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Physique Nucléaire

présentée par :

GIBELIN Julien

Pour obtenir le grade de :

DOCTORAT de l’UNIVERSITÉ PARIS XI
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Introduction

Giant Resonances are general properties of all but very light nuclei. Well

understood in stable nuclei, the development of radioactive beams over the

past 20 years enable us to investigate their behaviour for nuclei far from

the valley of stability. We present here experimental work which aims to

highlight the presence of a low energy dipole strength in the neutron rich

nucleus 26Ne.

This dissertation is organized as follow: in a first chapter we will introduce

notions concerning Giant Resonances and more specifically the Dipole modes.

We will emphasize on the evolution of their properties in neutron rich nuclei.

Then we will describe the experimental tools: the Coulomb excitation, the

Distorted Wave Born Approximation and the invariant mass method. The

second chapter is dedicated to the description of the experimental setup

composed of beam trackers, a γ-ray detector, a charged fragment hodoscope

and a neutron detection wall. In the third part, we will analyze the data

obtained with these four detectors. Finally the first part of the chapter

four will present results on excited states below the one neutron emission

threshold including the extraction of the B(E2; 0+ → 2+) value. In a second

part, using the invariant mass method, the excited states between the one

and the two neutron threshold will be analyzed and the results compared to

predictions of mean field calculations.
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Chapter I

Giant resonances: from stable

to unstable nuclei

I.1 Overview on Giant Resonances

Giant Resonances (GR) are high frequency collective excitation modes of the

nucleus, which involve a large number of nucleons. The collectivity means

that their characteristics depend on the bulk structure of the nucleus and

they are a general property of nuclei present in all but very lightest species.

Their parameters vary smoothly with the mass number A and they exhaust

a large part of the appropriate sum rule. GR were first observed in 1937

by means of photo-absorption onto 63Cu nucleus [Bothe 37]. But one had

to wait until 1947 before a systematic study was performed by Baldwin and

Klaiber [Baldwin 47] with the development of new accelerators. In stable

nuclei, Giant Resonances are characterized by an excitation energy higher

than the particle emission threshold (10–20 MeV) and a broad width Γ of

2.5–6 MeV. For a comprehensive and up-to-date discussion of GR the reader

is referred to [Van Der Woude 01].
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I.1 Overview on Giant Resonances

I.1.1 Macroscopic picture
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Figure I.1: Schematic representation of various collective modes within the

liquid-drop model. From [Zegers 99].

Giant Resonances are collective phenomenon and can be described as

small-amplitude oscillations of a liquid drop about its equilibrium shape.

Considering that the nuclear fluids consist of protons and neutrons with spin

up or down this leads to rich resonance phenomenology that can be classified

according to three quantum numbers: their angular momentum L, isospin T

and spin S as illustrated in Fig. I.1:

According to the isospin T the modes are classified as:

Isoscalar (∆T = 0): in which neutrons oscillate in phase with protons.

Isovector (∆T = 1): in which neutrons and protons oscillate in opposite phase.

And according to the spin S the modes are:

Electric (∆S = 0): in which nucleons vibrate following a multipole pattern

given by L.

Magnetic (∆S = 1): in which nucleons with spin ↑ vibrate against nucleons

with spin ↓, following a multipole pattern given by L.
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Giant resonances: from stable to unstable nuclei

The three lowest angular momentum modes are:

the Giant Monopole Resonance (GMR), ∆L = 0, or “breathing mode”. It

is a density oscillation consisting of cyclic phases of compression and expan-

sion.

the Giant Dipole Resonance (GDR), ∆L = 1, is a density/shape oscillation

which is often pictured as vibrational displacement of two fluids which na-

ture depends upon the two other quantum numbers.

the Giant Quadrupole Resonance (GQR), ∆L = 2, is a surface oscillation

where the two fluids considered are distorted in two orthogonal directions.

If the macroscopic model can explain most of the macroscopic features of

the Giant Resonance it does not describe all the width properties and how the

nucleons organize themselves, for which a microscopic picture is necessary.

I.1.2 Microscopic picture

The microscopic models are often based on the mean-field concept which

consists in describing the n-body problem of the interactions between all

the nucleons as a sum of interactions of one nucleon inside a potential cre-

ated by all the other nucleons, plus a small residual interaction. One of

the most used methods to calculate the best non correlated ground state

is called Hartree-Fock (HF), method based on variational principals. From

here, a very commonly-used approximation called Random Phase Approxi-

mation (RPA) helps to include the ground state correlation and the pairing.

The RPA ground state |RPA〉 is hence a superposition of particle-hole states

(1p-1h). In this framework, and by taking into account the residual interac-

tion, the GRs are described as a coherent superposition of many particle-hole

excitations, resulting from the action of an operator O†
λ,σ,τ on |RPA〉:

|GR〉 = O†
λ,σ,τ |RPA〉 with Oλ,σ,τ |RPA〉 = |0〉 (I.1)

where λ, σ, τ are multipolarity∗, spin and isospin structure.

∗Microscopic equivalents of L, T and S in Sec. I.1.1
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Figure I.2: Schematic picture of E1 and E2 (E0) single particle transitions

between shell model states.

Qualitative aspects can be understood using a schematic shell model pic-

ture. In such an independent particle model, the energy associated to one

vibration is a multiple of the difference between two shells N,N + 1, . . . i.e.

~ω = ∆N × 41A−1/3 MeV. Due to momentum and parity conservation, a

σ = 0, τ = 0 excitation will correspond to a transition with ∆N ≤ λ and with

(−1)∆N = (−1)λ for parity conservation, as illustrated in Fig. I.2. Now in a

correlated approach since the residual interaction is attractive for isoscalar

and repulsive for isovector excitations, isoscalar resonances will be located

below and the isovector above the unperturbed ~ω energies.

These simple considerations also show on the difficulties of studying Giant

Resonances experimentally: the excitation energy of different types of GR

can be located around the same value. The overlap is increased by the large

GR width. In order to disentangle them, specific selective probes should be

used.
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I.1.3 Damping of Giant Resonances
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Figure I.3: Schematic picture of the width of the collective (1p-1h) state into a

direct component Γ ↑ and a spreading component Γ ↓. Note that in principle the

intermediate states can also decay as indicated by Γ↑↓. From [Van Der Woude 01]

Damping and decay of Giant Resonances are strongly connected to their

width. The width can be written:

Γ = ∆Γ + Γ↑ + Γ↓ (I.2)

where :

∆Γ is the Landau damping. It arises from the fact that the collective (1p-1h)

strength is spread over many states. This damping is found especially in

light nuclei.

Γ↑ is the escape width and it comes from the coupling of the collective (1p-

1h) ‘doorway’ state with the continuum. This leads to a (semi)-direct decay

of a nucleus AX to a nucleus A-1X. It is dominant light nucleus.

Γ↓ is the spreading width. It is dominant in heavy nuclei and correspond to

coupling to more complex states such as (2p-2h), which again couples to (3p-

3h), etc. . . to (np-nh) until a statistical equilibrium is reached. The system

can decay at any intermediate state and contribute to the pre-equilibrium
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I.1 Overview on Giant Resonances

with Γ↑↓. In case a fully equilibrated system is reached it decays by evap-

oration of particles and contribute to the width via the statistical width

Γ↓↓.

The study of the direct decay of giant states constitute the strongest test for

the models predicting the wave function of the modes.

I.1.4 Collectivity, sum rule

In the analysis of GR spectra, it is very useful to make use of sum rules which

are derived from the transition operator previously described. We can define

the nth moment of the transition probability distribution by:

mn =
∑

v

(Ev − E0)
n
∣∣∣〈0| Oλ,σ,τ |ν〉

∣∣∣
2

(I.3)

where |ν〉 is a state which composes the Giant Resonance state: |GR〉 =
∑

ν |ν〉. Note that Eq. I.3 can be seen as the complete sum of “partial”

sum rules (Ev − E0)
n
∣∣〈0| Oλ,σ,τ |ν〉

∣∣2 for a given |ν〉 state. In most of the

cases, the ratio between one of this “partial” sum rule and the total one

gives information on the collectivity of the |ν〉 state.

The moment m1, called Energy Weighted Sum Rule (EWSR), is of a par-

ticular importance for Giant Resonances. It can be evaluated independently

of the models and depends only on the ground state properties of the nucleus.

It is also expressed by:

m1 =
1

2
〈0| [Oλ,σ,τ , [H,Oλ,σ,τ ]] |0〉 (I.4)

where H is the Hamiltonian of the system.

I.1.5 Giant Dipole Resonances

The Giant Dipole Resonance (GDR) was the first mode of GRs to be discov-

ered owing to the use of photo-nuclear reactions† as experimental tool. This

†i.e. reactions in which a nucleus is bombarded with energetic γ-rays
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Giant resonances: from stable to unstable nuclei

reaction is very selective. It strongly disadvantages the high multi-polarities

and almost only dipole excitations are induced.

The total cross sections for GDR excitations are of the order of hun-

dreds of millibars and its distribution in heavy nuclei is well reproduced by

a Lorentzian distribution:

σγ(E) =
σmax

1 + [(E2 − E2
GDR)/E Γ]

2 (I.5)

where EGDR is the resonance energy, σmax the maximum cross section and Γ

the width of the distribution. These parameters are smooth function of the

nucleus mass number A.

The Giant Dipole Resonance was first theoretically explained in terms

of collective vibration by Goldhaber and Teller in 1948 [Goldhaber 48] and

by Steinwedel and Jensen in 1950 [Steinwedel 50]. In both cases the GDR

is described as an out-of-phase oscillation of protons against neutrons which

separates the center of mass from the center of charge, producing a dipole

moment. The first authors described the phenomenon in terms of incompress-

ible and rigid fluids. The whole nucleus is then deformed and its response

is proportional to a surface energy. For the second authors the GDR is a

compressional mode with an out-of-phase density oscillation of the neutron

again the proton fluid, with in this case a response proportional to the volume

energy term. They predicted a dependence in excitation energy in A−1/6 and

A−1/3 respectively but in reality, the vibration is both a volume and a surface

vibration and the excitation energy dependence with A is well reproduced in

stable nuclei by:

E∗
GDR(A) = 31.2A−1/3 + 20.6A−1/6 MeV (I.6)

The EWSR, defined in Sec. I.1.4, can here be expressed using only the

atomic Z and mass number A of the nucleus of interest. The so called

Thomas-Reiche-Kuhn (TRK) sum-rule is directly related to the GDR photo-

nuclear reaction cross section:
+∞∫

0

σγ dE =
2π2e2~

mc

N Z

A
≈ 60

Z(A− Z)

A
mb MeV (I.7)
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I.2 Collective excitations in neutron rich nu-

clei

A current topic of interest in nuclear physics is the evolution of the nuclear

structure for nuclei far from the valley of stability. When going towards the

neutron drip-line the neutron density distribution become more diffuse at

the surface. This results in neutron halos in light nuclei and neutron skins

in heavy nuclei. In the past decade, several theoretical studies performed

in the framework of the liquid drop model [Suzuki 90, Van Isacker 92] pre-

dicted a redistribution of the multipole strengths, essentially at lower energy

compared to the stable nuclei. In general, all mean-field calculations predict

these low-lying structures, often call pygmy resonances, which carry a small

fraction of the full strength. Experimentally few results are available and

almost essentially for the dipole resonances in light nuclei like 11Li. Among

other impacts, the measurement of the properties of these modes will help

tuning the forces or the field implemented in the calculations [Reinhard 99].

In the following we will describe more in details the case of the dipole

resonance within a simple two-fluids model. Then we will present recent

experimental results on the oxygen and the tin isotopic chains. Finally, we

will introduce mean-field calculations describing the dipole strength in our

nuclei of interest: the neutron-rich neon isotopes.

I.2.1 Dipole excitation and sum rule evolution

In this section we will introduce simple concepts for the pygmy dipole reso-

nance within the liquid drop model.

The pygmy resonance can be tentatively explained by the presence of

loosely bound neutrons which can create a halo or a neutron skin. A very

simple picture of this phenomenon is given within the liquid drop model

[Suzuki 01] if we suppose a deeply bound core surrounded by neutrons. A

plane-wave impinging of this object will displace the charged core with re-

spect to its skin. This will separate the center of mass from the center of

9
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Figure I.4: (a) Energy of neon’s isotopes pygmy dipole resonance (PDR) within

two (dashed line) fluids framework. For comparison the shaded area represent the

GDR region. Results from (Q)RRPA calculation [Cao 05b] are also shown (see

sections above). (b) Ratio of Thomas-Reiche-Kuhn (TRK) sum rule exhausted by

the GDR and the PDR. Same legend as figure (a).

charge and will produce a dipole moment. Then the oscillation occurs thanks

to the restoring strong forces, like in the Giant Dipole Resonance case of

Sec. I.1.1. The difference here is the energy needed, smaller, since there is

no full separation of proton and neutron distributions. We show in Fig. I.4

the results of calculation using this two fluids model framework, for the neon

isotopes. We suppose here that the core is 20Ne to which we add 1 to 10

neutrons. Following [Suzuki 01] the energy at which the pygmy resonance

occur EPDR is a fraction of the GDR average energy EGDR:

EPDR =

√
Z(N −Nc)

N(Z +Nc)
EGDR (I.8)

where Nc in the number of neutron in the core, Z and N the number of

protons and neutrons of the nucleus of interest. The same considerations

relate the total classical sum rule Stot and the sum rule exhausted by the

10



I.2 Collective excitations in neutron rich nuclei

pygmy SPDR:

SPDR = 0.857
Z(N −Nc)

N(Z +Nc)
Stot (I.9)

If this simple model does not reproduce accurately nor the energy centroid

neither the fraction of sum rule exhausted, partly because of the possible non-

collective nature of the pygmy as will be discussed further, it gives an good

idea of the trends with the neutron richness. As one can see on Fig. I.4, both

the energy and the strength of the pygmy resonance is increasing with the

number of neutrons.
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Figure I.5: Experimental evolution with the mass number of the sum rule of the

low-lying E1 resonance in oxygen isotopic chain [Leistenschneider 01].

Up to now few experiments were performed in that direction, especially

due to the fact that it involves (very) exotic nuclei. In light nuclei like 11Be a

large low lying dipole strength has been measured above the neutron thresh-

old, which can be related to the direct break-up mechanism [Nakamura 97,

Palit 03]. In the oxygen chain, if for the stable 16O the photo-absorption

cross section shows mainly the expected major peak at 23-25 MeV exci-

tation energy, in the 18O, structures already appear between 10-20 MeV

[McLean 91]. The first systematic study in that direction, using exotic beam,
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Giant resonances: from stable to unstable nuclei

was performed in GSI by the LAND collaboration [Leistenschneider 01]. Us-

ing the Coulomb excitation of secondary oxygen beams in reverse kinematics

at ∼ 600MeV/n, they measured the dipole strength exhausted by the pygmy

resonance in 17–22O. Their experimental results are displayed Fig. I.5 and

they found that the pygmy strength increases with the oxygen mass number

and exhaust up to 12% of the TRK sum rule in 20O. But they measured a

clear drop after 20O which is against the trend predicted by the simple liq-

uid drop model presented previously. This means that our naive model of
16O surrounded by a neutron skin is no longer applicable for these isotopes

and these observations challenge the collective picture of the excitations. The

same group recently performed the same type of experiments on neutron rich

tin isotopes [Adrich 05a, Adrich 05b]. Again if they measured a low-lying

dipole strength, its collective nature is still under debate.

I.2.2 Prediction of low lying dipole strength in 26Ne

As previously mentioned, mean field calculations are one of the main theoreti-

cal tools which can explain and predict excitation energies and their strength.

We present in Fig. I.6 (a) Quasiparticle Relativistic Random Phase Approx-

imation (QRRPA)‡ calculation performed by Cao and Ma [Cao 05a] for the

iso-vector dipole strength in even-even neon isotopes of mass A = 20 → 28.

If the main peak of the GDR follows the systematics of Eq. I.6 (gray line),

a structure clearly appears around 10 MeV excitation energy from 24Ne up.

We then focus on 26Ne, which we compare to 20Ne in Fig. I.6 (b) (up) and

(down) respectively. We superimpose to Relativistic Random Phase Approx-

imation the QRRPA calculations for 26Ne and to the experimental results for
20Ne. On this figure it is clear again that both 20Ne and 26Ne shows a max-

imum of strength around the expected (Eq. I.6 gives E∗ = 22–24 MeV)

giant dipole resonance excitation energy. However, if all the strength is

concentrated around this value in 20Ne, in 26Ne a fragmentation at low en-

‡Note that some authors call this last method, equivalently, Relativistic Quasiparticle

Random Phase Approximation (RQRPA)
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Figure I.6: (a) Comparison for a QRRPA calculation of the IVGDR strength for

A = 20 → 28 neon isotopes. The gray line is the prediction of Eq. I.6. (b) Isovector

dipole strength functions in: the neutron rich 26Ne (up) and the stable 20Ne (down).

The QRRPA response with pairing (dashed line) are compared to RRPA calculation

without pairing (solid line) for the 26Ne case. The experimental result obtained from

photo nuclear reactions [Varlamov 00] is displayed as triangles for 20Ne.

ergy clearly appears. From now we will focus on the lowest peak centered

around E∗ = 8.34 MeV, which the calculation predicts to exhaust 4.9% of

the Thomas-Reiche-Kuhn (TRK) energy weighted sum-rule (Eq. I.7). We

compared on Fig. I.4 the values predicted by this (Q)RRPA calculation with

the values predicted by the two-fluids model. Interestingly, we observe that

the trends for excitation energy and sum rule are comparable.

I.3 Experimental considerations

Up to the early 80’s, Giant Resonances have been studied mainly using light

probes such as protons, deuterium or alpha particles on stable nuclei. The

development of intermediate-energy heavy-ion accelerators like GANIL and

RIKEN opened new perspectives in this field. The first heavy ion studies
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showed [Barrette 88, Suomijärvi 89] a strong enhancement of the iso-vector

giant dipole resonance (IVGDR) cross section. In the early nineties, Ra-

dioactive Ion Beams became available and the study of GR in exotic nuclei

feasible, but progress has been slow due to low beam intensities and technical

difficulties.

In this case the beam is the nucleus of interest and is probed by the

target, which is called inverse kinematics. This method was first used in

GSI for the study of Giant Dipole Resonances and multi-phonon excitation

[Aumann 98]. Since GRs are located above the particle emission threshold,

the projectile-like nucleus will break-up and all the products (fragments,

particles, gammas) need to be collected to perform a complete kinematical

reconstruction of the excitation energy. Since the Coulomb excitation is

the dominant mechanism involved for highly charged heavy ions, we will

introduce in the next section its description via the so-called semi-classical

virtual photon theory. At the RIKEN energies, angular distributions of the

outgoing fragment can also be measured which will allow to disentangle the

different multipolarites excited, as we will show in Sec. I.3.2. Finally, a study

of the excited 26Ne decay in Sec. I.3.3 will bring us to introduce the invariant

mass method in Sec. I.3.4.

I.3.1 Virtual photon method
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Figure I.7: (a) Schematic drawings of a relativist ion incident on a target. The

electromagnetic field can induce excitation in the target nucleus. (b) It can be seen

as the production of two pulses of plane waves. From [Bertulani 88].
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Coulomb excitation is the excitation of a target nucleus by the electro-

magnetic field of the projectile and vice-versa. The simplest way to describe

its reaction mechanism at relativistic energies is given by the so called vir-

tual photon method. It was introduced by Fermi [Fermi 24] and indepen-

dently developed by Weiszäcker [Weiszäcker 34] and Williams [Williams 34].

A complete description can be found in the Jackson textbook [Jackson 99].

For other details on the induced reaction, the reader is referred to the work

of Winther and Alder [Winther 79] or Bertulani and Baur [Bertulani 88].

Let’s consider a fixed target nucleus (Ap, Zp) and neglect the recoil. The

electromagnetic field created by a moving nucleus with the velocity ~v = ~β c

along a straight line has two components: one parallel to the direction of

motion (noted ‖) and one perpendicular ⊥, given by:

E‖(t) = −Zpe
γvt

[b2 + (γvt)2]3/2
; B‖(t) = 0 (I.10)

E⊥(t) = Zpe
γb

[b2 + (γvt)2]3/2
; B⊥(t) = β E⊥(t) (I.11)

where b is the impact parameter and γ = 1/
√

1 − β2. The field generated by

the projectile looks contracted in the direction perpendicular to the motion.

For γ ≫ 1 and if we add a minor magnetic fieldB‖(t) = β E‖(t) the two plane-

polarized radiation P⊥ and P‖ falling on the target become two photons.

They hence act during a very short time ∆t ≈ b/γc.

By analogy we can calculate the incident energy I(ω, b) on the target and

associate the field generated to a real photon spectrum. The probability for

a certain electromagnetic process to occur hence reads:

P (b) =

∫
I(ω, b)σγ(~ω) d~ω =

∫
N(ω, b)σγ(ω)

dω

ω
(I.12)

where σγ(ω) is the real photo cross-section for the photon of energy Eγ = ~ω.

N(ω, b) can then be interpreted as the equivalent photon number per unit area

that falls on the target. We can now express the Coulomb excitation cross

section, taking into account the polarities (πλ) of the excitation and the fact

15



Giant resonances: from stable to unstable nuclei

that it will be dominant only above a minimum impact parameter R at least

greater than the sum of the two radii:

σ =

∞∫

R

2πbP (b) db =
∑

πλ

∫
nπλ(ω)σ(πλ)

γ (ω)
dω

ω
(I.13)

Here nπλ(ω) is the equivalent photon number of energy ~ω and of multipo-

larity (πλ)§. σ
(πλ)
γ is the photo-nuclear absorption cross section for a real

photon and for a given multipolarity πλ. It is directly proportional to the

the reduced transition probability B(πλ).
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Figure I.8:
26Ne Coulomb excitation cross section impinging on 208Pb target for

three different transitions, calculated using the equivalent photon method, function

of the 26Ne incident energy. We supposed B(E1) = B(E2) = B(M1) = 1 W.u. for

three different excitation energies: E∗ = 1, 5 and 10 MeV. The shaded region is the

region accessed in our experiment.

Using the virtual photon method, we calculated the cross section for

E1, E2 and M1 transitions with B(E1) = B(E2) = B(M1) = 1 W.u., for

three different excitation energies: E∗ = 1, 5 and 10 MeV of the 26Ne incom-

ing nucleus impinging on 208Pb target. We suppose the minimum impact

§Its expression will be detailed for electric transitions in Eq. IV.23 and Eq. IV.23.
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parameter to be equal to the sum of the two radii. The results are plotted in

Fig. I.8 and show a clear dominance of E1 cross section at intermediate and

high incident energy.

I.3.2 Distorted Wave Born Approximation
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Figure I.9: Typical angular distribution obtain for 26Ne impinging on 208Pb at

55 MeV/n, using ECIS 97 code, for three different multipolarities.

In direct nuclear reactions, Distorted Wave Born Approximation (DWBA)

or Coupled Channel (CC) calculations are extensively used. With heavy ions

at intermediate energy their predictions show a very distinct angular distri-

bution between transitions of multipolarity L = 1 and other multipolarities.

Without detailing the procedure♯ we present in Fig. I.9 the theoretical an-

gular distribution in the center-of-mass system as given by ECIS 97 code

[Raynal 97] for a 26Ne at 55 MeV/n impinging on 208Pb target. In a vibra-

tional approach, we suppose here that 10% of the Thomas-Reiche-Kuhn sum

rule is exhausted by a 9 MeV excited state. It can be seen on the figure that

around the grazing angle (∼ 3.5◦) the shape of the L = 1 angular distribu-

tion strongly differs from the L = 2 or L = 3 ones. Note that however the

♯Which will be done in the following chapters
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different L ≥ 2 distributions present a rather similar shape. If we are able to

measure the angular distributions with sufficient precision, they will provide

a powerful tool to identify L = 1 strength among all possible excitations.

I.3.3 26Ne decays of resonances

gs
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18.6 MeV 3n

23.8 MeV 4n

 
26

Ne + γ

 
25

Ne + 1n + γ

 
24

Ne + 2n + γ
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18.1 MeV p

 
25

F + p + γ

Figure I.10: Theoretical

iso-vectorial strength function

in 26Ne (plain line),

calculation from [Cao 05b],

compared to neutron and

proton emission thresholds,

plotted with their subsequent

decays. The predicted pygmy

resonance at E∗ = 8.34 MeV

is located between the one

and the two neutrons

threshold.

26Ne is a neutron rich nuclei. By consequence, the first neutron emission

threshold is located at rather low energy (Sn = 5.6 MeV ) compared to

the stable isotopes, and one should expect the high excitation energy states

composing the geant resonances to decay essentially by neutron evaporation

rather than by photon emission. This is experimentally demonstrated in the

same experimental condition of ours for example for 20O in [Triggestad 01]

where almost no γ-rays are observed decaying from excited states located

above the neutron emission threshold. We then look at the particle emission

thresholds in 26Ne, plotted in Fig. I.10. We compare them with the theoretical

iso-vector strength function predicted by Cao and Ma [Cao 05b] and we

can see that the pygmy resonance of interest at around 8 MeV excitation

energy is located between the one neutron emission threshold Sn and the two

neutron emission threshold S2n. Hence in order to investigate this region, we
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must look at the 26Ne* → 25Ne* + n decay channel and perform a complete

kinematics experiment.

Ne
26 Ne*

26

Pb

Ne*
25

Ne
25

n

b

E

γ

γ∗

Figure I.11: Schematic drawing for Coulomb excitation followed by break-up. The

projectile enters the strong electric field gradient produced by a highly charged

nucleus. The reaction is illustrated by the main case studied here: the Coulomb

excitation of 26Ne and its subsequent scattering, followed by decay by neutron

emission. 25Ne is then here assumed to be produced in an excited state which decays

by emission of gamma ray.

An illustration of the reaction is presented in Fig. I.11: The 26Ne impinges

on a highly charged target (here lead), which produces Coulomb excitation

of the projectile ♮. The incoming nucleus is thus scattered and decays by

emitting a neutron. The remaining 25Ne maybe left in an excited state which

decays by gamma-ray emission. The invariant mass method, whose charac-

teristic features will be developed in Sec. I.3.4, applied to the decay channel
26Ne* → 25Ne* + n → 25Ne + γ + n forces our setup to need a neutron, a

charged fragment and a gamma-rays detector.

♮It is modelized here by the absorption of a virtual photon γ∗, explained in the Sec. I.3.1.
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I.3.4 Invariant mass method

The invariant mass method is a powerful tool for measuring excitation ener-

gies of unbound states, especially when used in inverse kinematics. Mathe-

matically speaking the invariant mass is defined as the squared norm of the

momentum four-vector P̂ = (E, ~p), which is a Lorentz invariant. Choosing a

system of units where c = 1 it is written:

M2
inv =

∣∣∣P̂
∣∣∣
2

= E2 − ~p2 (I.14)

where E is the total energy and ~p the total momentum. It corresponds to

the total energy in the rest frame of the system of interest. Consequently,

for a system composed of i subsystems of rest mass Mi, of energy Ei and

momentum pi:

Minv = M0 + E∗ =

√∑

i

E 2
i −

∑

i

~p 2
i (I.15)

When the system conserves its energy during the reaction, the invariant

mass relates the energy before the reaction to the energy of the outgoing

subsystems. The invariant mass method then overcomes the poor resolution

that can be associated with a secondary beam, for which the momentum

spread can be large.

In the following we will restrain our system to the break-up of an excited

nucleus of rest mass M0 in two outgoing fragments which can be also in

excited states. We thus write:

M∗
0 =

√
(E1 + E2)2 − (~p1 + ~p2)2 = Erel +M∗

1 +M∗
2 (I.16)

where Erel is the relative energy between the constituents. The excitation

energy of the mother nucleus E∗ is hence related to the relative energy Erel

by E∗ = Erel + ES where ES represents the separation energy for the decay

channel. In the case of excited nucleus decaying by neutron emission in the

ground state of the daughter nucleus, ES is simply equal to the neutron

emission threshold Sn. However, if the daughter nucleus is generated in an

excited state of energy Ex, ES = Sn + Ex.
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Finally, two important properties of the invariant mass method must

be mentioned: the relative energy resolution is proportional to the square

root of the incident energy per nucleon [Nakumura 95] which allows to use

rather energetic beams. Hence by increasing the energy, we can perform

the experiment using a thick target. Furthermore, in inverse kinematics at

intermediate and high incident energy, the fragments of interest are focused

forwards which considerably reduces the surface that must be covered by the

detectors.

In the next chapter we will describe the setup used for our reverse kine-

matics experiment. It included beam tracking detectors, silicon detector

telescopes, a 4π gamma-ray array and a large acceptance neutron wall.
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Chapter II

Experimental Setup

In this chapter the experimental setup used in the Coulomb Excitation of
26Ne is described. The experimental goal was to obtain the excitation energy

spectrum of 26Ne using the invariant mass method. As explained in Sec. I.3.4,

this requires a complete kinematics measurement of all reaction products, i.e.

charged fragments, neutrons and gammas.

The experiment was carried out at the RIKEN Accelerator Research Fa-

cility (RARF) [Yano 89], using the RIKEN Projectile fragment Separator

(RIPS) [Kubo 92]. The 26Ne beam was produced using projectile fragmen-

tation of a stable beam of 40Ar. A description of the facilities is given in

Sec. II.1, the detector systems used for incoming and outgoing nuclei, and

for γ rays and neutrons are respectively described in Sec. II.2 and Sec. II.3

is devoted to electronics and data acquisition system.

II.1 Production of Secondary Beams

II.1.1 The RIKEN Projectile fragment Separator (RIPS)

The RIKEN Projectile fragment Separator is part of the RIKEN Accelerator

Research Facility (RARF), see Fig. II.1. A scheme of the RIPS is presented
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D

E6

RIPS

AVF Cyclotron

Ring Cyclotron

Figure II.1: Schematic layout of the RIKEN Accelerator Research Facility. A

stable 40Ar beam was accelerated by the ring cyclotron and was transported through

the beam transport line onto the production target of the RIPS, in room D.

Thought, the experimental area lays in E6 room, with the rest of the spectrometer.

in Fig. II.2. It is composed of two 45◦ dipole magnets (D1 and D2), twelve

quadrupoles (Q1 to Q12) and four sextupoles (SX1 to SX4). It can be divided

into three sections :

1. The section from the production target at F0 to the first focus point

F1 includes the first dipole magnet D1 which gives a dispersive focus

and analyzes the magnetic rigidity of projectile fragments.

2. From F1 to F2, the dispersion is compensated and the beam is refocused
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at the achromatic focal plane F2.

3. Finally the last quadrupole triplet refocuses the beam onto the exper-

imental focal point F3.

Momentum
Slit

Select A/Z

Al wedge

Select A   /Z 
2.5 1.5

Momentum
Slit

F2

F1

F3

Q1Q2Q3

SX1

SX2

Q4

Q5
Q6
SX3

SX4
Q7
Q8
Q9

Q10

Q11

Beam

Experimental Area

E6

D2

F0

Production
Target

Q12

D1

Figure II.2: Layout of the RIKEN Projectile fragment Separator. The primary

beam impinges on the production target at F0 point. Projectile-like fragments are

analyzed and selected in two s, first by a dispersive D1 magnet to F1 focal point then

refocused by D2 magnet to F2 focal point. Finally the secondary beam is focused on

F3 focal point where the reaction target and detection setup are installed
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The production of a secondary exotic beam in those conditions is achieved

using the projectile-like fragmentation reaction of an intense primary heavy-

ion beam impinging onto a light production target placed at F0. A large

variety of nuclei are created and emitted at forward angles with almost the

same velocity as the primary beam. The first dipole magnet provides a

magnetic rigidity Bρ = p/Q selection, with p the momentum and Q the

charge of the fragment. For nuclei of mass number A . 80, species are fully

stripped [Imai 04] so that the magnetic rigidity is directly proportional to

the A/Z ratio. Nuclei are then selected by interposing a slit at the exit of

the first dipole magnet.

After this A/Z selection, nuclei pass through a wedge-shape degrader

installed at the focal point F1, where the energy loss properties modify the

rigidity. The wedge shape allows to compensate the momentum dispersion

for a given isotope∗. After passing the second magnet D2, slits placed at

its exit select the ions with a Bρ approximately proportional to A2.5/Z1.5

[Dufour 86].

Finally, the selected isotopes are transported to the achromatic focal plane

F3 where the experimental setup is placed.

II.1.2 Production of the 26Ne beam

In this experiment, the primary beam was 40Ar at 95 MeV/n with an average

intensity of 60 pnA. The production target was a 2 mm thick 9Be plate. We

used, for the 26Ne beam production, a 700.0 mg/cm2, 3.3◦ Al wedge-shaped

degrader at F1. 26Ne beam was produced with an energy of 58 MeV/n, a

80% purity, an average rate of 104 pps and a momentum spread of 2%. For

calibration purposes other beams were produced and they are detailed in

Table II.1.

Due to the presence of silicon detectors setup located close to the beam

∗The thickest part is placed across the path of the highest energy nuclei which then

loose more energy than the lowest energy isotopes which cross the thinest part of the

wedge.
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axis nearly 2 m after the normal focal point F3, RIPS was tuned to focus on

the empty center of the silicon hodoscope in order to minimize the number

of beam particles hitting directly the silicon detector. The beam spot size at

the target was 1.9 cm (FWHM) horizontally and 2.2 cm (FWHM) vertically,

see Sec. III.1.2 for a detailed analysis.

II.1.3 Cyclotrons tuning and radio frequency

The stable 40Ar beam was accelerated by two cyclotrons placed in series: the

K70 AVF cyclotron is used to inject the beam into the K540 ring cyclotron,

see Fig. II.1. To accelerate 40Ar with a 17+ charge state at 95 MeV/n, the

Radio Frequency (RF) of the K540 is 28.1 MHz. The AVF radio frequency,

which is tunable from 12 MHz to 24 MHz, is tuned with a frequency of

14.05 MHz to be in phase with the ring cyclotron. Theoretically, to one bunch

in AVF should correspond one bunch at the ring cyclotron exit. However two

bunches 35.6 ns (1/28.1 Hz) apart from each other are often observed, the one

with biggest amount of particles called “mother” the other one “daughter”.

This is due to the mixture of different turns of accelerated beam when they

are extracted.

II.2 Detection System at F3 focal point

The invariant mass method requires complete kinematics measurement of

all outgoing particles. Since 26Ne is neutron rich, we expect it, in the high

excite states, to decay essentially by neutron emission. We thus needed to

record energy and position of the daughter nuclei and neutrons. However,

the daughter nuclei may be produced in excited states which will decay by

gamma emission. An additional gamma detector was thus required.

An overview of the whole setup is given in Fig. II.3: the 26Ne beam

was tracked by 2 PPACs [Kumagai 01] before the target, surrounded by

the γ detector array DALI [Takeuchi 02]. The beam pipe of the RIPS was

evacuated, whereas the target and detectors were set in the air. In order to
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Figure II.3: Simplified scheme of the experimental setup.

limit reactions between charged particles and air after the target we placed

a bag filled with helium gas till the silicon detector. Charged fragments of

interest stopped in the last layer of a silicon hodoscope, ∼ 1.3 m downstream

from the target. Neutrons were detected in a neutron plastic array, 3.6 m

downstream from the target.

In the following sections, we will describe the geometries and the char-

acteristics for the beam line counters, the hodoscope for charged fragment

collection, the 4π gamma detector and finally the neutron detector wall.

II.2.1 Beam line counters and Targets

The nuclei of interest were selected on an event-by-event basis using the Time

of Flight (TOF) method. To achieve this goal, a thin (0.5 mm) plastic scintil-

lator was placed at F2 focal point. This detector was also the timing trigger

for electronics. RF being the Radio Frequency signal from the cyclotron,

the RF-PlasticF2 time difference provides the TOF between F0 and F2 (i.e.

a path length of 21.3 m). It has been used for beam particle identification
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Figure II.4: Scaled overview of setup. It shows position length and maximum

acceptance angle for charged particle (5◦) and for neutrons (15◦).

(Sec. III.1.1).

To achieve a better resolution in the reconstruction of the invariant mass,

the information on the position and the angle of the incident nuclei on the

target is necessary. For this purpose, the beam was tracked by two parallel-

plate avalanche counters (PPAC) placed upstream of the target respectively

at 148 cm for PPACa and at 118 cm for PPACb. They are of delay-line type

[Kumagai 01], in which two 100×100 mm2 cathode plates with 2.4 mm pitch

strips in horizontal and vertical axis are installed. The strips were connected

by a chain of delay lines and the difference between time signals (left and right

or up and down) directly provides the incoming charged particle position.

Typically the resolution of these PPACs is 1.5 mm in r.m.s, which correspond

to 6 mm position resolution on the target.

The beam line section under vacuum was terminated by a 25 µm kapton

window right before (∼ 2 cm) the target plate.
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II.2 Detection System at F3 focal point

Figure II.5: Exploded view of the delay line parallel avalanche counter (PPAC)

[Kumagai 01]

As explained in Sec. I.3.1, heavy target nuclei strongly induce Coulomb

excitations. In this experiment we used natural 10×10 cm2 Pb of 230 mg/cm2

thickness. For further subtraction of nuclear excitation, 10×10 cm2 27Al of

130 mg/cm2 was chosen as a light target. 27Al was preferred to more often

used carbon target for kinematic reasons: the hodoscope presents a hole in its

middle and with a light target such as carbon, most of the scattered particles

could not be detected. In front of the silicon detector setup we placed the

helium bag. Its entrance and exit windows were made of 16 µm mylar†to

minimize interactions with the charged particle of interest and the pressure

inside was kept around 1 atm.

†Thiner that the rest of the envelope of the bag (∼ 50 µm)
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II.2.2 Hodoscope for Outgoing Fragments

In this experiment the identification of charged fragments as well as the mea-

surement of their energy and angle were performed using eight silicon tele-

scopes placed 1.2 m downstream of the target. One telescope was composed

of two layers of silicon strip detectors (SSD) and one layer of lithium drifted

silicon (Si(Li)). They were placed in air but inside an aluminum chamber to

protect them from light and electronic noises. The entrance window of the

chamber was made of 7 µm aluminized mylar to minimize interactions with

the incoming charged particles.

4mm 4mm
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m
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m
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m
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m
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224mm
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m
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Figure II.6: Left: First layer of silicon strip detectors (SSD) , for X position

measurement. We see the 3×3 matrix with a hole (⊠) in the middle to avoid the

beam. The 8 SSD are mounted on an aluminum frame. Each SSD is divided in 10

strips of 500 µm each. Middle: Side view of the whole hodoscope. We see the 4

layers with from left to right: SiLi, SiLi, SSD Y, SSD X. The beam is coming from

the right. Right: Back view that shows the cross-shaped last layer of SiLi, composed

of 4 detectors. Again ⊠ stands for hole. Note that this is only one layer of 4 SiLi

detectors and a second one was placed upstream with the remaining 4 units.

The two first layers of SSD were arranged in a 3×3 matrix, with a hole in

the middle to avoid silicon detectors to be directly hit by the beam, as pre-

sented in Fig. II.6 (left). Each SSD has a 50×50 mm2 active area, an 0.5 mm

thickness and was divided into 10 strips of 5 mm each. They were espe-
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II.2 Detection System at F3 focal point

cially designed for this kind of invariant-mass measurement and fabricates

by Hamamatsu Photonics Corporation. The first layer has vertical strips

and the second layer, placed 2.2 cm downstream, horizontal strips. They

respectively measure the horizontal position and the vertical position of the

outgoing heavy ions. In order to reduce the number of channels, vertical

strips of adjacent detectors on the left and on the right side of the first layer

of the hodoscope were connected two by two, resulting in 15 cm long strips.

Similarly adjacent horizontal strips on the top and bottom side of the second

layer were also connected. Finally, the signal from the back sides of SSD

were used for energy (∆E) measurement.

The energy measurement was performed by 3-mm-thick lithium drifted

silicons (SiLi) from the MUST‡ array [Blumenfeld 99]. New pre-amplifiers

have been built for this experiment since the original ones have a too limited

dynamic range, MUST being dedicated to the detection of light particles.

Due to a bigger active area of 5.5×5.5 cm2, their positions were chosen to

minimize the dead zones and the 8 detectors were shared among two layers

of 4 units each. All nuclei of interest stopped in the SiLi detectors, allowing a

total energy measurement. The particle identification (PID) was done using

the E-∆E technique, see Sec. III.3.2 for details.

II.2.3 Gamma-ray Detector

Gamma-rays were detected using the 4π detector named DALI(I and II)§. It

consisted, in this experiment, of 152 NaI(Tl)s surrounding the target. Mod-

ules of DALI(I) consist of a scintillator of rectangular shape of 6×6×12 cm3

coupled to a 5.1 cm diameter (φ) photomultiplier tube (PMT) giving a typ-

ical intrinsic resolution of 7% for the 1.275 MeV γ-ray of the 22Na source

[Iwasaki 01]. For the newest part, DALI(II), the size is 4×4×16 cm3 and

the diameter of the PMT is 3.8 cm, its resolution ∼ 8% at 662 keV (137Cs,

standard source) [Takeuchi 02].

‡Mur à Strip, i.e. french for “strip wall”
§Detector Array for Low Intensity radiation
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(a) (b)

Figure II.7: (a) Front view of one typical layer of DALI(I) (b) Front face of one

typical layer of DALI(II)

The whole setup counted 12 rings perpendicular to the beam axis. The 3

most upstream layers were from DALI(I), the 9 others from DALI(II). The

NaI(Tl) crystals within a layer of DALI(I) are placed like bricks in a wall (see

Fig. II.7(a)) whereas DALI(II) are placed in diaphragm configuration around

a circle, as shown in Fig. II.7(b). The diameter of these circles is minimum

for the most upstream and downstream layers (∼ 40 cm and ∼ 25 cm respec-

tively) and maximum in the middle (52 cm). This geometry is a compromise

between efficiency, angular resolution and simple mechanical aspects. The

whole detector, presented in Fig. II.8, hence forms a sphere around the tar-

get. However, in order to increase the acceptance of the detectors placed

more downstream (see following Sections), the last two layers were opened,

which lead more to a vase shape ( ) with beam axis as symmetry axis,

rather than a spherical shape ( ).

The angular information was used for Doppler correction, since the emit-

ting sources were beam-like nuclei with typically β ∼ 0.3 (see Sec. III.2.3).

For the DALI(I) part the angular resolution is 20◦ in average. For the

DALI(II) part the angular resolution is 7◦ at 90◦ from beam direction, angle
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II.2 Detection System at F3 focal point

Figure II.8: Exploded view of the γ-ray detector DALI [Takeuchi 02]: only

3/4thof the setup is drawn, allowing to see inside: the end of the beam pipe and the

square-shaped target.

where the Doppler effect on resolution is the most important as described in

Sec. III.2.5.

II.2.4 Neutron Wall

The outgoing neutrons were detected using an array of 116 plastic scintillator

rods made from BC408 material from BICRON [BICRON ]. As compared to

the usual BC400, BC408 offers longer bulk light attenuation length (380 cm

against 250 cm) more suitable for long rods. Rods of two different length

were used: the Short Neutron detectors (SN) have a dimension of 6 cm

(thick)×6 cm (vertical)×110 cm (horizontal) whereas Long Neutron detec-
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Figure II.9: Photograph of DALI(II)

tors (LN) have the same section but a length of 210 cm.

The counters were packed into 4 layers, placed side by side with only a

1.2 cm gap. Each layer consisted of 8 SN, 13 LN and again 8 SN creating

a shape of a cross of dimensions 210 cm (horizontal) ×175 cm (vertical). A

diagram is displayed in Fig. II.10 . The distance between the front face of

the first layer and the target was 3.6 m. The 2nd, 3rd and 4th layers were

at 3.67, 3.74 and 3.81 m, respectively. Each plastic had both ends coupled

to a photo-multiplier tube (φ = 51 mm) for light-output read out of the

scintillator. The neutron time-of-flight (TOF) was deduced from the sum of

the two PMT’s timings. The neutron hit position was given: in the horizontal

direction by the timing difference between PMTs ; in the vertical position by

identifying the rod that fired.
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II.2 Detection System at F3 focal point

Figure II.10: Exploded view of neutron detector. One can guess the cross-shaped

layers of parallelepipedic neutron detectors, equipped at both end by one

photomultiplier (PMT). On the front face, the thin plastic vetoes, with almost all of

them mounted with just one PMT. In reality the entire font face is covered by 28

vetoes, whereas 18 are represented here.

Thin plastic detectors (displayed in Fig. II.10) were placed right in front of

the neutron wall in order to identify charged particles hitting the wall. They

were used as veto detectors as well as 26Ne beam dump. Their thicknesses

were of 0.5 cm or 1 cm. According to the code CECIL [Cecil 79], the neutron

reaction probability in these detectors is typically 3%.
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Figure II.11: Photograph of the neutron wall

II.3 Electronics and Data Acquisition

II.3.1 Triggers

The electronics schemes are displayed in Fig. II.12-II.15. Each detection

component (beam, gamma, fragment, neutron) has an independent trigger

made from a logical OR of time signals of individual detectors. For plastic

detectors with 2 PMTs (F2 beam plastic and neutron detectors), coincidence

between both PMT was required. All amplitude and time information was

recorded, except time information for the strips of silicon detectors.

Beam events were defined as a hit in F2 plastic which made both ends

fire, see circuit diagram in Fig. II.12. An event in SSD was defined as at

least one event in the second (Y ) layer to reject low energy particles, see

36



II.3 Electronics and Data Acquisition

Discri.

Discri.F2 Plastic Left TDC

Discri.PPAC Left TDC

Discri.PPAC Right TDC

Discri.PPAC Up TDC

Discri.PPAC Down TDC

F2 Plastic Right TDC

Trigger

2x

Figure II.12: Circuit diagram for BEAM detectors.

Pre Amp  AmpSSD Striped Side CAEN V785 ADC

Fast Amp  CFD

Pre Amp  AmpSSD Back Side CAEN V785 ADC

CAEN V775 TDC

Trigger (only X layer)

Fast Amp  CFD

Pre Amp  Amp

CAEN V775 TDC

Trigger

SiLi CAEN V785 ADC8 x

8 x

80 x

Figure II.13: Circuit diagram for silicon hodoscope.

complete electronic diagram in Fig. II.13. An event in DALI corresponded

to at least one NaI crystal hit. Similarly for the neutron wall, only one hit

was requested with both corresponding PMTs firing. For DALI electronic

diagram see Fig. II.14 and for neutron wall Fig. II.15. Neutron wall vetoes

and beam PPACs data were not part of any triggers and were recorded for

each event.
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Fast Amp  CFD

−10dB

CAEN V775 TDC

SiLi CAEN V792 QDC

152 x Trigger/Multiplicity

Figure II.14: Circuit diagram for DALI.

−10dBPMT  Left Anode 2 FERA

Discri. TFCPMT  Left Anode 1 FERA

−10dBPMT Right Anode 2 FERA

Discri. TFCPMT Right Anode 1 FERA

x 116 Trigger/Multiplicity

Figure II.15: Circuit diagram for neutron wall.

Four individual triggers were defined as follow :

BEAM = F2 PLASTIC LEFT ⊗ F2 PLASTIC RIGHT

NEUT =
⊕

ALL

(PLASTIC LEFT ⊗ PLASTIC RIGHT )

DALI =
⊕

ALL

NaI

SSD =
⊕

ALL

SSD (Y LAY ER)

The F2 beam plastics was used as start for time measurements. All other

time signals were delayed with 300 ns on average. Individual triggers were

combined to obtain the main trigger signal for the data acquisition system

(DAQ), see illustration in Fig. II.16:
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II.3 Electronics and Data Acquisition

DSB = DOWN SCALED BEAM (1/500)

BSN = BEAM ⊗NEUT ⊗ SSD

BSD = BEAM ⊗DALI ⊗ SSD

COIN = DSB ⊕BSN ⊕BSD

SSD

BEAM

NEUTRON WALL

DS BEAM

DALI

COMPUTER BUSY

Trigger

Figure II.16: Circuit diagram for total trigger.

In addition, for calibration runs, the following triggers were also used, see

details in Sec. II.3.3:

BN = BEAM ⊗NEUT

BS = BEAM ⊗ SSD

II.3.2 Data Acquisition System (DAQ)

The data acquisition system used here is called “BabarlDAQ” [Baba 01]. It

is based on personal computers (PC) with a RTLinux (Real Time Linux)

operating system connected to a CAMAC crate controller via a Kinetic 3922

crate controller and a Kinetic 2915 PCI Interface to 3922 ; or connected

to VME via SBS 620 PCI-VME card and optical cable. The BabarlDAQ
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Figure II.17: Typical configuration of BabarlDAQ. Some client PCs can lie on the

Ethernet

processes each event using a PC instead of an auxiliary crate controller. It

can store data on hard-drive or magnetic tape and most of its component

can be distributed to other PCs via Ethernet.

The on-line control and histogramming is made using “Anapaw” [Baba 01],

an analysis software based on the CERN Program Library PAW [Brun 89]. It

can be run on-line by analyzing data from BabarlDAQ through the Ethernet

or off-line reading data files.

II.3.3 Data sets

Experimental data were taken under several conditions as summarized in

Table II.1. Mainly, RIPS tuning was done to produce 26Ne which impinged

on lead or aluminum targets or labeled “empty runs” i.e. without target, for

background measurement.

Furthermore, for silicon hodoscope calibration, three different energy (50,

55 and 60 MeV/n) 25Ne beams were prepared. For neutron detector calibra-

tion four different energy (30, 40, 50 and 70 MeV/n) secondary proton beams
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II.3 Electronics and Data Acquisition

and a 87 MeV/n tritium beam were tuned. The tritium run was performed

because of its high kinetic energy, which allowed it to penetrate deeply into

the plastic wall. A run was performed using a very thick target (here ≈ 1 cm

brass) in order to produce photons at the target position to calibrate the

neutron time of flight. The method is described in Sec. III.4.3.

Beam Energy Momentum Target Trigger Beam

(RIPS D2 magnet) spread Events
26Ne 58.6 MeV/n ∆P/P = 2% Pb COIN 16.5 · 108

26Ne 58.6 MeV/n ∆P/P = 2% Al COIN 6.8 · 108

26Ne 58.6 MeV/n ∆P/P = 2% none COIN 3.1 · 108

26Ne 58.6 MeV/n ∆P/P = 2% Brass BN

proton 29.6 MeV/n ∆P/P ≈ .5% Pb BN

proton 29.6 MeV/n ∆P/P ≈ .5% none BN

proton 40.3 MeV/n ∆P/P ≈ .7% Pb BN

proton 49.7 MeV/n ∆P/P ≈ .7% Pb BN

proton 69.7 MeV/n ∆P/P ≈ .7% Pb BN

tritium 87.7 MeV/n ∆P/P ≈ .1% Pb BN
25Ne 60.0 MeV/n ∆P/P = .1% Pb BS
25Ne 55.3 MeV/n ∆P/P = .1% Pb BS
25Ne 49.5 MeV/n ∆P/P = .1% Pb BS

Table II.1: Data set summary. For details on trigger see Sec. II.3.1. Beam events

are calculated taking into account live time from acquisition
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Chapter III

Data Analysis

As described in the previous chapter, our experiment involved several types

of detectors, for which a specific calibration and analysis treatment should

be performed. This will be presented within this chapter. It is organized in

the same way as the description of the setup, i.e. from upstream to down-

stream. Hence the Sec. III.1 is devoted to the calibration of beam detectors,

beam tracking and identification. Sec. III.2 deals with the characteristics of

the γ-ray array. Sec. III.3 is dedicated to the calibration of charge particle

silicon detector and particle identification. Finally, neutron wall calibration

procedures are described in Sec. III.4.

III.1 Beam

The nuclei of interest were produced by fragmentation of a primary stable

beam. This section presents the calibration of the secondary beam detectors.

In a first step we present the beam particle identification, then we move to

beam tracking and finally explain the alignment procedures of the beam

detectors with the silicon telescopes placed downstream.
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III.1.1 Particle Identification
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Figure III.1: (a) Energy loss in F2 plastic versus TOF for the cocktail beam.

(b)TOF measurement of secondary beam nuclei, with identification.

The secondary exotic 26Ne beam was obtained with the RIken Projec-

tile fragment Separator (RIPS) spectrometer from the stable 40Ar beam as

presented in Chapter II. During the experiment, the particle identification

of the beam was performed using a calibrated silicon detector placed at F2

and the F0 to F2 time-of-flight. Fig. III.1 (a) shows the amplitude from F2

plastic instead of the F2 silicon versus the TOF information. Calibration of

∆E signal was performed thanks to the theoretical energy loss of the iden-

tified nuclei in the plastic. We superimposed the identification, obtained by

comparing the position of the nuclei with theoretical calculations from code

Intensity [Winger 92].

The F0 to F2 TOF is obtained from a time measurement using the plastic

located at F2 and the RF signal of the cyclotron which is known to shift,

here within 0.5 ns, in the course of an experiment. We correct this effect by

applying a correcting time offset for each run, obtained from the time shift

of each three nuclear species present in the cocktail beam (see below).
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The average purity of the 26Ne beam is ≈ 80%, the main contaminant

being 27Na (≈ 5%) and 29Mg (≈ 15%). Due to a good separation of the

nuclei in time, the identification could be performed using the time-of-flight

information only. The identification resulting from TOF measurement, after

calibration, is illustrated in Fig. III.1 (b).

III.1.2 PPAC calibration and beam profile

The incident beam profile was monitored using two parallel-plate avalanche

counters (PPAC A and B) placed in the F3 chamber ≈ 120 cm in front of

the target. A typical profile of the beam on these detectors is displayed in

Fig. III.2 (a). The sizes in Full-Width Half-Maximum (FWHM) are ∆X =

35 mm and ∆Y = 41 mm for PPAC A and ∆X = 29 mm and ∆Y = 37 mm

for PPAC B. The angular spread of the beam is measured to be ∆θX = 1.4◦

and ∆θY = 1.2◦as shown in Fig. III.2 (c). The position in PPAC is obtained

from the time difference between both sides of a delay line for both horizontal

(X) and vertical (Y) directions, namely:

x [mm] = cx × (Tright − Tleft) +X offset
0 , (III.1)

y [mm] = cy × (Tdown − Tup) + Y offset
0 , (III.2)

where Tright,left,down,up are PPAC timing information with respect to the F2

plastic and cx or cy are constants for time to length conversion. These con-

stants are obtained before the experiment by injecting a pulser signal at one

side of the delay line and by measuring the time difference between left and

right side or up and down, for which we know the corresponding length.

Typically cx, y ≈ 1.3 mm/ns.

If a single event occurs in PPAC, the sum Tright + Tleft (or Tdown + Tup)

should be constant. Multi-hit events will lead to a smaller value for the time

sum∗. Consequently, by setting gates as illustrated in Fig. III.3, we reject

partly beam pile-up events.

∗If the device is hit in more than one place, the total distance between the hit positions

and the closest side is smaller and so the timing.
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Figure III.2: (a) Cocktail beam profile at PPAC A. The profile at PPAC B looks

the same with different sizes: ∆X = 29 mm and ∆Y = 37 mm. (b) Beam

divergence angle in degrees. (c) Beam profile at target position extrapolated using

PPACs. (d) Beam profile at silicon setup position extrapolated using PPACs. The

dashed line sketches the position of the edge of silicon detector. In all four cases the

arrow tags represent the size in FWHM.

The PPAC efficiency was estimated by comparing the number of events

in F2 plastic and the number of events in PPACs. We obtained 97% and

96% for PPAC A and PPAC B respectively.

We obtained the beam profile at target and silicon setup positions, us-
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ing PPAC A and B information. Results displayed in Fig. III.2 (c) and in

Fig. III.2 (d) respectively show a beam spot size (FWHM) of 22 × 19 mm2

at target position and of 27 × 42 mm2 at the silicon position. We also rep-

resented in dashed line the frame of the silicon setup. The beam was tuned

in order to avoid the beam to hit the silicon detectors and one can see that

almost all the beam goes through the hole. However, a small tail of the beam

in the horizontal direction hit the telescopes and produces noise. It was used

for alignment, as described below.
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Figure III.3: Sum of time signals of both horizontal and vertical delay lines of

PPAC A. Shaded area is the time gate used to remove pile-up events.

III.1.3 Alignment

The mechanical alignment of the two PPACs was done before the experiment

and checked after, using in both cases a transit and a laser. The method

consists in setting the laser spot position to reproduce the beam axis. A

graduated mask whose center corresponds to the geometrical center of the

PPAC is taped on it. The values of the possible shifts are then evaluated.
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A final adjustment on the alignment of the PPACs with the silicon setup

(i.e. the evaluation ofX offset
0 and Y offset

0 parameters in Eq. III.1 and Eq. III.2)

was done by comparing the position on silicon strip detectors (SSD) as ex-

trapolated from the PPAC measurements (XPPAC @ SSD and YPPAC @ SSD )

with the position given by the SSD themselves (XSSD and YSSD), which

should be equal when the incident particle is not scattered. This was done

by using the 26Ne beam run without target and selecting beam particles of

the beam tails hitting directly the silicon detectors. Since only the relative

position between PPACs and silicon setup is important, we assumed the

position given by the silicon setup absolute and each SSD position known.

Then, we have to adjust each PPAC horizontally and vertically, thus 4

parameters in total. We made a linear regression with the two distributions:

XPPAC @ SSD = ΛX XSSD + ∆X , (III.3)

YPPAC @ SSD = ΛY YSSD + ∆Y , (III.4)

where Λ and ∆ are coefficients which, if everything is perfectly aligned, should

be 1 and 0 respectively. The first term essentially probes the calibrations

between the two lengths whereas the second is more directly connected to

alignment. Gates on the two distributions ∆′
X = XPPAC @ SSD−XSSD and its

equivalent ∆′
Y were set around the peak to suppress events being scattered

in helium bag or windows because they correspond to large values of ∆′
X or

∆′
Y . It also provided a cross check for alignment. Results after correction for

∆X as well as X linearity is displayed in Fig. III.4, and the shifts applied on

PPACs and their effect are listed in Table III.1.

The width of the XPPAC @ SSD −XSSD (respectively YPPAC @ SSD −YSSD)

distribution is ≈ 7.5 mm. It can be reproduced by the error generated by

SSD position measurement (for 5 mm strips: σ = 5/
√

12 = 1.5 mm), the

error on the PPAC extrapolation on SSD (σ ≈ 7 mm), as well as the error

due to straggling in crossed material (σ ≈ 3 mm). We concluded that the

error generated by this method of alignment is negligible.
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Direction Offset [mm] ∆′ ∆ Λ

PPAC A PPAC B [mm]

X -0.65 -0.2 0.03 -0.04 0.98

Y -0.35 1.1 0.00 0.03 1.04

Table III.1: Software offset applied to PPAC position to correct their alignment

with silicon detector setup and their effects. See text for the definition of ∆′, ∆ and

Λ.
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Figure III.4: (a) XPPAC @ SSD − XSSD distribution. The shaded distribution

corresponds to beam particles that were scattered. Hence, for our purpose, we

selected only the center part, not shaded here. (b) 2D distribution of XPPAC @ SSD

vs XSSD fitted by linear function

III.2 γ-rays

As described in Chapter II the reaction target was surrounded by a 4π NaI

γ-ray detector DALI. In the following, the energy calibration procedure, the

detection efficiency, the Doppler shift correction and the background reduc-

tion methods, as well as the resolution are discussed. All these procedures
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were performed with the whole array of 152 modules selecting events with

multiplicity one.

III.2.1 Energy calibration

The energy calibration of the NaI of the DALI array was done using stan-

dard γ-ray sources of 22Na (511 keV and 1275 keV), 60Co (1173 keV and

1333 keV), 137Cs (662 keV), and the mixture of Am-Be (4439 keV, 3928 keV

and 3417 keV). The individual energy distributions are shown in Fig. III.5.
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Figure III.5: Illustration of the different observed γ-ray spectra in DALI from

standard sources.

In the case of the mixture of 241Am and 9Be the presence of three peaks

is due to the reactions:

241Am → α+237 Np ; α+9 Be →12 C∗ + n,

where 12C∗ immediately de-excites to the ground state by emitting a γ-ray

at 4.439 MeV. But at that energy, pair production γ → e+ + e− occurs with

49



Data Analysis

a large probability in detector material. The annihilation e+ + e− → 2γ in

the matter produces two 511 keV γ-rays which can escape from the detector.

This results in three peaks in the NaI detector at 4.391 MeV, 4.391 MeV −
511 keV = 3.928 MeV and 4.391 MeV − 2 × 511 keV = 3.417 MeV.

Table III.2 shows the comparison between the tabulated γ energies and

the values deduced after the calibration for the whole array. The resolution

weighted average deviation of 0.3% was retained as the systematic uncer-

tainty on the γ-ray energy.

A simulation using the Geant 3 code [Brun 86] was performed to repro-

duce the energy spectra of the whole detector for all energies. Geant 3 being

not able to simulate the intrinsic resolution, it was convoluted with simula-

tions output. The resolution was determined by using 137Cs standard source

which gave the coefficient of proportionality for the dependence of the resolu-

tion in the square root of the energy, as explained in detail in Sec. III.2.5. A

comparison of a simulated energy spectrum with the experimental 60Co spec-

trum is shown in Fig. III.6 (a). The background, also shown in Fig. III.6 (a),

was not simulated in Geant 3, but measured by removing all sources and

putting DALI in self triggering mode. It was normalized on the high energy

part of the spectrum.

III.2.2 Photo-peak efficiency

The energy dependence of the efficiency was calculated using Geant 3. It

was checked for some energies by using standard sources, whose initial in-

tensity and date of production is known. We hence estimated how many

γ-rays they produce now via the element half life and the branching ratio.

By counting the number of detected photons using DALI self trigger, we de-

duced its efficiency. The Am-Be source was placed inside a 2 cm high, 1 cm

radius cylindrical lead shield against neutrons. From an attenuation length

of 0.483 cm−1, we estimated by Monte-Carlo simulation that only 10% of the

produced γ-rays were able to emerge from the shield.

As can be seen in Fig. III.6 (b), the simulation reproduces nicely the

50



III.2 γ-rays

Source γ Energy:

Type Tabulated Measured Deviation Resolution (σ)

[keV] [keV] [%] [keV]
137Cs 661.660 660.6 0.16 28.5
60Co 1173.237 1173.6 0.03 30.0

1332.501 1335.8 0.25 34.0
22Na 1274.532 1275.9 0.11 34.7

511. 506.2 0.94 23.5
9Be +241Am 4439.1 4435. 0.09 76.6

3928.1 3939. 0.28 136.

3417.1 3418. 0.03 153.

Table III.2: Energy of γ-ray emitted from standard sources, and corresponding

measured energies in the whole DALI after calibration. The deviation is defined by

|Etab. − Emeas.|/Etab.

.

trend of the energy dependence of the efficiency. However some experimental

values are slightly lower and since they correspond to the same γ-ray source

of 60Co, we supposed its intensity was overestimated. From the discrepancies

we deduce that on average the efficiency is obtained with a ∼ 10% relative

error.

The same computer code was used to calculate the angular acceptance of

the DALI. An example is shown in Fig. III.7 (a) where the angular acceptance

was determined using 1275 keV 22Na source and compared to the simulated

results, assuming an isotropic emission of the γ-rays. We then calculated this

acceptance in the center of mass system of a 26Ne emitting a 2018 keV γ-ray

at a β = 0.32 velocity (Fig. III.7 (b)). We see that despite some fluctuations

essentially due to some non-covered angles in the laboratory frame, the region

between 40 and 140 degrees gives an average equal to 12%, close to the overall
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Figure III.6: (a) Deposed energy from 1173 and 1333 kev γ-ray emitted from
60Co standard source (•) in the whole DALI array, compared with simulation by

Geant 3 (solid line). The measured background (dashed line) was added to

simulation. (b) Evaluated DALI total efficiency for source emitter at rest (solid line)

in addition to experimental values (�), see details for experimental values in

Sec. III.2.2. Efficiency (in %) is well reproduced by 8.7 · 103/E0.87
γ with Eγ in keV.

The dashed line is obtained by simulating a source emitting at velocity β = 0.32.

efficiency value.

III.2.3 Doppler shift correction

A γ emitted in a moving frame has its energy in the laboratory frame shifted

depending on the angle between the direction of the emitter and the observer:

this is called Doppler shift. In our case, the emitting nuclei were traveling

at β ≈ 0.3. Hence we retrieved the γ-ray energy value in the rest frame E⋆
γ

using the measured energy in the laboratory frame E lab
γ through the formula:

E⋆
γ = E lab

γ γ (1 − β cos θ lab) (III.5)
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Figure III.7: (a) Acceptance of the DALI, in laboratory frame for the 1275 keV γ

from 22Na source. (b) Simulation of the acceptance of a 2018 keV γ emitted from a

moving (β = 0.32) 26Ne nucleus.

where β is the relativistic velocity and γ the Lorentz factor of the nuclei

in the laboratory frame. The angle θ lab was determined by the geometrical

information of position of the center of the crystal, with respect to the target

position where the de-excitation occurs. The angle θ lab is here defined with

respect to the beam axis and not with respect to the direction of the out-

going nucleus. The induced error (σ ∼ 1.5◦) is smaller compared to the the

resolution on the γ angle measurement using DALI (σ ∼ 2.6◦) as explained

below in Sec. III.2.5. The reaction was supposed to occur in the center of the

target inducing a small error of σ ∼ 0.6◦ on the angle of emission. The outgo-

ing charged fragment crosses many materials including a thick target before

stopping in the silicon and since the kinematic energy difference between the

incoming nucleus and the outgoing nucleus are comparable to the kinematic

energy at the center of the target, the β value at the center of the target was

calculated event-by-event using the velocity of the incoming nucleus. The

velocity was obtained via the time-of-flight of the incoming nucleus in RIPS

spectrometer, in the same way as TOFF2→Target was calculated in Sec. III.4.3.
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A typical result of Doppler shift correction is shown in Fig. III.8 which

represents the photon energy distribution obtained in coincidence with 26Ne

particles in the silicon hodoscope before and after Doppler correction. The

γ-ray line at 2018.2 kev from 2+ → 0+(gs) transition in 26Ne is not distin-

guished in laboratory frame, but clearly seen in the Doppler corrected energy

distribution.
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Figure III.8: Illustration of Doppler correction in the whole DALI array. (a)

Deposited energy distribution in DALI, in coincidence with a 26Ne fragment in the

silicon hodoscope. (b) Same conditions, but Doppler corrected case with a constant

β ≈ 0.32. A peak at 2016 keV appears.

To test if the Doppler correction has been efficiently carried out, the

energy dependence of the same γ-ray is plotted versus the detection angle,

as in Fig. III.9 (a). No angle dependence is observed after the correction was

applied (Fig. III.9 (a)).

III.2.4 Background reduction via time gate

NaI γ-ray detectors are not sensitive only to γ but also to neutrons or charged

particles. In addition, the photons detected are not emitted only from re-
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Figure III.9: Energy/angle dependence of the tabulated (2+) 2018 kev γ-ray

emitted from 26Ne, (a) before and (b) after Doppler correction. The angle in degree

is the position of center of NaI crystal with respect to beam direction. No obvious

dependence in (b) is shown which confirms the good Doppler correction.

actions of interest but also by natural background like 1461 keV transition

in 40K. It is thus necessary to reduce the background of random events by

setting a time window for each crystal.

The first step was to align all time spectra to set a single gate. We used

the 26Ne 2+ → 0+ transition γ for which the time coincidence peak was fixed

to an arbitrary value of 100 ns. The summed time spectra for the 2+ → 0+

transition and for all γ energies are shown in Fig. III.10 (a) and Fig. III.10 (b)

respectively. In a second step, a time window was set on the peak which

rejects events on the right produced by neutrons or charged particles hitting

the crystals and events on the left which correspond to random coincidences

with background γ-rays.

Note the resolutions for a given detector is σ ∼ 1.9 ns and for the whole

detector σ ∼ 2.0 ns which indicates that the timing alignment is satisfactory.
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Figure III.10: Time window for the whole DALI in case of: (a) 26Ne 2018 keV γ

in coincidence; (b) all events. Time in shifted to 100 ns for convenience. The

selected area (100 ns ± 7 ns i.e. 100 ns ± 3.5σ) corresponds to more than 99% of
26Ne 2018 keV γ events in case of Gaussian distribution.

III.2.5 Resolution and accuracy

Errors on the velocity of the emitting nuclei as well as the finite angular aper-

ture of the crystals, lead to broaden the γ-ray peaks obtained after Doppler

correction. Based on Eq. III.5, the resolution of the energy in the frame of

the emitting nucleus E⋆ can be written:

(
∆E⋆

γ

E⋆
γ

)2

=

(
β sin θlab

1 − β cos θlab

)2 (
∆θlab

)2
+

(
βγ2

(
β − cos θlab

)

1 − β cos θlab

)2(
∆β

β

)2

+

(
∆Elab

Elab

)2

. (III.6)

The first contribution, ∆θlab, is due to the finite size of NaI crystals and

is defined as the average angle between two DALI layers, i.e. ∆θlab ≈ 9◦.

This corresponds to a variance σθlab = ∆θlab/
√

12 ≈ 2.6◦. Since here we

determined the angle without taking into account neither the incident nor
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the outgoing angle, we must add to this variance a σθbeam ≈ 1.5◦. The

indetermination of the reaction position in target create an additional effect

of σθtarget ≈ 0.6◦. The summed contribution leads to σθlab ≈ 3.1◦.

The second term is driven by the error on beam velocity due to time

resolution as well as energy loss in target. We estimate it to be σβ/β ≈ 1.7%.

Finally, the last term corresponds to the intrinsic resolution of crystals.

It can be written: σElab

Elab ∝
√
Elab [Iwasaki 01]. The square root dependence

comes from the fact that statistical uncertainty in scintillation-photon col-

lection is the main factor which determines the intrinsic resolution. The

number of photons collected is roughly proportional to the energy, thus the

energy resolution must be proportional to
√
Elab. The factor of propor-

tionality has been determined experimentally from the test of each crystal

using standard 137Cs source placed closed to the crystal. We illustrated the

trend in Fig. III.11 (a), where the values of the resolution were obtained

during experiment, hence in different conditions. We obtained here a factor

of 0.04 MeV−1/2 and one could see that the square-root tendency is nicely

reproduced.

The calculated effects of all contributions are plotted in Fig. III.11 (b).

The dominant effect at all angles on the resolution comes from the intrinsic

resolution. The finite size of the detector affects angles close to the beam axis

whereas the spread on beam velocity plays a role around 90◦. We compared

our trends to the results of simulation, in good agreement. The statistic did

not allow us to measure the resolution experimentally at each angle, but for

the whole DALI we obtained σ = 3 ± 0.15% in good agreement with the

average result from simulation.

The measurement of the first well known excited state of neon isotopes

from 22Ne to 26Ne allowed us to perform a check of the Doppler correction by

identifying the corresponding de-excitation γ in coincidence with the isotope

of interest in the silicon hodoscope. Results are reported in Table III.3 and

shows an accuracy in average better than 1% on the energy centroid, after

Doppler correction.
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Figure III.11: (a) Experimental intrinsic energy resolution function of the γ

energy for one crystal, fitted by σE = α
√

E function. Here α ≈ 0.04 MeV−1/2. (b)

Calculated energy resolution contributions for a 2.018 MeV γ-ray from a 26Ne at

β ≈ 0.32. Dashed line is the finite detector angle contribution, dotted line is the

contribution of the spread in beam velocity, dash-dot line is the contribution from the

intrinsic resolution. Finally the solid line is the quadratic sum. Cross (×) points are

the result from simulation and shaded area the average from experiment.

Isotope Tabulated γ Energy Measured Energy Absolute Deviation

(keV) (keV) (%)
26Ne 2018.2 2021. ≈ 0.1%
24Ne 1981.6 1980. ≈ 0.1%
23Ne 1701.5 1720. ≈ 1.0%
22Ne 1274.5 1281. ≈ 0.5%

Table III.3: De-excitation γ-ray energy measured after Doppler Correction from

various neon isotopes, compared with tabulated values.
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III.3 Silicon detectors

Silicon strip and silicon lithium drifted detectors were placed after the reac-

tion target in order to identify the charged fragments as well as to measure

their energy. The calibrations and data analysis of these detectors are de-

scribed here. We start with energy calibration and resolution, then present

the methods for particle identification and we conclude by discussing the

angular acceptance.

III.3.1 Energy calibration and resolution

Before the experiment, we adjusted the feed-back capacitance of the pre-

amplifiers to match the energy range of the experiment. The 26Ne beam had

an energy of 58.6 MeV/n. The average deposited energy in the SSD layer

and the Si(Li) were, according to calculations based on Bethe-Block formula,

respectively 100 MeV and 1 GeV. Hence, the required energy range is a few

MeV to 200 MeV in SSD and to 2 GeV in Si(Li). For Si(Li), this energy

range exceeds the one of MUST array and specific preamplifiers were built

at the Institut de Physique Nucléaire d’Orsay (IPN Orsay) with a gain of

1.5 mV/MeV. We also performed an estimation of the charge collection from

the SSD which led us to tune their pre-amp gain to 4.4 mV/MeV. With a

pulser the electronic linearity was checked by injecting different charges in

the electronics chain.

To calibrate the silicon hodoscope, we prepared beams at several energies

with very small momentum spread (0.1%). These secondary beams contained

essentially 25Ne with energies of 50, 55 and 60 MeV/n, in the same range as

expected in the experiment. These beams were scattered off a lead target

in order to be in the same condition of energy loss as the one during the

experiment with 26Ne beam. By calculating the energy losses in each layer of

the hodoscope for each energy, we deduced the linear calibration functions in

the region of interest. Results of calibration and comparison with expected

values are presented in Table III.4.
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25Ne Beam E. loss SSD X [MeV] E. loss SSD Y [MeV] E. loss Si(Li) [MeV]

energy Calc. Meas. (FWHM) Calc. Meas. Calc. Meas.

50 MeV/n 155.1 155.1 (4.7) 186.9 186.9 (7.5) 563.8 563.3 (28.2)

55 MeV/n 132.9 132.9 (4.1) 150.1 150.1 (5.2) 802.0 802.6 (24.6)

60 MeV/n 120.4 120.5 (3.4) 132.2 132.3 (4.7) 969.9 969.7 (20.7)

Table III.4: Calculated and measured energy losses after calibration, in the three

different layers of silicon hodoscope. Error is defined as FWHM obtained with the

events in all detectors (not only one) deconvoluted from beam momentum spread

(negligible)

We measured the width of the elastic peak for 25Ne at 60 MeV/n in

the first SSD layer (X) to be 3.4 MeV (FWHM), in the second SSD layer

(Y) 4.7 MeV and in the last Si(Li) layer 20.7 MeV†. This corresponds to

the convolution of straggling effects in the crossed material by the intrinsic

resolution of silicons. From the measured peak position in each detector we

concluded that the resolution effect due to calibration is lower than 0.4%.

While performing the Geant 3 simulation of the experiment we included the

intrinsic resolution of silicon strip detector (FWHM ∼ 1.5 MeV) and lithium-

drifted silicons (FWHM ∼ 9 MeV). The good agreement with data will be

illustrated with the particle identification in Sec. III.3.2.

The angular resolution of the silicon setup placed at 1.2 m from the target

with strips of 5 mm width is σ = 0.07◦. If we include the straggling generated

by crossed materials, the simulation gives a typical value of σ = 0.6◦ in the

center of mass for lead and σ = 0.5◦ for the aluminum target respectively,

for 26Ne at 55MeV/n.
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Figure III.12: (a) E-∆E plot from silicon hodoscope from the 26Ne+natPb

reaction. (b) PID projection from E-∆E in silicon hodoscope for Ne isotopes,

detected in coincidence.

III.3.2 Particle Identification (PID)

The PID of charged fragment hitting the silicon hodoscope is done using the

E-∆E technique, where ∆E is obtained by summing the energy losses in the

first and second layers of hodoscope (X and Y SSD) and E by adding to

∆E the energy deposited in the third layer (Si(Li)). A typical E-∆E plot is

shown in Fig. III.12 (a).

In order to be able to gate on different isotopes using a simple one-

dimension gate, we projected the 2D distribution onto a 1D one using the

formula [Goulding 85]:

A = λ.
(
E ζ+η ∆E − (E − ∆E)ζ+η ∆E

)
+ κ, (III.7)

where A stands for mass number of Ne isotopes, adjusted by λ and κ whereas

ζ and η were adjusted to suppress the energy dependence. This method

provides a better energy independence than the simple projection onto a

†These values correspond respectively to 2.8%, 3.6% and 2% respectively
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parabolic E-∆E relation, and the mass number peak position interval re-

mains constant. The results of this projection for neon isotopes in Fig. III.12 (b)

shows that the peak shape is well reproduced by a Gaussian distribution. The

peak position of 26Ne and 25Ne was checked using corresponding 26Ne and
25Ne secondary beam. For one isotope peak of mass A, and for lead target,

the resolution achieved is σA/A ∼ 1%. We also test it with 25Ne beam at

55 and 60 MeV/n, we achieved a mean at A = 25.06 (σA/A = 0.91%) and

A = 25.03 (σA/A = 0.95%) respectively. We also test PID function for simu-

lated data by Geant 3, which include both position of silicon hodoscope and

resolution. We obtain A = 24.93 (σA/A = 0.94%).

III.3.3 Geometrical acceptance
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Figure III.13: (a) Angular acceptance of silicon hodoscope without and with

beam angular spread effect. (b) Angular acceptance of silicon hodoscope for 26Ne

nucleus without and with beam angular spread effect and material angular straggling

including the lead target. The angle is defined is the center-of-mass frame.

Assuming an intrinsic silicon efficiency of 100%, from Monte-Carlo sim-

ulation with Geant 3, we estimated the angular acceptance of the silicon
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hodoscope. The first case was purely geometrical‡ i.e. we made the hypoth-

esis that particles were emitted from the center of a infinitely thin virtual

target. We only required the particles to hit the three layers of silicon. A

second case was studied using real beam trajectories extracted from tracking

information of the PPACs. The beam spread hence influences both incoming

angle and position on target, see results in Fig. III.13 (a). One can note that

efficiency at zero degree is then equal to zero no more but ≈ 4%.

A third study have been made for a β = .32 velocity 26Ne beam and its

results are displayed in Fig. III.13 (b). In the first case no spread from beam

was added. There was neither the target, nor the surrounding air or He

bag. This was just to test this effect of angular straggling in silicons, which

appeared to be negligible. In the second case we used the experimental beam

spread in angle and energy and added the target, the air and the helium bag

to test the effect of straggling from upstream material. As one can expect,

the acceptance interval becomes broader and the detection efficiency reaches

∼ 10% at zero degree.

III.4 Neutron detection

This section deals with the neutron wall calibration. The different s of the

calibration: energy, time-of-flight (TOF), position as well as their optimiza-

tion are presented. They were performed, except for TOF, with the help of

cosmic ray muon data taken during dedicated runs. Finally the efficiency of

the detector (intrinsic and whole wall) is estimated.

‡With the use of the so-called geantino particle, a special particle in Geant 3 which

never interacts but tests detectors geometry.
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III.4.1 Calibration method for neutron detectors using

cosmic rays

The procedures relies on the detection of cosmic-ray muon events which where

accumulated in separate runs before and after the experiment. To record

these events, the neutron detector wall was in self-triggering mode with the

condition that at least 8 of the 116 scintillators were fired.

Muons reach the earth essentially vertically from the sky with a total

energy of approximately 4 GeV [Hagiwara 02]. Their energy loss in plastic

rods can be estimated by taking into account the fact that at this energy

muons are located around the minimum of ionization of ∼ 2 MeV cm2/g.

BC408 neutron plastic rods used here have a density of ∼ 1 g/cm3 and a

6 cm thickness which imply an energy loss of ∼12 MeV. A detailed analysis

using simulations [Fukuda 04] for 1 GeV/c muons gives 11.7 MeV for the

most probable energy loss.

Due to the small thickness of the neutron rods with respect to the cosmic

ray energy, the deposited energy distribution follows a Landau distribution

[Landau 44], which is characterized by a narrow peak followed by a long tail

at higher energies as illustrated in our case in Fig. III.14 (a). This distribution

well can be approximated by [Moyal 55]:

Φ(κ) =
√
e−(κ+e−κ)/(2π) (III.8)

where κ is proportional to the energy loss.

III.4.2 Energy calibration of light output

To properly set the detection threshold of deposited energy in the neutron

scintillator rods, a calibration of light output amplitude was required. γ-rays

from 60Co (1.17 and 1.33 MeV§) as well as muon events (∼ 12 MeV, see

Sec. III.4.1) were used for this purpose.

§Hence a Compton peak at ∼ 1 MeVee

64



III.4 Neutron detection
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Figure III.14: (a) Experimental energy distribution of deposited energy of muons,

fitted with the [Moyal 55] function. (b) Light attenuation measured using muons in

a 2 m plastic rod, fitted with a A0 exp(−x/λ) function, A0 ∼ 12 MeV and

λ ∼ 1500 mm.

The light attenuation effect in plastic scintillators, illustrated in Fig. III.14 (b),

was studied by fitting the detector response as a function of the distance x

to the center by A0 exp(−x/λ), where A0 is the energy deposed and λ is the

bulk attenuation length. In an infinite bulk, λ only depends on the material

properties, but here the finite geometry makes it strongly dependent on the

size of the detectors. We typically obtain here λ ∼ 1.5 m for 2 m long plas-

tics, λ ∼ .7 m for 2 m long rods made from two 1 m plastics glued together

and λ ∼ .8 m for 1 m long rod. The amplitude for a detector was then the

geometrical mean of the light output at the right end (AR) and at the left

end (AL):

AL ≈ A0 e
+x/λ and AR ≈ A0 e

−x/λ (III.9)

⇒ <A> =
√
ALAR ≈ A0, (III.10)

Here the middle of the plastic rod is given by x = 0 and x > 0 corresponds

to the right side.
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Figure III.15: Remaining amplitude/position dependence (a) before and (b) after

correction, plot in case (a) with the polynomial fit. This is done before position

calibration by using time difference between left and right end, instead of lengths to

be free from position calibration, as described in Sec. III.4.5. These graphs are

obtained using cosmic ray muons as source of charged particles.

Due to complex reflections and solid angle effects from which the pho-

tomultiplier sees the plastic, an amplitude/position dependence remains.

We corrected it using a quadratic fit. The dependence is illustrated in

Fig. III.15 (a) and its correction in Fig. III.15 (b). For some 2 m neutron

detectors made from two 1 m plastic scintillators glued together, a disconti-

nuity in amplitude is observed, and we correct this effect by adding an offset

to the amplitude in one part of the detector.

III.4.3 Time calibration

A calibration of the absolute timing of each rod was made by a run utilizing

a thick brass plate placed at the target position producing a large amount of

prompt γ-rays and neutrons. For TOF measurement, the arrival time in one
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III.4 Neutron detection

neutron detector is defined by:

<T >=
TR + TL

2
(III.11)

where TR is the time measured for the right PMT and TL the time measured

for the left one, the “start” signal being provided by the F2 plastic. The

TOF from F2 to the target must then be subtracted, to obtain the TOF of

the neutron from the reaction point, which we supposed in the middle of the

target:

TOFneutron, Target→Wall =<T > − < TOF >F2→Target (III.12)
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Figure III.16: (a) Definition of < TOF >F2→Target and < TOF >F0→F2

visualized on a simplified RIPS scheme (b) < TOF >F0→F2 vs < TOF >F2→Target

calculated and fitted by an linear function.

Our setup does not yield a direct measurement of the time difference

between F2 and the target. Hence, we extrapolated it from the TOF between

the F0 production target to the F2 plastic. For that purpose we calculated the

averaged < TOF >F2→Target value corresponding to a given < TOF >F0→F2

for the 26Ne beam, see Fig. III.16, i.e. :

< TOF >F2→Target= f (< TOF >26Ne, F0→F2) (III.13)
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where f is well described by a linear function. The time resolution for

< TOF >26Ne, F0→F2 is σ ∼ 0.6 ns. Since the path length is greater, the

resolution on the energy of the incoming nucleus is better than the one ob-

tained by the TOF between F2 and PPACs at F3 as reference (∼ 0.8 ns). We

took into account the effect of all materials crossed after F2: the F2 plastic,

the two PPACs, the kapton window, the air between kapton and target and

half of the target, while extracting the TOF between F2 and target.
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Figure III.17: (a) Example of calibrated absolute TOF spectrum with brass target

in one neutron plastic. The first peak (γ) corresponds to gammas emitted from

target, the bump (n) to neutrons. (b) Deposited energy vs time-of-flight in neutron

detectors for 26Ne impinging onto lead target. The second peak at ∼ 23 ns

correspond to γ-rays emitted from the silicon setup.

The TOF spectrum obtained with the brass target is displayed in Fig. III.17 (a)

and the correlation plot between deposited energy and TOF for the lead tar-

get in Fig. III.17 (b). Since the neutron detector wall was placed 3.6 m after

the target, the TOF for γ is ∼ 12 ns and, with a beam of velocity β ∼ c/3

the TOF for neutron is centered around 40 ns.

The deposited energy of γ-rays in the plastics is typically below 2 MeV

whereas neutrons (and other particles)’s energy loss is more widely dis-
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III.4 Neutron detection

Particle Energy [MeV/n] Time of Flight [ns] Deviation [%]

Calculated Experiment

protons 70 34.6 34.1 ± 1.1 1.5

protons 50 41.3 41.4 ± .75 0.3

protons 40 46.7 46.6 ± .9 0.2

tritium 87 30.6 30.0 ± 1.2 2.0

Table III.5: Results for proton TOF for a given Long Neutron detector (number

7, center) in the first layer of the wall. Due to the fact that protons essentially

stopped in the first layer and their angular spread was rather limited, only few

detectors of the first layer were able to be tested. The error presented is ±FWHM/2

and the deviation is defined by |Eth. − Eexp.|/Eth.

tributed. We confirm this fact by plotting the correlation between deposed

energy and TOF, see Fig. III.17 (b). In this figure the average deposed γ-

ray energy (at TOF∼ 12 ns) appears to be below 2 MeV. In the following

we rejected events which deposed less than 2 MeV in order to disentangle

between γ-ray and neutron events. One should note that this figure shows

two γ peak: one at 12 ns and one at 23 ns. The first peak is γ-rays emitted

from the target whereas the second γ are emitted from the silicon setup.

The larger amount of the latter events is due to the trigger condition which

required the silicons to be hit.

We checked the time calibration (after slew calibration, see Sec. III.4.4)

by using four different energy proton (or tritium) secondary beams (70, 50,

40 MeV for protons and 87 MeV/n for tritium). Only a few central detec-

tors were hit by these direct beams. As can be read in Table III.5, a good

agreement is found between the calculated TOF and the experimental one

extracted after calibration. However, the resolution is not good because pro-

tons (or tritium) cross and interact with many materials before arriving into

the neutron wall.
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III.4.4 Slew (walk) correction

Description

For timing signals, leading edge (LE) discriminators were used. It produces

a strong time/amplitude dependence termed walk or slew. This effect is

due to the fact that the time signal occurs when the amplitude exceeds the

threshold. However, as illustrated in Fig. III.18 (a), the time to reach the

threshold depends on the amplitude of the signal. For an improved resolution

of TOF or position measurement, this effect must be corrected for.

(a) (b)
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T  − T [ns]
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Figure III.18: (a) Illustration of the walk effect, using real signal from 2 m

neutron plastic detector (presentation strongly inspired from [Leo 94]) (b) LE

discriminator timing minus CFD timing we suppose without slew effect. The dashed

line is obtained by fitting the data with the function ∆T = ∆T0 − K/
√

E

For some detectors, we redirected the timing signal both into LE and

a constant fraction discriminator (CFD). By supposing that the CFD does

not create any slew, the dependence with the energy of the time difference

TLE − TCFD measures the slew effect for the LE. The result is displayed in

Fig. III.18 (b) and one can see that the time/amplitude dependence can

be well approximated by T = T 0 − K/
√
A, where A is the light output

at one end (see Fig. III.18 (b)). In the following, K will be referred to as

slew coefficient. The rise time of the plastic-scintillator signal is ∼ 6 ns

and therefore the time shift from the slew effect cannot be more than 6 ns.
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III.4 Neutron detection

The slew is corrected for each rod’s end according to the above formulas.

We eliminated the time/amplitude dependence due to attenuation in the

plastic scintillator by selecting events from the center of the plastic rod, thus

obtaining similar light attenuation at both ends.

Finally, timing for one neutron detector is defined as:

<T >=
1

2
(TR + TL − KR√

AR

− KL√
AL

), (III.14)

where R and L denotes the right and the left end respectively.

3

1

2

4

29

µ

Figure III.19: Schematic explanation of propagation method through plastic

scintillators. In this case, we start from detector 3 and propagate to both up and

down, while selecting the center of the scintillators (dash-dot line area) to obtain a

similar light attenuation at both ends.

The slew coefficients K have been determined in a procedure detailed in

the next section.
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Slew correction procedure

We considered two consecutive detectors in one layer: one for correction (C)

and one for reference (R). We define:

δ TS(AC
S) = T C

S (AC
S) − TR

S (AC
S); S : Left, Right (III.15)

δ T (<AC>) =
(
δ TL(<AC>) + δ TR(<AC>)

)
/2. (III.16)

We fitted the two dimensional δTS vs AC
S using the slew function, and

obtained the slew coefficients.

We started from the top detector of a layer, called 1. By fitting, we

obtained slew coefficients for both sides of the next rod below, called 2.

Since the reference detector was not corrected yet, these coefficients included

the slew effect from both the reference and corrected detectors. In the case

of an R detector with a high slew, coefficients of the C detector can even be

negative and the time for low-energy events appears less than that for high

energy ones. We continued to propagate the correction, using 2 as a reference

for 3, then 3 for 4, up to 28 as a reference for 29.

When the last detector had been fitted, we restarted the same propagation

algorithm, from detector 2. This last detector is used as a reference for both

1 and 3, then 3 for 4 up to 28 as a reference for 29. We started again from 3

as a reference for 4 and 2, then 4 for 5, 2 for 1, and so on, see illustration in

Fig. III.19 (b).

The coefficients obtained after using all the detectors as starting points,

i.e. , after 29 resets, were averaged to give the 29 (×2 sides) slew coefficients.

We validated the correction by confirming that neither δTS nor δT depends

on AC
S or <AC >, respectively, for all detectors. The extracted coefficients

were of the order of 4 ns.MeV
1
2 .

With the method using cosmic rays, a typical time resolution of 850 ps

(FWHM) was for γ-rays. The same detectors, before correction, showed a

average resolution of 2 ns. The “direct” correction using energetic neutrons,

emitted from the 7Li(p,n)7Be reaction, provides however a better correction

and the resolution achieved is 700 ps [Fukuda 04]. However our method does
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(a) (b)

Figure III.20: (a) Example of muon’s tracking before position correction (+) and

after correction (◦), plotted with a fitted track. (b) Example of position difference

between the track and the real and non corrected hit position. After position

calibration, this distribution also gives the error on the trajectory of the muons,

which is σ ≈ 15 mm.

not require additional beam time.

III.4.5 Position calibration

The time difference ∆T = TL − TR provides the horizontal position. The

maximum value of ∆T , ∆Tmax, corresponds to photons that travel the entire

scintillator length L. We measured ∆Tmax ≈ 30 ns for L = 2.1 m and

∆Tmax ≈ 18 ns for L = 1.1 m. Then, L/∆Tmax provides the mm↔ns

correspondence.

For the relative position calibration between the detectors within one

layer, we selected the highest multiplicity events in the cosmic ray measure-

ment. For one event, 29 pairs of hit coordinates (Xi, Yi)i=1,29 were fitted

to provide an equation that describes the muon’s trajectory: X = αY + β

as one can see on Fig. III.20 (a). For each detector we obtained the dis-
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Figure III.21: Illustration of the

method of improvement of the absolute

position calibration using vertical plastic

detectors (vetoes) placed in front of the

neutron wall. We required the incoming

charged particle to hit to overlap vetoes

before hitting the neutron plastic rod

behind.

NEUTRON
PLASTIC

VETO 1
VETO 2

1 cm

p, t

tribution of differences between the fitted trajectory and real coordinates,

∆iX = Xi − (αYi + β), which gives the individual horizontal position shift

(for illustration see Fig. III.20 (a)). The overall horizontal position resolution

for muons was found to be 2 cm (FWHM).

The absolute position of the first layer is obtained by utilizing a proton

beam run. Protons stop in the first layer at a well-known position deter-

mined using the veto detectors placed in front of the neutron wall. The

width of these vetoes is of 10 cm but they overlap over less than 1 cm which

as illustrated in Fig. III.21. By taking only data in coincidence with 2 over-

lapped vetoes, we improved the position resolution. The three other layers

are aligned on the first one by relying on the geometrical alignment of each

edge at each side. This method is tested using the 87 MeV/n tritium run

which stop in the second layer with a good result.

III.4.6 Efficiency and Angular acceptance

Efficiency

According to previous analysis [Fukuda 04] using the same plastic neutron

detectors, the efficiency is well reproduced at our intermediate energies by

code CECIL [Cecil 79].
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III.4 Neutron detection

The code CECIL is a Monte-Carlo simulation of neutron propagation in

plastic, which includes the C(n, γ), C(n, α), C(n, 3α), C(n, np), C(n, 2n) and

H(n, p) reactions in their inelastic channels as well as in their elastic channels.

The light response is taken into account. The finite size of the detector and

the possible escaping charged particles are taken into account for the energy

loss. The results presented in Fig. III.22 are obtained by supposing a neutron

incident in the direction perpendicular to the center of the front [2.1 m×6 cm]

face of a 6 cm thick parallelepipedic rod.

For experimental verifications, a 7Li(p,n)7Be(g.s.+0.43 MeV) reaction

[Taddeucci 90] was performed with proton of 70 MeV impinging on lithium

target to produce neutrons with an energy of about 65 MeV. The neutron

was identified by its time-of-flight. The accuracy on the efficiency for long

neutron detectors is of 6%. The light-output threshold dependence of the

efficiency as obtained in the experiment is comparable with simulation using

the code CECIL, see Fig. III.22 (a).
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Figure III.22: (a) Neutron efficiency function of the light output threshold in LN

plastic, as calculated by CECIL and as given by the experiment. (b) Neutron

efficiency in LN plastics function of the neutron kinetic energy, as calculated by

CECIL and as given by the experiment.
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The same code is used to extrapolate the dependence of the efficiency

on the energy of the detected neutron, see Fig. III.22 (b). The efficiency

calculated has an average of 8.0%±0.8% in the 30 MeV to 100 MeV neutron

incident energy range.
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Figure III.23: (a) Neutron wall angular acceptance function of the angle in

degrees (b) Neutron angular resolution (FWHM) function of the angle in degrees,

with its minimum at 0.64◦.

Angular acceptance and angular resolution

The geometrical acceptance is deduced using a Monte-Carlo simulation. Fig. III.23 (a)

shows its angular dependence in the laboratory frame. This angle is defined

between an hypothetical incident beam passing through the center of the tar-

get and the center of the neutron wall front face, and a neutron coming from

the center of the target into the first layer of the neutron wall. The same

definition of angle is used for estimating the angular resolution (FWHM).

The position resolution of 4 cm correspond to an average angular resolution

of 0.6◦. The small angular dependence is shown in Fig. III.23 (b).
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Chapter IV

Results

In this chapter, we present the results that we have obtained on the elas-

tic and the inelastic scattering of the 26Ne nucleus impinging on lead and

aluminum targets.

The elastic scattering data were analyzed mainly for two purposes:

i) to check the validity of the optical potentials to be used in the analysis

of the inelastic scattering.

ii) to confirm the normalization of the data as well as the geometrical effi-

ciency extracted from the simulations.

In the second step, the excitation of the first 2+ state in 26Ne is studied

by using two methods and the comparison with previous results is presented.

Finally, the inelastic excitations induced by aluminum and lead targets

above the neutron emission threshold are investigated. The method to recon-

struct the 26Ne excitation energy in the 25Ne+n decay channel is presented

and applied for both targets. In the last part, the extracted strength is

compared with the predictions using the most advanced microscopic models.
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IV.1 Elastic scattering of 26Ne

IV.1.1 Optical potential

In the elastic scattering, the projectile direction and/or state of polarization

is changed during the interaction with the target, but without loss of kinetic

energy. The Schroedinger equation can be written, in the center of mass

system (CM) of the two nuclei:

(
− ~

2

2µ
∇2

r + U(~r)

)
ψ(~r) = E ψ(~r) (IV.1)

where ψ(~r) is the total wave function of the system, ~r the relative position

of the two particles, U(~r) the central potential. By analogy with optics, we

can describe its asymptotic wave function, far from the reaction point, as the

sum of an incident plane wave and an outgoing (scattered) spherical wave:

ψ(~r)
r→∞−→ ei~k~r + f(θ, φ)

ei~k~r

r
with r = |~r | . (IV.2)

Therefore, all the scattering information are contained in the scattering am-

plitude f(θ, φ). The angular distribution is expressed by the differential cross

section:
dσ

dΩ
= |f(θ, φ)|2 . (IV.3)

The optical model supposes that the interaction between an incident particle

and a nucleus of mass number A is well described by an average nucleon-

nucleus interaction written as a single absorbing central potential well, the

optical potential U(r) = V (r) + iW (r). V (r) and W (r) are the real and

the imaginary potential: V (r) corresponds to a simple reflection of the in-

coming wave whereas W (r) is introduced to reproduce the possible absorp-

tions before reemission, of this wave. Its expression is often simplified by a

parametrization of a Woods Saxon form F(x):

U(r) = −(V + iW ) F

(
r −R

a

)
; F(x) =

1

1 + exp (x)
(IV.4)
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with V,W real and positive, A the mass number of the nucleus, R = r0A
1/3

its radius (r0 is call reduced radius) and a the diffuseness. To describe the

data satisfactorily, a spin-orbit term (SO) and a Coulomb potential (C) are

added to the real part (ℜ) of the potential, and a surface term (D) to the

imaginary part (ℑ), which gives:

ℜ(U(r)) = V (r) = VC(r) − V F(xV ) + VSO

(
~

mπc

)2
1

r

∂ F(xSO)

∂ r
~L · ~σ, (IV.5)

ℑ(U(r)) = W (r) = −WF(xW ) − 4WD
∂ F(xD)

∂ r
, (IV.6)

where xα = (r − Rα)/aα, mπ is the mass of pion, ~L · ~σ the scalar product

between the spin of the incoming particle and the angular momentum, and

VC(r) the Coulomb potential due to a pointless charge Zpe interacting with

an uniformly charged (Zte) sphere of radius RC :

VC(r) =






ZpZte2

r
for r ≥ RC

ZpZte2

2RC

(
3 − r2

R2
C

)
for r ≥ RC

. (IV.7)

One frequently assumes RD = RW and aD = aW .

In heavy ion scattering, one should take into account the size of the two

nuclei reacting, [Satchler 83] proposes:

Ri ≈ ri(A
1/3
t + A1/3

p ) ; RC ≈ RC, t +RC, p (IV.8)

as expressions for nuclear and Coulomb radius respectively, where the t and

p in index stand for target and projectile respectively.

IV.1.2 Extraction of experimental angular distributions

Method

Elastic scattering data were obtained from downscaled beam events (see

Chapter II) by selecting 26Ne scattered particles in the silicon hodoscope.

The scattering angle of 26Ne in the laboratory frame θlab is deduced via the

position measured in the silicon strip detectors, corrected from the incoming
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beam angle. We suppose that the reaction occurs in the middle of the target

and at the position extrapolated using the PPAC information as explained

in Sec. III.1.2, hence :

cos θlab =
~pi

|~pi|
· ~pf

| ~pf |
(IV.9)

with ~pi and ~pf are incident and outgoing momenta∗. We express the angle in

the center of mass system of the incoming and target nuclei using the inverse

of formula Eq. C.28:

tan(θCM) =
Γ tan(θlab)

(√
1 + tan(θlab)2 Γ2 − tan(θlab)2 Γ2 χ2 − χ

)

tan(θlab)2 Γ2 χ+
√

1 + tan(θlab)2 Γ2 − tan(θlab)2 Γ2 χ2
,

(IV.10)

where χ is the ratio between the velocity of the CM and the velocity of

the particle of interest as defined in Eq. C.27 for the 26Ne. From the θCM

distribution we deduced the angular distribution:

dσ

dΩ
(θCM) [mb/sr] =

Nscat (θCM)

NincNtarget sin(θCM) ∆θCM 2π ǫ(θCM)
(IV.11)

where Nscat is the number of nuclei scattered, Ninc is the number of inci-

dent nuclei in the beam, Ntarget is the target thickness in mb−1, ∆θCM the

histogram binning size and ǫ corresponds to the angular acceptance of the

silicon detectors illustrated in Fig. III.13 (b).

To reconstruct the elastic distribution we subtract the inelastic scattering

spectrum corresponding to 26Ne in coincidence with γ-rays, as described in

Sec. IV.2, from the inclusive spectrum. Events close to the center of the

silicon hodoscope, corresponding to the direct beam, were rejected. The

theoretical distribution is obtained by Monte-Carlo simulation using Geant 3

with an angular distribution calculated using ECIS 97 [Raynal 97] as input.

The simulation included the real beam events as obtained from the PPAC

data for downscaled beam events, taking into account all materials located

after the vacuum pipe and the exact geometry of silicons.

∗Note that it is not necessary to calculate the full momentum since ~p/|~p| is simply the

direction.
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V W r a rc ac

[MeV] [MeV] [fm] [fm] [fm] [fm]

(a) 20Ne+208Pb 63.2 32.4 1.168 0.637 1.2 0.559

(b) 26Ne+27Al 67.0 35.0 1.080 0.750 1.2 0.556

Table IV.1: Optical parameters used in this analysis: (a) is extracted from

[Suomijärvi 89] (b) Empirically deduced from various references (see text). Note that

we have equality between real and imaginary part for the reduced radius r and the

diffusiveness a.

The elastic scattering angular distribution of 26Ne onto natPb at 55 MeV/n

is shown in Fig. IV.1 (a). It is satisfactorily reproduced by using the experi-

mental 20Ne+208Pb optical potential parameters at 40 MeV/n [Suomijärvi 89]

listed in Table IV.1 (a). These potential parameters are hence considered

valid for our further analysis.

In the case of elastic scattering on aluminum target, we tested different

published potential parameters:
20Ne(40 MeV/n)+90Zr [Suomijärvi 89]

12C(84 MeV/n)+12C [Buenerd 84]

16O(94 MeV/n)+12C, 28Si or 40Ca [Roussel-Chomaz 88]

16O(30 MeV/n)+16O [Khoa 95].

Since none of them gave acceptable results for our case, we used them as

starting point to deduce empirically the parameters listed in Table IV.1 (b).

The hypothesis made to extrapolate our parameters are:

– We considered that the reduced radius r and the nuclear diffusiveness a

only depends linearly on the sum of the two nuclei radius of interest, i.e.

r, a ∝ A
1/3
p + A

1/3
t .

– We use the Coulomb parameters rc and ac from 20Ne(40 MeV/n)+90Zr.
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Figure IV.1: Experimental dσ
dΩ/ dσ

dΩRuth
ratio, in the center-of-mass system, for

(a) lead target (b) aluminum target (open circles) compared to ECIS 97 calculation

(solid lines).

– Following [Broglia 91], we suppose that the real volume part V of the

potential depth depends linearly on the incident energy.

– The imaginary part of the potential reproduces the possible absorption

and its dependence on the other parameters is more complicated. This is

confirmed by the experimental values of the volume potential W . Check-

ing that the other coefficients are acceptable by looking at the effect of

their variation on the angular distribution, and knowing the deformation

parameters from the analysis on lead target, we adjusted W to fit the elas-

tic scattering as well as the 18 ± 3(stat) mb total cross section reaction

for the first 2+ state of 26Ne obtained via the number of gamma-rays (see

Sec. IV.2.2).

The result using these parameters is plotted in Fig. IV.1 (b) and we

observe a good agreement with the data. It hence validates the use of these

parameters in our case.
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IV.2 Inelastic scattering of 26Ne below the neu-

tron emission threshold

By selecting the 2018 keV gamma decay from the first 2+ to the ground

state in coincidence with 26Ne in silicon telescopes, we built the angular

distribution for the inelastic scattering excitation to the 2+ state. By fitting

it using the ECIS 97 code we extracted its B(E2; 0+ → 2+
1 ) value. For

comparison, this B(E2; 2+
1 ) was also deduced from the γ-decay of the 2+

1

state measured with the photon detector array, using the virtual photon

method.

IV.2.1 The Distorted Wave Born Approximation

The distorted wave Born approximation (DWBA) is the most frequently

used method to analyze inelastic scattering data. The scattering potential

U(r) is described by the elastic scattering U0(r) potential to which we add

a perturbation ∆U , causing the inelastic scattering. The transition matrix

element from the initial state i to a given final state f is written:

Tfi =

∫
χ

(−)
f (~k, ~r) 〈f |∆U(r) |i〉χ(+)(~k, ~r) d~r, (IV.12)

where χ(+), χ(−) are the solutions of the Schrödinger equations for the elastic

scattering with outgoing and incoming boundary conditions respectively. The

differential cross section for inelastic excitation in the center of mass of the

two scattered particles is written:

dσ

dΩ
=
( µ

2π~2

)2 kf

ki

∣∣Tfi

∣∣2, (IV.13)

where µ is the reduced mass of the system and ki, kf the initial and final

momentum respectively.

If the excitation sustained deforms the nucleus, and within the frame-

work of the dynamical theory of the collective motion of a liquid drop, this

deformation can be expressed in terms of variation of the radius, which is
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function of the azimuthal and polar angles, with a value around equilibrium

radius R0 i.e. R(θ, φ) = R0 + δR(θ, φ). In the deformed optical model, it

is assumed that the optical potential follows the shape of the density of the

nucleus, by expanding it about R0:

U(r, R) = U(r, R0) +

(
δU

δR

)

R0

(R−R0) + . . . (IV.14)

which leads by identification at the first order to ∆U = ∂ U(r,R0)
∂ R

(R−R0).

The nuclear radius can be developed onto the spherical harmonics basis:

R = R0

[
1 +

∑

λµ

αµ
λ Y

µ
λ (θ, φ)

]
, (IV.15)

where αµ
λ is proportional to the deformation parameter βµ

λ . Inserting Eq. IV.15

into Eq. IV.14 leads to

∆U = R0

(
δU

δR

)

R0

∑

λµ

αµ
λ Y

µ
λ (θ, φ) (IV.16)

The elastic scattering potential as written in Eq. IV.5 is composed of

a nuclear term and a Coulomb term. For a given multipolarity λ, in the

hypothesis we separate the hadronic deformation length δN
λ from the charge

deformation length δC
λ , the nuclear part of the optical potential will be only

affected by the nuclear deformation βN
λ while the Coulomb potential will be

affected by the charge deformation βC
λ . Note that these different lengths and

deformations are often related together via :

(
δN
λ = βN

λ RN

)
=
(
δC
λ = βC

λ RC

)
= βλR (IV.17)

where RN , RC and R = 1.115A1/3 − 0.53A−1/3 are respectively: the nuclear,

the Coulomb and the half density radius .

For a 0+ → 2+ transition in an even-even nucleus, the collective defor-

mation model gives the following relation between βC
2 and its corresponding

B(E2):

B(E2; 0+ → 2+) =

(
3

4π
Zp eR

2
C β

C
2

)2

(IV.18)
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where RC is the Coulomb radius written 1.2A
1/3
p fm.

IV.2.2 B(E2) calculation

26Ne gamma decay analysis

Ne
16

E I
π

      0 0
+

2018.2(1) 2
+

3691.2(3) 0
+

Sn = 5580       

Figure IV.2: Adopted levels and gammas in 26Ne

The adopted gamma transitions and levels for 26Ne are given in Fig. IV.2.

The Doppler corrected energy spectrum for a γ multiplicity strictly equal to

1, in coincidence with a 26Ne in the silicon telescope, is presented in Fig. IV.3.

The spectrum obtained with the empty target has been subtracted from both

the lead and the aluminum target spectra after normalization to the same

number of incident particles. The 26Ne 2+
1 state at 2022 ± 62 keV is clearly

observed. The peak at 4130± 140 keV indicated by the arrow ↓ is present in

the non-Doppler corrected distribution, in lead, aluminum and empty target

spectra with a narrow width so we conclude that it does not come from the

interaction with the target.

85



Results

0

100

200

300

400

500

600

700

800

1000 2000 3000 4000 5000 6000

26
Ne(2

+
)

↓

  E [keV]

C
o

u
n

ts

Figure IV.3: Doppler corrected γ-ray energy distribution in coincidence with
26Ne, for lead target. The shaded area corresponds to the integrated number of

gamma taken as really emitted from 26Ne. The arrow ↓ corresponds to γ-rays

identified as emitted from the background (see text).

In order to investigate the feeding of the 2+
1 state through the higher 0+

2

excited state decay, we examined the gamma-gamma correlations. In a first

step we plot the two dimensional energy spectrum of γ2 versus energy of γ1,

where γ1 labeled the γ with higher energy, as shown in Fig. IV.4 (a). A

correlation is clearly seen between ∼ 2 MeV and ∼ 1.7 MeV gammas. We

assign the peak at 1683 ± 60 keV (Fig. IV.4 (b)) to the cascade from the

adopted 3691.2(3) keV 0+
2 to the 2018.2(1) keV 2+

1 state. We estimated the

ratio of the intensities of the 1667 keV
/
2018.2 keV lines to be 10 ± 5% for

the reaction on lead and 20± 5% for aluminum target. In the following, we

will take into account this contribution to the 2 MeV γ-ray cross section and

angular distribution.
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Figure IV.4: Analysis with gamma multiplicity strictly equals to 2: (a) γ2 energy

vs γ1 energy where E(γ1) > E(γ2), see details in Sec. IV.3.2. (b) Energy distribution

of γ2 in coincidence with E(γ1) ∈ [1950 : 2090] keV.

B(E2) extraction using angular distributions

The differential cross section for the inelastic scattering of the first 2+ excited

state in 26Ne is obtained by building the angular distribution of 26Ne in the

silicon detectors in coincidence with the 2020 ± 150 keV gamma-rays. The

peak in Fig. IV.5 (a) is superimposed onto a continuum, which can be well

reproduced by means of a exponential fit normalized to the high energy

part of the γ-rays spectrum [Yamada 04]. Here, the background is removed

by subtracting from the angular distribution gated by the 2020 γ peak the

angular distribution gated on the adjacent area (centered at 2320 keV) with

the same ±150 keV width and normalized by a 1.25 factor. This factor is

obtained as the ratio of the areas delimited by the 2020 ± 150 and (2020 +

300) ± 150 keV γ-rays in the exponential background previously discussed,

see Fig. IV.5 (a).

The resulting angular distributions are presented in Fig. IV.5 (b) for the

lead target. By using ECIS 97 code with the optical parameters of 20Ne at
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40 MeV/n impinging on 208Pb [Suomijärvi 89] and under the hypothesis that

the nuclear (δL=2
N ) and the Coulomb (δL=2

C ) deformation lengths are equal, we

deduced a B(E2) of 87 ± 13 e2fm4 which reproduces the integrated excited

γ-decay cross section of 68(8) mb (see below). The corresponding calculated

angular distribution for the inelastically scattered 26Ne well reproduce the

experimental distribution. Note that the pure Coulomb assumption (dashed

line) does not well reproduce the data.

(a)

0

100

200

300

400

500

600

700

800

1000 1500 2000 2500 3000

26
Ne(2

+
)

Background

  E [keV]

Counts

(b)

10
3

0 1 2 3 4 5 6

dσ/dΩ [mb/sr]

Figure IV.5: (a) Experimental 26Ne energy gamma distribution (•) with lead

target. Solid line is an exponential fit to the background. Dashed �✁�
�✁�
✂✁✂
✂✁✂

area is gammas

taken as equivalent background for the 2+ γ-ray energy distribution (dashed �✁�
�✁�
✂✁✂
✂✁✂

area).

(b) Angular distribution for the first 2+ excited state of 26Ne on lead target

compared to ECIS 97 calculation: in solid line the calculated angular distribution

with βN = 0.319 and βC = 0.310, in dashed line the calculated result with pure

Coulomb excitation (βN = 0.0, βC = 0.466.) . Both calculations give an integrated

cross section of 68 mb.

The distribution obtained for the aluminum target, using the same method,

with the above deformation parameters and the optical potential described in

Sec. IV.1 gives a good agreement with the data as can be seen in Fig. IV.6 (b).
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Figure IV.6: (a) Experimental 26Ne energy gamma distribution (•), for aluminum

target. Solid line is an exponential fit of the background. Dashed �✁�
�✁�
✂✁✂
✂✁✂

area is gammas

taken as equivalent background for the 2+ γ-ray energy distribution (dashed �✁�
�✁�
✂✁✂
✂✁✂

area).

(b) Angular distribution for the first 2+ excited state of 26Ne on aluminum target

compared to ECIS 97 calculation.

B(E2) extraction using the equivalent photon method

Our result using angular distribution is now compared to the previous result

and method using the equivalent photon method.

Theoretical considerations The reduced transition probability for elec-

tromagnetic transitions is defined by:

B(πλ; Ii → If ) =
∑

µMf

|〈JfMf |M(πλµ)|JiMi〉|2 (IV.19)

=
1

2Ji + 1
|〈Jf ||M(πλ)||Ji〉|2 (IV.20)

where M(πλµ) is the multipole operator for electromagnetic transitions and

|Ji〉 (|Jf〉) is the initial (respectively final) state of angular momentum J .

According to Winther and Alder [Winther 79], it is directly related to exci-
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tation cross section by:

σi→f =

(
Zp e

2

~c

)2∑

µMf

k2(λ−1)B(πλ; Ii → If )

e2

∣∣∣Gπλµ

( c
v

)∣∣∣
2

gµ(ξ(bmin))

(IV.21)

where Gπλµ(x) is a function of the associated Legendre polynomials P µ
λ (x)

and gµ(x) is function of the modified Bessel function Kµ(x). Their expres-

sions in the electric transition case (π = E) are:

GEλµ (x) = iλ+µ

√
16π

λ (2λ+ 1)!!

(
(λ− µ)!

(λ+ µ)!

)1
2 (
x2 − 1

)− 1
2 (IV.22)

×
(

(λ+ 1)(λ+ µ)

2λ+ 1
P µ

λ−1 (x) − λ (λ− µ+ 1)

2λ+ 1
P µ

λ+1 (x)

)

gµ(x) = π x2

(
|Kµ+1(x)|2 − |Kµ(x)|2 − 2µ

x
Kµ+1(x)Kµ(x)

)
(IV.23)

In Eq. IV.21 gµ(x) is function of the adiabaticity parameter ξ(b), where

b is the impact parameter. In the non-relativistic limit (v/c≪ 1), it is given

by the relation:

ξ(b) =
ωfi

vγ

(
b+

π

2

ZpZte
2

M v2 γ

)
(IV.24)

where M[MeV ] ≈ 981. Ap∗At

Ap+At
is the reduced mass of the two nuclei of charge

and mass (Zp, Ap) and (Zt, At), v the velocity and γ the Lorentz factor.

The energy of the transition is expressed by its frequency ωfi. Finally, the

minimum impact parameter bmin in Eq. IV.21 is the one below which nuclear

reactions will occur with higher probability than Coulomb induced ones and

hence should be greater that the sum of the two nuclear radii. According to

[Scheit 98] it is nearly equal to the distance of closest approach and can be

written:

bmin = 1.25 (A
1/3
t + A1/3

p ) + ∆s ; ∆s ∼ 2−4 fm (IV.25)

where At and Ap are mass number of target and projectile respectively.
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IV.2 Inelastic scattering below the neutron emission threshold

Results According to Eq. IV.25 and by using the Rutherford scattering

equation the maximum center of mass scattering angle below which Coulomb

excitation is dominant in the 26Ne+208Pb reaction is 4.1± .3 ◦. Assuming this

condition being fulfilled (see Fig. III.13 (a)), from the amount of detected

2018 keV 2+ gammas emitted in coincidence with 26Ne (see shaded area in

Fig. IV.3), we evaluated the B(E2; 0+ → 2+) from the experimental Coulomb

cross section which is defined as:

σexp =
Nγ

ǫtot

1

NincNt

with Nt =
NA ρt

At

(IV.26)

where Nγ stands for the number of detected gammas of interest, ǫtot the

total detection efficiency, Ni the integrated number of incident nuclei from

the beam, and Nt the number of nuclei in the target, calculated from the

Avogadro number NA, the target areal density ρt and its atomic mass number

At.

In order to evaluate the total detection efficiency we needed to estimate

the angular correlation between gamma and outgoing nucleus. It is expressed

as a sum of even order Legendre polynomials:

W (θ) =
∑

k even

ak Pk(cos(θ)) (IV.27)

The ak coefficients in the Coulomb excitation have been calculated using the

following expressions:

ak =
∑

µ,L,L′

∣∣∣Gπλµ

( c
v

)∣∣∣
2

gµ(ξ(bmin))

(
λ λ k

µ−µ 0

)
(IV.28)

×
{
If If k

λ −λ Ii

}
Fk(L,L

′, Iff , If )
√

2k + 1 δLδL′

where ‘(
...
...
...)’ stands for Wigner 3j-symbol and ‘{.........}’ for Wigner 6j-symbol.

Fk is the γ-γ correlation function which can be written:

Fk(L,L
′, I1, I2) = (−1)I1+I2−1

√
(2k + 1)(2I1 + 1)(2L+ 1)(2L′ + 1)

×
(
L L′ k

1 −1 0

){
L L′ k

I2 I2 I1

}
(IV.29)
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Figure IV.7: Experimental angular distribution (◦) for 2+ → 0+ γ in 26Ne

compared to calculations (plain line) based on [Alder 75]

The center of mass angular distribution of the gamma-ray from 2+
1 to

ground state transition in 26Ne in coincidence with the detection of this nu-

cleus in the silicon telescope is compared to the theoretical angular distribu-

tion in Fig. IV.7. The net result of the angular correlation effect with respect

to an isotropic emission is a slight decrease of the efficiency from 13% to 11%.

According to the efficiency measurement performed in Sec. III.2.2, the peak

efficiency is subject to a relative 10% error. Taking this effect into account

the background subtracted cross section is σ = 68 ± 8 mb.

The B(E2; 0+ → 2+) is then evaluated using an equivalent program as

[Pritychenko 99a]. According to Eq. IV.25 the error on the minimum impact

parameter is ±1 fm and we estimated its impact on the B(E2) value as

listed in Table IV.2. These variations were averaged to give B(E2; 0+ →
2+) = 230 ± 30 e2fm4 in very good agreement with 228(41) e2fm4 from

[Pritychenko 99b].
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(a) (b)

Impact parameter B(E2)

1.25 (A
1/3
t + A

1/3
p )

[
e2fm4

]

+2 fm 200

+3 fm 230

+4 fm 265

Cross section B(E2)

[mb]
[
e2fm4

]

60 mb 190

68 mb 230

76 mb 270

At constant cross section (68 mb) At constant impact parameter (+3 fm)

Table IV.2: Variations of the B(E2) value with (a) the impact parameter (b) the

cross section
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Figure IV.8: (�) Previous value of the B(E2) in 26Ne. Marker �, ♦ and •:
Evolution of this value with the different methods of extraction (see text). The error

bar comes from the statistics as well as the estimation of the feeding from the 26Ne

0+
2 to the 2+

1 state.

Discussion on B(E2)

In the previous section two different methods of extraction of theB(E2; 0+ → 2+)

of 26Ne have been applied, leading to different values. In this section, we will

discuss the origin of the discrepancy as well as the reliability of the new
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result.

The method using the gamma-ray decay cross section presented in Sec. IV.2.2

supposes – as in [Pritychenko 99b] – that the reaction is purely a Coulomb

excitation, due to a scattering angle selection. The former result extracted

for 26Ne at 41.7 MeV/n impinging on 197Au and our result on natPb target,

plotted as case (I) and case (II) on Fig. IV.8 (a) are consistent with each

other. The advantage of this method is the perfect understanding of the

reaction process. However it relies on the good estimation of the minimum

impact parameter, see Eq. IV.21, via the scattering angle.

Using ECIS 97 and the hypothesis that no nuclear reaction – i.e. a

null nuclear deformation parameter βN = 0. – is involved, we calculated

the Coulomb deformation parameter βC = 0.465 ± 0.028 that reproduces

the reaction cross section. We hence present in Fig. IV.8 (a) case (III) the

B(E2) = 197 ± 23 e2fm4 value deduced from this analysis. The error bar

comes from discrepancies in βC reproducing the error on the cross section.

The value is in good agreement with the previous method.

However, at these incident energies, a contribution from nuclear processes

to the cross section should be quantified. It is clear by looking at Fig. IV.5 (b)

that the dashed line representing the angular scattering distribution in the

hypothesis that no nuclear reaction is involved is hardly compatible with the

experimental distribution. The angular distribution providing a constraint

of the deformation parameters, it proves the necessity to include the nuclear

contribution in the excitation process. In this last case (IV), we extracted a

smaller value of B(E2) = 87 ± 13 e2fm4. Note that the error bars here only

correspond to statistics. In order to evaluate the sensibility to the optical

potentials we performed the same analysis using 20Ne+208Pb at 41 MeV/n

optical potential parameters [Suomijärvi 90] and found a B(E2) = 99 ±
14 e2fm4 compatible with our results.

In the following we retained the B(E2) = 87 ± 13 e2fm4 value and

compared to the other experimental B(E2) of A = 18 to A = 30 even-

even neon isotopes in Fig. IV.9 (b). One should note that the 28Ne case
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Figure IV.9: Even neon isotope (a) 2+
1 energy and (b) B(E2; 0+ → 2+)

value, compared with theoretical calculations. Open circles are previous experimental

results, the closed circle and the closed triangle recent results.

from [Iwasaki 05], recently extracted by a method comparing the integrated

cross section on lead and carbon targets, is much below and hardly com-

patible, within the error, with the one from [Pritychenko 99b]. We com-

pared them with theoretical calculations recently published. Rodŕıguez-

Guzmán et al. [Rodŕıguez-Guzmán 03] performed a Angular Momentum

Projected Generator Coordinate Method (AMPGCM) with Gogny force (dashed

line), and they reproduce well the B(E2) trend. However their 2+ exci-

tation energies are almost twice larger than the experiment. Kimura and

Horiuchi [Kimura 04] studied the low-lying level structures of 26Ne in the

framework of the deformed-basis antisymmetrized molecular dynamics plus

generator coordinate method using Gogny D1S force (AMD+GCM). Their

calculation (solid line) predicts well the excitation energies and follows the

B(E2) trend but gives an absolute transition strength twice as large as the

experimental data. Concerning the Shell Model calculation of Sagawa et al.

[Sagawa 04], their predicted excitation energies are in average for the neon

isotope chain within 20% error bar and their B(E2) trend deviates on aver-
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age by 30%. Finally, in dotted-dashed line is presented the prediction from

Cao et Ma article [Cao 05b] from which the E1 strength presented in in-

troduction is extracted. Their theoretical prediction is larger than the new

experimental value of ours.

In conclusion we cite a theoretical study [Obertelli 05b] in the Hartree-

Fock Bogoliubov plus Generator Coordinate Method (HFB+GCM) which

suggests the N = 16 sub-shell closure. It predicts an excitation energy of

2.19 MeV but a B(E2) equals to 89 e2fm4. Note that the value obtained in

our analysis is very close to the later values and the overall tendency of the

E2+ and B(E2) in neon isotopes is compatible with the N = 16 sub-shell

closure.

IV.3 Excitation Energy spectrum of 26Ne above

the neutron threshold

IV.3.1 The method

The excitation energy of an unbound state in the nucleus AX decaying to a

state in A-1X can be expressed by:

E∗ = Erel + Sn +
∑

j

Eγj
(IV.30)

where Sn is the one neutron emission threshold, Eγi
the energies of the decay

γ-rays emitted from A-1X*, Erel is the relative energy between the neutron

and the A-1X nucleus:

Erel = I −MA-1
X
−Mn (IV.31)

with MA-1
X

mass of A-1X and Mn mass of the neutron and I invariant mass.

The above formulae, when they are developed like in Sec. I.3.4, show

that a measurement of the excitation energy requires the determination of

the fragment and the neutron velocities and their relative angle as well as the
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total amount of energy released by the γ-rays emitted from the fragments

after neutron emission. In our experiment, however, the γ-detection efficiency

was not high enough to provide such a calorimetry so that the excitation

energy spectrum could not be obtained on an event-by-event basis.

Alternatively, we used a method based on an adequate subtraction of

relative energy spectra which will be presented in a simplified case in this

first section.

Illustration by a simplified case

X
A
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S n

8 MeV

X
A−1

gs

1.7 MeV

E
γ

S
n

E
re

l

 (
g
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E
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E
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(a)     (b)

Figure IV.10: Level scheme for the mother and the daughter nuclei with their

decay paths implemented in the simulation (see text). We plotted the different

components of the reconstructed excitation energy in case (a) where the mother

nucleus decays to the ground state of the daughter nucleus, and in case (b) where it

decays to the excited state.

The method is illustrated in the schematic case where the daughter nu-

cleus A-1X has only one excited state below its two-neutron emission thresh-

old, as illustrated in Fig. IV.10. The excitation energy spectrum can be

decomposed in the sum of two contributions:
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– the decay of AX to the ground-state of A-1X (gs)

– the decay of AX to the excited state of A-1X (I).

In the following, ⌊. . .⌉ stands for spectrum. The first contribution can be

obtained by subtracting from the inclusive relative energy spectrum ⌊Erel(
A-1X, n)⌉

the relative spectrum of γ-ray-coincidence events ⌊Erel(
A-1X, n)|γ ⌉ divided

by the γ-ray detection efficiency ǫ and finally shifted “→֒” by the Sn value

i.e. :

⌊E∗⌉(gs) =
⌊
Erel(

A-1X, n)
⌉
−
⌊
Erel(

A-1X, n)|γ
⌉
/ǫ

︸ ︷︷ ︸⌊
E

(gs)
rel

⌉
→֒ Sn (IV.32)

The different components (E
(gs)
rel , Sn) of the reconstructed energy and their

correspondence in both daughter and mother nuclei level scheme are visual-

ized in Fig. IV.10 case (a).

The second contribution is simply the relative energy spectrum of γ-ray-

coincidence events shifted by the γ-ray energy, according to Eq. IV.30 :

⌊E∗⌉(I) =
⌊
Erel(

A-1X, n)|γ
⌉
/ǫ

︸ ︷︷ ︸⌊
E

(I)
rel

⌉
→֒ Sn →֒ Eγ (IV.33)

Again Fig. IV.10 case (b) illustrates the different components (E
(I)
rel, Sn

and Eγ) of the reconstructed energy.

Finally, the excitation energy spectrum for the 25Ne+n decay channel is

given by the sum of the two contributions:

⌊E∗⌉ = ⌊E∗⌉gs + ⌊E∗⌉(I) (IV.34)

Simulation

We performed a Monte-Carlo simulation using the Geant 3 code [Brun 86]

where we suppose that AX is excited to one 8.5 MeV state and decays by

neutron emission to the A-1X ground state or to the E∗
I = 1.7 MeV A-1X
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Figure IV.11: (a) Reconstructed excitation spectrum of AX which decay to all

states of A-1X. (b) Same spectrum in coincidence with γ from A-1X decay, in order to

compare the spectrum (a) is added in dotted line. (c) Rebuild excitation spectrum

of AX which decay to A-1X(gs) (shaded area). The dotted histogram is the

contribution removed from Fig. IV.11 (a) using Eq. IV.32. (d) Same spectrum for

the decay to A-1X(I) (shaded area). It is obtained from Fig. IV.11 (b) (dotted

histogram) using the transformation describe in Eq. IV.33. (e) Finally the last two

contributions are added.
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excited state with equal branching ratios. The intermediate spectra are pre-

sented in Fig. IV.11 (a) and Fig. IV.11 (b) respectively for the A-1X-n relative

energy spectrum measured inclusively and the spectrum in coincidence with

the 1.7 MeV decay γ-ray. One sees that in (a), where no gate on γ-ray energy

is applied, two peaks are present: the one with higher energy corresponds

to (gs) decay, whereas the one with lower energy (dashed area) the decay to

(I). They are separated by 1.7 MeV i.e. the energy of the excited state EI

in the daughter nucleus. This is confirmed by the fact that in (b), relative

energy spectrum obtained in coincidence with the γ-decay, only the lower

energy peak (dashed area) subsists. The small amount of events is due to

the γ detection efficiency of ǫ ∼ 13 ± 0.7%.

Fig. IV.11 (c) and Fig. IV.11 (d) corresponds to the next s of analysis.

They are respectively the contribution from the excitation energy spectrum

which decays to A-1X(gs) and to one which decays to A-1X(I), obtained by

applying the treatment based on Eq. IV.32 and Eq. IV.33. One can see that

the areas drawn by the distributions are equal, which is due to the fact that

the probabilities of these two contributions were chosen equal.

Finally, following Eq. IV.34, the sum of the two contributions, is presented

in Fig. IV.11 (e). We tested that the number of events in this spectrum is the

same in Fig. IV.11 (a) and, as expected, that the average energy is 8.5 MeV.

The energy resolution is ∼ 800 keV (FWHM).

In the next section, we will extract the complete level scheme of 25Ne. The

method discussed above can be applied in the case of this more complicated

level scheme of the daughter nucleus. In Appendix A, a generalization to the

case of two excited levels in the daughter nucleus is presented. We will see

in the next section that the 26Ne → 25Ne + n channel can be reduced to this

simple case.
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Figure IV.12: Known levels and confirmed ones in 25Ne below one neutron

emission threshold (Sn = 4180 keV), with detected gammas. The gammas in solid

lines are these detected in this experiment, the dashed are known but not seen here.

Spin and parity assignment comes from [Lemmon 05].

IV.3.2 Level scheme of daughter nucleus 25Nevia γ-

decay

The level scheme of 25Ne obtained from the literature is displayed in Fig. IV.12.

The four states at 1702.7(7) keV, 3316.4(11) keV, 3891.2(12) keV and 4092.7(11)

where seen in [Wilcox 73], [Woods 85] and [Reed 99] and are considered

established with certainty. The 2030(50) keV state is referenced only in

[Wilcox 73].

Analysis by means of simulations, contributions

The gamma energy distribution measured by the NaI array DALI in coin-

cidence with a 25Ne in the silicon detector is displayed in Fig. IV.13 (a) for

the lead target. The same spectrum gated further by the detection of one

101



Results

0

200

400

600

800

1000

 Counts

(a)

0

20

40

60

80

100

120

500 1000 1500 2000 2500 3000 3500 4000

γ energy [kev]

(b)

Figure IV.13: γ-ray energy distribution in DALI, fitted with simulation. Points

represent data with statistical errors, plain line the sum of all simulated contribution

and dot-dashed lines each gamma weighted contribution. The dotted line represents

the exponential fit of the background. Graph (a) is obtained by DALI in coincidence

with 25Ne, (b) in coincidence with a 25Ne and one neutron in the neutron wall.

neutron is shown in Fig. IV.13 (b). In both cases the normalized spectra

obtained with the empty target were subtracted. Two peaks appear cen-

tered around 1700 keV and 2050 keV respectively. According to the DALI

resolution analysis, presented in Sec. III.2.5, the 1700 keV peak is broad,

and is expected to be composed of more than one line. In the neutron gated

spectrum, an additional peak appears at higher energy around 3250 keV. In

a first step, a simulation of the in-flight decay of 25Ne was performed for the

five transitions mentioned before.

Before performing a fit of the experimental data with these calculated

contributions, the background component was evaluated. Its presence is

102



IV.3
26

Ne excitation energy above Sn

confirmed by the high rate of low energy γ-rays and the rather homogeneous

distribution at high energy, which cannot be explained by simulations which

only treats the decay of the outgoing nucleus. The background is better

reproduced by considering the excitations of the target, as for example ex-

plained in [Yamada 04]. This reference also shows that is not sufficient,

and that the background can be modelized by an exponential fit, normal-

ized to the high energy γ-rays data part of the spectrum. Its contribution is

treated the same way as a contribution coming from 25Ne gamma decay and

we represented it in Fig. IV.13 (a) and Fig. IV.13 (b) by a dotted line.

The comparison of the experimental data with the result of the likelihood

fit including the five gamma transitions and the background is shown in

Fig. IV.13 (a) and Fig. IV.13 (b). This method allowed us to highlight the

presence of a 3250 ± 125 keV gamma we assigned to the direct decay from

3316 keV excited state to ground state. The contributions of each transition

are listed in Table IV.3 for both the lead and the aluminum target. Within

the error bars, the population of the excited states of 25Ne is similar for the

two targets.

The fit has also been performed by simulating the 1613 keV and 1696 keV

γ-rays cascade from the 3316 keV and the results found are comparable.

Gamma energy γ contribution [%] in coincidence:

[keV] with 25Ne w ith 25Ne and one neutron

Target Pb Al Pb Al

1613 ± 62 25 ± 4 % 20 ± 10% 20 ± 4 % 15 ± 4 %

1696 ± 60 50 ± 9 % 50 ± 10% 50 ± 7 % 60 ± 6 %

2063 ± 80 15 ± 2 % 20 ± 5% 20 ± 1 % 20 ± 2 %

3250 ± 125 5 ± 4 % 10 ± 7% 10 ± 5 % 5 ± 2 %

Table IV.3: Contribution of each detected photons emitted from 25Ne
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Confirmation of the 2 MeV excited state

We measured a γ at 2063±67 keV and thus confirm a state initially measured

at 2030 ± 50 keV in the 26Mg(7Li,8 B)25Ne transfer reaction [Wilcox 73] but

unseen in the 26Mg(13C,14 O)25Ne transfer reaction [Woods 85] and β decay

from 25F [Reed 99].

We exclude this 2050 keV photon to be contamination from both 26Ne

or 24Ne 2+ →gs gamma decay (2018 keV and 1981 keV respectively) since

our fragment separation is good enough as illustrated in Fig. IV.14 (b). This

is also confirmed by looking at the two dimensional plot of the measure γ-

energy versus the neon mass number of Fig. IV.14 (a). In coincidence with

the 25Ne ejectile two distinct peaks at ∼ 1700 keV and ∼ 2020 keV clearly

appear. Finally this transition is observed in coincidence with a 1.25 MeV γ

which corresponds to the decay cascade from the 25Ne 3.3 MeV excited state

(see below).
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Figure IV.14: (a) Gamma energy distribution versus neon mass number, in

coincidence with one neutron in the neutron wall. The circles highlight the ∼ 2 MeV

gammas for 24Ne, 25Ne and 26Ne as well as the more intense 1.6 MeV and 1.7 MeV

γ from 25Ne. (b) Particle identification in silicons in coincidence with one neutron,

showing the small overlap between A = 24, 25 and 26 neon isotopes.
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Analysis of events with multiplicity equal to two

The resolution of ∼ 125 keV (FWHM) is not sufficient to clearly separate

the γ-ray lines at 1613 and 1703 keV in 25Ne. However, we established

the existence of the cascade from the 3316.4 keV excited state leading to

both 1613 keV and 1703 keV γ by observing the photon energy distribution

in coincidence with a second photon of energy 1700 to 1800 keV, i.e. the

highest energy part of 1703 keV γ distribution†. For the events with γ-ray

multiplicity two, the γ-ray energy spectrum in coincidence with a second

transition of energies from 1700 keV to 1800 keV exhibits a peak centered at

1613±62 keV, see Fig. IV.15 (a). Conversely a [1575; 1675] keV gate applied

on the first gamma spectrum shows a peak at 1696 ± 60 keV in the second

gamma spectrum.
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Figure IV.15: Doppler corrected gamma energy distribution in DALI, with

multiplicity strictly 2: (a) represents the case in coincidence with a 1750 ± 50 keV γ

in coincidence (b) the case where a 2050 ± 50 keV γ is required is coincidence.

The same analysis shows the presence of a cascade from the two transi-

tions at 2063±67 keV and 1243±54 keV as illustrated in Fig. IV.15 (b). These

†Where the probability of an accidental detection of a 1613 keV photon is negligible.
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γ-coincidence results confirm the one obtained by simulation in Sec. IV.3.2,

on the existence of a 2 MeV excited state.

Conclusion on the 25Ne level scheme

The previous sections allow us to draw the 25Ne level scheme of Fig. IV.16.

The γ-ray lines were observed at the 1613± 62 keV, 3290± 120 keV, 2063±
67 keV and 1696 ± 60 keV, which corresponds to three excited states at

1702 keV, 2063 keV and 3316 keV. This scheme will be used in the following

analysis to reconstruct the 26Ne excitation energy above the one neutron

threshold.

IV.3.3 Excitation energy spectrum for 26Ne, above one

neutron emission threshold

We presented in Sec. IV.3.1 our method to build the 26Ne excitation energy

distribution is described using a simplified case. The starting point of the

method is to build the relative energy spectra for the 25Ne+n inclusive case

and for the 25Ne+n+γi coincidence events for each γi transition in 25Ne.

The level scheme for 25Ne is displayed in Fig. IV.16. The two levels at

1.7 MeV and 2 MeV are considered to be degenerated since their energy

difference is significantly smaller that the simulated resolution for relative

energy (800 keV). Three levels in 25Ne hence remain: the ground state (gs)

and two excited states at ∼ 1.9 MeV (I) and at 3.3 MeV (II). They can

decay via the emission of three different gammas of 1882 keV, 1613 keV and

3316 keV, labeled γ(1), γ(2) and γ(3) respectively.

Extraction We now apply the procedure presented in Sec. IV.3.1 to recon-

struct the excitation energy spectrum for the 25Ne+n channel. It was already

pointed out in Sec. IV.3.2 that our energy resolution is not enough to sep-

arate the 1.7 MeV gamma emitted from the 1.7 MeV excited state (γ(1) )

decaying to the ground state and the 1.6 MeV gamma (γ(2) ) from the decay
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Figure IV.16: Retained scheme of decay from 26Ne excited state above the one

neutron emission threshold via
25Ne+n channel. We present here a simplified level

scheme for 25Ne where the two first states are degenerated. We also illustrate the

different components involved in the excitation energy reconstruction.

of the 3.3 MeV to the 1.7 MeV excited state. However, in the peak between

1500 and 1900 keV, the analysis of each contribution in Sec. IV.3.2 shows

that the highest energy part (above 1750 keV) is almost (∼ 95%) purely

composed of γ(1). We hence adopted as gate the [1750; 2200] keV energy

interval to select our decay gamma of interest γ(1) which includes the tran-

sition from the 2 MeV excited state. Finally in order to extract the events

corresponding to the 25Ne∗ decay via γ(2) emission we consider the inter-

val Eγ ∈ [1500; 1615] keV from which we subtract with the adequate ratio

(∼ 20%) the events gated by the Eγ ∈ [1750; 2200] keV energy interval.

The equations for each decay path contribution to the excitation energy
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spectra thus become‡:

⌊
E(II)

⌉
=

⌊
Erel|γ(2)

⌉/
ǫ γ(2) +

⌊
Erel|γ(3)

⌉/
ǫ γ(3) →֒ Sn →֒ Eγ(3) , (IV.35)

⌊
E (I)

⌉
=

⌊
Erel|γ(1)

⌉/
ǫ γ(1) −

⌊
Erel|γ(2)

⌉/
ǫ γ(2) →֒ Sn →֒ Eγ(1) , (IV.36)

⌊
E(gs)

⌉
= ⌊Erel⌉ −

⌊
Erel|γ(1)

⌉/
ǫ γ(1)

−
⌊
Erel|γ(3)

⌉/
ǫ γ(3) →֒ Sn, (IV.37)

where ⌊Erel⌉ stands for the relative energy spectrum between the outgo-

ing neutron and 25Ne and
⌊
Erel|γ(i)

⌉
is ⌊Erel⌉ in coincidence with the decay

gamma γ(i) of energy Eγ(i) . ǫγ(i) is the corresponding gamma detection effi-

ciency. According to the previous paragraph,
⌊
Erel|γ(2)

⌉
should be understood

as:

⌊
Erel|γ(2)

⌉
=

⌊
Erel|Eγ∈[1500;1615]keV

⌉
−
⌊
Erel|Eγ∈[1750;1900]keV

⌉ /
ǫ12 (IV.38)

where 1/ǫ12 = 20% is the estimated contribution of γ(1) in the [1500; 1615] keV

interval of energy.

Results for the excitation energy spectra, 25Ne+n channel

The relative energy spectra as well as the final excitation energy spectrum

for the lead target are displayed in Fig. IV.17. The first upper four panels

correspond to the inclusive spectrum for 25Ne+n and the spectra associated

with γ(1), γ(2) and γ(3) respectively. The next three in the middle as the

spectra corresponding to Eq. IV.37, Eq. IV.36 and Eq. IV.35 for the excita-

tion energy contribution decaying to (gs), (I) and (II) respectively. Finally

the bottom panel is the sum of these three contributions. We checked that

the number of events is conserved along the different procedures. The num-

ber of counts in the relative energy spectrum in coincidence with a photon

from 25Ne is, as expected, roughly the number of events from the inclusive

spectrum which multiplied by the γ-ray efficiency. It is very interesting to

note that the contribution of the 26Ne decaying to the ground state of the

‡We remind that the notation ⌊. . .⌉ stands for spectrum
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Figure IV.17: Relative energy spectrum, shifted with the one neutron emission

threshold Sn. The first row presents the results for inclusive and exclusive spectra

(see text). The second row shows the different components of the excitation energy

spectrum for each decay path (see text). The last panel is the sum of the previous

three histograms.
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25Ne is compatible with zero, and since the branching ratio from the initial

state to the final state gives information on the initial wave function, this

point will be discussed in the following. The contribution decaying to the two
25Ne excited states both show a structure located around 9 MeV excitation

energy. The same procedures have been applied to the case of the aluminum

target.

We present in Fig. IV.18 the final results for the differential cross section

spectra of the excitation energy for both lead and aluminum targets. The left

column (Fig. IV.18 (a) and Fig. IV.18 (c)) compares the spectrum obtained

without background subtraction (solid line) and its corresponding normalized

background (dashed line), whereas the column on the right (Fig. IV.18 (b)

and Fig. IV.18 (d)) is the result after subtraction of this background. The

background presented here is obtained from the empty target data to which

we applied the same analysis treatment as in the lead or aluminum target

cases.

From the spectra of Fig. IV.18 (b) and Fig. IV.18 (d) we conclude that

some strength is present above 8 MeV excitation energy for both lead and

aluminum targets, with a lower cross section for the latter. This indicates a

sizable contribution of nuclear excitation to the cross section observed with

lead target. The shape of our distributions might be due to the presence

at 9.8 Mev of the two-neutron emission threshold and does not necessarily

reflect the existence of a single excited state broadened by the resolution.

The present work investigates the amount of strength for excitation energies

between Sn and S2n, but no results can be drawn above S2n, which would

necessitate an analysis of the 26Ne → 24Ne + 2n channel. This is beyond the

scope of the present work.

Extraction of the Coulomb excitation cross section

In order to extract the L = 1, Coulomb excitation cross section from which

theB(E1) will be deduced, the contribution from other multipolarities should

be evaluate. According to ECIS calculations presented in Fig. IV.19 (a) all
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Figure IV.18: Excitation energy spectrum for 26Ne impinging: (a), (b) on lead

target ; (c), (d) on aluminum target. The left column present the results before

background (empty target) subtraction (solid line) with the background (dashed line)

superimposed. The right column presents the results of the subtraction. The shaded

area is a tentative for Lorentzian fit.

the multipolarities greater than 2 present a rather similar shape of angu-

lar distribution. In the following, we will label by L = 2 the sum of all

multipolarities greater or equal to 2.

We will now present two methods which have been used to extract the

E1 contribution from the lead target data. In the first method, data taken
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Figure IV.19: Angular distributions as predicted by ECIS 97, for 26Ne impinging

at 55 MeV/n on (a) lead and (b) aluminum target. We choose deformation

parameters close to βL=1 ∼ 0.1 and βL≥2 ∼ 0.2, keeping the prescription on equal

deformation lengths. The shaded area correspond to a silicon detector acceptance

above 20%.

with the aluminum target are used to determine the L = 2 contribution to

be subtracted.

The second method relies on the multipole decomposition of the angular

distribution of the scattered 26Ne, reconstructed from the 25Ne+n events.

It allowed us to evaluate the L = 2 contribution independently from the

aluminum data.

Method 1: Integrated cross sections As mentioned above, the contri-

bution of L = 2 for the lead target is obtained from the data on the aluminum

target. In this section, we will use the total integrated cross section in lead

and aluminum to deduce the integrated L = 1 cross section in lead i.e. :

σL=1
Pb ≈ σPb − ΛσAl (IV.39)

where Λ is a factor to be estimated.
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In order to extract these integrated cross sections, the overall detection

efficiency for each target and each multipolarity was estimated. We hence

simulated the reactions supposing an excitation energy of 9 MeV and the

corresponding angular momentum.

Using the ECIS 97 code and assuming that the excitation energy spectra

of Fig. IV.18 (d) corresponds only to L = 2 excitations with equal nuclear

and Coulomb deformation lengths, we extract the deformation parameters

which reproduce the integrated cross section in aluminum σAl = 9.1±2.3 mb.

The L = 2 cross section in lead was then calculated using the deformation

lengths extracted in the previous step. We obtained σL=2
Pb = 17 ± 4.1 mb.

We deduced the corresponding number of events, from the experimental to-

tal number of events obtained with the Pb target, in order to obtain the

remaining L = 1 events.

The resulting σL=1
Pb = 49.4 ± 4.7 mb cross section corresponds, using

ECIS 97, to a Coulomb deformation parameter of βC = 0.092 ± 0.05 which

led to a B(E1) = 0.602± 0.059 e2fm2 via the relation B(E1; 0+ → 1−) =
(

3
4π
Zp eRCβ

L=1
C

)2
with RC the Coulomb radius [Bohr 98]. Note that βC is

obtained from the βeff
C input in ECIS 97 by βC = βeff

C ∗ A
2N

with A and N

mass number and neutron number.

Note that using a simplistic approach (described below) we deduced a

yield in the same order of magnitude. Since the reactions that excite the

mother nucleus of mass Ap in a resonant state to the 25Ne+n channel might be

considered as a peripherical reaction and the ratio between the cross section

with a target a of mass number Aa and a target b of mass number Ab can be

written as the ratio of the sum of the radii [Nakumura 95]: Λ =
A

1/3
p +Aa

1/3

A
1/3
p +Ab

1/3
.

Here Λ = 1.49. We obtained βC = 0.097 ± 0.010 hence B(E1) = 0.773 ±
0.055 e2fm2. This value is comparable to the previous result.

Method 2: Angular distribution Due to the high granularity and the

good resolution of the present setup, it is possible to extract the angular

distributions, despite the strong forward focusing of the reaction products.
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Figure IV.20: Angular distribution of scattered 26Ne reconstructed from
25Ne + n decay channel, for (a) lead target; (b) aluminum target. Dotted line is the

theoretical, simulated angular distribution for L = 2, in dashed for the L = 1. Solid

line is the sum of this theoretical contributions.

The second method that we have used to extract the E1 excitation relies on

a multipole decomposition analysis of the angular distribution of the 26Ne.

The scattering angle for the 26Ne nucleus is build from the neutron and

the 25Ne momenta:

cos θlab =
~pn + ~p

25
Ne

| ~pn + ~p
25

Ne

| ·
~p

26
Ne

|~p
26

Ne

| (IV.40)

where ~pn and ~p
25

Ne

are the momentum of the outgoing neutron and 25Ne

respectively. ~p
26

Ne

is the momentum of the 26Ne before entering the target

as obtained from beam detector informations.

The rather complex method of addition and subtraction which leads to

the excitation energy spectra induces large error bars due to poor statistic

in the relative energy spectra in coincidence with γ-rays. We hence did

not perform it for the angular distribution. But since our strength is located

within a narrow excitation energy interval and since no contribution decaying
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to the ground state is seen in the different excitation energy spectra shown in

Fig. IV.18 (b) and Fig. IV.18 (d), we can remove partly the high excitation

energy events (E∗ ≥ S2n) by gating our angular distributions with a relative

energy lower than the emission threshold of two neutrons minus the first
25Ne first excited state energy. Before converting the angular distribution

spectrum in cross section, counts due to background has been subtracted

using the run with empty target normalized to the same number of incident

particles.

Results are displayed for lead and aluminum targets in Fig. IV.20 (a) and

Fig. IV.20 (b) respectively. The L = 1 and L = 2 calculated angular distri-

butions (dashed and dotted lines) were obtained from simulation based on

ECIS 97 angular distribution calculated for E∗ = 9 MeV. In a first step the

L = 2 component was fitted to the Al data for small scattering angles and

the corresponding deformation parameters were used to calculate the L = 2

component in Pb target. Finally, using this latter extrapolated contribution,

a L=1 component is added and fitted to the data. We obtained a reduced

transition probability of B(E1) = 0.471 ± 0.225 e2fm2. It has to be noted

that the cross section at large angles for the aluminum target is not repro-

duced by a our L = 2 contribution. As can be seen on Fig. IV.20 (b) neither

a L = 1 nor higher multi-polarities, whose predicted shapes are similar to

L = 2, can be invoked to explain the disagreement. Since the cross section at

these large center-of-mass angles is low, small contributions from processes

other than elastic excitation (such as pick-up/break-up, direct break-up, . . . )

can become sizable. The origin of this contribution has not been understood

so far. The same arguments can be given for the two points at large angle in

the angular distribution obtained with lead target.

In a second method, the fit was performed directly, independently of the

data on the aluminum target, by minimizing the chi square for a sum of

calculated L = 1 and L = 2 distributions in the lead target. The result

obtained for the contribution of the two multipolarity gives βN = 0.107 ±
0.018, βC = 0.085 ± 0.014 i.e. B(E1) = 0.544 ± 0.183 e2fm2. This method
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Figure IV.21: Angular distribution for the strength around E∗ = 9 MeV and the

value extracted from direct fit of L = 1 (dashed line) and L = 2 (dotted line)

theoretical calculation

is the most direct since it does not necessitate any extrapolation from Al

to Pb and we adopted it to deduce our results. These last are displayed

in Fig. IV.21 with the obtained values. If we now suppose that our L = 2

distribution is really a L = 2 we obtain βN = 0.228±0.018, βC = 0.206±0.016

which corresponds to B(E2)↑= 38.8 ± 6.0 e2fm4.

IV.3.4 Discussion on the B(E1) value

The results from the two methods are listed in Table IV.4. The error bars

correspond to the deviation of the deformation parameter while taking into

account the Coulomb cross section error. For the Thomas-Reiche-Kuhn sum

rule, we also included the error of the excitation energy. The two results are in

agreement but as previously mentioned, the second value of B(E1) = 0.544±
0.183 e2fm2 will be retained here. Note that the smaller error bar in the

integrated cross section method comes from the fact that the extrapolation

factor Λ in Eq. IV.39 is theoretically calculated using ECIS 97 and its error

not estimated.
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σL=1
Pb [mb] B(E1)

[
e2fm2

]
%STRK

Method 1 50.1 ± 4.9 0.602 ± 0.059 5.9 ± 1.0%

Method 2 0.544 ± 0.183 5.2 ± 2.1%

Table IV.4: Deduced L = 1 cross section, B(E1) value and exhausted energy

weighted sum rule, using lead target. Method 1: integrated cross section

lead/aluminum subtraction method. Method 2: With angular distribution fit on lead

only (see text).
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Figure IV.22: Iso-vector dipole strength in 26Ne in (a) QRRPA framework,

compared with Hartree-Foch calculations [Cao 05b] (b) in QRPA framework

[Khan 05]

The results obtained from our experiment concerning the E1 transition

are compared to theoretical mean field calculations.

In Chapter I we already presented results from Cao and Ma, displayed

here in Fig. IV.22 (a). Using the Quasiparticle Relativistic Random Phase
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Approximation framework and the response function formalism, in the ex-

tended RMF+BCS approach with the effective Lagrangian NL3 parame-

ter set, they predicted a pygmy resonance centered around 8.4 MeV and

which exhaust ∼ 4.5% of the Thomas-Reiche-Kuhn energy weighted sum

rule, which is closed to our experimental values. The comparison of their

calculation with the Hartree-Foch calculation (in dashed line) tells us that

the low-lying strength is dominated by non collective, single transitions.

They predicted that the two configurations involved for the unperturbed

strength are ν(2s−1
1/22p3/2) and ν(2s−1

1/22p1/2). We also remind here that this

approach predicts for the 2+
1 state B(E2, ↑) = 223 e2fm4 at 1.46 MeV.

The reduced transition probability is hence higher than our experimental

B(E2, ↑) = 87 ± 13 e2fm4 result and the energy lower than the adopted

value.

Another calculation has been performed by Khan et al. [Khan 05] and is

presented in Fig. IV.22 (b). It is based on effective SGII Skyrme interactions

and is performed in the spherical QRPA framework [Khan 00]. It predicts a

redistribution of the strength at low energy centered around E∗ = 11.7 MeV

for which only one ν(1d−1
3/2, 2p3/2) configuration contributes, which is radically

different from the previous prediction. It however exhausts ∼ 5% of the

TRK. Note that this calculation gives B(E2, ↑) = 206 e2fm4 for the 2+
1 state

at 2.73 MeV. The reduced transition probability is smaller that the previous

theory, but still a little bit larger that our experiment. The differences with

the experimental excitation energy are comparable.

Two other preliminary calculations has been performed in the QRPA

framework using Gogny forces [Péru 05] and in the deformed relativistic

QRPA framework [Ring 05]. They are displayed in Fig. IV.23 (a) and

Fig. IV.23 (b) respectively. Both predict a redistribution of the strength

at low energy, centered around 10.7 MeV and 7.5 MeV respectively. The

first calculation also predicts that 1% of the TRK should be exhausted and

gives a B(E2, ↑) = 120 e2fm4 at E∗ = 2.3 MeV.

Note that recently shell-model calculations has been performed with suc-
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Figure IV.23: Iso-vector dipole strength in 26Ne in (a) QRPA framework using

Gogny force [Péru 05] (b) in deformed RQRPA framework [Ring 05]

cess [Nowacki 05] in that direction.

Comparison with other models

In order to discuss the collectivity of the corresponding 1− state, we can

express its B(E1) in Weisskopf units for the single-neutron transition by

[Van Der Woude 01]:

BW.u(E, 0 → λ) =
2λ+ 1

4π

(
3

λ+ 3

)2 (
1.2A1/3

)2
(
Z

A

)2 [
e2fm2λ

]
(IV.41)

We obtain B(E1, ↑) = 2.5 ± 0.9 W.u. This value indicates that a small

number of single-particle transitions are present in the interval of energy

observed and it might correspond to a small collectivity.

Another method to investigate the collectivity of our low lying state is

given by the framework of the nuclear cluster state, where here the nucleus

is divided into a core of ZCore protons and NCore neutrons and a additional

cluster (Zv, Nv). We hence can express a cluster sum rules obtained from
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this decomposition [Alhassid 82, Sagawa 90]. The energy weighted sum rule

(SEW
Clus) in case of a hypothetic neutron skin (Zv = 0) then reads:

SEW
Clus =

9

4π

Nv Z
2
Coree

2

AACore

~
2

2m
= STRK

ZCore

ACore

Nv

N
(IV.42)

We compared it to the energy weighted cluster sum rule exhausted by

our low lying structure and we obtained here Nv ≈ 2± 1 which would mean

that only ∼ 2 over 16 neutrons will participate to the excitation of this skin

against a 24+1
+1Ne core. The non energy weighted cluster sum rule (SNEW

Clus )

can be related to the average fluctuation of the radial position 〈R2
v〉 of the

center-of-mass of the participating Nv valence neutrons:

SNEW
Clus =

3

4π
Z2

Coree
2

(
Nv

ACore

)2 〈
R2

v

〉
. (IV.43)

From the ratio with our B(E1) value, we obtained here
√
〈R2

v〉 = 2.5 ±
1. fm which has to be compared to the 26Ne radius: R = 1.2A1/3 ≈ 3.6 fm.

In conclusion: in this classical framework 20% if the neutron of the 26Ne will

form a skin that, in case of collective excitation, will be shift away with a

huge amplitude corresponding to almost 70% of the diameter of the nucleus.

If we get back to our two fluids model of Sec. I.2.1 and by supposing the main

giant dipole resonance peak to follow the systematic of Eq. I.6, by using the

Eq. I.8 and the hypothesis that the core in a 24+1
+1Ne we obtain an excitation

energy for the pygmy of E∗ = 5.0 ± 1. MeV, lower than our experiment.

Decay of pygmy resonances in 26Ne

Our method allows us to extract for the first time data on the decay of

pygmy resonance in 26Ne. We present the experimental branching ratios on

Table IV.5. The clear difference between the branching ratios obtained with

lead and aluminum target proves that states of different nature have been

excited. For comparison, we also performed a statistical decay calculation

for L = 1, 2, 3 states using the CASCADE code [Puhlhofer 77], assuming

spins and parities of 25Ne states as presented in Fig. IV.12. It clearly shows
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Final 25Ne state Experiment Statistical decay

Label JΠ Pb Al L = 1 L = 2 L = 3

(gs) 1/2+ 5+17
−5 % < 10% 40% 28% 22%

(I) 5/2+ + 3/2+ 66% ± 15% 95+5
−15% 55% 67% 75%

(II) 3/2− 35% ± 9% 5+6
−5% 5% 4% 3%

Table IV.5: Experimental branching ratio compared to statistical model for a

given 26Ne transition multipolarity to a given excited state in 25Ne compared to

experiment.

that the decay is not statistical, which is not surprising for a light nucleus.

No predictions of the direct decay of pygmy states exist from the previously

mentioned microscopic models. Future comparisons with our data should be

a strong test for these models.

IV.3.5 Estimation of the direct break-up

It has been established for weakly bound nuclei like 11Be, that the large

cross sections observed for the Coulomb dissociation can be explained by

a so-called direct break-up model [Nakamura 97]. Due to a large overlap

between the tail of the valence neutron(s) wave function and the continuum,

a non-resonant transition is possible to the continuum. The direct breakup

strength distribution is extremely sensitive to the spatial extension of the

single-particle wave function, and thus to the angular momentum of the

valence neutron. It however decreases with increasing the binding energy.

In order to estimate the direct break-up contribution to our experiment we

performed two calculations of absolute break-up cross-sections. The first one

is based on the resolution of the Time Dependant Schrödinger Equations

(TDSE) and the second is based on the first order perturbation theory.

(i) The Time Dependant Schrödinger Equation (TDSE) method as devel-

oped by Lacroix et al. [Lacroix 99] is a semi classical calculation. Each
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Figure IV.24: Neutron angular distribution from 26Ne → 25Ne + n channel for

lead target Experimental results are displayed in open circle and are compared to two

calculations: TDSE in close square and Margueron et al. in closed circle. For this last

the Coulomb contribution (dashed line) and the nuclear contribution (dotted line) as

well as their sum (solid line) is plotted. In dot-dash line is displayed the result of

simulations of an isotropic emission of neutron in the center-of-mass system.

of the two nuclei involved in the reaction are initially supposed to be de-

scribed properly by an independent particle model. The two nuclei of mass

At (Target) and Ap (Projectile) are initially far away from one another

and are prepared in their respective ground state. The projectile is ini-

tially boosted according to a given beam energy and impact parameter,

and follows a trajectory of classical Rutherford scattering. A cut-off below

the impact parameter corresponding to the grazing angle is set, since no

rearrangement of the potential is performed. The dynamical evolution of

the system is reduced to the set of evolutions of its At +Ap single-particle

wave-packets |φi〉, via At + Ap set of Schrödinger equations We supposed

here that the valence neutron is located in the 2s1/2 orbital and that the

spectroscopic factor equals to one. Results are presented in the Fig. IV.24

with closed square (�) marker.
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(ii) The second theoretical approach, developed by Margueron et al. [Margueron 02,

Margueron 03], uses the first order perturbation theory for the Coulomb

amplitude and an eikonal approach for the nuclear breakup. The formalism

includes the effect of the nuclear distortion of the neutron wave function

which is summed coherently with the Coulomb amplitude. The breakup

amplitude hence becomes the sum of three terms: one has the form of the

nuclear breakup in the eikonal model, one the form of the Coulomb breakup

in first order perturbation theory and the third term mixes the Coulomb

and the nuclear potentials (interferences). In this model, the probabil-

ity to generate a direct break-up exponentially decreases below the strong

absorption radius. The results supposing again a 2s1/2 neutron and a spec-

troscopic factor of one, are presented in the Fig. IV.24 with closed circle

(•) marker.
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Figure IV.25: Classical calculation (solid line) of the impact parameter function

of the scattering angle in laboratory system, for 55 MeV/n 26Ne impinging: (a) on

lead target (b) on aluminum target. In comparison the dashed line represents the

pure Rutherford scattering. The shaded area stands for the silicon detector angular

acceptance.
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As previously described, these models are impact parameter dependent.

We hence performed a classical estimation, based on an optical potential,

of the impact parameter as function of the deviation angle for 55 MeV/n
26Ne impinging on lead target and aluminum target, displayed in figures

Fig. IV.25 (a) and Fig. IV.25 (b) respectively. We also represent on this

figure the angular acceptance of the silicon detector (shaded area). We see

that in case of lead target, our setup allows us to look essentially to the

reactions above the grazing angle. On the other hand, for kinematic reasons,

the impact parameter in aluminum is smaller than the sum of the two radii

and the physics observed is essentially inelastic.

Results

For aluminum target, the experimental impact parameters are lower than

the strong absorption radius below which these approaches are not valid.

Therefore, no conclusion can be drawn here.

Concerning the angular distribution in lead target, the calculated ampli-

tudes by the two models differ. TDSE gives an amplitude almost comparable

with our data whereas the results predicted by the eikonal approach is ∼ 10

times smaller than the experiment. In both cases the absolute cross sec-

tion is an upper limit, and several structure effects which are not presently

taken into account, should decrease the amplitude. The 25Ne is theoretically

generated in its ground state, which is not what is observed experimentally

(Fig. IV.17). Taking into account the excited states in 25Ne will decrease the

cross section. The calculations has been performed for one neutron in the

2s1/2 since, according to a recent experiment [Obertelli 05a], the 26Ne ground

state configuration is essentially two neutrons in the 2s1/2. Experimentally

the direct break-up seems to be dominant in odd nuclei [Adrich 05a] and

wicker in even-even nuclei, and in the calculations the effect of the pairing is

not taken into account. The calculations tend to show that direct break-up

cross section is a small contribution to the experiment but structure effects

need to be taken into account to improve the theoretical calculations.
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Finally, the neutron angular distribution as obtained from the simulation

of a resonance break-up at 9 MeV excitation energy, taking into account the

possible 25Ne excited states, with an isotropic emission of the neutron in the

center of mass reproduce the shape of the experimental data (dot-dash line

in Fig. IV.24). However the shape is essentially due to kinematical effects

and cannot be reliably used to distinguish between reaction mechanisms.
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Summary & Conclusion

The elastic and inelastic scattering of 26Ne on natPb and 27Al target has been

studied at the RIKEN Accelerator Research Facility. The experimental setup

was designed for a complete kinematics measurement, in order to apply the

invariant mass method for excitation energies above the particle emission

threshold. It hence included a charged fragment hodoscope, a γ-ray array

and a neutron detector wall.

Below the one neutron emission threshold, we measured the γ-decay from

the 2+
1 and 0+

2 states at 2018 keV and 3691 keV respectively. We have ex-

tracted a B(E2, 0+
1 →2+

1 ) value of 87± 13 e2fm4, smaller than the one previ-

ously published by Pritychenko et al. The raw experimental results from the

two studies are comparable but the discrepancy is explained by the different

analysis of the data. In the case of Pritychenko et al. the nuclear part of the

excitation was neglected.

The excitation energy spectrum of 26Ne between the one neutron and the

two neutron emission thresholds was reconstructed using the invariant mass

method in the 25Ne+n decay channel. A sizable amount of strength was ob-

served within this interval. The multipole decomposition of the correspond-

ing scattering angular distribution from the lead target shows the presence of

E1 strength. We extracted a Coulomb deformation parameter corresponding

to a reduced transition probability of B(E1, ↑) = 0.544± 0.183 e2fm2 and a

fraction of the Thomas-Reiche-Kuhn energy weighted sum-rule of 5.2 ±2.1%
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between E∗ = 8 and 10 MeV. The results are compared to several theoretical

predictions and the best agreement was found with the QRRPA calculation

of Cao and Ma [Cao 05b].

Furthermore, the method used allowed us to study for the first time the

decay pattern of the excited “pygmy” states. The branching ratios to the

final 25Ne states exhibit significant differences for the reactions on lead and

aluminum target, which confirms that different multipolarities have been

excited. A comparison with a Hauser-Feshbach calculation indicates that the

decay is non statistical. Interestingly, the 25Ne ground state is almost not fed

in both cases. These results give a handle on the microscopic structure of the

low-lying strength and this constitutes a strong constraint for the theoretical

models. Indeed, all the mean-field calculations predict a redistribution of

strength towards low energies in neutron rich nuclei, but the predicted wave

functions strongly differ.

We demonstrated that intermediate energy reaction are a powerful spec-

troscopic tool. In particular the angular distributions can be measured with

sufficient accuracy to perform a multipole decomposition analysis. The coin-

cident γ-ray measurement allows us to extract branching ratios to the levels

of the daughter nucleus. The direct break-up contribution was also investi-

gated theoretically with the conclusion that it was not significant.

It would be important to investigate the states above the two neutron

emission threshold. However the level density in the daughter nucleus be-

come higher and the γ-detection may become a limitation. Furthermore the

neutron acceptance was relatively low in our setup and its detection not

dedicated to more than one neutron.

Giant Resonances being a general property of nuclei, it will be interest-

ing in the future to investigate the redistribution of strength in a systematic

way. A first case would be the predicted pygmy resonance in 28Ne [Cao 05b].

An experimental 27Ne level scheme was recently proposed [Obertelli 05a] but

the very small one neutron emission threshold (Sn = 1.4 MeV) would ne-

cessitate in the measurement of the two neutron decay channel. Low ly-
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Summary & Conclusion

ing dipole strength in neutron rich oxygen isotopes was already measured

[Leistenschneider 01] using high energy beam. It would be interesting to in-

vestigate their decay branching ratios to the various states the daughter nu-

clei. The new information provided would be useful to constrain the theoret-

ical calculations. For nuclei on the neutron poor side, calculations predicting

pygmy resonances have been performed for example in 32Ar [Ma 97, Paar 05].

Experimentally, such secondary beams have become available [Yamada 01]

making these experiments feasible using a large charged particle array like

MUST2.

The new facilities at Riken (RIBF and Big-RIPS) which will be able to

generate heavier beam at few hundreds of MeV/n might be a good compro-

mise between the high Coulomb cross section and the possibility to perform

multipole decomposition based on angular distributions. A dedicated exper-

imental setup, able to handle a neutron multiplicity greater that one with a

good efficiency and to measure the γ-rays with accuracy, should however be

constructed.
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Appendix A

Extraction of 26Ne excitation

energy distribution, simulation

test case

We presented in Sec. IV.3.1 our method to build the 26Ne excitation energy

distribution using a simplified case. The starting point of the method is

to reconstruct the relative energy spectra for the 25Ne+n inclusive events

and for the 25Ne+n+γi coincidence, for each γi transition in 25Ne. In the

following, we present the method, using a simulation, for a more general case

corresponding to the experiment.

The level scheme for 25Ne is displayed in Fig. IV.16. The two levels at

1.7 MeV and 2 MeV are considered degenerated since their energy difference

is significantly smaller than the excitation energy resolution (∼ 800 keV).

Three levels in 25Ne hence remain: the ground state (gs) and two excited

states at ∼ 1.9 MeV (I) and at 3.3 Me (II) respectively. They can decay via

the emission of three different gammas of 1882 keV, 1613 keV and 3316 keV,

labeled γ(1), γ(2) and γ(3) respectively. For details on the simulation, please

refer to Appendix B.
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Figure A.1: Retained scheme of decay from 26Ne excited state above the one

neutron emission threshold via
25Ne+n channel. We present here a simplified level

scheme for 25Ne where the two first states are degenerated. We also illustrate the

different components involved in the excitation energy reconstruction.

In analogy with the simplified case of Sec. IV.3.1, the contribution to the

excitation energy spectrum of the decay to the ground state (gs), the first

(I) and the second (II) 25Ne excited state read:

⌊
E(II)

⌉
=

⌊
Erel|γ(2)

⌉/
ǫ γ(2) +

⌊
Erel|γ(3)

⌉/
ǫ γ(3) →֒ Sn →֒ Eγ(3) (A.1)

⌊
E (I)

⌉
=

⌊
Erel|γ(1)

⌉/
ǫ γ(1) −

⌊
Erel|γ(2)

⌉/
ǫ γ(2) →֒ Sn →֒ Eγ(1) (A.2)

⌊
E(gs)

⌉
= ⌊Erel⌉ −

⌊
Erel|γ(1)

⌉/
ǫ γ(1)

−
⌊
Erel|γ(3)

⌉/
ǫ γ(3) →֒ Sn (A.3)

where ⌊. . .⌉ stands for spectrum and
⌊
Erel|γi

⌉/
ǫ γi is the relative energy spec-

trum in coincidence with γi and divided by the corresponding detection effi-

ciency ǫ γi . According to Sec. III.2.2 Geant 3 code [Brun 86] well reproduce

the γ-ray peak efficiency. But in order to take into account the correlation
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State Branching ratio γ-ray composition

(gs) 40% —

(I) 40% 50% 1.7 MeV + 50% 2.0 MeV

(II) 20% 75% (1.7+1.6 MeV) + 25% 3.3 MeV

Table A.1: Branching ratio from the 26Ne excited state to difference state of the
25Ne for the lead and the aluminum target.

between the gamma-ray efficiency and the other efficiency and acceptances

(silicon detectors and neutron wall) we simulated the reaction of a excited
26Ne at 9 MeV decaying by neutron emission. We tested the L = 1 and L = 2

angular distribution cases.

We made the same supposition concerning the level scheme and the decay

to 25Ne as in Sec. IV.3.3. We re-displayed here its illustration. We suppose

the branching ratios displayed in Table A.1. Note that that we simulated the

decay from the non degenerated 1.7 MeV and 2.0 MeV.

We adjusted the ǫ γi γ-ray efficiency in order to reproduce a peak at

E∗ = 9 MeV and suppress the background that can be generated by a bad

efficiency estimation. We observed that wrong values of of the efficiency ǫ γi

induce distortions of the reconstructed excitation energy. It was however

encouraging to note that the γ-peak efficiency obtained was very closed to

the one obtained in Sec. III.2.2. We could also adjust the mixing between

the unresolved 1.6 MeV and the 1.7 MeV gamma-rays, which also turned to

be very closed to our independent contribution analysis.

Results a presented in Fig. A.2 for lead and Fig. A.3 for aluminum target.

We checked that the same ratios as in Table A.1 are found after reconstruc-

tion. One can note that the value displayed in Fig. A.2 and Fig. A.3 show

some discrepancy we could no perfectly suppress without generating some

distortion in the shape of the excitation energy spectrum. The number of

events was however conserved at the end of our analysis process.
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Figure A.2: Simulation on lead: Relative energy spectrum, shifted with the one

neutron emission threshold Sn. The first row presents the results for inclusive and

exclusive spectra (see text). The second row shows the different components of the

excitation energy spectrum for each decay path (see text). The last panel is the sum

of the previous three histograms.
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Figure A.3: Simulation on aluminum: target. Relative energy spectrum, shifted

with the one neutron emission threshold Sn. The first row presents the results for

inclusive and exclusive spectra (see text). The second row shows the different

components of the excitation energy spectrum for each decay path (see text). The

last panel is the sum of the previous three histograms.
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Appendix B

Description of the simulation

code

All simulations where performed using the Geant 3 [Brun 86] package, a

system of detector description and simulation tools written in Fortran and

developed at CERN. It allows do define and track various particles (like gam-

mas, neutrons, muons, heavy ions, . . . ) and monitor their interaction with

matters and especially whose of detectors are made from. In further sections

we will detail the procedures employed to simulate the whole experiment,

from the experimental beam tracking to the gamma detector array DALI,

the silicon hodoscopes and the neutron wall, successively. An overview of

the experimental setup as computed by Geant 3 is displayed in Fig. B.1.

B.1 Description of the simulation code

B.2 Beam simulation

Experimental down scaled beam events is used as input to generate the mo-

mentum of the incident particles. Experimental observables input in simula-
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B.2 Beam simulation
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Figure B.1: Experimental setup as computed by Geant 3

tion are thus position in the first PPAC (PPACa) and in the second PPAC

(PPACb) as well as the velocity βbeam of the beam. We simulate also the

conditions with which the beam arrives on the targets i.e. the 26Ne ions

comes from a vacuum pipe, cross a kapton window of 25 µm and air before

impinging on the target.
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Description of the simulation code

B.3 Inelastic scattering and decay

At that point it is necessary to compute the specific reactions that occur in

the target. In a first step we decide where the reaction occurs, by drawing

lots for the reaction thickness. We let Geant 3 propagate the nuclei till this

thickness, where we successively apply an elastic scattering followed by a

break-up.

B.3.1 Inelastic scattering

From external reaction codes like ECIS [Raynal 97] we obtain the angular

distribution of the inelastic scattering, for a given excitation energy. At the

reaction point, we hence modify the mass of the incoming nuclei, in order to

simulate its excitation, and its direction to simulate the scattering.

B.3.2 Decay

We suppose that the break-up occurs just after excitation. We randomly

determine in the center of mass frame the direction of the resulting particles,

e.g. 25Ne and neutron in case of 26Ne break-up. If excited states of the

daughter nuclei are kinetically reachable, we allow with a given branching

ratio to populate these states. The mass of decay particles is thus increased

by their excitation energy.

In the case of daughter nuclei decaying by gamma, we simulate imme-

diately after breakup the emission of the gamma(s), in the center of mass

of the daughter nucleus. Note that if a cascade exists, it is systematically

generated.

B.3.3 Illustration

The main simulated case is the coulomb excitation of 26Ne followed by break-

up in 25Ne and one neutron. 25Ne can be in excited state and emits γ.
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B.4 DALI simulation

In order to test our inputs, we rebuild both the angular distribution of
26Ne inelastic scattering and the invariant mass from position and energy of

the 25Ne and the neutron, recorded just after break-up (and not using the

simulation of the detection). The reconstruction program is exactly the one

used for experimental data and the results shown in Fig. B.2 proves that the

consistency between it and the simulation.

10
3

10
4

0 1 2 3 4 5 6
θCM [degree]θCM [degree]θCM [degree]θCM [degree]θCM [degree]

dσ/dΩ [mb/sr]

Figure B.2: Arbitrary ECIS 97 26Ne+208Pb angular distribution (plain line)

compared with the reconstruction just after break-up into 25Ne+n (filled circles) as

given by the simulation. The dotted line is obtain after simulation of the detection

and illustrates the effect if the latter.

B.4 DALI simulation

DALI I & II are made from different shape and type of NaI crystal. The ex-

act geometry and composition of each detector as well as their real positions

in the whole detector was enter in the simulation. We also included the alu-

minum plate that supported the crystal. Geant 3 can not deal with intrinsic

resolutions of detectors. By consequence, it was experimentally measured

for each crystal (see Sec. III.2.5) and input to the simulation. The obtained

137



Description of the simulation code

the energy distribution and the peak-efficiency were compared to experiment

with a very good agreement. We display in Fig. B.3 (a) and Fig. B.3 (b) the

figures already presented in Sec. III.2. In Fig. B.3 (a) the simulation of 60Co

source, with the corresponding intense 1173 and 1333 kev γ-ray emission is

well reproduce by our simulation if we add the room background, non gener-

ated by Geant 3. Concerning the efficiency, we reproduce the experimental

measurement from standard source 22Na, 60Co, 137Cs, and the mixture of

Am-Be, with a ∼ 10% error, see Fig. III.2.2.
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Figure B.3: (a) Deposed energy from 1173 and 1333 keV γ emitted from 60Co

standard source (•) the whole DALI array, compared with simulation by Geant 3

(solid line). The measured background (dashed line) was added to simulation. (b)

Evaluated DALI total efficiency for source emitter at rest (solid line) in addition to

experimental values (�), see details for experimental values in Sec. III.2.2. Efficiency

(in %) is well reproduced by 8.7 · 103/E0.87
γ with Eγ in keV. The dashed line is

obtained by simulating a source emitting at velocity β = 0.32.
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B.5 Silicon hodoscope simulation

B.5 Silicon hodoscope simulation

The exact position of the silicons (strip and SiLi) is enter is simulations.

However there is mainly two equivalent ways to simulated the resolution

in position due to strip size of 5 mm. Either by dividing in Geant 3each

5 cm square silicon by 10 strips or by recording the position given by the

simulation modulo .5 mm. For simplicity and since the size of the enter-strip

is negligible, we used this latter method.

We can check the accuracy between silicon thickness and position in ex-

periment with the one entered in Geant 3by superimposing the two E-∆E

distributions, where in both cases ∆E is the sum of deposited energies in

silicon strip layer 1 (X) and 2 (Y) and E the sum of ∆E and the deposited

energy in last SiLi layer. See for illustration Fig. B.4.
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Figure B.4: Test on Geant 3accuracy reproducing energy loss in silicons. Here the

black contour is obtained from 25Ne from 26Ne break-up. It is superimposed to

experimental results

In the same way, we compared the particle identification as obtained from

the 1D projection. Experimentally with 25Ne beam at 55 and 60 MeV/n, we

achieved a mean at A = 25.06 (σA/A = 0.91%) and A = 25.03 (σA/A =

0.95%) respectively. For simulated data by Geant 3, which include both

position of silicon hodoscope and resolution, we obtain A = 24.93 (σA/A =
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Description of the simulation code

0.94%), which is enough for our purpose.

B.6 Neutron wall simulation

Geant 3 deals with neutron through GHEISHA and/or FLUKA interface.

But, experimental tests reported in [Celano 97] show difficulties to reproduce

detection properties for ∼ 50 MeV neutrons, partly because of the lake of

data on the neutron kinematics on carbon at these energies. On the other

hand results from CECIL code [Cecil 79] where tested good with the neutron

plastics used in this experiment [Fukuda 04]. We thus decided to include

CECIL simulated efficiency in Geant 3. Note also that Geant, in is version

3, can not handle light output.

We safety, we decided to make the neutron plastic empty, with vacuum as

material. In case of a neutron interring a plastic, according to its kinematic

energy and following the efficiency dependences given by CECIL, we draw

a lot on its probable detection. We hence did not simulated the neutron

scattering in the detector at the origin of the cross talk. This is acceptable as

long as we do not need to simulated the detection of more than one neutron.
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Appendix C

Relativistic Kinematics

Most of the following equations are extracted from [Michalowicz 64].

C.1 Notations, Basic relations

C.1.1 Notations

mi : rest mass of particle i (C.1)

Ei : total energy of particle i (C.2)

~pi : momentum of particle i (C.3)

Ti : kinetic energy of particle i (C.4)

~βi : velocity of particle i (C.5)

γi : relativistic γ of particle i (C.6)

I : Invariant Mass (C.7)
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Relativistic Kinematics

C.1.2 Basic (one body) relations

~β = ~p/E (C.8)

γ =
1

1 − |~β|2
=

1

1 − β2
(C.9)

|~p |2 ≡ p2 = E2 −m2 = T (T + 2m) (C.10)

T = E −m =
p2

√
p2 +m2 +m

(C.11)

E = mγ (C.12)

~p = mγ~β (C.13)

T = m(γ − 1) = m
β2 γ2

1 + γ
(C.14)

C.2 Two-body reaction: Center of Mass (CM)

frame

Here after observables calculated in CM frame will be denoted with a star

(⋆)
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❅❘

~p1,m1

θ1

�
�

�
�✒

~p2,m2

❅
❅

❅
❅❅❘

~p3,m3

�
�

�
��✒

~p4,m4

⇐⇒
�

�
�

��✠

~p⋆
3

θ⋆
3 ❅

❅
❅

❅❅■

~p⋆
2

❅
❅

❅
❅❅❘

~p⋆
1

�
�

�
��✒

~p⋆
4

Figure C.1: Illustration of the notations in an unspecified (e.g. laboratory) frame

(Right) and in center of mass system (Left).
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C.3 Two-body decay

C.2.1 Notations

M =
m1m2

m1 +m2

: reduced mass (C.15)

ET = E1 + E2 = E3 + E4 : total energy (C.16)

~pT = ~p1 + ~p2 = ~p3 + ~p4 : CM momentum (C.17)

⇒ ~p⋆

T = ~0 (by definition) (C.18)

~B : CM velocity (C.19)

Γ =
1

1 −B2
: CM relativistic gamma (C.20)

C.2.2 Relations

~B =
~p1

E1 +m2

(C.21)

E⋆

T = ET/Γ (C.22)

E⋆
3 =

E⋆2
T +m2

3 −m2
4

2E⋆

T

=
E2

T + Γ2 (m2
3 −m2

4)

2 ΓET

(C.23)

E⋆
4 =

E⋆2
T +m2

4 −m2
3

2E⋆

T

=
E2

T + Γ2 (m2
4 −m2

3)

2 ΓET

(C.24)

p⋆2
i = E⋆2

i −m⋆2
i with i = 3 or 4 (C.25)

~β⋆

i = ~p⋆

i /E
⋆

i with i = 3 or 4 (C.26)

χi = B/β⋆

i with i = 3 or 4 (C.27)

tan θi =
1

Γ

sin θ⋆

i

cos θ⋆

i + χi

with i = 3 or 4 (C.28)

Ei = E⋆

i Γ (1 +B β⋆

i cos θ⋆

i ) with i = 3 or 4 (C.29)

C.3 Two-body decay

The center of mass system coincides here with the rest frame of the decaying

particle.
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Relativistic Kinematics
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Figure C.2: Two body decay

E⋆
1 =

m2
0 −m2

2 +m2
1

2m0

(C.30)

or E⋆
2 =

m2
0 −m2

1 +m2
2

2m0

(C.31)

|~p⋆
1 | = |~p⋆

2 | (C.32)

(C.33)

C.3.1 Doppler Effect
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Figure C.3: Doppler Effect
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C.4 Three-body breakup

It is a special case of two-body decay where one of the particle (e.g.

number (2)) is a photon.

E2 = T2 = p2 = Eγ (C.34)

Eγ = E⋆
γ γ1 (1 − β1 cos θ12) (C.35)

E⋆
γ = Eγ γ1 (1 + β1 cos θ12) (C.36)

θ⋆ = (C.37)

(C.38)

C.4 Three-body breakup
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Figure C.4: Three body decay
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Résumé

Nous avons effectué l’excitation Coulombienne, sur une cible de plomb, d’un
faisceau exotique à 58 MeV/nucléon de 26Ne, noyau riche en neutrons, afin
d’étudier la possible existence de résonances dipolaires pygmées au dessus du
seuil d’émission neutron. L’expérience a été conduite auprès de l’accélérateur
de l’institut RIKEN, à Tokyo (Japon) et incluait un détecteur de gammas,
un hodoscope pour particules chargées et un détecteur de neutrons. A l’aide
de la méthode de la masse invariante appliquée dans la voie de décroissance
25Ne+n, et en comparant la section efficace de réaction sur le plomb et sur
une cible légère d’aluminium, nous observons de la force de moment angu-
laire égal à un entre les seuils d’émission un neutron et deux neutrons. A
l’aide des distributions angulaire de diffusion du 26Ne nous en confirmons la
nature et extrayons la valeur de probabilité de transition réduite dipolaire
correspondante B(E1) = 0.54 ± 0.18 e2fm2. Notre méthode nous permet
aussi d’accéder pour la première fois aux rapports d’embranchement de la
décroissance d’une résonance pygmée. Par ailleurs, en détectant les pho-
tons de décroissance des états au-dessous du seuil d’émission neutron et en
analysant les distributions angulaires de diffusion du 26Ne correspondant au
premier état excité 2+, nous en déduisons sa probabilité de transition réduite,
à partir de l’état fondamental. La valeur obtenue de B(E2) = 87±13 e2fm4

est en désaccord avec le résultat d’une expérience précédente.

Abstract

We carried out the Coulomb excitation, on a lead target, of an exotic beam
of neutron-rich nucleus 26Ne at 58 MeV/n, in order to study the possible
existence of a pygmy dipole resonance above the neutron emission threshold.
The experiment was performed at the RIKEN Research Facility, in Tokyo
(Japan) and included a gamma-ray detector, a charged fragment hodoscope
and a neutron detector. Using the invariant mass method in the 25Ne+n de-
cay channel, and by comparing the reaction cross section on the lead target
and a light target of aluminum, we observe a sizable amount of E1 strength
between the one neutron and the two neutron emission thresholds. The cor-
responding 26Ne angular distribution confirms its nature and we deduce its
reduced dipole transition probability value of B(E1) = 0.54 ± 0.18 e2fm2.
Our method also enables us to extract for the first time the decay pattern of
a pygmy resonance. By detecting the decay photons from the excited states
below the neutron emission threshold and by analyzing the angular distri-
bution of the inelastically scattered 26Ne we deduce the reduced transition
probability of the first 2+ state, from the ground state. The value obtained
of B(E2) = 87 ± 13 e2fm4 being in disagreement with a previous result.
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