Part	0:	Simple
000	0	

A Logical Investigation of Interaction Systems Une investigation logique des systèmes d'interaction

Pierre Hyvernat

Insitut mathématique de Luminy Université Aix-Marseille 2

PhD Defense, December 12th 2005

Supervisors: Thierry Coquand (Chalmers Universitet, Göteborg, Sweden) Thomas Ehrhard (Institut mathématique de Luminy, Marseille, France)

Institut mathématique de Luminy

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?

Programs and proofs are complex things!

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then? 000

Programs and proofs are complex things! We want to give a simpler "denotation" and proofs or programs.

(We can thus forget about syntactical details like the choice of programming language...)

A Logical Investigation of Interaction Systems

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 00000	Part ∞ : and then? 000

Programs and proofs are complex things!

We want to give a simpler "denotation" and proofs or programs.

(We can thus forget about syntactical details like the choice of programming language...)

We use a notion of abstract games...

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?

Programs and proofs are complex things!

We want to give a simpler "denotation" and proofs or programs.

(We can thus forget about syntactical details like the choice of programming language...) We use a notion of abstract games...

Games also give a computational interpretation to "topology"...

Part 0: Simple	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then?

Where are we?

Part 0: Simple Interaction Systems for everyone

Part 1: More Precisely (Interaction Systems for Experts) The category of Interaction Systems Interaction Systems and Topology Interaction and Predicate Transformers, Linear Logic

Part ∞ : and then? Achievements and Future Work

Part 0: Simple ●000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then? 000
Interaction Systems for every	one	
C		

Games "Interaction Systems"

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

A Logical Investigation of Interaction Systems

34.5 Institut mathématique de Luminy

ъ

Part 0: Simple ●000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Games		

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

the first player is called the Angel;

"Interaction Systems"

Part 0: Simple ●000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Games		

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

- the first player is called the Angel;
- the second is called the Demon;

"Interaction Systems"

Part 0: Simple ●000	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000000	Part ∞ : and then?
Interaction Systems for everyone		
Games		

We are interested in games between players with full information. (Like chess or Go and unlike soccer or Poker)

- the first player is called the Angel;
- the second is called the Demon;
- moves alternate: first the Angel, then the Demon etc.

"Interaction Systems"

Part 0: Simple ○●○○	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000 000000	Part ∞ : and then?
Interaction Systems for e	veryone	

Some games are equivalent:

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple ⊙●○○	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone	2	

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

Part 0: Simple 0●00	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyon	e	

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game G_1 is easier than a game G_2 if:

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple ⊙●○○	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? 000
Interaction Systems for everyone	2	

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game G_1 is easier than a game G_2 if:

• Angel moves in G_1 can be translated into Angels moves in G_2 ;

Part 0: Simple o●oo	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyor	e	

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game G_1 is easier than a game G_2 if:

- Angel moves in G_1 can be translated into Angels moves in G_2 ;
- Demon moves in G_2 can be translated into moves in G_1 .

Part 0: Simple ⊙●○○	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game G_1 is easier than a game G_2 if:

- Angel moves in G_1 can be translated into Angels moves in G_2 ;
- Demon moves in G_2 can be translated into moves in G_1 .

Thus G_1 is easier for the Angel but more difficult for the Demon.

Part 0: Simple 0●00	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyon	2	

Some games are equivalent:

all moves in the first games can be translated into moves in the second game; and vice and versa.

More generally, we say that a game G_1 is easier than a game G_2 if:

- Angel moves in G_1 can be translated into Angels moves in G_2 ;
- Demon moves in G_2 can be translated into moves in G_1 .

Thus G_1 is easier for the Angel but more difficult for the Demon.

We write $G_1 \leq G_2$ and say " G_2 simulates G_1 ".

Part 0: Simple ○○●○	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Examples of ga	ames	

► The game of Chess;

- A 🗎 🕨

< (□)

A Logical Investigation of Interaction Systems

- ₹ 🖬 🕨 Institut mathématique de Luminy

3

Part 0: Simple 00●0	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000 000000	Part ∞ : and then? 000
Interaction Systems for eve	eryone	

Examples of games

- The game of Chess;
- ▶ game of "*Devinettes*":
 - the Angel asks the questions,
 - the Demon answers by YES or NO;

Part 0: Simple ○○●○	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? 000
Interaction Systems for e	veryone	

Examples of games

- The game of Chess;
- ▶ game of "*Devinettes*":
 - the Angel asks the questions,
 - the Demon answers by YES or NO;
- potential executions of a program:
 - the Angel is the user,
 - the Demon is the computer;

Part 0: Simple ○○●○	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000000	Part ∞ : and then? 000
Interaction Systems for ev	reryone	

Examples of games

- The game of Chess;
- ▶ game of "*Devinettes*":
 - the Angel asks the questions,
 - the Demon answers by YES or NO;
- potential executions of a program:
 - the Angel is the user,
 - the Demon is the computer;
- ▶ a specification for a sequential / interactive program.

This was the starting intuition... (cf. Peter Hancock)

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? 000
Interaction Systems for everyon	e	
Safety Propert	ies	

-

< 口 > < 同 >

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Safety Prop	erties	

... i.e. a set of "winning positions" for the Angel

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Safety Prop	erties	

... *i.e.* a set of "winning positions" for the Angel:

from each winning position,

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? 000
Interaction Systems for everyone		
Safety Prop	erties	

... *i.e.* a set of "winning positions" for the Angel:

from each winning position, the Angel can find a smart move

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Safety Proper	ties	

... *i.e.* a set of "winning positions" for the Angel:

from each winning position, the Angel can find a smart move to always remain in a winning position

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Safety Proper	ties	

... *i.e.* a set of "winning positions" for the Angel:

from each winning position, the Angel can find a smart move to always remain in a winning position no matter what the Demon plays...

Part 0: Simple 000●	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then?
Interaction Systems for everyone		
Safety Properties		

... *i.e.* a set of "winning positions" for the Angel:

from each winning position, the Angel can find a smart move to always remain in a winning position no matter what the Demon plays...

(In particular, the Angel always has a move to play!)

Part 0: Simple	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
0000	0000 000 000000	000

Where are we?

Part 0: Simple Interaction Systems for everyone

Part 1: More Precisely (Interaction Systems for Experts) The category of Interaction Systems Interaction Systems and Topology Interaction and Predicate Transformers, Linear Logic

Part ∞ : and then? Achievements and Future Work

Part 1: More Precisely (Interaction Systems for Experts) •OOO •OOO •OOO Part ∞ : and then? 000

The category of Interaction Systems

Objects: Interaction Systems

Definition An interaction system *w* is given by the following:

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 1: More Precisely (Interaction Systems for Experts) •OOO •OOO •OOO Part ∞ : and then? 000

The category of Interaction Systems

Objects: Interaction Systems

Definition

An interaction system *w* is given by the following:

► a set *S* of states;

・ロッ・雪・・曲・・曲・・ しょうくろ

A Logical Investigation of Interaction Systems

Part 1: More Precisely (Interaction Systems for Experts) •OOO •OOO •OOO Part $\infty :$ and then? 000

The category of Interaction Systems

Objects: Interaction Systems

Definition

An interaction system w is given by the following:

- a set S of states;
- for each state $s \in S$, a set A(s) of actions;

ъ

The category of Interaction Systems

Objects: Interaction Systems

Definition

An interaction system w is given by the following:

- a set S of states;
- for each state $s \in S$, a set A(s) of actions;
- ▶ for each action $a \in A(s)$, a set D(s, a) of reactions;

The category of Interaction Systems

Objects: Interaction Systems

Definition

An interaction system w is given by the following:

- a set S of states;
- for each state $s \in S$, a set A(s) of actions;
- ▶ for each action $a \in A(s)$, a set D(s, a) of reactions;
- ▶ for each reaction $d \in D(s, a)$, a new state $n(s, a, d) \in S$.

The category of Interaction Systems

Objects: Interaction Systems

Definition

An interaction system w is given by the following:

- a set S of states;
- for each state $s \in S$, a set A(s) of actions;
- ▶ for each action $a \in A(s)$, a set D(s, a) of reactions;
- ▶ for each reaction $d \in D(s, a)$, a new state $n(s, a, d) \in S$.

(Equivalently, an interaction system is a coalgebra for the monad \mathcal{F}^2 of "doubly iterated families" over the category **Set**.)

Part 0:	Simple	
0000		

The category of Interaction Systems

Morphisms: Simulations

Definition

If w_1 and w_2 are interaction systems,

a relation $R \subseteq S_1 \times S_2$ is a simulation from w_1 to w_2 iff

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

ъ

Part 0:	Simple
0000	

The category of Interaction Systems

Morphisms: Simulations

Definition

If w_1 and w_2 are interaction systems,

a relation $R \subseteq S_1 \times S_2$ is a simulation from w_1 to w_2 iff

$$(s_1, s_2) \in R \Rightarrow \forall a_1 \in A_1(s_1) \\ \exists a_2 \in A_2(s_2)$$

 $(n_1(s_1, a_1), n_2(s_2, a_2)) \in R$

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

-

・ 同 ト ・ ヨ ト ・ ヨ ト

Part 0: Simple 0000

The category of Interaction Systems

Morphisms: Simulations

Definition

If w_1 and w_2 are interaction systems,

a relation $R \subseteq S_1 \times S_2$ is a simulation from w_1 to w_2 iff

$$\begin{array}{ll} (s_1, s_2) \in R \Rightarrow & \forall a_1 \in A_1(s_1) \\ & \exists a_2 \in A_2(s_2) \\ & \forall d_2 \in D_2(s_2, a_2) \\ & \exists d_1 \in D_1(s_1, a_1) \\ & & \left(n_1(s_1, a_1, d_1), n_2(s_2, a_2, d_2) \right) \in R \end{array}$$

-

- 4 周 ト 4 月 ト 4 月 ト

Part 0: Simple 0000

The category of Interaction Systems

Morphisms: Simulations

Definition

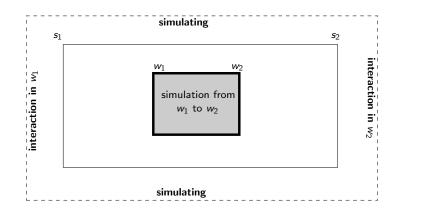
If w_1 and w_2 are interaction systems, a relation $P \subset S_1 \times S_2$ is a simulation from w_1 t

a relation $R \subseteq S_1 \times S_2$ is a simulation from w_1 to w_2 iff

$$\begin{array}{ll} (s_1, s_2) \in R \Rightarrow & \forall a_1 \in A_1(s_1) \\ & \exists a_2 \in A_2(s_2) \\ & \forall d_2 \in D_2(s_2, a_2) \\ & \exists d_1 \in D_1(s_1, a_1) \\ & & \left(n_1(s_1, a_1, d_1), n_2(s_2, a_2, d_2) \right) \in R \end{array}$$

(This is not a morphism of coalgebras...)

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 00●0 000 000000	Part ∞ : and then?
The category of Interact	ion Systems	



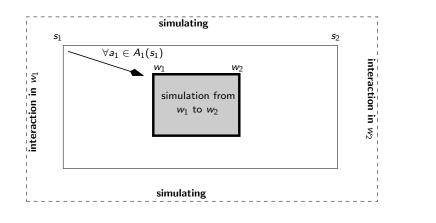
A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

ъ

< 口 > < 同 >

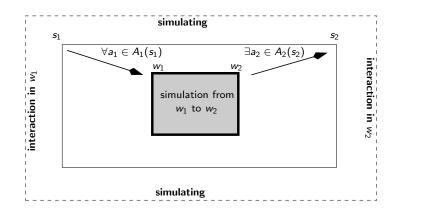
Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 00●0 000 000000	Part ∞ : and then?
The category of Interact	ion Systems	



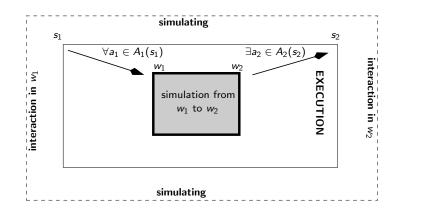
ъ

< A >

Part 0: Simple	Part 1: More Precisely (Interaction Systems for Experts) 00€0 000 000000	Part ∞ : and then? 000
The category of Interact	ion Systems	



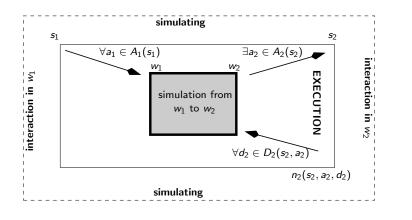
Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○●○ ○○○ ○○○	Part ∞ : and then?
The category of Interact	on Systems	



Part 0: Simple	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
0000	00● 0 000 0000000	000

The category of Interaction Systems

Simulation, Visually



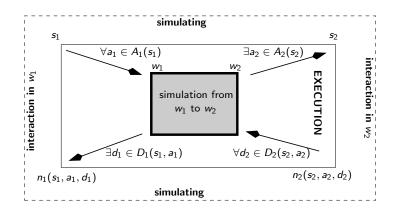
A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
0000	000 000 000000	000

The category of Interaction Systems

Simulation, Visually



A Logical Investigation of Interaction Systems

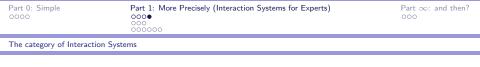
Institut mathématique de Luminy

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then? 000
The category of Interaction S	ystems	
Composition		

To compose two simulations from w_1 to w_2 and from w_2 to w_3 use the relational composition:

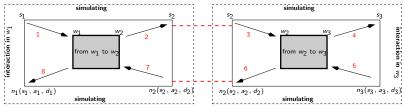
ъ

< E.



Composition

To compose two simulations from w_1 to w_2 and from w_2 to w_3use the relational composition:



⁽flow of interaction)

Part 0: Simple

Part 1: More Precisely (Interaction Systems for Experts) ${}^{\circ\circ\circ\circ}_{\bullet\circ\circ}$

Part $\infty :$ and then? 000

Interaction Systems and Topology

Reflexive and Transitive Closure

Definition There is a functorial operation $w \mapsto w^*$

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0:	Simple
0000	

Reflexive and Transitive Closure

Definition

There is a functorial operation $w \mapsto w^*$ s.t.

• an Angel action in w^* is a strategy to play several times in w;

ъ

Part 0:	Simple
0000	

Reflexive and Transitive Closure

Definition

There is a functorial operation $w \mapsto w^*$ s.t.

- > an Angel action in w^* is a strategy to play several times in w;
- ► a Demon reaction is a sequence of responses.

Part 0:	Simple
0000	

Reflexive and Transitive Closure

Definition

There is a functorial operation $w \mapsto w^*$ s.t.

- > an Angel action in w^* is a strategy to play several times in w;
- a Demon reaction is a sequence of responses.

This operation satisfies w^* is "least" s.t. $w^* \simeq \text{skip} \cup w$; w^* ,

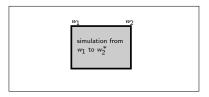
where w_1 ; w_2 is the game

"one move in w_1 and then one move in w_2 ."

Part 0:	Simple
0000	

Programming Interpretation

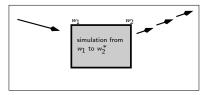
- A simulation from w_1 to w_2^* is a relation R s.t. if $(s_1, s_2) \in R$:
 - for every action from s_1 , there is a "list" of actions from s_2 ;
 - s.t. for any "list" of reactions, there is a reaction;
 - s.t. the simulation can be sustained from the new states.



Part 0:	Simple
0000	

Programming Interpretation

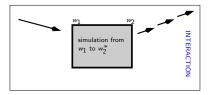
- for every action from s_1 , there is a "list" of actions from s_2 ;
- ▶ s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.



Part 0:	Simple
0000	

Programming Interpretation

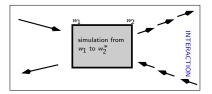
- for every action from s_1 , there is a "list" of actions from s_2 ;
- ▶ s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.



Part 0:	Simple
0000	

Programming Interpretation

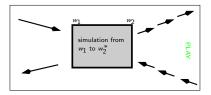
- for every action from s_1 , there is a "list" of actions from s_2 ;
- ▶ s.t. for any "list" of reactions, there is a reaction;
- s.t. the simulation can be sustained from the new states.



Part 0:	Simple
0000	

Programming Interpretation

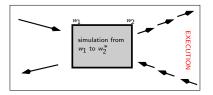
- A simulation from w_1 to w_2^* is a relation R s.t. if $(s_1, s_2) \in R$:
 - for every move from s_1 , there is a strategy from s_2 ;
 - s.t. for any counter-strategy, there is a counter-move;
 - s.t. the simulation can be sustained from the new states.



Part 0:	Simple
0000	

Programming Interpretation

- for every command from s_1 , there is a program from s_2 ;
- s.t. for any sequence of responses, there is a response;
- s.t. the simulation can be sustained from the new states.

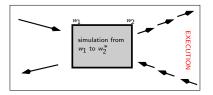


Part 0:	Simple
0000	

Programming Interpretation

A simulation from w_1 to w_2^* is a relation R s.t. if $(s_1, s_2) \in R$:

- for every command from s_1 , there is a program from s_2 ;
- s.t. for any sequence of responses, there is a response;
- s.t. the simulation can be sustained from the new states.



This is just a program implementing w_1 in terms of w_2 !

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 000 000 000000	Part ∞ : and then?
Interaction Systems and Top	ology	

► *S* is a basis for a topological space;

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○● ○○● ○○○○○○	Part ∞ : and then? 000
Interaction Systems and Topo	logy	

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○○○○	Part ∞ : and then?
Interaction Systems and Topolog	5y	

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;
- D(s, a) indexes the basic opens from the covering a;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○○○○○	Part ∞ : and then?
Interaction Systems and Topology		

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;
- D(s, a) indexes the basic opens from the covering a;
- n(s, a, d) is the basic open corresponding to index d.

(This bears similarities with Grothendieck topologies.)

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○○○○	Part ∞ : and then?	
Interaction Systems and Topology			

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;
- D(s, a) indexes the basic opens from the covering a;
- n(s, a, d) is the basic open corresponding to index d.

(This bears similarities with Grothendieck topologies.)

Theorem

There is a full and faithful functor from **Ref**^{op} to **BTop**.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○○○○	Part ∞ : and then?	
Interaction Systems and Topology			

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;
- D(s, a) indexes the basic opens from the covering a;
- n(s, a, d) is the basic open corresponding to index d.

(This bears similarities with Grothendieck topologies.)

Theorem

There is a full and faithful functor from **Ref**^{op} to **BTop**.

i.e. a simulation from w_1 to w_2^* ...

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○○○○	Part ∞ : and then?
Interaction Systems and Topolog	у	

- ► *S* is a basis for a topological space;
- A(s) corresponds to the atomic covering of the basic open s;
- D(s, a) indexes the basic opens from the covering a;
- n(s, a, d) is the basic open corresponding to index d.

(This bears similarities with Grothendieck topologies.)

Theorem

There is a full and faithful functor from Ref^{op} to BTop.

i.e. a simulation from w_1 to w_2^* ...

... is exactly a continuous function from w_2 to w_1 .

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 00000	Part ∞ : and then? 000
Interaction and Predicat	e Transformers, Linear Logic	

Advantages of interaction systems:

very concrete (cf. link with programming);

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ●○○○○	Part ∞ : and then?
Interaction and Predicate	Transformers, Linear Logic	

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
Interaction and Predicate	Transformers, Linear Logic	

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○ ●○○○○ ●○○○○	Part ∞ : and then?
Interaction and Predicate	Transformers, Linear Logic	

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

very concrete;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○ ●○○○○ ●○○○○	Part ∞ : and then?
Interaction and Predicate	Transformers Linear Logic	

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

- very concrete;
- too simple (?!) computational content;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○ ●○○○○ ●○○○○	Part ∞ : and then?
Interaction and Predicate	Transformers Linear Logic	

Advantages of interaction systems:

- very concrete (cf. link with programming);
- simple computational content;
- adequate to model "predicative" topology.

Drawbacks of interaction systems:

- very concrete;
- too simple (?!) computational content;
- some simple operations look complicated.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 00000	Part ∞ : and then? 000
Interaction and Predicat	e Transformers, Linear Logic	

Predicate Transformers

In a classical setting, we simplify the structure:

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○ ○●○○○	Part ∞ : and then?
Interaction and Predicate	e Transformers. Linear Logic	

Predicate Transformers

In a classical setting, we simplify the structure: to any interaction system w we associate

$$\begin{array}{rcccc} w^{\circ} & : & \mathcal{P}(S) & \to & \mathcal{P}(S) \\ & & U & \mapsto & \left\{ s \mid (\exists a)(\forall d) \, n(s,a,d) \in U \right\} \end{array}$$

i.e. $s \in w^{\circ}(U)$ iff "the Angel can reach U from s in exactly one interaction".

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○●○○○○	Part ∞ : and then? 000
Interaction and Predicate Transf	ormers, Linear Logic	

Predicate Transformers

In a classical setting, we simplify the structure: to any interaction system w we associate

$$w^{\circ}$$
 : $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$
 $U \mapsto \{s \mid (\exists a)(\forall d) \ n(s, a, d) \in U\}$

Theorem

We have that R is a simulation from w_1 to w_2 iff

$$R \cdot w_1^\circ \subseteq w_2^\circ \cdot R$$

A Logical Investigation of Interaction Systems

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○●○○○○	Part ∞ : and then? 000
Interaction and Predicate Transf	ormers, Linear Logic	

Predicate Transformers

In a classical setting, we simplify the structure: to any interaction system w we associate

$$w^{\circ}$$
 : $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$
 $U \mapsto \{s \mid (\exists a)(\forall d) \ n(s, a, d) \in U\}$

Theorem

We have that R is a simulation from w_1 to w_2 iff

$$R \cdot w_1^\circ \subseteq w_2^\circ \cdot R$$

This defines an equivalence of categories $PT \simeq Sim!$

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○●○○○	Part ∞ : and then?
Interaction and Predicat	e Transformers, Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:

ロット 4回ット ボット ボット うくの

A Logical Investigation of Interaction Systems

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○●○○○	Part ∞ : and then? 000
Interaction and Predicat	e Transformers, Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:
 $P_1^{\perp} : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$

(In particular involutivity of $_^{\perp}$ is trivial.)

< A >

A 3 1

A Logical Investigation of Interaction Systems

- A 🗐 🕨 Institut mathématique de Luminy

ъ

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○●○○○	Part ∞ : and then? 000
Interaction and Predicat	e Transformers, Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:
 $P_1^{\perp} : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$
 $x \mapsto \overline{P_1(\overline{x})}$

(In particular involutivity of $_^{\perp}$ is trivial.)

< A >

A 3 1

A Logical Investigation of Interaction Systems

- A 🗐 🕨 Institut mathématique de Luminy

ъ

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○●○○○	Part ∞ : and then? 000
Interaction and Predicate	e Transformers, Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:
 $P_1^{\perp} : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$ $P_1 \otimes P_2 : \mathcal{P}(S_1 \times S_2) \to \mathcal{P}(S_1 \times S_2)$
 $x \mapsto \overline{P_1(\overline{x})}$

(In particular involutivity of $_^{\perp}$ is trivial.)

< 6 >

A Logical Investigation of Interaction Systems

Institut mathématique de Luminy

ъ

- 4 E 6 4 E 6

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○● ○○●○○○	Part ∞ : and then? 000
Interaction and Predicate	e Transformers, Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:
 $P_1^{\perp} : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$ $P_1 \otimes P_2 : \mathcal{P}(S_1 \times S_2) \to \mathcal{P}(S_1 \times S_2)$
 $x \mapsto \overline{P_1(\overline{x})}$ $r \mapsto \bigcup_{x_1 \times x_2 \subseteq r} P_1(x_1) \times P_2(x_2)$

(In particular involutivity of $_^{\perp}$ is trivial.)

< 6 >

ъ

- 4 E 6 4 E 6

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○ ○○● ○○●	Part ∞ : and then?
Interaction and Predicate	e Transformers. Linear Logic	

For
$$P_1 : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$$
 and $P_2 : \mathcal{P}(S_2) \to \mathcal{P}(S_2)$:
 $P_1^{\perp} : \mathcal{P}(S_1) \to \mathcal{P}(S_1)$ $P_1 \otimes P_2 : \mathcal{P}(S_1 \times S_2) \to \mathcal{P}(S_1 \times S_2)$
 $x \mapsto \overline{P_1(\overline{x})}$ $r \mapsto \bigcup_{x_1 \times x_2 \subseteq r} P_1(x_1) \times P_2(x_2)$

This gives a self-dual symmetric monoidal category. (In particular involutivity of $_^{\perp}$ is trivial.)

Those correspond to concrete operations on interaction systems...

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○○ ○○○	Part ∞ : and then?
Interaction and Predicat	e Transformers, Linear Logic	

Monoidal closure

We can extend this to a self-dual monoidal closed category.

A Logical Investigation of Interaction Systems

0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000 000	Part ∞: and then? 000
Interaction and Predicate Tra	nsformers, Linear Logic	

Monoidal closure

We can extend this to a self-dual monoidal closed category.

The adjoint to \otimes is given by

$$P_1 \multimap P_2 : \mathcal{P}(S_1 \times S_2) \to \mathcal{P}(S_1 \times S_2)$$

A Logical Investigation of Interaction Systems

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
Interaction and Predicate Trans	formers, Linear Logic	

Monoidal closure

We can extend this to a self-dual monoidal closed category.

The adjoint to \otimes is given by

$$P_1 \multimap P_2 : \mathcal{P}(S_1 \times S_2) \to \mathcal{P}(S_1 \times S_2)$$

with

$$(s_1, s_2) \in (P_1 \multimap P_2)(r)$$

iff
 $(\forall x_1 \subseteq S_1) s_1 \in P_1(x_1) \Rightarrow s_2 \in P_2(r(x_1))$

A Logical Investigation of Interaction Systems

ヨト Institut mathématique de Luminy

- A - E - M

	000 000000	
Interaction and Predicate Tra	ansformers, Linear Logic	

Linear Logic

With an appropriate construction

$$!P: \mathcal{P}(\mathcal{M}_f(S)) \to \mathcal{P}(\mathcal{M}_f(S))$$

3

A.

A Logical Investigation of Interaction Systems

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
Interaction and Predicat	te Transformers, Linear Logic	

Linear Logic

With an appropriate construction

$$!P: \mathcal{P}(\mathcal{M}_f(S)) \to \mathcal{P}(\mathcal{M}_f(S))$$

we can interpret all of linear logic or typed λ -calculus.

(This corresponds to the construction of the free \otimes -comonoid...)

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then?
Interaction and Predicat	te Transformers, Linear Logic	

Linear Logic

With an appropriate construction

$$!P: \mathcal{P}(\mathcal{M}_f(S)) \to \mathcal{P}(\mathcal{M}_f(S))$$

we can interpret all of linear logic or typed λ -calculus.

(This corresponds to the construction of the free \otimes -comonoid...)

A proof/term becomes a safety property,

i.e. a subset $x \subseteq S$ s.t. $x \subseteq P(x)$.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts)	Part ∞ : and then? 000
Interaction and Predicate Tra	insformers, Linear Logic	

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○○○ ○○○○●	Part ∞ : and then?
Interaction and Predicate Transformers, Linear Logic		

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Traditional models do not model those new features!

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○○○○ ○○○○●	Part ∞ : and then?
Interaction and Predicate Transformers, Linear Logic		
-		

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Traditional models do not model those new features!

Safety properties are closed under arbitrary union,

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○○○ ○○○○●	Part ∞ : and then? 000
Interaction and Predicate Transf	ormers, Linear Logic	

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Traditional models do not model those new features!

Safety properties are closed under arbitrary union, we can thus interpret non-determinism

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) ○○○○ ○○○○ ○○○○●	Part ∞ : and then?
Interaction and Predicate Transformers, Linear Logic		

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Traditional models do not model those new features!

Safety properties are closed under arbitrary union, we can thus interpret non-determinism and even differentiation.

A Logical Investigation of Interaction Systems

	00000	
Interaction and Predicate Transformers, Linear Logic		

Differential λ -calculus has an intrinsic notion of

- non-determinism (addition);
- Inear substitution (differentiation).

Traditional models do not model those new features!

Safety properties are closed under arbitrary union, we can thus interpret non-determinism and even differentiation.

We get a simple, non-trivial model for the differential λ -calculus!

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then?

Where are we?

Part 0: Simple Interaction Systems for everyone

Part 1: More Precisely (Interaction Systems for Experts) The category of Interaction Systems Interaction Systems and Topology Interaction and Predicate Transformers, Linear Logic

Part ∞ : and then? Achievements and Future Work

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? $\bullet \circ \circ$
Achievements and Future Work		

Achievements

- a new category of games and simulations;
- ▶ an intuitive/informal model for "real-life" programming;
- giving a computational interpretation of "basic topologies";
- concrete example of interaction system to give a (complete) topological semantics to "linear geometric theories";
- this category is a denotational model for full linear logic;
- and the differential (typed) λ -calculus;
- which can extended to second order.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000000	Part ∞ : and then? 000
Achievements and Future Work		
Future Work		

link the topology part and the linear logic part;

4 E 6 4 E 6

< 6 >

3

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000000	Part ∞ : and then? 0 \bullet 0
Achievements and Future Work		
Future Work		

- Ink the topology part and the linear logic part;
- \blacktriangleright study the model of differential λ -calculus in more details;

ъ

E

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? $0 \bullet 0$
Achievements and Future Work		
Future Work		

- Ink the topology part and the linear logic part;
- **>** study the model of differential λ -calculus in more details;
- b do we have denotational completeness?

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? $0 \bullet 0$
Achievements and Future Work		
Future Work		

- Ink the topology part and the linear logic part;
- study the model of differential λ -calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? $0 \bullet 0$
Achievements and Future Work		
Future Work		

- link the topology part and the linear logic part;
- study the model of differential λ -calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ -calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$ -calculus?

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? $0 \bullet 0$
Achievements and Future Work		
Future Work		

- link the topology part and the linear logic part;
- study the model of differential λ -calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ -calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$ -calculus?
- generalize in the spirit of "containers";

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 000 000000	Part ∞ : and then? 000
Achievements and Future Work		
Future Work		

- link the topology part and the linear logic part;
- study the model of differential λ -calculus in more details;
- do we have denotational completeness?
- Study in particular untyped differential λ-calculus;
- do we get a model of Lionel Vaux's differential $\lambda \mu$ -calculus?
- generalize in the spirit of "containers";
- study concrete example of interfaces.

Part 0: Simple 0000	Part 1: More Precisely (Interaction Systems for Experts) 0000 0000000	Part ∞ : and then?
Achievements and Future	e Work	

Et voilà !

A Logical Investigation of Interaction Systems

. . .

Institut mathématique de Luminy

з

- 4 同 ト 4 目 ト 4 目 ト