

Contribution de la géochronologie U-Th-Pb sur monazite à la compréhension de la fusion crustale dans la chaîne varisque française et implication géodynamique.

Eugène Be Mezeme

► To cite this version:

Eugène Be Mezeme. Contribution de la géochronologie U-Th-Pb sur monazite à la compréhension de la fusion crustale dans la chaîne varisque française et implication géodynamique.. Géologie appliquée. Université d'Orléans, 2005. Français. NNT: . tel-00011558

HAL Id: tel-00011558 https://theses.hal.science/tel-00011558

Submitted on 8 Feb 2006 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THÈSE

Présentée

A L'UNIVERSITÉ D'ORLÉANS

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITÉ D'ORLÉANS

École doctorale : Sciences et Technologies

Discipline : Sciences de la Terre et de l'Univers

Spécialité : Géochronologie et Géodynamique

Par

Eugène BE MEZEME

CONTRIBUTION DE LA GÉOCHRONOLOGIE U-Th-Pb SUR MONAZITE A LA COMPRÉHENSION DE LA FUSION CRUSTALE DANS LA CHAÎNE VARISQUE FRANÇAISE ET IMPLICATION GÉODYNAMIQUE

Soutenue le 7 octobre 2005 devant le jury composé de :

M. Patrick LEDRU	Ingénieur-chercheur, B.R.G.M.	Président du jury
M. Jean-Marc MONTEL	Professeur, Université de Toulouse	Rapporteur
M. Pierre BARBEY	Professeur, Université de Nancy	Rapporteur
M. Michel FAURE	Professeur, Université d'Orléans	Directeur de thèse
M. Alain COCHERIE	Ingénieur-chercheur, B.R.G.M.	Co-directeur de thèse
M. Philippe ROSSI	Ingénieur-chercheur, B.R.G.M.	Examinateur

AVANT PROPOS

Tout arrive quand on y croit, l'impossible n'existe pas. Nous sommes présentement témoins du prologue d'une histoire, une histoire déjà ancienne mais re-initiée et portée à son aboutissement exceptionnel par l'opiniâtreté d'un père doublée de la détermination d'une mère qui a cru en l'alchimie de l'effort. Il est d'une honnêteté insondable et d'une légitimité morale de leur attribuer le mérite de tout ce qui a été entrepris avec succès. A Monsieur Abagha Ongone Jules, ce qui est et qui sera résulte essentiellement de l'admiration profonde que tu as suscitée, du courage et du savoir faire que tu as insufflés. Voilà donc le témoignage de l'homme fidèle que tu as instruit : "si tu sens le besoin d'être, que tu sois par tes propres forces". Qu'il te soit accordé de goûter les délices de ton travail, un travail bien fait, mille félicitations. A Madame Meye Me Zogho Odile, l'histoire te donne raison, raison d'avoir guidé avec justesse les pas fébriles de ton fils, de l'avoir porté quand il ne pouvait plus des caprices de la vie. " Il est l'heure, il faut partir..." oui, il est l'heure, ton fils est arrivé. Il est arrivé pour témoigner que tu es la plus douée, que tu es la source exceptionnelle de toute ambition. "un homme c'est celui qui maintient ses efforts jusqu'au bout". S'il faut refaire le monde, s'il faut renaître un jour, tu seras toujours ma petite maman par laquelle tout doit s'accomplir. Il me sera particulièrement agréable que tu trouves ici l'expression de mes remerciements et mes compliments pour ton entreprise. A tous mes frères et sœurs pour lesquels il a été éreintant de me supporter, il convient de confesser qu'il n'a pas toujours été facile de me vivre (sic). Vous m'avez néanmoins garanti un cadre familial paisible, un cadre convivial propice à l'éclosion de toutes mes possibilités. L'histoire nous apprend qu'on n'écrit jamais assez pour ses frères et sœurs. La valeur de ce qui est exprimé ici est tout simplement à la hauteur de leur efficacité et de leur assistance inconditionnelle. Ma pensée exclusive à Monsieur Meye et Madame Ntsame Elle. Il est souhaitable que tout enfant puisse bénéficier d'une confiance aussi soutenue. La phobie de les décevoir a finalement été une épreuve infaillible pour édifier ma personnalité, ma responsabilité et surtout ma ténacité. Rien de remarquable n'aurait pu se constituer sans leur générosité, leur jugement et leur perspicacité. Merci pour tout. A tous mes camarades, sans oublier les oubliers qui ne sont pas moins méritants. Oui je suis convenablement assuré, tout arrive quand on y croit, l'impossible n'existe pas. Comme c'est gratifiant !

REMERCIEMENTS

Ce rapport est une synthèse d'un travail d'équipe. Sous la forme la plus prodigieuse, des hommes et des femmes ont exprimé leur savoir, leur habileté doublée d'une dimension humaine mémorable. Il est dans l'ordre légitime des choses de leur garantir toute ma reconnaissance. Je remercie tout particulièrement la Région Centre, l'ISTO et le BRGM pour leur engagement pécuniaire, matériel et scientifique qui a constitué un support solide pour l'aboutissement de cette étude.

Je pense à Michel Faure. Son pragmatisme, son assurance, sa confiance ont, dès la fin du DEA, canalisé et cristallisé mes objectifs pour une thèse. Il a pris une part déterminante dans la bonne conduite de l'étude. Ses suggestions, ses conseils, sa rigueur scientifique m'ont été un format idéal pour parfaire ma formation. Je souhaite à tous de bénéficier d'un encadrement aussi enrichissant. Merci encore pour tout.

Je remercie chaleureusement Alain Cocherie. Je voudrais qu'il trouve ici l'expression de mes sentiments respectueux. Je me suis instruit dans son environnement généreux et fertile. Sa disponibilité, son dynamisme et son suivi avisé et bienveillant caractérisent l'appui de l'aboutissement de ce travail. Je suis bien honoré d'avoir disposé de tant de ressources.

Mes remerciements vont aussi à Philippe Rossi pour sa contribution inestimable dans la mise en œuvre de toutes les analyses et des campagnes de terrain dont dépendait la valeur scientifique de cette étude. Je pense également à Olivier Legendre pour sa participation significative dans l'élaboration des procédures analytiques. Mes remerciements particuliers à Pierre Jezequel, Jean Breton, Christian Gilles, Olivier Rouer. En plus du professionnalisme, j'ai bénéficié d'un environnement attentionné, c'est effectivement "au pied du mur qu'on voit mieux le mur". Je n'oublie pas Fabian Delorme, Claire Beny, Motelica Mikael, Romain Millot, Hubert Haas et tous ceux qui se sont de loin ou de près engagés pour la réussite de ce travail. A ma nouvelle famille : Cyril Mullard, Emilie Bizet, Franck Pouriel, Mikael Karst et Sylvain Janiec qui ont les premiers guidé mes pas. Je vous suis reconnaissant. A tous mes collègues pour les discussions combien édifiants et des escapades conviviales, sans oublier Dudu pour son sens critique. A Madame Annie Manson pour tout ce qu'elle fait pour les étudiants d'ailleurs, madame je ne vous remercierai jamais assez. "ah, la belle chose, que de savoir quelque chose". Que Dieu vous garde tous !

TABLE DES MATIERES

1 ÉTUDES TEXTURALE ET STRUCTURALE DES MIGMATITES ET DES GRANITOÏDES......10

1.1 Introduction

1.2 Les migmatites

- 1.2.1 Définitions modes de formation
- 1.2.2 Moteurs de la ségrégation des liquides silicatés
- 1.2.3 Pétrologie générale des migmatites
- 1.2.4 Cadre géodynamique de l'anatexie

1.3 Les granitoïdes

- 1.3.1 Analyse pétrographique
- 1.3.2 Contexte structural
- 1.4 Conclusion

- 2.1 Généralités Paléogéographie
- 2.2 Empilement litho-structural
- 2.3 Évolution tectonique de la chaîne hercynienne
 - 2.3.1 Dynamisme orogénique

- 2.3.2 Processus syn à post-orogéniques
- 2.3.3 Distribution de la fusion crustale
- 2.4 Conclusion

- 3.1 Principes généraux
- 3.2 Géochronologie "chimique" sur monazite
 - 3.2.1 Caractéristiques chimiques et minéralogiques de la monazite
 - 3.2.2 Datation U-Th-Pb_{total} à la sonde électronique
 - 3.2.2.1 Principes
 - 3.2.2.2 Validation de la méthode de datation U-Th-Pb à la sonde électronique
 - 3.2.2.3 Détermination des teneurs en U, Th et Pb à la sonde électronique
 - 3.2.2.4 Traitement des données, calcul des âges
 - Étape initiale
 - Moyenne pondérée
 - Modèles isochrones
- 3.3 Géochronologie U-Pb sur le zircon
- 3.4 Conclusion

4 NOUVELLES DONNÉES GÉOCHROLOGIQUES SUR LA FUSION CRUSTALE DANS LE

MASSIF CENTRAL FRANÇAIS......60

4.1 Introduction

4.2 Les Cévennes

- 4.2.1 Cadre lithologique
- 4.2.2 Résultats
 - 4.2.2.1 Les migmatites
 - 4.2.2.2 Les granites

4.3 Le Velay

- 4.3.1 Cadre géologique
- 4.3.2 Résultats radiochronologiques
- 4.3.3 Discussion

4.4 La Montagne Noire

- 4.4.1 Cadre géologique
- 4.4.2 Migmatites et granitoïdes cibles
 - 4.4.2.1 Les migmatites
 - 4.4.2.2 Les granitoïdes
- 4.4.3 Résultats
 - 4.4.3.1 Données U-Th-Pb sur monazite (micro sonde électronique)
 - (a) La migmatite
 - (b) Les granitoïdes

- Granite d'Anglès, granite du Vialais
- Granite du Laouzas
- Granite de Montalet
- 4.4.3.2 Datation isotopique zircon (sonde ionique)

4.5 Le Limousin

- 4.5.1 La faille d'Argentat et le Sud Millevaches
 - 4.5.1.1 Cadre géologique
 - 4.5.1.2 Etude minéralogique et texturale des échantillons cibles
 - (a) Les migmatites
 - (b) Les granites
 - 4.5.1.3 Résultats radiochronologiques
 - (a) Les migmatites
 - (b) Les granites
- 4.5.2 Migmatites et granitoïdes cibles du Bas Limousin (du plateau d'Aigurande à l'anticlinal de Tulle)
 - 4.5.2.1 Cadre géologique
 - 4.5.2.2 Caractérisation des échantillons de l'antiforme de Tulle
 - (a) Les migmatites
 - (b) Le granite de Cornil
 - 4.5.2.3 Caractérisation des échantillons de migmatite du nord Limousin
 - 4.5.2.4 Résultats chronologiques

			(a)	Les migmatites
			(b)	Le granite de Cornil
	4.6	Discussion -	- Conc	lusion
5	5 ANALYSE STRUCTURALE : EXEMPLE DU GRANITE DE ROCLES151			
	5.1	Généralité		
	5.2	Article (Inter	rnatior	nal Journal of Earth Sciences)
6	ESSA	DE SYNTI	HÈSE	CHRONOLOGIQUE DE L'ÉVOLUTION GÉODYNAMYQUE DE LA
	CHAÎ	NE HERCY	NIEN	INE FRANÇAISE177
CONCLUSION				
RE	FEREN	CES BIBLIO	GRAP	HIQUES185
AN	NEXE	5		

INTRODUCTION

Depuis longtemps, la chaîne hercynienne française dans le Massif Central et dans le Massif Armoricain fait l'objet de campagnes d'études détaillées pour comprendre sa structure et son histoire géodynamique. Si les structures d'ensemble et l'évolution dynamique sont déjà suffisamment décrites, ils subsistent plusieurs questions et des remises en cause de certains acquis qui justifient encore aujourd'hui la nécessité des travaux en cours dans la chaîne hercynienne. Un progrès considérable a été réalisé grâce au programme GéoFrance 3D par une approche géochronologique, géophysique, géochimique et structurale. Il a été constitué une base de données géochronologiques dans laquelle ils manquaient des âges sur les dômes migmatitiques de la Montagne Noire, des migmatites et des granitoïdes des Cévennes et du Limousin. La datation de ces roches notamment les migmatites, apparaît pourtant essentielle dans la compréhension de la fusion crustale et son implication dans l'évolution dynamique de la chaîne hercynienne française.

C'est dans cet objectif que le travail de thèse présenté ici, inscrit dans le programme "Cartographie géologique de la France", a été engagé. Il s'est posé la question de la difficulté de dater les migmatites qui sont des objets composites complexes avec une proportion importante d'héritage. La solution était alors d'appliquer la méthode de datation "chimique" des monazites à la microsonde électronique. La méthode permet en effet de travailler sur des monograins et même de décrypter l'histoire souvent complexe de grains polygénétiques grâce à la haute résolution de la microsonde (1-2 µm de diamètre). La méthode est rapide, reproductible et non destructive. De plus, les analyses peuvent se faire directement sur lames minces et préserver la texture du grain afin de faciliter l'interprétation des résultats. Cette méthode a été préalablement validée sur monazites datées par ailleurs à l'aide de la méthode U/Pb conventionnelle après dissolution et spickage (T.I.M.S). La datation U/Pb sur zircon (T.I.M.S) et U-Th-Pb sur monazite (microsonde électronique) de la même roche a permis aussi de valider la méthode.

Outre la radiochronologie, une analyse directe de l'influence de la fusion crustale sur l'évolution de la chaîne hercynienne est proposée en considérant le cas du dôme du Velay-Cévennes.

La validité des résultats de ce travail permettra d'étendre les procédures analytiques sur des chaînes de montagnes qui présentent la même évolution complexe que celle de la chaîne Varisque française ou celles qui comprennent des reliques de l'anatexie.

1 ETUDES TEXTURALE ET STRUCTURALE DES MIGMATITES ET DES GRANITOIDES

1.1 Introduction

A l'instar de la dynamique lithosphérique archéenne et protérozoïque qui a gouverné la mise en place des noyaux cratoniques et des activités très localisées des points chauds évoluant en lignes et îles volcaniques, la tectonique des plaques annoncée par Alfred Wegener en 1915 a largement contribué à la compréhension de la composition et de la structuration des matériaux constituants la croûte océanique et continentale. Les convections mantelliques sont le moteur principale de ces mouvements des plaques (Ernst, et Desnoyers, 2004 ; Petterson, 1999 ; Pysklywec and Mitrovica 1998; Pysklywec et al. 2003). Elles sont restées actives aujourd'hui et évoluent en système clos bipolaire dans lequel la génération d'espace et de matière en un endroit (accrétion des fonds océaniques), implique sa destruction ou raccourcissement horizontal en un autre. Les manifestations les plus frappantes du raccourcissement sont localisées aux frontières des blocs continentaux. Les zones de convergence : subduction, obduction et collision sont à l'origine de toutes les chaînes de montagnes, les chaînes anciennes au relief abrasé telles que les Appalaches, les Calédonides et les Mauritanides se manifestent par leur vestiges alors que les chaînes les plus récentes comme les chaînes alpino-himalayennes, la Cordière des Andes ou les Montagnes rocheuses présentent encore de hauts reliefs. C'est le contexte particulier de collision intracontinentale qui nous intéresse dans ce travail.

La collision intercontinentale est précédée par la subduction océanique et elle se caractérise par le maintien des contraintes compressives horizontales conduisant à l'épaississement de la croûte continentale. L'épaississement crustal constitue un des contextes géotectoniques favorables à la production de liquides silicatés car il contrôle le passage de la base de la croûte dans les domaines de pression et de température susceptibles de conduire à l'anatexie des roches. Les principaux processus géologiques qui gouvernent la fusion crustale sont discutés plus loin. Néanmoins retenons ici que la fusion partielle donne lieu à des migmatites par cristallisation *in situ* des liquides de fusion et des granitoïdes par ségrégation-migration-accumulation des liquides silicatés. La migmatisation est donc contemporaine des processus tectoniques.

1.2 Les migmatites

1.2.1 Définisions – modes de formation

La migmatite est une roche composite intermédiaire entre une roche ignée et une roche métamorphique (Fig.1-1). Sur le plan thermodynamique, la migmatite se situe entre la catazone métamorphique et l'anatexie génératrice de roches magmatiques acides. La migmatite résulte de la cristallisation *in situ* des liquides issus de la fusion partielle. Elle comporte par conséquent une portion de matériel initial réfractaire, resté à l'état solide (restite) et une composante néoformée cristallisée à partir de la phase liquide et présentant une pétrographie granitique (néosome). Les caractéristiques de ces deux éléments sont discutées plus loin. Les structures initiales de la roche tendent à disparaître par la différenciation dynamique (Robin, 1979; Ashworth and McLellan, 1985; Lindh and Wahlgren, 1985) ou thermique qui est positivement corrélée avec l'intensification de la migmatisation. Il existe plusieurs modèles de migmatisation (Fig.1-2).

le cycle des roches (à partir de Skinner et Porter, 1995). Fig.1-1. La migmatite dans le cycle simplifié des roches (à partir de Skinner et Porter, 1995).

Suivant les modèles présentés à la figure 1-2, on peut retenir que l'évolution d'une roche métamorphique, ou protolithe, vers une migmatite se déroule en trois étapes successives (Fig.1-3) qui débouchent sur l'individualisation d'une restite, d'un mélanosome, d'un leucosome et d'un mésosome.

3 alternance des lits de mésosome, mélanosome et de leucosome

- 1→2→3 modèle Mehnert (1968), Mehnert &Büsch (1982); paléosome = mésome.
- 4→2→3 modèle Johannes et Gupta (1982), Johannes (1983, 1985, 1988).
- 5→2→3 modèle Holmquist (1921), Winkler et Von Platen (1961): pas de mélanosome.
- 5-6-3 nouveau modèle avec des reactions de retromorphose : mélanosome partiellement prograde et partiellement retrograde.

Fig.1-2. Illustration des différents modèles de migmatisation (Kriegsman, 2001) avec indexation des différents éléments constitutifs.

-La **restite** comprend aussi bien les minéraux initiaux potentiellement "fusibles", mais qui ont résisté à la fusion partielle et le résidu solide plus stable, dérivé par exemple des réactions de fusiondéshydratation. Si au cours de la fusion, le liquide et la fraction solide se dissocient, il se forme alors des lits sombres très riches en minéraux ferro-magnésiens. Ces niveaux sont appelés *mélanosome*. Par ailleurs, les minéraux qui cristallisent à partir du liquide, essentiellement des assemblages quartzo-feldspathiques, définissent des zones plus claires appelés *leucosome*. Le mélanosome peut conserver les textures du paléosome métamorphique alors que le leucosome a généralement une texture grenue, magmatique démontrant ainsi son passage par un état fondu.

La restite est un produit hérité qui a résisté à la déstabilisation du paléosome (protolithe) de sorte que si le leucosome et le mélanosome évoluent dans les proportions initiales avec une composition chimique linéaire, en d'autres termes si le système restait clos, à l'exception des composants volatils il en découlerait l'égalité:

Paléosome = restite + leucosome + mélanosome

-Le mésosome représente la portion de migmatite avec une couleur intermédiaire entre le leucosome et le mélanosome. Sa composition chimique est représentative de celle de la roche source, les composants felsiques et mafiques y sont représentés. La plupart des caractéristiques pétrostructurales du protolithe y sont préservées et les traces de fusion restent très localisées. Le mésosome peut figurer en enclaves dans le néosome. Le paléosome, le mélanosome et le leucosome (Fig.1-4) sont généralement tous présents dans la migmatite. Ils permettent de suivre l'évolution de la migmatisation à l'échelle de l'affleurement.

La nomenclature (Schmid et al., 2002) habituellement utilisée pour décrire une roche en fonction de l'importance de la migmatisation distingue : l'anatexite, la métatexite et la diatexite.

-L'anatexite désigne une roche renfermant des vestiges structuraux et pétrographiques de la fusion partielle. A ce stade, la texture de la roche métamorphique préexistante est préservée, c'est le début

du processus de migmatisation. Ce terme recouvre également d'autres roches d'origine anatectique. L'anatexite cristallise dans la croûte continentale et se met en place dans les conditions de subsurface.

Fig.1-4. (a) Migmatite du Limousin (carrière Brousse) illustrant le mélanosome (m), le mésosome (M) et le leucosome (L).
P_L désigne une poche de leucosome et Z_r la zone réactionnelle. Le détail sur la partie A montre les plans de faiblesse (la foliation et bandes de cisaillement) pouvant drainer le liquide silicaté. (b) Métatexite du Sud Millevaches montrant une alternance des leucosomes et des mélanosomes.

-La métatexite correspond aussi au début de la migmatisation. La roche est très orientée et montre un litage du type rubanement gneissique avec une nette alternance des lits sombres (résidu non fondu) et des lits plus clairs issus des liquides qui sont de plus en plus abondants. Il se dégage une idée de ségrégation et de mobilité des liquides (métatecte ou mobilisat) formant des zones discrètes. La fraction de liquide piégé dans la métatexite est estimée à moins de 20% (Sawyer, 1999). La métatexite peut aussi se constituer sans passer par un stade liquide (ségrégation des espèces chimiques transportées en solution) en procédant simplement par une différenciation métamorphique ou redistribution à l'état solide des minéraux.

-La diatexite caractérise le stade plus avancé de la migmatisation. La roche métamorphique a subit une fusion complète ou quasi complète. La structure de la roche initiale est totalement désagrégée. Elle acquiert la viscosité d'un magma granitique et présente des structures d'écoulement, des textures typiques telles les schlieren et ou les plis ptygmatiques, plus complexes et très communs dans des enclaves polymorphes à bords francs anguleux ou arrondis qui "flottent" souvent dans la migmatite. La diatexite présente habituellement un aspect granitoïde : granite d'anatexie

Ces dénominations ne renseignent que sur les conditions d'évolution et de formation des migmatites, elles sont quelquefois difficilement applicables sur le terrain dans la mesure où elles sont tributaires de l'échelle de l'observation. Ces termes descriptifs, doivent être remplacés par des termes d'ordre génétique justifiés par l'analyse des différentes structures et textures perceptibles au sein des migmatites. Les structures sont pour l'essentiel déterminées par la ségrégation du leucosome et son agencement par rapport au mélanosome et au mésosome. Les géométries associées sont très diverses, toutefois dans la terminologie courante de ces roches métamorphiques ultimes on distingue (Dietrich et Mehnert, 1961 ; Mehnert, 1968 ; Schmid et al., 2002) :

-La stromatite encore appelée migmatite "lit par lit". Elle est constituée par une alternance plus ou moins régulière des lits continus ou boudinés de leucosome et de mélanosome bien différenciés. Outre la fusion, la stromatite massive ou fine, comporte des reliques pétrostructurales du gneiss originel dont le litage a influencé l'organisation du leucosome et du mélanosome néoformés.

-L'artérite est une migmatite qui résulte de l'injection du liquide silicaté dans le mésosome. Le liquide injecte les fractures, les diaclases, les plans de foliation, des zones en dilatation et d'autres plans de discontinuité. Il résulte en conséquence des filonnets centimétriques de leucosome très anastomosés. Le régime tectonique et la nature de la roche source déterminent la mise en place d'une artérite.

-La nébulite dite migmatite en tache, dérive d'une fusion partielle importante du paléosome avec toutefois une fraction considérable d'enclaves à faible contraste de protolith arborant la texture initiale ou encore des amas de minéraux ferromagnésiens. Dans la nébulite, on trouve également des amas flous de biotites réfractaires.

-L'agmatite est une migmatite composite contenant des fragments anguleux de roches d'origines variées : des brèches issues de la roche encaissante ; des fragments de paléosome cimentés par du liquide silicaté *in situ*, ou extrait d'une source extérieure. Dans le dernier cas, le liquide peut également colmater les fractures des roches encaissantes cataclasées qui ne subissent pas automatiquement la fusion partielle. Contrairement aux autres migmatites, la formation d'une agmatite semble contrôlée par la tectonique cassante. Les fractures jouent le rôle de conduits de circulation des liquides silicatés.

La figure 1-5 montre quelques exemples de géométries de migmatites observables sur le terrain. Ils illustrent des cas simples de début de fusion (Fig.1-5a, b, et c) et des cas plus complexes qui correspondent a des roches dont la fraction fluide était plus importante que la fraction solide (Fig.1-5d, e et f).

Fig.1-5. Exemples de structures observables dans les migmatites : (a) migmatite du col d'Ourtigas (Montagne Noire) illustrant un début de fusion. Noter les poches lenticulaires de liquide primaire, (b) agmatite avec des enclaves anguleuses (Vernon et al., 2001), (c) stromatite (Limousin) intensément déformée, (d) une diatexite du Limousin. Le leucosome et le mélanosome sont bien individualisés. (e) et (f) correspondent aux diatexites des Cévennes.

1.2.2 Moteurs de la ségrégation des liquides silicatés

Pour accommoder les processus métamorphiques, les minéraux réagissent et s'organisent en

agrégats résiduels plus compacts. La densité de la roche augmente avec l'apparition de nouvelles espèces minérales plus stables. Du liquide silicaté est produit et s'accumule aux jointures des minéraux réactants (Fig.1-6) ou encore se confine au sein des minéraux sous forme d'inclusions (Sawyer, 1999). La viscosité de l'ensemble composé par le matériau solide et le liquide diminue avec l'augmentation du taux de fusion. Des modèles analogiques (Barraud et al., 2004) montrent que sous l'effet des forces motrices de la pression solide (conditions statiques, Fig.1-7) et ou des contraintes tectoniques anisotropes locales (conditions dynamiques), la phase liquide, de densité et de viscosité plus faible coalesce et migre vers des poches infra millimétriques d'extraction primaire entre les grains (Wickham, 1987; Burg and Vanderhaeghe, 1993; Sawyer, 1994; Brown and Rushmer, 1997).

Fig.1-6. Représentation schématique (Sanyer, 1999) de l'évolution de l'interconnectivité des pores d'accumulation primaire des liquides. (a) début de la fusion partielle aux joints des grains. Les poches de liquide en noir sont isolées. (b) taux de fusion <5%, interconnexion des poches, le seuil de percolation est atteint.

Fig.1-7. Diagramme schématique (Mc Kenzie, 1984) de la ségrégation du liquide silicaté (en noir) et de sa migration sous l'effet de la pression lithostatique. Par gravité, la fraction solide non fondue

expulse le liquide de sa base vers les niveaux supérieurs.

La dissociation du liquide avec la matrice rocheuse solide est désignée sous le terme de ségrégation. Des sites où le liquide est majoritaire, correspondant essentiellement à des pores isolés ou reliés entre eux par des canaux ou des ponts ouverts ou obstrués se forment (Fig.1-8). Le degré d'interconnexion des ces sites d'extraction détermine la perméabilité de la roche qui conditionne le volume et la migration des liquides disponibles. La connectivité peut être augmentée par l'effet cumulatif de la fracturation tectonique, de l'existence de plans de moindre raccourcissement, voire de dilatation et de la micro fracturation hydraulique. En effet la pression fluide dans les pores non connectés peut augmenter et dépasser la pression lithostatique. La roche est alors fragilisée et il se crée généralement des fractures dans lesquelles les liquides en surpression s'infiltrent pour tendre vers un nouvel équilibre des pressions. En outre plusieurs auteurs s'accordent sur un taux de fusion inférieur à 5% (Maaloe, 1982 ; Vigneresse et al., 1991 ; Vigneresse et al., 1996) pour des assemblages de type felsiques pour réaliser l'interconnexion entre les poches de liquide. On atteint alors le seuil de percolation ou d'extraction gouverné par l'instabilité générée par le gradient de pression. Les propriétés de l'écoulement libre dans les pores et le comportement rhéologique des migmatites ont été décrits en détail par Van der Molen et al. (1979), Rutter er al. (1995), Vigneresse et al. (2000) et Vanderhaeghe (2001). Du fait du régime tectonique, les fractures qui ne peuvent rester ouvertes sont colmatées par la cristallisation des minéraux néoformés (crack sealing) ou cicatrisées progressivement en petites bulles de liquide disséminées dans la roche (crack healing).

1-initiatialisation de la fusion dans la roche métamorphique.

- 2-ségrération du liquide silicaté sous l'effet du taux de fusion croissant et du gradient de pression.
- *3-anastomose des poches et migration du liquide dans les plans de faiblesse de la roche.*
- **4** extraction du liquide depuis les sites grisés par la fracture (F) et par et la foliation (f).

Fig.1-8. Développement du réseau de drainage du liquide de fusion (Sanyer, 2001).

Dans un régime statique, si la ségrégation et la migration sont contemporaines de la production de liquides, la structure de la roche source est préservée, il se forme une métatexite ou plus précisément une stromatite (Fig.1-5a, c). Par contre, au cours d'une fusion dynamique, les liquides peuvent être complètement extraits ce qui pour nombre d'auteurs représente la source des magmas granitique (Vielzeuf and Vidal, 1990; Brown, 1994a; Brown et al., 1995b). Si dans ce cas, les liquides produits en quantité restent piégés dans la matrice gneissique, ou connaissent une migration lente, ils réagissent continuellement avec le résidu réfractaire jusqu'à dénaturation presque totale du protolithe. Il se crée une diatexite avec les figures de fluage caractéristiques comme exposé précédemment. La composition minéralogique de la migratite est donc étroitement liée au processus successif de ségrégation-migration des liquides silicatés. La paragenèse minérale résultant de la cristallisation du liquide en équilibre avec le protolithe non fondu se distingue de celle issue de la cristallisation du bain silicaté directement extrait de la source.

1.2.3 Pétrologie générale des migmatites

Les leucosomes représentent des systèmes fossiles, témoins de la présence de volume significatif de liquide silicaté libre dans la roche affectée par une fusion partielle. Leurs caractéristiques texturales similaires à celles des granites, des pegmatites, des aplites et leur assemblage polycristallin sont largement documentés (par exemple Mehnert, 1968; Ashworth, 1985). Les leucosomes s'illustrent par de fortes agglomérations de cristaux de quartz, de feldspath potassique, de plagioclase, de muscovite et quelquefois de biotite néoformée déterminant une texture grenue contrairement aux restites métamorphiques. Il faut également souligner la présence des minéraux accessoires comme le zircon fréquemment en inclusion dans la biotite, des oxydes multiples, de l'apatite et de la monazite. D'autres nouveaux minéraux bordant les leucosomes sont aussi présents comme la sillimanite, le grenat, la cordiérite, le pyroxène et des espèces cristallines spécifiques se rapportant à certains domaines de pression-température et aux systèmes minéraux réactants. Ces paragenèses simples se développent aussi bien pendant les transformations métamorphiques progrades qu'au cours des réactions de retromorphose.

1.2.4 Cadre géodynamique de l'anatexie

Parmi les roches nouvellement formées lors de la collision continentale, on dénombre des gneiss, des migmatites et des granitoïdes. Ces objets sont répandus dans les chaînes de subduction et ou de collision ayant impliqué des roches fertiles et n'ayant postérieurement pas perdu ces reliques de la fusion. Ces processus de fusion partielle s'accomplissent également au cours des mécanismes d'effondrement post-orogéniques. La compréhension de l'histoire des orogènes, et la mise en évidence des déformations, se sont toujours effectuées en analysant préférentiellement des échantillons de gneiss, de migmatites et des plutons granitiques associés. Il apparaît donc essentiel de connaître les transformations chimiques ou minérales mises en œuvre pour la production de liquides silicatés. Deux origines sont ordinairement admises : une origine anatectique et une origine métamorphique.

(i) l'origine anatectique implique la génération de liquides silicatés par fusion partielle d'une roche métamorphique. La fusion crustale génère une migmatite dite supersolidus ou migmatite vraie (Clemens, 1984 ; Powell et Downes, 1990 ; Holtz et Johannes, 1994). La production de liquide en conditions supersolidus est réalisée à une température supérieure à celle du solidus correspondant à la composition minéralogique de la roche source. Les températures de fusion sont plus élevées en condition anhydre (fusion déshydratée) qu'en présence de phase H₂0 libre (fusion partielle hydratée).

(ii) l'origine métamorphique induit une ségrégation des espèces minérales à l'état solide aboutissant à une individualisation des leucosomes et mélanosomes. On parle dans ce cas de migmatite subsolidus. Cette transformation est contrôlée par l'augmentation de la pression et de la température. L'évolution à pression croissante empêche les réactions de fusion qui sollicitent des températures de plus en plus importantes. Sans rupture de la matrice solide, les minéraux se déforment de façon exclusivement plastique, ils sont remobilisés et probablement ségrégés par fluage gouverné par le gradient de densité.

Dans un contexte de convergence-collision des plaques (modèle dynamique : fusion synchrone à la déformation orogénique), les roches subissent une déformation intense qui provoque des réactions progrades de fusion. Ces dernières dépendent de la composition minéralogique de la roche source et sont favorisées ou initiées par la présence d'une phase fluides, essentiellement de l'eau avec des sels et gaz dissous (dioxyde de carbone, méthane). D'une part, cette phase peut être libre : fluide aqueux supercritique ou gazeux confiné dans des veinules et des inclusions, en films adsorbés aux frontières des grains, de l'eau juvénile ou météorique recyclée. Mais du fait de la forte diminution de la porosité des roches (<1%) par compaction, le pourcentage de la fraction de fluides libres est très faible. D'autre part, le fluide peut constituer un élément structural sous forme d'ions OH⁻ dans les minéraux hydratés ou hydroxylés (micas, amphiboles ...etc). Les fluides libérés abaissent les points de fusion des systèmes réactants. Dans ce contexte, la courbe du solidus du système Quartz-Micas-Feldspaths est déplacée vers les températures les plus basses avoisinant le minimum thermique des assemblages granitiques (Lindh et Wahlgren, 1985; Sawyer et Barnes, 1988; Conrad et al., 1988; Clemens & Droop, 1998; Patiño Douce & Harris, 1998;

Gardien et al., 2000). L'interaction fluide-minéraux gouvernée par l'augmentation de la pression génère ainsi du liquide souvent de nature granitique suivant les réactions:

$$Qz + Pg + H_2O \leftrightarrow Liquide (1)$$

Ms + $Qz + Pg + H_2O \leftrightarrow Liquide (2)$

(1) et (2) sont deux exemples de réactions classiques produisant du liquide au solidus "hydraté" des roches granitiques (Van der Molen, 1985). Les températures avoisinent les 600°C. Des études expérimentales de fusion ou des analyses de migmatites ont montré que ces deux processus contribuaient faiblement à la quantité de liquide produit soit <3% vol. (Thompson, 2001). Par contre, dans les roches dépourvues de fluides libres, les minéraux hydratés qui comportent 2-5% de volume d'eau (Kriegsman, 2001) se désagrègent et libèrent une importante quantité d'eau rendant ainsi possible les réactions incongruentes dites de "fusion-déshydratation" dont les principales sont :</p>

$$Ms + Qz + Pg \leftrightarrow Als + Kf + Bt + Liquide (3).$$

$$Bt + Als + Qz + Pg \leftrightarrow Grt/Crd + Kf + Liquide (4)$$

 $Bt + Qz + Pg \leftrightarrow Opx + Cpx + Kf + Liquide (5)$

Ms : muscovite ; Qz : quartz ; Pg : plagioclase ; Als : alumino-silicates Kf : feldspath potassique ; Bt : biotite ; Grt : grenat ; Crd : cordiérite ; Opx : orthopyroxène ; Cpx : clinopyroxène ; Hbl : hornblende; Liquide : liquide silicaté.

 $Hbl + Qz \leftrightarrow Opx + Cpx \pm Grt + Pg + Liquide (6)$

Ces réactions de fusion anhydre libèrent des quantités plus importantes de liquide granitique. Les taux de fusion peuvent atteindre 30% (Clemens, 1984; Clemens et Vielzeuf, 1987), particulièrement lorsqu'ils sont contrôlés par les réactions de fusion-désydratation de la biotite. Dans ce cas, avant de fondre, les roches atteignent des températures beaucoup plus élevées (>750°C) que celles nécessaires pour leur fusion en conditions hydratées. Cette production de liquide peut également s'effectuer au cours des processus de décompression due par exemple à l'effondrement gravitaire post orogénique : fusion partielle adiabatique.

Le modèle thermique implique la présence d'une anomalie thermique suffisante pouvant induire la

fusion des roches fertiles. Les contextes géologiques sont variés à l'image des sources potentielles de chaleur. La chaleur peut résulter de l'activité des radioéléments naturels contenus dans les minéraux. Les plus habituels des ces éléments sont ²³⁸U, ²³²Th et ⁴⁰K. En se désintégrant, ils libèrent de grandes quantités d'énergie sous forme de rayonnement. Cette source de chaleur est dite interne. Un apport d'énergie peut également découler du contact ou du rapprochement d'un matériel chaud. L'énergie est, dans ce cas, transmise par un transfert de matière dont les exemples typiques correspondent aux remontés en provenance du manteau lithosphérique ou asthénosphérique, aux intrusions de plutons granitiques et aux sous placages de magmas dérivés du manteau (Bergantz, 1989). Le transfert s'effectue aussi par simple conduction thermique à l'instar des zones d'effondrement post orogénique, des zones de délamination du manteau lithosphérique avec augmentation du flux thermique mantellique profond. Dans le modèle thermique, la fusion des roches se déroule aussi suivant les réactions identiques à celles de la fusion dynamique. A côté des paramètres nécessaires à la fusion crustale que sont la fertilité des roches (paragenèse), les conditions de pression et de température, la disponibilité des fluides, il est raisonnable d'ajouter le temps pendant lequel les roches sont exposées à ces conditions particulières. En effet, la cinétique des réactions joue un rôle essentiel dans les quantités de liquides magmatiques produits, une exposition prolongée conduira à des volumes de liquides plus importants. Le mode de cristallisation des liquides aboutira ou non à la formation de migmatites.

1.3 Les granitoïdes

Les observations de terrain montrent que les migmatites affleurent dans des complexes anatectiques associées généralement à des granitoïdes et ou à des gneiss dans des assembles aux limites généralement diffues. La caractérisation de chaque entité lithologique, ou structurale n'est souvent possible que par une analyse détaillée des structures macroscopiques internes. Dans cette configuration, certains auteurs (Foster et al., 2001 ; Johannes et al., 2003 ; Nabelek et al., 1999 ; Vernon et al., 2001) admettent que les granitoïdes correspondent à la phase ultime du processus de migmatisation ou encore, qu'ils dérivent de la ségrégation et de l'accumulation des liquides extraits d'une migmatite sous-jacente. En d'autres termes, la migmatite serait un granitoïde avorté. Dans ce cas les liquides de fusion à l'origine des leucosomes donneraient des granitoïdes. D'autres auteurs (Barbey et al., 1996) montrent que les leucosomes peuvent indiquer le passage de liquide silicaté granitique dans la croûte. Il se pose alors la question de la disponibilité et de la quantité des liquides. Dans quel contexte la fusion partielle serait-elle suffisante pour générer des volumes de liquides qui correspondraient aux plutons observables sur le terrain. Patiño Douce et al., (1990)

proposent des taux de fusion supérieurs à 30 vol. % de la fusion par déshydratation des biotites. Il apparaît surtout que l'hypothèse de la migmatite comme source de granitoïdes ne peut être vérifiée uniquement par des données acquises grâce à des études structurales, il conviendrait aussi d'y ajouter des analyses géochimiques pour mieux contraindre le protolithe initial des liquides, ce qui n'est pas une chose aisée à cause de l'hétérogénéité des migmatites. La ségrégation et l'injection de ces fluides dans les réservoirs magmatiques s'effectuent aussi par gradient de pression et de densité et par le biais des discontinuités de la roche encaissante. Trois principaux mécanismes de migration sont retenus (Fig.1-9) : remontée diapirique, remontée par dyke et enfin par un réseau de fractures tectoniques ou hydrauliques.

1- une unique remontée diapirique d'un grand volume de matériel fondu. La migration est contrôlée par les contrastes de viscosité et de densité entre le magma et son encaissant. Cette migration s'accompagne d'une déformation ductile de l'encaissant.

3- Migration des liquides par un réseau de fractures tectoniques ou hydrauliques. La perméabilité du système assure le transfert vers les sites de mise en place final.

Fig.1-9. Illustration des trois principaux mécanismes de transport des liquides de fusion depuis la source profonde jusqu'à l'emplacement dans les niveaux supérieurs (Bons et al., 2004).

1.3.1 Analyse pétrographique

Les assemblages minéralogiques des granites sont aussi variés que les roches sources dont ils proviennent et du taux de fusion associé. La présentation générale des granitoïdes n'entre pas dans le cadre de ce travail, toutefois il convient de mentionner que des analyses chimiques et minéralogiques de divers granites ont permis d'établir des évolutions indépendantes qui intègrent toutes les transformations depuis la zone source profonde de la croûte jusqu'aux niveaux crustaux supérieurs où les liquides cristallisent. En effet, au cours de la montée, les liquides subissent des interactions avec l'encaissant (assimilation, transfert de fluides et des éléments transportés), des mélanges avec d'autres magmas et des différenciations par cristallisation fractionnée. Les paragenèses sont alors déterminées par les conditions de production, de migration et de cristallisation du bain silicaté. Davies et Tommasini (2001) montrent qu'en l'absence d'équilibre chimique entre les minéraux réactants et les liquides produits (extraction très rapide des liquides silicatés de leur environnement de production), il se forme un liquide granitique présentant une composition dite déséquilibrée par opposition aux fluides normaux dont la migration vers l'espace d'accumulation finale s'effectue lentement. Le déséquilibre chimique est le résultat de la synchronisation des processus de fusion et d'évacuation des liquides. La composition minéralogique du magma granitique et sa mise en place renseignent sur l'environnement géotectonique : la source des magmas (fusion partielle des roches sédimentaires ou des roches ignées complétées par d'éventuels mélanges post-fusion), l'épaisseur de la croûte, le domaine de pression et de température. Les techniques radio-chronométriques à partir des phases accessoires (zircon, monazite, xénotime...etc) permettent aujourd'hui de mieux contraindre l'age absolu et la durée des phénomènes thermiques. Les granites présentent généralement une texture grenue avec des grains de dimension variable, des mégacristaux et parfois des "grumeaux" métamorphiques n'ayant pas subit la fusion.

1.3.2 Contexte structural

La figure 1-9 montre les différents modèles de mise en place des massifs granitiques. Ils évoquent non seulement une mise en place contrôlée par des zones de faiblesse crustales ou lithosphériques mais aussi l'acquisition des individualités morphologiques suffisantes. La formation des granites et leur mise en place peuvent se faire à des profondeurs diverses de part et d'autre de la limite du ductile-cassant (~15 Km) de la croûte. Bien que les contextes tectoniques distensifs post-orogéniques ou anorogéniques apparaissent comme les endroits privilégiés pour les intrusions volcano-plutoniques, (Brown et al., 1995; LeFort, 1986 ; Harrison et al., 1997) il n'en demeure pas moins que des intrusions ont également été mises en évidence dans des complexes compressifs liés aux empilements de nappes crustales pendant le raccourcissement syn-collision (Burg et al., 1997; Dèzes, 1999; Rolland et al., 2001). Il existe une interaction structurale forte entre l'encaissant et l'intrusion. Lors de sa mise en place, en conditions subsolidus, le granite enregistre les déformations induites par l'encaissant sous formes d'orientation préférentielle des minéraux, une orientation qui peut se surimposer à l'anisotropie magmatique primaire. Ces textures sont directement observables sur l'affleurement ou sont déductibles à partir des mesures physiques d'anisotropies (Poland et al., 2004). Par ailleurs, les granites à leur tour contribuent à l'évolution rhéologique de la croûte en ce sens que les fluides à partir desquels ils sont formés induisent une instabilité thermomécanique (Davidson et al., 1994; Bercovici et al., 2001) qui accélère les mécanismes de déformation métamorphique (Rosenberg, 2001). Dans un contexte extensif il est difficile d'affirmer si les liquides sont antérieurs à l'extension ou s'ils sont concomitants auquel cas ils constitueraient un des facteurs qui contribuent à cette extension. Les contraintes différentielles générées par la percolation rigide (Vigneresse et al., 1996) du liquide comportant environ 50% de cristaux amplifie des changements structuraux dans l'encaissant. La conséquence de ces observations est que les granites participent activement à l'édification de la lithosphère et à sa différenciation chimique.

1.4 Conclusion

En conclusion, la production des liquides silicatés nécessite des conditions thermodynamiques précises, une lithologie fertile avec l'assistance ou non de fluides libres dont dépend le taux de fusion. Les liquides produits sont observables à toutes les échelles, depuis l'espace inter minéral, les micro plutons dans les gneiss jusqu'aux batholithes granitiques plurikilométriques. La ségrégation et la migration de ces liquides sont facilitées par l'action combinée de la pression fluide et le régime tectonique de l'encaissant qui produit des fractures d'importance crustale. Ces conditions sont réalisées dans les environnements orogéniques. Pour mieux assimiler la signification de cette fusion crustale et appréhender sa contribution mécanique dans l'édification de l'orogène, il faut trouver et analyser des formations métamorphiques qui comportent des marques de fusion à des degrés divers et ou de véritables roches magmatiques préservées. Dans cet objectif, les gneiss migmatitiques, les migmatites et les granitoïdes se révèlent être les témoins privilégiés de cette activité thermotectonique. Dans l'évolution des orogènes, la question du lien génétique entre les migmatites et les granites et la question sur les premières contraintes à l'origine du changement du régime compressif en régime extensif (effondrement), la relation entre la mise en place des plutons et

l'extension restent discutées. Par ailleurs les datations isotopiques des minéraux néoformés permettent de déterminer la succession et la durée des processus de migmatisation et de granitisation qui interviennent dans l'évolution de la chaîne de montagnes.

Dans cette étude nous nous intéressons à la chaîne hercynienne française (Massif Central), à la répartition des principaux témoins de la fusion crustale et à la chronologie absolue des différents processus de fusion. Pour cela il convient avant tout de situer la chaîne hercynienne dans le contexte de la tectonique globale.

2 CONTEXTE TECTONIQUE DE LA CHAÎNE HERCYNIENNE

2.1 Généralités – Paléogéographie

Le Massif Central Français comme le Massif Armoricain représente un des vestiges de la chaîne paléozoïque de l'Europe moyenne. Cette chaîne Varisque résulte de la collision continentale entre le Gondwana au sud et la Laurussia au nord (Bard, 1997 ; Matte, 1991). La figure 2-1 illustre la zonation tectonique de cette Europe varisque et l'architecture des unités est montrée sur les coupes de la figure 2-2.

Fig.2-1. Carte structurale de l'Europe Central (Matte, 1991). NVF: Front hercynien Nord ; LRhS: Suture Rhin-Lizard ; MTS : Suture Münchberg-Tepla ; MCS : Suture Massif Central ; CCS : Suture Coimbra-Cordoba ; OMS : Suture Ossa Morena.

Fig.2-2. Coupes schématiques des grandes unités hersyniennes (localisées sur la fig.2-1). (B) Section Armonica-Ardennes ; (C) Section Massif Central ; (C') Section du dôme de

Levezou (Matte, 1991).

Le Gondwana correspond au supercontinent édifié par l'agglomération des blocs continentaux sud américain, africain, indien, arabique, australien et antarctique. Il connaît une évolution complexe qui entraîne l'ouverture de l'océan rhéique au nord isolant le fragment continental de l'Avalonia détaché du Gondwana autour de 500-480 Ma. L'accrétion océanique s'accentue et provoque la migration vers le nord de l'Avalonia qui se rapproche des continents de la Baltica et de la Laurentia. Cette évolution tectonique conduit à la résorption progressive de la lithosphère de l'océan Iapétus situé entre la Laurentia et la Baltica. La lithosphère océanique du Iapétus est entraînée dans une subduction sous la Laurentia du Silurien terminal au Dévonien. La fermeture complète de l'océan Iapétus s'achève par la formation du supercontinent de la Laurussia (420 Ma) qui comprend alors les continents de Baltica, Avalonia et Laurentia. Cette orogenèse correspond à la chaîne calédonienne d'Europe du Nord et d'Amérique du Nord. Au même moment, en Europe moyenne, une autre lanière continentale appelée "Armorica", constituée de la Bretagne Central, Bassin de Paris, Vosges du Nord, Bohème Centrale, Ibérie Centrale, se détache du Gondwana. Ainsi les nombreux orthogneiss œillés d'âge ordovicien inférieur (~480 Ma) du Massif Central et de l'Armorique méridionale sont des granites alcalins dus au rifting de l'Armorica. Le rifting de l'Avalonia est responsable de l'ouverture de l'océan rhéique entre micro-continents et le reste du Gondwana. Par ailleurs, la séparation du micro-continent Armorica avec le Gondwana est responsable de la création d'un domaine océanique : l'océan Galice-Massif Central ou Médio-Européen (Matte, 1986).

Des reliques de roches métamorphiques de haute pression et moyenne température (localement d'ultra-haute pression) identifiées (les péridotites et les éclogites) dans le Massif Central (Pin et Vielzeuf, 1988 ; Pin, 1990) témoignent de la fermeture de l'océan Médio-Européen et de la subduction continentale datée entre 430 et 400 Ma. La résorption de l'océan rhéique s'achève par l'adjonction des derniers fragments du Gondwana à Laurasia vers 360 Ma par subduction (Matte, 2001). Cette dernière précède la collision continentale proprement dite, amorcée au Silurien-Dévonien (Pin et Peucat, 1986 ; Ledru et *al.*, 1989), elle se maintient jusqu'au Carbonifère moyen. Au cours de cette période, la chaîne de collision est alors structurée avec la mise en place des nappes de charriage conduisant à l'épaississement de la lithosphère continentale, aux transformations métamorphiques et à un magmatisme résultant de la fusion crustale des roches tectonisées. Le détail de cette structuration sera discuté plus loin. En considérant ce jeu des plaques et microplaques lithosphériques, il apparaît que la chaîne Varisque, malgré sa configuration actuelle, doit être appréhendée comme une orogenèse à évolution polycyclique ayant subi au cours du temps une succession de phases tectoniques : du régime de subduction à la collision passant par des périodes de moindre activité marquées

par les stades de rifting, de distension (Faure et *al.*, 1997). Des océans disparus, il ne reste plus que des sutures de roches basiques et ultrabasiques issues des lithosphères océaniques engagées dans les zones de collision.

Outre les massifs Central et Armoricain, les témoins de la chaîne Varisque dans le substratum de l'Europe centrale sont également connus du Massif Bohémien à l'Est, au domaine sud portugais à l'Ouest. Von Raumer et *al.*, (2003) proposent une configuration des principales unités structurales de la chaîne au Carbonifère inférieure (Fig.2-3).

Fig.2-3. Carte géologique simplifiée du socle varisque dans l'Europe Central (Von Raumer et al., 2003). Aq: Aquitaine ; Ib : Allochtone Ibérique ; MA : Massif Armoricain, MB : Massif Bohémien, MC : Massif Central.

2.2 Empilement litho-structural

Les données tectoniques, métamorphiques et géochronologiques recueillies depuis une vingtaine d'années dans le Massif Central convergent pour démontrer l'existence de six principales unités lithotectoniques séparées par de grands accidents d'importance crustale (Ledru et *al.*, 1989). Ces différentes unités correspondent à la marge passive du Gondwana. De bas en haut et du sud au nord, elles sont organisées selon la succession :

(i) L'unité externe comprend des dépôts sédimentaires de plate-forme empilés du Paléozoïque inférieur jusqu'au Viséen avec un hiatus stratigraphique au Silurien. Il s'agit essentiellement d'apports détritiques terrigènes et de dépôts carbonatés. Cette unité est impliquée dans la tectonique de nappes d'âge Carbonifère moyen (Viséen-Namurien) qui succède à la collision entre le Gondwana et la Laurasia. Les séries sédimentaires sont affectées par des charriages associés à un très faible métamorphisme (anchi à épizonal). Les métasédiments sont structurés en écailles ou en plis couchés plurikilométriques déversés vers le sud. Cette tectonique à vergence sud-est s'observe dans le versant sud de la Montagne Noire (Demange et *al.*, 1986) et au Sud des Cévennes dans le Viganais.

(ii) L'unité Para-autochtone, aussi appelée "Micaschistes des Cévennes" chevauche l'unité externe paléozoïque précédemment décrite. Elle correspond à une épaisse série (~5000 m d'épaisseur) constituée de métapélite, de métagrauwacke, de quartzites et rarement d'amphibolites. Cette unité lithostructurale affleure également au sud du plateau de Millevaches et dans les fenêtres du plateau d'Aigurande, du Limousin et de la Sioule. Plusieurs auteurs ont mentionné des niveaux mylonitiques séparant des sous-unités, en revanche la présence de plis couchés des micaschistes des Cévennes reste hypothétique. La foliation sub-horizontale S1, contemporaine du métamorphisme régional, développée dans le faciès schiste vert à amphibolite, résulte d'un cisaillement plat ductile synchrone à la tectonique de nappe. Une linéation minérale et d'étirement L1, bien marquée, est associée à S1 et indique une direction NE-SW qui est interprétée comme la direction de transport des nappes. Des données radiochronologiques ⁴⁰Ar/³⁹Ar sur muscovite, biotite et amphibole indiquent des âges compris entre 340 Ma et 330 Ma (Caron, 1994). Le métamorphisme à grenat, biotite diminue du nord au sud (Rakib, 1996).

(iii) L'unité inférieure de gneiss (UIG) est lithologiquement identique au para-autochtone car ces deux unités proviennent tous les deux de la marge nord du Gondwana engagée progressivement dans la collision (Matte, 1986). Le métamorphisme de l'UIG est de type barrowien. Cette unité est caractérisée par des intrusions de granites porphyriques et des granodiorites d'âge Cambrien à Ordovicien inférieur. Ce plutonisme est généralement attribué à des processus postérieurs à l'orogène cadomienne et dû à la distension continentale qui a séparé l'Armorica du Gondwana (Ledru et *al.*, 1994). Les granites ainsi mis en place correspondent aux protolithes des orthogneiss comme celui de Mulatet-Argentat, celui du Thaurion ou l'orthogneiss de Meuzac. Tous ces plutons sont encaissés dans les roches sédimentaires essentiellement pélitiques avec des termes grauwackeux, des roches d'âge Néo-Protérozoïque à Cambro-Ordovicien probable et parfois migmatitiques. Dans ces derniers métasédiments, l'assemblage métamorphique est caractérisé par l'association : biotite + grenat \pm staurolite \pm disthène \pm sillimanite. L'unité

inférieure de gneiss comporte de rares reliques d'éclogite et de granulite, témoins d'un métamorphisme de haute pression décrit uniquement dans le Limousin, dans le massif de Sauviat.

(iv) L'unité supérieure des gneiss (USG) est constituée d'une partie inférieure encore appelée "ensemble leptyno-amphibolique" et de migmatites (Burg et Matte 1978). Elle est constituée par la succession de gneiss quartzofeldspathique, des amphibolites et des gneiss amphiboliques. Les premiers découlent de sédiments volcanosédimentaires, de granites, de métarhyolites, de micaschistes et de grauwackes du Paléozoïque inférieur. Pour certains auteurs, les gabbros et les roches ultabasiques de l'USG sont interprétés comme un fragment de lithosphère océanique formé au Paléozoïque inférieur (Matte, 1991). L'USG comporte la plus grande proportion des vestiges de roches de haute pression voire de très haute pression. En effet, l'unité supérieure de gneiss a été entraînée dans la subduction éo-varisque. Les roches ont été transformées dans le faciès éclogite à des profondeurs de 60 à 100 km (~20-30 kb). Cette déformation est datée entre 430 et 415 Ma (Pin et Lancelot 1982, Pin et Peucat 1986). Le métamorphisme de très haute pression déterminé par l'occurence d'éclogites à coesite (Lardeaux et *al.*, 2001) n'est connu que dans les Monts du Lyonnais.

(v) L'unité de Thiviers-Payzac occupe le niveau structural le plus élevé de toutes les unités. Elle affleure dans le Quercy (séries de Leyme), dans le sud du Limousin où l'unité de Thiviers-Payzac sensu-stricto est affectée par le plutonisme granitique. Elle est composée de métagrauwacke, de rhyolites et des bancs de quartzite cambrien formant l'encaissant des granites ordoviciens. Cette unité présente un gradient métamorphique qui augmente du haut vers le bas. La série est métamorphisée dans les conditions épizonales du faciès des schistes verts au Nord et passe progressivement au faciès amphibolite profond au Sud. Dans le Sud Limousin, les relations entre l'unité Thiviers-Payzac et l'USG restent encore débattues, car le contact est repris par un décrochement. Cependant dans le Quercy, l'unité de Thiviers-Payzac surmonte l'unité supérieure des gneiss.

(vi) Au nord-est du Massif Central, affleure l'unité de la Brévenne qui constitue la dernière unité importante du Massif Central. Les roches qui composent l'unité de la Brévenne se rattachent à un dynamisme de rifting océanique. En effet l'unité est constituée de roches basiques et ultrabasiques parmi lesquelles on dénombre des basaltes, des gabbros tholéiitique. Elle comporte également des roches acides datées à 366 ± 5 Ma par U-Pb sur zircon (Pin et Paquette, 1998). On y observe des rhyolites, des trondhjémites et des roches sédimentaires siliceuses telles que des radiolarites et des siltites. L'unité de la Brévenne est charriée sur l'unité supérieure de gneiss vers le NW (Leloix et *al.*, 1999). L'âge du processus d'obduction n'est pas clairement déterminé. Toutefois ce dernier se situerait au Carbonifère inférieur ou Dévonien supérieur (~360 Ma) puisque les nappes de l'unité de la Brévenne sont scéllées par les séries sédimentaires gréseuses du Viséen inférieur qui affleurent à l'Est de Lyon (Série du Goujet).

Les unités présentées ci-dessus dérivent généralement du recyclage des roches sédimentaires des marges continentales, des bassins de rift et des roches magmatiques associées. Ces roches sont engagées dans des tectoniques de nappe résultant de la collision continentale. Elles atteignent des conditions thermo-barométriques favorables à leur fusion partielle. La fusion affecte surtout les composants pélitiques et génère des liquides silicatés à l'origine des plutons, des dykes de granitoïdes et aussi des migmatites. Ces dernières roches, résultant de la fusion syntectonique, constituent des échantillons de choix pour analyser l'évolution géodynamique de la chaîne. Parmi ces roches néoformées, les migmatites sont les plus intéressantes de part leur composition minéralogique (héritage + néoformation) et par leur étendue. Elles affleurent dans l'unité supérieure de gneiss occupant la partie supérieure de l'unité. Ces migmatites résultent de la décompression associée à l'exhumation de l'USG. Les migmatites affleurent également dans le para-autochtone (migmatites des Cévennes, du Limousin et du plateau de Millevaches). Les conditions tectoniques de mise en place de certaines migmatites restent encore débattues telles que les migmatites de la Montagne Noire, en revanche d'autres sont associées au processus thermique intégré à l'extension post-orogénique comme par exemple le dôme granito-migmatitique du Velay. Les deux principaux modèles d'évolution des unités lithologiques sont présentés dans ce qui suit.

2.3 Évolution tectonique de la chaîne hercynienne

2.3.1 Dynamisme orogénique

Les analyses structurales et géochronologiques conduites dans le Massif Central et le Massif Armoricain ont amené plusieurs auteurs à proposer des modèles d'évolution géodynamique. Les deux principaux modèles d'évolution de la chaîne Hercynienne demeurent très débattus :

L'évolution monocyclique considère la chaîne comme une conséquence de processus convergents continus pendant toute la période varisque de 450 Ma à 325 Ma (Ledru et *al.*, 1989). Cette durée est subdivisée en période éovarisque, médio-varisque et néo-varisque. La première de 450 à 400 Ma correspond à la subduction lithosphérique et à la fermeture des espaces océaniques. La formation des roches de haute pression (éclogites à coésite et orthogneiss de HP) se produit à ce moment. La période médio-varisque, entre 400 Ma et 350 Ma, se caractérise par la collision continentale entre la marge nord du Gondwana et la Laurussia responsable de l'empilement des nappes et de la fermeture du domaine océanique de la Brévenne. La collision continentale proprement dite entraîne également des processus métamorphiques de moyenne pression et moyenne température. Dans les nappes, il se développe une foliation sub-horizontale portant une linéation d'allongement de direction NW-SE qui reste encore mal comprise. Il s'agit de la phase majeure synchrone du métamorphisme prograde. L'épaississement crustal qui résulte de cette tectonique de nappes est estimé de 15 à 20 km dans le Massif Central (Ledru et *al.*, 2001). Au cours de la dernière période néo-varisque qui s'étend de 350 Ma et 325 Ma, le régime compressif se maintient dans le Sud du Massif Central et la tectonique des nappes se poursuit, l'évolution de la chaîne est totalement intracontinentale avec amplification d'importants accidents décrochants (Mezure, 1981). Ce dernier épisode est relayé par le changement du régime convergent en régime extensif global de 325 Ma à 210 Ma.

Cette approche monocyclique ne fait pas l'unanimité. En effet Faure et al., (1997, 2002), Cartier et al., (2001) relèvent dans le Massif Armoricain et le Massif Central, des arguments en faveur d'une évolution polycyclique de la chaîne. Ce modèle met l'accent sur l'importance de la tectonique convergente similaire à celle précédemment évoquée, mais interrompue par un dynamisme extensif au cours du Dévonien moyen. L'évolution géodynamique comporte un cycle "Varisque" qui se produit du Cambrien au Dévonien et un cycle "Hercynien sensu stricto" du Dévonien inférieur au Carbonifère supérieur-Permien. Le cycle varisque comprend trois stades : un stade de rifting cambro-ordovicien caractérisé par un magmatisme alcalin responsable de la mise en place des principaux granitoïdes qui seront par la suite orthogneissifiés. L'orthogneiss du Thaurion (532 ± 24 Ma, Rb/Sr sur roche totale, Duthou, 1977), les orthogneiss de Meuzac (495 ± 5 Ma, U-Pb sur zircon, Lafon, 1986), celui du Saut-du-Saumon, de Mulatet-Argentat respectivement 475 Ma, 535 ± 21 Rb/Sr sur roche totale (Bernard-Griffiths, 1975), l'orthogneiss œillé de Fix témoin d'un magmatisme hyperalumineux daté à 528 ± 9 Ma (Rb/Sr sur roche totale, R'Kha Chaham et al., 1990) et quelques autres orthogneiss assimilés comme protolithes des migmatites des Cévennes (pré-Velay) et celles de la Montagne Noire donnent 560 ± 18 Ma par U-Th-Pb sur monazite (Be Mezeme et al., sous presse, annexe 3). Ce magmatisme constitue la marque du rifting continental, puis océanique qui sépare le micro continent Armorica du Gondwana. Cette phase d'ouverture océanique précède la convergente silurienne au cours de laquelle, une partie de la lithosphère continentale du Gondwana est engagée dans la subduction atteignant des profondeurs de l'ordre de 60 à 100 Km. Au même moment, les granitoïdes sont transformés en orthogneiss de haute pression. Ce schéma s'accorde avec la formation des éclogites à coesite. Le dernier stade du cycle varisque intervient autour de 390-385 Ma avec l'exhumation des roches de la croûte continentale et océanique englouties dans la subduction. Au cours de la décompression, les roches subissent des processus de retromorphose dans le faciès amphibolite. Dans l'état actuel des connaissances, cette décompression est interprétée comme étant également responsable de la fusion partielle qui affecte les métasédiments et la composante métapélitique des gneiss pour donner naissance aux premières migmatites exposées dans l'USG. Le Dévonien moyen est marqué par une phase distensive au cours de laquelle se développe le bassin océanique de la Brévenne. Un magmatisme d'arc produit des plutons de gabbro-diorite du Limousin et la Série d'arc du Morvan (Série de la Somme). Ces phénomènes sont interprétés comme le résultat de la subduction de l'océan Rhéique vers le Sud.

Le cycle hercynien *sensu stricto* commence par la fermeture de l'océan Rhéique qui sépare le Gondwana au Sud et la Laurussia au Nord. L'espace océanique se ferme par subduction vers le sud annonçant ainsi la collision entre le Gondwana et la Laurussia. Ce cycle comporte aussi des stades successifs de la convergence, collision et mise en place des nappes. La chaîne est organisée en éventail avec une zone médiane très peu structurée délimitée par des niveaux intensément affectés par des chevauchements d'échelle lithosphérique. Les nappes de charriage présentent une vergence sud dans le Massif Central (Cévennes, Albigeois et Montagne Noire). Dans l'Ardenne, elles sont à vergence nord. Cependant, le domaine médian amorce un début de désépaississement syn-orogénique qui se manifeste dès le Viséen supérieur (vers 330 Ma) par un étirement NW-SE associé à un flux de chaleur important. Ce contexte tectonique est favorable à la mise en place des massifs granitiques.

2.3.2 Processus syn à post-orogéniques

Les marqueurs structuraux et magmatiques du processus d'extension post-orogénique sont largement distribués dans différents secteurs de la chaîne paléozoïque (Costa, 1990 ; Faure et Pons, 1991 ; Faure, 1995). Bien que les délais entre l'étape de collision continentale et l'extension ne soient pas encore précisément établis, la majorité des auteurs admet que l'extension post-orogénique intervient entre le Carbonifère moyen (Stéphanien) et le Permien inférieur et entraîne en surface, l'activité des discontinuités structurales (failles normales ou décrochantes, cassantes ou ductiles, comme par exemple le Sillon Houiller, la faille du Pilat ou d'Autun...) et l'ouverture des bassins houillers intracontinentaux d'âge Stéphanien comme par exemple les bassins de Graissessac, de Saint-Affrique, de Lodève ou de St Etienne. La tectonique extensive tardi-varisque est responsable de l'amincissement de la lithosphère. Ce dernier processus est associé à une remontée de l'asthénosphère responsable d'un transfert de chaleur dans la
lithosphère par advection. Il en résulte un échauffement qui peut aussi entraîne la fusion partielle de la croûte continentale et notamment des composants pélitiques et génère des liquides magmatiques. Les quantités de liquides produits conditionnent ainsi la mise en place des plutons granitiques et ou des dômes migmatitiques. Ce régime tectonique extensif est caractérisé par une direction d'allongement NW-SE observable dans les granites porphyriques comme celui de la Margeride et les leucogranites du Limousin. Dans le domaine cévenol, la linéation d'étirement post-orogénique (E-W à NW-SE) se surimpose à celle associée à la tectonique des nappes orientée N-S à NE-SW.

Dans les Massifs français, l'évolution tectonique de la chaîne Varisque, depuis la collision continentale jusqu'à l'extension post-orogénique, montre que la fusion crustale est très répendue dans la chaîne. Elle résulte à la fois de conditions géodynamiques favorables et d'une lithologie fertile pour la production de liquides silicatés. Les analyses géochronologiques des vestiges de la fusion crustale ont permis de déterminer les contraintes temporelles associées à chaque étape de fusion dans l'histoire de la chaîne. Des granitoïdes et migmatites ont déjà été évoqués plus haut et leurs âges approximatifs ont souvent été indiqués. Cependant, dans la perspective de mieux définir les principaux épisodes du processus de fusion, de les distinguer les uns des autres dans un schéma d'ensemble et de mieux appréhender leur développement, il apparaît indispensable de déterminer avec plus de précision les âges des migmatites et des granitoïdes issus de la fusion partielle de la croûte.

2.3.3 Distribution de la fusion crustale

Le Massif Central français renferme de nombreux complexes anatectiques composés de migmatites et de granitoïdes largement distribués du Limousin aux Cévennes. Ils affleurent en massifs recoupant les gneiss et micaschistes du Para-autochtone. La distribution spatiale des migmatites et des granitoïdes suggère que le processus de fusion crustale est général dans tout le Massif Central. L'analyse de ces témoins montre que le magmatisme et la migmatisation se sont déroulés au cours des périodes différentes de l'histoire de la chaîne. Trois épisodes sont mis en évidence : (i) un épisode Tournaisien à Viséen inférieur accompagne la mise en place des granites du type Guéret, (ii) un épisode Viséen Supérieur au cours duquel on note l'intrusion de granites rouges, de micro-granites et l'épanchement des Tuffs Anthracifères et la formation de migmatites. Cette période est suivie par (iii) l'épisode namuro-westphalo-stéphanien qui contrôle la mise en place des leucogranites dans le Limousin, et des plutons de granites porphyriques dans le Sud du Massif Central ; les migmatites du Velay se forment également lors de cette

période. Outre les formations métamorphiques, la figure 2-4 montre la distribution des migmatites et des granitoïdes dans le Massif Central. Ce travail va mettre l'accent sur l'étude des migmatites.

Fig.2-4. Schéma structural simplifié du Massif Central.

2.4 Conclusion

L'histoire géologique de la chaîne Hercynienne dans le Massif Central français présente plusieurs épisodes de fusion crustale qui sont à l'origine de nombreux massifs de granitoïdes et de migmatites affleurant dans tout le massif. Les premières datations ont permis de déterminer un calage chronologique des différents processus géologiques qui ont contribué à la formation du Massif Central (Fig.2-4). L'interprétation de la géodynamique globale, l'évolution polyphasée de la chaîne est généralement admise par la majorité des auteurs. Cependant, il ressort souvent une controverse quant au contexte tectonique de certains évènements métamorphiques ou magmatiques tels que la formation du dôme de la Montagne Noire, les processus de migmatisation dans le domaine cévenol, le développement du dôme du Velay et la mise en place des migmatites du Limousin. Toute interprétation dynamique de ces environnements doit être précédée d'une analyse géochronologique détaillée. Et le choix de la méthode de datation conditionne la fiabilité des résultats obtenus. En effet, des datations effectuées par "roche totale" ou des méthodes classiques de dilution isotopique peuvent cacher des perturbations multiples et aboutir à des résultats inexacts qui conduisent systématiquement à une interprétation géologique erronée. D'autres méthodes comme la datation potassium-argon ou argon-argon sont suffisament sensibles aux effets de la température, dans ce cas, les résultats ne correspondent pas forcément à l'évènement migmatitique, mais plutôt au dernier évènement thermique.

Dans ce travail on va exploiter la méthode de datation de la monazite à la microsonde électronique pour mieux comprendre l'évolution crustale de la chaîne hercynienne française.

3 GÉOCHRONOLOGIE

3.1 Principes généraux

Diverses méthodes radiométriques permettent de dater une grande variété de processus géologiques qui sont associés à la cristallisation ou à la recristallisation des minéraux. Ces méthodes sont essentiellement basées sur les propriétés physiques de certains atomes radioactifs incorporés dans les minéraux communs ou accessoires des roches ignées, sédimentaires et métamorphiques. Après la cristallisation du minéral (fermeture du système), le nombre d'isotopes radioactifs décroît suivant une loi exponentielle avec émission d'un rayonnement (x, γ , α , β^- ou β^+) caractéristique de la réaction nucléaire correspondante. C'est une loi cinétique du premier ordre :

$$-\frac{dN}{dt} = \lambda N$$
 (a)

Le premier membre de l'équation correspond à l'activité du noyau radioactif. N étant le nombre d'atomes radioactifs présent à l'instant t et λ la constante de désintégration. En intégrant (a) il vient :

$$N = N_0 e^{-\lambda t}$$
 (b)

Dans cette équation, N_{θ} désigne la quantité d'atomes radioactifs initialement présents dans le système. Dans la pratique, la teneur initiale des atomes pères ne peut être mesurée directement, seules les quantités actuelles peuvent être déterminées. De plus, le système doit être resté clos depuis sa fermeture à l'âge *t* recherché. Si F* correspond au nombre d'atomes radiogéniques (atome fils), de (b) il découle l'égalité :

$$N_0 = N + F^*(\mathbf{c})$$

En combinant (b) et (c) il vient :

$$F^* = N(e^{\lambda t} - 1)$$
(d)

On peut déduire l'âge (t) de fermeture du système dans le cas où aucun atome F n'existe initialement. Dans ce cas on écrit :

$$t = \frac{1}{\lambda} \ln \left(\frac{F^*}{N} + 1 \right)$$
(e)

Dans la plupart des cas, il existe un nombre non négligeable F_a d'atomes initialement présents et de même type que les atomes radiogéniques F*. Il faudra alors faire plusieurs mesures isotopiques sur plusieurs échantillons cogénétiques et utiliser la méthode isochrone pour s'affranchir de cette nouvelle variable F_e. Les systèmes isotopiques correspondants sont par exemple Rb-Sr, Sm-Nd, Lu-Hf. En parallèle, la méthode isochrone offre l'avantage de donner la signature isotopique initiale du système géologique étudié, ce qui est très utile pour les études géochimiques. Dans le cas plus favorable où F_e est très faible devant F*, on parvient à corriger cette contribution initiale et ainsi à faire correspondre un âge significatif à chaque analyse. Le système U-Pb, appliqué aux minéraux riches en U et très pauvre initialement en Pbo, est de ce type. Pour qu'un âge mesuré soit géologiquement significatif, il faut que le système ait évolué en système clos depuis sa fermeture initiale, c'est-à-dire sans pertes ni gains, même partiels et qu'il ne soit pas affecté par un phénomène de diffusion. Des représentations graphiques adaptées permettent de contrôler ces phénomènes, dans le cas où plusieurs roches totales ou minéraux sont impliqués dans le calcul final d'un âge, il faut aussi qu'ils soient cogénétiques. En outre, l'analyse pétrographique détaillée et l'examen au microscope électronique à balavage (MEB) en électrons rétrodiffusés ou en cathodoluminescence permettent d'évaluer la pureté des minéraux. La méthode la plus précise pour accéder aux abondances isotopiques est de mesurer des rapports d'abondances isotopiques. Pour les méthodes spécifiques K-Ar et ³⁹Ar-⁴⁰Ar, un spectromètre de masse à source gazeuse est nécessaire. Dans la plupart des autres cas, un spectromètre à source solide et thermoionisation (TIMS) est utilisé après mise en solution des échantillons. La tendance actuelle vise à obtenir la même information, même significativement moins précise, à l'échelle de domaines spécifiques des minéraux à dater. A l'aide des microsondes ioniques (SIMS) de très grande sensibilité et équipées d'une haute résolution ($M/\Delta M \sim 5\ 000$) il est possible d'investiguer des domaines de 20 µm avec une perte de précision tout à fait acceptable (Compston et al., 1982; Williams, 1998). Récemment une alternative possible à l'utilisation des microsondes ioniques, investissement très lourd, apparaît avec le couplage d'un système d'ablation laser à un spectromètre de masse à ionisation par plasma induit (MC-ICP-MS) doté d'un multi-compteur d'ions (p. ex. Cocherie et al., 2005).

3.2 Géochronologie "chimique" sur monazite

3.2.1 Caractéristiques chimiques et minéralogiques de la monazite

La monazite est un phosphate de terre rares (TR) légères monoclinique renfermant de grandes quantités de

Th. La structure de la monazite se caractérise par la succession des tétraèdres PO₄ avec un atome métallique quasiment équidistant de neuf atomes d'oxygène. Cette structure est présentée sur la figure 3-1a et sa géométrie observable dans les roches est montrée sur les figures 3-2 et 3-3. La formule générale de la monazite s'écrit : (Ce, La, Th)PO₄. Un autre phosphate de terres rares, TR lourdes et Y (le xénotime de formule YPO₄, Fig.3-1a, 2) accompagne fréquemment la monazite. Les spectres d'émission électronique caractéristiques de la monazite et du xénotime sont exposés sur la figure 3-4. Les principales substitutions dans la monazite sont décrites par les réactions ci-après (Burt, 1989 ; Zhu et O'Nions, 1999).

$$2\text{TR}^{3+} = (\text{Th}, \text{U})^{4+} + \text{Ca}^{2+}; \text{TR}^{3+} + \text{P}^{5+} = (\text{Th}, \text{U})^{4+} + \text{Si}^{4+}; \text{Ca}^{2+} + 2\text{P}^{5+} = (\text{Th}, \text{U})^{4+} + 2\text{Si}^{4+};$$

La monazite a la particularité de posséder l'élément Th à l'état d'élément stoechiométrique (4 à 12% de ThO₂). On y trouve également des quantités significatives de U (jusqu'à 7% de UO₂). Ces deux éléments radiogènes produisent en quantité les isotopes ²⁰⁸Pb, ²⁰⁷Pb et ²⁰⁶Pb. De plus, la mesure du ²⁰⁴Pb non radiogénique montre que le Pb initial est le plus souvent négligeable (Parrish, 1990). La monazite est par conséquent utilisée depuis plusieurs décennies pour la datation U-Pb similaire à la méthode U-Pb sur zircon (TIMS ou SIMS). Du fait de la richesse en Th, de la quantité négligeable de Pb initial et des progrès de l'analyse élémentaire à la microsonde électronique, il est apparu dans les années 1990 qu'il était possible d'obtenir des âges fiables par cette méthode élémentaire, non isotopique (Suzuki et Adachi, 1991, 1994, 1998 ; Montel et *al.*, 1996 ; Braun et *al.*, 1998 ; Cocherie et *al.*, 1998 ; Growley et Ghent, 1999).

Fig.3-1. (a) Structure de la monazite et du xénotime. La distinction des deux minéraux est délicate en optique classique. (b) Volume de la maille en fonction des rayons ioniques (Ni et al., 1995). Les rayons sont d'après Shanon, (1976). Ils ont été calculés en fonction de la coordinence 8 et 9.

Fig.3-2. Image électrons secondaires d'un xénotime et d'une monazite automorphes du granite de Montalet (zone axiale Montagne Noire).

Fig.3-3. Images électrons secondaires de deux monazites automorphes de la migmatite des Cévennes.

Fig.3-4. Spectres en dispersion d'énergie de la monazite et du xénotime obtenu au microscope électronique à balayage.

Cette radiochronologie "chimique" utilise simultanément les chronomètres Th-Pb et U-Pb. La littérature montre que la composition de la monazite est un indicateur de l'évolution chimique et ou dynamique de son environnement de cristallisation (Gratz et Heinrich, 1997; Poitrasson et *al.*, 1996; Nagy et *al.*, 2002; Williams et Jercinovic, 2002). Elle permet ainsi de calibrer des domaines de pression-température ou encore de suivre les processus d'altération hydrothermale. Dans les conditions normales de cristallisation (~300°C), la monazite assimile préférentiellement les TR légères du La de rayon ionique 1,216 Å au Gd (1,107 Å). L'augmentation des teneurs en TR lourdes dans sa structure évolue en fonction de la température. En effet, la dilatation thermique du réseau cristallin de la monazite, vraisemblablement des sites tétraédriques, entraîne la diminution du volume des sites polyédriques expulsant les TR légères et favorisant l'incorporation des TR lourdes de plus petit rayon ionique. Des échanges facilités par l'augmentation de la température ont été mis en évidence entre la monazite et le xénotime qui définissent ainsi une solution solide (Heinrich et *al.*, 1997). Le xénotime est par contre un phosphate de terres rares lourdes (du Tb : 1,040 Å au Lu : 0, 977 Å). Il est aussi beaucoup plus riche en yttrium (Y : 1,019 Å) que la monazite.

Le xénotime, isotructural du zircon (ZrSiO₄), est tétragonal composé par une alternance de tétraèdres (PO₄) et des sites octaèdriques (REE, Y) PO4. Ces deux espèces contrôlent en grande partie l'abondance des TR dans les roches. Il a été démontré que la monazite préserve ses éléments constitutifs dans des conditions physico-chimiques critiques. Oelkers et al., (2002) montrent que soumise à des température de 50 à 230°C et des pH de 1,5 à 10, la monazite présente des taux de dissolution bien plus faibles voir négligeables que ceux des silicates les plus communs des roches. Le Th par exemple n'est pas transporté, il est réintégré dans l'édifice cristallin ou reprécipite sous forme d'hydroxyde au voisinage des zones primaires d'altération ou encore sous forme de phosphate donnant une nouvelle génération de monazite. Il a également été empiriquement montré que la monazite se comporte en système clos, et que les phénomènes de diffusion restent très limités jusqu'à des températures de 700°C (Cocherie et al., 1998) voir même 900°C en l'absence des circulations fluides (Braun et al., 1998). Cette stabilité conforte le potentiel chronologique de la monazite. En outre, il est définitivement admis que le plomb initial ou Pb commun se trouve en quantité négligeable (< 1 ppm) par rapport au plomb radiogénique qui est solidement piégé par le réseau cristallin. Le plomb radiogénique est aussi préservé des perturbations physico-chimiques postérieures à la cristallisation de la monazite. Toutefois, en fonction des conditions expérimentales, les travaux de Smith et Giletti, (1996) démontrent sur des sections cylindriques de monazite que la diffusion est 2 à 5 fois moins importante suivant la direction de l'axe « c » et qu'elle est plus significative pour une section de 50 µm de diamètre que pour une section de 200 µm. La monazite est un minéral primaire. Elle est un minéral accessoire et bien représenté dans les roches magmatiques du type granite leucocrate alumineux, les roches de haut degré de métamorphisme, et les roches partiellement fondues : migmatites. Elle est également présente dans les syénites néphéliques et les carbonatites. La monazite apparaît régulièrement en association avec le zircon, le xénotime, la biotite, l'apatite, l'allanite et la magnétite. Elle cristallise à partir des liquides magmatiques issus de la fusion partielle ou à partir des fluides hydrothermaux. Dans les roches d'origine sédimentaire, la monazite se forme sous l'effet des processus métamorphiques (cristallisation à l'état solide) combinant des conditions de pression-température voisines de l'isograde du grenat. Ses propriétés optiques rappellent celles du zircon et du xénotime, ce qui la rend difficilement repérable en analyse optique classique. Contrairement au zircon et malgré les teneurs assez élevées en U et Th, les monazites naturelles métamictes sont rarement observées ce qui limite les risques de réouverture partielle du système. L'absence de fissures d'irradiation et la rareté des monazites amorphes rendent peu probable l'interaction avec des fluides. Toutefois le rayonnement généré par la désintégration des radioéléments (ravonnement alpha) entraîne généralement des dommages dans les réseaux des minéraux contigus. A l'instar du zircon, un halo pléochroïque peut être observé autour de la monazite lorsqu'elle se trouve en particulier en inclusion dans un mica. La monazite est généralement dépourvue de fractures et présente souvent une macle polysynthétique qui évoque celle des plagioclases. La difficulté de distinguer la monazite du zircon ou encore du xénotime justifie l'usage du MEB ou de la sonde électronique, pour analyser les détails de la structure du minéral. Ces outils révèlent souvent une zonation chimique, associée à des variations de compositions chimiques au cours de la cristallisation. Pour la monazite, cette zonation est généralement de trois types :

- (i) une zonation irrégulière très commune dans la monazite est toujours corrélée avec les variations des teneurs en Th et en U. Elle ne présente aucune géométrie qui puisse être associée à la croissance du minéral. Aucune étude jusqu'aujourd'hui n'a démontré les mécanismes de formation de cette zonation ;
- (ii) une zonation typique de la croissance cristalline similaire à celle observée sur le zircon, plus rare, permet de suivre l'histoire du minéral. Cette zonation est plus fréquente dans les roches métadérivées. Dans ce cas les bandes de croissance du minéral permettent de suivre le processus métamorphique et d'évaluer sa durée ;
- (iii) un héritage, s'exprime sous la forme d'un domaine interne de composition différente enrobé dans une monazite néoformée (Cocherie et al., 2005, annexe 1). Les limites entre les deux générations de monazites sont généralement nettes montrant l'absence des processus de diffusion élémentaire pourtant démontrée expérimentalement. Le phénomène d'héritage permet de retracer l'évolution géodynamique complexe de la roche.

L'examen de la structure interne, de la texture de la monazite par rapport à l'ensemble des espèces minérales associées, est indispensable à la réalisation d'une étude géochronologique.

3.2.2 Datation U-Th-Pbtotal à la sonde électronique

3.2.2.1 Principes

Le radiochronomètre utilisé prend en compte les "familles radioactives" (Fig.3-5). Dans la gamme des âges explorés (> 10 Ma), les périodes de désintégration de tous les isotopes radioactifs sont négligeables devant celles des trois désintégrations principales. On dit dans ce cas que l'équilibre séculaire est atteint. Par conséquent, tout se passe comme si : $^{238}U \rightarrow ^{206}Pb$, $^{235}U \rightarrow ^{207}Pb$, $^{232}Th \rightarrow ^{208}Pb$

Fig.3-5. Schéma des trois principales familles radioactives.

La teneur en Pb_{total} mesurée peut s'exprimer en fonction des teneurs en Th, U et en fonction du temps :

$$Pb_{total} = \frac{M_{208_{Pb}}}{M_{232_{Th}}} Th\left(e^{\lambda_{232}t} - 1\right) + U\left[\frac{M_{206_{Pb}}}{M_{238_{U}}}\alpha\left(e^{\lambda_{238}t} - 1\right) + \frac{M_{207_{Pb}}}{M_{235_{U}}}\beta\left(e^{\lambda_{235}t} - 1\right)\right] (f)$$

 α et β désignent les proportions respectives de ²³⁸U et ²³⁵U, sachant que le rapport actuel ²³⁵U/²³⁸U est de 1/137,88. Ce rapport est considéré comme constant par conséquent :

$$\alpha = \frac{{}^{238}U}{{}^{235}U + {}^{238}U} = 0,9928; \quad \beta = \frac{{}^{235}U}{{}^{235}U + {}^{238}U} = 0,0072$$

Les constantes de désintégration λ_{232} , λ_{238} et λ_{235} valent respectivement : 0,49475.10⁻¹⁰; 9,8485.10⁻¹⁰; 1,55125.10⁻¹⁰ an⁻¹. Tous les termes de l'équation (f) sont connus et la valeur de *t*, donnée en million d'années (Ma), est déterminée par recherche dichotomique. Le calcul approché de l'erreur sur *t* s'appuie sur le développement limité d'ordre 1 de la fonction exponentielle : $e^{\lambda t} \approx 1 + \lambda t$. Il vient :

$$\Delta t = \frac{\Delta t}{t} t \text{ (g)}$$

Avec :

$$\frac{\Delta t}{t} = \frac{\Delta Pb}{Pb} + \frac{\Delta Th \frac{M_{208}}{M_{232}} \lambda_{232} + \Delta U \left[\alpha \frac{M_{206}}{M_{238}} \lambda_{238} + \beta \frac{M_{207}}{M_{235}} \lambda_{235} \right]}{Th \frac{M_{208}}{M_{232}} \lambda_{232} + U \left[\alpha \frac{M_{206}}{M_{238}} \lambda_{238} + \beta \frac{M_{207}}{M_{235}} \lambda_{235} \right]}$$

Théoriquement, chaque âge ponctuel peut être entaché de deux types d'erreurs, à priori impossibles à contrôler en l'absence de données isotopiques :

- (i) Du Pb initial (ou Pb commun), non identifiable puisqu'il ne s'agit pas d'une mesure isotopique, serait présent et intégré dans le Pb total pris en compte. Cette situation entraîne un "vieillissement" du résultat.
- La monazite, ou certains domaines de la monazite, pourraient être affectés de pertes de Pb radiogénique, entraînant cette fois un "rajeunissement" de l'âge.

On a déjà vu que la monazite est réputée pour sa pauvreté en Pb commun et son caractère très résistant. En outre, l'étude des images MEB et l'analyse ponctuelle de très grande résolution spatiale (1-2 µm) permettent d'éviter les sources potentielles de Pb commun que sont les inclusions, les fractures et les défauts des grains à dater. Enfin, les domaines altérés peuvent être facilement évités, soit à partir des images MEB, soit à postériori à l'aide de l'analyse totale de chaque point à dater. En effet, tous les éléments constitutifs du domaine à dater étant analysés, il est facile de vérifier que la composition correspond effectivement à celle d'une monazite. Un autre avantage de la microsonde électronique est de permettre d'acquérir un grand nombre d'analyses en mode automatique, ce qui permet de compenser le manque relatif de précision des mesures individuelles.

3.2.2.2 Validation de la méthode de datation U-Th-Pb à la sonde électronique

Deux approches sont envisageables pour valider cette méthode non isotopique :

La première est indirecte. Elle consiste à dater la monazite à la sonde électronique d'une part et le zircon de la même roche par une méthode isotopique d'autre part (spectrométrie de masse à thermo-ionisation et dilution isotopique (ID-TIMS) ou microsonde ionique). Mais cette approche ne peut être qu'indicative, car les conditions de fermeture des deux systèmes ne sont pas identiques : les âges ne sont donc pas nécessairement identiques. De plus, il est en fait assez rare d'extraire des grains de bonne qualité à la fois pour ces deux espèces minérales.

La seconde est directe ; elle consiste à faire deux lots identiques de monazites à partir d'une population unique extraite d'une même roche. C'est ce qui a été fait sur deux échantillons couvrant la gamme d'âges rencontrée dans notre travail (300-500 Ma). La première monazite est issue d'une anatexite du sud du Massif Armoricain. Cet exemple a souvent été traité au cours de l'évolution et de l'amélioration de cette méthode de datation depuis le début de sa mise en œuvre (Cocherie et *al.*, 1998 ; Cocherie et Albarède, 2001). La datation isotopique conventionnelle sur populations de grains de monazite avait donné 310 ± 5 Ma (Peucat, 1983). Le traitement des données obtenues à la microsonde électronique selon la procédure utilisée dans ce mémoire donne, un âge moyen à 316 ± 5 Ma, en utilisant la méthode isochrone Th/Pb = f(U/Pb) (Fig.3-6). Cet âge obtenu à partir de 63 analyses est bien validé par la cohérence de la pente de la droite de régression avec celle de l'isochrone théorique à l'âge déterminé au barycentre de la population. Les détails sur la méthode seront exposés plus loin.

La seconde monazite est issue d'un leucogranite du nord du Massif Armoricain (Plouizy). Il a été daté par la méthode isotopique conventionnelle (ID-TIMS) à 523 ± 4 Ma (Egal et *al.*, 1999). Un grand nombre d'analyses a été réalisé sur les grains séparés pour l'analyse à la microsonde dans la mesure où un test de reproductibilité avait été fait. En effet, cette méthode non-destructive permet, le cas échéant, de réaliser plusieurs séries d'analyses indépendantes sur exactement les mêmes grains. Ainsi, un âge de 528 ± 7 Ma sur 188 analyses a été obtenu (Fig.3-7). La parfaite concordance entre la droite de régression et l'isochrone théorique permet de valider sans ambiguïté l'âge moyen. Comme le montrent les deux exemples traités, cette méthode est donc précise, mais aussi et surtout elle est juste dans la limite des erreurs sur les âges.

Fig.3-6. Diagramme Th/Pb vs U/Pb du granite MOR 34 (Sud Massif Armoricain).

Fig.3-7. Diagramme Th/Pb vs U/Pb du granite de Plouizy (Sud Massif Armoricain).

3.2.2.3 Détermination des teneurs en U, Th et Pb à la sonde électronique

La datation par microsonde électronique de la monazite est indifféremment pratiquée en lame (\sim 30 µm d'épaisseur) et en section polie (grains isolés de la matrice rocheuse, annexe 5). Dans les deux cas, il est indispensable de s'assurer de la nature du minéral choisi pour la datation et de sélectionner les plages dépourvues de fractures, inclusions et les zones mal cristallisées ou altérées par une étude systématique au MEB (électrons rétrodiffusés). Les préparations sont métallisées au carbone pour assurer l'évacuation des électrons non directement utilisés pour l'analyse. La métallisation n'induit aucune contamination en Pb. L'étude sur lame mince préserve l'information texturale, tandis qu'une étude sur grains séparés permet de travailler sur les grains les plus convenables pour l'analyse mais en favorisant ceux de plus grande taille. Au delà de cette différence méthodologique, toute la procédure analytique à la sonde électronique est identique. Pour la SX 50 (BRGM), les premiers auteurs (Cocherie et *al.*, 1998 ; Cocherie et Albarède, 2001) ont décrit avec précision le programme d'analyse de la monazite pour la chronologie. Ce programme intègre le choix des éléments à analyser, la sélection des raies caractéristiques utilisées avec pour objectif d'éviter au maximum les phénomènes d'interférence entre les éléments et maximiser ainsi le rendement quantitatif de chaque élément. Le tableau 3-1 qui suit résume le mode opératoire. La majorité des analyses a été faite à 100 nA autorisant une limite de détection de 150 ppm pour U, Th, et Pb. Pour certains échantillons, cette limite est amélioréé à 105 ppm pour U, 130 ppm pour Th et 110 ppm pour Pb en appliquant un courant de 200 nA.

Eléments	Témoins	Raie	Cristal	THT (kV)	T (comptage)
U	UO ₂	Μα	PET	20	100 s
Pb	Galène	Mα	PET	20	120 s
Nd	NdPO ₄	Lβ	LIF	20	20 s
Gd	GdPO ₄	Lβ	LIF	20	20 s
Ca	Apatite	Κα	PET	20	20 s
Р	NdPO ₄	Κα	ТАР	20	20 s
Th	ThO_2	$M\alpha$	PET	20	20 s
Sm	SmPO ₄	Lα	LIF	20	20 s
Ce	CePO ₄	Lα	PET	20	20 s
Si	Albite	Κα	ТАР	20	20 s
La	LaPO ₄	Lα	PET	20	20 s
Y	YPO_4	Lα	ТАР	20	20 s
Pr	PrPO ₄	Lβ	LIF	20	20 s

CAMECA SX 50

Tableau 3-1. Paramètre de calibration de la microsonde électronique pour une analyse quantitative multiélément des monazites. La tension (THT) opératoire est fixée à 20 kV. Les même temps de comptage sont appliqués au bruit de fond.

Les limites de détection évoquées plus haut sont considérées comme représentatives des erreurs absolues U, Th et Pb sur les mesures de U, Th et Pb. Pour les teneurs faibles en Pb des monazites "jeunes", l'erreur relative correspondante (Pb/Pb) est tout à fait cohérente avec l'incertitude observée empiriquement. Au contraire, dans le cas des teneurs en U et surtout Th très élevées de la plupart des monazites, ce mode de calcul statistique de l'incertitude peut conduire à des erreurs relativement très faibles (par exemple, 0.1% pour 15% en poids de Th) sans rapport avec l'incertitude effective qui doit intégrer des sources d'erreur autre que la simple statistique comme l'incertitude sur la valeur les témoins eux-mêmes et leur mesure, les corrections d'effet de matrice, les dérives instrumentales inévitables... C'est pourquoi, nous supposerons arbitrairement que, quel que soit le niveau de teneur atteint par Pb, U et surtout Th, l'erreur relative ne pourra pas être inférieure à 2%. Cette valeur arbitraire a été validée par un grand nombre de datations effectuées au BRGM depuis plus de 8 ans (Cocherie et Legendre, Lithos, accepté). Nous prendrons un exemple pour illustrer cette observation. Si on considère une monazite ayant cristallisé il y a 3 000 Ma et contenant 1.5% de U et 15% de Th, au cours de ces 3 000 Ma, 3% de Pb seront produits. En ne tenant

compte que de l'erreur statistique, les erreurs relatives calculées seront respectivement de 1%, 0.1% et 0.5%. En conséquence, l'erreur absolue calculée sur cet âge ponctuel serait de \pm 24 Ma. Au contraire, si on applique une erreur minimale de 2% sur U, Th et Pb, l'erreur absolue sur l'âge devient égale à \pm 117 Ma ! Cette dernière erreur est très différente, mais elle est beaucoup plus réaliste. Sans cette approche, le traitement statistique d'une population d'âges sur une monazite ancienne et/ou très riche en U et Th n'aurait aucune chance de conduire à une population unique selon les critères du MSWD (Wendt et Carl, 1991), ce qui montre qu'il faut fixer une valeur minimale aux erreurs relatives sur les concentrations (ici choisie empiriquement à 2%). Dans le cas d'une monazite hercynienne de même composition en U et Th (1.5 et 15%), l'effet devient presque négligeable : l'erreur absolue sur l'âge augmente seulement de \pm 18 à \pm 24 Ma.

3.2.2.4 Traitement des données, calcul des âges

On a vu que pour chaque analyse ponctuelle sur monazite, outre U, Th et Pb, on obtient aussi les teneurs en P, La, Ce, Pr, Nd, Sm, Gd, Y et Si. La teneur en O est recalculée. Ces analyses sont le plus souvent obtenues sur des "traversées" linéaires par groupes de dix analyses équidistantes.

 si une analyse ne satisfait pas à au moins l'un des quatre critères suivants, elle est systématiquement rejetée :

$$15\% < Ce < 35\%$$
; $9\% < P < 17\%$; Pb > 0.015%; $97\% < \text{total éléments} < 103\%$

Ainsi, sont écartées toutes les analyses ne correspondant pas une monazite. Par contre, si un domaine possède une teneur en U inférieure à la limite de détection (généralement 150 ppm), elle peut être prise en compte. Si le matériel à dater est de bonne qualité et si les domaines sont convenablement sélectionnés généralement, seules quelques rares analyses sont écartées.

(ii) L'étape suivante est de déterminer s'il n'existe pas une ou plusieurs analyses aberrantes (sur une centaine) qui pourraient être associées à une perte de Pb* (Pb radiogénique) ou à un excès de Pb (Pb commun). Pour cela on utilise les différentes options du programme ISOPLOT de Ludwig, régulièrement amélioré et complété (Ludwig, 2004). Ce programme est maintenant utilisé par tous les géochronologues, il permet donc de comparer facilement la signification des âges et des

erreurs déterminées par l'ensemble des laboratoires. En particulier, l'option "weighted average", pondérant chaque analyse de manière inversement proportionnelle à son erreur, permet de visualiser les données statistiquement aberrantes. A ce stade, il arrive fréquemment que deux à quatre analyses soient rejetées. Il est important de souligner que notre calcul approché de l'erreur sur chaque âge individuel est cohérent avec ce qui est obtenu par d'autre auteurs après retraitement des données issues de leurs travaux et corroboré par l'approche graphique Th/Pb = f(U/Pb) décrite plus loin (voir Cocherie et Legendre, soumis).

(iii) La question suivante est de s'assurer que l'ensemble des grains analysés (souvent 10 et plus) a cristallisé durant la même période et que tous les domaines au sein d'un grain ont cristallisé quasi simultanément (à l'échelle du Ma) malgré les hétérogénéités chimiques clairement visibles. Pour cela, on compare l'observation des images MEB (électrons rétrodiffusés) et la succession des âges individuels présentés dans le diagramme "weighted average". Si le cas est simple, car aux domaines clairement visibles au MEB correspondent des âges nettement distincts, on identifie les populations qui seront ensuite traitées statistiquement de manière séparée comme on verra par la suite. Si le cas est plus compliqué, car les domaines sont d'âges comparables dans la limite des erreurs individuelles sur chaque analyse, mais le MSWD est significativement trop élevé pour que la population puisse être considérée comme unique, alors on peut utiliser l'option "Unmix ages" qui utilise l'algorithme de déconvolution de mélange d'âges de Sambridge et Compston (1994). Cependant, seule la confrontation de ces indications avec l'examen détaillé des images MEB permettra de donner un sens géochronologique à ces contraintes statistiques.

Moyenne pondérée

Prenons par exemple le cas du grain de monazite (grain 5) du granite filonien de St-Laurent (Cocherie et *al.*, 2005, annexe 1), une simple moyenne pondérée des âges du grain (Fig.3-8a) montre une certaine hétérogénéité des âges attestée par le MSWD trop élevé à 2.7 au lieu d'une valeur de 1.3 acceptée pour 139 données (Wendt et carl, 1991). Ceci est confirmé par l'utilisation de l'option "Unmix ages" qui permet d'identifier deux populations d'âges vers 344 et 310 Ma (Fig.3-8b). Ensuite, on observe que les âges les plus jeunes sont localisés à la périphérie du grain.

Fig.3-8. Résultat du traitement des données du grain 5 (filon granitique de St-Laurent). (a) Moyenne pondérée, (b)

fréquence des âges dans le grain. Noter les pics à 344 et 310 Ma.

Fig.3-9. Résultat du traitement des données du grain 12 (migmatite Puylaurent, Cocherie et al., 2005, annexe 1) extrait de la migmatite des Cévennes.

Modèles isochrones

Dès le début du développement de cette méthode "chimique", les précurseurs japonais (Suzuki et Adachi, 1991) ont estimé que pour accéder à l'âge moyen, une simple moyenne directe des âges n'était pas totalement satisfaisante. En plus d'améliorer statistiquement la précision sur cette moyenne, l'objectif était de valider graphiquement la signification géochronologique de l'âge obtenu dans un diagramme isochrone, à la manière du système Rb-Sr, mais à l'échelle d'un seul minéral cette fois, en utilisant la propriété de la monazite de montrer très souvent une composition élémentaire variable en U et Th pour des grains cogénétiques.

$$Pb = f(Th^*) \text{ avec } Th^* \text{ }_{apparent} = Th_{mesure} + Th_{U-equivalent}$$

 $Th_{U-équivalent}$ = quantité de Th qu'il aurait fallu pour produire autant de Pb que celle issue de la quantité d'U mesurée, pendant le temps *t* recherché. Il vient :

$$Th^{*} Th \qquad \frac{M_{232} * U}{e^{232^{t}} 1} * \frac{0.9928}{M_{238}} * e^{238^{t}} 1 \qquad \frac{0.0072}{M_{235}} * e^{235^{t}} 1 \qquad (h)$$

Des analyses cogénétiques (Exemple Fig.3-10) se distribueront selon une droite isochrone dans le diagramme Pb = f(Th*). En l'absence de Pb initial, cette isochrone doit passer par l'origine et l'âge de l'ensemble des points est calculé à partir de la pente de la droite.

Cette approche isochrone est intéressante car les analyses de domaines de composition différente doivent s'aligner et la droite de régression doit passer par l'origine, si les analyses correspondantes appartiennent à des domaines cogénétiques. Evidemment le MSWD doit satisfaire aux conditions décrites par Wendt et Carl (1991). L'âge recherché est donné par la pente de la droite isochrone.

En 2001, Cocherie et Albarède proposèrent une autre représentation isochrone. Si on divise par Pb les deux membres de l'équation (f), il vient :

$$1 = \frac{M_{208}}{M_{232}} \frac{Th}{Pb} \left(e^{\lambda_{232}t} - 1 \right) + \frac{U}{Pb} \left[\frac{M_{206}}{M_{238}} 0.9928 \left(e^{\lambda_{238}t} - 1 \right) + \frac{M_{207}}{M_{235}} 0.0072 \left(e^{\lambda_{235}t} - 1 \right) \right]_{(i)}$$

C'est une équation d'une droite de type Th/Pb = a U/Pb + b, dont la pente *a* est fonction de l'âge. Cette pente est donnée par :

$$a = -\frac{\frac{M_{206_{Pb}}}{M_{238_{U}}}\alpha(e^{\lambda_{238}t} - 1) + \frac{M_{207_{Pb}}}{M_{235_{U}}}\beta(e^{\lambda_{235}t} - 1)}{\frac{M_{208_{Pb}}}{M_{232_{Tb}}}(e^{\lambda_{232}t} - 1)}$$
 (j)

Dans la représentation graphique de Th/Pb = f(U/Pb), les intercepts avec les axes Th/Pb et U/Pb sont respectivement (k) et (l) :

$$1 = \frac{M_{208}}{M_{232}} \frac{Th}{Pb} \left(e^{\lambda_{232}t} - 1 \right) \quad (k)$$

$$1 = \frac{U}{Pb} \left[\frac{M_{206}}{M_{238}} 0.9928 \left(e^{\lambda_{238}t} - 1 \right) + \frac{M_{207}}{M_{235}} 0.0072 \left(e^{\lambda_{235}t} - 1 \right) \right] \quad (l)$$

Potentiellement, on a donc trois possibilités pour calculer l'âge à partir de ces trois équations en traitant un groupe d'analyses issues de domaines de même âge. Par contre, les âges déduits des intercepts donnent des âges Th-Pb et U-Pb indépendants, ce qui constitue un excellent critère de validation de l'âge moyen retenu. En d'autre terme, ces deux âges doivent être identiques dans la limite des erreurs sur ces âges, si un seul événement a été enregistré par le matériel étudié. Cependant, les analyses étant généralement plutôt dispersées vers le centre du diagramme, ce qui permet de bien définir la droite de régression pour la population étudiée, les erreurs sur ces deux intercepts sont souvent élevées. Or, à chaque point du diagramme correspond un âge unique, on peut donc calculer l'âge moyen de la population là où l'erreur est la plus faible, c'est-à-dire au barycentre des analyses. Comme les erreurs sur les rapports U/Pb et Th/Pb sont corrélées, la meilleure représentation de l'erreur sur chaque analyse est une ellipse. Sachant que les erreurs sur U, Th et Pb ne sont pas corrélées, le coefficient de corrélation entre les erreurs sur U/Pb et Th/Pb est donné par :

$$\rho_{\frac{U}{Pb},\frac{Th}{Pb}} = \frac{\sigma_{Pb}^2}{\sqrt{(\sigma_U^2 + \sigma_{Pb}^2)^* (\sigma_{Th}^2 + \sigma_{Pb}^2)}} \quad (m)$$

A l'aide du programme ISOPLOT, il est possible d'identifier la valeur du barycentre et de visualiser l'enveloppe d'erreur constituée de deux hyperboles symétriques de part et d'autre de la droite de régression calculée. L'âge moyen est calculé de manière optimum conduisant à une précision très satisfaisante. La figure 3-11 montre sur un exemple la démarche suivie.

Fig.3-11. Représentation graphique d'une isochrone calculée à partir des données analytiques. Sur le même diagramme, pour comparairon, une isochrone théorique est également projetée. L'âge est calculé au barycentre des points où l'erreur est la plus petite (resserement de l'enveloppe d'erreurs).

Chaque analyse est représentée par une ellipse d'erreur. La droite de régression est pratiquement confondue avec l'isochrone théorique à l'âge moyen calculé au barycentre. En d'autres termes, les âges U-Pb et Th-Pb déduits des intercepts sont égaux dans la limite des erreurs sur ces âges.

Initialement on vérifie que le MSWD est compatible avec une population unique. Ensuite, l'intérêt de cette représentation est d'apporter une contrainte graphique pour la validation de l'unicité de la population. En effet, deux populations de chimisme très différent et d'âge également légèrement différent peuvent conduire à une régression bien définie et satisfaisant aux conditions du MSWD. Par contre, dans ce cas la droite de régression aura une pente significativement différente de celle de l'isochrone théorique (Fig.3-12).

Fig.3-12. Diagramme Th/Pb vs U/Pb illustrant l'effet de mélange de deux populations d'ages différents.

Tous les calculs pour accéder aux paramètres indispensables et aux erreurs, depuis les données brutes de la microsonde, sont accessibles à partir d'un programme compatible EXCEL : "EPMA dating" (Pommier et *al.*, 2002). Un point important est à souligner, l'approche graphique Th/Pb *vs* U/Pb nécessite uniquement la connaissance des erreurs sur U, Th et Pb, sans aucune approximation, pour accéder en toute rigueur aux erreurs sur tous les paramètres du diagramme correspondant sans passer par exemple sur une estimation de l'erreur sur les âges individuels ou sur Th*. Il a été démontré qu'ainsi on peut éviter la création erronée de deux populations d'âges voisins ou au contraire, on distinguera plus rigoureusement deux populations différentes en âges (Cocherie et

Legendre, accepté). En d'autre termes, le calcul direct de Δt pour chaque âge individuel conduit à $|\Delta t+|=|\Delta t-|$ or comme le montre le diagramme Th/Pb vs U/Pb on devrait avoir $|\Delta t+|>|\Delta t-|$.

En résumé, le tableau 3-2 ci-dessous décrit les limites d'utilisation des diverses approches graphiques pour accéder aux âges.

	Avantages	Iconvénients
Moyenne pondérée	-Très simple. -Visualisation des hétérogénéités du grain.	 -Calcul Δt approché, avec Δt+ = Δt- entraînant un biais sur l'âge moyen de quelques Ma car Δt+ > Δt- rajeunit l'âge. -Erreur (Δt+) sur l'âge moyen est sous-estimée.
Isochrone Pb = f(Th*)	-Représentation 2D. -Bonne alternative, si grande vari- ation de (Th+U) : erreur sur l'âge voisine de 20 Ma, quelle que soit la gamme d'âges.	-Définition de Th* complexe. -Pente peu précise si Th+U = Cte erreur sur l'âge > 30 Ma.
Isochrone Th/Pb = f(U/Pb)	 -Représentation 2D. -Définition simple de Th/Pb et U/Pb (pas de Th*). -Possibilité du choix du point le mieux défini pour le calcul de l'âge. -Contrôle de la signification de l'âge moyen par les âges U-Pb et Th-Pb des interceptes et la pente de la régression comparée aux isochrones de références. -Erreur sur l'âge entre 2 et 15 Ma selon l'âge (300-3 000). 	-Si Th/U = Cte, la pente de la régres- sion ne permet plus de contrôler la signification de l'âge calculé au barycentre : dans ce cas, utiliser Pb = f(Th*).

Tableau 3-2. Etude comparative des trois protocoles de calcul des âges par datation "chimique" de la monazite à la

sonde électronique.

3.3 Géochronologie U-Pb sur zircon

La datation isotopique U-Pb sur zircon est la méthode de datation actuellement la plus utilisée pour dater les processus géologiques (Wetherill, 1956 ; Krogh, 1973) pour deux raisons :

(i) Le zircon est un minéral accessoire relativement peu fréquent.

(ii) Il est particulièrement réfractaire, il représente généralement un système fermé.

L'objectif de ce paragraphe n'est pas de revenir en détail sur cette méthode de datation, mais d'expliquer comment cette méthode pourrait constituer un complément à l'approche U-Th-Pb *in situ* sur monazite sélectionnée pour ce travail.

La méthode conventionnelle utilisant la dilution isotopique après mise en solution des zircons et mesure des rapports isotopiques par TIMS n'a pas été retenue. En effet, devant la forte probabilité de rencontrer des héritages, on a choisi l'analyse U-Pb *in situ* par microsonde ionique. Les mesures ont été réalisées sur l'IMS 1270 au CRPG (CNRS) de Nancy. Le protocole analytique est similaire à celui développé sur SHRIMP (Compston et *al.*, 1982; Williams, 1998), il est décrit par Deloule et al. (2001).

En raison de la difficulté d'accéder avec précision au rapport ²⁰⁶Pb/²⁰⁴Pb nécessaire à la correction du Pb commun, tout particulièrement pour les âges "jeunes" (< 800 Ma), nous avons choisi d'utiliser la méthode dite du ²⁰⁷Pb développé par Compston et al. (1992). Cette méthode permet de prendre compte graphiquement du Pb commun pour le calcul de l'âge, tout en reportant les analyses ²⁰⁷Pb/²⁰⁶Pb et ²³⁸U/²⁰⁶Pb, non corrigées du Pb commun.

Les résultats sur monazite et zircon extrait d'un même échantillon permettront de préciser les conditions de fermeture et de réouverture de ces deux systèmes.

4 NOUVELLES DONNÉES GÉOCHRONOLOGIQUES SUR LA FUSION CRUSTALE DANS LE MASSIF CENTRAL FRANÇAIS.

4.1 Introduction

Les données géochronologiques déjà disponibles sur les zones cibles (Fig.4-1) ont été obtenues soit par mesure sur "roche totale" ou encore par des méthodes conventionnelle par dilution isotopique (ID.TIMS). Mais ces méthodes peuvent cacher des perturbations multiples produites par la succession ou la superposition de processus thermiques ultérieurs. Les systèmes isotopiques K-Ar et Ar-Ar peuvent s'ouvrir à plus basse température, les résultats dans ce cas ne correspondent pas à l'évènement magmatique, mais plutôt au dernier évènement thermique. Dans ce contexte, il était impératif d'envisager d'autres méthodes de datation des processus de fusion. C'est dans cet objectif que cette étude s'emploie à démontrer le potentiel et la contribution de la méthode de datation ponctuelle et *in situ* de la monazite à la sonde électronique dans la compréhension de l'évolution crustale dans le Massif Central français. Une corrélation entre les différents domaines du Massif Central sera établie et un modèle géodynamique proposé.

La figure 4-1 montre la localisation des quatre sites principaux d'étude où des échantillons de migmatites et de granitoïdes ont été collectés. Pour chaque site, la procédure analytique et le contexte géologique seront examinés séparément. Dans le Limousin des échantillons de migmatites, distribués sur une plus grande surface ont également été prélevés.

Fig.4-1. Carte géologique simplifiée du Massif Central français avec la localisation des trois principales zones cibles d'étude (Limousin, Cévennes-Velay et la Montagne Noire) des migmatites et granitoïdes d'âge Carbonifère et l'étude locale (échantillons locaux) des migmatites d'âge Dévonien.

4.2 Les Cévennes

Fig.4-2. Carte litho-tectonique simplifiée du domaine cévenol.

Les migmatites des Cévennes appartiennent à un complexe formé de paragneiss et d'orthogneiss (parfois appelé unité de Masméjean) chevauché par le Para-autochtone d'âge Paleozoïque inférieur (Faure et *al.*, 2001). Ce dernier est composé essentiellement des micaschistes des Cévennes lesquels comportent une épaisse série gréso-pélitique contenant des quartzites, des grés arkosiques des microconglomérats, des schistes noirs presque constitués uniquement de métapélites graphiteuses ; des gneiss œillés et des gneiss albitiques à grain fin. Dans cette série d'origine terrigène se concentrent également des intrusions centimétriques à décamétriques de filons souvent boudinés de granite, des panneaux de roches basiques (vaugnérite) (Weisbrod, 1968). On observe aussi des filons de l'Aigoual-St-

Guiral-Liron au Sud, du Pont-de-Montvert-Borne au Nord, daté à 315 ± 5 Ma par Rb-Sr sur roche totale (Mialhe, 1980), et des leucogranites illustrés par les plutons des Signaux-Bougès dans le massif du Mont-Lozère et du granite de Rocles au Nord-Est du massif de la Borne. Les échantillons analysés proviennent de l'unité des gneiss migmatitiques. Bien qu'il soit toujours possible d'observer des vestiges des stades précoces de migmatisation caractérisés par des "îlots" difformes de matériel leucocrate, les textures perceptibles et les quantités importantes de leucosomes des migmatites vraies évoquent un taux de fusion important. Il s'agit essentiellement de diatexites (Fig.4-3). Leur assemblage minéralogique principal exprime des conditions de fusion hydratée des gneiss. Cette paragenèse est définie par du quartz, du feldspath potassique, de la biotite moins abondante dans les leucosomes et du plagioclase de dimensions variant entre 0,1 à 0,5 mm. Localement, les minéraux néoformés peuvent atteindre 1 mm. Les limites des grains sont rectilignes avec un développement de points triples qui indiquent des traces de cristallisation statique du liquide de fusion dans les leucosomes grenus (Fig.4-3). Ces derniers passent latéralement aux mélanosomes granoblastiques très riches en biotite et muscovite héritées.

Fig.4-3. Exemple des textures observables dans la migmatite des Cévennes (St-Laurent). Les plages de néosome présentent une texture magmatique grenue contrairement aux paléosomes métamorphiques.

Les leucosomes et les mélanosomes forment des couches de géométrie très variée, la foliation originelle est généralement disloquée, voire détruite. On relève aussi de petits cristaux de mica blanc interstitiel, du zircon, de l'apatite, de la monazite, des sulfures multiples, des oxydes de fer et de la chlorite qui résulte de l'altération de la biotite. Les migmatites des Cévennes se distinguent essentiellement des migmatites contiguës du dôme du Velay au Nord par leur paragenèse. Les migmatites du Velay se développent en conditions anhydres (migmatite M3 de Montel et *al.*, 1992). La fusion dans ces conditions de sous saturation en fluides a impliqué la déstabilisation des micas à des températures plus importantes comprises entre 760 et 850 °C avec une pression estimé entre 4.4 et 6.0 kbar (migmatisation M4, Montel et *al.*, 1992). Le calage géochronologique de la mise en place de migmatites des Cévennes n'est pas encore bien déterminé. Elles sont toutefois associées aux processus orogéniques antérieurs à la mise en place des plutons de monzogranite porphyrique type Margeride. Il apparaît donc essentiel que la datation de ces migmatites apportera des informations complémentaires pour comprendre l'évolution structurale des Cévennes.

Outre les trois faciès du granite de Rocles, trois échantillons de dykes de leucogranites boudinés, localisés le long des accidents qui séparent les micaschistes des Cévennes et les gneiss migmatitiques, ont été analysés. A l'instar des massifs de leucogranites et monzogranites westphaliens (Margeride, Signeaux, Pont-de-Monvert et la Borne) plus connus, les granites étudiés dans ce travail sont des indicateurs de l'activité plutonique des Cévennes. Il apparaît par conséquent important de déterminer les relations chronologiques de ces objets à l'échelle de la région.

Trois groupes de dykes ont été recensés. Ils se distinguent par leur couleur, leur forme et leur texture macroscopique. L'échantillon de Puylaurent correspond à un granite orienté, homogène à biotite millimétrique dominante. Les analyses des lames minces révèlent une texture généralement granoblastique avec des lits de quartz engrenés, le feldspath potassique se présente en phénocristaux fracturés et allongés suivant la direction des lits de quartz. Les deux filons granitiques (a) et (b) (Fig.4-4) de St-Laurent comportent une paragenèse identique composée de quartz, de feldspath potassique plus abondant que le plagioclase, de micas, de zircon, d'oxydes divers et de pyrite automorphe. D'autres minéraux accessoires comme la monazite et le xénotime sont observés. La paragenèse principale est complétée par des assemblages de minéraux secondaires en position interstitielle et en colmatage dans les microfractures. Les minéraux sont organisés en texture grenue hétérogranulaire, la déformation est très faiblement exprimée.

Fig.4-4. Carte de localisation des échantillons du domaine cévenol. La carte détaillée du granite de

Rocles met en évidence les trois faciès du granite.

- 4.2.2 Résultats
 - 4.2.2.1 Les migmatites

Les images par électrons retrodiffusés des monazites issues des échantillons de Puylaurent et de St-Laurent

(Fig.4-5) montrent les différentes zonations observées dans les minéraux. Les zonations (Fig.4-5) sont fonction de la distribution des éléments lourds tels que U et Th. Ces domaines de compositions chimiques différentes ne sont pas systématiquement différents en âge. Les zonations découlent des variations chimiques dans l'environnement de cristallisation des minéraux. Pour des teneurs à peu près similaires en Th, la migmatite de Puylaurent comporte des grains avec des cœurs hérités beaucoup moins riches en U et en autres éléments de substitution comme le Ca (Fig.4-6). Les deux domaines comportent généralement des limites bien définies montrant ainsi l'absence des processus de diffusion chimique au cours de la surimposition d'une nouvelle génération. Une telle configuration permet de discriminer avec précision l'âge de la néoformation ou encore de la migmatisation (323 ± 3 Ma) de celui de l'héritage à 550 ± 86 Ma, comme dans l'exemple de la migmatite de Puylaurent (Cocherie et *al.*, 2005 ; annexe 1).

Fig.4-5. Zonation visible en électrons retrodiffusés de deux grains de monazite. (a) monazite xénomorphe de la migmatite de Puylaurent, (b) monazite sub-automorphe de la migmatite de S¹-Laurent. Les deux images illustrent la zonation irrégulière et amiboïde la plus fréquemment observée dans les monazites des migmatites et des gneiss migmatitiques. Les zones claires sont plus riches en U et Th que les zones sombres.

Les images sont utilisées pour localiser les secteurs à analyser. L'identification des grains à domaines

multiples (Cocherie et *al.*, 2005; annexe 1) par le microscope électronique à balayage ou par la microsonde électronique permet de séparer en amont des populations d'analyses. L'exemple présenté ci-après (Figs.4-6, 7) témoigne de la nécessité de la procédure.

Fig.4-6. Exemple de cartographie élémentaire (microsonde électronique SX 50, BRGM) d'une monazite extraite de la migmatite de Puylaurent. La zonation chimique semi quantitative met en évidence les deux principaux composants résultant à priori de deux épisodes de croissance cristalline. Notez les bandes de croissance concentriques révélées par l'Y et le Ca au cœur du grain.

Le nombre de points d'analyses réalisé est variable selon la taille et la complexité du grain. La figure 4-7 illustre la procédure d'acquisition des données sur un grain : le grain complexe de la migmatite de Puylaurent. Le calcul d'un âge isochrone sur la périphérie de ce grain donne 324 ± 6 Ma à partir de 38 analyses (Fig.4-8), un résultat identique à celui déterminé sur la population totale des huit autres grains qui sont eux tous homogènes avec 99

points d'analyses conduisent à un âge 323 ± 3 Ma (Cocherie et *al.*, 2005; Fig. 7, annexe 1). L'échantillon de migmatite de St-Laurent produit de rares grains de monazite (4 grains extraits de 5 kg de roche), présentant les mêmes caractéristiques micro texturales que ceux de l'échantillon de Puylaurent. La zonation "amiboïde" (Fig.4-5) est la plus fréquente et le phénomène d'héritage est également mis en évidence. Les âges isochrones se rapportant à l'héritage et à la néoformation des migmatites des deux localités sont concordants dans la limite des erreurs (2σ).

Fig.4-7. Exemple de résultat élémentaire du grain 12 de la monazite de l'échantillon de la migmatite de Pyulaurent. (a) image MEB de la monazite sub-automorphe avec un cœur hérité. (b) Localisation des points d'analyse et des âges ponctuels correspondants. Notez la différence d'âge entre les deux domaines. (c) Variation chimique (U, Th et Pb) le long de la coupe [AB]. L'héritage se caractérise par des teneurs particulièrement basses en U.

Fig.4-8. Résultat du traitement statistique des analyses du grain présenté dans la figure 4-7.

Fig.4-9. Diagramme Th/Pb vs U/Pb de la migmatite prélevée à St-Laurent. On note la cohérence de la droite de régression avec l'isochrone théorique.

Fig.4-11. Diagramme Th/Pb vs U/Pb de la migmatite prélevée à St-Laurent (cœur grain 5).

Comme il a été mentionné plus haut, l'extraction des grains de monazite favorise des grains de grandes dimensions au détriment des petits et comporte l'inconvénient de la perte des indications sur les relations texturales de la monazite avec le reste des espèces minérales. En effet, l'analyse des relations texturales peut fournir des indices essentiels dans la caractérisation des générations de monazite. Elle simplifie l'interprétation des résultats et facilite l'identification des processus géologiques générateurs des monazites. Un échantillon de leucosome de migmatite a été prélevé au pont de Bayzan. Les conditions particulières de l'échantillonnage sont détaillées par Be Mezeme et *al.*, 2005 annexe 2. L'étude microscopique des lames minces dévoile des sections de monazite de plus petites dimensions ~5 à 50 µm avec des grains exceptionnels de 100 µm. Ces monazites sont regroupées en deux populations caractérisées par des distributions de terre rares distinctes (Fig.4-12). La première est en inclusion dans les feldspaths plus ou moins altérés et comporte des proportions plus élevées en terres rares lourdes. La seconde population de monazites est localisée en position interstitielle. Elle présente des grains xénomorphes de grande taille avec des limites irrégulières (Fig.4-13).

Fig.4-12. Distribution normalisée aux chondrites des terres rares des deux populations de monazites mises en évidence pour la migmatite du pont de Bayzan (Be Mezeme et al., 2005 ; annexe 2).

Monazites en inclusion

Monazites interstitielles

Fig.4-13. Les deux populations de monazites observées en lames polies des échantillons de migmatites prélevés au pont de Bayzan. Contrairement aux monazites en inclusion, les monazites xénomorphes interstitielles comportent des limites plus irrégulières avec des marques d'altération.

Les analyses des deux populations conduisent au calcul d'un âge de 331 ± 4 Ma pour les monazites en inclusion et de 320 ± 5 Ma pour les monazites interstitielles (Fig.4-14).

an.
2
3
ñ
de
nt
D0
dи
5
ite
6
10
0
Ш
de
SZ
.õ
ati
110
P1
20
্য
XX
deux
es deux
des deux
ue des deux
ane des deux
nique des deux
imique des deux
chimique des deux
m chimique des deux
tion chimique des deux
sition chimique des deux
oosition chimique des deux
mbosition chimique des deux
omposition chimique des deux
Composition chimique des deux
1. Composition chimique des deux
4-1. Composition chimique des deux
u 4-1. Composition chimique des deux
eau 4-1. Composition chimique des deux
bleau 4-1. Composition chimique des deux
ableau 4-1. Composition chimiane des deux

93 40

 14 ± 6 8 ± 3

 331 ± 4 320 ± 5

80929±24781 67680±13997

6289±2453 9432±1515

 1491 ± 438 1403 ± 185

₽

âge isochrone

Th/U ±

Th (ppm) ±

U (ppm)

Pb (ppm)

+1

Pont de Bayzan

(Cévennes)

Migmatite

+1

 $\pm 2\sigma \,\mathrm{Ma}$

n = nombre d'analyses.

4.2.2.2 Les granites

Les filons de leucogranites ont été traités sur des populations de grains de monazite extraits de la roche par liqueurs denses. Les observations sous la loupe binoculaire révèlent que les monazites manifestent des caractéristiques morphologiques et optiques similaires, de taille supérieure à 50 µm elles sont généralement automorphes, verdâtres et translucides avec des surfaces irrégulières parsemées de petites excavations. Les analyses MEB dévoilent l'abondance d'inclusions de zircons, de micas, surtout d'apatite et de rares microconcentrations de huttonite (ThSiO4). On retrouve les textures classiques des monazites, allant des grains sans variations chimiques apparentes à des monazites présentant des zonations multiformes, concentriques et amiboïdes. On y dénombre également des grains composites avec des héritages et d'autres grains complexes découvrant une texture particulière (Fig.4-15) (Be Mezeme et *al.*, 2005 ; annexe 3). La complexité des données texturales de certains grains (surcroissances secondaires évoquées par la présence des zones internes chimiquement différentes avec des limites irrégulières et aussi par la présence de domaines de textures distinctes (Fig.4-15a, c)) témoigne des origines multiples de la monazite. Les résultats géochronologiques et les caractéristiques chimiques sont résumés dans le tableau 4-2.

Fig.4-15. Exemples des textures des monazites extraites des filons de granites. (a) zonation interne irrégulière circonscrite par des bandes de croissance concentriques; (b) grain homogène; (c) grain multiple (grain 5) avec un héritage à texture complexe soulignée par la cartographie élémentaire du thorium, les limites irrégulières du grain hérité témoignent de la mise en œuvre du processus de remplacement.

Localisation	Pb (ppm)	U (ppm)	U (ppm) Th (ppm) Th/		âge isochrone n	
(filon de leucogranite)	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$	$\pm 1\sigma$ $\pm 2\sigma$ M		,
Puylaurent, dix grains	1143±300	8278±6310	51834±11996	10.8±10.2	333±6	69
St-Laurent (a), deux grains	1601±643	19866±9474	49933±18054	3.2±2.8	318±5	32
St-Laurent (b)						
neuf grains (sans grain 5)	2336±612	39582±12481	41508±7442	1.2±0.4	311±5	85
Périphérie du grain 5	2998±447	50210±10529	56383±10485	1.3±0.8	309±4	43
Coeur complexe du grain 5	2343±549	4026±826	140846±33072	35±5	341±14	85

n = nombre d'analyses

Tableau 4-2. Tableau de synthèse des analyses à la sonde électronique des monazites des filons de leucogranite des Cévennes. Le tableau montre les domaines de variation des teneurs en Pb, U et Th. Les âges ont été déterminés à partir du modèle isochrone et l'erreur est à 2σ. Pour Pb, U, Th, Th/U, ± désigne la dispersion des données pour les n mesures.

Dans le domaine cévenol, ne considérer que les seuls résultats des filons de granite peut conduire à des erreurs d'interprétation du cadre temporel des processus de mise en place des granites qui ont affecté cette région. En effet, il est clairement admis que de tels objets, de par leur dimension, peuvent résulter de tous les évènements géologiques générateurs de liquides silicatés. Il est donc nécessaire d'analyser la cartographie régionale, recenser d'autres objets granitiques environnants et mener conjointement une étude chronologique tout en recherchant des calages lithotectoniques. Les filons de St-Laurent sont en continuité structurale avec le pluton granitique de Rocles. Au voisinage même du pluton, on retrouve des filons enracinés dans le granite et injectés dans les micaschistes (Be Mezeme et *al.*, 2005 ; annexe 3). Cette observation étaie l'hypothèse d'une relation génétique entre le granite de Rocles et les filons de leucogranite. En complément de la description pétrographique, une analyse chimique sur roche totale (Be Mezeme et *al.*, 2005 ; annexe 3) et une étude radiochronologique ont été entreprises sur ce granite. Le granite de Rocles est moins riche en grains de monazite. Le faciès intermédiaire à biotite et muscovite a été traité sur granit isolés. Tous les grains sont xénomorphes, jaunes et arrondis. Ils sont de petites dimensions et comportent aussi des inclusions de zircon, de xénotime et d'apatite (~20 μ m ; Be Mezeme et *al.*, 2005 ; annexe 3). Les quatre grains récoltés ont été montés et analysés en section polie. Comme il a été mentionné plus haut, les monazites de cette dimension sont beaucoup plus sujettes aux processus de diffusion élémentaire entretenus par des évènements

thermiques et des circulations hydrothermales. Dans ces conditions la qualité du résultat peut être diminuée et l'interprétation délicate. Les deux autres faciès du granite de Rocles ont été analysés directement en lames minces polies. A l'instar des zircons, les monazites en inclusion dans la biotite sont identifiées grâce aux halos qui se développent autour du grain à cause de son activité radioactive. Ce halo est moins fréquent dans les micas blancs. Les monazites sont plus rares et localisées majoritairement en inclusion dans les micas. La texture rappelle celle des monazites du faciès intermédiaire. Les figures 4-16 et 4-17 montrent des exemples de localisation de ces monazites. Ces dernières renferment moins d'inclusions mais présentent souvent des micros fractures. Cinq monazites ont été choisies pour la datation du faciès à biotite dominante, 51 mesures ont permis de déterminer un âge de 325 ± 4 Ma. Ces monazites sont riches en Th, une composition chimique comparable à celle des quatre monazites du faciès à muscovite dominante. Ces dernières présentent en plus des teneurs plus élevées en U. 55 points d'analyse des monazites du faciès à muscovite donnent un age de 324 ± 4 Ma (Fig.4-18). Par contre les quatre monazites du faciès intermédiaire à biotite-muscovite, beaucoup plus riches en U avec des teneurs variables en Th, donnent un âge de 318 ± 3 Ma sur 36 mesures (Fig.4-19).

Fig.4-16. Texture et localisation des monazites dans le faciès à biotite dominante du granite de Rocles. Les monazites se trouvent généralement en inclusion dans les biotites. La texture des grains est identique. Noter les auréoles pléochroïques témoins de la radioactivité de U, Th contenus dans les monazites.

Fig.4-17. Texture et localisation des monazites dans le faciès à muscovite dominande du granite de Rocles. La monazite y est plus fréquente en inclusion dans la muscovite. Les auréoles pléochroïques sont plus rares ou inexistantes.

La composition chimique des monazites analysées réflète la différence pétrographique des différents faciès. Les âges isochrones des différents faciès sont équivalents dans la limite de leurs erreurs. Il est donc raisonnable d'affirmer que les trois faciès du granite se sont mis en place au même moment autour de 320 Ma. La différence négligeable des âges de chacun des faciès donne une indication intéressante sur les limites du chronomètre U-Th-Pb en terme de datation absolue.

Rocles (Cévennes)	Pb (ppm) ±	U (ppm) ±	Th (ppm) ±	'Tħ/U ±	âge isochrone ±2σ Ma	u
Granite à muscovite	1770 ± 445	13821 ± 11157	78967±14342	13 ± 11	324 ± 4	55
Granite intermédiaire	2429 ± 872	32136 ± 23226	64624 ± 21258	13 ± 24	318 ± 3	36
Granite à biotite	1625 ± 263	11778 ± 4452	74651 ± 9379	8±5	325 ± 4	51

Tableau 4-3. Composition chimique des monazites du granite de Rocles.

n = nombre d'analyses.

La synthèse des nouvelles données chronologiques des Cévennes (Figs.4-20, 21) permet de distinguer deux évènements géologiques successifs : la migmatisation vers 330 Ma, puis la mise en place des granites à 320 Ma qui se poursuit jusqu'aux alentours de 315 Ma. Il convient de remarquer le recouvrement des résultats témoignant de la continuité dans le temps de la fermeture des systèmes cristallins. En effet, on imagine que le refroidissement des liquides silicatés issus de la migmatisation ou de la mise en place des granites n'ont pas une évolution thermique identique dans tout le domaine cévenol, de plus la fermeture d'un système cristallin à l'instar du refroidissement des magmas n'est pas un mécanisme instantané.

Fig.4-20. Synthèse des nouveaux âges des migmatites et granites des Cévennes. En italique, les âges interprétés comme héritage. Ces héritages sont obtenus soit dans un cœur de grain soit sur une population de grains hérités.

Fig.4-21. Diagramme synthétique montrant la succession chronologique des principaux évènements métamorphiques et magmatiques des Cévennes.

4.3 Le dôme du Velay

4.3.1 Cadre géologique

Fig.4-22. Carte simplifiée du dôme du Velay avec localisation des échantillons analysés. VE 3 : migmatite à cordiérite de Mas de Tence ; VE 10 : granite du Velay, échantillon prélevé au Crouzet ; VE
11 : migmatite à cordiérite recueilli à Terret ; VE 12 : migmatite au Sud du dôme du Velay.

Le dôme du Velay est un complexe granito-gneissique au cœur duquel s'observent des panneaux de

micaschistes d'extension décamétrique à plurikilométrique et des gneiss des Unités Para-autochtones et Inférieure des Gneiss (Fig.4-22). Le dôme du Velay est aussi intrusif dans l'Unité Supérieure des Gneiss qui affleure à l'Est et les métasédiments de l'Unité Inférieure des Gneiss préservés au Sud et au Nord du dôme. Il se met en place au cours de l'effondrement gravitaire de la chaîne Hercynienne autour de 300 Ma (Ledru et *al.*, 2001). De nombreux plutons granitiques, comme par exemple les granites de Civrieux (322 ± 9 Ma, Caen Vachette et *al.*, 1982), de la Chaise Dieu, de la Margeride (323 ± 12 Ma Caen Vachette et *al.*, 1984) ou de Tournon (337 ± 13 Ma, Batias et Duthou, 1979) se disposent en couronne autour du dôme du Velay. Ils sont considérés comme des précurseurs du développement d'une anomalie thermique responsable de la fusion crustale (Dupraz et Didier, 1988 ; Ledru et *al.*, 2001).

- Granite du Velay

Le granite du Velay, localisé au cœur du dôme est daté à 301 ± 5 Ma (Mougeot et *al.*, 1997; Montel et *al.*, 2001) par U-Pb sur monazite. Il présente plusieurs faciès définis par la taille du grain, l'abondance et les dimensions des minéraux de cordiérite et aussi par la présence des enclaves de gneiss, de migmatite et parfois de micaschiste.

Le faciès le plus important du granite du Velay se distingue par l'abondance de nodules centimétriques de cordiérite (Fig.4-23), des mégacristaux de feldspath potassique enrobés dans une matrice homogène microgrenue. Il contient également de petits cristaux de grenat. Sur certains affleurements, ce faciès leucocrate se confond avec la migmatite et renferme beaucoup d'enclaves de gneiss, de migmatite, de micaschiste et surtout d'enclaves sub-sphériques micacées (Barbey et *al.*, 1999; Montel et Abdelghafar, 1993). Vitel (1985) et Williamson et *al.*, (1992) signalent la présence de panneaux de gneiss d'origine crustale profonde métamorphisés dans le faciès granulitique.

Le second comporte un grain homogène et grossier observable à l'échelle de l'affleurement. La cordiérite y est très fréquente, mais se présente sous forme de plages millimétriques (Fig.4-23). Ce granite, très riche en biotite, est dépourvu d'enclaves. Les observations microscopiques optiques indiquent une texture grenue isogranulaire. Le dernier faciès du granite du Velay correspond à un granite hétérogène particulièrement riche en enclaves, essentiellement des enclaves de migmatites. Ces dernières sont plus fréquentes vers la bordure sud du dôme. L'interprétation géologique et les relations chronologiques de ces différents faciès ont été documentées par plusieurs auteurs (p. ex. Ledru et *al.*, 2001 ; Williamson et *al.*, 1992). En complément des âges isotopiques déjà disponibles sur le granite du Velay (Mougeot et *al.*, 1997), un échantillon du faciès à grain fin a été récolté (VE 10) pour une datation

chimique sur monazite.

Fig.4-23. Planche photo des trois faciès du granite du Velay. (a) granite à biotite à grain moyen, riche en cordiérite millimétrique ; (b) faciès à grain fin, à cordiérite centimétrique et à phénocristaux de feldspath potassique (échantillon daté dans cette étude : VE 10) ; (c) et (d) exemples d'enclaves de micaschiste et de migmatite dans le troisième faciès du granite du Velay.

La datation de la monazite a été réalisée directement en lames minces. La monazite est généralement en inclusion dans le feldspath potassique (Fig.4-24a). Quelques rares grains sont en position interstitielle, associés à des biotites chloritisées, constellées d'oxydes d'uranium et de thorium. Les monazites sont sub-automorphes (Fig.4-24b), présentent des bordures corrodées avec des cavités remplies par l'apatite et l'allanite. Les images détaillées montrent que les monazites renferment également beaucoup d'inclusions et la zonation chimique est absente ou très faible.

Fig.4-24. Exemples de microphotographie MEB (mode électrons retrodiffusés) des lames minces du granite du Velay. (a) plages de lames illustrant la distribution spatiale des grains de monazite (en surbrillance). Notez les micronodules (points blancs) des oxydes d'uranium et de thorium témoins d'une mobilisation post-cristallisation importante de ces éléments. (b) détail sur la texture des monazites montrant une faible zonation chimique.

- Les migmatites

Deux types de migmatite ont été également identifiés dans le dôme du Velay : le premier type est constitué de panneaux plurikilométriques de migmatite en enclaves dans le granite. Ces migmatites se caractérisent par une bonne préservation des caractéristiques texturales de leur protolithe. La migmatite, appelée VE 3, est une métatexite qui présente encore la foliation du protolithe orthogneissique. Elle comporte des mégacristaux de feldspath potassique, de la sillimanite, de la cordiérite centimétrique souvent localisée sur des fractures et une forte concentration de cristaux millimétriques de grenat. La seconde migmatite (VE 11) ne présente aucune texture relique du protolithe. C'est une diatexite qui se confond souvent avec le granite du Velay (Fig.4-25). Elle renferme des nodules de cordiérite. Le mélanosome riche en micas présente des figures d'écoulement (Fig.4-25c). Contrairement à celle de VE 3, la texture globale de la migmatite VE 11 ressemble beaucoup plus à celle d'un granite d'où la confusion possible avec le granite dit du Velay dont la mise en place serait concomitante. Les analyses MEB révèlent que les migmatites et le granite renferment des proportions équivalentes de monazites (Fig.4-26).

Fig.4-25. Photographies illustrant les faciès des migmatites du dôme du Velay. (a), (b) métatexite montrant la foliation initiale du protolithe orthogneissique avec une enclave de micaschiste (a). (c) diatexite massive du Velay présentant un mélanosome aux formes irrégulières interprétées comme magmatiques ; (d) diatexite avec des cordiérites centimétriques.

Fig.4-26. Microphotographies MEB des sections de lames minces des migmatites (VE3, VE 11) du dôme du Velay. Les deux migmatites contiennent d'une grande quantité de monazites (tous les grains en surbrillance). Les images illustrent également la localisation préférentielle des monazites au voisinage ou en inclusion dans les biotites. Les grains g1 et g2 de VE 3 ; g3 et g4 de VE 11 sont détaillés sur la figure 4-27.

Contrairement à la migmatite VE 11, les observations macroscopiques et microscopiques montrent que la cordiérite est rare dans la migmatite VE 3, mais on y trouve de petits grenats automorphes. Cependant, les deux migmatites se caractérisent par une paragenèse principale commune composée de biotite, muscovite, feldspath, quartz, apatite, monazite. Le zircon, minéral accessoire est généralement en inclusion dans la biotite et le xénotime en position interstitielle. La texture de la roche VE 3 est grenue à granoblastique. La question qui se pose est celle de comprendre les relations chronologiques entre ces deux lithotypes. La datation radiométrique de ces échantillons a été effectuée directement en lame mince. La microtexture des grains de monazite a préalablement été étudiée au MEB (Fig.4-27) pour identifier les zones à analyser et éviter les inclusions et les domaines susceptibles d'avoir subi des perturbations du système radiochronométrique U-Th-Pb (bordure du grain, le voisinage des fractures et des inclusions). Dans tous les échantillons, les grains de monazite présentent des dimensions comprises entre 10 µm et 40 µm. Les monazites d'origine migmatitique. On y dénombre toutefois beaucoup d'inclusions polygénétiques de micas, de zircon et d'apatite. Les grains de monazite présentent des limites irrégulières témoins des processus d'altération et ou de substitution (monazite-allanite). Les très abondantes micro fractures diminuent les surfaces de grain analysables.

Fig.4-27. Illustration de la texture des monazites des migmatites du dôme du Velay. (g1), (g2) sont de VE 3 ; g3 et g4 proviennent de la migmatite VE 11.

4.3.2 Résultats radiochronologiques

- Granite du Velay

Quatre grains de monazite du granite du Velay prélevé dans la partie sud du dôme ont été analysés. Un total de 240 analyses ponctuelles a été réalisé. Le traitement statistique de l'ensemble des âges individuels confirme globalement l'existence de deux populations différentes (Fig.4-28) lesquelles se rapportent à un grain pour la population jeune et trois grains pour la population vieille. Aucune donnée de l'analyse texturale des grains n'avait laissé présager une telle distribution rendant ainsi l'interprétation du résultat délicate. Le nombre d'analyses de la population jeune est faible (11) ne permettant pas d'utiliser le diagramme isochrone (Th/Pb vs U/Pb) pour déterminer son âge. La moyenne pondérée sur cet ensemble donne un résultat de 360 ± 17 Ma. Sur les trois autres grains, 214 points ont permis de déterminer un âge isochrone à 2σ de 567 ± 4 Ma (MSWD = 1.2). Ces deux résultats sur monazite sont visiblement trop vieux pour constituer un indice sur la mise en place hercynienne du dôme du Velay. Ces âges peuvent être interprétés de deux manières. A partir de la détermination des âges isotopiques la méthode concordia sur un granite comparable, Mougeot et al., (1997) mentionnent déjà l'existence de monazites discordantes témoins d'une perturbation du système isotopique U-Pb ou comme dans le cas de cette étude, du système chimique U-Th-Pb de la monazite. Dans ces conditions, les résultats ne peuvent être rapportés à aucun processus géologique distinct. L'âge de 567 ± 4 Ma est donc interprété comme celui du protolithe. Par ailleurs, la distribution spatiale des monazites (globalement en inclusion) laisse penser que ces dernières sont blindées et placées à l'abri des agressions thermiques et ou hydrothermales (origine des nodules disséminés dans les biotites, (Fig.4-24)) qui ont affecté le massif. Cette hypothèse est en faveur du processus d'héritage, les migmatites et le granite du Velay sont en partie issus d'un protolithe orthogneiss cambrien. Mougeot et al., (1997), obtiennent un âge isotopique U-Pb sur monazite de 301 ± 5 Ma, et de 292 ± 7 Ma, sur les apatites. Ces âges sont donc retenus ici comme correspondant à la mise en place du granite du dôme du Velay.

Fig.4-28. Distribution des âges individuels et diagramme Th/Pb vs U/Pb des données des monazites du granite du Velay. La distribution montre deux populations, seule la fraction ancienne a été analysée sur le diagramme isochrone.

- Migmatite

Trois grains de monazite de la migmatite VE 3 (Mas de Tence) et cinq de la migmatite VE 11 (Terret) ont été analysés pour la détermination de leurs âges radiométriques. 36 données, recueillies sur les monazites de la migmatite VE 3 ont permis de calculer un âge isochrone à 303 ± 1 Ma (MSWD = 0.50) (Fig.4-29). Le diagramme Th/Pb *vs* U/Pb montre la similitude de droite de régression obtenue à partir des points analytiques et l'isochrone théorique à 303 Ma. La migmatite du Terret (VE 11) donne un âge équivalent de 301 ± 4 Ma (Fig.4-30) avec MSWD = 0.53. Les analyses individuelles de cette dernière migmatite montrent une grande variation des rapports U/Pb compris entre 4 et 18, les rapports Th/Pb sont dans l'intervalle 25-90. Cette dispersion des points permet une bonne détermination de la droite de régression et par la suite de mieux calculer l'âge isochrone. Ce résultat sur les migmatites du Velay confirme bien l'existence d'un évènement thermique responsable de la fusion crustale autour de 300 Ma et également responsable de la mise en place du granite à cordiérite et des migmatites associées. Cette phase de fusion est souvent interprétée comme correspondant à la phase ultime des processus de décompression post-orogéniques. En effet, l'effondrement gravitaire de la chaîne hercynienne entraîne un amincissement de la croûte continentale et une remontée mantellique avec un flux de chaleur important. Dans le dôme du Velay, Montel et *al.*, (1992) et Ait Malek et *al.*, (1995) proposent l'intervention de deux processus de fusion successive. La première fusion opèrerait dans les conditions de saturation d'eau et se situerait autour de 314 Ma (Mougeot et *al.*, 1997). Elle produit des quantités moins importantes de liquide silicaté par rapport à la seconde fusion qui s'effectue par contre à haute température et conduit à la déstabilisation des micas. Le liquide silicaté produit est abondant et serait à l'origine des diatexites et des granites du centre du dôme. C'est cette dernière phase de migmatisation qui a été datée vers 300 Ma (Mougeot et *al.*, 1997). Cette étude fondée sur une autre méthode confirme cet âge Carbonifère Supérieur. Le fait de retrouver par la méthode "chimique". Le tableau 4-4 résume les résultats obtenus sur les échantillons de migmatite et de granite.

Fig.4-29. Diagamme Th/Pb vs U/Pb des analyses des monazites de l'échantillon de migmatite de Mas de Tence.

Fig.4-30. Diagamme Th/Pb vs U/Pb des analyses des monazites de l'échantillon de migmatite du

Terret.

Dôme du Velay	Pb (ppm) ±	U (ppm) ±	Th (ppm) ±	Th/U ±	âge isochrone ±2σ Ma	n
Migmatite						
VE 3	3229 ± 563	39684±5903	111669 ± 32831	3±1	303±1	36
VE 11	1442±302	16957±6008	53450±5891	4 <u>±</u> 4	301±4	54
Granite						
Le Crouzet	1422±227	4077±3071	45058±6424	24±22	567±4	214

Tableau 4-4. Composition chimique des monazites extraites de la migmatite et du granite du Velay.

n = nombre d'analyses

L'échantillon de migmatite VE 12 au sud du dôme donne un résultat plus vieux (337 ± 4 Ma) que ceux de VE 3 et VE 11. L'âge de 337 ± 4 Ma est proche de celui de la migmatite des Cévennes. Il est raisonnable d'envisager une contamination de la migmatite du dôme du Velay par celle des Cévennes plus ancienne. En effet, la fusion crustale à 300 Ma affecte le domaine cévenol et de nombreux fragments de migmatites sans cordiérite comparables à la migmatite des Cévennes sont observés en enclaves dans la migmatite du Velay.

4.3.3 Discussion

Les structures induites par le "dôming" du Velay se surimposent à l'évolution tectonique déjà polyphasée de la région (Laumonier, 1991). Au niveau de la bordure nord du dôme, la pile de nappes est affectée par la faille normale ductile du Pilat avec une direction d'étirement N-S (Malavieille et *al.*, 1990 ; Gardien, 1990 ; Ledru et *al.*, 2001). Dans l'encaissant méridional du dôme, la déformation induit un redressement de la foliation avec des pendages sub-verticaux voire inversés. Les plis résultants de la tectonique compressive anté-Velay à vergence nord dans les micaschistes sont restructurés en plis droits lors de la formation du dôme (Laumonier et *al.*, 1991). Le gradient métamorphique augmente du sud vers le nord au cœur du complexe anatectique où les études thermobarométriques indiquent des conditions de basse pression 3-4 kbar et de moyenne température 700-780 °C pour les épisodes magmatiques-métamorphiques associés au développement de la cordiérite (deuxième fusion) (Gardien et *al.*, 1997). La fusion crustale la plus importante dans le dôme du Velay se fait dans des conditions catazonales en l'absence de fluides libres. La phase fluide nécessaire à la fusion découle de la réaction de déstabilisation de la biotite selon la réaction biotite+alumino-silicate+quartz+plagioclase qui donne la cordiérite \pm grenat + feldspath potassique + Liquide. Les quantités de fluide libérées par cette réaction sont à l'origine du granite à cordiérite du Velay et de la migmatite qui s'y rattache.

Pour cette formation anatectique, seul l'âge de la migmatisation a été bien contraint par la datation de la monazite. La monazite du granite à cordiérite donne plutôt l'âge de l'héritage de l'orthogneiss, on retient toutefois que la mise en place du granite est synchrone de la migmatisation à 300 Ma. Le granite se met en place grâce à la tectonique extensive d'âge stéphanien, autour de 300-290 Ma. La figure 4-31 résume ces nouvelles données chronologiques du dôme du Velay.

Fig.4-31. Carte synthétique des nouveaux résultats radiochronologiques du dôme du Velay.

4.4 La Montagne Noire

(i)

4.4.1 Cadre géologique

Située à l'extrême Sud du Massif Central (Fig.4-32), la Montagne Noire correspond au domaine le plus méridional de la chaîne Varisque en France. On distingue classiquement une zone axiale entourée des versants sud et nord. Ces derniers sont constitués de séries sédimentaires (du Cambrien au Viséen pour le versant sud) déformées en plis couchés kilométriques et en écailles à vergence sud. La zone axiale est composée de terrains métamorphiques et granitiques qui affleurent dans un massif de forme elliptique dont le grand axe est orienté NE-SW (N70). La zone axiale se présente globalement en dôme avec des ensembles concentriques. Du bord vers le centre, on distingue des micaschistes et des paragneiss à biotite-staurotide-grenat \pm sillimanite. Des orthogneiss œillés (orthogneiss du Somail) correspondent à des métagranites intrusifs dans les séries métamorphiques. Une datation récente des orthogneiss des Gorges d'Héric à 450 \pm 6 Ma (Roger et *al.*, 2004) et de l'orthogneiss du Somail à 471 \pm 4 Ma (Cocherie et *al.*, 2005) démontre définitivement que la zone axiale n'est pas le socle précambrien des plis couchés. De l'extérieur vers l'intérieur du dôme, les gneiss œillés subissent peu à peu une anatexie. Dans le centre du dôme, les migmatites à cordiérite sont très développées et le cœur est occupé par un granite d'anatexie (granite du Laouzas ; voir aussi annexe 6) qui renferme encore de nombreuses restites de gneiss. Enfin, la foliation migmatitique est recoupée par plusieurs plutons lesquels présentent quelquefois aussi une foliation magmatique. Il s'agit des granites du Vialais, d'Anglès et de Sécun.

En outre, dans le NW du dôme de la Montagne Noire, on reconnaît des granites à grain moyen à fin, parfois à grenat qui semblent recoupés par la migmatisation et qui ne sont pas ou peu foliés. Il s'agit du granite de Montalet (Demange, 1996-1998). Les études métamorphiques (Thompson et *al.*, 1982 ; Demange., 1998) montrent un resserrement des isogrades concentriques qui s'accordent avec le métamorphisme de HT à l'origine du dôme de la zone axiale. La formation du dôme migmatitique de la Montagne Noire est un des sujets les plus controversés du Massif Central. De nombreux modèles ont été proposés. Ces derniers peuvent être regroupés en trois catégories : (i) une origine diapirique, (ii) un modèle extensif de "metamorphic Core Complex" et (iii) une origine en antiforme compressif.

Dans l'hypothèse d'une remonté diapirique, les migmatites et les granites d'anatexie (annexe 6) se

mettent en place du fait de leur contraste de densité et de viscosité par rapport à l'encaissant (Schuiling, 1960; Faure et Cottereau, 1988; Soula et *al.*, 2001). Cependant la forme du dôme suggère aussi une intervention de la tectonique régionale responsable de la linéation NE-SW.

- (ii) Comme pour de nombreux dômes métamorphiques, une origine extensive a été évoquée pour la zone axiale. Par analogie avec les "metamorphic core complex" du "Basin and Range" aux USA, la zone axiale est interprétée comme formée lors de l'effondrement gravitaire de la chaîne hercynienne. La mise en place des migmatites et des granites d'anatexie serait contrôlée par le fonctionnement de la faille normale ductile de Graissessac sur le versant nord du dôme (Echtler et Malavieille, 1990; Van den Driessche et Brun, 1992; Brun et Van den Driessche, 1994).
- (iii) En remarquant que le dôme migmatitique se développe juste après la formation des plis couchés du versant sud, certains auteurs (Demange, 1998-1999; Matte, 1998) proposent que la zone axiale correspond à un antiforme compressif dans lequel affleure le substratum partiellement fondu des plis couchés du versant sud.

Quel que soit le modèle dynamique de la zone axiale, tous les auteurs s'accordent sur la succession suivante :

- Formation des nappes et plis couchés au Viséen terminal-Namurien,
- Mise en place du dôme migmatitique et du granite à cordiérite du Laouzas,
- Mise en place des granites post-migmatitiques du Vialais, d'Anglès ou de Sécun.

Cependant cette chronologie relative demande à être précisée par des données géochronologiques absolues. La datation des différentes générations des granitoïdes apportera aussi des arguments en faveur de l'un ou de l'autre des modèles évoqués ci-dessus. Cette datation a été effectuée à l'aide de méthodes ponctuelles, indispensables dans le cas de ces migmatites et granitoïdes susceptibles de contenir des domaines hérités (monazite et zircon). Pour dater la monazite on a utilisé la microsonde électronique et pour le zircon la microsonde ionique de haute résolution (IMS 1270) du CRPG de Nancy.

Fig.4-32. Carte géologique simplifiée de la Montagne Noire à partir de Gèze (1949) et de Arthaud (1975).

4.4.2 Migmatites et granitoïdes cibles

4.4.2.1 Les migmatites

Quatre échantillons de migmatites ont été prélevés dans la zone axiale de la Montagne Noire (Fig.4-34). Deux échantillons proviennent du col de l'Ourtigas (ourt1, ourt2), un échantillon à Espinouse (espi) et un dernier échantillon à La Salvetat (salv). A l'affleurement, les migmatites partagent la caractéristique essentielle de l'individualisation du leucosome et du mélanosome (Fig.4-35, 36) dont les proportions relatives varient de la bordure vers l'intérieur de la zone axiale. Au col de l'Ourtigas, la foliation initiale de l'orthogneiss n'est pas complètement déstructurée, le degré de migmatisation y est moins avancé préservant à certains endroits les méga cristaux de feldspath potassique comparables aux feldspaths communs de l'orthogneiss des gorges d'Héric (massif du Caroux). Les faciès d'orthogneiss progressivement migmatisés sont observés vers l'ouest. De nombreuses enclaves de gneiss interprétées comme des restites et des cumulats micacés sont également rencontrés. Cette association migmatiteorthogneiss est plus inhabituelle vers le centre du dôme où la migmatite est plutôt associée à divers granitoïdes et où il est également possible d'observer différents domaines homogènes de granites d'anatexie. L'échantillon de La Salvetat correspond à une migmatite présentant une forte proportion de leucosome qui se distribue sous forme de filonnets centimétriques. La migmatite de La Salvetat présente les caractéristiques d'une diatexite, la foliation initiale est désagrégée et le leucosome se présente localement sous forme de micro amas granitiques enrobant de petites enclaves de migmatite. Les analyses pétrographiques des lames minces montrent que les migmatites comportent des assemblages minéraux similaires composés de biotite, muscovite, feldspath, quartz et parfois du silicate d'alumine notamment la sillimanite. Cette paragenèse principale est complétée par des phases accessoires telles que le zircon, le xénotime, la monazite, l'allanite et l'apatite. On note également de la chlorite secondaire et quelques sulfures et oxydes dans les micros fractures. La simplicité d'échantillonnage des migmatites de la Montagne Noire pour la géochronologie n'est qu'apparente et vient de ce que les affleurements sont d'un accès facile. Cependant les migmatites sont des roches hétérogènes et l'obtention d'un échantillon comportant majoritairement des géochronomètres néoformés est délicate.

Fig.4-34. Carte de localisation des sites d'échantillonnage.

Il ressort de l'étude lithologique de la Montagne Noire que la migmatite résulte de la fusion partielle de roches elles-mêmes hétérogènes (gneiss et granites précoces). Et il peut également se poser la question de savoir si l'épisode de fusion (migmatisation) est unique dans cette partie de la chaîne hercynienne ou bien si elle est polyphasée. Pour cela il est essentiel pour ces échantillons de migmatite, de coupler les méthodes analytiques (étude de la monazite en monograins isolés et en lames minces avec analyses texturales, datation U-Pb classique sur zircon à la sonde ionique) pour faciliter l'interprétation des résultats.

Fig.4-35. Texture des gneiss migmatitiques et des migmatites du col de l'Ourtigas (a) et (b) et d'Espinouse (c) et (d). Notez que la texture initiale du gneiss est encore préservée. (a) et (b) montrent encore des méga cristaux de feldspath similaires à ceux des gneiss des gorges d'Héric. (c) illustre les multiples enclaves qu'on trouve dans les migmatites. (d) métatexite d'Espinouse avec une alternance de lits de leucosome et de mélanosome. Ces affleurements présentent une faible proportion en leucosome, la fraction du matériel hérité est dominante.

Fig.4-36. Texture des migmatites de La Salvetat (a), (b) et des bordures du lac de la Raviège (c) et (d). (a) présente les caractéristiques d'une diatexite. Le leucosome et le mélanosome n'ont aucune forme géométrique précise. Cette diatexite enrobe des enclaves de métatexite très déformées (b). Au niveau des affleurements au œur du dôme, on retrouve également beaucoup d'enclaves micacées (c) et des filons décamétriques (d) alimentés par les leucosomes des migmatites. Pour ces échantillons, la fraction de roche néoformée est plus importante.

4.4.2.2 Les granitoïdes

Cette étude concerne l'évaluation des âges des granites précoces du Montalet, et du Lauouzas et des granites post-migmatitiques du Vialais et d'Anglès.

Le granite du Montalet (Fig.4-34, 38) se situe dans le Nord de la zone axiale de la Montagne Noire, il se met en place dans le groupe du Somail (Gneiss d'Héric et Gneiss du Tarn) et le groupe de la Salvetat (formations grésocarbonatées, schisto-gréseuses, volcaniques et volcano-sédimentaires) et occupe toute la bordure nord-ouest du granite de Laouzas. Ce granite est limité au Nord et au Nord-Ouest par la "faille des Monts de Lacaune ". Il est traversé par de multiples formations filoniennes de quartz, de pegmatites et des lentilles de vaugnérite correspondant à des témoins des intrusions de matériel basique. Le granite présente deux faciès leucocrates. L'un est riche en grenat présent sous forme de petits cristaux millimétriques roses et en biotite mais pauvre en muscovite ; l'autre faciès est très pauvre en biotite avec des cristaux de grenat moins réguliers que dans le premier faciès. Sur la base d'une étude structurale régionale, Demange et al. (1996) proposent que ces deux magmas se sont mis en place simultanément. L'âge relatif du granite de Montalet serait antérieur

Fig.4-37. Enclave décamétrique d'amphibolite dans le granite de Laouzas (bord du lac de la Raviège).

à la migmatisatisation du Laouzas mais son âge absolu reste inconnu. Cependant l'absence de déformation postsolidus suggère aussi que ce granite pourrait être post-migmatitique. Afin de résoudre ce problème, le granite de Montalet a été échantillonné pour déterminer son âge précis en utilisant la méthode de datation ponctuelle par microsonde électronique sur monazite. Les caractéristiques pétrographiques du faciès choisi correspondent à la synthèse de l'étude en lame mince et du bilan des minéraux isolés en grains à partir de 5 kg de roche. L'échantillon (recueilli sur la route de Lamontélarié) présente une forte proportion de grenats automorphes inclus dans de grands cristaux de feldspath localement perthitique, la monazite automorphe est fréquente et le zircon (<160µm) se localise préférentiellement dans les plages de biotite. De petites plages de chlorite sont observées en position interstitielle et en fines paillettes dans les microfractures des feldspaths. Le quartz montre un certain étirement avec des limites engrenées vraisemblablement résultant de la déformation modérée du granite du Montalet à l'état magmatique. Cette légère déformation s'exprime aussi par l'orientation de la biotite et de la muscovite. A cette paragenèse principale s'ajoutent l'apatite, la sillimanite et une grande quantité de pyrite automorphe et d'oxydes divers. Cet assemblage minéralogique définit une texture grenue hétérogranulaire avec une faible tendance granoblastique.

Le granite de Laouzas se trouve au cœur de la zone axiale de la Montagne Noire. C'est un granite d'anatexie hétérogène. Il comporte de nombreuses enclaves de l'encaissant para et orthogneissique aux limites présentant souvent des contacts réactionnels (Fig.4-37) et montre également des formations filoniennes de quartz. Des boudins de quartz concordants avec la foliation (N20 à N30) et associés à des failles normales pentées au nord-est (rive nord du lac de Laouzas, le long de la route de Nages et le barrage de Laouzas) caractérisent la déformation qui a affecté ce massif. Le faciès migmatitique est visible à toutes les échelles des affleurements, les leucosomes s'individualisent et définissent des plis recoupés localement par des petites failles normales. D'une façon générale, la difficulté de définir des limites franches entre les différents faciès permet d'apprécier l'évolution du phénomène de migmatisation. Une datation isotopique du granite du Laouzas devrait permettre d'obtenir également l'âge de la migmatisation. L'échantillon recueilli comporte des mégacristaux de feldspath potassique observables même à l'échelle de l'affleurement, de la cordiérite orientée et du grenat. L'analyse microscopique révèle la présence de sillimanite, biotite orientée, du quartz à joints lobés, des plagioclases et de la muscovite. Le zircon et la monazite apparaissent régulièrement en inclusion dans les plages de biotite et de feldspath potassique. L'ilménite et l'apatite présentent une tendance automorphe. La pyrite est abondante et automorphe. La texture est grenue hétérogranulaire.

Le granite du Vialais (fig.4-38) affleure dans le dôme de l'Espinouse où il recoupe la foliation et l'échantillon traité dans cette étude a été prélevé près du col de l'Ourtigas. Encaissé dans les migmatites et les gneiss migmatitiques, le granite du Vialais apparaît clairement postérieur à la déformation ductile synmétamorphe des gneiss et à leur migmatisation. En lame mince, le granite est composé exclusivement de feldspath, de micas (notamment la muscovite), du quartz et de fibres de sillimanite. La chlorite secondaire a également été observée en position interstitielle ou en substitution de la biotite. En plus faible proportion, l'apatite, le zircon, la monazite et le xénotime, en inclusion dans la biotite, constituent les minéraux accessoires. La texture est globalement grenue à gros grains (jusqu'à plusieurs millimètres) même si on observe des plages de cristaux fins de quartz organisés en petites tablettes allongées avec des limites lobées témoignant de la légère déformation du granite du Vialais dont l'évolution tectonique est largement décrite par Beaud (1985) ; Brunel et Lansigu (1997).

Le granite d'Anglès (Fig.4-38) est encaissé dans le groupe du Somail-Nore, il se caractérise par un débit en boules et par un grain très fin enrobant quelques rares phénocristaux de feldspaths observables à l'échelle de l'affleurement. Il est particulièrement riche en biotite qui permet de mettre en évidence le caractère orienté du granite. L'étude microscopique révèle que le granite d'Anglès est un granite à texture grenue à tendance granoblastique. Le granite est essentiellement composé de quartz, de zircon aciculaire en inclusion dans la biotite, d'apatite automorphe, de monazite et du xénotime.

Fig.4-38. Vues macroscopiques des sections illustrant les textures du granite de Montalet (a) et (b), du granite leucocrate du Vialais (c) et du granite d'Anglès (d). Notez la différence des deux faciès du granite de Montalet : (a) faciès microgrenu à biotite dominante, le grenat est moins abondant; (b) faciès grenu, leucocrate et très riche en grenat.

4.4.3 Résultats

4.4.3.1 Datations U-Th-Pb sur monazite (micro sonde électronique)

(a) La migmatite

La migmatite a été analysée sur des grains isolés (échantillons du col de l'Ourtigas ourt1, ourt2 et un échantillon d'Espinouse (espi)) ou directement en lame mince (un échantillon de La Salvetat (salv)). Les monazites isolées de la gangue rocheuse sont de grande taille (> 150 µm) et se caractérisent par la zonation (image MEB, Fig.4-39) typique des monazites métamorphiques (texture irrégulière amiboïde). Ces monazites donnent des résultats chronologiques très hétérogènes à l'échelle même du grain. On obtient des âges individuels qui s'étalent de moins de 300 Ma à plus de 500 Ma, ce qui résulterait de la persistance du processus thermique responsable de la cristallisation de la monazite. Dans ces conditions, la fermeture du minéral par rapport au chronomètre U-Th-Pb ne peut être homogène sur des grains de grande taille. La variabilité des résultats peut également être liée à des imperfections minérales ou à des zones affectées par la perte en U, Th ou Pb ou encore des secteurs touchés par des rééquilibrages thermo-chimiques permettant de dater le dernier évènement thermique important. L'altération, la perte de U, Th ou de Pb aboutissent à des résultats sans signification géologique. Seul un traitement statistique de l'ensemble des données permet de distinguer des populations différentes en âges, de déceler les données incohérentes et d'extraire des âges géologiquement significatifs. Les âges définitifs sont appuyés par les observations de terrain qui fournissent une information sur la chronologie relative du métamorphisme et des processus de fusion crustale.

59 points été effectués pour l'ensemble des monazites de l'échantillon ourt1. Le diagramme de déconvolution de la figure 4-40a dégage deux ensembles d'âges avec un pic à 326 Ma et un autre à 458 Ma. La projection des deux populations sur des diagrammes isochrones : Th/Pb vs U/Pb (Figs.4-40b, c) donne précisément 326 ± 4 et 458 ± 9 Ma. Ces âges sont complétés par les résultats d'un second échantillon du Col de l'Ourtigas (ourt2) et les données de l'échantillons d'Espinouse (espi), respectivement 524 ± 7 Ma sur 54 mesures et 322 ± 6 Ma sur 36 mesures (Fig.4-41). Dans cette migmatite, le mélange des grains hérités (orthogneiss) et des grains formés au cours de la migmatisation semble systématique lorsqu'on travaille sur des grains isolés. Pour caractériser ces catégories de grains en terme de distribution texturale dans la migmatite, une étude en lame mince polie d'un échantillon de La Salvetat a été approfondie (Fig.4-42). Les deux lames analysées n'ont permis de mettre en évidence que des monazites néoformées qui donnent un âge de 327 ± 7 Ma (Fig.4-43)

Fig.4-39. Images MEB (mode électrons retrodiffusés) de quatre exemples de monazites extraites des échantillons de migmatite du col de l'Ourtigas (a,b), de l'Espinouse (c,d) et de La Salvetat. Les quatre monazites illustrent les textures fréquemment rencontrées dans la migmatite (zonation irrégulière, diffuse, amiboïde). Ces monazites subautomorphes se caractérisent également par l'abondance des inclusions, de zircon, de quartz et plus rarement d'apatite et biotite.

Fig.4-40. Résultats de l'analyse chronologique des monazites isolées de l'échantillon ourt1. (a) fréquence des âges individuels obtenus sur l'ensemble de 7 grains de monazite récoltés. Il ressort deux ensembles statistiques qui donnent (b) 326±4 Ma et (c) 458±9 Ma. Les deux populations de grains ne présentent aucune particularité texturale permettant de les distinguer.

Fig.4-41. Diagrammes Th/Pb vs U/Pb des monazites des échantillons (a) ourt2, (b) Espinouse.

Fig.4-42. Microphotographies des plages de deux lames minces de l'échantillon de la migmatite de La Salvetat. Les monazites (cercle) sont de plus petites tailles que les grains extraits (Fig.4-39). Comme les zircons, elles se caractérisent par une auréole tout autour du grain. Deux exemples d'images détaillées (MEB) illustrent la structure interne des monazites. Les domaines clairs correspondent à des teneurs plus élevées en U+Th.

L'analyse géochronologique des monazites (grains isolés ou en lames minces) de la migmatite de la

Montagne Noire met en évidence un héritage daté à 524 \pm 7 Ma et un autre à 458 \pm 9 Ma. Ces âges sont bien connus dans la Montagne Noire. Le premier concorde avec le magmatisme alcalin infracambrien autour de 530 Ma (orthogneiss de Nages, Ducrot et *al.*, 1979) témoin de la phase d'amincissement de la croûte continentale. Le second âge, ordovicien correspond au magmatisme calco-alcalin qui engendre des granites avec des méga cristaux de feldspath. Dans la zone axiale, ces derniers granites correspondent aux protolithes d'orthogneiss œillés du type de l'orthogneiss des gorges d'Héric. Roger et *al.*, (2004) ont déterminé l'âge de ce protolithe à 456 \pm 3 Ma (U-Pb sur zircon), ce résultat est identique à celui trouvé avec les monazites héritées dans la migmatiset : 458 \pm 9 Ma. L'orthogneiss dans la zone axiale est par la suite affecté par une fusion partielle (migmatisation) qui conduit à la néoformation des monazites. Ces dernières donnent des âges de 322 \pm 6, 326 \pm 4 et 327 \pm 7 Ma remarquablement homogènes dans la limite des erreurs. Selon ces résultats, et en tenant compte des erreurs, la migmatisation dans la zone axiale de la Montagne Noire se déroulerait au Viséen terminal.

(b) Les granitoïdes

Dans la zone axiale de la Montagne Noire, les gneiss et les migmatites sont intrudés par des roches plutoniques ou magmatiques. La chronologie relative de ces différents objets a permis d'identifier des granites précoces antémigmatitiques, des granites syn-migmatitiques et des granites postérieurs à la migmatisation. La connaissance des âges absolus de ces granites permettra de mieux contraindre l'évolution thermo-tectonique de la Montagne Noire. Les échantillons analysés dans cette étude proviennent du granite de Louzas (granite dit "synmigmatitique"), du granite de Montalet, du granite d'Anglès et du granite du Vialais tous deux tardi à postmigmatitiques.

- Granite d'Anglès, granite du Vialais

Les monazites extraites des échantillons des granites d'Anglès et du Vialais sont automorphes à subautomorphes. Elles sont généralement homogènes même si quelques rares grains présentent de faibles zonations chimiques. La figure 4-44 montre les diagrammes U/Pb vs Th/Pb, résultant du traitement des analyses chimiques ponctuelles des monazites issues des deux granites. Le granite d'Anglès donne un âge de 325 ± 7 Ma et celui du Vialais de 320 ± 3 Ma.

Fig.4-44. Diagrammes Th/Pb vs U/Pb des granites d'Anglès (a) et du Vialais (b). La quasi-superposition de l'isochrone théorique avec la droite de régression permet de valider l'âge calculé au centre géométrique des populations étudiées.

- Granite du Laouzas

L'analyse des monazites du granite d'anatexie du Laouzas a été faite en lame mince. Les monazites identifiées se rapportent à un évènement unique et à l'instar des monazites issues d'autres échantillons de granites, les monazites du granite du Laouzas ne présentent aucune particularité texturale à l'exception des micro-inclusions de thorite et de zircon. Le granite du Laouzas donne un âge isochrone de 333 ± 6 Ma (Fig.4-45) sur une population de 5 grains de monazites analysés.

Fig.4-45. Diagramme Th/Pb vs U/Pb du granite migmatitique du Laouzas.

- Granite de Montalet

Les deux faciès du granite de Montalet précédemment décrits (faciès à biotite dominant et faciès à grenat dominant) ont été datés sur lame mince. Dans les deux cas, La monazite est présente en position interstitielle et majoritairement en inclusion dans la biotite (Fig.4-46). Les âges isochrones obtenus sur les granites sont différents de plus de 100 Ma (Fig.4-47), le faciès à biotite dominante donne 499 \pm 6 Ma sur 4 grains de monazites et 96 points d'analyses. Le faciès à grenat par contre donne un résultat plus jeune de 327 \pm 7 Ma sur 5 grains et 58 points.

Fig.4-46. Microphotographies des deux faciès du granite de Montalet. (a, b et c) : granite à biotite dominante.
Le grenat y est rare et la monazite abondante en inclusion dans la biotite. (d, e et f) : granite à grenat.
Dans ce faciès, la monazite est généralement associée à la biotite.

Fig.4-47. Diagrammes Th/Pb vs U/Pb des faciès du granite de Montalet. (a) faciès à grenat avec un âge U-Th-Pb de 327±7 Ma et un faciès à biotite (b) à 499±6 Ma.

Montagne Noire	Pb (ppm) ±	U (ppm) ±	Th (ppm) ±	Th/U ±	âge isochrone ±2 σ Ma	n
Migmatite						
Ourt1	1945±473	22544±11484	60542±15041	5±4	326±4	29
Ourt1	1403±393	4644±2930	53513±20255	16±10	458±9	30
ourt2	1639±397	5453±3234	51865 ± 20470	14±11	524±7	54
Espinouse	1980 ± 433	25297±10597	59201 ± 15287	4±3	322±6	36
Salvetat	1023±186	4124±1425	58133±10731	16±7	327±7	48
Granite						
Vialais	2094 ± 425	25148±9335	65922±17006	3±3	320±3	92
Anglès	1106±198	10003±4137	45417±5565	5±2	325±7	56
Montalet (biotite)	2196 ± 446	9246±7224	68681±10869	19±17	499±6	96
Montalet (grenat)	937±180	7060 ± 3481	42572±3427	7±3	327±7	58
Laouzas	1133±216	4660±1377	66298±13792	15±5	333±6	54

Tableau 4-5. Composition chimique des monazites des échantillons de la Montagne Noire.

n = nombre d'analyses

Pour certains échantillons de la Montagne Noire (granite de Montalet, granite du Laouzas et la migmatite de la Salvetat), on a tenté de conforter les datations sur monazites à la sonde électronique par des datations isotopiques sur zircon à la sonde ionique. Les deux méthodes donnent des analyses ponctuelles sur monograins sur des domaines homogènes, mais elles diffèrent par leur résolution spatiale : ~1-2 µm pour la sonde électronique (SX 50 BRGM) et ~25-30 µm pour la sonde ionique (IMS 1270 CRPG Nancy). Pour minimiser les effets dus à l'hétérogénéité potentiel des zircons analysés à la sonde ionique, on s'est aidé des analyses microstructurales détaillées par cathodoluminescence en plus des images par électrons rétrodiffusés. Les échantillons de roche produisent des zircons incolores, automorphes se présentant sous forme d'aiguilles pouvant atteindre 200 µm de longueur avec un développement plus important des prismes par rapport aux pyramides. Les zircons prismatiques comportent des faces cristallines {110} plus larges que les faces {100}. Les observations en microscopie optique indiquent que la plupart des cristaux renferment des micro-inclusions variées avec quelquefois des zones amorphes totalement opaques. La classification des zircons suivant la nomenclature de Pupin (1980 ; voir annexe 6) montre que tous les zircons de cette étude sont d'origine anatectique sialique.

4.4.3.2 Datation isotopique de zircon (sonde ionique)

Cinquante zircons par échantillon ont été montés en même temps que des éclats du zircon standard (91 500) en section polie métallisée à l'or. Seuls 28 zircons de la migmatite de La Salvetat, 29 du granite de Laouzas et 30 du granite de Montalet ont été analysés. La figure 4-48 montre des exemples représentatifs des trois populations de zircons illustrant les différentes structures observées. Les images de cathodoluminescence révèlent que la plupart des zircons sont hétérogènes. En plus des auréoles de croissance communément observées dans les zircons, on note la présence de coeurs hérités à plus forte luminescence par rapport aux bordures néoformées. La procédure analytique utilisée sur la sonde ionique est celle décrite par Deloule et *al.*, (2001). On effectue alternativement trois analyses sur un échantillon suivies d'une analyse sur le zircon standard. Ce protocole permet de définir la courbe de calibration U/Pb *vs* U/UO à l'aide du standard afin de calculer le rapport ²⁰⁶Pb/²³⁸U sur les échantillons. Le calcul des âges (Fig.4-49, 50) se base sur le diagramme concordia de Terra-Wasserburg (1972).

Fig.4-48. Exemple d'images en cathodoluminescence par microscope électronique à balayage de la migmatite de La Salvetat (a), du granite de Laouzas (b) et du granite de Montalet, faciès à grenat (c). Les images ont été choisies pour illustrer la variété structurale des zircons. Les zircons allongés automorphes dominent dans les trois populations. Les zircons de la migmatite de la Salvetat et du granite de Laouzas comportent des grains composites avec des cœurs multiples enrobés dans du zircon néoformé, résultat d'une croissance multi épisodiques des grains. Les points et les numéros indiquent les zones analysées du zircon. Les résultats analytiques sont disponibles dans les tableaux 1, 2 et 3 en annexe 4.

Fig.4-49. Concordia Terra-Wasserburg des échantillons de (a) migmatite de La Salvetat, (b) du granite de Montalet (faciès à grenat abondant). En rouge, analyses prises en compte dans le calcul d'âges moyens.

Fig.4-50. Concordia Terra-Wasserburg des échantillons de granite de Laouzas. En rouge, analyses prises en compte dans le calcul d'âges moyens.

Sur les diagrammes (Figs.4-49, 50) une contribution de plomb commun se traduit par une forte augmentation du rapport ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ associée à une faible diminution du rapport ${}^{238}\text{U}/{}^{206}\text{Pb}$; une perte de Pb radiogénique (Pb*) se traduit par une augmentation significative du rapport ${}^{238}\text{U}/{}^{206}\text{Pb}$. Une analyse composite avec une part héritée se traduit par une légère augmentation du rapport ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ associée à une forte diminution du rapport ${}^{207}\text{Pb}/{}^{206}\text{Pb}$. Due analyse composite avec une part héritée se traduit par une légère augmentation du rapport ${}^{207}\text{Pb}/{}^{206}\text{Pb}$ associée à une forte diminution du rapport ${}^{238}\text{U}/{}^{206}\text{Pb}$. Pour une meilleure lisibilité du diagramme chaque analyse est représentée par son ellipse d'erreur à $\pm 1\sigma$, mais tous les calculs prennent en compte les erreurs à $\pm 2\sigma$.

Les analyses des zircons de la migmatite de la Salvetat donnent des points globalement concordants exprimant la faible contribution du plomb commun dans le résultat des analyses. Un groupe de 24 analyses homogènes (voir Fig.4-49) permet de calculer un âge hérité à 540 \pm 7 Ma (MSWD = 3.8). D'autres analyses donnent un âge nettement plus jeune (306 \pm 6 Ma). Cependant, la statistique insuffisante (3 points) de cet ensemble de points

ne permet pas en toute rigueur d'attribuer un sens géologique à ce résultat. L'âge à 540 Ma témoigne de la présence d'une majorité de zircons hérités d'âge Protérozoïque terminal-Cambrien inférieur dans la migmatite.

Le granite de Montalet (faciès à grenat abondant) donne par contre un âge isotopique de 325 ± 5 Ma (Fig.4-49) sur 11 analyses. Cet âge est similaire à celui trouvé par la datation chimique de la monazite issue du même faciès. En dépit des phénomènes multiple ayant affecté nombre des analyses, le diagramme de Terra et Wasserburg a permis le calcul de l'âge recherché. Les analyses des zircons du granite de Laouzas présentent la même configuration avec des populations de points indiquant des pertes récentes de plomb radiogénique et surtout une majorité d'analyses sur zircons hérités. L'âge de ces zircons est calculé sur 18 analyses majoritairement concordantes (Fig.4-50). Le granite de Louzas donne 552 \pm 6 Ma (MSWD = 1.5). Sur deux points supplémentaires (Fig.4-50) on a pu déterminer un âge de 299 \pm 8 Ma. Le nombre restreint de points (susceptibles d'avoir subi une perte partielle de Pb*) pour cette dernière population rend le résultat très peu informatif par rapport à l'éventualité d'un évènement thermique majeur ayant affecté le granite autour de 300 Ma. Toutefois, il convient de souligner que ces âges autour de 300 Ma sont également rencontrés dans les monazites des granites et des migmatites. Ce résultat laisse envisager une perturbation des chronomètres vers 300 Ma par un processus thermique comme un métamorphisme de haute température, un évènement magmatique ou une circulation hydrothermale.

En conclusion, l'étude radiochronologique des monazites et des zircons des migmatites et granitoïdes de la Montagne Noire montre que les résultats sont très bien corrélés. Contrairement à la monazite, le zircon donne majoritairement des âges relatifs au magmatisme ancien (Protérozoïque-Cambrien) interprétés comme représentatifs des protolithes granitiques de la migmatite de la zone axiale et du granite d'anatexie du Lauzas. Le zircon est hérité et bien préservé des processus anatectiques hercyniens. La monazite par contre semble plus portée à la recristallisation tout en préservant l'héritage qui dans certains cas sert de germe à la néoformation. Cette forte propension de la monazite à recristalliser permet de déterminer avec précision les âges de chaque évènement thermique. La figure 4-51 résume l'ensemble des nouvelles données géochronologiques obtenues dans la zone axiale de la Montagne Noire.

La succession chronologique des évènements thermo métamorphiques mis en évidence dans la Montagne Noire, grâce à notre étude est schématiquement représentée sur la figure 4-52.

Fig 4-51. Carte synthétique des nouvelles données chronologiques de la Montagne Noire. Les valeurs en italiques correspondent aux résultats obtenus

par analyse du zirron les autres restent résultent de l'analyse de la monazite aussi bien en lame mince qu'en section polie.

Fig.4-52. Schéma interprétatif des données chronologiques acquises dans la Montagne Noire. Notez la quasi superposition des âges des granites et ceux de la migmatite dans le domaine 320-330 Ma qui est admis comme étant la principale période des processus thermiques qui affecte ce domaine de la chaîne hercynienne française.

4.5 Le Limousin

Contrairement aux sites précédents qui correspondent à des gisements restreints de migmatites, souvent en dômes, les migmatites du Limousin se caractérisent par une vaste distribution régionale. Ainsi que cela a été présenté dans le chapitre 2, le Limousin est une région du Massif Central où la tectonique de nappes a été définie en particulier sur la base d'une cartographie détaillée (Floc'h, 1983). L'empilement de nappes est replissé par des plis droits qui déforment la foliation selon des axes E-W, il en résulte une succession d'antiforme: l'antiforme du plateau d'Aigurande, l'antiforme de Meuzac, l'antiforme de Tulle et la fenêtre de Châteauneuf-la-Foret (Fig.4-53). Contrairement au Sud Millevaches, on ne connaît pas de migmatites dans les micaschistes de l'unité Para-autochtone du Limousin.

Comme dans la plupart des autres secteurs du Massif Central français, l'Unité Supérieure des Gneiss du plateau d'Aigurande est constituée dans sa partie supérieure de migmatites à cordiérite qui ne sont encore que très imparfaitement datées.

Dans le Limousin, se rencontrent aussi plusieurs générations de granitoïdes. La première génération correspond à la mise en place du granite de Guéret immédiatement après la deuxième déformation ductile (D2 Faure et *al.*, 2004). Le granite de Guéret est daté radiométriquement à 356 Ma (Rb-Sr, Berthier et *al.*, 1979) et 352 (U-Th-Pb, monazite, Cartannaz et *al.*, soumis). Ces âges radiométriques s'accordent avec la stratigraphie puisque les dépôts volcano-sédimentaires d'âge Viséen (vers 340 Ma) reposent directement sur le granite de Guéret.

Dans l'anticlinal de Tulle, les granites de Cornil-Chanteix et les filons associés appartiennent à la génération des granites de Guéret. Mais actuellement, il n'existe aucune contrainte radiométrique pour appuyer cette interprétation.

Fig.4-53. Schéma structural simplifié du Massif Central.

4.5.1 La faille d'Argentat et le Sud Millevaches

4.5.1.1 Cadre géologique

La faille d'Argentat sépare deux domaines de la chaîne Varisque du Massif Central : le Limousin à l'Ouest et le massif du Millevaches à l'Est. La faille d'Argentat est une structure importante du Massif Central à jeu polyphasée (Roig, thèse 3^{ième} cycle; 1997 ; Roig et Faure, 1995). Le jeu ductile précoce correspond à un mouvement normal à composante décrochante dextre puisque la linéation associée au mouvement est orientée NW-SE. Le domaine limousin est abaissé par rapport au domaine Millevaches. Ce mouvement se produit entre le Viséen supérieur et Westphalien, c'est à dire pendant l'extension syn-orogénique. Il est contemporain de la mise en place des leucogranites de l'ouest Millevaches (leucogranite de Goulles, Labernardière, 1992 ; Monier et *al.*, 1980). Pendant le jeu fragile, décrochant senestre de la faille d'Argentat se forment les bassins houillers d'Argentat ou de Bosmoreau.

Du fait de ces mouvements verticaux, le masif du Millevaches permet d'observer l'Unité para-autochtone, qui est comme dans les autres domaines du Massif Central, constitués par des micaschistes et des quartzites recoupés par plusieurs générations de granitoïdes. En outre on reconnaît des migmatites développées à partir d'orthogneiss (appelés orthogneiss de la Xaintrie). Parmi les leucogranites, on distingue :

- (i) le leucogranite de Goulles, allongé N-S présente souvent une foliation magmatique qui passe vers l'ouest à une foliation developpée à l'état post-solidus pendant le jeu ductile de la faille d'Argentat.
 Outre le pluton proprement dit, de nombreux filons issus du granite de Goulles peuvent être observés lorsque les conditions d'affleurement le permettent.
- (ii) D'autres plutons sont caractérisés par des granitoïdes porphyriques (granite de Gour Noir) semblant être associés au décrochement dextre qui partage longitudinalement le massif du Millevaches.
- (iii) Les granites à biotite, non porphyriques et à grain fin (granite de Glény) recoupent les autres granites qui possèdent tous, à des degrés divers, une orientation préférentielle globalement N-S.

Dans la continuité des études géochronologiques menées ici sur les migmatites des Cévennes et de la Montagne Noire, il est intéressant d'examiner les migmatites du sud Millevaches.

Fig.4-54. Carte simplifiée du Sud Millevaches (à partir de Labernardière, 1992). La carte illustre la localisation des échantillons de migmatites et de granitoïdes prélevés pour l'étude radiochronologique.

4.5.1.2 Etude minéralogique et texturale des échantillons cibles

(a) Les migmatites

Trois échantillons de migmatite ont été prélevés (smv 11, smv 12 smv 4). Les études géochimiques (Labernardière, 1992) montrent que la migmatite dérive de la fusion partielle des granitoïdes orthogneissifiés dont la mise en place est datée à 467 \pm 8 Ma par Rb-Sr (Monier, 1980). Les observations de terrain montrent que la migmatite se caractérise par des textures variables parmi lesquelles se distinguent les métatexites (Fig.4-55) et les diatexites. La migmatite (métatexite) est souvent localisée sous forme de panneaux d'extension métrique à décamétrique avec des bordures franches dans les granites tardifs comme par exemple les granites de Goulles, de Glény et le monzogranite de Gour-Noir. La métatexite massive est très souvent traversée par une multitude de filons de leucogranite de faible puissance et parfois anastomosés. On observe une alternance régulière de leucosomes et de mélanosomes quelquefois plissés, les leucosomes étant quantitativement plus importants. Les mégacristaux sigmoïdes de cristaux de feldspath potassique dont la taille varie entre 1 à 4 cm et pouvant atteindre exceptionnellement 6 cm sont abondants ils correspondent au gneiss œillé du protolithe. La diatexite quant à elle, comporte des niveaux discontinus, d'épaisseur variable de mélanosomes. Elle présente localement les caractéristiques d'un granite à deux micas avec un grain fin et homogène, les mégacristaux de feldspath sont absents. La diatexite apparaît souvent très altérée et friable (barrage de Chastang) rendant difficile le prélèvement d'échantillon.

Les analyses microscopiques des échantillons montrent que toutes les migmatites possèdent une paragenèse similaire composée d'assemblages polycristallins de quartz avec des joints lobés et le développement de sous grains dans les cristaux de plus grande taille, la biotite se présente sous formes d'amas fusiformes aplatis suivant la foliation. Des cristaux très allongés de sillimanite fibreuse s'observent autour de ces amas de biotite. La muscovite microcristalline est en position interstitielle et souvent sécante à la foliation définie par les lits de biotites. Les mégacristaux de feldspath potassique de la métatexite sont brisés avec une microfracturation importante. Les microfractures sont colmatées par des produits d'altération. Accessoirement, on trouve de grands cristaux d'apatite à bords engrenés. Cette paragenèse principale est complétée par des assemblages de minéraux secondaires tels que le zircon, la monazite, le xénotime, l'allanite et des oxydes multiples résultant de l'altération. Le zircon est préférentiellement en inclusion dans la biotite, le reste des minéraux présentant une distribution aléatoire. La monazite comporte des bordures d'aspect souvent corrodées.

Fig.4-55. Photographies illustrant les deux faciès observables de migmatite dans le Sud Millevaches. (a) une diatexite présentant des reliques diffuses de la foliation initiale de l'orthogneiss. Quantitativement, le leucosome est plus important que le mélanosome. On y observe des structures de type fluage magmatique. (b) une métatexite, avec une foliation initiale très marquée et des bandes de cisaillement. Noter la distribution des mégacristaux de feldspath potassique.

La texture de la diatexite est grenue à faiblement granoblastique et celle de la métatexite est granoblastique hétérogranulaire. La métatexite qui rappelle beaucoup l'orthogneiss correspond à un faciès de transition vers le développement de la diatexite ou encore vers la genèse des liquides silicatés à l'origine des nombreux petits corps intrusifs souvent de type pegmatitique et des filons de granitoïdes divers qui traversent le complexe migmatitique.

(b) Les granites

Pour cette étude, deux échantillons du granite de Glény (smv 1, smv 10) et deux autres du granite de Goulles (smv 15, smv 16) ont été prélevés. Le granite de Glény est intrusif dans le granite de Goulles. Les deux granites sont structuralement postérieurs à la migmatite du Sud Millevaches. Le granite de Glény est un granite homogène à deux micas, il se distingue du granite de Goulles par son grain fin et l'absence d'indice de déformation. Au microscope optique, le granite de texture isogranulaire est composé essentiellement de quartz, de biotite, de mica, de feldspath potassique et de feldspath plagioclase. Le quartz présente un aspect globuleux et la biotite renferme une grande quantité d'inclusions de zircon et de monazite qui constituent les principaux minéraux accessoires de ce granite.

Le granite de Goulles est le faciès le plus vaste et le plus riche en enclaves de migmatite caractérisées par des limites diffuses. Il est également recoupé par des filons de pegmatite. Sur le terrain, le granite de Goulles présente, un faciès fin faiblement rubané et un faciès à grain moyen non rubané et localement porphyrique. Les observations microscopiques du faciès à grain fin (\sim 70-100 µm) montrent que le granite est composé d'amas polycristallins de quartz xénomorphe à joints dentelés ou à tendance globuleuse. La biotite se présente sous forme de plages minces et régulières définissant le rubanement caractéristique de ce faciès à grain fin. Dans ces lits s'observent également des fibres de sillimanite. Le feldspath potassique est enrobé dans des amas de quartz, plagioclase et muscovite. Cette dernière se présente sous forme de lamelles automorphes souvent en contact avec la biotite. En position interstitielle ou en inclusion se trouvent les minéraux accessoires comme par exemple le zircon, la monazite, l'apatite et l'allanite. Minéralogiquement, le faciès à grain moyen (~150-750 µm) comporte les mêmes assemblages que le granite à grain fin. Le feldspath potassique automorphe atteint exceptionnellement 1 à 2 cm ; dans ce cas la macle est bien perceptible. La biotite est souvent chloritisée et est accompagnée par des petites paillettes lenticulaires de muscovite. Outre les lattes de feldspath potassique, on observe également le quartz qui forme de grands agrégats polycristallins avec des joints rectilignes. On note aussi de grands cristaux de quartz isolés caractérisés par une extinction ondulante et un développement de sous-grains. Les observations microscopiques révèlent aussi la présence d'une multitude de microfractures remplies d'oxydes de fer et d'une variété de produits d'altération ou de circulations hydrothermales.

Des mesures radiochronométriques sur monazite ont été effectuées pour déterminer les relations chronologiques entre la migmatite et les deux granites de Glény et de Goulles.

4.5.1.3 Résultats radiochronologiques

(a) Les migmatites

La taille des monazites varie de 20 à 70 µm. Elles comprennent très peu d'inclusions et ne présentent aucune zonation chimique. Chaque échantillon donne une population homogène en terme d'âges (Fig.4-56, 57). Ces analyses permettent de contraindre avec précision la période de migmatisation entre 337 et 328 Ma dans le Sud Millevaches.

Fig.4-57. Ages isochrones des échantillons smv 11 et smv 12 de la migmatite du Sud Millevaches.

(b) Les granites

Les granites de Glény, et de Goulles sont très riches en monazite (Fig.4-58). Cependant la granulométrie est très variable avec une dominance des minéraux de petite taille, les gros grains dépassent exceptionnellement 40 µm (Fig.4-59). La plus grande proportion de monazites est en inclusion dans la biotite. La microscopie optique révèle la présence systématique d'une auréole pléochroïque autour des monazites. Ces dernières sont très pauvres en inclusions parmi lesquelles on trouve souvent des zircons automorphes ou arrondis de petite taille. Une analyse détaillée de la structure des monazites montre qu'elles sont, pour certaines, subautomorphes et d'autres se caractérisent par des bordures irrégulières, lobées évoquant des figures de dissolution. Les cavités sont occupées essentiellement par l'allanite et quelquefois par l'apatite. En outre, on observe également une zonation diffuse (Fig.4-59) qui rappelle les bandes de croissance. L'analyse texturale et l'examen des structures internes des monazites indiquent que chaque échantillon de granite ne renferme qu'une génération de monazite. Seuls les grains de taille supérieure ou égale à 20 µm ont été analysés pour éviter les perturbations du géochronomètre U-Th-Pb déjà signalées lorsqu'on travaille avec les grains de trop petite taille.

Fig.4-58. Exemples de microphotographies des lames minces des granites. (a) granite de Goulles, (b) granite de Glény. Notez la taille et la distribution des monazites cerclées. Elles sont essentiellement incluses dans les biotites.

Fig.4-59. Images MEB détaillés des monazites observées dans les lames minces des granites. (g1, g2 et g3) granite de Goulles, (g4, g5 et g6) granite de Glény.

Les deux échantillons du granite de Glény smv 1 et smv 10 ont été datés sur respectivement 9 et 7 grains. 128 points d'analyse de l'échantillon smv 1 ont permis de calculer un âge de 324 ± 3 Ma (MSWD = 1.3) similaires dans la limite des erreurs à l'âge de 318 ± 3 Ma (MSWD = 1.01) obtenu sur 60 analyses des monazites de l'échantillon smv 10. Ces résultats indiquent l'âge de mise en place du pluton de Glény autour de 321 Ma.

Concernant le granite de Goulles, les échantillons smv 15 et smv 16, distants de près de 10 km donnent exactement le même résultat à un million d'années près. Sur l'échantillon smv 15, 6 grains de monazites pour 100 analyses donnent 324 ± 3 Ma (MSWD = 1.1) et l'échantillon smv 16 fournit 5 grains sur lesquels 83 points d'analyse

ont été effectués. Le résultat pour cet échantillon est de 323 ± 4 Ma (MSWD = 0.88). Les figures 4-60 et 4-61 montrent les différents diagrammes à partir desquels les âges moyens ont été calculés.

Fig.4-60. Diagrammes Th/Pb vs U/Pb des quatre échantillons de granite daté par monazite. (a), (b) : granite de Glény.

Fig.4-61. Diagrammes Th/Pb vs U/Pb des quatre échantillons de granite daté par monazite. (a), (b) : granite de Goulles.

A partir de ces résultats, l'âge de 322 ± 5 Ma peut être considéré comme l'âge de mise en place du granite de Goulles. Dans la limite des erreurs de ces 4 âges on ne peut pas distinguer la mise en place de ces deux granites

autour de 322 Ma. Ce résultat n'est pas en désaccord avec les relations structurales observées sur le terrain montrant l'antériorité du granite de Goulles. Les figureS 4-62 et 4-63 résument les résultats radiochronologiques obtenus dans le Sud Millevaches et la succession des évènements de migmatisation et de granitisation est synthétisée sur la figure 4-63 : si on écarte la monazite smv 11 (328 ± 3 Ma), l'âge de la migmatisation apparaît significativement antérieur (337-334 Ma) à l'âge de mise en place des granites à 322 ± 5 Ma.

Faille d'Argentat Sud Millevaches	Pb (ppm) ±	U (ppm) ±	Th (ppm) ±	Th/U ±	âge isochrone ±2σ Ma	n
Migmatite						
smv 4	1176 ± 208	6762±3064	57477 ± 8026	11±8	334±4	90
smv 11	1380 ± 276	4035±3627	81726±13506	41±31	328±3	129
smv 12	1326 ± 255	4096±3790	75199±15571	39±27	337±4	76
Granite						
smv 1 (Glény)	1388±276	5704 ± 5564	78378±16676	28 ± 20	324±3	183
smv 10 (Glény)	1708 ± 289	16069 ± 3366	69131±17866	4±2	318±3	60
smv 15 (Goulles)	1745 ± 370	12410 ± 8402	80841±32275	15±18	324±3	100
smv 16 (Goulles)	1731±281	17039 ± 7749	65018±15616	7±11	323±4	83

Tableau 4-6. Composition chimique des monazites des échantillons du Sud Millevaches. n = nombre d'analyses

Fig.4-62. Carte simplifiée du domaine Sud Millevaches illustrant la localisation des échantillons et des

nouvelles données géochronologiques correspondantes.

4.5.2 Migmatites et granitoïdes du Limousin : du plateau d'Aigurande à l'anticlinal de Tulle

4.5.2.1 Cadre géologique

Les ensembles de nappes du Limousin, à l'ouest du domaine de Millevaches, s'étendent du plateau d'Aigurande à l'anticlinal de Tulle. Ils forment une zone tectonisée complexe où affleurent essentiellement des formations métamorphiques de l'Unité Inférieure des Gneiss (UIG) sur laquelle reposent tectoniquement les gneiss de l'Unité Supérieure (USG). Comme il a été mentionné précédemment, ces nappes sont affectées d'un plissement tardif qui produit des plis droits d'échelle métrique à kilométrique. Ces derniers déterminent les structures les plus apparentes de la région. On observe une succession d'antiformes : l'antiforme du plateau d'Aigurande, celui de Meuzac et l'antiforme de Tulle (Fig.4-64). L'Unité Para-autochtone, semblable aux micaschistes des Cévennes, apparaît en fenêtres sous UIG. Les deux unités métamorphiques sont recoupées par des granitoïdes d'âge fini Tournaisien à Westphalien. En outre, on observe des gneiss migmatitiques avec de faibles taux de fusion qui préservent bien les caractéristiques texturales du gneiss d'origine. On note également la présence de migmatite dans l'UIG. La distribution spatiale des niveaux leucocrates élaborés par la fusion partielle n'est pas uniformément répartie dans l'ensemble de l'UIG. En effet, les affleurements les plus vastes des gneiss migmatitiques sont localisés au cœur des antiformes où on rencontre également un grand nombre de filons de leucogranites d'extension métrique et souvent intensément déformés (Roig et Faure, 1995). Dans le cadre du programme GéoFrance 3D, les études

gitologiques des concentrations aurifères suggèrent que le cœur de l'antiforme de Meuzac pourrait être occupé par un dôme migmatitique (Bouchot et *al.*, 2000). Enfin, les profils sismiques également acquis lors du programme GéoFrance 3D suggèrent aussi la présence de formations granitiques ou migmatitiques profondes (Bitri et *al.*, 1999).

Fig.4-64. Carte structurale schématique (à partir de Faure 1995) du Limousin avec emplacement des points d'échantillonnage pour l'étude géochronologique. Détail de l'encadré A : Fig.4-65.

Aucune étude radiochronologique systématique des migmatites de l'USG et de l'UIG n'a encore été réalisée jusqu'ici dans cette partie du Massif Central pour contraindre l'âge de cette fusion crustale afin de la placer dans le cadre plus global de l'évolution de la chaîne Varisque. C'est pourquoi, un travail préliminaire a été entrepris ici. Cinq échantillons de migmatite ont été prélevés (Fig.4-64 : *Li 5, Li 9, Li 13 et Li 16*). En outre, un échantillon du granite de Cornil (Li 6) a été récolté pour tenter d'en déterminer l'âge absolu.

4.5.2.2 Caractérisation des échantillons de l'antiforme de Tulle

(a) Les migmatites

Les échantillons *Li* 5 (Tulle) et *Li* 9 (Meuzac) présentent les mêmes caractéristiques pétrographiques. Le grain est généralement fin et parfois moyen (~500 μ m). Quartz, biotite, feldspath potassique et plagioclase constituent les minéraux essentiels de la roche. Le quartz comporte des limites irrégulières. Les petits cristaux organisés en amas polycristallins avec des joints lobés enrobent les gros cristaux. Ces derniers montrent une extinction ondulante avec développement de sous grains dont la taille rappelle celle des microcristaux. Le feldspath légèrement allongé et fracturé est associé au quartz pour former des nivaux leucocrates qui alternent avec les rubans de biotite sombre et parfois des baguettes très fines de sillimanite. L'alternance des lits quartzo-feldspathiques et les lits plus riches en biotite définit la foliation de la métatexite. La muscovite se présente sous forme de petites paillettes dispersées entre le quartz et le feldspath. Elle est exceptionnellement associée aux lits de biotite. Outre le zircon inclus dans la biotite, l'apatite, le xénotime et la monazite constituent le cortège des minéraux accessoires de cette métatexite qui passe au gneiss de façon progressive. Les minéraux sont associés en une texture granoblastique.

(b) Le granite de Cornil

Le granite de Cornil recoupe le gneiss migmatitique localisé au cœur de l'antiforme (Fig.4-65). Il affleure sous forme de filons bien individualisés d'une puissance métrique à décamétrique. Les filons sont généralement très déformés. A la déformation magmatique se surimposent des structures sub à post-solidus comme le plissement ou le boudinage (Roig et *al.*, 1998). Le granite de Cornil est un granite leucocrate à grain très fin avec de nombreux agrégats quartzeux. Minéralogiquement, la biotite est peu abondante et se présente en lamelles interstitielles avec un aspect déchiqueté à l'instar des cristaux de quartz allongés et dendritiques. La biotite lenticulaire est localement chloritisée et renferme beaucoup d'inclusions de zircon. La muscovite est fraîche, très abondante et dépourvue d'inclusions. Elle est disséminée dans toute la roche et se présente à la fois avec des formes sigmoïdes et en amas d'individus très allongés et fréquemment kinkés. La distribution des micas et leurs caractéristiques géométriques soulignent une foliation fruste globalement horizontale, similaire à celle observée dans l'encaissant. Les feldspaths potassiques et plagioclase moulés par des microcristaux de quartz témoignent aussi du développement d'une fabrique magmatique. La déformation post-solidus est attestée par la présence régulière des fractures. La phase minérale accessoire est composée d'allanite, de monazite en position interstitielle ou en inclusion dans la biotite, de xénotime et de zircon observés en très faible quantité. On note également des craquelures qui sont colmatées par de fines lamelles de chlorite, des oxydes de fer aux formes globuleuses et d'une variété de produits amorphes d'aspect poussiéreux, issus de l'altération hydrothermale. De rares petits feldspaths potassiques altérés sont associés. Le granite est orienté à l'état magmatique, la texture granoblastique est généralisée.

Fig.4-65. Carte structurale simplifiée du Limousin méridional (d'après de Roig et al., 1998). La carte montre la localisation des échantillons Li 5 (migmatite) et Li 6 (granite de Cornil). La coupe [AB] est représentée sur la figure 4-66.

Fig.4-66. Coupe schématique (d'après Roig et al., 1998) montrant les relations structurales des différentes unités lithologique du Sud Limousin. La coupe illustre également les relations entre migmatites et granitoïdes.

Fig.4-67. Photographies illustrant les variations de textures des migmatites étudiées. (a) Migmatite Li 5, (b) migmatite Li 9, (c) migmatite Li 13 très plissée et (d) migmatite Li 16 du plateau d'Aigurande avec des nodules de cordiérite. Tous ces échantillons correspondent à des métatexites.

Fig.4-68. Photographies de deux affleurements des filons du granite de Cornil. (a) Filon boudiné, faciès correspondant à l'échantillon Li 6. (b) Filon métrique dans l'encaissant gneissique. La foliation sub-horizontale du granite est parallèle à celle de l'encaissant.

4.5.2.3 Caractérisation des échantillons de migmatite du nord Limousin

Deux échantillons de migmatite ont été collectés dans le Nord du Limousin. L'échantillon Li 16 provient de la migmatite qui affleure sur le plateau d'Aigurande le long de la vallée de la Creuse au Pont Noir (Fig.4-67d). Elle se distingue des autres migmatites par les proportions assez élevées des poches de leucosome témoins d'une fusion partielle importante. Toutefois les caractéristiques du protolithe gneissique initial ne sont pas totalement altérées. La foliation visible à l'échelle de l'affleurement est bien préservée. On observe des traces fantomatiques des mégacristaux de feldspath potassique que comportait le gneiss. La migmatite du plateau d'Aigurande se caractérise également par la présence de larges plages de cordiérite pouvant atteindre 5 cm. La cordiérite, lorsqu'elle existe, est toujours distribuée de façon homogène sur toute la roche. Cependant les traces les plus importantes sont localisées dans les lits ou les poches de leucosome. Les observations microscopiques montrent qu'à l'exception de la cordiérite, la paragenèse principale de cette migmatite est similaire à celle déjà observée avec les échantillons de migmatite de l'antiforme de Tulle. Il convient toutefois de signaler l'abondance des petits cristaux de feldspath potassique qui donnent un aspect rosé à la migmatite. Les minéraux comportent des preuves d'une déformation plastique notamment le quartz qui présente de gros grains lobés avec un développement important de sous-grains. Outre la texture granoblastique, on observe localement la présence de la texture grenue avec apparition des points triples et des limites rectilignes pour de petits cristaux de quartz. Une telle association évoque une recristallisation statique,

certainement liée à la production des liquides silicatés. Accessoirement, on peut observer de la monazite, du zircon, de la pyrite automorphe et parfois de l'allanite et de l'apatite. Il apparaît utile pour l'Unité Supérieur des Gneiss de caler chronologiquement sa fusion partielle par rapport à celle qui est mise en œuvre dans l'Unité Inférieure des Gneiss.

La migmatitique *Li 13* à l'ouest de Limoges, appartenant à l'UIG a également été échantillonnée (Fig.4-67c). L'âge de ces échantillons de migmatite permettra d'apprécier l'importance des processus de migmatisation dans le Limousin. La métatexite est très déformée, on observe des plis centimétriques à métriques. Le leucosome est plus épais au niveau des charnières des plis. Les analyses microscopiques montrent que cet échantillon est minéralogiquement identique aux échantillons de l'antiforme de Tulle.

4.5.2.4 Résultats chronologiques

(a) Les migmatites

Les études géochronologiques des échantillons de migmatite ont été faites par des analyses de monazites extraites de la roche. Elles sont montées en sections polies. Les grains de monazite sont de grande taille (>100 μ m) et riches en inclusions de zircon, d'apatite et rarement de paillettes de micas. On remarque toutefois des différences structurales internes entre les monazites issus des échantillons *Li* 5 et *Li* 9 de ceux issus des échantillons *Li* 13 et *Li* 16. Sous la loupe binoculaire, Li 13 et Li 16 contiennent des grains automorphes translucides ou verdâtres avec des facettes sans aspérités. Les sections de monazites (Fig.4-69) observées au microscope électronique à balayage (électrons retrodiffusés) montrent des zonations amiboïdes typiques des monazites métamorphiques. Ces analyses MEB mettent également en évidence deux familles de micro-fractures parfois très denses et faisant un angle d'environ 90° entre elles. Cette fracturation est beaucoup plus importante pour l'échantillon *Li* 16. Ces particularités structurales ne sont pas visibles sur les échantillons *Li* 5 et *Li* 9 dont les grains apparaissent très émoussés sous la loupe binoculaire avec une teinte jaune verdâtre. Les grains de monazites sont parfois brumeux et de taille plus variable. Leur structure détaillée au MEB est similaire à celle des monazites de *Li* 13 et *Li* 16 avec une zonation chimique très irrégulière. Elles sont xénomorphes et comportent des bords corrodés déterminant des cavités souvent colmatées par du xénotime. Ces spécificités structurales laissent envisager une évolution géologique différente des

Fig.4-69. Microphotographies MEB des monazites extraites des échantillons de migmatites. (a), (b) monazites xénomorphes de Li 5 et Li 9 respectivement. Les bordures des grains illustrent les traces de corrosion. (c), (d) monazites de Li 13 et Li 16. Notez la présence de deux familles de micro fractures très marquées sur le grain 9 (G9) de la planche (d).

Les résultats radiochronologiques de ces populations de monazites sont présentés sur les figures 4-70, 71 et 4-72. Les différences déjà observées à partir des analyses de la structure des monazites se reflètent également sur les données chronologiques. Les échantillons *Li* 5 et *Li* 9 de l'antiforme de Tulle et de Meuzac donnent respectivement 378 ± 5 Ma (MSWD = 1.09) et 374 ± 6 Ma (MSWD = 0.88). Ces résultats sont éloignés de ceux obtenus sur le *Li* 13 soit 366 ± 5 Ma (MSWD = 0.90) et 355 ± 6 Ma (MSWD = 0.92) sur l'échantillon *Li 16*. Ces derniers résultats peuvent être interprétés comme résultants d'une phase thermique postérieure à l'évènement autour de 380 Ma, mais incompatibles avec les données Ar/Ar (Boutin et Montigny, 1993). Dans ce cas ces résultats représenteraient une recristallisation associée à l'évènement D2. Ils peuvent aussi indiquer une importante perte de plomb due à la présence de micro fractures dans les monazites de ces échantillons.

Fig.4-70. Diagramme Th/Pb vs U/Pb de l'échantillon de migmatite du Sud antiforme de Meuzac.

Fig.4-71. Diagrammes Th/Pb vs U/Pb des échantillons de migmatite (a) de l'antiforme de Tulle, (b) du Sud plateau d'Aigurande.

Fig.4-72. Age moyen de la migmatite du plateau d'Aigurande comparé avec son âge isochrone donné par le diagramme Pb=f(Tb*).

(b) Le granite de Cornil

Le granite de Cornil a été étudié en lames minces pour la datation chimique sur monazite et en grains isolés pour la chronologie isotopique sur zircon.

(i) Les monazites

L'analyse optique des monazites en lames minces montre qu'elles sont préférentiellement en position interstitielle au voisinage des micas. Il existe aussi de petits cristaux (~10 µm) en inclusion dans la biotite. La géométrie des grains est très variable, on observe des grains automorphes, sub-automorphes à xénomorphes (Fig.4-73). Certains grains présentent la macle polysynthétique (du type plagioclase) rarement observée dans la monazite (Fig.4-73b). Les analyses au MEB montrent des grains avec une zonation très diffuse. Les monazites se rapportent à une unique population dont l'âge radiométrique calculé sur 7 grains est illustré par la figure 4-74.

Fig.4-73. Microphotographies optiques montrant des exemples de monazites du granite de

Cornil et leurs différentes textures.

Fig.4-74. Age moyen du granite de Cornil comparé avec son âge isochrone donné par le diagramme Pb=f(Th*).
Limousin	Pb (ppm)	U (ppm)	Th (ppm)	Th/U	âge isochrone	n	
	土	<u> </u>	<u> </u>	Ξ	±2 Ma		
Migmatite							
Li 9 (antiforme de Meuzac)	942±162	5268±1182	40192±9433	8±3	374±6	89	
Li 5 (antiforme de Tulle)	1096 ± 215	8070 ± 2004	39504±8177	5±2	378 ± 5	85	
Li 13 (Est Limoges)	869±115	5541±1486	36159±4514	7±2	366±5	92	
Li 16 (Pl. Aigurande)	821±97	5152±902	35127±3691	7±2	354±7	98	
Granite							
Cornil (antiforme de Tulle)	2611±579	6356±802	142687±34511	23±6	358±3	80	

Tableau 4-7. Composition chimique des monazites des échantillons du Limousin.

n = nombre d'analyses

(ii) Les zircons

Les zircons extraits du granite de Cornil (Li 6) sont automorphes, occasionnellement translucides et de taille très variable (~20 à 200 µm). Les prismes sont plus développés par rapport aux pyramides qui sont souvent très réduites ou totalement absentes. Les zircons sont brumeux avec de petites inclusions polygéniques (feldspath, micas). On observe également une population composée de petits cristaux (~20 µm) arrondis opaques qui n'ont pas été traités dans cette étude. Les observations au MEB révèlent l'existence de fractures et une alternance de bandes de croissance diffuses avec des niveaux amorphes. Suivant la classification typologique de Pupin (1980) (annexe 6), tous les zircons automorphes sont typiquement d'origine anatectique crustale. La fraction de zircons sélectionnés (>160 µm) pour l'analyse géochronologique est composée essentiellement de zircons morphologiquement identiques, aucune particularité ne permet de les séparer en familles minéralogiques distinctes. Pour la détermination des mesures radiométriques, les zircons sont analysés à la sonde ionique (CRPG Nancy). La projection des analyses individuelles sur le diagramme concordia de Terra Wasserburg (1972) donne une grande dispersion des points (Fig.4-75) peu propice à définir un âge de cristallisation. Les analyses les plus discordantes sont majoritairement associées à des âges hérités, sans doute ordoviciens, comme l'attestent les quelques analyses sub-concordantes. Par ailleurs, cinq analyses plus jeunes, n'ayant pas subi de perte de Pb*, apparaissent concordantes ou avec seulement une légère contribution de Pb commun. Elles permettent d'estimer un âge de cristallisation de ces zircons à 378 ± 7 Ma. En traçant une droite de mélange partant des deux points concordants vers les trois points discordants dont les teneurs en Pb communs sont plus importantes.

O Analyses prises en compte pour le calcul de l'âge.

Fig.4-75. Diagramme concordia (Tera Wasserburg, 1972) des zircons du granite de Cornil. La composition isotopique des analyses prises en compte sont résumées dans le tableau 4 annexe 4

Ce résultat rappelle ceux obtenus sur les migmatites au cœur de l'antiforme de Tulle (Li 5) et au voisinage de Meuzac (Li 9). L'interprétation la plus probable en tenant compte de l'âge sur monazite déjà obtenu sur ce même granite de Cornil serait la suivante :

-l'âge de mise en place du granite serait donné par l'âge de cristallisation de la monazite (358 ± 2 Ma) tandis que les âges *in situ* déterminés sur zircons ne seraient que des témoins des héritages vers 380 et 480 Ma. Les résultats radiochronologiques de tous les échantillons sont résumés sur la figure 4-76.

Fig.4-76. Carte synthétique des nouvelles données géochronologiques du Limousin.

4.6 Discussion - Conclusion

Dans cette étude, les analyses de monazites à la micro sonde électronique ont permis de dater avec précision les différents épisodes de la fusion crustale exprimés dans la chaîne varisque du Massif Central. Plusieurs constatations générales peuvent être dégagées :

- A l'instar du zircon, la monazite peut être héritée constituant ainsi une mémoire des processus crustaux plus anciens. Cette observation a permis de déterminer les âges de mise en place des protolithes othogneissiques ayant subi la migmatisation et parfois la fusion complète au cours de la tectonique hercynienne.
- (ii) La fiabilité des âges et leur interprétation sont conditionnées par des analyses microstructurales et texturale (observations optique ou MEB) préalables des monazites. Les échantillons qui ont été traités dans cette étude montrent que les grains de petite taille (~5-20 µm) donnent souvent des âges sans signification géologique, car du fait de leur faible volume, les phénomènes de diffusion peuvent être très importants.
- (iii) Bien que les conditions géochimiques qui contrôlent la cristallisation et la croissance de la monazite restent encore incomplètement connues, les zonations chimiques communément observées dans les monazites métamorphiques et ou magmatiques n'indiquent pas systématiquement des sous domaines d'âges différents.

Il a été difficile de corréler les données chronologiques obtenues sur les monazites avec les âges isotopiques fournis par les zircons issus des mêmes échantillons de roche. Les zircons sont significativement plus vieux. Ces résultats sur zircons sont interprétés comme les âges de mise en place des protolithes ayant ultérieurement subi une fusion partielle. A l'exception du granite de Montalet, les granites et les échantillons de migmatite testés n'ont donné aucun indice de recristallisation du zircon ou encore de surcroissance sur les grains existants. Le zircon apparaît donc comme un minéral moins sensible aux processus thermiques que la monazite.

Les nouvelles données radiométriques sur les migmatites et les granitoïdes de la chaîne hercynienne française ont permis d'évaluer l'étendue des différents évènements de fusion crustale. La fusion crustale peut être subdivisée en quatre épisodes principaux (Fig.4-77):

- Un premier épisode de migmatisation se situe vers 385 et 375 Ma, il est mis en évidence dans le Limousin, précisément dans les Unités Inférieure et supérieure des Gneiss.
- (ii) Une seconde phase de migmatisation intervient autour de 330 Ma et se poursuit jusqu'à 325 Ma.
 Cette anatexie se rencontre dans tout le Massif Central. Elle se produit dans la Montagne Noire, les
 Cévennes, le dôme du Velay et le Sud Millevaches. Cette migmatisation est contemporaine de la

mise en place des granites d'anatexie à cordiérite dans la zone axiale de la Montagne Noire (granite du Laouzas, granite de Montalet).

- (iii) Une vaste activité plutonique succède à la deuxième migmatisation et s'étend de 325 Ma à 310 Ma. Cette période voit la mise en place de vastes plutons granitiques, de leucogranites et de monzogranites distribués dans tout le Massif Central et encaissés dans des gneiss ou des gneiss migmatitique (granite du Vialais, granite d'Anglès, le granite de Goulles et de Glény, le granite de Rocles). On observe également de nombreux filons de granite liés aux plutons, certains filons et pluton jalonnent des accidents syntectoniques (ex : granite de Rocles).
- (iv) La dernière phase de fusion crustale se déroule entre 310 et 300 Ma. Elle est essentiellement présente dans le dôme du Velay. Au cours de cette phase se mettent en place le granite à cordiérite et la deuxième génération de migmatites du Velay (Ledru et *al.*, 2001).

La méthode de datation de la monazite à la sonde électronique apparaît comme une méthode alternative de datation. Outre sa rapidité de mis en œuvre, la méthode préserve l'échantillon de la destruction. La haute résolution spatiale de la microsonde électronique est un atout qui permet d'éviter des mélanges de domaines de composition et d'âge différents. Dès lors, les héritages peuvent être systématiquement mis en évidence. Des analyses erratiques généralement situées en bordure de grain ou au voisinage des fractures qui représentent des lieux privilégiés de processus qui peuvent perturber la composition chimique du chronomètre se révèlent par des valeurs qui se démarquent de la tendance générale. Le nombre assez élevé d'analyses permet de calculer un résultat définitif à partir d'un traitement statistique des données. Ce traitement commence par le calcul de la moyenne pondérée et l'analyse de la distribution des résultats ponctuels en fonction des sites d'analyse et leurs écarts par rapport à la moyenne globale. Cette dernière est considérée ici comme un outil discriminant qui permet de séparer les population d'âges. Le calcul de l'âge par différents diagrammes isochrones succède au calcul de la moyenne. La radiochronologie est couplée à un examen détaillé de la texture des minéraux analysés. Ce dispositif révèle souvent des particularités texturales qui facilitent l'interprétation des âges. En outre, la microsonde électronique présente l'avantage d'effectuer des mesures en conditions in situ ce qui favorise l'analyse des monazites dans leur contexte textural directement en lame mince et permet d'accéder à de nombreux renseignements sur les relations cristallisation-déformation qui ne peuvent être acquis par l'étude des grains isolés en section polie. Il est donc question de privilégier les analyses géologiques classiques pour caractériser, en terme d'assemblage minéralogique, le processus géologique prospecté. Il est également important de noter que ces analyses minéralogiques doivent succéder à des observations pétrologiques et structurales de terrain afin de bien choisir les échantillons.

La radiochronologie donne des indications sur l'âge absolu de la fermeture d'un système cristallin pour à un radiochronomètre précis. Cette fermeture dépend étroitement de l'environnement thermodynamique généralement régi par un processus géologique majeur notamment le magmatisme ou le métamorphisme, et souvent par la combinaison des deux. Ces deux évènements peuvent alterner ou se superposer dans le temps mais dans tous les cas, ils conduisent généralement à la formation de nouveaux minéraux. Il est donc raisonnable d'étendre la chronologie de la fermeture des minéraux aux processus géologiques qui leur donnent naissance. En revanche le résultat géochronologique ne couvre pas nécessairement toute la durée de l'évènement géologique. En effet, les processus métamorphiques ou magmatiques peuvent se maintenir bien plus longtemps après la formation des radiomètres et la fermeture des systèmes cristallins. Il demeure par conséquent délicat de statuer sur la durée de certains processus géologiques ce qui aura pour corollaire un étalement possible dans le temps des âges d'un même évènement. Les frontières des âges de deux évènements rapprochés (~10 Ma) restent donc floues et subjectives. Les méthodes de datation ponctuelle offrent donc l'opportunité de conduire des recherches minutieuses et au moyen d'un grain polygénique (un cœur hérité bordé d'une néoformation) de préciser les différents âges qui s'y rapportent. Le phénomène d'héritage qui donne des résultats radiométriques plus anciens que l'évènement étudié témoigne de la résistance de certains minéraux. Le zircon par exemple montre une résistance remarquable aux évènements métamorphiques alors que la monazite semble beaucoup plus sensible aux perturbations thermiques. Le choix de la méthode de datation est déterminé par l'évènement à dater. La compréhension du comportement des éléments constitutifs du chronomètre est indispensable à l'interprétation des âges radiométriques. Cette interprétation requiert également une bonne connaissance de la géologie des roches étudiées, en d'autres termes les résultats géochronologiques doivent s'accorder avec les résultats issus des analyses géologiques.

Fig.4-77. Diagramme synthétique montrant la chronologie des différents épisodes de fusion crustale dans le Massif Central français.

5 ANALYSE STRUCTURALE : EXEMPLE DU GRANITE DE ROCLES

5.1 Généralité

Si la fusion crustale dans la chaîne hercynienne française favorise le transfert de matière dans la croûte, elle entraîne également la mise en place des zones de découplage mécanique qui participent à l'évolution dynamique de la chaîne en facilitant la mobilité des grands ensembles lithologiques. En effet, ainsi que cela a été plusieurs fois utilisé dans les orogènes, les plutons granitiques peuvent être utilisés comme des marqueurs de le déformation crustale L'influence de l'anatexie dans la structuration du Massif Central français a été abordée dans les Cévennes par l'étude structurale du leucogranite de Rocles, présentée ci-dessous, Le pluton leucogranitique de Rocles est postérieur à l'anatexie viséenne des Cévennes et antérieur à celle du Velay. Son architecture a été fortement perturbée par le "dôming" du Velay qui intervient au cours de l'effondrement gravitaire de la chaîne (Ledru et *al.*, 2001). La structure du granite de Rocles est, le plus souvent, peu ou mal visible sur le terrain. Elle a été analysée par une étude de l'Anisotropie de la Susceptibilité Magnétique (ASM) qui permet de définir les orientations planaires et linéaires de la biotite.

Le granite de Rocles se met en place dans un contact tectonique entre les micaschistes des Cévennes et les gneiss ortho et paradérivés migmatitiques sous jacents. Le granite enregistre donc une déformation polyphasée. La foliation subhorizontale et la linéation E-W contemporaine de la mise en place du pluton sont en accord avec la tectonique extensive d'âge namuro-westphalien. Ces structures sont ensuite basculées vers le sud lors de la mise en place du dôme diapirique du Velay au Carbonifère supérieur.

5.2 Article (soumis pour publication à International Journal of Earth Sciences)

Structural, AMS and geochronological study of a laccolith emplaced during Late Variscan orogenic extension: the Rocles pluton (SE French Massif Central)

E. Be Mezeme (a, b, *), M. Faure (a), Y. Chen (a), A. Cocherie (b), J-Y. Talbot (a)

(a) Institut des Sciences de la Terre d'Orléans (ISTO), UMR CNRS 6113, Bâtiment Géosciences, Université

d'Orléans, BP 6759, 45067 Orléans cedex 2, France

(b) BRGM, Av. Claude-Guillemin BP 6009, 45060 Orléans cedex2, France

*Corresponding author E. Be Mezeme (e.be@brgm.fr)

Abstract

In the southern French Massif Central, the Rocles leucogranite of Variscan age consists of three petrographic facies; textural analysis shows that they experienced the same subsolidus deformation. New chemical U-Th-Pb dating on monazite yielded 324±4 Ma and 325±5 Ma ages for muscovite-rich and biotite-rich facies respectively. AMS-study results agree with petrostructural observations. The magnetic planar and linear fabrics, which correspond to the preferred orientation of biotite and muscovite, are consistent with the foliation and lineation defined by the preferred mineral orientation. This fabric developed during pluton emplacement. The accordance of this granite foliation with that observed in the hostrock, suggests that the Rocles pluton is a laccolith, but its present geometry resulted from post-emplacement southward tilting due to the uplift of the Late Carboniferous Velay dome. Restoration of the primary geometry of the pluton and its country-rocks to a flat-lying attitude places the granite lineation close to the trend measured in other plutons of the area. This restoration further supports the interpretation of the Rocles laccolith as a pluton emplaced along a tectonic contact reactivated during the late-orogenic collapse of the Variscan Belt.

Keywords: syntectonic pluton, extensional tectonics, AMS fabric, Variscan Belt, French Massif Central

Introduction

It is widely acknowledged that the development of planar and linear fabrics in granitic plutons results from the interplay between magma dynamics during its crystallisation and regional tectonics during pluton emplacement. In collision orogens, crustal melting commonly takes place after thickening, during the crustal thinning stage of the belt. Thus the architecture of crustal-derived plutons generally records the extensional tectonic setting coeval with collapse of the orogen (e.g. Hutton et al. 1990; Fowler 1994; Scaillet et al. 1995).

In the French Variscan Belt, it has been argued that the Middle to Late Carboniferous magmatism developed after the Early Carboniferous nappe stacking during late-orogenic collapse (Faure 1995; Faure et al. 2004 and references therein). Nevertheless, some plutons may have been emplaced earlier in the orogenic evolution, during thrusting (Duguet and Faure 2004). In the southeastern Massif Central (Cévennes area), most monzogranites and two-mica leucogranites were emplaced during the Middle Carboniferous (ca. 325-315 Ma) after nappe stacking (e.g. Faure et al. 2001; Talbot et al. 2000, 2004). Furthermore, in the northern part of the study area, several leucogranite bodies are exposed along a major contact between two tectonic units, the kilometre-sized Rocles leucogranite being the largest of these bodies. Therefore, the question arises whether this pluton was emplaced during or after thrusting. This study investigates the petrology and structure of the weakly deformed Rocles leucogranite pluton using the AMS technique. New U-Th-Pb ages presented below support an emplacement timing coeval with neighbouring plutons. A tectonic evolution model for the Rocles pluton with its country rocks is proposed.

Regional geological setting

Paleozoic tectonic evolution of the French Massif Central was the result of continental collision between the Gondwana and Laurasia supercontinents (e.g. Matte 1986). In the southern part of the Massif Central, intracontinental shortening yielded southward ductile and synmetamorphic shearing responsible for nappe stacking (Ledru et al. 1989; Faure et al. 1997) dated at 340-330 Ma by ⁴⁰Ar/³⁹Ar geochronology on muscovite, biotite and amphibole (Caron 1994). This Middle Carboniferous (Visean) southward thrusting, characterised by a flat-lying or north dipping foliation and a N-S to NE-SW trending lineation, is often compared with Himalayan tectonics (Mattauer and Etchecopar 1977; Matte 1986). Immediately after thickening, the country rocks (metapelite, metagrauwacke and gneiss) underwent conspicuous melting during the Middle to Late Carboniferous (Duthou et al. 1984; Pin and Duthou 1990); this resulted in numerous peraluminous granitic and monzogranitic plutons in the

Massif Central that were emplaced coevally with the late-orogenic extensional tectonics at about 325-310 Ma. The crustal thinning was controlled by NW-SE to E-W trending stretching, well represented by mineral and stretching lineations in both plutons and host rocks (Faure 1995). The granites thus preserved structural evidence of their tectonic setting, providing a key for understanding the regional structural evolution of the Variscan Belt.

In the Cévennes area, diverse leucogranite and monzogranite bodies occur of various shape and size, ranging from decametre-wide vein sheets to the multi-kilometre-wide Margeride and Mt-Lozère-La Borne batholiths. The Rocles massif is a WSW-ENE-elongated peraluminous granite body of about 10-km length (Fig. 1), exposed in the northeastern Cévennes. The pluton is in tectonic contact to the south with the overlying Cévennes micaschistquartzite series, metamorphosed under greenschist to lower amphibolite facies, and the underlying orthogneiss and paragneiss to the north (Palm 1957; Weisbrod 1968). Its eastern contact with country rocks is hidden below Permian and Mesozoic sedimentary rocks. To the west of the Rocles massif, numerous decametre-sized leucogranite veins, locally with a mylonitic fabric, are common along the tectonic contact between micaschist and gneiss. However, their small size does not allow them to be shown on the map (Fig. 1). As shown below, their petrological features and radiometric age show that these veins are genetically related to the Rocles pluton. Numerous metre-scale leucogranite dykes and sills are widely distributed in the micaschist that forms the hanging wall of the pluton (Fig. 2). Due to their petrological resemblance, it is likely that these dykes and lenses are part of the Rocles granite. Farther north, Late Carboniferous cordierite-bearing granite and migmatite of the Velay dome is exposed (e.g. Ledru et al. 2001 and references therein). The gneiss below the Cévennes micaschist is conspicuously migmatised. Although interpreted by some as belonging to the Velay dome (e.g. Ledru et al. 2001), these migmatites are in fact older and petrologically different (Montel et al. 1992; Barbey et al. 1999). Field evidence and petrology show that the Cévennes cordieritefree migmatite is distinct from the Velay cordierite-bearing migmatite. Recent chemical U-Th-Pb dating on leucosomes indicated Middle Carboniferous (ca. 330-325 Ma) ages (Be Mezeme et al. in press).

Fig. 1. Geological setting of the Cévennes area in the French Massif Central (insert). (A): Structural map showing the Rocles, Margeride and La Borne granitic massifs. The map highlights the two stretching lineations related to nappe stacking and post-thickening extension. (B): Cross section of the study area. (C): Detail map of the Rocles granite with the three lithological types and location of newly dated samples by EPMA analysis on monazite.

Fig. 2. Field pictures (a) decimetre sized mafic enclave within biotite-rich facies of Rocles granite. Please note that the AMS fabric measured in the nearby granite is consistent with planar and linear structures inferred from the preferred orientations of enclaves and megacrysts; (b) leucogranite dyke, and sills intruding micaschist country rocks near the upper contact with the Rocles pluton.

Due to its peculiar location along a tectonic contact, a structural study has been undertaken in order to assess the tectonic setting of the Rocles pluton. On the following pages, we argue that it is a Middle Carboniferous synkinematic body emplaced along a polyphase crustal discontinuity during late-orogenic extensional tectonics.

Petrography and geochemistry of Rocles granite

1 Petrographic overview

The Rocles pluton consists of three petrological facies defined by their relative amounts of biotite and muscovite (Palm 1957; Weisbrod 1968). Muscovite-rich rocks crops out along the southern and south-eastern margins of the pluton (Fig. 1). A porphyritic biotite-rich facies occupies the northern and largest part of the massif. An intermediate facies of biotite-muscovite leucogranite is found at the western and the eastern ends of the pluton. The biotite granite contains numerous micaschist xenoliths, and small elongated biotite-rich tonalite and vaugnerite enclaves restricted to this biotite granite (Weisbrod et al. 1980). The preferred orientation of these mafic enclaves is

consistent with the mineral fabric of the granite (Fig. 2a). In the eastern part of the pluton, the previously-mentioned granitic dykes and sills are common within the micaschist country rocks (Fig. 2b).

All leucogranite facies share a common mineral composition of quartz, plagioclase, K-feldspar, zircon, apatite, monazite and xenotime. Muscovite and sericite grains are the dominant accessory phases. Some secondary minerals are related to the alteration of feldspar and micas. Few micro-scale Ti-Fe oxides coexist either as grains included in mica, feldspar and monazite, or as trails near thin brittle fractures probably infilled during post-magmatic fluid circulation. Besides these assemblages, the three main facies of the pluton exhibit distinctly different grain sizes and a relative abundance of micas, thus presenting a significant microstructural variability.

Texturally, the biotite-rich facies shows weak evidence of plastic deformation. Polycrystalline quartz grains with irregular boundaries display wavy extinction and surround plurimillimetre to centimetre-sized K-feldspar megacrysts (Fig. 3a). These K-feldspars, easily seen in outcrops (Fig. 3b), have a well-developed shape-preferred orientation with a dominant ENE-WSW trend (average of 65° in strike) and a NE or SW plunge (mean value of 20°). Due to a higher muscovite proportion, the middle part of the pluton is more leucocratic than its northern part, corresponding to a finer-quartz-grained granite in comparison to the others (Fig. 3c). Scattered K-feldspar megacrysts altered to sericite are surrounded by plagioclase and chlorite lamellae formed by biotite replacement; this facies does not have a preferred mineral orientation of K-feldspar, even at outcrop scale (Fig. 3d). Quartz porphyroclasts with wavy extinction are surrounded by polycrystalline fine-grained quartz aggregates indicating a dynamic recrystallisation texture. Moreover, garnet grains, up to 2 mm large with small quartz inclusions, are also locally identified. The muscovite-rich facies that occupies the structurally highest part of the pluton differs from the previous one by abundant millimetre-size muscovite (Fig. 3e), a low abundance of biotite, and a decrease in quartz grain size. Inclusion-free garnet is a common accessory phase (Fig. 3f). The rare K-feldspar megacrysts are surrounded by quartz that shows a similar microtexture to that of the muscovite-biotite granite: mosaic subgrains with irregular boundaries and quartz clasts displaying wavy extinction.

Fig. 3. Macroscopic and microscopic views of the three facies of the Rocles pluton. (a) and (b): Biotiterich facies showing the weak solid-state deformation and a well-marked K-feldspar preferred orientation. (c) and (d): Biotite-muscovite intermediate facies. The fabric develops in the subsolidus stage. (e) and (f): Muscovite rich-facies with garnet (circled). For all views Qtz, Bi, Fk, Mus, Gt stand for quartz, biotite, K-feldspar, muscovite, garnet respectively.

This petrographic overview indicates that the planar and linear fabrics of the Rocles pluton developed at a subsolidus stage during magma crystallisation. Microstructural features of quartz suggest that the deformation occurred at around 350° C.

2 Geochemistry

Caen-Vachette (1981) performed geochemical analyses of the biotite-rich and muscovite-rich facies. For the present study, additional whole-rock analyses of major elements were made on the intermediate facies. The three granite sub-types share some similar chemical characteristics, such as a high SiO₂ content ranging from 70 to 75 wt% and very low amounts of TiO₂ with an upper value of about 0.09 wt% in the muscovite-biotite middle facies. (Na₂O + K₂O)/Al₂O₃ ratios show slight variation between 0.5 and 0.6 wt%. In addition to the above-mentioned similarities, the Rocles massif exhibits a bottom-to-top decrease of Fe₂O₃: the higher Fe₂O₃ content of ca. 3 wt% is found in the biotite-rich facies, whereas intermediate-facies contents are about 1 wt% and the muscovite-rich facies contains an even lower amount of ca. 0.6 wt%. This Fe₂O₃ variation, correlated to the biotite content for each facies, is interpreted as the result of fractional crystallisation. Rb-Sr dating of the Rocles pluton gave 310 Ma (Caen-Vachette et al. 1981), but these whole-rock measurements, obtained on several samples from the massif, require a reassessment for each of the three petrographic facies by in-situ techniques on single grains.

New U-Th-Pb ages of the Rocles pluton

1 Analytical procedure

The detailed analytical procedure is described in Cocherie et al. (1998); the theoretical procedure to reduce the data and calculate the average age from individual ages calculated from individual spot analyses can be found in Cocherie and Albarède (2001) and Cocherie et al. (2004). In the following paragraphs, we describe some recent improvements and stress critical aspects of our calculations. U, Th and Pb concentrations in monazite were obtained with a Cameca SX50 electron microprobe co-operated by BRGM and ISTO in Orléans. Before chemical analysis, each grain is studied by scanning electron microprobe (SEM) in back-scattered electron mode, in order to avoid micro-inclusions, altered domains and all other components of non-monazite composition. SEM images commonly show heterogeneous domain compositions, which can be related either to discrete age domains or to variations of Th and U composition during the various stages of recrystallisation of monazite within a period of less than 1 Ma. The operating conditions are 20 kV and 200 nA, which provide average calculated detection limits of 105, 130 and 110 ppm, for U, Th and Pb respectively. The major-element composition of monazite remaining similar, we did not consider it necessary to calculate those detection limits for each individual analysis. The detection limits are taken as absolute error. However, monazite is commonly U- and especially Th-enriched, so that a simple statistical error can lead to a very low relative error. As an example, a domain containing 13 wt% of Th and 1.05 wt% of U leads to respective relative errors of 0.1% and 1%. This is actually not realistic because all other error sources, such as standardisation, cannot be taken into account in such a low error calculation. It is the reason why we arbitrarily assumed that, even at high concentration levels, the relative error cannot be <2% for U, Th, and Pb. There is only a limited influence on relatively young samples (e.g. <300 Ma), but it may be of major influence for older samples.

After studying several tens of monazite grains, we saw that most of them have Th, U and Th/U ratio variations at the µm scale, even for grains homogeneous in age. From a geochemical point of view, the result can be quite surprising because it means that the composition of the melt surrounding the monazite can change significantly during mineral growth. A similar phenomenon is commonly observed on zircon. Such a texture leads to observed episodic mineral growth. These common Th/U variations in monazite have led us to propose a geochronological representation (Th/Pb *vs.* U/Pb diagram) suitable only if a single event is recorded, in which case the calculated regression line must fit the related theoretical isochron. Then it is possible to calculate an average age with good precision at the population centroid. Finally, the MSWD calculation must agree with the Wendt and Carl (1991) criteria to certify the statistical significance of the calculated average age. If MSWD and/or the regression line do not satisfy the criteria of a single event, one can use the Sambridge-Compston algorithm. The "Unmix ages" option of the ISOPLOT program (Ludwig 2003) allows the deconvolution of several ages for establishing the relationships with the BSE images, thus reducing separately each population before re-using the Th/Pb *vs.* U/Pb representation.

2 Results

All analysed monazite grains were investigated by SEM. Some are included in feldspar whereas others are found within biotite (Fig. 4). Monazites are homogeneous or show a weak chemical zoning mainly related to U and Th contents. The bright zones correspond to Th-rich domains, and conversely the dark ones contain a higher amount of U. EPMA analyses for dating were done directly on thin sections of muscovite-rich and biotite-rich facies.

Fig. 4. BSE view of representative monazite grains from the Rocles pluton. The top row images illustrate the main location of monazite grains in relation to the surrounding minerals. Monazite included in biotite exhibits a weak zonation related to Th and U variations.

Monazite grains from muscovite-rich and biotite-rich facies gave ages of 324 ± 4 Ma (2σ) and 325 ± 4 Ma (2σ) respectively (Fig. 5).

The calculated regression lines for both samples are very close to the corresponding theoretical isochron; this indicates that a single event was recorded, taking into account an analytical error of ± 4 Ma despite the large variation of Th/U ratios related to similar large variations in Th and U content. The calculated MSWD are in agreement with such an interpretation. Monazite grains extracted from the intermediate granite facies (biotite-

muscovite) and mounted on polished sections were already dated by the same method at 318±5 Ma (Be Mezeme et al., in press).

Fig. 5. U/Pb vs. Th/Pb-isochron diagrams for monazite from biotite-rich facies and muscovite-rich facies of Rocles granite (cf. sample location in Fig. 1). All errors are given at 2σ level (95% confidence).

AMS study of the Rocles pluton

1 Sampling

Among the methods used for characterising geological deformation, several recent studies show that anisotropy of magnetic susceptibility (AMS) is considered as one of the most relevant tools. It examines a wide range of deformation events, including magmatic flow, pluton emplacement, folding as well as all other geological processes that introduce structural organisation or specific petrofrabric assemblies in rocks (e.g. Borradaile and Kehlenbeck 1996; Bouchez 1997; Aranguren et al. 2003). Since planar and linear fabrics are rather difficult to determine directly in the field, an AMS study of the Rocles pluton has been carried out. Cores of 25 mm diameter were collected from 43 sites throughout the three facies of Rocles granite. Samples were taken in situ with a portable water-cooled gasoline drill. The cores were oriented by magnetic compass and a clinometer; GPS positions were recorded as well. Weather permitting, a sun compass was also used to correct the magnetic azimuth. The average difference between solar and magnetic azimuths is about 1.9 ± 6.4 °, which was applied to correct the core orientations that were only measured by magnetic compass. In the laboratory, cores were cut into pieces of 22 mm length. Subsequently, the magnetic properties of each specimen were measured.

2. Magnetic mineralogy

In order to characterise the magnetic mineralogy of our collection, transmitted-light microscopic investigations, isothermal remanent magnetisation (IRM) analyses, and thermal-magnetic experiments were carried out. Three representative cores from the three granite sub-types (ROC24, ROC46 and ROC11) underwent progressive magnetisation from 10 to 1,500 mT generated by a pulse magnetiser (IM30). IRM values were measured with a JR5A after each magnetisation. The results (Fig. 6a) show similar magnetic characters among the three facies: generally weak IRM (<0.045 A/m) with a relatively rapid increase of IRM before 150 mT, then a progressive increase until 1,500 mT. This observation suggests that these granitic rocks contain mainly paramagnetic minerals and a small proportion of ferromagnetic minerals, such as magnetite and probably hematite.

Fig. 6. (a) IRM diagram of specimens from the three granite facies. The non-linear curves are similar and reflect a few contributions of hematite to the bulk susceptibility. Samples are not saturated even at high intensity of the applied field. (b), (c), (d) Representative thermomagnetic curves from 29 to 700° C on bulk rock of biotite-rich facies (Roc24), biotite-mucovite facies (Roc46) and muscovite facies (Roc11) respectively.

Thermal magnetic experiments (K *vs.* T) were performed by a KLY3 Kappabridge coupled with a CS3 furnace. These experiments produce an irreversible variation of magnetic susceptibility. For the heating procedure, low and progressive decreases of magnetic susceptibility were general features for all three facies, confirming the dominance of paramagnetic minerals in our collection (Figs. 6c, 6d). The important increase in magnetic susceptibility during cooling reveals a remarkable mineral change, probably due to the transformation of some biotite or ilmenite to titano-magnetite.

3. AMS measurements

Magnetic susceptibility was measured with a low-field KLY3 kappabridge susceptibility meter, characterised by a high sensitivity (around 10⁻⁹ SI) and by continuous measurements in each plane orthogonal to the main x, y and z axes. Susceptibility values K_{max} , K_{int} and K_{min} , corresponding to the three main axes of the magnetic-susceptibility ellipsoid, and bulk susceptibility K_{mean} were determined. The magnetic lineation is represented by K_{max} axes; K_{min} axes correspond to the magnetic-foliation poles determined by planes containing K_{max} and K_{int} axes. Linear and planar anisotropy degrees are then given by $L = K_{max} / K_{int}$ (Balsley and Buddington 1960) and $F = K_{int} / K_{min}$ (Stacey et al. 1960) respectively. Using Jelinek's definitions (1981), the anisotropy degree (P) and shape parameter (T) are calculated.

The main magnetic-susceptibility results of the studied rocks are listed in Table 1. The three facies of the granite pluton generally yield low magnetic susceptibility with values varying from 1.2 to 120x10⁻⁶ SI (Fig. 7a) and an average of 58.0±3.4 x 10-6 SI. The muscovite-rich facies shows the weakest susceptibility of 35.0±2.3 x 10-6 SI and the biotite-rich one has the highest value of $85.0\pm2.6 \text{ x}$ 10⁻⁶ SI. These results corroborate our thin-section observations of the small proportion of ferromagnetic minerals found in our collection, and confirm the weak contribution of these minerals to AMS measurements. In other words, micas -mostly biotite- can be considered as the main carrier of magnetic susceptibility. Most sites show an anisotropy degree (P) lower than 1.1 with an average value of 1.07±0.03 (Fig. 7b). The form parameter (T) value ranges from -0.15 to 0.68. More than 80% of sites present positive T values, indicating a dominance of the oblate shape with respect to the prolate one (Fig. 7b; Table 1). Figure 8 shows the three main axes of the magnetic-susceptibility ellipsoid (Kmax, Kint and Kmin) defined from the 43 sites on a lower-hemisphere equal-area projection with corresponding geographic position of each site. At least three configurations (a, b and c) can be distinguished: a) Almost all sites of biotite-rich granite provide stereoplots with main axes forming distinct groups (e.g. Roc3, Roc31; Fig. 8). These sites show weak dispersion with moderate α_{95} values (Table 1). Such a well-defined gathering of axes indicates a reliable determination of trend and dip of magnetic foliation as well as magnetic lineation. b) Both biotite-muscovite and muscovite-rich facies yield K_{max} axes that cannot be distinguished at a 95° confidence level, but the Kmin axes are scattered. c) The last configuration corresponds to a scattered distribution of all three main axes with a poorly defined foliation and lineation (e.g. Roc23, Roc43). These heterogeneously distributed axes, even in a single site, cannot be used to establish the global pattern of ASM fabrics for the entire pluton. However, such sites are rare and are probably due to a locally restricted

deformation process, distinct from the general trend related to the prevailing tectonic events experienced by the

Rocles pluton.

Site	n	Kmean	AMS parameters			Eigenvectors										
		(x 10 ⁻⁶)	L	F	P	Т	K max	Dec	Inc	α_{95x}	α_{95y}	^K min	Dec	Inc	α_{95x}	α ₉₅₎
Bi-rich j	facies															
Roc1	6	120	1.02	1.06	1.08	0.56	103	51	10	16	2	95	309	52	5	2
Roc2	9	101	1.03	1.07	1.10	0.33	103	64	27	21	11	98	315	33	69	15
Roc3	7	108	1.04	1.04	1.08	0.16	103	86	26	18	5	97	314	54	17	12
Roc4	8	117	1.02	1.07	1.09	0.59	103	55	7	11	8	95	319	38	10	5
Roc7	14	60	1.03	1.07	1.09	0.43	103	69	21	29	8	96	330	24	13	9
Roc8	7	67	1.02	1.06	1.08	0.40	103	237	20	20	10	96	338	29	17	9
Roc10	6	115	1.02	1.03	1.05	0.20	102	234	9	9	5	98	337	56	17	5
Roc24	6	101	1.02	1.04	1.06	0.22	102	70	30	15	10	97	315	36	13	9
Roc25	6	103	1.02	1.04	1.05	0.34	102	47	48	22	12	98	287	25	28	4
Roc26	6	80	1.03	1.06	1.09	0.34	103	57	15	19	3	96	310	39	19	11
Roc28	6	02	1.05	1.04	1.08	0.12	103	75	20	20	7	97	321	28	20	15
Roc30	5	44	1.02	1.03	1.07	0.33	103	83	34	32	20	99	349	32	36	15
Roc31	5	51	1.02	1.02	1.04	-0.06	102	112	9	13	4	98	18	25	7	3
Roc33	7	110	1.02	1.03	1.05	0.10	102	72	7	6	3	98	163	21	16	6
Roc34	8	46	1.01	1.03	1.04	0.41	101	37	39	27	13	98	305	8	32	11
Roc35	6	71	1.02	1.02	1.05	0.02	102	246	2	30	16	98	337	15	17	16
Roc37	6	96	1.02	1.06	1.08	0.47	103	219	22	23	11	97	112	35	20	10
Roc38	6	58	1.03	1.03	1.07	-0.02	103	78	18	11	3	97	343	14	10	2
Roc40	11	59	1.02	1.07	1.09	0.52	103	50	2	27	8	96	141	25	12	8
Bi-Mus	facies															
Roc14	6	12	1.05	1.15	1.22	0.44	106	330	2	24	9	92	238	53	23	11
Roc15	7	51	1.03	1.03	1.06	0.01	102	263	27	23	12	98	18	40	17	15
Roc16	7	59	1.01	1.02	1.03	0.43	101	285	15	23	18	100	17	8	78	14
Roc23	6	23	1.01	1.02	1.03	0.25	101	254	53	28	15	99	23	25	37	20
Roc29	6	39	1.01	1.07	1.09	0.68	103	55	71	29	7	96	293	10	19	6
Roc41	6	22	1.02	1.02	1.04	0.04	101	34	75	22	14	98	124	2	18	12
Roc43	6	38	1.03	1.04	1.07	0.07	101	126	15	65	14	98	327	14	45	12
Roc44 Roc46	7	28 25	1.03	1.04	1.14	0.56	102	125	61	20 68	13	98	302	6 20	16	9
Mus-ric	h facies													29		
Roc5	6	55	1.03	1.06	1.10	0.28	104	75	35	9	3	95	324	20	14	6
Roc6	6	20	1.02	1.02	1.04	-0.15	101	256	26	38	14	99	349	28	39	15
Roc9	7	76	1.01	1.07	1.08	0.72	103	70	28	9	4	96	328	22	6	5
Roc11	6	89	1.03	1.03	1.07	-0.11	103	260	1	21	6	97	351	15	9	7
Roc12	6	12	1.02	1.08	1.10	0.47	103	288	25	18	4	97	28	20	30	4
Roc13	6	33	1.02	1.06	1.08	0.38	103	96	29	18	8	96	234	54	15	8
Roc17	7	30	1.03	1.06	1.10	0.24	104	52	1	14	10	96	320	54	14	8
Roc18	7	34	1.03	1.07	1.11	0.40	104	241	9	17	4	96	340	46	22	11
Roc19	6	18	1.02	1.04	1.06	0.37	102	62	31	20	7	98	275	54	38	17
Roc20	6	16	1.03	1.09	1.12	0.33	102	130	20	48	10	96	11	54	47	12
Roc21	6	18	1.02	1.05	1.06	0.43	102	208	17	47	-	97	31	73	26	6
Roc22	5	35	1.04	1.04	1.08	-0.05	103	255	25	21	6	97	2/	65	15	2
Roc42	6	34	1.02	1.05	1.00	0.14	102	22	35	28	12	90	203	48	45	8
R0C4/	0	54	1.02	1.05	1.07	0.51	102	44	55	20	12	91	291	1	22	0

Table 1. Summary of anisotropy of magnetic-susceptibility data: n = number of specimens, $K_{mean} =$ mean magnetic susceptibility; L and F stand for magnetic lineation and magnetic foliation anisotropies, P = anisotropy degree and T = ellipsoid shape parameter; K_{max} , $K_{min} =$ main axes of magnetic fabrics; *Dec*, *Inc* a_{95x} , $a_{95y} =$ declination, inclination, Bingham (1964) bimodal statistics data respectively.

K_{mean} (10-6 SI)

Fig. 7. (a) Histogram of the mean susceptibility value showing the contribution of each granite facies.(b) Plot of shape parameter (T) and degree of anisotropy (P). Note the dominant oblate deformation with positive T values. In addition, the samples are characterised by very low anisotropy.

Fig. 8. Equal-area projection of the directions of magnetic susceptibility axes for 43 sites with their geographical location within the Rocles pluton (projection on lower hemisphere).

Figure 9 illustrates the magnetic lineation pattern. Apart from a few sites with poorly defined lineation, especially when approaching the granite margins or along faults within the granite, most of sites show an ENE-WSW trend with an average strike of about 70° and a gentle plunge with values varying from horizontal to 50° NE or SW (Fig. 9a). Moreover, in addition to the dominant ENE-WSW trend, a WNW-ESE trend of the magnetic lineation can also be observed.

The magnetic foliation, defined by the K_{max} - K_{int} plane, shows a more complicated pattern. In terms of orientation, two main foliation groups can be distinguished. The main group, corresponding to the general trend, reveals a SE plunge of the foliation with an average dip angle of about 45°. More than 80% of the sites belong to this group (Figs. 8 and 10). The second group, which corresponds to the sites near the contact of the pluton with country rocks, presents variable foliation orientation, such as Roc13, 12, 19, 21, 22 and 23 (Figs. 8 and 10). A few sites present a poorly defined foliation with dispersed K_{min} distribution, such as sites 6, 14 (Fig. 8). It is worth noting that the foliation pattern is unrelated to the petrological facies discussed above, since similar orientations are found whatever the facies. Therefore, the AMS-fabric development in each facies can be considered as a synchronous.

Fig. 9. Sketch map of the Rocles granite showing magnetic foliation with dip angles. The stereographic projection presents the distribution of the minimum main axis (K_{min}), which corresponds to the magnetic-foliation pole. Note the similarity between magnetic foliation and mineral foliation in the host rock. Moreover, the preferred planar-mineral orientation in the granite is concordant with AMS measures.

Fig. 10. Structural map of Rocles granite summarising the direction of magnetic lineations with plunge angle. The stereographic diagram shows the mean direction of defined lineations.

Discussion

Based on the petrographic observations and AMS measurements carried out on the Rocles pluton, we conclude that micas, especially biotite, are the main carrier of magnetic susceptibility. In addition, the contribution from Fe- and Ti-bearing oxides is insignificant. Globally, the planar fabric dominates the linear one, and the NE-SW trend of the magnetic lineation is conspicuous throughout the Rocles pluton. As earlier noted (e.g. Weisbrod et al. 1980) from field observations, the pluton foliation plunges consistently SE in almost the entire pluton. A few sites near the contact with country rocks present a variable foliation orientation, which seems to be controlled by the geometry of the pluton-host rock contact; local heterogeneous deformation during granite emplacement may have developed in the pluton and be responsible for this abnormal trend. To a certain extent, the country rocks may have controlled the deformation around the margins of the granite. An important implication of this control is that foliation patterns may follow the pluton boundaries (Fig. 10). It is worth noting that two sites (Roc15 and Roc31), located within the pluton but near faults, show also different foliation orientations with respect to the general trend (Figs. 8 and 10). This anomaly suggests significant fault activity after pluton emplacement. The good consistency of foliation trends throughout the pluton, with a predominance of the oblate shape of the ASM fabric ellipsoid, suggests that this granitic body has a SE plunging laccolithic shape with an average dip of 50°. This result agrees with mapping and local field observations (e.g. Palm 1957; Weisbrod 1968).

The present geometry of the Rocles pluton and surrounding rocks is strongly influenced by the uplift of the Velay granite-migmatite dome. This tilted the Rocles pluton to the south or south-east; locally, north of the Prades fault, the metamorphic country rocks are overturned to the south. Thus, the structural pattern of the Rocles pluton inferred from the magnetic fabric determined in this study does not correspond to the initial geometry developed during granite emplacement, but is the result of later reworking. In order to restore the primary structure, the southward dip produced by tectonic deformation after emplacement of the Rocles pluton should be untilted. Previous structural works on the Cévennes micaschists (e. g. Mattauer and Etchecopar 1977; Weisbrod et al. 1980; Matte 1986; Faure et al. 2001) show that the regional foliation developed during a subhorizontal Top-to-the south ductile shearing. As discussed above, the magnetic foliation, consistent with that of the country rocks, suggests that the Rocles pluton was emplaced like a laccolith, i.e. the current tilt of the Rocles pluton must be corrected assuming that the granite foliation developed with a subhorizontal attitude. The Rocles pluton and its regional host rocks experienced a bulk rigid tilting to the SE from an initial flat-lying geometry, due to uplift of the Velay dome around

300 Ma. Tilt correction is done by using the present AMS mean foliation trend and dip of 55°N and 68°SE respectively (Fig. 10a). The probable pre-Velay-dome geometry of the Rocles pluton is inferred from rotation of the mean foliation plane to the horizontal position. This restoration requires a single tectonic correction, which seems more realistic according to previous structural analyses (Mattauer and Etchecopar 1977; Faure et al. 2001). The corresponding restored magnetic lineation becomes 75°N in strike. Even if the difference yielded by the restoration does not exceed 20°, this geometric reconstruction of the AMS data provides useful information on the structural influence of the Velay dome on the final geometry of the Cévennes area.

It must be kept in mind that this correction remains a crude estimate since, in spite of several structural studies (e.g. Ledru et al, 2001 and references therein), the exact and quantitative knowledge of the strain mechanism that led to the formation of the Velay dome, namely diapiric uprise, upright buckling, gravitational collapse, etc., remains largely unsettled. Nevertheless, this qualitative estimate agrees with previous regional data. Extensive structural and AMS studies of the Middle Carboniferous plutons exposed in the southeastern Massif Central show the development of a conspicuous NW-SE to E-W trending AMS and mineral lineation (Faure 1995; Talbot et al. 2000, 2004). Moreover, in the Borne pluton, which is the closest one to the Rocles massif and where any tilt related to the Velay dome cannot be recognised, the mineral lineation trends E-W (Fig. 1A). The tectonic evolution of the study area is summarised in Figure 11. During the Middle Carboniferous, the Cévennes area experienced Top-to-the-south shearing and nappe stacking coeval with amphibolite facies metamorphism. As in other parts of the Massif Central, post-orogenic extension was accommodated by Top-to-the-east shearing. Some thrust contacts were reworked as low-angle ductile normal faults. At that time, around 325-310 Ma, according to our new dating, the Rocles leucogranite pluton was emplaced as a laccolith along the reworked contact. Finally in Late Carboniferous time, the emplacement of the Velay dome was responsible for the southward tilt of the previous architecture.

A. ca 340 Ma - Top-to-the-South thrusting

B. ca 325-320 Ma - Top-to-the-East extension

emplacement of Rocles Pluton

Fig. 11. Schematic sketch of the tectonic evolution of the Rocles pluton. A: Middle Carboniferous nappe stacking stage coeval with Top-to-the-south ductile and synmetamorphic shearing. B:
Post-orogenic extensional tectonics and emplacement of the Rocles pluton as a laccolith along a reworked older tectonic contact. C: Late Carboniferous bulk southward tilting of the Rocles pluton and its host rocks due to the emplacement of the Velay granite-migmatite dome.

Conclusions

AMS measurements of the three petrological facies of the Rocles leucogranite pluton show a good consistency of the magnetic foliation with the regional foliation of Cévennes metamorphic rocks. In spite of some irregularities encountered in sites close to the pluton border or to some faults where the foliation curves, the magnetic foliation is homogeneous throughout the pluton. The sheet-like shape of the intrusion developed synchronously to the extensional tectonic event undergone by the country rock around 325-310 Ma, after crustal thickening. Both leucogranite and host rocks were then reworked by the uplift the Late Carboniferous Velay dome at ca. 300 Ma. This suggests that the present orientation of the magnetic fabric (foliation and lineation), must have been deviated from its initial position. Qualitative restoration of the ASM lineation before the emplacement of the Velay dome suggests an initial N75°E strike, which is consistent with the extension-related stretching lineation trend common in the Cévennes area. Thus, the Rocles leucogranite appears to be a laccolith emplaced during extensional tectonics resulting from a post-thickening evolution of the Variscan Belt in the French Massif Central.

Acknowledgements

This study has been supported by P. Rossi and the "Carte Géologique de la France" programme at BRGM (French Geological Survey). The Conseil Régional du Centre is acknowledged for financial support. The authors would like to acknowledge the Institut des Sciences de la Terre d'Orléans (ISTO) for providing analytical facilities.

References

- Aranguren A., Cueves J., Tubia J.M., Roman-Berdiel T., Casas-Sainz A., Casa-Ponsati A. (2003) Granite laccolith emplacement in the Iberian arc: AMS and gravity study of the La Tojiza pluton (NW Spain). J. Geol. Soc. 160: 435-445.
- Balsley J.R., Buddington A.F. (1960) Magnetic susceptibility anisotropy and fabric of some Adirondack granites and orthogneisses. Am. J. Sci. 2: 6-20.
- Barbey P., Marignac C., Montel J.M., Macaudiere J., Gasquet D., Jabbori J. (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J. Petrol. 40: 1425–1441.

- Be Mezeme E., Cocherie A., Faure M., Legendre O., and Rossi P. (2004) Electron microprobe monazite geochronology: a tool for evaluating magmatic age domains, example from Variscan French Massif Central migmatites and granitoids: Lithos (in press).
- Bingham C. (1964) Distribution on a sphere and on the projective plane. Ph.D. thesis, Yale University.
- Borradaile G.J., Kehlenbeck M.M. (1996) Possible cryptic tectono-magnetic fabrics in 'post-tectonic' granitoid plutons of the Canadian Shield. Earth and Planetary Science letters 137: 119-127.
- Bouchez J.L. (1997) Granite is never isotropic: an introduction to AMS studies in granitic rocks. In: Bouchez, J.L., Hutton, D.H.W., Stephen, W.E. (eds.), Granite: From Segregation of Melts to Emplacement Fabrics. Kluwer Academic Publishers, Dordrecht, pp. 95-112.
- Caen-Vachette M., Couturié J.P., Fernandez A. (1981) Age westphalien du granite de Rocles (Cévennes, massif Central Français). Comptes rendus de l'Académie des Sciences, Paris, II, 293: 957-960.
- Caron C. (1994) Les minéralisations Pb-Zn associées au Paléozoïque inférieur d'Europe méridionale. Traçage isotopique Pb-Pb des gîtes de l'Iglesiente (SW Sardaigne) et des Cévennes et évolution du socle encaissant par la géochronologie U-Pb, ⁴⁰Ar-³⁹Ar et K-Ar. Ph.D. thesis, University of Montpellier II, 288 p.
- Cocherie A., Be Mezeme E., Legendre O., Fanning C.M., Faure M., Rossi P. (2004) Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites. American Mineralogist (in press).
- Cocherie A., Albarede F. (2001) An improved U-Th-Pb age calculation for electron microprobe dating of monazite. Geochimica et Cosmochimica Acta, 65: 4509-4522.
- Cocherie A., Legendre O., Peucat J.J., Kouamelan A.N. (1998) Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total Pb determination: Implications for lead behaviour in monazite. Geochimica et Cosmochimica Acta, 62: 2475-2497.
- Duguet M., Faure M. (2004) Granitoid emplacement during a thrusting event: structural analysis, microstructure and quartz c-axis patterns. An example from Hercynian plutons in the French Massif Central. Journal of Structural Geology 26: 927-945.
- Duthou J.L., Cantagrel J.M., Didier J., Vialette Y. (1984) Paleozoic granitoids from the French Massif Central: Age and origin studied by ⁸⁷Rb/⁸⁷Sr system. Physics Earth Planetary interior, 35: 131-144.
- Faure M., Ledru P., Lardeaux J.M., Matte P. (2004) Paleozoic orogenies in the French Massif Central. A cross section from Béziers to Lyon. 32nd Int. Geol. Congres Florence (Italy), Field trip guide book, 40pp. freely dowloadable in

http://www.apat.gov.it/site/it-IT/APAT/FieldtripGuidebooks/ pre-congres B22.

- Faure M., Charonnat X., Chauvet A., Chen Y. (2001) Tectonic evolution of the Cévennes para-autochthonous domain of the Hercynian French Massif Central and its bearing on ore deposits formation. Bulletin de la Société Géologique de France, 172: 687-696.
- Faure M., Leloix C., Roig J.Y. (1997) L'évolution polycyclique de la chaîne hercynienne. Bulletin de la Société géologique de France, 168, 6: 3-14.
- Faure M. (1995) Late orogenic Carboniferous extension in the Variscan French Massif Central. Tectonics, 14: 132-153.
- Fowler T.J. (1994) Sheeted and bulbous pluton intrusion mechanisms of a small granitoid from southeastern Australia: implications for dyke-to-pluton transformation during emplacement. Tectonophysics 234: 197–215.
- Hutton D.H.W., Dempster T.J., Brown P.E. (1990) A new mechanism of granite emplacement: rapakivi intrusions in active extensional shear zones. Nature 343: 451–454.
- Jelinek V. (1981) Characterization of the magnetic fabric of rocks. Tectonophysics 79: T63-T67.
- Ledru P., Lardeaux J.M., Santallier D., Autran A., Quenardel J.M., Floc'h J.P., Lerouge G., Maillet N., Ploquin A. (1989) Où sont les nappes dans le Massif Central français ? Bulletin de la Société Géologique de France, 8, V, 3: 605-618.
- Ledru P., Courrioux G., Dallain C., Lardeaux J.M., Montel J.M., Vanderhaeghe O., Vitel G. (2001) The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. Tectonophysics, 342: 207-237.
- Ludwig K.R., 2003. Users Manual for Isoplot/Ex. version 3.00 A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Spec. Pub. 4, 71 p.
- Matte P. (1986) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126: 329-374.
- Mattauer M., Echecopar A. (1977) Arguments en faveur de chevauchements de type himalayen dans la chaîne hercynienne du Massif Central français. In: Coll. Inter. CNRS, Ecologie et Géologie de l'Himalaya Paris, 1976, CNRS 268, pp.261-267.
- Montel J.M., Marignac C., Barbey P., Pichavant M. (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French Massif Central). J. Metamorph. Geol. 10: 1– 15.
- Palm Q.A. (1957) Les roches cristallines des Cévennes médianes, à hauteur de Largentière, Ardèche, France. Ph.D.

thesis, University of Utrecht, Geologia Ultraiectana, 3, 121 p.

- Pin C., Duthou J.L. (1990) Sources of Hercynian granitoids from the French Massif Central: inferences from Nd isotopes and consequences for crustal evolution. Chemical Geology, 83: 281-296.
- Scaillet B., Pêcher A., Rochette P., Champenois M. (1995) The Gangotri granite (Garhwal Himalaya): laccolithic emplacement in an extending collisional belt. J. Geophys. Res., [Solid Earth] 100: 585–607.
- Stacey F.D., Joplin G., Lindsay J. (1960) Magnetic anisotropy and fabric of some foliated rocks from S.E. Australia. Geofis. Pura Appl. 47: 30-40.
- Talbot J.Y., Chen Y., Faure M., Lin W. (2000) AMS study of Pont-de-Montvert-Borne porphyritic granite pluton (French Massif Central) and its tectonic implications. Geophysical Journal International 140: 677-686.
- Talbot J.Y., Martelet G., Courrioux G., Chen Y., Faure M. (2004) Emplacement in an extensional setting of the Mont Lozère-Borne granitic complex (SE France) inferred from comprehensive AMS, structural and gravity studies. Journal of Structural Geology 26: 11-28.
- Weisbrod A. (1968) Les conditions du metamorphisme dans les Cévennes médianes. Comptes rendus de l'Académie des Sciences, Paris, 266, 775.
- Weisbrod A., Pichavant M., Marignac C., Macaudiere J., Leroy J. (1980) Relations structurales et chronologiques entre le magmatisme basique, les granitisations et l'évolution tectonométamorphique tardi-hercynienne dans les Cévennes médianes, Massif Central Français. C. R. Acad. Sci. Paris 291: 665–668.
- Wendt I., Carl C. (1991) The statistical distribution of the mean squared weighted deviation. Chem. Geol. (Isot. Geosci. Sect.) 86: 275-285.

6 ESSAI DE SYNTHÈSE CHRONOLOGIQUE DE L'ÉVOLUTION GÉODYNAMYQUE DE LA CHAÎNE HERCYNIENNE FRANÇAISE

L'évolution géodynamique de la chaîne hercynienne est déjà assez bien documentée dans sa globalité (Autran et Cogné, 1980 ; Franke, 1989, Ledru et *al.*, 1989 ; Matte, 1991, 2001 ; Faure et *al.*, 1997), il est toutefois intéressant de constater que les liens entre l'anatexie et l'orogenèse restent encore fragmentaires notamment à cause du manque de données radiochronologiques. Les nouvelles données apportées par cette étude documentent les multiples épisodes de la fusion crustale dans la chaîne hercynienne du Massif Central français et les présentent dans leur contexte géologique régional avec l'objectif final de dégager un schéma d'ensemble de cette fusion au sein de toute la chaîne. Le travail a permis de mettre l'accent sur l'anatexie du Carbonifère moyen (autour de 330 Ma) qui était encore relativement méconnue. Quatre sites d'étude ont été sélectionnés : les Cévennes septentrionales, le Velay, la Montagne Noire et le Limousin. Ces sites présentent l'avantage d'être géographiquement dispersés dans l'ensemble du Massif Central et chacun d'eux comporte des migmatites et plusieurs générations de granitoïdes, conséquence des anomalies thermiques qui accompagnent le processus orogénique.

L'étude préliminaire dans le dôme du Velay, dont le but était de vérifier que la méthode U-Th-Pb sur monazite donnait des résultats comparables à ceux obtenus par la méthode U-Pb a été concluante. Elle a permis en outre de distinguer les migmatites et les granites d'anatexie du Velay de la fusion crustale "pré-Velay" du domaine cévenol. Le dôme du Velay (~300 Ma) correspond à la dernière phase de fusion importante dans la chaîne. Il est admis qu'il se met en place suite à l'effondrement gravitaire (Malavieille et *al.*, 1990, Ledru et *al.*, 2001) généralisé de la chaîne. L'effondrement se matérialise par le changement de régime tectonique compressif en régime extensif bien contraint par des études structurales (Malavieille et *al.*, 1990, Lagarde et *al.*, 1994). Dans le Massif Central, le régime extensif post-orogénique NNE-SSW se caractérise aussi par l'ouverture des bassins houillers intra montagneux d'âge Stéphanien et de nombreuses failles normales et ou décrochantes. L'extension s'accompagne aussi de la mise en place des plutons et des filons granitiques entre 320 et 300 Ma. L'anatexie qui produit la migmatite et le granite à cordiérite du Velay intervient à la fin de l'effondrement (310-290 Ma).

Nous retiendrons ici que la fusion crustale dans la chaîne hercynienne française est le fait de deux sources de chaleur conjuguées contrôlées par la tectonique des plaques. La première source résulte de l'épaississement crustal dû à l'empilement des nappes. Le gradient thermique établi, déclenche la fusion de la base de croûte dans un contexte hydraté. La fusion généralisée dans toute la chaîne s'amplifie avec l'apport des injections sous-jacentes de matériel asthénosphérique chaud. Cet épisode gouverne la mise en place des migmatites et des granitoïdes (Fig.6-1A) lesquels vont à leur tour transférer la chaleur dans les niveaux supérieurs par conduction thermique. Au cours de la fusion hydratée, la phase fluide peut s'épuiser avec le temps ou bien à la suite d'une augmentation de la température ce qui semble être le cas du Velay autour de 300 Ma (Fig.6-1B) où l'amincissement lithosphérique conduit à la remontée du Moho et de la chaleur mantellique. Dans ces conditions, la fusion partielle se fait par déstabilisation des minéraux hydratés essentiellement les micas. La température étant plus élevée (~850 °C), la production de liquides est plus importante que dans le cas de fusion hydratée.

Fig.6-1. Bloc diagramme simplifié et interprété du Massif Central Français (modifié à partir de Donnes et al., 1997). Le bloc diagramme illustre les principaux évènements thermiques opérant entre 380 et 300 Ma. Il apparaît que la fusion crustale dans le Massif Central se passe suivant le schéma (A). On note également des dispositions tectoniques particulières (schéma B) avec une remontée importante du Moho correspond au dynamisme de type Velay.

Les contextes tectoniques de mise en place des migmatites en dôme dans le Massif Central sont également bien documentés. Cependant, l'histoire géodynamique de la zone axiale de la Montagne Noire reste très discutée. Bien qu'aucune nouvelle donnée structurale ne soit disponible, il ressort dans cette étude que les migmatites et les granites précoces comme par exemple le granite migmatitique du Laouzas de la zone axiale se forment au cours de l'empilement des nappes. Dans ce cas le "doming" de la Montagne Noire résulte de l'expulsion des niveaux fondus de la croûte sous pression (Soula et *al.*, 2001). Les granitoïdes syn à post-migmatites s'inscrivent dans l'évolution globale présentée plus haut. Pour la Montagne Noire, le modèle "Basin and Range" parfois évoqué (Brun Van...) ne semble pas compatible avec les nouvelles données radiométriques obtenues dans cette étude. Des analyses pétrostructurales du granite du Laouzas et de Montalet seraient nécessaires pour expliquer la géométrie des objets.

Outre le contexte d'effondrement gravitaire dans le Velay, on peut mettre en évidence une anatexie d'âge Viséen moyen ~330 Ma qui succède immédiatement à la phase finale de l'épaississement crustal (phase D3 de Faure et *al.*, 2004) datée entre 340 et 330 Ma. Cette anatexie est très développée dans le Sud du Massif Central. La migmatite de la zone axiale de la Montagne Noire, la migmatite des Cévennes et la migmatite du Sud-est Limousin (Argentat – Millevaches) appartiennent à cet épisode. On note également la mise en place de granitoïdes. Les migmatites sont de texture variable : des gneiss migmatitiques à des diatexites passant par des métatexites, une variation qui implique soit des conditions thermiques différentes soit une exposition hétérogène au flux thermique. Cette migmatisation affecte aussi bien des paragneiss que des orthogneiss et se caractérise par une grande distribution géographique. Les résultats radiochronologiques confirment les données obtenues sur les migmatites équivalentes dans le Massif Armoricain : la migmatite de Pont-Sal (Vidal, carte 1/50 000, en cours) datée à 328 \pm 5 Ma sur monazite (Cocherie, communication personnelle).

L'étude préliminaire des migmatites précoces du Dévonien s'est faite sur les échantillons prélevés dans le Limousin : antiformes de Tulle, de Meuzac et l'Est Limoges affectant l'UIG ; la migmatite du plateau d'Aigurande appartenant à l'USG. Notre étude montre l'absence de migmatites carbonifères même au cœur des plis (antiformes de Tulle et de Meuzac). Cette migmatisation peut être interprétée comme résultant de l'exhumation des éclogites de l'USG, une exhumation qui affecte également l'UIG. La décompression des matériaux enfouis entraîne leur fusion partielle (Fig.6-2). Les migmatites des deux unités sont antérieures à sub-contemporaines du métamorphisme D1 qui est caractérisé par la linéation NE-SW (Duthou et *al.*, 1994 ; Roig et Faure, 2000).

Fig.6-2. Trajets P-T du (a) Silurien-Dévonien et du (a) Carbonifère des différentes unités lithologiques de la chaîne varisque (Faure et al., 2004).

Il se dégage ici deux contextes géodynamiques de mise en place des migmatites dans la chaîne varisque, deux contextes qui impliquent des roches métamorphiques para et ortho dérivées. Pour l'épisode d'anatexie autour de 330 Ma et celui autour de 300 Ma, se pose la question de la source de chaleur nécessaire pour produire des liquides silicatés à une si grande échelle. Les diverses sources de chaleur sont groupées en source interne, et en source externe donc :

- La source interne associe un épaississement crustal qui enfouit les roches vers les domaines de pression-température propices à la fusion partielle. L'augmentation de la température est dans ce cas contrôlée par le gradient géothermique et ou par une concentration des éléments radiogénique dans la "colonne crustale".
- (ii) La source externe correspond à des transfert de chaleur associés à la mise en place des plutons de granitoïdes dans l'encaissant et induisent sa fusion partielle. Le flux de chaleur peut également être d'origine asthénosphérique résultant de la délamination lithosphérique post-collisionnelle (Fig.6-3, Faure et *al.*, 2002). Le manteau de la plaque lithosphérique se sépare de la croûte. Cette dernière est ensuite "sous plaquée" par des injections de magmas basiques issus de la fusion du manteau asthénosphérique, la température est élevée (T > 1200 °C) et la pression décroît rapidement. Le flux asthénosphérique peut être à l'origine de la fusion de la croûte sus-jacente.

Dans cette catégorie des sources externes, s'ajoute la remontée diapirique de l'asthénosphère à l'endroit de l'amincissement lithosphérique provoqué par un régime tectonique extensif.

Fig.6-3. Coupe interprétative de l'évolution lithosphérique de la chaîne hercynienne française au Viséen terminal (Faure et al., 2002).

Dans la chaîne hercynienne, ces différentes sources de chaleur peuvent avoir interagi. Cependant la délamination lithosphérique suivie d'un sous plaquage de matériau basique et la remontée asthénosphérique sous une croûte amincie sont potentiellement à l'origine de la fusion partielle la plus importante. En effet, les évidences de la contribution de la composante mantélique dans la formation des magmas à l'origine des plutons de monzogranites et de granodiorites dans le Massif Central sont déjà documentées (Duthou et *al.*, 1984 ; Turpin et *al.*, 1990 ; Williamson et *al.*, 1992). Pin et Duthou (1990) soulignent l'augmentation de eNd_i dans les granitoïdes avec le temps ce qui peut s'expliquer soit par un apport croissant du matériau mantellique soit par une fusion plus importante de la composante mafique de la croûte inférieure. Downes et *al.*, (1997) notent l'interaction forte entre les gneiss (para et orthogneiss) de la croûte inférieure et les roches basiques sous-jacentes source de chaleur et de mélanges. La majorité

des liquides silicatés est produite à la base de la croûte. Ces derniers migrent dans les niveaux supérieurs en y apportant une chaleur supplémentaire. Si l'extraction des liquides n'est pas assurée, il se forme des migmatites caractérisées par l'association des produits réfractaires avec des liquides silicatés. L'interaction des différents lithofaciès de la base de croûte s'exprime par les rapports variables de ⁸⁷Sr/⁸⁶Sr_i. Les valeurs élevées sont la mémoire de la fusion importante du matériel paragnessique tandis que les valeurs basses témoignent de la contribution des métavolcanites du type "Tufs Anthracifères". Le magmatisme des "Tufs Anthracifères" survient en effet autour de 330 Ma. Il est bien connu dans tout le Nord du Massif Central : Sioule, Morvan, Guéret et le Nord du Limousin (Bruguier et *al.*, 2003).

La compilation de ces observations suggère que les apports mantelliques sont probablement la source la plus importante de chaleur qui a contrôlé la fusion crustale dans la chaîne varisque française. La fusion partielle se fait à des températures autour de 700-800 °C lorsqu'elle est assistée par des fluides libres et peut atteindre 850 °C en l'absence de fluides.

CONCLUSION

La compréhension de l'évolution dynamique et thermique d'une chaîne de montagnes requiert une approche pluridisciplinaire. Cette approche a permis de démontrer que la chaîne hercynienne française résulte d'une collision entre deux blocs continentaux (Gondwana au sud et la Laurussia au nord). Dans le Massif Central, la cartographie et les analyses pétro-structurales indiquent que l'évolution tectonique s'est faite en trois épisodes : (i) l'épisode éovarisque, se déroule entre 450 et 400 Ma et conduit à la disparition des domaines océaniques ; (ii) la collision continentale proprement dite, non synchrone dans toute la chaîne intervient autour de 360 Ma jusqu'à 340 Ma. Elle est responsable de la structuration de la chaîne et précède (iii) l'évolution dynamique intracontinentale de 340 à 290 Ma. Ce dernier épisode comporte deux phases dont la première se caractérise par une tectonique tangentielle des nappes de charriage du Nord vers le Sud, l'épaississement crustal se poursuit. La seconde phase correspond à l'évolution ultime de la chaîne dans un contexte d'amincissement post-collisionnel avec mise en place d'importantes anomalies thermiques précurseurs de l'ultime phase de fusion crustale. Des bassins sédimentaires stéphaniens sont comptemporains de ce régime extensif qui contrôle également la mise en place et le jeu normal des accidents d'importance lithosphérique du type faille d'Argentat.

Si l'évolution dynamique globale est bien documentée, il manquait des données géochronologiques sur certaines migmatites et certains granitoïdes, témoins des perturbations thermiques et des réajustements mécaniques pour contraindre l'évolution thermique de la chaîne hercynienne. Quatre zones d'étude ont été retenues (la Montagne Noire, les Cévennes, le dôme du Velay et le Limousin). Les résultats permettent de montrer que la monazite peut enregistrer une mémoire crustale ancienne (héritage) sur une mémoire plus récente dans le cas :

- d'un métamorphisme suivi d'une fusion crustale partielle (migmatisation), survenu longtemps après
 la mise en place des protolithes (gneiss, granites précoces),
- (ii) dans le cas d'un magmatisme qui conduit à la mise en place des granitoïdes, les liquides silicatés ayant transporté en l'état les reliques minérales du protolithe fondu.

La thermosensibilité de la monazite sans perturbation du chronomètre U-Th-Pb apparaît alors comme un atout majeur pour inventorier de façon précise les différentes périodes de la fusion crustale. Dans le Massif Central, trois périodes distinctes sont mises en évidence. Elles sont corrélées avec l'évolution géodynamique de la chaîne : la première fusion se déroule entre 385 et 375 Ma et la seconde, la plus vaste, se situe entre 330 et 325 Ma. Cette fusion est contrôlée par l'épaississement crustal auquel s'ajoute les processus de délamination suivie de l'injection de l'asthénosphère chaud. L'anomalie thermique ainsi mise en place amène les roches dans les conditions d'anatexie hydratée. La dernière fusion intervient entre 310 et 290 Ma. Cette fusion qui est enregistrée essentiellement dans le dôme du Velay résulte de l'amincissement post-orogénique couplé à une remontée asthénosphérique. Les roches atteignent les conditions de fusion anhydre produisant des quantités plus importantes de liquide silicaté.

Finalement, ce travail a montré l'utilité de l'étude radiométrique sur monazite pour situer l'anatexie dans un contexte dynamique. A ce titre, la méthode peut être appliquée sur d'autres systèmes orogéniques du type Himalaya où les indices de fusion crustale sont également bien connus.

En outre, l'association géographique régulière des migmatites et des granitoïdes contemporains ou postmigmatitiques soulève des questions sur la relation génétique des deux lithotypes : les granitoïdes dans ce cas correspondent-ils au stade ultime de la migmatisation comme par exemple la migmatite et le granite du dôme du Velay étudiés dans ce travail ? Les granitoïdes sont-ils le résultat de l'accumulation des liquides échappés des migmatites ? Ou plus simplement les migmatites et les granitoïdes ont-ils une origine différente ? Les réponses à ces questions permettraient sans doute d'éclairer les mécanismes de recyclage des roches engagées dans la structuration de la chaîne varisque française, rattacher ces roches au fonctionnement de toute la chaîne.

Par ailleurs, il a été proposé que l'épaississement crustal au cours de la tectonique des nappes a joué un rôle important dans les phases anatectiques de 385-375 Ma et 330-325 Ma auxquelles succède un régime tectonique extensif qui induit la fusion 310-290 Ma dans le Velay. Il convient de noter que la surrection du dôme conduit à son tour à une restructuration locale avec des basculements comme celui du granite de Rocles. Cet exemple montre que l'anatexie prend le relais sur les processus dynamiques pour la structuration de la chaîne hercynienne. Il apparaît même essentiel de s'interroger sur son implication dans le changement du régime tectonique compressif en régime extensif.

RÉFÉRENCES BIBLIOGRAPHIQUES

- Ait Malek H., Gasquet D., Marignac C., Bertrand J.M., 1995. Des xénolithes à corindon dans une vaugnérite de l'Ardèche (Massif Central Français) : implications pour le métamorphisme ardéchois. *C. R. Acad. Sci. Paris* 321, 959-966.
- Arnaud F., Boullier A.M., Burg J.P., 2004. Shear structures and microstructures in micaschists: the Variscan Cévennes duplex (French Massif Central). J. Struct. Geol. 26, 855-868.
- Arthaud F., Matte P., 1975. Les décrochements tardi-hercyniens du sud-ouest de l'Europe. Géométrie et essai de reconstitution des conditions de deformation. *Tectonophysics* 25, 139-171.
- Ashworth J.R., Ed. 1985. Migmatites. Blackie, Glasgow, 302 pp.
- Ashworth J.R., McLellan E.L., 1985. Textures. In: Ashworth, J.R. Ed., Migmatites. Blackie, Glasgow, pp. 180-203.
- Autran A., Cogné J., 1980. La zone interne de l'orogenèse Varisque dans l'Ouest de la France et sa place dans le développement de la chaîne hercynienne. (Cogné J. and Slansky M. Eds), Géologie de l'Europe du Précambrien aux bassins sédimentaires post-hercyniens, 26^{ième} Cong. Géol. Int., Coll. C6, Paris 1980. Ann. Soc. Géol. Nord, Lille XCIX, 90-111.
- Barbey P., Brouand M., Le Fort P., Pêcher A., 1996. Granite-migmatite genetic link: the example of the Manaslu granite and Tibetan Slab migmatites in central Nepal. *Lithos* 38, 63-79.
- Barbey P., Marignac C., Montel J.M., Macaudière J., Gasquet D., Jabbori J., 1999. Cordierite growth texture and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J. Petrol. 40, 1425-1441.
- Bard J.P., 1997. Démembrement anté-mésozoï que de la chaîne varisque d'Europe occidentale et d'Afrique du Nord
 : rôle essentiel des grands décrochements transpressifs dextres accompagnant la rotation-translation horaire de
 l'Afrique durant le Stéphanien. C. R. Acad. Sci. Paris 324, 693-704.
- Barraud J., Gardien V., Allemand P., Grandjean P., 2004. Analogue models of melt-flow networks in folding migmatites. J. Struct. Geol. 26, 307-324.
- Batias P., Duthou J.L., 1979. Age Viséen supérieur du granite porphyroïde de Vienne-Tournon (Massif Central français). *7eme R.A.S.T., Lyon*, p. 34.

- **Beaud F., 1985**. Etude structurale de la Zone Axiale orientale de la Montagne Noire (sud du Massif Central français). Détermination des mécanismes de formation. *Thèse 3^{ième} cycle, Univ. Montpellier*.
- Bercovici D., Ricard Y., Schubert G., 2001. A two-phase model for compaction and damage. Applications to shear localization and plate boundary formation. J. Geophys. Res. 106, 8925-8940.
- Bergantz G.W., 1989. Underplating and partial melting: Implications for melt generation and extraction. *Sciences* 245, 1093-1095.
- Bernard-Griffiths J., 1975. Essai sur la signification des âges au strontium dans une série métamorphique : le Bas Limousin (Massif Central français). Thèse de 3^{ième} cycle, Univ. Clermont Ferrand, Ann. Sci. 55, 243p.
- Berthier F., Duthou, J.L., Roques M., 1979. Datation géochronologique Rb-Sr sur roches totales du granite de Guéret (Massif central), âge fini-dévonien de mise en place de l'un de ses faciès types. Bull. Bur. Rech. Géol. Min. 2(2), 59-72.
- Bitri A., Truffert C, Bellot J-P., Bouchot V., Ledru P., Milesi J-P., Roig J-Y., 1999. Imagerie des paléochamps hydrothermaux As-Au-Sb d'échelle crustale et dess pièges associés dans la chaîne varisque : sismique réflexion verticale (GéoFrance 3D : Massif central français). C. R. Acad. Sci. Paris 329, 771-777.
- Bons P.D., Arnold J., Elburg M.A., Kalda J., Soesoo A., Van Milligen B.P., 2004. Melt extraction and accumulation from partially molten rocks. *Lithos* 78, 25-42.
- Bouchot V., Milesi J.P., Ledru P., 2000. Crustal scale hydrothermal paleofield and related Au, Sb, W orogenic deposits at 310-305 Ma (Franch Massif Central, Variscan Belt). *SGA News* 10, 1, 6-12.
- Boutin R., Montigny R., 1993. ³⁹Ar/⁴⁰Ar des amphibolites du complexe leptyno-amphibolique du plateau d'Aigurande : collision varisque à 390 Ma dans le Nord-Ouest du Massif Central français. *C. R. Acad. Sci. Paris* 316, 1391-1398.
- Braun I., Montel J. M., Nicollet C., 1998. Electron microprobe dating of monazite from high-grade gneisses and pegmatites of Kerala Khondalite Belt, southern India. *Chem. Geol.* 146, 65-85.
- Brown M., Ed., 1994a. Crustal Anatexis and Ascent of Felsic. Magmas. Lithos 32 1-2, 109-168.
- Brown M., Rushmer T., 1997. The role of deformation in the movement of granitic melt: views from the laboratory and the field. In: Holness, M.B. (Ed.). The Role of Deformation in the Movement of Granitic Melt: Views from the Laboratory and the Field 8. Chapman and Hall, London, 111-144.

Brown M., Rushmer T., Sawyer E.W., 1995. Introduction to Special Section: Mechanisms and consequences of

melt segregation from crustal protoliths, J. Geophys. Res. 100, 15, 551-563.

- Brown M., Rushmer T., Sawyer E.W., Eds., 1995b. Special Section: Mechanisms and Consequences of Melt Segregation from Crustal Protoliths. J. Geophys. Res. B, 100, 15549-15808.
- Bruguier O., Becq-Giraudon J.F., Clauer N., Maluski H., 2003. From late Visean to Stephanian: pinpointing a two-stage basinal evolution in the Variscan belt. A case study from the Bosmoreau basin (French Massif Central) and its geodynamic implicatios. *Int. J. Earth Sci.* 92, 338-347.
- Brun J.P., Van Den Driessche J., 1994. Extensional gneiss domes and detachment fault systems: structure and kinematics. *Bull. Soc. Géol. Fr.* 165, 519-530.
- Brunel M., Lansigu Ch., 1997. Déformation et cinétique de mise en place du dôme de la zone axiale de la Montagne Noire : signification des nodules à quartz-sillimanite (Massif Central français). C. R. Acad. Sci. Paris 325, 517-523.
- **Burg J.P., 1977.** Tectonique et microtectonique des séries crystallophylliennes du Haut-Allier et de la vallée de la Truyère. Contribution de la microscopie électronique à transmission à l'étude de la déformation des minéraux dans les zones profondes. *Thèse 3^{ieme} cycle, Univ. Montpellier*, 80 p.
- Burg J.P., Davy P., Nievergelt P., Oberli F., Seward D., Diao Z., Meier M., 1997. Exhumation during crustal folding in the Namche-Barwa syntaxis. *Terra Nova* 9, 53-56.
- Burg J.P., Matte P., 1978. A cross section through the French Massif Central and the scope of its variscan geodynamic evolution. Z. Dtsch. Geol. Ges. Stuttgart 109, 429-460.
- Burg J.P., Vanderhaeghe O., 1993. Structures and way-up criteria in migmatites, with application to the Velay dome (French Massif Central). J. Struct. Geol. 15, 1293-1301.
- Burt D.M., 1989. Compositional and phase relations among rare earth element minerals. In: Lipin, B.R., McKay, G.A. (Eds.), Geochemistry and Mineralogy of Rare Earth Elements. *Min. Soc. Am. Rev. Min., Washington, D.C.* 21, 59-307.
- Caen Vachette M., Couturié J.P., Didier J., 1982. Age radiométrique des granites anatectiques et tardimigmatitique du Velay (Massif Central français). C. R. Acad. Sci. Paris 294, 135-138.
- Can-Vachette M., Gay M., Peterlongo J.M., Pitiot P., Vitel G., 1984. Age radiométrique du granite syntectonique du Gouffre d'Enfer et du métamorphisme hercynien dans la série de basse pression du Pilat (Massif Central français). C.R. Acad. Sci. Paris 299, série II, 1201-1204.

- **Caron C., 1994**. Les minéralisations Pb-Zn associées au Paléozoïque inférieur d'Europe méridional. Traçage isotopique Pb-Pb des gîtes de l'Iglesiente (SW Sardaigne) et des Cévennes et évolution de socle encaissant par la géochronologie U-Pb, ⁴⁰Ar/³⁹Ar et K/Ar. *Thèse 3üme cycle, Univ. Montpellier II*, 288 p.
- Cartannaz C., Rolin P., Cocherie A., Marquer D., Legendre O., Fanning C.M., Rossi Ph., 2005. Strike slip tectono-magmatic event reconstructed from syntectonic granite dating. Wrench history in the north-western part of Massif Central (France). *Int. J. Earth Sci.* (soumis).
- Cartier C., Faure M., Lardeux H., 2001. The Hercynian orogeny in the South Armorican Massif (St-Georges-sur-Loire Unit, Ligerian Domain, France): rifting and welding of continental stripes. *Terra nova* 13, 143-149.
- Clemens J.D., 1984. Water contents of silicic to intermediate magmas. Lithos 17, 273-287.
- Clemens J.D., Droop G.T.R., 1998. Fluids, P–T paths and the fates of anatectic melts in the Earth's crust. In: Clemens, J.D., Hutton, D.H. (Eds.), Generation of Granitic Rocks and Deep Crustal Processes. Lithos 44, 21-36.
- Clemens J.D., Vielzeuf D., 1987. Constraints on melting and magma production in the crust. *Earth Planet. Sci. Lett.* 86, 287-306.
- Cocherie A., Albarede F., 2001. An improved U-Th-Pb age calculation for electron microprobe dating of monazite. *Geochim. Cosmochim. Acta* 65, 4509-4522.
- **Cocherie A., Baudin T., Autran A., Guerrot C., Fanning M., Laumonier B., 2005**. U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early Ordovician intrusion of metagranites in the late Proterozoic Canaveilles Group of Pyrenees and the Montagne Noire (France). *Bull. Soc. Géol. Fr.* T. 176, n° 3, 269-282.
- Cocherie A., Legendre O., 2005. Potential minerals for determining U-Th-Pb chemical age using electron microprobe. Lithos (soumis)
- Cocherie A., Legendre O., Peucat J. J., Kouamelan A. N., 1998. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total Pb determination: Implications for lead behaviour in monazite. *Geochim. Cosmochim. Acta* 62, 2475-2497.
- Cocherie A., Rossi Ph., Fanning C.M., Guerrot C., 2005. Comparative use of TIMS and SHRIMP for U-Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican Batholith (France). *Lithos* 82, 185-219.

- Compston W., Williams I.S., Clement S.W., 1982. U-Pb ages within single zircons using a sensitive high massresolution ion microprobe. *Amer. Soc. Mass Spectro. Conference, 30th*, *Honolulu* 593-595.
- Compston W., Williams I.S., Kirschvink J.L., Zhang Zichao, Guogan M.A., 1992. Zircon ages for the Early Cambrian time-scale. J. Geol. Soc. London 149, 171-184.
- **Conrad W.K., Nicholls I.A., Wall V.J., 1988**. Water-saturated and undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo volcanic zone, New Zealand, and other occurrences. *J. Petrol.* 29, 765-803.
- **Costa S., 1990**. De la collision continentale à l'extension tardi-orogénique : 100 millions d'années d'histoire varisque dans le Massif central Français. Une étude chronologique par la méthode ⁴⁰Ar/³⁹Ar. *Thèse 3ième cycle, Univ. Montpellier*, 441 p.
- Crowley J. L., Ghent E. D., 1999. An electron microprobe study of the U-Th-Pb systematics of metamorphosed monazite: The role of Pb diffusion versus overgrowth and recrystallization. *Chem. Geol.* 157, 285-302.
- Davidson C., Hollister L. S., Schmid S. M., 1992. Role of melt in the formation of a deep-crustal compressive shear zone: The MacLaren Glassier metamorphic belt, south-central Alaska. *Tectonics* 11, 348-359.
- Davies G.R., Tommasini S., 2000. Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes. *Chem. Geol.* 162, 169-191.
- Deloule E., Alexandrov P., Cheilletz A., Laumonier B., Barbey P., 2001. In-situ U-Pb zircon ages for Early Ordovician magmatism in the eastern Pyrenees, France: the Canigou orthogneiss. *Int. J. Earth Sci.* 91, 398-405.
- Demange M., 1999. Evolution tectonique de la Montagne Noire : un modèle en transpression. *Earth Planet. Sci.* 329, 823-829.
- **Demange M., 1998.** Contribution au problème de la formation des dômes de la zone axiale de la Montagne Noire : analyse géométrique des plissements superposés dans les séries métasédimentaires de l'enveloppe. Implications pour tout modèle géodynamique. *Géologie de la France* 4, 3-56.
- Demange M., 1996. Observations et remarques sur l'article Extensional gneiss domes and detachment fault systems: Structure and kinematics (Brun and Van den Driessche). *Bull. Soc. Géol.*. Fr. 3, 295-302.
- Demange M., Goutay R., Issard H., Perrin M., 1986. Présence de disthène épizonal dans la Zone Axiale de la Montagne Noire (Massif Central, France). *Bull. Soc. Géol. Fr.* (8), 2, 525-526.
- Dickin A.P., 1995. Radiogenic Isotope Geology Cambridge Univ. Press, Cambridge. 490 pp.

- Dietrich R.V., Mehnert K.R., 1961. Proposal for the nomenclature of migmatites and associated rocks. Report of the International Geological Congress, XXI. Session, Norden, 1960, Copenhagen. Part XXI, Section 14, 56-78.
- Downes H., Shaw A., Williamson B.J., Thirlwall M.F., 1997. Hercynian granodiorites and monzogranites, Massif Central, France. *Chem. Geol.* 136, 99-122.
- Ducrot J., Lancelot J.R., Reille J.L. 1979. Datation en Montagne Noire d'un témoin d'une phase majeure d'amincissement crustal caractéristique de l'Europe pré-varisque. Bull. Soc. Géol. Fr. 4, 501-505.
- **Dupraz J., Didier J., 1988**. Le complexe anatectique du Velay (Massif Central français) : structure d'ensemble et évolution géologique. *Géologie de la France* 4, 73-87.
- Duthou J.L., 1977. Chronologie Rb-Sr et géochimie des granitoïdes d'un segment de la chaîne Varisque. Relations avec le métamorphisme : le Nord-Limousin. *Ann. Fac. Sci. Univ.* Clermont, 63, 209p.
- Duthou J.L., Chenevoy M., Gay M., 1994. Age Rb-Sr Dévonien moyen des migmatites à cordierite des Monts du Lyonnais (Massif central Français). C. R. Acad. Sci., Paris Série II, 319, 791-796.
- Echtler H., Malavieille J., 1990. Extensional tectonics, basement uplift and Stephano-Permian collapse basin in a late variscan metamorphic core complex (Montagne noire, Southern Massif Central). *Tectonophysics* 177, 125-138.
- Egal E., Le Goff E., Lebret P., 1999. Notice explicative de la carte géologique de la France à 1/50 000. Feuille "Guingamp" (142), Orléans, Editions BRGM.
- Ernst R.E., Desnoyers D.W., 2004. Lessons from Venus for understanding mantle plumes on Earth. Phys. Earth Planet. Int. 146, 195-229.
- Faure M., 1995. Late Carboniferous extension in the Variscan French Massif central. Tectonics 14, 132-153.
- Faure M., Charonnat X., Chauvet A., Chen Y., 2001. Tectonic evolution of the Cévennes Para-autochthonous domain of the Hercynian French Massif Central and its bearing on ore deposits formation. *Bull. Soc. Géol. Fr.* 172, 687-696.
- Faure M., Cottereau N., 1988. Données cinématiques sur la mise en place du dôme migmatitique carbonifère moyen de la zone axiale de la Montagne Noire (Massif Central, France). C.R. Acad. Sci. Paris 307, 1787-1794.
- Faure M., Ledru P., Lardeaux J.M., Matte P., 2004. Paleozoic orogenies in the French Massif Central. A cross section from Bézier to Lyon. 32nd Int. Geol. Congres Florence (Italy), Field trip guide book, 40 pp.

- Faure M., Leloix C., Roig J.Y., 1997. L'évolution polycyclique de la chaîne hercynienne. Bull. Soc. Géol. Fr. 168, 695-705.
- Faure M., Monié P., Pin C., Maluski H., Leloix C., 2002. Late Visean thermal event in the northern part of the French Massif Central: new ⁴⁰Ar/³⁹Ar an Rb-Sr isotopic constraints on the Hercynian syn-orogenic extension. *Int. J. Earth Sci.* 91, 53-75.
- Faure M., Pons J., 1991. Crustal thinning recorded by the shape of the Namurian-Westphalian leucogranite in the Variscan Belt of the northwest Massif Central, France. *Geology* 19, 730-733.
- Finger F., Broska I., Roberts M. P., Schermaier A., 1998. Replacement of primary monazite by apatite-allaniteepidote coronas in amphibolite facies granite gneiss from the eastern Alps. *Am. Mineral.* 83, 248-258.

Floc'h J-P., 1983. La série métamorphique du Limousin central. Thèse d'Etat, Université de Limoges, France, 445 pp.

- Foster D.A., Schaferb C., Fanning C. M., Hyndmanb D.W., 2001. Relationships between crustal partial melting, plutonism, orogeny, and exhumation: Idaho-Bitterroot batholith. *Tectonophysics* 342, 313-350.
- Franke W., 1989. Tectonostratigraphic units in the Variscan belt of central Europe. Geol. Soc. Am. Special Paper 230, 67-90.
- Gardien V., 1990. Reliques de grenat et de staurotide dans la série métamorphique de basse pression du Mont Pilat (Massif Central français): témoins d'une évolution tectono-métamorphique polyphasée. C. R. Acad. Sci. Paris 310, 233-240.
- Gardien V., Lardeaux J.M., Ledru P., Allemand P., Guillot S., 1997. Metamorphism during late orogenic extension: insights from the FrenchVariscan belt. *Bull. Soc. Géol. Fr.* 168, 271-286.
- Gardien V., Thompson A.B., Ulmer P., 2000. Melting of biotite+plagioclase+quartz gneisses: the role of H₂O in the stability of amphibole. *J. Petrol.* 41, 651-666.
- Gèze B., 1949. Etude géologique de la Montagne Noire et des Cévennes méridionales. Mém. Soc. Géol. Fr., Paris 29, 215 pp
- Gratz R., Heinrich W., 1997. Monazite-xenotime thermobarometry: Experimental calibration of the miscibility gap in the binary system CePO₄-YPO₄. *Am. Mineral.* 82, 772-780.
- Harrison T.M., Lovera O.M., Grove M., 1997. New insights into the origin of two contrasting Himalayan granite belts. *Geology* 25, 899-902.

Heinrich W., Andrehs G., Franz G., 1997. Monazite-xenotime miscibility thermometry. I. An empirical calibration. J. Metamorphic Geol. 15, 3-17.

Holmquist P.J., 1921. Typen und Nomenklatur der Adergesteine. GFF 43, 613-631.

- Holtz F., Johannes W., 1994. Maximum and minimum water contents of granitic melts; implications for chemical and physical properties of ascending magmas. In: Brown, M. (Ed.), Crustal Anatexis and Ascent of Felsic Magmas. *Lithos* 32, 149-159.
- Johannes W., 1988. What controls partial melting in migmatites? In: Tracy, R.J., Day, H.W. (Eds.), Studies in the Genesis and Deformation of Migmatites. J. Metamorphic. Geol. 6, 451-465.
- Johannes W., 1985. The significance of experimental studies for. the formation of migmatites. In: Ashworth, J.R. (Ed.), Migmatites. Blackie and Son, Glasgow, UK, pp. 36-85.
- Johannes W., 1983. On the origin of layered migmatites. In: Atherton, M.P., Gribble, C.D. Eds., Migmatites, Melting and Metamorphism. Shiva Geol. Ser. Shiva, Nantwich, UK, pp. 234-248.
- Johannes W., Ehlersb C., Kriegsmanc L.M., Mengeld K., 2003. The link between migmatites and S-type granites in the Turku area, southern Finland. *Lithos* 68, 69-90.
- Johannes W., Gupta L.N., 1982. Origin and evolution of a migmatite. Contrib. Mineral. Petrol. 79, 114-123.
- Kriegsman L.M., 2001. Partial melting, partial melt extraction and partial back reaction in anatectic migmatites. Lithos 56, 75-96.
- Krogh T.E., 1973. A low contamination method for the hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. *Geochim. Cosmochim. Acta* 37, 485-494.
- Labernardière H., 1992. Argentat, Carte géologique de la France 1/50 000. Document BRGM.
- Lafon J.M., 1986. Géochronologie U-Pb appliquée à deux segments du français: le Rouergue oriental et le Limousin central. *Thèse 3ième cycle, Univ. Montpellier*, 152 p.
- Lagarde J.L., Dallain C., Ledru P., Courrioux G., 1994. Deformation localization with laterally expanding anatectic granites: hercynian granites of the Velay, French Massif Central. J. Struct. Geol. 16, 839-852.
- Laumonier B., Marignac C., Cheilletz A., Macaudière J., 1991. Relation entre tectoniques superposées, migmatisation et mise en place des granites sur l'exemple de la bordure sud du dôme du Velay (région de Laviolle, Ardèche, France). C.R. Acad. Sci. Paris 313, série II, 937-944.

Lardeaux J.M., Ledru P., Daniel I., Duchene S., 2001. The Variscan French Massif Central a new addition to the

ultra-high pressure metamorphic 'club': exhumation processes and geodynamic consequences. *Tectonophysics* 332, 143-167.

- Ledru P., Autran A., Santallier D., 1994a. Lithostratigraphy of variscan terranes in the French Massif Central: a basic for paleogeographical reconstruction. In: Keppie, J.D. (Ed.), Pre-Mesozoic Geology in France and Related Areas. Springer-Verlag, 276-288.
- Ledru P., Costa S., Echtler H., 1994b. Structure. In: Keppie, J.D. (Ed.), Pre-Mesozoic Geology in France and Related Areas. Springer-Verlag, 305-323.
- Ledru P., Courrioux G., Dallain C., Lardeaux J.M., Montel J.M., Vanderhaeghe O., Vitel G., 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. *Tectonophysics* 32, 207-237.
- Ledru P., Lardeaux J.M., Santallier D., Autran A., Quenardel J.M., Floc'h J.P., Lerrouge G., Maillet N., Marchand J., Ploquin A., 1989. Où sont les nappes dans le Massif central français ? Bull. Soc. Géol. Fr. 8, 605-618.
- LeFort P., 1986. Metamorphism and magmatism during the Himalayan colfision. In: Coward, M.P. and Ries, A.C. (Editors), Collision tectonics, *Geol. Soc. Spec. Pub.* 19, 159-172.
- Leloix C., Faure M., Feybesse J.L., 1999. Hercynian polyphase tectonics in the northeast French Massif central: the closure of the Brévenne Devonian-Dinantian rift. *Int. J. Earth Sci.* 88, 409-421.
- Lindh A., Wahlgren C.H., 1985. Migmatite formation at subsolidus conditions; an alternative to anatexis. J. *Metamorphic. Geol.* 3, 1-12.
- Ludwig K.R., 2004. User's manual for Isoplot. A geochronological toolkit for Microsoft Excel. Berkley Geochronology Center.
- Maaloe S., 1982. Geochemical aspects of permeability controlled partial melting and tiactional crystallization. Geochim. Cosmochim. Acta 46, 43-57.
- Malavieille J., Guihot P., Costa S., Lardeaux J.M., Gardien V., 1990. Collapse of the thickened Variscan crust in the French Massif Central: Mont Pilat extensional shear zone and St. Etienne upper Carboniferous basin. *Tectonophysics* 177, 139-149.
- Matte P., 2001. The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate : a review. *Terra Nova* 13, 122-128.

- Matte P., 1998. Continental subduction and exhumation of HP rocks in Paleozoic belts : Uralides and Variscides, GFF, 120, 209-222.
- Matte P., 1991. Accretionary history and crustal evolution of the Variscan belt in Western Europe. *Tectonophysics* 196, 309-337.
- Matte P., 1986. Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126, 329-374.

Mc Kenzie D., 1984. The generation and compaction of partially molten rock. J. Petrol. 25, 713-765.

- Mehnert K.R., 1968. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 393 pp.
- Mehnert K.R., Busch W., 1982. The initial stage of migmatite formation. N. Jb. Mineral. Abh. 145, 211-238.
- Mezure J.F., 1981. Orientation préférentielle des mégacristaux de feldspath potassique dans les granites. Applications à l'étude structurale des granites d'Egletons et de Meymac. *Bull. Soc. Géol. Fr.* (7), XXIII, 6, 641-649.
- Mialhe J., 1980. Le massif granitique de la Borne (Cévennes). Etude pétrographique, géochimique, géochronologique et structurale. *Thèse 3^{ième} cycle, Univ. Clermont-Ferrand*, 171 pp.
- Monié G., 1980. Pétrologie des granitoïdes du sud Millevaches (Massif Central Français). Thèse 3^{ième} cycle, Univ. Clermont-Ferrand, 300 pp.
- Montel J.M., Abdelghaffar R., 1993. Les granites tardi-migmatitiques du Velay (Massif Central) : principales caractéristiques pétrographiques et géochimiques. *Géologie de la France* 1, 15-28.
- Montel J. M., Forest S., Veschambre M., Nicollet C., Provost A., 1996. Electron microprobe dating of monazite. *Chem. Geol.* 131, 37-53.
- Montel J.M., Marignac C., Barbey P., Pichavant M., 1992. Thermobarometry and granite genesis: the Hercynian low-P, high T Velay anatectic dome (French Massif Central). *J. Metamorphic Geol.* 10, 1-15.
- Montel J.M., Vanderhaeghe O., Vitel G., 2001. The Velay dome (French Massif Central): melt generation and granite emplacement during orogenic evolution. *Tectnophysics* 332, 207-237.
- Mougeot R., Respaut J.P., Ledru P., Marignac C., 1997. U-Pb chronology on accessory minerals of the Velay anatectic dome (French Massif Central). *Eur. J. Mineral.* 9, 141-156.
- Nabelek P.I., Bartlett C., Glascock M., 1999. Can Trace Element Distributions in Migmatites be used as Analogues in Understanding Petrogenesis of Anatectic Granites. *Phys. Chem. Earth (A)*, 24, 295-298.

- Nagy G., Draganits E., Demény A., Pantó G., Árkai P., 2002. Genesis and transformations of monazite, florencite and rhabdophane during medium grade metamorphism: examples from the Sopron Hills, Eastern Alps. *Chem. Geol.* 191, 25-46.
- Ni Y., Hughes J.M., Mariano A.N., 1995. Crystal chemistry of the monazite and xénotime structures. Am. Mineral. 80, 21-26.
- **Oelkers E.H., Poitrasson F., 2002**. An experimental study of the dissolution stoichiometry and rates of a natural monazite as a function of temperature from 50 to 230 °C and pH from 1.5 to 10. *Chem. Geol.* 191, 73-87.
- Palm Q.A., 1957 Les roches cristallines des Cévennes médianes, à hauteur de Largentière, Ardèche, France. Ph.D. thesis, University of Utrecht, Geologia Ultraiectana 3, 121 p.
- Patiño Douce A.E., Harris N., 1998. Experimental constraints on Himalayan anatexis. J. Petrol. 39, 689-710.
- Patiño Douce, A.E., Humphreys, E.D., Johnston, A.D., 1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. *Earth Planet. Sci. Lett.* 97, 290-315.
- Petterson M.G., 1999. Geological-tectonic framework of Solomon Islands, SW Pacific Crustal accretion and growth within an intra-oceanic setting. *Tectonophysics* 301, 35-60.
- Peucat J.J., 1983. Géochronologie des roches métamorphiques (Rb-Sr et U-Pb). Mém. Soc. Géol. Minér. Bretagne 28 (158 pp.).
- Pin C., 1990. Variscan oceans: ages, origins and geodynamic implications inferred from geochemical and radiometric data. *Tectonophysics* 177, 215-227.
- Pin C., Duthou J.L., 1990. Sources of Hercynian granitoids from the French Massif Central: Inferences from Nd isotopes and consequences for crustal evolution. *Chem. Geol.* 83, 281-296.
- Pin C., Lancelot J., 1982. U/Pb dating of an early Paleozoic bimodal magmatism in the French Massif Central and of its further metamorphic evolution. *Contrib. Mineral. Petrol.* 79, 1-12.
- Pin C., Paquette J.L., 1998. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics Massif Central (France). *Contrib. Min. Petrol.* 129, 222-238.
- Pin C., Peucat J.J., 1986. Ages des épisodes de métamorphisme paléozoï ques dans le Massif central et le Massif armoricain. *Bull. Soc. Géol. Fr.* (8), II, 461-469.

- Pin C., Vielzeuf D., 1988. Les granulites de haute pression d'Europe moyenne témoins d'une subduction éohercynienne. Implications sur l'origine des groupes leptynoamphiboliques. *Bull. Soc. Géol. Fr.* 8, 13-20.
- Poland M.P., Fink J.H., Tauxe L., 2004. Patterns of magma flow in segmented silicic dikes at Summer Coon volcano, Colorado: AMS and thin section analysis. *Earth Planet. Sci. Lett.* 219, 155-169.
- Poitrasson F., Chenery S., Bland D.J., 1996. Constrated monazite hydrothermal alteration mechanisms and their geochemical implications. *Earth Planet. Sc. Lett.* 145, 79-96.
- **Pommier A., Cocherie A., Legendre O., 2002.** EPMA Dating User's manual: Age calculation from electron probe microanalyser measurements of U-Th-Pb. BRGM, 9 pp.
- Powell R., Downes R., 1990. Garnet porphyroblast-bearing leucosomes in metapelites: mechanisms, phase diagrams, and an example from Broken Hill, Australia. In: Ashworth, J.R., Brown, M. (Eds.), High-temperature Metamorphism and Crustal Anatexis. *Mineral. Soc. Ser.* 2. Unwin Hyman, London, 105-123.
- Pupin J.P., 1980. Zircon and granite petrology. Contrib. Min. Petrol. 73, 207-220.
- Pysklywec R.N, Mitrovica J.X., 1998. Mantle flow mechanisms for the large-scale subsidence of continental interiors. *Geology* 26, 687-690.
- Pysklywec R.N., Mitrovica J.X., Ishii M., 2003. Mantle avalanche as a driving force for tectonic reorganization in the southwest Pacific. *Earth Planet. Sci. Lett.* 209, 29-38.
- Rakib A., 1996. Le métamorphisme régional de basse pression des Cévennes occidentales : une conséquence directe de la mise en place du dôme thermique vellave (Massif Central français). *Thèse 3ième cycle, Univ. Montpellier II.* 207 pp.
- R'Kha Chaham K., Couturié J.P., Duthou J.L., Fernandez A., Vitel G., 1990. L'orthogneiss oeillé de l'Arc de Fix : un nouveau témoin d'âge cambrien d'un magmatisme hyper alumineux dans le Massif Central français. *C. R. Acad. Sci. Paris* 311, 845-850.
- Robin P.Y., 1979. Theory of metamorphic segregation and related processes. *Geochim. Cosmochim. Acta* 43, 1587-1600.
- Roger F., Respaut J.P., Brunel M., Matte P., Paquette J-L., 2004. U-Pb dating of Augen orthogneisses from the Axial Zone of the Montagne Noire (Southern of Massif Central): new witness of Ordovician magmatism into the Variscan Belt. C. R. Géosci. 336, 19-28.
- Roig J-Y., 1997. Evolution tectono-métamorphique d'un segment de la chaîne hercynienne. Rôle du plutonisme

dans la caractérisation des tectoniques du Sud Limousin (Massif Central français). Thèse de 3^{ieme} cycle, Univ. d'Orléans, 287p.

- Roig J-Y., Faure M., 2000. La tectonique cisaillante polyphasée du Sud Limousin (Massif central Français) et son interprétation dans un modèle dévolution polycyclique de la Chaîne hercynienne. *Bull. Soc. Géol. Fr.* 171, 295-307.
- Roig J-Y., Faure M., 1995. La déformation du quartz dans un pluton syntectonique mis en place pendant l'extension Carbonifère supérieur du Massif Central français (le leucogranite de Chambles, Massif du Velay). C.
 R. Acad. Sci. Paris 321, 789-796.
- Roig J-Y., Faure M., Truffert C., 1998. Folding and granite emplacement inferred from structural, strain, TEM and gravimetric analysis: the case study of the Tulle antiform, SW French Massif Central. J. Struct. Geol. 20, 1169-1189.
- Rolland Y., Mahéo G., Guillot S., Pêcher A., 2001. Tectono-metamorphic evolution of the Karakorum Metamorphic complex (Dassu-Askole area, NE Pakistan): mid-crustal granulite exhumation in a compressive context. J. Struct. Geol. 19, 717-737.
- Rosenberg C.L., 2001. Deformation of partially molten granite: a review and comparison of experimental and natural case studies. *Int. J. Earth Sci.* 90, 60-76.
- Rutter E., Neumann D., 1995. Experimental deformation of partially molten Westerly granite under fluid-absent conditions with implications for the extraction of granitic magmas. J. Geophys. Res. 100, 15697-15715.
- Sambridge M.S., Compston W., 1994. Mixture modeling of multi-component data sets with application to ionprobe zircon ages. *Earth Planet. Sci. Lett.* 128. 373-390.
- Sawyer E.W. 2001. Melt segregation in the continental crust: distribution and movement of melt in anatectic rocks. J. Metamorphic Geol. 19, 291-309.

Sawyer E. W., 1999. Criteria for the Recognition of Partial Melting. Phys. Chew. Earth (A), 24, 3, 269-279.

- Sawyer E.W., 1994. Melt segregation in the continental crust. Geology 22, 1019-1022.
- Sawyer E.W., Barnes S.J., 1988. Temporal and compositional differences between subsolidus and anatectic migmatite leucosomes from the Quetico metasedimentary belt, Canada. In: Tracy, R.J., Day, H.W. (Eds.), Studies in the Genesis and Deformation of Migmatites. *J. Metamorphic. Geol.* 6, 437-450.

Schmid R., Fettes D., Harte B., Davis E., Desmons J., Siivola J., 2002. Towards a unified nomenclature in

metamorphic petrology: 1. How to name a metamorphic rock; An outline on behalf of SCMR.

- Schuiling R.D., 1960. Le dôme gneissique de l'Agout (Tarn et Hérault). Mém. Soc. Géol. Fr., Paris 29, 59 pp.
- Shannon R.D., 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* A 32, 751-767.
- Skinner B. J., Porter S. C., 1995. The Dynamic Earth, An Introduction to Physical Geology (3d Edition). New York, John Wiley and Sons, 567 pp.

Smith H.A., Giletti B., 1996. Lead diffusion in monazite. Geochem. Cosmo. Acta 61, 5, 1047-1055.

- Soula J.C., Debat P., Brusset S., Bessière G., Christophoul F., Déramond J., 2001. Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian Belt. J. Struct. Geol. 23, 1677-1699.
- Suzuki K., Adachi M., 1998. Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: Constrains from CHIME monazite ages of gneisses and granitoids. J. Metamorphic. Geol. 16, 23-37.
- Suzuki K., Adachi M., 1994. Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: Their origin and implications for the correlation of basement gneiss of Southwest Japan ad Forea. *Tectoniphysics* 235, 277-292.
- Suzuki K., Adachi M., 1991a. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochrone ages of monazite, zircon and xenotime. *Geochem. J.* 25, 357-376.
- Suzuki K., Adachi M., 1991b. The chemical Th-U-total Pb isochrone ages of zircon and monazite from the gray granite of the Hida Terrane, Japan. J. Earth Sci. Nagoya Univ. 38, 11-37.
- Talbot J.Y., Chen Y., Faure M., Lin W., 2000. AMS study of Pont-de-Montvert-Borne porphyritic granite pluton (French Massif Central) and its tectonic implications. *Geophys. J. Int.* 140, 677-686.
- Tera F., Wasserburg G.J., 1972. U-Th-Pb systematics in three apollo 14 basalts and the problem of initial Pb in Lunar rocks. *Earth Planet. Sci. Lett.* 14, 281-304.
- Thompson P.H., Bard J.P., 1982. Isograds and mineral assemblages in the eastern axial zone, Montagne Noire (France): Implications for temperature gradients and P-T history. *Can. J. Earth Sci.* 19, 129-143.
- Thompson A.B., Schulmann K., Jezek J., Tolar V., 2001. Thermally softened continental extensional zones (arcs and rifts) as precursors to thickened orogenic belts. *Tectonophysics* 332, 115-141.

- Turpin L., Cuney M., Friedrich M., Bouchez J.L., Aubertin M., 1990. Meta-igneous origin of Hercynian peraluminous granites in the N.W. French Massif Central: implications for crustal history reconstructions. *Contrib. Mineral. Petrol.* 104, 163-172.
- Van Den Driessche J., Brun J.P., 1992. Tectonic evolution of the Montagne Noire. A model of extensional gneiss dome. *Geodin. Acta*, Paris 5, 85-101.
- Van der haeghe O., 2001. Melt segregation, pervasive melt migration and magma mobility in the continental crust: the structural record from pores to orogens. *Phys. Chem. Earth, Part A: Solid Earth and Geodesy*, 26, 213-223.
- Van der Molen I., 1985. Interlayer material transport during layer-normal shortening. Part I. The model. Tectonophysics 115, 275-295.
- Van der Molen I., Paterson M.S., 1979. Experimental Deformation of Partially-Melted Granite. Contrib. Mineral. Petrol. 70, 299-318.
- Vernon R. H., Richards S. W., Collins W. J., 2001. Migmatite-Granite Relationships: Origin of the Cooma Granodiorite Magma, Lachlan Fold Belt, Australia. *Phys. Chem. Earth (A)*, 26, 267-271.
- Vielzeuf D., Vidal P., Eds. 1990. Granulites and Crustal Evolution. NATO ASI Ser., Ser. C. 311. Kluwer, Dordrecht, 585 pp.
- Vigneresse J.L., Barbey P., Cuney M., 1996. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. *J. Petrol.* 37, 1579-1600.
- Vigneresse J.L., Burg J.P., 2000. Continuous vs. discontinuous melt segregation in migmatites: insights from a cellular automaton model. *Terra Nova* 12, 188-192.
- Vigneresse J.L., Cuney M., 1991. What can we learn about crustal structure from thermal data. Terra Nava 3, 28-34.
- Vitel G., 1985. La transition faciès granulite faciès amphibolite dans les enclaves basiques du Velay. C. R. Acad. Sci. Paris 300, 407-412.
- Von Raumer J.F., Stampfli G.M., Bussy F., 2003. Gondwana-derived microcontinents the constituents of the Variscan and Alpine collisional orogens. *Tectonophysics* 365, 7-22.

Weisbrod A., 1968. Les conditions du metamorphisme dans les Cévennes médianes. C. R. Acad. Sci. Paris 266, 775.

Wendt I., Carl C., 1991. The statistical distribution of the mean squared weighted deviation. *Chem. Geol.* (Isot. Geosci. Sect.) 86, 275-285.

- Wetherill G.W., 1956. Discordant uranium-lead ages I: Transactions of the American Geophysical Union, 37, 320-326.
- Wickham S.M., 1987. The segregation and emplacement of granitic magmas. J. Geol. Soc. London 144, 281-297.
- Williams I.S., 1998. U-Th-Pb Geochronomogy by Ion Microprobe. Rev. Eco. Geol. 7, 1-35.
- Williams M., Jercinovic M.J., 2002. Microprobe monazite geochronology: putting absolute time into microstructural analysis. J. Struct. Geol. 24, 1013-1028.
- Williamson B.J., Downes H., Thirlwall M.F., 1992. The relationship between crustal magmatic underplating and granite genesis: an exemple from the Velay granite complex, Massif Central, France. Trans. R. Soc. Edinburgh: *Earth Sci.* 83, 235-245.
- Winkler H.G.F., Von Platen H., 1961. Experimentelle Gesteinsmetamorphose: IV. Bildung anatektischer Schmelzen aus metamorphisierten Grauwacken. *Geochim. Cosmochim. Acta* 24, 48-69.
- Zhu X.K., O'Nions R.K., 1999. Zonation of monazite in metamorphic rocks and its implications for high temperature thermochronology: a case study from the Lewisian terrain. *Earth Planet. Sci. Lett.* 171, 209-220.

Electron-microprobe dating as a tool for determining the closure of Th-U-Pb systems in migmatitic monazites

ALAIN COCHERIE,^{1,*} EUGÈNE BE MEZEME,^{1,2} OLIVIER LEGENDRE,¹ C. MARK FANNING,³ MICHEL FAURE,² AND PHILIPPE ROSSI¹

¹BRGM, BP 6009, 45060 Orléans, France ²Université d'Orléans, ISTO, BP 6759, 45067 Orléans, France ³Research School of Earth Sciences, ANU, Canberra, ACT 0200, Australia

ABSTRACT

High spatial resolution dating of monazite by the electron-probe microanalyzer (EPMA) enables systematic and detailed studies of small minerals. Like zircon, monazite records the complex history undergone by the host rocks. Recent improvements in the statistical treatment of many in situ data now make it possible to decipher the related thermal events and so obtain reliable and precise ages. Our work shows that a significant number of individual spot analyses is required to reach such precise information (i.e., more than 30–40 data). Using the examples of monazites from three migmatites and one granite, we show how to select the most efficient method of age calculation according to the U and Th geochemistry of the grains, or grain domains, that we are trying to date. Three situations may be met: (1) monazites exhibiting significant Th/U ratio variation, (2) monazites exhibiting a fairly constant Th/U ratio, but significant U + Th heterogeneity, and (3) monazites of constant U and Th concentrations. For the first case, a precise mean age can be calculated using a method of data reduction in the Th/Pb = f(U/Pb) diagram, whereby a precision of $\pm 5-10$ Ma (2σ) is commonly achieved. For the second case, an isochron age can be calculated according to the $Pb = f(Th^*)$ method, with a common precision of around 20 Ma (2σ), whereas for the third case, a simple weighted average age can be calculated. Using these approaches, coupled with a back-scattered electron image study, we demonstrate that inheritance is probably as common for monazite as for zircon. In addition, the combination of high spatial resolution and precise age determination show the limited extent of Pb diffusion in monazite.

Finally, an example from a migmatite from southern French Guiana demonstrates the especially robust behavior of the Th-U-Pb system in monazite. This system remains closed during late migmatization and during the subsequent zircon crystallization and zircon overgrowth of protolith zircons. The monazite yielded exactly the same age as the protolith zircons.

^{*} E-mail: a.cocherie@brgm.fr

In situ chemical dating of tectonothermal events in the French Variscan Belt

Eugène Be Mezeme,^{1,2} Michel Faure,¹ Alain Cocherie² and Yan Chen¹

¹Institut des Sciences de la Terre d'Orléans, UMR CNRS 6113, Bâtiment Géosciences, Université d'Orléans, 45067 Orléans Cedex 2, France; ²BRGM, Av. Claude-Guillemin BP 6009, 45060 Orléans Cedex 2, France

ABSTRACT

In situ U–Th–Pb geochronology on monazite using Electron Probe Micro Analyser has been performed on migmatite in the southern French Variscan Massif Central in order to decipher its complex history. After the Early Visean (340 Ma) nappe stacking, the Cévennes area experienced a regional migmatization already dated 330–325 Ma in northern Cévennes. In these rocks two monazite populations are recognized on the basis of petrology texture and geochemistry. The oldest monazite generation that appears as inclusion in K-feldspar is dated at 331 \pm 4 Ma. This age complies with that of the crustal melting experienced by the Cévennes metamorphic series. The youngest monazite generation is interstitial and gives an age of 320 ± 5 Ma. A hydrothermal origin, coeval with the peraluminous magmatism that predates the formation of the Late Carboniferous Velay Dome is proposed as a working hypothesis to account for the formation of this second monazite generation.

Terra Nova, 17, 420-426, 2005

Correspondence: Dr Eugène Be Mezeme, ANA/ISO, BRGM, 3, avenue Claude Guillemin, BP 6009, Orléans 45060, France. Tel.: 00 33 2 38 64 48 21; fax: 00 33 2 38 64 32 48; e-mail: e.be@brgm.fr

www.elsevier.com/locate/lithos

Electron microprobe monazite geochronology of magmatic events: Examples from Variscan migmatites and granitoids, Massif Central, France

E. Be Mezeme ^{a,b,*}, A. Cocherie ^a, M. Faure ^b, O. Legendre ^a, Ph. Rossi ^a

^a BRGM-3, avenue Claude Guillemin, BP 6009, 45060 Orléans, France ^b ISTO bâtiment Géosciences, BP 6759, 45067 Orléans Cedex 2, France

Received 26 November 2003; accepted 2 June 2005

Abstract

U–Th–Pb dating of monazite with the electron probe microanalyser (EPMA) is increasingly documented as a reliable geochronological method offering high spatial resolution. This method has been applied on monazite from the Cévennes migmatites and granitoids from the southeast of the French Massif Central. Measurements were performed on separated grains after systematic back-scattered electron (BSE) imaging. Monazites from migmatites record two main ages: (i) a protolith age of about 550–543 Ma obtained on inherited cores, and (ii) a migmatization event between 329 ± 5 and 323 ± 3 Ma recorded by monazite rims and all other monogenetic grains. Monazite from the peraluminous Rocles pluton yields a 318 ± 3 Ma age. Finally, three granite dykes are dated at 333 ± 6 , 318 ± 5 and 311 ± 5 Ma; the older dyke is the most deformed of them and is interpreted as linked to the migmatization event; the two other dykes are geochronologically, petrologically and structurally coeval with the Rocles pluton. The data constrain the timing of crustal melting following Variscan thickening in the northern Cévennes area. Migmatization of Ordovician protoliths took place at 329-323 Ma and was shortly followed by intrusion of leucogranite at 318-311 Ma. The study shows that EPMA dating of monazite can be successfully used to resolve a close succession of regional melting events.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Monazite; Electron microprobe; Geochronology; Massif Central, France

^{*} Corresponding author. BRGM-3, avenue Claude Guillemin, BP 6009, 45060 Orléans, France.

E-mail address: e.be@brgm.fr (E. Be Mezeme).

ANNEXES

annexe 4

Tableau 1. Analyses U-Pb (IMS 1270) sur zircons de la migmatite de La Salvetat

							Total		Radi	ogénique	Age (Ma)			
Grain.	U	Th	Th/U	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁶ Pb/	
point	(ppm)	(ppm)		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁸ U	±
1.1	375	41	0.11	27	-	0.20	11.725	0.274	0.05957	0.00051	0.08512	0.00199	526.6	11.8
2.1	326	44	0.14	26	-	-0.06	10.906	0.352	0.05846	0.00023	0.09175	0.00296	565.9	17.5
2.2	476	73	0.15	36	-	-0.08	11.272	0.181	0.05786	0.00013	0.08879	0.00143	548.4	8.4
3.1	699	58	0.08	55	-	-0.19	10.986	0.342	0.05727	0.00035	0.09120	0.00284	562.6	16.7
4.1	875	91	0.10	64	0.000027	0.14	11.682	0.288	0.05911	0.00041	0.08548	0.00211	528.8	12.5
5.1	148	57	0.38	11	-	-0.08	11.187	0.210	0.05792	0.00028	0.08946	0.00168	552.3	9.9
6.1	460	193	0.42	36	-	-0.12	10.919	0.313	0.05795	0.00030	0.09169	0.00263	565.5	15.5
7.1	314	192	0.61	22	-	0.19	12.149	0.426	0.05901	0.00057	0.08216	0.00288	509.0	17.1
7.2	137	32	0.23	11	-	0.08	10.419	0.644	0.06028	0.00081	0.09591	0.00592	590.4	34.8
7.3	537	23	0.04	28	-	-0.06	16.444	0.958	0.05376	0.00042	0.06085	0.00355	380.8	21.5
8.1	460	54	0.12	36	-	-0.04	11.062	0.261	0.05839	0.00023	0.09044	0.00213	558.2	12.6
9.1	190	155	0.82	15	-	0.02	11.071	0.307	0.05891	0.00028	0.09031	0.00251	557.3	14.8
10.1	497	62	0.13	37	-	-0.01	11.488	0.263	0.05817	0.00024	0.08705	0.00199	538.1	11.8
11.1	453	47	0.10	33	-	0.08	11.937	0.231	0.05839	0.00024	0.08370	0.00162	518.2	9.6
12.1	291	44	0.15	23	-	0.46	10.971	0.461	0.06265	0.00059	0.09073	0.00381	559.8	22.5
12.2	595	11	0.02	26	-	-0.03	19.992	0.503	0.05243	0.00017	0.05004	0.00126	314.7	7.7
12.3	149	46	0.31	11	-	-0.01	11.500	0.171	0.05810	0.00035	0.08697	0.00129	537.6	7.7
12.4	563	16	0.03	30	-	0.09	16.224	0.726	0.05511	0.00027	0.06158	0.00275	385.2	16.7
13.1	318	73	0.23	25	-	-0.01	10.901	0.269	0.05889	0.00027	0.09174	0.00227	565.8	13.4
14.1	214	44	0.21	18	-	-0.36	10.332	0.166	0.05684	0.00010	0.09713	0.00156	597.6	9.2
15.1	241	45	0.19	18	-	0.00	11.416	0.234	0.05827	0.00030	0.08760	0.00179	541.3	10.6
16.1	515	53	0.10	38	-	0.06	11.499	0.277	0.05870	0.00027	0.08691	0.00210	537.3	12.4
17.1	272	41	0.15	21	-	-0.03	11.295	0.218	0.05824	0.00033	0.08856	0.00171	547.0	10.1
18.1	280	35	0.13	20.9	-	0.18	11.494	0.198	0.05965	0.00030	0.08685	0.00150	536.9	8.9
18.2	1369	103	0.07	117.1	0.00000	-0.20	10.049	0.190	0.05855	0.00032	0.09972	0.00189	612.8	11.1
19.1	329	419	1.27	26.6	-	-0.12	10.629	0.193	0.05838	0.00048	0.09420	0.00171	580.3	10.1
19.2	894	12	0.01	37.8	0.00079	1.34	20.311	0.270	0.06332	0.00066	0.04857	0.00065	305.8	4.0
19.3	508	80	0.16	35.2	0.00001	0.03	12.395	0.110	0.05744	0.00018	0.08066	0.00072	500.0	4.3
20.1	668	69	0.10	44.4	0.00024	0.42	12.915	0.168	0.06013	0.00015	0.07710	0.00100	478.8	6.0
21.1	447	35	0.08	38.2	0.00024	0.07	10.041	0.278	0.06084	0.00071	0.09952	0.00276	611.6	16.2
22.1	447	36	0.08	29.1	-	0.36	13.195	0.158	0.05936	0.00022	0.07552	0.00090	469.3	5.4
23.1	1182	54	0.05	84.5	0.00002	0.24	12.023	0.135	0.05960	0.00013	0.08297	0.00093	513.9	5.5
24.1	589	35	0.06	43.1	-	0.08	11.731	0.140	0.05859	0.00016	0.08517	0.00101	526.9	6.0
25.1	736	52	0.07	54.6	0.00001	0.08	11.575	0.138	0.05879	0.00010	0.08632	0.00103	533.7	6.1
25.2	675	15	0.02	28.1	0.00066	0.01	20.684	0.308	0.05252	0.00028	0.04834	0.00072	304.3	4.4
25.3	796	73	0.09	62.5	0.00021	0.17	10.937	0.093	0.06027	0.00027	0.09128	0.00078	563.1	4.6
25.4	1264	81	0.06	92.4	0.00004	-0.15	11.758	0.105	0.05669	0.00024	0.08517	0.00076	526.9	4.5
26.1	442	445	1.01	30.2	0.00031	0.72	12.596	0.164	0.06284	0.00066	0.07882	0.00102	489.1	6.1
27.1	661	46	0.07	43.8	-	0.27	12.965	0.165	0.05884	0.00009	0.07692	0.00098	477.7	5.9
28.1	717	31	0.04	43.1	0.00035	0.44	14.288	0.175	0.05917	0.00030	0.06968	0.00085	434.2	5.1

Notes :

1. Incertidudes données à 1σ .

2. L'erreur due à la calibration à l'aide du standard 91500 est incluse dans les erreurs ci-dessus.

3. $f_{206}\,\%$ correspond au pourcentage de ^{206}Pb issu du Pb commun.

 Correction du Pb commun réalisée à l'aide des rapports ²³⁸U/²⁰⁶Pb et ²⁰⁷Pb/²⁰⁶Pb mesurés selon Tera and Wasserburg (1972) développé par Williams (1998).

Tableau 2. Analyses U-Pb (IMS 1270) sur zircons du granite de Laouzas

								,	Гotal		Rad	iogénique	Age (N	1a)
Grain.	U	Th	Th/U	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁶ Pb/	
point	(ppm)	(ppm)		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁸ U	±
1.1	318	72	0.23	23	-	0.13	11.700	0.266	0.05899	0.00033	0.08536	0.00194	528.0	11.5
2.1	493	66	0.13	37	0.000006	0.06	11.324	0.272	0.05893	0.00023	0.08825	0.00212	545.2	12.5
3.1	783	6	0.01	32	-	0.04	20.737	0.532	0.05277	0.00022	0.04820	0.00124	303.5	7.6
3.2	337	182	0.54	24	0.000017	0.29	12.136	0.538	0.05985	0.00078	0.08216	0.00364	509.0	21.7
3.3	272	71	0.26	20	-	0.18	11.677	0.231	0.05943	0.00024	0.08549	0.00169	528.8	10.0
4.1	505	60	0.12	38	-	0.09	11.272	0.177	0.05924	0.00022	0.08863	0.00139	547.4	8.2
5.1	370	77	0.21	28	0.000090	0.14	11.445	0.295	0.05944	0.00044	0.08725	0.00225	539.3	13.3
6.1	334	32	0.09	23	-	0.17	12.333	0.286	0.05870	0.00037	0.08094	0.00188	501.7	11.2
7.1	177	51	0.29	14	0.000174	0.07	11.242	0.257	0.05906	0.00025	0.08889	0.00203	549.0	12.0
8.1	352	72	0.20	26	-	0.10	11.630	0.288	0.05887	0.00031	0.08590	0.00213	531.2	12.6
9.1	661	71	0.11	50	-	0.06	11.457	0.300	0.05878	0.00023	0.08723	0.00228	539.1	13.5
10.1	237	42	0.18	17	-	0.16	11.809	0.210	0.05913	0.00031	0.08455	0.00150	523.2	8.9
11.1	555	78	0.14	47	-	-0.28	10.093	0.240	0.05786	0.00026	0.09936	0.00236	610.7	13.8
12.1	363	80	0.22	28	-	-0.02	11.325	0.253	0.05826	0.00030	0.08832	0.00198	545.6	11.7
13.1	534	4	0.01	22	0.001203	1.95	20.779	0.319	0.06801	0.00167	0.04719	0.00072	297.2	4.5
13.2	96	40	0.41	8	0.000084	-0.05	10.661	0.273	0.05890	0.00043	0.09385	0.00240	578.2	14.1
14.1	282	31	0.11	21	-	0.07	11.334	0.303	0.05901	0.00043	0.08817	0.00235	544.7	13.9
14.2	448	94	0.21	35	-	-0.04	10.940	0.167	0.05856	0.00012	0.09145	0.00139	564.1	8.2
15.1	166	39	0.23	13	-	-0.06	10.883	0.234	0.05850	0.00039	0.09194	0.00198	567.0	11.7
16.1	359	47	0.13	27	-	0.03	11.290	0.143	0.05868	0.00029	0.08855	0.00112	547.0	6.7
16.2	420	34	0.08	32	0.000080	0.31	11.321	0.187	0.06091	0.00038	0.08806	0.00145	544.1	8.6
16.3	447	32	0.07	32	-	0.14	12.086	0.218	0.05868	0.00026	0.08263	0.00149	511.8	8.9
17.1	773	90	0.12	58	-	0.12	11.469	0.253	0.05922	0.00020	0.08709	0.00192	538.3	11.4
18.1	344	33	0.10	26	-	0.02	11.470	0.137	0.05839	0.00020	0.08717	0.00104	538.8	6.2
19.1	651	69	0.11	48	0.000045	0.14	11.622	0.149	0.05924	0.00020	0.08592	0.00110	531.4	6.6
20.1	241	163	0.67	19	0.000039	0.38	11.045	0.133	0.06185	0.00022	0.09019	0.00109	556.7	6.4
21.1	471	80	0.17	37	0.000062	-0.08	10.874	0.137	0.05838	0.00018	0.09203	0.00116	567.6	6.9
22.1	742	77	0.10	52	0.000182	0.31	12.176	0.175	0.05997	0.00021	0.08187	0.00117	507.3	7.0
23.1	531	66	0.12	39	0.000098	0.12	11.567	0.138	0.05909	0.00018	0.08635	0.00103	533.9	6.1
24.1	577	74	0.13	41	0.000035	0.11	12.233	0.139	0.05825	0.00024	0.08166	0.00093	506.0	5.5
25.1	477	70	0.15	34	0.000141	0.10	11.985	0.139	0.05845	0.00035	0.08335	0.00097	516.1	5.7
26.1	1041	67	0.06	76	0.000047	0.16	11.800	0.133	0.05917	0.00011	0.08461	0.00096	523.6	5.7
27.1	258	38	0.15	20	0.001987	3.65	11.248	0.190	0.08821	0.00308	0.08566	0.00145	529.8	8.6
28.1	481	31	0.06	37	-	-0.07	11.085	0.144	0.05814	0.00031	0.09027	0.00117	557.2	6.9
29.1	321	92	0.29	24	-	-0.05	11.465	0.222	0.05783	0.00051	0.08726	0.00169	539.3	10.0

Notes :

1. Incertidudes données à 1σ .

2. L'erreur due à la calibration à l'aide du standard 91500 est incluse dans les erreurs ci-dessus.

3. f_{206} % correspond au pourcentage de 206 Pb issu du Pb commun.

4. Correction du Pb commun réalisée à l'aide des rapports ²³⁸U/²⁰⁶Pb et ²⁰⁷Pb/²⁰⁶Pb mesurés selon Tera and Wasserburg (1972) développé par Williams (1998).

Tableau 3	5. Analys	es U-PD	(1145-1	270) su	r zircons c	u grann	Total				Radiog	énique	Age (Ma)		
Grain.	U	Th	Th/U	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/	<u> </u>	²⁰⁶ Pb/		
point	(ppm)	(ppm)		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁸ U	±	
1.1	538	144	0.27	21	0.00058	0.23	21.932	0.552	0.05386	0.00045	0.04549	0.00115	286.8	7.1	
2.1	201	21	0.10	12	0.00125	2.33	14.642	0.377	0.07415	0.00162	0.06671	0.00172	416.3	10.4	
3.1	237	122	0.52	9	0.00007	0.79	22.121	0.450	0.05835	0.00098	0.04485	0.00091	282.8	5.6	
4.1	2043	417	0.20	89	0.00020	1.56	19.354	0.193	0.06545	0.00082	0.05086	0.00051	319.8	3.1	
5.1	1057	68	0.06	41	0.00071	1.50	21.720	0.336	0.06411	0.00140	0.04535	0.00070	285.9	4.3	
6.1	468	31	0.07	28	-	0.10	14.242	0.199	0.05645	0.00022	0.07014	0.00098	437.0	5.9	
7.1	2333	57	0.02	167	0.00018	-0.14	11.981	0.124	0.05654	0.00020	0.08358	0.00086	517.5	5.1	
8.1	138	64	0.46	52	-	2.41	2.219	0.024	0.17627	0.00240	0.43985	0.00483	2350	22	
8.1	94	35	0.38	39	-	1.61	2.057	0.037	0.18398	0.00636	0.47825	0.00867	2520	38	
9.1	4251	3073	0.72	188	0.00186	3.58	18.750	0.266	0.08250	0.00321	0.05142	0.00073	323.2	4.5	
10.1	2356	1318	0.56	105	-	-0.03	19.322	0.195	0.05271	0.00012	0.05177	0.00052	325.4	3.2	
11.1	2053	1059	0.52	88	0.00005	0.02	19.935	0.201	0.05287	0.00011	0.05015	0.00050	315.5	3.1	
12.1	844	361	0.43	35	-	0.07	20.812	0.263	0.05292	0.00009	0.04802	0.00061	302.3	3.7	
12.2	920	445	0.48	36	-	0.30	21.880	0.241	0.05445	0.00027	0.04557	0.00050	287.2	3.1	
12.3	638	276	0.43	27	-	0.09	20.535	0.245	0.05317	0.00049	0.04865	0.00058	306.3	3.6	
13.1	1434	532	0.37	58	0.00022	0.60	20.952	0.298	0.05712	0.00134	0.04744	0.00068	298.8	4.2	
14.1	1525	556	0.36	66	0.00105	2.01	19.450	0.266	0.06897	0.00474	0.05038	0.00069	316.9	4.2	
15.1	333	54	0.16	21	-	0.10	13.680	0.144	0.05685	0.00037	0.07303	0.00077	454.4	4.6	
15.2	468	24	0.05	30	-	0.05	13.212	0.173	0.05688	0.00023	0.07565	0.00099	470.1	5.9	
16.1	2128	670	0.31	95	0.00108	2.26	18.714	0.195	0.07134	0.00072	0.05223	0.00054	328.2	3.3	
17.1	433	214	0.49	19	0.00001	7.16	18.324	0.210	0.11087	0.00153	0.05067	0.00058	318.6	3.6	
18.1	845	32	0.04	36	0.00034	0.20	20.324	0.236	0.05415	0.00034	0.04911	0.00057	309.0	3.5	
19.1	187	109	0.58	27	-	0.14	6.050	0.078	0.07322	0.00032	0.16505	0.00213	984.8	11.8	
20.1	1159	19	0.02	115	0.00057	2.19	8.467	0.110	0.08134	0.00381	0.11552	0.00149	704.7	8.6	
21.1	531	298	0.56	39	-	0.19	11.542	0.148	0.05974	0.00021	0.08647	0.00111	534.6	6.6	
21.2	223	104	0.47	17	-	0.17	11.330	0.156	0.05983	0.00038	0.08811	0.00121	544.3	7.2	
22.1	133	50	0.37	12	-	0.73	9.627	0.108	0.06693	0.00150	0.10312	0.00116	632.6	6.8	
23.1	283	25	0.09	18	0.00068	1.68	13.593	0.155	0.06970	0.00045	0.07233	0.00083	450.2	5.0	
23.2	192	41	0.21	12	-	0.16	13.501	0.250	0.05751	0.00036	0.07395	0.00137	459.9	8.2	
24.1	653	26	0.04	30	0.00005	0.62	18.519	0.186	0.05822	0.00021	0.05366	0.00054	337.0	3.3	
25.1	1412	1209	0.86	143	0.00000	-0.05	8.462	0.071	0.06296	0.00027	0.11823	0.00099	720.4	5.7	
26.1	2615	94	0.04	118	0.00011	0.29	18.983	0.209	0.05538	0.00041	0.05253	0.00058	330.0	3.5	
27.1	2095	7	0.00	103	0.00001	0.24	17.557	0.201	0.05556	0.00020	0.05682	0.00065	356.3	4.0	
28.1	557	167	0.30	23	-	0.27	20.730	0.225	0.05462	0.00053	0.04811	0.00052	302.9	3.2	
29.1	939	432	0.46	42	-	0.05	19.268	0.176	0.05330	0.00015	0.05188	0.00047	326.0	2.9	
30.1	424	202	0.48	19	0.00002	0.13	19.428	0.230	0.05391	0.00050	0.05141	0.00061	323.2	3.7	

Tableau 4	Analyses II Dh	(IMG 1270)	eur zircone du l	aucogranite de Cornil
I apicau 4.			3ui zii cons uu i	

										Total		Radi	ogénique	Age	(Ma)
	Grain.	U	Th	Th/U	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁶ Pb/	
	point	(ppm)	(ppm)		(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁸ U	±
•	1.1	458	123	0.27	21	0.00005	0.04	19.048	0.235	0.05335	0.00037	0.05248	0.00065	329.7	4.0
	1.2	574	189	0.33	29	-	0.11	17.078	0.246	0.05477	0.00045	0.05849	0.00084	366.4	5.1
	1.3	201	49	0.25	10	-	0.23	16.600	0.170	0.05603	0.00056	0.06010	0.00062	376.2	3.7
	1.4	542	172	0.32	26	-	0.08	17.875	0.281	0.05418	0.00027	0.05590	0.00088	350.6	5.4
	1.5	465	147	0.32	24	-	0.01	16.971	0.297	0.05399	0.00041	0.05892	0.00103	369.1	6.3
	2.1	531	374	0.71	35	0.00245	4.36	12.913	0.128	0.09204	0.00055	0.07406	0.00073	460.6	4.4
	2.2	474	81	0.17	31	0.00000	0.06	13.103	0.114	0.05707	0.00019	0.07627	0.00067	473.8	4.0
	3.1	3797	209	0.06	199	0.00004	0.00	16.361	0.143	0.05425	0.00015	0.06112	0.00053	382.4	3.2
	4.1	1091	91	0.08	73	0.00016	0.33	12.802	0.114	0.05953	0.00028	0.07785	0.00069	483.3	4.1
	5.1	1897	495	0.26	88	0.00056	0.89	18.541	0.189	0.06042	0.00015	0.05345	0.00055	335.7	3.3
	5.2	1206	396	0.33	76	0.00144	2.71	13.674	0.128	0.07804	0.00063	0.07114	0.00067	443.1	4.0
	6.1	640	41	0.06	42	0.00044	1.04	12.981	0.111	0.06507	0.00024	0.07624	0.00065	473.6	3.9
	7.1	719	80	0.11	48	0.00018	0.14	12.967	0.113	0.05780	0.00021	0.07701	0.00067	478.3	4.0
	9.1	3424	661	0.19	179	0.00032	0.45	16.393	0.146	0.05788	0.00014	0.06073	0.00054	380.1	3.3
	10.1	2498	975	0.39	127	0.00596	10.90	16.885	0.246	0.14146	0.00127	0.05277	0.00077	331.5	4.7
	11.1	3176	1576	0.50	223	0.00001	0.01	12.234	0.103	0.05743	0.00009	0.08173	0.00069	506.5	4.1
	12.1	529	127	0.24	36	0.00022	0.44	12 458	0.116	0.06076	0.00018	0.07991	0.00074	495.6	44

Notes : 1. Incertidudes données à 1σ .

2. L'erreur due à la calibration à l'aide du standard 91500 est incluse dans les erreurs ci-dessus.

3. f_{206} % correspond au pourcentage de ²⁰⁶Pb issu du Pb commun.

 Correction du Pb commun réalisée à l'aide des rapports ²³⁸U/²⁰⁶Pb et ²⁰⁷Pb/²⁰⁶Pb mesurés selon Tera and Wasserburg (1972) développé par Williams (1998).

Filon de leucogranite (BE10)	03°54'37" - 44°31'20"
------------------------------	-----------------------

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Total
2 960l2g1t1 3.228 0.2100 9.558 0.971 1.183 12.949 3.735 1.595 22.545 0.142 10.818 1.695 2.852 2.699 3 960l2g1t1 2.509 0.1608 9.389 0.905 1.117 12.973 3.942 1.805 2.3251 0.143 1.481 2.068 2.832 2.696 5 960l2g1t1 0.050 0.138 9.773 0.978 1.061 12.883 5.804 1.701 2.231 0.197 10.929 1.812 2.720 2.695 6 960l2g1t1 0.989 0.0959 10.252 0.997 0.673 1.2968 3.008 1.855 2.3718 0.144 1.147 2.103 2.423 2.101 8 960l2g1t1 0.952 0.0966 9.839 1.003 1.304 5.286 1.747 2.2415 0.164 10.848 2.198 2.702 10 960l2g1t1 0.628 0.1070 9.819 1	98.50
3 960/2g1rl 2.509 0.1608 9.389 0.905 1.117 12.936 4.025 1.506 23.121 0.147 11.268 1.513 2.735 2.696 5 960/2g1rl 1.026 0.1318 9.773 0.978 1.061 12.883 5.804 1.701 22.351 0.147 10.429 1.812 2.702 2.695 6 960/2g1rl 0.989 0.0959 10.252 0.997 0.673 12.968 3.008 1.855 2.3718 0.144 11.47 2.103 2.923 2.701 7 960/2g1rl 0.986 0.0960 10.034 1.109 0.926 12.943 4.747 1.843 2.2647 0.174 10.097 2.094 2.832 2.701 8 960/2g1rl 0.952 0.0966 9.839 1.003 0.936 12.951 4.875 1.634 23.348 0.175 11.372 1.884 2.649 2.709 10 960/2g211 0.661 0.1071 9.988 0.884 12.958 4.876 1.634 23.348 0.175	98.49
4 96012g1t1 0.510 0.0883 10.274 1.092 0.762 12.973 3.942 1.805 23.269 0.143 11.481 2.068 2.831 27.01 5 96012g1t1 1.026 0.1318 9.773 0.978 1.061 12.883 5.804 1.701 22.351 0.197 10.929 1.812 2.720 2.690 6 96012g1t1 0.988 0.0960 10.034 1.109 0.926 12.943 4.747 1.843 22.647 0.174 10.907 2.03 2.323 2.701 8 96012g1t1 0.928 0.0966 9.839 1.003 0.936 12.951 4.835 1.747 22.415 0.164 10.948 2.188 2.638 2.701 10 96012g2t1 0.661 0.171 9.88 0.884 0.884 12.958 4.876 1.642 2.348 0.175 1.137 1.884 2.489 2.692 2.013 1.038 2.849 2.602 1.035 2.612 2.614 2.643 2.648 2.643 2.649 2.649	98.40
5 96012g1t1 1.026 0.1318 9.773 0.978 1.061 12.883 5.804 1.701 22.351 0.197 10.929 1.812 2.720 26.95 6 96012g1t1 0.989 0.0950 10.252 0.997 0.673 12.968 3.008 1.855 23.718 0.144 11.474 2.103 2.923 27.00 7 96012g1t1 0.868 0.0960 10.034 1.109 0.926 12.951 4.843 22.647 0.174 10.907 2.094 2.832 2.700 9 96012g1t1 0.928 0.070 9.819 1.087 1.005 13.004 5.286 1.747 22.415 0.164 10.848 2.198 2.683 27.09 10 96012g1t1 0.661 0.1071 9.988 0.984 0.884 12.958 4.876 1.641 2.348 0.752 1.843 2.849 2.709 11 96012g2t1 1.014 0.155 9.27 1.101 12.952 5.943 1.776 2.2749 0.140 1.042 2.819 <td>98.27</td>	98.27
6 96012g1t1 0.989 0.0959 10.252 0.997 0.673 12.968 3.008 1.855 23.718 0.144 11.474 2.103 2.923 27.00 7 96012g1t1 0.868 0.0960 10.034 1.109 0.926 12.931 4.747 1.843 22.647 0.174 10.007 2.094 2.832 27.01 8 96012g1t1 0.952 0.0966 9.839 1.003 0.936 12.951 4.835 1.774 22.455 0.164 10.648 2.198 2.668 27.09 10 96012g1t1 0.661 0.1071 9.988 0.984 0.884 12.958 4.876 1.634 23.348 0.152 1.342 2.648 2.198 2.649 2.709 11 96012g2t1 0.661 0.1071 9.988 0.984 1.091 12.981 5.722 1.945 2.042 0.132 1.041 2.649 2.049 2.041 2.649 2.649 2.649 2.649 2.649 2.649 2.649 2.649 2.649 2.649 2.649 </td <td>98.34</td>	98.34
7 96012911 0.868 0.0960 10.034 1.109 0.926 12.943 4.747 1.843 22.647 0.174 10.907 2.094 2.832 27.01 8 96012g1t1 0.952 0.0966 9.839 1.003 0.936 12.951 4.835 1.794 22.555 0.186 10.055 2.234 2.600 27.01 9 96012g1t1 0.928 0.0170 9.819 1.087 1.005 1.304 5.286 1.747 22.415 0.164 10.842 2.198 2.683 27.09 10 96012g2t1 0.661 0.1071 9.988 0.984 0.844 12.958 4.876 1.634 23.348 0.175 11.372 1.844 2.693 27.09 12 96012g2t1 0.727 0.1245 9.564 0.873 1.091 12.952 5.943 1.776 22.749 0.140 1.044 1.646 2.671 2.694 13 96012g2t1 0.772 0.1245 9.564 0.873 1.091 12.952 5.943 1.709 22.444<	98.22
8 96012g1t1 0.952 0.0966 9.839 1.003 0.936 12.951 4.835 1.794 22.595 0.186 10.955 2.234 2.690 27.01 9 96012g1t1 0.928 0.1070 9.819 1.087 1.005 13.004 5.286 1.747 22.415 0.164 10.848 2.198 2.683 27.09 10 96012g1t1 0.661 0.1071 9.989 0.984 0.298 4.876 1.634 23.348 0.175 11.372 1.884 2.849 27.09 11 96012g2t1 0.104 0.1354 9.769 1.295 1.101 12.981 5.722 1.945 2.0132 0.132 1.032 2.610 2.634 13 96012g2t1 0.727 0.1245 9.564 0.873 1.091 12.952 5.943 1.776 22.49 0.143 1.046 2.685 14 96012g2t1 0.770 0.1134 9.440 0.911 1.073 <t< td=""><td>98.25</td></t<>	98.25
9 96012g1t1 0.928 0.1070 9.819 1.087 1.005 13.004 5.286 1.747 22.415 0.164 10.848 2.198 2.683 27.09 10 96012g1t1 0.661 0.1071 9.988 0.984 0.884 12.958 4.876 1.634 23.348 0.175 11.372 1.884 2.849 27.09 11 96012g2t1 1.014 0.1354 9.769 1.295 1.101 12.952 5.943 1.776 22.749 0.140 10.944 1.646 2.671 2.604 13 96012g2t1 0.727 0.1255 0.933 1.113 12.896 6.050 1.660 22.532 0.143 11.019 1.628 2.687 14 96012g2t1 0.770 0.1134 9.440 0.911 1.073 12.884 5.570 1.648 2.3159 0.134 11.312 1.554 2.687 15 96012g2t1 0.770 0.1134 9.440 0.911	98.10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	98.40
11 960122rt1 1.014 0.1354 9.769 1.295 1.101 12.981 5.722 1.945 22.023 0.132 10.352 2.051 2.819 27.02 12 960122rt1 0.727 0.1245 9.564 0.873 1.091 12.952 5.943 1.776 22.749 0.140 10.944 1.646 2.671 26.94 13 960122rt1 0.779 0.1265 9.427 0.981 1.109 12.886 6.050 1.660 22.532 0.143 11.028 1.651 2.604 26.84 14 960122rt1 0.770 0.1134 9.440 0.911 1.073 12.886 5.570 1.648 23.159 0.134 11.312 1.554 2.658 26.87 16 960122rt1 0.770 0.1266 9.361 0.941 1.052 12.844 5.588 1.703 22.986 0.136 11.338 1.537 2.716 26.79 17 960122rt1 0.782 0.180 9.493 1.091 12.792 5.387 1.752 2.515 0.1	98.83
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	98.38
13 960/2g/t1 0.798 0.1475 9.427 0.981 1.109 12.886 6.050 1.660 22.532 0.143 11.028 1.651 2.604 26.84 14 960/2g/t1 0.792 0.1057 9.465 0.933 1.113 12.896 6.035 1.709 22.444 0.143 11.019 1.629 2.738 26.85 15 960/2g/t1 0.770 0.1134 9.440 0.911 1.073 12.885 5.570 1.648 23.159 0.134 11.312 1.554 2.678 26.87 16 960/2g/t1 0.739 0.1206 9.361 0.941 1.051 12.792 5.387 1.752 22.966 0.136 11.38 1.547 2.716 26.68 17 960/2g/t1 0.782 0.180 9.245 0.954 1.038 12.806 5.504 1.634 22.901 0.134 11.283 1.494 2.625 26.65 19 960/2g/t1 0.785 0.160 9.877 1.205 1.292 6.027 1.766 1.161 10.194	98.16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	97.87
15 96012g2t1 0.770 0.1134 9.440 0.911 1.073 12.885 5.570 1.648 23.159 0.134 11.312 1.554 2.658 26.87 16 96012g2t1 0.739 0.1206 9.361 0.941 1.052 12.844 5.588 1.703 22.986 0.136 11.338 1.537 2.716 26.79 17 96012g2t1 0.887 0.1309 9.493 1.193 1.051 12.792 5.87 1.752 22.515 0.131 11.000 1.707 2.701 26.68 18 96012g3t1 0.782 0.1180 9.245 0.954 1.038 1.671 12.660 1.634 2.901 0.134 11.283 1.494 2.625 26.65 20 96012g3t1 0.055 0.1260 9.87 1.205 1.047 12.856 5.616 1.714 21.600 0.162 10.34 2.391 2.725 2.6.85 20 96012g3t1 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 21.16	97.89
16 9602g2t1 0.739 0.1206 9.361 0.941 1.052 12.844 5.588 1.703 22.986 0.136 11.338 1.537 2.716 26.79 17 9602g2t1 0.887 0.1309 9.493 1.103 1.051 12.792 5.587 1.752 22.515 0.131 11.000 1.707 2.701 26.68 18 9602g2t1 0.782 0.180 9.245 0.954 1.038 12.806 5.504 1.634 22.901 0.134 11.283 1.494 2.625 26.65 19 9602g3t1 0.965 0.1260 9.877 1.205 1.047 12.856 5.616 1.771 21.600 0.162 10.394 2.391 2.725 26.85 20 9602g3t1 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 21.162 0.161 10.194 2.676 2.580 2.685 21 9602g3t1 1.233	98.11
17 96012g2t1 0.887 0.1309 9.493 1.051 12.792 5.387 1.752 22.515 0.131 11.000 1.707 2.701 26.68 18 96012g2t1 0.782 0.1180 9.245 0.954 1.038 12.806 5.504 1.634 22.001 0.134 11.283 1.494 2.625 26.65 19 96012g3t1 0.965 0.1260 9.877 1.205 1.047 12.86 5.616 1.771 2.1601 0.1042 2.391 2.392 2.725 2.685 20 96012g3t1 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 2.162 0.611 10.194 2.676 2.580 2.698 2.299 9.0128 1.33 1.825 2.0928 0.131 10.053 3.029 2.622 2.688 21 96012g3t1 1.230 0.1077 9.874 1.212 0.986 12.911 4.262 1.869 21.811	97.86
18 96012g2t1 0.782 0.1180 9.245 0.954 1.038 12.806 5.504 1.634 22.901 0.134 11.283 1.494 2.625 26.65 19 96012g3t1 0.965 0.1260 9.877 1.205 1.047 12.856 5.616 1.771 21.690 0.162 10.394 2.391 2.725 26.85 20 96012g3t1 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 21.162 0.161 10.194 2.676 2.580 2.6.98 21 96012g3t1 1.253 0.1226 9.662 1.193 1.170 12.918 5.338 1.825 20.928 0.131 10.053 3.029 2.622 26.88 22 96012g3t1 1.230 0.1207 9.874 1.212 0.986 12.914 4.262 1.869 21.811 0.123 10.553 2.826 2.770 26.89 23 96012g3t1 1.092	97.44
19 9602g3tl 0.965 0.1260 9.877 1.205 1.047 12.856 5.616 1.771 21.690 0.162 10.394 2.391 2.725 26.85 20 96012g3t1 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 21.162 0.161 10.194 2.676 2.580 26.98 21 96012g3t1 1.253 0.1226 9.662 1.193 1.170 12.918 5.338 1.825 20.928 0.131 10.053 3.029 2.622 26.88 22 96012g3t1 1.230 0.1077 9.874 1.212 0.986 12.914 4.262 1.869 21.811 0.123 10.553 2.826 2.770 26.89 23 96012g3t1 1.092 0.1031 9.813 1.144 10.01 1.868 21.768 0.130 10.567 2.584 2.642 2.674 24 96012g3t1 0.874 0.1113 1.011	97.18
20 9602g3tl 1.103 0.1352 9.592 1.184 1.250 12.928 6.027 1.766 21.162 0.161 10.194 2.676 2.580 26.98 21 9602g3t1 1.253 0.1226 9.662 1.193 1.170 12.918 5.338 1.825 20.928 0.131 10.053 3.029 2.622 26.88 22 9602g3t1 1.230 0.1077 9.874 1.212 0.986 12.911 4.262 1.869 21.811 0.123 10.553 2.826 2.770 26.89 23 9602g3t1 1.092 0.0131 9.813 1.144 1.030 12.832 4.728 1.868 21.768 0.130 10.553 2.826 2.740 26.89 24 9602g3t1 0.0874 0.113 1.014 1.13 0.969 12.914 4.729 1.865 22.608 0.126 11.042 2.266 2.740 26.98 25 9602g3t1 0.670	97.70
21 960/2g3rtl 1.253 0.1226 9.662 1.193 1.170 12.918 5.338 1.825 20.928 0.131 10.053 3.029 2.622 26.88 22 960/2g3rt 1.230 0.1077 9.874 1.212 0.986 12.911 4.262 1.869 21.811 0.123 10.553 2.826 2.770 26.89 23 960/2g3rt 1.092 0.1031 9.813 1.144 1.030 12.82 4.728 1.868 21.768 0.130 10.553 2.826 2.770 26.89 24 960/2g3rt 0.874 0.113 1.011 1.113 0.909 12.914 4.729 1.865 2.608 0.126 11.042 2.62 2.64 2.674 25 960/2g3rt 0.600 0.948 10.027 0.966 0.916 12.800 4.987 1.732 23.204 0.145 11.367 1.714 2.852 26.82 25 960/2g3rt 0.600 <	97.76
12 960/2g3rtl 1.230 0.1077 9.874 1.212 0.986 12.911 4.262 1.869 21.811 0.123 10.553 2.826 2.770 26.89 23 960/2g3rtl 1.092 0.1031 9.813 1.144 1.030 12.832 4.728 1.869 21.811 0.126 1.0553 2.826 2.770 26.89 24 960/2g3rtl 0.874 0.1113 10.011 1.113 0.969 12.914 4.729 1.865 22.608 0.126 11.042 2.266 2.740 26.98 25 960/2g3rt 0.600 0.0948 10.027 0.966 0.916 12.800 4.987 1.732 23.204 0.145 11.367 1.714 2.852 26.82	97.16
23 960/2g3t1 1.092 0.1031 9.813 1.144 1.030 12.832 4.728 1.868 21.768 0.130 10.567 2.584 2.621 26.74 24 960/2g3t1 0.874 0.1113 10.011 1.113 0.969 12.914 4.729 1.865 22.608 0.126 11.042 2.266 2.740 26.98 25 960/2g3t1 0.600 0.0948 10.027 0.966 0.916 12.800 4.987 1.732 23.204 0.145 11.367 1.714 2.852 26.82	97.45
24 960l2g3tl 0.874 0.1113 10.011 1.113 0.969 12.914 4.729 1.865 22.608 0.126 11.042 2.266 2.740 26.98 25 960l2g3t1 0.600 0.0948 10.027 0.966 0.916 12.800 4.987 1.732 23.204 0.145 11.367 1.714 2.852 26.82	97.05
25 96012g3t1 0.600 0.0948 10.027 0.966 0.916 12.800 4.987 1.732 23.204 0.145 11.367 1.714 2.852 26.82	98.37
25 9012g3r1 0.000 0.0940 10.027 0.900 0.910 12.000 4.907 11.92 2.5204 0.145 11.507 1.714 2.052 20.02	08.24
26 96012g3r1 0.646 0.1175 10.109 1.043 0.883 12.739 4.741 1.653 23.165 0.136 11.445 1.749 2.797 26.71	97.95
27 96012941 0.682 0.091 9.21 1.098 0.837 12.803 4.287 1.790 22.975 0.137 11.250 2.087 2.818 26.74	97.55
28 96(12)511 0.638 0.0835 9.800 1.070 0.733 12.643 4.411 1.846 22.860 0.206 11456 2.246 2.664 2660	97.30
20 9002511 0.000 0.0023 7.007 1.070 0.735 1.2007 7.41 1.070 2.2007 0.200 1.1430 2.177 2.007 2.009	97.35
30 960125t1 0.615 0.0936 9.834 1.105 0.604 12.637 4.267 1.832 23.030 0.213 11481 2.138 2.744 26.59	97.29
31 96012541 0.577 0.0826 9.667 1.013 0.642 12.425 4.358 1.658 24.295 0.262 12.622 1.133 2.71 26.43	97.94
32 9602541 0.78 0.002 7.001 1.013 0.071 12.13 4.411 1.617 2.3707 0.265 12.781 1.371 2.761 2.54	97.94
33 96012511 0.366 0.0812 9.632 0.977 0.562 12.368 4.349 1.552 24.784 0.263 12.820 0.873 2.827 26.33	97.79
34 96(1)2511 0.434 0.0742 9.933 1.078 0.577 12.365 4.350 1.680 24.340 0.297 12.407 0.882 2.800 26.33	97.66
54 500 gold 0.57 0.012 553 1.010 0.57 1.100 1.00 1.000 1.000 1.000 0.001 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.00	97.00
36 9602511 032 10004 1044 0701 1245 4394 1807 23751 0237 11745 1411 2746 2640	97.42
37 96012541 1750 01468 9460 1006 1007 12081 4610 1740 22962 0135 11455 1410 2600 2662	97.88
38 96012641 0.360 0.1561 8.431 0.610 1.373 12.450 7.041 1.240 22.957 0.283 12.872 0.287 2.407 26.47	97.00
30 96012641 0.366 0.1501 0.451 0.073 1.330 12.431 8.384 1.002 22.850 0.270 12.623 0.200 2.44 26.42	97.93
57 5000001 0.571 0.1451 0.504 0.544 1.572 12.300 8.306 1.224 22.047 0.269 12.800 0.347 2.506 2.647	97.89
1 9602001 0.571 0.1505 0.500 0.574 1.572 12.570 0.500 1.227 22.571 0.200 1.2010 0.571 2.500 2.037	97.37
42 960126611 0.343 0.1431 8.047 0.545 1.364 12.229 8.76 1.295 22.966 0.297 12.777 0.286 2.306 26.18	97.50
13 96012661 0.26 8615 0.594 1.034 12.152 6.887 1.245 24.307 0.255 1.3352 0.108 2.655 26.08	97.72
44 9602071 0.200 0.1185 9.251 0.776 1.050 1.1122 0.007 1.1242 2.100 0.23 0.1251 0.125 2.005 2.005	97.59
45 96012711 0.324 0.1288 9.178 0.832 1.077 12.057 6.529 1.489 23.600 0.221 12.685 0.315 2.707 25.87	97.06
4. 96(1)27/11 0.383 0.093 0.262 0.904 0.844 12.774 4.400 1.558 23.930 0.237 12.531 1.168 2.752 26.82	98.11
17 96012711 0473 01113 9 857 1 274 0 785 1 2696 4 952 1 779 23093 0 218 11464 1 964 2 774 2676	98.17
48 96012901 0125 00929 10.768 10.69 0524 12.403 5.276 1.907 23.472 0.420 11215 1.402 2.829 26.54	98.05
	97.25
50 960[29:1] 0.120 0.0928 11.059 1.078 0.488 12.387 5.450 1.972 23.315 0.460 11.000 1.316 2.917 26.56	98.22
51 960[291] 0.194 0.0669 10.323 1.203 0.720 12.632 5.329 1.908 22.804 0.270 10.921 1.905 2.880 26.68	97.85
52 960[29:01] 0173 01000 10394 1249 0718 12671 5357 1910 22860 0273 10864 1999 2782 2676	98.13
53 960[29:1] 0.158 0.0869 10.536 1.388 0.688 12.608 5.384 1.955 22.620 0.314 10.674 2.005 2.851 26.71	98.00
54 96012901 0.558 0.0863 9.243 1.077 1.077 12.07 5.56 1.639 23.244 0.178 11.888 1.465 2.781 26.85	98.35
55 96012901 0.513 0.0056 9.522 1110 0.077 12.737 5.404 1751 23145 0.203 11627 1.537 2.771 26.78	98.18
56 96012/01 0.793 0.0716 1.0224 1.215 0.678 12.841 3.318 1.887 22.949 0.139 11.058 2.334 2.780 26.71	97.03
57 960124041 0.541 0.051 1.023 1.141 0.647 12.730 3.480 1.878 23.203 0.231 1160 1.888 2.712 26.65	97.01
58 960124041 0.400 0.0731 10.535 1127 0.585 12.604 3.288 1.886 23.504 0.173 11.860 1.385 2.068 26.53	97.12
59 96012111 0.463 0.0873 10.632 1156 0.563 12.701 3166 1.904 23749 0.173 11.912 1.272 2.854 26.53	97.18
60 96029111 0955 01029 10125 1189 0777 12.841 3.640 1.970 2.600 0132 10.989 2.301 2.853 26.33	97.16
00 Joung 11 0.55 0.1025 10.125 11.05 0.001 12.011 3.000 1.020 2200 0.152 10.75 2.001 20.01	07.76
62 96(0)/211 1007 01741 976 0.868 1077 12736 4.472 1432 23163 0155 11572 1332 2332 265	97.70
63 96021211 1099 01225 8610 0633 1040 12657 5018 1351 24.048 0161 11577 1140 2.676 26.60	97.76
64 9609/211 1128 01430 8860 0966 1063 12688 5174 1631 23266 0143 11713 1506 2662 2600	97.55
047 2002 gran 1120 01722 0.002 0.200 1000 11200 0117 1001 25270 0170 11713 1.000 2.002 2000 65 0600 201 201 1487 01301 0585 1.088 1.136 12.744 5.201 1.872 22.427 0.131 10.501 1.792 2.762 7.627	97.63
66 960/20121 1055 01021 2000 1000 1100 10177 2001 1012 22727 0101 10021 1/00 2/02 2001	97 37
67 9600/2141 1147 01377 0131 1070 1066 12833 5.422 1773 23164 0158 1176 1.622 2670 268	98.20
68 96(0)/211 0662 01177 9588 0744 0041 12781 5477 1542 2093 010 1155 1109 274 2607	98.78
69 9602/21/1 1047 01231 9.014 0.989 1141 12.826 5.550 1656 22.779 0.170 11300 1484 2.563 26.79	97.88

Filon de leucogranite (BE12) 03°58'14" - 44°36'26"

NUM	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	1.975	0.1720	9.514	1.257	1.156	12.931	4.733	2.106	22.476	0.114	10.318	1.999	2.781	26.98	98.53
2	2.778	0.2245	8.229	1.006	1.516	12.859	6.169	1.842	21.804	0.148	9.968	1.942	2.556	26.86	97.92
3	2.838	0.2180	8.300	1.092	1.534	12.876	6.121	1.898	21.754	0.153	9.800	2.094	2.659	26.95	98.30
4	2.474	0.1782	8.349	0.953	1.455	12.883	6.104	1.809	22.191	0.141	10.051	1.876	2.707	26.90	98.09
5	1.229	0.1618	6.781	0.571	1.250	12.580	7.669	1.162	23.774	0.302	13.220	1.113	2.406	26.79	99.02
6	0.785	0.0608	9.390	1.105	0.294	12.767	1.233	2.042	25.928	0.175	12.348	2.012	3.085	26.78	98.03
7	0.902	0.0427	9.975	1.225	0.260	12.782	0.799	2.204	25.717	0.158	11.658	2.222	2.856	26.73	97.55
8	0.860	0.0433	10.070	1.412	0.246	12.866	0.469	2.285	25.740	0.142	11.608	2.265	3.138	26.88	98.04
9	0.765	0.0505	10.151	1.278	0.351	12.843	0.484	2.193	26.146	0.166	12.038	1.745	3.103	26.88	98.21
10	2.048	0.1522	9.381	1.221	1.203	12.829	4.900	2.076	22.105	0.138	10.041	2.074	2.784	26.80	97.78
11	2.879	0.2395	8.202	1.068	1.555	12.847	6.353	1.890	21.523	0.160	9.705	2.142	2.695	26.91	98.19
12	2.845	0.2104	8.263	1.045	1.561	12.882	6.287	1.904	21.615	0.142	9.758	2.157	2.611	26.94	98.24
13	2.786	0.2109	8.429	1.047	1.548	12.864	6.219	1.893	21.583	0.138	9.686	2.105	2.642	26.89	98.06
14	2.778	0.2084	8.178	0.974	1.516	12.867	6.271	1.850	21.751	0.154	9.795	2.060	2.646	26.88	97.95
15	2.901	0.2268	8.246	0.994	1.551	12.859	6.361	1.852	21.578	0.148	9.680	2.114	2.561	26.87	97.97
16	2.801	0.2158	8.421	1.039	1.492	12.933	6.002	1.886	21.860	0.140	9.894	2.014	2.680	26.99	98.39
17	2.644	0.2092	8.568	0.963	1.511	12.995	6.388	1.895	22.026	0.143	9.823	1.976	2.646	27.13	98.94
18	2.543	0.2051	8.414	0.917	1.490	13.024	6.289	1.782	22.176	0.153	10.046	1.887	2.682	27.14	98.77
19	3.353	0.2392	7.650	0.684	1.517	13.104	5.545	1.427	22.940	0.127	10.957	1.874	2.489	27.26	99.19
20	2.868	0.2035	7.362	0.781	1.431	13.056	5.678	1.452	23.241	0.191	11.338	1.746	2.620	27.27	99.25
21	3.247	0.2213	7.506	0.811	1.540	13.127	5.634	1.516	22.932	0.125	11.067	1.869	2.618	27.35	99.58
22	3.057	0.2048	7.983	0.840	1.494	13.115	5.706	1.654	22.837	0.130	10.603	1.920	2.599	27.32	99.48
23	2.267	0.1954	8.534	0.901	1.372	13.045	5.806	1.820	22.850	0.194	10.162	1.854	2.636	27.20	98.86
24	0.489	0.0878	9.750	0.885	0.768	12.795	4.534	1.804	24.233	0.162	11.916	1.417	2.846	26.83	98.54
25	0.261	0.0609	10.332	0.970	0.462	12.623	3.878	2.021	24.960	0.315	11.997	1.210	2.930	26.78	98.81
26	0.745	0.0888	9.687	0.990	0.849	12.796	4.733	1.828	24.072	0.179	11.713	1.419	2.874	26.90	98.89
27	1.041	0.0991	9.375	1.167	0.988	12.764	4.760	1.847	23.015	0.200	11.094	1.783	2.742	26.75	97.64
28	0.999	0.1104	9.476	1.209	0.961	12.933	4.623	1.853	23.279	0.104	11.232	1.760	2.811	26.92	98.29
29	1.237	0.1198	9.503	1.078	1.028	12.824	4.699	1.868	22.950	0.146	10.952	1.815	2.809	26.80	97.84
30	1.223	0.1242	9.421	1.023	0.905	12.696	5.146	1.854	23.662	0.257	11.199	1.473	2.896	26.83	98.73
31	1.999	0.1832	8.485	1.057	1.810	12.864	5.192	1.781	22.368	0.180	10.587	1.880	2.689	27.02	98.12
32	1.955	0.1549	8.932	1.082	1.158	12.732	5.000	1.877	22.188	0.534	10.317	1.802	2.703	26.96	97.41

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	956l5g1t1	6.861	0.3572	8.434	1.281	1.910	12.846	3.968	2.103	19.375	0.155	8.895	2.178	2.410	26.82	97.61
2	956l5g1t1	1.400	0.1415	9.491	1.319	0.685	12.555	4.609	2.069	23.016	0.336	11.122	1.944	2.901	26.70	98.31
3	956l5g1t1	3.970	0.2489	9.001	1.247	1.422	13.003	3.954	2.083	21.430	0.125	10.045	2.001	2.616	27.01	98.18
4	956l5g1t1	3.003	0.2088	9.405	1.318	1.206	12.952	3.801	2.141	22.011	0.088	10.280	1.912	2.770	26.89	98.01
5	956l5g1t1	2.748	0.1568	9.561	1.330	1.141	12.957	3.684	2.302	22.025	0.094	10.139	1.920	2.729	26.85	97.66
6	956l5g1t1	3.982	0.2488	9.016	1.311	1.435	13.049	4.031	2.096	21.228	0.122	9.925	2.015	2.621	27.05	98.15
7	956l5g1t1	3.686	0.2263	9.266	1.468	1.388	12.904	4.108	2.216	21.097	0.101	9.641	2.070	2.605	26.82	97.61
8	956l5g1t1	3.852	0.2336	9.315	1.287	1.396	12.954	4.059	2.186	21.244	0.097	9.711	2.031	2.562	26.89	97.84
9	956l5g1t1	4.562	0.2405	9.043	1.211	1.522	13.017	4.072	2.166	20.777	0.103	9.693	2.042	2.638	27.00	98.11
10	956l5g1t1	4.338	0.2590	8.708	1.096	1.449	12.879	3.999	1.900	21.053	0.381	9.917	1.997	2.556	27.01	97.56
11	956l5g1t2	2.927	0.1883	9.578	1.312	1.172	13.113	3.846	2.278	21.971	0.148	10.066	1.970	2.686	27.16	98.43
12	956l5g1t2	4.129	0.2296	9.014	1.259	1.416	13.043	4.000	2.029	21.470	0.110	9.962	1.940	2.604	27.04	98.27
13	956l5g1t2	2.590	0.1965	9.441	1.105	1.158	13.086	4.237	2.068	22.569	0.099	10.526	1.743	2.669	27.10	98.61
14	956l5g1t2	3.727	0.2155	9.323	1.201	1.327	13.073	3.974	2.167	21.519	0.097	9.903	1.948	2.714	27.05	98.26
15	956l5g1t2	4.349	0.2234	9.126	1.219	1.471	13.096	4.045	2.176	21.077	0.106	9.727	2.055	2.599	27.12	98.41
16	956l5g1t2	5.296	0.2894	8.836	1.195	1.636	13.087	4.156	1.973	20.489	0.123	9.613	2.055	2.510	27.12	98.40
17	956l5g1t2	3.263	0.1831	9.436	1.311	1.222	13.079	3.850	2.122	22.021	0.094	10.197	1.886	2.693	27.08	98.45
18	956l5g1t2	3.257	0.1980	9.331	1.304	1.234	13.096	3.831	2.226	21.925	0.131	10.054	1.898	2.594	27.09	98.19
19	956l5g1t2	3.601	0.2120	9.523	1.504	1.293	13.074	3.729	2.453	21.204	0.094	9.614	1.995	2.685	27.02	98.02
20	956l5g1t2	5.220	0.2704	9.397	1.507	1.519	13.025	3.477	2.467	20.368	0.153	8.955	2.060	2.513	27.01	97.96
21	956l5g3t1	3.717	0.2322	9.451	1.353	1.511	13.038	5.145	2.372	20.851	0.118	9.088	1.975	2.607	27.08	98.56
22	956l5g3t1	3.571	0.2001	9.589	1.466	1.293	13.050	4.005	2.420	21.287	0.099	9.521	1.882	2.656	26.99	98.05
23	956l5g3t1	3.905	0.2216	9.384	1.462	1.301	13.038	3.640	2.278	21.599	0.083	9.820	1.939	2.594	27.01	98.29
24	956l5g3t1	3.177	0.2052	9.393	1.333	1.243	13.034	3.868	2.174	21.969	0.093	10.082	1.972	2.658	27.01	98.23
25	956l5g3t1	3.283	0.1884	9.246	1.249	1.303	13.027	4.220	2.012	21.852	0.088	10.130	1.953	2.715	27.01	98.30
26	956l5g3t1	3.703	0.2176	9.094	1.236	1.352	13.003	4.036	1.990	21.745	0.087	10.216	1.931	2.666	26.99	98.28
27	956l5g3t1	2.736	0.1822	9.487	1.204	1.175	13.035	3.972	2.086	22.325	0.089	10.348	1.873	2.621	26.99	98.14
28	956l5g3t1	2.552	0.1757	9.243	1.158	1.175	13.005	4.239	1.908	22.645	0.086	10.693	1.830	2.614	26.99	98.33
29	956l5g3t1	2.868	0.1663	9.322	1.313	1.177	12.980	3.821	2.086	22.377	0.081	10.493	1.865	2.841	26.97	98.38
30	956l5g3t1	3.672	0.2397	9.185	1.140	1.326	12.965	3.992	2.052	21.761	0.127	10.157	1.925	2.669	26.97	98.20
31	956l5g4t1	4.314	0.2371	9.333	1.461	1.383	13.027	3.411	2.270	21.241	0.107	9.812	1.882	2.669	27.00	98.17
32	956l5g4t1	5.353	0.2826	9.230	1.563	1.520	13.012	3.316	2.393	20.326	0.131	9.166	1.938	2.641	26.95	97.84
33	956l5g4t1	3.811	0.2248	9.924	1.719	1.423	13.057	4.162	2.677	20.562	0.093	8.747	2.012	2.690	27.02	98.14
34	956l5g4t1	4.886	0.2803	9.460	1.679	1.459	13.010	3.333	2.601	20.350	0.089	8.993	2.062	2.611	26.91	97.74
35	956l5g4t1	1.938	0.1497	9.530	1.213	0.842	12.793	3.869	2.054	23.206	0.244	11.217	1.729	2.743	26.89	98.43
36	956l5g4t1	2.908	0.1650	9.510	1.321	1.125	13.018	3.542	2.149	22.436	0.093	10.552	1.895	2.784	27.04	98.55
37	956l5g4t1	0.251	0.0702	9.391	0.829	0.381	12.487	4.777	1.773	24.689	0.422	12.456	1.579	2.927	26.73	98.78
38	956l5g4t1	1.695	0.1100	10.168	1.133	0.844	12.971	3.222	2.066	23.437	0.090	10.966	1.792	2.955	26.96	98.43
39	956l5g4t1	3.256	0.1944	9.428	1.288	1.196	13.006	3.560	2.124	22.053	0.088	10.357	1.957	2.720	26.98	98.23
40	956l5g6t1	3.713	0.2348	9.503	1.519	1.281	12.884	3.494	2.421	21.184	0.121	9.689	1.912	2.700	26.77	97.44
41	956l5g6t1	3.123	0.2112	9.231	1.194	1.216	12.920	3.719	2.081	22.137	0.109	10.386	1.871	2.707	26.85	97.77
42	956l5g6t1	2.798	0.1844	9.318	1.312	1.223	12.862	4.087	2.159	22.129	0.105	10.193	1.852	2.731	26.78	97.76
43	956l5g6t1	2.958	0.1946	9.524	1.321	1.159	12.868	3.605	2.254	22.085	0.091	10.234	1.837	2.685	26.74	97.58
44	956l5g6t1	2.857	0.1719	9.302	1.139	1.143	12.914	3.612	2.039	22.628	0.101	10.728	1.807	2.696	26.87	98.02
45	956l5g6t1	2.057	0.1295	9.498	1.125	1.047	12.919	3.839	1.997	23.116	0.099	10.647	1.850	2.763	26.87	97.98
46	956l5g6t1	2.174	0.1553	9.502	1.209	1.075	12.939	4.026	2.054	22.771	0.096	10.679	1.870	2.691	26.91	98.17
47	956l5g6t1	2.279	0.1536	9.201	1.079	1.098	13.003	3.961	1.996	22.938	0.095	10.859	1.834	2.760	26.99	98.26
48	956l5g6t1	3.047	0.1837	9.297	1.105	1.180	13.041	3.710	2.033	22.496	0.084	10.635	1.830	2.694	27.03	98.38
49	956l5g6t1	4.906	0.2709	9.459	1.642	1.658	13.095	4.155	2.4//	19.504	0.110	8.532	2.104	2.631	27.00	97.57
50	956l5g7t1	3.098	0.1743	9.497	1.211	1.149	13.136	3.499	2.056	22.558	0.136	10.586	1.867	2.948	27.28	99.22
51	956l5g7t1	3.878	0.2249	9.299	1.085	1.250	13.090	3.344	1.990	22.318	0.095	10.541	1.807	2.676	27.13	98.75
52	956l5g7t1	3.206	0.1939	9.504	1.133	1.181	13.106	3.411	1.967	22.601	0.093	10.662	1.906	2.798	27.19	98.97
53	956l5g7t1	3.472	0.1995	9.435	1.248	1.191	13.049	3.305	1.989	22.564	0.087	10.404	1.848	2.739	27.07	98.62
54	95615g7t1	4.169	0.2290	9.547	1.153	1.265	13.077	3.181	2.102	22.126	0.098	10.144	1.893	2.726	27.14	98.87
55	95615g/t1	4.097	0.2222	9.329	1.180	1.310	13.090	3.339	2.071	21.956	0.103	10.104	1.9/5	2.664	27.13	98.59
50	95615g/t1	3.495	0.1945	9.356	1.134	1.222	13.112	3.438	2.031	22.252	0.087	10.403	1.949	2./14	27.13	98.54
5/	95615g/t1	5.225	0.1780	9.512	1.204	1.169	13.082	3.431	2.093	22.443	0.089	10.400	1.896	2.734	27.10	98.58
58	95615g/t1	5.881	0.2992	8.918	1.324	1.676	13.079	3./50	2.160	20.573	0.127	9.314	1.977	2.528	27.10	98.80
59	95615g/t1	4.1/2	0.2547	9.338	1.545	1.630	13.091	5.266	2.583	20.004	0.110	8.530	2.030	2.609	27.08	98.27
60	95015g8t1	4.842	0.2593	9.534	1.550	1.489	13.089	3.583	2.004	20.478	0.090	8./93	1.900	2./33	27.04	98.13
61	95615g8t1	4.785	0.2618	9.081	1.499	1.498	12.059	2.007	2.592	20.015	0.107	8.814	2.010	2.692	27.04	98.20
62	95615g8t1	4.885	0.2438	0.700	1.094	1.458	12.050	2.797	2.930	20.085	0.085	8.405	2.019	2.770	26.99	98.08
6.5	95615g8t1	2.921	0.1901	9.798	1.301	1.1//	12.005	3.785	2.244	21.8/7	0.095	9.984	1.988	2./55	27.05	98.22
64	95615g8t1	3.255	0.1981	9.391	1.242	1.314	12.080	4.217	2.125	21.827	0.091	10.001	1.985	2.809	27.15	98.69
05	95615g8t1	2.935	0.1792	9.538	1.296	1.180	13.077	3.790	2.262	22.148	0.105	10.078	1.9/1	2.785	27.10	98.47
66	95615g8t1	4.921	0.2631	10.183	1.8/2	1.499	13.000	3.224	2.950	19.967	0.147	8.482	1.883	2.762	26.99	98.17
607	95015g8t1	1.900	0.1662	0.022	1.339	4 070	14 510	4.070	2.947	10.960	0.104	9.101	1.076	2.070	20.95	20.30
60	95015g8t1	1.030 E 741	0.1003	9.933	1.400	4.070	12.972	4.070 5.096	1.027	20.001	0.409	0.241	1.051	2.005	29.90	07.62
09	95615g8t2	5./41	0.3272	8.001	1.019	1.889	12.872	5.080	1.857	20.091	0.096	9.541	1.9/8	2.480	26.79	97.05
70	95615-e+2	0.031 A 657	0.2608	8 227	1.090	2.130	12.979	5.282	1.790	20.460	0.117	0.277	2.11/	2.3/1	20.99	90.08 07.57
71	95015g8t2	4.037	0.2009	0.337	1.115	2.022	12.002	5.206	1.970	20.400	0.117	9.420	2.010	2.329	20.01	97.37
72	20010g8t2	5.721	0.3310	1.0/ð 8.002	1.129	1.023	12.912	5.400	1.809	19.920	0.110	9.330	1.997	2.409	20.91	97.98
73	95615-e+2	5.382	0.3250	8.002	1.082	1.000	12.695	5.150	1.839	20.272	0.110	9.303	1.992	2.450	20.89	20.13
75	95615ce+2	J.411 4 200	0.3381	7 021	1.1.38	1.218	12.022	J.400 7 972	1.000	20.214	0.100	9.558	1.200	2.30/	27.08	20.00 08.17
76	05615-0-2	5 5 2 1	0.2172	0.731 0.145	1 102	1.023	12.344	5 102	1./01	20.034	0.112	0.404	1.702	2.390	20.01	08.24
70	95615-e+2	5.521	0.31/2	0.145 8.025	1.102	1.001	12.950	5.195	1.855	20.270	0.112	9.400	2.002	2.320	20.90	20.24 07.94
78	956]5a8+2	0.459	0.2919	7 364	0.804	0.627	10.062	13.767	1 442	20.009	1 381	10.840	1.850	2.399	25.00	08.22
79	95615g8t2	5 754	0 3133	8 11 2	1.058	1.980	12 881	5 357	1.442	19.842	0.117	9 227	2 064	2.521	26.88	97.97
80	95615g8t2	5.810	0.3577	7 796	1 180	2 074	13.013	5 504	1 780	19.810	0.100	9 1 3 0	2.004	2.510	27.02	98.16
81	956]5a8+2	0.472	0.2453	7 222	0.752	0.545	10.669	15 245	1 361	20.037	1.602	10.679	1 562	2.400	25.62	98.29
82	9561508+2	5.640	0 3008	8 101	1 180	1 866	12 904	5.031	1 804	20.079	0.090	9 417	2.015	2 448	26.83	97.74
83	95615g8t2	4 798	0.2868	8 4 4 9	1.157	1 743	12.904	5 1 4 2	1 016	20.075	0.090	0.317	2.015	2.770	26.80	97.48
84	956]5a8+2	0.466	0 2284	7 249	0.873	0.635	11 035	13 410	1 425	20.331	1 347	10.852	1 854	2.355	25.79	97.50
85	956]5g8t2	0.477	0.2211	7.331	0.937	0.627	10.997	13.890	1.464	20.337	1.367	10.826	1.883	2.384	25.87	98.63

Filon de leucogranite	(BE15_néofor_grain_5)

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	956l5g5t3	3.709	0.2258	8.492	1.245	1.358	13.620	4.178	2.135	22.796	0.190	9.070	1.913	2.731	28.18	99.86
2	95615g5t3	4.020	0.2418	8.290	1.211	1.462	13.545	4.519	2.172	21.771	0.582	9.057	2.012	2.736	28.42	100.06
3	95615g5t3	4.390	0.2438	8.026	1.248	1.527	13.522	4.505	2.076	21.694	0.504	9.013	2.013	2.703	28.32	99.80
4	95615g5t3	4.796	0.2756	8.007	1.208	1.710	13.498	5.222	1.976	21.027	0.410	9.036	2.036	2.608	28.16	99.99
5	95615g5t3	1.226	0.1437	8.037	0.869	0.823	12.817	6.872	1.615	24.044	0.733	11.637	1.429	2.552	27.72	100.53
6	95615g5t3	2.228	0.1800	7.928	0.869	1.158	13.013	6.714	1.577	23.530	0.504	12.214	1.497	2.522	27.76	101.71
7	95615g5t3	5.980	0.3272	7.758	0.938	1.945	13.447	5.406	1.709	20.810	0.239	10.025	1.875	2.477	27.92	100.88
8	95615g5t3	5.619	0.3138	8.035	1.036	1.820	13.421	5.151	1.619	21.290	0.195	10.264	1.819	2.549	27.87	101.02
9	95615g5t3	5.843	0.3168	8.058	0.993	1.902	13.333	5.289	1.718	20.803	0.380	9.858	1.916	2.342	27.90	100.67
10	95615g5t3	5.789	0.3281	7.988	1.057	1.850	13.239	5.156	1.736	20.881	0.454	9.870	1.883	2.392	27.83	100.47
11	95615g5t3	5.663	0.3304	8.044	1.032	1.829	13.296	5.057	1.727	21.223	0.212	10.089	1.859	2.558	27.71	100.65
12	95615g5t3	5.491	0.3126	7.943	1.058	1.793	13.170	5.062	1.693	21.137	0.420	10.052	1.832	2.427	27.68	100.09
13	95615g5t3	5.758	0.3390	7.945	0.966	1.867	13.176	5.260	1.799	21.035	0.188	9.995	1.893	2.446	27.51	100.20
14	95615g5t3	5.905	0.3335	7.961	1.058	1.898	13.128	5.327	1.734	20.855	0.231	9.760	1.945	2.462	27.50	100.11
15	95615g5t3	5.882	0.3448	7.985	1.039	1.910	13.046	5.246	1.734	20.751	0.218	9.797	1.915	2.384	27.33	99.60
16	95615g5t3	5.853	0.3165	7.985	0.998	1.899	13.019	5.279	1.722	20.736	0.262	9.787	1.942	2.473	27.35	99.64
17	95615g5t3	4.325	0.2695	7.785	0.864	1.698	12.872	6.068	1.612	21.621	0.368	10.858	1.645	2.377	27.27	99.65
18	95615g5t3	5.526	0.3182	7.946	1.023	1.917	12.924	5.727	1.686	20.677	0.299	9.806	1.875	2.429	27.26	99.43
19	956l5g5t3	3.335	0.2155	9.172	1.117	1.488	12.952	5.406	1.951	21.973	0.300	9.734	1.745	2.641	27.25	99.29
20	956l5g5t3	3.865	0.2368	9.139	1.254	1.549	12.864	5.213	2.123	21.445	0.275	9.388	1.915	2.566	27.10	98.95
21	95615g5t4	4.885	0.2948	7.775	0.941	1.992	12.823	6.933	1.759	20.397	0.390	9.655	1.812	2.340	27.20	99.22
22	95615g5t4	4.002	0.3300	7.480	1.057	1.703	12.017	10.001	1.709	20.007	0.627	9.687	1.799	2.321	26.52	99.27
23	956l5g5t4	5.859	0.3225	8.065	1.179	1.934	13.546	5.363	1.858	20.371	0.211	9.571	2.041	2.454	27.99	100.78
24	956l5g5t4	5.799	0.3260	8.172	1.128	1.877	13.518	5.082	1.816	20.672	0.397	9.607	1.996	2.385	28.13	100.93
25	956l5g5t4	5.800	0.3212	8.241	1.135	1.849	13.480	5.107	1.768	20.808	0.422	9.682	1.973	2.458	28.15	101.21
26	956l5g5t4	5.912	0.3599	8.002	1.118	1.871	13.533	5.101	1.809	20.736	0.337	9.700	2.007	2.503	28.12	101.13
27	956l5g5t4	5.833	0.3319	8.156	1.095	1.876	13.577	5.065	1.821	20.706	0.363	9.745	2.006	2.523	28.22	101.34
28	956l5g5t4	5.964	0.3338	8.213	1.128	1.875	13.521	5.148	1.809	20.829	0.407	9.807	2.017	2.461	28.26	101.80
29	95615g5t4	5.851	0.3267	8.291	1.077	1.849	13.516	4.937	1.795	20.637	0.262	9.701	2.030	2.489	28.00	100.78
30	956l5g5t5	4.931	0.3285	7.642	0.988	1.946	13.567	6.591	1.587	21.008	0.201	10.321	1.846	2.277	28.07	101.32
31	956l5g5t5	4.460	0.2987	7.726	0.943	1.871	13.545	6.580	1.713	21.085	0.269	10.328	1.826	2.384	28.07	101.12
32	956l5g5t5	4.085	0.2850	7.574	0.987	1.935	13.572	7.081	1.629	20.920	0.286	10.539	1.793	2.365	28.14	101.20
33	956l5g5t5	4.039	0.2581	7.573	1.045	1.888	13.532	7.120	1.505	21.149	0.318	10.569	1.781	2.379	28.13	101.30
34	956l5g5t5	4.446	0.3176	7.185	1.158	1.721	13.261	7.414	1.783	20.390	0.509	8.619	2.031	2.488	27.99	99.33
35	956l5g5t5	5.301	0.3191	7.209	1.185	1.923	13.594	5.856	1.963	20.335	0.209	8.457	2.083	2.466	28.07	98.99
36	956l5g5t1	5.411	0.3381	8.092	1.138	1.918	13.022	5.488	1.805	20.214	0.106	9.558	1.986	2.387	27.08	98.56
37	956l5g5t1	5.810	0.3577	7.796	1.189	2.074	13.013	5.594	1.789	19.819	0.100	9.139	2.028	2.408	27.02	98.16
38	956l5g5t1	6.031	0.3808	7.807	1.090	2.130	12.979	5.982	1.796	19.299	0.110	8.977	2.117	2.371	26.99	98.08
39	956l5g5t1	4.388	0.3021	7.931	0.999	1.623	12.344	7.873	1.701	20.034	0.518	9.642	1.789	2.390	26.61	98.16
40	956l5g5t1	5.682	0.3419	8.025	1.181	1.912	12.891	5.194	1.816	20.089	0.111	9.326	2.003	2.399	26.85	97.84
41	956l5g5t1	5.640	0.3098	8.101	1.180	1.866	12.904	5.031	1.804	20.079	0.090	9.417	2.015	2.448	26.83	97.74
42	956l5g5t1	5.741	0.3272	8.061	1.019	1.889	12.872	5.086	1.837	20.091	0.096	9.341	1.978	2.480	26.79	97.63
43	956l5g5t1	4.798	0.2868	8.449	1.157	1.743	12.903	5.142	1.916	20.301	0.096	9.317	2.020	2.533	26.80	97.48

Filon de leucogranite (BE15_béritage_grain_5)

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	95615g5t4	0.416	0.2716	6.856	0.684	0.453	9.915	18.065	1.276	20.227	2.115	10.428	1.242	2.295	25.40	99.66
2	95615g5t4	0.414	0.2797	6.933	0.807	0.452	10.006	17.493	1.309	20.222	2.137	10.533	1.225	2.293	25.52	99.63
3	95615g5t4	0.423	0.2865	6.927	0.762	0.445	9.901	18.023	1.283	20.010	2.141	10.397	1.247	2.165	25.37	99.39
4	95615g5t4	0.386	0.2611	7.012	0.679	0.492	10.301	16.472	1.312	20.311	1.994	10.635	1.382	2.208	25.66	99.12
5	95615g5t4	0.423	0.2623	7.122	0.890	0.533	10.594	15.101	1.365	20.564	1.944	10.818	1.569	2.260	26.01	99.47
6	95615g5t4	0.434	0.2562	7.154	0.850	0.549	10.623	15.225	1.279	20.482	1.923	10.867	1.572	2.235	26.02	99.49
7	95615g5t4	0.453	0.2529	7.180	0.853	0.533	10.693	15.159	1.433	20.697	1.852	10.853	1.605	2.306	26.10	99.99
8	95615g5t4	0.418	0.2353	7.034	0.782	0.513	10.269	14.562	1.334	19.994	3.164	10.680	1.470	2.198	26.70	99.37
9	95615g5t4	0.437	0.2525	7.262	0.894	0.540	10.740	15.161	1.417	20.600	1.900	10.866	1.545	2.274	26.20	100.10
10	95615g5t4	0.446	0.2722	7.302	0.790	0.530	10.782	15.032	1.385	20.564	1.870	10,969	1.577	2.264	26.21	100.00
11	95615g5t4	0.417	0.2623	7.144	0.822	0.557	10.787	14.885	1.429	20.715	2.185	10.993	1.569	2.271	26.57	100.62
12	95615g5t4	0.428	0.2500	7.211	0.817	0.537	10.785	15.479	1.400	20.768	1.906	10.961	1.596	2.366	26.36	100.88
13	95615g5t4	0.437	0.2509	7 206	0.856	0.524	10.853	14.952	1 388	20.800	1.947	11.062	1.609	2 362	26.45	100.00
14	95615g5t4	0.447	0.2340	7.336	0.829	0.566	11 117	13.967	1.300	21.063	1.765	11.002	1.694	2 373	26.58	100.71
15	95615g5t4	0.418	0.2158	7 280	0.882	0.637	11.256	13 265	1 405	20.984	1.974	11.052	1 715	2 300	26.70	100.00
16	95615g5t4	0.428	0.2156	7 384	0.880	0.656	11.250	13 315	1.472	21.102	1.0/4	11.032	1.715	2.356	26.83	100.20
17	95015g5t4	0.420	0.2004	7.304	0.880	0.050	11.303	12.207	1.442	21.172	1.717	11.140	1.737	2.330	20.05	100.71
10	95015g5t4	0.420	0.2020	7.405	0.047	0.630	11.300	13.397	1.445	21.204	1.54/	11.201	1.755	2.341	26.70	100.05
18	95615g5t4	0.457	0.2128	7.500	0.956	0.611	11.348	13.540	1.485	21.111	1.606	11.155	1.017	2.559	26.70	100.05
19	95615g5t4	0.465	0.2556	7.341	0.820	0.000	11.305	13.639	1.454	21.085	1.088	11.181	1.855	2.237	20.80	100.77
20	95615g5t4	0.441	0.2146	7.274	0.882	0.624	11.343	15.82/	1.439	21.061	1.568	11.090	1.855	2.268	26.65	100.55
21	95615g5t4	0.455	0.241/	7.328	0.930	0.607	11.38/	13.691	1.4/5	20.974	1./14	11.105	1.830	2.376	26.87	101.01
22	956l5g5t4	0.270	0.1397	7.851	0.851	0.610	12.394	8.493	1.513	23.992	0.915	12.744	1.327	2.623	27.30	101.04
23	956l5g5t4	0.174	0.1135	8.010	0.787	0.574	12.771	6.316	1.386	25.255	0.735	13.758	1.145	2.588	27.59	101.21
24	956l5g5t4	0.218	0.1176	7.999	0.895	0.603	12.634	7.633	1.398	24.709	0.857	13.246	1.233	2.572	27.61	101.73
25	956l5g5t4	0.189	0.1045	8.063	0.824	0.613	12.692	6.720	1.460	25.183	0.762	13.485	1.248	2.636	27.59	101.58
26	956l5g5t4	0.452	0.2507	7.365	0.949	0.601	11.398	13.874	1.439	20.887	1.617	11.101	1.823	2.313	26.78	100.87
27	95615g5t4	0.436	0.3080	7.017	0.752	0.454	10.479	17.750	1.372	20.258	2.217	10.620	1.295	2.361	26.33	101.66
28	95615g5t4	0.418	0.3160	7.034	0.807	0.469	10.403	17.849	1.305	20.020	2.360	10.519	1.295	2.237	26.33	101.38
29	95615g5t4	0.411	0.2586	7.382	0.781	0.462	10.904	15.603	1.423	20.988	2.028	11.077	1.333	2.344	26.65	101.65
30	95615g5t5	0.397	0.2783	7.018	0.770	0.476	10.647	16.738	1.347	20.380	2.126	10.782	1.267	2.284	26.33	100.85
31	95615g5t5	0.413	0.2827	6.899	0.695	0.506	10.628	17.416	1.357	20.320	2.157	10.716	1.228	2.126	26.36	101.12
32	95615g5t5	0.424	0.2911	7.059	0.741	0.465	10.670	17.172	1.331	20.402	2.098	10.721	1.283	2.377	26.40	101.45
33	95615g5t5	0.395	0.2804	7.146	0.700	0.468	10.688	16.988	1.274	20.367	2.057	10.887	1.254	2.260	26.34	101.12
34	95615g5t5	0.401	0.2845	7.067	0.704	0.449	10.627	16.912	1.295	20.527	2.127	10.890	1.245	2.312	26.35	101.21
35	95615g5t5	0.379	0.2896	7.110	0.772	0.442	10.616	16.911	1.347	20.505	2.197	10.734	1.238	2.402	26.42	101.38
36	95615g5t5	0.425	0.2746	7.047	0.816	0.440	10.534	17.360	1.308	20.057	2.479	10.616	1.235	2.204	26.56	101.37
37	95615g5t5	0.422	0.3088	7.123	0.677	0.457	10.626	17.315	1.306	20.293	2.245	10.725	1.218	2.213	26.46	101.40
38	95615g5t5	0.443	0.2562	6.906	0.802	0.444	10.369	17.186	1.351	19.866	2.772	10.587	1.179	2.306	26.61	101.08
39	95615g5t5	0.416	0.2867	7.200	0.867	0.446	10.629	17.362	1.332	20.299	2.138	10.702	1.228	2.347	26.41	101.68
40	95615g5t5	0.474	0.3058	6.962	0.709	0.460	10.378	18.349	1.275	19.838	2.327	10.537	1.222	2.216	26.25	101.32
41	95615g5t5	0.460	0.2943	6.873	0.662	0.452	10.355	18.913	1.335	19.801	2.286	10.561	1.165	2.333	26.24	101.74
42	95615g5t5	0.351	0.1903	7.584	0.913	0.517	11.985	10.999	1.516	22.342	1.404	12.195	1.664	2.374	27.29	101.34
43	95615g5t5	0.270	0.1493	7.680	0.891	0.444	12.447	8.252	1.441	23.612	1.172	13.705	1.665	2.457	27.70	101.90
44	95615g5t5	0.259	0.1370	6.649	0.883	0.479	12.416	8.461	1.488	23.447	1.353	12,585	1.697	2.476	27.87	100.21
45	95615g5t5	0.284	0.1519	6.662	0.844	0.517	12.389	8.803	1.532	23.267	1.257	12.319	1.803	2.437	27.74	100.02
46	95615g5t5	0.297	0.1556	6 588	0.927	0.532	12 352	9 204	1 461	23 227	1.071	12 162	1.831	2 483	27.51	99.82
40	95615g5t5	0.269	0.1730	6 564	0.868	0.524	12.352	9.155	1.357	23 171	1.074	12.102	1 795	2.405	27.51	99.32
48	95615g5t5	0.313	0.1602	6 561	0.964	0.524	12.302	0.140	1.357	23.322	0.957	12.100	1.790	2.440	27.47	00.80
40	95615g5t5	0.286	0.1653	6.611	0.904	0.521	12.400	8.010	1.400	23.322	1 387	12.307	1.767	2.400	27.90	100.33
50	05615g5t5	0.200	0.1663	6.612	0.915	0.555	12.400	0.122	1.501	23.231	1.307	12.277	1.762	2.410	27.50	00.86
50	95015g5t5	0.270	0.1005	6.540	0.000	0.520	12.397	9.132	1.300	23.145	1.214	12.215	1.703	2.304	27.07	00.36
50	95015g5t5	0.200	0.1505	6.504	0.850	0.527	12.320	9.104	1.999	23.319	1.021	12.295	1.740	2.371	27.30	99.30 400.45
52	95615g5t5	0.296	0.1565	6.504	0.897	0.548	12.579	9.145	1.501	23.322	1.1/5	12.358	1.745	2.450	27.07	100.15
55	95615g5t5	0.296	0.1545	6.506	0.808	0.529	12.404	9.020	1.405	25.100	0.954	12.185	1.708	2.419	27.50	99.11
54	95615g5t5	0.297	0.1408	6.539	0.920	0.541	12.320	9.327	1.450	23.108	0.996	12.059	1./15	2.448	27.52	99.17
55	95615g5t5	0.265	0.2021	6.824	0.950	0.524	11.888	11.699	1.466	22.507	1.324	11.109	1.48/	2.505	27.19	99.96
56	95615g5t5	0.434	0.3000	5.936	0.798	0.445	10.465	18.161	1.315	20.147	2.3/1	9.812	1.199	2.257	26.49	100.14
57	956l5g5t5	0.420	0.2827	5.962	0.695	0.455	10.565	17.562	1.421	20.186	2.366	9.801	1.232	2.343	26.57	99.87
58	956l5g5t5	0.555	0.2918	5.946	0.788	0.672	10.096	16.848	1.348	20.080	2.251	9.475	1.213	2.286	25.75	97.61
59	95615g5t5	0.594	0.2395	6.200	0.715	0.546	11.052	15.400	1.448	21.167	1./8/	10.038	1.349	2.222	26.56	99.33
60	95615g5t1	0.538	0.3093	7.000	0.799	0.501	10.013	17.964	1.393	19.400	2.022	10.207	1.270	2.291	25.34	99.06
61	95615g5t1	0.462	0.2569	/.231	0.839	0.543	10.649	15.354	1.362	20.050	1.602	10.691	1.604	2.232	25.64	98.53
62	95615g5t1	0.457	0.2641	7.302	0.889	0.555	10.630	15.516	1.450	19.932	1.629	10.653	1.589	2.302	25.68	98.87
63	956l5g5t1	0.467	0.2579	7.239	0.758	0.545	10.648	15.149	1.352	19.952	1.699	10.677	1.606	2.213	25.69	98.26
64	956l5g5t1	0.472	0.2453	7.222	0.752	0.545	10.669	15.245	1.361	20.037	1.602	10.679	1.562	2.257	25.62	98.29
65	956l5g5t1	0.466	0.2284	7.249	0.873	0.635	11.035	13.410	1.425	20.434	1.347	10.852	1.854	2.250	25.79	97.87
66	95615g5t1	0.458	0.2294	7.364	0.896	0.627	10.962	13.767	1.442	20.260	1.381	10.840	1.859	2.321	25.79	98.22
67	95615g5t1	0.477	0.2211	7.331	0.937	0.627	10.997	13.890	1.464	20.337	1.367	10.826	1.883	2.384	25.87	98.63
68	95615g5t1	0.468	0.2251	7.251	0.923	0.661	10.974	13.649	1.465	20.308	1.420	10.695	1.785	2.299	25.80	97.94
69	95615g5t1	0.467	0.2205	7.251	0.906	0.645	10.960	13.762	1.436	20.430	1.376	10.728	1.845	2.329	25.78	98.15
70	95615g5t1	0.415	0.2028	7.529	0.804	0.607	11.056	13.118	1.513	20.941	1.303	11.116	1.715	2.396	25.88	98.61
71	95615g5t1	0.480	0.3018	6.958	0.778	0.462	9.980	18.035	1.261	19.383	2.019	10.140	1.315	2.211	25.23	98.57
72	95615g5t2	0.426	0.3170	6.877	0.753	0.457	10.002	17.758	1.286	19.547	1.990	10.363	1.199	2.252	25.21	98.45
73	956l5g5t2	0.301	0.1749	7.709	0.842	0.509	11.243	11.385	1.473	21.782	1.214	11.787	1.506	2.411	25.96	98.31
74	95615g5t2	0.290	0.1573	7.448	0.797	0.531	11.764	9.176	1.452	22.436	0.838	12.925	1.762	2.435	26.24	98.26
75	95615g5t2	0.374	0.2057	7.341	0.860	0.529	11.118	12.400	1.434	21.159	1.262	11.745	1.626	2.458	25.88	98.40
76	95615g5t2	0.443	0.2449	7.085	0.805	0.655	10.547	15.135	1.449	19.763	1.712	10.496	1.610	2.296	25.56	97.81
77	95615g5t2	0.460	0.3066	6.914	0.682	0.439	9.876	18.632	1.338	19.169	2.087	10.057	1.238	2.243	25.17	98.62
78	95615g5t2	0.475	0.3181	6.908	0.746	0.454	9.985	17.990	1.367	19.340	2.023	10.240	1.292	2.252	25.25	98.65
79	95615g5t2	0.489	0.2610	7.127	0.856	0.544	10.610	15.245	1.411	20.015	1.624	10.634	1.592	2.253	25.58	98.25
80	95615g5t2	0.450	0.2476	7.117	0.808	0.536	10.601	15.071	1.504	20.034	1.613	10.745	1.639	2.227	25.56	98.17
81	95615g5t2	0.465	0.2344	7.218	0.854	0.553	10.570	15.249	1.407	20.057	1.617	10.744	1.555	2.185	25.54	98.26
82	95615g5t2	0.468	0.2417	7.358	0.817	0.622	11.008	13.685	1.475	20.378	1.342	10.919	1.823	2.323	25.81	98.29
83	95615ø5t2	0.484	0,2243	7.322	0.944	0.634	10.929	13.701	1.400	20.214	1.356	10.866	1.765	2.289	25.68	97.82
84	95615ø5t2	0.297	0.1947	7.744	0.889	0.486	11.272	11.455	1.442	21.697	1.165	11.711	1.524	2.411	25.93	98.23
85	95615o5t2	0.438	0.2711	7 075	0.823	0.497	10 418	15 999	1 427	20 321	1 749	10 558	1 287	2 335	25.55	98.72
00	20038014	0.450	0.2/11	1.015	0.045	0.421	10.410	13.777	1.741	40.341	1.742	10.330	1.407	4.555	<i>LJ.J</i> 1	20.14

Granite de Rocles (roc18)	04°08'59" - 44°32'49"
---------------------------	-----------------------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	roc18a1t1	2.322	0.251	8.743	1.345	1.671	13.191	8.344	2.552	19.675	0.239	8.521	2.346	2.646	27.45	99.29
2	roc18a1t2	1.132	0.224	8.513	0.872	1.458	12.673	10.251	1.927	21.905	0.682	10.654	1.024	2.540	27.47	101.32
3	roc18a1t2	0.764	0.199	8.674	0.945	1.344	12.518	10.027	2.011	21.959	0.743	10.431	1.055	2.717	27.27	100.66
4	roc18a1t2	0.373	0.185	8.491	0.848	1.274	12.497	10.057	1.866	22.440	0.702	11.071	0.838	2.611	27.16	100.42
5	roc18a1t2	0.340	0.168	8.411	0.735	1.233	12.532	9.980	1.825	22.535	0.679	11.299	0.790	2.676	27.17	100.37
6	roc18a1t2	0.280	0.171	7.585	0.515	1.251	12.512	10.203	1.275	23.060	0.694	12.682	0.564	2.643	27.19	100.63
7	roc18a1t2	0.577	0.180	7.499	0.538	1.411	12.716	10.134	1.299	22.793	0.664	12.483	0.590	2.503	27.41	100.80
8	roc18d1t1	0.280	0.119	10.166	1.334	0.262	11.831	7.226	2.717	23.739	0.924	10.740	0.886	2.919	26.47	99.61
9	roc18d1t1	0.389	0.145	9.984	1.373	0.394	11.546	8.199	2.740	22.757	1.090	10.143	0.916	2.961	26.21	98.85
10	roc18d1t1	0.365	0.128	10.081	1.343	0.314	11.564	7.858	2.854	22.963	1.132	10.104	0.926	2.897	26.25	98.78
11	roc18d1t1	0.444	0.147	10.075	1.330	0.373	11.572	8.238	2.634	22.735	1.290	10.141	0.957	3.004	26.49	99.43
12	roc18d1t1	0.756	0.147	9.872	1.442	0.491	11.718	8.028	2.711	22.509	1.217	10.025	1.037	2.915	26.59	99.46
13	roc18d1t1	1.065	0.182	9.700	1.426	0.623	11.942	8.036	2.944	22.059	0.980	9.656	1.220	2.861	26.62	99.31
14	roc18d1t1	0.699	0.162	9.671	1.417	0.472	11.635	8.212	2.726	22.499	1.111	10.067	1.079	2.944	26.36	99.06
15	roc18d1t1	0.253	0.140	9.758	1.195	0.248	11.404	8.279	2.624	23.042	1.741	10.425	0.831	2.855	26.68	99.47
16	roc18d1t1	0.322	0.141	9.932	1.415	0.310	11.623	8.175	2.817	22.830	1.265	10.066	0.951	2.968	26.49	99.30
17	roc18d1t1	0.395	0.125	9.906	1.250	0.421	11.858	7.351	2.708	23.207	1.106	10.432	1.044	2.970	26.65	99.43
18	roc18d1t1	0.165	0.144	8.750	0.926	0.982	12.358	8.862	1.835	22.700	1.639	11.116	0.533	2.637	27.77	100.41
19	roc18d1t2	0.609	0.144	9.959	1.356	0.509	11.836	7.611	2.570	22.834	0.995	10.246	1.129	2.906	26.52	99.22
20	roc18d1t2	0.697	0.148	9.872	1.340	0.505	11.941	7.465	2.719	22.854	1.105	10.251	1.042	2.888	26.75	99.58
21	roc18d1t2	0.363	0.132	10.010	1.334	0.325	11.765	7.380	2.624	23.680	1.121	10.768	0.855	2.918	26.61	99.88
22	roc18d1t2	0.422	0.129	9.952	1.318	0.362	11.858	7.131	2.622	23.695	1.103	10.625	0.909	3.008	26.69	99.83
23	roc18d1t2	0.242	0.115	10.007	1.312	0.278	11.699	7.304	2.613	23.702	1.226	10.749	0.821	2.937	26.58	99.59
24	roc18d1t2	0.283	0.103	10.201	1.248	0.370	11.991	6.211	2.581	23.806	0.924	10.929	0.750	3.001	26.57	98.96
25	roc18d1t2	1.401	0.263	7.322	0.688	2.319	12.580	12.929	1.521	20.034	0.476	10.221	0.685	2.388	27.06	99.89
26	roc18d1t2	0.656	0.157	9.075	1.207	0.745	11.825	8.214	2.464	22.246	1.192	10.192	0.914	2.680	26.52	98.09
27	roc18c1t1	2.651	0.244	9.031	1.086	1.662	12.615	6.893	2.050	19.434	1.950	8.817	1.728	2.586	28.26	99.00
28	roc18c1t2	1.386	0.214	8.059	0.716	1.692	12.137	9.425	1.598	20.730	0.848	10.716	1.045	2.433	26.62	97.62
29	roc18c1t2	2.485	0.252	8.768	1.053	1.734	12.968	8.067	1.956	20.436	0.479	9.566	1.916	2.490	27.48	99.64
30	roc18c1t2	2.205	0.223	9.631	1.013	1.537	12.966	7.194	1.950	21.011	0.475	9.596	1.683	2.809	27.46	99.75
31	roc18c1t2	2.229	0.218	9.700	0.957	1.583	12.881	7.374	1.832	21.150	0.499	9.799	1.748	2.551	27.44	99.96
32	roc18c1t2	1.338	0.183	9.976	0.851	1.369	12.790	7.409	1.816	22.209	0.599	10.143	1.159	2.899	27.40	100.14
33	roc18c1t2	0.867	0.167	9.717	0.783	1.359	12.716	8.383	1.755	22.521	0.723	10.411	0.858	2.816	27.46	100.53
34	roc18c1t2	0.574	0.160	9.672	0.641	1.313	12.581	8.726	1.575	22.991	0.690	10.956	0.567	2.784	27.27	100.49
35	roc18c1t2	0.661	0.180	8.911	0.583	1.463	12.517	9.812	1.414	22.597	0.727	11.367	0.437	2.711	27.24	100.62
36	roc18c1t2	1.414	0.178	9.371	0.818	1.207	12.598	7.602	1.883	22.498	0.617	10.930	0.888	2.681	27.13	99.81
37	roc18c1t2	1.574	0.196	9.536	0.837	1.199	12.551	7.489	1.914	22.345	0.643	10.690	1.011	2.774	27.12	99.88
38	roc18c1t2	2.569	0.221	9.561	1.187	1.360	12.611	6.668	2.137	21.291	0.703	9.675	1.475	2.753	27.21	99.42
39	roc18c1t3	2.929	0.226	9.223	0.996	1.534	12.888	6.335	1.885	21.594	0.450	10.172	1.429	2.603	27.33	99.59
40	roc18c1t3	3.150	0.252	10.014	1.343	1.498	12.884	5.987	2.291	20.448	0.469	9.350	1.696	2.756	27.32	99.46
41	roc18c1t3	2.149	0.211	9.193	0.763	1.491	12.822	7.418	1.756	21.833	0.614	10.574	1.183	2.645	27.44	100.09
42	roc18c1t3	2.017	0.227	8.062	0.652	1.709	12.798	8.560	1.399	21.644	0.845	10.900	1.139	2.597	27.64	100.19
43	roc18c1t3	2.344	0.227	8.387	0.887	1.610	12.619	7.121	1.748	19.912	1.753	9.408	1.618	2.593	27.97	98.20
44	roc18e1t2	0.337	0.124	9.905	0.697	1.204	13.600	6.912	1.814	22.540	2.220	10.102	0.097	2.859	29.74	102.15
45	roc18e1t2	0.297	0.111	10.486	0.592	1.202	12.945	7.192	1.866	24.089	0.706	11.057	0.049	2.921	27.72	101.23
46	roc18e1t2	0.327	0.106	10.314	0.539	1.135	12.837	6.626	1.780	24.622	0.434	11.567	0.028	3.068	27.32	100.70
47	roc18e1t2	0.393	0.102	10.484	0.534	1.074	12.762	5.733	1.708	24.856	0.478	11.999	0.048	2.980	27.25	100.40
48	roc18e1t2	0.384	0.097	10.490	0.641	1.114	12.936	5.823	1.757	24.738	0.335	12.118	0.083	2.982	27.38	100.88
49	roc18e1t2	0.404	0.108	10.620	0.584	1.087	12.846	5.577	1.707	24.960	0.376	12.096	0.053	3.039	27.31	100.76
50	roc18e1t2	0.449	0.085	10.593	0.524	0.968	12.710	4.985	1.784	25.171	0.488	12.132	0.070	3.022	27.18	100.16
51	roc18e1t2	0.505	0.103	10.721	0.603	0.994	12.872	4.929	1.805	25.311	0.322	11.951	0.102	2.985	27.24	100.44
52	roc18e1t2	0.508	0.111	10.224	0.620	1.074	12.891	5.436	1.749	24.964	0.381	11.995	0.083	2.965	27.29	100.29
53	roc18e1t2	0.424	0.118	9.936	0.663	1.162	12.761	6.731	1.658	24.523	0.423	11.992	0.055	2.967	27.23	100.64
54	roc18e1t2	0.821	0.147	9.245	0.599	1.370	12.748	7.759	1.720	23.505	0.391	11.487	0.407	2.863	27.16	100.22
55	roc18e1t2	1.561	0.193	8.624	0.707	1.489	12.788	7.530	1.683	22.486	0.425	11.100	1.266	2.573	27.22	99.64

Granic it	100003 (100)	04 11 20	- 44 3247												
NUM	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	2.324	0.257	8.921	1.394	1.778	13.298	8.696	2.334	19.695	0.151	8.876	2.139	2.655	27.59	100.11
2	6.011	0.372	8.742	1.058	1.950	13.401	5.333	2.148	20.347	0.067	9.060	1.755	2.769	27.69	100.70
3	0.898	0.190	9.554	1.247	1.439	13.152	8.535	2.137	20.888	0.180	9.655	2.211	2.828	27.52	100.44
4	1.825	0.223	9.391	1.195	1.553	13.318	8.034	2.248	20.397	0.162	9.308	2.166	2.876	27.65	100.35
5	1.171	0.207	9.267	1.420	1.505	13.182	8.641	2.353	19.912	0.209	8.849	2.598	2.829	27.48	99.63
6	7.035	0.370	9.831	1.227	1.780	13.456	2.720	2.603	20.470	0.066	8.424	1.720	2.754	27.65	100.10
7	6.924	0.371	9.802	1.265	1.693	13.416	2.499	2.650	20.758	0.059	8.693	1.722	2.973	27.65	100.47
8	6.915	0.363	10.011	1.214	1.636	13.549	2.456	2.670	20.673	0.062	8.516	1.774	2.900	27.78	100.52
9	6.995	0.378	10.062	1.288	1.634	13.611	2.254	2.815	20.586	0.057	8.502	1.797	2.885	27.86	100.73
10	6.974	0.369	10.231	1.316	1.606	13.580	2.177	2.960	20.588	0.055	8.368	1.741	3.028	27.84	100.83
11	7.077	0.380	10.439	1.409	1.592	13.525	2.011	2.909	20.477	0.056	8.189	1.781	3.050	27.76	100.66
12	8.517	0.457	9.582	1.432	1.996	13.467	2.771	2.812	18.855	0.071	7.481	2.084	2.879	27.67	100.07
13	5.991	0.348	11.046	1.663	1.645	13.358	3.294	3.634	19.073	0.075	7.330	1.706	2.919	27.44	99.52
14	6.130	0.352	11.061	1.471	1.646	13.221	3.113	3.709	18.904	0.076	7.199	1.689	2.928	27.19	98.69
15	3.253	0.290	8.840	1.202	1.977	13.109	8.169	2.265	19.923	0.087	8.904	1.749	2.822	27.32	99.91
16	3.319	0.274	8.859	1.107	1.958	13.232	8.137	2.322	19.918	0.081	8.999	1.775	2.606	27.45	100.04
17	3.631	0.285	8.969	1.317	1.906	13.034	7.472	2.348	19.862	0.080	8.881	1.779	2.735	27.17	99.47
18	3.943	0.307	8.949	1.355	1.972	13.080	7.571	2.424	19.278	0.093	8.285	1.982	2.634	27.18	99.05
19	3.916	0.288	9.164	1.340	1.869	13.186	6.916	2.494	19.661	0.082	8.578	1.880	2.824	27.33	99.53
20	4.012	0.309	9.232	1.433	1.877	13.066	7.018	2.624	19.371	0.086	8.345	1.970	2.625	27.16	99.13
21	3.408	0.252	9.129	1.287	1.631	13.275	6.018	2.424	20.899	0.073	9.399	1.708	2.717	27.41	99.63
22	3.221	0.254	9.140	1.197	1.670	13.179	6.506	2.393	20.760	0.070	9.477	1.692	2.769	27.32	99.65
23	2.986	0.238	9.168	1.206	1.693	13.176	6.842	2.321	20.892	0.098	9.632	1.631	2.792	27.40	100.08
24	3.719	0.280	8.958	1.214	1.895	13.115	7.371	2.330	19.631	0.089	8.772	1.811	2.676	27.20	99.06
25	3.304	0.281	8.794	1.212	1.979	13.174	8.376	2.276	19.693	0.086	8.787	1.738	2.588	27.33	99.62
26	3.786	0.293	8.895	1.289	1.995	13.306	7.918	2.444	19.209	0.094	8.381	1.987	2.559	27.49	99.64
27	3.743	0.290	8.855	1.223	1.912	13.167	7.308	2.416	19.839	0.078	8.892	1.742	2.596	27.28	99.34
28	3.388	0.264	9.098	1.181	1.938	13.389	7.379	2.375	20.047	0.106	9.039	1.623	2.767	27.66	100.25
29	3.427	0.248	8.881	1.140	1.888	13.408	7.385	2.371	20.289	0.082	9.144	1.606	2.730	27.64	100.24
30	3.505	0.293	8.910	1.148	1.907	13.414	7.371	2.337	20.299	0.083	8.950	1.595	2.578	27.61	100.00
31	3.545	0.279	8.922	1.116	1.933	13.540	7.370	2.372	20.169	0.082	9.046	1.623	2.808	27.83	100.64
32	3.545	0.271	8.995	1.206	1.900	13.547	7.399	2.455	20.179	0.079	8.989	1.638	2.751	27.85	100.81
33	3.397	0.276	9.015	1.245	1.910	13.020	7.219	2.351	20.303	0.084	9.043	1.603	2.670	27.14	99.27
34	3.390	0.255	9.146	1.285	1.920	13.545	7.285	2.438	20.229	0.082	9.109	1.623	2.652	27.87	100.82
35	3.512	0.291	9.064	1.227	1.951	13.538	7.213	2.327	20.118	0.094	9.147	1.587	2.680	27.83	100.58
36	3.291	0.267	9.055	1.264	1.859	12.891	7.040	2.359	20.394	0.074	9.031	1.576	2.765	26.93	98.80

Granite de Rocles (roc7) 4°11'3	9" - 44°32'40"
---------------------------------	----------------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	roc7d1t1	2.303	0.261	8.243	1.222	1.919	13.139	9.525	2.204	19.310	0.387	8.655	2.380	2.426	27.59	99.56
2	roc7d1t1	2.135	0.267	8.221	1.188	1.922	13.342	9.592	2.271	19.147	0.484	8.529	2.513	2.565	27.96	100.13
3	roc7d1t1	1.797	0.245	8.633	1.299	1.769	13.156	9.366	2.321	19.579	0.330	8.550	2.521	2.495	27.57	99.63
4	roc7g1t1	0.246	0.113	9.104	0.520	1.125	12.462	7.168	1.471	23.999	1.294	11.609	0.330	2.786	27.55	99.78
5	roc7g1t1	0.618	0.127	8.947	0.618	1.613	12.802	6.971	1.508	23.700	0.614	11.643	0.843	2.731	27.52	100.25
6	roc7g1t1	0.867	0.138	8.555	0.688	1.613	12.890	6.918	1.584	23.453	0.514	11.859	1.194	2.664	27.58	100.52
7	roc7g1t1	1.188	0.178	8.540	0.759	1.269	12.906	6.870	1.701	23.265	0.445	11.773	1.252	2.717	27.43	100.29
8	roc7g1t1	1.145	0.182	8.500	0.750	1.327	12.935	7.332	1.614	23.016	0.422	11.608	1.444	2.643	27.47	100.38
9	roc7g1t1	0.869	0.170	8.786	0.672	1.314	12.892	7.647	1.552	23.178	0.559	11.571	1.233	2.725	27.57	100.74
10	roc7g1t1	0.518	0.136	9.028	0.603	1.189	12.817	7.689	1.593	23.923	0.585	11.888	0.742	2.764	27.50	100.98
11	roc7g1t1	0.329	0.141	9.346	0.622	1.181	12.914	7.851	1.629	23.825	0.470	11.885	0.571	2.788	27.49	101.04
12	roc7i1t1	0.753	0.165	9.318	0.949	1.299	13.016	7.668	2.071	22.576	0.327	10.580	1.329	2.740	27.42	100.21
13	roc7i1t1	1.040	0.174	8.986	1.013	1.404	12.961	7.623	2.106	21.999	0.439	10.395	1.671	2.732	27.47	100.01
14	roc7i1t1	1.182	0.185	8.880	1.044	1.477	13.062	7.784	2.082	21.808	0.399	10.267	1.781	2.687	27.57	100.21
15	roc7i1t1	1.356	0.209	8.776	1.025	1.529	13.035	8.060	2.087	21.427	0.428	10.110	1.844	2.638	27.55	100.08
16	roc7i1t1	1.222	0.191	8.862	1.020	1.482	13.084	7.832	2.068	21.587	0.443	10.167	1.868	2.603	27.61	100.04
17	roc7i1t1	1.128	0.196	8.843	1.004	1.491	13.048	8.092	1.978	21.711	0.481	10.281	1.732	2.697	27.64	100.32
18	roc7i1t1	1.044	0.190	8.938	0.939	1.486	13.060	8.218	2.053	21.677	0.524	10.262	1.757	2.711	27.72	100.58
19	roc7i1t1	1.432	0.220	8.580	1.094	1.611	13.048	8.332	2.132	20.739	0.839	9.658	2.045	2.608	27.96	100.30
20	roc7i1t1	1.660	0.222	7.762	0.997	1.651	12.403	8.168	2.043	19.028	3.087	8.880	1.918	2.374	29.04	99.24
21	roc7i1t1	1.502	0.188	6.580	0.777	1.426	11.074	7.001	1.670	16.785	8.752	8.019	1.556	2.100	32.54	99.97
22	roc7j1t2	0.450	0.133	8.114	0.829	1.106	11.439	6.028	1.765	18.932	6.397	8.582	1.018	2.356	30.56	97.71
23	roc7j1t2	0.650	0.152	9.401	1.002	1.322	12.859	7.424	2.143	21.767	1.523	9.842	1.400	2.626	28.30	100.41
24	roc7j1t2	0.864	0.174	9.484	1.134	1.382	13.018	7.505	2.262	21.388	0.912	9.721	1.935	2.756	28.01	100.55
25	roc7j1t2	1.304	0.178	8.941	1.277	1.432	12.616	7.371	2.278	20.117	1.432	9.064	2.511	2.621	27.88	99.02
26	roc7j1t2	1.562	0.201	8.929	1.387	1.475	13.077	7.196	2.407	19.840	0.974	8.721	3.020	2.545	28.04	99.37
27	roc7j1t2	1.549	0.197	9.036	1.394	1.468	12.908	7.268	2.434	20.171	0.557	8.908	2.944	2.643	27.46	98.93
28	roc7j1t2	1.472	0.214	9.071	1.316	1.475	13.037	7.462	2.404	20.222	0.599	8.978	2.832	2.621	27.67	99.37
29	roc7j1t2	1.318	0.192	8.799	1.279	1.412	12.411	7.164	2.298	19.435	1.773	8.680	2.618	2.427	27.77	97.57
30	roc7j1t2	0.943	0.173	8.889	1.114	1.405	12.422	8.112	2.226	20.234	1.665	9.023	2.109	2.534	27.79	98.64
31	roc7j1t2	0.806	0.173	9.217	1.064	1.425	12.623	8.534	2.234	21.038	1.142	9.404	1.826	2.646	27.69	99.82
32	roc7j1t2	0.661	0.171	9.261	1.029	1.389	12.269	8.366	2.163	21.204	1.402	9.554	1.442	2.654	27.42	98.98
33	roc7j1t2	0.620	0.160	9.686	0.985	1.387	13.017	8.278	2.243	22.031	0.389	9.874	1.439	2.841	27.52	100.47
34	roc7j1t2	0.569	0.151	9.816	0.989	1.376	13.065	8.318	2.215	22.374	0.423	10.036	1.256	2.829	27.66	101.08
35	roc7j1t2	0.495	0.150	9.716	0.932	1.351	13.061	8.192	2.103	22.629	0.435	10.362	1.048	2.875	27.64	100.99
36	roc7k2t2	1.455	0.195	8.605	1.018	1.380	13.131	7.102	2.128	21.633	0.403	10.094	2.309	2.539	27.59	99.58
37	roc7k2t2	1.359	0.210	8.506	0.996	1.526	13.081	8.234	2.105	21.212	0.285	9.878	2.248	2.608	27.45	99.70
38	roc7k2t2	1.380	0.197	8.697	1.025	1.502	13.114	7.996	2.126	21.387	0.249	10.068	2.231	2.608	27.51	100.09
39	roc7k2t2	1.623	0.182	8.991	1.043	1.215	13.242	5.677	2.104	22.228	0.191	10.531	2.622	2.712	27.60	99.96
40	roc7k2t2	1.487	0.186	8.963	0.969	1.240	13.215	6.015	1.972	22.063	0.200	10.740	2.580	2.706	27.58	99.91
41	roc7k2t2	1.587	0.175	8.677	1.047	1.220	13.168	5.745	1.993	21.728	0.671	10.124	2.537	2.663	27.81	99.14
42	roc7k2t2	0.953	0.155	9.148	0.797	1.249	13.096	7.162	1.960	23.006	0.330	10.926	1.514	2.817	27.59	100.70
43	roc7k2t2	1.306	0.164	9.129	0.904	1.285	13.192	6.509	1.984	22.396	0.250	10.653	2.012	2.692	27.57	100.05
44	roc7k2t2	1.253	0.156	9.376	0.835	1.263	13.250	6.125	1.872	22.769	0.222	11.106	1.891	2.804	27.69	100.61
45	roc7k2t2	1.234	0.167	9.184	0.723	1.227	13.234	6.093	1.800	22.868	0.231	11.257	1.844	2.767	27.62	100.25
46	roc7k2t2	1.793	0.188	8.590	0.974	1.168	12.844	5.081	2.044	21.242	1.237	9.956	2.506	2.611	27.80	98.03
47	roc7k2t2	1.578	0.191	8.839	1.003	1.262	13.213	6.237	2.122	21.944	0.317	10.407	2.433	2.661	27.64	99.85
48	roc7k2t2	1.454	0.187	8.609	1.015	1.423	13.136	7.333	2.127	21.157	0.618	9.861	2.345	2.579	27.78	99.63
49	roc7k2t2	1.520	0.192	8.651	1.021	1.367	13.249	6.981	2.179	21.519	0.343	10.134	2.410	2.573	27.69	99.83
50	roc7k2t2	1.297	0.192	8.852	1.057	1.405	13.245	7.616	2.188	21.487	0.305	9.932	2.282	2.563	27.68	100.10
51	roc/k2t2	1.191	0.193	8.726	1.034	1.432	13.169	7.891	2.124	21.318	0.617	9.869	2.215	2.628	27.89	100.30

Migmatite Pont de Bayzan	4°11'20" - 44°38'31"
0	

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	pb5b1t1	0.867	0.131	10.576	0.885	1.048	13.053	5.595	1.785	23.156	0.129	11.059	1.781	2.836	27.34	100.24
2	pb5b1t1	0.815	0.127	10.208	0.799	1.486	13.280	5.158	1.677	23.477	0.228	11.420	1.543	2.933	27.83	100.98
3	pb5b1t1	0.628	0.173	8.718	0.600	1.350	12.785	9.057	1.363	22.913	0.338	12.282	0.995	2.566	27.29	101.06
4	pb5b1t1	0.699	0.165	8.807	0.699	1.370	12.874	8.993	1.398	22.800	0.309	12.240	1.122	2.570	27.43	101.47
5	pb5b1t1	0.739	0.176	8.766	0.677	1.373	12.862	8.918	1.398	22.608	0.304	12.068	1.193	2.584	27.35	101.02
6	pb5b1t1	0.719	0.171	8.721	0.666	1.385	12.854	8.968	1.411	22.632	0.308	11.982	1.186	2.665	27.35	101.01
7	pb5b1t1	0.708	0.171	8.783	0.663	1.361	12.843	9.089	1.392	22.635	0.308	12.121	1.160	2.655	27.36	101.25
8	pb5b1t1	0.703	0.179	8.783	0.624	1.373	12.864	9.142	1.353	22.715	0.314	12.095	1.148	2.562	27.39	101.24
9	pb5b1t1	0.696	0.181	8.659	0.626	1.380	12.851	9.252	1.371	22.677	0.312	12.104	1.138	2.615	27.37	101.23
10	pb5b1t1	0.688	0.176	8.698	0.637	1.390	12.848	9.244	1.347	22.551	0.313	12.144	1.132	2.612	27.35	101.13
11	pb5b1t1	0.694	0.170	8.686	0.616	1.411	12.853	9.362	1.385	22.632	0.319	12.168	1.136	2.648	27.42	101.50
12	pb5b1t1	0.682	0.186	8.708	0.620	1.423	12.889	9.510	1.405	22.721	0.330	12.211	1.121	2.589	27.52	101.91
13	pb5b1t1	0.690	0.185	8.605	0.647	1.426	12.811	9.503	1.402	22.477	0.337	12.061	1.129	2.632	27.35	101.26
14	pb5b1t1	0.694	0.176	8.570	0.639	1.480	12.810	9.945	1.379	22.285	0.332	12.004	1.106	2.583	27.36	101.37
15	pb5b1t1	0.711	0.185	8.454	0.606	1.509	12.815	10.054	1.358	22.272	0.340	12.075	1.070	2.588	27.38	101.42
16	pb5b1t2	0.922	0.148	10.762	1.092	1.095	13.055	5.964	2.209	21.738	0.146	9.951	2.183	2.829	27.24	99.34
17	pb5b1t2	1.005	0.126	10.391	0.881	0.969	13.083	4.850	1.833	23.648	0.112	11.406	1.688	2.931	27.35	100.28
18	pb5b1t2	1.105	0.125	10.358	0.721	0.972	13.110	4.332	1.685	24.120	0.101	11.918	1.518	2.937	27.39	100.39
19	pb5b1t2	0.990	0.155	10.539	0.916	1.128	13.075	6.164	2.029	22.200	0.133	10.224	2.149	2.844	27.33	99.88
20	pb5b1t2	1.013	0.162	10.356	0.987	1.161	13.043	6.259	1.955	22.104	0.146	10.359	2.123	2.897	27.31	99.88
21	pb5b1t2	1.018	0.155	10.441	0.969	1.164	13.081	6.239	1.985	22.219	0.154	10.480	2.064	2.870	27.41	100.24
22	pb5b1t2	1.071	0.155	10.289	0.964	1.241	13.065	6.645	1.932	21.972	0.157	10.387	2.006	2.879	27.37	100.14
23	pb5b1t2	1.069	0.165	10.315	0.915	1.240	13.077	6.793	1.859	22.001	0.152	10.326	1.996	2.834	27.37	100.12
24	pb5b1t2	1.085	0.171	10.232	0.898	1.246	13.048	6.290	1.881	22.086	0.150	10.383	1.967	2.790	27.27	99.49
25	pb5b1t2	1.050	0.156	10.183	0.886	1.228	13.075	6.487	1.898	22.236	0.152	10.460	1.899	2.818	27.34	99.86
26	pb5b1t2	1.089	0.168	10.198	0.914	1.230	13.046	6.468	1.934	22.031	0.154	10.368	1.965	2.841	27.29	99.69
27	pb5b1t2	1.090	0.171	10.319	0.866	1.252	13.113	6.681	1.877	22.204	0.154	10.456	1.974	2.918	27.48	100.55
28	pb5b1t2	1.073	0.166	10.320	0.967	1.231	13.049	6.610	1.906	22.100	0.154	10.330	1.997	2.802	27.34	100.05
29	pb5b1t2	1.063	0.168	10.368	0.951	1.192	13.086	6.339	1.927	22.080	0.157	10.397	2.033	2.863	27.38	100.00
30	pb5b1t2	1.019	0.136	10.367	0.919	1.058	13.073	5.674	1.864	22.877	0.128	10.833	1.849	2.883	27.32	100.00
31	pb5b1t2	1.006	0.156	10.237	0.902	1.170	13.048	6.277	1.864	22.468	0.150	10.653	1.891	2.860	27.32	100.00
32	pb5b1t2	0.869	0.146	10.595	1.041	1.107	13.089	5.961	2.149	22.217	0.134	10.384	1.984	2.919	27.34	99.94
33	pb5b1t2	0.866	0.133	10.749	1.053	1.137	13.185	6.100	2.181	22.413	0.146	10.453	1.987	2.882	27.58	100.87
34	pb5b1t2	0.809	0.154	10.790	1.098	1.079	13.093	5.855	2.121	22.261	0.144	10.356	1.970	2.979	27.37	100.08
35	pb5b1t2	0.821	0.133	10.671	1.047	1.077	13.086	5.894	2.135	22.192	0.140	10.379	1.988	2.861	27.32	99.74
36	pb5b1t2	0.825	0.142	10.596	1.079	1.111	13.086	6.078	2.146	22.140	0.141	10.347	1.983	2.892	27.34	99.90
37	pb5b1t2	0.835	0.143	10.597	0.994	1.145	13.086	6.108	2.196	22.145	0.149	10.262	1.985	2.874	27.35	99.87
38	pb5b1t2	0.876	0.153	10.690	1.041	1.146	13.092	6.266	2.175	21.956	0.147	10.148	2.024	2.910	27.37	99.99
39	pb5b1t2	0.887	0.147	10.745	1.146	1.141	13.109	6.054	2.238	22.036	0.142	10.241	1.994	2.866	27.40	100.15
40	pb5b1t2	0.922	0.137	10.775	1.094	1.054	13.115	5.704	2.234	22.138	0.131	10.248	2.034	2.913	27.35	99.85
NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
----------	--------------------	-------	-------	--------	-------	-------	--------	----------------	-------	------------------	-------	--------	-------	-------	-------	-----------------
1	pb7b1t1	0.732	0.106	8.668	0.740	1.014	10.170	5.132	1.563	19.583	8.157	9.549	1.323	2.570	31.25	100.56
2	pb7b1t1	0.839	0.124	10.024	0.902	1.038	11.739	5.550	1.698	22.530	2.336	10.763	1.470	2.783	27.79	99.58
3	pb7b1t1	0.295	0.105	9.805	1.019	0.761	10.514	4.366	1.832	20.272	8.145	9.420	1.512	2.612	31.84	102.50
4	pb7b1t2	0.863	0.162	9.902	0.956	1.085	13.222	6.215	1.719	22.287	0.561	10.860	1.794	2.855	27.86	100.35
5	pb7b1t2	0.957	0.217	8.888	0.857	1.495	13.349	8.650	1.565	21.463	0.313	10.844	1.518	2.682	27.80	100.60
6	pb7b1t2	0.904	0.224	8.308	0.738	1.672	13.034	11.136	1.414	20.743	0.366	10.803	1.295	2.482	27.50	100.62
7	pb7b1t2	1.325	0.239	7.760	0.620	1.975	13.271	11.579	1.239	20.635	0.259	10.895	1.120	2.464	27.74	101.12
8	pb7b1t2	1.304	0.254	8.094	0.686	1.975	13.156	11.573	1.332	20.683	0.276	10.819	1.239	2.498	27.72	101.61
9	pb/b1t2	0.730	0.215	8.341	0.639	1.645	13.074	11.0/1	1.341	21.308	0.398	11.249	1.042	2.561	27.64	101.26
10	pb/b1t2	0.622	0.209	8.385	0.692	1.590	12.000	10.055	1.349	21.511	0.411	11.434	1.020	2.585	27.60	101.45
11	pb/b1t2	0.674	0.195	8 456	0.042	1.601	12.977	10.055	1.325	21.310	0.411	11.329	1.032	2.539	27.55	101.01
12	pb7b1t2	0.987	0.214	8 183	0.702	1.815	12.932	11 421	1.344	20.543	0.349	10.722	1.110	2.320	27.51	101.12
14	pb7b1t2	1.187	0.214	8.246	0.781	1.784	12.999	10.353	1.473	20.728	0.295	10.785	1.504	2.520	27.41	100.28
15	pb7b1t2	1.123	0.185	9.383	0.788	1.367	13.589	8.047	1.518	21.921	0.365	10.795	1.448	2.729	28.18	101.44
16	pb7b1t3	0.669	0.203	8.494	0.669	1.567	12.680	10.757	1.302	21.733	0.369	11.400	1.011	2.494	27.12	100.47
17	pb7b1t3	0.685	0.202	8.742	0.685	1.534	12.700	10.709	1.381	22.260	0.369	11.579	1.037	2.593	27.33	101.81
18	pb7b1t3	0.509	0.181	8.674	0.694	1.340	12.735	9.808	1.415	22.206	0.412	11.744	1.142	2.561	27.24	100.66
19	pb7b1t3	0.661	0.165	9.228	0.776	1.263	13.008	9.213	1.524	22.828	0.296	11.936	1.316	2.672	27.69	102.58
20	pb7b1t3	0.780	0.139	9.533	1.012	0.907	12.972	5.318	1.921	23.132	0.222	11.328	1.859	2.755	27.15	99.03
21	pb7b1t3	0.486	0.127	9.182	0.913	0.807	13.003	6.327	1.724	23.520	0.440	11.839	1.361	2.775	27.42	99.92
22	pb/b1t3	0.499	0.140	9.266	0.879	0.834	12.860	6.803	1.695	23.986	0.438	12.206	1.263	2.785	27.43	101.09
23	pb/b1t4	0.451	0.098	9.531	0.739	0.633	12.903	4.543	1.580	25.499	0.294	13.165	0.858	2.883	27.26	100.42
24	pb/b1t4 pb7b1t4	0.401	0.095	9.889	0.695	0.529	12.909	4.225	1.548	25.600	0.309	13.004	0.754	2.925	27.40	101.42
20	pb7b1t4	0.502	0.006	9.486	0.646	1.042	12.000	3.887	1.430	25.800	0.209	13.445	0.929	2.042	27.13	100.13
27	pb7b1t4	0.552	0.104	9.361	0.584	0.728	12.523	4 658	1.420	25.554	0.342	13.402	0.814	2.839	26.88	99.74
28	pb7b1t4	0.451	0.093	9.287	0.562	0.636	12.668	4.738	1.352	26.225	0.290	13.878	0.746	2.826	27.08	100.83
29	pb7b1t4	0.416	0.104	9.036	0.662	0.756	12.572	5.493	1.445	25.382	0.300	13.540	0.755	2.807	26.90	100.17
30	pb7b1t4	0.462	0.124	9.249	0.804	0.812	12.641	6.240	1.644	24.733	0.341	12.881	1.135	2.792	27.14	100.99
31	pb7b1t4	0.554	0.167	8.820	0.763	1.259	12.620	9.614	1.504	22.667	0.377	12.050	1.218	2.628	27.21	101.45
32	pb7b1t4	0.438	0.197	8.529	0.631	1.451	12.499	10.938	1.387	21.859	0.487	11.765	0.984	2.577	27.07	100.82
33	pb7b1t5	0.038	0.055	11.424	0.897	0.090	12.905	2.574	2.036	26.756	0.453	13.404	0.391	3.140	27.48	101.65
34	pb7b1t5	0.539	0.131	9.166	0.879	3.440	12.503	5.810	1.659	21.982	0.684	10.765	1.449	2.661	27.58	99.24
35	pb7b1t5	0.595	0.134	9.504	0.839	0.995	13.150	5.793	1.662	23.873	0.215	12.187	1.500	2.813	27.57	100.83
36	pb7b1t5	0.498	0.113	9.374	0.707	0.896	12.998	5.544	1.618	24.570	0.209	12.551	1.201	2.891	27.34	100.51
3/	pb/b1t5	0.413	0.140	8.964	0.732	0.822	12.450	7.150	1.670	24.056	0.458	12.446	1.091	2.749	26.88	100.03
20	pb/b1t5	0.769	0.144	9.069	0.700	1.214	12.841	10.072	1.075	22.840	0.219	11.708	1.545	2.705	27.15	100.94
40	pb/b1t5	0.353	0.107	10 384	0.055	0.794	12.362	4 960	1.335	23.374	1.867	11.501	1.022	2.372	27.13	99.75
41	pb7b1t6	0.355	0.099	10.504	0.943	0.781	12 261	5.092	1.885	23.973	0.387	11.656	1.405	2.075	26.54	98.83
42	pb7b1t6	0.468	0.129	9.670	0.792	0.998	12.327	6.410	1.729	23.651	0.265	11.919	1.355	2.845	26.54	99.10
43	pb7b1t6	0.419	0.133	9.445	0.823	0.839	12.401	6.747	1.736	23.929	0.421	12.048	1.195	2.794	26.78	99.71
44	pb7b1t6	0.422	0.130	9.296	0.740	0.886	12.533	6.917	1.605	24.495	0.394	12.543	1.023	2.780	27.04	100.80
45	pb7b1t6	0.533	0.137	9.038	0.743	0.902	12.649	6.748	1.505	24.411	0.341	12.693	1.004	2.812	27.08	100.59
46	pb7b1t6	0.632	0.111	9.295	0.561	0.757	12.775	4.466	1.445	25.743	0.287	13.477	0.963	2.784	27.17	100.47
47	pb7b1t6	0.595	0.117	9.289	0.571	0.770	12.727	5.418	1.448	25.220	0.347	13.242	1.016	2.810	27.20	100.77
48	pb7b1t6	0.477	0.130	9.200	0.704	0.834	12.643	6.911	1.557	24.340	0.447	12.594	1.067	2.733	27.18	100.82
49	pb7b1t6	0.476	0.156	9.393	0.810	1.086	12.846	7.573	1.720	23.211	0.281	11.876	1.335	2.803	27.29	100.85
50	pb7b1t6	0.427	0.173	9.124	0.758	1.293	12.836	9.040	1.540	22.841	0.398	11.839	1.121	2.746	27.47	101.61
51	pb/b1t6	0.539	0.195	9.048	0.696	1.393	12.770	10.193	1.501	22.243	0.395	11.573	1.122	2.598	27.39	101.66
52	pD/D1t0	0.052	0.230	/.905	0.551	1.910	12.901	0.684	1.291	21.180	0.269	11.1//	1.055	2.407	27.52	100.69
54	pb/bit/ pb7b1t7	0.955	0.201	8.580	0.705	1.004	12.937	9.064	1.434	21.095	0.257	11.147	1.445	2.512	27.40	100.05
55	pb7b1t7	0.893	0.195	8.617	0.676	1.597	12.956	9.477	1.445	22.071	0.258	11.410	1.373	2.597	27.44	101.00
56	pb7b1t7	0.859	0.184	8,735	0.700	1.580	12.926	9,384	1.414	22.261	0.270	11.482	1.320	2.688	27.45	101.25
57	pb7b1t7	0.779	0.189	8.766	0.700	1.537	13.013	9.502	1.491	22.125	0.295	11.519	1.273	2.596	27.55	101.34
58	pb7b1t7	0.684	0.192	8.730	0.674	1.485	12.831	9.441	1.456	22.414	0.313	11.637	1.156	2.635	27.32	100.97
59	pb7b1t7	0.587	0.182	8.759	0.556	1.436	12.723	9.785	1.406	22.368	0.353	11.685	1.013	2.623	27.18	100.66
60	pb7b1t7	0.513	0.182	8.730	0.595	1.424	12.529	9.978	1.337	22.405	0.411	11.813	0.944	2.485	26.99	100.33
61	pb7b1t7	0.397	0.179	8.511	0.493	1.376	12.169	10.482	1.235	22.372	0.437	12.056	0.814	2.500	26.52	99.54
62	pb7b1t7	0.385	0.167	8.631	0.498	1.328	12.356	10.082	1.272	22.667	0.435	12.501	0.793	2.574	26.85	100.53
63	pb/blt/	0.338	0.164	8.713	0.559	1.256	12.415	9.895	1.291	22.788	0.469	12.466	0.828	2.591	26.95	100.72
64	pb/bit/	0.371	0.178	8.072	0.588	1.305	12.585	10.344	1.288	22.458	0.494	12.194	0.907	2.025	27.21	101.21
66	pb7b1t7	0.408	0.200	8.770	0.674	1.465	12.799	11.163	1.360	22.307	0.515	11.978	0.920	2.555	27.44	102.11
67	pb5d1t1	1.040	0.167	10.370	0.968	1.525	13.025	6.370	2.053	21.680	0.222	10.093	2.163	2.810	27.43	99.92
68	pb5d1t1	1.054	0.159	10.352	0.963	1.200	13.089	6.405	2.027	21.802	0.150	10.206	2.181	2.880	27.36	99.83
69	pb5d1t1	1.024	0.169	10.337	0.991	1.178	13.119	6.418	1.927	22.042	0.147	10.427	2.094	2.782	27.41	100.06
70	pb5d1t1	1.007	0.161	10.065	0.890	1.181	13.064	6.298	1.821	22.354	0.154	10.794	1.887	2.846	27.32	99.84
71	pb5d1t1	1.028	0.172	8.760	0.625	1.341	13.021	7.230	1.435	23.029	0.177	12.540	1.346	2.690	27.41	100.81
72	pb5d1t1	0.994	0.134	8.619	0.603	1.118	13.013	5.642	1.378	23.924	0.186	13.305	1.296	2.615	27.32	100.15
73	pb5d1t1	0.925	0.121	8.958	0.635	1.021	13.106	4.993	1.442	24.363	0.132	13.436	1.404	2.638	27.44	100.62
74	pb5d1t1	0.939	0.134	8.892	0.610	1.007	13.112	4.821	1.404	24.542	0.130	13.497	1.406	2.741	27.46	100.70
75	pb5d1t1	0.945	0.124	8.888	0.607	1.015	13.098	4.885	1.416	24.372	0.115	13.438	1.412	2.681	27.39	100.39
/6 77	pb5d1t1	0.939	0.137	8.790	0.648	1.051	13.080	5.326	1.397	24.341	0.117	13.406	1.283	2.695	27.39	100.60
78	posaiti ph5d1+1	0.948	0.142	0.080	0.575	1.050	13.085	5.320 5.354	1.3/0	24.370 24.519	0.121	13.499	1.200	2.00/	27.58	100.50
79	pb5d1+1	1.013	0.154	9 228	0.005	1.032	13.094	5 937	1.597	23 737	0.125	12 551	1.241	2.030	27.40	100.80
80	pb5d1t1	0.964	0.155	8.860	0.650	1.233	12.964	7.136	1.420	23.195	0.182	12.439	1.303	2.650	27.29	100.44
81	pb5d1t1	0.973	0.154	8.888	0.665	1.212	13.028	6.776	1.396	23.260	0.165	12.621	1.274	2.599	27.33	100.34
82	pb5d1t1	0.981	0.144	9.391	0.653	1.092	13.059	5.925	1.510	23.734	0.136	12.421	1.380	2.798	27.38	100.60
83	pb5d1t1	0.984	0.139	9.632	0.737	1.069	13.091	5.625	1.561	23.666	0.138	12.038	1.514	2.755	27.38	100.33
84	pb5d1t1	1.106	0.152	10.272	0.841	1.207	13.080	6.431	1.815	22.203	0.154	10.429	1.984	2.805	27.34	99.82
85	pb5d1t1	1.096	0.175	10.315	0.896	1.221	13.089	6.524	1.822	22.140	0.150	10.314	2.014	2.800	27.36	99.92
86	pb5d1t1	1.108	0.169	10.289	0.886	1.251	13.099	6.666	1.886	22.005	0.161	10.282	1.959	2.810	27.38	99.95
87	pb5d1t1	1.106	0.171	10.319	0.901	1.254	13.087	6.719	1.890	22.031	0.156	10.256	2.002	2.864	27.40	100.15
88	pb5d1t1	1.152	0.163	10.195	0.932	1.268	13.058	6.856	1.845	21.873	0.157	10.221	2.023	2.825	27.33	99.90
89	pb5d1t1	1.188	0.176	10.178	0.938	1.296	13.068	7.000	1.887	21.802	0.158	10.186	2.038	2.837	27.38	100.13
90	ppoditi pb5d1t1	1.1/4	0.158	10.190	0.923	1.310	13.0/1	7.080	1.840	21./0/	0.162	10.093	2.050	2.113	27.50	99.96 100 21
92	pb5d1t1	1.101	0.169	10.190	0.005	1.555	13.062	6 791	1 922	21.005	0.152	10.140	2.000	2.034	27.33	00.21
93	pb5d1t1	1.120	0.203	10.263	1.018	1.268	13.085	6.765	2.005	21.525	0.151	9.890	2.254	2.814	27.33	99.70
							20000									

Migmatite Pont de Bayzan 4°11'20" - 44°38'31"

Migmatite du Velay (Mas de Tence, VE3) 04°20'23" - 45°07'17"

NUM	REF	U	Pb	Nd	Ca	Р	Th	Gd	Ce	Si	Sm	La	Y	Pr	0	Total
1	migt1	3.911	0.305	8.085	2.194	13.274	8.766	1.455	19.367	0.132	1.929	7.557	2.282	2.502	27.47	99.23
2	migt1	3.909	0.312	8.047	2.187	13.234	8.663	1.451	19.400	0.148	1.827	7.703	2.261	2.493	27.42	99.05
3	migt1	4.333	0.335	8.078	2.251	13.260	9.029	1.555	18.708	0.142	1.905	7.150	2.573	2.438	27.47	99.23
4	migt1	4.259	0.338	8.111	2.337	13.291	9.243	1.540	18.512	0.166	1.905	7.175	2.502	2.578	27.57	99.53
5	migt2	3.875	0.323	7.196	2.393	13.260	10.010	1.269	19.470	0.116	1.602	8.088	2.185	2.252	27.49	99.53
6	migt2	3.800	0.319	8.097	2.240	13.286	9.261	1.683	18.953	0.130	1.924	7.366	2.430	2.432	27.51	99.43
7	migt2	3.574	0.339	6.688	2.593	13.234	11.666	1.189	18.923	0.136	1.463	8.040	2.049	2.349	27.51	99.75
8	migt2	3.542	0.323	6.783	2.541	13.297	11.230	1.189	19.071	0.144	1.510	8.065	2.075	2.234	27.55	99.56
9	migt2	3.664	0.312	7.167	2.369	13.304	10.456	1.361	19.361	0.143	1.580	8.203	2.103	2.243	27.58	99.85
10	migt3	3.744	0.296	8.183	2.193	13.273	8.789	1.521	19.204	0.188	1.980	7.375	2.405	2.507	27.52	99.18
11	migt3	3.855	0.306	7.716	2.303	13.162	9.554	1.379	19.447	0.134	1.778	7.617	2.356	2.390	27.40	99.39
12	migt3	3.775	0.307	7.877	2.240	13.179	9.267	1.388	19.698	0.135	1.722	7.750	2.333	2.512	27.44	99.63
13	migt4	3.637	0.310	7.902	2.324	13.366	9.559	1.523	19.010	0.164	1.865	7.674	2.311	2.534	27.69	99.87
14	migt4	6.060	0.468	4.738	3.460	13.122	14.006	0.609	17.646	0.112	0.846	9.142	0.945	1.900	27.43	100.49
15	migt4	5.770	0.457	4.593	3.453	13.283	14.037	0.532	17.545	0.108	0.763	9.101	0.930	1.830	27.51	99.91
16	migt4	5.424	0.472	4.426	3.711	13.265	16.504	0.525	16.457	0.132	0.766	8.695	0.895	1.805	27.61	100.69
17	migt4	3.808	0.482	3.664	4.387	13.236	22.668	0.510	14.248	0.192	0.601	7.857	0.652	1.602	27.77	101.67
18	migt5	3.957	0.311	8.201	2.099	13.383	8.388	1.496	19.552	0.125	1.980	7.737	2.374	2.460	27.63	99.69
19	migt5	3.930	0.301	8.261	2.076	13.402	8.492	1.545	19.652	0.115	2.002	7.768	2.341	2.517	27.69	100.09
20	migt5	3.910	0.302	8.296	2.047	13.364	8.115	1.583	19.463	0.108	2.022	7.718	2.462	2.421	27.55	99.36
21	migt5	3.844	0.309	8.319	2.040	13.410	8.166	1.628	19.713	0.111	1.993	7.861	2.388	2.541	27.69	100.01
22	migt5	3.846	0.302	8.133	2.069	13.410	8.376	1.578	19.632	0.120	1.970	7.811	2.374	2.529	27.67	99.82
23	migt6	3.919	0.333	7.041	2.448	13.343	10.563	1.160	19.402	0.125	1.482	8.054	2.148	2.430	27.65	100.10
24	migt6	3.983	0.335	6.776	2.426	13.335	10.460	1.001	20.129	0.115	1.286	8.361	1.885	2.445	27.63	100.16
25	migt6	3.761	0.316	7.535	2.208	13.293	9.361	1.331	19.971	0.122	1.613	8.234	2.200	2.421	27.57	99.94
26	migt6	3.843	0.318	7.495	2.364	13.264	9.713	1.290	19.286	0.123	1.725	7.881	2.244	2.374	27.49	99.41
27	migt6	3.980	0.336	7.513	2.357	13.296	10.010	1.396	19.127	0.126	1.712	7.841	2.265	2.427	27.59	99.97
28	migt6	3.841	0.335	7.191	2.501	13.216	10.311	1.286	19.242	0.146	1.583	7.896	2.288	2.379	27.52	99.74
29	migt6	3.966	0.322	7.696	2.372	13.305	9.569	1.396	19.297	0.132	1.732	7.755	2.333	2.351	27.60	99.83
30	migt6	4.115	0.324	8.200	2.203	13.331	8.768	1.602	19.117	0.119	1.912	7.496	2.462	2.527	27.59	99.77
31	migt7	3.997	0.332	7.399	2.332	13.368	9.864	1.360	19.318	0.118	1.633	7.940	2.319	2.364	27.66	100.00
32	migt7	3.793	0.372	4.624	3.276	13.325	15.279	0.544	18.365	0.110	0.763	9.946	0.773	1.872	27.65	100.69
33	migt7	3.383	0.400	4.572	3.501	13.317	17.601	0.464	17.541	0.158	0.826	8.779	0.921	1.831	27.73	101.03
34	migt7	3.498	0.414	4.444	3.587	13.371	18.371	0.449	17.033	0.190	0.789	8.376	0.912	1.893	27.82	101.14

Granute au Velay (Le Crouzer, VE10) 4-20.5.

NUM	DEE	п	Ph	Nd	Gd	Ca	D	ть	Sm	Ce	s;	La	v	D .	0	Total
1	amo10bat1	0.192	0.155	10.506	1.093	0.841	F 13.342	5.111	2.006	24 700	0.123	La 11.403	1.076	2 9 4 3	27.69	101.27
2	gran10bgt1	0.132	0.159	10.065	1.144	0.782	13.237	4.778	1.954	23 233	0.156	10.687	2.377	2.737	27.37	98.81
3	gran10bgt1	0.135	0.168	10.034	1.212	0.805	13.403	4,980	1.972	23.649	0.144	10.928	2.365	2.837	27.74	100.37
4	gran10bgt1	0.164	0.196	9.532	1.201	0.882	13.416	5.325	1.863	23.442	0.150	10.607	2.758	2.758	27.75	100.04
5	gran10bgt1	0.384	0.185	9.937	1.382	0.852	13.503	4.983	1.978	23.621	0.132	10.688	2.478	2.939	27.92	100.98
6	gran10bgt1	0.592	0.175	10.550	1.485	0.824	13.516	4.408	2.192	23.846	0.106	10.653	1.960	2.898	27.88	101.09
7	gran10bgt1	0.704	0.164	10.604	1.363	0.775	13.550	3.817	2.318	24.063	0.083	10.988	1.780	3.007	27.89	101.11
8	gran10bgt1	0.573	0.168	10.773	1.328	0.751	13.584	3.865	2.173	24.730	0.092	11.191	1.424	3.053	27.99	101.69
9	gran10bgt1	0.447	0.153	10.759	1.299	0.759	13.549	4.115	2.133	24.910	0.107	11.352	1.228	2.998	27.96	101.77
10	gran10bgt1	0.241	0.195	10.398	1.294	1.003	13.545	6.067	2.143	24.275	0.129	10.647	1.172	2.925	28.00	102.04
11	gran10bgt1	0.230	0.211	10.233	1.331	1.053	13.524	6.396	2.135	24.068	0.150	10.370	1.210	2.887	27.96	101.//
12	gran10bgt1	0.240	0.198	10.289	1.299	0.007	13.561	6.120	2.187	25.880	0.139	10.552	1.22/	2.955	28.02	101.80
13	gran10bgt1	0.245	0.151	10.303	1.200	0.997	13.535	5.000	2.203	24.038	0.137	11 532	0.075	2.027	28.02	102.03
15	gran10bgt1	0.213	0.155	10.590	1.196	0.843	13 586	5.029	1.983	25.000	0.122	11 540	0.957	2.970	28.05	102.20
16	gran10bgt1	0.200	0.153	10.568	1.148	0.834	13.612	4.957	1.992	24.956	0.117	11.549	1.074	2.923	28.08	102.16
17	gran10bgt1	0.177	0.154	10.027	1.217	0.848	13.680	5.081	1.973	24.173	0.125	11.168	2.046	2.998	28.18	101.85
18	gran10bgt1	0.154	0.168	10.210	1.187	0.817	13.660	5.040	1.952	24.192	0.129	11.185	2.174	2.794	28.17	101.83
19	gran10bgt1	0.159	0.155	10.119	1.206	0.820	13.700	4.943	1.839	24.191	0.133	11.197	2.253	2.938	28.23	101.89
20	gran10bgt1	0.162	0.164	10.039	1.207	0.786	13.692	4.892	1.974	24.162	0.134	11.229	2.248	2.831	28.19	101.71
21	gran10bgt1	0.145	0.166	10.183	1.133	0.813	13.746	4.993	1.922	24.094	0.127	11.247	2.262	2.815	28.27	101.92
22	gran10bgt1	0.151	0.159	10.201	1.168	0.808	13.681	4.947	1.923	24.268	0.131	11.182	2.237	2.839	28.21	101.91
23	gran10bgt1	0.161	0.155	10.149	1.095	0.802	13.734	4.889	1.886	24.211	0.131	11.247	2.261	2.828	28.25	101.80
24	gran10bgt1	0.164	0.163	10.258	1.172	0.826	13.697	5.012	1.928	24.398	0.124	11.243	1.767	2.953	28.18	101.88
25	gran10bgt1	0.177	0.148	10.380	1.109	0.860	13.629	5.067	2.055	24.366	0.117	11.196	1.598	2.869	28.06	101.63
26	gran10bgt1	0.197	0.168	10.525	1.093	0.861	13.660	5.088	1.921	24.764	0.126	11.241	1.217	2.957	28.11	101.93
2/	gran10bgt1	0.179	0.175	10.664	1.045	0.846	13./18	5.001	1.979	24.747	0.117	11.585	1.095	2.958	28.18	102.14
29	gran10be+1	0.206	0.101	10.450	1.065	0.840	13,100	5.048	1.940	24.880 24.801	0.124	11.420	1.078	2.000	20.23	102.10
30	gran10bot1	0.177	0.154	10.264	1.085	0.838	13 326	5.063	1.969	24 511	0.131	11.360	1.555	2.946	27.70	101.07
31	gran10bgt1	0.169	0.170	10.021	1.114	0.826	12.575	4.845	1.955	24.068	0.154	11.106	1.599	2.719	26.53	97.85
32	gran10bet1	0.180	0.157	10.179	1.141	0.802	12.481	4.760	1.864	23.665	0.157	11.020	1.840	2.703	26.39	97.34
33	gran10bgt1	0.590	0.158	10.263	1.227	0.795	13.261	4.107	2.014	24.755	0.138	11.618	1.517	2.867	27.62	100.93
34	gran10bgt1	0.685	0.164	10.304	1.260	0.784	13.526	3.790	2.090	24.691	0.115	11.615	1.667	2.899	27.96	101.55
35	gran10bgt1	0.925	0.188	10.086	1.315	0.762	13.737	3.403	2.136	24.095	0.082	11.330	2.242	2.708	28.12	101.12
36	gran10bgt1	0.945	0.180	10.167	1.203	0.774	13.746	3.504	2.126	24.114	0.093	11.180	2.365	2.777	28.18	101.35
37	gran10bgt2	0.864	0.193	9.985	1.246	0.895	13.829	4.381	2.132	23.283	0.103	10.847	2.475	2.755	28.26	101.25
38	gran10bgt2	0.403	0.153	10.606	1.083	0.811	13.750	4.559	2.079	25.089	0.100	11.627	0.866	2.990	28.20	102.31
39	gran10bgt2	0.305	0.156	10.633	1.057	0.837	13.770	4.722	2.052	24.929	0.104	11.577	0.978	2.966	28.24	102.32
40	gran10bgt2	0.168	0.159	10.281	1.039	0.810	13.748	4.880	1.991	24.070	0.150	11.163	1.862	2.800	28.17	101.29
41	gran10bgt2	0.190	0.147	10.483	0.998	0.837	13.703	4.893	1.995	25.047	0.123	11.555	1.057	2.966	28.17	102.17
42	gran10bgt2	0.184	0.153	10.514	1.044	0.838	13.705	4.991	1.979	24.971	0.117	11.554	1.037	2.981	28.18	102.24
4.5	gran10bgt2 gran10bgt2	0.198	0.158	10.506	1.095	0.855	13.705	5.014	1.970	24.975	0.111	11.017	1.034	2.965	28.19	102.57
45	gran10bgt2	0.195	0.155	10.507	1.077	0.832	13.678	4 986	1 994	24.975	0.122	11.452	1.055	2.900	28.12	101.99
46	gran10bgt2	0.203	0.163	10.564	1.092	0.864	13.674	5.156	1.957	24 881	0.122	11.386	1.045	2.960	28.14	102.21
47	gran10hot2	0.206	0.174	10.528	1.145	0.867	13.741	5.210	2.012	24 692	0.123	11.320	1.277	2.929	28.27	102.49
48	gran10bgt2	0.155	0.161	10.298	1.180	0.829	13.715	4.946	1.966	24.369	0.115	11.213	1.902	2.858	28.21	101.91
49	gran10bgt2	0.151	0.150	10.247	1.080	0.789	13.694	4.917	1.909	24.558	0.119	11.351	1.928	2.838	28.19	101.92
50	gran10bgt2	0.159	0.160	10.096	1.097	0.784	13.758	4.896	1.905	24.386	0.123	11.296	2.029	2.857	28.24	101.79
51	gran10bgt2	0.171	0.164	10.042	1.024	0.801	13.709	4.947	1.924	24.489	0.141	11.338	1.953	2.862	28.20	101.77
52	gran10bgt2	0.160	0.166	9.930	1.144	0.822	13.638	5.018	1.854	23.899	0.140	11.123	2.228	2.756	28.03	100.91
53	gran10bgt2	0.167	0.170	9.996	1.045	0.840	13.671	5.165	1.882	23.988	0.135	10.875	2.431	2.752	28.13	101.24
54	gran10bgt2	0.191	0.174	9.840	1.047	0.849	13.693	5.066	1.929	23.783	0.156	10.825	2.625	2.794	28.17	101.14
55	gran10bgt2	0.170	0.173	10.013	1.082	0.780	13.595	4.870	1.997	23.589	0.163	10.921	2.634	2.750	28.02	100.75
50	gran10bgt2	0.156	0.162	9.807	1.098	0.801	13.581	4.952	1.807	25.818	0.606	10.975	2.475	2.727	28.48	101.56
59	gran10agt1	0.175	0.150	10.095	1.072	0.798	13.207	4.091	2.047	24.204	0.120	11.12/	1.320	2.204	27.45	100.19
59	gran10agt1	0.172	0.157	10.496	1.087	0.822	13 248	4 932	1 994	24 279	0.118	11.125	1 397	2.855	27.15	100.14
60	gran10agt1	0.182	0.161	10.625	1.225	0.828	13 293	5.012	2.011	24.282	0.126	11.045	1.600	2.891	27.64	100.92
61	gran10agt1	0.134	0.143	10.352	1.218	0.758	13.350	4.764	1.981	23.717	0.131	10.911	2.422	3.000	27.71	100.59
62	gran10agt1	0.124	0.167	10.345	1.353	0.764	13.395	4.655	2.038	23.694	0.138	10.842	2.515	2.723	27.76	100.51
63	gran10agt1	0.122	0.140	10.360	1.204	0.750	13.267	4.544	2.077	23.712	0.150	10.999	2.408	2.818	27.59	100.14
64	gran10agt1	0.123	0.161	10.327	1.232	0.741	13.336	4.649	1.995	23.542	0.131	10.875	2.519	2.806	27.63	100.07
65	gran10agt1	0.120	0.161	10.395	1.302	0.750	13.398	4.647	2.049	23.810	0.130	10.983	2.535	2.816	27.81	100.91
66	gran10agt1	0.107	0.155	10.282	1.356	0.730	13.445	4.567	1.960	23.749	0.127	10.893	2.579	2.841	27.81	100.61
67	gran10agt1	0.111	0.156	10.399	1.242	0.730	13.464	4.527	1.957	25.644	0.122	10.902	2.532	2.839	27.80	100.42
69	gran10agt1	0.111	0.155	10.300	1.200	0.725	13,493	4.321	2.013	23.645	0.125	10.980	2.320	2.985	27.95	100.99
70	gran10agt1	0.128	0.145	10.704	1.257	0.715	13 511	4 4 56	2.051	23 544	0.107	10.892	2.535	2.907	27.89	100.84
71	gran10ast1	0.124	0.141	10.845	1.293	0.725	13.516	4.479	2.075	23.626	0.117	10.855	2.533	2.860	27.95	101.14
72	gran10agt1	0.086	0.152	10.957	1.336	0.709	13.487	4.502	2.094	23.518	0.131	10.811	2.357	2.891	27.88	100.91
73	gran10agt1	0.081	0.144	11.051	1.260	0.718	13.509	4.464	2.035	23.763	0.143	10.940	2.137	2.866	27.91	101.02
74	gran10agt1	0.104	0.150	10.858	1.408	0.752	13.571	4.600	2.110	23.411	0.132	10.769	2.472	2.928	28.03	101.29
75	gran10agt1	0.129	0.155	10.414	1.418	0.769	13.607	4.717	2.171	23.223	0.117	10.427	2.832	2.837	28.01	100.83
76	gran10agt1	0.163	0.144	10.702	1.365	0.779	13.561	4.683	2.079	23.335	0.118	10.617	2.525	2.899	27.96	100.93
77	gran10agt1	0.127	0.157	10.557	1.292	0.774	13.614	4.771	2.052	23.458	0.118	10.554	2.589	2.954	28.04	101.05
78	gran10agt1	0.132	0.144	10.416	1.297	0.754	13.589	4.770	2.016	23.406	0.116	10.797	2.655	2.996	28.02	101.11
/9	gran10agt1	0.136	0.150	10.130	1.242	0.773	13.618	4./22	1.965	25.611	0.128	10.990	2.635	2.802	28.04	100.94
81	gran to agt 1	0.158	0.164	10.312	1.200	0.792	13.578	+.600	2,040	23.048	0.128	11.014	4.405	2.399	20.03	101.25
82	gran10agt1	0.150	0.150	10.617	1.210	0.808	13 549	4.999	2.000	23.951	0.127	11.020	1.015	2.878	27.95	101.45
83	gran10aot1	0,132	0,164	10.569	1.214	0.821	13,629	5.041	2.057	24,086	0.130	11.189	1.742	2.914	28 10	101 79
84	gran10agt1	0.171	0.153	10.653	1.208	0.828	13.545	5.082	2.042	24.053	0.128	11.137	1.752	2.852	27.99	101.59
85	gran10agt1	0.162	0.170	10.461	1.171	0.819	13.649	5.076	2.030	24.110	0.126	11.301	1.717	2.900	28.11	101.81
86	gran10agt1	0.155	0.159	10.343	1.133	0.825	13.614	5.032	2.019	24.208	0.124	11.372	1.670	2.838	28.04	101.53
87	gran10agt1	0.145	0.149	10.263	1.193	0.821	13.628	5.096	2.067	24.272	0.130	11.366	1.638	2.758	28.06	101.59
88	gran10agt1	0.155	0.167	10.140	1.165	0.836	13.631	5.103	2.058	24.464	0.123	11.370	1.640	2.839	28.09	101.78
89	gran10agt1	0.169	0.153	10.208	1.152	0.832	13.646	5.120	2.062	24.514	0.129	11.471	1.586	2.751	28.12	101.91
90	gran10agt1	0.174	0.161	10.148	1.175	0.835	13.619	5.150	1.998	24.475	0.126	11.435	1.533	2.830	28.06	101.72
91	gran10agt1	0.313	0.155	10.200	1.145	0.826	13.602	4.839	2.013	24.281	0.119	11.558	1.516	2.992	28.02	101.58
92	gran10agt2	0.349	0.152	10.619	0.900	0.821	13.242	4.636	1.964	25.012	0.107	11.721	0.734	2.917	27.47	100.64
93 04	gran10agt2	0.325	0.155	10.482	1.035	0.813	13.220	4.595	2.008	24.981	0.106	11.533	0.823	2.979	27.43	100.48
24 95	gran10agt2	0.262	0.155	10.740	1.052	0.834	13.280	4.014	1.051	24.709	0.105	11.408	1.055	2.278	27.50	100.75
96	gran10aot2	0.148	0.135	10.947	1.126	0.774	13,398	4.626	1.946	24,295	0.113	11.402	1.420	2.950	27.70	100.05
97	gran10agt2	0.057	0.127	11.265	1.073	0.747	13.348	4.426	1.983	24.465	0.132	11.309	1.368	2.887	27.67	100.86
98	gran10agt2	0.063	0.142	11.359	1.019	0.718	13.320	4.219	1.962	24.543	0.131	11.496	1.278	2.988	27.64	100.88
99	gran10agt2	0.065	0.125	11.322	1.017	0.697	13.345	4.128	1.959	24.784	0.125	11.701	1.186	3.056	27.70	101.21
100	gran10agt2	0.042	0.126	11.218	0.895	0.679	13.389	4.168	1.759	25.069	0.129	11.901	1.035	3.038	27.73	101.18

Granite du Velay (Le Crouzet, V	/E10) suite
---------------------------------	-------------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
101	gran10agt2	0.047	0.117	11.036	0.839	0.719	13.331	4.429	1.736	25.316	0.132	12.180	0.945	2.931	27.71	101.47
102	gran10agt2 gran10agt2	0.048	0.127	10.955	0.804	0.705	13.391	4.304	1.715	25.438	0.140	12.497	1 341	2.958	27.80	101.94
104	gran10agt2	0.093	0.137	10.313	1.122	0.749	13.443	4.670	1.792	24 457	0.123	11.657	2.140	2.816	27.00	101.42
105	gran10agt2	0.232	0.138	10.290	1.206	0.835	13.281	6.196	1.951	23.336	0.449	10.743	1.669	2.895	27.90	101.12
106	gran10agt2	0.185	0.170	10.860	1.243	0.790	13.550	4.905	2.137	23.942	0.120	10.868	1.544	2.870	27.89	101.07
107	gran10agt2	0.114	0.163	10.602	1.267	0.766	13.505	4.721	2.096	23.436	0.120	10.744	2.243	2.780	27.80	100.36
108	gran10agt2	0.106	0.150	10.557	1.380	0.732	13.606	4.505	2.087	23.200	0.115	10.613	2.835	2.764	27.98	100.63
109	gran10agt2	0.122	0.152	10.625	1.308	0.764	13.556	4.703	2.138	23.292	0.117	10.539	2.516	2.921	27.92	100.67
111	gran10agt2	0.096	0.133	10.637	1.1/1	0.743	13.590	4.303	1.882	23.723	0.113	11.386	2.380	2.649	28.02	101.15
112	gran10agt2	0.107	0.152	10.593	1.173	0.756	13.562	4.627	1.980	23,566	0.136	11.022	2.474	2.875	27.99	101.01
113	gran10agt2	0.135	0.157	10.452	1.203	0.803	13.196	5.379	2.009	22.809	0.383	10.526	2.652	2.720	27.72	100.14
114	gran10agt2	0.133	0.150	10.190	1.237	0.802	13.231	5.410	2.016	22.603	0.449	10.483	2.670	2.784	27.78	99.93
115	gran10agt2	0.102	0.150	10.539	1.047	0.770	13.570	4.761	1.884	24.150	0.128	11.450	1.880	2.783	27.97	101.18
116	gran10agt2	0.110	0.142	10.894	0.940	0.744	13.585	4.863	1.718	24.898	0.143	11.862	1.220	2.922	28.07	102.11
117	gran10agt2	0.079	0.144	10.890	0.887	0.730	13.609	4.606	1.761	25.171	0.148	12.236	1.062	2.898	28.12	102.35
118	gran10agt2	0.054	0.136	10.054	0.909	0.681	13.601	4.313	1.722	25.258	0.135	12.1/3	1.090	2.987	28.09	102.21
120	gran10agt2	0.033	0.114	11.040	0.868	0.702	13.502	4.397	1.795	23.230	0.142	11 995	1.000	3.013	28.00	101.85
121	gran10agt2	0.052	0.146	11.260	0.917	0.721	13.510	4.681	1.877	24.895	0.152	11.679	1.101	2.986	27.97	101.95
122	gran10agt2	0.060	0.139	11.429	1.038	0.700	13.593	4.399	1.952	24.760	0.144	11.577	1.284	2.979	28.09	102.14
123	gran10agt2	0.070	0.139	11.501	1.160	0.742	13.557	4.620	2.095	24.163	0.147	11.228	1.404	2.974	28.02	101.82
124	gran10agt2	0.064	0.138	11.488	1.135	0.789	13.550	4.870	2.079	23.897	0.148	10.920	1.517	2.952	27.98	101.53
125	gran10agt2	0.086	0.138	11.435	1.114	0.789	13.551	4.888	2.031	24.091	0.188	11.030	1.451	3.049	28.06	101.90
126	gran10agt2	0.059	0.112	11.222	1.077	0.628	13.635	3.889	2.038	24.925	0.142	11.546	1.613	2.886	28.12	101.89
127	gran10agt3	0.116	0.166	10.850	1.280	0.761	13.597	4.650	2.126	23.580	0.127	10.635	2.120	2.874	27.95	100.84
120	gran10agt3	0.127	0.146	10.331	1.210	0.719	13.666	4.433	1.086	23.519	0.120	10.927	2.402	2.601	28.02	101.23
130	gran10agt3	0.159	0.150	10.233	1.226	0.809	13.666	5.012	2.024	23.832	0.120	11.052	2.123	2.905	28.09	101.39
131	gran10agt3	0.187	0.158	10.335	1.159	0.811	13.636	4.820	2.061	23.948	0.115	11.053	2.003	2.875	28.03	101.19
132	gran10agt3	0.297	0.146	10.698	1.045	0.854	13.606	4.761	2.049	25.042	0.100	11.708	0.796	2.967	28.03	102.10
133	gran10agt3	0.286	0.136	10.564	0.987	0.832	13.626	4.713	2.012	25.149	0.100	11.885	0.651	2.855	27.99	101.79
134	gran10agt3	0.289	0.136	10.545	0.975	0.840	13.586	4.771	1.961	25.112	0.093	11.863	0.644	2.918	27.93	101.66
135	gran10agt3	0.288	0.168	10.480	1.081	0.823	13.592	4.725	2.037	24.901	0.097	11.668	0.923	2.937	27.96	101.68
1.30	gran10agt3	0.284	0.156	10.608	1.034	0.850	13.628	4.764	2.075	24.625	0.088	11.440	1.025	3.107	28.00	101.69
129	gran10agt5	0.260	0.157	10.592	0.988	0.820	13.670	4.830	2.054	24.432	0.095	10.840	1.354	3.085	28.05	101.56
130	gran10agt3	0.150	0.154	10.209	1.063	0.854	13.601	5.370	2.039	23.935	0.110	10.040	1.767	2.866	28.03	100.96
140	gran10agt3	0.125	0.160	10.153	1.174	0.871	13.576	5.388	2.145	23.836	0.124	10.940	1.849	2.862	27.96	101.16
141	gran10agt3	0.100	0.146	10.297	1.165	0.850	13.141	5.055	2.121	23.149	0.180	10.680	2.298	2.890	27.39	99.46
142	gran10agt3	0.192	0.172	9.945	1.179	0.974	13.629	5.961	1.968	23.491	0.136	10.522	2.128	2.851	28.05	101.20
143	gran10agt3	0.274	0.205	9.283	1.008	1.110	13.584	6.795	1.916	23.561	0.137	10.810	1.865	2.726	28.01	101.28
144	gran10agt3	0.223	0.181	9.696	1.076	0.975	13.627	5.906	1.859	23.792	0.121	11.016	2.099	2.799	28.08	101.45
145	gran10agt3	0.149	0.161	9.836	1.205	0.803	13.629	5.025	1.920	23.786	0.120	11.058	2.614	2.897	28.09	101.30
140	gran10agt5	0.177	0.155	9.847	1.070	0.799	13.078	3 304	2.117	25.720	0.121	12.207	2.0/4	2.894	28.15	101.16
148	gran10dgt1	0.719	0.152	10.113	1.093	0.716	13,730	3.357	2.025	25.244	0.101	12.079	1.418	2.838	28.15	101.72
149	gran10dgt1	0.647	0.151	10.010	1.092	0.715	13.740	3.376	2.011	25.598	0.080	12.458	1.100	2.922	28.17	102.07
150	gran10dgt1	0.641	0.159	10.072	1.148	0.710	13.701	3.290	2.038	25.754	0.071	12.408	1.067	2.942	28.13	102.13
151	gran10dgt1	0.630	0.153	10.022	1.162	0.696	13.717	3.247	2.100	25.738	0.078	12.366	1.068	2.860	28.12	101.96
152	gran10dgt1	0.609	0.156	10.117	1.132	0.698	13.736	3.221	2.023	25.686	0.085	12.224	1.067	2.889	28.12	101.76
153	gran10dgt1	0.626	0.146	10.158	1.138	0.705	13.735	3.291	2.091	25.804	0.073	12.427	1.022	2.973	28.20	102.39
154	gran10dgt1	0.595	0.137	9.893	0.966	0.727	13.511	3.328	1.974	25.334	0.338	12.249	0.930	2.903	27.98	100.87
155	gran10dgt1	0.627	0.135	10.065	1.100	0.726	13.722	3.150	2.104	25.715	0.086	12.345	0.906	2.925	28.12	101.85
150	gran10dgt1	0.606	0.149	10.220	0.981	0.665	13.645	3.193	2.085	26.060	0.100	12.475	0.821	2.922	28.05	102.14
158	gran10dgt1	0.634	0.148	9.958	1.116	0.717	13.569	3.358	2.056	25.698	0.116	12.292	0.889	2.927	27.92	101.40
159	gran10dgt1	0.644	0.143	10.234	1.114	0.725	13.674	3.335	2.015	25.748	0.085	12.269	0.904	2.969	28.08	101.93
160	gran10dgt1	0.640	0.147	10.093	1.069	0.721	13.622	3.348	2.068	25.901	0.081	12.246	0.895	2.902	27.99	101.72
161	gran10dgt1	0.657	0.141	10.065	1.061	0.725	13.694	3.431	2.061	25.807	0.080	12.338	0.929	2.969	28.11	102.07
162	gran10dgt1	0.679	0.152	10.055	1.014	0.717	13.686	3.442	2.066	25.854	0.077	12.257	0.930	2.919	28.08	101.93
163	gran10dgt1	0.654	0.159	9.990	1.048	0.744	13.658	3.504	2.083	25.720	0.074	12.249	0.929	2.815	28.01	101.64
165	gran10dgt1	0.008	0.143	0.082	0.961	0.765	13.522	3.504	2.035	25.001	0.077	12.130	0.928	2.930	27.91	101.50
166	gran10dgt1	0.676	0.161	9.565	1.018	0.775	13.105	3.772	1.940	24.845	0.148	11.973	0.907	2.751	27.03	98.75
167	gran10dgt1	0.620	0.135	9.712	0.966	0.807	12.266	3.365	2.002	25.125	0.369	12.069	0.835	2.845	26.32	97.44
168	gran10dgt1	0.660	0.154	9.581	1.027	0.736	13.938	3.724	1.952	24.051	0.380	11.484	1.014	2.724	28.24	99.67
169	gran10dgt1	0.848	0.184	10.386	1.230	0.917	13.313	4.135	2.242	24.604	0.089	11.274	1.137	2.915	27.60	100.87
170	gran10dgt1	0.844	0.208	10.360	1.229	0.897	13.398	4.335	2.248	24.578	0.086	11.238	1.087	2.886	27.69	101.08
171	gran10dgt1	0.805	0.202	10.244	1.223	0.863	13.494	4.206	2.223	24.709	0.082	11.346	1.056	2.839	27.77	101.07
172	gran10dgt1	0.825	0.176	10.340	1.200	0.849	13.525	4.170	2.251	24.670	0.085	11.239	1.044	2.91/	27.81	101.09
174	gran10dgt1	0.823	0.178	10.435	1.255	0.855	13.537	4.112	2.203	24.700	0.077	11.200	1.072	2.900	27.00	100.92
175	gran10dgt1	0.788	0.191	10.446	1.298	0.835	13.591	4.055	2.235	24.773	0.080	11.232	1.097	3.012	27.94	101.57
176	gran10dgt1	0.777	0.183	10.425	1.249	0.830	13.607	4.001	2.291	24.580	0.084	11.226	1.131	2.869	27.90	101.16
177	gran10dgt1	0.775	0.196	10.393	1.222	0.841	13.572	4.065	2.209	24.718	0.086	11.242	1.138	2.927	27.89	101.27
178	gran10dgt1	0.763	0.190	10.360	1.256	0.809	13.601	3.977	2.141	24.894	0.093	11.491	1.115	2.936	27.97	101.59
179	gran10dgt1	0.818	0.176	10.357	1.255	0.839	13.599	4.128	2.278	24.651	0.094	11.392	1.188	2.961	27.99	101.73
180	gran10dgt1 gran10dgt1	0.802	0.179	10.390	1.321	0.847	13.61/	4.162	2.24/	24.532	0.081	11.220	1.22/	2.876	27.96	101.46
182	gran10dor1	0.668	0.173	10.334	1.227	0.807	13.494	4 304	2.182	24 135	0.004	11.090	1 445	2.939	27.73	101.45
183	gran10dgt1	0.775	0.166	10.517	1.435	0.749	13.656	3.549	2.309	24.383	0.090	11.041	1.663	2.846	28.00	101.18
184	gran10dgt1	0.791	0.161	10.675	1.312	0.763	13.693	3.494	2.305	24.448	0.087	10.999	1.714	2.882	28.07	101.40
185	gran10dgt2	0.784	0.145	10.086	1.220	0.791	13.759	3.782	2.105	24.272	0.079	11.672	1.745	2.805	28.14	101.38
186	gran10dgt2	0.790	0.180	10.365	1.194	0.851	13.735	4.136	2.210	24.437	0.074	11.284	1.344	2.998	28.12	101.72
187	gran10dgt2	0.785	0.183	10.345	1.308	0.860	13.701	4.140	2.228	24.409	0.075	11.284	1.337	2.905	28.07	101.63
188	gran10dgt2	0.815	0.180	10.223	1.362	0.836	13.699	4.226	2.238	24.451	0.080	11.315	1.302	2.880	28.07	101.68
189	gran10dgt2	0.789	0.190	10.321	1.227	0.877	13.723	4.202	2.210	24.592	0.081	11.377	1.1//	2.894	28.11	101.77
190	gran10dgt2	0.823	0.185	10.150	1.230	0.889	13.743	4.193	2.253	24.441	0.074	11.230	1.091	2.809	28.03	101.15
192	gran10dgt2	0.859	0.206	10.176	1.249	0.921	13.688	4.428	2.277	24.145	0.085	11.110	1.225	2.910	28.01	101.29
193	gran10dgt2	0.925	0.211	10.134	1.336	0.949	13.717	4.538	2.272	24.037	0.085	10.989	1.265	2.924	28.06	101.45
194	gran10dgt2	0.926	0.193	10.337	1.348	0.940	13.735	4.523	2.227	24.042	0.075	10.983	1.316	2.808	28.09	101.54
195	gran10dgt2	0.895	0.201	10.210	1.350	0.952	13.680	4.579	2.251	23.908	0.079	10.998	1.304	2.858	28.00	101.26
196	gran10dgt2	0.819	0.199	10.004	1.230	0.929	13.670	4.580	2.203	24.413	0.087	11.352	1.216	2.843	28.04	101.58
197	gran10dgt2	0.787	0.176	9.958	1.172	0.881	13.565	4.338	2.095	23.417	0.146	10.817	1.223	2.687	27.59	98.85
198	gran10dgt2	0.803	0.201	10.074	1.226	0.893	13.715	4.328	2.221	24.396	0.088	11.337	1.243	2.928	28.08	101.53
200	gran10dgt2 gran10de+?	0.797	0.188	10.185	1.184	0.894	13./35	4.350	2.235	24.433	0.085	11.2/5	1.213	2.819	28.08	101.48
200	gran10dot2	0.711	0.184	10.298	1.212	0.905	13,712	4,517	2,108	24,543	0.081	11.342	1.097	2.925	28.09	101.58
202	gran10dgt2	0.718	0.177	10.278	1.206	0.899	13.744	4.568	2.175	24.554	0.090	11.267	1.133	2.951	28.15	101.91
203	gran10dgt2	0.718	0.185	10.131	1.176	0.895	13.688	4.604	2.086	24.421	0.093	11.302	1.112	2.740	27.98	101.14
204	gran10dgt2	0.720	0.185	10.322	1.221	0.881	13.728	4.576	2.201	24.560	0.087	11.376	1.114	2.858	28.14	101.96
205	gran10dgt2	0.732	0.170	10.246	1.228	0.895	13.671	4.571	2.163	24.569	0.081	11.417	1.102	2.874	28.05	101.77
206	gran10dgt2	0.759	0.193	10.309	1.140	0.908	13.671	4.571	2.184	24.536	0.090	11.433	1.117	2.884	28.08	101.87
207	gran10dgt2	0.729	0.183	10.280	1.215	0.887	13.662	4.561	2.202	24.538	0.085	11.308	1.111	2.910	28.03	101.70
200	gran10dat2	0.747	0.193	9 974	1.020	0.849	13.647	3.994	2.088	25.042	0.078	11.295	1.024	2.920	28.08	101.65
210	gran10dgt2	0.723	0.174	10.188	1.243	0.896	13.639	4.007	2.108	24.817	0.100	11.653	1.105	2.926	28.03	101.40
211	gran10dgt2	0.777	0.177	10.195	1.283	0.861	13.657	3.986	2.192	24.729	0.079	11.616	1.107	2.941	28.02	101.62
212	gran10dgt2	0.746	0.171	10.183	1.200	0.866	13.843	4.095	2.216	24.786	0.088	11.434	1.140	2.998	28.27	102.03
213	gran10dgt2	0.768	0.161	10.361	1.193	0.850	13.711	3.995	2.202	24.804	0.086	11.517	1.122	2.860	28.10	101.73
214	gran10dgt2	0.738	0.183	10.344	1.312	0.855	13.698	3.868	2.203	24.767	0.080	11.586	1.088	2.945	28.08	101.75

Migmatite du Velay (Terrett, VE11)	04°20'39" -	44°18'00"
------------------------------------	-------------	-----------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	mig11ag3t1	2.217	0.184	8.579	0.765	1.224	13.554	5.171	1.606	23.510	0.116	11.548	1.943	2.537	27.93	100.88
2	mig11ag3t1	2.122	0.181	8.445	0.772	1.274	13.410	5.548	1.556	23.554	0.111	11.533	1.940	2.643	27.79	100.88
3	mig11ag3t1	2.199	0.191	8.388	0.772	1.290	13.372	5.527	1.661	23.327	0.106	11.465	2.014	2.616	27.72	100.65
4	mig11ag3t1	2.123	0.184	8.432	0.884	1.252	13.358	5.246	1.607	23.358	0.111	11.616	1.932	2.667	27.68	100.44
5	mig11ag3t1	2.053	0.188	8.600	0.862	1.229	13.359	5.405	1.649	23.493	0.110	11.634	1.938	2.588	27.73	100.83
6	mig11ag3t1	1.347	0.158	8.834	0.926	1.183	13.473	5.799	1.648	23.549	0.150	11.446	1.925	2.665	27.89	101.00
7	mig11ag3t1	2.163	0.190	8.542	0.918	1.336	13.612	5.470	1.690	23.266	0.107	11.372	1.988	2.575	28.05	101.28
8	mig11bgt1	2.118	0.162	9.652	1.129	1.108	12.724	4.254	2.000	23.451	0.096	10.528	1.927	2.827	26.80	98.78
9	mig11bgt1	2.054	0.171	8.943	0.978	1.149	13.710	4.670	1.728	23.940	0.076	11.287	2.034	2.699	28.16	101.59
10	mig11bgt2	1.766	0.162	8.881	0.899	1.164	13.424	5.095	1.748	23.510	0.132	11.383	1.859	2.743	27.76	100.52
11	mig11bgt2	0.229	0.102	9.910	0.942	0.558	12.917	6.078	1.932	24.962	0.450	11.538	1.340	2.880	27.51	101.35
12	mig11bgt2	2.049	0.157	9.096	1.022	1.115	13.528	4.372	1.699	24.007	0.101	11.006	2.024	2.774	27.89	100.84
13	mig11bgt2	2.166	0.170	9.594	1.122	1.087	13.536	4.094	2.012	23.601	0.103	10.669	2.103	2.741	27.91	100.91
14	mig11cgt1	2.062	0.164	9.745	1.116	1.109	13.847	4.318	2.098	23.083	0.106	10.481	2.108	2.881	28.28	101.40
15	mig11cgt1	2.094	0.179	8.919	0.992	1.199	13.592	5.100	1.653	23.506	0.136	11.493	1.912	2.712	28.07	101.56
16	mig11cgt1	0.875	0.128	9.042	0.895	0.995	13.549	5.456	1.673	24.283	0.137	12.131	1.626	2.702	27.99	101.48
17	mig11cgt2	1.729	0.151	8.992	0.900	1.193	13.608	5.432	1.691	23.528	0.089	11.288	1.951	2.620	28.00	101.17
18	mig11cgt2	1.029	0.126	8,950	0.800	0.887	13.514	5.160	1.727	24.729	0.157	12.164	1.705	2.847	28.01	101.81
19	mig11cgt2	2.147	0.195	8.309	0.832	1.413	13.537	6.084	1.534	22.599	0.097	11.109	2.110	2.497	27.84	100.30
20	mig11cgt2	2.210	0.204	8.110	0.853	1.466	13.552	6.529	1.551	22.605	0.090	11.171	2.197	2.566	27.96	101.06
21	mig11cgt2	2.357	0.238	7.882	0.896	1.682	13.436	7.686	1.610	21.301	0.122	10.808	2.246	2.451	27.80	100.52
22	mig11cgt2	2.313	0.210	8.963	1.022	1.387	13.478	5.964	1.857	22.144	0.101	10.435	2.254	2.587	27.81	100.53
23	mig11cgt2	0.850	0.127	9.185	0.846	0.983	13.487	5.503	1.721	24.187	0.169	11.938	1.656	2.708	27.93	101.29
24	mig11cgt2	2.451	0.208	8.939	1.010	1.286	13.827	5.127	1.853	22.744	0.103	10.734	2.112	2.681	28.25	101.33
25	mig11dat1	0.369	0.096	9.059	0.794	0.611	13 222	5 1 5 4	1 644	25 508	0.312	13 049	1 396	2 767	27.80	101 78
26	mig11dat1	1 549	0.157	8 963	0.960	1 1 32	13 573	5 374	1 744	23.824	0.119	11.621	1.887	2 722	28.05	101.68
27	mig11dgt1	1.683	0.159	8.895	0.944	1.175	13,595	5.423	1.769	23.550	0.119	11.327	2.033	2.602	28.03	101.31
28	mig11dot1	2 203	0.196	8 758	0.853	1 275	13 603	5 356	1.661	23 160	0.117	11 311	2.038	2 595	28.02	101.15
29	mig11dat1	2 364	0.193	8 764	0.794	1.275	13 563	5.220	1 725	22 970	0.128	11 111	2.074	2.650	27.94	100.76
30	mig11dgt2	2.444	0.201	8.735	0.935	1.297	13.432	5.264	1.634	22.928	0.142	10.944	2.096	2.630	27.78	100.46
31	mig11dat2	1 540	0.162	8 743	0.836	1 183	13 323	5 4 9 8	1 719	23 376	0.128	11 346	1 941	2 716	27.61	100.12
32	mig11dat2	0.374	0.094	9.437	0.866	0.550	13.001	4 824	1 726	25 372	0.334	12 281	1 721	2 783	27.50	100.86
33	mig11dat2	0.545	0.122	9.042	0.933	0.725	12 794	6.160	1.725	23.679	0.569	12.146	1 755	2 709	27.50	100.38
34	mig11dat2	0.313	0.104	9.455	0.910	0.552	13.061	4 970	1 748	25 265	0.337	12 209	1 732	2 914	27.60	101.17
35	mig11eg2t1	2 197	0.204	8 213	0.810	1.430	13 651	6.011	1.578	22 768	0.113	11 526	2 134	2.479	28.10	101.21
36	mig11eg2t1	1 913	0.181	8 870	0.951	1.268	13.626	5 889	1.736	22.672	0.157	10.917	2 256	2.626	28.09	101.15
37	mig11eg2t1	1.865	0.185	8 758	0.970	1 254	13.645	5.790	1 764	22.889	0.135	11.044	2.200	2.658	28.10	101.26
38	mig11eg2t1	1 728	0.153	9.350	0.956	1.061	13.678	4 510	1.859	23.826	0.097	11.068	1.902	2 744	28.03	100.97
30	mig11eg2t1	1.699	0.156	9.526	0.991	1.040	13 738	4 483	1.035	23.895	0.100	10.952	1.896	2 783	28.14	101.32
40	mig11eg2t1	1 372	0.142	9.120	0.819	1.076	13 548	5 112	1.854	23.446	0.650	10.920	1.679	2.849	28.35	100.94
40	mig11ag2t1	2 284	0.191	8 415	0.852	1 340	13.616	5.635	1.553	23.187	0.114	11 509	2.021	2.570	28.07	101.36
42	mig11ag2t1	1 534	0.151	9.054	0.984	1.100	13.622	5.040	1.773	23.857	0.104	11 447	1.957	2.671	28.05	101.34
43	mig11ag2t1	1.425	0.146	9.206	0.994	1.048	13.619	4 784	1.841	24.073	0.104	11.447	1.805	2 725	28.08	101.54
4.5	mig11ag2t1	1.42.5	0.126	9.200	0.974	1.046	13.646	4.097	1.041	24.075	0.105	11.075	1.025	2.72.5	20.00	101.01
45	mig11ag2t2	2 307	0.185	9.051	1.043	1 328	13 584	5 197	1.852	22 740	0.118	10.659	2 094	2.689	27.97	100.81
4.5	mig11ag2t2	2.000	0.165	9.031	1.040	1.320	12.604	4.094	1.052	22.740	0.006	11 222	1.072	2.007	29.01	101.22
40	mig11ag2t2	2.000	0.114	8.047	0.700	0.014	13.537	5.506	1.661	24 733	0.174	12.470	1.775	2.755	28.03	101.22
48	mig11ag1t1	1 571	0.114	8.860	0.799	1 157	13.557	5 389	1.001	24.733	0.174	12.470	1.442	2.700	20.05	101.70
40 40	mig11c=1+1	1.371	0.139	0.000	0.077	1.137	13.070	5.209	1.705	23.093	0.112	11.400	1.240	2.130	20.14	101.57
49 50	mig11ag1t1	2.193	0.141	0.024	0.030	1.149	13.033	5.730	1.795	23.033	0.101	11.494	2 107	2.000	20.05	101.13
50	mig11ag1t1	2.103	0.201	0.312 8 708	0.652	1.350	13.625	5.750	1.040	23.005	0.100	11.195	2.107	2.500	20.12	101.20
51	migriagiti	2.155	0.194	0.700	0.875	1.2/3	12.023	5.551	1.700	23.061	0.103	10.002	2.090	2.020	27.99	100.63
52	mig11ag1t1	2.1/5	0.194	8.940	0.899	1.203	13.030	5.200	1.//У	22.950	0.105	10.903	2.081	2.004	28.00	100.80
55	inigi lagit2	1.113	0.13/	8.94/ 9.940	0.942	1.083	13.014	5.362	1.//5	24.162	0.112	11./25	1./5/	2.090	28.05	101.48
54	migl lag1t2	0.551	0.1/5	8.860	0.917	0.852	12.931	/.599	1.00/	23.851	0.568	11.904	1.515	2.828	27.75	101.92

$Granue Min (2ngles) = 2^{-}3340^{-} - 43^{-}2327$	ranite MN (Anglès)	2°33'40" - 43°23'27'
--	--------------------	----------------------

1 0.684g21 1.222 0.017 0.104 1.018 0.104 2.888 26.56 97.37 3 0.684g21 0.031 0.1064 1.128 0.918 1.224 3.802 2.130 2.1302 0.078 1.0144 2.443 2.665 2.237 9.837 5 0.684g21 1.148 0.142 1.0144 1.044 1.024 0.016 1.117 2.117 2.338 0.118 1.118 0.124 0.018 0.014 2.247 9.832 6 0.684g21 0.313 0.131 0.135 0.138 0.011 1.233 4.104 2.208 0.017 1.144 0.288 2.665 9.664 11 0.684g21 0.33 0.131 0.130 0.131	NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
2 0.84g21 0.010 10.04 1.78 0.98 1.232 3.49 1.99 2.701 1.110 1.048 <th1.048< th=""> 1.048 <th1.048< <="" td=""><td>1</td><td>05l4g2t1</td><td>1.292</td><td>0.137</td><td>10.427</td><td>1.442</td><td>0.905</td><td>12.663</td><td>4.064</td><td>2.176</td><td>22.392</td><td>0.087</td><td>10.789</td><td>1.904</td><td>2.888</td><td>26.56</td><td>97.73</td></th1.048<></th1.048<>	1	05l4g2t1	1.292	0.137	10.427	1.442	0.905	12.663	4.064	2.176	22.392	0.087	10.789	1.904	2.888	26.56	97.73
3 0.98kg21 0.03 0.144 0.142 0.047 0.149 2.141 2.860 2.57 9.80k 5 0.98kg21 1.148 0.134 </td <td>2</td> <td>05l4g2t1</td> <td>0.711</td> <td>0.110</td> <td>10.604</td> <td>1.178</td> <td>0.918</td> <td>12.326</td> <td>4.840</td> <td>1.939</td> <td>23.701</td> <td>0.110</td> <td>11.686</td> <td>0.738</td> <td>2.965</td> <td>26.22</td> <td>98.04</td>	2	05l4g2t1	0.711	0.110	10.604	1.178	0.918	12.326	4.840	1.939	23.701	0.110	11.686	0.738	2.965	26.22	98.04
4 6 6 9 11.81 0.14 10.35 10.35	3	05l4g2t1	0.653	0.096	10.504	1.312	0.587	12.534	3.892	2.126	23.029	0.202	11.491	2.141	2.866	26.57	98.00
5 0.81 0.74 1.18 0.14 0.148 1.282 0.198 2.133 0.107 1.174 0.079 2.668 2.672 9.824 7 0.954/21 0.780 1.131 0.132 0.132 0.133 1.142 1.055 2.666 9.86.6 9 0.954/21 1.333 0.131 1.035 1.236 0.011 2.2385 0.046 1.012 2.155 2.808 2.71 9.736 10 0.954/81 1.338 1.035 1.030 1.040 0.971 1.242 2.474 1.933 2.137 0.161 1.944 1.935 2.989 2.371 9.36 11 0.954/812 0.77 1.135 0.877 1.242 4.74 1.931 1.034 1.033 1.237 9.30 2.333 0.104 1.131 1.133 1.131 1.134 1.133 1.134 1.134 1.134 1.134 1.134 1.134 1.134 1.134 1.134 1.134 </td <td>4</td> <td>05l4g2t1</td> <td>1.414</td> <td>0.142</td> <td>10.071</td> <td>1.481</td> <td>0.913</td> <td>12.754</td> <td>4.254</td> <td>2.009</td> <td>21.941</td> <td>0.078</td> <td>10.640</td> <td>2.620</td> <td>2.870</td> <td>26.73</td> <td>97.91</td>	4	05l4g2t1	1.414	0.142	10.071	1.481	0.913	12.754	4.254	2.009	21.941	0.078	10.640	2.620	2.870	26.73	97.91
6 6.9.4.2.1 0.8.3.2 0.1.8 0.1.8 0.1.8 0.1.8 0.1.8 0.1.8 0.1.8 0.1.8 0.1.8 0.1.9 1.2.60 4.8.63 0.1.90 1.2.41 0.1.90 2.3.98 0.4.8 1.1.92 0.1.9 2.0.3 2.2.88 0.8.6 0.1.92 2.0.13 2.2.88 0.8.7 1.7.8 9.8.9 10 0.9.9.4.2.1 1.3.8 1.0.3 1.0.33 1.0.40 0.8.7 1.2.7.5 3.9.2 2.1.98 2.8.9 0.8.6 1.0.67 2.3.5 2.9.99 2.6.9 9.7.9 11 0.9.9.9.4 1.0.67 1.0.75 1.0.91 1.7.1 0.4.9 1.2.7.2 4.4.6 2.1.05 2.9.9 0.1.0 1.1.99 1.3.1 1.2.29 2.2.09 7.5.7 13 0.5.9.1.1 0.1.37 1.3.5 1.0.27 1.3.5 1.2.2 1.2.5 1.3.7 1.3.5 1.2.2 2.7.9 7.5.7 14 0.9.9.1.2.1.2 1.0.2 1.2.5 1.2.5 <	5	05l4g2t1	1.181	0.134	10.184	1.382	0.918	12.723	4.353	2.051	22.430	0.100	11.117	2.077	2.868	26.72	98.24
7 9 9 2 1 3 3 1	6	05l4g2t1	0.740	0.118	10.444	1.256	0.919	12.668	4.863	1.988	23.357	0.107	11.544	0.988	2.855	26.62	98.47
8 68 69 71 120 143 0407 1274 4495 2176 2298 0468 1032 2.032 2.237 2.671 958 10 694g/1 1.38 1.03 1.037 1.043 0.171 2.755 3.92 2.198 2.671 958 11 6954g/1 0.667 0.677 1.053 1.067 0.163 1.067 2.352 2.989 2.629 9.756 12 6954g/12 1.061 0.167 1.075 0.591 0.171 0.163 1.229 1.257 4.362 2.164 2.164 2.164 2.113 0.113 1.223 2.979 2.54 9.091 1.013 1.231 2.919 2.54 7.70 15 6954g/104 1.377 1.63 1.021 1.914 4.240 2.018 2.440 1.031 1.231 2.919 2.54 7.71 7.55 7.55 7.55 7.55 7.55 7.55 7.55	7	0514g2t1	0.833	0.115	10.570	1.326	0.913	12.670	4.675	2.096	23,335	0.104	11.421	1.055	2.896	26.65	98.66
9 0	8	0514g2t1	1.313	0.132	10.550	1.483	0.901	12.741	4.050	2.176	22,389	0.086	10.912	2.003	2.878	26.74	98.35
10 054-22.1 14.8 0.15 1.027 1.400 0.971 1.2492 2.108 0.087 10.64 2.52 2.898 2.63 98.26 12 058-42 0.374 0.075 1.051 1.171 0.403 1.229 2.368 2.055 2.055 2.015 2.211 2.988 2.039 2.015 2.211 2.988 2.989 2.238 2.989 2.989 2.989 2.989 2.989 2.989 2.989 2.988 2.989 2.988 2.978 0.108 0.1031 <th2.388< th=""> <th2.017< th=""> <th2.018< th=""></th2.018<></th2.017<></th2.388<>	9	0514g2t1	1.280	0.140	10.353	1.420	0.877	12.756	3.992	2.130	22.228	0.087	10.875	2.215	2.893	26.71	97.96
11 0.954q-2 0.07 0.113 0.060 0.877 0.292 4.794 193 2.937 0.105 1144 0.589 2.20 9.756 13 0.954q-2 0.041 0.140 0.877 1.336 0.899 1.237 4.595 2.015 2.2499 0.116 1.144 1.585 2.999 2.571 2.581 2.64 7.91 14 0.954q-0.2 1.340 0.125 0.223 1.264 4.276 2.018 2.241 0.081 1.037 2.398 2.481 2.430 2.483 2.433 2.483 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.43 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.431 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433 2.433	10	0514g2t1	1.348	0.153	10.287	1.403	0.911	12.753	4.161	2.242	22.098	0.087	10.647	2.365	2.894	26.74	98.09
12 034g42 0.075 0.075 1.0151 1.111 0.403 1.229 2.038 2.109 2.4.26 0.101 1.034 1.858 2.989 2.6.20 97.56 14 034g42 1.033 0.127 1.0806 1.490 0.850 12.164 4.165 2.113 2.111 0.088 1.077 2.989 2.624 97.81 15 054g103 1.137 0.128 1.223 1.57 0.203 1.244 4.016 2.088 2.071 0.087 1.244 2.946 2.082 2.444 2.956 2.444 2.956 2.444 2.956 2.244 7.071 2.048 2.949 2.048 2.949 2.048 2.949 2.048 2.944 2.956 2.944 2.956 2.944 2.945 2.948 2.949 2.940 2.949 2.940 2.949 2.940 2.949 2.947 1.111 1.242 2.977 1.116 1.123 1.271 2.942 2.949 9.940 <td>11</td> <td>0514g4t2</td> <td>0.607</td> <td>0.113</td> <td>10.630</td> <td>1.060</td> <td>0.877</td> <td>12 492</td> <td>4 794</td> <td>1 993</td> <td>23 937</td> <td>0.105</td> <td>11 846</td> <td>0.529</td> <td>2 898</td> <td>26.38</td> <td>98.26</td>	11	0514g4t2	0.607	0.113	10.630	1.060	0.877	12 492	4 794	1 993	23 937	0.105	11 846	0.529	2 898	26.38	98.26
15 063 042 104 014	12	0514g4t2	0.374	0.075	10.951	1 171	0.403	12 291	2 968	2 109	24 326	0.176	11 944	1 585	2 989	26.20	97.56
14 0818q42 1033 0.127 10806 14.09 0.153 21.13 21.11 21.11 0.087 1.381 1.222 21.99 25.49 97.80 15 0818g103 1.340 0.126 1.257 0.226 12.460 4.176 2.088 22.071 0.087 1.081 2.248 2.662 97.81 17 0818g124 1.225 0.136 1.021 1.341 0.021 1.244 4.247 0.006 10.732 2.433 2.883 2.617 97.03 18 0818g124 1.226 0.142 1.044 0.020 12.312 4.348 2.021 2.2446 0.088 1.091 1.236 2.733 2.002 2.704 2.888 2.714 2.888 2.717 1.011 1.262 5.737 1.098 1.014 1.237 1.237 1.237 2.57 2.899 2.747 9.899 2.711 9.89 2.719 3.623 3.070 2.64 3.87 2.77	13	0514g4t2	1.061	0.140	9.877	1 336	0.899	12.374	4 595	2.035	22 499	0.101	11.029	2 211	2.872	26.26	97.29
1. 0.15 0.156 10.070 1.559 0.923 12.664 4.264 2.018 10.078 1.298 2.881 2.6.2 97.81 16 0584p103 1.340 0.128 1.023 1.557 0.926 12.480 4.176 2.088 2.073 0.089 10.572 2.434 2.563 2.6.71 97.03 18 0584p124 1.225 0.152 1.0268 1.501 0.000 12.444 4.202 2.014 2.2446 0.089 2.434 2.956 2.6.24 97.50 10 0584p124 1.022 0.122 1.0448 1.036 0.983 1.2.350 5.109 2.2446 0.088 1.031 1.2.62 2.6.73 2.6.72 9.800 21 0584p124 0.138 1.011 1.2.62 5.307 2.6.72 9.8.70 22 0584p164 0.148 1.0.30 1.2.25 0.5.72 9.8.73 2.088 2.0.75 2.6.63 9.8.44	14	0514g4t2	1.033	0.127	10.806	1 409	0.850	12 163	4 165	2 113	23 111	0.098	11 131	1 223	2 919	25.94	97.09
1 0 0 12 15 0 22 12.480 4.176 2.089 20.272 0.089 10.521 2.484 2.722 2.6.36 97.171 17 0544(24 1.225 0.156 10.261 1.231 0.990 12.312 4.340 2.073 2.213 0.096 10.732 2.433 2.843 2.643 97.17 18 0544(24 1.225 0.142 10.198 1.446 0.002 12.134 4.340 2.2077 0.1081 2.243 2.843 2.667 97.80 21 0544(24 0.182 0.142 1.018 1.268 5.373 2.088 2.097 0.106 11.321 1.290 2.863 2.017 2.872 0.104 1.035 1.674 8.84 23 0544(165 0.627 0.104 1.038 1.226 2.138 0.099 11.256 0.622 2.6.38 9.84 24 0544(165 0.647 0.044 1.0749	15	05l4g10t3	1.055	0.127	10.000	1.559	0.923	12.105	4.165	2.018	22.071	0.087	10.787	2 398	2.919	26.62	97.81
10 0.05 0.12 0.12 0.12 0.12 1.00 1.00 1.00 1.01 0.01 1.01 0.01 0.11 0.01 0	16	0514g10t3	1.340	0.128	10.223	1.557	0.926	12.004	4.176	2.010	22.071	0.089	10.521	2.550	2.001	26.36	07.01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	0514g10t5	1.225	0.126	10.225	1.337	0.020	12.400	4 240	2.000	22.072	0.007	10.521	2.404	2.720	26.50	07.02
no completa leads no.a no.a leads leads <thleads< th=""> <thleads< th=""> <thleads< th=""></thleads<></thleads<></thleads<>	18	0514g12t4	1.225	0.152	10.201	1.521	0.910	12.304	4 170	2.07.5	22.150	0.020	10.752	2.433	2.005	26.24	97.00
0 0 0 0 0 124 0 0 124 0 124 124 0 124 124 0 124 <td>10</td> <td>0514-212+4</td> <td>1.275</td> <td>0.142</td> <td>10.200</td> <td>1.301</td> <td>0.002</td> <td>12.012</td> <td>4.262</td> <td>2.114</td> <td>22.275</td> <td>0.090</td> <td>10.010</td> <td>2.4.54</td> <td>2.704</td> <td>26.24</td> <td>07.67</td>	10	0514-212+4	1.275	0.142	10.200	1.301	0.002	12.012	4.262	2.114	22.275	0.090	10.010	2.4.54	2.704	26.24	07.67
D0 D0/12 0.114 0.135 1.2.00 0.046 1.2.00	20	0514-212+4	0.012	0.172	10.170	1.4.06	0.082	12.770	5 100	2.001	22.440	0.000	11 222	1 202	2.001	26.30	00.00
1 0.094g14 0.086 0.114 10.39 1.207 1.017 12.24 5.307 1.088 1.014 11.251 1.209 2.0.73 2.0.74 98.79 23 054kg124 0.728 0.149 10.316 1.228 0.014 11.251 1.209 2.863 98.84 40 054g124 1.311 0.141 10.277 1.473 0.934 12.746 4.385 2.101 21.951 0.068 10.705 2.268 2.6.87 99.26 25 054kg165 0.657 0.109 10.664 1.058 0.862 1.2465 4.755 1.337 24.202 0.098 11.716 0.369 2.938 2.6.66 98.89 26 054kg165 0.745 0.118 10.014 1.033 0.862 12.445 4.755 1.11 2.4.214 0.098 1.150 0.702 2.4.68 98.89 20 054kg165 0.533 0.066 1.0730 1.170 0.942 1.286 5.062 2.0454 0.097 1.236 0.884 2.777 2.6.69	20	0514-12+4	0.912	0.122	10.250	1.300	1.011	12.550	5.109	2.000	22.977	0.110	11.200	1.275	2.901	20.27	20.00
22 Oshqi 214 Octob Olang 124 Octob Olang 124 Octob Dist Dist <thdist< th=""> <thdist< th=""> <thdist< td="" th<=""><td>21</td><td>0514g12t4</td><td>0.000</td><td>0.114</td><td>10.359</td><td>1.207</td><td>1.011</td><td>12.062</td><td>5.3/3</td><td>2.066</td><td>22.990</td><td>0.100</td><td>11.302</td><td>1.225</td><td>2.//3</td><td>26.72</td><td>96.90</td></thdist<></thdist<></thdist<>	21	0514g12t4	0.000	0.114	10.359	1.207	1.011	12.062	5.3/3	2.066	22.990	0.100	11.302	1.225	2.//3	26.72	96.90
23 0.149 0.129 0.149 1.299 0.030 2.103 2.103 2.103 1.290 0.132 5.010 2.013 2.101 2.1313 0.003 2.123 5.010 2.013 2.101 2.1313 0.008 11.716 0.032 2.833 2.6.00 9.263 0.544g165 0.670 0.010 10.634 1.225 0.042 12.2181 5.589 1.017 2.046 0.096 1.105 0.070 2.946 2.686 9.899 20 0544g165 0.633 0.096 1.078 1.079 0.090 2.046 1.011 1.212 0.000 2.049 2.049 2.040 0.013 1.215 0.000 2.049 9.049 0.000 3.000 2.049 9.000 3.000 2.049 9.010 0.003 2.147 2.048 0.0133 1.034 2.049 9.042 2.041 0.003 1.214 0.030 2.010 1.145 0.44 0.048 1.008 1.008 <td< td=""><td>22</td><td>0514-12+4</td><td>0.000</td><td>0.149</td><td>10.301</td><td>1.200</td><td>0.097</td><td>12.724</td><td>5.307</td><td>2.092</td><td>22.072</td><td>0.104</td><td>11.251</td><td>0.652</td><td>2.009</td><td>20.74</td><td>00.79</td></td<>	22	0514-12+4	0.000	0.149	10.301	1.200	0.097	12.724	5.307	2.092	22.072	0.104	11.251	0.652	2.009	20.74	00.79
24 Oshgi 244 1.511 0.141 10.27 1.493 0.394 12.493 5.205 2.137 0.088 10.103 2.208 2.633 2.0.03 2.633 2.0.03 2.633 2.0.03 2.0.33 2.0.038 2.0.038 10.103 2.248 5.0.08 2.0.22 2.3.38 0.006 11.500 0.086 2.0.23 2.0.008 11.716 0.0.68 2.0.23 2.0.008 11.716 0.0.68 2.0.23 2.0.008 11.716 0.0.68 2.0.23 2.0.008 11.31 11.375 0.970 2.9.46 2.6.85 98.88 20 0.514g165 0.538 0.066 10.798 1.057 0.8.62 1.2.842 4.852 1.911 2.4.61 0.093 1.2.102 0.55 3.0.00 2.6.95 93.32 0.0514g165 0.658 0.114 1.0.374 1.170 0.984 1.2.89 2.3.240 0.016 11.332 0.842 2.727 2.6.80 98.85 3.0514g165 0.658	23	0514g12t4	0.720	0.124	10.749	1.299	0.960	12.036	3.327	2.062	23.163	0.099	10.705	0.052	3.070	20.05	90.04
25 0588605 0.0.00 <td>24</td> <td>0514g12t4</td> <td>1.511</td> <td>0.141</td> <td>10.277</td> <td>1.495</td> <td>0.954</td> <td>12.740</td> <td>4.365</td> <td>2.101</td> <td>21.951</td> <td>0.000</td> <td>11.705</td> <td>2.200</td> <td>2.655</td> <td>26.70</td> <td>97.95</td>	24	0514g12t4	1.511	0.141	10.277	1.495	0.954	12.740	4.365	2.101	21.951	0.000	11.705	2.200	2.655	26.70	97.95
20 0584205 0.057 0.059 0.059 0.059 0.150 0.058 0.054 1.250 0.25 2.5.86 0.056 1.250 0.258 2.057 2.608 98.58 27 05842165 0.487 0.094 10.064 1.058 0.862 12.465 4.755 1.937 24.02 0.096 12.147 0.350 2.938 2.656 98.38 28 05842165 0.538 0.086 10.798 1.050 0.862 12.842 4.852 1.911 24.664 0.097 12.363 0.298 3.070 2.648 99.70 30 05842165 0.053 0.016 10.726 1.338 0.632 12.842 4.852 1.911 24.604 0.097 12.363 0.284 2.927 2.648 98.38 31 05842165 0.558 0.106 10.730 1.176 0.852 12.846 4.713 1.996 2.3882 0.103 11.916 0.440 3.060 2.648 99.62 3.548 164 1.535 0.914 1.302 0.932	25	0514g16t5	0.620	0.100	10.550	1.1/4	0.925	12.838	5.009	2.044	23.735	0.098	11./10	0.680	2.926	26.87	99.26
27 054g105 0.049 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 10.094 12.015 0.0175 0.0175 0.0175 0.0175 0.070 22.946 0.6.85 98.89 29 0514g165 0.538 0.086 10.798 10.541 10.53 0.865 12.842 4.852 1.911 24.604 0.097 12.363 0.298 3.070 2.648 98.85 30 0514g165 0.685 0.114 10.374 1.170 0.984 12.815 0.344 0.098 11.559 0.824 2.648 98.235 32 0514g165 0.558 0.016 10.370 1.176 0.852 12.816 4.713 1.996 23.882 0.103 11.116 0.440 3.060 2.688 99.62 35 0514g165 0.555 0.000 10.022 1.257 0.870 12.827 4.748 2.022 2.1212 0.106 11.332 0.844 2.640 2.848 2.714	26	0514g16t5	0.657	0.109	10.665	1.225	0.942	12.810	5.068	2.025	25.586	0.096	11.509	0.728	2.975	26.80	98.99
28 054g105 0.745 0.118 10.212 1.100 1.200 1.237 0.970 2.246 2.054 90 054g105 0.533 0.005 10.741 1.050 0.865 12.842 4.852 1.911 24.604 0.007 12.363 0.208 3.000 26.04 99.70 30 054g105 0.655 0.114 1.037 0.170 0.386 12.842 4.852 1.911 24.604 0.007 12.363 0.208 3.000 26.04 99.70 31 054g105 0.758 0.106 10.730 1.176 0.852 12.816 4.713 1.996 23.249 0.106 11.854 0.461 2.943 2.680 2.709 98.58 34 054g216 1.782 0.144 0.921 1.327 0.971 1.326 0.008 1.1016 0.440 3.060 2.681 99.62 35 054g216 1.681 0.166 10.074 1.419 0.936	21	0514g16t5	0.487	0.094	10.604	1.058	0.862	12.465	4./55	1.957	24.202	0.098	12.14/	0.369	2.958	26.56	98.38
29 05Hg165 0.538 0.086 10.99 0.182 12.864 4.685 1.911 24.641 0.097 12.102 0.505 3.000 26.96 99.70 31 05Hg165 0.533 0.055 10.541 1.053 0.856 12.842 4.852 1.945 23.444 0.097 12.533 0.884 2.727 26.80 98.85 32 05Hg165 0.558 0.104 10.726 1.338 0.963 12.886 5.062 2.045 23.842 0.103 11.916 0.440 3.060 2.6.81 99.16 34 05Hg216 0.555 0.000 10.902 1.257 0.870 1.2827 4.748 2.022 2.4122 0.100 1.184 0.461 2.943 2.6.89 99.62 05Hg216 1.681 0.164 9.922 1.239 0.972 1.3026 3.932 2.030 2.2179 0.084 11.062 2.482 2.484 2.714 98.90 3.0514g2145	28	0514g16t5	0.745	0.118	10.212	1.160	1.050	12.851	5.589	1.991	22.965	0.115	11.5/5	0.970	2.946	26.85	98.89
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	29	0514g16t5	0.538	0.086	10.798	1.059	0.862	12.864	4.685	1.911	24.251	0.093	12.102	0.505	3.000	26.94	99.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	0514g16t5	0.533	0.095	10.541	1.053	0.865	12.842	4.852	1.911	24.604	0.097	12.363	0.298	3.070	26.96	100.08
32 054g165 0.00 0.122 10.726 1.338 0.963 12.886 5.002 2.045 23.249 0.106 11.332 0.884 2.959 26.95 99.32 33 054g165 0.535 0.000 10.700 1.852 1.816 4.713 1.996 23.828 0.103 11.916 0.440 3.060 2.6.81 99.62 35 054g216 1.782 0.164 9.922 1.239 0.972 13.026 3.932 1.899 22.179 0.084 11.006 2.482 2.802 2.709 98.58 36 054g216 1.681 0.166 10.074 1.419 0.936 13.002 4.003 2.2135 0.094 10.903 2.539 2.870 27.13 98.83 38 054g216 1.645 0.163 9.972 1.355 0.929 2.018 2.177 10.085 10.599 2.631 2.775 2.695 97.85 39 054g216 1.645 0.163 9.972 1.355 0.929 1.208 0.395 2.102 <td< td=""><td>31</td><td>0514g16t5</td><td>0.685</td><td>0.114</td><td>10.374</td><td>1.170</td><td>0.984</td><td>12.809</td><td>5.325</td><td>1.945</td><td>23.444</td><td>0.098</td><td>11.559</td><td>0.824</td><td>2./2/</td><td>26.80</td><td>98.85</td></td<>	31	0514g16t5	0.685	0.114	10.374	1.170	0.984	12.809	5.325	1.945	23.444	0.098	11.559	0.824	2./2/	26.80	98.85
33 05l4g165 0.558 0.106 10.730 1.76 0.852 12.816 4.713 1.996 23.882 0.103 11.916 0.440 3.060 26.81 99.16 34 05l4g216 1.585 0.009 10.902 1.257 0.870 12.827 4.748 2.022 24.122 0.100 11.854 0.641 2.943 2.689 99.62 35 05l4g216 1.681 0.164 9.922 1.239 0.870 12.827 4.748 2.022 2.121 0.091 10.793 2.542 2.848 2.7.09 98.58 36 05l4g216 1.661 0.164 9.966 1.328 0.940 1.302 4.073 2.047 2.171 0.084 10.943 2.539 2.870 2.7.13 98.83 39 05l4g216 1.646 0.168 9.977 1.296 0.930 1.297 4.073 2.047 2.107 10.845 2.558 2.807 2.7.03 98.44 40 05l4g216 1.642 0.164 9.972 1.355 0.929	32	05l4g16t5	0.705	0.122	10.726	1.338	0.963	12.886	5.062	2.045	23.249	0.106	11.332	0.884	2.959	26.95	99.32
34 054g165 0.535 0.090 10.902 1.287 0.870 12.827 4.748 2.022 24.122 0.100 11.854 0.461 2.943 26.89 99.62 35 0514g2116 1.681 0.164 9.922 1.239 0.972 13.030 4.032 2.030 22.179 0.084 11.006 2.482 2.802 27.19 98.58 36 0514g2116 1.681 0.164 9.926 1.328 0.940 13.025 4.005 2.023 22.135 0.094 10.943 2.539 2.870 27.13 98.83 38 0514g2116 1.713 0.159 9.844 1.394 0.960 13.002 4.013 2.047 2.171 0.085 10.599 2.661 2.825 2.707 98.54 410 0514g2116 1.645 0.163 9.977 1.296 0.390 12.987 4.039 2.029 2.102 0.077 10.845 2.558 2.807 2.7.03 98.48 41 0514g216 1.642 0.163 9.972 1.355	33	05l4g16t5	0.558	0.106	10.730	1.176	0.852	12.816	4.713	1.996	23.882	0.103	11.916	0.440	3.060	26.81	99.16
35 05Hq2116 1.782 0.164 9.922 1.239 0.972 13.026 3.932 1.899 22.179 0.084 11.006 2.482 2.802 27.09 98.58 36 05Hq2116 1.681 0.166 10.074 1.419 0.936 13.030 4.032 2.030 22.121 0.091 10.793 2.542 2.848 27.14 98.99 37 05Hq2116 1.686 0.148 9.956 1.528 0.940 13.022 4.005 2.023 2.117 0.085 10.991 2.775 2.6.95 97.85 39 05Hq2116 1.646 0.186 9.894 1.394 0.960 13.002 4.141 2.018 21.928 0.084 10.695 2.661 2.825 2.707 98.84 40 05Hq2116 1.645 0.163 9.977 1.256 0.929 1.2992 3.975 2.066 21.993 0.075 10.793 2.540 2.835 2.704 98.84 42 05Hq2146 1.639 0.147 9.823 1.175 10.00	34	05l4g16t5	0.535	0.090	10.902	1.257	0.870	12.827	4.748	2.022	24.122	0.100	11.854	0.461	2.943	26.89	99.62
36 0514g2116 1.681 0.166 10.074 1.419 0.936 13.025 4.032 20.30 22.121 0.091 10.793 2.542 2.848 27.14 98.90 37 0514g2116 1.690 0.148 9.956 1.328 0.940 13.025 4.005 2.023 22.135 0.094 10.973 2.641 2.775 2.605 97.85 38 0514g2116 1.646 0.168 9.894 1.394 0.960 13.002 4.141 2.018 21.928 0.084 10.695 2.661 2.825 27.07 98.54 40 0514g2116 1.645 0.163 9.977 1.296 0.930 12.987 4.039 2.022 22.102 0.0077 10.845 2.558 2.807 27.03 98.48 41 0514g2116 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 2.2147 0.066 10.954 2.531 2.818 27.02 98.38 42 0514g2147 1.651 0.143 10.133 1.240<	35	05l4g21t6	1.782	0.164	9.922	1.239	0.972	13.026	3.932	1.899	22.179	0.084	11.006	2.482	2.802	27.09	98.58
37 05l4g216 1.690 0.148 9.956 1.328 0.940 13.025 4.005 2.023 22.135 0.094 10.943 2.259 2.870 27.13 98.83 38 05l4g21t6 1.713 0.159 9.846 1.247 0.981 12.978 4.073 2.047 21.771 0.085 10.599 2.631 2.757 26.95 97.85 39 05l4g21t6 1.645 0.163 9.977 1.296 0.930 12.987 4.039 2.029 22.102 0.077 10.845 2.558 2.807 27.03 98.48 41 05l4g21t6 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 22.147 0.086 10.954 2.531 2.818 27.04 98.52 42 05l4g21t6 1.628 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.993 0.075 10.793 2.540 2.835 2.6.99 98.19 43 05l4g24t7 1.651 0.1471 1.163 0.583 <td>36</td> <td>05l4g21t6</td> <td>1.681</td> <td>0.166</td> <td>10.074</td> <td>1.419</td> <td>0.936</td> <td>13.030</td> <td>4.032</td> <td>2.030</td> <td>22.121</td> <td>0.091</td> <td>10.793</td> <td>2.542</td> <td>2.848</td> <td>27.14</td> <td>98.90</td>	36	05l4g21t6	1.681	0.166	10.074	1.419	0.936	13.030	4.032	2.030	22.121	0.091	10.793	2.542	2.848	27.14	98.90
38 05l4g216 1.713 0.159 9.846 1.247 0.981 12.978 4.073 2.047 21.771 0.085 10.599 2.631 2.775 26.95 97.85 39 05l4g216 1.646 0.186 9.894 1.394 0.960 13.002 4.141 2.018 21.928 0.084 10.695 2.661 2.825 27.07 98.54 40 05l4g216 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 22.147 0.086 10.954 2.531 2.818 27.04 98.52 42 05l4g216 1.642 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.993 0.075 10.793 2.540 2.835 27.02 98.38 44 05l4g216 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.091 11.398 2.103 2.933 26.90 99.00 45 05l4g247 0.607 0.096 10.471 1.163	37	05l4g21t6	1.690	0.148	9.956	1.328	0.940	13.025	4.005	2.023	22.135	0.094	10.943	2.539	2.870	27.13	98.83
39 05l4g216 1.686 0.186 9.894 1.394 0.960 13.002 4.141 2.018 21.028 0.084 10.695 2.661 2.825 27.07 98.54 40 05l4g216 1.645 0.163 9.977 1.296 0.930 12.987 4.039 2.029 22.102 0.077 10.845 2.558 2.807 27.03 98.54 41 05l4g216 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 22.147 0.086 10.954 2.531 2.818 27.04 98.52 42 05l4g216 1.628 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.933 0.075 10.793 2.540 2.823 2.6.99 98.19 43 05l4g2147 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.011 1.398 2.033 2.033 2.049 99.00 45 05l4g247 0.607 0.060 1.0471 1.163	38	05l4g21t6	1.713	0.159	9.846	1.247	0.981	12.978	4.073	2.047	21.771	0.085	10.599	2.631	2.775	26.95	97.85
40 05l4g216 1.645 0.163 9.977 1.296 0.930 12.987 4.039 2.029 22.102 0.077 10.845 2.558 2.807 27.03 98.48 41 05l4g216 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 22.147 0.086 10.954 2.531 2.818 27.04 98.52 42 05l4g216 1.628 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.93 0.075 10.793 2.540 2.835 26.99 98.19 43 05l4g24r7 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.001 11.398 2.103 2.933 26.90 99.00 45 05l4g24r7 0.607 0.096 10.471 1.163 0.586 12.690 4.838 2.091 23.194 0.259 11.662 1.800 2.978 2.6,91 99.35 46 05l4g24r7 0.617 0.117 10.485 1.337	39	05l4g21t6	1.686	0.186	9.894	1.394	0.960	13.002	4.141	2.018	21.928	0.084	10.695	2.661	2.825	27.07	98.54
41 05l4g21t6 1.642 0.168 9.972 1.355 0.929 12.989 3.951 1.937 22.147 0.086 10.954 2.531 2.818 27.04 98.52 42 05l4g21t6 1.628 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.993 0.075 10.793 2.540 2.835 26.99 98.19 43 05l4g21t6 1.639 0.143 10.133 1.240 0.928 12.990 3.936 2.124 22.060 0.078 10.719 2.536 2.835 27.02 98.38 44 05l4g24t7 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.001 11.398 2.103 2.933 2.690 99.00 45 05l4g24t7 0.607 0.066 10.471 1.163 0.583 12.640 4.838 2.091 23.194 0.259 11.662 1.800 2.978 26.91 99.35 47 05l4g24t7 0.617 0.117 10.485 1.337<	40	05l4g21t6	1.645	0.163	9.977	1.296	0.930	12.987	4.039	2.029	22.102	0.077	10.845	2.558	2.807	27.03	98.48
42 05l4g216 1.628 0.162 9.924 1.302 0.934 12.992 3.975 2.056 21.993 0.075 10.793 2.540 2.823 26.99 98.19 43 05l4g216 1.639 0.143 10.133 1.240 0.928 12.990 3.936 2.124 22.060 0.078 10.719 2.536 2.835 27.02 98.38 44 05l4g24r7 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.001 11.398 2.033 2.033 2.039 99.00 45 05l4g24r7 0.607 0.096 10.471 1.163 0.585 12.630 4.838 2.091 23.194 0.255 11.667 1.779 2.768 26.91 99.35 46 05l4g24r7 0.617 0.117 10.485 1.337 0.624 12.642 5.011 2.013 22.900 0.291 11.429 1.912 2.753 2.6.84 98.74 49 05l4g24r7 0.780 0.128 1.030 1.234 </td <td>41</td> <td>05l4g21t6</td> <td>1.642</td> <td>0.168</td> <td>9.972</td> <td>1.355</td> <td>0.929</td> <td>12.989</td> <td>3.951</td> <td>1.937</td> <td>22.147</td> <td>0.086</td> <td>10.954</td> <td>2.531</td> <td>2.818</td> <td>27.04</td> <td>98.52</td>	41	05l4g21t6	1.642	0.168	9.972	1.355	0.929	12.989	3.951	1.937	22.147	0.086	10.954	2.531	2.818	27.04	98.52
43 05l4g216 1.639 0.143 10.133 1.240 0.928 12.990 3.936 2.124 22.060 0.078 10.719 2.536 2.835 27.02 98.38 44 05l4g24r7 1.651 0.147 9.823 1.175 1.000 12.782 4.302 1.834 22.867 0.091 11.398 2.103 2.933 26.90 99.00 45 05l4g24r7 0.607 0.096 10.471 1.163 0.583 12.634 4.580 1.916 23.031 0.265 11.667 1.779 2.768 26.71 98.27 46 05l4g24r7 0.617 0.117 10.485 1.337 0.624 12.642 5.011 2.013 22.900 0.291 11.429 1.912 2.753 26.84 98.97 48 05l4g24r7 0.916 0.151 10.038 1.325 0.789 12.625 5.788 2.055 21.91 0.309 11.009 2.262 2.686 26.83 98.74 49 05l4g24r7 0.786 0.128 1.0300 1.248<	42	05l4g21t6	1.628	0.162	9.924	1.302	0.934	12.992	3.975	2.056	21.993	0.075	10.793	2.540	2.823	26.99	98.19
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43	05l4g21t6	1.639	0.143	10.133	1.240	0.928	12.990	3.936	2.124	22.060	0.078	10.719	2.536	2.835	27.02	98.38
45 05l4g24r7 0.607 0.096 10.471 1.163 0.583 12.634 4.580 1.916 23.031 0.265 11.667 1.779 2.768 26.71 98.27 46 05l4g24r7 0.582 0.129 10.438 1.203 0.586 12.690 4.838 2.091 23.194 0.259 11.662 1.800 2.978 26.91 99.35 47 05l4g24r7 0.617 0.117 10.485 1.337 0.624 12.642 5.011 2.013 22.900 0.291 11.429 1.912 2.753 26.84 98.97 48 05l4g24r7 0.916 0.151 10.038 1.325 0.789 12.625 5.788 2.055 21.917 0.309 11.009 2.262 2.684 26.71 98.15 50 05l4g24r7 0.789 0.128 10.300 1.234 0.757 12.609 5.457 2.060 21.917 0.274 10.897 2.174 2.846 26.71 98.87 51 05l4g24r7 0.769 0.131 10.294 1.3	44	05l4g24t7	1.651	0.147	9.823	1.175	1.000	12.782	4.302	1.834	22.867	0.091	11.398	2.103	2.933	26.90	99.00
46 05l4g24r7 0.582 0.129 10.438 1.203 0.586 12.690 4.838 2.091 23.194 0.259 11.662 1.800 2.978 26.91 99.35 47 05l4g24r7 0.617 0.117 10.485 1.337 0.624 12.642 5.011 2.013 22.900 0.291 11.429 1.912 2.753 26.84 98.97 48 05l4g24r7 0.916 0.151 10.038 1.325 0.789 12.629 5.788 2.055 21.951 0.309 11.009 2.262 2.686 26.83 98.74 49 05l4g24r7 0.786 0.146 10.264 1.388 0.748 12.535 5.478 2.013 2.218 0.289 10.984 2.214 2.955 26.75 98.87 51 05l4g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.211 2.189 22.033 0.276 10.785 2.154 2.994 26.77 98.87 51 05l4g24r7 0.769 0.131 10.394 1.36	45	05l4g24t7	0.607	0.096	10.471	1.163	0.583	12.634	4.580	1.916	23.031	0.265	11.667	1.779	2.768	26.71	98.27
47 05l4g24r7 0.617 0.117 10.485 1.337 0.624 12.642 5.011 2.013 22.900 0.291 11.429 1.912 2.753 26.84 98.97 48 05l4g24r7 0.916 0.151 10.038 1.325 0.789 12.625 5.788 2.055 21.951 0.309 11.009 2.262 2.686 26.83 98.74 49 05l4g24r7 0.789 0.128 10.204 1.388 0.748 12.635 5.457 2.060 21.917 0.274 10.897 2.176 2.866 26.83 98.74 50 05l4g24r7 0.769 0.146 10.264 1.388 0.748 12.642 5.211 2.18 0.289 10.987 2.176 2.866 26.75 98.87 51 05l4g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.211 2.189 22.033 0.276 10.785 2.154 2.994 26.77 98.81 52 05l4g24r7 0.566 0.097 10.901 1.372 0.526	46	05l4g24t7	0.582	0.129	10.438	1.203	0.586	12.690	4.838	2.091	23.194	0.259	11.662	1.800	2.978	26.91	99.35
48 05l4g24r7 0.916 0.151 10.038 1.325 0.789 12.625 5.788 2.055 21.951 0.309 11.009 2.262 2.686 26.83 98.74 49 05l4g24r7 0.786 0.128 10.300 1.234 0.757 12.605 5.457 2.060 21.917 0.274 10.897 2.176 2.846 26.71 98.15 50 05l4g24r7 0.786 0.146 10.264 1.388 0.748 12.535 5.478 2.113 22.218 0.289 10.984 2.214 2.955 26.75 98.87 51 05l4g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.211 2.189 2.033 0.276 10.785 2.154 2.994 26.77 98.81 52 05l4g24r7 0.578 0.091 10.718 1.323 0.542 12.656 3.894 2.166 23.053 0.207 11.384 1.947 2.866 26.68	47	05l4g24t7	0.617	0.117	10.485	1.337	0.624	12.642	5.011	2.013	22.900	0.291	11.429	1.912	2.753	26.84	98.97
49 054g24r7 0.789 0.128 10.300 1.234 0.757 12.609 5.457 2.060 21.917 0.274 10.897 2.176 2.846 26.71 98.15 50 0514g24r7 0.786 0.146 10.264 1.388 0.748 12.535 5.478 2.113 22.218 0.289 10.984 2.214 2.955 26.75 98.87 51 0514g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.221 2.189 22.033 0.276 10.785 2.154 2.994 26.77 98.41 52 0514g24r7 0.578 0.091 10.718 1.323 0.542 12.656 3.894 2.166 23.053 0.207 11.384 1.947 2.866 26.68 98.10 53 0514g24r7 0.566 0.097 10.901 1.372 0.526 12.722 3.887 2.214 2.311 0.213 11.569 1.974 2.866 26.68 98.10 54 0514g24r8 0.516 0.096 10.901 1.372	48	05l4g24t7	0.916	0.151	10.038	1.325	0.789	12.625	5.788	2.055	21.951	0.309	11.009	2.262	2.686	26.83	98.74
50 054g24r7 0.786 0.146 10.264 1.388 0.748 12.535 5.478 2.113 22.218 0.289 10.984 2.214 2.955 26.75 98.87 51 0514g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.221 2.189 22.033 0.276 10.785 2.154 2.994 26.77 98.41 52 0514g24r7 0.578 0.091 10.718 1.323 0.542 12.656 3.894 2.166 23.053 0.207 11.384 1.947 2.866 26.68 98.10 53 0514g24r7 0.566 0.097 10.901 1.372 0.526 12.722 3.887 2.114 2.311 0.213 11.569 1.974 2.866 26.68 98.10 54 0514g29t8 0.516 0.096 10.908 1.225 0.836 12.722 3.887 2.116 24.056 0.231 11.857 0.640 3.099 27.26	49	05l4g24t7	0.789	0.128	10.300	1.234	0.757	12.609	5.457	2.060	21.917	0.274	10.897	2.176	2.846	26.71	98.15
51 05l4g24r7 0.769 0.131 10.394 1.306 0.740 12.642 5.21 2.189 22.033 0.276 10.785 2.154 2.994 26.77 98.41 52 05l4g24r7 0.578 0.091 10.718 1.323 0.542 12.656 3.894 2.166 23.053 0.207 11.384 1.947 2.866 26.68 98.10 53 05l4g24r7 0.566 0.097 10.901 1.372 0.526 12.722 3.887 2.214 23.311 0.213 11.569 1.974 2.804 26.89 99.14 54 05l4g29t8 0.516 0.096 1.0208 1.225 0.836 12.722 3.887 2.106 24.056 0.231 11.857 0.640 3.099 27.26 100.35 55 05l4g29t8 0.517 0.101 10.709 1.316 0.891 13.040 4.666 2.191 23.245 0.094 11.250 1.222 2.985 27.16	50	05l4g24t7	0.786	0.146	10.264	1.388	0.748	12.535	5.478	2.113	22.218	0.289	10.984	2.214	2.955	26.75	98.87
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	05l4g24t7	0.769	0.131	10.394	1.306	0.740	12.642	5.221	2.189	22.033	0.276	10.785	2.154	2.994	26.77	98.41
53 05l4g24r7 0.566 0.097 10.901 1.372 0.526 12.722 3.887 2.214 23.311 0.213 11.569 1.974 2.894 26.89 99.14 54 05l4g29t8 0.516 0.096 10.908 1.225 0.836 12.967 4.561 2.106 24.056 0.231 11.857 0.640 3.099 27.26 100.35 55 05l4g29t8 0.817 0.101 10.709 1.316 0.891 13.040 4.666 2.191 23.245 0.094 11.250 1.222 2.985 27.16 99.69 56 05l4g29t8 0.707 0.131 10.440 1.312 0.642 12.785 4.376 2.052 23.139 0.238 11.542 1.705 2.876 26.92 98.86	52	05l4g24t7	0.578	0.091	10.718	1.323	0.542	12.656	3.894	2.166	23.053	0.207	11.384	1.947	2.866	26.68	98.10
54 0514g2918 0.516 0.096 10.908 1.225 0.836 12.967 4.561 2.106 24.056 0.231 11.857 0.640 3.099 27.26 100.35 55 0514g2918 0.817 0.101 10.709 1.316 0.891 13.040 4.666 2.191 23.245 0.094 11.250 1.222 2.985 27.16 99.69 56 0514g2918 0.707 0.131 10.440 1.312 0.642 12.785 4.376 2.052 23.139 0.238 11.542 1.705 2.876 26.92 98.86	53	05l4g24t7	0.566	0.097	10.901	1.372	0.526	12.722	3.887	2.214	23.311	0.213	11.569	1.974	2.894	26.89	99.14
55 0514g29t8 0.817 0.101 10.709 1.316 0.891 13.040 4.666 2.191 23.245 0.094 11.250 1.222 2.985 27.16 99.69 56 0514g29t8 0.707 0.131 10.440 1.312 0.642 12.785 4.376 2.052 23.139 0.238 11.542 1.705 2.876 26.92 98.86	54	05l4g29t8	0.516	0.096	10.908	1.225	0.836	12.967	4.561	2.106	24.056	0.231	11.857	0.640	3.099	27.26	100.35
56 0514g29t8 0.707 0.131 10.440 1.312 0.642 12.785 4.376 2.052 23.139 0.238 11.542 1.705 2.876 26.92 98.86	55	05l4g29t8	0.817	0.101	10.709	1.316	0.891	13.040	4.666	2.191	23.245	0.094	11.250	1.222	2.985	27.16	99.69
	56	05l4g29t8	0.707	0.131	10.440	1.312	0.642	12.785	4.376	2.052	23.139	0.238	11.542	1.705	2.876	26.92	98.86

Granite MN (Montalet_B)	2°39'39"	- 43°30'10"
-------------------------	----------	-------------

NUM	4 REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	007l2g3t1	1.251	0.222	10.203	0.795	1.133	13.252	5.868	1.843	23.525	0.133	11.828	0.259	2.909	27.46	100.68
2	007l2g3t1	0.142	0.123	10.628	0.475	0.683	13.020	5.404	1.551	25.251	0.266	13.171	0.000	3.067	27.37	101.15
3	007l2g3t1	0.093	0.113	10.703	0.452	0.595	13.099	4.935	1.515	25.538	0.257	13.564	0.000	3.074	27.48	101.42
4	007l2g3t1	0.167	0.214	9.726	0.467	0.950	12.731	8.568	1.451	24.010	0.473	12.547	0.000	2.768	27.25	101.32
5	007l2g3t1	0.227	0.210	9.472	0.330	1.122	12.718	9.324	1.390	23.554	0.504	12.630	0.000	2.816	27.32	101.62
6	007l2g3t1	0.224	0.224	9.630	0.337	1.102	12.796	8.762	1.364	23.791	0.459	12.772	0.000	2.830	27.38	101.67
7	007l2g3t1	0.210	0.152	10.326	0.408	0.859	12.921	6.726	1.532	24.562	0.325	12.828	0.000	2.929	27.31	101.09
8	007l2g3t1	1.170	0.234	9.992	0.722	1.112	13.168	6.036	1.710	23.253	0.153	11.758	0.744	2.813	27.37	100.24
9	007l2g3t1	0.457	0.185	9.732	0.935	0.892	13.066	6.151	1.812	23.625	0.239	12.211	0.719	2.889	27.32	100.23
10	007l2g3t1	0.306	0.185	10.731	1.142	0.946	13.230	5.983	2.362	23.220	0.182	11.326	0.601	2.997	27.49	100.70
11	007l2g15t2	1.467	0.250	9.937	0.869	1.201	13.308	5.854	1.810	22.755	0.118	11.358	1.131	2.917	27.56	100.53
12	007l2g15t2	1.535	0.271	9,896	0.909	1.246	13.273	5,988	1.769	22.621	0.111	11.258	1.144	2.746	27.48	100.25
13	007l2g15t2	1.643	0.246	0.848	0.825	1.230	13 319	5 796	1 763	22 600	0.096	11 212	1 202	2 837	27.50	100.12
14	00712g15t2	1.727	0.275	9.750	0.773	1.296	13.260	6.079	1.747	22.540	0.000	11.212	1.192	2.007	27.50	100.12
15	00712g15t2	1.727	0.275	9.750	0.779	1.200	12.192	C 1 E E	1.741	22.340	0.099	11.2/2	1.102	2.791	27.47	00.44
15	00/12g15t2	1./10	0.289	9.525	0.798	1.284	13.182	0.155	1./41	22.223	0.135	11.192	1.200	2.705	27.50	99.44
16	00/l2g15t2	0.212	0.189	10.053	0.414	0.952	12.793	7.604	1.454	24.438	0.365	12.544	0.000	2.906	27.22	101.15
17	007l2g15t2	0.211	0.172	9.903	0.306	0.941	12.831	7.687	1.527	24.474	0.346	12.700	0.000	2.969	27.27	101.34
18	007l2g15t2	0.217	0.179	10.017	0.387	0.963	12.810	7.888	1.423	24.362	0.355	12.595	0.000	2.879	27.25	101.33
19	007l2g15t2	1.514	0.260	9.776	0.768	1.217	13.205	6.138	1.785	22.819	0.138	11.504	1.110	2.716	27.45	100.40
20	007l2g15t2	0.911	0.230	9.820	0.651	1.009	13.043	6.333	1.509	23.836	0.213	12.275	0.539	2.749	27.29	100.41
21	007l2g17t3	0.170	0.174	10.155	0.410	0.924	12.799	7.504	1.563	24.252	0.346	12.821	0.000	2.868	27.22	101.21
22	007l2g17t3	0.250	0.228	9.659	0.382	1.153	12.753	9.356	1.490	23.126	0.416	12.359	0.000	2.807	27.22	101.20
23	007l2g17t3	0.363	0.227	9.745	0.481	1.142	12.727	9.069	1.485	23.249	0.399	12.296	0.000	2.785	27.18	101.14
24	007l2g17t3	1.788	0.259	9.894	0.745	1.203	13.178	5.730	1.710	23.469	0.130	11.671	0.490	2.925	27.40	100.59
25	007l2g17t3	1 772	0.254	9.960	0.631	1.180	13 199	5 581	1.655	23 586	0.123	11 994	0.471	2 828	27.42	100.65
26	007l2g17t3	1.890	0.267	9.637	0.709	1.230	13 196	5 861	1.585	23 554	0.137	11.825	0.508	2.878	27.46	100.83
20	00712g1713	0.020	0.207	0.700	0.709	1.024	12.024	6.800	1.500	20.004	0.260	10 200	0.320	2.070	27.40	100.00
20	00/12g1/t3	0.028	0.108	2.799	0.300	1.020	12.930	5.000	1.520	24.264	0.209	12.320	0.141	2.7/3	27.20	100.00
2ð 20	00/12g1/t3	1.45/	0.211	10.060	0.762	1.182	13.104	5.989	1.791	43.755	0.135	11.907	0.116	2.934	27.59	100.81
29	00/12g1/t3	1.380	0.214	10.359	0./86	1.147	13.176	5.588	1./93	23.885	0.121	11.9/3	0.106	2.996	27.41	100.94
50 a:	00/12g17t3	1.812	0.268	9.872	0.665	1.203	13.167	5.716	1.641	23.566	0.132	11.797	0.542	2.899	27.41	100.68
31	007l2g30t4	1.428	0.250	9.520	0.719	1.249	13.378	6.128	1.613	22.929	0.104	11.609	1.138	2.821	27.62	100.51
32	007l2g30t4	1.550	0.286	9.635	0.834	1.342	13.321	6.402	1.705	22.434	0.115	11.435	1.184	2.631	27.57	100.44
33	007l2g30t4	1.568	0.274	9.640	0.887	1.380	13.385	6.837	1.740	22.243	0.110	11.239	1.191	2.748	27.69	100.94
34	007l2g30t4	1.583	0.288	9.602	0.825	1.373	13.360	6.837	1.757	22.264	0.114	11.182	1.241	2.743	27.66	100.83
35	007l2g30t4	1.501	0.266	9.604	0.766	1.338	13.334	6.421	1.725	22.653	0.116	11.386	1.146	2.788	27.61	100.66
36	007l2g30t4	0.226	0.176	9.561	0.415	0.811	12.788	7.628	1.387	24.601	0.437	12.943	0.041	2.825	27.25	101.09
37	00712g30r4	0.242	0.224	9.514	0.431	0.812	12.563	8.868	1.432	23.806	0.590	12.262	0.413	2.788	27.15	101.10
38	00712030+4	1.442	0.250	9.982	0.848	1.185	13.396	5.876	1.791	22.891	0.104	11.405	1.091	2.836	27.66	100.75
39	00712g30t4	1 320	0.245	9.941	0.820	1 172	13 373	5 775	1.673	23.088	0.104	11 660	1.018	2.802	27.60	100.75
40	00712g30t4	1.520	0.245	0.952	0.020	1.1/2	12.296	J.//J	1.075	23.000	0.100	11.000	1.010	2.002	27.02	100.01
40	00712g3115	1.409	0.256	9.652	0.952	1.240	13.360	5.007	1.007	22.094	0.106	11.200	1.115	2.730	27.03	100.37
41	00/12g31t5	1.494	0.227	9.794	0.755	1.215	13.393	5.907	1.812	22.947	0.097	11.679	1.067	2.815	27.67	100.87
42	00/l2g31t5	1.500	0.266	9.769	0.851	1.210	13.362	5.933	1./96	22.794	0.108	11.543	1.151	2.818	27.63	100.73
43	00/l2g31t5	1.354	0.252	9.738	0.826	1.2/5	13.311	6.321	1.644	22.750	0.106	11.445	1.130	2.811	27.56	100.52
44	007l2g31t5	0.179	0.204	9.785	0.306	0.931	12.724	8.393	1.425	24.365	0.448	12.489	0.000	2.939	27.24	101.43
45	007l2g31t5	0.184	0.221	9.744	0.315	0.913	12.729	8.418	1.428	24.320	0.445	12.634	0.000	2.819	27.24	101.41
46	007l2g31t5	0.182	0.180	10.268	0.284	0.860	12.862	7.449	1.542	24.688	0.382	12.801	0.000	2.837	27.37	101.71
47	007l2g31t5	0.232	0.206	9.876	0.501	0.978	12.907	7.932	1.478	24.371	0.355	12.607	0.000	2.797	27.39	101.63
48	007l2g31t5	0.206	0.180	10.172	0.364	0.890	12.883	7.291	1.589	24.708	0.338	12.802	0.000	3.028	27.39	101.84
49	0071203115	1.817	0.256	9.608	0.668	1.245	13.446	5.854	1.600	23.467	0.127	11.790	0.593	2.825	27.73	101.03
50	00713022	0.261	0.205	9.777	0.534	1.112	12.761	8.430	1.510	23.690	0.392	12.492	0.000	2.828	27.23	101.22
51	00713g22	0.805	0.239	9.784	0.612	1 246	13 228	7 204	1.618	23.243	0.151	11.845	0.669	2.853	27.54	101.04
51	00713g22	0.005	0.237	10.014	0.504	1.040	13.220	0.001	1.010	22.245	0.252	12.256	0.000	2.055	27.34	101.64
52	00713g22	0.261	0.206	0.036	0.435	1.005	12.000	9.140	1.604	23.009	0.334	12.230	0.000	2.910	27.30	101.35
55	00713g22	0.201	0.200	9.950	0.455	1.050	12.910	0.149	1.004	23.996	0.334	12.236	0.000	2.003	27.34	101.35
54	00713g22	0.291	0.185	10.016	0.455	1.052	12.075	6.125	1.524	25.905	0.330	12.2/4	0.000	2.962	27.50	101.55
22	00/15g22	0.193	0.134	10.306	0.417	0.766	12.962	6.002	1.567	25.410	0.264	13.091	0.000	3.126	27.38	101.62
56	00/13g22	0.198	0.138	10.216	0.406	0.754	12.983	5.732	1.445	25.618	0.259	13.097	0.000	3.034	27.35	101.23
57	00/l3g22	0.195	0.128	10.213	0.428	0.740	13.019	5.597	1.496	25.665	0.251	13.266	0.000	2.999	27.40	101.40
58	007l3g22	0.476	0.197	9.715	0.809	0.848	12.973	5.953	1.612	24.168	0.341	12.483	1.029	2.969	27.46	101.03
59	007l3g2t2	0.137	0.178	10.306	0.435	0.813	12.925	6.759	1.586	24.560	0.325	13.159	0.000	2.814	27.34	101.34
60	007l3g2t2	0.174	0.184	9.768	0.374	0.844	12.859	7.260	1.432	24.854	0.364	12.829	0.000	3.002	27.29	101.23
61	00713g2t2	0.183	0.182	9.867	0.409	0.890	12.812	7.634	1.426	24.677	0.392	12.504	0.000	2.927	27.25	101.16
62	00713g2t2	0.241	0.178	9.882	0.397	0.870	12.779	6.982	1.513	23.897	0.333	12.109	0.000	2.929	26.87	98.98
63	00713g2t2	0.244	0.188	10.041	0.353	0.940	13.028	7.167	1.526	24.656	0.310	12.527	0.000	2.820	27.42	101.22
64	00713g2t2	0.310	0.193	9.971	0.458	1.101	12.991	8.082	1.650	23.923	0.297	12.248	0.000	2.873	27.42	101.52
65	00713g2t2	0.134	0.130	10.641	0.598	0.679	13.029	5.445	1.600	25.012	0.274	12.995	0.065	3.013	27.36	100.98
66	00713o2t2	0.306	0.198	10.494	1.034	1.017	13.125	6.954	2.344	22.802	0.225	11.303	0.477	2.919	27.39	100.59
67	0071302+2	0.712	0.205	9.755	0.750	1.010	13,124	6.489	1.651	23.992	0.205	12.451	0.354	2.810	27.43	100.93
68	0071208+3	1 768	0.287	9.735	0.937	1 363	13 160	6.940	1 803	22 582	0.146	11 383	0.251	2 7 5 7	27 37	100.58
60	0071298+2	1 574	0.200	0 739	0.850	1 292	13 226	6.409	1 027	22.002	0 1 3 9	11 722	0 222	2 704	27.44	100.50
70	0071268+2	1.612	0.2290	0.741	0.005	1 252	13 217	7.001	1.927	22.24.0	0.150	11.7.32	0.136	2.7.24	27.45	100.00
71	00712g002	1.012	0.200	0.722	0.202	1 220	13 202	6.002	1.274	22.210	0.101	11.540	0.104	2.117	27.40	100.02
70	00712.002	1.528	0.200	2.123	0.923	1.329	13.202	0.902	1.922	22.014	0.152	11.008	0.104	2.000	27.43	100.72
12	00/12g8t3	1.408	0.241	9.086	0.999	1.515	13.205	0.788	1.968	22.799	0.155	11.669	0.217	2.853	27.44	100.74
/3	00/12g8t3	1.200	0.232	9.924	1.101	1.265	13.251	6./4/	1.930	22.901	0.145	11.575	0.182	2.873	27.48	100.81
/4	00/12g8t3	1.094	0.248	9.810	1.030	1.218	13.247	6.545	2.020	22.801	0.139	11.764	0.217	2.826	27.41	100.37
/5	00/12g8t3	1.150	0.209	9.975	1.090	1.236	13.255	6.596	2.004	22.897	0.151	11.714	0.214	2.763	27.48	100.74
/6	007l2g8t3	1.517	0.250	10.108	0.996	1.339	13.232	6.915	2.020	22.579	0.149	11.238	0.179	2.796	27.46	100.77
/7	007l2g8t3	1.637	0.256	9.833	0.875	1.341	13.281	6.794	1.917	22.852	0.139	11.603	0.261	2.761	27.56	101.11
78	00713g9t4	1.461	0.243	9.855	0.784	1.215	13.379	5.885	1.868	22.937	0.108	11.461	1.099	2.847	27.66	100.80
79	00713g9t4	1.240	0.215	10.077	0.807	1.137	13.297	5.654	1.750	23.270	0.102	11.657	0.974	2.854	27.53	100.56
80	007l3g9t4	0.313	0.257	9.787	0.502	1.243	12.860	9.362	1.625	23.138	0.380	11.871	0.000	2.702	27.33	101.37
81	00713g9t4	1.635	0.261	9.789	0.899	1.286	13.296	6.167	1.819	22.409	0.109	11.101	1.213	2.831	27.52	100.33
82	00713g9t4	1.539	0.273	9.831	0.832	1.288	13.350	6.218	1.812	22.443	0.106	11.225	1.140	2.734	27.57	100.36
83	00713g9t4	1,592	0,285	9,621	0.895	1,313	13,333	6.525	1,815	22.307	0.116	11.144	1.216	2.844	27.60	100.60
84	007[3o9t4	0.180	0.204	9 508	0.367	1.004	12 664	9 237	1 500	23 943	0.480	12 148	0.000	2.853	27.20	101 30
- T 85	00713-0+4	0.171	0.204	0.500	0.324	0.050	12.004	8 770	1 260	24.274	0.472	12 290	0.000	2.055	27.10	101.32
00 97	00712-044	0.1/1	0.223	2.377	0.324	0.930	12.000	7.002	1.309	24.274	0.472	12.300	0.000	2.909	27.19	101.30
00	00/15g9t4	0.198	0.198	9.841	0.578	0.891	12.760	7.903	1.459	24.6/1	0.395	12.699	0.000	2.761	27.23	101.39
8/	00/13g9t4	0.335	0.159	10.349	1.003	1.023	13.122	6.483	2.452	22.922	0.175	11.369	0.595	3.034	27.34	100.36
88	007l3g18t5	2.167	0.262	9.527	0.782	1.270	13.181	5.532	1.602	22.843	0.115	11.566	1.024	2.866	27.37	100.10
89	007l3g18t5	2.886	0.334	9.096	0.791	1.400	13.274	5.584	1.592	22.162	0.098	11.422	1.419	2.610	27.48	100.15
90	007l3g18t5	1.319	0.246	9.962	0.835	1.209	13.305	5.831	1.757	22.974	0.094	11.559	1.113	2.841	27.55	100.60
91	007l3g18t5	2.233	0.339	9.046	0.624	1.517	13.251	7.059	1.461	22.543	0.119	11.779	0.607	2.763	27.52	100.86
	007l3g18t5	1.457	0.265	9.353	0.577	1.432	13.215	7.468	1.499	22.451	0.131	11.721	0.764	2.741	27.46	100.53
92	0	3.099	0.377	8.700	0.798	1.592	13.294	6.565	1.579	21.279	0.119	10.956	1.655	2.662	27.55	100.21
92 93	007l3g18t5	5.000									-				1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	
92 93 94	007l3g18t5 007l3g18t5	0.179	0.189	9.866	0.324	0.942	12.636	8.740	1.424	24.029	0.469	12.464	0.000	2.849	27.14	101.25
92 93 94 95	007l3g18t5 007l3g18t5 007l3g18t5	0.179	0.189	9.866 9.844	0.324	0.942	12.636 12.711	8.740 8.223	1.424	24.029 24.361	0.469	12.464 12.591	0.000	2.849 2.919	27.14 27.22	101.25 101.38

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	05l3g8t1	0.753	0.086	9.309	0.541	0.663	12.877	3.572	1.276	25.975	0.090	13.794	1.189	2.901	27.08	100.10
2	05l3g8t1	0.751	0.102	9.304	0.636	0.671	12.925	3.512	1.193	25.887	0.088	13.743	1.173	2.987	27.12	100.09
3	05l3g8t1	1.281	0.134	9.190	0.791	0.848	12.897	4.092	1.352	24.376	0.099	12.885	1.651	2.837	27.05	99.48
4	0513g8t1	1 279	0.116	9.106	0.727	0.879	12 894	4 292	1 491	24 173	0.091	12 857	1 691	2 787	27.04	99.42
5	0513g8t1	0.703	0.101	9 306	0.520	0.771	12.807	4 299	1 216	25 363	0.103	13 487	1 1 1 4	2.868	26.94	99.60
6	0513g8t1	0.578	0.112	0.367	0.532	0.726	12.840	4 221	1 274	25.641	0.105	13/107	1.010	2.881	26.00	00.78
7	0513g8t1	0.370	0.084	10.224	0.072	0.749	12.040	4 1 1 9	1.2/7	24.051	0.103	12.017	1.017	2.001	20.77	00.44
0	0515g8t1	0.490	0.004	0.010	0.972	0.740	12.920	4.110	1.005	24.031	0.085	12.017	1.622	2.947	27.07	00.04
0	0515g8t1	0.465	0.097	9.916	0.951	0.705	12.000	3.795	1.000	24.479	0.070	12.515	1.550	2.955	26.92	96.90
9	0515g8t1	0.525	0.095	9.995	0.954	0.775	12.001	4.150	1.700	24.234	0.065	12.204	1.550	3.016	26.96	99.15
10	0515g8t1	1.41/	0.156	9.485	0.910	0.844	12.809	5.954	1.5/3	24.152	0.118	12.522	1.555	2.//1	26.92	99.16
11	05l3g21t3	0.569	0.099	9.692	0.862	0.706	12.989	4.096	1.720	24.633	0.111	12.679	1.638	3.064	27.22	100.08
12	05l3g21t3	0.560	0.101	9.596	0.923	0.713	12.936	4.110	1.590	24.464	0.115	12.746	1.635	2.891	27.09	99.47
13	05l3g21t3	0.553	0.099	9.782	0.897	0.690	12.922	4.021	1.595	24.625	0.111	12.768	1.559	2.852	27.07	99.55
14	05l3g21t3	0.537	0.085	9.664	0.956	0.689	12.980	4.058	1.682	24.585	0.115	12.821	1.599	2.840	27.17	99.78
15	05l3g21t3	0.549	0.111	9.738	0.815	0.713	12.920	4.077	1.666	24.629	0.111	12.883	1.554	2.897	27.11	99.77
16	05l3g21t3	0.540	0.092	9.523	0.893	0.708	12.949	4.038	1.728	24.732	0.105	12.792	1.523	2.901	27.11	99.63
17	05l3g21t3	0.552	0.109	9.715	0.900	0.731	12.927	4.309	1.683	24.408	0.123	12.466	1.615	2.824	27.07	99.44
18	05l3g21t3	0.542	0.100	9.873	0.988	0.730	12.955	4.287	1.704	24.341	0.129	12.350	1.641	2.825	27.13	99.60
19	05l3g21t3	0.553	0.104	9.730	0.932	0.714	12.941	4.228	1.710	24.343	0.115	12.411	1.656	2.874	27.08	99.39
20	05l3g21t3	0.601	0.118	9.627	0.874	0.696	12.976	4.052	1.600	24.566	0.120	12.713	1.614	2.926	27.15	99.63
21	05l3g32t4	1.514	0.136	9.520	0.967	0.954	12.719	4.448	1.689	23.652	0.114	11.989	1.745	2.913	26.85	99.21
22	05l3g32t4	0.447	0.098	9.700	0.868	0.737	12.620	4.250	1.708	24.492	0.102	12.646	1.481	2.979	26.67	98.79
23	05l3g32t4	0.490	0.105	10.052	0.916	0.759	12.618	4.428	1.684	24.533	0.117	12.349	1.439	3.002	26.73	99.22
24	0513g32t4	0.566	0.105	9.583	0.865	0.754	12.626	4.602	1.609	24.336	0.136	12.512	1.600	2.725	26.69	98.71
25	05l3g32t4	0.508	0.101	9.620	0.910	0.717	12.620	4 349	1 495	24 784	0.136	12 797	1 278	2 907	26.69	98.91
26	05l3g32t4	0.488	0.094	10.039	0.892	0.727	12.626	4 4 3 2	1.622	24.704	0.128	12.797	1.396	2.907	26.72	99.03
27	0513g32t4	0.573	0.111	0.767	0.892	0.738	12.651	4.454	1.670	24.130	0.120	12.357	1.660	2.011	26.72	08.76
20	0513e32t4	0.160	0.057	10 522	0.393	0.756	12.001	2 2 2 0	1 412	27.137	0.124	14.040	0.000	2.071	26.91	100.64
20	0515g52t4	0.100	0.007	10.323	0.565	0.505	12.391	3.520	1.412	27.570	0.124	10.570	0.000	2.045	20.01	00.57
21	0515g52t4	1.075	0.060	0.207	0.860	0.605	12.001	4.554	1./15	24.607	0.092	12.376	1.710	3.045	20.77	99.57
51	0515g45t7	1.2/5	0.141	9.397	0.765	0.910	12.815	4.4/5	1.550	23.737	0.095	12.347	1./19	2.897	26.90	99.02
32	0513g43t7	1.483	0.150	9.515	0.923	0.967	12.836	4.596	1.648	23.296	0.109	12.001	1.913	2./4/	26.97	99.15
33	05l3g43t/	1.408	0.139	9.278	0.908	0.919	12.8/5	4.296	1.607	23.675	0.099	12.335	1.789	2.753	26.97	99.06
34	05l3g43t7	1.377	0.146	9.352	0.873	0.928	12.843	4.443	1.661	23.670	0.103	12.412	1.741	2.897	27.00	99.44
35	05l3g43t7	0.430	0.093	9.794	0.665	0.684	12.779	4.288	1.580	25.162	0.143	12.900	0.992	2.947	26.89	99.34
36	05l3g43t7	0.438	0.096	9.856	0.682	0.670	12.747	4.237	1.573	25.127	0.143	12.972	1.001	3.005	26.86	99.41
37	05l3g43t7	0.560	0.099	9.672	0.611	0.732	12.855	4.280	1.427	25.318	0.121	13.373	0.981	2.867	27.03	99.93
38	05l3g43t7	1.368	0.143	9.825	0.920	0.944	12.873	4.285	1.684	23.573	0.086	11.894	1.694	2.937	26.98	99.20
39	05l3g43t7	1.277	0.117	10.141	1.006	0.850	12.959	3.710	1.822	23.836	0.074	11.885	1.868	2.922	27.12	99.59
40	05l3g43t7	0.903	0.136	9.640	0.754	0.922	12.879	4.692	1.515	24.125	0.083	12.446	1.315	2.897	26.96	99.27
41	05l3g49t8	0.245	0.081	11.336	1.025	0.368	12.738	3.428	2.007	25.349	0.223	12.221	1.229	3.157	27.05	100.45
42	05l3g49t8	0.493	0.109	9.866	0.991	0.774	12.869	4.564	1.776	24.294	0.133	12.241	1.518	2.974	27.05	99.65
43	05l3g49t8	0.610	0.112	9.965	0.971	0.757	12.908	4.407	1.863	24.185	0.106	12.125	1.679	2.904	27.08	99.67
44	05l3g49t8	0.618	0.114	9.812	0.991	0.769	12.936	4.453	1.915	23.975	0.112	12.020	1.775	2.798	27.07	99.36
45	05l3g49t8	0.430	0.106	9.718	0.687	0.735	12.677	4.911	1.558	25.055	0.187	12.911	0.947	3.015	26.88	99.82
46	0513ø49t8	0.422	0.080	9.880	0.824	0.705	12.720	4.475	1.813	24.721	0.140	12,513	1.365	2.961	26.88	99.49
47	0513g49t8	0.812	0.129	9 468	0.781	0.959	12 718	5 1 9 7	1 685	23.868	0.111	12 149	1 539	2 903	26.83	99.15
48	0513g49t8	0.257	0.074	9.974	0.462	0.645	12.468	4 819	1 336	26.065	0.228	13 454	0.207	3.098	26.64	99.73
40	0513g49t8	0.207	0.102	0.805	1 1 27	0.767	12.400	4.750	1.550	24.066	0.135	12.053	1.610	2.850	26.73	08.08
50	0513c40t8	0.472	0.115	0.076	1.006	0.744	12.032	4 292	1.702	24.000	0.122	12.000	1.017	2.050	26.75	00.10
50	0513g4918	0.472	0.115	10.029	0.072	0.222	12.001	4.203	1.705	24.455	0.123	11.074	1.421	2.029	20.79	00.42
51	0515g52t9	1.272	0.150	10.028	0.972	0.622	12.780	4.151	1./30	23.350	0.082	11.804	1.907	2.604	20.79	20.43
52	0513g52t9	1.3/3	0.150	10.308	0.809	0.926	12.678	4.682	1.8/5	23.932	0.125	11.89/	0.887	2.858	26.74	99.24
53	0513g52t9	0.722	0.111	9.938	1.058	0.708	12.850	5.771	1.955	24.268	0.079	11.906	1.672	3.032	26.90	98.97
54	0513g52t9	0.619	0.103	9.977	1.019	0.767	12.781	4.248	1.964	23.853	0.110	11.794	1.673	2.873	26.81	98.59
55	05l3g52t9	0.656	0.104	9.963	0.941	0.758	12.796	4.324	1.850	23.923	0.119	11.969	1.670	2.899	26.86	98.83
57	05l3g52t9	0.661	0.109	10.009	1.080	0.756	12.818	4.144	1.979	23.817	0.100	11.744	1.796	2.927	26.87	98.81
58	05l3g52t9	0.635	0.125	9.938	0.974	0.772	12.845	4.212	1.789	24.005	0.094	11.894	1.755	2.934	26.91	98.88
59	05l3g52t9	0.534	0.098	10.134	1.012	0.734	12.800	4.301	1.890	24.356	0.130	12.289	1.458	2.874	26.96	99.57
60	05l3g52t9	0.467	0.104	9.971	0.912	0.755	12.794	4.397	1.776	24.238	0.132	12.296	1.472	2.943	26.91	99.16

Granite MN	(Vialais)	2°57'57"	- 43°28'12"

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	05l2g3t1	3.468	0.229	9.514	1.421	1.393	12.795	4.888	2.351	21.136	0.092	9.769	2.129	2.785	26.87	98.84
2	05l2g3t1	1.895	0.167	9.839	1.438	1.238	12.800	5.904	2.368	21.777	0.115	9.744	1.950	3.001	26.92	99.16
3	05l2g3t1	3.906	0.302	6.887	0.913	1.962	12.747	7.478	1.539	20.447	0.141	11.079	1.878	2.355	26.84	98.47
4	05l2g3t1 05l2g3t1	4.059	0.317	6.625	0.8/5	1.988	12.768	/.463	1.346	20.580	0.152	11.449	1.962	2.295	26.93	98.81
5	0512g3t1	4.104	0.322	0.432	1.736	1.935	12.004	4 959	2.905	20.232	0.108	0.099	1.912	2.232	20.04	90.04
7	0512g3t1 0512g3t1	3 748	0.208	9.030	1.035	1.515	12.707	4.000	2.695	20.050	0.085	9.082	1.954	2.739	26.74	96.55
8	0512g3t1	1.816	0.176	9.626	1.305	1 204	12.637	5.693	2 337	22 249	0.104	10 242	1.801	2.888	26.69	98.76
9	05l2g3t1	1.869	0.192	9.573	1.239	1.233	12.610	5.691	2.308	21.947	0.164	10.048	1.831	2.779	26.63	98.11
10	05l2g3t1	1.923	0.172	9.539	1.321	1.272	12.603	5.808	2.326	21.945	0.108	9.926	1.915	2.935	26.63	98.42
11	05l2g10t2	3.393	0.263	9.019	1.266	1.432	12.727	5.045	2.374	21.510	0.078	10.043	1.663	2.791	26.68	98.29
12	05l2g10t2	1.757	0.192	6.820	0.790	1.514	12.701	7.319	1.454	22.988	0.095	12.335	1.526	2.581	26.78	98.85
13	05l2g10t2	1.763	0.216	6.263	0.717	1.651	12.746	8.216	1.305	22.793	0.106	12.744	1.535	2.508	26.93	99.50
14	05l2g10t2	3.645	0.267	9.018	1.414	1.561	12.789	5.492	2.510	20.529	0.090	9.554	1.825	2.724	26.75	98.17
15	05l2g10t2	2.837	0.216	8.722	1.275	1.489	12.758	6.077	2.018	21.228	0.104	10.245	1.941	2.660	26.77	98.34
16	05l2g10t2	2.701	0.232	8.602	1.208	1.460	12.765	6.193	2.054	21.364	0.102	10.587	1.885	2.674	26.81	98.64
17	05l2g10t2	2.671	0.231	8.605	1.107	1.445	12.752	6.127	1.974	21.405	0.099	10.725	1.878	2.692	26.78	98.49
18	05l2g10t2	2.749	0.236	8.198	1.188	1.440	12.747	5.845	1.881	21.572	0.090	11.166	1.909	2.534	26.75	98.30
19	05l2g10t2	2.866	0.230	8.375	1.224	1.473	12.722	5.877	2.051	21.276	0.108	10.771	1.955	2.625	26.74	98.29
20	05l2g12t3 05l2_12+2	2.311	0.184	9.307	1.329	1.229	12.795	4.936	2.283	22.224	0.093	10.971	1.679	2.833	26.88	99.05
21	0512g12t3	2.340	0.221	9.750	1.405	1.370	12.01/	5.655	2.495	20.908	0.104	9.339	2.014	2.630	20.65	90.37
22	0512g12t3 0512g12t3	2.490	0.209	9.730	1.470	0.945	12.631	5.956	2.559	20.995	0.108	9.576	1.907	2.643	26.91	20.00
23	05l2g12t3	2.055	0.225	6.061	0.708	1 580	12.521	7 879	1 248	22.855	0.134	12 940	1.553	2 281	26.92	99.29
25	05l2g12t3	2.078	0.202	9.516	1 293	1.268	12 773	5.633	2 367	21.878	0.108	10.178	1.896	2.883	26.86	98.94
26	05l2g12t3	2.060	0.178	9.547	1.256	1.266	12.742	5.787	2.403	21.608	0.110	9.902	1.912	2.754	26.73	98.26
27	05l2g18t4	3.842	0.279	9.301	1.450	1.525	12.881	4.909	2.671	20.581	0.078	9.489	1.790	2.726	26.85	98.38
28	05l2g18t4	2.191	0.247	6.315	0.740	1.677	12.893	8.208	1.403	22.420	0.111	12.517	1.598	2.307	27.11	99.73
29	05l2g18t4	2.580	0.225	6.625	0.781	1.716	12.871	7.510	1.584	22.216	0.094	12.384	1.484	2.423	27.04	99.54
30	05l2g18t4	2.249	0.215	5.863	0.708	1.761	12.890	8.139	1.270	22.316	0.106	12.910	1.473	2.372	27.05	99.32
31	05l2g18t4	2.500	0.252	5.861	0.690	1.925	12.876	9.381	1.268	21.184	0.114	11.954	1.945	2.306	27.07	99.32
32	05l2g18t4	2.721	0.266	6.002	0.801	1.929	12.932	8.754	1.405	21.107	0.096	11.693	1.908	2.261	27.05	98.93
33	05l2g18t4	3.061	0.296	6.400	0.876	1.989	12.972	8.783	1.521	20.771	0.089	11.137	1.915	2.343	27.13	99.28
34	05l2g18t4	3.146	0.292	6.316	0.901	2.049	12.894	8.974	1.562	20.541	0.092	11.068	1.831	2.248	27.00	98.92
35	0512g18t4 0512=10+5	1./85	0.215	0.200	1.570	1.615	12.947	7.989	1.398	22.672	0.099	0.454	1.649	2.562	2/.1/	99.82
30	0512g19t5 0512g19t5	3.032	0.239	9.369	1.309	1.403	12.699	4.629	2.602	20.466	0.091	9.454	1.620	2.755	26.90	96.57
38	0512g19t5	1.410	0.247	9.579	0.936	1.495	12.820	5.615	1.807	23.875	0.112	11 570	0.624	2.070	26.81	90.71
39	0512g19t5	1.680	0.187	9.400	1.167	1.195	12.767	5.873	2.033	22.347	0.124	10.805	1.596	2.906	26.84	98.92
40	05l2g19t5	1.676	0.187	9.355	1.193	1.224	12.757	5.878	1.990	22.490	0.114	10.971	1.322	2.689	26.76	98.61
41	05l2g19t5	2.284	0.205	9.210	1.219	1.247	12.827	5.101	1.994	22.078	0.093	10.894	1.710	2.759	26.83	98.45
42	05l2g19t5	2.344	0.219	9.473	1.107	1.193	12.802	4.975	1.973	22.135	0.092	11.001	1.669	2.710	26.79	98.49
43	05l2g19t5	2.098	0.185	9.734	1.224	1.181	12.783	4.857	2.037	22.218	0.096	10.804	1.713	2.716	26.78	98.43
44	05l2g19t5	2.017	0.201	9.742	1.401	1.189	12.823	5.040	2.289	21.809	0.094	10.189	1.949	2.871	26.83	98.45
45	05l2g21t6	3.635	0.255	7.087	0.756	1.716	12.414	6.273	1.448	21.130	0.800	11.144	1.547	2.527	26.92	97.65
46	05l2g21t6	3.603	0.239	9.185	1.232	1.469	12.853	5.113	2.222	21.332	0.087	10.146	1.725	2.748	26.90	98.86
47	05l2g21t6	3.038	0.229	9.792	1.168	1.298	12.787	4.568	2.125	21.799	0.174	10.356	1.787	2.706	26.90	98.72
48	05l2g21t6	3.534	0.249	9.306	1.329	1.424	13.045	4.95/	2.130	21.076	0.101	10.017	2.103	2.///	27.18	99.23
49 50	0512g21t6 0512g21t6	1.908	0.251	0.220	1.610	1.619	12.790	5.572	2 700	10.026	0.151	0.050	1.041	2.240	27.00	99.45
51	05l2g21t6	2.059	0.275	5.763	0.683	1.044	12.901	9.722	1 270	21.671	0.148	12 191	1.550	2.040	26.93	99.29
52	05l2g21t6	2.495	0.250	5.823	0.856	1.860	12.892	8,735	1.344	21.352	0.099	11.821	2.148	2.293	27.05	99.01
53	05l2g21t6	2.596	0.259	6.115	0.688	1.885	12.891	8.802	1.428	21.109	0.101	11.660	2.133	2.390	27.06	99.12
54	05l2g21t6	2.433	0.219	7.378	0.794	1.466	12.874	6.276	1.594	23.184	0.082	11.938	1.658	2.649	27.05	99.59
55	05l2g26t7	1.169	0.142	9.367	1.227	1.044	12.870	5.601	2.076	22.923	0.127	11.088	1.807	2.883	27.02	99.34
56	05l2g26t7	1.241	0.155	9.272	1.234	1.103	12.846	5.823	2.204	22.743	0.132	10.950	1.795	2.795	26.99	99.28
57	05l2g26t7	1.689	0.178	9.147	1.473	1.321	12.860	6.634	2.487	21.448	0.131	9.972	1.882	2.634	26.94	98.79
58	05l2g26t7	1.269	0.162	9.153	1.236	1.137	12.758	5.976	2.227	22.379	0.125	10.837	1.803	2.751	26.81	98.62
59	05l2g26t7	1.300	0.161	9.250	1.261	1.166	12.818	6.117	2.173	22.282	0.132	10.746	1.812	2.725	26.90	98.85
60	0512g26t7	1.205	0.172	9.211	1.14/	1.080	12.815	5.828	2.120	22.595	0.135	10.875	1.823	2.807	26.87	98.69
62	0512g26t7 0512g26t7	1.115	0.155	9.167	1.057	1.034	12.709	5.029	2.045	22.997	0.127	10.000	1.061	2.775	26.85	90.77
63	0512g26t7	1.418	0.150	9 1 4 4	1.270	1 243	12.021	6 509	2.330	21.711	0.127	10.368	1.824	2.845	26.79	98.58
64	0512g29t8	3.799	0.267	9.317	1.382	1.513	13.012	5.156	2.485	20.638	0.075	9.539	1.863	2.884	27.07	99.00
65	0512g29t8	3.735	0.261	9.261	1.319	1.502	13.034	5.090	2.547	21.002	0.084	9.614	1.851	2.749	27.13	99.17
66	05l2g29t8	4.178	0.278	9.580	1.742	1.515	13.020	4.795	2.905	20.162	0.075	8.998	1.946	2.754	27.07	99.02
67	05l2g29t8	4.008	0.285	9.498	1.560	1.516	13.057	5.074	2.895	20.164	0.087	9.130	1.947	2.762	27.13	99.12
68	05l2g29t8	3.937	0.271	9.487	1.618	1.515	13.011	4.901	2.796	20.340	0.074	9.330	1.872	2.682	27.05	98.88
69	05l2g29t8	2.289	0.207	9.849	1.401	1.300	12.987	5.725	2.487	21.447	0.112	9.550	1.971	2.932	27.14	99.39
70	05l2g29t8	1.897	0.182	8.945	1.152	1.335	12.943	6.364	2.185	21.925	0.115	10.525	1.809	2.749	27.07	99.19
71	0512g29t8	3.147	0.295	5.795	0.930	2.089	12.999	9.529	1.422	20.305	0.107	11.287	2.140	2.208	27.22	99.47
72	05l2g29t8	3.139	0.306	5.737	0.757	2.106	13.045	9.615	1.388	20.533	0.104	11.636	2.003	2.226	27.32	99.91
73	0512g29t8 0512-27+0	3.049	0.300	5.978	0.809	2.069	12.951	9.597	1.46/	20.339	0.117	11.004	2.279	2.252	27.18	99.39
75	0512g37t9	3.509	0.274	0.451	1.2.30	1.400	12.024	5.265	1.971	20.075	0.134	0.022	2.005	2.055	20.00	08.56
76	0512g37t9	2 235	0.250	8.045	0.871	1.479	12.700	8.934	1.519	20.575	0.283	10.738	1.810	2.000	26.50	98.20
77	0512g37t9	0.680	0.209	7.972	0.686	0.829	11.598	10.667	1.350	22.206	0.841	12.246	1.240	2.646	26.20	99.37
78	0512g37t9	0.673	0.204	7.959	0.761	0.851	11.586	10.568	1.317	22.188	0.826	12.213	1.260	2.579	26.15	99.13
79	05l2g37t9	0.679	0.227	8.002	0.691	0.847	11.550	10.964	1.293	22.090	0.853	12.213	1.330	2.514	26.17	99.42
80	05l2g37t9	0.733	0.233	7.863	0.689	0.886	11.447	11.662	1.374	21.244	0.947	11.877	1.286	2.548	26.04	98.83
81	05l2g37t9	2.865	0.233	9.093	1.016	1.488	12.698	6.114	1.818	21.178	0.101	10.427	1.893	2.666	26.70	98.29
82	05l2g37t9	2.922	0.229	9.089	1.010	1.470	12.690	5.940	1.835	21.307	0.087	10.497	1.889	2.691	26.69	98.35
83	05l2g47t10	2.362	0.200	9.572	1.288	1.311	12.619	5.639	2.313	21.571	0.128	9.851	1.901	2.751	26.61	98.12
84	05l2g47t10	2.261	0.196	9.637	1.415	1.323	12.817	5.566	2.527	21.586	0.094	9.841	1.816	2.790	26.86	98.73
85	0512g47t10	2.969	0.236	8.500	1.233	1.450	12.796	5.732	2.330	21.723	0.073	10.438	1.649	2.796	26.81	98.74
86	0512g47t10	2.869	0.243	8.171	1.216	1.612	12.777	6.707	2.023	20.678	0.099	10.347	2.020	2.585	26.77	98.11
8/	0512g47t10 0512g47+10	2.260	0.248	5.540	0.667	1./36	12.799	8.172	1.204	22.295	0.096	12.832	1.755	2.320	26.90	98.83
00 80	0512g47t10	2.221	0.231	5.575	0.015	1.735	12./98	0.344	1.1/5	22.429	0.100	12.009	1./00	2.200	20.92	20.23
90	0512g47t10 05]2o47t10	1.963	0.235	5.637	0.738	1.777	12.810	8.826	1.198	22.417	0.100	12.7768	1.517	2.321	26.99	99.31
91	0512g47t10	3.484	0.227	9.104	1.161	1.460	12.791	5.044	2.387	21.292	0.079	9.932	1.696	2.866	26.75	98.28
92	05l2g47t10	3.202	0.243	9.620	1.321	1.437	12.739	5.345	2.361	20.695	0.102	9.516	2.118	2.754	26.74	98.19

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	05l1g1t1	0.404	0.096	9.975	0.951	0.560	12.730	4.730	1.779	24.739	0.281	12.229	1.650	3.042	27.10	100.26
2	0511g1t1	0.415	0.112	9.595	0.992	0.622	12.709	5.303	1.622	24.488	0.292	12.299	1.441	2.944	27.00	99.84
3	05l1g1t1	0.709	0.168	8.568	0.767	0.846	12.106	8.926	1.498	22.240	0.603	12.131	1.342	2.775	26.52	99.20
4	05l1g1t1	0.834	0.191	8.592	0.683	0.846	12.347	8.763	1.519	22.786	0.645	12.514	1.348	2.651	27.01	100.73
5	0511g1t1	2.748	0.213	9.653	1.046	1.308	12.999	5.402	2.026	21.510	0.097	10.285	1.979	2.828	27.12	99.21
6	0511g2t2	2.628	0.272	8.525	1.042	1.853	12.926	8.460	1.782	20.125	0.115	9.975	1.985	2.578	27.11	99.38
7	05l1g2t2	0.138	0.112	11.085	1.302	0.727	12.910	4.642	2.018	23.073	0.129	10.969	2.188	3.050	27.10	99.44
8	05l1g2t2	3.297	0.245	9.455	1.107	1.459	13.004	5.317	1.930	21.225	0.108	10.153	2.053	2.619	27.13	99.10
9	05l1g2t2	0.168	0.135	10.678	1.387	0.755	13.003	4.692	2.048	22.689	0.106	10.706	2.768	2.985	27.20	99.32
10	05l1g2t2	1.002	0.161	8.730	0.784	0.839	12.391	7.006	1.506	23.595	0.480	12.242	1.397	2.675	26.80	99.60
11	05l1g2t3	1.351	0.188	8.184	0.933	1.155	12.440	8.724	1.543	22.153	0.611	11.488	1.452	2.661	27.00	99.88
12	05l1g2t3	1.873	0.260	8.215	0.874	1.756	12.744	9.637	1.590	20.292	0.242	10.640	1.672	2.504	26.98	99.28
13	05l1g2t3	3.242	0.255	8.926	1.164	1.595	12.981	6.375	1.828	20.740	0.116	9.844	2.087	2.688	27.10	98.94
14	05110213	3.212	0.256	9.111	1.075	1.588	12.923	6.186	1.871	20.903	0.101	10.085	1.982	2.648	27.03	98.97
15	0511g2t3	2.018	0.186	0.578	0.942	1.300	12.923	5 757	1.750	22.403	0.084	10.003	1.702	2.857	27.04	00.32
1.5	0511g2t3	0.220	0.130	10.470	1 275	0.740	12.934	4.544	2.064	22.405	0.115	10.591	2.951	2.057	27.04	09.32
10	0511g5t4	0.229	0.130	10.479	1.575	0.749	12.741	4.544	2.064	22.596	0.115	10.692	2.651	2.957	20.62	96.55
17	05l1g3t4	0.213	0.137	10.603	1.315	0.758	13.096	4.666	2.024	22.625	0.114	10.737	2.673	2.921	27.26	99.14
18	05l1g3t4	0.187	0.138	10.546	1.402	0.741	12.986	4.665	2.075	22.469	0.104	10.707	2.676	3.055	27.10	98.85
19	05l1g3t4	0.258	0.120	10.439	1.306	0.749	12.768	4.597	2.061	22.588	0.107	10.785	2.670	2.886	26.80	98.13
20	05l1g3t4	2.323	0.191	9.616	1.016	1.179	12.915	5.394	1.896	22.264	0.159	10.413	1.740	2.848	27.03	98.98
21	05l1g4t5	3.519	0.231	9.427	1.091	1.406	13.121	4.719	1.945	21.748	0.082	10.337	2.013	2.795	27.32	99.75
22	05l1g4t5	3.240	0.224	9.543	1.051	1.312	13.122	4.498	1.816	22.068	0.065	10.638	1.990	2.796	27.29	99.65
23	05l1g4t5	2.991	0.232	9.703	1.083	1.230	13.114	4.039	1.840	22.294	0.073	10.992	1.968	2.855	27.29	99.71
24	05l1g4t5	3.123	0.225	9.487	1.074	1.236	13.096	4.137	1.741	22.388	0.072	11.017	1.784	2.744	27.20	99.32
25	0511g4r5	0.954	0.117	10 355	0.873	0.716	12 840	4 268	1 799	24 345	0.198	12 183	1 1 1 7	3.005	27.05	99.82
26	05119516	3 1 8 2	0.268	8 968	1.072	1 536	12 081	5 316	1.825	21 / 85	0.007	10.456	1 903	2 772	27.11	90.04
27	0511e5t6	0.219	0.152	10.200	1 444	0.760	13.060	4 572	2 101	22.405	0.111	10.450	2 0/2	2.774	27.11	00.00
	0511-5-4	0.475	0.1.02	10.009	1.770	0.700	12 122	4.514	2.171	22.274	0.115	10.013	2.243	2.071	21.23	22.00
40 20	05119500	0.175	0.136	10.786	1.382	0.737	13.122	4.054	2.066	44.3/1	0.115	10.638	2.913	5.01/	27.55	99.46
29	0511g5t6	0.275	0.139	10.419	1.312	0.735	13.164	4.428	2.084	22.988	0.100	11.106	2.560	2.935	27.38	99.62
30	05l1g5t6	0.531	0.144	8.784	0.713	0.875	12.840	6.665	1.507	23.926	0.306	12.391	1.491	2.797	27.21	100.18
31	05l1g6t7	2.963	0.242	9.106	0.953	1.451	13.199	5.721	1.776	21.632	0.092	10.724	1.949	2.757	27.43	100.00
32	05l1g6t7	2.869	0.255	8.879	0.959	1.546	13.156	6.343	1.804	21.164	0.102	10.526	1.996	2.697	27.36	99.65
33	05l1g6t7	2.950	0.236	8.964	1.042	1.578	13.169	6.419	1.831	21.236	0.098	10.364	1.991	2.688	27.41	99.98
34	0511g6t7	1.408	0.179	9.412	0.862	0.962	12.783	6.337	1.736	23.271	0.320	11.495	1.416	2.752	27.13	100.06
35	05l1g6t7	0.692	0.163	9.301	0.719	0.880	12.294	7.726	1.666	23.595	0.533	11.520	1.126	2.782	26.74	99.73
36	051107#8	3 411	0.226	9.250	1 144	1 437	13 176	5.083	1 833	21 279	0.095	10 346	2.081	2 710	27 34	99.42
37	0511~7+9	3.664	0.251	0 201	1 1 2 0	1 400	12 102	4 749	1.000	21.2/2	0.025	10.320	2.001	2.714	27.24	00.10
38	0511e7+9	3.004	0.231	9.301	1.139	1.424	12.009	4.040	1.922	21.240	0.084	10.230	2.12/	2.714	27.22	22.16
38	0511g/t8	3.638	0.251	9.199	1.057	1.436	15.088	4.962	1.85/	21.440	0.086	10.544	2.065	2.745	21.21	99.61
39	05l1g7t8	0.072	0.081	12.075	1.086	0.515	12.999	3.405	1.960	24.008	0.121	12.005	1.309	3.228	27.19	100.05
40	05l1g7t8	0.174	0.095	11.778	1.205	0.603	12.884	4.180	2.109	23.466	0.173	11.315	1.202	3.272	27.02	99.48
41	05l1g8t9	0.235	0.117	10.796	1.252	0.579	13.130	3.456	1.986	23.691	0.099	11.644	2.192	3.081	27.31	99.56
42	05l1g8t9	0.200	0.108	11.478	1.346	0.765	13.131	4.407	2.294	23.416	0.087	11.043	1.267	3.047	27.26	99.85
43	05l1g8t9	0.070	0.070	11.965	0.897	0.525	13.066	3.456	1.852	24.943	0.124	12.521	0.757	3.152	27.31	100.71
44	05l1g8t9	0.139	0.124	11.729	1.204	0.692	13.072	4.165	2.077	23.964	0.107	11.599	0.955	3.058	27.23	100.12
45	0511ø8r9	0.130	0.152	11.041	1.261	0.708	13.033	4.652	2.055	22.788	0.125	10.842	2.392	3.019	27.22	99.42
46	0511e9t10	3 409	0.231	10.006	1 218	1 327	13.010	4 109	2 211	21.872	0.194	10.043	1.830	2 814	27.25	99.53
47	0511a0±10	0.102	0.151	11.043	1 200	0.736	13 122	4.730	1.073	23.057	0.129	11.043	2.224	2.095	27.20	00.07
40	0511_0+10	0.102	0.1.01	10.974	1.222	0.730	12.122	4.700	1.975	23.037	0.120	11.045	2.224	2.905	27.30	00.02
48	0511g9t10	0.142	0.149	10.864	1.226	0.734	13.121	4./22	1.981	22.949	0.131	11.109	2.41/	2.989	27.39	99.92
49	0511g9t10	0.157	0.143	10.975	1.283	0.761	13.052	4.815	1.979	22.683	0.129	10.880	2.596	2.888	27.30	99.64
50	05l1g9t10	0.182	0.145	10.434	1.242	0.784	12.994	4.809	2.051	22.485	0.122	10.812	2.818	2.975	27.17	99.02
51	05l1g11t11	3.232	0.256	9.188	1.060	1.540	13.129	5.472	1.824	21.537	0.087	10.514	1.886	2.624	27.32	99.67
52	05l1g11t11	3.576	0.242	9.294	1.010	1.532	13.071	5.091	1.820	21.468	0.078	10.310	1.809	2.780	27.19	99.27
53	05l1g11t11	2.483	0.199	9.520	1.066	1.400	13.187	5.668	1.820	21.836	0.076	10.528	1.848	2.772	27.37	99.77
54	05l1g11t11	2.623	0.212	9.378	1.023	1.365	13.049	5.932	1.764	21.638	0.133	10.679	1.794	2.613	27.21	99.41
55	05l1g11t11	2.733	0.240	8.994	1.124	1.436	13.110	5.994	1.739	21.762	0.084	10.843	1.941	2.683	27.34	100.02
56	05l1g12t12	0.244	0.153	10.980	1.213	0.790	13.080	4,985	2.042	23.572	0.126	11.461	1.280	3.011	27.30	100.23
57	0511g12t12	0.666	0.134	11.056	1 624	0.670	13 242	3 205	2 303	22 117	0.059	10.756	2 780	3.053	27 35	99.01
58	0511e12+12	0.774	0.147	11.001	1 339	0.635	13 102	2 959	2 180	22.640	0.050	11 254	2 530	2 804	27.00	08.04
50	0511-12-12	0.170	0.145	11.021	1.005	0.000	12.072	4.245	1.044	22.040	0.000	11.4.34	2.550	2.024	27.21	20.90
37 60	0511g12t12	0.103	0.115	11.524	1.005	0.649	13.073	4.245	1.844	43.967	0.150	11.889	1.10/	3.081	27.21	99./4
00	0511g12t12	0.720	0.135	10.525	0.989	0.5/5	12.793	4.637	1.838	24.310	0.315	12.109	1.336	3.048	27.19	100.51
61	0511g12t13	3.487	0.260	9.725	1.138	1.418	12.953	5.027	1.959	21.058	0.092	9.913	2.054	2.682	27.01	98.78
62	05l1g12t13	3.296	0.230	9.813	1.127	1.416	13.091	5.154	1.974	21.493	0.090	10.189	1.942	2.775	27.30	99.89
63	05l1g12t13	0.437	0.114	9.827	0.947	0.625	12.817	5.005	1.722	24.524	0.286	12.123	1.515	3.054	27.16	100.16
64	05l1g12t13	0.148	0.130	10.824	1.330	0.709	13.099	4.763	2.026	22.971	0.144	11.044	2.335	3.028	27.37	99.92
65	05l1g12t13	2.906	0.226	9.706	1.148	1.376	13.154	5.292	1.994	21.390	0.087	10.143	1.872	2.855	27.29	99.44
66	05l1g13t14	4.102	0.268	9.128	0.997	1.574	12.760	5.222	1.785	21.072	0.079	10.280	1.897	2.689	26.80	98.65
67	05l1g13t14	3.930	0.263	9.332	1.069	1.552	12.648	5.122	1.793	21.209	0.078	10.102	1.934	2.701	26.66	98.39
68	05l1g13t14	3.168	0.236	9.313	0.890	1.424	12.591	5.213	1.750	21.632	0.078	10.474	1.810	2.804	26.53	97.91
69	05l1g13t14	4.351	0.301	8.876	1.055	1.589	12.639	4.865	1.755	21.039	0.073	10.283	1.931	2.592	26.58	97.93
72	05l1g14t15	0.140	0.145	11,256	1.234	0.672	12,688	4.161	2.085	22,963	0.119	10,881	2.407	3.027	26.76	98.54
73	0511g14r15	0.125	0.143	11.102	1.249	0.723	12-560	4.686	2.001	22.691	0.130	10.919	2.390	3.054	26.63	98.40
74	0511014+15	0.263	0.161	10.444	1 344	0.760	12 533	5 1 4 1	2 033	22 /05	0.189	10 788	2 721	2 832	26.66	98.36
75	0511-014-15	3.174	0.224	0.524	0.070	1.420	12.333	5.170	1.747	22.490	0.077	10/00	1 772	2.002	26.00	20.00
15 77	051124514	0.142	0.4.44	2.334	0.970	1.420	12.031	3.170	1./4/	22.023	0.077	10.000	1.//3	2.073	20.72	99.01
70	0511g15t16	0.148	0.144	10.085	1.372	0.698	12.0/5	4.42/	2.070	22.896	0.124	10.9//	2.495	2.940	20.74	98.39
/8	0511g15t16	0.109	0.123	11.018	1.2/5	0.707	12.599	4.535	1.951	22./13	0.128	11.116	2.108	2.972	26.57	97.93
79	0511g15t16	0.281	0.146	10.252	1.301	0.811	12.627	4.828	2.008	22.732	0.116	10.967	2.571	3.016	26.70	98.35
80	05l1g15t16	0.502	0.129	9.172	0.803	0.817	12.352	5.820	1.640	24.205	0.240	12.294	1.456	2.806	26.48	98.72
82	05l1g16t17	1.634	0.144	10.181	0.917	1.009	12.616	4.546	1.905	23.161	0.086	11.084	1.485	3.011	26.58	98.36
83	05l1g16t17	1.898	0.151	10.238	0.951	0.965	12.624	3.772	1.919	23.359	0.069	11.088	1.560	2.941	26.55	98.08
85	05l1g16t17	3.173	0.236	9.470	1.072	1.360	12.616	4.929	1.876	21.642	0.086	10.315	1.991	2.742	26.59	98.10
86	05l1g18t18	3.480	0.257	9.299	1.085	1.521	12.939	4.933	1.918	21.381	0.137	10.018	2.045	2.659	27.06	98.73
87	05l1g18t18	3.122	0.201	10.119	1.165	1.274	12.651	4.374	2.100	22.043	0.076	10.111	1.863	2.912	26.69	98.70
88	0511e18+19	3.405	0.234	0.740	1 159	1 370	12 560	4 002	2.025	21 202	0.087	0.761	2.064	2 750	26.51	07.00
00	0511, 10:12	3.403	0.230	2.749	1.138	1.3/9	12.309	4.902	2.025	21.292	0.002	2.701	2.000	2./39	20.31	97.90
89	0511g18t18	3.265	0.231	9.676	1.138	1.356	12.538	4.933	1.970	21.594	0.089	10.006	1.926	2./70	26.49	97.98
90	05l1g18t18	0.388	0.123	10.853	1.162	0.679	11.878	3.846	2.233	23.121	2.178	10.739	1.094	2.911	27.63	98.83
91	05l1g18t19	0.219	0.123	10.362	1.551	0.749	12.578	4.703	2.083	22.478	0.115	10.813	2.782	2.960	26.63	98.14
92	05l1g18t19	0.158	0.107	10.628	1.331	0.537	12.323	4.291	2.057	23.720	0.214	11.280	2.119	2.906	26.37	98.04
	05l1g18t19	0.232	0.149	10.490	1.369	0.772	12.535	4.719	2.139	22.660	0.117	10.644	2.475	2.986	26.51	97.80
93	05l1g18t19	0.326	0.141	10.384	1.254	0.775	12.535	4.726	2.157	22.926	0.099	10.794	2.292	3.092	26.52	98.02
93 94		0.270	0.131	10.513	1.311	0.757	12.627	4.542	2.081	22,776	0.109	10.936	2.601	2.953	26.68	98.20
93 94 95	0511018+10	0.470	0.1.01	0.576	1.142	1.500	12.04/	4.970	2.001	21 1 22	0.000	0.050	2.001	2.755	20.00	07.21
93 94 95 96	05l1g18t19	3 2 2 0	0.224			1.507	17-344	4.6/9	2.000	21.185	0.090	7.777	2.0/1	2.027	20.20	97.21
93 94 95 96	05l1g18t19 05l1g26t20	3.320	0.224	9.570	1.145	1.002	10.775	6001	0.011	20.552	0.005	0.702	0.110	0.000	04.00	00.02
93 94 95 96 97	0511g18t19 0511g26t20 0511g26t20	3.320 2.912	0.224	9.576	1.145	1.609	12.775	6.984	2.014	20.552	0.095	9.783	2.118	2.689	26.89	99.03
93 94 95 96 97 98	05l1g18t19 05l1g26t20 05l1g26t20 05l1g26t20	3.320 2.912 3.342	0.224 0.238 0.254	9.189 8.689	1.145 1.179 1.017	1.609	12.775 12.613	6.984 6.670	2.014 1.717	20.552 20.863	0.095	9.783 10.328	2.118 1.917	2.689 2.668	26.89 26.65	99.03 98.51
93 94 95 96 97 98 99	0511g18t19 0511g26t20 0511g26t20 0511g26t20 0511g26t20	3.320 2.912 3.342 0.962	0.224 0.238 0.254 0.208	9.189 8.689 7.491	1.149 1.179 1.017 0.669	1.609 1.702 1.058	12.775 12.613 11.788	6.984 6.670 9.859	2.014 1.717 1.245	20.552 20.863 22.368	0.095 0.080 0.625	9.783 10.328 12.890	2.118 1.917 1.070	2.689 2.668 2.525	26.89 26.65 26.19	99.03 98.51 98.94

Migmatite MN (Ourtigas, Outi1) 2°58'55" - 43°27'30"

|--|

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	006g3t1	1.001	0.177	9.871	0.581	0.834	13.263	3.988	1.412	25.005	0.059	12.650	1.472	2.888	27.54	100.74
2	006g3t1	0.867	0.182	8.934	0.416	0.925	13.204	4.767	1.077	26.073	0.075	14.166	0.312	2.837	27.50	101.33
3	006g3t1	0.845	0.168	8.949	0.377	0.925	13.229	4.752	1.062	26.221	0.076	14.258	0.297	2.807	27.55	101.51
4	006g3t1	0.902	0.164	9.856	0.458	0.761	13.243	3.683	1.292	26.138	0.056	13.359	0.707	2.993	27.51	101.12
5	006g3t1	0.962	0.165	10.154	0.482	0.817	13.243	3.782	1.421	25.726	0.067	12.973	0.719	3.127	27.53	101.17
6	006g3t1	0.914	0.186	9.903	0.500	0.812	13.238	3.886	1.343	25.571	0.075	12.964	0.948	3.028	27.51	100.88
7	006g17t2	0.379	0.144	9.871	0.475	0.552	13.086	4.659	1.312	26.396	0.267	13.755	0.196	3.026	27.52	101.63
8	006g17t2	0.424	0.153	9.870	0.527	0.571	13.052	4.725	1.414	26.276	0.266	13.721	0.200	2.966	27.48	101.65
9	006g17t2	0.167	0.097	10.308	0.345	0.429	13.168	3.330	1.319	27.540	0.190	14.225	0.000	3.151	27.57	101.84
10	006g17t2	0.782	0.156	9.861	0.479	0.773	13.419	3.643	1.312	26.379	0.056	13.647	0.608	2.882	27.77	101.77
11	006g17t2	0.373	0.114	10.085	0.398	0.488	13.294	3.225	1.301	27.091	0.148	14.105	0.355	3.103	27.68	101.76
12	006g17t2	0.412	0.142	9.981	0.479	0.627	13.089	4.875	1.337	26.189	0.251	13.496	0.235	2.944	27.51	101.56
13	006g17t2	0.899	0.163	10.125	0.526	0.808	13.441	3.858	1.422	25.631	0.062	13.019	0.904	3.014	27.80	101.68
14	006g25t3	0.259	0.283	9.536	0.227	0.680	11.746	11.814	1.176	23.303	1.055	11.822	0.000	2.763	26.64	101.30
15	006g25t3	0.273	0.288	9.599	0.264	0.687	11.694	12.347	1.157	23.048	1.123	11.716	0.000	2.792	26.69	101.67
16	006g25t3	0.272	0.304	9.438	0.317	0.686	11.545	12.856	1.135	22.745	1.184	11.558	0.000	2.788	26.53	101.36
17	006g25t4	0.953	0.170	9.602	0.624	0.812	13.369	3.731	1.380	25.236	0.049	12.937	1.361	2.924	27.64	100.78
18	006g25t4	0.970	0.171	9.671	0.482	0.820	13.627	3.760	1.457	25.225	0.068	12.976	1.087	2.780	27.91	101.00
19	006g25t4	1.052	0.194	9.558	0.604	0.891	13.356	4.037	1.406	24.900	0.067	12.896	1.376	2.936	27.66	100.94
20	006g25t4	1.047	0.208	9.665	0.609	0.863	13.410	4.046	1.426	24.955	0.068	12.698	1.470	2.866	27.74	101.07
21	006g28t5	0.221	0.174	9.861	0.366	0.652	12.778	6.220	1.307	25.851	0.379	13.307	0.113	3.054	27.28	101.56
22	006g28t5	0.334	0.156	9.935	0.394	0.637	12.911	5.357	1.382	25.881	0.292	13.385	0.190	2.984	27.29	101.13
23	006g28t5	0.280	0.151	9.894	0.437	0.635	12.835	5.786	1.387	25.780	0.338	13.426	0.164	2.874	27.26	101.25
24	006g28t6	0.158	0.114	10.097	0.382	0.481	12.960	4.030	1.292	27.032	0.247	14.110	0.106	3.117	27.37	101.49
25	006g28t6	0.165	0.106	10.123	0.391	0.454	13.036	3.756	1.298	27.174	0.225	14.184	0.079	3.061	27.42	101.47
26	006g32t7	1.587	0.230	9.357	0.530	0.920	13.278	3.777	1.294	24.530	0.068	12.652	1.660	2.962	27.53	100.37
27	006g32t7	0.463	0.146	9.612	0.280	0.772	12.998	4.840	1.102	26.542	0.155	14.019	0.000	3.038	27.32	101.28
28	006g32t7	0.307	0.164	9.878	0.437	0.656	12.829	5.325	1.341	26.115	0.290	13.485	0.130	3.000	27.22	101.18
29	006g32t7	0.379	0.160	9.552	0.397	0.819	12.845	5.965	1.223	25.729	0.290	13.569	0.088	2.888	27.24	101.14
30	006g32t7	0.400	0.182	9.603	0.356	0.797	12.857	5.902	1.233	25.648	0.282	13.456	0.113	3.038	27.24	101.11
31	006g32t7	0.531	0.153	9.964	0.263	0.716	13.061	4.399	1.178	26.621	0.159	13.992	0.000	3.043	27.40	101.48
32	006g32t7	0.771	0.149	9.513	0.461	0.826	13.189	3.995	1.227	26.016	0.065	13.700	0.506	2.958	27.41	100.79
33	006g39t8	0.388	0.177	9.537	0.388	0.669	12.756	6.147	1.275	25.693	0.371	13.414	0.147	2.912	27.18	101.05
34	006g39t8	0.444	0.190	9.814	0.438	0.721	12.745	6.489	1.371	25.348	0.381	13.058	0.143	2.825	27.18	101.15
35	006g39t8	0.439	0.185	9.699	0.455	0.713	12.732	6.462	1.318	25.395	0.381	13.067	0.182	2.946	27.18	101.15
36	006g39t8	0.368	0.167	9.786	0.407	0.688	12.719	6.497	1.312	25.571	0.397	13.199	0.115	2.914	27.20	101.34
37	006g39t8	0.367	0.191	9.601	0.297	0.706	12.691	6.723	1.307	25.373	0.415	13.170	0.093	2.912	27.13	100.97
38	006g39t8	0.367	0.131	8.886	0.226	0.731	13.130	4.548	1.011	26.914	0.117	15.123	0.000	2.909	27.46	101.55
39	006g39t8	0.525	0.141	8.893	0.274	0.766	13.204	4.219	0.893	26.712	0.091	14.871	0.134	2.924	27.47	101.11
40	006g39t8	0.857	0.156	10.078	0.502	0.769	13.343	3.589	1.345	26.082	0.062	13.160	0.703	2.945	27.63	101.22
41	006g45t9	0.337	0.139	9.928	0.561	0.538	12.835	4.644	1.416	26.111	0.267	13.591	0.306	2.984	27.17	100.82
42	006g45t9	0.456	0.154	9.855	0.459	0.574	12.806	4.771	1.387	25.952	0.286	13.520	0.414	3.014	27.16	100.81
43	006g45t9	0.413	0.148	9.692	0.471	0.585	12.776	5.077	1.364	25.979	0.309	13.634	0.247	3.040	27.14	100.88
44	006g45t9	0.344	0.135	9.878	0.425	0.517	12.862	4.240	1.315	26.444	0.244	13.849	0.239	3.051	27.16	100.70
45	006g50t10	0.395	0.154	9.919	0.484	0.648	13.070	5.180	1.384	25.863	0.267	13.443	0.235	3.085	27.51	101.63
46	006g50t10	0.387	0.173	9.821	0.443	0.658	13.037	5.307	1.367	25.836	0.267	13.440	0.218	2.909	27.42	101.28
47	006g50t10	0.291	0.124	9.769	0.408	0.564	13.132	4.352	1.295	26.594	0.214	14.154	0.154	3.073	27.54	101.66
48	006g50t10	0.182	0.099	10.208	0.383	0.423	13.144	3.302	1.364	27.379	0.181	14.309	0.092	3.247	27.55	101.86
49	006g60t11	0.214	0.207	9.634	0.356	0.711	12.544	7.994	1.227	24.983	0.579	13.078	0.000	2.874	27.17	101.57
50	006g60t11	0.203	0.160	9.936	0.316	0.608	12.680	6.451	1.232	25.731	0.459	13.394	0.000	2.977	27.20	101.34
51	006g60t11	0.176	0.194	9.623	0.329	0.644	12.637	7.104	1.160	25.439	0.503	13.436	0.000	2.988	27.19	101.42
52	006g60t12	0.930	0.173	10.043	0.578	0.823	13.379	3.975	1.363	25.341	0.064	12.940	1.073	2.971	27.71	101.36
53	006g60t12	1.098	0.194	9.377	0.618	0.870	13.342	4.016	1.351	25.054	0.066	13.029	1.498	2.947	27.69	101.15
54	006g60t12	0.915	0.166	9.766	0.466	0.814	13.317	3.866	1.248	25.788	0.058	13.408	0.753	2.863	27.58	101.00

Migmatite MN	(Salvetat,	2°42'30" - 43°35	'40"
--------------	------------	------------------	------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	za26t8	0.254	0.093	10.619	1.237	0.408	12.970	3.541	1.911	25.246	0.232	12.347	1.698	3.144	27.42	101.12
2	za26t8	0.261	0.090	10.605	1.343	0.435	12.956	3.574	1.946	25.174	0.296	12.135	1.749	3.144	27.47	101.18
3	za26t8	0.302	0.098	10.613	1.283	0.499	13.024	4.450	2.036	24.474	0.332	11.589	1.966	2.996	27.58	101.24
4	za26t8	0.308	0.101	10.292	1.322	0.552	12.883	5.009	2.031	24.132	0.404	11.544	1.990	3.037	27.48	101.08
5	za26t8	0.260	0.095	10.547	1.338	0.481	13.058	4.049	1.996	24.967	0.367	11.995	1.846	3.139	27.73	101.87
6	za26t8	0.261	0.090	10.532	1.254	0.471	13.119	3.968	1.980	25.008	0.417	12.014	1.804	3.095	27.83	101.84
7	za26t8	0.241	0.082	10.637	1.247	0.474	13.088	4.009	1.969	25.089	0.341	12.011	1.868	3.070	27.74	101.87
8	za26t4	0.427	0.134	9.868	1.265	0.790	12.952	6.296	1.789	23.185	0.333	11.194	2.149	2.827	27.44	100.65
9	za26t4	0.521	0.140	10.003	1.579	0.709	12.763	6.678	2.009	22.745	0.505	10.752	2.169	2.770	27.38	100.72
10	za26t4	0.391	0.110	9.698	1.140	0.673	13.022	5.002	1.794	24.269	0.384	12.216	1.769	2.913	27.59	100.97
11	za26t4	0.411	0.112	10.076	1.357	0.821	13.457	5.237	1.972	23.522	0.227	11.139	2.249	2.819	27.99	101.39
12	za26t5	0.324	0.112	8.286	1.019	0.898	11.746	4.066	1.603	18.853	6.261	9.093	1.984	2.507	30.83	97.58
13	za26t5	0.631	0.116	9.774	1.191	0.983	13.696	5.558	1.837	22.899	0.200	11.151	2.570	2.845	28.29	101.74
14	za26t5	0.611	0.130	9.680	1.199	0.976	13.577	5.607	1.757	22.976	0.144	11.230	2.547	2.862	28.07	101.37
15	za26t5	0.577	0.114	9.622	1.136	0.951	13.447	5.479	1.750	23.247	0.145	11.360	2.422	2.841	27.89	100.98
16	za26t5	0.412	0.098	9.555	1.146	0.657	13.034	5.243	1.715	24.269	0.350	12.232	1.765	2.902	27.56	100.93
17	za26t5	0.462	0.130	9.593	1.238	0.900	13.163	5.834	1.865	23.194	0.224	11.194	2.334	2.824	27.59	100.54
18	za26t5	0.446	0.133	9.606	1.214	0.874	13.057	6.242	1.919	23.102	0.266	11.187	2.208	2.825	27.50	100.58
19	za26t5	0.461	0.134	9.785	1.323	0.936	13.100	6.322	1.930	22.854	0.228	10.826	2.398	2.798	27.54	100.64
20	za26t6	0.502	0.147	9.124	1.224	1.084	13.333	5.438	1.713	22.354	0.285	10.803	2.496	2.714	27.61	98.83
21	za26t6	0.462	0.151	9.540	1.292	1.141	13.019	7.571	1.787	21.833	0.437	10.255	2.629	2.680	27.63	100.43
22	za26t6	0.485	0.164	8.801	1.184	1.333	13.029	7.369	1.702	21.241	0.400	10.080	2.163	2.727	27.25	97.93
23	za26t6	0.435	0.143	9.426	1.310	1.088	12.868	7.231	1.737	22.839	0.306	11.055	1.928	2.848	27.34	100.55
24	za26t6	0.473	0.152	9.401	1.260	1.126	12.743	7.853	1.762	22.768	0.293	11.018	1.639	2.887	27.17	100.55
25	za26t6	0.511	0.150	9.456	1.231	1.117	12.871	7.650	1.797	22.763	0.282	10.950	1.685	2.880	27.31	100.65
26	za26t6	0.496	0.145	9.531	1.307	1.102	12.986	7.303	1.786	22.870	0.275	11.156	1.834	2.741	27.48	101.02
27	za26t7	0.573	0.155	9.760	1.339	0.967	13.551	5.700	1.780	22.672	0.132	11.003	2.762	2.839	28.04	101.27
28	za26t7	0.596	0.125	9.684	1.278	0.965	13.567	5.818	1.786	22.888	0.145	11.044	2.745	2.742	28.09	101.47
29	za26t7	0.603	0.150	9.894	1.354	0.994	13.665	5.787	1.731	23.088	0.145	11.121	2.767	2.816	28.33	102.45
30	za26t7	0.590	0.141	10.001	1.263	0.988	13.633	5.744	1.843	22.681	0.140	10.917	2.770	2.776	28.18	101.67
31	za26t7	0.573	0.140	9.734	1.422	0.997	13.592	5.678	1.763	22.844	0.149	10.959	2.790	2.912	28.16	101.72
32	za26t7	0.594	0.131	9.844	1.392	1.002	13.745	5.633	1.837	23.051	0.183	11.036	2.753	2.835	28.45	102.48
33	za26t7	0.561	0.128	9.663	1.292	1.003	13.840	5.581	1.783	23.002	0.155	11.105	2.788	2.861	28.49	102.25
34	za26t7	0.559	0.132	9.819	1.238	0.987	13.916	5.531	1.823	23.242	0.149	11.265	2.795	2.833	28.66	102.95
35	za26t7	0.474	0.120	9.645	1.194	1.201	13.509	5.482	1.780	22.344	0.350	10.767	2.648	2.876	28.11	100.50
36	za26t1	0.336	0.118	9.376	1.240	0.865	13.755	5.903	1.582	23.276	0.544	11.410	2.156	2.917	28.63	102.11
3/	za26t2	0.462	0.13/	9.255	1.210	1.026	13.164	6.911	1.693	22.392	0.823	11.037	2.031	2.794	28.13	101.07
38	za26t2	0.509	0.145	9.299	1.259	1.055	12.832	/.490	1./31	22.364	0.302	10.818	2.151	2.796	27.22	99.97
39	za26t2	0.552	0.146	9.267	1.526	0.502	13.138	6.964	1.8/5	22.595	0.268	10.862	2.472	2.821	27.66	100.95
40	za26t2	0.252	0.124	9.788	1.170	0.502	12.497	6.726	1.869	23.195	0.556	11.060	2.627	2.844	27.15	100.55
41	za26t2	0.171	0.113	9.913	1.269	0.456	12.582	5.1/1	1.707	23.943	0.394	11.435	2.58/	2.941	27.01	99.69
42	za26t2	0.194	0.119	9.750	1.2/1	0.515	12.214	5.645	1.755	23.475	0.416	11.21/	2.044	2.839	26.52	98.59
4.5	za20t2	0.162	0.111	9.585	1.2/4	0.515	12.208	4.908	1./55	23.236	0.510	10.962	2.892	2.8/8	20.34	97.31
44	za2013	0.270	0.131	9.690	1.311	0.492	12.013	6 200	1.901	22.092	0.300	10.002	2.044	2.912	27.50	00.25
40 40	za20t3	0.200	0.124	9./19	1.409	0.682	12.010	0.288	1.843	22.103	0.496	10.355	3.451	2.770	27.15	99.25
40	za2013	0.217	0.149	9.034	1.304	0.095	12.331	0.492	1.824	22.338	0.404	10.409	2.5/2	2./89	27.70	100.80
+/ /8	za2013	0.232	0.141	9.009	1.450	0.700	13.041	6.062	1.040	22.371	0.494	10.342	3.393	2.010	21.19	100.62
40	za2013	0.100	0.120	9./41	1.319	0.077	13.419	0.002	1.900	22.010	0.055	10.223	3.721	2.000	20.40	101.55

Granite FA (SMV1) 2°01'10" - 45°05'50"

NUM	I REF	U	Pb 0.154	Nd	Gd	Ca	P	Th 8 001	Sm	Ce 23.415	Si	La	Y 1.027	Pr	0 27.36	Total
2	smv1g2t1 smv1g2t1	0.889	0.154	9.180	0.760	1.346	12.790	8.710	1.462	23.881	0.234	10.853	0.634	2.855	27.30	100.34
3	smv1g2t1	0.236	0.129	9.491	0.696	1.058	12.689	8.524	1.397	24.672	0.493	11.657	0.340	2.896	27.32	101.60
4	smv1g2t1	0.146	0.099	9.401	0.546	0.878	12.665	7.665	1.236	25.644	0.518	12.364	0.161	2.893	27.29	101.50
5	smv1g2t1	0.203	0.133	9.387	0.624	0.938	12.728	8.000	1.308	25.370	0.482	12.169	0.237	2.910	27.37	101.86
7	smv1g2t1 smv1g2t1	0.384	0.147	9.219	0.658	1.111	12.802	8.547	1.417	24.552	0.459	11.622	0.450	2.780	27.35	101.26
8	smv1g2t1	0.321	0.155	8.976	0.835	1.285	12.604	8.900	1.459	23.747	0.637	11.081	0.526	2.729	27.24	100.50
9	smv1g2t1	0.174	0.128	9.202	0.758	1.211	12.674	9.214	1.480	24.207	0.533	11.099	0.355	2.963	27.31	101.31
10	smv1g2t1	0.125	0.133	8.837	0.702	1.169	11.912	8.381	1.390	22.678	2.170	10.226	0.286	2.687	27.49	98.18
11	smv1g1t2	0.130	0.134	9.465	0.548	0.887	12.622	7.952	1.260	25.415	0.438	12.144	0.152	2.970	27.13	101.25
12	smv1g1t2 smv1g1t2	0.690	0.107	9.524	1.429	0.975	13.019	3.263	1.959	23.921	0.185	12.084	1.642	2.739	27.40	99.94
14	smv1g1t2	0.729	0.109	10.344	1.342	0.669	13.110	3.733	1.919	24.178	0.184	11.851	1.592	2.975	27.39	100.12
15	smv1g1t2	0.679	0.113	10.021	1.193	0.861	13.051	4.974	1.793	23.965	0.426	11.482	1.382	2.903	27.56	100.40
16	smv1g1t2	0.533	0.093	10.287	1.241	0.785	13.152	4.455	1.843	23.888	0.214	11.431	1.757	2.929	27.47	100.08
1/	smv1g1t2	0.643	0.107	0.721	1.255	0.745	13.304	3.795	1.925	23.632	0.168	11.44/	2.132	2.879	27.59	99.89
10	smv1g1t2 smv1g1t2	1.050	0.123	9.731	1.010	0.899	12.927	5.323	1.651	22.622	0.399	11.345	1.252	2.802	27.33	98.08 99.76
20	smv1g1t2	0.176	0.144	9.436	0.747	1.244	12.761	9.265	1.606	23.740	0.613	10.511	0.414	2.760	27.39	100.81
21	smv1t3	0.641	0.153	8.544	0.680	1.293	12.686	8.298	1.350	22.986	0.567	11.130	0.816	2.623	27.05	98.82
22	smv1t3	0.523	0.161	8.673	0.889	1.553	12.937	9.242	1.588	22.592	0.384	10.630	0.933	2.708	27.37	100.18
23	smv1t3	0.373	0.151	9.017	1.019	1.561	12.928	10.037	1.624	22.622	0.403	9.088	0.817	2.623	27.42	100.66
24	smv1t3	0.322	0.154	9.051	0.794	1.344	12.947	8.897	1.569	23.882	0.367	10.929	0.606	2.832	27.39	101.11
26	smv1t3	0.169	0.106	9.366	0.530	0.926	12.787	7.594	1.265	25.531	0.414	12.257	0.201	2.764	27.29	101.20
27	smv1t3	0.534	0.152	9.098	0.953	1.447	13.046	8.999	1.746	22.952	0.249	10.468	0.965	2.783	27.44	100.84
28	smv1t3	0.639	0.163	8.766	0.919	1.472	12.899	8.789	1.677	22.433	0.363	10.487	1.077	2.610	27.22	99.52
29	smv1t5	0.776	0.175	8.382	0.914	1.500	12.000	8.555	1./1/	22.489	0.366	10.550	1.205	2.709	27.42	98.71
31	smv1g3t4	0.110	0.086	9.870	0.485	0.758	13.012	5.067	1.243	26.432	0.219	13.102	0.165	2.795	27.30	100.65
32	smv1g3t4	0.112	0.082	9.754	0.471	0.741	12.988	4.857	1.266	26.628	0.163	13.242	0.180	3.006	27.25	100.74
33	smv1g3t4	0.136	0.089	9.916	0.563	0.769	13.035	5.042	1.257	26.467	0.197	13.152	0.180	3.036	27.39	101.23
34	smv1g3t4	0.163	0.111	9.543	0.637	1.035	12.971	7.066	1.422	25.283	0.261	11.928	0.375	3.003	27.38	101.18
36	smv1g3t4 smv1g3t4	0.645	0.138	9.309	0.753	1.158	13.132	6.534	1.402	24.507	0.171	11.823	0.955	2.744	27.39	100.61
37	smv1g3t4	0.497	0.143	9.244	0.765	1.144	13.115	6.917	1.473	24.623	0.189	11.981	0.741	2.744	27.48	101.06
38	smv1g3t4	0.316	0.127	9.295	0.650	1.099	13.069	6.914	1.441	24.883	0.220	12.021	0.552	2.824	27.42	100.83
39	smv1g3t5	0.124	0.083	9.667	0.537	0.828	13.031	5.401	1.314	26.335	0.205	12.845	0.235	2.900	27.35	100.85
40	smv1g3t5	0.455	0.129	9.148	0.696	1.137	13.078	6.840	1.4.50	24.580	0.198	11.976	0.730	2.866	27.40	100.67
41	smv1g3t5 smv1g3t5	1.034	0.165	8.862	0.700	1.190	13.088	6.808	1.342	24.303	0.139	11.585	1.119	2.729	27.47	100.56
43	smv1g6t6	1.221	0.180	8.036	0.680	1.431	13.494	7.443	1.308	21.657	1.343	10.676	1.268	2.489	28.70	99.93
44	smv1g6t6	1.522	0.192	8.463	0.880	1.520	13.644	7.944	1.522	22.302	0.250	10.762	1.582	2.579	28.16	101.32
45	smv1g6t6	0.786	0.184	8.814	0.905	1.483	13.422	8.984	1.707	22.526	0.242	10.368	1.207	2.610	27.86	101.09
46 47	smv1g6t6	0.277	0.163	9.049	0.731	1.315	13.3/2	9.262	1.548	23.553	0.366	10.763	0.561	2.746	27.91	101.62
48	smv1g6t6	1.007	0.165	8.677	0.706	1.459	13.460	8.452	1.493	23.244	0.244	11.250	0.807	2.666	27.94	101.45
49	smv1g6t6	1.584	0.191	8.118	0.709	1.544	13.540	7.901	1.383	23.128	0.189	11.776	0.974	2.584	28.01	101.63
50	smv1g6t6	2.007	0.194	7.561	0.752	1.564	13.498	7.410	1.288	22.883	0.142	12.189	1.225	2.491	27.88	101.08
51	smv1g6t6	2.011	0.200	7.440	0.734	1.562	13.729	7.322	1.275	22.952	0.179	12.235	1.122	2.497	28.18	101.44
53	smv1g6t6	0.960	0.202	8 800	0.795	1.550	13.778	5.839	1.405	24.533	0.240	12 251	0.881	2.360	26.52	101.81
54	smv1g6t6	0.886	0.156	8.497	0.902	1.314	13.247	7.315	1.693	23.895	0.195	12.051	0.761	2.682	27.65	101.24
55	smv1g6t6	0.990	0.173	8.352	1.018	1.458	13.256	8.047	1.653	23.101	0.210	11.462	0.910	2.681	27.64	100.96
56	smv1g6t6	0.906	0.179	8.819	1.133	1.555	13.238	8.737	1.901	22.361	0.200	10.488	1.044	2.646	27.60	100.81
57	smv1g6t6	0.574	0.172	8.730	0.959	1.491	13.192	9.252	1./51	22.920	0.237	10.694	0.758	2.810	27.60	101.15
59	smv1g6t6	0.655	0.160	8.488	0.962	1.305	13.209	7.846	1.685	23.888	0.203	11.745	0.674	2.771	27.52	101.18
60	smv1g6t6	0.671	0.144	8.734	0.906	1.191	13.243	7.173	1.624	24.146	0.186	12.008	0.656	2.707	27.58	100.97
61	smv1g6t6	0.669	0.121	8.978	0.861	1.069	13.330	6.165	1.650	24.685	0.166	12.418	0.707	2.745	27.70	101.26
62	smv1g6t6	0.754	0.128	8.916	1.012	1.011	13.386	5.667	1.728	24.786	0.140	12.459	0.872	2.718	27.75	101.33
64	smv1g6t6	1.356	0.172	8.264	0.955	1.415	13.398	7.080	1.569	22.734	0.136	11.617	1.554	2.001	27.96	101.08
65	smv1g6t6	0.998	0.158	8.692	0.705	1.370	13.213	7.759	1.447	23.515	0.200	11.549	1.062	2.803	27.62	101.10
66	smv1g6t6	0.467	0.146	9.152	0.694	1.239	13.014	8.586	1.432	23.998	0.305	11.394	0.593	2.777	27.47	101.27
67	smv1g6t6	0.186	0.128	9.314	0.685	1.256	12.996	9.236	1.530	24.015	0.352	11.080	0.437	2.797	27.51	101.52
68	smv1g6t6	0.438	0.162	9.196	0.772	1.404	13.246	9.332	1.675	22.952	0.311	10.457	0.823	2./24	27.72	101.21
70	smv1g11t7	0.783	0.152	8.883	0.761	1.233	12.948	7.255	1.429	23.574	0.461	11.414	0.989	2.633	27.40	99.92
71	smv1g11t7	0.838	0.111	9.448	1.045	1.001	13.060	5.113	1.738	24.365	0.122	11.526	1.412	2.886	27.28	99.94
72	smv1g11t7	0.306	0.094	9.964	0.756	0.823	13.064	4.877	1.479	25.473	0.128	12.461	0.734	2.939	27.29	100.39
73	smv1g11t7	0.117	0.085	10.155	0.657	0.764	13.239	4.658	1.486	25.832	0.145	12.682	0.457	2.916	27.49	100.69
75	smv1g11t7	0.103	0.072	10.259	0.701	0.709	13.064	4.277	1.406	26.038	0.135	13.199	0.466	2.931	27.32	100.68
76	smv1g11t7	0.079	0.062	10.131	0.728	0.688	13.055	4.291	1.394	26.296	0.131	13.252	0.449	2.998	27.33	100.89
77	smv1g11t7	0.326	0.100	9.913	0.679	0.711	13.086	4.045	1.342	26.225	0.127	13.391	0.446	2.915	27.33	100.63
78	smv1g11t7	2.962	0.229	8.663	0.928	1.270	13.550	4.297	1.649	23.161	0.099	11.441	1.731	2.688	27.84	100.51
80	smv1g11t7	3.170	0.230	8.510	0.974	1.349	13.241	4.505	1.618	23.022	0.085	11.291	1.629	2.587	27.41	99.71
81	smv1g11t7	3.070	0.225	8.670	0.916	1.316	13.183	4.586	1.612	23.256	0.080	11.431	1.610	2.772	27.43	100.03
82	smv1g11t7	1.355	0.137	9.574	0.765	0.911	13.134	4.175	1.419	25.081	0.110	12.697	0.925	2.951	27.40	100.63
83	smv1g11t7	0.104	0.065	10.195	0.633	0.686	13.061	4.121	1.310	26.325	0.145	13.342	0.413	2.858	27.31	100.56
84	smv1g11t7	0.079	0.068	10.222	0.600	0.701	13.072	4.402	1.417	26.227	0.161	13.167	0.393	3.091	27.38	100.98
86	smv1g11t/ smv1g11t7	0.164	0.135	9.483	0.663	1.034	12.000	8.282	1.462	24.535 24.535	0.276	11.075	0.435	2.809	27.21	100.73
87	smv1g11t7	0.281	0.131	9.623	0.942	1.046	12.305	7.057	1.642	23.819	0.281	11.073	1.049	2.757	26.40	98.41
88	smv1g11t7	0.414	0.108	10.061	1.359	0.905	12.953	5.043	1.913	23.504	0.162	10.980	2.004	2.760	27.15	99.32
89	smv1g11t7	0.357	0.130	9.729	1.077	1.051	13.024	6.674	1.743	23.402	0.186	10.898	1.602	2.860	27.30	100.03
90	smv1g4t8	1.487	0.179	7.968	0.687	1.470	12.612	8.213	1.280	21.561	1.120	10.481	1.315	2.427	27.40	98.20
91 92	smv1g4t8 smv1o4r8	1.005	0.171	6.522 8.493	0.714	1.437	12.9/1	7.893	1.439	23.053	0.222	10.979	1.223	2.529 2.577	27.12	98.92 99.14
93	smv1g4t8	0.732	0.164	8.810	0.695	1.378	12.935	8.434	1.540	23.460	0.245	10.804	0.826	2.740	27.20	99.96
94	smv1g4t8	0.416	0.149	9.264	0.717	1.332	12.838	8.985	1.632	23.504	0.288	10.506	0.585	2.716	27.12	100.05
95	smv1g4t8	0.178	0.149	9.497	0.627	1.330	12.805	9.451	1.597	23.670	0.319	10.298	0.474	2.887	27.15	100.43
96 07	smv1g4t8	0.201	0.144	9.624	0.701	1.329	12.825	9.278	1.676	23.690	0.328	10.257	0.461	2.718	27.18	100.41
98	smv1g4t8	0.180	0.150	9.431	0.716	1.320	12.643	9.213	1.600	23.219	0.326	10.046	0.450	2.765	26.77	98.83
99	smv1g4t8	0.188	0.138	9.460	0.732	1.354	12.705	9.337	1.683	23.343	0.315	10.131	0.503	2.774	26.94	99.60
100	smv1g4t8	0.201	0.135	9.522	0.801	1.359	12.771	9.542	1.705	23.364	0.314	10.116	0.491	2.848	27.09	100.26

Grania	te FA (SMV1) su	vite														
NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
101	smv1g4t8	0.209	0.148	9.534	0.820	1.383	12.764	9.458	1.684	23.244	0.307	10.163	0.477	2.777	27.05	100.01
102	smv1g4t8	0.201	0.143	9.614	0.841	1.400	12.786	9.443	1.676	23.359	0.301	10.049	0.556	2.745	27.10	100.22
103	smv1g4t8	0.204	0.154	9.473	0.772	1.383	12.790	9.336	1.749	23.277	0.297	10.066	0.585	2.802	27.07	99.96
104	smv1g4t8	0.214	0.151	9.306	0.788	1.384	12.429	9.363	1.761	22.888	0.313	10.077	0.536	2.765	26.52	98.49
105	smv1g4t8	0.207	0.162	9.130	0.745	1.397	12.278	9.008	1.659	22.791	0.296	10.112	0.570	2.754	26.20	97.31
100	smv1g4t8	0.234	0.135	9.090	0.800	1.369	12.040	8.968	1.504	22.696	0.274	10.251	0.567	2.773	20.00	100.00
108	smv1g4t8	0.231	0.165	9.451	0.838	1.388	12.854	9.284	1.695	23.351	0.293	10.255	0.570	2.780	27.18	100.33
109	smv1g4t8	0.196	0.149	9.323	0.731	1.383	12.700	9.161	1.576	23.060	0.290	10.271	0.553	2.709	26.83	98.93
110	smv1g4t8	0.188	0.141	9.376	0.774	1.366	12.743	9.173	1.655	23.347	0.291	10.300	0.516	2.727	26.96	99.55
111	smv1g4t8	0.180	0.156	9.417	0.734	1.349	12.691	9.163	1.619	23.464	0.312	10.443	0.452	2.766	26.93	99.68
112	smv1g4t8	0.182	0.147	9.149	0.659	1.282	12.306	8.679	1.581	23.535	0.374	10.596	0.415	2.746	26.38	98.03
113	smv1g4t8	0.165	0.122	8.952	0.645	1.229	12.269	8.053	1.394	23.969	0.343	11.090	0.387	2.6/1	26.26	97.54
115	smv1g4t8	0.200	0.130	9.355	0.005	1.278	12.015	8.939	1.534	23.725	0.305	10.565	0.464	2.774	20.00	100.41
116	smv1g4t8	0.210	0.134	9.279	0.839	1.342	12.861	9.059	1.631	23.718	0.284	10.534	0.616	2.893	27.23	100.63
117	smv1g4t8	0.248	0.157	9.400	0.846	1.369	12.891	9.176	1.608	23.582	0.264	10.548	0.583	2.749	27.24	100.66
118	smv1g4t8	0.245	0.150	9.321	0.832	1.392	12.874	9.092	1.671	23.362	0.259	10.511	0.621	2.678	27.16	100.17
119	smv1g4t8	0.228	0.137	9.403	0.783	1.397	12.886	9.099	1.623	23.342	0.255	10.435	0.634	2.780	27.17	100.17
120	smv1g4t8	0.233	0.146	9.435	0.789	1.392	12.822	9.207	1.726	23.279	0.261	10.275	0.599	2.813	27.09	100.07
121	smv1g4t8	0.223	0.155	9.330	0.775	1.390	12.854	9.155	1.667	23.310	0.253	10.364	0.600	2.756	27.10	99.93
122	smv1g4t8	0.227	0.139	9.286	0.779	1.390	12.302	9.072	1.599	23.268	0.202	10.448	0.579	2.721	26.93	99.41
124	smv1g4t8	0.217	0.154	9.207	0.722	1.327	12.717	8.831	1.518	23.470	0.284	10.600	0.553	2.806	26.90	99.30
125	smv1g4t8	0.195	0.147	9.245	0.692	1.252	12.756	8.787	1.518	23.923	0.304	10.947	0.454	2.825	27.05	100.09
126	smv1g4t8	0.226	0.147	9.272	0.790	1.361	12.737	9.341	1.586	23.544	0.326	10.524	0.523	2.821	27.08	100.28
127	smv1g7t9	0.888	0.179	8.415	0.808	1.540	12.931	8.054	1.486	22.524	0.704	10.914	1.118	2.574	27.60	99.74
128	smv1g7t9	0.601	0.170	8.603	0.834	1.587	12.959	9.093	1.646	22.641	0.276	10.587	0.953	2.704	27.28	99.93
129	smv1g7t9	0.422	0.157	8.894	0.780	1.492	12.860	9.127	1.517	23.100	0.296	10.704	0.686	2.622	27.14	99.80
130	smv1g7t9	0.277	0.144	9.017	0.587	1.240	12.654	8.063	1.452	24.156	0.337	11.364	0.408	2.793	27.19	100.19
132	smv1g7t9	0.262	0.122	9.094	0.478	0.985	12.709	7.419	1.225	25.202	0.381	12.530	0.276	2.735	27.11	100.53
133	smv1g7t9	0.299	0.129	9.073	0.483	0.940	12.636	7.575	1.332	25.201	0.448	12.342	0.323	2.749	27.10	100.63
134	smv1g7t9	0.217	0.140	9.136	0.557	0.931	12.513	8.078	1.408	25.004	0.549	11.847	0.328	2.822	27.04	100.57
135	smv1g7t9	0.162	0.126	9.160	0.576	0.905	12.466	8.339	1.426	25.091	0.577	11.803	0.277	2.751	27.02	100.68
136	smv1g7t9	0.163	0.158	8.723	0.514	0.686	12.128	9.025	1.211	25.119	0.765	12.485	0.239	2.774	26.80	100.79
137	smv1g/t9	0.175	0.142	9.042	0.519	0.685	12.232	8.620	1.295	25.235	0.714	12.199	0.265	2.696	20.80	100.67
139	smv1g7t9	0.223	0.120	8.967	0.601	0.976	12.693	8.007	1.467	24.779	0.398	11.927	0.523	2.699	27.10	100.50
140	smv1g7t9	0.228	0.130	9.102	0.606	0.990	12.774	7.841	1.433	24.744	0.390	12.086	0.443	2.808	27.22	100.79
141	smv1g7t9	0.140	0.127	9.195	0.517	0.956	12.744	7.821	1.306	25.114	0.396	12.294	0.271	2.712	27.17	100.77
142	smv1g7t9	0.094	0.123	9.294	0.529	0.941	12.705	7.861	1.277	25.261	0.409	12.306	0.104	2.829	27.15	100.88
143	smv1g7t9	0.112	0.111	9.117	0.567	0.947	12.659	7.989	1.187	25.211	0.421	12.179	0.132	2.779	27.05	100.46
144	smv1g7t9	0.085	0.142	9.060	0.410	0.965	12.632	8.233	1.256	25.155	0.417	12.191	0.111	2.775	27.02	100.45
145	smv1g7t9	0.109	0.122	9.155	0.419	1 1 38	12.024	0.029	1.245	24.965	0.436	11.959	0.120	2.003	27.00	100.75
147	smv1g7t9	0.702	0.177	8.628	0.590	1.300	12.884	8.511	1.409	23.685	0.300	11.265	0.732	2.678	27.19	100.05
148	smv1g9t10	0.628	0.150	7.675	0.286	1.347	12.499	7.751	1.061	22.029	1.825	11.098	0.581	2.427	27.67	97.03
149	smv1g9t10	0.690	0.146	8.257	0.436	1.406	13.034	8.226	1.163	23.859	0.388	11.814	0.676	2.602	27.45	100.15
150	smv1g9t10	0.959	0.172	8.391	0.761	1.456	13.081	8.112	1.421	23.136	0.199	11.237	1.105	2.586	27.34	99.96
151	smv1g9t10	0.752	0.177	8.668	0.880	1.559	13.024	9.282	1.785	22.382	0.234	10.194	1.184	2.614	27.32	100.06
152	smv1g9t10	0.548	0.182	8.959	0.910	1.592	12.928	10.12/	1.870	22.109	0.281	9.809	1.088	2.759	27.31	100.47
155	smv1g9t10	0.482	0.181	9.122	0.851	1.599	12.913	9 372	1.792	22.145	0.280	9.699	0.998	2.712	27.26	100.50
155	smv1g9t10	0.911	0.167	8.722	0.828	1.404	13.121	7.874	1.506	23.118	0.187	11.062	1.214	2.683	27.41	100.21
156	smv1g9t10	1.029	0.172	8.639	0.711	1.391	13.133	7.588	1.507	23.505	0.164	11.449	1.163	2.521	27.43	100.41
157	smv1g9t10	1.047	0.153	8.500	0.675	1.387	13.151	7.354	1.380	23.716	0.167	11.741	1.122	2.594	27.47	100.45
158	smv1g9t10	1.108	0.157	8.286	0.613	1.371	13.113	7.299	1.295	23.931	0.164	12.005	1.053	2.684	27.43	100.51
159	smv1g9t10	1.069	0.153	8.001	0.632	1.386	13.127	7.494	1.213	24.132	0.171	12.313	0.895	2.676	27.47	100.73
160	smv1g9t10	0.984	0.154	0.362	0.485	1.388	12.028	7.504 0.170	1.194	23.960	0.269	12.282	0.804	2.304	27.55	99.92 100.97
162	smv1g9t11	0.161	0.142	9.292	0.548	1.184	12.791	9.016	1.435	24.035	0.372	11.178	0.400	2.883	27.24	100.89
163	smv1g9t11	0.139	0.142	9.306	0.541	1.176	12.803	8.736	1.425	24.415	0.375	11.302	0.326	2.720	27.21	100.61
164	smv1g9t11	0.120	0.125	9.346	0.537	1.134	12.766	8.536	1.392	24.539	0.372	11.525	0.327	2.916	27.20	100.84
165	smv1g9t11	0.135	0.127	9.209	0.583	1.179	12.762	8.734	1.444	24.413	0.365	11.425	0.313	2.811	27.17	100.67
166	smv1g9t11	0.161	0.141	9.373	0.620	1.160	12.767	8.743	1.448	24.374	0.362	11.404	0.363	2.797	27.21	100.92
167	smv1g9t11	0.172	0.149	9.305	0.603	1.159	12.712	8.865	1.444	24.214	0.522	11.289	0.370	2.813	27.28	100.89
168	smv1g9t11	0.148	0.127	9.046	0.545	1.1/4	12.504	8./23 10.422	1.450	23.532	0.819	0.550	0.348	2.810	27.10	99.32
170	smv1g9t11	0.418	0.135	9.003	0.085	1.400	12.290	11.087	1.725	21.602	0.407	9.339	0.720	2.685	20.00	100.02
171	smv1g9t11	0.464	0.192	9.000	0.929	1.759	12.906	11.496	1.850	21.323	0.320	8.858	1.086	2.703	27.27	100.15
172	smv1g8t12	1.001	0.159	7.547	0.445	1.462	12.996	7.983	1.024	24.168	0.456	12.641	0.593	2.544	27.54	100.56
173	smv1g8t12	0.750	0.135	8.013	0.377	1.329	12.900	7.571	1.141	23.946	0.384	12.212	0.598	2.558	27.16	99.08
174	smv1g8t12	0.772	0.155	8.106	0.436	1.327	12.970	7.707	1.157	24.155	0.252	12.219	0.633	2.588	27.20	99.68
175	smv1g8t12	0.792	0.156	8.101	0.505	1.389	12.905	7.871	1.196	24.090	0.266	12.187	0.647	2.674	27.20	99.98
1/6	smv1g8t12	0./30	0.164	8.398	0.600	1.393	13.047	8.175	1.317	23.850	0.214	11.838	0.772	2.683	27.38	100.56
178	smv1g8t12	0.620	0.134	8.607	0.622	1.399	12.980	8.366	1.325	23.703	0.225	11.735	0.759	2.682	27.32	100.34
179	smv1g8t12	0.568	0.158	8.690	0.714	1.448	12.998	8.913	1.466	23.403	0.244	11.138	0.760	2.608	27.33	100.44
180	smv1g8t12	0.400	0.170	8.896	0.772	1.473	12.883	9.581	1.563	23.032	0.294	10.631	0.705	2.749	27.23	100.38
181	smv1g8t12	0.511	0.165	8.815	0.646	1.447	13.015	9.108	1.507	23.359	0.274	10.932	0.793	2.640	27.39	100.60
182	smv1g8t12	0.497	0.177	8.692	0.789	1.457	12.932	9.279	1.611	22.659	0.333	10.552	0.853	2.669	27.23	99.73
183	smv1g8t12	0.644	0.159	8.298	0.653	1.396	12.938	8.051	1.453	21.866	1.120	10.587	0.969	2.589	27.74	98.46

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	g1t1	0.441	0.115	9.131	0.907	0.854	13.125	4.796	1.556	24.635	0.193	12.783	1.663	2.840	27.51	100.54
2	g1t1	0.444	0.115	8.927	0.955	0.900	13.131	4.902	1.420	24.189	0.262	12.752	1.960	2.702	27.55	100.21
3	g1t1	0.429	0.108	9.021	0.998	0.899	13.152	4.849	1.448	24.341	0.241	12.754	1.973	2.638	27.59	100.44
4	g1t1	0.418	0.112	8.978	0.953	0.869	13.164	4.912	1.431	24.339	0.248	12.706	1.960	2.712	27.59	100.39
5	g1t1	0.419	0.107	8.955	0.914	0.843	13.212	4.856	1.389	24.396	0.229	12.740	1.983	2.737	27.63	100.41
6	g1t1	0.438	0.113	9.003	0.937	0.847	13.156	4.792	1.537	24.248	0.196	12.726	1.979	2.754	27.52	100.24
7	g1t1	0.410	0.104	8.982	0.840	0.848	13.116	4.835	1.478	24.418	0.180	12.836	1.931	2.628	27.44	100.04
8	g1t1	0.410	0.099	8.927	0.904	0.826	13.167	4.680	1.419	24.738	0.182	13.437	1.453	2.691	27.51	100.44
9	g1t1	0.393	0.105	8.965	0.871	0.817	13.264	4.586	1.449	24.681	0.138	13.193	1.611	2.664	27.56	100.29
10	g1t1	0.434	0.117	9.124	0.916	0.875	13.215	4.945	1.418	24.493	0.125	12.929	1.597	2.741	27.52	100.44
11	g1t2	0.754	0.156	9.123	1.040	1.326	12.654	6.916	1.787	22.439	0.505	10.733	1.018	2.652	26.90	98.00
12	g1t2	0.796	0.144	9.177	1.034	1.342	12.598	6.873	1.833	22.134	0.851	10.556	1.042	2.607	27.16	98.14
13	g1t2	0.625	0.145	9.293	0.995	1.298	12.894	6.933	1.773	22.939	0.482	11.048	0.955	2.691	27.30	99.37
14	g1t2	0.444	0.118	8.774	0.846	0.980	12.780	5.157	1.416	23.453	0.443	11.997	1.705	2.637	26.99	97.74
15	g1t2	0.403	0.097	9.277	0.809	0.821	13.307	4.641	1.385	24.872	0.158	12.833	1.466	2.857	27.64	100.57
16	g7t4	1.260	0.149	9.982	0.867	1.240	13.219	5.365	1.798	24.203	0.118	11.246	0.956	2.931	27.55	100.88
17	g7t4	0.261	0.118	10.138	0.684	1.223	13.111	6.995	1.634	24.360	0.165	11.327	0.445	2.890	27.41	100.76
18	g7t4	0.157	0.102	10.175	0.601	1.026	13.102	6.172	1.463	25.312	0.187	12.507	0.157	2.830	27.46	101.25
19	g7t4	0.251	0.081	10.281	0.605	0.809	13.140	4.564	1.469	26.141	0.142	12.876	0.237	2.904	27.42	100.92
20	g7t4	0.204	0.092	9.829	0.555	0.931	13.105	5.799	1.360	25.456	0.157	12.957	0.187	2.951	27.40	100.98
21	g7t4	0.122	0.092	10.071	0.535	0.928	12.996	6.046	1.308	25.487	0.184	12.905	0.111	2.878	27.30	100.96
22	g7t4	0.163	0.098	9.998	0.482	0.969	13.046	6.346	1.416	25.186	0.179	12.440	0.178	2.917	27.31	100.73
23	g7t4	0.201	0.112	10.127	0.590	1.085	13.036	6.882	1.569	24.557	0.188	11.773	0.264	2.945	27.30	100.63
24	g7t4	0.837	0.139	10.254	0.792	1.059	13.076	5.815	1.691	24.160	0.116	11.279	0.808	2.987	27.28	100.29
25	g/t5	0.903	0.149	9.458	0.751	1.148	13.169	6.168	1.694	23.825	0.099	11.763	0.907	2.813	27.36	100.20
26	g/t5	1.12/	0.145	9.416	0.729	1.131	13.242	5.706	1.634	23.837	0.096	11.836	1.038	2.800	27.43	100.17
27	g/t5	0.814	0.142	9.446	0.806	1.164	13.217	6.470	1.674	23.854	0.112	11.493	0.952	2.759	27.43	100.33
28	g/t5	1.053	0.151	9.395	0.851	1.180	13.262	6.310	1.782	23.296	0.110	11.170	1.246	2.801	27.46	100.07
29	g/t5	1.297	0.147	8.981	0.772	1.079	13.417	5.110	1.5/1	23.982	0.116	12.500	1.105	2.670	27.65	100.18
30	g13t9	1.325	0.148	9.403	0.727	1.060	13.048	5.291	1./51	23.950	0.123	11.959	1.420	2.835	27.19	99./4 00.50
22	g13t9	1.715	0.180	9.485	0.964	1.121	12.025	5.344	1.804	23.120	0.156	11.100	1.450	2.739	27.27	99.58
32	12:0	1.200	0.149	9.496	0.905	1.039	12.107	5.205	1.00/	23.339	0.120	11.130	1.401	2.040	27.15	100.10
24	g1309	0.009	0.147	9.397	0.910	1.041	12.215	6 222	1.//1	23.693	0.124	11.369	1.294	2.631	27.34	100.19
25	-12+0	0.707	0.170	0.542	0.740	1.026	12.145	5.555	1.921	23.412	0.122	12.056	0.022	2.079	27.40	100.20
36	g13t9	0.742	0.135	0.506	0.740	1.020	13.145	5.557	1.504	24.211	0.123	12.030	0.922	2.070	27.33	00.06
37	g13t9	0.477	0.120	9.590	0.705	1.110	13 121	6.534	1.623	24.230	0.121	11.735	0.925	2.729	27.31	100.36
38	g13t9	0.732	0.138	9.585	0.672	1.125	13 165	6.196	1.625	24.105	0.127	11.887	0.720	2.005	27.34	100.50
39	g13t9	0.845	0.133	9 374	0.799	1 1 1 1 8	13.187	6.071	1.676	24.300	0.107	11.756	0.720	2.737	27.39	100.72
40	g13t9	0.554	0.132	9.432	0.667	1.070	13 194	6.186	1.546	24.557	0.140	12 247	0.545	2.822	27.46	100.56
41	g13t9	0.554	0.127	9.640	0.710	1.093	13.147	6 252	1.684	24 529	0.120	12.065	0.581	2.833	27.40	100.76
42	g13t9	0.958	0.140	9.471	0.679	1.034	13.222	5.579	1.675	24.537	0.117	12.282	0.738	2.824	27.48	100.74
43	g13t9	0.796	0.133	9 777	0.706	1.061	13.187	5 792	1 728	24.476	0.131	11 740	0.685	2 913	27.43	100.56
44	g13t10	0.615	0.132	9.633	0.665	1.080	13.212	6.017	1.630	24.770	0.111	12.173	0.594	2.890	27.50	101.02
45	g13t10	0.749	0.126	10.100	1.051	0.955	13.229	5.107	1.880	23.890	0.111	11.431	1.304	2.899	27.46	100.29
46	g13t10	0.518	0.097	10.682	1.032	0.850	13,177	4.844	1.999	24.677	0.128	11.807	0.616	2.920	27.43	100.78
47	g13t10	0.430	0.093	11.053	0.949	0.821	13.207	4.567	2.032	25.023	0.110	11.990	0.447	2.941	27.49	101.15
48	g13t10	1.083	0.145	9.931	1.146	0.976	13.282	4.923	2.025	23.641	0.096	11.071	1.542	2.756	27.48	100.10
49	g13t10	0.805	0.117	10.328	1.048	0.943	13.241	4.902	2.090	24.079	0.099	11.343	0.961	2.854	27.42	100.23
50	g13t10	1.080	0.132	10.305	1.256	0.894	13.342	4.266	2.186	23.122	0.090	10.734	1.950	2.794	27.50	99.65
51	g13t10	0.704	0.126	9.752	0.858	1.071	13.228	5.506	1.849	24.147	0.117	11.634	0.970	2.842	27.45	100.25
52	g13t10	0.679	0.133	9.519	0.654	1.200	13.169	6.297	1.719	24.471	0.143	11.812	0.608	2.795	27.45	100.65
53	g13t10	0.761	0.146	9.568	0.711	1.231	13.234	6.284	1.728	24.319	0.137	11.654	0.661	2.924	27.55	100.91
54	g13t10	0.686	0.135	9.619	0.682	1.109	13.287	6.234	1.646	24.481	0.120	11.907	0.650	2.860	27.58	101.00
55	g13t10	1.114	0.139	9.083	0.835	1.257	13.115	5.510	1.714	22.928	0.595	11.467	1.197	2.647	27.63	99.23
56	g10t11	0.375	0.082	9.884	0.484	0.788	13.222	4.429	1.454	26.235	0.129	13.295	0.143	2.902	27.48	100.90
57	g10t11	0.356	0.081	9.826	0.563	0.779	13.223	4.530	1.398	26.327	0.129	13.344	0.140	2.906	27.50	101.10
58	g10t11	0.242	0.089	9.929	0.472	0.803	13.157	5.006	1.354	26.510	0.156	13.189	0.039	2.924	27.49	101.36
59	g10t11	0.186	0.083	9.673	0.366	0.754	13.141	4.862	1.278	26.724	0.171	13.575	0.023	2.963	27.47	101.27
60	g10t11	0.442	0.094	9.741	0.511	0.837	13.217	4.630	1.427	25.943	0.116	13.432	0.238	2.851	27.48	100.96
61	g10t11	0.369	0.085	9.587	0.516	0.809	13.243	4.589	1.414	26.124	0.122	13.599	0.257	2.912	27.54	101.17
62	g11t12	1.267	0.153	9.341	0.863	1.069	13.148	5.474	1.726	23.630	0.145	11.632	1.224	2.694	27.31	99.68
63	g11t12	0.799	0.140	9.474	0.931	1.211	13.132	6.828	1.802	23.398	0.168	11.181	0.977	2.811	27.38	100.23
64	g11t12	0.684	0.140	9.440	0.887	1.216	13.195	6.773	1.748	23.653	0.131	11.496	0.912	2.685	27.44	100.40
65	g11t12	0.670	0.143	9.811	0.923	1.110	13.247	6.028	1.845	23.900	0.138	11.426	0.926	2.872	27.51	100.55
66	g11t12	0.791	0.143	9.578	0.848	1.139	13.230	6.181	1.823	23.796	0.135	11.601	1.035	2.836	27.52	100.65
67	gl1t12	0.674	0.14/	9.083	0.777	1.433	13.132	8.013	1.752	23.258	0.172	11.128	0.798	2.779	27.44	100.58
68	gl1t12	0.499	0.120	10.064	0.918	1.144	13.173	0.100	1.932	24.165	0.144	11.15/	0.711	2.848	27.42	100.47
69 70	g11t12	0.675	0.161	9.527	0.932	1.393	13.186	7.958	1.983	22.911	0.135	10.520	0.753	2.828	27.41	100.57
70	g11t12	0.817	0.151	9.296	0.884	1.285	13.143	7.119	1.801	23.452	0.140	11.394	0.935	2.704	27.42	100.54
71	g11t12	0.698	0.131	9.004	0.965	1.127	13.182	6.280	1.798	23.855	0.119	11.354	0.911	2.857	27.39	100.27
72	g11t12 a11t12	0.659	0.149	9.540	0.709	1.102	13.119	6.342	1.701	23.941	0.125	11.030	0.894	2.720	27.33	100.21
74	g11t12	0.670	0.125	0.476	0.902	1.121	13.174	6.542	1.005	23.940	0.127	11.447	0.043	2.000	27.39	100.32
75	g11t12	0.974	0.1.34	9 208	0.860	1 1 35	13 144	5.872	1 738	23.763	0.130	11.846	1.059	2.681	27.39	99.97
76	g12t13	0.416	0.109	8 987	0.515	0.822	12.838	5.900	1 314	25.382	0.313	13.267	0.369	2.834	27.15	100.21
77	g12t13	0.281	0.104	8.820	0.416	0.636	12.830	5.467	1.118	26.182	0.365	14.251	0.336	2.675	27.24	100.72
78	g12t13	0.436	0.121	8.872	0.580	0.899	13.107	5.609	1.501	25.002	0.169	13.475	0.787	2.748	27.41	100.72
79	g12t13	0.634	0.134	9.244	0.760	1.074	13.188	5.902	1.649	24.070	0.128	12.362	0.930	2.800	27.42	100.29
80	g12t13	0.539	0.116	9.105	0.736	0.996	13.189	5.605	1.623	24.314	0.114	12.733	0.951	2.775	27.39	100.19
81	g12t13	0.797	0.145	9.262	0.831	1.079	13.207	5.946	1.692	23.848	0.124	11.799	1.074	2.740	27.38	99.92
82	g12t13	0.814	0.129	9.366	0.779	1.079	13.185	5.882	1.743	23.859	0.126	11.940	1.119	2.724	27.40	100.15
83	g12t13	0.904	0.152	9.310	0.867	1.123	13.201	5.982	1.795	23.607	0.113	11.463	1.203	2.795	27.37	99.89
84	g12t13	0.859	0.139	9.431	0.951	1.153	13.246	6.257	1.769	23.586	0.114	11.427	1.150	2.757	27.47	100.31
85	g12t13	0.789	0.146	9.626	0.813	1.150	13.201	6.311	1.813	23.551	0.125	11.407	1.087	2.773	27.42	100.21
86	g12t13	0.786	0.141	9.351	0.851	1.157	13.203	6.332	1.694	23.646	0.126	11.484	1.069	2.820	27.40	100.06
87	g12t13	0.801	0.144	9.314	0.838	1.199	13.187	6.618	1.810	23.301	0.128	11.275	1.049	2.718	27.34	99.72
88	g12t13	0.921	0.153	9.467	0.783	1.215	13.162	6.483	1.871	23.166	0.136	11.168	1.203	2.835	27.36	99.93
89	g12t13	0.666	0.128	9.011	0.744	1.002	13.193	5.442	1.474	24.334	0.113	13.006	0.889	2.632	27.37	100.00
90	g12t13	0.684	0.114	9.065	0.696	0.914	13.178	4.836	1.535	24.413	0.279	12.806	0.904	2.708	27.43	99.56

Granite FA (SMV10) 2°00'00" - 45°06'32"

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	smv10t5	1.505	0.192	7.787	0.584	1.542	14.124	7.260	1.293	22.314	0.254	11.762	1.269	2.568	28.59	101.04
2	smv10t5	1.609	0.199	7.856	0.625	1.528	13.465	7.574	1.201	22.445	0.150	11.828	1.225	2.472	27.68	99.86
3	smv10t5	1.548	0.200	7.874	0.621	1.587	13.211	7.778	1.320	22.435	0.147	11.705	1.221	2.513	27.40	99.56
4	smv10t5	1.662	0.199	8.160	0.724	1.578	13.146	7.735	1.344	22.221	0.151	11.300	1.336	2.613	27.33	99.50
5	smv10t5	1.736	0.196	8.015	0.742	1.600	13.150	7.840	1.451	21.860	0.155	11.167	1.496	2.406	27.29	99.11
6	smv10t5	1.553	0.209	8.497	1.044	1.701	13.019	8.599	1.764	20.601	0.181	9.711	1.979	2.460	27.12	98.44
7	smv10t5	1.409	0.218	8.620	1.022	1.781	13.075	9.054	1.864	20.485	0.188	9.476	1.951	2.636	27.27	99.05
8	smv10t5	1.014	0.192	8.537	1.029	1.961	12.911	9.658	1.813	20.659	0.218	9.327	1.504	2.542	27.04	98.41
9	smv10t5	0.732	0.158	8.948	0.634	1.256	12.836	7.644	1.468	23.396	0.302	11.400	0.924	2.684	27.09	99.47
10	smv10t5	1.509	0.187	8.572	0.964	1.501	13.089	7.610	1.646	21.540	0.188	10.373	1.796	2.580	27.22	98.78
11	smv10t5	1.522	0.194	8.588	0.912	1.515	13.071	7.760	1.621	21.500	0.185	10.298	1.819	2.664	27.22	98.87
12	smv10t5	1.586	0.188	8.559	0.952	1.569	13.009	7.757	1.656	21.311	0.238	10.324	1.857	2.539	27.20	98.74
13	smv10t5	1.535	0.200	8.335	0.909	1.628	12.598	7.645	1.628	20.847	0.764	9.958	1.736	2.534	27.04	97.36
14	smv10t5	1.636	0.190	8.657	1.036	1.632	13.062	8.031	1.725	20.873	0.260	9.877	1.972	2.562	27.28	98.79
15	smv10t5	1.645	0.190	8.611	1.081	1.615	13.123	8.071	1.780	21.016	0.176	9.925	2.040	2.609	27.33	99.21
16	smv10t6	1.500	0.207	7.195	0.523	1.914	13.050	9.085	1.101	21.982	0.314	11.718	0.967	2.491	27.37	99.42
17	smv10t6	1.624	0.214	7.432	0.551	1.839	13.199	9.087	1.083	22.271	0.140	11.881	1.034	2.419	27.48	100.25
18	smv10t6	1.635	0.209	7.415	0.638	1.798	13.198	8.909	1.194	22.043	0.126	11.820	1.194	2.450	27.45	100.08
19	smv10t6	1.690	0.192	7.616	0.587	1.790	13.102	8.473	1.263	21.825	0.172	11.382	1.408	2.512	27.31	99.32
20	smv10t6	1 507	0.215	8 230	0.777	1 722	13.080	8 788	1.600	21 449	0.158	10.610	1 481	2 484	27.26	99.36
21	smv10t6	1 218	0.209	8 411	0.762	1.845	12.857	9.688	1 703	20.583	0.276	9 721	1 448	2.632	27.00	98 35
22	smv10t6	1 471	0.213	8 1 2 5	0.783	1.864	12.037	9 394	1.650	20.505	0.321	9.920	1.608	2.472	26.92	98.17
23	smv10t6	1 528	0.217	8 280	0.935	1.846	12.939	8 949	1.652	20.853	0.204	10.020	1.632	2 537	27.09	98.69
24	smv10t6	1.967	0.219	7 822	0.706	1.732	13.037	7.932	1 326	21 899	0.127	11 231	1 424	2.668	27.20	99.29
25	smv10t6	1.940	0.215	7 769	0.644	1.732	13.014	8.036	1.020	21.000	0.127	11 393	1.121	2.579	27.15	99.11
26	smv10t6	1.949	0.223	7 795	0.698	1.733	13.106	7.852	1.171	22.021	0.121	11.555	1.125	2.570	27.30	99.50
27	smv10t6	1.903	0.215	7 778	0.661	1 759	13.021	8 049	1 259	21.835	0.126	11 361	1 499	2 588	27.19	99.24
28	smv10t6	1.781	0.213	7.845	0.686	1.766	13.050	8 289	1.250	21.000	0.120	11.360	1.175	2.500	27.15	99.51
20	smv10t6	1.753	0.219	7.730	0.694	1.700	13.033	8 3 9 8	1.236	21.697	0.125	11.276	1.175	2 516	27.18	99.10
30	smv10t6	1 726	0.205	7 689	0.700	1 822	13.054	8 565	1.266	21.682	0.128	11 281	1 471	2 529	27.24	99.35
31	smv10t6	1.697	0.205	7.815	0.668	1.835	13.066	8 481	1.200	21.002	0.120	11.201	1 441	2.527	27.21	99.53
32	smv10t6	1.709	0.207	7.673	0.605	1.831	13.126	8 719	1.159	21.010	0.123	11.372	1.376	2.550	27.34	99.64
33	smv10t6	1 734	0.207	7 554	0.608	1.863	13.106	8 752	1.206	21.795	0.125	11.572	1 314	2.536	27.31	99.62
34	smv10t6	1.731	0.221	7 532	0.668	1.864	13.102	8 691	1.200	21.889	0.127	11.132	1.370	2 397	27.32	99.58
35	smv10t6	1.710	0.220	7.409	0.660	1.800	13.082	8 848	1.138	21.865	0.126	11.151	1.265	2 532	27.29	99.50
36	smv10t6	1 718	0.200	7.546	0.571	1.01/	13.136	8.902	1.150	21.005	0.120	11.665	1.205	2.504	27.20	00.07
37	smv10t6	1.609	0.209	7 397	0.545	1.925	13.047	8 864	1.150	22.001	0.121	11.005	1.002	2.304	27.55	99.25
38	smv10t7	2 463	0.200	10.297	1.665	1.925	13.178	4 4 3 0	2 841	20.596	0.228	8 940	1.890	2.823	27.20	97.96
30	smv10t7	2.105	0.186	0.800	1 370	1 285	13.170	5 100	2.011	21.376	0.151	9.649	1.888	2.805	27.20	98.44
40	smv10t7	2.111	0.100	9.630	1.572	1.205	13.096	5.109	2.270	21.570	0.176	9.915	1.813	2.847	27.14	98.29
41	smv10t7	2 1 3 9	0.183	9 445	1.073	1 290	13.147	5.064	1.920	21.073	0.121	10.659	1.674	2 761	27.20	98.65
42	smv10t7	1.880	0.169	9.621	1 107	1 187	13 227	4 821	1.990	22 465	0.120	10.929	1.645	2 7 2 2	27.35	99.23
43	smv10t7	1.516	0.154	9 748	1 203	1 149	13 154	4 721	2.079	22.103	0.128	10.782	1.669	2 813	27.19	98.54
44	smv10t7	1 4 3 9	0.153	9.833	1.200	1.1.19	13 139	4 809	2.075	22.251	0.125	10.702	1.009	2.818	27.23	98.87
45	smv10t7	1 362	0.145	9.820	1.200	1 1 27	13 186	4 858	2 182	22.201	0.132	10.816	1 707	2 808	27.30	99.02
46	smv10t7	1.362	0.143	9.933	1.132	1.127	13.148	4 781	2.102	22.301	0.128	10.833	1.707	2.840	27.30	98.89
10	smv10t7	1.376	0.143	0.850	1.152	1.083	13 278	4 7 2 3	2.167	22.351	0.120	10.035	1.658	2.010	27.21	90.09
48	smv10t7	1.320	0.143	9.849	1.170	1.005	13 217	4.620	2.107	22.405	0.117	10.945	1.654	2.751	27.30	98.88
10	smv10t7	1.325	0.142	0.704	1.131	1.053	13 383	4 747	2.123	22.501	0.097	11.003	1.673	2.017	27.50	00.00
50	smv10t7	1.320	0.158	0.754	1.151	1.035	13 208	4.611	2.102	22.007	0.117	11.005	1.680	2.002	27.52	00.21
51	smv10t7	1.330	0.177	0.117	1.038	1.002	13.185	6.007	1.804	21.023	0.178	10.540	1.503	2.740	27.38	00.41
52	smv10t7	1.525	0.177	8.862	0.803	1.570	13.161	7 217	1.004	21.925	0.356	10.545	1.595	2.015	27.50	00.77
53	smv10t/	1 361	0.120	10.110	1 235	1.052	13 300	4 784	2 1 5 8	21.071	0.084	10.545	1.395	2.727	27.37	99.81
54	smv10t0	1 227	0.149	10.009	1 320	1.004	13.309	5.049	2.130	22.327	0.004	10.740	1.002	2.020	27.42	00.25
54 55	smv10t0	1.227	0.137	10.096	1.320	1.090	13.200	3.040 4.899	2.221	22.224	0.007	10.363	1.911	2.013	27.37	99.23
55	smv 10to	1.239	0.144	10.034	1.293	1.033	13.200	4.000	2.240	22.149	0.000	10.300	1.030	2.077	27.22	90.49 08.06
57	smv10to	1.190	0.145	10.270	1.200	1.045	13.203	4.700	2.239	22.233	0.007	10.409	1.930	2.003	27.24	90.90
57	sinv10t8	1.155	0.150	10.255	1.342	1.024	13.221	4.909	2.128	22.084	0.084	10.275	1.992	2.//3	27.24	20.02
50 50	smv10t8	1.104	0.142	0.062	1.345	1.045	13.183	4.923	2.248 2.106	22.050	0.090	0.864	1.984	2.089 2.932	27.08	20.80 08.46
59 60	smv10t0	3.029	0.190	9.902	1.549	1.227	13.002	5.410	2.190	21.333	0.097	0 212	2.023	2.032	27.00	20.40 08.02
00	5111V 1010	5.040	0.247	2.303	1.400	1.4/4	15.051	J.+17	2.190	20.002	0.113	2.313	2.000	2./10	27.01	20.03

Migmatite FA (SMV11) 2°01'00)" - 4!	5°08'1.	3"
------------------------------	---------	---------	----

NUM	f REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	smv11t1	1.092	0.173	8.558	0.771	1.539	13.055	8.669	1.577	21.162	1.040	10.192	1.298	2.604	27.99	99.72
2	smv11t1	0.517	0.187	9.003	0.945	1.698	12.910	10.651	1.766	21.124	0.358	9.542	0.943	2.651	27.21	99.50
3	smv11t1	0.268	0.165	9.086	0.699	1.540	12.769	10.386	1.635	22.012	0.347	9.953	0.673	2.822	27.01	99.37
4	smv11t1	0.404	0.178	9.587	0.712	1.452	12.851	9.331	1.707	22.196	0.299	10.017	0.721	2.786	27.05	99.29
5	smv11t1	0.461	0.156	9.620	0.738	1.281	12./15	8.939	1.620	22.885	0.366	10.566	0.415	2.998	26.96	99.52
7	smv11t1	0.471	0.149	9.848	0.728	1.251	12.598	9.492	1.760	22.749	0.350	9.712	0.413	2.982	26.89	99.48
8	smv11t1	0.428	0.166	9.992	0.622	1.216	12.481	9.711	1.738	22.802	0.517	9.447	0.401	2.967	26.79	99.28
9	smv11t1	0.375	0.174	9.968	0.691	1.175	12.480	9.744	1.774	22.690	0.523	9.431	0.353	2.961	26.75	99.09
10	smv11t1	0.188	0.157	9.659	0.583	1.024	12.210	9.411	1.510	23.493	0.625	10.234	0.210	2.913	26.51	98.72
11	smv11t1	0.211	0.135	9.370	0.476	1.117	12.021	9.148	1.463	23.270	0.623	10.130	0.205	2.759	26.11	97.03
12	smv11t1	0.205	0.157	9.317	0.546	1.062	12.047	8.967	1.439	23.361	0.615	10.227	0.204	2.850	26.13	97.13
13	smv11t1	0.202	0.145	9.581	0.589	0.946	12.322	9.445	1.533	23.667	0.631	10.416	0.216	2.932	26.69	99.31
14	smv11t1	0.158	0.152	9.544	0.528	0.880	12.274	9.328	1.423	24.013	0.637	10.731	0.172	2.905	26.65	99.39
15	smv11t1	0.175	0.166	9.547	0.532	0.893	12.233	9.514	1.417	23.977	0.645	10.817	0.172	2.954	26.66	99.70
16	smv11t1	0.177	0.138	9.568	0.556	0.857	12.348	8.510	1.487	24.353	0.564	10.835	0.184	2.880	26.64	99.09
17	smv11t1	0.193	0.141	9.866	0.523	0.931	12.365	8.977	1.544	24.020	0.571	10.445	0.233	3.006	26.73	99.54
18	smv11t1	0.215	0.148	10.076	0.649	0.972	12.385	9.158	1.616	23.753	0.585	9.962	0.240	3.029	26.75	99.54
19	smv11t1	0.274	0.158	10.156	0.677	1.042	12.382	9.5/5	1.665	23.416	0.564	9.645	0.290	2.960	26.74	99.54
20	smv11t1	0.289	0.147	10.107	0.615	1.146	12.300	9.645	1.005	23.105	0.500	9.332	0.350	2.920	26.73	99.10
22	smv11t1	0.240	0.143	9.680	0.535	1.140	12.442	8 807	1.615	23 371	0.363	10.425	0.396	2.004	26.86	99.22
23	smv11t1	0.281	0.151	9.225	0.598	1.514	12.689	10.039	1.684	22.218	0.315	10.138	0.594	2.680	26.85	98.98
24	smv11t3	0.257	0.136	9.127	0.581	1.139	12.962	8.210	1.352	23.299	0.819	11.230	0.416	2.812	27.65	99.99
25	smv11t3	0.160	0.136	9.197	0.550	1.072	12.906	8.132	1.275	23.967	0.405	11.515	0.274	2.868	27.18	99.64
26	smv11t3	0.097	0.120	9.550	0.517	0.915	12.675	7.680	1.233	24.441	0.419	11.892	0.158	2.933	26.94	99.57
27	smv11t3	0.114	0.118	9.475	0.507	0.890	12.708	7.641	1.245	24.614	0.446	11.911	0.173	2.901	27.02	99.76
28	smv11t3	0.172	0.127	9.420	0.451	0.921	12.664	7.504	1.270	24.627	0.417	12.068	0.179	2.829	26.94	99.58
29	smv11t3	0.144	0.116	9.383	0.443	0.965	12.656	7.376	1.276	24.582	0.448	11.957	0.160	2.869	26.92	99.30
30	smv11t3	0.366	0.125	8.848	0.433	1.084	12.196	7.607	1.212	23.843	0.367	11.824	0.200	2.803	26.10	97.00
31	smv11t3	0.307	0.111	9.079	0.486	0.999	11.919	7.410	1.252	24.351	0.498	11.967	0.226	2.864	26.00	97.47
32	smv11t3	0.579	0.132	8.998	0.623	1.142	12.548	7.384	1.476	23.610	0.331	11.495	0.376	2.813	26.58	98.09
33 24	smv11t3	0.521	0.139	9.119	0.547	1.118	12.649	7.483	1.389	23.732	0.352	11.511	0.366	2./93	26.74	98.46
25	smv11t3	0.572	0.138	9.076	0.545	1.149	12./51	7.632	1.425	23.764	0.331	11.505	0.377	2.819	26.90	98.98
36	smv11t3	0.307	0.117	9.321	0.390	0.805	12.975	7.006	1.320	24.000	0.579	12.035	0.270	2.01/	27.30	98.01
37	smv11t3	0.115	0.124	9.404	0.451	0.895	12.255	7.090	1.210	24.4715	0.525	12.033	0.131	2.044	26.80	90.01
38	smv11t3	0.106	0.112	9.482	0.434	0.959	12.525	7.732	1.261	24.484	0.501	11.839	0.164	2.916	26.84	99.36
39	smv11t3	0.101	0.128	9.542	0.473	1.024	12.574	7.997	1.291	24.156	0.456	11.616	0.194	2.928	26.85	99.33
40	smv11t3	0.129	0.134	9.401	0.549	1.076	12.623	8.065	1.298	23.974	0.541	11.422	0.255	2.848	26.98	99.29
41	smv11t3	0.167	0.120	9.366	0.543	1.069	12.658	7.976	1.291	23.728	1.202	11.291	0.262	2.918	27.70	100.29
42	smv11t4	0.433	0.194	8.963	0.827	1.759	12.895	10.890	1.812	20.891	0.318	9.296	0.910	2.714	27.09	98.99
43	smv11t4	0.546	0.183	8.852	0.906	1.819	12.858	10.940	1.845	20.716	0.283	9.137	1.057	2.668	27.02	98.83
44	smv11t4	0.602	0.183	8.793	0.899	1.813	12.925	10.840	1.878	20.734	0.267	9.184	1.105	2.692	27.10	99.02
45	smv11t4	0.491	0.202	8.966	0.853	1.743	12.874	10.792	1.869	21.039	0.265	9.330	0.934	2.712	27.04	99.11
46	smv11t4	0.584	0.189	8.859	0.806	1.759	12.905	10.759	1.845	20.930	0.256	9.375	1.083	2.646	27.07	99.07
47	smv11t4	0.470	0.204	8.879	0.877	1.766	12.895	10.712	1.825	21.179	0.262	9.330	0.942	2.629	27.06	99.03
48	smv11t4	0.540	0.191	8.936	0.904	1.800	12.913	11.015	1.917	20.872	0.259	9.150	1.041	2.703	27.12	99.36
49	smv11t4	0.611	0.186	8.851	0.940	1.825	12.954	11.034	1.835	20.666	0.251	9.195	1.123	2.607	27.14	99.22
50	smv11t4	0.524	0.185	8.915	0.825	1.805	12.916	10.026	1.818	20.761	0.274	9.050	1.017	2.760	27.08	98.92
51	smv11t4	0.540	0.166	0.960	0.907	1./00	12.095	10.920	1.004	20.755	0.276	9.236	0.040	2.007	27.09	99.10
53	smv11t4	0.819	0.104	8 942	0.853	1.610	13.016	9.209	1.730	21.450	0.280	9.920	1 322	2.705	27.13	99.39
54	smv11t4	1.000	0.102	8 809	0.925	1.563	13.167	8 323	1.683	21.017	0.368	10.169	1.322	2.005	27.49	99.21
55	smv11t4	1.093	0.169	8.560	0.772	1.504	12.880	7.251	1.594	20.769	1.447	9.978	1.505	2.543	27.96	98.02
56	smv11t5	1.163	0.182	8.442	0.566	1.455	13.255	7.585	1.307	22,500	0.181	11.445	1.187	2.556	27.41	99.23
57	smv11t5	1.158	0.172	8.423	0.586	1.452	13.183	7.545	1.360	22.669	0.167	11.524	1.181	2.707	27.36	99.49
58	smv11t5	1.174	0.179	8.396	0.574	1.438	13.083	7.514	1.276	22.706	0.172	11.731	1.048	2.670	27.21	99.17
59	smv11t5	1.257	0.181	7.615	0.366	1.567	13.203	7.954	1.101	22.364	0.501	11.947	0.832	2.564	27.58	99.03
60	smv11t6	1.548	0.216	6.811	0.328	1.808	13.176	8.724	0.930	22.592	0.183	12.820	0.716	2.449	27.40	99.70
61	smv11t6	1.456	0.184	7.307	0.482	1.657	13.053	8.331	0.983	22.819	0.151	12.647	0.771	2.391	27.20	99.43
62	smv11t6	0.877	0.162	9.150	0.747	1.365	12.868	7.706	1.660	22.745	0.238	10.834	1.068	2.811	27.06	99.29
63	smv11t6	0.972	0.172	9.009	0.841	1.455	13.010	7.750	1.673	21.949	0.185	10.342	1.339	2.694	27.07	98.46
64	smv11to	0.840	0.168	8.965	0.886	1.520	12.954	8.353	1.//1	21.728	0.1/1	10.270	1.359	2.725	27.04	98.75
65	smv11to	0.725	0.156	9.099	0.920	1.52/	12.939	8.484	1.850	21.940	0.187	10.401	1.245	2.750	27.12	99.32
67	smv11t6	0.303	0.105	8 074	0.774	1.440	12.004	8 734	1.631	22.545	0.204	10.613	0.970	2.604	26.94	98.86
68	smv11t6	0.381	0.175	9.052	0.839	1 408	12.045	9.053	1.656	22.504	0.210	10.004	0.803	2.800	26.97	99.25
69	smv11t6	0.299	0.145	9.297	0.762	1.418	12.767	9.092	1.647	22.745	0.285	10.364	0.654	2.690	26.93	99.09
70	smv11t7	1.194	0.189	7.903	0.573	1.486	12.640	7.954	1.260	22.032	1.364	11.327	1.032	2.435	27.77	99.16
71	smv11t7	1.420	0.199	8.373	0.785	1.478	12.572	7.581	1.376	22.195	0.171	11.143	1.309	2.607	26.53	97.74
72	smv11t7	1.188	0.177	8.674	0.655	1.457	12.900	7.839	1.577	22.214	0.176	10.862	1.353	2.581	26.98	98.63
73	smv11t7	0.253	0.124	9.260	0.485	1.096	12.883	8.124	1.278	23.880	0.375	11.611	0.399	2.867	27.18	99.81
74	smv11t7	0.119	0.133	9.244	0.375	1.035	12.844	8.123	1.277	24.376	0.422	11.939	0.167	2.971	27.21	100.24
75	smv11t7	0.101	0.131	9.302	0.474	1.006	12.651	7.976	1.294	24.338	0.415	11.945	0.169	2.805	26.92	99.52
76	smv11t7	0.109	0.128	9.333	0.539	0.988	12.645	8.099	1.259	24.474	0.418	12.059	0.132	2.891	26.98	100.05
70	smv11t/	0.087	0.131	9.339	0.455	0.966	12.5/6	8.160	1.270	24.453	0.458	12.027	0.150	2.916	26.90	99.87
70 70	smv11t/	0.100	0.125	9.424	0.464	0.979	12.5/9	0.130	1.300	24.333	0.451	11.990	0.157	2.792	26.93	99.96 00.44
80	smv11t7	0.105	0.129	9.364	0.558	1.014	12.401	8 562	1.297	24.220	0.440	11.549	0.138	2.022	26.80	99.44
81	smv11t7	0.106	0.127	9 372	0.545	1.020	12.510	8 489	1 322	24.130	0.450	11.457	0.180	2.934	26.88	99.60
82	smv11t7	0.130	0.137	9.348	0.517	1.051	12.556	8.649	1.395	24.112	0.440	11.371	0.191	2.791	26.83	99.52
83	smv11t7	0.123	0.123	9.215	0.503	1.093	12.533	8.780	1.389	23.504	0.484	11.047	0.226	2.789	26.71	98.52
84	smv11t7	0.095	0.134	9.417	0.527	1.126	12.597	8.988	1.383	23.749	0.457	11.211	0.220	2.864	26.92	99.69
85	smv11t7	0.097	0.129	9.402	0.438	1.079	12.579	8.664	1.344	23.884	0.423	11.349	0.189	2.907	26.82	99.30
86	smv11t7	0.109	0.127	9.379	0.457	1.078	12.651	8.449	1.385	24.129	0.385	11.538	0.185	2.970	26.93	99.77
87	smv11t8	1.277	0.202	7.992	0.582	2.280	13.298	8.289	1.267	21.901	0.469	10.944	1.119	2.584	27.95	100.16
88	smv11t8	1.341	0.200	8.106	0.702	1.962	13.094	8.218	1.373	22.024	0.207	11.076	1.138	2.552	27.36	99.35
89	smv11t8	0.988	0.199	8.302	0.718	1.872	12.963	8.736	1.503	21.923	0.193	10.705	1.030	2.626	27.12	98.88
90	smv11t8	0.965	0.188	8.367	0.578	1.824	12.998	8.931	1.412	22.417	0.181	10.949	0.843	2.522	27.19	99.36
91	smv11t8	0.480	0.158	8.806	0.497	1.468	12.880	8.527	1.314	23.452	0.275	11.412	0.503	2.727	27.12	99.62
92	smv11t8	0.290	0.130	9.066	0.500	1.268	12.820	8.251	1.268	23.950	0.528	11.6/5	0.336	2.801	27.02	99.78
93 04	smv11t8	0.099	0.111	9.328	0.515	0.981	12.739	6.010	1.199	24.8/5 25.417	0.333	12.514	0.122	2.954 2.934	27.02	99.94 00.42
24 05	5111V111(8 5mv11+9	0.061	0.093	9.494	0.449	0.019	12.704	5.762	1.1/4	25.410	0.204	13 304	0.133	2.030	20.93	99.43 99.43
96	smv11t8	0.065	0.000	9.348	0.415	0.749	12.781	5.782	1.062	25.635	0.303	13.428	0.094	2.912	26.95	99.65
97	smv11t8	0.054	0.095	9.366	0.420	0.788	12.773	5.935	1.099	25.509	0.297	13.306	0.082	2.882	26.96	99.57
98	smv11t8	0.058	0.091	9.378	0.397	0.800	12.824	6.084	1.024	25.458	0.291	13.331	0.079	2.912	27.03	99.76
99	smv11t8	0.071	0.089	9.364	0.471	0.845	12.833	5.967	1.113	25.444	0.275	13.076	0.111	2.849	27.00	99.51
100	smv11t8	0.065	0.106	9.298	0.411	0.920	12.787	6.408	1.191	25.246	0.276	12.742	0.135	2.965	26.96	99.51

	Migmatite FA	(SMV11) suite
--	--------------	--------	---------

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
101	smv11t8	0.092	0.110	9.282	0.528	1.056	12.780	7.491	1.269	24.650	0.315	12.092	0.233	2.838	27.02	99.76
102	smv11t8	0.132	0.118	9.210	0.593	1.217	12.784	7.847	1.403	24.219	0.294	11.384	0.325	2.929	26.99	99.44
103	smv11t8	0.228	0.141	9.085	0.619	1.338	12.897	8.182	1.441	23.475	0.236	11.115	0.481	2.909	27.03	99.18
104	smv11t9	0.254	0.118	8.556	0.444	1.001	12.667	6.201	1.315	22.550	1.999	11.426	0.422	2.777	28.06	97.79
105	smv11t9	0.085	0.104	8.762	0.328	0.628	12.641	6.538	0.993	25.411	0.546	13.733	0.046	2.729	26.99	99.53
106	smv11t9	0.098	0.105	8.740	0.337	0.581	12.561	6.571	0.972	25.535	0.620	13.946	0.000	2.850	27.01	99.93
107	smv11t9	0.088	0.112	8.689	0.349	0.577	12.366	7.161	0.946	25.395	0.618	14.199	0.000	2.789	26.84	100.13
108	smv11t9	0.204	0.120	8.837	0.464	0.818	12.510	7.518	1.268	24.540	0.487	12.975	0.248	2.740	26.83	99.56
109	smv11t9	0.426	0.148	9.083	0.663	1.331	13.052	7.796	1.549	22.942	0.188	11.259	0.718	2.859	27.16	99.17
110	smv11t9	0.334	0.135	9.018	0.667	1.151	12.965	7.215	1.480	23.655	0.212	11.868	0.566	2.806	27.07	99.14
111	smv11t9	0.272	0.117	9.384	0.672	1.091	12.948	7.118	1.517	23.628	0.216	11.740	0.472	2.830	27.02	99.02
112	smv11t9	0.210	0.121	9.153	0.553	1.020	12.857	7.056	1.457	24.101	0.264	12.249	0.430	2.843	27.01	99.32
113	smv11t9	0.042	0.107	8.647	0.264	0.419	12.214	6.951	0.851	25.767	0.686	14.473	0.000	2.712	26.68	99.82
114	smv11t9	0.095	0.121	9.077	0.301	0.602	12.380	7.264	1.052	25.263	0.601	13.146	0.012	2.874	26.75	99.54
115	smv11t9	0.109	0.124	9.225	0.372	0.763	12.526	7.534	1.204	24.959	0.485	12.564	0.135	2.791	26.84	99.63
116	smv11t10	0.307	0.113	9.292	0.492	1.144	13.081	6.839	1.422	23.655	0.207	11.931	0.692	2.682	27.18	99.04
117	smv11t10	0.263	0.106	9.215	0.496	1.016	13.027	6.263	1.239	24.088	0.192	12.908	0.514	2.900	27.15	99.38
118	smv11t10	0.183	0.118	8.295	0.403	0.949	12.684	7.442	1.070	24.192	0.405	13.850	0.214	2.590	26.93	99.32
119	smv11t10	0.138	0.109	8.056	0.419	0.903	12.629	7.763	1.022	24.417	0.446	14.065	0.078	2.584	26.91	99.54
120	smv11t10	0.108	0.119	8.009	0.329	0.828	12.508	7.929	0.991	24.515	0.516	14.283	0.041	2.608	26.85	99.63
121	smv11t10	0.117	0.121	8.079	0.390	0.859	12.630	7.495	1.044	24.717	0.432	14.288	0.052	2.592	26.93	99.75
122	smv11t10	0.138	0.117	8.262	0.472	0.880	12.678	7.357	1.038	24.609	0.392	13.940	0.064	2.515	26.89	99.36
123	smv11t11	0.312	0.112	9.282	0.598	1.091	13.075	6.082	1.355	24.130	0.170	12.413	0.598	2.675	27.15	99.04
124	smv11t11	0.426	0.098	9.486	0.755	1.023	13.083	5.623	1.559	24.074	0.125	12.307	0.609	2.922	27.14	99.23
125	smv11t11	0.460	0.119	9.583	0.746	1.044	13.054	5.719	1.611	24.035	0.133	12.212	0.657	2.919	27.15	99.44
126	smv11t11	0.507	0.123	9.833	0.921	1.054	13.102	5.676	1.773	23.875	0.111	11.670	0.570	2.852	27.13	99.20
127	smv11t11	0.565	0.119	9.631	0.899	1.166	12.831	5.999	1.893	23.393	0.154	11.314	0.486	2.844	26.74	98.03
128	smv11t11	0.506	0.104	9.973	0.993	1.047	13.052	5.474	2.020	24.058	0.107	11.515	0.357	2.954	27.07	99.23
129	smv11t11	0.525	0.114	9.899	1.047	1.045	13.077	5 583	2.067	23 935	0.106	11.430	0.407	2 9 5 5	27.10	99.29

Migmatite FA (SMV12) 2°01'05" - 45°06'35"

NU	VREF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	smv12t1	1.254	0.139	8.463	0.445	1.118	12.948	4.841	1.243	23.845	0.596	12.804	0.169	2.651	27.16	97.67
2	smv12t1	0.096	0.085	9.363	0.306	0.812	12.893	4.609	1.126	25.038	0.210	13.573	0.112	2.778	26.79	97.79
3	smv12t2	0.719	0.121	9.514	0.543	1.001	13.069	4.907	1.623	23.947	0.176	11.976	0.468	2.796	26.96	97.82
4	smv12t2	0.192	0.080	9.577	0.287	0.802	12.921	4.574	1.283	25.415	0.228	13.155	0.203	2.949	26.95	98.62
5	smv12t3	0.738	0.134	9.026	0.854	0.979	13.432	4.853	1.750	22.254	0.504	11.265	2.001	2.773	27.77	98.33
6	smv12t3	0.763	0.136	9.269	0.772	0.998	13.105	5.215	1.619	22.539	0.089	11.575	2.057	2.640	27.04	97.82
7	smv12t3	0.736	0.132	9.283	1.046	1.014	13.161	5.291	1.699	22.359	0.107	11.424	2.096	2.650	27.16	98.15
8	smv12t3	0.831	0.131	9.201	0.885	0.984	13.148	4.931	1.744	22.309	0.101	11.336	2.132	2.654	27.04	97.43
9	smv12t3	0.873	0.138	9.134	0.937	0.973	13.163	4.928	1.695	22.527	0.086	11.548	2.143	2.752	27.13	98.02
10	smv12t3	0.871	0.137	9.117	0.808	0.991	13.126	4.885	1.751	22.391	0.150	11.484	2.133	2.754	27.10	97.70
11	smv12t3	0.911	0.141	9.038	1.126	0.982	12.964	4.906	1.770	21.838	0.385	11.064	2.254	2.621	27.05	97.05
12	smv12t3	0.474	0.114	8.419	0.568	0.885	13.128	4.991	1.423	23.656	0.105	13.101	1.741	2.600	27.13	98.33
13	smv12t3	0.433	0.118	8.335	0.646	0.926	13.151	5.085	1.344	23.644	0.105	13.085	1.769	2.579	27.17	98.39
14	smv12t3	0.471	0.126	8.393	0.550	0.951	13.100	5.357	1.347	23.196	0.124	12.624	1.915	2.664	27.07	97.89
15	smv12t3	0.472	0.125	8.406	0.667	0.973	13.154	5.435	1.377	23.072	0.110	12.573	1.982	2.464	27.12	97.93
16	smv12t4	0.137	0.139	9.077	0.318	1.109	12.594	8.633	1.278	23.793	0.431	11.530	0.204	2.727	26.77	98.74
17	smv12t4	0.130	0.129	9.042	0.288	1.047	12.562	8.454	1.227	23.932	0.432	11.672	0.173	2.787	26.71	98.58
18	smv12t4	0.129	0.136	9.194	0.333	1.047	12.555	8.476	1.276	24.010	0.435	11.605	0.205	2.813	26.76	98.97
19	smv12t4	0.086	0.129	9.056	0.212	0.802	12.399	7.907	1.151	24.868	0.521	12.347	0.073	2.705	26.63	98.89
20	smv12t4	0.083	0.104	9.170	0.274	0.716	12.421	7.102	1.158	25.201	0.492	12.644	0.046	2.870	26.64	98.92
21	smv12t4	0.155	0.097	9.511	0.336	0.694	12.668	5.822	1.255	25.472	0.374	12.463	0.244	2.959	26.81	98.86
22	smv12t4	0.221	0.093	10.010	0.408	0./11	12./16	5.243	1.411	25.312	0.2//	11.918	0.46/	3.007	26.//	98.56
23	smv12t4	0.162	0.121	9.619	0.349	0.973	12.546	8.063	1.38/	24.108	0.435	11.1/1	0.223	2.946	26.72	98.83
24	smv12t4	0.645	0.160	8.981	0.393	1.23/	12.624	8.288	1.451	23.199	0.506	10.831	0.557	2.763	26.87	98.50
25	smv12t4	0.255	0.117	9.625	0.419	1.058	12.738	7.356	1.515	24.065	0.392	10.962	0.444	2.825	26.90	98.66
26	smv12t4	0.165	0.114	9.8/5	0.594	0.908	12.660	/.206	1.400	24.48/	0.367	11.058	0.282	2.948	26.79	98.86
20	sinv12t4	0.114	0.115	9.700	0.521	0.620	12.005	7 700	1.200	24.070	0.555	12.020	0.245	3.020	20.00	99.31
28	smv12t4	0.111	0.124	9.480	0.421	0.847	12.514	0.762	1.214	24.021	0.401	12.181	0.185	2.872	20.81	99.55
29	sinv12t4	0.120	0.130	9.272	0.409	1.044	12.400	0.702 9.794	1.255	23.001	0.461	11.452	0.155	2.034	26.64	90.04
31	smv12t4	1 256	0.136	9.279	0.500	1.608	13.144	0.70 4 9.537	1.355	23.701	0.452	10.063	0.208	2.675	20.04	00.04
32	smv12t6	1.230	0.194	8 1 5 2	0.521	1.000	13.060	8 717	1.303	21.102	0.174	10.905	1 1 3 0	2.595	27.25	99.05
33	smv12t6	1.320	0.214	8 532	0.717	1.633	12,000	8 763	1.007	21.710	0.226	10.715	1.137	2.500	27.10	98.86
34	smv12t6	0.242	0.205	0.332	0.546	1.055	12.796	8 346	1.430	23 543	0.220	11 202	0.386	2.020	27.14	90.00
35	smv12t6	0.242	0.145	9.237	0.540	1.102	12.700	8 340	1.450	23.703	0.364	11.272	0.235	2.057	26.91	99.17
36	smv12t6	0.126	0.135	9.230	0.426	1.1.92	12.776	8 1 2 7	1.308	23.841	0.358	11.605	0.203	2.978	26.97	99.22
37	smv12t6	0.094	0.137	9.307	0.458	1.192	12.752	8.546	1.311	23.767	0.354	11.427	0.223	2.866	26.97	99.40
38	smv12t6	0.137	0.141	9 2 3 2	0.467	1 185	12.720	8 5 3 0	1 356	23 707	0.342	11 340	0.258	2.923	26.91	99.24
39	smv12t6	0.131	0.126	9.231	0.544	1 204	12.743	8 531	1 355	23.611	0.342	11.245	0.275	2.864	26.91	99.12
40	smv12t6	0.135	0.132	9.312	0.545	1.216	12.746	8.562	1.409	23.598	0.335	11.301	0.291	2.705	26.93	99.21
41	smv12t6	0.138	0.130	9.287	0.556	1.233	12.684	8.569	1.384	23.445	0.333	11.180	0.279	2.841	26.82	98.88
42	smv12t6	0.137	0.158	9.395	0.610	1.254	12.662	9.274	1.407	23.295	0.393	10.805	0.271	2.900	26.91	99.47
43	smv12t6	0.134	0.142	9.364	0.551	1.240	12.634	9.342	1.432	23.284	0.412	10.883	0.286	2.897	26.91	99.51
44	smv12t6	0.129	0.145	9.274	0.519	1.237	12.657	9.181	1.415	23.197	0.387	10.954	0.288	2.798	26.84	99.02
45	smv12t6	0.143	0.141	9.312	0.531	1.210	12.700	8.962	1.402	23.200	0.371	11.029	0.308	2.805	26.87	98.98
46	smv12t6	0.134	0.144	9.495	0.492	1.190	12.814	8.807	1.393	23.553	0.396	11.068	0.255	2.889	27.10	99.73
47	smv12t6	0.144	0.139	9.490	0.528	1.175	13.392	8.301	1.360	23.194	0.446	11.042	0.322	2.933	27.79	100.25
48	smv12t6	0.187	0.149	9.407	0.559	1.228	13.664	8.368	1.421	23.053	0.451	10.914	0.391	2.890	28.15	100.83
49	smv12t6	0.966	0.199	8.594	0.879	1.643	13.840	8.717	1.687	20.350	0.632	9.271	1.482	2.691	28.37	99.32
50	smv12t7	0.632	0.153	8.444	0.608	1.162	14.257	6.680	1.381	21.050	1.403	10.330	1.045	2.624	29.33	99.10
51	smv12t7	0.907	0.170	8.445	0.590	1.290	14.164	7.210	1.459	21.123	1.111	10.424	1.220	2.545	29.11	99.77
52	smv12t7	0.956	0.185	8.425	0.593	1.351	14.190	7.370	1.438	21.320	0.996	10.430	1.222	2.734	29.13	100.34
53	smv12t8	0.085	0.118	9.165	0.327	0.890	12.599	7.831	1.191	24.661	0.546	12.170	0.072	2.814	26.94	99.41
54	smv12t8	0.103	0.128	9.202	0.379	0.871	12.496	7.932	1.153	24.660	0.495	12.315	0.086	2.767	26.78	99.37
55	smv12t8	0.104	0.127	9.204	0.426	1.001	12.502	8.604	1.256	23.893	0.472	11.534	0.151	2.779	26.69	98.74
56	smv12t8	0.160	0.130	9.395	0.421	1.173	12.635	8.766	1.470	23.328	0.369	11.050	0.322	2.802	26.78	98.80
57	smv12t8	0.525	0.199	9.089	0.801	1.653	12.663	10.895	1.849	20.955	0.332	9.156	1.000	2.601	26.79	98.51
58	smv12t8	1.073	0.218	8.840	1.005	1.850	12.928	10.171	2.010	20.158	0.206	8.819	1.586	2.592	27.02	98.48
59	smv12t8	1.143	0.195	8.713	0.731	1.594	13.338	8.162	1.629	21.288	0.261	10.160	1.203	2.504	27.43	98.35
60	smv12t8	1.163	0.172	8.469	0.622	1.498	13.533	8.019	1.479	22.154	0.219	10.887	0.911	2.593	27.70	99.42
61	smv12t9	0.609	0.142	9.284	0.823	1.187	12.720	6.728	1.927	21.591	1.660	9.118	1.334	2.833	27.91	97.86
62	smv12t9	0.849	0.130	9.750	0.957	1.022	13.156	4.719	2.086	23.487	0.131	10.143	1.658	3.023	27.16	98.27
63	smv12t9	0.597	0.125	9.970	0.793	1.074	12.997	6.205	1.777	23.569	0.207	10.718	1.105	2.992	27.15	99.28
64	smv12t9	0.280	0.143	9.591	0.485	1.124	12.815	7.483	1.4/4	23.865	0.296	11.330	0.547	2.877	27.00	99.31
65	smv12t9	0.151	0.130	9.556	0.526	1.029	12.700	/.806	1.391	24.113	0.337	11.583	0.301	2.889	26.90	99.41
00	smv12t9	0.196	0.126	9.598	0.609	1.107	12.755	8.014	1.446	23.868	0.329	11.383	0.400	2.802	26.99	99.62
0/	smv12t9	0.264	0.142	9.546	0.667	1.153	12.735	8.132	1.598	23.743	0.314	11.238	0.461	2.888	27.00	99.88
68	smv12t9	0.297	0.154	9.397	0.624	1.155	12./22	8.053	1.672	23.653	0.345	11.209	0.488	2.963	27.00	99.73
69 70	smv12t9	0.163	0.155	9.228	0.45/	1.218	12.633	9.16/	1.466	23.225	0.385	10.880	0.305	2.849	26.80	98.93
70	smv12t9	0.193	0.135	9.235	0.443	1.235	12.001	9.034	1.436	23.286	0.370	10.953	0.329	2.755	26.82	98.88 00.21
/1	smv12t9	0.201	0.14/	9.500	0.450	1.2/1	12./1/	0.002	1.52/	23.169	0.342	11.054	0.442	2.825	20.91	99.21
12 73	smv12t9	0.206	0.140	9.205	0.458	1.213	12./14	8.000	1.420	23.390	0.348	11.122	0.421	2.958	26.90	99.14 00 07
13 74	smv12t9	0.131	0.127	9.280 0.322	0.312	1.055	12.3//	0.089	1.348	24.110 24.176	0.201	11.038	0.193	2.802	20.79	28.80 00.11
75	smv12t9	0.121	0.127	9.322	0.297	1.055	12.590	8 502	1.309	24.170	0.380	11.397	0.194	2.900	20.70	99.11 90.10
76	smv12t9	0.150	0.139	9 370	0.384	1 217	12.300	8 308	1 431	23.635	0.332	11 294	0.240	2.072	26.52	98 41
.0	1411	0.130	U.1.J./	2.210	TUCIO		1 II I I I I I I I I I I I I I I I I I	0.000	11.1.7.1		0.004	· · · · · / T	0.200		-0.04	20.71

Granite FA (SMV15)	2°00'42" - 45°05'53"	

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	smv15t1	1.728	0.190	7.602	0.502	1.427	12.858	6.539	1.188	23.102	0.208	12.107	1.079	2.526	26.86	97.92
2	smv15t1	1.774	0.178	7.786	0.539	1.416	12.889	6.477	1.086	23.391	0.123	12.497	0.957	2.511	26.90	98.52
3	smv15t1	1.528	0.176	8.151	0.686	1.336	12.875	6.472	1.426	23.186	0.126	11.719	1.154	2.687	26.87	98.39
4	smv15t1	2.136	0.215	8.141	1.043	1.512	12.993	6.893	1.920	21.462	0.128	10.054	1.952	2.492	26.97	97.91
5	smv15t1	2.271	0.222	8.102	1.121	1.517	12.915	6.800	2.013	21.006	0.132	9.630	2.090	2.572	26.80	97.19
7	smv15t1	0.675	0.199	8.925 9.045	1.265	1.425	12.855	7.861 8.303	2.301	21.206	0.186	9.214	1.755	2.623	26.80	97.81
8	smv15t1	0.675	0.162	9.045	0.908	1.326	12.750	8 172	1 775	21.914	0.241	10.480	1.250	2.705	26.79	98.38
9	smv15t1	0.414	0.140	9.059	0.843	1.287	12.749	7.988	1.714	23.007	0.226	10.922	0.846	2.723	26.83	98.75
10	smv15t1	0.389	0.155	9.093	0.893	1.326	12.718	8.234	1.744	22.876	0.241	10.808	0.770	2.646	26.80	98.69
11	smv15t1	0.436	0.156	8.994	0.910	1.357	12.714	8.291	1.739	22.756	0.240	10.603	0.835	2.650	26.77	98.45
12	smv15t1	0.451	0.140	9.026	0.965	1.332	12.742	8.289	1.776	22.703	0.223	10.579	0.888	2.849	26.83	98.79
13	smv15t1	0.473	0.150	9.038	0.912	1.328	12.758	8.248	1.764	22.848	0.223	10.735	0.900	2.604	26.85	98.83
14	smv15t1	0.500	0.160	9.143	1.005	1.337	12.781	8.110	1.816	22.522	0.217	10.554	0.942	2.718	26.85	98.65
15	smv15t1	0.510	0.135	8.968	0.934	1.362	12.769	8.172	1.768	22.556	0.206	10.616	0.949	2.758	26.81	98.52
16	smv15t1	0.567	0.139	9.012	0.924	1.365	12.818	8.077	1.741	22.527	0.211	10.573	1.032	2.669	26.87	98.53
17	smv15t1	0.549	0.152	9.004	0.836	1.337	12.834	7.907	1.721	22.771	0.198	10.768	1.029	2.642	26.90	98.65
18	smv15t1	0.505	0.148	8.959	0.959	1.304	12.835	7.585	1.838	22.642	0.180	10.703	1.182	2.729	26.87	98.43
19	smv15t1	0.577	0.166	8.829	0.884	1.321	12.821	8.041	1.770	22.689	0.216	10.571	1.055	2.574	26.85	98.36
20	smv15t1	0.250	0.172	0.413	0.796	0.719	12.027	0.075	1.000	24.560	0.157	12.804	0.175	2.034	20.65	96.23
21	smv15t2	0.258	0.155	8 262	0.435	0.751	11 774	10.690	1.137	23.940	0.750	12.694	0.175	2.620	26.43	100.05
23	smv15t2	0.271	0.192	8.131	0.515	0.824	11.430	12.918	1.108	22.892	1.166	11.966	0.130	2.594	26.32	100.46
24	smv15t2	0.278	0.202	8.097	0.433	0.839	11.382	13.727	1.176	22.260	1.294	11.686	0.150	2.562	26.36	100.45
25	smv15t2	0.266	0.225	8.064	0.429	0.873	11.225	14.787	1.100	21.799	1.404	11.466	0.124	2.510	26.29	100.57
26	smv15t2	0.282	0.249	7.660	0.467	0.876	10.906	16.107	1.074	21.125	1.610	11.249	0.114	2.457	26.07	100.25
27	smv15t2	0.298	0.256	7.465	0.454	0.873	10.511	17.875	1.006	20.590	1.919	11.142	0.074	2.341	25.98	100.78
28	smv15t2	0.270	0.278	7.317	0.409	0.825	10.367	18.548	0.949	20.359	2.048	11.065	0.090	2.338	25.92	100.78
29	smv15t2	0.293	0.266	7.544	0.409	0.816	10.616	17.314	1.050	20.624	1.862	11.125	0.095	2.241	25.95	100.20
30	smv15t2	0.290	0.243	7.629	0.441	0.837	10.773	16.869	0.992	20.813	1.755	11.056	0.130	2.399	26.04	100.27
31	smv15t2	0.291	0.254	7.815	0.499	0.827	10.946	16.393	1.151	21.111	1.644	11.150	0.137	2.371	26.20	100.79
32	smv15t2	0.285	0.235	8.028	0.411	0.842	11.084	15.398	1.105	21.390	1.540	11.291	0.130	2.413	26.22	100.37
33 24	smv15t2	0.296	0.224	7.908	0.508	0.831	11.308	14.473	1.122	21.867	1.363	11.434	0.158	2.542	26.31	100.34
34 35	smv15+2	0.263	0.211	6.080 9.200	0.444	0.829	11.446	13./23	1.12/	22.12/	1.300	11.063	0.135	2.501	∠0.40 26.47	100.25
30	striv i 5t2	0.265	0.200	6.209 8.340	0.425	0.773	11.010	12.449	1.080	22.902	1.108	12 204	0.145	2.33/	20.47	100.18
37	smv15t2	0.204	0.175	0.009	0.405	0.732	12 412	8 773	1.142	23.378 24.310	0.939	12.304	0.139	2.009	∠0.04 26.01	90.04
38	smv15t2	1.304	0.177	8.316	0.706	1.276	13.077	7.032	1.459	22.852	0.461	11.460	1.174	2.563	27.45	99.31
39	smv15t2	1.883	0.174	7.607	0.619	1.294	12.655	5.894	1.319	21.494	1.994	10.873	1.263	2.429	28.09	97.59
40	smv15t3	2.926	0.231	8.292	0.709	1.450	12.947	5.560	1.378	22.366	0.099	11.213	1.575	2.603	26.93	98.28
41	smv15t3	3.003	0.224	8.871	0.842	1.362	12.972	5.033	1.695	22.232	0.096	10.625	1.722	2.650	26.95	98.28
42	smv15t3	2.411	0.190	9.314	0.958	1.183	12.933	4.911	1.861	22.555	0.132	10.578	1.595	2.835	26.94	98.39
43	smv15t3	1.853	0.188	9.073	0.854	1.159	12.636	6.476	1.752	22.356	0.333	10.757	1.304	2.746	26.74	98.23
44	smv15t3	1.100	0.196	8.682	0.750	0.982	12.144	9.077	1.405	22.776	0.645	11.486	0.785	2.605	26.55	99.18
45	smv15t3	0.394	0.181	8.141	0.511	0.940	11.715	11.639	1.120	22.973	1.014	12.046	0.256	2.756	26.50	100.18
46	smv15t3	0.290	0.178	8.232	0.457	1.115	11.762	12.155	1.077	22.710	1.102	11.994	0.155	2.504	26.66	100.39
47	smv15t3	0.276	0.181	8.032	0.500	2.769	12.384	12.051	1.155	21.681	1.183	11.377	0.181	2.483	27.91	102.16
48	smv15t3	0.282	0.200	7.213	0.371	5.066	12.762	12.432	1.014	19.300	1.694	10.154	0.182	2.259	29.11	102.04
49	smv15t3	0.380	0.198	7.340	0.396	4.391	12.691	12.896	1.12/	20.091	1.325	10.739	0.226	2.248	28.70	102.75
50	smv15t3	2 157	0.229	7.942	0.575	1.555	12.123	7.039	1.111	22.175	0.765	12.009	0.056	2.500	20.07	99.20
52	smv15t3	2.157	0.205	7.042	0.587	1.510	13.073	6 721	1.100	22.000	0.174	12.098	0.965	2.520	27.10	00.53
53	smv15t3	2.200	0.219	8.010	0.526	1.301	13 119	6 560	1.155	23.116	0.110	12.137	0.936	2.530	27.20	99.33
54	smv15t3	2.116	0.202	8.042	0.536	1.426	13.189	6.397	1.219	23.061	0.168	12.154	0.891	2.561	27.32	99.28
55	smv15t3	2.024	0.211	7.985	0.529	1.418	13.056	6.377	1.191	22.621	0.453	11.963	0.880	2.496	27.31	98.52
56	smv15t4	1.677	0.196	7.561	0.573	1.388	12.682	6.659	1.175	22.491	0.943	11.786	1.098	2.572	27.32	98.12
57	smv15t4	1.842	0.190	7.778	0.640	1.443	13.047	6.859	1.170	23.257	0.143	12.072	1.198	2.506	27.19	99.34
58	smv15t4	1.958	0.185	7.879	0.565	1.455	13.051	6.571	1.215	23.202	0.124	12.357	1.001	2.573	27.17	99.30
59	smv15t4	2.872	0.210	9.369	1.103	1.251	13.066	4.459	1.906	22.436	0.105	10.540	1.692	2.730	27.13	98.86
60	smv15t4	1.907	0.186	9.474	1.110	1.299	13.119	5.782	1.959	22.017	0.104	10.032	1.847	2.753	27.18	98.77
61	smv15t4	1.484	0.199	9.308	1.013	1.401	13.055	6.861	1.941	21.657	0.123	9.735	2.013	2.680	27.12	98.59
62	smv15t4	1.367	0.182	9.239	1.026	1.415	13.036	7.150	2.001	21.460	0.12/	9.421	2.011	2.634	27.03	98.10
64	smv15t4	0.465	0.165	9.225	0.541	1.365	12.997	7.274 5.271	1.092	25.242	0.154	9.730	0.769	2.742	27.00	96.00
65	smv15t4	0.287	0.088	8 584	0.460	0.678	12.001	4 649	1.079	26.013	0.334	14 273	0.398	2.002	26.93	99.26
66	smv15t4	0.492	0.109	8.666	0.583	0.916	12.656	5.472	1.282	24.435	0.506	12.717	0.747	2.695	26.89	98.17
67	smv15t4	1.650	0.181	8.338	0.678	1.354	12.600	6.398	1.355	22.310	1.056	11.261	1.143	2.535	27.35	98.21
68	smv15t5	1.808	0.193	7.453	0.533	1.433	12.909	6.489	1.100	23.084	0.546	12.221	1.006	2.534	27.28	98.59
69	smv15t5	2.057	0.192	8.291	0.638	1.374	13.035	6.141	1.298	23.230	0.117	11.954	1.024	2.532	27.09	98.97
70	smv15t5	1.454	0.190	9.074	1.180	1.412	13.014	6.951	1.933	21.659	0.134	9.927	1.933	2.638	27.08	98.58
71	smv15t5	1.454	0.190	9.209	1.202	1.419	13.064	7.116	2.047	21.407	0.146	9.532	2.080	2.692	27.17	98.73
72	smv15t5	1.363	0.182	9.438	1.194	1.428	13.062	7.186	1.996	21.693	0.153	9.542	2.036	2.742	27.25	99.27
/3	smv15t5	1.329	0.190	9.375	1.169	1.439	13.090	/.176	1.974	21.584	0.151	9.411	2.066	2.724	27.23	98.91
/4 75	smv15t5	0.891	0.125	9.134	0.951	1.207	13.019	5 200	1.639	23.202	0.145	11.111	1.46/	2.6/3	27.18	99.40
76	smv15+5	0.024	0.125	0.220	0.773	1.035	12.994	5.079	1.410	24.193 23.700	0.134	12.294	1.034	2.709	∠/.1Z 27.14	77.51 00 54
70	smv15t5	0.007	0.147	9.030	0.010	1.1.50	12.971	6 535	1.022	22.799	0.146	10.742	1.240	2.705	27.14	98.00
78	smv15t5	1.696	0.201	9.090	1 103	1.240	13.080	6.610	1.907	21.686	0.143	9.834	1.930	2.810	27.00	98.63
79	smv15t5	3.152	0.226	8.344	0.800	1.392	13.072	5.089	1.423	22.588	0.105	11.300	1.668	2.549	27.14	98.85
80	smv15t5	2.726	0.222	8.259	0.677	1.443	13.077	5.801	1.358	22.723	0.097	11.605	1.315	2.676	27.16	99.14
81	smv15t5	2.007	0.206	8.246	0.577	1.397	12.873	6.541	1.272	23.209	0.112	12.121	0.824	2.554	26.89	98.82
82	smv15t5	1.836	0.188	7.956	0.517	1.418	12.873	6.711	1.196	23.309	0.113	12.400	0.824	2.445	26.87	98.66
83	smv15t5	1.851	0.225	7.381	0.499	1.602	12.876	7.127	1.127	22.838	0.157	12.399	0.928	2.483	26.91	98.40
84	smv15t5	1.724	0.196	7.414	0.411	1.482	12.025	6.884	1.146	22.225	1.635	11.711	0.971	2.359	27.15	97.33
85	smv15t6	2.064	0.200	7.871	0.489	1.466	13.054	6.567	1.269	23.011	0.149	11.845	1.158	2.441	27.11	98.70
86	smv15t6	2.521	0.189	9.242	0.839	1.162	13.051	4.405	1.852	22.774	0.101	10.812	1.484	2.789	27.00	98.22
8/	smv15t6	1.302	0.145	8.845	0.608	1.085	12.989	4.985	1.4/2	24.574	0.127	12.507	0.590	2.773	27.03	99.03
88	smv15t6	0.497	0.121	8.840	0.670	1.01/	13.023	5.025	1.541	25.054	0.110	12.608	0.492	2./9/	27.08	99.40
90	smv15t6	0.460	0.117	9.368	0.629	1.162	12.002	6 508	1.040	24.000 24.932	0.209	11.097	0.201	2.952	20.99 26.92	77.40 00.13
91	smv15t6	0.489	0.127	9.825	0.646	1.127	13.032	6.780	1.798	24.610	0.183	10.507	0.324	3.058	27.16	99.67
92	smv15t6	0.716	0.119	9.691	0.860	1.162	13.000	6.542	2.131	24.547	0.162	10.131	0.468	2.969	27.11	99.61
93	smv15t6	0.702	0.149	9.971	0.788	1.228	12.990	6.960	2.081	24.065	0.170	9.793	0.484	2.931	27.08	99.39
94	smv15t6	0.862	0.145	9.624	0.855	1.326	12.970	7.257	2.045	23.612	0.166	9.726	0.574	2.984	27.04	99.19
95	smv15t6	0.879	0.139	9.324	0.801	1.277	12.965	7.076	1.939	23.789	0.168	10.396	0.511	2.759	27.01	99.03
96	smv15t6	1.138	0.139	8.900	0.775	1.097	13.018	5.714	1.600	24.228	0.128	11.976	0.638	2.825	27.07	99.25
97	smv15t6	1.934	0.181	9.219	0.872	1.222	13.078	5.350	1.776	22.906	0.111	11.177	1.195	2.729	27.11	98.85
98	smv15t6	2.043	0.197	8.968	0.855	1.271	13.077	5.403	1.612	22.704	0.115	11.304	1.389	2.732	27.12	98.79
99	smv15t6	1.690	0.177	7.686	0.636	1.364	13.046	6.441	1.215	23.458	0.133	12.475	1.088	2.632	27.16	99.20
100	311111310	1./39	0.204	1.300	0.005	1.400	12.04/	0.742	1.443	22.497	0.002	11./00	1.119	2.430	21.20	20.39

Granite FA (SMV16) 1°59'57" - 45°03'25"

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	smv16t1	2.186	0.215	8.324	0.893	1.539	13.010	6.765	1.664	21.896	0.186	10.789	1.455	2.470	27.08	98.48
2	smv16t1	2.142	0.228	7.565	0.740	1.662	12.951	7.787	1.441	21.975	0.146	11.310	1.346	2.379	27.02	98.69
3	smv16t1	2.140	0.255	7.624 8.466	0.857	1.608	12.987	7.601 5.771	1.514	21.850	0.135	11.196	1.606	2.451	27.08	98.87
5	smv16t1	1.918	0.183	7.687	0.669	1.368	12.950	5.974	1.400	24.008	0.104	13.088	0.537	2.588	27.05	99.52
6	smv16t1	1.642	0.189	6.100	0.424	1.687	12.989	8.222	0.880	23.424	0.108	14.477	0.208	2.245	27.11	99.71
7	smv16t1	1.779	0.224	5.660	0.400	1.889	13.017	9.308	0.878	22.984	0.115	14.336	0.179	2.131	27.20	100.10
8	smv16t1	1.734	0.191	7.422	0.481	1.395	13.029	6.407	1.262	24.629	0.101	13.389	0.144	2.613	27.15	99.95
9	smv16t1	1.639	0.174	6.948	0.386	1.429	12.934	6.638 7.186	1.034	24.485	0.107	14.010	0.173	2.459	27.00	99.42
11	smv16t1	1.599	0.175	6 566	0.390	1.404	12.970	7.100	0.912	24.337	0.101	14.310	0.100	2.399	26.95	99.89
12	smv16t1	1.642	0.176	7.262	0.530	1.471	13.036	6.750	1.312	23.851	0.118	13.195	0.444	2.524	27.13	99.44
13	smv16t1	1.905	0.195	8.796	0.903	1.292	12.970	5.626	1.839	22.637	0.145	11.035	1.398	2.668	26.99	98.40
14	smv16t2	0.864	0.171	8.801	0.753	1.392	12.876	8.160	1.556	22.746	0.230	11.098	0.991	2.659	27.06	99.36
15	smv16t2	0.882	0.163	8.677	0.792	1.419	12.915	8.216	1.596	22.902	0.223	11.143	1.026	2.624	27.15	99.73
16	smv16t2	0.940	0.163	8.666	0.709	1.428	12.951	8.217	1.561	22.833	0.215	11.064	1.036	2.601	27.16	99.54
18	smv16t2	0.989	0.175	8 481	0.633	1.457	12.935	8 245	1.556	22.000	0.205	11.101	1.005	2.670	27.13	99.41
19	smv16t2	0.992	0.176	8.500	0.606	1.481	12.864	8.317	1.560	22.490	0.208	10.941	1.066	2.599	26.96	98.76
20	smv16t2	1.018	0.176	8.463	0.621	1.497	12.824	8.299	1.580	22.369	0.202	10.795	1.103	2.703	26.89	98.54
21	smv16t2	1.019	0.181	8.538	0.715	1.518	12.893	8.518	1.561	22.466	0.202	10.856	1.187	2.592	27.08	99.32
22	smv16t2	1.026	0.175	8.552	0.676	1.487	12.928	8.494	1.554	22.403	0.214	10.785	1.122	2.668	27.09	99.17
23	smv16t2	1.002	0.175	8.666	0.762	1.479	12.903	8.310	1.644	22.242	0.208	10.779	1.236	2.633	27.06	99.10
24 25	smv16t2	0.972	0.182	8.690	0.783	1.493	12.898	8.556	1.668	22.329	0.214	10./19	1.202	2.602	27.07	99.15
26	smv16t2	0.902	0.179	8.669	0.844	1.456	12.678	8.224	1.668	22.104	0.209	10.572	1.255	2.527	26.95	28.00 98.04
27	smv16t2	0.959	0.176	8.760	0.793	1.465	12.867	8.193	1.662	22.160	0.222	10.659	1.296	2.669	27.01	98.89
28	smv16t2	0.949	0.178	8.819	0.742	1.444	12.949	8.197	1.663	22.155	0.218	10.701	1.271	2.703	27.11	99.10
29	smv16t2	0.964	0.181	8.802	0.876	1.441	12.878	8.263	1.680	22.277	0.217	10.759	1.272	2.582	27.06	99.25
30	smv16t2	0.910	0.185	8.808	0.825	1.419	12.937	8.144	1.608	22.274	0.225	10.732	1.221	2.696	27.09	99.08
31	smv16t2	0.918	0.184	8.823	0.857	1.406	13.012	8.059	1.718	22.331	0.227	10.864	1.244	2.667	27.24	99.55
32	smv16t2	0.912	0.171	8.84.5	0.755	1.393	13.246	8.083	1.635	22.258	0.247	10.759	1.228	2.685	27.50	99.71
34	smv16t3	0.569	0.172	9.227	0.771	1.441	12.861	8.899	1.706	22.406	0.227	10.349	0.926	2.712	27.02	99.29
35	smv16t3	0.405	0.162	9.151	0.722	1.336	12.756	9.029	1.613	22.951	0.283	10.646	0.620	2.700	26.93	99.30
36	smv16t3	0.337	0.148	9.069	0.559	1.250	12.588	8.255	1.555	23.796	0.364	11.373	0.336	2.742	26.81	99.18
37	smv16t3	0.478	0.158	9.110	0.714	1.470	12.680	8.174	1.729	22.888	0.268	10.756	0.566	2.766	26.77	98.53
38	smv16t4	1.768	0.191	8.026	0.764	1.357	13.180	6.040	1.596	23.261	0.252	12.054	0.646	2.640	27.33	99.11
39	smv16t4	1.819	0.186	8.051	0.691	1.407	13.118	6.333	1.612	23.450	0.109	11.990	0.725	2.594	27.19	99.27
40	smv16t4	1.814	0.202	6.792	0.765	1.502	13.074	0.810 7 370	1.62/	23.383	0.112	12.110	0.677	2.529	27.18	99.55
42	smv16t4	2.356	0.219	6.060	0.360	1.754	13.061	7.971	1.112	23.496	0.102	13.388	0.481	2.390	27.22	99.99
43	smv16t4	2.973	0.253	5.576	0.437	1.971	13.062	8.515	0.993	22.752	0.100	13.128	0.551	2.192	27.20	99.70
44	smv16t4	3.386	0.280	5.587	0.482	2.059	13.077	8.544	1.040	22.348	0.097	12.684	0.619	2.212	27.21	99.62
45	smv16t4	3.762	0.288	5.967	0.529	2.024	13.124	8.165	1.170	22.164	0.096	12.400	0.709	2.203	27.28	99.89
46	smv16t4	3.354	0.264	6.491	0.547	1.824	13.136	7.285	1.283	22.937	0.101	12.427	0.655	2.398	27.31	100.01
47	smv16t4	2.145	0.190	7.322	0.518	1.444	13.126	6.361 5.040	1.174	24.406	0.085	13.254	0.384	2.468	27.28	100.16
48	smv16t4	1.690	0.164	7.502	0.517	1.291	13.080	5.940	1.206	24.906	0.082	13.621	0.270	2.642	27.22	100.15
50	smv16t4	1.652	0.162	7.357	0.492	1.330	13.088	6.301	1.117	24.802	0.094	13.899	0.243	2.461	27.25	100.14
51	smv16t4	1.855	0.160	7.393	0.463	1.273	13.079	5.683	1.164	25.077	0.075	13.827	0.264	2.553	27.21	100.07
52	smv16t4	2.066	0.165	7.488	0.499	1.248	13.070	5.194	1.241	25.085	0.083	13.782	0.247	2.521	27.17	99.86
53	smv16t4	1.916	0.172	7.337	0.478	1.300	13.060	5.545	1.135	24.882	0.088	13.781	0.252	2.536	27.14	99.62
54	smv16t4	1.818	0.172	7.261	0.361	1.324	13.127	5.811	1.168	24.999	0.084	13.893	0.223	2.471	27.25	99.96
55 56	smv16t4	1./90	0.1/1	/.4/1	0.491	1.292	13.049	5.662 5.640	1.156	24.8/1	0.093	15./30	0.270	2.584	26.95	99./8 08.04
50 57	smv16t5	1.828	0.165	9.326	1.158	1.1302	13.025	4.770	2.147	23.357	0.525	10.951	1.420	2.759	27.05	98.93
58	smv16t5	1.801	0.159	9.229	1.074	1.126	13.073	4.789	2.107	23.585	0.094	11.314	1.067	2.785	27.15	99.35
59	smv16t5	1.890	0.176	8.564	0.851	1.199	13.035	5.305	1.626	24.095	0.094	12.271	0.693	2.693	27.12	99.62
60	smv16t5	1.712	0.156	8.350	0.763	1.176	13.021	5.267	1.607	24.220	0.089	12.540	0.583	2.640	27.04	99.16
61	smv16t5	1.732	0.169	7.774	0.558	1.254	13.021	5.722	1.323	24.683	0.093	13.277	0.371	2.579	27.11	99.66
62 63	smv16t5	1.//6	0.193	7 480	0.438	1.344	13.046	6.122	1.18/	24.683	0.098	13.412	0.269	2.051	27.17	99.93 100.02
64	smv16t5	1.763	0.172	7,572	0.542	1.348	13.039	6.059	1.224	24,626	0.094	13.446	0.285	2.605	27.18	100.00
65	smv16t5	1.717	0.172	7.708	0.517	1.291	13.038	5.830	1.314	24.603	0.094	13.236	0.380	2.551	27.12	99.57
66	smv16t5	1.362	0.138	9.248	0.980	0.982	13.031	4.286	2.076	24.031	0.130	11.720	0.960	2.893	27.06	98.90
67	smv16t5	1.302	0.166	8.761	0.987	1.244	13.169	5.882	1.771	23.545	0.144	11.212	1.125	2.720	27.29	99.32
68	smv16t5	1.468	0.164	8.329	0.678	1.367	13.120	6.422	1.616	23.719	0.091	11.693	0.809	2.685	27.19	99.35
69 70	smv16t5	1.996	0.206	/.538	0.537	1.595	13.065	7.210	1.373	23.332	0.096	12.159	0.552	2.501	27.12	99.28
70	smv16t6	1.711	0.203	9.212	0.446	1.094	12.994	7.974 5.565	2.135	22.576 22.600	0.120	12.440	1.006	2.570	∠7.18 26.91	22.03 98.06
72	smv16t6	1.674	0.159	9.553	1.081	1.113	13.009	4.736	2.249	23.001	0.128	10.648	1.094	2.728	26.93	98.10
73	smv16t6	1.674	0.140	9.934	1.078	0.921	13.071	3.301	2.084	23.792	0.126	11.189	1.070	2.829	27.01	98.22
74	smv16t6	1.715	0.161	9.703	1.251	1.292	13.080	4.957	2.201	22.543	0.114	10.341	1.235	2.823	27.08	98.50
75	smv16t6	1.849	0.186	9.319	1.273	1.401	13.051	5.850	2.325	21.940	0.124	10.190	1.197	2.786	27.06	98.55
76	smv16t6	1.944	0.181	9.219	1.217	1.374	13.078	5.843	2.224	22.154	0.122	10.397	1.149	2.762	27.10	98.77
// 78	smv16t6	2.007	0.187	9.053	1.144	1.356	13.123	5.532	2.130	22.507	0.117	10.751	1.044	2.718	27.15	98.81
70 79	smv16t6	1.926	0.169	9.228 9.586	1.1.55	1.260	13.135	5.208 4 975	2.103	22.735 22.174	0.119	10.929	1.009	2.760	27.21 27.18	97.07 97.98
80	smv16t6	1.752	0.168	9.502	1.320	1.341	13.191	5.707	2.372	22.035	0.148	10.168	1.125	2.800	27.25	98.88
81	smv16t6	1.859	0.184	9.453	1.360	1.414	13.147	6.019	2.271	21.954	0.137	10.173	1.133	2.848	27.24	99.19
82	smv16t6	1.860	0.188	9.198	1.278	1.471	13.172	6.224	2.222	22.075	0.134	10.358	1.127	2.688	27.29	99.28
83	smv16t7	2.834	0.199	9.414	1.175	1.255	13.090	4.405	1.977	21.965	0.128	10.374	1.827	2.758	27.13	98.53

Migmatite A.T. (Li5)	1°05'39" - 45°54'33"
0	1 05 57 - 45 54 55

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	lil5g4t1	0.595	0.112	9.753	0.382	0.795	13.299	5.095	1.693	25.429	0.183	13.616	0.000	2.913	27.65	101.51
2	lil5o4t1	0.663	0.109	10.018	0.412	0.724	13 370	4 260	1 797	25 924	0.155	13 907	0.000	2 904	27 77	102.01
2	1115 - 4+4	0.762	0.104	0.040	0.521	0.721	12.0(5	1.200	1.770	25.904	0.100	12 724	0.000	2.000	27.77	101.65
3	hi5g4t1	0.762	0.104	9.949	0.531	0./19	13.265	4.015	1.770	25.894	0.199	15./54	0.000	3.060	27.65	101.65
4	lil5g4t1	0.686	0.093	10.197	0.511	0.563	13.329	3.304	1.793	26.461	0.137	13.885	0.000	2.953	27.64	101.56
5	lil5ø4t1	0.471	0.072	10.106	0.424	0.400	13.357	2.401	1.707	27.488	0.122	14.462	0.000	3.103	27.70	101.81
,	1:15 - 4+4	0.254	0.077	10.077	0.404	0.404	12 290	2 492	1 755	26.022	0.150	11.000	0.000	2.025	27.65	101.15
0	mog4t1	0.250	0.077	10.077	0.494	0.494	15.560	3.462	1.735	20.255	0.150	14.009	0.090	2.935	27.05	101.15
7	lil5g4t1	0.393	0.084	10.084	0.486	0.543	13.344	3.476	1.709	26.642	0.146	14.197	0.000	2.924	27.69	101.72
8	lil5g4t1	0.812	0.120	9.667	0.568	0.741	13.353	4.211	1.764	25.561	0.144	13.502	0.108	2.911	27.61	101.08
0	1:15 - 4+1	0.669	0.004	0.700	0.462	0.610	12 290	4.000	1 6 5 7	26 622	0.166	14 153	0.000	3.025	27.94	102.41
9	m5g4t1	0.000	0.094	9.700	0.402	0.010	15.569	4.009	1.057	20.055	0.100	14.155	0.000	5.025	2/.04	102.41
10	lil5g4t2	0.496	0.111	9.850	0.468	0.682	13.337	4.536	1.620	26.283	0.181	14.326	0.000	2.898	27.84	102.63
11	lil5g4t2	0.530	0.095	9.831	0.458	0.695	13.299	4.442	1.624	26.141	0.173	14.291	0.000	2.942	27.75	102.27
12	1:15 - 4+2	0.568	0.104	0.041	0.498	0.630	13 381	4 201	1.682	26 365	0.171	14 283	0.000	3.034	27.80	102.74
12	mog4t2	0.508	0.104	5.541	0.420	0.050	15.561	4.201	1.002	20.505	0.171	14.205	0.000	5.054	27.09	102.74
13	lıl5g4t2	0.493	0.063	10.575	0.440	0.430	13.402	2.495	1.710	27.457	0.131	14.262	0.000	3.055	27.83	102.34
14	lil5g4t2	0.768	0.095	9.941	0.539	0.628	13.388	3.971	1.670	26.348	0.155	14.044	0.000	2.941	27.82	102.30
15	1i15a4t2	0.890	0.126	9 893	0.566	0.753	13 373	4 528	1 7 3 1	25 742	0.166	13 907	0.000	2 837	27.82	102.33
15	1158412	0.020	0.120	2.025	0.500	0.755	13.575	4.520	1.751	25.742	0.100	10.007	0.000	2.057	27.02	102.55
16	hl5g4t2	0.649	0.113	9.909	0.492	0.747	13.219	5.151	1.608	25.535	0.228	13.355	0.000	2.869	27.58	101.46
17	lil5g4t2	0.627	0.125	10.051	0.471	0.684	13.250	4.615	1.666	26.017	0.201	13.595	0.000	2.965	27.66	101.93
18	lil5o4t2	0.492	0.110	9 881	0.374	0.717	13 277	4 9 4 5	1.625	25 881	0.209	13 756	0.000	2 998	27 71	101.97
10	1158412	0.472	0.110	2.001	0.574	0.717	13.277	4.745	1.025	25.001	0.209	13.750	0.000	2.550	27.71	101.57
19	hl5g6t3	0.819	0.113	10.118	0.537	0.5/1	13.346	3.550	1.845	25.///	0.169	13.500	0.348	2.821	27.65	101.16
20	lil5g6t3	0.644	0.083	10.247	0.550	0.458	13.428	2.891	1.718	26.808	0.150	14.102	0.222	2.891	27.83	102.02
21	lil5a6t3	1.049	0.127	9.920	0.613	0.664	13 302	4 108	1 785	25 299	0.210	13 336	0.341	2 867	27.65	101.27
	115 6 0	0.077	0.127	0.020	0.010	0.001	10.002	1.100	1.705	25.277	0.210	10.000	0.511	2.007	27.05	101.27
22	hisgots	0.977	0.119	9.922	0.654	0.619	15.544	4.079	1./49	25.318	0.202	15.425	0.290	2.824	27.65	101.15
23	lil5g6t3	0.962	0.110	9.972	0.638	0.618	13.344	3.977	1.721	25.383	0.199	13.487	0.308	2.787	27.66	101.16
24	lil5g6t3	0.583	0.067	10.345	0.588	0.399	13.412	2.361	1.784	27.135	0.129	14.246	0.240	3.025	27.82	102.13
25	1:15	0.060	0.127	0.670	0.552	0.610	12 366	3 9 25	1 749	25.665	0.177	13 646	0 322	2767	27.66	101.11
25	mogoto	0.960	0.127	9.079	0.552	0.619	15.500	3.825	1./48	25.005	0.177	15.646	0.322	2.767	27.00	101.11
26	lil5g6t3	1.034	0.131	9.902	0.605	0.697	13.400	3.938	1.737	25.266	0.174	13.354	0.356	2.870	27.71	101.17
27	lil5ø6t3	0.636	0.077	10.319	0.562	0.463	13.485	2.574	1.875	26.578	0.135	13.868	0.312	3.042	27.85	101.78
20	1:15 -6+4	1.006	0.117	0.029	0.630	0.608	13 300	3 000	1 9 4 2	25 244	0.173	13 190	0.415	2.044	27.71	101.19
20	m5g0t4	1.000	0.117	9.936	0.050	0.098	13.390	5.900	1.045	23.244	0.175	13.160	0.415	2.944	2/./1	101.16
29	lil5g6t4	1.045	0.120	10.026	0.683	0.675	13.337	3.988	1.748	25.319	0.176	13.336	0.346	2.907	27.67	101.38
30	lil5g6t4	0.665	0.079	10.327	0.635	0.450	13.437	2.501	1.805	26.616	0.130	13.749	0.266	2.965	27.73	101.36
21	1:15	0.901	0.100	0.802	0.550	0.500	12 366	3 (21	1 774	25 600	0.161	13 715	0.306	2 754	27.64	101.05
51	m5g0t4	0.691	0.100	9.692	0.550	0.390	15.500	5.021	1.//4	23.090	0.101	15./15	0.500	2.734	27.04	101.05
32	lil5g6t4	0.979	0.115	9.891	0.662	0.630	13.385	3.844	1.783	25.349	0.174	13.802	0.323	2.844	27.73	101.51
33	lil5g6t4	1.299	0.171	9.567	0.676	0.824	13.379	4.749	1.766	24.582	0.202	13.185	0.394	2.766	27.72	101.28
34	1/1506+4	1 262	0.170	0.533	0.632	0.849	13 328	4 769	1 8 3 8	24 423	0.197	13 107	0.413	2 801	27.63	100.95
54	mogot4	1.202	0.170	7.555	0.052	0.047	15.520	4.702	1.0.00	24.42.)	0.197	13.107	0.415	2.001	27.05	100.75
35	lil5g6t4	0.794	0.100	9.943	0.594	0.532	13.399	2.816	1.756	26.210	0.142	14.121	0.265	2.886	27.70	101.25
36	lil5g6t4	0.846	0.098	9.676	0.537	0.637	13.448	3.084	1.660	25.915	0.153	14.385	0.277	2.755	27.77	101.24
37	1/1506+4	0.827	0.096	9.642	0.537	0.656	13 370	3 1 4 1	1.623	25.022	0.155	14 211	0.245	2 844	27.66	100.94
37	m5g0t4	0.627	0.090	9.042	0.557	0.050	13.379	3.141	1.025	23.922	0.155	14.211	0.245	2.044	27.00	100.94
38	hl5g6t5	0.993	0.136	9.823	0.672	0.689	13.232	4.386	1.801	24.867	0.209	13.229	0.320	2.826	27.49	100.67
39	lil5g6t5	0.699	0.099	10.134	0.614	0.527	13.339	3.015	1.818	25.886	0.143	13.956	0.308	2.991	27.62	101.15
40	1150615	0.964	0.158	9.028	0.651	0.969	13 166	6 1 3 1	1 5 5 5	23.810	0.278	13.614	0 294	2 696	27.51	100.83
40	115g0t5	0.504	0.150	0.020	0.051	0.505	13.100	0.151	1.555	25.010	0.270	15.014	0.274	2.070	27.51	100.05
41	hl5g6t5	0.645	0.097	10.017	0.608	0.464	13.392	2.798	1.809	26.178	0.141	14.178	0.284	2.946	27.68	101.24
42	lil5g6t5	0.831	0.137	9.615	0.542	0.729	13.203	5.122	1.682	24.851	0.252	13.581	0.268	2.748	27.55	101.11
43	1150615	0.853	0.134	9.619	0.677	0.731	13 169	5.066	1 718	24 906	0.252	13 476	0.259	2 890	27 54	101.29
45	mogoto	0.055	0.1.54	9.019	0.077	0.751	13.107	5.000	1.710	24.700	0.252	13.470	0.237	2.070	27.34	101.27
44	hl5g6t5	0.603	0.087	10.334	0.603	0.405	13.318	2.403	1.819	26.478	0.131	13.932	0.252	3.023	27.56	100.94
45	lil5g6t5	0.804	0.103	9.373	0.602	0.633	13.435	3.112	1.612	26.055	0.152	14.266	0.287	2.946	27.73	101.11
46	1/1507+6	0.031	0.123	0.453	0.518	0.690	13 364	4.455	1.696	25 545	0.196	13.657	0.129	2 820	27.68	101.27
10	1158710	0.951	0.120	0.400	0.510	0.077	10.004	4.455	1.090	25.545	0.150	10.007	0.120	2.020	27.00	101.27
4/	hl5g/t6	0.933	0.138	9.391	0.556	0.732	13.3/1	4.810	1.686	25.337	0.200	13.546	0.119	2.834	27.70	101.35
48	lil5g7t6	0.948	0.132	9.580	0.524	0.752	13.335	4.762	1.745	25.363	0.199	13.473	0.118	2.967	27.70	101.60
49	lil5g7t6	1 287	0.137	9 376	0.476	0.897	13 422	4 870	1 7 3 6	25.067	0.171	13 493	0.188	2 903	27.82	101.84
50	115 7.4	0.000	0.1.57	0.004	0.540	0.744	12.122	1.070	1.750	25.507	0.157	42.505	0.165	2.000	27.02	101.01
50	hl5g/t6	0.999	0.114	9.681	0.549	0./44	15.450	4.241	1.760	25.584	0.15/	13.505	0.165	2.890	27.78	101.61
51	lil5g7t6	0.948	0.126	9.932	0.614	0.708	13.403	4.091	1.647	25.578	0.166	13.407	0.173	2.846	27.72	101.36
52	lil5g7t6	0.796	0.123	9 5 3 7	0.505	0.793	13 324	5 480	1 647	25 401	0.242	13 508	0.088	2 834	27 79	102.07
52	1:15 - 7-4	0.702	0.123	0.709	0.305	0.727	12.220	4.027	1.642	25.770	0.215	12 (15	0.000	2.001	27.79	102.07
55	m5g/to	0.792	0.125	9.798	0.499	0.757	15.550	4.957	1.045	25.770	0.215	15.615	0.069	2.795	21.18	102.10
54	lil5g7t6	0.804	0.119	9.725	0.551	0.749	13.322	4.984	1.649	25.558	0.209	13.496	0.074	2.885	27.73	101.86
55	lil5ø7t6	0.729	0.110	9.790	0.516	0.689	13.259	4.523	1.661	25.704	0.193	13.477	0.028	2.948	27.56	101.19
= /	115 7.7	0.527	0.070	10.000	0.500	0.440	12 540	0.04.0	4.454	07.005	0.140	44.270	0.020	2.4.20	07.00	101.00
56	hl5g/t/	0.537	0.070	10.226	0.529	0.419	13.519	2.313	1.654	27.205	0.110	14.3/0	0.026	3.139	27.88	101.99
57	lil5g7t7	0.960	0.115	10.092	0.560	0.708	13.449	3.729	1.780	25.380	0.137	13.459	0.193	2.955	27.73	101.25
58	lil5g7t7	0.927	0.134	9.207	0.483	0.875	13.434	4.599	1.570	25.394	0.196	13.998	0.101	2.823	27.82	101.56
50	1:1507+7	0.951	0.110	0.884	0.549	0.689	13 383	3.012	1 778	25.660	0.158	13 580	0.179	2 888	27.71	101.45
57	mbg/t/	0.951	0.117	2.004	0.547	0.002	15.565	5.912	1.770	23.000	0.150	15.567	0.175	2.000	27.71	101.45
60	hl5g7t7	0.938	0.115	9.867	0.603	0.725	13.416	3.907	1.721	25.436	0.176	13.603	0.146	2.893	27.74	101.28
61	lil5g7t7	0.807	0.121	9.731	0.573	0.740	13.320	4.757	1.632	25.571	0.206	13.509	0.096	2.833	27.69	101.59
62	lil5ø7t7	0.999	0.103	9.811	0.477	0.715	13.414	3,834	1.799	25.525	0.151	13,592	0.134	2,922	27 70	101.17
63	1:15-7-7	0.020	0.1.20	0.690	0.544	0.729	12 224	4677	1 (12	25.000	0.107	12 514	0.074	2.012	27.70	101.79
0.5	mbg/t/	0.829	0.128	9.680	0.564	0.728	13.324	4.0 / /	1.642	25.708	0.19/	13.511	0.076	2.913	27.70	101.68
64	lil5g7t7	0.800	0.127	9.860	0.570	0.701	13.302	4.609	1.624	25.806	0.201	13.520	0.047	2.906	27.69	101.76
65	lil5g7t7	0.775	0.107	9.858	0.552	0.677	13.358	4.330	1.694	25.866	0.188	13.682	0.047	2.969	27.75	101.85
66	1150.8+9	0.860	0.000	10.037	0.659	0.600	13 424	3 662	1 761	25 475	0.134	13 31 2	0.150	2 947	27.65	100.97
00	mogoto	0.000	0.099	10.057	0.056	0.090	13.424	5.005	1./01	23.475	0.150	15.515	0.156	2.947	27.05	100.07
67	lil5g8t8	0.871	0.102	9.971	0.611	0.685	13.438	3.507	1.862	25.515	0.134	13.298	0.180	2.895	27.65	100.71
68	lil5g8t8	0.877	0.104	10.134	0.669	0.695	13.490	3.584	1.799	25.392	0.138	13.383	0.147	2.838	27.73	100.98
69	11508+8	0.826	0.124	9 9 1 5	0.615	0.701	13 439	3 600	1 727	25 502	0.130	13 416	0.181	2 926	27.65	100.75
52	mogoto	0.020	0.124	2.21J	0.013	0.701	1.5.4.52	5.000	1.121	23.302	0.1.50	10.410	0.101	2.720	27.00	100.75
70	lil5g8t8	1.091	0.136	9.456	0.552	0.897	13.444	4.815	1.791	24.815	0.164	13.170	0.136	2.773	27.71	100.95
71	lil5g8t8	1.051	0.133	9.694	0.603	0.842	13.404	4.491	1.716	25.084	0.153	13.189	0.135	2.824	27.66	100.98
72	1:1508+8	1.041	0.137	9.667	0.500	0.816	13 251	4 387	1 724	24 902	0.158	13 117	0.142	2 820	27 30	100.07
14	mogoto	1.041	0.137	2.007	0.509	0.010	13.431	ч.J0/	1./24	24.202	0.130	1.3.11/	0.142	2.027	27.37	100.07
73	hl5g8t8	0.997	0.116	9.838	0.535	0.824	13.408	4.411	1.731	25.176	0.153	13.247	0.141	2.915	27.70	101.19
74	lil5g8t8	0.938	0.128	9.860	0.628	0.773	13.450	4.203	1.713	25.228	0.152	13.234	0.119	2.910	27.71	101.05
75	11508+8	0.900	0.132	9 765	0.590	0.758	13 432	4 243	1 7 3 7	25 622	0.155	13 305	0.118	2 947	27 75	101.46
75	115 0.0	0.700	0.1.04	10.005	0.570	0.750	10.402	1.410	1.1.51	25.022	0.155	10.000	0.110	2.777	07.10	101.40
/6	ini5g8t9	0.742	0.105	10.025	0.512	0.601	13.411	3.682	1.716	25.715	0.158	13.556	0.052	2.901	27.63	100.80
77	lil5g8t9	0.750	0.114	9.976	0.620	0.648	13.348	3.911	1.685	25.881	0.171	13.518	0.091	2.983	27.66	101.36
78	11508+9	0.747	0.102	9 761	0 547	0.650	13 316	4 008	1.658	25 544	0.179	13 414	0.058	2 828	27.48	100.29
70	115,000	0.027	0.102	0.055	0.54/	0.000	12 201	2 000	1 7 9 4	25.200	0.151	12 504	0.030	2.020	27.40	100.22
79	m5g8t9	0.837	0.123	9.855	0.546	0.682	15.291	3.808	1./36	25.380	0.151	15.526	0.113	2.797	27.45	100.29
80	lil5g8t9	0.839	0.114	9.847	0.530	0.700	13.397	4.090	1.696	25.288	0.157	13.488	0.135	2.838	27.62	100.73
81	11508+9	0.839	0.106	9 948	0.630	0.695	13 431	3 667	1 720	25 334	0.144	13 483	0.159	2 909	27.64	100.71
00	115 0.0	0.000	0.100	2.240	0.000	0.075	10.10-	0.007	1.120	20.004	0.127	10.000	0.1.57	2.707	27.04	100./1
82	ini5g8t9	0.846	0.104	10.076	0.582	0.679	13.428	3.602	1.723	25.700	0.137	13.395	0.180	2.985	27.70	101.14
83	lil5g8t9	0.469	0.066	10.332	0.502	0.418	13.445	2.471	1.767	26.934	0.120	14.089	0.000	3.057	27.72	101.39
84	li15g8t9	0.434	0,066	10.324	0,466	0.428	13,396	2,483	1.728	27,303	0.118	14.080	0,000	2,955	27.69	101.47
07	115.0.0	0.450	0.000	10.005	0.450	0.425	10.070	0.45.1	4 705	27.000	0.440	14400	0.000	2.755	07.42	101.17/
00	mogory	0.459	0.074	10.285	0.459	0.425	13.390	2.404	1./35	27.039	0.110	14.100	0.000	2.9//	27.03	101.14

Granite de Cornil (Li6)	1°05'41" - 45°54'09"

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	cornt6	0.696	0.187	8.501	0.725	0.927	12.024	9.157	1.343	22.529	0.722	12.328	0.839	2.568	26.48	99.03
2	cornt6	0.688	0.221	8.410	0.649	0.820	11.724	11.019	1.450	21.773	0.956	11.685	0.792	2.601	26.32	99.11
3	cornt6	0.656	0.223	8 4 2 4	0.709	0.837	11 671	11 272	1 365	21.698	0.998	11.613	0.772	2 499	26.29	99.02
4	cornt6	0.665	0.217	9.479	0.699	0.807	11.630	11.272	1 306	21.656	1.000	11.515	0.766	2.400	26.23	08.80
4	comto	0.005	0.217	0.4/0	0.000	0.802	11.650	11.545	1.590	21.000	1.009	11.515	0.766	2.490	20.23	90.09
5	cornt6	0.654	0.234	8.623	0.726	0.807	11.579	11.653	1.362	21.553	1.034	11.524	0.778	2.483	26.24	99.25
6	cornt6	0.661	0.230	8.446	0.727	0.816	11.549	11.977	1.373	21.405	1.069	11.374	0.732	2.504	26.21	99.07
7	cornt7	0.661	0.254	8.226	0.691	0.849	11.491	12.902	1.391	21.274	1.137	11.389	0.698	2.468	26.28	99.71
8	cornt7	0.562	0.300	7.889	0.623	0.698	10.732	16.201	1.281	20.214	1.667	10.783	0.473	2.404	25.84	99.67
9	cornt7	0.548	0.300	7 843	0 584	0.689	10.829	15713	1 223	20.460	1 587	10.989	0.485	2 376	25.86	99.48
10	come7	0.510	0.369	8.014	0.572	0.677	10.021	14.021	1.22.5	20.100	1.507	11.270	0.497	2.491	25.00	00.67
10	conit/	0.547	0.208	0.014	0.572	0.677	10.931	14.921	1.234	20.855	1.500	11.279	0.465	2.461	25.95	99.07
11	cornt/	0.517	0.254	8.024	0.538	0.685	11.073	14.202	1.291	21.111	1.408	11.450	0.464	2.364	25.97	99.35
12	cornt7	0.521	0.246	8.077	0.550	0.683	11.170	13.586	1.170	21.318	1.336	11.623	0.474	2.370	25.99	99.11
13	cornt7	0.507	0.246	8.089	0.601	0.702	11.247	13.453	1.250	21.531	1.303	11.745	0.454	2.496	26.13	99.76
14	cornt8	0.430	0.179	8.119	0.541	0.596	11.735	9.981	1.190	23.337	0.919	13.061	0.443	2.578	26.32	99.43
15	coret9	0.606	0.202	8.036	0.604	0.763	10.990	15 321	1 273	20.413	1.504	10 708	0.571	2 316	25.84	00.22
15	como	0.000	0.292	8.050	0.004	0.705	10.009	15.521	1.275	20.415	1.504	10.798	0.571	2.510	25.64	<i>yy.22</i>
16	cornt8	0.701	0.264	8.402	0.736	0.841	11.331	13.334	1.357	20.699	1.207	10.997	0.792	2.451	26.10	99.21
17	cornt8	0.717	0.255	8.461	0.724	0.836	11.504	12.679	1.378	20.964	1.138	11.066	0.809	2.430	26.22	99.18
18	cornt8	0.685	0.226	8.452	0.582	0.831	11.503	12.347	1.318	21.178	1.091	11.234	0.788	2.586	26.17	98.99
19	cornt8	0.671	0.236	8.452	0.649	0.823	11.560	12.252	1.409	21.461	1.074	11.405	0.786	2.453	26.28	99.51
20	cornt8	0.623	0.226	8.460	0.690	0.812	11.722	11.435	1.330	21.560	1.010	11.634	0.786	2.475	26.35	99.11
21	cornt8	0.651	0.215	8 404	0.681	0.805	11 738	11 260	1 313	21 731	0.946	11 767	0.785	2 4 9 3	26.32	99.11
20	conto	0.031	0.215	0.404	0.001	0.003	11.750	10.766	1.315	21.751	0.040	11.707	0.705	2.495	26.32	00.24
22	cornt8	0.642	0.216	8.3/1	0.629	0.802	11.858	10.766	1.515	21.976	0.932	11.948	0.791	2.576	20.44	99.24
23	cornt8	0.655	0.208	8.389	0.675	0.798	11.848	10.516	1.356	22.174	0.894	12.071	0.759	2.500	26.42	99.26
24	cornt8	0.629	0.197	8.241	0.746	0.839	11.829	10.067	1.256	22.391	0.843	12.326	0.740	2.481	26.33	98.92
25	cornt8	0.641	0.177	8.275	0.604	0.737	12.137	9.122	1.272	22.841	0.752	12.723	0.776	2.383	26.58	99.02
26	cornt8	0.635	0.175	8.361	0.600	0.708	12.141	8.621	1.261	23.243	0.699	12.828	0.752	2.471	26.55	99.04
27	cornt8	0.623	0.169	8.301	0.660	0.697	12,287	8.084	1.284	23,504	0.648	13,136	0.771	2.552	26.72	99.44
20	000000	0.457	0.152	0.001	0.450	0.644	10.210	7.005	1 257	22.070	0.500	12 540	0.747	2.552	20.72	00.21
28	cornt8	0.657	0.153	8.239	0.659	0.644	12.312	7.095	1.25/	25.978	0.582	13.549	0./4/	2.064	20.67	99.21
29	cornt9	0.645	0.189	8.355	0.643	0.800	11.976	9.432	1.329	22.838	0.807	12.610	0.773	2.504	26.53	99.43
30	cornt9	0.641	0.197	8.270	0.596	0.799	11.864	9.978	1.288	22.614	0.862	12.346	0.752	2.502	26.41	99.12
31	cornt9	0.664	0.227	8.426	0.689	0.820	11.775	11.581	1.388	21.704	1.013	11.738	0.741	2.526	26.50	99.79
32	cornt9	0.665	0.224	8.423	0.699	0.837	11.662	11.784	1.332	21.440	1.041	11.572	0.770	2,490	26.34	99.27
22	coret()	0.682	0.255	9 291	0.703	0.875	11 543	12 823	1 373	21.037	1 1 1 7	11 279	0.763	2 470	26.20	00.50
24	comes	0.082	0.255	0.201	0.705	0.075	11.040	12.023	1.375	21.037	1.117	10.000	0.705	2.475	20.29	99.30
54	cornty	0.755	0.264	8.276	0.600	0.951	11.232	13.408	1.346	20.912	1.208	10.998	0.739	2.405	26.07	99.20
35	cornt9	0.737	0.258	8.360	0.647	0.930	11.287	13.357	1.367	20.723	1.221	10.985	0.764	2.351	26.06	99.05
36	cornt9	0.686	0.262	8.075	0.618	1.103	10.805	14.378	1.274	20.284	1.476	10.630	0.733	2.363	25.72	98.41
37	cornt10	0.646	0.210	8.510	0.717	0.776	11.886	10.417	1.324	22.350	0.918	12.223	0.772	2.489	26.55	99.79
38	cornt10	0.633	0.215	8.450	0.624	0.784	11.830	11.153	1.405	22.221	0.973	12.020	0.755	2.513	26.58	100.15
30	coret10	0.651	0.221	8 4 4 4	0.736	0.803	11 776	11.073	1 3 3 7	22.003	1.000	11.020	0.734	2 618	26.51	00.84
40	(10	0.051	0.221	0.444	0.750	0.805	11.770	12.573	1.337	22.005	1.009	11.920	0.794	2.010	20.31	22.04
40	contrio	0.077	0.246	0.422	0.039	0.800	11.560	12.302	1.419	21.237	1.132	11.454	0.785	2.439	20.41	99.90
41	cornt10	0.705	0.252	8.372	0.716	0.907	11.501	13.117	1.350	21.144	1.188	11.199	0.778	2.517	26.40	100.15
42	cornt10	0.702	0.263	8.262	0.658	1.123	10.893	14.645	1.310	20.381	1.523	10.644	0.727	2.396	26.00	99.53
43	cornt10	0.739	0.277	7.951	0.616	1.059	10.519	15.561	1.323	19.910	1.759	10.496	0.668	2.420	25.72	99.02
44	cornt10	0.760	0.297	7.951	0.595	0.947	10.495	15.787	1.200	20.028	1.785	10.624	0.592	2.421	25.71	99.19
45	cornt10	0.750	0.344	7 7 7 9	0.561	0.796	10.419	17 132	1 1 7 1	19.695	1.917	10 547	0.474	2 420	25.75	99.75
46	contro	0.794	0.344	7,657	0.501	0.774	10.700	18.057	1.102	10.366	1.004	10.370	0.447	2.420	25.75	00.74
40	cornt10	0.794	0.339	/.65/	0.544	0.774	10.290	18.057	1.182	19.300	1.994	10.370	0.447	2.270	25.65	99.74
47	cornt10	0.793	0.333	7.599	0.555	0.770	10.264	18.055	1.195	19.344	2.020	10.404	0.441	2.254	25.64	99.67
48	cornt10	0.752	0.330	7.554	0.609	0.765	10.225	18.283	1.132	19.289	2.028	10.384	0.451	2.253	25.60	99.66
49	cornt10	0.712	0.342	7.486	0.542	0.754	10.177	18.771	1.109	19.281	2.030	10.270	0.414	2.298	25.55	99.74
50	cornt10	0.663	0.343	7.545	0.460	0.737	10.210	18.810	1.172	19.245	2.000	10.258	0.442	2.285	25.56	99.73
51	cornt10	0.587	0.336	7.687	0.546	0.763	10.260	18.622	1 225	19.076	1.952	10.218	0.440	2 373	25.56	99.65
50		0.554	0.221	7.762	0.525	0.705	10.220	19 5 25	1 1 6 9	10.208	1.051	10.170	0.427	2 271	25.52	00.54
52	contro	0.554	0.331	7.702	0.525	0.795	10.229	10.525	1.108	19.208	1.951	10.170	0.427	2.371	25.55	<i>99.3</i> 4
53	cornt10	0.579	0.328	/./61	0.565	0./56	10.312	18.227	1.155	19.333	1.899	10.307	0.466	2.336	25.57	99.60
54	cornt10	0.581	0.326	7.751	0.495	0.743	10.348	18.287	1.204	19.398	1.868	10.283	0.463	2.374	25.60	99.72
55	cornt10	0.534	0.331	7.721	0.484	0.750	10.400	18.025	1.167	19.492	1.827	10.318	0.409	2.324	25.57	99.35
56	cornt10	0.548	0.317	7.660	0.564	0.741	10.437	18.005	1.188	19.489	1.844	10.393	0.446	2.249	25.64	99.52
57	cornt10	0.562	0.334	7.651	0.522	0.778	10.311	17.992	1.154	19.486	1.864	10.331	0.450	2.180	25.48	99.10
58	cornt10	0.597	0.322	7,828	0.544	0.723	10.439	17.615	1.172	19,705	1.801	10.384	0.438	2.304	25.61	99.48
50	cornt10	0.507	0.321	7 7 20	0.597	0.725	10.400	18 252	1 1 2 0	10.420	1.001	10.220	0.410	2.207	25.01	00.74
57		0.397	0.321	7.000	0.502	0.723	10.400	10.233	1.107	17.427	1.040	10.339	0.419	2.307	25.05	22.70
60	cornt10	0.602	0.335	7.800	0.502	0.715	10.427	18.086	1.263	19.488	1.857	10.378	0.448	2.259	25.68	99.84
61	cornt10	0.615	0.330	7.936	0.516	0.751	10.492	17.576	1.209	19.544	1.813	10.322	0.496	2.265	25.69	99.55
62	cornt10	0.584	0.316	7.926	0.554	0.761	10.671	16.932	1.232	19.753	1.718	10.535	0.496	2.297	25.81	99.58
63	cornt10	0.588	0.276	8.207	0.652	0.860	11.047	15.165	1.307	20.119	1.490	10.691	0.613	2.446	26.05	99.51
64	cornt11	0.484	0.282	7 910	0 547	0.703	10.800	15 574	1 180	20.606	1 554	11 140	0.433	2 549	25.83	99.61
65	comt11	0.527	0.204	7.015	0.620	0.747	10.640	16 207	1 205	20.152	1 709	10.702	0.446	2.047	25.05	00.75
05	commit	0.527	0.294	7.913	0.030	0.747	10.042	10.30/	1.293	20.133	1.700	10.792	0.440	2.412	20.01	22.13 00 = 2
00	cornt11	0.522	0.305	7.900	0.524	0.766	10.516	16.930	1.232	19.905	1./64	10./17	0.429	2.381	25.70	99.59
67	cornt11	0.560	0.310	7.702	0.513	0.753	10.444	17.685	1.165	19.661	1.852	10.460	0.455	2.239	25.66	99.46
68	cornt11	0.556	0.316	7.836	0.553	0.736	10.423	17.915	1.214	19.469	1.885	10.471	0.432	2.350	25.71	99.87
69	cornt11	0.653	0.332	7.705	0.495	0.753	10.247	18.822	1.216	19.356	2.016	10.385	0.436	2.266	25.70	100.38
70	cornt11	0.762	0.359	7,555	0.525	0,746	10,114	18,967	1.146	19,046	2.137	10,144	0.416	2,259	25.57	99.75
71	cornt11	0.763	0.359	7 526	0.532	0.777	10.170	18 9/1	1 109	10.024	2 1 2 9	10.240	0.415	2 222	25.64	00.02
/ 1	commit	0.703	0.358	7.520	0.532	0.777	10.170	10.841	1.198	19.024	2.128	10.240	0.415	2.222	25.64	99.83
12	cornt11	0.740	0.352	/.554	0.586	0.771	10.176	18.658	1.154	18.986	2.121	10.320	0.410	2.314	25.63	99.78
73	cornt11	0.754	0.351	7.565	0.520	0.781	10.127	18.783	1.109	19.058	2.105	10.343	0.401	2.285	25.57	99.75
74	cornt11	0.723	0.330	7.536	0.492	0.775	10.148	18.746	1.122	19.062	2.110	10.283	0.374	2.263	25.56	99.53
75	cornt11	0.715	0.353	7.477	0.459	0.764	10.130	19.100	1.166	19.104	2.110	10.312	0.418	2.249	25.60	99.95
76	cornt11	0.556	0.303	7,721	0.416	0.732	10.467	17.659	1.053	19.579	1.843	10.486	0.426	2.421	25.65	99.31
77	cornt11	0.542	0.200	7 900	0.507	0.722	10.705	15 790	1 217	20.249	1.642	11 104	0.442	2.721	25.05	00.41
70	comm	0.342	0.400	1.000	0.507	0.755	10.795	11.051	1.417	20.248	1.043	10.104	0.443	2.305	20.6/	77.41
/8	cornt11	0.426	0.198	8.390	0.500	0.658	11.506	11.351	1.163	22.214	1.091	12.494	0.481	2.515	26.18	99.17
79	cornt12	0.623	0.179	7.643	0.459	0.666	11.911	8.783	1.093	23.777	0.850	13.770	0.485	2.450	26.44	99.13
80	cornt12	0.509	0.161	7.808	0.520	0.578	12.006	8.498	1.012	24.171	0.742	13.861	0.460	2.540	26.46	99.33

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	lil3g2t1	0.406	0.115	9.619	1.070	0.475	13.005	4.985	2.051	23.932	0.396	11.837	1.942	2.775	27.42	100.02
2	hl3g2t1	0.412	0.120	9.545	1.057	0.468	13.008	4.905	2.081	23.960	0.395	11.722	1.951	2.838	27.40	99.86
3	hl3g2t1	0.404	0.113	9.324	1.039	0.510	12.845	4.841	2.033	23.697	0.474	11.830	1.850	2.787	27.17	98.92
4	lil3g2t1	0.389	0.126	9.647	1.034	0.464	13.037	4.808	2.024	24.238	0.389	12.122	1.836	2.706	27.48	100.30
5	hl3g2t1	0.564	0.176	9.020	0.991	0.620	12.756	6.942	1.975	22.715	0.562	11.437	1.969	2.673	27.23	99.63
6	hl3g2t1	0.534	0.152	8.905	0.966	0.634	12.831	6.305	1.8/1	23.763	0.544	12.614	1.662	2.54/	27.45	100.78
7	hl3g2t1	0.516	0.150	8.774	0.886	0.616	12.867	5.926	1.758	23.819	0.517	12.630	1.645	2.696	27.39	100.19
8	hl3g2t1	0.402	0.103	9.164	0.937	0.486	13.094	4.618	1.887	24.669	0.358	12.778	1.62/	2.764	27.52	100.41
9	hi3g2t1	0.360	0.098	9.259	0.986	0.441	13.126	4.26/	1.917	24.8//	0.326	12.837	1.598	2.864	27.54	100.49
10	hl3g2t2	0.616	0.148	9.318	1.115	0.741	13.080	5.691	2.096	23.098	0.445	11.583	2.163	2.703	27.63	100.43
11	113g2t2	0.682	0.158	9.102	1.11/	0.671	12.973	6.018	2.105	22.591	0.464	11.180	2.342	2.730	27.40	99.53
12	hl5g2t2	0.688	0.149	9.217	1.209	0.658	12.952	6.141	2.0/1	22.516	0.474	11.111	2.379	2.702	27.41	99.67
15	1113g2t2	0.678	0.147	9.155	1.100	0.675	12.995	0.2/4	2.102	22.000	0.480	11.188	2.343	2./50	27.51	100.15
14	113g2t2	0.007	0.135	9.203	1.074	0.002	12.900	4.800	2.050	22.554	0.474	11.14/	1.722	2.030	27.44	99.00
15	112-2-2	0.450	0.127	9.210	1.045	0.555	12.037	4.090	2.002	23.770	0.040	12 1 42	1.732	2.040	27.09	20.07
10	113g2t2	0.465	0.129	9.355	0.085	0.475	12.972	5.187	2.040	23.957	0.420	12.145	1.739	2./19	27.38	00.02
10	113g2t2	0.475	0.134	9.309	1.005	0.501	12.040	5.502	2.001	23.044	0.420	11.712	2.151	2.030	27.43	99.92
10	1112-512	0.400	0.134	9.199	1.095	0.526	12.90/	4.720	2.050	23.200	0.410	12.240	2.131	2./19	27.37	100.40
20	1112-512	0.333	0.115	9.449	0.040	0.455	12.999	4.739	1.964	24.720	0.367	12.249	1.675	2.000	27.43	100.49
20	1112-512	0.322	0.105	0.759	0.949	0.390	13.025	4.370	1.974	24.750	0.302	12.203	1.601	2.930	27.43	100.32
21	1112.5.2	0.309	0.105	9.750	1.047	0.391	12.107	4.520	1.960	23.079	0.374	12.334	1.001	2.792	27.50	100.85
22	1112-512	0.339	0.097	9.504	0.064	0.400	13.107	4.447	2.010	24.090	0.300	12.449	1.690	2.009	27.50	100.75
23	1112-512	0.312	0.075	9.790	0.904	0.350	12.101	3.331	1.967	25.557	0.204	12.000	1.050	2.099	27.57	100.01
24	1112-512	0.324	0.087	9.000	0.022	0.354	13.135	2.622	2.011	25.556	0.275	12.007	1.014	2.001	27.51	100.38
25	113g5t3	0.335	0.000	0.620	0.955	0.428	12.002	4.687	2.011	23.575	0.380	12.041	1.570	2.945	27.39	100.85
20	113g5t3	0.322	0.107	9.665	0.940	0.411	13.107	4.007	2.030	24.005	0.387	12.302	1.628	2.015	27.40	100.58
29	113g5t3	0.344	0.127	0.542	1.038	0.432	13.010	4.750	2.020	24.725	0.402	12.346	1.610	2.850	27.50	100.04
29	il3a5t4	0.305	0.122	9.342	0.873	0.432	12 719	4.150	1.020	24.401	0.402	12.340	1.019	2.000	21.32	97.83
30	il3a5t4	0.505	0.120	9.584	1.065	0.411	13.007	4 242	2.041	24.370	0.341	12.095	1.342	2.734	20.70	100.51
31	11305t4	0.507	0.129	9.833	1.005	0.423	13.185	3 972	2.041	24.570	0.309	12.274	1 998	2.854	27.64	100.51
32	ii]3o5+4	0.507	0.100	9.665	1 126	0.434	13 272	3.805	2.075	24.145	0.203	12.525	2 212	2.074	27.69	100.75
33	11305t4	0.468	0.128	9 538	1.012	0.430	13 120	4 183	2.1.52	24 700	0 343	12 309	1 851	2.789	27.55	100.43
34	lil3q5t4	0.364	0.093	9.520	0.943	0.367	13.134	3.692	1.012	25.286	0.314	12.505	1.683	2.863	27.54	100.45
35	lil3q5t4	0.304	0.099	9.313	0.949	0.466	13.022	4 570	1.952	23.200	0.539	12.090	1.570	2.805	27.54	100.44
36	lil3q5t5	0.333	0.107	9 355	0.983	0.415	13.075	4 512	2.052	24.815	0.368	12.205	1.642	2.700	27.54	100.05
37	lil3g5t5	0.336	0.103	9 456	0.857	0.412	13.013	4 340	1.970	25.121	0.340	12.501	1.602	2 781	27.30	100.33
38	lil3g5t5	0.413	0.100	9.582	0.911	0.356	13.048	3.871	1.998	25.267	0.305	12.580	1.739	2.807	27.44	100.41
39	lil3ø5t5	0.433	0.109	9.392	1.005	0.401	13.068	4.109	1.999	24.944	0.338	12.526	1.802	2.944	27.51	100.58
40	lil3ø5t5	0.483	0.123	9.459	1.015	0.430	13.039	4.342	2.009	24.714	0.350	12.410	1.843	2.766	27.48	100.46
41	lil3ø5t5	0.473	0.108	9.580	1.009	0.426	13.129	4.258	2.018	24.798	0.354	12.515	1.806	2.807	27.63	100.91
42	lil3g5t5	0.510	0.108	9.256	0.985	0.460	13.083	4.466	1.927	24.551	0.366	12.552	1.783	2.757	27.51	100.31
43	lil3g5t5	0.519	0.128	9,432	1.060	0.489	13.056	4,780	1.900	24.527	0.386	12.500	1.808	2,755	27.59	100.93
44	lil3g5t5	0.472	0.105	9.454	0.980	0.417	13.089	4.055	1.965	24.538	0.317	12.365	1.869	2.730	27.41	99.76
45	lil3g5t5	0.471	0.105	9.531	1.035	0.402	13.159	3.922	2.014	24.584	0.323	12.436	1.876	2.778	27.54	100.17
46	lil3g13t6	0.640	0.102	9.111	0.919	0.383	13.247	3.303	1.724	25.537	0.275	12.987	2.263	2.837	27.77	101.09
47	lil3g13t6	0.646	0.107	9.187	0.953	0.390	13.272	3.137	1.717	25.397	0.267	12.825	2.259	2.871	27.74	100.77
48	lil3g13t6	0.657	0.110	9.139	0.896	0.379	13.265	3.232	1.704	25.313	0.271	12.921	2.244	2.762	27.71	100.60
49	lil3g13t6	0.636	0.122	9.158	0.880	0.371	13.303	3.246	1.724	25.333	0.273	13.141	2.253	2.717	27.79	100.95
50	lil3g13t6	0.641	0.115	9.155	0.936	0.381	13.336	3.098	1.636	25.407	0.255	13.063	2.268	2.802	27.81	100.90
51	lil3g13t6	0.610	0.103	9.032	0.857	0.361	13.304	3.026	1.732	25.419	0.254	12.993	2.243	2.771	27.71	100.41
52	lil3g13t6	0.597	0.095	9.203	0.942	0.360	13.297	3.099	1.655	25.314	0.260	12.926	2.256	2.739	27.71	100.45
53	lil3g13t6	0.610	0.114	9.152	0.801	0.366	13.335	3.083	1.659	25.285	0.250	13.020	2.241	2.751	27.73	100.40
54	lil3g13t6	0.627	0.110	8.888	0.800	0.373	13.298	3.158	1.607	25.448	0.255	12.891	2.267	2.720	27.66	100.10
55	lil3g13t6	0.612	0.115	8.944	0.873	0.364	13.281	3.173	1.709	25.310	0.260	12.924	2.216	2.857	27.67	100.30
56	lil3g13t6	0.586	0.110	8.851	0.835	0.364	13.221	3.226	1.658	25.250	0.269	12.894	2.187	2.756	27.53	99.74
57	lil3g13t6	0.590	0.101	8.948	0.966	0.369	13.177	3.332	1.710	25.551	0.272	12.917	2.206	2.834	27.62	100.59
58	lil3g13t6	0.629	0.112	8.977	0.907	0.367	13.151	3.223	1.649	25.459	0.267	13.028	2.224	2.795	27.55	100.34
59	lil3g13t6	0.608	0.112	8.983	0.832	0.364	13.142	3.349	1.622	25.564	0.285	12.966	2.159	2.805	27.55	100.34
60	lil3g13t6	0.614	0.102	8.963	0.916	0.362	13.134	3.229	1.631	25.458	0.284	13.014	2.177	2.860	27.54	100.28
61	lil3g13t6	0.623	0.110	9.064	0.908	0.367	13.170	3.369	1.615	25.663	0.271	13.064	2.205	2.800	27.65	100.88
62	lil3g13t6	0.627	0.121	9.112	0.828	0.382	13.170	3.284	1.637	25.655	0.270	13.063	2.187	2.713	27.62	100.67
63	hl3g13t6	0.617	0.113	9.082	0.884	0.364	13.173	3.243	1.717	25.369	0.278	12.986	2.172	2.870	27.60	100.46
64	hl3g13t6	0.585	0.094	9.120	0.926	0.385	13.188	3.276	1.656	25.601	0.271	13.135	2.086	2.818	27.65	100.79
65	hl3g13t6	0.606	0.119	9.208	0.881	0.385	13.208	3.404	1.677	25.513	0.274	13.145	2.124	2.841	27.71	101.10
66	hl3g13t7	0.565	0.110	9.113	0.837	0.373	13.274	3.375	1.666	25.566	0.279	13.086	2.100	2.668	27.73	100.74
67	ы3g13t7	0.593	0.107	9.064	0.922	0.363	13.270	3.134	1.647	25.329	0.270	13.075	2.147	2.726	27.66	100.31
08	шэg13t7	0.595	0.100	9.059	0.902	0.378	13.301	3.228	1.685	25.290	0.268	12.885	2.174	2.845	27.71	100.42
עט 70	шэg15t/	0.609	0.121	8.986	0.964	0.366	13.311	3.268	1.504	25.402	0.287	13.084	2.208	2.811	27.78	100.76
70	hisgist/	0.595	0.114	8.977	0.869	0.376	13.322	3.227	1.703	25.248	0.265	12.914	2.199	2.791	27.72	100.58
/1	mog13t/	0.613	0.120	9.057	0.914	0.379	13.299	3.334	1.730	25.252	0.2/1	12.933	2.105	2.820	27.73	100.62
73	ni3g13t/	0.649	0.109	9.041	0.852	0.380	13.213	3.284	1.0//	25.219	0.269	13.050	2.223	2./59	27.62	100.35
73	mog15t/	0.050	0.100	0.858	0.8/8	0.371	13.345	3.190	1.089	25.300	0.272	13.131	2.222	2.099	27.77	100.50
75	m3g13t/	0.651	0.108	0.007	0.775	0.374	13.317	3.180	1.009	25.402	0.207	13.090	2.233	2.703	27.72	100.35
76	m.3g13t/ [i]3a13+7	0.634	0.115	0.048 8 702	0.821	0.375	13.222	3.248	1.722	25.403	0.270	12.005	2.240	2.040	27.01	00.18
77	iii.3~12+7	0.054	0.009	8 054	0.021	0.301	13.409	3 2 2 0	1.650	25.515	0.274	12.033	2 245	2.100	27.30	100.61
78	iil3g13t7	0.633	0.112	8.024	0.866	0.366	13.120	3.246	1.000	25.313	0.274	12.741	2.240	2.002	27.05	00.01
79	m.3g13t/ [i]3a13+7	0.033	0.112	0.234	0.854	0.300	13.137	3.200	1.702	25.1/2	0.275	12.734	2.202	2.704	∠7.40 27.50	22.74 100.36
80	ii.3g13t/	0.032	0.115	9.094	0.807	0.379	13.170	3.285	1.020	25.303	0.275	12.031	2.275	2.040	27.39	99.87
81	ii]3013+7	0.550	0.097	8 977	0.824	0.374	13.142	3.044	1.640	25 769	0.205	13 528	2.063	2.000	27.58	100.70
82	13013+7	0.534	0.102	8 908	0.891	0.370	13 208	3 1 97	1 671	25 507	0.259	13 271	2.127	2.768	27.30	100.63
83	13013t7	0.613	0.115	9 151	0.959	0.306	13 180	3 510	1 661	25 302	0.292	12 962	2 1 9 6	2.828	27.67	100.84
84	13013+7	0.645	0.115	9 200	1 027	0.446	13 160	3 4 5 3	1 741	25 335	0.278	12.902	2.170	2.785	27.64	100.83
85	13013+7	0.622	0.112	9 127	0.933	0 394	13 287	3 380	1 767	25.355	0.285	12.857	2.188	2.668	27.73	100.00
86	li]3013t7	0.639	0.121	9.244	1.004	0.415	13.226	3.748	1.825	25.261	0.316	12.765	2.227	2.913	27.83	101.53
87	lil3g13t7	0.511	0.115	9.262	0.970	0.391	13.192	3.858	1.842	24.944	0.437	12.695	1.968	2.798	27.76	100.74
88	kil3g13t7	0.603	0.122	9.346	0.955	0.390	13.168	3.802	1.852	24.842	0.321	12.637	2.168	2.831	27.64	100.68
89	lil3g13t7	0.581	0.110	9.338	1.032	0.397	13.232	3.540	1.782	25.094	0.316	12.779	2.110	2.744	27.72	100.77

Migmatite A.M. (Li9) 1°05'17" - 45°56'06"

Migmatite E.L. (Li13) 1°05'40" - 45°59'36"

NUM	REF	U	Pb	Nd	Gd	Ca	Р	Th	Sm	Ce	Si	La	Y	Pr	0	Total
1	lil2g5t1	0.703	0.121	9.064	0.875	0.642	13.546	3.235	1.779	24.439	0.071	12.375	2.215	2.687	27.69	99.44
2	lil2g5t1	0.632	0.095	9.285	0.726	0.606	13.356	3.286	1.703	25.233	0.135	12.893	1.522	2.844	27.56	99.88
3	lil2g5t1	0.670	0.105	9.230	0.753	0.640	13.363	3.447	1.675	25.345	0.142	12.930	1.409	2.868	27.61	100.19
4	lil2g5t1	0.709	0.098	9.293	0.648	0.652	13.397	3.561	1.844	25.462	0.143	13.017	1.388	2.924	27.74	100.88
5	lil2g5t1	0.798	0.101	9.349	0.733	0.648	13.371	3.462	1.824	25.222	0.145	12.889	1.481	2.758	27.66	100.44
6	lil2g5t1	0.693	0.097	9.326	0.764	0.646	13.471	3.523	1.788	24.905	0.128	12.488	1.806	2.836	27.73	100.20
7	lil2g5t1	0.866	0.127	9.180	0.992	0.743	13.567	3.545	1.758	24.253	0.061	12.413	2.385	2.775	27.87	100.54
8	lil2g5t1	0.801	0.127	9.314	0.935	0.809	13.569	3.955	1.790	23.772	0.066	12.002	2.477	2.645	27.83	100.09
9	lil2g5t1	0.560	0.118	9.205	1.043	0.789	13.556	4.039	1.796	24.031	0.067	12.196	2.467	2.693	27.86	100.42
10	lil2g5t1	0.669	0.124	9.316	0.946	0.775	13.532	3.970	1.947	23.738	0.059	11.841	2.555	2.684	27.76	99.92
11	lil2g5t2	0.585	0.084	9.516	0.745	0.524	13.390	3.060	1.722	26.194	0.130	13.485	1.169	2.933	27.76	101.30
12	lil2g5t2	0.610	0.096	9.135	0.705	0.597	13.422	2.910	1.637	25.974	0.133	13.888	1.159	2.752	27.73	100.75
13	lil2g5t2	0.582	0.086	9.134	0.646	0.575	13.477	2.610	1.655	26.504	0.123	14.294	1.126	2.923	27.91	101.65
14	lil2g5t2	0.549	0.068	9.279	0.625	0.544	13.494	2.549	1.619	26.489	0.116	14.362	1.078	2.861	27.90	101.53
15	lil2ø5t2	0.525	0.082	9.359	0.703	0.474	13.485	2.288	1.600	26.559	0.097	14.122	1.118	2.863	27.80	101.08
16	lil2e5t2	0.549	0.084	9.178	0.682	0.492	13.507	2.387	1.717	26.418	0.102	14.187	1.144	2.812	27.83	101.09
17	lil2a5t2	0.562	0.083	9.350	0.626	0.472	13.476	2 298	1 640	26 589	0.110	14.074	1 242	2 823	27.83	101.17
18	1:12g5t2	0.532	0.007	0.328	0.734	0.506	13.480	2.596	1.756	26.105	0.096	13 754	1.416	2.769	27.81	100.99
10	11205+2	0.507	0.000	0.252	0.675	0.500	13,507	2.590	1.711	26.120	0.102	13.754	1.400	2.705	27.01	101.00
20	112-6+2	0.507	0.090	0.204	0.075	0.515	13.327	2.300	1.711	20.122	0.065	12.061	2.792	2.834	27.60	00.64
21	112-6+3	0.542	0.129	0.019	1.014	0.706	13.400	4 152	1.709	22.177	0.072	11.666	2.705	2.757	27.60	00.30
21	1:12-6-2	0.542	0.120	0.176	0.090	0.750	12.404	2.026	1.700	23.177	0.072	11.000	2.1.49	2.733	27.09	99.30
22	112got5	0.552	0.117	9.170	0.969	0.757	13.400	3.920	1.000	23.391	0.072	11.069	2.146	2.624	27.00	99.23
25	hi2got3	0.558	0.122	9.150	0.992	0.755	13.507	3.918	1./12	23.308	0.067	11.//5	3.105	2.603	27.70	99.25
24	hl2g6t3	0.843	0.127	9.143	0.949	0.819	13.54/	3.902	1.650	23./99	0.067	11.926	2./24	2./66	27.83	100.09
25	hl2g6t3	0.495	0.118	9.194	0.995	0.778	13.592	3.954	1.702	23.414	0.066	11.691	3.281	2.693	27.89	99.86
26	hl2g6t3	0.503	0.115	9.112	1.071	0.780	13.522	4.141	1.821	23.024	0.078	11.382	3.429	2.651	27.77	99.40
27	hl2g6t3	0.423	0.113	8.997	0.848	0.753	13.576	4.100	1.646	23.671	0.074	12.274	2.788	2.728	27.83	99.82
28	lil2g6t3	0.445	0.113	8.827	0.798	0.756	13.539	4.201	1.589	23.677	0.074	12.286	2.731	2.636	27.73	99.40
29	lil2g6t4	0.450	0.126	9.212	1.006	0.768	13.556	3.980	1.689	23.560	0.076	11.867	2.977	2.655	27.81	99.74
30	lil2g6t4	1.157	0.141	9.202	0.785	0.842	13.567	3.775	1.607	24.560	0.058	12.712	1.697	2.742	27.84	100.69
31	lil2g6t4	0.777	0.123	9.127	0.767	0.774	13.509	3.651	1.584	24.673	0.067	12.702	1.847	2.825	27.74	100.16
32	lil2g6t4	0.807	0.105	9.078	0.742	0.773	13.502	3.705	1.565	24.892	0.057	12.809	1.756	2.781	27.73	100.31
33	lil2g6t4	0.426	0.115	9.244	0.980	0.613	13.460	2.995	1.672	23.911	0.058	12.091	3.220	2.713	27.64	99.14
34	lil2g6t4	0.417	0.097	9.151	1.002	0.639	13.463	3.188	1.653	24.471	0.062	12.472	2.859	2.782	27.74	100.00
35	lil2g6t4	0.393	0.112	9.195	0.935	0.695	13.500	3.637	1.663	24.082	0.070	12.190	2.790	2.761	27.75	99.77
36	lil2g6t4	0.438	0.122	9.107	1.005	0.752	13.540	4.019	1.658	23.709	0.077	12.098	2.761	2.659	27.78	99.72
37	lil2g6t4	0.396	0.095	9.469	0.879	0.608	13.480	3.213	1.701	24.608	0.068	12.526	2.503	2.709	27.73	99.98
38	lil2g6t4	0.438	0.106	9.401	0.936	0.689	13.537	3.659	1.652	24.447	0.069	12.549	2.332	2.733	27.83	100.37
39	lil2g7t5	0.639	0.122	9.332	0.988	0.709	13.562	3.584	1.837	24.283	0.079	12.182	2.269	2.730	27.81	100.13
40	lil2g7t5	0.468	0.094	8.962	0.683	0.733	13.541	3.865	1.535	25.079	0.065	13.353	1.742	2.641	27.82	100.58
41	lil2o7t5	0.538	0.103	9.073	0.700	0.733	13.547	3.739	1.537	25.221	0.072	13.367	1.833	2.784	27.92	101.17
42	lil2o7t5	0.368	0.104	9.307	0.926	0.654	13.607	3 533	1.679	24.695	0.074	12.652	2 386	2.801	27.96	100.74
43	1i12o7t5	0.447	0.123	0.223	0.838	0.742	13 571	3 011	1.776	24.144	0.082	12 355	2.000	2.001	27.86	100.21
44	11207+5	0.372	0.102	0.255	0.000	0.695	13.500	3.607	1.770	24.290	0.072	12.555	2.402	2.724	27.00	00.87
44	1il2o7t5	0.372	0.102	9.2.55	0.778	0.085	13.597	3.726	1.625	24.202	0.073	12.270	1.971	2.091	27.81	100.24
46	11207+5	0.791	0.100	0.224	0.760	0.767	13.611	3.720	1.652	24.475	0.062	12.505	1.752	2.704	27.00	100.24
40	1:12-7-5	0.701	0.105	0.020	0.700	0.707	12.011	2.700	1.002	24.002	0.002	12.723	2.424	2.701	27.00	100.02
4/	112 0.4	0.501	0.097	9.080	0.949	0.000	13.076	2,000	1./22	24.010	0.078	12.372	2.434	2.723	26.05	100.75
48	112g8t6	0.816	0.128	8.929	0.755	0.800	13.331	3.888	1.689	24.764	0.065	12.601	2.047	2.700	27.85	100.58
49	hi2g8t6	0.820	0.107	9.507	0.592	0.628	13.245	3.450	1.855	26.027	0.117	15.514	0.626	2.864	27.46	100.59
50	hl2g8t6	0.820	0.104	9.45/	0.586	0.692	13.203	3.813	1.832	26.233	0.136	13.3/4	0.370	2.953	27.49	101.06
51	hl2g8t6	0.661	0.104	9.802	0.542	0.689	13.175	4.025	1.748	26.033	0.148	13.441	0.232	2.902	27.44	100.94
52	lil2g8t6	0.551	0.123	9.410	0.727	0.729	13.422	4.073	1.716	24.949	0.104	12.838	1.762	2.855	27.79	101.05
53	lil2g8t6	0.467	0.103	9.177	0.891	0.699	13.488	3.654	1.659	24.731	0.063	12.591	2.289	2.794	27.77	100.38
54	lil2g8t6	0.528	0.111	9.291	0.755	0.722	13.436	3.870	1.732	24.563	0.093	12.497	2.120	2.824	27.72	100.26
55	lil2g8t6	0.496	0.116	9.260	0.870	0.750	13.512	4.247	1.696	24.654	0.098	12.469	2.171	2.753	27.90	100.99
56	lil2g8t6	0.269	0.112	9.212	0.822	0.810	13.418	4.877	1.639	24.567	0.114	12.455	1.910	2.644	27.74	100.59
57	lil2g11t7	0.532	0.107	9.409	0.546	0.825	13.439	4.012	1.504	26.545	0.163	14.212	0.278	2.754	27.94	102.26
58	lil2g11t7	0.506	0.083	9.241	0.420	0.776	13.405	3.794	1.601	26.473	0.150	14.377	0.251	2.800	27.81	101.69
59	lil2g11t7	0.526	0.097	9.304	0.504	0.789	13.469	3.826	1.646	26.517	0.160	14.236	0.223	2.869	27.93	102.10
60	lil2g11t7	0.325	0.103	9.052	0.772	0.674	13.607	3.672	1.569	25.078	0.071	13.302	2.058	2.716	27.97	100.96
61	lil2g11t7	0.481	0.087	9.270	0.449	0.781	13.453	3.891	1.555	26.367	0.143	14.228	0.351	2.812	27.86	101.73
62	lil2g11t7	0.517	0.114	9.147	0.793	0.788	13.573	4.034	1.665	24.821	0.076	12.976	1.833	2.719	27.92	100.98
63	lil2g11t7	0.629	0.116	9.312	0.912	0.760	13.605	3.870	1.736	24.125	0.068	12.195	2.413	2.646	27.88	100.27
64	lil2g11t7	0.593	0.116	9.197	0.899	0.735	13.618	3.790	1.757	24.344	0.063	12.515	2.158	2.733	27.89	100.41
65	lil2g11t7	0.535	0.112	9.346	0.898	0.739	13.647	3.832	1.780	24.251	0.057	12.259	2.398	2.733	27.95	100.54
66	lil2g11t7	0.483	0.097	9.363	0.869	0.669	13.559	3.561	1.781	24.265	0.646	12.294	2.323	2.725	28.42	101.06
67	lil2g11t8	0.738	0.119	9.670	0.896	0.698	13.508	3.477	1.906	24.808	0.081	12.424	1.553	2.781	27.74	100.40
68	lil2g11t8	0.591	0.125	9.333	1.026	0.720	13.586	3.813	1.846	23.932	0.072	11.865	2.581	2.840	27.86	100.19
69	lil2g11t8	0.637	0.127	9.247	0.941	0.714	13.640	3.597	1.718	24.199	0.065	12.204	2.550	2.634	27.91	100.18
70	lil2g11t8	0.649	0.108	9.234	0.960	0.722	13.612	3.662	1.759	24.013	0.069	12.227	2.575	2.577	27.87	100.03
71	lil2g11t8	0.602	0.124	9.338	0.993	0.748	13.547	3.847	1.841	23.766	0.070	11.816	2.618	2.680	27.77	99.76
72	lil2g11t8	0.532	0.114	9.485	0.938	0.675	13.586	3.536	1.812	24.330	0.074	12.445	2.274	2.744	27.87	100.42
73	lil2g11t8	0.451	0.095	9.315	1.014	0.660	13.589	3.535	1.762	24.320	0.074	12.321	2.427	2.727	27.85	100.14
74	lil2g11t8	0.480	0.112	9.307	0.935	0.636	13.630	3.377	1.799	24.698	0.072	12.745	2.250	2.783	27.97	100.79
75	lil2g11t8	0.300	0.101	9.226	0.927	0.646	13.650	3.460	1.716	24.669	0.072	12.613	2.248	2.692	27.91	100.23
76	lil2g13r9	0,488	0.104	9,177	0.829	0,661	13,596	3,390	1.682	24,590	0,060	12.648	2,432	2,823	27.89	100.37
77	lil2013r9	0.583	0.107	9,480	1.020	0.631	13.589	3.249	1.803	24,250	0.073	12.286	2.410	2.787	27.84	100.11
78	lil2013r0	0.655	0.101	9.543	1.016	0.618	13.629	3.264	1.847	24.328	0.076	12.200	2.469	2.842	27.96	100.64
79	112013+0	0.560	0.118	9 418	1 024	0.648	13.615	3 360	1 820	24 381	0.063	12 300	2 506	2 779	27.93	100 55
80	112013+0	0.454	0.105	0 370	0.955	0.659	13 591	3 365	1 782	24.204	0.071	12 350	2.500	2.761	27.23	100.17
00 81	122~12+0	0.434	0.103	0.409	1.017	0.000	13.301	3.303	1.764	24.200	0.074	12.330	2.037	2.701	27.07	100.17
01 82	122~12+0	0.450	0.090	7.478 0.200	0.920	0.628	13.000	3.144	1.750	24.205	0.076	12.321	2.743	2.011	27.91	100.25
04 92	m2g13t9	0.315	0.091	9.528	0.628	0.03/	13.005	3.334	1./58	24.498	0.070	12.019	2.02/	2.648	27.97	100.73
0.2	112g13t9	0.368	0.090	9.233	0.778	0.000	13.002	2.525	1.040	24.449	0.080	12.054	2.357	2.769	27.88	100.18
84	m2g13t9	0.475	0.106	9.546	0.853	0.677	13.664	3.535	1.//4	24.43/	0.076	12.6/2	2.505	2.763	28.05	100.93
85	m2g18t10	0.442	0.099	9.288	0.783	0.713	13.707	5./26	1./1/	24.494	0.074	12./82	2.250	2.//4	28.07	100.92
86	112g18t10	0.451	0.106	9.135	0.859	0.750	13.740	3.980	1.565	24.294	0.070	12.482	2.417	2.728	28.08	100.65
87	hl2g18t10	0.335	0.104	9.057	0.767	0.723	13.705	3.941	1.560	24.997	0.071	13.003	2.025	2.703	28.07	101.06
88	hl2g18t10	0.454	0.091	9.408	0.676	0.733	13.484	4.360	1.728	25.562	0.146	13.314	0.992	2.802	27.91	101.66
89	hl2g18t10	0.400	0.100	9.229	0.793	0.743	13.647	3.971	1.684	24.532	0.065	12.651	2.087	2.751	27.95	100.60
90	hl2g18t10	0.458	0.113	9.260	0.856	0.726	13.676	3.836	1.745	24.448	0.064	12.444	2.310	2.828	28.02	100.78
91	lil2g18t10	0.555	0.120	9.308	0.915	0.723	13.721	3.686	1.766	24.196	0.067	12.370	2.345	2.700	28.02	100.49
92	lil2g18t10	0.453	0.110	9.268	0.988	0.687	13.701	3.528	1.783	24.425	0.060	12.448	2.392	2.735	28.01	100.59

Migmatite Pl. A. (Li16) 1°04'10" - 46°04'56"

NUN	I REF	U 0.467	Pb	Nd	Gd	Ca	P 13 557	2 4 2 1	5m	25.280	Si 0.075	La	1 808	Pr	27.07	Total
2	lil1g1t1	0.555	0.103	9.697	0.786	0.707	13.596	3.489	1.691	25.191	0.073	12.953	1.972	2.783	28.05	101.40
3	lil1g1t1	0.585	0.096	9.792	0.795	0.674	13.568	3.307	1.750	24.851	0.068	12.568	2.001	2.798	27.88	100.74
4	lil1g1t1	0.617	0.096	9.740	0.904	0.711	13.603	3.470	1.740	24.812	0.073	12.523	2.132	2.936	28.03	101.38
5	lil1g1t1	0.557	0.106	9.931	1.002	0.638	13.637	3.082	2.024	24.209	0.060	12.170	2.699	2.874	28.04	101.03
6 7	hilgltl bllg1+1	0.452	0.105	10.111	1.012	0.674	13.585	3.406	1.840	24.409	0.087	11.879	2.383	2.804	27.93	100.68
8	lil1o1t1	0.043	0.105	9.065	1.006	0.708	13.390	3.408	1.626	24.465	0.072	12.300	2.201	2.632	27.94	100.85
9	lil1g1t1	0.479	0.091	8.989	0.763	0.717	13.559	3.697	1.651	25.019	0.060	13.242	2.194	2.852	27.97	101.28
10	lil1g1t1	0.504	0.097	8.945	0.691	0.691	13.472	3.520	1.554	25.287	0.064	13.341	2.105	2.710	27.81	100.79
11	lil1g2t2	0.580	0.110	9.394	1.123	0.652	13.519	3.255	1.917	23.922	0.060	11.878	2.752	2.826	27.74	99.72
12	lil1g2t2	0.435	0.098	9.546	0.792	0.652	13.470	3.429	1.666	25.357	0.073	12.960	1.548	2.871	27.74	100.64
13	lil1g2t2	0.542	0.096	9.406	1.090	0.630	13.597	3.076	1.837	24.210	0.051	12.170	2.677	2.870	27.86	100.11
14	hl1g2t2	0.381	0.110	9.921	1.049	0.713	13.608	3.903	1.854	24.163	0.068	11.657	2.488	2.922	27.96	100.80
15	lil1g2t2	0.340	0.104	9.930	1.194	0.658	13.582	3.039	1.760	24.357	0.065	11.865	2.485	2.812	27.89	100.48
17	lillo2t2	0.451	0.093	9.831	1.104	0.629	13 552	3.262	1.959	24.026	0.004	11.927	2.604	2.760	27.80	100.18
18	lil1g2t2	0.539	0.099	9.892	1.128	0.651	13.535	3.129	1.979	23.686	0.049	11.885	2.645	2.899	27.76	99.87
19	lil1g2t2	0.551	0.113	9.740	1.137	0.651	13.618	3.195	1.962	24.024	0.055	11.995	2.631	2.770	27.91	100.35
20	lil1g2t3	0.492	0.110	10.111	1.020	0.664	13.605	3.315	1.951	24.419	0.059	12.232	2.154	2.796	27.94	100.86
21	lil1g2t3	0.469	0.109	9.872	1.128	0.636	13.532	3.226	1.944	24.147	0.071	12.181	2.415	2.855	27.83	100.41
22	lil1g2t3	0.358	0.111	9.812	1.218	0.693	13.554	3.745	1.968	23.747	0.068	11.652	2.662	2.804	27.84	100.23
23	lil1g2t3	0.344	0.098	9.608	1.125	0.652	13.516	3.530	1.902	24.124	0.074	11.908	2.523	2.862	27.77	100.04
24	lillo2t3	0.335	0.102	9.436	1.055	0.033	13.173	3.570	1.970	23 904	0.419	11.785	2.029	2.720	27.63	99.92
26	lil1g2t3	0.334	0.107	9.637	0.974	0.717	13.436	3.599	1.815	24.303	0.094	11.829	2.489	2.844	27.70	99.88
27	lil1g2t3	0.331	0.123	9.489	0.900	0.704	13.194	3.661	1.830	23.778	0.266	11.595	2.428	2.728	27.38	98.41
28	lil1g2t3	0.524	0.117	9.750	1.079	0.682	13.223	3.217	1.952	24.123	0.092	11.873	2.222	2.815	27.34	99.00
29	lil1g2t3	0.269	0.079	10.259	1.089	0.360	13.044	3.152	1.996	25.063	0.385	12.398	1.444	2.861	27.41	99.81
30	lil1g9t4	0.278	0.118	9.116	0.631	0.879	13.413	4.694	1.455	25.312	0.083	13.408	1.536	2.845	27.86	101.62
51 20	h11g9t4	0.548	0.104	9.684	1.060	0.700	13.498	3.463	1.908	24.619	0.066	12.350	2.263	2./64	27.85	100.88
32 33	111g9t4	0.424	0.105	9.605	0.959	0.007	13.522	3.408 3.508	2.030	23.998	0.061	11.900	2.389	2.644 2.829	27.83 27.70	100.48
34	lil1g9t4	0.483	0.114	9.733	0.867	0.674	13.506	3.495	1.864	24.469	0.088	12.169	2.378	2.833	27.83	100.51
35	lil1g9t4	0.493	0.090	9.675	0.944	0.661	13.586	3.372	1.784	24.444	0.060	12.195	2.393	2.806	27.87	100.37
36	lil1g9t4	0.483	0.105	9.661	0.950	0.682	13.609	3.495	1.767	24.313	0.197	12.205	2.407	2.898	28.08	100.85
37	lil1g9t4	0.509	0.104	9.711	1.012	0.701	13.561	3.671	1.840	24.149	0.064	12.141	2.502	2.932	27.92	100.82
38	lil1g9t4	0.567	0.117	9.577	1.036	0.750	13.576	3.900	1.811	23.887	0.069	12.076	2.442	2.752	27.88	100.44
39 40	111g9t4 1j1a13+5	0.595	0.113	9.539 9.980	0.962	0.752	13.575	3.917 3.200	1.800	24.066 23.052	0.057	11.955	2.503	2.768	27.88 27.97	100.48
40	lil1g13t5	0.598	0.096	9.969	0.832	0.655	13.575	3.200	1 772	23.932	0.057	12 544	1.981	2.761	27.07	100.41
42	lil1g13t5	0.510	0.093	9.740	0.832	0.680	13.495	3.439	1.788	24.695	0.068	12.580	2.028	2.817	27.79	100.55
43	lil1g13t5	0.498	0.089	9.756	0.943	0.671	13.559	3.352	1.805	24.444	0.058	12.503	2.054	2.805	27.81	100.35
44	lil1g13t5	0.474	0.104	9.317	0.721	0.737	13.566	3.749	1.649	24.554	0.052	12.744	2.047	2.760	27.81	100.29
45	lil1g13t5	0.550	0.095	9.574	0.646	0.716	13.405	3.968	1.676	25.320	0.116	13.145	1.187	2.756	27.71	100.87
46	lil1g13t5	0.526	0.098	9.255	0.594	0.755	13.514	4.001	1.606	25.158	0.073	12.994	1.568	2.725	27.79	100.66
47	hl1g13t5	0.625	0.121	9.687	0.933	0.754	13.540	3.730	1.969	23.559	0.067	11.587	2.266	2.762	27.66	99.26
48	lil1g13t5	0.575	0.104	9.562	0.848	0.645	13.448	3.224	1.823	24.650	0.076	12.626	1.675	2.916	27.60	99.77 100.23
50	lil1g16t6	0.608	0.095	9.613	1.012	0.649	13.589	3.150	1.927	24.008	0.048	12.048	2.765	2.739	27.85	100.23
51	lil1g16t6	0.640	0.103	9.582	0.888	0.625	13.549	3.069	1.823	24.337	0.058	12.454	2.511	2.807	27.83	100.27
52	lil1g16t6	0.648	0.096	9.591	0.894	0.649	13.569	3.067	1.883	24.182	0.050	12.367	2.602	2.794	27.85	100.24
53	lil1g16t6	0.637	0.103	9.632	0.895	0.634	13.594	3.045	1.886	24.240	0.058	12.344	2.598	2.771	27.89	100.32
54	lil1g16t6	0.566	0.106	9.558	0.984	0.612	13.599	2.951	1.875	24.262	0.050	12.281	2.668	2.818	27.87	100.20
55	lil1g16t6	0.551	0.080	9.751	0.912	0.620	13.601	3.056	1.836	24.646	0.051	12.481	2.310	2.819	27.91	100.62
56	lil1g16t6	0.568	0.103	9.590	0.948	0.655	13.583	3.056	1.828	24.587	0.052	12.619	2.178	2.752	27.85	100.37
58	lillg16t6	0.543	0.096	9.797	0.851	0.637	13.601	3.443	1.870	24.171	0.052	12.100	1.843	2.835	27.90	100.45
59	lil1g16t6	0.446	0.122	9.673	0.994	0.683	13.569	3.500	1.805	24.252	0.062	12.123	2.374	2.867	27.84	100.31
60	lil1g16t7	0.530	0.099	9.879	1.186	0.637	13.707	3.009	1.960	23.879	0.052	11.894	2.641	2.888	28.00	100.36
61	lil1g16t7	0.549	0.106	9.797	1.014	0.680	13.668	3.315	1.861	24.456	0.054	12.311	2.123	2.700	27.95	100.59
62	lil1g16t7	0.563	0.108	10.066	1.080	0.646	13.732	3.153	1.967	23.409	0.053	11.591	3.023	2.864	28.04	100.29
63	lil1g16t7	0.687	0.099	9.759	0.895	0.624	13.600	3.109	1.850	24.736	0.076	12.827	1.666	2.813	27.86	100.60
04 65	111g16t/	0.612	0.115	9.708	0.959	0.655	13.698	∠.966 3.1.29	1.897	23.918	0.053	12.012	2.722	2.781	27.96	100.05
66	lil1016t7	0.666	0.105	9.680	0.953	0.691	13.731	3.230	1.929	24.103	0.055	12.290	2.020	2.700	28.05	100.85
67	lil1g16t7	0.619	0.102	9.681	0.989	0.672	13.704	3.200	1.856	24.001	0.047	12.206	2.632	2.727	28.00	100.44
68	lil1g16t7	0.554	0.093	9.642	0.997	0.686	13.626	3.109	1.931	23.723	0.052	11.846	2.717	2.806	27.83	99.61
69	lil1g16t7	0.488	0.110	9.252	0.798	0.773	13.342	3.665	1.607	24.577	0.076	12.761	2.024	2.837	27.56	99.87
70	lil1g18t8	0.608	0.101	9.633	0.875	0.675	13.578	3.463	1.922	24.398	0.063	12.254	2.215	2.888	27.87	100.54
71	lil1g18t8	0.549	0.124	9.293	0.847	0.716	13.561	3.619	1.788	24.520	0.050	12.338	2.386	2.861	27.86	100.51
72 73	111g18t8	0.015	0.101	9.554 9.851	0.799	0.693	13.082	3.382 4.028	1.855	∠5.001 26.197	0.095	12.589	1.925	2.8/2	27.72 27.41	100.78
74	lil1g18t8	0.557	0.106	9.424	0.947	0.686	13.500	3.374	1.741	24.456	0.091	12.378	2.481	2.877	27.84	100.46
75	lil1g18t8	0.604	0.101	9.797	0.426	0.618	12.454	3.676	1.648	26.137	0.641	13.424	0.000	2.921	26.91	99.35
76	lil1g18t8	0.570	0.090	9.920	0.502	0.601	13.153	3.860	1.611	26.968	0.162	13.870	0.015	2.998	27.54	101.86
77	lil1g18t8	0.570	0.094	9.767	0.471	0.633	13.156	3.763	1.452	26.982	0.142	14.077	0.000	3.106	27.52	101.73
78	lil1g18t8	0.497	0.096	9.681	1.072	0.726	13.518	3.557	1.919	24.028	0.055	12.038	2.587	2.802	27.82	100.40
79	lil1g18t8	0.657	0.091	10.174	1.151	0.630	13.429	2.941	2.055	24.049	0.059	11.888	2.350	2.864	27.65	99.99
80 91	h11g20t9	0.541	0.098	9.681	0.821	0.789	13.681	3.862	1.743	24.836	0.052	12.842	1.714	2.787	28.08	101.53
82 82	h1g20t9 lil1g20r9	0.449	0.111	9.629	0.755	0.754	13.015	3,807	1.0/5	24.707	0.057	12.980	0.000	2.731	27.94 27.88	101.02
83	lil1o20t9	0.453	0.097	9.415	0.275	0.717	13.594	3.743	1.565	25.118	0.061	13.260	1.575	2.930	27.93	102.34
84	lil1g20t9	0.497	0.107	9.791	0.578	0.644	13.574	3.638	1.666	25.597	0.096	13.433	1.008	2.939	27.93	101.50
85	lil1g20t9	0.485	0.109	9.828	0.668	0.653	13.574	3.716	1.667	25.722	0.091	13.230	1.221	2.789	27.98	101.73
86	lil1g20t9	0.453	0.107	9.474	0.788	0.762	13.749	4.050	1.692	24.314	0.045	12.423	2.243	2.751	28.09	100.94
87	lil1g20t9	0.446	0.105	9.226	0.641	0.783	13.660	4.130	1.529	24.840	0.056	13.125	1.798	2.815	28.02	101.17
88	lil1g20t9	0.482	0.090	9.819	0.306	0.715	13.382	4.693	1.482	26.412	0.178	14.034	0.000	2.914	27.85	102.36
89	hl1g24t10	0.581	0.116	9.418	0.844	0.803	13.633	4.077	1.778	24.165	0.055	12.526	2.068	2.883	27.97	100.92
90 01	h1g24t10	0.424	0.117	9.202	0.751	0.849	13.660	4.492	1.641	24.397	0.060	12.824	1.974	2.696	28.03	101.11
92	lil1o24t10	0.524	0.115	9.342	0.785	0.806	13.630	4.134	1.651	23.139	0.056	12.505	2.078	2.676	27.94	100.33
2.6.2	lil1o24t10	0.471	0.109	9.345	0.890	0.773	13.526	3.870	1.717	24.502	0.099	12.763	1.890	2.716	27.83	100.50
93		0.476	0.093	9.627	0.747	0.733	13.450	3.708	1.810	24.697	0.102	12.650	1.420	2.891	27.66	100.06
93 94	lil1g24t10	0.470														
93 94 95	lil1g24t10 lil1g24t10	0.476	0.110	9.559	0.814	0.670	13.576	3.540	1.682	25.156	0.076	12.971	1.536	2.842	27.87	100.84
93 94 95 96	lil1g24t10 lil1g24t10 lil1g24t10	0.476	0.110	9.559 9.893	0.814	0.670	13.576 13.579	3.540 3.156	1.682	25.156 24.903	0.076	12.971 12.623	1.536	2.842	27.87 27.84	100.84

ANNEXES

annexe 5

Extraction de la monazite

Les techniques de séparation exploitent principalement les propriétés physiques des minéraux notamment leur densité et leur susceptibilité magnétique. Elles sont pratiquées de sorte à écarter toute pollution, toute contamination avec une source extérieure. Le matériel ainsi récolté constitue une phase pure sur laquelle des études élémentaires satisfaisantes et approfondies sont faites au MEB (Microscope Electronique à Balayage) et à la microsonde électronique.

1-Introduction

Le travail effectué sur des échantillons de migmatites et de granitoïdes de la région des Cévennes, et de la Montagne Noire consiste à extraire des grains de monazite et de zircon des roches cohérentes, compactes. Les échantillons sont homogènes, débarrassés de toutes leurs traces d'altération, des plaquages de surface et sont par la suite débités en petits fragments. L'extraction finale des minéraux est précédée des techniques de traitement dont les principes et les méthodes sont exposés dans ce qui suit.

2-Principes et méthodes du fractionnement

2-1- Concassage-broyage

Le concassage correspond à la réduction de la taille des fragments rocheux par un concasseur. La réduction s'opère par choc et pression des mâchoires du concasseur sur l'échantillon. Selon la taille initiale de l'échantillon et la classe granulométrique visée, trois utilisations successives de concasseur et de broyeur peuvent être nécessaires. A cause de cette contrainte nous avons été conduits à effectuer deux broyages dont le dernier sur le concasseur "minemet" produit des éléments fins (micrométriques) et des éléments grossiers (millimétriques \sim 3-5 mm). La coupure des deux classes est faite au tamis de 400 µm. Au niveau de ce premier traitement nous recueillons trois fractions : une fraction roche totale (RT) qui correspond au produit brut issu du broyage (fins + grossiers) et qui est destinée aux analyses chimiques éventuelles ; une fraction grossière (>400 µm) constitue un recourt au cas ou la classe des fines (<400 µm) qui nous intéresse présenterait des problèmes (cas de pollution

avérée et ou quantité insuffisante par exemple). Ces deux dernières fractions sont conservées dans des sacs sur lesquels les caractéristiques de l'échantillon sont clairement spécifiées. Dans la suite des opérations, seules les fines seront prises en compte.

2-2- Le tamisage

Le tamisage qui succède au broyage par "minemet" est une manipulation simple du fait qu'il consiste à faire passer l'échantillon à tamiser au travers d'une grille à maille de 400 µm. Toutefois l'opération reste toujours délicate car la grille est une source inéluctable de pollution si elle n'est pas préalablement bien débarrassée des impuretés assez fréquentes.

2-3- La concentration en phase liquide

Cette technique est basée sur la différence densimétrique des minéraux et vise dans un premier temps à nettoyer l'échantillon (fraction <400 μ m) par élimination des très fines et dans un second temps à concentrer la fraction des minéraux lourds à laquelle font partis les monazites, xénotimes et les zircons.

L'échantillon est versé dans le PAN américain (une assiette en inox avec un sillon à son bord) de 2l. On y verse de l'eau et par brassage à la main toutes les particules très fines (40-50 µm) de micas, de minéraux argileux, de poussière de silice et feldspaths sont mis en suspension et évacuées en même temps que l'eau. Le lavage est ainsi renouvelé jusqu'à ce que l'eau dans le PAN devienne plus claire. Il faut signaler que l'élimination des très fines aurait pu se faire par tamisage mais la batée offre l'avantage de minimiser les possibilités de pollution. L'échantillon nettoyé est concentré dans le PAN 2l et le refus de la batée est recueilli dans un autre PAN de 8l. La concentration des lourds se fait manuellement suivant deux mouvements : une rotation couplée d'un mouvement de jigage (haut-bas). Les deux favorisent l'accumulation des minéraux lourds au fond du PAN et dans le sillon. Les minéraux moins denses, maintenus sous l'influence de la force ascensionnelle restent en suspension dans l'eau et sont évacués dans le PAN 8l (refus de batée). Avec cette technique la perte des lourds est estimée à 20% ce qui me semble important vu la rareté des grains de monazite. Le concentré, nettoyé à l'alcool (accélérer le séchage) et le refus sont placés dans des plateaux et mis à l'étuve à 45°C pour le temps nécessaire au séchage complet. La température de l'étuve doit être bien ajustée pour éviter la déstabilisation des minéraux et le séchage, important afin de préserver la densité des liqueurs qui contrôlent l'étape suivante.

2-4- Les liqueurs denses

Les liqueurs denses sont des produits synthétiques de densités bien définies. Au laboratoire nous avons utilisé deux liqueurs : Le bromoforme (Br_3CH) dont la densité varie avec la température. A 20°C, elle tourne autour de 2.89 ; l'iodure de méthylène (CH_2I_2) de densité égale à 3.3. Il est donc évident que pour l'utilisation du bromoforme l'état thermique de la salle opératoire doit être connu de sorte à contrôler l'interprétation sur la coupure densimétrique. Ce sont des produits très toxiques qui exigent une manipulation délicate et une récupération immédiate sans rejet dans l'environnement. La séparation des minéraux est contrôlée par la densité de la liqueur : les minéraux dont la densité est inférieure ou égale à celle de la liqueur, flottent ou restent en suspension alors que les minéraux plus denses sédimentent. Les deux liqueurs ne sont pas utilisées en continu, il y a un temps de latence (5h à 12h) nécessaire pour sécher l'échantillon, le débarrasser de la première liqueur. Le protocole expérimental s'est fait comme suit, tout les outils ont été préalablement nettoyés:

(i) Le concentré séché issu de la batée est versé dans un entonnoir contenant du bromoforme et dont la forme de la cavité empêche toute installation de système convectif. L'entonnoir est bouché à son extrémité inférieure par l'intermédiaire d'un tuyau souple et d'une pince. L'ensemble est laissé pour décantation pendant une demi-heure à une heure. Nous observons une nette stratification des minéraux dans le dispositif qui fait distinguer trois classes : les lourds au fond de l'entonnoir, les légers flottent et une classe intermédiaire entre les deux. Un bécher placé sous l'entonnoir avec un filtre permet de recueillir sous le contrôle de la vis (contrôle du débit) la fraction des lourds (lourds + intermédiaires), un autre filtre pour les légers (d<2.9). Les deux fractions sont lavées à l'éther pour dissoudre la liqueur et aussi pour favoriser le séchage à l'étuve (45°C).

(ii) Les minéraux lourds (d>2.9) sont ensuite traités de la même façon à l'iodure de méthylène pour extraire deux classes densimétriques : la classe de densité supérieure à 3.3 et l'autre de densité inférieure. Celle qui nous intéresse est la première classe qui une fois passée à l'étuve est prête pour la suite.

Il convient de rappeler que toutes les fractions sont conservées à l'abri de toute pollution.

2-5-Séparation magnétique

Dans un cristallisoir, l'échantillon (d>3.3) est soumis tour à tour à l'influence des champs magnétiques de deux aimants : un barreau aimanté et un aimant Ugine. Le premier permet l'extraction d'éléments ferromagnétiques qui sont des corps à susceptibilité magnétique positive très élevée, ils expriment une aimantation très forte et ou une rémanence magnétique observable. Dans cette fraction nous avons retrouvé la magnétite, les hydroxydes de fer, des silicates mixtes avec des inclusions ferromagnétiques et une quantité notable d'esquilles métalliques issues de l'usure des mâchoires des concasseurs. Ces observations sont faites sous la loupe binoculaire (x50). Le second aimant (Ugine) est utilisé dans la suite pour récupérer les paramagnétiques qui ont une faible susceptibilité et ne présentent aucune rémanence. Dans ce groupe de minéraux **la monazite a été identifiée**, du xénotime du zircon, de la pyrite automorphe, du molybdène de la sillimanite et bien d'autres minéraux sans oublier la limaille de fer des concasseurs. Toutes ces fractions sont supérieures à 160 µm. Et chacune est placée dans un flacon étiqueté.

La fraction non attirée par les deux aimants est tamisée à 160 μ m, elle renferme en grande quantité des minéraux de zircon. Les grains <160 μ m sont utilisés pour faire un frottis de minéraux pour faire la typologie des zircons.

2-6- Récupération des minéraux utiles

Les observations sont faites à la loupe binoculaire qui permet un grossissement de 50. Les grains sont récupérés à l'aide d'une pince et mis dans un tube. Cette manipulation présente le seul inconvénient des forces électrostatiques parasites sur les grains, notamment les grains de monazite. Ces forces ne facilitent pas la prise des grains avec la pince qui se magnétise. Nous la plongeons de temps en temps dans l'alcool pour supprimer les charges. Les grains de monazite sont ensuite envoyés au montage en section polie et le reste est conservé pour des applications ultérieures.

Schéma du protocole d'extraction de la monazite de la matrice rocheuse.

ANNEXES

annexe 6

Diagrammes typologiques des zircons (à partir de Pupin, 1980). L'indice T décrit le développement des faces prysmatiques des cristaux et l'indice A décrit le développement des faces pyramidales. La typologie de l'ensemble des zircons analysés indique que les cristaux sont globalement d'origine anatectique sialique.

Migmatite, St-Laurent (Cévennes)

Migmatite, Puylaurent (Cévennes)

Granite, St-Laurent (Cévennes)

Granite, Puylaurent (Cévennes)

Migmatite, ourt1 (Montagne Noire)

Granite à grenat, Montalet (Montagne Noire)

Migmatite, Salvetat (Montagne Noire)

Granite à biotite, Montalet (Montagne Noire)

Granite, Cornil (antiforme de Tulle)

"L'homme doit se tailler comme dans du roc, se faire seul ou avec le concours des autres, se distinguer par son énergie et sa bravoure, émerger du commun, servir d'exemple...C'est un devoir sacré qu'il doit accomplir en toute circonstance, jusqu'à ce qu'il deviennent un bon vieillard, signe de pureté, de sagesse et de l'immortalité assurée".