Quelques mécanismes non conventionnels de l'effet Hall anormal

Mathieu Taillefumier

Max-Planck-Institut für Mikrostrukturphysik , Weinberg 2 D06120 Halle LLN - CNRS, 25 avenue des martyrs, BP 166 38042 Grenoble

14 mars 2006

Co-directeurs de thèse : Claudine Lacroix et Patrick Bruno Encadrants : Benjamin Canals et Vitalii Dugaev

Effet Hall Topologique

Chiralité de spin

Conclusion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Plan de l'exposé

1 Introduction à l'effet Hall anormal

- Effet Hall anormal
- Mécanismes responsables de l'AHE
- Phases de Berry

2 Effet Hall Topologique

- Motivations
- Hamiltonien et transformation appliquée
- Calcul de l'effet Hall et propriétés du champ topologique
- Ordres de grandeur
- Conclusion

- Motivations
- Modèle employé
- Résultats numériques
- Conclusion

4 Conclusion générale

Effet Hall Topologique

Chiralité de spin

Conclusion

Effet Hall dans les matériaux conducteurs

Effet Hall dans les matériaux non magnétiques

- Effet Hall : Force de Lorentz $\mathbf{f} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \Rightarrow V_H \neq 0.$
- Définitions
 - $\mathbf{J} = \bar{\sigma} \mathbf{E}, \ \bar{\sigma}$ est le tenseur conductivité.
 - Conductivité transverse $\sigma_{xy} = J_y/E_x$
 - Résistivité transverse $\rho_{xy} = [\bar{\sigma}^{-1}]_{xy} \approx \frac{\sigma_{xy}}{\sigma_{xy}^2}$

Effet Hall dans les matériaux ferromagnétiques (AHE)

- Origine : aimantation spontanée et couplage spin-orbite.
- Loi expérimentale (Pugh et al. 1940)

$$\rho_{xy} = \underbrace{R_0 B}_{\text{Effet Hall classique}} + \underbrace{R_s M}_{\text{Effet Hall anormal}}$$

000

Effet Hall Topologique

Chiralité de spin

Conclusion

Mécanismes de side-jump et de diffusion asymétrique

- Origine de ces mécanismes
 - diffusion des électrons par des impuretés où défauts,
 - couplage spin-orbite (réseau cristallin et impuretés).
- Mécanisme de side-jump (Berger 1970)

- Décalage transverse $\delta \approx 10^{-11}$ m du centre du paquet d'onde par rapport au centre diffuseur.
- Phénomène similaire à un spectromètre de masse mais résolu en spin.

うして ふゆう ふほう ふほう うらつ

- Mécanisme de diffusion asymétrique (Smit 1956)
 - Section différentielle efficace de diffusion dépendante de la direction du spin de l'électron par rapport à la direction des vecteurs d'onde incident et diffusé.

Effet Hall Topologique

Chiralité de spin

Conclusion

2

Modèle de Karplus et Luttinger (1954)

Modèle

- Modèle d'électrons de Bloch en présence de couplage SO induit par le réseau cristallin,
- traitement perturbatif de l'interaction entre le champ E et les électrons,
- la diffusion par les impuretés n'est pas prise en compte.

Résultats

$$\sigma_{xy} = \frac{e^2}{h} \sum_{n} \int \frac{d^2 \mathbf{k}}{4\pi^2} n_f(\varepsilon_{n,\mathbf{k}}) \mathrm{Im} \left[\left\langle \frac{\partial u_{n,k}}{\partial k_x} \mid \frac{\partial u_{n,k}}{\partial k_y} \right\rangle \right]$$

- En général σ_{xy} fait intervenir uniquement les états proches du niveau de Fermi, ce qui n'est pas le cas ici.
- Haldane (2004) : σ_{xy} décrit l'évolution adiabatique de quasi-particules se déplaçant sur la surface de Fermi.
- Expression de σ_{xy} ne dépend pas du modèle employé
- σ_{xy} peut être exprimée en termes de courbure de Berry de chaque bande.

Introduction	Effet Hall Topologique	Chiralité de spin	Conclusion
00000	00000000000	0000000000000	
Phases de Berry			

• Évolution temporelle d'un état quantique $|\psi\rangle$ décrite par l'équation de Schrödinger :

$$i\hbarrac{d|\psi
angle}{dt}=H(R(t))|\psi
angle,$$

où H(R(t)) est un hamiltonien décrivant l'évolution du système et R(t) un ensemble de paramètres.

- Lorsque l'évolution est cyclique R(0) = R(T), T période de l'évolution, $\psi(T)$ et $\psi(0)$ diffèrent d'un terme de phase.
- Si $|\psi(t)\rangle = |n, R(t)\rangle$ est un état propre de H(R(t)) et que l'évolution est adiabatique alors

$$R(0) = R(T)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$|\psi(T)\rangle = e^{i\int_{0}^{T} E_{n}(R(t))dt} e^{i\gamma_{C}} |\psi(0)\rangle$$

 γ_C = ∫_C ⟨n, R|∇_R|n, R⟩dR est appelée phase de Berry. Elle dépend uniquement du chemin suivi par l'état ψ

Effet Hall Topologique

Chiralité de spin

Conclusion

Différents problèmes abordés dans cette thèse

- Rôle des impuretés dans l'AHE :
 - Contribution supplémentaire induite par la diffusion.
 - Elle est indépendante de la concentration en impuretés.
- e Effet Hall topologique :
 - Effet Hall induit par une texture magnétique inhomogène connue et contrôlable extérieurement.
 - Signature identifiable caractérisée par des sauts de σ_{xy} .
- 3 Mécanisme de chiralité de spin sur le réseau Kagomé :
 - Obtention d'un changement de signe alors que la chiralité est fixée
 - Proportionnalité entre σ_{xy} et la chiralité est vérifiée uniquement pour un nombre restreint de paramètres.
- Oprimique d'un électron dans un champ magnétique inhomogène
 - Localisation des électrons au voisinage des lignes de champ magnétique B(x,y) = 0
 - Possibilité de courant permanents.

Effet Hall Topologique

Chiralité de spin

Conclusion

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Effet Hall topologique

Introd	uction
0000	0

Effet Hall Topologique

Chiralité de spin

Conclusion

Motivations

- Effet Hall topologique : Contribution supplémentaire de l'effet Hall qui dépend uniquement de la **topologie** de la texture de l'aimantation.
- Problème : Contribution difficilement identifiable dans les ferromagnétiques car
 - présence simultanée des mécanismes de side-jump et de la diffusion asymétrique qui contribuent aussi à l'effet Hall,
 - texture magnétique n'est pas connue.
- But :
 - Proposer un système où la texture d'aimantation est connue et contrôlable.
 - Calculer l'effet Hall induit par la texture magnétique uniquement
- Système : Gaz d'électrons couplés à une texture de champ magnétique créée par un réseau de nanocylindres magnétiques.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Effet Hall Topologique

Chiralité de spin

Propriétés du champ magnétique créé par un réseau de nanocylindres

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Chiralité de spin

Forme du Hamiltonien

Caractéristiques du modèle

- Gaz d'électrons libres confinés dans un plan *xOy*
- Champ magnétique inhomogène caractérisé par $\langle B_z(\mathbf{r}) \rangle = 0$ par maille élémentaire.
- Force de Lorentz nulle en moyenne $(\sigma_{xy} \propto \langle B_z(\mathbf{r}) \rangle = 0$ dans le modèle de Drude).
- On considère uniquement l'effet Zeeman.

Hamiltonien

- $T(\mathbf{r})$ définit l'axe de quantification du spin le long du champ magnétique $\mathbf{B}(\mathbf{r}) = B(\mathbf{r})\mathbf{n}(\mathbf{r})$.
- Résultat

$$\mathcal{H}' = -\frac{\hbar^2}{2m^*} \left(\frac{\partial}{\partial \mathbf{r}} - i\frac{e}{\hbar}\mathbf{A}(\mathbf{r})\right)^2 + g\mu_B B\sigma_z,$$

avec $\mathbf{A}(\mathbf{r}) = -2\pi i \phi_0 \mathcal{T}^{\dagger}(\mathbf{r}) \frac{\partial}{\partial \mathbf{r}} \mathcal{T}(\mathbf{r})$ est une quantité analogue à un potentiel vecteur.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Effet Hall Topologique

Chiralité de spin

Conclusion

Approximation Adiabatique

- L'approximation adiabatique correspond physiquement à conserver le spin de l'électron dans la direction du champ magnétique.
- Elle est gouvernée par :
 - τ₀ : Temps de précession du spin autour de n(r)
 - τ : Temps de variation de n(r) dans le repère de l'électron. τ = ξ/v_F, v_F vitesse d'un électron au niveau de Fermi et ξ la distance caractéristique séparant deux extrémas consécutifs du champ magnétique.

• Paramètre d'adiabaticité

$$\lambda = \frac{\tau}{\tau_0} = \frac{\varepsilon_F}{\varepsilon_0 k_F \xi},$$

 ε_0 est le splitting Zeeman.

Condition d'adiabaticité : $\lambda \ll 1$

Effet Hall Topologique

Chiralité de spin

Conclusion

ション ふゆ アメリア メリア しょうめん

Approximation adiabatique

Critère d'adiabaticité vérifié : $\lambda \ll 1$

$$\mathcal{H}' \xrightarrow{\lambda \ll 1} \tilde{\mathcal{H}} = \underbrace{-\frac{\hbar^2}{2m^{\star}} \left(\frac{\partial}{\partial \mathbf{r}} - i\frac{\mathbf{e}}{h}\mathbf{a}(\mathbf{r})\right)^2}_{\text{Énergie cinétique}} + \underbrace{\frac{V(\mathbf{r})}{V(\mathbf{r})}}_{\text{Potentiel scalaire}}$$

H décrit le mouvement d'une particule "chargée" sans spin en présence d'une force f similaire à la force de Lorentz (Aharonov *et al* 1992).

• Champs équivalents
$$\mathbf{b}_t(\mathbf{r}) = \nabla_{\mathbf{r}} \times \mathbf{a}(\mathbf{r})$$
 et $\mathbf{e}_t = -\nabla_{\mathbf{r}} V(\mathbf{r})$

• $\mathbf{b}_t(\mathbf{r})$ et $\mathbf{e}_t(\mathbf{r})$ existent parce que $\mathbf{B}(\mathbf{r})$ varie spatialement.

Conclusion

si $\langle b_t(\textbf{r}) \rangle \neq 0 \Rightarrow ~ \text{Effet Hall possible alors que } \langle \textbf{B}(\textbf{r}) \rangle = \textbf{0}$

Introduction	
00000	

Effet Hall Topologique

Chiralité de spin

Calcul de σ_{xy}

Simplifications des calculs

- On considère uniquement la valeurs moyenne (b_t(r))_S (S est la cellule élémentaire).
- $\ \, {\bf 0} \ \, \langle {\bf b}_t \rangle_{\cal S} \neq 0 \ \, {\rm en} \ \, {\rm général} \ \, {\rm alors} \ \, {\rm que} \ \, \langle {\bf B} \rangle_{\cal S} = 0.$

$$\sigma_{xy} = \sum_{i=\uparrow,\downarrow} \frac{n_i e^2 \tau_i}{m} \frac{\omega_c^i \tau_i}{1 + (\omega_c^i \tau_i)^2} \text{ avec } \omega_c^{\uparrow,\downarrow} = \pm e \langle b_t \rangle / m$$

•
$$\omega_c^{\uparrow,\downarrow} \tau_{\uparrow} \ll 1$$
,
 $\sigma_{xy} \approx \left(\frac{n_{\uparrow} e^3 \tau_{\uparrow}^2}{m^2} - \frac{n_{\downarrow} e^3 \tau_{\downarrow}^2}{m^2} \right) \langle b_t(x,y) \rangle \propto \int_s \mathbf{b}_t d\mathbf{S} = \phi_t$

Conséquence :

 σ_{xy} est proportionnelle au flux du champ topologique.

Effet Hall Topologique

Chiralité de spin

Conclusion

Propriétés du champ topologique

Propriétés générales (surface quelconque)

$$\phi_t = \int_{\mathcal{S}} b_t d\mathbf{S} = \oint_{\mathcal{C}(\mathcal{S})} \mathbf{a}(\mathbf{r}) \cdot d\mathbf{I} = \frac{\phi_0}{2\pi} \gamma_t,$$

 γ_t est la phase de Berry acquise par un spin se déplaçant le long de $\mathcal{C}(\mathcal{S})$.

Conséquences de la périodicité de B(r)

- φ_t travers une maille élémentaire (ABCD) est quantifié.
- φ_t = φ₀(n₊ − n₋) où n_± sont le nombre de régions délimitées par les lignes fermées B_z = 0 où B_z > 0 (+) ou B_z < 0 (−)
- Il est possible de modifier φ_t en appliquant un champ magnétique extérieur suivant z (topologie des lignes de champ B_z = 0 modifiée).

Effet Hall Topologique

Chiralité de spin

Conclusion

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Variations de ϕ_t lorsqu'un champ magnétique extérieur est appliqué

• Application d'un champ magnétique extérieur se traduit par des variations discontinues de ϕ_t .

Effet Hall Topologique

Chiralité de spin

Conclusion

$\sigma_{xy}(B_{ext})$ pour un gaz totalement polarisé en spin

- Présence d'un champ magnétique B_{ext} additionnel : Effet Hall classique + Effet Hall topologique.
- Gaz complètement polarisé en spin.

Effet Hall Topologique

Chiralité de spin

Conclusion

Ordres de grandeur du champ magnétique et topologique

- Paramètres de la structure
 - d = 20 nm
 - *a* = 100 nm
- Amplitude de *B_z* de l'ordre de 0.2 T pour le fer
- $\langle b_t \rangle \approx 0.48$ T ($\langle B_z(\mathbf{r}) \rangle = 0$)
- $\sigma_{xy} \approx 0.15 \ \Omega^{-1}$ (pour des trous dans $Cd_{1-x}Mn_xSe$)
- \Rightarrow Effet observable

Effet Hall Topologique

Chiralité de spin

Conclusion

(ロ) (型) (E) (E) (E) (O)

Critère d'adiabaticité (semi-conducteurs magnétiques)

- Effet Zeeman plus important dans les semi-conducteurs magnétiques que dans les semi-conducteurs usuels.
- Possibilité de prendre des trous à la place des électrons car le spin des trous est plus grand donc $\langle b_t \rangle_t \geq \langle b_t \rangle_e$.
- Paramètre d'adiabaticité $\lambda = \frac{\varepsilon_{F}}{E_{ex}k_{f}\xi}$
 - paramètres géométriques : d= 20 nm, a= 100 nm, $B_z pprox$ 0.2 T, T= 4.2 K
 - Trous (Cd_{1-x}Mn_xSe) : $m_{\star} = 0.5m_0$, $n = 10^{11}$ cm⁻², $\varepsilon_F \approx 1$ meV, $E_{ex} \approx 11$ meV

 $\lambda \ll$ 1, approximation adiabatique vérifiée

• électrons (Cd_{1-x}Mn_xSe) : $n = 10^{11}$ cm⁻², $m_{\star} = 0.22$ m₀, $\varepsilon_F \approx 4.4$ meV, $E_{\rm ex} \approx 2$ meV

 $\lambda\approx$ 1, approximation adiabatique non valide et effet Hall topologique réduit

 Conséquences : un gaz de trous est plus approprié qu'un gaz d'électrons pour mesurer l'effet Hall topologique.

Effet Hall Topologique

Chiralité de spin

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusion

- Effet Hall topologique : Effet Hall qui dépend uniquement de des variations spatiales du champ magnétique.
- Mesure possible de l'effet Hall topologique induit par une texture magnétique contrôlable par des paramètres géométriques et modifiable par application d'un champ magnétique extérieur.
- Variations brutales de σ_{xy} lorsqu'un champ magnétique extérieur est appliqué : c'est la signature caractéristique de l'effet Hall topologique.

Effet Hall Topologique

Chiralité de spin

Conclusion

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Mécanisme de chiralité de spin

Effet Hall Topologique

Chiralité de spin

Conclusion

Structure du composé Nd₂Mo₂O₇

- Nd₂Mo₂O₇ : Réseau pyrochlore.
- Moments magnétiques portés par les atomes de Mo et de Nd.
- Transition de phase ferromagnétique à 90 K. Ordre partiel des moments de Nd à basse température à cause l'interaction anti-ferromagnétique entre Nd et Mo.
- En dessous de 30 K, les moments magnétiques de Mo et de Nd sont dans une configuration chirale.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Effet Hall Topologique

Chiralité de spin

Conclusion

Effet Hall dans Nd₂Mo₂O₇

- Signe de ρ_{xy} dépend de la direction de B
- ρ_{xy} tend vers une valeur finie lorsque $T \rightarrow 0$.

(Yasui et al. 2003)

(Yasui et al. 2003)

• $\rho_{xy} \rightarrow 0$ lorsque $T \rightarrow 0$ (comportement canonique) dans les composés ferromagnétiques usuels (Pugh *et al.* 1953).

- Chiralité de spin définie par $\chi = \mathbf{S}_1 \cdot (\mathbf{S}_2 \times \mathbf{S}_3)$.
- diffusion de neutron : signe de χ_{Mo} dépend aussi de B.
- Mécanisme de chiralité de spin proposé pour expliquer l'AHE

Effet Hall Topologique

Chiralité de spin

Conclusion

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Mécanisme de chiralité de spin

Études antérieures

- Ye *et al.* (1999) proposent pour le mécanisme de chiralité de spin pour expliquer l'AHE dans les manganites.
- Cas des verres de spins (Tatara et Kawamura 2001)
 - Système désordonné.
 - $\sigma_{xy} \propto \langle S_i \cdot (S_j \times S_k) \rangle$ lorsque le couplage entre les moments et le spin des électrons itinérants est faible.
 - Expériences semblent prouver que c'est le mécanisme dominant (Pureur *et al.* 2004)
- Cas de Nd₂Mo₂O₇ : Réseau ordonné

But

Étudier le rôle de la chiralité de spin dans un modèle plus simple que $Nd_2Mo_2O_7$.

Effet Hall Topologique

Chiralité de spin

Conclusion

Hamiltonien de double-échange

 Structure en ombrelle (θ angle de l'ombrelle)

- Réseau kagomé considéré (réseau triangulaire de triangles).
- Hamiltonien

$$egin{array}{rcl} \mathcal{H} &=& t\sum_{\langle i,j
angle}(c^{\dagger}_{i,\sigma}c_{j\sigma}+c.c.) \ &-& J\sum_{i}c^{\dagger}_{ilpha}({f S}_{i}\cdot\sigma_{lpha,eta})c_{i,eta}. \end{array}$$

- Les moments magnétiques sont traités classiquement
- Paramètres du problème
 - la constante de couplage J/t

・ロト ・ 得 ト ・ ヨ ト ・ ヨ ト

3

• le remplissage

•
$$\chi(\theta) = S_A \cdot (S_B \times S_C) = \frac{3\sqrt{3}}{2} \sin^2 \theta \cos \theta$$

calcul de σ_{xy}

Effet Hall Topologique

Chiralité de spin

Conclusion

$J \rightarrow \infty$: limite étudiée par Ohgushi *et al* (2000)

• Hamiltonien effectif

$$\mathcal{H} \xrightarrow{J \to \infty} \mathcal{H}_{eff} = \sum_{\langle i,j \rangle} \tilde{t}_{ij} (c_i^{\dagger} c_j + c.c.) \text{ avec } \tilde{t}_{ij} \propto \exp i\phi$$

- *H*_{eff} décrit le mouvement d'un électron sans spin en présence d'un flux magnétique φ inclus dans le terme de saut.
- σ_{xy} non nul lorsque la structure magnétique est chirale.

J fini

• On considère uniquement le terme de Karplus et Luttinger.

$$\sigma_{xy} = \frac{e^2}{\hbar S} \sum_{\substack{n \neq m \\ k}} f(\varepsilon_{nk}) \frac{v_x^{nm} v_y^{mn} - v_y^{nm} v_x^{mn}}{(\varepsilon_{nk} - \varepsilon_{mk})^2} = \frac{e^2}{h} \sum_n \frac{1}{2\pi} \int_{ZB} d^2 k f(\varepsilon_{n,k}) \Omega_{n,k}$$

Effet Hall Topologique

Chiralité de spin

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structure de bande

• Existence de gap donc σ_{xy} est quantifiée

$$\sigma_{xy} = rac{e^2}{h} \sum_n
u_n$$
 avec $u_n = rac{1}{2\pi} \int d^2 \mathbf{k} \Omega_{n,\mathbf{k}}$

• ν_n sont des entiers appelés nombres de Chern.

Effet Hall Topologique

Chiralité de spin

Conclusion

Existence et influence du croisement de bande sur ν_n

• Croisement de bande pour

$$J = J_c(\theta) = \frac{2}{\sqrt{1 + 3\cos^2\theta}}$$

 Modification des nombres de Chern lorsque J passe par J_c(θ).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 Nombres de Chern differents suivant que J < J_c ou J > J_c. Cela implique des modifications de σ_{xy} lorsque les paramètres J, ε_F où la chiralité sont modifiés.

Effet Hall Topologique

Chiralité de spin

Conclusion

Variations de $\sigma_{xy}(\varepsilon_f)$ $(J > J_c(\theta))$

$$\sigma_{xy} = \frac{e^2}{h} \sum_{n} \frac{1}{2\pi} \int_{ZB} d^2 \mathbf{k} f(\varepsilon_{n,\mathbf{k}}) \Omega_{n,\mathbf{k}},$$

•
$$J > J_c(\theta)$$
 :

Valeur des plateaux ±e²/h,0 (niveau de Fermi dans un gap)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

•
$$\nu_n = (-1, 0, 1, 1, 0, -1)$$

$J > J_c(\theta)$

Pas de comportements particuliers de la conductivité transverse

Effet Hall Topologique

Chiralité de spin

Conclusion

Variations de $\sigma_{xy}(\varepsilon_f)$ $(J < J_c(\theta))$

- $\nu_n = (-1, 3, -2, -2, 3, -1)$
- Valeur des plateaux $\pm 2e^2/h, \pm e^2/h, 0$
- Changement de signe de σ_{xy} alors que la densité d'états ne présente pas de variations particulières.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

- Lorsque ε_F est dans un gap :
 - σ_{xy} est quantifiée.
 - Valeur des plateaux dépend du croisement de bande.
- Toutes les variations de σ_{xy} sont possibles y compris des changements de signe lorsque le niveau de Fermi est dans une bande.

Effet Hall Topologique

Chiralité de spin ○○○○○○○○●○○○ Conclusion

Variations de $\sigma_{xy}(J)$ à χ et remplissage p fixés

- p = 1/3
 - σ_{xy}(J) est quantifiée.
 - Changement de signe induit par une modification des nombres de Chern.

•
$$p = 1/2$$
.

- $\sigma_{xy} = 0$ lorsque J > 3t/2 (niveau de Fermi dans un gap).
- Origine :
 - Modification de la structure de bande uniquement

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• J < 3/2 : changement de signe de σ_{xy} autour de J = 0.6t.

• Changement de signe observé n'est pas lié à la chiralité.

•
$$\sigma_{xy} \propto \chi$$
 pour 0.6 $t < J < t$

• $\sigma_{xy} \propto -\chi$ pour J < 0.6t

Résumé

- Généralisation du modèle de Tatara et Kawamura (2002)
- χ est un paramètre pertinent pour le remplissage symétrique

Effet Hall Topologique

Chiralité de spin ○○○○○○○○○○●○ Conclusion

Lien entre σ_{xy} et χ : Remplissage p = 1/4

• Impossible de trouver une relation simple entre σ_{xy} et χ .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Conclusion

La chiralité de spin n'est pas un paramètre pertinent lorsque le remplissage est différent du remplissage symétrique (p = 1/2)

Introduction	
00000	

Effet Hall Topologique

Chiralité de spin

Conclusion

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Conclusion

- **(**) Le croisement de bande induit une modification des propriétés de σ_{xy}
- Observation à Chiralité fixée de différents changements de signe de σ_{xy} lorsque J ou le niveau de Fermi varient. Ce changement de signe est lié a une modification des propriétés topologiques du modèle.
- Étude de σ_{xy}(χ) pour différentes valeurs du remplissage et de J, montre que la chiralité n'est pas un paramètre pertinent en dehors du remplissage symétrique.
- Cas de Nd₂Mo₂O₇ : Changement de signe observé lors de la mesure de ρ_{xy} ne permet pas de conclure si le mécanisme de chiralité de spin est dominant dans ce composé.

Effet Hall Topologique

Chiralité de spin

Conclusion

Conclusion et perspectives

• Effet Hall topologique.

- Application d'un champ magnétique inhomogène couplé au spin d'un électron, se traduit par la présence d'un champ topologique b_t(r) dépendant uniquement de la topologie du champ magnétique. Sous certaines conditions, b_t(r) induit une contribution supplémentaire à l'effet Hall appelé effet Hall topologique.
- Prendre en compte les inhomogénéités du champ topologique et des corrections non adiabatiques dans le calcul de la conductivité transverse.
- Etudier l'effet de la force de Lorentz créée par un champ magnétique inhomogène sur le transport électronique.

Ø Mécanisme de chiralité de spin

- Le changement de signe de σ_{xy} observé dans Nd₂Mo₂O₇ ne permet pas de dire que le mécanisme de chiralité de spin est un mécanisme pertinent pour ce composé.
- Étude plus quantitative de σ_{xy} dans Nd₂Mo₂O₇ doit prendre en compte la structure cristalline et magnétique de ce composé