Raffinement de maillage spatio-temporel pour les équations de l'élastodynamique

Jerónimo Rodríguez García

sous la direction de Éliane Bécache et Patrick Joly

Université Paris-Dauphine Projet **POems** en collaboration avec **EDF**

8 Décembre 2004

Le contexte applicatif et scientifique

Simulation numérique d'expériences de contrôle non-destructif

- Travail realisé dans le cadre d'un contrat avec le département <u>SINETICS</u> de <u>EDF</u> (J. L. Vaudescal).
- Continuation de deux thèses financées par EDF: C. Tsogka et G. Scarella.

- Code ATHENA-2D [Tsogka Fouquet Duwig].
 - Formulation vitesse contraintes.
 - Éléments finis mixtes sur des maillages réguliers.
 - Condensation de masse.
 - Schéma explicite centré en temps, non dissipatif.

- Code ATHENA-2D [Tsogka Fouquet Duwig].
 - Formulation vitesse contraintes.
 - Éléments finis mixtes sur des maillages réguliers.
 - Condensation de masse.
 - Schéma explicite centré en temps, non dissipatif.
 - Domaines fictifs pour la prise en compte des fissures.

- Code ATHENA-2D [Tsogka Fouquet Duwig].
 - Formulation vitesse contraintes.
 - Éléments finis mixtes sur des maillages réguliers.
 - Condensation de masse.
 - Schéma explicite centré en temps, non dissipatif.
 - Domaines fictifs pour la prise en compte des fissures.
 - PML pour la simulation des domaines non-bornés.

- Code ATHENA-2D [Tsogka Fouquet Duwig].
 - Formulation vitesse contraintes.
 - Éléments finis mixtes sur des maillages réguliers.
 - Condensation de masse.
 - Schéma explicite centré en temps, non dissipatif.
 - Domaines fictifs pour la prise en compte des fissures.
 - PML pour la simulation des domaines non-bornés.

Problématique

- Bien prendre en compte des détails géométriques.
 - Microfissures, présence de trous, singularités de la solution, ...

• Mettre au point des méthodes non-conformes de raffinement de maillage espace-temps.

- Mettre au point des méthodes non-conformes de raffinement de maillage espace-temps.
 - Continuité de la thèse de T. Fouquet en électromagnétisme.

- Mettre au point des méthodes non-conformes de raffinement de maillage espace-temps.
 - Continuité de la thèse de T. Fouquet en électromagnétisme.

- Mettre au point des méthodes non-conformes de raffinement de maillage espace-temps.
 - Continuité de la thèse de T. Fouquet en électromagnétisme.

Contraintes industrielles

- Doivent être facilement intégrables dans ATHENA-2D.
- Doivent pouvoir être couplées avec la méthode des domaines fictifs.

• Première Partie: Raffinement de maillage spatio-temporel avec multiplicateur de Lagrange

- Méthode conservative (p q) pour l'élastodynamique.
- Nouvelles analyses d'erreur 1-D:
 - Par techniques énergétiques (1-2).
 - Par techniques de Fourier (p q).
- Construction d'une nouvelle méthode stable plus précise.
- Implémentation en élastodynamique 2D.

- Première Partie: Raffinement de maillage spatio-temporel avec multiplicateur de Lagrange
 - Aéthode conservative (p q) pour l'élastodynamique.
 - Nouvelles analyses d'erreur 1-D:
 - Par techniques énergétiques (1-2).
 - Par techniques de Fourier (p q).
 - Construction d'une nouvelle méthode stable plus précise.
 - Implémentation en élastodynamique 2D.

• Troisième Partie: Sur la méthode des domaines fictifs

- Correction de la méthode des domaines fictifs initiale:
 - Enrichissement de l'espace de vitesses.
 - Amortissement des modes parasites.
- Analyse de convergence dans le cas acoustique.
- Implémentation en élastodynamique 2D.

- Quatrième Partie: Couplage entre les deux méthodes
 - Conception de deux formulations variationnelles approchées conservatives du problème couplé.
 - Implémentation en élastodynamique 2D d'une d'entre elles.

• Deuxième Partie: Raffinement de maillage spatio-temporel sans multiplicateur de Lagrange

- Construction d'une méthode conservative (p q).
- Analyse dans le cas multidimensionnel (1-2).
- Même précision que pour la méthode avec multiplicateur.

Une présentation technique

Raffinement de maillage spatio-temporel conservatif Présentation de la méthode Expériences numériques: Phénomènes parasites Analyse de Fourier 1D

Une nouvelle technique de raffinement spatio-temporel

Post-traitement en temps Expériences numériques avec la nouvelle méthode Un nouveau schéma Analyse de Fourier 1D

Une expérience numérique moins académique

Une présentation technique

Raffinement de maillage spatio-temporel conservatif Présentation de la méthode Expériences numériques: Phénomènes parasites Analyse de Fourier 1D

Une nouvelle technique de raffinement spatio-temporel

Post-traitement en temps Expériences numériques avec la nouvelle méthode Un nouveau schéma Analyse de Fourier 1D

Une expérience numérique moins académique

Raffinement de maillage

Prendre en compte un détail géométrique (typiquement \implies une fissure)

Raffinement de maillage

Prendre en compte un détail géométrique (typiquement \implies une fissure)

Inconvénients d'un raffinement seulement en espace:

Raffinement de maillage

Prendre en compte un détail géométrique (typiquement \implies une fissure)

Inconvénients d'un raffinement seulement en espace:

 Stable si CFL, Δt/Δx < Cte ⇒ Pas de temps global imposé par la grille fine (coûteux).

Raffinement de maillage

Prendre en compte un détail géométrique (typiquement \implies une fissure)

Inconvénients d'un raffinement seulement en espace:

- Stable si CFL, Δt/Δx < Cte ⇒ Pas de temps global imposé par la grille fine (coûteux).
- La dispersion numérique augmente lorsque $\Delta t / \Delta x$ diminue \implies Le schéma est dispersif dans la grille grossière.

Raffinement de maillage

Prendre en compte un détail géométrique (typiquement \implies une fissure)

Pas de temps local pour avoir la même CFL dans le domaine entier.

État de l'art. Raffinement purement en espace

• La méthode des éléments joints.

```
[Bernardi - Maday - Patera] (94)
```

• Éléments joints pour les équations de Maxwell.

[Belgacem - Buffa - Maday - Rappeti] (01-03)

• Éléments joints avec multiplicateur de Lagrange.

[Belgacem] (99)

État de l'art. Raffinement purement en espace

• La méthode des éléments joints.

```
[Bernardi - Maday - Patera] (94)
```

• Éléments joints pour les équations de Maxwell.

[Belgacem - Buffa - Maday - Rappeti] (01-03)

• Éléments joints avec multiplicateur de Lagrange.

[Belgacem] (99)

• Application à l'acoustique en temporel.

[Bamberger - Glowinski - Tran] (97)

• Méthodes avec des équations de raccord au sens fort: Techniques d'interpolation.

[Kunz - Simpson] (81), [Prescott - Shuley] (92), [Chevalier - Luebbers] (97) [Zakharian - Brio - Moloney] (04) [M. Berger - Colella - R.J. Leveque - Oliger] (84-98)

• Méthodes avec des équations de raccord au sens fort: Techniques d'interpolation.

[Kunz - Simpson] (81), [Prescott - Shuley] (92), [Chevalier - Luebbers] (97)

[Zakharian - Brio - Moloney] (04)

[M. Berger - Colella - R.J. Leveque - Oliger] (84-98)

- → F.D.T.D.
- Consistance.
- Peuvent être instables sous la CFL habituelle si on couple des schémas intérieurs non-dissipatifs (Analyse G.K.S.).

- Méthodes avec des équations de raccord au sens faible:
 - Décomposition de domaines en espace-temps:

[Gander - Halpern - Nataf] (03)

- Méthodes avec des équations de raccord au sens faible:
 - Décomposition de domaines en espace-temps:

```
[Gander - Halpern - Nataf] (03)
```

- Volumes finis.
- Consistance.
- Stabilité prouvée pour certains cas.

- Méthodes avec des équations de raccord au sens faible:
 - Décomposition de domaines en espace-temps:

```
[Gander - Halpern - Nataf] (03)
```

- Volumes finis.
- Consistance.
- Stabilité prouvée pour certains cas.
- Méthodes conservatives:
- [Collino Fouquet Joly] (03) , [Bécache Joly R.] (04),

F.D.T.D., éléments finis,

- Méthodes avec des équations de raccord au sens faible:
 - Décomposition de domaines en espace-temps:

```
[Gander - Halpern - Nataf] (03)
```

- Volumes finis.
- Consistance.
- Stabilité prouvée pour certains cas.
- Méthodes conservatives:
- [Collino Fouquet Joly] (03) , [Bécache Joly R.] (04), [Piperno] (03)

 ₱ F.D.T.D., éléments finis, volumes finis, G.D.

- Méthodes avec des équations de raccord au sens faible:
 - Décomposition de domaines en espace-temps:

```
[Gander - Halpern - Nataf] (03)
```

- Volumes finis.
- Consistance.
- Stabilité prouvée pour certains cas.
- Méthodes conservatives:

[Collino - Fouquet - Joly] (03), [Bécache - Joly - R.] (04), [Piperno] (03)

- F.D.T.D., éléments finis, volumes finis, G.D.
- Stabilité assurée par construction.
- Consistance.

Les équations de l'élastodynamique

$$\begin{vmatrix} \rho \frac{\partial \mathbf{v}}{\partial t} - \operatorname{div}(\sigma) &= f \quad \text{dans } \Omega \\ A \frac{\partial \sigma}{\partial t} - \varepsilon(\mathbf{v}) &= 0 \quad \text{dans } \Omega \end{vmatrix}$$

Les équations de l'élastodynamique

$$\begin{vmatrix} \rho \frac{\partial \mathbf{v}}{\partial t} - \operatorname{div}(\sigma) &= f \quad \text{dans } \Omega \\ A \frac{\partial \sigma}{\partial t} - \varepsilon(\mathbf{v}) &= 0 \quad \text{dans } \Omega \end{vmatrix}$$

Les équations de l'élastodynamique

- Le point de vue de la décomposition de domaines.
- Formulation comme un problème de transmission entre deux sous-domaines.

$$\begin{cases} \rho \frac{\partial \mathbf{v}_c}{\partial t} - \operatorname{div}(\sigma_c) = f \quad \operatorname{dans} \Omega_c \\ A \frac{\partial \sigma_c}{\partial t} - \varepsilon(\mathbf{v}_c) = 0 \quad \operatorname{dans} \Omega_c \end{cases} \begin{cases} \rho \frac{\partial \mathbf{v}_f}{\partial t} - \operatorname{div}(\sigma_f) = f \quad \operatorname{dans} \Omega_f \\ A \frac{\partial \sigma_f}{\partial t} - \varepsilon(\mathbf{v}_f) = 0 \quad \operatorname{dans} \Omega_f \end{cases}$$

 $\sigma_c n_c = -\sigma_f n_f$, sur Γ $v_c = v_f$ sur Γ

Formulation variationnelle

• Utiliser la même formulation sur chaque sous-domaine.

Formulation variationnelle

• Utiliser la même formulation sur chaque sous-domaine.
Formulation variationnelle

• Utiliser la même formulation sur chaque sous-domaine.

• On introduit un multiplicateur de Lagrange (\equiv trace de v_I)

$$j_I, \mu \in \underline{\mathcal{J}} = \underline{H^{\frac{1}{2}}}(\Gamma),$$

Formulation variationnelle

Trouver
$$(\sigma_f, \sigma_c, \mathbf{v}_f, \mathbf{v}_c, \mathbf{j}_f, \mathbf{j}_c) \in \underline{X}_f^{sym} \times \underline{X}_c^{sym} \times \underline{M}_f \times \underline{M}_c \times \underline{\mathcal{J}}^2$$

$$\begin{cases} \int_{\Omega_c} \rho \frac{\partial \mathbf{v}_c}{\partial t} \cdot w_c & - \int_{\Omega_c} \operatorname{div}(\sigma_c) \cdot w_c & = \int_{\Omega_c} f \cdot w_c \\ \int_{\Omega_c} A \frac{\partial \sigma_c}{\partial t} : \tau_c & + \int_{\Omega_c} \operatorname{div}(\tau_c) \cdot \mathbf{v}_c & - \int_{\Gamma} \tau_c n_c \cdot \mathbf{j}_c & = 0 \end{cases}$$

$$\begin{cases} \int_{\Omega_f} \rho \frac{\partial \mathbf{v}_f}{\partial t} \cdot w_f & - \int_{\Omega_f} \operatorname{div}(\sigma_f) \cdot w_f & = \int_{\Omega_f} f \cdot w_f \\ \int_{\Omega_f} A \frac{\partial \sigma_f}{\partial t} : \tau_f & + \int_{\Omega_f} \operatorname{div}(\tau_f) \cdot \mathbf{v}_f & - \int_{\Gamma} \tau_f n_f \cdot \mathbf{j}_f & = 0 \end{cases}$$

$$\int_{\Gamma} \sigma_f n_f \cdot \mu = -\int_{\Gamma} \sigma_c n_c \cdot \mu, \qquad \mathbf{j}_f = \mathbf{j}_c.$$

Conservation de l'énergie

L'énergie

$$\mathbf{E} := \mathbf{E}_{c} + \mathbf{E}_{f},$$

$$\mathbf{E}_{l} := \frac{1}{2} \left[\int_{\Omega_{l}} A \, \sigma_{l} : \sigma_{l} + \rho |\mathbf{v}_{l}|^{2} \right], \qquad l \in \{c, f\}$$

satisfait

$$\frac{d\mathbf{E}}{dt} = \int_{\mathbf{\Gamma}} \left(\sigma_c n_c \cdot j_c + \sigma_f n_f \cdot j_f \right) + \sum_{l \in \{c,f\}} \int_{\Omega_l} f_l \cdot \mathbf{v}_l$$

En l'absence de forces externes, elle est conservée.

 $\Delta x_c = \Delta x$ $\Delta x_f = \Delta x/p$

 $H = \Delta x$

 $\underline{\underline{X}}_{h_l}^{\mathsf{sym}} \subset \underline{\underline{X}}_l, \quad \underline{\underline{M}}_{h_l} \subset \underline{\underline{M}}_l, \quad l \in \{c, f\}, \qquad \qquad \underline{\underline{J}}_H \subset \underline{\underline{J}}$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ ▲□▶

$$\begin{aligned} \text{Trouver} \left(\sigma_{l}^{h}, \mathbf{v}_{l}^{h}, j_{l}^{H}\right) &\in \underline{X}_{h_{l}}^{sym} \times \underline{M}_{h_{l}} \times \underline{\mathcal{J}}_{H} \\ \begin{cases} \int_{\Omega_{c}} \rho \frac{\partial \mathbf{v}_{c}^{h}}{\partial t} \cdot \mathbf{w}_{c}^{h} &- \int_{\Omega_{c}} \operatorname{div}(\sigma_{c}^{h}) \cdot \mathbf{w}_{c}^{h} &= \int_{\Omega_{c}} f \cdot \mathbf{w}_{c}^{h} \\ \int_{\Omega_{c}} A \frac{\partial \sigma_{c}^{h}}{\partial t} : \tau_{c}^{h} &+ \int_{\Omega_{c}} \operatorname{div}(\tau_{c}^{h}) \cdot \mathbf{v}_{c}^{h} &- \int_{\Gamma} \tau_{c}^{h} n_{c} \cdot j_{c}^{H} &= 0 \\ \end{cases} \\ \begin{cases} \int_{\Omega_{f}} \rho \frac{\partial \mathbf{v}_{f}^{h}}{\partial t} \cdot \mathbf{w}_{f}^{h} &- \int_{\Omega_{f}} \operatorname{div}(\sigma_{f}^{h}) \cdot \mathbf{w}_{f} &= \int_{\Omega_{f}} f \cdot \mathbf{w}_{f}^{h} \\ \int_{\Omega_{f}} A \frac{\partial \sigma_{f}^{h}}{\partial t} : \tau_{f}^{h} &+ \int_{\Omega_{f}} \operatorname{div}(\tau_{f}^{h}) \cdot \mathbf{v}_{f}^{h} &- \int_{\Gamma} \tau_{f}^{h} n_{f} \cdot j_{f}^{H} &= 0 \\ \end{cases} \\ \end{cases} \\ \int_{\Gamma} \sigma_{f}^{h} n_{f} \cdot \mu^{H} &= -\int_{\Gamma} \sigma_{c}^{h} n_{c} \cdot \mu^{H}, \qquad j_{c}^{H} &= j_{f}^{H} \end{cases} \end{aligned}$$

$$C^t_{\Gamma,c}\Sigma_c = -C^t_{\Gamma,f}\Sigma_f, \quad J_c = J_f, \text{ sur }\Gamma,$$

$$\begin{bmatrix} C_{\Gamma,c}^{t} (M_{\sigma,c})^{-1} C_{\Gamma,c} + C_{\Gamma,f}^{t} (M_{\sigma,c})^{-1} C_{\Gamma,f} \end{bmatrix} J = \\ C_{\Gamma,c}^{t} (M_{\sigma,c})^{-1} D_{c}^{t} V_{c} + C_{\Gamma,f}^{t} (M_{\sigma,f})^{-1} D_{f}^{t} V_{c} \end{bmatrix}$$

$$\underline{\underline{X}}_{h_{l}}^{sym} = \left\{ \tau_{l}^{h} \in \underline{\underline{X}}_{l}^{sym} : \tau_{l}^{h} \in \left[\mathcal{Q}_{1}(C) \right]^{2 \times 2} \right\},$$

 $M_{\sigma,l}$ est diagonale par blocs

$$\underline{\underline{X}}_{h_{l}}^{sym} = \left\{ \tau_{l}^{h} \in \underline{\underline{X}}_{l}^{sym} : \tau_{l}^{h}|_{C} \in \left[\mathcal{Q}_{1}(C)\right]^{2 \times 2} \right\},$$

$$\underline{\underline{M}}_{h_{l}} = \left\{ w_{l}^{h} \in \underline{\underline{M}}_{l} : w_{l}^{h}|_{C} \in \left[\mathcal{Q}_{0}(C)\right]^{2} \right\}, \quad [\mathsf{Tsogka}]$$

 $M_{\sigma,I}$ est diagonale par blocs

 $M_{v,l}$ est diagonale

$$\underline{\underline{X}}_{h_{l}}^{sym} = \left\{ \tau_{l}^{h} \in \underline{\underline{X}}_{l}^{sym} : \tau_{l}^{h}|_{C} \in \left[\mathcal{Q}_{1}(C)\right]^{2 \times 2} \right\},$$

$$\underline{\underline{M}}_{h_{l}} = \left\{ w_{l}^{h} \in \underline{\underline{M}}_{l} : w_{l}^{h}|_{C} \in \left[\mathcal{P}_{1}(C)\right]^{2} \right\},$$

 $M_{\sigma,I}$ est diagonale par blocs

 $M_{v,I}$ est diagonale

$$\underline{\mathcal{J}}_{H} = \left\{ \mu^{H} \in \underline{L}^{2}(\Gamma) : \mu_{|S}^{H} \in [\mathcal{P}_{0}(S)]^{2} \right\} \not\subset \underline{\mathcal{J}}$$

Discrétisation en temps

Discrétisation en temps

Discrétisation en temps

Discrétisation en temps

• Relation entre $J_c^{n+\frac{1}{2}}$ et $J_f^{n+\frac{2k+1}{2p}}$? (Approx. de $J_c(t) = J_f(t)$). • Comment peut-on discrétiser $C_{\Gamma,c}^t \Sigma_c(t) = -C_{\Gamma,f}^t \Sigma_f(t)$?

Conservation d'une énergie

$$E_{c}^{n} = \frac{1}{2} (M_{\sigma,c} \Sigma_{c}^{n}, \Sigma_{c}^{n}) + \frac{1}{2} (M_{v,c} V_{c}^{n+\frac{1}{2}}, V_{c}^{n-\frac{1}{2}})$$

$$E_{f}^{\frac{n}{p}} = \frac{1}{2} (M_{\sigma,f} \Sigma_{f}^{\frac{n}{p}}, \Sigma_{f}^{\frac{n}{p}}) + \frac{1}{2} (M_{v,f} V_{f}^{\frac{2n+1}{2p}}, V_{f}^{\frac{2n-1}{2p}})$$

$$E^{n} = E_{c}^{n} + E_{f}^{n} \simeq \frac{1}{2} \int_{\Omega} A\sigma : \sigma + \frac{1}{2} \int_{\Omega} \rho |v|^{2}$$

Conservation d'une énergie

$$E_{c}^{n} = \frac{1}{2} (M_{\sigma,c} \Sigma_{c}^{n}, \Sigma_{c}^{n}) + \frac{1}{2} (M_{v,c} V_{c}^{n+\frac{1}{2}}, V_{c}^{n-\frac{1}{2}})$$

$$E_{f}^{\frac{n}{p}} = \frac{1}{2} (M_{\sigma,f} \Sigma_{f}^{\frac{n}{p}}, \Sigma_{f}^{\frac{n}{p}}) + \frac{1}{2} (M_{v,f} V_{f}^{\frac{2n+1}{2p}}, V_{f}^{\frac{2n-1}{2p}})$$

$$E^{n} = E_{c}^{n} + E_{f}^{n} \simeq \frac{1}{2} \int_{\Omega} A\sigma : \sigma + \frac{1}{2} \int_{\Omega} \rho |v|^{2}$$

○ 200 비로 《로》 《로》 《国》 《□》

Conservation d'une énergie

$$E_{c}^{n} = \frac{1}{2} (M_{\sigma,c} \Sigma_{c}^{n}, \Sigma_{c}^{n}) + \frac{1}{2} (M_{v,c} V_{c}^{n+\frac{1}{2}}, V_{c}^{n-\frac{1}{2}})$$

$$E_{f}^{\frac{n}{p}} = \frac{1}{2} (M_{\sigma,f} \Sigma_{f}^{\frac{n}{p}}, \Sigma_{f}^{\frac{n}{p}}) + \frac{1}{2} (M_{v,f} V_{f}^{\frac{2n+1}{2p}}, V_{f}^{\frac{2n-1}{2p}})$$

$$E^{n} = E_{c}^{n} + E_{f}^{n} \simeq \frac{1}{2} \int_{\Omega} A\sigma : \sigma + \frac{1}{2} \int_{\Omega} \rho |v|^{2}$$

$$J_{c}^{n+\frac{1}{2}} = J^{n+\frac{1}{2}},$$

$$J_{f}^{n+\frac{2k+1}{2p}} = J^{n+\frac{1}{2}}, \quad k \in \{0, \dots, p-1\},$$

$$C_{\Gamma,c}^{t} \frac{\sum_{c}^{n+1} + \sum_{c}^{n}}{2} = -\sum_{l=0}^{p-1} C_{\Gamma,f}^{t} \frac{\sum_{f}^{n+\frac{l+1}{p}} + \sum_{f}^{n+\frac{l}{p}}}{2p}$$

Interaction entre les multiplicateurs de Lagrange

Le schéma numérique

Le schéma numérique

Expériences numériques

- Milieu homogène isotrope: $\rho = 1$, $\mu = 2.04$, $\lambda = 3.45$.
- Domaine de calcul: $\Omega = [0, 10] \times [0, 10]$.
- $\Delta x = 1/15$. $\alpha = \Delta t/\Delta x = 0.95 CFL_{opt}$.
- Condition initiale de rayon 1.5.

Expériences numériques

Le modèle simplifié 1D

Grille grossière (x < 0). Grille fine (x > 0). $A\frac{\partial u_c}{\partial t} - \frac{\partial v_c}{\partial x} = 0 \qquad A\frac{\partial u_f}{\partial t} - \frac{\partial v_f}{\partial x} = 0$ $\rho\frac{\partial v_c}{\partial t} - \frac{\partial u_c}{\partial x} = 0 \qquad \rho\frac{\partial v_f}{\partial t} - \frac{\partial u_f}{\partial x} = 0$ $v_c(0,t) = j_c(t) \qquad v_f(0,t) = j_f(t)$ $\begin{vmatrix} u_c(0,t) &= u_f(0,t) \\ j_c(t) &= j_f(t) \end{vmatrix}$ $A = I, \qquad \rho = 1$ х

Le modèle simplifié 1D

Dans la grille grossière:

$$\begin{vmatrix} \frac{(\mathbf{v}_c)_{j+\frac{1}{2}}^{n+\frac{1}{2}} - (\mathbf{v}_c)_{j+\frac{1}{2}}^{n-\frac{1}{2}}}{\Delta t} &+ \frac{(\mathbf{u}_c)_{j+1}^n - (\mathbf{u}_c)_j^n}{\Delta x} &= 0, \quad j < 0, \\ \frac{(\mathbf{u}_c)_j^{n+1} - (\mathbf{u}_c)_j^n}{\Delta t} &+ \frac{(\mathbf{v}_c)_{j+\frac{1}{2}}^{n+\frac{1}{2}} - (\mathbf{v}_c)_{j-\frac{1}{2}}^{n+\frac{1}{2}}}{\Delta x} &= 0, \quad j < 0. \end{vmatrix}$$

Dans la grille fine:

$$\begin{array}{rcl} \displaystyle \frac{\left(\mathbf{v}_{f}\right)_{\frac{2j+1}{2p}}^{\frac{2n+1}{2p}}-\left(\mathbf{v}_{f}\right)_{\frac{2j+1}{2p}}^{\frac{2n-1}{2p}}}{\Delta t/p} & + & \displaystyle \frac{\left(u_{f}\right)_{\frac{j+1}{p}}^{\frac{n}{p}}-\left(u_{f}\right)_{\frac{j}{p}}^{\frac{n}{p}}}{\Delta x/p} & = & 0, \quad j \geq 0, \\ \\ \displaystyle \frac{\left(u_{f}\right)_{\frac{j}{p}}^{\frac{n+1}{p}}-\left(u_{f}\right)_{\frac{j}{p}}^{\frac{n}{p}}}{\Delta t/p} & + & \displaystyle \frac{\left(\mathbf{v}_{f}\right)_{\frac{2j+1}{2p}}^{\frac{2n+1}{2p}}-\left(\mathbf{v}_{f}\right)_{\frac{2j-1}{2p}}^{\frac{2n+1}{2p}}}{\Delta t/p} & = & 0, \quad j \geq 0. \end{array} \right.$$

Le modèle simplifié 1D

Les équations de couplage

Analyse par ondes planes sur une grille uniforme

Ondes planes harmoniques

$$u_j^n = U e^{i(kx_j - \omega t^n)}, \quad v_{j+\frac{1}{2}}^{n+\frac{1}{2}} = V e^{i(kx_{j+\frac{1}{2}} - \omega t^{n+\frac{1}{2}})}$$

$$\sin^2\left(\frac{\omega\Delta t}{2}\right) = \alpha^2 \sin^2\left(\frac{k\Delta x}{2}\right) \qquad \alpha = \frac{\Delta t}{\Delta x}$$

Relation de dispersion

Analyse par ondes planes sur une grille uniforme

Soit
$$\omega^* = \frac{2}{\Delta t} \arcsin(\alpha)$$
, alors
• si $\omega \in [-\omega^*, \omega^*] + \frac{2\pi}{\Delta t} \mathbb{Z}$:
 $k^{\pm}(\omega) = \pm \frac{2}{\Delta x} \arcsin\left(\alpha^{-1} \sin\left(\frac{\omega \Delta t}{2}\right)\right)$, $U = \pm V$,

l'onde est propagative.

• si
$$\omega \notin [-\omega^*, \omega^*] + \frac{2\pi}{\Delta t} \mathbb{Z}$$
:

$$k^{\pm}(\omega) = \pm \frac{\pi}{\Delta x} \operatorname{sign}(\omega) \pm \frac{2i}{\Delta x} \operatorname{argch}\left(\alpha^{-1} \sin\left(\frac{\omega \Delta t}{2}\right)\right), \quad U = \pm V,$$

l'onde est évanescente.

Un problème de propagation d'ondes sur un milieu bi-couche

Un problème de propagation d'ondes sur un milieu bi-couche

Dans la grille fine il faut considérer plus de fréquences...

• Dans la grille grossière

$$(u_c)_j^n = e^{i(k_c^+(\omega)x_j - \omega t^n)} + R e^{i(k_c^-(\omega)x_j - \omega t^n)},$$

$$(v_c)_{j+\frac{1}{2}}^{n+\frac{1}{2}} = e^{i(k_c^+(\omega)x_{j+\frac{1}{2}} - \omega t^{n+\frac{1}{2}})} - R e^{i(k_c^-(\omega)x_{j+\frac{1}{2}} - \omega t^{n+\frac{1}{2}})}.$$

• Dans la grille fine

Les p + 1 amplitudes sont les inconnues.

• On calcule R, T_k , $k \in \{0, ..., p-1\}$ avec les équations de transmission.

- On calcule R, T_k , $k \in \{0, ..., p-1\}$ avec les équations de transmission.
- Pour la convergence:
- On calcule R, T_k , $k \in \{0, ..., p-1\}$ avec les équations de transmission.
- Pour la convergence:

•
$$R \xrightarrow{\Delta t \to 0} 0$$
, $T_0 \xrightarrow{\Delta t \to 0} 1$, $T_k \xrightarrow{\Delta t \to 0} 0$, $k \in \{1, \dots, p-1\}$.

- On calcule *R*, *T_k*, *k* ∈ {0,..., *p*−1} avec les équations de transmission.
- Pour la convergence:
 - $R \xrightarrow{\Delta t \to 0} 0$, $T_0 \xrightarrow{\Delta t \to 0} 1$, $T_k \xrightarrow{\Delta t \to 0} 0$, $k \in \{1, \dots, p-1\}$.
 - La nature des ondes pour $\omega \Delta t$ petit

- On calcule *R*, *T_k*, *k* ∈ {0,..., *p*−1} avec les équations de transmission.
- Pour la convergence:
 - $R \xrightarrow{\Delta t \to 0} 0$, $T_0 \xrightarrow{\Delta t \to 0} 1$, $T_k \xrightarrow{\Delta t \to 0} 0$, $k \in \{1, \dots, p-1\}$.
 - La nature des ondes pour $\omega \Delta t$ petit
 - Les ondes transmise et réfléchie de fréquence ω sont propagatives.

- On calcule *R*, *T_k*, *k* ∈ {0,..., *p*−1} avec les équations de transmission.
- Pour la convergence:
 - $R \xrightarrow{\Delta t \to 0} 0$, $T_0 \xrightarrow{\Delta t \to 0} 1$, $T_k \xrightarrow{\Delta t \to 0} 0$, $k \in \{1, \dots, p-1\}$.
 - La nature des ondes pour $\omega \Delta t$ petit
 - Les ondes transmise et réfléchie de fréquence ω sont propagatives.
 - Les ondes parasites dépendent de α . Si

$$0 < \alpha < \sin\left(\frac{\pi}{p}\right) \implies$$
 Toutes évanescentes.

Les résultats pour p = 2

• Si 0 < α < 1 (l'onde parasite est évanescente):

$$\begin{split} R(\omega\Delta t,\alpha) &= \frac{1}{64} \left[1 - \frac{3}{\alpha^2} \right] (\omega\Delta t)^2 + \mathcal{O}(\omega\Delta t)^3, \\ T_0(\omega\Delta t,\alpha) &= 1 - \frac{3}{64} \left[1 + \frac{1}{\alpha^2} \right] (\omega\Delta t)^2 + \mathcal{O}(\omega\Delta t)^3, \\ T_1(\omega\Delta t,\alpha) &= \frac{i\alpha}{4\sqrt{1 - \alpha^2}} (\omega\Delta t) + \mathcal{O}(\omega\Delta t)^3. \end{split}$$

Les résultats pour p = 2

• Si 0 < α < 1 (l'onde parasite est évanescente):

$$\begin{split} R(\omega\Delta t,\alpha) &= \frac{1}{64} \left[1 - \frac{3}{\alpha^2} \right] (\omega\Delta t)^2 + \mathcal{O}(\omega\Delta t)^3, \\ T_0(\omega\Delta t,\alpha) &= 1 - \frac{3}{64} \left[1 + \frac{1}{\alpha^2} \right] (\omega\Delta t)^2 + \mathcal{O}(\omega\Delta t)^3, \\ T_1(\omega\Delta t,\alpha) &= \frac{i\alpha}{4\sqrt{1 - \alpha^2}} (\omega\Delta t) + \mathcal{O}(\omega\Delta t)^3. \end{split}$$

• Si $\alpha = 1$ (l'onde parasite est propagative): $R(\omega \Delta t, 1) = 0, \quad T_0(\omega \Delta t, 1) = \cos(\omega \Delta t) = -T_1(\omega \Delta t, 1).$

• Si
$$\alpha < \sin\left(\frac{\pi}{p}\right) \implies \mathcal{O}(\Delta t)^{\frac{3}{2}}.$$

• Si
$$\alpha < \sin\left(\frac{\pi}{p}\right) \implies \mathcal{O}(\Delta t)^{\frac{3}{2}}.$$

• Si $0 \neq \alpha = \sin\left(\frac{\pi k}{p}\right), \ k \in \mathbb{N} \implies \mathcal{O}(\Delta t)^{\frac{1}{2}}.$

• Si
$$\alpha < \sin\left(\frac{\pi}{p}\right) \implies \mathcal{O}(\Delta t)^{\frac{3}{2}}$$
.
• Si $0 \neq \alpha = \sin\left(\frac{\pi k}{p}\right), \ k \in \mathbb{N} \implies \mathcal{O}(\Delta t)^{\frac{1}{2}}$.

• Sinon
$$\implies \mathcal{O}(\Delta t)$$
. Détails

Une présentation technique

Raffinement de maillage spatio-temporel conservatif Présentation de la méthode Expériences numériques: Phénomènes parasites Analyse de Fourier 1D

Une nouvelle technique de raffinement spatio-temporel

Post-traitement en temps Expériences numériques avec la nouvelle méthode Un nouveau schéma Analyse de Fourier 1D

• L'onde parasite

$$(u_f^{par})_{\frac{j}{2}}^{\frac{n}{2}} = T_1(\omega\Delta t, \alpha) e^{i(k(\omega - \frac{2\pi}{\Delta t})x_j - (\omega - \frac{2\pi}{\Delta t})t^{\frac{n}{2}})}$$

• L'onde parasite

$$\left(u_{f}^{par}\right)_{\frac{j}{2}}^{\frac{n}{2}} = (-1)^{n} \mathcal{T}_{1}(\omega \Delta t, \alpha) e^{i\left(k\left(\omega - \frac{2\pi}{\Delta t}\right)x_{j} - \omega t^{\frac{n}{2}}\right)}$$

Comportement hautement oscillatoire

• L'onde parasite

$$(u_f^{par})_{\frac{j}{2}}^{\frac{n}{2}} = (-1)^n \mathcal{T}_1(\omega \Delta t, \alpha) e^{i(k(\omega - \frac{2\pi}{\Delta t})x_j - \omega t^{\frac{n}{2}})}$$

• La valeur moyenne entre deux pas de temps consécutifs:

$$(\tilde{u}_{f}^{par})_{\frac{j}{2}}^{\frac{2n+1}{4}} := \frac{(u_{f}^{par})_{\frac{j}{2}}^{\frac{n+1}{2}} + (u_{f}^{par})_{\frac{j}{2}}^{\frac{n}{2}}}{2}$$

• L'onde parasite

$$\left(u_{f}^{par}\right)_{\frac{j}{2}}^{\frac{n}{2}} = T_{1}(\omega\Delta t, \alpha) e^{i\left(k\left(\omega-\frac{2\pi}{\Delta t}\right)x_{j}-\left(\omega-\frac{2\pi}{\Delta t}\right)t^{\frac{n}{2}}\right)}$$

• La valeur moyenne entre deux pas de temps consécutifs:

$$\left(\tilde{u}_{f}^{par}\right)_{\frac{j}{2}}^{\frac{2n+1}{4}} = \boxed{T_{1}(\omega\Delta t,\alpha)\left[-\frac{\omega\Delta t}{4} + \mathcal{O}(\omega\Delta t)^{3}\right]} e^{i(k\left(\omega-\frac{2\pi}{\Delta t}\right)x_{j}-\left(\omega-\frac{2\pi}{\Delta t}\right)t^{\frac{2n+1}{4}})}$$

• L'onde parasite

$$(u_f^{par})_{\frac{j}{2}}^{\frac{n}{2}} = T_1(\omega\Delta t, \alpha) e^{i(k\left(\omega - \frac{2\pi}{\Delta t}\right)x_j - \left(\omega - \frac{2\pi}{\Delta t}\right)t^{\frac{n}{2}})}$$

• La valeur moyenne entre deux pas de temps consécutifs:

$$\left(\tilde{u}_{f}^{par}\right)_{\frac{j}{2}}^{\frac{2n+1}{4}} = \left[\mathcal{T}_{1}(\omega\Delta t,\alpha) \left[-\frac{\omega\Delta t}{4} + \mathcal{O}(\omega\Delta t)^{3} \right] \right] e^{i(k\left(\omega - \frac{2\pi}{\Delta t}\right)x_{j} - \left(\omega - \frac{2\pi}{\Delta t}\right)t^{\frac{2n+1}{4}})}$$

• Encore mieux:

$$(\bar{u}_{f}^{par})_{\frac{j}{2}}^{\frac{n}{2}} := \frac{(u_{f}^{par})_{\frac{j}{2}}^{\frac{n+1}{2}} + 2(u_{f}^{par})_{\frac{j}{2}}^{\frac{n}{2}} + (u_{f}^{par})_{\frac{j}{2}}^{\frac{n-1}{2}}}{4}$$

• L'onde parasite

$$(u_f^{par})_{\frac{j}{2}}^{\frac{n}{2}} = T_1(\omega\Delta t, \alpha) e^{i(k\left(\omega - \frac{2\pi}{\Delta t}\right)x_{\frac{j}{2}} - \left(\omega - \frac{2\pi}{\Delta t}\right)t^{\frac{n}{2}})}$$

• La valeur moyenne entre deux pas de temps consécutifs:

$$\left(\tilde{u}_{f}^{par}\right)_{\frac{j}{2}}^{\frac{2n+1}{4}} = \boxed{T_{1}(\omega\Delta t,\alpha)\left[-\frac{\omega\Delta t}{4} + \mathcal{O}(\omega\Delta t)^{3}\right]} e^{i(k\left(\omega-\frac{2\pi}{\Delta t}\right)x_{j}-\left(\omega-\frac{2\pi}{\Delta t}\right)t^{\frac{2n+1}{4}})}$$

• Encore mieux:

$$\left(\bar{u}_{f}^{par}\right)_{\frac{j}{2}}^{\frac{n}{2}} = \left[T_{1}(\omega\Delta t, \alpha) \left[\frac{(\omega\Delta t)^{2}}{16} + \mathcal{O}(\omega\Delta t)^{4} \right] e^{i(k(\omega - \frac{2\pi}{\Delta t})x_{j} - (\omega - \frac{2\pi}{\Delta t})t^{\frac{n}{2}})} \right]$$

Post-traitement en temps pour le cas général

La dernière équation de couplage suggère

$$\overline{\Sigma}_{c}^{n+\frac{1}{2}} := \frac{\Sigma_{c}^{n+1} + \Sigma_{c}^{n}}{2}, \\ \overline{V}_{c}^{n} := \frac{V_{c}^{n+\frac{1}{2}} + V_{c}^{n-\frac{1}{2}}}{2},$$

dans la grille grossière,

dans la grille fine,

Expériences numériques

Le nouveau schéma

Le nouveau schéma

Toutes les équations de transmission

sont consistantes à l'ordre deux!

Interaction entre les multiplicateurs de Lagrange

• Si 0
$$\neq \alpha = \sin\left(\frac{\pi k}{\rho}\right), \ k \in \mathbb{N} \implies \mathcal{O}(\Delta t)^{\frac{3}{2}}.$$

• Si
$$0 \neq \alpha = \sin\left(\frac{\pi k}{p}\right), \ k \in \mathbb{N} \implies \mathcal{O}(\Delta t)^{\frac{3}{2}}.$$

• Sinon $\implies \mathcal{O}(\Delta t)^2$. • Détails

Une présentation technique

Raffinement de maillage spatio-temporel conservatif Présentation de la méthode Expériences numériques: Phénomènes parasites Analyse de Fourier 1D

Une nouvelle technique de raffinement spatio-temporel

Post-traitement en temps Expériences numériques avec la nouvelle méthode Un nouveau schéma Analyse de Fourier 1D

 Méthode de raffinement de maillage spatio-temporel performante et robuste bien adaptée au code ATHENA2D. Technique avec multiplicateur.

- Méthode de raffinement de maillage spatio-temporel performante et robuste bien adaptée au code ATHENA2D. Technique avec multiplicateur.
- Méthode de couplage des problèmes de propagation d'ondes capable de gérer des maillages non-conformes en espace et en temps. Technique sans multiplicateur [Diaz].

- Méthode de raffinement de maillage spatio-temporel performante et robuste bien adaptée au code ATHENA2D. Technique avec multiplicateur.
- Méthode de couplage des problèmes de propagation d'ondes capable de gérer des maillages non-conformes en espace et en temps. Technique sans multiplicateur [Diaz].
- Nouvelles analyses de convergence.

- Méthode de raffinement de maillage spatio-temporel performante et robuste bien adaptée au code ATHENA2D. Technique avec multiplicateur.
- Méthode de couplage des problèmes de propagation d'ondes capable de gérer des maillages non-conformes en espace et en temps. Technique sans multiplicateur [Diaz].
- Nouvelles analyses de convergence.
- Nouvel élément fini qui assure la convergence de la méthode des domaines fictifs. Analyse pour le cas scalaire.

- Méthode de raffinement de maillage spatio-temporel performante et robuste bien adaptée au code ATHENA2D. Technique avec multiplicateur.
- Méthode de couplage des problèmes de propagation d'ondes capable de gérer des maillages non-conformes en espace et en temps. Technique sans multiplicateur [Diaz].
- Nouvelles analyses de convergence.
- Nouvel élément fini qui assure la convergence de la méthode des domaines fictifs. Analyse pour le cas scalaire.
- Deux méthodes de couplage entre domaines fictifs et les techniques de raffinement spatio-temporel.

... perspectives

• Implémentation:

- Essayer des autres choix de multiplicateur de Lagrange.
- Coder la méthode sans multiplicateur.
- Implémentation 3-D.

... perspectives

• Implémentation:

- Essayer des autres choix de multiplicateur de Lagrange.
- Coder la méthode sans multiplicateur.
- Implémentation 3-D.

• Développement des méthodes:

- Construction des méthodes de raffinement plus précises.
- Développement des méthodes de raffinement multi-conservatives.

... perspectives

• Implémentation:

- Essayer des autres choix de multiplicateur de Lagrange.
- Coder la méthode sans multiplicateur.
- Implémentation 3-D.

• Développement des méthodes:

- Construction des méthodes de raffinement plus précises.
- Développement des méthodes de raffinement multi-conservatives.

• Analyse mathématique:

- Pousser plus loin l'analyse de convergence des méthodes de raffinement spatio-temporel avec des techniques énergétiques.
- Effectuer l'analyse de convergence de la méthode des domaines fictifs pour l'élastodynamique.
- Comprendre le défaut de convergence de la méthode des domaines fictifs avec l'élément Q₁^{div} × Q₀.
▲□▶ ▲圖▶ ▲필▶ ▲필▶ 필] 의약

Resumé

La matrice $\mathcal{A}_f(\Delta t_f)$

Analyse par Fourier de la méthode conservative

Une présentation technique

La matrice $\mathcal{A}_f(\Delta t_f)$

Analyse par Fourier de la méthode conservative

La matrice $\mathcal{A}_f(\Delta t_f)$

Suposons que les matrices

$$N_{l}(\Delta t_{l}) := M_{\sigma,l} - \frac{\Delta t_{l}^{2}}{4} D_{l}^{t} (M_{v,l})^{-1} D_{l}, \qquad l \in \{c, f\},$$

sont définies positives (condition CFL habituelle sur chaque domaine).

La matrice $\mathcal{A}_f(\Delta t_f)$

• Si p > 2 et impair

$$\left| \frac{4^{p-1}}{p^2} \left\{ \prod_{k=1}^{\frac{p-1}{2}} \left[(M_{\sigma,f})^{-1} \left(N_f(\Delta t_f) - \cos^2\left(\frac{\pi k}{p}\right) M_{\sigma,f} \right) \right]^2 \right\} (M_{\sigma,f})^{-1} \right.$$

La matrice $\mathcal{A}_f(\Delta t_f)$

• Si p > 2 et impair

$$\frac{4^{p-1}}{p^2} \left\{ \prod_{k=1}^{\frac{p-1}{2}} \left[(M_{\sigma,f})^{-1} \left(N_f(\Delta t_f) - \cos^2\left(\frac{\pi k}{p}\right) M_{\sigma,f} \right) \right]^2 \right\} (M_{\sigma,f})^{-1}$$

• Si p > 2 et pair

$$\frac{4^{p-1}}{p^2} \left\{ \left[(M_{\sigma,f})^{-1} N_f(\Delta t_f) \right] \right.$$
$$\left. \prod_{k=1}^{\frac{p}{2}-1} \left[(M_{\sigma,f})^{-1} \left(N_f(\Delta t_f) - \cos^2\left(\frac{\pi k}{p}\right) M_{\sigma,f} \right) \right]^2 \right\} (M_{\sigma,f})^{-1}$$

Une présentation technique

La matrice $\mathcal{A}_f(\Delta t_f)$

Analyse par Fourier de la méthode conservative

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼|볼 · 이익⊙

○ ▲ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ● ▲ ■ ▲ ● ▲ ● ▲ ■ ▲

○ ▲ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ■ ▲ ● ▲ ■ ▲ ● ▲ ● ▲ ■ ▲

· ◆ □ ▶ ◆ @ ▶ ★ 분 ▶ ★ 분 ▶ · 분 범 · 의 ۹ ()

Une présentation technique

La matrice $\mathcal{A}_f(\Delta t_f)$

Analyse par Fourier de la méthode conservative

· ◆ □ ▶ ◆ @ ▶ ★ 분 ▶ ★ 분 ▶ · 분 범 · 의 ۹ ()

· ◆ □ ▶ ◆ 圖 ▶ ★ 필 ▶ ★ 표 ▲ 이 Q @

Resumé

Présentation

L'élément $\mathcal{Q}_1^{div} \times \mathcal{Q}_0 \times \mathcal{P}_1^{cont}$

Présentation

L'élément $\mathcal{Q}_1^{div} \times \mathcal{Q}_0 \times \mathcal{P}_1^{cont}$

Présentation

L'élément $\mathcal{Q}_1^{div} \times \mathcal{Q}_0 \times \mathcal{P}_1^{cont}$

Expériences numériques avec $\mathcal{Q}_1^{div} \times \mathcal{Q}_0 \times \mathcal{P}_1^{cont}$

Onde S incidente

Onde P incidente

Présentation

L'élément $\mathcal{Q}_1^{div} \times \mathcal{Q}_0 \times \mathcal{P}_1^{cont}$

Expériences numériques avec $\mathcal{Q}_1^{div} \times \mathcal{P}_1^{disc} \times \mathcal{P}_1^{cont}$

Onde S incidente Comp

Onde P incidente Comp

Expériences numériques avec $\mathcal{Q}_1^{div} \times \mathcal{P}_1^{disc} \times \mathcal{P}_1^{cont}$

Onde S incidente

Onde S incidente X 4

Expériences numériques avec $\mathcal{Q}_1^{div} \times \mathcal{P}_1^{disc} \times \mathcal{P}_1^{cont}$

Onde S incidente Comp

Onde S incidente X 4 Comp

 $\beta = 6$

Nombre de points par longueur d'onde

Expériences numériques

- Milieu homogène isotrope: $\rho = 1$, $\mu = 2.04$, $\lambda = 3.45$.
- Domaine de calcul: $\Omega = [0, 10] \times [0, 10]$.
- $\Delta x = 1/15$. $\alpha = \Delta t/\Delta x = 0.95 CFL_{opt}$.
- Second membre.

Expériences numériques

$\textit{N}_{\Lambda,10\div}=10, \qquad \textit{N}_{\Lambda,1\div}=8,$

 $N_{\Lambda,10\div}=13, \qquad N_{\Lambda,1\div}=11,$

 $\textit{N}_{\Lambda,10\,\div}=17, \qquad \textit{N}_{\Lambda,1\div}=14,$

