

Étude et développement d'un déphaseur achromatique pour l'interférométrie en frange noire

Frank Brachet

sous la direction d'Alain Léger et de Marc Ollivier

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

Un cadre d'étude large ... Exoplanétologie Recherche de la vie dans l'Univers

... une approche progressive

Existe-t-il des planètes

en dehors du Système Solaire ?

1995: 1ère détection, 51 Peg (Mayor & Queloz, 1995)

2000 : 1^{er} transit exoplanétaire, HD209458b

(Charbonneau et al., 1999; Henry et al., 1999)

- Accumuler des statistiques
 ... au 14 décembre 2005 :
- 146 systèmes planétaires détectés
- 170 planètes dont 161 par la méthode des vitesses radiales
- 18 systèmes multiples (55 *Cnc* : 4 planètes)
- G Détecter des exoplanètes telluriques
 C détections indirectes
 - c> vitesses radiales : 1 m/s (Terre : 9 cm/s)
 - c> transits :
 - ~ 2006 : CoRoT (CNES)
 - ~ 2009 : Kepler (*NASA*)

- GCes exoplanètes sont-elles habitables ...
 - 1. Détection directe

- ... habitées ?
- 2. Étude complète, analyse spectrale
 - Recherche de bio-signatures
 Vie basée sur la chimie du carbone, en solution dans l'eau
 - Critères :
 - $rac{\sim} O_2$, CO_2 , H_2O (visible) (Owen, 1980)
 - ∽ O₃, CO₂, H₂O (infrarouge) (Angel, 1986)

Objectif : caractériser des exoplanètes

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

Détection directe d'exoplanètes

Exoplanétologie des planètes

géantes et telluriques

 Analyse spectrale et recherche d'éventuelles bio-signatures

3 objectifs, mais des contraintes majeures ...

Contraintes observationnelles

Contraste étoile / planète

Contraste étoile / planète Résolution angulaire

Contraintes observationnelles

Contraste étoile / planète

Résolution angulaire

Lumières zodiacale et exozodiacale

Contraintes observationnelles

Contraste étoile / planète

Résolution angulaire

Lumières zodiacale et exozodiacale

⇒ contrainte instrumentale : Stabilité durant les observations

Visible : télescope "classique" + coronographe mission TPF-C (NASA)

... une solution pour Darwin (1)

Interférométrie en "frange noire"

Interféromètre de Bracewell (1978)

La mission Darwin (1)

Interféromètre spatial (base variable de 50 à 500 m)

La mission Darwin (2)

Flottille de 6 télescopes, 1 recombinateur central et 1 relais

- $\ensuremath{^{@}}$ Taux de réjection de qq 10⁴ à 10⁵
- Spectroscopie basse résolution : R = 20 à 50
- Generations entre 6 et 20 µm (déphasage achromatique)
 → Signatures de O₃, H₂O et CO₂ (Angel, 1986)
- Orbite autour du point de Lagrange L2

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

Déphasage achromatique (1)

"Éteindre" l'étoile \Leftrightarrow déphaser de π sur [λ_{min} ; λ_{max}]

Déphasage achromatique (2)

De multiples solutions ...

Lames dispersives

Retournement du champ électrique (Serabyn et Colavita, 2001)

Passage par un foyer optique (effet Gouy) (Gay & Rabbia, 1996)

Réseaux sub-lambdas (Mawet et al., 2003)

Translation du prisme coulissant ⇒Variation de l'épaisseur de matériau différentielle *e* ET de la différence de marche *ddm* entre les voies de l'interféromètre

Déphasage achromatique (4)

 \Rightarrow Espace de 2 paramètres : (e) et (ddm)

Prismes déphaseurs

Lignes à retard

- Détermination du couple optimal (e, ddm)
- Achromatisation sur $[\lambda_{min}; \lambda_{max}]$

- Détermination du couple optimal (e, ddm)
- Achromatisation sur $[\lambda_{min}; \lambda_{max}]$

Point de fonctionnement (1)

IAS

Point de fonctionnement (2)

Thèse Frank Brachet, IAS, 14 décembre 2005

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

SYmmetric Nuller for Achromatic Phase Shifters Evaluation

- **Objectifs** :
- Obtenir de fortes réjections (qq 10⁴) :
 - en proche infrarouge (bandes K et L)
 - en bande large ($\Delta\lambda/\lambda = 18$ %)
- Tester différents déphaseurs achromatiques :
 - Lames dispersives (prismes)
 - Passage par un foyer optique
- Étudier la stabilité de la réjection

1^{er} élément : une "étoile" un "corps noir" à 2000 K

Corps noir

Corps noir

Corps noir

M₂

2^{ème} élément : deux télescopes ↔ deux faisceaux

Interféromètre de Mach-Zehnder modifié (Serabyn et al., 2000)

Corps noir 2000 K

 S_2

M.

 M_2

 S_1

Voie infrarouge

MIP S2...

Injection et « séparatrice »

Thèse Frank Brachet, IAS, 14 décembre 2005

Le banc SYNAPSE (4)

3 et 4^{èmes} éléments :

- un déphaseur achromatique : 4 prismes en fluorine (CaF₂)
- deux lignes à retard

Déphaseur et lignes à retard

Thèse Frank Brachet, IAS, 14 décembre 2005

IAS

« Recombinatrice »

6^{ème} élément : un système de détection

un détecteur monopixel InSb et la caméra CIRCUS

Systèmes de détection

Détecteur monopixel

Caméra CIRCUS

7^{ème} élément : un système de métrologie Interféromètre de Michelson (*Agilent*)

<u>Autres spécifications :</u> Traitements Silicium, Or et Argent Bandes K (2-2,5 µm) et L (3-4 µm)

Le banc SYNAPSE (8)

Séparatrice

Thèse Frank Brachet, IAS, 14 décembre 2005

Vibrations

Amortissement des vibrations : Tables à structure en nid d'abeille (étages 3 et 4, passifs)

Marbre sur pieds pneumatiques (étage 1, passif)

Contrôle du banc (1)

Contrôle du banc (2)

Thèse Frank Brachet, IAS, 14 décembre 2005

Contrôle du banc (2)

Thèse Frank Brachet, IAS, 14 décembre 2005

Égalité des chemins optiques $\approx 2 \text{ nm}$ pour $\rho = 10^5$

Égalité des chemins optiques $\approx 2 \text{ nm}$ pour $\rho = 10^5$

Égalité des chemins optiques $\approx 2 \text{ nm}$ pour $\rho = 10^5$

Égalité des chemins optiques $\approx 2 \text{ nm}$ pour $\rho = 10^5$

Égalité des chemins optiques $\approx 2 \text{ nm}$ pour $\rho = 10^5$

Environnement

La salle dite « des marbres »

Thèse Frank Brachet, IAS, 14 décembre 2005

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

État de l'art, avant sinals ...

Thèse Frank Brachet, IAS, 14 décembre 2005

Recherche du point de fonctionnement (1)

Thèse Frank Brachet, IAS, 14 décembre 2005

Recherche du point de fonctionnement (2)

Thèse Frank Brachet, IAS, 14 décembre 2005

Recherche du point de fonctionnement (3)

Thèse Frank Brachet, IAS, 14 décembre 2005

Recherche du point de fonctionnement (4)

Rôle du filtrage modal

Thèse Frank Brachet, IAS, 14 décembre 2005

Taux de réjection (1)

Enregistrement temporel du signal interférométrique

Thèse Frank Brachet, IAS, 14 décembre 2005

Taux de réjection (2)

Enregistrement temporel du signal interférométrique 10⁰ Fuites stellaires (1/p, échelle logarithmique) 10⁻¹ $N \approx 1,5.10^{-4}$ soit $\rho \approx 6500$ en bande K 10^{-2|} Bruit du Frange Frange courant 10^{-3[} noire brillante 10⁻⁴ 10^{-5∟} 10^{-6L} 50 100 150 200 250 300 Temps (s)

Thèse Frank Brachet, IAS, 14 décembre 2005

IAS orsay

Stabilité de la réjection (1)

Hypothèse :

$$N = \frac{1}{\rho} \approx \frac{(\Delta \phi)^2}{4}$$

avec

$$\Delta \phi = 2\pi \frac{ddm}{\lambda} + \text{cste}$$

avec N

N: fuites stellaires
$$\rho$$
: taux de réjection

- $\Delta \Phi$: déphasage
- ddm : différence de marche
- contient les autres termes agissant sur le déphasage (flux, ...)

Stabilité de la réjection (3)

Thèse Frank Brachet, IAS, 14 décembre 2005

Stabilité de la réjection (4)

Thèse Frank Brachet, IAS, 14 décembre 2005

Performances de l'asservissement en différence de marche (1)

Données métrologie Agilent

Thèse Frank Brachet, IAS, 14 décembre 2005

avec → mesure de N (ddm + δddm)
→ mesure de N (ddm - δddm)
O calcul de ΔN et correction de la d.d.m.
→ mesure de N (ddm corrigée)
Modulation de la d.d.m. (3)

Thèse Frank Brachet, IAS, 14 décembre 2005

- 1. La recherche d'exoplanètes
- 2. Vers une détection directe : la mission Darwin
- 3. Étude d'un déphaseur achromatique
- 4. Environnement de test : le banc SYNAPSE
- 5. Mesures et résultats
- 6. Conclusions et perspectives

Conclusions (1)

1. Une mission de détection directe : Darwin

2. Un composant central : le déphaseur achromatique

Flexibilité de la méthode des lames dispersives

3. Un environnement de test : SYNAPSE

 Stabilité du banc essentielle pour caractériser correctement les déphaseurs

Conclusions (2)

4. Résultats : obtention de réjections de quelques milliers sur des bandes larges

Enregistrement temporel du signal interférométrique

Thèse Frank Brachet, IAS, 14 décembre 2005

Conclusions (3)

- 4. Résultats : obtention de réjections de quelques milliers sur des bandes larges
- 5. Enjeux et enseignements :
 - stabilité de la réjection critique
 - superposition des voies de métrologie et des voies de mesure ?
 - modulation de la d.d.m. suffisante ?

- 1. Poursuite des réglages de la modulation
- 2. Test d'un déphaseur basé sur le passage par un foyer optique
- 3. Utilisation d'un corps noir à 10 000 K

ou de CIRCUS ...

4. Test de la charge utile d'un démonstrateur

Perspective !

Thèse Frank Brachet, IAS, 14 décembre 2005

IAS

Merci de votre attention ...

Thèse Frank Brachet, IAS, 14 décembre 2005

Thèse Frank Brachet, IAS, 14 décembre 2005

Enregistrement temporel du signal interférométrique

Enregistrement temporel du signal interférométrique

Capacités de la mission

Analyse spectrale

(d'après Mennesson & Mariotti, 1997)

Passage par un foyer optique

14

