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Wenn ich in den Griibeleien eines langen Lebens
eines gelernt habe, so ist es dies,

dass wir von einer tieferen Einsicht

in die elementaren Vorgange viel weiter entfernt sind
als die meisten unserer Zeitgenossen glauben.

A. Einstein (1955)
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Abstract

The subject of this thesis are various ways to construct four-dimensional quantum field
theories from string theory.

In a first part we study the generation of a supersymmetric Yang-Mills theory,
coupled to an adjoint chiral superfield, from type IIB string theory on non-compact
Calabi-Yau manifolds, with D-branes wrapping certain subcycles. Properties of the
gauge theory are then mapped to the geometric structure of the Calabi-Yau space.
In particular, the low energy effective superpotential, governing the vacuum structure
of the gauge theory, can in principle be calculated from the open (topological) string
theory. Unfortunately, in practice this is not feasible. Quite interestingly, however,
it turns out that the low energy dynamics of the gauge theory is captured by the
geometry of another non-compact Calabi-Yau manifold, which is related to the original
Calabi-Yau by a geometric transition. Type IIB string theory on this second Calabi-
Yau manifold, with additional background fluxes switched on, then generates a four-
dimensional gauge theory, which is nothing but the low energy effective theory of the
original gauge theory. As to derive the low energy effective superpotential one then
only has to evaluate certain integrals on the second Calabi-Yau geometry. This can
be done, at least perturbatively, and we find that the notoriously difficult task of
studying the low energy dynamics of a non-Abelian gauge theory has been mapped
to calculating integrals in a well-known geometry. It turns out, that these integrals
are intimately related to quantities in holomorphic matrix models, and therefore the
effective superpotential can be rewritten in terms of matrix model expressions. Even
if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals
explicitly, one can then always use matrix model perturbation theory to calculate the
effective superpotential.

This intriguing picture has been worked out by a number of authors over the last
years. The original results of this thesis comprise the precise form of the special geome-
try relations on local Calabi-Yau manifolds. We analyse in detail the cut-off dependence
of these geometric integrals, as well as their relation to the matrix model free energy.
In particular, on local Calabi-Yau manifolds we propose a pairing between forms and
cycles, which removes all divergences apart from the logarithmic one. The detailed
analysis of the holomorphic matrix model leads to a clarification of several points re-
lated to its saddle point expansion. In particular, we show that requiring the planar
spectral density to be real leads to a restriction of the shape of Riemann surfaces, that
appears in the planar limit of the matrix model. This in turns constrains the form of
the contour along which the eigenvalues have to be integrated. All these results are
used to exactly calculate the planar free energy of a matrix model with cubic potential.

The second part of this work covers the generation of four-dimensional super-
symmetric gauge theories, carrying several important characteristic features of the
standard model, from compactifications of eleven-dimensional supergravity on Ga-
manifolds. If the latter contain conical singularities, chiral fermions are present in
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the four-dimensional gauge theory, which potentially lead to anomalies. We show
that, locally at each singularity, these anomalies are cancelled by the non-invariance
of the classical action through a mechanism called “anomaly inflow”. Unfortunately,
no explicit metric of a compact Go-manifold is known. Here we construct families of
metrics on compact weak Gy-manifolds, which contain two conical singularities. Weak
(G>-manifolds have properties that are similar to the ones of proper (Go-manifolds, and
hence the explicit examples might be useful to better understand the generic situation.
Finally, we reconsider the relation between eleven-dimensional supergravity and the
FEy x Eg-heterotic string. This is done by carefully studying the anomalies that appear
if the supergravity theory is formulated on a ten-manifold times the interval. Again
we find that the anomalies cancel locally at the boundaries of the interval through
anomaly inflow, provided one suitably modifies the classical action.
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Sommaire

Cette these traite de plusieurs fagons de construire une théorie quantiques des champs
en quatre dimensions a partir de la théorie des cordes.

Dans une premiere partie nous étudions la construction d’une théorie Yang-Mills
supersymétrique, couplée a un superchamp chiral dans la représentation adjointe, a
partir de la théorie des cordes de type IIB sur une variété Calabi-Yau non compacte,
avec des D-branes qui enroulent certaines sousvariétés. Les propriétés de la théorie de
jauge sont alors reflétées dans la structure géométrique de la variété Calabi-Yau. En
particulier, on peut calculer en principe le superpotentiel effectif de basse énergie qui
décrit la structure des vides de la théorie de jauge en utilisant la théorie des cordes
(topologiques). Malheureusement, en pratique, ceci n’est pas faisable. Il est remar-
quable qu’on puisse cependant montrer que la dynamique de basse énergie de la théorie
de jauge est codée par la géométrie d'une autre variété Calabi-Yau non compacte, reliée
a la premiere par une transition géométrique. La théorie des cordes de type IIB sur
cette deuxieme variété, dans laquelle sont allumés des flux de fond appropriés, génere
une théorie de jauge en quatre dimensions, qui n’est d’autre que la théorie effective
de basse énergie de la théorie de jauge originale. Ainsi, pour obtenir le superpotentiel
effectif de basse énergie il suffit simplement de calculer certaines intégrales dans la
deuxieme géométrie Calabi-Yau, ce qui est faisable, au moins perturbativement. On
trouve alors que le probleme extrémement difficile d’étudier la dynamique de basse
énergie d'une théorie de jauge non Abelienne a été réduit a celui de calculer certaines
intégrales dans une géométrie connue. On peut démontrer que ces intégrales sont in-
timement reliées a certaines quantités dans un modele de matrices holomorphes, et on
peut alors calculer le superpotentiel effectif comme fonction de certaines expressions du
model de matrices. Il est remarquable que la série perturbative du modele de matrices
calcule alors le superpotentiel effectif non-perturbatif.

Ces relations étonnantes ont été découvertes et élaborée par plusieurs auteurs au
cours des dernieres années. Les résultats originaux de cette these comprennent la
forme précise des relations de la “géométrie spéciale” sur une variété Calabi-Yau non
compacte. Nous étudions en détail comment ces intégrales géométriques dépendent
du cut-off, et leur relation a l’énergie libre du modele de matrices. En particulier,
sur une variété Calabi-Yau non compacte nous proposons une forme bilineaire sur le
produit direct de l'espace des formes avec 'espace des cycles, qui élimine toutes les
divergences, sauf la divergence logarithmique. Notre analyse détaillée du modele de
matrices holomorphes clarifie aussi plusieurs aspects reliés a la méthode du col de
ce modele de matrices. Nous montrons en particulier qu’exiger une densité spectrale
réelle restreint la forme de la courbe Riemannienne qui apparait dans la limite planaire
du modele de matrices. Cela nous donne des contraintes sur la forme du contour
sur lequel les valeurs propres sont intégrées. Tous ces résultats sont utilisés pour
calculer explicitement 1’énergie libre planaire d’un modele de matrices avec un potentiel
cubique.

La deuxieme partie de cette these concerne la génération de théories de jauge super-



symétriques en quatre dimensions comportant des aspects caractéristiques du modele
standard a partir de compactifications de la supergravité en onze dimensions sur une
variété Go. Si cette variété contient une singularité conique, des fermions chiraux appa-
raissent dans la théorie de jauge en quatre dimensions ce qui conduit potentiellement a
des anomalies. Nous montrons que, localement a chaque singularité, les anomalies cor-
respondantes sont annulées par une non-invariance de 1’action classique au singularités
(“anomaly inflow”). Malheureusement, aucune métrique d’'une variété G5 compacte
n’est connue explicitement. Nous construisons ici des familles de métriques sur des
variétés compactes faiblement G5, qui contiennent deux singularités coniques. Les
variétés faiblement (G5 ont des propriétés semblables aux propriétés des variétés G,
et alors ces exemples explicites pourraient etre utiles pour mieux comprendre la situ-
ation générique. Finalement, nous regardons la relation entre la supergravité en onze
dimensions et la théorie des cordes hétérotiques Ey x Eyg. Nous étudions en détail les
anomalies qui apparaissent si la supergravité est formulée sur le produit d’un espace
de dix dimensions et un intervalle. Encore une fois nous trouvons que les anomalies
s’annulent localement sur chaque bord de l'intervalle si on modifie I'action classique
d’une fagon appropriée.
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Zusammenfassung

Gegenstand dieser Arbeit sind verschiedene Arten und Weisen, auf die man, ausgehend
von einer String Theorie, eine vierdimensional Quantenfeldtheorie generieren kann.

In einem ersten Teil untersuchen wir, wie man mit Hilfe der Typ IIB String Theorie
auf einer nichtkompakten Calabi-Yau-Mannigfaltigkeit eine supersymmetrische Yang-
Mills Theorie erzeugen kann. Dazu miissen wir D-brane in die Theorie einfiihren, die
bestimmte Untermannigfaltigkeiten der nicht-kompakten Mannigfaltigkeit umwickeln.
Die dadurch generierte Eichtheorie ist eine NV = 1 super Yang-Mills Theorie, die an
ein chirales Superfeld in der adjungierten Darstellung gekoppelt ist. Eigenschaften
der supersymmetrischen Eichtheorie werden dann auf die geometrische Struktur des
Calabi-Yau Raumes abgebildet. Insbesondere kann man, ausgehend von der offenen
(topologischen) String Theorie, im Prinzip das niederenergetische effektive Superpoten-
zial, welches die Struktur des Eichtheorie Vakuums beschreibt, ausrechnen. Leider ist
dies in der Praxis aber nicht moglich. Interessanterweise stellt es sich jedoch her-
aus, dass die niederenergetische Dynamik der Eichtheorie durch die Geometrie einer
anderen nichtkompakten Calabi-Yau Mannigfaltigkeit beschrieben wird, die mit der
urspriinglichen Calabi-Yau Mannigfaltigkeit durch einen sogenannten geometrischen
Ubergang verbunden ist. Formuliert man nun Typ IIB String Theorie auf diesem
zweiten Calabi-Yau Raum, und schaltet man geeignete Hintergrundfliisse ein, dann ist
die dadurch generierte vierdimensionale Eichtheorie nichts anderes als als die niederen-
ergetische effektive Theorie der urspriinglichen Fichtheorie. Um das niederenergetis-
che effektive Superpotenzial zu bestimmen, muss man dann lediglich gewisse Integrale
auf dem zweiten Calabi-Yau Raum ausrechnen. Dies ist zumindest naherungsweise
moglich, und wir sehen, dass das ungemein schwierige Problem einer Studie der Dy-
namik einer nichtabelschen Eichtheorie bei niedrigen Energieskalen auf die Berechnung
von Integralen in einer wohlbekannten Geometrie reduziert wurde. Es stellt sich her-
aus, dass diese Integrale eng mit Groflen eines holomorphen Matrix Models verbunden
sind, und dass deshalb das effektive Superpotenzial als Funktion gewisser Ausdriicke
im Matrix Model geschrieben werden kann. Selbst wenn die Calabi-Yau Geometrie
zu kompliziert ist, um die Integrale explizit ausrechnen zu konnen, kann man doch
stets Storungstheorie im Matrix Model benutzen, um das effektive Superpotenzial zu
bestimmen.

Diese faszinierenden Zusammenhange wurden im Verlauf der letzten Jahre von einer
Reihe von Autoren entwickelt. Die originalen Ergebnisse dieser Doktorarbeit umfassen
die prazise Form der Gleichungen “spezieller Geometrie” auf nichtkompakten Calabi-
Yau Mannigfaltigkeiten. Wir studieren die Cut-off-Abhéngigkeit dieser geometrischen
Integrale, sowie ihre Beziehung zur freien Energie des Matrix Models. Inbesondere
schlagen wir fiir nicht-kompakte Calabi-Yau Mannigfaltigkeiten eine bilineare Abbil-
dung vom Produkt des Raumes aller Formen mit dem Raum aller Zyklen in die Menge
der komplexen Zahlen vor, das, abgesehen von den logarithmischen, samtliche Di-
vergenzen beseitigt. Das genaue Studium des holomorphen Matrix Models fiihrt zu
einer Erklarung einiger mit der Sattelpunktsnaherung verbundener Punkte. Inbeson-
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dere zeigen wir, dass die Forderung einer reellen spektralen Dichte die Form der Rie-
mannschen Flachen, die im planaren Limes des Matrix Models auftauchen, einschrankt.
Dies wiederum fiihrt zu Bedingungen an die Form der Kurve, entlang derer die Eigen-
werte integriert werden missen. Wir beniitzen all diese Ergebnisse, um die planare
freie Energie eines Matrix Models im Falle eines kubischen Potenzials exakt zu berech-
nen.

Der zweite Teil dieser Arbeit umfasst die Erzeugung vierdimensionaler Eichthe-
orien, die die charakterisierenden Merkmale des Standardmodells aufweisen, durch
Kompaktifizierungen der elfdimensionalen Supergravitation auf Go-Mannigfaltigkeiten.
Falls letztere konische Singularitdten enthalten, fiihrt dies zu chiralen Fermionen in
der vierdimensionalen Eichtheorie. Wir zeigen, dass die dazugehdrigen Anomalien
lokal an der Singularitat ausgeloscht werden konnen, falls die klassische Wirkung
nicht invariant ist. Dieser Mechanismus wird als Anomalieeinfluss bezeichnet. Lei-
der sind keine expliziten Metriken kompakter Go-Mannigfaltigkeiten mit konischen
Singularitiaten bekannt. Hier konstruieren wir Familien von Metriken auf kompak-
ten schwachen Gy-Mannigfaltigkeiten mit zwei konischen Singularitdten. Schwache
Go-Mannigfaltigkeiten haben dhnliche Eigenschaften wie echte GGo-Mannigfaltigkeiten,
weshalb die expliziten Beispiele fiir ein besseres Verstandnis der allgemeinen Situation
von Nutzen sein diirften. Schlieilich betrachten wir die Beziehung zwischen der Super-
gravitationstheorie in elf Dimensionen und dem FEg x FEg heterotischen String. Dazu
untersuchen wir die Anomalien, die entstehen, wenn man elfdimensionale Supergrav-
itation auf dem direkten Produkt aus einem Intervall mit einem zehndimensionalen
Raum formuliert. Erneut finden wir, dass die Anomalien lokal an Réndern des Inter-
valls ausgeloscht werden, wenn man die klassische Wirkung geeignet modifiziert.
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Setting the Stage

Wer sich nicht mehr wundern,
nicht mehr staunen kann,

der 1st sozusagen tot

und sein Auge erloschen.

A. Einstein

When exactly one hundred years ago Albert Einstein published his famous articles
on the theory of special relativity [50], Brownian motion [51] and the photoelectric
effect [52], their tremendous impact on theoretical physics could not yet be foreseen.
Indeed, the development of the two pillars of modern theoretical physics, the theory of
general relativity and the quantum theory of fields, was strongly influenced by these
publications. If we look back today, it is amazing to see how much we have learned
during the course of the last one hundred years. Thanks to Einstein’s general relativity
we have a much better understanding of the concepts of space, time and the gravita-
tional force. Quantum mechanics and quantum field theory, on the other hand, provide
us with a set of physical laws which describe the dynamics of elementary particles at
a subatomic scale. These theories have been tested many times, and always perfect
agreement with experiment has been found [1]. Unfortunately, their unification into
a quantum theory of gravity has turned out to be extremely difficult. Although it
is common conviction that a unified mathematical framework describing both gravity
and quantum phenomena should exist, it seems to be still out of reach. One reason for
the difficulties is the fundamentally different nature of the physical concepts involved.
Whereas relativity is a theory of space-time, which does not tell us much about matter,
quantum field theory is formulated in a fixed background space-time and deals with
the nature and interactions of elementary particles. In most of the current approaches
to a theory of quantum gravity one starts from quantum field theory and then tries
to extend and generalise the concepts to make them applicable to gravity. A notable
exception is the field of loop quantum gravity', where the starting point is general
relativity. However, given the conceptual differences it seems quite likely that one has
to leave the familiar grounds of either quantum field theory or relativity and try to
think of something fundamentally new.

Although many of its concepts are very similar to the ones appearing in quantum

IFor a recent review from a string theory perspective and an extensive list of references see [112].
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field theory, string theory [68], [117] is a branch of modern high energy physics that
understands itself as being in the tradition of both quantum field theory and relativity.
Also, it is quite certainly the by far most radical proposition for a unified theory.
Although its basic ideas seem to be harmless - one simply assumes that elementary
particles do not have a point-like but rather a string-like structure - the consequences
are dramatic. Probably the most unusual prediction of string theory is the existence
of ten space-time dimensions.

As to understand the tradition on which string theory is based and the intuition
that is being used, it might be helpful to comment on some of the major developments
in theoretical physics during the last one hundred years. Quite generally, this might be
done by thinking of a physical process as being decomposable into the scene on which
it takes place and the actors which participate in the play. Thinking about the scene
means thinking about the fundamental nature of space and time, described by general
relativity. The actors are elementary particles that interact according to a set of rules
given by quantum field theory. It is the task of a unified theory to think of scene and
actors as of two interdependent parts of the successful play of nature.

High energy physics in a nutshell
Special relativity tells us how we should properly think of space and time. From a
modern point of view it can be understood as the insight that our world is (R%,n), a
topologically trivial four-dimensional space carrying a flat metric, i.e. one for which
all components of the Riemann tensor vanish, with signature (—,+,+,+). Physical
laws should then be formulated as tensor equations on this four-dimensional space.
In this formulation it becomes manifest that a physical process is independent of the
coordinate system in which it is described.

General relativity [53] then extends these ideas to cases where one allows for a metric
with non-vanishing Riemann tensor. On curved manifolds the directional derivatives
of a tensor along a vector in general will not be tensors, but one has to introduce
connections and covariant derivatives to be able to write down tensor equations. In-
terestingly, given a metric a very natural connection and covariant derivative can be
constructed. Another complication that appears in general relativity is the fact that
the metric itself is a dynamical field, and hence there should be a corresponding tensor
field equation which describes its dynamics. This equation is know as the Einstein
equation and it belongs to the most important equations of physics. It is quite in-
teresting to note that the nature of space-time changes drastically when going from
special to general relativity. Whereas in the former theory space-time is a rigid spec-
tator on which physical theories can be formulated, this is no longer true if we allow
for general metrics. The metric is both a dynamical field and it describes the space in
which dynamical processes are formulated. It is this double role that makes the theory
of gravity so intriguing and complicated.

Einstein’s explanation of the photoelectric effect made use of the quantum nature of
electro-magnetic waves, which had been the main ingredient to derive Planck’s formula
for black body radiation, and therefore was one major step towards the development of
quantum mechanics. As is well known, this theory of atomic and subatomic phenomena
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was developed during the first decades of the twentieth century by Sommerfeld, Bohr,
Heisenberg, Schodinger, Dirac, Pauli and many others.? It describes a physical system
(in the Schrodinger picture) as a time-dependent state in some Hilbert space with a
unitary time evolution that is determined by the Hamilton operator, which is specific
to the system. Observables are represented by operators acting on the Hilbert space,
and the measurable quantities are the eigenvalues of these operators. The probability
(density) of measuring an eigenvalue is given by the modulus square of the system state
vector projected onto the eigenspace corresponding to the eigenvalue. Shortly after the
measurement the physical state is described by an eigenvector of the operator. This
phenomenon is known as the collapse of the wave function and here unitarity seems to
be lost. However, it is probably fair to say that the measurement process has not yet
been fully understood.

In the late nineteen forties one realised that the way to combine the concepts of
special relativity and quantum mechanics was in terms of a quantum theory of fields?.
The dynamics of such a theory is encoded in an action S, and the generating functional
of correlation functions is given as the path integral of e#® integrated over all the fields
appearing in the action. In the beginning these theories had been plagued by infinities,
and only after these had been understood and the concept of renormalisation had been
introduced did it turn into a powerful calculational tool. Scattering cross sections and
decay rates of particles could then be predicted and compared to experimental data.
The structure of this theoretical framework was further explored in the nineteen fifties
and sixties and, together with experimental results, which had been collected in more
and more powerful accelerators and detectors, culminated in the formulation of the
standard model of particle physics. This theory elegantly combines the strong, the
electro-magnetic and the weak force and accounts for all the particles that have been
observed so far. The Higgs boson, a particle that is responsible for the mass of some of
the other constituents of the model, is the only building block of the standard model
that has not yet been discovered. One of the major objectives of the Large Hadron
Collider (LHC), which is currently being built at CERN in Geneva, is to find it and
determine its properties.

For many years all experimental results in particle physics could be explained from
the standard model. However, very recently a phenomenon, known as neutrino oscil-
lation, has been observed that seems to be inexplicable within this framework. The
standard model contains three types of neutrinos, which do not carry charge or mass,
and they only interact via the weak force. In particular, neutrinos cannot transform
into each other. However, observations of neutrinos produced in the sun and the upper
part of the atmosphere seem to indicate that transitions between the different types of
neutrinos do take place in nature, which is only possible if neutrinos carry mass. These
experiments are not only interesting because the standard model has to be extended
to account for these phenomena, but also because the mass of the neutrinos could
be relevant for open questions in cosmology. Neutrinos are abundant in the universe

2A list of many original references can be found in [37].
3See [134] for a beautiful introduction and references to original work.
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and therefore, although their mass is tiny, they might contribute in a non-negligible
way to the dark matter which is known to exist in our universe. Although interest-
ing, since beyond the standard model, neutrino oscillation can be described by only
slightly modifying the standard model action. Therefore, it does not seem to guide us
in formulating a theory of quantum gravity.

There are also some theoretical facts which indicate that after all the standard
model has to be modified. For some time it was believed that quantum field theories
of the standard model type form the most general setting in which particle physics can
be formulated. The reason is that combining some weak assumptions with the basic
principles of relativity and quantum mechanics leads to no-go theorems which constrain
the possible symmetries of the field theory. However, in the middle of the nineteen
seventies Wess and Zumino discovered that quantum field theories might carry an
additional symmetry that relates bosonic and fermionic particles and which is known
as supersymmetry [137], [138]. Since from a theoretical point of view “everything that
is not forbidden is allowed”, one either has to explain why supersymmetry has to be
absent or, if this cannot be achieved, one is forced to include it into the formulation of
the theory. Then of course, one still has to explain why the particular vacuum we live
in is not supersymmetric. On the classical level supersymmetry can also be applied
to theories containing the metric which are then known as supergravity theories. Of
course one might ask whether it was simply the lack of this additional supersymmetry
that made the problem of quantising gravity so hard. However, unfortunately it turns
out that these problems persist in supergravity theories. In order to find a consistent
quantum theory of gravity which contains the standard model one therefore has to
proceed even further.

Another important fact, which has to be explained by a unified theory, is the dif-
ference between the Planck scale of 10! GeV (or the GUT scale at 10'® GeV) and the
preferred scale of electro-weak theory, which lies at about 102 GeV. The lack of under-
standing of this huge difference of scales is known as the hierarchy problem. Finally
it is interesting to see what happens if one tries to estimate the value of the cosmo-
logical constant from quantum field theory. The result is by 120 orders of magnitude
off the measured value! This cosmological constant problem is another challenge for a
consistent quantum theory of gravity.

Mathematical rigour and experimental data
Physics is a science that tries to formulate abstract mathematical laws from observing
natural phenomena. The experimental setup and its theoretical description are highly
interdependent. However, whereas it had been the experiments that guided theoretical
insight for centuries, the situation is quite different today. Clearly, Einstein’s 1905
papers were still motivated by experiments - Brownian motion and the photoelectric
effect had been directly observed, and, although the Michelson-Morley experiment
was much more indirect, it finally excluded the ether hypotheses thus giving way for
Einstein’s ground breaking theory. Similarly, quantum mechanics was developed as
very many data of atomic and subatomic phenomena became available and had to be
described in terms of a mathematical theory. The explanation of the energy levels
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in the hydrogen atom from quantum mechanics is among the most beautiful pieces
of physics. The questions that are answered by quantum field theory are already
more abstract. The theory is an ideal tool to calculate the results of collisions in a
particle accelerator. However, modern accelerators are expensive and tremendously
complicated technical devices. It takes years, sometimes decades to plan and build
them. Therefore, it is very important to perform theoretical calculations beforehand
and to try to predict interesting phenomena from the mathematical consistency of the
theory. Based on these calculations one then has to decide which machine one should
build and which phenomena one should study, in order to extract as much information
on the structure of nature as possible.

An even more radical step had already been taken at the beginning of the twentieth
century with the development of general relativity. There were virtually no experimen-
tal results, but relativity was developed from weak physical assumptions together with
a stringent logic and an ingenious mathematical formalism. It is probably fair to say
that Einstein was the first theoretical physicist in a modern sense, since his reasoning
used mathematical rigour rather than experimental data.

Today physics is confronted with the strange situation that virtually any experiment
can be explained from known theories, but these theories are themselves known to be
incomplete. Since the gravitational force is so weak, it is very difficult to enter the
regime where (classical) general relativity is expected to break down. On the other
hand, the energy scales where one expects new phenomena to occur in particle physics
are so high that they can only be observed in huge and expensive accelerators. The
scales proposed by string theory are even way beyond energy scales that can be reached
using standard machines. Therefore, today physics is forced to proceed more or less
along the lines of Einstein, using pure thought and mathematical consistency. This
path is undoubtedly difficult and dangerous. As we know from special and general
relativity, a correct result can be extremely counterintuitive, so a seemingly unphysical
theory, like string theory with its extra dimensions, should not be easily discarded. On
the other hand physics has to be aware of the fact that finally its purpose is to explain
experimental data and to quantitatively predict new phenomena. The importance
of experiments cannot be overemphasised and much effort has to be spent in setting
up ingenious experiments which might tell us something new about the structure of
nature. This is a natural point where one could delve into philosophical considerations.
For example one might muse about how Heisenberg’s positivism has been turned on
the top of its head, but I will refrain from this and rather turn to the development of
string theory.

The development of string theory
String theory was originally developed as a model to understand the nature of the
strong force in the late sixties. However, when Quantum Chromodynamics (QCD)
came up it was quickly abandoned, with only very few people still working on strings.
One of the first important developments was the insight of Joél Scherk and John
Schwarz that the massless spin two particle that appears in string theory can be in-
terpreted as the graviton, and that string theory might actually be a quantum theory



6 Contents

of gravitation [120]. However, it was only in 1984 when string theory started to at-
tract the attention of a wider group of theoretical physicists. At that time it had
become clear that a symmetry of a classical field theory does not necessarily translate
to the quantum level. If the symmetry is lost one speaks of an anomaly. Since local
gauge and gravitational symmetries are necessary for the consistency of the theory,
the requirement of anomaly freedom of a quantum field theory became a crucial issue.
Building up on the seminal paper on gravitational anomalies [13] by Alvarez-Gaumé
and Witten, Green and Schwarz showed in their 1984 publication [67] that N' =1 su-
pergravity coupled to super Yang-Mills theory in ten dimensions is free of anomalies,
provided the gauge group of the Yang-Mills theory is either SO(32) or Eg x Eg. The
anomaly freedom of the action was ensured by adding a local counterterm, now known
as the Green-Schwarz term. Quite remarkably, both these supergravity theories can
be understood as low energy effective theories of (ten-dimensional) superstring theo-
ries, namely the Type I string with gauge group SO(32) and the heterotic string with
gauge group SO(32) or Eg x Eg. The heterotic string was constructed shortly after
the appearance of the Green-Schwarz paper in [73]. This discovery triggered what is
know as the first string revolution. In the years to follow string theory was analysed
in great detail, and it was shown that effective theories in four dimensions with N' =1
supersymmetry can be obtained by compactifying type I or heterotic string theories
on Calabi-Yau manifolds. These are compact Kahler manifolds that carry a Ricci-flat
metric and therefore have SU(3) as holonomy group. Four-dimensional effective ac-
tions with A/ = 1 supersymmetry are interesting since they provide a framework within
which the above mentioned hierarchy problem can be resolved. Calabi-Yau manifolds
were studied intensely, because many of their properties influence the structure of the
effective four-dimensional field theory. A major discovery of mathematical interest was
the fact that for a Calabi-Yau manifold X with Hodge numbers h''(X) and h*!(X)
there exists a mirror manifold Y with ht*(Y) = h*1(X) and R?1(Y) = hb1(X). Fur-
thermore, it turned out that the compactification of yet another string theory, known
as Type ITA, on X leads to the same effective theory in four dimensions as a fifth
string theory, Type IIB, on Y. This fact is extremely useful, since quantities related
to moduli of the complex structure on a Calabi-Yau manifold can be calculated from
integrals in the Calabi-Yau geometry. Quantities related to the Kéhler moduli on the
other hand obtain corrections from world-sheet instantons and are therefore very hard
to compute. Mirror symmetry then tells us that the Kahler quantities of X can be
obtained from geometric integrals on Y. For a detailed exposition of mirror symmetry
containing many references see [81].

Equally important for string theory was the discovery that string compactifications
on singular Calabi-Yau manifold make sense and that there are smooth paths in the
space of string compactifications along which the topology of the internal manifold
changes [69]. All these observations indicate that stringy geometry is quite different
from the point particle geometry we are used to.

Another crucial development in string theory was Polchinski’s discovery of D-branes
[118]. These are extended objects on which open strings can end. Their existence can
be inferred by exploiting a very nice symmetry in string theory, known as T-duality.
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In the simplest case of the bosonic string it states that string theory compactified
on a circle of radius R is isomorphic to the same theory on a circle of radius 1/R,
provided the momentum quantum numbers and the winding numbers are exchanged.
Note that here once again the different notion of geometry in string theory becomes
apparent. One of the many reasons why D-branes are useful is that they can be used
to understand black holes in string theory and to calculate their entropy.

There also has been progress in the development of quantum field theory. For
example Seiberg and Witten in 1994 exactly solved the four-dimensional low-energy
effective N' = 2 theory with gauge group SU(2) [122]. The corresponding action is
governed by a holomorphic function F, which they calculated from some auxiliary
geometry. Interestingly, one can understand this geometry as part of a Calabi-Yau
compactification and the Seiberg-Witten solution can be embedded into string theory
in a beautiful way.

Originally, five different consistent string theories had been constructed: Type I
with gauge group SO(32), Type ITA, Type IIB and the heterotic string with gauge
groups SO(32) and Eg x Eg. In the middle of the nineties is became clear, however,
that these theories, together with eleven-dimensional supergravity, are all related by
dualities and therefore are part of one more fundamental theory, that was dubbed M-
theory [149]. Although the elementary degrees of freedom of this theory still remain to
be understood, a lot of evidence for its existence has been accumulated. The discovery
of these dualities triggered renewed interest in string theory, which is known today as
the second string revolution.

Another extremely interesting duality, discovered by Maldacena and known as the
AdS/CFT correspondence [101], [74], [151], relates Type IIB theory on the space
AdSs x S° and a four-dimensional N' = 4 supersymmetric conformal field theory on
four-dimensional Minkowski space. Intuitively this duality can be understood from
the fact that IIB supergravity has a brane solution which interpolates between ten-
dimensional Minkowski space and AdSs x S®. This brane solution is thought to be
the supergravity description of a D3-brane. Consider a stack of D3-branes in ten-
dimensional Minkowski space. This system can be described in various ways. One can
either consider the effective theory on the world-volume of the branes which is indeed
an N =4 SCFT or one might want to know how the space backreacts on the presence
of the branes. The backreaction is described by the brane solution which, close to the
location of the brane, is AdS5 x S°.

Recent developments in string theory
String theory is a vast field and very many interesting aspects have been studied in
this context. In the following a quick overview of the subjects that are going to be
covered in this thesis will be given.

After it had become clear that string theories are related to eleven-dimensional su-
pergravity, it was natural to analyse the seven-dimensional space on which one needs
to compactify to obtain an interesting four-dimensional theory with the right amount
of supersymmetry. It is generally expected that the four-dimensional effective field
theory should live on Minkowski space and carry N’ = 1 supersymmetry. Compactifi-
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cation to Minkowski space requires the internal manifold to carry a Ricci-flat metric.
From a careful analysis of the supersymmetry transformations one finds that the vac-
uum is invariant under four supercharges if and only if the internal manifold carries
one covariantly constant spinor. Ricci-flat seven-dimensional manifolds carrying one
covariantly constant spinor are called GGo-manifolds. Indeed, one can show that their
holonomy group is the exceptional group G5. Like Calabi-Yau compactifications in the
eighties, Gy-compactifications have been analysed in much detail recently. An inter-
esting question is of course, whether one can construct standard model type theories
from compactifications of eleven-dimensional supergravity on Gs-manifolds. Charac-
teristic features of the standard model are the existence of non-Abelian gauge groups
and of chiral fermions. Both these properties turn out to be difficult to obtain from
Gy-compactifications. In order to generate them, one has to introduce singularities in
the Gy-manifolds. Another important question, which arises once a chiral theory is
constructed, is whether it is free of anomalies. Indeed, the anomaly freedom of field
theories arising in string theory is a crucial issue and gives important consistency con-
straints. The anomalies in the context of Ga-manifolds have been analysed, and the
theories have been found to be anomaly free, if one introduces an extra term into the
effective action of eleven-dimensional supergravity. Interestingly, this term reduces to
the standard Green-Schwarz term when compactified on a circle. Of course, this extra
term is not specific to Gy-compactifications, but it has to be understood as a first
quantum correction of the classical action of eleven-dimensional supergravity. In fact,
it was first discovered in the context of anomaly cancellation for the M5-brane [48],
[150].

Another important development that took place over the last years is the construc-
tion of realistic field theories from Type II string theory. In general, if one compactifies
Type II on a Calabi-Yau manifold one obtains an N = 2 effective field theory. How-
ever, if D-branes wrap certain cycles in the internal manifold they break half of the
supersymmetry. The same is true for suitably adjusted fluxes, and so one has new
possibilities to construct NV = 1 theories. Very interestingly, compactifications with
fluxes and compactifications with branes turn out to be related by what is known as
geometric transition. As to understand this phenomenon recall that a singularity of
complex codimension three in a complex three-dimensional manifold can be smoothed
out in two different ways. In mathematical language these are know as the small reso-
lution and the deformation of the singularity. In the former case the singular point is
replaced by a two-sphere of finite volume, whereas in the latter case it is replaced by a
three-sphere. If the volume of either the two- or the three-sphere shrinks to zero one
obtains the singular space. The term “geometric transition” now describes the process
in which one goes from one smooth space through the singularity to the other one. It
is now interesting to see what happens if we compactify Type IIB string theory on two
Calabi-Yau manifolds that are related by such a transition. Since one is interested in
N =1 effective theories it is suitable to add either fluxes or branes in order to further
break supersymmetry. It is then very natural to introduce D5-branes wrapping the
two-spheres in the case of the small resolution of the singularity. The manifold with
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a deformed singularity has no suitable cycles around which D-branes might wrap, so
we are forced to switch on flux in order to break supersymmetry. In fact, we can, very
similar in spirit to the AdS/CFT correspondence, consider the deformed manifold as
the way the geometry backreacts on the presence of the branes. This relation between
string theory with flux or branes on topologically different manifolds is by itself al-
ready very exciting. However, the story gets even more interesting if we consider the
effective theories generated from these compactifications. In the brane setup with N
D5-branes wrapping the two-cycle we find an N/ = 1 theory with gauge group U(N)
in four dimensions. At low energies this theory is believed to confine and the suit-
able description then is in terms of a chiral superfield S, which contains the gaugino
bilinear. Quite interestingly, it has been shown that it is precisely this low energy
effective action which is generated by the compactification on the deformed manifold.
In a sense, the geometric transition and the low energy description are equivalent. In
particular, the effective superpotential of the low-energy theory can be calculated from
geometric integrals on the deformed manifold.

For a specific choice of manifolds the structure gets even richer. In three influential
publications, Dijkgraaf and Vafa showed that IIB on the resolved manifold is related
to a holomorphic matrix model. Furthermore, from the planar limit of the model one
can calculate terms in the low energy effective action of the U(N) N = 1 gauge theory.
More precisely, the integrals in the deformed geometry are mapped to integrals in the
matrix model, where they are shown to be related to the planar free energy. Since this
free energy can be calculated from matrix model Feynman diagrams, one can use the
matrix model to calculate the effective superpotential.

Plan of this thesis
My dissertation is organised in two parts. In the first part I explain the intriguing
connection between four-dimensional supersymmetric gauge theories, type II string
theories and matrix models. As discussed above, the main idea is that gauge theories
can be “geometrically engineered” from type II string theories which are formulated
on the direct product of a four-dimensional Minkowski space and a six-dimensional
non-compact Calabi-Yau manifold. I start by reviewing some background material on
effective actions in chapter 2. Chapter 3 lists some important properties of Riemann
surfaces and Calabi-Yau manifolds. Furthermore, I provide a detailed description of
local Calabi-Yau manifolds, which are the spaces that appear in the context of the ge-
ometric transition. In particular, the fact that integrals of the holomorphic three-form
on the local Calabi-Yau map to integrals of a meromorphic one-form on a correspond-
ing Riemann surface is reviewed. In chapter 4 I study the holomorphic matrix model
in some detail. I show how the planar limit and the saddle point approximation have
to be understood in this setup, and how special geometry relations arise. Quite inter-
estingly, the Riemann surface that appeared when integrating the holomorphic form
on a local Calabi-Yau is the same as the one appearing in the planar limit of a suit-
ably chosen matrix model. In chapter 6 I explain why the matrix model can be used
to calculate integrals on a local Calabi-Yau manifold. The reason is that there is a
relation between the open B-type topological string on the Calabi-Yau and the holo-
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morphic matrix model. All these pieces are then put together in chapter 5, where it is
shown that the low energy effective action of a class of gauge theories can be obtained
from integrals in the geometry of a certain non-compact Calabi-Yau manifold. After
a specific choice of cycles, only one of these integral is divergent. Since the integrals
appear in the formula for the effective superpotential, this divergence has to be studied
in detail. In fact, the integral contains a logarithmically divergent part, together with
a polynomial divergence, and I show that the latter can be removed by adding an
exact term to the holomorphic three-form. The logarithmic divergence cancels against
a divergence in the coupling constant, leading to a finite superpotential. Finally, I
review how the matrix model can be used to calculate the effective superpotential.

In the second part I present work done during the first half of my PhD about
M-theory on Go-manifolds and (local) anomaly cancellation. I start with a short ex-
position of the main properties of Gy-manifolds, eleven-dimensional supergravity and
anomalies. An important consistency check for chiral theories is the absence of anoma-
lies. Since singular Go-manifolds can be used to generate standard model like chiral
theories, anomaly freedom is an important issue. In chapter 9 it is shown that M-theory
on singular Go-manifolds is indeed anomaly free. In this context it will be useful to
discuss the concepts of global versus local anomaly cancellation. Then I explain the
concept of weak Ga-holonomy in chapter 10, and provide examples of explicit met-
rics on compact singular manifolds with weak G5 holonomy. Finally, in chapter 11 I
study M-theory on My x I, with I an interval, which is known to be related to the
Ey x Eg heterotic string. This setup is particularly fascinating, since new degrees of
freedom living on the boundary of the space have to be introduced for the theory to
be consistent. Once again a careful analysis using the concepts of local anomaly can-
cellation leads to new results. These considerations will be brief, since some of them
have been explained rather extensively in the following review article, which is a very
much extended version of my diploma thesis:

[P4] S. Metzger, M-theory compactifications, Go-manifolds and anomalies,
hep-th/0308085

In the appendices some background material is presented, which is necessary to
understand the full picture. I start by explaining the notation that is being used
throughout this thesis. Then I turn to some results in mathematics. The definition
of divisors on Riemann surfaces is presented and the notion of relative (co-)homology
is discussed. Both concepts will appear naturally in our discussion. Furthermore, I
quickly explain the Atiyah-Singer index theorem, which is important in the context
of anomalies. One of the themes that seems to be omnipresent in the discussion is
the concept of special geometry and of special Kéahler manifolds. A detailed definition
of special Kahler manifolds is given and their properties are worked out. Another
central building block is the B-type topological string, and therefore I quickly review
its construction. Finally, the concept of an anomaly is explained, and some of their
properties are discussed. I terminate with the references and present the abstracts of
my publications.
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Chapter 1

Introduction and Overview

The structure of the strong nuclear interactions is well know to be captured by Quan-
tum Chromodynamics, a non-Abelian gauge theory with gauge group SU(3), which
is embedded into the more general context of the standard model of particle physics.
Although the underlying theory of the strong interactions is known, it is actually very
hard to perform explicit calculations in the low-energy regime of this theory. The rea-
son is, of course, the behaviour of the effective coupling constant of QCD, which goes
to zero at high energies, an effect called asymptotic freedom, but becomes of order 1 at
energies of about 200MeV. At this energy scale the perturbative expansion in the cou-
pling constant breaks down, and it becomes much harder to extract information about
the structure of the field theory. It is believed that the theory will show a property
known as confinement, in which the quarks form colour neutral bound states, which
are the particles one observes in experiments. Most of the information we currently
have about this energy regime comes from numerical calculations in lattice QCD. Pure
Yang-Mills theory is also asymptotically free and it is expected to behave similarly
to QCD. In particular, at low energies the massless gluons combine to colour neutral
bound states, known as glueball fields, which are massive. Therefore, at low energies
the microscopic degrees of freedom are irrelevant for a description of the theory, but it
is the vacuum expectation values of composite fields which are physically interesting.
These vacuum expectation values can be described by an effective potential that de-
pends on the relevant low energy degrees of freedom. The expectation values can then
be found from minimising the potential.

Understanding the low energy dynamics of QCD is a formidable problem. On
the other hand, it is known that A/ = 1 supersymmetric non-Abelian gauge theories
share many properties with QCD. However, because of the higher symmetry, calcula-
tions simplify considerably, and some exact results can be deduced for supersymmetric
theories. They might therefore be considered as a tractable toy model for QCD. In
addition, we mentioned already that indications exist that the action governing physics
in our four-dimensional world might actually be supersymmetric. Studying supersym-
metric field theories can therefore not only teach us something about QCD but it may
after all be the correct description of nature.

In order to make the basic ideas somewhat more concrete let us quickly consider

14



15

the simplest example, namely N = 1 Yang-Mills theory with gauge group SU(N).
The relevant degrees of freedom at low energy are captured by a chiral superfield S
which contains the gaugino bilinear. The effective superpotential, first written down
by Veneziano and Yankielowicz, reads

(51 = e () ] "

where A is the dynamical scale of the theory. The minima of the corresponding effective
potential can be found by determining the critical points of the effective superpotential.
Indeed, from extremising the superpotential we find

(SYN = AN (1.2)

which is the correct result. All this will be explained in more detail in the main text.

Over the last decades an intimate relation between supersymmetric field theories
and string theory has been unveiled. Ten-dimensional supersymmetric theories appear
as low energy limits of string theories and four-dimensional ones can be generated
from string compactifications. The structure of a supersymmetric field theory can
then often be understood from the geometric properties of the manifolds appearing in
the string context. This opens up the intriguing possibility that one might actually be
able to learn something about the vacuum structure of four-dimensional field theories
by studying geometric properties of certain string compactifications. It is this idea
that will be at the heart of the first part of this thesis.

Gauge theory - string theory duality
In fact, there is yet another intriguing relation between non-Abelian gauge theories
and string theories that goes back to 't Hooft [80]. Let us consider the free energy of a
non-Abelian gauge theory, which is known to be generated from connected Feynman
diagrams. 't Hooft’s idea was to introduce fatgraphs by representing an U (V) adjoint
field as the direct product of a fundamental and an anti-fundamental representation,
see Fig. 1.1. The free energy can then be calculated by summing over all connected
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Figure 1.1: The propagator of an adjoint field ®* can be represented as a fatgraph.
The indices 4, 7 then run from 1 to V.

vacuum amplitudes, which are given in terms of fatgraph Feynman diagrams. By

rescaling the fields one can rewrite the Lagrangian of the gauge theory in such a

way that it is multiplied by an overall factor of 921 . This means that every vertex

Y M
comes with a factor g%, whereas the propagators are multiplied by ¢2,,. The gauge

Y M
invariance of the Lagrangian manifests itself in the fact that all index lines form closed
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(index) loops. For each index loop one has to sum over all possible indices which gives
a factor of N. If E denotes the number of propagators in a given graph, V' its vertices
and F' the number of index loops we find therefore that a given graph is multiplied by

1\v 5 o ) .
<§r—) (goa)” N = (g5a)" V1" = (g30) Xt = (g5 2 87 . (1.3)
Y M

Here we defined what is know as the t Hooft coupling,

= goyN . (1.4)

Furthermore, the Feynman diagram can be understood as the triangulation of some
two-dimensional surface with F the number of faces, £ the number of edges and V
the number of vertices of the triangulation, see Fig. 1.2. Then the result follows
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Figure 1.2: The appearance of a Riemann surface for two fatgraphs. The first graph
can be drawn on a sphere and, after having shrunk the fatgraph to a standard graph,
it can be understood as its triangulation with three faces, two edges and one vertex.
The second graph, on the other hand, can be drawn on a torus. The corresponding
triangulation has two edges, one vertex and only one face.

immediately from V — F + F = y = 2 — 2g, where ¢ is the genus and x the Euler
characteristic of the surface. Summing over these graphs gives the following expansion
of the free energy

Fomuse (g2 1) = Z (9% 1) 202 Z F; 5" 4+ non-perturbative . (1.5)
=0 h=1

Here we slightly changed notation, using h instead of F'. This is useful, since an open
string theory has an expansion of precisely the same form, where now A is the number
of holes in the world-sheet Riemann surface. Next we define

FL™9e(t) =Y Fypt" | (1.6)
h=1
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which leads to

Fomse (g, t) =Y (g3a) " F2™9°(¢) + non-perturbative . (1.7)
4=0

In the 't Hooft limit g% ,, is small but ¢ is fixed, so N has to be large. The result can
now be compared to the well-known expansion of the free energy of a closed string
theory, namely

Feiring(g) = Z g2 F;m”g + non-perturbative . (1.8)
§=0

This leads us to the obvious question whether there exists a closed string theory which,
when expanded in its coupling constant g,, calculates the free energy of our gauge
theory, provided we identify

gs ~~ g%’M . (19)

In other words, is there a closed string theory such that F;*"* = F 199 Note however,
that F/*9 = [7*"°(t), so we can only find a reasonable mapping if the closed string
theory depends on a parameter ¢.

For some simple gauge theories the corresponding closed string theory has indeed
been found. The most spectacular example of this phenomenon is the AdS/CFT
correspondence. Here the gauge theory is four-dimensional A/ = 4 superconformal
gauge theory with gauge group U(N) and the corresponding string theory is Type IIB
on AdSs x S°. However, in the following we want to concentrate on simpler examples of
the gauge theory - string theory correspondence. One example is Chern-Simons theory
on S® which is known to be dual to the A-type topological string on the resolved
conifold. This duality will not be explained in detail but we will quickly review the
main results at the end of this introduction. The second example is particularly simple,
since the fields are independent of space and time and the gauge theory is a matrix
model. To be more precise, we are interested in a holomorphic matrix model, which
can be shown to be dual to the B-type closed topological string on some non-compact
Calabi-Yau manifold. It will be part of our task to study these relations in more detail
and to see how we can use them to extract even more information about the vacuum
structure of the supersymmetric gauge theory.

Gauge theories, the geometric transition and matrix models
After these general preliminary remarks let us turn to the concrete model we want to
study. Background material and many of the fine points are going to be be analysed
in the main part of this thesis. Here we try to present the general picture and the
relations between the various theories, see Fig. 1.3.

To be specific, we want to analyse an A/ = 1 supersymmetric gauge theory with
gauge group U(N). Its field content is given by a vector superfield V' and an adjoint
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Figure 1.3: A sketch of the relation of supersymmetric Yang-Mills theory with Type
IIB string theory on non-compact Calabi-Yau manifolds and with the holomorphic
matrix model.

chiral superfield ®. The dynamics of the latter is governed by the tree-level superpo-

tential
n+1

W(®) = Z LY L 9o » (1.10)

k
k=1

with complex coefficients g,. Here, once again, we used the equivalence of the ad-
joint representation of U(N) and the direct product of the fundamental and anti-
fundamental representation, writing ® = ®,;. Note that the degrees of freedom are the
same as those in an N = 2 vector multiplet. In fact, we can understand the theory as
an N = 2 theory that has been broken to A/ = 1 by switching on the superpotential
(1.10).

It turns out that, in order to make contact with string theory, we have to expand the
theory around one of its classical vacua. These vacua are obtained from distributing
the eigenvalues of ® at the critical points' of the superpotential, where W’(x) = 0.

!The critical points of W are always taken to be non-degenerate in this thesis, i.e. if W/(p) = 0
then W (p) # 0.
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Then a vacuum is specified by the numbers NN; of eigenvalues of ® sitting at the i-th
critical point of W. Note that we distribute eigenvalues at all critical points of the
superpotential. Of course, we have the constraint that ) | N; = N. In such a vacuum
the gauge group is broken from U(N) to [[;_, U(N;).

It is this gauge theory, in this particular vacuum, that can be generated from string
theory in a process known as geometric engineering. To construct it one starts from
Type IIB string theory on some non-compact Calabi-Yau manifold X, which is given
by the small resolutions of the singular points of?

W (z)? +v+w’+22=0, (1.11)

where W (x) = Zii %xk + go- This space contains precisely n two-spheres from the
resolution of the n singular points. One can now generate the gauge group and break
N = 2 supersymmetry by introducing D5-branes wrapping these two-spheres. More
precisely, we generate the theory in the specific vacuum with gauge group [[, U(N;),
by wrapping /N; D5-branes around the i-th two-sphere. The scalar fields in & can then
be understood as describing the position of the various branes and the superpotential
is natural since D-branes have tension, i.e. they tend to wrap the minimal cycles
in the non-compact Calabi-Yau manifold. The fact that, once pulled away from the
minimal cycle, they want to minimise their energy by minimising their world-volume
is expressed in terms of the superpotential on the gauge theory side.

Mathematically the singularity (1.11) can be smoothed out in yet another way,
namely by what is know as deformation. The resulting space Xg4.¢ can be described as
an equation in C*,

W (2)*+ fo(z) +0v* +w* + 2> =0, (1.12)

where fy(z) is a polynomial of degree n — 1. In (1.12) the n two-spheres of (1.11) have
been replaced by n three-spheres. The transformation of the resolution of a singularity
into its deformation is know as geometric transition.

Our central physical task is to learn something about the low energy limit of the
four-dimensional U(N) gauge theory. Since X,.s and Xg4.; are intimately related one
might want to study Type IIB on Xg4.¢. However, the resulting effective action has
N = 2 supersymmetry and therefore cannot be related to our original N” = 1 theory.
There is, however, a heuristic but beautiful argument that leads us on the right track.
The geometric transition is a local phenomenon, in which one only changes the space
close to the singularity. Far from the singularity an observer should not even realise
that the transition takes place. We know on the other hand, that D-branes act as
sources for flux and an observer far from the brane can still measure the flux generated
by the brane. If the branes disappear during the geometric transition we are therefore
forced to switch on background flux on Xg.¢, which our observer far from the brane
can measure. We are therefore led to analyse the effective field theory generated by
Type IIB on Xg.¢ in the presence of background flux.

2The space X,.s is going to be explained in detail in section 3.2, for a concise exposition of
singularity theory see [15].
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The four-dimensional theory is N' = 1 supersymmetric and has gauge group U(1)",
i.e. it contains n Abelian vector superfields. In addition there are also n chiral su-
perfields denoted by® S;. Their scalar components describe the volumes of the n
three-spheres I'4,, which arose from deforming the singularity. Since the holomorphic
(3,0)-form €2, which comes with every Calabi-Yau manifold, is a calibration? (i.e. it
reduces to the volume form on suitable submanifolds such as I'4,) the volume can be

calculated from
S; = / Q. (1.13)
Ta,

Type 1IB string theory is known to generate a four-dimensional superpotential in the
presence of three-form flux G3, which is given by the Gukov-Vafa-Witten formula [75]

Weff(si)Ng (/FA Gg/FBiQ—/FBi Gg/w Q) : (1.14)

Here I'p, is the three-cycle dual to I 4.

Now we are in the position to formulate an amazing conjecture, first written down
by Cachazo, Intriligator and Vafa [27]. It simply states that the theory generated from
Xgey in the presence of fluzes is nothing but the effective low energy description of the
theory generated from X,.s in the presence of D-branes. Indeed, in the low energy limit
one expects the SU(N;) part of the U(N;) gauge groups to confine. The theory should
then be described by n chiral multiplets which contain the corresponding gaugino
bilinears. The vacuum structure can be encoded in an effective superpotential. The
claim is now that the n chiral superfields are nothing but the S; and that the effective
superpotential is given by (1.14). In their original publication Cachazo, Intriligator
and Vafa calculated the effective superpotential directly for the U(N) theory using
field theory methods. On the other hand, the geometric integrals of (1.14) can be
evaluated explicitly, at least for simple cases, and perfect agreement with the field
theory results has been found.

These insights are very profound since a difficult problem in quantum field theory
has been rephrased in a beautiful geometric way in terms of a string theory. It turns
out that one can extract even more information about the field theory by making use
of the relation between Type II string theory compactified on a Calabi-Yau manifold
and the topological string on this Calabi-Yau. It has been known for a long time
that the topological string calculates terms in the effective action of the Calabi-Yau
compactification [14], [20]. For example, if we consider the Type IIB string we know
that the vector multiplet part of the four-dimensional effective action is determined
from the prepotential of the moduli space of complex structures of the Calabi-Yau

3Later on we will introduce fields S;, S;, S; with slightly different definitions. Since we are only
interested in a sketch of the main arguments, we do not distinguish between these fields right now.
Also, S; sometimes denotes the full chiral multiplet, and sometimes only its scalar component. It
should always be clear from the context, which of the two is meant.

4A precise definition of calibrations and calibrated submanifolds can be found in [85].
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manifold. But this function is nothing else than the genus zero free energy of the
corresponding B-type topological string. Calculating the topological string free energy
therefore gives information about the effective field theory. In the case we are interested
in, with Type IIB compactified on X,.; with additional D5-branes, one has to study
the open B-type topological string with topological branes wrapping the two-cycles
of X,es. It can be shown [148] that in this case the corresponding string field theory
reduces to holomorphic Chern-Simons theory and, for the particular case of X, this
was shown by Dijkgraaf and Vafa [43] to simplify to a holomorphic matrix model with
partition function

7 = CN/dMeXp (—itrW(M)) , (1.15)

where the potential W (zx) is given by the same function as the superpotential above.
Here g, is a coupling constant, N is the size of the matrices and C « 1s some normalisa-
tion constant. Clearly, this is a particularly simple and tractable theory and one might
ask whether one can use it to calculate interesting physical quantities. The holomor-
phic matrix model had not been studied until very recently [95], and in our work [P5]
some more of its subtleties have been unveiled. Similarly to the case of a Hermitean
matrix model one can study the planar limit in which the size ]Sf of the matrices goes

to infinity, the coupling g, goes to zero and the product t := g,/ is taken to be fixed.
In this limit there appears a Riemann surface of the form

y? = W' (z)* + fo(z) , (1.16)

which clearly is intimately related to Xg.¢. Indeed, as we will see below, the integrals
in the geometry of Xg.r, which appear in (1.14), can be mapped to integrals on the
Riemann surface (1.16). These integrals in turn can be related to the free energy of the
matrix model at genus zero, Fy. After this series of steps one is left with an explicit
formula for the effective superpotential,

Weff(S) ~ Z <N18§(§S) — S@ IOgA?NZ - 27'('2517') N (117)
i=1 ¢

where dependence on S means dependence on all the S;. The constants A; and 7 will
be explained below. The free energy can be decomposed into a perturbative and a
non-perturbative part (c.f. Eq. (1.7)). Using monodromy arguments one can show

OFIP
that 35,

~ S;log S;, and therefore

n Y )
Weff<S) ~ Z <NZ8F805€5) + NzSz lOg (%) — QWZSZT) s (118)

i=1

where now FJ is the perturbative part of the free energy at genus zero, i.e. we can
calculate it by summing over all the planar matrix model vacuum amplitudes. This
gives a perturbative expansion of W.s, which upon extremisation gives the vacuum
gluino condensate (S). Thus using a long chain of dualities in type IIB string theory
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we arrive at the beautiful result that the low energy dynamics and vacuum structure
of a non-Abelian gauge theory can be obtained from perturbative calculations in a
matrix model.’

Chern-Simons theory and the Gopakumar-Vafa transition

In the following chapters many of the points sketched so far are going to be made
more precise by looking at the technical details and the precise calculations. However,
before starting this endeavour, it might be useful to give a quick overview of what
happens in the case of ITA string theory instead. As a matter of fact, in this context
very many highly interesting results have been uncovered over the last years. The
detailed exposition of these developments would certainly take us too far afield, but
we consider it nevertheless useful to provide a quick overview of the most important
results. For an excellent review including many references to original work see [103].
In fact, the results in the context of IIB string theory on which we want to report have
been discovered only after ground breaking work in ITA string theory. The general
picture is quite similar to what happens in Type IIB string theory, and it is sketched
in Fig. 1.4.

d=4 N=1 U(1)
gauge theory,
L. vector superfield V
low energy limit N chiral superfield S
d=4 N=1 U(N) gauge theory "4 Veneziano-Yankielowicz
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Figure 1.4: A sketch of the relation of supersymmetric Yang-Mills theory with Type
ITA string theory on the conifold and with Chern-Simons theory.

SIn fact, this result can also be proven without making use of string theory and the geometric
transition, see [42], [26].
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The starting point here is to consider the open A-model topological string on T*S?
with topological branes wrapped around the three-cycle at the center. Witten’s string
field theory then does not reduce to holomorphic Chern-Simons theory, as is the case
on the B-side, but to ordinary Chern-Simons theory [148], [145] on S®,

s— X (AAdA+§AAAAA). (1.19)

T Jgs

To be more precise, Witten showed that the F gchs of the expansion (1.5) for Chern-
Simons theory on S® equals the free energy of the open A-model topological string on
T*S? at genus § and h holes, F ;;,1}: tst " The details of this procedure can be found in
[148].

Of course, the space T*S? is isomorphic to the deformed conifold, a space we want
to call Cger, which is given by

w2 = (1.20)
Clearly, this is the deformation of the singularity
4+ w422 =0. (1.21)

As we have seen above, these singularities can be smoothed out in yet another way,
namely by means of a small resolution. The resulting space is known as the resolved
conifold and will be denoted by Cies. Both Cgr and C,., are going to be studied in
detail in 3.2. Motivated by the AdS/CFT correspondence, in which a stack of branes in
one space has a dual description in some other space without branes (but with fluxes),
in [64], [65], [66] Gopakumar and Vafa studied whether there exists a dual closed string
description of the open topological string on Cy.s, and hence of Chern-Simons theory.
This turns out to be the case and the dual theory is given by the closed topological
A-model on C,.,. To be somewhat more precise, the Gopakumar-Vafa conjecture
states that Chern-Simons gauge theory on S? with gauge group SU(N) and level k is
equivalent to the closed topological string of type A on the resolved conifold, provided
we identify

2, _ 2miN
_k:—i—N_gCS g H_—k+N’
where x is the Kahler modulus of the two-sphere appearing in the small resolution.
Note that £ = it where t = g2 4N is the 't Hooft coupling.

On the level of the partition function this conjecture was tested in [66]. Here we
only sketch the main arguments, following [103]. The partition function Z¢%(S%) =
exp (—F%) of SU(N) Chern-Simons theory on 5% is known, including non-perturbative
terms [145]. The free energy splits into a perturbative F¢5? and a non-perturbative
piece F¢9mP where the latter can be shown to be

Js (1.22)

(2793)%1\[2

FOSmp _ gg \STYs)2
& Sl (U(N))

(1.23)
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We find that the non-perturbative part of the free energy comes from the volume of
the gauge group in the measure. As discussed above, the perturbative part has an

expansion
FOSP = Z g¥=2 ZFg,hth : (1.24)
h=1

The sum over h can actually be performed and gives FQC 5P The non-perturbative part
can also be expanded in the string coupling and, for g > 2, the sum of both pieces
leads to (see e.g. [103])

—1)9| By; Bay— By,
FCS FCS,Z?_I_FCSTLP A( A) | 29 A29 2| : . ‘ A29’ ‘LiS—Qg (e—fﬁ) , (125)
29(29 = 2)(29 = 2)! * 29(29 — 2)!

where B, are the Bernoulli numbers and Li;(z) := Y ° | - is the polylogarithm of
index J.

This result can now be compared to the free energy of the topological A-model on
the resolved conifold. Quite generally, from results of [32], [19], [20], [64], [65] and [54]
it can be shown that the genus g contribution to the free energy of the topological
A-model on a Calabi-Yau manifold X reads [103]

X(X)| By Bag—o|
g—2)(2g —2)!

1)9
49(2
| Byglny | 2(=1)'nj 9—2 51,
+o =TS 08 ) Lis o, (QF)
zﬁ:<2gzq—2 T2 13 "t | L (QF)

(1.26)

A—tst (
FQ

Here g =) . n; [%(2 ] is a homology class, where the [% ] form a basis of Hy(X). In
general there are more than one Kihler parameters x; and Q° has to be understood as
[ Q" with Q; := e ". Furthermore, the ng, known as Gopakumar-Vafa invariants,
are integer numbers.

We see that precise agreement can be found between (1.25) and (1.26), provided we
set x(X) = 2 and nY = 1, with all other Gopakumar-Vafa invariants vanishing. This
is indeed the correct set of geometric data for the resolved conifold, and we therefore
have shown that the conjecture holds, at least at the level of the partition function.
In order to have a full duality between two theories, however, one should not only
compare the free energy but also the observables, which in Chern- Simons theory are
given by Wilson loops. In [113] the corresponding quantities were constructed in the
A-model string, thus providing further evidence for the conjecture. Finally, a nice and
intuitive proof of the duality from a world-sheet perspective has been given by the
same authors in [114]. Quite interestingly this duality can be lifted to non-compact
G>-manifolds, where the transition is a flop [4], [16].

After having established the Gopakumar-Vafa duality we can now proceed similarly
to the above discussion on the IIB side. Indeed, in [130] the duality was embedded into
the context of full string theory. There the statement is that ITA string theory on the
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direct product of four-dimensional Minkowski space and the deformed conifold with
N D6-branes wrapping around the S% in T*S? is dual to the ITA string on Minkowski
times the resolved conifold, where one now has to switch on flux with flux number
N through the S?. As above one can also study the four-dimensional effective field
theories generated by these compactifications. The N D6-branes clearly lead to pure
supersymmetric Yang-Mills theory with gauge group U(N), whereas the dual theory
on Cyes with fluxes switched on, leads to an effective U(1) theory in four dimensions.
In [130] it is also shown that the effective superpotential generated from ITA on the
resolved conifold is nothing but the Veneziano-Yankielowicz potential. Thus, like in
the 1IB case sketched above, the geometric transition is once again equivalent to the
low energy description.

Both the resolved and the deformed conifold can be described in the language of
toric varieties. In fact, one can study the A-type topological string on more gen-
eral toric varieties. The geometry of these spaces can be encoded in terms of toric
diagrams and the geometric transition then has a nice diagrammatic representation.
Quite interestingly, it was shown in [10] that, at least in principle, one can compute the
partition function of the A-type topological string on any toric variety. This is done
by understanding the toric diagram as some sort of “Feynman diagram”, in the sense
that to every building block of the diagram one assigns a mathematical object and
the partition function corresponding to a toric variety is then computed by putting
these mathematical objects together, following a simple and clear cut set of rules.
Many more results have been derived in the context of the A-type topological string
on toric varieties, including the relation to integrable models [9]. These developments
are, however, outside the scope of my thesis.



Chapter 2

Effective Actions

In what follows many of the details of the intriguing picture sketched in the introduction
will be explained. Since the full picture consists of very many related but different
theories we will not be able to study all of them in full detail. However, we are going
to provide references wherever a precise explanation will not be possible. Here we
start by an exposition of various notions of effective actions that exist in quantum
field theory. We quickly review the definitions of the generating functional of the one-
particle-irreducible correlation functions and explain how it can be used to study vacua
of field theories. The Wilsonian effective action is defined somewhat differently, and it
turns out that it is particularly useful in the context of supersymmetric gauge theories.
Finally a third type of effective action is presented. It is defined in such a way that it
captures the symmetries and the vacuum structure of the theory, and in some but not
in all cases it coincides with the Wilsonian action.

2.1 The 1PI effective action and the background
field method

We start from the Lagrangian density of a field theory
L= L(D) (2.1)

and couple the fields ®(x) to a set of classical currents J(z),

Z[J]) = exp(iF[J /ch exp( /d4:1: L(D) +z’/d4x J(x)@(:c)) (22

The quantity iF'[J] is the sum of all connected vacuum-vacuum amplitudes. Define

B, (z) = M‘zx)ﬂﬂ — (@ (a)) - (2.3)

This equation can also be used to define a current Jg,(x) for a given classical field
Do(z), s.t. Py(x) = Po(x) if J(z) = Jo,(x). Then one defines the quantum effective

26
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action T'[®g)] as
L[®] = FlJs,] — / d*z ®y(z)Je,(z) . (2.4)

The functional I'[®g] is an effective action in the sense that i¢F'[J] can be calculated
as a sum of connected tree graphs for the vacuum-vacuum amplitude, with vertices
calculated as if I'[®¢] and not S[®] was the action. But this implies immediately that
iI'[®p] is the sum of all one-particle-irreducible (1PI) connected graphs with arbitrary
number of external lines, each external line corresponding to a factor of 3. Another
way to put it is (see for example [134] or [116] for the details)

exp(il[@e]) = | Do exp(iS[y + ) . (2.5)

1PI

Furthermore, varying I" gives

SI'[Do]
= —J 2.6
5(1)0 (.T) o) (.CC) ) ( )
and in the absence of external currents
O[]
=0. 2.7

This can be regarded as the equation of motion for the field &, where quantum
corrections have been taken into account. In other words, it determines the stationary
configurations of the background field ®.

The effective potential of a quantum field theory is defined as the non-derivative
terms of its effective Lagrangian. We are only interested in translation invariant vacua,
for which ®y(z) = ® is constant and one has

L[] = =Vi Vepp(Po) (2.8)

where V} is the four-dimensional volume of the space-time in which the theory is
formulated.
To one loop order the 1PI generating function can be calculated from

exp(il'[®g]) ~ / D¢ exp (z / d*z .cq(q>o,¢)> : (2.9)

L(®, ¢) contains all those terms of L(®g + ¢) that are at most quadratic in ¢. One
writes LI(Pg, ¢p) = L(Pg) + L1(Dg, ¢) and performs the Gaussian integral over ¢, which
schematically leads to

T[] ~ ViL (Do) — %log det(A(®y)) | (2.10)

where A is the matrix of second functional derivatives of £ with respect to the fields
¢.! For some concrete examples the logarithm of this determinant can be calculated

Since we have to include only 1PI diagrams to calculate I' (c.f. Eq. 2.5) the terms linear in the
fluctuations ¢ do not contribute to I'. See [2] for a nice discussion.
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and one can read off the effective action and the effective potential to one loop order.
Minimising this potential then gives the stable values for the background fields, at
least to one loop order. The crucial question is, of course, whether the structure of the
potential persists if higher loop corrections are included.

Example: Yang-Mills theory
In order to make contact with some of the points mentioned in the introduction, we
consider the case of Yang-Mills theory with gauge group SU(N) and Lagrangian
1 a va

EZ —4—g2ijFH 5 (211)
and try to determine its effective action using the procedure described above. Since
the details of the calculation are quite complicated we only list the most important
results. One start by substituting

Al (r) — Aj(r) + aj(z) (2.12)

into the action and chooses a gauge fixing condition. This condition is imposed by
adding gauge fixing and ghost terms to the action. Then, the effective action can be
evaluated to one loop order from

exp(iT[A]) ~ / Da De Dé exp <z / diz L9(A,a,c, 5)) | (2.13)

where L£(A,a,c,¢) only contains those terms of L£(A + a) + £/ + L9t that are
at most quadratic in the fields a,c,¢. Here £9/ is the gauge fixing and £9"° the
ghost Lagrangian. The Gaussian integrals can then be evaluated and, at least for
small N, one can work out the structure of the determinant (see for example chapter
17.5. of [134]). The form of the potential is similar in shape to the famous Mexican hat
potential, which implies that the perturbative vacuum where one considers fluctuations
around the zero-field background is an unstable field configuration. The Yang-Mills
vacuum lowers its energy by spontaneously generating a non-zero ground state.

However, this one-loop calculation can only be trusted as long as the effective
coupling constant is small. On the other hand, from the explicit form of the effective
action one can also derive the one-loop g-function. It reads

11 3
_3Ng
1672 ’

Blg) = (2.14)

where the dots stand for higher loop contributions. The renormalisation group equation

() = 509 (2.15)

1 N IA|
— 3 oo () 2.16
g()? 82 Og( I > (2.16)

is solved by
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Therefore, for energies lower or of order |A| we cannot trust the one-loop approximation.
Nevertheless, computer calculations in lattice gauge theories seem to indicate that even
for small energies the qualitative picture remains true, and the vacuum of Yang-Mills
theory is associated to a non-trivial background field configuration, which gives rise
to confinement and massive glueball fields. However, the low energy physics of non-
Abelian gauge theories is a regime which has not yet been understood.

2.2 Wilsonian effective actions of supersymmetric
theories

For a given Lagrangian one can also introduce what is known as the Wilsonian effective
action [141], [142]. Take A to be some energy scale and define the Wilsonian effective
Lagrangian £, as the local Lagrangian that, with A imposed as an ultraviolet cut-off,
reproduces precisely the same results for S-matrix elements of processes at momenta
below A as the original Lagrangian £. In general, masses and coupling constants in the
Wilsonian action will depend on A and usually there are infinitely many terms in the
Lagrangian. Therefore, the Wilsonian action might not seem very attractive. However,
it can be shown that its form is quite simple in the case of supersymmetric theories.

Supersymmetric field theories are amazingly rich and beautiful. Independently
on whether they turn out to be the correct description of nature, they certainly are
useful to understand the structure of quantum field theory. This is the case since they
often possess many properties and characteristic features of non-supersymmetric field
theories, but the calculations are much more tractable, because of the higher symmetry.
For an introduction to supersymmetry and some background material see [21], [134],
[135]. Here we explain how one can calculate the Wilsonian effective superpotential in
the case of NV = 1 supersymmetric theories.

The N = 1 supersymmetric action of a vector superfield V' coupled to a chiral
superfield ® transforming under some representation of the gauge group is given by?

S = /d4x [@Te_VCI)]D—/d4m [(16;1, tr WTeVV)F + c.c.] +/d4x (W(®))p + cc] ,

(2.17)
where W(®) is known as the (tree-level) superpotential. The subscripts F' and D
extract the F- respectively D-component of the superfield in the bracket. Renormalis-
ability forces W to be at most cubic in ®, but since we are often interested in theories
which can be understood as effective theories of some string theory, the condition of
renormalisability will often be relaxed.> The constant 7 is given in terms of the bare

*We follow the notation of [134], in particular [tr WTeW ], = [eqp tr WoWg],. = %tr F FM —
%EWW tr F*Y FP7 4 tr A@(1 — v5)\ — tr D2. Here F),, etc. are to be understood as Fy,t*, where ¢
are the Hermitean generators of the gauge group, which satisfy trt*t? = 2.

30f course, for non-renormalisable theories the first two terms can have a more general structure
as well. The first term, for instance, in general reads K (®,®Te~") where K is known as the Kihler
potential. However, these terms presently are not very important for us. See for example [135], [134]
for the details.
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coupling g and the ©-angle,
A ©
T=—+

7t (2.18)

The ordinary bosonic potential of the theory reads

V)= + 2 (Z aszcz»m(t“)mn) , (2.19)

where ¢ is the lowest component of the superfield ® and t* are the Hermitean generators
of the gauge group. A supersymmetric vacuum ¢, of the theory is a field configuration
for which V' vanishes [134], so we have the so called F-flatness condition

ow
Oy,

0
—W(o =0, 2.20
UG (2.20)
as well as the D-flatness condition
> G om(t)mn| =0 (2.21)
mn ¢O

The space of solutions to the D-flatness condition is known as the classical moduli
space and it can be shown that is can always be parameterised in terms of a set of
independent holomorphic gauge invariants Xy (¢).

The task is now to determine the effective potential of this theory in order to
learn something about its quantum vacuum structure. Clearly, one possibility is to
calculate the 1PI effective action, however, for supersymmetric gauge theories there
exist non-renormalisation theorems which state that the Wilsonian effective actions of
these theories is particularly simple.

Proposition 2.1 Perturbative non-renormalisation theorem

If the cut-off N\ appearing in the Wilsonian effective action preserves supersymmetry
and gauge invariance, then the Wilsonian effective action to all orders in perturbation
theory has the form

Sy = /d4x [(W(®))r +c.c] —/d4x [(1(7;1 tr WTGW>F + c.c.} + D-terms , (2.22)

where
47 S
+

4= 2.23
o (223)

™ —
and gy is the one-loop effective coupling.

Note in particular that the superpotential remains unchanged in perturbation theory,
and that the gauge kinetic term is renormalised only at one loop. The theorem was
proved in [72] using supergraph techniques, and in [121] using symmetry arguments
and analyticity.



2.2 Wilsonian effective actions of supersymmetric theories 31

Although the superpotential is not renormalised to any finite order in perturbation
theory it does in fact get corrected on the non-perturbative level, i.e. one has

Weff = Wtree + Wnonfpert . (224)

The non-perturbative contributions were thoroughly studied in a series of papers by
Affleck, Davis, Dine and Seiberg [41], [8], using dimensional analysis and symmetry con-
siderations. For some theories these arguments suffice to exactly determine W, —pert-
An excellent review can be found in [134]. This effective Wilsonian superpotential can
now be used to study the quantum vacua of the gauge theory, which have to be critical
points of the effective superpotential.

So far we defined two effective actions, the generating functional of 1PI amplitudes
and the Wilsonian action. Clearly, it is important to understand the relation between
the two. In fact, for the supersymmetric theories studied above one can also evaluate
the 1PI effective action. It turns out that this functional receives contributions to
all loop orders in perturbation theory, corresponding to Feynman diagrams in the
background fields with arbitrarily many internal loops. Therefore, we find that the
difference between the two effective actions seems to be quite dramatic. One of them
is corrected only at one-loop and the other one obtains corrections to all loop orders.
The crucial point is that one integrates over all momenta down to zero to obtain the 1PI
effective action, but one only integrates down to the scale A to calculate the Wilsonian
action. In other words, whereas one has to use tree-diagrams only if one is working with
the 1PI effective action, one has to include loops in the Feynman diagrams if one uses
the Wilsonian action. However, the momentum in these loops has an ultraviolet cutoff
A. Taking this A down to zero then gives back the 1PI generating functional. Therefore,
the difference between the two has to come from the momentum domain between 0
and A. Indeed, as was shown by Shifman and Vainshtein in [123], in supersymmetric
theories the two-loop and higher contributions to the 1PI effective action are infrared
effects. They only enter the Wilsonian effective action as the scale A is taken to zero.
For finite A\ the terms in the Wilsonian effective action arise only from the tree-level
and one-loop contributions, together with non-perturbative corrections.

Furthermore, it turns out that the fields and coupling constants that appear in
the Wilsonian effective action are not the physical quantities one would measure in
experiment. For example, the non-renormalisation theorem states that the coupling
constant ¢ is renormalised only at one loop. However, from explicit calculations one
finds that the 1PI ¢ is renormalised at all loops. This immediately implies that there
are two different coupling constants, the Wilsonian one and the 1PI coupling. The two
are related in a non-holomorphic way and again the difference can be shown to come
from infrared effects. It is an important fact that the Wilsonian effective superpotential
does depend holomorphically on both the fields and the (Wilsonian) coupling constants,
whereas the 1PI effective action is non-holomorphic in the (1PI) coupling constants.
The relation between the two quantities has been pointed out in [124], [46]. In fact, one
can be brought into the other by a non-holomorphic change of variables. Therefore, for
supersymmetric theories we can confidently use the Wilsonian effective superpotential
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to study the theory. If the non-perturbative corrections to the superpotential are
calculable (which can often be done using symmetries and holomorphy) then one can
obtain the exact effective superpotential and therefore exact results about the vacuum
structure of the theory. However, the price one has to pay is that this beautiful
description is in terms of unphysical Wilsonian variables. The implications for the
true physical quantities can only be found after undoing the complicated change of
variables.

2.3 Symmetries and effective potentials

There is yet another way (see [84] for a review and references), to calculate an effective
superpotential, which uses Seiberg’s idea [121] to interpret the coupling constants as
chiral superfields. Let

W(®) = guXn(®) (2.25)

be the tree-level superpotential, where the X are gauge invariant polynomials in the
matter chiral superfield ®. In other words, the X, are themselves chiral superfields.
One can now regard the coupling constants g as the vacuum expectation value of the
lowest component of another chiral superfield Gy, and interpret this field as a source
[121]. I.e. instead of (2.25) we add the term W(G,®) = >, G4 X} to the action.
Integrating over ® then gives the partition function Z[G| = exp(iF'[G]). If we assume
that supersymmetry is unbroken F' has to be a supersymmetric action of the chiral
superfields GG, and therefore it can be written as

FlG| = / A [(Wipw(G))r+ o]+ ... | (2.26)

with some function W, (G). As we will see, this function can often be determined from
symmetry arguments. For standard fields (i.e. not superfields) we have the relation
(2.3). In a supersymmetric theory this reads

(Xi)a = %F[G] = ainM/low(G> (2.27)

where we used that W, is holomorphic in the fields GG;. On the other hand we can
use this equation to define (Gy) as the solution of

0
X0= — W , 2.2
R 0G) tou(G) (2.28)

Then we define the Legendre transform of W,

Wdyn(Xlg) = VVlow(<Gk>) - Z<GK>XIE:) ) (2'29)
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where (Gy) solves (2.28), and finally we set

Weff(Xk7gk) = Wdyn(Xk) + ngXk . (230)
k

This effective potential has the important property that the equations of motion for the
fields X}, derived from it determine their expectation values. Note that (2.30) is nothing
but the tree-level superpotential corrected by the term Wy,,. This looks similar to
the Wilsonian superpotential, of which we know that it is uncorrected perturbatively
but it obtains non-perturbative corrections. Indeed, for some cases the Wilsonian
superpotential coincides with (2.30), however, in general this is not the case (see [84]
for a discussion of these issues). Furthermore, since W, does not depend on the
couplings gi, the effective potential depends linearly on g;. This is sometimes known
as the linearity principle, and it has some interesting consequences. For instance one
might want to integrate out the field X; by solving

=0 2.31
0X; ’ ( )
which can be rewritten as p
2} dyn
.= — ] 2.32
g 0X; ( )

If one solves this equation for X; in terms of g; and the other variables and plugs the
result back in Wy, the g;-dependence will be complicated. In particular, integrating
out all the X; gives back the superpotential W, (g). However, during this process one
does actually not loose any information, since this procedure of integrating out X; can
actually be inverted by integrating in X;. This is obvious from the fact that, because
of the linearity in gz, integrating out X; is nothing but performing an (invertible)
Legendre transformation.

Super Yang-Mills theory and the Veneziano-Yankielowicz potential
In order to see how the above recipe is applied in practice, we study the example of
N =1 Super-Yang-Mills theory. Its action reads

Ssym = —/d41: [( Tt WTEW) —i—c.c.} , (2.33)
1671 F
which, if one defines the chiral superfield
. 1 T
S = 50,2 tr WTeW | (2.34)
can be rewritten as
Ssym = /d4x [(2miTS)p +c.c] . (2.35)

S is known as the gaugino bilinear superfield, whose lowest component is proportional
to AX = tr \7e\. Note that both S and 7 are complex.
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The classical action (2.33) is invariant under a chiral U(1) R-symmetry that acts as
Wo(z,0) — Wy (z, e *0), which implies in particular that A — e¢*’\. The quantum
theory, however, is not invariant under this symmetry, which can be understood from
the fact that the measure of the path integral is not invariant. The phenomenon in
which a symmetry of the classical action does not persist at the quantum level is known
as an anomaly. For a detailed analysis of anomalies and some applications in string
and M-theory see the review article [P4]. The most important results on anomalies
are listed in appendix E. The precise transformation of the measure for a general
transformation A — €*“®)\ can be evaluated [134] and reads

DADX — DNDX = exp (z / d*z e(z)Glx; A]) DADA (2.36)

where N
G[l’,A] = —%EMV,DUF(QLVFC?U . (237)
For the global R-symmetry €(x) = ¢ is constant, and = [ d* €u,,o F*FP7 = v is

an integer, and we see that the symmetry is broken by instantons. Note that, because
of the anomaly, the chiral rotation A — €’ is equivalent to © — © — 2N (c.f. Eq.
(2.18)). Thus, the chiral rotation is a symmetry only if ¢ = £ with £ = 0,...2N — 1,
and the U(1) symmetry is broken to Zsy.

The objective is to study the vacua of NV =1 super Yang-Mills theory by probing
for gaugino condensates, to which we associate the composite field S that includes
the gaugino bilinear. This means we are interested in the effective superpotential
Wesr(S), which describes the symmetries and anomalies of the theory. In particular,
upon extremising W, ;;(S) the value of the gaugino condensate in a vacuum of N' =1
Yang-Mills is determined.

The SB-function of N = 1 super Yang-Mills theory reads at one loop

3Ng?

= — 2.38

and the solution of the renormalisation group equation is given by

1 3N |A|
=———log— . 2.39
P s B (2:39)
Then
dmi O 1 Alet®/BNNF g A
Tl—loop - m + - = 10g L = — log — (240)
() 2w 2mi 1 271 1

enters the one-loop action

A
S1toop = /d4x (27071 —joopS) F + c.C.] = /d4a: [(3Nlog (;) S) + c.c.] )
F

(2.41)
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In order to determine the superpotential W, (7) one can use Seiberg’s method
[121], and one interprets 7 as a background chiral superfield. This is useful, since
the effective superpotential is known to depend holomorphically on all the fields, and
therefore it has to depend holomorphically on 7. Furthermore, once 7 is interpreted as
a field, spurious symmetries occur. In the given case one has the spurious R-symmetry
transformation

W(x,0) — e%W(x, e #0),
N 2.42
T — T+ =2 , ( )
s
and the low energy potential has to respect this symmetry. This requirement, together

with dimensional analysis, constrains the superpotential W, uniquely to
i
Wi = Ny exp (2517 ) = . 213

where p has dimension one. Indeed, this Wiy, (7) transforms as Wiy, (1) — €2 W4, (1),
and therefore the action is invariant.

Before deriving the effective action let us first show that a non-vanishing gaugino
condensate exists. One starts from (2.33) and now one treats 7 as a background field.
Then, since Wo, = Ao + - .., the F-component of 7, denoted by 7, acts as a source
for AX. One has

_ 1 isyy _ 1 . 4 T T
) = Z/D@e AN = Z/ch exp[ z/dx[(lﬁm,W 6W>F+C.C.H AN

1 o . 160 ¢ )
— 161 [ Do 5= T 0 7 46xl logz
7TZ/ (57'F6 A 5TF W(STF ©8
= —167m'% d*z [(Wigw)r +cc]+...= —167rz'§l/l/low(7)
-
_ 327r2,u3exp< ?\;T) , (2.44)

where D® stands for the path integral over all the fields. 7 is renormalised only at one
loop and non-perturbatively, and it has the general form

3N A 0 A\
= log [ = = . 2.4
T om 8 (u) +;an (u) (2:45)

Therefore, the non-perturbative terms of 7 only contribute to a phase of the gaugino
condensate, and it is sufficient to plug in the one-loop expression for 7. The result is
a non-vanishing gaugino condensate,

(M) = 327 A% . (2.46)

The presence of this condensate means that the vacuum does not satisfy the Zoy
symmetry, since (AX) — e?#(\)\) and only a Z,-symmetry survives. The remaining
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|ZZQ—§’| — 1 = N — 1 transformations, i.e. those with ¢ = % with k = 1,... N — 1
transform one vacuum into another one, and we conclude that there are N distinct
vacua.

Next we turn to the computation of the effective action. From (2.35) we infer that
2miS and 7 are conjugate variables. We apply the recipe of the last section, starting
from W, (7), as given in (2.43). From

, 0
2miS = EVVIOU,(T)

-
= 2mip® exp <ﬂ<7>> (2.47)
& N

2mi

we infer that (7) = 2 log (%) According to (2.29) one finds

Wayn(S) = NS — NSlog (%) . (2.48)

Finally, using the one-loop expression for 7 and identifying the p appearing in (2.43)
with the one in (2.40), one obtains the Veneziano-Yankielowicz potential [132]

Werr(A,S) = Wyy(A,S) =S {N + log (%)] . (2.49)

In order to see in what sense this is the correct effective potential, one can check

whether it gives the correct expectation values. Indeed, M‘( > = 0 gives the N
S

a5
vacua of N’ = 1 super Yang-Mills theory,

2mik

(SYy =A%~ | k=0,...N—-1. (2.50)

Note that this agrees with (2.46), since S is defined as 55— times tr W,W®, which
accounts for the difference in the prefactors. Furthermore, the Veneziano-Yankielowicz
potential correctly captures the symmetries of the theory. Clearly, under R-symmetry
S transforms as S — S = ¢%*$ and therefore the effective Veneziano-Yankielowicz
action Syy transforms as

Svy — Syy = /d% [(WVY>F + c.c.] + ...

) ASN
= /d% {62“" (SN + Slog <S_N) - 2@'Ng05) - c.c}
F
= Syy — /d4x iNg trWTeW | +cc (2.51)
— VY 167T2 - L. 9 .

which reproduces the anomaly. However, for the effective theory to have the Zsy
symmetry, one has to take into account that the logarithm is a multi-valued function.
For the n-th branch one must define

(n) AN .
Wyy (A, S) =S |N +log N + 2min| . (2.52)
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Then the discrete symmetry shifts £, — £, for ¢ = ™. The theory is invariant

N
under Zoy if we define

7= i /DSeXp (@'/d“x [Wé’;)Jrc.c}FJr...) . (2.53)

n=—oo

Thus, although the Veneziano-Yankielowicz effective action is not the Wilsonian ef-
fective action, it contains all symmetries, anomalies and the vacuum structure of the
theory.

Super Yang-Mills coupled to matter
The main objective of the next chapters is to find an effective superpotential in the
Veneziano-Yankielowicz sense, i.e. one that is not necessarily related to the 1PI or
Wilsonian effective action, but that can be used to find the vacuum structure of the
theory, for N' = 1 Yang-Mills theory coupled to a chiral superfield ® in the adjoint
representation. The tree-level superpotential in this case is given by

n+1
we) =Y g—]: trd* + gy, gr €C (2.54)
k=1
where without loss of generality g,.1 = 1. Furthermore, the critical points of W

are taken to be non-degenerate, i.e. if W/(p) = 0 then W”(p) # 0. As we mentioned
above, the corresponding effective superpotential can be evaluated perturbatively from
a holomorphic matrix model [43], [44], [45]. This can either be shown using string
theory arguments based on the results of [130] and [27], or from an analysis in field
theory [42], [26]. The field theory itself has been studied in [28], [29], [57]. However,
before we turn to explaining these development we need to present background material
on the manifolds appearing in this context.



Chapter 3

Riemann Surfaces and Calabi-Yau
Manifolds

In this section we explain some elementary properties of Riemann surfaces and Calabi-
Yau manifolds. Of course, both types of manifolds are ubiquitous in string theory
and studying them is of general interest. Here we will concentrate on those aspects
that are relevant for our setup. As we mentioned in the introduction, the theory we
are interested in can be geometrically engineered by “compactifying” Type II string
theory on non-compact Calabi-Yau manifolds, the structure of which will be presented
in detail. The superpotential can be calculated from geometric integrals of a three-
form over a basis of three-cycles in these manifolds. Quite interestingly, it turns out
that the non-compact Calabi-Yau manifolds are intimately related to Riemann surfaces
and that the integrals on the Calabi-Yau can be mapped to integrals on the Riemann
surface. As we will see in the next chapter, it is precisely this surface which also
appears in the large N limit of a holomorphic matrix model.

Our main reference for Riemann surfaces is [55]. An excellent review of both
Riemann surfaces and Calabi-Yau manifolds, as well as their physical applications
can be found in [81]. The moduli space of Calabi-Yau manifolds was first studied in
(34].

3.1 Properties of Riemann surfaces

Definition 3.1 A Riemann surface is a complex one-dimensional connected analytic
manifold.

There are many different description of Riemann surfaces. We are interested in the
so called hyperelliptic Riemann surfaces of genus g,
G+1
v =1 —-a)@—a), (3.1)
i=1
with z, ¥, ali € C and all aii different. These can be understood as two complex sheets
glued together along cuts running between the branch points a; and a], together

38
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with the two points at infinity of the two sheets, denoted by ) on the upper and @’

df, %, e @} forms a basis of
holomorphic differentials. This fact can be understood by looking at the theory of
divisors on Riemann surfaces, presented in appendix B.2, see also [55]. The divisors
capture the zeros and divergences of functions on the Riemann surface. Let Py, ... Posio

denote those points on the Riemann surface which correspond to the zeros of y (i.e.
to the a). Close to ai the good coordinates are z = \/z —a;. Then the divisor

Pi..Pyys . . . .
Gitigart> since y has simple zeros at the P in the good coordinates

z;, and poles of order g+ 1 at the points @, Q. If we let R, R’ denote those points on
the Riemann surface which correspond to zero on the upper, respectively lower sheet

on the lower sheet. On these surfaces the set

of y is given by

then it is clear that the divisor of = is given by ggi. Finally, close to ali we have
dx ~ ziidzii, and obviously dx has double poles at @) and @', which leads to a divisor

%. In order to determine the zeros and poles of more complicated objects like

242 we can now simply multiply the divisors of the individual components of this

object. In particular, the divisor of df is Q971Q"9~!, and for § > 1 it has no poles.

zkda

Similarly, we find that has no poles if £ < g— 1. Quite generally, for any compact
Riemann surface ¥ of genus ¢ one has,

dim Hol}(¥) = ¢ , (3.2)

where HO%(Z) is the first holomorphic de Rham cohomology group on ¥ with genus
g. On the otl;er 2hand, later on we will be interested in integrals of the form ydz,
with divisor %, showing that ydx has poles of order g+ 3, +2,...1 at @ and
Q'. To allow for such forms with poles one has to mark points on the surface. This
marking amounts to pinching a hole into the surface. Then one can allow forms to
diverge at this point, since it no longer is part of the surface. The dimension of the
first holomorphic de Rham cohomology group on ¥ of genus ¢ with n marked points,
Hol; (%), is given by [55]

dim Hol; () =25 +n—1. (3.3)

The first homology group H;(X;Z) of the Riemann surface ¥ has 2¢g generators
o', B, 1€ {1,..., g}, with intersection matrix

a'ne’ =0 , BNG=0,
a'NBj=—FNa =d . (3.4)

Note that this basis is defined only up to a! Sp(2g,Z) transformation. To see this
formally, consider the vector v := (a' 3;)" that satisfies v N v™ = U. But for S €
Sp(2§,7) we have for v := Sv that v' N V'™ = SUS™ = U. A possible choice of the
cycles o', 3; for the hyperelliptic Riemann surface (3.1) is given in Fig. 3.1. As we

!There are different conventions for the definition of the symplectic group in the literature. We
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Figure 3.1: The hyperelliptic Riemann surface (3.1) can be understood as two complex
sheets glued together along cuts running between a; and af. Here we indicate a
symplectic set of cycles for § = 2. It consists of § compact cycles o', surrounding 4 of
the cuts, and their compact duals 3;, running from cut ¢ to ¢ + 1 on the upper sheet
and from cut 7+ 1 to cut ¢ on the lower one. We also indicated the relative cycles &, B ,
which together with o, 3; form a basis of the relative homology group H;(2,{Q,Q'}).
Note that the orientation of the two planes on the left-hand side is chosen such that
both normal vectors point to the top. This is why the orientation of the a-cycles is
different on the two planes. To go from the representation of the Riemann surface on
the left to the one on the right one has to flip the upper plane.

mentioned already, later on we will be interested in integrals of ydx, which diverges
at @, Q. Therefore, we are led to consider a Riemann surface with these two points
excised. On such a surface there exists a very natural homology group, namely the
relative homology H; (3, {Q,Q’'}). For a detailed exposition of relative (co-)homology
see appendix B.3. H(3,{Q, Q'}) not only contains the closed cycles o', 3;, but also a
cycle B, stretching from @ to @', together with its dual &. As an example one might
look at the simple Riemann surface

=2 = (e - i)z~ V), (3.7)

with only one cut between —./u and /p surrounded by a cycle a. The dual cycle B
simply runs from ' through the cut to Q).

There are various symplectic bases of Hy(X,{Q,Q’}). Next to the one just pre-
sented, another set of cycles often appears in the literature. It contains g + 1 compact

adopt the following:
Sp(2m,K) :={S € GL(2m,K) : ST0S = U}, (3.5)

0 < o g ) (3.6)

and 1l is the m x m unit matrix. K stands for any field.

where
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cycles A?, each surrounding one cut only, and their duals B;, which are all non-compact,
see Fig. 3.2. Although string theory considerations often lead to this basis, it turns

f

NN

Figure 3.2: Another choice of basis for Hi(X,{Q,Q'}) containing compact A-cycles
and non-compact B-cycles.

out to be less convenient, basically because of the non-compactness of the B-cycles.
Next we collect a couple of properties which hold for any (compact) Riemann surface
Y. Let w be any one-form on X, then

(%) 39

is called the period vector of w. For any pair of closed one-forms w, x on Y one has

S o) e

This is the Riemann bilinear relation for Riemann surfaces.
Denote the ¢ linearly independent holomorphic one-forms on ¥ by {A\;}, k €

{1,...,9}. Define
62, = /)\k: s hzk I:/ )\k s (310)

and from these the period matriz

Hij = hik(e_l)l? . (311)

J

Inserting two holomorphic forms A;, A; for w, x in (3.9) the left-hand side vanishes,
which tells us that the period matrix is symmetric. This is known as Riemann’s first
relation. Furthermore, using (3.9) with Ag, A; one finds Riemann’s second relation,
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Riemann’s relations are invariant under a symplectic change of the homology basis.

The moduli space of Riemann surfaces
Let M denote the moduli space of complex structures on a genus g Riemann surface.
As is reviewed in appendix B.1, infinitesimal changes of the complex structure of a
manifold X are described by H é(TX ) and therefore this vector space is the tangent
space to M at the point corresponding to X. This is interesting because the dimension
of M coincides with the dimension of its tangent space and the latter can be computed
explicitly (using the Grothendieck-Riemann-Roch formula, see [81]). The result is

My = {point} ,
dimeM; = 1, (3.13)
dim(c./\/lg = 3.@ —3 for g > 2.

One might consider the case in which one has additional marked points on the Riemann
surface. The corresponding moduli space is denoted by M, ,, and its dimension is given

by
dimcMp, = n—3 forn>3,
dimeMy, = n, (3.14)
dimeMg = 39g—3+n forg>2.

3.2 Properties of (local) Calabi-Yau manifolds

3.2.1 Aspects of compact Calabi-Yau manifolds

Our definition of a Calabi-Yau manifold is similar to the one of [86].

Definition 3.2 Let X be a compact complex manifold of complex dimension m and
J the complex structure on X. A Calabi- Yau manifold is a triple (X, J,g), s.t. g is a
Kahler metric on (X, J) with holonomy group Hol(g) = SU(m).

A Calabi-Yau manifold of dimension m admits a nowhere vanishing, covariantly con-
stant holomorphic (m, 0)-form €2 on X that is unique up to multiplication by a non-zero
complex number.

Proposition 3.3 Let (X, J,g) be a Calabi-Yau manifold, then g is Ricci-flat. Con-
versely, if (X, J, g) of dimension m is simply connected with a Ricci-flat Kdhler metric,
then its holonomy group is contained in SU(m).

Note that Ricci-flatness implies ¢;(TX) = 0. The converse follows from Calabi’s
conjecture:

Proposition 3.4 Let (X,J) be a compact complex manifold with ¢1(X) = [0] €
H?*(X;R). Then every Kdhler class [w] on X contains a unique Ricci-flat Kahler
metric g.
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In our definition of a Calabi-Yau manifold we require the holonomy group to be pre-
cisely SU(m) and not a proper subgroup. It can be shown that the first Betti-number
of these manifolds vanishes, b; = b = 0.

We are mainly interested in Calabi-Yau three-folds. The Hodge numbers of these
can be shown to form the following Hodge diamond:

h00 1
hl,O hO,l 0 0
hQ,O hl,l h0’2 0 hl,l 0
h3’0 h2’1 h1,2 h0’3 = 1 h2’1 h2,1 1
h3,1 h2’2 h1,3 0 hl’l 0
ps2 h28 0 0
h33 1
The dimension of the homology group Hs(X;Z) is 2h*! + 2 and one can always choose
a symplectic basis? U1, T, I, J € {0, ..., h*'} with intersection matrix similar to the
one in (3.4).

The period vector of the holomorphic form €2 is defined as

Q
I(z) := ( ﬁ 0 ) . (3.15)

Similar to the bilinear relation on Riemann surfaces one has for two closed three-
forms ¥, = on a (compact) Calabi-Yau manifold,

(E,E)::/XE/\::Z:(/F&IE/ME—/FBE/FQIE>. (3.16)

The moduli space of (compact) Calabi-Yau three-folds
This and the next subsection follow mainly the classic paper [34]. Let (X, J, €, ¢g) be
a Calabi-Yau manifold of complex dimension m = 3. We are interested in the moduli
space M, which we take to be the space of all Ricci-flat Kahler metrics on X. Note
that in this definition of the moduli space it is implicit that the topology of the Calabi-
Yau space is kept fixed. In particular the numbers by = hy; for the two-cycles and
by = 2(hg1 + 1) for the three-cycles are fixed once and for all.® Following [34] we
start from the condition of Ricci-flatness, Rap(g) = 0, satisfied on every Calabi-Yau
manifold. Here A, B, ... label real coordinates on the Calabi-Yau X. In order to explore

ZWe use the letters (o', 3;), (A%, B;), (a’,b;), ... to denote symplectic bases on Riemann surfaces
and (Tyr,Tg,), (Tar,Tg,), (Car,Iy,), ... for symplectic bases of three-cycles on Calabi-Yau three-
folds. Also, the index i runs from 1 to §, whereas I runs from 0 to h%*.

3In fact this condition can be relaxed if one allows for singularities. Then moduli spaces of Calabi-
Yau manifolds of different topology can be glued together consistently. See [33] and [70] for an
illuminating discussion.
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the space of metrics we simply deform the original metric and require Ricci-flatness to
be maintained,

Rap(g+dg) =0. (3.17)

Of course, starting from one “background” metric and deforming it only explores the
moduli space in a neighbourhood of the original metric and we only find a local de-
scription of M. Its global structure is in general very hard to describe. After some
algebra (3.17) turns into the Lichnerowicz equation

VOVeogap + 2R E6gpE =0 . (3.18)

Next we introduce complex coordinates x* on X, with u,v,... = 1,2,3. Then there
are two possible deformations of the metric, namely dg,, or dg,5. Plugging these into
(3.18) leads to two independent equations, one for dg,, and one for dg,; and therefore
the two types of deformations can be studied independently. To each variation of the
metric of mixed type one can associate the real (1, 1)-form idg,dz* A dz”, which can
be shown to be harmonic if and only if dg,; satisfies the Lichnerowicz equation. A
variation of pure type can be associated to the (2,1)-form , 7dgzpda™ A dz* A dzF,
which also is harmonic if and only if §g;; satisfies (3.18). This tells us that the allowed
transformations of the metric are in one-to-one correspondence with H®(X) and
H®Y(X). The interpretation of the mixed deformations g, is rather straightforward
as they lead to a new Kahler form,

K = igpda" Ad7” =i(gus + 0g,s)da” A dz”
= K+idg,dat Ndz” = K + 0K . (3.19)

The variation g, on the other hand is related to a variation of the complex structure.
To see this note that gap = gap + dgap is a Kahler metric close to the original one.
Then there must exist a coordinate system in which the pure components of the metric
gap vanish. Under a change of coordinates 1% — 2’4 := 24 + f4(x) = h*(z) we have

on\ 1€ 7 ap ~1P
9dap — (@)A (%)B gcp
= gap+ 094 — (0af)gcn — (Opf")gap - (3.20)

We start from a mixed metric g, and add a pure deformation dgzz. The resulting
metric can be written as a mixed metric in some coordinate system, we only have to
chose f s.t.

0957 = (0af") 900 — (02f")gpn = 0 . (3.21)
But this means that f cannot be chosen to be holomorphic and thus we change the
complex structure. Note that the fact that the deformations of complex structure
are characterised by H*!(X) is consistent with the discussion in appendix B.1 since
H?*'(X) ~ Hé(TX).

Next let us define a metric on the space of all Ricci-flat Kahler metrics,

1
2 _ AC, BD 6
ds* = Tvol(X) /Xg 97" (0gaB0gcp)\/g °x . (3.22)
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In complex coordinates one finds

1 o
ds® = HE G2 189005 + 09,30G0% d%x . 3.23
s 2V01(X)/ng (0900955 + 09,309,5] /g d°x (3.23)
Interestingly, this metric is block-diagonal with separate blocks corresponding to vari-
ations of the complex and Kéhler structure.

Complex structure moduli
Starting from one point in the space of all Ricci-flat metrics on a Calabi-Yau manifold
X, we now want to study the space of those metrics that can be reached from that
point by deforming the complex structure of the manifold, while keeping the Kéhler
form fixed. The space of these metrics is the moduli space of complex structures and
it is denoted M_,. Set

1 v 75\ . 1 —agj\ﬁ
Xi = §Xiw5\dxu Adz” Adzt with g8 = —§QW” i (3.24)
where the z* for ¢ € {1,...,hy 1} are the parameters for the complex structure de-

formation, i.e. they are coordinates on M., Clearly, x; is a (2,1)-form Vi. One
finds

~ UV ag*}\
Qﬁ‘u XipvX = _||Q||28_sz ) (325)

where we used that €2,,, = Q123€,,, with € a tensor density, and ||Q||* := \/§le123@123 =
%QW,,Q‘“’”. This gives

1w Z.
(5gﬁ5\:—HQHQQﬁ“ Xipwa02" (3.26)

We saw that the metric on moduli space can be written in block diagonal form. At
the moment we are interested in the complex structure only and we write a metric on

M
L= 1 _ 5
(es) ¢ ic=] . KU A _ 6
2G¢ i= " Vg dz . 2
G5 020z vol(X) /X 9" 9"09u09551/9 (3.27)

Using (3.26) we find
(cs) Jx Xi N XG

G\ = JX A AJ 3.28
“ Jxana’ (3.28)

where we used that [|Q]|? is a constant on X, which follows from the fact that 2 is

covariantly constant, and [, Q@ A Q = [|©]|?>vol(X). The factor of 2 multiplying GZ%C.S)
was chosen to make this formula simple. To proceed we need the important formula

o2
= kO 3.29

where k; may depend on the 27 but not on the coordinates of X. See for example [34]
for a proof. Using (3.29) it is easy to show that

G 94 557 108 (z ; A , (3.30)
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which tells us that the metric (3.27) on the moduli space of complex structures M.
is Kahler with Kéahler potential

K:-mg(QAQAQ>. (3.31)

If we differentiate this equation with respect to z' we can use (3.29) to find that
ki = —32% K.

Nexé‘)c we consider the Hodge bundle H, which is nothing but the cohomology bundle
over M, s.t. at a given point z € M, the fiber is given by H?(X,;C), where X,
is the manifold X equipped with the complex structure J(z) determined by the point
z € M. This bundle comes with a natural flat connection which is known as the
Gauss-Manin connection. Let us explain this in more detail. One defines a Hermitian

metric on the Hodge bundle as

(n,0) ::i/ nAf fornm, € H*(X;C) . (3.32)
b

This allows us to define a symplectic basis of real integer three-forms wy, n’ € H3(X;C),
I,J €{0,1,...h*'} with the property

(wr,n”) = =’ wr) = 67, (3.33)

which is unique up to a symplectic transformation. Dual to the basis of H3(X;Z) C
H3(X;C) there is a symplectic basis of three-cycles {T'y1,T'5,} € H3(X;Z), s.t.

/ wy =64 ,/iwzﬁ, (3.34)
FaI 1—‘BI

and all other combinations vanish. Clearly, the corresponding intersection matrix is

LaNTy=0 F@,rwrg,_-w, (3.35)

FyNlg, = —ng NIy = 53‘ ,
see for example [71] for a detailed treatment of these issues. Note that the Hermitian
metric is defined on every fibre of the Hodge bundle, so we actually find three-forms
and three-cycles at every point, w;(2), n7(2), Tat(2), [gs(2). Since the topology of X
does not change if we move in the moduli space one can identify the set of basis cycles
at one point p; in moduli space with the set of basis cycles at another point p,. To
do so one takes a path connecting p; and p, and identifies a cycle at p; with the cycle
at p, which arises from the cycle at p; by following the chosen path.* For a detailed

4This might sound somewhat complicated but it is in fact very easy. Consider as an example a
torus T2 with its standard cycles «, 3. If we now change the size (or the shape) of the torus we
will find a new set of cycles o', 3’. These can in principle be chosen arbitrarily. However, there is a
natural choice which we want to identify with «, 3, namely those that arise from «, 3 by performing
the scaling.
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explanation in the context of singularity theory see [15]. Note that this identification
is unique if the space is simply connected. The corresponding connection is the Gauss-
Manin connection. Clearly, this connection is flat, since on a simply connected domain
of M the identification procedure does not depend on the chosen path. If the domain
is not simply connected going around a non-contractible closed path in moduli space
will lead to a monodromy transformation of the cycles. Since we found that there is
a natural way to identify basis elements of H3(X,;Z) at different points z € M, we
can also identify the corresponding dual elements w;(2),n7(2). Then, by definition, a
section o of the cohomology bundle is covariantly constant with respect to the Gauss-
Manin connection if, when expressed in terms of the basis elements w;(2),n7(2), its
coefficients do not change if we move around in M.,

h21 h21 X)

Z w2 Z dm’(z) ¥V ze M, . (3.36)

In particular, the basis elements w;, 7’ are covariantly constant. A holomorphic section
p of the cohomology bundle is given by

h21(X) h21(X
p2)= 3 @+ Y g’ (3.37)

where f1(2), g;(z) are holomorphic functions on M.

If we move in the base space M,.s; of the Hodge bundle ‘H we change the com-
plex structure on X and therefore we change the Hodge-decomposition of the fibre
H3(X,;C) = @}_,HG*M(X,). Thus studying the moduli space of Calabi-Yau mani-
folds amounts to studying the variation of the Hodge structure of the Hodge bundle.
Consider the holomorphic (3, 0)-form, defined on every fibre X,. The set of all these
forms defines a holomorphic section of the Hodge bundle. On a given fibre X, the
form 2 is only defined up to multiplication by a non-zero constant. The section €2 of
the Hodge bundle is then defined only up to a multiplication of a nowhere vanishing
holomorphic function e/*) on M., which amounts to saying that one can multiply
Q) by different constants on different fibres, as long as they vary holomorphically in
z. It is interesting to see in which way this fact is related to the properties of the
Kahler metric on M,;. The property that €2 is defined only up to multiplication of a
holomorphic function,

0—Q =0, (3.38)

implies
K — K=K+f(z)+f(2)), (3.39)
G — GO =G (3.40)

So a change of §2(z) can be understood as a Kéhler transformation which leaves the
metric on moduli space unchanged.
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Next we express the holomorphic section € of the Hodge bundle as®
Q2) = X (2)wr + Fi(2)n” (3.41)

where we have

X1(2) = / Qz) , Fiz)= / Qz) . (3.42)

T s,

Since €(z) is holomorphic both X! and F; are holomorphic functions of the coordi-
nates z on moduli space. By definition for two points in moduli space, say z, 2/, the
corresponding three-forms Q(z), (') are different. Since the bases w’(z),7n;(z) and
w!(z"),n;(#') at the two points are identified and used to compare forms at different
points in moduli space it is the coefficients X!, F; that must change if we go from z
to 2’. In fact, we can take a subset of these, say the X' to form coordinates on moduli
space. Since the dimension of M., is h*! but we have h*! +1 functions X' these have
to be homogeneous coordinates. Then the F; can be expressed in terms of the X'. Let
us then take the X! to be homogeneous coordinates on M, and apply the Riemann
bilinear relation (3.16) to

Q
/Q/\ ;XI =0. (3.43)
This gives®
J 9 18 I 0
f[:X 0XIfJ:§ J(X F]):ny (344)
where {

So the Fj are derivatives of a function F(X) which is homogeneous of degree 2. F
is called the prepotential. This nomenclature comes from the fact that the Kahler
potential can itself be expressed in terms of F,

K = —log (Z/Q A Q) = —log <zhz (X' Fr — XUT,)) . (3.46)

I1=0

We will have to say much more about this structure below.

To summarise, we found that the moduli space of complex structures of a Calabi-
Yau manifold carries a Kahler metric with a Kahler potential that can be calculated
from the geometry of the Calabi-Yau. A Kéhler transformation can be understood as
an irrelevant multiplication of the section §2(z) by a nowhere vanishing holomorphic
function. The coordinates of the moduli space can be obtained from integrals of €2(z)
over the I',s-cycles and the integrals over the corresponding I's,-cycles can then be
shown to be derivatives of a holomorphic function F in the coordinates X, in terms
of which the Kéhler potential can be expressed. As explained in appendix C.1 these
properties determine M., to be a special Kahler manifold.

5Since the wy,ns on different fibres are identified we omit their z-dependence.
6To be more precise one should have defined F;(z) := Jr, Q(z) and F;(X) = Fs(2(X)).
B
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Obviously the next step would be to analyse the structure of the moduli space
of Kéhler structures, Mgg. Indeed, this has been studied in [34] and the result is
that M kg also is a special Kahler manifold, with a Kahler potential calculable from
some prepotential. However, the prepotential now is no longer a simple integral in
the geometry, but it receives instanton correction. Hence, in general it is very hard
to calculate it explicitly. This is where results from mirror symmetry come in useful.
Mirror symmetry states that Calabi-Yau manifolds come in pairs and that the Kahler
structure prepotential can be calculated by evaluating the geometric integral on the
mirror manifold and using what is known as the mirror map. Unfortunately, we cannot
delve any further into this fascinating subject, but must refer the reader to [70] or [81].

3.2.2 Local Calabi-Yau manifolds

After an exposition of the properties of (compact) Calabi-Yau spaces we now turn to
the spaces which are used to geometrically engineer the gauge theories that we want
to study.

Definition 3.5 A local Calabi- Yau manifold is a non-compact Kéhler manifold with
vanishing first Chern-class.

Next we give a series of definitions which will ultimately lead us to an explicit local
Calabi-Yau manifold. For completeness we start from the definition of CP!.

Definition 3.6 The complex projective space CP* = P! is defined as
c\{0}/ ~ . (3.47)
For (z1,22) € C?\{0} the equivalence relation is defined as
(21, 22) ~ (Az1, Az9) = A(21, 22) (3.48)

for A\ € C\{0}. Note that this implies that CP' is the space of lines through 0 in C2.
We can introduce patches on CP! as follows

UT = {(21,22) € CO\{0} : 21 #0, (21, 22) ~ A(21, 22)} (3.49)
UF' = {(21,22) € CO\{0} : 25 # 0, (21, 20) ~ A(z1, 20)} '
and on these patches we can introduce coordinates
z z
=2, L= (3.50)
21 Z9
On the overlap U; N Us; we have
1
= —, 3.51
&2 3 (3.51)

and we find that CP' is isomorphic to a Riemann sphere S2.
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Definition 3.7 The space O(n) — CP' is a line bundle over CP'. We can define it
in terms of charts

U = {(&,9):6 €U ~C,®eC},

/ 1 / (352)
Uy = {(&,9):&elU; =C, o eCl,
with .
fo=— , ¥ =&T0 (3.53)
&
on U; NU,.

Definition 3.8 Very similarly O(m) @ O(n) — CP' is a fibre bundle over CP' where
the fibre is a direct sum of two complex planes. We define it via coordinate charts and
transition functions

Ui = {(6,%0,%1): & €U, @ € C, 8 €C}, (3.54)
Uy = {(6, %) ): & € U @) e C.®) € C} |
with
1
=g o B=E" . =g o liND . (3.59)

These manifolds are interesting because of the following proposition, which is explained
in [104] and [71].

Proposition 3.9 The first Chern class of O(m)®O(n) — CP' vanishes if m+n = —2.

The conifold
Definition 3.10 The conifold Cy is defined as f~1(0) with f given by

f:ct - C
9 9 9 9 (3.56)
(w1, wo, wg,wy) = fwy, we, ws,wy) := wi + wy + ws + wj .
In other words
Co:={w € C: w +w; +w; +wj =0} . (3.57)

Setting ®¢ = wy + iwq, D1 = iws — w4, P = jws + wy and P} = wy — iwsy this reads
Co := {(®g, ®f), 1, P))" € C*: @) — D[P, = 0} . (3.58)

Clearly, f has a singularity at zero with singular value zero and, therefore Cj is a
singular manifold. To study the structure of Cy in more detail we set w; = z; + iy;.
Then f = 0 reads

P2—-P=0 , Z-y=0. (3.59)
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The first equation is 2% = r? if r? := &%+ ¢2, so Z lives on an S®. § on the other hand
is perpendicular to Z. For given r and x we have an S? of possible 4/s and so for given
r we have a fibre bundle of S? over S3. However, there is no nontrivial fibration of S?
over 5% and we conclude that f = 0 is a cone over S x S2. Fig. 3.3 gives an intuitive
picture of the conifold, together with the two possible ways to resolve the singularity,
namely its deformation and its small resolution, to which we will turn presently.

. resolution
deformation \

S3 S2

Figure 3.3: The conifold is a cone over S® x S? with a conical singularity at its tip that
can be smoothed out by a deformation or a small resolution.

The deformed conifold

Definition 3.11 The deformed conifold Cy.; is the set f~'(u) with u € R, and f as
in (3.56).

In other words the deformed conifold is given by
Coep = {0 € C*: w] + w3 + w3 +wj = u} (3.60)

or

Cuep = {(Pg, Bfy, @1, P})” € C*: Du®| — Opd; = pu} . (3.61)

The above analysis of the structure of the conifold remains valid for fixed r, where
again we have S3 x S?. However, now we have an S® of minimal radius V1 that occurs

for i = 0. If we define ¢ := —~—2 we find
pt?

7*=1 , q-y=0. (3.62)
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This shows that the deformed conifold is isomorphic to T%S%. Both the deformed
conifold and the conifold are local Calabi-Yau. Interestingly, for these spaces this fact
can be proven by writing down an explicit Ricci-flat Ké&hler metric [33].

The resolved conifold
The resolved conifold is given by the small resolution (see Def. B.1) of the set f = 0.
We saw that the singular space can be characterised by

C = {(®g, D)), D1, ®)) € C*: g} = D[P} . (3.63)

The small resolution of this space at 0 € C C C*is in fact the space C = Ches ==
O(—1) ® O(—1) — CP'. To see this we have to construct a map 7 : C' — C' such that
7 : C\r~'(0) — C\0 is an isomorphism and 7'(0) = CP'. On the two patches of C
it is given by

(515(1)07®1) |1> (@0’51@0’(191,51(131) ) (3 64)
(527(1)67(13/1) o (€2CI)6’(I)6’€2(I),17(I),1) : '

A point in the overlap of the two charts in C' has to be mapped to the same point in C,
which is indeed the case, since on the overlap we have & = gll Note also that as long

as Py, d; do not vanish simultaneously this map is one to one. However, (UFI,O,O)
and (UF",0,0) are mapped to (0,0,0,0), s.t. 7~1((0,0,0,0)) = P'. this proves that
O(—1) ® O(—1) — CP*' is indeed the small resolution of the conifold.

As in the case of the deformed conifold one can write down a Ricci-flat Kahler
metric for the resolved conifold, see [33].

The resolved conifold and toric geometry
There is another very important description of the resolved conifold which appears
in the context of linear sigma models and makes contact with toric geometry (see for
example [147], [82], [81]). Let Z' = (z1, 29, 23, 24)7 € C* and consider the space

Cioric :={Z€ C* 1 |21|* + |2® — |23]* — |a]® =t} ~ (3.65)
where the equivalence relation is generated by a U(1) group that acts as
(21, 20, 23, 24) > (%21, €% 29,6723, 7 2) . (3.66)

This description appears naturally in the linear sigma model . In order to see that this
is indeed isomorphic to C,., note that for z3 = 2z, = 0 the space is isomorphic to CP".
Consider then the sets U; := {Z € Cippic : 2zi # 0}, i = 1,2. On Uy we define the U(1)

invariant coordinates

61 = ? , ¢0 = z1z3, (bl = Z124 , (367)
1
and similarly for Us,
1= L B =2z, B = 2z (3.68)

Z2
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Clearly, the &; are the inhomogeneous coordinate on U} " On the overlap U; N U, we
have

=&, Bp=56D, Py =6P, (3.69)

which are the defining equations of C,..,. Therefore, indeed, Cres = Ciopic.

From this description of the resolved conifold we can now understand it as a 77
fibration over (part of) R parameterised by |z1|?, |z3]%, |z4|*. Because of the defining
equation |z2|? =t — |z1]? 4 |23|> + |z4]* the base cannot consist of the entire R%. For
example for 23 = 24 = 0 and |2|* > ¢ this equation has no solution. In fact, the
boundary of the base is given by the hypersurfaces |21/ = 0, |z3]*> = 0, |z)> = 0
and |z|? = 0, see Fig. 3.4. The T® of the fiber is given by the phases of all the z;

Figure 3.4: The part of R? that is the base of the T fibration of the resolved conifold
is bounded by the surfaces |21]*> = 0, |2z3]> = 0, |24]*> = 0 and |2]*> = 0. If k of
these equations are satisfied simultaneously, & of the S's in T shrinks to zero size. In
particular, at |23]* = |z4/> = 0 one has a single S! in the fibre that shrinks at |z;|> =0
and |2,]? = t. The set of these S* form the P! in C,.,.

modulo the U(1) transformation. The singularity locus of this fibration is then easily
determined. In fact on every hypersurface |z]? = 0 the corresponding S! shrinks to
zero size and the fibre consists of a 72 only. At the loci where two of these surfaces
intersect two S's shrink and we are left with an S'. Finally, there are two points where
three hypersurfaces intersect and the fibre degenerates to a point. This happens at
|23]> = |24/*> = 0 and |21 = 0 or |2|*> = t. If we follow the |z;|*-axis from 0 to ¢ an
S1 opens up and shrinks again to zero. The set of these cycles form a sphere S? = P!,
which is the P! in C,.,. For a detailed description of these circle fibrations see for
example [100].
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More general local Calabi-Yau manifolds
There is a set of more general local Calabi-Yau manifolds that was first constructed in
[61] and which appeared in the physics literature in [87] and [27]. One starts from the
bundle O(—2) & O(0) — P! which is local Calabi-Yau. To make the discussion clear
we once again write down the charts and the transition functions,

Uy = {(&., @0, ®1) : & € Ul , & € C,, € C}
Uy = {(&, ®), ®}) : & € Uy, ¥ € C, ¥, € C}

with & = 5—11 . B =880, , ) =d on UnNU,. (3.70)
To get an intuitive picture of the structure of this space, we take &y = ¢, = 0 and fix
®; = @] arbitrarily. Then we can “walk around” in the &; direction “consistently”, i.e.
we can change & without having to change the fixed values of &, .
Next we consider a space X,.; with coordinate patches Uy, U, as above but with
transition functions

_1
&

Here W is a polynomial of degree n 4+ 1. To see that the structure of this space is
very different from the one of O(—2) @ O(0) — CP' we set &y = &, = 0 and fix &,
arbitrarily, as before. Note that now &; is fixed and changing &£ amounts to changing
®;. Only for those specific values of ®; for which W’(®;) = 0 can we consistently
“walk” in the &;-direction. Mathematically this means that the space that is deformed
by a polynomial W contains n different CP's.

We have seen that the “blow-down” of O(—1) @ O(—1) — CP' is given by the
conifold C'. Now we are interested in the blow-down geometry of our deformed space,
i.e. the geometry where the size of the CP's is taken to zero. We claim that X,., can
be obtained from a small resolution of all the singularities of the space

& Of =G+ W/(01)& ., P =0 onUNU;. (3.71)

X = {(®g, D), @1, 2) € C* : 4Dy D) + 22 + W'(P)* =0} . (3.72)

As to prove that X,.s is the small resolution of X we have to find a map 7 : X,., — X.
It is given by

(£, B0, 1) ¥ (Do, Do + W'(D1)Ey, By, i(26Pg + W(Dy)))
(527 (I){M qD,l) 'L (fg‘bg - £2W/((I)/1)7 (I){h (I)Ib Z(2£2q)6 - W/(CI)Il))) :

It is easy to check that

° W(UZ) Cc X,

e on U; N U, the two maps map to the same point ,

e the map is one to one as long as W/(®,) # 0,

o for &, = & s.t. W/(Py) = 0 one finds that (UF',0,®;) and (UL, 0, ®}) are mapped
to (0,0, ®,,0), i.e. 771((0,0,®;,0)) = CP' V&, s.t. W/(®;) = 0. This shows that X,
can indeed be understood as the small resolution of the singularities in X.
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Changing coordinates x = @1, v = &y + Of, w = i(P[ — Py) the expression (3.72)
for X can be rewritten as

X ={(v,w,z,2) € C*: W'(2)* +v* +w* + 2> =0} . (3.73)

Finally, we note that it is easy to find the deformation of the singularities of (3.73).
If fo(x) is a polynomial of degree n — 1 then

Xaef = {(w,w,2,2) € C*: F(x,v,w,2) =0}

3.74
with  F(z,v,w,2) = W (x)*+ folx) +v* +w?® + 22 (3.74)

is the space where (for generic coefficients of fy) all the singularities are deformed.
The spaces X5, X and Xy 5 are the local Calabi-Yau manifolds that will be used in
order to geometrically engineer the gauge theories we are interested in. Going from
the resolved space X,.s through the singular space to the deformed one Xy, is known
as a geometric transition.

3.2.3 Period integrals on local Calabi-Yau manifolds and Rie-
mann surfaces

We mentioned already in the introduction that one building block that is necessary to
obtain the effective superpotential (1.14) of gauge theories is given by the integrals of
the holomorphic (3,0)-form €2, which exists on any (local) Calabi-Yau manifold, over
all the (relative) three-cycles in the manifold. Here we will analyse these integrals on
the space Xg.f, and review how they map to integrals on a Riemann surface, which is
closely related to the local Calabi-Yau manifold we are considering.

Let us first concentrate on the definition of Q. Xy s is given by a (non-singular)
hypersurface in C*. Clearly, on C* there is a preferred holomorphic (4, 0)-form, namely
dz AdvAdwAdz. Since X4 is defined by F' = 0, where F' is a holomorphic function in
the ,v,w, z, the (4,0)-form on C* induces a natural holomorphic (3,0)-form on Xg;.
To see this note that dF is perpendicular to the hypersurface F' = 0. Then there is a
unique holomorphic (3,0)-form on F' = 0, such that dz Adv Adw Adz = QAdF. If
z # 0 it can be written as

_dx/\dv/\dw/\dz_dx/\dv/\dw

Q
dF 2z ’

(3.75)

where z is a solution of F' = 0. Turning to the three-cycles we note that, because of
the simple dependence of the surface (3.74) on v, w and z every three-cycle of Xy s can
be understood as a fibration of a two-sphere over a line segment in the hyperelliptic
Riemann surface 3,

n

v = W@ + fole) = [J(x — af)e —a;) . (3.76)

i=1
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of genus § = n— 1. This was first realised in [92] in a slightly different context, see [96]
for a review. As explained above, this surface can be understood as two complex planes
glued together along cuts running between a; and a; . Following the conventions of
[P5] yo, which is the branch of the Riemann surface with yo ~ W'(z) for |z| — oo, is
defined on the upper sheet and y; = —yo on the lower one. For compact three-cycles
the line segment connects two of the branch points of the curve and the volume of the
S2-fibre depends on the position on the base line segment. At the end points of the
segment one has 4> = 0 and the volume of the sphere shrinks to zero size. Non-compact
three-cycles on the other hand are fibrations of S? over a half-line that runs from one
of the branch points to infinity on the Riemann surface. Integration over the fibre is
elementary and gives

/ Q — +2mi y(z)dz | (3.77)
SQ

(the sign ambiguity will be fixed momentarily) and thus the integral of the holomorphic
Q) over a three-cycle is reduced to an integral of £2miydz over a line segment in
Y. Clearly, the integrals over line segments that connect two branch points can be
rewritten in terms of integrals over compact cycles on the Riemann surface, whereas
the integrals over non-compact three-cycles can be expressed as integrals over a line
that links the two infinities on the two complex sheets. In fact, the one-form

¢ :=ydzx (3.78)

is meromorphic and diverges at infinity (poles of order n + 2) on the two sheets and
therefore it is well-defined only on the Riemann surface with the two infinities () and @’
removed. Then, we are naturally led to consider the relative homology H; (3, {Q,Q'}),
which we encountered already when we discussed Riemann surfaces in section 3.1. To
summarise, one ends up with a one-to-one correspondence between the (compact and
non-compact) three-cycles in (3.74) and H,(%,{Q,Q'}). Referring to our choice of
bases {A*, B, } respectively {o’, 3;} for H1(3,{Q,Q’}), as defined in Figs. 3.2 and 3.1,
we define I'4i, ', to be the S*-fibrations over A’, B;, and I'y:,['g, are S*-fibrations
over o, 3;. So the problem effectively reduces to calculating the integrals’

/ Q= —iw/( for ~ € {O/,ﬁj,d,ﬁ}. (3.79)
Ly Y

As we will see in the next chapter, these integrals can actually be calculated from a
holomorphic matrix model.
As mentioned already, one expects new features to be contained in the integral | 5 ¢,

where B runs from Q' on the lower sheet to (Q on the upper one. Indeed, it is easy to see
that this integral is divergent. It will be part of our task to understand and properly

"The sign ambiguity of (3.77) has now been fixed, since we have made specific choices for the
orientation of the cycles. Furthermore, we use the (standard) convention that the cut of y/z is along
the negative real axis of the complex z-plane. Also, on the right-hand side we used that the integral
of ( over the line segment is % times the integral over a closed cycle ~.
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treat this divergence. As usual, the integral will be regulated and one has to make
sure that physical quantities do not depend on the regulator and remain finite once
the regulator is removed. In the literature this is achieved by simply discarding the
divergent part. Here we want to give a more intrinsic geometric prescription that will
be similar to standard procedures in relative cohomology. To render the integral finite
we simply cut out two “small” discs around the points @, Q'. If z, 2" are coordinates
on the upper and lower sheet respectively, one only considers the domains |z| < Ay,
|2’| < Ao, Ap € R. Furthermore, we take the cycle 3 to run from the point Aj on the
real axis of the lower sheet to Ag on the real axis of the upper sheet. (Actually one
could take Ag and Af to be complex. We will come back to this point later on.)



Chapter 4

Holomorphic Matrix Models and
Special Geometry

After having collected some relevant background material let us now come back to the
main line of our arguments. Our principal goal is to determine the effective super-
potential (in the Veneziano-Yankielowicz sense, see section 2.3) of super Yang-Mills
theory coupled to a chiral superfield in the adjoint representation with tree-level su-

perpotential
n+1

9k k
W (®) —;?‘MQ) + 4o - (4.1)
We mentioned in the introduction that this theory can be geometrically engineered
from type IIB string theory on the local Calabi-Yau manifolds X,.s studied in section
3.2.2. Furthermore, as we will review below, Cachazo, Intriligator and Vafa claim that
the effective superpotential of this theory can be calculated from integrals of €2 over
all the three-cycles in the local Calabi-Yau X, which is obtained from X,.s through
a geometric transition.

We reviewed the structure of the moduli space of a compact Calabi-Yau manifold
X, and we found the special geometry relations

be :/ Q,
FAI

P / N (4.2)
1 = aXI - FBI 9

where  is the unique holomorphic (3,0)-form on X, and {I"4r,I'g,} is a symplectic
basis of H3(X). On Riemann surfaces similar relations hold.

An obvious and important question to ask is whether we can find special geometry
relations on the non-compact manifolds Xg.¢, which would then be relevant for the
computation of the effective superpotential. We already started to calculate the inte-
grals of € over the three-cycles in section 3.2.3 and we found that they map to integrals
of a meromorphic form on a Riemann surface. It is immediately clear that the naive

o8
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special geometry relations have to be modified, since we have at least one integral over
a non-compact cycle I'5, which is divergent. This can be remedied by introducing a
cut-off Ay, but then the integral over the regulated cycle depends on the cut-off. The
question we want to address in this chapter is how to evaluate the integrals of ( = ydx
of Eq. (3.79) on the hyperelliptic Riemann surface (3.76). Furthermore, we derive
a set of equations for these integrals on the Riemann surface which is similar to the
special geometry relations (4.2), but which contain the cut-off Ay. Finally, a clear cut
interpretation of the function F that appears in these relations is given. It turns out
to be nothing but the free energy of a holomorphic matrix model at genus zero. For
this reason we will spend some time explaining the holomorphic matrix model.

4.1 The holomorphic matrix model

The fact that the holomorphic matric model is relevant in this context was first dis-
covered by Dijkgraaf and Vafa in [43], who noticed that the open topological B-model
on X,.s is related to a holomorphic matrix model with W as its potential. Then,
in [45] they explored how the matrix model can be used to evaluate the effective su-
perpotential of a quantum field theory. A general reference for matrix models is [59],
particularly important for us are the results of [25]. Although similar to the Hermitean
matrix model, the holomorphic matrix model has been studied only recently. In [95]
Lazaroiu described many of its intriguing features, see also [91]. The subtleties of the
saddle point expansion in this model, as well as some aspects of the special geometry
relations were first studied in our work [P5].

4.1.1 The partition function and convergence properties

We begin by defining the partition function of the holomorphic one-matrix model
following [95]. In order to do so, one chooses a smooth path v : R — C without self-
intersection, such that 4(u) # 0 Yu € R and |y(u)| — oo for u — £oo. Consider the
ensemble T'(y) of! N x N complex matrices M with spectrum spec(M) = {1, ... Ay}
in? v and distinct eigenvalues,

L(y):={M € CALRE spec(M) C v, all A, distinct} . (4.3)

The holomorphic measure on CN*N i just dM = A, ,dM,,, with some appropriate sign
convention [95]. The potential is given by the tree-level superpotential of Eq. (4.1)

W(z) = go+ Z %xk, Gnt1=1. (4.4)

'We reserve the letter N for the number of colours in a U (N) gauge theory. It is important to
distinguish between N in the gauge theory and N in the matrix model.
2Here and in the following we will write « for both the function and its image.
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Without loss of generality we have chosen g,,; = 1. The only restriction for the
other complex parameters {g }x—o. n, collectively denoted by g, comes from the fact
that the n critical points p; of W should not be degenerate, i.e. W"(u;) # 0 if
W'(z) = [, (x — p;). Then the partition function of the holomorphic one-matrix
model is

Z(T'(y), 9,95, N) := Cx /F( )dM exp (—gltrW(M)> : (4.5)

where g, is a positive coupling constant and C'y is some normalisation factor. To avoid

cluttering the notation we will omit the dependence on v and g and write Z (9s, N )=
Z((7v),9,9s, N). As usual [59] one diagonalises M and performs the integral over the
diagonalising matrices. The constant C is chosen in such a way that one arrives at

A 1 . ) i
Z(gs, N) = — /d)\l.../d)\N exp (—N2S(QS,N; /\m)> —: ¢ Flos ) (4.6)
NUJy v
where )
R 1
S(gs, N; A\pp) = = 4.7
(9 ) NQgszl (4.7)
m psﬁq

See [95] for more details.

The convergence of the ), integrals depends on the polynomial W and the choice of
the path . For instance, it is clear that once we take W to be odd, v cannot coincide
with the real axis but has to be chosen differently. For given W the asymptotic

. . . (c)
part of the complex plane (|z| large) can be divided into convergence domains G,

and divergence domains Gl(d), [ =1,...n+ 1, where e 3 V(@) converges, respectively
diverges as |r| — oo. To see this in more detail take x = re? and g, = rpe” %, with
rry >0, 60,0, € [0,27) for k =1,...n and 41 = 1, 6,41 = 0, and plug it into the
potential,

n+1 n+1 k

W(re®) = go + Z —— cos(kO — 0;) + i Z % sin(kf — 0y) . (4.8)

k=1

1 W(reig)

The basic requirement is that ‘e_ 9s — oo ReW (re'?)

=¢ s should vanish for r — oo.

If we fix 0, s.t. cos((n + 1)) # 0, then e 3V ) decreases exponentially for r — oo
if and only if cos((n + 1)0) > 0 which gives
a 2(1-1)

9:n+1+7r o withl=1,2...,n+1and a € (—7/2,7/2) . (4.9)

This defines n + 1 open wedges in C with apex at the origin, which we denote by
Gl(c), [ =1...,n+1. The complementary sectors Gl(d) are regions where cos((n+1)0) <
0, i.e.

o) 20-1

9:n+1+7rn+1 withl=1,2...,n+1and o € (—7/2,7/2) . (4.10)
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Y21
Y21

Figure 4.1: Example of convergence and divergence domains for n = 2 and a possible
choice of ~5;. Because of holomorphicity the path can be deformed without changing
the partition function, for instance one could use the path 75, instead.

The path « has to be chosen [95] to go from some convergence domain G,(:) to some
other Gl(c), with k # [; call such a path =, see Fig. 4.1. Note that, for the case of

n + 1 even, the convergence sectors G,(:) come in pairs, symmetric with respect to the

inversion x — —x, so that ch) and GEZ) 32 lie opposite each other and cover the real

axis. Then we can choose v to coincide with the real axis. In this case the holomorphic
matrix model reduces to the eigenvalue representation of the Hermitian matrix model.
In the case of odd n + 1, the image of G,(:) under x — —x is Glg?[(nJrl)/Z]’ and the
contour cannot chosen to be the real line. The value of the partition function depends
only on the pair (k, 1) and, because of holomorphicity, is not sensitive to deformations

of v, In particular, instead of 4, we can make the equivalent choice [P5]

Vit = Ypipz Y Vpaps U -+ - U Vpn 1pp U Vpppnys With p1 = k, pni1 =1, (4.11)

as shown in Fig. 4.1. Here we split the path into n components, each component
running from one convergence sector to another. Again, due to holomorphicity we can
choose the decomposition in such a way that every component .., runs through
one of the n critical points of W in C, or at least comes close to it. This choice of
will turn out to be very useful to understand the saddle point approximation discussed
below. Hence, the partition function and the free energy depend on the pair (k,1), g, gs
and N. Of course, one can always relate the partition function for arbitrary (k,1) to
one with (k’,1), ¥ = k — [ 4+ 1 mod n, and redefined coupling constants g1, ... gn11-
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4.1.2 Perturbation theory and fatgraphs

Later we will discuss a method how one can calculate (at least part of) the free energy
non-perturbatively. There is, however, also a Feynman diagram technique that can be
used to evaluate the partition function. Here we follow the exposition of [58], where
more details can be found. Define a Gaussian expectation value,

P e LM T e (o)

[ dM exp (———tr M2> ’ (412

and let us for simplicity work with a cubic superpotential in this subsection, W (z) =
s gm , with m, g real and positive. (Note that we take ¢g,,41 = ¢ # 1 in this section,

since we want to do perturbation theory in g.) We set Z¢ := Cy [dM exp (—gis% tr M2>
and expand the interaction term,

o Im,_  Ne=1/( 1g \"
Z(gs, N) = CN/FdM exp <——EtrM)VZ:OW(——§trM>

. 9s
> 1 1 v

= Y ze (__g trM3> . (4.13)
= V! gs 3 G

The standard way to calculate ((—gig tr M3)V) ¢ is, of course, to introduce sources J
with ‘

(exp (tr JM)), = exp (29—72 tr J2> , (4.14)
such that one obtains the propagator
(M;; M) = ai S (e (rIM))g| = 95 b (4.15)
ji OJik Jg=o0 M

More generally one deduces [58] the matriz Wick theorem

<H >G > I MM, (4.16)

(i,4)€l parings P ((i,5),(k,l))eP

where [ is an index family containing pairs (7, j), and the sum runs over the set of
possibilities to group the index pairs (7, j) again into pairs. Of course the propagator
relation tells us that most of these pairings give zero. The remaining ones can be
captured by Feynman graphs if we establish the diagrammatic rules of Fig. 4.2. For
obvious reasons these Feynman graphs are called fatgraphs. We are then left with the

relation .
((tr M)V )g = > Np( ) NF®) | (4.17)

fatgraphs I with

V k-valent vertices
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o—r—i
M1J <> J
° > °
<M;M;> <> ® J< ®
tr(M®) <« / ..... —)
lni/? %iz
! L 1

Figure 4.2: The Feynman diagrammatic representation of the matrix M;;, the propa-
gator (M;;M;;) and an n-valent vertex tr (M™).

where F'(I') is the number of index loops in the fatgraph I', E(I") is the number of
propagators and Nt is the number of different ways the propagators can be glued
together to build the fatgraph I'. The partition function for our cubic example can
then be expressed as

2§y = S~ Lgo(_Lg) N () e
) = 2577 ( =5 > ()
V=0 fatgraphs I' with
V' 3-valent vertices
1 .
= 2% > (=)' m B0 _Fg%? (4.18)

| Aut(T))|

fatgraphs I’

where |Aut(T")| is the symmetry group of T', § is the genus of the Riemann surface on
which the fatgraph I" can be drawn (c.f. our discussion in the introduction), and

A

ti=g,N (4.19)

is the (matrix model) 't Hooft coupling. Similarly, for the free energy we find

1 R
F(gs,t) = > —(=g)V O PO~ 472072 _1og(7%) | (4.20)
connected fatgraphs I’ |AUt(F)‘
Note that this has precisely the structure
o (e}
F(gs,t) = Z Z F,; 5" g2~ + non-perturbative |, (4.21)

§=0 h=1
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that we encountered already in the introduction. This tells us that we can not deter-
mine the entire free energy from a Feynman diagram expansion, since we also have to
take care of the non-perturbative piece. Furthermore, note that in the particular limit
in which N — oo with fixed ¢ only planar diagrams, i.e. those with ¢ = 0, contribute
to the perturbative expansion.

The free energy can then be calculated perturbatively by following a set of Feynman
rules:

e To calculate F' up to order ¢g* draw all possible fatgraph diagrams that contain up
to k vertices.

e Assign a factor —i to every vertex.

e Assign a factor £ to every fatgraph propagator.

e Assign a factor N to each closed index line.

e Multiply the contribution of a given diagram by |Aut(T')|~!, where Aut(T') is the
automorphism group of the diagram.

e Sum all the contributions and multiply the result by an overall minus sign, which
comes from the fact, that F(gs,t) = —log Z(gs, t).

As an example let us calculate the planar free energy up to order g*. Clearly, we
cannot build a vacuum diagram from an odd number of vertices, which is, of course,
consistent with ((tr M?®)")s = 0 for odd V. The first non-trivial contribution to the
free energy comes from ((tr M?3)?), which is given by the sum of all possibilities to
connect two trivalent vertices, see Fig. 4.3. The three diagrams that contribute are

1 1 n n
k

NN/

K j m 1
Figure 4.3: To calculate ((tr M?)?) on has to sum over all the possibilities to connect

two trivalent vertices.

sketched in Fig. 4.4. According to our rules the first diagram gives g%fn—g;%, the second

<=

Figure 4.4: From two three-valent vertices one can draw three Feynman diagrams, two
of which can be drawn on the sphere, whereas the last one is “nonplanar”.
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one contributes g%i—g;% and the last one %% Then we have3
12g° 1g° ¢
F(got) = ——5otet® — =i+ ...—log(29) . 422
(95, ) g2 3m?3 6 m3 + og( ) ( )

The terms of order g* in Fy(t) can be obtained by writing down all fatgraphs with
four vertices that can be drawn on a sphere. They are sketched, together with their
symmetry factor |Aut(I')|, in Fig. 4.5. Adding all these contributions to the result of

V& O

3 12 4
2 1 2

Figure 4.5: All possible planar diagrams containing four vertices, together with their
symmetry factors |Aut(L')].

order g? gives an expression for the planar free energy up to order g*:

Fo(t) = —==— — 36 Tt FiP(t) . (4.23)

3 Alternatively we can use the explicit formula for F. From (4.17) one obtains

F(gs,t) = —log (i % (—;g)v <(trM3)V>G> —log (2°)
V=0 s

11 g2 N3 11
_ —10g<1+2g2(9+3)N3 (%) +§—2§—23N(m) +...>—log(ZG)

In the second line we used the fact that when writing down all possible pairings one obtains nine
times the first diagram of Fig. 4.4, three times the second and three times the last one. Of course,
the result coincides with the one obtained using the Feynman rules.
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4.1.3 Matrix model technology

Instead of doing perturbation theory one can evaluate the matrix model partition
function using some specific matrix model technology. Next, we will recall some of this
standard technology adapted to the holomorphic matrix model. Let us first assume
that the path 7 consists of a single connected piece. The case (4.11) will be discussed
later on. Let s be the length coordinate of the path ~, centered at some point on -,
and let A\(s) denote the parameterisation of v with respect to this coordinate. Then,
for an eigenvalue A, on 7, one has \,, = A(s,,) and the partition function (4.6) can be
rewritten as

957 dsl

dsNH)\ (s1 exp( N25(g,, N; )\(sm))> . (4.24)

The spectral density is defined as

1 N
p(8,8m) == —= 3(s — Sm) » 4.25

% le (4.25)

so that p is normalised to one, ffooo p(s,8m)ds = 1. The normalised trace of the

resolvent of the matrix M is given by

1
w(z, 8m) == 7 tr

Mz

/ ds;’(f’—jg)) , (4.26)

for z € C. Following [95] we decompose the complex plane into domains D;, i €
{1,...,n}, with mutually disjoint interior, (U;D; = C, D;ND; =0 for i # j). These
domains are chosen in such a way that v intersects each D; along a single line segment
A;, and U;A; = ~. Furthermore, pu;, the i-th critical point of W, should lie in the
interior of D;. One defines

ZL‘—M N

der 1
(M= [ L~ 4.2
Xi(M) /m. iz — M’ (4.27)

(which projects on the space spanned by the eigenvectors of M whose eigenvalues lie
in D;), and the filling fractions &;(\,,) := % tr y; (M) and

oi(5m) = Gs(A(50m)) = / ds p(s, sm)xi(A(s)) = /6 9T s, (4.28)

D, 270

(which count the eigenvalues in the domain D;, times 1/N). Obviously

Zai(sm) =1. (4.29)
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Loop equations
Next we apply the methods of [94] to derive the loop equations of the holomorphic

matrix model. We define the expectation value
1 1 " .
h(Am ::—A-T/d)\.../d)whAm exp (—N2S(gs, N; M) ) . (4.30
() = Zs 5 | e | D b exp (=S (g, Nidn)) - (430

From the translational invariance of the measure one finds the identity [94], [95]

Cwon 1
/ou1 /d)\ Z o [H Ak—A,)e—g%ELVV(Aa)x_A ] =0. (4.31)

k£l

Evaluating the derivative gives

al 1 1 N W'\, N N
<Zm gsmlx—(Am)JerZZ; —Az Am)>:0' (4.32)

m=1

Using
1 1 1 1
(w—a)(w—ﬁ):a—ﬂ{x—a_w—ﬁ} (433)
we find
l 1 NN 1 al 1 1
2_1 eI Z_lz O — M@ — ) ZZ_I e Y
"= T "
and therefore )
1 O W (A(sm))
ce \2 _
<w(x, Sm) 5 mzﬂ ) )~ (4.35)

If we define the polynomial

N
4t W' (x) — W' (A(sm)) W' (z) — W'(A(s))
1 Sm) = ——= =—4t | d i Sm ,
f(@;5m) N z — A(Spm) / s P53 5m) r — A(s)
m=1
(4.36)
we obtain the loop equations
1 1
(wlw;sm)?) = S W (@) {w(w;5m)) = 75 {f(w55m)) =0 (4.37)
Equations of motion
It will be useful to define an effective action as
Sers(9s: N $m) = S(ge, N Msm)) — < Sm

5ﬁum@acwww—%m< P/mpswmw>‘ww)@%>

t
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so that .
Z(gs, N) = I /dsl.../dsN exp <—N256ff(gs,N; sm)> . (4.39)

Note that the principal value is defined as

P In(A(s) — A(s')) = %g% [m ()\(s) A + z’ex(s>) +ln ()\(s) () — ie}\(s)ﬂ .
(4.40)

. . . . . . 55,
The equations of motion corresponding to this effective action, £ = 0, read

1 2 1 1 Alsw)
W/ (Asm)) = szg#m PR 53 oy (4.41)

Using these equations of motion one can show that

1 1
2
UJ(ZL‘, Sm) - gW/(ZL')UJ(IL‘, Sm) - Ef(ZL Sm) +
N .
1 d 1 A(Sm) 1
+—=—w(x, 8m) + = - =0. 4.42
N dz ( ) N2 n; A(5m)2 T — A(8m) (442)

Solutions of the equations of motion

Note that in general the effective action is a complex function of the real s,,. Hence, in
general, i.e. for a generic path vy, with parameterisation A(s), there will be no solution
to (4.41). One clearly expects that the existence of solutions must constrain the path
A(s) appropriately. Let us study this in more detail.

Recall that we defined the domains D; in such a way that u; C D;. Let Nl be the
number of eigenvalues A(s,,) which lie in the domain D;, so that > . , N; = N, and
denote them by A(s{"), a € {1,... N;}.

Solving the equations of motion in general is a formidable problem. To get a good
idea, however, recall the picture of N; fermions filled into the i-th “minimum” of %W
[90]. For small ¢ the potential is deep and the fermions are located not too far from the
minimum, in other words all the eigenvalues are close to ;. To be more precise consider
(4.41) and drop the last term, an approximation that will be justified momentarily.
Let us take ¢ to be small and look for solutions? A(s{’) = u; + VESAY | where 6AY is of

order one. So, we assume that the eigenvalues )\(sgf)) are not too far from the critical
point p;. Then the equation reads

W (1) 0N =

a

Z 5}\; + 0(\/%) ) (4.43)

4One might try the general ansatz )\(sff)) = w; + eSAY) but it turns out that a solution can be
found only if € ~ v/
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so we effectively reduced the problem to finding the solution for n distinct quadratic
potentials. If we set z, := 4/ %/(‘”)5)\((5) and neglect the o(v/t)-terms this gives

= Y ! : (4.44)

Za — Rb

which can be solved explicitly for small N;. It is obvious that Zivzl 2, = 0, and one
finds that there is a unique solution (up to permutations) with the z, symmetrically
distributed around 0 on the real axis. This justifies a posteriori that we really can ne-
glect the term proportional to the second derivative of A(s), at least to leading order.
Furthermore, setting W” (j1;) = |[W"(u;)|e’® one finds that the A(s!) sit on a tilted line
segment around p; where the angle of the tilt is given by —¢;/2. This means for exam-
ple that for a potential with W’(z) = z(z — 1)(x + 1) the eigenvalues are distributed
on the real axis around +1 and on the imaginary axis around 0. Note further that, in
general, the reality of z, implies that W’ (“ - (5)\( )> > 0 which tells us that, close to
iy W(A(s)) — W () is real with a minimum at \(s) = p;.

So we have found that the path 74 has to go through the critical points p; with a
tangent direction fixed by the phase of the second derivative of /. On the other hand,
we know that the partition function does not depend on the form of the path . Of
course, there is no contradiction: if one wants to compute the partition function from
a saddle point expansion, as we will do below, and as is implicit in the planar limit,
one has to make sure that one expands around solutions of (4.41) and the existence
of these solutions imposes conditions on how to choose the path ~;;. From now on we
will assume that the path is chosen in such a way that it satisfies all these constraints.
Furthermore, for later purposes it will be useful to use the path A of (4.11) chosen
such that its part 7,,,,,, goes through all N; solutions AY ,a=1,...N;, and lies en-
tirely in D;, see Fig. 4.6.

It is natural to assume that these properties together with the uniqueness of the so-
lution (up to permutations) extend to higher numbers of N; as well. Of course once
one goes beyond the leading order in v/t the eigenvalues are no longer distributed on
a straight line, but on a line segment that is bent in general and that might or might
not pass through p;.

The large N limit R
We are interested in the large N limit of the matrix model free energy. It is well known
that the expectation values of the relevant quantities like p or w have expansions of

the form .

(p(s,5m)) =D _pr(s)NTT . (w(x, 5m)) Zw, . (4.45)

=0
Clearly, wy(z) is related to py(s) by the large N limit of (4.26), namely

_ po(s)
wol(x) = /dsm : (4.46)
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Figure 4.6: For the cubic potential of Fig. 4.1 we show the choice of the domains D,
and Dy (to the left and right of the bold line) and of the path 4, with respect to the
two critical points, as well as the cuts that form around these points.

We saw already that an eigenvalue ensemble that solves the equations of motion is
distributed along line segments around the critical points p;. In the limit N — oo this
will turn into a continuous distribution on the segments C;, through or close to the
critical points of W. Then py(s) has support only on these C; and wy(x) is analytic in
C with cuts C;. Conversely, pg(s) is given by the discontinuity of wy(x) across its cuts:

po(s) = A(s) lim L,[wo()\(s) —ieA(s)) — wo(A(s) +ieA(s))] . (4.47)

The planar limit we are interested in is N — 0, gs — 0 with ¢t = gsN held fixed.
Hence we rewrite all N dependence as a g5 dependence and consider the limit g, — 0.
Then, the equation of motion (4.41) reduces to

—W’ —2P/ds __mls) eEEE

Note that this equation is only valid for those s Where elgenvalues exist, i.e. where
po(s) # 0. In principle one can use this equation to compute the planar eigenvalue
distribution po(s) for given W”.

(4.48)

The leading terms in the expansions (4.45) for (p(s, s;m)) or (w(x, sm)), i.e. po(s) or
wo(x), can be calculated from a saddle point approximation, where the {s,,} are given
by a solution {s’ } of (4.41): po(s) = p(s;s},), or explicitly from eq. (4.25)

is—sr) - (4.49)

m=1

1
S) = —«
po(s) N



4.1 'The holomorphic matrix model 71

Note in particular that py(s) is manifestly real. This is by no means obvious for the
full expectation value of p(s, s,,) since it must be computed by averaging with respect
to a complex measure. In the planar limit, however, the quantum integral is essentially
localized at a single classical configuration {s},} and this is why po(s) is real. The large
N limit of the resolvent wy(z) = w(x; s%,) then is still given by (4.46).

This prescription to compute expectation values of operators in the large N limit is
true for all “microscopic” operators, i.e. operators that do not modify the saddle
point equations (4.41). (Things would be different for “macroscopic”operators like

e o V(’\P).) In particular, this shows that expectation values factorise in the large
N limit.

Riemann surfaces and planar solutions
This factorisation of expectation values shows that in the large /N limit the loop equa-
tion (4.37) reduces to the algebraic equation

1

_ 4_t2f0($) =0, (4.50)

wo(x)? — %W’(m)wo(:v)

where
Jo(z) = —4t/d8 PO(S)W (2 : ?28())\(8» (4.51)

is a polynomial of degree n — 1 with leading coefficient —4¢. Note that this coincides
with the planar limit of equation (4.42). If we define

yo(z) := W'(x) — 2two(x) , (4.52)
then g, is one of the branches of the algebraic curve
y'=W()* + folx) , (4.53)

as can be seen from (4.50). This is in fact an extremely interesting result. Not only is
it quite amazing that a Riemann surface arises in the large N limit of the holomorphic
matrix model, but it is actually the Riemann surface (3.76), which we encountered
when we were calculating the integrals of €2 over three-cycles in X ;. This is important
because we can now readdress the problem of calculating integrals on this Riemann
surface. In fact, the matrix model will provide us with the techniques that are necessary
to solve this problem.

On the curve (4.53) we use the same conventions as in section 3.2.3, i.e. yo(x) is
defined on the upper sheet and cycles and orientations are chosen as in Fig. 3.2 and
Fig. 3.1.

Solving a matrix model in the planar limit means to find a normalised, real, non-
negative py(s) and a path 4y, which satisfy (4.46), (4.48) and (4.50/4.51) for a given
potential W (z) and a given asymptotics (k, ) of ~.

Interestingly, for any algebraic curve (4.53) there is a contour 4y, supporting a
formal solution of the matrix model in the planar limit. To construct it start from an
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arbitrary polynomial fy(z) or order n — 1, with leading coefficient —4¢, which is given
together with the potential W (x) of order n 4 1. The corresponding Riemann surface
is given by (4.53), and we denote its branch points by a and choose branch-cuts C;
between them. We can read off the two solutions yo and y; = —y from (4.53), where we
take 7o to be the one with a behaviour yo “— +W'(z). we(x) is defined as in (4.52) and
we choose a path 7, such that C; C 7y, for all 7. Then the formal planar spectral density
satisfying all the requirements can be determined from (4.47) (see [95]). However, in
general, this will lead to a complex distribution py(s). This can be understood from
the fact the we constructed py(s) from a completely arbitrary hyperelliptic Riemann
surface. However, in the matrix model the algebraic curve (4.53) is not general, but
the coefficients ay, of fo(x) are constraint. This can be seen by computing the filling
fractions (o;(s,,)) in the planar limit where they reduce to o;(s?*,). They are given by

1 1
vii=oi(s)) = . /8Di wo(z)dz = it yo(z)de = /vl(c,-) po(s)ds , (4.54)
which must be real and non-negative. Here we used the fact that the D; were chosen
such that =, , C D; and therefore C; C D;, so for D; on the upper plane, 9D;
is homotopic to —A’. Hence, Im (z fAi y(x)dx) = (0 which constrains the aj. We
conclude that to construct distributions py(s) that are relevant for the matrix model
one can proceed along the lines described above, but one has to impose the additional
constraint that po(s) is real [P5]. As for finite N, this will impose conditions on the
possible paths 4y, supporting the eigenvalue distributions.

To see this, we assume that the coefficients oy in fo(x) are small, so that the lengths
of the cuts are small compared to the distances between the different critical points:
laj — a;| < |pwi — pj]. Then in first approximation the cuts are straight line segments
between a; and a; . For z close to the cut C; we have y*> ~ (v —a; )(x —a;") [ (i —
1) = (@—aF) (@ —ay )W ()2, T we set W(y15) = (W () e and af —a; = riei®,

7(11_

s = se™i, and we

then, on the cut C;, the path ~ is parameterised by A(s) = giaf'
find from (4.47) s

1 )
- _ a7 T 10,0\ i Pit+21:)
wle) = 5o/ — a1y ) — ai | W7 le

- %\/W‘S) = af Iy/IAGs) = ar | () (A(s))? (4.55)

So reality and positivity of po(s) lead to conditions on the orientation of the cuts in
the complex plane, i.e. on the path ~:

hi=—0/2 , W (u)(A(s)*>0. (4.56)

These are precisely the conditions we already derived for the case of finite N. We see
that the two approaches are consistent and, for given W and fixed N; respectively v},
lead to a unique® solution {\(s), po(s)} with real and positive eigenvalue distribution.

°To be more precise the path 7y, is not entirely fixed. Rather, for every piece 9, we have the

requirement that C; C ¥p,p,, ;-

Pi+1
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Note again that the requirement of reality and positivity of py(s) constrains the phases
of aj — a; and hence the coefficients ay, of fo(z).

4.1.4 The saddle point approximation for the partition func-
tion

Recall that our goal is to calculate the integrals of ( = ydz on the Riemann surface
(4.53) using matrix model techniques. The tack will be to establish relations for these
integrals which are similar to the special geometry relations (4.2). After we have
obtained a clear cut understanding of the function F appearing in these relations,
we can use the matrix model to calculate F and therefore the integrals. A natural
candidate for this function F is the free energy of the matrix model, or rather, since
we are working in the large N limit, its planar component Fy(t). However, Fy(t)
depends on ¢ only and therefore it cannot appear in relations like (4.2). To remedy
this we introduce a set of sources J; and obtain a free energy that depends on more
variables. In this subsection we evaluate this source dependent free energy and its
Legendre transform Fy(¢, S) in the planar limit using a saddle point expansion [P5].
We start by coupling sources to the filling fractions,’

R 1 R R N n—1
Z(gs,N,J) = X /d/\1 . /d)\N exp (—N2S(gs,N; Am) — 0 Z Jiﬁi()\m)>
sy v 5 =1

— exp (—F(gs,N,J)> . (4.57)

where J := {Ji,...,J,_1}. Note that because of the constraint > .  &;(\,) = 1,
7n(Am) is not an independent quantity and we can have only n — 1 sources. This
differs from the treatment in [95] and has important consequences, as we will see
below. We want to evaluate this partition function for N — oo, ¢ = gsN fixed, from a
saddle point approximation. We therefore use the path 44 from (4.11) that was chosen
in such a way that the equation of motion (4.41) has solutions s}, and, for large N,
Ci C Ypipis,- 1t is only then that the saddle point expansion converges and makes sense.
Obviously then each integral fv d\,, splits into a sum >, d\,. Let s € R

Ypipit1
be the length coordinate on 7,,p,. ,, so that s( runs over all of R. Furthermore, &;(\,,)

only depends on the number N; of eigenvalues in 43, N D; = 7p,p,,,- Then the partition
function (4.57) is a sum of contributions with fixed N; and we rewrite is as

Z(g N, D)= S Z(ge, N, Ny s Zimt i (4.58)
T Ni=N
Ni,.., Ny,

SNote that exp (—NTZ Z?’:—ll J,LvUi(Sm)) looks like a macroscopic operator that changes the equa-
tions of motion. However, because of the special properties of o;(s,,) we have a%ai(sm) =

% f oD, %% In particular, for the path 44; that will be chosen momentarily and the corre-

sponding domains D; the eigenvalues \,, cannot lie on 9D;. Hence, a%ai(sm) = 0 and the equations
of motion remain unchanged.
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where now

Z(g&N; Nz) -

1 (1) / (1) / (n) / (n)
= di\y7 ... d .. dA\y7 ... d\Y x
Nl cee Nn! Yp1p2 Yp1p2 M YPnpPn41 YPnPn+1 N
t? (i)
x exp | ——55(gs, 1 \”)
g
= exp (f(gs, t, Ni)) (4.59)

is the partition function with the additional constraint that precisely N; eigenvalues
lie on p,p,.,. Note that it depends on g,,t = gsN and Ny,...N,_; only, as Yoy N, =
N. Now that these numbers have been fixed, there is precisely one solution to the
equations of motion, i.e. a unique saddle-point configuration, up to permutations of
the eigenvalues, on each 7,,,,,. These permutations just generate a factor [[, N;!
which cancels the corresponding factor in front of the integral. As discussed above, it
is important that we have chosen the ~,,,,., to support this saddle point configuration
close to the critical point p; of W. Moreover, since 7,,,,,, runs from one convergence
sector to another and by (4.56) the saddle point really is dominant (stable), the “one-
loop” and other higher order contributions are indeed subleading as g, — 0 with
t = gsN fixed. This is why we had to be so careful about the choice of our path

7 as being composed of n pieces vp,p,.,. In the planar limit v; = % is finite, and

F(gs,t,v;) = g%fo(t, Vi) + .... The saddle point approximation gives
Folt,vi) = —~t25ess (g = 0,559 (1)) (4.60)

where (cf. (4.38)) Sef(gs = 0,1; sgj)*(m)) is meant to be the value of S(0, ¢; )\(sgj)*(m))),

with A(sgj )*(Vi» the point on 7y,,,,, corresponding to the unique saddle point value

((f) with fixed fraction v; of eigenvalues \,, in D;. Note that the = Z)\(sm) erm

n (4.38) disappears in the present planar limit. One can go further and evaluate
subleadlng terms. In particular, the remaining integral leads to the logarithm of the
determlnant of the N x N-matrix of second derivatives of S at the saddle pomt This is
not order g° ~ N as naively expected from the expansion of F in powers of g2. Instead
one finds contributions like —N log N, N > logt. The point is that NQSeff(gs,t s*(v))
also has subleading contributions, Wthh are dropped in the planar limit (4.60). In
particular, one can check very explicitly for the Gaussian model that these subleading
contributions in S.s;(s*) cancel the Nlog N and the 2 logt pieces from the determi-
nant. A remaining N-dependent (but v- and t-independent) constant could have been
absorbed in the overall normalisation of Z. Hence the subleading terms are indeed
o(g?) ~ o(N?).

It remains to sum over the N; in (4.58). In the planar limit these sums are replaced
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by integrals:

Z(gs,t,J) = /Oldz/l../dyn (Zy,—1>

exp [—% (tnz: Jiv; — Folt, I/Z)> +¢(N) + 0(92)] . (4.61)

s\ =1
Once again, in the planar limit, this integral can be evaluated using the saddle point

technique and for the source-dependent free energy F(gs,t,J) = g%Fo(t, J)+ ... we
find )

n—1
= Jitv; — Fo(t,v}) (4.62)
=1

where v} solves the new saddle point equation,

0Fo
i = o i) (4.63)
This shows that Fy(t, J) is nothing but the Legendre transform of Fo(t, v*) in the n— 1
latter variables. If we define

Si=ty; , fori=1,...,n—1, (4.64)

we have the inverse relation oF
S, =—=—2(t,J 4.65
ST, (4.65)

and with Fo(t,S) := Fo(t, 21), where S := {Si,...,S,_1}, one has from (4.62)

n—1
Folt,S) =D JiSi — Fy(t, J) | (4.66)
i=1
where J; solves (4.65). From (4.60) and the explicit form of S.sr, Eq.(4.38) with
N — oo, we deduce that

Fo(t,S) =t273/ds/ds' In(A(s)=A(s"))po(s;t, Si)po(s's t, Si)—t/ds W(A(s))po(s;t,Si),
(4.67)
where po(s;t, S;) is the eigenvalue density corresponding to the saddle point configu-

ration si* with % = y; fixed to be v = 7’. Hence it satisfies

t/ po(s;t,S)ds=S8; fori=1,2,...n—1, (4.68)
1(Ci)
and obviously
n—1
771 (Cn) i=1

Note that the integrals in (4.67) are convergent and Fy (¢, S) is a well-defined function.
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4.2 Special geometry relations

After this rather detailed study of the planar limit of holomorphic matrix models we
now turn to the derivation of the special geometry relations for the Riemann surface
(3.76) and hence the local Calabi-Yau (3.74). Recall that in the matrix model the
S; = tv} are real and therefore Fy(t,S) of Eq. (4.67) is a function of real variables.
This is reflected by the fact that one can generate only a subset of all possible Riemann
surfaces (3.76) from the planar limit of the holomorphic matrix model, namely those for
which the v = ﬁ i) 1 G are real (recall ¢ = ydz). We are, however, interested in the
special geometry of the most general surface of the form (3.76), which can no longer be
understood as a surface appearing in the planar limit of a matrix model. Nevertheless,
for any such surface we can apply the formal construction of pg(s), which will in
general be complex. Then one can use this complex “spectral density” to calculate the
function Foy(t,S) from (4.67), that now depends on complex variables. Although this
is not the planar limit of the free energy of the matrix model, it will turn out to be
the prepotential for the general hyperelliptic Riemann surface (4.53) and hence of the
local Calabi-Yau manifold (3.74).

4.2.1 Rigid special geometry

Let us then start from the general hyperelliptic Riemann surface (3.76) which we view
as a two-sheeted cover of the complex plane (cf. Figs. 3.2, 3.1), with its cuts C; between
a; and a;. We choose a path v on the upper sheet with parameterisation A(s) in such
a way that C; C . The complex function pg(s) is determined from (4.47) and (4.52),
as described above. We define the complex quantities

Sl—— —t/ (s) fori=1,....,n—1, (4.70)
A’L

47y

and the prepotential (¢, S) as in (4.67) (of course, ¢ is —3 times the leading coefficient
of fo and it can now be complex as well).
Following [95] one defines the “principal value of y,” along the path ~ (c.f. (4.40))

B (5) = 3 Imlyo(A(s) + ieA(5)) + so(A(s) — ied(s))] (471)

For points A(s) € v outside C := U;C; we have yh(s) = yo(A(s)), while y5(s) =0 on C.
With

b(s) = ) — 2P / ds' In(A(s) — A(8))pol(s’: £, 1) (4.72)
one finds, using (4.46), (4.52) and (4.40),

—¢( ) = Ms)yh(s) - (4.73)
The fact that yf(s) vanishes on C implies
¢(s) = & := constant on C; . (4.74)
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Integrating (4.73) between C; and C;; 1 gives

G 6= [ T avn=; [y =3 [ ¢. (4.75)

i i i

From (4.67) we find for i <n

0 0 ; ,Sj
@Si]'—o(t, 5) = _t/dsm(;—si)¢(5) =& =& . (4.76)

To arrive at the last equality we used that po(s) = 0 on the complement of the cuts,
while on the cuts ¢(s) is constant and we can use (4.68) and (4.69). Then, fori < n—1,

0 0 1
— t — t = = . 4.
For ¢ = n — 1, on the other hand, we find
Rt ==t =2 [ ¢ (4.75)
8;5'”,1 0\t — Sn n—1 — 9 0 . .

We change coordinates to

and find the rigid special geometry” relations

~ 1
Si = — ; 4.80
i ] ¢ (4.80)
0 ~ 1
S5 RS = 5 ¢ (4.8)
forte=1,...,n— 1. Note that the basis of one-cycles that appears in these equations

is the one shown in Fig. 3.1 and differs from the one used in [95]. The origin of this
difference is the fact that we introduced only n —1 currents J; in the partition function
(4.57).

Next we use the same methods to derive the relation between the integrals of { over
the cycles & and 3 and the planar free energy [P5].

4.2.2 Integrals over relative cycles

The first of these integrals encircles all the cuts, and by deforming the contour one sees
that it is given by the residue of the pole of ¢ at infinity, which is determined by the

leading coefficient of fy(x):
1
— / (=t. (4.82)

47

"For a review of rigid special geometry see appendix C.2.
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The cycle 3 starts at infinity of the lower sheet, runs to the n-th cut and from there
to infinity on the upper sheet. The integral of ¢ along B is divergent, so we introduce
a (real) cut-off Ay and instead take 3 to run from A} on the lower sheet through the
n-th cut to Ay on the upper sheet. We find

/ ¢= / WA = (AL (A) — 61 (al)) = A (Ao)) — &

— W(Ag) — 2P / ds' (Ao — A(s))po(s'st, 5:) — &

(4.83)
On the other hand we can calculate
9, 0 3, -
5ot S) = /ds O(A(s)) 5 tro(sit, S)] Zgz/ ds = [tpo(sit, )] = =&,
(4.84)
(where we used (4.68) and (4.69)) which leads to
% / ¢ = %3’-‘0(2& 3) + W (Ao) — 2P / ds'n(Ag — A(s"))po(s's 1, 5:)
g
0 9 1
= —]:0(25 S) + W(A()) — tlogA +o . (485)
ot Ao

Together with (4.82) this looks very similar to the usual special geometry relation. In
fact, the cut-off independent term is the one one would expect from special geometry.
However, the equation is corrected by cut-off dependent terms. The last terms vanishes
if we take Ay to infinity but there remain two divergent terms which we are going to
study in detail below.® For a derivation of (4.85) in a slightly different context see [29].

4.2.3 Homogeneity of the prepotential

The prepotential on the moduli space of complex structures of a compact Calabi-
Yau manifold is a holomorphic function that is homogeneous of degree two. On the
other hand, the structure of the local Calabi-Yau manifold (3.74) is captured by a
Riemann surface and it is well-known that these are related to rigid special geometry.
The prepotential of rigid special manifolds does not have to be homogeneous (see for
example [38]), and it is therefore important to explore the homogeneity structure of
Fo(t,S). The result is quite interesting and it can be written in the form

A 8]-"0 8 0F, 8

2 Si— 85’1 tﬁ(t S;) = 2F(t, S)) —i—t/ds po(s;t, SHW(A(s)) . (4.86)

80f course, one could define a cut-off dependent function F2o (¢, S) := Fo(t, S)+tW (Ag) — % log A2
for which one has 1 [5¢ 36 = a},- L, (%) similar to [40]. Note, however, that this is not a stan-

dard special geometry relation due to the presence of the 0( ) -terms. Furthermore, F° has no

interpretation in the matrix model and is divergent as Ag — oc.
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To derive this relation we rewrite Eq. (4.67) as

270(t,5) = ~t [ ds (st 5) [005) + WA(S)
n—1
:—%/ﬁsm@mSMMM@»+§:@ffﬁ$—ﬁn. (4.87)
i=1
Furthermore, we have 37~ gig—gj(t, S =0 Sig—/g‘;(t, Si) =S Si(€,—&), where
we used (4.76). The result then follows from (4.84).
Of course, the prepotential was not expected to be homogeneous, since already for
the simplest example, the conifold, Fy is known to be non-homogeneous (see section
4.2.5). However, Eq. (4.86) shows the precise way in which the homogeneity relation
is modified on the local Calabi-Yau manifold (3.74).

4.2.4 Duality transformations

The choice of the basis {a’, 3, 4, B} for the (relative) one-cycles on the Riemann sur-
face was particularly useful in the sense that the integrals over the compact cycles
o and (3; reproduce the familiar rigid special geometry relations, whereas new fea-
tures appear only in the integrals over & and B In particular, we may perform any
symplectic transformation of the compact cycles o' and 3}, i,j = 1,...n — 1, among
themselves to obtain a new set of compact cycles which we call a’ and b;. Such sym-
plectic transformations can be generated from (i) transformations that do not mix
a-type and b-type cycles, (ii) transformations a’ = o, b; = 3; + o' for some i and (iii)
transformations a’ = 3;, b; = —a’ for some 4. (These are analogue to the trivial, the T
and the S modular transformations of a torus.) For transformations of the first type
the prepotential F remains unchanged, except that it has to be expressed in terms of
the new variables s;, which are the integrals of ¢ over the new a’ cycles. Since the
transformation is symplectic, the integrals over the new b; cycles then automatically
OFo(t,s)

are the derivatives =5 ==. For transformations of the second type the new prepotential

is given by Fy(t, SZ) + mgf and for transformations of the third type the prepotential
is a Legendre transform with respect to fai (. In the corresponding gauge theory the
latter transformations realise electric-magnetic duality. Consider e.g. a symplectic
transformation that exchanges all compact a’-cycles with all compact 3; cycles:

(g>ﬁ(i):(f2),¢:Lmn—y (4.88)

Then the new variables are the integrals over the a;-cycles which are

Fio= E ¢ = 0Folt,5) (4.89)
2 Bi aS@

and the dual prepotential is given by the Legendre transformation

fD(t,ﬁ‘) = glﬁ‘z - Fo(t,S) 5 (490)
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such that the new special geometry relation is

8?[)(?5 ’/T . ~A
97 Si 477@/C (4.91)

Comparing with (4.62) one finds that Fp(t, 7) actually coincides with Fy(t, .J) where
Ji—Ji=mfori=1,...n—2and J, 1 =7,_1.

Next, let us see what happens if we also include symplectic transformations involv-
ing the relative cycles @ and 3. An example of a transformation of type (i (i) that does
not mix {o, &} with {g, ﬁ} cycles is the one from {a’, §;, a,ﬁ} to {A%, B;}, c.f. Figs.
3.1, 3.2. This corresponds to

5‘1 = gl)
S; == S;—8_y for i=2..n—1, (4.92)
7n = t— 51n—1 )
so that 1
= 4.93

The prepotential does not change, except that it has to be expressed in terms of the
S;. One then finds for B; = Y7} 8 + 3

1 _ OF(S) no , 1
§/Bi§— 95, + W (Ao) — (Z Si) log A + o (A_o> . (4.94)

i=1

We see that as soon as one “mixes” the cycle 3 into the set {/3;} one obtains a number
of relative cycles B; for which the special geometry relations are corrected by cut-off
dependent terms. An example of transformation of type (iii) is @ — B, B — —aé.
Instead of t one then uses

~ 6.7-"0(25,5’) g 1 2

as independent variable and the Legendre transformed prepotential is

F(#,8) =t — Fo(t,S) , (4.96)
so that now . R
OF (7, S) 1
on t 4mi LC (4.97)

Note that the prepotential is well-defined and independent of the cut-off in all cases (in
contrast to the treatment in [40]). The finiteness of F is due to 7 being the corrected,
finite integral over the relative (-cycle.
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Note also that if one exchanges all coordinates simultaneously, i.e. al — B, & —
B3,8; — —a', B — —a, one has

~ ~

Using the generalised homogeneity relation (4.86) this can be rewritten as
Fp(#,70) = Fo(t, S;) + / ds pol(s;t, S))W(A(s)) . (4.99)

It would be quite interesting to understand the results of this chapter concerning
the parameter spaces of local Calabi-Yau manifolds in a more geometrical way in the
context of (rigid) special Kéhler manifolds along the lines of C.2.

4.2.5 Example and summary

Let us pause for a moment and collect the results that we have deduced so far. In
order to compute the effective superpotential of our gauge theory we have to study the
integrals of €2 over all compact and non-compact three-cycles on the space Xg.¢, given
by

W'(z)? + fo(z) +v* +w?+22=0. (4.100)

These integrals map to integrals of ydxr on the Riemann surface X, given by 3? =
W'(x)? + fo(x) over all the elements of Hi(X,{Q,Q'}). We have shown that it is
useful to split the elements of this set into a set of compact cycles o and ; and a
set containing the compact cycle & and the non-compact cycle B , which together form
a symplectic basis. The corresponding three-cycles on the Calabi-Yau manifold are
Loi, I'g; T, T This choice of cycles is appropriate, since the properties that arise
from the non-compactness of the manifold are then captured entirely by the integral of
the holomorphic three-form €2 over the non-compact three-cycle I's which corresponds

to (. Indeed, combining (3.79), (4.80), (4.81), (4.82) and (4.85) one finds the following
relations

1 ~
—— Q = 2mS; 4.101
2mi I TS (4.101)
L[ g 2 2RS) (4.102)
2mi Ty, 0S;
—% Q — omit, (4.103)
i Jr,
1 OFo(t,S) ) 1
-—— Q = ———+W(Ay) —tlogA — ] . 4.104
27 I‘B ot + ( 0) 0g 0+0 AO ( )

These relations are useful to calculate the integrals, since Fo(t, S) is the (Legendre
transform of) the free energy coupled to sources, and it can be evaluated from (4.67).
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In the last relation the integral is understood to be over the regulated cycle I'5 which
is an S2-fibration over a line segment running from the n-th cut to the cut-off A,.
Clearly, once the cut-off is removed, the last integral diverges. This divergence will be
studied in more detail below.

The conifold
Let us illustrate these ideas by looking at the simplest example, the deformed conifold.
In this case we have n = 1, W(x) = %2 and fo(x) = —p = —4t, p € RT, and
Xiges = Cyey is given by
P4+ wi4 2 —p=0. (4.105)

As n =1 the corresponding Riemann surface has genus zero. Then

vx? — 4t dxr  on the upper sheet
¢ =yde= { —va?2 — 4t dx  on the lower sheet (4.106)
We have a cut C = [~2v/%,2v/1] and take A(s) = s to run along the real axis. The
corresponding po(s) is immediately obtained from (4.47) and (4.52) and yields the well-
known po(s) = 554t — 52, for s € [~2v/1,2V/t] and zero otherwise, and from (4.67)
we find the planar free energy

t? 3 5
Fo(t) = —logt — —t= . (4.107)
2 4
Note that ¢ [ ds po(s)W(A(s)) = % and F satisfies the generalised homogeneity rela-
tion (4.86)
0Fo t?

tﬁ< ) =2Fo(t) + 7

For the deformed conifold the integrals over €2 can be calculated without much
difficulty and one obtains

(4.108)

1 1 _
| == — ot = 2mi 41
o o 2/{ it = 2wiS (4.109)
Ao A3
N — 2 — i 9 _
L /g A — 4t — 2tlog (2\/¥+ o 1) . (4.110)

On the other hand, using the explicit form of Fy(t) we find

0Fo(t)
ot

A2
+ W(Ag) — tlog AZ = 70+tlog (%) —t (4.111)
0

which agrees with (4.110) up to terms of order o (A%)
0



Chapter 5

Superstrings, the Geometric
Transition and Matrix Models

We are now in a position to combine all the results obtained so far, and explain the
conjecture of Cachazo, Intriligator and Vafa [27] in more detail. Recall that our goal is
to determine the effective superpotential, and hence the vacuum structure, of N' =1
super Yang-Mills theory with gauge group U(N) coupled to a chiral superfield ® in
the adjoint representation with tree-level superpotential

9k k
W(®) = ; Lt O 4 gy (5.1)
In a given vacuum of this theory the eigenvalues of ® sit at the critical points of W (x),
and the gauge group U(N) breaks to [];_, U(N;), if N; is the number of eigenvalues
at the i-th critical point of W(z). Note that such a & also satisfies the D-flatness
condition (2.21), since tr ([®f, ®]?) = 0.

At low energies the SU(N;)-part of the group U(X;) confines and the remaining
gauge group is U(1)™. The good degrees of freedom in this low energy limit are the
massless photons of the U(1) C U(N;) and the massive chiral superfields' S with the
gaugino bilinear AD N s their lowest component. We want to determine the quan-
tities (Sft), and these can be obtained from minimising the effective superpotential,

oW (Y
Ltz) -0. (5.2)
057

(s7")

Therefore, we are interested in determining the function Weg;f(Sft). Since we are in
the low energy regime of the gauge theory, where the coupling constant is large, this
is a very hard problem in field theory. However, it turns out that the effective super-
potential can be calculated in a very elegant way in the context of string theory.

'For clarity we introduce a superscript gt for gauge theory quantities and st for string theory
objects. These will be identified momentarily, and then the superscript will be dropped.

83
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As mentioned in the introduction, the specific vacuum of the original U(N) gauge
theory, in which the gauge group U(N) is broken to [['_; U(N;), can be generated from
type IIB theory by wrapping N; D5-branes around the i-th CP' in X,., (as defined in
(3.71)). We will not give a rigorous proof of this statement, but refer the reader to [87]
where many of the details have been worked out. Here we only try to motivate the re-
sult, using some more or less heuristic arguments. Clearly, the compactification of type
IIB on X, leads to an A/ = 2 theory in four dimensions. The geometric engineering
of N = 2 theories from local Calabi-Yau manifolds is reviewed in [105]. Introducing
the N = ), N; D5-branes now has two effects. First, the branes reduce the amount
of supersymmetry. If put at arbitrary positions, the branes will break supersymmetry
completely. However, as shown in [18], if two dimensions of the branes wrap holomor-
phic cycles in X,.s, which are nothing but the resolved CP', and the other dimensions
fill Minkowski space, they only break half of the supersymmetry, leading to an N' =1
theory. Furthermore, U(N;) vector multiplets arise from open strings polarised along
Minkowski space, whereas those strings that start and end on the wrapped branes lead
to a four-dimensional chiral superfield ® in the adjoint representation of the gauge
group. A brane wrapped around a holomorphic cycle C in a Calabi-Yau manifold
X can be deformed without breaking the supersymmetry, provided there exist holo-
morphic sections of the normal bundle NC. These deformations are the scalar fields
in the chiral multiplet, which therefore describe the position of the wrapped brane.
The number of these deformations, and hence of the chiral fields, is therefore given
by the number of holomorphic sections of NC. However, on some geometries these
deformations are obstructed, i.e. one cannot construct a finite deformation from an in-
finitesimal one (see [87] for the mathematical details). These obstructions are reflected
in the fact that there exists a superpotential for the chiral superfield at the level of the
four-dimensional action. In [87] it is shown that the geometry of X, is such that the
superpotential of the four-dimensional field theory is nothing but W (®).

We have seen that the local Calabi-Yau manifold X,.s can go through a geometric
transition, leading to the deformed space Xges (as defined in (3.74)). This tells us that
there is another interesting setup, which is intimately linked to the above, namely type
IIB on Xy with additional three-form background flux G53. The background flux is
necessary in order to ensure that the four-dimensional theory is N' = 1 supersymmetric.
A heuristic argument for its presence has been given in the introduction. The N = 1
four-dimensional theory generated by this string theory then contains n U(1) vector
superfields and n chiral superfields? Si!, the lowest component of which is proportional
to the size® of the three-cycles in Xdefs

§ 1
St — [ Q. 5.3
) (5.3)

2The bar in S§* indicates that in the defining equation (5.3) one uses the set of cycles [y, T,
c.f. Eq. (4.92).
3() is a calibration, i.e. it reduces to the volume form on I'4:, see e.g. [86].
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The superpotential W, for these fields is given by the formula® [75]

Wt (S5 /G/ /G/Q 5.4
1r(S7) = 2m (FA 3 . . ' (5.4)

see also [128], [106]. Of course, W:} 1 does not only depend on the Sst but also on the gy,
since € is defined in terms of the tree-level superpotential, c.f. Eq. (3.75). Furthermore,
as we will see, it also depends on parameters A;, which will be identified with the
dynamical scales of the SU(X;) theories below. It is quite interesting to compare the
derivation of this formula in [75] with the one of the Veneziano-Yankielowicz formula in
[132]. The logic is very similar, and indeed, as we will see, Eq. (5.4) gives the effective
superpotential in the Veneziano-Yankielowicz sense. It is useful to define

. 1 1
Siti= — Q , tri=— Q, (5.5)

2 2
47 Fai 47T T's

fori =1,...n—1, and use the set of cycles {I',:,I'5,, s, FB} instead (see the discussion
in section 3.2.3 and Figs. 3.2, 3.1 for the definition of these cycles). Then we find
Wff(tSt gSt) —

e

s (Lo o fof o) m(fofofof)

e T

Here we used the fact that, as explained in section 3.2.3, the integrals of €2 over three-
cycles reduce to integrals of ¢ := ydx over the one-cycles in Hy(3, {Q,Q’'}) on the
Riemann surface X,

[\:)I)—l

(5.6)

y? = W'(2)* + fo(z) , (5.7)

cf. Eq. (3.79). However, from our analysis of the matrix model we know that the
integral of ¢ over the cycle 3 is divergent, c.f. Eq. (4.85). Since the effective super-
potential has to be finite we see that (5.6) cannot yet be the correct formula. Indeed
from inspection of (4.85) we find that it contains two divergent terms, one logarithmic,
and one polynomial divergence. The way how these divergences are dealt with, and
how a finite effective superpotential is generated, will be explained in the first section
of this chapter.

*The original formula has the elegant form Wi, = 5= [\ G3 A Q, which can then be written as
(5.4) using the Riemann bilinear relations for Calabi-Yau manifolds. However, X is a local Calabi-
Yau manifold and we are not aware of a proof that the bilinear relation does hold for these spaces as
well.
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The claim of Cachazo, Intriligator and Vafa is that the four-dimensional superpo-
tential (5.4), generated from IIB on R* X Xg.; with background flux, is nothing but
the effective superpotential (in the Veneziano-Yankiwlowicz sense) of the original gauge
theory,

W (SP) = Wi (ST) (5.8)

e

Put differently we have
(57" = (S5, (5.9)

where the left-hand side is the vacuum expectation value of the gauge theory operator

Sft, whereas the right-hand side is a Kéhler parameter of Xg4.; (proportional to the
size of T' i), that solves
OW 3 (S5)
eff\Mi
— et =0. 5.10
057 (5.10)

(51

Therefore, the vacuum structure of a gauge theory can be studied by evaluating W:} £
i.e. by performing integrals in the geometry Xg.;. From now on the superscripts gt
and st will be suppressed.

We are going to check the conjecture of Cachazo-Intriligator and Vafa by looking
at simple examples below.

5.1 Superpotentials from string theory with fluxes

In this section we will first analyse the divergences in (5.6) and show that the effective
potential is actually finite if we modify the integration over €2 in a suitable way. We
closely follow the analysis of [P5], where the necessary correction terms were calculated.
Then we use our matrix model results to relate the effective superpotential to the planar
limit of the matrix model free energy.

5.1.1 Pairings on Riemann surfaces with marked points

In order to understand the divergences somewhat better, we will study the meromor-
phic one-form ( := ydz on the Riemann surface ¥ given by Eq. (5.7) in more detail.
Recall that ), Q" are those points on the Riemann surface that correspond to oo, oo’
on the two-sheets of the representation (5.7) and that these are the points where
has a pole. The surface with the points @, Q" removed is denoted by . First of
all we observe that the integrals fcxi ¢ and [ 5, ¢ only depend on the cohomology class

(] € H'(Z), whereas fﬁf (where (3 extends between the poles of ¢, i.e. from oo’ on
the lower sheet, corresponding to @', to oo on the upper sheet, corresponding to @),)
is not only divergent, it also depends on the representative of the cohomology class,

since for ¢ = ¢ +dp one has fﬁé = f[; ¢+ fa[ﬁ p (7é fB C). Note that the integral would

be independent of the choice of the representative if we constrained p to be zero at E)B .
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But as we marked @, Q" on the Riemann surface, p is allowed to take finite or even
infinite values at these points and therefore the integrals differ in general.

The origin of this complication is, of course, that our cycles are elements of the rela-
tive homology group H; (X, {Q,Q'}). Then, their is a natural map (.,.) : H1(3,{Q,Q’'})
x H'(2,{Q,Q'}) — C. H'(Z,{Q,Q'}) is the relative cohomology group dual to H; (%,
{Q,Q'}). In general, on a manifold M with submanifold N, elements of relative co-
homology can be defined as follows (see for example [88]). Let QF(M,N) be the
set of k-forms on M that vanish on N. Then H*(M,N) := Z¥(M,N)/B*(M, N),
where ZF(M,N) := {w € Q¥(M,N) : dw = 0} and B*(M, N) := dQ*}(M, N). For
[[] € Hy(M,N) and [5] € H*(M, N) the pairing is defined as

(T, )y = /f” . (5.11)

This does not depend on the representative of the classes, since the forms are constraint
to vanish on N.

Now consider £ € QF(M) such that i*¢ = d¢, where i : N — M is the inclusion
mapping. Note that £ is not a representative of an element of relative cohomology, as
it does not vanish on N. However, there is another representative in its cohomology
class [£] € H¥(M), namely s = £ —d¢ which now is also a representative of H*(M, N).
For elements & with this property we can extend the definition of the pairing to

(T, €)o :—/f(f—ckb) - (5.12)

More details on the various possible definitions of relative (co-)homology can be found
in appendix B.3.

Clearly, the one-form ( = ydz on S is not a representative of an element of
HY(2,{Q,Q'}). According to the previous discussion, one might try to find ¢, = (—dyp
where ¢ is chosen in such a way that (, vanishes at @,Q’, so that in particular
3¢, = finite. In other words, we would like to find a representative of [(] € H ()

which is also a representative of H'(3,{Q,Q’'}). Unfortunately, this is not possible,
because of the logarithmic divergence, i.e. the simple poles at @), Q’, which cannot be
removed by an exact form. The next best thing we can do instead is to determine ¢
by the requirement that (, = ( — dy only has simple poles at ), )". Then we define

the pairing [P5]
(3.0)= [ €c=a0)= [, (5.13)

which diverges only logarithmically. To regulate this divergence we introduce a cut-
off as before, i.e. we take B to run from Aj to Ay. We will have more to say about
this logarithmic divergence below. So although (, is not a representative of a class in
HY (2, {Q,Q'}) it is as close as we can get.

We now want to determine ¢ explicitly. To keep track of the poles and zeros of the
various terms it is useful to apply the theory of divisors, as explained in appendix B.2
and e.g. in [55]. The divisors of various functions and forms on ¥ have already been
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. . oy . . . k . k—1 k, 2/
explained in detail in section 3.1. Consider now @y := % with dgj, = & m dz _ z gy3dx.

For z close to Q or Q' the leading term of this expression is £(k — g — 1)2z*~972dz. This
has no pole at Q, Q' for k < g, and for k = g+ 1 the coefficient vanishes, so that we do
not get simple poles at (), Q)’. This is as expected as dypy, is exact and cannot contain
poles of first order. For k > g 4+ 2 = n + 1 the leading term has a pole of order k — g
and so dyy, contains poles of order k — g,k — g —1,...2 at ), Q. Note also that at

Py, ... Py one has double poles for all £ (unless a zero of y occurs at © = 0). Next,
we set P

Y =—, 5.14

; (5.14)

with P a polynomial of order 2¢g + 3. Then dy has poles of order g + 3,9+ 2,...2 at
@, @', and double poles at the zeros of y (unless a zero of Py, coincides with one of the
zeros of y). From the previous discussion it is clear that we can choose the coefficients
in P such that ¢, = ¢ — dy only has a simple pole at @), Q" and double poles at
Py, Py, ... Pyys. Actually, the coefficients of the monomials z* in P with k < g are
not fixed by this requirement. Only the g 4 2 highest coefficients will be determined,
in agreement with the fact that we cancel the § 4+ 2 poles of order g + 3, ... 2.

It remains to determine the polynomial P explicitly. The part of { contributing
to the poles of order > 2 at @, Q' is easily seen to be £W’(x)dz and we obtain the

condition
w’ _ ] (x) , =0 1
=) (\/W "(x)? + f(@) <x2> . (515)

Integrating this equation, multiplying by the square root and developing the square
root leads to

2t
n+1

where ¢ is an integration constant. We read off [P5]

W(z)W'(x) —

" —Px) =cx" +o(a"") | (5.16)

o) = W(z)W'(z) — (F;"" c) " +o(z" ) | (5.17)

and in particular, for x close to infinity on the upper or lower sheet,

T

olz) ~ + [W(x) —cto (1” | (5.18)

The arbitrariness in the choice of ¢ has to do with the fact that the constant W (0)
does not appear in the description of the Riemann surface. In the sequel we will choose
¢ = 0, such that the full W (x) appears in (5.18). As is clear from our construction,
and is easily verified explicitly, close to @, Q" one has ¢, ~ (IF +o0 ( )) dx.

With this ¢ we find

/cw /c /dso /c (o) + o(A /c 2( A0+0(A10)>.(5.19)
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Note that, contrary to ¢, (, has poles at the zeros of y, but these are double poles and
it does not matter how the cycle is chosen with respect to the location of these poles
(as long as it does not go right through the poles). Note also that we do not need to
evaluate the integral of (, explicitly. Rather one can use the known result (4.85) for
the integral of ¢ to find from (5.19)

<ﬁ ¢ /gw = Folt, 9) —tlogA2+o<§0) . (5.20)

Let us comment on the independence of the representative of the class [¢] € H'(%).
Suppose we had started from C~ := ( + dp instead of (. Then determining ¢ by the
same requirement that ¢ — d@ only has first order poles at Q and " would have led
to ¢ = ¢ + p (a possible ambiguity related to the integration constant ¢ again has to
be fixed). Then obviously

(0= [ [ o= [ [ o=(30) (5.21)

and hence our pairing only depends on the cohomology class [(].
Finally, we want to lift the discussion to the local Calabi-Yau manifold. There we
define the pairing

<FB,Q> - /Fa (Q— dd) = (—m)/ﬁ(g —dy) (5.22)
where (recall that ¢ = 0)

W)W (z) - %ZB CdoAdw
e o (5.23)

is such that [, d® = —in fB dp. Clearly, we have
5

1 0Fo(t,S) ) 1
~5 <F Q> T —tlogAj +o n) (5.24)

5.1.2 The superpotential and matrix models

Let us now return to the effective superpotential W, in (5.6). Following [27] and [45]
we have for the integrals of G3 over the cycles I'4 and I'p:

NZ-:/ Gy , 7,:=Ip,Gs) fori=1,...n. (5.25)

Here we used the fact that the integral over the flux on the deformed space should be
the same as the number of branes in the resolved space. It follows for the integrals
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over the cycles I', and I'g
Nz:/ G3:ZNj s %z:/ GgZTZ‘—TH_l for 7= ,...n—l,
r; st I's,
N = ZN / A <FB,G3> — 7, . (5.26)

For the non-compact cycles, instead of the usual integrals, we use the pairings of
the previous section. On the Calabi-Yau, the pairings are to be understood e.g. as
7 = —im (B;, h), where [, G3 = —2mih and S? is the sphere in the fibre of I'p, — B;.
Note that this implies that the 7; as well as 7y have (at most) a logarithmic divergence,
whereas the 7; are finite. We propose [P5] that the superpotential should be defined
as

Weff (f

(/ o[, 0=, f,2) + 5 (], 0 (ra)- i) | o)

[e3

SRR R

This formula is very similar to the one advocated for example in [99], but now the
pairing (5.13) is to be used. Note that Eq. (5.27) is invariant under symplectic trans-
formations on the basis of (relative) three-cycles on the local Calabi-Yau manifold, resp.
(relative) one-cycles on the Riemann surface, provided one uses the pairing (5.13) for
every relative cycle. These include of — 3i, & — 3, 8; — —af, 3 — —a, which acts
as electric-magnetic duality.

It is quite interesting to note what happens to our formula for the superpotential
in the classical limit, in which we have S; =t = 0, i.e. fo(x) = 0. In this case we have
¢ = dW and we find

Weps = ZN/W dW+§(2/ﬂAOdW— Aod(W@)W'(fczﬂ(x”‘l)))

n Af

= ZN&W(M), (5.28)

where p; are the critical points of W. But this is nothing but the value of the tree-level
superpotential in the vacuum in which U(N) is broken to U(1V;).

By now it should be clear that the matrix model analysis was indeed very useful
to determine physical quantities. Not only do we have a precise understanding of the
divergences, but we can now also rewrite the effective superpotential in terms of the
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matrix model free energy. Using the special geometry relations (4.80), (4.81) for the
standard cycles and (4.82), (5.20) for the relative cycles, we obtain

Woep = — Y Ni— ]—"tS,...,Sn_ +2mi Y 7S
ff EE: 85% 0 1 1) :g;
8 1
~N o Folt S, Suma) + (N log A +2mro)t+o(A> - (5.29)
0

The limit Ag — oo can now be taken provided N log A2 + 2mi7, is finite. In other
words, 2717y itself has to contain a term — N log A2 which cancels against the first one.

This is of course quite reasonable, since 7y is defined via the pairing <B, h>, which is

expected to contain a logarithmic divergence. Note that 7y is the only flux number in
(5.29) that depends on Ag. This logarithmic dependence on some scale parameter is of
course familiar from quantum field theory, where we know that the coupling constants
depend logarithmically on some energy scale. It is then very natural to identify [27]
the flux number 7y with the gauge theory bare coupling as

47 n C)
g or

To —

(5.30)

In order to see this in more detail note that our gauge theory With a chiral superfield
in the adjoint has a S-function 3(g) = —-225¢%. This leads to ( ;= 2% log <|A‘) If

1671'2

g g%(Ao) (M)

Ao is the cut-off of the gauge theory we have ig =_1l = + 87r2 N log ( ) We

now have to identify the gauge theory cut-off Ay with the cut-off Ag on the Riemann
surface as

Ao = Ag (5.31)

to obtain a finite effective superpotential. Indeed, then one gets
Nlog A2 + 27iTy = 2mi7(u) + 2N log ju = 2N log A | (5.32)

with finite A = [A]e’®/2Y and 7(u) as in (5.30), but now with g(u) instead of go. Note
that A is the dynamical scale of the gauge theory with dimension 1, which has nothing
to do with the cut-off Ay.

Eq. (5.29) can be brought into the form of [45] if we use the coordinates S;, as
defined in (4.92) and such that S; = = [,; ¢ foralli =1,...n. We get

n—1
Wesp = ZN _ ]-“0 )+ ZS <27TZZT] —|—logA2N> + S, log AN . (5.33)
j=t
In order to compare to [45] we have to identify afo( ) with # + S;log S; + .

where F{ is the perturbative part of the free energy of the matrlx model. Indeed 1t
was argued in [45] that the S;logS; terms come from the measure and are contained
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OFF”? . OFyT
52— In fact, the presence of these terms in —2

easily be proven by monodromy arguments [27]. Alternatively, the presence of the
S; log S;-terms in Fy can be proven by computing F; exactly in the planar limit. We
will discuss some explicit examples below.

We could have chosen 3 to run from a point A} = [Ag|e®®/2 on the lower sheet to a
point Ag = |Ag|e?/? on the upper sheet. Then one would have obtained an additional
term —itf, on the right-hand side of (5.20), which would have led to

in the non-perturbative part can

i6/2

60+ Nb (5.34)
in (5.33).

Note that (5.33) has dramatic consequences. In particular, after inserting Fy =
Fy + Fy* we see that the effective superpotential, which upon extremisation gives a
non-perturbative quantity in the gauge theory can be calculated from a perturbative
expansion in a corresponding matrix model. To be more precise, F§ can be calculated
by expanding the matrix model around a vacuum in which the filling fractions v} are
fixed in such a way that the pattern of the gauge group [[_, U(X;) is reproduced.
This means that whenever N; = 0 we choose v = 0 and whenever N; # 0 we have
v # 0. Otherwise the v can be chosen arbitrarily (and are in particular independent
of the N;.) F¥ is then given by the sum of all planar vacuum amplitudes.

As was shown in [45] this can be generalised to more complicated N' = 1 theories
with different gauge groups and field contents.

5.2 Example: Superstrings on the conifold

Next we want to illustrate our general discussion by looking at the simplest example,
ie. n=1and W = %2 This means we study type IIB string theory on the resolved
conifold. Wrapping N D5-branes around the single CP' generates A’ = 1 Super-
Yang-Mills theory with gauge group U(NN) in four dimensions. The corresponding
low energy effective superpotential is well-known to be the Veneziano-Yankielowicz
superpotential. As a first test of the claim of Cachazo-Intriligator Vafa we want to
reproduce this superpotential.

According to our recipe we have to take the space through a geometric transition
and evaluate Eq. (5.27) on the deformed space. From our discussion in section 3.2 we
know that this is given by the deformed conifold,

P+t + 22— =0, (5.35)

where we took f(zr) = —pu = —4t, u € RT. The integrals of ¢ on the corresponding
Riemann surface have already been calculated in (4.109) and (4.110). Obviously one
has ¢ = —Qtij—x +d (%), which would correspond to ¢ = %. Comparing with (5.17)
this would yield ¢ = ¢. The choice ¢ = 0 instead leads to ¢ = % + tﬁ and ( =
—Qt% + 4t2‘;—§ + dg. The first term has a pole at infinity and leads to the logarithmic
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divergence, while the second term has no pole at infinity but second order poles at
+21/t. One has

/ A
65—

and

L/ 4t At 1
§<5,C> = tlog(A—g>—2tlog <1+ l_A_%)_t—_ﬁ
V A3

OFo(t) 9 1
g —tlogAj + o A (5.37)

where we used (4.110) and the explicit form of Fy(t), (4.107). Finally, in the present
case, Eq. (5.27) for the superpotential only contains the relative cycles,

W =—3 (B.C)+ 3 [ ¢ (5.39)

or

Wepp = —N (tlogt —t — tlog AJ) + 2miot + o (Ai%) . (5.39)
For U(N) super Yang-Mills theory the g-function reads 5(g) = — I%JTYQ ¢> and one has to
use the identification AZ = /~\8 between the geometric cut-off Ay and the gauge theory
cut-off Ag. Then N log A2 + 2miTg = 3N log |A] +i© = 3N log A. Therefore, sending
the cut-off Ay to infinity, and using S = t, we indeed find the Veneziano-Yankielowicz
superpotential,

3N

Weff = SlOg (1‘;—]\/) + SN . (540)

5.3 Example: Superstrings on local Calabi-Yau man-
ifolds

After having studied superstrings on the conifold we now want to extend these con-
siderations to the more complicated local Calabi-Yau spaces X,.;. In other words, we
want to study the low energy effective superpotential of an N' =1 U(N) gauge theory
coupled to a chiral superfield ® in the adjoint, with tree-level superpotential W (®).
The general structure of this gauge theory has been analysed using field theory meth-
ods in [27], see also [28], [29]. There the authors made use of the fact that the gauge
theory can be understood as an A/ = 2 theory which has been broken to N' = 1 by
switching on the tree-level superpotential. Therefore, one can apply the exact results
of Seiberg and Witten [122] on N = 2 theories to extract some information about the
N =1 theory. In particular, the form of the low energy effective superpotential W
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can be deduced [27]. Furthermore, by studying the monodromy properties of the ge-
ometric integrals, the general structure of the Gukov-Vafa-Witten superpotential was
determined, and the structures of the two superpotentials were found to agree, which
provides strong evidence for the conjecture (5.8). For the case of the cubic superpoten-
tial the geometric integrals were evaluated approximately, and the result agreed with
the field theory calculations.

Unfortunately, even for the simplest case of a cubic superpotential the calculations
are in general quite involved. Therefore, we are going to consider a rather special case
in this section. We choose n = 2, i.e. the tree-level superpotential W is cubic, and we
have 2 CP's in X, es, corresponding to the small resolution of the two singularities in
W' (x)?+v?+w?+22 = 0. In order for many of the calculations to be feasible, we choose
the specific vacuum in which the gauge group remains unbroken. In other words, we
wrap all the N physical D-branes around one of the two CP's, e.g. N; = 0and N, = N.
Therefore, strings can end on only one CP'. We saw already that the pattern of the
breaking of the gauge group is mirrored in the filling fractions v of the matrix model.
In our case we must have vf = 0 and v = 1.5 But from ;% fFAi Q) = S; = tv} we learn

that the corresponding deformed geometry X contains a cycle I' 41 of vanishing size,
together with the finite I'42. This situation is captured by a hyperelliptic Riemann
surface, where the two complex planes are connected by one cut and one point, see Fig.
5.1 The situation in which one cut collapsed to zero size is described mathematically by

Figure 5.1: The Riemann surface for a cubic tree level potential, and fy such that one
of the two cuts collapses to a point.

a double zero of the polynomial defining the Riemann surface. Therefore, the vacuum
with unbroken gauge group leads to the surface

b? 42

2
b
' =g*(x—a)*(x—b)(z+b) = <gx2 —agr — Tg> +ab’g*r — a*b?*g* — Tg . (5.41)

5This can also be understood by looking at the topological string. As we will see in the next
chapter, the B-type topological string with N topological branes wrapping the two CP's calculates
terms in the four-dimensional effective action of the superstring theory. If there are no D5-branes
wrapping CP' the related topological strings will also not be allowed to end on this CP', i.e. there
are no topological branes wrapping it. This amounts to Ni =0 and N, = N. In the next chapter we
will see that the number of topological branes and the filling fractions are related as v} = N; / N.
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Without loss of generality we took the cut to be symmetric around zero. We want
both the cut and the double zero to lie on the real axis, i.e. we take g real and positive
and a,b € R. From (5.41) we can read off the superpotential,

b2
W(z) = gaz?’ — a_29$2 — 7933 , (5.42)
where we chose W (0) = 0. Note that, in contrast to most of the discussion in chapter
4, the leading coefficient of W is § and not %, because we want to keep track of the
coupling g. This implies (c.f. Eq. (4.51)) that the leading coefficient of f, is —4tg, and
therefore

ab’qg
t=— 5.43
- (5.3
Since t is taken to be real and positive, a must be negative. Furthermore, we define the
positive m := —ag. Then W(z) = $2° 4+ 2 %x. Note that we have in this special

setup S = S; = = Jr Q=0 and 52 = 1> fF&Q =2 [.¢=2 [ ylx)dz =t
Using (4.47) and (4.52) our curve (5.41) leads to the spectral density

po(z) = (:c —a)Vb? —z? for x € [—b,b] (5.44)

27t

and zero otherwise. The simplest way to calculate the planar free energy is by making
use of the homogeneity relation (4.86). We find

A = (0t [ as s s)
t

A ( / - WA0>+tlogA2) ; /d po(s)W(s) . (5.45)

Here we used that the cut between —b and b lies on the real axis, where we can take
A(s) = s. In the second line we made use of (4.85). The integrals can be evaluated
without much effort, and the result is

2?2t 3

2 2
Fo(t) = log—— g

4t2 + gﬁt?’ . (5.46)

This result is very interesting, since it contains the planar free energy of the conifold
(4.107), which captures the non-perturbative contributions, together with a perturba-
tive term %7;—35 2. Note that this is precisely the term calculated from matrix model
perturbation theory in Eq. (4.23). (Recall that in our special case Fy(t) = —Fy(t), c.f.
Eq. (4.62), which accounts for the minus sign.) On the other hand, it seems rather
puzzling that there are no o(g*)-terms in the free energy. In particular, (4.23) contains
a term —g% g*, coming from fatgraph diagrams containing four vertices. However,
there we had a slightly different potential, namely W(z) = %:1:3 + %xQ, i.e. there
was no linear term. In our case this linear term is present, leading to tadpoles in the

Feynman diagrams. Each tadpole comes with a factor fnﬁ Then, next to the planar
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Figure 5.2: The linear term in W leads to tadpoles in the Feynman diagrams, each
tadpole coming w1th , which contains a factor of g. At order g% only two diagrams
contribute.

diagrams of Fig. 4.4, there are two more diagrams that contribute to Fy at order g2,
see Fig. 5.2. However, their contribution cancels, because of different symmetry fac-
tors. This is why, in the presence of tadpoles, we still reproduce the result of (4.22)
at order ¢g*. Furthermore, the explicit expression for Fy(t) tells us that starting from
order g* (as in the case without tadpoles there are no diagrams that lead to an odd
power of g) the contributions coming from tadpole diagrams cancel the contributions
of the diagrams without tadpoles.

It is quite interesting to look at this from a slightly different perspective. We again
start from the potential W (x) = $2° + Za? — thx and perform the shift v =y + o :=

Y+ ;n_g (@ — 1). Then we have W(z) = W(y) with

W(y) = gy3+ Ay + Wy (5.47)

where A :=4/1+ 8tg and Wy = 12g (—% + %AQ — A?’). The shift of x was chosen in

such a way that W( ) does not contain a term linear in y.
Next consider what happens at the level of the partition function. We have

zZ = /DMe‘;s“W(M):/DMe—thfVV(M): NWO/DMe—gZ“(gM3+mAM2)

W, 2 . 1 gA—3/2
— ——— — —logA DM — Sy e 4
exp ( 2 og ) / exp ( m tr ( 3 + = 5 (5.48)

This shows that partition functions with different coefficients in the defining polynomial
potential are related as

Z (g,m,—%) = e_é(twﬁ logA)Z (A2, m,0) . (5.49)

In terms of the planar free energy this is
2

2t ~ t
F0<9A73/25m70) = f‘O (gvm> _%) +tWO<g>m7t) + ElogA(gﬂnat)

2tg o (—1+3A%—2A3% 1
= —— —log A |(5.
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The first term on the right-hand side of this equation is the one we calculated in (5.46).
Therefore,

12 t 3 2 3 (1 —3A24+2A% 3
A—3/2 = —log— — 24+ —(A*2—-1 — —log A
Folg ,m, 0) 5108 — — 7 +12( )—|—3 A + 5 log
2 t 3
= Zlog— — 24+ 7P 51
5 ogm 1 + F (5.51)

Note that this expression is exact, and it contains both the perturbative and the non-
perturbative part of Fy for a potential that only contains a cubic and a quadratic term.
In other words, expanding this expression in terms of §% := ¢?A~3 we reproduce the
contributions of all the planar fatgraph Feynman diagrams. This can be done by using
A? =1+ B5G2A3 to express A in terms of g2, The result is

3 1.t 3 2t 8[t3*\° 56 [t5*\® 512 [t?\"
F 0) = ?{-log—— 4242 (=L — = (=
o(g,m, 0) {ZOgm 173 3+3(m3 3\m) T3 e

| 9152 tG2 5+
5 m3

oL 3 1 (8 T(3k/2)
=t {éloga‘ﬂa“ (k:+2)!F(k:/2+1)} ' (5:52)

This is precisely the expression found in [25].

Coming now back to our original form of the potential W (z) = 42° + 22?2 — 2y it
remains to write down the effective superpotential. For that purpose we write S :=t.
From (5.46) we find

0Fo(S)
0S

2
:SlogS—Slogm—S+2%52 : (5.53)

As promised below (5.33), this contains a term S'log.S. Plugging this into (5.33) gives

2NmN

SN

2

Wess(S) = NS + Slog < > —aNLog? (5.54)
Note that we also have a term S'logm in the derivative of Fy. This is interesting for
various reasons. Firstly, so far we did not keep the dimensions of the various fields
in our theory. The argument of the logarithm in our final result should, however,
be dimensionless and since m and A have dimension one, and S has dimension three
this is indeed the case. Furthermore, one can use the threshold matching condition
27] AN = A?Nm™ in order to relate our result to the dynamical scale Ay, of the low-
energy pure N' = 1 super Yang-Mills theory with gauge group U(N). Similar threshold
matching conditions also hold for the more general case, see [27] for a discussion.



Chapter 6

B-Type Topological Strings and
Matrix Models

In the last chapters we learned how the holomorphic matrix model can be used to
calculate the integrals of the holomorphic (3, 0)-form 2 over three-cycles in X4.¢. These
integrals in turn are the central building blocks of the effective superpotential of our
U(N) gauge theory. The starting point of the argument was the fact that the Riemann
surface (3.76), that appears when calculating the integrals, and the one of (4.53), that
arises in the 't Hooft limit of the matrix model, are actually the same. However, so
far we have not explained the reason why these two surfaces agree. What motivated
us to study the holomorphic matrix model in the first place? In this final chapter we
want to fill this gap and show that the holomorphic matrix model is actually nothing
but the string field theory of the open B-type topological string on X,.;,. We will not
be able to present a self-contained discussion of this fact, since many of the theories
involved are quite complicated and it would take us too far to explain them in detail.
The goal of this chapter is rather to familiarise the reader with the central ideas and
the main line of argument, without spelling out the mathematics.

Some elementary background material on topological strings is given in appendix
D, see [133] and [81] for more details. A recent review of string field theory appeared
in [119]. Central for the discussion are the results of the classic article [148], and the
holomorphic matrix model first occurred in [43]. A recent review of the entire setup
can be found in [104].

The open B-type topological string and its string field theory
It has been known for a long time that in the case of Calabi-Yau compactifications of
type II string theory certain terms of the four-dimensional effective action can be cal-
culated by studying topological string theory on the Calabi-Yau manifold [20]. To be
specific, consider the case of type IIB string theory on a compact Calabi-Yau manifold
X. Then there are terms in the four-dimensional effective action, which (when formu-
lated in NV = 2 superspace language) have the form [ d*zd*d F;(X')(W?)9, where X’
are the N = 2 vector multiplets and W? := W,sW*? is built from the chiral N' = 2
Weyl multiplet W,5, which contains the graviphoton. The function F; now turns out

98
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[20] to be nothing but the free energy of the B-type topological string with target
space X at genus g. For example, it is well known that the prepotential governing the
structure of vector multiplets in an AV = 2 supersymmetric theory is nothing but the
genus zero free energy of the topological string on the Calabi-Yau manifold.

Our setup is slightly more complicated, since we are interested in type IIB theory on
My x X,es, with additional D-branes wrapping the resolved two-cycles. The D-branes
lead to an open string sector, and therefore we expect that we have to study the open
B-type topological string on X,.s. In other words, we allow for Riemann surfaces
with boundaries as the world-sheet of the topological string. It can be shown that
in the B-type topological string, when mapping the world-sheet into the target space,
the boundaries have to be mapped to holomorphic cycles in the target space. The
appropriate boundary conditions are then Dirichlet along these holomorphic cycles
and Neumann in the remaining directions. These boundary conditions amount to
introducing “topological branes”, which wrap the cycles. See [148], [103], [104] for
a discussion of open topological strings and more references. Since the various CP's
in X,.s around which the physical D-branes are wrapped are all holomorphic (a fact
that we have not proven) we expect that the relevant topological theory is the open
B-type topological string with topological branes around the various CP's. An obvious
question to ask is then whether this topological theory calculates terms in the four-
dimensional theory.

As to answer this question we have to take a little detour, and note that the open
B-type topological string can actually be described [148] in terms of a cubic string
field theory, first introduced in [143]. Usually in string theory the S-matrix is given
in terms of a sum over two-dimensional world-sheets embedded in space-time. The
corresponding string field theory, on the other hand, is a theory which reproduces this
S-matrix from the Feynman rules of a space-time action S[¥]. ¥, called the string
field, is the fundamental dynamical variable, and it contains infinitely many space-
time fields, namely one for each basis state of the standard string Fock space. Writing
down the string field theory of a given string theory is a difficult task, and not very
much is known about the string field theories of superstrings. However, one does know
the string field theory for the open bosonic string [143]. Its action reads

1 1 1
S = —/ tr (ﬁw*QBRST\II + g‘l’*qf*\lj) , (61)
Is

where g is the string coupling. The trace comes from the fact that, once we add
Chan-Paton factors, the string field is promoted to a U (N ) matrix of string fields. We
will not need the detailed structure of this action, so we just mention that x is some
associative product on the space of string fields and f is a linear map from the space

of string fields to C.}

'To be more precise, in open string field theory one considers the world-sheet of the string to be an
infinite strip parameterised by a spacial coordinate 0 < o < 7 and a time coordinate —oo < 7 < 00
with flat metric ds? = do? + d72. One then considers maps x : [0,7] — X into the target space X.
The string field is a functional W[z (0),...], where ... stands for the ghost fields ¢, ¢ in the case of the
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The structure of the topological string (see appendix D for some of its properties)
is very similar to the bosonic string. In particular there exists a generator ()p with
Q% = 0, the role of the ghost fields is played by some of the particles present in
the super multiplets, and the ghost number is replaced by the R-charge. So it seems
plausible that an action similar to (6.1) should be the relevant string field theory for
the B-type topological string. However, in the case of the open bosonic string the
endpoints of the strings are free to move in the entire target space. This situation can
be generated in the topological string by introducing topological branes which fill the
target space completely. This is reasonable since any Calabi-Yau X is a holomorphic
submanifold of itself, so the space filling topological branes do wrap holomorphic cycles.
This completes the analogy with the bosonic string, and it was indeed shown in [148]
that the string field theory action for the open B-type topological string with space
filling topological branes is given by (6.1) with @) instead of Qpggrsr-

In the same article Witten showed that this action does actually simplify enor-
mously. In fact, the string functional is a function of the zero mode of the string,
corresponding to the position of the string midpoint, and of oscillator modes. If we
decouple all the oscillators the string functional becomes an ordinary function of (tar-
get) space-time, the x-product becomes the usual product of functions and the integral
becomes the usual integral on target space. In [148] it was shown that this decoupling
does indeed take place in the open B-type topological string. This comes from the fact
that in the B-model the classical limit is exact (because the Lagrangian is independent
of the coupling constant ¢ and therefore one can take ¢ — oo, which is the classical
limit, c.f. the discussion in appendix D). We will not discuss the details of this decou-
pling but only state the result: the string field theory of the open topological B-model
on a Calabi-Yau manifold X with N space-time filling topological branes is given by
holomorphic Chern-Simons theory on X, with the action

S =

! /Q/\ br (AA5A+3AAAAA) | (6.4)
298 X 3

where A is the (0,1)-part of a U(N) gauge connection on the target manifold X

bosonic string and for 7,6 (c.f. appendix D) in the B-topological string. In [143] Witten defined two
operations on the space of functionals, namely integration, as well as an associative, non-commutative

star product
/ v

/\1/1*...*\111,

where x,11 = x1. The integration can be understood as folding the string around its midpoint
and gluing the two halves, whereas the star product glues two strings by folding them around their
midpoints and gluing the second half of one with the first half of the following. See [117], [148], [104],
[119] for more details and references.

/Dm(o) H d[z(o) — x(m — 0)]¥x(0)] , (6.2)

0<o<m/2

/HD%(U)H [T (o) = zipa(r — o) Wilwi(o)] (6.3)

i=10<o<m/2
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Holomorphic matrix models from holomorphic Chern-Simons theory
The holomorphic Chern-Simons action (6.4) is the string field theory in the case where
we have N space-time filling topological branes. However, we are interested in the
situation, where the branes only wrap holomorphic two-cycles in X,.,. Here we will
see that in this specific situation the action (6.4) simplifies further.

Before we attack the problem of the open B-type topological string on X,., let
us first study the slightly simpler target space O(—2) @ O(0) — CP' (c.f. definition
3.8) with N topological branes wrapped around the CP'. The corresponding string
field theory action can be obtained from a dimensional reduction [87], [43], [104], of
the action (6.4) on O(—2) @ O(0) — CP' down to CP'. Clearly, the original gauge
connection A leads to a (0,1) gauge field @ on CP', together with two fields in the
adjoint, ®; and ®Y, which are sections of O(0) and O(—2) respectively. In other words
we take z,Z to be coordinates on the CP', y, 7 are coordinates on the fibre O(—2)
and x,Z are coordinates on O(0), and write A(x,Z,y,7, 2, 2) = a(z, ) + ®Y(z, 2)dy +
®o(2,2)dz, where @ := a.dz. Of course ®; and ®Y are in the adjoint representation.
The index g in ®Y reminds us of the fact that ®Y transform if we go from one patch of
the CP' to another, whereas ®, does not. In fact we can build a (1,0)-form ®; := ®¥dz.
Plugging this form of A into (6.4) gives

1

S=—
gs Jx

Quyo(z,y, z)de Ady AdZ Ady A tr (@11_)@@0) , (6.5)

where D := 0 + [a,-] and 0 := 0.dz. We integrate this over the two line bundles to

obtain .
S=— f(Z) tr ((I)l-Da(I)O) . (66)
9s Jcpt
But tr (®;D;®) is a (1,1)-form on CP' that does not transform if we change the coor-
dinate system. From the invariance of S we deduce that f(z) must be a (holomorphic)

function. Since holomorphic functions on CP' are constants we have [43]

S= 2 [ & (@.D,) . (6.7)
gs Jp

Here we suppressed a constant multiplying the right-hand side.

We are interested in the more general situation in which the target space is X,.s,
which can be understood as a deformation of O(—2) @ O(0) — CP' by W, see the
discussion in section 3.2.2. In particular, we want to study the case in which N;
topological branes wrap the i-th CP'. The string field theory action describing the
dynamics of the branes in this situation reads [87], [43], [104]

S = i/ tr ((I)lDEL(I)O -+ W(q)o)(.U) 3 (68)
9s Jpt

where w is the Kihler class on CP' with fPl w = 1. We will not prove that this is
indeed the correct action, but we can at least check whether the equations of motion
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lead to the geometric picture of branes wrapping the n CP's. As to do so note that
the field @ is just a Lagrange multiplier and it enforces

(@, ®1] =0, (6.9)
i.e. we can diagonalise ¢y, and ®; simultaneously. Varying with respect to ®; gives
0Py =0, (6.10)
which implies that ® is constant, as P! is compact. Finally, the equation for ®; reads
00, = W' (Pp)w . (6.11)
Integrating both sides over CP' gives
W'(®) =0, (6.12)

for non-singular ®;. Plugging this back into (6.11) gives 0®; = 0. But there are no
holomorphic one forms on CP', implying ®; = 0. All this tells us that classical vacua
are described by ®; = 0 and a diagonal &, where the entries on the diagonal are
constants, located at the critical points of W. But of course, from our discussion of
X,es we know that these critical points describe the positions of the various CP's in
X,es. Since the eigenvalues of @, describe the position of the topological branes we are
indeed led to our picture of N; topological branes wrapping the i-th CP'.

After having seen that the classical configurations of our string field theory action
do indeed reproduce our geometric setup we now turn back to the action itself. We
note that both a and ®; appear linearly in (6.8), and hence they can be integrated
out. As we have seen, this results in the constraint 0®, = 0, which means that ®, is
a constant N x N matriz,

®y(2) = ® = const . (6.13)

Now we can plug this solution of the equations of motion back into the action, which
then reduces to

s—Law@) (6.14)

9s

But since @ is a constant N x N matrix we find that the string field theory partition
function is nothing but a holomorphic matrix model with potential W (z). An alter-
native derivation of this fact has been given in [104]. It is quite important to note
that the number of topological branes N is unrelated to the number N of physical
D-branes. Indeed, N is the size of the matrices in the matrix model and we have seen
that interesting information about the physical U(N) gauge theory can be obtained by
taking NV to infinity. This now completes the logic of our reasoning and finally tells us
why the holomorphic matrix model can be used in order to extract information about
our model.
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Open-closed duality

Let us now analyse what the above discussion implies for the relations between the
various free energies involved in our setup. Like any gauge theory, the free energy of the
matrix model can be expanded in terms of fatgraphs, as discussed in the introduction
and in section 4.1.2. Such an expansion leads to quantities .7: P from fatgraphs with
h index loops on a Riemann surface of genus ¢, where the superscnpt p denotes the
perturbative part. The statement that the holomorphic matrix model is the string field
theory of the open B-type topological string on X,.., means that the matrix model free
energy coincides with the free energy of the open B-type topological string. To be more
precise, we consider the open B-type topological string on X,.s with N; topological
branes wrapped around the i-th CP' with coupling constant g,. When mapping a
Riemann surface with boundaries into the target space we know that the boundaries
have to be mapped onto the holomorphic cycles. We denote the free energy for the case
in which h; boundaries are mapped to the i-th cycle by F gﬁf n,- In the corresponding
matrix model with coupling constant g, on the other hand, one also has to choose a
vacuum around which one expands to calculate the free energy. But from our analysis
it is obvious that the corresponding vacuum of the matrix model is the one in which
the filling fraction v} is given by the number of topological branes as

tvf = Nigy = S; . (6.15)

On can now expand the matrix model around this particular vacuum (see e.g. [93],
[104] for explicit examples) and from this expansion one can read off the quantities
Fom¥ .- The statement that the matrix model is the string field theory of the open

g
B- topologlcal string implies then that

m,p —

B’
Gt = Fght b - (6.16)

Let us define the quantities

mm’p mm7p 7h1 7hn
7 Z Z eSS

h1=1 hn=1
Z DY FRE S Sk = FPP(S) (6.17)
h1=1 hnp=1

Next we look back at Egs. (4.101) and (4.102). These are the standard special geometry
relations on Xy, with FJ"" as prepotential. On the other hand, the prepotential is
known [81] to be the free energy of the closed B-type topological string at genus zero:
Fim(S;) = FL(S;). This led Dijkgraaf and Vafa to the conjecture [43] that this
equality remains true for all g, so that

Fr(Si) = FP(Si) (6.18)

where the left-hand side is the matrix model free energy with coupling constant g,
and the right-hand side denotes the free energy of the closed B-type topological string
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on Xgep with cogpling constant g,. On the left-hand side S; = gsNi, whereas on the
right-hand side S; = .5 [ Q.
A'L
Note that this implies that we have an open-closed duality

F7(Si) = F3m(Ss) = F3B(S) - (6.19)

In other words, we have found a closed string theory which calculates the free energy
of the gauge theory, and thus we have found an example in which the old idea of 't
Hooft [80] has become true.

The effective superpotential revisited
Let us finally conclude this chapter with some remarks on the effective superpotential.

So far our general philosophy has been as follows: we geometrically engineered a
certain gauge theory from an open string theory on some manifold, took the manifold
through a geometric transition, studied closed string theory with flux on the new
manifold and found that the four-dimensional effective action generated from this string
theory is nothing but the low energy effective action of the geometrically engineered
gauge theory.

One might now ask whether it is also possible to find the low energy effective
superpotential Wess before going through the geometric transition from the open string
setup. It was shown in [20], [130] that this is indeed possible, and that the low energy
effective superpotential is schematically given by

Wepp~ > FOENAS"™ +as | (6.20)

h=1

where we introduced only one chiral superfield S and N D-branes (i.e. the gauge
group is unbroken). To derive this formula one uses arguments that are similar to
those leading to the F;(W?)9-term in the case of the closed topological string [20].
Introducing the formal sum

ng(S) — ng7h8h (621)
h=1
this can be written as 9FeB(S
WeffNN%—SH—I—OzS. (6.22)

If we now use the open-closed duality (6.19) this has precisely the form of (5.33). So,
in principle, one can calculate the effective superpotential from the open topological
string. However, there one has to calculate all the terms Fg} and sum them over h.
In practice this task is not feasible explicitly. The geometric transition is so useful,
because it does this summation for us by mapping the sum to the quantity ]—"f in
closed string theory, which is much more accessible.



Chapter 7

Conclusions

Although we have covered only a small part of a vast net of interdependent theories,
the picture we have drawn is amazingly rich and beautiful. We saw that string theory
can be used to calculate the low energy effective superpotential, and hence the vacuum
structure, of four-dimensional A/ = 1 supersymmetric gauge theories. This effective su-
perpotential can be obtained from geometric integrals on a suitably chosen Calabi-Yau
manifold, which reduce to integrals on a hyperelliptic Riemann surface. This Riemann
surface also appears in the planar limit of a holomorphic matrix model, and the inte-
grals can therefore be related to the matrix model free energy. The free energy consists
of a perturbative and a non-perturbative part, and the perturbative contributions can
be easily evaluated using matrix model Feynman diagrams. Therefore, after adding
the non-perturbative S'log S term, the effective superpotential can be obtained using
matrix model perturbation theory. This is quite surprising, since vacuum expectation
values like (S)Y = A3 in super Yang-Mills theory are non-perturbative in the gauge
coupling. In other words, non-perturbative gauge theory quantities can be calculated
from a perturbative expansion in a matrix model.

Our analysis has been rather “down to earth”, in the sense that we had an explicit
manifold, Xg.r, on which we had to calculate very specific integrals. After having ob-
tained a detailed understanding of the matrix model it was not too difficult to relate
our integrals to the matrix model free energy. Plugging the resulting expressions into
the Gukov-Vafa-Witten formula expresses the superpotential in terms of matrix model
quantities. However, this technical approach does not lead to a physical understanding
of why all these theories are related, and why the Gukov-Vafa-Witten formula gives
the correct superpotential. As we tried to explain in chapter 6, the deeper reason
for these relations can be understood from properties of the topological string. It is
well known that both the open and the closed topological string calculate terms in
the four-dimensional effective action of Calabi-Yau compactifications. In particular,
the low energy effective superpotential W, can be calculated by summing infinitely
many quantities .7-"(‘)”],5; of the open topological string on X,.;. Quite interestingly, there
exists a dual closed topological string theory on Xgr, in which this sum is captured
by FZ, which can be calculated from geometric integrals. The relation between the
target spaces of the open and the dual closed topological string is amazingly simple
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and given by a geometric transition. In a sense, this duality explains why the Gukov-
Vafa-Witten formula is valid. The appearance of the holomorphic matrix model can
also be understood from an analysis of the topological string, since it is nothing but
the string field theory of the open topological string on X.s. Interestingly, the matrix

model also encodes the deformed geometry, which appears once we take the large N
limit.

These relations have been worked out in the articles [130], [27], [43], [44] and [45].
However, in these papers some fine points have not been discussed. In particular, the
interpretation and cut-off dependence of the righthand side of

0Fo
O~ Nl
/F LI (7.1)

was not entirely clear. Over the last chapters and in [P5] we improved this situation by
choosing a symplectic basis {I',i,'g,, [a, FB} of the set of compact and non-compact
three-cycles in Xg.r, given by W'(x)? + fo(z) +v* +w?*+ 22 = 0. These map to a basis
{a', B;, &, B} of the set of relative one-cycles Hy(X,{Q,Q’}) on the Riemann surface
¥, given by y* = W'(x)? + fo(z), with two marked points @, Q’. Then we showed that
the precise form of the special geometry relations on Xy reads

1

“m - iQ = 2miS; , (7.2)
| -
= 0 = 8-,F0<f7 S) ’ (73)
27TZ Fﬁi aS,L
1
T T's
1 _ 0F(t.S) ) 1
i Jr, Q = ey + W(Ay) —tlog A+ o N (7.5)

where Fy(t, S;) is the Legendre transform of the free energy of the matrix model with
potential W, coupled to sources. In the last relation the integral is understood to be
over the regulated cycle I'; which is an .S 2_fibration over a line segment running from
the n-th cut to the cut-off Ag. Clearly, once the cut-off is removed, the last integral
diverges. These relations show that the choice of basis {I’ ai,rﬁi,rd,rﬁ}, although
equivalent to any other choice, is particularly useful. The integrals over the compact
cycles lead to the familiar rigid special geometry relations, whereas the new features,
related to the non-compactness of the manifold, only show up in the remaining two
integrals. We further improved these formulae by noting that one can get rid of the
polynomial divergence by introducing [P5] a paring on Xg.r defined as

<FB,Q> - /F (Q— dd) = (—m)/ﬁ(g —dy) | (7.6)
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where W ()W (1) o
o T ! — ?l’ dv A dw
P TWr A 2 D

is such that fFA d® = —ir fB de, with ¢ as in (5.17). This pairing is very similar
]

in structure to the one appearing in the context of relative (co-)homology and we
proposed that one should use this pairing so that Eq. (7.5) is replaced by

1 _ OFu(t, S) : 1

At any rate, whether one uses this pairing or not, the integral over the non-compact
cycle I'; is not just given by the derivative of the prepotential with respect to ¢, as is
often claimed in the literature.

Using this pairing the modified Gukov-Vafa-Witten formula for the effective super-
potential is proposed to read

Wess = 271rzz - (/ “ /pﬁ /rﬁi o /r Q)
+2im (/F Gy (T5,9) = (T;,Gs) /F Q) . (7.9)

We emphasize that, although the commonly used formula Wesp ~ [ Gs A Q is very
elegant, it should rather be considered as a mnemonic for (7.9) because the Riemann
bilinear relations do not necessarily hold on non-compact Calabi-Yau manifolds. Note
that although the introduction of the pairing did not render the integrals of €2 and Gj3
over the I';-cycle finite, since they are still logarithmically divergent, these divergences
cancel in (7.9) and the effective superpotential is well-defined.

The detailed analysis of the holomorphic matrix model also led to some new results.
In particular, we saw that, in order to calculate the matrix model free energy from a
saddle point expansion, the contour v has to be chosen in such a way that it passes
through (or at least close to) all critical points of the matrix model potential W, and
the tangent vectors of ~ at the critical points are such that the critical points are
local minima along ~. This specific form of v is dictated by the requirement that the
planar limit spectral density po(s) has to be real. pgy is given by the discontinuity
of yo = W'(x) — 2twy, which is one of the branches of the Riemann surface y? =
W'(z)? + fo(x). The reality of py therefore puts constraints on the coefficients in fo
and hence on the form of the cuts in the Riemann surface. Since the curve v has
to go through all the cuts of the surface, the reality of py constrains the form of the
contour. This guarantees that one expands around a configuration for which the first
derivatives of the effective action indeed vanish. To ensure that saddle points are really
stable we were led to choose v to consist of n pieces where each piece contains one cut
and runs from infinity in one convergence domain to infinity of another domain. Then
the “one-loop” term is a convergent, subleading Gaussian integral.



Part 11

M-theory Compactifications,
(Go-Manifolds and Anomalies

108



Chapter 8

Introduction

In the middle of the nineteen nineties it became clear that the five consistent ten-
dimensional string theories, Type ITA, Type IIB, Type I, SO(32)-heterotic and Fgx Eg-
heterotic, are not independent, but are related by duality transformations. Further-
more, a relation of these string theories to eleven-dimensional supergravity was found,
and this web of interrelated theories was dubbed M-theory [129], [149]. One of the
intriguing new features of M-theory is the appearance of an additional, eleventh di-
mension, which implies that the old constructions of string compactifications [31] had
to be generalised. In fact, one is immediately led to the question on which manifolds
one has to compactify eleven-dimensional supergravity, in order to obtain a physically
interesting four-dimensional N' = 1 effective field theory. It turns out that the mecha-
nism of these compactifications is quite similar to the one of Calabi-Yau compactifica-
tions, and the compact seven-dimensional manifold has to be a so-called Gs-manifold.
The Kaluza-Klein reduction of eleven-dimensional supergravity on these manifolds was
first derived in [115]. However, one finds that four-dimensional standard model like
theories, containing non-Abelian gauge groups and charged chiral fermions, can only
be obtained from Gs-compactifications if we allow the seven-manifold to be singular
(see for example [6] for a review). To be more precise, if the Gy-manifold carries con-
ical singularities, four-dimensional charged chiral fermions occur which are localised
at these singularities. Non-Abelian gauge groups arise from ADE-singularities on the
Go-manifold. Clearly, once a theory with charged chiral fermions is constructed, one
has to check whether it is also free of anomalies. Two different notions of anomaly
cancellation occur in this context. Global anomaly cancellation basically is the require-
ment that the four-dimensional theory is anomaly free after summation of the anomaly
contributions from all the singularities of the internal manifold. Local anomaly cancel-
lation on the other hand imposes the stronger condition that the contributions to the
anomalies associated with each singularity have to cancel separately. We will study
these issues in more detail below. What we find is that, in the case of singular G,-
compactifications, the anomalies present at a given singularity are cancelled locally by
a contribution which “flows” into the singularity from the bulk, provided one modifies
the fields close to the singularity [152], [P2].

Compactifications on Ga-manifolds lead to four-dimensional Minkowski space, since
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the metric on a Go-manifold is Ricci-flat. There are also other solutions of the equations
of motion of eleven-dimensional supergravity. One of them is the direct product of AdSy
with a seven-dimensional compact Einstein space with positive curvature. Since the
metric on the seven-manifold is Einstein rather than Ricci-flat, these manifolds cannot
be Go-manifolds. However, a generalisation of the concept of Go-manifolds to the case
of Einstein manifolds exists. These manifolds are known to be weak Gy-manifolds.
Quite interestingly, we were able to write down for the first time a family of explicit
metrics for such weak GGy-manifolds that are compact and have two conical singularities
[P1]. Although these manifolds have weak G, rather than G, metrics, they are quite
similar to Go-manifolds, and hence provide a framework in which many of the features
of compact, singular Go-manifolds can be studied explicitly.

Another context in which the cancellation of anomalies plays a crucial role is the
Mb5-brane. It carries chiral fields on its six-dimensional world-volume and this field the-
ory on its own would be anomalous. However, once embedded into eleven-dimensional
supergravity one finds that a contribution to the anomaly flows from the bulk into the
brane, exactly cancelling the anomaly. In fact, from these considerations a first correc-
tion term to eleven-dimensional supergravity has been deduced already ten years ago
[48], [150], [60]. The mechanism of anomaly cancellation for the M5-brane has been
reviewed in detail in [P3] and [P4] and we will not cover it here.

Finally, our methods of local anomaly cancellation and inflow from the bulk can be
applied to eleven-dimensional supergravity on the interval [83], [P3]. In this context
an intriguing interplay of new degrees of freedom living on the boundaries, a modified
Bianchi identity and anomaly inflow leads to a complete cancellation of anomalies. The
precise mechanism has been the subject of quite some controversy in the literature (see
for example [22] for references). Our treatment in [P3] finally provides a clear proof of
local anomaly cancellation.

In the following I am going to make this discussion more precise by summarising the
results of the publications [P1], [P2] and [P3]. The discussion will be rather brief, since
many of the details can be found in my work [P4]. In the remainder of the introduction
I quickly review the concept of Go-manifolds, explain the action of eleven-dimensional
supergravity and introduce the important concept of anomaly inflow. The notation is
explained in appendix A.

(Go-manifolds

Definition 8.1 Let (x1,...,27) be coordinates on R”. Write dx;; ; for the exterior
form daz; Adz; A ... Adx; on R7. Define a three-form ®; on R” by

D 1= dxi93 + dxs16 + dxoss + dXazs + dxia7 + dxs67 + dxXos7 . (8.1)

The subgroup of GL(7,R) preserving ® is the exceptional Lie group Gs. It is compact,
connected, simply connected, semisimple and 14-dimensional, and it also fixes the four-
form

*®g = dxuse7 + dXog74 + dXi3gs57 + dXi276 + dXoss6 + dXq245 + dXi346 (8.2)
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the Euclidean metric gy = dz? + ... dz2, and the orientation on R.

Definition 8.2 A Gs-structure on a seven-manifold M is a principal subbundle of the
frame bundle of M with structure group Gs. Each Ga-structure gives rise to a 3-form
® and a metric g on M, such that every tangent space of M admits an isomorphism
with R7 identifying ® and g with ®y and go, respectively. We will refer to (®,g) as a
Go-structure. Let V be the Levi-Civita connection, then V& is called the torsion of
(®,g). If VO = 0 then (,g) is called torsion free. A Go-manifold is defined as the
triple (M, ®, g), where M is a seven-manifold, and (®, g) a torsion-free Go-structure
on M.

Proposition 8.3 Let M be a seven-manifold and (®,g) a Ga-structure on M. Then
the following are equivalent:

(i) Vo=0,
(ii)) dP=d*x®=0,
(i) Hol(g) C Go.

Note that the holonomy group of a GGo-manifold may be a proper subset of G5. However,
we will mean a manifold with holonomy group G5 whenever we speak of a Go-manifold
in the following. Let us list some properties of compact Riemann manifolds (M, g)
with Hol(g) = Gbs.

e M is a spin manifold and there exists exactly one covariantly constant spinor,!

V3 =0.
e ¢ is Ricci-flat.
e The Betti numbers are 8° = b” = 1, b' = b% = 0 and b> = b® and b = b* arbitrary.

Many more details on Gy-manifolds can be found in [P4]. A thorough mathematical
treatment of Go-manifolds, which also contains the proof of proposition 8.3 can be
found in [85].

Eleven-dimensional supergravity

It is current wisdom in string theory [149] that the low energy limit of M-theory is
eleven-dimensional supergravity [39]. Therefore, some properties of M-theory can be
deduced from studying this well understood supergravity theory. Here we review the
basic field content, the Lagrangian and its equations of motion. More details can be
found in [135], [47], [49] and [140]. For a recent review see [108]. The field content of
eleven-dimensional supergravity is remarkably simple. It consists of the metric gy, a
Majorana spin—% fermion 15, and a three-form C' = %C’MdizM/\dzN/\dzP, where 2M
is a set of coordinates on the space-time manifold M;;. These fields can be combined

1V¥ contains the spin connection, see (8.6) or appendix A.
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to give the unique A = 1 supergravity theory in eleven dimensions. The full action is?

1 1 1

1 - w+w
+o— [ d'e /g TNV ( > Vp (8.3)

2K2, 2

1 1 - " A
—5 o3 | VG (TP Y 120 DESG0) (Grgrs + Grans) -
11

To explain the contents of the action, we start with the commutator of the vielbeins,
which defines the anholonomy coefficients Q2,5 ¢

lea,en] = [ea ™0, es™NOn] = Q5 %ec (8.4)

Relevant formulae for the spin connection are

wymaple) = 5(_QMAB + Qusn — QUBpa)
1 _ _ _
wuap = wwmaple)+ g[—prMABP%Q + 2(Yu T — Uul avp + YT ma)] ,
R 1~
WMAB ‘= WwWymaB t g@DPFMAB PQ%DQ . (8.5)

¥y is a Majorana vector-spinor. The Lorentz covariant derivative reads

1
Viar(w)n == Outon + ZWMABFABQZJN : (8.6)

For further convenience we set

~ 1 .
V%(w)w]\/ = Vﬂ(w)zﬁN - @ (FMPQRS - SéﬂFQRS> GPQstN . (87)
G :=dC i.e. GMNPQ = 48[MCNPQ] . (88)
G mnpq is defined as
GMNPQ = Gunpg + 3@[MFNP¢Q] . (8.9)

The action is invariant under the supersymmetry transformations

1
5€AM = _éﬁFAwM7
3
Cyunp = —éﬁF[MNl/JP], (8.10)

oy = 654(@)77

2We define 1y == iw}wfo, see appendix A.
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Next we turn to the equations of motion. We will only need solutions of the
equations of motion with the property that ¥, = 0. Since ), appears at least
bilinearly in the action, we can set 1), to zero before varying the action. This leads to
an enormous simplification of the calculations. The equations of motion with vanishing
fermion field read

1 1 1
Run(w) — §QMNR(U)> = 5 (GMPQRGNPQR _ ggMNGPQRSGPQRS) 7
(8.11)

d*G—l—%G/\G = 0.

In addition to those field equations we also know that G is closed, as it is exact,
dG =0. (8.12)

A solution (M, (g), (C), (¢)) of the equations of motion is said to be supersymmetric if
the variations (8.10) vanish at the point e, = (e?,,), Crynp = (Cunp), Y = (¥ar).
All the vacua we are going to study have vanishing fermionic background, (¢;) = 0,
so the first two equations are trivially satisfied and the last one reduces to

Vi (wn =0, (8.13)

evaluated at Cynp = (Cuynp), ety = (e?y,) and ¥y = 0. We see that e, and
Cynp are automatically invariant and we find that the vacuum is supersymmetric if
and only if there exists a spinor 7 s.t. VM

1
Vi - 3 (FMPQRS - 85A’}FQRS> Grorsi =0 . (8.14)

Solutions of the equations of motion

Given the explicit form of the equations of motion, it is easy to see that (iy) = 0,
(C') = 0, together with any Ricci-flat metric on the base manifold M;; is a solution.
In particular, this is true for (Mj1,g) = (R* x M,n x g), where (R*, 1) is Minkowski
space and (M, g) is a Go-manifold. For such a vacuum the condition (8.14), reduces to

Vi =0. (8.15)

The statement that the effective four-dimensional theory should be N’ = 1 supersym-
metric translates to the requirement that (8.15) has exactly four linearly independent
solutions. After the compactification the original Poincaré group P(10, 1) is broken to
P(3,1) x P(7). The 32 of SO(10, 1) decomposes as 32 = 4 ® 8, thus, for a spinor in
the compactified theory we have

n(z,y) = e(x) ®0(y) , (8.16)
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with € a spinor in four and 6 a spinor in seven dimensions. The I'-matrices can be
rewritten as

re — ,Ya®]1’

N > (8.17)
I = s ®’7 9

with {7} the generators of a Clifford algebra in seven dimensions. Then it is not hard
to see that for V¥ = V%,d2™ one has

Vi=Vil+1aV:. (8.18)
Therefore, (8.15) reads
(Vi®l+1® V)e(z) ®0(y) = Vielr) @ 0(y) +e(x) @ VIO(y) =0.  (8.19)

On Minkowski space we can find a basis of four constant spinors €¢'. The condition we
are left with is

V20(y) =0 . (8.20)

Thus, the number of solutions of (8.15) is four times the number of covariantly constant
spinors on the compact seven manifold. Since we already saw that a Gs-manifold
carries precisely one covariantly constant spinor, we just proved our statement that
compactifications on G5-manifolds lead to four-dimensional N' = 1 theories.

Next consider what is known as the Freund-Rubin solution of eleven-dimensional
gravity. Here (M, g) is given by a Riemannian product, (M, g) = (Myx M7, g1 X g2),
and 3

My, = S'%xR®x M;, M, compact ,

) 0,

) = 9(AdSy), (8.21)
go) Einstein, s.t. Ryn = §/%(920mn) »

) = fVA{91) €upo -

Next we want to analyze the consequences of (8.14) for the Freund-Rubin solutions.
We find

i
Vi = —gf(wys@@ﬂ)n,
) it (8.22)
Vm77 = E(]l®7m)77-

Again we have the decomposition 32 = 4 ® 8 and hence n(x,y) = ¢(z) ® 0(y). Then

3Recall that the topology of AdS, is S x R3.
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(8.22) reduce to

if

Vie = =6 (8.23)
Vi = %”ymﬁ. (8.24)

On AdS, one can find four spinors satisfying (8.23). Therefore, the number of spinors 7,
satisfying (8.22) is four times the number of spinors # which are solutions of (8.24). In
other words, to find Freund-Rubin type solutions with N' = k supersymmetry we need
to find compact seven-dimensional Einstein spaces with positive curvature and exactly
k Killing spinors. One possible space is the seven-sphere which admits eight Killing
spinors, leading to maximal supersymmetry in four dimensions. A seven-dimensional
Einstein manifold with exactly one Killing spinor is known as a weak Gy-manifold.

Kaluza-Klein compactification on a smooth G,-manifolds

We already mentioned that one has to introduce singularities into the compact Gs-
manifold in order to generate interesting physics. Indeed, for smooth G3-manifolds we
have the following proposition.

Proposition 8.4 The low energy effective theory of M-theory on (R* x X, n x g) with
(X, g) a smooth Go-manifold is an N' = 1 supergravity theory coupled to b*(X) Abelian
vector multiplets and b3(X) massless neutral chiral multiplets.

This field content was determined in [115], the Kaluza-Klein compactification proce-
dure is reviewed in [P4]. Note that although there are chiral fields in the effective
theory these are not very interesting, since they do not couple to the gauge fields.

Anomaly inflow

Before we embark on explaining the details of the mechanism of anomaly cancellation
on singular Gy-manifolds, we want to comment on a phenomenon known as anomaly
inflow. A comprehensive discussion of anomalies and many references can be found in
[P4], the most important results are listed in appendix E, to which we refer the reader
for further details. The concept of anomaly inflow in effective theories was pioneered
in [30] and further studied in [110]. See [76] for a recent review. Here we analyse the
extension of these ideas to the context of M-theory, as studied in [P3].

Consider a theory in d = 2n dimensions containing a massless fermion 1 coupled to

a non-Abelian external gauge field A = A,T, with gauge invariant (Euclidean) action
SE[, A]. The current

5SF[, A

a = A (2) (8.25)
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is conserved, because of the gauge invariance of the action, Dy J(x) = 0. Next we
define the functional

exp (— X[A]) = / DD exp (—S7[, A]) . (8.26)
Under a gauge variation A(z) — A'(x) = A(x) + De(x) with €(z) = e,(x)T, the

Euclidean action is invariant, but, in general, the measure transforms as
DD — exp (z /(dda:)Eea(a:)Ga[x; A]) DD . (8.27)

Here (d%z)g is the Euclidean measure, and the quantity G,[z; A], called the anomaly
function, depends on the theory under consideration (see [P4] for some explicit exam-
ples). Variation of (8.26) then gives

exp(— X[A]) / (&%) Dys (T () eal) = / (d)s / DYDY (iGyl; Aleal)] exp(—SF)

where we used the invariance of the Euclidean action S under local gauge transfor-
mations. Therefore,

Dy (J) (2)) = iGala; A] (8.28)
and we find that the quantum current (JM ()} is not conserved. The anomaly G, [x; A]
can be evaluated from studying the transformation properties of the path integral

measure.
Note that (8.27) implies

0X = —z'/(ddx)Eea(:B)Ga[x;A] /121,1 : (8.29)

where we defined a 2n-form I) . We see that a theory is free of anomalies if the
variation of the functional X vanishes. This variation is captured by the form I, and
it would be nice if we could find a simple way to derive this form for a given theory.
This is in fact possible, as explained in some detail in the appendix. It turns out [126],
[153], [102] that the 2n-form I, is related to a 2n + 2-form Iy,,s via the so called
decent equations,

d‘[21n - 6]2n+1 ; d[2n+1 == Ign+2 ; (830)

where I5,.5 is a polynomial in the field strengths. Furthermore, the anomaly polyno-
mial 5,5 depends only on the field Content of the theory It can be shown that the
only fields leading to anomalies are spm—— fermions, spm—— fermions and forms with
(anti-)self-dual field strength. The anomaly polynomials corresponding to these fields
are given by (see [12], [11] and references therein)

1505 =~ |A(Mn) cb(F)] (8.31)
I¥%) = —ox |A(My,) (trexp(—R) —1) ch(F) , (8.32)
2 Mn+2

A
1
I, = —2r < 5)— Mgn)} . (8.33)
2n+2
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To be precise these are the anomalies of spin—% and spin—% particles of positive chirality
and a self-dual form in Euclidean space, under the gauge transformation A = De
and the local Lorentz transformations dw = De. All the quantities appearing in these
formulae are explained in appendices B.4 and E. The polynomials of the spin—% fields,
12(;/3%, can be written as a sum of terms containing only the gauge fields, terms con-
taining only the curvature tensor and terms containing both. These terms are often
referred to as the gauge, the gravitational and the mixed anomaly, respectively. As
to determine whether a theory is anomalous or not, is is then sufficient to add all
the anomaly polynomials Is,.o. If they sum up to zero, the variation of the quantum
effective action (8.29) vanishes? as well, and the theory is anomaly free.

It turns out that this formalism has to be generalized, since we often encounter
problems in M-theory in which the classical action is not fully gauge invariant. One
might argue that in this case the term “anomaly” loses its meaning, but this is in fact
not true. The reason is that in many cases we study theories on manifolds with bound-
ary which are gauge invariant in the bulk, but the non-vanishing boundary contributes
to the variation of the action. So in a sense, the variation is nonzero because of global
geometric properties of a given theory. If we studied the same Lagrangian density on
a more trivial manifold, the action would be perfectly gauge invariant. This is why it
still makes sense to speak of an anomaly. Of course, if we vary the functional (8.26)
in theories which are not gauge invariant we obtain an additional contribution on the
right-hand side. This contribution is called an anomaly inflow term, for reasons which
will become clear presently.

Consider for example a theory which contains the topological term of eleven-
dimensional supergravity. In fact, all the examples we are going to study involve
either this term or terms which can be treated similarly. Clearly, |, ay O N dC' A dC
is invariant under C' — C 4+ dA as long as M;; has no boundary. In the presence of
a boundary we get the non-vanishing result |, oMy ANdC NdC. Let us study what
happens in such a case to the variation of our functional. To do so we first need to find
out how our action can be translated to Euclidean space. The rules are as follows (see
[P3] for a detailed discussion of the transition from Minkowski to Euclidean space)

vy = i, , 1% =1y,
(d'z)p = id"
Chun = —iCoar—nyn-1y » M,N...€{2,...,11}
CZ{E/INP = C(M—l)(N—l)(P—l) )
€ns 11 = +1. (8.34)

4This is in fact not entirely true. It can happen that the sum of the polynomials I, o of a given
theory vanishes, but the variation of X is non-zero. However, in these cases one can always add a
local counterterm to the action, such that the variation of X corresponding to the modified action
vanishes.
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We know that SM = iS¥ where S™ is the Minkowski action, but explicitly we have®

1
Siin = A / vy 4'GMNPQG
1
= g [V ol GFY T
1 1
Stop = 122, Hay/g MEMO"'M“)CMoMlMQGM3M4M5M6GM7M8M9M10
1 11 E\My..M E
= _12/€%1 ( x)E\/E m( ) v 11CM1M2M3GM4M5M6M7GM8M9M10M11 :
(8.35)
But then we can read off
1 1
¥ = o [ @)y @GﬁNPQ@EWNPQ
11

?

Mjy...M- E
+12/{/%1 /( )E\/_ 3'4'4'( ) v 11CM1M2M5GM4M5M()M7GM3M9M1()M11 ?

where a crucial factor of ¢ turns up. We write ¥ = Sfi + S = S + zSgp, because

Sgp is imaginary, so StEOp is real. Then, for an eleven-manifold with boundary, we find

68T = i55E = i Jorr, A" A GP A GP. But this means that 6S” has precisely the

right structure to cancel an anomaly on the ten-dimensional space dM;;. This also
clarifies why one speaks of anomaly inflow. A contribution to an anomaly on dM;; is
obtained by varying an action defined in the bulk Mj;.

Clearly, whenever one has a theory with 6S™ £ 0 we find the master formula

§X =65F +z’/[21n = —i6SM +z‘/[§n : (8.36)

The theory is anomaly free if and only if the right-hand side vanishes. In other words,
to check whether a theory is free of anomalies we have to rewrite the action in Eu-
clidean space, calculate its variation and the corresponding 2n+ 2-form and add ¢ times
the anomaly polynomials corresponding to the fields present in the action. If the result
vanishes the theory is free of anomalies. In doing so one has to be careful, however,
since the translation from Minkowski to Euclidean space is subtle. In particular, one
has to keep track of the chirality of the particles involved. The reason is that with
our conventions (A.27) for the matrix Iyyq we have 'S, = —T'%, for d = 4k + 2,
but I'},, = I'}%, for 4k. In other words a fermion of positive chirality in four dimen-
sional Minkowski space translates to one with positive chirality in four-dimensional
Euclidean space. In six or ten dimensions, however, the chirality changes. To calculate
the anomalies one has to use the polynomials after having translated everything to
Fuclidean space.

50ur conventions are such that et M = sig(g)%””1 Ma and eMi-Ma ig totally anti-symmetric

with é91-+4 = 4+1. See [P3] and appendix A for more details.



Chapter 9

Anomaly Analysis of M-theory on
Singular Go-Manifolds

It was shown in [17], [7] that compactifications on Gy-manifolds can lead to charged
chiral fermions in the low energy effective action, if the compact manifold has a conical
singularity. Non-Abelian gauge fields arise [3], [4] if we allow for ADE singularities on
a locus () of dimension three in the G'o-manifold. We will not review these results but
refer the reader to the literature [6]. We are more interested in the question whether,
once the manifold carries conical singularities, the effective theory is free of anomalies.
This chapter is based on the results of [P2].

9.1 Gauge and mixed anomalies

Let then X be a compact Gy-manifold that is smooth except for conical singularities!
P,, with « a label running from one to the number of singularities in X. Then there
are chiral fermions sitting at a given singularity P,. They have negative? chirality and
are charged under the gauge group U(1)”¥) (c.f. proposition 8.4). Their contribution
to the variation of X is given by

0X |anomaty = i1} with Iy = —2r[(—1)A(My)ch(F)]g . (9.1)

Here the subscript “anomaly” indicates that these are the contributions to X coming
from a variation of the measure. Later on, we will have to add a contribution coming
from the variation of the Euclidean action. The sign of I is differs from the one in (8.31)
because the fermions have negative chirality. The anomaly polynomials corresponding
to gauge and mixed anomalies localized at P, are then given by (see appendices A and

'Up to now it is not clear whether such G5-manifolds exist, however, examples of non-compact
spaces with conical singularities are known [63], and compact weak Go-manifolds with conical singu-
larities were constructed in [P1].

ZRecall that this is true both in Euclidean and in Minkowski space, since v& = v, such that the
chirality does not change if we translate from Minkowski to Euclidean space.
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E for the details, in particular F' = iFiq'),

3

b2(X) ‘ 1 b2(X) o
[(oauge) — 23' Do\ wF ) I =y | DG A (92)
o€Ts \ i=1 0€Ta \ =1

o labels the four dimensional chiral multiplets ®, which are present at the singularity
P,. T, is simply a set containing all these labels. ¢’ is the charge of ®, with respect
to the i-th gauge field A’. As all the gauge fields come from a Kaluza-Klein expansion
of the C-field we have v?(X) of them. pj = —gz tr R A R is the first Pontrjagin class
of four dimensional space-time R*. Our task is now to cancel these anomalies locally,
i.e. separately at each singularity.

So far we have only been using eleven-dimensional supergravity, the low energy limit
of M-theory. However, in the neighbourhood of a conical singularity the curvature of
X blows up. Close to the singularity P, the space X is a cone on some manifold
Y, (ie. close to P, we have ds% ~ dr2 + r2dsy. ). But as X is Ricci-flat Y, has
to be Einstein with R}:;n = 50mn. The Riemann tensor on X and Y, are related by
RXmn = =z 5 (RYemn — 6mon 4 6707 ), for m € {1,2,...,6}. Thus, the supergravity
description 1s no longer vahd close to a singularity and one has to resort to a full
M-theory calculation, a task that is currently not feasible.

To tackle this problem we use an idea that has first been introduced in [60] in
the context of anomaly cancellation on the M5-brane. The world-volume Wy of the
Mb5-brane supports chiral field which lead to an anomaly. Quite interestingly, one can
cancel these anomalies using the inflow mechanism, but only if the topological term of
eleven-dimensional supergravity is modified in the neighbourhood of the brane. Since
we will proceed similarly below, let us quickly motivate these modifications. The five-
brane acts as a source for the field G, i.e. the Bianchi identity, dG = 0, is modified to
dG ~ 6©)(Ws). In the treatment of [60] a small neighbourhood of the five-brane world-
volume W is cut out, creating a boundary. Then one introduces a smooth function p
which is zero in the bulk but drops to —1 close to the brane, in such a way that dp has
support only in the neighbourhood of the boundary. This function is used to smear
out the Bianchi identity by writing it as dG ~ ... A dp. The solution to this identity
is given by G = dC' + ... A dp, i.e. the usual identity G = dC' is corrected by terms
localised on the boundary. Therefore, it is not clear a priori how the topological term
of eleven-dimensional supergravity should be formulated (since for example the terms
C ANdC AdC and C' A G A G are now different). It turns out that all the anomalies of
the Mb5-brane cancel if the topological term reads Scs — o0 2 f CAGA G where C
is a field that is equal to C' far from the brane, but is modified in the neighbourhood
of the brane. Furthermore, G = dC. This mechanism of anomaly cancellation in the

context of the M5-brane is reviewed in detail in [P3] and [P4].

Now we show that a similar treatment works for conical singularities. We first
concentrate on the neighbourhood of a given conical singularity P, with a metric
locally given by ds% ~ dr2 + r2ds}, . The local radial coordinate obviously is r > 0,
the singularity being at r, = 0. As mentioned above, there are curvature invariants
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of X that diverge as r, — 0. In particular, supergravity cannot be valid down to
ro = 0. Motivated by the methods used in the context of the Mb5-brane, we want
to modify our fields close to the singularity. More precisely, we want to cut of the
fluctuating fields using a smooth function p, which equals one far from the singularity
but is zero close to it. The geometry itself is kept fixed, and in particular we keep the
metric and curvature on X. Said differently, we cut off all fields that represent the
quantum fluctuations, but keep the background fields (in particular the background
geometry) as before. To be specific, we introduce a small but finite regulator €, and
the regularised step function p, such that

0 for 0<r,<R-—c¢
, m):{ = 93)

1 for rea > R+¢€

where €/R is small. Using a partition of unity we can construct a smooth function
p on X from these p, in such a way that p vanishes for points with a distance to a
singularity which is less than R — € and is one for distances larger than R + €. We
denote the points of radial coordinate R in the chart around P, by Y,, where the
orientation of Y, is defined in such a way that its normal vector points away from
the smgularlty All these conventions are chosen in such a way that [, (. <) Ndp =
Y fY . The shape of the function p is irrelevant, in particular, one m1ght use p?
instead of ,0, ie. p" ~ p. However, when evaluating 1ntegrals one has to be careful
since p"dp = Hdp”“ ~ Hdp, where a crucial factor of - appeared. In particular,
for any ten-form ¢y, not containing p’s or dp we have

"dp = . 9.4
/MMX (1o)p ap = Z +1 I 10) ( )

Using this function p we can now “cut off” the quantum fluctuations by simply defining
C:=Cp , G=0Gp. (9.5)

The gauge invariant kinetic term of our theory is constructed from this field

Skin = /G AxG = ——— dC A xdC' . (9.6)
4/111

“11 r>R

However, the new field strength G no longer is closed. This can be easily remedied by
defining B _ B
C:=Cp+BANdp , G:=dC (9.7)

Note that G = G + (C'+ dB) A dp, so we only modified G on the Y,. The auxiliary
field B living on Y, has to be introduced in order to maintain gauge invariance of G.

Its transformation law reads
0B =A, (9.8)

which leads to B
0C =d(Ap) . (9.9)
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Using these fields we are finally in a position to postulate the form of a modified
topological term [P2],

~ 1 ~ ~ o~
= - . Nl
Stop 7, /HWXC/\G/\G (9.10)

To see that this form is indeed useful for our purposes, one simple has to calculate
its gauge transformation. After plugging in a Kaluza-Klein expansion of the fields,
C=>, AN +.., A=) €ew +..., where the w" are harmonic two-forms on X
(see [P2] and [P4] for details), we arrive at

~ 1 i i ; )
5Stop=—ZW/R4EF]Fk/ (Tg)sw Awd AWk (9.11)

o2

1/3
Here we used T5 := (?) . The quantity 75 can be interpreted as the M2-brane
11

tension [P3]. Note that the result is a sum of terms which are localized at Y,. The
corresponding Euclidean anomaly polynomial is given by

toP th(’p :_ZZ 1iter) :Z )23'FzFJFk/ (To)3w' Aw? AWF . (9.12)

(gauge)

This is very similar to the gauge anomaly I, and we do indeed get a local cancel-

lation of the anomaly, provided we have

/ (T2)3w' Aw! AWk = Z iqt . (9.13)
o €Ty
(Note that the condition of local anomaly cancellation is il (gauge) | (tf) = 0, from
(8.36).) In [152] it was shown that this equation holds for all known examples of conical
singularities. It is particularly important that our modified topological term gives a
sum of terms localized at Y, without any integration by parts on X. This is crucial,
because local quantities are no longer well-defined after an integration by parts®.

After having seen how anomaly cancellation works in the case of gauge anomalies we
turn to the mixed anomaly. In fact, it cannot be cancelled through an inflow mechanism
from any of the terms in the action of eleven-dimensional supergravity. However, it
was found in [131], [48] that there is a first correction term to the supergravity action,
called the Green-Schwarz term. On a smooth manifold R* x X it reads

1 1

SG’S—__ GANX;=——
Rix X T JRAx X

C A X, (9.14)

3Consider for example jf df = f(b) — f(a) = (f(b) + ¢) — (f(a) + ¢). It is impossible to infer the
value of f at the boundaries a and b.
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with
X, ! L R* ! (trR?)? (9.15)
= | =Ur — —(Ur . .
*T (27341 \ 8 32

and Xg = dX5;. The precise coefficient of the Green-Schwarz term was determined in
[P3]. Then, there is a natural modification® on our singular manifold [P2],

~ T. ~
Sgg = —— CAXs. (9.16)

and its variation reads

55@5 = —— Z/ wi A Xg . (917)
R

AxY,

To obtain this result we again used a Kaluza-Klein expansion, and we again did not
integrate by parts. Xg can be expressed in terms of the first and second Pontrjagin

classes, pj = —3 (%)2’51"]%2 and py = ¢ (%)4 [(trR?)? — 2trRY], as

P

The background we are working in is four-dimensional Minkowski space times a Go-
manifold. In this special setup the Pontrjagin classes can easily be expressed in terms
of the Pontrjagin classes p, on (R* 7) and those on (X, g), which we will write as p/.

We have p; = p) + p] and py = p| A p. Using these relations we obtain a convenient
expression for the inflow (9.17),

T2 i / i 1
== v . 1
§Scs = 5 18 / epl/aw A Py (9.19)

The corresponding (Euclidean) anomaly polynomial is given by

ZI(GS = —22241?2 ’/ N (9.20)

and we see that the mixed anomaly cancels locally provided

15 i "o i
/Yu i Npy = Z q - (9.21)

O’GT&

All known examples satisfy this requirement [152].

4The reader might object that in fact one could also use [ C'A Xg, [ GA Xz or [ G AXs. However,
all these terms actually lead to the same result [P2].
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9.2 Non-Abelian gauge groups and anomalies

Finally we also want to comment on anomaly cancellation in the case of non-Abelian
gauge groups. The calculations are relatively involved and we refer the reader to [152]
and [P2] for the details. We only present the basic mechanism. Non-Abelian gauge
fields occur if X carries ADE singularities. The enhanced gauge symmetry can be
understood to come from M2-branes that wrap the vanishing cycles in the singularity.
Since ADE singularities have codimension four, the set of singular points is a three-
dimensional submanifold @) of X. Chiral fermions which are charged under the non-
Abelian gauge group are generated if the @ itself develops a conical singularity. Close
to such a singularity P, of () the space X looks like a cone on some Y. If U, denotes
the intersection of ) with Y, then, close to P,, () is a cone on U,. In this case there
are ADE gauge fields on R* x ) which reduce to non-Abelian gauge fields on R* if
we perform a Kaluza-Klein expansion on (). On the P, we have a number of chiral
multiplets ®, which couple to both the non-Abelian gauge fields and the Abelian ones,
coming from the Kaluza-Klein expansion of the C-field. Thus, we expect to get a
U(1)?, U(1)H? and H? anomaly®, where H is the relevant ADFE gauge group. The
relevant anomaly polynomial for this case is (again taking into account the negative
chirality of the fermions)

Iy = —27[(=1) A(M)ch(F“AY)ch(F)]g (9.22)

where F(4%) .= ¢’ F* denotes the Abelian and F the non-Abelian gauge field. Expan-
sion of this formula gives four terms namely (9.2) and

T = trF? [ g FitrF? (9.23)

1 1
(2m)23! (2m)22

It turns out [152], [P2] that our special setup gives rise to two terms on R* x @, which
read

~ 1

_ A2
S = ~5am R4XQK/\tr(AF), (9.24)
Sy = i/ O AtrF? (9.25)
* T 2(2m)? Jaisg ' '

Here K is the curvature of a certain line bundle described in [152], and A and F are
modified versions of A and F', the gauge potential and field strength of the non-Abelian
ADE gauge field living on R* x ). The variation of these terms leads to contribu-
tions which are localised at the various conical singularities, and after continuation to
Euclidean space the corresponding polynomials cancel the anomalies (9.23) locally, i.e.
separately at each conical singularity. For the details of this mechanism the reader is
referred to [P2]. The main steps are similar to what we did in the last chapter, and
the only difficulty comes from the non-Abelian nature of the fields which complicates
the calculation.

5The U(1)?G anomaly is not present as tr T, vanishes for all generators of ADE gauge groups,
and the H3-anomaly is only present for H = SU(n).



Chapter 10

Compact Weak (Go-Manifolds

We have seen already that one possible vacuum of eleven-dimensional supergravity is
given by the direct product of AdS; with a compact Einstein seven-manifold of posi-
tive curvature, together with a flux G, o< €41. Furthermore, if the compact space
carries exactly one Killing spinor we are left with A/ = 1 in four dimensions. Such man-
ifolds are known as weak Go-manifolds. As for the case of Go-manifolds one expects
charged chiral fermions to occur, if the compact manifold carries conical singularities.
Unfortunately, no explicit metric for a compact Ge-manifold with conical singulari-
ties is known. However, in [P1] explicit metrics for compact weak Go-manifolds with
conical singularities have been constructed. These spaces are expected to share many
properties of singular compact Gy-manifolds, and are therefore useful to understand
the structure of the latter.

The strategy to construct the compact weak G3-holonomy manifolds is the follow-
ing: we begin with any non-compact G-holonomy manifold X that asymptotically,
for “large r” becomes a cone on some 6-manifold Y. Manifolds of this type have been
constructed in [63]. The Gy-holonomy of X implies certain properties of the 6-manifold
Y which we deduce. In fact, Y can be any Einstein space of positive curvature with
weak SU (3)-holonomy. Then we use this Y to construct a compact weak Go-holonomy
manifold X, with two conical singularities that, close to the singularities, looks like a
cone on Y.

10.1 Properties of weak (G,-manifolds

On a weak Gy-manifold there exists a unique Killing spinor?,

1 o A
(@- + ijbv b) S 25%6’ , (10.1)
from which one can construct a three-form

b, = %QT%bCQ e*Neb Ae (10.2)

Note that a,b,c are “flat” indices with Euclidean signature, and upper and lower indices are
equivalent.
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which satisfies
dd, =4\ "0, . (10.3)

Furthermore, (10.1) implies that X, has to be Einstein,

It can be shown that the converse statement is also true, namely that Eq. (10.3) implies
the existence of a spinor satisfying (10.1). Note that for A — 0, at least formally, weak
G5 goes over to Go-holonomy.

To proceed we define the quantity 1. to be totally antisymmetric with 93 =

VY516 = Vo214 = Yuzs = Va1 = Yer3 = Y572 = 1, and its dual

N 1 ~abcde
wabcd = 56 bed fgwefg : (105)

Using these quantities we note that every antisymmetric tensor A%’ transforming as the
21 of SO(7) can always be decomposed [23] into a piece A4 transforming as the 14 of
Gy (called self-dual) and a piece A% transforming as the 7 of Gy (called anti-self-dual):

A = A% 4 A% (10.6)
2 1-

Aib — g (Aab + Z¢adeACd> — 7314Aab ’ (107)
1 1-

Acib — g (Aab . 5wabchAcd) — 737Aab ’ (108)

with orthogonal projectors (P14)% := % (53‘; + iwade) and (Pp)d .= % <5gg _ %%de)a
oot = L(dco — 6265). Using the identity?

YavdeVaee = —Mape (10.9)
we find that the self-dual® part satisfies
PeAbe =0 . (10.11)
In particular, one has
WPy = b 4 (yTrb (10.12)

The importance of (anti-)self-duality will become clear in the following theorem.

2Many useful identities of this type are listed in the appendix of [23].

3The reader might wonder how this name is motivated, since so far we did not encounter a self-
duality condition. As a matter of fact one can show that for any anti-symmetric tensor B the
following three statements are equivalent

wabCBbc =
Bab —

)

: (10.10)

B = 4B,

o= O O

and the last equation now explains the nomenclature.
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Theorem 10.1 A manifold (M, g) is a (weak) Go-manifold, if and only if there exists
a frame in which the spin connection satisfies

Ve’ = =21 € | (10.13)

where e is the 7-bein on X.

We will call such a frame a self-dual frame. The proof can be found in [23]. In the case
of a Gy-manifold one simply has to take A = 0. We also need the following:

Proposition 10.2 The three-form ®y of Eq.(10.2) can be written as
1 a b c
b, = éwabc e’ Ne’ Ne (10.14)

if and only if the 7-beins e* are a self-dual frame. This holds for A =0 (G3) and X # 0
(weak G3).

Later, for weak G5, we will consider a frame which is not self-dual and thus the 3-form
®, will be slightly more complicated than (10.14). To prove the proposition it will
be useful to have an explicit representation for the y-matrices in 7 dimensions. A
convenient representation is in terms of the 1. as [23]

(Va)aB = 1(YaaB + 6aadsp — dapdsa) - (10.15)

Here a = 1,...7 while A, B = 1,...8 and it is understood that ¢,45 = 0 if A or B
equals 8. One then has [23]

('Vab)AB = @Z;abAB + ¢abA58B - @ZjabB(SsA + 5aA5bB — 5aB5bA , (10.16)
(’Yabc)AB - “pabc(éAB - 268A58B> - Sil/JA[ab(Sc}B - 3i¢3[ab(50],4
—i%abendsE — 1Wabendsa - (10.17)

In order to see under which condition (10.2) reduces to (10.14) we use the explicit
representation for the ~-matrices (10.15) given above. It is then easy to see that
0T Vapel ~ Yape if and only if 04 ~ Jg4. This means that our 3-form & is given by
(10.14) if and only if the covariantly constant, resp. Killing spinor ¢ only has an eighth
component, which then must be a constant which we can take to be 1. With this
normalisation we have

07 el = —itape | (10.18)

so that ® is correctly given by (10.14). From the above explicit expression for v,, one
then deduces that (’Yab)ABQB = w(sz and u)ab(’}/d,)ABQB = wabwabA. AISO, z’(%)ABGB =
—d.4, so that Eq. (10.1) reduces to w®gp. = —2\eC.
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10.2 Construction of weak Gs-holonomy manifolds
with singularities

Following [P1] we start with any (non-compact) Go-manifold X which asymptotically
is a cone on a compact 6-manifold Y,

ds ~ dr® +r’ds3 . (10.19)

Since X is Ricci flat, ¥ must be an Einstein manifold with R,3 = 5d,43. In practice
[63], Y = CP? S3 x S% or SU(3)/U(1)?, with explicitly known metrics. On Y we
introduce 6-beins

dsy =) e @e”, (10.20)
a=1
and similarly on X ]
dsky =) é"®eé" . (10.21)
a=1
Our conventions are that a,b,... run from 1 to 7 and «, (3, ... from 1 to 6. The various

manifolds and corresponding viel-beins are summarized in the table below. Since X
has Ga-holonomy we may assume that the 7-beins é* are chosen such that the w® are
self-dual, and hence we know from the above remark that the closed and co-closed
3-form @ is simply given by Eq. (10.14), i.e. ® = $1bapc € A €” A €°. Although there is
such a self-dual choice, in general, we are not guaranteed that this choice is compatible
with the natural choice of 7-beins on X consistent with a cohomogeneity-one metric
as (10.19). (For any of the three examples cited above, the self-dual choice actually is
compatible with a cohomogeneity-one metric.)

BIRERARN

e e | e | e
P b | D,

Table 1 : The various manifolds, corresponding viel-beins
and 3-forms that enter our construction.

Now we take the limit X — X, in which the GG5-manifold becomes exactly a cone
on Y so that é* — €* with
e* =re”

, e =dr. (10.22)

In this limit the cohomogeneity-one metric can be shown to be compatible with the
self-dual choice of frame (see [P1] for a proof) so that we may assume that (10.22) is
such a self-dual frame. More precisely, we may assume that the original frame é* on
X was chosen in such a way that after taking the conical limit the e* are a self-dual



10.2 Construction of weak (Go-holonomy manifolds with singularities 129

frame. Then we know that the 3-form ® of X becomes a 3-form ¢ of X, given by the
limit of (10.14), namely
¢ =r2dr ANE+ 13, (10.23)

with the 2- and 3-forms on Y defined by
1 e~ 1 o A ~B .~
€= §¢7a56aAeﬁ , (= 6¢aﬁ7€aA€ﬁA€7 : (10.24)
The dual 4-form is given by
o =rtE —rPdr A C (10.25)

where *¥¢ is the dual of £ in Y.* As for the original ®, after taking the conical limit,
we still have d¢ = 0 and d*¢ = 0. This is equivalent to

¢ = 3¢,

i — aee (10.30)

These are properties of appropriate forms on Y, and they can be checked to be true for
any of the three standard Y’s. Actually, these relations show that Y has weak SU(3)-
holonomy. Conversely, if Y is a 6-dimensional manifold with weak SU(3)-holonomy,
then we know that these forms exist. This is analogous to the existence of the 3-form
o, with d®, = 4\*®, for weak G>-holonomy. These issues were discussed e.g. in [79].
Combining the two relations (10.30), we see that on Y there exists a 2-form & obeying

AdE+ 1276 =0 , d™=0. (10.31)

4We need to relate Hodge duals on the 7-manifolds X, X. or X to the Hodge duals on the 6-
manifold Y. To do this, we do not need to specify the 7-manifold and just call it X7. We assume that
the 7-beins of X7, called e®, and the 6-beins of Y, called €* can be related by

e"=dr, e“=h(re*. (10.26)

We denote the Hodge dual of a form 7 on X7 simply by *m while the 6-dimensional Hodge dual of
a form o on Y is denoted *Yo. The duals of p-forms on X7 and on Y are defined in terms of their
respective viel-bein basis, namely

1 4
(e AL Ne™) = =k T e €A AT (10.27)
and )
*y(gal A A ’gap) = mgal'“apﬁl'”ﬂﬁipgﬁl VAR gﬁeip . (1028)

Here the e-tensors are the “flat” ones that equal +1. Expressing the e® in terms of the €* provides
the desired relations. In particular, for a p-form w, on Y we have

*(drAwy) = h(r)P Yy,
fwp = (2)PR(r)PTdr A Y, (10.29)

where we denote both the form on Y and its trivial extension onto X by the same symbol w,.
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This implies Ay& = 12€, where Ay = —*¥d*¥d — d*d*¥ is the Laplace operator
on forms on Y. Note that with ¢ = %dé we actually have ¢ = d <§§> and ¢ is

cohomologically trivial. This was not the case for the original ®.

We now construct a manifold X, with a 3-form &, that is a deformation of this
3-form ¢ and that will satisfy the condition (10.3) for weak Go-holonomy. Since weak
(Go>-manifolds are Einstein manifolds we need to introduce some scale rq and make the
following ansatz for the metric on X,

dsk, = dr® 4+ rgsin®# dsi | (10.32)

with

=, 0<r<mr. (10.33)
To

Clearly, this metric has two conical singularities, one at r = 0 and the other at r = 7ry.

We see from (10.32) that we can choose 7-beins e* on X that are expressed in
terms of the 6-beins €* of Y as

e =rgsint € | e =dr. (10.34)

Although this is the natural choice, it should be noted that it is not the one that
leads to a self-dual spin connection w® that satisfies Eq. (10.13). We know from [23]
that such a self-dual choice of 7-beins must exist if the metric (10.32) has weak Gs-
holonomy but, as noted earlier, there is no reason why this choice should be compatible
with cohomogeneity-one, i.e choosing e’ = dr. Actually, it is easy to see that for
weak (G-holonomy, A # 0, a cohomogeneity-one choice of frame and self-duality are
incompatible: a cohomogeneity-one choice of frame means e’ = dr and e = hy) (1)

so that w® = ZE;—;E:?ZDW and w7 = Ri{o(r)€*. But then the self-duality condition for
a = 7 reads 744 Zi‘;—;g:;@aﬂ = —2)dr. Since @*? is the spin connection on Y, associated

with €%, it contains no dr-piece, and the self-duality condition cannot hold unless A = 0.
Having defined the 7-beins on X in terms of the 6-beins on Y, the Hodge duals
on X, and on Y are related accordingly. If w, is a p-form on Y, we have

“(dr Aw,) = (rosin?)’™ M,

10.35
*w, = (=)P(rosin f)672p dr A Mw, | ( )

where we denote both the form on Y and its trivial (r-independent) extension onto X
by the same symbol w,,.

Finally, we are ready to determine the 3-form &) satisfying d®, = A\*®,. We make
the ansatz [P1]

Oy = (rosin?)?dr A € + (rosin?)? (cos 7 ¢ +sin? p) . (10.36)

Here, the 2-form £ and the 3-forms ¢ and p are forms on Y which are trivially extended
to forms on X, (no r-dependence). Note that this ®, is not of the form (10.14) as
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the last term is not just ¢ but cos? ( + sin7 p. This was to be expected since the
cohomogeneity-one frame cannot be self-dual. The Hodge dual of &, then is given by

“®, = (rosin)* ¢ — (rgsin7)? dr A (cos 7 *Y( + sin 7 *¥p) (10.37)
while

d®y, = (rosin?)*dr A (=d€ + 3¢) + (rosin#)? (cos# d¢ +sin7 dp)
4
+ —(rosin?)®*dr A (cos? p —sin# () . (10.38)
To
In the last term, the derivative 0, has exchanged cos7 and sin7 and this is the reason

why both of them had to be present in the first place.
Requiring d®, = 4\*®, leads to the following conditions

e = 3¢, (10.39)
dp = 4Xrg™¢ , (10.40)
p = —Arg™C, (10.41)
¢ = Arg™p. (10.42)
Equations (10.41) and (10.42) require
ro =+ (10.43)
0= :

and ( = "p & p = —*( (since for a 3-form *¥(*w3) = —ws). Then (10.40) is
dp = 4*¢, and inserting p = —*¥( and Eq. (10.39) we get

Ad*dE +12¢ =0 and d™¢=0. (10.44)

But we know from (10.31) that there is such a two-form & on Y. Then pick such a &
and let ¢ = %dg and p = —"( = —% *vd¢. We conclude that

. 2 . 3
o) = (sm)\)\r) dr A&+ % (sm}\)m) (cos Ard€ — sin Ar *¥d¢) (10.45)
satisfies d®) = 4\*®, and that the manifold with metric (10.32) has weak G5-holonomy.
Thus we have succeeded to construct, for every non-compact Gs-manifold that is
asymptotically (for large r) a cone on Y, a corresponding compact weak Go-manifold
X, with two conical singularities that look, for small r, like cones on the same Y. Of
course, one could start directly with any 6-manifold Y of weak SU(3)-holonomy.

The quantity A sets the scale of the weak Go-manifold X, which has a size of order
%. As A — 0, X, blows up and, within any fixed finite distance from r = 0, it looks
like the cone on Y we started with.
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Cohomology of the weak (Gy-manifolds

As mentioned above, what one wants to do with our weak GGo-manifold at the end of
the day is to compactify M-theory on it, and generate an interesting four-dimensional
effective action. This is done by a Kaluza-Klein compactification (reviewed for instance
in [P4]), and it is therefore desirable to know the cohomology groups of the compact
manifold. To be more precise, there are various ways to define harmonic forms which
are all equivalent on a compact manifold without singularities where one can freely
integrate by parts. Since X, has singularities we must be more precise about the
definition we adopt and about the required behaviour of the forms as the singularities
are approached.

Physically, when one does a Kaluza-Klein reduction of an eleven-dimensional k-
form C} one first writes a double expansion C} = ZI;:() > A};fp A gb; where A};fp are
(k—p)-form fields in four dimensions and the ¢; constitute, for each p, a basis of p-form
fields on X,. It is convenient to expand with respect to a basis of eigenforms of the
Laplace operator on X,. Indeed, the standard kinetic term for C} becomes

/ dCy A*dC, = ) / dAj_, AdA;_, oL NP
M4><X)\ M4 X)\

i
+ / Al NTAL, / d¢;A*d¢;). (10.46)
My X

Then a massless field Aj_, in four dimensions arises for every closed p-form gb; on X,
for which [ X, ¢p N ¥, is finite. Moreover, the usual gauge condition d*C, = 0 leads to
the analogous four-dimensional condition d*A;_, = 0 provided we also have d*¢, = 0.
We are led to the following definition:

Definition 10.3 An L?-harmonic p-form ¢, on X, is a p-form such that

(4) ||¢p||2 = ¢p N pp < o0, and (10.47)

X

(1) d¢, =0 and d*¢,=0. (10.48)
Then one can prove [P1] the following:

Proposition 10.4 Let X, be a 7-dimensional manifold with metric given by (10.32),
(10.83). Then all L?-harmonic p-forms ¢, on Xy for p < 3 are given by the trivial
(r-independent) extensions to Xy of the L*-harmonic p-forms w, on'Y. For p > 4 all
L*-harmonic p-forms on X, are given by *¢r_,.

Since there are no harmonic 1-forms on Y we immediately have the
Corollary : The Betti numbers on X, are given by those of Y as

V(X)) =b0"(Xy)=1 , b (X)) =0b(X))=0,
V(X)) =0 (X)) =b02Y) ,  bV(Xy)=b(X)) =) . (10.49)

The proof of the proposition is lengthy and rather technical and the reader is referred
to [P1] for details.



Chapter 11

The Horava-Witten Construction

The low-energy effective theory of M-theory is eleven-dimensional supergravity. Over
the last years various duality relations involving string theories and eleven-dimensional
supergravity have been established, confirming the evidence for a single underlying
theory. One of the conjectured dualities, discovered by Hotava and Witten [83], relates
M-theory on the orbifold M;qx S!/Z, to Egx Fg heterotic string theory on the manifold
M. In [83] it was shown that the gravitino field ¢y, M, N,...=0,1,...10, present in
the eleven-dimensional bulk Mg x Sl/ Zs leads to an anomaly on the ten-dimensional
fixed “planes” of this orbifold. Part of this anomaly can be cancelled if we introduce a
ten-dimensional Eg vector multiplet on each of the two fixed planes. This does not yet
cancel the anomaly completely. However, once the vector multiplets are introduced
they have to be coupled to the eleven-dimensional bulk theory. In [83] it was shown
that this leads to a modification of the Bianchi identity to dG # 0, which in turn leads
to yet another contribution to the anomaly, coming from the non-invariance of the
classical action. Summing up all these terms leaves us with an anomaly free theory.
However, the precise way of how all these anomalies cancel has been the subject of
quite some discussion in the literature. Using methods similar to the ones we described
in chapter 9, and building on the results of [22], we were able to prove for the first
time [P3] that the anomalies do actually cancel locally, i.e. separately on each of the
two fixed planes. In this chapter we will explain the detailed mechanism that leads to
this local anomaly cancellation.

The orbifold R'? x S'/Z,

Let the eleven-dimensional manifold Mj; be the Riemannian product of ten-manifold
(Mg, g) and a circle S' with its standard metric. The coordinates on the circle are
taken to be ¢ € [—m, 7| with the two endpoints identified. In particular, the radius of
the circle will be taken to be one. The equivalence classes in S!/Zy are the pairs of
points with coordinate ¢ and —¢, i.e. Zy acts as ¢ — —¢. This map has the fixed
points 0 and 7, thus the space My x S'/Z, contains two singular ten-dimensional
spaces. In the simplest case we have M;y = R!°, which is why we call these spaces
fixed planes.

133
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Before we proceed let us introduce some nomenclature. Working on the space
Mo x S, with an additional Zy-projection imposed, is called to work in the “upstairs”
formalism. Equivalently, one might work on the manifold Mo x I = Mg x S*/Z, with
I = [0,7]. This is referred to as the “downstairs” approach. It is quite intuitive to
work downstairs on the interval but for calculational purposes it is more convenient to
work on manifolds without boundary. Otherwise one would have to impose boundary
conditions for the fields. Starting from supergravity on My x I it is easy to obtain the
action in the upstairs formalism. One simply has to use fI cee= % fsl e

Working upstairs one has to impose the Zs-projection by hand. By inspection of
the topological term of eleven-dimensional supergravity (c.f. Eq. (8.3)) one finds that
Cuvp, with p,v, ... =0,1,...9, is Zy-odd, whereas C),,10 is Zs-even. This implies that
Clwp 1s projected out and C' can be written as C' = B A dé.

Following [22] we define for further convenience

51 = 6(¢)d¢ ) 52 = 6(¢ - 7T)d¢ )
N (1)
@) =sis0)~ 2 @) =al-m),
which are well-defined on S! and satisfy
s
After regularization we get [22] !

Anomalies of M-theory on M, x S'/Z,

Next we need to study the field content of eleven-dimensional supergravity on the given
orbifold, and analyse the corresponding anomalies. Compactifying eleven-dimensional
supergravity on the circle leads to a set of (ten-dimensional) massless fields which are
independent of the coordinate ¢ and other (ten-dimensional) massive modes. Only the
former can lead to anomalies in ten-dimensions. For instance, the eleven-dimensional
Rarita-Schwinger field reduces to a sum of infinitely many massive modes, and two
massless ten-dimensional gravitinos of opposite chirality. On our orbifold we have to
impose the Zs-projection on these fields. Only one of the two ten-dimensional graviti-
nos is even under ¢ — —¢, and the other one is projected out. Therefore, after the
projection we are left with a chiral theory, which, in general, is anomalous. Note that
we have not taken the radius of the compactification to zero, and there is a ten-plane
for every point in S'/Z,. Therefore it is not clear a priori on which ten-dimensional
plane the anomalies should occur. There are, however, two very special ten-planes,
namely those fixed by the Zs-projection. It is therefore natural to assume that the

1Of course §;; is the usual Kronecker symbol, not to be confused with ;.
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anomalies should localise on these planes. Clearly, the entire setup is symmetric and
the two fixed planes should carry the same anomaly. In the case in which the radius
of S! reduces to zero we get the usual ten-dimensional anomaly of a massless grav-
itino field. We conclude that in the case of finite radius the anomaly which is situated
on the ten-dimensional planes is given by exactly one half of the usual gravitational
anomaly in ten dimensions. This result has first been derived in [83]. Since the Zo-
projection gives a positive chirality spin—% field and a negative chirality spin—g field in
the Minkowskian, (recall I'¥ = —I'M)  we are led to a negative chirality spin—% and
a positive chirality spin—% field in the Euclidean. The anomaly polynomial of these
so-called untwisted fields on a single fixed plane reads

untwiste 1 1
]{2(5 ted) _ ~ {_ (_](3/2)(31.) + [(1/2)(Ri))} ) (11.4)

212 grav grav

The second factor of % arises because the fermions are Majorana-Weyl. ¢ = 1, 2 denotes
the two planes, and R; is the curvature two-form on the i-th plane. [g(%? is obtained
from 11(3/2) of Eq. (8.32) by setting F' = 0, and similarly for [é%g).

So eleven-dimensional supergravity on Mg x S'/Z, is anomalous and has to be
modified in order to be a consistent theory. An idea that has been very fruitful in
string theory over the last years is to introduce new fields which live on the singu-
larities of the space under consideration. Following this general tack we introduce
massless modes living only on the fixed planes of our orbifold. These so-called twisted
fields have to be ten-dimensional vector multiplets because the vector multiplet is the
only ten-dimensional supermultiplet with all spins < 1. In particular, the multiplets
can be chosen in such a way that the gaugino fields have positive chirality (in the
Minkowskian). Then they contribute to the pure and mixed gauge anomalies, as well
as to the gravitational ones. The corresponding anomaly polynomial reads

; 1
twisted 1/2
15 = =5 (I3 (Re) + 1002 (R B + 2R ) (11.5)
where the minus sign comes from the fact that the gaugino fields have negative chirality
in the Euclidean. n; is the dimension of the adjoint representation of the gauge group
G;. Adding all the pieces gives

(fields) (untwisted) (twisted)
Loy = g + Lo
1 496 — 2n; —224 — 2n; 320 — 10n,
= - “trR) + ————trRjtrR} + ———(trR;)"
>@nyel | 1008 Tt T gg v R4 —gore— (R
1 5 5
+ 1—6trR;*TrFf + 6—4(trR§)2TrFf - gtrR?TrFf +TrFP| (11.6)

where now Tr denotes the adjoint trace. To derive this formula we made use of the
general form of the anomaly polynomial as given in appendix E. The anomaly cancels
only if several conditions are met. First of all it is not possible to cancel the tr R® term
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by a Green-Schwarz type mechanism. Therefore, we get a restriction on the gauge
group G;, namely

n; = 248. (11.7)
Then we are left with
: 1 15 15 1
i) —__ — g RWR? — — (trR?)? + —tr Ry F?
12(3) 2rye |16 Rt = g (R e R,
5 5
+ 6—4(trR?)2TrFf - gterTrE“ + TrFY| . (11.8)

In order to cancel this remaining part of the anomaly we will apply a sort of Green-
Schwarz mechanism. This is possible if and only if the anomaly polynomial factorizes
into the product of a four-form and an eight-form. For this factorization to occur we
need

1 1
TrE) = ﬂTrFfTrFf - %(Tmf)i’) : (11.9)

There is exactly one non-Abelian Lie group with this property, which is the exceptional
group Fg. Defining tr := %Tr for Fy and making use of the identities

TeF? = 30 trF? (11.10)
1

Trrt = —(TrF?)?, (11.11)
100
1

TrF® = ——(TrF?)>? 11.12

r 7200( r ) Y ( >

which can be shown to hold for Eg, we can see that the anomaly factorizes,

ields ™
Ig(i)ld ) = —5(14@'))3 — Lyiy N Xy, (11.13)

with

R 1 2 1 2

and Xg as in (9.15). Xg is related to forms X7 and X via the usual descent mechanism
Xg = dX7, (5X7 == dX6

The modified Bianchi identity

So far we saw that M-theory on S'/Z, is anomalous and we added new fields onto the
fixed planes to cancel part of that anomaly. But now the theory has changed. It no
longer is pure eleven-dimensional supergravity on a manifold with boundary, but we
have to couple this theory to ten-dimensional super-Yang-Mills theory, with action

1

~DF d"z\/g1o tr F,, F", (11.15)

Ssym =
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where A is an unknown coupling constant. The explicit coupling of these two theories
was determined in [83]. The crucial result of this calculation is that the Bianchi identity,
dG = 0, needs to be modified. It reads?

2 1 2k
dG = _% Z(si A (trFE — étrR2> = —(47r)2% Z(si A Ly - (11.16)

Since ¢; has support only on the fixed planes and is a one-form ~ d¢, only the values
of the smooth four-form I4(;y on this fixed plane are relevant and only the components
not including d¢ do not vanish. The gauge part trF? always satisfies these conditions
but for the trR? term this is non-trivial. In the following a bar on a form will indicate
that all components containing d¢ are dropped and the argument is set to ¢ = ¢;.
Then the modified Bianchi identity reads

dG =7 6; AL | (11.17)
where we introduced
22“%1
v = —(4m) BV (11.18)
Define the Chern-Simons form
n L (4 (A;dA; + 2A:”) L (Qd€Y; + 2(23) (11.19)
Wy = nA;dAa; — 5A4;) — ZWwrQdsddl; — 534, ) |, .
(4)? 3 2 3
so that B

Under a gauge and local Lorentz transformation with parameters A9 and A* indepen-
dent of ¢ one has
6w; = dw; (11.21)

7 )

where

1 1 _
b = trA9dA;, — —trAFdQ, ) . 11.22
wz (47‘(‘)2 < T 7 2 r l) ( )

Making use of (11.2) we find that the Bianchi identity (11.17) is solved by
_ €7 do =~ _

where b is an undetermined (real) parameter. As G is a physical field it is taken to be
gauge invariant, 0G = 0. Hence we get the transformation law of the C-field,

6C:dB§—7Z<5i/\¢D§—bVZ%d@§, (11.24)

2This differs by a factor 2 from [83] which comes from the fact that our x1; is the “downstairs”
k. [83] use its “upstairs” version and the relation between the two is 2Kgownstairs = 2611 = Kupstairs-
See [22] and [P3] for a careful discussion.
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with some two-form Bj. Recalling that C),, is projected out, this equation can be
solved, because C),,,, = 0 is only reasonable if we also have 6C,,, = 0. This gives

by _
(dB%)MVp - ? Z(eidwil)uyp ) (1125)
which is solved by
b _
(B =75 D (@] - (11.26)
So we choose ;
1_ 1
By =75 & (11.27)
and get
b
_ -1 -1
50_72 {(b—l)éi/\wi —%dgb/\wl} : (11.28)

Inflow terms and anomaly cancellation

In the last sections we saw that introducing a vector supermultiplet cancels part of
the gravitational anomaly that is present on the ten-dimensional fixed planes. Fur-
thermore, the modified Bianchi identity led to a very special transformation law for
the C-field. In this section we show that this modified transformation law allows us
to cancel the remaining anomaly, leading to an anomaly free theory. We start from
supergravity on Mg x I = My x S* /Zo and rewrite it in the upstairs formalism,

1
24K2,

1
12k

Siop = / CAACAdC = — / CAACAAC . (11.29)
MioxI MygxS?

However, we no longer have G = dC' and thus it is no longer clear whether the correct
topological term is CdCdC or rather CGG. It turns out that the correct term is
the one which maintains the structure CdC'dC' everywhere except on the fixed planes.

However, the field C' has to be modified to a field C', similarly to what we did in chapter
9. To be concrete let us study the structure of G in more detail. It is given by

sz(C%—ngeiwi)—vzéi/\wi::da—vz@/\wi. (11.30)

That is we have G = dC except on the fixed planes where we get an additional
contribution. Thus, in order to maintain the structure of the topological term almost
everywhere we postulate [P3] it to read

1 / ~
— CANGANG
24/{‘/%1 ]\410><S1

1 ~ ~ ~ ~ ~
= / (O/\dO/\dO—2C’/\dC’/\725iAwi> . (11.31)
]\41()><S1 i

24K2,

Stop =
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To see that this is reasonable let us calculate its variation under gauge transformations.
From (11.28) we have

b —1 —1
5C = d<2 Zei%) —725iAwi : (11.32)

and we find

65, = LU / S 00D ALy N Y Z ATy A
op = —= €€+ 2665 kw/\4 N Ly(k) //\4 N 1y@)
o 96/{%1 Mygx St k ’ ’ () 96/{/11

S (11.33)
where we used (11.3). This 0.5, is a sum of two terms, and each of them is localised on
one of the fixed planes. The corresponding (Minkowskian) anomaly polynomial reads

top v b2 (top)
Z 96/{11 Z ]12(1) (11.34)

7

If we choose 7 to be

b2
and use (8.36) we see that this cancels the first part of the anomaly (11.13) through
inflow. Note that this amounts to specifying a certain choice for the coupling constant

A

2 9 1/3
y=— (M) (11.35)

This does not yet cancel the anomaly entirely. However, we have seen, that there
is yet another term, which can be considered as a first M-theory correction to eleven-

dimensional supergravity, namely the Green-Schwarz term?
1 1
S, :z——/ G/\X:——/ GAXy, 11.36
“ (4K Jangxa ! 2(4mK3)Y? S argxst ! ( )

studied in [131], [48], [P3]. Xg is given in (9.15) and it satisfies the descent equations
Xg =dX7 and 0. X7 = dXg. Its variation gives the final contribution to our anomaly,

1 & _ _
6SGS:——/ GAdX} = —/ L ANXg, (11.37)
2(47K3)12 iyt ° ;%ma)w o

where we integrated by parts and used the properties of the §;. The corresponding
(Minkowskian) anomaly polynomial is

(GS) _ o (GS)
e _;2(47m i Ty A Xs =3 Do) - (11.38)

i

3The reader might wonder why we use the form | G A X7 for the Green-Schwarz term, since we
used fé’ A Xs in chapter 9, c.f. Eq. (9.19). However, first of all we noted already in chapter 9 that
[ G A X7 would have led to the same results. Furthermore, on Mo x S! we have from (11.30) that
JGAX; = jC’ ANXs—~>, [w; A X7. But the latter term is a local counterterm that does not
contribute to Iqs.
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which cancels the second part of our anomaly provided
v = —(327wK3)V3 . (11.39)

Happily, the sign is consistent with our first condition (11.35) for anomaly cancellation
and it selects b = 1. This value for b was suggested in [22] from general considerations
unrelated to anomaly cancellation. Choosing v (and thus the corresponding value for
A) as in (11.39) leads to a local cancellation of the anomalies. Indeed let us collect all
the contributions to the anomaly of a single fixed plane, namely (11.13), (11.34) and
(11.38)

. r(untwisted . (twisted . (to . (GS
ZIf?(i) '+ Zlfm) = ZIfQ(I;)) - fog(i)) =0. (11.40)

The prefactors of —¢ in the last two terms come from the fact that we calculated the
variation of the Minkowskian action, which has to be translated to Euclidean space
(c.f. Eq. 8.36). Note that the anomalies cancel separately on each of the two ten-
dimensional planes. In other words, we once again find local anomaly cancellation.



Chapter 12

Conclusions

We have seen that anomalies are a powerful tool to explore some of the phenomena of
M-theory. The requirement of a cancellation of local gauge and gravitational anomalies
imposes strong constraints on the theory, and allows us to understand its structure in
more detail. In the context of higher dimensional field theories anomalies can cancel in
two different ways. For instance, in the case of M-theory on the product of Minkowski
space with a compact manifold, anomalies can be localised at various points in the
internal space. The requirement of global anomaly cancellation then simply means
that the sum of all these anomalies has to vanish. The much stronger concept of
local anomaly cancellation, on the other hand, requires the anomaly to be cancelled
on the very space where it is generated. We have seen that for M-theory on singular
G'y-manifolds and on Mg x S'/Z, anomalies do indeed cancel locally via a mechanism
known as anomaly inflow. The main idea is that the classical action is not invariant
under local gauge or Lorentz transformations, because of “defects” in the space on
which it is formulated. Such a defect might be a (conical or orbifold) singularity
or a boundary. Furthermore, we saw that the classical action had to be modified
close to these defects. Only then does the variation of the action give the correct
contributions to cancel the anomaly. These modifications of the action in the cases
studied above are modelled after the similar methods that had been used in [60] to
cancel the normal bundle anomaly of the M5-brane. Of course these modifications are
rather ad hoc. Although the same method seems to work in many different cases the
underlying physics has not yet been understood. One might for example ask how the
smooth function p (c.f Eq. (9.3)) is generated in the context of Gy-compactifications.
Some progress in this direction has been made in [77], [24]. It would certainly be quite
interesting to further explore these issues.

There are no explicit examples of metrics of compact Gy-manifolds with conical
singularities and therefore the discussion above might seem quite academic. However,
we were able to write down relatively simple metrics for a compact manifold with
two conical singularities and weak Go-holonomy. Although the corresponding effective
theory lives on AdS, one expects that the entire mechanism of anomaly cancellation
should be applicable to this case as well, see e.g. [5] for a discussion. Therefore, our
explicit weak Go-metric might serve as a useful toy model for the full G»-case.
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Appendix A

Notation

Our notation is as in [P4]. However, for the reader’s convenience we list the relevant
details once again.

A.1 General notation

The metric on flat space is given by
n:=diag(—1,1,...1) . (A.1)

The anti-symmetric tensor is defined as

Cor2.a-1 = €M Tli=41, (A.2)
€My My, = \/gng...Md . (AB)
That is, we define € to be the tensor density and e to be the tensor. We obtain
€o12..d-1 = /9 =e:=|det eAM’ ) (A.4)
1
Ml---Md _ : Ml Md
€ = sig(g)— € , and (A.5)
\/_
z MlmMrPl“'Pd_T’gNl...NrPL--Pd_r _ ( )|5[M1 M, ‘ (AG)

(Anti-)Symmetrisation is defined as,

1

Anany = ﬁZAMwu)---Mw(w ) (A7)
1 :

Apnan) = 7 > Sig(m)An ) ayg, - (A.8)

p-forms come with a factor of p!, e.g.

1

w = _lel"'MdeMl A ANd2Me (A.9)
p!
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The Hodge dual is defined as

1 My..M,

_ M, M,
e p!(d - p)! WMy My € Mpt1...Mg Az NN AT (A.lO)

A.2 Spinors

A.2.1 Clifford algebras and their representation

Definition A.1 A Clifford algebra in d dimensions is defined as a set containing d
elements I'* which satisfy the relation

{r4, 178} = 2981 . (A.11)
Under multiplication this set generates a finite group, denoted Cy, with elements
Cq= {£1,404, L7442 4pA-Aa) (A.12)

where T'41-4r .= T4 - T4 The order of this group is

d
ord(Cy) =2 (;l) =2.2¢ =201 (A.13)
p=0

Definition A.2 Let G be a group. Then the conjugacy class [a] of a € G is defined
as
la] := {gag™'|g € G}. (A.14)

Proposition A.3 Let G be a finite dimensional group. Then the number of its irre-
ducible representations equals the number of its conjugacy classes.

Definition A.4 Let G be a finite group. Then the commutator group Com(G) of G
is defined as
Com(G) := {ghg *h™'|g,h € G} . (A.15)

Proposition A.5 Let G be a finite group. Then the number of inequivalent one-
dimensional representations is equal to the order of G divided by the order of the
commutator group of G.

Proposition A.6 Let G be a finite group with inequivalent irreducible representations
of dimension ny,, where p labels the representation. Then we have

ord(G) = (n,)* . (A.16)
p
Proposition A.7 Fvery class of equivalent representations of a finite group G con-
tains a unitary representation.

For the unitary choice we get rATAT = 1. From (A.11) we infer (in Minkowski space)
10" — 10 and (I'4)" = T4 for A # 0. This can be rewritten as

pAt = popAro (A.17)
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Clifford algebras in even dimensions

Theorem A.8 For d = 2k + 2 even the group Cy has 2¢ + 1 inequivalent representa-
tions. Of these 2% are one-dimensional and the remaining representation has (complex)
dimension 2% = 2k+1,

This can be proved by noting that for even d the conjugacy classes of Cy are given by
{[+1]7 [_1], [FA]’ [FAlAz], ol [FA1~~-Ad]} :

hence the number of inequivalent irreducible representations of Cy is 2¢ + 1. The
commutator of Cy is Com(Cy) = {£1} and we conclude that the number of inequivalent
one-dimensional representations of Cy is 2¢. From (A.16) we read off that the dimension
of the remaining representation has to be 2%

Having found irreducible representations of C; we turn to the question whether we
also found representations of the Clifford algebra. In fact, for elements of the Clifford
algebra we do not only need the group multiplication, but the addition of two elements
must be well-defined as well, in order to make sense of (A.11). It turns out that the
one-dimensional representation of C; do not extend to representations of the Clifford
algebra, as they do not obey the rules for addition and subtraction. Hence, we found
that for d even there is a unique class of irreducible representations of the Clifford
algebra of dimension 25 = 2++1,

Given an irreducible representation {I''} of a Clifford algebra, it is clear that
+{I'4"} and £{T'""} form irreducible representations as well. As there is a unique
class of representations in even dimensions, these have to be related by similarity
transformations,

A* —1pA
FAT = i<Bi)_1FABi , (A18)
r = +(Cy)"TCk .

The matrices CL are known as charge conjugation matrices. Iterating this definition
gives conditions for By, CL,

(B+)™! = biBi*, (A.19)
Ci = CiCiT, (AQO)

with by real, cx € {£1} and CL symmetric or anti-symmetric.

Clifford algebras in odd dimensions

Theorem A.9 Ford = 2k+3 odd the group Cy has 2?42 inequivalent representations.
Of these 2¢ are one-dimensional' and the remaining two representation have (complex)
dimension 25 = 2k+1,

! As above these will not be considered any longer as they are representations of Cy but not of the
Clifford algebra.
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As above we note that for odd d the conjugacy classes of Cy are given by
{[+1]’ [_1]7 [FA]v [FAIAQ]a ey [FAl“'AdL [_FAl---Ad]}

and the number of inequivalent irreducible representations of Cy is 2¢4-2. Again we find

the commutator Com(C,) = {£1}, hence, the number of inequivalent one-dimensional

representations of Cy is 2¢. Now define the matrix
=1t et (A.21)

which commutes with all elements of C';. By Schur’s lemma this must be a multiple of
the identity, 'Y = =1, with some constant a. Multiplying by I'*~! we find

4=t = qrort.. .72 (A.22)

Furthermore, ([T ... T972)2 = —(—1)*"1. As we know from (A.11) that (IT971)? = +1
we conclude that a = £1 for d = 3 (mod 4) and @ = +i for d = 5 (mod 4). The ma-
trices {T°, T, ... %2} generate an even-dimensional Clifford algebra the dimension
of which has been determined to be 2¥*!. Therefore, the two inequivalent irreducible
representations of Cy for odd d must coincide with this irreducible representation when
restricted to Cy_1. We conclude that the two irreducible representations for C; and odd
d are generated by the unique irreducible representation for {I'%, "', =2}  together
with the matrix I'*"! = aI'°T'' .. . T'%"2. The two possible choices of a correspond to
the two inequivalent representations. The dimension of these representation is 2#+1.

A.2.2 Dirac, Weyl and Majorana spinors
Dirac spinors

Let (M, g) be an oriented pseudo-Riemannian manifold of dimension d, which is iden-
tified with d-dimensional space-time, and let {I'4} be a d-dimensional Clifford algebra.
The metric and orientation induce a unique SO(d — 1,1)-structure®* P on M. A spin
structure (]5,7r) on M is a principal bundle P over M with fibre Spin(d — 1, 1), to-
gether with a map of bundles 7 : P — P. Spin(d — 1,1) is the universal covering
group of SO(d — 1,1). Spin structures do not exist on every manifold. An oriented
pseudo-Riemannian manifold M admits a spin structure if and only if wy(M) = 0,
where wo(M) € H*(M,Z) is the second Stiefel-Whitney class of M. In that case we
call M a spin manifold.
Define the anti-Hermitian generators

1 1
»AB = §FAB = Z[FA, o). (A.23)

2Let M be a manifold of dimension d, and F the frame bundle over M. Then F is a principle
bundle over M with structure group GL(d,R). A G-structure on M is a principle subbundle P of F
with fibre G.
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Then the 45 form a representation of so(d — 1, 1), the Lie algebra of SO(d — 1, 1),
[EAB, ECD] — —ZACQBD + EADgBC + EBCgAD . ZBDgAC ) (A24)

In fact, X247 are generators of Spin(d—1,1). Take A? to be the natural representation of
Spin(d—1,1). We define the (complex) spin bundle S — M tobe® S := ﬁxspin(d,l’l)Ad.
Then S is a complex vector bundle over M, with fibre A% of dimension 2192, A
Dirac spinor v is defined as a section of the spin bundle S. Under a local Lorentz

transformation with infinitesimal parameter ayp = —ag4 a Dirac spinor transforms
as
1
V=14 6 =1p — §aABzAB¢ . (A.25)
The Dirac conjugate 1 of the spinor 1 is defined as
=i TO . (A.26)

With this definition we have 6(¢/n) = 0 and 9% is Hermitian, (y1))" = 4.

Weyl spinors

In d = 2k + 2-dimensional space-time we can construct the matrix*

Dypy = (=i)*rort.. .ot (A.27)
which satisfies
(Can)® = 1, (A.28)
{Fd+17FA} = 0, (A29)
Tut, SV = 0. (A.30)

Then, we can define the chirality projectors

1

PLEP_ = 5(]]_—Fd+1> s PREP+ = —(]1+Fd+1) s (A31)
satisfying
Pr+Pr = 1,
P, = P
LR LA (A.32)
PP, = PrPp =0,
[PLr, 2] = 0.

3p X Spin(d—1,1) A is the fibre bundle which is associated to the principal bundle P in a natural way.
Details of this construction can be found in any textbook on differential geometry, see for example
[109].

4This definition of the T-matrix in Minkowski space agrees with the one of [117]. Sometimes
it is useful to define a Minkowskian I-matrix as I' = *T?...T9"! as in [P3]. Obviously the two
conventions agree in 2, 6 and 10 dimensions and differ by a sign in dimensions 4 and 8.
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A Weyl spinor in even-dimensional spaces is defined as a spinor satisfying the Weyl
condition,

Pt =1 . (A.33)

Note that this condition is Lorentz invariant, as the projection operators commute
with 48, Spinors satisfying P, = 1;, are called left-handed Weyl spinors and those
satisfying Prir = 1R are called right-handed. The Weyl condition reduces the number
of complex components of a spinor to 2*.

Obviously, under the projections P, z the space A? splits into a direct sum A% =
A% @ A? and the spin bundle is given by the Whitney sum S = S, & S_. Left- and
right-handed Weyl spinors are sections of S_ and S, respectively.

Majorana spinors

In (A.18) we defined the matrices By and C. We now want to explore these matrices
in more detail. For d = 2k + 2 we define Majorana spinors as those spinors that satisfy

and pseudo-Majorana spinors as those satisfying
= B_9". (A.35)

As in the case of the Weyl conditions, these conditions reduce the number of compo-
nents of a spinor by one half. The definitions imply

BiB+ — ]l 5

A.36
B'B. = 1, (4.36)

which in turn would give by = 1 and b_ = 1. These are non-trivial conditions since B
is fixed by its definition (A.18). The existence of (pseudo-) Majorana spinors relies on
the possibility to construct matrices By or B_ which satisfy (A.36). It turns out that
Majorana conditions can be imposed in 2 and 4 (mod 8) dimensions. Pseudo-Majorana
conditions are possible in 2 and 8 (mod 8) dimensions.

Finally, we state that in odd dimensions Majorana spinors can be defined in di-
mensions 3 (mod 8) and pseudo-Majorana in dimension 1 (mod 8)

Majorana-Weyl spinors

For d = 2k + 2 dimensions one might try to impose both the Majorana (or pseudo-
Majorana) and the Weyl condition. This certainly leads to spinors with 2¥~1 compo-
nents. From (A.27) we get (Iyy1)* = (—1)*Bi'T411 B+ and therefore for d = 2 (mod
1)

P} p=Bi'PLrBy (A.37)

and for d = 4 (mod 4)
P} p=DBi"Pr By . (A.38)
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But this implies that imposing both the Majorana and the Weyl condition is consistent
only in dimensions d = 2 (mod 4), as we get

By(Ppry)" = PrLrBay”
for d = 2 (mod 4), but
By(PrrY)" = ProBi” (A.39)

for d = 4 (mod 4). We see that in the latter case the operator By is a map between
states of different chirality, which is inconsistent with the Weyl condition. As the
Majorana condition can be imposed only in dimensions 2, 4 and 8 (mod 8) we conclude
that (pseudo-) Majorana-Weyl spinors can only exist in dimensions 2 (mod 8).

We summarize the results on spinors in various dimensions in the following table.

d | Dirac | Weyl | Majorana | Pseudo-Majorana | Majorana-Weyl
2 4 2 2 2 1
3 4 2

4 8 4 4

5 8

6 16 8

7 16

8 32 16 16

9 32 16

10| 64 32 32 32 16
11| 64 32

12 | 128 64 64

The numbers indicate the real dimension of a spinor, whenever it exists.

A.3 Gauge theory

Gauge theories are formulated on principal bundles P — M on a base space M with
fibre G known as the gauge group. Any group element g of the connected component
of G that contains the unit element can be written as g := e®, with A := AT, and T,
basis vectors of the Lie algebra g := Lie(G). We always take T, to be anti-Hermitian,
s.t. T, =: —it, with t, Hermitian. The elements of a Lie algebra satisfy commutation

relations
To, T = CWT. ,  [ta,ts) = iCte (A.40)

with the real valued structure coefficients C<,;.
Of course, the group GG can come in various representations. The adjoint represen-

tation

(T == =C" (A1)

ca
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is particularly important. Suppose a connection is given on the principal bundle. This
induces a local Lie algebra valued connection form A = A,T, and the corresponding
local form of the curvature, F' = F,T,. These forms are related by®

P dA+%[A,A],
Fo = 004y = 0,4, + AL A) | (A.42)
Fo = 0,48 — 0,A% + (% AL AC

v

In going from one chart to another they transform as

1
AV =g Y A+dg , F9:=dA%+ §[A9,Ag] =g 'Fg. (A.43)
For g = e = e‘”a with € infinitesimal we get A9 = A + De. B
For any object on the manifold which transforms under some representation 7' (with
T anti-Hermitian) of the gauge group G we define a gauge covariant derivative

Di=d+A , A:=AT,. (A.44)

When acting on Lie algebra valued fields the covariant derivative is understood to be
D:=d+ A, |
We have the general operator formula

DD¢ =F¢ | (A.45)

which reads in components

[Dyi, Dl = Fung (A.46)

Finally, we note that the curvature satisfies the Bianchi identity,

DF =0. (A.47)

A.4 Curvature

Usually general relativity on a manifold M of dimension d is formulated in a way which
makes the invariance under diffeomorphisms, Dif f(M ), manifest. Its basic objects are
tensors which transform covariantly under GL(d,R). However, since GL(d, R) does not
admit a spinor representation, the theory has to be reformulated if we want to couple
spinors to a gravitational field. This is done by choosing an orthonormal basis in
the tangent space T'M, which is different from the one induced by the coordinate
system. From that procedure we get an additional local Lorentz invariance of the
theory. As SO(d — 1,1) does have a spinor representation we can couple spinors to
this reformulated theory.

°The commutator of Lie algebra valued forms A and B is understood to be [A,B] :=
[A]V[,BN] dzM A d2N.
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At a point = on a pseudo-Riemannian manifold (M, g) we define the vielbeins e4(x)
as

ea(z) = e, M(x)0 | (A.48)

with coefficients e, () such that the {e,} are orthogonal,

glea,ep) = €AM€BN9MN =1AB - (A.49)

Define the inverse coefficients via e,Me?,, = 6§ and e? e,V = §Y, which gives

gun () = nape? ) (1)ef (). The dual basis {4} is defined as, e := e#,,d2z™. The
commutator of two vielbeins defines the anholonomy coefficients Q 45,

N

lea,en] == [es™Onr, ep™ On] = Qup Cec (A.50)
and from the definition of e4 one can read off
Qup C(w) = ecN[eAK(aKeBN) - eBK(aKeAN>](9U) . (A.51)

When acting on tensors expressed in the orthogonal basis, the covariant derivative
has to be rewritten using the spin connection coefficients wy/* g,

VaVeb: = 0uVep: +wy gVep + .. —wy” Vb (A.52)
The object V¥ is called the spin connectionS. Its action can be extended to objects

transforming under an arbitrary representation of the Lorentz group. Take a field ¢
which transforms as

00" = —EEAB(TAB) Jlog (A.53)
under the infinitesimal Lorentz transformation A% 5(z) = 05+€? 5 = dp-+iecn(TEE) 5,
with the vector representation (T¢2)4 , = (n©468 —nP46%). Then its covariant deriva-
tive is defined as ]
V30 = 0md’ + swaap(TP) ;¢ . (A.54)

2
We see that the spin connection coefficients can be interpreted as the gauge field
corresponding to local Lorentz invariance. Commuting two covariant derivatives gives
the general formula

1
[Vin Vile = §RMNABTAB¢ : (A.55)

In particular we can construct a connection on the spin bundle S of M. As we know
that for 1 € C°°(S) the transformation law reads (with 247 as defined in (A.24))

oY = _%eABZABw , (A.56)
we find . .
Vi = Ot + §WMABEABIP = Oy + ZWMABFABIP : (A.57)

SPhysicists usually use the term ”spin connection” for the connection coefficients.
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If we commute two spin connections acting on spin bundles we get
1
[Vin Valy = ZRMNABFABwa (A.58)
where R is the curvature corresponding to w, i.e. R 5 = D(w,* gdz™).

In the vielbein formalism the property Vgy v = 0 translates to
vyed,; =0. (A.59)

In the absence of torsion this gives the dependence of wy 4p on the vielbeins. It can
be expressed most conveniently using the anholonomy coefficients

1
wirap(e) = 5(—QMAB + Qapyv — Qpma) - (A.60)

If torsion does not vanish one finds
wyaB = wypas(e) + kuas (A.61)
where kp74p is the contorsion tensor. It is related to the torsion tensor 7 by
kaap = Tin(eares™ —eprea™) + gurTinesNeg™ . (A.62)

Defining w? 5 1= w,A gz one can derive the Maurer-Cartan structure equations,

de* +wigne? =74 | dop+wi AWy =RY, (A.63)
where
1 1
T4 = §7AMNdzM ANdZN R = 5RABMNdzM AdZN (A.64)
and
TAMN = eAPTPMN ) RABMN = eAQeBPRQPMN . (A.65)

These equations tell us that the curvature corresponding to V and the one correspond-
ing to V* are basically the same. The Maurer-Cartan structure equations can be
rewritten as

T=De , R=Dw, (A.66)
where D = d +w. 7 and R satisfy the Bianchi identities
DT =Re , DR=0. (A.67)
The Ricci tensor Ry and the Ricci scalar R are given by
Run = RMPNQQPQ R = Rung™ . (A.68)

Finally, we note that general relativity is a gauge theory in the sense of appendix
A.3. If we take the induced basis as a basis for the tangent bundle the relevant group
is GL(d,R). If on the other hand we use the vielbein formalism the gauge group is
SO(d — 1,1). The gauge fields are I' and w, respectively. The curvature of these
one-forms is the Riemann curvature tensor and the curvature two-form, respectively.
However, general relativity is a very special gauge theory, as its connection coefficients
can be constructed from another basic object on the manifold, namely the metric tensor
gun or the vielbein e, M.
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Some Mathematical Background

B.1 Useful facts from complex geometry

Let X be a complex manifold and define AP?(X) := AP((TH0X)*) @ A1((TOH X)*).
Then we have the decomposition

k
AT X) @ C =N (X) . (B.1)

AP9(X) are complex vector bundles, but in general they are not holomorphic vector
bundles. One can show that the only holomorphic vector bundles are those with ¢ = 0,
ie. A®O(X), AMO(X),... A™0(X), where m := dimc X, [85]. Let s be a smooth section
of APY(X) on X. s is a holomorphic section if and only if

0s =0 . (B.2)

Such a holomorphic section is called a holomorphic p-form. Thus, the Dolbeault group

H ép 0) (X) is the vector space of holomorphic p-forms on X.

Definition B.1 Let X be a complex three manifold and p € X. The small resolution
of X in p is given by the pair (X, 7) defined s.t.

X — X
m: X\r Y p) — X\{p} is one to one. (B.3)
T ip) = S

The moduli space of complex structures

Proposition B.2 The tangent space of the moduli space of complex structures M.
of a complex manifold X is isomorphic to H3(T'X).
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Loosely speaking, the complex structure on a manifold X with coordinates 2t 7 tells
us which functions are holomorphic, df(z,z) = 0. Changing the complex structure

therefore amounts to changing the operator 9 := dz'd.;. Consider

0—0 =0+ A (B4

~—

where A 1= A'9; = A’0.: and A’ is a one-form. Then linearizing (0 + A)* =
gives A = 0. On the other hand a change of coordinates (z,z) — (w,w) wit
' =w' 4+ v'(w?), z' = w' leads to

5= & =0+ (50 . (B.5)

=)

This means that those transformations of the operator 0 that are exact, i.e. A* = Ov’,
can be undone by a coordinate transformations. For A’ closed but not exact on the
other hand, one changes the complex structure of the manifold. The corresponding A
lie in H3(T'X) which was to be shown.

B.2 The theory of divisors

The concept of a divisor is a quite general and powerful tool in algebraic geometry.
We will only be interested in divisors of forms and functions on compact Riemann
surfaces. Indeed, the theory of divisors is quite convenient to keep track of the position
and degree of zeros and poles on a Riemann surface. The general concept is defined in
[71], we follow the exposition of [55].

Let then > be a compact Riemann surface of genus g.

Definition B.3 A divisor on ¥ is a formal symbol
A =P . P, (B.6)
with P; € ¥ and o € Z.

This can be rewritten as
A=][P", (B.7)
Pex
with a(P) € Z and «(P) # 0 for only finitely many P € ¥. The divisors on ¥ form a
group, Div(X), if we define the multiplication of A with

B=[[rP"", (B.8)
pPex.
by
AB = [ poo®) (B.9)
Pex.
The inverse of A is given by
Al — H paP) (B.10)

pPex
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Quite interestingly, there is a map from the set of non-zero meromorphic function
f on X to Div(X), given by

fe(f) =[] P (B.11)

pPex

Furthermore, we can define the divisor of poles,

f_l(OO) — H Pmax{—ordpf,o} (B.12)
pPex
and the divisor of zeros
F7H0) = T prowtordr/ot (B.13)
Peyx.
Clearly,
f71(0)
(f) = FT(00) (B.14)

Let w be a non-zero meromorphic p-form on Y. Then one defines its divisor as

(w) = JJ Poor= . (B.15)

pPex

Divisors on hyperelliptic Riemann surfaces
Let ¥ be a hyperelliptic Riemann surface of genus g, and P, ... Py;49 points in . Let
further z : ¥ — C be a function on ¥, s.t. z(P;) # oo. Consider the following function
on the Riemann surface,!

25+2
v= | TG~ =B). (B.16)
j=1
If Q, Q" are those points on ¥ for which 2(Q) = 2(Q’) = o0, i.e. QQ' = z7!(c0) is the
polar divisor of z, then the divisor of y is given by

Pl...PQngQ

W)= Girigan (B.17)

To see this one has to introduce local coordinate patches around points P € . If P
does not coincide with one of the P, or @, Q' local coordinates are simply z — z(P).
Around the points @, Q" we have the local coordinate 1/z, and finally around the P,

one has y/z — z(F;).
Let R, R’ be those points on X for which z(R) = z(R') = 0, i.e. RR' = 27'(0) is
the divisor of zeros of z. The divisors for z reads
) 2710) RR
Z) = = .
z7Hoo) QY
'One can show that for two points P # P on ¥ for which z(P) = z(P) one has y(P) = —y(P).
These two branches of y are denoted gy and y; = —1o in the main text.
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Furthermore, it is not hard to see that
P1 e P2g+2
Q2"

By simply multiplying the corresponding divisors it is then easy to see that the forms

Zk% are holomorphic for k£ < g.

(dz) = (B.19)

B.3 Relative homology and relative cohomology

A first introduction to algebraic topology can be found in [109], for a more compre-
hensive treatment of this beautiful subject see for example [125]. We only present
the definition of relative (co-)homology, a concept that is important in a variety of
problems in string theory. For example it appears naturally if one studies world-sheet
instantons in the presence of D-branes, since then the world-sheet can wrap around
relative cycles ending on the branes.

B.3.1 Relative homology

Let X be a triangulable manifold, Y a triangulable submanifold of X and i:Y — X
its embedding. Consider chain complexes C(X;Z) := (C;(X;Z),0) and C(Y;Z) =
(C;(Y;Z),0) on X and Y. For the pair (X,Y’) we can define relative chain groups by

Ci(X,Y;Z):=Cy(X;2)/C;(Y; Z) . (B.20)

This means that elements of C;(X,Y;Z) are equivalence classes {c} := ¢+ C;(Y;Z)
and two chains ¢, ¢ in C;(X;Z) are in the same equivalence class if they differ only by
an element ¢y of C;(Y;Z), ¢ = ¢+ ¢y. The relative boundary operator

0:C;(X,Y:Z) — C;1(X,Y;Z) (B.21)

is induced by the usual boundary operator on X and Y. Indeed, two representatives c
and ¢ = ¢+ ¢ of the same equivalence class get mapped to dc and 0c’, which satisfy
dc = Oc + Ocy, and since Ocy is an element of C;_1(Y;Z) their images represent the
same equivalence class in C;_1(X,Y;Z).

Very importantly, the property 9> = 0 on C(X;Z) and C(Y;Z) implies §° =
0 for the C;(X,Y;Z). All this defines the relative chain complex C(X,Y;Z) =
(C;(X,Y;Z),0). It is natural to define the relative homology as

H;(X,Y;Z):=Z;(X,Y;Z)/B;(X,Y;Z) , (B.22)

where Z;(X,Y;Z) := ker(0) := {{c} € C;(X,Y;Z) : 0{c} = 0} and B;(X,Y;Z) :=
Im(0) :={{c} € C;(X,Y;Z) : {c} = 0{¢} with {¢} € C;1(X,Y;Z)} = 0C; 11 (X, Y Z).
Elements of ker(0) are called relative cycles and elements of Im(0) are called relative
boundaries. Note that the requirement that the class {c} has no boundary, d{c} = 0,
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or more precisely 0{c} = {0}, does not necessarily mean that its representative has no
boundary. It rather means that it may have a boundary but this boundary is forced to
lie in Y. Note further that an element in H;(X,Y;Z) is an equivalence class of equiv-
alence classes and we will denote it by [{c}] := {c} + B;(X,Y;Z) for c € C;(X;Z) s.t.
JeCY.

We have the short exact sequence of chain complexes

0—C(Y:Z) 5 C(X;2) L C(X,Y;Z) — 0 (B.23)

where ¢ : C;(Y;Z) — C;(X;Z) is the obvious inclusion map and p : C;(X;Z) —
C;(X,Y;Z) is the projection onto the equivalence class, p(c) = {c}. Note that p is
surjective, i is injective and p o i = {0}, which proves exactness. Every short exact
sequence of chain complexes comes with a long exact sequence of homology groups. In
our case

S Hin(XY:2) B H(YZ) S Hy (X Z) B Hy(X, Y 2) S Hy (Y Z) —

(B.24)
Here i, and p, are the homomorphisms induced from i and p in the obvious way,
for example let [¢] € H;(X;Z) with ¢ € Z;(X;Z) C C;(X;Z) then p.([c]) := [p(c)].
Note that p(c) € Z;(X,Y;Z) and [p(c)] = p(c) + B;(X,Y;Z). The operator 0,
H;(X,Y;Z) — H;(Y;Z) is defined as [{c}] — [i " (d(p~'({c})))] = [Oc]. Here we used
the fact that Oc has to lie in Y. The symbol [-] denotes both equivalence classes in
H;(X;Z) and H;(Y;Z).

B.3.2 Relative cohomology

Define the space of relative cohomology H?(X,Y’; C) to be the dual space of H;(X,Y;Z),
HI(X,Y;C) := Hom(H’(X,Y;C),C), and similarly for H?(X;C), H/(Y;C). The
short exact sequence (B.23) comes with a dual exact sequence

0 — Hom(C(X,Y;Z),C) & Hom(C(X;Z),C) - Hom(C(Y;Z),C) — 0. (B.25)

Here we need the definition of the dual homomorphism for a general chain mapping?
f:C(X;Z) — C(Y;Z). Let ¢ € Hom(C(Y;Z),C), then f(¢) :== ¢o f.
The corresponding long exact sequence reads

Lo XGOS Y0 S X, Y0 L H(X;C) S HI(Y;C) — ...,
~ (B.26)
n i*([0]) = i.([0]) =

where i* := i,, p* := p,. For example let [©] € H/(X;C). The
= 1(0)))], and d := 9 is the

[Z(@)] d* acts on [0] € H'71(Y;C) as d*([0]) : i

[P~ (d(i™
coboundary operator.

2A chain mapping f : C(X;Z) — C(Y;Z) is a family of homomorphisms f; : C;(X;Z) — C;(Y;Z)
which satisfy do f; = fj—100.
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So far we started from simplicial complexes, introduced homology groups on trian-
gulable spaces and defined the cohomology groups as their duals. On the other hand,
there is a natural set of cohomology spaces on a differential manifold, very familiar to
physicist, namely the de Rham cohomology groups. In fact, they encode exactly the
same topological information, as we have for any triangulable differential manifold X
that . '

Hc]leRham<X; (C) = Hgimplicial(X; C) : (B27)

So we can interpret the spaces appearing in the long exact sequence (B.26) as de
Rham groups, and the maps ¢* and p* are the pullbacks corresponding to ¢ and p.
Furthermore, the coboundary operator d = 9 is nothing but the exterior derivative.

In fact, on a differentiable manifold X with a closed submanifold Y the relative
cohomology groups H?(X,Y’;C) can be defined from forms on X [88]. Let /(X,Y;C)
be the j-forms on X that vanish on Y, i.e.

O(X,Y:C) = ker(¥(X;C) 5 (V) (B.28)

where ¢* is the pullback corresponding to the inclusion ¢ : Y — X. Then it is natural
to define

Z1(X,Y;C) = {©c¥(X,Y;C):dO =0},
BI(X,Y;C) = {0 W(X,Y;C):0=dnfornec ¥ (X,Y;C)}, (B.29)
H/(X,Y;C) = Z/(X,Y;C)/B'(X,Y;C) .

As for the cohomology spaces we have
HéeRham(Xﬂ Y;C) = Hgimplicial(X7 V;C). (B.30)
There is a pairing
() Hy(X,Y;Z) x H(X,Y;C) — C (B.31)
for [I'] € H;(X,Y;Z) and [6] € H’(X,Y;C), defined as

(), [0)]) = / 0. (B.32)

Of course, this pairing is independent of the chosen representative in the two equiv-
alence classes. For [V := [' 4+ 9 + [y with [y C Y this follows immediately from
the fact that © is closed and vanishes on Y. For ©' := © + dA this follows from
JrdA = [,. A =0, as A vanishes on Y.

This definition can be extended to the space of forms
Y(X,Y;C):={0 e Y (X;C):i"0 = db} . (B.33)
Then one first defines the space of equivalence classes

V(X,Y:C):= YV (X,Y;C)/d¥(X;C) . (B.34)
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which is clearly isomorphic to ((X,Y;C). Note that an element of this space is an
equivalence class {©} := O +d¥ (X C) Then one continues as before, namely one
defines

Z/(X,Y;C) = {{0} e ¥(X,Y;C):d{0} =0},

B(X,Y;C) = {{6} € Y(X,Y;C): {6} =d{n} for {n} € ¥ (X,Y;C)},

HI(X,Y;C) = Z/)(X,Y;C)/B(X,Y;C). (B.35)
Obviously, H(X,Y;C) = H/(X,Y;C). Element of H7(X,Y;C) are equivalence
classes of equivalence classes and we denote them by [{©}]. The natural pairing in this
case is given by

() H(XYZ ) x HI(X,Y;C) — C

B.36
(C,{8}]) = 1, [{©}]) / /d& if @ =4d6, ( )
which again is independent of the representative.
The group H7(X,Y;C) can be characterised in yet another way. Note that a
representative © of Z(X,Y;C) has to be closed d® = 0 and it must pull back to an
exact form on Y, i*© = df. This motives us to define an exterior derivative

d:Y(X;C)x ¥ (YV;C) — YH(X;C)xYY;C)

(0,0) — d(©,0) :=(dO,i*e —db) . (B.37)
It is easy to check that d? = 0. If we define
Z(X,Y;C):={(6,0) € W(X;C) x ¥ 1Y;C):d(O,0) =0} (B.38)
we find
Z(X,Y;C) = Z(X,Y:C) . (B.39)

Note further that BJ (X,Y;C) = B/(X;C), so we require that the representative ©
and © + dA are equivalent. But ¢*(© + dA) = d(f +i*A) so 6 has to be equivalent to
0 +i*A. This can be captured by

(©,0) ~ (©,0) +d(A, N\, (B.40)
and with
B(X,Y;C) = {d(A, ) : (A, N) € V(X;C) x QX H(Y;C)} (B.41)
we have
H(X,Y;C)~ Z(X,Y;C)/B(X,Y;C) . (B.42)

B.4 Index theorems

It turns out that anomalies are closely related to the index of differential operators.
A famous theorem found by Atiyah and Singer tells us how to determine the index
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of these operators from topological quantities. In this section we collect important
index theory results which are needed to calculate the anomalies. [109] gives a rather
elementary introduction to index theorems. Their relation to anomalies is explained
in [11] and [12].

Theorem B.4 (Atiyah-Singer index theorem)

Let M be a manifold of even dimension, d = 2n, G a Lie group, P(M,G) the principal
bundle of G over M and let E the associated vector bundle with k := dim(E). Let A be
the gauge potential corresponding to a connection on E and let Sy be the positive and
negative chirality part of the spin bundle. Define the Dirac operators Dy : S1 @ E —
S @ E by

1
D:t = ZFM (8]\/[ + ZUJMABFAB + AM) P:t . (B43)
Then ind(D) with
ind(D ) := dim(kerD; ) — dim(kerD_) (B.44)
s given by
nd(D,) = / (ch(F)A(M)] , (B.45)
M
i )2
AM) = — B.46
(M) ],Ellsinh(xjﬂ) ’ ( )
1F
h(F) = t — ] . B.A4
) = e (5) (B.47)
The z; are defined as
R [n/2]
- — 2y
p(E).—det(l—i-%)—jl_[l(l+xj)—1+p1+p2+..., (B.48)

where p(E) is the total Pontrjagin class of the bundle E. The x; are nothing but the
skew eigenvalues of R/2m,

0O z 0 0
—X 0 0 0o ...
R
L_lo0o 0 0w o... | (B.49)

A(M) is known as the Dirac genus and ch(F) is the total Chern character. The sub-
script vol means that one has to extract the form whose degree equals the dimension
of M.
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To read off the volume form both A(M) and ch(F) need to be expanded. We get
[11], [12]

) 11 1 [1 1
AM) = 1 —trR? —(trR*)? + —trR*

(M) a2 @ e ) g0 rR]
1

1 1
(trR?)® + ——trR*trR* + —trR6]

Ty {10368 4320 5670

1 1
trRAH* + —— (trR?)*tr R
MPE {497664“ V' Toses0 ) HA
1
trR*trRS + ———— (trRY)? + ———trR8| + ... B.50
* 65020 T F 5aganp (TR e I (B.50)
iF i ;2 i
h(F) = t — ) =k+ —trF trF? 4+ .. 4 ——trF ...
¢h(F) reXp(%) T T T T gt T
(B.51)

From these formulae we can determine the index of the Dirac operator on arbitrary
manifolds, e.g. for d = 4 we get

. 1 i? k
1nd(D+) = W /]w <§trF2 + 4_8tI'R2> . (B52)

The Dirac operator (B.43) is not the only operator we need in order to calculate
anomalies. We also need the analogue of (B.45) for spin-3/2 fields which is given by
[11], [12]

nd(Dys) = [ (A (trexpliR/2n) = Deh(F)

_ /M LACM) (tr(exp(iR/27) — 1) + d — 1)eh(F)lwr . (B.53)
Explicitly,
A(M)tr (exp(R/27) — 1) = —@ 2 trR?
+ ( 4;) . :—%(trRQ)z + ;trR‘l}
+ ( 471T>6 :—ﬁ(td#)?’ + %trRQtrR‘l - 4%1;1‘]%6}
+@ :—@(tﬂ#)‘* - %(tr}?)ztrﬁl—
-3 8§5trR2trR6 - ﬁ(tﬂ%‘*ﬁ - %trRS]

+.. (B.54)
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Finally, in 4k + 2 dimensions there are anomalies related to forms with (anti-)self-
dual field strength. The relevant index is given by [11], [12]

1

ind(Da) = ; /M [L(M))an, , (B.55)

where the subscript A stands for anti-symmetric tensor. L(M) is known as the Hirze-
bruch L-polynomial and is defined as

- l’j 2
L) =1] m . (B.56)

=1

For reference we present the expansion

L(M) = 1- @étrRQ + ﬁ [7—12(trR2)2 — gi)trRﬁ‘}
+(271T)6 [_T%(URZ):S + ﬁtrRQtrRA‘ — 2:%@36}
+ﬁ {ﬁ(nm)‘l = Tagg0 R
o et ey - ] s ma



Appendix C

Special Geometry and Picard-Fuchs
Equations

In section 3.2 we saw that the moduli space of a compact Calabi-Yau manifold carries a
Kahler metric and that the Kahler potential can be calculated from some holomorphic
function F, which itself can be obtained from geometric integrals. In this appendix we
will show that this moduli space is actually an example of a mathematical structure
known as special Kahler manifold. We also explain how a set of differential equations,
the so called Picard Fuchs equations arise. In the case of compact Calabi-Yau manifolds
these are differential equations for the period integrals of €). This is interesting, since for
general Calabi-Yau manifolds it may well be simpler to solve the differential equation
than to explicitly calculate the period integral. During my thesis some progress on the
extension of the concept of special geometry to local Calabi-Yau manifolds has been
made [P5]. Unfortunately, the analogue of the Picard-Fuchs equations is still unknown
for these manifolds. A first attempt to set up a rigorous, coordinate free framework
for special Kéhler manifolds was made in [127]. Various properties of special geometry
and its relation to the moduli spaces of Riemann surfaces and Calabi-Yau manifolds,
as well as to Picard-Fuchs equations, were studied in [56], [36], [35]. For a detailed
analysis of the various possible definitions see [38].

C.1 (Local) Special geometry

We start with the definition of a (local) special Kahler manifold, which is modelled after
the moduli space of complex structures of compact Calabi-Yau manifolds, and which
should be contrasted with rigid special Kahler manifolds, that occur in the context of
Riemann surfaces.

Hodge manifolds .
Consider a complex n-dimensional Kahler manifold with coordinates 2%, 2 and metric

163
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where the real function K (z,z) is the Kéhler potential, i,7,...,4,7,... € {1,...,n}.
The Christoffel symbols and the Riemann tensor are calculated from the standard
formulae ' ~ ' '

F;‘k = gllajgkl_ ) le/;l = 8EF;‘l ) (C.2)

with gijgk3 = ok, 99" = 5%, and the Kahler form is defined as

w = ig;dz" A dz . (C.3)
Introduce the one-form 1 u
Q= —Z(’?K + Z(‘?K . (C4)
Then under a Kahler transformation,
K(2(2).2(2) = K(2,2) + f(2) + [(2) , (C.5)
g is invariant and
QzQ—ic‘)eriéf. (C.6)
Clearly
w = 2idQ . (C.7)

Definition C.1 A Hodge manifold is a Kéhler manifold carrying a U(1) line bundle

L, s.t. Q is the connection of £. Then the first Chern-class of £ is given in terms of

the Kéhler class, 2¢1(£) = 5-[w]. Such a manifold is sometimes also called a Kdahler

manifold of restricted type.t

On a Hodge manifold a section of £ of Kéhler weight (¢, ¢) transforms as
D(3(2), 2(2)) = ¥(z, )t/ et/ (C8)

when going from one patch to another. For these we introduce the Kéahler covariant
derivatives

D= (0-10K) v . Dy = (0+%0K)) v, (C.9)

where 9 := dz9;, 0 := dz'0; := diz%. A Kahler covariantly holomorphic section, i.e.
one satisfying D1 = 0 is related to a purely holomorphic section v, by

Ynot = 15y, (C.10)

since then 0y, = 0. The Kéhler covariant derivative can be extended to tensors ®
on the Hodge manifold M as

Do = <V—%(8K))<I> . Do = (v+%(6f()>q>, (C.11)

'Following [38] we define the Hodge manifold to have a Kéhler form which, when multiplied by
5-, is of even integer cohomology. In the mathematical literature it is usually defined as a manifold
with Kéhler form of integer homology, ¢ (£) = o= [w].

2
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where V is the standard covariant derivative.

Special Kahler manifolds
Next we want to define the notion of a special Kahler manifold, following the conven-
tions of [38]. There are in fact three different definitions that are useful and which are
all equivalent.

Definition C.2 A special Kdhler manifold M is a complex n-dimensional Hodge man-
ifold with the following properties:

e On every chart there are complex projective coordinate functions X*(z), I €

{0,...,n}, and a holomorphic function F(X7), which is homogeneous of second
degree, i.e. 2F = X! F; := X352 F, s.t. the Kéhler potential is given as
K(z,2) = —log [iX' 0 F(Xh —ix?! 9 FXH| . (C.12)
’ oX1! oX1!

e On overlaps of charts, U,, Ug, the corresponding functions are connected by

X _ X
( aJT >(a) =€ f(o‘/B)M(aﬁ) ( af. >(ﬂ), <C13>

where f(,) is holomorphic on U, N Usz and Mgz € Sp(2n + 2,R).

e On the overlap of three charts, U,,Ups, U,, the transition functions satisfy the
cocycle condition,

PUCORICHRICTINE I

(C.14)
MpyMpy My = 1.

Definition C.3 A special Kéhler manifold M is a complex n-dimensional Hodge man-
ifold, s.t.

e Jaholomorphic Sp(2n+2, R) vector bundle H over M and a holomorphic section
v(z) of L® H, s.t. the Kéhler form is

w = —i0dlog(i(v,v)) , (C.15)
where £ denotes the holomorphic line bundle over M that appeared in the defi-

nition of a Hodge manifold, and (v, w) := v"Ow is the symplectic product on H;

e furthermore, this section satisfies

(v,0;v) =0 . (C.16)
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Definition C.4 Let M be a complex n-dimensional manifold, and let V(z,z) be a
2n + 2-component vector defined on each chart, with transition function

Viay = e #enrezfen Mg Vg (C.17)

where fq3 is a holomorphic function on the overlap and M,s) a constant Sp(2n+2,R)
matrix. The transition functions have to satisfy the cocycle condition. Take a U(1)
connection of the form r;dz! — K;dz*, under which V' has opposite charge as V. Define

Uz = 'DIV = (81 + m)V s
_ ' _ _ C.18
Up=D;V = (g+&)V, (C.18)
DIV = (81 — K,L)V y
and impose
(v, Vy = i,
DV =0, (C.19)
V,uy) = 0, '
DUy = 0
Finally define )
gi; = (U;, U3) . (C.20)

If this is a positive metric on M then M is a special Kahler manifold.

The first definition is modelled after the structure found in the scalar sector of four-
dimensional supergravity theories. It is useful for calculations as everything is given in
terms of local coordinates. However, it somehow blurs the coordinate independence of
the concept of special geometry. This is made explicit in the second definition which,
although somewhat abstract, captures the structure of the space. The third definition,
finally, can be used to show that the moduli space of complex structures of a Calabi-
Yau manifold is a special Kahler manifold. The proof of the equivalence of these three
definitions can be found in [38].

Consequences of special geometry
In order to work out some of the implications of special geometry we start from a special
Kéhler manifold that satisfies all the properties of definition C.3. Clearly, (C.15) is
equivalent to K = —log(i(v,v)) and from the transformation property of K we deduce
that v is a field of weight (—4,0) and v of weight (0,4). In other words they transform
as

=e ' Mv, (C.21)

v
from one local patch to another. Here M € Sp(2n + 2,R). The corresponding deriva-
tives are

v=e'Muv,
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~ \ (C.22)
Div = 09w,
and their complex conjugates. Let us define
i = DZ 9
! Y (C.23)
up = D,

i.e. u; is a section of T'® L @ H of weight (—4,0) and u; a section of T®L®H of
weight (0,4). Here we denoted T := TAO(M), T := TV (M). Then the following
relations hold, together with their complex conjugates

D;v 0, (C.24)

Diu; = [D;,Djlv = g;0 , (C.25)
[D:,D;] = 0, (C.26)

Dyu;) = 0, (C.27)

(v,0) = 0, (C.28)

(v,0) = e X, (C.29)

(v,u)) = 0, (C.30)

(uju;) = 0, (C.31)

(v,3) = 0, (C.32)

(wj, i) = —igge™ . (C.33)

(C.24) holds as v is holomorphic by definition, (C.25), (C.26) and (C.27) can be found
by spelling out the covariant derivatives, (C.28) is trivial. (C.29) is (C.15). Note that
(C.16) can be written as (v, D;u) = 0 because of the antisymmetry of (.,.), this gives
(C.30). Taking the covariant derivative and antisymmetrising gives (D;v, Djv) = 0 and
thus (C.31). Taking the covariant derivative of (C.29) leads to (C.32). Taking another
covariant derivative leads to the last relation.

Next we define the important quantity

Cijk = —i€K<DiDjU,DkU> = —i€K<Din,Uk> s (034)

which has weight (—4, —4) and satisfies

Cijk = C(ijk) , (C35>
DiCyr = 0, (C.36)
DCijw = 0, (C.37)

Diu; = C’”kuk , (C.38)

where @ := ¢/*u;. The first two relations can be proven readily from the equations
that have been derived so far. The third relation follows from (u;, [D;, Di]w;) = 0. In
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order to prove (C.38) one expands Dyu; as®> Diu; = a;v + bfjuk + cfjﬁ,; + d,;;v, and
determines the coefficients by taking symplectic products with the basis vectors. The
result is that ¢;;* = C;;* and all other coefficients vanish. Considering (u;, [Dg, Dy]u;)
we are then led to a formula for the Riemann tensor,

Rt = 95696 + Gidji — CimCrg ™ (C.39)
Here C‘;;,jc is the complex conjugate of Cyj and Cp" := g™ Ciip,.-

Matrix formulation
So far we collected these properties in a rather unsystematic and not very illuminating
way. In order to improve the situation we define the (2n + 2) x (2n + 2)-matrix

v
w;"
U= 7 , C.40
,l_)’?'
which satisfies
0 0 0 1
r K 0 0 —giz O
UBU™ =ie 0 gy 0 0| (C.A41)
-1 0 0 0

as can be seen from (C.28)-(C.33). In other words one defines the bundle E := (L &
(TRL) D (T®L)®L)®H = span(v) @ span(u;) & span(i;) & span(v) and U is a
section of E. Let us first study the transformation of & under a change of coordinate
patches. We find

U=5S"UM" (C.42)
where M € Sp(2n + 2,R),
el 0 0 0
0 e fe! 0 0
-1 el
st=1 0 edEl o (C.43)
0 0 0 e/

and § := ¢ = gj;, €= 573 = g% Using (C.23), (C.38), (C.25) and (C.24) one finds

that on a special Kahler manifold the following matrix equations are satisfied?,

2To understand this it is useful to look at the example of the complex structure moduli space
M, of a Calabi-Yau manifold, which is of course the example we have in mind during the entire
discussion. As we will see in more detail below, v is given by the period vector of 2 and the u; have
to be interpreted as the period vectors of a basis of the (2, 1)-forms. Then it is clear that @; should
be understood as period vectors of a basis of (1,2)-forms and finally ¥ is given by the period vector
of Q. The derivative of a (2, 1)-form can be expressed as a linear combination of the basis elements,
which is the expansion of D;u; in terms of v, u;, 4z, v, which now is obvious as these form a basis of
three-forms.

3Note that the matrices C and A are not the complex conjugates of C and A.
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DU = CU,
~ - (C.44)
DU = Gu,
with ,
06 0 0 0 0 0 0
0o 0 C.%F o _ g; 0 0 0
C; = ij L CG=| T C.45
00 0 g 0 CyF 0 0 (©49)
0 0 0 0 0 0 (5%“ 0

Here (55 is a row vector of dimension n with a 1 at position ¢ and zeros otherwise, g,z is
a column vector of dimension n with entry ¢,z at position k, and Cijk is symbolic for
the n x n-matrix C; with matrix elements (C;);* = C;;*. The entries of C; are to be
understood similarly. These matrices satisty [C;,C;] = 0 and C,C;C,C; = 0. It will
be useful to rephrase these equations in a slightly different form. We introduce the
operator matrix D := D;dz’,

- A o C.46
DU = (3’—|—AZU—(D;—(Cg)U:(a;-i-F;—(C;)U—O, ( )
where
0K 0 00 0 0 0 0
r—| 0 OO K —T7 0 0 L_00 0O 0
' 0 0 00 b 0 0 6K—-TL 0 7
0 0 00 00 0 0K
(C.47)
and therefore
K &7 0 0 0 0 0 0
0 &K -Tk C.F 0 _ gij O 0 0
A, = adl ij g . A= _ - -
0 0 0 g 0 Cz* S¥gK -T% 0
0 0 0 0 0 0 &7 O K
(C.48)

Let us see how D transforms when we change patches. From the transformation prop-
erties of D and C we find

A = STTAS+S571dS,

~ _ C.49
A = STTAS+S71dS, ( )
for A := A;dz*, so A is a connection. One easily verifies that

Relation (C.39) for the Riemann tensor gives

[y, Ds)ud = 0 . (C.51)
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All this implies that D is flat on the bundle F.

Special coordinates and holomorphic connections
We see that an interesting structure emerges once we write our equations in matrix
form. To push this further we need to apply the equivalence of definition C.3 and C.2.
In particular, we want to make use of the fact that locally, i.e. on a given chart on M,

we can write ,
U_< é(}' ) ) (C52)

ax7
where X7 = X!(z) and F = F(X(z)) are holomorphic. Furthermore, the X’ can be
taken to be projective coordinates on our chart. There is a preferred coordinate system
given by

a

19(2) = %@) . ae{l,....n}, (C.53)

and the t* are known as special coordinates. To see that this coordinate system really
is useful, let us reconsider the covariant derivative D; on the special Kéhler manifold
M, which contains I'(z, 2), K;(z, 2) := 0;K(z, z). If we make use of special coordinates
these split into a holomorphic and a non-holomorphic piece. We start from Ffj(z, zZ),

set e;* 1= ag—z(f), which does depend on z but not on z, and write
Ffj - gklgigjf = gab(e_l)ak<€_l)BleicaC(ejdezfgdf)
= eic(acejd)(efl)dk + eicejd(acgdﬁgaf(efl)ak
_. Tk k(. =
= I5(2) +T5(2,2) . (C.54)

Note that ffj transforms as a connection under a holomorphic coordinate transforma-
tion z — Z(z), whereas T}, transforms as a tensor. Similarly from (C.12) one finds
that

Ki(z,2) = —0;log(X°(2))

9, 1og {éo—g (%f()(o(z), X(2)) + t_‘l(z)%f(Xo(z), X“(z)))
~0770— (5 qa 6770— (5

i PR X0(3) - it (2) s PR, X0(2)

= K;(2) + Ki(2, 2) . (C.55)

Clearly, K;(z,%) is invariant under Kéhler transformations and K;(z) transforms as
Ki(z) — K;(2) + 9;f(2), which is precisely the transformation law of K;(z,z). Thus,
the transformation properties of I' and K; are carried entirely by the holomorphic parts
and one can define holomorphic covariant derivatives for any tensor ® on M of weight

(¢,9),

qu) =

>
—
<
-
|

(C.56)

~
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where V now only contains the holomorphic connection ['. A most important fact is
that I' is flat, i.e. the corresponding curvature tensor vanishes,

RE, =0Tk —onf + Tk, —TpTE, =0, (C.57)

which can be seen readily from the explicit form of . Next we take Nap to be a constant,
invertible symmetric matrix and define

Gij = €;¢; Ny - (C.58)

It is not difficult to show that the Levi-Civita connection of g;; is nothing but L. If we
take 2z = t* one finds that

)

So the holomorphic part of the connection can be set to zero if we work in special
coordinates. Special or flat coordinates are a preferred coordinate system on a chart
of our base manifold M. But on such a chart v is only defined up to a transformation
0 = e~/ Mv. This tells us that we can choose a gauge for v such that X° = 1. This is,
of course, the gauge in which the holomorphic part of the Kéahler connection vanishes
as well, K; = 0.

Solving the Picard-Fuchs equation
The fact that the connections on a special Kahler manifold can be split into a holo-
morphic connection part and a non-holomorphic tensor part is highly non-trivial. In
the following we present one very important consequence of this fact. Consider once
again the system
DU=0 , DU=0 (C.60)

which holds on any special Kahler manifold. Now suppose we know of a manifold that
it is special Kahler, but we do not know the holomorphic section v. Then we can
understand (C.60) as a differential system for ¢ and therefore for v. These differential
equations are known as the Picard-Fuchs equations. As to solve this system consider
the transformation

U - W:=R'U,
A — A=RYA+IR, (C.61)
A — A:R71<A+5)R,
where
1 0 0 O
-1 . k ]]_ 0 0
R (z,2) = « « 10 (C.62)
* ok k1

Note that for such a matrix R~* the matrix R will be lower diagonal with all diagonal
elements equal to one, as well. Clearly, this transformation leaves v invariant and
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DU=0—DW=0,

_ = (C.63)
DU=0—-DW=0,

with D := 9 + A and D:=d + A. The crucial point is that the solution v that we are
after does not change under this transformation, i.e. we might as well study the system

DW = 0, DW = 0. Next we note that R™Y(z, %) does not have to be holomorphic.

In fact, since the curvature of A vanishes we can go into a system where A =0 and
therefore A = ROR™'. In this gauge we have

oW =0, (C.64)

and from (C.51) one finds -
GA =0, (C.65)

which tells us that the non-holomorphic parts of the connection A vanish and that the
matrices C; are holomorphic. In other words we have D, = 151 — C;, where 151 is the
holomorphic covariant derivative of Eq. (C.56) including K;(z) and f‘fj only and we
are interested in the solutions of the holomorphic system

DW =0 . (C.66)

Note that in this system we still have holomorphic coordinate transformations as a
residual symmetry. Furthermore, if we plug (C.52) in the definition of Cjjj, we find in
the holomorphic system

Cz'jk = —iek (ﬁzﬁjXI)ﬁkf[ — (ﬁz,ﬁjf]>’f)kXI . (C67)
In special coordinates this reduces to
Clope = 10,000 F . (C.68)

The strategy is now to solve the system in special coordinates first, and to find the
general solution from a holomorphic coordinate transformation afterwards. Let us then
choose special coordinates on a chart of M, together with the choice X° = 1, and let

,UT

w=| Y |. (C.69)
Uy

(%)

In special coordinates the equation D, W = 0 reads (0, — Co)W = 0 with

06 0 0
oo ¢, o0

Co=|9 o & o (C.70)
00 0 0
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or
OV = g,
aa = C c~c:
qf” @’ (C.71)
8avc = MNact ,
9,0 = 0.

Recalling (C.68) the solution can be found to be

v 1 tt 04 F 2F —t°0.F

’Ug . 0 5(0}! (91,(9(1}— 8},./7 —t° 8861)]-"

o T 00 —ing it7ec (C.72)
(v0)7 00 0 i

Of course, the solution of DW = 0 in general (holomorphic) coordinates can then be
obtained from a (holomorphic) coordinate transformation of (C.72).

Special geometry and Calabi-Yau manifolds
It was shown in section 3.2 that the moduli space of complex structures of a compact
Calabi-Yau manifold is Kahler with Kahler potential K = —log (z QA Q) Let

K

Vi=e? / QGO (C.73)
r{®

where {FE?’)} = {T'41,[3,} is the set of all three-cycles in X. These cycles are only
defined up to a symplectic transformation and €2 is defined up to a transformation
Q — e/3)Q, see Eq. (3.38). Therefore V is defined only up to a transformation

SIS
Wl

V =V =¢ Ze

MV, (C.74)

with M € Sp(2n + 2;7Z) and f(z) holomorphic. Next we set

1 1
_ _ 1 -
DV = <&i - 5(@1{)) V. (C.76)
For vectors V = [ s Z and W = [ ¥ with Z, ¥ three-forms on X there is a natural
symplectic product, (V,W) := — [ E A X. Then it is easy to verify that (C.19)
holds and i(U;, U;) = —fj( Xé;\\% is indeed nothing but Gg]s). So we find that all the
X

requirements of definition C.4 are satisfied and M, is a special Kahler manifold.
In the context of Calabi-Yau manifolds the projective coordinates are given by
the integrals of the unique holomorphic three-form €2 over the I',:-cycles and the
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holomorphic function F of definition C.2 is nothing but the prepotential constructed
from integrals of €2 over the I'g,-cycles,

Xl = Q , Fr= Q. (C.77)
T ; s,

In other words the vector v of definition C.3 is given by the period vector of €2 and
the symplectic bundle is the Hodge bundle H. This is actually the main reason why
the structure of special geometry is so important for physicist. The integrals of 2
over three cycles is interesting since it calculates the prepotential (and therefore the
physically very interesting quantity Cj;z). On the other hand, using mirror symmetry
a period integral on one manifold can tell us something about the instanton structure
on another manifold. Unfortunately the integrals often cannot be calculated explic-
itly. However, in some cases it is possible to solve the ordinary linear differential
Picard-Fuchs equation for [ 2, which therefore gives an alternative way of extracting
interesting quantities. Indeed, the differential equations that one can derive for [ by
hand agree with the Picard-Fuchs equations of special geometry. Finally we note that
the matrix U is nothing but the period matrix of the Calabi-Yau,
Jae
o
i 002
[ Qs

which can be brought into holomorphic form by a (non-holomorphic) gauge transfor-
mation.

,0
1

)
)
)

C.2 Rigid special geometry

The quantum field theories we are interested in are generated from local Calabi-Yau
manifolds, rather than from compact Calabi-Yau manifolds. We saw already that the
integrals of € over (relative) three-cycles maps to integrals on a Riemann surface. It
turns out that the moduli space of Riemann surfaces carries a structure which is very
similar to the special geometry of Calabi-Yau manifolds, and which is known as rigid
special geometry.

Rigid special Kahler manifolds

Definition C.5 A complex n-dimensional Kéhler manifold is said to be rigid special
Kdhler if it satisfies:

e On every chart there are n independent holomorphic functions X*(2),4 € {1,...,n}
and a holomorphic function F(X), s.t.
0 - . _. 0 )
Kz 2)=i| X'—=F(X") - X" -F(X") ). )
(2:7) =i (X R - X)) (©.19)
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e On overlaps of charts there are transition functions of the form

( 5‘<F1 ) — eiCaBMaﬁ ( é}_{—F’ ) + baﬁ, (C80)
()

with cap € R, Maﬁ S Sp(?n, R), bag e C™,

e The transition functions satisfy the cocycle condition on overlaps of three charts.

Definition C.6 A rigid special Kahler manifold is a Kéhler manifold M with the
following properties:

e There exists a U(1) x ISp(2n,R) vector bundle* over M with constant transition
functions, in the sense of (E.8), i.e. with a complex inhomogeneous piece. This
bundle should have a holomorphic section V', s.t. the Kahler form is

w=—00(V,V) . (C.81)
e We have <82V, 8JV> = 0.

Definition C.7 A rigid special manifold is a complex n-dimensional Kéhler manifold
with on each chart 2n closed holomorphic 1-forms U;dz’,

U =0, 0U;=0, (C.82)
with the following properties:
o (U,U;)=0.
e The Kahler metric is )
gi; = (U;, U;) . (C.83)

e The transition functions read
Uz‘,(a)dzéa) = €icaﬁMa5Ui,(g)dZ§ﬁ) (C.84)

with cog € R, M,z € Sp(2n,R).

e The cocycle condition holds on the overlap of three charts.

4This is a vector bundle with transition function Vi = gicas Map)V +bag, with cop € R, Myg €
Sp(2n,R), bys € C*.
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For the proof of the equivalence of these definitions see [38].

Matrix formulation and Picard Fuchs equations
As before we want to work out some of the consequences of these definitions. Take the

U; from Def. C.7 and define
= < ng ) : (C.85)

Equations (C.82) and (C.83) can then be written in matrix form

VOV" = ( ig: 0 ) . (C.86)
Next we define the (2n x 2n)-matrix
A= —(0V)V, (C.87)
which has the structure i .
Gk C.
L ij ij
we-(% ) 09
where G;% = G Fand C;;* =Cy ) , as can be seen from Eq. (C.82). Then one finds
ik,
- —ai< 0 g ) + V0V (C.89)
195 0
but on the other hand
(0 =gy \ _ ( —iCugn iGagpi
e NG TR (0s0
and therefore, taking the second line of (C.89) minus the transpose of the first,
( iCagn = 1C; ﬂG(m)l) — ( 0 _’igﬂ’) . (C.91)
iGin;j 0 ig; 0

We deduce that C' is symmetric in all its indices and that J;g;; = 0, i.e. it is Kahler.
Hence, we can define the Levi-Civita connection and its covariant derivative

Clearly, G;;* = I'}; and we find
(0 +A)Y =(V,-=C)V=0 , (f}z + Ai)v = (?E - CE)V =0, (C.93)
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and symmetric Cjj;. From [V;, V]V = 0 we deduce that V;C;; = 0 or
Cijr = ViV;ViS (C.95)
for some function S. Acting with [V, ?3] on V gives the identity
Rigi = —CitmCiing™™ . (C.96)

Finally we define D; := V,; — C; and D; := (V; — C;) with the properties [D;,D;] = 0,
(D7, D3] = 0 and [D;,D;]V =0, so D is a flat connection.

Now we use the equivalence of the three definitions and define the special coordinates
to be the holomorphic functions

$9(2) == X(2) . (C.97)

As above the Christoffel symbol splits into a tensor part and a holomorphic connection
part,
k =\ 1k k _
Fij(z’z> _FU(’Z) +T;j(Z,Z), (098)

and once again ' is a flat connection, R(f) = 0, that vanishes if we use special
coordinates. We again define a holomorphic covariant derivative, V, that contains
only the holomorphic part of the connection. Its commutator gives the curvature of I
and therefore vanishes. Next we transform

y - X =81V,

A — A:=85"1A+0)S, (C.99)

A — A:=S5YA+0)S,

where S is chosen such that 17% = 0. Then we are left with

(Va—C)X =0 , 9.X=0. (C.100)
In special coordinates [ vanishes and this reads
— 0 C'abc

0, X = ( 0 0 )X : (C.101)

Using the equivalence of the three definitions we find that

X7
U, = 0; ( Gj}" > . (C.102)

Then, multiplying 9,U, = C,,%U, by UTU we find that in special coordinates

Cabc = Z.aaabac]: ) (0103)

which leads to the solution

d
X:(5b K0uF ) . (C.104)
0 —Med
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Rigid special geometry and Riemann surfaces

For a given Riemann surface Y it is natural to try to construct a rigid special Kahler
manifold using the g holomorphic forms \;. However, the moduli space of a Riemann
surface has dimension 3§ — 3 for § > 1, whereas we can only construct a g-dimensional
rigid special Kahler manifold from our forms. That means that unless ¢ = 1 the special
manifold will be a submanifold of the moduli space of X.

Let then W be a family of genus g Riemann surfaces which are parameterised by only g
complex moduli and let \; be the set of holomorphic one-forms on . Then we identify

U; = < fgk i ) . (C.105)

(E)EU,- = ( tells us that the periods should depend holomorphically on the moduli. Using
Riemann’s second relation one can show that all requirements of definition (C.7) are
satisfied. (E.g. (U;,U;) = 0 follows immediately from the symmetry of the period
matrix; Riemann’s second relation gives the positivity of the metric.) The condition
0;;U;) = 0 has to be checked for the particular example one is considering. On compact
Riemann surfaces it reduces to J;\;; = (dn);;. If the right-hand side is zero then
locally there exists a meromorphic one-form A whose derivatives give the holomorphic

(52)2(}2?) : (C.107)

This implies that, similarly to the case of the Calabi-Yau manifold, the holomorphic
function X* and the prepotential F can be calculated from geometric integrals on the
Riemann surface. However, in contrast to the Calabi-Yau space, the form A\ now is
meromorphic and not holomorphic.

we identify



Appendix D

Topological String Theory

One of the central building blocks of the web of theories sketched in Fig. 1.3 is the B-
type topological string. Indeed, although the relation between effective superpotentials
and matrix models can also be proven using field theory results only [42], [26], the string
theory derivation of this relation leads to the insight that many seemingly different
theories are actually very much related, and the topological string lies at the heart of
these observations. The reason for this central position of the topological string are a
number of its properties. It has been known for a long time [20] that the topological
string computes certain physical amplitudes of type II string theories compactified on
Calabi-Yau manifolds. Furthermore, it turns out that the string field theory of the open
B-type topological string on the simple manifolds X,.s is an extremely simple gauge
theory, namely a holomorphic matrix model [43], as is reviewed in chapter 6. Finally,
we already saw in the introduction that the gauge theory /string theory duality can be
made precise if the string theory is topological. Here we review the definition of the
topological string, together with some of its elementary properties. Since topological
string theory is a vast and quickly developing subject, this review will be far from
complete. The reader is referred to the book of Hori et. al. [81], for more details and
references. For a review of more recent developments see for example [111]. Here we
follow the pedagogical introduction of [133].

D.1 Cohomological field theories

Before we embark on defining the topological string let us define a cohomological field
theory. It has the following properties:

e It contains a fermionic symmetry operator () that squares to zero,
Q*=0. (D.1)

Then the physical operators of the theory are defined to be those that are Q-
closed,

Q.0 =0. (D.2)

179
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e The vacuum is -symmetric, i.e. Q|0) = 0. This implies the equivalence O; ~
O; +{Q, A}, as can be seen from (O;, ... 0; {Q,A}0;, ., ...) = 0, where we used
(D.2).

e The energy-momentum tensor is ()-exact,

08

Taﬁ - ShaB = {QaGaﬁ} . (D3)
This property implies that the correlation functions do not depend on the metric,

0 = 0 iS[¢]

(S}L—O‘B(O“O%) - haﬁ/D¢ O“(Dzne
] 05
= D o

/ ?On - One 5haﬁ

- . Om{Q Gaﬁ}) =0. (D4)

Here we assumed that the O; do not depend on the metric.

The condition (D.3) is trivially satisfied if the Lagrangian is Q-exact,
L={Q,V}, (D.5)

for some operator V. For such a Lagrangian one can actually calculate the correlation
functions exactly in the classical limit. To see this note that

0 0 i

Interestingly, from any scalar physical operator @), i.e. from one that does not
transform under coordinate transformation of M, where M is the manifold on which
the theory is formulated, one can construct a series of non-local physical operators,
which transform like forms. Integrating (D.3) over a space-like hypersurface gives

P, ={Q,G,} . (D.7)
Consider
oW = i{G,, 0} (D.8)
and calculate
%a@“” = [P, 0"

= i[{Q, Ga}, 0]
= +i{{G.,09},Q} —i{{0°,Q},Ga}
Let O := Oldz®, then
0° = {Q,0'} . (D.10)
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Integrating this equation over a closed curve v in M gives

{Q,/O‘”} =0. (D.11)

Therefore, the set of operators f7 OW are (non-local) physical operators. Repeating
this procedure gives

{0} = 0
{00} = a0
{@.0%} = do¥

{0}y = do"
0 = do" (D.12)

where n is the dimension of M. Hence, the integral of O® over a p-dimensional
submanifold of M is physical. In particular, we have

{Q,/M(’)(")} =0. (D.13)

This implies that we can add terms t“(’)én), with ¢* arbitrary coupling constants to the
Lagrangian, and the “deformed” theory then will still be cohomological.

D.2 N =(2,2) supersymmetry in 14+1 dimensions

The goal of this appendix is to construct the B-type topological string. This can be
done by twisting an N/ = (2,2) supersymmetric theory in two (real) dimensions and
then coupling the twisted theory to gravity. Let us therefore start by studying two-
dimensional ' = (2,2) theories. Since we will only be interested in theories living
on complex one dimensional manifolds, which locally look like C, we will concentrate
on field theories on C with coordinates z = x' + i2°. Here i2° can be understood as
Euclidean time.

The Lorentz group on C is given by U(1), and Weyl spinors have only one complex
component!. On the other hand, these spinors transform under the U(1) Lorentz group
and one can classify them according to whether they have positive or negative U(1)-
charge. A theory with p spinor supercharges of positive and ¢ spinor supercharges of
negative charge is said to be a N’ = (p, q¢) supersymmetric field theory.

Here we study N' = (2,2) theories which are best formulated on superspace with
coordinates z, z, 0%, 0%, where 6% are Grassmann variables satisfying (6%)* = 6F. The
superscript = indicates how the spinors transform under Lorentz transformation, z —
2 = ez, namely

G:I: _ (9:&)/ — e:tia/Qe:I: 7 é:l: _ (é:l:)/ — e:l:ia/Qe_:I: ) (D14>

'For a detailed description of spinors in various dimensions see appendix A.2.
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Functions that live on superspace are called superfields and because of the Grassman-
nian nature of the fermionic coordinates they can be expanded as

U(z,2,07,07,0",0_) = ¢(2,2)+0" (2, 2)+0 ¢_(2,2)+0T0" F(2,2)+... . (D.15)

Symmetries and the algebra
Having established superspace, consisting of bosonic coordinates z, Z and fermionic co-
ordinates 6%, 0* we might ask for the symmetry group of this space. In other words we
are interested in the linear symmetries which leave the measure dzdzd6+dg-dé+do-
invariant. Clearly, part of this symmetry group is the two-dimensional Poincaré sym-
metry. The translations are generated by

. d :

H = —Zm — _Z(az - 82) 9
. d .

P = —Zﬁ = —Z(az + 85) .

We saw already how the spinors 6%, §* transform under Lorentz transformation, so the
generator reads

d d - d

d _
M =220, — 220. + 67— _ 4~ gt g ¢ D.1
20: = 220 407 S = 0 g T g 0 g (D-16)

where M is normalised in such a way that €™M rotates the Grassmann variables once

and the complex variables twice. Other linear transformations are the translation of
the fermionic coordinates % generated by % and a change of bosonic coordinates
2z — 2/ = 2 + €f, generated by the eight operators 6%0,, 6705, 00.,070-. From these
various symmetry generators one defines differential operators on superspace,

Qs = a%ﬂ‘eiai, (D.17)
Qy = —%—wiai, (D.18)
Dy = &%—iéiai, (D.19)
Dy = —a%ﬂ'@iai, (D.20)

where we denoted 0, := 0, and 0_ := 0;.
There are two more interesting linear symmetry transformations, known as the
vector and axial R-rotations of a superfield. They are defined as

Ry(a):  (0%,07) — (e7™0F,e0%) , (07,07) — (e7"*07,e"07) ,
Ra(a):  (67,0%) — (e7™@0% 0%) |, (07,07) — ("0 ,e"07)
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with the corresponding operators

d d . d - d
_  _pt 0 + -
Fvo= 0" — 0 g= +0 d§++9 do—’
Py = —ov- Ly Ty g O 2y
A Ao+ do- do+ do- -

Of course, a superfield ¥ might also transform under these transformations,
elefv . \I/(:E”,Hi,ﬁ_i) — emqV\If(x“,e’m@i,eméi) , (D.22)
ePra . \ll(a:“,é'i,@i) — equ\If(x“,eijQi,eiwéi) , (D.23)
where ¢y and g4 are known as the vector and axial R-charge of .

From the operators constructed so far it is easy to derive the commutation relations.
One obtains the algebra of an N' = (2,2) supersymmetric theory

[M,H] = —2P , [M,P]=-2H
Q=0 = Q+ o’ =0
{Q+, 0.} = H+P
[M,Qs] = FQi , [M,Qu)=7F0:
[F, Qs = -9+ , [Fy,Qs]=+04
[F4,Q:] = FQOi , [F4,9:]==404. (D.24)

Chiral superfields
A chiral superfield is a function on superspace that satisfies

Di®=0, (D.25)

and fields satisfying
DY =0 (D.26)

are called anti-chiral superfields. Note that the complex conjugate of a chiral superfield
is anti-chiral and vice-versa. A chiral superfield has the expansion

O(z,60%,05) = p(w, w) + 0y (w, @) + 0 Y_(w,w) + 070" F(w,w) , (D.27)

where w := z — 070" and w := Z — i@~ 6. Note that a O-transformed chiral field is
still chiral, because the Q-operators and the D-operators anti-commute.

Supersymmetric actions
We are interested in actions that are invariant under the supersymmetry transformation

§=€Q,+e Q +e0,+e O_. (D.28)

Let K(W,,
tity

;) be a real differentiable function of superfields ¥; and consider the quan-

0,
/ z d*0 K(¥;,¥;)) = /dz dz d0Tdo—doTdo K (U, ;) . (D.29)
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Functionals of this form are called D-terms and it is not hard to see that they are
invariant under the supersymmetry transformation (D.28). If we require that for any
W, with charges ¢i,, ¢', the complex conjugate field ¥; has opposite charges —qy, —qa,
the D-term is also invariant under the axial and vector R-symmetry.

Another invariant under supersymmetry can be constructed from chiral superfields ®;.
Let W(®;) be a holomorphic function of the ®;, called the superpotential, and consider

/ 22 d20 W (D)) = / A2z do+do— W (®,) (D.30)
6£=0

This invariant is called an F-term. Clearly, this term is invariant under the axial R-
symmetry if the ®; have g4 = 0. The vector R-symmetry, however, is only conserved
if we can assign vector R-charge two to the superpotential W (®). For monomial
superpotentials this is always possible.

It is quite interesting to analyse the action (D.29) in the case in which K is a
function of chiral superfields ®; and their conjugates. As to do so we want to spell out

the action in terms of the component fields and keep only those fields that contain the
fields ¢;. The coefficient of 6t0~076~ can be read off to be

dK , d’K , , d*’K — , dK

-0,0_¢'+ ———0,0'0_¢) = ——=0,¢’0_¢" +d .
Of course, the last term vanishes under the integral. The ¢’-dependent terms give the
same expression with + and — interchanged. This implies that the ¢, ¢-dependent
part of the D-term action can be written as

aqﬁi) . (D.31)

Sp = —/sz gijnaﬂaaﬁ@ﬁ@j , (D.32)

withnpt= =9t =2, 7"t =9~ =0 and

- d*K

If we interpret the ¢' as coordinates on some target space M, we find that this space
carries as metric g;; which is Kahler with Kahler potential K. Of course, one could
also write down all the other terms appearing in the action (D.29), but the expression
would be rather lengthy. One the other hand it does not contain derivatives of the
F;, and all F; appear at most quadratically. Therefore, we can integrate over F; in
the path integral and the result will be to substitute the value it has according to its
equation of motion. Then the action turns into the rather simple form

(D.33)

L = —g;0°¢' 0.0’ — gz’ A v’ — 2ig5l Al — Ry wflgl . (D.34)
where
R = 9" 09m;jOk9ni — Ou0igij
A’ = 0ot +Th0:070" (D.35)

7

ik = gilakgfj-
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Quantum theory and anomalies
When studying a quantum field theory it is always an interesting question whether the
symmetries of the classical actions persist on the quantum level, or whether they are
anomalous. Here we want to check whether the quantum theory with action (D.29),
and with chiral superfields ®; instead of the general fields U;, is still invariant under the
vector and axial symmetries. One possibility to analyse the anomalies of a quantum
theory is to study the path integral measure,

[[P¢' Dy, DY DF' x cc. . (D.36)

If we take the charges gy, g4 of all the ®; to zero, the ¢* do not transform under R-
symmetry and, as we just saw, the " can be integrated out, so it remains to check
whether the fermion measure is invariant. To proceed one first of all assumes that the
size of the target manifold is large compared to the generic size of the world-sheet. In
this case the Riemann curvature will be small and one can neglect the last term in the
action (D.34). Then the path integral over ¢_ has the form

/ Dv_Di_exp(b, M) | (D.37)

where the inner product is defined as (a, b) := f@ a'b;. A quantity that will be important
in what follows is the index k of the operator A,

k = dim KerA, — dim KerAl . (D.38)

This quantity is actually a topological invariant, and the Atiyah-Singer index theorem
tells us that in this simple case it can be written as

k= Cl./\/l. D.
/M) (M) (D.39)

Here ¥ is the world-sheet, i.e. it is C in the case we studied so far, and M denotes the
target space. We will not address the problem of how to study the fermion measure
in detail, but we only list the results. First of all, because of the Grassmannian
nature of the integrals over the fermionic variables, one can show that the quantity
i Dp_Dip_exp(p_, Ay1p_) does actually vanish, unless k¥ = 0. In order to obtain a
non-zero result for finite &£ one has to insert fermions into the path integral,

/DmeDszﬂ (giljlwi_l(zl)&il(zl) . -gikjkw_k (%)@f(zk)) e . (D-4O)

It is easy to see that these quantities are invariant under the vector symmetry, but
the axial symmetry is broken unless £ = 0. This is a first indication why Calabi-Yau
manifolds are particularly useful for the topological string, since k& = 0 implies that

C1 (M) =0.
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D.3 The topological B-model

The starting point of this section is once again the action
S = / d?zd*0K (', ®) (D.41)
by

with chiral superfields ®, now formulated on an arbitrary Riemann surface X.
The N = (2,2) supersymmetric field theories constructed so far are not yet coho-
mological theories. Note however, that

{0, +0Q..9,-0Q} = 2H,
{@++§—>Q++Q—} = 2P,

so if we define - o
QR =09, +9_ (D.42)

then
QL =0, (D.43)

and H and P are ()g-exact. However, one of the central properties of a cohomological
theory is the fact that it is independent of the world-sheet metric, i.e. one should be
able to define it for an arbitrary world-sheet metric. This can be done on the level of
the Lagrangian, by just replacing partial derivatives with respect to the world-sheet
coordinates by covariant derivatives. However, one runs into trouble if one wants to
maintain the symmetry of the N' = (2,2) theory. In particular, the supersymmetries
should be global symmetries, not local ones. This amounts to saying that in the
transformation d®! = " Q_ ® the spinor €' has to be covariantly constant with respect
to the world-sheet metric. But for a general metric on the world-sheet there are no
covariantly constant spinors. So, it seems to be impossible to construct a cohomological
theory from the N' = (2,2) supersymmetric one.

On the other hand, for a symmetry generated by a bosonic generator the infinitesi-
mal parameter is simply a number. In other words, it lives in the trivial bundle ¥ x C
and can be chosen to be constant. This gives us a hint on how the above problem can
be solved. If we can somehow arrange for some of the Q-operators to live in a trivial
bundle, the corresponding symmetry can be maintained. Clearly, the type of bundle
in which an object lives is defined by its charge under the Lorentz symmetry. We are
therefore led to the requirement to modify the Lorentz group in such a way that the
Qpg-operator lives in a trivial bundle, i.e. has spin zero. This can actually be achieved
by defining

Mp:= M — Fu (D.44)

to be the generator of the Lorentz group. One then finds the following commutation
relations

[M37 Q-l—] = _2Q+ ) [MB7
[MB,Q-l—] =0 ) [MBv
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Note that now the operator (Jp indeed is a scalar, and therefore the corresponding
symmetry can be defined on an arbitrary curved world-sheet. This construction is
called twisting and we arrive at the conclusion that the twisted theory truly is a co-
homological field theory. Of course, on the level of the Lagrangian one has to replace
partial derivatives by covariant ones for general metrics on the world-sheet, but now
the covariant derivatives have to be covariant with respect to the modified Lorentz
group.

So far our discussion was on the level of the algebra and rather general. Let us now
come back to the action (D.41) analysed in the last section. Note first of all that the
B-type twist (D.44) involves the axial vector symmetry, which remains valid on the
quantum level only if we take the target space to have ¢; = 0. Therefore, we will take
the target space M to be a Calabi-Yau manifold from now on.

Let us then study in which bundles the various fields of our theory live after twisting.
It is not hard to see that

Y€ AY(D) @ ¢ (THI(M))
Y€ AM(D) @ ¢ (THIM))
o€ ¢ (TONM))
o€ ¢ (TOIM))

where € means “is a section of”. This simply says that e.g. " transforms as a
(_1, 0)-form on the world-sheet and as a holomorphic vector in space time, whereas e.g.

Y. transforms as a scalar on the world-sheet, but as an anti-holomorphic vector in
space-time. It turns out that the following reformulation is convenient,

=+t

t; = gzj(?/_fi - ij—) )
pL =,
pri=1l

The twisted N' = (2, 2) supersymmetric theory with a twist (D.44) and action (D.41)
is called the B-model. Its Lagrangian can be rewritten in terms of the new fields,

L=-t (9677&5 0a0'0p¢ + gz (Aszp; + Dop) + i0:(Azp, — Azpl) + %Ruklﬂip’in]@)

(D.45)
where t is some coupling constant. Here we still used a flat metric on ¥ to write the
Lagrangian, but from our discussion above we know that we can covariantise it using

an arbitrary metric on the world-sheet, without destroying the symmetry generated by
@ p. The Lagrangian can be rewritten in the form

L=-it{Qp,V} 1t (Z@(Azf)z —Aspl) + §Rijklpzp’2n]91) , (D.46)
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with

V = gij (p.0:0" + p:0.97) . (D.47)
Now it seems as if the B-model was not cohomological after all, since the second term
of (D.45) is not @p-exact. However, it is anti-symmetric in z and Z, and therefore it
can be understood as a differential form. The integral of such a form is independent
of the metric and therefore the B-model is a topological quantum field theory.

We mention without proof that the B-model does depend on the complex structure
of the target space, but it is actually independent of its Kéhler structure [146]. The
idea of the proof is that the variation of the action with respect to the Kahler form is
() p-exact.

Furthermore, the t-dependence of the second term in (D.45) can be eliminated
by a rescaling of 6;. If one studies only correlation function which are homogeneous
in @, the path integral only changes by an overall factor of ¢t to some power. Apart
from this prefactor the correlation function is independent of ¢, as can be seen by
performing a calculation similar to the one in (D.6). But this means that to calculate
these correlation functions one can take the limit in which ¢ is large and the result will
be exact. This fact has interesting consequences. For example consider the equations
of motion for ¢ and ¢,

0.¢' = 0:¢' = 9.¢' = 0:¢' =0, (D.48)

which only have constant maps as their solutions. Since the “classical limit” t — oo
gives the correct result for any ¢, up to an overall power of ¢, we find that in the path
integral for ¢ we only have to integrate over the space of constant maps, which is
simply the target space M itself.

A set of metric independent local operators can be constructed from

o —— — 0 0
V= V2" g)de™ AL do'r— .. — D.49
R e (D.49)
as o ) )
Oy = Vilif((b, o).l .0, (D.50)
The transformation laws
{QB7¢i} =0 ) {QB7(Z_§;L} = _7]5 )
{Qp,0:} =0, {Q@s,n'}=0,
can then be used to show that
{QB,Ov} = -0y . (D.51)

We see that Qp can be understood as the Dolbeault exterior derivative 0 and the
physical operators are in one-to-one correspondence with the Dolbeault cohomology
classes.
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D.4 The B-type topological string

So far the metric on the world-sheet was taken to be a fixed background metric. To
transform the B-model to a topological string theory one has actually to integrate over
all possible metrics on the world-sheet. If one wants to couple an ordinary field theory
to gravity the following steps have to be performed.

e The Lagrangian has to be rewritten in a covariant way, by replacing the flat

metrics by dynamical ones, introducing covariant derivatives and multiplying
the measure by vdeth

e One has to add an Einstein-Hilbert term to the action, plus possibly other terms,
to maintain the original symmetries of the theory.

e The path integral measure has to include a factor Dh, integrating over all possible
metrics.

Here we only provide a sketch of how the last step of this procedure might be
performed. We start by noting that, once we include the metric in the Lagrangian, the
theory becomes conformal. But this means that one can use the methods of ordinary
string theory to calculate the integral over all conformally equivalent metrics. An
important issue that occurs at this point in standard string theory is the conformal
anomaly. To understand this in our context let us review the twisting from a different
perspective. We start from the energy momentum tensor 7,s, which in conformal
theories is known to have the structure T,; = Ts, = 0, T,, = T(z) and Ts; = T(Z).

One expands T'(z) = > L,2z"™ 2 and the Virasoro generators satisfy
(Lins L] = (m — 1) Ly + 1—62m(m2 —1)d . (D.52)

¢ is the central charge and it depends on the theory. Technical problems occur for
non-zero c¢, since the equation of motion for the metric reads

5S
Shag

=Ty =0. (D.53)

In conformal theories this equation is imposed as a constraint, i.e. one requires that a
physical state | ) satisfies

L) =0 VmeZ. (D.54)

This is compatible with the Virasoro algebra only if ¢ = 0. If ¢ # 0 one speaks of a
conformal anomaly. Let us then check whether we have a central charge in the case of
the twisted theory.

Note from (D.21) that Fy + F4 acts on objects with a + index, i.e. on left-moving
quantities, whereas Fy — F'4 acts on objects with a minus index, i.e. on right-moving
quantities. Therefore we define Fy, := Fy + F4 and Fg := Fy — Fr. It can be shown
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that these two symmetries can be identified with the two components of a single global
U(1) current. To be more precise we have

FL = / J(=)dz | (D.55)

and similarly for Fr. Expanding the current as

o0

J(z) = Z " (D.56)

m=—00

gives I, = 2miJo. Now recall that Mp = M — Fy = M — %(FL — Fr) and from
M = 27TZ(L0 - Lo) we find

Lo = Ly — %JO . Low=1Lo— %JO | (D.57)
This twisted Virasoro generator can be obtained from
To(z) = T(2) + 50() (D.58)
with generators
Lovss = Ly — %(m 1) (D.59)

The algebra of these modified generators can be calculated explicitly and one finds
[Lm,Bu Ln,B] = (m - n)Lm—i-n,B . (D.GO)

We find that the central charge is automatically zero, and as a consequence the topo-
logical string is actually well-defined in any number of space-time dimensions.

Now we can proceed as in standard string theory, in other words we sum over all
genera ¢ of the world-sheet, integrate over the moduli space of a Riemann surface of
genus ¢ and integrate over all conformally equivalent metrics on the surface. In close
analogy to what is done in the bosonic string the free energy at genus § of the B-model
topological string is given by (c.f. Eq. (5.4.19) of [117])

3§-3
by = / < 11 (dmi A dmi/ Gzz(ui)i/ Gzz(uz)§)> : (D.61)
Mg\ g by )

where M is the moduli space of a Riemann surface of genus §. As usual the (p;)% are
defined from the change of complex structure, dz* — dz’ + €(u')Zdz, and the dm’ are
the dual forms of the p;. Furthermore, the quantity G, is the Q-partner of the energy
momentum tensor component 7. Interestingly, one can show that the F}; vanish for
every g > 1, unless the target space of the topological string is of dimension three.

This elementary definition of the B-type topological string is now the starting point
for a large number of interesting applications. However, we will have to refrain from
explaining further details and refer the interested reader to the literature [81], [133],
[111].



Appendix E

Anomalies

Anomalies have played a fascinating role both in quantum field theory and in string
theory. Many of the results described in the main text are obtained by carefully
arranging a given theory to be free of anomalies. Here we provide some background
material on anomalies and fix the notation. A more detailed discussion can be found
in [P4]. General references are [11], [12], [13], [134] and [139]. In this appendix we
work in Euclidean space.

E.1 Elementary features of anomalies

In order to construct a quantum field theory one usually starts from a classical theory,
which is quantized by following one of several possible quantization schemes. Therefore,
a detailed analysis of the classical theory is a crucial prerequisite for understanding
the dynamics of the quantum theory. In particular, the symmetries and the related
conservation laws should be mirrored on the quantum level. However, it turns out that
this is not always the case. If the classical theory possesses a symmetry that cannot
be maintained on the quantum level we speak of an anomaly.

A quantum theory containing a massless gauge field A is only consistent if it is
invariant under the infinitesimal local gauge transformation

Al(x) = A(z) + De(x) . (E.1)

The invariance of the action can be written as

5S[A]

D) 3 A (7)

~0, (E.2)

where A = A, T, = AunTodz™. Then we can define a current corresponding to this
symmetry,

0S[A

T () = S

B 6AaM(x) ’ (Eg)

191
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and gauge invariance (E.2) of the action tells us that this current is conserved,
Dy JM(z)=0. (E.4)
Suppose we consider a theory containing massless fermions v in the presence of an

external gauge field A. In such a case the expectation value of an operator is defined
1

* [ DYDY Oexp(—S[w, A)
O =" DiDi exp(—5Tv. A) 9
and we define the quantity
exp(~X[A)) i= [ DvD exp(=5[v. A) (E6)
Then it is easy to see that "
(U2 = 53 o (E:7)

An anomaly occurs if a symmetry is broken on the quantum level, or in other words
if X[A] is not gauge invariant, even though S[¢), A] is. The non-invariance of X|[A]
can then be understood as coming from a non-trivial transformation of the measure.
Indeed, if we have

DDy — exp (i/ddx €a(7)Golx; A]) DD, (E.8)

then the variation of the functional (E.6) gives

exp(—X[A])/ddx Dy (JM(2))eq(z) = /ddx/ngDQE[iGa[x;A]ea(x)] exp(—9) .
(E.9)
This means that the quantum current will no longer be conserved, but we get a gen-

eralised version of (E.4),
Dyt (T2 (2)) = iGalr; A] (E.10)

Go|z; A] is called the anomaly.

Not every symmetry of an action has to be a local gauge symmetry. Sometimes
there are global symmetries of the fields

' =D+ icAD . (E.11)

These symmetries lead to a conserved current as follows. As the action is invariant
under (E.11), for

' =&+ ic(r) AD (E.12)
'We work in Euclidean space after having performed a Wick rotation. Our conventions in the
Euclidean are as follows: Sy = iSg, iz, = 2}, z}, = 2%,... 29" = 24; T}, = T, T}, =

— .d . . . .
r%,...T9 ' =T%; I'p:=i2T},...,'4. For details on conventions in Euclidean space see [P3].
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we get a transformation of the form
dS[P] = —/dda: JM(2)0pe(x) (E.13)

If the fields ® now are taken to satisfy the field equations then (E.13) has to vanish.
Integrating by parts we find
oM (x) =0, (E.14)

the current is conserved on shell.? Again this might no longer be true on the quantum
level. An anomaly of a global symmetry is not very problematic. It simply states that
the quantum theory is less symmetric than its classical origin. If on the other hand
a local gauge symmetry is lost on the quantum level the theory is inconsistent. This
comes about as the gauge symmetry of a theory containing massless spin-1 fields is
necessary to cancel unphysical states. In the presence of an anomaly the quantum
theory will no longer be unitary and hence useless. This gives a strong constraint for
valid quantum theories as one has to make sure that all the local anomalies vanish.

The chiral anomaly
Consider the specific example of non-chiral fermions v in four dimensions coupled to
external gauge fields A = AT, = A,,T,dz" with Lagrangian

L= TEWMDMD = YEZ"YM(au + A (E.15)
It is invariant under the global transformation

Y= exp(ieys )y (E.16)

with € an arbitrary real parameter. This symmetry is called the chiral symmetry. The
corresponding (classical) current is

Jy () = Y(2)7" 59 () |

and it is conserved 0, Jf = 0, by means of the equations of motion. For this theory
one can now explicitly study the transformation of the path integral measure [62], see
[P4] for a review. The result is that

Glz; Al = tr[e"P7 F,(x) Fpp ()] . (E.17)

1672
We conclude that the chiral symmetry is broken on the quantum level and we are left
with what is known as the chiral anomaly
7; Vpo
8M<J§($)> = @EM g trFuy<I’)FpU($) . (E18)

2This can be generalized to theories in curved space-time, where we get V,J™ (z) = 0, with the
Levi-Civita connection V.
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The non-Abelian anomaly
Next we study a four-dimensional theory containing a Weyl spinor y coupled to an
external gauge field A = A,T,. Again we take the base manifold to be flat and four-
dimensional. The Lagrangian of this theory is

L= X" D, Prx = Xiv" (0 + Au) Pex - (E.19)

It is invariant under the transformations

|
j’ = zlz(/{—i— d)g , (E.20)
with the corresponding current
JE(x) = i0(@) Ty Pyx (o) (E.21)
Again the current is conserved on the classical level, i.e. we have
D,J!(x)=0. (E.22)

In order to check whether the symmetry is maintained on the quantum level, one once
again has to study the transformation properties of the measure. The result of such a
calculation (see for example [134], [109]) is®

1 1
DulJi(w)) = 55 (L0, (A0, As + 5A,A,A,)] (E.23)

If the chiral fermions couple to Abelian gauge fields the anomaly simplifies to

t vpo (& Z vpo C
D, (J}(z)) = —mﬁu P70, AL O, AG - (qahie) = —@GM PEES - (qathie) - (E.24)
Here we used T, = iq, which leads to D = d + iq,A,, the correct covariant derivative
for Abelian gauge fields. The index a now runs from one to the number of Abelian

gauge fields present in the theory.

Consistency conditions and descent equations
In this section we study anomalies related to local gauge symmetries from a more
abstract point of view. We saw above that a theory containing massless spin-1 particles
has to be invariant under local gauge transformations to be a consistent quantum
theory. These transformations read in their infinitesimal form A, (y) — A, (y)+D.e(y).
This can be rewritten as A,,(y) — Au(y) — i [ d'z e,(2)To(x) Au(y), with

0 4] )

_%—5‘4#&(%) - CabcAHb(x) (E25)

—i7,(z) = A @)

3Note that this anomaly is actually purely imaginary as it should be in Euclidean space, since it
contains three factors of T, = —it,.
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Using this operator we can rewrite the divergence of the quantum current (E.10) as
T,(2) X[A] = Ga[; A] (E.26)
It is easy to show that the generators 7,(z) satisfy the commutation relations
To(2), To(y)] = iCan To(2)(w — ) - (£.27)
From (E.26) and (E.27) we derive the Wess-Zumino consistency condition [136]
1.(2)Goly; A] — Ty(y)Galz; A] = iCaped(x — y)Ge[r; A] - (E.28)

This condition can be conveniently reformulated using the BRST formalism. We in-
troduce a ghost field ¢(x) := ¢,(x)T, and define the BRST operator by

sA = —Dc, (E.29)
1
sc = _5[07 cl . (E.30)

s is nilpotent, s* = 0, and satisfies the Leibnitz rule s(AB) = s(A)B + As(B), where
the minus sign occurs if A is a fermionic quantity. Furthermore, it anticommutes with
the exterior derivative, sd + ds = 0. Next we define the anomaly functional

Glg Al == /d4x Ca(x)Go[z; A] . (E.31)

For our example (E.23) we get

Al — ¢ L3
Glg Al = Y /tr {c d {AdA%— 2A ]} . (E.32)
Using the consistency condition (E.28) it is easy to show that
sGle; Al =0 (E.33)

Suppose G[c; A] = sF[A] for some local functional F[A]. This certainly satisfies (E.33)
since s is nilpotent. However, it is possible to show that all these terms can be cancelled
by adding a local functional to the action. This implies that anomalies of quantum
field theories are characterized by the cohomology groups of the BRST operator. They
are the local functionals G|c; A] of ghost number one satisfying the Wess-Zumino con-
sistency condition (E.33), which cannot be expressed as the BRST operator acting on
some local functional of ghost number zero.

Solutions to the consistency condition can be constructed using the Stora-Zumino
descent equations. To explain this formalism we take the dimension of space-time to
be 2n. Consider the (2n + 2)-form

1 i\
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which is called the (n+1)-th Chern character®. As F satisfies the Bianchi identity we
have dF = [A, F|, and therefore, trF"™! is closed, d trF™*! = 0. One can show (see
[P4] for details and references) that on any coordinate patch the Chern character can
be written as

Chn+1(A) = dQQn+1, (E35)
with
1 /i \""" ! .

Here F}, := dA; + %[At,At], and A, := tA interpolates between 0 and A, if ¢ runs
from 0 to 1. Qy,41(A) is known as the Chern-Simons form of ch,1(A). From the
definition of the BRST operator and the gauge invariance of trF™*! we find that
s(trF™t1) = 0. Hence d(sQ2,41(A)) = —sdQa,11(A) = —s(ch,;1(A)) = 0, and, from
Poincaré’s lemma,

$Qony1(A) = d2, (c, A) . (E.37)
Similarly, d(sQ3,(c, A)) = —5*Qg,41(A) = 0, and therefore

SQ;n<C> A) = dQ%n71<Cv A) : (ESS)

(E.37) and (E.38) are known as the descent equations. They imply that the integral of
04, (c, A) over 2n-dimensional space-time is BRST invariant,

S/ Q3,(c,A)=0. (E.39)
M27L

But this is a local functional of ghost number one, so it is identified (up to possible
prefactors) with the anomaly G[c; A]. Thus, we found a solution of the Wess-Zumino
consistency condition by integrating the two equations d€2s,1(A) = ch,1(A) and
dQl (¢, A) = sQ9,+1(A). As an example let us consider the case of four dimensions.
We get

Q5(A) = %(é)g /0 ldt tr(AF?) | (E.40)
Qi(c, A) = 48iﬂgtr{cd{AF—%A3H. (E.41)

Comparison with our example of the non-Abelian anomaly (E.32) shows that indeed

Glc; Al = —QW/Qi(c, A) . (E.42)

4A more precise definition of the Chern character is the following. Let Let E be a complex vector
bundle over M with gauge group G, gauge potential A and curvature F. Then ch(A) := tr exp (%)

is called the total Chern character. The jth Chern character is ch;(A) := %tr (%)]
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Having established the relation between certain polynomials and solutions to the Wess-
Zumino consistency condition using the BRST operators it is actually convenient to
rewrite the descent equations in terms of gauge transformations. Define

Gle; A] := /d4x €a(2)Go[z; A . (E.43)

From (E.29) it is easy to see that we can construct an anomaly from our polynomial
by making use of the descent

Cthrl (A) = dQ2n+1(A) ) 5692n+1 (A) = dQ%n(@*A)a (E44)

where 0. A = De. Clearly we find for our example

tr {e d [AF — %AS] } : (E.45)

and we have

Gle, A] = QW/Qi(e,A) : (E.46)

We close this section with two comments.

e The Chern character vanishes in odd dimension and thus we cannot get an anomaly
in these cases.

e The curvature and connections which have been used were completely arbitrary.
In particular all the results hold for the curvature two-form R. Anomalies related to
a breakdown of local Lorentz invariance or general covariance are called gravitational
anomalies. Gravitational anomalies are only present in 4m + 2 dimensions.

E.2 Anomalies and index theory

Calculating an anomaly from perturbation theory is rather cumbersome. However,
it turns out that the anomaly G|x; A] is related to the index of an operator. The
index in turn can be calculated from topological invariants of a given quantum field
theory using powerful mathematical theorems, the Atiyah-Singer index theorem and
the Atiyah-Patodi-Singer index theorem®. This allows us to calculate the anomaly
from the topological data of a quantum field theory, without making use of explicit
perturbation theory calculations. We conclude, that an anomaly depends only on the
field under consideration and the dimension and topology of space, which is a highly
non-trivial result.

Indeed, for the operator iy*D,, appearing in the context of the chiral anomaly the
Atiyah-Singer index theorem (c.f. appendix B.4 and theorem B.45) reads

ind(iv*D,,) = /M [ch(F)A(M)]yo1 - (E.47)

5The latter holds for manifolds with boundaries and we will not consider it here.
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We studied the chiral anomaly on flat Minkowski space, so A(M) = 1. Using (B.51)
we find

1
ind (iv"D,,) = —32 / trF? . (E.48)

and

Glz; Al = tr[e"P7 F () Fpo ()] , (E.49)

1672
which is the same result as (E.17). We see that it is possible to determine the structure
of G[z; A] using the index theorem.

Unfortunately, in the case of the non-Abelian or gravitational anomaly the calcula-
tion is not so simple. The anomaly can be calculated from the index of an operator in
these cases as well. However, the operator no longer acts on a 2n-dimensional space,
but on a space with 2n 4+ 2 dimensions, where 2n is the dimension of space-time of the
quantum field theory. Hence, non-Abelian and gravitational anomalies in 2n dimen-
sions can be calculated from index theorems in 2n + 2 dimensions. Since we do not
need the elaborate calculations, we only present the results. They were derived in [13]
and [12] and they are reviewed in [11].

We saw already that it is possible to construct solutions of the Wess-Zumino con-
dition, i.e. to find the structure of the anomaly of a quantum field theory, using the
descent formalism. Via descent equations the anomaly GJc; A] in dimension 2n is re-
lated to a unique 2n + 2-form, known as the anomaly polynomaial. 1t is this 2n 4 2-form
which contains all the important information of the anomaly and which can be cal-
culated from index theory. Furthermore, the 2n 4 2-form is unique, but the anomaly
itself is not. This can be seen from the fact that if the anomaly G|c; A] is related to
a 2n + 2-form I, then G[c, A] + sF[A], with a 2n-form F[A] of ghost number zero, is
related to the same anomaly polynomial /. Thus, it is very convenient, to work with
anomaly polynomials instead of anomalies.

The only fields which can lead to anomalies are spln—— fermions, spm—é fermions and
also forms with (anti-)self-dual field strength. Their anomalies were ﬁrst calculated in
[13] and were related to index theorems in [12]. The result is expressed most easily in
terms of the non-invariance of the Euclidean quantum effective action X. The master
formula for all these anomalies reads

6X = z'/fgn , (E.50)

where dI, = 0ly,41 , dlyyi1 = Iopie. The 2n + 2-forms for the three possible
anomalies are

)3 = —2n _A(Man) ch(F)]M, (E.51)
fz(i/f% = —2r A(Mzn) tr exp ~R)-1 ch(F) : (E.52)
2m 2n+2
1
Ly, = —27 < 5)— MQn):| : (E.53)
2n+2
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To be precise these are the anomalies of spin—% and spin—% particles of positive chirality
and a self-dual form in Euclidean space under the gauge transformation A = De and
the local Lorentz transformations dw = De. All the objects which appear in these
formulae are explained in appendix B.4.

Let us see whether these general formula really give the correct result for the
non-Abelian anomaly. From (E.8) we have 60X = —i [e(z)Gx; 4] = —iG[e; Al
Next we can use (E.46) to find 60X = —2miQl(e, A). But —27Qi(e, A) is related to
—2mchy,11(A) = —27[ch(F)]an+2 via the descent (E.44). Finally —27[ch(F)]|an 42 is ex-
actly (8.31) as we are working in flat space where A(M)=1.

The spin—% anomaly® is often written as a sum
70/2) — /2 4 (/2 r(1/2) (E.54)

gauge mixed grav

with the pure gauge anomaly

Ié}l{f])e = [Ch(A)]2n+2 = Chn+1(A) s (E55)
a gravitational anomaly R
502 = [A(M))anss (E.56)
and finally all the mixed terms
1/2
D R (E.57)

n is the dimension of the representation of the gauge group under which F' transforms.

Anomalies in four dimensions

There are no purely gravitational anomalies in four dimensions. The only particles
which might lead to an anomaly are chiral spin-1/2 fermions. The anomaly polynomials
are six-forms and they read for a positive chirality spinor in Euclidean space’

I2 (F) = =2 chy(A) = mtrﬁ’ . (E.58)

The mixed anomaly polynomial of such a spinor is only present for Abelian gauge fields
as tr(T,)F, vanishes for all simple Lie algebras. It reads

1 1
102 (R F) = —— " —trR*rF = =

/ —— —trR*FY, . E.59
mized (2m)?3! 8 s (E.59)

SWe use the term “anomaly” for both G[z; A] and the corresponding polynomial 1.
"Note that the polynomials are real, since we have, as usual, A = A,T, and T, is anti-Hermitian.
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Anomalies in ten dimensions

In ten dimensions there are three kinds of fields which might lead to an anomaly.
These are chiral spin-3/2 fermions, chiral spin-1/2 fermions and self-dual or anti-self-
dual five-forms. The twelve-forms for gauge and gravitational anomalies are calculated
using the general formulae (8.31) - (8.33), together with the explicit expressions for
A(M) and L(M) given in appendix B.4. One obtains

1
W) =
12 (R F) = 1 —trR4TrF2 > — (trR*)*TrF? — §tl"R2TrF4‘
mized 27_‘_ 56| 64 8
)
I0(R ~Lar - Lurar - trR?
grav ( ) 27_‘_ 56| 504 ! 384 ' ' 4608( ' )
35
IB2(R) = —t R® — t RYR? + ——(trR?)?
grav ( ) 27T)56' 512( r )
1 496 7 5
J6—form) Ry — ———trR® + —trR*rR? — —(trR%)?* ) . E.60
grav ( ) (27]')56 504 12 r r 72( r ) ( )

The Riemann tensor R is regarded as an SO(9, 1) valued two-form, the trace tr is over
SO(1,9) indices. It is important that these formulae are additive for each particular
particle type. For Majorana-Weyl spinors an extra factor of % must be included,
negative chirality spinors (in the Euclidean) carry an extra minus sign.
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Abstract

We construct 7-dimensional compact Einstein spaces with conical singulari-
ties that preserve 1/8 of the supersymmetries of M-theory. Mathematically
they have weak Go-holonomy. We show that for every non-compact Go-
holonomy manifold which is asymptotic to a cone on a 6-manifold Y, there
is a corresponding weak Go-manifold with two conical singularities which,
close to the singularities, looks like a cone on Y. Our construction provides
explicit metrics on these weak Go-manifolds. We completely determine the
cohomology of these manifolds in terms of the cohomology of Y.
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Abstract

When M-theory is compactified on Go-holonomy manifolds with conical
singularities, charged chiral fermions are present and the low-energy four-
dimensional theory is potentially anomalous. We reconsider the issue of
anomaly cancellation, first studied by Witten. We propose a mechanism
that provides local cancellation of all gauge and mixed gauge-gravitational
anomalies, i.e. separately for each conical singularity. It is similar in spirit
to the one used to cancel the normal bundle anomaly in the presence of
five-branes. It involves smoothly cutting off all fields close to the conical
singularities, resulting in an anomalous variation of the 3-form C' and of
the non-abelian gauge fields present if there are also ADE' singularities.
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Abstract

We carefully review the basic examples of anomaly cancellation in M-
theory: the 5-brane anomalies and the anomalies on S!/Z,. This involves
cancellation between quantum anomalies and classical inflow from topolog-
ical terms. To correctly fix all coefficients and signs, proper attention is
paid to issues of orientation, chirality and the Euclidean continuation. In-
dependent of the conventions chosen, the Chern-Simons and Green-Schwarz
terms must always have the same sign. The reanalysis of the reduction to
the heterotic string on S'/Z, yields a surprise: a previously neglected fac-
tor forces us to slightly modify the Chern-Simons term, similar to what
is needed for cancelling the normal bundle anomaly of the 5-brane. This
modification leads to a local cancellation of the anomaly, while maintaining
the periodicity on S*.
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Abstract

We analyse the (rigid) special geometry of a class of local Calabi-Yau mani-
folds given by hypersurfaces in C* as W(x)?+ fo(z) +v?+w?+2? = 0, that
arise in the study of the large N duals of four-dimensional A” = 1 supersym-
metric SU(N) Yang-Mills theories with adjoint field ® and superpotential
W(®). The special geometry relations are deduced from the planar limit
of the corresponding holomorphic matrix model. The set of cycles is split
into a bulk sector, for which we obtain the standard rigid special geometry
relations, and a set of relative cycles, that come from the non-compactness
of the manifold, for which we find cut-off dependent corrections to the usual
special geometry relations. The (cut-off independent) prepotential is iden-
tified with the free energy of the holomorphic matrix model in the planar
limit. On the way, we clarify various subtleties pertaining to the saddle
point approximation of the holomorphic matrix model. A formula for the
superpotential of IIB string theory with background fluxes on these local
Calabi-Yau manifolds is proposed that is based on pairings similar to the
ones of relative cohomology.
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