it defines through the application X : B 7→ XB a
random process with value in the set of boundedly finite, integer-valued measures, i.e. in
other words, a random point field.

We will see that the Gibbs measures we construct on (Ω, F) define a particular type
of random point fields on Z × R, named determinant random point fields, for which
correlations functions are given by determinants of a kernel J .

We prove the following theorem

Theorem 5.1. For a fixed average density of beads, there exists a 1-parameter family
of ergodic Gibbs measures (Pγ) on (Ω,F). When endowed with one of these measures,
(Ω, F) is a determinantal random point field on Z×R whose marginal on each thread is
the sine random point field.

The sine random point field process is a determinantal random point field on R whose
kernel is the sine kernel

S(x, y) =
sin(x − y)

π(x − y)

and describes the statistics of eigenvalues in the bulk of the spectrum of large hermitian
random matrices. The parameter is chosen to be the average distance between a bead
and its right neighbour just below it and describes the amplitude of a magnetic field
that tends to push the beads in some directions.
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5.2. Discrete bead model and dimers

(a) γ < 0 (b) γ > 0

Figure 5.2: Two typical bead configurations for different values of γ. The parameter γ is negative in
panel (a), and positive in panel (b).

A way to construct these Gibbs measures is first to consider a discretized version of the
bead model. The set of possible configurations Ωt ⊂ Ω, is constituted by the configu-
rations for which the beads are located at sites of a lattice with mesh t. We show that
in this discrete setting, there exist probability measures supported by Ωt, for which the
distribution of the beads is a determinantal random point field, by exhibiting a bijection
between the discretized bead model and the dimer model on the honeycomb lattice –
or equivalently random tilings of the plane by rhombi. The measures on random tilings
have the Gibbs property. Then we prove that the sequence of discrete determinantal
processes indexed by t converges to a determinantal random point field on Z×R when
t goes to zero.

5.2 Discrete bead model and dimers

We assume for the moment that the threads are not continuous lines, but one-dimensional
lattice with mesh size t. The possible positions of the beads are labelled by coordinates

(c, ty) ∈ Z× tZ, (5.1)

c representing the thread on which the bead lies, and y being the coordinate running
along the thread.

There is a correspondence between discrete bead configurations and dimer configurations
on the honeycomb lattice H: there is a bead at (c, ty) if the horizontal edge incident
with the white vertex (c, y) is in the dimer configuration. A way to see geometrically
this correspondence is the following: fix an isoradial embedding of the honeycomb lattice
such that the middle of horizontal edges coincide with the possible bead positions. A
bead configuration is obtained by putting a bead at a site each time there is an horizontal
dimer at this position. Reciprocally, from a bead configuration one can reconstruct a
dimer configuration by placing horizontal dimers on edges crossing an occupied site, and
completing the configuration. This is always possible, because of the intertwining of
bead positions. Moreover, the completion is unique once there is at least one bead on
each wire.
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5. The bead model

Figure 5.3: A piece of discrete bead configuration and the corresponding piece of dimer configuration
on H.

Isoradial embeddings of H are parameterized, up to a global scaling factor, by two
quantities a/b, c/b fixing the ratios between the length of dual edges of each type. We
take a = t, b = 1, c = eγt.

The parameter γ ∈ (−1, 1) parameterizes the family of isoradial embeddings compatible
with the geometric constraints discussed above.

For a fixed t, each value of γ corresponds to a liquid Gibbs probability measure on
dimer configurations, that can be transported to bead configurations. The local statis-
tics of the beads coincide with that of horizontal dimers. The probability measure on
bead configurations benefits from the conditional uniform property of the dimer Gibbs
measure.

This procedure defines for a given t a family parameterized by γ of probability mea-
sures on discrete bead configurations that have the conditioned uniform property. The
correlations between beads are given by determinants: the probability of having a bead
at the sites (c1, ty1), . . . , (ck, tyk) in the random bead configuration ω is

Pt,γ [(c1, ty1), . . . , (ck, tyk) ∈ ω] = tk det
1≤i,j≤k

K
−1

t,γ(bci
yi

,w
cj
yj ) (5.2)

where K
−1

t,γ is defined by

K
−1
t,γ(b(c)

y ,w) =

∫∫

T2

u−ywc

t + 1
w (1 + ueγt)

du

2iπu

dw

2iπw
(5.3)

We will determine the asymptotics of this kernel for a fixed γ and a small t, and then
prove the convergence of the corresponding determinantal process when t goes to zero.
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5.3. Explicit expression of the Gibbs measures

5.3 Explicit expression of the Gibbs measures

Before proving theorem 5.1, it is necessary to investigate the behavior of the kernel
defining the discrete bead model. In other words, one has to compute the asymptotics
of K

−1
γ,t(b

c
y,w) when t becomes small and y large. Such asymptotics are given by the

following lemma.

Lemma 5.1. In the vertical scaling limit

t → 0, ty → ξ (5.4)

the coefficients (−1)y
K

−1
γ,t(b

(c)
y ,w) converge to

Jγ(c, ξ) =







1

2π

∫

[−
√

1−γ2,
√

1−γ2]
e−iξφ(γ + iφ)cdφ if c ≥ 0,

−1

2π

∫

R\[−
√

1−γ2,
√

1−γ2]
e−iξφ(γ + iφ)cdφ if c < 0.

(5.5)

In particular, when c = 0,

Jγ(0, ξ) =

∫

[−
√

1−γ2,
√

1−γ2]
eiξφdφ =

sin(
√

1 − γ2ξ)

πξ
(5.6)

Proof:

As we said before, the entries of the inverse Kasteleyn operator are given by

K
−1(b(c)

y ,w) =

∫∫

T2

z−ywx

a + b/w + cz

dz

2iπz

dw

2iπw
=

∫∫

T2

u−ywc

t + 1
w (1 + ueγt)

du

2iπu

dw

2iπw

To evaluate this integral, we first perform the integration over w by the method of
residues. If c ≥ 0, the rational fraction

fu(w) =
wc

tw + u (1 + ueγt)

has one pole at w = w0(u) = −1+ueγt

t
.

By Cauchy’s theorem, the integral

1

2iπ

∫

S1

fu(w)dw

is zero unless the pole w0(u) is in the unit disc, i.e.

Re(u) < −1 + e2γt − t2

2eγt
= −1 + (1 − γ2)t2 + O(t3) (5.7)
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5. The bead model

Define θ0 = Arccos
(

1+e2γt−t2

2eγt

)

= t

√

1 − γ2 + O(t2). The constraint (5.7) on the pole

to be inside the unit disk can be rewritten as

arg(u) ∈ (π − θ0, π + θ0)

Posing u = −eiθ = −eitφ in the integral, we get

K
−1(b(c)

y ,w) =

∫

Re(u)<− 1+e2γt−t
2

2eγt

u−y

(

−1 + ueγt

t

)c du

2πtiu
(5.8)

= (−1)y

∫ θ0

−θ0

e−iyθ

(
eγteiθ − 1

t

)c
dθ

2πt
(5.9)

=
(−1)y

2π

∫ θ0/t

−θ0/t
e−ityφ

(

et(γ+iφ) − 1

t

)c

dφ (5.10)

In the vertical scaling limit t → 0, ty → ξ, we have

lim
θ0

t
=

√

1 − γ2, lim e−ityφ = e−iξφ, lim
et(γ+iφ) − 1

t
= γ + iφ.

Thus, the integral above, multiplied by (−1)y, converges to

lim(−1)y
K

−1(b(c)
y ,w) =

1

2π

∫

[−
√

1−γ2,
√

1−γ2]
e−iξφ (γ + iφ)c dφ.

When c < 0, fu(w) has two poles: there is a pole at w = 0 in addition to that located

at w = w0(u) = −1+u−1eγt

t
. Since wfu(w) goes to zero when u goes to infinity, the sum

of the residues is zero. Therefore the integral of fu(w) on the unit circle is not zero only
if u0(w) is outside of the unit disc. It equals in that case the opposite of the residue at
w0(u). Again with the change of variable u = −eiθ = −eitφ, we have

K
−1(b(c)

y ,w) = −
∫

Re(w)>− 1+e2γt−t
2

2eγt

u−y

(

−1 + ueγt

t

)c du

2πtiu
(5.11)

= (−1)y+1

(∫ −θ0

−π
+

∫ π

θ0

)

e−iyθ

(
eγteiθ − 1

t

)c
dθ

2πt
(5.12)

= (−1)y+1

(
∫ −θ0/t

−π/t
+

∫ π/t

θ0/t

)

e−ityφ

(
eγteitφ − 1

t

)c
dφ

2π
(5.13)

Thus in the scaling limit, by Lebesgue dominated convergence theorem,

lim(−1)y
K

−1(b(c)
y ,w) =

−1

2π

∫

R\[−
√

1−γ2,
√

1−γ2]
e−iξφ (γ + iφ)c dφ
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5.3. Explicit expression of the Gibbs measures

what terminates the proof of the lemma. ¤

From the exact expressions (5.10) and (5.13) of K
−1(b

(c)
y ,w), one can easily check that

the entries are uniformly bounded in y and t for a given value of c, leading to the
following lemma:

Lemma 5.2. ∀ c ∈ Z ∃ Mc > 0 ∀ t < t0 ∀ y ∈ R
∣
∣
∣K

−1(b(c)
y ,w)

∣
∣
∣ ≤ Mc

These two lemmas will now be used to prove theorem 5.1, stating that this family
converges weakly to the determinantal random point field on Z×R with kernel Jγ .

Theorem 5.2. For each value of γ ∈ (−1, 1), the discrete bead model converges weakly
when t goes to 0 to a determinantal random point field on Z×R, the marginal of which
on each factor R is the sine random field of the eigenvalues of large random Hermitian
matrices. The kernel Jγ of this limiting determinant random point field is given by

Jγ(c, ξ) =







∫

[−
√

1−γ2,
√

1−γ
2
]
e−iξφ(γ + iφ)cdφ

2π
if x ≥ 0

−
∫

R\[−
√

1−γ2,
√

1−γ
2
]
e−iξφ(γ + iφ)cdφ

2π if x < 0.
(5.14)

Proof:

Since tightness is automatic for random point fields [9], it is sufficient to prove the
convergence of finite dimensional distributions in order to prove the weak convergence
of the family of random point fields (Ω, F,Pγ,t),.

Let I1, . . . , Ik be segments on wire c1, . . . , ck respectively. It will be convenient to use
multi-index notations

n! =
k∏

j=1

nj !, |n| =
k∑

j=1

nj , In = In1
1 × · · · × Ink

k , zn = zn1
1 · · · znk

k

We will prove the convergence of the moment generating function G
(I)
γ,t(z1, . . . , zk) of the

joint law of (XI1 , . . . , XIk
)

G
(I)
γ,t(z) = Eγ,t





k∏

j=1

(1 − zj)
XIj



 =
∑

n∈Nk

Eγ,t





k∏

j=1

(XIj )!

(XIj − nj)!




(−z)n

n!
. (5.15)

The factorial moments

A
(I)
γ,t(n1, . . . , nk) = Eγ,t

[
k∏

i=1

XIi !

(XIi − ni)!

]

(5.16)
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5. The bead model

are quite easy to compute. They are given by the formula:

A
(I)
γ,t(n1, . . . , nk) =

∑

y1
1 ...y1

n1
∈I1/t

yk
1 ...yk

nk
∈Ik/t

Pγ,t

[

there are beads at (c1, ty
1
1), . . . , (ck, ty

k
nk

)
]

(5.17)

where the sum is performed over all the distinct njtuples of Ij , j = 1, . . . , k. By equation
(5.2), this can be rewritten in terms of determinants of matrices with blocks of size
n1, . . . , nk

A
(I)
γ,t(n) =

∑

y1
1 ...y1

n1
∈I1/t

yk
1 ...yk

nk
∈Ik/t

t
|n| det






K
−1
γ,t(b

c1
yi1

,wc1
yj1

) · · · K
−1
γ,t(b

c1
yi1

,wc1
yj1

)
...

. . .
...

K
−1
γ,t(b

c1
yi1

,wck
yjk

) · · · K
−1
γ,t(b

c1
yi1

,wc1
yj1

)






1≤i1,j1≤n1
1≤ik,jk≤nk

(5.18)
which converges when t goes to zero to

A(I)
γ (n) =

∫

In

det






Jγ(c1−c1,ξ
(1)
i1

−ξ
(1)
j1

) · · · Jγ(c1−ck,ξ
(1)
i1

−ξ
(k)
jk

)

...
. . .

...

Jγ(ck−c1,ξ
(k)
ik

−ξ
(1)
j1

) · · · Jγ(ck−ck,ξ
(ck)

ik
−ξ

(ck)

jk
)




dnξ (5.19)

where the integration variable ξ =
(
ξ
(1)
1 , . . . , ξ

(1)
n1 , . . . , ξ

(k)
nk

)
. Since the coefficients of K

−1
γ,t

are bounded uniformly in t and y, say by M , then using Hadamard inequality, we get a

uniform bound on the coefficients A
(I)
γ,t(n1, · · · , nk)

∣
∣A

(I)
γ,t(n)

∣
∣ ≤

k∏

j=1

|Ij |nj
(√

|n|M
)|n|

(5.20)

Therefore, by an argument of dominated convergence, the entire series Q
(I)
γ,t(z), z ∈ Ck

converges uniformly on compact sets towards

Q(I)
γ (z) =

∑

n∈Nk

A(I)
γ (n)

(−z)n

n!
(5.21)

which is the moment generating function for the limit distribution of (XI1 , . . . , XIk
).

The probability of having for all j ∈ {1, . . . , k} exactly nj beads in Ij is given by the
following formula

Pγ [XI1 = n1, . . . , XIk
= nk] =

(−1)|n|

n!

∂n

∂zn
Q(I)

γ (z)
∣
∣
z=(1,...,1)

. (5.22)

In particular, the probability of having no bead in a Borel set B is given by the Fredholm
determinant

Pγ [XB = 0] = Det(Id − χBK
−1
γ χB) = QB

γ (1) =
∞∑

n=0

(−1)n

n!

∫

Bn

det
[
K

−1
γ (ξi − ξj)

]
dnξ

(5.23)
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5.4. Comments and possible developments

The restriction of the process to one line is a determinantal random point field on R
with kernel

Jγ(0, ξ − ξ′) =
sin(

√

1 − γ2(ξ − ξ′))
π(ξ − ξ′)

. (5.24)

It is thus, up to a scaling factor, the sine random point field. ¤

5.4 Comments and possible developments

5.4.1 The bead model as an asymmetric exclusion process

A bead configuration can be interpreted as the history of a collection of particles located
on a one dimensional lattice Z and jumping from left to right. Time is continuous and
is flowing vertically along the threads, and there is a lattice site between two successive
threads. Joining every bead to the bead just above it on the neighbouring right thread,
one gets an infinite collection of monotonous paths representing the trajectories of the
particles: a bead on a thread corresponds to a jump of a particle from the site at the
left of the thread to the site on its right. Because of the geometric constraint on beads,
these paths cannot touch each other. Consequently, the particles are submitted to an
exclusion rule: a particle cannot jump to a site if this one is already occupied by another
particle.
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Figure 5.4: The trajectories corresponding to the bead configuration of figure 5.1 and positions of
particles (black squares) at different times t1 and t2.

The Gibbs measures Pγ on bead configurations, viewed as families of monotous paths
constructed as above, are probability measures on all possible evolutions of particles.
The Gibbs property and ergodicity imply that the marginal of these measures for a
fixed time ( i.e. along an horizontal line) give stationnary measures for some Markovian
dynamics.
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5. The bead model

The discrete bead model gives a discrete version of this particle system: in this picture
a particle is represented by a c-rhombus, and a hole by a b-rhombus. Under Pγ , the
average particle density ρ is equal to the limit of the probability of a c-rhombus, and
therefore related to γ by the following expression

ρ = lim
t→0

Pt,γ

[ ]

= 1 − arccos γ

π
(5.25)

so that the density is an increasing function of γ.

ASEP1 is also an example of particle systems with the same constraint of exclusion.
Its evolution is Markovian, and the transition rates from an allowed configuration to
another is constant. The translation invariant stationnary measures for this model are
Bernouilli probability measure, whose parameter is the density.

If the particles are not located on the vertices of the finite lattice Z but on a finite
annulus Z/NZ, then the number of particles is a conserved quantity. For a fixed number
of particles, the stationnary measure is uniform for ASEP. This is not the case for the
bead model with a finite number of beads2 the probability of a configuration of particles
depends not only on the number of particles, but also on their positions.

The properties of the particle system coming from the bead model differ from that of
ASEP. It would be interesting to study more in details these properties using the dimer
microscopic structure, and to compare them with that of ASEP, that are also related to
random matrix theory [49].

5.4.2 The bead model and spanning trees

In [59], Temperley gives a bijection between dimer model on Z2 and the uniform spanning
tree model on Z2. This correspondance has been considerably extended [35, 36]: for
any bipartite planar graph G with weighted edges, there exist a T-graph GT and a
weight-preserving bijection between spanning trees of a GT and the (marked) dimer
configurations of G. A piece of the T-graph corresponding to the dimer model on the
honeycomb lattice with weights a = t = 0.1, b = 1, c = 1, shown on figure 5.5, looks like
fish scales. When t goes to zero, the enveloppes of these fish scales approach a collection
of superimposed cycloids. Using Wilson’s algorithm [63], one can sample a spanning
tree on that T-graph, and thus a bead configuration using loop-erased random walks.
It would be interesting to understand more in details how a random walk can sample a
sine random field.

1ASEP: Asymmetric Simple Exclusion Process.
2A bead model for a finite number of threads can be constructed following the same procedure as in

the beginning of this chapter. We impose the number of threads N to be even to ensure that the
geometric constraint on beads makes sense. We get leading to a 1-parameter family of determinantal
random fields, whose kernel is obtained by replacing the integral in (5.5) by a discrete sum.
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5.4. Comments and possible developments

Figure 5.5: A piece of the graph on which the spanning tree model is in bijection with the dimer model
on the honecomb lattice with weights a = t = 0.2, b = 1, c = 1. The faces of this graph are
triangles similar to the isoceles triangle with side lengths a, b and c.
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6 The bead model – Generalization

Although the bead model was presented in the last section as the limit of the dimer
model on the honeycomb lattice, it turns out to be much more general. Indeed, we will
see in this chapter that the bead model appears as the limit of any dimer model on a
planar Z2-periodic bipartite graph.

Let G be a planar Z2-periodic graph, and K the Kasteleyn operator corresponding to
some periodic weight function on the edges of G. There is a two-parameter family of
Gibbs measures on dimer configurations of G for these weights, parameterized by two
order parameters (Bx, By). The characteristic polynomial P (z, w) is the determinant of
the Fourier transform of the periodic operator K, and the phase diagram describing the
behaviour of the measures in function of Bx and By is given by the amœba of the spectral
curve P (z, w) = 0, i.e. the image of P (z, w) = 0 by the mapping

Log : (C∗)2 → R2

(z, w) 7→ (log |z|, log |w|).

The structure of this amœba is related to the geometry of N(P ), the Newton polygon
of P , which is the convex hull of the exponents of monomials of P , representing all the
possible slopes of a Gibbs measure.

Before explaining how to find the bead model in this setting, we need some more in-
formation about the local geometry of the amœba, in particular about its unbounded
outgrowths of of the amœba, the tentacles.

6.1 Tentacles of the amoeba

Consider a particular side of the Newton polygon N(P ). Changing the basis of the
Z2 lattice acting on G by translation induces a linear transformation1 of N(P ). After
possibly such an operation, we can assume that this side is horizontal, and that the
polygon lies above it. Recall that the Newton polygon represent the possible slopes for
a Gibbs measure on the dimer model on G. When the slope of a Gibbs measure is a
lattice point of the boundary of N(P ), the system is a solid phase.

We want to investigate the geometry of the phase diagram for values of the magnetic field
inducing measures with slope close to the particular side of N(P ) we chose. In particular,

1A change of basis of Z2 is encoded by an element M of SL2(Z). The linear transformation acting on
N(P ) is (M−1)T .
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6.1. Tentacles of the amoeba

we seek for the shape of the curve in the neighborhood of the frontier between the liquid
phase and the different solid phases, corresponding to the points of the particular side
of the polygon.

To get a measure with a slope close to that side of N(P ), we apply to the system a
magnetic field oriented essentially downward (Bx, By) = (c,−R). To remain close to the
notations used in the previous chapter, we introduce the small parameter t = e−R.

When t is small, the leading terms in the characteristic polynomial P (ecz, tw) are those
with the smallest power in w, say δ0.

P (ecz, tw) = (tw)δ0
(∑

γ

aγδ0(e
cz)γ + O(t)

)
(6.1)

By a suitable choice of the origin of the Newton polygon, one can assume that δ0 = 0
and that all the roots of P0(X) =

∑

γ aγ0X
γ are positive.

If ec is not a root of P0(X) =
∑

γ aγ0X
γ , then for t small enough, P (ecz, e−Rw) has no

roots on the unit torus. In this case, the magnetic field (Bx, By) = (c,−R) belongs to a
unbounded component of the amœba. The corresponding measure µ(Bx, By) is frozen.
On the contrary, if ec is a root of this polynomial, then for every R large enough, the
polynomial has two complex conjugated roots on the unit torus: we are in the liquid
phase. The amœba defining the liquid phase has therefore tentacles going to infinity
with asymptotes the straight lines x = c. For generic weights, the asymptotes are all
distinct, and there is one asymptote for each segment between to lattice points on the
side of N(P ). Moreover, one can give an asymptotic expansion for the equation of the
boundary of the amœba: since the boundary of the amœba is the image of the real locus
of the curve, it is given by the equation

P (eBx ,±eBy) = 0 (6.2)

In the neighborhood of (Bx, By) = (c,−∞), Bx admits an asymptotic expansion in
t = e−By : Bx = c + c1t + O(t2). Since P (ec, 0) = 0, we have

P (eBx ,±eBy) = P (ec+c1t+O(t2),±t) =
(
c1e

c∂1P (ec, 0) ± ∂2P (ec, 0)
)
t + O(t2) (6.3)

Therefore the coefficient c1 in the expansion is defined by

c1 = ± ∂2P (ec, 0)

ec∂1P (ec, 0)
(6.4)

and the two curves Bx = c±e−c ∂2P (ec,0)
∂1P (ec,0)e

By define asymptotic branches of the boundary

of the amœba in the neighborhood of (c,−∞). Define β as

β = −e−c ∂2P (ec, 0)

∂1P (ec, 0)
(6.5)

For any γ ∈ (−1, 1), the curve
Bx = c + γβeBy (6.6)

lies inside the amoeba for By negative enough.
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6. The bead model – Generalization

Γ=-1 Γ=1

Γ=-
1
�����
3

Γ=
1
�����
3

Γ=0

Figure 6.1: A tentacle (in thick lines) and curves described above, for different values of γ.

6.2 Deep inside a tentacle

6.2.1 Analytic results about the roots of P

Let us fix c to be equal to the logarithm of one of the roots of P0. For a fixed z, the
polynomial P (ec+γβtz, W ) has d roots W0(z), . . . , Wd−1(z). Since ec is a root of P0, one
of these Wj(z), say it is W0, equals 0 when z = 1. If all the roots of P0 are distinct,
W0(z) is the only zero having this property. The 2-to-1 property shows that W0(z) does
not equal zero for z 6= 1

Therefore, by compactness of S1 there exists an ε > 0 such that

∀ j ∈ {1, . . . , d − 1}, ∀ z ∈ S1 |Wj(z)| ≥ ε (6.7)

Continuity of the roots with respect to the coefficients and symmetry by complex con-
jugation imply that there exists θ(t) = θ0t + O(t2), with θ0 > 0 such that

|W0(z)| ≤ t ⇔ z ∈ [e−iθ(t), eiθ(t)] (6.8)

In fact, an expansion of P similar to (6.3) shows that when arg(z) = O(t)

W0(z) = γt +
i arg(z)

β
+ O(t2), (6.9)

and therefore, θ(t) = tβ
√

1 − γ2 + O(t2).
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6.2. Deep inside a tentacle

6.2.2 Asymptotics of the inverse Kasteleyn operator for beads

Recall that the Newton polygon N(P ) is an intersection of half-planes, where all the
inequalities (2.34) are satisfied by the average slope of the Gibbs measure. The side of
the Newton polygon we are looking at is a segment of one of the sraight lines delimiting
one of these half-planes. When the average slope of the Gibbs measure lies on this line,
there exists two translates of a face between which the difference of height equals the
capacity of a dual path Γ joining them. All the translated of this path form a collection
of infinite parallel paths perpendicular to the side of N(P ), that are frozen when the
slope of the Gibbs measure lies on that boundary of N(P ): with probability 1, no dimer
will cross these frozen paths. These possibly frozen paths will be the threads of our bead
model. When the slope is not exactly on that boundary of N(P ), some dimers may cross
these paths. We will see that these defects will play the role of beads strung along these
threads.

Let e = (w,b) be an edge of G crossing one of these threads. When the slope of the
Gibbs measure is on the side of the Newton polygon, this edge appears in the random
dimer configuration with probability 0. In particular, there is no dimer configuration on
the torus G1 corresponding to a lattice point of the side of N(P ) containing this edge.
As the cofactor Qe(z, w) = Qbw(z, w) is up to a sign the determinant of the Kasteleyn
operator on G1 \ {w,b}, it contains only monomials of degree at least 1 in w.

We determine now the asymptotic expression for the coupling function K
−1
γ,t(bx,w) cor-

responding to our magnetic field (Bx, By) = (c + βγt, log t), between w and the black
end bx of a translate ex of e by x = (x, y) ∈ Z2

K
−1
γ,t(bx,w) =

∫∫
z−ywxQe(e

c+βγtz, tw)

P (ec+βγtz, tw)

dz

2iπz

dw

2iπw
. (6.10)

Proposition 6.1. Denote by Jγ(x, ξ) the kernel of the bead model.

Jγ(x, ξ) =







∫

[−
√

1−γ2,
√

1−γ2]

e−iξφ(γ + iφ)x dφ

2π
if x ≥ 0

−
∫

R\[−
√

1−γ2,
√

1−γ2]

e−iξφ(γ + iφ)x dφ

2π
if x < 0

(6.11)

In the scaling limit
t → 0, , tβy → ξ, (6.12)

the coefficients K
−1
γ,t(bx,w) have the following asymptotics

K
−1
γ,t(bx,w) ∼ tρeJα(x, ξ) (6.13)

The quantity ρe is given by

ρe =
ecβ∂1Qe(e

c, 0) + ∂2Qe(e
c, 0)

∂2P (ec, 0)
. (6.14)

Once multiplied by Ke, it represents the proportion of this type of edges among the defects
along a thread.
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6. The bead model – Generalization

Proof:

We denote by f(z, w) the rational fraction inside the integral (6.10)

f(z, w) =
z−y−1wx−1Qe(e

c+βγtz, tw)

P (ec+βγtz, tw)
. (6.15)

The integral defining K
−1
γ,t is evaluated by performing first the integral over w. Suppose

first that x ≥ 0. There is no singularity at w = 0, since degwQ ≥ 1. The only pole in
the unit disc is W0(z)/t when z ∈

[
e−iθ(t), eiθ(t)

]
= It. In this case,

K
−1
γ,t(bx,w) =

∫

It

u−y
(
W0(z)/t

)x−1
Qe(e

c+βγtz, W0(z))

∂2P (z, W0(z))t

dz

2iπz

=

∫
√

1−γ2+O(t)

−
√

1−γ2+O(t)

e−iβtyφ(γ + iφ + O(t))x−1Qe(e
c+tβγ+itβφ, (γ + iφ)t + O(t2))

∂2P (ec+tβγ+itβφ, (γ + iφ)t + O(t2))

βdφ

2π

For a small t and a fixed φ, we have

Qe(e
c+tβγ+itβφ, (γ + iφ)t + O(t2)) = t(γ + iφ)

(
βec∂1Qe + ∂2Qe

)
+ O(t2), (6.16)

∂2P (ec+tβγ+itβφ, (γ + iφ)t + O(t2)) = ∂2P + O(t). (6.17)

where the derivatives of polynomials P and Qe are evaluated at (ec, 0). Therefore,

K
−1
γ,t(bx,w) =

tβ
(
ecβ∂1Qe + ∂2Qe

)

∂2P

(
∫

[−
√

1−γ2,
√

1−γ2]
e−iξφ(γ + iφ)x dφ

2π
+ O(t)

)

When x < 0, the rational fraction in the integral has a multiple pole at w = 0 which is
hard to evaluate directly. However the rational fraction is a o( 1

w ) when |w| → ∞, and
hence the sum of all residues in the plane is 0.

Let us bound the residues at the simple roots of P : W1(z), . . . , Wd−1(z) . We know
already from (6.7) that there exists ε such that for every j ∈ {1, . . . , d− 1}, |Wj(z)| ≥ ε
for every z ∈ S1. By the same argument of compactness, there exists a constant M > 0
such that for t small enough,

∀ j ∈ {1, . . . , d − 1} ∀ z ∈ S1

∣
∣∂2P (ec+βγtz,Wj(z))

∣
∣ ≥ 1

M
and

∣
∣
∣
∣

Qe(e
c+βγtz, Wj(z))

Wj(z)

∣
∣
∣
∣
≤ M (6.18)

and therefore,

∣
∣
∣
∣
∣

(
Wj(z)/t)xQe(e

c+γβt,Wj(z))

Wj(z)∂2P (ec+γβtz, Wj(z))

∣
∣
∣
∣
∣
≤ (ε/t)xM2 = O(t−x) (6.19)

88



6.2. Deep inside a tentacle

Thus the contribution of these residues is negligible as soon as x ≤ −2. In that case, we
have:

K
−1
γ,t(bx,w) =

∫

S1

Resw=0 f(z, w)
dz

2iπ
+

∫

It

Resw=W0(z)/t f(z, w)
dz

2iπ

= −
d−1∑

j=1

∫

S1

Resw=Wj(z)/t f(z, w)
dz

2iπ
−

∫

S1\It
Resw=W0(z)/t f(z, w)

dz

2iπ
(6.20)

Using the estimates (6.16) and (6.17), we find that

∫

S1\It
Resw=W0(z)/t f(z, w)

dz

2iπ
=

∫

S1\It

z−y
(W0(z)

t

)x−1
Qe(e

c+γβtz,W0(z))

t∂2P (ec+γβtz,W0(z))

dz

2iπz

=

∫

[
− π

|β| ,−
√

1−γ2+o(1)

]
∪
[√

1−γ2+o(1), π
|β|

]

e−iyβtφ(γ + iφ + O(t))x−1Qe(e
c+tβγ+itβφ,W0(e

itβφ))

t∂2P (ec+tγβ+itβφ,W0(eitβφ))

tβdφ

2π
. (6.21)

By Lebesgue’s dominated convergence theorem, the integral in the scaling limit

t → 0, tβy → ξ

is asymptotic to the following expression

tβ
(
ecβ∂1Qe + ∂2Qe

)

∂2P

∫

R\[−
√

1−γ2,
√

1−γ2]

e−iφξ(γ + iφ)x dφ

2π
(6.22)

and thus,

K
−1
γ,t(bx,w) =

tβ
(
ecβ∂1Qe + ∂2Qe

)

∂2P

(

−
∫

R\[−
√

1−γ2,
√

1−γ2]

e−iφξ(γ + iφ)x dφ

2π
+ o(1)

)

.

(6.23)

When x = −1, the residues at the poles W1(z), . . . , Wd−1(z) are not negligible any more.
However, in this case, the pole at w = 0 is simple. A direct evalutation of the integral
shows:

K
−1
γ,t(bx,w) =

∫

S1

Resw=0 f(z, w)
dz

2iπ
+

∫

It

Resw=W0(z)/t f(z, w)
dz

2iπ

=

∫

S1

z−y
t∂2Qe(e

c+βγtz, 0)

P (ec+βγtz, 0)

dz

2iπz
+

∫

It

z−y
(W0(z)

t

)−2
Qe(e

c+βγtz, W0(z))

t∂2P (ec+βγtz,W0(z))

dz

2iπz
(6.24)

Posing z = eiβtφ, one has

K
−1
γ,t(bx,w) = t

2β

∫ π
|β|t

− π
|β|t

e−iβϕty∂2Qe(e
c+βγt+iβφt, 0)

P (ec+βγt+iβφt, 0)

dφ

2π

+ t
2β

∫ √
1−γ2+o(1)

−
√

1−γ2+o(1)

e−iβϕtyQe(e
c+βγt+iβφt, 0)

W0(eiβφt)2∂2P (ec+βγt+iβφt, 0)

dφ

2π
(6.25)
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6. The bead model – Generalization

Using the following estimates from Taylor’s formula

∂2Q(ec+βγt+iβφt, 0) =
Qe(e

c+βγt+iβφt,W0(z)) − Qe(e
c+βγt+iβφt, 0)

W0(z)
+ O(t)

= βec∂1Qe + ∂2Qe + O(t) (6.26)

P (ec+βγt+iβφt, 0) = P (ec+βγt+iβφt,W0(z)) − W0(z)∂2P (ec+βγt+iβφt,W0(z)) + O(t2)

= −(γ + iφ)t∂2P + O(t2) (6.27)

together with (6.16) and (6.17), and applying Lebesgue dominated convergence theorem
after an integration by parts, one can prove that in the scaling limit, the coefficient of
the inverse Kasteleyn operator K

−1
γ,t(bx,w) is asymptotic to

−tβ ecβ∂1Q + ∂2Q

∂2P

∫

R\[−
√

1−γ2,
√

1−γ2]
e−iφξ(γ + iφ)−1 dφ

2π

¤

Remark. The ratio (ecβ∂1Qe + ∂2Qe)/∂2P controls the density of the limiting bead
model. If pluging φ =

√

1 − γ2 into (6.16) and (6.17), one can see that it is up, to terms
of higher order in t, equal to

iQe(e
c+βγtz0, tw0)

i∂2P (ec+βγtz0, tw0)tw0
(6.28)

where (z0, w0) are zeros of the characteristic polynomial P (ec+βγt·, t·) on the unit torus.
When multiplied by Ke, the numerator is the length of the dual edge e∗ in the natural
application from the dual graph G∗ to R2 described in section 2.6 while the denominator
is that of the vertical side of the fondamental domain.

Proposition 6.1 shows that the kernel giving the correlations has the same form as the
original bead model. However, in order to recover the bead model, one can not just look
at one type of edges on threads but at all of them.

Since the frozen paths have been chosen to cross no dimer when the slope is on the
side of the particular Newton polygon we are looking at, they are bordered by white
vertices on their left, and black vertices on their right. For a reason of parity between
white and black vertices, there is no dimer configuration of the graph G1 deprived of the
projection of these two vertives having a height change2 on the side of N(P ). Therefore
the arguments of the proof of proposition 6.1 can be applied to obtain similar asymptotics
as those given in that proposition for the coefficients of K

−1
γ,t between these vertices.

2The term height change here is an abuse of notations, since the difference between the reference unit
flow and the one corresponding to any dimer configuration of G1 deprived of the two vertices has
a non-zero divergence. What we mean here by this expression is in fact the powers in z and w in
the weight of the configuration computed using the magnetically altered Kasteleyn operator K(z, w)
divided by that of the reference dimer configuration.
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6.2. Deep inside a tentacle

Proposition 6.2. Let bx,y and w be respectively a black and a white vertex each bor-
dering one of these paths, and in fundamental domains separated by a lattice translation
(x, y). In the scaling limit

t → 0, tβy → ξ, (6.29)

the coefficient K
−1
γ,t(bx,y,w) has the following asymptotics

K
−1
γ,t(bx,y,w) ∼ tρbwJγ(x, ξ), (6.30)

where

ρbw =
ecβ∂1Qbw(ec, 0) + ∂2Qbw(ec, 0)

∂2P (ec, 0)
. (6.31)

These coefficients ρbw are in fact the product of two terms, one depending only on b

and the other on w. This property is stated in the following lemma

Lemma 6.1. The rank of the matrix ecβ∂1Q(ec, 0)+∂2Q(ec, 0), restricted to projections
of vertices bordering a thread, is equal to 1. In particular, for any b and any w bordering
a thread, there exist Ub and Vw such that

ρbw = UbVw. (6.32)

Proof:

The matrix ecβ∂1Q(ec, 0) + ∂2Q(ec, 0) is the limit when t goes to zero of

1

tw0
Q(ec+βγtz0, tw0) (6.33)

where (z0, w0) are zeros on the unit torus of P (ec+βγtz, tw). These zeros depend on t and
γ and their the first term in their expansion in t is obtained by plugging φ = ±

√

1 − γ2

into equations (6.16) and (6.17):

z0 = 1 + O(t), w0 = γ ± i
√

1 − γ2 + O(t). (6.34)

Since (ec+βγtz0, tw0) is not real, it is a simple zero of P = det K. Q is the comatrix
of K, its rank is 1 at a simple zero of P . Therefore, as the limit of sequence of rank 1
matrices, the matrix ecβ∂1Q(ec, 0)+∂2Q(ec, 0) has a rank a most 1. As there is at most
an non-zero entry in this matrix, the rank is equal to 1.

The coefficient ρbw is a multiple the entry(b,w) of this matrix. Its decomposition into
a product comes from the representation of a rank-1 matrix as a tensor product of a
vector and a linear form. ¤

91



6. The bead model – Generalization

6.3 Convergence to the bead model

We already said that the threads of our bead model would be the infinite collection of
vertical paths, translated one from another, that are frozen, i.e they do not cross any
dimer when the slope of the measure lies on the boundary of the Newton polygon. The
beads are represented by the dimers crossing these paths when the magnetic field lies in
one of the vertical tentacles of the amœba.

Like in chapter 5, as the magnetic field goes deeper into the tentacle of the amœba, the
picture of the graph in the plane is rescaled in such a way that although the probability of
seeing a dimer crossing these “almost-frozen” paths goes to zero, the average number of
such edges by centimeter of thread stays almost constant. The scaling limit we perform
is

t → 0, tβy → ξ ∈ R. (6.35)

To find the limiting distribution of this beads, we first evaluate the quantities

E
[

XI1 !

(XI1 − n1)!
· · · XIk

!

(XIk
− nk)!

]

(6.36)

where XIj is the number of dimers crossing the (rescaled) thread interval. We look in
details at the case k = 1 when only one thread interval is at stake. The other cases are
similar. For a given n, and a fixed value of γ and of the scaling parameter t , we have

Eγ,t

[
XI !

(XI − n)!

]

=
∑

e1,...,en∈I
distinct

Pγ,t [e1, . . . , en ∈ C] (6.37)

where the sum is over all possible n-tuples of edges crossing the thread interval I. The
edges crossing I are labelled by their type (i.e. their projection on G1 = G/Z2) and
the coordinates of the fundamental domain they belong to. The edge e

j
x represents

the edge of type j in the fundamental domain with coordinates x = (x, y). The type
label j ranges from 1 to d. Since the probability of having two such edges in the same
fundamental domain is negligible, we can rewrite this sum of probabilities, as a sum over
the fundamental domains and the types of edges crossing the thread interval.

Eγ,t

[
XI !

(XI − n)!

]

=
∑

x1,...,xn∈I
distinct

n∑

j1,...,jn=1

Pγ,t

[
ej1
x1 , . . . , e

jn
xn

∈ C
]
+ O(t) (6.38)

The different probabilities Pγ,t

[

e
j1x1 , . . . , e

jn
xn ∈ C

]

are given by the determinant of a n×n

matrix that is equal to

t
n

(
n∏

l=1

Kjl

)

× det
1≤k,l≤n

[
ρjkjl

Jγ(xk − xl, tβ(yk − yl))
]
+ O(tn+1) (6.39)
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Since ρjk is the product of two terms UjVk, by carrying out of the determinant by
n-linearity these coefficients, equation (6.39) becomes

t
n

(
n∏

l=1

Kjl

)

× det
1≤k,l≤n

[
Ujk

Vjl
Jγ(xk − xl, tβ(yk − yl))

]
+ O(tn+1)

t
n

(
n∏

l=1

Kjl
Ujl

Vjl

)

× det
1≤k,l≤n

[
Jγ(xk − xl, tβ(yk − yl))

]
+ O(tn+1)

t
n

(
n∏

l=1

Kjl
ρjl

)

× det
1≤k,l≤n

[
Jγ(xk − xl, tβ(yk − yl))

]
+ O(tn+1) (6.40)

Summing now over the different types of edges, one gets

d∑

j1,...,jn=1

Pγ,t

[
ej1
x1 , . . . , e

jn
xn

∈ C
]

=

t
n





d∑

j=1

Kjl
ρjl





n

det
1≤k,l≤n

[
Jγ(xk − xl, tβ(yk − yl))

]
+ O(tn+1) (6.41)

Kjρj is the proportion of edges of type j along the thread. These coefficients sum up to
1, and we have finally that expression (6.38) is a Riemann sum of

∫

· · ·
∫

In

det
1≤k,l≤n

[
Jγ(xk − xl, ξk − ξl)

]
dnξ (6.42)

and the same argument of domination as in the proof of theorem 5.2 implies that the
distribution of XI converges to the distribution of beads in the interval I in the bead
model of parameter γ. The generalization to any finite dimensional distribution is nota-
tionally cumbersome, but straightforward. These considerations give thus the proof of
the following theorem

Theorem 6.1. Let γ ∈ (−1, 1). In the scaling limit t → 0, tβy → ξ, the point process
describing the position of rare edges on the threads, identified with the almost frozen
paths converges to the bead model of index γ, i.e. the determinantal point process on
Z×R with kernel Jγ.

Recall that γ describes the different possible ways to go deep into a tentacle. This
theorem states that the bead model, with its 1-parameter family of Gibbs measures, is
the universal limiting behaviour of any dimer model on a bipartite periodic planar graph
when the order parameters (Bx, By) go to infinity in staying in the liquid phase.

6.4 Interaction between bead models

It often happens that a side of the Newton polygon is not the result of a unique frozen
path, but that different paths give the same constraint on the slope (2.34). In that case,
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ŷ

x̂

aij

cijz
1/m

bijw
−1/n

(a)

-10 -5 5

-5

5

10

(b)

Figure 6.2: (a) A 3× 3 fundamental domain of the honeycomb lattice. Weights of edges around white
vertex wij are aij , bij and cij . The Fourier multipliers have been distributed over the edges
by gauge transformation. (b) The amœba for generic weights on the graph represented on
the left panel. This amœba presents a gaseous phase, and three tentacles in three directions,
each corresponding to a collection of frozen paths drawn on figure 6.3.

we do not have just one family of frozen paths, but several parallel families of thread,
carrying all in the scaling limit a bead model. In this section, we describe the interaction
between these different bead models in the case of the generic case of the honeycomb
lattice H with a n × m fundamental domain.

The fundamental domain of this periodic planar graph is represented on figure 6.2.
The vertices of the quotient H1 by the action of Z2 by translation are labelled by two
integers, i and j ranging respectively from 1 to n, and from 1 to m. The weights of the
edges around the white vertex labelled by (i, j) are denoted by aij , bij and cij . By an
appropriate gauge transformation, one can spread the factors z and w in the magnetically
altered Kasteleyn matrix K(z, w) so that the coefficients of this operator be aij , bijw

−1/n

and cijz
1/m. The reference dimer configuration we will use is the configuration containing

a-edges.

One distinguishes three special classes of dual cycles in G1, say A, B and C that cross
only edges of a given type (repsectively a, b and c). The lifts of these classes to H are
represented on figure 6.3. The B class is constituted by n vertical straight paths with
homology class (0, 1), whereas the C class contains the m horizontal straight paths with
homology class (1, 0). The A class contains d = gcd(n,m) paths with homology (m

d , n
d ).

The three classes of cycles lift to H, forming three classes of parallel families of straight
lines.
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A1

A2

A3

A1 A2

(a) A-paths

B1 B2 B3

(b) B-paths

C3

C2

C1

(c) C-paths

Figure 6.3: the three classes of possible frozen paths: A, B and C.

The Newton polygon of the weighted dimer graph G is a right triangle. Each side of
the triangle corresponds to Gibbs measures for which all the paths of one of the three
classes are frozen. The horizontal side contains n + 1 lattice points. The amœba of
the associated spectral curve exhibits n vertical tentacles separating n + 1 unbounded
complementary components – solid phases in the phase diagram – each corresponding
to a lattice point of the horizontal side.

As explained in chapter 2, the frozen configurations are obtained as follows: when the
Gibbs measure’s slope lies, say, on the horizontal side of the Newton polygon, there is
almost surely no edge crossing the B class of paths. These paths delimit thin strips
where one sees either an infinite succession of a-edges or an infinite collection of c-edges.
On G1 and in presence of a magnetic field (Bx, By), the associated patterns have weights
∏m

i=1 aij and eBx
∏m

i=1 cij . The patterns with the highest weight correspond to the type
of columns appearing in the configuration with probability 1. When the horizontal
component of the magnetic field is very negative, the weight of the ’a’ patterns are
greater than the ’c’ ones, but as Bx increases, the weight of the second pattern becomes
more important, and at some point, it becomes bigger that the first one. In the graph
G the a-edges that were filling the space between the two B paths switch to c-edges.
Generically the values of Bx corresponding to such a switch are all differents. They
correspond to the abscissæ of the vertical tentacles of the amoœba.

In a fixed window and when By is very large, one sees colums of edges of the same type
(a, or c) with a probability close to 1. When the magnetic field lies in a tentacle of the
phase diagram, the system hesitates between two states for a given type of columns.
With a probability p bounded away from 0 and 1, the column is filled with a-edges, and
with probability 1− p, it is filled with c-edges. If one rescales vertically the graph in the
same time as By goes to +∞, then one will be able to see the transition between these
two possibilities: between the two types of fillings, a b-edge is inserted. The edge creates
a defect in the neighbouring column that is supposed to be frozen. This discussion is
quantified in the following proposition:
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Proposition 6.3. If

Bx <
m∑

i=1

log
aij0

cij0

, (6.43)

then with probability going to 1 when By goes to infinity, the colums of type j0 will be
filled with a-edges.

If the inequality is strict in the other direction, then they will be filled with c-edges with
probability going to 1 when By goes to infinity.

Proof:

When the vertical component of the magnetic field is very negative, the main contribu-
tion to the characteristic polynomial is given by the configurations on G1 that contain
no b-edges. One can choose to fill each strip of G1 between two consecutive frozen cycles
either by a-edges or by c-edges. Choosing a filling with c edges induces a height change
of m in the vertical direction. Therefore

PB(z, w) =
n∏

j=1

(
m∏

i=1

aij − (−1)meBxz
m∏

i=1

cij

)

+ O(t) (6.44)

where t = eBy is small.

Let b and w two vertices in the same strip j0 in G1. Denote by by and w0 lifts of b

and w in the same column of G, separated by y fundamental domains. The entry of
the inverse Kasteleyn operator between these two vertices is easily evaluated: recall that
Qbw is the characteristic polynomial of the graph G where all the translated of b and w

have been removed. Repeating the argument given above, we find the main contribution
to it,

QB
bw = Mbwzδ

n∏

j=1
j 6=j0

(
m∏

i=1

aij − (−1)meBxz
m∏

i=1

cij

)

+ O(t) (6.45)

where Mbwzδ is the weight of the dimer configuration of the strip j0 of G1 deprived of
b and w. The coefficient of the inverse Kasteleyn operator corresponding to these two
vertices whose fundamental domains are separated by the lattice vector (x, y) is given
by

K
−1

B (by,w0) =

∫∫

T2

z−yw0QB
bw(z, w)

PB(z, w)

dz

2iπz

dw

2iπw
(6.46)

=

∫∫

T2

z−y+δMbw

(
∏m

i=1 aij0 − (−1)meBxz
∏m

i=1 cij0)

dz

2iπz

dw

2iπw
+ O(t) (6.47)

=

∫

S1

z−y+δMbw

(
∏m

i=1 aij0 − (−1)meBxz
∏m

i=1 cij0)

dz

2iπz
+ O(t) (6.48)
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Suppose that Bx <
∑m

i=1 log
aij0
cij0

, the other case is similar. In that case, the pole located
at

z = (−1)m

∏m
i=1 aij0

eBx
∏m

i=1 cij0

(6.49)

is outside of the unit disk. If y − δ < 0, then there is no pole at all in the unit disk, and
therefore the integral over z is zero. However, if y − δ ≥ 0, then the integral equals the
opposite of the residue at z0, and

K
−1

B (by,w0) =
Mbw

(−1)meBx
∏m

i=1 cij0

( ∏m
i=1 aij0

(−1)meBx
∏m

i=1 cij0

)−y−1

+ O(t) (6.50)

When by and w0 are the ends of an edge with weight ai0j0 , Mbw =
∏

i6=i0
aij0 and y and

δ equal 0. It follows that

K
−1

B (by,w0) =
Mbw

∏m
i=1 aij0

+ O(t) =
1

ai0j0

+ O(t) (6.51)

Thus, the probability of this a-edge, given by ai0j0K
−1

B (by,w0) goes to 1 when t goes to
zero.

On the other hand, in the case when b and w are the ends of a ’c’-type edge, then either
y = −1 or δ = 1. In both cases, K

−1

B (by,w0) is O(t). Thus the probability of this edge
goes to zero when t goes to zero. Such an edge is called non typical. ¤

A sequence of non-typical edges in a frozen column is initiated by the presence of a bead
(a ’b’-edge) crossing a neighbouring wire. The analysis we made of the inverse Kasteleyn
operator allows us to determine the distribution of the sequence of non typical edges in
a frozen column.

Proposition 6.4. The length of a succession of non typical edges in a frozen column
has a geometric distribution. The parameter of the geometric distribution has an explicit
expression in terms of lengths of dual edges.

Proof:

We suppose that in the frozen column j0, we only see a-edges with probability close to
1. The following inequality

Bx <
m∑

i=1

log
aij0

cij0

(6.52)

is satisfied. Since we work only in one column, we will drop the index j0 for the sake
of simplicity. Given that the edge e = (w,b) with weight bi0 is present in the dimer
configuration, we compute the probability of seeing N successive c-edges after this bead.
Denote by ec

1 = (w1,b1), . . . , e
c
N (wN ,bN ) the N c-edges. The weights of the edges

around vertex wi are a[i], b[i], c[i], where [i] =
(
i0 + i mod m

)
+ 1. The conditional

probability we want to compute is give by the following formula
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P
[

e ∈ C and ∀i = 1, . . . , N ec
i ∈ C

∣
∣
∣ e ∈ C

]

=

P [e ∈ C and ∀i = 1, . . . , N ec
i ∈ C]

P [e ∈ C]
=

(
N∏

i=1

c[i]

)

detAN+1

K−1(b,w)
(6.53)

where AN+1 is the following square matrix whose entries are inverse Kasteleyn operator
coefficients:

A =









K
−1(b,w) · · · K

−1(bj ,w) · · ·
...

. . .
...

K
−1(b,wi) K

−1(bj ,wi)
...

...
. . .









(6.54)

Since w and the white vertices wi stand on different sides of a frozen path, the associated
coefficients K

−1(b,wi) are O(t). More precisely, from (6.30), one has

K
−1(b,wi) = tρbwi

+ O(t2). (6.55)

Besides, if i ≤ j, the power of z in the numerator of (6.46) is positive, and it follows
from computations made above that K

−1(bj ,wi) is also O(t).

For i ∈ {1, . . . , N} and with the convention that w0 = w, wi−1 and bi are the ends
of an a-edge with weight a[i−1]. Therefore, the same computations as above show that

K
−1(bi,wi−1) = 1

a[i−1]
. As a consequence, the asymptotic expansion of the determinant

of AN+1 is given by the product of these elements just above the diagonal times the last
element of the first column.

detAN+1 = tρbwN

N∏

i=1

1

a[i−1]
+ O(t2) (6.56)

As the probability of the bead is bi0ρbwt + O(t2), the conditional probability we want
is given by

P [N succesive c-edges |bead] =
ρbw

ρbwN

N∏

i=1

c[i]

a[i−1]
+ O(t) (6.57)

Using proposition 6.1, one can rewrite ρbwN
/ρbw as the following telescopic product

ρbwN

ρbw

=
UbVwN

UbVw

=

N∏

i=1

UbiVwi

UbiVwi−1

. (6.58)

Plugging this into (6.57), one gets

P [N succesive c-edges |bead] =
N∏

i=1

c[i]Ubi
Vwi

a[i−1]Ubi
Vwi−1

+O(t) =
N∏

i=1

ℓ(c[i])

ℓ(a[i−1])
+O(t) (6.59)
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where ℓ(a[i−1]) and ℓ(c[i]) are respectively the length of the dual edges with weight
a[i−1] and c[i] given by the mapping described in lemma 2.1. In particular, in the limit
t → 0, the probability that the length L of this succession of non typical edges exceeds
p fundamental domains equals

P [L ≥ p] =

(
m∏

i=1

ℓ(ci)

ℓ(ai)

)p

. (6.60)

Thus, in the limit, L has a geometric distribution. ¤

w3
w2

b2

b3

b1

w1b

w

Figure 6.4: Illustration of proposition 6.4. Here is represented a frozen column of (horizontal) a-rhombi,
perturbed by the presence of a defect (the b-rhombus corresponding to the edge (w,b)),
followed by a finite sequence of c-rhombi.

A corrolary of the above computations of the lenghts of the non typical sequences of
edges in frozen columns is the following:

Corollary. The limiting bead models on the different families of threads Bj are perfectly
correlated: the distance between beads on each side of a frozen column converges in
probability to zero.

Proof:

If one proceeds as in lemma 4.2, then one can easily see that, for every t, the probability
that a sequence of non typical edges in a frozen colums exceeds, say, 1√

t
is of order q1/

√
t,

and thus decays very fast when t goes to zero. Thus, in the vertically rescaled graph, the
distance between two beads at the extremity of a sequence of non typical edges is close to
1. In the scaling limit, the distance between these beads converges in probability to 0. ¤

As a consequence, the picture of a typical dimer configuration for a Gibbs measure
corresponding to a point in a tentacle of the phase diagram looks like the figure 6.5.
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6. The bead model – Generalization

Figure 6.5: A typical tiling for a Gibbs measure corresponding to a point in a tentacle. The black
beads mark the transition between the two dominant type of edges. Next to them, bead
also appear on the other threads to compensate the defect created in frozen colums.
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7 Pattern densities in fluid dimer models

7.1 Introduction

The aim of statistical mechanics is to describe systems made of a large number of simple
components. The notion of Gibbs measure for the dimer model on an infinite graph
gives a mathematical description of such an infinite system, at a microscopic scale: these
probability measures describe the local statistics of the system, when the boundary of
the system is sent to infinity.

If one wants to capture long range properties of the system, one has to adopt a macro-
scopic point of view, where the size of the simple components goes to zero, whereas the
number of components goes to infinity, the global size of the system being fixed. This
double limit procedure is referred to as scaling limit. Several quantities of interest can
be studied from this point of view. Two examples of such observables are the height
function, and the pattern densities.

This chapter is devoted to the proof of the convergence of pattern density fields in the
scaling limit, in both liquid and gaseous phases of the dimer model on a bipartite Z2-
periodic graph, to a continuous random object, which can be described as the sum of a
derivative of the Gaussian Free Field in the plane and an independent white noise.

7.1.1 Scaling limits of pattern densities

A dimer configuration on a bipartite planar graph can be interpreted through the height
function as a discrete surface. From this point of view, scaling limits of dimer models on
planar bipartite graphs have already been the object of several studies. A law of large
number has been established [8, 33] showing that this discrete surface approaches a limit
shape when the mesh size goes to zero. The fluctuations of the height function around
the limit shape have also been studied in the case of a graph embedded in a bounded
region, as well as in the case of an isoradial infinite graph with critical weights [10]. The
continuous limiting object for these fluctuations is the Gaussian Free Field [54, 18].

In this chapter, we are interested in the scaling limit of dimer models on Z2-periodic
planar graphs but from a different standpoint. Instead of looking at the height function,
we consider other observables, called pattern density fields.

Let G be a Z2-periodic planar bipartite graph. A geometric realization of G is an
application from G to R2 preserving the Z2-periodicity of G: vertices of G are mapped
to points of R2, edges to segments, and Z2 acts on the image of G by translation.
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Let Ψ a geometric realization of G such that the quotient of R2 by the action of Z2 has
area 1. For each scaling factor ε > 0, we define the scaled geometric realization Ψε = εΨ
and Gε = Ψε(G) the image of G by the application Ψε.

A pattern P is a finite set of edges {e1, . . . , ek}, together with a marked vertex. The
position of the pattern in Gε is given by the coordinates of the image by Ψε of this marked
vertex. The probability of seeing such a pattern in a random dimer configuration is given
by a determinant involving the Kasteleyn operator and its inverse: if ej goes from white
vertex wj to black vertex bj , then

P[P] =





k∏

j=1

K(wj ,bj)



 det
1≤i,j≤k

[
K

−1(bi,wj)
]

In order to get some information about spatial distribution of patterns, and the way they
interact with each other, we define for every pattern P a family of (discrete) random
fields N ε

P
, called pattern density fields. For a given ε, N ε

P
is a random distribution,

associating to every domain D the number of copies of P seen in D in a random dimer
configuration of Gε. More precisely, if uε is the image of the marked vertex related to P

the action of N ε
P

on a smooth test function ϕ is given by

N ε
P(ϕ) =

∑

x∈Z2

ϕ(uε
x)1Px =

∑

x∈Z2

ϕ(uε
x)Px

where Px and uε
x are the translated by x of P an uε. For the sake of simplicity, Px will

also represent the indicator function 1Px of the pattern Px, equal to 1 or 0 whether Px
is in the random dimer configuration C or not.

ε2E
[
N ε

P
(ϕ)

]
is a Riemann sum of P[P]ϕ, and thus converges to P[P]

∫
ϕ(u)|du| when ε

goes to 0.

The aim of the following chapters is to prove the convergence of the fluctuations of this
field around its mean value

Ñ ε
P = ε (N ε

P −E [N ε
P]) (7.1)

towards a continuous Gaussian field. Such central limit theorems exist for a broad class
of determinantal random fields [57] but only for Hermitian kernels, contrary to the cases
presented here.

Before stating the main results, we recall some basics facts about the fluid phases of the
dimer model and about Gaussian fields.

7.1.2 The fluid phases of the dimer model

We recall here some basic facts about liquid and gaseous phases of the dimer model on a
planar bipartite periodic graph G, presented in details in chapter 2. The phase diagram
of the dimer model is given by the amoeaba of the spectral curve P (z, w) = 0, where the
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characterisitc polynomial P is the determinant of the Fourier transform of the Kasteleyn
operator on G.

Liquid phase of dimer models

The liquid phase corresponds to the interior of the amœba. In this phase, the character-
istic polynomial P (z, w) has two conjugate zeros (maybe merged) on the unit torus T2.

Generically, these two zeros are distinct. Let (z0, w0) be the zero satisfying Im
(

βw0

αz0

)

≥ 0.

P has the following expansion near (z0, w0)

P (z, w) = α(z − z0) + β(w − w0) + o(||(z, w) − (z0, w0)||). (7.2)

Recall from section 2.6.1 that generically, when the two zeros on the torus are distinct,
there is a natural geometric realisation of G∗, with a fundamental domain spanned by
vectors proportionnal to x̂ = iαz0 and ŷ = iβw0, from which a geometric realisation
of G can be deduced. The asymptotics of the inverse Kasteleyn operator are given in
lemma 2.2. In particular, if b and w are adjacent,

K(w,b) K
−1(bx,y,w) = −Re

(

z−y
0 wx

0K(w,b)Qbw(z0, w0)

π
(
xx̂ + yŷ

)

)

+ O

(
1

|x|2 + |y|2
)

= ε Re

(

z−y
0 wx

0 ie∗

πuε
x,y

)

+ O

(
ε2

uε
x,y

2

)

, (7.3)

where uε
x,y = Ψε(bx,y) − Ψε(w) and e∗ is the complex number representing the dual of

e = (w,b) in Ψ. The correlations between edges decay polynomially with the distance.

Gaseous phase

This phase corresponds to bounded components of the complementary of the amœba.
The characteristic polynomial P has no zero on the unit torus. If b and w are a black and
a white vertex of G, the fraction Qbw/P is analytic on the unit torus and its Fourier
coefficients K

−1(bx,w) decay exponentially with x. Hence the correlations also decay
exponentially.

7.1.3 Gaussian Fields

These definitions are borrowed from [20].

Definition 7.1 (Random field). A random distribution or random field F is a continuous
linear functional on the set C∞

c (R2) of smooth functions on R2 with compact support.
F associates to every test function ϕ ∈ C∞

c (R2) a random variable F (ϕ). The continuity
here means that if the sequence (ϕk) converges to ϕ in C∞

c (R2), then F (ϕk) converges
to F (ϕ) in distribution.
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Ñ ε
P

is an example of random field. A particular class of random fields is given by the
Gaussian fields:

Definition 7.2 (Gaussian field). A Gaussian random field F is a random field such that
for ϕ ∈ C∞

c (R2), F (ϕ) is a Gaussian random variable.

A Gaussian field is somehow a infinite dimensional generalization of the notion of Gaus-
sian vector. As in the classical situation with a Gaussian vector, all the moments can
be expressed in terms of the second moment, by Wick’s formula:

Theorem 7.1 (Wick’s formula). Let W be a Gaussian field. All the moments of W are
determined by the covariance: Let ϕ1, . . . , ϕn be smooth test functions. Then

E [W (ϕ1) · · ·W (ϕn)] =







0 if n is odd

∑

τ pairing

n/2
∏

k=1

E [W (ϕikW (ϕjk
)] if n is even

(7.4)

In particular, if all the test functions are taken to be equal and E
[
W (ϕ)2

]
= σ2, then

we recover the usual formula for the moments of a Gaussian random variable:

E [W (ϕ)n] =

{

0 if n is odd

(n − 1)!! σn if n is even
(7.5)

where (n − 1)!! = (n − 1) · · · 3 · 1 is the number of pairings of n elements.

7.1.4 Statement of the result and structure of the proof

We prove the following Central Limit Theorem when the measure on dimer configurations
is fluid (i.e liquid or gaseous).

Theorem 7.2. Consider the dimer model on a planar bipartite Z2-periodic graph G with
a generic liquid or gaseous Gibbs measure µ. Let P be a pattern of G and Ñ ε

P
be the

random field of density fluctuations of pattern P. Then when ε goes to 0, Ñ ε
e converges

weakly in distribution to a Gaussian random field Ne.

• If the measure is liquid, then NP is a linear combination of a directional derivative
of the masslessfree field and an independent white noise and its covariance structure
has the form

E [NP(ϕ1)NP(ϕ2)] = α

∫∫

R2×R2

∂ϕ1(u)∂ϕ2(v)G(u, v)dudv + β

∫

R2

ϕ1(u)ϕ2(u)du (7.6)

where G(u, v) = − 1
2π log |u − v| is the Green function on the plane.
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• If µ is gaseous, then Ñ ε
P

is a white noise and

E [NP(ϕ1)NP(ϕ2)] = β

∫

R2

ϕ1(u)ϕ2(u)du (7.7)

In other terms, for any choice of ϕ1, . . . , ϕn ∈ C∞
c (R2), the distribution of the random

vector (Ñ ε
eϕ1, . . . , Ñ

ε
eϕn) converges to that of the Gaussian vector (Neϕ1, . . . ,Neϕn)

whose covariance structure is mentioned in the theorem. As the distribution of a Gaus-
sian vector is characterized by its moments, it is sufficient to prove the convergence of the
moments of (Ñ ε

eϕ1, . . . , Ñ
ε
eϕn) to those of (Neϕ1, . . . ,Neϕn), given by Wick’s formula

(7.4).

The proof goes in two steps: first we prove the convergence of the second moment of the
fluctuation field Ñ ε

P
to the covariance of NP, and then we prove that Wick’s formula is

satisfied asymptotically.

As the arguments are differents for a liquid and a gaseous measure, the proof of theorem
7.2 is decomposed into three cases. In section 7.2, we give the proof for a pattern made
of a single edge in the generic liquid case and discuss briefly what happens in the non
generic case. In section 7.3, the proof is extended to any admissible pattern ( i.e. a
pattern appearing with positive probability) in the generic liquid case. The case of a
gaseous measure is discussed in section 7.4.

7.1.5 Density fields and partition function

In this paragraph, the calculations are purely formal and try to give some heuristics on
the information one can get from these pattern density fields.

Consider a dimer model for wich we assign to a configuration C the weight w(C). Let
Z0 be the partition function of this model

Z0 =
∑

C

w(C) (7.8)

We now perturb the partition function by modifying locally the configuration weights.
Let ϕ be a smooth test function. Fix a pattern P and a ε > 0. We multiply every weight
w(C) by a factor etεϕ(uε

x) whenever there is a copy of a given pattern P located at x. Up
to a multiplicative constant exp(tεP [P]

∑

x ϕ(uε
x)), the new partition function for the

model with these new weights is

Zt =
∑

C

w(C)etε
P

x ϕ(uε
x)(1Px−P[P]) =

∑

C

w(C)etÑε
P
(ϕ)

This can be gereralized to a perturbation involving several patterns. Formally, the
successive derivatives of Zt/Z0 at t = 0 are the moments of the random variable Ñ ε

P
(ϕ)

with respect to the unperturbed probability measure.

dk

dtk
Zt

Z0

∣
∣
∣
∣
t=0

= E0

[

(Ñ ε
P ϕ)k

]
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7. Pattern densities in fluid dimer models

Thus, an information on the moments of Ñ ε
P

gives an infinitesimal information on the
perturbed partition function that could be hopefully integrated to construct probabilility
measures corresponding to the modified weights.

7.2 The liquid case: edge densities

This section is devoted to the proof of one particular case of theorem 7.2. We suppose
that the probability measure on dimer configurations of G is liquid, and consider the
fluctuations of the density random field Ñ ε

e for a pattern constiting in a single edge
e = (w,b). The precise statement we prove in this section is the following:

Theorem 7.3. The random field Ñ ε
e converges weakly in distribution, as ε goes to 0, to

a Gaussian random field Ne with covariance

E [Ne(ϕ1)Ne(ϕ2)] =
1

π

∫∫

∂e∗ϕ1(u)G(u, v)∂e∗ϕ2(v)dudv + A

∫

ϕ1(u)ϕ2(u)du (7.9)

for a certain A ≥ 0.

As we discussed in the prevous section, we first prove the convergence of the second
moment, and then that of higher moments. In this section, as we will be interested
in copies of an edge e = (w,b), the only vertices we will deal with are most of the
time translates of w and b. To simplify notations, we will write K

−1(x − x′) instead of
K

−1(bx,wx′) and Ke will stand for K(w,b).

7.2.1 Convergence of the second moment

The second moment (ϕ1, ϕ2) 7→ E
[

Ñ ε
e(ϕ1)Ñ

ε
e(ϕ2)

]

of Ñ ε
e is a continuous bilinear positive

form on C∞
c (R2). In this section, we prove that this bilinear form converges to a non

degenerate bilinear form, that will define the covariance structure for the limit Gaussian
field Ne.

Proposition 7.1. There exists a non-negative constant A such that

∀ϕ1, ϕ2 ∈ C
∞
c (R2)

lim
ε→0

E
[

Ñ ε
e(ϕ1)Ñ

ε
e(ϕ2)

]

=
1

π

∫∫

R2×R2

∂e∗ϕ1(u1)G(u1, u2)∂e∗ϕ2(u2)|du1||du2|

+ A

∫

R2

ϕ1(u)ϕ2(u2)|du| (7.10)

where G(u, v) = − 1
2π log |u − v| is the Green function on the plane.
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7.2. The liquid case: edge densities

The right hand side can be physically interpreted as the energy of interaction between
two electric dipoles with moment density ϕ1e

∗ and ϕ2e
∗, plus a term of interaction at

very short range.

Proof:

Using the invariance by translation of the Kasteleyn operator and hence of the correla-
tions, we rewrite the second moment as a convolution of two distributions applied to a
test function.

E
[

Ñ ε
e(ϕ1)Ñ

ε
e(ϕ2)

]

= ε2
∑

x,x′∈Z2

ϕ1(ux)ϕ2(ux′)E [(ex − e)(ex′ − e)] (7.11)

= ε2
∑

x,x′∈Z2

ϕ1(ux)ϕ2(ux′)E [(e − e)(ex−x′ − e)] (7.12)

= 〈ϕε
1 ∗ F ε, ϕ2〉 (7.13)

where e = P [e] and the two distributions ϕε
1 and F ε are defined by

ϕε
1 = ε2

∑

xy

ϕ1(ux)δux F ε =
∑

x
E [(e − e)(ex − e)] δux .

The distribution ϕε
1 converges weakly to ϕ1 when ε goes to zero. We will now prove

the convergence of F ε to some distribution F , what will ensure that ϕε
1 ∗ F ε converges

weakly to ϕε
1 ∗ F ε, since the support of ϕε

1 is contained in the fixed compact supp(ϕ1),
and hence, that 〈ϕε

1 ∗ F ε, ϕ2〉 converges.

Let ψ be a smooth test function with compact support. Let us prove the convergence of

〈F ε, ψ〉 =
∑

x
E [(e − e)(ex − e)]ψ(uε

x) =
∑

x
Cov(e, ex)ψ(uε

x). (7.14)

At first sight, 〈F ε, ψ〉 looks like a Riemann sum of a particular function. The problem
is that due to the asymptotics of K

−1, the function would behave as 1/u2, which is not
integrable in the vicinity of 0. Therefore, we decompose the sum on x in the definition
of F ε depending on whether the norm of x is larger than M = ⌊1/ε⌋ or not, that is if uε

x
is in B =

{
−i(αz0s − βz0t) ; (s, t) ∈ [−1, 1]2

}
.

〈F ε, ψ〉 =
∑

|x|>M

ψ(uε
x)Cov(e, ex) +

∑

|x|≤M

ψ(uε
x)Cov(e, ex)

=
∑

|x|>M

ψ(uε
x)Cov(e, ex) +

∑

|x|≤M

(ψ(uε
x) − ψ(0))Cov(e, ex) + ψ(0)

∑

|x|≤M

Cov(e, ex)

(7.15)
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7. Pattern densities in fluid dimer models

The fact we subtracted and added ψ(0) in the second sum removed the non integrable
singularity at 0. The following two lemmas state the convergence of the three sums.

Lemma 7.1.

lim
ε→0

∑

|x|>⌊1/ε⌋
ψ(uε

x)Cov(e, ex) =
1

2π2

∫

R2\B
ψ(z)Re

(
e∗

u

)2

|du| (7.16)

lim
ε→0

∑

|x|≤⌊1/ε⌋
(ψ(uε

x) − ψ(0))Cov(e, ex) =
1

2π2

∫

B

(ψ(z) − ψ(0))Re

(
e∗

u

)2

|du| (7.17)

Moreover the sum of the two previous limit can be rewritten as

1

π

∫

R2

∂e∗ψ(u)∂e∗G(u, 0)|du| + A1ψ(0).

for some constant A1.

Proof:

If x 6= (0, 0), the covariance between edges e = e(0,0) and ex is given by

Cov(e, ex) = P [e and ex] −P [e]2 = K
2
e det

[
K

−1(0) K
−1(x)

K
−1(−x) K

−1(0)

]

− (KeK
−1(0))2

= −K
2
e K

−1(x)K−1(−x)

Using asymptotics of K
−1 for large x, we get the following asymptotic expression for the

covariance between two distinct edges

Cov(e, ex) = − ε2

π2
Re

(

z−y
0 wx

0 ie∗

uε
x

)

Re

(
zy
0w−x

0 ie∗

−uε
x

)

+ O

(
ε

uε
x

)3

= − ε2

2π2
Re

(
e∗

uε
x

)2

+
ε2

2π2
Re(z2y

0 w−2x
0 )

∣
∣
∣
∣

e∗

uε
x

∣
∣
∣
∣

2

+ O

(
ε

uε
x

)3

Since the second term is oscillating, it will not contribute to the limit. The sum in
the LHS of (7.16), modulo the oscillating terms, can be interpreted as the integral of a
piecewise constant function approximating

− 1

2π2
ψ(u)Re

(
e∗2

u2

)

1R2\B(u)

As the approximating functions are bounded uniformly in ε by an integrable function,
and converge almost everywhere, then by Lebesgue theorem, the first sum converges to

−
∫

R2\B

1

2π2
Re

(
e∗2

u2

)

ψ(z)|du| (7.18)
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7.2. The liquid case: edge densities

In the same way, the sum in the LHS of (7.17) is the integral of a piecewise constant
function approximating

− 1

2π2
(ψ(u) − ψ(0))Re

(
e∗2

u2

)

1B(u)

and for the same reasons, it converges to

−
∫

B

1

2π2
Re

(
e∗2

u2

)
(
ψ(z) − ψ(0)

)
|du| (7.19)

We rewrite the sum of the limit using Green’s formula inside and outside of B, noticing

that 1
2πRe

(
e∗
u

)2
is the second derivative of the Green function G(·, 0) along the vector

e∗.
∫

R2\B

1

π
∂2
e∗G(u, 0)ψ(z)|du| =

1

π

∮

∂B

ψ(u)∂e∗G(u, 0)〈~nin, e∗〉dσ − 1

π

∫

R2\B
∂e∗ψ(u)∂e∗G(u, 0)|du| (7.20)

∫

B

1

π
∂2
e∗G(u, 0)(ψ(u) − ψ(0))|du| =

1

π

∮

∂B

(ψ(u) − ψ(0))∂e∗G(u, 0)〈~nout, e
∗〉dσ − 1

π

∫

B

∂e∗ψ(u)∂e∗G(u, 0)|du| (7.21)

where ~nin and ~nout are the unit normal vector fields on ∂B pointing respectively inwards
and outwards. The two integrals on B and R2 \ B combine to give an integral over R2.
The two integrals on ∂B cancel out partially. It remains only

−ψ(0)

∮

∂B

∂e∗G(u, 0)〈~next, e
∗〉dσ = A1ψ(0)

This establishes the convergence of the two first sums , which completes the proof of the
lemma. ¤

We now prove the convergence of the third sum.

Lemma 7.2.
∑

|x|≤M Cov(e, ex) converges when M goes to infinity to a limit A2.

Proof:

The sum of the covariances is given in terms of K and K
−1 by

∑

|x|≤M

Cov(e, ex) = P [e] (1 −P [e]) +
∑

0<|x|≤M

Cov(e, ex)

= KeK
−1(0) − K

2
e

∑

|x|≤M

K
−1(x)K−1(−x) (7.22)
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7. Pattern densities in fluid dimer models

K
−1(x) is by definition the xth Fourier coefficient of the function f = Q/P defined on

the unit torus T2. As P has simple zeros, f is in L1(T2). The convolution

(f ∗ f)(z, w) =

∫∫

T2

f(u, v)f(zu,wv)
du

2iπu

dv

2iπv
(7.23)

is also in L1(T2) and its xth Fourier coefficient is exactly K
−1(x)K−1(−x). Establishing

the convergence of the sum is now a problem of pointwise convergence of a Fourier series.
If f was continuous at (z, w) = (1, 1), then the Fourier series would have converged to
f(1, 1). The problem is that the function f(u, v)f(ū, v̄) is not integrable and thus, the
function f ∗f is not defined when z and w are both equal to 1. However, f ∗f is smooth
in a punctured neighborhood of (1, 1), has directional limits when (z, w) converges to
(1, 1), varying continuously with the direction. We can then prove an analogue in two
dimensions of Dini’s theorem1 for f ∗ f . If t = arg(w)/ arg(z) and ℓ(t) the limit of f ∗ f
when (z, w) goes to (1, 1) with t fixed, then

lim
M→+∞

∑

|x|≤M

K
−1(x)K−1(−x) =

1

π2

∫ +∞

−∞
ℓ(t) log

∣
∣
∣
∣

1 + t

1 − t

∣
∣
∣
∣

dt

t
(7.26)

And thus
∑

|x|≤M Cov(e − e)(ex − e) converges to a limit that we denote by A2. ¤

We now come back to the proof of the convergence of the distribution F ε. The three
sums in 7.15 defining 〈F ε, ψ〉 converge and the sum of the limits is

〈F, ψ〉 =
1

π

∫

R2

∂e∗ψ(u)∂e∗G(u, 0)|du| + Aψ(0) (7.27)

where A = A1 +A2. Thus, when ε goes to 0, F ε converges to a distribution F defined by
the formula above, and hence ϕε

1 ∗ F ε to ϕ1 ∗ F . Denoting by ∂(u) and ∂(v) respectively
the operator of partial differentiation with respect to the variable u and v, and noticing
that, since G(u, v) = G(u − v), we have

∂(u)G(u, v) = −∂(v)G(u, v),

1This theorem states that if a function f is piecewise continuous on S1, the partial Fourier series

Sn(f)(z) =

n
X

k=−n

z
−k

Z

S1

f(w)wk dw

2iπw
(7.24)

converges pointwise and

lim
n→+∞

Sn(f)(eiθ0) =
1

2

 

lim
θ→θ−

0

f(eiθ) + lim
θ→θ+

0

f(eiθ)

!

. (7.25)
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7.2. The liquid case: edge densities

we get the following expression for the limit covariance structure

lim
ε→0
E

[

(Ñ ε
eϕ1)(Ñ

ε
eϕ2)

]

= 〈ϕ1 ∗ F, ϕ2〉 (7.28)

=
1

π

∫∫

R2×R2

∂e∗ϕ1(u)∂(u)

e∗ G(u, v)ϕ2(v)|du||dv| + A

∫

R2

ϕ1(u)ϕ2(u)|du| (7.29)

= − 1

π

∫∫

R2×R2

∂e∗ϕ1(u)∂(v)

e∗ G(u, v)ϕ2(v)|du||dv| + A

∫

R2

ϕ1(u)ϕ2(u)|du| (7.30)

=
1

π

∫∫

R2×R2

∂e∗ϕ1(u)G(u, v)∂e∗ϕ2(v)|du||dv| + A

∫

R2

ϕ1(u)ϕ2(u)|du| (7.31)

Thus the covariance of Ñ ε
e converges to the expression given in proposition 7.1. ¤

7.2.2 Convergence of higher moments

In this section, we prove the convergence of the moments of order ≥ 3 of Ñ ε
e to those of

Ne.

Proposition 7.2. For every n ≥ 3, The nth moment of Ñ ε
e converges to that of Ne

when ε goes to zero. In other words, for every ϕ1, · · · , ϕn ∈ C∞
c (R2),

lim
ε→0

E
[

Ñ ε
eϕ1 · · · Ñ ε

eϕn

]

= E [Neϕ1 · · ·Neϕn]

Since Ne is Gaussian, it is sufficient to show that in the limit, the moments of Ñ ε
e satisfy

Wick’s formula. Moreover, as (ϕ1, · · · , ϕn) 7→ E
[

Ñ ε
eϕ1 · · · Ñ ε

eϕn

]

is a symmetric n-

linear form, we just have to prove proposition 7.2 when all the ϕi are equal to some test
function ψ, the general case being obtained by polarization. The previous proposition
reduces then to showing that

Proposition 7.3.

lim
ε→0

E
[

(Ñ ε
eψ)n

]

= E [(Neψ)n] =

{

0 if n is odd

(n − 1)!! E
[
(Neψ)2

]n/2
if n is even

In this section, we are thus interested in the limit of

E
[

(Ñ ε
eψ)n

]

= εn
∑

x1,··· ,xn

ψ(uε
1) · · ·ψ(uε

n)E [(ex1 − e) · · · (exn − e)] (7.32)

A first step in the proof is to study the convergence of a related quantity Ξε
n(ψ), defined

by a sum of the same general term as for E
[

(Ñ ε
eψ)n

]

, but with a set of indices restricted

to distinct points:

Ξε
n(ψ) = εn

∑

x1···xn
distinct

ψ(uε
x1) · · ·ψ(uε

xn
)E [(ex1 − e) · · · (exn − e)] . (7.33)
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Convergence of Ξε
n(ψ)

To prove the convergence of Ξε
n(ψ), we have to understand the asymptotic behavior

of the correlation between distinct edges, when they are far from each other. A sim-
ple expression is given by Kenyon in [28] to compute this correlation using a unique
determinant.

Lemma 7.3 ([28]). Let e1 = (w1,b1), · · · , en = (wn,bn) be distinct edges. Their
correlation is given by

E [(e1 − ē1) · · · (en − ēn)] =





n∏

j=1

K(wj ,bj)



 det
1≤i,j≤n






0 K
−1(bi,wj)

. . .

K
−1(bj ,wi) 0






Proof:

This lemma is proven by induction, using the fact that

det








a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann








= det








a11 0 · · · 0
0 a22 · · · a2n
...

...
...

0 an2 · · · ann








+ det








0 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann








¤

This formula allows us to give an explicit expression for Ξε
n(ψ) in terms of the operators

K and K
−1. Since the matrix in lemma 7.3 has zeros on the diagonal, only permutations

with no fixed point will contribute to the determinant expressed as a sum over the
symmetric group. Let Ŝn be the set of such permutations. Every permutation σ ∈ Ŝn

is decomposed as a product of disjoint cycles γ1 · · · γp. The supports of these cycles form
a partition (Γl)

p
l=1 of {1, . . . , n}, whose parts Γl have cardinal at least 2. The terms

coming from permutations leading to the same partition are put together and we get

εn
∑

x1···xn
distinct

E





n∏

j=1

ψ(uε
xj

)(exj − ē)



 = εn
K

n
e

∑

x1···xn
distinct

∑

σ∈Ŝn

sgn(σ)

n∏

j=1

ψ(uε
xj

)K−1(xσ(j) − xj)

=
∑

{Γ}p
l=1

p
∏

l=1

∑

γ cycle
supp(γ)=Γl







sgn(γ)ε|γ|
∑

xj1
,··· ,xj|γ|

distinct

|γ|
∏

k=1

ψ(uε
xjk

)KeK
−1(xγ(jk) − xjk

) + o(1)







(7.34)

The error term o(1) comes from the fact that in the second line, we allow two xj whose
indices are in different components of (Γ) to be equal.
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We now examine the convergence of a term in brackets, associated to a cycle γ

sgn(γ)(εKe)
|γ| ∑

xj1
,··· ,xj|γ|

distinct

|γ|
∏

k=1

ψ(uε
xjk

)K−1(xγ(jk) − xjk
)

According to subsection 7.2.1, we know that when γ is a transposition the corresponding
term converges. When the length of γ is at least 3, we have the following lemma.

Lemma 7.4. For any cycle γ of length m ≥ 3, and any ψ ∈ C∞
c (R2), we have

lim
ε→0

εm
∑

x1,···xm
distinct

m∏

k=1

ψ(uε
xk

)KeK
−1(xγ(k) − xk) =

1

2m−1πm

∫

(R2)m

Re

(
(ie∗)mψ(u1) · · ·ψ(um)

(uγ(1) − u1) · · · (uγ(m) − um)

)

|du1| · · · |dum| (7.35)

Proof:

From the behavior of K
−1 at long range, we get an asymptotic expression for the product

m∏

j=1

KeK
−1(xγ(j) − xj) =

m∏

j=1

Re

(

εz
−(yγ(j)−yj)

0 w
+(xγ(j)−xj)

0 ie∗

π(uxγ(j)
− uε

xj
)

)

+
small
terms

(7.36)

=
εm

2m−1πm
Re

(

(ie∗)m

(uε
xγ(1)

− uε
x1) · · · (uε

xγ(m)
− uε

xm
)

)

+
oscillating

terms

(7.37)

The oscillating part of this asymptotic expansion once summed on x1, . . . , xm will not
contribute to the limit. The sum of the leading term multiplied by εmψ(uε

x1) · · ·ψ(uε
xm

)
can be interpreted as the integral of a piecewise constant function, converging almost
surely to

1

2m−1πm
ψ(u1) · · ·ψ(um)Re





m∏

j=1

ie∗

uγ(j) − uj



 (7.38)

As all the functions are dominated by a constant times the integrable function

|ψ(u1) · · ·ψ(um)|
|(uγ(1) − u1) · · · (uγ(m) − um)| ,

the convergence follows from Lebesgue theorem. ¤
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Once proven the convergence of all these terms, we can combine their limit to get the
limit of Ξε

n(ψ). When summing over all cycles with a given support Γ = {j1, . . . , jm} of
cardinality m ≥ 3, we get the following limit :

lim
ε→0

∑

γ cycle
supp(γ)=Γ




εm

∑

xj1
,··· ,xjm

distinct

m∏

k=1

ψ(uε
xjk

)KeK
−1(xγ(jk) − xjk

) + o(1)






=
1

2m−1πm

∫

(R2)m

∏

j∈Γ

ψ(uj)Re







∑

γ cycle
suppγ=Γ

∏

j∈Γ

1

uγ(j) − uj







|du1| · · · |dum|

which equals zero according to the following lemma :

Lemma 7.5. Let m ≥ 3, and u1, . . . , un be distinct complex numbers. Then

∑

γ∈Sm
m−cycles

m∏

i=1

1

uγ(i) − ui
= 0 (7.39)

Proof:

Denote by f the function of u1, . . . , um defined by the left hand side of (7.39). When m is
odd, the result is obvious, since γ and γ−1 give opposite contributions. For a general m,
since m-cycles form a conjugation class in the group of permutations Sm, the function
f is a rational fraction invariant under permutation of the variables u1, . . . , um. The
denominator of this fraction is the Vandermonde V =

∏

i<j(ui −uj), and the numerator
is of lower degree than V . Since V is antisymmetric under permutation, the denominator
has to be as well. But the only antisymmetric polynomial of lower degree than V is 0. ¤

In the limit of equation (7.34) will contribute only partitions whose all components have
cardinality 2. If n is odd, {1, . . . , n} cannot be partionned into parts of two elements,
and the limit Ξn(ψ) of Ξε

n(ψ) is zero. When n is even, there are (n−1)!! such partitions,
corresponding each to a pairing. The limit Ξn(ψ) of Ξε

n(ψ) is then

Ξn(ψ) =
∑

pairings
{i1,j1},...,{in/2,jn/2}

n/2
∏

k=1



lim
ε→0

ε2
∑

xik
6=xjk

ψ(uε
xik

)ψ(uε
xjk

)Cov(exik
, exjk

)





= (n − 1)!! (Ξ2(ψ))n/2

For the moment, we discussed the limit of a restricted sum on distinct edges, which is
not exactly the expression for the nth moment. We will now deal with the case when
edges can coincide.
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Proof of proposition 7.3

In the expression of the nth moment

εn
∑

x1,··· ,xn

ψ(uε
1) · · ·ψ(uε

n)E [(ex1 − e) · · · (exn − e)]

the correlations are not given by lemma 7.3 as soon as at least two edges coincide. To
understand the behavior of this expression, we must be able to express in terms of K

and K
−1 correlations of the form

E
[

(ex1 − e)k1 · · · (exp − e)kp

]

(7.40)

when e1, . . . , ep are distinct. Using the fact that the indicator function of an edge e

satisfies ej = e for j ≥ 1, Newton formula yields

(e − e)k =
k∑

j=0

(
k

j

)

ej(−e)k−j = e

k∑

j=1

(
k

j

)

(−e)k−j + (−e)k = αe
k(e − e) + βe

k

where αe
k and βe

k are deterministic, depending only on e and k. In the case we consider,
all the edges have the same probability, and we will simply denote these coefficients by
αk and βk. Note the particular values of αk and βk that will be useful later

α1 = 1 β1 = 0 β2 = e(1 − e)

Therefore correlation 7.40 can be rewritten as

E
[

(ex1 − e)k1 · · · (exp − e)kp

]

= E
[
(αk1(e1 − e) + βk1) · · · (αkp(ep − e) + βkp)

]
(7.41)

=
∑

J⊂{1,··· ,p}
α̃J β̃J̄E




∏

j∈J

(ej − e)



 (7.42)

where α̃J =
∏

j∈J

αkj
andβ̃J̄ =

∏

j /∈J

βkj
.

In equation (7.32), E
[

(Ñ ε
eψ)n

]

is expressed as a sum over all edges. We want now to

rewrite this sum as a sum over distinct edges, using partitions of {1, . . . , n}. Such a
partition {Γl}p

l=1 is associated naturally to every n-tuple of lattice points (x1, . . . , xn):
each component Γl of this partition is an equivalence class for the relation

i ∼ j ⇔ xi = xj .
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Denoting by nl the cardinal of Γl, we rewrite equation (7.32) as

E
[

(Ñ ε
eψ)n

]

= εn
∑

{Γl}p
l=1

∑

x1,··· ,xp

distinct

E





p
∏

j=1

ψnj (uε
xj

)(exj − ē)nj





= εn
∑

{Γl}p
l=1

∑

J⊂{1,...,p}
α̃J β̃J̄

∑

(xj)j∈J

distinct

E




∏

j∈J

ψnj (uε
xj

)(exj − ē)




∑

(xl)l/∈J

′ ∏

l /∈J

ψnl(uε
xl

) (7.43)

where Σ′ means the sum over (xl) distinct, but also distinct from values of any xj , j ∈ J .
Denote by q the number of Γl reduced to a single element. As β1 = 0, β̃J̄ is zero unless
J contains the indices of these Γl. Thus, the cardinal of a subset J giving a non-zero
contribution must be at least q. For such a J , the last sum over (xl)l /∈J in (7.43) is a
Riemann sum, and therefore is O(ε−2(p−|J |)).

Furthermore, the sum over (xJ)j∈J can be expressed by polarization in terms of Ξε
|J |,

and is therefore a O(ε−|J |). Since |J | ≥ q and

n =

p
∑

l=1

nl ≥ q + 2(p − q) = 2p − q,

the contribution of J to (7.43) is at most O(εn−2p+|J |) which will be negligible in the
limit except when |J | = q and nl = 2 for all l /∈ J . For such J and (Γl), we have

α̃J = 1 β̃J̄ = (ē(1 − ē))(n−q)/2 (7.44)

Thus the only partitions that will contribute to the limit are “partial pairings”, matching
by pairs 2m = (n − q) elements of {1, . . . , n}. For a fixed m, there are

(
n

2m

)

(2m − 1)!! =
n!

2mm!(n − 2m)!

such partitions, all giving the same contribution. Summing over m we get

E
[

(Ñ ε
eψ)n

]

=

⌊n/2⌋
∑

m=0

(
n

2m

)

(2m − 1)!! Ξε
n−2m(ψ)

(

ε2ē(1 − ē)
∑

x
ψ2(uε

xk
)

)m

+ O(ε)

If n is odd, so is n − 2m. In this case, limΞε
n−2m(ψ) = 0, and therefore

lim
ε→0

E
[

(Ñ ε
eψ)n

]

= 0 (7.45)

If n is even,

lim
ε→0

Ξε
n−2m(ψ) = Ξn−2m(ψ) = (n − 2m − 1)!! Ξ2(ψ)n/2−m (7.46)

=
(n − 2m)!

2n/2−m(n/2 − m)!
Ξ2(ψ)n/2−m. (7.47)
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Therefore, the limit of E
[

(Ñ ε
eψ)n

]

is given by

lim
ε→0

E
[

(Ñ ε
eψ)n

]

=

n/2
∑

m=0

n!

2mm!(n − 2m)!

(n − 2m)! Ξ2(ψ)n/2−m

2n/2−m(n/2 − m)!

(

ē(1 − ē)

∫

ψ2(u)|du|
)m

= (n − 1)!!

n/2
∑

m=0

(
n/2

m

)

Ξ2(ψ)n/2−m

(

ē(1 − ē)

∫

ψ2(u)|du|
)m

= (n − 1)!!

(

Ξ2(ψ) + ē(1 − ē)

∫

ψ2(u)|du|
)n/2

= (n − 1)!!
(
E

[
Ne(ψ)2

])n/2

what is exactly what we wanted to prove. This therefore ends the proof of theorem 7.2
for a pattern made of one edge and a generic liquid Gibbs measure.

7.2.3 A word about the non generic case

When the two roots of the characteristic polynomial P (z, w) on the unit torus coincide,
the measure is still liquid, and the correlations between edges at distance r still decay
like r−2. However, since z0 and w0 are real, the leading term is the asymptotics of K

−1

is not oscillating anymore, what will induce a resonance phenomenon in the system.

The two first sums in equation (7.15) defining the distribution F ε appearing in the study
of the convergence of the second moment still have a finite limit when ε goes to zero.
On the contrary, due to the resonance, the third sum

∑

|x|≤⌊1/ε⌋
Cov(e, ex)

in this case diverges. More precisely, this sum is O(log(1/ε)). Therefore the second
moment diverges. However, one can prove that (log(1/ε))−1Ñ ε

e converges weakly in
distribution to a white noise. We will not show it here.

7.3 The liquid case: general pattern densities

This section is devoted to the proof of an analogue of theorem 7.3 for multi-edged
patterns. Let Ñ ε

P
the density fluctuation field of a pattern P for a generic liquid Gibbs

measure.

Theorem 7.4. When ε goes to zero, Ñ ε
P

converges weakly in distribution to the Gaussian
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field NP whose covariant structure is given by

E [NP(ϕ1)NP(ϕ2)] =
1

π

∫∫

R2×R2

∂P∗ϕ1(u1)G(u1, u2)∂P∗ϕ2(u2)|du1||du2|

+ A

∫

R2

ϕ1(u1)ϕ2(u)|du|

where the vector P∗ and the positive constant A depend only on the pattern P and the
Gibbs measure.

The scheme of the proof is very similar to that of theorem 7.3 for edge density fluctu-
ations. The problem is that there is no simple analogue of lemma 7.3 for correlations
between non overlapping patterns, that is why the proof needs a little more combinatorial
work in this case.

After having introduced the different notations required to deal easily with these pat-
terns, we prove the theorem, following the structure of the proof given in the last chapter,
and explaining in details only parts that are specific to patterns formed by more than
one edge.

7.3.1 Notations

Let P be a pattern containing k distinct edges e1 = (w1,b1), . . . , ek = (wk,bk). The
probability of such a pattern to appear in a random dimer configuration is

P = P [P] = Ke1 · · ·Kek det






K
−1(b1,w1) · · · K

−1(b1,wk)
...

. . .
...

K
−1(bk,w1) · · · K

−1(bk,wk)




 (7.48)

More generally, the probability to see n non-overlapping copies P1, . . . ,Pn of P obtained
respectively by translation of a lattice vector x1, . . . , xn is given up to a constant by a
determinant of matrix nk × nk defined by blocks

P [P1 · · ·Pn] = (Ke1 · · ·Kek)n det






A11 · · · A1n
...

. . .
...

An1 · · · Ann




 (7.49)

where the entries of the block AIJ are coefficients of K
−1 between black vertices of PI

and white vertices of PJ

AIJ =






K
−1(b1

xI
,w1

xJ
) · · · K

−1(b1
xI

,wk
xJ

)
...

. . .
...

K
−1(bk

xI
,w1

xJ
) · · · K

−1(bk
xI

,wk
xJ

)




 (7.50)
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7.3. The liquid case: general pattern densities

When I = J the matrix AII does not depend on I. We denote by E this matrix, whose
determinant is used to compute P [P]. Defining BIJ as the product E−1AIJ and B as
the whole block matrix (BIJ), we can rewrite the joint probability of P1, . . . ,Pn as

P [P1 · · ·Pn] = (P)n det









1k B1,2 · · · B1,n

B2,1 1k
...

...
. . .

...

Bn,1 · · · Bn,n−1 1k









(7.51)

Instead of using a single integer i to denote the line (resp. the column) of an entry in
such a matrix defined by blocks, it will be more convenient to use a couple of integers
(I, α), where I is the index of the block line (resp. of the block column) and α is the
relative position in the Ith block line (resp. block column). The relation between the
two sets of indices is simply

i = I(k − 1) + α.

If the coordinates xj are all distinct but some patterns overlap, define P̃j = Pj \
⋃j−1

i=1 Pi

for all j ∈ {1, . . . , n}. We have then

P [P1 · · ·Pn] = P
[

P̃1 · · · P̃n

]

Up to a relabelling of the patterns, we can assume that none of the P̃j is empty. Thus the
joint probability of these patterns is also given by the determinant of a matrix defined
by blocks of size |P̃1| + · · · + |P̃n|.

7.3.2 Asymptotics of correlations

The following lemma gives asymptotic correlations between distant patterns.

Lemma 7.6. Let (xj) = x1, . . . , xn be n distinct lattice points. The correlations between
the patterns Px1 , . . . ,Pxn can be rewritten as

E
[
(Px1 − P̄) · · · (Pxn − P̄)

]
=

∑

S∈Ŝn




∏

γcycleofS

Hγ

(
(xj)

)



 (1 + o(1))

where the functions Hγ are have the following asymptotic behaviour

Hγ

(
(xj)

)
= sgn γ

ε|γ|

2|γ|−1π|γ|Re

(

tr((E−1Q)|γ|)
∏

j∈suppγ uε
xγ(j)

− uε
xj

)

+
oscillating

terms

and satisfy
∣
∣Hγ

(
(xj)

)∣
∣ ≤ ε|γ|

C
∏

j∈suppγ |uγ(j) − uj |
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7. Pattern densities in fluid dimer models

for every u1, . . . , un in a ε-neighborhood of uε
x1 , . . . , u

ε
xn

. The error term o(1) is uniformly
bounded in x1, . . . , xn and goes to zero when the distance between the patterns goes to
infinity.

Proof:

We first derive the asymptotic expression for the correlations when the patterns are far
from each other. When |xi − xj | are large enough for every i 6= j, the patterns are
disjoint and expression (7.51) for correlations can be used. Expanding the products in
the expectation, we get

E
[
(Px1 − P̄) · · · (Pxn − P̄)

]
=

∑

j1,...,jp

(−P̄)n−pE
[

Pxj1
. . .Pxjp

]

= P [P]n
∑

C⊂{1,...,n}
(−1)n−|C| det








1n δ12B12 · · · δ1nB1n

δ21B21 1n
...

. . .

δn1Bn1 1n








(7.52)

where the non diagonal bloc (I, J) is either BIJ or 0 depending on whether (I, J) belongs
to C × C or not.

Expressing each determinant as a sum over the symmetric group Snk and gathering
the terms coming from the same permutation, one can notice that the contributions
of permutations fixing a whole block are vanishing, due to the alternating sign in the
sum over C. The permutations contributing to the correlations are those whose support
intersects each block. Therefore, we have

E
[
(Px1 − P̄) · · · (Pxn − P̄)

]
= P [P]n

∑

σ∈Snk
fixing no block

sgn(σ)
∏

I,α

B(I,α),σ((I,α))

To each such σ can be associated (in a non canonical way) a fixed-point free permutation
S ∈ Ŝn: as σ does not fix the first block, there exists an index (1, α1) that is not sent to
an index of the first block by σ. Define S(1) as the label of the block to which belongs
σ((1, α1)). The index σ((1, α1)) is not a fixed point either. Thus its image under S
belongs to a block labelled by S2(1) 6= S(1). Define in the same way the iterated images
of 1 under S until that Sk(1) = 1 for some k > 1. If all the blocks have been visited once,
then the definition of S is complete and S is a n-cycle. If some block J has not been
visited, then, as σ does not fix block J , one can find a non-fixed index (J, αJ) and follow
the orbit of this index under σ until the first return to block J to define the orbit of J
under S. This construction is reiterated until each block has been visited. It provides
a partition of the set of permutations fixing no blocks indexed by elements of Ŝn. The
class of permutations σ leading to a given S ∈ Ŝn is denoted [S].

In each class there are “special” permutations, the support of which intersects each
block exactly once. For each class [S], there are kn such elements, corresponding to the
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7.3. The liquid case: general pattern densities

different possible choices of non fixed points (1, α1), . . . , (n, αn). These permutations will
give the main contribution, whereas the contributions of the permutations with more
than one non fixed point by block will be negligible in the limit, since non diagonal terms
are small when the patterns are far from each other. Thus,

E





n∏

j=1

(Pxj − P̄)



 = P [P]n
∑

S∈Ŝn

∑

σ∈[S]

sgn(σ)
∏

I,α

B(I,α),σ((I,α)) (7.53)

= P [P]n
∑

S∈Ŝn

∑

σ∈[S]

sgn(S)

(
n∏

I=1

k∑

αI=1

(BI,S(I))αI ,αS(I)

)

(1 + o(1))

(7.54)

where o(1) corresponds to the contributions of the non “special” permutations. As K
−1

is a bounded operator, and goes to zero at infinity, this error term is bounded by a
constant uniformly in the positions of the patterns, and goes to zero when the distance
between patterns goes to infinity.

The main term in equation (7.54) has an expression in terms of traces of products of
block matrices BIJ

n∏

I=1

k∑

αI=1

(
BI,S(I)

)

αIαS(I)
=

∏

γ=(I1,...,Ip)
cycle of S

tr
(
BI1,I2 · · ·BIp,I1

)
(7.55)

Let us have a look to a particular trace tr
(
BI1,I2 · · ·BIp,I1

)
. Recall that BIJ is the prod-

uct of E−1 whose entries will be denoted by eαβ and AIJ whose entries are K
−1(bα

xI
,wβ

xJ ),
the coefficient of K

−1 taken between black vertex ‘α’ of pattern I and white vertex ‘β’
of pattern J , whose asymptotics when patterns are far away from each other are given
by lemma 2.2

(AIJ)αβ = − ε

π
Re

(

z−yJ+yI
0 w+xJ−xI

0 Qαβ(z0, w0)

uε
xJ

− uε
xI

)

+
small
terms

. (7.56)

To simplify notations, we introduce

ζIJ =
z−yJ+yI
0 w+xJ−xI

0

uε
xJ

− uε
xI

. (7.57)

The trace tr
(
BI1,I2 · · ·BIp,I1

)
can therefore be rewritten as
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tr
(
BI1,I2 · · ·BIp,I1

)
=

∑

α1,...,αk

(E−1AI1I2)α1α2 · · · (E−1AIpI1)αpα1

=
∑

α1,...,αk
β1,··· ,βk

(−ε

π

)p

eα1β1 · · · eαpβpRe (Qβ1α2ζI1I2) · · ·Re
(
Qβpα1ζIpI1

)
+

small
terms

As in the case of edge densities, there will be only two non oscillating terms in the
expansion of this product of real parts: those for which the phases contained in the ζIJ

compensate exactly.

tr (BI1,I2 · · · BIp,I1

)
= (7.58)

=
∑

α1,...,αk
β1,··· ,βk

(−ε

2π

)p p
∏

j=1

eαjβj

(
Qβjαj+1

ζIjIj+1 + Qβjαj+1
ζIjIj+1

)
+

small
terms

(7.59)

=
∑

α1,...,αk
β1,··· ,βk

(−ε)p

2pπp





p
∏

j=1

eαjβjQβjαj+1ζIjIj+1 +

p
∏

j=1

eαjβj
Qβjαj+1ζIjIj+1



 +
oscillating

terms

(7.60)

The product of the ζIkIk+1
is equal to

p
∏

j=1

ζIj ,Ij+1 =

p
∏

j=1

1

uε
Ij+1

− uε
Ij

(7.61)

and we can rewrite the trace of BI1,I2 · · ·BIp,I1 as

tr
(
BI1,I2 · · ·BIp,I1

)
=

(−ε)p

2p−1πp
Re

tr((E−1Q)p)

(uε
I2
− uε

I1
) . . . (uε

I1
− uε

Ip
)

+
oscillating

terms
(7.62)

giving the asymptotics for Hγ .

When the patterns are not disjoint anymore, then a similar analysis can be done, in
defining new patterns as the connected components of P1 ∪ · · · ∪Pn. The bound can be
extended to this case. ¤
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7.3.3 Convergence of the second moment

Proposition 7.4.

∀ ϕ1, ϕ2 ∈ C
∞
c (R2)

lim
ε→0

E
[

Ñ ε
P(ϕ1)Ñ

ε
P(ϕ2)

]

=
1

π

∫∫

R2×R2

∂P∗ϕ1(u1)G(u1, u2)∂P∗ϕ2(u2)|du1||du2|

+ A

∫

R2

ϕ1(u)ϕ2(u)|du| (7.63)

The proof of the convergence of the second moment goes exactly as that of section 7.2.
The second moment of Ñ ε

P
can be expressed as a convolution of two distributions applied

to a test function

E
[

(Ñ ε
Pϕ1)(Ñ

ε
Pϕ2)

]

= 〈ϕε ∗ F ε, ϕ2〉 (7.64)

with the same definitions as before for ϕε
1 and F ε.

ϕε
1 = ε2

∑

x
ϕ1(u

ε
x)δ(· − uε

x) F ε =
∑

x
Cov(P,Px)δ(· − uε

x) (7.65)

ϕε
1 converges weakly to ϕ1. The convergence of F ε to a distribution F is proven in exactly

in the same way as in section 7.2. The only difficulty that could appear is the analogue of
lemma 7.2 proving the convergence of

∑

x Cov(P,Px). Cov(P,Px) is a linear combination
of products of diverse values of K

−1. If we interpret these products as Fourier coefficients
of a convolution of functions, then the convergence becomes more obvious: we saw in
section 7.2 that the function whose Fourier coefficients are the product of two K

−1 is not
defined at (1, 1), but has directional limits when (z, w) converges to (1, 1), and the sum
of the Fourier coefficient was an average of these directional limits. When more than
K

−1 are involved, the function is even continuous thanks to the multiple convolutions,
and the Fourier series converges at (z, w) = 1.

The complex number representing the vector P∗ along which are taken the derivatives
is a square root of tr(E−1QE−1Q).

7.3.4 Convergence of higher moments

Proposition 7.5. Let n ≥ 3, and ϕ1, . . . , ϕn ∈ C∞
c (R2).

lim
ε→0

E
[

Ñ ε
P(ϕ1) · · · Ñ ε

P(ϕn)
]

=







0 if n is odd

∑

pairings

n/2
∏

l=1

E [NP(ϕil)NP(ϕjl
)] if n is even

(7.66)
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Proof:

As usually, it is sufficient to study the case where all the ϕi are equal to some fixed
smooth test function ψ. The nth moment is the given by

E
[

(Ñ ε
Pψ)n

]

= εn
∑

x1,...,xn

E

[
n∏

l=1

ψ(uε
l )(Pxl

− P̄)

]

. (7.67)

We know from lemma 7.6 the asymptotics of the general term of the sum

εnE

[
n∏

l=1

ψ(uε
l )(Pxl

− P̄)

]

=
∑

S∈Ŝn

∏

γcycleofS

sgn γ
2ε2|γ|

(2π)|γ|
Re



tr
(
(E−1Q)|γ|

) ∏

l∈suppγ

ψ(uε
l )

uε
xγ(l)

− uε
xl





+
oscillating

terms
+

small
terms

=
∑

(Γl)
p
1

p
∏

l=1

(−2)

(−ε

2π

)|Γl|
Re







tr
(
(E−1Q)|Γl|)

∑

γcycle
suppγ=Γl

∏

j∈Γl

ψ(uε
j)

uε
xγ(j)

− uε
xj







+
small
terms

+
oscillating

terms

where the (Γl) are partitions of {1, . . . , n} whose components have size at least 2. The
expression we obtained is very close to that of equation (7.36). From this point, the
same arguments as for edges yield the proof of the proposition. ¤

7.4 The gaseous case

In a gaseous phase, K
−1 decays exponentially. There exist two constants C1 and C2 such

that

∀ x ∈ Z2, |K−1(bx,w00)| ≤ C1 · e−C2|x|

The precise statement of theorem 7.2 in this particular context for a pattern constisting
in a single edge e is the following:

Theorem 7.5. The random field Ñ ε
e converges weakly in distribution to a white noise

of amplitude
√

∂2F
∂2 log Ke

.
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The proof is exposed in the first two subsections, and the case of a more complex pattern
is briefly discussed in subsection 7.4.3

7.4.1 Convergence of the second moment

Proposition 7.6.

∀ϕ1, ϕ2 ∈ C
∞
c (R2) lim

ε→0
E

[

Ñ ε
e(ϕ1)Ñ

ε
eS(ϕ2)

]

=
∂2F

∂ log K2
e

∫

R2

ϕ1(z)ϕ2(z)|dz|.

Proof:

As in section 7.2, the covariance E
[

Ñ ε
e(ϕ1)Ñ

ε
eS(ϕ2)

]

is a convolution of distributions

ϕε
1 ∗ F ε applied to the test function ϕ2, where

ϕε
1 = ε2

∑

xy

ϕ1(ux)δ(· − uε
x) and F ε =

∑

x
Cov(e, ex)δ(· − uε

x).

ϕε
1 converges weakly to ϕ1. We have now to prove that the distribution F ε converges

toward the distribution F = ∂2F

∂ log K2
e

δ. The limit of the second moment will be then

〈ϕ1 ∗ F, ϕ2〉 =
∂2F

∂ log K2
e

〈ϕ1 ∗ δ, ϕ2〉 =
∂2F

∂ log Ke
2

∫

R2

ϕ1(u)ϕ2(u)|du|. (7.68)

If x 6= (0, 0), the covariance between edges e and ex is given by

Cov(e, ex) = E [(e0,0 − e)(ex − e)] = −K
2
eK

−1(x)K−1(−x) (7.69)

Let ψ be a smooth test function with compact support, and N a large integer. We
decompose the sum over x in the expression of 〈F ε, ψ〉 depending on whether the norm
of x is larger than N or not.

〈F ε, ψ〉 =
∑

|x|>N

ψ(uε
x)Cov(e, ex) +

∑

|x|≤N

(ψ(uε
x) − ψ(0))Cov(e, ex)

+ ψ(0)
∑

|x|≤N

Cov(e, ex)

In the first sum, there are at most O(ε−2) terms since the support of ψ is bounded. As
|x| > N , each term in this sum is bounded by some constant times e−2C2N . Therefore the
whole sum is a O(ε−2e−2C2N ). In the second sum, since |x| ≤ N , the distance between
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uε
x and 0 is less than εN . As ψ is smooth , (ψ(uε

x) − ψ(0)) is O(εN). The second sum is
therefore O(N3ε). Choosing for instance N of order ε−1/4, these two sums converge to
zero, when ε goes to zero.

The third sum is absolutely convergent, the limit of 〈F ε, ψ〉 is

ψ(0)
∑

x∈Z2
Cov(e, ex).

Thus F ε converges weakly to
∑

x∈Z2 Cov(e, ex)δ and the limit of the second moment is
proportional to the L2 scalar product. The coefficient of proportionality

∑

x∈Z2
Cov(e, ex)

can be rewritten in terms of the polynomials P (z, w) and Qe(z, w).

∑

x∈Z2

Cov(e, ex) = E [(e − e)(e − e)] +
∑

x6=(0,0)

E [(e0,0 − e)(ex − e)]

= P [e] (1 −P [e]) − K
2
e

∑

x6=(0,0)

K
−1(x)K−1(−x)

= KeK
−1(0) − K

2
e

∑

x
K

−1(x)K−1(−x)

=

∫∫

T2

KeQe(z, w)

P (z, w)
− K

2
eQe(z, w)2

P (z, w)2
dz

2πiz

dw

2πiw

= Ke

∂

∂Ke

Ke

∂

∂Ke

∫∫

T2

log(P (z, w))
dz

2πiz

dw

2πiw

=
∂2F

∂ log K2
e

where F is the free energy of the system. ¤

7.4.2 Higher moments

Proposition 7.7. The Wick formula is verified in the limit.

lim
ε→0

E
[

(Ñ ε
eψ)n)

]

=

{
0 if n is odd,

(n − 1)!!E
[

(Ñ ε
e)2

]n/2
if n is even.

Proof:

As in the case of a generic liquid measure, the proof begins with the study of the restricted
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7.4. The gaseous case

nth moment Ξε
n(ψ) defined by equation (7.33). Lemma 7.3 yields the same asymptotic

expression as in the generic liquid case (7.34):

Ξε
n(ψ) =

∑

{Γ}p
l=1

p
∏

l=1

∑

γ cycle
supp(γ)=Γl

(

sgn(γ)(εKe)
|γ|×

∑

xj1
,··· ,xj|γ|

distinct

|γ|
∏

k=1

ψ(uε
xjk

)K−1(xγ(jk) − xjk
) + o(1)

)

(7.70)

The contributions of cycles of length greater than 3 vanish in the limit, thanks to the
following lemma:

Lemma 7.7.

∀m ≥ 3, lim
ε→0

εm
∑

x1,··· ,xm

m∏

j=1

ψ(uε
xj

)K−1(xj+1 − xj) = 0

Proof:

Define x′ = x1 and for j ≥ 2 x′j = xj − xj−1 . The sum can be rewritten using these new
notations and invariance by translation of operator K

−1 as

εm
∑

x′
ψ(uε

x′)
∑

x′2···x′m





m∏

j=2

ψ(uε
x′+x′2+···+x′j

)K−1(x′j)



K
−1(−x′ − x′2 · · · − x′m)

As ψ is a continuous function on a compact set, it is bounded. The sum on x′ has O(ε−2)
terms. K

−1(b−x′−x′2···−x′n ,w) is bounded independently from the x′j ’s. As K
−1 decays ex-

ponentially, the sum on x′2, . . . , x′n is bounded. The whole sum is thus a O(εm−2), which
goes to zero when ε goes to zero as soon as m ≥ 3. ¤

Thus Ξε
n(ψ) converges to Ξn(ψ) = (n − 1)!! Ξ2(ψ). The end of the proof deals with

collisions between edges, which is identical to what has been done for proposition 7.3,
leading to the result. ¤

7.4.3 Patterns in gaseous phase

Combining the notations and the techniques introduced in 7.3 to deal with correlations
between patterns, and following the steps of the proof of theorem 7.5, one can prove the
following
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7. Pattern densities in fluid dimer models

Theorem 7.6. Let P be a pattern in a dimer model endowed with a gaseous Gibbs
measure. The random field Ñ ε

P
of density fluctuation of pattern P converges weakly in

distribution to a white noise.

Th proof is omitted here.

7.5 Correlations between density fields

In the previous sections, only fluctuations of the density field associated to one fixed
pattern was considered. One can ask what happens for correlations between density
fields associated to different patterns. To what extent a high density of some pattern
in a given region of the plane has an influence on the density of another pattern in an
other region ?

This question is answered by the following theorem generalizing the results of the pre-
vious sections.

Theorem 7.7. Consider a dimer model with a generic liquid Gibbs measure µ.

• Let P1 and P2 be two patterns. The bilinear form E
[

Ñ ε
P1

(·)Ñ ε
P2

(·)
]

on C∞
c (R2)

converges when ε goes to zero to a bilinear form E [NP1(·)NP2(·)].

• If µ is a generic liquid Gibbs measure, there exists a constant AP1P2 such that for
every test functions ϕ1 and ϕ2,

E [NP1(ϕ1)NP2(ϕ2)] =
1

π

∫∫

R2×R2

∂P∗
1
ϕ1(u)G(u, v)∂P∗

2
ϕ2(v)|du||dv|

+ AP1P2

∫

R2

ϕ1(u)ϕ2(u)|du| (7.71)

• If µ is gaseous, there exists a constant AP1P2 such that for every test functions ϕ1

and ϕ2,

E [NP1(ϕ1)NP2(ϕ2)] = AP1P2

∫

R2

ϕ1(u)ϕ2(u)|du|

• Let P1, . . . ,Pn be patterns (not necessarily distinct). When ε goes to zero, the

multilinear form E
[

Ñ ε
P1

(·) · · · Ñ ε
Pn

(·)
]

converges. The limit E [NP1(·) · · ·NPn(·)] is

given by Wick formula: for every test functions ϕ1, . . . , ϕn,

E [NP1(ϕ1) · · ·NPn(ϕn)] =







0 if n is odd

∑

pairing

n/2
∏

k=1

E
[

NPik
(ϕik)NPjk

(ϕjk
)
]

if n is even
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Let v be a vertex of the graph, and denote by e1, . . . , em the edges incident with v. The
complex numbers e∗1, . . . , e

∗
m sum to zero since they represent the edges of the dual face

v∗. Even more, for every ε > 0, the linear combination Ñ ε
e1

+ · · · + Ñ ε
em

is identically
zero. Indeed, for every x ∈ Z2, there is exactly one edge incident with vx in the random
dimer configuration. Therefore the sum of indicator functions (e1)x + · · · + (em)x is
always equal to 1. This relation between the random fields Ñ ε

ej
at a microscopic level

yields relations between the different coefficients Aeiej . Precisely,

m∑

i=1

m∑

j=1

Aeiej = 0 (7.72)

7.6 Examples

The theorems in the previous sections state a convergence of density fluctuation in the
scaling limit to a linear combination of a derivative of the massless free field and a white
noise. However, they do not give an explicit form for the white noise amplitude. In this
section we present some cases for which a closed expression for the white noise amplitude
can be provided in terms of the weights on edges. The first case is the dimer model on
the graph Z2 with periodic weights a, b, c, d around white vertices. The second case is
the dimer model on the square octagon graph.

7.6.1 Tilings of the plane by dominos

The graph we consider here in the graph Z2 with a bipartite coloring of its vertices.
Weights are assigned to edges according to their directions: a, b, c, d counterclockwise
around white vertices and clockwise around black vertices. If none of the weights is
greater than the sum of the others, the corresponding dimer model is critical [30]: the
graph can be embbeded in the plane such that all the faces of the graph as well as those
of the dual graph are inscribed in circles of a given radius. The Gibbs measure with no
magnetic field on dimer configurations is liquid. The primal and dual faces are similar
to the cyclic quadrilateral with sides a, b, c and d. The area of such a quadrilateral is

Area =
1

4

√

(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)

and the radius R of its circumscribed circle is defined by the relation

R2 =
(ab + cd)(ac + bd)(ad + cb)

(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)
.

The fact we chose the fundamental domain to have area 1 leads to the following expres-
sion for the complex numbers representing the dual edges in the embedding of Z2:

a∗ =
ia√

2 Area
b∗ =

ib

w0

√
2 Area

c∗ =
−icz0

w0

√
2 Area

d∗ =
idz0√
2 Area
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7. Pattern densities in fluid dimer models

where (z0, w0) is the root of the the characteristic polynomial

P (z, w) = a +
b

w
− cz

w
+ dz

on the unit torus, with the additional constraint that Im(z0) > 0.

The following theorem is a particular case of theorem 7.7.

Theorem 7.8. Let GFF a Gaussian free field in the plane and W an independent white
noise. The vector-valued random field

Ñ ε =







Ñ ε
a

Ñ ε
b

Ñ ε
c

Ñ ε
d







converges weakly in distribution to the vector-valued Gaussian Field







Na

Nb

Nc

Nd







=
1√
π







∂a∗

∂b∗

∂c∗

∂d∗







GFF +

√

abcd

8πR2 Area







+1
−1
+1
−1







W

where R is the radius of the circumscribed circle of a face, given by

R2 =
(ab + cd)(ac + bd)(ad + cb)

(−a + b + c + d)(a − b + c + d)(a + b − c + d)(a + b + c − d)
.

Proof:

The only point we have to explain is the computation of the white noise amplitude.
This coefficient can be identified from the limit of the second moment of Ñ ε

a . The
proof of the convergence of the second moment, as before, goes through the proof
of the convergence of the distribution F ε defined by (7.14). The sum over x in the
definition of F ε is decomposed into two parts depending on whether uε

x belongs to
some neighborhood of 0 or not. In the general case, we considered the neighborhood
B =

{
i(αz0s + βz0t) ; (s, t) ∈ [−1, 1]2

}
. However, here we will take an infinite strip

S = {i(αz0s + βz0t) ; (s, t) ∈ R× [−1, 1]} .

The condition on x = (x, y) corresponding to uε
x ∈ S is x ∈ Z and |y| ≤ M where

M = ⌊1/ε⌋. We have

〈F ε, ψ〉 =
∑

x∈Z
|y|>M

ψ(uε
x)Cov(e, ex)+

∑

x∈Z
|y|≤M

(ψ(uε
x) − ψ(0))Cov(e, ex)+ψ(0)

∑

x∈Z
|y|≤M

Cov(e, ex).
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The inverse Kasteleyn operator in this case is given by

K
−1(x, y) = K

−1(bx,w0) =

∫

T2

z−ywx

a + b/w − cz/w + dz

dz

2iπz

dw

2iπw
.

The fact we have an infinite strip allows us to make use of one dimensional Fourier
series in the x-direction to compute the third sum. Indeed, K

−1(x, y) is the xth Fourier
coefficient of the function fy(w) defined by

fy(w) =

∫
z−y

a + b/w − cz/w + dz

dz

2iπz
.

Hence, for a fixed y,

∑

x∈Z
K

−1(x, y)K−1(−x,−y) =

∫

fy(w)f−y(w)
dw

2iπw
.

For y 6= 0, the functions fy and f−y have disjoint support, therefore the sum above is
zero. When y = 0, the sum is equal to

∑

x∈Z
K

−1(x, 0)K−1(−x, 0) =

∫

f2
0 (w)

dw

2iπw
=

∫

| a+bw
cw−d |>1

dw

2iπ(a + b/w)2w
.

The third sum equals

ψ(0)
∑

x∈Z
|y|≤M

Cov(e, ex) = ψ(0)



aK
−1(0) − a2

∑

|y|≤M

∑

x∈Z
K

−1(x, y)K−1(−x,−y)





= ψ(0)

(
∫

|a+bw
cw−d |>1

adz

(a + b/w)2iπw
−

∫

| a+bw
cw−d |>1

a2dz

(a + b/w)22iπw

)

= ψ(0)
−abIm(w0)

π|a + b/w0|2
.

The other term coming from the application of Green formula can also be computed and
turns out to be equal to

−ψ(0)
1

2Area π

(

−abIm(w0)

|a + b
w0

|

)2

.

Hence the variance of the white noise appearing in the limit of Ñ ε
a is given, after some

calculations, by
1

π

−abIm(w0)

|a + b/w0|2
(

1 +
abIm(w0)

2Area

)

=
abcd

8πR2 Area

A similar computation for E
[

Ñ ε
a(ϕ1)Ñ

ε
b (ϕ2)

]

leads to the same expression, with a neg-

ative sign. As the expression of the coefficient is invariant under cyclic permutation of
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7. Pattern densities in fluid dimer models

Figure 7.1: A portion of the square-octagon graph. Edges are oriented from white end to black end,
except those whose orientation is represented on the figure.

a, b, c, d, the amplitudes for the other pairs are easily deduced. ¤

When c = 0, the dimer model on Z2 is equivalent to that on the honeycomb lattice with
periodic weights a, b, d. One can notice that in this case, the amplitude of the white
noise vanishes. The interaction between dimers on the honeycomb lattice is purely
electrostatic. We conjecture that it is true only for that particular model.

7.6.2 Dimer densities on the square-octagon graph

The square-octagon graph is a Z2-periodic graph whose fundamental domain is presented
in figure 7.1. It contains four white and four black vertices. When every edge is assigned
a weight equal to 1, the characteristic polynomial is given by

P (z, w) = det







1 1
w 0 −1

z
1 1 1 0
0 z 1 w
−1 0 1 1







= 5 − z − 1

z
− w − 1

w

The spectral curve has genus 1 and its amœba is represented on figure 7.2. When the
magnetic field is weak, the dimer model is in a gaseous field. The fluctuations of the
density field of an edge can be therefore computed by taking derivatives of the free energy
of the system with resect to the weights, as explained in section 7.4.
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-4 -2 2 4
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Figure 7.2: The amœba of the dimer model on the square-octagon graph.

To compute for instance the amplitude of the white noise in the limit density of the
edges (w1,b1), we assign to these edges a weight ea and to the others a weight equal to
1, and compute the second derivative of the free energy F associated to this model with
respect to a. For these new weights, the spectral curve is now

Pa(z, w) = det







ea 1
w 0 −1

z
1 1 1 0
0 z 1 w
−1 0 1 1







= 4 + ea − eaz − 1

z
− eaw − 1

w
.

If a is small enough, the dimer model is in a gaseous phase in absence of magnetic field.
In every point of this phase, the free energy is constant and given by

F =

∫∫

T2

log(Pa(z, w)
dz

2iπz

dw

2iπw

= log(4 + ea) +

∫∫

[0,2π]2
log

(

1 − 1

4 + ea

(

ea+iθ + e−iθ + ea+iφ + e−iφ
))

dθ

2π

dφ

2π

Perfoming the change of variables α = θ+φ
2 , β = θ−φ

2 and moving the contour of integra-
tion over α from [0, 2π] to [−ia/2,−ia/2 + 2π] using analiticity and periodicity in α, we
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finally get an expression of F in terms of an absolutely convergent series:

Fa = log(4 + ea) +

∫∫

[0,2π]2
log

(

1 − 4ea/2

4 + ea
cos(α) cos(β)

)

dα

2π

dβ

2π
(7.73)

= log(4 + ea) −
∞∑

k=1

1

k

(

4ea/2

4 + ea

)k (∫ 2π

0
cosk(α)

dα

2π

)(∫ 2π

0
cosk(β)

dβ

2π

)

(7.74)

= log(4 + ea) −
∞∑

k=1

1

2k

(

ea/2

4 + ea

)2k (
(2k)!

(k!)2

)2

(7.75)

Fa can be expressed as the value of a certain generalized hypergeometric function. The
Taylor expansion up to order 2, involving the elliptic integrals K and E2

Fa = F +

(

1

2
− 3K

(
16
25

)

5π

)

a +

(

K
(

16
25

)
− E

(
16
25

)

2π

)

a2

2
+ O(a3)

gives information on the statistics of the copies of edge (w1,b1). The constant coefficient
is the free energy of the initial model, the coefficient of a is the probability of (w1,b1)

P [(w1,b1)] =
1

2
− 3K

(
16
25

)

5π
,

and the coefficient of a2/2 gives the amplitude of the white noise describing the scaling
limit of the fluctuations of the number of edges (w1,b1)

lim
ε→0

E
[

(Ñ ε
(w1,b1)ϕ)2

]

=
K

(
16
25

)
− E

(
16
25

)

2π

∫

R2

ϕ(u)2du.

Similarly, one can compute the probability of seeing an edge of a square, for example
(w2,b1), and the amplitude of the white noise:

P [(w2,b1)] =
1

4
+

3K
(

16
25

)

10π
,

lim
ε→0

E
[

(Ñ ε
(w1,b1)ϕ)2

]

=
2K

(
16
25

)

5π

∫

R2

ϕ(u)2du.

The fact we see elliptic functions showing up is not very surprising since the spectral
curve in this case is a torus.

2We recall that the complete elliptic integral of first and second class are given by

K(m) =

Z π

2

0

dφ
p

1 − m sin2(φ)
and E(m) =

Z π

2

0

q

1 − m sin2(φ)dφ. (7.76)
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8 Curl-free walks and the lamplighter’s

problem

This work is a preliminary step to solve the following combinatorial problem proposed
by Richard Kenyon. On the lattice Z2, what is (asymptotically) the number of closed
paths such that the winding number around each face is equal to zero ? These special
paths are called curl-free paths and an example of length 14 is presented on figure 8.1.

Figure 8.1: An curl-free walk of length 14.

We will solve the following simpler question in the same spirit. Let G be the ladder graph:
the vertices of G are indexed by Z× {0, 1}, and there is an edge between v = (k, z) and
v′ = (k′, z′) if either |k − k′| = 1 and z = z′, or k = k′ and z 6= z′. Edges of the second
type are called the rungs of the ladder. A piece of the ladder graph is represented on
figure 8.2. To simplify, we will use the following notations to label vertices:

k = (k, 1), k = (k, 0).

The position of the bar recalls on which side of the ladder the vertex is located.

10

0 1 2

2

Figure 8.2: A piece of the ladder graph G.

Let Pn be the set of closed paths on G of length n, starting from (0, 0) and passing an
even number of times through every rung of the ladder, and P =

⋃

n≥0 P. The problem
is to determine an asymptotic expression for the cardinal of Pn.
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8.1 The lamplighter’s problem

It turns out that this combinatorial problem is equivalent to determining the on-diagonal
asymptotics of the heat kernel on the lamplighter’s graph.

The lamplighter’s graph represents an infinite street with an infinite number of lamps
labelled by Z. A vertex of this graph is the collection of the states of all the lamps, in
addition to the position of the lamplighter. Two vertices of the graph are linked by an
edge if the lamplighter can pass from one state to the other by one of these elementary
operations:

• make one step on the left,

• make one step on the right,

• switch the lamp located at his position.

Figure 8.3: The lampligher switching on and off lamps on a infinite street.

Initially, all the lamps are switched off and the lamplighter stands in front of the lamp
labelled by 0. The diagonal entries of the heat kernel represent the probability that the
lamplighter will come back to his starting point after a given number of steps, and when
he comes back, all the lamp will be switched off.

The correspondence between paths on G and paths on the lamplighter is the following:
let γ be a path on G. The projection of γ on the first factor Z describes the trajectory
of the lamplighter, and a crossing of rung k corresponds to a state change of lamp k.

The paths of P are thus in bijection with loops on the lamplighter’s graph, since for the
lamplighter to come back to the initial state, he must operate an even number of times
all the switchs, so that all lamps are switched off when he comes back to 0.

The lamplighter’s graph turns out to be the Cayley graph of a group, that can be
generated by an automaton [19]. The spectrum of this group is completely known for
some random walks [2], and can be used to compute return probabilities. However, we
use here an alternative method. See also [53] for another approach.
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8.2 Strategy

The method proposed to solve this problem is based on the following combinatorial fact:
let M be the adjacency matrix of G. Then

(
Mn

)

0,0
is exactly the number of loops of

length n starting from 0. If we now add weights ω(e) to the edges e of the graph, and
consider the weighted adjacency matrix Mω, then

(
Mn

ω

)

0,0
is the sum of the weights of

these loops of length n, where the weight of a path γ, as usual, is the product of the
weights of the edges it contains

ω(γ) =
∏

e∈γ

ω(e). (8.1)

Let (εk)k∈Z a sequence of independent identically distributed random variables, such
that

P [εk = +1] = P [εk = −1] =
1

2
.

If we assign weights to the edges of G as follows:

ω(e) =

{

1 if e = (k, k + 1) or (k, k + 1)

εk if e = (k, k)
(8.2)

then the average of
(
Mn

ω

)

0,0
is equal to the cardinal of Pn

∣
∣Pn

∣
∣ = E

[(
Mn

ω

)

0,0

]

=
∑

length(γ)=n
γ(0)=γ(n)=0

E [ω(γ)] . (8.3)

Indeed, if a path γ crosses a rung, say rung k, an odd number of times, the power of εk

in ω(γ) is odd, and therefore E [ω(γ)] = 0. On the contrary, if γ ∈ Pn, E [ω(γ)] = 1.

Since a path of length n does not see vertices of G at a distance greater than n of the
origin, one can in fact replace the infinite graph G by a smaller one coinciding with G
on a large enough neighbourhood of 0. Since G is periodic, it is convenient in order to
keep some symmetry to replace G by a quotient of it by a large lattice GN = G/NZ, for
N > n. The actual value of N has no importance. One can take for example N = 2n.

We will use bra and ket notations from quantum mechanics to denote functions on
vertices and their transpose. For k ∈ Z/NZ,

∣
∣k

〉
(resp.

〈
k
∣
∣) stands for the function

equal to 1 on vertex k (resp. k) ans 0 elsewhere.

The graph GN is invariant under the exchange of the two copies of Z/NZ. The weighted
matrix Mω

Mω

∣
∣k

〉
=

∣
∣k − 1

〉
+ εk

∣
∣k

〉
+

∣
∣k

〉
, Mω

∣
∣k

〉
=

∣
∣k − 1

〉
+ εk

∣
∣k

〉
+

∣
∣k

〉
(8.4)

commutes with operator T

T
∣
∣k

〉
=

∣
∣k

〉
, T

∣
∣k

〉
=

∣
∣k

〉
. (8.5)
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The functions
∣
∣k±〉

=

∣
∣k

〉
±
∣
∣k

〉

√
2

are eigenfunctions of T

∣
∣k±〉

= ±
∣
∣k±〉

(8.6)

and the matrix of Mω in the eigenbasis
(∣
∣k+

〉
,
∣
∣k−〉)

is block diagonal
(

M+
ω 0

0 M−
ω

)

where

M±
ω =












±ε0 1 0 · · · 1

1 ±ε1 1
. . .

...

0 1
. . .

. . . 0
...

. . .
. . . ±εN−2 1

1 · · · 0 1 ±εN−1












(8.7)

It follows then from the iid property of the sequence (εk) that

E
[(

Mn
ω

)

0,0

]

=
1

2N
E

[
tr

(
Mn

ω

)]
=

1

N
E

[
tr

(
M+

ω

)]
=

1

N

N∑

j=1

E
[(

λj(ω)
)n]

(8.8)

where λ1(ω) ≥ · · · ≥ λ2N (ω) are the eigenvalues of M+
ω .

The matrix M+
ω can be interpreted as the weighted adjacency matrix of the graph

represented on figure 8.2.

ε0
ε1

ε2ε
N−1

1 1 1 1
1

ε
N−2

Figure 8.4: The weighted graph represented by M+
ω

Since the graph GN is bipartite1, the walk needs an even number of steps to come back
to the origin. Therefore the quantity (8.8) is zero if n is odd. We from now assume that
n is even.

When n is large, the main contribution to this sum is given by the edge of the spectrum,
λ1 and λN . As GN is bipartite, we have

λ1

(
(εk)

)
= −λN

(
(−εk)

)
(8.9)

1In fact, it is really bipartite only if N is even. We will suppose that it is indeed the case. However, if
N is odd, one can still color the vertices such that the bipartite property is verified in a large enough
neighbourhood of the origin to contain every n-step walk.
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8.3. Approximation of the first eigenvalue

and once again, by the iid property of the sequence (εk) , the contribution of these two
eigenvalues are equal, and thus

∣
∣Pn

∣
∣ ∼

n→+∞
2

N
E [λ1(ω)n] (8.10)

To obtain an asymptotic expression for the cardinal of Pn, we will give for any realisation
of ω an approximation of λ1(ω) to get an estimate of the main term of (8.8). Then we
evaluate the spectral gap in order to control the contribution of the other eigenvalues.

8.3 Approximation of the first eigenvalue

We will work only the block M+
ω with a fixed realization of

(
εk

)
. To simplify notations,

we will drop from notations the dependance on ω and superscript +.

The diagonal entries of M can be viewed as the period of an infinite succession of +1
and −1. We will see in this section that the greatest eigenvalue is related to the longest
sequence of +1 in this succession. More precisely, we claim that

Proposition 8.1. Let ℓ be the longest sequence of +1 in ε0, . . . , εN−1, ε1, . . . . Then

λ1 = 3e
− π2

3ℓ2
+O

“

1
ℓ3

”

. (8.11)

We prove the proposition in two steps, by fist giving a lower bound on λ1, and then an
upper bound. The error term O

(
1
ℓ3

)
is uniform in ℓ.

8.3.1 Lower bound

The greatest eigenvalue of symmetric matrix M+
ω is the maximal value of the associated

quadratic form on the unit sphere

λ1(ω) = sup
〈ϕ|ϕ〉=1

〈
ϕ
∣
∣M

∣
∣ϕ

〉
. (8.12)

To get a lower bound for λ1, it is therefore sufficient to evaluate
〈
ϕ
∣
∣M

∣
∣ϕ

〉
for a suitably

chosen function
∣
∣ϕ

〉
.

If ℓ < N , the restriction of M to the largest interval of +1 is equal to 3Idℓ + ∆ℓ, where
∆ℓ is the discrete Dirichlet Laplacian on a segment of ℓ points.

Let
∣
∣ϕ

〉
be the normalized eigenfunction of ∆ℓ associated to its greatest eigenvalue

2 cos
(

π
ℓ+1

)
− 2. Then

λ1 ≥
〈
ϕ
∣
∣M

∣
∣ϕ

〉
=

〈
ϕ
∣
∣3Idℓ + ∆ℓ

∣
∣ϕ

〉
= 1 + 2 cos

( π

ℓ + 1

)

= 3 − π2

ℓ2
+

2π2

ℓ3
+ O

(
1

ℓ4

)

= 3e
− π2

3ℓ2
+O

“

1
ℓ3

”

. (8.13)
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8.3.2 Upper bound

A direct rough upper bound for λ1 is

λ1 ≤ sup
i

∑

j

∣
∣
∣

〈
i
∣
∣M

∣
∣j

〉
∣
∣
∣ ≤ 3. (8.14)

Unfortunately, this is not precise enough to conclude.

Let
∣
∣ψ

〉
be the eigenfunction of M associated to λ1. The upper bound on λ1 will be

given by the greatest eigenvalue µ1 of a symmetric matrix P such that

λ1 =
〈
ψ

∣
∣M

∣
∣ψ

〉
≤

〈
ψ

∣
∣P

∣
∣ψ

〉
≤ sup

〈ϕ|ϕ〉=1

〈
ϕ
∣
∣P

∣
∣ϕ

〉
= µ1 (8.15)

To get a first bound on the quadratic form represented by M , one can first replace some
− on the diagonal by +, without increasing ℓ and so that − come at most by pairs on
the diagonal. Then in all pairs of −, replace one of them by a +. We are left with a
matrix M̃ with the same form as M and a ℓ at most increased by 1, whose diagonal
consists in a succession of sequences of + separated by one −. Let ⊕ (resp. ª) be the

set of indices corresponding to + (resp. −) diagonal entries. Let
◦
⊕⊂ ⊕ the subset of

indices whose neighbours are also in ⊕. We have

〈
ψ

∣
∣M̃

∣
∣ψ

〉
=

∑

j∈⊕
ψ2

j +
∑

j∈
◦
⊕

ψj

(
ψj−1 + ψj+1

)
+

∑

j∈ª
−ψ2

j + 2ψj

(
ψj−1 + ψj+1

)
. (8.16)

Since ψ is the eigenfunction of M associated to λ1, we have for j ∈ ª that

λ1ψj = ψj−1 − ψj + ψj+1 (8.17)

and therefore
(λ1 + 1)2ψ2

j =
(
ψj−1 + ψj+1

)2 ≤ 2
(
ψ2

j−1 + ψ2
j+1

)
(8.18)

from what we get

−ψ2
j + 2ψj

(
ψj−1 + ψj+1

)
= 2ψj

(
ψj−1 − ψj + ψj+1

)
+ ψ2

j

= 2λ1ψ
2
j + ψ2

j

≤ 4λ1
(
λ1 + 1

)2

(
ψ2

j−1 + ψ2
j+1

)
+ ψ2

j

≤ 4 × 3
(
2 + 2 cos

(
π

ℓ+1

))2

(
ψ2

j−1 + ψ2
j+1

)
+ ψ2

j

where in the last line we used the rough upper bound and the lower bound on λ1 obtained
before. Denote by α the coefficient in front of

(
ψ2

j−1 + ψ2
j+1

)
:

α =
4 × 3

(
2 + 2 cos

(
π

ℓ+1

))2 =
3

(
1 + cos

(
π

ℓ+1

))2 (8.19)
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We obtain finally the following majoration

〈
ψ

∣
∣M

∣
∣ψ

〉
≤

〈
ψ

∣
∣M̃

∣
∣ψ

〉
≤

∑

j∈⊕
ψ2

j +
∑

j∈
◦
⊕

ψj

(
ψj−1 + ψj+1

)
+

∑

j∈ª
α
(
ψ2

j−1 + ψ2
j+1

)
+ ψ2

j

︸ ︷︷ ︸
〈
ψ
∣
∣P

∣
∣ψ

〉

.

(8.20)

The matrix P representing the quadratic form on the right hand side is block diagonal

P =





















. . .

1 1 0
1 1 1
0 1 1+α

0
0 1 0

0 1+α 1
1 1 1
0 1 1

. . .





















(8.21)

The greatest eigenvalue of P is the greatest eigenvalue of the largest block Pℓ̃, that has

size ℓ̃ = ℓ or ℓ + 1. An eigenfunction φ of Pℓ̃ must satistfy the second order induction
relation

∀j ∈ {1, . . . , ℓ̃} µuj = uj−1 + uj + uj+1 (8.22)

with the following boundary conditions

u0 = αu1, uℓ̃+1 = αuℓ̃+1. (8.23)

As soon as ℓ̃ ≥ 4, α is smaller than 1, and thus

1 + 2 cos
( π

ℓ + 1

)

≤ λ1 ≤ µ ≤ sup
i

∑

j

∣
∣
∣

〈
i
∣
∣Pℓ̃

∣
∣j

〉
∣
∣
∣ ≤ 3. (8.24)

In this case, we pose µ = 1 + 2 cos(θ), with θ ∈
[
0, π

ℓ+1

]
.

To satisfy (8.22), the eigenfunction u associated to µ must have the following form

uj = A cos(jθ) + B sin(jθ). (8.25)

In order to have a non trivial solution for A and B such that the boundary conditions
(8.23) are also satisfied, the following relation, obtained by plugging (8.25) into (8.23)
must hold

det

[
1 − α cos(θ) −α sin(θ)

cos
(
ℓ̃ + 1)θ

)
− α cos(ℓ̃θ) sin

(
ℓ̃ + 1)θ

)
− α sin(ℓ̃θ)

]

= sin(ℓ̃θ)
(
(1 + α2) cos(θ) − 2α) + cos(ℓ̃θ)(1 − α2) sin(θ) = 0
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This equation in θ can be rewritten as

tan(ℓ̃θ) = − (1 − α2) sin(θ)

(1 + α2) cos(θ) − 2α
. (8.26)

This equation has a unique solution in
(
0, π

ℓ̃

)
given by the following expansion

θ =
π

ℓ̃
− 7π

ℓ̃2
+ O

(
1

ℓ̃3

)

. (8.27)

The asymptotic expression for µ is thus

µ = 3 − π2

ℓ̃2
+

14π2

ℓ̃3
+ O

(
1

ℓ̃4

)

= 3e
− π2

3ℓ2
+O

“

1
ℓ3

”

(8.28)

giving the uper bound we were looking for.

8.4 Main contribution to |Pn|

In order to determine the main term in the asymptotics of
∣
∣Pn

∣
∣, one has to first estimate

probability that the longest succession of +1 in
(
εk

)
has size ℓ.

Lemma 8.1.

P [ℓ = l0] =
N

2l0+2

(

1 + O

(
N

2l0

))

(8.29)

Proof:

For i ∈ Z/NZ and l ∈ N, define C
(l)
i to be the following event

C
(l)
i =

{
there is a sequence of + 1 of length at least l starting at position i

}
(8.30)

=
{
εi−1 = −1 and ∀ k ∈ {i, . . . , i + l − 1}, εk = +1

}
(8.31)

The probability we want to estimate can be rewritten in terms of these events as

P [ℓ = l0] = P

[
⋃

i

C
(l0)
i \

⋃

i

C
(l0+1)
i

]

(8.32)

The probability that C
(l)
i occurs is P

[

C
(l)
i

]

= 2−(l+1) and it is easy to see that

P
[

C
(l)
i ∩ C

(l)
j

]

=

{

P
[

C
(l)
i

]

P
[

C
(l)
j

]

if their supports are disjonts,

0 if their supports intersect.
(8.33)
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More generally,

P
[

C
(l)
i1

∩ · · · ∩ C
(l)
im

]

=

{

P
[

C
(l)
i1

]

· · ·P
[

C
(l)
im

]

= 1
2m(l+1) if their supports are disjonts,

0 otherwise.

(8.34)
The number of ways of positioning m sequences of symbols of length l + 1 so that their
support do not intersect on a ring with N sites is equal to N

m

(
N−ml−1

m−1

)
. By an inclusion-

exclusion argument, the probability that a sequence of +1 of length at least l occurs is
thus

P

[
⋃

i

C
(l)
i

]

=
∑

i

P
[

C
(l)
i

]

+ · · · + (−1)m+1
∑

i1,...,im
distinct

P
[

C
(l)
i1

∩ · · · ∩ C
(l)
im

]

+ · · · + (−1)N+1P

[
⋂

i

C
(l)
i

]

=

N∑

m=1

(−1)m+1

(
1

2l+1

)m N

m

(
N − ml − 1

m − 1

)

(8.35)

This alternate sum is well approximated by its first term, and since N
m

(
N−ml−1

m−1

)
≤ Nm

m! ,
the rest of the sum is bounded by

N∑

m=2

(−1)m+1

(
1

2l+1

)m N

m

(
N − ml − 1

m − 1

)

≤
N∑

m=2

(
1

2l+1

)m Nm

m!

≤ e
N

2l+1 − 1 − N

2l+1
= O

((
N

2l+1

)2
)

. (8.36)

Consequently, as
⋃

i C
(l0)
i ⊂ ⋃

i C
(l0+1)
i , we get finally that

P [ℓ = l0] = P

[
⋃

i

C
(l0)
i

]

−P
[
⋃

i

C
(l0+1)
i

]

=
N

2l+2

(

1 + O

(
N

2l

))

. (8.37)

This approximation is valid only for l À log2 N . However, this proof furnishes a uniform
upper bound P [ℓ = l0] ≤ N

2l0+1 , what will be convenient to control the estimates below.
¤

Using proposition 8.1 and lemma 8.1, we can now write the main contribution to
∣
∣Pn

∣
∣

as a sum over the length of the longest sequence of +1.

A =
2

N
E [λn

1 ] =
2

N

N∑

l=0

P [ℓ = l] λ1(l)
n =

2

N

N∑

l=0

N

2l+2

(
1 + O

(
N

2l

))
3ne

−nπ2

3l2
+O

“

n
l3

”

= 3n
N∑

l=0

1

2l+1
e−

nπ2

3l2 e
O

“

N

2l

”

+O
“

1
l3

”

=
3n

2

N∑

l=0

e−f(l)e
O

“

N

2l

”

+O
“

n
l3

”

(8.38)
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where f is the convex function defined by f(l) = l log 2+ π2n
3l2

. By Laplace’s method, the
main contribution to the sum comes from the terms locates near the critical point of f ,
which is

l0 = 3

√

2π2

3 log 2
n

1
3 . (8.39)

More precisely, A is rewritten as

A =
3n

2

∑

|l−l0|≤l
2/3
0

e−
3
2

log 2 l0 g(l/l0)e
O

“

N

2l

”

+O
“

n
l3

”

+
3n

2

N∑

l=0
|l−l0|>l

2/3
0

e−
3
2

log 2 l0 g(l/l0)e
O

“

N

2l

”

+O
“

n
l3

”

(8.40)
where g(x) = 2

3

(
x + 1

2x2

)
. In the first sum, l is close to l0 and one has

g

(
l

l0

)

= g(1) +
1

2!

(l − l0)
2

l20
g′′(1) + O






(l − l0)
3

l30
sup

|h|≤l
− 1

3
0

∣
∣g′′′(1 + h)

∣
∣






= 1 +

(
l − l0

l0

)2

+ O(n−1/3). (8.41)

In this range of l, the error terms are small, and thus the first sum, interpreted as a

Riemann sum with a step ∆x = l
−1/2
0 , can be compared to a Gaussian integral

∑

|l−l0|≤
√

l0

e−
3
2

log 2 l0 g(l/l0) =
√

l0

∫ +∞

−∞
e−

3 log 2
2

(l0+x2)dx
(
1 + O

(
1√
l0

))

=

(
2π

3 log 2

) 2
3

(πn)
1
6 e−

(3π log 2
2

) 2
3 n

1
3
(1 + O(n− 1

6 )). (8.42)

The contribution of the other sum is smaller. The fact that g is convex implies that
this sum can be bounded by a the sum of a geometric series decaying faster than the
contribution of the first sum. More precisely,

N∑

l=0
|l−l0|>l

2/3
0

e−
3
2

log 2 l0 g(l/l0)e
O

“

N

2l

”

+O
“

n
l3

”

= O
(

e−
3
2

log 2 l0
)

(8.43)

what is the order of the error term in (8.42). The error term O
(

n
l3

)
has to be treated

with more care. As this error term is uniform in l, we could have bound from above and
from below the function f by functions of the form

fc(l) = l log 2 +
π2n

3l2
+

cn

l3
(8.44)

for different values of c. Anyway, the critical point of fc is still close enough to l0 not to
modify the global asymptotics (exponential decay exponent and polynomial prefactor),
except unfortunately the constant in front of (8.42). What we get finally is
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Theorem 8.1.

∣
∣Pn| ³ 3nn

1
6 e−

(3π log 2
2

) 2
3 n

1
3

(8.45)

where the symbol ³ means that the ratio between the left hand side and the right hand
side is bounded away from 0 and ∞. To finish the proof, we need to estimate the
contribution of the other eigenvalues.

8.5 Spectral gap

With some more work, we prove that the second eigenvalue of M is comparable either
to the second eigenvalue of the largest block corresponding to successions of +1, either
to the first eigenvalue of the second largest block. More precisely,

Lemma 8.2. If ℓ (resp. ℓ′) is the longest (resp. the second longest) succession of +1 in
the sequence

(
εk), the second eigenvalue is given by

λ2 ≤ max
(

3e
− 4π2

3ℓ2
+O

“

1
ℓ3

”

, 3e
− π2

3ℓ′2 +O
“

1
ℓ′3

”)

(8.46)

We omit the proof of this lemma here.

The contribution of the second eigenvalue is thus given by

B =
1

N

N∑

l=0

P [ℓ = l]
l∑

l′=0

P
[
ℓ′ = l′|ℓ

]
max

(

3e
− 4π2

3l2
+O

“

1
l3

”

, 3e
− π2

3l′2 +O
“

1
l′3

”)n

=
3n

N

N∑

l=0

P [ℓ = l]

l/2−1
∑

l′=0

P
[
ℓ′ = l′|ℓ

]
(

e
− 4π2

3l2
+O

“

1
l3

”

)n

+
3n

N

N∑

l=0

P [ℓ = l]
l∑

l′=l/2

P
[
ℓ′ = l′|ℓ

]
(

e
− π2

3l′2 +O
“

1
l′3

”

)n

The first sum can be rewritten, and bounded by

3n

N

N∑

l=0

P [ℓ = l]
(

3e
− 4π2

3l2
+O

“

1
l3

”)n





l/2−1
∑

l′=0

P
[
ℓ′ = l′|ℓ

]





≤ Cst 3n
N∑

l=0

2−le
− 4nπ2

3l2
+O

“

n
l3

”

= O

(

n1/63ne−(3π log 2)
2
3 n

1
3

)

(8.47)
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which is negligible comparing to A. We invert the order of summation in the second
term

3n

N

N∑

l=0

P [ℓ = l]
l∑

l′=l/2

P
[
ℓ′ = l′|ℓ

]
(

e
− π2

3l′2 +O
“

1
l′3

”

)n

=
3n

N

N∑

l′=0

(

e
− π2

3l′2 +O
“

1
l′3

”

)n
(

2l′−1∑

l=l′
P

[
ℓ = l, ℓ′ = l′

]

)

(8.48)

Using the same kind of arguments as in the proof of lemma 8.1, one deduces that the
probability that ℓ = l and ℓ′ = l′ is bounded by some constant times N2

2l+l′ . Therefore,

the sum over l is O
(

N2

22l′

)

, and hence second sum is bounded by

Cst N 3n
N∑

l′=0

1

22l′

(

e
− π2

3l′2 +O
“

1
l′3

”

)n

= O

(

n1/63ne−(3π log 2)
2
3 n

1
3

)

(8.49)

which is also negligible.

As the contribution of all the other eigenvalues are dominated by that of λ2, on can con-
clude that the leading term in

∣
∣Pn

∣
∣ is really given by A, and that therefore, theorem 8.1

is proven.

8.6 Generalization

One can extend these results to a little broader context. We suppose that the lamps
have not 2 states (on or off ), but p states of different intensity, and that the lamplighter
can either increase or decrease the intensity of the lamp (increasing the intensity when
the lamp is already in the most intensive state means switching it off).

This can be translated in terms of walks on the graph G. The loops on the lamplighter’s
graph with p-state lamps are in bijection with closed walks on G passing through every
rung an algebraic number of times multiple of p. By algebraic number of times, we mean
the number of times from bottom to top, minus the number of times from top to bottom.
Let Pn(p) the set of paths on G of length n having this property.

Our method can be extended to this case: instead of weights ±1 we assign random,
uniformly distributed, complex pth roots of the unity ζk to the oriented edge from

∣
∣k

〉

to
∣
∣k

〉
, and ζk to the backward oriented edge from

∣
∣k

〉
to

∣
∣k

〉
(see figure 8.5).

Let Mω the random weighted adjacency matrix of GN for these weights. We claim that
the cardinal of

∣
∣Pn(p)

∣
∣ is given by

∣
∣Pn(p)

∣
∣ = E

[〈
0
∣
∣Mn

ω

∣
∣0

〉]
= E

[
1

2N
tr

(
Mn

ω

)
]

(8.50)
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1 1

11

k kξ ξ

Figure 8.5: weights on edges of G for the problem with lamps with p states.

One can show that for these weights, proposition 8.1 still holds for this weights, and thus

λ1 = 3 exp
(

− π2

3ℓ2

)

where ℓ is the longest succession of identical symbols in the cyclic

sequence
(
ζk

)
. This is done by applying the previous arguments not on M , but on M2.

As GN is bipartite, M2 preserves the subspaces of functions supported on vertices of only
one color (white or black). The restriction to M2 to white vertices can be interpreted as
the weighted matrix of the graph represented on figure 8.6. The amplitude of weights
of the diagonal edges is maximal when two succesive coefficients ξk and ξk+1 are equal.
The approximation of the first eigenvalue of M2 (that is the approximation for λ2

1) is
obtained by comparing M2 with the square of the discrete Laplacian on the longest
succesion of identic symbols ξk, with suitable boundary conditions.

33

33

1

1

kk−1 k k+1

k k+1k−1 k
ξ   + ξ ξ  + ξ

ξ  + ξξ   + ξ

Figure 8.6: The weighted graph described by the white block of M2, the square of the adjacency matrix
of GN . The module of weights on diagonal edges are maximal when ξk = ξk+1.

The probability that the longest succession of identical symbols is l is

N

(p − 1)pl

(

1 + O

(
N

pl

))

. (8.51)

We apply the same arguments as in the previous sections to compute the asymptotics
of

∣
∣Pn(p)

∣
∣, and we get finally:

Theorem 8.2.
∣
∣Pn(p)

∣
∣ ³ 3nn

1
6 e−

(3π log p
2

) 2
3 n

1
3

(8.52)
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8. Curl-free walks and the lamplighter’s problem

These asymptotics have already been obtained by Revelle [53] for the random walk on
the lamplighter group in a more precise form, but for other generators.

8.7 Paths counting and random Schrödinger operators

This kind of problem is related to the spectral study of discrete Schrödinger opera-
tors with random potential, and more precisely, to a phenomenon called Lifshitz’s tail
describing the behavior of the spectral density at the edge of the spectrum of these
operators. The spectral theory of such operators can be found in [48, 6].

Lifshitz gave heuristic arguments to justify that the integrated spectral density N of a
random Schrödinger operator in dimension d near the bottom edge E0 of the spectrum
would have the following behaviour

log N(E0 + h) ≃ − c

h1/(d+1)
, (8.53)

to be compared to the behaviour of another class of random matrices (operators), the
GUE ensemble, described by the Wigner semi-circle law (3.16). The same behaviour is
expected for every edge of the spectrum.

The proof of this phenomenon has been established rigorously in many examples with
different degrees of precision in the asymptotics. The most common type of result is the
determination of the Lifschitz exponent

lim
h→0

log
∣
∣log N(E0 + h)

∣
∣

log |h| =
1

d + 1
(8.54)

The operator M+
ω on G discussed in the first sections is in fact a discrete Schrödinger

operator with a iid random scalar potential

M+
ω = ∆ + Vω (8.55)

The spectrum of this operator is included in [−3, 3], and the quantities counting the
paths we are interested are the large moments of the spectral measure:

∣
∣Pn

∣
∣ = E

[∫

λndN(λ)

]

(8.56)

Precise asymptotics for the Lifshitz’s tail and Laplace’s method would lead to an ap-
proximation of

∣
∣Pn

∣
∣ for large n.

The method proposed to solve the initial question raised by Richard Kenyon about
the number of curl-free walks on Z2 of a given length is analogous to that used in the
previous sections: assign to each edge e a weight ζe for one direction and ζe for the
other direction, where (ζe) is a sequence of independent random variables uniformly
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8.7. Paths counting and random Schrödinger operators

distributed on U(1). The weighted adjacency operator for these weights is a discrete
Schrödinger operator with random magnetic field in 2 dimensions

(M f)(v) =
∑

w∼v

ζ(v,w)f(w). (8.57)

the phase of ζ playing the role of magnetic potential. The cardinal of the set Qn of
curl-free paths of length n is

∣
∣Qn

∣
∣ = E

[∫

λndN(λ)

]

. (8.58)

The techniques we used in the 1-dimensional case seems quite difficult to apply to this
situation. However, there exist already some results for the Lifshitz’s tail of this opera-
tor [43] stating that the Lifshitz exponent is given by the formula predicted by Lifshitz

lim
h→0

log
∣
∣N(4 − h)

∣
∣

log |h| =
1

3
, (8.59)

implying that

log

∣
∣
∣
∣
log

|Qn|
4n

∣
∣
∣
∣
=

1

4
(8.60)

i.e. that roughly, Qn must be of order 4ne−cn1/4
up to polynomial prefactors. More

precise statements on the behaviour of the spectrum of such operators would lead to full
asymptotics for |Qn|.
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