
HAL Id: tel-00011657
https://theses.hal.science/tel-00011657

Submitted on 21 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integer programming column generation strategies for
the cutting stock problem and its variants

Nancy Perrot

To cite this version:
Nancy Perrot. Integer programming column generation strategies for the cutting stock problem and
its variants. Mathematics [math]. Université Sciences et Technologies - Bordeaux I, 2005. English.
�NNT : �. �tel-00011657�

https://theses.hal.science/tel-00011657
https://hal.archives-ouvertes.fr

1

THÈSE
présentée à

L’UNIVERSITÉ BORDEAUX I
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

par Nancy PERROT

POUR OBTENIR LE GRADE DE

DOCTEUR

SPÉCIALITÉ : MATHÉMATIQUES APPLIQUÉES

INTEGER PROGRAMMING COLUMN GENERATION STRATEGIES
FOR THE CUTTING STOCK PROBLEM AND ITS VARIANTS

Soutenue le : 29 Juin 2005

Après avis de :

MM. Alberto CAPRARA Professeur, Université de Bologne (Italie) Rapporteurs
Jacques DESROSIERS Professeur, École HEC de Montréal (Canada)

Devant la commission d’examen formée de :

MM. Paul MOREL Professeur, Université Bordeaux 1 Président
Jacques DESROSIERS Professeur, École HEC de Montréal (Canada) Examinateurs
Denis JAUBERT Industriel, Greycon (Angleterre)
Brigitte JAUMARD Professeur, Université de Montréal (Canada)
Claude LEMARÉCHAL Directeur de Recherche, INRIA Rhone-Alpes
François VANDERBECK Professeur, Université Bordeaux 1

2

Remerciements

Je tiens à remercier vivement mon directeur de thèse, François Vanderbeck, qui

est à l’origine de cette thèse. Il a su manifester tout au longde ce travail intérêt et

confiance.

Je remercie les professeurs Jacques Desrosiers et Alberto Caprara d’avoir

accepté d’être rapporteurs de ce travail, ainsi que pour leurs suggestions et

conseils.

Je suis particulièrement reconnaissante à Claude Lemaréchal de m’avoir per-

mis d’étendre mon domaine de recherche et de m’avoir ouvert des opportunités

intéressantes tout au long de ma thèse. Il a accepté d’être membre de mon jury de

thèse, je l’en remercie. Je remercie également l’ensemble des membres du jury

de thèse et en particulier Paul Morel qui a présidé ce jury.

Un immense merci à Olivier Briant pour ces remarques constructives, sa

disponibilité et ses connaisssances dans de nombreux domaines, sans oublier sa

précieuse amitié et son soutien permanent. Merci égalementà mes collègues qui

m’ont permis de travailler dans une ambiance excellente, enparticulier à Magalie

et Marie pour leur présence, leur amitié et leurs encouragements. Enfin, je salue

chaleureusement mes proches, et tout particulièrement mesparents qui m’ont tou-

jours fait confiance et soutenue, et auxquels je dédie ce travail.

4 Remerciements

Contents

Introduction 9

1 The cutting stock problem and its variants 17
1.1 Standard cutting stock and bin packing problems 17
1.2 A variant with intervals on production19
1.3 The multiple width cutting stock problem19
1.4 A variant with technical restrictions 20
1.5 The minimization of set-ups . 21
1.6 Review of the literature . 23

2 Reformulations and column generation 27
2.1 Formulations for the knapsack subproblem 28
2.2 Explicit reformulations . 33
2.3 Implicit reformulations and column generation 35

2.3.1 The column generation procedure 37
2.3.2 The column generation subproblem 37
2.3.3 The Lagrangian dual bound 38
2.3.4 Termination criteria . 38
2.3.5 The dual master program 39
2.3.6 Strength of the dual bound 41
2.3.7 Branching schemes . 42

2.4 Other approaches and formulations 44
2.5 Master formulations with exchanges built-in 47

2.5.1 Aggregating covering constraints 48
2.5.2 Introducing exchange variables 50
2.5.3 Using exchange vectors 54
2.5.4 Exchanges in the arc flow formulation 60

2.6 Comparing the formulations for the standard cutting stock 61
2.7 Reformulations of the variant with intervals on production 69
2.8 Reformulations of the multiple widths cutting stock problem . . . 74
2.9 Reformulations of the variant with technical restrictions 77

6 Contents

2.10 Reformulation of the minimization of setups 80

3 Knapsack sub-problems 87
3.1 Characterizations of optimal solutions for the multiple-class bi-

nary knapsack with setups . 91
3.2 Upper Bound of the multiple-class binary knapsack with setups . . 93
3.3 A dynamic program for the multiple-class binary knapsack with

setups . 97
3.4 Primal heuristics for the multiple-class binary knapsack with setups 99
3.5 Branch-and-Bound for the multiple-class binary knapsack with

setups . 101

4 Comparing IP Column Generation strategies 105
4.1 Framework for computational tests: data sets and table of results . 106
4.2 Initializations . 108

4.2.1 Initialization with a heuristic solution 108
4.2.2 Initialization with artificial columns109
4.2.3 Comparative tests . 113

4.3 Stabilization methods . 116
4.3.1 The Dynamic Boxstep Method 117
4.3.2 The Bundle method . 119
4.3.3 Smoothing Methods . 119
4.3.4 Comparative tests . 121

4.4 Formulations with exchanges . 125
4.4.1 Comparative tests . 126

4.5 Strategies for column generation 129
4.6 Primal heuristics . 132

4.6.1 Greedy algorithm . 132
4.6.2 Rounding heuristic . 133
4.6.3 Comparative tests . 133

4.7 Branching . 136
4.7.1 Numerical tests . 137

5 The industrial cutting stock problem 141
5.1 The cutting problem at the paper mill Condat144
5.2 An application with minimal run length 155

Conclusion 159

Bibliography 169

Abstract

This thesis gives a comprehensive view of the scope of formulations and related

solution approaches for the cutting stock problem (CSP) andits variants. The

focus is on branch-and-price approaches. Specialized algorithms are developed

for knapsack subproblems that arise in the course of the algorithm. Thorough

numerical tests are used to identify good strategies for initialization, stabilization,

branching, and producing primal solutions. Industrial variants of the problem are

shown to be tractable for a branch-and-price approach.

The models studied are the following: the standard cutting stock and bin pack-

ing problems, a variant in which the production levels lie ina prescribed interval

of tolerance, the multiple width cutting stock problem in which stock pieces are of

different size, a variant with additional technical constraints that arise typically in

industrial applications, and a variant where the number of distinct cutting patterns

used is minimized given a waste threshold.

First, we consider various formulation of the Cutting StockProblem (CSP):

different models of the knapsack subproblem can be exploited to reformulate the

CSP. Moreover, we introduce different ways of modeling local exchanges in the

solution (primal exchanges imply dual constraints that stabilize the column gen-

eration procedure). Some models are shown to be valid integer programming (IP)

reformulations while others define relaxations. The dual bounds defined by their

LP solution are compared theoretically.

Then, we study the variants of the knapsack subproblem that arise in a column

generation approach to the CSP. The branching constraints used in the branch-

and-price algorithm can result in class bound and setup costor the need for a

binary decomposition in the subproblem. We show how standard knapsack solvers

(dynamic programming approach and specialized branch-and-bound algorithm)

can be extended to these variants of the knapsack problem.

8 Abstract

Next, we discuss some branch-and-price implementation strategies. We com-

pare different modes of initialization of the column generation procedure, we

present our numerical study of various stabilization strategies to accelerate con-

vergence of the procedure. We compare in particular the impact of the various

ways of introducing local exchanges in our primal model and other stabilization

techniques such as dual solution smoothing techniques or penalization from a sta-

bility center that prevent the fluctuation of the dual variables. To generate the

columns we study different strategies based on the use of heuristic columns or on

a multiple generation of columns. We also consider the use ofheuristics based on

column generation to find a primal bound. These are compared to a classic con-

structive heuristic. Then, we compare the different branching rules that are used

in the branch-and-price procedure.

Finally, we present numerical results on two industrial applications that cor-

respond to the variant with technical restrictions for which we minimize first the

waste and then the number of setups.

Introduction

Le problème de découpe consiste à découper des pièces de petite taille dans

de larges rouleaux, de façon à satisfaire une demande associée à chacune

de ces pièces. L’objectif est principalement de réduire au minimum la perte

correspondant à la partie inutilisée de ces rouleaux. Une solution est donnée

par un ensemble de plans de découpe réalisables, c’est à diredes façons de

couper les petites pièces sur les rouleaux, de façon à ce que leur production totale

couvre les demandes. La dimension,d, peut être1, 2 ou 3 où d est le nombre de

dimensions significatives des rouleaux et des pièces commandées. Nous pouvons

même avoird = 11
2

si les pièces demandées ont 2 dimensions significatives tandis

que les rouleaux ont une dimension fixe et une dimension variable; d peut être

supérieur à3 si on considère des dimensions de temps ou de poids. Les processus

de découpe changent selon les types de coupes, les placements des pièces, le

nombre d’étapes dans le processus de découpe, etc. Il peut également y avoir

des contraintes additionnelles ou des objectifs secondaires au problème (équili-

brage de la charge de travail entre différentes machines de découpe, minimisation

du nombre de plans de découpe différents, ou respect des dates dues par exemple).

Ici nous nous intéressons au problème de découpe unidimensionnel. Ce

modèle est d’un grand intérêt dans le domaine de la recherche. La méthode de

génération de colonnes a été développée sur cette application. C’est également

une application pratique qui intervient, par exemple, dansles industries d’acier

ou de papier. Ce dernier processus de découpe est illustré par la figure 2.

Dans le chapitre 1 nous présentons les formulations compactes des diverses

variantes qui seront examinées. Nous commençons par les problèmes de découpe

et de “bin-packing” standard. Les variantes considérées sont les problèmes dans

10 Introduction

Rouleau mère

refendeuse

déchet

plans de découpe

levées

bobines

Figure 1: Le processus de découpe de rouleaux

lesquels : les niveaux de production se situent dans un intervalle prescrit de

tolérance, les rouleaux à découper sont de différentes tailles, ou, des contraintes

techniques doivent être prises en compte. Nous présentons également une

formulation pour la minimisation du nombre de plans de découpe distincts en

tant que deuxième objectif une fois que le déchet est fixé à sa valeur optimale.

Nous donnons une brève revue de la littérature sur le problème de découpe qui

sera complétée tout au long des chapitres par une étude détaillée des travaux

spécifiquement liés au nôtre.

Le chapitre 2 traite de diverses reformulations du problèmede découpe (CSP).

Nous considérons d’abord différentes formulations pour lesous-problème de sac

à dos. Chacune de ces formulations mène à une reformulation explicite du CSP

et à une reformulation implicite qui peut être résolue en utilisant une procédure

dynamique de génération de colonnes. Nous passons en revue également les

approches hybrides qui ont été proposées dans la littérature. En outre, nous

développons des reformulations alternatives implicites modélisant des échanges

locaux dans la solution, et nous montrons comment ces échanges impliquent un

effet de stabilisation de la procédure de génération de colonnes, dans la mesure

Introduction 11

où ils reviennent implicitement à ajouter des contraintes duales. Certains de

ces modèles sont des reformulations valides tandis que d’autres définissent des

relaxations. Ces reformulations sont comparées d’un pointde vue théorique pour

leur relaxation linéaire (bornes LP) et les solutions en nombre entier (bornes

primales). Certaines des formulations considérées ici sont des contributions

originales de cette thèse. De plus, ce chapitre offre une classification des

formulations possibles, comparant la force de la borne duale LP et présentant des

observations sur leur intérêt pratique.

Le chapitre 3 traite du sous-problème de sac à dos. Le problème de sac à

dos standard peut être résolu relativement efficacement en utilisant des algo-

rithmes spécialisés. Cependant, lorsqu’on résout la reformulation de génération

de colonnes en nombres entiers, nous employons des règles debranchement

qui peuvent mener à des modifications du sous-problème de sacà dos. Pour

modéliser correctement le coût réduit après branchement, nous devons effectuer

une décomposition binaire des variables du sous-problème de sac à dos et

introduire des variables de “setup” associées à chaque objet commandé. Le point

central de ce chapitre est l’étude du modèle résultant appelé problème binaire

multi-classe de sac à dos avec “setups”. Nous montrons comment adapter des

résultats standard pour le problème de sac à dos à ce modèle plus complexe. Nous

caractérisons les solutions optimales de sa relaxation linéaire, nous montrons

comment obtenir une borne LP en utilisant une procédure gloutonne, et nous

proposons un algorithme de “branch-and-bound” en profondeur d’abord (pour le

cas avec coût fixe positif) ainsi que des procédures de programmation dynamique

pour résoudre ce sous-problème modifié. Cette recherche a donné lieu à la

publication [32].

Dans le chapitre 4, nous étudions tour à tour chaque étape de la procédure de

“branch-and-price” pour le problème de découpe et nous comparons différentes

stratégies d’implémentation à travers des tests numériques. Nous présentons

différents modes d’initialisation pour la procédure de génération de colonnes.

Nous comparons des techniques de stabilisation sur plusieurs variantes. En

particulier, nous examinons la contribution en terme de stabilisation de notre

reformulation avec échanges intégrés. Nous expérimentonsla méthode simple de

12 Introduction

stabilisation “boxstep” et des techniques de lissage des variables duales. Nous

faisons également la comparaison entre la génération de colonnes basée sur le

LP et l’utilisation de la méthode des faisceaux pour résoudre le problème maître.

Cette étude a contribué à la publication [6]. Nous développons également des

heuristiques primales basées sur l’approche de générationde colonnes que nous

comparons à une heuristique constructive standard. Ensuite, nous considérons

différentes stratégies pour générer des colonnes (colonneunique ou colonnes

multiples, exactes ou solutions heuristiques du sous-problème et une stratégie

de diversification). Finalement, nous testons la contribution individuelle de nos

règles de branchement pour la convergence vers une solutionen nombre entier et

pour l’amélioration des bornes duales.

Le chapitre 5 est consacré à l’étude de problèmes de découpe industriels qui

combinent les difficultés des variantes du CSP passées en revue au chapitre 1.

Leur formulation est construite sur base de celles présentées au chapitre 2. Une

étude de cas du problème réel de la papeterie de Condat est présentée. Le prob-

lème implique une tolérance sur les niveaux de production, des restrictions tech-

niques du processus de découpe et deux critères d’optimisation (déchet et nom-

bre de plans de découpe différents). Une deuxième application réelle avec une

contrainte minimale sur la multiplicité des plans de découpe est étudiée. Les

meilleures stratégies dérivées de notre étude expérimentale du chapitre 4 sont

appliquées à ces problèmes. Elles nous permettent de montrer qu’on peut ré-

soudre des exemples réels avec un code générique de “branch-and-price” utilisant

un solveur commercial de programme en nombre entier mixte (MIP) pour les so-

lutions du problème maître et du sous-problème.

Introduction

In the cutting stock problem, one has a supply of pieces (objects) of stock material

on one hand and a set of demands for “small” pieces of this material on the other

hand. One must satisfy these demands by cutting the requiredpieces out of the

stock pieces. The objective is primarily to minimize the waste that is counted as

the unused part of used pieces of stock material. A solution is given by a set of

feasiblecutting patterns, i.e. assortments of order pieces that can be cut out of a

given piece of stock material, such that their accumulated production of ordered

pieces covers the demands. The dimensionality,d, can be1, 2 or 3 whered is

the number of dimension of the stock and order pieces that aresignificant. We

can even haved = 11
2

if order pieces have 2 significant dimensions while stock

pieces have a fixed dimension and a variable one;d can be greater than3 if time

or weight dimensions are considered. The cutting processesvary according to

the types of cuts that are allowed (guillotine or nested, orthogonal or not), the

geometrical arrangements of pieces, the number of cutting stages, etc. There

might also be some side-constraints or secondary objectives to the problem to

do with the balancing of the workload between different cutting machines, the

minimization of the number of different cutting pattern used, or the respect of due

dates for instances.

Here we shall be concerned with the one-dimensional cuttingstock problem.

This model is of great interest from a research point of view.It has been the

application on which the column generation method was developed. But it is also

a practical application that arises in steel or paper industries, for example. The

latter cutting process is illustrated in Figure 2.

In chapter 1 we present the compact formulations of the various variants that

14 Introduction

Wide Roll

winder

waste

distinct cutting patterns

cutting patterns

reels

Figure 2: The cutting of paper rolls

shall be examined. We start with the standard cutting stock and bin packing

problems. Variants are problems in which the production levels lie in a prescribed

interval of tolerance, the multiple widths cutting stock problem for which stock

pieces can be of different sizes, problems with additional technical constraints

(taking into account side constraints issued from technical or managerial consid-

erations in real-life industrial applications). We also present a formulation for the

minimization of the number of distinct cutting patterns seen as a second objective

once the waste is fixed to its optimal value. Finally, we give abrief literature

review on the cutting stock problem. It will be completed by in-depth review of

work specifically related to ours throughout the text.

Chapter 2 deals with various reformulations of the Cutting Stock Problem

(CSP). We first consider different formulations for the knapsack subproblem.

Each of these formulations leads to an explicit reformulation of the CSP and to

an implicit reformulation that can be solved using a dynamiccolumn generation

procedure. We also review hybrid approaches that have been proposed in the

literature. Furthermore, we develop alternative implicitreformulations modeling

local exchanges in the solution, and we show how these exchanges imply a

Introduction 15

stabilization effect in the column generation procedure, because they implicitly

amount to adding dual constraints. Some of these models are valid reformulations

while others define relaxations. These reformulations are compared from a the-

oretical point of view in terms of their linear relaxation (LP bounds) and integer

solutions (primal bounds). Some of the formulations considered therein are

original contribution of this thesis. Moreover, this chapter offers a classification

of the possible formulations, comparing the strength of theLP dual bound and

commenting on their practical interest.

Chapter 3 deals with the knapsack subproblem. The standard knapsack

problem can be solved relatively efficiently using specialized algorithms.

But, when solving the column generation reformulation to integrality, we use

branching rules that can lead to modifications to the knapsack subproblem. To

model properly the reduced cost after branching, we need to operate a binary

decomposition of knapsack subproblem variables and introduce setup variables

associated to each order. The focus of this Chapter is the study of the resulting

model named multiple-class binary knapsack problem with setups. We show

how to extend standard results for the knapsack problem to this more complex

model. We characterize optimal solutions to its LP relaxation, we show how to

obtain the LP bound using a greedy procedure, we propose a depth-first-search

branch-and-bound algorithm (for the case with positive fixed cost) and dynamic

programming procedures to solve this modified subproblem. This research gave

rise to publication [32].

In chapter 4, we study in turn each step of a branch-and-priceprocedure

for cutting stock problem and compare different implementation strategies

through numerical tests. We present different modes of initialization for the

column generation procedure. We compare stabilization techniques on several

variants. In particular, we examine the contribution to stabilization of our original

reformulation with built-in exchanges. We experiment withsimple boxstep

stabilization method and with dual variable smoothing techniques. We also make

comparison between LP-based column generation and the use of the bundle

method for solving the master. This study contributed to publication [6]. We

also develop primal heuristics based on the column generation approach and

16 Introduction

compared them to standard constructive heuristics. Then, we consider different

strategies for generating columns (single versus multiplecolumns, exact versus

heuristic subproblem solutions and a strategy of diversification). Finally, we

test the individual contribution of our branching rules in converging to integer

solution and increasing the dual bounds.

Chapter 5 is devoted to the study of industrial cutting problems that combine

the difficulties of the CSP variants reviewed in Chapter 1. Their formulation is

built on those presented in Chapter 2. A case study of the real-life problem en-

countered at the paper mill Condat is presented. The probleminvolves tolerance

on production levels, technical restrictions on the cutting process and two opti-

mization criteria (waste and number of setups). A second real-life application

with a minimal run length constraint is studied. The best strategies derived from

our experimental study of Chapter 4 are applied to these problems. They allow us

to solve real-life instances with a generic branch-and-price code that relies on a

commercial mixed integer programming (MIP) solver for master and subproblem

solutions.

1
THE CUTTING STOCK PROBLEM

AND ITS VARIANTS

1.1 STANDARD CUTTING STOCK AND BIN PACKING

PROBLEMS

In the standard cutting stock problem, we consider that demands for cut pieces

are fixed: letn be the number of orders to be cut. An orderi, for i = 1, . . . , n,

is defined by its widthwi and its demanddi. We assume a sufficient stock of

identical wide rolls, indexed byk, k = 1, . . . , K, whose width is denotedW , with

wi ≤ W ∀i and

d

∑n

i=1 wi di

W
e ≤ K ≤

n∑

i=1

di .

The objective is to minimize the waste resulting from the cutting process.

When the demand is fixed, it is equivalent to minimizing the number of wide

rolls used as these two criteria differ by a constant (the total length of stock

material used is equal to the total length of produced material plus the total waste).

18 The cutting stock problem and its variants

The problem can be formulated in terms of integer variablesxik representing

the number of ordersi cut in wide rollk, and binary variablesyk taking value1 if

wide roll k is used and0 otherwise. A compact formulation (due to Kantorovich

[19]) is thus:

Zk = min

K∑

k=1

yk

[F1] s.t.
K∑

k=1

xik ≥ di i = 1, . . . , n (1.1)

n∑

i=1

wi xik ≤ W yk k = 1, . . . , K (1.2)

xik ∈ {0, . . . , ui} i = 1, . . . , n ; k = 1, . . . , K (1.3)

yk ∈ {0, 1} k = 1, . . . , K

where

ui = min{di, b
W

wi

c} (1.4)

is a natural upper bound for variablesxik. Constraints (1.1) ensure the satisfac-

tion of the demand for each order (one could use equality constraint but their

relaxation into covering constraint leads to the same optimal solution value). Con-

straints (1.2) are knapsack constraints that ensure that cutting patterns are feasible.

A well known variant of this problem is when all orders demands are equal

to one, i.e. di = 1 for i = 1 to n. This problem is known as thebin-packing

problem. However in bin packing problems there are typically several items of

the same width. These items should better be aggregated intoa single item whose

demand becomesdi > 1 in order to avoid symmetry in modeling the problem.

Hence, the bin packing problem can be understood as a cuttingstock problem

with small demand levels.

1.2 A variant with intervals on production 19

1.2 A VARIANT WITH INTERVALS ON PRODUCTION

In industrial applications, the production requirements are sometimes expressed

with a tolerance, which translates into intervals of admissible production levels.

Let di anddi be respectively the lower and upper bounds on the productionof

orderi. Then, the objective of minimizing the waste that occurred in the cutting

process is no longer equivalent to minimizing the number of used stock rolls but

must be stated explicitly. We give the full formulation for further reference. It is:

ZR = min
K∑

k=1

(W yk −
∑

i

wi xik)

[F2] s.t.
K∑

k=1

xik ≥ di i = 1, . . . , n (1.5)

K∑

k=1

xik ≤ di i = 1, . . . , n (1.6)

n∑

i=1

wi xik ≤ W yk k = 1, . . . , k

xik ∈ {0, . . . , ui} i = 1, . . . , n ; k = 1, . . . , K

yk ∈ {0, 1} k = 1, . . . , K

whereui = min{di, b
W
wi
c}. The satisfaction of the demand is now stated with two

types of constraints: the covering (1.5) and the packing (1.6) constraints.

1.3 THE MULTIPLE WIDTH CUTTING STOCK PROBLEM

The multiple width cutting stock problem is a generalization of the cutting stock

model [F1] (1.1) in which the stock is made of non identical wide rolls. The width

of roll k is notedWk. Then [F1] becomes:

20 The cutting stock problem and its variants

Zk = min

K∑

k=1

yk (1.7)

[F3] s.t.
K∑

k=1

xik ≥ di i = 1, . . . , n (1.8)

n∑

i=1

wi xik ≤ Wk yk k = 1, . . . , K (1.9)

xik ∈ {0, . . . , ui} i = 1, . . . , n ; k = 1, . . . , K

yk ∈ {0, 1} k = 1, . . . , K

1.4 A VARIANT WITH TECHNICAL RESTRICTIONS

In the context of industrial production, there might be additional constraints, so

calledside constraints, imposed for technical reasons (like the characteristics of

the machines used) or managerial reasons. Classical examples are a minimum

width required for cutting patterns, and the number of orders cut in a wide roll

cannot exceed the cut capacity of the winder. The minimum andthe maximum

widths to be cut are noted respectivelyWmin and Wmax and the maximum

cardinality of a cut setC. Furthermore we consider an interval on the demand

because in real applications it is often the case.

It amounts to add additional constraints in[F2]:

ZR = min

K∑

k=1

(W yk −
∑

i

wi xik) (1.10)

1.5 The minimization of set-ups 21

[F4] s.t.
K∑

k=1

xik ≥ di i = 1, . . . , n (1.11)

K∑

k=1

xik ≤ di i = 1, . . . , n (1.12)

Wmin yk ≤
n∑

i=1

wi xik k = 1, . . . , K (1.13)

n∑

i=1

wi xik ≤ Wmax yk k = 1, . . . , K (1.14)

n∑

i=1

xik ≤ C k = 1, . . . , K (1.15)

xik ∈ {0, . . . , ui} i = 1, . . . , n ; k = 1, . . . , K

yk ∈ {0, 1} k = 1, . . . , K

whereui = min{di, b
W
wi
c}.

1.5 THE MINIMIZATION OF SET-UPS

The main objective in cutting stock problems is to minimize the waste. However

other criteria are important in determining what a good production planning is.

One of them is the minimization of setups, i.e. of the number of distinct cutting

patterns used. Indeed, in real process cut, time is spent between each new pattern

to cut and a waste is incurred in trial run to check the correctposition of the knives.

This problem can be modeled by introducing the concept of cloning. The

cutting pattern used for a wide rollk can be reproduced identically on other wide

roll. A compact but non linear formulation for this problem is given below. It

involves new integer variableszk representing the number of times the cutting of

wide roll k is cloned on other wide roll. Binary variablesyk do take a different

22 The cutting stock problem and its variants

meaning here:yk = 1 if wide roll k is cut using an original cutting pattern (not

used yet) and that may be used as a model (a patron) for cuttingother wide rolls,

while yk = 0 if either wide rollk is not used or it is used with a cutting pattern

that is the clone of another wide roll. As it was the case in [F1] (1.1), the variables

definition allows for multiple representation of the same solution obtained by

permuting the role of thek indices.

The formulation takes the form:

Z = min

K∑

k=1

yk

[F5] s.t.
K∑

k=1

xik zk ≥ di i = 1, . . . , n (1.16)

n∑

i=1

wi xik ≤ W yk k = 1, . . . , K

zk ≤ K yk k = 1, . . . , K

xik ∈ {0, . . . , ui} i = 1, . . . , n; k = 1, . . . , K

yk ∈ {0, 1} k = 1, . . . , K

zk ∈ IN k = 1, . . . , K

This formulation can be linearized by applying a two-stage transformation:

decompose integer variables in binary components associated with powers of two

and then define new variables to represent products of binaryvariables. This shall

be done in Chapter 2.

If there are interval constraints on production, constraints (1.16) are replaced

by:

di ≤
K∑

k=1

xik zk ≤ di i = 1, . . . , n

1.6 Review of the literature 23

A constraint can be added to bound the waste, either by bounding the total number

of wide rolls used :
∑K

k=1 zk ≤ U or, when production is not fixed, the explicit

waste

K∑

k=1

(W −
n∑

i=1

wi xik) zk ≤ R . (1.17)

In the former case, one better redefineK = U instead of adding constraint
∑K

k=1 zk ≤ U . In a hierarchical optimization approach where the priority is the

waste minimization while setup minimization is a secondaryobjective,U (resp.

R) is computed first using model [F1] (1.1) (resp. [F2]), then one solves [F5] in a

second stage.

1.6 REVIEW OF THE LITERATURE

The one-dimensional cutting stock problem has been intensively studied in the

two last decades. In [12], Dyckhoff developed a typology of cutting and packing

problems according to the dimensionality, the kind of assignment, the assortment

of large objects and the assortment of small items. A more recent improved

typology is presented in [46]. It is based on the Dyckhoff’s typology, defining

new problem categories and it gives a review of all recent papers in the cutting

and packing problems area.

Exact approaches to solve this problem make use of column generation.

Vance in [39] developed a branch-and-price algorithm usingthe Dantzig-Wolfe

reformulation, and branching directly on variables associated with the choice of

cutting patterns. Different branching schemes were proposed by Vanderbeck in

[40]. Scheithauer et al.([33]) developed a cutting plane algorithm. A different

approach was used by Valério de Carvalho who worked with an arc flow formu-

lation with side constraints in [35].

The cutting stock problem admits different formulations that are well suited

for column generation. The choice of a particular formulation has sometimes been

24 The cutting stock problem and its variants

motivated by the ease to implement branching or by the stabilization effect that

the formulation can have on the column generation procedure. In [38], Valério

de Carvalho gives a survey of models for the one dimensional cutting stock

and packing problems: the integer linear formulation of Kantorovitch described

in [19], the Dantzig-Wolfe reformulation that gives stronger dual bounds, the

position indexed model, some alternative one-cut models and an extended model

obtained by adding extra columns in the Gilmore-Gomory model. A modeling as

a Vehicle Routing problem is also considered. In [10], Desrosiers and Lübbecke

give a review of the usual formulations that are well suited for applying a column

generation procedure to the cutting stock problem, in particular the Gilmore

and Gomory model ([14]), and the arc flow formulation proposed by Valério de

Carvalho in [38]. Further pointers to the literature on formulations for the CSP

are provided in Chapter 2.

With regards to implementation strategies, the literaturehas mainly focused

on the issue of stabilization. In his thesis, Neame, [30], presents a new simple

technique to stabilizing the column generation procedure by smoothing the

dual values and he tests it to solve the binary cutting stock problem. He makes

comparisons with other main approaches (varying box size step method, a

linear norm penalty method, an hybrid method (du Merle et al.[11])) and then

shows that it performs well on the binary cutting stock problem, the average

time on difficult instances is reduced by a factor of three. In[37], Valerio de

Carvalho proposes to introduce dual cuts in the dual formulation: he initializes

the column generation procedure with valid cuts (see chapter 2) and shows that

they accelerate the procedure on bin-packing problems.

In recent work on dealing with industrial cutting stock problem, few papers

use exact methods. Johnson et al., in [18], propose a model combining skiving

(joining smaller rolls to form larger rolls) and the one dimensional cutting

stock problem. Their model consists in generating the cutting patterns while

minimizing the waste and takes into account two technical constraints (minimum

width used in a pattern and a bound on the number of cut pieces in a pattern).

Their solution method combines heuristics and the use of theLP formulation. In

[8], Correira, Oliveira and Ferreira describe two models (minimizing the waste)

1.6 Review of the literature 25

for the same problem with additional technical constraints. In a first stage, they

generate a priori cutting patterns to be included in a LP formulation. Then, they

obtain an integer solution to the LP solution using a rounding heuristic procedure.

Lee, in [24], proposes “in situ” column generation approachthat we discuss in

Chapters 2 and 5.

26 The cutting stock problem and its variants

2
REFORMULATIONS AND COLUMN

GENERATION

The compact formulations of Section 1 suffer from several drawbacks. One of

these drawbacks is the weakness of their LP relaxation: the lower bound obtained

by relaxing the integrability constraints is typically weak. For the standard cutting

stock problem it has the value

ZLP =

∑n

i=1 widi

W
.

When the cutting process involves a lot of waste, this bound can be far from the

optimum. For example, whenwi = W
2

+ ε, ∀i, the optimal solution is
∑n

i=1 di

and the gap between this optimal solution and the lower boundapproaches50%.

The second weakness of Section 1 models is the symmetry inherent to indexing

variables withk: several equivalent solutions can be obtained by exchanging

cutting patterns between wide rolls, i.e. by permuting thek indexes in the solution

of the compact formulation [F].

Better formulations that avoid (in part) the above drawbacks can be derived by

exploiting the structure of the problem. The knapsack constraints (1.2) represent

28 Reformulations and column generation

a block diagonal matrix, while the covering constraints (1.1) act as linking con-

straints. The compact formulation exhibits symmetry because it makes no use of

the fact that the knapsack subproblems are identical. On theother hand, stronger

dual bound can be obtained by convexification of the knapsacksubproblem (us-

ing the Dantzig-Wolfe reformulation principle [9]). Indeed, efficient algorithms

(although not polynomial) are known for the knapsack problem (either dynamic

programming or specialized branch-and-bound methods) that can be exploited

to carry on an implicit reformulation of the cutting stock problem in terms of

the weights associated with knapsack subproblem solutions. Such extensive

formulation is to be solved using dynamic column generation. Alternatively, an

explicit reformulation can be obtained using the variable redefinition technique

of [29].

The alternative reformulations are developed in this chapter. We begin by

considering the various formulations of the integer knapsack subproblem as they

underly the different formulations of the cutting stock problem. Indeed, a variable

change in the subproblem can be applied to the whole problem to give an explicit

reformulation. Moreover, each subproblem formulation calls for its own solution

method. Then, we consider successively explicit and implicit reformulations for

the standard cutting stock problem. Finally, we review in turn the different variants

and say how to adapt subproblem and global problem reformulations.

2.1 FORMULATIONS FOR THE KNAPSACK SUBPROBLEM

The sub-systemX, whose solutions are valid cutting patterns, is defined by con-

straints (1.2) and (1.3). Thus, the natural formulation foran optimization Integer

2.1 Formulations for the knapsack subproblem 29

Subproblem (ISP) overX is

max
x∈X

n∑

i=1

pi xi

[ISP1] whereX = {
n∑

i=1

wi xi ≤ W

xi ≤ ui i = 1, . . . n

xi ∈ IN i = 1, . . . n}

It can be solved by using a dynamic programming procedure inO(nW 2), or

a specialized branch-and-bound algorithm [28]. However, for the latter, it can

be better to transform the subproblem into a 0-1 knapsack problem, which can

be done polynomially. Moreover, the binary decomposition shall also be useful

in our definition of branching constraints. To avoid introducing symmetric

representations of some solutions in the transformation, [42] showed that it is

better to use a multiple class binary knapsack model.

Let ni = blog2(di)c + 1. We apply the change of variable:

xi =

ni∑

j=1

2j−1 xij ∀i = 1, . . . , n (2.1)

with xij ∈ {0, 1}. We denote bymij = 2j−1 ∀j = 1, . . . , ni, the multiplicities of

item i. The Binary Subproblem (BSP) takes the form of amultiple class binary

knapsack:

max
x∈X

n∑

i=1

ni∑

j=1

pij xij

[BSP1] whereX = {
n∑

i=1

ni∑

j=1

wi mij xij ≤ W

ni∑

j=1

mij xij ≤ ui i = 1, . . . n

xij ∈ {0, 1} i = 1, . . . n, j = 1, . . . ni}

30 Reformulations and column generation

Reformulation [BSP1] does not allow to improve the LP dual bound. It admits the

same set of LP solutions than [ISP1], as any solution to [ISP1] can be decomposed

in an LP solution to [BSP1] using transformation:

xij =
xi

2ni − 1
∀i = 1, . . . , n (2.2)

while the reverse transformation is given by (2.1).

The unbounded version, where we ignore the bounds (1.4), allowing a pattern

cutting more pieces than the demand, is easier to solve. The dynamic programs

takesO(nW) operations, while the 0-1 transformation now leads to a standard bi-

nary knapsack problem. For further reference let [uISP1] (resp. [uBSP1]) denotes

model [ISP1] (resp. [BSP1]) without constraints (2.1) (resp. (2.2)).

The third formulation considered here is for the unbounded version of

the knapsack subproblem. The problem can be formulated as alongest path

problem in an acyclic network that underlies the dynamic programming solution

method. Assume that all items have different widthwi (for otherwise they can be

aggregated into a single item). We define a graphG = (N, A), where the node

set isN = 0, . . . , W, W + 1, each node representing a feasible level of capacity

usage and the arc set is defined byA = ∪iA(i) ∪ {(u, W + 1) : u = 0, . . . , W}

whereA(i) = {(u, v) : 0 ≤ u < v ≤ W with v − u = wi} are arcs representing

the cutting of a piece of itemi, while the other arcs represent waste. A valid

cutting pattern is a path in this directed acyclic graph.

Letxuv be the binary decision variable associated with arc(u, v) ∈ A: xuv = 1

if a knife is set in positionu and another in positionv yielding a cut piece of size

wi = v − u. The reformulation in these variables, denoted as the uncapacitated

2.1 Formulations for the knapsack subproblem 31

Flow Subproblem (uFSP), takes the form:

max
x∈X

n∑

i=1

puv xuv

[uFSP1] whereX = {
∑

u∈N

xuv =
∑

w∈N

xvw ∀v ∈ N \ {0, W + 1} (2.3)

∑

v∈N

x0v = 1

∑

v∈N

xvW+1 = 1

xuv ∈ {0, 1} ∀(u, v) ∈ A

Constraints (2.3) are flow conservation constraints that ensure the feasibility of

the cutting pattern.

Observe that the network flow model suffers from symmetry because different

paths could correspond to the same production of cut pieces.However, Valério

de Carvalho shows in [36] how to reduce the symmetry. He considers a subset of

arcs using the following criteria: assuming that items are sorted in non increasing

order of their width, then an arc representing an item of smaller width has its

head on the tail of an arc corresponding to a larger item. Withthis streamlined

definition of the support graph, a given subproblem solutionhas a unique path

representation.

On the other hand, [uFSP1] is a stronger formulation than [uISP1] and

[uBSP1]. Each LP solution of this subproblem can be transformed in a LP so-

lution for [uISP1]:

xi =
∑

(u,v)∈A(i)

xuv

and one can show that if the vector ofxuv is a feasible solution of the LP relaxation

of [uFSP1], then the associatexi vector is feasible for the LP relaxation of [uISP1].

But, it exists LP solutions to [uISP1] that cannot be represented as LP solutions in

[uFSP1], as seen in example 1.

32 Reformulations and column generation

Example 1 Letn = 2, W = 4, w1 = 3 andw2 = 2.

The solutionx1 = 1, x2 = 1
2

cannot be presented in [uFSP1] because the only arc

leaving node3 is a waste arc to nodeW + 1.

In fact, [uFSP1] is an ideal formulation that has the “integrality prop-

erty”, since it is a flow problem. However it is less compact: it involves

a pseudo polynomial number of variables (O(nW)) and constraints (O(W))

instead ofn variables and one constraint for unbounded version of model[uISP1].

In theory, the ideal formulation for the sub-system can alsobe obtained using

the definition of the convex hull of the integer solution. LetQ be the set of feasible

cutting patterns, i.e. solutions of the sub-systemX, whereX is defined using

formulation (u)ISP1, (u)BSP1, or uFSP1. Thus,Q denotes the enumerated set

while X is a mathematical programming representation of the discrete solutions:

X = {xq}q∈Q

We say thatxq is the solutionx ∈ X associated with the feasible cutting pattern

q ∈ Q. Then, the subproblem could be reformulated as

max
x∈X

p x

[ESP1] whereX = {x =
∑

q∈Q

xqλq (2.4)

∑

q∈Q

λq = 1 (2.5)

λq ∈ {0, 1}∀q ∈ Q} .

Its LP relaxation givesconv(X), by definition. [ESP1] assumes we have enu-

merated exhaustively all solutionsx ∈ X. Of course this is not realistic. This

reformulation is only to be used implicitly in applying to the cutting stock prob-

lem what is known as a Dantzig-Wolfe reformulation.

2.2 Explicit reformulations 33

2.2 EXPLICIT REFORMULATIONS

Each reformulation of the knapsack sub-systems leads to reformulations of the

global standard cutting stock problem. Formulation [ISP1]gives rise to the com-

pact formulation [F1] (1.1) presented in Section 1, which weshall be more pre-

cisely denoted by F1(ISP1). Using [BSP1] yields an alternative formulation:

Z = min

K∑

k=1

yk

[F1(BSP1)] s.t.
K∑

k=1

ni∑

j=1

mij xijk ≥ di ∀i

n∑

i=1

ni∑

j=1

mij wi xijk ≤ W yk ∀k

ni∑

j=1

mij xij ≤ ui ∀i

yk ∈ {0, 1} ∀k

xijk ∈ {0, 1} ∀i, ∀j, ∀k

Its interest is limited because it is not any stronger than F1(ISP1), and it does not

help to avoid symmetry. Moreover it involves a larger numberof variables. We

mentioned it for further reference when it comes to defining branching constraints

based on these binary variables.

Formulation [uFSP1], however, leads to an interesting explicit reformulation

of the cutting stock problem. Valério de Carvalho ([38]) introduced this arc-flow

model for bin packing problem. Here, variablesxuvk of each sub-system in the

form [uFSP1] can be aggregated into

xuv =
∑

k

xuvk

34 Reformulations and column generation

wherexuv now represents the number of wide roll cuttings where consecutive

knifes are placed in positionsu andv (i.e. the number of times the item of weight

wi = v − u is placed at a distance ofu of the origin in a cutting pattern). Observe

that such aggregation could not be carried out in F1(ISP1) orF1(BSP1) because

the disaggregate value was needed to formulate the knapsackconstraints, while

here the knapsack constraint is built into the definition of aflow from node0 toW .

Thus, the reformulation takes the form:

min z

[R1] s.t.
∑

(u,v)∈A

xuv −
∑

(v,w)∈A

xvw = 0 ∀v ∈ N \ {0, W}

∑

v∈N

x0v = z

∑

v∈N

xvW = z

∑

(u,v)∈A(i)

xuv ≥ di ∀i (2.6)

xuv ∈ IN ∀(u, v) ∈ A

Reformulation [R1] has pseudo polynomial size since it involvesO(nW) vari-

ables andO(W) constraints. But it is stronger than [F1(ISP1)] or [F1(BSP1)] as

it makes use of an ideal formulation for the subproblem. Moreover the above

mentioned aggregation allows to avoid the symmetry that resulted from the in-

terchange ofk indexes. However, it introduces a new symmetry. Although the

reduction to the support graph proposed by Valerio de Carvalho completly elim-

inates the duplication of representation of solutions at the subproblem level, it

remains symmetry at the global level: the paths flow can be recombined in multi-

ple ways, much more for the cutting stock problem. A given solution to R1 admits

different representations as shown by the following example problem.

Example 2 Letn = 2 items with respective widths and demandsw1 = 1, d1 = 6

andw2 = 2, d2 = 3, and letW = 4.

2.3 Implicit reformulations and column generation 35

The patternsq1 = (4, 0), q2 = (0, 2) andq3 = (2, 1) represented in figure 2.1 by

the respective paths:(0, 1, 2, 3, 4), (0, 2, 4) and (0, 2, 3, 4), respect the reduction

criteria. However, combining them, the patternq3 admits another representation

: {0, 1, 2, 4}, that gives rise to the same solution.

1 2 3 40

w1 w1 w1w1

w2w2

pattern 1

pattern 2

Figure 2.1: Symmetry in the arc flow formulation

The motivation for this formulation is also to provide new variables on which

to branch.

2.3 IMPLICIT REFORMULATIONS AND COLUMN GENERATION

Formulation [ESP1] leads to a reformulation in terms of variablesλk
q = 1 if sub-

problem solutionxq is chosen for subproblemk and zero otherwise. It takes the

36 Reformulations and column generation

form:

ZM = min
K∑

k=1

∑

q∈Q

λk
q (2.7)

[M1Disag] s.t.
K∑

k=1

∑

q∈Q

x
q
i λk

q ≥ di i = 1, . . . , n (2.8)

∑

q∈Q

λk
q ≤ 1 k = 1, . . . , K (2.9)

λk
q ∈ {0, 1} ∀q ∈ Q, k = 1, . . . , K (2.10)

where the convexity constraints
∑

q∈Q λk
q = 1 have been relaxed into

∑

q∈Q λk
q ≤

1 because the null cutting pattern is a feasible solution toX of zero cost.

Because the subproblems are identical, variablesλk
q can be aggregated by

defining variablesλq =
∑

k λk
q ∀q ∈ Q. Thus,λq represents the number of

times the cutting patternq ∈ Q is chosen in the solution. The aggregation allows

to eliminate the symmetry. Thus, whenX is defined by [ISP1] or [uISP1], the

reformulation of the standard cutting stock problem takes the form:

ZM = min
∑

q∈Q

λq (2.11)

[M1] s.t.
∑

q∈Q

x
q
i λq ≥ di i = 1, . . . , n (2.12)

∑

q∈Q

λq ≤ K (2.13)

λq ∈ IN ∀q ∈ Q (2.14)

The convexity constraint (2.13) is not binding becauseK is an overestimate

of the number of stock pieces used, so it can be dropped. Due toits large

(exponential) number of variables, this reformulation is to be solved using an

integer programming column generation procedure (branch-and-price). In this

context, re-formulation [M1] is called themaster program.

2.3 Implicit reformulations and column generation 37

The demand covering constraints (2.12) take a different form for alternative

representation ofX. When [BSP1] or [uBSP1] is chosen, they take the form
∑

q∈Q

∑

j

mij x
q
ij λq ≥ di ∀i

while for [uFSP1], they take the form
∑

q∈Q

∑

uv:v=u+wi

xq
uv λq ≥ di ∀i .

2.3.1 THE COLUMN GENERATION PROCEDURE

The dynamic column generation procedure consists in iteratively solving the mas-

ter LP restricted to a subset of columns, and, in the pricing procedure, search for

missing columns with negative reduced cost by solving an optimization subprob-

lem overX. The optimal dual solution of the restricted master LP is used to define

the reduced cost of a generic column. At the root node, it works as follows. Letπ

be the dual variables associated to the master constraint (2.12). The specific form

of the reduced cost of a cutting pattern depends on the variable definitions. Using

the variables of [ISP1], the reduced cost is

cq = 1 −
n∑

i=1

πi x
q
i .

2.3.2 THE COLUMN GENERATION SUBPROBLEM

The pricing subproblem is solved in search for the most negative reduced cost

overX. Using representation [ISP1], it takes the form:

ξ(π) = max{
n∑

i=1

πi xi :

n∑

i=1

wi xi ≤ W, xi ≤ ui andxi ∈ IN for i = 1, . . . n}

A solution to the subproblem is a column that should be added to the master

problem if it has a negative reduced cost. When the optimal reduced cost is zero,

the current solution to the restricted master is proved optimal for the unrestricted

master.

38 Reformulations and column generation

2.3.3 THE LAGRANGIAN DUAL BOUND

Any dual bound on the subproblem gives rise to a Lagrangian dual bound for the

master. Indeed, applying Lagrangian relaxation to the covering constraints (2.12),

using the Lagrangian multipliersπ, yields a Lagrangian bound:

L(π) = min
∑

q∈Q

(1 −
n∑

i=1

πi x
q
i) λq +

n∑

i=1

πi di

∑

q∈Q

λq ≤ K (2.15)

λq ∈ IN ∀q ∈ Q

whose solution is

L(π) =
n∑

i=1

πi di + min{K (1 − ξ(π)), 0}

If the pricing subproblem is not solved exactly, any dual bound ξ(π) on the sub-

problem valueξ(π) can be used in the above expression to define a valid lower

bound on the master problem. The best bound encountered in the course of the

column generation procedure is recorded:

LB = max
t

L(πt)

whereπt is the dual solution at iterationt. Moreover, for an integer objective

value, this bound can be rounded up:LB = maxtdL(πt)e.

2.3.4 TERMINATION CRITERIA

The column generation procedure stops:

(i) when no more negative reduced cost columns are found or,

(ii) when the current Lagrangian dual boundLB is greater or equal to the current

value of the restricted master LP, or

2.3 Implicit reformulations and column generation 39

(iii) when the current Lagrangian dual boundLB allows to prune the current

branch-and-bound node, i.e.

LB ≥ ZINC

whereZINC denotes the cost of the incumbent integer solution.

2.3.5 THE DUAL MASTER PROGRAM

Seen in the dual space, the column generation procedure is a cutting plane algo-

rithm for the dual of the master LP. It is known asKelley’s cutting plane method

[20]. The dual problem takes the form:

max
n∑

i=1

di πi − K σ (2.16)

[D1] s.t.
n∑

i=1

x
q
i πi − σ ≤ 1 ∀q ∈ Q (2.17)

πi ≥ 0 i = 1, . . . , n

σ ≥ 0

The study of the dual is important because the dual multipliers play an important

role in the column generation process, for the pricing of columns and the conver-

gence of the algorithm.

This dual problem is the LP form of thedual Lagrangian problem:

θ = max
π≥0

L(π) (2.18)

40 Reformulations and column generation

Indeed,

θ = max
π≥0

L(π)

= max
π≥0

n∑

i=1

di πi + min{K (1 − ξ(π)), 0}

= max
n∑

i=1

di πi − K σ

s.t − σ ≤ 1 − ξ(π)

π ≥ 0

σ ≥ 0

= max

n∑

i=1

di πi − K σ

s.t
n∑

i=1

x
q
i πi − σ ≤ 1 ∀q ∈ Q

π ≥ 0

σ ≥ 0

whereσ stands for the opposite of(1 − ξ(π))−. Also note that the Lagrangian

bound that results from dualizing constraints (1.1) in [F1]is the same as the above.

We introduce the restricted dual functionLk(π) as being the restriction ofL(π)

defined in (2.15) to the subset of columns obtained up to thekth iteration, i.e.

L(π) = min
∑

q∈Qk

(1 −
n∑

i=1

πi x
q
i) λq +

n∑

i=1

πi di

∑

q∈Qk

λq ≤ K (2.19)

λq ∈ IN ∀q ∈ Qk

2.3 Implicit reformulations and column generation 41

The associated restricted dual master problem takes the form:

θk = max
π≥0

Lk(π)

= max

n∑

i=1

di πi − K σ (2.20)

s.t
n∑

i=1

x
q
i πi − σ ≤ 1 ∀q ∈ Qk

π, σ ≥ 0

At each iterationk of Kelley’s cutting plane procedure, one maximizesθk and

checks whether the resulting dual vectorπk is feasible for the unrestricted master

by searching a violated inequality. For this, we solve the subproblemξ(πk) that

will provide the most violated inequality. If there is no violated inequality,πk is

feasible and therefore optimal for the unrestricted master.

2.3.6 STRENGTH OF THE DUAL BOUND

Standard Lagrangian duality theory [13] tells us that the master LP yields a bound

equivalent to solving

min{
K∑

k=1

yk :
K∑

k=1

xik ≥ di ∀i, xk ∈ conv(X), xik ≤ uiyk∀i, k, xik, yk ≥ 0∀i, k} .

I.e. using Dantzig-Wolfe reformulation defines a master LP that is equivalent

to an implicit convexification of the subproblem. The quality of this bound

depends on the specific definition ofX: [ISP1] and [BSP1] yield the same bound

LD, while all three unbounded knapsack representations [uISP1], [uBSP1] and

[uFSP1] yield a weaker bounduLD. As formulation [uFSP1] has the integrality

property, formulation [R1] also yields bounduLD. In the sequel, we refer to

proper columnsto denote the solutions of a bounded knapsack subproblem, while

solutions of unbounded version areunproper. This terminology was introduced

in [45]. Usingproper columnsyields the stronger boundLD.

42 Reformulations and column generation

Finally, observe that applying a Dantzig-Wolfe reformulation to [R1] letting

the covering constraints (2.6) in the master, results in a master formulation of type

[M1] with the use of subproblem [uFSP1].

2.3.7 BRANCHING SCHEMES

Formulation [M1] is solved with a branch-and-price method.At each node of a

branch-and-bound tree, if the current node cannot be prunedby bounds, infeasi-

bility or optimality, then branching must takes place to eliminate the fractional

solution. Branching on individual fractional variableλq is not appropriate. In [41]

different branching schemes are studied where fractional solutions are eliminated

using disjunctive constraints of the form:

∑

q∈Q̂

λq ≤ bαc (2.21)

or
∑

q∈Q̂

λq ≥ dαe (2.22)

where Q̂ ⊂ Q and α =
∑

q∈Q̂ λq for the current fractional solutionλ. The

specific definitions of̂Q that happen to be useful in practice are described below

for each formulation.

With formulation M1(ISP), branching constraints are difficult to formulate,

hence the motivation for introducing the binary decomposition in the subproblem.

For formulation M1(BSP), we use the following branching rules

1. Q̂ = {q ∈ Q : x
q
i > 0} , i.e. the number of used patterns involving item

i must be integer. To implement this scheme, we need to introduce, in the

subproblem, binary variablesyi = 1 if xi > 0 and zero otherwise. The dual

variables associated with the corresponding branching constraint (2.21) or

(2.22) define a setup cost in the subproblem objective function

2.3 Implicit reformulations and column generation 43

2. Q̂ = {q ∈ Q : x
q
ij = 1} , i.e. the number of used patterns involving

the component of multiplicityj in the binary decomposition of itemi must

be integer. The dual variables associated with the corresponding branching

constraint (2.21) or (2.22) define an extra cost associated to variablexij in

the subproblem objective function.

3. Q̂ = {q ∈ Q : x
q
i > 0 andx

q
j > 0}, i.e. the number of columns involving

two specific itemsi andj must be integer. To implement this scheme, we

need to introduce, in the subproblem, binary variablesyij = 1 if yi = yj = 1

and zero otherwise for all pairs of itemsi < j. The proper value ofyij

variables is enforced by adding constraints

yij ≥ yi + yj − 1 ∀i, j : i < j

yij ≤ yi ∀i, j : i < j

yij ≤ yj ∀i, j : i < j

These three branching rules do not guarantee that any fractional solution can be

separated. However, they were sufficient to eliminate all fractional solutions in

the numerical experimentation reported in Chapter 4.

For M1(uFSP), the branching rule is

• Q̂ = {q ∈ Q : xq
uv = 1}, i.e. the number of columns involving a particular

arc(u, v) (or equivalently the total flow on arc(u, v)) is forced to be integer

for all arcs. The dual variables associated with the corresponding branch-

ing constraint (2.21) or (2.22) come as an extra arc cost in the subproblem

objective function.

This branching rule alone is enough to guarantee that an integer solution is

obtained. Indeed, if the flow on each arc is integer, the flow decomposition

44 Reformulations and column generation

theorem guarantees that this flow can be decomposed into integer flow on path

from node0 to nodeW . Each of this path defines a feasible pattern, the flow on

the path defines the number of time this pattern is chosen. This path flow solution

is therefore a feasible integer solution for the CSP. Thus apparently, branching

is easier to formulate and enforced under the arc flow formulation approach. It

is to be reminded however that there is a pseudo-polynomial number of arc flow

variables. Moreover, the arc flow formulation allows for different representation

of a given solution and that branching efficiency will sufferfrom this drawback.

2.4 OTHER APPROACHES AND FORMULATIONS

Valério de Carvalho ([38]) applied an hybrid method to the bin packing problem:

he solves it using “implicitly” the above column generationformulation [M1] with

subproblem [uFSP1], but translates the columns for [M1] in variables for formu-

lation [R1] and obtains the next set of dual prices by solvingthe restricted LP

formulation [R1]. This requires adding variables and flow conservation constraint

dynamically to [R1]. The procedure is not equivalent to working with formulation

M1(uFSP1), as we can see in example 3, the arc flow formulationallows to define

implicitly path flows that cannot be obtained as convex combination of the paths

generated so far.

Example 3 Letn = 2, W = 3, w1 = 2 andw2 = 1.

We consider the following cutting patterns:q1 = (1, 0), q2 = (0, 3). In figure

2.2 the solution is represented as path flows, the full line corresponds to the first

cutting pattern and the dotted path to the second one.

Then, the flowx12 = 0, x23 = 0, x13 = 1 andx34 = 1 that would lead to the

cutting patternq3 = (1, 1) is an implicit solution of the arc flow representation

but it cannot be obtained by listing a convex combination of patternsq1 andq2.

2.4 Other approaches and formulations 45

1 2 3 4 5

w1 = 2

w2 = 1 w2 = 1w2 = 1

waste

waste

Figure 2.2: Path flow representation

Jon Lee ([24]) also introduced an hybrid method for the cutting stock problem

(that he called “in situ” column generation): it is an hybridation of a method

based on the compact formulation [F1] (1.1) and the column generation [M1].

In fact Lee proposed this approach for a variant with technical constraints and

minimization of setups (he did not solve the model exactly neither). Here we

just introduce the underlying idea on the standard CSP. The first cutting pattern is

expressed in the original variables while the others are in the space of the column

generation reformulation. Thus the formulation is:

min
∑

q∈Q

λq + y (2.23)

∑

q∈Q

x
q
i λq + xi ≥ di i = 1, . . . , n (2.24)

∑

q∈Q

λq ≤ K − 1 (2.25)

λq ∈ IN ∀q ∈ Q (2.26)
∑

i

wi xi ≤ W y (2.27)

xi ∈ IN ∀i (2.28)

y ∈ {0, 1} . (2.29)

46 Reformulations and column generation

The hybrid procedure works as follows: at iterationk, one has a given subset

of columnsQk in the hybrid formulation; one solves the above integer problem

restricted toQk to optimality and record the solutionx as a new column before

re-iterating. The stopping criteria to obtain an exact solution are not clear. The

interest of using such approach, according to Lee, is to generate columns that are

complementary to existing columns with regards to the IP solution. Observe that

each generation of a column demands the solution of the IP master program to

optimality.

To be exhaustive we should also mention the acyclic capacitated VRP model

introduced by Ben Amor ([5]). Assuming that items are sortedin non increasing

order of their width (wi ≤ wi+1 i = 1, . . . , n), the network is defined as follows:

• for each itemi, a set ofni + 1 nodes, withni =
⌊

W
wi

⌋

notedi1, . . . , ini
, i0,

and a set of associated arcs(iv, iv+1) for v = 1, . . . , ni − 1 and(iv, i0) for

v = 1, . . . , ni. Thus a path between nodesi1 andi0 define the number of

itemsi that are chosen in a cutting pattern.

• a set of arcs between two items(i0, j1) such that(wj > wi) andwi + wj ≤

W ,

• for each patternk a starting and an ending nodes notedsk andek, and a set of

starting (respectively ending) arcs defined as(sk, i1) (respectively(i0, ek))

for i = 1, . . . , n.

Each arc entering a nodeiv, v = 1, . . . , ni has an associated weightwi. Any path

defining a cutting pattern must start at nodesk and end at nodeek and respect the

knapsack constraint. We noteN the set of nodes, andAk the set of arcs associated

to a patternk. We define binary variablesxk
ij∀(i, j) ∈ Ak, then the formulation

2.5 Master formulations with exchanges built-in 47

takes the form:

min
∑

k∈K

n∑

i=1

xk
sk ,i1

s.t.
∑

k∈K

(

ni∑

v=1

∑

(j,iv)∈Ak

xk
j,iv

≥ di i = 1, . . . n (2.30)

∑

(sk,i)∈Ak

xk
sk,i = 1 ∀k ∈ K (2.31)

∑

(i,j)∈Ak

xk
ij −

∑

(j,i)∈Ak

xk
ji = 0 ∀i ∈ N \ {sk, ek} ∀k ∈ K (2.32)

∑

(i,ek)∈Ak

xk
i,ek

= 1 ∀k ∈ K (2.33)

n∑

i=1

wi (

ni∑

v=1

∑

(j,iv)∈Ak

xk
j,iv

) ≤ W (
n∑

j=1

xk
sk,j1

) ∀k ∈ K (2.34)

xk
ij ∈ IN ∀k ∈ K, ∀(i, j) ∈ Ak

The first constraints (2.30) ensure the satisfaction of the demand for each item,

(2.31), (2.32) and (2.33) are flow conservation constraints, and constraints (2.34)

ensures the feasibility of each pattern.

This formulation allows to define proper patterns, definingni =

min{
⌊

W
wi

⌋

, di}, and it amounts to consider a binary decomposition of items.

2.5 MASTER FORMULATIONS WITH EXCHANGES BUILT-IN

The above cutting stock formulations can be amended to represent feasible

exchanges that can be operated in a cutting pattern. For instance replacing an

48 Reformulations and column generation

item i by itemk andl in a cutting pattern is feasible ifwi ≥ wk + wl. Modeling

such exchange is not necessary to model the problem since instead of modifying a

cutting pattern one can generate a new one, leading to the same result. However,

the apparent redundancy in the model can have benefit when solving it. In

particular, in a column generation approach, a simple exchange can be applied

to any already defined pattern for which it is feasible and therefore it defines

implicitly a whole set of cutting patterns that may not yet begenerated and need

not to be generated. Using such exchange has been shown to accelerate the

column generation procedure. In particular, Valerio de Carvalho [37] used this

idea to accelerate the resolution of bin packing problems.

In this section we consider three alternatives to formulation [M1] where ex-

changes are modeled. We assume formulation [ISP1] for the subproblem. First,

we see how the simplest exchange (replacei by j for wj < wi) can be modeled

simply be re-writing the covering constraints (2.12) in a different form. Then,

we consider how modeling any feasible exchange using extra variables. For these

reformulations, we assume that orders are different and sorted in non increasing

order of their width:

w1 > w2 > . . . > wn

2.5.1 AGGREGATING COVERING CONSTRAINTS

The production of piece ofk can be used to cover the demand for an itemi such

that k < i. Thus, it is enough to enforce constraint on the aggregate demands

for items1, . . . , k for all i. Modifying the covering constraints (2.12) in [M1]

2.5 Master formulations with exchanges built-in 49

accordingly leads to the following master reformulation:

ZM = min
∑

q∈Q

λq (2.35)

[AgregCovM1] s.t.
∑

q∈Q

(
i∑

k=1

x
q
k) λq ≥

i∑

k=1

dk i = 1, . . . , n (2.36)

∑

q∈Q

λq ≤ K (2.37)

λq ∈ IN ∀q ∈ Q (2.38)

The covering constraints are an aggregation of those of model [M1]: for item i,

we sum the covering constraints of M1 corresponding to all items of width larger

or equal towi.

To understand the stabilization effect of the built-in exchanges, let us look at

the dual problem of the LP relaxation of AgregCovM1. It takesthe form:

max
n∑

i=1

di (
n∑

k=i

νk) − K σ

s.t.
n∑

i=1

(
n∑

k=i

νk) x
q
i − σ ≤ 1 ∀q ∈ Q

νi ≥ 0 i = 1, . . . , n

σ ≥ 0

whereνi (respectivelyσ) are the dual variables associated to the constraints (2.36)

(respectively (2.37)).

50 Reformulations and column generation

Then, introducing variablesπ′
i =

∑n

k=i νk ∀i we obtain:

max
n∑

i=1

di π′
i − K σ

s.t.
n∑

i=1

x
q
i π′

i − σ ≤ 1 ∀q ∈ Q

π′
i − π′

i+1 ≥ 0 i = 1, . . . , n − 1

π′
n ≥ 0

σ ≥ 0

This formulation is equivalent to D1 with the addition ofn − 1 dual constraints:

π′
i ≥ π′

i+1 i = 1, . . . , n − 1

that means that the reward associated to the cut of itemi should be greater than

that of the cut of a smaller item. These constraints belong toa family of dual

cuts that were introduced by Valério de Carvalho in [37] to accelerate the column

generation procedure.

2.5.2 INTRODUCING EXCHANGE VARIABLES

An alternative formulation of exchanges in the master problem is to introduce

exchange variableseik representing the quantity of itemi used to cover the

demand for itemk. Here, we consider replacing one piece of an itemi by one

or several copies of a smaller itemj. The problem of defining such feasible

exchanges can be formulated as a generalized flow model (see [1] Chapter 15).

The corresponding graph is presented in Figure 2.3.

2.5 Master formulations with exchanges built-in 51

The nodesN = {1, . . . , n} are associated to each itemi with associated

demanddi, and node0 is the source node with supply
∑

i di. Arcs(0, i), ∀i repre-

sent a production, the associated flow is
∑

q x
q
i λq. Arcs (i, j) between itemi and

j such thatwi > wj, i.e. i < j with our indexing, represent feasible exchanges.

Indeed, the production of itemi is used to cover the demand for itemj by further

cutting the pieces of itemi into pieces for itemj. The associated variableeij rep-

resents the flow entering the arc, i.e. the number of copies ofi cut for producingj.

The gain on the arc is the multiplier

µij =

⌊
wi

wj

⌋

thus the flow leaving the arc,µij eij , represents the production of itemj obtained

from further cutting pieces ofi.

In order to avoid redundancy, we do not create the arcs that can be obtained by

a relation of transitivity. Thus, beyond the creation of arc(i, i + 1), we consider

only the arcs corresponding to an incremental increase inµij. Moreover, in order

to avoid exchanges that obviously lead tounpropercolumns, we further restrict

our graph to arcs whereµij ≤ dj. Hence, the arcs leaving the node associated to

item i are

A+(i) = {(i, j) : i < j, µik < µij ≤ dj∀i < k < j} .

Similarly, A−(i) denotes the non redundant exchange arcs entering the node

associated with itemi.

52 Reformulations and column generation

0

1 2 3 4 5

n∑

i=1

di

d1

d2 d3

d4
d5

e12 e23 e34 e45

e13
e15

µ13e13

µ15e15

X

q∈Q

x
q
1
λq

X

q∈Q

x
q
2
λq

X

q∈Q

x
q
3
λq

X

q∈Q

x
q
4
λq

X

q∈Q

x
q
5
λq

Figure 2.3: Exchange formulation

The formulation with exchange variableseik is:

ZM = min
∑

q∈Q

λq

[ExchF lowM1] s.t.

∑

q∈Q

x
q
i λq +

∑

(k,i)∈A−(i)

µkieki ≥ di +
∑

(i,j)∈A+(i)

eij ∀i

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

eij ∈ IN ∀(i, j) ∈ A.

To understand the stabilization effect of the built-in exchange, let us look at

the dual problem to the LP relaxation of ExchFlowM1, ignoring the convexity

constraint. It is enriched with the dual constraints associated with variableseij . It

2.5 Master formulations with exchanges built-in 53

takes the form:

max

n∑

i=1

di πi

s.t.
n∑

i=1

x
q
i πi ≤ 1 ∀q ∈ Q

πi ≥

⌊
wi

wj

⌋

πj ∀ i, (i, j) ∈ A(i) (2.39)

πi ≥ 0 ∀i

Constraints (2.39) say that the reward for cuttingi must be at least as large as

the reward that could be obtained by transformingi in smaller productsj. The

coefficientµij allows to obtain stronger dual cuts than for the preceding model

(when there are larger than 1).

A simplification of the model entails taking all gain factorsto be 1, i.e. cut only

one copy ofj out of a piece ofi even if several could be cut. Then, the underlying

exchange network is a simple flow problem instead of a generalized flow. Observe

that eliminating all arcs that are implied by transitive relations builds down to

considering only the simplest exchange arcs(i, i + 1) with multipliersµij = 1.

54 Reformulations and column generation

Let DirectExchF lowM1 denote this simplified model:

ZM = min
∑

q∈Q

λq

[DirectExchF lowM1] s.t.

∑

q∈Q

x
q
i λq + ei−1,i ≥ di + ei,i+1 ∀i (2.40)

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

eij ∈ IN ∀(i, j) ∈ A.

It is equivalent to AgregCovM1 in the sense that it allows thesame exchanges.

However the stabilization effect may not exactly be the samefrom a computa-

tional point of view due to the presence of the extra variablesei−1,i .

2.5.3 USING EXCHANGE VECTORS

Model ExchFlowM1 only captures a small subset of feasible exchanges: cutting

an item into a single other product. More general exchanges involve cutting an

item into several different products (as done by Valério de Carvalho in [37]) ,

or even more general, replacing a subset of item pieces by another subset: letr

(resp. a) be the indicator vector of the pieces that are replaced (resp. added).

This general class of exchange can be modeled by introducingso called exchange

vectors in [M1]. These vectors can be seen as the difference between two feasible

columns. Exchange vectors can be defined as scaled rays of thesubproblem, they

are solutions of:

Y = {(a, r) :
∑

i

wiai ≤
∑

i

wiri,
∑

i

wiri ≤ W,

2.5 Master formulations with exchanges built-in 55

ai ri = 0 ∀i, ai ≤ di ∀i, a ∈ INn, ri ≤ di∀i, r ∈ INn}

where boundsdi on ai and ri are enforced to avoid exchanges that would

obviously lead tounproper columns.

As the set of feasible exchanges is quite large, the idea is toconsider them im-

plicitly through a column generation technique. LetE stands for the enumerated

set ofY solutions, i.e.

Y = {(ae, re)}e∈E

where theeth exchange vector is characterized by a vectorre of items that are

replaced by a vectorae of added items1. However, when formulating the master

problem with the addition of these exchange vectors, one must return to the dis-

aggregated master program[M1dissaggreg] given in ((2.7)-(2.10)) so as to apply

exchanges to specific cutting patterns. The augmented formulation takes the form:

min
∑

k,q∈Q

λk
q (2.41)

[ExchVectM1Disag] s.t. (2.42)
∑

k,q∈Q

x
q
i λk

q +
∑

k,e∈E

(ae
i − re

i) ρk
e ≥ di ∀i (2.43)

∑

e∈E

re
i ρk

e ≤
∑

q∈Q

x
q
i λk

q ∀i ∀k (2.44)

∑

q∈Q

λk
q ≤ 1 ∀k (2.45)

λk
q ∈ {0, 1} ∀q ∈ Q, ∀k (2.46)

where constraints (2.44) are needed to insure that one only replaces items that

1We shall sometimes use an alternative notation to define an exchange vector lettingxe ∈
IN

n represents an exchange vectore where the negative components inx
e representre while the

positive components representa
e.

56 Reformulations and column generation

were cut.

If we relax constraints (2.44), variablesλk
q andρk

e can be aggregated intoλq =
∑

k λk
q andρe =

∑

k ρk
e respectively. The relaxed master problem then takes the

form:

min
∑

q∈Q

λq

[ExchV ectM1] s.t.

∑

q∈Q

x
q
i λq +

∑

e∈E

(ae
i − re

i) ρe ≥ di ∀i

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

ρe ∈ IN ∀e ∈ E.

whereρe is the number of times the exchange vectore is used.

The exchange vectors can be generated dynamically by solving a pricing sub-

problem:

max{
n∑

i=1

πi(ai − ri) : (a, r) ∈ Y } (2.47)

Using exchange vectors in the primal amounts to adding the following dual cuts:

∑

i

πi (ae
i − re

i) ≤ 0 ∀e ∈ E (2.48)

Hence, well chosen exchange vectors, defining undominated and elementary

relations between the dual variables, can help stabilizingthe overall column

generation approach.

2.5 Master formulations with exchanges built-in 57

However, relaxing constraints (2.44) leads to a weaker formulation as illus-

trated by the following example.

Example 4 Letn = 3, W = 1 and

w1 = 5
8

d1 = 4

w2 = 3
8

d2 = 2

w3 = 2
8

d3 = 3

Consider feasible cutting patterns

x1 = (1, 1, 0)

x2 = (1, 0, 1)

x3 = (0, 0, 3)

and exchange vector

x4 = (0,−2, 3)

represented in figure 2.4.

The optimal solution for the linear relaxation of [ExchVectM1] is 4 with associ-

ated solutionλ1 = 4, ρ4 = 1. While if one solves the LP of [ExchVectM1Disag]

to optimality one gets41
3

with associated solutionλ1 = 2, λ2 = 2, λ3 = 1
3
.

The weakness of [ExchVectM1] is due to the fact that the replaced pieces defined

in an exchange can be taken from different patterns. It is like if we were allowed

to define a cutting pattern for the aggregation ofk wide rolls having total width

equal tok W . This, of course, allows to save waste.

58 Reformulations and column generation

1 2 3

x1

x2

x2

x4

Figure 2.4: Replacing two units of item 2 by three units of item 3 using exchange
vector

There is a natural subset of exchange vectors for which the relaxed master

[ExchVectM1] is as strong as [ExchVectM1Disag]: When|r| = 1, i.e. when only

one piece is replaced by a subset of smaller pieces, then the exchange obviously

applies to a single cutting pattern. This subclass of exchange vectors is precisely

those studied by Valerio de Carvalho [37]. Let

Ei = {e ∈ E : re
i = 1, re

j = 0 ∀j 6= i}, Ei = ∪j 6=iEj (2.49)

and let[RestrExchV ectM1] be the disaggregate master formulation where the

exchange vectors are restricted to those with|r| = 1. The disaggregate version

2.5 Master formulations with exchanges built-in 59

takes the form :

min
∑

k,q∈Q

λk
q

[RestrExchV ectM1Disag] s.t.

∑

k,q∈Q

x
q
i λk

q −
∑

k,e∈Ei

ρk
e +

∑

k,e∈Ei

ae
i ρk

e ≥ di ∀i

∑

e∈Ei

ρk
e ≤

∑

q∈Q

x
q
i λk

q ∀i, k (2.50)

∑

q∈Q

λk
q ≤ 1 ∀k

λk
q ∈ IN ∀k, q ∈ Q

ρk
e ∈ IN ∀k, e ∈ E.

Observation 1 When exchange vectors are restricted to those with|r| = 1, con-

straints (2.50) are redundant in the above formulation and its LP relaxation.

Indeed, as the exchange involves transforming a single piece of a given producti,

it is enough to ensure that the global production of piecesi is sufficient for satisfy-

ing demand plus transformed pieces. The aggregate solutioncan be disaggregated

in any way by arbitrarily assigningk indices.

Thus the associate aggregate master formulation is equivalent. It takes the

60 Reformulations and column generation

form:

min
∑

q∈Q

λq

[RestrExchV ectM1] s.t.

∑

q∈Q

x
q
i λq −

∑

e∈Ei

ρe +
∑

e∈Ei

ae
i ρe ≥ di ∀i

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

ρe ∈ IN ∀e ∈ E.

whose dual includes cuts

∑

j

πj ae
j ≤ πi ∀e ∈ Ei (2.51)

2.5.4 EXCHANGES IN THE ARC FLOW FORMULATION

Some exchanges can be represented in the arc flow formulationby recombining

path flows in different ways: a cycle in the non oriented graphrepresents an ex-

change between several products.

Example 5 In figure 2.5, where we consider3 items whose widths arew1 = 5,

w2 = 3 and w3 = 2, and W = 8, the item2 can be exchanged by item3 in

the first pattern leading then to the third pattern. Furthermore, considering arcs

between two consecutive nodes as waste, this arc flow representation models more

than one to one exchanges: for example the cycle{0, 5, 4, 2, 0} corresponds to the

exchange of one copy of item1 by two copies of items3 plus a waste of1.

2.6 Comparing the formulations for the standard cutting stock 61

1 2 3 4 5 6 7 T80

w1

w1 w2

w3

w3w3w3

pattern 1
pattern 2
pattern 3

waste
waste

waste

Figure 2.5: Exchanges in the arc flow formulation

2.6 COMPARING THE FORMULATIONS FOR THE STANDARD

CUTTING STOCK

Let us now compare the above integer formulations of the standard cutting stock

as well as their LP relaxation. Let us use the notationF
LP
→ F ′ to express that a

LP solution toF can be converted into a LP solution toF ′ with the same cost.

Similarly F
IP
→ F ′ denotes an IP solution transformation that preserves the cost.

The interest of the LP transformationF
LP
→ F ′ is in the implied relation be-

tween resulting dual bounds:

Observation 2 Assuming we are dealing with minimization problems,

F
LP
→ F ′ => ZF

LP ≥ ZF ′

LP

whereZF
LP is the optimal LP value forF .

The question raised in this section is whether the modification introduced in the

master to help stabilizing the column generation solution method does imply

62 Reformulations and column generation

weaker LP bound.

Let us start by showing that they define relaxation. We shall then show some

reverse relations that prove that some relaxations do not yield weaker dual bounds.

Proposition 1

M1Disag
LP
→ M1

LP
→ AgregCovM1

LP
→ DirectExchF lowM1

LP
→

ExchF lowM1
LP
→ RestrExchV ectM1

LP
→ ExchV ectM1

proof:

M1Disag
LP
→ M1 : Let λ ∈ {0, 1}|Q|×K be a LP solution toM1Disag. Define

solutionλ′ ∈ IN |Q| by settingλ′
q =

∑

k λk
q ∀q ∈ Q. It is easy to verify that

λ′ solves M1.

M1
LP
→ AgregCovM1 : Let λ be a LP solution toM1, then it is solution to

AgregCovM1 since the constraints of AgregCovM1 are partialsum of con-

straints of M1.

AgregCovM1
LP
→ DirectExchF lowM1 : Let λ be a LP solution to

AgregCovM1. For i = 1, . . . , n − 1, let ei,i+1 =
∑

q(
∑i

l=1 x
q
i)λq −

(
∑i

l=1 di). Then, (λ, e) solvesDirectExchF lowM1. Indeed, the con-

straints ofAgregCovM1 imply ei,i+1 ≥ 0 while the definition ofei,i+1

implies that the constraints ofDirectExchF lowM1 are satisfied at equal-

ity.

DirectExchF lowM1
LP
→ ExchF lowM1 : the solution (λ, e) of

DirectExchF lowM1 augmented withei,j = 0 for j > i + 1 triv-

ially solvesExchF lowM1.

ExchF lowM1
LP
→ RestrExchV ectM1 : let (λ, e) be a LP solution to

ExchF lowM1. For eacheij > 0 define an exchange vector(ae, re) ∈ Ei

2.6 Comparing the formulations for the standard cutting stock 63

with re
i = 1 andae

j = µij and set the associated variableρe = eij . Then, the

solution(λ, ρ) solvesRestrExchV ectM1.

RestrExchV ectM1
LP
→ ExchV ectM1 : the LP solution (λ, ρ) of

RestrExchV ectM1 trivially solvesExchV ectM1.

Proposition 1 is true whether we work withproper columnsor not,

i.e. we could writeM1(uISP1)
LP
→ AgregCovM1(uISP1) . . . as well as

M1(ISP1)
LP
→ AgregCovM1(ISP1) However, the reverse relations cannot

necessarily be established for both bounded and unbounded subproblem. Valerio

de Carvalho [37] has proved:

Proposition 2

RestrExchV ectM1(SP)
LP
→ M1(uSP)

In [37] Valerio de Carvalho gives a constructive procedure to transform a LP

solution to RestrExchVectM1 into a LP solution to M1, but in the process one

might generateunproper cutting patterns. He proved the same result in the

dual space, showing that the dual solutionπ to M1 is feasible to the dual of

RestrExchV ectM1, i.e. it satisfies all constraints (2.51). Indeed, if one of them

is violated then one can construct a cutting pattern (not-necessarilyproper) with

strictly negative reduced cost.

Corollary 1

M1(SP)
LP
→ M1(uSP)

AgregCovM1
LP
→ M1(uSP)

DirectExchF lowM1
LP
→ M1(uSP)

ExchF lowM1
LP
→ M1(uSP)

64 Reformulations and column generation

But, this is not true forExchV ectM1 :

Observation 3

ExchV ectM1
LP

6→ M1(uSP)

Indeed, as shown by Example 4, cutting waste can be saved by implicitly pasting

wide rolls together.

For AgregCovM1 andDirectExchF lowM1 there is a stronger result not

implied by Proposition 2 : the use of direct exchangeei,i+1 induces a master

formulation equivalent to the standard master withproper columns.

Proposition 3

DirectExchF lowM1(SP)
LP
→ M1(SP)

proof: Let (λ, e) be an optimum LP solution toDirectExchF lowM1 with con-

straints (2.40) set to equality2. We proceed to show that the exchanges can be

implemented by a way of transforming existing patterns without introducingun-

properpatterns, i.e. after transformation, all cutting patternsq that are used still

have the property thatxq
i ≤ di ∀i.

Let i be the largest item index for whichei−1,i > 0 (remember that items are

indexed in order thatw1 ≥ w2 ≥ . . . ≥ wn). Let k < i be the largest item index

beforei for which ek−1,k = 0. Then, any pieces ofj for j = k, . . . , i − 1 can

be transformed in a piece ofi in a partial implementation of exchangeei−1,i. Let

S = {q ∈ Q : λq > 0, x
q
k,i−1 =

∑i−1
j=k x

q
j > 0} be the set of patterns that are

possible candidates for producing extra pieces ofi through further cutting larger

pieces.

2Both problems, with equality (partitioning) or inequality(covering) constraints, admit the
same optimal solution.

2.6 Comparing the formulations for the standard cutting stock 65

We need to show that setS contains candidatesq with x
q
i < di so that after

increasingx
q
i the cutting pattern remainsproper. We show this by contradic-

tion. Assumexq
i = di ∀q ∈ S. The master constraint associated with itemi in

DirectExchF lowM1 can be re-written as
∑

q∈S

x
q
i λq +

∑

q∈Q\S

x
q
i λq + ei−1,i = di

becauseei,i+1 = 0. As x
q
i = di ∀q ∈ S and

∑

q∈Q\S x
q
i λq + ei−1,i > 0, this

implies that
∑

q∈S

di λq < di

which in turn implies that
∑

q∈S

λq < 1

But this is a contradiction sinceek−1,k = 0 implies that
∑

q∈S

x
q
k,i−1λq ≥ dk,i−1

wheredk,i−1 =
∑i−1

j=k dj; and because columns areproper
∑

q∈S

dk,i−1λq ≥
∑

q∈S

x
q
k,i−1λq ;

thus,
∑

q∈S λq ≥ 1. Thus, we have established the existence of candidate columns

q ∈ S to which a piece ofj ∈ {k, . . . , i − 1} can be transformed in a piece of

i while keepingproperpatterns. In practice, one would choose the largest index

j such as∃q ∈ S with x
q
j > 0 andx

q
i < di. Then one defines a patternq′ as

follows: initially setxq′ = xq, then redefinexq′

j = x
q
j − 1 andx

q′

i = x
q
i + 1. The

associated variable value is set asλq′ = min{λq, ei−1,i}, while λq is redefined as

λq := λq − ei−1,i andei−1,i is redefined asei−1,i := ei−1,i − λq. The process is

reiterated until all exchange variables are brought to zero.

Thus, formulationDirectExchF lowM1 does not yield any relaxation com-

pared toM1. As DirectExchF lowM1 is a relaxation ofAgregCovM1, the

same result holds forAgregCovM1.

66 Reformulations and column generation

Corollary 2

AgregCovM1(SP)
LP
→ M1(SP)

However, once we allow exchanges with multiplicity larger than one, the result is

lost:

Observation 4

ExchF lowM1(SP)
LP

6→ M1(SP) .

As shown by the following example,ExchF lowM1(SP) can be a strict re-

laxation of M1(SP) because exchanges implicitly amount to usingunproper

columns.

Example 6 Letn = 2, W = 1 and

w1 = 2
3

d1 = 1
w2 = 1

3
d2 = 2

Consider feasible cutting patterns

x1 = (1, 1)

x2 = (0, 2)

and exchange1 → 2 with multiplicity µ1,2 = 2, as represented in the following

figure 2.6.

The optimal solution for the linear relaxation of [M1(SP)] is 11
2

with associated

solutionλ1 = 1, λ2 = 1
2
. While the optimal LP solution for [ExchFlowM1] is11

3

with associated solutionλ1 = 11
3
, e1,2 = 1

3
.

Observation 5

ExchV ectM1
LP
→ F1 .

2.6 Comparing the formulations for the standard cutting stock 67

1 2

x1

x2

e1,2

Figure 2.6: Replacing one unit of item 1 by two units of item 2 in cutting pattern 1

Indeed, one can can show that for all LP solutionsλ to ExchV ectM1(SP) there

exits a LP solutionx to F1 of same cost.

The above results are summarized in Table 2.1 with

ZF1
LP ≤ ZExchV ectM1

LP ≤ uLD ≤ LD ≤ ZIP

Finally, let us observe that all the above LP transformations do have their

equivalent counter part in IP term. Indeed the above transformations preserve

integrality of the solution. But, one can say more in terms ofIP equivalence.

Proposition 4

RestrExchV ectM1
IP
→ M1

proof: Let (λ, ρ) be an optimum IP solution toRestrExchV ectM1 where the

master constraints are set as equality constraints. Let us show how it can be

transformed in an IP solutionλ′ to M1 with the same cost. Ifρ = 0, the result

is trivial. Assume therefore∃e ∈ E : ρe ≥ 1. From among all those, select

68 Reformulations and column generation

e ∈ Ei for somei such that
∑

e∈Ei
ae

i ρe = 0. There must exist suchi for

otherwise there would be a cyclic series of exchange (which is a contradiction

with our assumption thatw1 > w2 > . . . > wn). Thus, the master constraints

imply
∑

q∈Q x
q
i λq ≥ di + 1. Then, take any patternq with λq ≥ 1 andx

q
i ≥ 1,

define a new patternq′ from q by settingx
q′

i = x
q
i − 1 andx

q′

j = x
q
j + ae

j∀j

and take itλq′ = min{λq, ρe} times. Then resetλq := λq − λq′, ρe = ρe − λq′

and reiterate until all variablesρe are bring to zero. In the process we will

not introducedunproperpattern because the master constraints set as equality

constraint guarantee that columns entries plus exchange addition remain below or

equal to item demand.

As a result all stronger master formulations are also IP equivalent toM1. But,

formulationExchV ectM1 is not IP equivalent toM1

LP bound Formulation

ZF1
LP F1(ISP1), F1(BSP1)

ZExchV ectM1
LP ExchVectM1(SP)

uLD R1, M1(uISP1), M1(uBSP1), M1(uFSP1),

ExchFlowM1(SP), RestrExchVectM1(SP)

LD M1(ISP1), M1(BSP1), AgregCovM1(SP),

DirectExchFlowM1(SP)

Table 2.1: LP Bounds

2.7 Reformulations of the variant with intervals on production 69

Observation 6

ExchV ectM1
IP

6→ M1(SP) .

As shown by Example 4, where the IP solution toExchV ectM1 is 4 while the IP

solution toM1 is at least5.

2.7 REFORMULATIONS OF THE VARIANT WITH INTERVALS

ON PRODUCTION

When the production is free to take value within an interval,the waste must be set

explicitly as the objective. Hence, the objective value is no longer integer and its

LP relaxation cannot be rounded up. The packing constraints(enforcing an upper

bound on production) induce a new set of dual variables. The sub-system remains

the same than for the standard cutting stock problem. The explicit reformula-

tion resulting from the sub-system formulation [ISP1] is the compact formulation

presented in Section 1 [F2], denoted F2(ISP1), while [BSP1]gives rise to the

following binary formulation:

70 Reformulations and column generation

Z = min

K∑

k=1

(yk W −
n∑

i=1

ni∑

j=1

mij wi xijk)

[F2(BSP1)] s.t.
K∑

k=1

ni∑

j=1

mij xijk ≥ di ∀i

K∑

k=1

ni∑

j=1

mij xijk ≤ di ∀i

n∑

i=1

ni∑

j=1

mij wi xijk ≤ W yk ∀k

ni∑

j=1

mij xij ≤ ui ∀i

yk ∈ {0, 1} ∀k

xijk ∈ {0, 1} ∀i, ∀j, ∀k

An explicit arc-flow formulation, such as [R1], can be obtained from [uFSP1].

The objective being the minimization of the waste, the wastearcs from set

{(u, W + 1) : u = 0, . . . , W} weighted by the associated waste incurred define

2.7 Reformulations of the variant with intervals on production 71

the objective. The resulting formulation [R2] is

min
∑

u∈N

(W − u) xu,W+1

[R2] s.t.
∑

(u,v)∈A

xuv −
∑

(v,w)∈A

xvw = 0 ∀v ∈ N \ {0, W + 1}

∑

v∈N

x0v =
∑

v∈N

xvW+1

∑

(u,v)∈A(i)

xuv ≥ di ∀i

∑

(u,v)∈A(i)

xuv ≤ di ∀i

xuv ∈ IN ∀(u, v) ∈ A

The implicit reformulations for the standard cutting stockproblem can be

adapted for this variant. When the sub-system is defined by [ISP1] or [uISP1],

the reformulation gives rise to the following master problem:

ZM2 = min
∑

q∈Q

(W −
∑

i

(wi x
q
i)) λq (2.52)

[M2] s.t.
∑

q∈Q

x
q
i λq ≥ di i = 1, . . . , n (2.53)

∑

q∈Q

x
q
i λq ≤ di i = 1, . . . , n (2.54)

∑

q∈Q

λq ≤ K (2.55)

λq ∈ IN ∀q ∈ Q (2.56)

When the subproblem is defined by [BSP1] or [uBSP1] (resp. [uFSP1]), we must

replacexq
i by

∑

j mijx
q
ij , (resp.

∑

uv:v=u+wi
xq

uv).

72 Reformulations and column generation

Let πi and νi be the dual variables associated respectively to the covering

(2.53) and packing (2.54) master constraints. Since the objective is to minimize

the waste, the reduced cost,cq, of a cutting patternq ∈ Q is:

cq = W −
n∑

i=1

(wi + πi − νi) x
q
i .

Using [ISP1], the resulting pricing subproblem is:

ξ(π, ν) = max{
n∑

i=1

(wi+πi−νi)xi :

n∑

i=1

wixi ≤ W, xi ≤ ui andxi ∈ IN for i = 1, . . . n}

The Lagrangian relaxation of packing and covering constraint gives

L(π, ν) = min
∑

q∈Q

(W −
∑

i

(wi + πi − νi) x
q
i) λq +

n∑

i=1

πi di −
n∑

i=1

νi di

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

that leads to Lagrangian bound:

L(π, ν) =

n∑

i=1

(πi di − νi di) + min{K (W − ξ(π, ν)), 0}

As the objective value is not necessarily integer, these Lagrangian dual bounds

cannot be rounded up as for the standard cutting stock problem.

The dual of the master problem is:

max

n∑

i=1

di πi − di νi − K σ (2.57)

[D2] s.t.
n∑

i=1

x
q
i (wi + πi − νi) − σ ≤ W ∀q ∈ Q(2.58)

πi, νi ≥ 0 i = 1, . . . , n

σ ≥ 0

2.7 Reformulations of the variant with intervals on production 73

The master formulations with exchanges can be adapted, but we have to take

into account the waste induced by the replacement of an item by another of larger

width in the objective. So the aggregation of the covering and packing constraints

cannot be used here, but the master problem can be formulatedwith the use of

exchange variableseik. Their cost is the waste induced by the exchange of one

item by another. The master formulation with exchange flow variables becomes

ZM = min
∑

q∈Q

(W −
∑

i

(wi x
q
i)) λq +

∑

(i,j)∈A+(i)

(wi − µij wj) eij

[ExchF lowM2] s.t.

∑

q∈Q

x
q
i λq +

∑

(k,i)∈A−(i)

µkieki ≥ di +
∑

(i,j)∈A+(i)

eij ∀i

∑

q∈Q

x
q
i λq +

∑

(k,i)∈A−(i)

µkieki ≤ di +
∑

(i,j)∈A+(i)

eij ∀i

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

eij ∈ IN ∀(i, j) ∈ A.

The dual constraints associated to variableseij now take the form:

(wi + πi − νi) ≥

⌊
wi

wj

⌋

(wj + πj − νj) ∀ i, (i, j) ∈ A(i)

which means that the value of itemi (its coefficient in the column generation

subproblem) must be greater or equal to the value that could be obtained by

converting itemi into µij pieces ofj.

74 Reformulations and column generation

We can also use a formulation with exchange vectors but the latter now in-

volves a cost. The aggregate master takes the form:

min
∑

q∈Q

(W −
∑

i

(wi x
q
i)) λq +

∑

e∈E

∑

i

wi (re
i − ae

i) ρe (2.59)

[ExchVectM2Disag] s.t.
∑

q∈Q

x
q
i λq +

∑

e∈E

(ae
i − re

i) ρe ≥ di i = 1, . . . , n (2.60)

∑

q∈Q

x
q
i λq +

∑

e∈E

(ae
i − re

i) ρe ≤ di i = 1, . . . , n (2.61)

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

ρe ∈ IN ∀e ∈ E

and it amounts to add in the dual problem the constraints:

∑

i

(wi + πi − νi) (ae
i − re

i) ≤ 0 ∀e ∈ E

The relation between these different formulations remainsthe same as for the

standard cutting stock problem.

2.8 REFORMULATIONS OF THE MULTIPLE WIDTHS CUTTING

STOCK PROBLEM

We consider here several wide roll widths, so we define a sub-systemXl for each

wide roll typel, l = 1, ...L, whereL is the number of different widths. A formu-

2.8 Reformulations of the multiple widths cutting stock problem 75

lation for the subproblem corresponding to the wide roll type l is:

max
x∈X

n∑

i=1

pi xi

[ISP1l] whereX = {
n∑

i=1

wi xi ≤ Wl

xi ≤ ui i = 1, . . . n

xi ∈ IN i = 1, . . . n}

Sub-system formulations [BSP1], [FSP1] and [ESP1] are adapted in the same

way, and are denoted as [BSP1l], [FSP1l] and [ESP1l].

The arc-flow formulation [R1] becomes:

min

L∑

l=1

zl

[R3] s.t.
∑

(u,v)∈A

xuv −
∑

(v,w)∈A

xvw =







L∑

l=1

zl if v = 0

−zl for v = Wl, ∀l

0 otherwise

∑

(u,v)∈A(i)

xuv ≥ di ∀i

zl ≤ Kl ∀l

xuv ∈ IN ∀(u, v) ∈ A

zl ∈ IN ∀l

wherezl corresponds to the number of wide rolls of widthWl used.

76 Reformulations and column generation

The master formulation resulting from the Dantzig-Wolfe decomposition is

the same as the disaggregated formulation [M1Disag] for thestandard cutting

stock problem. Patterns of same width can be aggregated so asto eliminate the

symmetry. We assume that wide roll are sorted in non increasing order of their

width: W1 ≤ W2 ≤ . . . ≤ WL, then an aggregated master formulation is:

ZM3 = min
∑

q∈Q

λq

[M3] s.t.
∑

q∈Q

x
q
i λq ≥ di i = 1, . . . , n

l∑

k=1

∑

q∈Q

δ(W q ≤ Wk) λq ≤
l∑

k=1

Kk l = 1, . . . , L

λq ∈ IN ∀q ∈ Q

whereKl is the number of stock wide rolls of typel.

The dual of the master formulation [M3] is:

max

n∑

i=1

di πi −
L∑

l=1

l∑

k=1

Kk σl

[D3] s.t.
n∑

i=1

x
q
i πi −

L∑

l=1

l∑

k=1

δ(W q ≤ Wk) σl ≤ 1 ∀q ∈ Q

πi ≥ 0 i = 1, . . . , n

σl ≥ 0 l = 1, . . . , L

2.9 Reformulations of the variant with technical restrictions 77

And the Lagrangian’s bound obtained by relaxing the covering constraints is:

L(π) = min
∑

q∈Q

(1 −
n∑

i=1

πi x
q
i) λq +

n∑

i=1

πi di

l∑

k=1

∑

q∈Q

δ(W q ≤ Wk) λq ≤
l∑

k=1

Kk l = 1, . . . , L

λq ∈ IN ∀q ∈ Q

whose solution is

L(π) =

n∑

i=1

πi di +

L∑

l=1

Kl min{(1 − ξl(π)), 0}

Exchanges can be modeled on the same way that for the standardcutting stock

problem.

2.9 REFORMULATIONS OF THE VARIANT WITH TECHNICAL

RESTRICTIONS

The side constraints resulting from the technical restrictions are set in the sub-

systemX to define valid cutting patterns. Formulation [ISP1] addingthe con-

straints on the minimum width to be cut and on the maximum cardinality of a cut

78 Reformulations and column generation

set becomes:

max
x∈X

n∑

i=1

pi xi

[ISP4] whereX = {Wmin ≤
n∑

i=1

wi xi ≤ Wmax

n∑

i=1

xi ≤ C

xi ≤ ui i = 1, . . . n

xi ∈ IN i = 1, . . . n}

The multiple class binary transformation is yet valid, it leads to the following

subproblem formulation:

max
x∈X

n∑

i=1

pij xij

[BSP4] whereX = {Wmin ≤
n∑

i=1

ni∑

j=1

wi mij xij ≤ Wmax

n∑

i=1

ni∑

j=1

mij xij ≤ C

ni∑

j=1

mij xij ≤ ui i = 1, . . . n

xij ∈ {0, 1} i = 1, . . . n, j = 1, . . . ni}

The subproblem can be solved by dynamic programming. Hence,the third

formulation [uFSP1] can be adapted so as to model the longestpath problem un-

derlying the dynamic program. We define the arcs set:A = ∪iA(i)∪{(u, W +1) :

u = Wmin, . . . , Wmax}, to specify that the arcs corresponding to the waste should

have their head on a node afterWmin. The cardinality constraint must be added

2.9 Reformulations of the variant with technical restrictions 79

explicitly to the formulation giving rise to a two resourcesconstraints longest path

problem.

The sub-system [ISP4] leads to the compact formulation [F4], and [BSP4] to

the binary compact formulation [F3(BSP3)] with the following additional con-

straints:

n∑

i=1

ni∑

j=1

mij wi xijk ≥ Wmin yk ∀k

n∑

i=1

ni∑

j=1

mij xijk ≤ C ∀k

The implicit reformulations remain the same as for the variant with interval

on production since the technical constraints are set in thesub-system. The

Lagrangian bounds are then also equivalent to those given previously.

The formulation with built-in exchanges do not extend naturally to the present

variant with additional technical constraints in the subproblem. Even if we relax

the minimum cut width constraint that can mostly be interpreted as a “business

rule”, that remains to enforce the cardinality constraint.One to one exchange do

satisfy the latter. But the more general exchanges of formulation [ExchFlowM1]

or [ExchVectM1] do not extend to this variant.

80 Reformulations and column generation

2.10 REFORMULATION OF THE MINIMIZATION OF SETUPS

Let x0 be the multiplicity of cutting patternq, a formulation for the subproblem

is:

max
x∈X

n∑

i=1

pi xi x0

[ISP5] whereX = {
n∑

i=1

wi xi ≤ W

x0 xi ≤ ui i = 1, . . . n

xi ∈ IN i = 1, . . . n

x0 ∈ IN}

The sub-systemX leads to the compact reformulation [F5].

This subproblem can be reformulated as a bilinear binary knapsack problem. The

xi decomposition is the same as for [BSP1], while forx0 we apply the change of

variables:

x0 =
∑

l

ml x0l

2.10 Reformulation of the minimization of setups 81

with x0l ∈ {0, 1}, ml = 2l−1 ∀l = 1, . . . , blog2(x0
max)c + 1 and x0

max =

min{maxi di, K}. The binary reformulation takes the form:

max
x∈X

n∑

i=1

ni∑

j=1

∑

l

pijl x0l xij

[BSP5] whereX = {
n∑

i=1

ni∑

j=1

mij wi xij ≤ W

ni∑

j=1

∑

l

ml mij xij x0l ≤ ui i = 1, . . . n

xij ∈ {0, 1} i = 1, . . . n j = 1, . . . ni

x0l ∈ {0, 1} ∀l}

As for [BSP1], this reformulation does not allow to improve the LP dual bound,

but the interest is twofold: in our definition of branching schemes and to obtain

a linearized formulation. Indeed the non-linearities can be eliminated introducing

binary variableszijl = xij x0l. Letmijl = ml mij , a formulation for the Linearized

82 Reformulations and column generation

Subproblem is:

max
x∈X

n∑

i=1

ni∑

j=1

∑

l

pijl zijl

[LSP5] whereX = {
n∑

i=1

ni∑

j=1

mij wi xij ≤ W

ni∑

j=1

∑

l

mijl zijl ≤ ui ∀i

zijl ≤ xij ∀i; ∀j; ∀l

xij ≤
∑

l

zijl ∀i; ∀j

zijl ≤ x0l ∀i ∀j ∀l

xij + x0l − 1 ≤ zijl ∀i ∀j ∀l

xij ∈ {0, 1} ∀i ∀j

yi ∈ {0, 1} ∀i

x0l ∈ {0, 1} ∀l

zijl ∈ {0, 1} ∀i ∀j ∀l}

This sub-system formulation leads to a linearized binary compact formulation

2.10 Reformulation of the minimization of setups 83

[F5’]. For the variant with tolerance on production it takesthe form:

Z = min
K∑

k=1

yk

[F5’] s.t.
K∑

k=1

∑

i

∑

j

∑

l

ml mij zijlk ≥ di i = 1, . . . , n

K∑

k=1

∑

i

∑

j

∑

l

ml mij zijlk ≤ di i = 1, . . . , n

∑

l

ml x0lk W −
∑

i

∑

j

∑

l

ml mijwi zijlk ≤ R

n∑

i=1

ni∑

j=1

mij wi xijk ≤ W yk k = 1, . . . , K

∑

j

∑

l

ml mij zijlk ≤ di i = 1, . . . , n

zijlk ≤ xijk ∀i; ∀j; ∀l

xijk ≤
∑

l

zijlk ∀i; ∀j

zijlk ≤ x0lk ∀i ∀j ∀l

xijk + x0lk − 1 ≤ zijlk ∀i ∀j ∀l

xijk ∈ {0, 1} ∀i, ∀j, ∀k

yk ∈ {0, 1} k = 1, . . . , K

zijlk ∈ {0, 1} ∀i, ∀j, ∀l ∀k

x0lk ∈ {0, 1} ∀l ∀k

84 Reformulations and column generation

The Dantzig-Wolfe reformulation leads to the following master problem:

min
∑

q∈Q

λq

[M5] s.t.
∑

q∈Q

x
q
0 x

q
i λq ≥ di i = 1, . . . , n (2.62)

∑

q∈Q

x
q
0 x

q
i λq ≤ di i = 1, . . . , n

∑

q∈Q

(W −
∑

i

wi x
q
i) x

q
0 λq ≤ R

∑

q∈Q

λq ≤ K

λq ∈ {0, 1} ∀q ∈ Q

wherex
q
0 ∈ {1, . . . , mini{b

di

x
q
i

c}.

Using [ISP5] the reduced cost,cq, of patternq is then

cq = 1 −
∑

i

(πi − νi) x
q
0 x

q
i + σ (W −

∑

i

wi x
q
i) x

q
0

and the Lagrangian bound obtained by the relaxation of the covering constraints

is:

L(π) = min
∑

q∈Q

(1 −
n∑

i=1

(σ wi + πi − νi) x
q
i x

q
0 + σ W x

q
0) λq +

n∑

i=1

πi di −
n∑

i=1

νi di − σ R

∑

q∈Q

λq ≤ K

λq ∈ {0, 1} ∀q ∈ Q

Its solution is:

2.10 Reformulation of the minimization of setups 85

L(π) =

n∑

i=1

πi di + min{K (1 − ξ(π)), 0}

Exchanges can be modeled as for the standard cutting stock problem.

86 Reformulations and column generation

3
KNAPSACK SUB-PROBLEMS

The integer subproblem formulation [ISP] can be solved using standard solvers,

as the classic depth-first-search branch-and-bound algorithm of Horowith and

Sahni (see [28]) or a dynamic programming recursion. For ournumerical tests,

we used a specialized branch-and-bound algorithm for the binary multiple class

knapsack problem, operating a binary decomposition of the integer variablesxi.

The algorithm is adapted form that of Horowith and Sahni for the standard binary

knapsack problem (it takes into account the class capacities). Furthermore, as the

binary components of a class have the same ratio profit per weight, the LP bound

is computed with a greedy algorithm for the bounded integer knapsack problem.

However, during the branch-and-price procedure, the introduction of branch-

ing constraints in the master implies some modifications to the knapsack subprob-

lems, then standard solvers can not be used anymore. The branching rules that

we use were presented in section 2.3.7. Branching rule 1 based on column subset

88 Knapsack sub-problems

Q̂ = {q ∈ Q : x
q
i > 0} requires the introduction of new binary variables in the

subproblem, the setup variableyi = 1 if xi > 0 with an associated set-up cost in

the objective. Branching rule 2 based on column subsetQ̂ = {q ∈ Q : x
q
ij = 1}

requires working with the binary form of the knapsack problem. Then, the sub-

problem takes the form of a variant of the knapsack problem, the multiple class

binary knapsack problem with setup costs:

max
n∑

i=1

ni∑

j=1

pij xij −
n∑

i=1

fiyi

[BSUSP1]
n∑

i=1

ni∑

j=1

wi mij xij ≤ W

ni∑

j=1

mij xij ≤ ui yi i = 1, . . . n

xij ≤ yi i = 1, . . . n, j = 1, . . . ni

xij ∈ {0, 1} i = 1, . . . n, j = 1, . . . ni

yi ∈ {0, 1} i = 1, . . . n

The modifications required by branching rules 3 based on column subset

Q̂ = {q ∈ Q : x
q
i > 0 andx

q
j > 0} however, give rise to a subproblem that can

no longer be treated with algorithms specialized for knapsack problems.

The above formulation is a generalization of the multiple-class binary

knapsack problem studied in [42]. In this chapter, we propose exact solution

approaches for this problem. In fact we consider a slightly more general model

for which a setup time,si ≥ 0, and a setup cost,fi ∈ IR are associated with

the use of producti. Items are partitioned into classes associated with each

producti. A setup time and cost is defined for each class. The item weights

in each class are a multiple of a class weight. The total item weight that

89

can be selected is bounded (we consider explicit lower and upper boundsai

andbi for each producti). The objective is to maximize the sum of the profits

associated with selected items minus the fixed costs incurred for setting up classes.

The resulting model is called the multiple class binary knapsack problem with

setups (MCBKPSU). It takes the following form:

max
n∑

i=1

ni∑

j=1

pi j xi j −
n∑

i=1

fiyi (3.1)

[MCKPSU] s.t.

n∑

i=1

(

ni∑

j=1

mi j wi xi j + si yi) ≤ W (3.2)

ai yi ≤
ni∑

j=1

mi j xi j ≤ bi yi for i = 1, . . . n (3.3)

xi j ≤ yi for i = 1, . . . n andj = 1, . . . , ni(3.4)

xi j ∈ {0, 1} for i = 1, . . . , n andj = 1, . . . , ni(3.5)

yi ∈ {0, 1} for i = 1, . . . , n , (3.6)

We show the extend to which classical results for the knapsack problem can

be generalized to this variant with setups. We give upper bounds that generalized

that of Dantzig. We show that the classic branch-and-bound algorithm of

Horowith and Sahni extends to this variant in the casefi ≥ 0. We provide

dynamic programming algorithms for the general case. Theseresults are useful to

build good solvers for the particular case of [BSUSP1] (whensi = 0 andai = 0).

In [32], we further develop the present chapter. We also consider the special

case that arises when each class holds a single item, i.e. thestandard integer

90 Knapsack sub-problems

knapsack problem with setups, and its continuous version. Aspecial case of

the integer knapsack problem with setups was studied by Sural et al. [34]: they

assumefi = 0 andwi = 1 for all i. They discuss the complexity of special cases

to explore the frontier of easiness. They generalize the Dantzig’s upper bound to

this case and propose a primal heuristic. Both are used for setting up a depth-first

search branch-and-bound algorithm that generalizes that of Horowitz and Sahni

[16]. Their motivations for studying this model were applications in finance and

in machine scheduling.

A variant of model MCBKPSU is considered by Chajakis and Guignard [7]

wheremij = 1 ∀ij, there are no class bounds (ai = 0 and bi = ∞), but the

item weights are not restricted to be a multiple of a class weight. The application

that motivated their study is the scheduling of parallel unrelated machines with

setups where this knapsack problem arises as a subproblem. They propose and

test two approaches: either a dynamic program solver or a two-stage approach

where the problem is transformed into a standard multiple choice 0-1 knapsack

problem and solved either by dynamic programming or branch-and-bound. The

transformation consists in defining a “pseudo item” for eachdominant feasible

solutions within a class. These dominant solutions are the states of a dynamic

programming recursion for solving the binary knapsack problem defined on a sin-

gle class. There is a pseudo-polynomial number of them. Theyfound that, for

correlated instances with reasonable knapsack capacity (500), the direct dynamic

programming approach is the most efficient. When the number of families or the

knapsack capacity increases the two-stage approach using branch-and-bound for

the second stage is the most efficient.

3.1 Characterizations of optimal solutions for the multiple-class binary knapsack with setups91

3.1 CHARACTERIZATIONS OF OPTIMAL SOLUTIONS FOR

THE MULTIPLE-CLASS BINARY KNAPSACK WITH

SETUPS

We can make the following observations and assumptions:

Observation 7 If ai = 0, then we can assume thatpij ≥ 0 for all j.

Since, ifai = 0 andpij < 0 for some binary item(i, j), xij = 0 in any optimal

solution.

Assumption 1 (without lost of generality) fi < max{
∑

j pij xij :
∑

j mij xij ≤

bi, xij ∈ {0, 1} ∀j}.

Indeed, iffi ≥ max{
∑

j pij xij :
∑

j mij xij ≤ bi, xij ∈ {0, 1} ∀j} for somei, it

is optimal to setxij = 0 ∀j andyi = 0.

Observation 8 There exists an optimal solution to MCKPSU where for each class

i one of the following cases arises:

(i) xij = 0 ∀j andyi = 0
(ii)

∑

j pij xij > fi andyi = 1 .

Indeed, if
∑

j pij xij ≤ fi andyi = 1, the solution can only improve if one sets

xij = 0 ∀j andyi = 0.

An optimal solution may haveyi = 1 while thexij ’s are set to the minimum

value that allows to satisfy the class lower boundai which could be zero. However,

Observation 9 whenai = 0 andfi ≥ 0, there exists an optimal solution where

yi = 0 when
∑

j xij = 0.

92 Knapsack sub-problems

The LP solution to MCKPSU can also be characterized. The following obser-

vation derives from the assumption that all items have a weight that is a multiple of

the class weight. Hence, the capacity consumption of a classi, i.e.wi(
∑

j mijxij),

is the same for all solutionxij ’s yielding the same total multiplicity
∑

j mij xij .

As a result, the optimization within each class can be done independently of the

global optimization of the use of the knapsack capacityW .

Observation 10 Consider solutions to LP relaxation of MCKPSU. Their projec-

tion in the subspace(xi =
∑

j mij xij , yi) associated with classi are convex

combinations of the following extreme points:

(i) xi = 0 (i.e. xij = 0 ∀j) andyi = 0
(ii) xi =

∑

j mij xij = ai andyi = 1

(iii) xi =
∑

j mij xij = bi andyi = 1

If the profit per unit of knapsack capacity of extreme solution (ii) is less than that

of (iii), i.e.,
pa

i − fi

wi ai + si

≤
pb

i − fi

wi bi + si

where

pa
i = max{

∑

j

pij xij :
∑

j

mij xij = ai, xij ∈ [0, 1] ∀j}

and

pb
i = max{

∑

j

pij xij :
∑

j

mij xij = bi, xij ∈ [0, 1] ∀j} ,

then one only needs to consider solutions that are convex combination of cases(i)

and (iii). The reverse case, i.e.p
a
i −fi

wi ai+si
>

pb
i−fi

wi bi+si
, can only arise ifai > 0 or

fi < 0. Moreover, when pa
i −fi

wi ai+si
>

pb
i−fi

wi bi+si
, the projection of the LP solution in

the subspace associated with classi will be in the convex hull of cases(i) and(ii)

while its knapsack capacity usage is less or equal to(wi ai + si).

Figure 3.1 illustrates both the case where the slopepa
i −fi

wi ai+si
>

pb
i−fi

wi bi+si
and vice

versa.

3.2 Upper Bound of the multiple-class binary knapsack with setups 93

pa
i −fi

wi ai+si pb
i−fi

wi bi+si

ai bi

xi

0

pa
i −fi

wi ai+si

pb
i−fi

wi bi+si

ai bi

xi

0

(a) (b)

Figure 3.1: Ratio of classi profit per unit of knapsack capacity consumption

3.2 UPPER BOUND OF THE MULTIPLE-CLASS BINARY

KNAPSACK WITH SETUPS

We show here that, under some restrictive conditions, the LPbound for MCKPSU

can be computed using a greedy algorithm. In the continuous relaxation of

MCKPSU, item(i, j) can yield a profit per unit of

either
pij

ai

mij
− fi

wi ai + si

or
pij

bi

mij
− fi

wi bi + si

or a convex combination of these two, depending of whether itis contributing

to the class effort of targeting extreme solution(ii) or (iii) of Observation 10

or their combination. Case(ii) can be split in two sub-cases, eitherai > 0 (let

Ia = {i : ai > 0}) or fi < 0 (let If = {i : ai = 0 andfi < 0}). Thus,

Ia∩If = ∅. In the second sub-case, the targeted class solution is(xi = 0, yi = 1).

We can represent this solution directly using variabley
f
i = 1 if (xi = 0, yi = 1)

and zero otherwise. Similarly, we defineza
ij = 1 (defined fori ∈ Ia) if item

(i, j) contribution is to achieve extreme solution(ii) of Observation 10 withai >

0, while zb
ij = 1 (defined fori ∈ I = {1, . . . , n}) if item (i, j) contribution

is to achieve extreme solution(iii). With these notations, the LP relaxation of

MCKPSU can be reformulated as

max
∑

i∈Ia

ni∑

j=1

(pij −
fi

ai

mij) za
i j +

∑

i∈I

ni∑

j=1

(pij −
fi

bi

mij) zb
i j −

∑

i∈If

fiy
f
i (3.7)

94 Knapsack sub-problems

s.t. (3.8)
∑

i∈Ia

ni∑

j=1

(wi +
si

ai

) mijz
a
ij +

∑

i∈I

ni∑

j=1

(wi +
si

bi

) mijz
b
ij +

∑

i∈If

siy
f
i ≤ W (3.9)

ni∑

j=1

[
mi j

ai

za
i j +

mi j

bi

zb
i j] ≤ 1 ∀i ∈ Ia (3.10)

ni∑

j=1

mi j

bi

zb
i j + y

f
i ≤ 1 ∀i ∈ If (3.11)

za
i j + zb

i j ≤ 1 ∀i ∈ Ia, j

za
i j ∈ [0, 1] ∀i ∈ Ia, j

zb
i j ∈ [0, 1] ∀i ∈ I, j

y
f
i ∈ [0, 1] ∀i ∈ If (3.12)

A solution(z, yf) translates into a solution for the LP relaxation of MCKPSU

as follows:

xij = za
ij + zb

ij and yi =
∑

j

(
mi j

ai

za
i j +

mi j

bi

zb
i j) + y

f
i

Constraints (3.10-3.11) are required to enforceyi ∈ [0, 1]. Observe that con-

straints (3.3) are built in the definition of the change of variables. Indeed, if we

replacex andy by their expression inz in (3.3), in the caseai > 0, we obtain:

ai

∑

j

(za
ij

mij

ai

+ zb
ij

mij

bi

) ≤
∑

j

mij (za
ij + zb

ij) ≤ bi

∑

j

(za
ij

mij

ai

+ zb
ij

mij

bi

)

which is always satisfied becauseai

bi
≤ 1 in the left-hand-side andbi

ai
≥ 1 in the

right-hand-side. In the caseai = 0, (3.3) is trivially verified. Hence, we have

shown that

Proposition 5 the LP relaxation of MCKPSU is equivalent to the continuous re-

laxation of binary knapsack problem with class bounds and SOS constraints (3.7-

3.12).

3.2 Upper Bound of the multiple-class binary knapsack with setups 95

On one hand, it is known that the LP relaxation of binary knapsack problem with

SOS constraints admits a greedy solution [17]. On the other hand, Vanderbeck

showed in [42] that the LP relaxation of a binary knapsack with class bounds can

also be solved using a greedy procedure. But, solving problem (3.7-3.12) requires

dealing with both SOS constraints and class bounds. We have not found a greedy

procedure to solve this case involving both complexities. Instead, we develop a

greedy LP solution for the special case where SOS constraints are redundant.

We make the simplifying assumption that all classi items target a filling up to

bi because this corresponds to a better ratio:

Assumption 2 (restrictive)

pij
ai

mij
− fi

wi ai + si

≤
pij

bi

mij
− fi

wi bi + si

∀(i, j)

This assumption implies that the aggregate class contribution is in the case

illustrated by part (b) of Figure 3.1.

Observation 11 Under Assumption 2, problem (3.7-3.12) admits a solution

where all variablesza
ij andy

f
i have value zero.

Indeed, if Assumption 2 holds andza
ij > 0, one can modify the solution by setting

za
ij
′ = 0 andzb

ij

′
= zb

ij +
(wi+

si
ai

) mij

(wi+
si
bi

) mij
za

ij . This solution modification is feasible

with regard to knapsack constraint (3.9) by construction but also with regard to

constraint (3.10) as it can be easily checked. Moreover, theprofit value of the

modified solution is not less than the original. Similarly, if y
f
i > 0, decreasing its

value allows to increase somezb
ij value of better profit ratio.

Under Assumption 2 we can give a greedy LP solution to MCBKSU,extend-

ing the result of Vanderbeck in [42].

96 Knapsack sub-problems

Proposition 6 If Assumption 2 holds, an optimal solution to the LP relaxation

of MCBKSU is given by the following procedure. Sort the items(i, j) in non-

increasing order of their ratio:

(pij −
fi

bi
mij)

(wi + si

bi
) mij

(3.13)

Let m =
∑

i ni andk = 1, . . . , m be the item indices in that ordering.Ki is the

set of itemsk that belong to classi:

Ki = {k : ∃j ∈ {1, . . . , ni} with k = (i, j)} .

For i ∈ {1, . . . , n}, let the critical item for classi becb
i ∈ Ki, be such that

∑

k∈Ki, k<cb
i

mk ≤ bi but
∑

k∈Ki, k≤cb
i

mk > bi . (3.14)

LetKi(l) = {k ∈ Ki : k < cb
i andk < l }, Ib(l) = {i : cb

i < l }, and

W (l) =
∑

i

∑

k∈Ki(l)

(wi +
si

bi

) mk +
∑

i∈Ib(l)

(wi +
si

bi

)
(bi −

∑

k∈Ki(l) mk)

mcb
i

. (3.15)

Then, let the global critical item,c ∈ {1, . . . , m}, be the highest index item such

that

W (c) ≤ W but W (c) + (wic +
sic

bic

) mc > W (3.16)

whereic refers to the class containing the global critical item (i.e. c ∈ Kic) and

set

xk = 1 for k ∈ Ki(c) andi = 1, . . . , n,(3.17)

xcb
i

=
1

mcb
i

(bi −
∑

k∈Ki(c)

mk) for i ∈ Ib(c), (3.18)

xc =
1

wic +
sic

bic

(W − W (c)) if c ∈ Kic (3.19)

xk = 0 otherwise (3.20)

yi = 1 for i ∈ Ib(c) (3.21)

yic =

∑

k∈Kic(c) mk + mc xc

bic

for i : c ∈ Ki (3.22)

yi = 0 otherwise. (3.23)

3.3 A dynamic program for the multiple-class binary knapsack with setups 97

Proof: Under the assumption made, problem (3.7-3.12) involves only the zb
ij

variables. Therefore it admits a greedy solution as proved in [42]. Converting the

greedy solutionz into the original variablesx andy provides the desired result.

3.3 A DYNAMIC PROGRAM FOR THE MULTIPLE-CLASS

BINARY KNAPSACK WITH SETUPS

A solution by dynamic programming assumes integer data:si, wi, andW ∈ IN .

Let us first consider the unbounded case whereai = 0 andbi ≥
⌊

W−si

wi

⌋

for all

i. Then, one can write a dynamic programming recursion whereV i(C) defines

the best value that can be achieved using items from classk = 1, . . . , i with a

capacity consumptionC andV ij(C) defines the best value that can be achieved

using items from classk = 1, . . . , i − 1 plus at least one item among the firstj

items of classi, with a capacity consumptionC. TheV ij(C) andV i(C) values

can be computed recursively as follows:

V ij(C) = max{ V i,j−1(C), V i,j−1(C − wi mij) + pij ,

V i−1(C − wi mij − si) − fi + pij} (3.24)

V i(C) = max{ V i−1(C), V i,ni(C), V i−1(C − si) − fi} .

Such dynamic program requiresO(
∑

i ni W) operations. Observe that this

complexityO(
∑

i ni W) does not imply that the multiple class problem requires

a higher complexity than the integer knapsack problem (for which the unbounded

problem can be solved inO(nW)). Indeed, the input data file is of length

proportional to
∑

i ni since it includes the description of the profit valuespij.

For the bounded case, one must first solve a knapsack subproblem within

each class before solving the overall problem: LetU i(M) be the optimal value

98 Knapsack sub-problems

that can be achieved with classi items using a multiplicity ofexactly M units.

U i(M) can be computed by dynamic programming: Initially,U i,j(0) = 0 ∀j and

U i,0(M) = −∞ for M = 1, . . . , bi; then, one setsU ij(M) = U i,j−1(M) for

M = 1, . . . , mij − 1 and one computes

U ij(M) = max{U i,j−1(M), U i,j−1(M − mij) + pij} (3.25)

M = mij , . . . , bi and forj = 1, . . . , ni. Then

U i(M) = U i,ni(M) ∀M . (3.26)

These computations requiresO(ni bi) operations for each classi. Therefore the

overall complexity for computing all theU i(M) is O(
∑

i nibi) (which is bounded

by O(
∑

i niW) asbi ≤ bW
wi
c). As an aside, observe that whenmij = 2j−1 ∀i, j,

a given multiplicityM can only be obtained from a single combination of 0-1

items(i, j) andU i(M) can be computed directly, although this does not change

the computational complexity. FromU i(M) values, one can computeV i(C), the

best value that can be achieved with items of class1 up toi and capacityC:

V i(C) = max{V i−1(C)
︸ ︷︷ ︸

yi=0

, max
ai≤M≤bi

{V i−1(C − wi M − si) + U i(M) − fi}
︸ ︷︷ ︸

yi=1

} .

(3.27)

This requiresO(nW maxi{bi}) operations (which is bounded byO(nW 2) but

can be much smaller thanO(nW 2) in practice).

When an integer knapsack problem is transformed into a binary multiple class

knapsack problem one can treat the class boundsai and bi implicitly and use

the dynamic recursion (3.24) for the unbounded case to benefit from the lower

complexityO(
∑

i ni W). Indeed, in such case, the profit is defined for the class

and not for the 0-1 items, therefore we can assumeai = 0 for all i (quantity

ai can be incorporated to the fixed cost and weight). To eliminate the upper

3.4 Primal heuristics for the multiple-class binary knapsack with setups 99

boundbi one just needs to amend the 0-1 transformation defined by (2.1): set

ni = blog2 bic+1 andmij = 2j−1 for j = 1, . . . , ni−1 butmi,ni
= bi−

∑ni−1
j=1 mij .

3.4 PRIMAL HEURISTICS FOR THE MULTIPLE-CLASS

BINARY KNAPSACK WITH SETUPS

In the rest of this Section, we make the following assumption:

Assumption 3 (restrictive) fi ≥ 0 for all i .

Furthermore we further assumeai = 0 for all i for simplicity.

Primal heuristics can be developed based on decomposing theproblem into

knapsack subproblems for each class. We assume that classesare sorted by non

decreasing ratio
p̃i − fi

wi bi + si

where p̃i = max{
∑

j pij xij :
∑

j mij xij = bi, xij ∈ {0, 1} ∀j}, or its LP

relaxation value or an estimate obtained by a greedy algorithm; and the knapsack

is filled with these classes in this order up to reaching capacity. For the critical

class, one solvesmax{
∑ni

j=1 pijxi j :
∑

j mi j xi j ≤ b C
wi
c, xi j ∈ {0, 1}∀j} (where

C is the residual capacity) either exactly or with a greedy procedure.

The alternative approach is to base the heuristic on the greedy ordering of

the items, (3.13), that was used for the LP solution. It allows to account more

accurately for difference of profit ratio within the same classes (cases wherepij 6=

p̃i

mij
and the difference is important). On the other hand, this second approach

is quite myopic with regards to the setup cost,fi, and the setup capacity usage,

100 Knapsack sub-problems

si. Indeed, the non-increasing order of ratio (3.13) is a greedy approach for a

relaxation whose formulation is

max

n∑

i=1

ni∑

j=1

(pij −
fi

bi

mij) zi j (3.28)

s.t.
n∑

i=1

ni∑

j=1

(wi +
si

bi

) mi j zi j ≤ W (3.29)

∑

j

mi j zi j ≤ bi ∀i (3.30)

zi j ∈ {0, 1} ∀i, j . (3.31)

Problem MCKPSU (under Assumption 3 and withai = 0 ∀i) and problem

(3.28-3.31) admit the same LP solution has shown above but not the same integer

solution. A partial feasible integer solution to (3.28-3.31) can be transformed into

a feasible for MCKPSU by rounding up the implicity variables if the residual

capacity allows it.

The latter approach is used in the primal heuristic of Table 3.1. We implicitly

setz variables to1 in greedy order and we keep tract of the setup fraction that

has not yet been accounted for. We use the following notations: ik denotes the

class index of itemk, C denotes the remaining knapsack capacity,Ci the residual

upper bound on classi items,S the reserved knapsack capacity for setups, andF

the setup cost to be withdrew from the current profitZ. On exiting the algorithm,

a primal solution is given by vectorsx and y, whose value isZ − F . S and

F can be understood as corrections needed to transform the current solution to

relaxation (3.28-3.31) into a solution for MCKPSU.

In the application for the column generation subproblem [BSUSP1] (where

costspij have been modified as a result of branching (typicallypij 6= p̃i

mij
), while

si = 0 ∀i andfi takes non zero value only when we branch on a class), the second

approach based on setting individual items is likely to be more effective than the

3.5 Branch-and-Bound for the multiple-class binary knapsack with setups 101

Table 3.1: Primal heuristic for MCBKSU whenfi ≥ 0 andai = 0 ∀i

Step A :Initializations: Renumber them items(i, j) in decreasing order of

their ratio (3.13), breaking tight in favor of the itemk = (i, j) with the

largest weightwk = (wi + si

bi
) mij .

Let mk = mij , andpk = pij −
si
bi

fi for k = 1, . . .m.

Let C = W , Ci = bi ∀i, S = 0, F = 0, Z = 0, x = y = 0, k = 1.

Step B: Setting items to one:While (wik mk + si (1 − yik) ≤ C − S)

and(mk ≤ Cik) and(k ≤ m), do

if (yik == 0), let yik = 1, S+= sik , F+= fik ;
xk = 1, C−= wk, S−=

sik

bik

mk, Cik−= mk, Z+= pk, F−=
sik

bik

fik , k++.

Step C: If(k > m), STOP.

Step D: Setting item to zero: /* ((wik mk + si (1 − yik) > C − S) or (mk > Cik) */

Let k++.

Step E: If(k > m), STOP. Else, goto Step B.

former based on setting classes.

3.5 BRANCH-AND-BOUND FOR THE MULTIPLE-CLASS

BINARY KNAPSACK WITH SETUPS

We propose an extension of the depth-first-search branch-and-bound algorithm of

Horowitz and Sahni [16] to MCBKSU under Assumption 3 withai = 0 for all i.

The algorithm of Table 3.2 can be understood as a branch-and-bound procedure

for problem (3.28-3.31) that has been adapted to MCBKSU by making corrections

to ensure primal feasibility (as in the above primal heuristic). The interest using

relaxation (3.28-3.31) implicitly is to have a greedy ordering of items that serves

both primal and dual procedure as required for Horowitz and Sahni’s algorithm.

102 Knapsack sub-problems

Table 3.2: Branch-and-Bound for MCBKSUfi ≥ 0 andai = 0 ∀i

Initialization: Sort items in decreasing order of their ratio (3.13). Letmk = mij ,

wk = (wi + si

bi
) mij , andpk = pij −

si

bi
fi ∀k, wmin = mink{wik mk},

C = W , Ci = bi ∀i, S = 0, F = 0, Z = 0, x = y = 0, INC = 0, k = 1.

Compute UB: Let U = Z, K = C, Ki = Ci ∀i, and letl = k .

Step A: While(sil (1 − yik) ≤ C − S) and(wl ≤ K) and(ml ≤ Cil) and(l ≤ m),

doU+= pl, K−= wl, l = l + 1.

Step B: If(sil (1 − yik) > C − S), do l = l + 1 and goto Step A.

Step C: If(l > m), goto Test Pruning.

Step D: If(ml > Cil) and(wl
Cil

ml
≤ K), do

U+= pl
Cil

ml
, K−= wl

Cil

ml
, l = l + 1, go to Step A.

Step E: If(ml > Cil) and(wl
Cil

ml
> K), do

U+= pl
K
wl

ml

Cil

, go to Test Pruning.

Step F: /*(wl > K) */ U+= pl
K
wl

.

Test Pruning: if (U ≤ INC), goto Backtracking.

Forward Move: While (wik mk + sik (1 − yik) ≤ C − S) and(mk ≤ Cik) and(k ≤ m), do

if (yik == 0), let yik = 1, S+= sik , F+= fik ;

xk = 1, C−= wk, S−=
sik

bik

mk, Cik−= mk, Z+= pk, F−=
sik

bik

fik , k++.

If (k > m) or (C − S < wmin), /* leaf node */ goto Record Incumb.

Set item to 0: /* ((wik mk + si (1 − yik) > C − S) or (mk > Cik) */

Let k++. If (k > m), goto Record Incumb. Else, goto Compute UB.

Record Incumb:If (Z − F > INC), thenINC = Z − F and record(x, y).

Pre-backtrack: If (k > m), do {k−−; if (xk == 1), WithdrawItem(k); }

Backtracking: Do k−−, while (xk == 0) and(k ≥ 1).

If (k == 0), STOP.

/* (xk == 1) */ WithdrawItem(k), k = k + 1.

Go to Compute UB.

3.5 Branch-and-Bound for the multiple-class binary knapsack with setups 103

Table 3.3: subroutineWithdrawItem(k) of the Branch-and-Bound for MCBKSU

Let xk = 0, C+= wk, S+=
sik

bik

mk,

Cik+= mk, Z−= pk, F+=
sik

bik

fik .

If (Cik == bi), yik = 0, S−= sik , F−= fik .

The “Compute UB” step is implemented so as to compute the upper bound

of Proposition 6 for the residual problem. In “Forward Moves”, we implicitly set

zk’s to one in formulation (3.28-3.31) which involves implicitly taking a fraction

of yik ; but simultaneously we construct a primal solution(x, y) for MCBKSU,

we reserve the extra capacityS, and we account for the extra fixed costF that

results from rounding up the fractional setup involved in the z solution. This is

repeated while there remain some knapsack capacity to insert further items, i.e.

while C − S ≥ wmin, wherewmin is the smallest item weight and some class

capacity. Otherwise, the next item is set to zero and the dualbound must be

computed. For the dual bound computation, we only account for the knapsack

capacity and class bound capacity used by fixing thez variables. However, if the

remaining primal capacityC − S is not sufficient to open a new class, the items

of this class are ignored during the UB computation. A leaf node is reached when

the knapsack is filled or there are no more items to consider. In the latter case,

as the branchzn = 1 has been explored, the branchzn = 0 does not need to be

explored as it is dominated. “Backtracking” must insure that the class setup is set

to zero when the last positive item of that class is set to zero. This is done in the

WithdrawItem(k) subroutine of Table 3.3.

Both dynamic program and branch and bound have been tested assubproblem

solvers. Whenfi < 0, we must use the dynamic program, in other case the branch

and bound algorithm performs better, even when we use stabilization methods, as

104 Knapsack sub-problems

we shall see.

4
COMPARING IP COLUMN

GENERATION STRATEGIES

The column generation procedure suffers from several drawbacks illustrated

in figure (4.1). The first one is theheading-in effect: at the beginning of the

procedure, poor dual informations lead to bad Lagrangian bounds, so the gap

between primal and dual bounds is important. Furthermore the procedure is

known to have a slow convergence, usually called thetailing-off effect: when

approaching the optimal solution lots of iterations are needed to prove optimality.

There are alsodegeneracyproblems in the primal: new columns added in the

restricted master does not improve its value that remains constant during several

iterations. Thejumpy behaviorcorresponds to oscillations of the intermediate

Lagrangian bounds, they do not converge monotonically to the optimal value.

This phenomenon is due to the instability of the dual variables values from one

iteration to the following.

106 Comparing IP Column Generation strategies

Several techniques can be used to reduce these drawbacks. Some of these

techniques are presented and compared in this chapter. In the first part of this

chapter, we study different initializations that may help in reducing the heading-in

effect. Then, we compare several methods to stabilize the column generation pro-

cedure. Follows the numerical comparison of various strategies for introducing

columns in the master (using exact versus heuristic oracles, adding a single col-

umn at each iteration versus multiple columns). Finally we study the efficiency of

the branching scheme.

Tailing-offHeading-in
iteration

Degeneracy

Jumpy Behavior

restricted master Lp values

Master LP value

intermediate Lagrangian bounds

Figure 4.1: Drawbacks of the column generation procedure

4.1 FRAMEWORK FOR COMPUTATIONAL TESTS: DATA SETS

AND TABLE OF RESULTS

We have made comparative tests on real and randomly generated instances. For

the standard cutting stock problem, we use 9 real data containing 7 to 33 items

and we generated 20 random instances with 50 items, an average demand of 100,

the width of wide roll is 10 000 and the items widths are uniformly generated in

the interval [500, 5000]. We also used 20 random instances used by Belov and

4.1 Framework for computational tests: data sets and table of results 107

Scheithauer in [4]. For these, the items widths are uniformly distributed in [100,

7000] and the demand in [1, 100]. For the variant with tolerance on production

we use the same instances with an interval on items demands ranging between

[bdi ∗ 0.95c, ddi ∗ 1.05e].

For the bin-packing problem we have used only random data coming from

the OR library [2]. When an instance involves items with the same width, we

aggregated their demand; hence they define cutting stock instances with low

average demand. For each type of data, we have made tests on 20instances.

BP-250, BP-500 and BP-1000 refer to instances with 250, 500 and 1000 items

respectively whose sizes are integer and uniformly distributed in [20, 100] while

the size of the bin is 150. BP-t120, BP-t249 and BP-t501 design so-called triplets

instances with 120, 249 and 501 items whose sizes are real andrange from 25 to

49.9 while the bin capacity is 100. The triplets instances are generated from an

optimum solution where there are exactly three items in eachbin and they fill the

bin capacity exactly. These are known to be hard to solve for standard column

generation algorithms, but their solution using the compact formulation is trivial.

The instances used to test the multiple width cutting stock problem comes

from [3]. We choose 20 random instances with 4 roll types whose widths are in

[5 000, 10 000] and the numbers of rolls available in each typeare uniformly

distributed in [625, 2 500], and 100 items whose widths were generated in [1,7

500] and demand in [1, 100] (with an average demand of 50).

In each comparative table, we report the following measures:

• ITER is the number of iterations of the column generation procedure to

solve the linear master problem,

• Col is the number of columns generated during the procedure,

108 Comparing IP Column Generation strategies

• tOracle is the time in seconds taken by the oracle to solve the subproblems,

• tMaster is the time in seconds to solve the restricted master problem,

• tTotal is the total time (Oracle + Master).

All implementations have been done using the environment ofBaPCod, a

generic branch-and-price Code [43]. The oracle used to solve the subproblems

is a specialized procedure presented in chapter 3, and the restricted linear master

problems are solved with XpressMP [31].

4.2 INITIALIZATIONS

The column generation procedure used to solve the linear relaxation of the

Dantzig-Wolfe reformulation must be initialized with a primal feasible solution.

This solution can be obtained with the use of a heuristic procedure or one can

choose to introduce artificial columns in the master. To control the heading-in ef-

fect of the column generation procedure different initializations have been tested.

We consider the use of columns of an initial heuristic solution to the master and/or

the use of artificial columns. To obtain a heuristic solutiona first fit decreasing

algorithm is used. For artificial columns we have tested two strategies: adding just

oneglobal artificial column or one artificial column for each master constraint

calledlocal artificial columns.

4.2.1 INITIALIZATION WITH A HEURISTIC SOLUTION

A heuristic solution is constructed by applying a first fit decreasing algorithm.

Items are sorted in order of non-increasing width. Then, each item is placed by

searching into the list of existing patterns the first one where it fits. When none

can be found a new pattern is initialized with the current item.

4.2 Initializations 109

For the problem with interval on production we compute a firstfit heuristic solu-

tion by the same procedure but considering the lower bound onthe demand. Then

we try to fill the existing patterns with the remaining demand, di = di − di: if

an itemi cannot be placed, one passes to the following item without creating new

patterns.

When there are multiple widths roll types we begin to fill the larger wide roll, and

when the upper bound is reached we fill the smaller ones.

4.2.2 INITIALIZATION WITH ARTIFICIAL COLUMNS

A basic initialization is to introduce asingle artificial column at the beginning of

the procedure to initialize the restricted master problem.The cost of this artificial

column is increased if the column is still in the solution on completion of the

column generation algorithm, then the procedure is re-iterated. However if after

a fixed number of iterations this column remains in the solution the problem is

considered as unfeasible. For the variant with multiple widths we introduce one

artificial column for each subproblem or one global artificial column.

Let γ be the artificial column,̃c its cost andãi its coefficient in constrainti.

The master formulation with artificial columns takes the form:

ZM = min
∑

q∈Q

cq λq + c̃ γ

s.t.
∑

q∈Q

x
q
i λq + ãi γ ≥ di i = 1, . . . , n

∑

q∈Q

λq ≤ K

λq ∈ IN ∀q ∈ Q

γ ≥ 0

110 Comparing IP Column Generation strategies

whose dual is:

max

n∑

i=1

di πi

s.t.
n∑

i=1

x
q
i πi ≤ cq ∀q ∈ Q

n∑

i=1

ãi πi ≤ c̃ (4.1)

πi ≥ 0 ∀i

The values̃c andã are presented in Table 4.1. For the costc̃ of this artificial

column we use an estimate of the order of magnitude of the objective. In this way,

dual constraints (4.1) takes the form:
∑n

i=1 di πi ≤ c̃ and thenπ is chosen such

that the dual objective does not exceed our cost estimate.

Problem constr. coeff. (̃ai) cost (̃c)

CSP di

⌈∑n

i=1 wi di

W

⌉

BP 1

⌈∑n

i=1 wi

W

⌉

CSP with tol. on prod. di

⌈∑n

i=1 wi di

W

⌉

−

∑n

i=1 wi di

W

W

multi Width CSP di

⌈∑n

i=1 wi di

maxk Wk

⌉

Table 4.1: Constraints coefficient and cost of the single artificial column

For the variants with restrictive constraints and the minimization of setups the

cost and constraints coefficients are the same than for the standard cutting stock

4.2 Initializations 111

problem.

Instead of a single artificial column one can uselocal artificial columns, one

for each master constraint. Letγi be the artificial column associated to the cover-

ing constrainti andc̃i its cost, the master [M1] becomes:

ZM = min
∑

q∈Q

cq λq +

n∑

i=1

c̃i γi

[M1LocArtCol] s.t.
∑

q∈Q

x
q
i λq + γi ≥ di i = 1, . . . , n

∑

q∈Q

λq ≤ K

λq ∈ IN ∀ q ∈ Q

γi ≥ 0 i = 1, . . . , n
(4.2)

In a dual point of view it amounts to add dual constraints:

max
n∑

i=1

di πi

s.t.
n∑

i=1

x
q
i πi ≤ cq ∀q ∈ Q

πi ≤ c̃i ∀i

πi ≥ 0 ∀i

We see clearly that the costs of artificial columns define upper bounds on the

associated dual variables. So these values should be an estimate of the optimal

dual values.

For the standard cutting problem the LP solution value of [F1] (1.1) is known

112 Comparing IP Column Generation strategies

to be:

ZLP =

∑n

i=1 widi

W

which is obtained with the solutionxik = di

K
andyk =

Pn
i=1

widi
W

K
. Indeed, the

optimality can be proved by showing that a feasible dual solution of the same cost

can be found. If we noteπi andνk the dual variables associated to the constraints

of [F1], its dual is:

max

n∑

i=1

di πi

s.t. xik πi ≥ wi νk ∀i, k

K∑

k=1

W νk ≥ 1

πi, νk ≥ 0 ∀i, k

The solutionπi = wi

W
, ∀i andνk = 1

W
, ∀k is feasible and its objective value

is equal toZLP .

Hence, when there are no interval on production, we initialize the artificial

columns cost with:

c̃i =
wi

W
αinit ∀i (4.3)

whereαinit is a parameter set toαinit = 1.2 in our computational tests.

For the problem that consists in minimizing the waste, when there are inter-

vals on the demand, we addn other artificial columnsγ′
i, ∀i, in the packing con-

straints. To obtain the costs values we use the economic interpretation of the dual

variables: the benefit to relaxing the covering constraint should be proportional to

the width of the associated item and inversely proportionalfor the packing con-

straints (the smaller items are more easily used to fill the gaps in cutting patterns

4.2 Initializations 113

that would otherwise be counted as waste). This gives rise tothe following values:

c̃i =
R

∑
widi

∗ wi and c̃′i =
R

∑
W
wi

di

∗
W

wi

, (4.4)

whereR is an estimate upper bound on the optimal waste.

Furthermore, if artificial columns are in the primal solution on completion

of the column generation process their cost is updated increasing it by a factor

α = 1.5.

4.2.3 COMPARATIVE TESTS

The following tables are comparative tests between the different initialization

methods. For each class of problems we give the average results obtained for

each method. The columnProblem refers to the class of problems whileInit.

Mode corresponds to the method used:

• 1 art. col. is the initialization with a single artificial column (one for each

sub problem for the multiple widths problem),

• 1 global art. col. is the initialization with a global artificial column for the

multiple widths problem,

• local art. col. is the initialization with one artificial column per master

constraints,

• FFD is the first fit decreasing algorithm.

If artificial columns remains in the solution their cost is increased by the factor

α = 1.5 and the column generation procedure is continued. For the FFD the total

time includes the time used to solve it.

114 Comparing IP Column Generation strategies

Problem Init. Mode ITER Col tOracle tMaster tTotal

1 art. col. 42 43 0.51 0.05 0.68
real local art. col. 29 29 3.75 0.02 3.86

instances 1 art. col. + FFD 24 50 0.14 0.04 0.34
local art. col. + FFD 23 48 0.62 0.02 0.77
1 art. col. 236 237 5.02 0.62 6.41

random local art. col. 142 142 4.31 0.27 5.04
instances 1 art. col. + FFD 159 235 4.75 0.55 7.74

of 50 items local art. col. + FFD 136 211 4.91 0.28 6.96
1 art. col. 727 727 78.32 23.00 106.13

random local art. col. 476 476 59.34 2.55 64.93
instances 1 art. col. + FFD 475 645 44.72 17.12 72.74

of 150 items local art. col. + FFD 347 515 35.51 2.03 44.39

Table 4.2: Standard Cutting Stock

Problem Init. Mode ITER Col tOracle tMaster tTotal

1 art. col. 339 340 7.41 0.94 9.97
120 local art. col. 118 118 3.12 0.29 4.14

items 1 art. col. + FFD 277 324 8.23 0.87 10.77
local art. col. + FFD 127 173 3.97 0.34 5.35
1 art. col. 650 651 58.38 3.62 66.14

249 local art. col. 191 191 13.80 0.73 16.14
items 1 art. col. + FFD 518 612 76.02 3.16 83.58

local art. col. + FFD 198 292 17.29 0.81 20.67
1 art. col. 950 951 545.41 8.73 562.05

501 local art. col. 246 246 43.41 1.25 47.59
items 1 art. col. + FFD 859 923 416.06 4.20 430.03

local art. col. + FFD 298 467 126.79 1.93 142.01

Table 4.3: Bin-Packing triplets instances

4.2 Initializations 115

Problem Init. Mode ITER Col tOracle tMaster tTotal

1 art. col. 273 273 8.18 0.63 10.03
120 local art. col. 112 112 3.63 0.27 4.48

items 1 art. col. + FFD 106 168 0.76 0.27 2.26
local art. col. + FFD 48 109 0.32 0.11 1.08
1 art. col. 268 268 7.15 0.80 9.23

500 local art. col. 115 115 3.43 0.26 4.33
items 1 art. col. + FFD 82 162 0.57 0.23 2.17

local art. col. + FFD 38 117 0.26 0.09 1.06
1 art. col. 258 258 7.82 0.90 10.02

1000 local art. col. 145 145 4.64 0.30 5.68
items 1 art. col. + FFD 72 167 0.49 0.20 2.30

local art. col. + FFD 35 129 0.25 0.09 1.18

Table 4.4: Bin-Packing

Problem Init. Mode ITER Col tOracle tMaster tTotal

1 art. col. 43 43 2.59 0.04 2.83
real local art. col 30 26 9.09 0.03 9.26

instances 1 art.col. + FFD 30 56 6.17 0.05 6.51
local art. col. + FFD 29 51 8.12 0.03 8.42
1 art. col. 140 140 8.14 0.25 9.36

random local art. col 129 115 26.35 0.30 27.33
instances 1 art.col. + FFD 119 194 7.72 0.27 12.05

of 50 items local art. col. + FFD 124 186 25.70 0.29 29.41
1 art. col. 525 522 147.75 3.18 158.79

random local art. col 520 479 447.80 3.62 456.87
instances 1 art.col. + FFD 514 617 138.58 3.17 164.12

of 150 items local art. col. + FFD 473 617 418.34 3.45 451.26

Table 4.5: CSP - Interval on production (5%)

116 Comparing IP Column Generation strategies

Problem Init. Mode ITER Col tOracle tMaster tTotal

1 art. col. 131 122 3.50 0.31 4.53
1 global art. col. 125 114 3.62 0.30 4.46

real local art. col 96 84 13.13 0.22 13.82
instances 1 art.col. + FFD 79 98 2.17 0.04 2.65

1 global art. col. + FFD 80 96 2.21 0.02 2.59
local art. col. + FFD 78 93 2.35 0.03 2.75

Table 4.6: Multiple Widths Cutting Stock Problem

The least number of iterations is obtained with the FFD heuristic combined

with the use of local artificial columns for almost all variants except the triplets

instances for which it is obtained with the use ofn artificial columns: in the

case of the triplets instances the FFD heuristic typically provides a poor primal

solution. Compared to the use of one artificial column, usingn local artificial

columns reduces the number of iterations in a consequent wayfor all variants,

this reduction is due to its stabilization effect in the column generation procedure.

However, in the model with interval on production the best computational time is

obtained with the use of one artificial column because oracles take more time in

the stabilized version. Overall, we note that the average time spent in oracles per

iteration is lower when using one artificial column because subproblems are then

easier to solve when their costs are well balanced.

4.3 STABILIZATION METHODS

To prevent problems of convergence issued from the instability of the dual values

a lot of stabilization techniques have been developed. Someof these techniques

are reviewed in this section and compared experimentally. We consider four types

of stabilization methods:

(i) bounding the dual values,

4.3 Stabilization methods 117

(ii) smoothing the dual values,

(iii) penalizing deviation of the dual solution from a stability center.

We shall consider the stabilization effect of the use of the formulations with built-

in exchanges that were presented in 2.5 in the next section.

4.3.1 THE DYNAMIC BOXSTEP METHOD

Boxstep method is used to bound the dual variables around a stability centerπ̂.

This method was introduced by Marsten in [27]: the Lagrangian dual is solved

forcingπ to lie in anl∞ box around̂π. The problem to solve at iterationk is then:

max
π≥0

{Lk(π) : ‖π − π̂‖∞ ≤ δ} (4.5)

whereLk is defined in (2.19).

On completion of the Kelley’s cutting plane procedure (see section 2.3.5), if

the current solution strictly lies in the box, optimality isproved and the Kelley’s

cutting plane process terminates. Otherwise, the stability center is moved setting

π̂ to the value of the dual vector giving the best dual bound and the procedure is

reiterated.

The LP form of (4.5) is:

max

n∑

i=1

di πi − K σ

s.t. x
q
i πi − σ ≤ 1 ∀q ∈ Q

πi ≤ π̂i + δ ∀i

−πi ≤ −π̂i + δ ∀i

πi, σ ≥ 0 ∀i

118 Comparing IP Column Generation strategies

whose dual is the primal view of the dynamic box step method:

max
∑

q∈Q

λq +

n∑

i=1

((π̂i + δ) y+
i + (−π̂i + δ) y−

i)

s.t.
∑

q∈Q

x
q
i λq + y+

i − y−
i ≤ di ∀i

∑

q∈Q

λq ≤ K

λq ≥ 0 ∀q ∈ Q

y+
i , y−

i ≥ 0 ∀i

Thus, the use of local artificial columns in the primal masterproblem, as in

formulation [M1LocArtCol], acts as a Boxstep method using one-side boxes,

wherey−
i is fixed to0, y+

i = γi andδ + π̂i = c̃i.

The principle of the dynamic Boxstep method is to bound dynamically

these dual variables: each time we find a new dual boundLk(π) > LB, with

LB = maxl=1,...,k+1{L
k(πl)}, we redefine our stability center to be the current

dual solutionπbest that gives rise to the best dual bound so far.

For the comparative numerical tests we use a simplified implementation of the

dynamic box step method: we only consider upper bounds onπi which we define

asα πbest whereα is a constant set to1.5 and we update it at each improvement

of the Lagrangian bound. Thus, in practice, we simply updatethe costs of local

artificial columns according to the above scheme.

4.3 Stabilization methods 119

4.3.2 THE BUNDLE METHOD

Non-linear stabilization methods can be used to solve the dual Lagrangian

problem (2.18).

Bundle methods go back to [25]. In their latest form, initiated in [26], [21] and

fully described in [15, Chap. XV], it consists in approximating the dual function

by adding a quadratic term (an euclidean norm) that penalizes the variation of the

dual variables from a stability center. Let us adopt the dualview of section 2.3.5

to see how this penalization can be implemented in the cutting plane algorithm.

Let π̂ be the stability center, the dual function to solve takes theform:

max
π≥0

Lk(π) −
1

2t
‖π − π̂‖2 (4.6)

The restricted master problem (4.6) is solved by the quadratic programming solver

of K.C. Kiwiel [22], [23]. The initialization is done heuristically computingπ̂i =

c̃i ∀i and we start with an empty initial set of columns. The algorithm also needs

an initial value fort, and this is obtained from an estimate of the optimal value

of the original problem. The algorithm stops when the largest cut violation is

"sufficiently small", i.e. when

ξ(πk) = θk(πk) − θ(πk) 6 ε . (4.7)

(see in [15, §II.2.2(c)] for more explanations).

4.3.3 SMOOTHING METHODS

In this section we present two smoothing methods: the first one has been devel-

oped by Neame in [30] and the second one by Wentges in [44]. Theprinciple of

smoothing methods is to take a convex combination of the current dual solution,

120 Comparing IP Column Generation strategies

πk and, either the solution obtained at the previous iteration(in the method by

Neame), or the dual solution that provided the best Lagrangian bound,πbest, seen

as a stability center (in the method by Wentges). Thus, aftereach solution of

the restricted master, the dual values, before being sent tothe subproblem, are

smoothed.

The principle of theNeame’s procedureis to solve the Lagrangian subprob-

lem with the dual vector

πk = (1 − α)πk−1 + απRM (4.8)

whereπRM is the optimal dual vector given by the last restricted master solution,

andπk−1 is the previous dual vector used at the last iteration,0 < α < 1 is a

constant. When the column generated has a negative reduced cost, it is added

to the restricted master and one goes on to the following iteration, else, if the

dual vector is too distant fromπRM this vector is recomputed by giving more

weight toπRM , increasing the parameterα. If none of these situations occurs the

subproblem is solved using the dual vectorπRM . It has then the effect of clearing

the memory of the preceding vectors. The algorithm stops only if, in this case,

the column generated has a non-negative reduced cost, then the master solution is

optimal.

Algorithm 1 (Neame’s algorithm)

STEP 0. Select an initial set of columns. Chooseε > 0, 0 < α < 2, compute

πRM by solving the restricted master problem and setπ0 = πRM .

STEP 1.A i = 0.

STEP 1.B Compute a dual optimal solutionπRM of the restricted master problem.

STEP 1.C Computeπi+1 = (1−α)πi +απRM . Solve the Lagrangian subproblem

usingπi+1 to optimality. If the resulting column has a negative reduced cost

let π0 = πi+1, add the column and goto STEP 1-a)

4.3 Stabilization methods 121

Else, if||πi+1 − πRM || > ε, andi < imax, theni = i + 1 and goto STEP 1-c)

Else solve the Lagrangian subproblem withπRM , if the column has a non-

negative reduced cost the current solution is optimal (stopping criteria 1).

Elseπ0 = πRM , add new column and goto STEP 1-a).

For our numerical tests, we use a simplified implementation whereimax = 1 and

α = 0.7 is constant.

In theWentges’ procedurethe subproblem is solved taking

πk = (1 − α)πbest + απRM (4.9)

whereπbest is the dual vector giving the best Lagrangian bound value, and α is

decreased at each iteration, its depends on the iteration and the number of times the

Lagrangian bound has been improved (the more one advances inthe algorithm and

one improves the dual bound and the more one gives weight to the πbest). In our

simplified implementationα remains constant and is set to value0.7. Furthermore,

if the oracle does not give a negative reduced cost column forthe smoothed dual

solutionπk, we resetπk = πRM and call again the oracle as in the Neame method.

4.3.4 COMPARATIVE TESTS

We present results that are averages on the instances classes presented in section

4.1. For the dynamic box step method, we use the formulation with n artificial

columns. For the Bundle method, the master is initialized with one artificial col-

umn.

122 Comparing IP Column Generation strategies

Method ITER Col tOracle tMaster tTotal

1 art. col. 42 43 0.48 0.03 0.51
1 art. col. + wentges 44 43 0.68 0.05 0.73

real 1 art. col. + neame 48 45 0.68 0.05 0.73
inst. n art. col. 25 25 3.49 0.03 3.52

n art. col. + wentges 25 25 3.72 0.01 3.73
n art. col. + neame 23 22 2.33 0.02 2.35
dynamicBoxStep 25 25 3.61 0.03 3.64
Bundle 34 26 21.03 0.03 21.06
1 art. col. 256 257 3.60 1.08 4.68
1 art. col. + wentges 230 231 3.45 1.04 4.49

rand. 1 art. col. + neame 230 231 3.34 1.06 4.40
inst. n art. col. 130 128 2.31 0.22 2.53

50 items n art. col. + wentges 130 128 2.78 0.22 3.00
n art. col. + neame 125 123 2.01 0.32 2.33
dynamicBoxStep 132 128 2.64 0.22 2.86
Bundle 163 114 32.74 0.39 33.13
1 art. col. 727 727 40.16 23.00 63.16
1 art. col. + wentges 643 644 22.08 18.27 40.35

rand. 1 art. col. + neame 644 646 21.44 18.26 39.70
inst. n art. col. 476 476 34.25 2.55 36.80

150 items n art. col. + wentges 474 473 30.62 2.36 32.98
n art. col. + neame 443 441 19.27 3.14 22.41
dynamicBoxStep 481 474 35.40 2.51 37.91
Bundle 668 388 671.52 14.00 685.52

Table 4.7: CSP Stab

Method ITER Col tOracle tMaster tTotal

1 art. col. 273 273 0.44 0.58 1.02
1 art. col. + wentges 240 241 0.36 0.74 1.10

250 1 art. col. + neame 226 227 0.33 0.70 1.03
items n art. col. 110 108 0.34 0.21 0.55

n art. col. + wentges 110 108 0.33 0.21 0.54
n art. col. + neame 103 101 0.30 0.33 0.63
dynamicBoxStep 110 108 0.33 0.22 0.55
Bundle 112 106 0.56 1.05 1.61
1 art. col. 269 269 0.35 0.77 1.12
1 art. col. + wentges 243 243 0.30 0.86 1.16

500 1 art. col. + neame 226 226 0.29 0.77 1.06
items n art. col. 117 115 0.43 0.24 0.67

n art. col. + wentges 117 115 0.43 0.24 0.67
n art. col. + neame 108 106 0.37 0.36 0.73
dynamicBoxStep 117 115 0.43 0.23 0.66
Bundle 99 99 0.29 0.99 1.28
1 art. col. 258 258 0.33 0.90 1.23
1 art. col. + wentges 235 235 0.26 0.96 1.22

1000 1 art. col. + neame 217 217 0.24 0.79 1.03
items n art. col. 121 119 0.49 0.27 0.76

n art. col. + wentges 121 119 0.48 0.26 0.74
n art. col. + neame 109 107 0.42 0.37 0.79
dynamicBoxStep 121 119 0.49 0.25 0.74
Bundle 93 94 0.15 0.94 1.09

Table 4.8: Bin-Packing aggreg - Stab

4.3 Stabilization methods 123

Method ITER Col tOracle tMaster tTotal

1 art. col. 340 340 5.75 0.97 6.72
1 art. col. + wentges 326 326 5.73 1.29 7.02

120 1 art. col. + neame 325 325 8.75 1.23 9.98
items n art. col. 123 121 2.56 0.28 2.84

n art. col. + wentges 123 121 2.59 0.33 2.92
n art. col. + neame 135 133 3.22 0.50 3.72
dynamicBoxStep 123 121 2.58 0.29 2.87
Bundle 80 81 2.36 0.92 3.28
1 art. col. 651 651 53.39 3.66 57.05
1 art. col. + wentges 592 592 38.04 4.03 42.07

249 1 art. col. + neame 562 562 65.42 3.80 69.22
items n art. col. 191 189 10.52 0.75 11.27

n art. col. + wentges 191 189 10.51 0.73 11.24
n art. col. + neame 203 201 11.83 1.17 13.00
dynamicBoxStep 191 189 10.49 0.73 11.22
Bundle 138 138 7.99 1.54 9.53
1 art. col. 956 956 479.73 8.71 488.44
1 art. col. + wentges 886 886 302.57 9.71 312.28

501 1 art. col. + neame 788 788 397.97 7.84 405.81
items n art. col. 253 251 27.44 1.30 28.74

n art. col. + wentges 253 251 27.22 1.30 28.52
n art. col. + neame 264 262 27.38 2.08 29.46
dynamicBoxStep 253 251 27.50 1.31 28.81
Bundle 191 190 24.32 2.67 26.99

Table 4.9: Bin-Packing aggreg - Stab - triplets instances

Method ITER Col tOracle tMaster tTotal

1 art. col. 43 43 2.79 0.04 2.83
1 art. col. + wentges 41 41 4.25 0.06 4.31

real 1 art. col. + neame 44 44 4.53 0.08 4.61
inst. n art. col. 30 26 12.48 0.03 12.51

n art. col. + wentges 29 26 10.96 0.05 11.01
n art. col. + neame 27 23 12.01 0.04 12.05
dynamicBoxStep 95 46 132.72 0.13 132.85
Bundle 62 33 17.17 0.78 17.95
1 art. col. 140 140 7.64 0.28 7.92
1 art. col. + wentges 135 134 8.76 0.45 9.21

rand. 1 art. col. + neame 138 137 8.57 0.44 9.01
inst. n art. col. 139 121 30.32 0.32 30.64
50 n art. col. + wentges 139 121 40.22 0.44 40.66

items n art. col. + neame 136 118 36.66 0.53 37.19
dynamicBoxStep 141 140 8.28 0.25 9.56
Bundle 193 80 52.14 1.43 53.57
1 art. col. 521 518 147.85 3.05 150.90
1 art. col. + wentges 505 502 180.02 4.87 184.89

rand. 1 art. col. + neame 522 519 164.79 5.21 170.00
inst. n art. col. 545 499 567.51 3.80 565.90
150 n art. col. + wentges 539 493 722.68 5.54 728.22

items n art. col. + neame 537 492 661.14 5.95 667.09
dynamicBoxStep 491 466 227.13 1.77 228.90
Bundle 550 241 1026.27 11.41 1037.68

Table 4.10: CSP tolerance on production Stab

124 Comparing IP Column Generation strategies

Method ITER Col tOracle tMaster tTotal

1 art. col. 395 1058 7.46 4.62 12.08
1 art. col. + wentges 345 906 5.97 4.07 10.14
1 art. col. + neame 336 893 6.23 3.86 10.09

n art. col. 186 504 5.89 0.67 6.56
n art. col. + wentges 180 485 5.29 0.74 6.03
n art. col. + neame 165 433 4.99 0.82 5.81
dynamicBoxStep 270 567 11.48 1.12 12.6

Bundle 377 436 14.71 5.26 19.97

Table 4.11: CSP Multiple Widths Stab

From a general point of view, the use of local artificial columns has a real

stabilization effect on all instances, except for the variant with tolerance on

production.

The smoothing methods (Wentges and Neame methods) have broadly the same

effect, however Neame’s method seems to be a little more effective, and it

is accentuated when it is applied to the version with local artificial columns,

compared to the version with a single artificial column. However for the triplets

instances of the Bin Packing problem, smoothing methods have no stabilization

effect when combined with the use of local artificial columns.

The dynamic Boxstep method has no effect because we start with an optimal

dual solution, and so the stability center does not move. TheBundle method must

be compared to the single artificial column version. It has a stabilization effect

for all the variants, the number of iterations decreased, however the time spent in

the subproblem increased, except for the Bin Packing where the bundle method

takes less time and less iterations compared to all the otherstabilization methods.

For the variant with tolerance on production none of the stabilization methods

have a real impact on the column generation procedure. The number of iterations

is roughly the same while the time increases. The resolutionof this variant is less

unstable because there is less degeneracy.

4.4 Formulations with exchanges 125

4.4 FORMULATIONS WITH EXCHANGES

The master formulations with exchanges built-in presentedin 2.5 are stabiliza-

tion methods, as they amount to add dual cuts. We have compared the following

formulations:

• M1 that refers to the standard master formulation. We initialize it with a

global artificial column.

• The formulationAgregCovM1 that correspond to the aggregation of the

covering constraints.

• For the exchange flow formulation we tested two versions: thefirst one

is DirectExchFlowM1 that corresponds to the simple exchanges and the

secondExchFlowM1 refers to whole feasible exchanges between two piece

types.

• We experimentRestrExchVectM1where exchange vectors are restricted to

those where one item is replaced by a set of smaller items. At each iteration

of the column generation procedure we solve two subproblems, the column

generation subproblem and a second pricing subproblem thatallows to gen-

erate a restricted exchange vector (with|r| = 1).

• The method of Carvalho where cuts are added a priori to the problem by

generating the corresponding columns before starting the column genera-

tion process has been tested. For this, two types of cuts are used, referred

asCarvalhoCuts:

126 Comparing IP Column Generation strategies

πi+1 ≤ πi for i = 1, . . . n − 1 (4.10)

πj + πk ≤ πi







for i = 1, . . . n − 2,

for the first identified pair of items (j,k)

such thati < j < k andwj + wk ≤ wi

(4.11)

The Simple CarvalhoCuts refers to the use of only the first type of cuts.

For the second type of cuts we generate only one cut for alli.

4.4.1 COMPARATIVE TESTS

Method DB ITER Col tOracle tMaster tOr.+Mast.

M1 81.22 42 43 0.48 0.03 0.51
real AgregCovM1 81.22 35 35 0.26 0.02 0.28

DirectExchFlowM1 81.22 40 40 0.61 0.04 0.65
Simple CarvalhoCuts 81.22 53 55 0.11 0.04 0.15

inst. ExchFlowM1 81.22 35 36 0.55 0.03 0.58
RestrExchVectM1 81.22 41 80 3.47 0.04 3.51
CarvalhoCuts 81.22 46 121 0.50 0.05 0.55
M1 1381.10 256 257 3.60 1.08 4.68

rand. AgregCovM1 1381.10 207 208 5.73 1.23 6.96
50 DirectExchFlowM1 1381.10 211 212 5.60 0.75 6.35

items Simple CarvalhoCuts 1381.10 267 270 5.33 1.18 6.51
ExchFlowM1 1381.10 188 189 5.27 0.79 6.06
RestrExchVectM1 1381.10 218 404 108.25 1.18 109.43
CarvalhoCuts 1381.10 223 1077 4.28 1.83 6.11

cuts generation = 1.50
M1 2558.35 727 727 40.16 23.00 63.16

rand. AgregCovM1 2558.35 660 661 55.81 119.13 174.94
150 DirectExchFlowM1 2558.35 700 700 36.51 21.31 57.82

items Simple CarvalhoCuts 2558.35 779 781 52.57 23.46 76.03
ExchFlowM1 2558.35 557 557 32.45 25.56 58.01
RestrExchVectM1 TOO LONG
CarvalhoCuts 2558.35 681 10584 49.72 85.57 135.29

Table 4.12: CSP Exchanges init. with one art. col

The use of alternative master reformulations allows to reduce the number

of iterations on almost all instances. The formulation ExchFlowM1 is the

most effective on the standard cutting stock problem. However, on the triplets

instances, it is less effective because the item widths are roughly the same and so

4.4 Formulations with exchanges 127

Method DB ITER Col tOracle tMaster tOr.+Mast.

M1 101.6 273 273 0.44 0.58 1.02
250 AgregCovM1 101.6 226 226 1.10 1.24 2.34

DirectExchFlowM1 101.6 237 237 0.99 0.66 1.65
Simple CarvalhoCuts 101.6 295 298 0.90 0.76 1.66

items ExchFlowM1 101.6 201 201 0.69 0.67 1.36
RestrExchVectM1 101.6 207 415 40.37 0.78 41.15
CarvalhoCuts 101.6 221 1850 0.46 1.10 1.56
M1 201.2 269 269 0.35 0.77 1.12

500 AgregCovM1 201.2 236 236 1.43 1.54 2.97
DirectExchFlowM1 201.2 251 251 1.13 0.81 1.94
Simple CarvalhoCuts 201.2 277 279 0.74 0.75 1.49

items ExchFlowM1 201.2 222 222 0.91 0.90 1.81
RestrExchVectM1 201.2 210 420 30.87 1.02 31.89
CarvalhoCuts 201.2 208 1999 0.38 1.43 1.81
M1 400.5 258 258 0.33 0.90 1.23

1000 AgregCovM1 400.5 240 240 1.49 1.72 3.21
DirectExchFlowM1 400.5 238 238 1.17 0.91 2.08
Simple CarvalhoCuts 400.5 309 311 1.04 1.07 2.11

items ExchFlowM1 400.5 198 198 0.67 0.97 1.64
RestrExchVectM1 400.5 206 413 26.73 1.20 27.93
CarvalhoCuts 400.5 234 2029 0.52 1.82 2.34

Table 4.13: Bin-Packing aggreg - Exchanges init. with one art. col.

Method DB ITER Col tOracle tMaster tOr.+Mast.

M1 40 340 340 5.75 0.97 6.72
120 AgregCovM1 40 231 231 27.62 1.59 29.21

DirectExchFlowM1 40 277 277 42.59 0.76 43.35
Simple CarvalhoCuts 40 374 376 27.71 0.98 28.69

items ExchFlowM1 40 277 277 42.66 0.80 43.46
RestrExchVectM1 40 290 537 268.88 1.22 8.93
M1 83 651 651 53.39 3.66 57.05

249 AgregCovM1 83 366 366 232.72 7.20 239.92
DirectExchFlowM1 83 429 430 441.41 2.13 443.54
Simple CarvalhoCuts 83 561 563 309.68 2.75 312.43

items ExchFlowM1 83 429 430 440.01 2.11 442.12
RestrExchVectM1 83 465 887 1247.81 6.18 1253.99
M1 167 956 956 479.73 8.71 488.44

501 AgregCovM1 167 469 465 671.48 22.26 693.74
DirectExchFlowM1 167 623 623 2154.48 4.64 2159.12
Simple CarvalhoCuts 167 735 737 2639.65 7.02 2646.67

items ExchFlowM1 167 622 622 2096.58 4.66 2101.24
RestrExchVectM1 TOO LONG

Table 4.14: Exchanges init. with one art. col. Bin-Packing triplets aggreg

128 Comparing IP Column Generation strategies

Method DB ITER Col tOracle tMaster tOr.+Mast.

M1 1893.03 43 43 2.54 0.04 2.58
real DirectExchFlowM1 1893.03 39 40 2.18 0.05 2.23

Simple CarvalhoCuts 1893.03 50 59 3.37 0.05 3.42
inst. ExchFlowM1 1893.03 39 39 4.23 0.05 4.28

RestrExchVectM1 1893.03 36 62 5.94 0.05 5.99
CarvalhoCuts 1893.03 42 123 2.53 0.06 2.59
M1 3499.79 140 140 7.71 0.28 7.99

random DirectExchFlowM1 3499.79 133 133 7.50 0.33 7.83
Simple CarvalhoCuts 3499.79 159 192 14.69 0.29 14.98

instances ExchFlowM1 3499.79 130 130 7.48 0.33 7.81
50 items RestrExchVectM1 3499.79 144 212 135.37 0.31 135.68

CarvalhoCuts 3499.79 157 1045 15.18 0.35 15.53
cuts generation = 2.50

M1 15778.3 521 518 147.85 3.05 150.90
random DirectExchFlowM1 15778.3 506 503 161.65 5.10 166.75

instances ExchFlowM1 15778.3 491 488 162.83 5.45 168.28
150 items RestrExchVectM1 TOO LONG

CarvalhoCuts 15778.2 582 10675 342.23 5.83 348.06

Table 4.15: CSP tol On Prod Exchanges init. with one art. col

Method DB ITER Col tOracle tMaster tOr.+Mast.

M1 2048.3 395 1058 7.46 4.62 12.08
AgregCovM1 2048.3 421 1071 12.60 19.96 32.56
DirectExchFlowM1 2048.3 429 1075 11.16 6.50 17.66
Simple CarvalhoCuts 2048.3 425 905 12.87 3.73 16.60
ExchFlowM1 2048.3 339 779 9.74 6.12 15.86
CarvalhoCuts 2048.3 348 5188 10.94 8.28 19.22

Table 4.16: CSP Multiple Widths Exchanges init. with one art. col

4.5 Strategies for column generation 129

only simple (one-to-one) exchanges can arise. We note that the subproblems are

harder to solve when using the formulation AgregCovM1, perhaps because the

dual values are more correlated.

The use of formulation ExchVectM1 is very expensive, because to generate

exchange vectors at each iteration we have to solve a second subproblem (it is

solved using Xpress because we did not develop a specific solver for this sub

problem). When using Carvalho cuts, some time is spent in generating the cuts

a priori before the procedure, and on the instances with a lotof items, more time

is spent in solving the restricted master problems because there are lots of extra

columns.

We note that in practice we obtain the same dual bounds, even using formulations

that are relaxations of the standard column generation formulation.

4.5 STRATEGIES FOR COLUMN GENERATION

In the classical column generation procedure, one column isgenerated at each

iteration by an exact oracle. Alternatively, one could use aheuristic oracle while

it provides a column with negative reduced cost and call the exact oracle only

when it fails. However a drawback of this method is that the dual bound must be

computed with an exact subproblem solution, so we have also tested this strategy

but generating an exact column solution every k iterations (in our tests we use k

= 2 or 10). Our heuristic oracle is the standard greedy algorithm for the knapsack

problem.

We also experimented with a different strategy aiming at diversifying the

search. Our intuition being that all columns with best reduced tend to concern the

same subset of items. Thus, we implemented the following scheme:

130 Comparing IP Column Generation strategies

(i) Solve the subproblem exactly and compute how many time this column can

feasibly be taken in the CSP solution,

(ii) update the bound on subproblem variables as if you were taking that selected

column so many time,

(iii) re-solve the subproblem after updating to obtain the next selected column,

(iv) if it has negative reduced cost, re-iterate.

In practice we impose an upper bound on the number of passes. (In our experi-

ments we compare generating up to 3 columns and up to 10 columns per iteration.)

Other strategies could be to record all columns with negative reduced cost

that are encountered in the oracle while solving the subproblem (for instance

when the oracle is a dynamic programming solver or a branch-and bound). When

there are many columns that could be returned, one can apply aselection criteria

such as taking those with minimum negative reduced cost. Moreover, using a

dynamic programming recursion would allow to generate all the columns with

an optimal cost, memorizing all the paths leading to a dominant solution. While

with a branch-and-bound procedure only columns that arise as incumbents at

some stages can be generated. We have not implemented these strategies.

In tables 4.17 and 4.18, respectively for the standard cutting stock problem

and the variant with tolerance on production, we compare these strategies on the

instances presented in section 4.1. The reported results are averages.

4.5 Strategies for column generation 131

ITER Col tOracle tMaster tTotal

1 exact col. 29 30 4.28 0.03 5.19
real 3 col/it. 10 41 3.60 0.01 3.64
inst. 10 col/it. 7 74 4.01 0.00 4.06

1 col. heur. 62 62 0.61 0.09 1.37
1 col.Heur-exact every 2it. 45 45 1.63 0.05 2.23
1 col.Heur-exact every 10it. 61 61 0.72 0.07 1.47
1 exact col. 146 146 6.88 0.30 10.93

50 3 col/it. 42 165 6.96 0.80 11.17
items 10 col/it. 21 200 9.40 0.50 13.59

1 col. heur. 251 251 5.28 0.50 9.95
1 col.Heur-exact every 2it. 201 201 5.55 0.39 9.56
1 col.Heur-exact every 10it. 240 240 5.53 0.51 9.94

150 1 exact col. 492 496 353.45 2.93 380.86
items 1 col.Heur-exact every 10it. 834 837 272.76 5.36 314.72

Table 4.17: CSP Several columns generated per iteration

ITER Col tOracle tMaster tTotal

1 col/it. 28 28 4.30 0.02 4.37
real 3 col/it. 15 38 8.33 0.01 8.40
inst. 10 col/it. 11 65 10.96 0.01 11.06

1 col/it. 142 120 32.80 0.29 33.56
50 3 col/it. 65 134 54.20 0.18 54.73
items 10 col/it. 48 222 93.11 0.17 94.39

Table 4.18: CSP with tolerance on prod. - Several columns generated per iteration

132 Comparing IP Column Generation strategies

The generation of several columns per iteration allows to reduce considerably

the number of column generation iterations, however lots ofthese columns are not

used. At the opposite the generation of heuristic columns increases the number of

iterations because the dual bound is updated only when this heuristic column has

a positive reduced cost and when an exact column is generated. That is why we

have tested the generation of an exact column after a fixed number of iterations.

A heuristic solver allows to reduce the time spent in oracles(time in oracles per

iteration decrease), however, this does not translate intoa reduction in the total

time as the number of iterations is much larger.

4.6 PRIMAL HEURISTICS

Integer primal solutions can be derived either a priori (forinstance using the FFD

heuristic described in Section 4.2.1) or using the column generation framework.

A classical column generation based heuristic is to solve tointegrality the mas-

ter program restricted to a subset of columns (by branch-and-bound). This can

potentially be done at any time during branch-and-price. However we just report

experimental results where this exact solution of the restricted master is called at

the end of the column generation procedure at the root node ofthe branch-and-

price tree. It is to be observed that the restricted set of columns can be insufficient

to give rise to an integer feasible solution. Below we describe 2 column genera-

tion based heuristics using dynamic column generation: a greedy procedure and a

rounding procedure. Then, we compare the quality of the primal solution obtained

with these procedures on random instances.

4.6.1 GREEDY ALGORITHM

In the greedy heuristic, we iteratively generated a column by solving the subprob-

lem with heuristic dual prices. The generated column is taken in the solution as

4.6 Primal heuristics 133

many time as feasible and the process reiterates until the residual master problem

becomes trivial (all orders demands are satisfied). This procedure can be called at

the outset of the algorithm using dual price set a priori (as defined in (4.3) for the

standard problem and in (4.4) for the variant with interval on production). Alter-

natively, the greedy procedure can be called at any time using the current master

dual solution. In our numerical comparison we test the greedy procedure with a

priori dual value (this procedure is denoted greedy1) and with the dual solution

obtained at the end of the column generation procedure at theroot node of the

b-a-p tree (this procedure is denoted greedy2). The cumulative use of these two

procedures will be denoted greedy.

4.6.2 ROUNDING HEURISTIC

The rounding heuristic consists in deriving an integer solution from the linear

solution of the master problem. It can be seen as doing a heuristic dive into a

branch-and-price tree. However the underlying branching scheme is not necessar-

ily the one that would be used for solving the problem exactly: the aim is to get

quickly to an integer solution and we do not have to worry about backtracking.

Again, it can be used at any time, but in our tests we used it only at the end of the

column generation procedure at the root node of the b-a-p tree. To be specific, the

last LP solution is rounded down and the columnq which have the largest value

λq is iteratively selected and taken in the partial solution byrounding it up. After

each round-up we apply a column generation procedure to re-optimize the linear

master problem associated to the residual problem obtainedby removing the fixed

columns and updating the right hand side of the master constraints.

4.6.3 COMPARATIVE TESTS

These four methods have been tested on instances described in section 4.1. In the

following tables, we mention the instances tested, the method used:FFD refers

134 Comparing IP Column Generation strategies

to the first fit decreasing algorithm,greedy1, greedy2andgreedy to the greedy

heuristics,rounding to the rounding heuristic andRMIP refers to the solution

of the integer restricted master problem. However the RMIP used alone does not

allow to find an integer solution in most cases, so we test it with the FFD algorithm

in FFD + RMIP . The tables compare then the primal and dual bounds and timers

in seconds. The number given between brackets alongside theheuristic name

corresponds to the number of instances for which an integer solution was found.

Then, the average primal bound is that obtained over the instances for which we

found a primal bound.

Method PB DB ITER Col tOracle tMaster tHeur tOr.+Mast. tTotal

FFD 83.56 81.22 34 50 0.09 0.03 0.11 0.11 1.27
real greedy 81.67 81.22 21 52 2.63 0.02 4.75 2.65 7.57
inst. rounding 81.22 81.22 123 122 2.03 0.09 4.85 2.12 6.88

RMIP +∞ 81.22 30 28 4.42 0.03 4.45 5.54
FFD + RMIP 83.56 81.22 16 39 0.73 0.01 0.11 0.74 1.63
FFD 1405.90 1380.8 186 235 5.36 0.61 2.49 5.97 18.34

50 greedy 1393.95 1380.8 172 248 8.65 0.55 16.91 9.00 46.60
greedy1 1447.40 1380.8 105 170 4.19 0.21 2.38 6.59 7.34
greedy2 1397.60 1380.8 142 177 6.07 0.27 6.05 6.34 11.47

items rounding 1381.15 1380.8 345 338 8.53 0.82 12.10 9.35 30.00
FFD 2574.1 2557.65 539 639 239.71 16.86 10.88 256.57 333.65

150 greedy 2626.3 2557.65 622 763 378.16 18.30 318.65 396.46 1040.72
items rounding 2626.3 2557.65 622 763 433.86 18.68 326.79 452.54 1109.98

Table 4.19: CSP Primal Heuristics

Method PB DB ITER Col tOracle tMaster tHeur tOr.+Mast. tTotal

FFD 103.10 101.6 50 111 0.12 0.12 0.54 0.24 4.60
250 greedy 110.55 101.6 62 174 0.31 0.15 6.13 0.46 17.36

items rounding 101.60 101.6 235 211 0.53 0.45 2.52 0.98 4.04
FFD + RMIP 103.10 101.6 50 111 0.13 0.13 0.55 0.26 4.90
FFD 203.9 201.2 39 118 0.05 0.09 0.80 0.11 4.51

500 greedy 211.4 201.2 53 188 0.25 0.13 7.84 0.38 21.15
items rounding 201.2 201.2 259 235 0.55 0.50 3.22 1.05 4.53

FFD + RMIP 203.9 201.2 39 118 0.05 0.09 0.82 0.11 4.82
FFD 405.40 400.55 37 130 0.06 0.09 1.16 0.15 4.92

1000 greedy 414.95 400.55 51 194 0.25 0.12 8.69 0.37 23.35
items rounding 400.55 400.55 261 237 0.56 0.49 3.04 1.05 4.58

FFD + RMIP 405.40 400.55 37 130 0.05 0.09 1.19 0.11 5.14

Table 4.20: Bin Packing Primal Heuristics

We can conclude that in all cases the best primal bounds are obtained with the

rounding heuristic, furthermore in almost all instances itallows to find the optimal

4.6 Primal heuristics 135

Method PB DB ITER Col tOracle tMaster tHeur tOr.+Mast. tTotal

FFD 45.8 40 179 224 1.44 0.53 0.40 1.97 13.26
120 greedy 41.0 40 122 191 2.50 0.34 3.99 2.84 20.06

items rounding 40.6 40 219 200 1.80 0.48 6.92 2.28 16.18
RMIP +∞ 40 125 123 1.01 0.34 1.35 9.69
FFD + RMIP 45.8 40 190 235 2.01 0.61 0.41 2.62 15.12
FFD 95.0 83 593 617 16.49 3.27 1.26 19.76 71.77

249 greedy 84.0 83 156 297 9.83 0.73 12.89 10.56 65.44
items rounding 83.9 83 372 334 8.91 1.24 24.64 10.15 47.98

FFD + RMIP 95.0 83 339 431 8.26 1.84 1.27 10.10 44.66
FFD 190.0 167 298 467 126.79 1.93 1.95 128.72 142.01

501 greedy 168.2 167 214 473 25.79 1.52 34.37 27.31 177.58
items rounding 167.8 167 490 438 30.35 2.26 32.61 32.61 103.40

Table 4.21: Bin Packing triplets Primal Heuristics

Method PB DB ITER Col tOracle tMaster tHeur tOr.+Mast. tTotal

FFD 94308.7 1893.03 38 56 5.44 0.04 0.11 5.48 6.84
real greedy 42806.2 1893.03 18 50 13.23 0.02 7.24 13.25 18.97
inst. rounding 2033.8 1893.03 63 61 11.38 0.06 7.71 11.44 14.20

RMIP (7) 3017.1 1893.03 43 43 2.79 0.02 2.81 3.89
FFD + RMIP 2396.6 1893.03 38 56 3.34 0.03 0.05 3.37 4.37
FFD 251776 3499.85 142 193 8.62 0.28 2.58 8.90 19.91

50 greedy 176285 3499.87 111 180 13.58 0.24 36.74 13.82 77.04
items rounding 3544.4 3499.84 179 162 13.91 0.33 10.41 14.24 27.22

FFD + RMIP 11204.9 3499.79 143 194 4.79 0.16 4.95 252.11
FFD 182514.1 15778.2 524 627 934.97 3.14 11.08 938.11 1021.8

150 greedy (15) 429525.1 15778.2 454 599 887.21 1.99 217.91 888.20 1250.22
items rounding 15843.8 15778.2 652 609 1424.83 3.82 241.68 1428.65 1569.95

Table 4.22: CSP with tolerance on production - Primal Heuristics

1+2 Method PB DB ITER Col tOracle tMaster tHeur tOr.+Mast. tTotal

FFD 2237.6 2048.25 167 562 6.10 0.67 3.31 6.77 37.74
greedy (3) 2226.7 2048.25 142 559 11.22 0.58 23.52 12.10 79.33
rounding 2048.3 2048.25 256 571 8.39 0.80 12.63 9.19 24.84
FFD + RMIP 2237.6 2048.25 167 562 6.15 0.67 6.82 39.05

Table 4.23: CSP Multiple Widths - Primal Heuristics

136 Comparing IP Column Generation strategies

solution. The first fit decreasing (FFD) algorithm allows to obtain a valid upper

bound on all instances, but it can be far from the dual bound, especially on the

variant with interval on production. For this variant solving the restricted master

integer problem (RMIP) exactly in addition to this heuristic reduces considerably

its value. We note that the set of columns generated at the root node is in general

not sufficient to obtain an integer solution (the RMIP can notbe solved). Greedy2

gives rise to better primal bounds than greedy1, but the combination of greedy1

and greedy2 seems to be even better.

From a computational time point of view the FFD heuristic is fastest (except on

the triplets instances), indeed the columns are generated heuristically so it does

not require the use of solvers for the master and the oracle. The greedy, rounding

and RMIP are generic algorithms so they could be used on others applications,

while the FFD heuristic is specific to cutting and bin packingproblems, however

it could be improved for some variants.

4.7 BRANCHING

The choice of the branching scheme is essential for the efficiency of the branch-

and-price procedure. The aim of branching is twofold: improving the dual

bound and enforcing integrality. These two objectives can be contradictory.

As the dual bound for the global problem is the worse bound over all active

nodes, it is important to use a balanced branching scheme that constraints

equally all descendant nodes: i.e. the subsetQ̂ defining the partition must not

be too restrictive, because otherwise, the branch corresponding to the restrictive

branching constraint will probably lead to an improved bound, while the other

branch will barely be constrained leading to a subproblem with almost the same

bound as the parent node.

4.7 Branching 137

In this section, we study and compare the branching rules presented in section

2.3.7. We first test each branching rule separately, our aim is to compare the

dual bounds improvements that can be obtained from that rulealone. We also see

whether some rules are more likely to quickly give rise to primal integer solutions.

Based on these experiments, we try to combine these independent branching rules.

Priorities on the variables allows to define the order of generation of the branching

constraints and can influence the balance of the tree. They are detailed below. The

tree search strategies are best bound first or depth first. Thebest bound strategy

consists in giving priority to the improvement of the dual bound, the next node

to treat being the node associated to the best dual bond. The depth first strategy

on the other hand aims at quickly finding primal feasible solutions. As the dual

bounds at the root node are optimal for the standard cutting stock problem, the

depth first strategy seems to be more appropriate, so we use itfor our numerical

tests.

4.7.1 NUMERICAL TESTS

For the numerical tests on branching we used smaller instances because of the

computational time required. The tests have been done on5 classes of random

instances with20 items, whose average demand is50, and the wide roll width is

1000. The classes are characterized by the items widths which were randomly

generated in the following intervals:

• class 1 (c1):wi ∈ [0, 7500]

• class 2 (c2):wi ∈ [0, 5000]

• class 3 (c3):wi ∈ [0, 2500]

• class 4 (c4):wi ∈ [500, 5000]

• class 5 (c5):wi ∈ [500, 2500]

138 Comparing IP Column Generation strategies

In tables 4.24 and 4.25, we compare the two following rules:

[br1]
∑

q:xij=1

λq ∈ IN

[br2]
∑

q:xi>0

λq ∈ IN

The highest priority was given to the variable with the largest weightwi mij for

[br1], andwi for [br2]. The last branching rule defined in section 2.3.7 isnoted

[br3]:

[br3]
∑

q:yi=y′

i=1

λq ∈ IN

It consists in branching on the number of columns that involve two itemsi and

l. [br3] has proved to be too restrictive to be interesting (asit can be seen on the

first class tests). We also test the combination of the rules 1and 2 on the classes

for which the use of a single rule was not sufficient to obtain the integer optimal

solution: we apply [br1] while a branching constraint is found to separate the

current fractional solution and we use [br2] otherwise.

For the numerical experiments we have limited the number of nodes treated to

1000, so the procedure stops:

• (i) when the maximum number of nodes to treat is reached,

• (ii) when the used branching rule becomes insufficient to cutthe current

fractional solution,

• (iii) or when the integer optimal solution has been found.

The master is initialized with local artificial columns and we use the first fit de-

creasing algorithm to start we an initial integer solution.

Table 4.24 present average results over5 random instances for the standard cutting

stock problem while table 4.25 reports the average results over all classes for the

variant with tolerance on production. The columns give:

4.7 Branching 139

• Rule = The branching rule tested.

• Nodes = number of node processed during the branch-and-price procedure.

• RtDB = dual bound at the root node.

• RtInc = incumbent at the root node.

• DB = best dual bound at the end of the branch-and-price procedure.

• Inc = best incumbent at the end of the branch-and-price procedure.

• Mast = number of master LP that have been solved.

• Sp = number of subproblems that have been solved.

• TSp = total time spent at solve the subproblems, in seconds.

• TMast = total time spent at solving restricted master problems, in seconds.

• Total = total time in seconds.

The number between brackets in the column Rule is the number of optimal solu-

tions over5 instances. For the variant with tolerance on production, the number

of instances solved to optimality with a single branching rule was under10% for

each branching rule.

The rule [br1] was sufficient to find an optimal integer solution in almost all

instances of the standard cutting stock problem. Moreover,even when the use of

[br2] allows to find the optimal solution, the number of nodesgenerated is much

more important than using [br1] and the computational timesper node is larger.

Optimal integer solutions are obtained for all instances onthe standard cutting

stock problem using first [br1] and then [br2].

For the variant with interval on production the use of a single branching

rule is insufficient to cut all fractional solutions. We mustuse a combination of

140 Comparing IP Column Generation strategies

Rule Nodes RtDb RtInc DB Inc Mast Sp Tsp TMast Total
c1 [br1] (5) 14 374.8 378.6 374.8 374.8 46 17 1.62 0.03 2.27
c1 [br2] (5) 6 374.8 378.6 374.8 374.8 33 18 8.36 0.02 9.39
c1 [br3] (3) 432 374.8 378.6 376 374.8 836 223 215.67 1.84 304.16
c2 [br1] (5) 106 262 266.4 262 262.0 285 62 14.87 0.25 18.39
c2 [br2] (4) 409 262 266.4 262 262.4 797 180 620.17 2.29 687.56
c3 [br1] (4) 467 122.8 123.4 122.8 123.0 777 111 44.54 1.38 69.65
c3 [br2] (3) 600 122.8 123.4 122.8 123.4 1043 124 199.51 1.92 247.40
c3 [br1] + [br2] (5) 472 122.8 123.4 122.8 122.8 1137 150 165.97 2.74 242.91
c4 [br1] (4) 222 247.2 253 247.2 247.4 494 73 68.53 0.51 78.09
c4 [br2] (2) 804 247.2 253 247.2 251.2 1381 145 114.72 2.73 181.81
c4 [br1] + [br2] (5) 191 247.2 253 247.2 247.2 440 76 76.75 0.58 91.11
c5 [br1] (4) 466 141.8 145.2 141.8 142.0 1099 137 139.43 1.28 163.86
c5 [br2] (0) 1000 141.8 145.2 141.8 145.2 1880 213 546.37 19.56 663.52
c5 [br1] + [br2] (5) 1143 141.8 145.2 141.8 141.8 2356 144 181.79 6.53 388.47

Table 4.24: Branching rules

Rule Nodes RtDb RtInc DB Inc Mast Sp Tsp TMast Total
[br1] 802 36231.3 88488 36231.3 40612.2 1236 554 6177.68 2.47 6328.12
[br2] 809 36231.3 88488 36231.3 47792.1 1423 489 2953.16 3.21 3066.22

Table 4.25: Branching rules - Tol. On Prod.

these rules. The computational experiments show that branching on the binary

components ([br1]) gives rise to a better incumbent solution thought the trees

sizes are equivalent. However the computational time spentin the subproblems is

twice as large.

5
THE INDUSTRIAL CUTTING STOCK

PROBLEM

Industrial Cutting Stock Problem (ICSP) combine all the difficulties of the

variants discussed in Chapter 1: tolerance on production, multiple stock pieces,

bi-criteria optimization (minimizing waste and the numberof different patterns

used). Moreover, there are typically further technical restrictions, some of which

concern the definition of a feasible cutting pattern (and hence must be taken into

account in the column generation subproblem), while othersare global constraint

(such as sequencing issue) that must be formulated in the master program.

Among the technical constraints generally encountered in the paper industry

we can cite:

1. An upper bound on the waste resulting from cutting. This bound translates

into a minimal cut width on the cutting pattern. It can be modeled in the

subproblem as (1.13).

142 The industrial cutting stock problem

2. A maximum number of cuts that can be made in a pattern, as thewinder has

typically a fixed number of knives. It gives rise to the cardinality constraint

(1.15) that goes in the subproblem.

3. A maximum number of different order types in a pattern. This constraint

comes from storage problems: after the cutting process the reels are put on

pallets. Moreover, dealing with many types of reels cause more waste of

time in handling. Such restriction takes the form:

n∑

i=1

yik ≤ T k = 1, . . . , K

whereyik = 1 if some piece of typei is cut in roll k, i.e. if xik > 0 (such

constraint goes in the subproblem).

4. In order to avoid short batch run length, a minimum number of use (N)

for each pattern may be imposed. In formulation [F5] (see (1.16)), this

constraint takes the form

zk ≥ N yk k = 1, . . . , K

While in the column generation reformulation [M5] (see (2.62)), it can be

modeled in the subproblem, since we augmented it with multiplicity vari-

ablex0: it takes the form

x0 ≥ N k = 1, . . . , K

5. A minimumM and maximumM use of stock pieces. It is a global con-

straint that arise typically when there are multiple kind ofstock pieces (this

may be a way to enforce the use of some stock pieces in priority). In the

compact formulation [F3] (1.8), it can be formulated as:

M ≤
∑

k∈S

yk ≤ M

143

for some subsetS of stock pieces. In the column generation reformulation,

it takes the form:

M ≤
K∑

k∈S

∑

q∈Qk

λq ≤ M

Lee, in [24], proposes a unified bilinear model that corresponds to the

formulation [F5] with the same additional technical constraints as ours (minimal

width and number of cuts) and whose objective is the waste minimization. This

model allows to generate the patternsin situ (some details on this approach

were given in Section 2.4). He starts with an initial set of patterns generated

heuristically, some of them are fixed, he solves the partial linearized model whose

solution allows to fix optimal patterns. After solving the linearized model, a local

search is used to determine what patterns can be dropped or re-generated.

Our aim in this chapter is to study the extents to which such real-life problems

can be approached with a branch-and-price algorithm that relies on a commercial

mip solver for master and subproblem solutions. In this purpose we use a

prototype generic branch-and-price code,BaPCod that is developed locally.

The code automatically applies the Dantzig-Wolfe decomposition based on

the original formulation and the user indications of what constraints must be

dualized. This “black-box” approach frees the user from having to define the

form taken by a column and its reduced cost and the form of the Lagrangian dual

bound. All further modifications resulting from branching or adding cuts in the

master for instance can be taken into account automaticallytoo.

The interest of such approach is that it is quite flexible in incorporating specific

technical constraints: any additional constraint need just be formulated correctly

and the user must say if the associated constraint goes in themaster or in the

subproblem. The drawback is that computing times can be muchlarger than those

144 The industrial cutting stock problem

of a specialized branch-and-price algorithm that relies onan efficient subproblem

solver. (However, when a specialized subproblem solver is available, it can replace

the call of the commercial MIP solver inBaPCod). In practice, it appears that

the size of the industrial instances that we received is within the reach of the

generic code based on MIP solver. The strategies of implementations that we

experimented within Chapter 4, have been built intoBaPCod and are therefore

available for our study of ICS problems.

5.1 THE CUTTING PROBLEM AT THE PAPER MILL CONDAT

We consider here a specific variant of ICSP such as encountered at the paper mill

Condat (Dordogne, France). The primer objective is to minimize the waste while

a second objective is to minimize the number of different cutting patterns. There

is a tolerance on the production level. Technical constraints on cutting patterns

are minimum cut width and maximum number of cuts (knifes) (1 and 2).

We implemented an hierarchical optimization approach. In afirst model

(ICPM1), we minimize waste under demand satisfaction constraints. Then,

under a second model (ICPM2), we minimize the number of setups under

demand satisfaction and waste bound constraint. We also consider a third model

(ICPM3) to examine the different trade-off between waste minimization and

setup minimization. We minimize waste under demand satisfaction constraints

and a bound on the number of setups. By enumerating the discrete value of the

latter, we can obtain all pareto optimal solutions.

The first model, which we call [ICSPM1], is to solve [M2] associated to the

subproblem [BSP4]. The optimal integer solution corresponds to the minimal

waste solution. The minimum waste value,waste∗ is used as an input for the

5.1 The cutting problem at the paper mill Condat 145

second model.

For the second model, [ICSPM2], the subproblem is formulation [LSP5] aug-

mented with a constraint on the waste (as a single pattern on its own cannot pro-

duce a waste larger than the total authorized waste) and technical constraints on

the minimum cut width of cutting patterns and maximum numberof cuts:

W x0l ml −
n∑

i=1

ni∑

j=1

zijl mijl wi ≤ waste∗

n∑

i=1

ni∑

j=1

wi mij xij ≥ Wmin

n∑

i=1

ni∑

j=1

mij xij ≤ C

The master problem is the linearized version of [M5] with an additional con-

straint on the waste, i.e.,

min
∑

q∈Q

λq

ICSPM2 s.t.
∑

q∈Q

∑

l

∑

j

mijlz
q
ijl λq ≥ di i = 1, . . . , n

∑

q∈Q

∑

l

∑

j

mijlz
q
ijl λq ≤ di i = 1, . . . , n

∑

q∈Q

(W x
q
0l ml −

n∑

i=1

ni∑

j=1

z
q
ijl mijl wi) λq ≤ waste∗

∑

q∈Q

λq ≤ U

λq ∈ {0, 1} ∀q ∈ Q

whereU is a valid upper bound on the number of different cutting patterns. In

practice, the value of this bound is set to the number of different patterns used in

146 The industrial cutting stock problem

the solution given by the first model, (ICPM1).

The third model, [ICSPM3], takes the form:

min
∑

q∈Q

(W x
q
0l ml −

n∑

i=1

ni∑

j=1

z
q
ijl mijl wi) λq

s.t.
∑

q∈Q

∑

l

∑

j

mijlz
q
ijl λq ≥ di i = 1, . . . , n

∑

q∈Q

∑

l

∑

j

mijlz
q
ijl λq ≤ di i = 1, . . . , n

∑

q∈Q

λq ≤ U

λq ∈ {0, 1} ∀q ∈ Q

whereU is the parameter on which we iterate to obtain the curve of pareto optimal

solutions: starting with theU obtained in the solution of model [ICSPM1] whose

waste is equal towaste∗, the valueU is decreased iteratively until there is no

more feasible solution. The two extreme solutions of the pareto optimal curve are

the minimum waste solution involving the smallest number ofdifferent patterns

and the solution with the minimum number of patterns that canbe achieved

(which has typically a waste greater thanwaste∗).

To enforce integrality, we used the branching constraints defined in Section

2.3.7. Moreover, we use a new branching rule, enforcing
∑

q∈Q̂ λq ∈ IN for

Q̂ = {q ∈ Q : x
q
0l = 1}, i.e. the number of columns of multiplicityx0l must be

integer. These branching rules are sufficient to solve our experimental instances

to optimality.

We used the two first models to solve the industrial data coming from Condat.

5.1 The cutting problem at the paper mill Condat 147

They were implemented in BaPCod ([43]) that uses XPressMP for solving the

linear master programs and the subproblems. For the convexity constraint we

compute an upper bound (K) on the number of wide rolls as:

∑

i di wi

W
1.5.

The maximum multiplicity of the cutting patterns is set tomin{maxi di, K}. To

obtain an incumbent solution forICSPM1, we use the first fit decreasing al-

gorithm adapted to this model and the rounding heuristic at adepth of 2, while

ICSPM2 is initialized with the solution ofICSPM1. The masters are initial-

ized with a single artificial column (4.2.2) as we have shown in chapter 4 that it

was the initialization mode that performs better on the variant with tolerance on

production. All branching schemes described in chapter 2 are useful to obtain in-

teger optimal solution. The algorithm stops when the numberof generated nodes

exceeds 10000 or at optimality.

The instances used are real-life problem from the paper factory Condat. Their

size is representative of the hardest instances that arise in practice at Condat: The

average number of orders is8 and there widths vary between 42 and 166 while

the average demand is 37. Each set of data are composed of:

1. the number of items to cut,

2. the minimum and maximum widths of a cutting patterns,

3. the number of knives of the winder, defining the capacity ofa pattern,

4. the width and associated demand in each order type,

5. lower and upper bounds on production for each order.

The names of data files are icspk0h, whereh is the number of the data file

while k = 0, ...3 has the following meaning:

148 The industrial cutting stock problem

k = 1: the instance represents an order form such as that it was provided to logis-

tics.

k = 2: same as above but a tolerance on production was introduced.

k = 3: the aim production levels represent what was really produced by the fac-

tory (as opposed to what was on the order form), a tolerance onproduction

level is set at 2 %.

k = 0: the required production levels represent what was really produced by the

factory.

The optional orders are treated as standard orders with lower bound on production

set to zero.

The numerical results are presented in tables 5.1 and 5.2. Each table reports:

• N. = name of the instance.

• RtLpVal = value of the last restricted LP master problem at the root node .

• RtDB = dual bound at the root node.

• RtInc = incumbent at the root node.

• DB = best dual bound at the end of the branch-and-price procedure.

• Inc = best incumbent at the end of the branch and-price procedure.

• Nodes = number of nodes processed during the branch-and-price procedure.

• TSp = total time spent at solve the subproblems, in seconds.(Note that it

represents the bulk of the computing time. Recall that we usea commer-

cial mip solver. Computing times would be much lower with a customized

solver).

5.1 The cutting problem at the paper mill Condat 149

• TMast = total time spent at solving restricted master problems, in seconds.

• TRh = time spent on the rounding heuristic, in seconds.

• Total = total time in seconds.

The first line corresponds to the solution of the first model while the second line

to the second one.

N. RtLpVal RtDb RtInc DB Inc Nodes TSp TMast TRh Total
0001 1149 1149 1149 1149 1149 1 0.03 0.01 0.00 0.10
0001 2.15 3 4 3 3 31 9.41 0.01 0.00 11.79
1001 1109.8 1109.8 1121 1121 1121 378 2.34 0.22 1.18 6.75
1001 2.11 3 3 3 3 1 0.99 0.00 0.00 1.15
2001 1109.8 1109.8 1121 1121 1121 362 2.25 0.26 1.68 6.94
2001 2.10 3 4 3 3 61 15.25 0.14 0.00 17.89
3001 1132.2 1132.2 1149 1147 1147 403 2.35 0.37 1.04 7.02
3001 2.10 3 3 3 3 1 1.11 0.01 0.00 1.28

0003 25.72 25.72 123.5 123.5 123.5 413 8.85 0.62 5.92 21.14
0003 2.68 3 6 4 4 403 28.79 0.67 0.00 44.08
1003 9.79 9.79 187.5 57.5 57.5 448 15.29 0.82 7.67 30.38
1003 2.38 3 4 4 4 27 7.63 0.03 0.00 8.74
2003 5.5 5.5 27.5 27.5 27.5 82 7.91 0.09 7.60 11.73
2003 2.75 3 4 4 4 3 1.79 0.00 0.00 2.03
3003 20.58 20.58 111 33.5 33.5 55 2.29 0.10 2.24 4.43
3003 2.93 3 5 5 5 7 3.46 0.00 0.00 3.90

0004 25.3 25.3 46 46 46 5393 245.06 7.81 20.48 579.38
0004 3.21 4 8 5 5 41 15.39 0.11 0.00 17.84
1004 120.77 120.77 233 129 129 526 124.53 0.83 65.63 156.38
1004 3.31 4 7 5 5 491 337.59 1.04 0.00 374.61
2004 27.54 27.54 54 30 30 757 151.24 1.11 55.64 192.35
2004 3.52 4 8 5 5 255 166.58 0.70 0.00 183.95
3004 23.8 23.8 31 28 28 368 43.06 0.50 18.95 58.54
3004 3.77 4 7 5 5 28 18.66 0.05 0.00 20.56

Table 5.1: B&P - numerical results (1/2)

N. RtLpVal RtDb RtInc DB Inc Nodes TSp TMast TRh Total
0005 274.39 274.39 314 314 314 2373 218.50 3.81 17.68 415.49
0005 3.66 4 5 5 5 97 78.90 0.17 0.00 86.07
3005 248.54 248.54 260 252 252 79 9.53 0.21 4.90 13.27
3005 3.82 4 6 5 5 154 78.42 0.23 0.00 87.49

0006 25 25 69 69 69 252 9.27 0.42 3.58 17.74
0006 2.89 3 5 3 3 31 8.85 0.09 0.00 10.51
3006 23.33 23.33 110 25 25 102 9.63 0.31 8.79 15.24
3006 2.63 3 4 4 4 13 5.85 0.02 0.00 6.59

0008 0 0 0 0 0 31 1.69 0.00 1.00 2.07
0008 2.91 3 9 5 5 1558 7165.36 3.11 0.00 7312.82

0009 1444 1444 1444 1444 1444 1 0.85 0.00 0.00 1.26
0009 5.44 6 7 6 6 33 189.36 0.13 0.00 199.29

0010 20 20 20 20 20 1 0.01 0.00 0.00 0.04
0010 1.39 2 5 2 2 21 2.56 0.00 0.00 3.15
1010 19.8 19.8 20 20 20 2856 7.98 2.39 0.38 64.26
1010 1.39 2 5 2 2 21 2.88 0.02 0.00 3.63
2010 19.8 19.8 20 20 20 3158 8.51 2.56 1.68 71.99
2010 1.39 2 5 2 2 21 2.71 0.04 0.00 3.40
3010 19.4 19.4 20 20 20 6238 23.10 6.42 2.40 279.16
3010 1.42 2 3 2 2 23 2.78 0.02 0.00 3.45

0011 (*) 187.88 187.88 325 196.171 325 9799 3112.70 16.54 47.30 5143.33
0011 3.28 4 8 4 4 4996 3441.15 20.14 0.00 6275.81
2011 40.5 40.5 41 41 41 48 55.14 0.09 17.62 57.83
2011 2.76 3 8 4 4 1093 2290.48 2.68 0.00 2440.30
3011 (*) 175.47 175.47 200 180.04 194 9939 1246.91 11.61 24.90 2516.04
3011 2.74 3 9 5 5 5000 6020.21 13.65 0.00 7742.08

Table 5.2: B&P - numerical results (2/2)
(*) refers to instances that were not solved to optimality (number of limited nodes exceeded).

152 The industrial cutting stock problem

In Table 5.3, we give compare the solutions used in the factory Condat to

ours. In the columnwastethe number between bracket is the percentage of waste

over the production, and in the columnnumber of setupswe give the number of

different cutting patterns over the total number of wide rolls used. The symbol

* referred to optimal solutions, whileUB is the lowest upper bound for the

instances where we do not have the optimal solution. We only have the factory

solution value for instance of type1 and0. For some instances, marked with(+),

the factory solution is not feasible (hence they can have a waste lower than our

feasible optimal solution).

For some instances in table 5.2 we have not the order form provided to

logistics, so we used only what was really produced as an input. We note that

most of these industrial instances were solved to optimality, in terms of waste

and number of different cutting patterns. ModelICPM1 take often more time

thanICPM2 because in many cases, the branch-and-price tree grows larger for

ICPM1. However the subproblems are harder to solve forICPM2, thus times

per node are more important for this model.

A more specialized code should have better performance. On one hand the

columns generated for solving the first model could be used inthe second model

(this can be implemented by redefining the associated subproblem solution). In-

deed, we note that on most instances the number of distinct cutting patterns given

by the optimal solution of the first model is near (sometimes equal) to its optimal

value, a lot of time is spent in generating columns that were already used in the

solution ofICPM1. Moreover, the computing time could be improved devel-

oping a specific solver (as a dynamic program). For the subproblem associated

to ICPM2 we could iterate on the multiplicityx0 of a cutting pattern: for each

valuex0 = 1, . . . , xmax
0 we determine the reduced cost of the associated cutting

5.1 The cutting problem at the paper mill Condat 153

instance waste number of setups
factory B&P factory B&P

1001 1149 (4.71 %) 1121 * (4.68 %) 3 / 49 3 */ 48
2001 1121 * 3 * / 48
3001 1147 *(4.70 %) 3 * / 49
0001 1149 1149 * 3 / 49 3 * / 49

1003 123.5 57.5 * 4 / 15 4* / 13
2003 27.5 * 4 */ 13
3003 33.5 * (0.47 %) 5* / 16
0003 123.5 (1.87 %) 123.5 * 4 / 15 4* / 15

1004 46 (+) 129 * 5 / 18 5 * / 18
2004 30 * 5 * / 18
3004 28 * 5 * / 19
0004 46 (0.74 %) 46 * 5 / 18 5 * / 18

3005 252 * (1.37 %) 5 * / 37
0005 314 (1.70 %) 314 * 5 / 37 5 * / 37

3006 25 * (0.95 %) 4 */ 6
0006 69 69 * 3 / 6 3 * / 6

0008 345 0 * 7 / 32 5 * / 32

0009 1444 1444 * 6 / 98 6 * / 98

1010 90 20 * 2 / 9 2*/ 9
2010 20 * 2*/ 9
3010 20 * 2* / 10
0010 90 (2.28 %) 20 * (0.0050 %) 2 / 9 2* / 9

2011 41 * 5 / 27 4* / 33
3011 194 (UB) 5* / 28
0011 325 (2.40 %) 325 (UB) 5 / 27 4* / 27

Table 5.3: Comparisons with factory solutions

154 The industrial cutting stock problem

pattern by solving a standard knapsack problem.

5.2 An application with minimal run length 155

5.2 AN APPLICATION WITH MINIMAL RUN LENGTH

The application described here comes from another industrial problem, where the

technical constraints are different from the above models.We still consider a tol-

erance on production, but now the only technical constraintis a minimum number

of runs set toN = 2. The model used to solve this application is [ICPM3] asso-

ciated to the subproblem formulation [LSP5] to which we add aconstraint on the

minimal multiplicity of a cutting pattern:

∑

l

ml x0l ≥ N

Numerical tests were done on two instances provided by Greycon with 17

items. Their characteristics are summarized in the following table:

W wi di di

inst.1 3200 [400, 870] 32 36

inst.2 1344 [352, 722] 12 11

We obtained an estimate of the minimal number of setups required by solving

the model [ICSPM1], then we decreased its value while minimizing the waste.

The pareto curve associated to the first instance is represented in figure 5.1. The

optimal waste, whose value is0, is obtained with at most8 cutting patterns, while

when the number of distinct cutting patterns is restricted to be at most7, 6, 5 or 4

the waste increased to the value220, and there is no feasible solution when this

number takes a value inferior to3.

The solutions are represented in figures 5.2 to 5.4. The two first figures (5.2

and 5.2) are associated to the first instance. Figure 5.2 corresponds to the optimal

156 The industrial cutting stock problem

waste

0
4 8

220

number of distinct patterns

Figure 5.1: pareto optimality curve for instance 1

waste solution while 5.2 corresponds to the solution with the minimum number of

setups. Figure 5.4 represents a solution for the second instance. This solution was

the best compromise that can be obtained in terms of number ofsetups and waste.

The second instance was harder to solve because of the items widths that are large

relative to the wide roll width.

5.2 An application with minimal run length 157

Total waste : 0
Number of rolls : 119
Number of distinct cutting patterns : 8

810 700 670 600 4203 x waste : 0

700 670 590 420 420 4004 x waste : 0

800 800 600 500 5003 x waste : 0

810 780 600 530 4809 x waste : 0

750 600 500 500 450 40022 x waste : 0

870 700 590 590 45015 x waste : 0

810 800 800 79026 x waste : 0

870 750 550 550 48037 x waste : 0

Figure 5.2: instance 1 - optimal waste

Total waste : 220
Number of rolls : 117
Number of distinct cutting patterns : 4

800 780 670 530 4209 x waste : 0

790 750 700 550 40022 x waste : 10

810 750 600 590 45036 x waste : 0

870 800 550 500 48050 x waste : 0

Figure 5.3: instance 1 - optimal number of distinct cutting patterns

158 The industrial cutting stock problem

Total waste : 5090
Number of rolls : 88
Number of distinct cutting patterns : 17

576 4002 x waste : 368

692 60814 x waste : 44

576 400 3525 x waste : 16

488 488 3524 x waste : 16

432 400 4883 x waste : 24

576 6088 x waste : 160

560 432 3524 x waste : 0

692 5726 x waste : 80

722 5728 x waste : 50

560 5604 x waste : 224

722 5685 x waste : 54

688 6084 x waste : 48

672 6728 x waste : 0

420 572 3522 x waste : 0

422 352 5682 x waste : 2

432 432 4802 x waste : 0

656 6887 x waste : 0

Figure 5.4: instance 2

Conclusion

Cette thèse donne une revue compréhensive des différentes formulations et

approches de résolution associées pour le problème de découpe (CSP) et ses

variantes. Les relations théoriques d’équivalence ou de dominance qui existent

entre ces formulations ont été établies, ainsi que des comparaisons sur des

questions pratiques telles que la symétrie dans la représentation des solutions

et les schémas de branchement qu’elles induisent. Nous noussommes alors

concentrés sur l’algorithme de “branch-and-price”. Nous avons développé des

algorithmes exacts spécialisés pour les sous-problèmes modifiés de sac à dos qui

interviennent au cours du parcours de l’arbre de “branch-and-price”. Notre étude

numérique complète des stratégies d’implémentation a montré quelles stratégies

ont un réel impact sur l’initialisation, la stabilisation,les branchements, et dans

l’obtention de solutions primales. Enfin, nous avons démontré qu’en utilisant

une implémentation basique des stratégies importantes, onpeut résoudre des

problèmes industriels.

Le chapitre 1 replace le problème de découpe 1D dans son contexte et donne

la formulation de contraintes et d’objectifs additionnelsqui peuvent apparaître

dans les variantes du problème. Des reformulations sont présentées au chapitre

2. Nous les présentons comme résultant d’un changement de variable dans

le sous-problème de sac à dos. Les problèmes de découpe ont typiquement

différentes solutions optimales. De plus, certaines formulations admettent

différentes représentations d’une solution donnée. Notrediscussion montre

160 Conclusion

que le modèle de Gilmore-Gomory évite cette dernière symétrie, alors que ce

n’est pas le cas de la formulation en terme de flots. La formulation compacte

de Kantorovich est encore plus mauvaise (car il y a un nombre exponentiel de

permutations d’index donnant la même solution). Le chapitre 2 classe également

les diverses formulations en classes d’équivalence en termes de leurs solutions

LP et IP.

Nous avons présenté, en particulier, des formulations originales avec échanges

intégrés. Nous montrons qu’elles ont un impact sur la restriction des solutions

duales (de la même façon que l’inclusion de colonnes artificielles implique des

contraintes duales) et par conséquent elles ont un effet de stabilisation sur une

approche de génération de colonnes. Nous présentons le concept de vecteurs

d’échanges et nous avons généralisé le travail de Carvalho sur les coupes duales.

Cette étude théorique est achevée par des tests numériques.Nous avons montré

au chapitre 4 que bien que la théorie prévoie une borne duale plus faible pour

certaines de ces reformulations avec échanges, elles semblent en fait donner la

même borne duale en pratique. Le meilleur effet de stabilisation est obtenu avec

la formulation avec variables d’échanges de flot. Elle semble être le meilleur

compromis en termes de complexité de la structure d’échange.

Les comparaisons numériques des stratégies d’implémentations du “branch-

and-price” du chapitre 4 sont menées sur les variantes du CSPafin d’identifier des

stratégies robustes. (Les travaux précédents présentés dans la littérature portent

seulement sur les problèmes de Bin-Packing (BPP) ou de CSP standard). On

observe que le BPP pur souffre typiquement davantage de la dégénérescence que

le CSP standard, lui-même étant plus dégénéré que la variante avec tolérance

sur la production. En effet, les exemples de BPP tendent à impliquer un grand

nombre d’articles dont les largeurs peuvent être proches les unes des autres (ils

Conclusion 161

sont bien plus dégénérés si des articles identiques ne sont pas agrégés). Alors

les techniques de stabilisation ont un plus grand impact. D’autre part, quand on

permet la tolérance sur la production, l’objectif est de mesurer la perte et par

conséquent il y a peu de solutions de même coût.

Nos résultats montrent qu’une initialisation appropriée aun impact signifi-

catif sur le nombre d’itérations de la procédure de génération de colonnes. La

meilleure stratégie est l’initialisation avec les colonnes artificielles locales, si on

a une bonne évaluation de la solution duale à priori (ce qui est le cas pour BPP et

CSP). Les colonnes d’une solution heuristique gloutonne aident aussi. En termes

de techniques de stabilisation, on peut noter que l’utilisation des contraintes de

recouvrement au lieu des contraintes de partitionnement est déjà une forme de

stabilisation. Nos comparaisons montrent que le boxstep dynamique n’aide pas,

étant donnée notre bonne initialisation. Lisser le vecteurdual avec celui obtenu

à l’itération précédente (Neame) fonctionne mieux que lisser avec le vecteur

dual donnant la meilleur borne duale (Wentges). La méthode des faisceaux est

efficace en terme de réduction du nombre d’itérations (particulièrement sur les

problèmes les plus dégénérés comme les triplets du BPP) ; cependant, elle est

plus chère en temps pour résoudre les sous-problèmes. On note que le facteur de

vitesse (ou le nombre d’itérations) rapporté dans la littérature sur des techniques

de stabilisation est obtenu en le comparant à une approche faible. Lorsque ces

techniques sont appliquées avec une bonne initialisation leur impact est moins

important.

Notre expérimentation de différentes stratégies de génération de colonnes ne

fait pas clairement apparaître de stratégie gagnante : comme prévu la solution

heuristique du sous-problème donne moins de temps par itération mais plus

d’itérations; on observe l’effet inverse en générant plusieurs colonnes par

162 Conclusion

itération avec notre stratégie de diversification. Les heuristiques primales basées

sur une approche de génération de colonnes fonctionnent bien, en particulier

l’heuristique d’arrondi qui donne des solutions presque optimales (optimales

dans presque tous les cas).

Des solveurs pour résoudre le sous-problème ont été développés au chapitre

3. Nous avons montré comment les résultats classiques pour le problème de

sac à dos peuvent être généralisés au problème de sac à dos multi-classe avec

des “setups”. Nous donnons des bornes supérieures qui généralisent celles

de Dantzig. Nous avons montré que l’algorithme de “branch-and-bound”

classique de Horowith et Sahni se prolonge à ces variantes etnous fournissons

des algorithmes de programmation dynamique. La contribution principale

de ce chapitre est un schéma d’énumération intelligent pourl’algorithme de

“branch-and-bound” spécialisé. Elle exploite les caractéristiques des solutions

optimales pour le modèle. On doit étendre l’approche standard pour avoir un

schéma d’énumération qui est glouton en terme de bornes duales et primales.

L’intérêt de considérer un modèle multi-classe 0-1 plutôt que la transformation 0-1

standard ou un modèle de sac à dos en nombre entier ont été développés dans [42].

Dans le chapitre 5, nous examinons des contraintes et objectifs supplémen-

taires qui interviennent dans les problèmes de découpe réels : nous avons montré

comment les formuler et nous avons fourni des modèles, bi-critère pour une op-

timisation hiérarchique, ou pour donner toutes les solutions pareto optimales. Ce

chapitre prouve qu’un code générique de “branch-and-price”, basé simplement

sur un solveur MIP commercial pour traiter les formulationsmathématiques, peut

résoudre des exemples industriels. L’intérêt de cette approche est sa flexibilité

pour manipuler de nouvelles contraintes spécifiques. Si on s’intéresse alors au

développement d’un solveur spécifique pour le sous-problème, on peut facilement

Conclusion 163

améliorer les temps calcul.

164 Conclusion

Conclusion

This thesis gives a comprehensive view of the scope of formulations and related

solution approaches for the cutting stock problem (CSP) andits variants. We

have established theoretically the relative strength of each formulation and

compared them on practical issues such as the symmetry in therepresentation of

solutions and the branching scheme to which they lead. We then focused on the

branch-and-price algorithm. We developed specialized exact algorithms for the

modified knapsack subproblems that arise in the course of thebranch-and-price

tree. Our thorough numerical testing of implementation strategies has showed

what strategies have a real impact on initialization, stabilization, branching,

and in producing primal solutions. Finally, we demonstrated that using a basic

implementation of the important strategies, one can solve industrial problems.

Chapter 1 places the one-dimensional cutting stock problemin context and

provides formulation of additional constraints and objectives that may arise

in variants of the problem. Reformulations are presented inChapter 2. We

take the view of presenting them as arising from a variable change in the

knapsack subproblem. Cutting stock problems typically admit different optimal

solutions. What is more, some formulations allow for different representations

of a given solution. Our discussion showed that the Gilmore-Gomory model

avoids the latter symmetry, while the arc flow formulation does not. The compact

formulation of Kantorovich is even worse (as there is an exponential number of

index permutations leading to the same solution). Chapter 2also sorts the various

166 Conclusion

formulations into equivalent classes in terms of their LP and IP solutions. This

classification builds on known results and completes them with new results.

In particular, we introduced original formulations with built-in exchanges.

They are shown to have an impact in terms of constraining dualsolutions (in

the same way as including artificial columns implies dual constraints) and hence

they have a stabilization effect on a column generation approach. We introduce

the concept of exchange vectors and generalized the work of Carvalho on dual

cuts. This theoretical study is completed by numerical tests. We showed in

Chapter 4 that although theory predicts a weaker dual bound for some of these

reformulations with exchanges, they seem to lead to the samedual bound

in practice. The best stabilization effect is obtained withthe exchange-flow

formulation which seems to strike the right trade-off in terms of the complexity

of the exchange structure.

Chapter 4’s numerical comparisons of implementations strategies for branch-

and-price are carried across the CSP variants to identify robust strategies.

(Previous works reported in the literature concerned only Bin Packing Problems

(BPP) or standard CSP). It is to be observed that the pure BPP typically suffers

more from degeneracy than the standard CSP, itself being more degenerate than

the variant with tolerance on production. Indeed, BPP instances tend to involve a

large number of items whose width can be close to another (they are even more

degenerate if identical items are not aggregated). Then stabilization techniques

have a larger impact. On the other hand, when tolerance on production is allowed,

the objective must be to measure waste and hence there are fewsolutions with the

same cost.

Our results show that proper initialization has a significant impact on the

Conclusion 167

number of iterations of the column generation procedure. The best strategy is the

initialization with local artificial columns, provided onehas a good estimation of

the dual solution a priori (which is the case for BPP and CSP).Columns from

a greedy heuristic solution do help too. In terms of stabilization techniques, let

us first note that using covering constraints instead of partitioning is already a

stabilization. Our comparisons show that dynamic boxstep does not help given

our good initialization. Smoothing the dual vector with those obtained at the

previous iteration (Neame) works better than the smoothingwith the dual vector

giving the best dual bound (Wentges). The Bundle method is effective in reducing

the number of iterations (specially on the most degenerate problems as the BPP

triplet problems); however, it is more expensive in solvingthe subproblems.

It is to be noticed that the speeding factor (or number of iterations) reported

in the literature on stabilization techniques are obtainedby comparing a poor

approach. Once these techniques are applied beyond a good initialization and/or

in combination, their impact is less important.

Our experimentation with different column generation strategies do not

exhibit a clear winner strategy: as expected solving the subproblem heuristically

leads to less time per iteration but more iterations; the opposite effect is observed

when generating several columns per iteration with our diversification strategy.

The primal heuristics based on a column generation approachare shown to

perform well, in particular the rounding heuristic that gives close to optimal

solutions (optimal in almost all cases).

The subproblem solvers were developed in Chapter 3. There, we have shown

the extend to which classical results for the knapsack problem can be generalized

to the multiple-class knapsack problem with setups. We gaveupper bounds

that generalized that of Dantzig. We showed that the classicbranch-and-bound

168 Conclusion

algorithm of Horowith and Sahni extends to these variants and we provided

dynamic programming algorithms. The main contribution of this chapter is an

intelligent enumeration scheme for the specialized branch-and-bound algorithm.

It exploits the characterization of optimal solutions for the model. One had to

stretch the standard approach to have an enumeration schemethat is greedy for

both primal and dual bounds. Another contribution of this chapter is to reset the

boundary of knapsack problem variants that admit a greedy LPsolution: after

multiple choice and variant with class bounds, we now extendthis to the case

with setups. The interest of considering a multiple class 0-1 model rather than the

standard 0-1 transformation or an integer knapsack model was developed in [42].

In Chapter 5, we offered a review of extra constraints and objectives that arise

in real-life cutting stock problems: we showed how to formulate them and we pro-

vided bi-criteria models for a hierarchical optimization or to generate all pareto

optimal solutions. This chapter shows that a generic branch-and-price code, that

simply relies on a commercial MIP solver for dealing with themathematical pro-

gramming formulation, is able to handle industrial instances. The interest of this

approach is its flexibility in handling new specific constraints. Then, if one cares

to develop a specific subproblem solver, one can easily improve on the computing

times.

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory,

Algorithms, and Applications.Prentice Hall, 1993.

[2] J.E. Beasley. Or-library: distributing test problems by electronic mail.

Journal of the Operational Research Society, 41(11):1069–1072, 1990.

http://www.brunel.ac.uk/depts/ma/research/jeb/info.html.

[3] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-

dimensional cutting stock problem with multiple stock lengths. European

Journal of Operational Research, 141(2):274–294, 2002.

[4] G. Belov and G. Scheithauer. The Number of Setups (Different Patterns) in

One-Dimensional Stock Cutting. Preprint MATH-NM-15-2003, TU Dres-

den, 2003.

[5] H. Ben Amor. Résolution du problème de découpe par générations de

colonnes. Master’s thesis, Ecole polytechnique de Montréal, Canada, 1997.

[6] O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, N. Perrot, and F. Van-

derbeck. Comparison of Bundle and Classical Column Generation. Rapport

de recherche INRIA, 5453, 2005.

[7] E. D. Chajakis and M. Guignard. Exact Algorithms for the setup knapsack

problem.INFOR, 32(3):124–142, 1994.

[8] M. H. Correira, J.F. Oliveira, and J. S. Ferreira. Reel and sheet cutting at a

paper mill.Computers and Operations Research, 31:1223–1243, 2004.

[9] G.B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs.

Operations Research, 8:101–111, 1960.

170 Bibliography

[10] G. Desaulniers, J. Desrosiers, and M.M. Solomon.Column Generation,

chapter 1. Springer, 2005.

[11] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column

generation.Discrete Mathematics, 194(1-3):229–237, 1999.

[12] H. Dyckhoff. A typology of cutting and packing problems. European Jour-

nal of Operational Research, 44:145–159, 1990.

[13] M.L. Fisher. The Lagrangian relaxation method for solving integer program-

ming problem.Management Science, 27(1):1–18, 1981.

[14] P. C. Gilmore and R. E. Gomory. A linear programming approach to the

cutting-stock problem.Operations Research, 9:849–859, 1961.

[15] J.-B. Hiriart-Urruty and C. Lemaréchal.Convex Analysis and Minimization

Algorithms. Springer Verlag, Heidelberg, 1993.

[16] E. Horowitz and S. Sahni. Computing partitions with applications to the

knapsack problem.Journal of ACM, 21:277–292, 1974.

[17] E.L. Johnson and M.W. Padberg. A Note on the Knapsack Problem With

Special Ordered Sets.Operations Research Letters, 1(1):18–22, 1981.

[18] M.P. Johnson, C. Rennick, and E. Zak. Skiving addition to the cutting stock

problem in the paper industry.SIAM Review, 39(3):472–483, 1997.

[19] L. V. Kantorovich. Mathematical methods of organazingand planning pro-

duction.Management Science, 6:363–422, 1960.

[20] J.E. Kelley. The cutting plane method for solving convex programs.J. Soc.

Indust. Appl. Math., 8:703–712, 1960.

[21] K.C. Kiwiel. An aggregate subgradient method for nonsmooth convex min-

imization. Mathematical Programming, 27:320–341, 1983.

[22] K.C. Kiwiel. A dual method for certain positive semidefinite quadratic pro-

gramming problems.SIAM Journal on Scientific and Statistical Computing,

10(1):175–186, 1989.

Bibliography 171

[23] K.C. Kiwiel. A Cholesky dual method for proximal piecewise linear pro-

gramming.Numerische Mathematik, 68:325–340, 1994.

[24] J. Lee. InSituColumn Generation for a Cutting-Stock Problem. Technical

report, IBM Research Report, 2005.

[25] C. Lemaréchal. An algorithm for minimizing convex functions. Information

Processing ’74, pages 552–556, 1974.

[26] C. Lemaréchal. Nonsmooth optimization and descent methods. Technical

report, IIASA, 1978.

[27] R. E. Marsten, W.W. Hogan, and J. W. Blankenship. The boxstep method

for large-scale optimization.Operations Research, 23(3):389–405, 1975.

[28] S. Martello and P. Toth.Knapsack problems. John Wiley & Sons, 1990.

[29] R. K. Martin. Generating Alternative Mixed-Integer Programming Models

Using Variable Redefinition.Operations Research, 35(6):820–831, 1987.

[30] P. J. Neame.Nonsmooth Dual Methods in Integer Programming. PhD thesis,

University of Melbourne, March 1999.

[31] Dash Optimization. Xpress-MP: User guide and Reference Manual, Release

12. Technical report, http://www.dashoptimization.com,2001.

[32] N. Perrot and F. Vanderbeck. Knapsack Problems with Setups. Work-

ing Paper no U-04.03, Laboratoire de Mathématiques Appliquées Bordeaux

(MAB), Université Bordeaux 1., 2004.

[33] G. Scheithauer, J. Terno, A. Müller, and G. Belov. Solving one-dimensional

cutting stock problems exactly with a cutting plane algorithm. JORS,

52:1390–1401, 2001.

[34] H. Sural, L. N. Van Wassenhave, and C. N. Potts. The bounded knapsack

problem with setups. Technical report, INSEAD working paper series - 97-

71-TM, 1997.

172 Bibliography

[35] J.M. Valério de Carvalho. Exact solution of Cutting Stock Problems us-

ing column generation and branch-and-bound.International Transactions

in Operational Research, 5(1):35–44, 1998.

[36] J.M. Valério de Carvalho. Exact solution of bin-packing problems using

column generation and branch-and-bound.Annals of Operation Research,

86:629–659, 1999.

[37] J.M. Valério de Carvalho. Using extra dual cuts to accelerate convergence in

column generation. To appear in INFORMS Journal on Computing., 2000.

[38] J.M. Valério de Carvalho. LP models for bin packing and cutting stock

problems.European Journal Of Operational Research, 141:253–273, 2002.

[39] Pamela H. Vance. Branch-and-Price Algorithms for the One-Dimensional

Cutting Stock Problem. Computational Optimization and Applications,

9:211–228, 1998.

[40] F. Vanderbeck. Computational study of a column generation algorithm for

bin packing and cutting stock problems.Math. Program., A(86):565–594,

July 1999.

[41] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming

and ways to perform branching in a branch-and-price algorithm. Operations

Research, 48(1):111–128, 2000.

[42] F. Vanderbeck. Extending Dantzig’s Bound to the Bounded Multi-Class

Binary Knapsack Problem.Mathematical Programming, 94(1):125–136,

2002.

[43] F. Vanderbeck. Dantzig-wolfe re-formulation or how toexploit simultane-

aously original formulation and column generation re-formulation. Working

paper U-03.24, Univ. Bordeaux 1, Talence, France, 2003.

[44] P. Wentges. Weighted Dantzig-Wolfe decomposition forlinear mixed-

integer programming.Int. Trans. Oper. Res., 4(2):151–162, 1997.

[45] G. Wäscher and T. Gau. Heuristics for the one-dimensional cutting stock

problem: A computational study.OR Spektrum, 18:131–144, 1996.

Bibliography 173

[46] G. Wäscher, H. Haubne, and H. Schumann. An improved Typology for

C&P Problems. Working Paper No. 24/2004 , Faculty of Economics and

Management, Otto von Guericke University Magdeburg., 2004.

