
HAL Id: tel-00011416
https://theses.hal.science/tel-00011416

Submitted on 18 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolution numerique de problemes de controle optimal
par une methode homotopique simpliciale

Pierre Martinon

To cite this version:
Pierre Martinon. Resolution numerique de problemes de controle optimal par une methode homo-
topique simpliciale. Mathématiques [math]. Institut National Polytechnique de Toulouse - INPT,
2005. Français. �NNT : �. �tel-00011416�

https://theses.hal.science/tel-00011416
https://hal.archives-ouvertes.fr

Numerical resolution of optimal control problems

by a Piecewise Linear continuation method.

Pierre Martinon

November 2005

2

Contents

1 Shooting method and continuation 7

1.1 Principle and first applications 7

1.2 Some convergence results . 20

2 PL continuation - Simplicial method 25

2.1 Simplicial methods principle 25

2.2 Junction homotopy . 32

2.3 Adaptive triangulation . 37

2.4 Solution refining . 51

3 Orbital Transfer problems 55

3.1 Problem statement . 56

3.2 Resolution approach . 59

3.3 Comparison of different integrators 63

3.4 Adaptive triangulation study 72

4 Singular Arcs problems 85

4.1 Problems statement . 86

4.2 Quadratic perturbation . 90

4.3 Discretized BVP approach . 99

4.4 Structured shooting . 109

4.5 Discretized Control formulation 119

4.6 Direct method approach . 124

A Simplicial package overview 131

A.1 Using the Simplicial package 133

A.2 General code structure . 142

B Main options 145

B.1 Problem class . 145

B.2 Labelings . 145

B.3 Integrators . 146

3

4 CONTENTS

C Sample files for some studied problems 151
C.1 Demonstration problem . 151
C.2 Orbital transfer problems . 155
C.3 Optimal harvesting in fishery 158
C.4 Quadratic regulator . 160

Introduction

This thesis work deals with the numerical resolution of optimal control prob-
lems with a low regularity. Indirect methods, based on the Pontryagin’s
Maximum Principle, are known to be a fast and accurate way of treating op-
timal control problems. However, their practical application can encounter
some difficulties, especially the critical choice of the initial point, when the
control structure is bang-bang or presents singular arcs. We handle here
these difficulties with a continuation approach, and we choose more specifi-
cally to use simplicial methods due to their robustness.

We begin in chapter I with a presentation of the general principle of
indirect methods, and more precisely the single shooting, that consists in
transforming the optimal control problem into finding a zero of the asso-
ciated shooting function. This method is illustrated on a simple example,
which allows us to highlight some of the difficulties expected in the case of
a bang-bang structure. We introduce then a continuation approach, whose
broad lines we recall (namely following the zero path of a certain homo-
topy), and pursue the resolution of the previous demonstration problem.
We conclude by recalling some convergence results concerning the continu-
ation, that also hold in the multi-valued case (for singular arcs for instance).

Chapter II is devoted to the description of the simplicial method, whose
main advantage is its low requirements concerning the path to follow. We
recall first the general principal of a simplicial method, then present some
algorithmic points we introduced in this context, such as adaptive meshsize
and solution refining mechanisms.

We focus in chapter III on the study of an orbital transfer problem pro-
vided by the CNES, for which the results tie up with those obtained by a
differential continuation (see [26]). We also compare on this problem sev-
eral variable step integrators, as well as different settings for the adaptive
meshsize mechanism.

In chapter IV we study two singular arcs problems in parallel, aiming
for a better generality of the methods employed. The first phase consists

5

6 CONTENTS

here in gathering sufficient information about the control structure, by the
use of relevant continuations. More precisely, we try to determine both
the number (and localization) of singular arcs, and the nature of remaining
bang-bang arcs. Then we move on to the precise resolution of the problems,
by methods derived from multiple shooting and adapted to the singular arcs
case. To finish with, we present some preliminary numerical results obtained
with a new formulation that considers the discretized control as part of the
unknown (more in the spirit of direct methods).

After the conclusion and future perspectives of this work, we briefly
detail in the appendix the various integrators used, as well as the Simplicial
code, in which we have implemented all the continuations and formulations
used in the numerical experiments.

Chapter 1

Shooting method and

continuation

To begin with, we recall the general principle of the shooting method, which
transforms the original optimal control problem into the resolution of a
nonlinear equation. We then detail the practical application of the shoot-
ing method on a simple demonstration problem, to illustrate some of the
difficulties that can be expected for the problems studied in chapters 3 and
4. These difficulties lead us to use a continuation (or homotopic) approach,
which is detailed later in chapter 2.

1.1 Principle and first applications

1.1.1 Single shooting method

We make here a brief presentation of the single shooting method, which is
part of the indirect methods, and is based on Pontryagin’s Maximum Princi-
ple (we refer readers interested in these methods to [32, 18, 4, 35]). We recall
that direct methods, on the other hand, typically involve the partial or total
discretization of the problem, and then use various approaches (SQP and
interior point techniques for instance) to solve the resulting problem. Direct
methods are thus supposed to be robust, but tend to have a relatively low
precision, and a huge problem size depending on the discretization stepsize
used. This makes these methods ill-suited to some particular cases, such
as the problems studied in chapter 3, which present a bang-bang control
structure with a huge number of commutations.

Single shooting, on the other hand, consists in finding a zero of the shoot-
ing function associated with the original problem. There is no discretization,
even if the method still involves an integration of the system in some way. It
is a fast and high precision method, that does not require any assumptions

7

8 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

on the control structure of the problem.

Yet a major drawback of this class of methods is that they require a good
initial guess: as they typically consist in applying a Quasi-Newton solver to
the shooting function, the convergence radius may be quite small, depending
on the problem. This is especially true when the shooting function has is
not smooth, which is the case for the bang-bang orbital transfers studied in
chapter 3 or the singular arc problems studied in chapter 4. This is why
we use a continuation approach to obtain a suitable initial point, which is
described in chapter 2.

Necessary conditions, PMP and Boundary Value Problem

Notation/Remark: for clarity, the time t will often be omitted in the formu-
las, except in the ambiguous cases.

We consider a general optimal control problem in the Bolza form

(P)

Min g(t0, x(t0), tf , x(tf)) +
∫ tf
t0
l(t, x, u) dt Objective

ẋ = f(t, x, u) Dynamics
u ∈ U Admissible Controls
ψ0(t0, x(t0)) = 0 Initial Conditions
ψ1(tf , x(tf)) = 0 Terminal Conditions

We use here and in all the following the notations: x for the state, u for the
control, U the set of admissible controls, and f for the state dynamics. We
introduce the costate p, of same dimension as the state x, and define the
Hamiltonian by

H(t, x, p, u) = l(t, x, u) + (p|f(t, x, u)).

Remark: we thus assume in all the following that we are in the normal

case, meaning that the costate p0 associated to the integral objective l is non
zero, and can be made equal to 1, by dividing the whole costate p by p0...

The Pontryagin’s Maximum Principle (originally stated in [32]) then states
that, under the assumptions:
• ∃ (x, u) feasible for (P), with x absolutely continuous and u measurable.
• f and l are continuous with respect to u and C1 with respect to t and x.
• g, ψ0, ψ1 are C1 with respect to x.

Let (x, u) be an optimal pair for (P), then

1.1. PRINCIPLE AND FIRST APPLICATIONS 9

(i) ∃ p 6= 0 absolutely continuous such that we have the Hamiltonian system

ẋ = ∂H
∂p

(t, x, p, u)

ṗ = −∂H
∂x

(t, x, p, u)

(ii) u is solution of Minw∈UH(t, x, p, w) ae in [t0, tf].

(iii) “Transversality conditions”: ∃ (µ0, µ1) such that

(TC)

ψ0(t0, x(t0)) = 0

p(t0) = − ∂Φ
∂x0

(t0, x(t0), tf , x(tf), µ0, µ1)

ψ1(tf , x(tf)) = 0

p(tf) = ∂Φ
∂xf

(t0, x(t0), tf , x(tf), µ0, µ1)

with

Φ : (t0, x0, tf , xf , µ0, µ1) 7→ g(t0, x0, tf , xf)+(ψ0(t0, x0)|µ0)+(ψ1(tf , xf)|µ1)

Remark: this explains why indirect methods are sometimes referred to as
necessary condition methods.

Now we denote y = (x, p) and ϕ the state-costate dynamics derived from
the Hamiltonian system. Then if Γ denotes the set valued map of optimal
controls, then solving (P) is equivalent to solving the following Boundary
Value Problem1

(BV P)

ẏ ∈ Φ(y) = ϕ(y,Γ(y)) ae in [t0, tf]
c0(t0, y(t0)) = 0 Boundary Conditions at t0
c1(tf , y(tf)) = 0 Boundary Conditions at tf

Note: these Boundary Conditions c0 and c1 correspond to the Transver-
sality Conditions mentioned above, that contain the Initial and Terminal
conditions of (P) in addition to the constraints on the costate p.

Initial Value Problem and Shooting method

We assume here that the expression of the optimal control given by the
necessary conditions Γ is actually a function, denoted γ. It is possible to
integrate y = (x, p) if we set the value of y(t0), and we then obtain the
following Initial Value Problem

(IV P)

{

ẏ = Φ(y) = ϕ(y, γ(y)) ae in [t0, tf]
y(t0) = β Initial V alue

1or more precisely, Two Point Boundary Value Problem (TPBV P), as the boundary
conditions apply only at 0 and tf .

10 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

We introduce now an application called the shooting function, which
basically maps the initial value β to the value of the Boundary conditions at
tf for the corresponding solution of (IV P). In practice, the initial conditions
ψ0 of the problem (P) already give a part of y(t0), so the unknown of the
shooting function is reduced to the “missing” part, that we denote z. A
frequent situation is when the initial conditions determine the initial state
x(t0), therefore z is actually the initial costate p(t0). Then the value of the
shooting function is given by the boundary conditions at tf for the solution
ŷ of (IVP) corresponding to y(t0) = [x0, z]

(Shooting function) S : z 7→ c1(ŷ(tf)).

Finding a zero of the shooting function S is then equivalent to the resolu-
tion of (BV P), and therefore also gives a solution of (P). The “shooting
method” thus consists in solving the equation S(z) = 0.

Remark: we do not consider here the case of state constraints, which
raise particular difficulties with indirect methods (see for instance [12], or
[28], where several formulations of the Maximum Principle for the state
constraints are described). However, this is an interesting class of problems,
that we plan to study in the future.

A first simple example: bang-bang control

We present now a first simple example to illustrate the practical application
of the shooting method. Moreover, this demonstration problem allows us
to highlight some of the difficulties that can be expected when dealing with
a bang-bang control structure, which is the case for the problems studied
later in chapter 3.

1.1.2 Problem statement

Let us consider the following optimal control problem:

(P)

Min
∫ 2
0 |u|dt

ẋ1 = x2

ẋ2 = u
|u| ≤ 1
x(0) = (0, 0)
x(2) = (0.5, 0)

The Hamiltonian is defined by

H : (t, x, p, u) 7→ |u|+ p1 x2 + p2 u

1.1. PRINCIPLE AND FIRST APPLICATIONS 11

and the optimal control by

u = −sgn(p2) if |p2| > 1
u = 0 if |p2| < 1
u = −α p2 with α ∈ [0, 1] otherwise.

So the control is discontinuous, with a bang-bang structure.
If we define the corresponding switching function ψ by

ψ : (t, x, p) 7→ 1− |p2|,
then the commutations of the bang-bang structure are the zeros of ψ.

We have the Boundary Value Problem

(BV P)

ẋ1 = x2

ẋ2 = u
ṗ1 = 0
ṗ2 = −p1

x(0) = (0, 0)
x(2) = (0.5, 0)
p(0) free
p(2) free

and define the shooting function

S(z) = x̂(2)− (0.5, 0)

where x̂ is the state corresponding to the integration of the Initial Value
Problem

(IV P)

ẋ1 = x2

ẋ2 = u
ṗ1 = 0
ṗ2 = −p1

x(0) = (0, 0)
p(0) = z.

If we examine the possible values of the initial costate p(0) = z ∈ R2,
we can see that the costate dynamics and optimal control expression lead
to 9 different possible optimal control structures:

12 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

Control structures corresponding to the value of p(0) ∈ R2

If we represent the shooting function S, we can recognize these 9 domains

−6

−4

−2

0

2

−6−4−202

−2

−1

0

1

z(1)

S(z), component 1

z(2)

−6−4−202

−6
−4

−2
0

2

−2

−1

0

1

2

S(z), component 2

z(1)z(2)

−6−4−202−6 −4 −2 0 2

0.5

1

1.5

2

2.5

3

z(1)

|S(z)|

z(2)

Shooting function for Problem (P)

It must be pointed out that S is not differentiable on the boundaries of these
domains, and is not even defined in (0,−1) and (0, 1). Thus difficulties are
to be expected when trying to solve S(z) = 0 with a Newton-like algorithm,
especially if the initial guess does not lie in the correct domain. And actually,
even in this very simple case, trying to solve directly S(z) = 0 from a random
initial point is non trivial. We try below the single shooting method, with an
initial point in each of the 9 domains. We indicate whether the convergence
is attained (“CV” with the number of shooting function calls in parentheses)
or not (-).

p(0) = (0, 2) p(0) = (1, 2) p(0) = (2, 2)
- - CV(61)

p(0) = (−1, 0) p(0) = (0, 0) p(0) = (1, 0)
CV(30) - CV(63)

p(0) = (−2,−2) p(0) = (−1,−2) p(0) = (0,−2)
CV(39) CV(26) -

Single shooting convergence results for various initializations

Of course, here there are only a few regions to explore, and convergence
may even be attained from an initial point in the “wrong” region (at an
increased iteration cost), but this is due to the simplicity of problem (P).

1.1. PRINCIPLE AND FIRST APPLICATIONS 13

Nevertheless, we observe that the single shooting already fails for 4 attempts
out of 9. So we understand that it is not realistic to try to solve difficult
problems directly by single shooting. This is why we resort to a continuation
approach to find a suitable initial point.

1.1.3 Continuation approach

As we have seen, the successful application of the shooting method can
sometimes be quite tricky, as it tends to be extremely sensitive to the ini-
tial guess. This is due to the fact that they basically consist in applying a
quasi-Newton method to find a zero of the shooting function. Depending on
the problem, this shooting function can be highly nonlinear or non smooth,
thus leading to a very small convergence radius for the shooting method in
practice. This is in particular the case for problems with a bang-bang or
singular control structure, the shooting function being a multi-valued map
in the latter case.

A possible way to overcome these difficulties is to use a continuation
approach to find a suitable initial point for the shooting method. Basically,
the principle of a continuation (or homotopic) method is to solve a difficult
problem by starting from the known solution of a somewhat related, but
easier problem. By related, we mean that there must exist an application
H, called a homotopy, with the right properties, connecting the two prob-
lems.

Notation: in all the following, we keep the notation H for the homotopy,
while H denotes the Hamiltonian.

Definition 1 Let r and f be two applications from Rn into Rn. We call
an homotopy connecting r and f any application H:

H : Ω× [0, 1] → Rn

(z, λ) 7→ H(z, λ)

with Ω a bounded open set in Rn and H continuous, so that

H(·, 0) = r and H(·, 1) = f

The first task is thus to find such a proper application H for our op-
timal control problems. To do this, we choose to introduce the homotopic
parameter λ in the criterion of the original problem. This parameterization
is done such that the case λ = 1 corresponds to the unmodified problem,
and that the problem for λ = 0 is much more regular and can be directly

14 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

solved by single shooting. We then obtain a family of boundary value prob-
lems (BV P)λ parametrized by λ ∈ [0, 1], and we can use the corresponding
shooting functions (Sλ) for the continuation, by defining the homotopy

H : (z, λ) 7→ Sλ(z).

Now, let us assume that we have found a solution z0 of the starting
problem (BV P)0, ie a zero of H(·, 0). The principle of the continuation
method is to start from this solution at λ = 0 to attain λ = 1, where we
have a solution of the original problem.

Discrete continuation

The first idea is naturally to try to solve a sequence of problems (BV P)λk
,

with a sequence (λk) ranging from 0 to 1. Each intermediate problem then
uses the solution of the previous one as an initial guess. However, finding
a suitable sequence (λk) is often problematic in practice, as the question of
setting the step in λ is left to the experimenter, and often implies a lot of
trial-and-error tests. This is why one has in many cases to resort to a full
path following method.

Predictor Corrector and Piecewise Linear methods

Contrary to the discrete continuation approach described above, full path
following methods try to follow the zero path entirely, and can be clas-
sified into two broad families, the Predictor Corrector (PC) methods and
the Piecewise Linear (PL) continuation methods. Extensive documentation
concerning both classes of methods can be found in the reference works by
E.Allgower and K.Georg, see [1, 2] in particular.

Predictor Corrector (or “differential”) continuation methods follow the
zero path as a differentiable curve. They are generally fast, as the step-
size along the homotopic parameter λ is computed automatically, and the
path following can therefore take a very small number of steps to converge
sometimes. In return, differential continuation requires some smoothness
properties of the path (typically C2-differentiability and a Jacobian of max-
imal rank). Also, the computation of the Jacobian of the homotopy can
raise some practical difficulties, especially in our case where H is a shooting
function that requires an IVP integration. An efficient PC method is im-
plemented for instance in the package HOMPACK by Watson ([38]), that
was used by T.Haberkorn to solve the family of orbital transfer problems
studied in chapter 3, see [26].

Piecewise Linear (or “simplicial”) methods, on the other hand, actually
follow a piecewise linear approximation of the zero path, and are supposed

1.1. PRINCIPLE AND FIRST APPLICATIONS 15

to be more robust, though slower, than Predictor Corrector methods. This
work is based on the application of these methods to optimal control prob-
lems with an expected low regularity, namely with bang-bang and singular
arc control structure. We recall in chapter 2 the general principle of these
simplicial methods, and describe some of the improvements we have tried
to bring in this particular context.

We illustrate now on the previous simple example the continuation method
used to obtain a reliable initial point.

Back to the simple example: continuation on the objective

We parametrize here the objective by λ ∈ [0, 1]:

Jλ =

∫ 2

0
λ|u|+ (1− λ)|u|2dt

This gives a family of problems (Pλ) such that (P1) is our original prob-
lem (P). Applying the PMP to (Pλ) gives the state and costate dynamics
(unchanged)

ϕ

ẋ1(t) = x2(t)
ẋ2(t) = u(t)
ṗ1(t) = 0
ṗ2(t) = −p1(t)

and the expression of the optimal control

λ < 1
if |p2(t)| ≤ λ then u∗(t) = 0
if |p2(t)| > 2− λ then u∗(t) = −sgn(p2(t))

else u∗(t) = −sgn(p2(t))
|p2(t)|−λ
2(1−λ)

λ = 1
if |p2(t)| < 1 then u∗(t) = 0

else u∗(t) = −sgn(p2(t))

with the boundary conditions on the costate p:
- p(0) is free (thus z = p(0)).
- p(2) is free, as x(2) is fixed.

If we note Sλ the shooting function associated to (Pλ), our aim is now
to follow a zero path of the homotopy

H : (z, λ) 7→ Sλ(z)

from λ = 0 to λ = 1. For λ = 0 the problem (P0) is much more regular, as we
can see that the optimal control is continuous, instead of the discontinuous,
bang-bang structure for λ = 1. Then the corresponding shooting function
S0 is also more regular, as shown on the graphs below.

16 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

−6

−4

−2

0

2

−6−4−202

−2

−1

0

1

z(1)

S(z), component 1

z(2)

−6
−4

−2
0

2

−6−4−202

−2

−1

0

1

2

z(1)

S(z), component 2

z(2)

−6
−4

−2
0

2

−6−4−202

0.5

1

1.5

2

2.5

3

z(1)

|S(z)|

z(2)

Shooting function for (P0) at λ = 0

Indeed, for (P0) the single shooting method converges for any of the 9 ini-
tializations tried previously, and gives the following solution:

0 0.5 1 1.5
−1

−0.5

0

0.5

1
Control u1

0 0.5 1 1.5
−0.5

0

0.5

1

Time

P
si

Switching function ψ

0 1
0

0.1

0.2

0.3

0.4

0.5

0.6
State x1

0 1
0

0.1

0.2

0.3

0.4

0.5
State x2

0 1
−2.5

−2

−1.5

−1

−0.5
Costate p1

0 1
−2

−1

0

1

2
Costate p2

Solution for (P0) - z∗ = (−1.5,−1.5)

Now all we have to do is to perform the path following from λ = 0 to
λ = 1, which is done by the simplicial algorithm detailed in chapter 2. We
represent here the two components of the zero path (that happen in this
simple example to be the same, which is of course not the case in general).

1.1. PRINCIPLE AND FIRST APPLICATIONS 17

−1.6 −1.5 −1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

La
m

bd
a

Path component 1
−1.6 −1.5 −1.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Path component 2

La
m

bd
a

Zero path for problem (P)

Now, if we take the solution z1 at the end of the path (for λ = 1) as
initial point, the single shooting converges immediately. Here is the solution
with the commutations when the switching function ψ = 1− |p2| vanishes.

0 0.5 1 1.5
−1

−0.5

0

0.5

1
U1

0 0.5 1 1.5
−0.5

0

0.5

1

Time

P
si

SWITCHING FUNCTION

0 1
0

0.2

0.4

0.6
X1

0 1
0

0.1

0.2

0.3
X2

0 1
−2.5

−2

−1.5

−1

−0.5

0
P1

0 1
−2

−1

0

1

2
P2

Solution for problem (P) - z∗ = (−
√

2,−
√

2).

A second simple example: singular arcs

We consider here a second simple example, to illustrate the case of singular
arcs, which is studied later in chapter 4. Let us define the problem family

(Pλ)

Min
∫ 2
0 λ|u(t)|+ (1− λ)u2(t)dt

ẋ = u
|u| ≤ 1 on [0, 2]
x(0) = 0
x(2) = 0.5

18 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

The application of the Maximum Principle gives the expression of the opti-
mal control

λ < 1
if |p(t)| ≤ λ then u∗(t) = 0
if |p(t)| > 2− λ then u∗(t) = −sgn(p(t))

else u∗(t) = −sgn(p(t)) |p(t)|−λ
2(1−λ)

λ = 1
if |p(t)| < 1 then u∗(t) = 0
else if |p(t)| > 1 then u∗(t) = −sgn(p(t))
else u(t) = −α(t) sgn(p(t)) , α(t) ∈ [0, 1].

We notice that when |p(t)| = 1, the optimal control is multi valued. If this
occurs on a non-trivial interval, we have a singular arc.

We have the Boundary Value Problem

(BV Pλ)

ẋ(t) = u(t)
ṗ(t) = 0
x(0) = 0
x(2) = 0.5
p(0) free
p(2) free

and define the shooting function S:

Sλ(z) = x̂(2) − 0.5

where x̂ is solution of the Initial Value Problem

(IV Pλ)

ẋ(t) = u(t)
ṗ(t) = 0
x(0) = 0
p(0) = z.

We set the homotopy H : (z, λ) 7→ Sλ(z), as usual. For λ = 0, the
solution corresponds to a constant control u = 0.25, with z∗ = p∗(0) = −0.5.
For λ = 1, any non negative control that satisfies

∫ 2
0 u(t)dt = 0.5 is optimal,

which corresponds to a singular arc over [0, 2], with z∗ = p∗(0) = −1. We
draw here the shooting function S.

1.1. PRINCIPLE AND FIRST APPLICATIONS 19

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2 0

0.2

0.4

0.6

0.8

1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

lambda

dx/dt=u(t);x(0)=0; x(2)=0.5

z

S
(z

,la
m

bd
a)

Shooting function for a simple singular arc example

As we can see, S is not defined at the solution for (z, λ) = (−1, 1). If we
try a differential continuation to follow the path, the algorithm stops just
before λ = 1, which is not surprising. A simplicial method, on the other
hand, actually converges to the correct solution z∗ at λ = 1:

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LA
M

B
D

A

Z=P(0)

Path following for a simple singular arc example

20 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

1.2 Some convergence results

1.2.1 Hamiltonian minimization properties

We begin with some results concerning the Hamiltonian minimization, that
were presented by J.Gergaud in [24] (see also [29]).

Notations: for the sake of brevity, we often use in the following the nota-
tion y = (x, p), with y of dimension n (typically twice the state dimension).
We also denote by H the Hamiltonian, the standard capital H being reserved
for the homotopy used in the continuation.

We first recall a standard result:

Theorem 1 Assume that U ⊂ Rm is a convex compact set whose interior
is nonempty, and that the Hamiltonian function H : [a, b] ×Rn × U → R
is continuous and convex with respect to the control u. We denote Γ(t, x, p)
the set of solutions of minu∈U H(t, x, p, u) Then Γ is a non empty compact
convex valued map.

And the following definitions:

Definition 2 A set valued map F : X → Y is upper semi continuous (usc)
(in the sense of Berge, [8] page 114) at x0 iff for all open subset O of Y
containing F (x0), there exists a neighborhood U of x0 such that F (U) ⊂ O.
F is upper semi continuous iff F is usc at every point in X.

Definition 3 A set valued map F : X → Y is lower semi continuous (lsc)
at x0 iff for all y0 ∈ F (x0) and all sequence (xk) that converges to x0, there
exists a sequence (yk), yk ∈ F (xk) that converges to y0. F is lower semi
continuous iff F is lsc at every point in X.

Definition 4 We call proper function any function with real values that
never takes the value −∞ and is not identically equal to +∞.

Definition 5 A function f : Rm → R is inf-compact (in the sense of [33])
iff

∀(y, a) ∈ Rm ×R, {u ∈ Rm : f(u)− (u|y) ≤ a} is compact.

(R is the extended real line and (·|·) stands for the usual inner product in
Rm.)

Lemma 1 A compact valued map G is usc if and only if for all sequence
(xk) that converges to x, (G(xk)) converges to G(x) according to
∀ε > 0, ∃k0 > 0 such that ∀k > k0, G(xk) ⊂ G(x) + ε B(0, 1).2

2B(0, 1) stands for the closed unit ball of center 0 and radius 1.

1.2. SOME CONVERGENCE RESULTS 21

Proof. see [30] page 66.

Lemma 2 Let (fk)k∈N be a sequence of proper convex lower-semicontinuous
functions defined over Rm. Under the following assumptions
(i) (fk)k∈N converges point-wise to f
(ii) int(domf) 6= ∅
(iii) f is inf-compact
Then,

lim
k→∞

inf
u∈Rm

fk(u) = inf
u∈Rm

f(u)

and, ∀ε > 0, there is k0 ∈ N such that

argminu∈Rm fk(u) ⊂ argminu∈Rm f(u) + ε B(0, 1) ∀k ≥ k0.

Proof. see [33], page I.3.54.

Theorem 2 Consider the same hypotheses as in Theorem 1.
Then Γ has the following convergence property:
If (tk, xk, pk) is a sequence that converges to (t, x, p) then
(i) infu∈Rm H(tk, xk, pk, u)→ infu∈Rm H(t, x, p, u) when k → +∞
(ii) ∀ε > 0, ∃k0 > 0 such that ∀k > k0, Γ(tk, xk, pk) ⊂ Γ(t, x, p) + ε B(0, 1).

Proof. Let (tk, xk, pk) be a sequence that converges to (t, x, p).
We note fk(u) = H(tk, xk, pk, u) + δ(u/U) and f(u) = H(t, x, p, u) + δ(u/U)
(where δ(u/U) = 0 if u ∈ U, and+∞ if u 6∈ U).
For the problems studied in the following, it is clear from the expression of
the Hamiltonian (see below) that the (fk) are convex and lower-semicontinuous.
Let us verify the assumptions of Lemma 2:
(i) if u 6∈ U then fk(u) = f(u) = +∞ ∀k
if u ∈ U then fk(u) = H(tk, xk, pk, u), and as H is continuous we have
H(tk, xk, pk, u)→H(t, x, p, u), so fk(u)→ f(u).
(ii) int(domf) = int(U) 6= ∅.
(iii) Let be v ∈ Rm, a ∈ R, then {u |H(t, x, p, u) + δ(u/U) − (u|v) ≤ a} =
U ∩ {u |H(t, x, p, u)− (u|v) ≤ a}. This is a closed subset of Rm included in
U compact, which is therefore compact. This gives the inf-compactness of
f .
Now Lemma 2 proves the theorem.

Corollary 1 Consider the same hypotheses as in Theorem 1.
Then Γ is upper-semicontinuous.

Proof. Theorem 1, Lemma 1 and Theorem 2 give this result.

Remark: In the case where H is strictly convex, we then have the well-
known property (see for instance [23](Theorem 6.1 p.75) and [10]) that u∗

is a continuous function (as Γ is then a continuous function).

22 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

1.2.2 Convergence properties

The following results were presented by J.Gergaud in [15], and are primarily
derived from the books [5] by J.P. Aubin and A. Cellina, and [22] by A.F.
Filippov, whose notations we will keep.

Notations:
- let K ⊂ Rn, co K denotes the closed convex hull of K
- let M ⊂ Rn, M δ = {m such that d(m,M) ≤ δ}

We recall here the definition of a δ-solution as in [22] (page 76).

Definition 6 A function y is called a δ-solution of ẏ(t) ∈ F (t, y(t)), with
F : [a, b] ×Rn → Rn an upper-semicontinuous set valued map, if over an
interval [a, b] y is absolutely continuous and

ẏ(t) ∈ Fδ(t, y(t)) = [co F (tδ, yδ)]δ

where
F (tδ , yδ) = ∪s∈tδ ,z∈yδ F (s, z).

Lemma 3 Let (yk) be a sequence of ACn([a, b]) (AC stands for absolutely
continuous) such that:
(i) ∀t ∈ [a, b], {yk(t)}k is relatively compact.
(ii) ∃l such that |ẏk(t)| ≤ l almost everywhere in [a, b].
Then there exists a subsequence still noted (yk) that converges uniformly to
an absolutely continuous function y : [a, b]→ Rn, and for which the sequence
(ẏk) converges weakly-* to ẏ in L∞

n ([a, b]).

Proof. The proof follows the principle of the demonstration of Theorem
4, page 14-15 in [5]. The sequence (yk) is equicontinuous as

|yk(t
′)− yk(t

′′)| =
∫ t′′

t′
ẏk(t) dt ≤ l|t′ − t′′|.

The Arzelá-Ascoli theorem implies the existence of a subsequence, still noted
(yk), that converges uniformly to y in Cn([a, b]). Moreover, ẏk ∈ B(0, l) ⊂
L∞

n ([a, b]), and L∞
n ([a, b]) is the dual of L1

n([a, b]). Thus the Alaoglu theorem
implies that this closed ball is weak-* compact. As L1

n([a, b]) is separable this
closed ball is metrizable for the weak-* topology (cf [11]). Then there exists
a subsequence, still noted (ẏk), that converges weakly-* to z in L∞

n ([a, b]).

We now have to prove that y is absolutely continuous and that ẏ = z. First,
(yk) is absolutely continuous, thus

yk(t
′)− yk(t

′′) =

∫ t′′

t′
ẏk(s) ds (∗)

1.2. SOME CONVERGENCE RESULTS 23

(yk) converges (uniformly) to y, so the left hand side converges to y(t′) −
y(t′′). As (ẏk) converges weakly-* to z, for all components i we have

< 1, ẏk,i >L1,L∞=

∫ b

a

ẏk,i(s)ds→< 1, zi >L1,L∞=

∫ b

a

zi(s)ds

(where 1 is the constant map equal to 1). So the right hand side of (*)

converges to
∫ t′′

t′
z(s)ds. We have then

y(t′)− y(t′′) =

∫ t′′

t′
z(s)ds

with z in L∞
n ([a, b]), thus in L1

n([a, b]). This means that y is absolutely
continuous and that ẏ(t) = z(t) almost everywhere.

Theorem 3 Let (yk) be a sequence of ACn([a, b]) that converges to y and
satisfies ẏk(t) ∈ K for all k and t, with K compact. Then y is absolutely
continuous and ẏk(t) ∈ co K for all t.

Proof. The proof is based on Filippov’s Lemma 13, page 64 of [22].

Theorem 4 Let F be a non empty compact convex valued map, defined on
an open set Ω ⊂ Rn+1. Let (yk) be a sequence of δk-solutions defined on
[a, b] that converges uniformly to y : [a, b] → Rn when δk → 0, and such
that the graph of y is in Ω. Then y is a solution of the differential inclusion
ẏ(t) ∈ F (t, y(t)).

Proof. see Filippov’s Lemma 1, page 76 of [22]

Lemma 4 Let ϕ : Ω × [0, 1] → Rn, with Ω an open subset of Rn, be a set
valued map verifying
(i) ϕ is upper-semicontinuous and non empty compact convex valued.
(ii) ϕλ = ϕ(·, λ) is a usual function and is piecewise − C 1 for 0 ≤ λ < 1.
Let us assume that the solutions of ẏλ(t) = ϕλ(y(t)) remain in a fixed com-
pact K and are defined on an interval [0, tf]. Then yλ is a δ-solution of the
differential inclusion ẏ(t) ∈ ϕ(y(t), 1), and δ tends to 0 when λ→ 1.

Proof. ϕ is upper-semicontinuous at (y∗, 1) for all (y∗, 1) ∈ K, thus for
all ε = δ, there exists η such that for all |y−y∗| < ηy∗ < δ, |λ−1| < ηy∗ < δ,
we have ϕλ(y, λ) ∈ ϕ(y∗, 1)ε.

ThusK ⊂ ∪y∗∈K B(y∗, ηy∗) and asK is compact, we haveK ⊂ ∪q
i=1 B(yi, ηi).

∀ε = δ,∀yi,∃ηi |y − yi| < ηi < δ and |λ− 1| < ηi < δ, ϕλ(y) ∈ ϕ(yi, 1)
ε.

For all y ∈ K, there exists yi such that y ∈ B(yi, ηi) and thus

ϕλ(y) ∈ (ϕ(yi, 1))
ε ⊂ (ϕ(yη

i , 1))
ε ⊂ (ϕ(yδ , 1))ε.

24 CHAPTER 1. SHOOTING METHOD AND CONTINUATION

Then for all λ such that |λ− 1| < η and for all y ∈ K,
we have ϕλ(y) ∈ (ϕ(yδ , 1))δ .

Theorem 5 Let us assume that the solutions of (BV P)λ remain in a fixed
compact subset of [0, tf]×K, K ⊂ Ω, with Ω an open subset of Rn. Then
from any sequence (yλk

) of solutions of (BV P)λk
, such that λk → 1 when

k → +∞, we can extract a subsequence (yk) verifying:
(i) (yk) converges uniformly to y solution of (BV P)1.
(ii) (ẏk) converges weakly-* to ẏ in L∞

n ([0, tf]).

Proof. ϕ(y, λ) is usc3 thus ϕ(K, [1 − ε, 1]) is compact. There exists l
such that |ẏλ(t)| < l for λ ∈ [1 − ε, 1]. The yλ are absolutely continuous,
and Lemma 3 says that we can extract a subsequence (yk) that converges
uniformly to y, and such that (ẏk) converges weakly-* to ẏ in L∞

n ([0, tf]).
As per Lemma 4, (yk) is a δk-solution. ϕ(y, 1) is non empty compact convex
valued, so Theorem 3 says that y is a solution of the differential inclu-
sion ẏ(t) ∈ ϕ(y(t), 1). Initial and terminal conditions can be written as
h0(y(0)) = 0 and hf (y(tf)) = 0 with h0 and hf continuous. The uniform
convergence of (yk) implies that y verifies the boundary conditions, thus y
is a solution of (BV P)1.

Corollary 2 Under the hypotheses of Theorem 5, assume that ẋ = f(t, x, u)
provides an expression of the control of the form u = S(t, x)+R(t, x)ẋ, with
R and S continuous and R linear with respect to x. Consider the subsequence
(yk) = (xk, pk) from Theorem 5, and denote (uk) = S(t, xk) + R(t, xk)ẋk.
Then (uk) converges weakly-* in L∞

n ([0, tf]).

Proof. see [17], proof of Proposition 3.2, page 551-552.

It should be noted that Theorem 5 and Corollary 2 only give the conver-
gence of a subsequence from the sequence of solutions (yλk

), which comes
from the Arzelá-Ascoli theorem in Lemma 3. As far as we know, under
the chosen assumptions we cannot state the convergence of the sequence of
solutions itself.

3usc stands for upper-semicontinuous

Chapter 2

PL continuation - Simplicial

method

We recall here the general principle of simplicial algorithms, and then detail
some algorithmic points we have introduced as part of this work. We would
like to emphasize that we have tried to stay coherent with the problems
studied, characterized by a low regularity. We want in particular to keep the
robustness of the simplicial methods, therefore the modifications introduced
should not require additional regularity assumptions on the path (which
probably would not be satisfied in practice anyway). This is also why we
use at the core a basic version of the simplicial algorithm, and have not
considered some existing improvements (such as the mixing of Newton steps
for instance).

2.1 Simplicial methods principle

As mentioned earlier, readers interested in Predictor Corrector and Piece-
wise Linear continuation methods should refer in particular to E.Allgower
and K.Georg [1, 2, 3], as well as M.Todd [36, 37] for simplicial methods more
specifically, to mention only a few.

Piecewise Linear continuation methods actually follow the zero path of
the homotopy H by building a piecewise linear approximation of H, hence
their name. This approximation is built over a certain subdivision of the
space, most often in a particular way called a triangulation in simplices. The
popular use of this kind of subdivision has led PL continuation methods to
be often referred to as “simplicial methods”.

The main advantage of these methods is that they put extremely low
requirements on the homotopy H. As no derivatives are used, the homotopy
is not supposed to be differentiable, unlike with PC methods. Continuity is

25

26 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

in fact sufficient, and should not even be necessary in all cases. Also, this
class of methods can be more easily adapted to the case of a multi-valued
homotopy, which is interesting as we plan to study singular arcs problems
that fall into this category. The main disadvantage of these methods is that
they are quite slower than Predictor-Corrector methods, when the latter
converge of course.

Simplices and triangulations

In the following we consider an homotopy H : Rn+1 → Rn. Let us begin
with some useful definitions.

Definition 7 (Simplices and faces) A simplex is the convex hull of n+2
affinely independent points (called the vertices) in Rn+1, while a k-face of
a simplex is the convex hull of k vertices of the simplex (note: k is typically
omitted for (n+ 1)-faces, which are just called faces).

Definition 8 (Triangulation) A triangulation is a countable family T
of simplices of Rn+1 verifying:
• The intersection of two simplices of T is either a face or empty
• T is locally finite (a compact subset of Rn+1 meets finitely many simplices).

In practice, a triangulation is described by the form of its simplices
(meaning the relations between the vertices), and also by its “pivoting rules”,
which tell how to build a simplex adjacent to a given one.

The following graphs show two famous triangulations, the K1 from Fre-
undenthal, and the “Union Jack” J1 from Todd. These are “uniform” trian-
gulations, meaning that the simplices keep the same size all along the space,
unlike some “refining” triangulations shown below.

Uniform triangulations K1 and J1 of R× [0, 1]

These two triangulations are very easy to manipulate, as the pivoting rules
can be expressed as a mere geometric reflexion (see [2] 13.3 for instance).
This simplicity is the reason why we have naturally began the numerical
experiments with these two triangulations, and we have found their overall
behaviour quite robust. Of course, several other, more sophisticated trian-
gulations have been developed, however their use is a bit more complicated.

2.1. SIMPLICIAL METHODS PRINCIPLE 27

For instance, we have made some tests the D1 described by Dang in [21]
(which looks same as the J1 in dimension 2, but you can see the differences
on the graphs page 29), that have not been quite convincing.

Then there are also some “refining” triangulations, in which the size of
the simplices decreases when getting nearer to the convergence. The idea
behind these is to combine the advantages of speed at the beginning of the
zero path, where things are supposed to go smoothly, and precision at the
convergence, to obtain an accurate solution.

Refining triangulations: J4 and J3 (of R× [0, 1[for the latter)

Remark: The graph above shows that for the J3 triangulation the size
of the simplices tends to zero as the homotopic parameter tends to the con-
vergence value (for instance 1) but never actually reaches it. A particular
stopping criterion is used in this case, namely when the homotopic parame-
ter crosses a certain threshold 1− ε, with ε = 10−6 or 10−9 for instance.

However, we have observed that using these more evolved triangulations
can be problematic in practice. We have noticed that they often encounter
difficulties either at the beginning (especially for J3 whose starting simplices
are too large to initiate the path following properly), or near the convergence,
where the simplices actually become to small. This is probably due to the
particular nature of the problems we study: our homotopies are shooting
functions, which can be highly nonlinear even at the beginning of the con-
tinuation, therefore the path is not that easy to follow. Moreover, as the
situation is often problematic at λ = 1, the use of small simplices tends to
make the algorithm to stagger on difficulties when coming near the conver-
gence. Besides, the primary objective of the continuation approach is for us
not to solve the problem precisely, but just to provide a good initial point
for the shooting method. So the whole point of using small simplices to have
a more precise solution is not always relevant in our case anyway.

Labeling and zero path following

In addition to the choice of the triangulation, we need a relation between the
homotopy and the vertices of the simplices. This is done by “labeling” the
vertices with respect to the homotopy value at these points. We use here the

28 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

standard vector labeling described below, but there are other possibilities,
like for instance the integer labeling described in Appendix B.2, page 145.

Definition 9 (Labeling) We call labeling a map l that associates a value
to the vertices vi of a simplex. We label here the simplices by the homotopy
H: l(vi) = H(zi, λi), where vi = (zi, λi).

An affine interpolation on the vertices thus gives a PL approximation of
the homotopy H over the triangulation T . We denote HT this approxima-
tion, whose zero path we want to follow. We recall for this the notion of
“completely labeled face”.

Definition 10 (Completely labeled face) A face [v1, .., vn+1] of a sim-
plex is completely labeled if and only if it contains a solution vε of the equa-
tion HT (v) = ~ε for all sufficiently small ε > 0 (where ~ε = (ε, .., εn)).

There exists a more implementable way of characterizing a completely
labeled face, given for instance in [2], chapter 12.3, page 159.

Definition 11 (Labeling matrix) The labeling matrix L of a face [v1, .., vn+1]
is defined by

L =

(

1 . . . 1
H(v1) . . . H(vn+1)

)

.

Then we have the following property.

Lemma 5 A face [v1, .., vn+1] is completely labeled if and only if its labeling
matrix L is nonsingular and L−1 is lexicographically positive,
ie the first non-vanishing entry in any row of L−1 is positive.

Proof. see [2], proposition 12.3.3, page 159-160

Now we recall the fundamental property on which is based the core of a
simplicial algorithm.

Lemma 6 Each simplex possesses either zero or exactly two completely la-
beled faces (being called a transverse simplex in the latter case).

Proof. see [2], chapter 12.4, page 163-165.

The constructive proof of this property, which gives the other completely
labeled face of a simplex that already has a known one, is often referred to as
PL step, linear programming step, or lexicographic test. Once again, we refer
the reader to [2] (pp 163-165), or [24] (pp 69-70), for a detailed description
of these mechanisms. Then per the triangulation properties, there exists a
unique transverse simplex that shares this second completely labeled face,
that can be determined via the pivoting rules specific to the triangulation.

2.1. SIMPLICIAL METHODS PRINCIPLE 29

A simplicial algorithm thus basically follows a sequence of transverse
simplices, from a given first transverse simplex with a completely labeled
face at λ = 0, to a final simplex with a completely labeled face at λ = 1 (or
1− ε for some refining triangulations that never reach 1, such as J3), which
contains an approximate solution of H(z, 1) = 0.

x*

x0

followed zero path
zero of homotopy PL approximation
completely labeled face

transverse simplex

Schematic Zero Path following for K1 triangulation in dimension 2

Sample path followings

We illustrate here the path following for the simple problem (P) described
in chapter 1, for various triangulations (whose complete description can be
found for instance in [2, 37, 21]).

Triangulation Simplices Solution Final norm

K1(10
−1) 30 (-1.418,-1.417) 2.13 10−3

J1(10
−1) 33 (-1.418,-1.417) 2.13 10−3

D1(10
−1) 32 (-1.418,-1.417) 1.94 10−3

J3(10
−1) 68 (-1.414,-1.414) 7.17 10−12

J4(10
−1) 513 (-1.414,-1.414) 1.31 10−9

−1.6 −1.55 −1.5 −1.45 −1.4 −1.35−1.5

−1.4

−1.3
0

0.2

0.4

0.6

0.8

1

Z
1
(0)

Z
2
(0)

La
m

bd
a

Lambda = 1
X = −1.4185 −1.4173
Simplx: 30

−1.6 −1.55 −1.5 −1.45 −1.4 −1.35−1.5

−1.4

−1.3
0

0.2

0.4

0.6

0.8

1

Z
1
(0)

Z
2
(0)

La
m

bd
a

Lambda = 1
X = −1.4185 −1.4173
Simplx: 33

−1.55 −1.5 −1.45 −1.4 −1.35 −1.3−1.5

−1.4

−1.3
0

0.2

0.4

0.6

0.8

1

Z
1
(0)

Z
2
(0)

La
m

bd
a

Lambda = 1
X = −1.418 −1.4169
Simplx: 32

Path following form λ = 0 to λ = 1 - K1, J1 and D1 triangulations

−1.55
−1.5

−1.45
−1.4

−1.55

−1.5

−1.45

−1.4

0

0.2

0.4

0.6

0.8

1

Z
1
(0)

Z
2
(0)

La
m

bd
a

Lambda = 1
X = −1.4142 −1.4142
Simplx: 513

−1.55
−1.5

−1.45
−1.4

−1.55

−1.5

−1.45

−1.4

0

0.2

0.4

0.6

0.8

1

Z
1
(0)

Z
2
(0)

La
m

bd
a

Lambda = 1
X = −1.4142 −1.4142
Simplx: 100

Path following form λ = 0 to λ = 1 - J4 and J3 triangulations

30 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

Following a path of non maximal rank

On a side note, we can illustrate on this simple example the robustness of
the simplicial methods, and more specifically the ability to follow a path
that is not of maximal rank (contrary to the differential continuation for
instance). We consider here another continuation for the problem (P), in
which we modify the terminal conditions according to λ, leading to the
family of problems

(Pλ)

Min
∫ 2
0 |u|dt

ẋ1 = x2

ẋ2 = u
|u| ≤ 1
x(0) = (0, 0)
x(2) = (0.5 − λ, 0)

Here we have the original problem (P) for λ = 0, while λ = 1 corresponds to
the “mirror” problem, with the opposite optimal control. We notice that for
λ = 0.5, the terminal and initial conditions coincide, with x(0) = x(2) = 0.
So in this case, the null control is the optimal solution, which corresponds to
any value of p(0) within the central area on the graph on page 11. Therefore
the zero path is not of maximal rank at λ = 0.5. Nevertheless, the simplicial
algorithm still converges to the right solution, as illustrated below.

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

0

0.2

0.4

0.6

0.8

1

P1(0)

P2(0)

La
m

bd
a

Lambda = 1
X = 1.4162 1.4163
Simplx: 403

−0.5
−0.4

−0.3
−0.2

−0.1
0

0.1 −1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

0.49

0.495

0.5

0.505

0.51

P2(0)

P1(0)

La
m

bd
a

Lambda = 0.5
X = 0.11883 −0.64783
Simplx: 195

Central area crossing at λ = 0.5

We observe that the simplicial algorithm manages to cross the central area
at λ = 0.5 by actually following its frontier, with simplices having vertices
on both sides. Incidentally, depending on the triangulation and/or meshsize
used, the algorithm can follow the other frontier instead of the “lower-right”
one on the graph above.

Simplices and labeling matrix stability

As mentioned before, at each step of a simplicial algorithm the current trans-
verse simplex is updated. More precisely, it is built from the previous one
with which it shares a completely labeled face, which means that there is

2.1. SIMPLICIAL METHODS PRINCIPLE 31

only one vertex to modify. This is done by the pivot rules after the lexico-
graphic test has determined which vertex of the previous simplex is to be
replaced (ie is not part of the exit completely labeled face). At the same
time, the inverse of the labeling matrix is updated directly, instead of re-
inverting the updated labeling matrix.

Then one may be worried about the accumulation of numerical errors
when the number of followed simplices grows large. To check this, we period-
ically recompute all the vertices from the formal expression of the simplex,
and the corresponding labeling matrix inverse.

The following tables show the evolution of the cumulative error on the
simplex vertices and labeling matrix inverse. The tests are made with the
simple example problem from chapter 1 and the two singular arcs problems
studied in chapter 4 (discretized BVP formulation). In each case we recall
the triangulation used, the dimension of z, and the number of simplices
followed.

Demo Problem: K1(10
−6), dimension 2, > 3 000 000 simplices

Check frequency Simplex error (abs/rel) Labeling error (abs/rel)

10 000 0 / 0 10−8 − 10−12 / 10−15 − 10−17

100 000 0 / 0 10−9 − 10−11 / 10−16 − 10−18

1 000 000 0 / 0 10−10 / 10−16

Problem 1: K1(10
−2), dimension 101, > 200 000 simplices

Check frequency Simplex error (abs/rel) Labeling error (abs/rel)

1 000 10−15 − 0/10−17 − 0 10−9 − 10−11/10−13 − 10−15

10 000 10−15 − 0/10−17 − 0 10−9 − 10−11/10−13 − 10−14

100 000 0 / 0 10−10 − 10−11 / 10−14

Problem 2: K1(10
−2), dimension 82, > 100 000 simplices

Check frequency Simplex error (abs/rel) Labeling error (abs/rel)

1 000 10−15 − 0 / 10−17 − 0 10−9 − 10−11 / 10−13 − 10−15

10 000 10−17 − 0 / 10−19 − 0 10−9 − 10−11 / 10−13 − 10−15

100 000 0 / 0 10−10 / 10−14

We observe that the simplex error is numerically negligible, sometimes
even undetectable in double precision. As for the labeling error, it can be
considered quite reasonable, especially for the two problems with a high
dimension (we recall that the computation of this matrix normally involves
one homotopy call per vertex, in addition to the matrix inversion). So
it seems that we do not have to worry about the accumulation of these
updating errors.

Convergence property

For a multi-valued homotopy H, we have the following convergence property.

32 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

Theorem 6 We consider a PL continuation algorithm using a selection of
H for labeling and a refining triangulation of Rn × [0, 1[(such as J3 for
instance). We make the two assumptions regarding the path following:
(i) all the faces generated by the algorithm remain in K × [0, 1], with K
compact.
(ii) the algorithm does not go back to λ = 0.
Then if H is usc and compact convex valued, the algorithm generates a
sequence (zi, λi) such that λi → 1, and there exists a subsequence still noted
(zi, λi) that converges to (z, 1) such that 0 ∈ H(z, 1).

Proof. the proof comes from [1], chapter 4, page 56.

Specific algorithmic points

We describe in the following some improvements we have tried to come
up with during our experiments with the simplicial method (more details
about the Simplicial package can be found in appendix A). In accordance
with the context of this work, we tried to keep the two following points in
mind. First, we assume that the essential part of the overall computational
cost comes from the homotopy evaluations, while the purely “simplicial”
operations are negligible. This assumption is well verified in practice due to
the particular nature of our homotopies (shooting functions). Besides, as we
are supposed to study problems with a low regularity in order to benefit from
the simplicial method’s robustness, we want these modifications to preserve
these low requirements as much as possible.

2.2 Junction homotopy

In a simplicial algorithm, the initialization of the path following consists in
finding a first completely labeled face on the boundary (typically at λ = 0).
With this face we can build the first transverse simplex of the path, and then
perform a sequence of lexicographic tests and pivoting steps, as described
before. The point is that obtaining such a face is not always a trivial matter.

As this face is supposed to contain a zero of the PL approximation of the
homotopy, a natural idea is to find a zero of H(·, 0), and then try to build
a face centered on this point. The first step, finding a zero of the homotopy
at the beginning of the continuation, is supposed to be easy: it is part of
the principle of the continuation approach.

However, the second step, building a face centered on this solution, does
not guarantee that this face is completely labeled. Indeed, the face must
contain a zero of the PL approximation of H over the face, which is not the

2.2. JUNCTION HOMOTOPY 33

same as a zero of H itself. In practice, depending on the regularity of the ho-
motopy around the starting zero, a sufficiently small face can turn out to be
completely labeled (larger faces usually mean a less accurate approximation
of H, and are therefore less likely to be completely labeled). An annoying
point, however, is that using a small triangulation leads to a huge number of
simplices followed, hence an unreasonable overall computational cost. More
importantly, this does not always work, sometimes even ridiculously small
meshsizes will not give a completely labeled face. So what we would like is
a method to obtain a completely labeled face for a given triangulation size.
For the path initialization we seek a face at λ = 0, but we will see that
more generally, finding a completely labeled face at a certain level λj can be
useful too.

2.2.1 Principle

The principle of junction homotopies follows the idea (see for instance [2],
Lemma 13.2.6 page 183) that if the labeling is affine, then it is much easier
to find a corresponding completely labeled face. More precisely, we consider
an intermediate homotopy Hj that takes place at a fixed λj with respect
to the main path following, and uses its own parameter λ′ ∈ [0, 1]. We try
to connect an application z 7→ A (z − zj) to H(·, λj), with the matrix A
such as to provide a reasonable affine approximation of H(·, λj) near the
junction starting point zj . In the initialization case, for λj = 0, this starting
point is typically the solution z0 obtained by a nonlinear solver applied to
H(·, 0) = 0. The difference with the main homotopy is that building a first
completely labeled face for the affine labeling is much easier, as this labeling
is identical to its PL approximation on the face. Then if A is nonsingular,
the face centered on zj is completely labeled. The triangulation size for this
junction homotopy is the meshsize δ for the wanted completely labeled face,
except for the stepsize with respect to the homotopic parameter λ′, which
we will discuss below.

This intermediate homotopy is supposed to be quick, requiring only a
small number of simplices to complete, provided we have an acceptable ma-
trix A. In this regard, we try to further minimize the number of evaluations
of H and use a “steep” meshsize, with a stepsize of 1 with respect to λ′.
Therefore, junction vertices either verify λ′ = 0 or λ′ = 1 (which always
correspond to λj on the main path), and we set the labeling for Hj:

{

Hj(z, λ
′) = A (z − zj) if λ′ = 0

Hj(z, λ
′) = H(z, λj) if λ′ = 1.

Now only the vertices on the λ′ = 1 level require an evaluation of H, while
the others at λ′ = 0 only cost some matrix/vectors operations.

34 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

It is of course possible to set a smaller stepsize along λ′, and use a labeling
of the form:

Hj(z, λ
′) = (1− λ′) A (z − zj) + λ′H(z, λj)

However, this requires more evaluations of H, which we want to avoid since
in our problems, most of the computational cost comes from these calls (H
is typically a shooting function and involves the integration of an IVP).
Similarly, keeping the first labeling with a stepsize lower than 1 for λ′ has
been abandoned for the same reasons. In fact, since they actually lead to
longer junctions, the only justification behind these less steep labelings is to
allow more difficult junctions that would fail otherwise. This difficulty has
been solved the other way around, by putting some restrictions on the use
of junctions in the case of meshsize changes, see below.

2.2.2 Applications

As said before, junction homotopies have been first introduced for the path
following initialization, namely to find the first completely labeled face.

Then another possibility offered by junctions is to change the meshsize
of the triangulation during the path following. The idea of changing the size
of the simplices along the zero path in order to improve the path following
is not new. It is indeed illustrated by the family of refining triangulations,
which typically use large simplices at the beginning of the path for a fast
progression, then increasingly smaller simplices near the convergence for a
good accuracy at the solution. In this particular case, the variable size of
the simplices is a structural property of the triangulation, which often leads
to more complex pivoting rules, as the “levels” shifts must be taken into
account. Under favorable circumstances these refining triangulations can
give impressive results. However, their use for the optimal control problem
we consider has been rather disappointing, which is why we try another
way. Basically, what we choose to do is to interrupt the path following at
some points, and try to compute a “better” meshsize (this step is detailed
below in 2.3, page 37). Then we perform a junction homotopy to obtain a
first completely labeled face for this new triangulation, and resume the path
following from there.

To finish with, a third application of junctions can be the solution refin-
ing, where we try to find a better solution than the one the path following
has converged to. One way to do this is to try a sequence of junctions at
the end of the path, with decreasing triangulation sizes (see 2.4.2 page 53
for more details).

2.2. JUNCTION HOMOTOPY 35

Remark: it is worth noting that junction homotopies have been imple-
mented in such a way that the triangulation used for the junction may be
of a different kind than the triangulation for the main path following. The
only restriction is that a junction must use a uniform triangulation, as its
objective is precisely to build a completely labeled face for a given meshsize.
For instance, if a uniform triangulation (ie K1, J1 or D1) is selected for
the main path, then junctions will use the same triangulation, to facilitate
the transitions between main and junction homotopies. Conversely, the first
initialization junction for a path with a refining triangulation (J3 or J4) has
to use a uniform triangulation to find the starting face. This difference then
implies some conversion of the obtained face from the junction triangulation
format to the main one, which fortunately can be rather easily done.

2.2.3 Practical formulations

We recall that we seek for the junction a practical affine approximation
z 7→ A(z − zj) of H(·, λj). The first idea that we have implemented is
merely to take for A an approximation of the Jacobian of H(·, λj) by cen-
tered finite differences.

Remarks: Another possibility to obtain directly the Jacobian of H would
be to use the variational equation of the shooting problem, that we recall
briefly. We consider the initial value problem

(IV P)

{

ẏ = φ(y)
y(0) = β

We assume that φ is continuous, and continuously differentiable with respect
to y. If ŷ(·, β) is a solution of (IV P), then dŷ

dβ
is a solution of

(V ar. eq.)

{

Ẏ = ∂φ
∂y

(y) Y

Y (0) = Id

This property can be used to obtain the derivatives of the shooting function,
but the regularity requirements are too high in our context. Then, there are
also more sophisticated ways of computing these derivatives, in particular
the internal numerical differentiation (IND) presented by Bock in [9]. How-
ever, due to the expected low regularity of the problems studied, our goal is
actually to find a formulation that does not require derivatives at all. This is
why we have not really focused our efforts in a clever computation of these
derivatives, and just used basic finite differences until we found a better way.

The main disadvantage of this first formulation is that the step for the
finite differences has to be chosen carefully. In our case, the homotopy is
a shooting function, whose evaluation requires the integration of an Initial

36 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

Value Problem. This integration is done with a certain error, depending
on the integrator used, and on the number of steps (for fixed step integra-
tors) or the tolerances (for variable step integrators). If the step is set too
large, the approximation of the Jacobian can be so poor that it is unusable.
On the other hand, a step too small compared to the precision of the IVP
integration can produce some “numerical noise”, by differentiating the error.

Moreover, there is the question of the sensitiveness of the homotopy
with respect to some components of the unknown. In relation with the
scaling of the unknown z, this can require the use of different stepsizes
hi, i = 1, . . . , n rather than an uniform step h for all dimensions. Similarly,
the question of the current meshsize is also of interest, as we would like the
approximation to be valid in the neighbourhood of the starting face of the
junction (junctions are supposed to just find a completely labeled face near
their starting point, and therefore to cover only a short path). We have then
modified the previous idea to reflect this link between the finite differences
stepsize and the triangulation meshsize. We set now the stepsize by dividing
the meshsize by a certain coefficient k, namely

hi =
δi
k

,∀i ∈ [1..n].

Numerical experiments suggest that values between 10 and 1000 for k usu-
ally give the better results. This variant is a step ahead the first one, but
still suffers from the sensitiveness to the stepsize somehow (that is, to the
choice of k), which seems to be an unavoidable consequence of using finite
differences. Anyway, as said before we expect to encounter shooting func-
tions that may not be differentiable at the solution.

So we would like to find another way, that would not rely on derivatives
at all. A possible idea is to use directly the piecewise linear approximation
of H(·, λj) by interpolation on the vertices of the junction starting face.
First, there is a slight modification from the previous formulations of the
form z 7→ A(z − zj), as we prefer here to work with barycentric coordinates
of z and zj with respect to the starting face [v1, . . . , vn+1]. So we set

F =

1 . . . 1

v1 . . . vn+1

 ,

and the barycentric coordinates of z and zj (noted ẑ and ẑj) are given by

ẑ = F−1

(

1
z

)

and ẑj = F−1

(

1
zj

)

.

2.3. ADAPTIVE TRIANGULATION 37

Now we denote the labeling matrix of the face [v1, .., vn+1] by

L =

 H(v1, λj) . . . H(vn+1, λj)

 .

and set the affine labeling for the junction as

z 7→ L (ẑ − ẑj).

This expression vanishes for z = zj, and coincides with H(·, λj) on the ver-
tices vi, ∀i ∈ [1..n + 1], and we can use it for the junction. The main
improvement of this third formulation is to get rid of the derivatives, as we
expect a low regularity of the shooting functions. An additional (however
minor) benefit is that the junction initialization then only requires n homo-
topy calls, instead of 2n for the centered finite differences.

Summary:

• First formulation: A ≈ Jac(H(·, λj)) via finite differences, with a stepsize
h either uniform or proportional to the meshsize δ.
• Second formulation: uses the PL approximation of H(·, λj) on the junc-
tion starting face, requires no derivatives.

A numerical comparison of these formulations on the orbital transfer
family of problems can be found in 3.4.2, page 80. Overall, the experiments
indicate that the second formulation is indeed more stable than the first one.
It is therefore the default mode in the Simplicial code for handling junction
homotopies.

2.3 Adaptive triangulation

2.3.1 Principle

One of the generally admitted reasons that makes simplicial algorithm slower
than differential continuation methods is the difficulty of adapting the tri-
angulation meshsize to the followed path. Unlike PC methods, where the
search direction and steplength are computed automatically to follow the
path at best, PL methods intrinsically lack such mechanism, due to the
fixed size of the simplices.

Indeed, refining triangulations are a nice way to introduce a variable sim-
plex size, yet this size is still not related to the path actually followed, and
is therefore not necessarily well adapted. Moreover, we have found that our
problems are not a favorable case for this kind of triangulations. Briefly, the
homotopy sensitiveness forbids the use of large simplices at the beginning

38 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

of the path, while small simplices can actually make the algorithm more
vulnerable to numerical difficulties when the path regularity is low near the
end. Except from the case of very simple demonstration problems, most of
the time we have not been able to use the refining triangulations (J3, J4) in
a satisfying way.

Moreover, even with the basic K1, which has eventually been chosen for
most experimentations, as it has shown the best reliability, the choice of
the meshsize has turned out to be a non trivial matter. Too large, and the
approximation is too far from the zero path to complete the path following.
Too small, and the path following takes ages. And of course, it is not quite
efficient to try several choices of meshsizes and perform several path follow-
ing just to find an appropriate setting for a particular problem.

So we would like to try to adapt the triangulation to the followed path
dynamically, in order to improve the precision and/or speed of the continua-
tion. For practical reasons, we choose to perform this adaptation only when
the simplicial algorithm reaches a certain ”level” λ = λi, meaning that we
have a completely labeled face whose vertices all belong to Rn × λi. At
this point we compute the new meshsize (see 2.3.2), based on the current
triangulation size and the path followed since the previous level λ = λi−1, as
detailed below. Then we proceed to a junction homotopy (see 2.2) to obtain
a completely labeled face with the new meshsize. Now the path following
can continue from this face, with the new triangulation, until we reach the
next level λi+1. We used to perform these adaptive junctions at new lev-
els in both directions, meaning when we go “back” to the previous level
λ = λi−1 as well. However, in all the problems studied it happens that the
paths are monotonous, with an increasing λ. In this case, going down one
level merely indicates some localized straying from the path, and should be
simply ignored, in order not to further disturb the following. In most cases,
this “turning back” lasts only for a few simplices anyway, after which the
path following goes on along an increasing λ.

Remarks: this procedure, although rather simple in its principle, is in
practice a bit tricky and requires a careful implementation to handle some
particular cases correctly. This is actually the most complicated part of the
Simplicial code, and a complete line-by-line description would be quite te-
dious for the reader (and probably not that interesting anyway, since most
of it is just plain coding...). However, we would like to briefly mention here
some points of interest.

• First, it is sometimes possible to avoid the complete junction homo-
topy, and just start over the path following with the new meshsize. This is
the case when the starting face for the junction happens to be completely

2.3. ADAPTIVE TRIANGULATION 39

labeled already for the main homotopy H(·, λi) (we recall that the sole pur-
pose of the junction is precisely to provide such a face). So we test for this
possibility just before the beginning of the junction path following, so we
can skip this step if the test is positive. This situation does occur in prac-
tice, even if it does not seem to be very frequent. As the detection is a mere
lexicographically positive check, whose cost is the same as a junction initial-
ization, and much lower than a full junction, I think it is better to test for it.

Another case is when the computation of the new meshsize actually leads
to keeping the same triangulation until the next level. Obviously there is no
need for a junction here, as the meshsize does not change and the path fol-
lowing just continues normally. However, this has to be detected separately,
as it does not fall into the previous case: of course we already know a com-
pletely labeled face, but the starting face for the junction is built with (z∗i , λi)
(the current zero of the PL approximation HT of H) as its isobarycenter.
So the vertices of this face do not coincide with the previous ones, even if
the meshsize is the same (well, theoretically they could, if z∗i were exactly
the isobarycenter of the previous face...). And with a bit of bad luck, it is
quite possible that the starting face be not completely labeled with respect
to H(·, λi), as this property depends on the PL approximation of H over the
face. So this case has to be treated separately, in order to avoid the risk of
a complete (and technically useless) junction and meshsize “change”. This
saving is not negligible, as this case happens regularly enough in practice,
due to the kind of inertia incorporated in the new meshsize computation (in
order to limit inopportune mesh changes, see below).

Note: we just recall that in case of a meshsize increase, the new face has
no particular reasons to be completely labeled, even if it contains a completely
labeled face. So unlike previously, we cannot skip the junction directly (it is
still possible to fall in the first case pointed before, though).

• Then, another point is that unfortunately, a junction is not guaran-
teed to converge, and more importantly to converge in a reasonable time.
Keeping in mind that one of the objectives of the adaptive triangulation is
to improve the overall path following performance, it seems obvious that
the cost of the junctions has to be controlled in some way. Otherwise, we
run the risk of spending more time completing the junctions than the main
path gain provided by the meshsize adaptation. This concern is actually
quite legitimate, as shown for instance in the experiments with the orbital
transfer problems in 3.4 on page 72).

I did not find any miracle solution for this, the best I have come up with
is to cap the number of simplices allowed for junctions at a relatively low
value, granted that junction homotopies are supposed to be fast anyway. If

40 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

the junction does not complete within this limit (or if it fails for any other
reason, by the way), we just dismiss the new meshsize and keep the current
one until the next level. This limitation should be set such as not to im-
pair the junctions completion in most cases, as it is just supposed to take
care of the isolated problematic junctions at a reasonable cost. Numerical
tests suggest that this approach gives satisfying results with a limit of 100
simplices for instance. Besides, setting a very low simplices limit for the
junctions (50 or below) actually does more harm than good, as it blocks
many junctions and severely degrades the whole adaptive mechanism. On
the other hand, setting the constraint too loose (more than 500 for instance)
means little improvement, as faulty junctions are then allowed to “waste”
more simplices.

A little more sophisticated idea is to cancel the junction before the limit
if it does not make sufficient progress (for instance if the parameter λ′ has
not reached a certain value after a certain number of simplices). However,
the choice of these “certain” values is quite hazardous in practice, and the
tests made with this idea have not been very convincing so far.

• An interesting, but fortunately rare phenomenon we can observe is
when the path following seems to “turn back” to λ = 0 after a junction.
The probable explanation for this is the existence of two distinct zero paths
close to each other at a certain level λi. A junction that happens here can
go wrong and end in a completely labeled face corresponding to the other
path. Then the algorithm can follow this second path down to λ = 0, which
by the way gives another zero of H(·, 0). If we draw the path projections
(with λ on the vertical axis), this is indicated by a kind of horizontal “jump”
at the junction level.

A simple and effective way to prevent this particular behaviour is just to
limit the number of simplices allowed for junctions, which is actually already
done for performance reasons, as said in the previous point. However, we
thus give up the adaptive process at this level, and this approach reaches
its limits anyway if the branches are very close (maybe if the junction takes
place near a bifurcation for instance). In this case, trying to prevent the
“jumps” may require such a low limit that it actually blocks most junction

2.3. ADAPTIVE TRIANGULATION 41

attempts along the path...

Incidentally, such jumps do not necessarily lead back to λ = 0, as the
path following may well go ahead onto the other branch and eventually con-
verge. An example of such a behaviour can be seen with the orbital transfer
problem family studied in chapter 3, more precisely in 3.4 (p. 72).

• A last remark concerning the change of triangulation during the follow-
ing is that we theoretically loose the property according to which a simplicial
algorithm does not cycle. Fortunately this risk seems to be rather hypothet-
ical, as we did not encounter this case in the numerical experiments.

2.3.2 New meshsize computation

So let us assume that we have reached a certain level λj , how should we
adapt the current meshsize δ in order to improve the path following ? We
describe here the two distinct mechanisms of meshsize adaptation we use in
practice.

The first one, called “deviation from zero path control”, uses the norm of
the homotopy H at the current solution zj as a measure of the path following
accuracy. By comparing this norm to a certain tolerance value, it decides
whether it is appropriate to uniformly shrink or expand the meshsize, or not.

The second one, referred to as “anisotropic deformation”, is a more re-
lated to the global direction of the path. It looks at the relative weight of
each dimension in the path progression since the previous level, and can then
increase or decrease the meshsize along each dimension separately, hence
its name. Practical tests show that the first approach is better suited to
performance gain, whereas the second is more oriented towards precision
improvement. We naturally try then to combine both aspects as efficiently
as possible, which we call the “full adaptive mode”.

Remark: in both the following mechanisms, the last component of the
meshsize, δn+1, which corresponds to the homotopic parameter λ, is treated
separately from the others. This is because this size has a strong influence
over the whole path following, as it gives the “height” of the next level,
at which the next triangulation change can occur. Therefore, we are more
restrictive for changing this size, to keep a better control over the adaptive
process. Further details about this particular handling are given below, in
particular in the full adaptive mode description.

42 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

Deviation from zero path control

Basically, the first method we have used is to adapt the meshsize for the
next level with respect to the quality of the following at the current level λi.
When we think the path following goes well, it should be safe to increase
the meshsize in order to improve performance. On the contrary, when we
seem to stray away from the path, reducing the meshsize might help to get
back on track. The matter is, of course, how we estimate the accuracy of
the path following at the current state.

A simple way to obtain a hint about it is to test the validity of the PL
approximation of the homotopy over the current face. More precisely, we
take the current solution (zi, λi) that is supposed to be a zero of HT , we
just evaluate the real homotopy H at this point and compare its norm to a
certain tolerance. Then if the norm of H(zi, λi) is low enough, the follow-
ing can be considered as rather accurate, and we can increase the meshsize.
Conversely, if the norm is too high, the following is probably too rough, and
the meshsize should be reduced to get closer to the path. In between, we
do nothing, as the situation is not bad enough to require a slowdown, but
not good enough to allow a safe speedup. This last point is important, as
the process must have a kind of inertia to prevent for instance an annoying
sequence of expansion/reduction if the norms checked stay in the neighbour-
hood of the tolerance.

A preemptive remark should be made concerning the “reducing the
meshsize to improve the accuracy” part. This is reasonably true in gen-
eral, from a qualitative point of view. However, there is no guarantee in
practice that we can keep the norm of H(zi, λi) at arbitrarily low values,
even with extremely small meshsizes. Indeed, the term of “tolerance” can be
a bit misleading here, as it suggests a strict control of the homotopy norm.
Actually, it is more like an indicative “acceptable” value for the norm, which
we try (rather loosely) to respect. Now let us have a closer look at this de-
viation thing.

We use here the following notations:

• zi denotes the nodes of the zero path on the current level. Thus z i is
the zero of HT (·, λi) contained in the completely labeled face on the
current level λi.

• htol is the (indicative) tolerance with respect to whom we determine
the possible reduction or expansion of the meshsize.

Algorithm:

2.3. ADAPTIVE TRIANGULATION 43

If |H(zi, λi)| < htol × 10−1

Then δj ← δj × 2 , j ∈ [1..n+ 1]

Else if |H(zi, λi)| > htol × 10

Then δj ← δj/2 , j ∈ [1..n+ 1]

If |H(zi, λi)| > htol

Then δj ← δj/2 , j ∈ [1..n]

Remarks:

• The size δn+1 is treated slightly differently, as the stepsize for λ has an
impact on the whole adaptive process. Indeed, it determines the “height” of
the levels [λi, λi+1], at which the adaptive steps take place, so we are a bit
more restrictive about modifying δn+1 than the other δj. Apart from this
particular case, all other dimensions are treated evenly here, contrary to the
anisotropic deformation process described below.

• Numerical experiments tend to indicate that this mechanism is better
suited to the performance improvement, via a controlled expansion of the
meshsize. On the other hand, trying to satisfy a too low tolerance soon leads
to a very small meshsize, with an unreasonable cost in terms of simplices.

• Due to the scaling applied to z and y = (x, p), the order of magnitude
of the values of H along the path is generally not too widespread in practice.
Therefore, the scope of relevant values for htol is also limited, fortunately.
Typically, the default setting of 10−1 has been chosen to obtain a satisfying
balance between the performance gain and the precision loss. A value of
1 corresponds to a more aggressive path following, and can give a faster
following at the expense of stability. On the other hand, a tolerance of 10−2

enforces a more cautious behaviour, which can have a heavy cost in terms
of simplices. In our experiments, setting a tolerance above 1 or below 10−2

is either overly permissive or restrictive, and both give poor results, with a
very unstable or extremely long path following respectively.

Here is an example of this deviation mechanism, applied to the demon-
stration problem. As this problem is quite easy, the deviation leads to a
steady increase of the triangulation size over the path, until the convergence
is reached at λ = 1 (note that the last level is resized with respect to λ so
as to reach exactly λ = 1).

44 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

−2
−1.5

−1

−1.7−1.6−1.5−1.4−1.3−1.2
0

0.2

0.4

0.6

0.8

1

Z
1
(0)Z

2
(0)

La
m

bd
a

−1.8 −1.7 −1.6 −1.5 −1.4 −1.3 −1.6
−1.4

−1.2
0

0.2

0.4

0.6

0.8

1

Deviation effect on demo problem - starting meshsize of 10−1 and 10−2

Anisotropic deformation

The second adaptive mechanism tries to take into account the fact that
the path is not the same along all components of the unknown z. For the
j − th dimension, if the corresponding meshsize value δj is too large, the
vertices may stray far from the zero path. This is not necessarily harmful,
for instance if we loose only a little precision and still manage to have a
fast following. However, if the homotopy is sensitive with respect to this
particular component of z, these far vertices can get extremely hazardous
labelings, or even cause numerical errors during the homotopy evaluation.
This difficulty is quite real in our case, where the homotopy is a shooting
function and z is an IVP unknown. Due to the numerical integration per-
formed during the homotopy evaluation, relatively small variations of the
initial costate can lead to completely different trajectories, or worse even
leave the domain of definition of the shooting function. Incidentally, this
phenomenon is further amplified by the scaling applied to the unknown z,
which sometimes actually needs to be loosed a bit to reduce the shooting
function sensitiveness (this is in particular the case for the orbital transfer
problems studied in chapter 3, where the integration can be very long).

Obviously, shrinking the meshsize mechanically brings the vertices closer
to the zero path, yet a smaller meshsize means more simplices, and a longer
path following. Same problem as if the original meshsize is chosen too
small at the beginning, where we have no idea of what the path is like. So
conversely, if we find that the size δj is too small compared to the path
progression along the j − th dimension, it means that we are unnecessarily
close to the path along this dimension. Therefore, if we increase δj a little,
we can probably go faster without straying too far away from the path.

All in all, this is a rather qualitative approach: we try to shrink and/or
expand the meshsize in order to fit the zero path better, and so hope both to
improve the precision and performance of the following. Here is a schematic
illustration of this anisotropic deformation mechanism in dimension 2. We

2.3. ADAPTIVE TRIANGULATION 45

consider an “unbalanced” path, where there is much more progress along
the second dimension than the first, so the general idea would be to increase
the size δ2 and decrease δ1. We represent the possible transverse simplices
crossed by the path following with a uniform meshsize (δ1 = δ2). The two
following graphs show the expected simplices for a doubled δ2 and a halved
δi respectively, while the last graph shows both modifications.

Schematic illustration of the anisotropic deformation mechanism
δ1 = δ2 , δ2 ← δ2 ∗ 2 , δ1 ← δ1/2 , (δ1, δ2)← (δ1/2, δ2 ∗ 2)

So what we expect is that the meshsize reduction part would help keeping
the vertices not too far from the path, while the meshsize augmentation part
would reduce the overall number of simplices needed. These two aspects are
naturally antagonists, and we hope that their combination can combine both
benefits.

In practice, we use the information on the progress made by the path
following over the previous level (from λi−1 to λi) to see if some components
of the meshsize should be modified for the next level. Of course, we implic-
itly expect the path to behave more on less the same way over [λi, λi+1],
which is why the anisotropic deviation generally does better with relatively
small levels.

Moreover, one has to be careful with these meshsize modifications: bru-
tal changes can have a disastrous effect, leading from a too large meshsize to
a too small one and vice-versa. This is why we have eventually limited the
changes to a factor between 0.5 and 2, and even drop intermediate values:
we just either double or halve the size δj if we deem it appropriate, and leave
it untouched otherwise. The last point is important, as it introduces a kind
of inertia in the process, as with the deviation described above. This aspect
is here necessary for the same reasons, namely to avoid a phenomenon of yo-
yo, where a size δj could undergo an unwanted sequence of increase/decrease
once an “appropriate” value has been found with respect to the path.

We use here the following notations:

46 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

• δ is the triangulation meshsize, a vector of dimension n + 1; δn+1 is
thus the stepsize with respect to the homotopic parameter λ

• zi−1 and zi denote the nodes of the zero path on the previous and
current level. This means that zi−1 is a zero of HT (·, λi−1) and zi is a
zero of HT (·, λi)

• ∆ is the progression since the previous level, rescaled with respect to
the meshsize, ie

∆j =
|zi

j − zi−1
j |

δj
, j ∈ [1..n]

• progressup > 1 > progresslow > progresstoolow are three thresholds
whose default values are 2, 0.2 and 0.1. To determine whether the size
δi is to be increased, decreased or left untouched, we compare the ratio
“progress along i-th dimension divided by average progress” to these
thresholds, as written below.

Algorithm: for each dimension j, j ∈ [1..n]

If ∆j ≥
P

k ∆k

n
× progressup

Then δj ← δj × 2

Else if ∆j ≤
P

k ∆k

n
× progresslow and ∆j ≥

P

k ∆k

n
× progresstoolow

Then δj ← δj/2

According to the principle explained above, progressup should indicate a
progression clearly above the average, and progresslow a progression clearly
below the average. Additionally, the range between the values progressup

and progresslow delimits a region of inertia, where the size is not modified.
This property is necessary to ensure a better overall stability of the meshsize
deformation, same as for the deviation described previously.

The third threshold progresstoolow has been introduced specifically to
prevent the unwanted behaviour of a size δj tending to 0 when there is al-
most no progression along a certain dimension j. On the path projection
along the j−th dimension, this visually corresponds to a very steep or nearly
“vertical” path. This situation does actually happen in practice sometimes,
so we have to take care of it.

Remarks:
• The component δn+1 is not modified in this process, as we try not to med-
dle too much with the size corresponding to λ, which can already be modified

2.3. ADAPTIVE TRIANGULATION 47

in the deviation control process.
• Concerning the double objective of the anisotropic deformation, the graphs
above show of course an idealistic situation. It appears in practice that this
mechanism is better suited to the precision improvement rather than the per-
formance gain. This is not really an inconvenience, as it nicely complements
the effects of the deviation described above.

Here is a comparison of different settings for the three anisotropic thresh-
olds progressup,low,toolow, on the discretized singular arc problems studied in
chapter 4. For each setting the columns indicate the total time in seconds
(rescaled by a factor 10 for clarity), the number of junction simplices, and the
number of simplices for the main path. The first group of columns on the left
corresponds to the reference uniform triangulation. The four groups in the
middle correspond to the (2, 0.5, 0.1), (2, 0.2, 0.1), (1.5, 0.2, 0.1), (1.5, 0.5, 0.1)
settings. The two last groups on the right correspond to the (1, 1, 0.1), (1, 1,−)
settings (which do not converge for the K1(0.01) on Problem 1).

Anisotropic settings comparison - Problem 1 (dim 101)
Triangulations K1(0.1) and K1(0.01).

48 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

Anisotropic settings comparison - Problem 2 (dim 82)
Triangulations K1(0.1) and K1(0.01).

First, the poor performance (and even failure for the K1(0.01) on Prob-
lem 1) of the two groups on the right illustrates the necessity of some inertia
zone. The (1, 1,−) setting, which always modifies all components of the
meshsize, leads to an insane amount of junction simplices and main sim-
plices (sometimes even more than the reference !), with of course a huge
execution time. The (1, 1, 0.1) case is slightly faster, as it avoids the abu-
sive reduction of meshsize components with a low progression. However,
the identity of progressup and progresslow still impairs this configuration
greatly.

Then if we look at the four configurations in the middle, we observe the
same general allure on the four test suites. The execution time is better for
the three on the right, and especially for the (1.5, 0.2, 0.1), with a particu-
larly low number of main simplices. Of course, this is not that surprising as
it corresponds to the most aggressive setting: a meshsize expansion for all
components with a progression only 50% above the average, and a reduc-
tion only for components below one fifth of the average progression. On the
other hand, the most conservative (in terms of meshsize) setting (2, 0.5, 0.1)
is logically slower, with a rather high number of main simplices.

The second and fourth anisotropic configurations, with the (2, 0.2, 0.1)
and (1.5, 0.5, 0.1) settings, correspond to the largest and shortest inertia
zones. This is coherent with the number of junctions simplices used, which
tends to be minimal (respectively maximal) for these settings. Both give
moderate performances in terms of execution time, between the first and
third (fastest) configurations.

Here are the numerical results, with for each setting the number of sim-
plices for the main path, the junction simplices, the execution time (in sec-
onds), and the euclidian norm of the homotopy at the end of the path
|H(z1, 1)|.

Problem 1, K1(10
−1) and K1(10

−2)

2.3. ADAPTIVE TRIANGULATION 49

Settings Main Junc. Time |H(z1, 1)|

2/0.5/0.1 24782 2774 932 0.122
2/0.2/0.1 14589 1101 534 0.078
1.5/0.2/0.1 6566 2345 293 0.077
1.5/0.5/0.1 12137 5840 648 0.100

1/1/0.1 26986 14673 1421 0.074
1/1/− 37277 9041 1573 0.158

Main Junc. Time |H(z1, 1)|

400673 9453 13991 0.133
171224 39554 7214 0.098
32156 11441 1473 0.211

135807 41415 6031 0.083

xxx xxx xxx xxx
xxx xxx xxx xxx

Problem 2, K1(10
−1) and K1(10

−2)
Settings Main Junc. Time |H(z1, 1)|

2/0.5/0.1 5998 1122 133 0.965
2/0.2/0.1 4311 778 95 0.894
1.5/0.2/0.1 3582 1454 93 1.040
1.5/0.5/0.1 5149 1660 126 0.890

1/1/0.1 6261 2932 170 0.829
1/1/− 8926 3056 220 0.812

Main Junc. Time |H(z1, 1)|

93281 2778 1789 0.288
39208 1221 755 0.763
11424 8743 379 1.125
14462 16503 589 1.016

40031 16833 1052 0.432
71370 16122 1637 0.317

Despite the aggressive setting (1.5, 0.2, 0.1) being faster, we see that it
also degrades the final norm quite a bit. Conversely, the inertial configu-
ration (2, 0.2, 0.1) seems to do well with the final norm, and seems a good
candidate for the combination with the deviation control mechanism. On a
side note, the two non-inertial configurations have a good final norm (when
they converge...), which is merely a consequence of the small meshsize they
produce (besides the quite long execution time).

Full adaptive mode

Now we would like to combine these two mechanisms in the most construc-
tive possible way. As mentioned before, the main benefit we can expect from
the deviation control is a performance gain, so we stick with it. Therefore
we choose to configure the anisotropic refinement with rather conservative
settings, so that it can primarily alleviate the resulting precision loss. The
resulting formulation generally leads to an interesting gain in the number of
simplices, without degrading the final precision. Actually, we often obtain a
better accuracy at the solution than with a basic uniform triangulation, in

50 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

addition to the path speedup.

Summary:

In practice, we typically use the following settings for the full adaptive mode:
• htol = 0.1 for the deviation control
• progressup,low,toolow = (2, 0.2, 0.1) for the anisotropic deformation

These values tend to give the overall best results on the whole set of problems,
even if better custom settings can be found for each problem individually with
a bit of tuning.

To finish with, here are several remarks about the whole adaptive trian-
gulation process, and especially the stepsize with respect to λ.

The meshsize adaptation is done for the next level, based on the path
following over the previous level. We recall that the “height” of these levels
is fixed by the last component of the meshsize, δn+1. If this size is large,
there are only few levels over the path, and the meshsize adaptation is too
limited to be effective. Conversely, if this size is too small, then the risk is
to spend too much time in changing the meshsize at very close intervals. So
a middle ground has to be found, with two practical consequences.

First, we have to be cautious with the modifications of δn+1 in the adap-
tive process. This is why we have eventually removed it from the anisotropic
deformation, to avoid potential interferences with the modifications made
by the deviation control part. It is then easier to keep control of its evolu-
tion along the path, and we have furthermore enforced a lower bound δmin

on δn+1, to prevent it from becoming overly small, for instance if the devi-
ation tolerance is set too low. Moreover, we also sometimes have to “crop”
the value δn+1 to prevent the apparition of vertices above λ = 1 or below
λ = 0. All in all, at the end of the new meshsize computation we enforce
the following constraint

δmin ≤ δn+1 ≤ min(λ, 1− λ),

with for instance

δmin = 10−6.

A visual illustration of this particular point can be found on the graphs
on page 43, where we can see that the last level is resized to match the λ = 1
limit. Actually, the first values of δn+1 on these examples are also resized
to respect the λ = 0 bound, but this does not appear on the graph due to
the small starting meshsizes.

2.4. SOLUTION REFINING 51

Then, it explains why in practical tests the adaptive mode does better
(compared to the fixed triangulation mode) with an initial δn+1 of 10−2

rather than 10−1 (see in particular 3.4). For our problems, setting initial
values of δn+1 outside of [10−2, 10−1] usually gives poor results anyway, with
either an awfully long or unstable path following. So in the end we have
come to use almost only these two settings, namely 10−1 for ordinary cases,
and 10−2 for fast problems (the singular arcs problems for instance, see
chapter 4).

Last but not least, it should be noted that the difficulties with the junc-
tions have actually plagued the whole adaptive meshsize system for a long
time. At first, the early formulations for the junctions still used derivatives,
and the new meshsize computation rules were much less restricted than in
the current version. Without even mentioning the important loss of sta-
bility, the desperately high rate of junction failures, and the heavy cost of
the lucky successful ones, were such that the adaptive mode was utterly
unusable most of the time. A first noticeable improvement was to put some
strict limitations on the possible meshsize changes, with a factor of 2 or 0.5
only at a time. This restored the stability back to normal, and made the
junctions easier, in addition to the introduction of the third formulation.
Then the adaptive mode became practically interesting at last, even if the
experiments with the orbital transfer problems in chapter 3 show that the
numerical cost of the junctions can still be sometimes quite significant.

2.4 Solution refining

We try in this part to address the question of the final precision of the
simplicial algorithm. In our case, the primary objective of the continuation
is to provide a suitable initial point for a shooting method. Therefore the
accuracy of the solution at the end of the path can at first be considered of
secondary interest. However, in some cases we observe that this final shoot
takes indeed a long time, nearly as much as the whole path following ! So
we wonder if a better initial point could make the shoot converge faster, as
it basically uses a quasi Newton method after all. Another situation is when
the final shoot does not converge in practice, due to intrinsic difficulties such
as singular arcs. In this case, we would still like to obtain a more accurate
solution than the one we would normally have.

So our objective here is to improve the precision of the solution at the
end of the path following, for which we have thought of two methods. The
first one aims at a better solution by the use of a refining triangulation
before the convergence at λ = 1. The second one is based on the principle

52 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

of Merril’s restart algorithm, and rather tries to refine the solution after the
convergence.

2.4.1 Refining before convergence

The idea here is to try to reuse the principle of refining triangulations, but
only near the convergence. We thus hope to avoid the difficulties met by
these triangulations (especially J3) at the beginning of the path. Basically,
we begin the path following with an uniform meshsize, a K1 for instance,
from λ = 0 until a certain value λrefine. At this point we proceed to a trian-
gulation change, and continue the following with a J3 (or J4), until normal
convergence.

Remark: the triangulation change at λ = λrefine does not require a junc-
tion homotopy in practice. The first completely labeled face for the refining
triangulation is rather built directly from the last completely labeled face of
the uniform triangulation, which is possible as the size does not change.

The following graph illustrates this approach on the demonstration prob-
lem.

0 0.5 1
0

1

2

3
x 10

−3

Lambda

H
om

ot
op

y
no

rm

−1.5−1.48−1.46−1.44−1.42
0

0.5

1

La
m

bd
a

Path component 1

−1.5 −1.45 −1.4
0

0.5

1

Path component 2

La
m

bd
a

−1.6 −1.55 −1.5 −1.45 −1.4 −1.35 −1.3
−1.6

−1.5

−1.4

−1.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Z
2
(0)

Z
1
(0)

La
m

bd
a

Lambda = 1
X = −1.4144 −1.4144
Simplx: 103

Solution refining: K1 until λ = 0.9, followed by J3 refinement

Solution Triangulation Simplices Norm

λ = 0.9 K1(0.1) 30 2.13 10−3

λ = 1 J3, (ε = 10−9) 90 4.47 10−13

The effect of the triangulation change at λ = 0.9 is quite obvious on the
first graph on the right, which shows the homotopy norm along the pathh.
We immediately observe a quick decrease of the homotopy norm as the J3

2.4. SOLUTION REFINING 53

refinement begins, with a very good final norm of 1.47 10−13. We notice
that the refinement already takes thrice the number of simplices of the main
path until λ = 0.9, which is one of the flaws of this idea (even if the global
execution time is here below 2 seconds).

Although things go well on this simple example, this formulation actu-
ally still suffers from some flaws of the refining triangulations, namely some
convergence difficulties and a high cost in terms of simplices. This rela-
tive lack of success is another hint that refining triangulations may not be
adapted in our case after all.

2.4.2 Refining after convergence

The second idea to obtain a more accurate solution is based on the principle
of Merril’s restart algorithm (see [2], p181 or [24], p74 for instance). More
precisely, starting from the solution z∗1 at the end of the path, we try to per-
form a sequence of junctions homotopies at the λ = 1 level, with decreasing
meshsizes. In practice, we divide the meshsize by 2 at each attempt, so that
the junctions should not be too difficult to complete. This approach does
not suffer from the convergence problems mentioned before: if one of the
junctions fails, we simply ignore it and move on to the next meshsize value.
We choose to stop the process after a fixed number of refine attempts, as
setting a stopping criterion over the norm of H(·, 1) at the solution would
not guarantee the termination. Therefore, we can roughly predict the final
meshsize used, depending on the initial meshsize and the maximal number
of refine attempts. For instance, starting from an initial size δ = 10−1, 10
refine attempts lead to δ ≈ 10−4, and 20 to δ ≈ 10−7. If the adaptive mode
is enabled, there is some degree of variation, as the meshsize at the end of
the path has probably evolved from its initial value.

Here are the results of this method applied to the demo problem: we
perform the path following with an ordinary K1(0.1), then try 20 successive
refinements.

Solution Meshsize Norm

Arrival at λ = 1 0.1 2.13 10−3

Refinement 10 1.95 10−4 1.92 10−5

Refinement 20 1.91 10−7 4.29 10−10

The norm decrease is quite regular on this simple problem, which is not the
case in general. Also, the refinements are here almost instantaneous (with
a total of 1 second for the initial path following plus the 20 junctions at
λ = 1), which once again is not a general behaviour.

54 CHAPTER 2. PL CONTINUATION - SIMPLICIAL METHOD

In fact, contrary to the adaptive meshsize junctions that occur during
the path following, these junctions taking place after the convergence often
require more simplices, as the homotopy is less regular. Therefore, the maxi-
mum number of simplices allowed for junctions should be raised accordingly,
up to 10000 for instance, depending on the problems.

Furthermore, it should be noted that the numerical cost of these refine-
ment junctions is usually quite significant, which is not to be overlooked.
Therefore this method seems the more appropriate as a replacement for the
final shooting, when the latter does not converge. In this case we have few
other options to obtain a better solution, apart from retrying the path fol-
lowing with a smaller meshsize (or using more cautious adaptive settings).
This solution refinement method can then prove interesting in terms of final
precision / overall cost ratio. An example of practical application, in addi-
tion to the adaptive mode, is described later in the singular arcs part, more
precisely in 4.3.3, page 106.

Chapter 3

Orbital Transfer problems

The problem we address here is a case of Earth orbital transfer, studied in the
context of a collaboration with the CNES (contract R&T 02/CNES/0257/00-
DPI 500, see [16]). We want to move a satellite from a low, elliptic, and
inclined initial orbit to an geosynchronous equatorial orbit, while maximiz-
ing the final mass (payload).

Orbital transfer (the inclination on the third graph is rescaled)

The chosen objective, the maximization of the final mass, leads to a bang-
bang structure for the optimal control, with a huge number of commutations
for low thrusts. As a consequence, it is not possible in practice to solve this
problem directly by single shooting. The extensive study (with a differential
continuation method) and physical interpretations of this problem can be
found in Thomas Haberkorn’s PhD thesis ([26]), some of these results being
also presented in [25].

55

56 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

3.1 Problem statement

We consider that the forces applied to the satellite are the Earth attraction
(central force) and the propulsor’s thrust:

r̈ = −µ0
r

|r|3 +
u

m

with r the position vector, u the thrust (ie the control), m the mass of the
satellite and µ0 the gravitational constant of the Earth (µ0 = GmT , with G
the universal gravititational constant and mT the masse of the Earth), and
|.| the euclidian norm.

The state vector consists of the position, speed and mass of the satellite
at a given time t. It is of course possible to express the position and speed in
a geocentric Cartesian system, yet according to the expected high number
of revolutions, this would lead to strong oscillations, which is detrimental to
numerical stability. This is why we prefer to use a modified set of classical
orbital elements, which describes the movement of the satellite in a more
orbit-related point of view. There we use the first five components of the
state vector to characterize the osculating orbit (the orbit the satellite would
follow if no thrust was applied), while the sixth component indicates the
current position of the satellite on this orbit. As the orbit deformation is
quite smooth, especially for low thrust transfers, this guarantees a very good
numerical stability for our state vector, which would not be the case with
the cartesian expression. This particular choice of coordinates is illustrated
below.

Orbital parameters

with
- P and e: ellipse parameter and eccentricity
- θ: true anomaly
- Ω: ascending node longitude
- ω: argument of perigee

3.1. PROBLEM STATEMENT 57

- i: inclination

Let us now define the state variables in R7:
• Orbit parameter P
• Eccentricity vector (ex, ey), in the orbit plane, oriented towards perigee
• Rotation vector (hx, hy), in the equatorial plane, colinear to the intersec-
tion of orbit and equatorial planes
• True longitude L
• Mass m

According to the previous notations, these parameters are defined as:

ex = e cos (Ω + ω) , ey = e sin (Ω + ω)
hx = tan(i/2)cosΩ , hy = tan(i/2)sinΩ
L = Ω + ω + θ

As for the three-dimensional control, we choose to express it in the mov-
ing reference frame attached to the satellite, as shown below.

Control expression in the moving reference frame (q, s, w)

The normalized control u (such as the thrust
−−→
T (t) = u(t) Tmax) is thus

expressed in R3 as: radial thrust q, transverse thrust s and normal thrust w.

If we denote TMax the maximal thrust and Isp the specific impulse of
the propeller, the chosen approximation of gravitational forces leads to the

58 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

following dynamics of the problem (see for instance [16]):

Ṗ (t) = 2TMax

m(t)

√

P 3(t)
µ0

s(t)
Z(t)

ėx(t) = TMax

m(t)

√

P (t)
µ0

1
Z(t) [Z(t)sin(L(t))q(t) +A1(t)s(t)

−ey(t)(hx(t)sin(L(t)) − hy(t)cos(L(t)))w(t)]

ėy(t) = TMax

m(t)

√

P (t)
µ0

1
Z(t) [−Z(t)cos(L(t))q(t) +A2(t)s(t)

+ex(t)(hx(t)sin(L(t))− h)y(t)cos(L(t)))w(t)]

ḣx(t) = TMax

2m(t)

√

P (t)
µ0(t)

X(t)
Z(t) cos(L(t)).w(t)

ḣy(t) = TMax

2m(t)

√

P (t)
µ0(t)

X(t)
Z(t) sin(L(t)).w(t)

L̇(t) =
√

µ0

P 3(t)
Z2(t) + 1

m(t)

√

P (t)
µ0

× 1
Z(t) (hx(t)sin(L(t)) − hy(t)cos(L(t)))w(t)

ṁ(t) = −TMax

Ispg0
|(q(t), s(t)), w(t)|

With

Z(t) = 1 + ex(t) cos(L(t)) + ey(t) sin(L(t))
A1(t) = ex(t) + (1 + Z(t)) cos(L(t))
A2(t) = ey(t) + (1 + Z(t)) sin(L(t))
X(t) = 1 + h2

x(t) + h2
y(t)

If we note x = (P, ex, ey, hx, hy, L) and u = (q, s, w) we obtain the fol-
lowing formulation of the maximal mass orbital transfer problem, with the
initial and terminal conditions corresponding to the two orbits:

(Pmf
)

Max m(tf)

ẋ = a(x) + TMax

m
B(x)u

ṁ = −TMax

Ispg0
|u|

|u| ≤ 1
IC : x(t0) = (11625; 0.75; 0; 0.0612; 0;π; 1500)
TC : x(tf) = (42165; 0; 0; 0; 0; free; free)
t0 = 0
tf fixed

Contrary to minimum-time problems, in which the transfer time is the
objective to be minimized, and thus the final time tf is free, we consider
here a fixed time transfer. The reason for this choice is that it is not obvious
that the minimum fuel problem with free final time has a solution.

3.2. RESOLUTION APPROACH 59

Besides, the actual criterion used for the maximization of the payload is
not Max m(tf) but (which is equivalent per the mass dynamic)

Min

∫ tf

t0

|u(t)|dt.

The Hamiltonian is thus defined by (t is here omitted for clarity)

H(x,m, p, pm, u) = (1− TMax

Ispg0
pm) |u|+ TMax

m
(B(x)u|p) + (a(x)|p).

If Bt(x)p 6= 0 then let us define the switching function ψ:

ψ(x,m, p, pm) = 1− TMax

Ispg0
pm −

TMax

m
|Bt(x)p|.

The application of Pontryagin’s Maximum Principle then leads to the fol-
lowing expression of the optimal control

u = − Bt(x)p
|Bt(x)p| if ψ(x,m, p, pm) < 0

u = −α Bt(x)p
|Bt(x)p| α ∈ [0, 1] if ψ(x,m, p, pm) = 0

u = 0 if ψ(x,m, p, pm) > 0

Else if Bt(x)p = 0 we have

u ∈ S(0, 1) if 1− TMax

Ispg0
pm < 0

u ∈ B(0, 1) if 1− TMax

Ispg0
pm = 0

u = 0 if 1− TMax

Ispg0
pm > 0

We can see that this control has a bang-bang structure, as its norm switches
between 0 and 1 at zeros of the switching function ψ. We now make two
assumptions, which are numerically verified:
• We assume that Bt(x)p is non-zero on [t0, tf]
• There is no singular arc, that is to say that we do not have ψ(x,m, p, pm) =
0 on any finite interval.

3.2 Resolution approach

As mentioned before, the resolution approach for this family of problems is
described in detail in [26], and we just recall here the general idea. While
maximizing the final mass leads to a difficult problem, due to the discontinu-
ous nature of the optimal control, changing the objective into the quadratic

60 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

one Min
∫ tf
t0
|u(t)|2 dt gives a much more regular problem, with a contin-

uous control. So we perform a kind of “energy to mass” continuation, by
considering the family of problems (BV Pλ) with the following objective

Jλ =

∫ tf

t0

λ|u(t)|+ (1− λ)|u(t)|2 dt.

and defining the homotopy as the corresponding shooting function

H : (z, λ) 7→ Sλ(z).

However, the first numerical experiments on this problem have shown the
existence of annoying local solutions. These were dealt with by using the
longitude instead of time as the integration variable, which eventually leads
to a formulation with both fixed final time and longitude.

Note: a consequence of this longitude formulation is that the resulting
shooting function is overly sensitive with respect to the costate pL associated
to the longitude. Therefore, using the usual scaling on this component of
the (IVP) unknown leads to numerical difficulties. As we would like to keep
the method as little problem dependant as possible, we have introduced a less
strict scaling mode instead of merely adjusting this component manually.
This “soft scaling” only rescales values to the interval [10−2, 10] instead of
[10−1, 1].

For the integration of the (IV P) required in the evaluation of the homo-
topy, as we expect a bang-bang control with a high number of commutations,
we primarily use a variable step integrator (RKF45), which performs quite
well in practice. We have also tried several fixed step Runge Kutta formulas,
which have all failed to complete the path following. The cause may be the
progressive appearance of the bang-bang control structure, which is difficult
to handle correctly with a fixed step integration (the transfers at low thrusts
are quite long, with several hundreds of commutations).

3.2.1 Initialization

For this problem family, the initialization of the continuation (ie solving the
problem for λ = 0) actually becomes non-trivial when the maximal thrust
Tmax (in Newtons) reaches low values. This difficulty is solved in [26] by
using a preliminary continuation on the initial conditions, but we have found
here another possibility.

More precisely, we try to solve the problem at λ = 0 by single shooting,
but with a fixed step integration instead of RKF45. The initialization for
this shooting attempt is very crude, as we set p(0) = 0. However, we set

3.2. RESOLUTION APPROACH 61

the more sensitive final longitude and time according to the empiric laws
presented in [15], which state that both the final time and longitude are
actually inversely proportional to the maximal thrust. Then, the (fixed)
number of integration steps is also set inversely proportional to Tmax, as
summarized below.

Tmax Lf tf (h) RK4 steps

10N 29.89539 150 300
5N 56.64919 300 600
1N 270.67959 1 500 3 000
0.5N 538.21759 3 000 6 000
0.2N 1340.83159 7 500 30 000
0.1N 2678.52159 15 000 50 000

Initial shooting at λ = 0 initialization - Fixed step RK4 integration

Here are the results of this fixed step initial shooting, which are quite
good.

Tmax tf (h) Solution norm H calls Time(s)

10N 153.87 6.75 10−15 113 1
5N 304.76 2.31 10−15 169 2
1N 1 529.65 3.74 10−15 147 7
0.5N 3 065.80 6.05 10−15 145 13
0.2N 7 659.83 2.20 10−14 183 86
0.1N 15 315.79 2.14 10−14 123 96

Initial shooting at λ = 0 results - Fixed step RK4 integration

Now the interesting point: these solutions at λ = 0, which correspond to
a RK4 fixed step integration, actually allow us to initialize properly the
simplicial algorithm, even though the (IV P) integration along the path is
performed with RKF45. Thus there is no need for the preliminary continu-
ation on the initial conditions anymore, which is a significant gain of time
at low thrusts.

Remark: it would be interesting to check whether this fixed step solution
would also be a sufficient initialization for the differential continuation.

3.2.2 Path following and solution

As mentioned before, the path following uses RKF45 for the integration,
with a moderate precision (we set 10−8 and 10−6 for the absolute and rel-
ative error tolerances). After the convergence at λ = 1, we then proceed
with a final shoot with a higher precision, namely (10−12, 10−10) for the tol-
erances. Here are summarized the results of the path followings and final
shoots for thrusts ranging from 10 to 0.1 Newton. The columns correspond
to
- Initial norm indicates the norm of H at the fixed step solution (which is
there re-integrated with RKF45).
- Simplices indicates the number of simplices followed for the path

62 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

- Time (s) indicates the execution time in seconds.
- Objective indicates the value of the objective (fuel consumption in kgs).
- Final norm indicates the norm of H at the solution after the final shoot.

Tmax Initial norm Simplices Time (s) Objective Final norm

10N 3.29 10−4 1336 20 121.21 3.43 10−10

5N 1.55 10−4 1909 51 121.58 4.63 10−10

1N 3.09 10−3 840 132 121.78 8.02 10−11

0.5N 3.58 10−3 2028 548 121.69 1.12 10−9

0.2N 6.34 10−3 912 661 121.71 3.21 10−9

0.1N 8.33 10−3 775 1252 121.70 1.75 10−6

Concerning the path following, we observe that the initialization works fine,
with a first junction generally requiring less than 100 simplices despite the
integrator change. This is coherent with the good norm (around 10−3) for
the re-integrated fixed step solution. The following itself converges normally
with a uniform K1(10

−1) triangulation, with 1000 to 2000 simplices. As for
the final shoot, we observe that for lower thrusts Tmax the precision de-
creases, while the time taken by the shoot increases.

Compared to the differential continuation used in [26], the final norms
are similar, and the objective values coincide as well. Actually, the solutions
found are the same, which is of course quite reassuring. Concerning the
performance, the execution time of the simplicial method is roughly up to
3 times longer than the differential continuation. This is not surprising, as
PC methods are known to be faster than PL methods, when they converge.

Here are the solutions corresponding to Tmax = 10, 1 and 0.1N . The two
columns on the left represent the state and costate components, the column
in the middle the three components and norm of the control, and finally the
trajectory (in 2D) from the initial elliptic orbit to the geostationary. The
switchings of the bang-bang control are clearly visible (for the 10N graph
anyway...) on the control norm, ie on the bottom graph in the middle.

10 20 30 40 50
−1

0

1
CONTROL

10 20 30 40 50
−1

0

1

10 20 30 40 50
−1

0

1

10 20 30 40 50
0

0.5

1
|u|

0

50

P

STATE

−1
0
1

e x

−0.02
0

0.02

e y

−0.1
0

0.1

h x

−2
0
2

x 10
−3

h y

0
50

100

L

1300
1400
1500

m

20 40
130
132
134

t f

−5
0
5

COSTATE

−100
0

100

−5
0
5

37.4
37.6
37.8

−1.2
−1

−0.8

−5
0
5

−0.1
0

0.1

20 40
0

0.5
1

x 10
−10

−50 0 50

−40

−30

−20

−10

0

10

20

30

40

Solution and trajectory for Tmax = 10N

3.3. COMPARISON OF DIFFERENT INTEGRATORS 63

100 200 300 400
−1

0

1
CONTROL

100 200 300 400
−1

0

1

100 200 300 400
−1

0

1

100 200 300 400
0

0.5

1
|u|

0

50

P

STATE

0
0.5

1

e x

−5
0
5

x 10
−3

e y

0

0.2

h x

−2
0
2

x 10
−4

h y

0

500

L

1300
1400
1500

m

200 400
1306
1308
1310

t f

−50
0

50
COSTATE

−1000
0

1000

−5
0
5

380
382
384

−2.6

−2.55

−5
0
5

0
0.5

1

200 400
−2

0
2

x 10
−10

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Solution and trajectory for Tmax = 1N

1000 2000 3000 4000
−1

0

1
CONTROL

1000 2000 3000 4000
−1

0

1

1000 2000 3000 4000
−1

0

1

1000 2000 3000 4000
0

0.5

1
|u|

0

50

P

STATE

−1
0
1

e x

−4
0
4

x 10
−4

e y

0

0.2

h x

−2
0
2

x 10
−5

h y

0

5000

L

1300
1400
1500

m

2000 4000
1.3096
1.3098

1.31
x 10

4

t f

−500
0

500
COSTATE

−1
0
1

x 10
4

−5
0
5

3790
3800
3810

−2.62
−2.6

−2.58

−5
0
5

0
5

10

2000 4000
0
2
4

x 10
−7

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Solution and trajectory for Tmax = 0.1N

Remark: if we try to re-integrate these solutions with a fixed step formula,
with a second shoot using RK4 for instance, it seems difficult to obtain the
same precision, even with a very large number of steps. This might be an-
other hint of the inadequacy of (uniform at least) fixed step integrators for
bang-bang control with many commutations.

Indeed, the correct handling of this bang-bang control (with several hun-
dreds of commutations for low thrusts), with no a priori knowledge about the
structure, is an impressive achievement of the combined continuation/single
shooting approach. On a side note, we would like to mention that the resolu-
tion of these problems highlighted some interesting physical properties and
interpretations, and refer once again the readers interested in these matters
to Thomas Haberkorn’s thesis ([26]).

3.3 Comparison of different integrators

We compare in this part two other variable step integrators for the final
shoot, namely the DOP853 and ODEX codes by E.Hairer and G.Wanner,
described in details in [27]. We use the same absolute and relative toler-
ances (ie 10−12 and 10−10) for all the shoots, while keeping the RKF45 with

64 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

(10−8, 10−6) for the path. We first examine the shoot results, then have a
closer look at the corresponding trajectories.

3.3.1 Final shoot results

We indicate here the shoot results for the three integrators (of course, the
RKF45 results are the same as mentioned before).
- Steps indicates the number of integration steps at the solution
- Final norm is the norm of H after the shoot
- Objective is the objective value at the solution
- Shoot (s) indicates the time taken by the shoot (in seconds)
- Shoot (H) indicates the number of homotopy evaluations for the shoot

Tmax Steps Final norm Objective Shoot (s) Shoot (H)

10N 1 552 3.43 10−10 121.21 4 55
5N 2 932 4.63 10−10 121.58 11 87
1N 15 170 8.02 10−11 121.78 38 51
0.5N 27 768 1.12 10−9 121.69 105 74
0.2N 67 769 3.21 10−9 121.71 161 49
0.1N 134 528 1.75 10−6 121.70 350 49

Solutions for 10,5,1,0.5,0.2 and 0.1N - RKF45 integrator

Tmax Steps Final norm Objective Shoot (s) Shoot (H)

10N 670 2.86 10−10 121.21 5 57
5N 1 328 1.52 10−11 121.58 15 88
1N 7 095 5.82 10−10 121.78 55 54
0.5N 12 805 3.51 10−9 121.69 164 96
0.2N 31 894 1.13 10−8 121.71 194 45
0.1N 63 810 1.92 10−5 121.70 570 65

Solutions for 10,5,1,0.5,0.2 and 0.1N - DOP853 integrator

Tmax Steps Final norm Objective Shoot (s) Shoot (H)

10N 954 3.96 10−10 121.21 6 58
5N 2 008 1.07 10−11 121.58 13 69
1N 11 072 9.61 10−10 121.78 58 51
0.5N 19 242 7.77 10−10 121.69 216 109
0.2N 48 591 1.49 10−8 121.71 365 76
0.1N 97 104 1.13 10−2 121.70 381 37

Solutions for 10,5,1,0.5,0.2 and 0.1N - ODEX integrator

The solutions are similar (identical up to 3 to 5 digits depending on the
components of z for 0.1N for instance), with the same objective values. The
final norms are also quite close, with the exception of the poor result of
ODEX in the 0.1N case (the solver stops here prematurely, with only 37
homotopy calls). Concerning the shoot time the order is less regular, but
overall RKF45 appears to be the fastest, followed by DOP853, then ODEX.

Now if we also look at the integration steps with respect to the thrust
Tmax, we see some interesting things, as shown on the graph below.

3.3. COMPARISON OF DIFFERENT INTEGRATORS 65

10
−1

10
0

10
1

10
3

10
4

10
5

RKF45, DOP853, ODEX steps vs T
max

T
max

 (N)

S
T

E
P

S

RKF45
DOP853
ODEX

Integration steps with respect to Tmax - RKF45, DOP853 and ODEX
(logarithmic scale on both axes)

For all three integrators, the number of integration steps taken is numerically
inversely proportional to the maximal thrust (as are also the transfer time
and total longitude), which illustrates well the extreme regularity of the
orbital transfer problem family with respect to Tmax.

Integration steps× Tmax ≈ Ct.

Moreover, we observe a steady relation in the number of integration steps,
with DOP853 taking about half the steps needed by RKF45, while ODEX
stands roughly halfway between the two. These relations seem to hold ex-
tremely well, regardless of the maximal thrust.

3.3.2 Solution trajectories

Let us have now a closer look at the trajectories obtained by the three
variable step integrators. The trajectories shown below correspond to the
solution given by the final shoot at the end of the path following, for the
thrusts Tmax = 10, 5, 1, 0.5, 0.2 and 0.1N . On each graph the initial and final
orbits are drawn, in addition to the dots corresponding to each integration
step. The spacing between the dots thus indicates the integration stepsize
(we recall that the integration variable is here always the longitude L, even
if it is sometimes abusively labeled as “time” on some graphs).

RKF45 integrator

We begin with the results of the RKF45 integrator.

66 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

−50 0 50

−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Trajectories for 10,5,1,0.5,0.2 and 0.1N - RKF45 integrator

The first thing we can note about these trajectories is another indication of
the extreme regularity of the problem with respect to the maximal thrust
Tmax. Trajectories for all thrusts share the same pattern for the integration
nodes, only with more revolutions for lower thrusts. Concerning the spread-
ing of the nodes, they seem here quite regularly spaced along the orbit, but
clearly with a smaller step over thrust arcs (centered on apogees and later
perigees) than non-thrust arcs.

Now let us have a closer look at the evolution of the stepsize during the
integration, and more precisely along with the switching function ψ. We
recall that the switching function ψ and the optimal control u∗ are closely
related, namely:

3.3. COMPARISON OF DIFFERENT INTEGRATORS 67

- |u∗(t)| = 1 when ψ(t) < 0, t is then within a thrust arc.
- u∗(t) = 0 when ψ(t) > 0, t is then within a non-thrust arc.
- u∗ is discontinuous at t when ψ(t) = 0, t is then a commutation, or switch-
ing time.

Note: the following graphs showing the stepsize correspond to the 10N
transfer. The qualitative behaviour for lower thrusts is similar, but the
graphs provide no visual interest due to the huge number of commutations.
The first graph shows the switching function ψ and the integration stepsize
h, the second graph shows only the stepsize, with a logarithmic scale for a
better vision of the three ranges of values taken (corresponding to the thrust,
non-thrust and commutation cases).

10 20 30 40 50
−0.5

0

0.5

1
RKF45: STEPSIZE and SWITCH

Time

ψ

SWITCH
STEPSIZE

10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0 Integrator Stepsize

Time

h

Integration stepsize and switching function (10N) - RKF45 integrator

The logarithmic scale on the right graph gives a better idea of the order of
magnitude of the stepsize, and we can distinguish three ranges, that inter-
estingly coincide very well with the sign of the switching value ψ. First, we
can see that the integration stepsize becomes very small (as low as 10−9) at
the commutations, when the switching function ψ vanishes. This indicates
that the integrator correctly detects the right hand side discontinuities in-
duced by the control switching at the commutations.

Over the thrust arcs, the stepsize is stable and relatively low, around
10−2, and slightly increasing from one revolution to the next one. The
difference in stepsizes between the first and last thrust arcs of the transfer is
quite clear on the left part of the graphs for Tmax below 1N : the final thrust
arcs overlap the initial ones and show more spaced dots, like for the thrust
arcs on the right part of the graphs. Over the non-thrust arcs, the step is
nearly one order of magnitude larger, around 10−1, and is rather regular
too. This difference of range probably finds its explanation in the dynamics
of the system. With the state expressed in terms of orbital parameters, a
null control just makes the satellite move along on its orbit, the orbit itself
staying the same. Then in the state [P, ex, ey, hx, hy , L,m] only the longitude

68 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

varies, whereas all other orbital parameters and the mass remain constant.
Therefore it seems logical that the integration can be performed with a larger
step over the non-thrust arcs. Concerning the moderate increase of the step
over the successive thrusts arcs, it may be related to the change of form of
the orbit, that tends to a circular one, with a lower angular speed of the
satellite than for the early apogees, which would allow a faster integration
along the longitude.

DOP853 integrator

We show now the trajectories for the DOP853 integrator, which belongs to
the same class of methods (embedded Runge Kutta) as RKF45, but is of
higher order, 8 instead of 5.

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Trajectories for 10,5,1,0.5,0.2 and 0.1N - DOP853 integrator

3.3. COMPARISON OF DIFFERENT INTEGRATORS 69

As before, we can see that these trajectories still look similar for all thrusts.
The similarities with RKF45 are the regular spreading of the integration
nodes over both thrust and non-thrust arcs, still with smaller steps over the
former. We also notice the same difference of stepsize between the early
apogees thrust arcs and the later apogees or perigees thrust arcs. Overall,
the fact that DOP853 takes only about half as many nodes as RKF45 seems
to correspond to a globally larger stepsize, over both kinds of arcs. Another
first glance difference is the presence of a huge concentration of nodes around
the commutations between the thrust and non-thrust arcs, especially visible
on the 1N and 0.5N graphs for instance. There were of course also very
small steps around the commutations for RKF45, but there was not such a
contrast with the thrust arcs.

Now let us move on to the detailed view of the stepsize.

10 20 30 40 50
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
DOP853: STEPSIZE and SWITCH

Time

ψ

SWITCH
STEPSIZE

10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

Integrator Stepsize

Time

h

Integration stepsize and switching function (10N) - DOP853 integrator

This confirms the important similarities of behaviour between DOP853 and
RKF45, as we find again three distinct ranges of values for the stepsize, that
perfectly match the sign of the switching function. First, same as before,
the stepsize becomes extremely small (around 10−9 again) around zeros of
the switching function, as the integrator has to deal with the right hand side
discontinuities due to the commutations. Then concerning the thrust arcs,
the stepsize is still regular and rather small, with values roughly around
10−1. Outside of the thrust arcs, we still have larger stepsizes, between 0.1
and 1 roughly.

The only noticeable differences with RKF45 seem to be the overall larger
stepsize (except at the commutations, which may explain the visual impres-
sion of dots accumulation), and the slightly closer stepsizes over the thrust
/ non-thrust arcs at the end of the transfer. The larger steps are most
probably a consequence of the higher order of DOP853, while the last point
could indicate a slightly better performance of the integrator when the orbit
becomes more circular. All in all, we have the same qualitative behaviour

70 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

between the to integrators, with a quantitative advantage to DOP853 in
terms of overall stepsize. This is quite coherent with them both implement-
ing embedded Runge-Kutta methods, but of higher order for DOP853.

ODEX integrator

We finish with the ODEX integrator, which unlike the two others uses an
extrapolation method, with both variable order and stepsize.

−50 0 50
−40

−30

−20

−10

0

10

20

30

40

−50 0 50
−40

−30

−20

−10

0

10

20

30

40

−50 0 50
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

−40 −20 0 20 40
−40

−30

−20

−10

0

10

20

30

40

Trajectories for 10,5,1,0.5,0.2 and 0.1N - ODEX integrator

Compared to the two previous integrators, there is an obvious difference
in the pattern of the integration nodes for ODEX. Contrary to what it
was for RKF45 and DOP853, their spreading appears quite irregular, with
some noticeably large “blanks” occurring not only on non-thrusts arcs, but

3.3. COMPARISON OF DIFFERENT INTEGRATORS 71

also on thrusts arcs. These indicate very large integration steps, which are
indeed a trait of extrapolation methods. What is a bit surprising is the
seemingly lesser distinction between thrust and non-thrust arcs in terms of
stepsize, especially visible on the early apogees (on the left of the graphs).
Still, a common point with the previous integrators is the concentration of
nodes around the commutations, and more precisely before the commuta-
tions. This is slightly different from what we have seen before with DOP853
for instance, where the accumulation of nodes seems rather centered on the
commutations. Here we rather have increasingly small steps before the com-
mutations, and relatively large steps just after the commutations.

As with ODEX the order can also change at each step, we have repre-
sented it along with the stepsize and the switching function.

10 20 30 40 50
−2

0

2

4

6

8

10

12

14

ODEX: SWITCH, STEPSIZE AND ORDER

Time

O
rd

er

SWITCH
STEPSIZE
ORDER

10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
1 Integrator Stepsize

Time

h

Integration order, stepsize and switching function (10N) - ODEX
integrator

Once again, we can see that the stepsize drops at the commutations to very
small values (10−9 and below). An interesting point is that the integration
order similarly drops there to its minimal value (4), which is supposed to
allow an efficient handling of the discontinuities, as pointed out in [27], II.9
page 237. Otherwise, the steps are still globally larger over the non-thrusts
arcs than thrust arcs, but are in both cases less regular than before. In
particular we can see that the stepsize increase after a commutation is less
steep than with RKF45 and DOP853, for which we have an almost symmet-
ric evolution of the stepsize on each arc. This may be related to the fact
that the step control mechanisms are different for ODEX, which could also
explain the fading of the stepsize gap between the thrust and non-thrust
arcs near the end of the transfer.

As expected from the trajectories, the overall stepsize values are higher
than with DOP853, between 10−1 and 1 over thrust arcs and above 1
over non-thrust arcs. Despite this ODEX curiously takes more steps than
DOP853, halfway between RKF45 and DOP853 actually. Maybe this is due

72 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

to some difficulties to cross the commutations, as we notice an accumulation
of integration nodes before the switching times, which is not the case for the
two other integrators. The order is comprised between 4 (minimal value, at-
tained at the switchings) and 14, which is higher than for the two previous
integrators. At this point, it seems that the extrapolation method might
not be a good choice for this problem, as its high order results in longer
integration times, with the number of steps still larger than for DOP853.

3.4 Adaptive triangulation study

We wish here to experiment on these problems with the adaptive meshsize
described in 2.3. We test here the default configuration for the full adap-
tive mode, namely a deviation tolerance set to 10−1 and (2, 0.2, 0.1) for the
anisotropic deformation thresholds. First we compare the path followings
with and without the adaptive mode, in order to study the impact on the
number of simplices followed. Then we look at the final shoots at the end
of the path, to see how they are affected by the precision of the solution at
λ = 1.

Path following

We represent here the number of simplices followed along the path. It is
obviously always increasing, starting from 0 to the total number of simplices
at λ = 1. We plot together the simplices for the uniform (reference) and
adaptive meshsize, for Tmax = 10, 5, 1, 0.5, 0.2 and 0.1N .
Note: the maximum number of simplices allowed for the junctions is 100,
except 500 for the 0.2N case that presents junctions difficulties (see later)

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

LAMBDA

S
P

LX

10N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

2000

LAMBDA

S
P

LX

5N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

LAMBDA

S
P

LX

1N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

LAMBDA

S
P

LX

0,5N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000
0,2N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

LAMBDA

S
P

LX

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800
0,1N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1)

LAMBDA

S
P

LX

UNIFORM
ADAPTIVE

Simplices followed for Uniform and Adaptive meshsize
10,5,1,0.5,0.2 and 0.1N - K1(10

−1) triangulation

3.4. ADAPTIVE TRIANGULATION STUDY 73

First we observe a curious “gap” of simplices between the levels λ = 0.6, 0.7
or λ = 0.7, 0.8 on some paths, namely the 5, 0.5 and 0.2N (we study this
phenomenon a bit later). Concerning the gain of the adaptive mode in terms
of simplices, it does not seem that important, except in the two cases where
these gaps are avoided (5 and 0.5N). In other cases, the gain exists but is
moderate (with the exception of the 10N case, where the adaptive actually
takes more simplices!). Concerning this last remark, more generally, we have
less to expect from the adaptive meshsize when a large uniform meshsize such
as K1(10

−1) already converges well, as there is not much left to improve.
Now that we have an idea of the simplices gain, we examine the precision
improvement, and its consequences on the final shoot.

Final Shoot

We look here more closely at the shoot results after the uniform and adap-
tive path followings. All shoots use the standard RKF45 with the tolerances
(10−12, 10−10) (the results for the uniform K1(10

−1) thus coincide with the
ones presented at the beginning of this chapter). We indicate in the follow-
ing tables
- |H1|: the norm of the homotopy at the end of the path, before the shoot
(this roughly measures the quality of the initial point for the shoot).
- Shoot (H) and Final norm: same as before, the number of homotopy
calls and final norm for the shoot.
- Total (H) and Total (s): the total number of homotopy calls, and exe-
cution time (in seconds).
Note: it should be noted that the homotopy calls made during the shoot-
ing attempts are most costly than the calls during the path following, as we
require a more precise integration. Therefore, the total execution time is
not exactly proportional to the total number of homotopy evaluations (for
a given Tmax), even though the computational cost essentially comes from
these calls. The difference is not that important, however, due to the rather
low number of “shoot” calls compared to the “path” calls...

Tmax |H1| Shoot (H) Final norm Total (H) Total (s)

10N 0.24 55 3.43 10−10 1553 20
5N 0.76 87 4.63 10−10 2117 51
1N 0.05 51 8.02 10−11 943 132

0.5N 0.74 74 1.12 10−9 2226 548
0.2N 0.24 49 3.21 10−9 1050 661
0.1N 0.04 49 1.75 10−6 920 1252

K1(10
−1) triangulation - Uniform (reference) mode

We first notice that the shoot seems to require more homotopy evaluations
when the norm of the solution at the end of the path is higher (5 and 0.5N).
Now are the results corresponding to the adaptive meshsize.

74 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

Tmax |h1| Shoot (H) Final norm Total (H) Total (s)

10N 0.01 43 1.93 10−10 2252 27
5N 0.002 66 2.07 10−10 1425 35
1N 0.02 64 4.11 10−11 1226 166

0.5N 0.01 44 4.89 10−10 1277 305
0.2N 0.02 44 2.16 10−7 1116 696
0.1N 0.02 70 9.85 10−5 1018 1486

K1(10
−1) triangulation - Adaptive mode

We observe that the norms at λ = 1 before the shoot are better than with
the uniform meshsize. However, the improvement on the shoot is not very
clear: it is better for the two previous worst cases again (5 and 0.5N), but
remains the same or even gets worse (1 and 0.1N) otherwise. Overall, the
poor results in terms of performance (global homotopy calls / execution
time) indicate that the adaptive meshsize mechanism does not perform well
with the K1(10

−1) triangulation.

3.4.1 A better suited meshsize

The first experiments, made with theK1(10
−1) used previously, confirm that

the adaptive meshsize actually requires a smaller meshsize with respect to
λ. Indeed, a value of 0.1 means about 10 adaptive junctions only along the
path, which is too rough to benefit fully from the adaptive mode. This is why
we also try a slightly modified meshsize, namely δi = 0.1,∀i ∈ [1..n]; δn+1 =
0.01, which we denote by K1(10

−1/10−2) in the following. This second
triangulation, although leading to a slower path following than the basic
K1(10

−1), allows us to better study the effects of the adaptive meshsize. So
we repeat now the same tests with a stepsize of 10−2 for λ.

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

S
P

LX

LAMBDA

10N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

LAMBDA

S
P

LX

5N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

LAMBDA

S
P

LX

1N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

3000

3500

LAMBDA

S
P

LX

0,5N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

1600

1800

LAMBDA

S
P

LX

0,2N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

LAMBDA

S
P

LX

0,1N − UNIFORM AND ADAPTIVE TRIANGULATIONS (K1 0.1 / 0.01)

UNIFORM
ADAPTIVE

Simplices followed for Uniform and Adaptive meshsize
10,5,1,0.5,0.2 and 0.1N - K1(10

−1/10−2) triangulation

An interesting thing is that we notice the same gaps as before for the 5, 0.5
and 0.2N paths. Moreover, the adaptive meshsize still performs very well

3.4. ADAPTIVE TRIANGULATION STUDY 75

for 5N and 0.5N , while it has very little effect for 0.2N (we study these
two cases more in details in the following). For other paths the gain is also
more important than before, which confirms that the stepsize of 0.1 for λ is
limiting the adaptive process.

Now let us have a look at the shoot results with the K1(10
−1/10−2).

Tmax |h1| Shoot (H) Final norm Total (H) Total (s)

10N 0.24 80 1.30 10−10 2685 34
5N 0.76 71 4.11 10−10 3425 77
1N 0.05 36 1.53 10−10 1793 223

0.5N 0.74 95 1.55 10−9 3546 855
0.2N 0.24 83 6.33 10−9 2030 1293
0.1N 0.04 58 3.49 10−5 1726 2170

K1(10
−1/10−2) triangulation - Uniform (reference) mode

Same as before, we observe a rough link between the norm of the solution
at the end of the path and the number of homotopy calls made during the
shoot, with faster shoots for 1 and 0.1N. Here are the corresponding adaptive
meshsize results.

Tmax |h1| Shoot (H) Final norm Total (H) Total (s)

10N 0.01 48 2.28 10−10 3736 49
5N 0.01 43 1.78 10−10 2677 72
1N 0.02 33 4.70 10−9 1742 209

0.5N 0.03 34 9.78 10−10 2090 489
0.2N 0.03 49 2.10 10−9 2552 1510
0.1N 0.02 46 6.77 10−5 1772 2051

K1(10
−1/10−2) triangulation - Adaptive mode

This time things are more satisfying, with a clear improvement on the norms
and a matching improvement on the shooting attempts (except for the al-
ready fast 1 and 0.1N cases). Now all shooting attempts take between 30
and 50 homotopy evaluations. In addition to the better gain in terms of
simplices, as seen before, this confirms the fact that the adaptive meshsize
requires a not too high stepsize with respect to λ in order to be effective.
However, despite the gain in simplices for the main path and the faster shoot,
the overall performance is a bit disappointing, as the cost of the junctions
often offsets these improvements.

We focus now a little bit more on the qualitative aspect of the following,
and have a closer look at two of these path followings, namely the 0.5 and
0.2N cases for the K1(10

−1/10−2) triangulation. The 0.5N path following
shows an example of the gaps mentioned before, and we observe an impor-
tant gain with the adaptive meshsize. Conversely, for 0.2N we also observe
a (smaller) gap between λ = 0.7 and λ = 0.8, but the adaptive gain is here
insignificant, and the junctions in this case are difficult (we have increased
the maximum number of junctions simplices to 500).

76 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

A favorable case

Let us begin with the favorable case (0.5N).

2600 2800 3000 3200
0

0.5

1

L
a

m
b

d
a

Path component 1
−160 −140 −120 −100

0

0.5

1

Path component 2
L

a
m

b
d

a

−5000 −4000 −3000 −2000
0

0.5

1

Path component 3

L
a

m
b

d
a

−5 −4 −3 −2
0

0.5

1

Path component 4

L
a

m
b

d
a

600 650 700 750 800
0

0.5

1

Path component 5

L
a

m
b

d
a

−2.5 −2 −1.5 −1
0

0.5

1

Path component 6

L
a

m
b

d
a

2 3 4 5
0

0.5

1

Path component 7

L
a

m
b

d
a

1.05 1.1 1.15 1.2 1.25
0

0.5

1

Path component 8

L
a

m
b

d
a

2600 2800 3000 3200
0

0.5

1

L
a

m
b

d
a

Path component 1
−160 −140 −120 −100

0

0.5

1

Path component 2

L
a

m
b

d
a

−5000 −4000 −3000 −2000 −1000
0

0.5

1

Path component 3

L
a

m
b

d
a

−5 −4.5 −4 −3.5
0

0.5

1

Path component 4

L
a

m
b

d
a

680 700 720 740 760
0

0.5

1

Path component 5
L

a
m

b
d

a

−3 −2.5 −2 −1.5
0

0.5

1

Path component 6

L
a

m
b

d
a

2.5 3 3.5 4 4.5
0

0.5

1

Path component 7

L
a

m
b

d
a

1.05 1.1 1.15 1.2 1.25
0

0.5

1

Path component 8

L
a

m
b

d
a

Path for 0.5N - Uniform and Adaptive meshsize

We see that the path on the left, corresponding to the uniform meshsize, is
quite irregular, with strong oscillations on components 1, 5 and 6 in partic-
ular. By looking more closely at what happens around λ = 0.7, we have the
explanation of the simplices gap. We observe that the following clearly turns
back after reaching λ ≈ 0.7, going down to λ ≈ 0.6 again, before resuming
the progression until λ = 1. This of course explains why it seems to take
so many simplices between the levels λ = 0.7 and λ = 0.8. Considering the
general allure of the path before and after this event, this behaviour may
indicate the existence of two distinct paths (or maybe a bifurcation).

On the other hand, the path on the right, corresponding to the adaptive
meshsize, looks much smoother. The oscillations on components 1,5,6 are
strongly reduced, and more importantly, there is no sign of turning back
around λ = 0.7 (still, an inflexion is clearly visible on components 4,7 for
instance). This better handling shows in the significant reduction in main
simplices (1377 versus 3222). The adaptive junctions require 1286 simplices,
which is nearly as much as the main path (we recall, however, that all junc-
tion simplices do not requires the evaluation of the homotopy, see later).

We have now a closer look at the evolution of the adaptive meshsize
along the path. We represent only δ for λ multiple of 0.1 for clarity, even
if the actual level height is δn+1 = 0.01 (and remains unchanged during the
following).

3.4. ADAPTIVE TRIANGULATION STUDY 77

λ δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8
0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.4 0.1 0.4 0.1 0.2 0.05
0.2-0.3 0.1 0.1 0.4 0.1 0.4 0.1 0.2 0.025
0.4 0.1 0.1 0.4 0.2 0.4 0.2 0.1 0.025
0.5-0.6 0.1 0.1 0.4 0.1 0.4 0.2 0.1 0.025
0.7-1 0.05 0.05 0.2 0.1 0.2 0.1 0.05 0.0125

Meshsize δ evolution along the path - 0.5N (δn+1 = 0.01)

We immediately notice the meshsize global reduction occurring between
λ = 0.6 and λ = 0.7 (at λ = 0.65 more precisely), that would coincide with
the deviation and turning back observed in the uniform case. The algorithm
seems to correctly detect some difficulties there (in practice the homotopy
norm crosses the threshold value of 0.1) and switches to a smaller meshsize
for a more cautious following. This turns out to be a correct move, as we
avoid the bad behaviour of the uniform meshsize. Besides, this small mesh-
size until the end is coherent with the nearly “vertical” aspect of the path
for λ ∈ [0.7, 1].

Concerning the different sizes for each dimension in general, we observe
that the third and fifth components tend to have a larger meshsize, whereas
the eighth component has a smaller one. This is coherent with the fact
that component 3 is the one having the largest relative variation (more than
a factor 3 between the initial and final value), while component 8 has a
small variation (from 1.21 to 1.08 roughly). The case of component 5 is less
clear, as even with the scaling, the variation does not seem that important.
However, we also see on the graphs that this component is one of the most
irregular on the uniform path, and the less smooth on the adaptive path.
Moreover, it happens that the difficulties of the 0.2N case also seem related
to this particular component (see just below).

To finish with, the additional benefit of the adaptive meshsize, namely
a faster final shoot, is also significant here. The norm at the end of the
path (before the shoot) is of 0.03 instead of 0.74, and the shoot takes only
34 homotopy evaluations (versus 95 for the uniform meshsize). This is not
negligible, all the more so as the homotopy evaluations for the shoot are
most costly than for the path (the integration is done with lower tolerances).

These two factors lead in this case to an overall important gain, with
a total execution time of 489s versus 855s (2090 and 3546 homotopy calls
respectively).

An unfavorable case

Now we would like to understand what happens in the 0.2N case, for which
the adaptive mode leads to a longer execution time than the reference. Con-

78 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

cerning the final shoot, there is indeed an improvement, with 49 homotopy
calls versus 83 (the norm of H at the end of the path being of 0.03 instead
of 0.24). The problem lies in the number of simplices followed on the main
path, which is almost the same than with the uniform meshsize. This is
probably related to the difficulties observed with the adaptive junctions, for
which we have to increase the maximal number of simplices from 100 to 500.
Otherwise junctions keep failing, and we basically keep the same meshsize
all along. Yet even with these settings, the simplices gain is very limited
compared to the cost of the junctions. We look at both paths with uniform
and adaptive meshsize, in order to try to figure out these difficulties.

6500 7000 7500 8000
0

0.5

1

L
a

m
b

d
a

Path component 1
−400 −350 −300 −250

0

0.5

1

Path component 2

L
a

m
b

d
a

−12000 −10000 −8000 −6000 −4000
0

0.5

1

Path component 3

L
a

m
b

d
a

−6 −5 −4 −3
0

0.5

1

Path component 4

L
a

m
b

d
a

1750 1800 1850 1900
0

0.5

1

Path component 5

L
a

m
b

d
a

−2.5 −2 −1.5
0

0.5

1

Path component 6

L
a

m
b

d
a

2.5 3 3.5 4 4.5
0

0.5

1

Path component 7

L
a

m
b

d
a

2.7 2.8 2.9 3 3.1
0

0.5

1

Path component 8

L
a

m
b

d
a

6500 7000 7500 8000
0

0.5

1

L
a

m
b

d
a

Path component 1
−400 −350 −300 −250

0

0.5

1

Path component 2

L
a

m
b

d
a

−12000 −10000 −8000 −6000 −4000
0

0.5

1

Path component 3

L
a

m
b

d
a

−5.5 −5 −4.5 −4 −3.5
0

0.5

1

Path component 4

L
a

m
b

d
a

1750 1800 1850 1900
0

0.5

1

Path component 5

L
a

m
b

d
a

−3 −2.5 −2 −1.5
0

0.5

1

Path component 6
L

a
m

b
d

a

2.5 3 3.5 4 4.5
0

0.5

1

Path component 7

L
a

m
b

d
a

2.6 2.8 3 3.2 3.4
0

0.5

1

Path component 8

L
a

m
b

d
a

Path for 0.2N - Uniform and Adaptive meshsize

First we observe that in the adaptive case, the path looks smoother, like in
the 0.5N case. However, if we look more closely at the component 5 of z,
we notice some horizontal “jumps” corresponding to the junctions that take
a lot of simplices to complete. This illustrates the phenomenon described
in 2.3.1, when a junction causes the path following to jump from a zero
path branch to another. It can sometimes then turn back to λ = 0, or like
here just continue towards λ = 1. The problem is that this is not at all the
purpose of an adaptive junction !

Indeed, we are supposed to have computed a new meshsize better suited
to the path we are following. If we jump to another branch instead of con-
tinuing on this path, nothing guarantees that the new meshsize is suited to
the new branch, which completely ruins the adaptive mechanism. Moreover,
we run the risk of a precision loss of the following at these straying jumps,
when the junction manages to catch up with the next branch. Of course,
the consequences of this phenomenon are aggravated if this happens repeat-
edly. In this case, in addition to the possibility of repeated precision losses

3.4. ADAPTIVE TRIANGULATION STUDY 79

at the jumps, we end up most of the time with an unadapted meshsize, as
it was designed according to the progression before the jump. In such cir-
cumstances, maybe a lesser evil is indeed just to give up with the adaptive
mode and keep the uniform meshsize.

We seem here to be in this situation, which would explain the difficulties
of the adaptive mode. On this particular example, we observe that strictly
limiting the junction simplices (to 50) does not give good results: we have
a lot of junction failures after 50 simplices, with an overall much longer ex-
ecution time than the reference. Trying a more aggressive adaptive setting,
with a deviation tolerance of 1 for instance, turns out to be too unstable,
while a more cautious setting (10−2) does not give better results either.

Remark: incidentally, if we look at the evolution of the meshsize along
the path, like before, we notice that the size for the component 5 becomes
very small, below 10−2. This is probably one of the practical reasons of the
poor adaptive performance in this case, and confirms that the handling of
this unknown (namely phy

(0)) seems to be quite sensitive.

First conclusions on the adaptive meshsize

Overall, these tests show a satisfying qualitative behaviour of the adaptive
meshsize, in two distinct ways. First, we notice in most cases a significant
reduction in the number of simplices followed for the main path, with a gen-
erally smoother following. The gain is quite impressive in some favorable
cases, when we can avoid some irregularities in the path following. Besides,
we also observe a general improvement of the precision of the following,
which leads to faster final shooting attempts, with less homotopy evalua-
tions. However, if the junctions are generally fast (less than 50 simplices),
there are also some problematic situations, maybe related to the existence of
several close branches of the path. In this case the junctions actually cause
more harm than good, and it seems that the whole adaptive mode should
be disabled.

Nevertheless, the comparison of the global execution times highlights the
fact that the numerical cost of the adaptive junctions is here not negligible
at all. Indeed, this cost often offsets the two gains mentioned above, leading
to a limited overall performance improvement. Generally speaking, there is
less to gain to expect for the path followings that already go smoothly with
a large uniform meshsize, whereas we can expect a good improvement for
the more irregular ones (except in the problematic case mentioned above).

Remark: these experiments confirm that a stepsize of 10−2 for λ is better
suited to the adaptive mode than 10−1, which is too rough.

80 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

On a side note, using the solution refining process described in 2.4 does
work on these problems, but suffers from the same flaw. The speed gain
on the final shoot (thanks to a better starting solution at λ = 1 after the
refining) is lower than the cost of the refinement junctions, and we actually
observe a longer global execution time.

3.4.2 Junction homotopy formulation

To finish with, we try to compare on this family of orbital transfer prob-
lems the different formulations for junctions homotopies described in 2.2. In
particular, we would like to emphasize that both the “first” and “second”
formulations (that use an approximation of the Jacobian of H by finite
differences) cannot perform well without some numerical tuning, which is
a strong limitation compared to the “third” (derivatives-free) formulation.
The test suite consists in the raw path following (no final shoot), with a full
adaptive mode. We keep the default values for the deviation tolerance and
anisotropic thresholds, ie 0.1 and (2, 0.2, 0.1). As we expect more difficult
junctions with the first and second formulations, and to keep a coherent test
environment, the maximum number of simplices allowed for junctions has
been increased to 500 for all tests. Also, we choose the K1(10

−1/10−2) in-
stead of the K1(10

−1) because it implies more junctions and is better suited
to the adaptive mode, as said before.

It should be noted that if the number of junction simplices naturally
differs for each formulation, the number of simplices for the main homotopy
path is also often different. This is due to the fact that the junctions may
come up with different completely labeled faces, or can sometimes fail for
a particular formulation (contrary to a first junction failure, an adaptive
junction failure does not stop the path following in any case: we just keep
the previous meshsize and go on).

First formulation

We being with the first formulation, in which we use centered finite differ-
ences, with an uniform stepsize h. We recall that the numerical integration
along the path is performed by RKF45, with absolute and relative tolerances
of 10−8 and 10−6.

A uniform stepsize of 10−6 gives awful results, attaining convergence
only in 2 cases out of 6, with thrice the usual homotopy calls and time,
while the first junction fails for other values of Tmax. Obviously, we must
chose a larger step for the finite differences. Indeed, a stepsize of 10−3 or
10−1 manages much better, as indicated below.

3.4. ADAPTIVE TRIANGULATION STUDY 81

The following tables indicate for each path following:
(i) Path the number of simplices for the main homotopy
(ii) Junc. the total number of simplices used for junction homotopies
(iii) H calls the total number of homotopy evaluations
(iv) Time the time (in seconds) taken by the path following

Tmax Path Junc. H calls Time

10N 1218 2148 4233 44
5N 913 1940 2901 63
1N 605 1546 1738 216

0.5N 1079 7971 4524 887
0.2N 1140 3027 3253 1745
0.1N - - - -

Tmax Path Junc. H calls Time

10N 1218 2398 4451 48
5N 1143 7185 4201 92
1N 773 662 1818 190

0.5N 1316 3725 3908 830
0.2N 1397 871 2793 1411
0.1N 904 425 1800 1794

Junctions for the first formulation, with h = 10−3 and h = 10−1

Then we move on to the modified formulation, in which the stepsize is
proportional to the triangulation meshsize (hi = δi

k
, i = 1, . . . , n).

With k = 1000 or k = 100 we obtain poor results, failing to complete the
first junction for half the tests, and up to twice the usual homotopy calls.
Then with k set to 10 or 1, it is much better, with results comparable to the
reference second formulation.

Tmax Path Junc. H calls Time

10N 1218 2134 4236 47
5N 913 1928 2904 63
1N 547 466 1418 171

0.5N 1019 1252 2591 578
0.2N 1395 707 2776 1594
0.1N 1450 736 2810 3198

Tmax Path Junc. H calls Time

10N 1218 2490 4464 48
5N 761 2316 2711 56
1N 559 567 1476 154

0.5N 1260 2243 3210 629
0.2N 1404 670 2696 1314
0.1N 846 586 1906 1892

Junctions for the first formulation, with k = 10 and k = 1

Second (reference) formulation

Here are now the reference results for the second formulation, which does
not require the derivatives of the homotopy. This point was important for
the problems we study, as we want to be able to handle homotopies with a
low regularity. An additional benefit is that there is no numerical parameter
to set, and this formulation is naturally the default mode for the Simplicial
code.

Tmax Path Junc. H calls Time

10N 1383 3785 4188 45
5N 792 4129 2614 60
1N 586 447 1339 161

0.5N 1044 1069 2386 493
0.2N 1500 371 2421 1422
0.1N 1527 505 2545 2812

Junctions for the second formulation

82 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

We compare now the results of th first (h = 10−3, 10−1 and k = 10, 1)
formulations with the second one, in terms of homotopy calls and total path
time:

- ratio (H) stands for H calls for first formulation
H calls for second formulation

- ratio (s) stands for Time for first formulation
Time for second formulation

Tmax (H) (s) (H) (s)

10N 1.01 0.98 1.06 1.07
5N 1.11 1.05 1.61 1.53
1N 1.30 1.34 1.36 1.18

0.5N 1.90 1.80 1.64 1.68
0.2N 1.34 1.23 1.15 0.99
0.1N - - 0.71 0.64

Tmax (H) (s) (H) (s)

10N 1.01 1.04 1.06 1.07
5N 1.11 1.05 1.04 0.93
1N 1.06 1.06 1.10 0.96

0.5N 1.09 1.17 1.35 1.28
0.2N 1.15 1.12 1.11 0.92
0.1N 1.10 1.14 0.75 0.67

Comparison: first (h = 10−3, 10−1 and k = 10, 1) / second formulation

We observe that for the formulations (h = 10−3, k = 10), for each Tmax

value, both ratios are quite close, which is coherent with the fact that the
computational cost is mostly due to the homotopy calls. The measure of the
execution time, however, is less reliable (for material reasons, and it depends
on the harware as well), so the number of homotopy calls is in practice a
handier performance index.

On the contrary, comparing the path simplices is not sufficient to judge
the relative merits of the formulations, as can be seen for Tmax = 0.2N ,
where the first tests count less simplices, despite a larger number of homo-
topy calls and longer execution time. This is due to the fact that junction
homotopies also use homotopy calls, so a path following that spends lots of
efforts in performing the junctions can be inferior to another one with more
simplices but cheaper junctions.

However, taking also into account the simplices used for the junctions
is not the answer, as the results for 10N and 5N clearly show: the third
formulation counts nearly twice as much junction simplices, and about as
much path simplices, for a lower total number of homotopy calls ! This ac-
tually comes from the nature of homotopy junctions that use a meshsize of
1 with respect to their homotopic parameter λ′ (see 2.2). The vertices with
λ′ = 0 do not require an evaluation of H, only some matrix-vector opera-
tions, which in our case has a much lower cost. This is why just counting the
total number - path and junctions - of simplices gives a flawed comparison
of the different formulations.

So, odd as it may seem, the number of simplices taken by the junctions
does not actually provide a good measure of their efficiency, only the global

3.4. ADAPTIVE TRIANGULATION STUDY 83

homotopy count does. These tests based on the orbital transfer problems
show that it is possible to find settings that yield acceptable performance for
the first and (especially) the second formulation. However, they also reveal
that poor values can lead to catastrophic results, first junction failures in
particular. This is problematic as the correct settings are probably problem-
dependant, or even vary with the integration method and precision chosen
for a specific problem. Thus finding the appropriate values would likely
require a sequence of trial and error tests on each particular case, which is
of course quite a burden. Moreover, it is not even granted that such settings
exist if the shooting function is not differentiable. In that aspect the third
formulation is clearly superior to the two previous ones, as no derivatives
are used. These tests also show that it generally gives better performance
than the two others, even if there exist some lucky parameters values that
could give better results for the latter.

Conclusion

With the continuation on the objective and the initialization provided by a
fixed step shoot, the simplicial method allows us to solve the problem with
a maximal thrust as low as 0.1N . The solutions obtained coincide with the
ones found by the differential continuation approach used in [26], but the
execution times are up to three times longer, which was predictable.

Then, we make some comparisons between three variable steps integra-
tors (RKF45, DOP853 and ODEX) that confirm the extreme regularity of
this family of problems with respect to the maximal thrust. Concerning
the handling of the bang-bang structure and huge number of commutations,
it would seem that RKF45 has the best speed/precision combination. Of
course, this is true for the particular settings we used, and there may be spe-
cific configurations more suited to the two other integrators (of higher order).

The experiments on the adaptive meshsize show a satisfying qualitative
behaviour, with a smoother path following. In favorable cases this leads to
a dual gain, with both a reduction of the number of simplices followed and
a faster final shoot. However, we also observe that the numerical cost of
the adaptive junctions is far from being negligible. Indeed, if the uniform
meshsize already allows a clean path following, then we may end up with an
insignificant overall performance gain. Another problematic case seems to
be the presence of close but distinct branches of the zero path, which can
perturb the adaptive junctions to the point of making the adaptive mode
useless.

This suggests that the best way to further improve the adaptive mesh-

84 CHAPTER 3. ORBITAL TRANSFER PROBLEMS

size is probably to find a cheaper formulation for the adaptive junctions, or
possibly to find another way of performing the meshsize changes. To finish
with, these experiments also indicate the superiority of the derivatives-free
formulation for the junctions. Indeed, the others formulations (that approx-
imate the Jacobian of the homotopy by finite differences) appear extremely
sensitive to the numerical setting of the stepsize, and are probably less suited
to problems with a low regularity anyway.

Chapter 4

Singular Arcs problems

Among optimal control problems, singular arcs problems are interesting and
difficult to solve with indirect methods, as they involve a multi-valued con-
trol and differential inclusions. In short, singular arcs occur in indirect
methods when the necessary conditions from the Hamiltonian minimization
fails to determine uniquely the optimal control over a non-trivial interval. In
this case, applying the Pontryagin’s Maximum Principle leads to a Boundary
Value Problem with a differential inclusion. We keep the usual notations:
x the state, p the costate, u the control, y = (x, p) and ϕ the state-costate
dynamics. Then if Γ denotes the set valued map of optimal controls, then
one has

(BV P)

{

ẏ ∈ Φ(y) = ϕ(y,Γ(y)) ae in [t0, tf]
Boundary Conditions

Multiple shooting is an efficient way to solve this kind of problems, but
typically requires some a priori assumptions on the control structure (num-
ber and approximate location of singular arcs in particular). Another pos-
sibility, described for instance in [6], is to use a discretization of the (BV P)
with some interior penalty techniques (which can be seen as a kind of dis-
crete continuation).

So the primary objective of the continuation is here to provide a reliable
singular structure detection and initialization, so that we can then use a
method derived from multiple shooting to solve the problems precisely. The
continuation is based on regularizing the problems by adding a quadratic
(u2) perturbation to the criterion (we limit here ourselves to the case where
the Hamiltonian is linear with respect to the control).

Remark: problems with singular arcs sometimes present a particular dif-
ficulty called “chattering”, ie an infinite concatenation of bang and/or sin-
gular arcs occurring in a finite time. However, we have not encountered this
case in the experiments on the two problems studied here.

85

86 CHAPTER 4. SINGULAR ARCS PROBLEMS

Note: we introduce in this chapter several variants of the single or mul-
tiple shooting methods, some of them involving the state-costate or control
discretization. We keep for these the term of “shooting function”, which may
seem kind of improper for the discretized ones. However, all these formula-
tions still use the costate p, and take into account the necessary conditions
on the optimal control. So it seems to me that it is appropriate for them to
keep a name associated to the indirect methods class.

4.1 Problems statement

We study in this chapter two singular arcs problems in parallel: an opti-
mal harvesting model in fishery from Clark ([20]), and a quadratic regulator
problem studied for instance by Chen and Huang in [19]. We do this to
observe the similarities and/or differences of behaviour with respect to the
method, so that we can better tell what is related to the method or to a
particular problem. This way, we also hope that the method be not too
problem dependant, as we try to apply it to both problems in the same con-
ditions. This is especially important for the numerical resolution part, as
experiments actually show that particular settings giving the best results for
one of the problems can turn out to be ill-suited to the other one. Indeed,
we would like to come up with a reasonably general method that could be
applied to various problems, rather than to find the best tuning for a par-
ticular case.

Notations: in this chapter, we will often use the subscripts 1 and 2 for
notations specific to Problems 1 and 2, and keep unsubscripted notations for
the general case.

4.1.1 Optimal harvesting in fishery

The first of the two singular arcs problems we consider is a optimal harvest-
ing model in fishery described by Clark in [20], and studied for instance by
Schilling in [34]1. The state x(t) ∈ R represents the fish (halibut) popula-
tion, and the control u(t) ∈ R is the fishing activity. The objective is to
maximize the harvesting over a certain fishing period, the fishing activity
being capped by a certain value Umax. The model of the harvesting product
and fish population growth is described in the original formulation of the

1where the BVP is interpreted in the context of fixed points for set valued operators

4.1. PROBLEMS STATEMENT 87

problem:

(P)

Max
∫ 10
0 (E − c

x(t)) u(t) dt

ẋ(t) = rx(t) (1− x(t)
k

) − u(t)
0 ≤ u(t) ≤ Umax ∀t ∈ [0, 10]
x(0) = 70.106 x(10) free

with E = 1, c = 17.5 .106, r = 0.71, k = 80.5 .106 and Umax = 20 .106.

We note that the numerical values of the constants above are such that
the term (E − c

x(t)) is always positive, which ensures a positive harvest-
ing product. Incidentally, one might want to add a state constraint of the
form x(t) > 0, ∀t ∈ [0, 10], as a negative fish population would make little
sense... However, in all the numerical experiments in the following we never
actually encounter this case, so we just let it as it is. Needless to say, the
problem would be much more complicated if this constraint had to be taken
into account explicitly.

We now slightly modify this problem statement in order to obtain a
similar formulation to the other problems we study. First we transform the
maximization problem into a minimization one, with the opposite objective
(remember that we have (c

x(t) − E < 0), which will play a part in the

formulation of the continuation approach, see 4.2 page 90 below). Then we
replace the expression of the control u(t) by u(t) Umax, with the constraint
on the control rewritten as 0 ≤ u(t) ≤ 1 ∀t ∈ [0, 10]. So the problem we
actually work with in the following is:

(P1)

Min
∫ 10
0 (c

x(t) −E) u(t) Umax dt

ẋ(t) = rx(t) (1− x(t)
k

) − u(t) Umax

0 ≤ u(t) ≤ 1 ∀t ∈ [0, 10]
x(0) = 70.106 x(10) free

To apply the Pontryagin’s Maximum Principle, we begin with the ex-
pression of the Hamiltonian

H1(t, x, p, u) =

(

c

x(t)
−E

)

u(t)Umax+p(t)

(

rx(t)

(

1− x(t)

k

)

− u(t)Umax

)

.

This gives the state and costate dynamics

{

ẋ(t) = r x(t) (1− x(t)
k

)− u(t)Umax

ṗ(t) = c
x2(t)

u(t)Umax − p(t) r
(

1− 2x(t)
k

)

.

We have the boundary conditions
{

x(0) = 70.106 p(0) free
x(10) free p(10) = 0.

88 CHAPTER 4. SINGULAR ARCS PROBLEMS

Now concerning the optimal control u∗, the Hamiltonian minimization
leads to the following switching function ψ:

t ∈ [0, 10] 7→ ψ(t) =
c

x(t)
−E − p(t),

and the corresponding bang-bang optimal control

u∗(t) = 0 if ψ(t) > 0
u∗(t) = 1 if ψ(t) < 0
u∗(t) ∈ [0, 1] if ψ(t) = 0.

The latter case usually indicates a commutation, where the control is
discontinuous and switches from one bang arc to another as ψ vanishes. It
is not that annoying by itself if this happens only at isolated times, apart
from the fact that a high number of commutations can make the numerical
integration of the BVP a bit tricky, and also lead to difficulties in applying
the single shooting method (as said in 1.1.1). Nevertheless, we have seen in
chapter 3 that using a variable step integrator and a well-chosen continua-
tion could give some good results.

However, we precisely study here the case of singular arcs, namely we
expect the switching function ψ to vanish over a non-trivial interval. The
necessary conditions given by the Hamiltonian minimization alone are in-
sufficient to determine uniquely the value of the optimal control over such
a singular arc, which is of course more problematic than a fixed number of
discontinuities.

Then we naturally try to extract some information concerning the con-
trol from the fact that the successive derivatives of the switching function
must vanish over a singular arc.

Remark: we recall that t is omitted for clarity in the following equations,
as it does not appear by itself anyways. We thus note x, p, u, ψ instead of
x(t), p(t), u(t), ψ(t).

The first derivative of the switching function is of the form

ψ̇ = r

(

− c
x

+
c

k
+ p− 2 p x

k

)

.

It happens that u has vanished from this expression, so the relation
ψ̇ = 0 provides no information on the control. We then look at the second
derivative

ψ̈ = r2

(

− 2

kr
(
c

x
− p)u Umax +

c

x
− c

k
− p+

2 p x

k
− 2 p x2

k2

)

.

4.1. PROBLEMS STATEMENT 89

Luckily, the equation ψ̈ = 0 gives the expression of the singular control

u∗singular =
k r

2 (c
x
− p) Umax

(

c

x
− c

k
− p+

2px

k
− 2px2

k2

)

.

The problem is of course that this expression is only usable if we know
that we are over a singular arc. Another point is that it is not obvious from
this formula that u∗singular always satisfies the constraint 0 ≤ u(t) ≤ 1,∀t ∈
[0, 10]. In practice however, this algebraic expression of the singular control
is only used for the precise resolution of the problems described later in 4.4.
In our case it turns out that the initialization provided by the continuation
(see 4.2 and 4.3 below) is close enough to the solution so that we do not
encounter such “out of the bounds” singular controls.

Remark: incidentally, combining the three equations ψ, ψ̇, ψ̈ = 0 yields
ẋ = 0 and ṗ = 0, so the state and costate are both constant over a singular
arc, and therefore so is the singular control value. This is of course quite
specific of this problem, and by no means a general result.

4.1.2 Quadratic regulator

The second singular arc problem we study is a quadratic regulator problem
studied for instance in [19] by Chen and Huang (who also use a perturbation
approach, but with a discrete continuation based on the Davidenko differ-
ential equation). The state is this time of dimension 2, while the control is
still of dimension 1. The objective is to minimize the squared L2-norm of
the state.

(P2)

Min 1
2

∫ 5
0 (x2

1(t) + x2
2(t)) dt

ẋ1(t) = x2(t)
ẋ2(t) = u(t)
−1 ≤ u(t) ≤ 1 ∀t ∈ [0, 5]
x(0) = (0, 1) x(5) free.

We have the expression of the Hamiltonian

H2(t, x, p, u) =
1

2
(x2

1(t) + x2
2(t)) + p1(t)x2(t) + p2(t)u(t),

which gives the simple dynamics of the state and costate

ẋ1(t) = x2(t)
ẋ2(t) = u(t)
ṗ1(t) = −x1(t)
ṗ2(t) = −p1(t)− x2(t).

With the boundary conditions
{

x(0) = (0, 1) p(0) free
x(5) free p(5) = (0, 0).

90 CHAPTER 4. SINGULAR ARCS PROBLEMS

The Hamiltonian minimization immediately indicates that the switching
function is

ψ(t) = p2(t),

and the corresponding optimal control is bang-bang again, namely

{

u∗(t) = − sign p2(t) if ψ(t) 6= 0
u∗(t) ∈ [−1, 1] if ψ(t) = 0.

There again, we expect ψ to vanish over nontrivial intervals, and we
try to obtain the expression of the singular control by using the successive
derivatives of ψ, same as before. The first order comes directly from the
dynamics:

ψ̇(t) = −p1(t)− x2(t)

As for Problem 1, this equation is useless concerning the control, so we
look at the second order

ψ̈(t) = x1(t)− u(t),

which immediately gives the expression of the singular control (via ψ̈ = 0)

u∗singular(t) = x1(t).

We make here the same remark than before concerning the constraint on
the control, which is not automatically satisfied by this expression. However,
the situation is in practice the same as for problem (P1), and out of the
bounds singular control do not occur during the numerical resolution either.

4.2 Quadratic perturbation

As for the orbital transfer studied in the previous chapter, a direct resolution
of these two problems by single shooting is not possible due to the presence
of singular arcs. Furthermore, the use of more evolved methods such as
multiple shooting would require some qualitative knowledge of the control
structure, more precisely the number and approximate location of possible
singular arcs. Then we would also need a reasonably good initialization at
the multiple shooting nodes, especially for the costate, than has no obvious
physical interpretation and is therefore difficult to estimate a priori. So we
try to use a continuation approach like before, but this time more specifically
to find out what the singular control structure looks like, and to obtain an
approximation of the state and costate at the solution. We can then use
this information to solve the problems precisely with a multiple shooting-
like method.

4.2. QUADRATIC PERTURBATION 91

4.2.1 Formulation

The setting is here a bit different from the orbital transfers problems, where
the main difficulty is the huge number of commutations for low thrusts.
Both (P1) and (P2) deal with a fixed final time, and the difficulty is the
presence of singular arcs. So the objective of the continuation is to regular-
ize the problems to get rid of the singular arcs, yet we still want to acquire
reliable information on the singular structure at the solution. We try to
do this by adding a quadratic perturbation to the original criteria, such as
done for instance by Chen and Huang for (P2) in [19] (the difference here
is that we use the simplicial method to perform the continuation, instead
of a discrete continuation based on the Davidenko differential equation). A
consequence of this perturbation is to make the Hamiltonian strictly convex
with respect to the control, which prevents the appearance of singular arcs.
We hope that by using the regularization parameter as the homotopy param-
eter, the continuation will allow us to predict the apparition of singular arcs.

In all the following we try to deal with both (P1) and (P2) in a similar
way, as the objective in studying two problems in parallel is to avoid a
problem dependant formulation and numerical resolution method. Here are
the regularized criteria that we use for the continuation:

Min

∫ 10

0

(

c

x(t)
−E

)

(u(t)− (1− λ) u2(t)) Umax dt, λ ∈ [0, 1]

and

Min
1

2

∫ 5

0
(x2

1(t) + x2
2(t)) + (1− λ)u2(t) dt, λ ∈ [0, 1].

For problem (P1), as mentioned before the term c
x(t) −E is always negative,

so the minus sign before (1 − λ) u2(t) Umax actually results in “adding” a
quadratic term, as for problem (P2). We then obtain two families of bound-
ary value problems parametrized by λ, denoted by (BV P1)λ and (BV P2)λ
respectively. The original unperturbed problems correspond of course to the
case λ = 1.

Back to the results of 1.2.1 (page 20) concerning the Hamiltonian mini-
mization, we have the following domains for the controls:

U1 = [0, 1] and U2 = [−1, 1],

and the Hamiltonians are (with t omitted for clarity):

H1(t, x, p, u) =
(c

x
−E

)

(u− (1− λ)u2)Umax + p(rx
(

1− x

k

)

− u Umax)

and

H2(t, x, p, u) =
1

2
(x2

1 + x2
2 + (1− λ)u2) + p1x2 + p2u.

92 CHAPTER 4. SINGULAR ARCS PROBLEMS

We can see that both H1 and H2 are continuous, and convex with re-
spect to u (again, we have c

x
−E < 0). So for both problems (P1) and (P2),

Theorem 1 and Corollary 1 apply, thus Γ1 and Γ2 are upper-semicontinuous,
and non empty compact convex valued. These properties will be useful for
the following convergence results concerning the continuation. We can also
note that for λ < 1, both Hamiltonians are strictly convex, thus the optimal
controls are continuous functions, according to Corollary 1.

We recall the state-costate dynamics for (BV P1)λ and (BV P2)λ:

ϕ1(y, u, λ) =

(

r x (1− x
k
)− u Umax

c
x2 (u− (1− λ)u2)Umax − p r (1− 2x

k
)

)

and

ϕ2(y, u, λ) =

x2

u
−x1

−p1 − x2

.

We consider the set valued dynamic Φ(y, λ) = ϕ(y,Γ(y), λ). From the
expression of ϕ1 and ϕ2, and the fact that Γ1 and Γ2 are usc and non empty
compact convex valued, we obtain that Φ1 and Φ2 are also usc and non
empty compact convex valued. Now we make the assumption that the solu-
tions of (BV P1)λ and (BV P2)λ remain in some fixed compacts. According
to Theorem 5, we know that from a sequence of solutions (yλk

) such that λk

tends to 1, we can extract a subsequence (yk) that converges uniformly to
a solution y of (BV P), with (ẏk) that converges *-weakly to ẏ in L∞

n ([0, tf]).

Moreover, we have the following expression of the control:

{

uλ(t) = 1
Umax

(r xλ(t) (1− xλ(t)
k

)− ẋλ(t)) for Problem 1

uλ(t) = ẋ2λ
(t) for Problem 2.

Thus Corollary 2 applies and gives the *-weak convergence for the sub-
sequence of the control (uk). However, the existence of these subsequences
does not guarantee the actual success of the continuation, as we shall see
during the numerical experiments.

Concerning Theorem 6, (see page 31), we make the assumptions on
the path following that all the faces generated by the algorithm remain
in K × [0, 1] with K compact, and that the algorithm does not go back to
0. In both cases the homotopy H is upper-semicontinuous, compact valued
and acyclic. The latter implies that H is connex valued, which gives the
convexity in dimension 1 but not in dimension 2. So the assumptions on
the homotopy only hold in the case of (P1), but not (P2) a priori. This

4.2. QUADRATIC PERTURBATION 93

point probably deserves further investigation, but this would require deal-
ing with some topological degree, however... In practice, the path following
converges for both problems, but we still encounter some difficulties related
to the presence of singular arcs, as detailed below.

Remark: incidentally, one might wonder what happens with problem (P1)
if we set a plus sign before the perturbation term, “same as with the orbital
transfer and problem (P2)”. Well, the corresponding Hamiltonian is concave,
not convex, which leads to a discontinuous control anyways. The resulting
continuation is not very useful in practice, to say the least...

4.2.2 Path following

Initialization

In order to initialize the continuation, we need to solve both problems for
λ = 0, which is easily done by single shooting. We use here a fixed step
(1000) Runge Kutta4 integration, the results with variable step integrators
being similar. The convergence of the single shooting is immediate for both
problems, with a trivial choice of starting points, namely z0 = 0.1 and
z0 = (0, 0) respectively. Here are the results of the single shooting and the
corresponding solutions for λ = 0.

z0 z∗ |S0(z
∗)| objective iter time

Problem 1 0.1 −4.0935 10−2 3.6295 10−16 69374046 39 < 1s
Problem 2 (0, 0) (1.2733, 2.2715) 3.3596 10−14 0.4388 134 < 1s

Single shooting results at λ = 0.

0 5 10
0.46

0.47

0.48

0.49

0.5
U

0 5 10
−0.73

−0.72

−0.71

−0.7

−0.69

Time

P
si

Switching function ψ

0 5 10
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7
x 10

7 X

0 5 10
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0
P

0 2 4
−1

−0.5

0

0.5
Control u1

0 2 4
−1

0

1

2

3

Time

P
si

Switching function ψ
0 5

0

0.2

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1

1.5
Costate p1

0 5
−1

0

1

2

3
Costate p2

Solutions for Problem 1 and 2 at λ = 0

Singular structure detection

For both problems, the path following goes smoothly at first, and the evo-
lution of the switching functions and controls is quite interesting, as shown
below.

94 CHAPTER 4. SINGULAR ARCS PROBLEMS

0 2 4 6 8 10
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
SWITCHING FUNCTION EVOLUTION

TIME

ψ

0 2 4 6 8 10
0.4

0.5

0.6

0.7

0.8

0.9

1
CONTROL EVOLUTION

TIME

U

Problem 1: Switching function and Control for λ = 0, 0.5, 0.75, 0.9 and 0.95

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5
SWITCHING FUNCTION EVOLUTION

TIME

ψ

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
CONTROL EVOLUTION

TIME

U

Problem 2: Switching function and Control for λ = 0, 0.5, 0.75 and 0.9

We can clearly see that for both problems, the switching function ψ
comes closer to 0 over certain time intervals as λ grows. This strongly sug-
gests the presence of singular arcs over these intervals at the solution for
λ = 1, and already gives some hints about the possible control structures.

For Problem 1, the form of the structure seems to be regular-singular-
regular, with the possible singular arc located around the time interval
[2, 7.5]. For Problem 2, we seem to have a regular-singular structure, with
the beginning of the singular arc near t = 1.5.

Meanwhile, by looking at the controls evolution we observe that outside
the suspected singular arcs, the control tends for both problems to a bang-
bang structure, which is coherent with the necessary conditions for λ = 1.
More precisely, we have two bang arcs with u = +1 flanking the singular
arc for Problem 1, and a bang arc with u = −1 before the singular arc for
Problem 2.

Another remarkable fact about the controls is that both of them keep
on taking interior values over time intervals matching those where ψ tends
to 0. As the necessary conditions for λ = 1 lead to a bang-bang control
for both problems, this is an additional hint of the presence of singular arcs

4.2. QUADRATIC PERTURBATION 95

over these intervals.

So at this stage, the continuation based on the quadratic perturbation
looks quite promising. For both problems, we already have a strong indi-
cation about the singular structure, with an approximate location of the
suspected singular arcs. As far as the detection of the singular arcs is con-
cerned, this approach seems rather effective.

Numerical difficulties

However, if we pursue the continuation, the path following encounters some
difficulties as λ tends to 1. For both problems, above a certain point, the
piecewise linear approximation of the homotopy seems to become increas-
ingly inaccurate. This phenomenon is illustrated on the two left graphs
below, as we see the homotopy norm along the path increase very steeply,
with a very oscillatory behaviour.

Moreover, we also observe that from this point on, the objective value
does not improve any longer, and displays the same kind of brutal degrada-
tion, with a lot of oscillations. We recall that on all graphs, the objectives
displayed for Problem 1 and 2 correspond to the original, non-perturbed
criteria

{

J1 = Max
∫ 10
0

(

E − c
x(t)

)

u(t) Umax dt

J2 = Min1
2

∫ 5
0 (x2

1(t) + x2
2(t)) dt

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60
HOMOTOPY NORM ALONG ZERO PATH

λ

|H
(z

,λ
)|

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11
x 10

7 CRITERION ALONG ZERO PATH

λ

C
R

IT
E

R
IO

N

Homotopy norm and objective along the zero path - Problem 1

96 CHAPTER 4. SINGULAR ARCS PROBLEMS

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9
HOMOTOPY NORM ALONG ZERO PATH

λ

|H
(z

,λ
)|

0 0.2 0.4 0.6 0.8 1
0.3

0.35

0.4

0.45

0.5

0.55

0.6
CRITERION ALONG ZERO PATH

λ

C
R

IT
E

R
IO

N

Homotopy norm and objective along the zero path - Problem 2

Difficulties are often expected at the end of continuation strategies, all
the more so in this particular case, with the presence of singular arcs. For
simplicial methods, one can think of using some refining triangulations (such
as J3 or J4), and hope that the decreasing meshsize would help to keep an
accurate path following until the convergence. In this case, however, the
use of such techniques only delays this degradation a little, and does not
prevent it from appearing eventually. Incidentally, we have observe during
these tests that the value of λ at which the degradation occurs is problem-
dependant. With the use of refining triangulations, we have located this
instability threshold around λ = 0.975 for Problem 1 and a bit earlier,
around λ = 0.95, for Problem 2.

4.2.3 Two different control structures

As the PL approximation of the homotopy is obtained by interpolation
over the vertices labeling, we investigate the corresponding trajectories more
closely. Then if we look at the control structures corresponding to the ver-
tices, we indeed find the cause of the degradation of HT . Over the last
completely labeled face, we clearly observe two distinct control structures,
depending on the vertices. This difference naturally leads to the same sep-
aration among the labels, and explains the inaccuracy of the approximation.

We show below for both problems the two kinds of control structures
that are present among the vertices of the last completely labeled face for
λ = 1. For each problems, both possible control structures are bang-bang,
and there is no trace of singular arcs anymore.

Note: the terms “crossing” and “turning back” applied to the control
structures are explained below.

4.2. QUADRATIC PERTURBATION 97

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CONTROL EVOLUTION

TIME

U

CROSSING
TURNING BACK

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
SWITCHING FUNCTION

TIME

ψ

CROSSING
TURNING BACK

Two different control and switch structures at the vertices - Problem 1

0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
CONTROL EVOLUTION

TIME

U

CROSSING
TURNING BACK

0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2
SWITCHING FUNCTION

TIME

ψ

CROSSING
TURNING BACK

Two different control and switch structures at the vertices - Problem 2

We notice, however, that the two structures are identical up to a certain
time, namely when the switching function ψ vanishes. Then we have the
two possibilities corresponding to the sign of ψ after this zero, with the two
opposite bang arcs. More precisely, in one case the switching function keeps
the same sign, and the initial bang arc continues. In the other one the sign
of ψ changes, and so does the bang arc: we have a commutation on the
control. After this, the trajectories are distinct and continue on their own
separately. We note that these two structures keep appearing among the
vertices of the completely labeled faces, however small a meshsize we use.
This explains why refining triangulations are eventually unable to prevent
this phenomenon.

So we can think that the path following degradation is due to the ap-
pearance, at a certain level, of two distinct control structures, numerically
merged in terms of homotopy unknown z. It is remarkable that both prob-
lems share here this particular behaviour, only with a different threshold
value, which is not surprising. In the following we refer to these two cases as
“turning back” and “crossing”, with respect to the behaviour of the switch-
ing function after the 0.

98 CHAPTER 4. SINGULAR ARCS PROBLEMS

4.2.4 Pseudo-arc instability near λ = 1

So we have seen that the degradation of the path following is due to the ap-
pearance of two distinct control structures, related to the behaviour of the
switching function. As said before, we notice in the beginning of the contin-
uation that the switching function gets close to 0 over some time intervals,
that we call “pseudo singular arc”. We observe that these pseudo singular
arcs seem to be numerically unstable: ψ stays near 0 for a while, then at
some point it leaves and increases in absolute values, either with positive
or negative sign. Depending on the exit sign of the switching function at
the end of the pseudo singular arc, we either obtain a “turning back” or
“crossing” type control structure.

Now if we examine the evolution of the switching function beyond the
instability threshold, we can get a clearer view of what happens. Basically,
the numerical instability of the switching function near 0 becomes worse as
λ tends to 1. The length of the pseudo singular arcs decrease, as the exit
occurs earlier and earlier.

0 2 4 6 8 10
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0
SWITCHING FUNCTION EVOLUTION

TIME

ψ

λ = 0.99
λ = 0.995
λ = 0.9999

0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
SWITCHING FUNCTION EVOLUTION

TIME

ψ

λ = 0.95
λ = 0.975
λ = 0.9999

Pseudo singular arc shrinking near the convergence
Problem 1 (λ = 0.99, 0.995, 0.9999) and Problem 2 (λ = 0.95, 0.975, 0.9999)

At the convergence for λ = 1, all that is left from the singular arc is a
contact point where ψ reaches 0. Depending on the sign of the switching
function after this point, we have the two corresponding “turning back” or
“crossing” bang bang control structures. We draw here the shooting function
in the neighbourhood of the solution z∗1 given by the path following, for
Problem 1 and 2.

−0.465 −0.46 −0.455 −0.45

−80

−70

−60

−50

−40

−30

−20

−10

0

10

20

HOMOTOPY AROUND Z*

Z

H
(Z

,1
)

4.3. DISCRETIZED BVP APPROACH 99

Shooting function discontinuity at the singular arc - Problem 1

HOMOTOPY AROUND Z*, COMPONENT 1

Shooting function discontinuity at the singular arc - Problem 2

In both cases we clearly notice the frontier separating the regions corre-
sponding to the two different control structures. The presence of singular
arcs manifests itself in the form of a discontinuity of the shooting functions
at the solution. As said in the beginning, the results here correspond to a
1000-step Runge Kutta 4 integration. However, augmenting the number of
steps to 10000, or using the three variable step integrators (RKF45, DOP853
and ODEX) gives similar results. The only difference we have noticed when
changing the integration is that for (P2) the path following can converge to
different points on the “frontier” at λ = 1. We also note that the conver-
gence is generally more difficult to attain for (P2), as we often have to use a
J4 triangulation instead of the more precise J3. This may be related to the
fact that Theorem 6 applies for (P1), but not for (P2), as mentioned before.

As a conclusion, we can say that this first continuation has earned a
mitigate success. Sure, observing the switching function and control evolu-
tion before the instability threshold gives strong hints about the presence
of singular arcs. However, due to this instability, we have lost the singu-
lar structure by the time we arrive at the convergence, where we obtain an
incorrect and useless solution.

4.3 Discretized BVP approach

4.3.1 Formulation

So we have seen that the continuation using a quadratic perturbation of the
criterion looks promising, but suffers from numerical instabilities during the
IVP integration when the problem becomes nearly singular. We would like
to circumvent this difficulty, and we try a new approach, inspired by the
multiple shooting principle. The idea is basically to discretize the equations
of the Boundary Value Problem (as for instance in [7], with a symplectic
Runge Kutta method). We use here a basic Euler scheme for the state and
costate, and consider a piecewise constant control, still derived from the

100 CHAPTER 4. SINGULAR ARCS PROBLEMS

necessary conditions. The values of the state and costate at the interior
discretization nodes thus become additional unknowns of the shooting func-
tion, while we have the following matching conditions at these nodes, from
the Euler scheme:

Matchcond

{

xi − (xi−1 + h∂x
∂t

(ti−1, xi−1, pi−1, u
∗
i−1)), ∀i ∈ [1..d]

pi − (pi−1 + h∂p
∂t

(ti−1, xi−1, pi−1, u
∗
i−1))

where the optimal control u∗i is obtained from (xi, pi) by the usual neces-
sary conditions, and gives the constant value of the control over the interval
[ti, ti+1]. The idea is, that even if the control obtained on the singular arc is
irrelevant, we hope to have a good approximation of the state and costate
values.

In terms of convergence properties, due to this choice of a very simple
integration scheme, the discretized version of the shooting function is com-
pact convex valued. This allows us to hope a good behaviour of the path
following, according to Theorem 6 (see 1.2.2).

The “shooting function” associated to this discretized BVP is of the form

SD : Rn+(2n)×d → Rn+(2n)×d

where n denotes the state (and costate) dimension, and d the number of
discretization nodes. We summarize here the discretized shooting function
unknown and value layouts:
Unknown z
- IVP unknown at t0 (same as in single shooting method)
- values of (xi, pi) at interior times ti, i ∈ [1..d] (note that td = tf)

IVP unknown at t0 (x1, p1) ... (xd, pd)

Value SD(z)
- matching conditions at interior times
- terminal and transversality conditions at tf (same as single shooting)

Matchcond(t1) Matchcond(t2) ... Conditions at tf

A major drawback of this formulation is that the full state and costate
are discretized. This drastically limits the number of discretization nodes,
else the high dimension of the unknown leads to prohibitive execution times.
As a side effect, this also puts some restrictions on the use of small meshsizes
or refining triangulations, for the same computational cost reasons.

Note: In all the following, the discretized BVP formulations use 50 nodes
for Problem 1, and only 20 for Problem 2, due to the higher dimension of
the state and costate. Even these rather rough discretizations lead to a total
dimension of 101 and 82 respectively for the path following...

4.3. DISCRETIZED BVP APPROACH 101

4.3.2 Path following

We perform with this new formulation the same continuation as before,
based on the quadratic perturbation of the criterion. Once again, solving
both problems for λ = 0 is immediate (less than 1s, with a solution norm
below 10−15), even with trivial starting values for the interior state and
costate

{

Problem 1 p(0) = 0, (xi = x0 = 7 107, pi = 0), ∀i ∈ [1..d]
Problem 2 p(0) = (1, 1), (xi = (0, 0), pi = (0, 0)), ∀i ∈ [1..d]

0 2 4 6 8 10
0.46

0.47

0.48

0.49

0.5
U

0 2 4 6 8 10
−0.8

−0.7

−0.6

Time

P
si

0 5 10
6.3

6.4

6.5

6.6

6.7

6.8

6.9

7
x 10

7 X

0 5 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01
P

SINGLE SHOOT
DISCRETIZED

0 1 2 3 4 5
−1

−0.5

0

0.5
Control u1

0 1 2 3 4 5
−1

0

1

2

3

Time

P
si

Switching function ψ

0 5
0

0.2

0.4

0.6

0.8
State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1

1.5
Costate p1

0 5
−1

0

1

2

3
Costate p2

SINGLE SHOOT
DISCRETIZED

Discretized (Euler) BVP solutions for Problem 1 and 2 at λ = 0
(plotted over the single shooting solution at λ = 0)

We note that the solutions for the discretized BVP formulation coincide very
well with the previous results from the single shooting formulation (see page
93), despite the rough integration scheme we use in the discretized BVP
formulation.

Concerning the path following, things go much more smoothly here, and
we attain λ = 1 without noticing the instability that plagued the single
shooting continuation. We plot below the solutions obtained at λ = 1, with
a K1(10

−2) triangulation for the path following.

0 5 10
0

0.5

1
U

0 5 10
−0.6

−0.4

−0.2

0

0.2

P
si

SWITCHING FUNCTION

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

0 2 4
−1

−0.5

0

0.5

1
U

0 2 4
−1

0

1

2

3

Time

P
si

SWITCHING FUNCTION

0 5
0

0.2

0.4

0.6

0.8
X1

0 5
−1

−0.5

0

0.5

1
X2

0 5
0

0.5

1

1.5
P1

0 5
−1

0

1

2

3
P2

102 CHAPTER 4. SINGULAR ARCS PROBLEMS

Discretized (Euler) BVP solutions for Problem 1 and 2 at λ = 1

At first glance, the most interesting part is the allure of the two switching
functions. For both problems the presence of the singular arcs is obvious,
with ψ nearly vanishing around the time intervals [2, 7] and [1.5, 5] respec-
tively. It is remarkable that despite the little number of discretizations
nodes, the switching functions are numerically rather close to 0. For Prob-
lem 1, in particular, the singular arc detection is obviously more accurate
than with the single shooting formulation just before the instability thresh-
old.

As expected with this formulation, the control is bang bang, according
to the necessary conditions at each discretization node. Over the singular
arcs intervals, it randomly oscillates between the two extremal possible val-
ues (0, 1 and −1, 1, respectively), depending on the sign of the switching
function evaluated at the nodes.

Actually, if we compare a posteriori these trajectories with the precise
solutions obtained later (see 4.4), we find that this discretized approximation
of x and p is not too bad. For Problem 1, the differences are localized on
the singular arc, where the discretized state and costate are nevertheless
still close to the solution. For Problem 2 however, the discretized solution is
less accurate: the state and costate have the same general allure, but there
is a kind of shifting from the solution for x1, p1 and p2, and some strong
oscillations for x2, the latter can be seen on the graph above.

Implicit trapeze formulation

Nevertheless, there is still a part of the discretized formulation that leaves
room for improvement, namely the integration scheme itself. The original
formulation uses an Euler formula, which is quite crude. This choice is
driven by the intent to apply Theorem 6, so we need the shooting function be
compact convex valued. However, an implicit trapeze formula also satisfies
this requirement, and could be expected to do better than a simple Euler.
The only change in the formulation is the new expression of the matching
conditions:

Matchcond

{

xi − (xi−1 + h
2

(

∂x
∂t

(ti−1, xi−1, pi−1, u
∗
i−1) + ∂x

∂t
(ti, xi, pi, u

∗
i)

)

)

pi − (pi−1 + h
2

(

∂p
∂t

(ti−1, xi−1, pi−1, u
∗
i−1) + ∂p

∂t
(ti, xi, pi, u

∗
i)

)

)

As before with the Euler discretization, the continuation initialization (ie
solving the problems for λ = 0) is immediate. Similarly, the path following
itself goes smoothly, and the convergence at λ = 1 is attained without any
particular difficulties, with the solutions below.

4.3. DISCRETIZED BVP APPROACH 103

0 5 10
0

0.2

0.4

0.6

0.8

1
U

0 5 10

−0.4

−0.2

0

0.2

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.1

0.2

0.3

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

Discretized (Trapeze) BVP solutions for Problem 1 and 2 at λ = 1

The solution for Problem 1 looks nearly identical to the Euler one, but
the annoying oscillations on Problem 2 are reduced. More interestingly, the
state, costate and switching function of these solutions are a posteriori closer
to the accurate solution obtained later. A hint of this can be found by look-
ing at the initial value of p, which is not the same as before (roughly (1, 1.5)
versus (1.15, 2) for Euler, the accurate solution being near (0.9422, 1.4419)).
So it would seem that the flaws of the previous solution for Problem 2 is
partly due to the Euler integration, and can be improved with a better
choice, which is rather comforting. Indeed, this second solution can be fur-
ther improved by the use of adaptive meshsize and solution refinement (see
4.3.3), contrary to the Euler solution.

Remark: one can think of trying more precise integration, even if the do
not verify the assumptions for Theorem 6. In practice, using Runge Kutta
2nd and 4th order actually gives less good solutions, with a shifting from the
correct solution observed on x2 (this is maybe related to the fact that the
convexity assumption does not hold for (P2)). We have also made very basic
experiments with some symplectic integrators, see Appendix B.3.2 page 147.

These solutions are actually already sufficient to detect the singular
structure, and to initialize properly the accurate resolution of the problems,
as explained in 4.4.

Matching condition errors

Besides the replacement of the Euler formula, one might think of simply
using more discretization nodes in order to improve the solutions. However,
the experiments we have done in this direction have not been very convinc-
ing, plus this strategy soon meets the limitation of the problem size anyways.
Similarly, using refining triangulations has not given better results, and the
shooting attempts at λ = 1 have also been unsuccessful (solution refining,

104 CHAPTER 4. SINGULAR ARCS PROBLEMS

however, gives some positive results, see page 106).

These difficulties might come from the expression of the control, which
is still given by the necessary conditions. On a time interval [ti, ti+1] located
within a singular arc, let us assume that the continuation has found the
correct values of the state and costate (xi, pi) and (xi+1, pi+1). As we are
supposed to be on a singular arc, the switching function value ψ(ti) should
be near 0, but of course, numerically, it will be a small positive or negative
value (the rough discretization even makes it quite unlikely that this value
be a “numerical zero” below the machine precision). According to this sign
the necessary conditions then give a bang-bang control ui, that is of course
different from the actual singular control u∗i . Therefore the matching con-
ditions on the state and costate at ti+1 may not be satisfied, even though
we have indeed their correct values. The numerical consequences on the
solution of this flaw inherent to the discretized BVP formulation are hard
to predict, but the continuation seems to find a middle ground between the
correct state-costate and the resulting matching errors.

We now have a closer look at the value of the matching conditions on
(x, p) for the solution at λ = 1 (Euler formulation). On the following graphs
are drawn, for both problems, the switching function ψ (plain line), and
each component of the matching conditions on the state and costate (dashed
line, with symbols marking the nodes). We thus have a total of 3 curves for
Problem 1 ((x, p) ∈ R2), and 5 for Problem 2 ((x, p) ∈ R4).

0 2 4 6 8 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
X MATCH
P MATCH
SWITCH

0 1 2 3 4 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

X
1
 MATCH

X
2
 MATCH

P
1
 MATCH

P
2
 MATCH

SWITCH ψ

Matching conditions for Problem 1 and 2 at λ = 1 (Euler)

The most interesting thing about these two graphs is the localization of the
matching errors. We immediately notice that non-zero components of the
matching conditions are found only for discretization nodes located inside
the singular arcs. Over the bang arcs, where the control given by the nec-
essary conditions is correct, the matching errors numerically vanish (below
10−14) for all components, for both problems.

4.3. DISCRETIZED BVP APPROACH 105

Moreover, for Problem 2 we see that matching errors only occur for the
second component of the state (x2). Other components (x1, p1, p2) always
have numerically verified matching conditions, even over the singular arcs.
Now if we look at the expression of the state-costate dynamics for Problem
2 (see page 89), we observe that the component x2 is precisely the only one
in which the control u appears. For Problem 1, both derivatives of x and p
involve the control (see page 86), so it is not surprising that both matching
conditions are non-zero on the singular arc.

Furthermore, we also note that the sign of the matching errors changes
accordingly to the sign of the switching function. This is consistent with the
previous point, as this sign changes also correspond to the switchings of the
incorrect bang-bang control from the necessary conditions. Given the actual
values of the singular control, these switchings typically lead to a change of
sign of the “error” on the control, namely ui − ui

singular.

Here are now the corresponding matching conditions at the solution,
with the switching function, for the trapeze formulation.

0 2 4 6 8 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04
X MATCHING
P MATCHING
SWITCH ψ

0 1 2 3 4 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

X
1
 MATCH

X
2
 MATCH

P
1
 MATCH

P
2
 MATCH

SWITCH ψ

Matching conditions for Problem 1 and 2 at λ = 1 (Trapeze)

We observe the same qualitative behaviour than with the Euler discretiza-
tion, only with lower matching errors for Problem 2. So it would seem that
the link between the matching errors at the solution and the wrong control
on singular arcs is not a consequence of the integration scheme used, but
indeed a characteristic of the discretized BVP formulation.

At this point, it seems safe to assume that these persistent matching
errors at the solution are directly related to the wrong optimal control value
given by the necessary conditions on the singular arcs.

Using the algebraic expression of the singular control ?

So it seems that the reason that prevents us from obtaining better solutions
is the wrong control value given by the necessary conditions over the singu-

106 CHAPTER 4. SINGULAR ARCS PROBLEMS

lar arcs. But after all, we do know the algebraic expression of the singular
control (see p.89 and 90) ! Then a legitimate idea would be to use this
expression in the following way: if at a given node ti we suspect that we
are within a singular arc, then we use the exact expression of the singular
control usingular instead of the incorrect optimal control U ∗

i given by the
necessary conditions. This idea seems interesting at first, but its practical
implementation turns out to be quite problematic.

The crucial point is the detection of a suspected singular arc, and we have
tried several formulations involving the norm of the switching function ψ and
its derivatives (that are supposed to vanish over singular arcs). However,
numerical tests with conditions of the form

Singcond

‖ψ(ti)‖ < ε
ψ2(ti) < ε

ψ2(ti) + ψ̇2(ti) < ε

ψ2(ti) + ψ̇2(ti) + ψ̈2(ti) < ε

have all shown an extreme sensitiveness with respect to the choice of the
tolerance ε, to say the least.

Indeed, changing the value of this parameter leads to completely different
solutions, sometimes better, but sometimes far worse than with the classical
formulation. As we have not found any consistent link (for both problems
at the same time) between the value of ε and the quality of the solutions,
we have finally abandoned this idea. The root of the problem seems to be
that this formulation tends to “force” singular arcs too abruptly, so maybe
a softer way of introducing usingular (or a much clever way of detecting the
singular case) could make this idea usable in practice.

4.3.3 Adaptive triangulation and solution refinement effect

For the discretized BVP formulation, we have observed that the final shoot-
ing does not improve the solution at λ = 1, regardless of the integration
used. This is probably due to the matching errors on singular arcs de-
scribed before, which are inherent to the formulation we use. So we try to
see how the adaptive meshsize and solution refining mechanisms perform in
this case, in terms of solution precision. We first compare the basic, fixed
uniform meshsize with the full adaptive mode (see 2.3 page 37). Then we
add to the adaptive mode the solution refinement (see 2.4.2 53) for the third
test, with 10 refinement attempts (allowing 20 refinements does not improve
the solutions).

Summary: the three configurations compared in the tests are:
- fixed uniform meshsize, no solution refinement, aka “uniform”.

4.3. DISCRETIZED BVP APPROACH 107

- full adaptive meshsize, no solution refinement, aka “adaptive”.
- full adaptive meshsize, 10 refinement attempts at λ = 1, aka “refined”.

All tests use a K1 triangulation, with an initial meshsize of 10−2, and
the implicit trapeze integration (the same tests with the Euler integration
have not been convincing, failing in particular to reduce the oscillations
observed before). As we look here for a better final precision rather than
performance2, the deviation control has been set to the more cautious value
of 10−2, that has turned out to be superior in this case to the default value
(10−1).

The ”uniform” solutions are the ones we have already obtained, and we
show here the “adaptive” and “refined” solutions for Problem 2, plotted over
the reference solution obtained by structured shooting (see 4.4 just below).

Remark: Solutions for Problem 1 are not represented, as the three of
them are very close and nearly identical visually.

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.1

0.2

0.3

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.1

0.2

0.3

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

Solutions for adaptive and refined triangulations, over reference solution.

0 1 2 3 4 5
−0.5

0

0.5

1

TIME

X
2

UNIFORM
ADAPTIVE
REFINED
REFERENCE

2these paths take only a few seconds to complete anyway

108 CHAPTER 4. SINGULAR ARCS PROBLEMS

0 1 2 3 4 5
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
X

2
 MATCH

SWITCH ψ

x2 comparison for all configurations, and x2 matching for refined.

We can see (with good eyes) that the “adaptive” and “refined” solutions
are indeed closer to the reference, which is reassuring somehow. The com-
parison is more significant for the x2 component, which is drawn separately
on the third graph above for all three test configuration, in addition to the
reference solution in solid line. We recall that x2 is the only one whose
derivative involves the control u, which probably explains why it is the one
displaying the most irregularities.

We notice that the refined solution still displays some stray points, which
cannot seem to be suppressed by increasing the number of refinement at-
tempts. We probably reach here the limits of the discretized formulation, as
the matching errors described before prevent us to find the exact solution
anyways. Nevertheless, as we can see on the comparison on page 117 with
the reference solution, the refined solution is actually quite good a posteri-
ori. We have a very close approximation of the state and costate, and also
especially of the switching function, with numerical values over the singular
arcs as low as 10−5− 10−6 for both problems. The difference with the “uni-
form” solution is quite clear on the graphs showing the matching conditions,
where we used to have some oscillations around 0 for the switching function
(see page 105).

Here are the details about the path followings: in addition to the final
norm, we indicate the number of simplices for the main path (splx), the
junction simplices including refinement junctions (J splx), and the total
homotopy calls (H calls).

Problem 1 splx J splx H calls |S1(z
∗)|

uniform 107 360 0 107 578 1.69
adaptive 34 920 754 37 404 8.81 10−1

refined 34 920 1 282 374 249 154 7.19 10−1

Problem 2 splx J splx H calls |S1(z
∗)|

uniform 25161 0 25 837 9.68 10−2

adaptive 9347 8 656 27 152 8.21 10−2

refined 9347 220 868 91 271 5.51 10−2

4.4. STRUCTURED SHOOTING 109

We observe that the adaptive mode does well in terms of performance, with
a quite faster path following for Problem 1. Then we see that if the solution
refinement manages to further improve the solutions, it is at a cost however3.
Incidentally, we see that the final norms decrease -slightly- in accordance to
the quality of the solutions. However, it should be kept in mind that, due to
the remaining matching errors, this norm is not always a reliable indicator
of the quality of a solution. In particular, the “refined” Euler solution for
Problem 2 actually has a low final norm, even though it still displays strong
oscillations as before, and has a very poor objective value.

Preliminary conclusion

The discretized BVP formulation has been introduced in an effort to avoid
the numerical instability of the single shooting continuation as the problem
becomes nearly singular. The numerical experiments have indeed shown
that this particular difficulty is avoided, and have also pointed out some
limitations of the formulation.

First, the roughness of the integration used, with only few nodes and an
extremely simple scheme, which has been improved a little by replacing the
original Euler formula with an implicit trapeze rule. Then, a more subtle
point, the matching errors induced by the incorrect expression of the control
over the singular arcs, which we have been unable to suppress completely at
this time. Nevertheless, even with these flaws we already obtain a reliable
detection of the singular structure and a good initialization for a precise
resolution, as described below.

Besides, with the use of both the adaptive meshsize and solution refine-
ment mechanisms presented in 2.1, we also manage to come up with a quite
close approximation of the state, costate and especially switching function,
even if this is not really needed in the following.

4.4 Structured shooting

As we have seen, the first approach with the quadratic perturbation of the
criterion already gives a hint about the singular structure of the two prob-
lems. Then with the continuation on the discretized formulation of the BVP,
we obtain a clearer idea of this structure, with an accurate detection of the
singular arcs. Now we want to solve the problems precisely, by using this
knowledge of the structure. We use a variant of the classical multiple shoot-
ing method that we call “structured shooting”. It shares the same principle

3but once again, performance is not our primary concern here, and the refined config-
urations still only take about 2 minutes to converge...

110 CHAPTER 4. SINGULAR ARCS PROBLEMS

as the well known code BNDSCO from Oberle (see [31]), slightly simplified
and adapted to the singular case instead of the state constraints. The first
of the two main differences is that singular arcs, unlike state constraints,
do not cause costate discontinuities, therefore there are no jump conditions
to worry about during the integration. The second simplification is that
instead of having a fixed time subdivision for the multiple shooting in addi-
tion to the switching times delimiting the structure changes, we only keep
the switching times. We integrate the IVP arc by arc, with the usual opti-
mal control on bang (non-singular) arcs, and singular control (given by the
relation ψ̈ = 0, cf 4.1.1 and 4.1.2 pages 89 and 90).

Remark: if we look more closely at the expressions of the singular control
mentioned above, we notice that these values do not verify the constraint
u ∈ U a priori. It turns out that the initializations provided by the two
previous continuations are precise enough to prevent this from happening in
practice. However, the numerical experiments on perturbed initializations
indeed show that some “out of the bounds” singular control values can occur
if we are far from the solution, see page 116.

4.4.1 Formulation

We describe here two formulations for the structured shooting method, first
the complete one then a simplified version.

Complete structured shooting

So in addition to the classical IVP unknown z (which for the two problems
is the initial costate p(t0)), we now have the interior switching times that
delimit the singular arcs, and the corresponding state and costate at these
times. On the other hand, we have a set of new conditions that must be
verified by these unknowns, so that the shooting function for this formulation
is of the form

SStruct : Rn+(2n+1)×s → Rn+(2n+1)×s

where n is the state-costate dimension and s the number of interior switch-
ing times. The conditions on the switching times reflect the fact that these
times are either the beginning or end of a singular arc, hence the switch-
ing function and its derivatives must vanish. The conditions on the interior
state-costate value here merely ensure the state and costate continuity at
the switching times (this is of course much simpler than the state constraints
case, where jump conditions have to be handled, as in BNDSCO). We will
note these conditions Switchcond and Matchcond in the following. Here are
the structured shooting function unknown and value layouts.

4.4. STRUCTURED SHOOTING 111

Unknown: z
- IVP unknown at t0 (same as in the single shooting method)
- values of (xi, pi) at interior switching times ti , i = 1..s
- switching times intervals ∆i, such that ti = ti−1 + ∆i , ∀i ∈ [1..s]

IVP unknown at t0 (x1, p1) ... (xs, ps) ∆1 ... ∆s

Value: SStruct(z)
- switching and matching conditions at interior times
- terminal and transversality conditions at tf (noted TC(tf), same as in the
single shooting method)

Switchcond(t1) Matchcond(t1) ... Switchcond(ts) Matchcond(ts) TC(tf)

Now let us detail the practical implementation of switching and matching
conditions. As said before, in our case matching conditions merely check the
continuity of the state and costate at the discretization nodes. Hence the
following expression:

Matchcond(ti) = (xi, pi)− (x̂i, p̂i) ∀i ∈ [1..s]

where (x̂i, p̂i) denotes the state and costate obtained by the integration at
the end of the [ti−1, ti] arc.

As for the switching conditions, we use

Switchcond(ti) = ψ2(ti, x
i, pi, ui).

Remark: it is possible to add the derivative of ψ in this switching con-
dition, with an expression of the form Switchcond(ti) = ψ2(ti, x

i, pi, ui) +
ψ̇2(ti, x

i, pi, ui). However, this turns out to be numerically more fragile than
the above formulation.

Light structured shooting

We present now a simplified version of the structured shooting formulation,
that we call, quite originally, “light structured shooting”. This modification
stems from the fact that as said before, in the absence of state constraints,
the matching conditions merely enforce the state and costate continuity
at the beginning/end of singular arcs. So one could want to just pursue
the integration at these times with the values of (x, p) obtained after the
integration of the previous arc (singular or not). Therefore, it is no longer
necessary to add the interior values (xi, pi) to the problem unknown. Now
only the switching time intervals ∆i remain, in addition to the usual IVP
unknown. The new shooting function is of the form

SLightStruct : Rn+s → Rn+s

112 CHAPTER 4. SINGULAR ARCS PROBLEMS

with s the number of interior switching times.

This lighter formulation does present a gain over the complete one in
terms of dimension, however this advantage would be more significant with
a higher number of singular arcs. For the two problems we study her, there
are only 2 and 1 interior switching times respectively, so there is not much
of a difference.

Besides, pursuing the integration all the way also raises a theoretical
difficulty. At a singular arc exit, the switching function is supposed to be 0,
thus the -non singular- optimal control just after the exit cannot be given
properly by the necessary conditions. In practice, of course, ψ only “numer-
ically” vanishes, up to a certain precision. At the exit, we therefore expect a
very small, but either positive or negative value. If this sign is correct, then
we have the right value of the control at the beginning of the bang-bang arc
following the singular arc.

The numerical experiments tend to show that with a good initialization,
we are in this favorable case and the light formulation converges well. This
highlights the importance of knowing the correct control structure com-
pletely, meaning not only the number and localization of the singular arcs,
but also the nature of the bang-bang arcs. It is therefore all more interesting
that the previous continuation can provide such information, with a quite
good approximate solution.

We summarize here the light structured shooting function unknown and
value layouts.

Unknown: z
- IVP unknown at t0 (same as in the single shooting method)
- switching times intervals ∆i, such that ti = ti−1 + ∆i , ∀i ∈ [1..s]

IVP unknown at t0 ∆1 ... ∆s

Value: SLightStruct(z)
- switching conditions at interior times
- terminal and transversality conditions at tf (noted TC(tf), same as in the
single shooting method)

Switchcond(t1) ... Switchcond(ts) TC(tf)

4.4.2 Numerical results

We now proceed with the numerical resolution of the problems. To begin
with, we determine the singular structure and initialization from the results

4.4. STRUCTURED SHOOTING 113

of the two previous continuations, namely single shooting and discretized
BVP. Then we solve the problems with the complete and light structured
shooting methods presented just above. This resolution does not imply any
continuation by itself, we just try to solve the equations SStruct(z) = 0 or
SLightStruct(z) = 0 for both problems (P1) and (P2).

Initializations

First we determine the singular structure we expect for each problem, based
on the information provided by the two continuations. Here the switching
functions clearly indicate the same structure for both continuations: regular-
singular-regular for Problem 1, and regular-singular for Problem 2. Then
we extract the required values for the switching times and interior state-
costate from the solutions obtained with the continuations, as summarized
below. We therefore have two initialization sets (from single shooting and
discretized BVP continuations), and two resolution methods (complete and
light structured shooting).

Remarks:
• Finding the initialization corresponding to the single shooting continua-
tion is a bit tedious. In order to find a solution just before the instability
threshold, we have in practice to try several path following with refining tri-
angulations.
• The initialization for the discretized BVP is taken from the most basic
formulation, Euler with an uniform meshsize path following. After all, we
only want an initialization, and this is sufficient, as we shall see.

We summarize here the initializations for Problem 1.
Note: in the following we use the arc lengths ∆i instead of the switching
times ti, in accordance with the implementation. We recall that we have
here t1 = ∆1 and t2 = ∆1 + ∆2.

Problem 1: control structure regular-singular-regular
• Unknown z: p(0), ∆1, ∆2, x(t1), p(t1), x(t2), p(t2)

Continuation p(0) ∆1 ∆2 x1 p1 x2 p2

BV P0.95 -0.429 2.5 4.5 4.996 107 -0.600 4.825 107 -0.587
BV PD -0.453 2.55 4.55 4.839 107 -0.637 4.741 107 -0.621

We observe that both initializations are rather close, and that for both
of them we have (x1, p1) ≈ (x2, p2). This latter point is coherent with the
fact that for (P1), the state and costate are constant over singular arcs (see
4.1.1 page 86).

114 CHAPTER 4. SINGULAR ARCS PROBLEMS

Now are the initializations for Problem 2.
Problem 2: control structure regular-singular
• Unknown z: p(0), ∆1, x(t1) ,p(t1)

Continuation p(0) ∆1 x1 p1

BV P0.925 (0.974,1.512) 1.5 (0.398,−0.309) (0.401, 0.00358)
BV PD (1.167,2.024) 1.429 (0.578,−0.429) (0.586, 0.000505)

There are only two arcs and one switching time here, but the state and
costate are of dimension 2. The initializations are here more distinct, which
is due to the particular “shifting” of the state and costate observed with
the Euler formulation on Problem 2, as mentioned before. Besides, the fact
that p1

2 is near 0 in both cases is coherent with the fact that the switching
function is supposed to vanish at the beginning of a singular arc (we recall
that ψ = p2 for Problem 2, so we expect p2(t1) = 0).

Resolution

As said before, there is no path following, we directly perform the shoot
(at λ = 1 technically). We use a Runge Kutta 4th order integration, with
1000 steps. In the structured shooting formulations, in case of a fixed step
integration, the steps are divided among the arcs proportionally to their
lengths (there is no distinction between the regular and singular case). The
convergence is immediate (1 second or below) for all test configurations.

Here are the full and light structured shooting details for Problem 1, for
both initialization sets:
- Initial norm is the norm of the shooting function at the initial point
- Final norm indicates the shooting function norm at the solution
- objective indicates the objective value at the solution
- H calls indicates the number of shooting function evaluations for the shoot
- time indicates the time taken by the shoot (on a 2.8GHz Pentium 4).

Initialization Shoot Initial norm Final norm objective H calls time

BV Pλ=0.95 Full 1.08 10−1 6.70 10−12 1.069 108 53 < 1s
BV Pλ=0.95 Light 1.69 10−1 1.40 10−12 1.069 108 59 < 1s
BV PD Full 8.44 10−2 1.17 10−12 1.069 108 111 1s
BV PD Light 1.13 10−1 4.47 10−14 1.069 108 62 < 1s

Structured shooting (full and light) convergence results for Problem 1
Initialization sets from single shooting and discretized BVP continuations

And a more detailed comparison of the shoot solutions:
-p(0) indicates the initial costate value at the solution
-∆1,∆2 indicate the arc lengths (with t1 = ∆1, t2 = ∆1 + ∆2)

Initialization Shoot p(0) ∆1 ∆2

BV Pλ=0.95 Full −4.622547 10−1 2.370416 4.618367
BV Pλ=0.95 Light −4.622547 10−1 2.370416 4.618367
BV PD Full −4.622547 10−1 2.370416 4.618367
BV PD Light −4.622547 10−1 2.370415 4.618366

4.4. STRUCTURED SHOOTING 115

Structured shooting (full and light) solution comparison for Problem 1
Initialization sets from single shooting and discretized BVP continuations

We see that the norm of the shooting function at the initial point is slightly
better for the discretized BVP initialization. As for the four solutions, the
final norm is similar for the first three solutions, the fourth one being slightly
better. The objective is actually the same up to 11 digits4, and p(0),∆1,∆2

up to 6 digits, except for the fourth solution (5 digits). So we can safely
assume that these solutions are numerically identical.

Now we move on to Problem 2.

Initialization Shoot Initial norm Final norm objective H calls time

BV Pλ=0.925 Full 1.37 3.07 10−14 3.7699 10−1 52 < 1s
BV Pλ=0.925 Light 1.99 6.85 10−14 3.7699 10−1 43 < 1s
BV PD Full 3.14 10−1 1.01 10−15 3.7699 10−1 57 < 1s
BV PD Light 1.01 10−1 1.56 10−14 3.7699 10−1 49 < 1s

Structured shooting (full and light) convergence results for Problem 2
Initialization sets from single shooting and discretized BVP continuations

Initialization Shoot p1(0) p2(0) ∆1

BV Pλ=0.925 Full 9.421734 10−1 1.441910 1.413764
BV Pλ=0.925 Light 9.421734 10−1 1.441910 1.413764
BV PD Full 9.421734 10−1 1.441910 1.413764
BV PD Light 9.421734 10−1 1.441910 1.413764

Structured shooting (full and light) solution comparison for Problem 2
Initialization sets from single shooting and discretized BVP continuations

Here we see more clearly the distinction between the two initialization sets,
accordingly to the previous remarks. Indeed, the initial norms show a differ-
ence of one order of magnitude, in favor of the discretized BVP initialization.
As for Problem 1, the final norms are very close, the objectives are identical
up to 14 digits5, and p(0),∆1 up to more than 6 digits. Once again, we can
assume that we have converged to the same solution.

We note that using the variable step integrators RKF45, DOP853 and
ODEX leads to the same solutions. The final norms are slightly better
(between 10−14 and 10−16), which is not surprising, and the objective value
remains the same, up to 8 significant digits. Finally, we represent here the
corresponding trajectories, on which the singular arcs are clearly visible.

41.06905997911 108 to be exact.
50.37699193029464...

116 CHAPTER 4. SINGULAR ARCS PROBLEMS

0 5 10

0.7

0.8

0.9

1
U

0 5 10
−0.5

−0.4

−0.3

−0.2

−0.1
P

si

SWITCHING FUNCTION

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

0 2 4
−1

−0.5

0

0.5
U

0 2 4
−0.5

0

0.5

1

1.5

P
si

SWITCHING FUNCTION

0 5
0

0.1

0.2

0.3

0.4

X1

0 5
−0.5

0

0.5

1
X2

0 5
−0.5

0

0.5

1
P1

0 5
−0.5

0

0.5

1

1.5
P2

Structured shooting solutions - Problem 1 and 2

We might wonder about the sensitiveness of the complete and light struc-
tured shooting formulations. So we study now the convergence stability by
applying some perturbations to the initialization. The reference settings are
the following: discretized BVP initialization, RK4 (1000) integration. We
use the following perturbations on the initial costate and switching times:
- p(0) by −1,−0.5,−0.1,+0.1,+0.5,+1 for Problem 1
- p(0) by (−2,−2), (−1,−1), (+1,+1), (+2,+2) for Problem 2
- (t1, t2) by (−1,+1), (+1,−1) for Problem 1
- t1 by −1,+1 for Problem 2

For each shooting attempt we only indicate here the final norm and ho-
motopy calls. The * after the number of homotopy calls indicates that out
of bounds values of the singular control (as mentioned on page 110) are en-
countered during the shoot.

Perturbation Complete Light

p(0) − 1 1.07 10−13 / 112* 6.02 / 19*
p(0) − 0.5 0.26 / 125* 4.59 / 19*
p(0) − 0.1 0.27 / 114* 9.57 10−3 / 75*
p(0) + 0.1 6.11 10−14 / 87 1.07 10−13 / 68
p(0) + 0.5 1.28 10−13 / 128 5.68 / 17*
p(0) + 1 4.06 / 25* 2.18 / 39*
(t1, t2) + (−1, 1) 9.80 10−13 / 60 0.28 / 37
(t1, t2) + (1,−1) 1.83 10−13 / 121 1.37 10−13 / 92

Convergence stability - Problem 1

We observe that the shooting methods are rather sensitive with respect to
the initial costate, as a perturbation of −0.1 is enough to prevent the con-
vergence. Actually, this is explained by the fact that this small perturbation
is enough to change the control structure, as shown below

4.4. STRUCTURED SHOOTING 117

0 5 10

0.7

0.8

0.9

1
U

0 5 10
−0.8

−0.6

−0.4

−0.2

0

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2
P

0 5 10
0

0.5

1

1.5
U

0 5 10
−10

0

10

20

30

Time

P
si

Switching function ψ

0 5 10
5

5.5

6

6.5

7

7.5
x 10

7 X

0 5 10
−25

−20

−15

−10

−5

0
P

The perturbation modifies the control structure - Problem 1

Therefore we are in the same situation as with the simple example in chapter
1: the initial point does not lie in the correct domain, and the shooting does
not converge.

We also notice that the full structured shooting manages slightly better
than the light one, with 5 acceptable convergence out of 8 tests, versus
only 2 (and a half at 10−3...). So it seems that the problem size gain of
the light formulation is counterbalanced by a reduced stability. Moreover,
we notice the frequent appearance of values of the singular control outside
of [0, 1], marked by the * symbol. These seem to coincide quite well with
the non convergent cases, with only one exception (first line for Complete
formulation) where the shoot manages to converge despite this phenomenon.
Technically, it is possible here to truncate these values to 0 or 1 respectively.
We have not made it part of the formulation because this case is actually not
supposed to happen if we have a good initialization, which is all what the
continuation part is about. Indeed, this phenomenon have never occurred
during the “normal” structured shooting attempts to solve the problems.

Perturbation Complete Light

p(0) − (2, 2) 9.79 10−14 / 58 2.27 10−14 / 54
p(0) − (1, 1) 1.84 10−14 / 58 1.26 10−14 / 50
p(0) + (1, 1) 1.97 10−14 / 70 5.37 10−15 / 58
p(0) + (2, 2) 9.79 10−15 / 73 3.24 10−14 / 54
t1 − 1 3.03 10−15 / 76 2.88 10−14 / 52
t1 + 1 7.28 10−15 / 69 4.50 10−15 / 73

Convergence stability - Problem 2

For Problem 2 we observe that the shooting method is much more robust,
as we always converge despite the perturbations. Incidentally, we never
encounter any “out of bounds” singular control values, which maybe explains
this stability.

Comparison of the three formulations

To finish with this part, we give here a comparison of the solutions ob-
tained by the single and discretized shooting continuations, with respect to
the reference solution from the structured shooting. We take for the single

118 CHAPTER 4. SINGULAR ARCS PROBLEMS

shooting (dashed line) the solution we have obtained just before the instabil-
ity threshold, namely for λ = 0.95 for Problem 1, and λ = 0.925 for Problem
2. As for the discretized BVP formulation (dots), we represent the “refined”
solution corresponding to the implicit trapeze integration, which is the best
we have obtained. Then the reference solution from structured shooting is
drawn with plain line.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
Control u1

0 2 4 6 8 10
−0.5

−0.4

−0.3

−0.2

−0.1

0

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 State x1

0 5 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
Costate p1

STRUCTURED
SINGLE (λ=0.95)
DISCRETIZED

Discretized BVP, Single and Structured shooting solutions for (P1)

0 1 2 3 4 5
−1

−0.5

0

0.5

1
Control u1

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

Time

P
si

Switching function ψ

0 5
0

0.1

0.2

0.3

0.4

0.5
State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5

2
Costate p2

STRUCTURED
SINGLE (λ=0.925)
DISCRETIZED

Discretized BVP, Single and Structured shooting solutions for (P2)

As we can see, the state and costate trajectories from the discretized BVP
continuation are quite close to the reference ones. For the single shooting
solutions, p is less close to the reference over the singular arc for Problem 1,

4.5. DISCRETIZED CONTROL FORMULATION 119

but then, we are only at λ = 0.95 here, so the difference is not that surpris-
ing. Actually, we should probably think the other way around, that we are
lucky with the good solution at λ = 0.925 for Problem 2.

This accuracy has probably a lot to do with the easy convergence of
the structured shooting, as we have a quite good initial guess. We also ob-
serve that the discretized switching function is really close to the reference
one, which would confirm that this formulation is well suited to the singular
structure detection (and structured shooting initialization).

Concerning the control, the discretized bang-bang values are irrelevant,
and merely correspond to the sign of the nearly-0 switching function val-
ues over the singular arcs. On the other hand, the control from the single
shooting continuation (at λ = 0.95) is not that bad, being rather close to the
reference optimal control. Indeed, we observe that this proximity holds both
inside bang-bang arcs, but also inside singular arcs. The differences are actu-
ally localized around the switching times (we mean here the regular/singular
switching times, in the sense of the structured shooting formulation), which
is not that surprising.

4.5 Discretized Control formulation

We have seen that the discretized BVP formulation can give quite good ap-
proximate solutions. However, it is a bit frustrating that the corresponding
control be useless, and indeed even impairs the method by inducing match-
ing errors over singular arcs. So we would like, still in the discretization
idea, to obtain an acceptable approximation of the control as well. We take
inspiration after the semi direct methods, where the discretized control is
the sole unknown (full direct methods discretize both the state and control).

4.5.1 Formulation

In this formulation, the state and costate (x, p) are basically integrated from
the initial time t0, as in the classical IVP of the single shooting method. The
difference is that this integration does not use the expression of the opti-
mal control given by the necessary conditions (u∗ = Argminu∈UH(t, x, p, u)
directly. We consider instead a piecewise constant approximation of the
control, whose values ui at the discretization nodes ti, i = 1..d become addi-
tional unknowns. These control values must satisfy some conditions, noted
Controlcond, that are described below. For now, suffice to say that these
conditions are of the same dimension as the control u, hence this “shooting
function” for the discretized control formulation looks like

SDC : Rn+m×d → Rn+m×d

120 CHAPTER 4. SINGULAR ARCS PROBLEMS

with d the number of discretization nodes (and m the dimension of the con-
trol). As usual, here is the detailed description of SDC :

Unknown z
- IVP unknown at t0 (same as in single shooting method)
- values of (ui) at interior times ti, i ∈ [1..d] (here tf is not a node6)

IVP unknown at t0 (u1) ... (ud)

Value SDC(z)
- control conditions at interior times
- terminal and transversality conditions at tf (same as single shooting)

Controlcond(t1) Controlcond(t2) ... Conditions at tf

Note: As the control is generally of lower dimension than the couple
(x, p), this formulation can often afford more discretization nodes than the
discretized BVP.

Now we come to the core of this formulation, the expression of the con-
trol conditions. On a discretization node at ti, the condition on the control
ui depends on the control structure. If we are over a bang-bang (non sin-
gular) arc, then ui must coincide with the optimal control u∗i given by the
necessary conditions. In the singular case, conversely, we must not enforce
the necessary conditions, unless we face the same consequences as in the dis-
cretized BVP formulation. However, the control condition should not rely
on the detection of the singular case, which typically involves the comparison
of the switching function ψ (and optionally of its derivatives) to a certain
threshold value. As mentioned previously on page 105, this is numerically
very instable depending on the threshold value. So in the end we try the
following formulation, which uses the fact that U is an interval [ulow, uup]
for the two problems:

If ui ∈ U = [ulow, uup]
Then Controlcond(ti) = (ui − u∗i)× Singcond(ti)
Else if ui > uup, then Controlcond(ti) = ui − uup,

else Controlcond(ti) = ui − ulow

with Singcond = ψ2 + ψ̇2

The first part translates the fact that we want to enforce the necessary
conditions only outside of singular arcs. When Controlcond(ti) = 0, we ei-
ther have ui = u∗i and the necessary conditions are satisfied (this should
correspond to the bang-bang arcs), or Singcond(ti) = 0, meaning a singular

6As we only use explicit integration formulas, the control at tf is not needed.

4.5. DISCRETIZED CONTROL FORMULATION 121

arc. The crucial part is that we do not chose which term vanishes, and never
actually force the necessary conditions: if the Singcond term is close enough
to 0, then ui is allowed to be different from u∗i . Concerning the expression of
Singcond, the formula above with the first derivative of ψ here works better
than the simpler formula Singcond = ψ2 used in the discretized BVP formu-
lation.

Remark: it is actually possible that both terms in the control condition
vanish, in which case what numerically happens is not clear. This would
correspond to the beginning/end of a singular arc (inside the arc, the correct
singular control is supposed different from the incorrect optimal control u∗

i ,
therefore ui − u∗i should not vanish). However, the coincidence of such a
time with a discretization node is probably quite unlikely in practice.

The last part, which corresponds to the constraint ui ∈ U , is such that
this constraint violation can take both negative and positive values. It is
in practice superior to the maybe more intuitive Controlcond(ti) = d(ui, U),
possibly because of this sign property. Of course, in case the control is of
dimension greater than 1, this part has to be adapted, but it is uneasy to
predict how to keep the stability of the above formulation.

Remark: as with the discretized BVP formulation, we have tried to use
the algebraic expression of the singular control. The idea is to enforce a con-
straint of the form “ui = ui

singular when ti is inside a singular arc” as part of
the control conditions. However, we have encountered the same difficulties
as before, namely an unacceptable sensitiveness with respect to the practical
implementation of the singular case detection.

Before we move on to the numerical results, we would like to emphasize
that the convergence properties for this discretized control formulation are
still an open question.

4.5.2 Numerical results

We apply the same continuation as with the single shooting and discretized
BVP. As the control is of dimension 1 in both cases, we use 50 discretiza-
tion nodes for the two problems (with a total dimension of 51 and 52 re-
spectively). We observe a rather fast7 convergence without any particular
difficulties, except the fact that the first junction at λ = 0 curiously takes a
large number of simplices, especially for Problem 2 (see the tables below).

7depending on the integrator, from 15 to 30 seconds for Problem 1, and 10 to 20 seconds
for Problem 2.

122 CHAPTER 4. SINGULAR ARCS PROBLEMS

The path following uses here for both problems a basic K1(10
−1) tri-

angulation, with normal scaling, and a shooting attempt both at λ = 0
and λ = 1. The initialization before the first shoot is extremely rough: we
set p(0) = 0 for (P1) and p(0) = (1, 1) for (P2), with the control values
ui = 0, i = 1..d in both cases. The initial shoot converges nevertheless
almost instantly to a solution with a norm around 10−15 in all cases, with
the exception of the Runge Kutta 2 integration for (P2), where the norm is
only around 10−4 (which does not seem to affect the following).

We detail here the path followings:
- Main path indicates the number of simplices for the main path following.
- 1st Junction indicates the number of simplices for the first junction.
- H calls indicates the global number of homotopy evaluations.
- Final norm indicates the norm of the solution after the shoot at λ = 1.

Integrator Main path 1st Junction H calls Final norm

Euler 23 209 3499 26 268 5.39 10−5

Midpoint 24 149 6474 29 071 6.87 10−6

RK2 24 186 6464 29 289 4.43 10−6

RK4 24 173 6488 28 974 3.88 10−6

Problem 1 - Path following for the Discretized Control Formulation.

Integrator Main path 1st Junction H calls Final norm

Euler 5071 27 033 23 792 4.03 10−3

Midpoint 5144 31 336 27 459 1.05 10−2

RK2 4678 42 142 33 568 6.57 10−4

RK4 5150 31 396 28 158 5.58 10−4

Problem 2 - Path following for the Discretized Control Formulation.

Here are the corresponding trajectories for various integration choices,
namely Euler, explicit midpoint, and basic Runge-Kutta of 2nd and 4th
order. Once again, the discretized solutions are plotted over the structured
shooting reference in solid line for the sake of comparison.

0 5 10
0.5

1

1.5
U

0 5 10

−0.4

−0.2

0

0.2

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
P

0 2 4 6 8
0.4

0.6

0.8

1

U

0 2 4 6 8

−0.4

−0.2

0

0.2

Time

P
si

Switching function ψ

0 5
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
P

Discretized control for Problem 1 - Euler and Midpoint

4.5. DISCRETIZED CONTROL FORMULATION 123

0 5 10
0.5

1

1.5
U

0 5 10

−0.4

−0.2

0

0.2

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1
P

0 2 4 6 8
0.5

1

1.5
U

0 2 4 6 8
−0.5

−0.4

−0.3

−0.2

−0.1

Time

P
si

Switching function ψ

0 5
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

Discretized control for Problem 1 - RK2 and RK4

0 2 4
−1.5

−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

2

Time

P
si

Switching function ψ
0 5

0

0.2

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1

1.5
Costate p1

0 5
−0.5

0

0.5

1

1.5

2
Costate p2

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 2 4

0

0.2

0.4

State x1

0 2 4
−0.5

0

0.5

1
State x2

0 2 4
0

0.5

1
Costate p1

0 2 4
−0.5

0

0.5

1

1.5
Costate p2

Discretized control for Problem 2 - Euler and Midpoint

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.2

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

0 2 4
−1.5

−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 2 4

0

0.1

0.2

0.3

0.4

State x1

0 2 4
−0.5

0

0.5

1
State x2

0 2 4
−0.5

0

0.5

1
Costate p1

0 2 4
−0.5

0

0.5

1

1.5
Costate p2

Discretized control for Problem 2 - RK2 and RK4

The first constatation is that for both problems and all integrators, the
approximation of the state and costate is surprisingly good. An exception
is the Euler case for Problem 2, which displays the same kind of “shifting”
from the solution mentioned on page 102 for the discretized BVP formula-
tion. The discretized switching function ψ is also quite accurate, and clearly

124 CHAPTER 4. SINGULAR ARCS PROBLEMS

indicates the singular structure for both problems.

Yet the most interesting point is the approximation of the control, which
is the unknown in this formulation. In all cases the discretized control
matches the reference over the bang-bang arcs, which tends to indicate that
the necessary conditions are taken into account properly. Then over the
singular arcs, we observe that the control is not that far from the reference
singular control, especially with the two Runge Kutta integrators. This
means that the ψ2 + ψ̇2 term in the control conditions indeed manages to
guide the control towards the correct singular value, even though we do not
use the expression of usingular at all8! This is an interesting point, as it
would suggest that this method might be applied to problems where the
algebraic expression of the singular control is not available.

4.6 Direct method approach

We would like here to make a quick comparison with the direct methods,
which basically discretize the problem. In their case the control is part of the
unknowns, and is not derived from necessary conditions, so it is interesting
to see how they handle the singular arcs.

4.6.1 Formulation

We use here for our direct experimentations the software KNITRO, that
solves nonlinear optimization problems (NLP). Detailed information about
the algorithms used can be found in [13, 14], we just recall here the general
principle of the method. Basically, KNITRO handles the resolution of the
original NLP problem by solving a sequence of barrier subproblems. Each
subproblem is solved with a low precision by SQP iterations (with the use
of trust regions), until the barrier parameter is nullified. This is an interior
point method, which share some ties with continuation or penalty methods.

The transformation of the optimal control problem into a nonlinear opti-
mization involves the discretization of the state and control, who become the
unknown of the problem. The integration of this discretized system intro-
duces a set of constraints related to the dynamics, as the value of the state
at a discretization node must match the value provided by the integration
from the last node.

8we recall that for the two problems studied, the expression of the singular control is
obtained from the second order equation ψ̈ = 0, as the control vanishes from ψ̇ = 0.

4.6. DIRECT METHOD APPROACH 125

Note: a variant from this direct approach is to discretize the control only,
and merely integrate the state from the beginning. This “semi direct” ap-
proach allows an important gain in terms of problem size, as the state is not
part of the unknown anymore and the dynamics constraints vanish.

Concerning the integration, we limit here ourselves to fixed step schemes,
as we want to be able to use automatic differentiation to compute the deriva-
tives of the dynamics constraints and integrated objective.

Remark: there is no costate as such in direct methods, even if it can be
linked to the Lagrange multipliers of the discretized problem.

4.6.2 Numerical results

The integration for both problems is a basic 4th order Runge Kutta rule,
with 100 and 1000 steps. The feasibility and optimality tolerances are set
to 10−12 and 10−9 respectively. We use the following trivial initialization,
in the same spirit as for our continuation approach: xi = x0, and ui = 0,
∀i = 1..ns, with ns the number of discretization steps.

With these settings, the execution times are of the same order as our method:
- 2 seconds (100 steps) and 81 seconds (1000 steps) for Problem 1
- 26 seconds (100 steps) and 237 seconds (1000 steps) for Problem 2

Here are the solutions (state and control) for 100 and 1000 steps:

0 5 10

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Control

time

U

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

time

X

State

0 5 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Control

time

U

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7

time

X

State

Direct method - Solutions with 100 and 1000 nodes for Problem 1

126 CHAPTER 4. SINGULAR ARCS PROBLEMS

0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control

time

U

0 5
0

0.2

0.4

time

X
1

0 5
−0.5

0

0.5

1

time

X
2

0 1 2 3 4 5

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Control

time

U

0 5
0

0.2

0.4

time

X
1

0 5
−0.5

0

0.5

1

time

X
2

Direct method - Solutions with 100 and 1000 nodes for Problem 2

We converge obviously to the same solutions that we have found with the
structured shooting. However, we observe some irregularities over the singu-
lar arcs, and especially at the switching times. The few tests we have made
would indicate that getting rid of these artifacts completely (to obtain a
“smooth” solution as with the structured shooting) might not be easy. In-
creasing the number of steps is soon limited by the execution times, and is
not always convincing. For instance, see Problem 1 with 1000 steps, where
the oscillations on the singular arc have actually increased compared to the
100 steps formulation. On the other hand, setting more strict tolerances
than the ones above rapidly makes the convergence much more difficult to
attain.

However, we must insist on the fact that our experiments with KNITRO
are very preliminary, so there are probably better settings to be found.
Another way that should be explored is the semi direct approach, in which
the control only is the unknown. Finally, we may also be limited by the
choice of a fixed step integration, which follows from the use of automatic
differentiation.

4.6. DIRECT METHOD APPROACH 127

Conclusion

The first continuation with the single shooting shows the progressive appari-
tion of the singular structure, by the evolution of the control and switching
function as λ increases along the path. However, near the convergence the
problems become nearly singular, and the singular structure is lost due to
the numerical instability of the switching function near 0.

To circumvent this difficulty, we discretize the equations of the BVP, the
values of the state and costate at the discretization nodes becoming part
of the homotopy unknown. We then observe on the numerical experiments
an indication of a flaw in this formulation, related to the incorrect appli-
cation of the necessary conditions over the singular arcs. This numerically
leads to persistent matching errors and some irregularities of the discretized
state and costate. Nevertheless, a good choice of the integration formula,
combined with the adaptive meshsize and solution refinement mechanisms
described in chapter II, allows us to obtain a quite accurate approximation
of the state, costate and switching function. We have therefore a clear de-
tection of the singular structure, as well as a good initialization for a precise
resolution.

It is worth noting that for these two continuations, the simplicial algo-
rithm manages to reach the convergence at λ = 1, despite the presence of
singular arcs.

Then we move on to the precise resolution, with a method adapted from
multiple shooting to the singular case. Thanks to the information provided
by the previous continuation, we are able to converge instantly to an ac-
curate solution for both problems (coherent with the results presented in
[34, 19]).

So the problems are solved, yet the very good results of the discretized
formulation concerning the state and costate encourage us to try to obtain
an approximation of the singular control as well.

We introduce then a new discretized formulation, in which the control
replaces the state and costate in the unknown. We try to enforce the neces-
sary conditions on this control, while respecting the singular structure of the
problem to avoid the pitfalls of the discretized BVP. Although very sensitive
to the practical implementation of these conditions on the control, this idea
gives surprising numerical results. Indeed we obtain for both problems a
very close approximation of the state and costate, and most interestingly
good control values as well, including over the singular arcs, without using
the algebraic expression of the singular control. However, we lack theoretical

128 CHAPTER 4. SINGULAR ARCS PROBLEMS

results concerning this formulation, and the handling of a control of dimen-
sion greater than 1 would likely require a careful implementation. Also,
the conditions on the control can probably be improved for more stability,
maybe by using a barrier.

To finish with, it is worth noting that all the approaches described in this
chapter are rather fast, with convergence times not exceeding 2 minutes (for
the refined discretized BVP continuation). In particular, the complete reso-
lution of the problems (basic discretized BVP continuation plus structured
shooting) takes less than 15 seconds.

Conclusions and Perspectives

The central theme of this work is related to the difficulties, especially the
critical choice of the initial point, encountered by shooting methods for
problems with a low regularity. In order to deal with these, we introduce
a continuation approach, and choose in practice to use simplicial methods
due to their robustness. In this context, some additions have been made to
the simplicial algorithm, such as adaptive meshsize and solution refining.

We first consider a low thrust orbital transfer problem family, involving
a bang-bang control structure with several hundreds of commutations. The
simplicial method leads to the same results that have already been obtained
by the differential continuation (but was slower, as expected), and the com-
parison of three variable step integrators highlights again some conservation
properties related to the maximal thrust. Besides, these experiments val-
idate the qualitative behaviour of the adaptive meshsize mechanism, with
both a gain in the simplices followed and a faster final shoot. However, they
also reveal the significant numerical cost of the adaptive junctions, leading
to a mixed quantitative performance.

Then, the second part of the experiments is devoted to the study of two
singular arcs problems in parallel. The continuations based on the single
shooting and discretized boundary value problem formulations provide us
with a reliable knowledge of the control structure, both singular and bang-
bang arcs. We also obtain a good approximate solution, which allow us
to initialize properly the precise resolution of the problems, performed by
methods derived from multiple shooting. Besides, we also introduce a new
formulation inspired by the direct methods, in which the discretized control
is part of the unknown. The first numerical results are interesting, even
though the practical implementation requires some care and the theoretical
properties of this formulation remain an open question.

Finally, the future perspectives of this work include the study of state
constraints problems, that are also difficult to solve by indirect methods with
no a priori assumptions on the structure. In particular, we note that some
interesting results have already been obtained by J. Laurent-Varin with an

129

130 CHAPTER 4. SINGULAR ARCS PROBLEMS

interior point method applied to a symplectic Runge Kutta discretization of
the optimality conditions, see [6].

Concerning the simplicial algorithm, a first objective would be to improve
the numerical cost of the adaptive meshsize, either with a better junction
formulation, or by finding another robust (and cheaper) way of performing
the meshsize changes. Some additional directions to explore would be other
triangulations, labelings (integer labeling for instance), integrators (sym-
plectic integrators in particular), and nonlinear solvers. Also, we would like
to make a more in-depth comparison with the direct methods on the studied
problems.

Appendix A

Simplicial package overview

This package was used to conduct all the numerical experiments of this work,
except the preliminary tests for the direct methods (made with Knitro1). It
implements a simplicial method adapted to resolution of optimal control
problems, as described in chapter 2, and includes the various formulations
presented in chapter 4 for the singular arcs problems. The complete package
(source, Matlab scripts, sample problems and user guide) is available online.

Web page: http://www.enseeiht.fr/lima/apo/simplicial
Contact: pierre.martinon@enseeiht.fr

The code itself is written in Fortran9x (about 7000 lines, standard F90
mostly), and uses some Fortran77 third party codes: the nonlinear solver
for the shooting methods, the three variable step integrators, and matrix
inversion subroutines. The Simplicial package should contain the following
files:

User guide

Simplicial core files

- Simplicial.f90 : main program
- Levels.f90 : path following module
- Cell.f90 : simplices manipulation
- Homotopy.f90 : homotopy interface
- Shoot.f90 : shooting functions module
- Integrators.f90 : integrators interface
- Defs.f90 : global variables
- Makefile

1see www.ziena.com/knitro.html

131

132 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

Sample problem files

- ProblemFuns.f90 : user supplied problem specific subroutines
- Problem.cfg : sample configuration file
- Problem.in: sample initialization file

Matlab scripts

- init.m: problem file generation
- config.m: configuration file generation
- sol.m: solution visualization
- path.m: zero path visualization
- simpath.m: zero path simplices visualization
- valley.m: path valley visualization
- plateau.m: homotopy plateau visualization
- control.m: control and switching function evolution for several solutions

Third party codes

- auxsubs.f : miscellaneous auxiliary subroutines
- inverse.f : matrix inversion (LU factorization)
- rkf45.f : Runge Kutta Fehlberg 4-5th order integrator
- dop853.f : Dormand Prince integrator
- odex.f : Gragg Bulirsch Stoer extrapolation integrator

• Nonlinear solver: Quasi Newton (Powell method) solver (MINPACK)
Source: hybrd.f, by B.S. Garbow, K.E. Hillstrom and J.J More
http://netlib.bell-labs.com/netlib/minpack/hybrd.f.gz

• Integrator: Runge Kutta Fehlberg (4,5) method
Source: rkf45.f, by H.A. Watts and L.F. Shampine
http://netlib.bell-labs.com/netlib/ode/rkf45.f.gz

• Integrator: Dormand Prince (8,5-3) method
Source: dop853.f, by E. Hairer and G. Wanner
http://elib.zib.de/pub/elib/hairer-wanner/nonstiff/dop853.f

• Integrator: Gragg Bulirsch Stoer extrapolation method
Source: odex.f, by E. Hairer and G. Wanner
http://elib.zib.de/pub/elib/hairer-wanner/nonstiff/odex.f

• Matrix inversion: via LU factorization (LAPACK-BLAS)
Source: dgetri.f, dgetrf.f
http://netlib.bell-labs.com/netlib/lapack/double/dgetr{i,f}.f.gz

A.1. USING THE SIMPLICIAL PACKAGE 133

A.1 Using the Simplicial package

In order to solve an optimal control problem with the Simplicial package, the
user has to complete the following subroutines, located in ProblemFuns.f90 :
• InitPar: performs specific problem initializations, if any.
• Control: optimal control and switching function evaluation.
• Dynamics: state, costate and objective dynamics.

Then for each problem, two input files are used as well:
• Problem initialization file .in: contains problem data.
• Configuration file .cfg: contains settings for the simplicial algorithm.

After execution, the Simplicial code will produce various output files:
• Debriefing file .out: details about the execution.
• Solution file .sol: state, costate, control (and switching function) gener-
ated at the solution (visualization with the Matlab script sol.m).
• Optional output files: .path, .simpath, .valley, .plateau (see page 141
for more details).

Here is an overview of the various input and output files used by the Sim-
plicial package, which are described more in details below.

Note: for each problem, a single prefix name is associated to all input
and output files. Thus if input files are named Demo1.in and Demo1.cfg for
instance, the corresponding output files will be Demo1.out and Demo1.sol
(and so on for optional output files). This makes it easier to keep track of
which problem the files correspond to.

A.1.1 User supplied subroutines

These three subroutines are located in the file ProblemFuns.f90, specific to
each problem.

134 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

InitPar

This subroutine performs the various initializations required by the prob-
lem. It is called at the beginning of the program, after the initialization file
.in has been read, and then each time the homotopy is computed.

The input variables are
- mode: 0 for first call, 1 for subsequent calls
- lambda: homotopic parameter used for continuation

Subroutine interface

Subroutine InitPar(mode, lambda)

implicit none

integer, intent(in) :: mode

real(kind=8), intent(in) :: lambda

Control

This subroutine provides the value of the optimal control, according to nec-
essary conditions. The switching function is also typically evaluated, but
this is not mandatory.

The input variables are
- lambda: homotopic parameter used for continuation
- t: time
- x: state (dimension ns)
- p: costate (dimension nc)

And the output variables
- u: optimal control (dimension m)
- psi: optional switching function and its derivatives (total dimension dimpsi)

Subroutine interface

Subroutine Control(lambda,t,x,p,u,psi)

implicit none

real(kind=8), intent(in) :: lambda, t

real(kind=8), intent(in), dimension(ns) :: x

real(kind=8), intent(in), dimension(nc) :: p

real(kind=8), intent(out), dimension(m) :: u

real(kind=8), intent(out), dimension(dimpsi) :: psi

Dynamics

This subroutine provides the dynamics for the state, costate, and objective
if needed.

A.1. USING THE SIMPLICIAL PACKAGE 135

The input variables are
- dimphi: dynamics dimension (> ns+nc when objective is required)
- lambda: homotopic parameter used for continuation
- t: time
- x: state (dimension ns)
- p: costate (dimension nc)
- u: the optimal control (dimension m)

And the output variable
- phi: dynamics (state, then costate, and optionally objective)

Subroutine interface

Subroutine Dynamics(dimphi,lambda,t,x,p,u,phi)

implicit none

integer, intent(in) :: dimphi

real(kind=8), intent(in) :: lambda, t

real(kind=8), intent(in), dimension(ns) :: x

real(kind=8), intent(in), dimension(nc) :: p

real(kind=8), intent(in), dimension(m) :: u

real(kind=8), intent(out), dimension(dimphi) :: phi

A.1.2 Input files

A.1.3 Initialization file .in

This file contains problem initializations, such as dimensions, initial and
terminal conditions, initial guess, and integrator choices. Configuration files
can either be edited manually, or automatically generated by the init.m
script. Here is a brief summary of the parameters set in this file.

• Homotopy choice and problem class
Integer [1+]: tells which homotopy is to be used by the program.
Set to 1 by default, this permits to use several different homotopies
for a given problem with the same ProblemFuns.f90.
Integer [0..3]: sets the kind of shooting method used (see page 145).
0: Discretized shooting
1: Single shooting
2: Structured shooting
3: Light Structured shooting
Note: The homotopy choice and problem class values given in the .cfg
and .in files must match.

• Unknown, State, Costate and Control dimensions
Integer Integer Integer Integer: here are specified the dimensions

136 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

of the shooting function unknown, and of the state, costate and con-
trol of the problem (the state and costate dimensions are usually the
same, but can differ if some components are known to be constant,
and therefore do not need to be integrated).

• Objective and Switch dimension
Integer [1+]: usually set to 1, as the objective is scalar, but addi-
tional objectives can also be computed, if the corresponding derivatives
are included in subroutine Dynamics.
Integer [0+]: like the objective, the switching function has scalar
values, but its derivatives can also be computed, if set in subroutine
Control (observing the switching function is especially useful when
suspecting the presence of singular arcs).

• Number of IVP unknown values
Integer: dimension of IVP unknown.
IVP unknown indices
Integer(): indices of IVP unknown values in y = (x, p) vector.

• Number of initial values
Integer: number of values known at t0 (given by initial and transver-
sality conditions).
Initial values indices
Integer(): indices of these values in (x(t0), p(t0)).
Initial values
Real(): initial values.

• Number of terminal values
Integer: number of values known at tf (given by terminal and transver-
sality conditions).
Terminal values indices
Integer(): indices of these values in (x(tf), p(tf)).
Terminal values
Real(): terminal values.

• Initial and final time
Real Real: the initial and final times t0 and tf

• Starting point (z0,lambda0) for zeropath
Real(n+1): initial guess z0 for shooting function unknown, and ini-

A.1. USING THE SIMPLICIAL PACKAGE 137

tial value λ0 for homotopic parameter λ (λ0 is typically 0).

• Scaling mode
Integer [0..1]: selects the scaling mode.
0: no scaling
1: standard scaling
2: soft scaling (to [0.01, 10] instead of [0.1, 1])

• Path and solution integrator choice
Integer [0..7]: selects the integrator used for path following and so-
lution (cf page 146)
0: Fixed step - Euler
1: Fixed step - Midpoint
2: Fixed step - Runge Kutta 2nd order
3: Fixed step - Runge Kutta 3rd order
4: Fixed step - Runge Kutta 4th order
5: Variable step - Runge Kutta Fehlberg 4-5th order (rkf45)
6: Variable step - Dormand Prince 8-5-3 (dop853)
7: Variable step - Gragg Bulirsch Stoer extrapolation method (odex)

• Steps for fixed step integrators
Integer Integer: sets the number of steps for fixed steps integrators
(path and solution).
Variable step integrator abserr and relerr
Real Real Real Real: absolute and relative error tolerances for vari-
able step integrators (idem).
Fixed point minimal progress and maximal iterations
Real Integer: sets the stopping criterion for the fixed point iterations.

• Number of parameters
Integer [0+]: number of problem specific parameters.
Parameters
Real(): problem specific parameters, if any.

A.1.4 Configuration file .cfg

Here we find a list of parameters for the simplicial algorithm. Configuration
files can either be edited manually, or automatically generated by the con-
fig.m script. Here is a brief summary of the parameters set in this file.

138 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

• Homotopy choice and problem class
Integer [1+]: tells which homotopy is to be used by the program.
Set to 1 by default, this permits to use several different homotopies
for a given problem with the same ProblemFuns.f90.
Integer [0..3]: sets the kind of shooting method used (see page 145).
0: Discretized BVP
1: Single shooting
2: Structured shooting
3: Light Structured shooting
4: Discretized Control
Note: The homotopy choice and problem class values given in the .cfg
and .in files must match.

• Triangulation choice
Integer [1..5]: selects the triangulation used (cf 2.1).
1: Freundenthal’s uniform K1

1

2: Todd’s uniform J1
1

3: Todd’s refining J3

4: Alternate refining J4

5: Dang’s uniform D1 (cf [21]) (experimental)

• Labeling choice
Integer [0..1]: selects the labeling used.
0: Traditional vector labeling by the homotopy
1: Integer labeling (experimental, cf page 145)

• Zero Path follow mode
Integer [-1..3]: sets the adaptive meshsize mode (cf 2.3).
-1: do not perform level checks at all
0: perform only level checks, no adaptive meshsize
1: adaptive meshsize, deviation control only
2: adaptive meshsize, anisotropic refinement only
3: full adaptive meshsize

• Initial and final solver calls
Integer [0..1] Integer [0..1]: selects whether solver calls are made
at the beginning / end of zero path.
0: no solver call

1Note: we use for the K1 and J1 the “interchange permutations” pivot rules, instead of
the “reflexion” pivot rules (see [2], 13.3), as they were slightly better in terms of cumulative
simplex errors.

A.1. USING THE SIMPLICIAL PACKAGE 139

1: solver call

• Refinement mode and maximum refinement attempts
Integer [0..3]: solution refinement method used (see 2.4).
0: no refinement
1: J3 refinement between refinement bound and upper bound
2: J4 refinement between refinement bound and upper bound
3: Merril-like junctions refinement at upper bound
Integer [0+]: number of solution refinement attempts (for mode 3).

• Deviation tolerance
Real: tolerance for adaptive meshsize (cf 2.3).
Anisotropic thresholds
Real Real Real: thresholds for adaptive meshsize (cf 2.3).

• Maximum simplices for main and junction homotopies, check frequency
Integer Integer: maximum number of simplices allowed for main
and junction homotopies. Junction homotopies (see page 32 for more
details) take place to find starting completely labeled faces, or when
changing the triangulation meshsize, and should not require more than
1000 or 10000 simplices (quick junctions can often be completed in
less than 100 simplices). In case of difficulties at the starting point, or
when using solution refinement, however, longer junctions may occur,
and the maximum number of simplices should be increased accordingly.

Integer: this parameter sets the number of simplices after which the
current simplex and labeling are periodically checked and reset in or-
der to limit the accumulation of roundoff errors. Set to 0 to disable
checks (usual value is 10000 or 100000).

• Initial triangulation meshsize for (z,lambda)
Real Real: size vector δ for initial meshsize, given by δ(i), i = 1, n
and δ(n + 1). (Note: the second value is meaningless for J3 triangu-
lation, as the stepsize with respect to the homotopic parameter λ is
here predetermined.)

• Bounds for homotopic parameter lambda
Real Real Real: lower, refinement (between lower and upper) and
upper bounds for homotopic parameter lambda. Lower and upper
bounds are often set to 0 and 1, but this is not mandatory. Actually,

140 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

the algorithm works internally with a homotopic parameter λ ∈ [0, 1],
which is re-parametrized to [lower bound, upper bound] for actual ho-
motopy evaluation. These values can be used to change the beginning
and end of the zero path, for instance to split the homotopy into sev-
eral passes.

• Zero Path, Simplices, Valley and Plateau output files
Integer[0..1] Integer[0..1] Integer[0..1] Integer[0..1]: selects whether
output files .path, .simpath, .valley and .plateau are to be generated
(see page 141 for details).
0: no output file generated
1: output file generation

• Ratio for saved paths
Integer Integer: selects the ratio for saved points/simplices in .path/.simpath
files, for main and refinement homotopy. Set to 1 to save full paths
(caution: this can lead to huge output files if the number of simplices
followed is high...).

• Homotopy Norm and Criterion output in Path
Integer[0-1] Integer[0-1]: see page 141 for description.
0: do not include homotopy norm/criterion in zero path file
1: include homotopy norm/criterion in zero path file
(these two options require that Zero Path output file be set to 1.)

• Valley range and step
Integer Real: see page 141 for description.

• Plateau range and step
Integer Real: see page 141 for description.

• Solution generation at final face vertices, barycentric control
Integer[0-1]:
0: do not generate solutions at final face vertices
1: generate .vertxx.sol solution files for final face vertices
Integer[0-1]: (note: barycentric control is experimental, and on its
way to oblivion...)
0: do not generate barycentric control
1: reintegrate solution with barycentric control

A.1. USING THE SIMPLICIAL PACKAGE 141

Warning: some options are not compatibles, and the code will check for
inconsistencies in the input files. In case some conflicting options are found,
a warning is issued and changes are made so that the conflict is solved.
Nevertheless, in this case the input files should be corrected manually, as the
automatic changes made by the code may not match the user’s wishes...

A.1.5 Output files

Here is a summary of the output files, that can be visualized with the pro-
vided Matlab scripts.

Execution and debriefing file

Once user-supplied subroutines and input files are completed, just run the
executable Simplicial. The program will ask the name (without the ex-
tension) of the input files, for instance “Problem1” for Problem1.cfg and
Problem1.in. Keep in mind that all input and output files associated to a
given problem have the same name, only with different extensions. Thus it
is quite easy to keep track of several problems at the same time, each one
having its set of files with the same prefix.

At the end of the execution, a debriefing file .out file is created, which
contains some informations about the continuation, as well as a copy of the
input files used for the run. A solution file .sol is also generated (see below),
as well as some other optional output files if specified in the .cfg file.

Solution file

The .sol output file contains the solution generated at the end of the contin-
uation. The script sol.m traces the state, costate and control with respect
to time, as well as the switching function optionally.

Zero Path file

The .path output file contains the PL approximation of the followed zero
path. The ratio (total simplices / saved zeros) is set in the .cfg file, and
should be set greater than 1 if a large number of simplices is expected. The
path can be traced by the script path.m, which displays the evolution of each
component of z with respect to λ. Optionally, the norm of the homotopy
and the objective value along the path can also be shown, if these options
are set to 1 (possibly greater than 1 for the objective).

Simplices Path file

The .simpath output file contains the transverses simplices followed, which
can be drawn by the script simpath.m (for dimension 2 or 3).

142 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

Note: this file can become quite huge if there are a lot of simplices fol-
lowed, so the saved path ratio should be set accordingly.

Homotopy Valley file

This file can be used to visualize the norm of the homotopy around the
followed path, with a certain deviation along each component of the path.
For each dimension j ∈ [1..n], for each point z of the zero path, the norm of
the homotopy will be computed at range points on both sides of z, with a
stepsize equal to step (the parameters step and range are set in the config-
uration file):

Note: same remark here, especially with large simplices/range values.

Homotopy Plateau file

In dimension 1 or 2, the “plateau” output file shows the value and norm
of the homotopy around the solution at the convergence. More precisely, it
will contain the value and norm of the homotopy on grid points around the
solution z∗. The total grid width is 1 + 2× range, with a stepsize between
points equal to step (range and step are set in the configuration file).

A.2 General code structure

The Simplicial code organization respects a layer structure, from the sim-
plicial algorithm to the user supplied subroutines for homotopy evaluation.

Layer 1: Simplicial module

The first layer contains the main program, and basically implements the
simplicial algorithm, along with some input and output files manipulations.

File name: Simplicial.f90
Main program: Simplicial
Module name: Simplicialmod, uses Levelsmod (Layer 2)

Main Subroutines

• Simplicial : main program

• Start : first simplex and labeled face (optional first junction)

• Follow : zero path following

• Refine: solution refinement (via homotopy)

• Solve: solution refinement (via Powell solver call)

A.2. GENERAL CODE STRUCTURE 143

Layer 2: Levels module

The second layer contains the subroutines related to junction homotopies,
and adaptive meshsize refinement, as well as some data scaling.

File name: Levels.f90
Module name: Levelsmod, uses Cellmod (Layer 3)

Main Subroutines

• Junction: performs junction homotopy (usually to new meshsize)

• NewMesh: computes the new meshsize for the triangulation

• DataScale: data scaling, initial or dynamic

Layer 3: Cell module

The third layer implements the cell manipulations, such as simplex con-
struction and pivoting, labeling operations, and next simplex choice (lexi-
cographic test).

File name: Cell.f90
Module name: Cellmod, uses Hmod (Layer 4)

Main Subroutines

• FirstSimplex : builds first transverse simplex.

• FirstLabel : computes labeling for the first simplex.

• Lex : lexicographic test, determines the exit (completely labeled) face
of the current simplex.

• Piv : pivoting rules for next simplex.

Third party code: inversion subroutines dgetri,dgetrf (in inverse.f).

Layer 4: Homotopy module

The fourth and last layer deals with the homotopy value computation. In
the current implementation, the homotopy is actually a shooting function
related to an optimal control problem, so this layer is merely an interface to
the Shooting function module described below.

File name: Homotopy.f90
Module name: Hmod, uses GenFuns

Main Subroutines

144 APPENDIX A. SIMPLICIAL PACKAGE OVERVIEW

• Homotopy : evaluates homotopy H at given point (x, λ)

• InitJunction: junction homotopy initialization

Layer 4bis: Shooting function

This implementation of the fourth layer in the case of shooting functions is
divided into two separate files, so that all user supplied subroutines are in
the same place.

Generic functions: common to all problems

File name: Shoot.f90
Module name: GenFuns, uses SpecFuns

Main subroutines

• Hom: interface for homotopy evaluation

• IVP : Shooting function evaluation

• Single, Structured, LightStructured, Discrete: shooting methods

• Hyb: interface for quasi newton solver (hybrd)

• Sol : solution file generation (.sol)

Problem-specific functions, user supplied

File name: [Problem]Funs.f90
Module name: SpecFuns

Main subroutines

• InitPar : initializations

• Control : computes optimal control

• Dynamics: state, costate and objective dynamics

Appendix B

Main options

We recall here the main options of the Simplicial package, without going
into the details (we refer the interested reader to the User Guide1 for a more
complete description of the available options).

B.1 Problem class

This setting indicates the general problem formulation, among the five im-
plemented at the moment:

0: Discretized BVP: introduced in chapter 4 for the singular arcs prob-
lems. Can provide an approximate solution to initialize the Structured
shooting below.

1: Single shooting: the standard one.

2: Structured shooting: introduced in chapter 4 for the precise resolution
of singular arcs problems. Requires proper intialization, that can be
provided by the Discretized BVP/Control formulations.

3: Light structured shooting: simplified version of the above.

4: Discretized Control: introduced in chapter 4, still experimental.

The formulation choice is nearly invisible in all the simplicial part of the
code, and only shows in the file Shoot.f90, where the “shooting function” is
actually evaluated.

B.2 Labelings

The Simplicial code actually features an integer labeling

1or the author...

145

146 APPENDIX B. MAIN OPTIONS

0: Standard vector labeling.

1: Integer labeling, see below.

We have implemented the integer labeling described in [2], page 168,
which is defined by:

L : Rn+1 → [1..n+ 1]

vi = (xi, λi) 7→ 1 +m

where m is the number of strictly positive components of H(xi, λi).

A face is completely labeled if and only if the labels of its vertices exactly
match the set [1..n+ 1]

f = {v1, .., vn+1} completely labeled ⇔ {L(v1), .., L(vn+1)} = {1, .., n + 1}

Finding the exit face is here extremely simple: the vertex of the face that
has to be pivoted is the one having the same label as the remaining vertex
of the simplex (therefore the new face has the same label set as the current
one, and is completely labeled too).

The main difficulty with this integer labeling is finding the first labeled
face. Using (directly at least) a junction homotopy like in the classical la-
beling case is here ineffective, as we have no trivial starting labeled face,
even in the affine case (see page 32 for more details).

Again, the code has been structured so that adding a new labeling would
be as simple as possible. Only three subroutines (located in Cell.f90) actu-
ally deal with the implementation of the labeling, and have therefore to be
provided for a new one (here are given the subroutines corresponding to the
two implemented labelings, classical and integer):

• Finding the exit face of the current simplex (Lex / PseudoLex)

• Labeling on the first face evaluation (FirstHLabel / FirstIntLabel)

• Labeling check (LabCheck / IntLabCheck)

B.3 Integrators

B.3.1 Variable step integrators

The variable step integrators available at the moment are:

B.3. INTEGRATORS 147

• RKF45 (code by Shampine and Watts)
Embedded Runge Kutta formulas, Fehlberg method, with local extrapola-
tion (ie 5th order used for the integration instead of 4th)

• DOP853 (code by Hairer and Wanner)
Embedded Runge Kutta formulas, improved version of Dormand-Prince 8(6)
(with the 6th order error estimation replaced by a 5th-3rd order)

• ODEX (code by Hairer and Wanner)
Gragg-Bulirsch-Stoer extrapolation method (Aitken-Neville, symmetric case,
using Gragg scheme as 2nd order base formula), both order and stepsize are
variable.

The links to the source files of these integrators are indicated among the
third party references (page 132). A complete description of the algorithms
can be found in [27].

B.3.2 Symplectic integrators

As we integrate a Hamiltonian system, we have also tried two symplectic
integrators, the Stormer-Verlet and Gauss methods described in [27]. It
should be noted that our implementation of these methods is extremely ba-
sic, especially for the fixed point part (both methods are implicit). Anyway,
some of the preliminary results are interesting.

As a first example, we represent the Stormer-Verlet method applied to
the discretized BVP formulation of the singular arc problems studied in
chapter 4.

0 5 10
0

0.5

1
U

0 5 10

−0.4

−0.2

0

0.2

Time

P
si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

148 APPENDIX B. MAIN OPTIONS

0 2 4
−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.2

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
−0.5

0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

Discretized BVP for Problems 1 and 2 - Symplectic Stormer-Verlet

The solutions are quite good, especially for Problem 2. Now we can look at
the evolution of the average fixed point iterations along the path.

0 0.5 1

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Lambda

H
O

M
O

T
O

P
Y

 N
O

R
M

0 0.5 1

10

12

14

16

18

20

22

24

26

Lambda

F
IX

E
D

 P
O

IN
T

 IT
E

R

0 0.2 0.4 0.6 0.8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Lambda

H
O

M
O

T
O

P
Y

 N
O

R
M

0 0.2 0.4 0.6 0.8

10

15

20

25

30

35

40

45

50

55

Lambda

F
IX

E
D

 P
O

IN
T

 IT
E

R

Evolution of |H| and FP iterations for Problems 1 and 2 (S-V)

It is here interesting to note that the steep increase in the number of itera-
tions seems to correspond to the degradation of the homotopy norm. Both
are probably related to the regularity loss when coming close to the singular
arcs.

The second example is with the Gauss method on the discretized control
formulation.

0 2 4
−1.5

−1

−0.5

0

0.5

1
Control u1

0 2 4
−0.5

0

0.5

1

1.5

Time

P
si

Switching function ψ
0 5

0

0.1

0.2

0.3

0.4

State x1

0 5
−0.5

0

0.5

1
State x2

0 5
0

0.5

1
Costate p1

0 5
−0.5

0

0.5

1

1.5
Costate p2

B.3. INTEGRATORS 149

0 5 10
0.5

1

1.5
U

0 5 10

−0.4

−0.2

0

0.2

Time
P

si

Switching function ψ

0 5 10
3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

7 X

0 5 10

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0
P

Discretized control for Problems 1 and 2 - Symplectic Gauss

The solutions are here again quite good, on the same level as the best ones
we obtain by RK4, but with a longer execution time however. Also, the
numerical settings of the fixed point is here a bit tricky for Problem 2.
Anyway, these are likely due to our crude implementation of the methods,
which should be improved before conducting further experiments.

150 APPENDIX B. MAIN OPTIONS

Appendix C

Sample files for some studied

problems

We reproduce here some of the input files used in the experiments, to show
that it is easy to modify the settings for the simplicial algorithm or the
problem itself. We would like to emphasize that all tests were conducted
with the same Simplicial code (with only one separate executable for each
problem studied, regardless of the formulation in particular).

C.1 Demonstration problem

This is the first simple example described in chapter 1 and 2.

C.1.1 InitPar

We begin with the parameters initialization. Nothing much to say, except
that we can consider several continuations for a given problem: we have
here the continuation on the terminal conditions mentioned on page 30, as
well as the first continuation on the objective introduced on page 15. The
variable “homotop” corresponds to the “Homotopy choice” parameter in the
.cfg and .in input files, and indicates the continuation used.

Subroutine InitPar(mode, lambda)

implicit none

integer, intent(in) :: mode

real(kind=8), intent(in) :: lambda

!mode = 0: first call

!mode = 1: homotopy call

if (mode == 0) then

tf0 = tf

cf0 = cf

ci0 = ci

151

152APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

elseif (homotop == 2) then

cf(1) = 0.5d0 - lambda

end if

end subroutine InitPar

C.1.2 Control

Here is the subroutine giving the optimal control, which corresponds to the
expressions given in chapters 1 and 2.

Subroutine Control(lambda,t,x,p,u,psi)

implicit none

real(kind=8), intent(in) :: lambda, t

real(kind=8), intent(in), dimension(ns) :: x

real(kind=8), intent(in), dimension(nc) :: p

real(kind=8), intent(out), dimension(m) :: u

real(kind=8), intent(out), dimension(dimpsi) :: psi

select case (homotop)

case (1)

if (lambda < 1d0) then

if (abs(p(2)) <= lambda .or. p(2)==0) then

u(1) = 0d0

elseif (abs(p(2)) >= 2d0 - lambda) then

u(1) = -p(2) / abs(p(2))

else

u(1) = -p(2)*(abs(p(2))-lambda) / (2d0*(1d0-lambda)*abs(p(2)))

end if

else

if (abs(p(2)) < 1d0 .or. p(2)==0) then

u(1) = 0d0

else

u(1) = -p(2) / abs(p(2))

end if

end if

case (2)

if (abs(p(2)) < 1d0 .or. p(2)==0) then

u(1) = 0d0

else

u(1) = -p(2) / abs(p(2))

end if

case default

write(outputfid,*) ’ERROR : Control >>> Unknown homotop...’,homotop

stop

C.1. DEMONSTRATION PROBLEM 153

end select

!switch value and successive derivatives

psi(1) = 1d0 - abs(p(2))

end subroutine Control

C.1.3 Dynamics

Now the state and costate (and objective) dynamics (we can recognize the
continuation on the first objective).

Subroutine Dynamics(dimphi,lambda,t,x,p,u,phi)

implicit none

integer, intent(in) :: dimphi

real(kind=8), intent(in) :: lambda, t

real(kind=8), intent(in), dimension(ns) :: x

real(kind=8), intent(in), dimension(nc) :: p

real(kind=8), intent(in), dimension(m) :: u

real(kind=8), intent(out), dimension(dimphi) :: phi

select case (homotop)

case (1)

phi(1) = x(2)

phi(2) = u(1)

phi(3) = 0d0

phi(4) = -p(1)

!objective dynamic

if (dimphi > ns+nc) phi(ns+nc+1) = lambda * abs(u(1)) + (1d0-lambda)*u(1)**2

case (2)

phi(1) = x(2)

phi(2) = u(1)

phi(3) = 0d0

phi(4) = -p(1)

!objective dynamic

if (dimphi > ns+nc) phi(ns+nc+1) = abs(u(1))

case default

write(outputfid,*) ’ERROR : Dynamics >>> Unknown homotop...’,homotop

stop

end select

end subroutine Dynamics

154APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

C.1.4 Input files

Here are the input files corresponding to the graph on page 52, with a
K1 triangulation until λ = 0.9 and a J3 refinement to λ = 1 (hence the
refinement mode set to 1 and the refine bound for λ at 0.9). We notice that
the path and simpath output are both set to 1, to generate the files used by
the visualization scripts.

Configuration file

Simplicial algorithm parameters

Homotopy choice and problem class

1 1

Triangulation choice

1

Labeling choice

0

Zero path follow mode

-1

Initial and final solver call

1 0

Refinement mode and Max refinement attempts

1 1

Deviation tolerance

1d-1

Anisotropic thresholds

2.0 0.2 0.1

Maximum simplices for main and junction homotopy, check frequency

500000 10000 100000

Starting triangulation size

1d-1 1d-1

Lower, refine and upper bounds for lambda

0d0 0.9d0 1d0

Path, simplices,valley and plateau output files

1 1 0 0

Ratio for saved paths

1 1

Homotopy Norm and Criterion output in Path

1 0

Valley range and step

50 0.1

Plateau range and steps

50 0.1

Solution generation at final face vertices, Barycentric control

0 0

Problem file

Homotopy choice and problem class

C.2. ORBITAL TRANSFER PROBLEMS 155

1 1

Unknown, State, Costate and Control dimensions

2 2 2 1

Objective and Switch dimension

1 1

Number of IVP unknown values

2

IVP unknown indices

3 4

Number of initial values

2

Initial values indices

1 2

Initial values

0 0

Number of terminal values

2

Terminal values indices

1 2

Terminal Values

0.5 0

Initial and final time

0.0 2.0

Starting point (x0,lambda0) for zeropath

0

0

0

Scaling mode

1

Path and solution integrator choice

4 4

steps for fixed steps integrators

1000 1000

Variable step integrator abserr and relerr

1d-16 1d-14 1d-16 1d-14

Fixed Point minimal progress and maximal iterations

1d-2 25

Number of parameters

0

Parameters

C.2 Orbital transfer problems

Concerning the orbital transfer problems studied in chapter 3, the optimal
control and dynamics are much more complicated (the costate dynamics in

156APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

particular...), and instead of copy/pasting four pages of code, we rather refer
the interested reader to the thesis of Thomas Haberkorn ([26]), who wrote
the original formulas. Here are the input files corresponding to the transfer
with Tmax = 0.1N , with a basic uniform following (follow mode set to 0).

Configuration file

Simplicial algorithm parameters

Homotopy choice and problem class

1 1

Triangulation choice

1

Labeling choice

0

Zero path follow mode

0

Initial and final solver call

0 1

Refinement mode and Max refinement attempts

0 0

Deviation tolerance

1d-1

Anisotropic thresholds

2 0.2 0.1

Maximum simplices for main and junction homotopy, check frequency

10000 500 5000

Starting triangulation size

1d-1 1d-1

Lower, refine and upper bounds for lambda

0 0.9 1

Path, simplices, valley and plateau output files

0 0 0 0

Ratio for saved paths

1 1

Homotopy Norm and Criterion output in Path

0 0

Valley range and step

10 0.1

Plateau range and step

10 0.1

Solution generation at final face vertices, barycentric control

0 0

Problem file

This one corresponds to a DOP853 shooting attempt, as indicated by the
second integrator choice set to 6 (the preceding 5 selects RKF45 as the path
integrator). We can also notice the use of the soft scaling (scaling mode set
to 2).

C.2. ORBITAL TRANSFER PROBLEMS 157

Homotopy choice and problem class

1 1

Unknown, State, Costate and Control dimensions

8 8 8 3

Objective and Switch dimension

1 2

Number of IVP unknown values

8

IVP unknown indices

8 9 10 11 12 13 14 15

Number of initial values

8

Initial values indices

1 2 3 4 5 6 7 16

Initial values

11.625 0.75 0 0.0612 0 0 1500 0

Number of terminal values

8

Terminal values indices

1 2 3 4 5 6 15 16

Terminal Values

42.165 0 0 0 0 1 0 0

Initial and final time

3.14159 2678.52159

Starting point (x0,lambda0) for zeropath

1.53157896392868E+04

-7.82647827592651E+02

-2.13866401262451E+04

-3.97023354861161E+00

3.56466373170132E+03

-1.22948602187706E+00

4.17593485715192E+00

6.08318784116258E+00

0.00000000000000E+00

Scaling mode

2

Integrator choice

5 6

Fixed step integrator steps

1500 2000

Variable step integrator abserr and relerr

1e-8 1e-6 1e-12 1e-10

Fixed point min prog and max iter

1d-2 25

Number of parameters

5

Parameters

158APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

0.1 1.77 0.0142 5165.86 12.96

Note: Tmax is the first parameter on the last line, the others are various
coefficients used in the transfer formulation.

C.3 Optimal harvesting in fishery

Here is the first of the two singular arc problems studied in chapter 4. We
give here the files for the discretized BVP continuation, as indicated by the
problem class set to 0. More specifically, it is the implicit trapeze formulation
(integrator choice set to 1 in the .in file), with full adaptive path following
(follow mode set to 3), and 10 refinement attempts at the solution (the
refinement modes 1 and 2 correspond to the J3-J4 refinement before the
convergence, and 3 is for the refinements after the convergence).

Configuration file

Simplicial algorithm parameters

Homotopy choice and problem class

1 0

Triangulation choice

1

Labeling choice

0

Zero path follow mode

3

Initial and final solver call

1 0

Refinement mode and Max refinement attempts

3 10

Deviation tolerance

1d-2

Thresholds for Anisotropic

2.0 0.2 0.1

Maximum simplices for main and junction homotopy, check frequency

1000000 100000 100000

Starting triangulation size

1d-2 1d-2

Lower, refine and upper bounds for lambda

0 0.9 1.0

Path, simplices, valley and plateau output files

0 0 0 0

Ratio for saved paths

1 1

Homotopy Norm and Criterion output in Path

0 0

Valley range and step

10 0.1

Plateau range and step

C.3. OPTIMAL HARVESTING IN FISHERY 159

10 0.1

Solution generation at final face vertices, Barycentric control

0 0

Problem file

Homotopy choice

1 0

Unknown, State, Costate and Control dimensions

101 1 1 1

Objective and Switch dimension

1 1

Number of IVP unknown values

1

IVP unknown indices

2

Number of initial values

1

Initial values indices

1

Initial values

7e+07

Number of terminal values

1

Terminal values indices

2

Terminal Values

0

Initial and final time

0 10

Starting point (x0,lambda0) for zeropath

0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

7e7 0 7e7 0 7e7 0 7e7 0 7e7 0

0.0

Scaling mode

1

Path integrator choice

160APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

1 1

Steps for fixed step integrator

1 1

Variable step integrator abserr and relerr

1d-16 1d-14 1d-16 1d-14

Fixed point minimal progression and maximal iterations

1d-4 100

Number of parameters

7

Parameters

1 1.75d+07 0.71d0 8.05d+07 2d+07 0d0 1d0

C.4 Quadratic regulator

To finish with, here are the files corresponding to the discretized control
continuation (problem class set to 4), for the second singular arc problem.

Configuration file

Simplicial algorithm parameters

Homotopy choice and problem class

1 4

Triangulation choice

1

Labeling choice

0

Zero path follow mode

0

Initial and final solver call

1 1

Refinement mode and Max refinement attempts

0 0

Deviation tolerance

1d-1

Anisotrpic thresholds

2.0 0.2 0.1

Maximum simplices for main and junction homotopy, check frequency

5000000 500000 100000

Starting triangulation size

1d-1 1d-1

Lower, refine and upper bounds for lambda

0d0 0.9d0 1.0d0

Path, simplices, valley and plateau output files

0 0 0 0

Ratio for saved paths

1 1

Homotopy Norm and Criterion output in Path

0 1

Valley range and step

C.4. QUADRATIC REGULATOR 161

10 0.1

Plateau range and step

10 0.1

Solution generation at final face vertices, barycentric control

0 0

Problem file

Homotopy choice

1 4

Unknown, State, Costate and Control dimensions

52 2 2 1

Objective and Switch dimension

1 2

Number of IVP unknown values

2

IVP unknown indices

3 4

Number of initial values

2

Initial values indices

1 2

Initial values

0 1

Number of terminal values

2

Terminal values indices

3 4

Terminal Values

0 0

t0 tf

0d0 5d0

Starting point (x0,lambda0) for zeropath

1 1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.0

Scaling mode

1

Path integrator choice

4 4

fixed step integrators

1 1

162APPENDIX C. SAMPLE FILES FOR SOME STUDIED PROBLEMS

Variable step integrator abserr and relerr

1d-16 1d-14 1d-16 1d-14

fpminprog and fpmaxiter

1d-6 100

Number of parameters

3

Parameters

1d0 -1d0 1d0

Bibliography

[1] E. Allgower and K. Georg. Simplicial and continuation methods
for approximating fixed points and solutions to systems of equations.
Siam review, 22(1):28–85, 1980.

[2] E. Allgower and K. Georg. Numerical Continuation Methods.
Springer-Verlag, Berlin-Heidelberg-New York, 1990.

[3] E. Allgower and K. Georg. Piecewise linear methods for nonlinear
equations and optimization. Journal of Computational and Applied
Mathematics, 124:245–261, 2000. Special Issue on Numerical Analysis
2000: Vol. IV: Optimization and Nonlinear Equations.

[4] U.M. Ascher, R.M. Mattheij, and R.D. Russel. Numerical Solu-
tion of Boundary Value Problems for Ordinary Differential Equations.
Prentice Hall, 1988.

[5] J.P. Aubin and A. Cellina. Differential Inclusion. Springer-Verlag,
1984.

[6] N. Berend, F. Bonnans, M. Haddou, J. Laurent-Varin, and
C. Talbot. A preliminary interior point algorithm for solving opti-
mal control problems. November 2003. 5th International Conference
on Launcher Technology (Madrid).

[7] N. Berend, F. Bonnans, M. Haddou, J. Laurent-Varin, and
C. Talbot. On the refinement of discretization for optimal control
problems. June 2004. 16th IFAC Symposium on Automatic Control in
Aerospace (St Petersburg).

[8] C. Berge. Espaces topologiques. Dunod, Paris, 1959.

[9] H. Bock. Numerical treatment of inverse problems in chemical reac-
tion kinetics. In W. Jiger K. Ebert, P. Deuflhard, editor, Modelling of
Chemical Reaction Systems, pages 102–125. Springer, Berlin, 1981.

[10] J.F. Bonnans. The shooting algorithm for optimal control problems:
a review of some theoretical and numerical aspects. Technical re-

163

164 BIBLIOGRAPHY

port, Université d’El Manar (Tunis), 2002. Lectures notes, DEA de
Mathématiques Appliquées de l’ENIT.

[11] Brezis. Analyse fonctionnelle. Masson, 1983.

[12] A.E. Bryson and Y.C. Ho. Applied Optimal Control - Optimization,
Estimation, and Control. Blaisdell publishing company, 1969.

[13] R.H. Byrd, J.C. Gilbert, and J. Nocedal. A trust region method
based on interior point techniques for nonlinear programming. 1998.

[14] R.H. Byrd, M.E. Hribar, and J. Nocedal. An interior point algo-
rithm for large scale nonlinear programming. 1997.

[15] JB. Caillau, R. Dujol, J. Gergaud, T. Haberkorn, P. Marti-
non, J. Noailles, and D. Preda. Mise au point d’une méthode de
résolution efficace pour les problèmes de contrôle optimal à solution
“bang-bang” - application au calcul de trajectoires à poussée faible.
Technical report, ENSEEIHT-IRIT, UMR CNRS 5505, 2 rue Camichel,
F-31071 Toulouse, January 2004. Rapport de fin de phase 2 - Contrat
02/CNES/0257/00 - DPI 500.

[16] JB. Caillau, R. Dujol, J. Gergaud, T. Haberkorn, P. Marti-
non, J. Noailles, and D. Preda. Mise au point d’une méthode
de résolution efficace pour les problèmes de contrôle optimal à so-
lution “bang-bang” - application au calcul de trajectoires à poussée
faible. Technical report, ENSEEIHT-IRIT, UMR CNRS 5505, 2 rue
Camichel, F-31071 Toulouse, January 2005. Rapport de contrat - Con-
trat 02/CNES/0257/00 - DPI 500.

[17] JB. Caillau, J. Gergaud, and J. Noailles. 3D Geosynchronous
Transfer of a Satellite: Continuation on the Thrust. Journal of Opti-
mization Theory and Applications, 118(3):541–565, 2003.

[18] L. Cesari. Optimization theory and application. Problems with ordi-
nary differential equations. Springer-Verlag, New York, 1983.

[19] Y. Chen and J. Huang. A numerical algorithm for singular optimal
control synthesis using continuation methods. Optimal Control Appli-
cations & Methods, 15:223–236, 1994.

[20] C.W. Clark. Mathematical Bioeconomics. John Wiley & Sons, 1976.

[21] C. Dang. The d1 triangulation of Rn for simplicial algorithms for
computing solutions of nonlinear equations. Mathematics of Operations
Research, 16(1):148–161, 1991.

[22] A.F. Filippov. Differential Equations with Discontinuous Righthand
Sides. Kluwer Academic Publishers, Dordrecht-Boston-London, 1988.

BIBLIOGRAPHY 165

[23] W.H. Flemming and R.W. Rishel. Deterministic and Stochastic Op-
timal Control. Springer-Verlag, 1975.

[24] J. Gergaud. Résolution numérique de problèmes de commande opti-
male à solution Bang-Bang par des méthodes homotopiques simpliciales.
PhD thesis, Institut National Polytechnique de Toulouse, 1989.

[25] J. Gergaud, T. Haberkorn, and P. Martinon. Low thrust
minimum-fuel orbital transfer: an homotopic approach. Journal of
Guidance, Control and Dynamics, 27(6):1046–1060, 2004.

[26] T. Haberkorn. Transfert orbital à poussée faible avec minimisation de
la consommation: résolution par homotopie différentielle. PhD thesis,
Institut National Polytechnique de Toulouse, 2004.

[27] E. Hairer, S.P. Nørsett, and G. Wanner. Solving Ordinary Differ-
ential Equations I: Nonstiff Problems, volume 8 of Springer Series in
Comput. Mathematics. Springer-Verlag, Berlin-Heidelberg-New York,
1993. Second Revised Edition.

[28] R. Hartl, S. Sethi, and R. Vickson. A survey of the maximum
principles for optimal control problems with state constraints. Siam
review, 37(2):181–218, 1995.

[29] P. Martinon and J. Gergaud. An application of pl continuation
methods to singular arcs problems. In A. Seeger, editor, Recent Ad-
vances in Optimization, Lectures Notes in Economics and Mathemati-
cal Systems. Springer-Verlag, 2005 (second semester).

[30] H. Nikaido. Convex structures and economic theory. Academic Press,
1968.

[31] H.J. Oberle and W. Grimm. BNDSCO - A Program for the Numerical
Solution of Optimal Control Problems. Technical Report 515, Institut
for Flight System Dynamics, Oberpfaffenhofen, German Aerospace Re-
search Establishment DLR, 1989.

[32] L. Pontriaguine, V. Boltianski, R. Gamkrelidze, and
E. Michtchenko. Théorie Mathématique des Processus Optimaux.
Editions Mir, Moscou, 1974.

[33] R. Robert. Contributions à l’analyse non linéaire. PhD thesis, Uni-
versité Scientifique et Médicale de Grenoble et Institut National Poly-
technique de Grenoble, 1976.

[34] K. Schilling. An algorithm to solve boundary value problems for
differential inclusions and applications in optimal control. Numerical
Functional Analysys and Optimization, 10(7-8):733–764, 1989.

166 BIBLIOGRAPHY

[35] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis.
Springer-Verlag, Berlin-Heidelberg-New York, 1983.

[36] M.J. Todd. The computation of fixed points and applications. In
Springer Lectures Notes in Economics and Mathematical Systems, vol-
ume 124 (VII). Springer-Verlag, Heidelberg-New York, 1976.

[37] M.J. Todd. Union jack triangulations. In Fixed Points: Algorithms
and Applications, pages 315–336. Karamadian, Academic Press, New
York, 1977.

[38] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan, and
H.F. Walker. Algorithm 777: HOMPACK90: A suite of fortran90
codes for globally convergent algorithms. ACM Transactions on Math-
ematical Software, 23:514–549, 1997.

