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Abstract

The aim of this work is to characterise quantitatively the arrangement of mitochondria
in heart and skeletal muscles. For this, we studied confocal images of mitochondria in
non-fixed cardiomyocytes and fibres from soleus and white gastrocnemius muscles of adult
rats. The arrangement of intermyofibrillar mitochondria was analysed by estimating the
densities of distribution of mitochondrial centres relative to each other (the probability
density function). According to the found probability density functions, mitochondria
are arranged in very regular manner in all studied muscles. In the cardiomyocytes (1820
mitochondrial centres marked), neighbouring mitochondria are aligned along rectangle,
with distance between the centres equal to 1.97±0.43 µm and 1.43±0.43 µm in longitudinal
and transversal directions, respectively. In soleus (1659 mitochondrial centres marked) and
in white gastrocnemius (621 pairs of mitochondria marked), the relative distribution of
mitochondrial centres is more complex. In soleus and white gastrocnemius, mitochondria
are mainly organised in pairs at the level of I-band, and, due to such organisation, there are
two distances characterising mitochondrial distribution in longitudinal direction in these
muscles. The distance between mitochondrial centres in longitudinal direction within
the same I-band is 0.91±0.11 µm and 0.61±0.07 µm in soleus and white gastrocnemius,
respectively. The second distance describing mitochondrial arrangement in longitudinal
direction — the distance between mitochondrial centres in different I-bands — is ∼3.7 µm
and ∼3.3 µm in soleus and in gastrocnemius, respectively. In the transversal direction,
the mitochondria are packed considerably closer to each other in soleus than in white
gastrocnemius — the distance is equal to 0.75±0.22 µm in soleus and 1.09±0.41 µm
in gastrocnemius. Our results show that mitochondria, which are situated between the
myofibrils, are arranged in highly ordered crystal-like pattern in a muscle-specific manner
with relatively small deviation in the distances between neighbouring mitochondria. This
is consistent with the concept of the unitary nature of the organisation of the muscle
energy metabolism.
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Introduction

Recent studies have shown the existence of multiple specific functional interactions be-

tween mitochondria, sarcoplasmic reticulum (SR) and myofibrils in permeabilized muscle

fibres (Seppet et al., 2001; Saks et al., 2001; Kaasik et al., 2001; Birkedal & Gesser, 2004).

Namely, endogenous ATP has been shown to be more efficient in maintaining calcium

uptake into SR than exogenous ATP (Kaasik et al., 2001). Additionally, kinetic studies

have shown direct supply of endogenous ADP from ATPases to mitochondria (Seppet

et al., 2001; Saks et al., 2001). Such interaction can be explained by existence of localised

intracellular diffusion restrictions (Saks et al., 2003; Vendelin et al., 2004). A mild treat-

ment of the fibres with trypsin leads to the removal of these diffusion restrictions and, at

the same time, distribution of mitochondria in the fibre is changed from regular arrange-

ment in control to random distribution after the treatment (Saks et al., 2003). Similarly,

in ischemic hearts, various alterations in mitochondrial function such as the significant

decrease in maximal respiration rate and half-saturation constant for ADP were observed

in parallel with the changes in structural organisation of the cardiac muscle cells (Boudina

et al., 2002; Kay et al., 1997b). These experimental results suggest that there is a direct

link between regulation of muscle cell energetics and structural organisation of the cell

(Saks et al., 2003).

According to ultrastructural electron microscopic studies, mitochondrial position in

the muscle cells is rather regular and depends on the muscle type. In the heart muscle,

mitochondria are arranged in longitudinal lattice between the myofibrils and are located

within the limits of the sarcomeres (Sommer & Jennings, 1986; Segretain et al., 1981).

The correlation between sarcomere and mitochondrial length is preserved during the heart

muscle contraction or when the muscle is stretched (Nozaki et al., 2001). In white and
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red skeletal muscles, mitochondria are either arranged in pairs on both sides of Z-line or

form columns in longitudinal direction in interfilament space (Ogata & Yamasaki, 1985,

1997). Thus, the arrangement of mitochondria is rather repetitive and similar for each

sarcomere. According to the studies using fluorescence recovery technique, mitochon-

dria are morphologically and functionally heterogeneous in number of cells (Collins et al.,

2002). In cardiac muscle mitochondria present single poorly branching organelles in nor-

mal conditions (Bakeeva et al., 1983). In hypoxic conditions, cardiac mitochondria can

fuse together to form gigantic mitochondria which are longer than several sarcomeres (Sun

et al., 1969). This is one of the examples showing that mitochondrial morphology is a

dynamic process which is regulated by the balance of fission and fusion and this balance

can be changed by such interventions as hypoxia (Collins et al., 2002; Rube & van der

Bliek, 2004).

In all these studies, however, mitochondrial distribution has not been analysed quanti-

tatively. Such quantitative description is required to relate the structural organisation of

the muscle cells to interactions between mitochondria and intracellular ATP-consuming

systems and, thus, to the intracellular energy crosstalk. Additionally, fixed preparations

have been used in the cited ultrastructural studies and, depending on the procedures used

in freezing and preparing the fibres, the fixation might influence the results (Roy et al.,

1996).

The aim of this work is to analyse quantitatively the arrangement of mitochondria

in heart and skeletal muscles. In this work, confocal images of non-fixed cardiomyocytes

and fibres from soleus and white gastrocnemius muscles were analysed by an algorithm

for this purpose. The position of mitochondria relative to each other in different muscles

were described by probability density functions. The results show ordered (crystal-like)
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arrangement of mitochondria with different distribution functions in various muscle cells.

This approach may be used for analysis of structural and functional changes in muscle

cells in different physiological and pathophysiological states.
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Methods

Animals

Adult Wistar rats (male ∼300 g and female ∼240 g) were used in all experiments. The

investigation conforms with the Guide for the Care and Use of Laboratory Animals pub-

lished by the National Institutes of Health (NIH Publication No. 85-23, revised 1985).

Preparation of skeletal muscle fibres

The fibres were prepared from adult female Wistar rat white gastrocnemius and soleus

muscles. Fibres were stored and imaged in solution A (for composition see below) in the

presence of exogenous substrates (glutamate 5 mM and malate 2 mM). The preparation

of the fibres has been described earlier (Saks et al., 1998).

Preparation of isolated cardiomyocytes

Intact cardiomyocytes were isolated from adult male Wistar rat heart as described by Kay

et al. (1997a).

Confocal microscopy

Two independent methods were used to visualise the mitochondrial position in the non-

permeabilized muscle fibres and cardiomyocytes.

Imaging of mitochondrial calcium by Rhod-2 AM. Rhod-2 AM is a cell permeable

fluorescent probe for mitochondrial matrix Ca2+. Non-permeabilized muscle fibres were

incubated in Multidish 24 wells (from Nunc A/S, Roskilde, Denmark) with 5 µM of Rhod-

2 AM in solution A for ∼1 hour at 4◦C in the presence of exogenous substrates (glutamate

5 mM and malate 2 mM). Rhod-2 AM has a rhodamine-like fluorophore whose excitation

and emission maxima are 557 nm and 581 nm, making it convenient to use with Ar and
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Kr lasers as an excitation source.

Imaging of mitochondria using MitoTracker(R) Red CMXRos. MitoTracker(R) Red

CMXRos is a derivative of x-rosamine and specifically binds to mitochondria. The fluo-

rescence of this dye was measured (excitation and emission maxima at 579 nm and 599

nm, respectively). Non-permeabilized muscle fibres were incubated in Multidish 24 wells

(from Nunc A/S, Roskilde, Denmark) with 100 nM of MitoTracker(R) Red CMXRos in

solution A for 2 hours at 4◦C in the presence of exogenous substrates (glutamate 5 mM

and malate 2 mM). Cardiomyocytes were incubated with MitoTracker(R) Red CMXRos

for 45 min at 37◦C in Flexiperm(R) chambers (from Vivascience, Hanau, Germany) in

solution A with 5 mM glutamate and 2 mM malate.

Muscle fibres and cardiomyocytes were mounted in Flexiperm(R) slides (from Viva-

science, Hanau, Germany) in the presence of solution A as follows. Muscle fibres were

put on a slide, stretched slightly before fixing the ends of the muscles by attaching Flex-

iperm(R) micro12 to the slide. Then the solution A was added to each chamber of Flex-

iperm(R) micro12 which contained the fibre. In the case of cardiomyocytes, Flexiperm(R)

micro12 was attached to the slide first, then solution A and cardiomyocytes were added

to a chamber.

All preparations were imaged using a confocal microscope Leica DM IRE2 (from Leica

microsystems, Heidelberg, Germany) with a 63X water immersion objective lens (NA 1.2).

The use of such a water immersion prevented from geometrical aberrations.

Solutions

Solution A contained, in mM: CaK2EGTA 2.77, K2EGTA 7.23 (free calcium concen-

tration ∼0.1 µM), MgCl2 6.56, dithiothreitol (DTT) 0.5, potassium 2-(N-morpholino)-

ethanesulfonate (K-MES) 53.3, imidazole 20, taurine 20, Na2ATP 5.3, phosphocreatine
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15, pH 7.1 adjusted at 25◦C.

All reagents were purchased from Sigma (Saint Louis, MO, USA) except ATP, which

was obtained from Boehringer (Germany).

Quantitative analysis of mitochondrial positioning

To analyse how mitochondria are positioned relative to each other, the confocal images

of the skeletal muscle fibres and cardiomyocytes were used with easily distinguishable

mitochondria. Each image was rotated until the muscle fibre or cell was oriented in vertical

direction, judged by eye. Next, the centres of mitochondria were marked manually. For

each mitochondrion, the closest mitochondrial centres were found among mitochondria in

several sectors as shown in Fig. 1. Then, the relative coordinates of the closest neighbours

were computed.

Before the analysis, the relative coordinates of the closest neighbours have been cor-

rected as follows.

In cardiomyocytes, the local myofibrillar orientation was estimated and accounted

for. Since contractile apparatus in the cardiac muscle is widely branching, one has to

take into account such organisation of the muscle before the distances between any two

points in the cell are measured (Sommer & Jennings, 1986). For each mitochondrial

centre, we approximated local myofibrillar orientation by fitting with the straight line the

positions of mitochondrial centre and the centres of its two neighbours found in the sectors

aligned along the fibre. The fitting was performed using the least-squares method. The

obtained line was considered as a local orientation of myofibrils and all the neighbouring

mitochondria were rotated to orient the line vertically. The relative coordinates obtained

after rotation were stored and analysed statistically (see below).

In soleus and gastrocnemius, mitochondria form lines which were not exactly perpen-
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dicular to fibre orientation (Fig. 2B and Fig. 2C). Since the angle between the lines formed

by mitochondria and the fibre orientation was different in different fibres and even in the

different sections of the same fibre, we transformed the relative mitochondrial positions

as follows. First, for each mitochondrial centre, we approximated local orientation of the

“mitochondrial line” by fitting with the straight line the positions of mitochondrial centre

and the centres of its two neighbours found in the sectors aligned across the fibre. The

fitting was performed using the least-squares method. Second, new relative coordinates

of mitochondrial neighbours were computed by reducing the coordinate value along the

fibre by factor x · sin α, where x is the relative coordinate of neighbour mitochondria in

transversal direction and α is an angle between the transversal direction and the found

local “mitochondrial line” direction. Thus, the mitochondrial neighbours were sheared

to form the “mitochondrial line” which was perpendicular to the fibre. The relative co-

ordinates obtained after such transformation were stored and analysed statistically (see

below).

The statistical analysis was performed by computing distribution function of the dis-

tance between the centres of neighbour mitochondria as well as by computing probability

density functions. The both functions (distribution and probability density) were com-

puted for each sector separately. In the analysis, the values are expressed as mean±SD.

The programs developed for this analysis were written in Python and are available on

request.
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Results

The representative confocal images of non-fixed intact cardiomyocytes and skeletal muscle

fibres are shown in Fig. 2.

Cardiomyocytes. A representative confocal image of non-permeabilized cardiomyocyte

with marked mitochondria is shown in Fig. 3. In Fig. 4, the distances between mitochon-

drial centres taken from image in Fig. 3 are analysed. According to our analysis (Fig. 4A),

the distances between mitochondrial centres are smallest in the direction transversal to

the fibre. The largest distances are in diagonal direction (angle 45◦). The distribution can

be presented in radial plot, where the average distance between mitochondrial centres is

related to direction between mitochondria. In this plot, the distances between the centres

are given by the distances from the reference point (coordinates 0, 0) plotted in the direc-

tion corresponding to each sector (Fig. 4B). From inspection of radial plot (Fig. 4B), it is

clear that mitochondrial centres are not distributed randomly, but arranged according to

some regular pattern. Indeed, if mitochondria would be distributed randomly, the mean

distance as well as the distribution functions would not depend on direction and, in radial

plot, the centres would have been aligned along a circle.

In the analysis presented in Fig. 4, only the distances between mitochondrial centres

within each sector (see Fig. 1 for definition of the sector) are taken into account. To

distinguish the distributions of mitochondrial centres in each of the sectors, we computed

the probability density functions for mitochondrial centres in each of the sectors (Fig. 5)

using confocal images (n = 10) of cardiomyocytes with total 1820 mitochondrial centres

marked. According to computed probability density function, the mitochondrial centres

are packed in certain areas within the sectors. The areas with the highest probabilities

are aligned along rectangle with the longer side of rectangle aligned along the fibre (Fig.
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5).

Since the distances between mitochondrial centres are not the same in the direction

along and perpendicular to the fibre, considerable amount of mitochondrial centres are

located near the borders of 45◦ sectors (Fig. 5). Taking into account that the distance

between mitochondrial centres in diagonal direction is usually larger than that in longi-

tudinal or transversal directions, the mitochondrial centres in diagonal direction are not

accounted for by our algorithm if the centre is positioned in the different sector. To avoid

such interaction of mitochondria in different sectors, the sectors were adjusted as follows:

the sectors in longitudinal direction were taken equal to 30◦, in the transversal direction

equal to 60◦, and 45◦ in the diagonal direction. The probability density functions cor-

responding to adjusted partitioning of the neighbouring mitochondria to the sectors is

shown in Fig. 6.

The regular (crystal-like) arrangement of mitochondrial centres is clear from the mean

positions of mitochondrial centres (Fig. 6B). The mean positions are aligned along rectan-

gle, with longer distances between mitochondrial centres along the fibre. Using the same

partitioning to the sectors as in Fig. 6, the following distances between mitochondrial

centres were found: 1.97 ± 0.43 µm and 1.43 ± 0.43 µm in longitudinal and transversal

directions, respectively.

Soleus. In skeletal muscle, mitochondrial arrangement is different from that of car-

diomyocytes with the most of the mitochondria arranged in pairs in soleus (Fig. 2). In

our analysis, we marked only mitochondria which were seen as a spots in the image (in-

dicated by arrows in Fig. 2B) and ignored the long mitochondria which were connecting

the mitochondrial pairs in longitudinal direction (marked by arrowheads in Fig. 2B). Such

approach was used since it is impossible to distinguish whether the connection between
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pairs of mitochondria is formed by separate but not resolved mitochondria or by long

extensions of mitochondria within the pairs. An example of the confocal image of soleus

fibre with marked mitochondrial centres is shown in Fig. 7. Since the arrangement of

mitochondria in soleus is different from the one in cardiomyocytes, there are large dif-

ferences in distribution of mitochondrial centres relative to each other in these muscles.

These differences were taken into account as follows.

To determine how the neighbouring mitochondria should be partitioned to represent

the spacial distribution of mitochondria in soleus, we analysed in detail the distribution

of all marked mitochondria shown in Fig. 7. As a first step of our analysis, we found, for

each marked centre, the neighbouring mitochondria which were positioned within 5 µm

in longitudinal and transversal directions, i.e. within 5 µm × 5 µm box. The size of

the box was selected to cover more than one sarcomere length in the muscle. Next, the

probability density function describing all neighbour mitochondria was computed (Fig.

8A). Since this probability density function describes not only the closest mitochondrial

neighbours (as in Fig. 5), but all neighbours that lie in 5 µm × 5 µm box, there are

several maxima of probability density function in each direction. Since these maxima

are distributed quite symmetrically relative to the reference point (cross in Fig. 8), it

is sufficient to recognise the origin of the maxima located in one quarter of the plot

only. The origin of marked maxima in positive transversal and longitudinal directions

is indicated in the scheme in Fig. 8B. For example, the maximum marked with “5” in

Fig. 8A corresponds to the neighbouring mitochondria in transversal directions. Since

the both mitochondria within the pair usually have neighbours in transversal direction,

this maximum is considerably larger than the maximum marked with “6” in Fig. 8. Other

maxima produced by the both mitochondria within the pair are marked with “3” and
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“8”. Note that these maxima are considerably larger (presented by brighter spots in Fig.

8A) than the others (compare with maxima 2, 4, 6, 7, and 9) in the map (Fig. 8A). In

longitudinal direction, the maxima (1, 2, 3, and 4) are clearly separated from each other

due to the small relative variation in the distances between mitochondrial centres in this

direction. In transversal direction, the maxima corresponding to the closest neighbours

(5, 6, 7, 8, 9) are distinguishable but not as clearly as in the longitudinal direction.

The maxima, corresponding to the neighbouring mitochondria which are further away in

transversal direction from the centre, are fused together leading to the formation of lines

in Fig. 8A. This indicates that the relative variation of distances in transversal direction

is considerably larger than in the longitudinal one.

To describe the distribution of mitochondria in soleus, we determined the distribution

mitochondrial neighbours corresponding to maxima 1, 2, 5, 6, and 7 in Fig. 8 and their

symmetric reflections. Indeed, mitochondria positioned near these maxima determine the

characteristic distance in transversal direction (arrow 5 in Fig. 8B) as well as the both

characteristic distances in longitudinal direction (arrows 1 and 2 in Fig. 8B). The probabil-

ity density function corresponding to such partitioning of neighbours into sectors is shown

in Fig. 9. The probability density function was found using n = 10 confocal images with

total 1659 mitochondrial centres marked. Note that variance of the distances is consider-

ably larger in transversal than in longitudinal direction (Fig. 9A). The distances between

centres of neighbouring mitochondria are as follows: 0.91±0.11 µm, 2.83±0.65 µm, and

0.75±0.22 µm corresponding to distances 1, 2, and 5 in Fig. 8B.

White gastrocnemius. In white gastrocnemius, most of the mitochondria are arranged

in pairs, similar to soleus (Fig. 2). As for soleus, we marked only mitochondria which

were seen as a spots in the image (indicated by arrows in Fig. 2C) and ignored the long
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mitochondria which were either connecting the pairs in longitudinal direction (marked by

arrowheads in Fig. 2C) or in transversal direction (marked by “*” in Fig. 2C).

Since the distances between mitochondria within each of the pairs is considerably

smaller than in soleus (see below), we were not able to distinguish the mitochondria

within the pairs in most of our images. For this reason, we analysed the distances be-

tween pairs of mitochondria, marking the centre of each pair as shown in Fig. 10. The

probability density function and used partitioning of the neighbouring pairs to the sectors

is shown in Fig. 11. As in the case of oxidative muscles analysed earlier, the mitochondrial

pairs are positioned rather regularly in white gastrocnemius. The distances between the

pairs of mitochondria are as follows: 3.33±0.96 µm and 1.09±0.41 µm in longitudinal

and transversal directions, respectively. According to the Welch test, the mean distance

obtained for transversal direction is considerably larger (p < 0.001) than the same dis-

tance in soleus (0.75±0.22 µm, distance 5 in Fig. 8B). The difference between the mean

transversal distances in soleus and white gastrocnemius is 0.31–0.38 µm (95% confidence

interval).

In some confocal images we were able to distinguish mitochondria within the pairs.

According to our data (10 images with 85 distances found), the distance between the

mitochondrial centres in pairs is 0.61±0.07 µm. Note that the mean value of this dis-

tance is considerably smaller (the Welch test, p < 0.001) than the one found for soleus

(0.91±0.11 µm, distance 1 in Fig. 8B). The difference between the mean distances between

mitochondria in pair in white gastrocnemius and soleus is 0.28–0.31 µm (95% confidence

interval).



14

Discussion

In this work, the arrangement of mitochondria within the muscle was assessed by analysing

quantitatively the distances between mitochondrial centres. To our knowledge, this is the

first time when the positions of neighbouring mitochondria are characterised by prob-

ability density functions in the muscle cells. Analysis of confocal images of non-fixed

cardiomyocytes and skeletal muscle fibres by this method reveals that intermyofibrillar

mitochondria are arranged in highly ordered pattern (crystal-like) with relatively small

deviation in the distances between neighbouring mitochondria in cardiac and skeletal

muscles. Moreover, this arrangement is a muscle specific.

According to ultrastructural studies of cardiac muscle, mitochondria occupy about

30-35% of myocardial cell volume (McCallister & Page, 1973; Bossen et al., 1978; Sommer

& Jennings, 1986; Schaper et al., 1985) and are distributed everywhere in the cell (Som-

mer & Jennings, 1986). Intermyofibrillar mitochondria usually do not violate the limits

of sarcomeres and are located between the zone demarcated by two Z lines (Muir, 1967;

Segretain et al., 1981; Shimada et al., 1984; Sommer & Jennings, 1986). Thus, in longi-

tudinal direction, the distance between the centres of two neighbouring mitochondria is

expected to be similar to the sarcomere length. From our analysis, this distance is ∼2 µm

and is close to the measured sarcomere length value in relaxed state (Sommer & Jen-

nings, 1986). In transversal direction, it has been suggested that all contractile material

is within 0.5 µm of mitochondria in cardiac muscle (Sommer & Jennings, 1986). Taking

the maximal diameter of myofibril equal to 1 µm , we obtain that the distance between

the centres of neighbouring mitochondria in transversal direction should be larger than

1 µm by a diameter of mitochondria. The mean distance found in our study (∼1.5 µm)

suggests that the diameter of mitochondria is at least ∼0.5 µm in non-fixed preparations.



15

In the skeletal muscle, intermyofibrillar mitochondria are arranged in register with the

sarcomere. In red fibres, mitochondria form either pairs on the both sides of Z-line or

columns on A-band level (Ogata & Yamasaki, 1985, 1997). In white fibres, most of mito-

chondria are organised in pairs next to Z-line and rather few are located between Z-lines

in the form of thin columns (Ogata & Yamasaki, 1985, 1997). The same pattern of mito-

chondrial arrangement is evident from the confocal images of the skeletal muscles using

specific fluorescent markers (Figs. 2, 7). In some images, thin links between the bright

spots can be identified (arrowheads in the insets of Fig. 2B and Fig. 2C), corresponding

to the “column-forming” mitochondria of Ogata & Yamasaki (1985). Additionally, long

pairs of mitochondria running along I-band (see mitochondria marked by “*” in Fig. 2C)

were observed in white gastrocnemius, in agreement with the earlier studies (Ogata &

Yamasaki, 1985, 1997). In our analysis, we did not consider the thin columns or pairs

of mitochondria (marked by arrowheads and “*” in Fig. 2), but marked only the centres

of mitochondria within the pairs along I-band. Such method was used since it is hard

to distinguish whether these long structures are formed by separate mitochondria or long

extensions of mitochondria (Fawcett & McNutt, 1969) within the marked bright spots in

I-band limited mitochondria. Thus, the distances analysed in skeletal muscle represent

the distances between the mitochondria forming pairs on the both sides of Z-line.

On the basis of our images, we conclude that the pattern of mitochondrial arrangement

is similar in soleus (mainly oxidative muscle) and white gastrocnemius (mainly glycolytic

muscle). This is in contrast with the differences in the regulation of respiration by exoge-

nous ADP: in oxidative skeletal muscles the affinity for ADP is very low (apparent Km

very high), while in glycolytic muscle the mitochondrial affinities for ADP is very high in

vivo and in vitro (Veksler et al., 1995; Kuznetsov et al., 1996). Thus, regardless to the
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differences in the participation of mitochondria in energy crosstalk in these two muscle

types, mitochondria are arranged in similar and highly ordered manner. In longitudinal

direction, the distances between two pairs of mitochondria are similar for soleus (sum of

the distances corresponding to maxima 1 and 2 in Fig. 8, ∼3.7 µm) and white gastroc-

nemius (the distance between the pairs, ∼3.3 µm) and, according to the ultrastructural

studies, correspond to the distances between two Z-lines. Since we stretched the skeletal

muscle fibres when mounting on a microscopic slide (see Methods), the sarcomere length

is somewhat larger than the one attributed to physiological conditions (Burkholder &

Lieber, 2001) and correspond to the descending limb in force-length relationship (Rassier

et al., 1999). The main difference between the soleus and white gastrocnemius is in the

distances between mitochondrial centres within the same I-band. Namely, in longitudinal

direction, mitochondrial centres are considerably closer to each other in white gastrocne-

mius muscle than in soleus, leading to the reduced width of “mitochondrial band”covering

each Z-line in white gastrocnemius. In transversal direction, the distances between mito-

chondrial centres is considerably smaller in soleus than in white gastrocnemius pointing

to the higher density of mitochondria in soleus.

Most of the ultrastructural studies of the mitochondrial arrangement in the muscle cells

have been performed on the fixed and frozen material. Depending on the procedures used

in freezing and preparing the fibres, the results of cellular volume assessments can vary

more than 50% (Roy et al., 1996). In our study, we were able to analyse the mitochondrial

distribution in non-fixed fibres surrounded with solution containing substrates. The fibres

or cells were isolated to investigate them using confocal microscopy, but the intracellular

environment was kept, similar to the recent studies on nuclear patterning in living muscle

cells in the intact animal (Bruusgaard et al., 2003). Since there is no fixation involved,
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our technique allows to study quantitatively alteration in mitochondrial distribution in

response to the changes of physiological state of the same fibre or cell, i.e. in fully functional

mitochondria.

There is an important difference between mitochondrial distributions in cardiac muscle

cells observed using electron and confocal microscopy. Usually, the images obtained by

electron microscopy from the thin sections of cardiac muscle show larger amount of irregu-

larities in position of intermyofibrillar mitochondria than the images obtained by confocal

microscopy. For example, it is common that there are several mitochondria packed to-

gether between sarcomeres (Fawcett & McNutt, 1969; Forbes & Sperilakis, 1984; Sommer

& Jennings, 1986). The confocal images of cardiac muscle cells show remarkable regu-

larity in arrangement of mitochondria between myofibrils (Duchen, 1999). The regular

arrangement of mitochondria in confocal images of cardiac muscle has been demonstrated

by cross-correlating the fluorescence images of flavoprotein (autofluorescence) and tetram-

ethylrhodamine ethyl ester (mitochondrial inner-membrane potential sensitive dye). (Ro-

mashko et al., 1998). Namely, such cross-correlation map has several peaks which are

regularly spaced in longitudinal and transversal directions. If a central peak in the cross-

correlation map represents the coincidence of the both images then peripheral peaks ob-

served in the map indicate the periodicity of the packing of mitochondria along myofibrils

(Romashko et al., 1998). Recently, Aon et al. (2004) used the regularity of mitochondrial

positioning in the cardiac cell by dividing the image of the cell with the grid filled with

small squares (∼ 2×2 µm) and analysing the fluorescence within each of the squares. Us-

ing such approach, usually 1-2 mitochondria were observed in each square of the grid (Aon

et al., 2004). The reasons for such difference between mitochondrial distribution accessed

by electron microscopy and confocal microscopy are not clear. One of the possible expla-
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nations is that when thin sections is analysed, as in electron microscopy, mitochondrion

can be either left out from the section by very small margin or have several membrane

invasions which split a mitochondrion into several in the image plane. Additionally, fixa-

tion procedures used in electron microscopy may play a role here. Alternatively, several

mitochondria could be represented by a single bright spot in confocal images due to the

resolution limits of confocal microscopy. Whether any of these explanations is a correct

one or not, is not clear and requires further investigation.

Our study has an important limitation. Namely, we used only one section in our

analysis and not the series of sections covering three-dimensional bulk of tissue. In confocal

images, the fluorescent signal is detected from rather thick section, > 0.3µm (given for

emission at 488 nm) due to the limitation in resolution. Thus, the distances which we

compute are projections from three-dimensional space to our image plane leading to some

underestimation of these distances. To overcome this limitation, the series of images must

be acquired covering the three-dimensional area of interest and analysed to reveal three-

dimensional organisation of mitochondria in the cells. Such extension of our method is in

development.

The regular arrangement of mitochondria in the heart muscle cells is in accordance

with the recently described functional interactions between mitochondria and myofibril-

lar and sarcoplasmic reticulum ATPases (Seppet et al., 2001; Saks et al., 2001; Kaasik

et al., 2001; Birkedal & Gesser, 2004). Already in the 1960s, the even distribution of

mitochondria in the cross-sections of heart muscles led to the following suggestion: “each

mitochondrion serves only a very limited area of the myofilament mass immediately sur-

rounding it” (Fawcett & McNutt, 1969). As it was pointed out by Sommer & Jennings

(1986), the close association of mitochondria with other intracellular structures must not
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be taken as prime evidence for specific functional interaction since the amount of mito-

chondria is very large in the cardiac cells. However, there is a kinetic evidence for such

interactions from the experiments on permeabilized cardiac fibres: (a) it is impossible

to inhibit completely mitochondrial respiration when stimulated by endogenous ATPases

using externally added ADP-trapping system as long as the intracellular structures are

kept intact (Seppet et al., 2001; Saks et al., 2001); (b) Ca2+ uptake can be enhanced by

endogenous rephosphorylation of ADP to ATP either using endogenous creatine kinase

or oxidative phosphorylation as compared to exogenous ATP (Kaasik et al., 2001). The

interaction between mitochondria and ATP-consuming systems can be explained by local

intracellular diffusion restrictions which divide the cell into unitary structures containing

mitochondrion and enzymatic systems consuming ATP next to the mitochondrion, such

as sarcoplasmic reticulum and actomyosin ATPases (Saks et al., 2001, 2003; Vendelin

et al., 2004). The crystal-like arrangement seen in our work is consistent with this hy-

pothesis and suggests the unitary structure of the studied muscle cells. Implications of

such unitary structure to regulation of oxidative phosphorylation within units as well as

synchronisation of events in these units within the cell are not clear and are subject of

active research (Vendelin et al., 2000; Saks et al., 2004; Aon et al., 2003, 2004).

In conclusion, our results show that mitochondria, which are situated between the

myofibrils, are arranged in highly ordered crystal-like pattern in a muscle-specific manner

with relatively small deviation in the distances between neighbouring mitochondria. This

is consistent with the concept of the unitary nature of the spacial organisation of the

muscle energy metabolism. The developed method may be used for relating structural

and functional changes in muscle cells in several physiological and pathophysiological

states.
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Figure 1: Schematic presentation of method of analysis of distances between mitochondrial
centres. First, the centres of mitochondria are marked by small boxes. Next, the closest
neighbours are found for each mitochondria, one per sector (the borders of 45◦ sectors
are indicated by dashed lines). In the scheme, the mitochondrion, which neighbours are
sought for, is highlighted. The closest neighbours for this mitochondrion are indicated by
arrows. The relative coordinates of the closest neighbours, i.e. the coordinates relative to
the highlighted mitochondria, are stored and analysed further.
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Figure 2: Representative confocal images of non-permeabilized cardiomyocytes (subplot
A), soleus and white gastrocnemius fibres (subplots B and C, respectively). In these
images, cardiomyocytes and the skeletal muscle fibres are oriented almost horizontally.
Cardiomyocytes and soleus fibres were preloaded with MitoTracker(R) Red CMXRos;
white gastrocnemius fibres were preloaded with Rhod-2. In cardiomyocytes (subplot A),
mitochondria are rather regularly spaced forming a mesh covering each cardiomyocyte. In
soleus and white gastrocnemius (subplots B and C, respectively), mitochondria form rows
running across the fibre. These rows are formed by mitochondrial pairs, marked by arrows
in the insets of the subplots B and C. On some images, “column-forming” mitochondria
(Ogata & Yamasaki, 1985) can be identified (marked by arrowheads in the insets). In
gastrocnemius, a long mitochondria running in pairs in transversal direction were seen
occasionally (marked by “*” in the insets of subplot C). Size of the images: 59.5 µm ×

59.5 µm (subplot A), 94.3 µm × 94.3 µm (subplot B), 14.3 µm × 7.1 µm and 7.8 µm ×

7.8 µm (insets in the left and the right bottom corners of subplot B, respectively), 112 µm
× 112 µm (subplot C), 6.9 µm × 6.9 µm (inset on the left top corner of subplot C), 6
µm × 4.55 µm and 8.2 µm × 7.6 µm (inset in the left and the right bottom corners of
subplot C, respectively).
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Figure 3: Representative confocal image of non-permeabilized cardiomyocyte. In this
image, the cardiomyocyte is oriented vertically. The cells were preloaded with Mito-
Tracker(R) Red CMXRos at 37◦C. Centres of mitochondria (n = 414) were marked with
small black boxes, as shown. Image size is 59.5 µm × 59.5 µm
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Figure 4: Distribution function (subplot A) and radial plot (subplot B) showing distri-
bution of the distances between mitochondrial centres depending on the direction in the
cardiac muscle. Here, the confocal image shown in Fig. 3 is analysed. In subplot A, the
distribution functions of distance between the centres of neighbouring mitochondria along
the fibre (direction 90◦), in cross-fibre direction (0◦), and in the diagonal direction (45◦)
are shown. In subplot B, the distance which enclose 25%, 50%, and 75% of neighbouring
mitochondrial centres is shown in radial plot. In this plot, the distance between mito-
chondrial centres is given through the distance from the reference point (coordinates 0, 0)
and the direction is taken equal to the middle of the corresponding sector. Sector borders
are indicated by dashed lines.
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Figure 5: Distribution of centres of neighbouring mitochondria in the cardiomyocytes is
analysed taking into account not only the distance but a precise direction as well. Here,
n = 10 images are analysed with 1820 mitochondrial centres marked in the images. In
the figure, probability density function is shown by colour-shades with the dark areas
corresponding to large probability density values and the light areas to the small values
of the density. In each sector (sector borders are indicated by dashed lines), mitochondria
are not distributed evenly, but are packed in certain areas. Thus, there is a maxima of
probability density surrounded by area without any significant number of mitochondrial
centres.
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Figure 6: Distribution of centres of neighbouring mitochondria in the cardiomyocytes is
analysed using the modified sectors. Here, the same images as in Fig. 5 are analysed,
but with the sectors which are adjusted for analysis of cardiac muscle cell. The same
notations as in Fig. 5 are used. In subplot A, probability density function is shown. Note
that regions with high density of mitochondrial centres are adrift from the borders of the
sectors. In subplot B, the mean position of neighbouring mitochondrial centres is shown
by solid dots for each of the sectors. The area containing 50% of the centres in the sector
closest to the mean position is surrounded by solid line. The similar area corresponding
to 75% of the centres is enclosed by dashed line.
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Figure 7: Representative confocal image of non-permeabilized soleus fibre. In this image,
the fibre is oriented almost diagonally, with sarcomeres oriented from the top left corner
to the bottom right corner of the image. The fibre was preloaded with MitoTracker(R)
Red CMXRos at 4◦C. Centres of mitochondria (n = 434) were marked with small black
boxes, as shown. Image size is 29.8 µm × 29.8 µm.
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Figure 8: Probability density function describing distribution of mitochondria in soleus
fibre corresponding to image shown in Fig. 7. In subplot A, the probability density
function describes distribution of all mitochondrial centres which are within 5 µm × 5 µm
box from the each other. The cross in the centre of the image marks the reference point
(coordinates 0, 0). Note that there are several maxima of the probability density function.
The origin of the maxima marked by circles on the probability density map is explained
on subplot B. In subplot B, the distances corresponding to the marked maxima are shown
by arrows with the index corresponding to the maxima.
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Figure 9: Distribution of mitochondria in soleus fibre. Here, n = 10 images are analysed
with total 1659 mitochondria marked. In subplot A, probability density function is shown.
In subplot B, the mean position of neighbouring mitochondrial centres is shown by solid
dots for each of the sectors. The area containing 50% of the centres in the sector closest
to the mean position is surrounded by solid line. The similar area corresponding to 75%
of the centres is enclosed by dashed line.
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Figure 10: Representative confocal image of non-permeabilized white gastrocnemius fibre.
In this image, the fibre is oriented vertically. The fibre was preloaded with Rhod-2 at 4◦C.
Since the distances between mitochondria within each of the pairs is considerably smaller
than in soleus (see Results), we were not able to distinguish the mitochondria within the
pairs in most of our images. Centres of mitochondrial pairs (n = 137) were marked with
small black boxes, as shown. Image size is 25.4 µm × 25.4 µm.
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Figure 11: Distribution of mitochondrial pairs in white gastrocnemius fibre. Here, n = 8
images are analysed with total 621 mitochondrial pairs marked. In subplot A, probability
density function is shown. In subplot B, the mean position of neighbouring pairs is shown
by solid dots for each of the sectors. The area containing 50% of the centres in the sector
closest to the mean position is surrounded by solid line. The similar area corresponding
to 75% of the centres is enclosed by dashed line.


