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Introduction en francais

Dans cette these, les domaines magnétiques, connus sous le nom de "domaines de Con-
don" ou "domaines diamagnétiques" sont étudiés. L’expression "domaines magnétiques"
signifie la subdivision d’un échantillon en régions ayant une aimantation uniforme. Les
domaines les plus intuitifs sont les domaines ferromagnétiques. Ces domaines ont été
étudiés intensivement au siecle dernier et aujourd’hui, on répond facilement a la question
"que sont des domaines magnétiques ?" en montrant des images de structure de domaines,
obtenues directement par I’effet Faraday ou par la méthode de décoration. D’autres ex-
emples de domaines magnétiques sont les domaines dans 1’état intermédiaire des supra-
conducteurs et les structures de vortex. Pour visualiser ces structures, des nouvelles tech-
niques d’observation (microsonde de Hall, micro-SQUID ...) ont été mises au point.

L’origine des domaines de Condon n’est pas I’interaction entre spins des électrons,
comme dans le cas des domaines ferromagnétiques, mais les oscillations quantiques de
I’aimantation d’un métal soumis a un champ magnétique extérieur, I’effet de Haas-van Alphen
(dHvA). L’effet dHVA, prédit par Landau et, expérimentalement montré par de Haas et
van Alphen dans les années 1930, est un outil trés important dans la physique du solide
parce que I’observation de ces oscillations permet de déterminer expérimentalement les
surfaces de Fermi des métaux. Généralement, le comportement de 1’aimantation est tres
bien décrit par la formule de Lifshitz-Kosevich (LK) [1], cependant, Shoenberg a dé-
couvert en 1962 [2] que, dans certaines conditions, si I’amplitude des oscillations est
comparable a leur période, des déviations considérables existent entre la formule LK
et les observations expérimentales. Shoenberg explique ces observations en remplagant
le champ H dans la formule LK par I’'induction B. Ce remplacement a le caractere
d’une interaction parce que 1’aimantation dHvA, M (B), influence le champ quantifiant
B = pyg (H + M (B)) Condon a proposé, en 1966, que la solution auto-cohérente de
ce probleme peut conduire a une instabilité du systeme vis-a-vis de la formation d’une
structure de domaines d’aimantation alternée [3]. L’existence des domaines de Condon
a ét¢ démontrée jusqu’a présent dans un certain nombre de métaux, a 1’aide de la réso-
nance magnétique nucléaire dans I’argent par Condon et Walstedt [4] et a 1’aide de la
rotation de spin de muon (#SR) sur le béryllium, 1’étain, le plomb et I’aluminium par Solt
et al. [5, 6]. Ces méthodes spectroscopiques ne permettent cependant pas de déterminer
la taille, la géométrie et la topologie de ces domaines. Le sujet principal de cette these est
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8 Introduction en francais

la visualisation des domaines de Condon grace a une sonde locale de 1’aimantation, une
micro sonde de Hall.

Les calculs théoriques ont montré que la transition entre I’état homogene et 1’état
avec domaines est de premier ordre [7]. En principe, une telle transition de phase est
accompagnée par I’hystérese de 1’aimantation. Le second sujet de cette these est 1’étude
de la réversibilité de 1’aimantation d’un échantillon en présence de domaines de Condon.
On montre I’existence de 1’hystérese dans I’effet dHVA a I’aide de plusieurs méthodes,
sondes de Hall et mesure de la susceptibilité AC. La découverte de I’hystérese permet de
déterminer, avec une grande sensibilité, la ligne de coexistence de 1’état homogene et de
I’état avec domaines. Ce comportement est utilisé pour déterminer expérimentalement
les diagrammes de phase (7', /) des domaines de Condon pour un échantillon d’argent et
un échantillon de béryllium. Notons que, jusqu’a présent, seulement trés peu de données
existent [4, 6], capables de vérifier les calculs théoriques des diagrammes de phase [8, 9].

Au premier chapitre, la théorie des oscillations quantiques et le mécanisme de I’interaction
magnétique sont bricvement introduits.

Les dispositifs expérimentaux et I’instrumentation sont présentés dans le second chapitre.
Le dispositif cryogénique et les différents types de bobines de champ magnétique utilisées
y sont décrits. Les caractéristiques de la méthode de mesure de la susceptibilit¢ AC par
mutuelle inductance, quelques aspects concernant I’effet de Hall et le choix du matériau
utilisé dans les différentes évolutions des sondes de Hall sont discutés.

Au cours du troisieme chapitre, on présente les expériences de visualisation des struc-
tures magnétiques des domaines de Condon par des réseaux de microsondes de Hall. Du
comportement d’une série de sondes, on va déduire la direction de propagation des parois
des domaines et de leur orientation.

Dans le quatrieme chapitre, les expériences montrant I’hystérése dans 1’effet dHvA en
présence de domaines de Condon sont examinées. On trouve notamment, que la suscepti-
bilité AC devient extrémement non linéaire en fonction de I’amplitude et que la troisieme
harmonique de la susceptibilité montre des valeurs exceptionnellement grandes.

Dans le dernier chapitre, les diagrammes de phase des domaines de Condon pour un
échantillon d’argent puis pour un échantillon de béryllium sont expérimentalement déter-
minés et ensuite comparés aux prédictions théoriques.



Introduction

The present thesis investigates dia- and paramagnetic domains in metals at low temper-
atures called "Condon domains" or sometimes simply "diamagnetic domains". These
domains, which were first predicted by Condon [3] in 1966 and two years later evidenced
by Condon and Walstedt [4], are a macroscopic quantum effect due to the Landau orbital
magnetism. They are one of the rare examples of magnetic domains whose origin is not
the interaction of electron spins.

From a global point of view domain formation is a consequence of discontinuities
in the equilibrium magnetization curve and of the demagnetization effect [10]. In the
case of Condon domains the magnetization is associated with the de Haas van Alphen
(dHvA) effect. The physical mechanism responsible for the discontinuity in the dHVA
magnetization is the self-consistent way the induction B is built up through the "magnetic
interaction” between electrons on cyclotron orbits [11]. This interaction is accounted
for by using the induction B instead of the magnetic field H as the field variable in the
Lifshitz-Kosevich formula [1]. Discontinuities appear in the magnetization if the ampli-
tude of the dHVA oscillations is of the order of their period. In a finite sample with a
demagnetization field this discontinuity leads to domain formation.

The "diamagnetic transition" [12] from the uniform to the domain state is analogous to
the transition to the intermediate state of type-I superconductors. However, the periodical
occurrence, in phase with the dHVA oscillations, is a unique feature together with the
particularity that Condon domains occur up to extremely high magnetic fields, e.g. in
silver up to about 45 T.

Indications for the existence of domains can be found in the waveform of various
oscillating magnetic, magnetothermal, elastic and transport parameters [11]. But direct
evidence has been obtained as yet only in a few cases. Condon domains were first discov-
ered by Condon and Walstedt [4] using nuclear magnetic resonance (NMR). This work
remained the only reference work in the next decades. In particular nuclear magnetic res-
onance was not suitable to study domains in beryllium, the very metal where anomalies
in the dHVA susceptibility, magnetoresistivity and magnetothermal oscillations stimulated
Condon to formulate his theory. With the development of muon spin rotation spectroscopy
(uSR), domains became visible in beryllium [5] and later on in white thin, aluminum,
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10 Introduction

lead [6, 13]. By now, the appearance of Condon domains is supposed to be a general
phenomenon in pure metals, with characteristic features and phase diagrams varying with
the different topologies and shapes of the Fermi surface.

However, important questions concerning the size, geometry and topology of Con-
don domains could not be addressed with the above cited spectroscopic methods which
measure only bulk properties. In this thesis we intend to measure with micro Hall probes
the local magnetic induction at the surface of beryllium and silver single crystals to gain
information about the size and orientation of the domain structure. The challenge in this
work is to develop Hall probes that meet the requirements of spatial and magnetic reso-
lution at low temperatures and high offset magnetic fields. In particular, a field contrast
of AB/B =~ 10~* on length scales of typically tens of micrometers should be resolved.
The Condon domain structure is for the first time resolved with a local magnetic field
probe. From the space resolved Hall probe measurements the domain period as well as
the domain wall thickness are estimated.

Furthermore, we investigate in this thesis whether a hysteresis effect exists in the
dHvA magnetization in the Condon domain state. The domain state consists of two phases
of different induction values with a magnetization current in the domain walls. This needs
usually extra energy. It was shown that the transition from the homogeneous to the Con-
don domain state is of first order [7]. At this phase transition one could in principle
expect all phenomena like irreversibility, supercooling and hysteresis that exist at first or-
der phase transitions, e.g. the liquid - gas transition. Naturally, Condon discussed these
aspects in his first paper on domains [3] concluding that neither supercooling nor hys-
teresis had been observed in all at that time available data. Since then, these phenomena
were discussed in several papers [9, 14]. In this work we will show with various highly
sensitive methods that indeed a small hysteresis loop occurs in dHVA magnetization in
the Condon domain state.

Phase diagrams of the Condon domain state in the temperature and magnetic field
plane have been calculated using the Lifshitz-Kosevich formula for various metals [8, 9].
However, only very few experimental data exists up to now [6] which allows to verify
the theoretical predictions. Experimental techniques using NMR, SR and Hall probes
measure two induction values in the domain state and this is considered as evidence for
domains. To construct a phase diagram the temperature where the induction difference
tends to zero must be determined as function of magnetic field. This procedure is very
time consuming, expensive and not precise enough. However, the discovery of hysteresis
in the Condon domain state which is easily detectable with field modulation techniques
provides a simple tool which enables to find the phase boundary of the Condon domain
state. Using this method experimental Condon domain phase diagrams for beryllium and
silver are drawn.
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Outline

The structure of this thesis is as follows: First, the basics of the Condon domain theory
are outlined. Then the experimental methods and setups developed and built-up during
this work, like the Hall probes and the ac susceptibility setup, are briefly introduced and
characterized. In chapter 3 local magnetization measurements with Hall probe arrays, re-
vealing Condon domains, are presented. In chapter 4 a hysteretic behavior of the dHvVA
magnetization is found in the Condon domain state. Several methods are used to demon-
strate its existence. Finally, in chapter 5 Condon domain phase diagrams for beryllium
and silver are measured using the observed hysteresis as a tool.






Chapter 1

Theory

Au cours de ce premier chapitre, on rappelle les fondamentaux de la quantification de
Landau et les oscillations de [’aimantation, connues sous le nom de [’effet de Haas-
van Alphen (dHvA). On montrera le mécanisme de "l’interaction magnétique" o il s’agit
de remplacer le champ H par l'induction B dans la formule de Lifshitz-Kosevich. Cette
interaction devient importante quand ’amplitude des oscillations dHvA est comparable
a leur période. Dans ces conditions, la formation de domaines magnétiques (domaines
de Condon) est énergétiquement favorable, en particulier dans une plaque (fort facteur
démagnétisant). On présentera ensuite un apercu des résultats expérimentaux obtenus
jusqu’a présent et les différents enjeux de ce sujet.

In the following a short introduction to the de Haas-van Alphen (dHvA) effect is given.
Then the term "magnetic interaction" (MI) is introduced which is important when the
amplitude of the dHVA oscillations becomes comparable to their period. Following the
argument first invoked by Condon the mechanism of magnetic domain formation is pre-
sented. Thereafter the most important experimental evidences of Condon domains are
reviewed. Finally, theoretical Condon domain phase diagrams for silver and beryllium
are shown.

A basic introduction to the dHVA effect can be found in nearly every textbook on solid
state physics, e.g. [15, 16]. A detailed description of "Magnetic Oscillations in Metals"
is given by D. Shoenberg [11]. This book is considered as reference work reviewing all
important results in this field. Another extensive review is the festschrift "Electrons at the
Fermi Surface" of M. Springford [17].

13



14 Theory

1.1 Landau quantization and the de Haas-van Alphen ef-
fect

dHvVA and Shubnikov-de Haas oscillations are often called quantum oscillations as they
are based on quantum mechanical effects. To determine the motion of an electron in
a magnetic field with the induction B in z-direction, the Schrodinger equation must be
solved. The energy eigenvalues are

1 h2k?2
E,=ho.(j+=|+ - (1.1)
2 2me

where w. = eB/m, is the cyclotron frequency, 7 = 0,1,2,... and k, = 27j,/L with
J. = 0,£1,£2 ... (L is the length of the sample). The solution of the Schrodinger
equation corresponds to a harmonic oscillator with the frequency w, and a free motion in
the z-direction. With the energy-momentum relation of a free electron gas

_ RPK?

FE =
2me

(1.2)

and k* = k* + k? where k| is the component of the k-vector which is perpendicular to
the magnetic field, we obtain
hk? 1
L = hw, (j+—>. (1.3)
m

All possible states for k£, and &, lie on concentric cylinders with the radius &, which are
parallel to the applied magnetic field. These are the so called Landau cylinders presented
in figure 1.1. Each eigenstate for fixed j and k, is degenerate

e
D, = ——BL? 14
Jk'z 27Th ( )

because the number of states on a Landau cylinder is given by the number of states that
would lie in the space between two Landau cylinders without an applied magnetic field.

1.1.1 Onsager relation

Ay, = mk? is the enclosed area by the electrons in the k,-k,-plane. With equation (1.3)
the cross section of the j*" Landau cylinder is

-1\ 27weB
Akj—(y+§) = (1.5)
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B

Figure 1.1: Landau cylinders in a 3D Fermi surface. The Fermi surface is indicated by the doted
sphere.

As Ay is proportional to the magnetic induction B, the cross section of the Landau cylin-
ders increases with rising fields. This leads to a successive sweep of the cylinders with
the allowed states out of the Fermi surface. The states outside the Fermi surface are redis-
tributed to inner Landau levels whose degeneracy is increased. This causes oscillations in
the density of states and hence in nearly all macroscopic physical properties like magneti-
zation, electrical resistivity, and specific heat. When Aj; equals an extremal cross section
of the Fermi surface A.,;. a particularly great number of electrons must be reorganized.
From equation (1.5) the increment of the inverse field between two passages of Landau
cylinders through the Fermi surface can be derived

1 1 1 2me

A=) = — — =
(B) Bj Bj+1 hAea:tr

(1.6)

This means that the oscillations are periodic in the inverse magnetic field. Their frequency

1

Ay

1.7)

whose unity is tesla, is proportional to the extremal cross section of the Fermi surface

F=l A (18)
2me
This is the Onsager relation [18] which is valid for arbitrary Fermi surfaces. If the Fermi
surface has several extremal cross sections perpendicular to the applied magnetic field
there are simply several frequencies in the dHvA spectra each corresponding to an ex-
tremal cross section.
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1.2 Lifshitz-Kosevich formula

In 1956 1. M. Lifshitz and A. M. Kosevich [1] developed a theory describing quantitatively
the oscillations of the magnetization. This theory applies up to now successfully to dHvA
oscillations in three-dimensional metals. The basics of this theory are presented in this
section.

1.2.1 Ideal case: zero temperature and infinite relaxation time

In most derivations of thermodynamic quantities it will be the chemical potential ;. (equal
to the Fermi energy at temperature 7' = 0 K), rather than the number of electrons NV,
which appears in the calculations. Therefore it is convenient to calculate the thermody-
namic potential defined by

Q=F —uN. (1.9)
The vector magnetic moment is then given by
M = — (grad5Q).., (1.10)
or in more practical terms, the components of M parallel and perpendicular to B are
o0
My = —\35
OB ) 1,
1 Q
M, = —— o0 ) (1.11)
B\ )y,

Strictly speaking, all quantities are for arbitrary volume V'; therefore M denotes magnetic
moment rather than magnetization, but we shall often ignore this distinction when it is
obvious what is meant.

The grand thermodynamic potential of a fermionic system is
Q= —kpT > In(1+exp(p— E;)/kpT) (1.12)
J

where the summation is over all possible states. With equation (1.4) and (1.3) the oscil-
lating part of the thermodynamic potential is obtained after a technical calculation [1]

o0

3 & B3 1 F 1 T
0= —cos|2mp(=—=)£2 1.1
8717h mev A" pzlpi o8 [ P (B 2) 4:| (1.13)

2
A" = (aa;’“) (1.14)

where
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is the curvature of the Fermi surface at the extremal cross sectional area. The frequency
F' is given by the Onsager relation (1.8). Finally, with (1.11) the oscillating part of the
magnetization can be calculated

- / F 1 T
M|| - = 7T5hm2 m*v A Z % {27‘(’}9 (E - 5) + Z:|

~ 10F -

The summation is over all harmonics of the dHVA oscillation and m™* = = is the quotient
of the cyclotron mass

h* dA

M= ordE

and the free electron mass m.. To derive an expression for the realistic case with finite

relaxation time and at finite temperatures, some damping factors must be introduced to
(1.15). These factors will be presented in the next section.

(1.16)

1.2.2 Real case: Damping factors
Effect of finite temperature

At finite temperatures the Fermi distribution of the electronic states is smoothed by the
factor kgT'. This leads to an attenuation of the amplitude as the redistribution of the
electrons is also smoothed. The reduction factor

apm*(T/B)

b= 1.17
T sinh (apm*(T/B)) (117)
where 0r2 1 -
T=“MeRB
= ————— ~14.69— 1.18
“ he 69K (1.18)

is obtained by calculating basically the Fourier transform of the Fermi distribution [11].
Figure 1.2a shows that increasing temperature causes a strong damping of the oscillation
amplitude. The oscillation amplitude increases on the other hand for high magnetic fields.
From the temperature damping factor the effective mass can be calculated when the am-
plitude of the oscillations is plotted as a function of temperature for a fixed magnetic
field.

Effect of finite relaxation time

Due to defects in the crystal the electron stay only a finite time 7 on their orbits. Then
they are scattered. This results in an energy uncertainty of //7 leading to a smearing of
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Figure 1.2: Amplitude reduction factors due to (a) finite temperature and (b) finite relaxation time
(calculated for beryllium o = 14.69 T/K and m* = 0.17).

the Landau cylinders. The effect of finite relaxation time is equivalent to a temperature
increase of Tp (Dingle temperature [19]). A similar calculation as for the temperature
damping factor yields the so called Dingle factor

RY = exp (—apm™(Tp/B)) (1.19)
where
Ty — (1.20)
b= 2rkpT’ .

The Dingle temperature is a measure for the crystalline quality of the sample. Figure 1.2b
shows its influence on the oscillation amplitude. When the effective mass is known, T
can be determined from the field dependence of the amplitude at a fixed temperature.

Effect of electron spin

The magnetic field lifts the spin degeneracy. Each Landau level with the energy ¢ is split
into two levels with

1
€+ EQHBB (1.21)

where pp = eh/m, is the Bohr magneton and g the spin-splitting factor (¢ = 2.0023
for free electrons). The two sets of shifted Landau cylinders create oscillations with a
different phase. This leads to the damping factor

prgm*

Rl = .
§ = cos—3

(1.22)
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Lifshitz-Kosevich formula

The final formula for the oscillating part of the magnetization is obtained after insertion
of the reduction factors (1.17), (1.19), and (1.22) into the ’ideal’ formula (1.15)

- | & FVB S~ pp o 1 F 1\,
M = - ST A//;RTRDRSESIH 2mp 5 3 iZ

LRy

F 06
This is the Lifshitz-Kosevich (LK) formula. In general, Fermi surfaces can be complicated
and usually there might be more than one cross section of extremal area for a given field
direction. Thus, the total oscillatory quantity is the sum of a number of contributions,
each of which has the LK form but with different sets of parameters.

M, = (1.23)

1.3 Magnetic interaction (MI)

So far the basic formulas of the dHVA effect have been introduced as function of the
induction B assuming that the electrons experience B and thus the Landau quantization
occurs. Historically all formulas were derived as function of the magnetic field H [1].
This difference might seem to be negligible as the oscillating magnetization M is always
small compared to the applied magnetic field and hence B =~ poH. In the following it will
be shown that M can create under certain conditions a kind of ’feedback’ effect which will
modify the line shape of the dHVA oscillations. Then the influence of the sample shape
and thus the demagnetization field —oN M, where N is the demagnetization factor, will
be studied.

1.3.1 Shoenberg effect for an infinite sample

Shoenberg [2] noticed a appreciable deformation of the sinusoidal line shape of the dHVA
oscillations in gold. The magnetization showed a left-right anisotropy and the suscepti-
bility dM /dH an up-down asymmetry. He proposed to replace the magnetic field in the
original LK-formula by the induction B as the electrons experience the induction rather
than the magnetic field. This apparently unimportant replacement could explain his ob-
servation on gold. It was Pippard [20] who confirmed with an thermodynamical argument
that indeed H must be replaced by B in the LK-formula. As this effect was first discov-
ered by Shoenberg in gold it is often called ’Shoenberg effect’.

To determing the conditions where the difference between B and H, i.e. the oscillating
magnetization M, might modify the dHVA line shape, we take the fundamental contribu-
tion (p = 1) of the LK-formula (1.23) in its original version as function of the applied
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magnetic field . As we are usually concerned with only a few periods of oscillations, it
is convenient to write

H=Hy+h and B=uoHy+b (1.24)

where / and b are small increments to H,. The LK-formula then writes

- —~ F F
M = Asin ( 2r—— | = Asin | 27 h|. (1.25)
< MOH) ( poHG )

Since for the present we ignore complications of shape and suppose the sample is a long
rod oriented along the field, we may put

B=yuy(H+M) or b= uy(h+ M) (1.26)

and we need not distinguish between [ and the field H, of the magnet. Replacing [ by
the induction B leads to a sort of self-consistency or implicit equation

M = M(po(H + M)) = Asink (uo(thM)) (1.27)

where 7
k=2r—t 1.28
7T(MOHO)Q (1.28)

The criterion for the *feedback’ to change the line shape of the dHvA oscillations is that
the extra term in the argument of the sin-term becomes appreciable

kpioM ~ 1. (1.29)

This means that the amplitude of the oscillating magnetization 110M should become com-
parable to the dHVA period (j10H)?/F. Even though M is never of the order of H it can
indeed become in practical situation, i.e. in high magnetic field and low temperatures,
comparable to the dHVA oscillation period. This criterion can be more conveniently ex-
pressed in terms of the differential susceptibility

oM

hutuinll S .
L (1.30)

Ko

Shoenberg [11] introduced for this critical parameter a ‘reduced’ notation which is widely

used B
oM

5| = kA (1.31)

a = Ho

The implicit equation (1.27) can be solved by a graphical construction in which each
point of the graph .
M = Asin(kpuoh) (1.32)
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Figure 1.3: Line shape of M (H). The sinusoidal wave form is more and more distorted as a in-
creases. When a > 1 the oscillation becomes multivalued and a sudden jump of the magnetization
occurs.

is shifted in the negative h direction by a distance equal to koM. Figure 1.3 shows that
the originally sinusoidal line shape becomes more and more distorted as a increases. For
a>1M (H) becomes multivalued in some part of each dHvA period. Naturally, the
wavy line shape of a = 2 is not realized. The points on the curve between P and Q are
thermodynamically instable. In fact, M jumps discontinuously at a critical applied field
from P to Q. This jump occurs periodically in each dHVA oscillation.

Figure 1.4 shows for comparison B(H) for low (a) and high (b) magnetic interaction.
The situation is basically the same. For a > 1 B(H) becomes multivalued in some part
of the dHVA oscillation. In this region

poOH/OB=1—a<0 for a>1. (1.33)

This implies that these section are thermodynamically instable. The instability is avoided
by a discontinuous jump at a given critical field H of 6B = By — Bj leaving out all
induction values between B; and By. The H — B diagram is similar to the p — V' diagram
of a van der Waals gas for the gas-liquid phase transition.

For a > 1 the B(H ) curve assumes the form of a staircase. The triangular magneti-
zation curve in this limit is very similar to magnetization curve of a superconductor, even
though of course the magnetization of a superconductor disappears at the critical field, so
that there is no periodic continuation outside the range indicated. This similarity will be
helpful when we will consider sample shape effects.
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H H

a a

Figure 1.4: B— H diagram for small (a) and high (b) magnetic interaction. For high MI (¢« > 1) B
becomes a multivalued function of H. These regions are thermodynamical instable. The systems
undergoes a discontinuous jump at a critical magnetic field H, leaving out all inductions between
B] and BQ.

1.3.2 Energy argument

It was ad hoc claimed above that the multivalued parts of the dHvA oscillation were
thermodynamical instable and that M (H) and B(H) jump at a critical magnetic field.
To understand this behavior figure 1.5 shows a graphical presentation of the energies
involved in the system. We emphasize that we are still dealing with an infinite sample
oriented along the magnetic field.

The parabola E,,,, is the magnetization energy per unit volume caused by the differ-
ence B — o H in the sample.

1
Ema = —(B— H 2 1.34
g 2,UO ( Ho ) ( )
E,s. 1s the oscillating energy described by the LK-formula. Here we take only the simplest
approximation necessary to explain the phenomenon

E,sc = ecos(2nF/B) (1.35)

Figure 1.5a shows separately both energies as function of B for a given applied magnetic
field Hy,. Figure 1.5b shows the sum of both contributions. The sample will always
assume the state with the lowest energy. This state is given when the B-derivative of the

total energy vanishes

OB 1
—(B — uoH) = 0. 1.
9B +M0( poH) =0 (1.36)

This leads to the well known expression for the magnetic moment M (B) = —0FE,s./0B.
Usually, only one minimum of the total energy exists for a given applied magnetic field.
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Figure 1.5: Schematic representation of the magnetization energy F,,q, and the dHvA energy
FE,sc as function of B for several applied magnetic fields. If the curvature of the parabola is smaller
than the curvature of the oscillating energy two minima coexist. This leads to discontinuous jump
of the induction.

In fact, the curvature of the parabola E,,,, = 1/ is normally bigger than the curvature
of the oscillating energy E,,. so that the second B-derivative is positive

PEpee 1
— > 0. 1.37
552 o (1.37)
This leads finally to the stability condition
oM
— < 1. 1.38
Ho OB ( )

If on the other hand the curvature of the parabola E,,,, is smaller than the curvature

of £ ., 1.€.

oM
toag > 1, (1.39)

two values of the induction B; and By may coexist (see figure 1.5¢. The condition for this
instability is the same as already found above in (1.30). When the applied field is then



24 Theory

swept to pgfo, shown in figure 1.5d, there is once again only one minimum in the total
energy for a single induction B. This explains the discontinuous jump in the induction.
As soon as the applied magnetic field crosses the point 19 H, the induction jumps from
By to By; or in terms of magnetization from M, to M.

1.3.3 Demagnetization field in finite samples

Up to now only infinite samples were considered so that demagnetization effects could be
neglected. For simplicity we will consider in this chapter only ellipsoidal shaped samples,
so that if the external field H, is uniform over all space, M and B will be uniform within
the sample. The predicted results will still be qualitatively valid even if the sample is
not a perfect ellipsoid but generally the dHvA amplitude will be reduced due to phase
smearing.

If the magnetic field H,, is applied parallel to one of the principal axes of the ellipsoid
the demagnetization tensor n;; is purely diagonal and reduces to a simple factor which
can be introduced in equation (1.26)

B = pigH, + p1o(1 — n) M. (1.40)
The additional factor (1 — n) seems to weaken the magnetic interaction, and indeed to
eliminate it altogether in the limiting case of a disc shaped sample with H, normal to
its plane, for which n = 1. It was found by Condon [3] that this is only true if the
homogeneously magnetized state is indeed that of the lowest free energy. It turned out
that if Ml is strong enough, a state of lower free energy can be achieved over an part of the
oscillation cycle by the sample breaking up into domains. In these domains the local value
of M alternates in sign from one domain to the next. This can be explained, following
Condon, if we think of the sample as made up of many parallel thin rods along the field
direction. Each of these rods experiences the field H, — uonM rather than H, and so, if
a > 1, can exist at the discontinuity in figure 1.3 in either of two states P or () of equal
free energy. For a finite demagnetization factor, the field

H, — nM = const. (1.41)

can stay constant at this critical value as H,, increases, provided M varies. Along the line
PQ in figure 1.6 the sample volume will be broken up into domains, with an increasing
proportion of + rather than — domains as we go along PQ until 100% is reached at ().
Over this domain part of the magnetization curve the observed M is an average value.
The values in the individual domains, as indicated in figure 1.8 are those at P and ().

The total energy was sketched above to explain the jump in the induction. Let us
consider now domain formation in this model. For simplicity we consider the limiting
case of a plate-like sample with an demagnetization factor of N = 1. In this case we have

oH, = B. (1.42)
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Figure 1.6: Shape effect on magnetic oscillation form for @ > 1 and n = 0.7. The sample breaks
up into domains between P and (), and the average magnetization follows the straight line P(Q)
with the slope 1/n.

This implies that the induction can not jump as discussed above for infinite samples be-
cause the applied magnetic field is usually smoothly swept. As B — pugH, = 0 we can
omit the parabola F,,,, in figure 1.5a. As a result, only the oscillating energy . re-
mains. Figure 1.7 shows that over a large range of magnetic field in the vicinity of Hy
the energy of the metal becomes considerably higher than the minimal value realized in
a infinite sample where the metal could always choose the induction of minimal total en-
ergy. Condon showed that in a plate-like sample the energy can be lowered by 6 E by
dividing the plate into a set of thin regions - domains. Let their length, which is the sam-
ple thickness, be much larger than the domain width. In this case a domain looks like
a long cylinder oriented along the field. That is why we can apply the above discussed
energy considerations (see figure 1.5) on each domain. The domains can hence exist with
two induction values By and B,. The volume fraction of the respective domains is then
arranged that the average induction over the whole sample is equal to the applied magnetic
field. Calculations show that the formation of domains with constant induction B; and B,
respectively becomes more favorable than the homogeneous state for applied magnetic
fields By < poH, < Bs. This gain is shown in figure 1.7 by the dashed line.
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Figure 1.7: In a plate-like sample only the oscillating energy is considered as pogH, = B. The
energy can be lowered by § E/ by the formation of domains with respective inductions B1 and Bo
for applied magnetic fields B; < pugH, < Bo.

1.4 Domain structure

The size and shape of Condon domains are governed by considerations very similar to
those in other domain structures, e.g. domains in ferromagnets and intermediate state
domains in type-I superconductors [21, 22]. The total free energy in thermodynamic
equilibrium should be a minimum. Therefore, the sum of the surface energy of the do-
main walls and on the other hand the energy of emergence of the domains at the surface or
magnetostatic energy of the sample must be minimized. These energies depend consid-
erably on the actual shape and size of the sample. In the simplest case of a flat plate-like
sample of thickness ¢, the domains may in principle form parallel layers across the sample
from one surface to the other with a domain periodicity p (see figure 1.8). In the following
we will consider this case.

There are no detailed calculations of the surface energy of the domain walls but the
order of magnitude can be estimated by considering the electron orbits which are in the
domain wall and experience a non-uniform field. There is certainly not a sharp reversal of
the magnetization because this would create a drift current along the domain wall. This
drift current would then be distributed over a thickness of roughly two electron orbits,
and hence the change in the induction can not be abrupt. The electrons in the wall have
quantized orbits but in average with a higher energy level, corresponding to the maximum
of Epom. 1n figure 1.7, than the electrons in the body of the domains (corresponding to
the energy at By and Bs in figure 1.7). This is the origin of the excess surface energy of
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Figure 1.8: Simplest model for a domain structure. Domains with magnetization M; and M
coexist in a thin sample. ¢ is the thickness of the sample and p the period of the domain structure.

the domain walls. One can estimate its order of magnitude to be roughly 6 F ~ aHyM,
times the thickness of the domain wall w. HyM, is the amplitude of the energy variations
in figure 1.7 and « is a numerical constant of order unity. The surface energy of the 1/p
domain walls per unit volume of the sample is then

1
Eyay = cwHoMsy—. (1.43)
p

The magnetostatic energy of the domain configuration shown in figure 1.8 has been cal-
culated before in connection with the ferromagnetic problem [22]. The magnetostatic
energy per unit volume is

By = 6H0M2]§ (1.44)

where [ is another numerical constant of order unity. The sum of these two energies has,
as a function of p, a minimum when p is

p= %wt o vVt (1.45)

The scale of the domain pattern, p, is roughly the geometric mean between the sample
thickness and the domain wall thickness. In a brief abstract Condon [23] refers to a
more relevant calculation, but gives no details except that the wall thickness is about two
cyclotron orbit diameters and the surface energy is positive.

The cyclotron radius is approximately 10 pgm for beryllium at 2.3 T and silver at
9.0 T. For a sample with a thickness of about 1 mm, we find a domain pattern size of
about 30 ym. The magnetization M, and M5 of the domains in figure 1.8, was measured
with ©SR on beryllium to be roughly £20 G at 2 T and 0.5 K [5]. These estimations are
important for the design of the domain vizualization experiment.
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1.5 Experimental evidence for Condon domains

Condon’s first experiments [3] indirectly confirmed the existence of domains in beryllium.
Jumps in the magnetization were observed for a rod-shaped sample in an applied field
parallel to the long axis. On the other hand the magnetization of a disc in a perpendicular
applied field approached the limiting form, discussed above, with two similar slopes on
both sides of the oscillation.

In 1968 Condon and Walstedt [4] found direct evidence for the existence of magnetic
domains in silver. Nuclear magnetic resonance (NMR) measurements at 1.4 K showed
a split in the resonance line corresponding to domains with different magnetic induction
(see figure 1.9). A local field difference of about 12 G was observed between the para-
magnetic and diamagnetic domains in a magnetic field of 9 T. As the conductivity of silver
is very high at these low temperatures, the high frequencies (18 MHz) used for the NMR
measurements can not penetrate more than the skin depth into the sample. The skin depth
is here of the order of some micrometers so that the induction splitting was essentially ob-
served at the surface of the silver sample. Therefore, this result is encouraging for domain
imaging attempts with magnetic probes at the sample surface. In [4] the authors attempted
similar experiments on a beryllium sample but the long nuclear thermalization time and
the nuclear quadrupole splitting made the measurements and their interpretation difficult.
Thus, this pioneering result remained the only reference work in the next decades.

New experimental possibilities appeared with the development of muon spin rotation
(uSR) [24]. Muons are unstable elementary particles with a lifetime of about two mi-
croseconds. A muon with sufficiently high initial energy, can penetrate into the sample
to a fairly large depth. Its spin precesses in exact correspondence with the local value of
magnetic induction. The decay of a muon creates a positron which rushes out mostly in
the direction of its spin, i.e. the direction of the muon spin when it decayed. The positron
is detected by detectors situated around the sample. In the experiment, a great number
of muons is used, with all their spins rotating from strictly the same starting position. If
all muons are in the same magnetic field, then the number of registered events in each
direction will vary with time with the muon precession frequency f, which determines
exactly the magnitude of the magnetic induction, i.e. f = gB, where the constant g is
well known for muons.

As early as in 1979, Yu. Belousov and V. Smilga [26] suggested to use 1SR for the
observation of Condon domains. In 1996 the idea was finally carried out and G. Solt et
al. [5] evidenced successfully Condon domains in beryllium by pSR at the Paul Scherrer
Institute in Switzerland. A splitting of the SR peak, similar to that observed by NMR,
caused by Condon domain formation, was observed at 2.7 T and 800 mK.

The ;SR method, in spite of its direct analogy with NMR, has, of course, a number of
distinctions as well. This method needs no ac electromagnetic field since the precession
frequency is measured directly, and therefore the first difficulty of NMR measurements
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Figure 1.9: NMR results on silver from [4]. (a) Induction values as function of the applied
magnetic field of 9 T at 1.4 K. Around AH = 0 two inductions separated by AB = 12 G are
observed. This indicates the presence of domains. (b) Shows the variation of the resonance line
amplitude in the domain region which corresponds to the respective domain volumes.
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Figure 1.10: Schematic representation of several uSR spectra over a small region of applied
magnetic field H near the onset of Condon domains [25]. In the domain region two peaks at B
and By coexist.

caused by the small skin layer does not exist. Furthermore, all metals can be investi-
gated, in contrast to NMR, where troublesome quadrupole broadening occurs for nuclear
spins I > 1/2. The fact that spin precession occurs far enough from the sample surface,
represents the third important advantage of this method.

As aresult, in analogy with NMR, the width of ;1SR peak corresponds to the amplitude
of magnetic induction inhomogeneity. If now the sample becomes stratified into two
phases with the induction values B; and Bs, then one part of muons will find themselves
in the field B; and the other part - in the field By, which will result in two precession
frequencies and therefore in a splitting of the SR peak into two peaks. Figure 1.10
demonstrates the results of ;1SR experiment on a crystalline plate of beryllium. Each time
when H goes through the region B; < poH < Bs, the spectrum splits into two peaks
with the frequencies corresponding to B, and By. While the field changes, the amplitude
of one peak decreases and the amplitude of the other increases, which corresponds to the
change of the relative volumes occupied by these two phases. At any other values of
magnetic field beyond the given range, a standard narrow peak is observed.

It was quite natural that Condon domains were evidenced successfully in beryllium
as, due to its quasi two dimensional Fermi surface, the dHvA amplitude is the highest
of all metals. At the same time the dHvA period is not too big so that equation (1.30)
is verified for temperatures up to 3 K (see section 1.7.2). A systematic study of domain
parameters in beryllium in function of temperature and magnetic field was possible with
1SR [27, 28, 29].
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Figure 1.11: Fermi surface of silver within a single zone [33]. The neighboring zones are joined
by ’necks’ in the (111) directions. The main "belly’ frequency is about 47500 T. The frequency of
a ‘neck’ orbit is about 900 T. The reduced electron mass is m* = 0.94.

Later on, the Condon domains were observed with ;SR in other very pure single
crystals of white tin [30, 31], aluminum and lead [13]. The requirements for sample
purity, field and temperature allowing domain formation are much more stringent in these
metals. The state of the art” in this field has been recently reviewed [6]. By now, the
phenomenon of Condon domain formation is assumed to occur in all metals.

The above discussed spectroscopic techniques give clear evidence for the existence of
domains. Nevertheless, the size and topology of Condon domains are still unknown.

1.6 Silver

1.6.1 Fermi surface of silver

Monovalent metals have the simplest Fermi surfaces. Out of the monovalent metals the
alkali Fermi surfaces are the simplest, departing only slightly from the ideal spherical
surface of the free-electron model. The next simplest Fermi surfaces are those of the
monovalent noble metals, Cu, Ag and Au. The new feature is that there are "necks’ in the
extended Brillouin zone representation joining the surfaces within each separate zone in
the (111) directions (see figure 1.11). Thus a magnetic field along (111) will see not only
the belly’ orbit with a high dHvA frequency of about 47500 T but also the 'neck’ orbit
associated with a low frequency of about 900 T [32].

Other consequences of the multiply connected Fermi surface are that there are [11]:

e a’dog’s’ bone orbit normal to (110) with 0.4 times the belly frequency,



32 Theory

e a ’four-cornered rosette’ orbit normal to (100) again with 0.4 times the belly fre-
quency,

e a ’six-cornered rosette’ normal to (111) with twice the belly frequency.

As the Fermi surface of silver is nearly spherical, the effective electron mass m, is ap-
proximately equal to the free electron mass m., i.e. m* = 0.94.

1.6.2 Theoretical phase diagram for silver

As has been shown in the previous chapter, domains can only arise at the paramagnetic
part (OM /0B > 0) of the dHVA period. This leads to two phase transitions per dHvA
period. Therefore, the Condon domain phase diagram has a comb-like structure in the
(B, T) plane, with a domain region or stripe for each dHVA period. The width of the
domain stripe within a dHvA period is proportional to the demagnetization factor n as
described above. In this section the envelope of the comb structure is considered which
separates the region with no domains from the one where uniform and domain phase
alternate. A more detailed consideration of the substructure is given in the section on the
phase diagram for beryllium. There, the substructure is more interesting due to the dHvA
frequency beat.

In the (B, T) plane, where B is the magnetic induction and 7T the temperature, the
boundaries between homogeneous and domain regions are determined by equation (1.30)
and (1.31)

a(B,T,Tp) =1 (1.46)
where T is the Dingle temperature. In other words the differential susceptibility must be
equal to unity

oM
Ho 9B
This condition gives the phase boundary T..(B).

xB(B,T,Tp) = 1. (1.47)

Although the amplitude of the magnetization increases like /B for B — oo, the
susceptibility has a maximum in function of magnetic field. This can be seen if one
considers only the limiting cases. In the high field limit B — oo

X X a%\/ﬁsin(%ri — 0. (1.48)

B < Bn
In other words the period of the oscillations increases faster than their amplitude for high
fields leading to vanishing susceptibility. This means that there is for every metal an upper
critical field above which no domains exist for all temperatures [12].
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Figure 1.12: Condon domain phase diagram 7,(B) for silver for several Dingle temperatures 7
calculated with the LK-formula (cf. [34]).

In the low field limit B — 0

X X a%\/ﬁexp(—apm*%) sin(QWg) — 0. (1.49)
In the low field limit the magnetization amplitude decreases exponentially due to the finite
sample quality of a real sample with a finite Dingle temperature. Even if the dHVA period
shrinks quadratically this leads to a vanishing susceptibility. From the LK-formula it is
clear that the susceptibility decreases also as the temperature is increased. In conclusion,
there will be for every metal a finite region in the (B,T) plane where Condon domains
arise.

The susceptibility can be calculated in absolute units with the LK-formula (1.23) if
all parameters like curvature A”, effective electron mass m* and the Dingle temperature
of the sample are known. For noble metals, where the deviations from a spherical Fermi
surface are only very small, these parameters have been calculated [35]. Usually only the
first harmonic contribution of the LK-formula is considered. Figure 1.12 shows several
phase diagrams for silver corresponding to samples with different Dingle temperatures.
Up to now, there are only very few experiments that test the theoretical calculations for
silver. At least the theoretical phase diagram is compatible with the NMR observations of
Condon and Walstedt [4]. They observed no splitting A B due to domains above 2.5 K at
9 T on their high quality silver sample.
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Figure 1.13: Fermi surface of beryllium [36] with the coronet and one of the two electron *cigars’.
The extremal cross sections at the *waist’ (1) and the two ’hips’ (2) lead a beat in the dHVA
waveform (see figure 1.14).

1.7 Beryllium

1.7.1 Fermi surface of beryllium

The Fermi surface of beryllium [37, 38], presented in figure 1.13, contains a hole region
which resembles a coronet and two equivalent pockets of electrons similar in shape to
a cigar. The cigar-like ellipsoids are oriented along the [0001] direction and are slightly
pinched in the middle forming a *waist’ and two symmetrically placed "hips’. The cross
sections A4 and Ay, give rise to two frequencies F;, = 942.2 T and Fj, = 9709 T
causing a beat in the oscillations with the frequency Fj, — F,, = 28.7 T. Each beat cycle,
i.e. between two succeeding nodes or antinodes of the magnetization beat, comprises ~32
dHVA periods.

While the shape of the cross sections A,qs: and Ay;, is known, Fermi surface models
have not given values for the curvature A”, which is however an important parameter in
the LK formula. From the observed ratio ~ 3 : 1 of the dHvA amplitudes at beat antinodes
and nodes [39] one can deduce that the curvatures at the hip and the waist are nearly equal.
A simple interpolation, consistent with these features [40], leads to A” =~ 0.24.

Figure 1.14 shows schematically the dHvA oscillations waveform of the magnetiza-
tion and the susceptibility calculated with the LK-formula for H || [0001]. In all experi-
ments described below the beryllium sample is usually oriented H || [0001] because the
small m* = 0.17 and the small curvature along [0001] result in a relatively high dHvA
amplitude even at relatively high temperatures. Therefore, the differential susceptibility,
which is the critical parameter for Condon domain formation, can be much higher than
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Figure 1.14: Magnetization and susceptibility waveforms of beryllium calculated with the LK-
formula for H || [0001]. The frequencies F,, = 942.2 T and Fj, = 970.9 T lead to a beat in the
oscillations with ~32 oscillations in each beat cycle.

unity at easily accessible (2-3 T) fields [39].

Because of the beat in the dHvA waveform in beryllium there is the unique possibility
to change the dHvA amplitude and the critical parameter x by a factor three at constant
temperature by varying the magnetic field only very little. This means that one can choose
the experimental conditions in a way that in a certain field range the Condon domain state
arises periodically in some part of each dHVA period and just for neighboring fields, i.e.
the beat minimum, the sample stays homogeneous over the hole dHvA period (see next
section). This features make beryllium the best metal to investigate Condon domains.

1.7.2 Theoretical phase diagram for beryllium

The general condition x5 > 1 under which the Condon domain state arises is naturally
the same for beryllium as for silver (see section 1.6.2). The differential susceptibility x5
is calculated with the LK formula with the above parameters of the Fermi surface. Three
extremal cross sections, two hips and one waist, contribute to x5 for H || [0001]. The
above described beat in the susceptibility (see figure 1.14) reappears in the phase diagram.
It is convenient to calculate two phase boundary lines 7.(B), one for the beat antinodes
and another for the beat nodes. Figure 1.15 shows the theoretical phase diagrams for
several Dingle temperatures [29].

Like in section 1.6.2 on the phase diagram for silver, figure 1.15 shows only the phase
boundary below which Condon domains may arise in some part of the dHvA period. For
beryllium the substructure is more sophisticated due to the dHvA beat. Figure 1.16 shows
schematically the substructure. Condon domains exist only in the thin “domain stripes”
reaching from 7' = 0 to T' = T.(B). Between the stripes the magnetic state is uniform.



36 Theory

T (K)

(b) induction B (T)

Figure 1.15: Theoretical phase diagram for beryllium for different Dingle temperatures [29].
The solid and dashed curves indicate the Condon domain state at the beat antinodes and nodes,
respectively. The experimental points for two beat antinodes (o) and beat nodes (o) show observed
domain phases for a sample with Tp ~ 2.6 K.

The phase diagram has a comb-like shape in the B-T-plane, modulated with the dHvVA
beat frequency. This feature enables many experimental possibilities as already discussed
above.

The experimental points in figure 1.15 show that Condon domains were observed in
samples of less quality (Tp ~ 2.6 K) in a much more extended region in the (B, T)
plane than the curves, calculated by the LK formula, predict. This indicates that the
susceptibility x is underestimated by the theory. The reason is the very low curvature
of the Fermi surface along the [0001] direction at the extremal cross sections. In fact,
the curvature factor in the LK formula is only a reminder of a power expansion of A(k)
stopped at the quadratic term. For low curvature this approximation is no longer valid.
Higher contributions need to be considered.

On the other hand, as the cross section A varies only very little along [0001] the
susceptibility can be estimated by taking the Fermi surface as a cylinder, i.e. a 2D electron
gas [12, 41]. This approach gives reasonable upper limits for x and for the phase boundary
T.(B). Nevertheless, there are some obvious shortcomings besides the poor precision like
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Figure 1.16: Schematic phase diagram for beryllium for Tp ~ 1.2 showing in detail the beat
substructure under the envelopes of figure 1.15. Domains occur only at the paramagnetic part of
the dHVA oscillations. This leads to a comb-like substructure in the (B, T") plane.

e.g. that the beat in y can not be reproduced.

Recently, x (B, T') has been calculated in the frame of a model beyond the LK formula
and consistent with the 3D character and available information of the Fermi surface of
beryllium [8]. In this model the cross section A(k) is approximated with power laws
and polynomial forms up the the eighth order. The obtained phase diagram is in good
agreement with at that time available SR data [6].






Chapter 2

Methods

Les dispositifs expérimentaux et l’instrumentation sont présentés dans ce chapitre. Les
conditions expérimentales pour I’ observation des domaines de Condon nécessitent basses
températures et champs magnétiques intenses (cf. partie 1.7.2 et partie 1.6.2). On expli-
quera ici le dispositif cryogénique et les différents types de bobines de champ magnétique
utilisées. Pour mesurer [’hystérese dans [’effet dHvA, nous avons utilisé la susceptibil-
ité AC, détectée par la méthode de mutuelle inductance. Pour détecter directement les
domaines de Condon, le sujet majeur de cette thése, nous avons développé des microson-
des de Hall, afin d’obtenir les résolutions spatiale et magnétique nécessaires. Dans ce
chapitre sont discutés quelques aspects concernant l’effet de Hall et le choix du matériau
utilisé dans les différentes évolutions des sondes de Hall.

In this chapter the experimental setups and measurement devices used during this work
are presented. From the phase diagrams for the Condon domain state in silver and beryl-
lium (see section 1.7.2 and 1.6.2) one can see that the experiments need to be performed
at low temperatures and high magnetic fields; considerably higher fields for silver. There-
fore, first the cryogenic equipment and magnet systems are briefly introduced. A standard
ac modulation coil method was used for the experiments on hysteresis effects in the Con-
don domain state and for the determination of the phase diagrams. The basic principles
of this method are summarized and its realization is presented. Finally, after a short intro-
duction to the magnetic and spatial resolution of a Hall probe, the Hall probe setups and
their evolutions realized during this work are shown. It turned out that the appropriate
choice of the Hall probe material and the spatial arrangement was decisive for a success-
ful observation of Condon domains on silver. Therefore the Hall probe setups and a test
of their spatial resolution are discussed in detail.

39
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2.1 General

2.1.1 Cryogenic equipment

Most of the experiments were carried out in a “helium bath cryostat. The cryostat has a
tail which fits to the room temperature bore of the magnet. In the tail a diameter of 38 mm
is available for the insert with the experiment. The temperature is varied by changing the
vapor pressure above the *helium bath. The vapor pressure of “helium increases expo-
nentially with temperature. In these cryostats temperatures between 1.3 K and 4.2 K are
typically accessible. The lowest temperature is given by the pump rate. On our magnet
site (T02) two rotary vane vacuum pumps with each a pump speed of 65 m?/h and a roots
vacuum pump are available. A pressure gauge measures the actual vapor pressure and the
temperature is determined via the ITS 90 temperature scale [42]. This way to measure the
temperature is particularly convenient when magnetic fields are applied. As commercial
resistive thermometers, made e.g. of ruthenium oxide, show more or less pronounced
magneto resistance. The vapor pressure however is independent from the applied mag-
netic field. The temperature of the “*helium bath could be stabilized by keeping a constant
pressure by means of a membrane valve.

On our magnet site (T02) the cryostat which houses the superconducting magnet and
the cryostat for the sample are completely independent. This has several advantages.
First, the sample cryostat, whose tail fits in a 50 mm bore, can be used also on the resistive
magnet sites of the laboratory. Secondly, the temperature of the sample cryostat can be
varied independently from the huge magnet cryostat volume.

The experiments for the Condon domain phase diagrams where partly carried out
in the laboratory of Laurent Levy where an Oxford variable temperature insert (VTI) is
available. The VTI is fitted in the “helium bath cryostat of the superconducting coil.
Helium is aspirated from the bath through a thin capillary by pumping on the VTI cryo-
stat. The flow trough the capillary can be adjusted by a needle valve. The insert with
the experiment is cooled by the cold helium gas stream. The temperature is kept stable
by a temperature controller using a heater in order to control the temperature at the po-
sition of the experiment. In the VTI temperatures between 1.5 K and room temperature
are available. Another advantage of the VTI is that temperature sweeps can be realized
very comfortably at a given magnetic field, which was very useful for the phase diagram
measurements.

2.1.2 Magnet systems

Magnetic fields with a high spatial homogeneity are required to measure dHvA oscilla-
tions. The magnetic field should be constant over the dimensions of the sample. If this
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condition is not fulfilled, the electrons experience different magnetic fields and hence the
resulting dHVA oscillations are slightly shifted in phase. A small phase shift or phase
smearing leads to a considerable decrease of the overall dHVA amplitude. For the ex-
periments to visualize Condon domains, in addition to the high spatial homogeneity, a
high temporal stability of the applied magnetic field is required. At least during the time,
necessary to read out all Hall probes or to accomplish a scan of the sample surface, the
magnetic field should be stable.

These requirements are very well fulfilled by superconducting magnets. Due to their
high inductance only slow fluctuations of the magnetic field are possible. Moreover the
coils can be wound in a way that the produced magnetic field has a high homogeneity.
Unfortunately superconducting magnets are limited by their maximum fields (about 17 T
available in the GHMFL in 2005). Higher fields have to be produced by resistive magnets
or hybrid magnets that incorporate a superconducting and a resistive part.

Superconducting magnets

Most of the results of this thesis were measured in an Oxford 10 T superconducting coil.
The coil, being actually a NMR coil, had a high spatial homogeneity of better than 10 ppm
(parts per million) in a sphere with a diameter of 1 cm. The magnet with an inductance of
11.8 H had a 60 mm warm bore in which a water-cooled modulation coil is fit. A standard
50 mm *helium cryostat was installed in the remaining space of the room temperature
bore. This coil had no switch so that the magnet power supply had to be always connected
to the coil and a persistent mode was not possible. Nevertheless, only very small temporal
drifts or fluctuations of the magnetic field were observed due to the high stability (<
30 ppm/hour) of the magnet power supply (Oxford PS 126 HS). In principle the magnet
could be pushed even to 12 T if the temperature was lowered to 2.2 K by pumping on the
lambda plate. This possibility was never used because of the high investment in time and
helium.

Some susceptibility measurements on silver were carried out in the laboratory of Lau-
rent Levy. There, the coil is slightly less homogenous (30 ppm in a 1 cm? sphere) but the
maximum available field is of about 17 T.

Resistive magnets

With resistive magnets, maximum fields of 31 T have been reached in a 50 mm warm bore
at the GHMFL. A hybrid magnet that should allow to attain magnetic fields up to 40 T is
currently under construction.

Resistive magnets are water-cooled copper coils, that use two design principles. The
outer part of the magnet is usually a so called Bitter magnet, realizing a coil by a stack
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of copper disks. A particularity of the resistive magnets designed in Grenoble is that the
inner part is a polyhelix magnet, that consists of concentric copper tubes that have been
cut into helices. The spatial homogeneity of the magnetic field produced by resistive
magnets of the GHMFL is of the order of 10~3. Exact values can be found in [43]. The
temporal stability of the magnetic field is of about 10~*, basically caused by parasitic
ac signals at the main power frequency and its higher harmonics. Another source of noise
are mechanical vibrations mainly caused by the flow of cooling water. The typical power
consumption of a resistive magnet at 30 T is around 20 MW.

The experimental conditions in resistive magnets were not suitable for Condon domain
visualization experiments using Hall probes but for studies of nonlinear response with a
pickup coil system and for the construction of the Condon domain phase diagram of
silver the experimental requirements are less stringent so that the high field magnets of
the GHMFL could be used.

2.1.3 Measurement control

The data acquisition and the operation of the measurement devices were controlled by
a computer. The lock-in amplifier (Stanford Research SR830) and the Keithley (2000)
multimeters were connected with a GPIB bus to the computer. The magnet power supply
was controlled via the serial RS232 bus. Only the temperature between 1.3 K and 4.2 K
had to be adjusted manually by a membrane pressure controller. The measurement pro-
grams and routines were built with LabView. With the graphical LabView compiler the
measurement programs could be easily adapted to the various purposes of this work.

2.2 Ac susceptibility setup

A standard ac modulation method was used to measure the susceptibility and the higher
harmonics of the beryllium and silver samples. This method was first introduced by
Shoenberg and Stiles [44]. Comprehensive reviews can be found in [45, 46] as well
asin [11]. Here, we will only outline the basic principles of the method.

The sample is placed in one of a balanced pair of pickup coils. The magnetization M
is made to vary periodically with time with small amplitude at some suitable frequency w
and the induced voltage at the same frequency or at a higher harmonic kw is measured.
The periodic variation of M is obtained by superimposing a small periodic field hq cos wt
on the applied field H,. Figure 2.1 shows a schematic representation of the ac suscep-
tibility setup. The great advantage of such modulation methods is that phase sensitive
detection of the pickup voltage can be used which improves considerably the signal to
noise ratio and therefore the effective sensitivity of detection.
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Figure 2.1: Schematic representation of the ac susceptibility setup. A small modulation field is
superposed to the applied field from the superconducting coil. The sample is placed in one of a
balanced pair of pickup coils. The induced voltage is measured with a lock-in amplifier.
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The voltage induced in the pickup coil is given by

dM dH

Yo =oqm

(2.1)

where « is an appropriate coupling constant. dH/dt is simply —how sinwt but if hg is
appreciable the time dependance of dM /d H must be taken into account. Thus

AN &
dH = dH?

Vp = —ahpw sinwt ( ho coswt + . . ) (2.2)

where all derivatives are to be taken at H = H,. Consequently if the variation of M
with A is non-linear, V), contains not only the fundamental frequency w but also higher
harmonics, i.e.

dM 1 ,d*M
‘/p = —QWw (hoﬁ sinwt + 5]13@ sin 2wt + . . ) . (23)
Here only the lowest power of iy has been retained in the amplitude of each harmonic. If

we now make the specific assumption that the dHvVA magnetization M as function of H
is given in the first harmonic approximation, i.e.

M = Asin <% + qb) (2.4)
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and we write the field interval of one dHVA oscillation as AH = H?/F equation (2.3)
becomes
2tho\ . [(2nF T\ .
Vp ——awA{(AH> sin (T + ¢ — 5) sin wt

1 2ho\ 2 . 27TF+¢ .
— S111 E— — Sin Zw
2 \ AH H m

We see that if hg << AH, the harmonic amplitudes are small, each successive harmonic
being weaker by a factor of order (27who/AH).

(2.5)

Usually a phase-sensitive detector tuned to the fundamental frequency w is used to
detect the pickup voltage V,,. This improves the signal to noise ratio. On the other hand
there are some considerable advantages in tuning the lock-in amplifier to a harmonic of
w. For example if the pickup coils are not perfectly balanced V), contains a considerable
component of sinwt not associated with properties of the sample. Furthermore, even at
low modulation frequencies, eddy currents induced in the sample upset the balance of
the pickup coils so that the measured dHvVA oscillations appear on a sloping base line.
Another source of noise are vibrations of the pickup coil in the steady field caused by
the interaction of the modulating current with the applied field. These effects influence
mostly V,, detected at the fundamental w and can be almost completely eliminated by
detection on 2w or higher harmonics. But in order to get an appreciable amplitude of such
a harmonic in equation (2.5), the modulation level must be increased in a way that the
condition (27ho/AH) < 1 is no longer valid.

For weak modulation h the pickup voltage V), has exactly the wave form of dM /dH
and higher harmonics corresponding to d*M /dH* are too feeble to be useful. The cri-
terion [11] for the modulation to be weak enough for V), to give faithful reproduction of
dM/dH is

27TFh0 27Th0
= < 0.28. 2.6
- AH (26)
Here one should note that if the susceptibility is measured over a large range of applied
magnetic field and if it is desired to keep a constant ratio of hy to AH it is necessary to
vary the modulation current as H2. By the way, during such measurements also the field
ramp rate should be varied as H? so that the lock-in amplifier measures for each dHvA

period an equal number of values.

We mentioned already that eddy currents induced in the sample by the modulating
field may influence the detected pickup voltage. This problem has been discussed in detail
in [47]. The modulation frequency is considered to be low enough and eddy currents can
be neglected if the skin depth s, given by

s=4/ 2 2.7)
wit
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where p is the resistivity and p the absolute magnetic permeability of the sample, is large
compared with some relevant sample dimension a (e.g. sample radius or thickness) i.e. if

g <1 (2.8)

An estimation of the possible dHvA waveform distortion in percent p for a cylindrical
sample due to eddy currents is given in [47] for low modulation frequencies and high
values of the differential susceptibility y = dM/dH

a D \1/4

- < (0.19=)"". 29

s <0197 29)
In practice this means that for a ~ 0.5 mm, the modulation frequency f = w /27 must be
below 100 Hz. For very pure metals with little magnetoresistance and for high values of
X, €.g. in the Condon domain phase, f should be even below 10 Hz.

The above considerations for the modulation amplitude h( and frequency f are impor-
tant if the aim is to study the waveform and the absolute amplitude of the dHVA oscilla-
tions. For experiments aiming at the dHvA frequency spectrum the requirements are less
stringent. By the way, it was proposed in [47] that if the modulation frequency is raised to
make eddy currents appreciable, resistance oscillations of the sample, i.e. the Shubnikov-
de Haas effect, can be observed with the same field modulation setup, originally designed
to measure the dHvVA effect. An advantage of this method is that no electrical contacts
must be prepared on the sample.

The pickup coil design depends very much on whether sensitivity or reliable calibra-
tion is the main aim and also on the kind of sample that is used and on whether the sample
orientation needs to be varied. Some typical arrangements are presented in [11]. Fig-
ure 2.2 shows our homebuild setup made of Araldite. The pickup coils consist of about
400 turns wound with 50 pm thick copper wire. The inner diameter of the pickup coil is
about 2.4 mm. We preferred to wind the wire on a Araldite structure and not directly on
the sample, which would have certainly increased the sensitivity, because we intended to
use the setup for several samples of slightly different sizes. Moreover, the sensitivity of
such a compensated system should be more than sufficient to measure the dHvA effect in
beryllium [3]. An advantage of our setup is that the pickup coil system on the right side of
figure 2.2 could be used without the modulation coil shown on the left side. For example,
the pickup coil were fixed above the Hall probe setup and then in sifu measurements of the
local and overall susceptibility were possible using the built-in water-cooled modulation
coil of the superconducting magnet.

In principle the field modulation method can give absolute values of M and Yy if the
coupling constant « in equation (2.3) is known. For our setup the coupling constant is
given by

a=—puNA(1 —n) (2.10)
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Figure 2.2: Ac susceptibility setup. The sample (1) is placed in one of a compensated pair of
pickup coils (2). The amplitude hq of the modulation field is measured with a small probe coil (3).
The modulation coil (4) consists of four layers wound with 200 pm thick copper wire. Both parts
are made of Araldite. A thermometer (5) surveys possible heating of the setup. The right part is
inserted to the modulation coil from the bottom.

where NV is the number of turns, A the cross-sectional area of the sample and n the demag-
netization factor of the sample. Thus in practice, due to e.g. the uncertainty of n because
of a not perfectly ellipsoid-shaped sample, it would be difficult to achieve an accuracy of
better than a few percent in the absolute determination of M or Y.

We tried to overcome this shortcoming of the calibration by preparing for each sample
clones of exactly the same sizes made of lead. Lead has a critical temperature of 7.2 K and
a critical field of 803 G [16]. At 4.2 K and zero applied field the lead clone is thus in the
superconducting state and the pickup voltage measured with the field modulation method
corresponds to Y = —1. Then a small field of the order of 0.5 T is applied so that the
lead sample is in entirely in the normal state. The resulting pickup voltage corresponds to
X = 0. The field modulation setup can in principle be calibrated with these two values.
In fact the calibration works best if the pickup coils are closely wound on the sample and
the sample is much longer than the pickup coil.

The sensitivity of a typical field modulation setup is estimated in [11]. It turns out that
the modulation method compares favorably with the widely-used torque method [48].
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Moreover, in contrast to the torque method even materials with an isotropic Fermi surface
or ferromagnetic materials can be studied with the field modulation method.

2.3 Hall probes

In this section we will first present the basic formulas of the Hall effect in three dimen-
sions. The spatial resolution of a micro Hall probe in the diffusive regime is discussed.
Then different sensor materials are compared and their possible application for Condon
domain imaging is considered. Finally, the Hall probe setups which were used during this
work are presented. They were all manufactured in the Technology Service Group of the
Max-Planck-Institut fiir Festkorperforschung in Stuttgart.

2.3.1 Hall effect and resolution of a Hall probe

We consider a rectangular plate with small thickness d with a current / applied along the
long side of the plate and a field B applied perpendicular to the plate. The Lorentz force
acting on the charge carrier with charge ¢ is compensated by the force on the carrier due
to the Hall field £, once a dynamic equilibrium has been established

quaB = qF, (2.11)

where v, is the carrier drift velocity. Using the relationship for the current density j =
nqug, where n is the charge density, the Hall constant R becomes

E, 1
YRy = — 2.12
jB a ng ( )

Ry is negative for electrons and positive for holes, and is expressed in Q-m-T~!. By
measuring Ry the type of the charge carriers and their density can be determined. Finally,
the Hall voltage Vi is given by

BI
Vian = RHT. (2.13)
Often, especially when dealing with two dimensional electron systems, the Hall resistance

R,y

Vita B
Ry = f}” = Ry~ (2.14)

is calculated which should not be confused with the Hall constant Ry. For two dimen-
sional electron gases (2DEG) the derivation of the Hall effect follows by analogy while
the 3D charge density n is replaced by the layer or sheet density n, = nd.
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The main noise component of such Hall probes for 7" < 100 K up to a critical dc bias
current /,,,,. is the Johnson noise of the Hall voltage contacts

Vi =4kgTR,Af (2.15)

where R, is the two-terminal voltage probe resistance and A f is the measurement band-
width. Consequently for Iy,; < I, the signal to noise ratio (SNR) of a Hall probe

1S
RyBlya/d

VAETRAT

For a Hall sensor with voltage leads of width w and total length [ the two-terminal resis-
tance R, is given by

SNR = (2.16)

Ry=p—=—— (2.17)

where p is the resistivity and p the charge carrier mobility. Finally we obtain for the SNR

SNR—<M>1/2 L v 1/231 (2.18)
—\n AkgTqAf 1d Hall: '

This means that if all other factors remain constant, the ratio of carrier mobility to carrier
density provides a good figure of merit for the sensor. In practice, however, the maximum
current bias imposes an equally severe constraint. If 7,,,., is exceeded, the low frequency
output becomes dominated by random telegraph-like 1/f noise, presumably due to the
trapping and emission of "hot" electrons at deep donor impurities [49].

The Hall voltage is always superimposed on an "offset" voltage which arises due to
slight misalignments of the opposing contacts. Another reason for the offset voltage are
microscopic inhomogeneities in the conduction layer. For two very similar micro Hall
probes the offset voltage is never the same. As the offset presents an ohmic longitudinal
voltage drop it has the same strong temperature dependence as the carrier mobility. In

practice this offset must be subtracted electronically every time that a new temperature is
established.

2.3.2 Spatial resolution

If the length scales of inhomogeneities in the magnetic field are of the order of the dimen-
sions of the Hall sensor it is important to provide a quantitative theory which relates the
experimental data, in terms of resistance and voltage measurements, to the properties of
the magnetic field, and more precisely to the size and strength of the inhomogeneities in
this magnetic field. In other words it is necessary to determine the response function of
the Hall probe.
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Figure 2.3: Response function for a two dimensional Hall probe with leads 1 um wide as a
function of the position of a highly localized vortex within it. From [49].

This problem can be studied in two limits. In the very high mobility and low temper-
ature (below 4.2 K) limit the Hall probe is in the ballistic regime if the electron mean free
path exceeds typical probe dimensions. In this limit the Hall voltage is well described by
the average magnetic field in the Hall junction and it is rather insensitive to the exact posi-
tion of the magnetic field inhomogeneity [50]. This is in contrast to the diffusive regime,
where scattering processes strongly determine the electron transport. In this case there is
no longer a simple relation between the Hall resistance and the magnetic field inhomo-
geneity. It turns out that different regions of the Hall probe are more or less sensitive to
the presence of a magnetic field.

Figure 2.3 shows a 3D representation of the response function of a 1 ym wide Hall
probe [49, 51]. We notice that the response extends well outside the square intersection
of voltage and current leads. We note that the response function of a Hall probe can be
determined experimentally by scanning a field source, for example a tip of magnetic force
microscope, over the Hall probe of interest [52, 53]. The Hall voltage as function of the
tip position measures directly the Hall response function. Figure 2.3 shows the response
function for a Hall probe with symmetrical current and voltage leads. Recently the effect
of the probe geometry on the Hall response function in an inhomogeneous magnetic field
has been investigated theoretically [54, 55] and experimentally in [53]. It was found that
narrowing the current or voltage leads, respectively, leads to more sensitive areas in the
Hall junction. Especially the reduction of one of the voltage leads to submicron size, for
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example by a focused ion beam, creates a highly sensitive spot in the junction and the
spatial resolution of the Hall probe is appreciably increased. As lithographic fabrication
techniques have limited resolution the effect of circular corners in the Hall junction has
been studied in [55]. It was observed that circular corners decrease significantly the Hall
response so that particular attention should be paid to the resolution with which the Hall
probe structure is fabricated.

2.3.3 Hall probe materials

Miniature Hall probes have been used for many years to detect magnetic fields and field
gradients on a micron scale. Typically thin evaporated films of the semimetal bismuth [56,
57] and later epitaxial films of InAs [56], InSb [56] and GaAs have been employed in this
role. Although most of these studies present results on a much coarser scale, spatial
resolution as high as 4 ym with magnetic field sensitivity of 0.01 mT was already attained
in [57].

The development of modulation doped semiconductor heterostructures [58] revolu-
tionized the field. These epitaxial structures contain two dimensional layers of electrons
(2DEG) with carrier mobilities which are far higher than in any other compound (see also
table 2.1). Hall probes made of 2DEG combine high sensitivity and high spatial reso-
lution. Therefore, mostly Hall probes prepared of a 2DEG are nowadays employed as
extremely sensitive flux detectors to study, for example, flux motion in type-II supercon-
ductors [59] and vortex dynamics in high-temperature superconductors [60, 61, 62].

Nevertheless, each type of Hall probe qualifies for a certain field and temperature
range and has its own advantages like high sensitivity, linearity of the Hall signal in field,
large signal to noise ratio, small size, reproducibility of the sensitivity after thermal cy-
cling, ease of fabrication, and mechanical robustness. Figure 2.4 compares the Hall re-
sistance I, as function of applied magnetic field at millikelvin temperatures for 0.1 ym
thick polycrystalline bismuth on a sapphire substrate, 0.1 pm thick InAs on a GaAs sub-
strate, and a GaAs 2DEG heterostructure. Bismuth Hall probes are easy to fabricate, but
their Hall signal is nonlinear in field, saturating for high fields and their sensitivity is
small. Furthermore, the Hall constant depends strongly on temperature and large changes
in the sensitivity occur under thermal cycling. Group III-V semiconductors like InAs,
InSb and GaAs are more suitable for the application as magnetic field sensors at liquid
helium temperatures. The Hall coefficient of these compounds is larger than in bismuth
by a factor of 750 for InSb and 75 for InAs for example. The signal to noise ratio is
larger than in bismuth as well by a factor of 10 in InSb. Figure 2.4 shows that an enor-
mous sensitivity can be reached with 2DEG GaAs Hall probes by reducing the charge
carrier concentration and increasing the charge mobility (see also table 2.1). However,
this increases not only the Hall resistance but causes also quantum Hall effect at low tem-
peratures. This is unfavorable for a Hall probe since the sensitivity depends in this case
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Figure 2.4: Comparison of the Hall resistance as a function of magnetic field 4 at ' = 0.3 K for

three magnetometer materials. Note the change of vertical scale between panels. From [63].
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strongly on the applied magnetic field and is even zero at a quantum Hall plateau.

In conclusion, we see that for the purpose of Condon domain visualization, at low
temperatures and high magnetic fields, epitaxial films made of InAs, InSb or GaAs are
the most favorable materials for the fabrication of Hall probes.

2.3.4 10 x 10 ym? micro-Hall probes

The semiconductor layers for this Hall probe setup were prepared by K. Eberl from the
Max-Planck-Institut fiir Festkorperforschung in Stuttgart. The same material was used for
studies on quantum Hall effect in disordered layers with a continuous 3D single-particle
spectrum of the charge carriers [64, 65]. The semiconductor structure was prepared with
molecular beam epitaxy. On a GaAs(100) substrate were successively grown an undoped
GaAs layer (0.1 pm), a periodic structure 30 x GaAs/Al; _,Ga,As(10/10 nm), an undoped
GaAs layer (0.5 pm), the heavily Si-doped GaAs layer of 140 nm nominal thickness and a
cap layer (0.5 ym). The mobility 1 in the heavily doped layer was about 2600 cm?/ Vs at
zero magnetic field and the bulk density of electrons n was 1.6 x 1017 cm™3 at 4.2 K. The
Hall probe structure was made by optical lithography and wet etching at the Max-Planck-
Institut fiir Festkorperforschung in Stuttgart. Contacts to the Hall probes were prepared by
diffusion of a AuGe/Ni alloy into the conducting semiconductor layer at 450°C. Finally,
a CrAu layer was evaporated to facilitate the attachment of bonding wires.

Figure 2.5 shows the Hall probe setup which was designed in [66]. Four independent
Hall probes with an active surface of 10 x 10 zm? are placed on one chip. The free surface
on the chip available for a sample and for scanning is about 6 x 6 mm?. The distance
between the centers of the Hall probe is 200 ym. The whole structure is covered with a
3 pm thick varnish which remained after optical lithography processing. A particularity
of this Hall probe setup is that there are four surface areas covered with CrAu. These
surfaces were used for capacitive distance control during scanning experiments as they
form a capacitor with the metallic sample.

Figure 2.6 shows the behavior of the two-terminal resistance Ry and the Hall voltage
Vi as function of magnetic field up to 10 T at 4.2 K. Ry and Vi, were measured with
a standard ac lock-in technique at low frequencies (= 40 Hz). An ac current with about
5 pA amplitude was passed through the sample. This was about a thousand times higher
than in [65] where self-heating was carefully avoided. For our purpose there were no
disadvantages in applying higher currents but rather the signal to noise ratio improved ap-
preciably. %y in figure2.6a shows well-pronounced Shubnikov-de Haas oscillations [64].
As a voltage source (oscillator of the lock-in amplifier) was used to apply the current a
high resistance (1 Mf)) was connected in series with the Hall probe to keep the current
constant as function of magnetic field. Figure 2.6b shows slight deviations from linearity
in the Hall voltage. These small deviations at 4.2 K might be due to quantum Hall effect
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Figure 2.5: Hall probe setup with four Hall probes with an active surface of 10 x 10 um?. The
distance between neighboring probes is about 200 pm. Four surface areas are covered with CrAu
for capacitive distance control. The right side shows a zoom to the center of the Hall probes with
leads for current and voltage being dark shaded.

like in [64] or on the other hand they might result of a slight misalignment of the opposing
voltage probes which causes an ohmic longitudinal voltage drop with the strong magnetic
field dependence of Ry .

From the slope of Vi, in figure 2.6b we can estimate that for a magnetic resolution of
1 G a voltage difference of 1 1V must be resolved at an applied current of 5 tA. However,
the typical resolution of a lock-in amplifier is 1073..10~%. In order to reach the magnetic
resolution at an applied magnetic field of 10 T the offset Hall voltage must be therefore
compensated. Figure 2.7 shows the circuit diagram used for the compensation. An simple
ac bridge was built with a General Radio capacitance and resistance bridge and with a high
impedance low noise preamplifier. On A the General Radio generated a sinusoidal voltage
with variable amplitude and phase. On B the Hall voltage is preamplified with a gain of
ten. A lock-in amplifier measured the differential signal A — B between the Hall voltage
and the reference signal from the bridge. The Hall voltage could be adjusted to zero for
every magnetic field between O T and 10 T by changing the capacitance and resistance of
the General Radio bridge.

The Hall probe setup had however some shortcomings. In dc measurements of the Hall
voltage the noise level was very high so that the magnetic resolution was not sufficient.
This might be due to the considerably high two-terminal resistance of about 200 k2. On
the other hand the more complicated ac method with the above described compensation
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Figure 2.6: (a) Ry and (b) Vg as a function of magnetic field up to 10 T at 4.2 K. The two-
terminal resistance shows well pronounced Shubnikov-de Haas oscillations. The transverse resis-
tance is slightly nonlinear.

was difficult to apply to several Hall probes simultaneously. Furthermore, for scanning
Hall probe application the integration time (= 1 s) of the lock-in amplifier should be
reduced by increasing the frequency of the driving current (> 150 Hz). However, it turned
out that for higher frequencies the phase of the lock-in amplifier could not be arranged in
a way that a monotonous Hall voltage like in figure 2.6b was obtained.

2.3.5 5 x 5 ym? micro-Hall probes

A second Hall probe generation was developed later [66] presenting some advantages in
design. However, the same semiconductor layer as described above was used for their
realization. The overall surface of the setup was considerably reduced to 4 x 4 mm?
because only small pieces of the GaAs heterostructure were left in Stuttgart.

Figure 2.7 shows the layout of the Hall probe setup. Two pairs of Hall probes, each
with an active surface of 5 x 5 pum?, are separated by 1.5 mm. The distance between two
probes of a pair is about 20 pm. The structure size of 5 ym was actually the minimum
size of the optical lithography facility in Stuttgart.

This design offers on the one hand the possibility to measure the applied magnetic
field H, with one Hall probe and the induction B with another one, if the sample is small
and covers only one pair of the Hall probes. On the other hand a short range differential
measurement can be made between nearby Hall probes, to detect spatial inhomogeneities
in the magnetization of the sample. In this respect we note that the distance of about
20 pm between the nearby Hall probes was approximately the theoretically predicted size
of the Condon domain structure [4].
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Figure 2.7: Circuit diagram used to balance the Hall voltage offset. A gives a reference voltage
generated by a General Radio capacitance bridge. B gives the Hall voltage amplified with a low
noise differential preamplifier. A and B are linked to the lock-in amplifier.

1T mm

Figure 2.7: Hall probe setup with two pairs of Hall probes with an active surface of 5 x 5 um?.
The distance between the two pairs is 1.5 mm and between the probes of a pair is about 20 pm.
The surface areas covered with CrAu are used for capacitive distance control. On the right side
an extended view of two Hall probes is shown with the leads for current and voltage being dark
shaded.
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Sample ID || carrier concentration n | mobility ¢ at 4.2 K
at 4.2 K (1/cm? or 1/cm?) (cm?/Vs)
71959 4.3-101° 1850
71960 3.5-10% 1270
71961 2.9-10'% 1880
81504 1.3-10% 1440000

Table 2.1: Carrier concentrations and mobility of the GaAs heterostructures used for the fabrica-
tion of the Hall probe arrays. 81504 is a heterostructure with a 2DEG.

However, similar problems like discussed above for the previous Hall probe setup per-
sisted for this setup because the same semiconductor material was used for its fabrication.

2.3.6 Hall probe arrays

A completely new Hall probe generation was finally developed to overcome the raised
shortcomings. It was shown in equation 2.18 that the ratio of carrier mobility to carrier
density provides a good figure of merit for the Hall probe. Table 2.1 shows the carrier con-
centrations and the mobilities of the semiconductor heterostructures that were selected
in this purpose and were received from the molecular beam epitaxy group in Stuttgart.
Heterostructure 81504 is a 2DEG. The other heterostructures consist of a 1 pm thick Si-
doped GaAs layer sandwiched between two 10 nm thick undoped GaAs layers grown
on a GaAs(100) substrate. It was noticed that the maximal current bias /,,,,, imposes an
equally severe constraint. Therefore, we used heterostructures with much thicker conduct-
ing layers (1 pm instead of 140 nm) in order to increase /,,,,. The Hall probe setup that
was first received was made of layer 71959. With this setup all measurements presented
in chapter 3 are made.

Figure 2.8 shows the design of the Hall probe setup. Two arrays of five Hall probes are
placed at a distance of b = 1 mm. Each Hall probe has an active area of 10x 10 zm?. The
distance between the centers of adjacent Hall probes in an array is 40 pym. The second
array is rotated by 90° with respect to the first. We note that the design advantages of
the Hall probe setup in figure 2.7 have been retained. Differential measurements between
the applied magnetic field and the induction are possible. Moreover, the possibility to
observe spatial inhomogeneities of the magnetization has been extended from two Hall
probes to an array of five Hall probes. Finally, the second array was rotated by 90° with
respect to the first to be able to measure magnetization profiles along and across an axis
of symmetry of the sample.

Due to the rather thick conducting layer of the heterostructure high dc currents, usually
100 pA, could be applied in series to all five Hall probes of an array. Figure 2.9a shows
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Figure 2.8: Hall probe setup with two arrays of Hall probes with an active surface of 10 x 10 zm?
separated by b = 1 mm.

the two-terminal resistance of a Hall probe as function of magnetic field at 4.2 K. Well-
pronounced Shubnikov-de Haas oscillations are observed and the resistance increases
strongly for magnetic fields exceeding 6 T (insulator transition). Here, we used a sta-
bilized dc current source to apply the Hall current. Therefore, the Hall current was con-
stant even though the two-terminal resistance exhibits strong magnetoresistance and rises
steeply at 6 T. Figure 2.9b shows the Hall resistances for three Hall probes of an array
at 1.3 K. R, is in good approximation linear up to 10 T without deviation due to the
quantum Hall effect. The Hall voltages were measured simultaneously with Keithley
multimeters. A magnetic resolution of better than 1 G is reached with the Hall probes at
magnetic fields up to 10 T. Furthermore, all five Hall probes of an array had very similar
Hall resistances. The slight offsets are subtracted numerically.

2.4 Test of the spatial resolution of the Hall probes

Before we tried to visualize Condon domain structures which requires quite complicated
measurement conditions (1.3 K and high offset magnetic fields) we tested the spatial
resolution of the Hall probe setup. For this we needed a magnetic structure which has
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Figure 2.9: (a) Two terminal resistance Ry at 4.2 K and (b) Hall resistance R, for three Hall
probes at 1.3 K as a function of magnetic field.

sizes comparable to the predicted Condon domain structure.

Actually, the well known [67, 68, 69] intermediate state domains in type 1 supercon-
ductors are very similar to Condon domain structures and the typical sizes can be made
comparable to the expected Condon domain structures. In samples with nonzero demag-
netization factor n the diamagnetism of the superconducting state distorts the applied
field, producing a nonuniform field distribution. As a result superconducting and normal
domains coexist in the intermediate state for applied fields H, within the range

H.(1-n)< H, < H, (2.19)

where H. is the critical field. In the frame of an unbranched laminar model [68] the period
of the domain structure p can be estimated

p= \/% (2.20)

where ¢ is the thickness of the sample, o the surface energy parameter which corresponds
roughly to the coherence length and ¢ a function tabulated by Lifshitz and Sharvin [70].
Here one should note the striking similarity between both formulas (2.20) and (1.45) for
the respective domain periods of Condon domains and intermediate state domains. The
main difference is that the coherence length § is replaced by the domain wall thickness w
in the formula for the Condon domain structure. This illustrates that the Condon domain
state can be considered as physically similar to the intermediate state.

We decided to test the spatial resolution of the Hall probes by measuring intermediate
state domains on a polycrystalline sample of tin. For tin intermediate state domains have
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been extensively studied in the past [68, 71] with e.g. the powder decoration technique,
the magneto-optic method and with field probes using the extreme magnetoresistance of
bismuth. More recently the intermediate state of tin was studied by ©SR [72]. Their sizes
and topology is hence well known. In fact, intermediate state domains are very suitable
to test the spatial resolution of the Hall probes for the possible observation of Condon
domains. First, the temperature ranges are nearly the same (less than 3.7 K for tin) and
secondly the sizes of both domain structures can be made quite similar. On the other hand
the applied magnetic field is very low for the intermediate state and the magnetic contrast
(B1 — Bs)/ B, where By is the induction in the normal state domain and B, the induction
in the superconducting domain, is 1 for intermediate state domains whereas for Condon
domains the magnetic contrast is not more than 1073,

A plate-like sample of polycrystalline tin was prepared with a thickness of about
I mm. The demagnetization factor of the sample was determined [73] to be roughly
n = 0.5. The critical temperature 7 of tin is 3.72 K [74]. The critical field poH at zero
temperature is 305 £ 2 G [75]. According to equation (2.20) one could expect domain
structures in the tin sample (§ ~ 10~* cm) with p of the order of 20 — 80 um. We have
chosen a base temperature of 2.7 K which reduces the critical field according the formula

T 2
H, = Hy (1 - (7) ) 2.21)

to ugH. = 140 G. The sample was directly fixed on the 5 x 5 ym? Hall probe setup
presented in section 2.3.5 and slightly pressed by a cotton pad to ensure a small distance
between the Hall probes and the sample.

Figure 2.10 shows the induction B measured at the surface of the tin sample when
the applied field is slowly swept. One can clearly distinguish three regions. First the
superconducting region 0 < H, < H.(1 — n) between 0 < poH, < 80 G where the
measured induction is approximately zero. The very small slope in this field range might
be due to the fact that there is a finite distance between the Hall probes and the sample. In
the second region H.(1 —n) < H, < H, the sample is in the intermediate state. Finally,
for applied fields higher than H. the sample is in the normal state.

In the intermediate state fast variations of the measured induction are observed. They
are caused by the normal and superconducting domains which are moving across the Hall
probe setup. These variations appear only when the applied field is swept very slowly
with about 0.1 G/s. Here we used the resistive modulation coil to sweep the field because
the smallest sweep rate (= 1 G/s) of the power supply of the superconducting magnet
was still to high to resolve the fast induction variations. Figure 2.11 shows a zoom to
the intermediate state. One can see a steep rise of the induction around pyH, = 85 G
followed by a drop at poH, = 87 G. This means that a normal state domain is passing
across the Hall probes and then a superconducting domain follows. The induction was
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Figure 2.10: B(H,) measured with a Hall probe on a tin sample. The vertical lines separate
roughly the field ranges of the three different states. The dashed line is a guide to the eye of
unity slope B = poH,. In the intermediate state fast variations of the measured induction due to
domains are visible.

simultaneously measured with two close (20 pm distance) Hall probes. For some applied
fields exactly the same inductions are measured whereas there are also field regions where
the induction clearly differs. This implies that a domain boundary is situated between the
close Hall crosses.

In conclusion, we could clearly observe normal and superconducting domains of the
intermediate state without moving the sample and the Hall probe setup with respect to
each other. The sample sizes were arranged in a way that the typical domain period in tin
is similar to the expected periods in beryllium at 4 T and silver at 10 T. The maximum
amplitude of the steps was about 20 G whereas one would expect about 100 G. This
means that we observe about 1/5 of the real magnetization difference. The resolution
of the Hall probes would therefore be sufficient to detect Condon domains in beryllium
where a magnetization difference of 30 G [5, 29] between dia- and paramagnetic domains
is expected.

2.5 Insert

In order to determine the geometry and the size of the Condon domain structure we need
to measure the magnetization distribution at the surface of the sample using a Hall probe.
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Figure 2.11: Zoom to a typical intermediate state region. The induction B is simultaneously
measured with two close 5 x 5 m? Hall probes (see section 2.3.5). The applied field was swept
with a very low sweep rate of 0.1 G/s with the resistive modulation coil.

On the one hand we can use an array of Hall probes to detect the magnetization at some
discrete points on the surface (see chapter 3) or on the other hand we can move the Hall
probe with respect to the sample surface. Here, we present the mechanically driven scan-
ner unit which was built for this purpose.

In chapter 1 theoretical estimations for the Condon domain size were given. If we
assume a domain size of 30 um [4] the scanning range of the Hall probe should be at least
100 pm in the x- and y-direction so that several domains could be resolved. Moreover,
the spatial resolution of the motion on the surface should be of a few ym. Since the
inhomogeneous magnetization distribution falls off outside the sample in a distance that
corresponds to the domain size the distance sample-Hall probe should be as small as
possible and must not exceed 10 pm. On the other hand, especially the hard beryllium
samples will damage the Hall probes if the contact is too close. Furthermore, the scanning
device needs to fit in the small tail of the *helium cryostat (diameter of 38 mm), should
be leak-tight so that the cryostat can be pumped to 1.3 K and finally, should work reliably
in high magnetic fields up to 17 T.

A considerable number of scanning probe techniques have been developed in recent
years [76]. Common to all is the need for a positioning or a scanning movement of the
probe tool with respect to the sample. For high resolution techniques like scanning tun-
neling microscopy [77] mechanical scanners incorporating piezoelectric actuators are the
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appropriate choice. For large range scanning probe techniques, piezoelectric actuators
are not favorable (see [78] and references therein). To access mm ranges, either their
dimensions are inconveniently large, their deformation has to be amplified by lever sys-
tems or they have to be combined with multimorph elements [79]. In addition problems
like creep, hysteresis and nonlinearity become more and more important the larger the
excursion of the actuators is.

In order to avoid these problems mechanically driven scanners can be employed [57,
78, 80]. They offer easy construction, ease of operation (they can even be operated man-
ually) and stable positioning while inactive. Among the disadvantages are of course vi-
brations during scanning operation and the necessity of a mechanical access to the exper-
imental region.

Mechanical scanning unit

We used a mechanically driven scanner developed by Heil ez al. [78] and built by Lehmann [66].
Figure (2.12) shows a schematic representation of the mechanical scanner. The position-
ing unit has an accessible range in three dimensions of approximately 2 mm with a res-
olution and reproducibility in the ym range. The key element of this construction is a
three-dimensional parallelogram composed of five leaf springs and a wire cross. Three
brass screws (M3x350 pm) are associated to the motion in the x-, y-, and z-direction.
The screw motion is transformed via a bronze wire of 0.6 mm diameter and a lever into a
bending of the leaf springs. The screws work against restoring forces so that all mechani-
cal play is suppressed. The upper end of these screws are attached to stainless steel tubes
that lead through squeezable O-seals out of the cryostat. They can be controlled manu-
ally or be coupled to stepper motors. Due to the symmetry of the design (apart from the
z-motion) the movements of the support in the x- and y-directions are orthogonal and de-
coupled from each other for small displacements. In [78] the scanning device was tested
and calibrated resulting a sensitivity of 0.8 pm/step in x- and y-direction using a stepper
motor with 1000 steps per revolution, a deviation from linearity of smaller than 10% per
full range, and a reproducibility of positioning of smaller than 2 ym. The sensitivity in
the z-direction was estimated from the pitch of the screw of 0.35 mm to be approximately
0.35 pm/step.

Implementation

In usual scanning Hall probe microscopes (see [49]), the active Hall sensor is patterned
close to a corner of a deep mesa etch which is coated with gold to act as an integrated tun-
nel tip. A relative tilt angle between the sample and the sensor ensures that the tip is the
closest point to the sample surface. The sample is first approached until tunneling is es-
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Figure 2.12: Schematic representation of the mechanical scanner from [78]. The rotation of the
brass screw (1) is transformed via a lever system (3) into a bending of a bronze leaf spring (4) so
that the sample holder (10) changes its position in x-direction. Restoring forces are provided by
helical springs (5) to eliminate mechanical play.
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Figure 2.13: Setup with fixed Hall probes located in the chip carrier and a moving beryllium
sample being glued on a copper wire. The setup allowed scans along one direction.

tablished, and then the Hall probe is scanned across the surface to measure simultaneously
the magnetic field and surface topography.

The Hall probes of our setups were always more or less in the middle of the GaAs
layer. Therefore, the above sketched technique was not practicable. In the following we
show some scanning implementations realized with the mechanical scanning unit [78] and
the existing Hall probe setups. For simplicity we decided to keep the relatively big chip
carrier (=31 mm long and 15 mm large) containing the Hall probes fixed and to move the
beryllium sample with respect to the sensors.

Figure 2.13 shows a setup allowing scans along one direction. The wire cross (9)
and the probe support (10) in figure (2.12) were replaced by a 200 pm thick copper wire
on which the sample was directly glued. To protect the Hall sensors and to reduce the
friction, a thin mica flake was placed between the beryllium sample and the Hall probe.
The copper wire provided a small restoring force in z-direction ensuring a close contact to
the Hall sensors. However, a persistent problem was the poor positioning reproducibility
and the high electronic noise during the sample motion due to the remaining friction at
the interface sample-Hall probe.

A contact-less scanning method was developed to reduce the high mechanical noise.
The beryllium sample was glued on the insulating support (10) in figure 2.12. The scan-
ning unit offered the possibility of motion in the z-direction to adjust the distance sample-
Hall probe from outside the cryostat. The areas coated with gold of the Hall setup in fig-
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Figure 2.14: Setup resembling a record player. A brass lever is glued directly on the Hall probe
carrier. The lever is driven by one leaf spring (4) of the scanning unit.

ure (2.5) were used for capacitive distance control. In fact, the capacity between the gold
areas and the metallic sample was measured with a capacitance bridge. Unfortunately,
the movements of the support (10) in the x-, y- and z-directions were not sufficiently de-
coupled. Especially for large excursions, the x-movement, for example, led to a slight
rotation of the support (10) around the y-direction. As a result the big sample tilted a little
with respect to the Hall probe setup.

To overcome the complicated problem of distance adjustment, we constructed a sim-
pler setup with fixed distance sample-Hall probe. In order to minimize length changes
during cool down the construction was made as small as possible and materials with sim-
ilar thermal expansion were used. Figure (2.14) shows the design. A lever resembling a
record player is directly glued on the chip carrier containing the Hall probes. The lever,
on which the sample is fixed, is bent for scanning by one leaf spring (4) of the scanning
unit which is connected to the lever by a copper wire. All components are made of brass
and copper-beryllium and the construction is smaller than 1 cm?.

In conclusion many technical problems have to be overcome to realize a reliable scan-
ning motion of the sample especially with the requirements described above. While it
was not clear whether Condon domains emerge to the sample surface we prefer to start
the observation of Condon domains in the next chapter with a more simple static method
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using an array of Hall probes.

2.6 Samples

In this section the sample preparation is described. Moreover, the Dingle temperature,
which is an important parameter for the analysis of dHvA oscillations, will be determined
for the beryllium and silver samples.

Beryllium

The beryllium single crystals were received from V.S. Egorov from the Russian Research
Institute "Kurchatov Institute”, Moscow. The samples were cut by electric spark erosion
from the same single crystal on which Condon domain formation was observed using
SR [5, 28, 29]. The residual resistance ratio of the samples was Rsgox/R40x == 300.
After cutting no further treatment was made to remove deposits and damages of the spark
erosion. Especially chemical etching turned out to be difficult on beryllium as the etching
rates were highly anisotropic in the hexagonal lattice. For domain observation exper-
iments with Hall probes we polished slightly one side of the sample with the method
described below to achieve a flat and mirror-like surface.

An important measure of the crystalline quality of the sample is the Dingle temper-
ature Tp [19]. In the following we will show briefly how 7T}, is obtained from dHvA
measurements [11].

The field dependence of the pth harmonic of the dHVA oscillations should be given

by
1

sinh (am*pT/H)
where Rp is the Dingle reduction factor introduced in equation (1.19). The values of
C, and n depend on the particular method of measurement. For instance, if it is M/ that
is measured, it can be seen from (1.23) that n = 1/2, while if it is dM/dH, as in the
ac modulation method for weak modulation, then n = 5/2.

M, =C,TH "Ry, (2.22)

The usual procedure to determine 7, from the field dependence of M, (which need
not to be measured absolutely) is to make a "Dingle plot". This is a plot of

“pT
In (MpH” sinh (O‘me )> (2.23)

against 1/H, which should be linear if equation (1.19) is valid. The slope of the plot gives
immediately apm*T'p. A variant of the procedure, valid if apm*T'/ H is large enough for
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Figure 2.15: Dingle plot for the beryllium sample measured at 1.3 K. The slope is 3.3 K which
results Dingle temperature Tp = 2.0 K.

sinh to be replaced by 3 exp, is to plot simply fp = In (M,H") against am*p/H and the
slope then gives T, + T

Figure 2.15 shows a Dingle plot measured on a rod-like beryllium sample of sizes
8 x 2 x 1 mm?® with the long side being parallel to the [0001]-axis of the crystal. Here,
the fundamental (p = 1) of the dHVA magnetization was directly measured with a Hall
probe. In section 1.7 we have seen that two dHVA frequencies coexist in this orientation
leading to a beat in the dHvVA magnetization (see figure 1.14). For the determination of
the Dingle temperature in figure 2.15 the dHvA amplitude at the beat antinodes was used.
From the slope of the Dingle plot we obtain 7p = 2.0 K. The Dingle temperature can
be assumed to be roughly the same for all samples cut from the same single crystal. In
this respect we note that J. Hinderer [81] determined similar Dingle temperatures for the
samples using the torque method [48].

Silver

The high quality silver single crystals were received from V.A. Gasparov from the Institute
of Solid State Physics in Chernogolovka. The crystals were prepared in the same way as
in experiments on radio frequency size effect and time of flight effect (see [82, 83] and
references therein).
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Figure 2.16: Dingle plot for the silver sample used in chapter 3 measured at 2.6 K. The slope is
2.6 K which results a Dingle temperature Tp = 0 K.

Plane-parallel silver plates of about 1 mm thickness were cut from a single crystal
which had an initial residual resistance ratio of Rsgox/Rs2x =~ 7000. The largest sur-
face of the samples was perpendicular to the [100]-axis of the crystal. After a subsequent
oxygen (1072 Pa) annealing at 750°C during 10 hours, the residual resistance ratio in-
creased to 16000. The resistance ratio was measured by the contact-less Zernov-Sharvin
method [84] which consists of measuring the torque on a sample caused by a rotating mag-
netic field. Finally, to obtain a flat and mirror-like surface, necessary for the Hall probe
measurements, the samples were slightly repolished with the method described below.

The very high quality of the samples results in a very low Dingle temperature'. Fig-
ure 2.16 shows a Dingle plot for the sample (2.4 x 1.6 x 1.0 mm?®) on which Condon
domains are directly observed in the next chapter. The fundamental of the dHvA mag-
netization was directly measured with a Hall probe. From the slope we obtain a Dingle
temperature of 7p = 0 K. Considering all measurement errors we conclude that the Din-
gle temperature of the sample is certainly not bigger than 7, = 0.2 K.

!One should note that a high residual resistance ratio of the sample does not necessarily yield a low
Dingle temperature as the scattering mechanisms of electrical conductivity and the dHVA effect are differ-
ent [11].
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Polishing

Usually chemical polishing is used to achieve a flat mirror-like surface of high quality
single crystals [82]. Here, however, we carefully repolished the samples using abrasive
polishing with small grit diamond paste. The sample was embedded at one end of a cylin-
der made of cold mounting resin (acrylic). The sample holder was then slightly pressed
to the polishing disk which was covered with a cloth. The type of cloth used is important
to the final result and we have been most successful with the Mecaprex polishing disks
HS Lavande and TFR. Diamond paste with different grit sizes, first 1 m and later for the
finishing 0.1 pm, was dispersed on the cloth surface and diluted with distilled water. The
silver removal rate was controlled with the rotation speed of the polishing disk and the
weight put on the sample holder. After polishing the cylindrical sample holder made of
acrylic was removed with a solvent and the sample was washed in acetone.






Chapter 3

Direct observation of Condon domains
with Hall probes

Dans ce chapitre, on présentera les expériences de visualisation des structures magné-
tiques des domaines de Condon dans des échantillons d’argent. L’induction (ou I’aimantation
locale) est mesurée avec des microsondes de Hall, un dispositif contenant deux séries de
cinqg sondes. Les sondes mesurent périodiquement une différence locale d’aimantation
dans la partie paramagnétique des oscillations dHvA. Cette différence est attribuée aux
domaines de Condon. Du comportement d’une série de sondes, on va déduire la direction
de propagation des parois des domaines et de leur orientation. Ces mémes expériences
ont été réalisées sur un échantillon en béryllium, et d’apres les résultats obtenus avec la
rotation de spin des muons (uSR) sur cet échantillon de béryllium, on s’attendait a des
différences d’aimantation plus importantes a la surface, ce qui n’a pas été vérifié expéri-
mentalement.

3.1 Introduction

We have seen in chapter 1 that a phase with Condon domains appears periodically in
normally nonmagnetic metals in strong magnetic fields at low temperatures under the
condition yp = peOM /OB > 1. In a plate-like sample, oriented perpendicular to H,
domains are formed with alternating regions of diamagnetic (A < 0) and paramagnetic
(M > 0) magnetization in the paramagnetic part (0M /OH > 0) of the dHVA period [3].
The volume fraction of the domains varies with H so that B = pH is fulfilled as an
average over the sample [4, 29].
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Condon and Walstedt [4] discovered these domains on a silver single crystal by a pe-
riodic splitting of the NMR line, corresponding to a local magnetic induction difference
of about 12 G between the paramagnetic and diamagnetic regions in magnetic fields of
about 9 T. More recently, Condon domains were observed in beryllium, white tin, alu-
minum, lead, and indium [5, 6, 13, 28, 29, 30, 31] by muon spin rotation (uSR). After
all, Condon domain formation is expected to be a general phenomenon occurring in pure
single crystals of all metals. Moreover, thermodynamic aspects of the Condon domain
phase transition have been treated theoretically [12] and the state of the art in this field
has been recently reviewed [9]. Some important questions, however, concerning domain
size and topology, domain wall energy, and pinning properties can only be solved with a
detailed knowledge of the domain structure. For this purpose, however, the local induc-
tion or magnetization must be measured with spatial resolution which is hardly possible
with the above cited methods using NMR and pSR.

The state with Condon domains can be considered as physically similar to the inter-
mediate state of type-I superconductors, where superconducting and normal regions form
in an applied magnetic field. Therefore, domain structures resulting of such different
phenomena as superconductivity and dHvA effect may be rather similar. Unfortunately,
the magnetic contrast which is the ratio of the induction difference between both sorts
of domains §B to the average induction is not more than 0.01 % for Condon domains
(compared to 100% for intermediate state domains). Besides, the applied magnetic field
itself is here hundred times higher. Thus, methods like magnetic decoration or magneto-
optical detection used for intermediate state imaging [49, 68] can not be used for Condon
domains.

In this chapter we present the first experimental results for a direct observation of
Condon domain structures in silver by a system of ten micro Hall probes held close to
the single crystal surface. In the homogeneous state, without domains, all probes show
the same dHVA signal B(H), i.e. all B; = B(H), where i = 1,2...10 are the Hall probe
numbers. In the domain state, the Hall voltages differ between the different probes in the
paramagnetic part of the dHvA period. This implies an inhomogeneous magnetic field
distribution due to Condon domains at the sample surface. In our measurements the sur-
face of the crystal was either normal to direction of the applied magnetic field or slightly
tilted (13°). By comparing data of neighboring Hall probes, new information about the
Condon domain structure is extracted. At the end of this chapter exactly the same exper-
iments are performed on a beryllium sample. Here, the magnetic field inhomogeneity at
the surface due to Condon domains is expected to be bigger than for silver.
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Figure 3.1: Experimental configuration with the longitudinal (L) and transverse (T) arrays of Hall
probes at distance b = 1 mm (s?> = 10 x 10 um?; d = 40 pm). Shaded and non-shaded areas
indicate a Condon domain structure with diamagnetic and paramagnetic domains, respectively.

3.2 Experiment

Figure 3.1 shows schematically the Hall probe setup made of a 1 pum thick Si doped
GaAs layer sandwiched between two 10 nm thick undoped GaAs layers. The Hall probe
setup has been presented in more detail in section 2.3.6. Two arrays of five Hall probes
(10x 10 pzm? at 40 um distance) are placed at a distance of b = 1 mm. One array, L, is
oriented along the long axis of the sample; the other, T, transverse to this axis. A dc Hall
current of 100 ©A was applied in series to all five Hall probes of an array. The Hall
voltages were read out simultaneously by five Keithley multimeters; the arrays L and T
were measured one after another. Due to the 3D conducting layer the V;(B) characteristics
of the Hall probes showed no quantum Hall effect and they were in good approximation
linear up to 10 T even at 1.3 K. The correct calibration of the Hall probes was tested at
temperatures between 4.2-3.6 K where all Hall probes showed exactly the same dHvA
oscillations of the homogenous silver sample. The detection limit of the Hall probes was
smaller than 1 G. A high homogeneity (better than 10 ppm in a sphere of 1 cm diameter)
10 T superconducting magnet was used to set a fixed offset magnetic field H,. The slowly
varying superimposed field Hy (£15 mT) was made by a water-cooled resistive coil. Thus
the total applied magnetic field was H = Hy + Hy .

The measurements were performed on a high quality silver single crystal of 2.4 x
1.6 x 1.0 mm3. The largest surface of the sample was normal to the [100]-axis of the
crystal. The sample was prepared in the same way as in experiments on radio frequency
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Figure 3.2: B(H) trace for silver single crystal with H || [100] showing the splitting 6 B of B;
and Bs of the L-array for three dHVA periods separated by dotted lines. The dashed line is a guide
to the eye for B — pugHoy = poHy .

size effect [82, 83]. The sample was annealed in O, (10~2 Pa) at 750°C during 10 hours.
It has a residual resistance ratio Rgpox/R4ox = 1.6X 10, measured by the contactless
Zernov-Sharvin method [84]. The very good quality of the sample results in a very low
Dingle temperature, which was estimated from our measurements to be about 7 = 0.2 K.
For a mirror-like surface, the crystal was slightly repolished by 0.1 pum diamond paste
after annealing. The surface before polishing had a roughness of about 20-30 gm and
the distance sample-Hall probe was too big so that no induction splitting due to Condon
domains could be resolved. The sample was glued by narrow strips of cigarette-paper to
the setup frame to fix the crystal on the Hall probes in order to avoid damage or strain
of the single crystal upon cooling down. Moreover, the sample was slightly pressed by a
spring and a cotton pad on the surface of the Hall probe setup to ensure a close contact.
This procedure guaranteed that the sample was fixed reliably in high magnetic fields.
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3.3 Results

Figure 3.2 shows typical B(H) traces of Hall probes B; and Bs of the L-array over three
dHVA periods at 10 T and 1.3 K. At each paramagnetic part of the dHVA period, i.e. the
steeper part of the period in the representation of figure 3.2, two different inductions are
measured at the surface of the sample. At the diamagnetic part (OM/0H < 0), however,
the induction is homogeneous. The measured traces are reversible for increasing and
decreasing magnetic field'. We ascribe the measured difference between the induction of
neighboring Hall probes to the existence of Condon domains.

The maximal induction splitting 0 B in a dHvVA period was measured as a function
of temperature at 10 T in figure 3.3a and as a function of magnetic field at 1.3 K in
figure 3.3b. One can see in figure 3.3 that the induction splitting disappears at about
3 K at 10 T. This means that the phase boundary of the Condon domain state is crossed
at about 3 K for this applied field. The solid line in figure 3.3a is a guide to the eye
representing the induction splitting 6 B calculated with the LK-formula [29, 34]. We used
for this calculation the phase transition temperature of 3 K and the maximum induction
splitting in silver of 12 G, measured by Condon and Walstedt [4], as parameters. At
1.3 K, the crossing is expected to occur at about 5 T. The inset of figure 3.3a shows a
theoretical phase diagram for silver with a Dingle temperature 7p = 0.2 K (see also
section 1.6.2 and [34, 85]). We see that the field and temperature range for the occurrence
of the induction splitting is in good agreement with the calculated Condon domain phase
diagram. Moreover, it agrees as well with the experimental phase diagram obtained by
nonlinear response measurements which will be presented in chapter 5.

As was mentioned above, the relative areas occupied by the two types of domains
change when the applied magnetic field is slowly varied [4]. From the order in which the
five Hall probes of an array detect the induction change, corresponding to the respective
domain magnetizations, we can deduce the direction of the domain wall motion. Fig-
ure 3.2 shows an anomalous alternating transition order of the Hall probes between the
diamagnetic and paramagnetic phase. In other words, in one period Hall probe 1 detects
first the transition from the diamagnetic to the paramagnetic magnetization whereas in the
following period it is Hall probe 5. Although reproducible, we will see that the observed
order depends strongly on the experimental configuration. In the following we will ex-
amine in more detail the direction of the domain wall motion observed by the Hall probes
within an array and compare the behavior between the L- and T-array.

A basically different behavior can be seen between the T-probes, shown in figures 3.4
and 3.4, and the L-probes shown in figure 3.5. No regular transition order was observed
for T-probes. Sometimes, they transit in ascending (1-5) or in descending order. This

'Regarding the next chapter, the experiments presented here did not offer the possibility to determine
whether there is a small hysteresis in the dHvA magnetization because all Hall probes were covered by the
sample. Therefore, the applied magnetic field could not be determined with the required precision.



76 Direct observation of Condon domains with Hall probes

12 I ——
[ 4t la
10-8.) ++ o fl .
8t ~2| .
b)
N AN R
S + % 10 20 30 40
Qg4 ++ u H (T) |
2_ -
uH=10T +
0 +
0 2 4 6
T (K)
12 ] v ] v ]
' b)

10

5B (G)
»
——
——
——

Figure 3.3: Maximum induction difference B as a function of temperature (a) and magnetic field
(b). Solid line in (a) is calculated from [34]. Inset shows the theoretical phase diagram [34, 85]
with dotted lines (a) and (b) indicating the two measuring tracks.
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Figure 3.4: Example of successive transitions for five T-probes between the diamagnetic and
paramagnetic phase. Here, the applied magnetic field was swept extremely slowly with about
0.5 mT/min.

uH, (mT)

Figure 3.4: Example of successive transitions for five T-probes for two successive dHVA periods.
The transition order varies from one period to the next.



78 Direct observation of Condon domains with Hall probes

wH

0

9 0 A
m by |
2o} _5 N .
-2 -1 0 1 2
ioHy (mT)

Figure 3.5: (a) Example of transitions for two dHvVA periods for L-probes. The transition order is
always either 1-3-4-5 or opposite.(b) shows the difference B — Bs vs Hy .

would imply that the domain boundaries are slightly tilted to the long axis of the sample.
Sometimes, as shown in figure 3.4, a middle T-probe transits the last or the first, as if the
domain wall is bent. In contrast, the transition order of the L-probes is always 1-2-3-4-5 or
reversed, as it is shown in figure 3.5a. This implies that domain walls move always along
the long side of the sample and that the domain structure is mainly oriented transverse to
the long side of the sample.

However, we found that the L-probe sequence changes alternately between successive
dHVA periods. This means that the domain wall motion changes direction along the long
sample axis from one dHVA period to the next (see also figure 3.2). At the diamagnetic
part of the dHVA period on the other hand, domains disappear completely and the sample
is homogenously magnetized. One would expect that Condon domains, like intermediate
state domains of type I superconductors, nucleate always at the same place in the sample
volume, for example at defects, small scratches or at the sample edge [68]. After nucle-
ation the domain walls would then propagate always more or less in the same direction.
Here, however, we observed that the wall motion changes direction between successive
dHVA periods. The sense of the domain wall motion can be expressed by the induction
difference 0 B = B; — Bj, shown in figure 3.5b. B changes sign alternately during four
or five periods (see figure 3.8a). Then the, what we will call, "pendulum" effect breaks
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Figure 3.6: Laminar structure of superconducting and normal state domains observed in a tin
disk. Normal state regions are dark. The ratio of the applied field H,, to the critical field H. was

H,/H. = 0.95 and T" = 2.165 K. The applied field makes an angle of 15° with the surface.
Photograph taken from [68] after [86].

down during two periods where the transition order is not clear. After this the pendulum
effect repeats.

In the following we are going to tilt the sample with respect to the applied mag-
netic field. The idea to tilt the sample is motivated by an experiment by Sharvin [86] on
intermediate state domains in a type I superconductor. He observed on tin that the in-
termediate state domain structure, being disordered in a symmetrical disk-shaped sample
oriented perpendicular to the applied magnetic field, becomes laminar when the applied
field makes an angle with the sample surface. An example of the laminar domain structure
observed in a slanted field is shown in figure 3.6 [68, 86]. This experiment indicated the
preference of the domain walls to align along the sample surface and to be parallel with
the applied magnetic field. We expected that Condon domains behave in the same man-
ner because, as was mentioned above, Condon domains can be considered as physically
similar to intermediate state domains.

Figure 3.7a shows the magnetizations measured with the same Hall probes as in fig-
ure 3.5 after rotating the sample around the long sample axis by 13°. In fact, the entire
chip carrier with the Hall probe setup, shown for example in figure 2.13, was rotated
around its long axis together with the sample glued on it. This ensured that the distance
sample-Hall probe was not changed. In figure 3.7a we see that the transition order is now
the same for both dHvA periods and that the pendulum effect, observed above on the
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Figure 3.7: (a) Example of transitions for two dHvA periods for L-probes. The transition order is
always either 1-3-4-5 or opposite.(b) shows the difference B; — Bs vs Hy .

non-tilted sample, has disappeared. In figure 3.8 the behavior of § B before and after ro-
tation, shown respectively in figure 3.5b and 3.7b, is compared for several dHvA periods.
The transition order is the same for all dHvA periods in figure 3.8b. For the T-probes,
on the other hand, the transition order did not essentially change under rotation from the
previously observed behavior. We conclude that domains draw up to a regular laminar
structure oriented always transverse to the long axis after rotation around the long sample
axis by 13°. Furthermore, the pendulum effect disappeared after rotation.

The rotation of the silver single crystal with respect to the magnetic field affects the
dHvA frequency spectrum. Figure 3.9 shows the difference in the dHVA spectra and
waveforms between the non-tilted and the tilted sample. For the non-tilted situation (see
figure 3.9a and b), where the magnetic field is applied along the [100]-axis of the crystal,
several frequencies are observed in the Fourier transform of the dHvA oscillations?. They
are due to other orbits, e.g. the four-cornered rosette orbit at about 19700 T, which exist
for this orientation as a consequence of the multiply connected Fermi surface of silver (see
chapter 1 and [11]). Taking into account the main frequencies, the dHvA magnetization

The Fourier transforms are obtained from Hall probe measurements over a large field range. For the
magnetic field sweeps the lowest speed (1 G/s) of the magnet power supply was used. The water-cooled
resistive coil was disconnected.
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Figure 3.8: (a) "Pendulum"” effect for sample surface oriented normal to H showing a regular
change of sign in the difference signal 6 B = By — Bj during 4 or 5 periods. (b) Same dependence
for the 13° tilted sample. In both the temperature was 1.3 K and the offset magnetic field was
/LoHO =10T.

waveform was then synthesized in figure 3.9b. We see that the magnetization amplitude
varies strongly between successive periods. For the slightly tilted sample (see figure 3.9¢
and d), on the other hand, only the frequency due to the "belly" orbit exists. This leads to
a dHvA magnetization without any frequency beat pattern.

The beating pattern in the dHvVA magnetization for the non-tilted orientation might
play a role in the occurrence of the pendulum effect. In this respect we note that the dHvA
magnetization alternates between small and high amplitude during five dHvA periods,
marked by the rectangles in figure 3.9b. This is compatible with the observed pendulum
effect of figure 3.8a if we assume that the domain wall motion changes direction for
low and high dHvA amplitude, respectively. Even though there is strong evidence that
the occurrence of the pendulum effect is linked to the complicated frequency spectrum
of the non-tilted sample and not to the geometry of the sample or a memory effect, the
circumstances should be tested in more detail. For this purpose a plate-like silver sample
should be prepared where the [100]-axis of the crystal is slightly inclined with respect to
the surface of the parallelepiped.

The transitions of the individual Hall probes are very sharp (see figure 3.4) compared



82 Direct observation of Condon domains with Hall probes

a) 47379 b)
o T 1 N
S 19655 3
é 27723 g V
< r 67034 1 §
39311 751086690
l,‘“--- " ‘_I ') IJ 1 A "
0 50000 100000 ' ' H' '
F (T) MO (a u )
C) 47213 )
% -
S >
;Q 8
S
< 94426
|
0 50000 100000 ' ‘ ' ‘ '
F(T) w,H (a.u.)

Figure 3.9: Possible origin of the pendulum effect. (a) Fourier transform of the dHvA oscillations
for the non-tilted sample. In addition to the main frequency at 47300 T several other frequencies
occur. (b) dHvA waveform simulated using the fourier spectrum of (a). (c¢) Fourier transform of
dHvVA oscillations measured on the tilted sample. Only the "belly" frequency remains. (d) dHvA
waveform corresponding to (c). The rectangles in (b) and (d) mark five dHvA periods, respectively.
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to the whole field range of the domain state especially when the applied magnetic field is
increased very slowly. This means that the thickness of the domain wall is much smaller
than the period of the domain structure. Moreover, a single Hall probe has never detected
more than one transition during a dHvA period. This implies that we saw always only one
boundary or domain wall between a dia- and a paramagnetic domain within the range of
five successive Hall probes. This means, however, that the period of the domain structure
is certainly bigger than the distance of ~ 150 um between the edge Hall probes of an array.
This lower limit for the domain period p should be compared with the value obtained from
the square-root averaged expression

p oVl 3.1)

for a sample with thickness ¢ and domain wall thickness w, introduced in chapter 1 [11].
With the proposed cyclotron radius for the wall thickness (1 gm at 10 T in silver), one
obtains at least a five times smaller value (= 30 pum) [4] for the period of the Condon
domain structure. If we insert, on the other hand, the lower limit of the domain period of
150 pm in formula (3.1) we find a domain wall thickness of ~ 20 pm. This is in agree-
ment with the observation that two neighboring middle L-probes, which are separated by
40 pm, show often intermediate but different induction values. Therefore, the thickness
of a domain wall can not be much smaller than 20 pm.

As the real domain pattern turns out to be somewhat bigger than expected, we need
either a new setup with better adapted Hall probe distances or a scanning Hall probe for
more detailed measurements of the domain structure. Another idea would be to reduce
the thickness of the sample. According to formula (3.1) the period of the domain structure
should decrease in this case and we should be able to detect a complete domain period
with the existing Hall probe setup. On the other hand it would be more difficult to resolve
the magnetization difference due to the domain structure because the distance sample-Hall
probe remains the same.

3.4 Beryllium

Exactly the same measurements as presented above were performed on a beryllium sam-
ple of 4.5 x 1.0 x 0.8 mm? cut from the same single crystal on which Condon domain
formation was observed using muon spectroscopy [5, 28, 29]. The largest surface, being
normal to the [0001]-axis of the crystal, was prepared with a quality comparable to the
silver crystal. Figure 3.10a shows dHVA oscillations observed with Hall probe 1 and 2 of
the L-array around the beat antinode at 4.8 T. Their amplitude is about four times bigger
compared to the dHVA amplitude observed on silver at 10 T. Consequently we expect a
much bigger B inside the crystal than in silver. The sizes of the domain structures, on the
other hand, should be similar for both samples because their thicknesses and the cyclotron
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Figure 3.10: (a) dHvA oscillations in beryllium measured with Hall probe 1 and 2 of the L-array
at 1.3 K. (b) shows the difference B = B — B versus H. On the right side are respective zooms.

radii, at the respective applied magnetic fields, are roughly the same (see formula (3.1)).
However, figure 3.10b shows that only a 0 B < 2 G is detected at the sample surface. We
conclude from these measurements that Condon domains do not emerge to the sample
surface in beryllium like it was observed on silver. The attempt of Condon and Walstedt
to find domains in beryllium by NMR was not successful, either [4]. The authors gave
explanations related to the quadrupole broadening and the long nuclear thermalization
time in beryllium. However, now we believe that the main reason is the absence of an
induction splitting 6 B at the sample surface.

This could be an intrinsic property of beryllium related to its anisotropic magnetostric-
tion [87, 88]. Another reason could be that the crystalline quality of the beryllium sample
decreases close to the surface. In this case dHVA effect would not be possible in a surface
layer of finite thickness. As a result the Hall probes would be too far from the domain
structure so that only a small induction splitting would be resolved. The surface layer
could, in principle, be reduced by annealing the sample, like it was done with the silver
sample. However, annealing beryllium is very difficult because extremely high tempera-
tures are needed and beryllium vapor is very toxic.
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3.5 Conclusion

In conclusion, Condon domains in silver with an induction splitting up to 10 G were
observed by micro Hall probes at fields and temperatures which are in agreement with
the theoretically estimated phase diagram. A laminar domain structure was found with
the orientation mainly transverse to the long sample axis. The domain motion was always
reversible for increasing and decreasing magnet field. However, the question of small
hysteresis in the dHvA magnetization was not addressed in these experiments. Moreover,
for the sample oriented perpendicular to the applied magnetic field a strange alternating
change of the domain wall propagation was observed during several dHvA periods. This
effect disappeared for a slightly tilted sample. From the known dimensions of the Hall
probe array we could deduce that the domain period is not smaller than 150 pm and the
domain wall thickness must be about 20 pm. The same experiments were made on a
beryllium sample. Here, only a induction splitting of 2 G was measured at the surface and
we conclude that Condon domains do not emerge to the surface in beryllium.






Chapter 4

Hysteresis in the dHvA effect

Dans ce chapitre, on va étudier la réversibilité de I’aimantation d’un échantillon en
présence de domaines de Condon. Les calculs théoriques ont montré que la transi-
tion entre I’état homogene et ’état avec domaines est de premier ordre. En principe,
I’hystérese de I’aimantation accompagne une telle transition de phase. D’abord on dé-
tectera l’hystérese a l’aide des sondes de Hall en variant lentement le champ magnétique
appliqué. Comme I’hystérése mesurée est tres petite, on vérifiera ces observations a l’aide
des mesures de susceptibilité AC. En présence des domaines de Condon, a tres faible am-
plitude de modulation, la susceptibilité n’est plus linéaire en fonction de I’amplitude. Par
ailleurs, la troisieme harmonique de la susceptibilité montre des valeurs exceptionnelle-
ment grandes. Ces observations sont expliquées par la présence des domaines de Condon,
responsables de I’hystérese de |’aimantation.

4.1 Introduction

It is well known that the irreversibility of the magnetization process by domain wall mo-
tion is due to energy barriers arising from a variety of defects inside magnetic mater-
ial [10, 89]. The resulting hysteresis effects in usual magnetic substances, i.e. in sub-
stances where the atomic magnetic moments, due largely to the electron spin, are the
reason of magnetism, have been investigated in detail in the past. However, in an applied
magnetic field, the orbital motion of free electrons in metals leads also to magnetiza-
tion. For Landau quantization [90] of the electronic system the oscillating magnetization
(dHvA effect) has been extensively studied in single crystals at low temperatures [11].
There is no experimental data reporting hysteresis in the dHvA effect apart from the trivial
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case caused by eddy currents when the applied magnetic field is varied fast enough [47].

After the discovery of Condon domains [3, 4] hysteresis in the dHVA effect needs to
be considered again. Indeed, the Condon domain state (CDS) consists of two phases of
different induction values with a magnetization current in the domain walls. This needs
usually extra energy. It was shown that the transition from the homogeneous state to
the CDS is of first order [7]. At this phase transition one could expect, in principle, all
phenomena like irreversibility, supercooling and hysteresis that exist at first order phase
transitions, e.g. the liquid - gas transition. Naturally, Condon discussed these problems
in his first paper on domains [3] concluding that neither supercooling nor hysteresis had
been observed in all reported data. Since then, the above phenomena were discussed in
several papers [9, 14]. Despite of the fact that Condon domains themselves have been
observed and investigated experimentally [5, 29, 88, 91], there is nevertheless up to now
no experimental data proving hysteresis.

In this chapter we present the first experimental observation of hysteresis in beryl-
lium single crystals. The hysteresis itself turns out to be very small. Therefore, several
methods were used to prove the existence of hysteresis. First the hysteresis effect is mea-
sured directly by Hall probes in dc fields, then a standard ac method is used with various
modulation levels, frequencies, and magnetic field ramp rates. Finally, the dc hysteresis
loop is reconstructed by assembling several higher harmonics of the ac pickup voltage.
Moreover, it is shown that the Condon domain phase diagram can be measured directly
from the response to sufficiently small ac fields. Finally, Plummer’s [92] strange and up
to now only incompletely understood data is explained.

4.2 Experiment

Beryllium is to our knowledge the best metal to investigate hysteresis effects related to
Condon domain formation. First, due to its cigar-like Fermi surface (small curvature at
the maximal cross sections) the dHvA amplitude is very high for H || [0001]. Secondly,
in this configuration two rather close dHvA frequencies 970 T and 940 T coexist leading
to a beat in M and . Because of this beat there is the unique possibility to change the
dHvVA amplitude and the critical parameter y by a factor three at constant 7" by varying the
magnetic field only very little. Thus, experimental conditions can be adjusted so that the
transition to the inhomogeneous CDS occurs in a part of each beat period. The sample
was cut from the same piece that was used earlier for the preparation of the plate-like
sample in which Condon domains were first observed by SR [5]. The results shown here
were measured on a rod-like sample of size 8 x 2 x 1 mm?® with the long axis parallel to
[0001]. The Dingle temperature was 7p = 2.0 K. The measurements were made either
directly by a micro Hall probe placed close to one end of the sample or by a compensated
pickup coil using low frequencies of about 21 Hz and small modulation level (< 6 G).
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Figure 4.1: Hysteresis loop observed by Hall probes in the paramagnetic part of the dHVA oscil-
lations of beryllium. B(H) traces for an up and down sweep of the applied magnetic field around
a dHvVA antinode at 3.6 T and 7" = 1.3 K (scale on the left). The hysteresis loop is visible in the
inset. The induction difference 6 B between these curves shows the value of the hysteresis (scale
on the right).

The Hall probes used here were presented in section 2.3.6 and the pickup coil system was
discussed in section 2.2. The experiments were carried out in a 10 T superconducting coil
with homogeneity better than 10 ppm in a sphere of 1 cm diameter.

4.3 Results

Figure 4.1 shows Hall probe traces for an up and down sweep of the applied magnetic
field around a dHvA antinode at 3.6 T and at 7" = 1.3 K. The hysteresis loop is very small
and only visible by a zoom. A periodically arising induction difference 6 B of about 3 G
between the up and down sweep is measured at the steeper part, i.e. the paramagnetic
part, of each dHvA period. The signal is about ten times higher than the noise level.
The applied field is measured here by another Hall probe, placed sufficiently far from the
sample, as the superconducting solenoid has its own small hysteresis when the current is
swept. The particularity of these measurements is that both, the applied magnetic field
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Figure 4.2: (a) Pickup voltages divided by the modulation level for low and high modulation
amplitude at 1.3 K. (b) Dc susceptibility derived from magnetization measurements with Hall
probes without field modulation. Graphs to the right show respective zooms.

and the magnetization are measured with high precision. The hysteresis effect is clearly
observed in figure 4.1 using dc Hall probes but rather under the most favorable conditions
at 1.3 K around a maximum of a magnetization beat. The dc Hall technique is not sensitive
enough to study hysteresis as a function of temperature and field.

A standard ac modulation method with a compensated coil system used at very low
modulation level A is much more sensitive to detect nonreversible magnetization or hys-
teresis. This method is used to determine exactly the point of its appearance. If the
modulation amplitude h is much smaller than the oscillation period AH, the measured
response corresponds in good approximation to the derivative, i.e. the susceptibility
X(H) = OM/OH (see section 2.2 and [11]). If the modulation is further decreased,
the result should not change, the measurements should only be more precise.

Figure 4.2 shows a different behavior as a function of modulation field amplitude h.
All x(H) curves of figure 4.2a and b are measured at low temperature where in the regions
of each antinode hysteresis exists like it was shown in figure 4.1. Figure 4.2a shows the
normalized pickup voltage, i.e. response divided by the modulation level, measured by
the ac method with 6.0 G and 0.5 G modulation amplitude. In both cases h < AH
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Figure 4.3: (a) Schematic representation of the hysteresis loop showing that the response to an
applied ac modulation field is nonlinear. (b) Modulation level dependence of the normalized
pickup voltage for characteristic magnetic fields at 1.3 K. (c) The same dependence at the antinode
atT = 2.2Kand T' = 4.2 K. Nonlinearities arise at a critical temperature of 3.2 K.

so that one could expect identical curves. In fact, both curves are completely congruent
except at the regions near the antinodes. Here, only the high modulation level (6 G) gives
the expected result, which is the well known dHVA oscillation beat of beryllium. For
comparison figure 4.2b shows y(H), calculated from B(H) curves measured with Hall
probes like in figure 4.1 without field modulation. For small modulation amplitude deep
"notches" in the dHVA oscillation envelope are observed. The notches occur at magnetic
fields where the dHvA amplitude is big enough that Condon domains arise. Instead of a
further increase, after having crossed the critical point, the dHvA amplitude decreases at
the paramagnetic (xy > 0) part of the dHvA period only. The diamagnetic part does not
change.

One would expect that dHvA oscillations M ( H) oscillate in average around zero mag-
netization (see figure 1.14). This requires that the areas under the paramagnetic x(H) > 0
part and under the diamagnetic x(H) < 0 part are equal in each dHVA period. Then the
integral of x(H) over one dHVA period is zero. On can see in figure 4.2a that this is
indeed the case for the waveform measured with high modulation level. For the small
modulation level, however, the areas are certainly not equal for magnetic fields where the
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notches appear because the diamagnetic part remains unchanged whereas the amplitude
of the paramagnetic part is reduced. This shows that the small modulation measurements
can not correspond to the real x(H ) waveform. The amplitude decrease is absent at tem-
peratures 7' > 3.2 K and at the nodes of the dHVA beat where the single crystal is in the
homogeneous state.

The decrease of the dHvA amplitude at low modulation level is schematically shown
in figure 4.3a. If the modulation is much bigger than the width of the hysteresis 0 H
the ac response corresponds in good agreement to the slope, i.e. x(H). As soon as the
modulation becomes comparable to the hysteresis loop size the response decreases [89].
The effect was measured for several modulation levels at different temperatures and at
different magnetic fields with respect to the dHvA beat phase. The results are shown in
figure 4.3b and c. The modulation level where the dHvA amplitude decreases gives the
hysteresis width 0 H which agrees with the above observed values of d B. No decrease is
observed at temperatures 7' > 3.2 K and near the beat nodes.

This explanation is checked in another way. Usually the applied magnetic field H
ramps much slower than the ac modulation field h, i.e. the full magnetic field H + h
always oscillates around the quasi static offset field H and B(H + h) makes a loop in
presence of hysteresis. If the ramp rates are changed in a way that dh/dt and dH /dt are
the same, then the magnetic field sweeps only forward with small steps in the direction of
the ramp. Under this condition B(H + h) never makes a loop as we go always along the
hysteresis loop boundary and never inside. In this regime, which is usually not used, the
lock-in amplifier does not measure the correct amplitude. Nevertheless, we observed in
this regime the usual dHvA beat signal without notches.

The notches in the envelope of the first harmonic in-phase ac response are "compen-
sated" by steeply rising higher harmonics at the same critical point. At the same field a
phase shift appears in the pickup voltage. This means that the response to an ac modula-
tion becomes extremely nonlinear in the presence of hysteresis. Figure 4.4 shows the third
harmonic (a) and the imaginary part (b) of the pickup voltage in a wide region of mag-
netic field at 1.3 K. The amplitude is big in both curves only around the beat antinodes.
In the regions of nodes the signal is about zero. The inset of figure 4.4a shows the 3¢
harmonic in the same field interval as in figure 4.2. The comparison shows that the signal
appears and disappears with a threshold character at the critical points of the transition
to the CDS. The inset in figure 4.4b shows schematically that the response to an initially
sinusoidal modulation field becomes highly distorted in the presence of a hysteresis loop.
The response becomes more rectangular shaped like a window-function. This function
can be composed, as it is well known, of odd harmonics of a sine. This explains that the
third harmonic content of the pickup voltage is very high in the CDS. At magnetic fields
without hysteresis the 3" harmonic is very small as the modulation level h = 2.5 G is
much less than the dHVA period of about 130 G at 3.6 T.

The hysteresis shape and size is reconstructed in figure 4.5 like e.g. in [93]. The
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Figure 4.4: (a) Third harmonic of the pickup voltage. The inset shows a zoom to the above
discussed field range. (b) Out of phase part of the pickup voltage. (both at 2.5 G modulation level
and 1.3 K). The inset shows a schematic representation of the hysteresis showing that the response
to a sinusoidal field modulation becomes window shaped and is slightly phase shifted with respect
to the input.

response to the sinusoidal modulation of 2.5 G amplitude is calculated by adding all in-
and out-of-phase contributions up to the fifth harmonic. The same procedure was applied
at different positions along the dHvA oscillations. At the diamagnetic part (y < 0) of
every dHvA period all harmonics vanish and only the in-phase response persists. Hence,
a line with negative slope is calculated. The same behavior is found for y > 0 around a
node with a line with positive slope. Whereas at the paramagnetic part in the region of
the notches hysteresis arises and its size is maximal at the dHvA beat antinode.

The observed threshold behavior of the third harmonic and of the out-of-phase signal
does not essentially change when the modulation level is varied. This behavior was ob-
served in the frequency range from 8 Hz up to about 200 Hz. Thus, these measurements
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Figure 4.5: Hysteresis shape reconstruction for modulation amplitude 2.5 G for several character-
istic magnetic fields at 1.3 K.

offer a simple way to determine the Condon domain phase diagram.

4.4 Discussion

Hysteresis may explain the data measured by Plummer [92] with an ac mutual inductance
method at low modulation level. Plummer first interpreted the observed dHVA wave-
form as a consequence of a new dHvA frequency. As the Fermi surface of beryllium was
not consistent with this frequency, eddy currents at the rather high frequency of 100 Hz
were invoked [47, 94]. A comparison of Plummer’s data with our results (see figure 4.6)
shows the similarity. The deep notches in the dHvA oscillation envelope seem indeed to
be the result of a new frequency. However, if we increase the modulation amplitude the
notches disappear and the known dHvVA waveform is obtained. In figure 4.6 we repeated
Plummer’s measurements at higher frequencies and found the same behavior. In the fol-
lowing we will check whether the notches at the beat antinodes persists down to very low
modulation frequencies in order to rule out effects due to eddy currents.

In section 2.2 and in [47] a frequency limit for field modulation methods is calcu-
lated. For frequencies higher than this limit eddy currents might considerably influence
the dHVA waveform. According to equation (2.9) the limiting frequency is very low es-
pecially in metals at low temperatures because the conductivity is very high. To exclude
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Figure 4.6: (a) Susceptibility measured by Plummer [92] on a rod-like sample with 0.25 mm
diameter and 10 mm length at 2.0 K with 100 Hz modulation frequency and 0.5 G amplitude.
(b) Susceptibility measured on our rod-like sample at 1.3 K with 160 Hz at low and high modula-
tion level.
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Figure 4.7: Susceptibility measured at 1.9 Hz and 1.0 G modulation amplitude with a Hall probe
placed close to one end of the rod-like beryllium sample. The notches in the dHVA oscillation
envelope exist even at this low frequency. The dashed lines indicate the expected envelope of the
dHVA oscillations.

reliably eddy currents as the reason for the nonlinearity of the pickup voltage we made
ac modulation measurements at very low frequencies (1.9 Hz). For these measurements
we used a Hall probe because the pickup voltage of the coil system vanishes at this very
low frequency. The Hall probe setup presented in section 2.3.6 was used like in chap-
ter 3 with a dc current. The Hall probe was placed as close as possible to one end of the
rod-like beryllium sample. A small ac modulation field with an amplitude of 1.0 G was
applied and the Hall voltage was measured with a phase sensitive detection. The result-
ing signal from the lock-in amplifier is proportional to the susceptibility of the sample
(x 14+ OM/OH). Figure 4.7 shows that the same notches appear in the susceptibility at
the antinodes of the dHvA waveform like in figure 4.2a for small modulation level. These
measurements show that the notches in the dHvVA oscillation envelope exist in a large
modulation frequency range. Therefore, eddy currents can not explain this behavior but
rather the hysteresis loop observed with Hall probes in dc fields in figure 4.1.

Hysteresis accompanies without doubt the appearance of the CDS. For any sample
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shape, not only in plate-like samples, two phases B; and By with domain walls between
them coexist in the CDS. The wall motion and pinning might, in principle, depend on the
sample shape. Therefore, a plate-like sample was measured in the same 7" and H range.
We found the same phase diagram for hysteresis formation in both samples. The hys-
teresis size, however, needs to be investigated more precisely as function of temperature,
magnetic field and for various n.

Hysteresis itself is a result of interaction or pinning of domain walls with defects, im-
purities and the surface of the crystal. Moreover, the question of domain wall motion can
not be neglected in many phenomena like e.g. acoustic wave propagation and absorption,
and helicon waves [91]. Recently, the question of Condon domain wall motion was con-
sidered in detail theoretically [95]. Unfortunately, an idealized model of a domain wall
was used without taking into account the direct link with lattice deformation [88] and the
metastable behavior due to hysteresis.

4.5 Conclusion

In conclusion we have shown that hysteresis occurs in the dHvVA effect under the condi-
tions of the Condon domain state. The observed hysteresis loop width is rather small, only
a few Gauss. Due to the hysteresis deep notches appear in the dHvA oscillation envelope
of the ac susceptibility measured at low modulation amplitude. Furthermore, we have
shown that the out-of-phase part and the third harmonic of the pickup voltage rise steeply
when a hysteresis loop arises in the dHvA magnetization of the sample. This threshold
behavior is independent on the modulation frequency and amplitude and offers therefore
a simple and robust possibility to measure a Condon domain phase diagram.

Beryllium, as mentioned above, is certainly the best candidate to observe this new ef-
fect. In other metals, like for example silver or gold, the hysteresis loop is expected to be
even smaller than in beryllium because the dHVA frequencies are much higher and conse-
quently the dHVA period much smaller. This makes it certainly impossible to observe the
hysteresis loop directly with Hall probes. However, we will see in the next chapter that
analogous features in the pickup voltage are discovered on silver with the ac modulation
method. This makes us believe that hysteresis occurs in the dHVA effect of all metals that
exhibit Condon domain formation.






Chapter 5

Experimental phase diagrams of the
Condon domain state

Dans ce chapitre, on va déterminer expérimentalement les diagrammes de phase (T'— H )
des domaines de Condon pour un échantillon d’argent puis pour un échantillon de béryl-
lium par les mesures de susceptibilité AC (cf. chapitre 4). On va montrer que la détec-
tion de la réponse non linéaire est suffisamment sensible pour des expériences en champ
magnétique intense d’une bobine résistive. Les diagrammes de phase expérimentaux de
[’argent et du béryllium sont ensuite comparés aux prédictions théoriques.

In this chapter the nonlinear response due to the discovered hysteresis in the Condon
domain state (CDS) is used to detect the phase boundary between the homogeneous and
the domain state. Experimental phase diagrams for silver and beryllium will be presented.

5.1 Introduction
We have seen in chapter 1 that the equation

XB = uog—]\; >1 .1
defines a boundary between the uniform and the CDS. If the Fermi surface parameters like
the curvature A” and the effective mass m* are known for a given metal and the Dingle
temperature 7 has been determined for a given sample, the CDS phase diagram in the
(H,T) plane can be predicted using the Lifshitz-Kosevich (LK) formula [9]. Theoretical
phase diagrams based on the LK-formula were presented in sections 1.6.2 for silver and
section 1.7.2 for beryllium.

99



100 Experimental phase diagrams of the Condon domain state

Up to now Condon domains have been observed by different experimental methods:
by NMR [4], uSR spectroscopy [5, 6] and as described in chapter 3 they where directly
observed by Hall probes [96]. All experimental observations have in common that two
distinct inductions B; and B, corresponding to an induction splitting 6B = B, — B,
are measured at a given applied field H, and temperature 7. However, all measurements
yield only a few values of (/{,7") where Condon domains exist which might be in agree-
ment or not with theoretical calculations of the phase diagram. For example, the data on
beryllium obtained by SR required new phase diagram calculations with a modified LK-
formula for the susceptibility [8]. The determination of the CDS phase boundary, where
0B approaches zero, is difficult and time-consuming with the above cited methods [29].
Moreover, the result is not precise enough. In chapter 3 the phase boundary was found,
for example, with Hall probes for an applied field of 10 T (see figure 3.3a).

It was shown in the previous chapter that small hysteresis occurs in the dHVA effect
under the conditions of the CDS [97]. Due to the irreversible magnetization, an extremely
nonlinear response to a very small modulation field arises in standard ac susceptibility
measurements. The out of phase part and the third harmonic of the pickup voltage rise
steeply at the transition point to the CDS. Moreover, it was shown that the point (/,7)
where the hysteresis arises, which corresponds to the transition point to the CDS, does not
depend on the sample shape. The threshold character of these quantities offers therefore a
possibility to measure a Condon domain phase diagram with much higher precision than
with the above cited methods. One should note that the third harmonic of the susceptibility
is commonly used as a very sensitive tool to detect phase boundaries also of other systems
like e.g. the vortex-glass transition in superconductors [98].

5.2 Silver

In this section we determine the Condon domain phase diagram for silver using the third
harmonic of the susceptibility. It was shown earlier [85] that calculations based on the LK-
formula are in very good agreement with experimental dHvA data up to 10 T on silver.
This is certainly due to the nearly spherical Fermi surface of silver. Because the LK-
formula describes well the dHvA oscillations in silver, we would expect good agreement
with a theoretical phase diagram based on the LK-formula (see figure 1.12). Therefore,
we actually start the CDS phase diagram investigations with silver.

5.2.1 Experimental

The measurements were performed on a high quality silver single crystal of 4.1 x 2.1 X
1.0 mm?®. The largest surface of the sample was normal to the [100]-axis of the crystal.
The sample was cut from the same piece than the sample used for the direct observation
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of Condon domains [96] in chapter 3. The sample preparation is described in section 2.6
and in more detail in [83]. The sample has a residual resistance ratio Rsoox/R4ox =
1.6 x 10%, measured by the contactless Zernov-Sharvin method [84]. The very high quality
of the sample results in a very low Dingle temperature, which was estimated from our
measurements to be about 7p = 0.2 K.

A standard ac modulation method with a compensated pickup coil system, which is
commonly used for dHvA measurements, was used. The coil system is presented in
section 2.2 and is shown in figure 2.2. Both pickup coils are identical and consist of
about 400 turns. A long coil wound by a copper wire produced the modulation field with
various amplitudes at frequencies of 20 — 200 Hz. The pickup voltage was simultaneously
measured by lock-in amplifiers (SRS 830) on the first and on higher harmonics. The
measurements were performed in a superconducting coil up to 16 T as well as in a resistive
coil up to 28 T at temperatures of 1.3 — 4.2 K. The long side of the sample was parallel
to the [100]-axis of the single crystal. In the setup the long side of the sample was slightly
tilted with respect to the direction of the applied magnetic field so that only the dHVA
frequency from the "belly" orbit of 47300 T existed in the frequency spectrum.

The method, we use here, is to our knowledge applied for the first time to find a
CDS phase diagram. Therefore, we have to present more precisely the technical details
of the measurements. We where especially concerned about the changing measurement
conditions between the superconducting and the resistive coils. The magnetic field of the
latter is, for example, much more noisy and less homogeneous.

5.2.2 Hiysteresis in Silver

As was mentioned above, the idea of this method to determine a Condon domain phase
diagram is based on the appearance of hysteresis in the CDS which was first discovered
on beryllium and has been presented in chapter 4. At the phase transition to the CDS
hysteresis appears [97] and this results in some radical changes in the response to an
ac modulation field. In principle, all these changes can be used to trace the phase boundary
of the CDS. In the following, we will show that the same characteristic features in the
ac response, like in beryllium, are found in silver.

First of all, the amplitude of the susceptibility, normalized on the modulation level,
should depend on the modulation amplitude in presence of hysteresis. This is expected
to occur when the modulation level is of the order of the hysteresis loop width, like it is
schematically shown in figure 5.1a. As a result, after the transition to CDS, the positive
(paramagnetic) part of the susceptibility turns out to be reduced. From a comparison of
two normalized susceptibilities, one measured with high and the other with low modula-
tion level, we can in principle find where the amplitude reduction starts and thereby the
transition point to the CDS. One disadvantage of this method is that it requires measure-
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a) b)

/

Figure 5.1: (a) The response to a field modulation is nonlinear in presence of hysteresis when
the modulation amplitude is of the order of the width of the hysteresis loop. (b) The ac response
becomes more window-like and is slightly shifted in phase due to the hysteresis.

ments at the lowest possible modulation level. Moreover, one needs to measure at least
two or more field dependencies, which takes time.

Secondly, as soon as hysteresis arises, the ac response becomes extremely nonlinear.
It is shown schematically in figure 5.1b that the response to a sinusoidal field modulation
becomes window shaped and is slightly shifted in phase with respect to the input. There-
fore, both the third harmonic and the out-of-phase signal of the pickup voltage increase
steeply when the CDS phase boundary is crossed [97]. This threshold behavior offers a
simple way to determine the transition point of the CDS. The major advantage of third
harmonic measurements is that only one magnetic field or temperature sweep is needed.
Moreover, we will see below that the obtained values for the phase boundary (H,7") do
not depend drastically on the frequency and level of the field modulation. This will be
important for measurements in the resistive coil.

Before we start the measurements for magnetic fields up to 28 T, it was necessary to
investigate the above mentioned features in more detail. Furthermore, we need to compare
quantitatively the results between superconducting and resistive coils. In the latter we
have much more noise so that we need to increase the amplitude of the measurement
signal by raising the modulation level and frequency.

Figures 5.2a and b, 5.3a and b show the above discussed features in the pickup signal
at constant temperature 7' = 2.7 K measured in the superconducting coil. Figure 5.2a
shows two traces of the normalized pickup voltage, i.e. the susceptibility, obtained in
the same conditions with 1.0 G and 0.2 G modulation amplitude at 160 Hz modulation
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Figure 5.2: (a) Pickup voltage normalized on the modulation level for low and high modulation
level. Up to about 10 T the response is linear with respect to the modulation level. (b) Third
harmonic of the pickup voltage measured at 0.2 G modulation amplitude showing that starting

from 9.5 T the harmonic content in the response increases steeply. Lower part of the figure shows
respective zooms.
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frequency. In principle, both modulation levels are small enough compared to the dHvA
period of about 20 G at 10 T that identical traces are expected for the susceptibility (see
section 2.2). The zoom for lower fields around 8 T, which is outside the CDS, shows
that the normalized signals are indeed identical. For higher fields, on the other hand, the
upper part of the susceptibility waveform, measured with the smaller modulation level, is
reduced. The zoom shows in detail that the signals are identical except for the positive part
of the oscillation. This implies that at this part of the dHVA oscillation the magnetization
is slightly irreversible and there is a small hysteresis loop. The width of the hysteresis
loop is certainly less than 1.0 G and might be of the order of 0.2 G.

A similar decreasing of the normalized response was observed earlier [14] on silver at
low temperatures and in magnetic fields less than 8 T. Unfortunately, it is impossible to
compare the presented data in [14] with our results.

The magnetic field where the normalized pickup voltages start to differ between low
and high modulation level is marked approximately by an arrow in figure 5.2a. We obtain
for the critical magnetic field po ., = 10.0 T. It seems to us that this method to determine
the phase boundary of the CDS is not the most convenient because the difference between
the waveforms occurs only very gradually. Furthermore, the value of the critical field
might decrease slightly if one could measure with even lower modulation levels. Never-
theless, the critical field of 10 T at 2.7 K corresponds roughly with the phase boundary
conditions found by Hall probes in chapter 3 in figure 3.3a.

Figure 5.2b shows the behavior of the third harmonic which was simultaneously mea-
sured with the first harmonic response in figure 5.2a with 0.2 G modulation amplitude.
For magnetic fields lower than the critical field there is only noise. At the transition to
the CDS hysteresis arises and the third harmonic starts to increase very steeply. This is
nicely seen in the respective zooms. The critical field of the CDS phase boundary can
be obtained as the intersection of the two straight lines shown in figure 5.2b. Here, the
critical field is found as g H = 9.5 T.

Comparing the waveform of the third harmonic measured on silver in figure 5.2b with
the waveform measured on beryllium (see figure 4.4) we notice that the minima of the
third harmonic oscillations are at zero voltage for beryllium whereas for silver the oscilla-
tions lift off at the transition field. We expect that the amplitude of the third harmonic goes
to zero in each oscillation period because in the diamagnetic part of the dHVA oscillation
the sample is homogeneous and therefore there is no hysteresis that would cause higher
harmonics. The result for silver is therefore not "ideal" as the third harmonic does not go
to zero in each period. This is certainly a result of small rectification or, what is the same,
a result of phase smearing of the oscillation signal. Generally speaking, there are at least
two reasons for this. The homogeneity of the coil is not high enough (it is about 30 ppm
in a sphere with 1 cm diameter which may result in a field inhomogeneity of about 1 G
in the sample volume at 10 T) which means that the transition to the CDS does not occur
simultaneously in the whole sample. This is the main reason here and this effect will be
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Figure 5.3: (a) Phase angle of the third harmonic showing clearly the transition between noise
outside the CDS and a fixed phase in the CDS. (b) The out-of-phase part of the first harmonic

response changes due to the arising hysteresis. Both data measured at 2.7 K and 0.2 G modulation
level.

much bigger in a resistive coil where the homogeneity is 20 times less. Another possible
reason is the finite ramp rate of the field sweeps. In the superconducting coil this effect
is practically absent because the ramp rate can be arbitrarily low. But in the resistive coil
the latter reason might occur, too. Nevertheless, as we will see below, both reasons for

the third harmonic rectification do not affect the determination of the critical field of the
CDS.

In figure 5.3a the phase angle of the third harmonic is shown for the same conditions
like in figure 5.2. For magnetic fields where the amplitude of the third harmonic is below
the noise level its phase angle is not determined. Therefore, the phase varies from —180°
to +180°. With the appearance of a third harmonic signal at the transition to the CDS
the phase becomes finite. This passage has a threshold character as well. The arrow in
figure 5.3a shows the position of the threshold which yields the critical field pgH.3 =
9.8 T.

The behavior of the out-of-phase part of the first harmonic response, shown in fig-
ure 5.3b, offers the last possibility to determine the critical field. In the uniform state,
without domains, the imaginary part is small and varies smoothly especially at low mag-
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netic field due to the magnetoresistance and changing eddy currents. After the transition
to the CDS the out-of-phase signal changes rapidly. The transition point can be again
found as the intersection of two lines, as it is shown in figure 5.3b. Here, we obtain for
the critical field poH.4 = 9.3 T.

A comparison of the values H,.,_ .4 for the transition field at 2.7 K shows that they
are very close. In addition the critical field of about 10 T correspond roughly with the
phase boundary found by Hall probes in chapter 3 in figure 3.3a. This means that all
above presented methods could be, in principle, used to determine the phase boundary of
the CDS at least when a superconducting coil with high field homogeneity and low noise
is used. Nevertheless, we think that the easiest and most precise way to determine the
critical field is by measurements of the third harmonic response. Therefore, this method
will be used below to determine the CDS phase diagram for silver.

As mentioned above there is much more noise in the resistive magnet compared to the
superconducting magnet. Therefore, for experiments in the resistive magnet we needed
to increase the signal by using rather high modulation frequencies ~160 Hz and higher
modulation amplitudes, 1.0 G and more. In the following we check whether the modu-
lation frequency and amplitude can be varied without changing the value of the critical
field deduced from the third harmonic response. A modulation frequency change modi-
fies slightly the behavior of the imaginary part, which is due to the eddy currents. But the
position of the deduced critical field is not affected. The same result is found when the
modulation amplitude is increased.

We have seen that modulation amplitudes of the order of the width of the hysteresis
loop are required to resolve the amplitude reduction in the normalized pickup voltage in
figure 5.2a. For the third harmonic, however, the features persist up to high modulation
amplitudes. Figure 5.4 shows traces with 0.2 and 1.0 G modulation amplitude while over
the oscillations visible in figure 5.2b was averaged. For 1.0 G modulation amplitude
there is a small third harmonic signal before the transition to the CDS takes place. This
small contribution to the third harmonic is due to the nonlinearity of the dHvA effect
itself (see section 2.2 and [11]). Nevertheless, the position of the sharp increase remains
unchanged. Moreover, the noise level exceeds this small signal in a resistive magnet (see
also figure 5.5).

Figure 5.5 shows that increasing the modulation amplitude up to 10 G and varying
the modulation frequency by a factor four between 40 Hz and 160 Hz does not change
the position of the critical field, either. The results presented here were obtained in the
resistive magnet. The measurements were made at low temperatures in order to compare
them with data obtained in the superconducting magnet. After all, the values found for
the critical fields coincide with the results of the superconducting coil. Figure 5.6 shows
an example of the transition point measurement in the resistive coil at the top of the phase
diagram at 4.2 K.
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Figure 5.4: Amplitude dependence of the third harmonic response measured in a superconducting
coil. The same critical field is found from the steep increase.

5.2.3 Phase diagram

All results obtained in the superconducting and the resistive magnets are presented in
figure 5.7. The critical fields for each temperature are found as the field where the third
harmonic response starts to arise like in figure 5.6. The solid line in figure 5.7 is the
CDS boundary calculated for silver using the LK-formula with a Dingle temperature of
Tp = 0.2 K as parameter for our sample. We see good agreement of the predictions based
on the LK-formula with our data. Moreover, data points obtained in superconducting and
resistive magnets overlap which supports again that the different measurement conditions
did not affect the precise determination of the phase boundary.

At the flat top of the CDS phase diagram between 20 and 30 T it would be, in principle,
better to make temperature sweeps with a variable temperature insert (VTI) at a fixed
magnetic field while measuring the third harmonic response. Field sweeps are in this
field range tangent to the phase boundary and therefore it might be difficult to determine
the value of the critical field.

5.2.4 Conclusion

We have shown that hysteresis appears in silver in the Condon domain state. This sub-
stantiates the conclusion of chapter 4 that hysteresis is likely to occur in all pure metals
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Figure 5.5: (a) Amplitude and (b) frequency dependence of the third harmonic response measured
in a resistive coil. The critical field values obtained at a given temperature are independent on
modulation frequency and amplitude.

that exhibit Condon domains. Due to the hysteresis similar features like in beryllium,
especially the sharp increase of the third harmonic response at the transition from the
uniform to the Condon domain state, are found in the pickup voltage. This offered the
possibility to determine easily the CDS phase boundary with high accuracy. The critical
fields obtained from both, the third harmonic and the out-of-phase part of the pickup volt-
age, turned out to be independent on changes of the modulation frequency and amplitude.
The CDS phase boundary could be traced in a wide magnetic field range up to 28 T using
resistive and superconducting magnets. Eddy currents affect slightly the behavior of the
out-of-phase part in silver when the frequency is increased. Therefore, we preferred to
use the third harmonic response to measure the phase boundary. The situation might be
different in a less conducting metal.

We have found very good agreement with the LK-theory. Of course, it would be very
interesting to continue the measurements to higher magnetic fields to see if the agreement
holds for the whole phase diagram. This method for the determination of the CDS phase
boundary could possibly be used in pulse fields as well, if the modulation frequency could
be increased correspondingly.
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Figure 5.6: Example of a third harmonic response measurement at 4.2 K in a resistive magnet up
to 28 T.

5.3 Beryllium

In this section we establish an experimental Condon domain phase diagram for beryl-
lium in the same way as it was done in the previous section for silver. It was shown in
section 1.7.2 that theoretical calculations for the CDS show big discrepancies with the
conditions where Condon domains were actually observed. To overcome these shortcom-
ings a new phase diagram for beryllium was calculated in [8] with a modified LK-formula.
It is in good agreement with results obtained with ;SR [6, 8]. Nevertheless, there is only
very few data from pSR experiments that is able to test the recent calculations. In order
to collect data for the whole Condon domain phase diagram of beryllium, we make the
nonlinear response measurements which were suggested in chapter 4 and in [97].

5.3.1 Experiment

The standard pickup coil system which is shown in figure 2.2 was used for the measure-
ments. The results shown here were measured on the same rod-like sample, that was used
in chapter 4, of sizes 8 x 2 x 1 mm?® with the long side being parallel to [0001]. The
magnetic field was applied parallel to the long side of the sample. We found from our
measurements a Dingle temperature of 7T, = 2.0 K. The experiments were carried out in
a 10 T superconducting coil in a standard “helium cryostat which could be pumped down
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Figure 5.7: Phase diagram in the H — 7" plane for silver. Experimental points from the supercon-
ducting and resistive magnet. The solid line is the CDS boundary calculated by the LK-formula
forTp = 0.2 K.
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Figure 5.8: Pickup voltage normalized on the modulation level for high and low modulation level
at 1.3 K. Due to hysteresis in the CDS the pickup voltage is nonlinear at the paramagnetic part of
the dHVA oscillations.

to 1.3 K. Some further experiments were made in a 16 T coil with a variable temperature
insert (VTI) which offered the possibility to measure temperature dependencies at a fixed
applied magnetic field. In contrast to chapter 4 where low modulation frequencies of the
order of 20 Hz and less were used, here we increased the frequency to about 160 Hz after
having checked that the principle features do not change (see for example figure 5.5). The
frequency increase allowed us to reduce the integration time of the lock-in amplifier and
to use again smaller modulation amplitudes.

5.3.2 Results

As was pointed out in the previous section on the phase diagram for silver, several meth-
ods can be used to determine the Condon domain phase diagram. Figure 5.8 shows the
pickup voltage normalized on the modulation level for low and high modulation amplitude
in a large magnetic field range at 1.3 K. Due to the hysteresis in the CDS [97] the am-
plitude of the pickup voltage at the paramagnetic part of the dHvA oscillation decreases
when the modulation level is of the order or smaller than the width of the hysteresis loop
(see also figure 4.2a). One can, in principle, determine for which magnetic fields hystere-
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Figure 5.9: Temperature dependence of the imaginary part of the pickup voltage for several mod-
ulation amplitudes at the beat antinode at 3.6 T. The dashed line indicates the critical temperature
T. = 3.0 K where the Condon domain phase boundary is crossed.

sis and consequently Condon domains occur at a given temperature by subtracting both
dHvA waveforms in figure 5.8 from each other. We see, for example, that there is no dif-
ference between the normalized pickup voltages for magnetic fields exceeding 7 T. This
implies that Condon domains disappear for fields higher than 7 T at 1.3 K. The disad-
vantage of this method to determine the Condon domain phase diagram is that two field
dependencies must be measured for each temperature. Furthermore, in order to detect the
presence of even very small hysteresis the modulation level should be as small as possible.

We have seen in chapter 4 that the out-of-phase part and the third harmonic of the
pickup voltage appear with threshold character whenever there is a small hysteresis in
the dHVA magnetization. A measurement of one of these quantities offers therefore a
simpler way to determine the phase boundary of the CDS. Figure 5.9 shows temperature
dependencies of the out-of-phase part of the pickup voltage in a large modulation level
range at the antinode of the dHvA oscillation envelope at 3.6 T. At the critical temperature
T. = 3.0 K the out-of-phase signal drops down rapidly. This indicates a sudden phase
shift of the ac response with respect to the modulation signal, which is caused by the
emerging hysteresis in the dHvA magnetization (see figure 5.1b). We find the same 7,
indicated by the dashed line in figure 5.9, for all modulation levels. The determination of
the CDS phase boundary is thus independent on the modulation level. In the following
we will use a modulation amplitude of 0.4 G. This value is sufficiently small to insure
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Figure 5.10: Field dependence of the imaginary part of the pickup voltage measured at 2.0 K and
2.5 K with 0.4 G modulation amplitude. The huge negative amplitude is caused by the hysteresis
in the CDS. The right graph shows a zoom around 4.8 T.

that the dHvVA period A H is always much bigger than the modulation amplitude h even at
very low magnetic fields' and on the other hand the ac response is still easily detectable.

Figure 5.10 shows magnetic field dependencies of the imaginary part of the pickup
voltage measured at 2.0 K and 2.5 K. The phase of the lock-in amplifier is adjusted in
a way that the signal, that is due to the susceptibility of the sample, is mainly in-phase.
dHvA oscillations with small amplitude, similar to the waveform in figure 5.8, are how-
ever visible around zero voltage. We note that the amplitude of the dHVA oscillations in
the out-of-phase signal was much smaller in figure 4.4b. There a modulation frequency
of only 21 Hz was used. The enhancement of the frequency to 160 Hz leads to increasing
eddy currents, which affect mainly the out-of-phase signal. Huge negative peaks appear at
magnetic fields where hysteresis occurs, like it was discovered in chapter 4 in figure 4.4b.
This means that the sample is in the CDS for the magnetic fields around each peak (see
zoom of figure 5.10). Figure 5.10 shows that the field range for which peaks appear is
much more extended at 2.0 K than at 2.5 K, especially at lower magnetic fields around
2 T. At temperatures above 3.0 K all peaks disappear and only the small dHVA oscillations
remain. The amplitude of the peaks depends on the modulation level, on the width of the
hysteresis loop at the particular magnetic field and on the amplitude of the in-phase part
of the pickup voltage, i.e. the susceptibility. Even though the peak amplitude seems to be
correlated with the Condon domain phase diagram, we extract only for each temperature

'If the modulation amplitude is of the order of the dHvA period the imaginary part and the third har-
monic increase even though there is no hysteresis (see section 2.2 and [11])
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Figure 5.11: Temperature dependence of the (a) imaginary part and the (b) third harmonic of the
pickup voltage measured at the beat node at 2.5 T with 0.4 G modulation amplitude.

the magnetic fields for which peaks appeared in order to construct the phase diagram in
the next section.

It was reported in [5, 8, 29] that Condon domains occur also at the nodes of the dHvVA
oscillation envelope around 2.0 T and 2.7 T at 0.5 K and 0.8 K, respectively. As explained
above, there are only very few temperature dependencies of the induction splitting mea-
sured with ©SR. In other words, the reported temperatures do not necessarily represent
the phase boundary of the CDS. Therefore, we tried to reach the phase boundary at beat
nodes in the pumped “helium cryostat. A base temperature of 1.3 K can be reached in
this cryostat (see chapter 2). Figure 5.11 shows the temperature dependence of the out-
of-phase part (a) and the third harmonic (b) of the pickup voltage at the beat node at 2.5 T.
A sharp transition at 1.5 K is visible in both traces which indicates that hysteresis arises
at this temperature. This means that Condon domains are indeed formed at this beat node
for temperatures lower than 1.5 K.

5.3.3 Phase diagram

We have seen that the CDS phase boundary can be determined with high precision by
measuring the critical magnetic field where hysteresis starts to arise in the dHvA magne-
tization. Due to the hysteresis the out-of-phase signal of the pickup voltage drops rapidly.
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This was measured either at a fixed applied field like in figure 5.9 and 5.11 or at a fixed
temperature as function of magnetic field like in figure 5.10. All this data is compiled to
obtain a complete phase diagram. Figure 5.12 shows the Condon domain phase diagram
for beryllium. The parabolas? are fits to the (H, T') values obtained at the beat antinodes
and nodes, respectively.

Figure 5.13a shows narrow needles which correspond to the magnetic fields where
sharp peaks appeared in figure 5.10. For magnetic fields between the needles the sample
is in the homogeneous state. We see in figure 5.13a that Condon domains appear first
for magnetic fields near a beat antinode. When cooling down the field range extends
gradually around the antinode. Furthermore, we tested on a plate-like sample with the
same Dingle temperature that the obtained phase diagram is independent on the shape
of the sample. In other words the Condon domain phase diagram does not depend on
the demagnetization factor. The difference between both samples was that the needles in
figure 5.13a were much broader for the plate-like sample. The reason for this is that the
field range within a dHvVA period where domains arise is more extended in a plate-like
sample (see chapter 1). The critical temperature at a given magnetic field, i.e. the top of
each needle, remains, however, the same for rod-like and plate-like samples.

Moreover, the phase diagram in figure 5.12 agrees with all data from uSR [5, 8, 13,
29]. There is especially a temperature dependence of the induction splitting at the beat
antinode near 2.6 T. It was found by ©SR that the induction splitting disappears for tem-
peratures higher than 3.0 K. We examined the same beat maximum and found a critical
temperature of 2.9 K in our sample.

In figure 5.13b the experimental phase diagram from figure 5.12 is compared with
the calculations made with the modified LK-formula in [6, 8]. There is only agreement
for magnetic fields around 2.6 T. Starting from 4 T the calculation predicts still increas-
ing critical temperatures whereas our measurements show clearly a rapid decrease. We
see in addition that Condon domains continue to exist down to low fields at pretty high
temperatures.

5.3.4 Conclusion

We have measured a complete Condon domain phase diagram for beryllium at tempera-
tures down to 1.3 K and magnetic fields from 1 T up to 10 T. The method based on the
detection of the nonlinear response to an ac field modulation provided also information
about the substructure of the phase diagram which is due to the dHVA frequency beat in
beryllium. The measurements agree with data from SR where a sample with the same
Dingle temperature was used.

’The phase boundary of the CDS, predicted by the LK-formula, is not parabolic in the (H, T')-plane (see
chapter 1). The fits are guides to the eye in analogy to figure 1.15.
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Figure 5.13: (a) Zoom of figure 5.12 around the beat maximum at 4.8 T showing the substruc-
ture of the phase diagram. (b) Comparison of the experimental phase diagram with theoretical
calculations (solid black line) from [6, 8] based on the modified LK-formula.

Moreover, we have tested that the obtained phase diagram does not depend on the
shape of the sample. The method can be easily applied to samples with different Dingle
temperatures.

The comparison of the experimental phase diagram with theoretical calculations [8]
shows differences especially for magnetic fields exceeding 4 T. Finally, we find from our
measurements an upper critical field of about 8 T above which no domains exist for all
temperatures in a sample with 7p = 2.0 K.
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Summary

This thesis reports investigations on magnetic domains called "Condon domains". These
domains are one of the rare examples of a magnetic domain structure with non-spin ori-
gin. The main topics addressed in this work are the visualization of the Condon domain
structure with micro Hall probes and the question whether the dHvA magnetization ex-
hibits hysteresis in the domain state. Furthermore, experimental phase diagrams of the
Condon domain state are measured for silver and beryllium.

Direct evidence for Condon domains has been obtained as yet only in a few cases.
After their discovery by Condon and Walstedt [4] in silver using NMR, they were more
recently observed by Solt ef al. in beryllium, white tin, lead and aluminium with xSR [5,
6]. However, there are some important open questions concerning the size, geometry
and topology of Condon domains which could not be addressed with these spectroscopic
methods. Therefore, the aim of this thesis is to measure directly the induction distribution
at the sample surface with a local magnetic field probe.

Several generations of micro-Hall probes are developed to meet the challenging re-
quirements of spatial and magnetic resolution at low temperatures and high offset mag-
netic fields. In particular a field contrast of AB/B =~ 10~ on length scales of typically
tens of micrometers should be resolved. Particular attention is drawn to the sample prepa-
ration as single crystals of very high quality are needed to observe Condon domains.
Especially the silver samples are of outstanding quality and have a very low Dingle tem-
perature.

Condon domains are for the first time revealed with a local magnetic probe. Using a
Hall probe setup consisting of two arrays of each five Hall probes an induction splitting
of up to 10 G is observed on silver at fields and temperatures which are in agreement with
the theoretically estimated phase diagram. A laminar domain structure is found whose
orientation is mainly transverse to the long sample axis. The domain motion is always
reversible for increasing and decreasing magnet field. From the known sizes of the Hall
probe array an estimation of the domain pattern size is deduced. The domain period is not
smaller than 150 pm and the domain wall thickness must be about 20 ym for the 1 mm
thick silver sample at 10 T and 1.3 K.

The same experiments are made on a beryllium sample on which Condon domains
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were successfully observed using 1SR and even bigger induction differences were ex-
pected than for the silver sample. However, an induction splitting of only 2 G is observed
at the surface which implies that Condon domains do not emerge to the surface in beryl-
lium.

The second major topic of this thesis is the investigation whether the dHvA magne-
tization shows hysteresis in the Condon domain state. The domain state consists of two
phases of different induction values with a magnetization current in the domain walls. It
was shown that the transition from the homogeneous state to the domain state is of first
order [7]. At this phase transition all phenomena like irreversibility, supercooling and
hysteresis are in principle expected. However, hysteresis in the dHvA effect has up to
now only been discussed in several papers [9, 14].

In this work hysteresis is for the first time resolved in the dHvA magnetization under
the conditions of the Condon domain state. A hysteresis loop with a width of a few Gauss
is directly observed with Hall probes on a beryllium sample. As a complimentary method
standard modulation field measurements reveal that the ac response to a modulation field
is highly nonlinear as function of the modulation level. Furthermore, it is shown that the
out-of-phase part and the third harmonic of the pickup voltage rise steeply when the mag-
netization becomes irreversible. The threshold character with which the nonlinearities
arise offers a simple and robust possibility to measure Condon domain phase diagrams.

Finally, the nonlinearities arising in the ac response are used to determine Condon
domain phase diagrams for silver and beryllium. In particular, it is shown that the same
features that were previously found in the ac response on beryllium exist also in silver,
another system that exhibits Condon domain formation. The Condon domain phase dia-
gram for a silver sample is traced in a wide magnetic field range up to 28 T using resistive
and superconducting magnets. Excellent agreement with the LK-theory is found in the
explored field and temperature range.

For beryllium a very complete Condon domain phase diagram is presented for temper-
atures down to 1.3 K and magnetic fields from 1 T up to 10 T. The ac response technique
provides also information about the substructure of the phase diagram which is due to the
dHVA frequency beat in beryllium. The phase diagram agrees with data from pSR for a
sample with the same Dingle temperature. A comparison of the experimental phase di-
agram with theoretical calculations [8] reveals differences especially for magnetic fields
exceeding 4 T. An upper critical field of about 8 T is found above which no domains
appear for all temperatures in a beryllium sample with T, = 2.0 K.
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Outlook

Despite of the progress made in this field in recent years there are still some open prob-
lems. Let us summarize first the perspectives of the experiments presented in this work.

The Condon domain visualization experiments with Hall probes presented in chap-
ter 3 can be studied in more detail. First, the influence of the sample thickness and the
demagnetization factor on the size of the domain structure can be studied. Furthermore, it
is planned to make similar measurements on high quality single crystals made of copper.
On the other hand more information on the domain structure could certainly be gained
using a scanning Hall probe. Here, the first attempts to move the Hall probe with respect
to the sample surface are under way.

The ac response measurements could be applied to construct Condon domain phase
diagrams for other metals that exhibit Condon domain formation like e.g. lead and alu-
minium. Here, certainly lower temperatures than that available in a pumped *helium
cryostat are needed as SR experiments evidenced Condon domains only at temperatures
below 300 mK in these metals. Moreover, it would be interesting to investigate the evo-
lution of the phase diagram for samples with different Dingle temperatures. In particular,
the phase diagram for silver, which has been established for magnetic fields up to 28 T
in this work, could be continued to higher fields to check if the good agreement with the
Lifshitz-Kosevich theory holds for the whole phase diagram.

Besides the perspectives concerning directly the experiments presented in this thesis
we should mention the following open questions.

Fingerprints of the phase transition between the homogeneous and the Condon domain
state should, in principle, occur in other thermodynamic quantities like specific heat. An
anomaly of the specific heat at the phase transition has been predicted in [99] and up to
now only unsuccessful attempts were made to find this anomaly [81]. However, specific
heat measurements would be particularly useful to elucidate whether the phase transition
from the homogenous to the Condon domain state is of first or second order.

Recent measurements of magnetostriction oscillations and compressibility in beryl-
lium have shown an increase of the compressibility as a result of Condon domain for-
mation [87, 88]. Considering the anisotropic magnetostriction of beryllium will certainly
help to understand why Condon domains do not emerge to the sample surface in beryllium
contrary to silver.

Besides normal metals, the transition to the Condon domain state in layered metals and
especially in organic quasi-2D compounds is of particular interest, since the cylindrical
Fermi surface with a unique cyclotron frequency should lead to a giant effect.

Finally, Condon domains are the only type of magnetic domains for which the dynam-
ics of domain walls have not been considered, in contrast to the continuous progress in
investigation of other magnetic ordered systems.
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Conclusion en francais

L’existence des domaines de Condon, prédite théoriquement en 1966 par Condon [3], a
été démontrée jusqu’a présent dans un certain nombre de métaux, a 1’aide de la résonance
magnétique nucléaire dans un échantillon d’argent par Condon et Walstedt [4] et a 1’aide
de la rotation de spin de muon (uSR) dans le béryllium, 1’étain, le plomb et I’aluminium
par Solt et al. [5, 6]. Ces méthodes spectroscopiques ne permettent cependant pas de
déterminer la taille, la géométrie et la topologie de ces domaines. Le sujet de cette these
est de visualiser directement la distribution de I’aimantation a la surface d’un échantillon
a l'aide d’une sonde magnétique locale. Notons que 1’origine de ces domaines n’est
pas I'interaction entre les spins des électrons mais "I’interaction magnétique" dans 1’effet
de Haas-van Alphen.

Pour la visualisation des domaines de Condon, plusieurs générations de microson-
des de Hall sont développées afin de remplir les spécifications difficiles de la résolution
spatiale et de la résolution magnétique a basse température et a champ magnétique in-
tense. Notamment, une différence d’induction de AB/B = 10~* doit étre résolue sur des
distances de quelques dizaines de micrometres. De plus, la qualité des monocristaux
est essentielle pour observer les domaines de Condon; en particulier, nous avons eu
I’opportunité de mesurer un échantillon d’argent ayant une température de Dingle tres
basse (Ip = 0.2 K), mesure de la qualité cristalline de 1’échantillon. Pour la premiére
fois, la structure des domaines de Condon a été détectée directement a la surface d’un
échantillon en argent. L’induction (ou I’aimantation locale) est mesurée a 1’aide d’un
réseau de cinq microsondes de Hall. Les sondes mesurent périodiquement une différence
locale d’aimantation dans la partie paramagnétique des oscillations dHvA, différence at-
tribuée aux domaines de Condon. La direction de propagation des parois des domaines et
leur orientation en sont déduites. Ces mémes expériences ont été réalisées sur un échantil-
lon de béryllium, sur lequel des domaines de Condon ont été mesurés par uSR. Pourtant,
nous n’avons pas pu visualiser les domaines a la surface. Les expériences de visualisation
des domaines de Condon a 1’aide des sondes de Hall doivent étre étendues, 1l est notam-
ment intéressant de déterminer 1’influence de 1’épaisseur de I’échantillon et du facteur
démagnétisant sur la taille de la structure des domaines. De plus, on obtiendrait beaucoup
plus d’information sur les structures des domaines a I’aide d’un dispositif a balayage de
sonde de Hall qu’a I’aide du réseau de cinq microsondes dont la résolution spatiale est
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tres limitée. Un tel microscope de Hall est en cours de développement.

La réversibilité de I’aimantation d’un échantillon en présence de domaines de Condon
est étudiée. Les calculs théoriques ont montré que la transition entre I’état homogene et
I’état avec domaines est de premier ordre [7]. En principe, I’hystérese de 1’aimantation
accompagne une telle transition de phase. L’hystérese est montrée a I’aide des sondes de
Hall en variant lentement le champ magnétique appliqué puis confirmée par des mesures
de susceptibilité AC. A tres faible amplitude de modulation, la susceptibilité n’est plus
linéaire en fonction de 1’amplitude, en outre, la troisieme harmonique de la susceptibil-
ité montre des valeurs exceptionnellement grandes. Ce comportement tres sensible est
utilisé pour déterminer expérimentalement les diagrammes de phase (7', H) des domaines
de Condon dans un échantillon d’argent puis dans un échantillon de béryllium. Le dia-
gramme de phase de 1’échantillon d’argent, mesuré jusqu’a 28 T doit étre étendu a des
champs magnétiques plus intenses. Cette méthode pourrait €tre appliquée a d’autre mé-
taux dans lesquels I’existence des domaines de Condon a été vérifiée par SR (le plomb,
I’étain et I’aluminium). Par ailleurs, le diagramme de phase d’un métal, par ex. I’argent,
pourrait étre mesuré en fonction de la température de Dingle.

Récemment, Gordon et al. [99] ont prédit une anomalie de la chaleur spécifique a
la transition de phase entre 1’état homogene et 1’état avec domaines de Condon. Cette
anomalie n’a pas été observée expérimentalement jusqu’a présent. Avec la connaissance
précise du diagramme de phase de 1’échantillon, ces expériences devraient étre plus sim-
ples a réaliser.
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