

Mise en place d'une couche physique pour les futurs systèmes de radiocommunications hauts débits UWB

Louis-Marie Aubert

8 novembre 2005

Thèse

résentée devant l'Institut National de Sciences Appliquées de Rennes

réalisée dans le cadre d'une collaboration entre Mitsubishi Electric Information Technology Center Europe et Institut d'Electronique et de Télécommunication de Rennes

Contexte de la thèse

Activités de recherche sur l'UWB

- IETR (depuis 1997) :
 - Etude de la propagation du signal UWB
 - Modélisation du signal radar pour la détection d'objets enfouis
 - Modélisation déterministe du canal
 - Caractérisation des matériaux
 - Caractérisation et conception d'antennes
 - Etude des solutions hauts débits multi-porteuses
- Mitsubishi ITE (depuis 2002) :
 - Couche physique de communications bas et hauts débits
 - Couche d'accès au réseau
 - Etude des solutions technologiques pour l'implémentation

Contexte de la thèse

Activités de recherche sur l'UWB

- IETR (depuis 1997) :
 - Etude de la propagation du signal UWB
 - Modélisation du signal radar pour la détection d'objets enfouis
 - Modélisation déterministe du canal
 - Caractérisation des matériaux
 - Caractérisation et conception d'antennes
 - Etude des solutions hauts débits multi-porteuses
- Mitsubishi ITE (depuis 2002) :
 - Couche physique de communications bas et hauts débits
 - Couche d'accès au réseau
 - Etude des solutions technologiques pour l'implémentation

• Convention CIFRE lancée en novembre 2002

Plan

- Partie 1 Contexte UWB et objectifs de la thèse
- Partie 2 Spécificités du canal UWB
- Partie 3 Principes et étude de la solution proposée
- Partie 4 Etude comparative MB-OOK / MB-OFDM
- Conclusion et perspectives

Partie 1

• Contexte UWB et objectifs de la thèse

- Partie 2 Spécificités du canal UWB
- Partie 3 Principes et étude de la solution proposée
- Partie 4 Etude comparative MB-OOK / MB-OFDM
- Conclusion et perspectives

1969	+	H. F. Harmuth – Premières publications de travaux sur les systèmes exploitant les signaux non-sinusoïdaux
1973	+	G. F. Ross – Brevet fondamental sur les communications UWB
1974		R. N. Morey – Conception d'un radar UWB à pénétration dans le sol
1987	$\overline{\uparrow}$	L. W. Fullerton – Création de la société Time Domain
1990	+	DARPA – « Assessment of Ultra-Wideband (UWB) Technology »
1993		R. A. Scholtz – Introduction d'une méthode d'accès multiple spécifique à l' <i>Impulse Radio</i>
1998		FCC – Lancement du processus de réglementation des émissions UWB
1999	+	Time Domain – Premier chipset UWB
2002	+	FCC – « First Report and Order »
	♥	

Mitsubishi ITE – IETR / INSA

Réglementation FCC

• En février 2002

- Extension de la définition de l'UWB :
 - Bande fractionnelle B/f_c supérieure à 20%
 - Largeur de bande *B* supérieure à 500 MHz

Réglementation FCC

• En février 2002

- Extension de la définition de l'UWB :

- Bande fractionnelle B/f_c supérieure à 20%
- Largeur de bande *B* supérieure à 500 MHz

- Autorisation des émissions UWB :

- Sans licence
- Principalement indoor
- Puissances moyennes limitées à -41.3 dBm dans toute bande de 1 MHz entre 3.1 et 10.6 GHz
- Puissance pic limitée à 0 dBm dans toute bande de 50 MHz

« First report and order, ET Docket No. 98-153 », Federal Communication Commission, 2002

Louis-Marie Aubert

Conséquences de la réglementation

• Applications :

- Communications hauts débits WPAN
 - De 100 à 500 Mbit/s
 - Courtes portées (jusqu'à 10 mètres)

Conséquences de la réglementation

• Applications :

- Communications hauts débits WPAN
 - De 100 à 500 Mbit/s
 - Courtes portées (jusqu'à 10 mètres)

• Solutions satisfaisant la définition très large de l'UWB :

- Techniques impulsionnelles
- Systèmes traditionnels à bande élargie

L'UWB depuis la réglementation FCC

• Solution DS-UWB

- Solution impulsionnelle
- Spectre disponible scindé en 2 sous-bandes

- Etalement par CDMA de longueur 1 à 24, de fréquence chip :
 - 1.33 GHz sur la bande basse
 - 2.66 GHz sur la bande haute
- Modulation
 - BPSK (polarité) 1 bit par symbole
 - 4-BOK (choix d'un code sur 2 disponibles + polarité) 2 bit par symbole
- Débits théoriques de 55 à 1320 Mbit/s par sous-bande

Mitsubishi ITE – IETR / INSA

Louis-Marie Aubert

Solution MB-OFDM

- Saut de fréquence sur au moins 3 sous-bandes de 528 MHz
- Modulation OFDM QPSK sur 128 porteuses
- Débits

- Brut : 640 Mbit/s (utilisation de 3 sous-bandes)
- Utile : de 55 à 480 Mbit/s

A. Batra et al, « Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a », IEEE P802.15-03/268r3, 2004

Mitsubishi ITE – IETR / INSA

Louis-Marie Aubert

Solution MB-OFDM

- Saut de fréquence sur au moins 3 sous-bandes de 528 MHz
- Modulation OFDM QPSK sur 128 porteuses
- Débits

- Brut : 640 Mbit/s (utilisation de 3 sous-bandes)
- Utile : de 55 à 480 Mbit/s

A. Batra et al, « Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a », IEEE P802.15-03/268r3, 2004

Mitsubishi ITE – IETR / INSA

Louis-Marie Aubert

- Points caractéristiques :
 - Point commun
 - Architecture multi-bandes
 - Flexibilité sur les débits et coexistence avec les systèmes traditionnels

• Points caractéristiques :

- Point commun

- Architecture multi-bandes
 - Flexibilité sur les débits et coexistence avec les systèmes traditionnels

- DS-UWB

- Approche impulsionnelle
 - Réduction des évanouissements sur le signal reçu
- Modulation à faible nombre d'états
 - Pour 1 Gbit/s avec une modulation à 2 états, nécessité d'un bit par ns

• Points caractéristiques :

- Point commun

- Architecture multi-bandes
 - Flexibilité sur les débits et coexistence avec les systèmes traditionnels

– DS-UWB

- Approche impulsionnelle
 - Réduction des évanouissements sur le signal reçu
- Modulation à faible nombre d'états
 - Pour 1 Gbit/s avec une modulation à 2 états, nécessité d'un bit par ns

– MB-OFDM

- Fonctionnement parallèle multi-porteuses
 - Minimisation naturelle des interférences inter-symboles
 - Récupération de la quasi totalité de l'énergie disponible
- Faible bande instantanée (compatible d'un échantillonnage)
 - Energie émise limitée par la bande
 - Evanouissement du signal reçu plus important

L'UWB depuis la réglementation FCC

L'UWB depuis la réglementation FCC

Objectifs de la thèse

- Au début de la thèse (nov. 2002) :

 « Comment se synchroniser rapidement et simplement sur une séquence d'impulsions ? »

– Dès mai 2003 :

 « Comment tirer le meilleur parti de la radio impulsionnelle pour les transmissions hauts débits ? »

- En respectant les contraintes :

- Faible complexité
- Faible consommation
- Faible coût
- Robustesse dans un large éventail de conditions de propagation

Partie 2

• Partie 1 – Contexte UWB et objectifs de la thèse

Spécificités du canal UWB

- Partie 3 Principes et étude de la solution proposée
- Partie 4 Etude comparative MB-OOK / MB-OFDM
- Conclusion et perspectives

Modélisation du canal de transmission

 Canal de transmission équivalent à un filtre linéaire invariant en temps (canal statique)

- Fonction de transfert H(f) : S(f) = H(f)P(f)
- Réponse impulsionnelle h(t) : s(t) = h(t) * p(t)

Modélisation du canal de transmission

 Canal de transmission équivalent à un filtre linéaire invariant en temps (canal statique)

- Fonction de transfert H(f) : S(f) = H(f)P(f)
- Réponse impulsionnelle h(t) : s(t) = h(t) * p(t)

Modélisation de la propagation en rayons

• Réponse impulsionnelle en bande infinie :

$$h(t) = \sum_{k} \alpha_k \delta(t - \tau_k)$$

 α_k et τ_k : amplitude et retard du $k^{ ext{ième}}$ trajet

Mitsubishi ITE – IETR / INSA

Modélisation du canal UWB

Modèle à redéfinir en tenant compte des spécificités de l'UWB

- Résolution temporelle très fine (capacité à distinguer les trajets)
 - Nombre important de trajets
 - Distribution différente des amplitudes

Mitsubishi ITE – IETR / INSA

Modélisation du canal UWB

Modèle à redéfinir en tenant compte des spécificités de l'UWB

- Résolution temporelle très fine (capacité à distinguer les trajets)
 - Nombre important de trajets
 - Distribution différente des amplitudes

Modèle statistique IEEE 802.15.3a

Exemple de réponses impulsionnelles construites à partir du modèle

Mitsubishi ITE – IETR / INSA

Modèle statistique IEEE 802.15.3a

Caractéristiques du modèle

	CM1	CM2	CM3	CM4
Configuration	LOS < 4 m	NLOS < 4 m	NLOS de 4 à 10 m	NLOS $\tau_{\rm RMS}$ = 25 ns
<i>T_d</i> (–10 dB) (ns)	11	16.5	23.5	38.5
NP _{85%}	24	36.1	61.54	123

Mitsubishi ITE – IETR / INSA

Distorsions de l'impulsion

Matériaux

Caractéristiques électromagnétiques variables suivant la fréquence

Distorsions de l'impulsion

Matériaux

Caractéristiques électromagnétiques variables suivant la fréquence

Antennes

- Gain variable et phase non linéaire sur la totalité de la bande
- Réponse différente en fonction de l'orientation

F. Tchoffo Talom, « Modélisation déterministe du canal de propagation indoor dans un contexte Ultra Wide Band », Thèse IETR/INSA, 2005 T. Matila et al, « UWB theory and applications - UWB antennas », pp 129–156, Wiley, 2004

Mitsubishi ITE – IETR / INSA

Louis-Marie Aubert

Conclusion sur le canal

Nombreux degrés de liberté dans le canal de transmission

Conclusion sur le canal

Nombreux degrés de liberté dans le canal de transmission

- Difficultés de mise en œuvre des approches synchrones impulsionnelles
 - Détection, estimation, poursuite d'un grand nombre de paramètres du canal
 - Synchronisation :
 - Instant d'arrivée des trajets
 - Récepteur de type *rake :*
 - Amplitude des trajets
 - Démodulation par corrélation :
 - Forme d'onde du signal reçu

Echantillonnage et traitements numériques complexes à cadence très élevée

Partie 3

Partie 1 – Contexte UWB et objectifs de la thèse

• Partie 2 – Spécificités du canal UWB

Principes et étude de la solution proposée

- Partie 4 Etude comparative MB-OOK / MB-OFDM
- Conclusion et perspectives

Synchronisation

• Approche asynchrone

• Détection d'une impulsion dans un intervalle de temps ΔT :

Synchronisation

• Approche asynchrone

• Détection d'une impulsion dans un intervalle de temps ΔT :

$$y(t) \xrightarrow{} t B\Delta T \approx 10$$

 Identifier le traitement qui maximise la probabilité de détection sous des conditions de fausse alarme fixées

$$\begin{cases} H_0: y(t) = n(t) \\ H_1: y(t) = A.p(t - \varepsilon) + n(t), \quad \varepsilon \sim U\left(\left[-\frac{\Delta T}{2}, \frac{\Delta T}{2}\right]\right), \quad A \neq 0 \text{ inconnu} \end{cases}$$

Synchronisation

Approche asynchrone

Détection d'une impulsion dans un intervalle de temps ΔT :

 Identifier le traitement qui maximise la probabilité de détection sous des conditions de fausse alarme fixées

$$\begin{cases} H_0: y(t) = n(t) \\ H_1: y(t) = A.p(t - \varepsilon) + n(t), \quad \varepsilon \sim U\left(\left[-\frac{\Delta T}{2}, \frac{\Delta T}{2}\right]\right), \quad A \neq 0 \text{ inconnu} \end{cases}$$

• Implique de considérer la quantité : $x = \int_{t_0}^{t_0 + \Delta T} (h_p(t) * y(t))^2 dt$

D. Middleton, « An introduction to stastical communication theory », McGraw-Hill, 1960

Mitsubishi ITE – IETR / INSA

Louis-Marie Aubert

8 Novembre 2005 - Slide 37

Solution impulsionnelle, asynchrone

- Traitements en réception basés uniquement sur l'énergie du signal
- Pour éviter les interférences inter-symboles, période de répétition des • impulsions supérieure à l'étalement du canal

Solution impulsionnelle, asynchrone

- Traitements en réception basés uniquement sur l'énergie du signal
- Pour éviter les interférences inter-symboles, période de répétition des impulsions supérieure à l'étalement du canal

Modulation

- Retard → PPM : incompatible avec les hauts débits
- Amplitude → OOK

Solution impulsionnelle, asynchrone

- Traitements en réception basés uniquement sur l'énergie du signal
- Pour éviter les interférences inter-symboles, période de répétition des impulsions supérieure à l'étalement du canal
- Modulation
 - Retard → PPM : incompatible avec les hauts débits
 - Amplitude → OOK

• Démodulation non-cohérente par seuillage

Solution impulsionnelle, asynchrone

- Traitements en réception basés uniquement sur l'énergie du signal
- Pour éviter les interférences inter-symboles, période de répétition des • impulsions supérieure à l'étalement du canal
- **Modulation**

 - Amplitude \rightarrow OOK

Démodulation non-cohérente par seuillage

- Pour atteindre la capacité du canal :
 - Augmenter la dimension de la constellation des signaux $\{s_i(t)\}$
 - Pour chaque signal $s_i(t)$: utilisation du schéma précédent

- Pour atteindre la capacité du canal :
 - Augmenter la dimension de la constellation des signaux $\{s_i(t)\}$
 - Pour chaque signal $s_i(t)$: utilisation du schéma précédent
 - Le canal se comporte comme un filtre linéaire *h*(*t*) invariant en temps, parcourant un très grand ensemble de possibles
 - Le récepteur n'a pas la possibilité d'estimer précisément h(t)

- Pour atteindre la capacité du canal :
 - Augmenter la dimension de la constellation des signaux $\{s_i(t)\}$
 - Pour chaque signal $s_i(t)$: utilisation du schéma précédent
 - Le canal se comporte comme un filtre linéaire *h*(*t*) invariant en temps, parcourant un très grand ensemble de possibles
 - Le récepteur n'a pas la possibilité d'estimer précisément h(t)

→Les informations véhiculées par les signaux de la constellation ne doivent pas être mélangées par le passage dans le canal

$$\int_0^T (h * s_i)(t) s_j(t) dt = 0 , \forall j \neq i , \forall h$$

→ Supports spectraux des signaux $s_i(t)$ nécessairement disjoints

- Pour atteindre la capacité du canal :
 - Augmenter la dimension de la constellation des signaux $\{s_i(t)\}$
 - Pour chaque signal $s_i(t)$: utilisation du schéma précédent
 - Le canal se comporte comme un filtre linéaire *h*(*t*) invariant en temps, parcourant un très grand ensemble de possibles
 - Le récepteur n'a pas la possibilité d'estimer précisément h(t)

→Les informations véhiculées par les signaux de la constellation ne doivent pas être mélangées par le passage dans le canal

$$\int_0^T (h * s_i)(t) s_j(t) dt = 0 , \forall j \neq i , \forall h$$

→ Supports spectraux des signaux $s_i(t)$ nécessairement disjoints

→ Architecture parallèle multi-bandes

 Orthogonalité des signaux conservée après le passage dans le canal

- Ordres de grandeur en pratique
 - Nombre de sous-bandes : de 12 à 24
 - Largeur des sous-bandes : de 250 à 500 MHz

Mitsubishi ITE – IETR / INSA

Problème de décision :

$$\begin{cases} H_0 : x = \int_0^T [n(t)]^2 dt \\ H_1 : x = \int_0^T [s(t) + n(t)]^2 dt \end{cases}$$

→ Minimiser la probabilité d'erreur connaissant *B* et ayant estimé *T*, $E = \int_0^T s^2(t) dt$, *N*

Problème de décision :

$$\begin{cases} H_0 : x = \int_0^T [n(t)]^2 dt \\ H_1 : x = \int_0^T [s(t) + n(t)]^2 dt \end{cases}$$

→ Minimiser la probabilité d'erreur connaissant *B* et ayant estimé *T*, $E = \int_0^T s^2(t) dt$, *N*

• Densité de probabilité : χ^2

$$\begin{cases} H_0: p_0(y) = \frac{y^{M-1}e^{-y}}{\Gamma(M)}, & y \ge 0 \\ H_1: p_1(y) = \left(\frac{y}{L}\right)^{\frac{M-1}{2}} e^{-y-L} I_{M-1}\left(2\sqrt{yL}\right), & y \ge 0 \end{cases} \quad \text{avec} \begin{cases} y = \frac{x}{N} \\ 2M = 2BT+1 \\ L = \frac{E}{N} \end{cases}$$

P. A. Humblet et M. Azizoglu, « On the bit-error rate of lightwave systems with optical amplifiers », Journal of Lightwave Technology, vol. 9, pages 1576–1582, 1991 *Mitsubishi ITE – IETR / INSA Louis-Marie Aubert 8 Novembre 2005 - Slide 52*

Fixation du seuil optimal :

$$- p_0 \left(\frac{\rho_{opt}}{N}\right) = p_1 \left(\frac{\rho_{opt}}{N}\right)$$

Fixation du seuil optimal :

$$- p_0\left(\frac{\rho_{opt}}{N}\right) = p_1\left(\frac{\rho_{opt}}{N}\right)$$

$$\rightarrow \frac{\rho_{opt}}{N} \approx \frac{L}{4} + M + \sqrt{M - 1}.\phi(L)$$

avec
$$\begin{cases} L = \frac{E}{N} \\ 2M = 2BT + 1 \end{cases}$$

Fixation du seuil optimal :

$$- p_0 \left(\frac{\rho_{opt}}{N}\right) = p_1 \left(\frac{\rho_{opt}}{N}\right)$$

$$\rightarrow \frac{\rho_{opt}}{N} \approx \frac{L}{4} + M + \sqrt{M - 1}.\phi(L)$$

- Adaptation dynamique du seuil en fonction des conditions de propagation dans le canal
- Estimation du canal réduite à deux quantités macroscopiques : ٠
 - Durée d'étalement
 - Rapport des énergies du signal utile et du bruit

Mitsubishi ITE – IETR / INSA

Estimation du canal

• Estimation de l'énergie utile disponible *E* et l'énergie du bruit *N*

- Estimation initiale pendant un préambule :
 - Emission d'échantillons $\{x_{i,k}\}, k \in \{1, ..., m_i\}, i \in \{0,1\}$ sous les hypothèses :

Estimation du canal

• Estimation de l'énergie utile disponible *E* et l'énergie du bruit *N*

- Estimation initiale pendant un préambule :
 - Emission d'échantillons $\{x_{i,k}\}, k \in \{1, ..., m_i\}, i \in \{0,1\}$ sous les hypothèses :

• Estimateurs simples non-biaisés :

$$\mathbf{H}_{0}: \hat{N} = \frac{\sum_{k=1}^{m_{0}} x_{0,k}}{Mm_{0}} \qquad \qquad \mathbf{H}_{1}: \hat{E} = \frac{\sum_{k=1}^{m_{1}} x_{1,k}}{m_{1}} - M\hat{N}$$

- Estimation récursive pendant la démodulation :
 - Expression de l'estimée au bit m+1 en fonction de l'estimée au bit m
 - Amélioration de l'estimation initiale
 - Adaptation de l'estimation aux variations du canal

$$\hat{E}_{m_1+1} = \left(1 - \frac{1}{K}\right)\hat{E}_{m_1} + \frac{x_{m_1+1} - M\hat{N}}{K}$$

Performances à énergie reçue fixée

Probabilité d'erreur en fonction de l'énergie récupérée

• Energie récupérable *E* variable suivant les réalisations de canaux :

- E_{mov} : énergie moyenne
- η : coefficient traduisant la variabilité du canal, $E(\eta) = 1$

Energie récupérable E variable suivant les réalisations de canaux :

- E_{mov} : énergie moyenne
- η : coefficient traduisant la variabilité du canal, $E(\eta) = 1$
- Probabilité d'erreur moyennée sur l'ensemble des réalisations possibles de canaux :

$$\overline{P}_{e}\left(\frac{E_{\text{moy}}}{N}\right) = \int_{0}^{\infty} P_{e}\left(\eta \frac{E_{\text{moy}}}{N}\right) p_{\eta}(\eta) \,\mathrm{d}\eta$$

- Statistique du coefficient η
 - loi gamma
 - moyenne = 1
 - variance = 1/q
 - $-q \propto B$
 - dans le cas du modèle IEEE 802.15.3a : $q \propto T_d$

- pour
$$T = T_d$$
: $q \propto BT \approx M$

Mitsubishi ITE – IETR / INSA

Schéma synoptique du système

Remarques sur l'implémentation

- Contraintes matérielles relaxées :
 - Seule une synchronisation grossière est requise
 - → Robuste aux imprécisions des horloges
 - Traitements basés sur l'énergie du signal
 - Robuste aux distorsions et aux non-linéarités de phase (conception simplifiée : antennes, amplificateurs et filtres)

- Principalement des composants analogiques passifs

→ Réduction de la consommation

Remarques sur l'implémentation

- Contraintes matérielles relaxées :
 - Seule une synchronisation grossière est requise
 - → Robuste aux imprécisions des horloges
 - Traitements basés sur l'énergie du signal
 - Robuste aux distorsions et aux non-linéarités de phase (conception simplifiée : antennes, amplificateurs et filtres)
 - Principalement des composants analogiques passifs
 - → Réduction de la consommation
- Flexibilité de l'architecture multi-bandes :
 - Compromis possible entre débits de transmission et consommation
 - Gestion des interférences
 - Systèmes traditionnels existants : détection et évitement
 - Systèmes UWB : accès multiple

Partie 4

- Partie 1 Contexte UWB et objectifs de la thèse
- Partie 2 Spécificités du canal UWB
- Partie 3 Principes et étude de la solution proposée

• Etude comparative MB-OOK / MB-OFDM

• Conclusion et perspectives

Performances de la modulation OFDM

- Multiplex de systèmes bande étroite
 - Modulation BPSK / QPSK

$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E}{N}}\right)$$

Performances de la modulation OFDM

- Multiplex de systèmes bande étroite
 - Modulation BPSK / QPSK

$$P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E}{N}}\right)$$

- Fading de Rayleigh
 - $E = \eta E_{\text{moy}}$
 - Coefficient η suivant une loi exponentielle

Performances de la modulation OFDM

- Multiplex de systèmes bande étroite
 - **Modulation BPSK / QPSK** ____

 $P_e = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E}{N}}\right)$

- Fading de Rayleigh _
 - $E = \eta E_{\rm mov}$
 - Coefficient η suivant une loi exponentielle
- Performances moyennes sur canal multi-trajets

$$\overline{P}_{e} = \frac{1}{2} - \frac{1}{2\sqrt{1 + \frac{1}{E_{moy}/N}}}$$

Mitsubishi ITE – IETR / INSA

Comparaison à énergie reçue identique

Mitsubishi ITE – IETR / INSA
Comparaison à énergie reçue identique

Mitsubishi ITE – IETR / INSA

• Occupation du spectre sur la durée d'un symbole :

• Occupation du spectre sur la durée d'un symbole :

Occupation du spectre sur la durée d'un symbole :

Occupation du spectre sur la durée d'un symbole :

Comparaison des performances en tenant compte des limitations FCC

Mitsubishi ITE – IETR / INSA

Comparaison des performances en tenant compte des limitations FCC

Mitsubishi ITE – IETR / INSA

Comparaison des performances en tenant compte des limitations FCC

Mitsubishi ITE – IETR / INSA

Remarques relatives au codage

Solution MB-OFDM

- Sous-porteuses en parallèle
- Diversité par codage de canal
 - Architecture numérique plus complexe
 - Débits utiles limités

Remarques relatives au codage

Solution MB-OFDM

- Sous-porteuses en parallèle
- Diversité par codage de canal
 - Architecture numérique plus complexe
 - Débits utiles limités

Solution MB-OOK

- Sous-bande (de 250 à 500 MHz) en parallèle
- Diversité par exploitation de la bande
- Codage de canal de rendement élevé
 - Partie numérique simple
 - Débits utiles très élevés

- Partie 1 Contexte UWB et objectifs de la thèse
- Partie 2 Spécificités du canal UWB
- Partie 3 Principes et étude de la solution proposée
- Partie 4 Etude comparative
- Conclusion et perspectives

Conclusion

Système impulsionnel MB-OOK pour les hauts débits

- Architecture multi-bandes

- Approche asynchrone traitement non-cohérent quadratique
- Modulation OOK
- Démodulation par seuillage adapté dynamiquement aux conditions de propagation dans le canal

Fonctionnement simple

- Estimation du canal limitée à deux quantités macroscopiques
- Robuste à de faibles écarts sur les amplitudes et les retards

– Bandes utilisées très larges

- Energie par bit élevée
- Fading limité

Codage de canal

- Simplifié
- Permettant de très hauts débits utiles

Perspectives

- Traitement du signal quadratique pour les communications numériques
 - Echantillonnage plus rapide de l'énergie
 - Réduire les durées d'intégration
 - Conserver l'énergie intégrée totale

- Procédure d'annulation des interférences inter-impulsions
- Codage de canal
- Procédure de détection et d'évitement des interférences
- Etude d'implémentation
 - Nouvelles fonctions analogiques pour l'architecture multibandes
 - Eléments actifs du système

 M. E. Sahin et H. Arslan, « Inter-symbol interference in high data rate UWB communications using energy detector receivers », IEEE International Conference on UWB, 2005

 Mitsubishi ITE - IETR / INSA
 Louis-Marie Aubert
 8 Novembre 2005 - Slide 84

