A Logical Investigation of Interaction Systems
 Une investigation logique des systèmes d'interaction

Pierre Hyvernat

Insitut mathématique de Luminy
Université Aix-Marseille 2

PhD Defense, December 12th 2005

Supervisors:
Thierry Coquand (Chalmers Universitet, Göteborg, Sweden)
Thomas Ehrhard (Institut mathématique de Luminy, Marseille, France)

What is this about?

Programs and proofs are complex things!

What is this about?

Programs and proofs are complex things!
We want to give a simpler "denotation" and proofs or programs.
(We can thus forget about syntactical details like the choice of programming language...)

What is this about?

Programs and proofs are complex things!
We want to give a simpler "denotation" and proofs or programs.
(We can thus forget about syntactical details like the choice of programming language...)
We use a notion of abstract games...

What is this about?

Programs and proofs are complex things!
We want to give a simpler "denotation" and proofs or programs.
(We can thus forget about syntactical details like the choice of programming language...)
We use a notion of abstract games...
Games also give a computational interpretation to "topology" ...

Where are we?

Part 0: Simple
 Interaction Systems for everyone

```
Part 1: More Precisely (Interaction Systems for Experts)
    The category of Interaction Systems
    Interaction Systems and Topology
    Interaction and Predicate Transformers, Linear Logic
```

Part ∞ : and then?
Achievements and Future Work

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

- the first player is called the Angel;

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

- the first player is called the Angel;
- the second is called the Demon;

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

- the first player is called the Angel;
- the second is called the Demon;
- moves alternate: first the Angel, then the Demon etc.

```
Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?

\section*{"Simulations"}

Some games are equivalent:

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game \(G_{1}\) is easier than a game \(G_{2}\) if:

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game \(G_{1}\) is easier than a game \(G_{2}\) if:
- Angel moves in \(G_{1}\) can be translated into Angels moves in \(G_{2}\);

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game \(G_{1}\) is easier than a game \(G_{2}\) if:
- Angel moves in \(G_{1}\) can be translated into Angels moves in \(G_{2}\);
- Demon moves in \(G_{2}\) can be translated into moves in \(G_{1}\).

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game \(G_{1}\) is easier than a game \(G_{2}\) if:
- Angel moves in \(G_{1}\) can be translated into Angels moves in \(G_{2}\);
- Demon moves in \(G_{2}\) can be translated into moves in \(G_{1}\).

Thus \(G_{1}\) is easier for the Angel but more difficult for the Demon.

\section*{"Simulations"}

Some games are equivalent:
all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game \(G_{1}\) is easier than a game \(G_{2}\) if:
- Angel moves in \(G_{1}\) can be translated into Angels moves in \(G_{2}\);
- Demon moves in \(G_{2}\) can be translated into moves in \(G_{1}\).

Thus \(G_{1}\) is easier for the Angel but more difficult for the Demon.
We write \(G_{1} \leq G_{2}\) and say " \(G_{2}\) simulates \(G_{1}\) ".
```

Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?
000

Examples of games

- The game of Chess;

```
Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?

\section*{Examples of games}
- The game of Chess;
- game of "Devinettes":
- the Angel asks the questions,
- the Demon answers by YES or NO;

\section*{Examples of games}
- The game of Chess;
- game of "Devinettes":
- the Angel asks the questions,
- the Demon answers by YES or NO;
- potential executions of a program:
- the Angel is the user,
- the Demon is the computer;

\section*{Examples of games}
- The game of Chess;
- game of "Devinettes":
- the Angel asks the questions,
- the Demon answers by YES or NO;
- potential executions of a program:
- the Angel is the user,
- the Demon is the computer;
- a specification for a sequential / interactive program.

This was the starting intuition... (cf. Peter Hancock)
```

Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?
000

Safety Properties

The denotation of a program/proof will be a safety property...

```
Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?
000

\section*{Safety Properties}

The denotation of a program/proof will be a safety property... ... i.e. a set of "winning positions" for the Angel

\section*{Safety Properties}

The denotation of a program/proof will be a safety property...
... i.e. a set of "winning positions" for the Angel:
from each winning position,

\section*{Safety Properties}

The denotation of a program/proof will be a safety property... ... i.e. a set of "winning positions" for the Angel:
from each winning position, the Angel can find a smart move

\section*{Safety Properties}

The denotation of a program/proof will be a safety property...
... i.e. a set of "winning positions" for the Angel:
from each winning position, the Angel can find a smart move to always remain in a winning position

\section*{Safety Properties}

The denotation of a program/proof will be a safety property...
... i.e. a set of "winning positions" for the Angel:
from each winning position, the Angel can find a smart move to always remain in a winning position no matter what the Demon plays...

\section*{Safety Properties}

The denotation of a program/proof will be a safety property...
... i.e. a set of "winning positions" for the Angel:
from each winning position, the Angel can find a smart move to always remain in a winning position no matter what the Demon plays...
(In particular, the Angel always has a move to play!)

\section*{Where are we?}

\section*{Part 0: Simple}

Interaction Systems for everyone
Part 1: More Precisely (Interaction Systems for Experts)
The category of Interaction Systems Interaction Systems and Topology Interaction and Predicate Transformers, Linear Logic

Part \(\infty\) : and then?
Achievements and Future Work

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:
- a set \(S\) of states;

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:
- a set \(S\) of states;
- for each state \(s \in S\), a set \(A(s)\) of actions;

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:
- a set \(S\) of states;
- for each state \(s \in S\), a set \(A(s)\) of actions;
- for each action \(a \in A(s)\), a set \(D(s, a)\) of reactions;

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:
- a set \(S\) of states;
- for each state \(s \in S\), a set \(A(s)\) of actions;
- for each action \(a \in A(s)\), a set \(D(s, a)\) of reactions;
- for each reaction \(d \in D(s, a)\), a new state \(n(s, a, d) \in S\).

\section*{Objects: Interaction Systems}

Definition
An interaction system \(w\) is given by the following:
- a set \(S\) of states;
- for each state \(s \in S\), a set \(A(s)\) of actions;
- for each action \(a \in A(s)\), a set \(D(s, a)\) of reactions;
- for each reaction \(d \in D(s, a)\), a new state \(n(s, a, d) \in S\).
(Equivalently, an interaction system is a coalgebra for the monad \(\mathcal{F}^{2}\) of "doubly iterated families" over the category Set.)

\section*{Morphisms: Simulations}

Definition
If \(w_{1}\) and \(w_{2}\) are interaction systems, a relation \(R \subseteq S_{1} \times S_{2}\) is a simulation from \(w_{1}\) to \(w_{2}\) iff

\section*{Morphisms: Simulations}

\section*{Definition}

If \(w_{1}\) and \(w_{2}\) are interaction systems, a relation \(R \subseteq S_{1} \times S_{2}\) is a simulation from \(w_{1}\) to \(w_{2}\) iff
\[
\begin{aligned}
\left(s_{1}, s_{2}\right) \in R \Rightarrow & \forall a_{1} \in A_{1}\left(s_{1}\right) \\
& \exists a_{2} \in A_{2}\left(s_{2}\right)
\end{aligned}
\]
\[
\left(n_{1}\left(s_{1}, a_{1} \quad\right), n_{2}\left(s_{2}, a_{2} \quad\right)\right) \in R
\]

\section*{Morphisms: Simulations}

\section*{Definition}

If \(w_{1}\) and \(w_{2}\) are interaction systems, a relation \(R \subseteq S_{1} \times S_{2}\) is a simulation from \(w_{1}\) to \(w_{2}\) iff
\[
\begin{aligned}
\left(s_{1}, s_{2}\right) \in R \Rightarrow & \forall a_{1} \in A_{1}\left(s_{1}\right) \\
& \exists a_{2} \in A_{2}\left(s_{2}\right) \\
& \forall d_{2} \in D_{2}\left(s_{2}, a_{2}\right) \\
& \exists d_{1} \in D_{1}\left(s_{1}, a_{1}\right) \\
& \left(n_{1}\left(s_{1}, a_{1}, d_{1}\right), n_{2}\left(s_{2}, a_{2}, d_{2}\right)\right) \in R
\end{aligned}
\]

\section*{Morphisms: Simulations}

\section*{Definition}

If \(w_{1}\) and \(w_{2}\) are interaction systems, a relation \(R \subseteq S_{1} \times S_{2}\) is a simulation from \(w_{1}\) to \(w_{2}\) iff
\[
\begin{aligned}
\left(s_{1}, s_{2}\right) \in R \Rightarrow & \forall a_{1} \in A_{1}\left(s_{1}\right) \\
& \exists a_{2} \in A_{2}\left(s_{2}\right) \\
& \forall d_{2} \in D_{2}\left(s_{2}, a_{2}\right) \\
& \exists d_{1} \in D_{1}\left(s_{1}, a_{1}\right) \\
& \left(n_{1}\left(s_{1}, a_{1}, d_{1}\right), n_{2}\left(s_{2}, a_{2}, d_{2}\right)\right) \in R
\end{aligned}
\]
(This is not a morphism of coalgebras...)

\section*{Simulation, Visually}


\section*{Simulation, Visually}


\section*{Simulation, Visually}


\section*{Simulation, Visually}


\section*{Simulation, Visually}


\section*{Simulation, Visually}


\section*{Composition}

To compose two simulations from \(w_{1}\) to \(w_{2}\) and from \(w_{2}\) to \(w_{3} \ldots\) ...use the relational composition:

\section*{Composition}

To compose two simulations from \(w_{1}\) to \(w_{2}\) and from \(w_{2}\) to \(w_{3} \ldots\) ...use the relational composition:

(flow of interaction)

\section*{Reflexive and Transitive Closure}

\section*{Definition}

There is a functorial operation \(w \mapsto w^{*}\)

\section*{Reflexive and Transitive Closure}

\section*{Definition}

There is a functorial operation \(w \mapsto w^{*}\) s.t.
- an Angel action in \(w^{*}\) is a strategy to play several times in \(w\);

\section*{Reflexive and Transitive Closure}

\section*{Definition}

There is a functorial operation \(w \mapsto w^{*}\) s.t.
- an Angel action in \(w^{*}\) is a strategy to play several times in \(w\);
- a Demon reaction is a sequence of responses.

\section*{Reflexive and Transitive Closure}

\section*{Definition}

There is a functorial operation \(w \mapsto w^{*}\) s.t.
- an Angel action in \(w^{*}\) is a strategy to play several times in \(w\);
- a Demon reaction is a sequence of responses.

This operation satisfies \(w^{*}\) is "least" s.t. \(w^{*} \simeq \operatorname{skip} \cup w ; w^{*}\), where \(w_{1} ; w_{2}\) is the game
"one move in \(w_{1}\) and then one move in \(w_{2}\)."

\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every action from \(s_{1}\), there is a "list" of actions from \(s_{2}\);
- s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every action from \(s_{1}\), there is a "list" of actions from \(s_{2}\);
- s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every action from \(s_{1}\), there is a "list" of actions from \(s_{2}\);
- s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every action from \(s_{1}\), there is a "list" of actions from \(s_{2}\);
- s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every move from \(s_{1}\), there is a strategy from \(s_{2}\);
- s.t. for any counter-strategy, there is a counter-move;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every command from \(s_{1}\), there is a program from \(s_{2}\);
- s.t. for any sequence of responses, there is a response;
- s.t. the simulation can be sustained from the new states.


\section*{Programming Interpretation}

A simulation from \(w_{1}\) to \(w_{2}^{*}\) is a relation \(R\) s.t. if \(\left(s_{1}, s_{2}\right) \in R\) :
- for every command from \(s_{1}\), there is a program from \(s_{2}\);
- s.t. for any sequence of responses, there is a response;
- s.t. the simulation can be sustained from the new states.


This is just a program implementing \(w_{1}\) in terms of \(w_{2}\) !
```

Part 0: Simple

Topology Interpretation

- S is a basis for a topological space;

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;
- $D(s, a)$ indexes the basic opens from the covering $a ;$

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;
- $D(s, a)$ indexes the basic opens from the covering $a ;$
- $n(s, a, d)$ is the basic open corresponding to index d.
(This bears similarities with Grothendieck topologies.)

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;
- $D(s, a)$ indexes the basic opens from the covering $a ;$
- $n(s, a, d)$ is the basic open corresponding to index d.
(This bears similarities with Grothendieck topologies.)
Theorem
There is a full and faithful functor from $\operatorname{Ref}^{o p}$ to BTop.

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;
- $D(s, a)$ indexes the basic opens from the covering $a ;$
- $n(s, a, d)$ is the basic open corresponding to index d.
(This bears similarities with Grothendieck topologies.)

> Theorem
> There is a full and faithful functor from $\operatorname{Ref}^{o p}$ to BTop.
> i.e. a simulation from w_{1} to w_{2}^{*}...

Topology Interpretation

- S is a basis for a topological space;
- $A(s)$ corresponds to the atomic covering of the basic open s;
- $D(s, a)$ indexes the basic opens from the covering $a ;$
- $n(s, a, d)$ is the basic open corresponding to index d.
(This bears similarities with Grothendieck topologies.)
Theorem
There is a full and faithful functor from $\operatorname{Ref}^{o p}$ to BTop.
i.e. a simulation from w_{1} to $w_{2}^{*} \ldots$
... is exactly a continuous function from w_{2} to w_{1}.

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

- very concrete;

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

- very concrete;
- too simple (?!) computational content;

Simplifying the Presentation

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

- very concrete;
- too simple (?!) computational content;
- some simple operations look complicated.

```
Part 0: Simple

\section*{Predicate Transformers}

In a classical setting, we simplify the structure:

\section*{Predicate Transformers}

In a classical setting, we simplify the structure:
to any interaction system \(w\) we associate
\[
\begin{aligned}
w^{\circ}: \mathcal{P}(S) & \rightarrow \mathcal{P}(S) \\
U & \mapsto\{s \mid(\exists a)(\forall d) n(s, a, d) \in U\}
\end{aligned}
\]
i.e. \(s \in w^{\circ}(U)\) iff "the Angel can reach \(U\) from \(s\) in exactly one interaction".

\section*{Predicate Transformers}

In a classical setting, we simplify the structure:
to any interaction system \(w\) we associate
\[
\begin{aligned}
w^{0}: \mathcal{P}(S) & \rightarrow \mathcal{P}(S) \\
U & \mapsto\{s \mid(\exists a)(\forall d) n(s, a, d) \in U\}
\end{aligned}
\]

Theorem
We have that \(R\) is a simulation from \(w_{1}\) to \(w_{2}\) iff
\[
R \cdot w_{1}^{\circ} \quad \subseteq \quad w_{2}^{\circ} \cdot R
\]

\section*{Predicate Transformers}

In a classical setting, we simplify the structure:
to any interaction system \(w\) we associate
\[
\begin{aligned}
w^{\circ}: \mathcal{P}(S) & \rightarrow \mathcal{P}(S) \\
U & \mapsto\{s \mid(\exists a)(\forall d) n(s, a, d) \in U\}
\end{aligned}
\]

Theorem
We have that \(R\) is a simulation from \(w_{1}\) to \(w_{2}\) iff
\[
R \cdot w_{1}^{\circ} \quad \subseteq w_{2}^{\circ} \cdot R
\]

This defines an equivalence of categories \(\mathbf{P T} \simeq \mathbf{S i m}\) !

\section*{Monoidal Structure}

For \(P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad\) and \(\quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right):\)

\section*{Monoidal Structure}
\[
\begin{aligned}
& \text { For } P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad \text { and } \quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right): \\
& P_{1}^{\perp}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right)
\end{aligned}
\]
(In particular involutivity of \({ }_{-}^{\perp}\) is trivial.)

\section*{Monoidal Structure}
\[
\begin{aligned}
& \text { For } P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad \text { and } \quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right): \\
& P_{1}^{\perp}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \\
& x \mapsto P_{1}(\bar{x})
\end{aligned}
\]
(In particular involutivity of \({ }^{\perp}\) is trivial.)

\section*{Monoidal Structure}
\[
\begin{aligned}
& \text { For } P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad \text { and } \quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right) \text { : } \\
& P_{1}^{\perp}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad P_{1} \otimes P_{2}: \mathcal{P}\left(S_{1} \times S_{2}\right) \rightarrow \mathcal{P}\left(S_{1} \times S_{2}\right)
\end{aligned}
\]
(In particular involutivity of \({ }_{-}^{\perp}\) is trivial.)

\section*{Monoidal Structure}
\[
\begin{array}{ll}
\text { For } P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) & \text { and } \quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right): \\
P_{1}^{\perp}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) & P_{1} \otimes P_{2}: \mathcal{P}\left(S_{1} \times S_{2}\right) \rightarrow \mathcal{P}\left(S_{1} \times S_{2}\right) \\
x \mapsto \overline{P_{1}(\bar{x})} & r \mapsto \bigcup_{x_{1} \times x_{2} \subseteq r} P_{1}\left(x_{1}\right) \times P_{2}\left(x_{2}\right)
\end{array}
\]
(In particular involutivity of \({ }_{-}^{\perp}\) is trivial.)

\section*{Monoidal Structure}

For \(P_{1}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) \quad\) and \(\quad P_{2}: \mathcal{P}\left(S_{2}\right) \rightarrow \mathcal{P}\left(S_{2}\right):\)
\[
\begin{array}{ll}
P_{1}^{\perp}: \mathcal{P}\left(S_{1}\right) \rightarrow \mathcal{P}\left(S_{1}\right) & P_{1} \otimes P_{2}: \mathcal{P}\left(S_{1} \times S_{2}\right) \rightarrow \mathcal{P}\left(S_{1} \times S_{2}\right) \\
x \mapsto \overline{P_{1}(\bar{x})} & r \mapsto \bigcup_{x_{1} \times x_{2} \subseteq r} P_{1}\left(x_{1}\right) \times P_{2}\left(x_{2}\right)
\end{array}
\]

This gives a self-dual symmetric monoidal category. (In particular involutivity of _ \({ }^{\perp}\) is trivial.)

Those correspond to concrete operations on interaction systems...
```

Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?

Monoidal closure

We can extend this to a self-dual monoidal closed category.

Monoidal closure

We can extend this to a self-dual monoidal closed category.
The adjoint to \otimes is given by

$$
P_{1} \multimap P_{2}: \mathcal{P}\left(S_{1} \times S_{2}\right) \rightarrow \mathcal{P}\left(S_{1} \times S_{2}\right)
$$

Monoidal closure

We can extend this to a self-dual monoidal closed category.

The adjoint to \otimes is given by

$$
P_{1} \multimap P_{2}: \mathcal{P}\left(S_{1} \times S_{2}\right) \rightarrow \mathcal{P}\left(S_{1} \times S_{2}\right)
$$

with

$$
\begin{gathered}
\left(s_{1}, s_{2}\right) \in\left(P_{1} \multimap P_{2}\right)(r) \\
\text { iff } \\
\left(\forall x_{1} \subseteq S_{1}\right) s_{1} \in P_{1}\left(x_{1}\right) \Rightarrow s_{2} \in P_{2}\left(r\left(x_{1}\right)\right)
\end{gathered}
$$

Linear Logic

With an appropriate construction

$$
!P: \mathcal{P}\left(\mathcal{M}_{f}(S)\right) \rightarrow \mathcal{P}\left(\mathcal{M}_{f}(S)\right)
$$

Linear Logic

With an appropriate construction

$$
!P: \mathcal{P}\left(\mathcal{M}_{f}(S)\right) \rightarrow \mathcal{P}\left(\mathcal{M}_{f}(S)\right)
$$

we can interpret all of linear logic or typed λ-calculus.
(This corresponds to the construction of the free \otimes-comonoid...)

Linear Logic

With an appropriate construction

$$
!P: \mathcal{P}\left(\mathcal{M}_{f}(S)\right) \rightarrow \mathcal{P}\left(\mathcal{M}_{f}(S)\right)
$$

we can interpret all of linear logic or typed λ-calculus.
(This corresponds to the construction of the free \otimes-comonoid...)
A proof/term becomes a safety property,

$$
\text { i.e. a subset } x \subseteq S \text { s.t. } x \subseteq P(x)
$$

```
Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

Traditional models do not model those new features!

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

Traditional models do not model those new features!
Safety properties are closed under arbitrary union,

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

Traditional models do not model those new features!
Safety properties are closed under arbitrary union, we can thus interpret non-determinism

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

Traditional models do not model those new features!
Safety properties are closed under arbitrary union, we can thus interpret non-determinism and even differentiation.

\section*{Differential \(\lambda\)-calculus}

Differential \(\lambda\)-calculus has an intrinsic notion of
- non-determinism (addition);
- linear substitution (differentiation).

Traditional models do not model those new features!
Safety properties are closed under arbitrary union, we can thus interpret non-determinism
and even differentiation.
We get a simple, non-trivial model for the differential \(\lambda\)-calculus!

\section*{Where are we?}
```

Part 0: Simple
Interaction Systems for everyone
Part 1: More Precisely (Interaction Systems for Experts)
The category of Interaction Systems
Interaction Systems and Topology
Interaction and Predicate Transformers, Linear Logic

```

Part \(\infty\) : and then?

\section*{Achievements and Future Work}

\section*{Achievements}
- a new category of games and simulations;
- an intuitive/informal model for "real-life" programming;
- giving a computational interpretation of "basic topologies";
- concrete example of interaction system to give a (complete) topological semantics to "linear geometric theories";
- this category is a denotational model for full linear logic;
- and the differential (typed) \(\lambda\)-calculus;
- which can extended to second order.
```

Part 0: Simple
Part 1: More Precisely (Interaction Systems for Experts)
Part }\infty:\mathrm{ and then?

Future Work

- link the topology part and the linear logic part;

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;
- do we have denotational completeness?

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$-calculus?

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$-calculus?
- generalize in the spirit of "containers";

Future Work

- link the topology part and the linear logic part;
- study the model of differential λ-calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$-calculus?
- generalize in the spirit of "containers";
- study concrete example of interfaces.

```
Part 0: Simple```

