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2 CHAPTER 1. INTRODUCTION

1.1 General introduction

This thesis looks at the coexistence of different types of order generated by the same elec-
tronic system. Obviously, different forms of order are often found together, e.g. magnetic
order on a crystalline lattice, but in such cases the types of order are often considered,
to the first approximation, to come from different parts of the system and do not always
interact (e.g. incommensurate magnetic order in itinerant electron systems), although
often the symmetry requirements of the two types of order constrain each other. When
more than one type of order is generated by the same components, a higher degree of
correlation is to be expected.

Before going further, the definition of order needs to be clarified. An ordered state is
defined by its order parameter. This quantity is zero in the disordered state and finite
in the ordered state. The transition may be first- or second-order. In a ferromagnet,
the order parameter is the macroscopic magnetization per unit volume, which is easily
measured. In a superconductor, the order parameter is the complex energy gap function
- a far more abstract concept.

In this thesis, multiple order parameters originating in the same electronic system are
studied. Prototype multiple order parameter systems are the so-called multi-k magnetic
structures where more than one propagation, or k, wavevector is observed in the same
volume. Two different 3-k structures are studied here. More complicated examples
include the coexistence of magnetism and superconductivity, two phenomena that are
often thought to be antagonistic. In the example considered here, UPdsAls, the two
behaviours develop from the same strongly correlated electron system.

The samples chosen are all 5f electron systems; a brief introduction to the physics of
5f electron systems is given next. The experimental probe of choice was the neutron and
so some information on some of the main neutron scattering techniques used is given in
Chapter 2. After this introductory material, the main work is split into three parts.

The first part, Chapter 3, is an inelastic neutron scattering investigation of the 3-k
structure of UO,. Full polarization analysis is used to study the spin-wave spectrum
of this material, to investigate the effects of a 3-k static structure on the spin-wave
fluctuations.

The second part, Chapters 4 and 5, covers diffraction studies of the uranium
monopnictide-chalcogenide solid solutions. These uranium rocksalts show many varied
types of multi-k magnetic order. In the 3-k phase of three such solid solutions, diffraction
peaks are seen at unexpected points in reciprocal space. A possible explanation as to the
origin of these peaks is presented, using a formalism based on geometric algebra (also
known as Clifford algebra).

The third part, Chapter 6, looks at the antiferromagnet superconductor UPdsAls
using inelastic neutron scattering. The effect of an external applied magnetic field on
both the normal and superconducting states is studied. In addition, the high-resolution
neutron spin-echo technique is used to determine the low-energy inelastic response to
greater precision than previously managed.
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1.1. GENERAL INTRODUCTION 3

Introduction générale

Cette these considere la coexistence de plusieurs types d’ordre. Evidemment les types
d’ordre différents sont souvent remarqués en parallele (par exemple I'ordre magnétique sur
un réseau cristallin). Le développement de 'ordre impose des restrictions sur les symétries
dans le matériau. Les symétries imposées par les ordres différents doivent étre résolues.
Si les ordres différents sont crées par les mémes constituants, le degré de corrélation doit
étre plus grand, et c’est cette question qui sera traitée ici.

D’abord, la définition du parametre d’ordre doit étre examiné. Un état ordonné est
défini par son parametre d’ordre. Cette quantité est zéro dans I’état désordonné, et fini
dans I'état ordonné. La transition peut étre de premiere ou deuxieme classe. Dans un
matériau ferromagnétique, le parametre d’ordre est I'aimantation dans un volume défini.
Ce n’est pas difficile a mesurer. Dans un état supraconducteur, le parametre d’ordre est
le gap d’énergie - une idée beaucoup plus abstraite.

Ici, on étudie les parametres d’ordre venant du méme systeme électronique. Les
systemes modeles sont les structures magnétiques, appelées multi-k, ou k signifie le vec-
teur de propagation dans l’espace réciproque décrivant 'ordre. Un tel systeme est ca-
ractérisé par l'observation de plusieurs vecteurs dans le méme volume. Un autre exemple
est la coexistence de 'ordre magnétique et la supraconductivité. Normalement, ces deux
phénomenes sont considérés comme antagonistes, mais dans UPdsAlj ils se développent
dans le méme systeme électronique.

Pour étudier ces effets, les composés contenant les électrons 5 f sont un choix évident, a
cause de la grande variété dans les états magnétiques qu’on trouve dedans. Une introduc-
tion breve décrivant les systemes d’électrons 5f est donné. La plupart des investigations
présentées ici étaient faites en utilisant les neutrons comme sonde, donc le deuxieme cha-
pitre est un exposé sur les techniques utilisées. Le travail principal est décrit en trois
parties.

La premiere partie, Chapitre 3, présente une investigation par la diffusion neutro-
nique inélastique de la structure 3-k d’UO,. Les neutrons polarisés étaient utilisés pour
examiner les ondes de spin dans ce composé. L’état 3-k a un effet sur les fluctuations qui
est nettement différent a ce qu’on observera dans, par exemple, ’état 1-k.

La deuxieme partie, Chapitres 4 et 5, présente une investigation par la diffraction
des solutions solides U(As,Se) et U(Sb,Te). Ces solutions sont antiferromagnétiques, avec
la structure NaCl. Plusieurs types d’ordre multi-k ont été vus dans la littérature. Cette
partie concerne la phase 3-k, ou on constate I’apparition de pics de diffraction a des en-
droits imprévus dans I'espace réciproque. Une explication est développée dans le Chapitre
5, en utilisant 'algebre géométrique (aussi appelé Ialgebre de Clifford).

La troisieme partie, Chapitre 6, considere le supraconducteur antiferromagnétique
UPdyAl;s. Leffet d’'un champ magnétique externe sur ’état normal et supraconducteur
est présenté, sondée par la diffusion neutronique inélastique. Une étude de la réponse
de basse énergie en prenant avantage de la résolution disponible avec le technique de la
diffusion spin-echo est également présentée.
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4 CHAPTER 1. INTRODUCTION

1.2 Uranium compounds

The actinides are one of the series in the periodic table. Each actinide atom consists of
a radon-like core with 3 to 17 external electrons filling the outer 5f, 6d and 7s shells.
The ground states for the actinide atoms have been determined by atomic spectroscopy.
The 7s shell is always filled, and as we move across the series, the 5f shell fills. For the
lighter actinides, one or two electrons may be present in the 6d shell. The ground states
are given in Figure 1.1.

89 90 91 92 93 94 95

Ac Th Pa U Np Pu Am —
ds? d2s? fids? f3ds? f4ds? fég? fis?

96 97 98 99 100 101 102 103
—- | Cm Bk Cf Es Fm Md No Lr
f7d52 f952 f1032 f1152 f1252 f1352 f1452 f14sZp

Figure 1.1: The actinide series, with the outer shell electrons labelled.

As the 5f shell is filled, the series does not mimic the behaviour of the 4f series, as
was originally expected. Study of a variety of material properties, for example the atomic
volume of the pure element, indicate two regimes. The light actinides (Ac-Pu) display a
similar behaviour to the d transition metal series, but from Am onwards the system acts
like the 4f lanthanides. The light actinides form a 5f transition series, and the heavy
actinides a lanthanide-type series. This is the first indication of the strange behaviour of
the 5f electrons.

In the lanthanides, the 4f electrons are localized, and can be treated as atomic elec-
trons. This is not the case for 5f electrons, which are partially extended. In the metallic
elements the 5f shells overlap, leading to the creation of 5f bands across the material.
This is similar to the behaviour of d band transition metals. In addition, the 6d and 7s
bands are close in energy and so can be expected to hybridize with the 5f band, creating
a complex conduction band. Interestingly, for Am onwards, the overlapping is very small,
if present at all, giving a good grounding to the idea that there are ‘light’ and ‘heavy’
parts of the 5f series.

From all of this, we can conclude that in actinide compounds, the extension of the
5f shell is very important in determining the electronic properties of the material, and
that hybridisation of the neighbouring shells also plays an important role. The local en-
vironment of the actinide ion is therefore extremely important, and this fragility explains
the wide range of different electronic behaviour observed in uranium-based compounds,
ranging from highly localized moment systems (e.g. UOs) to extended heavy fermion
systems (UPt3). This thesis concentrates on these two extremes, in particular localized
multi-k structures, and the more metallic, heavy fermion compound UPd;Al;. A brief
introduction to these two conditions is now given.
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1.3. MULTI-K STRUCTURES 5

1.3 Multi-k structures

Ferromagnets and coplanar magnetic structures (e.g. Néel antiferromagnets and helical
magnetic structures) can be described by an on-site term

Mka = Mkaexp(ié’ka), (11)

where My, is the polarization vector (related to the magnitude of the magnetic moment)
and 0, = k,.r;+0, is the relative phase at the i*® position. Such magnetic configurations
are fully described by one polarization vector and one propagation vector, k,, and are
nominated single-k magnetic structures. In this manner, My, is an order parameter, as
long as more than one site is considered. For a ferromagnet k = 0; in the ordered state
all of the on-site terms point in the same direction.

The discovery by Kouvel and Kasper [1] of neutron diffraction patterns from Fe-Mn
alloys that cannot be interpreted within this paradigm led to the proposal of multi-k
configurations as a natural expansion of the single-k case. These intricate, non-collinear
magnetic structures may be described by the simultaneous presence of more than one
polarization and associated propagation vector at a given site. For example, a config-
uration is deemed 2-k when, for a given reciprocal lattice vector 7, a single domain
yields magnetic Bragg peaks corresponding with two (orthogonal) wavevectors.! In this
scheme, a 2-k configuration is defined by two (orthogonal) simultaneous on-site terms,
My, = My, exp(if,) and My, = My,exp(ifg,), and therefore two independent order
parameters.

In practice, the existence of domains in high symmetry structures [3] often makes it
impossible to distinguish neutron diffraction peaks generated by a polydomain single-k
structure from those generated by a multi-k configuration. Indirect evidence is required
to support the hypothesis of a multi-k structure. This can include magnetization data
favouring a moment direction different to that required for the single-k structure [4], or,
in a cubic material, the absence of an observable lattice distortion [1].

This is no substitute for direct, microscopic, information, as obtained by neutron
scattering. Aid in resolving this problem is available through the application of uniaxial
magnetic fields or stresses to perturb the domain population, and hence the magnitude of
particular magnetic diffraction Bragg peaks. However, the perturbation may well bring
about a transition from one magnetic state to another, and so neutron diffraction appears
to be limited as a diagnostic tool.

To aid in the identification and understanding of multi-k states, this thesis presents
two alternative studies of triple-k states, using inelastic and elastic techniques, in cubic
fcc materials.

1.3.1 The stability of multi-k structures

First of all, a justification for the existence of multi-k structures on free energy grounds
is given. Consider a cubic fcc magnetic structure. A spin density wave can be used to

LA non-orthogonal basis set can also be used; an example is the magnetic structure of neodymium

2].
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6 CHAPTER 1. INTRODUCTION

describe the magnetic order. The observed quantity is
M(r) = My, + Mj, = My el 4 6 omilkariste) (12)

where k is the propagation vector. As the magnetic moments are constrained to lie on the
lattice sites, r; must be the lattice vector for site 7. In a cubic material, spin density waves
along equivalent symmetry directions must have the same energy; otherwise, the cube
would distort along the favoured direction. Wavevectors that are symmetry equivalent
are said to belong to same star of {k}. As a direct example, no energetic difference is
expected for waves with k = k, where @ = z,y, z. To see this, consider

2 1 2, 1 27 1

k,=—(= ik - 0); k —). 1.
o= (50,05 Ky = —(0,5,0) 0.0.5) (13)

2 T a 2

Using the Landau free-energy expansion, the free energy of a system can be written as a
power series in terms of the order parameter. In the general case, where n represents the
order parameter

(T, k) = ®o + a(T, k)n* +b(T, k)n* + ... (1.4)

No odd-power terms are permitted, as the phase terms do not balance.?

For the spin density wave, the appropriate order parameter is given by Equation 1.1.
The observed quantity is formed by considering this and its complex conjugate. As we
are working in a crystal lattice, the free energy must be translationally invariant under
the operation r; — r; — R,, where R, is a lattice vector.

In a multi-k state more than one spin density wave exist in the same volume simul-
taneously. The k, are drawn from the star of {k} (e.g. Equation 1.3). To investigate
the difference between single-k and multi-k states, the simplest free energy expression
involving the co-existence of more than one order parameter is

OBy = > Alka, T)(Mp, - My )+ B1 > (M, - M, )?

+By Y (M, - Mj, ) (Mg, - M) (1.5)
a#p

where A(k,,T) is a function of the temperature and the magnitude of k,. The B,, terms
are assumed to be temperature independent.
For a single-k material, there is only one k, in a given volume, and so

(® — Pg)y_r = A(ka, T) Mg, |* + B1|My, | (1.6)

Minimizing this with respect to [ My, |* results in the expression |My, |* = —A(k,, T)/2B;.
This can only be a stable minimum if B; is positive. This analysis shows that |Mj, |? o
A(ky, T). In the simplest approximation A(k,,T') is linear with respect to T, and so has
the form (7'—Ty) where Ty is the order-disorder transition temperature. This means that
adding a temperature dependence to the B parameters would be equivalent to adding
sixth-order terms to the free energy, which can usually be safely neglected.

2The case of an external magnetic field is not considered here
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1.3. MULTI-K STRUCTURES 7

In this given volume of single-k material, |My, [* = [Mg,|* = 0. Now suppose that the
three order parameters exist in the same volume simultaneously (the triple-k condition).
As discussed above, we assume that [Mg, |* = [My, |* = [Mg_|* = |[M|? to maintain cubic
symmetry.

(® — ®g)3_1, = 3A(k, T)|M|? + 3B, |M|* + 3B M|*. (1.7)

Experimentally, it is impossible to distinguish between the single- and triple-k states
by looking at the individual order parameters. The free energy from the uncoupled terms
must therefore be the same. This requires that |Mj |*> = |[M;_x|?/3. For the triple-k
state to be energetically favourable, By < 0. Otherwise, a new value for |[M|? can always
be found that will be give rise to a lower free energy for the single-k state than the
triple-k state.

With this restriction in mind, the free energy can be minimized with respect to |M]|?,
giving [M|? = —A(k,T)/2(B; + By). This is a stable energy minimum if (B; + By) > 0.
This restricts By to the range —B; < By < 0.

A similar analysis can be applied to a double-k state, this time with My |> =
|M;_|?/2. This will, as for the triple-k state, only be energetically favourable if By < 0.
However, in this case, a triple-k state must always be favourable. Higher-order terms are
needed to stabilize a double-k state.

2-k vs 3-k structures

As noted above, to fourth order the 3-k state is always preferred to the 2-k state. One
sixth-order term that would distinguish between 3- and 2-k states has the form

C’2|]‘\/‘[k’a:|2|]‘\/Iky|2|:"\/‘[k5z|2 (18)

which is only non-zero if the three spin density waves exist in the same volume. If Cy < 0
this always favours a 3-k state, but Cy > 0 may favour a lower-k state. This is not
guaranteed as the sixth-order term is proportional to (T — Ty)?, and so has a much
smaller effect than the fourth order terms.

Assuming that [M|? remains constant on going from the 3-k to the 2-k state the free
energy difference is

B3 g — Oy, = 3By M|* + Co|M|® — 2B, M. (1.9)

The 2-k state has lower energy if C' > —g—‘é. |IM|? is proportional to (Ty — T'), and
so near Ty, this condition is unlikely to be fulfilled, but as the temperature decreases,
the system may find it energetically favourable to switch to the 2-k state. The exact
crossover point depends strongly on the coefficients. This is illustrated in Figure 1.2.

1.3.2 Transverse and longitudinal structures

The direction of the polarization vector My, (i.e. magnetic moment direction) is not
necessarily related to the direction of the propagation vector k,. In this thesis, cubic fcc
antiferromagnets are studied. The magnetic moment is observed to be either parallel to
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Figure 1.2: —g% versus temperature, where |S|* = (T' — Ty). C is a temperature

independent coefficient (black line). C' is represented by the horizontal red line. When
C = - 5‘2 the 2-k — 3-k transition takes place at T™. The two transitions are denoted
by grey lines. The magnetic phase is noted; PM signifies paramagnetic.

the propagation vector (longitudinal) or perpendicular (transverse). For a 3-k magnetic
structure in a cubic fcc material all of the components are present in the same volume
at the same time, so there can be no magnetic K domains. However, there are three
S domains: one longitudinal and two transverse structures. From the nature of the
compound, the longitudinal or transverse orientation may be favoured according to the
exact electronic environment. In the transverse case, the two transverse options will be
degenerate. The difference between the three S domains corresponds to a re-ordering
of the moments in the chemical unit cell, and is illustrated in Figure 1.3 using a 2D
projection.

A e A
\/\‘\\‘\/\/
P A

Longitudinal Transverse

Figure 1.3: 2-D projections of longitudinal and transverse S domains of triple-k structures
where k = (001). Courtesy of Stuart B. Wilkins.
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1.4. HEAVY FERMIONS 9
1.4 Heavy fermions

1.4.1 Introduction

To explain the conduction properties of metals, the itinerant electron model was devel-
oped. In this model, the electrons can move freely throughout the metal: electron bands
form that extend across the sample. The transport properties of many normal metals are
successfully described by the Sommerfeld model, which assumes that the electrons do not
interact with each other. This is a Fermi gas, by analogy with an ideal gas. As electrons
are fermions with half-integral spin, they must obey the Pauli exclusion principle; two
electrons cannot have the same quantum numbers. In practice, the electrons fill up the
available states. When all of the electrons are accounted for, the energy of the sample is
the chemical potential, or the Fermi energy e at T' = 0 K.

Excitations from this ground state are limited to those electrons within kg7" of the
Fermi energy. This vastly reduces the number of excitations that can develop, and ac-
counts for the reduced electronic heat capacities that were originally such a surprise in
metals. The heat capacity for such a Fermi gas is linear with temperature, C' = ~T',
where v is the Sommerfeld coefficient, which represents the electronic density of states at
EF.

If the electrons are forced to evolve in a periodic potential (a reasonable approximation
of a lattice) the electrons may now be retarded or accelerated by the periodic potential.
This can lead to an effective mass different to that of the nominal electron mass. If more
complicated materials are to be described, further steps have to be taken to include the
interactions in the system. To do this, Landau Fermi liquid theory is often used.

1.4.2 The Landau Fermi-liquid theory

The Sommerfeld free electron model has been successfully applied to many simple met-
als, but if interactions between the electrons are present, the situation becomes more
complicated. Landau developed the Fermi-liquid theory to attack this problem. A one-
to-one correspondence between the states of the perfect Fermi gas and the Fermi liquid
is assumed. This is realized by adiabatically turning on the interactions. The Fermi
liquid (and its interactions) are defined by a set of elementary excitations that possess
the same spin and charge properties as the bare fermions. This is necessary as there is no
‘symmetry breaking’ in the adiabatic introduction of the interactions. (This means that
superconductivity cannot be developed as an extension of Fermi-liquid theory.) These
excitations, or quasiparticles, exist close to the Fermi surface, and their lifetime decreases
dramatically away from the Fermi energy. The excitations of the Fermi liquid are close
to those of a Fermi gas. Although the interactions may be strong, the excitations can be
described as weakly interacting quasiparticles. To first order, the difference manifests as
a renormalization of the particle mass, as the interactions affect the particle motion. In a
Fermi liquid, the mean free time between interactions for a quasiparticle is proportional
to T2, and so the resistivity p should have a component proportional to T2 as the resis-
tivity is determined by the number of collisions breaking up the flow of charged particles.
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This is the most common test for a Fermi liquid, but as the constant of proportionality
is determined by the effective mass, this effect is usually only visible for compounds with
a large electron mass renormalization. For other transport properties, further correc-
tions are required, often in the form of a so-called Stoner factor. These corrections are
determined by the exact nature of the quasiparticle.

1.4.3 Heavy fermions

This renormalization is the origin behind the name heavy fermion. The observation of
an apparent heavy fermion indicates that the system is strongly correlated. In fact, the
name heavy fermion is usually reserved for Ce- or U-compounds, where the f electrons
in the Ce- and U-compounds interact strongly with the conduction electrons at low tem-
peratures, increasing the effective mass by one or two orders of magnitude. Examples
include CeCug and UBej3. Other materials often have strongly correlated electron sys-
tems (e.g. transition metal oxides), however.

These materials may also order: antiferromagnetic order arises due to instabilities of
the Fermi surface to particular antiferromagnetic wavevectors (e.g. UCus). Superconduc-
tivity has also been observed, and appears to involve the heavy fermions (e.g. CeCusSiy).

All of the materials quoted above can be described in the Fermi liquid picture; however
as interactions increase, it may no longer be possible to maintain the adiabatic connection
between bare fermions and quasiparticles. This is suspected to be case for the ‘non-
Fermi-liquid’ materials, such as UCus_,Pd,, where the resistivity does not follow a 72
dependence.
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Sommaire

La diffusion neutronique est une sonde puissante des corrélations spatio-temporelle dans
la matiere condensée. Elle est particulierement douée pour I’étude de I’'aimantation, grace
au moment magnétique dont le neutron est doté. Ce moment rend le neutron sensible
aux champs magnétiques dans un échantillon.

Dans ce chapitre, des méthodes mathématiques pour traiter la diffusion neutronique
nucléaire et magnétique sont présentées, et les effets particuliers a un faisceau polarisé
sont également donnés. Le processus suit cela de Squires [5] et Lovesey [6].

Deux techniques développées pour profiter des effets d’un faisceau polarisé sont
présentées :

1) la polarimétrie sphérique neutronique, dans laquelle on peut controler 1'état de
polarisation du faisceau avant et apres I'événement diffusif. Cela donne acces a
des résultats dans lesquels on peut voir 'interférence entre les effets nucléaires et
magnétiques, et aussi entre les effets magnétiques d’origines diverses.

2) le <spin-echo>>, dans lequel la polarisation des neutrons est utilisée pour porter
I'information sur le transfert d’énergie entre le neutron et I’échantillon. Cela permet
la résolution spatiale et énergétique d’étre separée, ce qui n’est pas normalement le
cas avec la diffusion neutronique. Ainsi, une résolution supérieure est achevée.
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2.1 Introduction

Neutron scattering is a powerful probe of space-time correlations in condensed matter. In
particular, since the neutron carries a magnetic moment, it is sensitive to the magnetic
field distribution in the sample. This technique has long been exploited in studies of
magnetic materials.

Here, the neutron scattering cross-section for both nuclear and magnetic scattering
will be developed. The effects of using a polarized neutron beam will then be discussed,
along with a description of the main techniques for polarizing neutrons and exploiting
polarized neutrons. This approach follows those of Squires [5] and Lovesey [6].

2.2 The neutron scattering cross-section

The neutron is a spin-1/2 particle with a magnetic moment of —9.65 - 10727 JT~1. Tt
interacts weakly with nuclei (via the strong force) and magnetic fields (electromagnetic
interaction), and so gives rise to weak scattering, which is well described by first order
perturbation theory (the Born approximation). The quantity measured is the partial
differential cross-section: the number of scattered particles within a given energy and
solid angle range. For a neutron scattered by a potential V', this is:

d?o K s m
-5 (

deQ - E 27Th2> Zpkps Z | k?/S/)\/|V|kS)\>| (S(E)\ — E)\’ + huj) (21)

N,s!

k (k') is the incident (scattered) wavevector, s (s') is the incident (scattered) neutron
spin state, A (\') is the state of the sample before (after) scattering, m is the mass of
the neutron, F; is the energy of state i, p; is the occupation probability of state i, and
w is the energy transferred from neutron to sample in the scattering process. V is the
operator corresponding to the scattering potential.

To derive this equation, consider a plane wave ¥, = |1g|exp(—ik.r) of neutrons in a
spin state s. This wave is incident on a sample in state A, and is scattered to wavevector
k' and spin state ', whilst the sample state goes to A’. The differential cross-section, or
the number of scattered particles within a given solid angle range df2, is therefore

do
do e 2.2
(dQ))\—»)\/ ®dQZWkS)\ K5 A ( )

where @ is the flux of incident neutrons and Wi y_x v is the number of transitions per
second from the joint state {k, A} to state {k’, \'}.
To evaluate the transition rate, Fermi’s golden rule is applied:

Z Wk A=Kk N — fpk/|<k/8/)\/“/|k8)\>| (23)

pr is the number of momentum states in df) per unit energy range for neutrons in the
state k'.
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Evaluating the density of states pg

Suppose that the neutron-sample scattering system is contained in a box of volume V.
The neutron plane waves are obliged to be periodic within this box, and so only a discrete
set of k wavevectors are possible, although this set of points may be extremely dense.
These wavevectors form a lattice in momentum space, with a unit cell volume

(2m)°
o

The quantity prdE’ is, by definition, the number of states in d{2 with energy between E’
and dE’. This corresponds to the number of wavevector points in the volume k?dk’d(2,
SO

v = (2.4)

1
prdE' = —K?dk'dQ (2.5)
Uk
Since B/ = BE2 4B = B prdk/, and
1. ,m

The differential cross-section

In the scattering case, we assume that only one neutron is involved at any one time in
the scattering event, and so the neutron density is 1/V. The neutron wavefunction is
therefore g = ﬁexp(—ik.r).
Using this normalised form in the matrix element of Fermi’s golden rule pulls 1/12
outside the matrix element, such that
1

2r'1 . m ~
Wik v = — —k' —dQ—[(K's' N |V |ks\)|? 2.7
; ke A—k/ )\ non 12 V2< SNV ]ks))| (2.7)

where the k variable inside the matrix element is now normalised to unity.
The flux of incident neutrons is the product of the density and the velocity, ® =
hk/Vm, and so the differential cross-section is

do Vm 1 2n V m 1 N
Oy = I S L aQ— (K N[V | ksA) 2
(G i aq @t m Aty RSV IRsA)]
K m .
= Tl kSN VRSP, (2.8)

The partial differential cross-section

To evaluate the energy dependence, energy must be conserved, and so, if £ and E’ refer
to the neutron energy, and F, and E) to the sample state, £ + E, = E’' + E),. The
energy distribution of the scattered neutrons is given by a d-function, i.e.

/ S(Ex— Ey + E — B')AE = 1. (2.9)
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Using the definition of the differential cross-section

(%) B /0°° (dSZJEJ A (2.10)

and taking into account the occupation factors of the sample states and neutron spin
states, Equation 2.1 is obtained.

2.3 Polarized neutron scattering

Let us consider the effect of V on the neutron spin. It does nothing unless the potential is
coupled to the neutron spin. As an example, consider a system of aligned nuclear spins.
The scattering length will be different if the neutron spin is parallel or anti-parallel to
the nuclear spins.

The simplest potential involving such an interaction is:

V=A+B.o (2.11)

Operators A and B refer to the sample; o refers to the Pauli spin matrices for
the neutron. As we shall see later, this potential describes both nuclear and magnetic
scattering.

2.3.1 Beam polarization

We are interested in the effect on the neutron spin, so a firm definition of this quantity
is needed. The spin is defined as up or down relative to a quantization axis, usually set
by an external magnetic field. In a beam of neutrons, the spins may point in random
directions. We are interested in the ensemble of neutrons, so we define a quantity P, the
polarization, as the average value of the spin of the neutrons in the beam.

P = (o) (2.12)

P = +1 for a perfect spin-up beam, -1 for perfect spin-down beam, and 0 for an unpo-
larized beam. As we are considering an ensemble of particles, a partially polarized beam
is possible, but in this case we cannot give a complete quantum mechanical description
of the beam. In such cases, the density matrix formalism is more useful. The density
matrix operator p is a Hermitian matrix with unit trace, where Z denotes the identity
matrix.

ﬁ:%(zua.a) (2.13)
2.3.2 Spin dependent cross-section

With this established, we now return to the cross-section, in particular the part that
depends on the neutron spin alone.
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SpdEIVIP = S a7V (2.14)
= S plsl V) (2.15)
= S {slals) sV V]s) (2.16)

Here, we have used the closure relation and the property of the density matrix operator
that ps = (s|p|s). If we suppose that p is diagonal, then (s|p|s) = & ¢ (s'|p|s). Using this
identity and the closure relation again, we obtain:

Zps WP = > (slViVals) (2.17)

s

= Tr(pV+tV) (2.18)

This trace is independent of the choice of p, so the final result is not constrained to a
diagonal choice of p.

The partial differential cross-section is proportional to Tr(,éf/*f/). This can be eval-
uated using Equations 2.11 and 2.13. Bearing in mind that Tr(o) = 0, we obtain:

~ ~

1 ~ A ~ A
Tr(pV1V) = 5Tr((I+P-a)(A++B+-a)(A+B-a)) (2.19)
— AFA+BTB+AT(P-B)+ (P-B")A+iP-(B' x B)

We are also interested in the effect on the polarization of the beam. The incident
beam has polarization P, the scattered beam P’. The density matrix of the scattered
state is p’ = pV V. From Equation 2.13, P = Tr(op). After normalization, this gives:

Tr(pV+
p_ pV7aV) (2.20)
Tr(pV+V)
This is equivalent to:
d?o K r m .
odq = —( hQ) ZpATr( AV KN Yo <k;’X|V|k;)\>> X (2.21)

AN

(S(E)\ — FEyv+ fu,u)

We clearly need to know Tr(pV*+eV).

Tr(pV*toV) = A*B+ ABT+ ATAP+ (P -BY)B+ B*(P-B) (2.22)
—P(B*B) +iA"(B x P) +iA(P x B*) —i(B* x B))
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2.3. POLARIZED NEUTRON SCATTERING 17

These are the general forms with which to describe the spin-dependent interactions of
the neutron beam. P is a vector quantity, therefore we can describe fully the spin state
of the beam in 3-D space.

To briefly outline some consequences of this result, polarization is created indepen-
dently of the state of the incident beam by three terms: ATB, AB* and —i(B* x B).
The terms iA* (B x P) and iA(P x B*) act to rotate an incident polarization.

2.3.3 Nuclear scattering

For nuclear scattering, the Fermi pseudopotential is used as an estimate of the scattering
potential. This places a d-function at the site of each nucleus. Every isotope has its own
characteristic scattering length operator, b.

V(r) = 27;:285(7«) (2.23)

As the neutron beam is assumed to be a plane wave, evaluation over k and k' gives
us the Fourier transform of the scattering potential, V(Q), where Q = k' — k.

(KN VIkA) = (NV(Q)1N) (2.24)
Summing over the whole sample, the nuclear potential has the form:

N . 2mh? -
=) b, 2.2
Va(Q) : e ——b; (2.25)

where b = é + Oo - i, is the scattering length operator and R,; the position vector of the
it" nucleus. I is the nuclear spin operator. As stated earlier, the nuclear scattering is spin
dependent if the nucleus has a spin. There are then two distinct scattering events: I+ %

and I — % The operator b must return two different values.

1 1

blI+ =) = b T4+ =
|+2> +|+2>
. 1 1
I—2) = p JI—2=
b 2> b_| 2>

For this to be true, & and ( have the following values, where I is the modulus of I:

. (4 1)by+Tb 5= by —b_
“T T ar+r P arta
If we compare this to Equation 2.11, we see that:
~ . 21 h?
A= IQ-R; A 2.26
> cen 22 220

7
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B=Y)_ IQ&@@ I, (2.27)
(2

We can now evaluate the effects on the cross-section and beam polarization using
Equations 2.20 and 2.23. We assume that the nuclear spins are oriented randomly. This is
correct except at ultra-low temperatures. On averaging over the nuclear spins, any terms
linear in I will disappear. The last three terms in Equation 2.20 are linear in I. The first
term is unaffected by the spin averaging, but in the second term, O L IJ = I;(I;+1) where
O denotes the averaging over the nuclear spin variable. If we then introduce averaging
over the isotope distributions (denoted by a bar), we end up with the final cross-section,

split into coherent and incoherent terms.

dwdQ kZmZ GQRRNGET L5 (G2 — & + BPL(T + 1))] (2.28)
I(E\ — Ex + hw)
Therefore, the cross-section is independent of the initial polarization. The next ques-

tion is how the incident polarization is altered in the scattering process. For this, we need
to evaluate Equation 2.23, again averaging over the nuclear spin.

OTr(pV*toV) = P[ATA — %@(B+ - B)] (2.29)

This uses the identity given below, arising from the consideration of I as a vector.

A

O|B*(B - P)| = O|(B* - P)B] %PO[B* . B] (2.30)

After averaging over isotope distributions,

_ iQ-(R;—Rj)
PdwdQ - Zp,\Ze (2.31)

P[a +(5i,j(A —Oé ——621( —i—l))](S(E,\—E,\/—i-hw)

In this equation, the nuclear coherent and isotope incoherent scattering do not change
the final polarization. However, for the incoherent scattering due to random nuclear spin
orientation, the scattered polarization is —lP To obtain this fraction, one third of the

scattering (o.1.) does not flip the spin, and two thirds (0,1, + o,1,) do.

2.3.4 Magnetic scattering

The scattering potential here is rather more complicated than for nuclear scattering.

A~

Vin(Q) = roo - M| (2.32)
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Figure 2.1: A cartoon displaying the relative geometry of the neutron spin and the
scattering vector () as described in the text.

M, =Qx(MxQ) (2.33)
~ 1
M= 5 M) (2.34)

M (k) is the Fourier transform of the magnetic field distribution in the sample. This
can be derived by considering scattering off a single electron. From Equation 2.33, it is
clear that only those parts of M perpendicular to the scattering vector K are involved. &
is the unit vector parallel to the scattering vector k. rg is the constant of proportionality.

The first thing to note is that this potential has no A component, and B = rgM, . This
reduces our expressions for the spin-dependent cross-section and scattered polarization
considerably.

Tr(pViV,) = BFB+iP - (BT x B) (2.35)

The cross-section depends explicitly on the incident polarization and its relation to
the magnetic field distribution inside the sample.

Tr(pV*eV)= (P -BY)B+ B"(P-B)—- P(B"B) —i(B" x B)) (2.36)

As noted above, the chiral i(B* x B) term indicates that a non-collinear magnetic
structure will polarize an unpolarized beam. From the other three terms, we see that if the
polarization is parallel to B , the polarization will be unchanged (non-spin-flip scattering),
whereas if it is perpendicular, the polarization will be flipped. This is illustrated in Figure
2.1.

2.3.5 Nuclear and magnetic scattering

In a real material, we have both nuclear and magnetic scattering at the same time, as
spins are always attached to atoms. It is clear that A will always be solely nuclear,
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whereas B may contain components deriving from both nuclear and magnetic origins.
In a real experiment, this all has to be accounted for. We come back to Equation 2.23.
This is reshown here for clarity.

Tr(pV*ToV) = A*B+ ABT+ ATAP+ (P -BY)B+ B*(P-B)
—P(B™B) +iA"(B x P) +iA(P x BY) —i(B* x B))

Several terms that disappear in the purely nuclear case are maintained here. In par-
ticular, we have the creation of polarization by symmetric nuclear-magnetic interference
terms (A*B + AB*) We also see rotation of the incident polarization in the antisym-
metric nuclear magnetic-interference terms iA* (B x P) +iA(P x BY).

It is often a useful approximation to associate B solely with the magnetic part of
the scattering potential. Many materials do not have isotopes of different spin. In this
case, the nuclear component of B is zero. For those that do, they are only ordered at
extremely low temperatures and so for the majority of neutron scattering measurements,
can be treated as discussed in Section 2.3.3.

In subsequent sections, correlations coming from the A operator may be labelled N
(nuclear in origin) and those coming from the B operator may be labelled M (magnetic
in origin).

2.4 Correlation functions

The scattering cross-section can be directly related to the microscopic auto-correlation
functions. The evaluation of the matrix element in Equation 2.1 is obviously crucial in
understanding the observed scattering. The cross-section picks up the thermal average
of the operators. For nuclear scattering this represents correlations in the positioning of
the nuclei. The thermal averaging over the matrix element, neglecting spin states for the
moment, is

/ 3 (expli@ - Ry(0)] expliQ - By (1)) expl—itlde (2.37)

where Q@ = k — k' and R;(t) is the time-dependent positioning vector of the j™ nucleus.
An intermediate scattering function can therefore be defined as

1 , :

S(Q.1) = 5 D _(expliQ - R;(0)] expliQ - Rj(t)]) (2.38)
3y’

where N is the number of nuclei in the system. The scattering function then steps fully

into reciprocal space in both the momentum and energy variables:

]' —iwt
S(Q.w) = 5 / [(Q, e dw. (2.39)
The coherent cross-section can therefore be written as
d?o Ocon K’
=_2_NS ) 2.40
a0~ ar 0@ (2.40)
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S(Q,w) is the Fourier transform in time and space of the time-dependent pair-correlation
function. The sample can be probed through either neutron energy loss or neutron energy
gain. For neutron energy gain, the number of excitations, related to the temperature
becomes important. To account for this, detailed balance factor has to be applied:

S(Q,w) = exp(hw/kpT)S(—Q, —w). (2.41)

For magnetic scattering, the current-density auto-correlation function is probed. The
neutron creates a magnetic field. The response of the sample to this field is charac-
terized by the complex susceptibility x(Q,w). In the static limit at @ = 0 this is the
static susceptibility divided by gup where g is the Landé factor. Using the fluctuation-
dissipation theorem and Equation 2.41, the imaginary part of the susceptibility is linked
to the current-density correlations

X”(Q,W)
1 —exp(—hw/kgT)

S(Q,w) (2.42)
The spatial distribution of the individual scattering unit must also be considered. The
Fourier transform of this distribution imposes an intensity envelope (the magnetic form
factor) on the observed scattering, and for magnetism the effects are usually cause the
signal to diminish for large Q.

2.5 Polarizing Neutron Beams

The neutron beam generated by either a reactor or spallation source is unpolarized. To
polarize a beam, neutrons with a given polarization must be extracted, and the rest
thrown away. This can be accomplished in several different ways, two of which are
discussed below.

2.5.1 Polarizing monochromators

From our discussion above an unpolarized beam can be polarized by either the nuclear-
magnetic interference AT B+ AB™ or the chiral magnetic —i(B* x B) terms in Equation
2.23. If we assume that the nuclear spins are randomly oriented, then for the first term to
exist, nuclear and magnetic scattering must be generated by the same scattering vector.
This is fulfilled in ferromagnets. The second term is purely magnetic, and is zero unless
the moment directions in the material are non-collinear.

Polarizing monochromators usually belong to the first category. A typical example,
commonly used at the Institut Laue-Langevin, is the Heusler alloy CusMnAl. Using
the (111) reflection, the purely nuclear (ATA) scattering is minimized, so that a high
polarization (in excess of 90%) can be obtained.

Polarizing supermirrors have also been developed. By stacking multilayers of fer-
romagnetic material, extremely high levels of polarization can be achieved using poor
polarizers such as iron. At each layer, more neutrons of the desired polarization are
reflected back.
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2.5.2 Polarizing filters

Helium-3 is a spin-1/2 nucleus. It has a very strongly spin-dependent neutron capture
cross-section. Effectively, all neutrons with anti-parallel spins are absorbed, leaving the
spin-parallel neutrons. Therefore, in an ideal filter containing a gas of perfectly polarized
He? nuclei, an incident unpolarized beam would be perfectly polarized after transmission
through the filter.

Unfortunately, it is not possible to create a perfectly polarized gas of He?. Polarization
can be generated by optical pumping methods. Two such methods are currently being
pursued. In spin exchange optical pumping, a gas of, for example, rubidium ions is polar-
ized using circularly polarized light, and then this is used to polarize the helium through
direct spin exchange. In metastable exchange optical pumping, the helium is compressed
and then polarized directly using the circularly polarized light. It is then brought to the
desired pressure. This produces higher polarizations, but cannot be performed in situ.
In both cases, the He? polarization has a given relaxation time.

2.5.3 Maintaining and controlling neutron polarization

To preserve the polarization of a neutron beam, the chosen quantization axis must remain
constant. This is usually achieved by setting up a stable magnetic field through which
the beam moves. The direction of magnetic field lies parallel to the neutron polarization.

If the direction of the field is changed adiabatically, then the polarization can be
rotated without loss of polarization.

If the field direction is changed non-adiabatically, i.e. very suddenly, the beam po-
larization will not follow, but will instead start to precess about the new field direction.
The problem is getting the change in field to occur sharply enough. This can be achieved
using superconducting Meissner shields to separate two fields (this is done in CRYOPAD
(see Section 2.6.3)).

Another type of spin flipper is the Mezei spin flipper. In the simplest form, this
involves a thin rectangular solenoid, at an angle to a guide field. The neutrons enter and
leave the coil non-adiabatically, and inside the coil, the polarization precesses through an
angle determined by the internal field, the thickness of the coil, and the neutron’s velocity.
The guide field remains constant on either side, but the neutron beam’s polarization can
be completely determined. This is often used to set up m or 5 spin flippers.

2.6 Experimental setups

2.6.1 Flipping ratio measurements

In the simplest experiments involving polarized neutrons, a polarized incident beam is
generated and a 7 spin flipper placed before the sample. The cross-section is measured
with the spin flipper off, and then with the spin flipper on. This gives the cross-sections
when the polarization is reversed. This gives us the flipping ratio for a particular scat-
tering vector and energy transfer.
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As a part of the cross-section depends on the incident polarization, and so can be extracted
from such measurements. This is particularly useful for studies of the magnetic form
factor of ferromagnets, where the nuclear and magnetic parts occur at the same scattering
vector.

2.6.2 XYZ polarization

By placing a spin flipper before and after the sample, four separate cross-sections can be
measured: (T | T), (T ] 1),{l | T) and (] | |). As discussed in the theory section, this
allows us to select particular components of the cross-section, for example spin dependent
isotope incoherent scattering.

Further control can be added by using adiabatic guide fields to rotate the polarization
prior to entering the sample region. By this means, three orthogonal directions can be
selected and investigated. The direction must be maintained during the course of a mea-
surement, and as the guide field must be present across the sample space, ferromagnetic
samples cannot be investigated. A sample spectrometer is shown in Figure 2.2.

A common notation for the directions has arisen. x is parallel to the scattering vector,
y is perpendicular to the scattering vector in the scattering plane, and z is perpendicular
to the scattering plane.

In magnetic scattering, signal parallel to the scattering vector is not visible. This
gives us extra directional information concerning the magnetic field distribution in the
sample. It means that, assuming no spin-dependent nuclear scattering term, we can
cleanly separate out magnetic and non-magnetic signal by comparing the spin-flip and
non-spin-flip cross-sections when the polarization is parallel to the scattering vector.
Furthermore, if no nuclear signal is present, we can then distinguish the direction of
the magnetic signal by comparing the spin-flip and non-spin-flip cross-sections with the
polarization perpendicular to the scattering vector. This is all illustrated in Figure 2.1.

2.6.3 Spherical neutron polarimetry

The XYZ polarization technique outlined above maintains a guide field at all times, to
preserve the axis of quantization and hence the beam polarization. This can be avoided
by careful management of the sample environment. With this change, all possible cross-
sections in three dimensions can be accessed. The scattering event can be described by
a polarization tensor, P. Previously, we had access to the diagonal elements. By full
control of the sample environment, all of the elements become accessible.

sz ny P:r:z
p=|pr, P, P, (2.44)
sz sz Pzz
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Figure 2.2: Schematic arrangement of the polarization spectrometer first designed by
Moon et al. [7] at the Oak Ridge National Laboratory.

To achieve this, the CRYOPAD sample environment has been developed at the ILL.
This device can be inserted into any spectrometer equipped to generate polarized neu-
trons. The basic principle is as follows. An incident polarization is selected. The beam
enters a zero field region surrounding the sample. It interacts with the sample, and the
scattered beam then exits the zero field region. A particular polarization is selected for
analysis.

The beam is polarized by some method, such as using a Heusler monochromator. At
this point, it has polarization P, parallel to the direction of motion. This beam enters
the incident nutator, where the polarization is rotated to an angle # with respect to the
vertical axis (out of the page in Figure 2.3). The beam then passes through the outer
Meissner shield. These shields are superconducting niobium cylinders, cooled inside a p-
metal box to prevent stray magnetic fields from entering the volume inside the cylinder.

Between the two Meissner shields, the primary toroidal coil generates a horizontal
magnetic field B,. A secondary coil is wound over a 45° segment of this solenoid, and
allows tangential/horizontal fields to vary for k; and ky. Two rotatable dipole electro-
magnets (nutators) complete the device. The first nutator is used to rotate adiabatically
the neutrons spins (the spin component parallel to the magnetic field B;, is conserved
along the neutron path), so that the polarization P at the surface of the outer Nb shield
is orthogonal to the incident wavevector k; and forms an angle 6;, to the vertical axis,
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Figure 2.3: Schematic layout of CRYOPAD-II.

defined by the nutator orientation. The passage into the annular region between the two
Meissner shields is non-adiabatic, causing the polarization P to rotate around B, by an
angle Yi,. By choosing appropriate values for 6;, and for the electrical currents in the
toroidal coils, the polarization of the incident beam, P;, can be driven to any spatial
orientation. By controlling the orientation 6, of the second nutator, and the precession
angle You that the beam polarization undergoes when the scattered neutrons cross the
annular region, any of the three Cartesian components of the final polarization, Py, can
be analyzed. In the following, the z-axis of the reference frame is defined to be parallel
to the momentum transfer Q = k; — ky, the y-axis is perpendicular to @ and lies in the
scattering plane, and the z-axis is perpendicular to the scattering plane (vertical). This
means that in a given scan across reciprocal space, only the z-axis remains constant in
physical space.

The field strengths necessary to deliver the full scattered polarization along the correct
direction to maximise detection using, for example, a Heusler analyser crystal, can be
computed. This is described by Brown et al. [8]. In this way, all sixteen correlation
functions defining the most general expression of magnetic neutron scattering [9, 10]
can be measured. Spherical neutron-spin polarimetry has proved to be very useful in
determining both complicated magnetic structures and materials where nuclear-magnetic
interference is strong. This interference can only be observed when magnetic signal is
found at the same scattering vector as nuclear signal.

Most previous studies have used elastic scattering. As an example, a thorough study of
the formation of magnetoelectric domains in CryO3 was possible (see Brown et al. [11]).
To summarize briefly, CroOg3 is a collinear antiferromagnet with magnetic and nuclear
scattering phase shifted by 90°. It is anti-centrosymmetric and so information on the
180° domains cannot be obtained from the cross-section or XYZ polarization analysis. By
cooling under various conditions of electric and magnetic fields, an imbalance in domain
populations was created. Then, the crystal was measured in zero field. The magnetic
structures produced in given cooling conditions were obtained, along with the zero field
form factor. In principle, the form factor of any antiferromagnetic material can now be
measured by this technique.

This technique has not, as yet, often been associated with inelastic scattering stud-
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ies. Although general expresssions for the cross-section and polarisation of the scattered
neutrons were derived in the early 1960s [9, 10] only one recent paper can be found in
the literature where the results of inelastic scattering experiments with three-dimensional
polarization analysis are reported [12]. Such experiments can, in principle, give a wealth
of information on the interaction between electronic, spin and vibrational degrees of free-
dom, and have the potential to play an important role in the study of strongly correlated
electron systems. However, the low flux associated with polarised neutrons combined
with the small intensity of the inelastic excitations has limited the use of this technique.
In Chapter 3 such an inelastic experiment is described, carried out on UQOs.

2.6.4 Neutron spin-echo

The neutron spin-echo technique, first developed by Mezei [13], uses polarized neutrons,
in a completely different way. In a spin-echo experiment, the neutron polarization is
used to encode the energy transfer between the neutron and the sample. This allows
the energy and spatial resolution of the neutron to be separated, and very good energy
resolution can be obtained.

The incident neutron beam is fully polarized perpendicular to a magnetic field Bj.
On entering field B; the polarization precesses over a given distance I before hitting the
sample, acquiring a precession angle ¢, = ~yl; By /v1, where 7 is the neutron’s gyromagnetic
ratio and vy is the neutron’s velocity. The incident neutron beam is typically only loosely
monochromatized, and so has a large spread of velocities, each of which ends up with
a different total precession angle at the sample, meaning that there is no overall beam
polarization at the sample.

At the sample, the beam is scattered, possibly leading to a momentum and/or energy
transfer, and then passes through a second arm of length [ and magnetic field B,
acquiring a precession angle ¢ = Iy By /vy. The total precession angle is therefore A¢ =
¢1 + ¢o. For elastic scattering v1 = vq, and so if [{B1 = —[3Bs, A¢ = 0 for all incoming
neutron velocities. This is the ‘symmetric’ case. All of the neutrons are ‘unwound’
correctly, and so at the detector the beam polarization parallel to the original direction,
PysEg is recovered, taking into account any effects of scattering on the polarization.

Pysp = Ps(cos(A¢)) (2.45)

where the averaging includes information about the scatterer and Py is the polarization
after scattering by the sample. By altering the field slightly in one arm, A¢ is shifted
away from zero, and oscillations in Pygsg can be measured. The amplitude of this echo
group is a measure of the scattering intensity involved, and the envelope represents the
velocity spread of the incident beam. By measuring the echo group, the measurement
of the amplitude is ensured, even considering the high sensitivity of the system to small
changes in the magnetic field.

Experimentally, the echo condition is obtained by keeping the magnetic field in the
two arms parallel and using a 7 spin flip to alter the sense of precession. This can be done
by an external m-flipper placed after the sample, but if the sample creates spin-dependent
scattering (e.g. magnetic) this may bring about an appropriate 7 flip. This has the added
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amplitude

Figure 2.4: An echo group. A is the nominal wavelength of the scattered neutron beam
and 0\ the wavelength spread.

advantage that all non-flipped scattering does not meet the echo condition, and so is not
measured in the echo. This is discussed in more detail in Section 2.6.4.

In the inelastic case, the echo condition is not so obvious, but the key effect needed is
that the total precession angle is stationary over the whole beam (and spread of velocities
therein):

09

ov

The energy transfer, like A¢, is a function of the initial and final velocities of a particular
neutron. The energy transfer is positive for neutron energy gain.

= 0. (2.46)

beam

llBl lQBQ

), ho = T (12 —22). (2.47)

A¢=7( 5

U1 V2
A¢ is then used to probe w(vy,vs). As the functional dependence on vy is different,
this is only valid for first order variations in velocity about an arbitrary reference point,
denoted by a bar.

Ap=¢—¢=r1(w—n) (2.48)
where 7 is a constant of proportionality with units of time and
- LB, 1B
b=r (B2 -RR). me=g ). (2.49)
U1 U2 2

This only holds for first order variations in the velocities: dv; = v; — v;. Applying this
approximation gives

- LB LB
¢ — ¢ =Yg 0Us — Y= 0Vy (2.50)
U3 U1
and
_ m,_ _
Ww—w= E(UQ&UQ — 01001). (2.51)

Applying this to Equation 2.48 gives an expression for the constant of proportionality
7 and the ratio of magnetic fields in the two arms necessary to fulfil the condition.

llBl ?7? B lle hggl
= — T = = —
l2B2 ?73 ' g 3 QEZ

7

(2.52)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



28 CHAPTER 2. NEUTRON SCATTERING

For the elastic case, this gives I; By = lsB,. The value of 7 is set by the precession field.
For the inelastic case, the choice of magnetic fields is keyed to the desired energy transfer,
for the nominal wavelength of the neutron beam. For a reasonably monochromatic beam,
an echo group may be formed.

Returning to Equation 2.45

Pnsg = Pylcos(¢ — @)) = Pini{cos(T(w — ©)))
/ S(Q, w) cos(r(w — @))dw

[ 8@

_p (2.53)

The effect of scattering is included, here assuming no ) dependence. The observed
polarization is the Fourier transform of the scattering function S(Q,w). For this reason,
7 is referred to as the Fourier time.

As an example, consider a quasielastic response, assumed to have a Lorentzian line-
shape, centred at the elastic echo condition, ¢ = @ = 0. In the high-temperature limit

this is
r
where I is the half-width.
I" cos(wT)
/71“2 T dw
Pysg = P, T (2.55)
/ T2 .2 n dew
= Pe 7. (2.56)

If the spectrometer is tuned to the elastic condition, the Fourier time constant for a given
measurement is the time, ¢, representing the de-correlation time for the response being
probed.

Pysg can be measured at a series of Fourier times by altering the magnetic fields in
the arms (Equation 2.52). At the elastic echo condition Pysg(7) = PsRe S(Q,7)/S(Q,0),
i.e. it is the intermediate scattering function, as 7 is the de-correlation time, normalized

f0 S(Q,0) = / S(Q, w)dw.

A real spin-echo spectrometer

Figure 2.5 is a sketch of real spin-echo spectrometer, the IN11A spectrometer at the
Institut Laue-Langevin. The neutron beam is polarized by a supermirror section, and is
then flipped by 7/2, to place it perpendicular to the field in the solenoid arms, so that it
will precess appropriately. In the figure, the fields Hy and H; are B; and B, respectively
in the text above.
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Figure 2.5: The IN11A spin-echo spectrometer at the ILL. Taken from the ILL’s Yellow
Book.

Magnetic spin-echo scattering

Magnetic scattering is spin-dependent and so the incident beam polarization will be
changed by the scatterer (Section 2.3.2). This must be taken into account if the beam is
to unwind correctly in the second arm.

Here, only systems with zero total magnetization will be considered (paramagnets
and antiferromagnets). However, neutron spin-echo can be performed on ferromagnetic
samples, and the appropriate method is given by Mezei [13]. As there is no macroscopic
magnetization, the magnetic correlations (M;) = 0, where i = x,y, z, three orthogonal
directions. For an isotropic magnetic system (e.g. a perfect paramagnet), the correlations
in the three orthogonal directions are independent, such that (M;M;) = 0 for i # j, and
(M} M;) = (M;M;) # 0. From Equation 2.36, as the chiral term is zero, the scattered
polarization is

o (MO(PBM,+ PAML) +{(PM + PAOMY)
(MM, + MxM.)
2P, (MyM,)y +2P.(M;M.)2

= — P 2.
<M;My + MxM.,) (2.57)

if the scattering vector is assumed to be parallel to z. In the spin-echo experiment, the
plane of precession of the neutron polarization isassumed to be rotated so that it contains
the scattering vector. For the isotropic sample Equation 2.57 reduces to P’ = —k(P - k).

The final polarization can be split into two components, each with half the magnitude
of the original polarization (Figure 2.6b), one of which receives a 7 flip. Magnetic echoes
will be seen without using an external flipper. This has the great advantage that nuclear
scattering no longer meets the echo condition, and so does not contribute. However, the
converse is not true. If a w-flipper is used, the second magnetic component will contribute.

The scattered magnetic polarization is half the initial polarization. This is true for all
cases except when P is parallel to z or y. When P lies parallel to the scattering vector,
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Figure 2.6: (a) The effect of a m-flipper on the neutron spin with the polarization in the
x —y plane. P; is the incident polarization, and Py that after the flipper. (b) The effect
of isotropic magnetic scattering on a neutron spin polarized in the x — y plane, where x
is parallel to the scattering vector. P’ shows the effect of the magnetic scattering and
Prlippeq is the component that contributes to the echo.

the entire polarization is 7 flipped. When P is perpendicular to the scattering vector,
there is no 7 flip at all. For all other positions, a 7 flipped component of magnitude P /2
can be extracted. However, in a typical spin-echo experiment, a spread of polarizations
are expected at the sample, and so these effects average out.

The next case of interest is a tetragonal single crystal with (MyM,) — (M M.) =
A(M; M, + M; M) # 0. The system is anisotropic, and the direction of this anisotropy
is represented by A. This could occur in an antiferromagnet, or as critical fluctuations
in a paramagnet. From Equation 2.57

P’ = (—P, AP, —AP.) (2.58)

If the precession plane is  — ¢, this can again be split into two components:

P = (%) (=P, —P,,0) + <#) (—P,, P,,0). (2.59)

The second term has been 7 flipped and contributes to the observed echo.
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Sommaire

Ce chapitre concerne l'identification des structures magnétiques dites <multi-k>,
en utilisant les neutrons inélastiques. En 1981, Jensen et Bak [14] ont vu que les ondes
de spin dans le composé USb peuvent étre comprises si la structure n’était pas 1-k
(avec un vecteur de propagation k pour décrire la structure), mais un type de phase 3-k
(trois vecteurs de propagations sont nécessaires pour décrire la structure). Dans USb, les
moments magnétiques se trouvent paralleles au vecteur de propagation, donc on appelle
cela la phase 3-k longitudinale. Dans ce chapitre, ce principe est utilisé pour identifier le
cas 3-k transverse (le moment magnétique est perpendiculaire du vecteur de propagation).
L’exemple donné est la phase 3-k transverse dans le dioxyde d’uranium.

Antérieurement, la structure statique n’a jamais permis 'identification d’une structure
multi-k, et c¢’est pour cela que 'on est obligé de chercher des informations dans la réponse
dynamique. UO5 est un bon exemple d’une structure souhaitée. Les mesures indirectes
donnent une grande probabilité que la structure est 3-k transverse, et les ondes de spin
sont bien définies, si peu comprises. Une introduction aux études antérieures du dioxyde
d’uranium est donnée.

Parce que les moments ne sont pas paralleles aux vecteurs de propagation, les neutrons
polarisés sont nécessaires pour identifier I’anisotropie des ondes de spin. La polarimétrie
sphérique neutronique est utilisée pour faire 'analyse. Les résultats donnent une descrip-
tion détaillée de ’anisotropie des fluctuations collectives dans les directions principales de
I’espace réciproque. On confirme aussi la nature magnétique des excitations dans 'UQO,
et on en donne une description théorique. Ce comportement semble d’étre caractéristique
d’un structure 3-k.

Les calculs souffrent du probleme bien connu du dioxyde d’uranium - le nombre
d’ondes de spin dans le zone de Brillouin [15]. 11 y en a trois modes, mais la théorie
présentée ici n’en donne que deux. Cela veut dire que les calculs ne sont pas exacte-
ment les-mémes que les résultats, mais globalement ils donnent le comportement ob-
servé. Les deux modes théoriques correspondent a la mode acoustique et un des deux
modes optiques. Cela est démontré quand on voit que I’anisotropie observée se développe
intégralement dans un structure 3-k. Pour le voir dans un structure 1-k, les parametres
du modele ne sont pas du tout réalistes. En conclusion, 1’anisotropie des ondes de spin
est particulier a un structure 3-k.

Il sera intéressant de faire des mesures similaires sur d’autres composés 3-k. Deux
exemples déja identifiés sont USb [16] et NpBi [17] (3-k longitudinale les deux). Les
mesures ici peuvent confirmer, ou le contraire, la théorie sur I’'USb. Il sera également
intéressant d’étudier un échantillon magnétique moins complexe, par exemple le MnF,
pour voir I'anisotropie dans un systeme mieux compris.
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3.1 Introduction

This chapter discusses the use of inelastic scattering techniques to identify multi-k phases,
in particular 3-k phases. Jensen and Bak [14] realised, in 1981, that the spin-wave spectra
of USb could only be explained if the structure was assumed to be longitudinal 3-k, and
not single-k. In this chapter this is extended to the transverse 3-k case, illustrating that
the nature of the spin-wave excitations can be used to identify a 3-k structure.

To this end, a material with a transverse 3-k structure and strong dispersive inelastic
excitations is required. UQO, is an obvious candidate. It is a well-studied compound,
thought to have a 3-k state, with a detailed spin-wave spectrum. An introduction to
the physics of UO, is given below, followed by an analysis of the spin-wave spectrum
using spherical neutron polarimetry. The results obtained give a detailed description
of the anisotropy of the collective magnetic fluctuations modes propagating along the
main symmetry directions in UO,, a cubic 3-k antiferromagnet in which quadrupolar
and magnetovibrational interactions are known to be far from negligible. These results
confirm the magnetic character of the excitations observed in UO,, and complete the
phenomenological picture by providing a detailed description of the anisotropy of the
fluctuation amplitudes. This behavior is then shown to be characteristic of a (transverse)
3-k structure.

3.2 The physics of uranium dioxide

The physical properties of uranium dioxide have been extensively investigated, princi-
pally because of its importance in the nuclear industry as both a fuel element and as a
stable phase in which to store uranium. It also possesses interesting magnetic properties.
Even now, over fifty years after the first experiments were carried out, the theoretical
description of the magnetic structure and its excitations is still not complete.

As discussed earlier, the electronic state of a uranium ion is strongly influenced by its
physical environment, and the level of localization of the 5f electrons is highly variable.
In UO,, the uranium ions are tetravalent, with the 512 levels sitting in a 6 eV gap
between the valence and the conduction bands [18], and so the 5f electrons (and hence
the magnetic moments) are highly localized.

Above Ty = 30.8 K, UO; is a paramagnetic semiconductor with the cubic fluorite
structure and a I's-triplet crystal field ground state [19]. The uranium lattice is fec,
with each uranium surrounded by a cubic oxygen cage. At room temperature the lattice
parameter is a = 5.470 A.

Below Ty there is a first order transition to Type-I antiferromagnetic order (k =
(001)), with piora = 1.74 up at T = 4.2 K. This is lower than expected for a I'; state (~
2.06 pp). The magnetic transition is first order and is accompanied by a small internal
distortion of the oxygen sublattice [20]. The overall symmetry remains cubic within
experimental resolution and the point symmetry at the U site reduces to C'3, and the
space group to P3a.
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3.2.1 Magnetic structure

The magnetic transition was first observed as an anomaly in the heat capacity by Jones,
Gordon and Long [21]. Powder neutron diffraction [22] found the propagation vector to
be (001), with the uranium moments ordered (+-) in planes along the axis of propagation.
In this arrangement, magnetic Bragg reflections appear at (and only at) the systematic
absences of the (nuclear) fcc structure, perfectly separating the nuclear and magnetic
Bragg peaks. The moment direction was determined to be along the (111) directions.

Single crystal studies were carried out by Frazer et al. [23] and Willis and Taylor [24],
placing the moment direction in the (110) plane, transverse to the propagation wavevec-
tor, contradicting the powder diffraction results. They also confirmed the 5f character of
the valence electrons from form factor measurements of the magnetic signal. This work
was extended by Faber and Lander [20], who established that the ordered magnetic mo-
ment was 1.74 4+ 0.02 up per uranium atom at 4.2 K. They also deduced that the oxygen
atoms were displaced from the ideal fluorite sites, because of a discrepancy between the
theoretical and measured form factor at large scattering vectors. This is brought about
by a static distortion of the oxygen cages, which gives rise to a nuclear Bragg peak at
the same position as certain magnetic reflections. The authors were unable to distin-
guish experimentally between two models describing the shear necessary to reproduce
the results. One model placed the shear parallel to the magnetic propagation vector, the
other perpendicular. The authors deemed that the perpendicular model was more likely
from the shape of the U*T ion, arguing that the electrostatic interactions set up in this
case were favourable. This model then called for four magnetic sublattices, not two as
previously assumed, and therefore a non-collinear structure.

3.2.2 Spin-lattice interaction

Concurrently, the excitations in UO5 were being investigated by Cowley and Dolling, who
measured the phonons in 1965 [25] and the magnons in 1967 [26]. They noted significant
magnon-phonon interaction between the magnons and the transverse phonons, principally
close to the zone boundaries. This was broadly confirmed by Caciuffo et al. [15] in 1999,
who used polarized neutrons to unambiguously separate magnetic and vibrational signals.
Figure 3.1 (taken from Ref. [15]) shows the spin-wave dispersion as measured at 16.5 K
along the principal crystallographic directions. There are three magnetic modes close to
the magnetic zone centre, and two at the boundaries. In the left panel an anti-crossing
effect is clearly visible; a phonon is present at this point, and hence the suspected cause
is a magnon-phonon interaction.

Brandt and Walker [27] also saw evidence for a strong spin-lattice interaction in
their studies of the elastic constants. All of the elastic constants change significantly at
the antiferromagnetic transition, in particular the Cyy constant (which measures shear
strains) appeared to go to zero at the transition and then rose extemely sharply. Over
100 K above the transition, Cy4 continues to change considerably.

Allen developed a theory in 1968 [28, 29] to bind together all of these results. In
two elegant papers, he describes a microscopic theory of the electronic ground state and
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Figure 3.1: Spin-waves dispersion curves measured at 16.5 K along the principal crystallo-
graphic directions. The broken lines and crosses correspond to acoustic phonon branches
measured at 270 K. Open symbols indicate qualitatively smaller magnon intensity than
the filled points. The solid line in the left hand panel is a guide to the eyes. Taken from
Ref. [15].

elementary electronic excitations that fits the spin wave measurements reasonably and
that can be set up to give a first order transition. This is summarized in the following
two paragraphs.

The degeneracy of the ground state of the uranium ion is not broken by the ex-
change interaction, as the uranium ion is orbitally degenerate and has an even number
of electrons. Therefore, further interactions are required to bring about the magnetically
ordered state. These interactions could arise from, for example, electrostatic quadrupole-
quadrupole interactions, or Jahn-Teller distortions of the oxygen cages.

From the work on the magnetic dispersions and the elastic constants, it seemed clear
that there was a spin-lattice interaction, and so Allen constructed his Hamiltonian on
this basis, considering the interaction of the quadrupole moment on the U** ion with the
eight surrounding O%~ ions. Using this, Allen reproduced the magnetic structure, as it
was understood at the time, and gave a reasonable estimate of the magnetic excitations.
He calculated that all external distortions cancelled out, leaving only distortions internal
to the unit cell (i.e. rotations of the oxygen cage), in spite of the large anisotropies. He
was also able to reproduce a first order transition (although the details of the temperature
dependence were not exact) in which both the magnetic moments and the Jahn-Teller
distortions order. This explains the behaviour of the Cyy elastic constant: the distortion is
always present, but at higher temperatures it is dynamic [30]. The internal distortion also
affects the magnetic ground state: Ippolito, Martinelli and Bevilacqua [31] have found
that a dynamical Jahn-Teller coupling of the I's ground state with a trigonal phonon
mode gives the correct moment reduction.

This agreed nicely with the observations of Faber and Lander [20], with several key
differences. Allen had considered a simple collinear magnetic structure, whereas Faber
and Lander showed that, in fact, the structure was non-collinear. Because of this change
in the basic assumptions, Allen’s predictions may no longer be considered accurate (for
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example, the oxygen cage distortion observed was not that predicted), but this does
not detract from his central thesis: the importance of the spin-lattice interaction in the
physics of uranium dioxide.

3.2.3 Three-k structure

Subsequently, further elastic diffraction was carried out by Burlet et al. [32] under mag-
netic fields, strongly suggesting that the magnetic structure and (by extension) the lattice
distortion were both 3-k in nature. Burlet et al. observed that under an applied mag-
netic field, the relative strength of the (001) magnetic reflections did not change. Each of
these peaks selects a different member of the star of {k} and so equal intensities indicate
no change in the underlying K domain populations. Whilst not a positive proof, as the
magnetic field might be too small to cause domain repopulation, one possible explanation
for this behaviour is that the material has a triple-k structure, and hence no K domains.

An analysis of the crystal field splittings carried out by Amoretti et al. [19] found that
the triple-k structure model reproduced the observed behaviour better than other models.
However, one major problem is that the single-k structure was found to be energetically
favourable with respect to the 3-k structure. Nuclear magnetic resonance experiments
carried out by Ikushima et al. [33] indicate that the structure is 3-k on the basis of the
symmetry of the electric field gradient observed. The experimental results presented in
this thesis add to this weight of evidence that the structure is indeed transverse triple-k.

Although a 3-k structure has no K domains, three S, or phase, domains are possible in
a 3-k structure. 2D projections of these are illustrated in Figure 3.2. UQO, is transverse,
as magnetic peaks are seen at (001). Many neutron studies, in particular of the form
factor [20], have shown that the intensities are consistent with an incoherent addition
of the contributions from the two transverse S domains. This has recently been verified
using resonant x-ray scattering [34], if the 3-k structure is assumed.

ANA A A S ANS
W / W ‘*\ X W X ;V
ANy Ly £

Longitudinal Transverse

Figure 3.2: 2-D projections of longitudinal and transverse triple-k structures where k =
(001). Courtesy of Stuart B. Wilkins.
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3.2.4 Spin wave dispersion

Much theoretical work on this material has tried to reproduce the observed spin wave
dispersions. In the observed spectrum, three modes can be distinguished at the magnetic
zone centre, one of which is weaker than the others. In a purely dipolar model two
branches are predicted. If quadrupolar two-ion interactions are included [35] two further
branches might appear, bringing the total to four, but these additional two branches
should be much weaker than the others. In Giannozzi’s work [36] the missing quadrupolar
mode was supposed to have an intensity 1072 of the neighbouring spin excitations, and so
would not have been visible above the background even in the inelastic polarized neutron
scattering experiments carried out.

Assuming that this split into spin and quadrupolar modes is correct, the ‘spin” wave
dispersions can be calculated, following a methodology developed for USb and CeSb
[14, 37]. This will be described in more detail later, but essentially involves treating
the uranium spins as independent spins, coupled via nearest neighbour Heisenberg in-
teractions. As the spins are highly localized, this is a good approximation. Dipolar,
anisotropic and crystal field terms are included in the Hamiltonian, which is then ana-
lyzed using the Holstein-Primakoff transformation. By this method, the dispersion of two
branches can be adequately modelled, but only if the exchange interaction is assumed to
be anisotropic, with a sign of the anisotropy that favours a longitudinal structure over the
experimentally observed transverse structure. The parameters used also lead to a tran-
sition temperature Ty = 45 K. To improve this value, the anisotropy must be increased
further in favour of a longitudinal structure. Similar problems are extant in the model
of the dispersion developed using the model of Giannozzi, which relies on calculating the
magnetic susceptibility directly.
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3.3 Experimental Detalils

The technique of spherical neutron polarimetry (SNP) was used to investigate the spin-
wave spectrum in UQOs, using the thermal-neutron three-axis spectrometer IN20 at the
Institut Laue-Langevin, equipped with the CRYOPAD-II device. Further details on this
technique are given in Section 2.6.3.

The experiment was performed on a single crystal of ~ 9 cm? in volume, cut from
a melt-growth crystal boule of depleted uranium dioxide, supplied by P. duPlessis of
the Witwatersrand University, South Africa. It proved to be single phase and close to
stoichiometry, with a homogeneous mosaic spread of about 0.4 degrees. This sample was
the same as that used by Caciuffo et al. [15].

IN20 was operated in the fixed-k; mode (k; = 2.662 A~1), with the standard polarized
neutron setup: Heusler monochromator-Heusler analyser configuration (the Heusler alloy
used was CusMnAl). The sample was mounted on a mini-goniometer, and accurately
oriented with the [110] direction vertical prior to installation in the CRYOPAD-II device.

Before starting the experiment, the CRYOPAD-II device was aligned and calibrated
using the (004) Bragg reflection of a pyrolytic graphite crystal. An incident polarization
Py = 0.910(3) was obtained along three perpendicular directions. Measurements on the
nuclear (002) Bragg peak of UO, with incident polarization parallel to z gave a scattered
polarization P = 0.891(1). The rotation of the neutron polarization as scattered elasti-
cally by magnetic Bragg reflections was then measured and found to be consistent with
a transverse 3-k magnetic structure with an (001) propagation vector. The UO crystal
(99 g) was aligned with the scattering plane [001]-[110]. The neutron polarization axes
x, y and z are illustrated for two points in this scattering plane in Figure 3.3.

Q =1[001]

Q=[110] 110
000 O T—Vx
y

Figure 3.3: The [001]-[110] scattering plane of UOy. The = and y neutron polarization
directions are shown for Q = [001] and @ = [110]. The z neutron polarization direction
is always parallel to [110].

To recap the relevant results from Section 2.3 on polarized neutrons (neglecting the
chiral magnetic term), in the presence of certain magneto-vibrational interference terms
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the neutron polarization will be rotated. For example,
Pryo = (N"Myy, + NM7,) +i(N*M,. — NM] )P, (3.1)

so that a beam initially polarized along the z direction should have a small y polarization
component after being scattered. In Eq. 3.1, ¢ is the double differential cross-section,
N indicates the vibrational scattering amplitude, generated by the operator Aand M,
are Cartesian components of the inelastic magnetic scattering operator, generated by
B. The magneto-vibrational term, responsible for the rotation of P, involves correlation
functions which couple the time dependences of the spin components perpendicular to
Q and the time dependences of atomic displacements parallel to @ at the same position
and time.
For P; || , the unrotated polarization is given by:

meO' =a+ NN*P, — (MJ_yMj_y + MJ_ZMJ*_Z)BQB (32)

where a is a polarization-independent background term. Scattering from lattice vibra-
tions, proportional to N N*, gives rise to a non-spin-flip (NSF) signal, whereas magnetic
scattering reverses the polarization of the beam, and hence leads to a spin-flip (SF) signal.
On the other hand, with P; || y and negligible magneto-vibrational interference, one has

Pryo = NN*P, + (M, M}, — M. M:,)P,. (3.3)

Components of the magnetic fluctuation perpendicular to @ but parallel to P; also give
rise to NSF scattering, whereas components perpendicular to both @ and P; produce SF
scattering. Py, behaves similarly.

The final polarization is extracted from SF and NSF measurements, where the SF
measurement is taken with the fields in the second nutator inverted.

Insp — Isp
P, — el 3.4
T Insr + Isp (3:4)

where [ is the integrated intensity and the background should be subtracted as appro-
priate.

3.4 Results

3.4.1 At the magnetic zone centres

Measurements were performed at inelastic positions spanning the whole magnetic Bril-
louin zone. Some example scans taken at the magnetic zone centres are shown in Figure
3.4. The three panels on the left show constant-@Q scans taken at @ = [001]. The label
o — 3 indicates that the initial polarization is along the « direction and that the final
polarization is analyzed along the 3 direction. The three panels on the right show simi-
lar scans taken with the z — z, y — y and z — z geometry at @ = [110]. The open and
filled symbols correspond, respectively, to neutrons scattered either spin up (NSF) or spin
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Figure 3.4: Constant-Q scans taken at (001) (left hand side) and (110) (right hand side).
The neutron z — x, y — y and z — z spin-flip (SF = black squares) and non spin-flip (NSF
= open circles) cross-sections are shown. The error bars are smaller than the point size.

down (SF) with respect to the chosen analysis direction, where the incident polarisation
is defined to be spin up. A difference between these two counts implies a polarisation of
the scattered beam.

The absence of NSF scattering in the z — 2 measurement indicates that the excitation
centered about 2.5 meV is purely magnetic in nature. The y —y and z — z cross-sections
can then be used to gain further information on the polarisation of the fluctuations (see
Equation 3.3).

At Q = [001], y is in the [110] direction, and z in the [110] direction. In both the
y —y and z — z channels, the SF and NSF signals are equal, indicating that fluctuations
in the y and 2 directions have equal amplitudes leading to equal scattering intensity in
both directions - there are isotropic fluctuations in the accessible plane.

At Q@ = [1 1 0], y corresponds to the [001] direction. For neutron polarization in
the y direction, signal appears in the SF channel only, whereas for polarization along
z, it is in the NSF channel only. This indicates that there are no magnetic fluctuations
along the [001] direction (parallel to y). The z — z data independently measures the same
information as the y — y data. This absence of fluctuations is also responsible for the
weaker intensity measured at (110): only one component of the fluctuations is visible,
as compared to two in the (001) case. This leads to the intensity difference (ratio 4:1)
observed at the two positions. In principle some of the results presented here could be
obtained by careful measuring of intensities obtained using unpolarized neutrons, but
one would need to be confident that the difference was physical in origin, and not a
resolution effect, for example. However, unexpected variations in intensity might be a
sign that polarization analysis would be useful.
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The above discussion focusses on the low-energy (acoustic) magnetic fluctuations.
Figure 3.5 shows similar data taken at larger energy transfer, examining the less-dispersive
magnetic modes. Again, the signal is all magnetic, but at (110) the 10 meV mode has
equal amplitudes of fluctuation along y [001] and z [110]. The (less intense) 12.5 meV
mode shows a slightly larger magnetic amplitude along y than along z, evidenced by the
small difference in NSF and SF scattering for the y direction, which is inverted with the
polarization along the z direction. This indicates that the effect observed at low-energy
transfers is a real difference and not simply due to the change in the magnetic cross-
section due to a shift in scattering vector. The high-energy (optic) modes correspond to
isotropic magnetic fluctuations, with amplitudes of comparable size along [001], [110] and
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Figure 3.5: Constant-@Q scans taken at (001) (left hand side) and (110) (right hand side)
for an energy transfer of 8 - 14 meV. The z — x, y — y and z — z cross-sections are shown.
SF scattering is indicated by filled squares and NSF scattering by open circles. The error
bars are smaller than the point size.

3.4.2 Across the Brillouin zone
Data treatment

Information gathered from similar data sets taken at different @ positions was used
to monitor the fluctuations of the collective modes propagating along the symmetric
directions A, 3 and I' throughout the whole Brillouin zone, from the (001) and (110)
reciprocal lattice points. This information is collated in Figs. 3.6 - 3.11.

For each point, z — x, y — y and z — 2 measurements were taken and the excitations
observed were fitted using Gaussian profiles to extract an intensity and centre-of-mass
for each spin-wave. The centre-of-mass of the excitations in the x — x scans was used to
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establish the dispersions, and is plotted in the upper panels in Figures 3.6 - 3.11. For all
of the points shown in these figures, no signal was observed in the x — x NSF channel,
indicating that the scattering at each point is magnetic in origin. For the y —y and z — 2
measurements, the fitted intensities were used to calculate a spin-flip fraction for each
measurement, Isr/(Isp + Insr) where Isp (Ingr) represents the integrated intensity in
the spin-flip (non spin-flip) channel. This is 1 if the scattering is all SF, and 0 if it is
all NSF. This contains all of the information available from these measurements on the
anisotropy of the fluctuations in the excitations with respect to the y and z directions.

Each figure contains an insert illustrating the positioning of the scattering vector
Q in the scattering plane. The P || y and P || z data sets provide two independent
measurements of the same quantity, with the z data expected to be the mirror image
of the y data, and this comparison emphasises the robust nature of the data. The spin-
flip fraction of each point in the dispersion plots can be identified by matching up the
symbols.

Results

In Figures 3.6 and 3.7, the behavior of the modes propagating along [(¢0] is illustrated.
With @ || [110], magnetic fluctuations in the plane [001] — [110] are accessible. With
incident neutrons polarized along y (i.e. [001]), NSF scattering is absent if fluctuations
along [001] are negligible. This is observed in Figure 3.6 for the dispersive mode when
¢ < 0.5, whereas for ¢ > 0.5 the spin-flip fraction is about 0.5, suggesting that after the
branches merge, fluctuations along [001] and [110] have comparable magnitude. Results
obtained with incident neutrons polarized along [110] (lower panel of Figure 3.6) confirm
these conclusions. Figure 3.7 looks at the same branches again, but this time moving
away from the (001) magnetic zone center. In this geometry, fluctuations along the [110]
direction are probed in place of the [001] fluctuations.

Combining the data from Figures 3.6 and 3.7, at the magnetic zone center ({ = 0) all
of the modes have equal amplitude fluctuation in the [110] — [110] plane, and the acoustic
mode has no fluctuations in the [001] direction. Around the magnetic zone-boundary
(¢ = 0.5) the excitation mode around 10 meV is polarized in the [110] direction, whereas
the branch near 12 meV shows a small preference for fluctuations in the [111] direction.

The modes propagating along (((¢) are shown in Figures 3.8 and 3.9. For small ¢
values in Figure 3.8, fluctuations in the [001] — [110] plane are explored. At low (, the
acoustic branch is polarized along [110], whilst the non-dispersive branches at higher
energy are almost isotropic in the plane perpendicular to Q, with fluctuations along
[001] and [110] having finite amplitude. The behavior of the acoustic branch changes
on approaching the zone boundary as fluctuations in the scattering plane increase in
amplitude until the mode becomes isotropic in the plane perpendicular to @ for ¢ = 0.5.
The plane explored in Figure 3.9 remains close to [110] — [110]; anisotropic fluctuations
develop for ( larger than about 0.25, as the three modes start to merge. Then, the
mode at 10 meV (the middle branch) becomes mostly [110] polarized, as does the mode
propagating along [(C0] from the (001) position. In the 12 meV mode the fluctuation
amplitude along [110] diminishes relative to the fluctuation amplitude in the scattering
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plane.
In Figures 3.10 and 3.11 the [00¢] magnons are investigated. From the (110) point,
they are investigated in transverse geometry. Close to @ = [110], the accessible fluctu-

ations are in a plane close to [001]-[110]. The high-energy branches are isotropic in this
plane, in contrast to the behavior of the low-energy mode, which has been assumed to
hybridise strongly with the transverse A5 acoustic phonon. At the magnetic zone center
in fact, the [001] fluctuation is not present in the lowest energy magnon branch. In longi-
tudinal geometry (Figure 3.11) the acoustic mode has equal amplitudes along [001] and
[110], like the two optic modes.

Cross-terms

Particular attention was devoted to the region where the magnon-phonon interaction was
observed [26]. In the position where the anti-crossing occurs (~ (0 0 1.5)), a magneto-
vibrational interaction should rotate the neutron spin, as outlined in Equation 3.1, and
cross terms of the form x —y, x — z, etc. should be observed. We looked carefully for such
a rotation, but none was observed (see Figure 3.12). In the cross-term channels, a signal
was observed at the inelastic magnetic excitation, but there was no observable difference
between the spin-flip and non spin-flip terms. From Equation 3.1, this indicates that
N*M,, — NM;, = 0; either there are no magneto-vibrational terms present, although
the presence of polarization independent scattering indicates that there may be some,
or the in-phase and out-of-phase contributions are equal. The lack of a polarization
dependent signal could also be due to the low intensity of the magnon at this point in
reciprocal space, or a weak phonon cross-section due to the small value of Q).
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Figure 3.6: The modes in the [(¢0] direction
from the 110 magnetic zone center to 220.
The upper panel shows the dispersion, and
the insert indicates the scattering geometry
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of SF to NSF (SF/(SF+NSF)) scattering for
each mode, identified by symbol type, with
data taken from the y — y and z — z cross-
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3.5 Model and Discussion

The results presented above indicate that the [001] fluctuations are always absent in the
acoustic spin-wave mode. This work asserts that this is characteristic of a transverse 3-k
magnetic structure, and that, more generally, an (001) fluctuation will be absent in a
3-k structure, building on the work of Jensen and Bak [14] on USh. Here, their model is
summarized, and the extension to UO, considered. Finally, this is made more rigorous
by calculating the expected susceptibility.

3.5.1 The Jensen and Bak model

USb is a cubic, NaCl-type material with a longitudinal 3-k structure, with the uranium
atoms on fec sites. Like UOg it is a Type-I antiferromagnet (k = (001)). Figure 3.2
illustrates the differences between the transverse and longitudinal 3-k structures using a
2-D projection.

The magnetic excitations in USb were first measured by Lander and Stirling [16]. They
noticed that the acoustic excitation was present at @ = (110), but not at @ = (001).
From Eq. 2.33, this means that this excitation consists of fluctuations in the [001] direction
only. At the (001) magnetic Bragg reflection, only the component of the magnetic moment
parallel to [001] contributes to elastic scattering (since this is a longitudinal material).
If this were the only component involved in the inelastic scattering, then the excitation
would have to involve longitudinal fluctuations of the magnetic moment. Whilst not
unheard of, this is unusual.

Jensen and Bak [14] assumed that all three components of the magnetic moment (the
three k values) were involved in the inelastic process. This placed the moment directions
along the (111) directions, as illustrated in Figure 3.13. They then considered transverse
fluctuations of these spins, and found that when the spins precess in phase (a reasonable
approximation for the lowest energy mode) the [100] and [010] fluctuations cancel out.
(This behaviour has also been observed in NpBi [17], another longitudinal 3-k structure.)

This can be generalized to the transverse structure of UO5;. The moments are large
and well localized, and can be treated as classical vectors. For the structure in Figure
3.13, only the [100] fluctuation remains. For the second type of transverse structure, only
the [010] fluctuation remains. This phenomenological argument explains the absence of
the [001] fluctuation in the acoustic modes.

These results emphasise the difference between the elastic and inelastic scattering in
these multi-k compounds. At any one magnetic Bragg reflection, the elastic scattering
cross-section filters out two of the components. At all positions in reciprocal space, the
inelastic scattering cross-section involves all of the components, apparently correlated
from site to site. Secondly, the [110] and [110] fluctuations are equal in the acoustic
mode. On the basis of the phenomenological model, either only one of the transverse
S-domains is present, or they are both present in equal volume. Recent x-ray resonant
scattering experiments on UO, have found this second case to be true [34].
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Uo, USb

Figure 3.13: One eighth of the real space unit cells of UO2 and USb, with spin directions
labelled.

3.5.2 Spin-wave calculations

Although spin waves in UOy have been experimentally investigated since the 1960s, a
satisfactory theoretical understanding is still lacking. In particular, calculations of spin
waves for the initially assumed 1-k magnetic structure could be brought into satisfactory
agreement with experiment [26], whereas the actual 3-k structure is much more difficult
to reconcile with the observed spin-wave spectra. In particular, whereas three branches
are experimentally observed, two branches are predicted by purely dipolar models. If
quadrupolar two-ion interactions are included [35] two further branches might appear,
bringing the total to four. These additional two branches should be much weaker than
the others.

Preliminary calculations

Preliminary calculations were done using the Hamiltonian of Jensen and Bak [14]. This
has three terms: a nearest neighbour Heisenberg exchange, a dipolar anisotropic term
and the crystal field term. This last term fixes the (111) directions as the easy axes, to
model the three Fourier components as one simple vector.

H = Hiso+Haniso+Hcef

Hy, = =Y JiS:.5;
Haniso = — Y Jp(Simi;)(S;.735)
Hey = Sp+5,+S5; (3.5)
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The sums are over nearest neighbours. Because of the transverse nature of UO,, the
T;; in the anisotropic term describe an easy plane defined by the oxygen atoms. The
equations of motion were found and the eigenvalues and eigenvectors evaluated using the
Holstein-Primakoff transformations. As expected for this simple model, the calculated
dispersions were not exact, but acoustic and optic branches were clearly identifiable.
From the eigenvectors, the y — y spin-flip fraction for a mode at a particular @ could
be calculated; qualitatively along the [(C0] direction from the 110, there were no [001]
fluctuations in the acoustic branch and the optic branch had a spin-flip fraction of ~ 0.5.

Dynamical susceptibility calculations

As these basic calculations indicate that the 3-k structure may be responsible for the ob-
served behaviour, more detailed calculations of the dynamical susceptibility were carried
out in collaboration with N. Magnani and P. Santini at the Universita di Parma.

In the following, for the static 3-k structure a mean-field model similar to that adopted
in Ref. [35] is used. This is based on anisotropic exchange and effective lattice-mediated
quadrupolar interactions. Each U ion has an associated S = 1 pseudospin corresponding
to the I's-triplet crystal-field ground state. This multiplet carries magnetic-dipole and
I's, I's electric-quadrupole degrees of freedom. In addition to the usual two-ion dipolar
superexchange, effective quadrupole interactions are expected to arise from the magne-
toelastic coupling. Excited crystal-field states lie above 150 meV and are not expected
to produce qualitative changes in the low temperature behaviour.

Although there are four inequivalent sites, in the mean-field approximation the prob-
lem can be reduced to the study of a single self-consistent effective Hamiltonian

Hyr = —J5(5) = KQ(Q), (3.6)

where S = n(i) - S(i) is the component of the spin along the direction of the mo-
ment n(i) in the i*" sublattice (parallel to one of the four cube diagonals), and Q =
[(n(i) - S(i))* — 2/3] is the quadrupole operator describing an axial distortion of the
charge distribution along n(i). The first term in Hyp drives the order, and the second
is needed to account for the first-order character of the phase transition. Since @) and S
commute, the eigenstates of H,;r do not depend on the values of the J and K parameters,
but the eigenvalues obviously do.

Spin-wave excitations are calculated within a random-phase-approximation approach
[37]. This is equivalent to the method used in Ref. [35], apart from the fact that quadrupo-
lar interactions between fluctuations are neglected. Indeed, these effects are expected to
be minor [35], as the main role of quadrupolar terms in the dynamics being a modification
of the single-ion energy gaps (the latter determines the overall energy scale of spin waves).
The exchange is limited for simplicity to nearest-neighbour ions, and is parameterized by
J and a second parameter, §, which represents the anisotropic part of exchange [37]. The
relation between the parameters here and those of Ref. [37] is J = 2.Jy, whilst we define
§ = (JL = Jb)/|Jt. The off-diagonal exchange parameter J¢ has no effect on spin-waves
in the high-symmetry directions considered here. For isotropic exchange, 6 = 0. The
stability of the transverse structure requires § > 0.
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The wavevector- and frequency-dependent dynamical susceptibility tensor xas (Q,w),
whose poles and residues correspond to the frequencies and neutron-scattering intensities
of spin-wave excitations, is obtained by starting from the single-ion dynamical suscep-
tibilities calculated with Hjy;r, and by implementing the random-phase-approximation
scheme of Ref. [37]. The calculation of the cross-section for polarized neutrons is ob-
tained by using the general expression [6] which describes the final polarization Pj of a
scattered neutron beam as a function of the incident beam polarization P;. Defining the
x-axis as parallel to @ and choosing P; | x one obtains

Pfa <di;—Q) X {PW [S"‘y (Q7 w) + Sya (Q7w)] + Piz [Saz (Q,w) + Sza (Q, w)]

_Pia [Syy (Q7 w) + Szz (Q,Cd)]} ) (37>

where

6 (@) Xa(@e)

I 1= exp (—hw/kpT))]
For a given Q, S (Q,w) has three poles (two of which are always degenerate), correspond-
ing to two spin-wave branches. For the @ directions considered here, each diagonal term
of the susceptibility tensor x” ., (Q,w) in the cubic reference frame contributes a pole
w*(Q). For instance, for @ along [001] or [110], two of the dispersion curves w™(Q),
w(Q), and w**(Q) are degenerate, have equal intensity, and correspond to the opti-
cal mode, whereas the third one (w™ or w¥¥ depending on which of the two possible
S-domains is considered) corresponds to the acoustic branch.

As in the central panel of Figures 3.6-3.11, the y-axis is defined to be parallel to
the incident-beam polarization P; (the x-axis is parallel to Q). The z-axis is defined
by x x y. In the following, the cubic-axes reference frame will be denoted by z, y, Z.
For P; || y, the measured spin-flip fraction for a given spin-wave mode of frequency
wo(Q) is given by I,,/(I,, + 1..), where I, = Saa (Q,wo(Q)), and « refers to the chosen
(Q-dependent) reference frame. For instance, by rotating the generalized susceptibility
tensor to a reference frame x, y, z matching the one used in Figure 3.6, one has that

(3.8)

Xzz + Xgg
Xyy = Xzz) Xzz — %

(3.9)
For both S domains, this leads to a y — y spin-flip fraction (central panel of Figure
3.6) equal to 1 for the acoustic branch. In fact, for this branch I,, = 0 because it
has no fluctuations along the cubic z-axis. This is a consequence of the general behavior
expected for a transverse 3-k structure, as discussed in the paragraphs following Equation
3.8. For Q lying in the scattering plane [001]-[110], the eigenvalue w;: is associated to
the optical branch, so that the acoustic branch amplitude has no contribution from y;;.
In the reference frame of the experiment (for instance the one of Figure 3.6), xy, =Xzz
is therefore zero. The spin flip fraction is about 1/3 for the optical branch since for
the latter 1, ~ 21, (in fact, in the second equality of Equation 3.9, only one of the two
terms in the numerator is nonzero). The corresponding z — z spin-flip fractions are simply
their complements to one. This is perfectly compatible with the experimental data in the
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Figure 3.14: Measured and calculated inelastic neutron scattering spectra at @ = (1.4
1.4 0) in the scattering geometry of Figure 3.6. Panel (a) shows the fluctuations parallel
to the z direction and panel (c¢) the fluctuations parallel to the y direction. The 8.5 meV
peak in panel (a) corresponds to the acoustic branch, and the 10.5 meV peak to the two
optical branches. The 7 meV peak is non-magnetic in nature. The theoretical cross-
sections in panels (b) and (d) have been gaussian-broadened to match the experimental
resolution. The single plotted curve in panels (b) and (d) should match both data sets
in panels (a) and (c) respectively.

region where the acoustic and the optical branches are well separated (¢ < 0.5). It should
be noted that, although (as stated above) one of the two optical branches is missing in
the model, experimentally these display very similar polarization properties. An example
of comparison between measured and calculated inelastic neutron scattering spectra is
shown in Figure 3.14.

As for Figure 3.11, the generalized susceptibility tensor rewritten in the suitable ref-

erence frame gives

Xyy = Xaz = w (3.10)
Of course, this experimental configuration cannot detect any anisotropic behaviour in the
magnetic fluctuations; this is confirmed by the present experimental result, as a spin-flip
ratio 1/2 is detected for all branches.

On the other hand, returning to Figure 3.6 but supposing the 3-k structure to be
longitudinal, the acoustic branch can be identified with w**(Q) and the optical branch
with w™(Q) and w¥(Q); therefore, the y — y spin-flip fraction would be 0 for the former
(I, =0) and 1 for the latter (/,, = 0). As this is not compatible with the experimental
data, polarization analysis clearly discriminates between 3-k longitudinal and 3-k trans-
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Figure 3.15: Measured (black) and calculated (red) y — y spin flip fractions for directions
from the 110 (right-hand side) and 001 (left-hand side) magnetic zone centres.

verse excitations. Of course, this is more readily shown by the absence of the elastic (001)
Bragg peak in the case of a longitudinal structure.

As far as all other investigated directions are concerned, the calculated polarizations
well reproduce the measured ones whenever optical and acoustic branches are energeti-
cally well separated (Figure 3.15). The modelled data applies to the two branches (squares
and triangles in the previous notation). The model data have the same qualitative form as
the real data, although the exact values are not perfectly matched. The major difference
between model and theory occurs along the [(((] branch off 001.

The above results do not depend on the precise values of the three parameters of
the model (J, K, ). The correct range for these values has been set by a qualitative
matching of the model with the observed static properties and spin-wave frequencies.
For all three parameters we obtain values close to those used in Ref. [35]. In particular,
a slightly larger value of Ty (40 K) with respect to the experimental one had to be
assumed in order to match spin-wave energies. No attempts were made to precisely fit
the experimental dispersion curves, since the presence of three branches makes it difficult
as only two branches are allowed by the present model. However, it was verified that the
calculated spin-flip fractions are unchanged if the values of J and K are varied in the
range consistent with macroscopic behavior. This is also true when different values of
the anisotropic exchange ratio are used.

When acoustic and optical branches are well separated, the agreement between the
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theoretical and experimental spin-flip fractions is very good, and in particular the peculiar
behaviour of the acoustic mode is confirmed. Instead, for Q-values where acoustic and
optical branches are close in energy, the spin-flip fractions extracted from the experimental
data appear to deviate from the calculated ones. These deviations are not understood
at present. They might be due to effects not included in the present model (e.g., spin-
phonon interactions, or whatever produces the third spin-wave branch). However, we
cannot completely rule out that the deviations are an artefact, due to the difficulty of
assigning the measured total scattering intensity to the different spin-wave modes, when
their energies are closer than the experimental energy resolution. In fact, the deviation
of the experimental ratios from the calculated ones resembles that expected for not fully
discriminated spin-wave peaks.

3.6 Conclusions and summary

The polarization of the spin-wave modes in the ordered 3-k state of UO5 has been ex-
amined experimentally using three-dimensional polarisation analysis techniques. The
information obtained allows the directions and relative amplitudes of fluctuations giving
rise to the inelastic scattering event to be assessed. Fluctuations along three axes of
symmetry (A, 3, I') have been investigated. The measured polarizations of acoustic and
optical branches of UO, are consistent with those expected for the 3-k static ordered
structure, at least at points in reciprocal space where branches are well separated in
energy. Exact quantitative calculations suffer from the well-known problems of calculat-
ing the exact dispersion relations in UOy, but the qualitative results obtained here are
not strongly influenced by changes of the model parameters within physically reasonable
limits. No direct evidence for magnon-phonon interactions was found.

An important issue in the calculations is that the observed polarization behavior
emerges in a natural way under the assumption of 3-k order. Assuming a 1-k structure,
a similar behavior can in principle be obtained, but only for anisotropic exchange param-
eters satisfying particular conditions. That is, whereas for a 3-k structure the observed
anisotropic fluctuations occurs whatever the coupling strength, in a 1-k structure it could
only be the result of an accident. This indicates that the behaviour observed here is the
generalisation of the observations of Jensen and Bak [14] in the longitudinal 3-k material
USb to all 3-k systems, and indicates that the k wavevectors give a correlated response.

It would be interesting to perform similar measurements on other 3-k-ordering com-
pounds, such as USb [16] or NpBi [17]. For instance, the latter orders in a longitudinal
structure, with well-defined spin-waves whose dispersion and intensities are well repro-
duced by a model of localized 5 f-electrons in a crystal-field [14, 37]. Spin-wave polariza-
tion measurements could be used to test quite selectively the correctness of the theoretical
picture for USb. Indeed, this picture has been put into question several times because the
excited crystal-field states the model predicts have not yet been experimentally observed
38].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Chapter 4

Elastic observations in 3-k structures

95

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



56 CHAPTER 4. ELASTIC OBSERVATIONS IN 3-K STRUCTURES

Sommaire

Dans le chapitre 3, on a vu que la structure magnétique 3-k possede des dynamiques
fondamentalement différentes de celles observées dans un structure 1-k. Les résultats in-
diquent que les trois composantes de Fourier pour la description de I’aimantation doivent
étre corrélées pour expliquer le comportement des ondes de spin. Pour mémoire, une
phase 3-k est ainsi nommée parce que trois vecteurs de propagation k dans le méme
volume sont obligatoires pour expliquer la structure observée. Si on prend ce modele, la
question est : Y a-t-il des corrélations entre ces trois parametres de l'ordre magnétique 7
Et si c’est le cas, peut-on les voir 7

Dans ce chapitre, la recherche pour ces corrélations est présentée. Les composés choi-
sis pour la cherche sont des composés d’uranium de type NaCl. Ils montrent beaucoup de
structures multi-k, grace aux qualités de I'ion d’uranium et des électrons 5f (Section 1.2).
Les composés utilisés sont présentés, avec une courte discussion sur les différentes possi-
bilités d’une corrélation, ou cohérence entre les trois parametres de I'ordre magnétique.

La diffusion neutronique et photonique montrent tous les deux qu’il y a des pics
de Bragg faibles aux positions ks = 7+ (1/2 1/2 1/2), ou 7 est un vecteur du réseau
réciproque et 1/2 est dans les unités du réseau réciproque. Ces pics sont indépendants
de I’échantillon. L’origine n’est pas une petite phase separée dans le cristal. D’abord,
un tel vecteur de propagation (1/2 1/2 1/2) n’a jamais été vu avant dans des composés
d’uranium type NaCl. La largeur des pics est un argument plus persuasif : c¢’est la méme
pour les pics k3 et pour les pics magnétiques normaux. Cela montre que ces deux groupes
de pics sont ordonnés sur la méme échelle de distance - le cristal entiere. Les expériences
montrent que ces pics k3 ne sont pas le résultat des événements de diffusion multiples.

Cela laisse un objet avec l'ordre a grande distance, et une direction favorisée parallele
a (111). Une distorsion du réseau n’est pas soutenue par ces observations. La mesure avec
les neutrons confirme que ces pics existent sur une échelle de temps thermodynamique
(~ 1071 4 10712 5). Le facteur de forme pour ces pics n’est pas facile a extraire des
données, parce que la structure magnétique derriere ces pics n’est pas connu. Néanmoins,
on peut deviner, en utilisant les absences systématiques observées, mais le résultat ne
semble pas en accord avec les facteurs de forme traditionelles. Le chapitre 5 donne une
justification pour 'observation de ces pics k3, et ses propriétés.
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4.1 Introduction

The previous chapter showed that a 3-k structure has different dynamics to those expected
for a single-k structure, and the apparent involvement of all three Fourier components
in creating the spin-wave spectrum indicates that the three k wavevectors, or order
parameters, are correlated.

To recap, a 3-k phase is so called because a consistent interpretation of the positions
and symmetries of the magnetic Bragg peaks is not possible within the confines of a
model magnetic order parameter based on a single propagation wavevector. Instead three
(orthogonal) propagation vectors, with their associated magnetic moments, are required
to exist simultaneously in the same volume.! Taking this as a working model a natural
question is whether or not long-range coherent correlations exist between the conjectured
order parameters, as hinted at by the inelastic scattering results. If so, what form would
this take, and how might it be brought to light by known diffraction techniques?

To investigate this problem, the uranium rock-salts have been chosen for study. As a
group, they display many different multi-k structures, due to the unique qualities of the
uranium ion and its 5 electrons (Section 1.2). In this chapter, the particular compounds
studied are introduced, followed by a short discussion of the search for order parameter
correlations in these compounds. Experimental evidence for these correlations is then
presented. The subsequent chapter attempts to place this in a theoretical context.

4.2 Uranium rock-salts

The uranium monopnictide-monochalcogenide solid solutions were well studied in the
1980s (for a comprehensive review, see Ref. [39]). These materials display a wide range
of magnetic properties. Physically, they are all NaCl-type structures, and the pnictides
and chalcogenides are perfectly soluble. The lattice parameters of the solid solution
crystals follow Vegard’s law. Magnetically, the monopnictides are typically antiferromag-
netic, with a range of multi-k structures observed. The monochalcogenides are usually
ferromagnetic. For this work, two different solutions were considered, UAs;_,Se, and
USb;_,Te,. In both cases the addition of the chalcogenide acts to reduce the number
of electrons in the conduction band, and hence alters the electronic environment of the
magnetic 5f level.

4.2.1 UAs;_,Se,

Kuznietz et al. [40] carried out a series of neutron diffraction experiments and uncovered
a rich phase diagram, filled with longitudinal multi-k and incommensurate phases. This
work was redone recently using x-ray resonant scattering by Longfield et al. [41]. The x
= 0.2 composition, whose phase diagram as a function of temperature is shown in Figure
4.1, was selected for study as it contains both 2-k and 3-k phases. The lattice parameter
is 5.78 A at room temperature, and the ordered magnetic moment is ~ 2 up at 4.2 K.

!Some authors use a non-orthogonal basis set.
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Figure 4.1: Phase line for UAsgSeq s as a function of temperature. k = (00%).

Below Ty = 124 K, the compound enters an incommensurate ordered magnetic state.
At Ty = 119 K, this develops into a commensurate 3-k configuration with propagation
vector (003) in reciprocal lattice units (rlu). At 7% = 50 K the cubic symmetry is broken
and the low-temperature commensurate 2-k phase develops. The crystal structure is now
tetragonal. A rationale for this transition was given in Section 1.3.1. The change in the
crystal structure is small, but definitely present, as shall be seen later (Section 4.4).

Heat capacity of UAssSeq-

All of the transitions can be seen clearly in the heat capacity (Figure 4.2). In an external
magnetic field, the antiferromagnet-paramagnet transition remains essentially unchanged,
but the transition at T shifts and broadens.
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Figure 4.2: C,/T for UAsjgSepo under applied magnetic field, measured on an 80 mg
single crystal in a Quantum Design PPMS-9 calorimeter. The inset is C),qy/1 over a
broader temperature range. C,,q, has been calculated by comparison with a thorium
blank. This figure courtesy of Pavel Javorsky. The lines are guides for the eye.

Magnetization of UAs(sSe

The M/H magnetization ratio, where M is the magnetization and H the magnetic field,
was measured by sweeping the temperature at a given magnetic field H parallel to the
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[100] axis (Figure 4.3). The magnetization observed at a constant temperature whilst
sweeping the magnetic field was found to be consistent. In a magnetic field the anomaly
at T™ become more pronounced. The location of the anomaly shifts upwards and matches
perfectly with the changes in the heat capacity.
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Figure 4.3: The ratio M/H for an 80 mg single crystal of UAsjgSeps as measured in a
Quantum Design MPMS-7 SQUID magnetometer. M is the magnetization and H the
magnetic field. The open (closed) points are zero field cooled (field cooled). The data at
0.1 T have been vertically scaled by a factor of 20. The error bars are smaller than the
point size.

As illustrated in Figure 4.3 below T* there are differences between the zero-field- and
field-cooled results. This is assigned to domain repopulation in the 2-k phase. There are
no observable differences above T™, as expected for the 3-k state in this material. Figure
4.4 is a phase diagram marking 7*(H) and the domain repopulation transition extracted
from these measurements.

Description of samples used

In the experiments described here two batches of single crystals were used. Both were
prepared at ETH Zurich by K. Mattenberger and O. Vogt. The second batch was prepared
twenty years after the first. Within the estimated experimental error (£1 K), Ty was
the same in all samples of UAsygSegs. A polycrystalline sample was also used in some
experiments. This was prepared in two batches (denoted I and II) at the ITU Karlsruhe
by P. Boulet. This was found to contain a small amount (< 1%) of UO, impurity.

The heat capacities of the single crystal, used in the the neutron diffraction experi-
ments, and Batch I, as used in the time-of-flight experiments, are shown in Figure 4.5a.
T* is 51 K for the single crystal and 57 K for Batch I. Batch II displays similar be-
haviour, but 7™ is 60 K. The microscopic origin of this sensitivity to sample preparation
is unknown. It may be a further measure of the hysteretic nature of the discontinuous
crystalline and magnetic transitions at this point. The M /H ratios, where M is the mag-
netization and H = 1000 gauss is the magnetic field, of the single crystal and of Batch I
are given in Figure 4.5b.
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Figure 4.4: The magnetic field-temperature phase diagram for UAs( gSep.o, as determined
from measurements of the magnetization ratio M/H. In the phase 2-k I, the three possible
domains are all present. In 2-k II, the external field perturbs the domain populations.

4.2.2 USb; ,Te,

Burlet et al. [4] carried out neutron diffraction on this particular solid solution, and
observed (longitudinal) magnetic ordering with propagation wavevectors parallel to the
fourfold cubic axes. Here, the compositions USbggsTeg.15 and USbggsTeq 1o are consid-
ered, as they both possess a 3-k phase. The lattice parameters for these two compositions
are very close (~ 6.19 A at room temperature), and the magnetic moment is of the or-
der of 2.7 up/U. These two compositions have the same Ty (~ 210 K), below which
an incommensurate phase develops. At ~ 190 K a commensurate phase forms with
k= (OO%) which persists down to the lowest temperatures measured, although a second
incommensurate phase is observed to develop in parallel. A part of the phase diagram for
USbggsTeg.12 is shown in Figure 4.6¢, which contains magnetic neutron diffraction data
from USbggsTeg12. The wavevector range (2 k 0) was studied, where 0.5 < k£ < 0.6 in
reciprocal lattice units (rlu). This samples only one of the three order parameters. Panel
(a) shows the initial incommensurate phase. The main commensurate phase is 3-k and a
re-entrant incommensurate phase is observed below 130 K. Panel (b) shows the intensity
summed over all of the observed magnetic scattering in the given range, and represents
the best estimate of |S;|?. The moment saturates if all of the phases are taken into ac-
count, indicating that there are no missing phases. Panel (c) illustrates the temperature
dependence of the propagation wavevectors.

The first incommensurate phase can be modelled as a lock-in transition, analogous to
that seen with charge density waves (see e.g. Moncton, Axe and diSalvo [42]). The nature
of the second, re-entrant incommensurate phase is unknown. It is not obviously related
to the lock-in transition, and is not discussed further here. In the commensurate phase,
the apparent wavevector shifts; this is a temperature effect as the system was calibrated
at 135 K.
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Figure 4.5: Left-hand panel: The linear coefficient of the heat capacity of the 80 mg single
crystal of UAsygSeqo, labelled ‘original’, and Batch I of the polycrystalline UAsggSeq o,
labelled ‘new’. The insert shows data on an expanded scale around T, illustrating the
amplitude hysteresis at the 2-k to 3-k transition, and a marked sample dependence of
T*, which is not seen in the area under the anomaly (i.e. the change in entropy) or at
Ty. Right-hand panel: The M/H ratio at H = 1000 gauss of the 80 mg single crystal
(squares) and Batch I (circles) of UAsggSepo. Whilst the polycrystal has a higher dc
susceptibility, Ty (defined by the point of maximum slope) is similar (+ 1 K) in both
samples.

The commensurate-incommensurate lock-in transition

The lock-in transition, as described by Moncton, Axe and diSalvo [42] for charge density
waves, can be applied to spin density waves. A term is postulated to exist in the free
energy (see Section 1.3 for further discussion on the basics of the free energy of such a
system) corresponding to an additional (secondary) wavevector q/, = k, — 34. Although
the system is stable at the (measured) incommensurate wavevector q, = k, + 6§, the
existence of the second order parameter acts to pull § towards zero to minimize stresses.

d could be a vector in any direction; we assume that it is parallel to k,, the local high
symmetry direction. The existence of a secondary order parameter with wavevector q/,
is then postulated, as a translationally invariant addition to the free energy of the form

A(g),T)Y |IM, |+ Bs Y (M M, + M;*M) (4.1)

can be created.? For a given M, the vector components are all parallel so the vector
dependence can be neglected.
Minimizing this with respect to the secondary order parameter M;* gives

B3 3%
Méa — —qua (42)

and so the terms in Equation 4.1 are both sixth-order additions to the free energy. The

2The terms relating to multi-k states have been neglected, and are assumed to have little effect in
the incommmensurate phase.
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Figure 4.6: The temperature dependence of (a) the integrated intensity of the magnetic
Bragg peaks found in the range (2 0.5-0.6 0) in the reciprocal space of USbggsTeq 12,
(b) the total integrated intensity summed over all of the observed peaks, and (c) the
wavevectors of the observed magnetic Bragg peaks. The lines are described in the text.
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free energy can therefore be written, after summation over all wavevectors, as

BQ
® = 00— Al TP+ B (O )
including other sixth-order terms via C'. This form emphasises the behaviour of the
wavevector and applies to both single- and multi-k phases. Close to Ty, |M,,|?
sumed to be small, and so sixth-order terms can be neglected in establishing its value.
Minimization gives |M, |* = —A(g;, T)/B’ and so |M,,|* o< (Ty — T) (the line in Figure
4.6b close to T). The simplest form for A(g;,T) is

1S as-

A(q,T) = (T — Ty) + B(g — q)*. (4.4)

This is a minimum for ¢; = ¢., as required for the primary order parameters. At k], A
will have a larger value.

Now consider the effect of a small shift in the incommensurate wavevector, such that
§ — &y + ¢, where q. = k; + 8. A(q,T) now depends on e. If € is small, A~!(¢},T) ~
(D — Fe) to first order in €, and minimization of the free energy with respect to e gives

_ Eigps
ﬁ\Sl (4.5)

and so € oc (T — Tx)? in the limit close to the transition (the line in Figure 4.6¢). Due
to the presence of the secondary wavevector, the wavevector will tend to decrease (as €
increases) to minimize the total energy until it locks into the commensurate state. An
obvious test for this would be look for the secondary wavevector q;. However, from the
temperature dependences, the ‘lock-in’ transition seems to be a reasonable description.

4.3 Experimental motivation

Assuming that the 3-k state can be used as a model system in which there are co-
herent correlations between order parameters, how might this be observable? The two
main experimental issues are, firstly, the location in reciprocal space of an experimental
signature, and secondly, would it be sufficiently long-time correlated to be imaged by
diffraction techniques, or would it be fundamentally dynamic in origin?

The ordinary, or single-k magnetic reflections in these materials are found at scattering
vectors of the type k1 = 7 + (OO%}, where 7 is a reciprocal lattice vector. In a naive
picture, ignoring the quantization of angular momentum, the vectorial sum of the three
conceptual moments assumed to be responsible for the k; Bragg peaks, yields a net
moment of cube triad (111) symmetry. This suffers two unfortunate problems at the
level of both the x-ray and neutron diffraction cross sections. First, since the moment
auto-correlation,

<(Mklei(kz.'r+ez) + Mkyei(ky.r+9y) + mkzei(kz.T+92))
X (M, e/ 7 0e) 4 Mkyei(ky'rurey) + M, ek 402) )y (4.6)
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is a 2-site correlator it produces terms of the form (M, e'(kim+6:) M, ¢!kk-m+03)) only and
so cannot reveal the desired coherences between the three order parameters.

Secondly, even if this defect is ignored and diffraction from three coherent objects
(as a ‘secondary’ order parameter) is postulated to exist, symmetry analysis based on
the wavevector dependence of the three ‘primary’ order parameters leads to a conceptual
moment aligned along the (111) directions (see Section 5.2 for further details). At each
site the (111) director is then given by the sum of the underlying order parameter wave
vectors, Y k;. However, the geometric structure factor of such a construct is zero for wave
vectors of the form (111) i.e. just those compatible with the symmetry requirements of
the cube. This is illustrated pictorially in Figure 4.7 and mathematically in Appendix
4.A. For these reasons it is not clear where diffraction from this third-order correlator
might appear, if it exists.

S S-3

Figure 4.7: The cubes are cartoon representations of the magnetic structure in a 2 x 2 x 2

block of unit cells in UAsygSeg2. Each coloured block is a uranium ion, and the blue and

red colours represent antiparallel moments. The white blocks are empty space. The first

three blocks correspond with the three k; propagation vectors. The fourth block is the
111

structure with the propagation wavevector [333].

Recently, however, it was claimed that direct evidence for multi-k coherence might
be seen in x-ray resonant scattering from the F1F® term in the cross-section (an in-
troduction to the x-ray resonant scattering cross-section is given in Section 4.4). This
represents the 2-site correlator as given above, observed through the interaction of two
order parameters. Therefore, in principle this type of scattering should be seen in any
multi-k configuration at positions set by the wavevector dependence, i.e. in this case at
ko = 7 + (0kk). This was reported by Longfield et al. [43] in UAsggSeq.o.

Armed with this unpromising theoretical outlook, but reasoning that if the third-
order phase correlator existed it might well be transient and hence best exposed on the
electronic hopping time scale of x-ray resonant scattering, investigations were made in the
cubic 3-k phase of UAsgsSe» at wavevectors of the form, k3 = 7 + (331). Surprisingly,
at just such positions a weak, but long-range ordered, signal was observed. The data
supporting this observation are now presented, followed by neutron scattering data in
which this diffraction event is also observed.
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4.4 X-ray resonant scattering studies

4.4.1 The x-ray resonant scattering cross-section

X-ray diffraction is based on the electromagnetic interaction between the x-ray photon
(a spin-1 particle) and the electric field generated by the electrons in the sample. As the
wavelength of the x-ray photon is on the atomic lengthscale, simple diffraction patterns
result. Diffraction by the magnetic field of the electrons is possible, but weaker by a factor
(hw/mc?)?. This can be overcome by exploiting the phenomenon of atomic absorption.
Close to the absorption energy, a two-step coherent elastic scattering process takes place.
The incoming photon promotes a core-electron into an empty state above the Fermi
energy, and this is followed by the decay of the virtually excited electron into the core-
hole, generating the scattered photon. This process typically takes 107° seconds. Unlike
neutron scattering, this type of scattering strongly perturbs the sample. The resonant-
exchange process is particularly sensitive to sample magnetization because of the effects
of magnetic order on the electron states. For uranium ions, the absorption process probed
is usually My or My, .

U MIV: 3d3/2 — 5f5/2
U Mvi 3d5/2 — 5f5/2 or 5f7/2

The dipole scattering amplitude® has been calculated by Hannon et al. [44] as an
expansion of spherical harmonics and reformulated by Hill and McMorrow [45] into a
basis more readily related to experiment. In the formalism of the latter, the dipole
scattering amplitude is

fipn =€ - eFO + —i(€ x €) -1, FY + (€ - ;) (e - 1) F? (4.7)

where 11 is the unit vector in the direction of the j* magnetic moment and €' (€) are the
final (initial) x-ray photon polarization states. The terms F(™ give rise to the resonance
phenomena, and contain the dependence of the scattering amplitude on the ordered
magnetic moment.

Experimentally, an x-ray beam as generated by a synchrotron source has o polariza-
tion (linear polarization perpendicular to the horizontal scattering plane). Scattering into
the 7 polarization channel (parallel to the scattering plane) can be separated by using an
analyzer crystal, so the ¢ — ¢ and o — 7 scattering channels can be probed. Ignoring
the F(O term as it is independent of the magnetic moment direction, these two channels
have scattering amplitudes of the form

L pe) (4.8)

and
ki kpks -1y — k- miy][(ky x ki) - i)
[1— (ks ki)

J7om = iy - vy PO 4 L FO  (49)

3Multipole transitions are always possible, but are not considered here.
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where k; and k s are the unit initial and final scattering vectors.

4.4.2 Experimental details

The experiments described here were performed on the ID20 beamline at the European
Synchrotron Radiation Facility (ESRF), Grenoble. The x-ray beam is generated using an
undulator, with o incident polarization (99.0 & 0.5 %). Polarization analysis was carried
out using an Au (111) analyzer crystal. The beamline was tuned to the U My edge, as
this gives the largest enhancement for moments associated with the 5f states, although
the existence of the diffraction events observed was confirmed at the My edge as well.

Two single crystals of UAsggSegs were studied. Sample I was that used in the heat
capacity (Figure 4.2) and susceptibility (Figure 4.3) measurements. The results presented
here are from Sample I unless otherwise indicated, although all results were confirmed
with the second sample. The results presented here were all reproduced in a single crystal
of USb0.85T60.15.

4.4.3 Results

Resonant diffraction events

Representative reflections for the (k00), (kkO) and (kkk) peaks in UAsggSepo are illus-
trated in Figure 4.8, where scans were taken along the [001] direction. These reflections
are subsequently labelled kq, ko and k3 accordingly, following the conventions established
earlier. These data were taken at 60 K with an Au (111) analyzer and their sharp width
is indicative of long-range order. They all have a Lorentzian squared lineshape profile.

Figure 4.9 displays the dependence of these same reflections on incident photon energy,
using an Au (111) analyzer to discriminate the ¢ — ¢ and ¢ — 7 channels; they are all
resonant peaks. The intensity ratio is ki : kg : ks = 1: 1072 : 10~%. Both the (0 0 5/2)
and (1/2 1/2 5/2) peaks are only resonant in the ¢ — 7w channel, and they both have
the same lineshape. The reflection at (1/2 0 5/2) is resonant in both channels, but is not
centered at the absorption My edge, and has an unexpected lineshape. This is discussed
in Ref. [43], and will not be discussed further here.

Temperature dependences

The ks peaks are only observed in the 3-k phase. At T™, the onset of the tetrago-
nal distortion corresponds with the disappearance of the k3 peak (Figure 4.10). The
temperature dependence close to T is discussed in Section 4.5 in comparison with the
temperature dependence as observed by neutrons. The intensity of all of the observed
reflections diminishes with temperature before disappearing above Ty .

Azimuthal (Renninger) scans of the kj3 reflections

Figure 4.11 shows the azimuthal dependence of the intensity of the k3 reflections (1/2
1/25/2) and (-1/2 1/2 5/2) in the 0 — 7 channel. The smooth variation of the intensity
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Figure 4.8: Scans along the [001] direction
of the reflections (0 0 5/2), (1/2 0 5/2) and
(1/2 1/2 5/2). The solid lines are a fit to
a Lorentzian squared line shape. The data
were taken at a temperature of 60 K.
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Figure 4.9: Scans of the incident photon en-
ergy with polarization analysis of the scat-
tered beam for the three reflections in Figure
4.8, at the U My edge (dashed vertical line).
The open points are in the 0 — 7 channel
and the closed points n the ¢ — ¢ channel.
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Figure 4.10: The upper panel is the integrated intensity of the k3 peak (1/21/25/2), as a
function of temperature. The middle panel is the position of the charge peak at (008) as
measured by (non-resonant) x-ray diffraction on ID20. These measurements were made
on Sample II. The lower panel is the heat capacity of UAsygSeps (Sample I).
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7 channel about the scattering vector (1/2  channel about the scattering vector (-1/2 -
1/2 5/2) (open points) and (-1/2 1/2 5/2) 1/2 5/2) from USbggsTeg15. The lines cor-
(closed points) reflections from UAspgSegs.  respond to the analysis described in the text.
The lines are described in the text. For all  Note that for all azimuthal angles the inten-
azimuthal angles the intensity in the 0 — o sity in the 0 — ¢ channel is zero.

channel is zero.

eliminates multiple scattering as a possible source for these peaks.

Discussion

The k3 diffraction events are observed in the 3-k phase only. They disappear below T™*, in
the 2-k phase, when the cubic symmetry disappears. From Figure 4.8, they are generated
by long-range order. The smooth variation of the azimuthal scans eliminates a multiple
scattering origin. The energy resonance of the k3 peak looks identical to that of the k;
peak, and is only present in the ¢ — 7 channel, suggesting that it too is generated from
the F(U dipole E1 scattering amplitude.

The lines through the azimuthal dependences in Figure 4.11 are calculated from the
F® term of the E1 cross-section, assuming a symmetry-breaking vector parallel to the
reduced wavevector (kkk). The outline of such a calculation is given in Appendix 4.B.
The symmetry breaking vectors required to fit the data at the different peaks plotted

Reflection Symmetry breaking vector
(1/21/25/2) [111]
(-1/2 1/2 5/2) [111]
(-1/2-1/2 5/2) [111]

In each case, the symmetry breaking vector is parallel to the propagation wavevector
that generates the given reflection. It is not obvious that this is generated by a magnetic
moment.
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From Equations 4.8 and 4.9 the absence of a ¢ — ¢ term indicates that either F'?) =

or that (ks x k;) - 1; = 0. For the (1/2 1/2 5/2) reflection the scattering plane is [110]-
[001]. The azimuthal dependences indicate that the signal at the k3 positions is generated
by a symmetry breaking vector parallel to (111). To give a null result in the 0 — o
channel, we therefore require that F®?) = 0. Note that this assumes that the scattering
is purely dipolar.

As mentioned above, the x-ray probe operates on a very short timescale. The ks
diffraction events may therefore be short-time phenomena. To investigate this, neutron
diffraction, which averages over a longer time and probes the bulk of the material, was
an obvious next step.

4.5 Neutron diffraction

Experimental details

Single crystal neutron diffraction studies were carried out on the four-circle diffractometer
D10 at the Institut Laue-Langevin (ILL), Grenoble. To maximise the signal-to-noise
ratio, the diffractometer was operated in three-axis mode using a pyrolytic graphite (002)
analyser crystal (estimated acceptance of £ 0.5 meV at full width half maximum) and
a He? detector with maximal incident flux (5 - 10% neutrons cm=2s7!) at the calibrated
wavelength \ = 2.3622(3) A. In order to suppress A /2 contamination, a pyrolytic graphite
filter was placed in the path of the incident beam.

The sample of UAsggSeps used was the 80 mg single crystal used in the x-ray res-
onant scattering (Figures 4.8 and 4.9) experiment, as well as in heat capacity (Figure
4.2) and susceptibility (Figure 4.3) measurements. The crystal was indexed on D10 at
room temperature using the 66 accessible nuclear Bragg reflections, and checked at lower
temperatures, giving a lattice parameter of 5.7694(11) A at 65 K, with the error in A
included [46].

The sample of USbggsTeq 12 used was a 0.7 g single crystal prepared at ETH Zurich.
The crystal was indexed using 102 reflections, giving a lattice parameter 6.2013(4) A at
135 K [46]. The magnetic phase diagram obtained for this particular composition (Figure
4.6) was the same as that observed by Burlet et al. [4]. The nuclear structure factors
calculated in this case are tabulated in Appendix 4.C to give an example.

The k; reflections

Bragg reflections indexed at ky = <11%> confirm the presence of the single-k order param-
eters for T' < Ty. The temperature dependence of three such k; reflections in UAsg gSeq o
is given in Figure 4.13. The three orthogonal propagation wavevectors are present with
equal strength in the 3-k phase (T* — T}), reflecting the long-range phase coherence of
the three order parameters in the 3-k state. Below 7™, in the 2-k state, the domain
populations are approximately equal. This is consistent with the behaviour noted by
Kuznietz et al. [40]. Similar information is given for USbggsTe 12 in Figure 4.6. System-
atic absences are observed at positions like (0 0 1/2) and (0 0 3/2), indicating that the
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magnetic moment is parallel to the propagation vector.
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Figure 4.13: Integrated intensity of (11k) reflections of UAsygSeq o as a function of tem-
perature, measured by neutron diffraction on D10 (ILL). The sample is the same as that
used in the x-ray resonant scattering studies.

The ks reflections

The three frames in Figure 4.14 show measurements from UAsygSepo at the (3/2 -1/2
-1/2) ks position for T < T*,T* < T < Tx and T > Ty respectively. The peak
is only present between T and Ty, i.e. in the 3-k phase. The intensity of this peak
is approximately 1073 of the strongest single-k magnetic reflections. As in the x-ray
resonant diffraction, the wavevector response is sharp.

In USbqgsTeg 12, the k3 peak was investigated at T' = 135 K on the basis of the phase
diagram, as no parasitic incommensurate phases were present. Scans at the k3 positions
at 135 K and 220 K (inside the paramagnetic phase) are shown in Figure 4.15 for two
reflections. The reflections again had an intensity approximately 1073 of the k; peaks.

In both materials, a series of reflections were measured over a range of momentum
transfers. The variation in the intensity of these peaks is reported on in Section 4.5.1.
Whilst ks peaks are observed at positions where 7 is not parallel to (kkk), they are
(apparently systematically) absent at ks positions such as (1/2 -1/2 -1/2) and (3/2 -3/2

-3/2).

Temperature dependence

The temperature dependence of the (3/2 -1/2 -1/2) ks peak is given in Figure 4.16,
together with the k; data, and overlaid onto the equivalent x-ray data for the reflections
(005/2) and (1/2 1/2 5/2). Although the neutron diffraction data are relatively poorly
defined and few in number, the behaviour is qualitatively similar to the x-ray data from
the same sample. It is clear that the two types of reflection have qualitatively different
temperature dependences.
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Figure 4.14: Scans taken on D10 (ILL) along the [100] direction through @ = (3/2 -1/2
-1/2) at T = 40 K (left hand panel), T = 65 K (central panel) and 7" = 130 K (right
hand panel). The line in the central panel is a Gaussian fit to the reflection profile; the
width is similar to that observed in the k; reflections. The \/2 contamination is of the
order of 1 to 2 counts on this scale. The monitor of 800000 represents a counting time of
~ 2 minutes.
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Figure 4.15: The (-1.5-0.5 1.5) and (-2.5 -2.5 0.5) Bragg diffraction peaks in USbg gsTeg 12
at 135 K (closed circles) and 220 K (open circles). The data were taken on D10 (ILL) in
the three-axis mode. The monitor used corresponds to ~ 4 minutes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



4.5. NEUTRON DIFFRACTION 73

T T

O Kk xray |
0k, x-ray

® Kk, neutron
=k, neutron|

Integrated intensity (scaled to unity)

il D
50 60 70 80 90 100 110 120 130
Temperature (K)

Figure 4.16: Temperature dependences of the ky (circles) and ks (squares) integrated
intensities as measured by neutron diffraction (closed points) and resonant x-ray scatter-
ing peak intensity (open points) on the same single crystal of UAsggSepo. The data have
been individually scaled to a common low temperature value.

Azimuthal dependence and multiple scattering

A Renninger scan was made with the USbggsTeg 12 sample for the ks reflection at (-1.5
-0.5 1.5), covering 35° of the 1 angle. Unlike an x-ray azimuth scan, this should be
smooth and unmodulated. As this scan is smooth and considerably above the estimated
background level, the peak does not appear to be generated by multiple scattering events.

For the UAsggSegs sample limited azimuthal scans were carried on a selected ks
reflection and revealed no evidence for multiple scattering. To generate a ks peak by a
multiple scattering process would require three k; reflections. In this context, estimates of
the expected magnitude of multiple scattering reflections are helpful. The (11%) k; peak
has 8.5% of the integrated intensity of the (002) nuclear reflection at 60 K. A multiple
scattering signal was observed at positions of the ks type, as confirmed by a Renninger
scan. This had an intensity similar to that of the k3 peak. It requires a double scattering
event, and this gives a reflectivity of ~ 1% for the (002). The implied multiple scattering
event for a ks reflection would therefore have a reflectivity of 6 - 10~ with respect to the
(002) nuclear peak, leading to 1072 counts on the scale shown in Figure 4.14. To obtain
the observed signal via multiple scattering the reflectivity of the (002) would have to be
~ 25 %.

Discussion

The k3 peaks have been observed by neutron diffraction, and have a sharp wavevector
response, confirming the existence and long-range order of the k3 response as a bulk prop-
erty of the 3-k state, the phase coherence time window (~ 4 - 1071?s) remains relatively
coarse, being on the same scale as typical thermal excitations at these temperatures.
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Figure 4.17: A Renninger scan taken at the maximum of the (-1.5 -0.5 1.5) reflection
as measured by neutron diffraction from USbhggsTeg 12 over 35°. The dashed line is the
estimated background level. The two lower panels are rocking scans at the extremal
values of the Renninger scan.

The azimuthal scans and intensity analysis indicate that the peaks are not generated
by multiple scattering events. The sharp widths of the responses, as seen by both x-rays
and neutrons, argue against the existence of parasitic phases, or small regions (~ 1073
of the crystal volume) with an ordering wavevector (333). As an aside, single-k ordering
with such a wavevector has, to date, never been reported in NaCl-type uranium com-
pounds. In this case, the observed temperature dependences would have to be completely
fortuitous. These observations all suggest that the k3 reflections as seen by neutrons are

not a product of local chemical or structural disorder.

The apparent systematic absences reported by neutron diffraction indicate that the
effective magnetic dipole creating the scattering amplitude lies parallel to the propagation
wavevector generating the scattering for both the k; and ks peaks. The inference from
these two observations is that: (i) in common with the results obtained from the azimuth
dependence of x-ray resonant scattering, the effective scattering object for the k3 peak
may be parameterised by a moment which lies along the (111) directions, and (ii) for
the k; peak, the polarization vector is parallel to the (001) directions. Whilst these two
deductions can be reconciled at the classical level as a vector sum of ‘components’; this
construction is unable to give a finite geometric structure factor at the k3 positions (see
Appendix 4.A) and, furthermore, any such linear combination of independent angular
momenta appears to lack a sound microscopic basis.

The observed temperature dependences in both the x-ray and neutron data match,
and together with the apparent long-range order and effective dipolar nature of the ap-
propriate order parameter, suggests that the x-ray (near surface) and neutron (bulk)
probes are imaging the same object. The dependence close to T is not the same for
the two types of reflection. This is discussed by Lander and Bernhoeft [47], who looked
at the x-ray temperature dependence and found that close to T the k; integrated in-
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4.5. NEUTRON DIFFRACTION 75

tensity varied as (Ty — T)%*, whereas the ks reflections had a temperature dependence
proportional to (T — T)'°.

Having established that the ks reflections are brought about by a physical process
associated with a dipolar scattering object, attention now turns to its origin. Reflections
at different @) vectors were measured to investigate the form factor; this is now addressed.

4.5.1 The form factor

Introduction

In magnetic neutron scattering, the intensity of the magnetic signal is determined by an
envelope function labelled the magnetic form factor. This is the Fourier transform of the
magnetization density of the individual unit that orders to give rise to the coherent Bragg
diffraction event. Usually, this is the magnetization distribution for a single magnetic
ion, and most measured form factors can be calculated using electron atomic orbitals
for a single ion in the dipole approximation [48]. There are some specific exceptions, for
example Os, where the moment is carried by the whole molecule, and so the free orbitals
of a single molecule have to be used in the calculation [49].

For U(Sb,Te) and U(As,Se) the relevant ion is the uranium ion. The form factors
for the different uranium states are all reasonably similar, so that it can be difficult to
establish the ground state of the single ion from form factor measurements alone. For a
deeper discussion on magnetic form factors in uranium ions, see Freeman et al. [50].

Experimental details

The integrated intensity of the k; and k3 peaks was measured from 6 — 26 scans in
USbg gsTeg 12, taking advantage of the larger crystal. Some intensities of ks peaks were
also taken from the UAsygSeq o sample. For the k3 this was experimentally difficult as the
peaks were very weak and had to be measured in the single-detector, three-axis mode of
D10. The 2D detector option on D10 provides a more accurate measure of the intensity
but the signal-to-noise ratio is worse. The k; reflections were measured using both the
three-axis mode and the 2D detector, to provide a control of the accuracy of three-axis
mode. The accuracy of the single detector could therefore be controlled. All of the peaks
observed could be fitted using a Gaussian lineshape.

To evaluate the integrated intensities a trapezoidal numerical integration was used,
with a background subtraction calculated using a linear fit of the first and last six points.
The errors were estimated by repeating the calculation at the extremes of the errors on
the individual data points. This integrated intensity then has to be corrected to establish

the form factor.
Inp 1

LAY [Q x (M x Q)
where f2(Q) is the structure factor, I is the integrated intensity of reflection (hkl), L is

the Lorentz factor, A is the absorption correction, y is the extinction correction, and the
final term is the geometrical interaction between the scattering vector @ and the direction

F(Q) ox

(4.10)
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76 CHAPTER 4. ELASTIC OBSERVATIONS IN 3-K STRUCTURES

of the magnetization M in the sample. The effect of absorption was neglected. The
Lorentz factor corrects for the time-of-reflection opportunity for a given reciprocal-lattice
point, based on its position and the type of scan and detector used. The appropriate
factor here is L = 1/sin(260). The other factors will be discussed below.

The k, peaks

The k; peak intensities were measured over a range of scattering vectors for the crystal
of USbgssTeg 12 only. The [Q X (M X Q)P factor was calculated using the established
magnetic structure: moment directions longitudinal to the propagation vectors along the
cube four-fold axes. The 2D detector and analyzer measurements match very well (Figure
4.18). The line exp(—0.07Q?) in the lower panel of Figure 4.18 is a good approximation
to the uranium form factor [39]. To illustrate this, data taken from the literature for
UAs [51] and USb [52] have been added to the lower panel. These two compounds are
both cubic antiferromagnets, although in both cases the type of antiferromagnetism is
different, and the propagation vector is (001).
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Figure 4.18: The upper panel shows the uncorrected integrated intensities for the k;
peaks from USbggsTep12. The open (closed) points were obtained from the 1D (2D)
detector. The 2D detector data have been vertically scaled. The lower panel shows the
data corrected for the Lorentz factor and the direction of the magnetic moments. It
has then been scaled to the red line, exp(—0.07Q?), a common approximation for the
uranium form factor. The triangles are similar data for pure UAs (Ref. [51]) and pure
USb (Ref. [52]).

The data taken for USbggsTeq 1o fits the trend for high @ values, but the first two
points are clearly lower than the curve. This is almost certainly due to extinction effects
in the large sample. The nuclear peaks suffer from some extinction (see Appendix 4.C).
The numerical effects of the extinction could not be determined, as no measurements
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4.5. NEUTRON DIFFRACTION 77

were made at a different incident wavelength, and a standard refinement of the magnetic
reflections was not able to give a good fit [46]. However, the comparison with the UAs
and USb data indicates that the data measured here obey the usual uranium form factor.

The k3 peaks

To evaluate the integrated intensity of the k3 peaks, a trapezoidal numerical integration
was used, with a background subtraction calculated using a linear fit of the first and last
six points. The errors were estimated by repeating the calculation at the extremes of the
errors on the individual data points. Of the 20 peaks studied in USbggsTeq 12, several
were permutations of each other. These permutations all had similar intensities and so
were summed to improve statistics, leaving 11 data points. In the integration process
used, the intensity at the points with positions with 7 || (111) was zero. This was not the
case for any of the other peaks, reinforcing the interpretation of these null intensities as
systematic absences. In UAsggSego 10 reflections were measured, contributing 7 distinct
data points.

Table 4.1 gives the integrated intensities, with error, and the appropriate Lorentz
correction for the eleven peaks. Here, extinction should not be an issue as the peaks have
very low intensities. Figure 4.19 plots these data as a function of momentum transfer.
A limited data set was collected for UAsggSeps, and this is shown in the same figure.
The points shown here represent the limits of the accessible portion of reciprocal space
for crystals with a lattice parameter ~ 5-6 A on D10. Although the wavelength could be
changed, 2.36 A represents the best flux for D10, and it is not clear that the peaks could
be seen if the noise level were higher.

(hkl) Q Integrated Error sin(20)
intensity
(A=1) | (arb. units) | (arb. units)
(3/21/21/2) | 1.68 | 10.67 0.97 0.60
(3/23/21/2) | 2.21 | 20.10 0.86 0.76
(3/23/23/2) | 2.64 | -0.02 0.02 0.86
(5/21/21/2) | 2.64 | 9.67 0.65 0.86
(5/23/11/2) | 3.00 | 7.84 0.61 0.93
(5/23/23/2) | 3.33 | 1.62 0.16 0.98
(5/25/21/2) | 3.63 | 15.12 1.05 0.99
(7/21/21/2) | 3.63 | 2.22 0.22 0.99
(5/25/23/2) | 3.90 | 8.61 0.60 0.99
(7/23/11/2) | 3.90 | 13.75 1.14 0.99
(7/23/23/2) | 4.16 | 7.38 0.69 0.08

Table 4.1: The integrated intensities of the grouped peaks at the ks positions in
USbO.ngeohlg.

To convert the integrated intensities into a form factor, the magnetic structure must
be known. The appropriate structure for the k3 events is not evident. However, it is
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Figure 4.19: The integrated intensity of ks peaks from USbggsTeq 1o (closed points),
corrected for the Lorentz factor, as a function of momentum transfer, as measured on D10
(ILL). The open points are the same data from UAsggSeqs. At 2.67 A~! the UAsgsSeqo
data point has been shifted to avoid point overlay.
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Figure 4.20: The integrated intensity of ks peaks from USbggsTeq 12 (closed points),
corrected for the Lorentz factor and the magnetic structure model described in the text,
as a function of momentum transfer. The open points are the same data from UAsggSeq .o,
now vertically scaled by a factor of 3. At 2.67 A~! the UAsgsSep» data point has been
shifted to avoid point overlay.

clear that these data do not resemble the usual uranium ion form factor. The integrated
intensity is clearly anisotropic, as the two points at 3.63 A~ have very different intensities.
One of these (-2.5 -2.5 0.5), is illustrated in Figure 4.15b, confirming that it is not
obviously spurious in origin, although the high temperature background appears to have
increased. On the basis of the x-ray azimuthal analysis and the systematic absences noted
earlier, assumes the existence of moments parallel to the propagation wavevector (%%%}
generating a given reflection. The correction for this structure is shown in Figure 4.20.

This issue is addressed in the following chapter.
4.5.2 Time-of-flight analysis

Whilst the D10 data confirms the existence and long-range order of the kg response as a
bulk property of the 3-k state, the phase coherence time window (~ 4 - 107'2s) remains
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Figure 4.21: Time-of-flight data from a polycrystalline ingot of UAsggSeps, measured
on IN5 (ILL). Panels (a) and (b) show the integrated intensity (over an energy transfer
range —0.15 < AFE < 0.15 meV) and energy linewidth of the elastic peak at the (1 1
1/2) position. Panels (c) and (d) give equivalent information for data averaged over the
momentum transfer range 0.42 < @ < 1.41 A~' ie. for scattering angles below the
magnetic Bragg cut off value. The data in (c) have been adjusted for the integrated
scattered solid angle to be comparable to (a).

relatively coarse, being on the same scale as typical thermal excitations at these temper-
atures. When looking at low-level signals in UAs gSep2 a longer integration time may be
important since inelastic neutron scattering on pure UAs shows a pronounced response,
broad in wavevector and energy transfer, at temperatures below Ty [53]. To assess the
degree of long-time order present in the correlations leading to the kg response, the basis
set of k;y diffraction peaks has been investigated by high resolution time-of-flight spec-
troscopy on a polycrystalline sample (see Section 4.2.1 for further sample information).
Attaining the necessary high resolution limits the count rate, rendering the ks peaks
unobservable.

Time-of-flight experiments have been carried out using the IN5 and FOCUS spectrom-
eters, at the ILL and the Paul Scherrer Institute (PSI), Villigen, Switzerland, respectively.
The spectrometers were operated at incident wavelengths (4.85, 5.13 and 5.30 A) close
to twice that used on D10, giving an elastic energy resolution better than 0.1 meV. The
two-site de-coherence time can then be determined from the integrated elastic response
on scales up to ~ 4 - 107 s. The large solid angle detector banks enable a survey of the
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Brillouin zone for 0.25 < Q < 2.3 A~1.

At the scattering angle corresponding with (1 1 1/2) magnetic reflections, the temper-
ature dependences of the integrated elastic peak intensity, over an energy transfer range
—0.15 < AFE < 0.15 meV, and energy width are shown in panels (a) and (b) of Figure 4.21
respectively. In parallel with Figure 4.13 (single crystal data), they clearly show the tran-
sition from paramagnetism to magnetic order. The energy linewidth of the peak, panel
(b), tracks the transition in the manner expected for a developing order parameter. In the
paramagnetic phase, slow fluctuations with low amplitude generate a weak broadening
of the elastic linewidth. In the immediate neighbourhood of Ty, the rapidly increasing
fluctuation amplitude leads to a step-like increase in the measured width, followed by
a sharp fall in the ordered phase. The reduced energy linewidth below T, despite the
increasing integrated intensity, confirms the narrowing of the intrinsic linewidth and the
long-time order of the independent single-k order parameters on time scales ~ 107 !s.
This result, which establishes the existence on thermodynamic space-time scales of the
order parameter basis set for both the 2- and 3-k magnetic configurations, is important
in view of the apparent conflicting requirements of angular momentum quantization with
orthogonal magnetic moments in the given 3-k structure [40].

In addition to this response at the k; positions, a significant increase in the intensity
with decreasing temperature is seen across the full range of reciprocal space covered for all
T < Ty (Figure 4.21c). At all temperatures measured this integrated elastic scattering
has a similar energy width (Figure 4.21d) to that observed at the k; position in the
paramagnetic phase above Ty (Figure 4.21b). Its broad extent in momentum transfer
indicates that the response is generated by local, long-time correlations, the amplitude
of which mimics the temperature dependence of the ki antiferromagnetic Bragg peaks.
It stays on a similar dynamic scale in both the paramagnetic and ordered phases.

4.6 Experimental summary

To summarize, the present results show x-ray and neutron diffraction peaks at kg posi-
tions. These peaks are sample independent properties of 3-k phases where k = (00%).
They are not caused by multiple scattering events. Information on the nature and space-
time coherence scales of this response has also been presented.

A brief survey of possible origins of the ks peaks is given. A simple explanation would
be that, at the level of 1072 of the total volume, there are regions that exhibit an ordering
with the wavevector k = (1/2 1/2 1/2). This would explain the observed x-ray energy
dependence. However, a number of observations contradict such a scenario. Firstly,
the similar, sharp momentum space widths of the k; and ks reflections indicate that
the k3 peaks represent (bulk) long-range order. Secondly, the temperature dependence
relationships noted above would have to be completely fortuitous in origin. Moreover,
a propagation vector of the type (1/2 1/2 1/2) has, to date, never been reported in
uranium NaCl-type compounds. These observations suggest that the k3 reflections are
not a product of local chemical or structural disorder, but are intimately related to the
primary long-range magnetic order parameters.
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From both the x-ray and neutron data, the effective symmetry-breaking direction lies
along the reduced wavevector (111). Any combined lattice distortion or charge density
wave at (kkO) coupled with a magnetic dipole (k00) is not supported by these observa-
tions. Furthermore, there is no experimental evidence for either a distortion or a charge
density wave in the cubic phase.

The observation by diffraction of thermal neutrons is important since (i) the neutron
is a weak probe of the electronic state thus eliminating possible distortions of the core and
valence wavefunctions as a cause, (ii) the neutron scattering amplitude is well established
and carries information on the shape of the scattering object (the form factor), unlike
the x-ray resonant scattering amplitude which is based on approximate treatments of
a strongly perturbative probe, and (iii) the time scale of the auto-correlation function
of the k3 peaks is in the thermodynamic regime ~ 107! to 107!2 s. Furthermore, the
long-range, long-time order observed with respect to the three primary order parameters
through k; peaks on both D10 and the time-of-flight spectrometers in single crystal and
polycrystalline samples respectively shows them to be representative of a thermodynamic
magnetic configuration. By analogy, the same is likely to be the case for the 3-k state
realised in USb0.85T60.15 and USbO.ggTeo.lg.

The further evidence furnished by neutron time-of-flight analysis (Figure 4.21c,d)
shows that local, slow, long-time dynamics persist into the paramagnetic phase. This
suggests that the scattering associated with the long-range magnetic order parameters
may originate from local magnetic scattering units, which appear to characterise the
multi-k magnetic configuration, supporting arguments previously advanced on the basis
of the x-ray resonant scattering data [47]. In conjunction with this, the measured lower
limit for the phase coherence time scale in the 3-k state imposes significant constraints
on any theoretical interpretation.

The form factor for the k3 cannot easily be extracted from the data. As the magnetic
structure is not known the correction factor based on the magnetic moment direction
is not easily applied. Using an estimate based on the x-ray azimuthal data and the
observation of systematic absences in the neutron diffraction the integrated peak intensity
appears to oscillate over a momentum transfer range of 0.9 - 4.2 At nearing a minimum
at 3.5 A1,

In the next chapter, a justification for the appearance ks diffraction event is given,
and some of the questions raised by the data are answered.
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4.A Geometric structure factor

In UAsggSepo and USbggsTep 12, the magnetic ions are arranged in a face centred cubic
structure. In a triple-k structure, we consider the simultaneous existence of three ordering
wavevectors: k, = [1/2 0 0], k, = [0 1/2 0] and k, = [0 0 1/2]. The structure factor for

this arrangement is given by:
F(r) = Z m; e ™ di (4.11)

where d; is the position of the magnetic moment m; in real space. For the triple-k case,
m,; is usually considered as the sum of Fourier components. These are considered to be
longitudinal on the basis of neutron scattering data.

iky.d

m; = m,e"~“>% 4+ mye“‘y'd

i 4 m, ek ds (4.12)

Let us consider the z component only, evaluated over a 2 x 2 x 2 block of unit cells.
The magnitude of m is set to unity.

F(r), = (1—e&2)(1 4+ e 4 o2 | gi2n(rety))
(1+eiW(Tz+Tz) +eiﬂ(Tz+Ty) _i_eiﬂ-(TerTz)) (4'13)
(4.14)

In this equation, the first bracket is generated by the periodicity along the z axis.
The second bracket describes the phase coherence of the plane perpendicular to the z
axis. The third bracket contains information on the relative phase of the four moments
contained in the nuclear unit cell.

To obtain the = and y components of F(7), 7, . must be cyclically permuted. At 7 =
(1/2 1/2 1/2), each of these components is necessarily zero. This arises from the second
bracket.
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4.B Azimuthal dependence in x-ray resonant scat-

tering
Following the treatment of Hill and McMorrow [45], the dipole scattering amplitude is
written as
4 _ 0O—=0 T—=0 \ _ 0 1 0
Jin (O‘—>7T 7r—>7r) F (O cos(20)
_iFQ 0 21 co8 6 + z3sin
238in 6 — 2z cos 6 — 25 8in(26)
2 )
(2) 25 —25(218in 6 — z3 cos )
o ( 29(21 800 + 23 cos6)  — cos? O(2% tan? 6 + 23) (4.15)

where 6 is the Bragg scattering angle and z; are the (orthonormal) components of the
magnetization vector m; in the basis [u, w2, us] where u, is perpendicular to the scat-
tering vector and in the scattering plane and w3 antiparallel to the scattering vector. The
cross-section is sensitive to the local symmetry-breaking field and the ") are therefore
not necessarily in proportion to the thermodynamic magnetic moment.

The azimuthal dependence is determined by expanding z; in terms of the components
1; of the symmetry breaking vector along orthogonal crystallographic unit vectors ;.

z1 = pgsinag cos(y + 01) 4y, sin g cos(y) + d2) + i, sin ag cos(y) + ds)
2y = fgsinagsin(y + 01) + py, sin ag sin(y + d2) + p, sin o sin(y + d;)
Z3 = [ly COSQq + [l COS (g + i, COS O3, (4.16)

where «; is the angle between x; and us at ¢» = 0, and ¢; is the angle between :1:1L and
u; at ¢ = 0. x; is the projection of x; onto the plane perpendicular to Q. 1 is the
azimuthal angle.
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4.C Structure factors of USb(gsTe) 1o

The nuclear Bragg peaks were measured using the 2D detector option on D10, and the
integrated intensities were extracted using a Gaussian fitting procedure. The structure
factor Fjy; was then calculated using

(4.17)

2
Fip X ——

where Iy is the integrated intensity of reflection (hkl), L is the Lorentz factor, A is the
absorption correction and y is the extinction correction. The effect of absorption was
neglected. Two thermal parameters were included. The scale factor, the extinction and
the thermal parameters were refined with the Cambridge Crystallographic Subroutine

Library [46], which uses a least squares refinement procedure.

2

hkl Fobs Fcalc (Fobs - Fcalc) U(Fobs - Fcalc) Yy
(arb. units) | (arb. units) | (arb. units) | (arb. units)

200 332.433 381.007 -48.57370 -9.72 0.8532
400 361.704 373.017 -11.31308 -1.87 0.9008
220 | 358.602 384.799 -26.19736 -3.76 0.8837
420 368.618 381.007 6.01535 1.96 0.8979
111 96.764 381.007 4.16661 3.85 0.9897
311 97.765 94.781 2.89367 6.39 0.9931
331 95.373 96.329 -0.95638 -2.98 0.9925
222 | 367.148 380.599 -13.45050 -2.26 0.8964
422 | 356.562 346.645 9.91757 2.42 0.8801

Table 4.2: The structure factor listing for USbg gsTeq. 12.

ment is 81.7809 and y? = 31.9.
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Sommaire

Dans les deux derniers chapitres, des signes de la cohérence a grande distance entre
les parametres d’ordres magnétiques dans les états 3-k ont été vu. En particulier, des
pics de Bragg ont été vu dans des endroits imprévus. Dans ce chapitre, une explication
pour ces observations est présentée.

Dans cette explication, les pics k3 = 74 (1/2 1/2 1/2), ot 7 est un vecteur du réseau
réciproque et 1/2 est dans les unités du réseau réciproque, sont considérés comme les
signes de corrélations quantiques ordonnées, vus pour la premiere fois dans la matiere
condensée cristalline. Les corrélations quantiques ont été discutées avant dans le contexte
des systemes d’électrons fortement corrélés.

Une méthode pour développer les corrélations entre les parametres d’ordre est établie
dans l'algebre géometrique, aussi nommé l'algebre de Clifford. Cette algebre est une
algebre vectorielle avec des regles pour développer un produit éxterieur. Cette algebre a
été utilisé pour étudier la résonance magnétique nucléaire et les intricats quantiques. Une
introduction a cette algebre est donnée dans 'annexe 5.A .

Cette méthode est ainsi utilisée pour exprimer les équations pour la diffusion neutro-
nique, et on voit qu’une terme avec la symétrie et position des pics k3 apparait. L’origine
de cette terme est un corrélateur quantique entre les trois parametres d’ordre ; une partie
du produit géometrique des trois parametres.

Pour essayer de mettre ces arguments sur une base numerique, ces arguments ont
été appliqué aux orbites électroniques 5f pour voir si cela explique le facteur de forme
neutronique. Dans la symétrie cubique pour les électrons 5f, il y a trois types d’orbites :
un singulet, nommé [, et deux triplets, d et €. Si les trois orbites ¢ sont correlés dans
la maniere décrite par I'algebre géometrique, on réussit a reproduire le facteur de forme
observé. En conclusion, les parametres d’ordre sont corrélés dans ces composés 3-k, et on
peut identifier une signature de cette corrélation quantique aux températures relativement
hautes.
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5.1 Introduction

In the previous two chapters, signs of long-range coherence between the magnetic or-
der parameters in 3-k states have been reported. In particular, diffraction events have
been seen that are not yet accounted for within the conventional approach to multi-k
structures. In this chapter, a possible explanation for these unexpected observations is
presented.

The k3 peaks described in Chapter 4 are considered as signs of ordered quantum corre-
lators, visible for the first time in periodic bulk condensed matter. Quantum correlations
have been discussed both in the context of few-atom Bose condensates and strongly corre-
lated electron systems such as the joint superconducting-magnetic state, which has been
the subject of recent interest [54, 55]. Inspired by the success of the ideal gas model and
associated developments, many approaches to the mesoscopic problem involve a concep-
tual fragmentation of the system into quasiparticle states as per the Landau Fermi-liquid
model. Interactions are then included as a corrective glue to partially re-instate the bro-
ken correlations. Whilst a significant range of experimental data may be consistently
treated within such a framework, albeit often requiring different quasiparticles to explain
different thermodynamic and transport properties, the results presented in the previous
Chapter appear to lie outside the paradigm.

A formalism to describe these order parameter correlations is developed using geo-
metric algebra (GA), also known as Clifford algebra. Geometric algebra is an extended
vector algebra with well-defined rules for treating outer vector products. It has been
found useful when discussing, for example, nuclear magnetic resonance and quantum en-
tanglement (see e.g. [56, 57]). An introduction to GA is given in Appendix 5.A, although
the approach in the main text is self-contained. This formalism is then inserted into the
neutron scattering cross-section and is shown to give rise to a diffraction event at the
scattering vector ks = 7 + (%%%) The model is then used to examine the ‘form factor’
for the k3 reflections.

5.2 Motivation

Experimental motivation

To recap the principal experimental results that need to be accounted for, in the 3-k
state in cubic antiferromagnets, cubic symmetry is maintained and the three k; (single-
k) type reflections are present in equal quantities. A Bragg diffraction event is seen at
scattering vector k3 = T+ <%%%> As discussed in the previous chapter, this peak cannot
be obtained by a simple sum or product of the k; order parameters. From both the
neutron and x-ray resonant scattering data, the origin of these peaks appears to be a
magnetic dipole pointing along the (111) directions parallel to the propagation vector
(333)-

The evidence presented in Chapter 4 indicates that these reflections are generated by
the 3-k state, and not by any parasitic phase. From the time- and length-scales that have

been probed, the scattering appears to be both long-time and long-range ordered.
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Free energy arguments

First of all, the free energy of the system is examined, to see what it can tell us. The free
energy for a multi-k structure was explored in Section 1.3, considering only the primary
spin density waves corresponding with the three orthogonal propagation wavevectors k,,.
To account for the k3 reflections, by both neutron and x-ray resonant scattering methods,

a dipolar moment organized with a propagation wavevector of the type (:11) is needed.

222
The order parameter for such scattering would have to have the form

My = My 'K m+0k) (5.1)

where k' = (3353)(= ks + k, + k.). If this is to play a role in the free energy, it must

contribute to terms that are translationally invariant with respect to the lattice vectors.
Two types of term are obvious candidates:

A(k’/,T)(./\/lk/ . MZ/) and B4MkszyMkzM;;/. (52)

where My, = My e!Fem40%:) and 0y = O, + Ok, + Ok, describe the single-k order
parameters. If the B, term is to be translationally invariant, it is helpful to relabel
My as My,,.. Eight terms of the B, type must exist by cubic symmetry, with equal
magnitudes. This means that My, . must be invariant under cyclic permutations of the
three coordinate axes. Such a permutation leaves k,,. invariant, indicating that My,
is longitudinal with respect to the propagation vector. This agrees with experimental
observations.

Terms in the free energy must be real scalar quantities. For the A term, involving a
dot product of two vectors, this is not a problem. For the B, term, the approach is not so
clear. For the single-k components My, || k4, so the three components are orthogonal.
The triple vector product is therefore zero. The triple scalar product gives a scalar, and
so for the B, term to exist, B, must be a vector. Although such a term may exist in the
free energy, we are no closer to identifying the origin of the k3 peaks.

Theoretical motivations

Having identified the need to go beyond the usual quasiparticle auto-correlation function
to have a basis for understanding the appearance of the k3 Bragg peaks, an approach
has been developed based in geometric algebra. Hestenes [58] and the Cambridge GA
group [56] have evaluated the single-particle case and extended it to deal with multi-
particle correlators. This is developed here, following the approach of Doran and Lasenby
[56]. This is then generalized to cover multi-order parameter systems and applied to the
neutron dipole scattering amplitude, firstly for a single electron, and then for a lattice.
We stay in the non-relativistic limit. Appendix 5.A is a detailed introduction to the
basics of 3D Clifford geometric algebra in this limit.

5.3 Quantum correlations in geometric algebra

A geometric algebra exists in a linear vector space within which the rules for vector
multiplication are expanded. The geometric product of two vectors a and b is ab =

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



5.3. QUANTUM CORRELATIONS IN GEOMETRIC ALGEBRA 89

a-b+ a Ab, where a - b is the inner product (in this case the normal scalar product)
and a A b is the outer product. This second term is nominated a bivector, and is the
first new element of the algebra. This grade-2 entity encodes an oriented plane, with
a sense of rotation. The plane with the opposite sense of rotation is bAa = —a A b
(orthogonal vectors anti-commute). The bivector is related to, but distinct from, the
Gibbs vector cross product characteristic to three-dimensional space. On using higher
grade elements in place of the vectors a and b, further terms are generated, up to the
closure requirements of the GA as imposed by the number of dimensions of the vector
space. The span of the algebra consists of a scalar, the set of basis vectors and the higher-
order generalised products. The general element of the GA is termed a multivector and
comprises a sum of elements of different grades.

For the GA of a 3-D Euclidean space, the (orthonormal) basis vectors ej can be
mapped to the three Pauli spin matrices ; and thereby generate an algebra isomorphic
with that of Pauli spinor mechanics. To see this, consider the geometric product of two
basis vectors

82'6]‘ =€;- Bj + €; A Bj = 5ij + Ieijkek (53)

where I = e;eje;, is the unit trivector for the algebra. This new grade-3 element is a
directed volume element; e;eye; = —I. In a 3-D space there can only be one independent
trivector, and it commutes with all of the basis vectors. Ie;, = e;e;, where e, is the vector
perpendicular to the plane defined by the bivector e;e;.

Equation 5.3 is isomorphic with the equation defining the properties of the Pauli
matrices in quantum spinor mechanics.

5.3.1 A spin-1/2 particle

The Pauli spin operators

h
5 = §6k, (5.4)

where k = {z,y, z}, together with an appropriate set of 2-component spinors,

rw>—(§) a,feC (5.5)

are used to describe states involving spin-1/2 particles. Here o and /3 are complex numbers
that relate to the probability of observing the spin-up and spin-down states respectively,
relative to the axis of quantization, labelled z.

The mapping of the spinor to GA

The 6, Pauli operators are represented in GA as basis vectors labelled e. In this notation
the axis of quantization is e3. We now consider the observable

h

Sk = 5T = (Y]31]) (5.6)
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where ny, = (1|6%|1)). This can be expressed as a classical vector n = (ng, ny,n,) with
n]? = (Ja*> +|8]?) = (¥|)? = 1 for normalized states. In spherical polar coordinates,
this vector is

n =sinf (cospe; + sin g ey) + cos b es. (5.7)

0 determines the rotation of the spin relative to the axis of quantization. ¢ determines
the rotation of the e3 — m plane, but for a single spin, this rotation is irrelevant (gauge
invariance). Using this classical interpretation, the spinor can be rewritten in terms of

the angles # and ¢.
_ [ cos(8/2)e7 N iia)
‘¢> - ( Sin(9/2)ei¢/2 e (5'8)

where ¢ = §—+. The overall phase factor (7+4) can be thought of as the alignment of the
spin space. For a single spin, this is irrelevant, but when more than one spin is involved,
this term can be difficult to deal with. In the GA approach, all of this information is
included in m. Assuming for the moment that the overall phase factor can be safely
ignored, the spinor is now described in terms of half-angles, and looks like a rotor: the
rotation of the axis of quantization onto n.

In GA, this rotation of the e3 — n plane by the angle ¢ can be described by a rotor of
the form exp [—B¢/2|, where B is the bivector defining the plane of rotation, e;e;. To
show this we can write, using the orthonormal nature of the basis vectors,

(cosper +sinpey) = (coso+ exersing)e;
= explererdler = exp [ Tesdler
— exp[~Tess/2] exp [~ Tesd/2ley
= exp[—Ilesp/2]e;exp[lesp/2]. (5.9)

The first step, obtaining the exponential form, uses the face that (e;es)(ejes) = —1, and
so eje; = les acts like 4 in the exponential expansion € = cosé + isinf. Following a
similar procedure for the # variable

n = exp|—o¢les/2|exp[—0les/2]esexp [fles/2] exp [ples/2]
= ResR'. (5.10)
This is simply the rotation of the axis of quantization of the spinor, and suggests that

the rotor R is a map to the spinor. By expanding the rotors, the mapping for the Pauli
spinor < GA is obtained. Explicitly,

R = exp[—¢les/2]exp|—0les/2]

0 0
= 1- gfeg — 5[62 + %5163162 + h.o.t.

The higher order terms simply add to the four basic terms presented here, changing the
coefficients, and as the spinor can be written as

0 P03
o= L) (5.1)
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the a’ terms are identified with the four basic components of the rotor, giving the mapping

a’ + ia?

)= (e ) == e, (512
so that | 1) =1 and | |) = —Iey. The spinor is a rotor.

The operator

The spinor has now been written as a GA multivector. The operators {7} also require
mapping. This is done by example.

. —a® +ia'
a1y = ( O it )T —a® +a'ley — a’le;, +a’le; (5.13)
Using Equation 5.12 the right-hand-side of this can be written as follows:
—a®+a'les —a’les +a’le; = e (a’+a'le, + a’ey + a’les)es
= 61’1/]63. (514)

suggesting that the general operator mapping requires right multiplication by es.

This can be verified by example for all of the operators.

The quantum mechanical imaginary

One further quantity needs to be evaluated: the unit imaginary as used in quantum
mechanics. In Pauli algebra, the unit imaginary matrix, is given by &,0,03 suggesting
that pre-multiplication by ¢ be considered as an operator and so, on translation to GA,

Z‘lﬂ) — €1€2€3w(63)3 = wfeg (516)

i.e. right multiplication by the bivector /es.

Single particle observables

An observable is formed in wave mechanics by taking an inner product, where, in the bra-
ket notation the ‘bra’ wavefunction is the Hermitian conjugate. In GA, this operation
corresponds with the reversal of the order of the GA elements. A quantity must be
assembled to give the correct scalar projection. By direct expansion one obtains the
mapping

(¥|¢) = Re(¥|¢) — iRe(pio) — (V'¢) — (Uioles)les (5.17)
where the angular brackets on the right-hand-side indicate that the scalar projection of
the geometric product is to be taken, i.e the scalar components are extracted. Using
Equations 5.15 and 5.17 the expectation value for a spin in the k£ direction is therefore
mapped as

(Wlorl) < (Vlexpes) — (Ylexpl)Ies. (5.18)
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5.3.2 Multi-particle states

So far, we have discussed a single spin-1/2 particle, described by a state multivector basis
set {1, ejl-} in the GA. A second, identical, particle is added, with its own basis set {1, e7}
where the superscript is the particle label. In ordinary spinor mechanics a state-vector of
arbitrary angular momentum is generated by successive application of spinor operators
(e.g. [¥) = |d1) ®|p2) ®|b3)). In GA simply involves multiplying together the appropriate
multivectors.
The basis elements of the direct product are therefore

{1.e} ei,ejel} (5.19)
This has sixteen degrees of freedom; a two-spin system is known to have only eight. This
difference arises because here there are two quantum mechanical ‘imaginaries’, I'e} and
I?€Z. (From now on, the trivector I will be assumed to have the same superscript label
as the following ej.) By equating the action of these two imaginaries, the degrees of
freedom are reduced to eight.!

Yles = le; (5.20)
which can be rearranged to give
1
V= —yleile; = ¢§(1 — Iesle3). (5.21)
defining
1
By = 5(1 —Ieilel). (5.22)

which has the property E3 = FE, as a projection operation. Applied to states of the
system, this enforces compliance with the restrictions of standard Pauli spinor mechanics
and reduces the system to eight degrees of freedom. In a direct product state vector this
is given as,

= ¢'*Ey (5.23)

where ¢ are the spinors for the individual particles.

The compound imaginary

A quantum correlator of odd symmetry may also be defined,
1
Jo = Eyle; = Eyle; = 5(Ie;, + Ie3). (5.24)

This has the property J2 = —FE,. Even though E, # 1, J; has the nature of a generalised
quantum imaginary for a two-spin state.

!This ties together the arbitrary phase terms in Equation 5.7.
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General multi-particle states

This formalism can be extended to higher multiplicities. The key is FE,,, which is, for
higher particle numbers

"1
E,=]] 50— Ielleh). (5.25)
b=2

Jp is then constructed via the condition,

Jo=E,Jel Va (5.26)

5.3.3 Multiple order parameters
The nature of the quantum correlator

In the approach outlined above, a distinct copy of the GA has been associated with each
(quasi)particle. This is easily visualized. From the macroscopic perspective, however, the
nature of the quasiparticle is not always evident. The copies of the GA can instead be
considered as independent configuration spaces out of which the quantum correlator is
projected, and so the quasiparticle need not be defined.

These configuration spaces each have their own frame of reference relative to the
external frame of reference. An example would be the three magnetic order parameters
seen experimentally in Chapter 4. Each order parameter is a defined parameter space
with its own frame of reference (defined by the direction of the polarization vector), and
they are mutually orthogonal. Another example would be electronic orbitals, each with
its own frame of reference relative to the external frame of reference and set of appropriate
Pauli spin operators. If these spaces are correlated a particle evolving inside them will
be affected by the correlation between them, and so obey the correlators derived above.
For three magnetic order parameters, there are three configuration spaces, and so the
third-order correlatior is of interest.

The third-order correlators

For a three-spin state, the correlators F and J can be developed using Equations 5.25
and 5.26.

1
E; = 1(1 —Ieile3)(1 — Iezles)
1
= 1(1 —ITeile: — Ieilel + Iejlesleslel)

1
= 1(1 — leile; — Ieile; — Iesle;) (5.27)

Jg = Eg[eé = E3[€§ = Eg[@%
1

= Z(l — Ielle: — leiles — Ieilel)le;
1
= Z(Ieg, +Ies + Iej — Ieilejles) (5.28)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



94 CHAPTER 5. ORDER PARAMETER CORRELATION IN 3-K STRUCTURES

The observable for a order-n correlated state

As mentioned, J takes the role of the unit imaginary, and the expectation value of spin
in the 6} subspace in direction k is given as

(Wlopl) < (Wepves) — (Ylejvesd) . (5.29)

The second term has no scalar part, and, after a little algebra taking into account the
higher-order correlator, one arrives at

(Wlopl) & —2""HIegp' Jp) = —2" ey - (1), (5.30)

Observables involving higher odd powers of &; come from a projection of the (¢7.J,1)
quantity, whilst terms of even power are transmitted through (¢7E,1).

5.4 Neutron scattering

5.4.1 Introduction

If an interaction can be written as an expectation value for a dipole, the higher-order
correlations are compactly described using J,,. In second-order (.J2) correlated states the
additional quantum correlations are not projected by such probes, but the understanding
of quantum correlation is considerably advanced by their study. A probe looking at the
expectation value of two dipoles would, however, give rise to observable differences, via
the Fy correlator. With a single dipole probe, the first ‘new’ correlations will be seen
from the .J3 correlator.

When looking at electrons, the neutron is a dipolar probe and so the scattering ampli-
tude is written out explicitly as an expectation value of a single dipole, starting with the
scattering from a single electron, and then moving to scattering from a periodic lattice.
The expectation value for the J3 term is then evaluated.

5.4.2 Neutron-electron interaction

To construct the scattering amplitude the combined probe-sample wavefunction is split
into time intervals before and after the scattering event. This artificial fragmentation
introduces a probabilistic aspect concurrent with a direction of time. At any instant, out-
side the (unspecified) interaction time interval, the state-vector of the electron-neutron
system is taken to have distinct spatial and spinor components in the form of a direct
product, Ysys(Th, Ti; S, i3 t) = Gsys(Tn, Ti5t) Xsys(Sn, 035 t) where r,,, r; and oy, s, are
electron and neutron spatial and spin co-ordinates respectively. Possible spin-orbit terms
are therefore neglected. The combined wavefunction is then separated in the first Born
approximation as @gsys(Tn, 7i;t) = ¢n(rn;t)¢s(r;t); in contrast, the spinor fragment is
projected onto a stationary set of joint neutron-electron eigenstates. As the spatial lo-
cation is unknown/undefined, the neutron wavefunction is taken as a plane wave. When
constructing the total scattering amplitude, the neutron beam state-vector is taken as a
linear summation over individual neutrons.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



5.4. NEUTRON SCATTERING 95

The neutron-electron dipole-dipole scattering amplitude arises from an effective Zee-
man field. The Hamiltonian depends on the relative separation, R = r, — r;, and the
spin configuration of the two particles

H; = (gupypn)én - V % (U’Z%f) : (5.31)
where 8,, and &; are respectively the neutron and electron spin operator and the remaining
symbols take on their conventional meanings (see e.g. Lovesey and Balcar [59]).

The geometrical restrictions imposed by the form of the electromagnetic interaction
generate powerful selection rules. To illustrate this it is convenient to express R/|R|?
as V- (1/|R]|) and then decompose (1/|R]) into plane wave states. Integrating over the
neutron spatial co ordinates, assuming that neutron (plane wave) is uniformly distributed
in space at all times, the Fourier transform variable can be written as Q = k; — k; giving

eiQ'Ti

H; = 478, - [Q x (6 ¥ Q)]7 (5.32)
or, since this can be written as
. o . . etQT
H; =4n[(5-6)(Q Q) — (5-Q)(0- Q)] o (5.33)
the s,, and &; operators can be interchanged
. . . iR

The expression is symmetric both with respect to wave-vector and s and & of the
neutron and electron respectively for the single-electron case. Equation 5.34 gives the
Hamiltonian with respect to the electron spin operators . The electron is acting in a
magnetic field created by the neutron. This is a two-level system, and so the Hamiltonian
can be written as H = agbq + (04, With a as a Cartesian component.

The price of integrating out of the unknown, uniform, prior and posterior neutron
spatial dependence is that the a, are complex and the Hamiltonian of the effective two
level system is non-Hermitian. Explicitly,

m eZQ""'L

aQ(ry) = (qupvin)(— =) (S
o (1i) = (guBypN)( ) o

21 h? )Y [Q%6as — QuQsl3s. (5.35)

B

The energy eigenvalues for this are Fy. = ag + /a2 + a2 + a2 or, more concisely F. =
a0 + |a] exp(iQ - 7).

It is clear that the electromagnetic interaction, and therefore the dipole-dipole scat-
tering amplitude, vanishes when the neutron spin lies parallel to Q. These problems
formally vanish when it is recalled that, in the free-electron problem, as there is no lat-
tice, the stationary phase condition of elastic scattering can only occur at @ = 0. In
harmony with this the joint spinor eigenstate ensures that there is no scattering.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



96 CHAPTER 5. ORDER PARAMETER CORRELATION IN 3-K STRUCTURES

The probabilistic scattering event must now be introduced for a second time to break
the spin symmetry of H;. Approximations and assumptions made to achieve a macro-
scopic scattering rate are discussed in the following section.

The expectation value of the Hamiltonian maps to GA as

(WIH;|Y) < aaos - (bozyh) (5.36)

where 9 is the electron state vector. This is then re-written to express the expectation
value as an interaction with an effective magnetic field B generated by the neutron.

(Y| H[) < B - (Vosyh). (5.37)

Application to the projection into the p* sub-space of a mesoscopic state (Section
5.3.3) yields )
(VI Hily) < =2"" B - (Y J, 7). (5.38)

where BP is the neutron field evaluated in the p** sub-space.

5.4.3 The lattice

From the single particle analysis it is clear that there is one common Fourier @ vector
for all components of the electron & operator, and that no products of & components
(e.g. o103 cross terms) occur in the interaction Hamiltonian. Rather, H is the sum of
the components each sitting in their own Zeeman field. This underlines the restriction
of the neutron magnetic cross-section to dipole scattering. To clarify the formalism for
(macroscopic) Bragg scattering it is necessary to consider the modifications in scattering
amplitude arising from electronic correlations.

There are qualitative differences in the scattering amplitude for bound and spa-
tially periodic multi-electron systems. Primarily, the joint neutron-electron spinor and
wavefunction symmetries described above are broken on introducing the time-averaged
macrostate. Once the electron wave function is bounded, elimination of the Fourier
transform vector is most reasonably made in favour of the neutron spatial co-ordinate
as it can easily be treated as a plane wave. The electromagnetic interaction becomes a
perturbative, non-diagonalised term precluding direct summation of the zero-scattering
independent-particle response.

A mesoscopic scattering event occurs when the stationary phase condition is fulfilled.
This condition, that the total phase in the scattering amplitude at a given scattering
vector be zero when summed over the space-time coherence volume of diffraction, is
paraphrased in Bragg’s law [60, 61], where the choice of experimental scattering vector
determines the stationary phase condition probed. The mesoscopic scattering operator is
constructed, over the diffraction coherence volume, as the linear sum of the free-particle
scattering interaction evaluated over the periodic macroscopic state within the single
quasiparticle approximation.

The mesoscopic state-vector and applied operators are projected onto a lattice of
N sites. The electronic quasiparticle states are distinguished by their site index v. A
modulated magnetic configuration, e.g. the Néel state, may be represented in GA by
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o3 — ozexp(ik.r,) where k is the characteristic ordering wave vector. This phase term
represents a rotation of the frame of quantization for the correlator on site v.

These changes then have to be carried through to the J,, correlator with the stationary
phase condition, (Q+k—7) = constant. In a cubic lattice, projecting the level-3 quantum
correlators we obtain

J3 — i([o_?l)ezkzr + Io,geiky.r + [a,geikz.r o [Uéeikz.r[o_?Q)eiky.TIo,geikz.T) (539)
where the three characteristic ordering wave vectors, k are given by k,, k, and k. re-
spectively.

The k; Bragg peak symmetries in the 3-k phases of the uranium rocksalts force the
representative moments to be longitudinal, i.e. parallel to the appropriate k; vector. The
pth sub-space axis of quantization, o is therefore taken parallel to its k; vector. As the
term in the exponential is a scalar product, there are no problems in aggregating the
exponential terms in the last term of J3, giving rise to a stationary phase condition for
peaks at ks =k, + k, + k..

The stationary phase condition of coherent Bragg diffraction enables the experimenter
to exploit the scattering geometry to select a unique propagation wave-vector and hence
extract the individual terms in J3. Thus, for example, the k; amplitudes associated with
the subset {j'ol, %02, %02} ~ {my,my,,m,} are selected by tuning the spectrometer
to their respective wave-vectors {k,, k,, k.} where the effective interaction of a given
spin operator in frame of quantization (1) with a field of magnitude B, is up(B.ol) =
—jupBaol - (1J3T). These terms give rise to Bragg peaks at the same positions as the
J1 quantum correlator.

The new third-order scattering amplitude of the 3-k term is projected by the kj
propagation vector at QQ = <%%%> + 7 with an amplitude proportional to joljo?jo?.
The propagation vector of the k3 term reveals that it arises from a periodic array of
ferromagnetic sheets perpendicular to (111) with antiferromagnetic phasing.

Furthermore, in the 3-k state, no matter which sub-space p in the orthogonal set,
p € {1,2,3}, is projected onto by —jB,o? - (1Js1), the expectation value must be the
same under the cubic symmetry, indicating that the direction of (¢.J31"); lies along the
(111) directions. This is consistent with the symmetries established by the free energy
arguments and explains the systematic absences noted in neutron diffraction [62] and the

x-ray azimuth dependence [63].

5.4.4 Summary

The mapping of a spin-1/2 particle from its spinor to GA has been developed and ex-
tended to multi-particle systems. This has been applied to the neutron scattering dipole
amplitude, where the effect of a lattice is explored. This translation to GA and its ex-
tension to cover the mesoscopic level-3 quantum correlator provides a rationale for the
observation of magnetic dipole scattering at ks positions in the cubic 3-k phase of the
uranium rock salts. The azimuth dependence of x-ray resonant scattering ks peaks as
reported in Fig. 4.11 may be evaluated as shown and the systematic absences in neutron
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diffraction at positions where 7 || (kkk) can be understood in this picture. The intensity
dependence (a ratio ki : k3 = 1:1073) seems reasonable given the origin of the k3 peak
in this model.

5.5 The spatial distribution of the magnetization

5.5.1 Introduction

The magnetic form factor as measured by neutrons is the Fourier transform of the spatial
magnetization distribution of the individual scattering unit. The form factor is obtained
from measurements of the wavevector-dependent integrated intensity envelope that ap-
plies to the magnetic Bragg peaks. After correction for instrumental effects and the
geometrical constraints imposed by the magnetic structure, this is typically compared
with calculations based on the radial integrals for free single ions.

Form factors of this type were calculated in the 1970s and are tabulated in the Neutron
Data Booklet [48]. The original calculations for uranium were carried out by Freeman
et al. [50], who used the relativistic Dirac-Fock equations to evaluate the free-ion radial
integrals of several U ions. There is very little observable difference between the U3t
U%* and U* in the Q range typically accessible for a crystal with a lattice parameter of
5-6 A=!. The different radial integrals for the U** ion are illustrated in Figure 5.1.
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Figure 5.1: Radial (j;) integrals obtained with Dirac-Fock solutions for U4*. Taken from
Freeman et al. [50].

It is somewhat surprising that these single-ion form factors work so well for ions
in lattices, where the crystal field environment distorts the spherical symmetry of the
free ion, but they have been observed experimentally on many occasions. The effect
of a crystal field is often accounted for by altering the balance of the different radial
components, and this can also be used to estimate the ratio of spin and orbital components
in the angular momentum of the electron (for an example, see Ref. [64]). From the
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integrated intensities seen for the k3 peaks in Chapter 4, it is not clear that the single-ion
form factor can be applied.

In Section 5.3 a quantum correlator was derived for three correlated electronic con-
figuration spaces (defined as three independent sets of applicable Pauli operators). A
configuration space may be thought of as an electronic orbital, possessing its own axis of
quantization and frame of reference. As shown in Section 5.4, the quantum correlator of
three such coherent spaces leads to several terms in the neutron cross-section: a simple
sum of the individual configuration spaces, so that each projects out its own apparent
‘order parameter’ (giving rise to the k; peaks); and a direct product of the three spaces,
giving rise to a conjugate order parameter (the k3 peaks). If three candidate orbitals can
be found, the intensity modulaton of the k3 peaks should be calculable using the direct
product of the three orbitals as the spatial magnetization distribution. For the uranium
rocksalts, the uranium ion is in a crystal field of cubic symmetry.

5.5.2 5f electrons in cubic symmetry

In a cubic environment, the seven 5f orbitals have three (degenerate) irreducible repre-
sentations: a singlet () and two triplets (0 and €). In the Bethe notation these are T'y,
Iy and T'5 states respectively [65]. These orbitals have the form

510) = {75
5f(e) = {(x ZQ_?JQ)) (y($2—22)) (Z(yQ—a:Q))}’

sp) — (B t) By S (7 Ser)y

) Y

r3 r3 r3

Representations are shown in Figure 5.2. As the k; peaks appear to be symmetrically
identical, they must all be generated by members of the same irreducible representation
(i.e. there is no cross-correlation between orbitals from different sets). This limits us to
three scenarios: 3, € and 6. As we are expecting three configuration spaces (orbitals) one
of the triplets seems a more likely origin.

5.5.3 Results

The scattering amplitudes of the k; and k3 Bragg events have been calculated from first
principles by N. Bernhoeft, forming the relevant matrix elements from the U 5f3+/4+
ionic configurations with radial integrals as tabulated in the Neutron Data Booklet [48].
As is common with the U 5f ion, the differences in ion have little effect on the observed
magnetic Bragg peak intensities. The calculations are then corrected for the effect of the
magnetic moment direction and the Lorentz correction, so that they can be compared
with the raw measured integrated intensities. There are no free parameters, apart from a
vertical scaling factor. The raw data used for comparison was measured in single-detector
mode (see Section 4.5.1). Further details are given below.
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Figure 5.2: The cubic set of 5f orbitals. The top line is the ¢ orbitals, the middle line
the € orbitals, and the bottom line the 3 orbital. These representations were created by
Dr. M. Winter, University of Sheffield (http://www.shef.ac.uk/chemistry/orbitron/).
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The k, peaks

The magnetic moment directions for the k; peaks are easily determined as they are
longitudinal to the propagation vector generating the peak. In the calculations (Figure
5.3) the point group symmetries of the ionic orbitals in a cubic environment have been
respected; however, the radial extent of the orbitals differs from the free ion values in the
metallic state. To assess the spatial extent of the 5f wavefunctions a calculation of the
k, Bragg intensities has been made in which the set {jo, j4, jo} of ionic Bessel functions
compatible with cubic symmetry? are replaced by a single term, exp(—0.07Q?)2 with |Q|
in A='. This scheme, which replaces (jo) by exp(—O.O?QQ)% whilst setting the (j,) and
(j6) coefficients to zero, is used to represent the radial extent of the uranium ion in rock-
salt compounds [39, 52]. Since the (jo) coefficient is independent of the orientation of the
scattering vector with respect to the state vector, in this approximation no information
on the angular disposition of the wavefunction can be obtained.

The results are given as closed circles in the left-hand panel of Figure 5.3. This single
term approximation to the {jo, ju, je} set reproduces the wavevector dependency of the
measured intensities, and enables one, in a semi-empirical manner, to address the role
of bonding on the radial extent of the uranium valence shell. The lack of numerical
agreement for the first two data points is attributed to extinction. The figure further
demonstrates that the marked anisotropies at |Q| ~ 2.9 A=, 3.8 A=! and 4.1 A~! are
correctly reproduced by the complex vector scattering amplitude of the projection of
the state vector. The right-hand panel of Figure 5.3 is the transform of the integrated
intensities of the left-hand panel, i.e. both experimental (open circles) and theoretical
(closed circles), to a form factor together with the extinction corrected (open triangles)
form factor of pure USb [52]. The latter has been used to set the integrated intensity on
an absolute scale in the left-hand panel.

The k3 peaks

The magnetic moments are obtained by following the symmetry arguments presented
earlier (i.e. parallel to the (111) vector leading to a nuclear Bragg peak). These peaks
are suspected to be due to the direct product of the orbitals responsible for the k; peaks.

Direct calculation shows that the minimal {(jo) — exp(—0.07Q?)2; j, = js = 0}
approximation is not sufficient to explain the intensity-wavevector distribution of the k3
peaks. Therefore the summed contribution from the radial {jo, ju, j¢} set as determined
by the cubic environment is used at each angular setting. As with the k; peaks, ignoring
the role of valence shell bonding results in k3 intensities that have poor agreement with
the data since the radial extent of the wavefunction is artificially restricted. The same
k; replacement of the (jo) term is therefore made to allow for the bond electron density
redistribution in the radial extent of the isotropic component, and, in the same vein, the
calculations make use of a small, empirical, adjustment to the relative (j,) contribution.

Calculations of the scattering amplitude arising from the 3, € and ¢ sets of symmetry
determined orbitals give a ratio of cross sections: 5f(0):5f(€):5f(5) = 30000:100:1 in

2The (j2) term is not allowed in cubic symmetry.
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Figure 5.3: Left-hand panel: k; scattering intensity compared with a first principles
calculation (excepting a vertical scaling factor) from the degenerate 5f(J) orbitals com-
patible with cubic symmetry. Right-hand panel: data converted to form factor, additional
triangular points are taken from the observed form factor of pure USb [52]. The latter
have been used to set the integrated intensity on an absolute scale in the left hand panel
(mb/mole). Key: open circles are USbggsTeq12; open triangles are USb; closed circles
are calculation. The USbggsTeg 12 data are not corrected for extinction.

favour of the 5f(J) orbitals. This means that the cross-section at the ks peaks due
to the o orbitals is significantly larger than from the other two orbitals. The results
for the ¢ orbitals are shown in Figure 5.4. The UAsygSego data are included, scaled
to the USbggsTep 12 data (open circles). The coherent scattering amplitude from the
5f(0) orbitals is uniquely able to reproduce the observed anisotropy of the cross section.
Most notably this is the case between the {(5/2 5/2 1/2), (7/2 1/2 1/2)} and {(5/2
5/23/2), (7/2 3/2 1/2)} pairs of reflections at 3.63 A~' and 3.90 A~! respectively. The
anomalies are well captured by the § orbitals whilst the €, § and a spherically symmetric
linear combination of all of the orbitals all show an anisotropy at |@Q| = 3.63 A~" in the
opposite sense to that observed.

We note that in Figure 4.15 the high temperature measurement at the (3/2 3/2
1/2) reflection from USbggsTeg 12 has an elevated background; there may therefore be
some contamination at lower temperatures. However, this match is still better than that
obtained with the other two orbital sets.

5.5.4 Discussion

At first sight, these results might be surprising in view of the systematic absences at
ks || (111), particularly as the 3 orbital has the appropriate (zyz) symmetry, but the
calculation has shown it to be weak and incapable of supporting the observed form factor.
The 0 orbitals provide the best match to the data and fit well with the definition provided
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Figure 5.4: ks scattering intensity compared with a first principles calculation (except-
ing a vertical scaling factor) from the degenerate 5f(d) orbitals compatible with cubic
symmetry. Key: open circles = USbggsTeg 12; open triangles = UAsggSeq.o; closed circles
= calculation. The {(5/2 5/2 1/2), (7/2 1/2 1/2)} and {(5/2 5/2 3/2), (7/2 3/2 1/2)}
pairs of reflections at 3.526 A~' and A~! respectively have been separated by 2% in their
abscissa to illustrate the anisotropy. The data are set on an absolute scale as in Figure
5.3.
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by the quantum correlator. The ks peak arises from the coherent direct product of the
three orbitals.

To cross-check the behaviour, at the k3 position, the scattering amplitude as calculated
for the k; peaks was gives an intensity of 2-1072 relative to the intensity of the ks peak

as calculated from the § orbitals.

The absence of k3 peaks when 7 || (%%%) indicates quite strongly that at any given
ks peak the apparent dipole direction is longitudinal. This arises naturally from the
geometric algebra formalism, where an inversion of o; yields an inversion of the conjugate
axis in reciprocal space. This indicates that the set {o}, 02 a2} of vector-projected order
parameters is aligned with the {+£Q,, £Q,, £Q).} axes respectively, and not a mixed set,
e.g. {FQ., £Q,, £Q.}. It follows that {o!, 62,02} and {Q., Q,, Q.} share the same
chirality. The system does not favour preferentially one chirality, indicating that the
sample is in reality a superposition of right- and left-hand chiral states. However, once
chosen, the two are not mixed in the scattering amplitude. The {o!, 02 o3} element of
the quantum correlator therefore changes sign on adjacent (111) planes by inversion of all
three elements. This gives rise to the vectorial projections as observed in the azimuthal

scans taken by x-ray resonant scattering.

Here, the system has been considered to be completely localized, or ionic. We note that
some multi-k structures appear to have semimetal properties (e.g. UAs and USb). Knépfle
and Sandratskii [66] have found that the Fermi surface in USb, a 3-k antiferromagnet with
propagation vector (001), has 3-k symmetries (Figure 5.5) and, specifically, the § orbital
symmetries. These symmetries are lowered on using pressure to enter the 1-k phase high-
pressure state. These Fermi surface sheets clearly have the ¢ orbital symmetries. These
Fermi surfaces were calculated using a modified augmented spherical wave method with
a fully relativistic Hamiltonian.

Nonetheless, the effects of band hybridization on the form factor have been neglected
here. Within this assumption, the experimental results presented above suggest that the
electronic system is best described as a coherent superposition of the set of 5f(¢) orbitals,
with coherent correlations between all of the uranium ions.

Figure 5.5: Fermi surface sheets in 3-k USb. Taken from Knopfle and Sandratskii [66].
The sheets shown all have d symmetry.
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Because the role of the crystal field environment is paramount in explaining this
behaviour, it is no surprise that the single-ion approach has problems with the k3 peaks.

5.6 Summary

The approach developed here establishes unique evidence for both (a) the existence and
(b) the experimental detection of the triple quantum projector of the many-body state-
vector. The quantum correlator, derived using geometric algebra, reveals that both a sum
and product of three order parameters participate in the neutron scattering cross-section,
permitting a consistent interpretation of the observed ks peaks in terms of three coherent
scattering amplitudes coming from the elements of the 5f(9) triplet state.

The signature of this coherence is the oy0303 type term, which is accessible when
using momentum-transfer sensitive dipolar probes, i.e. Bragg diffraction techniques. The
vector component of this term is then extracted, and this gives the vectorial projections
found from the resonant x-ray azimuthal dependences. It seems clear that the k3 peaks,
seen in the 3-k state only, are generated by the  orbitals

The order parameters can therefore be viewed as quantum correlators of the appropri-
ate multi-particle state-vector, and can be equated with degenerate (symmetry connected)
Pauli subspaces (the electronic orbitals).
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5.A Geometric algebra: an introduction

An algebra is founded in a set of axioms with rules for handling elements. For example,
a vector algebra consists of two types of element: vectors, which possess a direction, and
scalars. The vector algebra is defined to be commutative and associative under addition,
with an identity element of zero, and the inverse of vector a being -a. The set of vectors is
closed under multiplication by a scalar, and the operation is distributive and associative,
such that:

(i

(ii

) AMa+Db)=Xa+ Ab,
)

(i) (Au)a = A(pa), and
)

(A + p)a= Xa+ pa,

(iv) if 1A = X then la=a

where A and p are scalars. Extending the scalars to 2D complex numbers makes it
a complex vector space, which looks like the direct product of the 2D space and the
ordinary vector space. In a vector space a set of basis vectors can be defined that span
the space. Any vector can then be defined as an addition of basis set elements.

What happens under multiplication of two vectors? For any vector space as defined
above, a scalar (inner) product can be defined: a.b = . This is usually defined as the
projection of a onto b. Uniquely in the three-dimensional case, the vector cross product
of two vectors a X b = ¢ may be defined in terms of a vector orthogonal to the initial
elements.

These two operations yield a scalar (grade-0 element) and a vector (grade-1 element).
Higher grade terms can be envisaged: a grade-2 ‘bivector’, formed by the outer (or wedge)
product a A b, is the antisymmetric (a A b+ b Aa = 0) directed outer projection of two
vectors, defining both a plane and a sense of circulation within it. This is related to, but
clearly distinct from, the Gibbs vector cross product in 3D space. To emphasise this, x
is reserved for the vector cross product and A used exclusively for the outer product. In-
troducing the bivector as a distinct geometric object provides a clean distinction between
axial and (ordinary) polar vectors. Axial vectors, such as angular momentum, express
circulation and are more naturally described as bivectors, whereas linear momentum is a
(polar) vector.

The geometric product of two vectors is therefore defined as ab = a.b + a A b, the
combination of the inner and outer products of the vectors a and b. ab is a multivector
that projects a grade-0 term (the scalar) and a grade-2 term (the bivector). The grades
possible are determined by the dimensionality of the space, such that a 2D space can
have terms of grades 0, 1 and 2. A 3D space adds a grade-3 element. The linear space
of interest is defined as the one containing these multivector elements, and the geometric
algebra is concerned with the operation of the geometric product. This means that the
geometric product can be applied to scalars and bivectors.

A full introduction to geometric algebra can be found in the book Geometric algebra
for physicists by Doran and Lasenby [56].
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5.A.1 The geometric algebra of 3D space

To explore these ideas in more detail, the 3D case is taken as an example. Consider a
3D space spanned by three orthonormal vectors: e;, e; and e3. The geometric product
of the basis vectors is:

ee;=e.e;+eNe; — e Nejifi#jande,.e;=1ifi=j. (5.40)

Three independent bivectors may therefore be generated (ejes, eje; and ejey), de-
scribing the three orthogonal planes of 3D space. The (non-commutative) product of two
distinct bivectors yields the third bivector element:

(ee;)(ejer) = eejeje, = e;ey (5.41)

(ejer)(eie;) = ejeree; = epejeje; = ee; = —e;ey.
This uses the antisymmetric nature of the bivector. The square of a bivector is —1:
(eiej)(eiej) = ¢;€;e,e; = —e;e,e,€; = —1. (542)

To summarize, the basis bivectors square to —1 and anticommute with each other.

One further element exists in 3D space: the unit tri-vector I = ejeses. This is a
directed volume element. As with the scalar quantity, in a 3D space there can only be
one independent tri-vector, but in a higher dimensional space, there may be more. [
commutes with the basis vectors, giving the bivector perpendicular to, and describing a
right hand circulation about the original vector. The bivectors are linked by a duality
transformation to a given basis vector.

[e1 = e€e1€e9e3e; — egey
e1[ = ejejege3 = egey (543)

The geometric product of the grade-1 vector and grade-3 trivector is limited to a
grade-2 bivector, reflecting the closure condition of 3D space. As seen here, the vector
and trivector commute. In fact, I commutes with all elements of the 3D algebra, and
squares to —1. It therefore behaves as a unit imaginary, and in some cases is used as this,
but care must be taken according to the problem in question.

17 = €1eg2€e3e1e9e3 — €3e3e9e3 — —e3e3 — —1 (544)

The vector cross product
Consider the geometric product of a bivector and the trivector:
I(el A 82) = [e1e263e3 = Ifeg = —e3. (545)

es is the vector perpendicular to the plane e; A e;. This gives a definition for the vector

cross product as
axb=—-I(aAb). (5.46)

The vector cross product is in reality a bivector, mapped to a vector using the duality
transform.
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Away from the basis elements

When not working with basis elements, the results may not be so clear. To provide some
examples, let us consider the geometric product of a vector a and a bivector B in this
3D algebra.

aB=aB+aAB (5.47)

The inner product is generalised to mean the lowest grade projection of the result,
and the outer product the highest grade part of the result. In this case, the scalar
product is a vector and the outer product a trivector. a is split into components parallel
and perpendicular to the plane defined by B: a = aj +a;. B can then be defined as
B = a; A b, where b is orthogonal to a|.

a.B = a||(a||b) = —(aHb)aH = —B.a (5.48)

The scalar product is antisymmetric, therefore:

a.B = %(aB — Ba). (5.49)

The outer product is therefore the projection involving a :
aAB=a,(ab)=aba, =BAa. (5.50)

This is symmetric, so the outer product can be written as:

1
aNB= §(aB + Ba). (5.51)

The Pauli spin algebra

Staying for the moment in 3D space, the geometric product of the basis vectors can be
rewritten as
€,e; = e;.€; +e; N e; = (5@‘ + Ieijkek. (552)

This has the same form as the Pauli algebra of quantum mechanics. The Pauli matrices
are therefore a matrix representation of the 3D geometric algebra. As a reminder, the
Pauli matrices are

0 1 0 —i 1 0
0'1—(1 O), 0'2—(7: 0>, 0'3—(0 _1> (553)
where 7 is the unit imaginary. These matrices obey the relation

0,05 = (5ZJI + ieijkak, (554)

where 7 is the 2 x 2 identity matrix. If Z is explicitly identified with the unit scalar, and
1 with the 3D unit trivector I, the geometric product of 3D space is recovered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



5.A. GEOMETRIC ALGEBRA: AN INTRODUCTION 109

Higher-dimensional algebras

Depending on the problem, higher-dimensional algebras may be appropriate. The most
common example is the 4D spacetime algebra, used for the study of relativistic physics.
The even subalgebra of this 4D spacetime algebra has the same properties as the 3D
algebra described above. This work concentrates on non-relativistic effects and so stays
in the 3D algebra; further details on space time algebra can be found in, for example,
Space-Time Algebra, by David Hestenes [58].

5.A.2 Axioms of geometric algebra

As this development shows, vectors play a crucial role in the geometric algebra: the
vector space provides the starting point for the algebra, and the grade-1 vector defines
the grading system. Three key axioms apply to vectors in all geometric algebras.

(i) a(bc) = (ab)c = abe. The geometric product is associative.
(ii) a(b+ ¢) = ab+ ac. The geometric product is distributive.

(iii) The square of any vector is a real scalar: a? € R.

By multiplying vectors together, the complete algebra is generated. The elements
of the full algebra are multivectors. A geometric product involving multivectors is also
associative and distributive. As for a set of vectors, the multivectors are closed under
multiplication by a scalar. With these rules in mind, some useful properties of the algebra
are discussed. From now on, vectors are described using lower-case italic letters.

Reflections

When a vector is reflected in a plane, the part parallel to the plane is unchanged, and the
part perpendicular to the plane has its sign reversed. Consider a vector a being reflected
in the plane perpendicular to the unit vector n. a can be resolved into components
parallel and perpendicular to n.

CL:TL2(I

n(n-a+nAa)
= q +a; (555)

ay is easy to assign, leaving the remainder as the perpendicular contribution

aj =a-n, a; =nnAa. (5.56)

The reflected vector is
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d=a —a = nnAa—a-nn
—n-an—nANan

= —nan (5.57)

To reflect a higher-grade element, each of its component vectors must be reflected.
Using the bivector B = a A b as an example, and using the antisymmetry of the wedge

product
B = (—nan) A (—nbn)
1
= —(nannbn — nbnnan)
1
= i(n(ab — ba)n)
n(a A b)n
nBn. (5.58)
Rotations

A rotation in the plane containing the two unit vectors m and n can be achieved by
successive reflections in the planes perpendicular to m and n. Components perpendicular
to the plane are unaffected, and the angle beween the initial vector a and the rotated

vector a’ is twice the angle between m and n. Therefore, if b = —mam is the reflection
in m, then o’ = —nbn = nmamn, or
d' = RaR' where R = nm. (5.59)

It should be clear that this will hold for bivectors, and indeed for elements of any grade.
As m and n are unit vectors

RR" = nm(nm)" = nmmn =1 = R'R. (5.60)

R is labelled a rotor, and it consists of a geometric product: R = n -m + n A m, where
n-m = cosb.

(nAm)(nAm) = (nm—n-m)(m-n—mn)
= —nmmn +n-m(nm+mn) — (n-m)?

= —nmmn+ (n-m)?

= —sin?0 (5.61)

The unit bivector B of the plane m A n is then given by

A
B:m n

(5.62)

sin 6
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The rotor can then be expressed as

R = cos § — Bsin 6. (5.63)

By applying a power series, and remembering that B? = —1 this can be expressed as an
exponential.

R = exp(—B0) (5.64)

This rotates through an angle of 26, so to rotate a by an angle # in the B plane, the
appropriate description is
o = e BI2qeP/2, (5.65)

The sense of rotation is contained in the description of B. To invert it, B has to be
inverted. This concept of rotation in a plane is applicable to higher dimensions.
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Sommaire

Dans ce chapitre on laisse les systemes localisés pour étudier un systeme plutot itinerant :
I’UPdyAl;. Ceci est un des rares matériaux ot I'ordre antiferromagnétique existe en méme
temps que la supraconductivité. On peut essayer de trouver comment la supraconduc-
tivité se développe dans des champs magnétiques forts associée avec I'ordre magnétique,
et si 'aimantation est nécessaire pour la fonctionnement de ce type de supraconductivité.

L’aimantation et la supraconductivité ont été vu ensemble dans plusieurs composés.
Les matériaux haute-T, sont soupconnés d’avoir un médiateur magnétique, parce que
quand on change ’environnement électronique par le dopage, ils deviennent magnétiques
[67]. Dans les supraconducteurs de type RNiyBoC, R est une terre rare, et les ions des
terres rares sont souvent magnétiques. Ils agissent avec les électrons conducteurs, dans
certains cas pour supprimer la supraconductivité [68].

Dans les composés fermions lourds avec une base de Ce comme CeCusSiy et Celns des
parametres externes, comme la pression, peuvent étre utilisés pour changer un composé
entre l'ordre antiferromagnétique et la supraconductivité. Un médiateur magnétique a
été également proposé pour ces composés [69].

Cela nous amene aux composés fermions lourds avec une base d'uranium. UGes
est ferromagnétique, mais il devient supraconducteur sous la pression [70]. Quelques
composés sont antiferromagnétiques et supraconducteurs en méme temps (e.g. URusSi,
[71]), ce qui indique que 'environnement magnétique n’empéche pas la supraconductivité
dans ces matériaux. UPdsAls est considéré comme un modele pour ces systeémes parce
que ces propriétés le rendent relativement facile & manipuler pour les expériences [72].

Les composés soupgonnés d’avoir un médiateur magnétique ont souvent un gap
d’énergie non conventionnel (aussi nommé le parametre d’ordre), avec nodes dans 'espace
de momentum, et une symétrie asphérique. En fait, Monthoux, Balatsky et Pines [73] ont
montré que pour un certain médiateur magnétique le gap d’energie est obligatoirement
non conventionnel.

Dans les chapitres précédents, nous avons vu que les parametres d’ordre magnétique
dans le méme espace sont corrélés. Ici, il y a un parametre d’ordre magnétique et un
parametre d’ordre supraconducteur, avec une origine commune - les électrons corrélés 5 f.
Le role de 'aimantation dans la supraconductivité est sujet a de vifs débats, et plusieurs
auteurs ont postulé un médiateur magnétique pour UPd,Al;.

La réponse inélastique vue par les neutrons est une sonde unique de I’ordre magnétique
et supraconducteur dans ce matériau. Un champ magnétique externe a des effets sur les
deux types d’ordre par des mécanismes différents. Pour ces raisons, on présente les effets
d’un champ magnétique externe sur la réponse inélastique. Finalement, pour conclure
sur certaines questions sur la réponse de basse énergie, le <spin-echo>> est utilisé pour
sa haute résolution.
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Les états paramagnétiques et antiferromagnétiques normaux étaient étudiés dans un
champ magnétique externe. Le comportement observé était caracteristique dun liquide
de Fermi dans des champs jusqu’a 15 T. La réponse quasiélastique augmente vivement
a 4 T avant un déclin dans des champs supérieurs. Ce comportement est attribué a
la rotation des moments magnétiques a 4.2 T. Dans le champ magnétique externe, on
voit aussi un changement dans la dispersion du pic inélastique dit de haute-énergie. Ces
changements sont en accord avec la théorie pour les ondes de spin dans un composé
hexagonal, comme UPd,Alz [74]. Une réponse additionnelle était vue dans les champs
hauts (11.6 T) & 4 meV. L'origine de cette réponse est pour le moment inconnue, mais
quelques origines possibles sont décrites.

Le changement de la réponse en quittant 1’état supraconducteur était étudié. Avec le
technique spin-echo, nous avons confirmé que, dans la limite de la résolution possible, au
profond de 'état supraconducteur, il n’y a pas de diffusion quasiélastique. Les mesures
descendent jusqu’a T" = 50 mK. Cette observation est liée avec le surface de Fermi et
I'impacte pour la compréhension de I’état supraconducteur est discuté.

Pour cette étude, on a utilisé un cristal unique d’UPdyAlz. Pour le spin-echo sur les
composés magnétique, il y a certains effets secondaires qui deviennent de plus en plus
importants avec un cristal unique comme échantillon. Ces effets sont présentés dans
I’annexe 6.A.
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6.1 Introduction

This chapter now shifts focus away from highly localized systems to a heavy-fermion
material, UPdyAlz. This is one of the rare class of materials in which antiferromagnetic
order and superconductivity coexist, and as such, provides a model system for questioning
how the superconductivity survives in the strong magnetic fields found in an ordered
state, and whether or not the magnetism is crucial in creating the superconducting phase
coherent state. Typically the internal fields of a magnetically ordered phase far exceed
the fields necessary to destroy superconductivity.

Magnetism and superconductivity are thought to interact in several different groups of
compounds. The high-T,. ceramics are often suspected of having a magnetic mediator, as
when the electronic environment is altered by doping, the superconductivity is replaced
by magnetic behaviour (see e.g [67] and references there-in). In the rare-earth nickel
borocarbides, some of the rare-earth ions are magnetic, and studies indicate that the rare-
earth magnetic moments interact with the conduction electrons, in some cases suppressing
the superconductivity [68].

In Ce-based heavy fermion compounds (e.g. CeCuySip, Celng) external parameters
such as pressure can be used to tune between, for example, antiferromagnetic order and
superconductivity. A magnetic mediator (spin fluctuations) has been proposed for these
materials [69)].

This brings us to the uranium (heavy fermion) compounds. UGe; is ferromagnetic,
but can be made into a (disordered) superconductor using pressure [70]. Several uranium
compounds are antiferromagnetic and superconducting at the same time (e.g. URusSis
[71]) indicating that the magnetic environment is not a handicap to the type of supercon-
ductivity that develops in these materials. UPd3Al; [72] is one of the most experimentally
amenable of these compounds, and so is the sample used here.

These compounds, suspected of having a magnetic mediator, often have an unconven-
tional superconducting energy gap (often labelled the superconducting order parameter),
with nodes (gapless points in momentum space) and non-spherical symmetry. Indeed,
Monthoux, Balatsky and Pines have shown that one type of magnetic mediator must
give rise to an unconventional energy gap [73]. In previous chapters, we have seen ev-
idence that multiple magnetic order parameters in the same volume interact; here we
have a magnetic order parameter and a superconducting order parameter, generated by
the same strongly-correlated electron system. The role of the magnetism in developing
the superconductivity is a matter of lively debate, and in UPdyAl; several authors have
posited that the superconductivity is magnetically mediated [54, 75, 76].

Previous work has shown that the neutron inelastic response provides a unique probe
of both the magnetic and superconducting order. An external magnetic field affects both
the magnetic and superconducting components via different mechanisms. Initial studies
at low-resolution by Metoki et al. [77] have indicated that the neutron inelastic response
is affected in an observable manner by an external magnetic field. The experiments
described in this chapter continue and extend this work, documenting the effect of an
external magnetic field on the normal and superconducting states. Finally, to answer
some specific questions about the nature of the low-energy response, a high-resolution
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Figure 6.1: The structure of UPdyAls. The grey atoms are U, the red atoms are Pd and
the blue atoms are Al. The arrows on the uranium ions represent localized magnetic
dipole positions and directions. The two hexagons are projections of the basal plane,
with the reciprocal axes a* and b* marked as dotted lines on the left-hand hexagon. In
the experimental work presented here, when a magnetic field B is applied, it is parallel to
the b axis. The black arrows in the right-hand hexagon show one of the possible low-field
magnetic domains. Above a certain applied field (2.3 T at 4 K) the moments rotate to
lie along the a* axis (grey arrows) [81].

neutron spin-echo study is discussed. First of all, an overview of the current experimental
situation is given, along with a description of the two main models for the material.

6.2 Overview

6.2.1 Basic facts

UPdsAls was first discovered by Geibel and coworkers [72] in 1991. It has the hexagonal
PrNipAly P6/mmm structure, with lattice parameters a = 5.37 Aand ¢ = 4.19 A at
room temperature [72]. There are no structural phase transitions observed from the
lowest temperatures measured up to 300 K [78]. Below T = 14.3 K, UPdyAl; becomes
antiferromagnetic. In the ordered state the magnetic moments lie in the basal a — b plane
forming ferromagnetic sheets. These sheets are stacked antiferromagnetically (+—+-) up
the ¢ axis (see Figure 6.1), giving a propagation vector Qo = [0 0 3] [79]. The ordered
magnetic moment per uranium atom is 0.85 pup. The magnetic moment is associated
solely with the uranium atoms [80].

Below Ti. = 1.8 K, UPdyAl3 becomes superconducting. Krimmel et al. [79] observed
that the magnetic Bragg peak remains present throughout the bulk of the material in the
superconducting phase, and from specific heat studies [72] both phenomena originate from
the same (strongly correlated) electron system as the superconductivity, and that there is
no apparent phase separation. As the transition temperatures are easily accessible, and
the magnetic moment is sizable, UPdsAls is ideal for experimental purposes. In addition,
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Figure 6.2: A schematic representation of the (B,T') phase diagram for UPd,Al; for
B || b, based on data from Refs. [81] and [85]. The dashed line denotes the onset of
superconductivity inside the antiferromagnetic phase. The thick grey line marks the
moment rotation transition illustrated in Figure 6.1. The phases marked are described
in the text.

large single crystals can be grown by the Czochralski method.

6.2.2 The effect of a magnetic field

Much of the experimental work presented here involves applying an external magnetic
field to the sample. If the magnetic field is applied parallel to the ¢ axis no change in the
structure is recorded up to 35 T [82]. If the magnetic field is applied perpendicular to
¢ there is a metamagnetic transition at 18 T (Figure 6.2) where the apparent magnetic
moment roughly doubles [81]. Below 18 T, three phases have been seen [81, 83] if B || b. In
phases I and II the moments point towards nearest(uranium) neighbours (black arrows in
Figure 6.1). Phase I has all three possible domains; in phase II the domain with moments
parallel to B disappears. In phase III the moments rotate to point along a* (towards
next nearest neighbours) perpendicular to B (grey arrows in Figure 6.1). Close to Ty
phase II dominates in the zero field state. This has been confirmed by x-ray resonant
scattering [84].

6.2.3 Bulk properties
Specific heat capacity

The specific heat is given in the upper panel of Figure 6.3, taken from Hagmusa et al. [85].
In the normal magnetically ordered state of UPdyAls, the specific heat capacity obeys
the relation

C =~T + pBT° (6.1)
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where the T term is attributed to scattering by magnons. v = 150 mJ/mol.K? and
B = 1.53 mJ/mol.K* [82]. This value of 7 is smaller than that extrapolated from the
paramagnetic regime (210 mJ/mol.K? [72]), but indicates that we are dealing with a
heavy fermion Fermi liquid. At T,. there is a jump in the electronic specific heat of
AC =1.2Cy(Ts.), implying that all of the heavy fermions take part in the formation of
the superconducting state.

Resistivity

There are three principal features in the resistivity as a function of temperature: at T},
the resistivity falls sharply to zero, marking the onset of superconductivity; at Ty there is
a point of inflexion, and at ~ 80 K there is a broad maximum. This last point is thought
to be linked to the Kondo effect, and is observed in other heavy fermion superconductors.
The middle panel of Figure 6.3, from Dalichaouch et al. [86], covers the low temperature
range. Two models have been proposed: the Bloch-Griineisen model for a metal [87],
and an Fermi-liquid antiferromagnet with an energy gap [86]. Both models fit the data
well, and contain the T2 component characteristic of a Fermi liquid. From Dalichaouch
et al. [86], the strength of this T? dependence is 0.23 uf2.cm/K?, a large value consistent
with the heavy fermion hypothesis.

Magnetic susceptibility

The dc susceptibility of a single crystal is given in the lower panel of Figure 6.3, taken
from Grauel et al. [83]. In the a — b easy magnetic plane, Curie-Weiss-like behaviour
is seen above ~ 150 K. Parallel to ¢, x shows van Vleck-like paramagnetism. Several
groups have attempted to model the paramagnetic susceptibility. Grauel et al. [83] found
that a model of crystal field splitting of a localized tetravalent 5f state had the correct
form, although the absolute values were a little too high (the solid lines in the figure).
The broad maximum seen around 35 K was ascribed to van Vleck contributions from the
two low lying singlets and the thermal population of the I'y and I'g states. A schematic
of the proposed crystal field scheme is given in their paper [83]. Subsequently, Richter
et al. [88] used ab initio crystal field theory to model the paramagnetic susceptibility.
They concluded that it could not be a 53 state, but a 52 state was found to match the
behaviour for T > 150 K.

6.2.4 Magnetic order

From the specific heat and resistivity data, the ordered state of UPds Al looks like a classic
Fermi liquid, with the antiferromagnetism generated by the itinerant 5f electrons. The
susceptibility data indicates that a localized moment model applies for T > 150 K. Other
experimental data indicate that there are two active electronic subsystems, one more
localized and one less. This includes: specific heat measurements under pressure [87];
SR data [89] revealing a strongly anisotropic susceptibility component (localized) and
an isotropic component (itinerant), and high resolution photoemission spectroscopy [90],
where two contributions are seen in the density of states, one close to the Fermi surface
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Figure 6.3: Upper panel: specific heat over temperature (C'/T') of UPdyAl; in zero field,
taken from Hagmusa et al. [85]. Inset: C'/T around the superconducting peak in magnetic
fields of 0, 1,2 and 3 T (B || a). Middle panel: low temperature resistivity vs temperature
of UPdsAlz in zero applied magnetic field. This figure is taken from Dalichaouch et
al. [86]. The solid line is a fit described in Ref. [86]. Lower panel: the dc susceptibility
of a UPdyAl; single crystal, taken from Grauel et al. [83]. The squares represent B || ¢
and the circles B L ¢. The solid lines are the crystal field model mentioned in the text.
The inset is the inverse susceptibility of a polycrystalline sample up to 650 K.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



6.2. OVERVIEW 121

(itinerant) and the other much lower (localized). This has motivated the application of
the dual model developed for UPts [91]. These two models for the magnetic order will
now be discussed.

The itinerant model

All three of the 5f electrons are assumed to be itinerant. The Fermi surface has been
calculated by three groups in this paradigm [92, 93, 94], with broad agreement on the
Fermi sheets found. The results of Knépfle et al. [92] are shown in Figure 6.4, and were
calculated using an electronic structure calculated using the local spin-density functional
approximation (LSDA). The three Fermi sheets are: (i) ‘party-hat’, the largest but with
major contributions from electrons other than the U 5f; (ii) the ‘cylinder’, almost purely
5f, and the ‘cigars’ with ~ 50 % 5f content, and (iii) the ‘egg’, with approximately 75 %
5f content. This system has an instability with respect to the wavevector Qo = [OO%], and
so magnetic order forms by nesting of the Fermi surface at this wavevector. Comparison
with measured de Haas-van Alphen (dHva) frequencies is favourable. All of the observed
frequencies could be classified, save for a few scattered points, but the ‘egg’ surface was not
seen experimentally. Knopfle et al. ascribe the absence of these frequencies to the local
curvature of the Fermi surface, as this affects the amplitude of a dHvA oscillation. This
absence may also occur because of the presumed high effective mass of the quasiparticles
on the ‘egg’ surface, and so T was not low enough for oscillations from these quasiparticles
to be observed.

The dual model

The 52 ground state calculated by Richter et al. [88] is assumed to extend to low tem-
peratures. The antiferromagnetic order is created by exchange between the localized
moments on the uranium ions. The itinerant properties are generated by the third 5f
electron. The Fermi surface in this case has been modelled by Zwicknagl, Yaresko and
Fulde [95], using the local density approximation (Figure 6.5). Again, three sheets were
observed. The first consisted of a K-centred ellipsoid, but was deemed unimportant to
the physics and is not shown in Figure 6.5. The second sheet was the ‘cylinder and cigars’
sheet, and the third sheet also consisted of K-centred ellipsoids which were strongly de-
pendent on the Fermi energy. These surfaces provided a reasonable fit to the dHvA
frequencies.

6.2.5 The superconducting state

UPdsAl;z is a Type II superconductor, with B usually quoted as 3.6 T [72] although
there is evidence that the critical field is anisotropic [96]. In the superconducting state,
the electrons form coherent paired states (Cooper pairs) in momentum space. For the
Cooper pairs to form, an attractive interaction between electrons is required. Usually,
the Coulomb force means that electrons repel each other. In ordinary BCS superconduc-
tors, this interaction is provided by phonons, which mediate the interaction between two
electrons.
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Figure 6.4: The calculated Fermi surfaces. The Greek letters mark particular extremal
cross-sections. (a) is the ‘party hat’, (b) shows the ‘cylinder’ and the ‘cigar’; and (c)
contains the ‘egg’. Taken from Knopfle et al. [92].

Figure 6.5: Two of the calculated Fermi surfaces from the Zwicknagl model. (a) is the
‘cylinder’ and ‘cigar’ sheet, (b) shows the K-centered ellipsoids, and (c) shows the same
sheet with the Fermi energy shifted by 40 K. Taken from Zwicknagl et al. [95].
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The pair formation must be energetically favourable compared to the normal state if
the paired state is to form. When this happens for all of the electrons in the material, an
energy gap forms at the Fermi surface. This gap acts as the (complex) order parameters
in the Ginzburg-Landau phenomenological theory of superconductivity. For a normal
BCS superconductor, the entire Fermi surface is uniformly gapped (s-wave symmetry),
but different symmetries have been observed in more complicated superconductors, often
accompanied by nodes. Indeed, some gapless superconductors have been found. It is not
known if an unconventional gap is an indication of an unconventional mediator, although
the converse has been shown for at least one case [73]. One reason for the great interest
in UPdyAlj3 is that it has an unconventional order parameter, and is suspected of being
magnetically mediated. As we shall see, inelastic neutron scattering can contribute to
this discussion.

6.3 Previous inelastic neutron scattering studies

6.3.1 Historical overview

The first inelastic neutron scattering on single crystals of UPd;Aly was carried out at
Risoe National Laboratory, where broad excitations with a strong dispersion along the
¢* [001] axis up to ~ 8 meV at the magnetic zone boundary were reported [97]. The full-
width half-maximum (fwhm) at the zone boundary is ~ 9 meV. In the basal plane strongly
damped excitations were found, with poles and widths of similar extent, increasing up
to ~ 4 meV. These studies, carried out with 0.3 meV resolution (fwhm) found no low
energy gap in the excitations at the magnetic zone centre @, and no change when the
material became superconducting. However, since the energy resolution was on the scale
of ~ 3 K, it is perhaps not surprising that no effect was observed below T%..

Work on polycrystalline material at the ISIS spallation source by Krimmel et al. [98]
then followed, giving an overview of the inelastic response function up to ~ 20 meV. This
study gave no evidence for a discrete crystal field level scheme and the principal results
were that (a) over the studied range of wavevectors a broad quasielastic contribution was
present in the scattering at all measured temperatures with a fwhm of 9.8 meV at T' =
25 K and 22.8 meV at 150 K, and (b) at 7" = 25 K a strong maximum in the scattered
intensity with an energy transfer ~ 2.2 meV at |@Q| ~ 1 A~ was identified. The inelastic
contributions appear to fit with the crystal field scheme of Grauel et al. [83] but could
also be due to magnetic correlations persisting in the paramagnetic state.

Experiments with single crystals and a cold-source three-axis spectrometer were first
attempted at Brookhaven National Laboratory in 1994, but were unsuccessful. In 1995,
experiments were performed by the Tohoku University group using the JRR-3M research
reactor (JAERI, Tokai) [99], and this motivated higher-resolution experiments at the In-
stitut Laue-Langevin (ILL), Grenoble in 1996 [100, 101]. Subsequently, an independent
effort was started by the group at the Advanced Science Research Centre in JAERI,
Tokai [77, 102]. Over the following years, several papers have been published concen-
trating on the magnetic response in the vicinity of Qy, including polarization analysis,
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Figure 6.6: Contour plot of the (E,T") domain at Q. The magenta points indicate actual
data points. The black line shows kgT'. The blue arrow marks 7 and the red arrow 7.
The white area marks the resolution limit due to Bragg peak contamination. Data taken
from Bernhoeft et al. [103]. The side panels are representations of the neutron inelastic
scattering response as a function of energy transfer in the paramagnetic (PM) state, the
antiferromagnetic state (AFM), and the joint superconducting-antiferromagnetic state
(SC/AFM).

temperature and field dependent studies. This has resulted in a disparate literature,
masking rather than highlighting the fundamental importance and remarkable degree
of experimental agreement between data collected on different samples by independent
experimental groups.

6.3.2 At the magnetic zone centre Q)

Figure 6.6, based on data from [103], is an overview of magnetic response at Qo. From
polarization analysis, this response is electronic in origin, and the fluctuations are in
the basal plane only. The side panels are schematics of the dynamic response in the
different temperature regimes. At high temperatures the response is, within the exper-
imental energy resolution of 0.09 meV (fwhm), quasielastic. Between Ty, and ~ Ty /2
the quasielastic energy linewidth at constant intensity scales approximately with kgT
(the black line in Figure 6.6), indicating that the bare susceptibility is temperature in-
dependent. In addition to this low energy response, on cooling a distinct, albeit broad,
inelastic features appears. This is the dispersive excitation seen at Risoe. This feature is
unchanged on passing into the superconducting phase down to the lowest temperatures
measured (0.15 K). In contrast, the low energy response is strongly renormalized in the
superconducting state, with a distinct inelastic excitation appearing. For all temper-
atures studied this latter pole has little change in amplitude, width or position below
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T,./2.

The thermal evolution of the normal state response along the hexagonal axis [00qy]
and in the hexagonal plane [qHO%] is given in Figure 6.7. The quasielastic intensity falls
off rapidly on moving away from Q. On heating to Tl the quasielastic feature becomes
more extended in momentum space, but remains localized up to at least 80 K. The
response across the Brillouin zone will be discussed in the relevant experimental section.
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Figure 6.7: Comparison of the scattering in the hexagonal plane (g, 0 1/2) (left) and
along the hexagonal ¢* axis (0 0 ¢;) (right) at different temperatures in the normal state.
Note the logarithmic vertical scale and different steps in reciprocal space (a reciprocal
lattice unit corresponds to a* = 1.355 A~! and ¢* = 1.500 A~! along the two axes). At
15 K there are no data at (0.04 0 0.5). Only for temperatures ~ Ty does the quasielastic
response become more isotropic and extend significantly out into the zone in both the
basal plane and along the hexagonal axis. Data taken on IN14 with fixed k;y = 1.15 A1
Figure taken from Ref. [104].

6.3.3 In an applied magnetic field

Initial inelastic neutron scattering experiments in an external field up to 4 T, by Metoki
et al. [77], show that an external field has a strong effect on the inelastic response at
Qo. These initial, low-resolution measurements provided the motivation for the studies
presented here.

The experimental work presented in this thesis investigates both the normal and
superconducting states of UPd,Alz as a function of applied magnetic field using three-
axis spectrometry. To answer further questions about the low-energy response, a neutron
spin-echo experiment was also performed.
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6.4 Sample characterization

The sample used was a 2.7 g single crystal supplied by N. Sato of Nagoya University; it
had previously been used in Refs. [100, 101, 103]. It was prepared by the Czochralski
method, and had a nominal composition of UPdyAl3 o3 in the melt. The transitions occur
at Ty = 14.3 K and T,. = 1.8 K. It was aligned to give an a* — ¢* scattering plane for all
experiments, with the b axis vertical. The superconducting phase diagram (Figure 6.8)
was established from the susceptibility as measured by a mutual inductance technique, in
the same 5 T cryomagnet as used for some of the neutron scattering work. Measurements
were made by sweeping the applied magnetic field at a series of fixed temperatures. The
critical field (B || b) was 3.3 T, consistent with the literature.
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0 . ‘ . ‘
00 04 08 12 16 20
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Figure 6.8: Experimental (B,T") phase diagram of the superconducting state in the sample
of UPdsAl; used, measured in the 5 T vertical cryomagnet (equipped with dilution insert)
used in some of the experiments. The bars indicate the width of the anomaly observed
as a function of magnetic field.
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6.5 The normal state

The normal state, in both paramagnetic and antiferromagnetic phases, is altered by
an external magnetic field. If the changes in the superconducting response are to be
visualised, the changes in the normal response must be well understood. To provide this
information the response at QQy, the magnetic zone centre, was examined in close detail.
A study of particular features at other points in the Brillouin zone was carried out to
complete the experimental picture.

6.5.1 At the magnetic zone centre
Experimental details

The IN14 three-axis spectrometer at the Institut Laue-Langevin (ILL) was used for this
work. It is supplied with cold neutrons, and so has a good energy resolution compared to
other three-axis spectrometers, although the available energy transfer range is shorter. A
14.9 T cryomagnet was used to generate the external magnetic field. The spectrometer
was operated in fixed ky mode, with ky = 1.5 A—1. This represented the best compromise
between flux and energy resolution (0.1 meV hwhm), considering the beam attenuation
caused by the cryomagnet tail. A vertically focussed pyrolytic graphite (PG) monochro-
mator was used with 60’ of collimation on k;. A horizontally focussed PG analyzer was
used with a Be filter and no collimation along k.

Results

Kita et al. [81] had examined the antiferromagnetic phases by neutron diffraction up
to 6 T, using the @ dependence of the magnetic cross-section to identify the magnetic
structure. In particular, the (1 0 1/2) Bragg peaks should drop to 38 % of its zero
field value in Phase III (Figure 6.2) due to the change in the projection of the magnetic
moment onto the scattering vector. At 14.9 T, the Bragg peak measured here had 43 %
of the its zero field value, indicating that at 14.9 T, the UPd,Alj is still in Phase III.

Figure 6.9 shows data taken at (1 0 0.5) at 7" = 20 K at 0, 4, 9 and 13 T. The signal
appears to be purely quasielastic, with the intensity declining monotonically as a function
of increasing magnetic field. Beyond 3 meV energy transfer there is almost no field-
induced difference. Figure 6.10 shows similar data taken at 1.9 K, in the antiferromagnetic
normal state, with scans taken at 0, 2, 4, 5, 7, 9, 11 and 13 T. The intensity of the
quasielastic response increases up to 4 T, and then decreases, becoming very broad and
flat by 13 T. This was confirmed by high-resolution measurements in fields up to 5 T (see
Section 6.6.1), and is seen at both (0 0 0.5) and (1 0 0.5). The inelastic response, at 1.4
meV at 0 T, moves to higher energy transfers; at 15 T it is centred at 2.5 meV. Above 4
meV there is little change.

The momentum space width in the two accessible directions a* and ¢* at AF = 0.3
meV was constant under applied magnetic field. The momentum width of the inelastic
excitation only starts to increase at the highest applied fields used. The changes observed
are therefore assumed to occur solely in the energy domain.
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Figure 6.9: The magnetic field dependence of the inelastic response at Q = (1 0 0.5) in
UPd,Als at 20 K, in the paramagnetic normal state, as measured on IN14 with £y = 1.5
A~'. The left-hand panel shows four individual scans as a function of energy transfer,
taken at 0 T, 4 T, 9 T and 13 T. The curves are separated by 100 counts. The fits are
described in the text. The right-hand panel is an interpolated colour plot, with real data
points are marked by dots. The white space marks the resolution cut-off.
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Figure 6.10: The magnetic field dependence of the inelastic response at Q = (1 0 0.5)
in UPd,Alz at 1.9 K, in the normal antiferromagnetic state, as measured on IN14 with
ky = 1.5 A-1. The left-hand panel shows four individual scans as a function of energy
transfer, taken at 0 T, 4 T, 9 T and 13 T. These curves are separated by 150 counts.
The fits are described in the text. The right-hand panel is an interpolated colour plot,
including additional curves. Real data points are marked by dots. The colour scheme
has been selected to highlight the inelastic excitation and the quasielastic response, and
is the same as that used in Figure 6.9. The white space marks the resolution cut-off.
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Analysis

A primitive model for the observed response is to split the dynamical susceptibility into
two distinct components, and sum them incoherently to generate the total response func-
tion, x = x1 + x2. At this level, the independent contributions can be assigned to a low
energy part, x1, and a high energy part, xo.

The next step is to adopt a standard mean-field type coupling between the two con-
tributions, to give the full 5f neutron scattering amplitude, in an attempt to restore at
least some of the correlations present. Although a dynamical coupling constant A should
be applied, in practice this is assumed to be constant for all energies and momentum
transfers for simplicity. The two contributions are generated from the total magnetiza-
tion M = M; + My where M = x1(H + AMs) and My = xo(H + AM,). The appropriate
mean-field form for the dynamic susceptibility is therefore

_Xi + X2 + 2Ax1X2

2
1 — A2x1x2 (6 )

Therefore small changes can have large effects on the observed spectral form, because
of the built-in positive feedback due to the Stoner-like denominator. This enhances the
low frequency part, renormalizing the effective low-energy width at the same time. To
see this, consider the response x at low frequencies. The real parts of the x;2 tend to
a constant, with the imaginary parts proportional to the frequency. As w — 0, this
gives a denominator 1 — A?Rey;Rex2. At high frequencies, x12 tend to zero, and the
denominator goes to unity.

In a typical three-axis neutron scattering experiment, the measured quantity after
all instrumental effects have been removed is the scattering function S(Q,w), which is
purely a property of the sample (Section 2). On taking into account the detailed balance
factor and the magnetic form factor f2(Q), for magnetic scattering S(Q,w) reduces to
the imaginary part of the magnetic susceptibility.

Q)
1 — exp(—hw/kgT)

5(Q,w) x X'(Q,w,T) (6.3)

Because the susceptibility x = x’+ix” is a causal quantity, the Kramers-Kronig relations

apply
2 OOU)’X”(W,)
W) = 2 /0 S (6.4)
2w oo X/ w/)
V) = -2 [T (65)

and so the imaginary part of the susceptibility can be written as
X'(T) = mwx(w,T) (6.6)

if x(w,T) is an even function of w.
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From the bulk measurements (Section 6.2.3) the system shows Fermi liquid-like elec-
tronic behaviour. A simple model of the response based on the effect of a random pertur-
bation and the time taken to return to equilibrium was applied. The time is visualised
via the energy linewidth I'; of the quasielastic part of the response (x1), and is a function
of all of the interactions and correlations inside the materials, represented by the total
susceptibility , partially measured in a neutron scattering spectrum. I'y = Oy ! where
C is a constant. This constraint was applied to a modelling using a Lorentzian lineshape
for the quasielastic profile and a damped harmonic oscillator for the inelastic component.

To fit such functions to the measured intensity, the detailed balance factor and form
factor must be taken into account. The fits described here are all at the same @, so f(Q)
can safely be neglected. The background (15 counts at 1.9 K and 20 counts at 20 K), an
estimated elastic contribution, and instrumental resolution must also be accounted for.
A full resolution ellipsoid is not used here; simply the energy resolution as estimated from
a scan of the elastic incoherence. This means that the parameters obtained will not be
comparable to those obtained in Ref. [103]. The parameters obtained here are intended
to illustrate the trends in the response, rather than to provide absolute widths.

For the paramagnetic state data, the spectral form is clear, due to the absence of
the inelastic excitation. Using I'(B) = C'x~!(B), where C is a constant with magnetic
field, the fits illustrated in Figure 6.9 were obtained with C' = 72 meV and a quadratic
dependence for the energy linewidth T'(B) on the applied magnetic field. The energy
linewidth parameters are shown in Figure 6.11a.

In the antiferromagnetic case, the inelastic pole y, was assumed to have a constant
amplitude and half-width half-maximum (0.6 meV) over all magnetic fields, with a shift-
ing centre of mass. The C' value determined from the paramagnetic state was used here.
The fixed parameters (unvarying under magnetic field) used were

C A I(x2) Iy (hwhm)
(meV) | (arb. units) | (arb. units) (meV)
72 0.042 104 0.64

This model describes the data successfully and confirms that the magnetic correlation
function of UPdyAls as measured here is consistent with Fermi-liquid-like behaviour over
a large range of the parameter space from 1.9 K to 20 K, and 0 T to 15 T. The itinerant
response is therefore well established.

The two fitted parameters - the centre of mass of the inelastic pole, and the quasielastic
energy linewidth - are illustrated in Figure 6.11. The inelastic pole centre increases with
applied magnetic field. This conclusion is supplemented with high-resolution data (0.05
meV fwhm) measured at (0 0 0.5) below 5 T, although here the measured inelastic pole
has less apparent intensity due to the geometrical constraints on the cross-section. The
quasielastic energy linewidth behaves quite differently. Globally, it increases with field,
but locally there is a minimum close to 4 T.

The energy linewidths at both 2 and 20 K can be compared crudely with the inverse
intensity, as estimated by summing over the inelastic energy window measured, and
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Figure 6.11: Panel (a) shows the effect of applied magnetic field on quasielastic energy
linewidth (hwhm) at 20 K (open points). The linewidth is quadratic with respect to the
applied magnetic field (I' = Ty + eB? where Iy = 0.6 meV and ¢ = 0.00319 meV.B~2.
Panel (b) shows the effect of applied magnetic field on the quasielastic energy linewidth
(hwhm) at 2 K (open points), from the fits shown in Figure 6.10. In both panels (a) and
(b) the closed points are the intensity of the non-Bragg response, summed over the energy
window measured, and corrected for background. The dashed arrow in (a) indicates B
(3.3 T), and the solid arrow the approximate position of the moment rotation transition
(4.2 T). Panel (c) shows the centre of the (high-energy) inelastic pole as a function of
applied magnetic field at 2 K. The closed points are taken from the data shown in Figure
6.10, measured at Q = (1 0 0.5). The open points are taken from (high-resolution) data
illustrated in Figures 6.18 and 6.19, measured at Q = (0 0 0.5). The line is described in
the text.
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correcting for background. As expected, considering the mean-field model described
above, these two plots show the same dependence, reinforcing the reliability of the model.

Discussion

The inverse intensity may be considered to be proportional to the inverse imaginary sus-
ceptibility. In this case, the behaviour is reminiscent of an antiferromagnetic transition.
It therefore seems that the changes in the quasielastic linewidth (and intensity) are di-
rectly related to the moment rotation at 4.2 T (Figure 6.2). As there is no change in
the observed width in momentum space, the length correlations remain unaltered but
the time correlations change. These antiferromagnetic fluctuations have a much longer
lifetime at 4 T, as the system approaches the moment rotation. As there is no entropy
change, this transition is invisible to the heat capacity, but is seen by neutron scattering.

The origin of the dispersive inelastic excitation is still a matter of debate. In both the
itinerant and dual models it may simply be an ordinary spin wave excitation. Cooper
et al. [74] have developed the spin wave theory for hexagonal close packed rare earth
metals, including the effects of anisotropic exchange, axial and hexagonal anisotropy, and
external magnetic fields. This can be applied to the hexagonal UPd,Al;. The general
Hamiltonian for the system is

H = =) J;8-8; =) KiSiSic+ > {[PSY3(S:)+ P}V (S))
i7] i i
+PYE (S0) + P (Y (Si) + Y5 °(80))] + ABH - S;} (6.7)

where S; is the total (orbital and spin) angular momentum of atom 4, A is the Landé factor
and ( is the direction of the hexagonal axis. The .J;; term is the anisotropic exchange; K;;
the axial anisotropy, the Y;™(S) (operator equivalents of the spherical harmonics relative
to this axis) describe the hexagonal anisotropy, and the final term is due to the external
magnetic field H. Other terms, such as the quadrupole-quadrupole interactions may be
present but are not included here; their effects can be mimicked by giving J;; and K;; a
temperature dependence. The branch of interest is acoustic, so the lattice can be treated
as a Bravais lattice.

The magnetic structure of UPd;Al3 needs to be put into the ((,&,n) orthonormal
coordinate frame. ( is along the hexagonal axis, £ || a, and 7 || b*.

Sic = 0; Sie = Scos(Qo - R+ ¢); Siy = Ssin(Qo - R+ ¢) (6.8)

where ¢ = 0 in the zero field state (Case IV in the notation used by Cooper et al.).

So far, the hexagonal anisotropy has been ignored, as it can introduce many harmonics,
and prevent a simple description of the structure being made. However, evaluation of
the spin-wave dispersion shows that it must be zero at Q (i.e. ungapped) unless there is
hexagonal anisotropy. The calculation including the hexagonal anisotropy and magnetic
field parallel to b is non-trivial; indeed conventional second-order perturbation theory
gave an infinite anisotropy gap! Cooper et al. try a modified perturbation procedure
and conclude that the energy gap of the excitation should vary quadratically with the
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magnetic field and B¢ (the expression of the hexagonal anisotropy). The line in Figure
6.11 is a fit to the function of the form ¢ + aB?, where B is the applied magnetic field. ¢
represents the effect of the hexagonal anisotropy at zero field, and places the spin wave
centre of mass at 1.44 + 0.01 meV; a = (5.2 + 0.2)-107% meV.T~2. This theory describes
the observed behaviour.

At 4 T, the moment rotation is equivalent to making ¢ = 7 /2. In the model described
above, this does not affect the quadratic dependence of the dispersion on the magnetic
field, but might affect frequency via the hexagonal anisotropy. However, a single quadratic
dependence appears to fit the data accurately.

As an aside, a change in a magnetic structure like the rotation seen here is often
ascribed to a ‘spin-flop transition’. In such a transition, the spin-wave excitations develop
an imaginary frequency due to the application of magnetic field. To stabilize the system,
the structure shifts. For this to occur, the frequency of the excitations would have to
decrease towards 0 meV as 4 T is approached. Experimentally this is not observed, and
from the theory of Cooper et al. it is not expected as the excitation gap increases with
external field.

In the dual model there is an alternative explanation for this inelastic pole: the
crystalline electric field (CEF) excitations are coupled together by the itinerant electrons,
giving an apparent dispersion through inter-site exchange. The mechanism was first
developed for the anisotropic paramagnet by Becker, Fulde and Keller [105]. The width
of the excitation is then a measure of the broadening of the CEF level brought about
by the itinerant electrons. In the same way, the quasielastic scattering is the broadening
of the ground state due to exposure to the itinerant part of the electronic subsystem.
This theory is developed in Refs. [75, 76, 106]. The changes in the pole position of the
excitation may then be brought about by (i) a decrease in the coupling by the itinerant
electrons, so pulling the excitation upwards in energy towards its natural level, or (ii) a
shift in the CEF energy level due to the external field. In principle, this could lead to a
Zeeman splitting of the level, with one level eventually becoming the new ground state
at ~ 4 T. There are several problems with this interpretation. No inelastic pole is seen
in the paramagnetic state, although dispersive CEF excitations are still possible in the
paramagnetic state [105]. This apparent absence could be due to significant broadening
of the excitation. However, the localized quasielastic scattering is still visible at 20 K,
and, unlike the data at 2 K, the observed energy linewidth does not decrease at 4 T. This
decrease would be expected even for a broadened inelastic excitation if the crystal field
levels underwent Zeeman splitting.

6.5.2 Dispersion away from the magnetic zone centre
Experimental details

To measure the inelastic response away from the magnetic zone centre, the thermal-source
three-axis spectrometer IN8 was used, as it covers a larger energy transfer range, although
the energy resolution is poorer than on IN14. Two sets of data, sampling two different
Brillouin zones, were taken at both low and high fields:
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(i) for @ = (00 Q) where 1.0 < @ < 1.5at 0 T and 11.6 T using a 12 T cryomagnet.
The spectrometer was operated at fixed k; = 2.662 A~! providing optimal flux with
a vertically and horizontally focussing PG(002) monochromator.

(ii) for @ = (0 0 Q) where 0.5 < @ < 1.0 at 0 T and 12.5 T using a 14.9 T
cryomagnet. The spectrometer was operated at fixed ky = 2.662 A~ A vertically
and horizontally focussing Si(111) monochromator was used.

In both cases, a vertically and horizontally focussing Si(111) analyzer was used, with a
PG filter to suppress third-order contamination and a radial collimator along kg, to cut
out incoherent scattering from the aluminium window of the cryomagnets.
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Figure 6.12: Contour map at 0.15 K showing the low-energy transfer response across the
Brillouin zone, taken on IN14 with &y = 1.3 A-1. The abscissa are scaled to constant
length in reciprocal space. The colour scheme chosen leads to saturation close to Q.
The cross-section at the smallest energy transfers is inaccessible due to incoherent elastic
scattering and, at Qo, due to the magnetic Bragg peak. Figure taken from Ref. [104].

Results

The inelastic response away from the magnetic zone centre is shown in Figure 6.12. The
response at Q* = (0.5 0 0.5) is discussed in Section 6.5.3. It is clear that the inelastic pole
seen at @ is dispersive. It is well-defined close to the antiferromagnetic zone centre, and
broadens rapidly in both momentum and energy space. The dispersion is much sharper
along the ¢* direction than in the basal plane, where secondary features are observed [107].
We therefore concentrate on the dispersion along the ¢* axis, to avoid any confusion. Two
different Brillouin zones were sampled.

Some examples of the data are shown in Figures 6.13 (constant-energy scans) and
6.14 (constant-Q scans). Figure 6.13 illustrates the steepness of the dispersion in zero
field (103 + 4 meV A~2, assuming quadratic behaviour), with several cuts across the
inelastic excitation. A quadratic fit of the dispersion gives a stiffness of 67 + 4 meV
A=2. The lines in both panels are Gaussian fits of the 0 T data, assuming an excitation
of equal weight on either side of the magnetic zone center. At 11.6 T, the excitation is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



6.5. THE NORMAL STATE 135

600 i ' ' "5 meV' '
5 meV

500:«“‘1#’\% w
*

400} L f@%
4 meV 4 meV

300 w@ﬁ c [

200

3 meV.
100

Intensity (Counts / MN 3000)

(@oT (b)11.6 T
900 125 180 100 125 150
(ooaQt)(rlu.)

Figure 6.13: Constant-energy transfer neutron spectra at 3 K in (a) 0 T and (b) 11.6 T
applied magnetic field. The curves are offset by 200 counts. The lines in both (a) and
(b) are fits of the zero-field data in panel (a). Details are given in the text.

slightly broader in momentum space, with a lower peak intensity. This may be due to
the small shift upwards in energy transfer, combined with the presence of the additional
scattering, broadening the excitation seen in the constant- £ cuts. Note that at ~ 4 meV,
the background level appears to be higher at 11.6 T.

Figure 6.14 shows constant-Q scans at several positions at 0 T and 11.6 T. In these
cuts, the inelastic excitation is no longer clearly visible; indeed it is difficult to assign any
of the features unambiguously. Nevertheless, several broad trends can be noted.

Analysis

At (0 0 1.30) in zero field there is an increased amount of scattering between 4 and 10
meV. This appears to have evolved from the dispersive inelastic exitation. At (0 0 1.15)
a similar feature with lower intensity is seen. Across the Brillouin zone in zero field from
(00 1.3) to (00 1.0) there is an increase in the observed scattering between 4 and 10 meV
energy transfer although the intensity decreases as we move away from Q. This appears
to have evolved from the dispersive inelastic excitation. At (0 0 1.0) the boundaries of
this scattering are more difficult to discern as a signal was noted at 11 meV; this has been
attributed to an optic phonon, due to its observed temperature dependence (measured
up to 120 K). Unfortunately, the instrumental background in this region could not be
obtained. In the absence of this information, this scattering is assumed to be electronic
in origin.

The differences between the zero- and high-field data are shown in the right-hand
panels of Figure 6.14. An S-like curve characteristic of a shift in excitation position is
observed. The differences were fitted by taking the difference of two inelastic excitations
at (0 0 1.45) and (0 0 1.3). At (0 0 1.15) and (0 0 1.0) the difference between the low-
and high-field scans arises from an excitation in the high-field state alone.

The low-field behaviour is illustrated in Figure 6.15a, where fits to excitations are
shown in bold with the measured half-width (in momentum or energy space accordingly).
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Figure 6.14: Constant-Q scans at 3 K at 0 T (closed points) and 11.6 T (open points).
Under each scan, there is the subtraction Iop — 1167 The lines at (0 0 1.30) and (0 0 1.45)
are fits of the difference between two Lorentzian lineshapes representing the dispersive
inelastic pole at the two fields. At (0 0 1.00) and (0 0 1.15) only one Lorentzian lineshape
is included in the fitting; the 0 T Lorentzian has been set to zero.
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The filled circles represent excitations seen directly in the data, and the open circles
excitations seen in the difference plots. The grey ellipses represent the broad features
described above.
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Figure 6.15: Representations of the inelastic response as a function of scattering vector
and energy transfer at 3 K in (a) zero field and (b) high applied magnetic field. The
solid black error bars indicate the half-width (in either momentum- or energy-space) of
a peak, as determined by fitting data similar to that seen in Figures 6.13 and 6.14. The
closed points were taken directly from data, and the open points from comparisons of
the zero- and high-field data. The circles were measured at 11.6 T in setup (i). The
diamonds at 12.5 T in setup (ii); these measurements were made in a different Brillouin
zone, and have been mapped appropriately. The grey ellipses correspond to regions of
relatively high intensity, measured from one estimated minimum to another (approximate

full-width).

On applying magnetic field, there are several clear changes in the spectra (Figure
6.14). The overall behaviour is illustrated in Figure 6.15b, using the same conventions
as in Figure 6.15a. The principal difference is the increase in scattering at 4.5 meV,
apparently present across the Brillouin zone. Taking the difference of the high- and
zero-field data sets, an excitation is observed centred close to ~ 4 meV energy transfer,
although the signal is broad and weak (Figure 6.14).
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Discussion

The appearance of additional scattering in a high applied magnetic field is of great inter-
est. Several explanations are considered here.

(i) a redistribution of the broad inelastic response seen at 0 T. This is unlikely as
there is no change in the scattering observed for AE > 6 meV, where the bulk of
this broad lump of scattering is. In addition, the extra scattering has a relatively
well-formed (Lorentzian) lineshape (Figure 6.14).

(ii) the quasielastic intensity at Qg diminishes in high fields; at 11.6 T it contains little
spectral weight. Is this spectral weight redistributed throughout the zone?

(iii) an excited crystal field level. In the dual model, this is not problematic. In the
itinerant model, this might indicate that increasing the external magnetic field in-
creases the localization of the apparent magnetic moments to the point that crystal
field levels become visible. This would explain the loss in quasielastic scattering at
Q) too. However, the system must retain some itinerant character; Terashima et
al. [108] have measured de Haas-van Alphen frequencies in elevated magnetic fields.

Several questions remain: is this signal present along the a* axis in high field? at
what field does it appear, or is the change gradual? If there is an abrupt change, the only
significant alteration at 3 K is the moment rotation at ~ 4 T.

6.5.3 A ‘soft spot’ at Q* = (0.5 0 0.5)

Experimental details

The following data was gathered concurrently with the data presented in the previous
two sections. The experimental setups are fully described above.

Results

A subsidiary maximum in the inelastic response was first observed at Q* = (1/2 0 1/2)
by Metoki et al. [109]. Figure 6.16 shows data taken at this point over a range of tem-
peratures and fields, from 1.5 K (just inside the superconducting state) out to 80 K, well
away from the magnetically ordered state, and from 0 T to 12.5 T. In the ordered state,
an inelastic pole at ~ 3 meV is clearly visible. This pole is not affected in the supercon-
ducting state, and is unaffected by magnetic field up to 14.9 T. It seems plausible that
it remains unchanged all the way to the metamagnetic transition, although this could
not be confirmed due to limitations on the available magnetic field. As the tempera-
ture increases, the associated gap diminishes, and the inelastic pole becomes a localised
quasielastic signal with diminished intensity above 20 K, disappearing after 80 K. This
is a real change, and cannot be explained by changes in the thermal occupation factor.
The quasielastic scattering at Q) is strongly localized at all of these temperatures; it is
never caused by contamination from the quasielastic scattering centred at @, which is
strongly localized even at 80 K.
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Figure 6.16: The inelastic response at Q* = (0.5 0 0.5) in UPd2Al3 as measured on INS.
Panel (a): the temperature dependence of the response. Panel (b): the magnetic field
dependence of the response, with B || b axis, at 3 K. The dashed line is an estimate of
the background. The two data sets were taken before and after a significant upgrade
of IN8, and with different sample environments, and so the count rates are not directly
comparable.

Discussion

A signal at Q* indicates that there are antiferromagnetic correlations in the basal plane
as well as along the ¢* axis. UPd,Als has a sister compound, UNiyAls. This has the
same crystallographic structure and similar physical properties, although the ordering
temperatures are lower: Ty = 4.5 K and Ty, = 1.2 K [110]. However, UNipAlz orders with
at the wavevector (0.39 0 0.5) [111]. Inelastic neutron scattering carried out by Gaulin
et al. [112] has revealed that the spectral weight of the spin fluctuations moves from the
incommensurate position to the commensurate wavevector (0 0 0.5) as the energy of the
fluctuations exceeds the energy scale of Ty ~ 0.5 meV. The electronic structure in these
two materials is clearly very similar, with the UPd;Als eventually selecting the wavevector
(0 0 0.5) whereas the UNiyAl; develops at (0.39 0 0.5), close to (0.5 0 0.5). This leans
towards the itinerant interpretation, as several wavevectors apparently encourage nesting
of the Fermi surface. The slight differences between UPd;Als and UNiy Al are sufficient
to give different results in the final ordered state.

It has been proposed [113] that the static Bragg peak observed at Qg is merely the
time-average of excitations at Q* corresponding with hopping between two states with
the symmetry required by Q* (see Figure 6.17). This constant hopping then gives rise
the dynamic scattering seen at Q* in the ordered state. This interpretation is difficult to
square with the observed moment rotation at 4 T. In addition, neutron spin-echo results
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Figure 6.17: The grey arrows (solid and dashed) represent two configurations which, if
static would give rise to a Bragg peak at Q*. The moments are proposed to fluctuate
between the two configurations, giving rise to a reduced, static, time-averaged moment
represented by the black arrow at Q.

presented in Section 6.6.1 indicate that any dynamics of the magnetic Bragg peak must
take place on a timescale greater than 10 ns.

It is surprising that the response at Q* is not affected by the moment rotation in
the basal plane. This indicates that the behaviour is independent of the actual magnetic
structure, and is more directly related to the single-ion anisotropy.
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6.6 The superconducting state

The superconducting state is investigated at 0.3 K and 1.4 K, and compared with the
behaviour at 2.5 K, just outside the superconducting state. The low-energy response
in the superconducting state is strongly renormalized, with a low-energy inelastic pole
appearing at ~ 0.35 meV. This renormalization is seen when using an external mag-
netic field to destroy the superconductivity. To complete the experimental picture of the
superconducting state, a high resolution neutron spin-echo study is included.

6.6.1 Three-axis data under magnetic field
Experimental details

To obtain the high resolution needed to distinguish the low-energy inelastic response,
IN14 was used with a fixed k; = 1.15 A~! (energy resolution 0.06 meV hwhm). A 5 T
cryomagnet was used with a dilution insert, so that the superconducting state could be
fully probed. The cryomagnet was the same as that used to measure the superconducting
phase diagram (Figure 6.8). A PG(002) monochromator was used with 60’ collimation
along k;. A focussing PG(002) analyzer was used with no collimation along k.

Results

Figure 6.18 illustrates the evolution of the inelastic response at Qo = (0 0 0.5) at 0.3 K
over a magnetic field range of 0 T to 5 T. One common feature is the dispersive inelastic
excitation at ~ 1.5 meV. This is always present, and changes little over the field range.
The low-energy part of the response changes quite dramatically. The left-hand panels
illustrate the disappearance of the inelastic pole at ~ 0.35 meV, associated with the su-
perconducting state, as the critical field B, is approached. The right-hand panels show
the evolution of the quasielastic signal as the compound moves into the normal antiferro-
magnetic state. As magnetic field is applied, the intensity of the low energy inelastic pole,
apparently centred at 0.35 meV, decreases and disappears completely between 2.92 T and
3.33 T, in agreement with the phase diagram in Figure 6.8. This is accompanied by a
small shift downwards in the energy gap (~ 0.1 meV over 2.5 T). The inelastic response
then assumes the normal state form with a quasielastic feature dominating, accompanied
by the dispersive inelastic pole at ~ 1.4 meV. This is consistent with the observations
of Metoki et al. [77]. In Metoki’s measurement, the low-energy inelastic pole appears to
shift downwards in energy more dramatically than here; the higher resolution available
on IN14 is able to resolve the inelastic component better as it loses intensity.

Further measurements were made at 0.3 K, 1.4 K and 2.5 K, to investigate the be-
haviour on leaving the superconducting phase by both magnetic field and temperature.
Figure 6.19 shows the evolution in magnetic field of the response at these three temper-
atures. Close to the phase boundary (in either direction), the intensity diminishes.
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Figure 6.18: The inelastic response of UPdyAlz at Q = (0 0 0.5) at 0.3 K, as a function
of magnetic field, measured on IN14. The fits are described in the text.
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2.5 K, adjusted using a Bose temperature scaling to the value expected at 0.3 K / 1.4 K.
In each case, the line represents the best estimate of the normal antiferromagnetic state
response. This data was measured at by = 1.15 A-1. The error bars are smaller than
the point size. [The lowest field measured was 0.05 T, to prevent the aluminium sample
holder becoming superconducting, and help maintain a low temperature in the dilution
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Analysis

The normal state data taken at 2.5 K was scaled using a Bose temperature factor to give
the best estimate of the expected normal state antiferromagnetic response for a given
applied field at 0.3 K / 1.4 K. At the higher end of the magnetic field range at 0.3 K
and 1.4 K the system is in the normal state and the measured response overlays perfectly
with the extrapolated data. The increase in the quasielastic strength at 5 T relative to 0
T is a physical increase and confirms the behaviour of the normal state described earlier
in Section 6.5.1. This response changes on applying a given magnetic field.

It is clear that the inelastic pole at 0.35 meV is associated with the superconducting
state. It diminishes in intensity as the boundary of the superconducting state, and the
quasielastic response becomes visible. There is some overlap between the two (e.g. 2.08
T at 0.3 K; 0 T at 1.4 K) and the resolution of IN14 is not good enough to establish what
is present at the lowest temperatures.

For the normal state responses, with a large quasielastic component, the fitting de-
scribed in Section 6.5.1 can be carried out and is consistent with the results given in
Section 6.5.1. Here, the focus is on the superconducting state, where the Fermi-liquid
paradigm no longer applies, and so the I'; = C'x; ' rule cannot be used in any case. The
intensity was calculated in the same manner as in Section 6.5.1 using an input suscepti-
bility assumed to consist of two inelastic poles, both described using damped harmonic
oscillators. No quasielastic scattering was included, although at, for example, 2.08 T, it is
evident that such a component is present. The other inelastic pole, diminished in inten-
sity due to the different scattering vector (0 0 0.5), was assumed to be fixed in amplitude
(46.2 arbitrary units) and linewidth (0.559 meV). The position is known to vary, but by
very little over this field range, so this is justified. A X of 0.04 was used and 25 counts of
flat background were deducted. The intensity of the x; inelastic pole was kept constant
(56 arb. units) and the energy linewidth and position allowed to vary. The centre of mass
of the inelastic pole is related to the width of the excitation (Figure 6.20), but there are
not enough data points to establish the functionality concretely. In Figure 6.20, a simple
linear fit is shown. The actual values obtained are given in Table 6.1.

Magnetic field (T) | Centre of mass (meV) | HWHM (meV)
0.05 0.351 £ 0.008 0.265 &= 0.009
0.42 0.317 £ 0.015 0.312 £ 0.011
0.83 0.315 £ 0.012 0.325 £ 0.011
1.25 0.278 £ 0.014 0.327 £ 0.014
1.67 0.267 = 0.019 0.384 £ 0.014
2.08 0.21 £ 0.07 0.45 £ 0.15

Table 6.1: The centre of mass and half-width half-maximum of the inelastic pole seen in
the superconducting state, as obtained from fits described in the text. These values are
plotted in Figure 6.20.

The apparent broadening of the inelastic pole may be an indication of quasielastic
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Figure 6.20: The half-width half-maximum of the inelastic pole associated with the su-
perconducting phase as a function of its centre of mass. The points and appropriate field
values are given in Table 6.6.1. Above 2.08 T, the presence of quasielastic scattering
made the fit unusable. The line is of the form y = mx + ¢ where ¢ = 0.627 meV and m
was fixed at -1.

scattering; in the 2.08 T scan (Figure 6.18) there is clearly a quasielastic component,
which distorts the fit used by broadening the model inelastic peak. From this it is not
clear what the bare width of the pole is, and how much broadening might originate
from the quasielastic components at QQy. To pin down exactly what is happening in the
superconducting state, and in particular to find out if there is any quasielastic scattering
left deep inside the superconducting phase, the neutron spin-echo technique was used, to
take advantage of the extremely high energy resolution available from Larmor tagging
the neutrons.

6.6.2 Neutron spin-echo study

The neutron spin-echo technique (see Section 2.6.4) offers a unique approach to this
problem, because of the extremely high energy resolution available from Larmor tagging
the neutrons. However, this method has rarely been applied to magnetic studies in single
crystals because of several experimental difficulties.

Experimental details

In UPd;Alj the region of interest is the antiferromagnetic zone centre Q. For this reason
a single crystal was used to focus on the relevant positions in momentum space. Elastic
magnetic scattering from a single crystal will take place for a given crystal orientation
only, and this effectively monochromatizes the scattered beam, which impinges on the
detector at a relatively well defined angle. This allows the majority of the elastic intensity
at Qo to be separated from the quasielastic scattering close to Q¢ by simply rotating the
sample whilst maintaining a fixed scattering angle 26 (a rocking scan).

The neutron spin echo spectrometer IN11A at the Institut Laue-Langevin (ILL),
Grenoble, was used. The incident wavelength was set to 5.5 A using a velocity selec-
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Figure 6.21: (a) Intensity observed on rotating the sample at a fixed scattering angle 26
corresponding to the (0 0 0.5) magnetic Bragg peak at T'= 50 mK. The arrows indicate
the positions of the echo groups measured as a function of coil current at (b) Qo = (0
0 0.5) with 5 s per point and (¢) Q" = (0.015 0 0.5) with 15 minutes per point. The
intensities are normalized to counts per second. The abscissa values of the coil current
were chosen to illustrate different numbers of periods in the two cases (see text).

tor with a 16% spread. Using the lattice parameter measured independently for this
sample at 50 mK, the wavelength selected by the crystal was found to be 5.52 A. The
first magnetic zone centre at (0 0 0.5) was selected for study, as a low 26 angle reduces
the overlap of the magnetic fields in the two arms of the spectrometer. A 2D detector
with an angular coverage of 0.9 x 0.9 degrees was used.

Figure 6.21a shows the neutron scattering intensity observed in a rocking scan about
the magnetic peak at Qg. On this basis an angular position 1.5° away from the Bragg
peak, as indicated by the arrow in the figure, was selected to look for quasielastic scat-
tering. This sample orientation corresponds to @’ = (0.015 0 0.5). From the previous
three-axis spectroscopy results it is known that this position is sufficiently close to the
magnetic zone centre to see a quasi-elastic signal at 7' = 2 K [102, 103].

By altering the magnetic field slightly in one arm, A¢ is shifted away from zero, and
oscillations in Pygp are observed. By altering the magnetic field, several periods over
such echo groups were measured at a selection of Fourier times, at both the Bragg peak
(Fig. 6.21b) with 5 s per point and Q' (Fig. 6.21c) with 15 minutes per point. Usually,
the echo group amplitude and phase are established by a simple four-point measurement
(of a maximum, minimum and two points in between). As the neutron phase is known,
this is accurate, but because of the weakness of the signals here, we measured over several
periods of the echo. By measuring more than one period, the existence of a real echo
and the correct measurement of the amplitude was ensured, even considering the high
sensitivity of the system to small changes in the magnetic field and the signal size at Q’.
The echo groups appear to have no envelope as the single crystal sample monochromatizes
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the beam, so the echo groups could be fitted as simple sine waves to obtain the amplitude.
At the Bragg peak, 45 point echoes were measured, covering 3 periods. An unexpected
second wavelength was observed in the response for the smaller echo times. This was
caused by the high beam monochromatization by the Bragg peak and the way that the
neutron spin is flipped in magnetic neutron spin-echo. More details are given in Appendix
6.A. This would not have been spotted using the four-point method. At Q’, a variety
of different point numbers and periods were measured, in an attempt to find the best
compromise with respect to time and accuracy.

Results

The amplitude of an echo group is a measure of the scattering fulfilling the echo condition
at a particular Fourier term and so, after instrumental effects have been removed, is
proportional to the intermediate scattering function S(Q,t). At Qy, the Bragg peak, echo
groups were measured at 52 Fourier times, giving an amplitude I(Qy,t) (Fig. 6.22a). This
was normalized using an estimate of the magnetic scattering integrated over all energy,
1(Qo,0), obtained using xyz polarization. Assuming that the signal 1(Qo,t)/I(Qo,0) at
T = 50 mK is generated by a static Bragg peak (S(Qo,t)/S(Qo,0) = 1) it is justified to
attribute observed deviations from 1 to instrumental resolution effects. This is the best
estimate available of the spectrometer resolution as the standard resolution samples do
not have the correct geometry and so the scattered beam would experience quite different
magnetic field gradients to that from the UPd,Als sample used. These data are therefore
used as a resolution correction for data measured at Q’. At Q' a selection of Fourier times
was examined in the superconducting state at 50 mK, in the antiferromagnetic state at
2 K, and in the paramagnetic state at 15 K (Fig. 6.22b). The data are normalized to
S(Q’,0) and also corrected for resolution by normalization to the data taken at Q.

Analysis

To analyse further the observed scattering function S(Q’,t) as a function of Fourier time
t we suppose that at all temperatures there is a superposition of a quasielastic (relaxing)
signal with a static t-independent component (resulting from the tail of the Bragg peak
and/or some instrumental background). In the simplest possible approach, assuming
one clear relaxation path, the quasielastic scattering can be modelled as an exponential
response (Eq. 2.53).! This is reinforced by the apparent observation of a quasielastic
signal with a Lorentzian lineshape on three-axis spectrometers (Section 6.5.1). The data
at Q' have therefore been fitted as

S(Q',1)/5(Q",0) = yo + (1 — yo) exp(—T't) (6.9)

where gy represents normalized background scattering and any static magnetic scattering
(the tail of the magnetic Bragg peak). This function is constrained to be < 1 for ¢ >

I The simple exponential response is not exact in the low-temperature limit but nonetheless this fitting
process provides a useful test for the presence of any dynamics.
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Figure 6.22: (a) Momentum and time-dependent intermediate scattering function 7(Qy, t)
normalized to S(Qp,0) as a function of Fourier time at 50 mK (closed circles). (b)
Momentum and time-dependent intermediate scattering function S(Q’,t) normalized to
S(Q’,0) and corrected for resolution using the measurements in panel (a) as a function
of Fourier time at 50 mK (closed circles), 2 K (open circles) and 15 K (open triangles).
The fits are described in the text. The dashed lines mark S(Q,t)/S(Q,0) = 1.

0. This is reasonable if all dynamic scattering is included in S(Q’,0) and a simple ex-
ponential is assumed. Neutron spin-echo cannot distinguish between neutron energy loss
and neutron energy gain, and so the detailed balance factor will distort the exponential.
For simplicity, this effect is ignored. The energy integration of S(Q’,0) is limited by the
instrumental transmission, and is estimated to cover the range from ~ 2 meV neutron
energy loss to ~ 6 meV neutron energy gain, and so the major part of the quasielastic
signal should be included. The fitted I" and y, values are given in Table 6.2, with the
measured S(Q’,0).

At 2 K and 15 K, the scattering function clearly relaxes with t. At 15K, there is ~
8 times more dynamic scattering than at 2 K. The widths I' obtained in the fits are of a
similar order of magnitude to those observed at Q in Section 6.5.1. Values away from Q)
were calculated by Bernhoeft et al. [103] from three-axis data, and are the same order of
magnitude as those found in here. This is reasonable considering the model dependencies
and simplification in the analysis assumed in both the three-axis and spin-echo data.

The remanent static contribution y, at 15 K is attributed to background magnetic
scattering. In the ordered state, the static signal is higher than this background level,
and the most likely cause is contamination by the Bragg peak.
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In the superconducting ordered state at 50 mK, the data suggests a constant
S(Q',t)/S(Q’,0) = 1, indicating that the scattering is purely static. This is supported
by the quantitative fit: if an exponential fit is forced, the yo-.S(Q’,0) given in the table is
obtained, but no viable relaxation time can be extracted. The value of the static compo-
nent yo-S(Q’,0) is, within statistical error, the same at 2 K and 50 mK; hence originating
from the Bragg peak. Though a quasielastic component cannot be categorically elimi-
nated, the maximum possible intensity would be 0.019 4+ 0.025 counts per second, with
an energy linewidth < 0.036 meV at Q’.

We therefore conclude that quasielastic scattering is absent deep inside the supercon-
ducting state and any magnetic scattering observed on the timescales accessible by IN11 is
static and results from the Bragg peak. Furthermore, at 50 mK there are no dynamics on
shorter timescales than those measured here, indicating that there is no low temperature
transition.

Our results allow us to interpret previous high-resolution diffraction experiments [77]
which found a 1 % decrease in the observed scattering intensity on crossing below Ti..
Based on the spin-echo data presented here, we attribute those changes to the modifica-
tion of the magnetization dynamics.

6.6.3 General discussion

The spin-echo results presented here were taken at Q’, sufficiently close to Q¢ = (0 0 0.5)
to probe the magnetic response possessing this (antiferromagnetic) periodicity. They can
only be understood in the context of the electronic structure, and so the two principal
model will be discussed here. First, however, before this can be assessed correctly, the
order parameter must be considered, as this describes the way in which the condensate
develops.

The superconducting order parameter

By probing the tunnelling conductivity of thin film superconducting junctions, Jourdan,
Huth and Adrian [54] found a maximum superconducting gap energy of A = 235 pueV
at T' = 0 K. The inelastic pole at 0.35 meV (~ 2A) is therefore thought to be generated
by excitations across the energy gap out of the condensate. In this case, its presence
at a position with antiferromagnetic symmetry indicates that the gap is periodic, and
therefore has a wavevector dependence. This is crucial in understanding the neutron

[ (meV) S(Q’,0) (counts.s™!) | yo - S(Q',0) (counts.s™)
50 mK - 0.108 £ 0.015 0.105 £+ 0.017
2K 0.18 + 0.12 0.185 £ 0.035 0.086 £ 0.019
15 K |0.496 + 0.076 0.854 £ 0.059 0.046 £ 0.021

Table 6.2: T" and y,-S(Q’, 0) values, obtained as described in the text, with the measured
S(Q’,0).
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response. If the inelastic response is from the condensate, then A(k + Qo) must be the
negative of A(k) over a sizable portion of the Brillouin zone. The observed scattering
suggests a spatially anti-symmetry form for A:

A(k) = —A(k + Qo). (6.10)

This gap can have either even or odd symmetry (a sum of cosines or sines respectively).
As the gap wavevector dependence has to be imposed on top of the Fermi surfaces, the
nature of the gap function is very important in understanding the electronic excitations.
Several investigations of the gap symmetry have been carried out: (i) studies of the
upper critical field in thin films found that the gap should have even symmetry, as the
critical field decreased initially for all applied field directions [114]; (ii) angular-resolved
magnetothermal transport measurements by Watanabe et al. [96] on a thin film found
strong evidence for a single line node orthogonal to the ¢ axis, and (iii) Oppeneer and
Varelogiannis [94] have carried out self-consistent calculations and find that the gap
equation has even symmetry. We therefore conclude that the gap has even symmetry,
with a cosine-like form modulated in the ¢* direction. It shall be shown that the inelastic
neutron scattering data concurs with this assessment.

The mediator

In the same tunnelling experiments by Jourdan, Huth and Adrian [54], an anomaly
was observed at 1.22 meV. In strongly coupled superconductors such as lead, a similar
anomaly has been observed brought about by the interaction of the phonon density
of states with the superconducting energy gap. It has therefore been proposed that
this anomaly is a signature of the mediator in a strongly coupled superconductor. In
UPd,Alz the only excitation close to this energy is the dispersive inelastic part of the
excitation spectrum at ~ 1.5 meV. Jourdan, Huth and Adrian therefore suggested that
this (magnetic) excitation might mediate the superconductivity. A full theory has been
developed by Thalmeier and co-workers [76, 106], working in the dual model. In this
approach, only the ‘cylinder’ Fermi sheet, being the purest 5f sheet, is used to develop
the superconducting state.
We now return to the discussion of the electronic structure in the two models.

The itinerant model

The itinerant model assumes that all of the 5f electrons are delocalized. Figure 6.23a is
an idealized sketch of the principal Fermi sheets as described by Knépfle et al. [92]. As this
sketch shows, the system has an instability with respect to the momentum transfer Q, =
(0 00.5). This is seen for all of the illustrated surfaces; the ‘cylinder’ is in fact corrugated
(see Figure 6.4), and so nesting of an appropriate vector is possible. Applying the caliper
set by Qo, it is clear that - contrary to the other surfaces - the ‘egg’ sheet presents a high
density of states (nesting). We therefore assume that the magnetic response as seen by
inelastic neutron scattering arises from the ‘egg’ surface.
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The dispersive inelastic feature in the antiferromagnetic normal state is anisotropic,
with a much steeper dispersion in the ¢* direction than in the a* direction. The quasielas-
tic scattering is also anisotropic, with shorter-range length correlations along the ¢* di-
rection than along the a* direction. The stiffness of a dispersion can be related to the
effective mass of the electrons, and is dependent on the Fermi surface topology. Bernhoeft
[107] concluded that the ‘egg’ sheet was the only one in Knépfle’s model with the correct
anisotropy in momentum space to fit the dispersion of the inelastic response.

The anisotropy of the observed quasielastic scattering indicates longer-range length
correlations in the basal plane, and thus a softer magnetic basal plane (Section 6.2.3).
Knopfle et al. calculated the anisotropy of the magnetic susceptibility for their three
sheets, and found that the ‘egg’ and the ‘party hat’ have the necessary anisotropy. As the
quasielastic scattering is strongly coupled to the dispersive inelastic response, it therefore
seems probable that ‘egg’ sheet is responsible for the observed magnetic inelastic response.

On entering the superconducting state, a superconducting energy gap opens as defined
by the gap function A(k). It is known to have a wavevector dependence [102] with even
symmetry [94, 96, 103, 114]. To illustrate this, a trapezoidal gap function is used in
Fig. 6.23. This may be an oversimplification and a limited sum of cosines is the more likely
form [94]. With such a gap function the ‘egg’ is completely gapped at low temperatures;
there are no nodes. This is consistent with the observed absence of quasielastic scattering
deep inside the superconducting state. Although the order parameter is unconventional,
there are no normal quasiparticles on the ‘egg’ part of the Fermi surface in equilibrium
with the condensate at low temperatures. Nevertheless, the order parameter does change
sign.

If the gap function (a sum of cosines) decreases as the temperature is increased, then
the ‘egg’ surface would start to generate quasielastic scattering at Qo before passing
through 7., thus explaining the behaviour near the superconducting phase boundary.
This has indeed been observed in three-axis neutron spectroscopy (Figure 6.18). The
itinerant model is therefore sufficient to explain all of these observations. As an aside, if
the gap did have odd symmetry, both the ‘cigar’ and ‘egg’ would be completely gapped,
and only the ‘cylinder’” would then have nodes. On heating, the ‘egg’ would remain
gapped right up to T.. It is therefore safely eliminated as an option.

The dual model

In the dual model the 5f electrons are split into two electronic subsystems - a localized
5f% ground state, and an itinerant third 5f electron. Considering the purely itinerant
contribution in this model first, Fig. 6.23b is an idealized sketch of the Fermi surface
calculated by Zwicknagl et al. [95]. The ‘ellipsoid’ replaces the ‘egg’, and for an even
parity energy gap function, all of the arguments given above apply to the ‘ellipsoid’.
The stiffness in the ¢* direction would be unaffected by a shift in the Fermi energy of
40 K, but would alter dramatically along the a* direction (Figure 6.5¢). The ‘cigar’
equivalents are here assumed to have similar anisotropy to that observed in the Knopfle
model, although this is not specified in the paper by Zwicknagl et al. The only difference
is that the ‘ellipsoid” will remain completely gapped right up to T,.. If the gap were
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Figure 6.23: The panels superpose, on a common c¢* axis, an even parity energy gap
function (left-hand ordinate) and schematics of (a) the itinerant model Fermi sheets [92]
and (b) the dual model Fermi sheets [95]. In both cases, the ‘party hat’ sheet is omitted.
The grey area marks the first Brillouin zone. Based on Fig. 4 from Ref. [107].
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odd, the ‘ellipsoids’ would always contain a node. At this point we note that if the
superconductivity in this material were mediated by spin fluctuations [54, 75], it would
have to be generated by fluctuations from either the ‘egg’ or ‘ellipsoid’ surfaces.

Moving now to the other part of the dual model, the localized 5f? states are assumed
to dominate the magnetic properties, which are described by a crystalline electric field
(CEF) scheme. In the normal state, the quasielastic scattering seen at Qg is generated
when the ground state is broadened via coupling with the itinerant conduction electrons.

In the superconducting state, the gap develops, condensing most of the itinerant
electrons. Given our spin-echo results, within this model it might be assumed that this
has the effect of sharpening the ground state signal, eliminating the quasielastic signal
at low temperatures and Qg. However, some coupling mechanism must still be active, to
renormalize and broaden the CEF excitation at 1.4 meV. At the gap nodes, the itinerant
electrons are in energetic equilibrium with the condensate, and those could still broaden
the ground state. Therefore no quantitative microscopic mechanism is proposed here
within the framework of this model.

Insight into the superconducting state

The above discussion has shown that the observed behaviour is fully consistent with
the development of an even symmetry gap with a cosine-like form. The low-energy
response deep inside the superconducting state is contained entirely in the low-energy
inelastic response. Following the approach of Bernhoeft [107] the spin susceptibility of
the excited quasiparticles below Ty. are considered. They are modified by the effects
of (i) superconducting phase coherence and (ii) the presence of a gap in the excitation
spectrum of the condensate. The susceptibility is calculated as x1 = x» + X, Where
Xn is the normal (quasiparticle) component and . the condensate component, assuming
that it is generated solely by the itinerant component. A singlet ground state is assumed
on the basis of thermodynamic, transport and tunnelling data [54, 72, 75, 89, 96]. The
quasiparticle fraction is

L[ ek qe(k) + A + g)l|Ak)| cos(®(q)
n(gw) = Z‘(” E(k+ Q) EK) )

f(k+q)— f(k)
X <w— Bk +q)— E(R)] +¢r) (6.11)

and the condensate fraction is
_ 1 {(k + q)é(k) + [A(k + q)[|A(k)| cos((q)
vl = 325 (- Bk -+ @) B )
1—f(k+q)— f(k)
% <w “[E(k+q) + E(k)] + z'r)
B 1 (1 Lk +q)i(k) + Ak + q)|[A(K)] COS(<1>(q)>
4 E(k+q)E(k)

1—f(k+q)— f(k)
% <w T [Ek+q) — Ek)]+ iF) (6.12)

k
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Each element is a summation over the Brillouin zone of a product of a superconduct-
ing phase coherence factor and a Lindhard-style function [115]. The x,, fraction arises
from scattering between quasiparticle levels, and ., the condensate fraction, from the
creation and condensation of quasiparticle pairs. £(k) = e(k) — ep is the quasiparticle
energy relative to the normal state Fermi energy, and E(k) = 1/£(k)% + |A(k)[? is the
quasiparticle excitation energy above the superconducting state. The factor ®(q) is the
phase difference between A(k) and A(k + q).

At T,. the observed susceptibility changes abruptly, and this must be due to the
development of superconductivity as the magnetic moment does not change, indicating
the the Fermi surfaces are not altered. The spatial symmetries expressed in susceptibilities
given above should not change, so the changes must have one of two origins: (i) changes
in the two normal state components of x, and possibly the coupling constant A, and (ii)
excitations out of the superconducting ground state.

In case (i), the cross-section is generated by quasiparticle-hole excitations from the
normal state, subject to the phase coherence constraints of the superconducting state
(the coherence factor in the equations above). To have significant spectral weight at Qg
nodes commensurate with Qg on sheets of the Fermi surface with a significant density
of states are required. Such a situation is energetically unfavourable and at odds with
the data presented here and the available tunnelling data and angular-resolved thermal
conductivity measurements [54, 96].

In case (ii), the response is dominated by the condensate response. This picture
is supported by the apparent absence of quasielastic scattering in the superconducting
condensate at low temperatures and the analysis of the Fermi surfaces with respect to the
neutron scattering data given above, as well as the dramatic fall in the heat capacity at
temperatures well below T, [72], signalling a loss of normal state quasiparticle excitations
to the susceptibility, due to the opening of a gap on the strongly correlated sheets with
a high density of states of the quasiparticle Fermi surface.

The coherence function acts in the opposite sense on the normal and condensate
fractions. This excludes simultaneous enhancement of both the quasiparticle-hole contri-
bution and the condensate fraction in the neutron scattering cross-section. To be explicit,
at low temperatures, excitations of the condensate are restricted to quasiparticle states
lying close to the Fermi surface (1 — f(k+ Qo) — f(k) = 1) with the normal quasiparticle
contribution to the bare susceptibility becoming progressively weaker on lowering the
temperature. For excitations of minimal energy, the quasiparticle excitation energies are
¢(k) = &(k+ Qo) = 0, and so the phase coherence term reduces to 1 £ cos(®(Qy)) for
the normal and condensate fractions respectively. For a significant condensate response
at wavevector g, A(k + Qq) must be the negative of A(k) over a sizable portion of the
zone. As (enhanced) inelastic scattering is observed in the superconducting phase at the
antiferromagnetic zone centres, we infer that the dominant contribution arises from the
condensate. The condensate, in turn, is gapped, with A(k) displaying sign inversion on
translation by Qg over a major part of the zone. The observed scattering suggests the
spatially anti-symmetric form of A given in Equation 6.10.

If the necessary symmetry is imposed ®(Qy) = m, and so for the normal fraction of
the response 1+cos(®(Qy)) = 0. The coherence factor eliminates normal state scattering

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



6.6. THE SUPERCONDUCTING STATE 155

at the antiferromagnetic zone centre, leaving only the signature of the coherent supercon-
ducting state. In models with either no spatial periodicity or a periodicity matching the
chemical lattice, the phasing enhancement from the coherence factor will be reversed. In
such cases the coherence factor will give rise to a Hebel-Slichter peak in nuclear magnetic
resonance experiments, as this probes @ = 0. The susceptibility amplification is in that
case a maximum for the gapless quasiparticle excitations from the normal fraction, and
small for excitations from the condensate.

The most important aspect in all of this is the introduction of the energy gap in the
denominator in the expression for x. (Equation 6.12). The normal state quasiparticle
response does not acquire the corresponding gap, and is expected to remain quasielastic
in form below Ti.. From the arguments above, it can therefore be neglected. In the
itinerant model, the energy gap is easily introduced - the Fermi surfaces are affected
directly. In the dual model, the mechanism is less clear. Sato et al. [75] claim that the
normal quasiparticle excitations appear to be responsible for the inelastic pole in question,
and the energy gap is inserted by hand. The mechanism for this is not made explicit,
but the observed pole is held to be a measure of A(k), subject to a strong coupling
renormalisation in position and width with a CEF excitation.

Conclusions

Inelastic neutron scattering is therefore able to contribute to our understanding of the
superconducting order parameter, although no further information on the nature of the
mediator has been obtained. It seems clear that the inelastic pole at ~ 0.35 meV is cause
by excitations out of the superconducting condensate, and that the order parameter has
even symmetry.
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6.7 Summary

A series of inelastic neutron scattering experiments have been carried out on UPdyAls.
The normal antiferromagnetic and paramagnetic states were investigated, and found to
display Fermi-liquid-like behaviour in external magnetic fields up to 15 T. The quasielastic
signal increases in intensity dramatically at 4 T, before dying away at higher fields. This
is attributed to the moment transition induced at 4.2 T. The external magnetic field also
led to a shift in the dispersion of the ‘high-energy’ inelastic pole, and the excitation gap
at the antiferromagnetic zone centre Qy = (0 0 0.5) (from 1.4 meV at 0 T to 2.5 meV at
15 T) was in accordance with the value expected from spin-wave theory. The rest of the
dispersion was relatively unchanged.

Away from the magnetic zone centre, a broad, weak response was seen in all parts of
the Brillouin zone studied at zero field as well as in high field. However, in high field, an
additional response was seen at 4 meV, across the zone. Possible origins for this response
are discussed.

At Q* = (0.5 0 0.5) an inelastic excitation is seen at 2.5 meV. It is not affected by
external magnetic fields up to 15 T, but in the paramagnetic state, it apparently becomes
quasielastic. This is compared to the behaviour of UNipsAls.

In the superconducting state, the renormalization of the inelastic response on exiting
the superconducting phase was investigated. A neutron spin-echo experiment was carried
out, and the high energy resolution available there revealed that deep inside the supercon-
ducting state, the quasielastic scattering is absent, within the experimental constraints.
This observation is related to the calculated Fermi surfaces for this material, and the
nature of the superconducting state is discussed.
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6.A An unusual effect in neutron spin-echo from mag-
netic single crystals

6.A.1 Experimental observations

During the spin-echo measurements of the scattering function at the magnetic Bragg peak
at Qo = (0 0 0.5), an unexpected second wavelength was seen at echo times < 36 ps.
Ordinarily, an oscillation with a particular period is measured by altering A¢ by pre-
scribed steps. This is achieved by changing the magnetic field in which the neutrons
precess by small steps AB, which can be tuned to measure a particular number of points
per period. Figure 6.24a is an example of such an oscillation from the Bragg peak at (0
0 0.5) taken at 78 ps. Figure 6.24b is the same measurement at 4.7 ps. An extra second
wavelength has appeared. This wavelength has approximately half the frequency of the
the ordinary echo group and the intensity of this new oscillation declines as the Fourier
time is increased.
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Figure 6.24: Sample echo groups measured at the Bragg peak (0 0 0.5). AB is the change
in the magnetic field applied to the precessing neutrons. Each point was measured for 5
s, and then normalized to 1 s. The error bars are smaller than the point size. The z-axis
is calibrated for the particular Fourier time to give ~ 3 periods in 45 points. (a) is an
echo group measured at 78 ps. Over the measured range, it is a sine wave. (b) is an echo
group measured at 4.7 ps. The fitted line consists of two sine waves.

For small Fourier times, the magnetic field in the spectrometer arms is small, and so
the number of neutron precessions may be small, depending on the length of the arm.
This can lead to a finite polarization remaining at the sample as the spins of neutrons
with different velocities have not yet fanned out completely. On IN11, the ‘small echo
coil” setup is used in these cases. The coils used to generate the changes AB in the
magnetic field are split and placed on both arms, so the precession angles before and
after the sample are

qbl = ’)/ll(Bl + ABl/2)/U1, ¢2 = ’yl2<B2 - AB2/2>/U2 (613)
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Figure 6.25: The intensity in counts per second of the second wavelength, observed at
the magnetic Bragg peak position (0 0 0.5) as a function of Fourier time.

Usually, in the normal ‘large echo coil’ setup, AB is applied on the first arm only.

The second wavelength is only present when using the small echo coil setup on IN11,
which is used for times below 38 ps in this experiment, and the large echo coil for times
above 36 ps. There is some overlap, and this is clearly apparent when looking at the
amplitude of the second wavelength (Figure 6.25).

6.A.2 The scattering process for a magnetic single crystal

This unexpected result is fundamentally a result of looking at magnetic scattering at a
Bragg peak in a single crystal. In UPd;Al; the moments all lie in the a — b plane, and
so at @, the scattering vector is always perpendicular to the magnetic signal. Assuming
that all three of the possible magnetic domains in UPdsAls are present in equal quantities
during the experiment, the magnetic correlations will be isotropic in the plane, and the
case outlined in Section 2.6.4 is valid (normal paramagnetic NSE).

Figure 2.6 in Section 2.6.4 sketches out the effect of this magnetic scattering on the
neutron spin. Part of the spin (Ppippeq) is effectively 7 flipped, and unwinds in the second
arm to give an echo group at the detector when the field integral is changed, as described
in Section 2.6.4. The other part, antiparallel to P;, does not meet the echo condition on
precessing in the second arm.

If the incident wavelength distribution is large, there is a wide spread of neutron
precession angles, and so at the sample the polarization appears white within its chosen
plane. On integrating over all of the frequencies, only Pjjippeqa meets the echo condition
and gives a signal at the detector. The other parts of the magnetic scattering simply add
to the background.

The magnetic Bragg peak in a single crystal acts as a monochromator, and cuts the
neutron velocity spread, and hence the spread of precession angles at the sample. For
small Fourier times, the spread of precession angles may be significantly less than 27
at the sample. In the extreme case, there is only one wavelength, and hence a fixed
precession angle. The w-flipped part of the signal behaves as expected. Because of the
precession coils along the second arm, the other part continues to precess in the second
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arm and arrives at the detector with a certain precession angle. When using the small
echo coil, this precession angle is changed by AB/2 during the measurement of the echo
group. An additional signal will therefore be seen with an apparent frequency half that
of the expected frequency, with the same intensity as the expected signal.

As more neutron velocities are included the spread of precession angles increases.
The precession in the second arm then acts to disperse the spread of polarization at the
detector, instead of amplifying it as at the echo condition and so the intensity of this
signal drops as the Fourier time is increased. There will be a minimum when the range of
precession angles covers 27 (complete cancellation), and then the intensity will increase
again, but only to a limited value as a much smaller proportion of the spins do not cancel
out. Assuming a 1% spread (hwhm) in the monochromated neutron wavelength, the
range of precession angles covered at the smallest Fourier time will be 72°.

Normally, the phase of an echo group should be well defined, and consistent between
measurements. For the second wavelength, the phase is dependent on the orientation of
the polarization at the sample when AB = 0. This is not a regular function.

This observation must be taken into account for all spin-echo experiments looking at
a monochromating magnetic Bragg peak when the phase shift is induced by changing the
field after the sample. The effect is easily eliminated if a full echo group is measured, so
that the two frequencies can be extracted. The amplitude of the expected echo should
then be used in further calculations. To illustrate the result if this is not done, the
open points in Figure 6.26 are data taken at (0 0 0.5) in UPdyAl; using the 4-point
measurement method. The second wavelength cannot be extracted, and significantly
perturbs the results. The closed points are taken from measurements made over more
than one period, with the second spurious wavelength neglected. The 4-point method
gives a characteristic extra scattering at small Fourier times. This is obviously spurious
as it gives an (unphysical) I(Qo,t)/1(Qo,0) value greater than 1.
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Figure 6.26: The momentum and time-dependent intermediate scattering function
I(Qo,t) normalised to S(Qo,0) as a function of Fourier time at 50 mK using the 4-
point echo method (open circles) and the multiple-period echo method with the spurious
wavelength ignored (closed circles).
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7.1 Conclusions

Inelastic polarized neutron studies of 3-k antiferromagnet UQO,

The 3-k magnetic state of UOy has been identified from polarization analysis of the
spin-wave spectrum. Previously, the existence of a 3-k state had been suspected on the
basis of indirect evidence, such as neutron diffraction carried out on artificially perturbed
samples. The observed behaviour of the spin-waves is explained if the three magnetic
propagation wavevectors of the 3-k state are considered coherently.

Diffraction from 3-k antiferromagnets

Continuing this theme, unexpected diffraction events are seen in cubic 3-k materials
where the propagation wavevector is (00%). This diffraction event is considered to be a
sign of quantum correlations between the three coherent order parameters, and when this
model is applied to the electronic orbitals of the U 5f electrons, it is shown to explain
the apparent moment direction and form factor of this diffraction event.

The antiferromagnetic superconductor UPd,Al;

In UPdyAl;s, the antiferromagnetic superconductor, the effect of magnetic field on the
normal state (both paramagnetic and antiferromagnetic) has been mapped out. In the
ordered state, the quasielastic signal at the magnetic zone centre increases in intensity
dramatically at 4 T, before dying away at higher fields. This is attributed to the moment
rotation induced at 4.2 T. The dispersive inelastic excitation at 1.4 meV behaves like
a spin wave in an external magnetic field and shifts to higher energy transfers. Away
from the magnetic zone centre, additional inelastic scattering is seen in a high applied
magnetic field at ~ 4 meV in the parts of the Brillouin zone studied.

The low-energy inelastic magnetic response of UPdyAls contains a signature of the
superconducting energy gap in the superconducting phase at the magnetic zone centre.
This is the indication that the superconducting energy gap has the same symmetry as
the magnetic lattice. Deep inside the superconducting state there is no quasielastic
scattering at the magnetic zone centre, and this places serious constraints on the models
of the superconductivity.

General

Understanding the interplay between multiple order parameters operating from the same
electron system is an extremely interesting problem in modern condensed matter physics.
If different types of order are generated from the same constituents, each type of order
must respect the symmetry constraints imposed by the other types of order present. This
is seen in the antiferromagnetic superconductor UPdyAls, where the superconducting
energy gap has the same symmetry as the antiferromagnetic lattice (and underlying
Fermi surface). It is also seen in the 3-k magnetic structures studied here, where to fit
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all three order parameters together, cubic symmetry is essential. This principle may be
of use in understanding other mixed-order states.

7.2 Perspectives

Inelastic polarized neutron studies of 3-k antiferromagnet UQO,

The method outlined in Chapter 3 for examining the direction of the spin-wave fluctua-
tions as a function of momentum transfer could easily be adapted to other (antiferromag-
netic) materials. It would be interesting to use the method presented here on USb, to
confirm the current theoretical picture. To see if this can be used to identify other types
of multi-k structure, a 2-k structure with a sufficiently well-defined spin-wave spectrum
would also be a possible candidate.

In addition to identifying multi-k structures, it would also be worthwhile to carry
out experiments on materials with simpler magnetic structures, such as the archetypal
antiferromagnet such as MnF5 as the observations available provide extra information on
the antiferromagnetic exchange.

Diffraction from 3-k antiferromagnets

Here, the next steps would be to look for k3 peaks in a non-actinide material, to illustrate
the generality of the phenomenon. Such a material would have to have a magnetic unit
cell larger than the nuclear cell, so that the k3 reflection does not coincide with a nuclear
Bragg peak. One candidate is the cubic rare-earth antiferromagnet NdZn (propagation
wavevector (001)) [116]. In addition, for the form factor analysis, the key region of interest

is the low @ regime; to investigate this area, one choice would be incommensurate 3-k
materials. The solid solution USbg¢Tey; has k = (OO§> [4].

The antiferromagnetic superconductor UPd,Al;

The results presented in Chapter 6, for both the normal and superconducting states, can
be explained within the context of the itinerant model for the 5 f electrons very easily. For
the dual model to apply, certain aspects are not yet clear (the behaviour of the excitations
under an applied field, and the low-energy response in the superconducting state), but
the results here provide a series of constraints. The role of the scattering at Q* = (0.5 0
0.5) is not yet understood, although it too appears to have an itinerant origin.
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Conclusions

Etudes de la structure antiferromagnétique d’UQ, par les neutrons polarisés

L’état 3-k d’UO, a été identifié par les particularités de ses ondes de spin. Avant, cet
état 3-k a été postulé grace a des expériences indirectes, comme la diffraction neutronique
sur des échantillons dans un champ magnétique. Les données ici sur les ondes de spin
peuvent étre expliquées seulement si les trois vecteurs de propagations sont considérés
comme cohérents.

Diffraction par les structures 3-k antiferromagnétiques

Suivant cette theme, des pics de diffraction inattendus ont été observés dans les matériaux
3-k (ou k = (0 0 1/2)). Ces pics sont considérés comme la marque d’une corrélation
quantique entre les trois vecteurs de propagation cohérents. Si ce modele est appliqué
aux orbitaux électroniques, des électrons 5f d’uranium, cela peut expliquer la direction
effective du moment magnétique qui génere la diffusion, et le facteur de forme.

Le supraconducteur antiferromagnétique, UPd,Al;

L’effet d’un champ magnétique sur I’état normal (paramagnétique et antiferromagnétique)
dans UPd,Als a été examiné. Dans 1’état ordonné, la réponse quasiélastique au centre
de la zone magnétique augmente rapidement a 4 T, et disparait dans les champs plus in-
tenses. Il semble que ces phénomenes soient liés a la rotation des moments magnétiques
ad2T.

L’excitation dispersif a 1.4 meV agit comme une onde de spin dans un champ
magnétique en bougeant aux transferts d’energie plus grands. Dans les autres parties
de la zone magnétique dans l'espace réciproque, la diffusion inélastique augmente aux
champs intensifs a ~ 4 meV.

La réponse inélastique au centre de la zone magnétique a petits transferts d’energie
contient une signature du gap supraconducteur dans 1’état supraconducteur. Cela indique
que le gap possede la mme symétrie que le réseau antiferromagnétique. Aux températures
les plus basses, il n’y a plus de diffusion quasiélastique au centre de la zone magnétique.
Cette observation impose des limites sur les modéles de supraconductivité dans ce com-
posé.

Général

L’interaction entre les parametres d’ordre multiple dans le mme systeme électronique est
une question intéressante dans la physique de la matiere condensée. Les types d’ordre
différents doivent respecter les contraintes symétriques imposées par eux-mémes. Le gap
supraconducteur dans UPd,Alz est un bon exemple - il possede la mme symétrie que le
réseau antiferromagnétique. Cela se voit également dans les structures magnétiques 3-k,
ou la symétrie cubique est essentielle. Ce principe peut étre utile pour comprendre les
autres états d’ordre mixte.
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Perspectives

Etudes de la structure antiferromagnétique d’UQO, par les neutrons polarisés

La méthode décrite en chapitre 3 pour sonder les fluctuations d’une onde de spin peut
tre facilement adaptée aux autres composés (antiferromagnétiques). Il sera intéressant
de poursuivre ces études sur USb pour confirmer la description donnée ici. Pour voir si
on peut identifier d’ autres états multi-k, il sera nécessaire d ’examiner un matériau 2-k,
par exemple ; mais il faut avoir des ondes de spin bien définies.

Il sera également une bonne prochaine étape d’étudier les structures magnétiques
plus simples, comme le prototype MnFs, pour voir si ces études offrent I'information
complementaire sur I’échange antiferromagnétique.

Diffraction par les structures 3-k antiferromagnétiques

Ici, les prochaines étapes seraient de chercher pour les pics k3 dans un composé qui ne
contient pas d’ actinides, pour montrer que ce phénomene est général. Un tel matériau
doit avoir une cellule magnétique plus grande que la cellule nucléaire pour que le pic k3
ne soit pas trouvé en-dessous un pic de Bragg nucléaire. Un candidat serait le composé
cubique NdZn (k = (0 0 1/2)) [116]. En plus, pour l'analyse du facteur de forme, la
région d’intérét critique est la partie petit Q. Pour sonder cette région, on aura besoin
des matériaux incommensurables, par exemple USbgTep; ou k = (0 0 2/3).

Le supraconducteur antiferromagnétique, UPd,Al;

Dans le chapitre 6, les états normaux et supraconducteurs étaient étudiés. Les résultats
peuvent étre expliqués en utilisant le modele itinérant pour les électrons 5f. Un deuxieme
modele, dit <dual>, existe dans la littérature. Pour qu’il soit vrai, certains résultats ici
doivent étre expliqués (I'effet d'un champ magnétique sur les excitations dispersives et la
réponse a basse énergies dans 1’état supraconducteur). La diffusion notée & Q* = (0.5 0
0.5) n’est pas bien comprise, mais il semble qu’il a une origine itinérante.
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Résumé

Dans cette these, la coexistence de plusieurs parametres d’ordre dans le méme systeme
¢électronique est étudiée. Les structures magnétiques, appelées multi-k, ou plusieurs
vecteurs de propagation, k, existent dans le méme volume, sont considérés comme des
systemes modeles. L’effet de cette structure sur la réponse élastique et inélastique est
étudié.

Dans certains composés d’uranium, type NaCl, avec des structures 3-k, des pics de
Bragg apparaissent a des positions imprévus dans I’espace réciproque. Ces pics sont iden-
tifiés avec des corrélations quantiques entre les trois parametres de I'ordre magnétique.
La structure 3-k joue également sur les dynamiques. Les fluctuations dans les ondes de
spin dans le composé UO, peuvent étre expliquées seulement si la structure est 3-k, et
les parametres d’ordre sont correlés.

Dans le supraconducteur antiferromagnétique UPdyAls, 'ordre magnétique et 1’état
supraconducteur sont crée par les mémes fermions lourds. L’effet d’un champ magnétique
externe sur les états normal et supraconducteur est étudié. Dans 1’état normal, le
matériau agit comme un liquide de Fermi. La réponse inélastique, vue par les neutrons,
est renormalisée en entrant 1’état supraconducteur. Une étude de la region de basse
energie confirme que le gap d’energie supraconducteur possede la symétrie du reseau
antiferromagnétique.

Abstract

In this thesis, multiple order parameters originating in the same electronic system are
studied. The multi-k magnetic structures, where more than one propagation wavevector,
k, is observed in the same volume, are considered as prototypical models. The effect
of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium
rocksalts, unexpected elastic diffraction events were observed at positions in reciprocal
space where the structure factor should have been zero. These diffraction peaks are
identified with correlations between the (orthogonal) magnetic order parameters. The
3-k structure also affects the observed dynamics; the spin-wave fluctuations in UO, as
observed by inelastic neutron polarization analysis can only be explained on the basis of
a 3-k structure

In the antiferromagnetic superconductor UPdyAls the magnetic order and the super-
conducting state coexist, and are apparently generated by the same heavy fermions. The
effect of an external magnetic field on both the normal and superconducting states is
examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The
inelastic neutron response is strongly renormalized on entering the superconducting state,
and high-precision measurements of the low-energy transfer part of this response confirm
that the superconducting energy gap has the same symmetry as the antiferromagnetic
lattice.
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