LaPle: Collective Communications adapted to Grid Environments

Luiz Angelo Barchet-Estefanel

Thesis Supervisor: M Denis TRYSTRAM Co-Supervisor: M Grégory MOUNIE

ID-IMAG Laboratory Grenoble - France

Introduction to Parallel Processing

Fact

The demand for computing power will always grow up

There are two options to increase the available computer power:

Introduction to Parallel Processing

Fact

The demand for computing power will always grow up

There are two options to increase the available computer power:

• Buy a bigger computer - \$\$\$\$\$

Introduction to Parallel Processing

Fact

The demand for computing power will always grow up

There are two options to increase the available computer power:

- Buy a bigger computer \$\$\$\$\$
- Use several computers

Parallel Processing

• Divide a problem into multiple fragments that can be executed in parallel

Introduction to Grids/Metacomputing

Definition

- Aggregation of geographically distributed computers
- Mainly clusters of computers

Fact

The Grid hardware already exists

Interconnexion of several clusters and NOWs

The Grid software only emerges

Most difficulties come from the resource heterogeneity

Communications in a Grid

Influence of resource heterogeneity

Geographically distributed systems

Different communication latencies

Heterogeneous communication infrastructures

Transfer bandwidth

Example: GRID 5000

	Latency	Bandwidth*
Myrinet	10 µs	250 MB/s
Giga Ethernet	50 μ s	120 MB/s

average bandwidth for a 32MB message sent with MPI

Example: GRID 5000

	Latency	Bandwidth
Myrinet	10 µs	250 MB/s
Giga Ethernet	50 µs	120 MB/s
WAN Connection	$5000\mu s$	6-120 MB/s

average bandwidth for a 32MB message sent with MPI

Collective Communications

Definition

- Collective communication is defined as communication that involves a group of processes
 - Different communication patterns

Collective Communications

Definition

- Collective communication is defined as communication that involves a group of processes
 - Different communication patterns

Most programming environments include collective communication primitives

- PVM, MPI, Athapascan, etc.
- Consensus, Group Membership, etc.

Collective Communications

Collective Communications

Impact of communication heterogeneity

- Absence of a single efficient strategy
- Performance depends on:
 - communication pattern
 - network characteristics
 - operation parameters (# of nodes, message size, etc.)

Overview of this work

Our goal: improve communication scheduling on grid environments through the use of an hierarchical network modelling

 provide efficient grid-aware collective communication operations

What we need:

- qualitative knowledge of the network topology
 - detect network heterogeneity
- quantitative knowledge of the network interconnexions
 - identify latency and bandwidth among different nodes

Overview of this work

Our approach: use hybrid algorithms

- dynamic scheduling of inter-cluster communication
- efficient "static" algorithms for intra-cluster communication

Technical validation: evaluation through synthetic experiences

- performances are close to those experienced by real applications
- fast prototyping

Outline

Optimising Collective Communications

- Identifying Logical Clusters
- Communication inside an Homogeneous Cluster

Optimising Collective Communications

Objective: minimise the overall execution time

- improve data distribution
- reduce communications through slow links

Optimising Collective Communications

Objective: minimise the overall execution time

- improve data distribution
- reduce communications through slow links

Heterogeneous Systems - Grids

 communication scheduling according to the network characteristics

Optimising Collective Communications

Objective: minimise the overall execution time

- improve data distribution
- reduce communications through slow links

Heterogeneous Systems - Grids

- communication scheduling according to the network characteristics
- NP-Complete
 - no accurate analytical models are available

Optimising Collective Communications Identifying Logical Clusters

Hierarchical Structure

Hierarchical Structure

"Flat Tree" approach

• Objective: minimise distant communications

Hierarchical Structure

"Flat Tree" approach

- Objective: minimise distant communications
- Communication is divided in two layers

Hierarchical Structure

"Flat Tree" approach

- Objective: minimise distant communications
- Communication is divided in two layers
 - Distant nodes

Hierarchical Structure

"Flat Tree" approach

- Objective: minimise distant communications
- Communication is divided in two layers
 - Distant nodes
 - Local nodes

Hierarchical Structure

"Flat Tree" approach

- Objective: minimise distant communications
- Communication is divided in two layers
 - Distant nodes
 - Local nodes

ECO (Lowekamp 96) - PVM library MagPle (Kielmann 99) - MPI library

Analysis of this approach

Advantages

- Easy to implement
- Minimises communication across slow links

Limitations

- Too tight scheduling
 - communication hierarchy does not make difference between links capacities/latencies
- The root process handles all long distance transmissions
 - does not explore parallel transmissions

Multi-layered Hierarchy

Multi-layered communications

Multi-layered Hierarchy

Multi-layered communications

- Structured according to the relative performance of each layer
 - WAN > MAN > LAN > SMP

Multi-layered Hierarchy

Multi-layered communications

- Structured according to the relative performance of each layer
 - WAN > MAN > LAN > SMP

MPICH-G2 (Karonis 02) - MPI library

Analysis of this approach

Advantages

- More flexible structure
- Based on the relative communication performance

Limitation

 Hierarchy does not takes into account the communication cost inside each cluster

Analysis of this approach

Advantages

- More flexible structure
- Based on the relative communication performance

Limitation

 Hierarchy does not takes into account the communication cost inside each cluster

How to improve Grid communications

Is it possible to better schedule communications in a grid environment?

- Dynamically generated hierarchy
 - network parameters, message size and communication pattern
- Fully Grid-aware
 - includes the communication cost inside each cluster

Our Approach

- Simplify the network description
 - focus on topology discovery and clustering
- Augment the information about clusters' performance
 - performance models to predict the communication cost
- Improve the usage of multi-layered hierarchy
 - grid-aware scheduling heuristics

Outline

- 2 Identifying Logical Clusters
- 3 Communication inside an Homogeneous Cluster
- 4 Grid Communication

Identifying Logical Clusters

Approaches

- Locality of the nodes
- User-defined mappings
- Network discovery tools

Identifying Logical Clusters

Approaches

- Locality of the nodes
- User-defined mappings
- Network discovery tools

Locality of the nodes

- Simple
- Does not express clusters' internal heterogeneity
- Does not consider interconnection parameters

Identifying Logical Clusters

Approaches

- Locality of the nodes
- User-defined mappings
- Network discovery tools

User defined topology

- Expensive and hard to do
- Sufficiently accurate (?)
- Normally falls back to the locality of the nodes
Identifying Logical Clusters

Approaches

- Locality of the nodes
- User-defined mappings
- Network discovery tools

Some network tools

- NWS measures latency and bandwidth between nodes
- REMOS uses SNMP to construct a low-level topology
- TopoMon identifies shared links

What we need

Application-level topology discovery

- identification of homogeneous "islands"
- fast deployment

	Latency between Subnets ₄ (s)					
	Α	в	С	D	Е	F
А	0	61.53	105.25	37.99	103.45	69.96
в	61.53	0	224.98	61.52	139.04	137.52
С	105.25	224.98	0	61.49	207.98	129.45
D	37.99	61.52	61.49	0	66.49	61.51
Е	103.45	139.04	207.98	66.49	0	123.97
F	69.96	137.52	129.45	61.51	123.97	0

Topology Discovery

First Phase: identify network heterogeneity

use of NWS-like tools

Topology Discovery

First Phase: identify network heterogeneity

- use of NWS-like tools
- construct a n × n distance matrix
 - Iatency

Details

How to minimise the probing time

- Latency measure is short enough to not disturb the network
- Schedule parallel probes among independent pairs

Topology Discovery

Second Phase: clustering

 use of a clustering algorithm (ECO)

• Tolerance factor $\rho = 30\%$

Topology Discovery

Second Phase: clustering

 use of a clustering algorithm (ECO)

- Tolerance factor $\rho = 30\%$
- Formatted output (*magpie_clusters* file)

Topology Description

cluster 0 process 0 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65 66 67 68 69 70 71 72 73 74 75 76 77 cluster 1 process 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 64 79 80 81 82 83 84 85 86 87 cluster 2process 20 21 22 23 25 26 cluster 3 process 24 cluster 4 process 27 cluster 5 process 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Topology Discovery

Third Phase: obtaining network parameters

- Reduced set of measures
 - one node from each cluster

	Latency between Subnets(s)					
	Α	в	С	D	Е	F
А	0	61.53	105.25	37.99	103.45	69.96
в	61.53	0	224.98	61.52	139.04	137.52
С	105.25	224.98	0	61.49	207.98	129.45
D	37.99	61.52	61.49	0	66.49	61.51
Е	103.45	139.04	207.98	66.49	0	123.97
F	69.96	137.52	129.45	61.51	123.97	0

Topology Discovery

Third Phase: obtaining network parameters

- Reduced set of measures
 - one node from each cluster
 - O(C²) measures

	Latency between Subnets(s)					
	Α	в	С	D	Е	F
А	0	61.53	105.25	37.99	103.45	69.96
в	61.53	0	224.98	61.52	139.04	137.52
С	105.25	224.98	0	61.49	207.98	129.45
D	37.99	61.52	61.49	0	66.49	61.51
Е	103.45	139.04	207.98	66.49	0	123.97
F	69.96	137.52	129.45	61.51	123.97	0

Topology Discovery

Third Phase: obtaining network parameters

- Reduced set of measures
 - one node from each cluster
 - O(C²) measures
- Merge of this information with network topology

	Latency between Subnets(s)					
	Α	в	С	D	Е	F
А	0	61.53	105.25	37.99	103.45	69.96
в	61.53	0	224.98	61.52	139.04	137.52
С	105.25	224.98	0	61.49	207.98	129.45
D	37.99	61.52	61.49	0	66.49	61.51
Е	103.45	139.04	207.98	66.49	0	123.97
F	69.96	137.52	129.45	61.51	123.97	0

Example: the IDPOT cluster

Latency between Subnets_µ(s)

	Α	в	С	D	Е	F
A	0	61.53	105.25	37.99	103.45	69.96
в	61.53	0	224.98	61.52	139.04	137.52
С	105.25	224.98	0	61.49	207.98	129.45
D	37.99	61.52	61.49	0	66.49	61.51
Е	103.45	139.04	207.98	66.49	0	123.97
F	69.96	137.52	129.45	61.51	123.97	0

Cost model Broadcast /alidating the models

Outline

- 2 Identifying Logical Clusters
- Communication inside an Homogeneous Cluster

LaPle: Collective Communications adapted to Grid Environments

Cost model Broadcast Validating the models

Modelling Collective Communications

We use pLogP cost model (Kielmann et al.)

- Number of processes P
- Latency L
- Communication gap g(m)

• Send and receive overhead - os(m), or(m)

Cost model Broadcast Validating the models

Advantages of pLogP

Cost model Broadcast Validating the models

Comparing with the Hockney model

pLogP allows a theoretical modelling that is close to the reality

Cost model **Broadcast** Validating the model

Example: modelling MPI_Bcast

Definition

Cost model **Broadcast** Validating the model:

Example: modelling MPI_Bcast

Definition

Cost model **Broadcast** Validating the model:

Example: modelling MPI_Bcast

Definition

Cost model **Broadcast** Validating the model:

Example: modelling MPI_Bcast

Definition

Cost model **Broadcast** Validating the model:

Example: modelling MPI_Bcast

Definition

Cost model **Broadcast** Validating the model

MPI_Bcast Modelling on Homogeneous Clusters

Implementation Strategy	Communication Model		
Flat Tree	$(P-1) \times g(m) + L$		
Flat Tree with Rendez-vous	$(P-1) \times g(m) + 2 \times g(1) + 3 \times L$		
Segmented Flat Tree	(P-1) imes (g(s) imes k) + L		
Binomial Tree	$\lfloor log_2 P floor imes g(m) + \lceil log_2 P floor imes L$		
Binomial Tree with Rendez-vous	$\lfloor log_2 P \rfloor \times g(m) + \lceil log_2 P \rceil \times (2 \times g(1) + 3 \times L)$		
Segmented Binomial Tree	$\lfloor log_2 P floor imes g(s) imes k + \lceil log_2 P floor imes L$		
Binary Tree	$\leq \lceil log_2 P \rceil imes (2 imes g(m) + L)$		
Chain	$(P-1) \times (g(m) + L)$		
Chain with Rendez-vous	$(P-1) \times (g(m) + 2 \times g(1) + 3 \times L)$		
Segmented Chain (Pipeline)	$(P-1)\times(g(s)+L)+(g(s)\times(k-1))$		

Cost model **Broadcast** Validating the model

MPI_Bcast Modelling on Homogeneous Clusters

Implementation Strategy	Communication Model		
Flat Tree	$(P-1) \times g(m) + L$		
Flat Tree with Rendez-vous	$(P-1) \times g(m) + 2 \times g(1) + 3 \times L$		
Segmented Flat Tree	(P-1) imes (g(s) imes k) + L		
Binomial Tree	$\lfloor log_2 P floor imes g(m) + \lceil log_2 P ceil imes L$		
Binomial Tree with Rendez-vous	$\lfloor log_2 P \rfloor \times g(m) + \lceil log_2 P \rceil \times (2 \times g(1) + 3 \times L)$		
Segmented Binomial Tree	$\lfloor log_2 P floor imes g(s) imes k + \lceil log_2 P floor imes L$		
Binary Tree	$\leq \lceil log_2 P \rceil imes (2 imes g(m) + L)$		
Chain	$(P-1) \times (g(m) + L)$		
Chain with Rendez-vous	$(P-1) \times (g(m) + 2 \times g(1) + 3 \times L)$		
Segmented Chain (Pipeline)	$(P-1)\times(g(s)+L)+(g(s)\times(k-1))$		

Cost model Broadcast Validating the models

Flat Tree Broadcast

- The simplest one $(P-1) \times g(m) + L$
- normally used with a few nodes (bad performance)
 - prediction error < 2%

Cost model Broadcast Validating the models

Binomial Tree Broadcast

•
$$\lfloor log_2 P \rfloor \times g(m) + \lceil log_2 P \rceil \times L$$

prediction error < 5%

MPI_Bcast - Binomial Tree - Myrinet

Cost model Broadcast Validating the models

Segmented Chain Broadcast

- $(P-1) \times (g(s) + L) + (g(s) \times (k-1))$
- Performance depends on the segment size
- Dependent on the performance of all nodes

MPI_Bcast - Segmented Chain (Pipeline) - Myrinet

Cost model Broadcast Validating the models

Choosing the best strategy

Cost model Broadcast Validating the models

Choosing the best strategy - small messages

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Outline

- Identifying Logical Clusters
- 3 Communication inside an Homogeneous Cluster

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Scheduling Communications in a Heterogeneous Environment

- exhaustive search
 - genetic algorithms (Vorakosit)
 - simulated annealing (Vadhiyar)

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Scheduling Communications in a Heterogeneous Environment

- exhaustive search
 - genetic algorithms (Vorakosit)
 - simulated annealing (Vadhiyar)
- operation specific optimisations
 - pipelined broadcasts (Beaumont et al.)
 - balanced trees (Burger et al.).

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Scheduling Communications in a Heterogeneous Environment

- exhaustive search
 - genetic algorithms (Vorakosit)
 - simulated annealing (Vadhiyar)
- operation specific optimisations
 - pipelined broadcasts (Beaumont et al.)
 - balanced trees (Burger et al.).
- optimisation heuristics
 - FEF and ECEF (Bhat)

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Why to use an hierarchical scheduling

reduces the search space

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Why to use an hierarchical scheduling

- reduces the search space
- each cluster may use different strategies
 - binomial, chain, etc.

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Grid-Aware Collective Communication

Why to use an hierarchical scheduling

- reduces the search space
- each cluster may use different strategies
 - binomial, chain, etc.
- this approach may be employed also with other communication patterns

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Broadcast - Optimisation Heuristics

Fastest Edge First -FEF (Bhat)

- objective: select the sender that can reach a new receiver earlier
- strategy: find the edge with the minimum latency

İ

$$\min_{i \in A, j \in B} L_{i,j}$$

Drawback

this strategy may overload a single sender
Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Broadcast - Optimisation Heuristics

Earliest Completing Edge First - ECEF (Bhat)

- objective: select the fastest available sender to reach a new receiver
 - strategy: take into account the Ready Time and the transfer time

$$\min_{i\in A, j\in B}(RT_i+g_{i,j}(m)+L_{i,j})$$

Weakness (?)

Can the receiver contribute to the broadcast?

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Broadcast - Optimisation Heuristics

Earliest Completing Edge First with lookahead - ECEFLA (Bhat)

- objective: select the fastest available sender to reach a good receiver
 - a node that can contribute with message diffusion
- strategy: use a lookahead function to evaluate the usefulness of a receiver

$$\min_{i\in A, j\in B} (RT_i + g_{i,j}(m) + L_{i,j} + F_j) ;$$

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Broadcast - Optimisation Heuristics

Earliest Completing Edge First with lookahead - ECEFLA (Bhat)

- objective: select the fastest available sender to reach a good receiver
 - a node that can contribute with message diffusion
- strategy: use a lookahead function to evaluate the usefulness of a receiver

$$\min_{i \in A, j \in B} (RT_i + g_{i,j}(m) + L_{i,j} + F_j) \; ; \; \; F_j = \min_{P_k \in B} (g_{j,k}(m) + L_{j,k})$$

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Broadcast - Optimisation Heuristics

Common characteristics of these heuristics

- Give priority to fast links
 - maximise the number of potential senders

Question:

Can a previous knowledge on intra-cluster communications improve the efficiency of these heuristics?

T_k - communication time inside a cluster

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Specific Heuristics

ECEFLA-t

- simple extension of the ECEFLA heuristic
- objective: select the fastest available sender to reach a good receiver
 - a cluster contacted by this node may finish in the smallest time
 - quickly reduces the number of clusters to contact

$$\min_{i \in A, j \in B} (RT_i + g_{i,j}(m) + L_{i,j} + F_j) \; ; \; \; F_j = \min_{P_k \in B} (g_{j,k}(m) + L_{j,k} + T_k)$$

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Drawbacks in a Grid System

All these strategies always try to contact first the fastest clusters/nodes

- Communications to distant/slow clusters are delayed
- This extra delay may augment the makespan

Balance communication:

- Give some priority to slow clusters
- Still keep trying to reach the largest number of nodes
 - maximise the number of data sources

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Specific Heuristics

ECEFLA-T - tries to balance the scheduling

- objective: select a receiver whose cost to contact the slowest cluster is still reduced
 - sender is the fastest one that can reach the slowest cluster
- strategy: the lookahead function maximises the search

$$\min_{i \in A, j \in B} (RT_i + g_{i,j}(m) + L_{i,j} + F_j) \; ; \; \; F_j = \max_{P_k \in B} (g_{j,k}(m) + L_{j,k} + T_k)$$

Drawback

slow clusters will be contacted only after no fast cluster remains

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Specific Heuristics

Bottom-Up

- gives priority to slow clusters
- objective: prevent a supplementary delay for the slow clusters
- strategy: search for the slowest cluster still not contacted

$$\max_{P_j \in \mathcal{B}} \left(\min_{P_i \in \mathcal{A}} \left(g_{i,j}(m) + L_{i,j} + T_j \right) \right)$$

Drawback

does not improve the number of data sources

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Comparing Strategies

Simulations

- Use of simulations to obtain the average performance of each strategy
 - average of 10000 runs
- Random values between:

	minimum⇔maximum	
gap _{i,j}	0.10 s⇔0.60 s	IDPOT-icluster2⇔IDPOT-GdX
latency _{i,j}	0.001 s⇔0.015 s	IDPOT-icluster2⇔GdX-Rennes
Ti	0.02 s⇔3 s	1 MB Myrinet⇔1 MB Fast Ethernet

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Comparing Strategies

LaPle: Collective Communications adapted to Grid Environments

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

A Large Scale Grid

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

A Close Look

LaPle: Collective Communications adapted to Grid Environments

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Hit Rate

A different metric to evaluate the heuristics

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Experimental validation

88 machines, 6 homogeneous clusters (3×IDPOT,2×GdX, Toulouse)

Optimising Collective Communications Identifying Logical Clusters Grid Communication

Experimental Validation

Message size (Bytes)

Optimising Collective Communications Identifying Logical Clusters Grid Communication

Experimental Validation

Broadcast on a 78 machines grid - Measured Times

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Conclusions

Scheduling communications on a grid environment

- Hierarchical communication reduces the optimisation complexity
- Multi-layered communication with hybrid algorithms

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Conclusions

• Scheduling communications on a grid environment

- Hierarchical communication reduces the optimisation complexity
- Multi-layered communication with hybrid algorithms
 - efficient "well known" intra-cluster strategies

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Conclusions

• Scheduling communications on a grid environment

- Hierarchical communication reduces the optimisation complexity
- Multi-layered communication with hybrid algorithms
 - efficient "well known" intra-cluster strategies
 - dynamically scheduled inter-cluster communications

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Conclusions

• Scheduling communications on a grid environment

- Hierarchical communication reduces the optimisation complexity
- Multi-layered communication with hybrid algorithms
 - efficient "well known" intra-cluster strategies
 - dynamically scheduled inter-cluster communications
- Importance of Topology Discovery
 - Helps to better describe the real network
 - Prevents mistakes induced by manual configuration
 - Simplify further optimisation tasks

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Future Works

Extend our experiments

- More experiments on a grid environment
- Compare with other heuristics and optimisation techniques
- Evaluate the impact on the performance of real applications

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Future Works

Extend our experiments

- More experiments on a grid environment
- Compare with other heuristics and optimisation techniques
- Evaluate the impact on the performance of real applications
- Study deeply other communication patterns
 - One-to-many personalised, many-to-one, many-to-many, ...

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Future Works

Extend our experiments

- More experiments on a grid environment
- Compare with other heuristics and optimisation techniques
- Evaluate the impact on the performance of real applications
- Study deeply other communication patterns
 - One-to-many personalised, many-to-one, many-to-many, ...
- Apply the optimisation techniques with other operations
 - Reduce, Gather, Barrier, etc.

Scheduling Strategies Optimisation Heuristics Simulation Experimental Validation

Questions?

Thank you!

LaPle: Collective Communications adapted to Grid Environments