N
N

N

HAL

open science

Integer programming column generation strategies for
the cutting stock problem and its variants

Nancy Perrot

» To cite this version:

Nancy Perrot. Integer programming column generation strategies for the cutting stock problem and
its variants. Mathematics [math]|. Université Sciences et Technologies - Bordeaux I, 2005. English.

NNT: . tel-00011657

HAL Id: tel-00011657
https://theses.hal.science/tel-00011657
Submitted on 21 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-00011657
https://hal.archives-ouvertes.fr

THESE

présentée a

LUNIVERSITE BORDEAUX |

ECOLE DOCTORALE DE MATHEMATIQUES ET INFORMATIQUE
par Nancy PERROT

POUR OBTENIR LE GRADE DE
DOCTEUR

SPECIALITE : MATHEMATIQUES APPLIQUEES
*kkkkkkkkkkkkkhkkkkhikkk

INTEGER PROGRAMMING COLUMN GENERATION STRATEGIES
FOR THE CUTTING STOCK PROBLEM AND ITS VARIANTS

kkkkkkkkkkkkkkkkkkkkk

Soutenue le : 29 Juin 2005

Aprés avis de :

MM. Alberto CAPRARA Professeur, Université de Bologne (Itplie Rapporteurs
Jacques DESROSIERS Professeur, Ecole HEC de Montréal ¢&gana

Devant la commission d’examen formée de :

MM. Paul MOREL Professeur, Université Bordeaux 1 Président
Jacques DESROSIERS Professeur, Ecole HEC de Montréald@pnExaminateurs
Denis JAUBERT Industriel, Greycon (Angleterre)
Brigitte JAUMARD Professeur, Université de Montréal (Cdag

Claude LEMARECHAL Directeur de Recherche, INRIA Rhone-édp
Francois VANDERBECK Professeur, Université Bordeaux 1

Remerciements

Je tiens a remercier vivement mon directeur de these, FsaNaaderbeck, qui
est a l'origine de cette these. Il a su manifester tout au tnge travail intérét et
confiance.

Je remercie les professeurs Jacques Desrosiers et Albepi@ar@ d'avoir
accepté d'étre rapporteurs de ce travail, ainsi que pous lsuggestions et
conseils.

Je suis particulierement reconnaissante a Claude Lensrmem’avoir per-
mis d’étendre mon domaine de recherche et de m’'avoir ouesriogportunités
intéressantes tout au long de ma these. Il a accepté d’étrdraale mon jury de
thése, je I'en remercie. Je remercie également I'ensemgderembres du jury
de thése et en particulier Paul Morel qui a présidé ce jury.

Un immense merci a Olivier Briant pour ces remarques cocisves, sa
disponibilité et ses connaisssances dans de nombreux desnaians oublier sa
précieuse amitié et son soutien permanent. Merci égaleinergs collégues qui
m’ont permis de travailler dans une ambiance excellentpaeticulier a Magalie
et Marie pour leur présence, leur amitié et leurs encouragésn Enfin, je salue
chaleureusement mes proches, et tout particulieremenpanests qui m’ont tou-
jours fait confiance et soutenue, et auxquels je dédie caikrav

Remerciements

Contents

Introduction

1 The cutting stock problem and its variants
1.1 Standard cutting stock and bin packing problems
1.2 Avariant with intervals on production
1.3 The multiple width cutting stock problem
1.4 Avariant with technical restrictions
1.5 The minimizationofset-ups
1.6 Reviewoftheliterature

2 Reformulations and column generation
2.1 Formulations for the knapsack subproblem
2.2 Explicitreformulations
2.3 Implicit reformulations and column generation .
2.3.1 The column generation procedure
2.3.2 The column generation subproblem

2.3.3 TheLagrangiandualbound

2.3.4 Terminationcriteria

2.3.5 Thedualmasterprogram
2.3.6 Strengthofthedualbound
2.3.7 Branchingschemes

2.4 Other approaches and formulations
2.5 Master formulations with exchanges built-in

2.5.1 Aggregating covering constraints

2.5.2 Introducing exchange variables

2.5.3 Usingexchangevectors
2.5.4 Exchanges in the arc flow formulation

2.6 Comparing the formulations for the standard cuttinglsto. . . .
2.7 Reformulations of the variant with intervals on prodoict
2.8 Reformulations of the multiple widths cutting stockipiem . . .
2.9 Reformulations of the variant with technical restoos

6 Contents

2.10 Reformulation of the minimizationofsetups 80
3 Knapsack sub-problems 87
3.1 Characterizations of optimal solutions for the muéiplass bi-
nary knapsack withsetups 91

3.2 Upper Bound of the multiple-class binary knapsack watiugs . . 93
3.3 A dynamic program for the multiple-class binary knasath

SEtUPS 97
3.4 Primal heuristics for the multiple-class binary knaghsaith setups 99
3.5 Branch-and-Bound for the multiple-class binary knagsaith

SEUPS . . . o e e 101
4 Comparing IP Column Generation strategies 105
4.1 Framework for computational tests: data sets and tdlbesalts . 106
4.2 Initializations 108
4.2.1 Initialization with a heuristic solution 108
4.2.2 Initialization with artificial columns 109
4.2.3 Comparativetests 113
4.3 Stabilizationmethods oL 116
4.3.1 The Dynamic Boxstep Method 117
4.3.2 TheBundlemethod. 119
4.3.3 SmoothingMethods 119
4.3.4 Comparativetests 121
4.4 Formulationswithexchanges 125
441 Comparativetests. 126
4.5 Strategies for column generation 291
4.6 Primalheuristics o 132
4.6.1 Greedyalgorithm 132
4.6.2 Roundingheuristic, 133
4.6.3 Comparativetests 133
47 Branching 136
4.7.1 Numericaltests 137
5 The industrial cutting stock problem 141
5.1 The cutting problem at the paper millCondat 144
5.2 An application with minimalrunlength 58
Conclusion 159

Bibliography 169

Abstract

This thesis gives a comprehensive view of the scope of fatiarls and related
solution approaches for the cutting stock problem (CSP)itndariants. The
focus is on branch-and-price approaches. Specializeditlgs are developed
for knapsack subproblems that arise in the course of theidign Thorough

numerical tests are used to identify good strategies faaliaation, stabilization,

branching, and producing primal solutions. Industriaiaaits of the problem are
shown to be tractable for a branch-and-price approach.

The models studied are the following: the standard cuttiogksand bin pack-
ing problems, a variant in which the production levels lia@iprescribed interval
of tolerance, the multiple width cutting stock problem iniahstock pieces are of
different size, a variant with additional technical coastts that arise typically in
industrial applications, and a variant where the numbersgirtt cutting patterns
used is minimized given a waste threshold.

First, we consider various formulation of the Cutting Stétaloblem (CSP):
different models of the knapsack subproblem can be exploiteeformulate the
CSP. Moreover, we introduce different ways of modeling l@cahanges in the
solution (primal exchanges imply dual constraints thabifitee the column gen-
eration procedure). Some models are shown to be valid inpgggramming (IP)
reformulations while others define relaxations. The duainas defined by their
LP solution are compared theoretically.

Then, we study the variants of the knapsack subproblem tisatia a column
generation approach to the CSP. The branching constraset in the branch-
and-price algorithm can result in class bound and setup @o#ie need for a
binary decomposition in the subproblem. We show how stahkizapsack solvers
(dynamic programming approach and specialized branckkandd algorithm)
can be extended to these variants of the knapsack problem.

8 Abstract

Next, we discuss some branch-and-price implementatiategfies. We com-
pare different modes of initialization of the column genera procedure, we
present our numerical study of various stabilization styegs to accelerate con-
vergence of the procedure. We compare in particular the ¢inplathe various
ways of introducing local exchanges in our primal model atitepstabilization
techniques such as dual solution smoothing techniqueshalipation from a sta-
bility center that prevent the fluctuation of the dual valegb To generate the
columns we study different strategies based on the use oistiewcolumns or on
a multiple generation of columns. We also consider the u$eofistics based on
column generation to find a primal bound. These are comparacttassic con-
structive heuristic. Then, we compare the different brarghules that are used
in the branch-and-price procedure.

Finally, we present numerical results on two industrialleagions that cor-
respond to the variant with technical restrictions for vihwee minimize first the
waste and then the number of setups.

Introduction

Le probleme de découpe consiste a découper des pieces te tpdke dans
de larges rouleaux, de facon a satisfaire une demande @ssacchacune
de ces pieces. Lobjectif est principalement de réduire @imum la perte
correspondant a la partie inutilisée de ces rouleaux. Uhgigo est donnée
par un ensemble de plans de découpe réalisables, c’est aatiréacons de
couper les petites pieces sur les rouleaux, de facon a ceguprbduction totale
couvre les demandes. La dimensidnpeut étrel, 2 ou 3 ou d est le nombre de
dimensions significatives des rouleaux et des pieces couhean Nous pouvons
méme avoid = 15 si les pieces demandées ont 2 dimensions significativestand
gue les rouleaux ont une dimension fixe et une dimensionblarid peut étre
supérieur & si on considere des dimensions de temps ou de poids. Lespusce
de découpe changent selon les types de coupes, les plasedesnpiéces, le
nombre d’étapes dans le processus de découpe, etc. |l paletrémt y avoir
des contraintes additionnelles ou des objectifs secaeslain probleme (équili-
brage de la charge de travail entre différentes machineécmuge, minimisation
du nombre de plans de découpe différents, ou respect desdisge par exemple).

Ici nous nous intéressons au probléme de découpe unidiomeredi Ce
modele est d'un grand intérét dans le domaine de la rechetchenéthode de
génération de colonnes a été développée sur cette apmticali’'est également
une application pratique qui intervient, par exemple, dassindustries d’acier
ou de papier. Ce dernier processus de découpe est illustia fogure 2.

Dans le chapitre 1 nous présentons les formulations compaets diverses
variantes qui seront examinées. Nous commencons par lelepres de découpe
et de “bin-packing” standard. Les variantes considéréetles problémes dans

10 Introduction

< Rouleau mére O

|

refendeuse

\ - déchet
z((. &
evees CC (@

\ / plans de découpe
. &0
bobines(() < @ (J

Figure 1: Le processus de découpe de rouleaux

lesquels : les niveaux de production se situent dans unvaiterprescrit de

tolérance, les rouleaux a découper sont de différentdsgadu, des contraintes
techniques doivent étre prises en compte. Nous présengaisnéent une

formulation pour la minimisation du nombre de plans de dgeodistincts en

tant que deuxieme objectif une fois que le déchet est fixé akavoptimale.

Nous donnons une breve revue de la littérature sur le prabliendécoupe qui
sera complétée tout au long des chapitres par une étuddiées travaux

spécifiguement liés au nétre.

Le chapitre 2 traite de diverses reformulations du probldenéécoupe (CSP).
Nous considérons d’abord différentes formulations powolgs-probleme de sac
a dos. Chacune de ces formulations mene a une reformulagmiciee du CSP
et a une reformulation implicite qui peut étre résolue efisait une procédure
dynamique de génération de colonnes. Nous passons en rgalemént les
approches hybrides qui ont été proposées dans la littératin outre, nous
développons des reformulations alternatives implicitesli@isant des échanges
locaux dans la solution, et nous montrons comment ces éebkamgpliquent un
effet de stabilisation de la procédure de génération dencels, dans la mesure

Introduction 11

ou ils reviennent implicitement a ajouter des contrainteales. Certains de
ces modeles sont des reformulations valides tandis quére&définissent des
relaxations. Ces reformulations sont comparées d’'un pigivue théorique pour
leur relaxation linéaire (bornes LP) et les solutions en li@rentier (bornes

primales). Certaines des formulations considérées ici des contributions

originales de cette thése. De plus, ce chapitre offre unssifieation des

formulations possibles, comparant la force de la borneedulet présentant des
observations sur leur intérét pratique.

Le chapitre 3 traite du sous-probléme de sac a dos. Le prebtErsac a
dos standard peut étre résolu relativement efficacementtiksant des algo-
rithmes spécialisés. Cependant, lorsqu’on résout lameftation de génération
de colonnes en nombres entiers, nous employons des réglbeadehement
qui peuvent mener a des modifications du sous-probléme dé sas. Pour
modéliser correctement le codt réduit apres branchemeng devons effectuer
une décomposition binaire des variables du sous-probleensad a dos et
introduire des variables de “setup” associées a chaquéabjgmandé. Le point
central de ce chapitre est I'étude du modele résultant agmelbleme binaire
multi-classe de sac a dos avec “setups”. Nous montrons comadapter des
résultats standard pour le probléme de sac a dos a ce modglegphplexe. Nous
caractérisons les solutions optimales de sa relaxatigrailie, nous montrons
comment obtenir une borne LP en utilisant une procéduretghime, et nous
proposons un algorithme de “branch-and-bound” en profond@&bord (pour le
cas avec co0t fixe positif) ainsi que des procédures de progedion dynamique
pour résoudre ce sous-probleme modifie. Cette recherchen@édeeu a la
publication [32].

Dans le chapitre 4, nous étudions tour a tour chaque étapeptedédure de
“branch-and-price” pour le probléme de découpe et nous eoomg différentes
stratégies d'implémentation a travers des tests numéiqudous présentons
différents modes d'initialisation pour la procédure de g@tion de colonnes.
Nous comparons des techniques de stabilisation sur phssiariantes. En
particulier, nous examinons la contribution en terme déiksation de notre
reformulation avec échanges intégrés. Nous expérimeraanéthode simple de

12 Introduction

stabilisation “boxstep” et des techniques de lissage deablas duales. Nous
faisons également la comparaison entre la génération darues basée sur le
LP et I'utilisation de la méthode des faisceaux pour réseleprobléme maitre.
Cette étude a contribué a la publication [6]. Nous développégalement des
heuristiques primales basées sur I'approche de génédgianlonnes que nous
comparons a une heuristique constructive standard. Enswus considérons
différentes stratégies pour générer des colonnes (colaniggie ou colonnes
multiples, exactes ou solutions heuristiques du souskpnmud et une stratégie
de diversification). Finalement, nous testons la contidibuindividuelle de nos

regles de branchement pour la convergence vers une soutinoombre entier et
pour I'amélioration des bornes duales.

Le chapitre 5 est consacré a I'étude de problémes de décodpstiiels qui
combinent les difficultés des variantes du CSP passées aa evchapitre 1.
Leur formulation est construite sur base de celles préssra@ chapitre 2. Une
étude de cas du probléme réel de la papeterie de Condat sshf@é. Le prob-
léeme implique une tolérance sur les niveaux de producties restrictions tech-
nigues du processus de découpe et deux critéeres d’optiariqaéchet et nom-
bre de plans de découpe différents). Une deuxieme apjplicadelle avec une
contrainte minimale sur la multiplicité des plans de déeoept étudiée. Les
meilleures stratégies dérivées de notre étude expériteedtachapitre 4 sont
appliquées a ces problémes. Elles nous permettent de mopim peut ré-
soudre des exemples réels avec un code générique de “baadebrice” utilisant
un solveur commercial de programme en nombre entier mixt@)dour les so-
lutions du probleme maitre et du sous-probléeme.

Introduction

In the cutting stock problem, one has a supply of pieces ¢djef stock material
on one hand and a set of demands for “small” pieces of thismaata the other
hand. One must satisfy these demands by cutting the reqpieeds out of the
stock pieces. The objective is primarily to minimize the tgabat is counted as
the unused part of used pieces of stock material. A solusaiven by a set of
feasiblecutting patternsi.e. assortments of order pieces that can be cut out of a
given piece of stock material, such that their accumulatedyrction of ordered
pieces covers the demands. The dimensionalitgan bel, 2 or 3 whered is

the number of dimension of the stock and order pieces thasigraficant. We
can even haved = 1% if order pieces have 2 significant dimensions while stock
pieces have a fixed dimension and a variable dnegn be greater thahif time

or weight dimensions are considered. The cutting procegsgsaccording to
the types of cuts that are allowed (guillotine or nestedhaonal or not), the
geometrical arrangements of pieces, the number of cuttages, etc. There
might also be some side-constraints or secondary objsctovéhe problem to
do with the balancing of the workload between differentiogttmachines, the
minimization of the number of different cutting pattern dser the respect of due
dates for instances.

Here we shall be concerned with the one-dimensional custiogk problem.
This model is of great interest from a research point of vidivhas been the
application on which the column generation method was dgesl. But it is also
a practical application that arises in steel or paper intesstfor example. The
latter cutting process is illustrated in Figure 2.

In chapter 1 we present the compact formulations of the uan@riants that

14 Introduction

< wide Rol Q

|

winder

\ waste

(C

cuting paterns << N
CC

e () 0(_ 0

Figure 2: The cutting of paper rolls

distinct cutting patterns

shall be examined. We start with the standard cutting stouk l@in packing
problems. Variants are problems in which the productioelilie in a prescribed
interval of tolerance, the multiple widths cutting stoclolpiem for which stock
pieces can be of different sizes, problems with additioeahmical constraints
(taking into account side constraints issued from techmicananagerial consid-
erations in real-life industrial applications). We alsegent a formulation for the
minimization of the number of distinct cutting patternsrsas a second objective
once the waste is fixed to its optimal value. Finally, we giverigf literature
review on the cutting stock problem. It will be completed hydepth review of
work specifically related to ours throughout the text.

Chapter 2 deals with various reformulations of the Cuttingck Problem
(CSP). We first consider different formulations for the ksagk subproblem.
Each of these formulations leads to an explicit reformalatf the CSP and to
an implicit reformulation that can be solved using a dynacaitimn generation
procedure. We also review hybrid approaches that have bexoged in the
literature. Furthermore, we develop alternative implieformulations modeling
local exchanges in the solution, and we show how these egelsamply a

Introduction 15

stabilization effect in the column generation proceduexduse they implicitly
amount to adding dual constraints. Some of these modelsadergformulations

while others define relaxations. These reformulations amepared from a the-
oretical point of view in terms of their linear relaxationRlbounds) and integer
solutions (primal bounds). Some of the formulations cosigd therein are
original contribution of this thesis. Moreover, this chepoffers a classification
of the possible formulations, comparing the strength ofltRedual bound and

commenting on their practical interest.

Chapter 3 deals with the knapsack subproblem. The standaagskck
problem can be solved relatively efficiently using spezedi algorithms.
But, when solving the column generation reformulation ttegmality, we use
branching rules that can lead to modifications to the kndpsabproblem. To
model properly the reduced cost after branching, we neecévate a binary
decomposition of knapsack subproblem variables and int@detup variables
associated to each order. The focus of this Chapter is tliy stuthe resulting
model named multiple-class binary knapsack problem withpse We show
how to extend standard results for the knapsack problemigontbre complex
model. We characterize optimal solutions to its LP relatatwe show how to
obtain the LP bound using a greedy procedure, we proposeth-tiegt-search
branch-and-bound algorithm (for the case with positivedigest) and dynamic
programming procedures to solve this modified subproblehs flesearch gave
rise to publication [32].

In chapter 4, we study in turn each step of a branch-and-gmioeedure
for cutting stock problem and compare different implemgatea strategies
through numerical tests. We present different modes ofalization for the
column generation procedure. We compare stabilizationnigoes on several
variants. In particular, we examine the contribution tdstzation of our original
reformulation with built-in exchanges. We experiment wgimple boxstep
stabilization method and with dual variable smoothing meghes. We also make
comparison between LP-based column generation and the fude dundle
method for solving the master. This study contributed tolipabon [6]. We
also develop primal heuristics based on the column geweratpproach and

16 Introduction

compared them to standard constructive heuristics. Thencamsider different
strategies for generating columns (single versus multiplamns, exact versus
heuristic subproblem solutions and a strategy of divegdifin). Finally, we
test the individual contribution of our branching rules ioneerging to integer
solution and increasing the dual bounds.

Chapter 5 is devoted to the study of industrial cutting peaisd that combine
the difficulties of the CSP variants reviewed in Chapter 1eifformulation is
built on those presented in Chapter 2. A case study of thelifeglroblem en-
countered at the paper mill Condat is presented. The proioienives tolerance
on production levels, technical restrictions on the cgtimocess and two opti-
mization criteria (waste and number of setups). A secontlifeaapplication
with a minimal run length constraint is studied. The besitstyies derived from
our experimental study of Chapter 4 are applied to thesdgmdh They allow us
to solve real-life instances with a generic branch-andepdode that relies on a
commercial mixed integer programming (MIP) solver for neastind subproblem
solutions.

THE CUTTING STOCK PROBLEM
AND ITS VARIANTS

1.1 STANDARD CUTTING STOCK AND BIN PACKING
PROBLEMS

In the standard cutting stock problem, we consider that delsdor cut pieces
are fixed: letn be the number of orders to be cut. An ordefori = 1,...,n,
is defined by its widthw; and its demand;. We assume a sufficient stock of

identical wide rolls, indexed by, k = 1, ..., K, whose width is denoted’, with
w; < W Viand
E ,\11 w; d; &
==l <K< d; .
(=5 1K<

=1
The objective is to minimize the waste resulting from thetiogt process.
When the demand is fixed, it is equivalent to minimizing thenber of wide
rolls used as these two criteria differ by a constant (thal tiength of stock
material used is equal to the total length of produced neltplus the total waste).

18 The cutting stock problem and its variants

The problem can be formulated in terms of integer variablgsepresenting
the number of orderscut in wide roll k&, and binary variableg, taking valuel if
wide roll £ is used and otherwise. A compact formulation (due to Kantorovich
[19]) is thus:

K
Z* = min Z Yk
k=1

F1] st) xy > d; i=1,...,n (1.1)
k=1
Zwixik < Wy k=1,....K (1.2)

=1

rip € {0,...,w;} i=1,...,n;k=1,..., K (1.3)

ykE{O,l} k=1,....K
where -
w; = min{d;, | — |} (1.4)
Wy

is a natural upper bound for variableg. Constraints (1.1) ensure the satisfac-
tion of the demand for each order (one could use equalitytcaing but their
relaxation into covering constraint leads to the same agtsolution value). Con-
straints (1.2) are knapsack constraints that ensure thiaigpatterns are feasible.

A well known variant of this problem is when all orders demsiade equal
to one, i.e.d; = 1fori = 1ton. This problem is known as thain-packing
problem. However in bin packing problems there are typically selvigems of
the same width. These items should better be aggregated sitgle item whose
demand become$ > 1 in order to avoid symmetry in modeling the problem.
Hence, the bin packing problem can be understood as a cuiodx problem
with small demand levels.

1.2 A variant with intervals on production 19

1.2 A VARIANT WITH INTERVALS ON PRODUCTION

In industrial applications, the production requirements sometimes expressed
with a tolerance, which translates into intervals of adiblssproduction levels.
Let d; andd; be respectively the lower and upper bounds on the production
orderi. Then, the objective of minimizing the waste that occurrethie cutting
process is no longer equivalent to minimizing the numbersaidustock rolls but
must be stated explicitly. We give the full formulation farrther reference. Itis:

K
ZR:mmZ(Wyk—szl’zkz)
k=1 7

K

F2 st > ap > d; i=1,...,n (1.5)
k=1
K
Y wn < d; i=1,....n (1.6)
k=1

Zwixik < Wy k=1,...,k

xikE{O,...,ui} 2217771,7]{:1,,[(

yr € {0,1} k=1,....K

whereu; = min{d;, | 1" |}. The satisfaction of the demand is now stated with two
types of constraints: the covering (1.5) and the packing) @onstraints.

1.3 THE MULTIPLE WIDTH CUTTING STOCK PROBLEM

The multiple width cutting stock problem is a generalizatad the cutting stock
model [F1] (1.1) in which the stock is made of non identicall@vrolls. The width
of roll £ is notedV,.. Then [F1] becomes:

20 The cutting stock problem and its variants

7k = minZyk (1.7)
k=1
K
F3 st > ay > d; i=1,...,n (1.8)
k=1

|‘M
g
8
=
A

l’ikE{O,...,ui} 221,771,7]{:1,,[(

yi € {0,1} k=1,... K

1.4 A VARIANT WITH TECHNICAL RESTRICTIONS

In the context of industrial production, there might be #iddial constraints, so
calledside constraintsimposed for technical reasons (like the characteristics o
the machines used) or managerial reasons. Classical essram@ a minimum
width required for cutting patterns, and the number of agdwrt in a wide roll
cannot exceed the cut capacity of the winder. The minimumtaadnaximum
widths to be cut are noted respectivély,,;, and W,,,, and the maximum
cardinality of a cut seC. Furthermore we consider an interval on the demand
because in real applications it is often the case.

It amounts to add additional constraintd i

K

Z% = min Z(W Yk — Z Wy Ti) (1.10)

k=1

1.5 The minimization of set-ups 21

K
F4 st > ap > d; i=1,....n (1.11)
k=1
K
ink S E’L v =]-7 y (112)
k=1
=1
Zwi Tk S Wma:ﬂ Yk k=]-7“‘7K (114)
=1
d ap<C k=1,....K (1.15)
=1

ziw € {0,...,u;} i=1,....,n;k=1,...,K

yr € {0,1} k=1,... K

whereu; = min{d;, mezj }.

1.5 THE MINIMIZATION OF SET-UPS

The main objective in cutting stock problems is to minimize tvaste. However
other criteria are important in determining what a good putihn planning is.
One of them is the minimization of setups, i.e. of the numbetistinct cutting
patterns used. Indeed, in real process cut, time is spenebateach new pattern
to cut and a waste is incurred in trial run to check the coesttion of the knives.

This problem can be modeled by introducing the concept aficth The
cutting pattern used for a wide rdllcan be reproduced identically on other wide
roll. A compact but non linear formulation for this problesigiven below. It
involves new integer variableg representing the number of times the cutting of
wide roll £ is cloned on other wide roll. Binary variablgs do take a different

22 The cutting stock problem and its variants

meaning herey, = 1 if wide roll £ is cut using an original cutting pattern (not
used yet) and that may be used as a model (a patron) for cottieg wide rolls,
while y, = 0 if either wide roll £ is not used or it is used with a cutting pattern
that is the clone of another wide roll. As it was the case ir] [E11), the variables
definition allows for multiple representation of the saméugon obtained by
permuting the role of thé indices.

The formulation takes the form:

K
Z = min Z Yk
k=1

K
F5 st > xpz > d; i=1,....n (1.16)
k=1
=1
2 < Ky k=1,....K

riw € {0,...,w;} i=1,....mk=1,... K
g e {01} k=1,... K
zr € IN k=1,....K

This formulation can be linearized by applying a two-staggngformation:
decompose integer variables in binary components assdaiath powers of two
and then define new variables to represent products of buaaigbles. This shall
be done in Chapter 2.

If there are interval constraints on production, constsafth.16) are replaced
by:

K
k=1

1.6 Review of the literature 23

A constraint can be added to bound the waste, either by bognide total number
of wide rolls used Eﬁil zr < U or, when production is not fixed, the explicit
waste

n

K
Z(W — Zwi k) ze < R. (1.17)

k=1
In the former case, one better redefihe = U instead of adding constraint
Zszl 2z, < U. In a hierarchical optimization approach where the pryostthe
waste minimization while setup minimization is a secondabjective,U (resp.
R) is computed first using model [F1] (1.1) (resp. [F2]), there solves [F5] in a
second stage.

1.6 REVIEW OF THE LITERATURE

The one-dimensional cutting stock problem has been intelysstudied in the
two last decades. In [12], Dyckhoff developed a typologywitiog and packing
problems according to the dimensionality, the kind of assignt, the assortment
of large objects and the assortment of small items. A moremnteonproved
typology is presented in [46]. It is based on the Dyckhoff/pdlogy, defining
new problem categories and it gives a review of all recenepam the cutting
and packing problems area.

Exact approaches to solve this problem make use of columerggon.
Vance in [39] developed a branch-and-price algorithm usinegDantzig-Wolfe
reformulation, and branching directly on variables ass®eci with the choice of
cutting patterns. Different branching schemes were preghdey Vanderbeck in
[40]. Scheithauer et al.([33]) developed a cutting plargoathm. A different
approach was used by Valério de Carvalho who worked with arfl@v formu-
lation with side constraints in [35].

The cutting stock problem admits different formulationattare well suited
for column generation. The choice of a particular formwiathas sometimes been

24 The cutting stock problem and its variants

motivated by the ease to implement branching or by the &abibn effect that
the formulation can have on the column generation procedur¢38], Valério
de Carvalho gives a survey of models for the one dimensioating stock
and packing problems: the integer linear formulation of tdaovitch described
in [19], the Dantzig-Wolfe reformulation that gives stremgdual bounds, the
position indexed model, some alternative one-cut modealssanextended model
obtained by adding extra columns in the Gilmore-Gomory modlenodeling as
a Vehicle Routing problem is also considered. In [10], Ds&ns and Lubbecke
give a review of the usual formulations that are well suit@dapplying a column
generation procedure to the cutting stock problem, in padr the Gilmore
and Gomory model ([14]), and the arc flow formulation prombbg Valério de
Carvalho in [38]. Further pointers to the literature on fatations for the CSP
are provided in Chapter 2.

With regards to implementation strategies, the literahas mainly focused
on the issue of stabilization. In his thesis, Neame, [30¢spnts a new simple
technique to stabilizing the column generation proceduresimoothing the
dual values and he tests it to solve the binary cutting steoklpm. He makes
comparisons with other main approaches (varying box siep stethod, a
linear norm penalty method, an hybrid method (du Merle ef{&l])) and then
shows that it performs well on the binary cutting stock peoh] the average
time on difficult instances is reduced by a factor of three.[37], Valerio de
Carvalho proposes to introduce dual cuts in the dual fortimrla he initializes
the column generation procedure with valid cuts (see ch&)tand shows that
they accelerate the procedure on bin-packing problems.

In recent work on dealing with industrial cutting stock plern, few papers
use exact methods. Johnson et al., in [18], propose a moddinong skiving
(joining smaller rolls to form larger rolls) and the one dmsenal cutting
stock problem. Their model consists in generating the myitpatterns while
minimizing the waste and takes into account two technicastaints (minimum
width used in a pattern and a bound on the number of cut piecaspattern).
Their solution method combines heuristics and the use of Fhiormulation. In
[8], Correira, Oliveira and Ferreira describe two modelénfmizing the waste)

1.6 Review of the literature 25

for the same problem with additional technical constraimtsa first stage, they
generate a priori cutting patterns to be included in a LP tdation. Then, they
obtain an integer solution to the LP solution using a rougdieuristic procedure.
Lee, in [24], proposes “in situ” column generation appro#wdt we discuss in
Chapters 2 and 5.

26

The cutting stock problem and its variants

REFORMULATIONS AND COLUMN
GENERATION

The compact formulations of Section 1 suffer from severaludracks. One of
these drawbacks is the weakness of their LP relaxationotherlbound obtained
by relaxing the integrability constraints is typically vikedor the standard cutting
stock problem it has the value
> i Wids

Zip = VlV :
When the cutting process involves a lot of waste, this bowardhe far from the
optimum. For example, whem; = 2 + ¢, Vi, the optimal solution iS5, d;
and the gap between this optimal solution and the lower bappdoaches§0%.
The second weakness of Section 1 models is the symmetryeinthier indexing
variables withk: several equivalent solutions can be obtained by exchgngin
cutting patterns between wide rolls, i.e. by permutingiiwdexes in the solution
of the compact formulation [F].

Better formulations that avoid (in part) the above drawlsazn be derived by
exploiting the structure of the problem. The knapsack cairds (1.2) represent

28 Reformulations and column generation

a block diagonal matrix, while the covering constraintd)Jct as linking con-
straints. The compact formulation exhibits symmetry beeatimakes no use of
the fact that the knapsack subproblems are identical. Ouottiex hand, stronger
dual bound can be obtained by convexification of the knapsablkroblem (us-
ing the Dantzig-Wolfe reformulation principle [9]). Ind&eefficient algorithms

(although not polynomial) are known for the knapsack prob(either dynamic

programming or specialized branch-and-bound methods)cdmra be exploited
to carry on an implicit reformulation of the cutting stockoptem in terms of

the weights associated with knapsack subproblem solutioBsch extensive
formulation is to be solved using dynamic column generatidtliernatively, an

explicit reformulation can be obtained using the varial@éefinition technique
of [29].

The alternative reformulations are developed in this atrapWWe begin by
considering the various formulations of the integer knapsaibproblem as they
underly the different formulations of the cutting stocklplem. Indeed, a variable
change in the subproblem can be applied to the whole proldegivé an explicit
reformulation. Moreover, each subproblem formulatiortsclr its own solution
method. Then, we consider successively explicit and intpidormulations for
the standard cutting stock problem. Finally, we review imtine different variants
and say how to adapt subproblem and global problem refotrooka

2.1 FORMULATIONS FOR THE KNAPSACK SUBPROBLEM

The sub-systenX', whose solutions are valid cutting patterns, is defined lny co
straints (1.2) and (1.3). Thus, the natural formulationaioroptimization Integer

2.1 Formulations for the knapsack subproblem 29

Subproblem (ISP) ovex is

[ISP1] whereX = {> wz; < W
=1

r, € IN i=1,...n}

It can be solved by using a dynamic programming procedur® (ini¥’?), or
a specialized branch-and-bound algorithm [28]. Howewar the latter, it can
be better to transform the subproblem into a 0-1 knapsackigmg which can
be done polynomially. Moreover, the binary decompositiballsalso be useful
in our definition of branching constraints. To avoid introthg symmetric
representations of some solutions in the transformatié®2] $§howed that it is
better to use a multiple class binary knapsack model.

Letn; = |log,(d;)] + 1. We apply the change of variable:
xi:ZjSlxij VZ:L,??, (21)
j=1

with z;; € {0,1}. We denote byn;; = 27! Vj =1,...,n;, the multiplicities of
itemi. The Binary Subproblem (BSP) takes the form ahaltiple class binary
knapsack

n ez
zEX pl] ()
i=1 j=1

i=1 j=1

n
E m,»j xij
Jj=1

xij

IN
&
I
—
3

m
—_
\'O

—_
—

~.

Il

—_
S
<

Il

—_
S
——

30 Reformulations and column generation

Reformulation [BSP1] does not allow to improve the LP dualtwb. It admits the
same set of LP solutions than [ISP1], as any solution to [|8Bd be decomposed
in an LP solution to [BSP1] using transformation:

Vi=1,...,n (2.2)

while the reverse transformation is given by (2.1).

The unbounded version, where we ignore the bounds (1.4jyialy a pattern
cutting more pieces than the demand, is easier to solve. yi@ngic programs
takesO(nW') operations, while the 0-1 transformation now leads to adstethbi-
nary knapsack problem. For further reference let [ulISRdr [uBSP1]) denotes
model [ISP1] (resp. [BSP1]) without constraints (2.1) fre@.2)).

The third formulation considered here is for the unboundedsion of
the knapsack subproblem. The problem can be formulatedlasgest path
problem in an acyclic network that underlies the dynamic prograngnsiolution
method. Assume that all items have different width(for otherwise they can be
aggregated into a single item). We define a gréph- (N, A), where the node
setisN = 0,...,W,W + 1, each node representing a feasible level of capacity
usage and the arc set is definedby= U;A(i) U {(u, W +1) : u =0,..., W}
whereA(i) = {(u,v) : 0 < u < v < W withv —u = w;} are arcs representing
the cutting of a piece of itemy, while the other arcs represent waste. A valid
cutting pattern is a path in this directed acyclic graph.

Letx,, be the binary decision variable associated withare) € A: z,, = 1
if a knife is set in position: and another in position yielding a cut piece of size
w; = v — u. The reformulation in these variables, denoted as the @ot@ped

2.1 Formulations for the knapsack subproblem 31

Flow Subproblem (UFSP), takes the form:

[UFSP1] whereX = {) "z, = Y zy Y€ N\{0,W+1}(2.3)
ueN weN
Zxov = 1
veEN
Z%Wﬂ =1
veEN

Ty € {0,1} Y(u,v) € A

Constraints (2.3) are flow conservation constraints thatienthe feasibility of
the cutting pattern.

Observe that the network flow model suffers from symmetrnahse different
paths could correspond to the same production of cut piddesever, Valério
de Carvalho shows in [36] how to reduce the symmetry. He densia subset of
arcs using the following criteria: assuming that items amesl in non increasing
order of their width, then an arc representing an item of malidth has its
head on the tail of an arc corresponding to a larger item. i streamlined
definition of the support graph, a given subproblem solutiaa a unique path
representation.

On the other hand, [uFSP1] is a stronger formulation thaisPd] and
[uBSP1]. Each LP solution of this subproblem can be tramséat in a LP so-
lution for [uISP1]:

and one can show that if the vectorgf, is a feasible solution of the LP relaxation
of [uFSP1], then the associatevector is feasible for the LP relaxation of [ulSP1].
But, it exists LP solutions to [ulSP1] that cannot be repnése as LP solutions in
[UFSP1], as seen in example 1.

32 Reformulations and column generation

Example 1 Letn =2, W =4, w; = 3 andw, = 2.
The solutione; = 1, 25 = % cannot be presented in [uFSP1] because the only arc
leaving nodes is a waste arc to nod&” + 1.

In fact, [uUFSP1] is an ideal formulation that has the “intdy prop-
erty”, since it is a flow problem. However it is less compact: involves
a pseudo polynomial number of variableS (1)) and constraints§(11))
instead ofn variables and one constraint for unbounded version of modeP1].

In theory, the ideal formulation for the sub-system can aks@btained using
the definition of the convex hull of the integer solution. Lebe the set of feasible
cutting patterns, i.e. solutions of the sub-syst&mwhere X is defined using
formulation (u)ISP1, (u)BSP1, or uFSP1. Thdsdenotes the enumerated set
while X is a mathematical programming representation of the diss@utions:

X = {xq}qu

We say that:? is the solutionr € X associated with the feasible cutting pattern
q € Q. Then, the subproblem could be reformulated as

maxpax
zeX
[ESP1] whereX = {z = > a9\, (2.4)
q€Q
Doy =1 (2.5)
q€Q

A, € {0,1}Vq e Q}.

Its LP relaxation givegonv(X), by definition. [ESP1] assumes we have enu-
merated exhaustively all solutionse X. Of course this is not realistic. This
reformulation is only to be used implicitly in applying toetlcutting stock prob-
lem what is known as a Dantzig-Wolfe reformulation.

2.2 Explicit reformulations 33

2.2 EXPLICIT REFORMULATIONS

Each reformulation of the knapsack sub-systems leads ¢tometations of the
global standard cutting stock problem. Formulation [IS§¥gs rise to the com-
pact formulation [F1] (1.1) presented in Section 1, whichskeall be more pre-
cisely denoted by F1(ISP1). Using [BSP1] yields an altevedbrmulation:

K
Z = min Zyk
k=1

K ny
[FLBSP1) st.) > my; zyn

> d; Wi
k=1 j=1
n n;
szij w i < Wy VEk
i=1 j=1

3,
j=1
Y € {0, 1} Vk

Lijk S {0,].} VZ, VJ, Vk

Its interest is limited because it is not any stronger thafi3H1), and it does not
help to avoid symmetry. Moreover it involves a larger numdiievariables. We
mentioned it for further reference when it comes to definirapbhing constraints
based on these binary variables.

Formulation [uFSP1], however, leads to an interestingiexwpkformulation
of the cutting stock problem. Valério de Carvalho ([38]raduced this arc-flow
model for bin packing problem. Here, variableg,. of each sub-system in the
form [uFSP1] can be aggregated into

Typ = E Luwk
k

34 Reformulations and column generation

where x,,, now represents the number of wide roll cuttings where cartsec
knifes are placed in positionsandv (i.e. the number of times the item of weight
w; = v — u IS placed at a distance afof the origin in a cutting pattern). Observe
that such aggregation could not be carried out in F1(ISPB14BSP1) because
the disaggregate value was needed to formulate the knapsacskraints, while
here the knapsack constraint is built into the definition fbda& from node) to IV

Thus, the reformulation takes the form:

min z

[R1] s.t. Z Ty — Z Tyw = 0 YoeN\{0,W}

(u,v)€A (vyw)eA
E Loy = Z
veEN
E ToW = z
vEN

(]
8
g
Y

d; Vi (2.6)

Tw € IN VY(uv)eA

Reformulation [R1] has pseudo polynomial size since it imesO (nW) vari-
ables and) (W) constraints. But it is stronger than [F1(ISP1)] or [F1(BERE
it makes use of an ideal formulation for the subproblem. Muvee the above
mentioned aggregation allows to avoid the symmetry thatltes from the in-
terchange of indexes. However, it introduces a new symmetry. Although th
reduction to the support graph proposed by Valerio de Caovebmpletly elim-
inates the duplication of representation of solutions atghbproblem level, it
remains symmetry at the global level: the paths flow can bemémed in multi-
ple ways, much more for the cutting stock problem. A givemsoh to R1 admits
different representations as shown by the following exanppbblem.

Example 2 Letn = 2 items with respective widths and demands= 1,d; = 6
andw, = 2,d, = 3, and letlV = 4.

2.3 Implicit reformulations and column generation 35

The patterng; = (4,0), ¢2 = (0,2) andgs = (2, 1) represented in figure 2.1 by
the respective pathg0, 1,2, 3,4), (0,2,4) and (0, 2, 3,4), respect the reduction
criteria. However, combining them, the pattegadmits another representation
: {0,1, 2,4}, that gives rise to the same solution.

wq w1 wq wq
4 4
Wa Wa

—_— pattern 1

,,,,,,,,, - pattern 2

Figure 2.1: Symmetry in the arc flow formulation

The motivation for this formulation is also to provide newiaales on which
to branch.

2.3 IMPLICIT REFORMULATIONS AND COLUMN GENERATION

Formulation [ESP1] leads to a reformulation in terms ofahkiasA’; = 1 if sub-
problem solutionz? is chosen for subproblemand zero otherwise. It takes the

36 Reformulations and column generation

form:
K
ZM =min) > "\ (2.7)
k=1 qeQ
K
[MiDisag st Y > 2fA > 4, i=1,....n (2.8)
k=1 qeQ
d oM< k=1,....K (2.9)

k
ANe {01} YgeQ, k=1,....,K (2.10)

where the convexity constrainis ., A\; = 1 have been relaxed infp ., A\l <
1 because the null cutting pattern is a feasible solutiok tof zero cost.

Because the subproblems are identical, variab[}‘asan be aggregated by
defining variables\, = >, A\¥ Vg € Q. Thus,), represents the number of
times the cutting patterq € @ is chosen in the solution. The aggregation allows
to eliminate the symmetry. Thus, when is defined by [ISP1] or [ulSP1], the
reformulation of the standard cutting stock problem takesform:

ZM =min) "), (2.11)
q€Q
[M1] st) al) > d i=1,....n (2.12)
q9EQ
N <K (2.13)
q€Q
A€ IN Vg € Q (2.14)

The convexity constraint (2.13) is not binding becauseis an overestimate
of the number of stock pieces used, so it can be dropped. Diuis targe

(exponential) number of variables, this reformulationasbe solved using an
integer programming column generation procedure (bramchprice). In this
context, re-formulation [M1] is called thmaster program.

2.3 Implicit reformulations and column generation 37

The demand covering constraints (2.12) take a differemhffor alternative
representation ok’. When [BSP1] or [uBSP1] is chosen, they take the form

qeqQ J

while for [uFSP1], they take the form

DY wl N = d Vil

qEQ uwv:v=utw;

2.3.1 THE COLUMN GENERATION PROCEDURE

The dynamic column generation procedure consists in ietgtsolving the mas-
ter LP restricted to a subset of columns, and, in the pricoggdure, search for
missing columns with negative reduced cost by solving amopation subprob-
lem overX. The optimal dual solution of the restricted master LP islusalefine
the reduced cost of a generic column. At the root node, it wagkfollows. Letr
be the dual variables associated to the master constrali®)(Z he specific form
of the reduced cost of a cutting pattern depends on the Vam&hinitions. Using
the variables of [ISP1], the reduced cost is

n
= q
cq—l—g T T -
i=1

2.3.2 THE COLUMN GENERATION SUBPROBLEM

The pricing subproblem is solved in search for the most megaeduced cost
over X. Using representation [ISP1], it takes the form:

E(m) = maX{Zm T Zwi x; <W, x; < u;andx; € INfor i =1,...n}
=1 =1

A solution to the subproblem is a column that should be addeith¢ master

problem if it has a negative reduced cost. When the optintilged cost is zero,

the current solution to the restricted master is provedogitior the unrestricted

master.

38 Reformulations and column generation

2.3.3 THE LAGRANGIAN DUAL BOUND

Any dual bound on the subproblem gives rise to a Lagrangiath lsbund for the
master. Indeed, applying Lagrangian relaxation to the mogeonstraints (2.12),
using the Lagrangian multipliers yields a Lagrangian bound:

L(m) = min Z(l - im x}) Ay + im d;
i=1

qeQ i=1

YN <K (2.15)
q€Q

A € IN Vg € Q

whose solution is
L(m) = Zm d; + min{K (1 —¢{(x)),0}
=1

If the pricing subproblem is not solved exactly, any dualfmbg(7) on the sub-
problem valug () can be used in the above expression to define a valid lower
bound on the master problem. The best bound encounteree icotirse of the
column generation procedure is recorded:

LB = max L(7")

wherer! is the dual solution at iteration Moreover, for an integer objective
value, this bound can be rounded UpB = max; [L(7")].

2.3.4 TERMINATION CRITERIA

The column generation procedure stops:

() when no more negative reduced cost columns are found or,

(#7) when the current Lagrangian dual bouh# is greater or equal to the current
value of the restricted master LP, or

2.3 Implicit reformulations and column generation 39

(77i) when the current Lagrangian dual bouhd allows to prune the current
branch-and-bound node, i.e.

LB > Zinc

whereZ; yc denotes the cost of the incumbent integer solution.

2.3.5 THE DUAL MASTER PROGRAM

Seen in the dual space, the column generation procedureuisiagcplane algo-
rithm for the dual of the master LP. It is known Kslley’s cutting plane method
[20]. The dual problem takes the form:

max Y dim—Ko (2.16)
=1
[D1] st) alm—o <1 Vg e Q (2.17)
=1
m > 0 1=1,...,n
c> 0

The study of the dual is important because the dual multipjay an important
role in the column generation process, for the pricing ofinois and the conver-
gence of the algorithm.

This dual problem is the LP form of trdual Lagrangian problem

0 = max L() (2.18)

>0

40 Reformulations and column generation

Indeed,

0 = maxL(m)

>0

— m%(Zdi 7 +min{ K (1 — &(x)),0}
- =1

= maXZdﬂri—KU
St—o<1—-¢&(m)

T>0
c>0

= maxidﬂri—KU

=1

S.thfwi—a <1 Vge@
i—1

T>0
c>0

whereo stands for the opposite @i — £(7))~. Also note that the Lagrangian

bound that results from dualizing constraints (1.1) in [BXhe same as the above.

We introduce the restricted dual functiafi(r) as being the restriction df(r)
defined in (2.15) to the subset of columns obtained up tathieration, i.e.

mlnz 1—27@ xl) A —i—Zm ’

qeQr

N <K (2.19)

A€ IN Vg e Q*

2.3 Implicit reformulations and column generation 41
The associated restricted dual master problem takes tire for

0 = max L*(m)
>0

= maxy dim—Ko (2.20)

i=1

S.th?m—a <1 VYge@t
i=1
m,0 >0

At each iterationk of Kelley’s cutting plane procedure, one maximiz&sand
checks whether the resulting dual vectdris feasible for the unrestricted master
by searching a violated inequality. For this, we solve thepsablemé (%) that
will provide the most violated inequality. If there is no lated inequalitys* is
feasible and therefore optimal for the unrestricted master

2.3.6 STRENGTH OF THE DUAL BOUND

Standard Lagrangian duality theory [13] tells us that theteraLP yields a bound
equivalent to solving

K K
min{z Yk me > d; Vi, xy € conv(X)),z < uiypVi, k, i, yr > 0V, k.
k=1 k=1
l.e. using Dantzig-Wolfe reformulation defines a master h& s equivalent
to an implicit convexification of the subproblem. The qualdf this bound
depends on the specific definition &f [ISP1] and [BSP1] yield the same bound
LD, while all three unbounded knapsack representations [ilJ|J§eBSP1] and
[UFSP1] yield a weaker boundl.D. As formulation [uUFSP1] has the integrality
property, formulation [R1] also yields bound.D. In the sequel, we refer to
proper columngo denote the solutions of a bounded knapsack subprobleite, wh
solutions of unbounded version anapropetr This terminology was introduced
in [45]. Usingproper columngields the stronger bountdD.

42 Reformulations and column generation

Finally, observe that applying a Dantzig-Wolfe reformidatto [R1] letting
the covering constraints (2.6) in the master, results in stendormulation of type
[M1] with the use of subproblem [uFSP1].

2.3.7 BRANCHING SCHEMES

Formulation [M1] is solved with a branch-and-price methéd.each node of a
branch-and-bound tree, if the current node cannot be propdobunds, infeasi-
bility or optimality, then branching must takes place taretiate the fractional
solution. Branching on individual fractional variablgis not appropriate. In [41]
different branching schemes are studied where fractiaiatisns are eliminated

using disjunctive constraints of the form:

> A< lal (2.21)
q€eqQ

or
D N> [a] (2.22)
q€qQ

whereQ ¢ Q anda = quc} Xq for the current fractional solution. The
specific definitions of) that happen to be useful in practice are described below

for each formulation.

With formulation M1(ISP), branching constraints are difficto formulate,
hence the motivation for introducing the binary decompaosiin the subproblem.

For formulation M1(BSP), we use the following branchingesul

1. Q = {g € Q : 27 > 0}, i.e. the number of used patterns involving item
i must be integer. To implement this scheme, we need to inteyda the
subproblem, binary variables = 1 if ; > 0 and zero otherwise. The dual
variables associated with the corresponding branchingtcaint (2.21) or

(2.22) define a setup cost in the subproblem objective fancti

2.3 Implicit reformulations and column generation 43

2.0 ={qeq: z{; = 1}, i.e. the number of used patterns involving
the component of multiplicity in the binary decomposition of iteirmust
be integer. The dual variables associated with the correpg branching
constraint (2.21) or (2.22) define an extra cost associatedriablez;; in

the subproblem objective function.

3.0={¢eQ:2?>0 andx? > 0}, i.e. the number of columns involving
two specific itemg and; must be integer. To implement this scheme, we
need to introduce, in the subproblem, binary variaples- 1if y;, = y; = 1
and zero otherwise for all pairs of items< j. The proper value of;;

variables is enforced by adding constraints
Yij 2 Yty —1 Vi,jii<j
Yij <y Vi,jri<j
Yig Syp Vi,jri<j
These three branching rules do not guarantee that anydnattsolution can be

separated. However, they were sufficient to eliminate alitfonal solutions in

the numerical experimentation reported in Chapter 4.

For M1(uFSP), the branching rule is

e Q={qeQ:a21, =1}, ie. the number of columns involving a particular
arc(u, v) (or equivalently the total flow on ar@, v)) is forced to be integer
for all arcs. The dual variables associated with the comedimg branch-
ing constraint (2.21) or (2.22) come as an extra arc costdrstibproblem

objective function.

This branching rule alone is enough to guarantee that amgeéntsolution is

obtained. Indeed, if the flow on each arc is integer, the flosodgosition

44 Reformulations and column generation

theorem guarantees that this flow can be decomposed ingemtiew on path
from node0 to nodelV. Each of this path defines a feasible pattern, the flow on
the path defines the number of time this pattern is chosems. gdth flow solution

is therefore a feasible integer solution for the CSP. Thymsmtly, branching

is easier to formulate and enforced under the arc flow fortimlaapproach. It

is to be reminded however that there is a pseudo-polynoriaber of arc flow
variables. Moreover, the arc flow formulation allows forferent representation

of a given solution and that branching efficiency will suffiem this drawback.

2.4 OTHER APPROACHES AND FORMULATIONS

Valério de Carvalho ([38]) applied an hybrid method to the jpacking problem:
he solves it using “implicitly” the above column generatiormulation [M1] with
subproblem [uFSP1], but translates the columns for [M1]anables for formu-
lation [R1] and obtains the next set of dual prices by solutimg restricted LP
formulation [R1]. This requires adding variables and flowgervation constraint
dynamically to [R1]. The procedure is not equivalent to wiagkwith formulation
M1(uFSP1), as we can see in example 3, the arc flow formulatiows to define
implicitly path flows that cannot be obtained as convex coration of the paths

generated so far.

Example 3 Letn =2, W = 3, w; = 2 andw, = 1.
We consider the following cutting patterng; = (1,0), ¢ = (0,3). In figure
2.2 the solution is represented as path flows, the full lireesponds to the first
cutting pattern and the dotted path to the second one.

Then, the flowt, = 0, x93 = 0, ;3 = 1 andx3, = 1 that would lead to the
cutting patterngs = (1,1) is an implicit solution of the arc flow representation

but it cannot be obtained by listing a convex combinationatfeynsg, andg..

2.4 Other approaches and formulations 45

waste

Figure 2.2: Path flow representation

Jon Lee ([24]) also introduced an hybrid method for the ngtstock problem
(that he called ih situ” column generation): it is an hybridation of a method
based on the compact formulation [F1] (1.1) and the colummegsdion [M1].

In fact Lee proposed this approach for a variant with tecintonstraints and
minimization of setups (he did not solve the model exactlighee). Here we

just introduce the underlying idea on the standard CSP. Ts$tecfitting pattern is
expressed in the original variables while the others arberspace of the column

generation reformulation. Thus the formulation is:

min Z Ayt y (2.23)
q€eqQ
N\t w = dii=1,....n (2.24)
q€eQ
YA < K1 (2.25)
q€eQ
Ny € NN Vq € Q (2.26)
sz‘%‘ < Wy (2.27)
r; € IN Vi (2.28)

(2.29)

<
m
—
“O
[u—
—

46 Reformulations and column generation

The hybrid procedure works as follows: at iteratibnone has a given subset
of columns@* in the hybrid formulation; one solves the above integer (@b
restricted toQ* to optimality and record the solutionas a new column before
re-iterating. The stopping criteria to obtain an exact soiuare not clear. The
interest of using such approach, according to Lee, is torgémeolumns that are
complementary to existing columns with regards to the IRtsmt. Observe that
each generation of a column demands the solution of the IRempogram to

optimality.

To be exhaustive we should also mention the acyclic capgaditdRP model
introduced by Ben Amor ([5]). Assuming that items are sortedon increasing

order of their width (v; < w;,1 i = 1,...,n), the network is defined as follows:

e for each itemi, a set ofn; + 1 nodes, withn; = {%J notediy, . .., i,,, io,

and a set of associated af@s, i,, 1) forv = 1,...,n; — 1 and(i,, i) for
v =1,...,n;. Thus a path between nodgsandi, define the number of

items: that are chosen in a cutting pattern.

e a set of arcs between two iterf¥g, j;) such thaiw; > w;) andw; + w; <
w,

o for each patterr a starting and an ending nodes notgdnde,, and a set of
starting (respectively ending) arcs defined &si,) (respectively(iy, ex))

fori=1,...,n.

Each arc entering a nodg v = 1, ..., n; has an associated weight. Any path
defining a cutting pattern must start at nageand end at node, and respect the
knapsack constraint. We natéthe set of nodes, and, the set of arcs associated

to a patternk. We define binary variablesi?jV(i,j) € Ay, then the formulation

2.5 Master formulations with exchanges built-in 47

takes the form:

n
: k
min)Y

keK i1=1
St dYooah, = dioi=1..n (2.30)
kGK v=1 (]Z’U)EAk
o= 1 Vkek (2.31)
(Skvi)eAk
Z wi — af = 0 Vie N\{sp,ex}Vke K (2.32)
(’L j)eAk (j,Z)GAk
> oaf, = 1 VkeK (2.33)
(i,er) € A¥
Z Z dooah) < WO et VkeK (2.34)
i=1 v=1 (j,iy)EAL j=1

o € IN VkeK,V(ij) e A

The first constraints (2.30) ensure the satisfaction of #mahd for each item,
(2.31), (2.32) and (2.33) are flow conservation constraarid constraints (2.34)

ensures the feasibility of each pattern.

This formulation allows to define proper patterns, defining =

min{ L%J ,d;}, and it amounts to consider a binary decomposition of items.

2.5 MASTER FORMULATIONS WITH EXCHANGES BUILT-IN

The above cutting stock formulations can be amended to septefeasible

exchanges that can be operated in a cutting pattern. Fanicestreplacing an

48 Reformulations and column generation

itemi by itemk and/ in a cutting pattern is feasible if; > w; + w;. Modeling
such exchange is not necessary to model the problem sirteadhsf modifying a
cutting pattern one can generate a new one, leading to the sesult. However,
the apparent redundancy in the model can have benefit whemgat. In
particular, in a column generation approach, a simple exgphaan be applied
to any already defined pattern for which it is feasible andefoee it defines
implicitly a whole set of cutting patterns that may not yetgemerated and need
not to be generated. Using such exchange has been showndierate the
column generation procedure. In particular, Valerio dev@o [37] used this

idea to accelerate the resolution of bin packing problems.

In this section we consider three alternatives to formatafM1] where ex-
changes are modeled. We assume formulation [ISP1] for thpreblem. First,
we see how the simplest exchange (replabg j for w; < w;) can be modeled
simply be re-writing the covering constraints (2.12) in #afent form. Then,
we consider how modeling any feasible exchange using eatiahles. For these
reformulations, we assume that orders are different antédan non increasing

order of their width:

wy > We > ... > Wy

2.5.1 AGGREGATING COVERING CONSTRAINTS

The production of piece df can be used to cover the demand for an itesuch
thatk < 4. Thus, it is enough to enforce constraint on the aggregateadds

for items1,... k for all . Modifying the covering constraints (2.12) in [M1]

2.5 Master formulations with exchanges built-in 49

accordingly leads to the following master reformulation:

ZM — min Z Ag (2.35)
qe@

[AgregCovM1 st Y () af)A, = DY di i=1,...,n (2.36)

qeQ k=1 k=1
M<K (2.37)
q€Q
A€ IN Vg e @ (2.38)

The covering constraints are an aggregation of those of hjbtdg: for item i,
we sum the covering constraints of M1 corresponding to ethg of width larger

or equal tow;.

To understand the stabilization effect of the built-in exahes, let us look at

the dual problem of the LP relaxation of AgregCovM1. It takies form:

n

madei(v)— Ko
=1 k

=1

s.t. Z(Z v)xi —o <1 Vge @
i=1 k=i
vi> 0 1=1,...,n
c> 0

wherey; (respectivelyr) are the dual variables associated to the constraints)(2.36
(respectively (2.37)).

50 Reformulations and column generation

Then, introducing variables, = 3, . v, Vi we obtain:

n
max E dimi— Ko
i=1

n
s.t. Zx?wg—agl Vg e @
i=1
T — Ty > 0 1=1,...,n—1
7r;20
o> 0

This formulation is equivalent to D1 with the additionof 1 dual constraints:

/ / .

that means that the reward associated to the cut of itehould be greater than
that of the cut of a smaller item. These constraints belong tamily of dual
cuts that were introduced by Valério de Carvalho in [37] toederate the column

generation procedure.

2.5.2 INTRODUCING EXCHANGE VARIABLES

An alternative formulation of exchanges in the master pobls to introduce
exchange variables;, representing the quantity of itemused to cover the
demand for itemk. Here, we consider replacing one piece of an iteby one
or several copies of a smaller itejn The problem of defining such feasible
exchanges can be formulated as a generalized flow model X&hfpter 15).

The corresponding graph is presented in Figure 2.3.

2.5 Master formulations with exchanges built-in 51

The nodesN = {1,...,n} are associated to each itenwith associated
demand/;, and nodé is the source node with supply , d;. Arcs(0,), Vi repre-
sent a production, the associated flowpis z{\,. Arcs (i, j) between itemi and
J such thatw; > w,, i.e. ¢ < j with our indexing, represent feasible exchanges.
Indeed, the production of itemis used to cover the demand for itgnby further
cutting the pieces of iteminto pieces for iteny. The associated variabig; rep-

resents the flow entering the arc, i.e. the number of copiésutffor producing;.

The gain on the arc is the multiplier

Mij = w,

thus the flow leaving the arg,; e;;, represents the production of iteiobtained
from further cutting pieces at

In order to avoid redundancy, we do not create the arcs tndteabtained by
a relation of transitivity. Thus, beyond the creation of @ré + 1), we consider
only the arcs corresponding to an incremental increagg; irMoreover, in order
to avoid exchanges that obviously leadutmpropercolumns, we further restrict
our graph to arcs wheng;; < d,. Hence, the arcs leaving the node associated to

items are

Similarly, A~(i) denotes the non redundant exchange arcs entering the node

associated with item

52 Reformulations and column generation

Z :cg)\q

qeQ

H15€15 dy

H13€13

Figure 2.3: Exchange formulation

The formulation with exchange variableg is:

7M = minZ)\q
q€Q
[ExchFlowM1] S.t.
Dl D e = dit > ey Vi
qeQ (k,i)eA= () (i,)€AT (1)
S, <k
q€Q
Ay € IN Vg € Q
e; € IN V(i,j) € A.

To understand the stabilization effect of the built-in exahe, let us look at
the dual problem to the LP relaxation of ExchFlowM1, igngrithe convexity

constraint. It is enriched with the dual constraints assed with variables;;. It

2.5 Master formulations with exchanges built-in 53

takes the form:

s.t. Zm?m <1 Vg € QQ
=1
> {Z—J no V(i) € AG) (2.39)
J
m > 0 \4)

Constraints (2.39) say that the reward for cuttingiust be at least as large as
the reward that could be obtained by transforming smaller productg. The
coefficienty;; allows to obtain stronger dual cuts than for the precedingleho

(when there are larger than 1).

A simplification of the model entails taking all gain factbode 1, i.e. cut only
one copy ofj out of a piece of even if several could be cut. Then, the underlying
exchange network is a simple flow problem instead of a gemethflow. Observe
that eliminating all arcs that are implied by transitiveatedns builds down to

considering only the simplest exchange afics + 1) with multipliers p4;; = 1.

54 Reformulations and column generation

Let Direct ExchFlowM1 denote this simplified model:
ZM — min Z Ag
[Direct ExchFlowM1] s.t.

ol ey > diteg Vi (240)
qeQ

YN <K

q€Q

N, € NN Vg e @

€ij e IN V(Z,]) e A.

It is equivalent to AgregCovML1 in the sense that it allows shene exchanges.
However the stabilization effect may not exactly be the s&me a computa-

tional point of view due to the presence of the extra varigble, ; .

2.5.3 USING EXCHANGE VECTORS

Model ExchFlowM1 only captures a small subset of feasibleharges: cutting
an item into a single other product. More general exchanges\Je cutting an
item into several different products (as done by Valério @ev@lho in [37]) ,
or even more general, replacing a subset of item pieces hansubset: let
(resp. a) be the indicator vector of the pieces that are replaceg (reslded).
This general class of exchange can be modeled by introdscieglled exchange
vectors in [M1]. These vectors can be seen as the differegivesien two feasible
columns. Exchange vectors can be defined as scaled rayssflipeoblem, they

are solutions of:

Y ={(a,r): Zwiai < Zwm,Zwiri <W,

2.5 Master formulations with exchanges built-in 55
a; Ty = OVZ, Q; S dZVZ, a € Wn,T'Z' S diVi,T’ € Wn}

where boundsi; on a; and r; are enforced to avoid exchanges that would

obviously lead tainproper columns

As the set of feasible exchanges is quite large, the ideacigritsider them im-
plicitly through a column generation technique. Ifestands for the enumerated

set ofY solutions, i.e.
Y ={(a"71)}eecr

where thee!® exchange vector is characterized by a vectoof items that are
replaced by a vectar® of added items. However, when formulating the master
problem with the addition of these exchange vectors, ond netisrn to the dis-
aggregated master progrgdMldissaggrepgiven in ((2.7)-(2.10)) so as to apply

exchanges to specific cutting patterns. The augmented fatimtakes the form:

min Y A (2.41)
k,qeQ
[ExchVectM1Disag S.t. (2.42)
DN+ D> (af =) pk > dy Vi (2.43)
k,qeQ kecE
STrept < Sl Vivk (2.44)
eck q€Q
A< vk (2.45)
q€eQ

Ar e {0,1} Vg€ Q, Yk (2.46)

where constraints (2.44) are needed to insure that one eplgaes items that

We shall sometimes use an alternative notation to define aenaege vector letting® €
IN™ represents an exchange vectarhere the negative componentsiifhrepresent© while the
positive components represerit

56 Reformulations and column generation

were cut.

If we relax constraints (2.44), variabla§ andp® can be aggregated infg =

Yk)\’; andp, = >, pF respectively. The relaxed master problem then takes the
form:

min Z Ag

9€Q
[ExchVect M1] S.t.
SN+ (@ —r)pe = d; Vi
qeEQ ecE
S < K
q€Q
Ay € IN Vg € Q
Pe € IN Ve € I.

wherep, is the number of times the exchange veet®s used.

The exchange vectors can be generated dynamically by gadvmicing sub-

problem:
maX{Z mi(a; — ;) (a,r) €Y} (2.47)

Using exchange vectors in the primal amounts to adding tlherdimg dual cuts:
> miaf—r) <0 Vec E (2.48)

Hence, well chosen exchange vectors, defining undominatddeéementary
relations between the dual variables, can help stabiliziveg overall column

generation approach.

2.5 Master formulations with exchanges built-in 57

However, relaxing constraints (2.44) leads to a weaker ttation as illus-

trated by the following example.

Example 4 Letn = 3,W =1 and

oot
=N
S
Il
W

w1 =

w3 = % d3 =3
Consider feasible cutting patterns
' = (1,1,0)
2 = (1,0,1)
7 = (0,0,3)
and exchange vector
z* = (0,-2,3)

represented in figure 2.4.

The optimal solution for the linear relaxation of [Exch\Edt] is 4 with associ-
ated solution\; = 4, p, = 1. While if one solves the LP of [ExchVectM1Disag]

to optimality one getsé with associated solution; = 2, Ay =2, A3 = % .

The weakness of [ExchVectM1] is due to the fact that the galgieces defined
in an exchange can be taken from different patterns. It esifikve were allowed
to define a cutting pattern for the aggregatiorkafide rolls having total width

equal tok . This, of course, allows to save waste.

58 Reformulations and column generation

Figure 2.4: Replacing two units of item 2 by three units ofit® using exchange
vector

There is a natural subset of exchange vectors for which tlagee master
[ExchVectM1] is as strong as [ExchVectM1Disag]: Whep= 1, i.e. when only
one piece is replaced by a subset of smaller pieces, therxtharge obviously
applies to a single cutting pattern. This subclass of exghaectors is precisely
those studied by Valerio de Carvalho [37]. Let

EZ‘:{OEEEZT;-Z:L T;:OV]%Z}, FZ:U]7§2E] (249)

and let[Restr ExchVect M 1] be the disaggregate master formulation where the

exchange vectors are restricted to those Wwith= 1. The disaggregate version

2.5 Master formulations with exchanges built-in 59

takes the form :

min Z)\l;

k,qeq
[Restr ExchV ect M 1Disag] S.t.
TN INTER '
k,qeq k.ecE; k.e€E;
STob < Sl vik (2.50)
ecE; qeqQ
oA <1 Vk
9€@
A€ N VEk, g€ @
e IN Vk, e € E.

Observation 1 When exchange vectors are restricted to those Wwith= 1, con-

straints (2.50) are redundant in the above formulation asd_P relaxation.

Indeed, as the exchange involves transforming a single@ta given produci,
itis enough to ensure that the global production of piéeesufficient for satisfy-
ing demand plus transformed pieces. The aggregate sotdiohe disaggregated

in any way by arbitrarily assigningindices.

Thus the associate aggregate master formulation is equivalt takes the

60 Reformulations and column generation

form:
min Z Ag
qeQ
[Restr ExchV ect M1] s.t.
SN =D pet > dape > d; Vi
qeQ eckE; EEEi
S s K
qeQ
AN € NN Vq € Q
Pe € IN Ve € F.
whose dual includes cuts
Y mia <m Ve € E; (2.51)
j

2.5.4 EXCHANGES IN THE ARC FLOW FORMULATION

Some exchanges can be represented in the arc flow formulatiomcombining
path flows in different ways: a cycle in the non oriented greggiresents an ex-

change between several products.

Example 5 In figure 2.5, where we consid8ritems whose widths are; = 5,
we = 3 andws = 2, andW = 8, the item2 can be exchanged by itemin
the first pattern leading then to the third pattern. Furtheme considering arcs
between two consecutive nodes as waste, this arc flow repeti®® models more
than one to one exchanges: for example the c{f¢lé, 4, 2,0} corresponds to the

exchange of one copy of itehby two copies of item$ plus a waste of.

2.6 Comparing the formulations for the standard cuttinglsto 61

w1 Wy
/\/\ o
0 1 2 4 6 3 (a%ﬂ:
Q“u - AN A AT A A s
s w3 7 ws w3 ' waste | oste
o

pattern 1

————————— - pattern 2

——————— pattern 3

Figure 2.5: Exchanges in the arc flow formulation

2.6 COMPARING THE FORMULATIONS FOR THE STANDARD
CUTTING STOCK

Let us now compare the above integer formulations of thedsti@hcutting stock
as well as their LP relaxation. Let us use the notafiof> F’ to express that a
LP solution toF' can be converted into a LP solution 8 with the same cost.

Similarly F £ F' denotes an IP solution transformation that preserves thte co
The interest of the LP transformatidn =5 F is in the implied relation be-
tween resulting dual bounds:

Observation 2 Assuming we are dealing with minimization problems,

LP /
FSF =7, > 7

whereZ!, is the optimal LP value foF'.

The question raised in this section is whether the modibeoatitroduced in the

master to help stabilizing the column generation soluticgthod does imply

62 Reformulations and column generation

weaker LP bound.

Let us start by showing that they define relaxation. We shalhtshow some

reverse relations that prove that some relaxations do et yieaker dual bounds.
Proposition 1
M1Disag a8 AgregCovM1 LE Direct ExehFlowM1 %5
ExchFlowM1 ™5 Restr ExchVect M1 X5 ExchVectM1
proof:

M1Disag X5 M1 : Let A € {0,1}9*K pe a LP solution ta\/1Disag. Define
solution)\’ € IN1@l by setting\, = 3°, Ak Vg € Q. Itis easy to verify that
)\ solves M1.

M1 AgregCovM1 : Let X\ be a LP solution taV/1, then it is solution to
AgregCovML1 since the constraints of AgregCovM1 are pastigh of con-
straints of M1.

AgregCovM1 L DirectBExchFlowM1 : Let A be a LP solution to
AgregCovM1. Fori = 1,...,n —1, lete; ;11 = Zq(Z§:1 zHA, —
(3,_, di). Then, (), e) solves Direct ExchFlowM]1. Indeed, the con-
straints of AgregCovM1 imply e; ;11 > 0 while the definition ofe; ;

implies that the constraints dbirect ExchFlowM1 are satisfied at equal-
ity.
Direct ExchFlowM1 "5 ExchFlowM]1 the solution (A e) of

DirectExchFlowM1 augmented withe;; = 0 for j > ¢ + 1 triv-
ially solvesExchFlowM]1.

ExchFlowM1 ™5 RestrExchVectM1 : let (\,e) be a LP solution to
EzxchFlowM1. For eache;; > 0 define an exchange vectore, r¢) € E;

2.6 Comparing the formulations for the standard cuttinglsto 63

with r{ = 1 anda$ = 1;; and set the associated variaple= ¢;;. Then, the

solution(\, p) solvesRestr ExchVectM1.

RestrExchVect M1 ™5 ExchVectM1 : the LP solution (), p) of
Restr ExchVect M1 trivially solves ExchVect M 1. u

Proposition 1 is true whether we work withroper columnsor not,
i.e. we could writeM1(ulSP1) 24 AgregCovM1(uIlSP1)... as well as
M1(1SP1) Le AgregCovM1(1SP1). ... However, the reverse relations cannot
necessarily be established for both bounded and unboundbpdablem. Valerio
de Carvalho [37] has proved:

Proposition 2
Restr ExchVectM1(SP) 24 M1(uSP)

In [37] Valerio de Carvalho gives a constructive procedwdransform a LP
solution to RestrExchVectM1 into a LP solution to M1, but retprocess one
might generataunproper cutting patterns. He proved the same result in the
dual space, showing that the dual solutiorio M1 is feasible to the dual of
Restr ExchVectM1, i.e. it satisfies all constraints (2.51). Indeed, if onehafh

is violated then one can construct a cutting pattern (noesarilyproper with

strictly negative reduced cost.

Corollary 1
M1(SP) X5 M1(uSP)

AgregCovM1 =5 M1(uSP)
DirectExchFlowM1 22 M1(uSP)

ExchFlowM1 %5 M1(uSP)

64 Reformulations and column generation

But, this is not true fo&wxzchVect M1 :

Observation 3

LP
ExchVectM1 4 M1(uSP)

Indeed, as shown by Example 4, cutting waste can be savedgigiithy pasting

wide rolls together.

For AgregCovM1 and DirectExchFlowM1 there is a stronger result not
implied by Proposition 2 : the use of direct exchange ; induces a master

formulation equivalent to the standard master vpitbper columns
Proposition 3
Direct ExchFlowM1(SP) e M1(SP)

proof: Let (), e) be an optimum LP solution t®irect ExchFlowM1 with con-
straints (2.40) set to equalify We proceed to show that the exchanges can be
implemented by a way of transforming existing patterns authntroducingun-
proper patterns, i.e. after transformation, all cutting patteyrbat are used still
have the property that! < d; Vi.

Let ¢ be the largest item index for whieh_,;, > 0 (remember that items are
indexed in order that);, > wy > ... > w,). Letk < ¢ be the largest item index
before: for whiche,_,, = 0. Then, any pieces of for j = k,...,7 — 1 can
be transformed in a piece ofn a partial implementation of exchangge ;. Let
S={g€Q:X >0z, , =, 2! > 0} be the set of patterns that are
possible candidates for producing extra piecestbfough further cutting larger

pieces.

2Both problems, with equality (partitioning) or inequaligovering) constraints, admit the
same optimal solution.

2.6 Comparing the formulations for the standard cuttinglsto 65

We need to show that sét contains candidateswith z! < d; so that after
increasingz! the cutting pattern remainsroper. We show this by contradic-
tion. Assumex! = d; Vq € S. The master constraint associated with item
DirectExchFlowM1 can be re-written as

fo Ag + Z i Ay +e1;=d;
qes a€Q\S

because; i1 = 0. Aszi = d; Vg € Sand}_ o s2] Ay + €im1; > 0, this

implies that
D diN < d;
q€eSs
which in turn implies that
> A <1
qeSs

But this is a contradiction sinag,_; ,, = 0 implies that
sz,i—l)‘q > dy,i—1
qes
whered,, ;1 = Y., d;; and because columns greper
de,i—1>\q > szﬂ-,l)\q ;
qes qeSs
thus,> " .5 A, > 1. Thus, we have established the existence of candidate oslum
q € S to which a piece ofi € {k,...,i — 1} can be transformed in a piece of
i while keepingproper patterns. In practice, one would choose the largest index
j such aslg € S with 2§ > 0 andz{ < d;. Then one defines a patteghas
follows: initially setz? = 29, then redefine:j.' =i —1 andz? = 27 4+ 1. The
associated variable value is setgs= min{\,, e¢;,_1,;}, while \, is redefined as
Ag = Ay — €1, ande;_y ; is redefined a8;_;; := e;_1; — A\,. The process is
reiterated until all exchange variables are brought to.zero u
Thus, formulationDirect ExchFlowM1 does not yield any relaxation com-
pared toM1. As DirectExchFlowM]1 is a relaxation ofAgregCovM1, the
same result holds fadgregCovM1.

66 Reformulations and column generation

Corollary 2
AgregCovM1(SP) X5 M1(SP)

However, once we allow exchanges with multiplicity larges one, the result is

lost:

Observation 4
LP
ExchFlowM1(SP) 4 M1(SP) .

As shown by the following exampleZxzchFlowM1(SP) can be a strict re-
laxation of M1(SP) because exchanges implicity amount to usingproper

columns

Example 6 Letn =2, W =1 and

w1 = % ‘ dl 1
Wo = % ‘ dg 2
Consider feasible cutting patterns
ot = (1,1)
2% = (0,2)

and exchangeé — 2 with multiplicity 1, » = 2, as represented in the following

figure 2.6.

The optimal solution for the linear relaxation of [Ml(SP)iI% with associated
solution\; = 1, A\, = 5. While the optimal LP solution for [ExchFlowM1] is;

with associated solution; = 13, €15 = 3. -

Observation 5
ExchVectM1 Ly Fi.

2.6 Comparing the formulations for the standard cuttinglsto 67

€1,2

Figure 2.6: Replacing one unit of item 1 by two units of itenm2utting pattern 1

Indeed, one can can show that for all LP solutiarte ExzchVectM1(SP) there

exits a LP solutiorx to F'1 of same cost.

The above results are summarized in Table 2.1 with

Zg]g S Zf'}agchVectMl S wL.D S LD S ZIP

Finally, let us observe that all the above LP transformatido have their
equivalent counter part in IP term. Indeed the above transfbons preserve

integrality of the solution. But, one can say more in termioéquivalence.

Proposition 4
Restr ExchVectM1 L M1

proof: Let (A, p) be an optimum IP solution t&estr ExchVect M1 where the
master constraints are set as equality constraints. Lehos &iow it can be
transformed in an IP solutioX' to M1 with the same cost. If = 0, the result

is trivial. Assume thereforéle € E : p. > 1. From among all those, select

68 Reformulations and column generation

e € E; for some: such thatZeEE a$ p. = 0. There must exist such for
otherwise there would be a cyclic series of exchange (whsch ¢ontradiction
with our assumption thaty, > w, > ... > w,). Thus, the master constraints
imply > co i\, > d; + 1. Then, take any pattempwith A, > 1 andz{ > 1,
define a new patterp’ from ¢ by settingx;?' =z —1and ;nj =] + ajvj

and take it\y = min{\,, p.} times. Thenreset, :== A\, — Ay, p = pc — Ay

and reiterate until all variables. are bring to zero. In the process we will
not introducedunproper pattern because the master constraints set as equality
constraint guarantee that columns entries plus exchardjgadremain below or

equal to item demand. n

As aresult all stronger master formulations are also |Pvaedemt to)/ 1. But,

formulation ExzchVectM1 is not IP equivalent td/1

LP bound | Formulation

ZF1 F1(ISP1), F1(BSP1)

ZEgehVectM1 | ExchVectM1(SP)

uLD R1, M1(uISP1), M1(uBSP1), M1(UFSP1),

ExchFlowM1(SP), RestrExchVectM1(SP)

LD M1(ISP1), M1(BSP1), AgregCovM1(SP

DirectExchFlowM1(SP)

Table 2.1: LP Bounds

2.7 Reformulations of the variant with intervals on prodoiat 69

Observation 6

P
ExchVectM1 4 M1(SP) .

As shown by Example 4, where the IP solutiodochV ect M1 is 4 while the IP

solution toM1 is at leasb.

2.7 REFORMULATIONS OF THE VARIANT WITH INTERVALS
ON PRODUCTION

When the production is free to take value within an intertred, waste must be set
explicitly as the objective. Hence, the objective valueadanger integer and its
LP relaxation cannot be rounded up. The packing constréanfercing an upper
bound on production) induce a new set of dual variables. Thesgstem remains
the same than for the standard cutting stock problem. Theceéx@formula-
tion resulting from the sub-system formulation [ISP1] is tompact formulation
presented in Section 1 [F2], denoted F2(ISP1), while [BS§hi¢s rise to the

following binary formulation:

70 Reformulations and column generation

K n o n;
Z = min Z(yk W — Z Zmij w; Tijk)

1 i=1 j=1

B
Il

Y%
| &

K n;
[F2(BSP1) st > > myxip Vi

k=1 j=1

K n;
E E mij xijk ; Vi

< d;
k=1 j=1
n o n;
mi;w; T < Wy, Yk
i=1 j=1

3
j=1
Yk € {O, 1} Vk

Tijk S {O, 1} VZ, VJ, Vk

An explicit arc-flow formulation, such as [R1], can be obtinfrom [uFSP1].
The objective being the minimization of the waste, the wamstes from set

{(u, W +1):u=0,...,W} weighted by the associated waste incurred define

2.7 Reformulations of the variant with intervals on prodoiat 71

the objective. The resulting formulation [R2] is

ueN
[R2] s.t. Z Lo — Z Tyw = 0 Yoe N\{0,W+1}
(u,v)€A (v,w)eA
Z Toy = Z TyW 41
veEN vEN
Y oww = dp Vi

Vi

(]
8
g
IN
&

Lyw € N V(U, ’U) €A

The implicit reformulations for the standard cutting stqmioblem can be
adapted for this variant. When the sub-system is defined ®%1]] or [uISP1],
the reformulation gives rise to the following master probie

ZM? = min Z(W - z:(wZ z})) A (2.52)
qeQ 7

(M2] st > al\, > d; i=1,...,n (2.53)

q€Q
doalN < d; i=1,...,n (2.54)

q€Q
YN <K (2.55)

q€Q

N € IN Vg e @ (2.56)

When the subproblem is defined by [BSP1] or [uBSP1] (respSREH), we must

replacexf by Zj mijx?j’ (resp'Zuv:v:quwi x?w '

72 Reformulations and column generation

Let m; andv; be the dual variables associated respectively to the cayeri
(2.53) and packing (2.54) master constraints. Since thectila¢ is to minimize
the waste, the reduced cogf, of a cutting patterg € @ is:

=W — Z(wZ +m —) .
i=1

Using [ISP1], the resulting pricing subproblem is:

€(W, I/) = maX{Z(wi+7ri—l/i)a:i : Z’LUZ.CL'Z < W, T < Uy andxi € IN for i = 1, R
=1

=1
The Lagrangian relaxation of packing and covering constigives

L(m,v) :minZ(W—Z(wi+m — ;)) >\q+iwi%—iw@
i=1 i=1

qeQ 7

YN <K

q€Q
A € IN Vg € Q)

that leads to Lagrangian bound:

n

L(m,v) =Y (m d; — vi d;) + min{K (W — &(m,v)),0}

=1
As the objective value is not necessarily integer, thesegdragian dual bounds

cannot be rounded up as for the standard cutting stock proble

The dual of the master problem is:

mangwi—@m—f(a (2.57)
i=1
D2 s.t. Zw? (wi+m—v)—o < W Vq € (§2.58)
i=1
m, v; > 0 1=1,...,n

2.7 Reformulations of the variant with intervals on prodoiat 73

The master formulations with exchanges can be adapted, dbawe to take
into account the waste induced by the replacement of an itfeambther of larger
width in the objective. So the aggregation of the coveringjjgacking constraints
cannot be used here, but the master problem can be formwlattedhe use of
exchange variables,. Their cost is the waste induced by the exchange of one

item by another. The master formulation with exchange flovedes becomes

mmZW Zwli Z (wi,uijw]')eij

q€Q (z,j)EA““(i)
[ExchFlowM?2| S.t.
Z x;l)\q + Z HEiChi > i + Cij Vi
q€Q (k,)eA~ () (4.4)EAT(3)
Z x;l)\q + Z i€k S E’L + el] Vi
e (ki)eA= (i) (3,4)EAT(3)
S < K
q€Q
A € IN Vg e @
€ij e IN V(Z,]) € A.

The dual constraints associated to variaklegsow take the form:
(U)Z‘—i‘ﬂ'i—%) Z \‘—J (U)j+7Tj—Vj) VZ,(Z,j) EA(Z)

which means that the value of item(its coefficient in the column generation
subproblem) must be greater or equal to the value that comlddained by

converting item into ;; pieces ofj.

74 Reformulations and column generation

We can also use a formulation with exchange vectors but ther laow in-

volves a cost. The aggregate master takes the form:

min Z(W - Z(wz z})) Ay + Z Z w; ({8 — af) pe (2.59)

q€Q i ecE i

[ExchVectM2Disagg s.t.

SoalNg +) (af —15) pe > d; i=1,....n (2.60)

qeQ ecE
fo)\quZ(&f—Tf)peSEi i=1,...,n (2.61)
qeQ e€EE

N <K

q€Q

A € IN Vg € Q
pe € IN Vee I

and it amounts to add in the dual problem the constraints:

Z(wri‘?ﬁ—%)(&f—rf) <0 Ve e E
The relation between these different formulations remtirsame as for the

standard cutting stock problem.

2.8 REFORMULATIONS OF THE MULTIPLE WIDTHS CUTTING
STOCK PROBLEM

We consider here several wide roll widths, so we define a gates1.X; for each

wide roll typel, | = 1, ...L, whereL is the number of different widths. A formu-

2.8 Reformulations of the multiple widths cutting stock ipieim 75

lation for the subproblem corresponding to the wide rolktys:

[ISP1] whereX = {> w; z;

i=1

A
=

VAN
&
SN
I
\'P—‘
3

X

Sub-system formulations [BSP1], [FSP1] and [ESP1] are tadajm the same
way, and are denoted as [BSPL1I], [FSP1l] and [ESP1I].

The arc-flow formulation [R1] becomes:
L
min Z 2
=1

L

Zzl if v=0

=1

R3 S.t. xuv_ I"U’LU -
[123] (g};A (U%:GA —z for =W,V
\ 0 otherwise
(u,v)EA(1)
2l S Kl)

Tw € IN Y(u,v)€A

2] S N Vi

wherez; corresponds to the number of wide rolls of widih used.

76 Reformulations and column generation

The master formulation resulting from the Dantzig-Wolfeo@position is
the same as the disaggregated formulation [M1Disag] forsthedard cutting
stock problem. Patterns of same width can be aggregated teoetiminate the
symmetry. We assume that wide roll are sorted in non inangasider of their

width: W; < W, < ... < Wy, then an aggregated master formulation is:

ZM3 — min Z Ag

q€Q
M3] st Y alN > d i=1,...,n
q€Q
l l
DD W) N, <) K I=1,...,L
k=1 qeQ k=1

whereK; is the number of stock wide rolls of tyge

The dual of the master formulation [M3] is:

L l

maxid,» = ZZK’“ o}
i=1

=1 k=1

n L l

D3] st aflm—> Y s(WI<Wyo < 1 Vg eQ
=1 =1 k=1

m > 0 i=1....n

(o) Z 0 lzl, ,L

2.9 Reformulations of the variant with technical restoos 77

And the Lagrangian’s bound obtained by relaxing the cogeconstraints is:

rnuljiz 1——2{:7Q xl) Ag 4—2{:7Q ’

qeQ i=1
l l
DD W) N, <) K I=1,....L
k=1 q€Q k=1
N € IN Vq € Q

whose solution is

- Zw d;+ Kimin{(1—¢'(7)),0}

Exchanges can be modeled on the same way that for the standtng) stock

problem.

2.9 REFORMULATIONS OF THE VARIANT WITH TECHNICAL
RESTRICTIONS

The side constraints resulting from the technical restm& are set in the sub-
systemX to define valid cutting patterns. Formulation [ISP1] addihg con-

straints on the minimum width to be cut and on the maximuminaidly of a cut

78 Reformulations and column generation

set becomes:
n
glgg Zl Di T
1=

i=1

IN

Wma:c

i=1

€

€

The multiple class binary transformation is yet valid, iadis to the following

subproblem formulation:

n
maxg ii Liq
veX Dij Tij

=1

n o n;

[BSP4] whereX = {szn < Z Z W; M5 Tij

i=1 j=1

n o n;
E E mij wij
i=1 j=1

ng
E mij ZL’ij
Jj=1

wij

S Wmaa:

<C

< u;, 1=1,...n

€ {0,1} i=1,...n,j=1,..

The subproblem can be solved by dynamic programming. Heheethird

formulation [uFSP1] can be adapted so as to model the lopgéistproblem un-

derlying the dynamic program. We define the arcs det: U; A(7) U{(u, W+1) :

U = Winin, - - -, Winaz |, t0 Specify that the arcs corresponding to the waste should

have their head on a node aftéf,,;,. The cardinality constraint must be added

2.9 Reformulations of the variant with technical restoos 79

explicitly to the formulation giving rise to a two resourcgamstraints longest path
problem.

The sub-system [ISP4] leads to the compact formulation, [&ddl [BSP4] to
the binary compact formulation [F3(BSP3)] with the follawi additional con-

straints:

n

Z imij W Tijk > Whin e Yk

i=1 j=1

n

i=1 j=1
The implicit reformulations remain the same as for the vanaith interval
on production since the technical constraints are set insthesystem. The

Lagrangian bounds are then also equivalent to those givemnqusly.

The formulation with built-in exchanges do not extend naltyito the present
variant with additional technical constraints in the sutgpfem. Even if we relax
the minimum cut width constraint that can mostly be intetguleas a “business
rule”, that remains to enforce the cardinality constra@he to one exchange do
satisfy the latter. But the more general exchanges of faatiar [ExchFlowM1]

or [ExchVectM1] do not extend to this variant.

80 Reformulations and column generation

2.10 REFORMULATION OF THE MINIMIZATION OF SETUPS

Let xo be the multiplicity of cutting pattern, a formulation for the subproblem

is:

n
max E Pi T; g
zeX 4 7

1=

IN
S

[ISP5] whereX = {> w; z;
=1

IN
&
I
—
N

To Ty
T; € N 2:1,77,

o € W}

The sub-systenX leads to the compact reformulation [F5].
This subproblem can be reformulated as a bilinear binarpgaek problem. The
x; decomposition is the same as for [BSP1], whilefgmwe apply the change of

variables:

To = E my ol
l

2.10 Reformulation of the minimization of setups 81

with zo; € {0,1}, my = 22 VI = 1,..., |logy(z¢™*®)| + 1 and zy™* =
min{max; d;, K }. The binary reformulation takes the form:

n ng
max iil Lol Liq
X E E § Dij i

=1 =1 1
i=1 j=1

n;

E E my My Tij Lol
l

Jj=1

IN

u, t=1,...n

Tij S {0,1} Zzl,Nle,nZ

ol c {0,].} VZ}

As for [BSP1], this reformulation does not allow to improvetLP dual bound,
but the interest is twofold: in our definition of branchinghemes and to obtain
a linearized formulation. Indeed the non-linearities carelbminated introducing

binary variables;;; = x;; x¢;. Letm;; = m;m;;, a formulation for the Linearized

82 Reformulations and column generation

Subproblem is:

n z
max g E E il Zidl
2EX pl] 1]

i=1 j=1 |

i=1 j=1
nq
E E M1 Ziji
j=1 1
Zijl
wij
Zijl

Iz‘j —|—I01 —1

Yi

Zoi

Zijl

IN

IN

IN

IN

IN

IN

Zoy
Zijl
{0,1}

{0,1}
{0,1}

{0,1}

Vi

Vi; Vg; Vi

Vi, Vg

Vi V5 Vi
Vi V5 VI
Vi ¥

Vi
Vi

Vi ¥ Vi)

This sub-system formulation leads to a linearized binamgact formulation

2.10 Reformulation of the minimization of setups 83

[F5’]. For the variant with tolerance on production it takke form:

K
Z = min Z Yk
k=1

v

K
[FS’] S.t. Z Z Z Z my My Zijik @ 1=1,...,n
k=1 l

i g

IN

K
E E E E mp Mgy Zijik dZ izl,...,n
k=1 l

i

Z my Toge W — Z Z Z myp my; W5 2441k < R
) i g1
szijwixijk < Wy k=1,... K
i—1 j—1
Z Z my Mg Zige < d; t=1,...,n
i1
Zijik < Tijk Vi; Vg5 Vi
Tk < Z Zijlk Vi; Vi
!
Zijik < Tow Vi Vj Vi
Tigk T xok — 1 < zZijk Vi Vj Vi

Lijk S {0, 1} VZ, VJ, Vk
e € {0,1} k=1,... K
e € {0,1} i, Vi, VIV

zo € {0,1} VIVE

84 Reformulations and column generation

The Dantzig-Wolfe reformulation leads to the following rteagproblem:

min Z Ag

qe@
[M5] st > alaln, > d; i=1,...,n (2.62)
q€Q
Za:gx?)\qu i=1,...,n
qeQ

Z(W—Zwixf) g\ < R

q€eqQ
Sa s K
q€Q

A € {0,1} Vg e @

£

i

wherez! € {1,... min;{|

I}

T

= Q)

Using [ISPS5] the reduced cost,, of patterng is then

Eq:1—Z(m—yi)xgw?+a(W—Zwix§)wg

and the Lagrangian bound obtained by the relaxation of thergwy constraints
is:

n

L(7r):minZ(l—Z(awier—Vi)xfngrang))\q—l—Zm@—ZmEj—aR
i=1 i=1

qeQ =1

YN <K

q€Q

N € {0,1} Vge@

Its solution is:

2.10 Reformulation of the minimization of setups

L(m) =Y mdi +min{K (1 —&(m)),0}

=1
Exchanges can be modeled as for the standard cutting stoblepr.

85

86

Reformulations and column generation

KNAPSACK SUB-PROBLEMS

The integer subproblem formulation [ISP] can be solvedgistandard solvers,
as the classic depth-first-search branch-and-bound #igomof Horowith and
Sahni (see [28]) or a dynamic programming recursion. Formoumerical tests,
we used a specialized branch-and-bound algorithm for tharpimultiple class
knapsack problem, operating a binary decomposition ofrikeger variables;.
The algorithm is adapted form that of Horowith and Sahni lher $tandard binary
knapsack problem (it takes into account the class capgkit@irthermore, as the
binary components of a class have the same ratio profit pghivehe LP bound

is computed with a greedy algorithm for the bounded integapsack problem.

However, during the branch-and-price procedure, the dnicton of branch-
ing constraints in the master implies some modificationeédknhapsack subprob-
lems, then standard solvers can not be used anymore. Thehbrgrrules that

we use were presented in section 2.3.7. Branching rule dimaseolumn subset

88 Knapsack sub-problems

Q = {q € Q : z7 > 0} requires the introduction of new binary variables in the
subproblem, the setup variabje= 1 if z; > 0 with an associated set-up cost in
the objective. Branching rule 2 based on column subset {ge@: x;?j =1}
requires working with the binary form of the knapsack praofbleThen, the sub-
problem takes the form of a variant of the knapsack problé&e ntultiple class

binary knapsack problem with setup costs:

n o n;

maxz Zpij Tij — Z fiyi
i=1

i=1 j=1

i=1 j=1

A
S

g
E Mmgj Tij S U; Y; z:l,...n
Jj=1

IA
&
-~
Il
\'P—‘
E
<
I
\'P—‘
3

wij

m

Lij {O,l} 2:1,77,,]:1,77,1

Yi € {0,1} 1=1,...n

The modifications required by branching rules 3 based onnmolsubset
Q={¢geQ:27>0 andx? > 0} however, give rise to a subproblem that can

no longer be treated with algorithms specialized for knekgaoblems.

The above formulation is a generalization of the multideess binary
knapsack problem studied in [42]. In this chapter, we prepesact solution
approaches for this problem. In fact we consider a slightbyergeneral model
for which a setup times; > 0, and a setup costf; € IR are associated with
the use of product. Items are partitioned into classes associated with each
producti. A setup time and cost is defined for each class. The item wsigh

in each class are a multiple of a class weight. The total iteagkt that

89

can be selected is bounded (we consider explicit lower amerupoundsa;
andb; for each product). The objective is to maximize the sum of the profits

associated with selected items minus the fixed costs inttoresetting up classes.

The resulting model is called the multiple class binary lszagk problem with
setups (MCBKPSU). It takes the following form:

n

max Zzzpij Tij —Zfiyi (3-1)

=1 j5=1 i=1

[MCKPSU st.
i(nz mijwi Tij+siyi) < W (3.2)
i=1 j=1
j=1
Tij < forlzl,nandj:17,7(34)

z;; € {0,1} fori=1,...,nandj=1,...(3p)
y, € {0,1} fori=1,...,n, (3.6)

We show the extend to which classical results for the kndppaablem can
be generalized to this variant with setups. We give uppentsthat generalized
that of Dantzig. We show that the classic branch-and-bougdrighm of
Horowith and Sahni extends to this variant in the cgse> 0. We provide
dynamic programming algorithms for the general case. Tresséts are useful to

build good solvers for the particular case of [BSUSP1] (wher 0 anda; = 0).

In [32], we further develop the present chapter. We alsoidenshe special

case that arises when each class holds a single item, i.estahdard integer

90 Knapsack sub-problems

knapsack problem with setups, and its continuous versionspécial case of
the integer knapsack problem with setups was studied byl 8ued. [34]: they
assumef; = 0 andw; = 1 for all .. They discuss the complexity of special cases
to explore the frontier of easiness. They generalize theZigia upper bound to
this case and propose a primal heuristic. Both are used tiongep a depth-first
search branch-and-bound algorithm that generalizes thdowitz and Sahni
[16]. Their motivations for studying this model were apptions in finance and

in machine scheduling.

A variant of model MCBKPSU is considered by Chajakis and @Gard [7]
wherem,;; = 1 Vij, there are no class bounds (= 0 andb;, = oc), but the
item weights are not restricted to be a multiple of a clasgteiThe application
that motivated their study is the scheduling of parallelelsied machines with
setups where this knapsack problem arises as a subprobleay. pfopose and
test two approaches: either a dynamic program solver or astage approach
where the problem is transformed into a standard multipeceh0-1 knapsack
problem and solved either by dynamic programming or braamafi-bound. The
transformation consists in defining a “pseudo item” for edominant feasible
solutions within a class. These dominant solutions are tidftes of a dynamic
programming recursion for solving the binary knapsack [@weidefined on a sin-
gle class. There is a pseudo-polynomial number of them. Tdwyd that, for
correlated instances with reasonable knapsack capa€i@y,(fhe direct dynamic
programming approach is the most efficient. When the numbianalies or the
knapsack capacity increases the two-stage approach usingiband-bound for

the second stage is the most efficient.

3.1 Characterizations of optimal solutions for the muétiplass binary knapsack with set@fs

3.1 CHARACTERIZATIONS OF OPTIMAL SOLUTIONS FOR
THE MULTIPLE-CLASS BINARY KNAPSACK WITH
SETUPS

We can make the following observations and assumptions:
Observation 7 If a; = 0, then we can assume that > 0 for all ;.

Since, ifa; = 0 andp;; < 0 for some binary itent:, j), z;; = 0 in any optimal

solution. -

Assumption 1 (without lost of generality) f; < max{zj Dij Tij Zj Mij Tij <
bi, xij € {0, 1} VJ}

Indeed, |ff, > IIlaX{Zj Dij Tij Zj Myj Ty < bi, Ti; € {0,].} Vj} for somey, it

is optimal to setr;; = 0 Vj andy; = 0. n

Observation 8 There exists an optimal solution to MCKPSU where for eachsla

i one of the following cases arises:

(ZZ) ijij Tij > fz andyi =1.

Indeed, ifzj pij Ti; < f; andy; = 1, the solution can only improve if one sets

Tij = 0 Vj andyi = 0.]

An optimal solution may havg, = 1 while thez;;’s are set to the minimum

value that allows to satisfy the class lower boupndhich could be zero. However,

Observation 9 whena; = 0 and f; > 0, there exists an optimal solution where

Y = 0 Whenzj Tij = 0.

92 Knapsack sub-problems

The LP solution to MCKPSU can also be characterized. Thevoeiig obser-
vation derives from the assumption that all items have a et is a multiple of
the class weight. Hence, the capacity consumption of ai;laSSwi(Zj MijTij),
is the same for all solution;;’s yielding the same total multiplicity _; m;; z;;.
As a result, the optimization within each class can be dodepandently of the

global optimization of the use of the knapsack capaldity

Observation 10 Consider solutions to LP relaxation of MCKPSU. Their prejec
tion in the subspacér; = >, m;; x;;, y;) associated with class are convex
combinations of the following extreme points:

(ZZ) T; = Zj My Tij = Q4 andyi =1
(ZZZ) XT; = Zj myj Tij = b; andyi =1
If the profit per unit of knapsack capacity of extreme soluti@) is less than that
of (ii1), i.e.,
Py — fi < pf — fi
w;a; +8; — w; b+ s

where
pi = max{Z Pij Tij - Zmij wij = ai; 1y € [0,1] Vit
j j
and
Py =max{y py i Y my ay = by, xy € 0,1 i}
j j

then one only needs to consider solutions that are convekicaion of casesi)

ep?*fz‘ pb—fi
W; a;+5; w; bi+s;

and (#i7). The reverse case, i.

fi < 0. Moreover, Wherf_?’fi > Poh e projection of the LP solution in

i @i tS; w; bi+s;’

the subspace associated with claséll be in the convex hull of casé€$) and (i)

, can only arise ifa; > 0 or

while its knapsack capacity usage is less or equéttpa; + s;).

o —fi = pi—Jfi

Wilaits; w; bits;

Figure 3.1 illustrates both the case where the s and vice

versa.

3.2 Upper Bound of the multiple-class binary knapsack wettgs 93

p;—fi pi-’—fi
: Wi ;+S; pg—fi o Wi bi+s;
i o W; bits; ‘

pi—rfi

DWW aitS;

(b)

Figure 3.1: Ratio of classprofit per unit of knapsack capacity consumption

3.2 UPPER BOUND OF THE MULTIPLE-CLASS BINARY
KNAPSACK WITH SETUPS

We show here that, under some restrictive conditions, thiedud for MCKPSU
can be computed using a greedy algorithm. In the continuelaxation of
MCKPSU, item(i, j) can yield a profit per unit of

]m_m_f pijnzij_fi

w; a; + S; w; by + 85

either

or a convex combination of these two, depending of whether dontributing
to the class effort of targeting extreme solution) or (:ii) of Observation 10
or their combination. Casgi) can be split in two sub-cases, eithgr> 0 (let

={i:a >0}orf, <0(etl/ = {i:a = 0andf; < 0}). Thus,
I*nI’ = (. Inthe second sub-case, the targeted class solutionis 0, y; = 1).
We can represent this solution directly using variajqﬁe: Lif (z; =0,y = 1)
and zero otherwise. Similarly, we defing = 1 (defined fori € I¢) if item
(1, 7) contribution is to achieve extreme solutign) of Observation 10 witla,; >
0, while 2!, = 1 (defined fori € I = {1,...,n}) if item (¢, 5) contribution
is to achieve extreme solutidrii). With these notations, the LP relaxation of
MCKPSU can be reformulated as

maxz Z Dij — mw z” + Z Z Pij — m” Z fzyZ (3.7)

el j=1 i€l j=1 icelf

94 Knapsack sub-problems

s.t. (3.8)
St S+ 0D Bk Yl < WG9
iele j=1 iel j=1 ielf
S Mij o | Mij p . a
Z[Ayt S 1 viel (3.10)
7j=1
Zb—éz§j+y{ <1 Viel (3.11)
j=1
zi+zl, <1 Vel
Z. € [0,1]Vie 1% j
2, € [0,1]Viel,j
yl e [0,1]vViel (3.12)

A solution(z, y/) translates into a solution for the LP relaxation of MCKPSU

as follows:

_ .a b _ Mg mij » f
Ty = 2 + z;; and yz—Z(a zy; + b i) +y;

Constraints (3.10-3.11) are required to enfogcec [0,1]. Observe that con-
straints (3.3) are built in the definition of the change ofiafales. Indeed, if we
replacer andy by their expression in in (3.3), in the case; > 0, we obtain:

m; m; s

a ij b Z] Z] b vJ

a; § (23 — 2y b <§ mi; (2, +zw)< b § zi; — + 2 b->
7 7

- a;
J

which is always satisfied becauge< 1 in the left-hand-side angj > linthe
right-hand-side. In the casge = 0, (3.3) is trivially verified. Hence, we have

shown that

Proposition 5 the LP relaxation of MCKPSU is equivalent to the continuaass r
laxation of binary knapsack problem with class bounds an8& S@nstraints (3.7-
3.12).

3.2 Upper Bound of the multiple-class binary knapsack wettgs 95

On one hand, it is known that the LP relaxation of binary kiaaggproblem with
SOS constraints admits a greedy solution [17]. On the othadhVanderbeck
showed in [42] that the LP relaxation of a binary knapsackwiéss bounds can
also be solved using a greedy procedure. But, solving pnofe7-3.12) requires
dealing with both SOS constraints and class bounds. We haveund a greedy
procedure to solve this case involving both complexitiestdad, we develop a

greedy LP solution for the special case where SOS condraiatredundant.

We make the simplifying assumption that all clagems target a filling up to

b; because this corresponds to a better ratio:

Assumption 2 (restrictive)

ij

a; b;
Pij = — i Pij o= — fi
< y V(i i
w;a; +8; — w; b+ s; (7 3)
This assumption implies that the aggregate class coniwitbus in the case

illustrated by part (b) of Figure 3.1.

Observation 11 Under Assumption 2, problem (3.7-3.12) admits a solution

where all variables:; and y! have value zero.

Indeed, if Assumption 2 holds angl > 0, one can modify the solution by setting

2! = 0 and zfj' = 2 + % zg;. This solution modification is feasible
w; B mij

with regard to knapsack constraint (3.9) by constructiondso with regard to

constraint (3.10) as it can be easily checked. Moreoverptbét value of the

modified solution is not less than the original. Similarfyyj > 0, decreasing its

value allows to increase somg value of better profit ratio. u

Under Assumption 2 we can give a greedy LP solution to MCBK&tend-
ing the result of Vanderbeck in [42].

96 Knapsack sub-problems

Proposition 6 If Assumption 2 holds, an optimal solution to the LP relagati
of MCBKSU is given by the following procedure. Sort the itéimg) in non-

increasing order of their ratio:

_ iy
(P = 3, ™) (3.13)
(w; + bi> mij
Letm =), n; andk = 1,...,m be the item indices in that orderind{" is the

set of itemg: that belong to class
K'={k: 3je{l,....,n;}withk = (i,5)} .

Fori € {1,...,n}, letthe critical item for class bec? € K, be such that

> mp<bbut Yo my>b (3.14)
keKi, k<cl keKi k<c?
LetK'(l)={ke K':k <cl?andk<l} I°(D) :{7; :cﬁ? <1}, and
, .m
Z Z w; + —) my + Z w; + ZkEK ® 2 . (3.15)
i keKi(l icIb(l) i et

Then, let the global critical iteny; € {1,...,m}, be the highest index item such
that

%?W>W (3.16)
wherei,. refers to the class containing the global ccritical item (icee K*) and

Wi(c) <W but W(c)+ (w;, +

set
T, = 1 fork € K'(c)andi = 1,...,n(3.17)
1)
T = o (b; — Z my) fori e I%(c), (3.18)
i keK(c)
1 ,

c — 5. W W f KZC 319
T wic+bzc((c)) if c e (3.19)
x = 0 otherwise (3.20)
y = 1 fori € I°(c) (3.21)

ic(e) M + M X ,
g, = 2kerieo M fori:ce K (3.22)

¥y = 0 otherwise. (3.23)

3.3 A dynamic program for the multiple-class binary knajasaith setups 97

Proof: Under the assumption made, problem (3.7-3.12) involvey tmé =,
variables. Therefore it admits a greedy solution as prongdd]. Converting the

greedy solutionr into the original variables andy provides the desired resuk.

3.3 A DYNAMIC PROGRAM FOR THE MULTIPLE-CLASS
BINARY KNAPSACK WITH SETUPS

A solution by dynamic programming assumes integer dgtav;, andWW € IV.

Let us first consider the unbounded case where- 0 andb; > VVIU;SJ for all

i. Then, one can write a dynamic programming recursion whe(€') defines
the best value that can be achieved using items from élassl1, ..., i with a
capacity consumptiot’ and V% (C) defines the best value that can be achieved
using items from class = 1,...,7 — 1 plus at least one item among the fiyst
items of clasg, with a capacity consumptiofi. The V% (C) andV(C') values

can be computed recursively as follows:

VIC) =max{ VVI(C), VVHC —wimy) +piy,
Vi‘l(C —w; Myj — 8;) — fi + Pij} (3.24)
VA(C) = max{ VH(C), VI"(C), VITHC = si) = fi}-

Such dynamic program requirgs(> ,n; W) operations. Observe that this
complexityO (>, n; W) does not imply that the multiple class problem requires
a higher complexity than the integer knapsack problem (tuictvthe unbounded
problem can be solved i®(nI1)). Indeed, the input data file is of length

proportional toy . n; since it includes the description of the profit valyes

For the bounded case, one must first solve a knapsack subprokithin

each class before solving the overall problem: UétM) be the optimal value

98 Knapsack sub-problems

that can be achieved with classtems using a multiplicity oexactly M units.
U'(M) can be computed by dynamic programming: Initially// (0) = 0 V5 and
UL(M) = —oo for M = 1,...,b; then, one set§/’ (M) = U~ (M) for
M =1,...,m;; —1and one computes

U (M) = max{U" (M), U (M — my;) + pij} (3.25)
M =my;,...,b;andforj =1,... ,n;. Then
U' (M) =U""(M) YM . (3.26)

These computations requirégn; b;) operations for each clags Therefore the
overall complexity for computing all th€* (M) is O(3", n;b;) (which is bounded

by O(3-, n,W) asb; < [17]). As an aside, observe that when; = 2/~ Vi, j,

a given multiplicity M can only be obtained from a single combination of 0-1
items (i, j) andU*(M) can be computed directly, although this does not change
the computational complexity. Frobi'(A/) values, one can computé (C'), the

best value that can be achieved with items of clagp toi and capacity”"

Vi(c) = maX{Vi_l(C)a ai?ﬁgbi{vi_l(c —w; M —s;) + UZ(M) — fi}}-

N

y;=0
1

~—
yi=

(3.27)
This requiresO(nW max;{b;}) operations (which is bounded ky(n1¥?) but
can be much smaller tham(n17?) in practice).

When an integer knapsack problem is transformed into aypmaitiple class
knapsack problem one can treat the class boundsd b; implicitly and use
the dynamic recursion (3.24) for the unbounded case to hdrmin the lower
complexityO(> . n; W). Indeed, in such case, the profit is defined for the class
and not for the 0-1 items, therefore we can assume- 0 for all : (quantity

a; can be incorporated to the fixed cost and weight). To elinsithé upper

3.4 Primal heuristics for the multiple-class binary knaggsaith setups 99

boundb; one just needs to amend the 0-1 transformation defined by. (8¢t

n;, = |_10g2 bZJ—Fl andmij =9i—1 fOI’j = 1, R ,ni—l butmim = bz_zy;zl myj.

3.4 PRIMAL HEURISTICS FOR THE MULTIPLE-CLASS
BINARY KNAPSACK WITH SETUPS

In the rest of this Section, we make the following assumption
Assumption 3 (restrictive) f; > 0 forall i .

Furthermore we further assumg= 0 for all ¢ for simplicity.

Primal heuristics can be developed based on decomposing dhém into
knapsack subproblems for each class. We assume that chassgsrted by non

decreasing ratio
pi— fi
w; b; + s;
wherep;, = max{szij Tij - Zj mi; ri; = b, x; € {0,1} Vj}, orits LP
relaxation value or an estimate obtained by a greedy algoriand the knapsack
is filled with these classes in this order up to reaching d@paEor the critical
class, one solvesax{Y " pijui; - > mijxi; < | =], @i € {0,1}Vj} (where

C'is the residual capacity) either exactly or with a greedycpdure.

The alternative approach is to base the heuristic on thedgresdering of
the items, (3.13), that was used for the LP solution. It afldev account more
accurately for difference of profit ratio within the samessles (cases whepg #
mp—] and the difference is important). On the other hand, thissg@pproach

is quite myopic with regards to the setup coft,and the setup capacity usage,

100 Knapsack sub-problems

s;. Indeed, the non-increasing order of ratio (3.13) is a gremuproach for a

relaxation whose formulation is

maxzz (pij — m,j Zij (3.28)

s.t. ZZ (wi+—=)mi;zi;, < W (3.29)
=1 j5=1 Z
z; € {0,1} Vi, j . (3.31)

Problem MCKPSU (under Assumption 3 and with = 0 Vi) and problem

(3.28-3.31) admit the same LP solution has shown above hihesame integer
solution. A partial feasible integer solution to (3.28-B.8an be transformed into
a feasible for MCKPSU by rounding up the impligitvariables if the residual

capacity allows it.

The latter approach is used in the primal heuristic of Takle B/e implicitly
setz variables tol in greedy order and we keep tract of the setup fraction that
has not yet been accounted for. We use the following notatigndenotes the
class index of itent, C' denotes the remaining knapsack capacitythe residual
upper bound on clagstems, S the reserved knapsack capacity for setups,/and
the setup cost to be withdrew from the current prgfitOn exiting the algorithm,

a primal solution is given by vectors andy, whose value isZ — F. S and
F' can be understood as corrections needed to transform thentwolution to
relaxation (3.28-3.31) into a solution for MCKPSU.

In the application for the column generation subproblemUB81] (where
costsp;; have been modified as a result of branching (typical)y# n{%) while
s; = 0 Vi and f; takes non zero value only when we branch on a class), thedecon

approach based on setting individual items is likely to beevedfective than the

3.5 Branch-and-Bound for the multiple-class binary knagsaith setups 101

Table 3.1: Primal heuristic for MCBKSU whefy > 0 anda; = 0 Vi

Step A :Initializations: Renumber then items(i, j) in decreasing order of
their ratio (3.13), breaking tight in favor of the itetn= (i, j) with the
largest weightv, = (w; + Z—) mj.

Letmy, = m,;, andp, = p;; — Z—jf, fork=1,...m.
LetC=W,C;=0Vi,S=0,F=0,Z=0,z=y=0,k=1.

Step B: Setting items to one:While (w;, my +s; (1 —y;,) < C —95)

and(my, < C;,) and(k < m), do

2 =1, C—= wy, S—= g my, Oy —=my, Z+=py, F—= 5= i, b+

Step C: If(k > m), STOP.
Step D: Setting item to zero: /* ((w;, my +s; (1 —y;,) > C —S) or (my > C;,) */

Let k++.
Step E: If(k > m), STOP. Else, goto Step B.

former based on setting classes.

3.5 BRANCH-AND-BOUND FOR THE MULTIPLE-CLASS
BINARY KNAPSACK WITH SETUPS

We propose an extension of the depth-first-search brandfzaand algorithm of
Horowitz and Sahni [16] to MCBKSU under Assumption 3 with= 0 for all 7.
The algorithm of Table 3.2 can be understood as a branctbandd procedure
for problem (3.28-3.31) that has been adapted to MCBKSU Wkimgacorrections
to ensure primal feasibility (as in the above primal heig)stThe interest using
relaxation (3.28-3.31) implicitly is to have a greedy ordgrof items that serves

both primal and dual procedure as required for Horowitz aaith®s algorithm.

102

Knapsack sub-problems

Table 3.2: Branch-and-Bound for MCBKSEJ) > 0 anda; = 0 Vi

Initialization:

Compute UB:

Test Pruning:

Forward Move:

Setitemto Q

Sort items in decreasing order of their ratio (3.13). kgt= m;;,

wi = (w; + Z—Z) m;j, andpy, = p;; — Z—Zf, Vk, Wyin = ming{w;, my},

C=W,C;=p¥,5=0,F=0,Z=0,z=y=0,INC =0,k =1.

LetU =72, K=C,K;, =C;Vi,and letl = k.

Step A: While(s;, (1 —y;,) < C — S) and(w; < K) and(m; < Cy,) and(l < m),
doU+=p, K—=w;,, =1+ 1.

Step B: If(s;, (1 —y;,) > C — S), dol = [+ 1 and goto Step A.

Step C: If({ > m), goto Test Pruning.

Step D: If(m; > C;,) and(w, %l < K),do

Ut=p S, K—= 1w S4,1=1+1,goto Step A.
Step E: If(m; > C;,) and(w, SUIES K), do

my
U+= pi 4 ¢, go to Test Pruning.
U
Step F: *(w; > K)* Ut=p; &
if (U <INC), goto Backtracking.

While (w;, my + s, (1 —y;,) < C —S)and(my, < C;,) and(k < m), do

If (k> m)or(C—S < wn), I* leaf node */ goto Record Incumb.

/* ((wlk mg + S; (1 — ylk) >(C — S) or (mk > Clk) */
Let k4++. If (k > m), goto Record Incumb. Else, goto Compute UB.

Record Incumbif (Z — F > INC), thenINC = Z — F and recordz, y).

Pre-backtrack:

Backtracking:

If (k> m),do {k—; if (x;, = 1), Withdrawltem(k); }

Do k——, while (x, = 0) and(k > 1).

If (k =20), STOP.

I* (z, = 1) */ Withdrawltem(k), k = k + 1.
Go to Compute UB.

3.5 Branch-and-Bound for the multiple-class binary knagsath setups 103

Table 3.3: subroutin&/ithdrawltem(k) of the Branch-and-Bound for MCBKSU

Letzy, = 0, C+= wy, S+= 7= my,
ik

The “Compute UB” step is implemented so as to compute the ruippend
of Proposition 6 for the residual problem. In “Forward MoYyese implicitly set
z;’s to one in formulation (3.28-3.31) which involves imptigitaking a fraction
of y;,; but simultaneously we construct a primal solutigny) for MCBKSU,
we reserve the extra capacity and we account for the extra fixed cdstthat
results from rounding up the fractional setup involved ia thsolution. This is
repeated while there remain some knapsack capacity ta fusdrer items, i.e.
while C' — S > wyi,, Wherew,,;, is the smallest item weight and some class
capacity. Otherwise, the next item is set to zero and the bdoahd must be
computed. For the dual bound computation, we only accounthi® knapsack
capacity and class bound capacity used by fixing:tkariables. However, if the
remaining primal capacit¢’ — S is not sufficient to open a new class, the items
of this class are ignored during the UB computation. A leafenis reached when
the knapsack is filled or there are no more items to considethd latter case,
as the branch,, = 1 has been explored, the brangh= 0 does not need to be
explored as it is dominated. “Backtracking” must insurd tha class setup is set
to zero when the last positive item of that class is set to.Z€nis is done in the
Withdrawltem¢) subroutine of Table 3.3.

Both dynamic program and branch and bound have been testethaoblem
solvers. Whery; < 0, we must use the dynamic program, in other case the branch

and bound algorithm performs better, even when we use i@iion methods, as

104 Knapsack sub-problems

we shall see.

COMPARING |IP COLUMN
GENERATION STRATEGIES

The column generation procedure suffers from several daak illustrated
in figure (4.1). The first one is theeading-in effect at the beginning of the
procedure, poor dual informations lead to bad Lagrangiamts, so the gap
between primal and dual bounds is important. Furthermoeepttocedure is
known to have a slow convergence, usually called tthieng-off effect when
approaching the optimal solution lots of iterations aredaekto prove optimality.
There are alsalegeneracyproblems in the primal: new columns added in the
restricted master does not improve its value that remainstaat during several
iterations. Thgumpy behaviorcorresponds to oscillations of the intermediate
Lagrangian bounds, they do not converge monotonically éodptimal value.
This phenomenon is due to the instability of the dual vasabalues from one

iteration to the following.

106 Comparing IP Column Generation strategies

Several techniques can be used to reduce these drawbackse @dhese
techniques are presented and compared in this chapter.e Ifirsh part of this
chapter, we study different initializations that may helpeducing the heading-in
effect. Then, we compare several methods to stabilize thercogeneration pro-
cedure. Follows the numerical comparison of various sgrasefor introducing
columns in the master (using exact versus heuristic oraatiing a single col-
umn at each iteration versus multiple columns). Finally welg the efficiency of

the branching scheme.

restricted master Lp values

Degeneracy

M iteration
. . f i .-
Heading-in B et Tailing-off

Master LP value

sH. ijmpy Behavior
'Y /
L]

intermediate Lagrangian bounds

Figure 4.1: Drawbacks of the column generation procedure

4.1 FRAMEWORK FOR COMPUTATIONAL TESTS: DATA SETS
AND TABLE OF RESULTS

We have made comparative tests on real and randomly gedeénatances. For
the standard cutting stock problem, we use 9 real data cont¢av to 33 items
and we generated 20 random instances with 50 items, an aveeagand of 100,
the width of wide roll is 10 000 and the items widths are umity generated in
the interval [500, 5000]. We also used 20 random instances bg Belov and

4.1 Framework for computational tests: data sets and tdbbésalts 107

Scheithauer in [4]. For these, the items widths are unifgrdndtributed in [100,
7000] and the demand in [1, 100]. For the variant with toleeaon production
we use the same instances with an interval on items demandgmgabetween
[|d; «0.95], [d; * 1.05]].

For the bin-packing problem we have used only random datangpinom
the OR library [2]. When an instance involves items with thens width, we
aggregated their demand; hence they define cutting stod¢&nicess with low
average demand. For each type of data, we have made tests iost@@ces.
BP-250, BP-500 and BP-1000 refer to instances with 250, 5@01#00 items
respectively whose sizes are integer and uniformly disteit in [20, 100] while
the size of the bin is 150. BP-t120, BP-t249 and BP-t501 desigcalled triplets
instances with 120, 249 and 501 items whose sizes are reabagd from 25 to
49.9 while the bin capacity is 100. The triplets instancesgenerated from an
optimum solution where there are exactly three items in &atcland they fill the
bin capacity exactly. These are known to be hard to solvet@ordard column

generation algorithms, but their solution using the comfmenulation is trivial.

The instances used to test the multiple width cutting stadblem comes
from [3]. We choose 20 random instances with 4 roll types wheglths are in
[5 000, 10 000] and the numbers of rolls available in each gq@euniformly
distributed in [625, 2 500], and 100 items whose widths wezeegated in [1,7
500] and demand in [1, 100] (with an average demand of 50).

In each comparative table, we report the following measures

e ITER is the number of iterations of the column generation procedo

solve the linear master problem,

e Col is the number of columns generated during the procedure,

108 Comparing IP Column Generation strategies
e torqce IS the time in seconds taken by the oracle to solve the subgns)
o {yaster 1S the time in seconds to solve the restricted master prgblem
e i1, IS the total time (Oracle + Master).

All implementations have been done using the environmerBai®Cod a
generic branch-and-price Code [43]. The oracle used tcesble subproblems
is a specialized procedure presented in chapter 3, andshreted linear master

problems are solved with Xpré€431].

4.2 INITIALIZATIONS

The column generation procedure used to solve the lineaxagbn of the
Dantzig-Wolfe reformulation must be initialized with a &l feasible solution.
This solution can be obtained with the use of a heuristic gulace or one can
choose to introduce artificial columns in the master. To e heading-in ef-
fect of the column generation procedure different initations have been tested.
We consider the use of columns of an initial heuristic soluto the master and/or
the use of artificial columns. To obtain a heuristic solutdirst fit decreasing
algorithm is used. For artificial columns we have tested tinategies: adding just
oneglobal artificial column or one artificial column for each master constraint

calledlocal artificial columns.

4.2.1 INITIALIZATION WITH A HEURISTIC SOLUTION

A heuristic solution is constructed by applying a first fit gesing algorithm.
Items are sorted in order of non-increasing width. Thenhetsn is placed by
searching into the list of existing patterns the first one mhefits. When none

can be found a new pattern is initialized with the curremnite

4.2 Initializations 109

For the problem with interval on production we compute a fitdteuristic solu-
tion by the same procedure but considering the lower bountdedemand. Then
we try to fill the existing patterns with the remaining demaid= d; — d: if
an item:; cannot be placed, one passes to the following item with@atorg new
patterns.

When there are multiple widths roll types we begin to fill thegler wide roll, and

when the upper bound is reached we fill the smaller ones.

4.2.2 INITIALIZATION WITH ARTIFICIAL COLUMNS

A basic initialization is to introduce single artificial column at the beginning of
the procedure to initialize the restricted master probl€he cost of this artificial
column is increased if the column is still in the solution aympletion of the
column generation algorithm, then the procedure is rexiéet. However if after
a fixed number of iterations this column remains in the sotuthe problem is
considered as unfeasible. For the variant with multipletisdve introduce one

artificial column for each subproblem or one global artificaumn.

Let v be the artificial columng its cost ands; its coefficient in constraini

The master formulation with artificial columns takes tharfor

M :mianq Ag +Cv
q€Q

st Y alX+dy > di i=1,....n
q€Q

YN <K

q€Q

A€ IN Vg e

7= 0

110 Comparing IP Column Generation strategies

whose dual is:

n
max g d; m;
i=1

s.t. Z:L’fm- < ¢ Vge @
1=1
=1

The values: anda are presented in Table 4.1. For the cosf this artificial
column we use an estimate of the order of magnitude of thectge In this way,
dual constraints (4.1) takes the for@?:1 d; m; < ¢ and thenr is chosen such

that the dual objective does not exceed our cost estimate.

Problem constr. coeff. ¢;) cost ¢)
27'1—1 w; d;
=5
Zﬁ—l w;
BP 1 =
=5
’72?:1 Wi dﬂ i wids
CSP with tol. on prod d; W w
w
multi Width CSP d [Mw
maxg Wk

Table 4.1: Constraints coefficient and cost of the singi@@al column

For the variants with restrictive constraints and the mination of setups the

cost and constraints coefficients are the same than for énelatd cutting stock

4.2 Initializations 111

problem.

Instead of a single artificial column one can Useal artificial columns, one
for each master constraint. Letbe the artificial column associated to the cover-

ing constraint andg¢; its cost, the master [M1] becomes:

n

ZM:mianq)\q—l—ZC}%

qeQ =1

[M1LocArtCol] s.t. fo AN +7 > d; i=1,...,n
q€Q

YN <K

q€Q

A € IN Vqge@

Y,
)
.
I
u}—‘
3

Yi

In a dual point of view it amounts to add dual constraints:

n
max E d; m;
i=1

s.t. mem < ¢ Vg € Q
=1

We see clearly that the costs of artificial columns define uppeands on the
associated dual variables. So these values should be amesitf the optimal

dual values.

For the standard cutting problem the LP solution value of [E11) is known

112 Comparing IP Column Generation strategies

to be:
7-1_ ’LUZdZ
Zip = 722_1/1[/
. S widy
which is obtained with the solution;, = % andy, = #—. Indeed, the

optimality can be proved by showing that a feasible dualtgmiuof the same cost
can be found. If we note; andy,, the dual variables associated to the constraints
of [F1], its dual is:

St zym > wiw Vi, k
K
Z |74 Vi > 1
k=1
mi, v > 0 Vi, k

The solutionr; = #, Vi andy, = %, Vk is feasible and its objective value
is equal toZ; p.
Hence, when there are no interval on production, we ingathe artificial

columns cost with:

whereq;,;; IS a parameter set t@,,;; = 1.2 in our computational tests.

For the problem that consists in minimizing the waste, wirard are inter-
vals on the demand, we addother artificial columng/, Vi, in the packing con-
straints. To obtain the costs values we use the economipretation of the dual
variables: the benefit to relaxing the covering constrdiotgd be proportional to
the width of the associated item and inversely proportidoathe packing con-

straints (the smaller items are more easily used to fill thesga cutting patterns

4.2 Initializations 113

that would otherwise be counted as waste). This gives rigeettollowing values:

G = 1 *
v szdl

whereR is an estimate upper bound on the optimal waste.

R w

w; and ¢ = ——— % —,
’ Z%dz w;

(4.4)

Furthermore, if artificial columns are in the primal solution completion
of the column generation process their cost is updatedasorg it by a factor
a=1.5.

4.2.3 COMPARATIVE TESTS

The following tables are comparative tests between therdifft initialization
methods. For each class of problems we give the averagdseshithined for
each method. The columiProblem refers to the class of problems whileit.

Mode corresponds to the method used:

e 1 art. col. is the initialization with a single artificial column (onerfeach

sub problem for the multiple widths problem),

e 1 global art. col. is the initialization with a global artificial column for the

multiple widths problem,

e local art. col. is the initialization with one artificial column per master

constraints,
e FFD is the first fit decreasing algorithm.

If artificial columns remains in the solution their cost islieased by the factor
a = 1.5 and the column generation procedure is continued. For tiRetR€ total

time includes the time used to solve it.

114 Comparing IP Column Generation strategies

Problem | Init. Mode ITER | Col | toracie | taraster | tTotal
1 art. col. 42 | 43 0.51 0.05 0.68

real local art. col. 29| 29| 3.75 0.02 3.86
instances | 1 art. col. + FFD 24| 50| 0.14 0.04 0.34
local art. col. + FFD 23| 48 0.62 0.02 0.77

1 art. col. 236| 237| 5.02 0.62 6.41

random local art. col. 142 | 142| 4.31 0.27 5.04
instances | 1 art. col. + FFD 159 | 235| 4.75 0.55 7.74
of 50 items | local art. col. + FFD| 136 211| 4.91 0.28 6.96
1 art. col. 727|727 78.32| 23.00| 106.13

random | local art. col. 476 | 476 | 59.34 2.55| 64.93
instances | 1 art. col. + FFD 475|645 | 44.72| 17.12| 72.74
of 150 items| local art. col. + FFD| 347 | 515| 35.51 2.03| 44.39

Table 4.2: Standard Cutting Stock

Problem| Init. Mode ITER | Col | toracie | taraster | tTotal
1 art. col. 339 340 7.41 0.94 9.97

120 local art. col. 118|118 3.12 0.29 4.14
items | 1 art. col. + FFD 277 324 8.23 0.87| 10.77
local art. col. + FFD| 127 | 173 3.97 0.34 5.35

1 art. col. 650| 651 | 58.38 3.62| 66.14

249 local art. col. 191|191 13.80f 0.73| 16.14
items | 1art. col. + FFD 518 | 612 | 76.02 3.16| 83.58
local art. col. + FFD| 198 | 292 | 17.29 0.81| 20.67

1 art. col. 950 | 951 | 545.41| 8.73| 562.05

501 local art. col. 246 | 246 | 43.41 1.25| 47.59
items | 1art. col. + FFD 859 | 923 | 416.06| 4.20| 430.03
local art. col. + FFD| 298| 467 | 126.79 1.93| 142.01

Table 4.3: Bin-Packing triplets instances

4.2 Initializations 115
Problem| Init. Mode ITER | Col | toracie | taraster | tTotal
1 art. col. 273| 273| 8.18 0.63]| 10.03
120 local art. col. 112 | 112| 3.63 0.27| 4.48
items | 1 art. col. + FFD 106| 168| 0.76 0.27| 2.26
local art. col. + FFD 48| 109| 0.32 0.11| 1.08
1 art. col. 268| 268| 7.15 0.80| 9.23
500 local art. col. 115| 115| 3.43 0.26| 4.33
items | 1 art. col. + FFD 82|162| 0.57 0.23| 2.17
local art. col. + FFD 38| 117| 0.26 0.09| 1.06
1 art. col. 258|258 | 7.82 0.90| 10.02
1000 | local art. col. 145| 145| 4.64 0.30| 5.68
items | 1 art. col. + FFD 721167 | 0.49 0.20| 2.30
local art. col. + FFD 35| 129| 0.25 0.09| 1.18
Table 4.4: Bin-Packing
Problem | Init. Mode ITER | Col | torecie | taraster | tTotal
1 art. col. 43| 43 2.59 0.04 2.83
real local art. col 30| 26 9.09 0.03 9.26
instances | 1 art.col. + FFD 30| 56 6.17 0.05 6.51
local art. col. + FFD 29| 51 8.12 0.03 8.42
1 art. col. 140 | 140 8.14 0.25 9.36
random local art. col 129 | 115| 26.35 0.30| 27.33
instances | 1 art.col. + FFD 119| 194 7.72 0.27| 12.05
of 50 items | local art. col. + FFD| 124| 186| 25.70 0.29| 29.41
1 art. col. 525|522 | 147.75| 3.18| 158.79
random | local art. col 520| 479 | 447.80| 3.62| 456.87
instances | 1 art.col. + FFD 514| 617 | 138.58| 3.17| 164.12
of 150 items| local art. col. + FFD| 473| 617 | 418.34| 3.45| 451.26

Table 4.5: CSP - Interval on production (5%)

116 Comparing IP Column Generation strategies

Problem | Init. Mode ITER | Col | toracie | taraster | tTotal
1 art. col. 131|122 3.50 0.31]| 4.53

1 global art. col. 125| 114| 3.62 0.30| 4.46

real local art. col 96| 84| 13.13 0.22| 13.82
instances 1 art.col. + FFD 79| 98| 2.17 0.04| 2.65
1globalart.col. + FFD 80| 96| 2.21 0.02| 2.59

local art. col. + FFD 78| 93| 2.35 0.03| 2.75

Table 4.6: Multiple Widths Cutting Stock Problem

The least number of iterations is obtained with the FFD tstiercombined
with the use of local artificial columns for almost all variamexcept the triplets
instances for which it is obtained with the useofartificial columns: in the
case of the triplets instances the FFD heuristic typicattywjles a poor primal
solution. Compared to the use of one artificial column, usinigcal artificial
columns reduces the number of iterations in a consequentfavagll variants,
this reduction is due to its stabilization effect in the colugeneration procedure.
However, in the model with interval on production the beshpatational time is
obtained with the use of one artificial column because osaelke more time in
the stabilized version. Overall, we note that the average 8pent in oracles per
iteration is lower when using one artificial column becaudaepsoblems are then

easier to solve when their costs are well balanced.

4.3 STABILIZATION METHODS

To prevent problems of convergence issued from the ingiabilthe dual values

a lot of stabilization techniques have been developed. Surtigese techniques
are reviewed in this section and compared experimentakycdvisider four types
of stabilization methods:

(i) bounding the dual values,

4.3 Stabilization methods 117

(i) smoothing the dual values,
(i) penalizing deviation of the dual solution from a stitlyicenter.
We shall consider the stabilization effect of the use of trenulations with built-

in exchanges that were presented in 2.5 in the next section.

4.3.1 THE DYNAMIC BOXSTEP METHOD

Boxstep method is used to bound the dual variables arounabditst centerr.
This method was introduced by Marsten in [27]: the Lagramglaal is solved

forcing = to lie in anl., box aroundr. The problem to solve at iteratidgnis then:
max{L(m) : [lr— e <) (4.5)

whereL* is defined in (2.19).

On completion of the Kelley’s cutting plane procedure (segtien 2.3.5), if
the current solution strictly lies in the box, optimalitypsoved and the Kelley’s
cutting plane process terminates. Otherwise, the stalbgitter is moved setting
7 to the value of the dual vector giving the best dual bound aedtocedure is

reiterated.

The LP form of (4.5) is:

maxzn:dﬂrl-—KU

i=1

st. zlm—0 < 1 Vg € Q
m < m+o \

—m < =740 Vi

T, 0 2 0 Vi

118 Comparing IP Column Generation strategies

whose dual is the primal view of the dynamic box step method:

maxz A+ Z((?ﬂ +0) Yy + (=7 +90) y;)

qeQ i=1

s.t. fo Ny —yr < d Vi
q€Q

YN <K

q€Q

Y
o

Vg € Q

vy, >0 Vi

Thus, the use of local artificial columns in the primal magablem, as in
formulation [M1LocArtCol], acts as a Boxstep method usingeaide boxes,

wherey; is fixed to0, ;- =, andd + 7; = ¢;.

The principle of the dynamic Boxstep method is to bound dyioaly
these dual variables: each time we find a new dual balfi{d) > LB, with

.....

dual solution®*! that gives rise to the best dual bound so far.

For the comparative numerical tests we use a simplified impigation of the
dynamic box step method: we only consider upper bounds @rhich we define
asa m°** wherea is a constant set to.5 and we update it at each improvement
of the Lagrangian bound. Thus, in practice, we simply uptlaecosts of local

artificial columns according to the above scheme.

4.3 Stabilization methods 119

4.3.2 THE BUNDLE METHOD

Non-linear stabilization methods can be used to solve thal dagrangian
problem (2.18).

Bundle methods go back to [25]. In their latest form, ingitn [26], [21] and
fully described in [15, Chap. XV], it consists in approxinmaf the dual function
by adding a quadratic term (an euclidean norm) that persiizevariation of the
dual variables from a stability center. Let us adopt the die of section 2.3.5
to see how this penalization can be implemented in the cufiiane algorithm.

Let 7 be the stability center, the dual function to solve takeddhe:
(4.6)

The restricted master problem (4.6) is solved by the quadvedtgramming solver

of K.C. Kiwiel [22], [23]. The initialization is done heutigally computingr; =

¢; Vi and we start with an empty initial set of columns. The aldwnitalso needs
an initial value fort, and this is obtained from an estimate of the optimal value
of the original problem. The algorithm stops when the larges violation is

"sufficiently small”, i.e. when
E(n%) = 0%(7*) — 0(=%) < €. 4.7)

(seein [15, 8lI.2.2(c)] for more explanations).

4.3.3 SMOOTHING METHODS

In this section we present two smoothing methods: the firethaas been devel-
oped by Neame in [30] and the second one by Wentges in [44] pTiheiple of

smoothing methods is to take a convex combination of theeatidtual solution,

120 Comparing IP Column Generation strategies

7% and, either the solution obtained at the previous iterafiorthe method by
Neame), or the dual solution that provided the best Lageanigoundr°¢*!, seen

as a stability center (in the method by Wentges). Thus, af@eh solution of
the restricted master, the dual values, before being sethetsubproblem, are
smoothed.

The principle of theNeame’s procedureis to solve the Lagrangian subprob-

lem with the dual vector
™ = (1 - a)r* ! 4 arfM (4.8)

wherer* is the optimal dual vector given by the last restricted nrastéution,
and*~1 is the previous dual vector used at the last iteratibr; o < 1is a
constant. When the column generated has a negative redosgdtas added
to the restricted master and one goes on to the followingtitar, else, if the
dual vector is too distant from® this vector is recomputed by giving more
weight torf*™ | increasing the parameter If none of these situations occurs the
subproblem is solved using the dual vectd?. It has then the effect of clearing
the memory of the preceding vectors. The algorithm stopg ibnin this case,
the column generated has a non-negative reduced costemeister solution is

optimal.

Algorithm 1 (Neame’s algorithm)

STEP 0. Select an initial set of columns. Choose> 0, 0 < a < 2, compute
7R#M by solving the restricted master problem andset= 71,

STEP1.A i=0.

Step 1.8 Compute a dual optimal solutior™ of the restricted master problem.

Step1.c Computerit! = (1—a)n+an®. Solve the Lagrangian subproblem
using7**! to optimality. If the resulting column has a negative redlicest

let 7° = 7!, add the column and goto STEP 1-a)

4.3 Stabilization methods 121

Else, if||7"* — 7fM|| > ¢, andi < i,40, theni = i + 1 and goto STEP 1-c)
Else solve the Lagrangian subproblem witR", if the column has a non-
negative reduced cost the current solution is optimal (stog criteria 1).

Elser® = 7™ add new column and goto STEP 1-a).

For our numerical tests, we use a simplified implementatibare:,,., = 1 and

o = 0.7 is constant.

In theWentges’ procedurethe subproblem is solved taking
™ = (1 — a)7*" + anft™ (4.9)

wherer**! is the dual vector giving the best Lagrangian bound valud,cais
decreased at each iteration, its depends on the iterattbinamumber of times the
Lagrangian bound has been improved (the more one advanitesalgorithm and
one improves the dual bound and the more one gives weighete’tt). In our
simplified implementation remains constant and is set to valug Furthermore,
if the oracle does not give a negative reduced cost columthéosmoothed dual

solutionz”, we resetr* = 7%M and call again the oracle as in the Neame method.

4.3.4 COMPARATIVE TESTS

We present results that are averages on the instancesscfassented in section
4.1. For the dynamic box step method, we use the formulatitm nvartificial
columns. For the Bundle method, the master is initializeith wne artificial col-

umn.

122 Comparing IP Column Generation strategies

Method ITER Col toracle tMaster trotal

1 art. col. 42 43 0.48 0.03 0.51

1 art. col. + wentges| 44 43 0.68 0.05 0.73

real 1 art. col. + neame 48 45 0.68 0.05 0.73
inst. n art. col. 25 25 3.49 0.03 3.52
n art. col. + wentges| 25 25 3.72 0.01 3.73

n art. col. + neame 23 22 2.33 0.02 2.35
dynamicBoxStep 25 25 3.61 0.03 3.64

Bundle 34 26 21.03 0.03 | 21.06

1 art. col. 256 | 257 3.60 1.08 4.68

1 art. col. + wentges| 230 | 231 3.45 1.04 4.49

rand. 1 art. col. + neame 230 | 231 3.34 1.06 4.40
inst. n art. col. 130 | 128 231 0.22 2.53
50 items | nart. col. + wentges| 130 | 128 2.78 0.22 3.00
n art. col. + neame 125 | 123 2.01 0.32 2.33
dynamicBoxStep 132 | 128 2.64 0.22 2.86

Bundle 163 | 114 32.74 0.39 | 33.13

1 art. col. 727 | 727 40.16 23.00 | 63.16

1 art. col. + wentges| 643 | 644 22.08 18.27 | 40.35

rand. 1 art. col. + neame 644 | 646 21.44 18.26 | 39.70
inst. n art. col. 476 | 476 34.25 2.55 36.80
150 items | nart. col. + wentges| 474 | 473 30.62 236 | 32.98
n art. col. + neame 443 | 441 19.27 3.14 22.41
dynamicBoxStep 481 | 474 35.40 251 | 37.91

Bundle 668 | 388 671.52 14.00 | 685.52

Table 4.7: CSP Stab

Method ITER Col tOracle t]\/[aster tTOi(Ll
1 art. col. 273 | 273 0.44 0.58 1.02
1 art. col. + wentges| 240 | 241 0.36 0.74 1.10
250 | 1art. col. + neame 226 | 227 0.33 0.70 1.03
items | nart. col. 110 | 108 0.34 0.21 0.55
nart. col. + wentges| 110 | 108 0.33 0.21 0.54
n art. col. + neame 103 | 101 0.30 0.33 0.63
dynamicBoxStep 110 | 108 0.33 0.22 0.55
Bundle 112 | 106 0.56 1.05 1.61
1 art. col. 269 | 269 0.35 0.77 1.12
1 art. col. + wentges| 243 | 243 0.30 0.86 1.16
500 | 1art. col. + neame 226 | 226 0.29 0.77 1.06
items | nart. col. 117 | 115 0.43 0.24 0.67
nart. col. + wentges| 117 | 115 0.43 0.24 0.67
n art. col. + neame 108 | 106 0.37 0.36 0.73
dynamicBoxStep 117 | 115 0.43 0.23 0.66
Bundle 99 99 0.29 0.99 1.28
1 art. col. 258 | 258 0.33 0.90 1.23
1 art. col. + wentges| 235 | 235 0.26 0.96 1.22
1000 | 1 art. col. + neame 217 | 217 0.24 0.79 1.03
items | nart. col. 121 | 119 0.49 0.27 0.76
nart. col. + wentges| 121 | 119 0.48 0.26 0.74
n art. col. + neame 109 | 107 0.42 0.37 0.79
dynamicBoxStep 121 | 119 0.49 0.25 0.74
Bundle 93 94 0.15 0.94 1.09

Table 4.8: Bin-Packing aggreg - Stab

4.3 Stabilization methods

Method ITER Col toracle tMaster trotal
1 art. col. 340 | 340 5.75 0.97 6.72
1 art. col. + wentges| 326 | 326 5.73 1.29 7.02
120 | 1 art. col. + neame 325 | 325 8.75 1.23 9.98
items | nart. col. 123 | 121 2.56 0.28 2.84
nart. col. + wentges| 123 | 121 2.59 0.33 2.92
n art. col. + neame 135 | 133 3.22 0.50 3.72
dynamicBoxStep 123 | 121 2.58 0.29 2.87
Bundle 80 81 2.36 0.92 3.28
1 art. col. 651 | 651 53.39 3.66 | 57.05
1 art. col. + wentges| 592 | 592 38.04 4.03 42.07
249 | 1 art. col. + neame 562 | 562 65.42 3.80 69.22
items | nart. col. 191 | 189 10.52 0.75 11.27
nart. col. + wentges| 191 | 189 10.51 0.73 11.24
n art. col. + neame 203 | 201 11.83 1.17 13.00
dynamicBoxStep 191 | 189 10.49 0.73 11.22
Bundle 138 | 138 7.99 1.54 9.53
1 art. col. 956 | 956 479.73 8.71 | 488.44
1 art. col. + wentges| 886 | 886 302.57 9.71 | 312.28
501 | 1art. col. + neame 788 | 788 397.97 7.84 | 405.81
items | nart. col. 253 | 251 27.44 1.30 28.74
nart. col. + wentges| 253 | 251 27.22 1.30 28.52
n art. col. + neame 264 | 262 27.38 2.08 29.46
dynamicBoxStep 253 | 251 27.50 1.31 28.81
Bundle 191 | 190 24.32 2.67 26.99

Table 4.9: Bin-Packing aggreg - Stab - triplets instances

Method ITER Col 75O'r‘acle t]\/[aster tTotal

1 art. col. 43 43 2.79 0.04 2.83

1 art. col. + wentges| 41 41 4.25 0.06 4.31

real 1 art. col. + neame 44 44 453 0.08 461
inst. | nart. col. 30 26 12.48 0.03 12.51
n art. col. + wentges| 29 26 10.96 0.05 11.01

n art. col. + neame 27 23 12.01 0.04 12.05
dynamicBoxStep 95 46 132.72 0.13 132.85

Bundle 62 33 17.17 0.78 17.95

1 art. col. 140 | 140 7.64 0.28 7.92

1 art. col. + wentges| 135 | 134 8.76 0.45 9.21

rand. | 1 art. col. + neame 138 | 137 8.57 0.44 9.01
inst. | nart. col. 139 | 121 30.32 0.32 30.64
50 nart. col. + wentges| 139 | 121 40.22 0.44 40.66
items | nart. col. + neame 136 | 118 36.66 0.53 37.19
dynamicBoxStep 141 | 140 8.28 0.25 9.56

Bundle 193 80 52.14 1.43 53.57

1 art. col. 521 | 518 147.85 3.05 150.90

1 art. col. + wentges| 505 | 502 180.02 4.87 184.89

rand. | 1 art. col. + neame 522 | 519 164.79 5.21 170.00
inst. | nart. col. 545 | 499 567.51 3.80 565.90
150 | nart. col. + wentges| 539 | 493 722.68 5.54 728.22
items | nart. col. + neame 537 | 492 661.14 5.95 667.09
dynamicBoxStep 491 | 466 227.13 1.77 228.90

Bundle 550 | 241 | 1026.27 11.41 | 1037.68

Table 4.10: CSP tolerance on production Stab

123

124 Comparing IP Column Generation strategies

Method ITER Col toracle tMaster trotal

1 art. col. 395 1058 7.46 4.62 12.08

1 art. col. + wentges| 345 906 5.97 4.07 10.14
1 art. col. + neame| 336 893 6.23 3.86 10.09
n art. col. 186 504 5.89 0.67 6.56

n art. col. + wentges| 180 485 5.29 0.74 6.03
n art. col. + neame| 165 433 4.99 0.82 5.81
dynamicBoxStep | 270 567 11.48 1.12 12.6
Bundle 377 436 14.71 5.26 19.97

Table 4.11: CSP Multiple Widths Stab

From a general point of view, the use of local artificial cohsrhas a real
stabilization effect on all instances, except for the varieith tolerance on
production.

The smoothing methods (Wentges and Neame methods) hawdl\otbe same
effect, however Neame’s method seems to be a little morectefée and it
is accentuated when it is applied to the version with locéfieal columns,
compared to the version with a single artificial column. Heerefor the triplets
instances of the Bin Packing problem, smoothing methode havstabilization

effect when combined with the use of local artificial columns

The dynamic Boxstep method has no effect because we starawioptimal
dual solution, and so the stability center does not move.Biurelle method must
be compared to the single artificial column version. It hasabikzation effect
for all the variants, the number of iterations decreasedgeler the time spent in
the subproblem increased, except for the Bin Packing whesdandle method

takes less time and less iterations compared to all the sthkilization methods.

For the variant with tolerance on production none of theibzabion methods
have a real impact on the column generation procedure. Timdaof iterations
is roughly the same while the time increases. The resolatiohis variant is less

unstable because there is less degeneracy.

4.4 Formulations with exchanges 125

4.4 FORMULATIONS WITH EXCHANGES

The master formulations with exchanges built-in preseme?.5 are stabiliza-
tion methods, as they amount to add dual cuts. We have cochffadollowing

formulations:

M1 that refers to the standard master formulation. We ing< with a

global artificial column.

e The formulationAgregCovM1 that correspond to the aggregation of the

covering constraints.

e For the exchange flow formulation we tested two versions: fitlse one
is DirectExchFlowML1 that corresponds to the simple exchanges and the

seconeExchFlowML1 refers to whole feasible exchanges between two piece

types.

e We experimerRestrExchVectM1where exchange vectors are restricted to
those where one item is replaced by a set of smaller itemsackt geration
of the column generation procedure we solve two subprohlgmasolumn
generation subproblem and a second pricing subproblenalibats to gen-

erate a restricted exchange vector (With= 1).

e The method of Carvalho where cuts are added a priori to thielgamo by
generating the corresponding columns before starting themn genera-
tion process has been tested. For this, two types of cutssad veferred

asCarvalhoCuts:

126 Comparing IP Column Generation strategies

i1 < m fori=1,..n—1 (4.10)
fori=1,...n—2,
T+ < om for the first identified pair of items (j,k) (4.11)
such that < j < kandw,; + wy, < w;

The Simple CarvalhoCutsrefers to the use of only the first type of cuts.

For the second type of cuts we generate only one cut far all

4.4.1 COMPARATIVE TESTS

Method DB ITER Col 75O'r‘acle 751%0,ste'r tOr.+]\/[a5t.

M1 81.22 42 43 0.48 0.03 0.51

real | AgregCovM1 81.22 35 35 0.26 0.02 0.28

DirectExchFlowM1 81.22 40 40 0.61 0.04 0.65

Simple CarvalhoCuts| 81.22 53 55 0.11 0.04 0.15

inst. | ExchFlowM1 81.22 35 36 0.55 0.03 0.58

RestrExchVectM1 81.22 41 80 3.47 0.04 3.51

CarvalhoCuts 81.22 46 121 0.50 0.05 0.55

M1 1381.10 256 257 3.60 1.08 4.68

rand. | AgregCovM1 1381.10 207 208 5.73 1.23 6.96

50 DirectExchFlowM1 1381.10 211 212 5.60 0.75 6.35

items | Simple CarvalhoCuts| 1381.10 267 270 5.33 1.18 6.51

ExchFlowM1 1381.10 188 189 5.27 0.79 6.06

RestrExchVectM1 1381.10 218 404 108.25 1.18 109.43

CarvalhoCuts 1381.10 223 | 1077 4.28 1.83 6.11

cuts generation = 1.50

M1 2558.35 727 727 40.16 23.00 63.16

rand. | AgregCovM1 2558.35 660 661 55.81 119.13 174.94

150 | DirectExchFlowM1 | 2558.35 700 700 36.51 21.31 57.82

items | Simple CarvalhoCuts| 2558.35 779 781 52.57 23.46 76.03

ExchFlowM1 2558.35 557 557 32.45 25.56 58.01
RestrExchVectM1 TOO LONG

CarvalhoCuts 2558.35| 681 | 10584 | 49.72 | 85.57 | 135.29

Table 4.12: CSP Exchanges init. with one art. col

The use of alternative master reformulations allows to cedihe number
of iterations on almost all instances. The formulation BEXolwM1 is the
most effective on the standard cutting stock problem. H@wreon the triplets

instances, it is less effective because the item widthscarghly the same and so

4.4 Formulations with exchanges

Method DB ITER Col 75O'r‘acle t]\/[aster tO'r.+1Wa,st.
M1 101.6 273 273 0.44 0.58 1.02
250 | AgregCovM1 101.6 226 226 1.10 1.24 2.34
DirectExchFlowM1 101.6 237 237 0.99 0.66 1.65
Simple CarvalhoCuts| 101.6 295 298 0.90 0.76 1.66
items | ExchFlowM1 101.6 201 201 0.69 0.67 1.36
RestrExchVectM1 101.6 207 415 40.37 0.78 41.15
CarvalhoCuts 101.6 221 | 1850 0.46 1.10 1.56
M1 201.2 269 269 0.35 0.77 1.12
500 | AgregCovM1 201.2 236 236 1.43 1.54 2.97
DirectExchFlowM1 201.2 251 251 1.13 0.81 1.94
Simple CarvalhoCuts| 201.2 277 279 0.74 0.75 1.49
items | ExchFlowM1 201.2 222 222 0.91 0.90 1.81
RestrExchVectM1 201.2 210 420 30.87 1.02 31.89
CarvalhoCuts 201.2 208 | 1999 0.38 1.43 1.81
M1 400.5 258 258 0.33 0.90 1.23
1000 | AgregCovM1 400.5 240 240 1.49 1.72 3.21
DirectExchFlowM1 400.5 238 238 1.17 0.91 2.08
Simple CarvalhoCuts| 400.5 309 311 1.04 1.07 2.11
items | ExchFlowM1 400.5 198 198 0.67 0.97 1.64
RestrExchVectM1 400.5 206 413 26.73 1.20 27.93
CarvalhoCuts 400.5 234 | 2029 0.52 1.82 2.34

Table 4.13: Bin-Packing aggreg - Exchanges init. with oneca.

Method DB ITER Col tOracle tMaster tOT‘4+AI(LSt4
M1 40 340 | 340 5.75 0.97 6.72
120 | AgregCovM1 40 231 | 231 27.62 1.59 29.21
DirectExchFlowM1 40 277 | 277 42.59 0.76 43.35
Simple CarvalhoCuts| 40 374 | 376 27.71 0.98 28.69
items | ExchFlowM1 40 277 | 277 42.66 0.80 43.46
RestrExchVectM1 40 290 | 537 268.88 1.22 8.93
M1 83 651 | 651 53.39 3.66 57.05
249 | AgregCovM1 83 366 | 366 232.72 7.20 239.92
DirectExchFlowM1 83 429 | 430 441.41 2.13 443.54
Simple CarvalhoCuts| 83 561 | 563 309.68 2.75 312.43
items | ExchFlowM1 83 429 | 430 440.01 2.11 442.12
RestrExchVectM1 83 465 | 887 | 1247.81 6.18 1253.99
M1 167 956 | 956 479.73 8.71 488.44
501 | AgregCovM1 167 469 | 465 671.48 22.26 693.74
DirectExchFlowM1 167 623 | 623 | 2154.48 4.64 2159.12
Simple CarvalhoCuts| 167 735 | 737 | 2639.65 7.02 2646.67
items | ExchFlowM1 167 622 | 622 | 2096.58 4.66 2101.24
RestrExchVectM1 TOO LONG

127

Table 4.14: Exchanges init. with one art. col. Bin-Packimgjé¢ts aggreg

128 Comparing IP Column Generation strategies

Method DB ITER Col 75O'r‘acle t]\/[aster tOr.+]\/[a5t.
M1 1893.03 43 43 2.54 0.04 2.58
real DirectExchFlowM1 1893.03 39 40 2.18 0.05 2.23
Simple CarvalhoCuts| 1893.03 50 59 3.37 0.05 3.42
inst. ExchFlowM1 1893.03 39 39 4.23 0.05 4.28
RestrExchVectM1 1893.03 36 62 5.94 0.05 5.99
CarvalhoCuts 1893.03 42 123 2.53 0.06 2.59
M1 3499.79 140 140 7.71 0.28 7.99
random DirectExchFlowM1 3499.79 133 133 7.50 0.33 7.83
Simple CarvalhoCuts| 3499.79 159 192 14.69 0.29 14.98
instances | ExchFlowM1 3499.79 130 130 7.48 0.33 7.81
50 items | RestrExchVectM1 3499.79 144 212 135.37 0.31 135.68
CarvalhoCuts 3499.79 157 1045 15.18 0.35 15.53
cuts generation = 2.50
M1 15778.3 521 518 147.85 3.05 150.90
random DirectExchFlowM1 15778.3 506 503 161.65 5.10 166.75
instances | ExchFlowM1 15778.3 491 488 162.83 5.45 168.28
150 items | RestrExchVectM1 TOO LONG
CarvalhoCuts 15778.2 | 582 | 10675 | 342.23 5.83 | 348.06 |

Table 4.15: CSP tol On Prod Exchanges init. with one art. col

Method DB ITER Col tOracle tMaster tOT‘4+AI(LSt4

M1 2048.3 395 | 1058 7.46 4.62 12.08
AgregCovM1 2048.3 421 | 1071 12.60 19.96 32.56
DirectExchFlowM1 | 2048.3 429 | 1075 11.16 6.50 17.66
Simple CarvalhoCuts| 2048.3 425 905 12.87 3.73 16.60
ExchFlowM1 2048.3 339 779 9.74 6.12 15.86
CarvalhoCuts 2048.3 348 | 5188 10.94 8.28 19.22

Table 4.16: CSP Multiple Widths Exchanges init. with one edl

4.5 Strategies for column generation 129

only simple (one-to-one) exchanges can arise. We notelikadubproblems are
harder to solve when using the formulation AgregCovM1, ppehbecause the

dual values are more correlated.

The use of formulation ExchVectML1 is very expensive, beedosgenerate
exchange vectors at each iteration we have to solve a sectmidablem (it is
solved using Xpress because we did not develop a specifiersfav this sub
problem). When using Carvalho cuts, some time is spent irm@é¢ing the cuts
a priori before the procedure, and on the instances with af iléms, more time
is spent in solving the restricted master problems becdese are lots of extra
columns.

We note that in practice we obtain the same dual bounds, esreg formulations

that are relaxations of the standard column generationudtatmon.

4.5 STRATEGIES FOR COLUMN GENERATION

In the classical column generation procedure, one colungemerated at each
iteration by an exact oracle. Alternatively, one could usearistic oracle while
it provides a column with negative reduced cost and call ttecteoracle only
when it fails. However a drawback of this method is that thal dund must be
computed with an exact subproblem solution, so we have afted this strategy
but generating an exact column solution every k iteratiom®(r tests we use k
=2 or 10). Our heuristic oracle is the standard greedy algorior the knapsack

problem.

We also experimented with a different strategy aiming aediifying the
search. Our intuition being that all columns with best restlitend to concern the

same subset of items. Thus, we implemented the followingraeh

130 Comparing IP Column Generation strategies

(i) Solve the subproblem exactly and compute how many tinedblumn can
feasibly be taken in the CSP solution,

(i) update the bound on subproblem variables as if you wekimg that selected
column so many time,

(ii) re-solve the subproblem after updating to obtain te&trselected column,
(iv) if it has negative reduced cost, re-iterate.

In practice we impose an upper bound on the number of pasisesur experi-

ments we compare generating up to 3 columns and up to 10 celperiteration.)

Other strategies could be to record all columns with negataduced cost
that are encountered in the oracle while solving the subenol{for instance
when the oracle is a dynamic programming solver or a branchbaund). When
there are many columns that could be returned, one can aggleetion criteria
such as taking those with minimum negative reduced cost. eMar, using a
dynamic programming recursion would allow to generate edl tolumns with
an optimal cost, memorizing all the paths leading to a dontisalution. While
with a branch-and-bound procedure only columns that assemeumbents at

some stages can be generated. We have not implementedtifadsgiss.

In tables 4.17 and 4.18, respectively for the standardrgugitock problem
and the variant with tolerance on production, we comparseistrategies on the

instances presented in section 4.1. The reported resalesvarages.

4.5 Strategies for column generation 131

ITER Col toracle tMaster tTotal

1 exact col. 29 30 4.28 0.03 5.19

real | 3collit. 10| 41 3.60 0.01 3.64
inst. | 10 colfit. 7 74 4.01 0.00 4.06
1 col. heur. 62 62 0.61 0.09 1.37

1 col.Heur-exact every 2it. 45 45 1.63 0.05 2.23

1 col.Heur-exact every 10it 61 61 0.72 0.07 1.47

1 exact col. 146 | 146 6.88 0.30 | 10.93

50 3 colfit. 42 | 165 6.96 0.80 | 11.17
items | 10 col/it. 21 | 200 9.40 0.50 | 13.59
1 col. heur. 251 | 251 5.28 0.50 9.95

1 col.Heur-exact every 2it. 201 | 201 5.55 0.39 9.56

1 col.Heur-exact every 10it] 240 | 240 5.53 0.51 9.94

150 | 1 exact col. 492 | 496 353.45 2.93 | 380.86
items | 1 col.Heur-exact every 10itf 834 | 837 272.76 5.36 | 314.72

Table 4.17. CSP Several columns generated per iteration

ITER Col toracle tMaster tTotal

1 colfit. 28 28 4.30 0.02 4.37

real 3 colfit. 15| 38 8.33 0.01 8.40
inst. 10 col/it. 11 65 10.96 0.01 | 11.06
1 colfit. 142 | 120 32.80 0.29 | 33.56

50 3 colfit. 65 | 134 54.20 0.18 | 54.73
items | 10 col/it. 48 | 222 93.11 0.17 94.39

Table 4.18: CSP with tolerance on prod. - Several columnsrmgéed per iteration

132 Comparing IP Column Generation strategies

The generation of several columns per iteration allows doice considerably
the number of column generation iterations, however loteege columns are not
used. At the opposite the generation of heuristic columasases the number of
iterations because the dual bound is updated only when ¢hisgtic column has
a positive reduced cost and when an exact column is generéked is why we
have tested the generation of an exact column after a fixedeuof iterations.
A heuristic solver allows to reduce the time spent in orafli@se in oracles per
iteration decrease), however, this does not translateameduction in the total

time as the number of iterations is much larger.

4.6 PRIMAL HEURISTICS

Integer primal solutions can be derived either a priori {(ifistance using the FFD
heuristic described in Section 4.2.1) or using the colummegation framework.
A classical column generation based heuristic is to solvategrality the mas-
ter program restricted to a subset of columns (by branchkanehd). This can
potentially be done at any time during branch-and-pricewéie@r we just report
experimental results where this exact solution of the ictstt master is called at
the end of the column generation procedure at the root notleedbranch-and-
price tree. Itis to be observed that the restricted set afmak can be insufficient
to give rise to an integer feasible solution. Below we ddémcé column genera-
tion based heuristics using dynamic column generationeady procedure and a
rounding procedure. Then, we compare the quality of thegdreolution obtained

with these procedures on random instances.

4.6.1 GREEDY ALGORITHM

In the greedy heuristic, we iteratively generated a colugnsdiving the subprob-

lem with heuristic dual prices. The generated column israkehe solution as

4.6 Primal heuristics 133

many time as feasible and the process reiterates until #igua master problem
becomes trivial (all orders demands are satisfied). Thisguhore can be called at
the outset of the algorithm using dual price set a priori @med in (4.3) for the
standard problem and in (4.4) for the variant with intervalppoduction). Alter-
natively, the greedy procedure can be called at any timegubm current master
dual solution. In our numerical comparison we test the greggdcedure with a
priori dual value (this procedure is denoted greedy1l) aritl tie dual solution
obtained at the end of the column generation procedure abtitenode of the
b-a-p tree (this procedure is denoted greedy?). The cuivellase of these two

procedures will be denoted greedy.

4.6.2 ROUNDING HEURISTIC

The rounding heuristic consists in deriving an integer sotufrom the linear
solution of the master problem. It can be seen as doing adteudive into a
branch-and-price tree. However the underlying branchohgshe is not necessar-
ily the one that would be used for solving the problem exadtig aim is to get
quickly to an integer solution and we do not have to worry akbmacktracking.
Again, it can be used at any time, but in our tests we used ytatthe end of the
column generation procedure at the root node of the b-aep T@be specific, the
last LP solution is rounded down and the columwhich have the largest value
A, Is iteratively selected and taken in the partial solutiorrdiynding it up. After
each round-up we apply a column generation procedure tptigize the linear
master problem associated to the residual problem obtayesimoving the fixed

columns and updating the right hand side of the master cntdr

4.6.3 COMPARATIVE TESTS

These four methods have been tested on instances describection 4.1. In the

following tables, we mention the instances tested, the atktised:FFD refers

134

Comparing IP Column Generation strategies

to the first fit decreasing algorithrgreedyl, greedy2andgreedyto the greedy

heuristics,rounding to the rounding heuristic anBMIP refers to the solution

of the integer restricted master problem. However the RMi&dwalone does not

allow to find an integer solution in most cases, so we testft thie FFD algorithm

in FFD + RMIP . The tables compare then the primal and dual bounds andstimer

in seconds. The number given between brackets alongsideetingstic name

corresponds to the number of instances for which an integatisn was found.

Then, the average primal bound is that obtained over thanuss for which we

found a primal bound.

Method PB DB ITER Col 75O'r‘acle t]\/[aster tHeu'r tO'r.+1Wa,st. tTotal
FFD 83.56 81.22 34 50 0.09 0.03 0.11 0.11 1.27
real | greedy 81.67 81.22 21 52 2.63 0.02 4.75 2.65 7.57
inst. | rounding 81.22 81.22 123 | 122 2.03 0.09 4.85 2.12 6.88
RMIP 400 81.22 30 28 4.42 0.03 4.45 5.54
FFD + RMIP 83.56 81.22 16 39 0.73 0.01 0.11 0.74 1.63
FFD 1405.90 | 1380.8 186 | 235 5.36 0.61 2.49 5.97 18.34
50 greedy 1393.95| 1380.8 172 | 248 8.65 0.55 16.91 9.00 46.60
greedyl 1447.40| 1380.8 105 | 170 4.19 0.21 2.38 6.59 7.34
greedy?2 1397.60 | 1380.8 142 | 177 6.07 0.27 6.05 6.34 11.47
items | rounding 1381.15| 1380.8 345 | 338 8.53 0.82 12.10 9.35 30.00
FFD 2574.1 | 2557.65 539 | 639 239.71 16.86 10.88 256.57 | 333.65
150 | greedy 2626.3 | 2557.65 622 | 763 378.16 18.30 | 318.65 396.46 | 1040.72
items | rounding 2626.3 | 2557.65 622 | 763 433.86 18.68 | 326.79 452.54 | 1109.98
Table 4.19: CSP Primal Heuristics
Method PB DB ITER Col 75O'r‘acle t]\/[aster tHeur tOr.+]\/[a5t. tTOt(Ll
FFD 103.10 | 101.6 50 | 111 0.12 0.12 0.54 0.24 4.60
250 | greedy 110.55| 101.6 62 | 174 0.31 0.15 6.13 0.46 17.36
items | rounding 101.60 | 101.6 235 | 211 0.53 0.45 2.52 0.98 4.04
FFD + RMIP | 103.10| 101.6 50 | 111 0.13 0.13 0.55 0.26 4.90
FFD 203.9 201.2 39 | 118 0.05 0.09 0.80 0.11 451
500 | greedy 211.4 | 201.2 53 | 188 0.25 0.13 7.84 0.38 21.15
items | rounding 201.2 | 201.2 259 | 235 0.55 0.50 3.22 1.05 4.53
FFD + RMIP 203.9 201.2 39 | 118 0.05 0.09 0.82 0.11 4.82
FFD 405.40 | 400.55 37 | 130 0.06 0.09 1.16 0.15 4.92
1000 | greedy 414.95 | 400.55 51 | 194 0.25 0.12 8.69 0.37 23.35
items | rounding 400.55 | 400.55 261 | 237 0.56 0.49 3.04 1.05 4.58
FFD + RMIP | 405.40 | 400.55 37 | 130 0.05 0.09 1.19 0.11 5.14

Table 4.20: Bin Packing Primal Heuristics

We can conclude that in all cases the best primal bounds #&eeld with the

rounding heuristic, furthermore in almost all instancesldws to find the optimal

4.6 Primal heuristics 135
Method PB DB ITER Col tO'racle tMaster tHeur tOr.+J\/Iast. tTota,l
FFD 45.8 40 179 | 224 1.44 0.53 0.40 1.97 13.26
120 greedy 41.0 40 122 | 191 2.50 0.34 3.99 2.84 20.06
items | rounding 40.6 40 219 | 200 1.80 0.48 6.92 2.28 16.18
RMIP +oo 40 125 | 123 1.01 0.34 1.35 9.69
FFD + RMIP 45.8 40 190 | 235 2.01 0.61 0.41 2.62 15.12
FFD 95.0 83 593 | 617 16.49 3.27 1.26 19.76 71.77
249 greedy 84.0 83 156 | 297 9.83 0.73 12.89 10.56 65.44
items | rounding 839 | 83 372 | 334 8.91 1.24 | 24.64 10.15| 47.98
FFD + RMIP 95.0 83 339 | 431 8.26 1.84 1.27 10.10 44.66
FFD 190.0 | 167 298 | 467 126.79 1.93 1.95 128.72 | 142.01
501 greedy 168.2 | 167 214 | 473 25.79 1.52 34.37 27.31| 177.58
items | rounding 167.8 | 167 490 | 438 30.35 2.26 32.61 32.61 | 103.40
Table 4.21: Bin Packing triplets Primal Heuristics
Method PB DB ITER Col tO'racle t]\/]aster tHeur tOT‘4+AI(LSt4 tTota,l
FFD 94308.7 | 1893.03 38 56 5.44 0.04 0.11 5.48 6.84
real greedy 42806.2 | 1893.03 18 50 13.23 0.02 7.24 13.25 18.97
inst. rounding 2033.8 | 1893.03 63 61 11.38 0.06 7.71 11.44 14.20
RMIP (7) 3017.1 | 1893.03 43 43 2.79 0.02 2.81 3.89
FFD + RMIP 2396.6 | 1893.03 38 56 3.34 0.03 0.05 3.37 4.37
FFD 251776 | 3499.85 142 | 193 8.62 0.28 2.58 8.90 19.91
50 greedy 176285 | 3499.87 111 | 180 13.58 0.24 36.74 13.82 77.04
items | rounding 3544.4 | 3499.84 179 | 162 13.91 0.33 10.41 14.24 27.22
FFD + RMIP 11204.9 | 3499.79 143 | 194 4.79 0.16 4.95 252.11
FFD 182514.1| 15778.2 524 | 627 934.97 3.14 11.08 938.11 1021.8
150 greedy (15) 429525.1| 15778.2 454 | 599 887.21 1.99 | 217.91 888.20 | 1250.22
items | rounding 15843.8 | 15778.2 652 | 609 | 1424.83 3.82 | 241.68 1428.65 | 1569.95
Table 4.22: CSP with tolerance on production - Primal Hegss
1+2 Method PB DB ITER Col tOracle t]\/]aster tHeur tOT‘4+AI(LSt4 tTota,l
FFD 2237.6 | 2048.25 167 | 562 6.10 0.67 3.31 6.77 37.74
greedy (3) 2226.7 | 2048.25 142 | 559 11.22 0.58 23.52 12.10 79.33
rounding 2048.3 | 2048.25 256 | 571 8.39 0.80 12.63 9.19 24.84
FFD + RMIP | 2237.6 | 2048.25 167 | 562 6.15 0.67 6.82 39.05

Table 4.23: CSP Multiple Widths - Primal Heuristics

136 Comparing IP Column Generation strategies

solution. The first fit decreasing (FFD) algorithm allows tataon a valid upper

bound on all instances, but it can be far from the dual bouspe@ally on the

variant with interval on production. For this variant solgithe restricted master
integer problem (RMIP) exactly in addition to this heugsteduces considerably
its value. We note that the set of columns generated at thenoo is in general

not sufficient to obtain an integer solution (the RMIP canlmosolved). Greedy?2
gives rise to better primal bounds than greedyl, but the auatibn of greedyl

and greedy2 seems to be even better.

From a computational time point of view the FFD heuristicastést (except on
the triplets instances), indeed the columns are generatedskically so it does

not require the use of solvers for the master and the oratle gfeedy, rounding
and RMIP are generic algorithms so they could be used ons#yglications,

while the FFD heuristic is specific to cutting and bin packmmgblems, however

it could be improved for some variants.

4.7 BRANCHING

The choice of the branching scheme is essential for the efiigi of the branch-
and-price procedure. The aim of branching is twofold: inworg the dual
bound and enforcing integrality. These two objectives cancbntradictory.
As the dual bound for the global problem is the worse bound alleactive
nodes, it is important to use a balanced branching schentecthestraints
equally all descendant nodes: i.e. the sultetefining the partition must not
be too restrictive, because otherwise, the branch comelsipg to the restrictive
branching constraint will probably lead to an improved bauwhile the other
branch will barely be constrained leading to a subprobleth aimost the same

bound as the parent node.

4.7 Branching 137

In this section, we study and compare the branching rulesepted in section
2.3.7. We first test each branching rule separately, our aite icompare the
dual bounds improvements that can be obtained from thatfale. We also see
whether some rules are more likely to quickly give rise toraliinteger solutions.
Based on these experiments, we try to combine these indepgeimdnching rules.
Priorities on the variables allows to define the order of gatnen of the branching
constraints and can influence the balance of the tree. Tleeyediailed below. The
tree search strategies are best bound first or depth firstb@stebound strategy
consists in giving priority to the improvement of the dualuibd, the next node
to treat being the node associated to the best dual bond. gpth @rst strategy
on the other hand aims at quickly finding primal feasible 8ohs. As the dual
bounds at the root node are optimal for the standard cuttmgk problem, the
depth first strategy seems to be more appropriate, so we feeoitir numerical

tests.

4.7.1 NUMERICAL TESTS

For the numerical tests on branching we used smaller instabecause of the
computational time required. The tests have been done @asses of random
instances witl20 items, whose average demand(s and the wide roll width is
1000. The classes are characterized by the items widths whick vegdomly

generated in the following intervals:

e class 1 (cl)w; € [0, 7500]

class 2 (c2)w; € [0,5000]

class 3 (c3)w; € [0,2500]

class 4 (c4)w; € [500, 5000]

class 5 (c5)w; € [500, 2500]

138 Comparing IP Column Generation strategies

In tables 4.24 and 4.25, we compare the two following rules:

[bri] Y NeEN

q:zTi;=1

[br2] Y NEN
q:z; >0
The highest priority was given to the variable with the |atg&eightw, m;; for
[br1], andw; for [br2]. The last branching rule defined in section 2.3.Aased
[br3]:

[br3] > MEN

Y=y, =

It consists in branching on the number of columns that inedivo items:; and
[. [br3] has proved to be too restrictive to be interestingit(aan be seen on the
first class tests). We also test the combination of the rukasdl2 on the classes
for which the use of a single rule was not sufficient to obtaiminteger optimal
solution: we apply [brl] while a branching constraint is fouto separate the
current fractional solution and we use [br2] otherwise.

For the numerical experiments we have limited the numberoadfes treated to

1000, so the procedure stops:
¢ (i) when the maximum number of nodes to treat is reached,

e (ii) when the used branching rule becomes insufficient totleatcurrent

fractional solution,
e (iii) or when the integer optimal solution has been found.

The master is initialized with local artificial columns ane@ wse the first fit de-
creasing algorithm to start we an initial integer solution.

Table 4.24 present average results dveandom instances for the standard cutting
stock problem while table 4.25 reports the average resuéisall classes for the

variant with tolerance on production. The columns give:

4.7 Branching 139

e Rule = The branching rule tested.

e Nodes = number of node processed during the branch-and{macedure.
e RtDB = dual bound at the root node.

e RtInc = incumbent at the root node.

e DB = best dual bound at the end of the branch-and-price ptoeed

¢ Inc = best incumbent at the end of the branch-and-price proee

e Mast = number of master LP that have been solved.

e Sp = number of subproblems that have been solved.

e TSp = total time spent at solve the subproblems, in seconds.

e TMast = total time spent at solving restricted master pnoislan seconds.

e Total = total time in seconds.

The number between brackets in the column Rule is the nunflmgtional solu-
tions over5 instances. For the variant with tolerance on productioa,rthmber
of instances solved to optimality with a single branchinig muas undei 0% for
each branching rule.

The rule [brl] was sufficient to find an optimal integer sadatin almost all
instances of the standard cutting stock problem. More@wem when the use of
[br2] allows to find the optimal solution, the number of nodeserated is much
more important than using [brl] and the computational tipesnode is larger.
Optimal integer solutions are obtained for all instanceghenstandard cutting

stock problem using first [brl] and then [br2].

For the variant with interval on production the use of a sngranching

rule is insufficient to cut all fractional solutions. We muste a combination of

140 Comparing IP Column Generation strategies

Rule Nodes | RtDb | Rtinc DB Inc Mast | Sp Tsp TMast | Total
cl [br1] (5) 14 | 374.8 | 378.6 | 374.8 | 374.8 46 17 1.62 0.03 2.27
cl [br2] (5) 6 | 374.8 | 378.6 | 374.8 | 374.8 33 18 8.36 0.02 9.39
cl [br3] (3) 432 | 374.8 | 378.6 376 | 374.8| 836 | 223 | 215.67 1.84 | 304.16
c2 [br1] (5) 106 262 | 266.4 262 | 262.0| 285 | 62 14.87 0.25 | 18.39
c2 [br2] (4) 409 262 | 266.4 262 | 262.4 | 797 | 180 | 620.17 2.29 | 687.56
c3 [br1] (4) 467 | 122.8 | 123.4| 122.8 | 123.0 | 777 | 111 | 44.54 1.38 | 69.65
c3 [br2] (3) 600 | 122.8 | 123.4 | 122.8 | 123.4 | 1043 | 124 | 199.51 1.92 | 247.40
c3 [brl] +[br2] (5) 472 | 122.8 | 123.4| 122.8 | 122.8 | 1137 | 150 | 165.97 2,74 | 24291
c4 [br1] (4) 222 | 247.2 253 | 2472 | 2474 494 | 73 68.53 0.51 | 78.09
c4 [br2] (2) 804 | 247.2 253 | 247.2 | 251.2 | 1381 | 145 | 114.72 2.73 | 181.81
c4 [brl] +[br2] (5) 191 | 247.2 253 | 247.2 | 2472 | 440 | 76 76.75 0.58 | 91.11
c5 [br1] (4) 466 | 141.8 | 145.2 | 141.8 | 142.0 | 1099 | 137 | 139.43 1.28 | 163.86
c5 [br2] (0) 1000 | 141.8 | 145.2 | 141.8 | 145.2 | 1880 | 213 | 546.37 | 19.56 | 663.52
c5 [brl] + [br2] (5) 1143 | 141.8 | 145.2 | 141.8 | 141.8 | 2356 | 144 | 181.79 6.53 | 388.47

Table 4.24: Branching rules

Rule | Nodes | RtDb Rtinc DB Inc Mast | Sp Tsp TMast Total
[br] 802 | 36231.3| 88488 | 36231.3| 40612.2| 1236 | 554 | 6177.68 2.47 | 6328.12
[br2] 809 | 36231.3| 88488 | 36231.3| 47792.1| 1423 | 489 | 2953.16 3.21 | 3066.22

Table 4.25: Branching rules - Tol. On Prod.

these rules. The computational experiments show that biagon the binary
components ([brl]) gives rise to a better incumbent satutfought the trees
sizes are equivalent. However the computational time Spehe subproblems is

twice as large.

THE INDUSTRIAL CUTTING STOCK
PROBLEM

Industrial Cutting Stock Problem (ICSP) combine all theficifities of the

variants discussed in Chapter 1: tolerance on productiaftipte stock pieces,
bi-criteria optimization (minimizing waste and the numisérdifferent patterns
used). Moreover, there are typically further technicatriesons, some of which
concern the definition of a feasible cutting pattern (andckenust be taken into
account in the column generation subproblem), while otaersgylobal constraint

(such as sequencing issue) that must be formulated in theenpasgram.

Among the technical constraints generally encounteretienpaper industry

we can cite:

1. An upper bound on the waste resulting from cutting. Thisrabtranslates
into a minimal cut width on the cutting pattern. It can be medean the

subproblem as (1.13).

142

The industrial cutting stock problem

2. A maximum number of cuts that can be made in a pattern, agititer has

typically a fixed number of knives. It gives rise to the casadity constraint

(1.15) that goes in the subproblem.

. A maximum number of different order types in a pattern. sT¢éonstraint

comes from storage problems: after the cutting processetls are put on
pallets. Moreover, dealing with many types of reels causeenmaste of

time in handling. Such restriction takes the form:
Zyik: < T k=1,....K
=1

wherey;, = 1 if some piece of typé is cut in roll £, i.e. if z;;, > 0 (such

constraint goes in the subproblem).

In order to avoid short batch run length, a minimum numbdeuse (V)
for each pattern may be imposed. In formulation [F5] (se&g), this

constraint takes the form

2k > Nyk kzl,,K

While in the column generation reformulation [M5] (see @)6it can be
modeled in the subproblem, since we augmented it with miidip vari-

ablex,: it takes the form

2w > N k=1,... K

. A minimum M and maximum) use of stock pieces. It is a global con-

straint that arise typically when there are multiple kindtack pieces (this
may be a way to enforce the use of some stock pieces in ppioiitythe

compact formulation [F3] (1.8), it can be formulated as:

M < Yy < M

143

for some subsef of stock pieces. In the column generation reformulation,

it takes the form:

Lee, in [24], proposes a unified bilinear model that corresisoto the
formulation [F5] with the same additional technical coasits as ours (minimal
width and number of cuts) and whose objective is the wastenmezation. This
model allows to generate the pattennssitu (some details on this approach
were given in Section 2.4). He starts with an initial set oftgq@s generated
heuristically, some of them are fixed, he solves the partiabrized model whose
solution allows to fix optimal patterns. After solving thedarized model, a local

search is used to determine what patterns can be droppedjenegated.

Our aim in this chapter is to study the extents to which suahlife problems
can be approached with a branch-and-price algorithm thiasren a commercial
mip solver for master and subproblem solutions. In this psepwe use a
prototype generic branch-and-price cod&gPCod that is developed locally.
The code automatically applies the Dantzig-Wolfe decontioos based on
the original formulation and the user indications of whahstoaints must be
dualized. This “black-box” approach frees the user fromimguvo define the
form taken by a column and its reduced cost and the form of dggdngian dual
bound. All further modifications resulting from branchingamding cuts in the

master for instance can be taken into account automatiwedly

The interest of such approach is that it is quite flexible comporating specific
technical constraints: any additional constraint neetijeformulated correctly
and the user must say if the associated constraint goes imaséer or in the

subproblem. The drawback is that computing times can be hangér than those

144 The industrial cutting stock problem

of a specialized branch-and-price algorithm that relieamefficient subproblem
solver. (However, when a specialized subproblem solvesasable, it can replace
the call of the commercial MIP solver iBaPCod. In practice, it appears that
the size of the industrial instances that we received isiwithe reach of the
generic code based on MIP solver. The strategies of implatiens that we
experimented within Chapter 4, have been built iBePCod and are therefore

available for our study of ICS problems.

5.1 THE CUTTING PROBLEM AT THE PAPER MILL CONDAT

We consider here a specific variant of ICSP such as encodrdétbe paper mill
Condat (Dordogne, France). The primer objective is to minéthe waste while
a second objective is to minimize the number of differentingtpatterns. There
is a tolerance on the production level. Technical consisaom cutting patterns

are minimum cut width and maximum number of cuts (knifes)r{d 3).

We implemented an hierarchical optimization approach. Hirst model
(ICPM1), we minimize waste under demand satisfaction camgs. Then,
under a second model (ICPM2), we minimize the number of setwpder
demand satisfaction and waste bound constraint. We alssad=ma third model
(ICPM3) to examine the different trade-off between wast@&imization and
setup minimization. We minimize waste under demand satisfa constraints
and a bound on the number of setups. By enumerating the thsakie of the

latter, we can obtain all pareto optimal solutions.

The first model, which we call [ICSPM1], is to solve [M2] as&ded to the
subproblem [BSP4]. The optimal integer solution corregjsoto the minimal

waste solution. The minimum waste valuegste* is used as an input for the

5.1 The cutting problem at the paper mill Condat 145

second model.

For the second model, [ICSPM2], the subproblem is formaitefi. SP5] aug-
mented with a constraint on the waste (as a single patterts@wn cannot pro-
duce a waste larger than the total authorized waste) anditatttonstraints on

the minimum cut width of cutting patterns and maximum nundfeuts:

n

nq
W g ml—E E Zii mijrw; < waste”

i=1 j=1

n z
E E w; mij wij

i=1 j=1

n n;
szij Lij S C

i=1 j=1

v

Wmin

The master problem is the linearized version of [M5] with adidonal con-

straint on the waste, i.e.,

min Z Ag

q€@
ICSPM?2 st Y DY mpl A, = d i=1,...,n

€@ L J
ZZZmiﬂzfﬂ)\q < d; i=1,....n
€@ L J

Z(W xg my — z”: i zhimiiwg) Ay < waste”

€Q i=1 j=1

dYa <U

q€Q
A€ {0,1} VYge@

whereU is a valid upper bound on the number of different cuttinggra. In

practice, the value of this bound is set to the number of @iffepatterns used in

146 The industrial cutting stock problem

the solution given by the first model, (ICPM1).

The third model, [ICSPM3], takes the form:

n ez
. q _ q .. .
min E (W xf, my E E 23 M w;) A

qe@ i=1 j=1
St YD mEh A, > d i=1,....,n
€@ I
Zzzmm%’m < d i=1,...,n
€Q 1 J
Z)‘q < U

q€qQ
A€ {0,1} Vge@

whereU is the parameter on which we iterate to obtain the curve atpaptimal
solutions: starting with thé’ obtained in the solution of model [[ICSPM1] whose
waste is equal tavaste*, the valueU is decreased iteratively until there is no
more feasible solution. The two extreme solutions of thefmeoptimal curve are
the minimum waste solution involving the smallest numbedifferent patterns
and the solution with the minimum number of patterns that banachieved

(which has typically a waste greater thanste*).

To enforce integrality, we used the branching constraietsdd in Section
2.3.7. Moreover, we use a new branching rule, enfording., A, € IV for
Q= {q € Q : z}, = 1}, i.e. the number of columns of multiplicity,, must be
integer. These branching rules are sufficient to solve opeemental instances

to optimality.

We used the two first models to solve the industrial data cgritom Condat.

5.1 The cutting problem at the paper mill Condat 147

They were implemented in BaPCod ([43]) that uses XPressNRBdtving the
linear master programs and the subproblems. For the cdpveomstraint we
compute an upper bound(on the number of wide rolls as:
d; w;

ZZT 1.5.
The maximum multiplicity of the cutting patterns is setiton{max; d;, K}. To
obtain an incumbent solution fafC'SPM1, we use the first fit decreasing al-
gorithm adapted to this model and the rounding heuristic @& @h of 2, while
ICSPM?2 is initialized with the solution of CSPM1. The masters are initial-
ized with a single artificial column (4.2.2) as we have showihapter 4 that it
was the initialization mode that performs better on theargrivith tolerance on
production. All branching schemes described in chaptee2iaeful to obtain in-
teger optimal solution. The algorithm stops when the nunobgenerated nodes
exceeds 10000 or at optimality.
The instances used are real-life problem from the papeorfadondat. Their
size is representative of the hardest instances that arg@actice at Condat: The
average number of orders 8sand there widths vary between 42 and 166 while

the average demand is 37. Each set of data are composed of:
1. the number of items to cut,
2. the minimum and maximum widths of a cutting patterns,
3. the number of knives of the winder, defining the capacitst pattern,
4. the width and associated demand in each order type,
5. lower and upper bounds on production for each order.

The names of data files are ié$jh, whereh is the number of the data file

while £ = 0, ...3 has the following meaning:

148 The industrial cutting stock problem

k = 1: theinstance represents an order form such as that it waglprbto logis-

tics.
k = 2: same as above but a tolerance on production was introduced.

k = 3: the aim production levels represent what was really prodgethe fac-
tory (as opposed to what was on the order form), a tolerangeauction

level is set at 2 %.

k = 0: the required production levels represent what was reatidyced by the

factory.

The optional orders are treated as standard orders withr logeand on production
set to zero.

The numerical results are presented in tables 5.1 and 5ch t&hle reports:

¢ N. = name of the instance.

e RtLpVal = value of the last restricted LP master problem atrtiot node .

e RtDB = dual bound at the root node.

¢ RtInc = incumbent at the root node.

e DB = best dual bound at the end of the branch-and-price ptoeed

¢ Inc = best incumbent at the end of the branch and-price ptweed

e Nodes = number of nodes processed during the branch-acelfgpocedure.

e TSp = total time spent at solve the subproblems, in secdddie(that it
represents the bulk of the computing time. Recall that weausemmer-
cial mip solver. Computing times would be much lower with atomized

solver).

5.1 The cutting problem at the paper mill Condat 149
e TMast = total time spent at solving restricted master pnoislan seconds.
e TRh =time spent on the rounding heuristic, in seconds.
e Total = total time in seconds.

The first line corresponds to the solution of the first modellevthe second line

to the second one.

N. RtLpVal | RtDb | Rtinc| DB Inc | Nodes| TSp| TMast| TRh| Total
0001| 1149 1149 | 1149 | 1149 | 1149 1 0.03| 0.01| 0.00| O0.10
0001| 2.15 3 4 3 3 31 9.41| 0.01| 0.00| 11.79
1001| 1109.8 | 1109.8| 1121 | 1121 | 1121 378 234| 0.22| 1.18| 6.75
1001 211 3 3 3 3 1 0.99| 0.00| 0.00| 1.15
2001| 1109.8 | 1109.8| 1121 | 1121 | 1121 362 2.25| 0.26| 1.68| 6.94
2001 2.10 3 4 3 3 61| 15.25| 0.14| 0.00| 17.89
3001| 1132.2 | 1132.2| 1149 | 1147 | 1147 403 235| 0.37| 1.04| 7.02
3001 2.10 3 3 3 3 1 1.11| 0.01] 0.00f 1.28
0003| 25.72 | 25.72 | 123.5| 123.5| 123.5| 413 8.85| 0.62| 5.92| 21.14
0003| 2.68 3 6 4 4 403| 28.79| 0.67| 0.00| 44.08
1003| 9.79 9.79 | 187.5| 57.5| 575 448 | 15.29, 0.82| 7.67| 30.38
1003| 2.38 3 4 4 4 27 7.63| 0.03| 0.00| 8.74
2003 5.5 55 275 | 275 | 275 82 791 0.09| 7.60| 11.73
2003| 2.75 3 4 4 4 3 1.79| 0.00| 0.00f 2.03
3003| 20.58 | 20.58 | 111 | 335 | 335 55 229 0.10| 2.24| 443
3003| 2.93 3 5 5 5 7 3.46| 0.00| 0.00| 3.90
0004| 253 25.3 46 46 46 5393| 245.06| 7.81| 20.48| 579.38
0004| 3.21 4 8 5 5 41| 15.39| 0.11| 0.00| 17.84
1004 | 120.77 | 120.77| 233 | 129 | 129 526 | 124.53| 0.83| 65.63| 156.38
1004 3.31 4 7 5 5 491 | 337.59| 1.04| 0.00| 374.61
2004| 27.54 | 27.54 | 54 30 30 757 | 151.24| 1.11|55.64| 192.35
2004| 3.52 4 8 5 5 255|166.58| 0.70| 0.00| 183.95
3004| 23.8 23.8 31 28 28 368| 43.06| 0.50|18.95| 58.54
3004| 3.77 4 7 5 5 28| 18.66/ 0.05| 0.00| 20.56

Table 5.1: B&P - numerical results (1/2)

N. RtLpVval | RtDb | Rtinc DB Inc | Nodes TSp| TMast| TRh Total
0005 274.39 | 274.39| 314 314 314 | 2373| 21850 3.81|17.68| 415.49
0005 3.66 4 5 5 5 97 78.90| 0.17| 0.00| 86.07
3005 248.54 | 248.54| 260 252 252 79 9.53| 0.21]| 4.90 13.27
3005 3.82 4 6 5 5 154| 78.42| 0.23| 0.00| 87.49
0006 25 25 69 69 69 252 9.27| 0.42| 3.58 17.74
0006 2.89 3 5 3 3 31 8.85| 0.09| 0.00 10.51
3006 23.33 | 23.33 | 110 25 25 102 9.63| 0.31| 8.79 15.24
3006 2.63 3 4 4 4 13 5.85| 0.02| 0.00 6.59
0008 0 0 0 0 0 31 1.69| 0.00| 1.00 2.07
0008 2.91 3 9 5 5 1558| 7165.36) 3.11| 0.00| 7312.82
0009 1444 1444 | 1444 | 1444 | 1444 1 0.85| 0.00| 0.00 1.26
0009 5.44 6 7 6 6 33| 189.36| 0.13| 0.00| 199.29
0010 20 20 20 20 20 1 0.01| 0.00| 0.00 0.04
0010 1.39 2 5 2 2 21 2.56| 0.00| 0.00 3.15
1010 19.8 19.8 20 20 20 2856 7.98| 2.39| 0.38| 64.26
1010 1.39 2 5 2 2 21 2.88| 0.02| 0.00 3.63
2010 19.8 19.8 20 20 20 3158 851 256| 1.68| 71.99
2010 1.39 2 5 2 2 21 2.71| 0.04| 0.00 3.40
3010 194 19.4 20 20 20 6238| 23.10| 6.42| 2.40| 279.16
3010 1.42 2 3 2 2 23 2.78| 0.02| 0.00 3.45
0011 (*) | 187.88 | 187.88| 325 | 196.171| 325 | 9799| 3112.70| 16.54| 47.30| 5143.33
0011 3.28 4 8 4 4 4996 | 3441.15| 20.14| 0.00| 6275.81
2011 40.5 40.5 41 41 41 48 55.14| 0.09|17.62| 57.83
2011 2.76 3 8 4 4 1093| 2290.48| 2.68| 0.00| 2440.30
3011 (*) | 175.47 | 175.47| 200 | 180.04 | 194 | 9939| 1246.91| 11.61| 24.90| 2516.04
3011 2.74 3 9 5 5 5000| 6020.21| 13.65| 0.00| 7742.08

Table 5.2: B&P - numerical results (2/2)
(*) refers to instances that were not solved to optimalitynfitver of limited nodes exceeded).

152 The industrial cutting stock problem

In Table 5.3, we give compare the solutions used in the faadBondat to
ours. In the colummvastethe number between bracket is the percentage of waste
over the production, and in the columaomber of setupswe give the number of
different cutting patterns over the total number of widdsaised. The symbol
* referred to optimal solutions, whil&)B is the lowest upper bound for the
instances where we do not have the optimal solution. We oale the factory
solution value for instance of typeand(. For some instances, marked w(i),
the factory solution is not feasible (hence they can have steMawer than our

feasible optimal solution).

For some instances in table 5.2 we have not the order formigedvto
logistics, so we used only what was really produced as ant.inple note that
most of these industrial instances were solved to optigpaht terms of waste
and number of different cutting patterns. Modél'PM 1 take often more time
thanIC'P M2 because in many cases, the branch-and-price tree groves farg
ICPM1. However the subproblems are harder to solvel/foP M2, thus times

per node are more important for this model.

A more specialized code should have better performance. @rhand the
columns generated for solving the first model could be uséldarsecond model
(this can be implemented by redefining the associated shlgmnosolution). In-
deed, we note that on most instances the number of distitttgypatterns given
by the optimal solution of the first model is near (sometinwpsad) to its optimal
value, a lot of time is spent in generating columns that wéneady used in the
solution of /ICPM1. Moreover, the computing time could be improved devel-
oping a specific solver (as a dynamic program). For the sutbgmo associated
to /C' PM2 we could iterate on the multiplicity, of a cutting pattern: for each

valuez, = 1,...,27"* we determine the reduced cost of the associated cutting

5.1 The cutting problem at the paper mill Condat

instance waste number of setups
factory | B&P factory| B&P
1001 | 1149 (4.71%)| 1121 *(4.68 %)| 3/49 | 3*/ 48
2001 1121~ 3*/48
3001 1147 *(4.70 %) 3*/49
0001 1149 1149 * 3/49 | 3*/49
1003 1235 57.5* 4/15 | 4*/13
2003 27.5* 4*13
3003 33.5*(0.47 %) 5%/16
0003 | 123.5(1.87 %) 123.5* 4/15 | 4*/15
1004 46 (+) 129 * 5/18 | 5*/18
2004 30* 5*/18
3004 28 * 5*/19
0004 46 (0.74 %) 46 * 5/18 | 5*/18
3005 252 * (1.37 %) 5*/37
0005 | 314 (1.70 %) 314 * 5/37 | 5*/37
3006 25 *(0.95 %) 4*6
0006 69 69 * 3/6 | 3*/6
\ 0008 \ 345 \ 0* \ 7/32\5*/32\
\ 0009 \ 1444 \ 1444 * \ 6/98 \6*/98\
1010 90 20* 2/9 2*/9
2010 20* 2*/9
3010 20* 2*/10
0010 90 (2.28 %) | 20 * (0.0050%)| 2/9 | 2*/9
2011 41 * 5/27 | 4*/33
3011 194 (UB) 5*/28
0011 | 325 (2.40 %) 325 (UB) 5/27 | 4% 27

Table 5.3: Comparisons with factory solutions

153

154 The industrial cutting stock problem

pattern by solving a standard knapsack problem.

5.2 An application with minimal run length 155

5.2 AN APPLICATION WITH MINIMAL RUN LENGTH

The application described here comes from another indligioblem, where the
technical constraints are different from the above moda#s still consider a tol-
erance on production, but now the only technical constraiatminimum number
of runs set taV = 2. The model used to solve this application is [ICPM3] asso-
ciated to the subproblem formulation [LSP5] to which we addastraint on the

minimal multiplicity of a cutting pattern:

Zml Ty > N
I

Numerical tests were done on two instances provided by Greydth 17
items. Their characteristics are summarized in the folhgable:

W % @ Ez
wnst.1 3200 400, 870] 32 36
mnst.2 1344 (352, 722] 12 11

We obtained an estimate of the minimal number of setups rediiy solving
the model [ICSPM1], then we decreased its value while mining the waste.
The pareto curve associated to the first instance is repgessenfigure 5.1. The
optimal waste, whose value(sis obtained with at most cutting patterns, while
when the number of distinct cutting patterns is restrictedd at most, 6, 5 or 4
the waste increased to the valR®), and there is no feasible solution when this

number takes a value inferior 8o

The solutions are represented in figures 5.2 to 5.4. The twofigures (5.2

and 5.2) are associated to the first instance. Figure 5.2gmonds to the optimal

156 The industrial cutting stock problem

waste

220 -

0 - * number of distinct patterns
4 8

Figure 5.1: pareto optimality curve for instance 1

waste solution while 5.2 corresponds to the solution wighrtiinimum number of
setups. Figure 5.4 represents a solution for the secorghicest This solution was
the best compromise that can be obtained in terms of numisetaps and waste.
The second instance was harder to solve because of the itelthsthat are large

relative to the wide roll width.

5.2 An application with minimal run length 157

37X

26 X

450

22 X

SN
a
o

w
x

(o]
x

IS
X

420 (420

w
x

Number of distinct cutting patterns : 8
Number of rolls ;: 119
Total waste : 0

Figure 5.2: instance 1 - optimal waste

50 x waste :

36 x waste :

22 X waste :

]

waste :

Number of distinct cutting patterns : 4
Number of rolls : 117
Total waste : 220

Figure 5.3: instance 1 - optimal number of distinct cuttiagt@rns

waste :

waste :

waste :

waste :

waste :

waste :

waste :

420 waste :

10

158

N ~
x x

N
x

a1

(o))

(o]
N
N

(o] N
x x

IN
X

a
[@)]
[o0]
r— N

» (o] E ol
x x x x

N
x

(o]
x

D
o
(03]
— N

Ea w
x x

==

(€31
x

14 x

N
x

L
_/

The industrial cutting stock problem

608

—
-
g

)
7

)
N

608

r—
-
v

Number of distinct cutting patterns : 17

Number of rolls : 88
Total waste : 5090

Figure 5.4: instance 2

waste :

waste :

waste :

waste :

waste :

waste :

waste :

waste

waste :

waste :

waste :

waste :

waste :

waste :

waste :

waste :

waste :

48

54

1224

50

80

16C

24

16

16

44

36¢€

Conclusion

Cette thése donne une revue compréhensive des différemtemilétions et
approches de résolution associées pour le probleme de pE¢QESP) et ses
variantes. Les relations théoriques d’équivalence ou deirttnce qui existent
entre ces formulations ont été établies, ainsi que des amigpas sur des
guestions pratiques telles que la symétrie dans la repgetgendes solutions
et les schémas de branchement qu’elles induisent. Nous swumes alors
concentrés sur l'algorithme de “branch-and-price”. Nousrna développé des
algorithmes exacts spécialisés pour les sous-problemedsiésode sac a dos qui
interviennent au cours du parcours de I'arbre de “branahaice”. Notre étude
numérique compléete des stratégies d'implémentation ar@ayielles stratégies
ont un réel impact sur l'initialisation, la stabilisatidies branchements, et dans
'obtention de solutions primales. Enfin, nous avons démgogt’'en utilisant
une implémentation basique des stratégies importantegeah résoudre des

problemes industriels.

Le chapitre 1 replace le probléme de découpe 1D dans sonxtertedonne
la formulation de contraintes et d’objectifs additionngls peuvent apparaitre
dans les variantes du probléme. Des reformulations soseptées au chapitre
2. Nous les présentons comme résultant d'un changement ribleadans
le sous-probleme de sac a dos. Les problemes de découpepimement
différentes solutions optimales. De plus, certaines féatmns admettent

différentes représentations d’'une solution donnée. Ndiseussion montre

160 Conclusion

que le modele de Gilmore-Gomory évite cette derniére syeyétors que ce
n'est pas le cas de la formulation en terme de flots. La fortimacompacte
de Kantorovich est encore plus mauvaise (car il y a un nontperentiel de
permutations d’'index donnant la méme solution). Le chagtclasse également
les diverses formulations en classes d’équivalence ereted®r leurs solutions
LP et IP.

Nous avons présenté, en particulier, des formulationsaigs avec échanges
intégrés. Nous montrons qu’elles ont un impact sur la @8in des solutions
duales (de la méme fagon que I'inclusion de colonnes adiligs implique des
contraintes duales) et par conséquent elles ont un effetatddisation sur une
approche de génération de colonnes. Nous présentons leptote vecteurs
d’échanges et nous avons généralisé le travail de Carvallescoupes duales.
Cette étude théorique est achevée par des tests numérioes.avons montré
au chapitre 4 que bien que la théorie prévoie une borne diladefgible pour
certaines de ces reformulations avec échanges, elles esetndnl fait donner la
méme borne duale en pratique. Le meilleur effet de stahois&st obtenu avec
la formulation avec variables d’échanges de flot. Elle send@tie le meilleur

compromis en termes de complexité de la structure d’échange

Les comparaisons numériques des stratégies d'implénmmatu “branch-
and-price” du chapitre 4 sont menées sur les variantes dula@s&identifier des
stratégies robustes. (Les travaux précédents présemigédalhttérature portent
seulement sur les problemes de Bin-Packing (BPP) ou de CGBidastl). On
observe que le BPP pur souffre typiguement davantage deyéndéescence que
le CSP standard, lui-méme étant plus dégénéré que la \ardaer tolérance
sur la production. En effet, les exemples de BPP tendent &qogs un grand

nombre d’articles dont les largeurs peuvent étre prochesnes des autres (ils

Conclusion 161

sont bien plus dégénérés si des articles identiques ne ssragrégés). Alors
les techniques de stabilisation ont un plus grand impacaué part, quand on
permet la tolérance sur la production, I'objectif est de mnesla perte et par

conséquent il y a peu de solutions de méme codt.

Nos résultats montrent qu’une initialisation appropriéenaimpact signifi-
catif sur le nombre d'itérations de la procédure de gér@madie colonnes. La
meilleure stratégie est linitialisation avec les colosmetificielles locales, si on
a une bonne évaluation de la solution duale a priori (ce queess pour BPP et
CSP). Les colonnes d’une solution heuristique gloutonderdgiaussi. En termes
de techniques de stabilisation, on peut noter que I'utibsades contraintes de
recouvrement au lieu des contraintes de partitionnemerdéa une forme de
stabilisation. Nos comparaisons montrent que le boxsteprmyque n’aide pas,
étant donnée notre bonne initialisation. Lisser le vectiial avec celui obtenu
a litération précédente (Neame) fonctionne mieux queefiss/ec le vecteur
dual donnant la meilleur borne duale (Wentges). La méthedefaisceaux est
efficace en terme de réduction du nombre d’itérations @a@rement sur les
problemes les plus dégénérés comme les triplets du BPP)endapt, elle est
plus chére en temps pour résoudre les sous-problemes. ©nueie facteur de
vitesse (ou le nombre d’itérations) rapporté dans la étténe sur des techniques
de stabilisation est obtenu en le comparant & une approdfie.fd.orsque ces
techniques sont appliquées avec une bonne initialisationimpact est moins

important.

Notre expérimentation de différentes stratégies de géaérde colonnes ne
fait pas clairement apparaitre de stratégie gagnante : eoprévu la solution
heuristique du sous-probléeme donne moins de temps patidtéranais plus

d’itérations; on observe l'effet inverse en générant guss colonnes par

162 Conclusion

itération avec notre stratégie de diversification. Les iséiques primales basées
sur une approche de génération de colonnes fonctionnent bie particulier
I'heuristique d’arrondi qui donne des solutions presquénogdes (optimales

dans presque tous les cas).

Des solveurs pour résoudre le sous-probleme ont été dééda chapitre
3. Nous avons montré comment les résultats classiques pgmmobleme de
sac a dos peuvent étre généralisés au probleme de sac a doeslasgsk avec
des “setups”. Nous donnons des bornes supérieures quialjéeét celles
de Dantzig. Nous avons montré que l'algorithme de “branuiHaound”
classique de Horowith et Sahni se prolonge a ces variantesust fournissons
des algorithmes de programmation dynamique. La contghuprincipale
de ce chapitre est un schéma d’énumération intelligent Palgorithme de
“branch-and-bound” spécialisé. Elle exploite les camsti§ues des solutions
optimales pour le modéle. On doit étendre I'approche stahdaur avoir un
schéma d’énumération qui est glouton en terme de bornegsiealprimales.
L'intérét de considérer un modele multi-classe 0-1 plutéd g transformation 0-1

standard ou un modéle de sac a dos en nombre entier ont étémmaedans [42].

Dans le chapitre 5, nous examinons des contraintes et dbjeapplémen-
taires qui interviennent dans les problemes de découpg:réelus avons montré
comment les formuler et nous avons fourni des modéles,itiérerpour une op-
timisation hiérarchique, ou pour donner toutes les sahgtigareto optimales. Ce
chapitre prouve qu’un code générique de “branch-and-prizasé simplement
sur un solveur MIP commercial pour traiter les formulatiorethématiques, peut
résoudre des exemples industriels. Lintérét de cetteambgr est sa flexibilité
pour manipuler de nouvelles contraintes spécifiques. Siintéesse alors au

développement d’'un solveur spécifique pour le sous-problempeut facilement

Conclusion 163

améliorer les temps calcul.

164 Conclusion

Conclusion

This thesis gives a comprehensive view of the scope of fationls and related
solution approaches for the cutting stock problem (CSP) ingariants. We
have established theoretically the relative strength ahe®rmulation and
compared them on practical issues such as the symmetry nephesentation of
solutions and the branching scheme to which they lead. Weftheaised on the
branch-and-price algorithm. We developed specializedteadgorithms for the
modified knapsack subproblems that arise in the course dbrdrech-and-price
tree. Our thorough numerical testing of implementatioatstyies has showed
what strategies have a real impact on initialization, $teddion, branching,
and in producing primal solutions. Finally, we demonsulateat using a basic

implementation of the important strategies, one can solgiastrial problems.

Chapter 1 places the one-dimensional cutting stock proldeaontext and
provides formulation of additional constraints and ohjexg that may arise
in variants of the problem. Reformulations are presente€Chapter 2. We
take the view of presenting them as arising from a variablangk in the
knapsack subproblem. Cutting stock problems typically iadifferent optimal
solutions. What is more, some formulations allow for diéiet representations
of a given solution. Our discussion showed that the Gilntéoenory model
avoids the latter symmetry, while the arc flow formulatiorgmot. The compact
formulation of Kantorovich is even worse (as there is an egmdial number of

index permutations leading to the same solution). Chapaéds@sorts the various

166 Conclusion

formulations into equivalent classes in terms of their LI # solutions. This

classification builds on known results and completes thetn mew results.

In particular, we introduced original formulations withiltin exchanges.
They are shown to have an impact in terms of constraining dakitions (in
the same way as including artificial columns implies dualstints) and hence
they have a stabilization effect on a column generation@ggr. We introduce
the concept of exchange vectors and generalized the worlanfatho on dual
cuts. This theoretical study is completed by numericalstestve showed in
Chapter 4 that although theory predicts a weaker dual boonddme of these
reformulations with exchanges, they seem to lead to the sdma¢ bound
in practice. The best stabilization effect is obtained wviltle exchange-flow
formulation which seems to strike the right trade-off imterof the complexity

of the exchange structure.

Chapter 4's numerical comparisons of implementationsgegres for branch-
and-price are carried across the CSP variants to identibugto strategies.
(Previous works reported in the literature concerned ontyMBacking Problems
(BPP) or standard CSP). It is to be observed that the pure B#i€atly suffers
more from degeneracy than the standard CSP, itself being oemenerate than
the variant with tolerance on production. Indeed, BPP msta tend to involve a
large number of items whose width can be close to anothey @heeven more
degenerate if identical items are not aggregated). Thdligition techniques
have a larger impact. On the other hand, when tolerance a@uption is allowed,
the objective must be to measure waste and hence there aseligons with the

same Ccost.

Our results show that proper initialization has a significampact on the

Conclusion 167

number of iterations of the column generation procedure Hést strategy is the
initialization with local artificial columns, provided oreas a good estimation of
the dual solution a priori (which is the case for BPP and C&®BJumns from
a greedy heuristic solution do help too. In terms of staation techniques, let
us first note that using covering constraints instead ofitparing is already a
stabilization. Our comparisons show that dynamic boxstgscot help given
our good initialization. Smoothing the dual vector with $leoobtained at the
previous iteration (Neame) works better than the smoothirlg the dual vector
giving the best dual bound (Wentges). The Bundle methodesigfe in reducing
the number of iterations (specially on the most degenenatelgms as the BPP
triplet problems); however, it is more expensive in solvihg subproblems.
It is to be noticed that the speeding factor (or number ofattens) reported
in the literature on stabilization techniques are obtaibgdcomparing a poor
approach. Once these techniques are applied beyond a gbalizstion and/or

in combination, their impact is less important.

Our experimentation with different column generation tefgges do not
exhibit a clear winner strategy: as expected solving the@maldem heuristically
leads to less time per iteration but more iterations; theosjtp effect is observed
when generating several columns per iteration with ourrdifieation strategy.
The primal heuristics based on a column generation appraaehshown to
perform well, in particular the rounding heuristic that ggvclose to optimal

solutions (optimal in almost all cases).

The subproblem solvers were developed in Chapter 3. Ther&éawe shown
the extend to which classical results for the knapsack proldan be generalized
to the multiple-class knapsack problem with setups. We gayger bounds
that generalized that of Dantzig. We showed that the cldssioch-and-bound

168 Conclusion

algorithm of Horowith and Sahni extends to these varianit$ e provided
dynamic programming algorithms. The main contribution o tchapter is an
intelligent enumeration scheme for the specialized braarahbound algorithm.
It exploits the characterization of optimal solutions foetmodel. One had to
stretch the standard approach to have an enumeration schatris greedy for
both primal and dual bounds. Another contribution of thiamtier is to reset the
boundary of knapsack problem variants that admit a greedgdl&tion: after
multiple choice and variant with class bounds, we now extésl to the case
with setups. The interest of considering a multiple clagds@edel rather than the

standard 0-1 transformation or an integer knapsack modeteaeloped in [42].

In Chapter 5, we offered a review of extra constraints andaihjes that arise
in real-life cutting stock problems: we showed how to foratalthem and we pro-
vided bi-criteria models for a hierarchical optimizationto generate all pareto
optimal solutions. This chapter shows that a generic bramchprice code, that
simply relies on a commercial MIP solver for dealing with thathematical pro-
gramming formulation, is able to handle industrial ins&sicThe interest of this
approach is its flexibility in handling new specific congtitai Then, if one cares
to develop a specific subproblem solver, one can easily ingowa the computing

times.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Bibliography

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.Network Flows: Theory,
Algorithms, and Applications?rentice Hall, 1993.

J.E. Beasley. Or-library: distributing test problemg électronic mail.
Journal of the Operational Research Socje#l(11):1069-1072, 1990.
http://www.brunel.ac.uk/depts/ma/research/jeb/imiol.

G. Belov and G. Scheithauer. A cutting plane algorithnn foe one-
dimensional cutting stock problem with multiple stock lémg European
Journal of Operational Research41(2):274—-294, 2002.

G. Belov and G. Scheithauer. The Number of Setups (DefiePatterns) in
One-Dimensional Stock Cutting. Preprint MATH-NM-15-2003J Dres-
den, 2003.

H. Ben Amor. Résolution du probleme de découpe par géoésade
colonnes. Master’s thesis, Ecole polytechnique de Moht@&amada, 1997.

O. Briant, C. Lemaréchal, Ph. Meurdesoif, S. Michel, Mridt, and F. Van-
derbeck. Comparison of Bundle and Classical Column GepetaRapport
de recherche INRIA, 5453, 2005.

E. D. Chajakis and M. Guignard. Exact Algorithms for thetugp knapsack
problem.INFOR, 32(3):124-142, 1994.

M. H. Correira, J.F. Oliveira, and J. S. Ferreira. Redal aheet cutting at a
paper mill. Computers and Operations Resegr8h:1223-1243, 2004.

[9] G.B. Dantzig and P. Wolfe. Decomposition Principle fdnéar Programs.

Operations Researci®:101-111, 1960.

170 Bibliography

[10] G. Desaulniers, J. Desrosiers, and M.M. Solomddolumn Generation
chapter 1. Springer, 2005.

[11] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Han&tabilized column
generationDiscrete Mathematigsl94(1-3):229-237, 1999.

[12] H. Dyckhoff. A typology of cutting and packing problemSuropean Jour-
nal of Operational Resear¢d4:145-159, 1990.

[13] M.L. Fisher. The Lagrangian relaxation method for sodvnteger program-
ming problem.Management Scienc27(1):1-18, 1981.

[14] P. C. Gilmore and R. E. Gomory. A linear programming agah to the
cutting-stock problemOperations Resear¢l9:849-859, 1961.

[15] J.-B. Hiriart-Urruty and C. LemaréchaConvex Analysis and Minimization
Algorithms Springer Verlag, Heidelberg, 1993.

[16] E. Horowitz and S. Sahni. Computing partitions with Bggtions to the
knapsack problemJournal of ACM 21:277-292, 1974.

[17] E.L. Johnson and M.W. Padberg. A Note on the KnapsacklEno With
Special Ordered Set®perations Research Letter(1):18-22, 1981.

[18] M.P. Johnson, C. Rennick, and E. Zak. Skiving additmthie cutting stock
problem in the paper industrslAM Review39(3):472-483, 1997.

[19] L. V. Kantorovich. Mathematical methods of organazargl planning pro-
duction.Management Scienc6:363—-422, 1960.

[20] J.E. Kelley. The cutting plane method for solving caxpeograms.J. Soc.
Indust. Appl. Math.8:703-712, 1960.

[21] K.C. Kiwiel. An aggregate subgradient method for noonstin convex min-
imization. Mathematical Programmin@7:320-341, 1983.

[22] K.C. Kiwiel. A dual method for certain positive semidafe quadratic pro-
gramming problemsSIAM Journal on Scientific and Statistical Computing
10(1):175-186, 1989.

Bibliography 171

[23] K.C. Kiwiel. A Cholesky dual method for proximal piecesg linear pro-
gramming.Numerische Mathematik8:325-340, 1994.

[24] J. Lee. InSituColumn Generation for a Cutting-Stock Problem. Technical
report, IBM Research Report, 2005.

[25] C. Lemaréchal. An algorithm for minimizing convex fuimms. Information
Processing '74pages 552-556, 1974.

[26] C. Lemaréchal. Nonsmooth optimization and descenhous. Technical
report, IASA, 1978.

[27] R. E. Marsten, W.W. Hogan, and J. W. Blankenship. Thesbex method
for large-scale optimizatiorOperations Researc¢l23(3):389-405, 1975.

[28] S. Martello and P. TothKnapsack problemsJohn Wiley & Sons, 1990.

[29] R. K. Martin. Generating Alternative Mixed-Integerdgramming Models
Using Variable RedefinitionOperations Researcl35(6):820-831, 1987.

[30] P.J. NeameNonsmooth Dual Methods in Integer ProgrammiR$gD thesis,
University of Melbourne, March 1999.

[31] Dash Optimization. Xpress-MP: User guide and Refezdlanual, Release
12. Technical report, http://www.dashoptimization.c@®01.

[32] N. Perrot and F. Vanderbeck. Knapsack Problems withu&et Work-
ing Paper no U-04.03, Laboratoire de Mathématiques AppbguBordeaux
(MAB), Université Bordeaux 1., 2004.

[33] G. Scheithauer, J. Terno, A. Miller, and G. Belov. Sofyone-dimensional
cutting stock problems exactly with a cutting plane aldgorit JORS
52:1390-1401, 2001.

[34] H. Sural, L. N. Van Wassenhave, and C. N. Potts. The bedrchapsack
problem with setups. Technical report, INSEAD working pageries - 97-
71-TM, 1997.

172 Bibliography

[35] J.M. Valério de Carvalho. Exact solution of Cutting &toProblems us-
ing column generation and branch-and-bouridternational Transactions
in Operational Researctb(1):35-44, 1998.

[36] J.M. Valério de Carvalho. Exact solution of bin-padkiproblems using
column generation and branch-and-bourthnals of Operation Research
86:629-659, 1999.

[37] J.M. Valério de Carvalho. Using extra dual cuts to aee convergence in
column generation. To appear in INFORMS Journal on CompgutZ000.

[38] J.M. Valério de Carvalho. LP models for bin packing andtiog stock
problems.European Journal Of Operational Reseayd41:253-273, 2002.

[39] Pamela H. Vance. Branch-and-Price Algorithms for thee@imensional
Cutting Stock Problem. Computational Optimization and Applicatigns
9:211-228, 1998.

[40] F. Vanderbeck. Computational study of a column gemamnealgorithm for
bin packing and cutting stock problemblath. Program, A(86):565-594,
July 1999.

[41] F. Vanderbeck. On Dantzig-Wolfe decomposition in gegeprogramming
and ways to perform branching in a branch-and-price algoriOperations
Research48(1):111-128, 2000.

[42] F. Vanderbeck. Extending Dantzig's Bound to the Bouhdéulti-Class
Binary Knapsack Problem.Mathematical Programming94(1):125-136,
2002.

[43] F. Vanderbeck. Dantzig-wolfe re-formulation or howemploit simultane-
aously original formulation and column generation re-fatation. Working
paper U-03.24, Univ. Bordeaux 1, Talence, France, 2003.

[44] P. Wentges. Weighted Dantzig-Wolfe decomposition lfoear mixed-
integer programmingint. Trans. Oper. Res4(2):151-162, 1997.

[45] G. Wascher and T. Gau. Heuristics for the one-dimeradiontting stock
problem: A computational studyDR Spektruml8:131-144, 1996.

Bibliography 173

[46] G. Wascher, H. Haubne, and H. Schumann. An improved [Bgyofor
C&P Problems. Working Paper No. 24/2004 , Faculty of Ecomsnaind
Management, Otto von Guericke University Magdeburg., 2004

