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Résumé

Cette thése concerne I’étude de modéles mathématiques et méthodes nu-
mériques motivés par la filtration des globules blancs du sang.

Dans la premiére partie, nous définissons des modéles mathématiques qui
réprésentent les principaux phénoménes physiques qui entrent en jeu dans le
procédé de la filtration.

La deuxiéme partie est dédiée a I’étude théorique de systémes d’équa-
tions aux dérivées partielles modélisant le procédé de la filtration. Dans le
chapitre 2, nous considérons un systéme d’équations semi-linéaires de type
hyperbolique-parabolique avec une diffusion anisotrope dégénérée. Nous étu-
dions ce probléme avec une théorie L' ; nous considérons en particulier I’exis-
tence et I'unicité de solutions faibles ainsi que d’autres propriétés comme le
principe du maximum ; puis nous établissons la limite quand la constante de
réaction devient grande. Nous montrons que le systéme converge vers une
équation non linéaire parabolique-hyperbolique qui généralise le probléme
de Stefan. Dans le chapitre 3, nous étudions, par des techniques de I’homo-
généisation, la filtration au travers de milieux poreux fibrés. Le réseau des
fibres étudié est celui utilisé par M. Briane dans le cadre d’'une étude sur
la conduction thermique des tissus biologiques. Nous dérivons et justifions
I’équation de Darcy ainsi que la forme du tenseur de perméabilité pour un
tel milieu fibreux. Les résultats théoriques concernant la perméabilité sont
illustrés par quelques simulations numériques. Finalement, nous considérons
le cas ol le diamétre des fibres tend vers zéro. En appliquant des résultats
de G. Allaire & notre cas, nous justifions rigoureusement la forme du terme
dominant dans les formules de perméabilité efficace utilisées en ingénierie.
Ces résultats sont également confirmés par un calcul numérique direct de la
perméabilité, dans lequel la petitesse du diameétre des fibres rend nécessaire
le recours & des approximations de précision élevée.

La définition des méthodes numeériques efficaces pour approximer la so-
lution des modéles mathématiques est envisagée dans la troisieme partie.
Précisément, concernant les équations de Darcy, nous avons utilisé la mé-
thode des éléments finis mixtes hybrides. Pour la résolution de 1’équation
du transport, nous avons implémenté une méthode numérique utilisant des
volumes finis pour la discrétisation du terme convection/réaction associé a
une approximation mixte hybride pour la discrétisation du terme dispersif.






Abstract

The aim of this work is to set up mathematical tools (mathematical
models and numerical methods) to investigate the white blood cells filtration.

In the first part, we set up specific mathematical models to represent the
physical phenomena that are involved in the filtration process.

The second part is devoted to the theoretical study of partial differen-
tial equations modelling the filtration. In chapter 2, we consider a semilinear
parabolic-hyperbolic system with a degenerate and anisotropic diffusion. We
study the well-posedness of the system using a L! theory; we consider in
particular the existence and the uniqueness of a solution and we investigate
other mathematical properties such as maximum principle. Then, we esta-
blish the relaxation limit as the reaction constant becomes large. We prove
that the system converges to a nonlinear parabolic-hyperbolic equation that
generalizes the Stefan problem. In chapter 3, we study the flow through
fibrous media using homogenization techniques. The fiber network under
study is the one already used by M. Briane in the context of heat conduction
of biological tissues. We derive and justify the effective Darcy equation and
the permeability tensor for such fibrous media. The theoretical results on
the permeability are illustrated by some numerical simulations. Finally, the
low solid fraction limit is considered. Applying results by G. Allaire to our
setting, we justify rigorously the leading order term in the empirical formu-
las for the effective permeability used in engineering. The results are also
confirmed by a direct numerical calculation of the permeability, in which the
small diameter of the fibers requires high accuracy approximations.

In part 3 we present the construction of suitable numerical methods to
compute solutions of the considered models. Precisely, we discuss the mixed
hybrid finite element formulation for the space discretization of the Darcy
problem. For the discretization of the transport equation, we use a splitting
technique for the space discretization and the Euler method for the time
discretization.
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Introduction

Afin de limiter les risques de réactions néfastes chez les receveurs, di-
verses techniques ont été mises au point pour réduire le nombre des globules
blancs (leucocytes) dans les préparations destinées a la transfusion [33]. A
I’heure actuelle, la déleucocytation par filtration est la plus répandue. C’est
dés 1926 qu’Alexandre Fleming décrit une méthode de déplétion des leu-
cocytes du sang par la filtration sur la ouate [48]. Ses recherches n’étaient
pas appliquées & la transfusion et il fallut attendre 1962 pour que cette idée
fut appliquée a la filtration du sang pour les banques du sang [51]. La mo-
délisation de la filtration du sang conduit & considérer une grande variété
de phénomeénes physiques, réaction physico-chimique, colmatage, etc. Les
hypothéses avancées par plusieurs auteurs proposent que la filtration des
leucocytes soit gouvernée par deux principaux mécanismes : le tamisage et
l’adhésion |92, 83].

Cette thése concerne ’étude avec modéles mathématiques et méthodes d’ap-
proximation numérique de la filtration des globules blancs du sang.

La premiére partie de ce travail consiste en une présentation de la filtration
ainsi qu’a la définition des modéles mathématiques qui représentent les phé-
noménes physiques que nous considérons. Cette phase de modélisation a été
menée en collaboration avec J.-L. Wautier et L. Barbe (Institut National de
la Transfusion Sanguine). Dans le cadre de cette collaboration, nous avons
contribué & une campagne de mesures effectuée a l'Institut National de la
Transfusion Sanguine.

La deuxiéme partie est dédiée & 1’étude théorique de systémes d’équations
aux dérivées partielles modélisant le procédé de la filtration. Dans le chapitre
2, nous considérons un systéme d’équations semi-linéaires de type hyperbolique-
parabolique avec une diffusion anisotrope dégénérée. Nous étudions ce pro-
bléme avec une théorie L'; nous considérons en particulier 'existence et
I'unicité de solutions faibles ainsi que d’autres propriétés comme le principe
du maximum ; puis nous établissons la limite quand la constante de réaction
devient grande. Nous montrons que le systéme converge vers une équation
non linéaire parabolique-hyperbolique qui généralise le probléme de Stefan.
Dans le chapitre 3, Nous étudions, par des techniques de I’homogénéisation,
la filtration au travers de milieux poreux fibrés. Le réseau des fibres étudié
est celui utilisé par M. Briane dans le cadre d’'une étude sur la conduction

13



14 Introduction

thermique des tissus biologiques. Nous dérivons et justifions 1’équation de
Darcy ainsi que la forme du tenseur de perméabilité pour un tel milieu fi-
breux. Les résultats théoriques concernant la perméabilité sont illustrés par
quelques simulations numériques. Finalement, nous considérons le cas ot le
diameétre des fibres tend vers zéro. En appliquant des résultats de G. Allaire
& notre cas, nous justifions rigoureusement la forme du terme dominant dans
les formules de perméabilité efficace utilisées en ingénierie. Ces résultats sont
également confirmés par un calcul numérique direct de la perméabilité, dans
lequel la petitesse du diamétre des fibres rend nécessaire le recours a des
approximations de précision élevée.

La présentation des méthodes numériques efficaces pour approximer la so-
lution des modéles mathématiques est envisagée dans la troisiéme partie.
Précisément, concernant les équations de Darcy, nous avons utilisé la mé-
thode des éléments finis mixtes hybrides. Pour la résolution de 1’équation
du transport, nous avons implémenté une méthode numérique utilisant des
volumes finis pour la discrétisation du terme convection/réaction associé a
une approximation mixte hybride pour la discrétisation du terme dispersif.

Signalons enfin que les références bibliographiques spécifiques au procédé
de la filtration sont situées a la fin de la premiére partie (p. 45) et que
celles correspondant aux autres chapitres sont regroupées a la fin de la thése

(p. 121).

1 Présentation de la déleucocytation par filtration

Le sang destiné a étre transfusé subit une filtration systématique afin d’en
retirer les globules blancs. La déleucocytation permet en effet d’améliorer la
sécurité transfusionnelle en

— diminuant des complications observées chez certains receveurs de pro-

duits sanguins tels la fievre, certains troubles pulmonaires et éventuel-
lement certaines infections post-opératoires.

— prévenant la transmission d’agents infectieux vectorisés par les leuco-

cytes (virus, bactéries).

Environ 3 millions de poches de sang de preés d’un demi litre sont ainsi trai-
tées en France chaque année. Le procédé actuel de la déleucocytation par
filtration consiste & faire passer par gravité le sang total & travers plusieurs
couches de fibres destinées & retenir les globules blancs [24].

L’intérieur des filtres a déleucocyter n’est pas homogéne et consiste en une
série de couches de fibres non tissées, compactées entre elles, & travers les-
quelles le sang doit circuler. Au fur et & mesure, la taille des pores de chaque
couche diminue. Ainsi, les feuilles des filtres présentent un gradient de po-
rosité : les premiers pores sont trés larges (diameétre d’environ 60 um), les
derniers ont une taille légérement inférieure & celle des globules blancs et
légérement supérieure & celle des globules rouges (environ 7 um).
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Les mécanismes de capture des leucocytes pour la filtration du sang sont de
nature complexe et regroupent différents types d’interactions que ’on dé-
signera par interactions mécaniques et interactions biologiques. Le premier
type correspond au tamisage des cellules, discriminées par des critéres de dia-
meétre cellulaire et des critéres de déformabilité cellulaire. Dans ce type d’in-
teraction intervient un paramétre géométrique inhérent au filtre, c’est-a-dire
sa porosité et le diamétre des fibres entre autres. Les interactions biologiques
quant & elles font appel d’une part aux propriétés adhésives des différents
types cellulaires et des caractéristiques physico-chimiques qui peuvent in-
fluencer cette adhésion.

L’adhérence aux fibres est la conséquence d’une interaction entre les molé-
cules d’adhésion leucocytaires et des molécules chimiques présentes sur les
fibres. Si la nature de I’adhésion est essentiellement chimique, il semble néan-
moins clair que les caractéristiques de I’écoulement 'influencent fortement.
La rétention cellulaire est dépendante de la surface totale du contact : en
effet, quand il fut constaté que la déplétion des leucocytes était accomplie en
partie par I’adhésion des cellules sur les fibres, la solution a été d’utiliser des
fibres de faible diamétre. Les fibres de petit diameétre sont préférées car elles
offrent une plus grande surface de contact pour un volume donné de boitier
de filtre. Il a été montré que le taux de rétention de leucocytes passe de 20%,
pour un réseau de fibres de 10um de diameétre, & 90%, pour des fibres de
3um de diameétre [41].

Des recherches ont été menées & I'Institut National de la Transfusion San-
guine (INTS) pour mieux comprendre les mécanismes impliquées dans 1’adhé-
sion leucocytaire au cours de la filtration sanguine (thése de L. Barbe sous
la direction de J. -L. Wautier [14]). Une bonne compréhension et une bonne
maitrise de I’adhésion est une des clés de I'amélioration de la filtration.

Nous allons & présent établir un modéle mathématique macroscopique
décrivant le procédé de la filtration qui pourrait enrichir la compréhension
des phénoménes impliqués dans la filtration du sang.

On note u la vitesse de Darcy, p la pression, ¢ la concentration en leucocytes
dans le sang, s la fraction surfacique occupée par les leucocytes ayant adhéré
(surface occupée divisée par surface totale initialement libre sur les fibres,
cf. Fig. 1).

On se donne a ’aire occupée sur la fibre par un leucocyte ayant adhéré, f la
surface spécifique du filtre, i.e. surface des fibres par unité de volume dans
le filtre, K le tenseur de conductivité hydraulique, u la viscosité dynamique,
D le tenseur de dispersion, w la porosité.

L’écoulement est gouverné par les équations de Darcy :

u+%(Vp—f) = 0, (1)
diva = 0. (2)
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ou f représente les forces de pesanteur. L’adhésion des leucocytes est décrite
par :

%(wc) +div (uc — wD(u)Ve) = —g% (3)
0Os
5 = ak(u)cB(s) (4)

Les équations (1)-(4) sont & compléter par des conditions aux limites et
initiales.

La fonction B est la fonction de blocage dynamique, le choix le plus simple
est la fonction de blocage de Langmuir :

B(s)=1-—°

()
Smaz

ol Smaz €st la fraction maximale de surface de fibre pouvant accueillir des

leucocytes. La fonction k(u) mesure la vitesse de réaction.

FiG. 1: Des leucocytes en solution et sur des fibres. La variable s est le
rapport entre la surface occupée par les leucocytes et la surface libre sur les
fibres

Le modeéle que nous avons proposé (ou des variations de celui-ci) a été
utilisé dans d’autres applications. On trouve par exemple dans [47] une étude
de la pénétration d’anticorps dans des tissus tumoraux et de leur réaction
avec des antigénes. Dans ce modéle, les anticorps sont I’analogue des leu-
cocytes et les antigénes des sites libres sur les fibres du filtre. Ce type de
modéle est également trés utilisé dans I’étude du transport de colloides (vi-
rus, bactéries, - --) dans les aquiféres sableux [93], [18].

Plusieurs modeéles de filtration ont été proposés (par exemple le modéle de
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filtration de colloides 1D de Herzig et al. [77]). Il y a également le modéle de
A. Bruil et al. [24], qui est I’étude la plus récente que nous connaissions sur
la modélisation de la filtration des leucocytes.

Afin de tester notre modéle de filtration, une série d’expériences a été effec-
tuée a 'Institut National de la Transfusion Sanguine (INTS). Malheureuse-
ment, elles ne nous ont pas permis de tirer des conclusions intéressantes du
point de vu de la modélisation.

2 Etudes mathématiques

2.1 Analyse d’un modéle de transport de colloides avec dif-
fusion dégénérée anisotrope (Chapitre 2)

Nous présenterons dans le Chapitre 2 une analyse mathématique d’une
variante du modeéle (3)-(4) qui compléte des résultats établis par D. Hilhorst,
R. van der Hout et L.A. Peletier [55, 56, 57]. On considére en particulier le
cas ol la diffusion dégénére complétement, et on étudie la limite quand la
vitesse de réaction tend vers l'infini. Plus précisemment, nous avons effectué
une analyse mathématique (existence, unicité et analyse asymptotique) de la
solution d’un systéme faiblement couplé d’équations semi-linéaires de type
hyperbolique-parabolique dégénéré : Trouver la solution (c,s) définie sur
R x (0,T) (avec T > 0 et d < 3), par

. 4. 9%4:i(c)
Orc + div A(c) — 22 = —kcs dans D'((0,T) x RY),
ig=1 8.%181‘]
(Pr) Os = —kcs dans D'((0,T) x RY),
c(0,z) = co(z) >0 p.p.dans R
5(0,z) = so(z) >0 p.p. dans R?,

ou k est une constante positive.

Ce systéme se rencontre dans la modélisation de 1’évolution d’un traceur chi-
mique ou biologique dans un milieu poreux. Nous avons étudié ce probléme
avec une théorie L'.

Concernant la théorie mathématique, D. Hilhorst et al. ont déja proposé di-
verses études mathématiques sur des systémes de méme type. En [55], ils ont
étudié le comportement asymptotique lorsque & — oo d’une version 1D de
ce probléme avec A = 0 et ¢(c) = c. En [56], ils ont considéré également le
cas 1D avec A = 0 et ¢(c) = ¢, mais ils ont pris plusieurs termes généraux
de réaction. En [57], ils ont gardé A = 0 mais ils ont étendu leurs travaux
aux cas multidimensionnels avec diffusion non-linéaire. Plus précisément, ils
supposent que ¢(c) = [ D(£) d¢ avec D(€) > 0 pour tout £ > 0.

Dans le présent travail, nous considérons une équation plus générale dans
la mesure ol nous traitons une diffusion dégénérée et non-isotrope. De plus,
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nous ajoutons le terme de convection div A(c), et traitant ainsi le cas hyperbolique-
parabolique.

L’idée essentielle est de commencer par prouver I’existence d’une unique
solution réguliére pour le probléme approché suivant :

{ Osce + div A (c.) — div (d)é(cE)Vcs) = —kcg s,

s = —kcgse.

(6)

ol ¢ (resp. A.) est une régularisation de ¢ (resp. A), en particulier, nous
supposons que ¢L > eId.
En utilisant un résultat de compacité de Kolmogorov-Ascoli, nous prouvons
ensuite que la solution de ce probléme régularisé tend vers une solution du
probléme initial quand € tend vers zéro.

Sous des hypothéses de régularité des données que l'on précisera au Cha-
pitre 2, nous établissons ainsi le résultat suivant :

Théoréme 1
Le probléme (Py) admet une unique solution (c,s) € C(R*;L'(R%))2. De
plus, on a les propriétés suivantes :

(i) Principe du maximum :

0 < c(t,z) < |lcollpeo(ray, p-p- dans RY x R, (7)
0 <s(t z) <|sollpeo(ray, p-p- dans Rt x R4, (8)

(ii) Propriété de contraction : soient (c, s) et (¢,3) deux solutions corres-
pondant respectivement aux données initiales (cg, so) et (o, Sp). Alors pour
tout t > 0,

le(®) =)l L1 (ra) HIs(#) =5 (D) | 21 rey <llco = oll L1 (ma)H]Is0 = Bol| L1 (rey- (9)

(iii) Propriété de comparaison : soient (c, s) et (¢,3) deux solutions cor-
respondant respectivement aux données initiales (co, o) et (o, 3o)-
Si ¢y < ¢y et sg < 5p alors pour tout t > 0,

c(t) <et) et s(t)<3(t) p.p. dans R?, (10)

(iv) Inégalité d’entropie : pour deux fonctions réguliéres, croissantes S
et ¥, avec S convexe, et avec les notations (AS)' = A'S’, ( ;5;)' = ¢;; S,

(i) = S"/2 qS;}c/Q, nous avons

V-45(c) € (LZ(IR+ X Rd)d o V-4(c) = (i%ﬁ,@)k:h..d

=1

s 4 8%¢5(c) & S/ 2
A[S(c) + (s)] + div AS(c) — M+ZW'¢ () <0. (11)
j=1 " k=1

1,J=
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2.1.1 Comportement asymptotique

Nous avons établi la limite quand la constante de réaction k devient
grande. Sous des hypothéses de régularité des données que ’on précisera au
Chapitre 2, nous avons obtenu le résultat suivant :

Théoréme 2
Quand k tend vers l'infini, la solution (cy, s;) de (Py), admet une limite dans
L'((0,T) x R%)? notée par (c,s) € L®(RT; L' (R?%))? qui satisfait

4 824(c)
O(c—s) + divA(e) — E —22 = 0, dansD'((0,T) x R%),
(Pso) =1 9102
c>0,s>0,cs = 0, p.p.dans(0,T)xR?,
c(0,z) — 5(0,z) = co(z) —so(x) p.p. dans R?.

De plus, (c,s) est I'unique solution entropique du systéme (Py,) i.e. pour
deux fonctions réguliéres, croissantes S et ¥ , avec S convexe, et avec les
notations (AS) = A'S’, ( i 5 = ¢t ;S (¥; 3) = §m/2 ¢'1/2 nous avons

V- ¢1%(e) € (LR x RY)Y, V-4(e) = (8)! /292 (0),

A,[S(c) + 2(s)] + divAS(c) — 8¢6( 2 + Z\V P32 <0.  (12)

’Ly

Nous avons montré ensuite que le systéme (P,,) est équivalent & une
équation non linéaire parabolique-hyperbolique de type Stefan.

9? ¢z W)
Oyw + div A (w4) J = 0 dans D'((0,T) x RY),
B ERISOVANES wra (0w
w(0,2) = co(z) —so(z) p.p. dans Re.

ot w =c— s € C(RT; L' (R?)) est 'unique solution entropique du systéme

(Qoo)-

Ces résultats ont été publiés dans Asymptotic Analysis.

2.2 Permeéabilité d’un milieu fibreux non périodique (Cha-
pitre 3)

Les filtres servant a la déleucocytation sont constitués de feuilles de fibres
d’orientations variables. Ceci a motivé I’étude présentée dans le chapitre 3.
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2.2.1 Homogénéisation : calcul de la perméabilité

Nous considérons un milieu fibreux correspondant a une structure loca-
lement stratifiéé inspiré des travaux de M. Briane pour le laplacien [22]. La
géométrie considérée par M. Briane est un milieu poreux Q de R? composé
de couches Q%" perpendiculaire & I’axe z; et d’épaisseur ¢" (0 < r < 1).
Dans chaque couche 2™, il y a un réseau périodique, de périodicité ¢, de
fibres cylindriques de rayon Re, dont les axes sont perpendiculaires & z; et
font avec I'axe x2 un angle 7. ,. 1y a e"~! rangées de fibres dans chaque
couche. Nous sommes alors amenés & résoudre un probléme d’homogénéisa-
tion & deux échelles dans lequel ’échelle la plus fine est celle des fibres et la
moins fine celle des couches. Pour obtenir le résultat, nous homogénéisons
couche par couche en imposant une condition sur les deux échelles. Plus pré-
cisemment, nous considérons un écoulement lent visqueux et incompressible
décrit par le systéme de Stokes suivant pour la vitesse u® et la pression p® :

—vAu +Vp® = f dans Q°, (13)
dive* = 0 dans Q°, (14)
u =0 sur 09°. (15)

Ensuite, nous allons étudier le systéme de Stokes (13)-(15) localement, i.e.
dans chaque couche Q™.
Afin de pouvoir homogénéiser, nous admettons les développements suivants

(voir [17]) : o
ut(z) = e2u’ (x M) T (16)

p°(z) = p° (ac W) + ept (:1: @) +... (17)

Pour trouver 'expression pour la perméabilité, nous introduisons une trans-
formation ¢, , d'un élément de référence 2*" dans *" définie par

Z1
N A oA 1 .
(£1,%2,23) = ¢ 5 (21, T2, 73) = | —T28iN7e,; + T3COS Ve (18)
—T COSYen — T3SINYe p

Dans 'élément de référence, QE’", les fonctions i and p admettent les déve-
loppements suivants

¢ (z) = 2 (:v n @> T (19)
13} 13
ooy A0ge T1 T2 g . %1 Zo
=932, 2,2) +¢ 22 ) 20
70 =6 22 et (2,2 4 (20)

Nous désignons par 2 = (21, 22) = (Z1/¢e, Z2/¢) l'échelle rapide et par Yp =
{(21,22) € V,x(2) = 0}; Y étant la cellule unité. En injectant (19)-(20)
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dans le systéme (13)-(15) écrit dans la configuration de référence Q%™ nous
sommes amenés & résoudre les problémes de cellules suivants :

( _A21,52w{($17 £1,%2) + 0! = & dans Y,
—-A 21,22&1%(:51, 21,%9) — sin’y(:cl)agzﬂj = d9; dans Yp,
< —-A 51722(;1?,;(:01, 21, %2) + cosy(x1)0s, 7 = d3j dans Vr, (21)
0z, w{ + 03, (— sinfy(acl)wg + cos ’y(ml)wg) = 0 dans)p,
wi(z1,21,%) = 0 sur 0Yr\0Y,
L {wi, 7} est Y-périodique en (21, 22).

Proposition 1
1. Le probléme (21) admet une solution unique (w’,77) € H'(Yr)® x
L?(Yr).

2. La fonction u’ dans (16) est donnée par

3

0 .
w0z, 21, 29) = %Z (fj(z) - %(@) Wi ) (22)

=1

3. La pression efficace p° dans (17) depend uniquement de z et elle est
solution du probléeme de Darcy :

K(z1)

uP(z) = —= (f-Vp’z)) dansQ,

i oD v (23)
divu®” = 0, dans(,

u?.n = 0, suroQ.

ou le tenseur de permeéabilité K = [K; ;]; j=1,2,3 est déterminé par

Kz(:cl) = i wj(arl,zl,zg)dzldzg. (24)
|y | Yr ’
Il est utile de remarquer que la formule (24) n’est pas commode du point
de vue numérique puisqu’elle depend de la variable macroscopique z1. Afin
de remedier & ce probléme, nous résolvons les deux problémes des cellules
suivants : soient U7 (21,22), U3(21,22), P/(21,22), 7 = 1,2 les solutions du
probléme de Stokes 2D

Ny WUl 48, P1 = §; dans Y,
—A Ul +8,P1 = & dans Vp,
0z, U‘f + 822U2j 0 dans Vg, (25)
Ul=U] = 0 sur 8Yp\0Y,
{Uf, Ug, P7} est Y-périodique en 2, 2o,
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et soit V(z1,22) la solution du probléme de Poisson 2D

—AV = 1 dans Yp,
V. = 0 sur 0Yr\0Y, (26)

V est Y-périodique en z1, zo.
Par des calculs élémentaires, nous simplifions I’expression (24) et nous obte-
nons alors
K(z1) = R(z1)KoR ' (21) (27)
avec R(z1) est la matrice orthogonale définie par
1 0 0

R(z1) = | 0 cosvy(z1) —sinvy(z1)
0 siny(z;) cosvy(z1)

et _ _
ulooo U?
1 Yr Yr
Ky=— 0 vV 0 . (28)
|y ‘ Yr
Ui 0 Uz
L JVF Yr

Anisi, nous obtenons la perméabilité en variable macroscopique z1 par simple
produit matrice-matrice.

2.2.2 Limite de faible fraction solide

Nous considérons le cas ou le diameétre des fibres tend vers zéro. En
appliquant des résultats de G. Allaire & notre cas, nous justifions rigoureuse-
ment la forme du terme dominant dans les formules de perméabilité efficace
utilisées en ingénierie. Ces résultats sont également confirmés par un cal-
cul numérique direct de la perméabilité, dans lequel la petitesse du diamétre
des fibres rend nécessaire le recours & des approximations de précision élevée.

Ces résultats ont été soumis pour publication.

3 Etudes Numériques

Les problémes des cellules (25)-(26) sont résolus en utilisant des éléments
finis Q2 pour la vitesse et des éléments finis P; discontinus pour la pression.
Cette paire d’éléments satisfait bien la condition inf-sup (cf. [50]) et préserve
le bilan de masse par élément. Concernant les équations de Darcy, nous avons
utilisé les méthodes des éléments finis mixtes : la vitesse est approximée par
les élements de Raviart-Thomas de plus bas degré (cf. [85]), et la pression est
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constante par maille. Ce choix assure la continuité de la composante normale
de la vitesse et aussi un bilan de masse exact. Nous adoptons une formulation
mixte-hybride : un systéme symétrique défini positif est d’abord résolu par
la méthode du gradient conjugué afin de calculer la trace de la pression sur
les interfaces des éléments ; puis la pression et la vitesse sont récupérées par
un procédé local.

Pour la résolution de I’équation du transport, nous avons utilisé une méthode
numérique utilisant des volumes finis pour la discrétisation du terme convec-
tion/réaction associé a une approximation mixte hybride pour la discrétisa-
tion du terme dispersif. Avec cette méthode, les flux convectifs et dispersifs
sont continus d’un élément a 1’autre.

Enfin pour résoudre une équation d’advection, nous avons proposé un schéma
numérique basée sur la méthode de décentrage. L’idée principale de ce schéma
suit une approche bien connue ol un principe du maximum local est défini
afin d’obtenir une méthode non-oscillante et qui n’ajoute pas de diffusion
numérique excessive. Notre schéma est une version simplifiée de limiteurs de
pente. En effet, son implémentation numérique est simple et ne demande pas
la résolution d’un probléme d’optimisation avec contraintes comme dans le
cas des limiteurs de pentes [59].

4 Conclusions et perspectives

Dans ce travail, nous avons proposé un modéle mathématique de filtration
des globules blancs du sang. Du point de vue théorique, nous nous sommes
intéréssés a des questions d’existence et d’unicité pour un tel modéle en
utilisant une théorie L'. Nous avons ensuite étudié, par des techniques de
I’homogénéisation, la filtration au travers de milieux poreux fibrés.

Du point de vue numérique, nous avons développé un code 3D basé sur
la méthode des éléments finis mixtes, permettant la simulation des modéles
proposés. Ce code fait partie de la bibliothéque LIFE-V développée conjoin-
tement & 'INRIA, a 'EPFL et au Politecnico de Milan (www.lifev.org). Nous
ne sommes pas encore en mesure de réaliser des simulations numeériques “réa-
listes” de la filtration du sang, les expériences effectuées a I’Institut National
de la Transfusion Sanguine n’ayant malheureusement pas permis de valider
notre modeéle.

Néanmoins, les travaux présentés dans cette thése pourraient s’appliquer
& d’autres types d’écoulements sanguins ot des modéles analogues sont uti-
lisés :

— Modélisation de la perfusion dans le myocarde [28].

— Modélisation de la pénétration de l'oxygéne et des lipoprotéines dans

les parois vasculaires.
Nous envisageons de poursuivre ces études en nous intéressant & la perfusion
dans le myocarde.
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Chapter 1

Model set up

L’objectif de ce chapitre est de proposer un modéle mathématique de la
filtration des globules blancs du sang et quelques références bibliographiques
concernant la modélisation mathématique d’autres modéles de filtration.

1 Introduction

White blood cells are the cellular components of the immune system that
provide protection against foreign matter or antigens. There are several
types of white blood cells, each having special functions.

Over the last several years, various studies have implicated leukocytes (white
blood cells) in most of the adverse reactions to blood component therapy.
Leukoreduction is the removal of leukocytes from blood in order to minimize
these adverse reactions. Indeed, the removal of leukocytes from blood is ef-
fective in reducing the risk of leukocyte-associated virus transmission [14].
Over the years, a variety of techniques have been developed to prepare leuko-
cyte depleted blood products [41]. At present, filtration is the most efficient
technique with respect to the reduction or prevention of adverse transfusion
reactions caused by leukocytes.

The procedure of filtration is simple and does not require expensive equip-
ment. Most filtrations were performed with the equipment represented in the
figure (¢f. Fig. 1.1). The mechanism of leukocyte depletion by such filters is
not completely understood, this fact limiting the development of improved,
cost-effective, and clinically applicable filter materials. So far, these mecha-
nisms have not been studied systematically, although it has been suggested
by several investigators that leukocyte filtration is gouverned by sieving and
adhesion cf. [24, 38, 33]. However, the quantitative contribution of each of
these factors has never been rigorously investigated.

The aim of this chapter is to discuss the various mechanisms of leukocyte
removal by filtration, as well as the mathematical models to describe the
process of leukocyte filtration.

27
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Figure 1.1: Filtration equipment.
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2 The mechanisms of leukocyte removal by filtra-
tion

Several mechanisms are known to play a role in leukocytes depletion by fil-
ters. A possible approach to explain filtration is to distinguish mechanical
entrapment (sieving) from physico-chemical entrapment (adhesion), which
means that filtration is caused by biological and physical interaction of blood
cells and fibers as well as by passive trapping due to mechanical sieving.
Because blood cells differ both in size and deformability, sieving should be
considered as a possible mechanism in the filtration of leukocytes. The pore
size of the filter then determines if sieving becomes important. Bruil et al
[3] found that leukocytes were only successfully removed when the filter pore
size approached the size of leukocytes (~ 10pum). It should be noted that in
addition to the pore size of the filter, the hydrostatic pressure applied also
determines whether cells will flow through the pores.

The adhesion is mediated by specific cell adhesion molecules and specific
molecules present on the fibers. Adhesion of particles to the filter material
becomes important when the ratio of particle to pore diameter is about 10~*
to 107! [21]. Several mechanisms are responsible for leukocyte adhesion dur-
ing blood filtration for leukoreduction. Indeed, the composition of the blood
may influence leukocyte adhesion in many aspects. Red blood cells may
influence leukocyte adhesion under conditions of flow, because these cells
are known to promote the migration of leukocytes to the substrate surface.
Several investigators have reported that leukocyte adhesion is reduced in the
presence of plasma [18].

The adhesion of cells to the filter surface can also be influenced by a number
of other factors. Firstly the capacity of the filter media for cell adhesion,
and secondly the effect of mechanical forces, such as gravity or blood flow
encouraging cells to come into contact with the surface of the fibers to which
they are then able to adhere. The surface charge of the fibre material also
plays a role in attracting leukocytes towards the fibre surface.

Adhesion of blood cells to filter surfaces was the objective of some works
(see. [1, 6, 7, 8] for example).

Effective leukoreduction depends on many factors. Indeed, some importants
parameters for the performance of the recents filters are given in the ta-
ble 1.1. The mechanisms responsible for leukocytes depletion by filters are
complicated processes, so mathematical models to describe the leukocyte fil-
tration process, based on current knowledge of filtration mechanisms, may
be helpful to explain results obtained with leukocyte filtration and to opti-
mize filters and filtration procedures.

In the next section, we start by giving an overview on some attempts to
describe mathematically the removal of the leukocytes by filtration. After
which, we propose our model.
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General characteristics | sectional surface (cm2)
Thickness (cm)

Dead volume (mL)
Interior of the filter Material of fibres and modification of surfaces
Diameter of fibres (um)
Density of fibres (mg/cm3)
Total fibre surface (m2)
Surface stress (dynes/cm2)
Characteristics of flow | Time of passage (sec)
Pressure (Pa)

Flow rate (mL/min)

Shear stress (sec™!)

Table 1.1: Filter’s specifications (cf. [13])

3 Mathematical models

3.1 State of the art

Only a few attempts to describe mathematically the leukocyte filtration pro-
cess are known.

Diepenhorst evaluated a mathematical model, originally derived to explain
the removal of ferrous hydroxide particles from ground water through sand
beds, to describe the filtration of leukocytes through cotton wool filters [11].
More recently, Prins developed a computer model to explain the depletion
of leukocytes in filters composed of filter segments with different leukocyte-
trapping efficiencies [34]. However, according to Bruil et al [5], Diepenhorst
did not succeed in explaining his experimental results; therefore the relative
roles of mechanical sieving or adhesion have not been determined. Bruil et
al also pointed out that a shortcoming of the model proposed by Prins was
that its parameters were based on empirically derived probability factors,
and therefore the theoretical value of the model is minimal. To the best of
our knowledge, the more advanced model to describe the leukocyte filtration
process has been proposed by Bruil et al [4]. This model consists of the
following differential system:

do oc
E M
oc
= = 2
© - )
g
A = A0(1—0max). (3)

Here ¢ is the concentration of the particles in suspension, o is the concen-
tration of the particles deposited in the filter. w is the rate of fluid flow
through the filter. The filtration coefficient A, a measure of the efficiency
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of the filter, was first introduced by Iwasaki in 1937 ¢f. [23]. The filtration
coefficient may be regarded as the fraction of particles, captured per unit of
filter length. During filtration, A changes as a function of time, because the
amount of material already deposited in the filter, o, influences the filtra-
tion of the other particles present. It is assumed that a limited number of
retention sites (omax) in the filter is accessible for the capture of particles.
Therefore, the filter efficiency decreases on occupation of these retention sites
during filtration. Hence, a linear decrease of A with o is often assumed [32].
In equation (3), Ag is the filtration coefficient of the noncontaminated filter.

Remark 3.1 Some investigators have postulated that )y is proportional to
the specific surface area (S) of the filter when adhesion is the predominant
mechanism for particle depletion [22]. Assuming that S is inversely propor-
tional to the filter pore size d, it follows that:

1
A()NE

The above 1D model has various limitations:

e In the 1D model, the porosity is constant whereas the filter is a fibrous
medium of variable porosity.

e In the 1D model, the dispersion is not taken into account. At the
microscpopic level, the variation in the size of the pores from one layer
to another, brings about a velocity variation which implies kinematic
dispersion.

e Geometrically speaking, the filter consists of various fibrous layers,
which makes it a 3D medium.

In the next section, we give a complete description of our model. It is
based on mass balance that incorporate advection, dispersion, and adsorp-
tion.

3.2 A 3D model for leukocyte removal

The simulation of the flow and transport processes inside the porous medium,
based on models that resolve the complex pore structure in detail, would
be computationally too expensive. Hence these simulations are based on
homogenized or volume-averaged equations, where the fluid and the solid
are considered as a pseudohomogeneous medium.

Here a three-dimensional model, capable of simulating colloid transport, in
the fibrous porous media is presented. The model consists of two equations,
flow equation and colloid transport-reaction equation.

For the sake of clarity, before starting the presentation of the equations, we
introduce the following physical quantities.
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u : Darcy velocity field (LT~!)

p : blood pressure (M L~1T2)

e ¢ : concentration of leukocytes in blood (a number of leukocytes per
unit of volume of blood)

e s : surface fraction occupied by the leucocytes having adhered (occu-
pied surface divided by free total surface of fibers, ¢f. Fig. 1.2)

Figure 1.2: Leukocytes in solution and on the fibers. The variable s is the
ratio between the shaded and the total area of the fibers.

e g : surface occupied on the fiber by a leukocyte adhered

f : specific surface of the filter, i.e.  surface fibers per unit of vol-
ume in the filter (L~!). Note that this quantity is provided by the
manufacturer of the filter.

K : hydraulic conductivity tensor (L?)

e 4 : dynamic viscosity (ML 1T 1)

D : dispersion tensor.

e w : porosity (volume which can be occupied by the fluid divided by
total volume)

where L, M, T indicate one unit of length, mass and time, respectively.
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3.2.1 Fluid dynamics model

As regards the blood flow, we need to choose a model to represent the blood
filtration in the filter. For this purpose, we consider two possibilities, Darcy
model and Darcy-Brinkman model for flows in porous media. Both Darcy
and Darcy-Brinkman equations can be derived by means of homogeneiza-
tion techniques starting from the Stokes flow through an array of particles
(for a detailed discusion we refer for example to [26]). Moreover, the Darcy-
Brinkman model can be regarded as a correction of the Darcy one, featuring
a viscous term inspired from the Stokes equations. Indeed, several authors
recommended the use of the equations of Brinkman, to model the flow in
a fibrous medium of large porosity (cf. [15], [12]). However, the Brinkman
model corresponds to an asymptotic mode extremely specific in the analy-
sis of the flows in porous environment by homogenisation (cf. [26], [20]).
The equations of Brinkman thus cover an exceptionnel case which has little
chance of corresponding to a physical reality.

We thus preserved the idea to use the equations of Darcy to calculate the
flow in the filter.

The flow in the fibrous medium is thus governed by:

u+ %Vp = 0, (4)
diva = 0. (5)
Various assumptions have been made in this commonly used model:
1. the fluid is Newtonian;
2. the flow is slow and so the same linear law applies at each instant;
3. the fluid is incompressible.

Remark 3.2 ([20]) Starting from the steady Stokes equations in a periodic
bounded porous medium Q C R%, with a no-slip (Dirichlet) boundary condi-
tion on the solid pores and according to the various scalings of the obstacle
size a. in terms of the inter-obstacle distance €, different limit problems arise.
To sort these different regimes, we introduce a ratio r. defined by

d \1/2
(%) / for d >3,
re = a4z (6)

e‘ In (%) ‘1/2 for d=2.

so that at the limit the effective flow is described by the Darcy law if the

obstacles are too big, i.e., | limr, =0|.
e—0

For smaller obstacles, different limit regimes occur (Brinkman or Stokes
equations), there by, we obtain
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1. Brinkman law if the obstacles have a critical size, i.e., liI% Te =T
£—

2. the homogenized Stokes equations if the obstacles are too small, i.e.,
lin(l) Te = 400 |.
E—r

In the blood filtration problem, typical values are € = 1075, and a. = 0.5.
Putting € and ac in the first relation of the expression (6), we obtain r. =
0(1079%). Consequently, it is reasonnable to assume that we are in the Darcy
regime.

3.2.2 Colloid dynamic model

We will briefly formulate the model. Let us consider a porous domain {2 in
R3. Let Q denote the flux of the colloids and let R denote the reaction term.
The colloid transport equation, can be derived from mass balance of colloids
over a representative elementary volume (REV) of a porous medium.

If we apply mass balance to an arbitrary ball B in €2, the integral conservation
law takes the form

d

— [ wedr = — Q.nds+/Rd:1:, (7)
dt /g oB B

where OB denotes the surface of the ball B. Here, n is the outward unit
normal vector.

Equation (7) states that the rate of change of colloid in the ball equals the
net flux of colloid through the surface of the ball, plus the rate of production
of the solute in the ball. The divergence theorem allows us to rewrite the
surface integral and (7) becomes

d

— wcdxz—/V.Qda:+/Rd:z;. (8)
dt Jp B B

Because the domain of integration B is arbitrary, the integrand must vanish
and we obtain the mass balance law in the local, differential form

(we)y=-V.Q+R. (9)

Here we are assuming that the functions are sufficiently smooth to allow
application of the divergence theorem and permit pulling the time derivative
inside the integral.

We could ask how the colloid gets from one place to another in a porous
medium. There are three main mechanisms controlling colloid transport:
advection, hydrodynamic dispersion, and adhesion.

1. Advection: which means that the particles are simply carried by the
bulk motion of the fluid. This leads us to define the advective lux Q(®)
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by

QW =uec.

2. Another way of transport is by hydrodynamic dispersion. It consists of
molecular diffusion and kinematic dispersion. The molecular diffusion
is the spreading caused by the random molecular motion and collisions
of the particles themselves. This type of motion is driven by concen-
tration gradients and the flux due to the diffusion is given by Fick’s
law. We call this the molecular diffusion flux Q™) and we take

Q™ = —wDM Ve,

The kinematic dispersion is the spreading, or mixing phenomenon,
caused by the variability of the complex, microscopic velocities through
the pores in the medium. So, it is linked to the heterogeneities present
in the medium and is present only if there is flow.

This heterogeneity is found within the porous media, whatever is the
scale of observation. On the scale of the microscopic field speed, het-
erogeneity is mainly due to three factors (cf. [17]):

e in a pore, the profile of velocities is parabolic. There is a gradient
of velocity from the surface of the solid to the axis of the pore;

e variable dimensions of the pores have as a consequence a variation
of velocities from one pore to another;

e the steamlines vary compared to the principal direction of the
flow.

The mathematical form of the dispersion flux Q@ is taken to be Fick-
ian and given by

QY = —wD@ v,

where D@ is the tensor of dispersion.
Now, consequently, the net flux is given by the sum of the advective,
molecular, and dispersion fluxes:

Q = Q(a) + Q(m) + Q(d)
= uc-— w(D(m) + D(d)) .Ve.

If we define the hydrodynamic dispersion tensor D by
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D = D™ 4+ p)
then the net flux is given simply as
Q =uc—wD.Vec.

The Fickian term —wD.Vc¢ is termed the hydrodynamic dispersion. It
consists of molecular diffusion and kinematic dispersion.

In several studies the following expression of the dispersion tensor D(u)
(in 2D isotropic medium ) is used:

2 2
U u UL U
aLﬁ—FaTﬁ—FD* (aL—aT) |$i1|y
D(u) = Ul ’U,Z u2 ’
(oL — ar)—=2 ar—=2 + ar—% + D*
|ul |ul |ul

where

e «ay: longitudinal dispersivity (L),
e ap: transverse dispersivity(L),

e D*: molecular diffusion (L?7T71).

This expression is used for molecular transport (c¢f. [40] p. 4). In
studies treating the colloidal transport, the molecular D* is replaced
by D*T, where D* is called particulate diffusion of Stokes-Einstein and
T is the tortuosity of the medium ([39], p. 210).

. The third contribution to the mechanisms controlling colloid transport

is called adhesion or adsorption: the function R, which we call a reac-
tion term or source term, measure an adsorption rate. Adsorption is a
process that causes the mobile tracer to adhere to the surface of solid
surface, and thus become immobile.

In our case, the function R is given by

ds
R=—-k—
ot’
where kK = =.
05 i o by the law:
5 15 given by the law:
os = ak(u)cB(s)
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Here k(u) is the coefficient of the reaction and B(s) is called the dy-
namic blocking function.

Coefficient of reaction. The function k(u) measures the reaction
rate. In several work ([39], [29] p. 115), an expression of this type is
used:

k(u) = anlul (10)

where the coefficient « (sticking coefficient) is the ratio between the
particles having touched the collector (the fiber) and those actually
adhered, and 7 (single collector efficiency) is the ratio between the par-
ticles having touched the collector and the particles which run around
the collector. The parameter n takes into account the hydrodynamic
forces of Van der Waals which are exerted on the colloides. Several
works propose empirical semi calculations of 7 if the particles and the
collectors are spherical for example ([27, 35, 36]).

The Dynamic Blocking Function. The dynamic blocking function
B(s) quantifies the probability of a particle contacting a portion of
collector surface that is unoccupied by previously retained particles.
Two types of dynamic blocking functions are generally recognized: the
Langmuirian dynamic blocking function (so called from an analogy
with the classical model of molecular adsorption (cf. [29] p. 39 et [37],
p. 47):

B(s)=1- s, (11)

1

B= (12)

Smazx
where spmqq is the maximum attainable fractional surface coverage (In
sandy aquifers, Spq. is generally worth between 0.1 et 0.3 (¢f. [2]
p. 295) and S is the excluded area parameter and represents the nor-
malized area blocked by a single cell (area blocked by cell/area of cell).
The second type of the dynamic blocking function is the random se-
quential adsorption(RSA) dynamic blocking function. Recent experi-
mental investigations have shown that the RS A model better describes
the dynamics of particle deposition in porous media than the conven-
tional Langmuirian model[37], p.46). The general form of the RSA dy-

2 3
namic blocking function is B(s) = 1—a; ——+aq (Snfam) +as (s,,iw)

Smazx

where Sy 18 the maximum attainable surface coverage and a1, ao, and
a3 are virial coefficients that can be evaluated theoretically (for ideal
particles and collector surfaces) or empirically.
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Consequently, the above mechanisms can be described by the generalized
advection-dispersion-adhesion equations:

%(wc) +div (uc — wD(u)Ve) = —g% (13)
0Os
5 = ak(u)cB(s) (14)

Equations (4)-(14) together with appropriate boundary and initial conditions
completely specify the problem at hand.

Remark 3.3 This kind of system describes the evolution of a tracer (typ-
ically a chemical or a biological species) in a porous medium. This tracer
is assumed to adhere to the surface of the solid skeleton. The places where
this adhesion process occurs are named the adsorption sites. Denoting by C
the mobile tracer, by S the adsorption sites on the immobile porous medium,
and CS the product of the reaction between the tracer and the skeleton, this
process can be represented as a formal chemical reaction:

C+8S=CS.

This model is encountered in various applications. For example, it was pro-
posed in cancer research to study the penetration of antibodies in tumourous
tissue and their attachment to antigens (K. Fenmori et al. [16]). It is also
used to study the transport and attachment of colloids, bacteria or viruses,
in sandy aquifers [39], [2].

Dimensional analysis. Taking into account the orders of magnitude, we
choose to work in CGS units. We introduce the variable without dimension
¢ = ¢/Cy, where Cj is the concentration of leukocytes before filtration.

The system (13)-(14), with (11) and (10) is written then:

0, . - ~ 0s
E(wc) +div (ué¢ — wD(u)Ve) = —k e
0Os s
b (1=
5 kolu|é ( 3ma;c>
with
k= aCo [no dimension]
and

ko = aonCy [em™?]

With the values given in the following table, we find:
14<Fk <375 et  ky=0.08cm
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The minimal value of k; corresponds to the prefilter, the highest value to
the fine layers.

Parameters | Values Units Remarks

o 0.5 poise (gem~1s~!) | water: 0.01 poise

w de 0.85 4 0.91 source: INTS

Cy 8.10° leukocyte c¢m 3

f de 110 4 3000 | em ™! source: INTS

a 106 em? / leukocyte

! 0.4 bacteria and sands [2]
n 0.025 idem

Simaz 0.3 idem

ar, 5 cm bacteria and sands [39]
ar 0.2 af, cm idem

Remark 3.4 The system of Darcy with second member is written (cf [20]
p- 46) K

where f = —pge,. we thus has p = p + pgz. The quantity called hydraulic
conductivity in the literature has the dimension of p/(pg).

3.3 Relation with other models of leukocyte filtration

In this section, we show that our model generalizes the mathematical model
proposed by A. Bruil et al. [5], that is the most recent study which we know
on the modeling of the filtration of the leucocytes. In [5], the domain is sup-
posed to be 1D, thus the Darcy velocity field is limited to u = (0, 0,u,), and
taking into account (5), u, is necessarily constant in space. The differential
system (4)-(5) is replaced by an algebraic relation:

u, = QAfp (15)

where (Q is the flow of blood and Ag the surface of the section of the filter
1D. It is then supposed that the dispersion tensor D is zero and that the
derivative in time c is negligible in (13). We note S the concentration of
leukocytes adhered:

s=1°
a
Equation (13) then reads:
oc oS

It is exactly the equation (6) p. 158 of [5] (while noting z, u, and S respec-
tively h, w and o)
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The equation (14) is written:

% — fk(u)cB(S)
While noting Ao the specific surface anf (in [5], Ag is proportional to f), by
taking the expression (10) for the coefficient of reaction k(u) = an|u,| , and
by taking a Langmuirian dynamic blocking function B(S) = (1 — S/Smaz),
we find (while supposing u, > 0):

- = — ol — 8§/ Smaz)c. (17)
It is exactly the equation (1) p. 157 of [5] joined to the formula (2) p. 157.

3.4 Filtration model in porous media with varying porosity

We present a reaction-dispersion-advection model with a varying porosity
which depends on the adsorbed species concentration. The flow is driven by
a pressure gradient satisfying Darcy’s law with nonconstant Darcy velocity.
We consider a chemical solute that interacts with the fixed porous matrix
to produce an immobile chemical species attached to the matrix. The ir-
reversible reaction is accompanied by a change in porosity. We assume the
flow is pressure driven and is subject to Darcy’s law

u=-K(w)Vp (18)

where u = u(z,t) is the Darcy velocity, p = p(z,t) is the pressure, w =
w(z,t) is the porosity, and K = K(w) is the hydraulic conductivity of the
medium. We further assume the continuity equation

wi+diva=0 (19)

Let ¢ = ¢(z,t) denotes the mass concentration of the mobile, chemical solute.
Due to the balance law and by assuming that the volumetric flux of the
concentration c¢ of the transported colloid contains an advective term and a
dispersion term, we obtain

(we)y = div (wDVe —cu) — r (20)

where D is the tensor of dispersion and r is the reaction rate.
Next, we impose the kinetics law

r=s = AucF(s),

where the positive constant A is called the filter coefficient. The function F
is a nonnegative, nonincreasing function of s. In this model decolmatage is
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negligible.

Equations with variable porosity have been studied by several investiga-
tors. Here we only mention Herzig , Leclerc, and Le Goff [19], deMarsily
[31], Logan [28], Cohn, Ledder, and Logan [10], and Ledder and Logan [25].

Remark 3.5 In order to prove the kinematical flow relation (19), let us
consider an arbitrary volume Q in a three-dimentional porous domain where
a fluid of density p = p(x,t) is flowing with Darcy velocity u = u(z,t),and
suppose that the porosity is evolving in both space and time, i.e., w = w(z,1),
where z € R3. We assume the flow is saturated, i.e., the pores are completely
filled with fluid. If there are no fluid sources, we can balance the mass of fluid

in Q to conclude that
i/pwdx——/ pu.ndA
dt /o a0

With an application of the divergence theorem over the arbitrary domain €,
we obtain
(pw)t + div (pu) = 0,

which is the local fluid mass balance law.
Now, let us expand the derivatives to obtain

pwi + wpr + pV.u+ u.Vp = 0.

If we introduce the logarithmic density 6 = In(p/po), where py is a constant
reference density, we can write the previous equation in the form

0
Vau=—w — (wa +u.V)é.

With the usual calculus interpretation of the divergence, the right-hand side
has two terms that can be regarded as source terms for the fluid velocity. If
the density is constant , then the equation leads to the continuity equation

wt-l-V.u = 0,

which relates porosity changes to velocity changes.

4 Appendix

4.1 Glossary of common terms

Adhesion: The property of remaining in close proximity, as that resulting
from the physical attraction of molecules to a substance, or the molecular
attraction existing between the surfaces of contacting bodies.
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Adsorption: The attachment of one substance to the surface of another.
Antigen: Any substance which is capable, under appropriate conditions, of
inducing a specific immune response and of reacting with the products of
that response.

Leukocyte: White blood cell.

Leukoreduced: Products meeting the standard of < 5210 WBCs/unit.

4.2 Characteristics of a standard filter

Layer of the filter | Thickness of the Layer | Porosity | Diameter of the pores
(um) (%) (um)

Fine 490 85 7

Coarse 550 86 37

Pre-filter 2360 91 61

The formula giving the specific surface reads

]__
S =4x w

p

where w is the porosity and D), is the diameter of the pores.

5 Experimental Study

In order to test our filtration model, a series of tests were conducted at the
Institut National de la Transfusion Sanguine (INTS). Blood bags of one and
a half litres in size were filtered. The figure 1.1 gives us an idea about the
principle of deleucocytation by filtration.

We shall describe the different steps taken during the process of filtration,as
follows:

5.1 Protocol
1. Weigh the bag and the filter together.

2. Suspend the bag and miz well its contents, install a container on a
balance to receive the blood.

3. Break the clips to allow the bag to empty itself in the filter.

4. Note the time which passes,from the arrival of the blood in the filter
to its passage in the tube from which it exits.( i.e time required to
traverse the filter)
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5. The liquid containing the anticoagulant is ejected before the blood has
reached. Collect this liquid in order to weigh it.

6. When the first drop of blood comes to the end of the tube,start the
chronometer, collect the drops in the first tube.

7. Every 90 seconds, note the weight of the pot, then collect some drops
in a tube.Weigh the tube.

8. Note the time at which the last drop of blood leaves the bag.

9. At the end of this manipulation, weigh together, the filter, the blood
bag and the broken clips.

5.2 Results of the experiments

The blood was drawn at the Centre de Transfusion des Armées (CTA). The
filtration of blood was done at the Institut National de la Transfusion San-
guine (INTS).

5.2.1 The flow rate measurement

The following figure represents the weight of the "filtrat’(i.e. The total weight
of the samples taken as well as the blood collected in the containers (in
grams)) as a fonction of time(seconds).

300 T T T T T T
250 | .
200 o T g

150 |- C B

100 | 1

50 | g

o ¥ ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500

It can be noted that, in the case of the four bags B,C,D and E, the curves
are close to each other.
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5.2.2 Concentration mesure

It is necessary to explain here that all the measurements were taken in order
to reply to certain questions that we had asked ourselves during the mod-
elisation. We particularly wanted to know if the white blood cells in the
“filtrat” were passed through the filter in the beginning or at the end of the
filtration. We also wanted to know the relative importance of colmatage and
adhesion in order to refine the model. The following figure represents the
evolution of the concecntration of the leucocytes as a fonction of time (in
seconds).

0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Figure 1.3: Concentration mesure in the filtrat (Institut National de la Trans-
fusion Sanguine).

One could have looked forward to identifying certain qualitative be-

haviours (for example: Plateaus at the beginning or at the end of the filtra-
tion). Unfortunately the rersults that can be seen in the figure 1.3 are not
of much help for validating or improving the model. Hence, no interesting
conclusion was found for all the measurements.
The “chaotic” behaviour observed could be put down to the fact that different
types of leucocytes react differently to the filtration. The proposed model
could probably be more pertinent as it considers only one cellular lineage.
The proposed model could probably be more pertinent as it considers only
one cellular lineage cf. [1].
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Chapter 2

A multiscale colloid transport
model with anistropic
degenerate diffusion

Le contenu de ce chapitre, réalisé en collaboration avec Jean-Frédéric Ger-
beau et Benoit Perthame, a donné lieuw o un rapport de recherche INRIA
(numéro RR-4468). Il est paru dans Asymptotic Analysis en Avril 2003.

1 Introduction

This note deals with the following problem: find the solution ¢ and s defined
on R? x (0,T) (with 7 > 0 and d < 3), to the weakly coupled semilinear and
degenerate parabolic-hyperbolic system

Orc+div A(c JZI 86;?5% = —kcs inD'((0,T) x R?),

(Pe) Os = —kcs inD'((0,T) x RY),
c(0,z) = co(x) >0 a.e. in R,
5(0,2) = so(z) >0 ae. inRY,

1)
where k is a given positive constant. The assumptions on the data A :
R — R?, the d x d matrix ¢(c) = (¢4(c)), co and so will be made precise
later (Section 2), but let us just say that they cover the cases of completely
degenerated diffusion (we only assume (¢;) is a nonnegative matrix) and
ill-prepared initial data (the product ¢ so does not vanish). Our purpose
is to prove a global well-posedness theory for this system and to study the

relaxation limit as kK — oo, and especially to characterize this limit through

51
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the generalized Stefan equation

0%¢ij(wy) o d
(Qu) Oyw + div A(wy) ]Zl Dotz 0 inD'((0,T) x R%),
w(0,z) = co(z) — so(x) a.e. in RI.

(2)
One of the difficulties is that the parabolic degeneracy leads to singular
solutions (possibly shock waves in the purely hyperbolic case). In order to
cover this generality, we therefore use methods based on S. Kruzhkov’s style
L' contraction property [72].
In chapter 4, we will give a numerical illustration of the asymptotic behaviour
of the solution to system (Py) as k becomes large (cf. the Figure 4.6).

This kind of system describes the evolution of a tracer (typically a chem-
ical or a biological species) in a porous medium. This tracer is assumed to
adhere to the surface of the solid skeleton. The places where this adhesion
process occurs are named the adsorption sites. Denoting by C the mobile
tracer, by S the adsorption sites on the immobile porous medium, and CS
the product of the reaction between the tracer and the skeleton, this process
can be represented as a formal chemical reaction:

C+S=CS.

We let ¢ and s denote the concentration of C' and S respectively. The
concentrations ¢ and s are classically assumed to satisfy the following system:

d
: 0*¢ij(c)
e+ div A(c) — i —2L2 = —R(c,s),
ij=1 6.%1833]
os = —R(cs),

Where the function R is a reaction term. In this work, we assume that the
above pseudo-chemical reaction is governed by the law of mass action and
we neglect the backward reaction (namely the desorption). Thus, we have

R(c,s) =kcs, (3)

where k is the forward rate constant.

This model is encountered in various applications. For example, it was
proposed in cancer research to study the penetration of antibodies in tu-
murous tissue and their attachment to antigens (K. Fenmori et al. [47]). It
is also used to study the transport and attachment of colloids, bacteria or
viruses, in sandy aquifers. In these later cases the function R(c,s) generally
takes the form ¢B(s), where B, the so-called blocking function, is typically
polynomial (see for example N. Sun et al. [93], C.H. Bolster et al. [18]).
These equations can also be viewed as a simple model of colloid filtration,
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when the retained particules are small enough to consider that their adhesion
on the filter do not modify the size of the pores (see M. Belhadj [15] for an
application to blood filtration).

Concerning the mathematical theory, D. Hilhorst, R. van der Hout and
L.A. Peletier proposed various mathematical studies on systems of this kind.
In [55], they considered the large time behaviour and the limiting behaviour
as k — oo of a 1D version of this problem with A =0 and ¢(c) = ¢. In [56],
they considered also the 1D case with A = 0 and ¢(c) = ¢, but they took
more general reaction terms. In [57], they kept A = 0 but they extended
their works to the multidimensional cases and nonlinear diffusions. More
precisely they assume that ¢(c) = [5 D(€)d¢ with D(€) > 0 for £ > 0. In
[45], R. Eymard, D. Hilhorst, R. van der Hout and L.A. Peletier focused
on reactions which are very fast in relation to the diffusion process. They
continued and extended earlier studies in [55], [56], [57]. On the other hand,
the purely hyperbolic case ¢(c) = 0 has been widely studied and we refer to
the survey paper of R. Natalini [81] for further references and analysis. We
would like also to point out that a possible approach is to use the nonlinear
semigroup theory which provides easily a partial answer (uniqueness in a
restricted sense) to the problem in the isotropic case at least.

In the present work, we restrict ourselves to the mass action kinetics
(3), which is just one of the two kinds of reactions investigated in [57], but
we consider a more general equation since we treat a completely degenerated
and non-isotropic diffusions. Moreover, we also add the nonlinear convection
term div A (c), thus dealing with the complete hyperbolic-parabolic case. Fi-
nally, we do not assume that initial data are well-prepared i.e. ¢gsg = 0 and
thus we implicitely treat the initial layer problem: a non-equilibrium initial
data (an equilibrium is defined by a state (¢, s) such that ¢s = 0) is imme-
diately relaxed to an equilibrium in the limit £k — o0o. As mentioned earlier,
we consider a purely L' well posedness theory. This requires to use a precise
definition of entropy solutions, an issue solved in the purely hyperbolic case
by S. Kruzhkov [72]. The parabolic case is much more involved and the
entropy dissipation has to be controlled precisely in the relaxation process
and in the construction of the solution. The main issue then is uniqueness
of solutions satisfying these entropy inequalities, a result proved recently for
isotropic matrices (¢;; =0 Vi # j) by J. Carrillo [25] (see also R. Eymard
et al. [46] for improved assumptions and K. H. Karlsen and N. H. Rise-
bro [68] for numerical analysis of the problem). The recent improvment in
this uniqueness proof by G. Q. Chen and B. Perthame [27] allows to treat
non-isotropic degenerate diffusions to the expense of more precise entropy
inequalities.

The paper is organized as follows. In Section 2, we prove an existence
result for the above system based on the L' contraction property. We study
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the behaviour of the solution as k tends to infinity in Section 3.

Remarks on notations We use the standard notations for the Sobolev
spaces, but for simplicity, we will sometimes denote the spaces L' ((0,T) x R%)
by Lj,, L*(0,T; H' (R%)) by L?(H}), and so on. Moreover, in the sequel C

will denote various constants.

2 Existence result

We make the following assumptions on the data:

4
5

(¢i;) € C*(R)is symmetric, (¢};)is a nonnegative matrix,
A =(A1,...,44) € (C'(R))%, A(0) = 0,

(4)

()

co € LMRY) N L®(RY),cp > 0 a.e. in RY, and / |z|2co dr < oo, (6)
R4

(7)

so € LY(RY) N L®(RY), and sg > 0 a.e. in R?. 7

We denote by (¢')'/? a symmetric square root of ¢’ and 1 its antiderivative,

d
S (@YD) = g, Yi(e) = (8% (0))ik- (8)

k=1

The main result of this Section is the following existence result which
states the main properties that will be used for the relaxation limit.

Theorem 1
Under assumptions (4)-(7), problem (Py) admits a unique solution (c,s) €
C(RT; L' (R%))2. Moreover the following properties hold:

(i) Maximum principle:

0 < s(t, @) < lsollpoo(ray,  a-e. in RY x R, (10)

0 <c(t,z) < leollpoo(rey, — a-e. in Rt x R?, 9)

(ii) Contraction property: let (c,s) and (¢,s) be two solutions corre-
sponding respectively to the initial data (cg, sg) and (€y,Sp). Then for any
£>0,

le(®) —e@)| 11 (rayHIs () —5@)] L1 (ray < llco —Coll 1 (rayHIs0 —Soll 11 (ray- (11)

(iii) Comparison property: let (c,s) and (¢,s) be two solutions corre-
sponding respectively to the initial data (cg, sg) and (¢g,30). If ¢y < ¢y and
so < 8¢ then for any t > 0,

c(t) <¢t) and s(t) <3(t) ae inR% (12)
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(iv) Entropy inequality: for any two smooth increasing functions S and
¥ , with S convex, and with the notations (AS)' = A'S’, (qﬁfj)’ = ;j S,
(wﬁc)l — (S//)l/Q (¢Il/2)z’k; we have Vk = 1,...d,

d 11/2
Za ¢ 'k ¢ L2(RT x RY),

=1

d n/2(c)), d S (e
S"(C)Za(¢ axf ))Zk _ Za¢zk( ) — (V . ,wS(C))k,

o0x;
i=1 i=1 t

s L 0%5(0) | & S/
O[S (c) + (s)] + divAS(c) = > + ) IV-yS(e))? 0. (13)
k=1

0z;01;
ig=1 "

Before recalling the proof of this Theorem, let us point out that, even
though we did not see a complete statement and proof for a coupled system,
the principles behind are not new (see for instance [25], [27], [46] or the
earlier work by P. Marcati [78]). Also some assumptions can be slightly
improved; the space quadratic moment in (6) is not needed, and a purely L'
assumption on c is enough (see [84], [27]).

Lemma 1
We assume there is an o > 0 such that

(¢") > a.1d (14)

Then any solution (c,s) € C*(Rt; S(R?)) to equations (1) i.e. with data in
S(RY), satisfies properties (9)—(13). In addition we have for any t > 0,

0?¢ij(c
[0tc(t) || 1 (ray + |08 L1 rey < BlIVeoll L1 (ra +||Z oz Zja O)HLl(Rd)

1,j=1
+2k|[cosol| 1 (ray (15)

where 8 = SuPlﬁ\SHCOHLoo(Rd) |A/(€)].

Proof of Lemma 1. We first notice that

st 7) = so(z) exp (—k /0 ") df) , (16)

thus, in view of (7), s > 0 almost everywhere. Multiplying the first equation
of (1) by c— = max(0, —c) and integrating, we obtain:

/2 . 2 _ 2 , ‘
2dt /Rd /Rd |67/%(c) - Ve |" = /deS(C—) RdA(C) Ve_c_.
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For the time being, we assume there exists § > 0 such that

| A%l oo () < B, (17)

fori=1,...,d. Thus,

2
i/ 02+a/ |Vc_\2§ﬂ—/ .
dt R4 Rd a JRd

Gronwall’s lemma thus gives ¢ = 0 since ¢ is supposed to be nonnegative.
Next, introducing the function v = ¢ — ||co|| oo (gey and using analogous
argument with the function v, = max(0,v), we finally obtain (9). Notice
that relation (10) is obvious in view of (16).

Next, we relax assumption (17) by a standard argument that we just
sketch: we introduce a cut-off function { € C*(R) satisfying ((£) = 1 if
¢ < |lcoll poo(ray and {(€) = 0if € > ||col| oo (ray + 1, and we let A = CA. The
function A clearly satisfies a relation like (17), thus we can use the above
arguments. In particular we can prove (9), which implies A(c) = A(c).

We now turn to the proof of properties (11) and (12). Let S5 be a C%(R)
convex real function, and let (¢, s) and (¢,s) be two regular solutions to (1)
corresponding to the initial regular data (cg, o) and (€, Sg). A substraction
and a multiplication by Sj(c —¢) yields:

%Sa(c —¢) +div (Ss(c — ¢)(A(c) — A(c)) — S5(c —T)V(c —¢) - (A(c) — A(0))
d 2(4. . c) — i (c
~Silc—2) ) 9 (%éz)iaxf”( ) _ Si(c — &)(—k(c — &)s + k&(s — 5)).(18)

ij=1

The integral over R? of the second term of (18) vanishes. We estimate the
third one as follows:

- [ Isi-avie-era@-A@) = [ ()8! (e~ W (c—c)- 2D~ AL
R4 Rd

cC—¢C

Thus, we can choose Sy such that Ss(c) — |c| in L*°(R) as § — 0, and
(¢ —©)Sj(c —¢) bounded and vanishing as  — 0 uniformly away from 0.
Therefore the third term of (18) also vanishes in L!(R?) for all times because
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¢, ¢ are smooth and decaying here. For the fourth term, we notice that:

2( hi:(c) — i (c
_Z/ Sj(c —¢) ’ <¢U<;x),-8xjj( ))

1,J=T
Z /R (c = 935, (c — ) () Oy — 8 (0)s,)

,Jl

_ Z S} (c = D¢ ~ Dl (€)0; (¢~ )

bhj= 1 Re
+Z (e~ )00, (c — ) (¢(0) — ¢};(0)) 0y
,J 1
= Z RdS C—C )¢z]() ( _E)
bhj= 1

+Z/ ¢ —1©)S§(c —©)0y,(c —7©) ”(Z_C”(_)%E

1,J=1

The first term is nonnegative. Passing to the limit as § — 0 in the second,
it vanishes as in the third term.
Finally, we deduce from (18)

d
—/ |c—E|§—k/ |c—E|s+k/ 2ls 3.
dt Rd R4 R4

Similarly, we easily obtain:

d
— —35 < —¢ls — cls — 3.
; /d |s — s k/d lc —¢ls k/dc|s S|

By summing these last two inequalities, we deduce

d
- e —3) <
G [ Ge—el+ls—a) <o,

which gives the contraction property (11). Choosing Ss such that Ss(c) — ¢y
as & — 0 gives, by the same arguments, the comparison property (12).

Finally, let us prove (15). We denote 9;c (resp. 0;s) by u (resp. v), we
differentiate the first two equations of (1) with respect to ¢ and we multiply
them respectively by sgn(u) and sgn(v):

u a2 (c)u
a| | +Za (A' )|u|) —sga(u) S gx%axj) — —klu|s — sgn(w)kev,
i,j=1 ’
v O¢lv| = —sgn(v)kus — écc|;;|
19
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Thanks to the decay assumption, (c,s) € S(R?), the integral of 8, (A;(c)|u|)

d 82( i (c)u)

over R? vanishes. Let us check that the integral of —sgn(u) Z N
ij=1 a.’lfi Ba:j

is nonnegative. We denote by Hs a monotone C* function such that Hs(u) —

sgn(u) in LY(R) as § — 0, we have:

8 (#1;(c)u) , , ,
- [ o = ng(u)‘}““(%‘c)%“+5wj%<0>“)
Rda—H(S( )uazj ¢;](c)

5 (c)
_ J
N /Rd}(:(s(u) 3{1718.’137 )

With Kj(u) = Hj(u)u and K5(u) — 0 as § — 0. Therefore letting 6 — 0,
this inequality becomes

-/ )
Rdsgn b Barzaxj =

Thus, we deduce from (

/|\+dt/ o] < k/ |u|s+k/ c|'u|+k/ luls — /c|’u|§0,

and therefore

/ |8tC| + ‘8t3|
Rd

IA

/ 1(01) o] + (815 )el
9? ¢zy CO /
/ |div A (e |+/ ‘Z B103; ‘+2 kcoso.

It remains to show (13), which simply follows from the chain rule and
space-time integration (we may always assume that S(0) = £(0) = 0 and
therefore S and ¥ are nonnegative on the range of interest for (c,s)), thus
we skip the calculations. This achieves the proof of Lemma 1. {

IA

Lemma 2

We assume ¢y € L?(RY) N L>°(RY), and we assume that the diffusion does
not degenerate, i.e. (14) is satisfied. Then, for all T > 0, problem (1) has a
solution (c, s) € L?(0,T; H*(RY))NC([0,T]; L?(R?)). If we assume moreover
that cg, 59 € S(R?) and A, ¢ € C®(R), then c,s € C®((0,T); S(RY)).

Proof of Lemma 2.

Step 1. We first assume there exists 8 > 0 such that
1"l Loy < B and  [|Af]lLeo(r) < B, (20)
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fori =1,...,d. We restrict problem (1) to Qr = {z € R¢, |z| < R}, R being
a given nonnegative real, and we complement it with Dirichlet homogenous
boundary conditions on 9Q2g for c. We thus consider the system

O+ div A(c) — div (¢'(c)Ve) = —kecs, (21)
Os = —kcs, (22)

c(t,z) = O0on [0,T] x O, (23)

c(0,-) = coxr on g, (24)

s(0,) = soxr on Qg, (25)

where ygr denotes the characteristic function of Qr. We introduce the fol-
lowing convex set of the Banach space L2(0,T; L?(QR)):

C = {v € L*(0,T; L*(QR)), 10122 0 7 12(00y) < M» and v > 0 ae. in (0, T)xQg},

m being a nonnegative constant that will be fixed later. For ¢ € C, we define
S by

5(3,1) = so(x) exp (—k /0 . 6) d§> , (26)

which is the solution to §;5 = —k¢3 satisfying S|4—¢9 = so. Notice that in
particular, for all ¢ € [0, T], ||5()||z=(az) < Isollzeco(ay)- Then, we define ¢
as the solution in L?(0, T; H} (2g)) N L*°(0,T; L*(QR)) to

A

Orc + div ( c) —div (¢'(€)Ve) = —kc5.
Notice that the existence of ¢ comes from standard theory on non-degenerate
linear parabolic problems. We denote by T the application ¢ — 7¢ = ¢. Our
purpose is to prove that, for ¢ € C, T¢ € C (for a suitable m), and to prove
that 7€ lies in a compact set of L2(0,T; L?(Qg)) in order to apply Schauder
fixed point theorem.

It is well-known that 8;c € L2(0,T; H~'(Qg)), which yields in particular
c € C([0,T]; L2(Qr)) and which makes rigorous all the manipulations we are
going to do now. Multiplying by ¢ and integrating we obtain:

+ / iC - c-—k/ %5 + /
2dt /QR ZZ #3(@Vie- V; on Qg ©

which gives, using (14), (20) and the fact that 5> 0,

c +a |Vc| +<— 5
dt 0y

In particular, \
sup [le(®)172(0p) < llcollz2gye” ™.
t€[0,T
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Thus, choosing m = T||C()||L2(Rd)6’32T/a, we have ||cl|r2(0,m;02(05)) < M-
Next, multiplying (21) by ¢— = max(0, —c) and integrating, we obtain:

A'(e
2dt/ / -Ve_c_ + 2/91523 Vic-Vjc=— QIl:sc_,

\/ 2< / A\V/

Young inequality and Gronwall’s lemma thus give ¢ = 0, since ¢ is sup-
posed to be nonnegative. Thus ¢ € C.
We now check that ;c is bounded in L%(0, T; H~(QR)). Let v € L?(0, T; H} (R)):

/OT<8tc,v> //( ¢” Vic- Vv + ()C-V'u—kECU)

ﬂIICIILz(H1 +Blellzz Jlollpz ) + klisollizellellzz Nolirz

IA A

Cllvllzzcay.

Thus, O;c is bounded in L?(0,T; H~'(2r)), and since c is also bounded in
L?(0,T; H*(QRg)), this proves that ¢ is compact in L%(0,7T;L?(Qg)), and
therefore the application 7 has a fixed point which is a solution to (21)-(25).
Notice that we can finally relax assumption (20) as in the proof of Lemma 1.

Step 2. We denote by (cg, sg) the solution on Qg built above. For R; > Ra,
we have obviously coxr, > coxRr, and SoxRr, > SoXR,.- Thus, for all ¢ > 0,
(cr(t),sr(t))r is an increasing sequence, bounded in (L?(R%))? (in step 1,
the definition of the bound m was independent of Q). Letting R — oo and
applying the monotone convergence theorem, this proves the existence of the
solution on R%. The regularity result is a consequence of classical theory of
non-degenerate parabolic problems (see |74] and [95] for example).

Proof of Theorem 1. We proceed in two steps.

Step 1. In this step, we assume that ¢y € S(R?) and sg € S(R?). We denote
by ¢. (resp. A.) a suitable regularization of ¢ (resp. A), in particular, we
assume that ¢, > eId. We consider the system

{ Osce + div A (c.) — div (d);(cs)Vcs) = —kcg s, (27)

0:se = —kcgse.
We now aim at showing that the set {(c, s¢) }e>0 is compact in C(0, T; L* (R?)).

Let h = (hy,...,hq) € R, with h; > 0 for i = 1,...,d. We define
Thee(t, ) = c.(t,z + h) and 7,8.(¢, ) = sc(t,x + h). Clearly, thc. and 75,5,
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satisfies (27) with initial data defined by 7hco(z) = co(z + h) and Ths0(z) =
so(z + h). Thus, the contraction property (11) gives for all ¢t € [0,T:

Ihee(t) = ce(®)llnrray +l1Thse(®) = se(®)llrrra)

(28)
< llthco — collpr (ray + ITns0 — soll L1 (wa)-

The right-hand side of this inequality tends to zero as h — 0, thus, the Riez-
Fréchet-Kolmogorov theorem (see [19] for example) implies the local relative
compactness of (c.(t,-),s.(t,+)) in (L*(R%))? for all ¢ € [0,T]. To show the
global relative compactness, we multiply

Oce + div A (c.) — div (gzﬁ'6 (cs)Vc> = —kces;

by |z|?/2 and we integrate by parts. We obtain, using ¢ > 0 and s. > 0,

d |115|2
— e dr — z-Ac(c)dz —d Tre.(ce) dz < 0.
dt 2 Ré RY

Now, denoting [q @Ce dz by R(t), and using (9),

dR( <C</ |x|c€dac+/ cedx>,
dt Ré Rd

where, here and in the sequel, C' denotes various constants independent of
e. Thus

9R(0) < OR®) + M),

with M(t fRd ce dx. Since M(t) < M(0), Gronwall lemma implies that
R(t) is bounded by a value independent of € as soon as R(0) is finite, which
was assumed in (6). This yields the equiintegrability of {c.}.. Therefore,
using analogous arguments for {s.}., we deduce the relative compactness of
{(c.,s:)} in (L' (R?))? for all ¢ € [0, T].

Finally, we obtain from (15), for 0 < t; < to < T — 17,

sup |lee(t+n) — ce(t)|lp1may + sup |Ise(t +n) — se(t)] L1 (way
tE[t1,t2] tE[t1,t2]

/ Brea(t +€) de / Byse (b + €) dt

sup

< + sup
tE [t1,t2]

LY(R)  te[ty,to]

LY(R?)

< Bl Vol o1 ey + nlldiv (9L (co) Vo)l uy + Zemlco sollz gay-

Thus, by Ascoli theorem, {(c¢, s¢)} is relatively compact in C(0,T; L*(R%))2.
Therefore, up to an extraction, (c, s¢) converges in C(0,7; L' (R?%))? and a.e.
to (c,s). Passing to the limit in (27), we deduce that (c,s) is a solution to
(1). Moreover passing to the limit in the relations established in Lemma 1,
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this solution satisfies (9)— (13).

Step 2. We now relax the regularity assumptions on (cg, s9). Let ¢f and
s2 be two sequences of S(R?) converging to ¢y and sg in L!(R?). According
to step 1, there exists a solution (¢, s5,) to system (1) corresponding to the
initial data (cf, sy) which satisfies the contraction property (11). This last
point implies in particular that (¢, s,) is a Cauchy sequence in the Banach
space C(0,T; L'(R?)). Thus, (cy,sn) converges in C(0,T; L'(R?)) to (c, s)
which is solution to (1) and which satisfies properties (9)—(12). As for (13),
we have a uniform L?(Rt x R%) bound on V- ¢'*/2(c"). Therefore, following
[27] the strong limit 4°(c) of 1°(c") satisfies the chain rule by strong-weak
convergence, and |V -4 (c)| < limp_y00 |V (c")| as a weak L? limit. Hence
we deduce the inequality (13) for (c,s). &

3 Asymptotic behaviour

Theorem 2
We make the assumptions (4)-(7). Ask tends to infinity, the solution (cx, k)
to (Py), has a limit in L*((0,T) x R?)? denoted by (c,s) € L®(R*"; L' (R%))?
that satisfies

L 8i(c)
Oic—s)+divA(c) — Y 22 = 0, inD'((0,T)xR?),
(Pso) i 90z,
c>0,5>0,cs = 0, ae in(0,T)xR%,
c(0,z) —s5(0,z) = co(z) —so(x) a.e in RY,

Moreover, (c,s) is the unique entropy solution to (P) i.e. for any two
smooth increasing functions S and %, with S convex, and with the notations

(AS) = A'S", (¢5) = ¢'S', (45) = (S")/2¢'*/2, it satisfies
V- §) € (LR xR, V() = (S 242(0),
. 8%4(c)

ai[S(c) + B(s)] + divAS(c) = Y 24—
ij=1 83@1835]

d
+ Y IV-95()? 0. (29)
k=1

Finally, w = ¢ — s € C(R"; L' (R?)) is the unique entropy solution to the
generalized Stefan equation (2).

Proof.

Relation with the generalized Stefan equation, uniqueness Before
proving the hard core of this theorem, let us explain the relation between its
limit (Py) and (Qoo) in (2). From the sign condition on (¢, s), and ¢s =0,
we can invert (c¢,s) = w = ¢ — s as follows:

w>0c=w,s=0, and w<0&s=-—w,c=0.
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This defines a lipschitz continuous inverse for ¢: ¢ = w and the two problems
are thus equivalent. Also the entropy inequalities can be translated in terms
of w. We firstly restrict our choice to S(0) = 3(0) = 0 and extend S
to negative values by S(w) = S(w;) + £(w_); thus we reach all smooth
functions S(w) such that S is convex for w > 0 and sgnS’(w) = sgnw, and
we have V - 4% (w) € L2(RT x R%) and

d 2 1S

07 ¢ (w
S (w) + div AS(w) — Tdy(w) + |V 4% (w)2 <0, (30)
= axia.rj
5,j=1
with A%, ¢°, ¢fj extended by 0 to negative values of their argument. En-
dowed with its initial value, this hyperbolic-parabolic admits a unique en-
tropy solution in C(R*;L'(R%)) (see the references in the introduction).
Therefore we have obtained the relation between the two problems and the
uniqueness of the limit.

Existence of a limit For 2 € R?, we denote by 7j,c; (resp. T,5%) the func-
tion (¢,2) — Thex(t, ) = ck(t, z+h) (resp. (¢, ) = T8k (t, ) = sk(t,z+h)).
For 1 € R, we denote by T,cy, the function (¢,z) = Tper(t, z) = cx(t+n,1)).
We denote by w(-) the initial L' modulus of continuity

w(h) = up €%+ R) = ()l rggay + [18°C + h) = 8° ()l £ -
<

We begin by proving the compactness of si. Integrating Osp = —kcgsg
and using s; > 0, we obtain for all 7" > 0,

T
k// ¢Sy dz dt = —/ (sk(T,x) —sk(O,:v)) dz < / so dz ey mo. (31)
0 /R4 Rd Rd

Thus we have
kllek skll o1+ xray < mo, crsk — 0in LY(RT x R?Y) as k — co.  (32)

Notice that this also shows that ||O;sk|z; < mo, and since

IThsk — skllpr gt xrey < Tllmneo — collpi ey + TllTaso — soll 1 (rey
< Tuw(lh)),

we deduce the local compactness of (sg)g in L!((0,7) x R?).

Let us now prove the compactness of (cx)x relying on an improvment by
A. E. Tzavaras [98] of a classical regularization argument. First of all, we
have space compactness because using (11),

IThek — cllioryxrey < Tllmhco — collpmay + TllThso — sollL1(rey
< Tw(|h]). (33)
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Let ¢ be a positive constant that will be fixed later, and let p, € C*®(R?) be
a mollifier kernel vanishing outside the ball of radius ¢ centered in 0. Let ¢;
and to be such that 0 < t; < to < T — 1, we have

to to [2)
/ / [Tock — ckl / / | Tnck — Tylck * pe |+/ / ek * pe — ck|
t1 R4 t1 R4
+/ [T ) = .
t1 Rd

The first and the second terms of the right hand side are treated by the same
way:

to to
//|Ck*pg—ck|s// /|ck<t,x—y)—ck(t,x>|SME).
t1 R4 t1 ly|<e/Re

For the third term of the right hand side, we first notice that

d

0pe 9?
Ouer pe) = = 3 Aile) * 5% + 3 (o) st~ Fes) x e
i=1 ij=1

thus, using (31),

to to n
/ / n(ck * pe) —cp xpe| < / / / |0 (ck * pe)(t + &, )|
t1 Re J€=0

n n
SMAler)llny, + 5lléler)liy, +mnllkerskllzy,

< c(n+l+3),
9 &

IN

where C' is a constant independent of €,  and k. Thus, choosing € = 771/ 3,
there exists a constant C' > 0, independent of &k, such that

||7;)Ck - Ck||L1((t1,t2)><Rd) <C (771/3 + w(n1/3)) . (34)

We deduce from (33) and (34) the local compactness of (cx )y in L'((0,T) x
R?). We can check the equiintegrability of (cx)x and (sx)x as in the proof of
Theorem 1. We deduce that the set (cg, sx)x is compact in L'((0,T) x R%),
and thus, up to an extraction, (cx,sx) — (¢, s) in L'((0,T) x R?) as k — oo.
Passing to the limit in (1) and using (32), we finally obtain (Py).

Time continuity of w=c-s The above proof uses compactnes in L*((0,T) x
R?%) in order to be compatible with the generic initial layer (and possibly
shock layer) which leads to the fact that d;c and 9;s are only bounded mea-
sures in time. Nevertheless an additional cancellation arises on ¢ — s which
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allows to prove time continuity. We argue as in previous subsection.

n
[t =s0sp— = enl < [ [ e - s 5o
R4 £=0 JRd
< Az + ldenller
n n
< o(7+2)

Also, we have

/ (ck — sk) * pe — (ck — sk)| < w(e).
Rd

Therefore, we obtain choosing again ¢ = 7'/, that, for some constant C
independent of k£ and 7, we have

/Rd | Ta(ck — sk) — (ck — sk)| < C <n1/3 " w(nl/S)) _

which proves time continuity uniformly in k£ and achieves the proof of the
asymptotic Theorem. {
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Chapter 3

Homogenization approach to
filtration through a fibrous
medium

Le travail présenté dans ce chapitre a été effectué en collaboration avec
Eric Cancés, Jean-Frédéric Gerbeau et Andro Mikelié. Il a donné lieu a un
rapport de recherche INRIA (numéro RR-5277). Il a été soumis pour publi-
cation.

1 Introduction

Filtration through fibrous porous media is of considerable interest in various
engineering systems. Common examples of fibrous media include industrial
filters, biological tissues, certain polymer membranes and many materials
produced in the paper industry.

In most applications, flow in porous media is modelled by using a generalized
form of Darcy’s law:

K
u = _7VP5 (1)

where u is the filtration velocity, p denotes the fluid pressure, v is the fluid
viscosity and K stands for the permeability tensor of the porous material.
Darcy equations can be derived by means of homogenization techniques
starting from the Stokes flow through an array of particles.

Ene and Sanchez-Palencia seem to be first to give a derivation of it, from the
Stokes system, using a formal multiscale expansion (see [42]). This derivation
was made rigorous in the case of a 2D periodic porous medium by L. Tartar
in [94]. This result was generalized in number of other papers. We mention
the generalization to 3D by G. Allaire [3| and to a random statistically ho-
mogeneous porous medium by Beliaev and Kozlov [16]. Another approach,

67
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very much present in the engineering literature is the spatial volume averag-
ing. For computing effective parameters averaging is equivalent to the usual
stochastic homogenization. For the introduction to the method we refer to
[69]. The derivation of Darcy’s law by volume averaging is in [100]. For our
setting, getting the " closure equation " isn’t clear and it is more natural to
use homogenization.

The knowledge of the permeability which expresses the flow resistance of a
fibrous porous medium is an important matter in the design of industrial fil-
ters and artificial porous media. Hence many works have been conducted to
study the permeability of different fibre distributions in the medium. These
works can be divided into pure experimental ones, pure theoretical ones,
and works based on an analytical approach with elements of computational
methods for the determination of permeability. A comprehensive review of
the literature on permeability of fibrous media has been elaborated by Jack-
son and James [64]. These authors discuss a variety of theoretical models
and present a large collection of experimental data for both natural and
synthetic fibrous media. Predominantly, these models use two-dimensional
representations of fibrous media, and consider both parallel and transverse
flow through spatially periodic arrays of cylinders (for a detailed discussion
we refer for example to [40, 53, 75, 76, 87, 90]).

For two-dimensional sparse media, Howells [60] developed a theory for dilute
random arrays of parallel cylinders using an averaged-equation approach.
Sangani and Yao [88, 89| conducted numerical simulations of random arrays
of parallel cylinders, finding good agreement with the predictions of Howells
at low concentrations.

While there is a large literature on two-dimensional models, relatively few
papers have been written that address three-dimensional, fibrous porous me-
dia.

For three-dimensional media, there are two studies cited by Jackson and
James (see [63, 91]). In [54], Higdon and Ford use a rigorous numerical tech-
nique, the spectral boundary element formulation, to calculate the hydraulic
permeability of ordered, three dimensional fibrous media. In [70], the ten-
sor of permeability of the fibrous porous media is determined based upon a
generalized cell model proposed by Neale et al. [82]. For three dimensional
disordered fibrous media we cite for example [29, 61].

In this work, we are concerned with studying the flow through a realistic
class of fibrous media using homogenization techniques. In section 2, we
give a description of the locally quasi-periodic fibrous medium, consisting
of layers of parallel fibers. This particular fibre geometry corresponds to a
description of a biological tissue and was first studied by M. Briane. We
note that our approach applies to other geometries studied in the papers of
Briane from 1993-94. Next, we present our model problem (Stokes problem)
and we homogenize it, using a two-scale expansion. We derive the effective
Darcy equation and the permeability. The formal result, which differs signif-
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icantly from the standard derivation of the Darcy law for a filtration through
a periodic rigid porous medium, is rigorously justified in the Appendix.

For computing the effective permeability tensor, we identify and solve a vari-
ational problem called the cell problem. For a practical calculation of the
permeability tensor, we introduce and solve two generic cell problems de-
scribed by a 2D Stokes problem and a 2D Poisson problem respectively.
Consequently, we obtain a new formula of the permeability tensor which
is function of the geometry of the above-mentioned generic cells. For the
sake of illustration, we present an example of numerical results that show
the influence of the orientation of the fibers in two cases: parallel fibers and
variable orientations.

Our goal in section 3 is to present a rigorous theoretical analysis consisting
in determining formulae of the permeability in the low solid fraction limit.
We show that the leading terms of our formulae are consistent with empir-
ical formulae given in the literature. Also, we compare the predictions of
asymptotic formulae with the results of numerical simulations.

As already said, we address in the Appendix the technical question of the
error made, when the physical velocity and the physical pressure are approx-
imated by the homogenized quantities introduced in section 2.

Our conclusion is that the homogenization approach allows to calculate
the permeability of fibrous media in a very efficient way. It also allows
to confirm the validity, at the leading order of the low fraction limit, of the
empirical formulas used in engineering. Let us note that the generalization to
the determination of the dynamic permeability (see [1] and references therein
for the definition) of fibrous media is straightforward. Our computations
generalize those performed for the parallel fibers, with periodic or random
distribution of the centers (see e.g. [49]).

2 Permeability of a fibrous medium

2.1 Notations and geometry definition

One of the rare mathematical references on fibrous porous media is the work
by M. Briane. He considered homogenization of an elliptic 2nd order oper-
ator with oscillatory coefficients in such setting. More precisely, he studied
the behavior of fibrous materials with respect to heat conduction. The con-
ductivity matrix took different values in the fibres and in the intersticial
medium.

The assumptions on the fiber geometry were motivated by biomechanical
applications and Briane studied three cases. They all deal with tiny fibers,
perpendicular to the zi-axis and making locally an angle y(z1) with the
To-axis.

His first model was a stratified periodic structure and its drawback was
that fibers were not cylindrical. The drawback was rectified by the sophis-
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ticated third model, which is no more locally periodic. For more details we
refer to Briane’s papers [21, 22, 23]. The second model was, according to
Briane (see his Ph. D. thesis [21] , page 202) the closest to the biomechanical
models used in applications. In this case, the fibrous material was locally pe-
riodic and its particularity was that the variations of the orientation function
v did not appear in the effective equation.

Motivated by its importance in the applications, we will deal with it.

To define the geometry of the porous medium, we follow the second case
considered by M. Briane in [22] (see also [21, 23]). Let Q be a domain in R3
which consists of N, layers, denoted by Q%" n = 1,..., N, perpendicular
to the Oz axis. The thickness along Oz of each layer is ", with 0 < r < 1.
Let 25" be a given point in Q°", forn = 1,..., N,, and v a C}(R) function.
In the layer Q5" there are 1/~ rows of fibers of radius e R which constitute
a periodic network of cylinders whose axes are parallel, perpendicular to Oz,
and make an angle v, , = y(z]") with Ozy. This angle is constant inside
a layer, but changes from one layer to another. It is shown on Figure 3.1 a
geometry with a function v which varies linearly with the coordinate 1 of
the layers. Figure 3.2 shows a magnified view of this configuration.

Figure 3.1: Microscopic geometry of the fibers (the vertical is Ox1).
To be more precise, let R € (0,1), Y = [—1,1] x [-1,1] and let x be the
Y— periodic function defined on Y by:
x(y)=1 ifly <R, andx(y)=0 if[yl>R.

We denote by Y the set {y € Y, x(y) = 0} and by p the function defined
on R x R® with values in R?:

p(C,2) = (21,23 cos ¥(C) — z28iny(())
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A

Figure 3.2: Microscopic geometry of the fibers (view along Ox1).

with = (z1, 2, z3). In the layer n, the fibrous domain is defined by

e,n
Q?n = {-7; S Q;X (p(wl ’$)> = 1}a
13}

and the fluid domain Q%" by:
Q" = Q\QS™.
We then defined Q¢ (resp. €2¢) as the union of all the layers Q%" (resp. Q5").

2.2 Homogenization

The flow in Q° is assumed to be governed by the Stokes equations:

—-vAu +Vp* = f in QF, (2)
divu®* = 0 in QF, (3)
u = 0 on 0€)F. (4)

Each layer is homogenized independently, which is justified by the difference
of scales of the fibers (¢) and the layer (¢"). In order to homogenize the
Stokes system (2)-(4) in Q%" the functions u and p are supposed to have
the following expansions (see [17]):

u®(z) = e2u’ (w, M) +... (5)

3
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P (z) = p° (w ”(%”)) +ep! (33 p(‘”%“’» +.. (6)

To perform the formal two-scale analysis, it is convenient to introduce a map-
ping ¢, , from a reference configuration %" onto 2*". We define @ in the
reference configuration by 4(#1, &9, %3) = u(x1,z2,23), with (x1,z2,23) =

Ve (1, L2, %3). The functions p and f are defined accordingly. The defor-
mation gradient is given by

F= [%] .
0i; i,j=1,2,3

The determinant of F' is denoted by J and F~! is denoted by G. Using
the following identities: Vp = GTVzp, Vu = V;0G, div;(JV;aGGT) =
Jdiv (Vu) and div 3(JGT) = 0, we obtain:

~

—vdiv 3 (JV;0°GGT) + divz(Jp°GT) = JE Q" (7)
divz(JG&®) = 0  in Q5" (8)

Qs 0 on 9™, 9)

6AU
6xj

We note that for a matrix valued function A, (divA); = Z . Thus,
J

denoting by g;; the components of G and by h;; the components of GGT,
we have for ¢ = 1,2, 3:

+ Z 76(Jgji'p ) = Jf; in Q5" (10)

j=1 k=1 j=1 0z,
3 N
278(‘]931“1) -0 w0, (11)
L O
3,j=1

ui = 0 on 90", (12)

In the reference configuration QF" | the functions @ and p have the following

expansions
(%) = e2@a’ (m n @> . (13)
€' €

1 Z

N

T1 T

70 =6, 2 2y et (0, 2,22) 4 (1)
with & = (&1, %2,23). We denote by 2 = (21,22) = (&1/e,22/¢) the fine
scale. First, putting these expressions into (10), we obtain with the O(1/¢)

terms:

—,—
g €

0 A0
95, (g1:0°) +

0
0%y

(g2ip°) =0, i=1,2,3.
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The matrix G being regular, these relations yield 8;,p° = 9;,5° = 0, and
thus

P = p°(&). (15)
Next, the O(1) terms in (10) and (11) give

Bu 8u 8 Bu Bu

[JhnaA +Jh126A ] - [Jh21aA +Jh228A ]
(16)
+Y —(Jgup") = Jfi — — (Jgrip°
;azr( griD") fi ;8377‘( griD")
in Q5" x Yp, for i = 1,2,3, and
3
5 IZJQMO ZJQ%’&?] =0 (17)
i=1 i=1
in Q" x Yr. We have moreover
0%(2,21,2) =0 on OQF x 0Yr\8Y, (18)
(a°,p') is Y-periodic in(31, 29), (19)
3 9 0 .
Z gji/ —(Z,21,29) d21d2, = 0 in Q%" (20)
ij=1 Yr 8‘7".7
/ 0 (%,21,%29) -ndz1dz =0 on 90" (21)
Vr
X3
/\1
o] % o X2
R X1

Figure 3.3: The mapping ¢; ,

For the mapping ¢, ,, we choose a rotation that transforms fibers parallel
to the O%3 axis on the fibers of the layer Q%" (see Fig. 3.3). More precisely:
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Z1
PPN 1 .
(T1,%2,%3) = @z (21, T2, 23) = | —T28in7; 5 + T3C08 Ve (22)
—T2 COSYen — T3SINYe p

For this choice, we have

1 0 0
G=|0 —siny.,, cosvyn |, J=1, GG' =1d
0 —cosYen —SinYep

and equations (16) and (17) simply read:

( ap! . o0
vy 500 + = —
21,2271 821 fl 8.'21
o ) aﬁl . ) aAO aAO
< —vA 21,29 Ug — Sln’}’s,na—é2 = fo— Sln’)’s,na—i_2 — COS 7’3’”8—@3
. 8]51 . aAO ) aAO
-vA zl,zQUg +COSVenmy = f3 + cos Yenazr — SINYen 5 —
0%9 0%9 03
a9 0 0 0
—A—I-—A(—ﬂ sin + 15 cos ) = 0.
\ 821 822 2 ’YE,TL 3 fYE,n
(23)

The scales cannot be separated in this system. Nevertheless, taking advan-
tage of the fact that the right-hand side does not depend on 2, we can obtain
the solution by solving the following “cell” problem: Let {w’, 77}, j =1,2,3
the functions defined as the solutions to:

( —A 5y 5w (31,51, 50) + 050 = &y in Y,
A 21,22wg(x1,21,22) —siny(21)05,m = b9 in Yp,
< AN 51,52(*):],;(901, 21,%2) + cosy(21)05,m = b3 inVp, (24)
Bglw{ + 03, (—sin v(xl)w% + cos 7($1)w§) = 0 inYp,
wi(z1,21,22) = 0 on dYp\OY,
{ {w¥, I} is Y-periodic in (%1, 2o).

Proposition 2
1. Problem (24) admits a unique solution (w’,77) € H(Yr)® x L2(Vr).

2. The function u® in (5) is given by

3

u( 3%l 2) VZ(-f]() 817]( ))w( 1, #1, 2) (25)

Jj=1
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3. The effective pressure p® in (6) only depends on z and is solution to
the Darcy problem:

uP(z) = Kz (f-vp’(z)) inQ,

v
divu? = 0, inQ, (26)
uP.n = 0, on 9.

where the permeability matrix K = [Kj ;]; j—1,23 is given by

1 .
Kz(.’El) = m . wg (.1‘1,2’1,22)d21d22. (27)
F

Note that formula (27) is not convenient from the numerical viewpoint
since it depends on the macroscopic variable z1. A more practical formula
involving cell problems independent of z1 will be given in section 2.3.

Proof.

1. The analysis of (24) is rather straightforward. We postpone it until
section 2.3 where a constructive proof is given (see Remark 2.1).

2. The fact that p® does not depend on the fine scale has been established
above (see (15)). Next, we multiply equations (24) by % (fj(ﬁr) - (GTVjﬁO)j),

for j = 1,2,3. Then, summing these equations, we obtain that (4?, 43,43, p')

defined by
3
A 1/ . -
i = (- (@"Vsp)) ]

and

= (F - @V, )
7j=1
is solution to (23). Thus using the relation Vp? = GT V3, we obtain (25).
3. Defining the Darcy velocity by:

1
= — u
|y| Yr

we straightforwardly obtain (26) with the definition (27) of the permeability
tensor. $

The rigorous justification of the approximation is quite technical, but
follows the general ideas used in the homogenization of the Stokes system
in a porous medium and in the study of the interface conditions between
two different porous media. We address it in some details in the Appendix.
In fact we will not only prove that our filtration velocity and the effective
pressure are the limits of the rescaled physical velocities and pressures, but
we will also give an error estimate in terms of €.

O(x,zl,zQ) dz1 dzo

u”(z)
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2.3 Cell problems

In order to address the effective computation of the permeability, we intro-
duce the following generic cell problems: let Uy (21, 22), U3 (21, 22), P?(z1, 22),
j = 1,2 be the functions defined as the solutions to the 2D Stokes problems:

A z1,Z2Uf_ + 8Z1Pj = 51j in Ve,
—A 2,2, U3 + 05, P7 02 in Y,
9.,Uf +0:,U3 = 0 in Yp, 25)
Uf _ Ug = 0 on 9Yr\0Y,
{Uf, Ug,Pj} is Y-periodic in z1, 22,

and let V(z1, z2) be the solution to the 2D Poisson problem:

-AV =1 in yF,
V = 0 on 0Yr\8Y, (29)

V is Y-periodic in 2, 29.

We introduce Q(wl,zl,ZQ) = [(:Jg]i’jzlgﬁ defined by

Q(xlazla Z2) = Ril(l‘l)Q(xlazlazQ)a
with Q(x1,z1,z2) = [wzj]i,jzl,g,g and

1 0 0
R(z1)=| 0 cosy(z1) —siny(z)
0 siny(z1) cosy(z1)

Combining the equations of system (28) and (29) we obtain:
Ull(zl,ZQ) 0 U12(Z1,Z2)

Q(wl,zl,ZQ) = 0 V(zl,zz) 0 R_l(iltl).
U21(Z1,22) 0 U22(Z1,22)
From which we finally deduce
K(.’L‘l) = R(Il)KQR_l(Il) (30)
with _ _
ul o0 U?
1 Vr Yr
Ko= L | o0 / Voo | (31)
|y| Yr
/ Ui 0 / Uz
L JVF Yr i

The developed expression for the permeability is given by

K —Kups _ K
K(z1) = | —Ka1s Ko+ V> (V — Kao)cs (32)
Kglc (V — KQQ)CS V82 + K2262
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where the following notations have been used: ¢ = cosy(x1), s = siny(z1),

— 1 — 1
vV il \%4 and K;; /s,
Consequently, once solved the three generic cell problems (28) with j=1,2
and (29), the permeability is obtained at any macroscopic coordinate z; by
computing two simple matrix-matrix products (30).
For example, Figure 3.4 shows the velocity and pressure fields for the
generic cell problem (28) with j = 1.

Ul (33)

Figure 3.4: Velocity and pressure field for a cell problem

Remark 2.1 Note that, the existence and uniqueness of (U?,P7) and V
being obvious, the relations

, Ui (21, 22) 0 U? (21, 22)
[wg(x1,21,22)] = R(z1) 0 V(z1,29) 0 Rfl(:vl)
U21(Z1,Z2) O U22(21,2’2)

and
xl = Pl 72 = —siny P2, 73 = cosy P?

give a constructive proof of the eristence and uniqueness of the solution
to (24).
Remark 2.2 Multiplying the first two equations of (28) by Ui and UL re-

spectively and integrating by parts, we obtain:

VU VU = | U'-e;.
Yr Yr
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Vectors Ut and U? being independent, the matriz [fyF VU" - VUY); j_19 is
invertible. In view of the definition of K¢ and relation (30), this implies that
K (1) is regular.

2.4 Numerical simulations

Due to the variable orientation of the fibers, the cell problems (24)depends
on the macroscopic variable. At a first glance, it seems necessary to solve a
huge number of cell problems just like in nonlinear models (see for example
[49] where a parallel strategy is considered). Nevertheless, the trick that we
have described in the previous section allows us to solve only two “generic”
cell problems. The generic solutions can then be combined to generate the
solutions of (24) for arbitrary macroscopic points. Compared to an approach
where the “real” cell problems (24) are actually solved, this procedure allows
a substantial reduction of the computational effort and makes unnecessary
the use of parallel algorithms.
From a practical viewpoint, the procedure is therefore the following:

1. Microscopic resolution (independent of the fibers orientation).

1.1. Solve once and for all the generic cell problems (28) and (29) (see
below for the description of the discretization method).

1.2. Compute the generic permeability Ky with formula (31).

2. Macroscopic resolution (which depends on the function v defining
the fibers orientation)

Solve the macroscopic problem (26) (see below for the description of
the discretization method). Whenever the value of the permeability
K (z1) is needed — typically at each integration points of the finite
element — we use formula (30) and the pre-computed values of the
generic permeability K.

The discretization methods that we used to solve the various problems
are reliable and standard, so we just sketch their description. The generic
cell problems (28) are solved using Q2 finite element for the velocity and
discontinuous P1 for the pressure. This pair of elements is known to sat-
isfy the inf-sup condition ([50]), and is elementwise mass preserving. The
Darcy equations (26) are also solved by mixed finite elements: the velocity
is approximated in the lowest order 3D Raviart-Thomas finite element space
(see for example [85]), and the pressure is constant by element. This choice
ensures the continuity of the normal component of the velocity and an exact
elementwise mass balance. Moreover, we adopt a mixed-hybrid formulation:
a symmetric definite positive system is first solved by a preconditioned con-
jugate gradient method to compute the trace of the pressure on the faces
on the elements; next the pressure and the velocity are recovered by a local
procedure.
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2.4.1 Parallel fibers: influence of the orientation

In this experiment, we impose a pressure drop between two opposite faces
of a unit cube. The fibers are parallel and we investigate the influence of
the angle between the fibers and the flow (which is mainly directed along
Ozxy). We report on Figure 3.5 the curves of the flux through a face of the
cube versus the angle for three different sizes of the fibers. As expected, the
flux is maximal (resp. minimal) for a flow parallel (resp. orthogonal) to the
fibers, and is greater for smaller fibers.

0.9 ===

08 | ]
07 g
06 - R 4

05 | R b

flux

0.1

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 E;O 90
angle fibers/flow (in degrees)

Figure 3.5: Influence of the angle between the fibers and the flow, and of the

radius of the fibers.

2.4.2 An example with non-parallel fibers

In this experiment, we still impose a pressure drop between two opposite faces
of a unit cube, but now the angle between the fibers and Oxs is variable:
v(z1) = 27z1. Figure 3.6 shows the influence of the orientation of the fibers
on the velocity vectors.

3 Low solid fraction limit

In the applied literature (see e.g. [64] or [70] and references therein), the
permeability in the low solid fraction limit is often assumed to be scalar and
is searched of the form k = a?f(¢), where a is the diameter of the fibers
and ¢ the volume fraction of the solid material. More sophisticated models
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Figure 3.6: Velocity obtained with fibers making an angle y(z1) = 27z with
Oz4 (on this picture Oz is horizontal and Oxs vertical).

provide a homogeneous permeability tensor of the form

K. 0 0
K=[0 K o0 (34)
0 0 K

where K| (resp. K ) corresponds to the permeability in the direction parallel
(resp. orthogonal) to the fibers. The following expressions are derived in [52]
in the case of fibers with circular section:

a2 2
K= @(log(l/go) —1.5—|—2<p—%), (35)
a2 2
K=o (logt1/e) + 517 ). (36)

Many other expressions have been proposed in the literature and com-
pared to experiments. Although they present slight differences, most of
them share the same leading order terms. We refer to [64] and the references
therein for a review of the most commonly used formulae and to [70] for
some recent developments. In 73], these formulas were obtained by solving
analytically approximated cell problems where periodicity were replaced by
convenient boundary conditions.

Our expression for the permeability (32) with y(z1) =0 is:
Ki 0 Ki
K=|0 7 0 (37)
Ko 0 Ko
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where K;; and V are defined in (33). The purpose of this section is to
compare this formula with (34). More precisely we shall compare K| with

V and -
(511 512) with (KL 0 )
Ko Ko 0 K
In section 3.1, it is shown that the leading terms of our formulae are consis-
tant with (35) and (36). In section 3.2, we compare the predictions of the

asymptotic formulae with the results of numerical simulations of the model
proposed in section 2.

3.1 Rigorous determination of the leading order terms

It has been seen in section 2, that the computation of the permeability tensor
requires the solution of the auxiliary 2D Stokes problems

~A U +V,Pl=¢; inYp
div,U =0 inYp
U/ =0 ondYr\oy
{U’, P7} is Y — periodic

38
39
40

(
(
(
(41

)
)
)
)

and the auxiliary 2D Poisson problem

~A,V =1 inYp (42)
V=0 ondYr\9Yy (43)
V is Y — periodic (44)

Let us now suppose that the size of B = Y \ Vr is of order 7, i.e. that
B = 1By where the radius of By is of order 1. We would like to know what
happens with the averages of U/ and V when 5 — 0+. This is the low solid
fraction limit. We assume that 1 and € go to zero in such a way that

1
n> eV, (45)
3

so that at the limit the effective flow is described by the Darcy law. For
smaller obstacles, different limit regimes occur (Brinkman or Stokes equa-
tions).

Following [6], where this problem was studied rigorously, we set

A wF+V,¢F =0 inR?\ By (46)
div,w® =0 inR?\ By (47)

wF =0 on 0By (48)

w® = (logr)e;, in infinity, r = |z|. (49)
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Then (46) -(49) has a unique solution being the sum of the special solution
for the case of the unit circle and of the solution for a "difference" problem,
where the velocity has a logarithmic asymptotic behavior at infinity. For
details we refer to [7], [4], [5] and [6]. The asymptotic behavior is given by
the following result:

Proposition 3 ([6])

We have
(P (), U ()} — (), (4)) (50)
weakly in L2 (R? \ By)/R x H}. (R? \ By)?. Furthermore
1 5k

lim———— [ U dy=-%, 51
-0 [lognl|Y] Jy, * ™ 1)

This result shows that the 2 x 2 matrix (K;;) is asymptotically a scalar
matrix, confirming the observations from [52, 64, 70]. It also shows that

— — 1
Ki1 =Ko~ ;‘ log7|.

Formula (36) is therefore consistant with our result at the leading order with
a =n and ¢ = m?/4 (7n? is the solid surface in the cell and 4 is the cell
surface [—1,1]?) .

We now discuss the low solid fraction limit for V. A detailed mathemat-
ical article on the computation of dispersive media is [71]. It concentrates
mainly on the Neumann boundary conditions. In such a case, simple asymp-
totic formulas of Rayleigh type have a high accuracy. In the case of Dirichlet
boundary conditions, this kind of asymptotic formulas is unfortunately much
less accurate. The case of low solid fraction for the Dirichlet problem in a
perforated domain has been addressed in [67] but only in 3D. In 2D we
establish the following result.

Proposition 4

We have
2v .
Viny) — — weakly in H}. (R*\ By) (52)
where v is the unique solution for the problem
~Av=0 inR?\ B, (53)
v=0 ondBy (54)
v =1logr at infinity, 7= |y|. (55)

Furthermore ) 5
Iim ——— Viy) dy = —. 56
25 Tlog a3 Jy, " W ¥ = (%6)
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Proof. It is a simplified version of the corresponding result for the Stokes
system in [6] and we give only an outline.
First we introduce the sequence V%7 defined by

(Vo1 —0 in B

2 .
) Vo — ;logr in By, \ B (57)

2
LVO’n:—;lOg’f] in R2\Bl/,,7

where By, is the ball of radius 1/n and V1(z) = V(nz) — V®(z). Then
it is easy to see that VV17 is uniformly bounded in L?(n~'Y\ By) and pass
to the limit 7 — 0. As in [6] , we establish the a priori estimate in L? with
the weight (r 4+ 1)log(r + 2) for V7. It leads to the conclusion that (52)
holds true.
Next we have
1

w Yr
where V" (z) = V(nz) and the proposition is proved.$

2 1 1
V(y) dy = log -+ O(|log _['?) (58)

The above result shows that the leading term in V is 2|logn| which
shows that our result is asymptotically consistent with formula (35) (taking
as before a = n and ¢ = n?w/4).

3.2 Numerical results

In order to assess the previous results, the cell problems (38)-(41) and (42)-
(44) have been numerically solved for fibers with circular sections, with a
solid fraction ranging from 0.2 to 0.002. To this purpose, for each solid
fraction, a specific mesh has been generated to achieve the resolution of the
cell problems. The procedure described in section 2.4 has then been applied
to obtain the permeability tensor. Equations (35) and (36) have been plotted
with @ = 7 (the radius of the inclusion) and ¢ = mn? /4. The agreement of K ;
with formula (36) is reasonable and both curves have the same asymptotic
behavior (Fig. 3.7, left). The agreement of V with formula (35) is excellent
on the whole range of solid fraction (Fig. 3.7, right).

All the previous computations have been done with circular section
fibers. An interesting property given by Propositions 3 and 4 is that the
leading term of the asymptotic behavior is independent of the shape of the
solid inclusion. To illustrate this fact, we present on Fig. 3.8 the results
given by (56) and (51) compared to numerical simulations with square sec-
tion fibers. The good agreement is striking.
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K11 or k22’ ——
Formula (35) -------

[ 002 004 006 008 01 012 014 016 018 02 0 002 004 006 008 01 012 014 016 018 02
phi phi

Figure 3.7: Fibers with a circular section. Left: comparison between Kj;
and Formula (36). Right: comparison between V and Formula (35).

¢ 14 K
0.196299 | 0.167123 | 0.079633
0.125631 | 0.267833 | 0.131824
0.070667 | 0.417707 | 0.208051
0.031407 | 0.651478 | 0.325558
0.007851 | 1.077900 | 0.538937
0.001962 | 1.515430 | 0.757714

Table 3.1: Numerical values corresponding to Figure 3.7.

"Kilorkzz —— T T T T T T T T
Formuia (50) - . Formula (55)

Figure 3.8: Fibers with a square section. Lgt: comparison between K;; and
Formula (51). Right: comparison between V and Formula (56).
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n |4 K;;
0.5 | 0.427491 | 0.208525
0.4 | 0.554049 | 0.270007
0.3 | 0.724945 | 0.353740
0.2 | 0.974281 | 0.477150
0.1 | 1.409805 | 0.693221
0.05 | 1.848851 | 0.911036

Table 3.2: Numerical values corresponding to Figure 3.8.

Appendix

In this appendix we discuss the error made, when the physical velocity and
the physical pressure are approximated by the homogenized quantities, in-
troduced in section 2.

In the case of a periodic porous medium, the Darcy law was justified
by L. Tartar in the late seventies. The proof that the Darcy velocity is the
weak limit of u®/e? is in [94] . For more details and generalizations to 3D
geometries, one can consult the review chapter by G. Allaire in [8] . In fact,
in the absence of external boundaries, it is possible to prove that u®/e? — u®
and p® — p® have L?—norms of order . This confirms the formal asymptotic
expansions. Nevertheless, the rigorous mathematical proof, which can be
found in [80] , requires also to correct the compressibility effects, coming
from u®. In fact, it is optimal to work in the Hilbert space, having finite
L?-norms of both the velocity field and its divergence.

Presence of outer boundaries complicates seriously the estimates. It was
established in [79] that in the presence of an outer boundary, where physical
velocity is zero, u®(z,z/e) is a L*-approximation of order £/3™)  where
m = 2 in the 2D case and m = 3 in 3D. For Laplace operator, such an
approximation is known to be of order /e.

In our particular situation, we have also the interfaces. Namely, u® is
constructed using (25) and it reads

£n 3 0
(e, A7) 23 (1)~ F2@) wiar. .z,
21 ﬂ, 29 = — cosy(z™") — % siny(z*") (59)
£,n 0 ]
P 2 (0 - @) im0
j=1 !

where {w’, 77} are defined by (24). Clearly, it depends on the parameter
5", saying in which layer we are.
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Thus, inside every layer the differences

£,n

° =r ) e @ P

p(z1™, z)
w§ = uj/e? —ug (z, =)

9

satisfy the system

—ve? Aw§ + %qs =-0; in Q9"i=1,2,3, (62)
7
div w® = —div,u’(z, M) in Q%" (63)
with
3 3 2
0 o ) 940
_ 271 _ —1 _
W=t Y S S| e {30 2 30 S|+
j=1 "I L k=1 j=1 "I L k=1
2 3 3
0 oY _ 0
255 [JZ a:a;h'“j] } —e ), [Jgjipl]' (%4
j=1 L k=1 j=1 """

After [80], we have
| /Q W da| < OVl p2(qem) (65)
for every ¢ € H'(25™), being zero at the fibres boundaries.

Then one corrects the compressibility effects, by introducing the auxiliary
problem

L4inQ = 9@ + o (_ siny(z1)Qg + cos¥(z1)Q3 | = divy (JG&°) in Yp
8z1 (922
(66)
Q@ is Y — periodic in (21, 29). (67)

Using the decomposition from section 2, we see that
divw/ uo(m,zl,ZQ)dzleQ =div,u? =0
Yr

is the necessary and sufficient condition for existence of at least one solution
for (66)-(67). Clearly, there is no uniqueness and we can choose a smooth
solution @ for (66)-(67).

Now, as in [80], we have

—ve? A(ws + 6Q(ac p(xi’",x))) + 0 r_ —Uf — e’ AQ(x p(aji’n,l'))
oy ’ € B.Q:iq Yy ’ €
Q" i =1,2,3, (68)
£,n
_¢t ", 7)

div (w® + SQ(w, M)) = Zdiv, Q(x, Pl z)
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This means that {w® + £Q(z, M), q°} satisfies the Stokes system (68)-
(69) with the force and the source terms of order €2 in appropriate norms.

In the situation without external boundary one could proceed as in [80]

and conclude that the L2-norms of {w® +£Q(z, W)} and ¢ are of order
€.

We are in presence of many layers 2™ and the geometry differs from
one layer to another. Consequently, the coefficients in problem (24) change
with n and they depend on z%". Thus, there is a jump of u® at the interface
between different layers. Furthermore, the layers are of size " and this fact
could also influence the estimates. By " gluing together " the layers, this
difficulty will be avoided.

Homogenization of problems containing several different subdomains, is
closely linked with the determination of the effective flow conditions at the
interface between two different porous media. At mathematically rigorous
level, these problems were considered by W. Jager and A. Mikeli¢ in a number
of papers. The general theory of the corresponding boundary layers is in
[65]. Our particular situation, with layers of fibres which should be glued
together, has a lot of similarities with the determination of the transmission
conditions at the interface between two porous media with different pore
structures. The transmission conditions, involving continuity of the pressure
and of the normal velocities, were rigorously established in the article [66].
We will follow the approach from [66].

Let us suppose that the interface between the layers Q5" and Q%" *! is at
z1 = c. Because of (22), the interface is stable under the mapping ¢, , and,
following [66], we introduce the boundary layer problem which corrects the
jump of u®. We denote by Lg the Stokes operator corresponding to system
(24). We denote the operator Ejg' when the parameter in the coefficients is
25" and by Ly otherwise (i.e. when the parameter is °"). Analogously,
{wh T 73+ (resp. {wP~, w5 ~}) is the solution for (24) for £ = 25"+ (resp.
for z = z5™). Then the boundary layer problem reads

ng({wj,bl’ M) =0 in Zt= Ukemnwu{o} (yF + k51) (70)

Ls{w mP)y =0 in  ZT =Ukew (yF — k€1> (71)

[wj,bl] = Wit — Klj(xs,n-l-l)é'l _ (wj,— _ Klj(l‘s’n)é'l) at 2, =0 (72)
A , w? ™ , dwl™ . _

[8—;1 — mwblgy;] = B — 6 — ( L™ atz =0 (73)

{wj’bl, ﬂj’bl} is periodic in  29. (74)

We note that the normal component of the jump [wj’bl] at the interface
z1 = ¢ has a zero mean.
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Then by slightly generalizing the theory from [66], we get the solvability
of problem (70)-(74) and the Saint-Venant principle saying that

|V | + W] < cge=t¥1 for some positive constants ¢y and ¢;
(75)
|Vl | 4 |7 — H(21)C — H(—21)C)| < coe 1. (76)

Consequently, in the neighborhoods of the separating planes 1 = ¢ between
two adjacent layers, our asymptotic expansion reads

e £ e+l
= = uo(x, M)H(c — ) +u’(z, M)H(wl —c)+
23: ; 8351 (w)wj bl 4 ( compressibility corrections + higher order terms)
~ (77)
p° = p°(z) +ep'(z, W)H(c — 1) + ep’(z, p(x?n:l, ))H(:vl —c)+
Z % ' — 8$] )(.T)T('j bl ( higher order terms) (78)

=1

Let us check that the jump of ?—; at x1 = c is zero.

First, in the tangential direction we have continuity of traces, by con-
struction.

Next, in the normal direction we have

ui > e,n+1 £,M 8p0
2= D (K (et = Ky(a*™) f; — a?j)‘wlzc =0, (79)

=1

since we imposed at the interfaces the continuity of K(f — Vp®)é, as the
transmission condition. We note that it follows from those considerations
that the continuity of the normal components of the filtration velocity is
one of the necessary and sufficient conditions for having the correct order of
approximation.

For this new approximation, we write an analogue of the system (68)-
(69). Then, it is used for obtaining the estimate for the L?-norm of the
difference between ?—;,ps} and the correction. Calculations are analogous
to the ones from [66] and we have the following conclusions:

e a) The pressure is continuous at the layer interfaces. We note that
the absolute value of the pressure jump is one of the leading terms
in the error estimate and it should be set to zero in order to get an
approximation. It is the second (and last) necessary and sufficient
condition for obtaining the correct order of approximation. For detailed
calculations we refer to [66] .
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e b) wi is of order cyexp{—c;e" '} at the other interfaces and we can
simply ignore it there.

e c) Using that p € C!, we get that the boundary layer terms are of order
e™t3/2 Since we have ¢~" boundary layers, this means a contribution
of order €%/2.

e d) Keeping K(z°") and K (z°"*!) deteriorates significantly the regu-
larity of p° . For this reason, K (x1) should be used. This introduces
an approximation error of order ". For small r, a possible solution
is to take several intermediate values of 2%™. Attempts to work with

less regular K lead to weaker error estimates and give raise to a global
error of order £/ (see [66]).

To conclude, in analogy with the results from [66] , we have

Theorem 3
Let B, be the n'* layer, containing fibres. Then we have

3

u® 1 op° ; 1 T
IZ- > xm@y) (fj(w) - ﬁ(w)) W@, =, = cosy(a®") -
over layers j=1 J
T2 . £,n min r
— siny(z°"))|r2(q) < CemH/OT, (80)
Ip° = P°llp(qy < Ce™H/6), (81)

With an appropriate choice of layers, the estimates (80)-(81) imply an inte-
rior estimate of order +/.
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Chapter 4

Numerical approximation

Les méthodes numériques présentées dans ce chapitre ont été implémen-
tées dans la bibliothéque LIFE-V développée conjointement o I’INRIA, a
I’EPFL et au Politecnico de Milan ( www.lifev.org).

1 Introduction

The present chapter is devoted to the numerical approximation of the math-
ematical models which have been introduced in chapter 1 and analyzed in
the course of chapter 2 and 3. Section 2 is devoted to the numerical approx-
imation of the fluid dynamics problem. We introduce the basic tools for the
numerical approximation of the Darcy problem and we discuss the mixed
hybrid finite element formulation for the space discretization. Section 3 is
devoted to the discretization of the transport equation. We use a splitting
technique for the space discretization and the Euler method for the time
discretization.

The goal of the section 4 is to present a modified method of upwinding that
reduces the numerical diffusion introduced by the upwind scheme.

2 Numerical approximation of the flow problem

The mixed finite element method provides a direct and accurate approxima-
tion of the flux. However, mixed finite element discretizations give rise to
large systems of algebraic equations, which are difficult to solve, because they
are derive from a saddle point formulation. The introduction of inter-element
multipliers, commonly called hybridization, is frequently used to transform
this saddle point problem into a problem whose matrix is symmetric and
positive definite (see [20]).

The main favorable property of these methods is that both the primary un-
known and its gradient are approximated simutaneously with the same order
of convergence. Besides, they preserve the physics of the problem, i.e. they

93
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locally conserve mass and preserve the continuity of fluxes (see [20, 31, 85]).
Some comparison studies show that the mixed hybrid finite element is su-
perior to the standard finite element in terms of accuracy. It is also more
efficient to the conforming method in terms of computational effort [2, 62].
In this section, we describe how the above mentioned techniques can be
applied to the following second order elliptic equations

u+KVp = 0 in Q,

divu = f in €,
(1)

b = pp On PDa

un = wu; on Iy,

where 2 is a bounded domain in R? with polygonal boundary 82 = T'pUT y;
K is the so-called hydraulic conductivity, that is assumed to be symmetric
and positive definite; n indicates the outward unit normal vector along 02;
f € L*(Q) represents the sink/source function; p, and uy are respectively
the Dirichlet and Neumann boundary conditions.

Under the above assumptions, it is immediate to chek that the problem (1)
admits a unique solution.

The basic idea of the mixed methods is to approximate simultaneously the
pressure p and its gradient , or more generally a gradient related velocity field
u and compute the Darcy velocity u as an unknown independent function.
Introducing the Hilbert spaces

V= H(div;Q) = {v € (L*(Q))® | V.v € L}(Q)}, 2)

Hyn(div;Q) = {veH(div;Q)|van=gonTxy}, (3)

the mixed formulation of (1) can be stated as: Find (u,p) € Hy n(div; Q) x
L%(Q) such that

{a(u,V)—b(v,p) = g(v) Vv € Hyn(div;Q),

) (4)
b(u,q) = flg) Vg €LQ).

The bilinear form b on V x L%(Q) is defined by b(v, q) = /div v gdz, ais
Q

continuous linear form on V' x V defined by a(u,v) = / u.v dzr, g and f are
Q

continuous linear forms on V' and L?((2), resp., defined by

g(v) = /F py(vn)ds and f(q) = /Q f qda.
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2.1 Discretization with the mixed-hybrid finite element

In the present section we consider the discretization of the space variables.
First of all, let us introduce a triangulation 7} of the domain €2, i.e. a finite
decomposition of 2 into polyhedrons, such that

1. each K is a polyhedron with non-empty internal part K;
2. K1 N Ky = { for each distinct K1, Ko € Tp;

3. if F=KiNK,# @and K1 # Ko, then F is a common face, side or
vertex of K1 and Ko;

4. diam(K) < h for each K € Tj,.

In our case, we consider hexahedra elements in 3D. We denote by g5 the
set of edges of 7. Respecting the partition of €2 into Dirichlet boundary
T'p (where p = py is given) and Neumann boundary I'y (where u.n = uy is
given), €, can be subdivided into three disjoint subsets e, = 1 Uel Uel.
Here e}, := {e € eple € 00} is the set of inner edges, ef := {e € ezle C T'p}
is the set of edges lying on the Dirichlet boundary and e} := {e € eyle C T}
is the set of edges lying on the Neumann boundary. For every K € T, we
denote by Px(K), k > 0, the set of polynomials of degree < k on K. Analo-
gously, we define Pg(e) for £ > 0 and e € ¢p,.

For the approximation of the Darcy velocity u, we use the mixed finite ele-
ment method on Raviart-Thomas elements of lowest order (see [20]) for the
spatial discretization of the first two equations of (1). Thus u is approxi-
mated by uy € V},, where

Vi, := RTo(Q;T) := {vp, € H(div; Q) | vp|k € RTH(K) forall K € Tp}

and RTy(K) is defined by

RTY(K) :={xx/xx = (ax + b,cy + d,ez + f),a,b,c,d,e, f € R}.
The pressure p is approximated by a piecewise constant function p, € Qp,
where @}, is defined by
Qn:={qn € L*(Q) | qu|x € Py(K) forall K € Tz}

Here Py(K) is the space of constants on K.
Note that any vp|x € RTy(K) is uniquely defined by the flux across the
edges of K

Ve 1= /vh\K.neds, e C 0K,
€
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where n. is an arbitrarily oriented unit normal vector to e € gy,
The property vy, € H(div;2) requires the continuity of these flux values:

Lemma 3
The following definition for V' is equivalent to (2):

2 3 2
V= {v € (L (Q)) L (divv)|x € LA(K) YK € Ty;
Z / vaagpdo =0 Vo€ D(Q)}
Here ng denotes the exterior unit normal of K and D(Q) = C§°(Q) is the

space of test functions.

3
Proof. Obviously, ” " holds, since V C (L2(Q)) and (divv)|x € L*(K)

for all K € 7T;. Furthermore, for all v € V and ¢ € D(2) Green’s formula
implies

Z /{jKV.anoda = Z (/Kv.dex—l—/Kdivadx>

KET;, KET,

= /V.Vgodm—l—/divvgodm
Q Q

= / v.ngpdo = 0.
o0

3
To prove that ” 2" holds, too, we must show that each v € (L2(Q)) , which

fulfills the above requirements, has a generalized divergence in L?(Q). To
this end, we define w € L%(Q) by w|x = divv for all K € Tj,. Then for all
¢ € D(Q) it holds

/ngod:v = Z /Kdivvcpdx: Z (/6K(V.nK)<pd0—/Kv.V<pda:)

KeTy, KeTy,
= Z v.Vodxr = —/V.V(pdw.
KeT, K @

Hence, w is the (generalized) divergence of v, as desired. This concludes the
proof of the lemma. <

To take into account the flux boundary conditions on I'y, we consider
the subspace thb’FN of V},, which is defined by

thb,FN — {Vh eV ‘ /vh.nds = /ubds forall ee€ 8;]:]}
e

€
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If u, = 0 on I'y, we obtain the space V,?’FN.
Then the discrete mixed formulation reads as follows: Find (up,ps) € th”’FN X
Qp, such that for every (vp,qp) € V,?’FN X Qp,

{“(“h’Vh)—b(Vh,ph) = 9(va), (5)

b(un,qn) = flan)-

Unfortunately, the systems of algebraic equations resulting from the mixed
finite element discretization are semidefinite. In order to obtain symmetric
definite positive systems, we apply the following classical technique, called
hybridization:

Hybridization: We eliminate the continuity constraints in the definition of
Vi, and enforce the required continuity instead through additional equations
involving Lagrange multipliers defined on the edges e € ;. Thus we replace
Vh by

Wy := RT_1(%T;) == {vh € (L2(Q))2 ‘ valx € RTp(K) forall K ¢ Th},

and thb’FN by the corresponding W)’ bIN of W,

W), is the discontinuous first order Raviart-Thomas finite element space.
Notice that Vj, C Wp, and that an element vj, of Wy belongs to Vj, if and
only if v, € H(div; Q).

In addition, we define the space of Lagrange multipliers by

APWTP = {/\h € L*(Ep) | Anle € Pole) Ve € ep, /(/\h—pb)ds =0Vee Ef?}’

€
where Ej, = Ugge,e. Then the hybridized mixed formulation reads as: Find
(up,ph, bp) € W;:”’FN X Qp X AZ“FD, such that for every (vp,qp,A\n) €
o,r 0,09
Wh N ox Qh X Ah

)
a(un,va) = Y b(vha,pn) + Y dx(un,va) = 0,
KeTy KeTh
0D brc(un,qn) = flqn), (6)
KeTp,
> dr(An,up) = 0.
\ K€Th

where b (vh, qn) = / div v, g dz and dg (Ap, V) = / Ap (Vp.ng) ds for
K 0K
KeT,.
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The solutions uy, and pp, of (6) coincide with the solutions uy and pp, of (5).
Therefore we are allowed to use the same notation for them.

Theorem 4
1. Let (up,pn) € Vi X Qp, be a solution of (5). Then there exists a unique
pn € Aj such that (up,pp, ps) is a solution of (6).

2. Let (up, phs pn) € Wh X Qp X A} be a solution of (6). Then (up, pp) is
a solution of (5).

Proof. (cf. the proof of Thm. V.1.1 in [20]). ¢

Remark 2.1 The Lagrangian multiplier uy represents an approrimation of
the trace of the solution p on €. This value can be used together with py to
obtain a better approximation of p (see[11]).

Some remarks on the algorithmic aspects: In order to reformulate the
problem (6) in algebraic form, we introduce the following basis vectors:

1. (xx)keT; is the basis associated to the space Qp, xx denotes the
characteristic function of an element K.

2. (Xe)ecs, is the basis associated to the space Ap, x. denotes the char-
acteristic function of an edge e.

3. The corresponding basis vectors to W, are denoted by wg .
The vector wg . has the following properties:

e Wk, is null on Q\K,
o V.wk . is constant on K and / V.wie(z)dr =1,
K

e Wg (z).ny is constant along each edge f and /wK,e(:c).nKyfdm = lef-
f

By virtue of these definitions, the unknown functions up, pp and pp can be
represented by

up = E § UK eWK,e,

KeTrecdK
pr = Z PKXK,
KeTy,

Mp = ZNeXea
ecep

where pg is the mean value of the pressure over K and p, is the mean value
of the pressure over the edge e.

Figure 4.1 shows the approximated unknowns and the basis functions on the
2D reference element.
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E
0,2) 30 (1,2)
w w
& 1 > ° < 2 ®
E2 El
W3
(0,0) ® (1,0)
2, E,

@ Pressurevalue

»

> 4 & Pressurevalue and its gradient
1

Figure 4.1: The approximated unknowns and the basis functions on the
reference element: the 2D case
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Employing the basis functions wgz for € ¢ ¢f and K € Ty, with & C 0K,
xx for K € Ty, and xe for € €} as test functions, we obtain from (6) the
following system of algebraic equations:

a(ug,Wke) —px +pz = 0, K €Ty, eC IK,

S i -0 KT .
e€cOK K

UKe+ UK e = 0, eceh, e=0KNOK'

Here ug € RTy(K) is defined by ug = Z UK, eWK,e-
ecOK
For the derivation of (7) we employed the fact that the basis functions wg

of W, satisfy

/div Wi dT = / div wi edr = WK eNgdo = /wae.ana =1,
Q K oK e

where ng denotes the unit outer normal of K.
After an assembling procedure, we obtain the following algebraic restate-

ment:

Au+BTp+ DTy = 0
Bu = —-F (8)
Du = 0,

where F is a vector defined by: F = (approximation of / fdm) ,
K KeTy

the matrix A is given by:

/K—le,e.wK,e, if K=K
Ak krey =19 Jk
0

otherwise,

the matrix B is defined by:

B 1 if K=K and eCcK
Ho(Ke) = 0 otherwise,
and the matrix D has the following expression:
5 lor —1 if e=¢
S o otherwise.
The matrix
A BT DT
S:=| B 0 0

D 0 0
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is symmetric, non-singular but fails to be positive definite. However, A is a
block-diagonal matrix, each block being a 6 X 6 matrix easy to invert. We
can therefore eliminate u in (8) finding

BA'BTp+BA'DTy = F
-1pT -1pT (9)
DA *B'p+ DA'D*p = 0,
i.e., a linear system associated to a symmetric and positive definite matrix.

The unknown pp is not continuous, therefore another simple elimination
procedure leads to a system where the only unknown is y. It reads

Ry =F, (10)
where

R:=DA'D" — DAT'BT(BA™'BT)"'BA~' DT,

and F:=-DA'BT(BA™'BT)"'F.

Having determined the solution of system (10) for the Lagrange multiplier
i, the mixed-Lagrangian algorithm furnishes p through (9) and u through
(8).

For the numerical computation, the symmetric definite positive system (10)
is first solved by a preconditionned conjugate gradient method to compute
the trace of the pressure on the faces on the elements; next the pressure and
the velocity are recovered by a local procedure from the system (7). This
yields a reduction of the number of equations that have to be solved globally.
We give the principal steps of the MHFE algorithm.

1. Initialize geometry and physical parameters of the problem.
2. Create the Schur complement matrix at the element level.

3. Find pu (trace of the pressure) by solving (10) via a preconditionned
conjugate gradient method.

4. Loop on the number of cells.

(a) Evaluate and invert Ax = / K™ ' Wi e Wi e
K

(b) Calculate the flux ug and the pressure px by solving (7).
(c) Write the outputs px and Uk.

Remark 2.2 For the numerical calculation of the matrizs Ax, Bg and
Dy on the reference elements, we use the Piola transformation: let K
be the reference element. For each K € Ty, there exist a transformation
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Kl K = To(K), bijective from K to K. We denote by DT, the deforma-
tion gradient and by J the determinant of DT,. Here, to each vector function
U € H(div; K) we associate the function u € H(div; K), defined by

1

|J|DTa.ﬁ(§c) for each x = F(%) € K. (11)

u(z)

The transformation (11) was constructed in such a way that

/ u.Vpdz = / u.Vp dz
K K

Using Green’s formula we deduce, cf. [96], that

/pdz’v udr = /ﬁdz’v udz,
K K

and we have, with g denoting the exterior unit normal of oK,

/pu.anU:/ pa.ng do
oK oK

2.2 Numerical examples
2.2.1 First example:

In this experiment, we impose a pressure drop between two opposite faces
of a unit cube. The permeability tensor is equal to the identity. Figure 4.2
shows the pressure.

2.2.2 Second example:

In this experiment, we impose the same Dirichlet condition on the 6 faces of
a unit cube (Dirichlet condition equal to zyz). The permeability tensor is
equal to the identity. Figure 4.3 shows the the velocity and the pressure.

2.2.3 Third example

In this experiment, the tensor of permeability is given by
K(z1) = R(z1)KoR (1), (12)

with
1 0 0
R(z1)=| 0 cosy(z1) —sin~y(z1)
0 siny(zy) cosy(zr1)
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Figure 4.2: The pressure.

Figure 4.3: Velocity (at left) and pressure (at right).
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and _ .
/ Ul o0 / U?
1 Yr Yr
Ky=— 0 Vv 0 (13)
|y| Vi
uy 0 / Uz
| JVFr Yr |

where the coefficients of K are the solutions of the two generic problems
(Stokes/Poisson) given in the chapter 3.

We impose a pressure drop between two opposite faces of a unit cube, The
angle between the fibers and Oxy is variable (y(z1) = 27z;). Figure 4.4
shows the influence of the orientation of the fibers on the velocity vectors.
Figure 4.5 show an isometric view and views along Oz1, Ozy, Oz3 of some
streamlines.

Figure 4.4: Velocity and pressure obtained with fibers making an angle
v(z1) = 2wz, with Oz, (on this picture Oz is horizontal and Ozo ver-
tical).
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Figure 4.5: Streamlines obtained with fibers making an angle y(x1) = 27z
with Ozg (z1, 9,3 are denoted by X,Y, Z on these pictures)
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3 Numerical approximation of colloid transport equa-
tion

3.1 Introduction

We consider the advection-diffusion-reaction equations:

% +div(uc—D(u)Ve) = —kcs, in 9, (14)
0Os .
5 = —kcs, in Q. (15)

In our case, the reaction term models the adhesion and the diffusion models
the so-called dispersion of the porous medium.

When (14)-(15) is advection dominated, conventional numerical methods ex-
hibit some combination of difficulties, ranging from non-physical oscillations
(central difference/ Galerkin schemes) to excessive numerical diffusion (up-
wind schemes) at steep fronts.

One powerful approach for such problems are operator splitting techniques,
which involve decoupling the full model into single physics components, em-
ploying specialized numerical methods to solve each component, and cou-
pling the resulting solutions togother. Indeed, a natural strategy is to split
the equation into a hyperbolic conservation law modelling advection and a
parabolic equation modelling diffusion and lower-order terms, and then try
to reproduce the solution using these simpler equations as building blocks.
Variations on this operator splitting approach have indeed been taken by
several authors; we mention Demkowitz & Oden [38], Douglas & Russel [39],
Espedal & Ewing [43], Dahle [32], and Arbogast & Wheeler [10]. A more
general approach is that of the Eulerian-Lagrangian localized adjoint meth-
ods of Celia et al. [26], and Wang et al. [99].

A number of methods for advection-dominated diffusion equations have been
based on the above splitting. For example, Douglas and Russell developped
the Modified Method of Characteristics [39] based on combining a character-
istic method for advection equation with a Galerkin finite element method
for diffusion equation.

In [34, 35, 36], Dawson examined Upwind-Mixed methods to explicitly
approximate the advective terms using an upwind method and implicitly
approximate diffusive terms using a mixed finite element method. Recently,
Dawson and Aizinger [37] extended this analysis by applying the Discon-
tinuous Galerkin method developed by Cockburn and Shu [30] and the En-
hanced Mixed finite element method developped by Arbogast et al [9] to
the transport equation. They analyzed the standard transport equation uti-
lizing higher order approximating spaces, a positive semi-definite diffusion
coefficient, and physically realistic boundary conditions.
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The purpose here, is to approximate (14)-(15) by employing the splitting
techniques. Indeed, we will explicitly approximate the advective-reactive
terms using an upwind technique based on the finite volume scheme and we
will implicitly approximate diffusive term using a mixed hybrid finite element
method.

3.2 Construction of approximate solutions

Here we describe time-splitting techniques which can be applied to the sys-
tem given by (14)-(15), whereby advection/reaction and diffusion are ap-
proximated by different solution procedures. Therefore, before giving the
splitting algorithm, we introduce numerical schemes for solving these two
equations.

3.2.1 The advection-reaction system

In this section, we consider the following advection-reaction system

dc ..

5 +div(cu) = —kecs, (16)
0Os
= = _ ) 1
5t kcs (17)

We will employ a cell-centered finite volume scheme for the spatial discretiza-
tion of (16) and (17). Note that this finite volume scheme can be derived
from the mixed finite element method cf. [13]. It is well known that the fi-
nite volume method is well-suited to treat numerically hyperbolic systems of
conservation laws, it is robust and presents the advantage to be conservative
(we refer to [44] for a survey of its properties).

Formulation of the method: Integrating (16) over a cell K € T, and ap-
plying the divergence theorem yields the following equation for all K € Tp:

1 Jc 1 k
I Bt . do — — d 18
K] ot~ K] o \K|/K” @ (18)

where | K| is the measure of K.

We subdivide the time interval [0,7"] into a finite number of sub-interval
[t",t"*1]. Let At = "' —¢" denote the time step. Writing equation (18)
at time t" and discretizing the time partial derivative by the Euler explicit
scheme suggests to find an approximation ¢"(x) of the solution ¢ at time ¢"
which satisfies the following semi-discretized equation:

1 At —cn 1 k
m/}(T = —m 6Kcn u.ng do — m/l‘(cn Sn dz. (19)
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Now, if we apply the cell-centered finite volume method, each discrete un-
known is associated with a control volume. Let (c’}( s’k) denote the
’ KeTy,

discrete unknowns.

In order to define the upwind technique [58], we need to split the boundary
0K of a discretized element K into an inflow part K" and an outflow part
OK% defined by

OK™ = {z € 0K :ung(z) >0},
0K = {z € 0K :u.ng(z) <0},

where ng (z) denotes the unit outward normal to K.

Let E be a common edge between any two adjacent elements K and K'.
Since discontinuity for any function ¢ € @y, is allowed acrooss interelemnet
boundaries, we need to define the jump discontinuity of ¢ across E. We
introduce the notation ¢™ and ¢®* to denote respectively the inner and the
outer values of ¢ over E with respect to K, that is,

cin(x) = lim c(z + ef),
e—0~

PU(z) = lim c(z +ep).
e—0t

Define the upwind value ¢* on an element boundary as follows:

ct =

AL if un >0,
Ut if un < 0.

We have therefore derived the following finite volume scheme for the dis-
cretization of (16)

1 ; 1
ATt =cn — At [—cm/ u.n do + _cout/ undo +kc% s ]
K7 TR Jorin ™" TR om0 T KK
For the discretization of (17), we obtain
shtl =% —k At cl sy (21)

Remark 3.1 This upwind scheme is known to be too diffusive. We propose
in section 4 a simple technics which reduces the numerical diffusion while
preserving the mazimum principle.

(20)
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3.2.2 The diffusion equation

As pointed out earlier, the diffusion is modelled by writing an equation of
the form

%—div(DVc) = 0, in Q. (22)

(23)

Here we will employ an implicit mixed-hybrid finite element scheme. There-
fore, we introduce a new variable ¢ defined by

¢ =—-D.Ve. (24)
Consequently, we obtain the following system

¢ = —DVe, in Q
Oc (25)

E + d1V¢ = O, in Q

Time integration: Here, we use the Euler implicit time discretization, and
so we obtain the following scheme

gntl = DV, in Q,

n+l _ .n (26)
%+div¢"+1 - 0, in Q.

The mixed formulation of the semi-discrete problem (26) reads as: Find
"t € H(div;Q), "+t € L2(Q) such that for all (1, q) € Ho n(div;Q) x L*(),
we have

/D1¢”+1.¢ = /c”“divzp— cq(1n),
Q Q

Ty
cn—l—l_cn 1
7q+/div¢"+q = 0.
L ar D,

space integration: Again here, for the spatial discretization, we will em-
ploy the mixed hybrid finite element method.
The hybridized mixed formulation reads: Find ( ZH, cZH, uzﬂ) ew, bTN o

Qn X Aﬁ"’rD, such that for every (¢p,qn, Ap) € W,?’PN X Qp X Ag,an
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a(gp ™ n) — D bW, ) + D die(upt gn) = 0,
KeT;, KEeT,,
cn—|—1 —
< M(hihaqh Z bK ¢n+1,Qh = f(Qh)a (27)
KeTh
Z dic(An, ¢7 1) = 0.
\ KeTy

where the operators di,a and bx are the same as in the section (2). The
1
operator M is defined by M (c "+1,qh) At/cﬁ"’1 qrdz.

Employing the basis function in (27) as test functions, i.e., 9, = wg for
(K,e) E'ﬁlxshN with e C 9K, g, = xi for K € T}, and /\h:ngorEEf:ﬁ,
we obtain the following system of algebraic equations:

a(¢n+1,WK,§) n+1 + ,unﬂ = 0, KeTp, eCiK,
C?(H 1 Ck
4 3 — [t KeT )
ecOK K
Pl + Ot = 0, ecel, e=0KNOK'"

Here ¢”+1 € RTy(K) is defined by ¢?(+1 Z ¢nK+elee
e€COK

3.2.3 The splitting algorithm

One particular splitting for the transport equation, results, at each time step,
in the approximation of a hyperbolic-reaction system and a parabolic equa-
tion: given (C™ = C(t"), S™ = S(t")) € Qp x Qn C L*(Q) x L*(), solve the
hyperbolic-reaction system

%—f +div(Cu) = —kCS8 on Qx (",
a8 A
5 = “kCS on Ox ", "),

The solution generated at this step, C , 1s the initial condition for the parabolic

equation

oCc*
ot

+divg* = 0, on Qx ("1,
¢* = —-DVC* on Qx ("]

The solution generated here will approximate ¢" ™1 = ¢(¢"™!) and s"*1 = s(¢"1).
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4 Modified method of upwinding (M2U)

4.1 Notation and Definitions

Here we define the notation we use throughout this section. Let a be a
common edge between any two adjacent elements @ and @'. Let o (resp.
cgy) the concentration in @ (resp. in Q') at the instant n. (We suppose that
cg and cfy are positives).

We define q, as: ¢4 = / u.n where n denotes the unit outward normal to

o
Q. Define the upwind value ¢, on an element boundary as follows:

. {c?2 if ¢go>0

cp = .
cg, if ¢go <0

Let @ € [0,1] and let ¢ the value of the concentration on the interface a.
We define cj, as follows:

(cty + cgy)
"= 9% +(1-6)c} (29)

Let |Q| be the measure of the element @ and let 6t be the time step. Then
we define 8, by

6 0t g,
0 = 30
B Q (30)

We suppose that |5,] < 1.

Finally, we define cg{;& (resp. cr?l;{;’ ) as the maximum of the values ¢}, where

K go over @ (resp. Q') and its neighbouring.
4.2 Numerical Method
We consider the transport equation of the form
Oc+div(cu) =0 in Qx(0,7), (31)
with the initial condition
c(z,0) =(z) in Q (32)

and appropriate boundary conditions. Here u is given, and it verifies div u = 0.
The discretization of the advection problem will be performed by a cell-
centered finite volume method. It is well known that when using constant
cell approximations the numerical diffusion due to upwinding is big enough
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to keep the scheme stable. However, by using higher order approximation
spaces the scheme produces non physical oscillations near shocks. In this
chapter, we introduce modified upwinding techniques, namely modified up-
wind finite volume scheme, in order to have a non-oscillatory shock captur-
ing method for the approximation of hyperbolic conservative laws without
adding excessive numerical diffusion and without using more sophisticated
and well known flux limiters cf.[59]

4.2.1 Discretization

We integrate (31) over each control volume () between two instants ¢" and
t"*+1 and by using the Green’s formula we get

otq
G- X e (3)
aCoQ

we introduce a new variable ¢»*! defined by:

et = ¢y — Blch — ), (34)

max

and thanks to the relation Z go = 0, we deduce that

aCoQ
aCOQ
We want to impose, for each a € 9Q),
't < adl (36)

(the same property can be deduced for c’éﬂ).

For the positivity, we write

gl = o — Bt (37)
and we want to impose 52"'1 > 0 (the same property can be deduced for
n+1
Q)

Two cases can arise:

First Case: g, > 0| In this case cp =cg and >0
Q

For the maximum principle, we write
— 0
et — Qi =y — it — B[ (el — Q) + (1= 3)(ch — )]

By using (36), we obtain:
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(c% - cff;a”x) (1 - p(1 - g)) < §9<05’ o Cg’g‘)

and also

B
0< 59(632, - cg) + (1 - ﬂ) (cg?,g; - cg)
We come to a choice

o if ¢fy > ¢y, we take 0 = 1.

(1— B)(cB — )
B 1)

e otherwise, we choose Hf' = min (

S~ )
for the positivity, we write
0 0
= o — ﬂ(icg, +(1- 5)06) (38)
Due to the relation 0 < & we will have
< ﬂH D — CO 1 0
and again we have to choose:
o if ¢y > cfy, we take 65 as 1.
1—pB)c
e otherwise, we choose 05 = min( 1=5 Q ,1)
B n
E(CQ/ — CQ)
This way, the value of 6 is given by
95 = min(0], 0") (40)

Second Case : g, < 0 In this case cp = cg, et 8 <0.

For the maximum principle, we write

0 0
et — e = ey — o — B[ 5 (el — o) + (1 - )(cly — )]

By using the relation (36), we obtain
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(1 - 65)(cly — ¢30) < B~ 5)(cly — c3)

Rewriting the equation above, we obtain

0< Do(ch — ) + Blely — <30) + (G — )
we come to a choice

o if 022, > cg), we take 0 as 1.

/3 cn, _CQﬂl + CQJL _cn
e otherwise, we choose 0] = min( ( @ ﬁmax) (i Q),l)
E(cg, )
For the positivity, we write é2™! = co — Beg-
From 0 < &' we will have
0 0
0<ch—B(5eh+0-3)ey)
and also
0<§0(n - n)+ n_ﬁn
=5 CQI CQ CQ CQI
and again we have to choose
o if cg > cgy, we take 0y = 1.
ch — Bck,
e otherwise, we choose §, = min (M, 1)
2t~ )
9 \Q Q'
This way, the value of @ is given by
g = min(6; ,65) (41)

Now, in order to preserve the balance of mass, the flux should be locally
conserved.

Analogously, we choose a value of 0 see by Q'.

Two cases are considered:

e if g, > 0 see by (Q) then g, < 0 see by (Q').
In this case @ is chosen as: @y, = min(Hg,Hé,), with 95 is given by
40) and @, is given by (41) by substitute respectively ¢, with cp,,
Q Q Q

¢y with ¢y, cifk with c2a% and 8 with —.
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e if g, <0 see by (Q) then g, > 0 see by (Q').
In this case 0 is chosen as: O, = min(Oé,Oa), with 6, is given by
(41) and 95, is given by (40) by substitute respectively ¢f, with cfy,
¢y with ¢y, ek with c2q% and § with —f.

5 Numerical examples

5.1 1D simulation

We consider a one dimensional advection-diffusion-reaction equations:

%—I—acw—ucm = —kcs, in £, (42)
% = —kcs, in Q. (43)

We proceed using an explicit finite-difference method. The reaction term
(—k ¢ s) will be treated implicitely in order to deal with large k. Let (C*, S7")
denote the discrete approximation to the exact solution (c(z;,t,), s(xi,tx))
at the lattice point (z;,t,), where z; = iAx and t, = nAt are the denote
ith spatial and n* time steps, respectively, and At and Az are the time and

spatial increments. We take the later to satisfy a stability condition At <

Az? . .. . .
——. The spatial derivatives c;; and ¢, are approximated with a second-

order centered difference and an upstream first-order difference, respectively.

0 0
Then, replacing the time partial derivative (—;:) and B_i by the Euler explicit

scheme. Therefore, we obtain the following discretized system

cptiocp Cp-CR, OBy -2+ R,

i _ 7 - n+l ¢gn+l
At +a Az H (A:C)2 k Cz Sz ’
grtl _ gn
ZTtZ = —kOortt gt
This results in the quadratic equation (for the unknown CZ”H)
AL (CPH2 + A2 O 4+ A3 = 0. (44)
where
Al = KAt
At At
A2 = 1-ALGT + AT (O] = OfLy) = Al (O — 207 + L)
+A1 S7,
alt uAt
A3 = -C]'+ A—m(CZ" -Cry) — W( i1 — 207 + City)
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The equation (44) is then solved explicitly to obtain the approximation CZL"’I

at the subsequent time step. The the approximation Si"+1 is then given by
T
' 1+kAtCrHt

We see here that for all value of k, the scheme that we have proposed is
stable.

The Figure 4.6 shows the values of ¢ and s obtained numerically with & =
10*, p = 41072 anda = 0.1. We notice the presence of propagation front
across which s presents a discontinuity. (as shown in chapter 2)

25 -
] t=20
20

15

1.0

05 - \

0.0 -

Figure 4.6: Simulation in 1D withu = 1073 and k = 10%
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5.2 2D simulation

We have developped a code (based on A .Marrocco’s code (INRIA)) per-
mitting the simulation of the 2D version of the advection-diffusion-reaction
equations introduced in section 3. We proceed using a finite volume scheme
with inflow and outflow Dirichlet conditions.

One type of result that can be obtained is as follows. we impose a pressure
drop between two opposite edges of a unit square. More precisely, the inflow
is at the top left while the outflow is at the bottom right.

The figure 4.7 shows the isovalues of ¢ (at left) and s (at right) during the
process. The figure 4.8 illustrates the same quantities at the end of filtration
process. It is observed that the zones of the filter situated on the right and
at the bottom, do not play any role in the filtration process.

In this experiment, the dispersion has not taken into account.

Tue Mar 26 17:50:46 2002 Tue Mar 26 17:52:55 2002

t= 503. t= 503.

Y-Axis

Y-Axis

1.41e-06

X-Axis X-Axis

Figure 4.7: Isovalue of ¢ and s during the filtration process

5.3 3D simulation

Here, for the simulation we consider the advection-dispersion-reaction system
proposed in the chapter 1 in the section 3.2.2.

First example:

In this experiment, we impose a concentration drop between two opposite
faces of a unit cube. This is the 3D counterpart of the 1D experiment
presented in the figure 4.6. Figure 4.9 shows the the concentrations ¢ and s.
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Tue Mar 26 17:49:16 2002 Tue Mar 26 17:21:10 2002

t= 1199. t= 1199.

Y-Axis

Y-Axis

0.0902

0.0603

0.0303

0.000357

X-Axis X-Axis

Figure 4.8: Isovalue of ¢ and s at the end of the filtration process

Second example: The filter
In this experiment, we impose an inflow and outflow Dirichlet conditions on
the filter. Figure 4.10 shows the the concentrations ¢ and s.
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LAY

Figure 4.9: ¢ (at left) and s (at right).

€

Figure 4.10: ¢ (at left) and s (at right).
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Third example:
In this experiment, we impose a concentration drop between two opposite
faces of a unit cube. The Figure 4.11 shows that the modified method of
upwinding is less diffusive than the method of upwinding.

1 T T B T T T T

09 .
08 - 4
07 | 4
06 - \ 4
05 - \ g
04 \ 4
03 .
02 | 4

0.1 | B

O 1 1 1 1 1 1 L — 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 4.11: A comparison between the method of upwinding and the mod-
ified method of upwinding
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