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We demonstrate theoretically that the spectra of electromagnetic emission of surface systems can
display remarkable differences in the near and the far zones. The spectral changes occur due to the loss
of evanescent modes and are especially pronounced for systems which support surface waves.
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Spectroscopy of electromagnetic radiation is perhaps
the most powerful exploration tool employed in natural
sciences: astronomy, atomic and molecular physics and
chemistry, materials science, biology, etc. The central
question considered in this paper—whether the spectral
content of the radiation emitted by an object can change on
propagation to the observer—usually does not arise, since
it seems natural that nothing can happen to waves travel-
ing through empty space. Surprisingly similar failure of
common sense was put forward by the recent progress of
near-field optical microscopy [1,2], which achieves sub-
wavelength resolution exactly because evanescent modes
carrying subwavelength spatial information do not propa-
gate far away from the object. However, a great deal of
work devoted to such an irreversible change of spatial in-
formation on propagation has been accompanied with sig-
nificantly lesser interest in the possibility of the change of
spectral information.

The subject of spectral changes on propagation has,
however, been addressed. In the 1980’s, Wolf [3] predicted
that the spectrum of light can be changed on propagation
from the source to the observer, even through empty space.
This effect, whose origin lies in the fluctuating nature of
the source, has been intensively studied in a variety of sys-
tems [4,5]. Typically, the Wolf effect is manifested in small
spectral shifts and can be viewed as a redistribution of the
weights of different spectral components.

In this Letter, we demonstrate spectral changes, whose
physical origin is very different from that of Wolf spectral
shifts and lies in the presence of the evanescent compo-
nent in the emitted field. We show that the near-field and
far-field spectra of emitted electric fields can display dras-
tic differences. For a broadband emission, such as thermal
emission which is considered in detail in this paper, the
near-field spectrum dominated by evanescent modes can
be entirely different from the far-field spectrum of propa-
gating modes. These spectral changes occur not due to the
statistical nature of the source (as in the Wolf effect) but
due to the loss of evanescent components on propagation.
We analyze how such spectral changes can be enhanced

by electromagnetic surface waves (SW) near the interface.
These SW are known to play an important role in the en-
hancement of interaction between nanoparticles near the
surface [6], in localization effects on random surfaces [7],
in surface-enhanced Raman scattering [8], in extraordinary
transmission of light through subwavelength holes [9], etc.
In this Letter, we show that SW provide the leading con-
tribution to the density of energy in the near-field zone of
electromagnetic emission.

We now proceed with analyzing near-field effects in the
spectra of thermal emission, which provides an easy way
to excite both propagating and evanescent electromagnetic
modes in a wide range of frequencies (at least, in the
infrared [10–12]). Thermal emission is frequently asso-
ciated with the textbook example of equilibrium black-
body radiation. The Planck spectrum IBB�v� of such
radiation is obtained by multiplying the thermal energy
u�v, T � � h̄v��exp�h̄v�kBT � 2 1� of a quantum oscil-
lator by the density of oscillations (modes) per unit vol-
ume N�v�dv � v2dv��p2c3� in the frequency interval
�v, v 1 dv�, and dividing the result by dv [13],

IBB�v� � u�v, T �N�v� �
h̄

p2c3

v3

exp�h̄v�kBT � 2 1
.

(1)

Here T is the body temperature, kB is Boltzmann’s con-
stants, h̄ is Planck’s constant divided by 2p, and c is the
speed of light in vacuum. A well-known representation of
blackbody radiation is the equilibrium radiation in a closed
cavity with lossy walls when only propagating modes of
the field are taken into account.

To demonstrate the importance of near-field effects, we
consider a somewhat more sophisticated example of ther-
mal emission from a semi-infinite �z , 0� slab of homoge-
neous, nonmagnetic material held in local thermodynamic
equilibrium at a uniform temperature T , into the empty half-
space z . 0. We will describe the macroscopic dielec-
tric properties of the material by a frequency-dependent,
complex dielectric function ´�v� � ´0�v� 1 i´00�v�. The

1548 0031-9007�00�85(7)�1548(4)$15.00 © 2000 The American Physical Society
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Fourier component E�r, v� of the electric field E�r, t�
at a point r � �x, y, z� in the empty half space z . 0 is
generated by thermal currents with density j�r0, v�, which
is nonzero only for z0 , 0. It can be computed following
the procedure outlined in Refs. [12,14],

Ea�r, v� � im0v
X

b�x,y,z

Z
V

d3r 0 Gab�r, r0, v�jb�r0, v� ,

(2)

where V is the volume of the hot body which occupies
the half-space z0 , 0, and Gab�r, r0, v� is the electromag-
netic Green tensor for the system of two homogeneous ma-
terials separated by a planar interface z � 0. According to
the fluctuation-dissipation theorem [14], the fluctuations of
thermal currents are described by the correlation function

�ja�r, v�jb�r0, v0�� �
vu�v, T �

p
´0´00�v�dabd�r 2 r0�

3 d�v 2 v0� , (3)

where the angle brackets denote the statistical ensemble
average. The Kronecker symbol dab and the spatial d

function in this formula follow from the assumption that
the dielectric function is isotropic, homogeneous, and
local [14].

The energy density I�r, v� of the emitted electric field
at the point r is defined by the formula

X
a�x,y,z

´0

2
�E�

a�r, v�Ea�r, v0�� � I�r, v�d�v 2 v0� .

(4)

Using Eqs. (2) and (3) into (4), we obtain, for I�r, v�,

I�r, v� � 8p3 v3

c4 u�v, T �´00�v�
X

a,b�x,y,z

Z 0

2`
dz0

3
Z d2kk

�2p�2 jgab�kk, v j z, z0�j2, (5)

where gab�kk, v j z, z0� is the analytically known [12] 2D
spatial Fourier transform (in x and y) of the Green’s tensor
Gab�r, r0, v�. Note that I�r, v� in Eq. (5) is independent
of x and y, due to the translational invariance of the system
in x and y directions.

We now assume that the interface z � 0 between the
material and a vacuum can support electromagnetic SW.
The dispersion relation between the wave number kk �
jkkj and frequency v of SW is

�kSW
k �v��2 � �v2�c2�´�v���´�v� 1 1� . (6)

Such waves exist for materials having ´0�v� , 21 in one
or several frequency ranges [10]. We consider SiC, which
supports SW known as surface phonon polaritons and
which has been used in previous experimental [11] and
theoretical [12] investigations of thermal emission. The di-
electric function of this material is given by the expression
´�v� � ´`�v2

L 2 v2 2 igv���v2
T 2 v2 2 igv� with

´` � 6.7, vL � 182.7 3 1012 s21, vT � 149.5 3

1012 s21, and g � 0.9 3 1012 s21 [11]. By substituting
´�v� into Eq. (5) and performing a straightforward evalua-
tion of integrals (only the integral over the magnitude of
kk has to be calculated numerically, the other two integrals
can be evaluated analytically), we obtain the spectra of
thermal emission for SiC at different heights z above the
surface. We plot the results in Fig. 1 in the frequency
range 0 , v , 400 3 1012 s21 for T � 300 K at three
different heights.

Although one could expect to find differences of the SiC
spectra with the blackbody spectrum (1), it is striking that
near-field and far-field spectra of the same SiC sample are
so dramatically different, as seen in Fig. 1. An observer
doing a traditional far-zone spectroscopic measurement
(Fig. 1a) would detect the spectrum with a rather wide
dip in the range 150 3 1012 s21 , v , 180 3 1012 s21

due to the low emissivity of SiC in that range [11]. Note
that the sample effectively acts as a nonradiating source
in this frequency range. However, when the probe moves
within a subwavelength distance from the material (typi-
cal thermal emission wavelengths at T � 300 K are of the
order of 10 mm), the spectrum starts to change rapidly. In
Fig. 1b, showing the emission spectrum at 2 mm above
the surface, this change is seen as a peak emerging at
v � 178.7 3 1012 s21. At very close distances (Fig. 1c),
the peak becomes so strong that an observer would sur-
prisingly see almost monochromatic emission with photon
energies not represented in the far zone.
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FIG. 1. Spectra of thermal emission of a semi-infinite sample
of SiC at T � 300 K and three different heights above the sur-
face: (a) za � 1000 mm, (b) zb � 2 mm, (c) zc � 0.1 mm.
The insets magnify the spectra plotted on a semilog scale in
the range of strong contribution from evanescent surface modes.

1549



VOLUME 85, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 14 AUGUST 2000

Thus, we find that the spectrum changes qualitatively
on propagation. The occurrence of such striking spec-
tral changes is related to SW existing in the region 150 3

1012 s21 , v , 180 3 1012 s21. We shall now clarify
the mechanism of the formation of spectra I�r, v� at dif-
ferent distances from the surface.

We note that the spectrum of the elctric field (5) has a
similar structure as that of blackbody radiation (1),

I�z, v� � u�v, T �N�z, v� . (7)

In Eq. (1), N�r, v� does not depend on r, while in Eq. (5)
it depends on z. Equation (7) is a pivotal point of our
paper since it accounts for the evolution of the spectrum
on propagation by relating it to the local density of elec-
tromagnetic modes N�r, v�. Note that N�r, v� includes
only relevant modes excited in the material �z , 0� and
emitted into vacuum �z . 0�. The correct counting of
modes is done automatically in the integral in Eq. (5),
which has a typical structure that relates the density of
modes to the Green’s tensor of the system. The function
jgab�kk, v j z, z0�j2 in Eq. (5) represents a mode that is
excited in the plane z0 with a 2D wave vector kk and po-
larization b and arrives at the plane z with the same 2D
wave vector (due to translational invariance in x and y) and
polarization a. The sum over b and the integrals over kk

and z0 , 0 take into account all possible modes that are
initially excited.

The origin of a sharp peak seen in the near-field emission
spectrum (Fig. 1c) becomes clear when we analyze the dis-
persion relation (6) for SW (Fig. 2). Near the frequency
vmax defined by the condition ´0�vmax� � 21, there ex-
ists a large number of surface modes with different wave
numbers but with frequencies that are very close to each
other. Therefore, the density of surface modes will neces-
sarily display a strong peak at v � vmax. However, since
SW decay exponentially away from the surface, this peak
is not seen in the far zone (Fig. 1a).

To achieve a detailed understanding of the z dependence
of the emission spectrum, we calculate an approximate
expression for the density of modes N�z, v� from Eqs. (5)
and (7) for small distances z and in the limit of large kk
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FIG. 2. Dispersion curve for SW on the vacuum-SiC planar
interface. Re�vSPP� is calculated for a given real kk.

(according to Fig. 2, the modes with large kk define the
behavior near the peak):

N�z, v� �
´00�v�

j1 1 ´�v�j2
1

16p2vz3 . (8)

This 1�z3 contribution can be recognized as a well-known
quasistatic behavior exhibited near the surfaces of all mate-
rials [12,14]. Note that if ´00 is not very large at v � vmax
then the density of modes exhibits a resonance at that fre-
quency. This is the origin of the peak in the near-field
spectrum of SiC at v � 178.7 3 1012 s21. The presence
of a resonance in the density of modes N�z, v� is, how-
ever, not required for observing spectral changes caused
by the loss of evanescent modes. Indeed, in the short dis-
tance regime, the spectrum is given by Eq. (8), whereas,
in the far field, the spectrum is given by Eq. (1) multiplied
by the emissivity of the surface. Thus, even in the absence
of resonant SW, the near-field spectrum is different from
the far-field spectrum, but the changes are less dramatic.

The result (8) is valid only in the limit of distances much
smaller than the wavelength. We show in Fig. 3 the varia-
tion of the spectral density I�v, z� with the distance z from
the surface. We consider two different frequencies none of
which is very close to the resonance at vmax. In agreement
with Eq. (8), we observe that the spectral density increases
sharply for z , 1 mm, i.e., when the distance to the sur-
face is much smaller than the wavelength. However, the
decay behavior of the two curves for larger values of z ex-
hibits an essential difference. The exponential decay seen
in the solid curve for the values of z between 1 and 5 mm
is a signature of the presence of a SW whose energy de-
cays exponentially with z. This SW is a surface phonon
polariton that exists at v � 166 3 1012 s21 (solid curve)
but not at v � 210 3 1012 s21 (dashed curve). The dif-
ferent z dependence of the I�v, z� for different values of
v causes the spectrum to change on propagation of emit-
ted radiation from the surface to the far zone.

This analysis allows us to conclude that the spectral
changes in thermal emission should be observable in a
wide variety of solid-state systems supporting evanescent
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FIG. 3. The variation of the spectral density of the thermal
emission for SiC at T � 300 K with the distance z from ob-
server to the surface. Solid line: v � 166 3 1012 s21 �l �
11.4 mm�, dashed line: v � 210 3 1012 s21 �l � 9.0 mm�.
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surface waves or guided waves (in layered structures [5]).
Resonant features in the near-field spectra (such as in
Fig. 1c) correspond to resonances in the local density of
surface modes N�z, v� and appear when the dispersion
curve for SW has a flat portion (as in Fig. 2). In addition
to our example of SiC, such resonances N�z, v� are dis-
played by metals (supporting surface plasmon polaritons),
semiconductors (supporting surface exciton polaritons F),
and several other materials. Yet, a peak in the emission
intensity I�z, v� will be observable only if u�v, T � is not
too small. For example, the near-field spectrum of thermal
emission from amorphous glass near-field spectrum has a
sharp peak for v � 9.24 3 1013 s21 �l � 20.4 mm� vis-
ible at room temperature. All of the III-V and II-VI semi-
conductors can support surface waves in the midinfrared.
However, although the number of modes (8) has a reso-
nance in the case of silver at about v � 5.57 3 1015 s21

�l � 0.339 mm�, no sharp peak is seen if the temperature
silver sample is lower than 4000 K.

Equations (7) and (8) also suggest a new application
for near-field spectroscopy. As a near-field spectrum at a
given distance to the interface gives access to ´00�v��j1 1

´�v�j2, one can hope to retrieve the material dielectric
constant, similar to the method usually used to obtain ´

from reflectivity measurements [15]. With the rapid de-
velopment of near-field optical microscopy, such near-field
spectra can be measured. This could open the way to a new
technique of local solid-state spectroscopy. Finally, we an-
ticipate that the effects reported in this paper should sig-
nificantly improve our understanding of the radiative heat
transfer at nanometric scale with particular applications in
the field of near-field microscopies. This might have ap-
plications for high density storage where the local control
of temperature is essential in the writing process. Also,
note that the effect of near-field thermal fluctuations was
measured recently using the induced brownian motion on
an atomic force microscope tip [16].

To summarize, we have demonstrated that the spec-
trum of thermal emission can undergo significant, qualita-
tive changes on propagation due to the loss of evanescent
modes. Such novel spectral changes are caused by the
change in the local density of emitted electromagnetic
modes, and are especially pronounced in the systems sup-
porting surface waves.
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Abstract

We analyze the spatial coherence of the electromagnetic field emitted by a half-space at temperature T close to the

interface. An asymptotic analysis allows to identify three di�erent contributions to the cross-spectral density tensor in

the near-field regime: thermally excited surface waves, skin-layer currents and small-scale polarization fluctuations. It is

shown that the coherence length can be either much larger or much shorter than the wavelength depending on the

dominant contribution. Ó 2000 Elsevier Science B.V. All rights reserved.
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Keywords: Black body radiation; Polaritons; Surface plasmons; Coherence in wave optics; Scanning near-field optical microscopy

1. Introduction

The typical textbook example of an incoherent
source is a thermal source. From the point of view
of temporal coherence, its spectrum is given by
Planck’s function and modified by its emissivity.
For usual sources, the emissivity is a smooth
function of frequency. Thus, the spectral width is
usually on the order of the peak frequency of
Planck’s function. From the point of view of
spatial coherence, a thermal source is often as-
sumed to be delta correlated. Yet, an exact form of

the cross-spectral density tensor has been derived
for a blackbody radiator and it has been shown
that the spatial coherence length is k=2 [1]. These
exact results seem to support the statement that a
thermal source is incoherent. Yet, one has to an-
alyze more carefully the problem when dealing
with a real thermal source. The radiation emitted
by a semiconductor (SiC) grating in the infrared,
for example, is partially coherent in space, as was
shown both theoretically and experimentally by
LeGall et al. (see Ref. [2] and references therein).
In the present paper, we consider a source that
consists of a half-space filled with a lossy material
at temperature T. We are interested in the emitted
field so that we assume that there are no other
sources. Thus there is no incident radiation illu-
minating the sample. Note in particular that this is
not an equilibrium situation.

Since we explicitly introduce a model for the
source, the emitted field contains evanescent waves
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in the vicinity of the interface. These evanescent
waves are not taken into account when dealing
with blackbody radiation. Yet, they modify the
coherence properties of the source in the near field
as was shown in Ref. [3]. The e�ect is particularly
striking if a resonant surface wave is excited. It has
been shown that the coherence length can be either
much larger than the wavelength or much shorter
than k=2 close to the surface. Temporal coherence
is also dramatically modified. For example, the
emitted radiation is almost monochromatic when a
surface wave is excited [4]. These results were ob-
tained using a direct calculation of the field emit-
ted by a half-space in the framework of fluctuation
electrodynamics [5–8].

The aim of this paper is to analyze the spatial
coherence of the emitted field by means of an
asymptotic evaluation of the cross-spectral density
tensor in the near-field limit (interface–detector
distance small compared to the wavelength). This
analysis permits to retrieve the properties reported
in Ref. [3] and yields insight into the physical
mechanism responsible for these e�ects. We are
thus able to identify all the possible contributions
to the cross-spectral density tensor: thermally ex-
cited surface waves, skin-layer currents and small-
scale polarization fluctuations. We show that to
a good approximation, the sum of these three
asymptotic contributions coincides with the exact
result. We obtain di�erent characteristic behaviors
that vary in accordance with the dominant term.
Surface waves such as surface plasmon–polaritons
or surface phonon–polaritons yield long-range
spatial coherence on a scale of the surface wave
propagation length which may be much larger
than the wavelength when absorption is small. On
the contrary, skin-layer currents and small-scale
polarization fluctuations lead to a much shorter
spatial coherence length that only depends on the
distance to the interface. A surprising consequence
of this property is that the macroscopic theory of
radiometry may be extended into the mesoscopic
regime insofar as emission is concerned. Note
however that this conclusion is based on the as-
sumption of a local medium. The ultimately lim-
iting scale is thus given by the electron screening
length or the electron Fermi wavelength, whatever
is larger [9,10].

2. Overview

2.1. Radiation emitted by a thermal source

In this section, we review the source theory
approach we use for the computation of the ther-
mal electromagnetic field [5–8]. We focus on the
radiation in the vacuum close to a source that we
model as a linear dielectric with dielectric function
eðr; xÞ. The frequency dependence will not be in-
dicated explicitly in the following since we calcu-
late quantities at fixed frequency (or, equivalently,
at fixed wavelength k ¼ 2pc=x. The source radi-
ates because it contains a fluctuating polariza-
tion field PðrÞ. The spectral density of this field
is characterized by the cross-correlation tensor
Sij

P ðr1; r2Þ that, according to the fluctuation–dissi-
pation theorem [5,6,11,12], is given by

Sij
P ðr1; r2Þ ¼ 2�he0 Im eðr1Þ

e�hx=kBT ÿ 1
dijdðr1 ÿ r2Þ ð1Þ

The Kronecker delta dij and the spatial d-function
in this formula follow from the assumption that
the dielectric function is isotropic and local. We
have taken the normal-ordered form for the po-
larization field spectrum since we are ultimately
interested in the electromagnetic field measured by
a photodetector (given by normally ordered field
operators [1,11]). The electric field EðrÞ radiated by
the polarization PðrÞ is now given by the Green
function for the source geometry

EiðrÞ ¼
Z

V
dr0
X

j

Gijðr; r0ÞPjðr0Þ ð2Þ

where V is the volume of the source, i.e., the do-
main where Im eðr0Þ is nonzero according to Eq.
(1). All quantities in Eq. (2) are understood as
temporal Fourier transforms at frequency x. The
coherence function W ijðr1; r2Þ of the electromag-
netic field is now obtained as a thermal average
of Eq. (2), using the polarization spectrum (1).
One obtains [3,4]

W ijðr1; r2Þ ¼ 2�he0

e�hx=kBT ÿ 1

X
k

Z
V

dr0 Im eðr0Þ

� Gik�ðr1; r
0ÞGjkðr2; r

0Þ ð3Þ
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The problem is now to evaluate this expression
analytically and to obtain an estimate for its de-
pendence on the separation s � r2 ÿ r1 between
the observation points.

To proceed in the calculation, we focus on the
simplified geometry shown in Fig. 1: an infinite
half-space with uniform dielectric constant e, sep-
arated by the plane z ¼ 0 from the empty half-
space z > 0. For this arrangement, the Green
tensor is explicitly known as a spatial Fourier
transform with respect to the lateral separation
S ¼ ðsx; syÞ � R2 ÿ R1. Details may be found in
Refs. [11,13,14] and in Appendix A. As to be ex-
pected for this source geometry, the electric co-
herence tensor depends on the distances z1, z2 of
the observers and their lateral separation S. For
simplicity, we put in the following z1 ¼ z2 ¼ z.
We also normalize the coherence tensor W ij to its
value for r1 ¼ r2 in the case of blackbody radiation

Wbb ¼ 2�hk3

3pe0ðe�hx=kBT ÿ 1Þ ð4Þ

where as usual k ¼ x=c. As outlined in Appendix
A, we thus get the following expression for the
spatial Fourier transform of the coherence tensor

wijðS; zÞ ¼ W ijðS; zÞ
Wbb

¼
Z

d2K

ð2pÞ2 eiK�Sÿ2z Im cwijðKÞ

ð5Þ
where K denotes a wave vector parallel to the in-
terface and ðK; cÞ is the vacuum wave vector of a

plane wave emitted by the source. The tensor
wijðKÞ is given in Appendix A, Eq. (A.10). The
integration over K in Eq. (5) also includes wave
vectors jKj > k, describing evanescent waves the
source excites in the vicinity of the interface (the
quantity c is then purely imaginary with positive
imaginary part).

2.2. Near-field coherence function

In this subsection, the typical behavior of the
field coherence function is discussed. We identify
several distance regimes showing a very di�erent
behavior of the lateral coherence function. Ana-
lytical approximations for the coherence function
are deferred to the next section.

In Fig. 2 is shown the ‘energy density’ (the trace
of the coherence tensor at coinciding positions)
above a metal surface in double logarithmic scale.
One observes a strong increase with respect to the
far-field energy density when the distance z is
smaller than the wavelength. For moderate dis-
tances z6 k, the energy density is dominated by
an exponentially increasing contribution (cf. Fig.
2(b)). This is due to the excitation of surface
plasmon resonances, whose contribution is calcu-
lated analytically in Section 3.1. The other curve in
Fig. 2(b) shows the energy density for the case of
tungsten with Re e > ÿ1 where no surface mode
exists and no exponential increase is found. For
small distances z� k, the energy density follows a
1=z3 power law (‘static limit’) that is discussed in
Section 3.2. The prefactor of this power law in-
volves the imaginary part of the electrostatic re-
flection coefficient Im½ðeÿ 1Þ=ðeþ 1Þ�. The second
curve in Fig. 2(a) illustrates the resonantly en-
hanced energy density for a wavelength where
Re e � ÿ1. The ‘static limit’ contribution then
overwhelms that of the plasmon resonance.

In Fig. 3, we show the normalized lateral co-
herence function at chosen distances from the in-
terface. In the far field (Fig. 3(a)), the coherence
length is k=2, and the coherence function the same
as for the blackbody field ððsin ksÞ=ks behaviorÞ.
This is not surprising since at large distances
z� k, only propagating plane waves radiated into
the vacuum half-space contribute to the field.

Fig. 1. Model geometry for a planar source.
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Fig. 2. Energy density TrwijðS ¼ 0; zÞ vs. distance from a metal surface. Dots: numerical evaluation of the integral (5), solid lines: sum

of the asymptotic approximations discussed in the text. In the far field, the numerically computed value is taken. (a) log–log scale for

gold at k ¼ 620 nm (e ¼ ÿ9:3þ 1:2i) and at k ¼ 400 nm (e ¼ ÿ1:1þ 6:5i). The dielectric constants are extracted from Ref. [15]. Dashed

line: 1=z3 power law dominating the extreme near-field; dotted line: exponentially decaying contribution of excited surface modes. (b)

log–linear scale, showing the exponentially decaying surface plasmon contribution for gold at k ¼ 620 nm. For comparison, the case of

tungsten at k ¼ 500 nm is shown where no plasmon resonance is found (e ¼ 4:4þ 18i).

Fig. 3. Normalized lateral coherence functions for three fixed distances z, plotted vs. the lateral separation s ¼ jSj. All plots are for a

gold surface at k ¼ 620 nm. Dots: numerical evaluation of Eq. (5), solid lines: analytical approximations discussed in the text. The

numerically computed values were used to normalize all curves. (a) Far field regime z ¼ 10k. The trace of the coherence tensor is

plotted, normalized to its value for s ¼ 0. Solid line: free space coherence function sinðksÞ=ðksÞ. (b) Plasmon dominated regime z ¼ 0:1k.

The components wxx and wzz are plotted, normalized to (the numerically computed) wzzðS ¼ 0; zÞ. (c) Static regime z ¼ 0:01k. The

components wxx and wzz are plotted and normalized as in (b). The solid curve only contains the extreme near-field contribution (17).
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When the surface plasmon excitation domi-
nates the field energy ðz6 kÞ, the field coherence
extends over much longer distances (Fig. 3(b)).
This is because of the weak damping of the plas-
mon modes in this case. We show below (Section
3.1) that the coherence length is indeed given by
the plasmon propagation length. The figure also
shows that the field is strongly polarized perpen-
dicular to the interface, as is the surface plasmon
mode.

At distances z� k even closer to the source, the
field coherence length gets shorter again (Fig.
3(c)). We show below that in this regime, the field
behaves as if it was quasi-static (Section 3.2). This
leads to a lateral coherence length equal to the
vertical distance z from the interface and hence
much shorter than the wavelength. We thus find
the surprising result that thermal near fields have
no lower limit in their coherence length, as long as
the dielectric function of the source may be taken
as local.

One might finally ask whether the skin depth d
(defined in Eq. (23)) is relevant for the radiation
emitted by a metallic source. This question is dis-
cussed in Section 3.3 where we show that in the
regime d� z� k, a di�erent power law ð/1=z2Þ
governs the energy density (see Fig. 4(a)). The
lateral coherence behaves similar to the static re-
gime z� d, however, as shown in Fig. 4(b).

3. Analytical approximations

3.1. Plasmon contribution

It is well known that a dielectric–vacuum in-
terface supports surface plasmon polariton (or
phonon polariton) modes provided the dielectric
constant satisfies Re e < ÿ1 [16,17]. These surface
modes propagate parallel to the surface with a
wave vector Kpl and are exponentially localized in
the direction perpendicular to the interface. In
addition, if there are losses in the dielectric, the
propagation parallel to the interface is damped
which may be described by a nonzero imaginary
part of Kpl. Mathematically, we obtain the plas-
mon dispersion relation by identifying the poles
of the transmission coefficients tl ðl ¼ s; pÞ as a
function of the wave vector K. Only the p-polar-
ization (magnetic field perpendicular to the plane
of incidence) gives a pole at the (complex) position

Kpl ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiÿe
ÿeÿ 1

r
; ReKpl; ImKpl > 0 ð6Þ

The plasmon pole shows up as a sharp peak when
the integrand wijðKÞ in Eq. (5) is plotted as a
function of the lateral wave vector magnitude K
(cf. Eq. (A.10)). This suggests that we get a good
approximation to the plasmon contribution by
taking slowly varying terms outside the integral

Fig. 4. Near-field coherence in the skin-e�ect dominated regime d� z� k, typical for metals in the far infrared. Dots: numerical

evaluation of the integral (5), lines: analytic asymptotics discussed in the text. (a) Energy density TrwijðS ¼ 0; zÞ above a metallic

surface with e ¼ ÿ8:26þ i 104 (gold extrapolated to k ¼ 3:7 lm). The solid line is the sum of the asymptotic contributions derived in

this paper. (b) Normalized lateral coherence functions wiiðS; zÞ=wzzð0; zÞ (i ¼ x; z) for fixed distance z, plotted vs. the lateral separation

s ¼ jSj. The x- and z-polarizations di�er because the plasmon contribution already comes into play. The numerically computed

wzzð0; zÞ was used to normalize all curves, this is why the analytic correlations exceed unity.
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and evaluating the pole contribution by contour
integration. For example, the denominator of the
jtpj2 transmission coefficient may be approximated
as

1

jecþ c2j2
� 4jej2
jeþ 1j jeÿ 1j2 Im

1

K2 ÿ K2
pl

ð7Þ

where c ¼ cðKÞ and c2 are the vertical wave vector
components above and below the interface. It is
essential for the contour integration to work that
one expresses the absolute square on the left-hand
side as the imaginary part of an analytic function
of K (right-hand side).

It is easily checked from Eq. (A.10) that the
trace of wijðKÞ only depends on the magnitude K
of the lateral wave vector K. The integration over
the angle between K and S therefore gives

TrwijðS; zÞ ¼
Z 1

0

K dK
2p

J0ðKsÞeÿ2z Im cTrwijðKÞ
ð8Þ

where J0ð�Þ is the ordinary Bessel function and
s ¼ jSj. The individual tensor components also
involve Bessel functions J2ðKsÞ, as discussed in
Appendix B.1. The integration over K may be
done using the identity (B.2) proven in Appendix
B.2.1. The diagonal elements of the coherence
tensor finally take the suggestive form

wiiðS; zÞ � Cpl e
ÿ2jplzgiðKplsÞ ð9Þ

gkðuÞ ¼ 1

2
Re H0ðuÞ
�

ÿ H2ðuÞ ÿ 4i

pu2

�
ð10Þ

g?ðuÞ ¼ 1

2
Re H0ðuÞ
�

þ H2ðuÞ þ 4i

pu2

�
ð11Þ

g zðuÞ ¼ jejReH0ðuÞ ð12Þ

Cpl ¼ 3p
2

jej2
jeþ 1j7=2

ð13Þ

where jpl ¼ ImcðKplÞ is the perpendicular plasmon
decay constant and H0; 2ð�Þ � H ð1Þ0; 2ð�Þ are Hankel
functions (or Bessel functions of the third kind)
[18]. The superscripts k, ? indicate the directions
parallel and perpendicular to the separation vector
S in the interface plane.

Eq. (9) shows that the plasmon resonance gives
a contribution to the energy density that increases
exponentially when approaching the source. This
behavior is reproduced by the numerical evalua-
tion of Eq. (A.10), as shown in Fig. 2(b). As a
function of the lateral distance s, the correlation
tensor (9) shows damped oscillations whose
wavelength is fixed by the plasmon wave vector
Kpl, as shown in Fig. 3(b). These oscillations can be
made explicit using the asymptotic form of the
Hankel function [18]

jKplsj � 1 : HnðKplsÞ �
ffiffiffiffiffiffiffiffiffiffiffi

2

pKpls

s
eiðKplsÿp=4ÿnp=2Þ

ð14Þ

We thus conclude that the propagation distance of
the plasmon resonance, as contained in the imag-
inary part of Kpl, determines the coherence length
of the field in this regime. For a dielectric constant
with small imaginary part, the inverse propagation
distance is approximately

ImKpl � ðReKplÞ3
k2

Im e

2ðRe eÞ2 � k ð15Þ

Thermally excited plasmons thus lead to a spa-
tially coherent field on a length scale well exceed-
ing the vacuum wavelength. They also create a net
field polarization, as shown by the anisotropy of
the tensor elements in Eqs. (10)–(12) (see also Fig.
3(b)). This anisotropy may be understood from the
fact that the coherence between points separated
by S is created by plasmons propagating parallel
to this direction, and the latter are polarized in the
plane spanned by S and the normal vector ez.

3.2. Extreme near field: quasi-static regime

We now turn to the near-field limit z� k. In-
specting the integrand of Eq. (A.10), one finds that
in addition to the plasmon resonance, large wave
vectors K � k dominate the integral. This is be-
cause the exponential cuto� eÿ2z Im cðKÞ � eÿ2zK gets
e�ective only for K P 1=z� k. We thus obtain the
asymptotic behavior of the integral when we ex-
pand the integrand to leading order in the limit
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1=z P K � k. The transmission coefficients, e.g.,
become in this limit

jtpj2 � 4jc2j2jej
K2jeþ 1j2 1

�
þ k2

K2
Re

e
eþ 1

�
jtsj2 � 4jc2j2

K2
1

�
þ k2

4K2
Re ðeþ 1Þ

� ð16Þ

We perform the integration over K using Eq. (B.8),
as explained in Appendix B.2.2 and get the fol-
lowing asymptotic form for the diagonal elements
of the cross-correlation tensor

wiiðS; zÞ � Cxnf

ðkzÞ3 giðs=zÞ ð17Þ

gkðuÞ ¼ 1ÿ u2=2

ð1þ u2=4Þ5=2
ð18Þ

g?ðuÞ ¼ 1

ð1þ u2=4Þ3=2
ð19Þ

g zðuÞ ¼ 2ÿ u2=4

ð1þ u2=4Þ5=2
ð20Þ

Cxnf ¼ 3

32
Im

eÿ 1

eþ 1
¼ 3

16

Im e

jeþ 1j2 ð21Þ

The coherence tensor given by Eq. (17) shows a
power law increase 1=z3 when the interface is ap-
proached, as plotted in Fig. 2(a). It therefore takes
over compared to the plasmon contribution in the
‘extreme near-field limit’ z� 1=jpl. In this regime,
the lateral coherence of the field is characterized,
as shown by the scale functions giðs=zÞ in Eqs.
(18)–(20), by a Lorentzian shape whose scale is set
by the distance z to the source. Hence, the closer
one detects the field, the more it is spatially inco-
herent.

This behavior may be understood from elec-
trostatics: in the near field, the electromagnetic
fields behave as if they were quasi-static because
they vary on a length scale much smaller than the
wavelength (retardation is negligible). A near-field
detector is thus sensitive to a source area of the
order of pz2, and spatial coherence is observed
when these areas overlap, hence for a separation
smaller than the distance z. Similar arguments

have also been put forward to interpret subwave-
length resolution in optical near-field microscopy
[19,20]. The electrostatic analogy may be pushed
even further: it is easily checked that we get the
same result as Eq. (17) using electrostatic image
theory. As a consequence of the fluctuation–
dissipation theorem [5,6,11,12], we have indeed

W ijðr2; r1Þ / ImGijðr2; r1Þ
/ ImEi

imageðr2;�r1; �djÞ ð22Þ
where Gij is again the electric Green function. The
electric field Eimage is created by the image �dj of a
dipole dj (polarized along the xj-axis) at position
r1, the image dipole being located at the mirror
position �r1 ¼ ðx1; y1;ÿz1Þ. This image dipole field
dominates the Green function Gij at sufficiently
close distance from the source if the electrostatic
reflection coefficient ðeÿ 1Þ=ðeþ 1Þ has a nonzero
imaginary part (see Eq. (21)).

We stress that there is no lower limit to the
spatial coherence length of the near field, provided
one uses the framework of a local dielectric sus-
ceptibility. Model calculations for a free elec-
tron gas confined to a half-space show that this
framework breaks down at wave vectors K of the
order of the Fermi wave vector [9,10]. For our
problem, this corresponds to typical distances of
the order of 0:1nm that are difficult to achieve
for near-field probes even in the optical range.

3.3. Relevance of the skin depth

It has become clear from the two preceding
subsections that the lateral coherence of near-field
radiation strongly depends on the distance of ob-
servation to the source. It might have been ex-
pected that the skin depth shows up in this
discussion, since it governs the penetration depth
for electric fields into the metal. We conclude our
analytical work by identifying the relevance of this
length scale.

Recall that the skin depth is given by

d ¼ k=2p
Im

ffiffi
e
p ð23Þ

In many cases (metals at low frequencies,
semiconductors in the infrared), the dielectric
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function is large and therefore the skin depth much
smaller than the wavelength, d� k. In this regime,
the source material approaches a perfect conduc-
tor. The large K expansion of the transmission
coefficients in Eq. (A.10) then has to be reconsid-
ered: while the limit K � k may be justified, the
limit K � kj ffiffiep j may be not. We find that there
exists an intermediate distance regime d� z� k
(corresponding to wave vectors kj ffiffiep j � K � k)
where the coherence tensor shows a di�erent be-
havior [21]. The expansion of the transmission
coefficients in this regime reads

jtpj2 � 4jc2j2
jejK2

1

�
þ O

K
k
ffiffi
e
p

� ��
jtsj2 � 4jc2j2

jejk2
1

�
þ O

K
k
ffiffi
e
p

� �� ð24Þ

We finally get an isotropic coherence tensor

wiiðS; zÞ � 3

16

d
kz2

gðs=zÞ ð25Þ

gðuÞ ¼ 1

ð1þ u2=4Þ3=2
ð26Þ

The skin layer dominated regime is thus charac-
terized by a 1=z2 power law for the energy density.
As shown in Fig. 4(a), the skin depth d separates
this regime from the extreme near field where a
di�erent power law 1=z3 prevails. We observe from
Fig. 4(b) and Eq. (25) that the lateral coherence
length is equal to the distance z from the source, as
in the extreme near-field regime. This is not so
surprising since the field propagation in the vac-
uum half-space above the source is governed by
the length scales k and z, whatever the smaller,
while the skin depth is only relevant for the
propagation inside the source.

To conclude, we recall that the di�erent con-
tributions to the correlation tensor originate in
distinct domains on the K-axis in the integral (5).
The total correlation tensor is therefore given by
the sum of the surface plasmon, extreme near field,
and skin-layer contributions. The accuracy of this
approximation is visible in Figs. 2 and 4(a). Note
that in the figures, the numerically computed far-
field energy density has been added to get the
correct large distance limit.

4. Conclusion

In the near field, the spatial coherence of ther-
mal radiation di�ers strongly from the blackbody
field. Confined field modes like surface plasmon
polaritons that propagate along the source surface
make the field spatially coherent over large scales
if they dominate the radiation density. At close
distance (smaller than the skin depth), the radia-
tion is dominated by quasi-static fields, and the
coherence length drops well below the wave-
length, being limited only by the (non)locality of
the dielectric response of the source material. The
crossover between these regimes is determined by
the skin depth and the electrostatic reflection co-
efficient. We conclude that in the near field, mac-
roscopic concepts like a local emissivity are still
meaningful at the subwavelength scale, provided
coherent surface excitations are absent or sub-
dominant. For rough surfaces, the validity of these
macroscopic concepts has been discussed in Ref.
[22].

The asymptotic forms for the cross-spectral
density tensor obtained in this paper are useful to
characterize thermal noise fields that may perturb
particles in integrated microtraps ‘mounted’ with
electromagnetic fields above a solid surface [23–
30]. The concomitant scattering and decoherence
of the guided matter waves is discussed elsewhere
[31,32].

The fluctuation electrodynamics used in this
paper enabled us to treat a non-equilibrium situ-
ation (thermal source in vacuum at T ¼ 0) where
the fluctuation–dissipation theorem for the electric
field is not immediately applicable. In particular,
we neglected the zero-point radiation impinging on
the interface from the empty half-space. The do-
main of validity of this approximation, as well as
the calculation of anti-normal-ordered correlation
functions will be the subject of future investiga-
tions.
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Appendix A. Notations for the plane interface

The Green tensor describing the emission from
the source z0 < 0 into the vacuum half-space z > 0
may be written in spatial Fourier space as [11,13]

Gijðr; r0Þ ¼
Z

d2K

ð2pÞ2 eiK�ðRÿR0ÞGijðK; z; z0Þ

GijðK; z; z0Þ ¼ ik2

2e0c2

X
l¼s; p

eðtÞl;ie
ð2Þ
l;j tleiðczÿc2z0Þ

ðA:1Þ

We use bold capitals to denote vectors parallel to
the interface, e.g., K ¼ ðkx; ky ; 0Þ. The vertical
components of the wave vectors in vacuum and
inside the source are, respectively,

c ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 ÿ K2

p
; Imc > 0 ðA:2Þ

c2 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ek2 ÿ K2

p
; Imc2 > 0 ðA:3Þ

The polarization vectors for the s- (or TE-) and
p- (TM-) polarized waves are taken as

eðtÞs ¼ eð2Þs ¼ K̂� êz ðA:4Þ

eðtÞp ¼
K ẑÿ cK̂

k
ðA:5Þ

eð2Þp ¼
K ẑÿ c2K̂ffiffi

e
p

k
ðA:6Þ

where K̂ is the unit vector parallel to K. Finally,
with this choice for the polarization vectors, the
Fresnel transmission coefficients are

ts ¼ 2c2

cþ c2

; tp ¼ 2c2

ffiffi
e
p

ecþ c2

ðA:7Þ

When the Green tensor (A.1) is inserted into the
integral (3), the spatial integration over R0 yields a
d-function for the lateral wave vectors. The inte-
gration over z0 is thenZ 0

ÿ1
dz0 eÿiðc2ÿc�

2
Þz0 ¼ 1

2Imc2

ðA:8Þ

where the convergence is ensured by the positive
imaginary part of c2. The resulting coherence
tensor is then of the form (5). We use the identity

k2Im e ¼ 2Imc2 Rec2 ðA:9Þ

and get after some elementary algebra:

wijðKÞ ¼ 3p
4k

Rec2

jc2j2
X

l

eðtÞl;i e
ðtÞ�
l;j jeð2Þl j2jtlj2 ðA:10Þ

Appendix B. Components of the coherence tensor

In this appendix, we outline the calculation for
the components of the coherence tensor.

B.1. Angular integrations

The only quantities in Eq. (A.10) that depend
on the angle u between the lateral wave vector K

and the separation S are the polarization vectors
el. To simplify the calculation, we choose the x-
axis parallel to S. We then get the following azi-
muthal integrals (Eq. (9.1.18) of Ref. [18])Z p

ÿp

du
p

eiKs cos u sin2 u
cos2 u

� �
¼ J0ðKsÞ � J2ðKsÞ

ðB:1Þ
The integrals with sin u cos u vanish due to par-
ity. We also note that one also gets nonzero o�-
diagonal elements W xz, W zx due to p-polarized
modes. For simplicity, these are not discussed
here.

B.2. Radial integrations

We are left with integrals over the radial wave
vector K. These are worked out using the defini-
tions (A.4)–(A.6) of the polarization vectors and
the transmission coefficients (A.7).

B.2.1. Plasmon pole
To find the plasmon contribution, we extract, as

mentioned in the main text, the pole of the tp co-
efficient and approximate the other factors by their
values at the pole. The remaining integral can be
reduced to the following standard formZ 1

0

xdx
x2 ÿ q2

J0ðxsÞ ¼ ip
2

H ð1Þ0 ðqsÞ ðB:2Þ

for Imq > 0, s > 0. To prove this identity, we use
contour integration. The Bessel function is written
as [18, Eqs. (9.1.3) and (9.1.39)]

C. Henkel et al. / Optics Communications 186 (2000) 57–67 65



J0ðxÞ ¼ 1

2
H ð1Þ0 ðxÞ
h

ÿ H ð1Þ0 ðeipxÞ
i

ðB:3Þ

where H ð1Þ0 ðxÞ is the Hankel function. The integral
may now be written as

1

2

Z 1

eip1

xdx
x2 ÿ q2

H ð1Þ0 ðxsÞ ðB:4Þ

with an integration path running just above the
negative real axis. The Hankel function is analytic
in the upper half-plane and vanishes exponentially
for jxj ! 1 there (see Eq. (14)). Therefore, closing
the integration contour with a half-circle, the in-
tegral is given by the residue at the pole x ¼ þq
(because Imq > 0), and we getZ 1

eip1

xdx
x2 ÿ q2

H ð1Þ0 ðxsÞ ¼ ipH ð1Þ0 ðqsÞ ðB:5Þ

This proves Eq. (B.2). Taking the imaginary part,
we find both the trace and the zz-component (12)
of the correlation tensor (9).

For the xx- and yy-components of the coher-
ence tensor, we also need the integral (B.2) with
the Bessel function J2ðxsÞ instead of J0ðxsÞ (cf. Eq.
(B.1)). Using the same reasoning as above, this
integral is transformed into

1

2

Z 1

eip1

xdx
x2 ÿ q2

H ð1Þ2 ðxsÞ ðB:6Þ

In addition to the pole at x ¼ q, we now have a
contribution from the ÿ4i=ðxsÞ2 singularity of the
Bessel H ð1Þ2 ðxsÞ function at the origin. This singu-
larity lies on the integration path and is therefore
taken into account by half its (negative) residue at
x ¼ 0. Combining the latter with the residue at
x ¼ q, we getZ 1

eip1

xdx
x2 ÿ q2

H ð1Þ2 ðxsÞ ¼ ipH ð1Þ2 ðqsÞ ÿ 4p
q2s2

ðB:7Þ

We may verify the sign of the second term by
checking that the function (B.7) vanishes in the
limit s! 0, as is the case for the left-hand side of
Eq. (B.6).

B.2.2. Near-®eld regime
In the near-field regimes K � kj ffiffiep j (extreme

near field) and kj ffiffiep j � K � k (skin layer domi-
nated regime), the expansions (16) and (24) of the
transmission coefficients are straightforward to

obtain. The final integration involves integer pow-
ers of K times products of Bessel functions and
exponentials and is performed using the following
identityZ 1

0

dK J0ðKsÞeÿ2Kz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z2 þ s2
p ðB:8Þ

This may be proven starting from the Fourier ex-
pansion of the Coulomb potential (writing k ¼
ðK; kzÞ)

1

r
¼ 1

2p2

Z
d2Kdkz

eik�r

k2
ðB:9Þ

and evaluating the integral over the vertical wave
vector component kz with contour integration (for
z > 0, a single pole at kz ¼ ijKj contributes). The
derivatives of Eq. (B.8) with respect to z and s then
provide all necessary integrals.
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We study the radiative heat transfer between a small dielectric particle, considered as a point-like
dipole, and a surface. In the framework of electrodynamics and using the fluctuation-dissipation
theorem, we can evaluate the energy exchange in the near field, which is dominated by the
contribution of tunneling waves. The transfer is enhanced by several orders of magnitude if the
surface or the particle can support resonant surface waves. An application to local heating is
discussed. ©2001 American Institute of Physics.@DOI: 10.1063/1.1370118#

Questions about radiative heat transfer~RHT! at nano-
scales have been raised by recent developments of
nanotechnology.1 Design of micro- and nanostructures re-
quires a thorough understanding of physical phenomena in-
volved in radiative energy exchange, when their sizes be-
come comparable to the thermal mean free path or the
thermal radiation wavelength.2,3 Modeling RHT between two
semi-infinite bodies4–7 or between a tip and a substrate8 is a
challenging problem for all near-field microscopes~scanning
tuneling microscope, atomic force microscope! or for scan-
ning thermal microscopes.9 Our work deals with the problem
of RHT between a small particle—considered as a point-like
dipole—and a very close plane interface. This particle could
be a single molecule, a dust particle, or a model for the tip of
a microscope probe. Using an electromagnetic approach, in
the dipolar approximation, we have derived the expression of
the radiative heat power exchanged between the particle and
the semi-infinite medium. We show that the transfer in-
creases at small distances and can be enhanced by several
orders of magnitude~in comparison with the transfer at large
distances! if the particle or the bulk support resonant surface
waves. Results of numerical simulations are presented and an
application to local heating is discussed.

In this part, we focus on the derivation of the radiative
power exchanged between a small particle~of spherical
shape! and a semi-infinite medium. The geometry of the
problem is presented in Fig. 1: the upper mediumz.0 is
vacuum («51). A particle ~P! of radius a and dielectric
constant~frequency dependent! «P(v)5«P8 (v)1 i«P9 (v) is
held at temperatureTP . The lower mediumz,0, is filled by
a homogeneous, isotropic material~bulk! of dielectric con-
stant«B(v)5«B8 (v)1 i«B9 (v) and held at temperatureTB .
The center of the particle is at a distanced above the
interface.

We first calculate the mean powerPabs
B→P(v) radiated by

the bulk at a given frequencyv and absorbed by the particle.
We assume that the bulk is in local thermodynamic equilib-
rium at uniform temperatureTBÞ0, so that there are fluctu-
ating currents inside the bulk due to thermal fluctuations.
These currents inside the bulk radiate an electromagnetic

field that illuminates the particle. An elementary fluctuating
currentj f(r 8,v) at frequencyv, radiates at pointr inside the
particle, an incident electric fieldEinc(r ,v) given by

Einc~r ,v!5~ ivm0!E
B
GI~r ,r 8,v!j f~r 8,v!d3r 8, ~1!

wherem0 is the magnetic permeability of vacuum andGI is
the Green tensor10 of a system constituted by two semi-
infinite media whose dielectric constants are either 1 if
z>0 or «B(v) if z,0. Let us now assume thatEinc(r ,v) is
uniform inside the particle. This amounts to use a dipolar
approximation, whose validity in the near field has already
been discussed.11 Provided that this condition is satisfied, the
small particle behaves as a point-like dipolepind(r P ,v) in-
duced by the incident fieldEinc(r P ,v). These quantities are
related by:pind(r P ,v)5«0a(v)Einc(r P ,v), where«0 is the
dielectric permittivity of vacuum anda(v) is the particle
polarizability. For a spherical particle of dielectric constant
«P(v), we used the Clausius–Mossotti polarizability12

a~v!54pa3F«P~v!21

«P~v!12G . ~2!

A more precise model,13 taking into account the interac-
tion between the dipole and its image through the interface,
leads to the introduction of an effective polarizability. We
have verified that, when the distanced is larger than the
particle radiusa, the correction to Eq.~2! is negligible. Since

a!Electronic mail: jpmulet@em2c.ecp.fr FIG. 1. Geometry of the system.
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we did our calculation for a distanced larger than 2a, we
will consider that Eq.~2! is a good approximation for the
polarizability in our problem.

We now evaluate the mean radiative powerPabs
B→P(v)

dissipated inside the particle. Since the scattered power is
negligible,14 this quantity is given by: Pabs

B→P(v)
5Re$^2ivpind(r P ,v)•Einc* (r P ,v)&%, where the brackets de-
note a statistical ensemble average over the fluctuations of
the currents inside the bulk. The components
^uEind,i(r P ,v)u2& ( i 5x,y,z) depend only on the distanced
and are given by10,15,16

^uEinc,i~r P ,v!u2&52
m0

2«0v3

p
Im@«B~v!#Q~v,TB!

3 (
j 5x,y,z

E
B
uGi , j~r P ,r 8,v!u2d3r 8,

~3!

whereQ(v,TB)5\v/@exp(\v/kBTB)21# is the mean energy
of a quantum oscillator in thermal equilibrium at temperature
TB , 2p\ is Planck’s constant, andkB is Boltzmann’s con-
stant. Finally, we find the expression of the mean power
radiated by the bulk and absorbed by the particle at fre-
quencyv

Pabs
B→P~r P ,v!5

2

p

v4

c4 Im@«B~v!#Im@a~v!#Q~v,TB!

3 (
i , j 5x,y,z

E
B
uGi , j~r P ,r 8,v!u2d3r 8. ~4!

We now consider the fluctuating currents inside the par-
ticle at temperatureTP that illuminate the bulk. Using the
same formalism, we can calculate the powerlocally dissi-
pated per unit volume, at a pointr inside the bulk, by the
following relation: Pabs

P→B(r ,v)5Re$^j ind(r ,v)•Einc* (r ,v)&%.
It reads

Pabs
P→B~r ,v!5

2

p

v4

c4 Im@«B~v!#Im@a~v!#Q~v,TP!

3 (
i , j 5x,y,z

uGi , j~r ,r P ,v!u2. ~5!

In this part, we present some numerical results obtained
with a particle and a surface of silicon carbide~SiC!. The
optical properties of this material can be described using an
oscillator model17

«B~v!5«P~v!5«~v!5«`S 11
vL

22vT
2

vT
22v22 iGv D ~6!

with «`56.7, vL5969 cm21, vT5793 cm21, and G
54.76 s21. The bulk can support resonant surface waves,
called surface phonon polaritons, that produce a peak in the
density of states at frequencyvB where«(vB) satisfies the
relation «8(vB)521. The spherical particle supports vol-
ume phonon polaritons atvP where«(vP) satisfies the re-
lation «8(vP)522. Using Eq. ~6!, we find: vB5178.7
31012rad s21 andvP5175.631012rad s21.

In Fig. 2, we plotPabs
B→P(v) for a spherical particle of

radius a55 nm at different distancesd above the surface,

held at temperatureTB5300 K. We note that the figure dis-
plays two remarkable peaks at frequencyv1'175.6
31012rad s21 and v2'178.731012rad s21. These two
peaks are related to the resonant surface waves: the first cor-
responds to the resonance of the particle which presents a
larger absorption at this frequency; the second is due to a
huge increase of electromagnetic energy density close to the
surface, demonstrated recently.16 An asymptotic expansion
of Eq. ~4! for small distanced yields the radiative power
spectrum

~7!

At this point, we must emphasize that, whereas those
surface waves are evanescent waves, an energy exchange
between the bulk and the particle takes place because the
particle lies in the region~up to many micrometers! where
the evanescent field is large, so that there is an efficient cou-
pling between them. The inset of the figure shows~in log–
log scale! the spectrum of the absorbed power between 1012

and 1015rad s21 at two different distancesd520 nm andd
51 mm. It is seen that the RHT is almost monochromatic
and is larger in the near field. If the particle and the bulk

FIG. 3. Total power radiated by the bulk~at TB5300 K! and absorbed by
the particle~of radiusa55 nm! vs distance.

FIG. 2. Mean power radiated by the bulk~at TB5300 K! and absorbed by
the particle ~of radius a55 nm! vs frequency: ~a! d520 nm; ~b! d
550 nm; ~c! d5100 nm. The inset~log–log scale! shows the spectrum of
the absorbed power between 1012 and 1015 rad s21; ~e! d520 nm; and~f!
d51 mm.
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were constituted by two different materials, the RHT spec-
trum would feature two separate sharp peaks at two different
resonance frequencies.

Figure 3 shows the integrated power absorbed by the
same particle versus distanced ~the substrate is still held at
temperatureTB5300 K!. The near-field RHT increases as
1/d3 and is larger at small distances by several orders
of magnitude than the far-field one. Indeed, ford510 nm,
Pabs'2.6310210W and for d510mm, Pabs'8.9310218

W. This enhancement comes from the contribution of eva-
nescent waves to the energy exchange. Therefore, this con-
tribution cannot be neglected in a near-field calculation. This
phenomenon occurs when the materials can support resonant
surface waves like III–V or II–VI semiconductors and be-
cause the resonant frequencies take place in the far IR region
~up to 10mm! where the characteristic wavelength of ther-
mal emission atT'300 K is 10mm. A lot of materials, like
oxides or glass, can also support resonant surface waves in
the IR or the visible region.

Reciprocity requires that the same enhanced RHT ap-
pears when the particle illuminates the surface. This situation
may help us in understanding the radiative heat exchange
between a nanotip~like those used in near-field microscopy!
and a sample. It is interesting to study how the energy radi-
ated by the tip is dissipated in the sample. To answer this
question, we calculated—using Eq.~5!—the total power~in-
tegrated over the frequencies! dissipated per unit volume for

different points in the sample. Figure 4 displays a map, in log
scale, of the dissipation rate in the case of a 10 nm diameter
sphere of SiC atTP5300 K situated at 100 nm above a
sample of SiC. It is seen that the energy is dissipated on a
scale comparable to the tip–sample distance. The dissipation
per unit volume decreases very fast~as 1/r 6! with the dis-
tancer between the source and the point of the sample where
the dissipation is considered~the isocontour labeled with a
‘‘6’’ corresponds to the points where the dissipation per unit
volume is 106 W m23!. The amount of energy locally depos-
ited is as large as 100 MW m23.

In this letter, we have shown that nanoscale RHT be-
tween a sample and a small particle is almost monochromatic
and can be enhanced by several orders of magnitude when
the materials involved support resonant surface waves. When
illuminated by the particle, the distribution of power inside
the sample extends over distances of the same order as the
particle-sample separation. These results should have broad
applications in near-field microscopy, in design of nanostruc-
tures and in high density storage processes by local heating.
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because the actual masses of massive protostars are poorly deter-
mined. Our approach is to predict the properties of some well
studied massive protostars in terms of their bolometric luminos-
ities. The bolometric luminosity Lbol has contributions from main-
sequence nuclear burning Lms, deuterium burning LD, and accretion
Lacc. The accretion luminosity Lacc � f accGmp Çmp=rp, where facc is a
factor of order unity accounting for energy radiated by an accretion
disk, advected into the star or converted into kinetic energy of
out¯ows, and where the stellar radius rp may depend sensitively on
the accretion rate Çmp. Massive stars join the main sequence during
their accretion phase at a mass that also depends on the accretion
rate23. To treat accelerating accretion rates, we have developed a
simple model for protostellar evolution based on that of refs 6 and
24. The model accounts for the total energy of the protostar as it
accretes and dissociates matter and, if the central temperature
Tc * 106 K, burns deuterium. We have modi®ed this model to
include additional processes, such as deuterium shell burning,
and we have calibrated these modi®cations against the more
detailed calculations of refs 23 and 25.

Our model allows us to make predictions for the masses and
accretion rates of embedded protostars that are thought to power
hot molecular cores (C.F.M. and J.C.T., manuscript in preparation).
Figure 2 compares our theoretical tracks with the observed bolo-
metric luminosities of several sources. We ®nd that uncertainties in
the value of the pressure create only small uncertainties in mp for Lbol

in excess of a few times 104 solar luminosities.
The infrared and submillimetre spectra of accreting protostars

and their surrounding envelopes have been modelled in ref. 5,
modelling the same sources shown in Fig. 2. We note that uncer-
tainties in the structure of the gas envelope and the possible
contributions from additional surrounding gas cores or diffuse
gas will affect the observed spectrum. Comparing results, our
inferred stellar masses are similar, but our accretion rates are
systematically smaller by factors of ,2±5. The modelled5 high
accretion rates of ,10-3 M( yr-1 for stars with mp < 10M( would
be dif®cult to achieve unless the pressure was increased substan-
tially; for example, if the stars are destined to reach mpf < 30M(,
pressure increases of a factor ,40 are required. M
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A thermal light-emitting source, such as a black body or the
incandescent ®lament of a light bulb, is often presented as a
typical example of an incoherent source and is in marked contrast
to a laser. Whereas a laser is highly monochromatic and very
directional, a thermal source has a broad spectrum and is usually
quasi-isotropic. However, as is the case with many systems,
different behaviour can be expected on a microscopic scale. It
has been shown recently1,2 that the ®eld emitted by a thermal
source made of a polar material is enhanced by more than four
orders of magnitude and is partially coherent at a distance of the
order of 10 to 100 nm. Here we demonstrate that by introducing a
periodic microstructure into such a polar material (SiC) a thermal
infrared source can be fabricated that is coherent over large
distances (many wavelengths) and radiates in well de®ned direc-
tions. Narrow angular emission lobes similar to antenna lobes are
observed and the emission spectra of the source depends on the
observation angleÐthe so-called Wolf effect3,4. The origin of
the coherent emission lies in the diffraction of surface-phonon
polaritons by the grating.

It is usually taken for granted that light spontaneously emitted by
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different points of a thermal source cannot interfere. In contrast,
different points of an antenna emit waves that interfere construc-
tively in particular directions producing well de®ned angular lobes.
The intensity emitted by a thermal source is the sum of the
intensities emitted by different points so that it cannot be direc-
tional. However, it has been shown1,2 recently that some planar
sources may have a spectral coherence length in the plane much
larger than a wavelength and can be quasi-monochromatic in the
near-®eld. This paves the way for the construction of a thermal
source that could radiate light within narrow angular lobes as an
antenna instead of having the usual quasi-lambertian angular
behaviour.

Here we report experimental measurements demonstrating that
it is possible to build an infrared antenna by properly designing
a periodic microstructure on a polar material. Such an antenna
radiates infrared light in a narrow solid angle when it is heated.
Another unusual property of this source is that its emission
spectrum depends on the observation direction. This property
was ®rst predicted by Wolf as a consequence of spatial correlations

for random sources3,4. This effect has been demonstrated experi-
mentally for arti®cial secondary sources4,5 but has never been
observed for direct thermal emission. In addition, the emissivity
of the source is enhanced by a factor of 20 compared to the
emissivity of a ¯at surface.

Using theories developed recently6 to interpret the emission data
by gratings, we have designed and optimized a periodic surface
pro®le that produces a strong peak of the emissivity around a
wavelength l � 11:36 mm. The grating (see Fig. 1) has been ruled
on a SiC substrate. A similar grating of doped silicon with very deep
depths has been investigated7. The authors attributed the particular
properties observed to organ pipe modes in the microstructure7.
However, the role of coherence induced by surface waves and the
exact mechanism were not understood at that time2,6.

The measurements of the thermal emission in a plane perpen-
dicular to the lines of the grating are shown in Fig. 2. Emission is
highly directional and looks very similar to the angular pattern of an
antenna. We have also plotted (see Fig. 2) the calculated emission
pattern. The qualitative discussion of the introduction suggests that
the small angular width of the emission pattern is a signature of the
local spatial coherence of the source. A proof of this stems from the
fact that the source has a width L � 5 mm and a spectral coherence
length l p L and that its temperature is uniform. Hence, we can
assume that the source is a quasi-homogeneous source8. With this
assumption, it is known that the radiant intensity and the spectral
degree of coherence in the plane of the source are related by a
Fourier transform relationship8. Therefore, the angular width v of
the lobe emission varies qualitatively with l/l for this locally
coherent source instead of with l/L, as for a globally coherent
source. Thus a small angular aperture of the far-®eld radiation is the
signature of a spectral coherence length in the source much larger
than the wavelength. To overcome the experimental resolution limit
of our direct emissivity measurement, we measured the re¯ectivity
R. From Kirchhoff 's law9, we know that the polarized directional
spectral emissivity e is given by e � a � 1 2 R where a is the
absorptivity and R is the re¯ectivity of the grating. Results
are plotted in Fig. 3. There is a remarkable quantitative agreement
between the data taken at room temperature and theoretical
calculations. We note that the peak at 608 has an angular width v
as narrow as 18 so that the corresponding spectral coherence length
is as large as l=v < 60l < 0:6 mm. This suggests that a thermal
source with a size L on the order of the spectral coherence length l,
namely a globally coherent thermal source, could be achieved.
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0 µm

0 µm25 µm

25 µm
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Figure 1 Image of the grating obtained by atomic force microscopy. Its period d � 0:55l

(l � 11:36 mm) was chosen so that a surface wave propagating along the interface

could be coupled to a propagating wave in the range of frequencies of interest. The depth

h � l=40 was optimized so that the peak emissivity is 1 at l � 11:36 mm. It was

fabricated on SiC by standard optical lithography and reactive ion-etching techniques.
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Figure 2 Polar plot of the emissivity of the grating depicted in Fig. 1 at l � 11:36 mm

and for p-polarization. Red, experimental data; green, theoretical calculation. The

measurements were taken by detecting the intensity emitted by the sample in the far ®eld

as a function of the emission angle. A HgCdTe detector placed at the focal length of a ZnSe

lens was used. The sample was mounted on a rotation stage. The theoretical result was

obtained by computing the re¯ectivity of the sample and using Kirchhoff's law

(e � a � 1 2 R ). To ®t the data, we took into account the spectral resolution (0.22 mm)

and the angular resolution (38) of the measurements. The disagreement is due to the fact

that for the calculation, the index at room temperature is used whereas emission data

were taken with a sample in a local thermal equilibrium situation at a temperature of

773 K. Comparison between the two curves illustrates the validity of Kirchhoff's law for

polarized monochromatic directional quantities. The surrounding medium was at 300 K

and the background signal was subtracted. The emissivity for s-polarization (not shown)

does not show any peak and is very close to its value for a ¯at surface. Note that most of

the emitted light is emitted in the narrow lobe (that is, coherently).
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Figure 3 Emissivity of a SiC grating in p-polarization. Blue, l � 11:04 mm; red,

l � 11:36 mm; green, l � 11:86 mm. The emissivity was deduced from measure-

ments of the specular re¯ectivity R using Kirchhoff's law. The data have been taken at

ambient temperature using a Fourier transform infrared (FTIR) spectrometer as a source

and a detector mounted on a rotating arm. The angular acceptance of the spectrometer

was reduced to a value lower than the angular width of the dip. The experimental data are

indicated by circles; the lines show the theoretical results. An excellent agreement is

obtained when the data are taken at ambient temperature, which supports our interpretation

of the slight disagreement in Fig. 1 being due to the variation of index with temperature.
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A surprising property of the emissivity patterns of Fig. 3 is that
they depend strongly on the wavelength. This suggests that the
emission spectra depend on the emission direction. This would be a
manifestation of the Wolf effect3,4. To observe this effect, we have
taken several spectra of the re¯ectivity of the surface at different
angles. Fig. 4 shows experimental and theoretical spectra for
different observation angles. The position of the peaks of emissivity
(dips of re¯ectivity) depends strongly on the observation angle. It is
important to emphasize that this property is not merely a scattering
effect but is a consequence of the partial spatial coherence of the
source. The value of the re¯ectivity is also remarkable. By ruling a
grating onto a material which is essentially a mirror, we were able to
produce a perfect absorber. This behaviour has already been
observed for metallic gratings and attributed to the resonant
excitation of surface plasmons. This is the ®rst time, to our knowl-
edge, that total absorption in the infrared owing to excitation of
surface-phonon polaritons has been reported.

In order to prove experimentally the role of the surface wave, we
have done spectral measurements of the emissivity for s- and p-
polarization. The peaks are never observed for s-polarization nor for
p-polarization in the spectral region where surface waves cannot
exist. In order to characterize quantitatively the role of the surface
waves, we have obtained the dispersion relation from re¯ectivity
measurements6. The results are displayed in Fig. 5 and compared
with theory. We note that the interaction of the surface wave with
the grating produces the aperture of a gap close to the band edge.
Figure 5 shows that our experiment allows us to directly see surface-
phonon polaritons. It also yields additional insight into the Wolf-
effect3,4 mechanism. Emission of infrared light has already been used
to study surface excitations, but using prisms to couple the surface
waves to propagating modes10.

We now discuss the physical origin of coherent thermal emission.
We wish to understand how random thermal motion can generate a
coherent current along the interface. The key lies in the coherent
properties of surface waves (either surface-plasmon polaritons or
surface-phonon polaritons) demonstrated in refs 1 and 2. Both are
mechanical delocalized collective excitations involving charges.
Surface-phonon polaritons are phonons in a polar material,
whereas surface-plasmon polaritons are acoustical-type waves in
an electron gas. In both cases, these waves have the following two

properties: (1) they are mechanical modes of the system that can
be resonantly excited; (2) they are charge-density waves, that is,
they generate electromagnetic ®elds. Because these excitations are
delocalized, so are the corresponding electromagnetic ®elds.

From a classical point of view, each volume element of the
thermal source can be modelled by a random point-like source
that excites an extended mode: the surface wave. This is similar to
some extent to the emission of sound by a string of a piano. The
source is a hammer that strikes the string at a particular point. Then
the modes of the string are excited producing a vibration along the
full length of the string. At that point of the analogy, as anyone can
hear the vibrations of a piano string, we may wonder why the
coherent electromagnetic surface waves are not usually observed.
The reason is that surface modes have a wavevector larger than 2p/l
so that they are evanescent. Their effect is not seen in the far-®eld.

However, by ruling a grating on the interface, we are able to
couple these surface modes to propagating modes. The relationship
between the emission angle v and the wavelength l is simply given
by the usual grating law

2p

l
sinv � kk � p

2p

d

where p is an integer and kk is the wavevector of the surface wave.
Thus, by modifying the characteristics of the surface pro®le, it is
possible to modify the direction and the value of the emissivity of
the surface at a given wavelength. It is also possible to modify the
emission spectrum in a given direction. Such gratings can be used to
design infrared sources with speci®c properties.

This may also have interesting applications such as modifying the
radiative heat transfer for a given material. Indeed, we have
demonstrated that a re¯ectivity of 94% can be reduced to almost
zero in the infrared for SiC. This could also be done for glass, which
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Figure 4 Comparison between measured and calculated spectral re¯ectivities of a SiC

grating at room temperature. The incident light is p-polarized. The dip observed at 458
and l � 11:36 mm coincides with the emission peak observed in Figs 2 and 3. The

®gure shows clearly that the re¯ectivity spectra depend on the observation angle. Using

Kirchhoff's law, it follows that the emission spectra depend on the observation angle. This

is a manifestation of the Wolf effect3,4.
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Figure 5 Dispersion relation wavevector, q(k k), of surface-phonon polaritons. Data

points, experimental dispersion relation. Solid green curve, theoretical dispersion relation

for the grating. Dotted red curve, theoretical dispersion relation for the ¯at surface. This

®gure explains the mechanism of the Wolf effect3,4 for this particular source. The spatial

coherence in the plane of the source is due to the presence of a surface wave. For a ®xed

frequency q, it can be seen that there is only one possible wavevector kk(q). Thus the

spectral degree of coherence at q oscillates2 with a particular wavelength 2p/kk(q). When

observing in the far ®eld at an angle v such that ck k�q�=q � sinv there is a strong

contribution of the surface wave at frequency q. By varying the observation angle, the

frequency varies according to the dispersion relation of the surface wave. It is seen that

the strong Wolf effect produced by this source is due to (1) the thermal excitation of

surface waves which produce the spatial coherence and (2) the propagation in vacuum

which selects one particular wavevector.
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is a polar material that has a large re¯ectivity in the infrared owing
to the presence of resonances. This would allow us to increase the
radiative cooling of the material if the emission is enhanced in a
region where absorption is low, because the atmosphere does not
emit. Another promising application of our results is the possibility
of modifying the heat transfer in the near-®eld. Materials that are
separated by distances smaller than the typical wavelength exchange
radiative energy through evanescent waves. When surface waves are
resonantly excited, they provide the leading contribution11. Thus,
the heat transfer is almost monochromatic. This may be used to
enhance the ef®ciency of infrared photovoltaic cells12. M
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Ceramics are often prepared with surface layers of different
composition from the bulk1,2, in order to impart a speci®c
functionality to the surface or to act as a protective layer for the
bulk material3,4. Here we describe a general process by which
functional surface layers with a nanometre-scale compositional
gradient can be readily formed during the production of bulk
ceramic components. The basis of our approach is to incorporate
selected low-molecular-mass additives into either the precursor
polymer from which the ceramic forms, or the binder polymer
used to prepare bulk components from ceramic powders. Thermal
treatment of the resulting bodies leads to controlled phase separa-
tion (`bleed out') of the additives, analogous to the normally

undesirable outward loss of low-molecular-mass components
from some plastics5±9; subsequent calcination stabilizes the com-
positionally changed surface region, generating a functional sur-
face layer. This approach is applicable to a wide range of materials
and morphologies, and should ®nd use in catalysts, composites
and environmental barrier coatings.

To avoid the concentration of thermomechanical stress at the
interface between the surface layer and the bulk material, many
materials have been developed that have gradually varying proper-
ties as the distance into the material increases10. Such materials can
contain gradients in morphology or in composition. Gradients in
morphology can, for example, result in materials that have a graded
distribution of pore sizes on a monolith of silica aerogel, and a type
of integral plastic. These materials have been created by strictly
controlling the vaporization of the volatile during the production
process11,12. Gradients in chemical composition have been achieved,
for example: (1) chemical vapour deposition13,14, (2) powder meth-
ods such as slip cast or dry processing15, (3) various coating
methods16, and (4) thermal chemical reaction2,17. Of these, (1) and
(4) are relatively expensive, complicated and result in damage to
bulk substrates. (2) and (3) produce stepped gradient structures,
and it is dif®cult to control the thickness of each layer to less than
100 nm. Furthermore, most of these processes are not easily adapted
to coating samples in the form of ®bre bundles, ®ne powders or
other materials with complicated shapes.

We have addressed the issue of establishing an inexpensive and
widely applicable process for creating a material with a composi-
tional gradient and excellent functionality. A schematic representa-
tive of our new in situ formation process for functional surface
layers, which have a gradient-like structure towards the surface, is
shown in Fig. 1. The important feature of our method is that the
surface layer of the ceramic is not deposited on the substrate, but is
formed during the production of the bulk ceramic. We con®rmed
that our process is applicable to any type of system as long as, in the
green-body (that is, not-calcined) state, the system contains a resin
and a low-molecular-mass additive that can be converted into a
functional ceramic at high temperatures. Here, the resin is a type of
precursor polymer (polycarbosilane, polycarbosilazane, polysila-
styrene, methylchloropolysilane, and so on) or binder polymer used
for preparing green bodies from ceramic powders18. Although the
former case (using precursor polymers) is explained in detail in this
Letter, the latter case using binder polymers was also con®rmed by
treating a Si3N4 body with a TiN surface layer. Si3N4 can exhibit
excellent thermal stability and wear resistance in the high-speed
machining of cast iron, but shows poor chemical wear resistance in
the machining of steel19. In order to avoid this problem, TiN
coating, by means of expensive chemical vapour deposition, has
often been performed on previously prepared Si3N4 substrates. But
if our process is appropriately applied, formation of the TiN surface
layer could be achieved during the sintering process of the Si3N4

green body. In this case, titanium(IV) butoxide and polystyrene are
used as the low-molecular-mass additive and binder polymer,
respectively. By a combination of suf®cient maturation (in air at
100 8C) and subsequent sintering (in NH3+H2+N2 at 1,200 8C),
Si3N4 covered with TiN is successfully produced. This technology
would be very useful for producing ceramic materials with compli-
cated shapes and various coating layers. Moreover, our process is
advantageous for preparing precursor ceramics (particularly ®ne
particles, thin ®brous ceramics and ®lms). The systems to which our
concept is applicable are shown in Fig. 1.

Here we give a detailed account of the results for the pre-
cursor ceramic obtained using polycarbosilane. Polycarbosilane
(±SiH(CH3)±CH2±)n is a representative pre-ceramic polymer for
preparing SiC ceramicsÐfor example, Hi-Nicalon ®bre20 and
Tyranno SA ®bre21. Furthermore, oxide or nitride can also be
produced from the polycarbosilane by ®ring in air or ammonia,
respectively. Our new technology makes full use of the bleed-out

© 2002 Macmillan Magazines Ltd
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We propose in this article an unambiguous definition of the local density of electromagnetic states~LDOS!
in a vacuum near an interface in equilibrium at temperatureT. We show that the LDOS depends only on the
electric-field Green function of the system but does not reduce in general to the trace of its imaginary part, as
often is used in the literature. We illustrate this result by a study of the LDOS variations with the distance to
an interface and point out deviations from the standard definition. We show nevertheless that this definition
remains correct at frequencies close to the material resonances such as surface polaritons. We also study the
feasibility of detecting such a LDOS with apertureless scanning near-field optical microscope~SNOM! tech-
niques. We first show that a thermal near-field emission spectrum above a sample should be detectable and that
this measurement could give access to the electromagnetic LDOS. It is further shown that the apertureless
SNOM is the optical analog of the scanning tunneling microscope, which is known to detect the electronic
LDOS. We also discuss some recent SNOM experiments aimed at detecting the electromagnetic LDOS.

DOI: 10.1103/PhysRevB.68.245405 PACS number~s!: 73.20.Mf, 03.50.De, 07.79.Fc, 44.40.1a

I. INTRODUCTION

The density of states~DOS! is a fundamental quantity
from which many macroscopic quantities can be derived.
Indeed, once the DOS is known, the partition function can be
computed yielding the free energy of the system. It follows
that the heat capacity, forces, etc., can be derived. A well-
known example of a macroscopic quantity that follows im-
mediately from the knowledge of the electromagnetic DOS
is the Casimir force.1,2 Other examples are shear forces3 and
heat transfer4 between two semi-infinite dielectrics. Recently,
it has been shown that unexpected coherence properties of
thermal emission at short distances from an interface sepa-
rating vacuum from a polar material are due to the contribu-
tion to the density of states of resonant surface waves.5 It has
also been shown that the Casimir force can be interpreted as
essentially due to the surface wave contribution to the
DOS.1,2

Calculating and measuring the local density of states
~LDOS! in the vicinity of an interface separating a real ma-
terial from a vacuum is therefore necessary to understand
many problems currently studied. The density of states is
usually derived from the Green function of the system by
taking the imaginary part of the Green function.6,7 In solid-
state physics, the electronic local density of states at the
Fermi energy at the surface of a metal can be measured with
a scanning tunneling microscope~STM!.8 This has been
proved by several experiments, in particular the so-called
quantum corral experiments.9 Although one can formally
generalize the definition of the electromagnetic LDOS by
using the trace of the imaginary part of the Green tensor,10 it
turns out that this definition does not yield the correct equi-
librium electromagnetic energy density.

Recently, it has been shown theoretically that the STM
and the scanning near-field optical microscope~SNOM! have
strong analogies.11 More precisely, in the weak tip-sample
coupling limit, it was demonstrated that a unified formalism
can be used to relate the STM signal to the electronic LDOS

and the SNOM signal to electromagnetic LDOS. SNOM
instruments12 have been used to perform different kinds of
emission spectroscopy, such as luminescence,13 Raman
spectroscopy,14 or two-photon fluorescence.15 For detection
of infrared light, apertureless techniques16 have shown their
reliability for imaging17 as well as for vibrational spectros-
copy on molecules.18 Moreover, recent calculations and ex-
periments have shown that an optical analog of the quantum
corral could be designed, and that the measured SNOM im-
ages on such a structure present strong similarities with the
calculated electromagnetic LDOS.19,20 These results suggest
that the electromagnetic LDOS could be directly measured
with a SNOM.

The purpose of this article is to show how the electromag-
netic LDOS can be related to the electric Green function, and
to discuss possible measurements of the LDOS in SNOM.
We first introduce a general definition of the electromagnetic
LDOS in a vacuum in the presence of materials, possibly
lossy objects. Then, we show that under some well-defined
circumstances, the LDOS is proportional to the imaginary
part of the trace of the electrical Green function. The results
are illustrated by calculating the LDOS above a metal sur-
face. We show next that the signal detected with a SNOM
measuring the thermally emitted field near a heated body is
closely related to the LDOS and conclude that the natural
experiment to detect the LDOS is to perform a near-field
thermal emission spectrum. We discuss the influence of the
tip shape. We also discuss whether standard SNOM measure-
ments using an external illumination can detect the electro-
magnetic LDOS.19,20

II. LOCAL DENSITY OF ELECTROMAGNETIC STATES
IN A VACUUM

As pointed out in the Introduction, the LDOS is often
defined as being the imaginary part of the trace of the
electric-field Green dyadic. This approach seems to give a
correct description in some cases,19,20 but to our knowledge
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this definition has never been derived properly for electro-
magnetic fields in a general system that includes an arbitrary
distribution of matter with possible losses. The aim of this
section is to propose an unambiguous definition of the
LDOS.

Let us consider a system at equilibrium temperatureT.
Using statistical physics, we write the electromagnetic en-
ergyU(v) at a givenpositivefrequencyv, as the product of
the DOS by the mean energy of a state at temperatureT, so
that

U~v!5r~v!
\v

exp~\v/kBT!21
, ~1!

where 2p\ is Planck’s constant andkB is Boltzmann’s con-
stant. We can now introduce21 a local density of states by
starting with the local density of electromagnetic energy
U(r ,v) at a given pointr in space and at a given frequency
v. This can be written by definition of the LDOSr(r ,v) as

U~r ,v!5r~r ,v!
\v

exp~\v/kBT!21
. ~2!

The density of electromagnetic energy is the sum of the
electric energy and of the magnetic energy. At equilibrium, it
can be calculated using the system Green function and the
fluctuation-dissipation theorem. Let us introduce the electric-
and magnetic-field correlation functions for a stationary sys-
tem:

Ei j ~r ,r 8,t2t8!5
1

2pE dv Ei j ~r ,r 8,v!e2 iv(t2t8)

5^Ei~r ,t !Ej* ~r 8,t8!&, ~3!

Hi j ~r ,r 8,t2t8!5
1

2pE dv Hi j ~r ,r 8,v!e2 iv(t2t8)

5^Hi~r ,t !H j* ~r 8,t8!&. ~4!

Note that here the integration overv goes from2` to `.
If j (r ) is the electric current density in the system, the

electric field readsE(r ,v)5 im0v*GIE(r ,r 8,v)• j (r 8)d3r 8.
In the same way, the magnetic field is related to the
density of magnetic currents m(r ) by H(r ,v)

5*GIH(r ,r 8,v)m(r 8)d3r 8. In these two expressions,GIE and

GIH are the dyadic Green functions of the electric and mag-
netic field, respectively. The fluctuation-dissipation theorem
yields22,23

Ei j ~r ,r 8,v!5
\v

@exp~\v/kBT!21#

m0v

2p
Im Gi j

E~r ,r 8,v!,

~5!

Hi j ~r ,r 8,v!5
\v

@exp~\v/kBT!21#

e0v

2p
Im Gi j

H~r ,r 8,v!.

~6!

If one considers only the positive frequencies,

U~r ,v!54S ~e0/2! (
i 51,3

Ei i ~r ,r ,v!

1~m0/2! (
i 51,3

Hi i ~r ,r ,v! D
so that

U~r ,v!5
\v

@exp~\v/kBT!21#

v

pc2
Im Tr@GIE~r ,r ,v!

1GIH~r ,r ,v!#. ~7!

It is important to note that the magnetic-field Green function
and the electric-field Green function are not independent. In
fact, one has

v2

c2
GIH~r ,r 8,v!5@“ r3#•GIE~r ,r 8,v!•@“ r83#. ~8!

A comparison of Eqs.~2! and~7! shows that the LDOS of the
electromagnetic field reads

r~r ,v!5
v

pc2
Im Tr@GIE~r ,r ,v!1GIH~r ,r ,v!#5 f ~GIE!

~9!

in which f (GIE) is an operator that will be discussed more
precisely in the next section.

III. DISCUSSION

The goal of this section is to study the LDOS behavior for
some well-characterized physical situations, based on the re-
sult in Eq.~9!.

A. Vacuum

In a vacuum, the imaginary part of the trace of the
electric- and magnetic-field Green functions are equal. In-
deed, the electric- and magnetic-field Green functions obey
the same equations and have the same boundary conditions
in this case~radiation condition at infinity!. In a vacuum, the
LDOS is thus obtained by considering the electric-field con-
tribution only, and multiplying the result by a factor of 2.
One recovers the familiar result

rv~r ,v!5rv~v!5
v2

p2c3
, ~10!

which shows in particular that the LDOS is homogeneous
and isotropic.

B. Plane interface

Let us consider a plane interface separating a vacuum
~medium 1, corresponding to the upper half-space! from a
semi-infinite material~medium 2, corresponding to the lower
half-space! characterized by its complex dielectric constant
e2(v) ~the material is assumed to be linear, isotropic, and
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nonmagnetic!. Inserting the expressions of the electric and
magnetic-field Green functions for this geometry24 into Eq.
~9!, one finds the expression of the LDOS at a given fre-
quency and at a given heightz above the interface in
vacuum. In this situation, the magnetic- and electric-field
Green functions are not the same. This is due to the boundary
conditions at the interface which are different for the electric
and magnetic fields. In order to discuss the origin of the
different contributions to the LDOS, we define and calculate
an electric LDOS@rE(z,v)# due to the electric-field Green
function only, and a magnetic LDOS@rH(z,v)# due to the
magnetic-field Green function only. The total LDOS
rE(z,v)5rE(z,v)1rH(z,v) has a clear physical meaning
unlike rE(z,v) andrH(z,v). Note thatrE(z,v) is the quan-
tity that is usually calculated and considered to be the true
LDOS. In the geometry considered here, the expression of
the electric LDOS is25

rE~z,v!5
rv~v!

4 H E
0

1k dk

p
@21Re~r 12

s e2ipvz/c!

1Re~r 12
p e2ipvz/c!~2k221!#1E

1

`k dk

upu @ Im~r 12
s !

1~2k221!Im~r 12
p !#e22upuvz/cJ . ~11!

This expression is actually a summation over all possible
plane waves with wave numberk5v/c(k,p), where p
5A12k2 if k<1 andp5 iAk221 if k.1. r 12

s andr 12
p are

the Fresnel reflection factors between media 1 and 2 ins and
p polarizations, respectively, for a parallel wave vector
vk/c.26 0<k<1 corresponds to propagating waves,
whereask.1 corresponds to evanescent waves. A similar
expression for the magnetic LDOS can be obtained:

rH~z,v!5
rv~v!

4 H E
0

1k dk

p
@21Re~r 12

p e2ipvz/c!

1Re~r 12
s e2ipvz/c!~2k221!#1E

1

`k dk

upu @ Im~r 12
p !

1~2k221!Im~r 12
s !#e22upuvz/cJ . ~12!

Adding the electric and magnetic contributions yields the
total LDOS:

r~z,v!5
rv~v!

2 H E
0

1k dk

p
$21k2@Re~r 12

s e2ipvz/c!

1Re~r 12
p e2ipvz/c!#%1E

1

`k3dk

upu @ Im~r 12
s !

1Im~r 12
p !#e22upuvz/cJ . ~13!

It is important to note that the electric and magnetic LDOS
have similar expressions, but are in general not equal. The
expression ofrH(r ) is obtained by exchanging thes and p
polarizations in the expression ofrE(r ). As a result, the two
polarizations have a symmetric role in the expression of the
total LDOSr(r ).

The vacuum situation can be recovered from the previous
expression by setting the values of the Fresnel reflection fac-
tors to zero. The same result is also obtained by taking the
LDOS at large distance from the interface, i.e., forz@l
wherel52pc/v is the wavelength. This means that at large
distances, the interface does not perturb the density of elec-
tromagnetic states. In fact,e22upuvz/c becomes negligible for
the evanescent waves ande2ipvz/c is a rapidly oscillating
function for the propagating waves when integrating overk.
The result is that all the terms containing exponential do not
contribute to the integral giving the LDOS in the vacuum.

Conversely, at short distance from the interface,r(r ,v) is
drastically modified compared to its free-space value. Equa-
tions ~11!–~13! show that the Fresnel coefficients and there-
fore the nature of the material play a crucial role in this
modification. For example, as pointed out by Agarwal,23 in
the case of a perfectly conducting surface, the contribution of
the electric and magnetic LDOS vanish, except for their free-
space contribution. In this particular case, one also retrieves
the vacuum result.

We now focus our attention on real materials such as met-
als and dielectrics. We first calculater(v) for aluminum at
different heights. Aluminum is a metal whose dielectric con-
stant is well described by a Drude model for near-uv, visible,
and near-ir frequencies:27

FIG. 1. LDOS versus frequency at different
heights above a semi-infinite sample of alumi-
num.
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e~v!512
vp

2

v~v1 ig!
~14!

with vp51.74731016 rad s21 andg57.59631013 rad s21.
We plotted in Fig. 1 the LDOSr(r ,v) in the near-uv–

near-ir frequency domain at four different heights. We first
note that the LDOS increases drastically when the distance to
the material is reduced. As discussed in the previous para-
graph, at a large distance from the material, one retrieves the
vacuum density of states. Note that at a given distance, it is
always possible to find a sufficiently high frequency for
which the corresponding wavelength is small compared to
the distance so that a far-field situation is retrieved. When the
distance to the material is reduced, additional modes are
present: these are the evanescent modes that are confined
close to the interface and that cannot be seen in the far field.
Moreover, aluminum exhibits a resonance aroundv
5vp /A2. Below this frequency, the material supports reso-
nant surface waves~surface-plasmon polaritons!. Additional
modes are therefore seen in the near field. This produces an
increase of the LDOS close to the interface. The enhance-
ment is particularly important at the resonant frequency that
corresponds to Re@e(v)#521. This behavior is analogous
to that previously described in Ref. 21 for a SiC surface
supporting surface-phonon polaritons. Also note that in the
low frequency regime, the LDOS increases. Finally, Fig. 1
shows that it is possible to have a LDOS smaller than that of
vacuum at some particular distances and frequencies. Figure
2 shows the contributions of propagating and evanescent
waves to the LDOS above an aluminum sample at a distance
of 10 nm. The propagating contribution is very similar to that
of the vacuum LDOS. As expected, the evanescent contribu-
tion dominates at low frequency and around the surface-
plasmon polariton resonance, where pure near-field contribu-
tions dominates.

We now turn to the comparison ofr(z,v) with the usual
definition often encountered in the literature, which corre-
sponds torE(z,v). In Fig. 3 we plotr, rE, andrH above an
aluminum surface at the distancez510 nm. In this figure, it
is possible to identify three different domains for the LDOS
behavior. We note again that in the far-field situation~corre-

sponding here to high frequencies, i.e.,l/2p!z), the LDOS
reduces to the vacuum situation. In this caser(z,v)
52rE(z,v)52rH(z,v). Around the resonance, the LDOS
is dominated by the electric-field Green contribution. Con-
versely, at low frequencies,rH(z,v) dominates. Thus, Fig. 3
shows that we have to be very careful when using the ex-
pressionr(z)5rE(z,v). Above aluminum and at a distance
z510 nm, this approximation is only valid in a small range
betweenv51016 rad s21 andv51.531016 rad s21.

C. Asymptotic form of the LDOS in the near field

In order to get more physical insight, we have calculated
the asymptotic LDOS behavior in the three regimes men-
tioned above. As we have already seen, the far-field regime
(l/2p!d) corresponds to the vacuum case. To study the
near-field situation, we focus on the evanescent contribution,
as suggested by the results in Fig. 2. Whenl52pc/v@z,
the exponential term exp(2upuvz/c) is small only for k
@l/(4pz)@1. In this ~quasistatic! limit, the Fresnel reflec-
tion factors reduce to

lim
k→`

r 12
s 5

e21

4k2
, ~15!

lim
k→`

r 12
p 5

e21

e11
. ~16!

Asymptotically, the expressions ofrE(z,v) andrH(z,v) are

rE~z,v!5
rv

ue11u2

e9

4k0
3z3

, ~17!

rH~z,v!5rvF e9

16k0z
1

e9

4ue11u2k0z
G . ~18!

At a distancez510 nm above an aluminum surface, these
asymptotic expressions matches almost perfectly with the
full evanescent contributions (k.1) of rE and rH. These
expressions also show that for a given frequency, one can
always find a distance to the interfacez below which the

FIG. 2. Density of states contributions due to
the propagating and evanescent waves compared
to the total density of states and the vacuum den-
sity of states. These quantities are calculated
above an aluminum sample at a distance of 10
nm.
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dominant contribution to the LDOS will be the one due to
the imaginary part of the electric-field Green function that
varies like (k0z)23. But for aluminum at a distancez
510 nm, this is not the case for all frequencies. As we men-
tioned before, this is only true around the resonance. For
example, for low frequencies, and forz510 nm, the LDOS
is actually dominated byrve9/(16k0z).

D. Spatial oscillations of the LDOS

Let us now focus on the LDOS variations at a given fre-
quency versus the distancez to the interface. There are es-
sentially three regimes. First, as discussed previously, at dis-
tances much larger than the wavelength the LDOS is given
by the vacuum expressionrv . The second regime is ob-
served close to the interface where oscillations are observed.
Indeed, at a given frequency, each incident plane wave on the
interface can interfere with its reflected counterpart. This
generates an interference pattern with a fringe spacing that
depends on the angle and the frequency. Upon adding the
contributions of all the plane waves over angles, the oscillat-
ing structure disappears except close to the interface. This
leads to oscillations around distances on the order of the
wavelength. This phenomenon is the electromagnetic analog
of Friedel oscillations that can be observed in the electronic

density of states near the interfaces.7,28 As soon as the dis-
tance becomes small compared to the wavelength, the phase
factors exp(2ipvz/c) in Eq. ~13! are equal to unity. For a
highly reflecting material, the real part of the reflecting co-
efficients are negative so that the LDOS decreases while ap-
proaching the surface. These two regimes are clearly ob-
served for aluminum in Fig. 4. The third regime is observed
at small distances as seen in Fig. 4. The evanescent contri-
bution dominates and ultimately the LDOS always increases
as 1/z3, following the behavior found in Eq.~17!. This is the
usual quasistatic contribution that is always found at short
distances.26 At a frequency slightly smaller than the resonant
frequency, surface waves are excited on the surface. These
additional modes increase the LDOS according to an expo-
nential law as seen in Fig. 5, a behavior which was already
found for thermally emitted fields.5,26 At low frequency, the
LDOS dependance is given by Eq.~18!. The 1/z magnetic
term dominates because the 1/ue11u2 takes large values. The
1/z3 contribution equals the 1/z contribution for distances
much smaller than the nanometer scale, a distance for which
the model is no longer valid.

The main results of this section can be summarized as
follows. The LDOS of the electromagnetic field can be un-
ambiguously and properly defined from the local density of

FIG. 3. LDOS at a distancez510 nm above a
semi-infinite aluminum sample. Comparison with
rE(v) andrH(v).

FIG. 4. LDOS versus the distancez from an
aluminum-vacuum interface at the aluminum
resonant frequency.
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electromagnetic energy in a vacuum above a sample at tem-
peratureT in equilibrium. The LDOS can always be written
as a function of the electric-field Green function only, but is
in general not proportional to the trace of its imaginary part.
An additional term proportional to the trace of the imaginary
part of the magnetic-field Green function is present in the
far-field and at low frequencies. At short distances from the
surface of a material supporting surface modes~plasmon or
phonon-polaritons!, the LDOS presents a resonance at fre-
quencies such that Re@e(v)#521. Close to this resonance,
the approximationr(z,v)5rE(z,v) holds. In the next sec-
tion, we discuss how the LDOS can be measured.

IV. MEASUREMENT OF THE LDOS

A. Near-field thermal emission spectroscopy with an
apertureless SNOM

In this section we shall consider how the LDOS can be
measured using a SNOM. We consider a frequency range
where r is dominated by the electric contributionrE. We
note that for an isotropic dipole, a lifetime measurement
yields the LDOS, as discussed by Wijnandset al.10 However,
if the dipole has a fixed orientationx, the lifetime is propor-

tional toGxx and not to the trace ofGI . In order to achieve a
direct SNOM measurement of the LDOS, we have to fulfill
two requirements. First, all the modes must be excited. The
simplest way to achieve this is to use the thermally emitted
radiation by a body at equilibrium. The second requirement
is to have a detector with a flat response to all modes. To
analyze this problem we use a formalism recently intro-
duced.

We consider a SNOM working in the detection mode, and
detecting the electromagnetic field thermally emitted by a
sample held at a temperatureT. The system is depicted in
Fig. 6. The microscope tip is scanned at close proximity of
the interface separating the solid body from a vacuum. The
signal is measured in the far field, by a point detector sensi-
tive to the energy flux carried by the electromagnetic field.

We assume that an analyzer is placed in front of the detector
~polarized detection!. The direction of polarization of the
analyzer is along the direction of the vectorj rec . If the solid
angledV under which the detector is seen from the tip is
small ~a condition we assume for simplicity!, the signal
^S(v)& at the detector, at a given frequencyv, reads

^S~v!&5
e0c

2
uEd~v!u2r 2dV, ~19!

wheree0 is the permittivity of vacuum,c is the speed of light
in vacuum,r is the distance between the tip and the detector,
andEd is the electric field at the position of the detector. Let
us denote byEexpt ~experimental field! the thermal field,
emitted by the sample, in the gap region between the tip and
the sample. This field can be, in principle, calculated follow-
ing the approach recently used in Refs. 5 and 21. For sim-
plicity, we shall neglect the thermal emission from the tip
itself ~which is assumed to be cold! compared to that of the
heated sample. But we do not need, at this stage, to assume a
weak coupling between the tip and the sample. In particular,
in the expressions derived in this section, the experimental
field Eexpt is the field emitted by the sample alone, in the
presence of the detecting tip. Following the approach of Ref.
29 based on the reciprocity theorem of electromagnetism,30

an exact relationship between the signal^S(v)& and the ex-

FIG. 5. LDOS versus the distancez from an
aluminum-vacuum interface at frequencyv58
31015 rad s21.

FIG. 6. Scheme of a scanning near-field optical microscope
measuring a thermally emitted field.~a! Experimental situation.~b!
Reciprocal~fictitious! situation.
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perimental fieldEexpt can be established. It can be shown
that the signal is given by an overlapping integral.

To proceed, one considers a fictitious situation in which
the sample is removed, and a point source, represented by a
monochromatic currentj rec oscillating at frequencyv, is
placed at the position of the detector@see Fig. 6~b!#. The
orientation of this reciprocal source is chosen along the di-
rection of polarization of the analyzer used in the experimen-
tal situation. The field created around the tip in this recipro-
cal situation is denoted byErec . Using the reciprocity
theorem, the field at the detector can be written29

Ed~v!• j rec5
22i

m0vES

]Erec~R,z,v!

]z
•Eexpt~R,z,v!dR,

~20!

where the integration is performed in a planez5z0 between
the tip and the sample andR5(x,y) are the coordinates
along this plane. Equation~20! connects the field above the
surfaceEexpt to the field in the detectorEd along the direc-
tion of the analyzer. Note that the reciprocal fieldErec en-
codes all the information about the detection system~tip and
collection optics!. Reporting the expression of the field at the
detector~20! in Eq. ~19!, one finds the expression for the
measured signal:

^S~v!&5
e0c

8p2ES
E

S
Hi j ~R,R8,z,v!Wi j ~R,R8,z,v!dR dR8.

~21!

Equation~21! establishes a linear relationship between the
signal and the cross-spectral density tensorWi j of the electric
field defined by

^Eexpt,i~R,z,v!Eexpt, j* ~R8,z,v8!&

5Wi j ~R,R8,z,v!d~v2v8!. ~22!

The response functionHi j only depends on the detection
system~in particular the tip geometry and composition!, and
is given by

Hi j ~R,R8,v!5
]Erec,i~R,z,v!

]z

]Erec, j~R8,z,v!

]z
. ~23!

The cross-spectral density tensorWi j describes the
electric-field spatial correlation at a given frequencyv. For
the thermal emission situation considered here, it depends
only on the dielectric constant, on the geometry, and on the
temperature of the sample.

Equation~21! is a general relationship between the signal
and the cross-spectral density tensor. It is nonlocal and
strongly polarization dependent. This shows that one does
not measure in general a quantity that is proportional to
Wkk(r ,r ,v), and thus torE(r ,v). Nevertheless Eq.~21!
suggested thatrE(r ,v) can be recovered if the response
function Hi j is localized. Indeed, in that case the signal is
proportional toWi j (R,R,z,v), thus torE(r ,v). As shown
in the next section, a dipole tip~small sphere! would exhibit
such a response function.

B. Detection of the LDOS by an ideal point-dipole probe

Let us see what would be measured by an ideal probe
consisting of a single electric dipole described by a polariz-
ability a(v). Note that such a probe was proposed as a
model for the uncoated dielectric probe sometimes used in
photon scanning tunneling microscopy~PSTM!, and gives
good qualitative prediction.31 We assume that the thermally
emitting medium occupies the half-spacez,0, and that the
probe is placed at a pointr t . As in the preceding section, the
detector placed in the far field measures the field intensity at
a given pointrd , through an analyzer whose polarization
direction is along the vectorj rec . In this case, Eq.~20! sim-
plifies to read

j rec•Ed

5a~v!
v2

4pc2

exp~ ikurd2r tu!
urd2r tu

j rec•hI~ud!•Eexpt~r t ,v!,

~24!

wherek5v/c, ud5(rd2r t)/urd2r tu is the unit vector point-

ing from the probe towards the detector andhI(ud)5 II

2udud is the dyadic operator that projects a vector on the

direction transverse toud , II being the unit dyadic operator.

The dyadichI(ud) being symmetric, the scalar product in the
right-hand side in Eq.~24! can be transformed using the

equality j rec•hI(ud)•Eexpt(r t ,v)5Eexpt(r t ,v)•hI(ud)• j rec .
Finally, the signal at the detector writes

^S&5ua~v!u2
v4

4pc4
dV(

i , j
AiAj* Wi j ~r t ,r t ,v!, ~25!

whereA5hI(ud)• j rec is a vector depending only on the de-
tection conditions~direction and polarization!. Note that if
j rec is transverse with respect to the directionud , which is
approximately the case in many experimental setups, then
one simply hasA5 j rec .

Equation~25! shows that with an ideal probe consisting of
a signal dipole with an isotropic polarizabilitya(v), one
locally measures the cross-spectral density tensor at the po-
sition r t of the tip. Nevertheless, polarization properties of
the detection still exist so that the trace ofWi j , and therefore
rE(r ,v), is not directly measured. A possibility of measuring
the trace would be to measure a signal^S1& in the direction
normal to the surface with an unpolarized detection, and a
signal ^S2& in the direction parallel to the surface, with an
analyzer in the vertical direction.^S1& would be a sum of the
two signals obtained withj rec along thex direction and along
the y direction. ^S2& would correspond to the signal mea-
sured withj rec along thez direction. Using Eq.~25!, we see
that the signal̂ S&5^S1&1^S2& is proportional to the trace
Wkk(r t ,r t ,v), and thus torE(r ,v). Measuring the thermal
spectrum of emission with an apertureless SNOM whose
probe is dipolar is thus a natural way to achieve the measure-
ment of rE(r ,v). Close to the material resonances, i.e., in
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the frequency domain whererE(r ,v) matchesr(r ,v), such
a near-field thermal emission spectrum gives the electromag-
netic LDOS.

C. Analogy with scanning „electron… tunneling microscopy

The result in this section shows that a SNOM measuring
the thermally emitted field with a dipole probe~for example,
a sphere much smaller than the existing wavelengths! mea-
sures the electromagnetic LDOS of the sample in the fre-
quency range situated around the resonant pulsation. As dis-
cussed above, the measured LDOS is that of the modes that
can be excited in the thermal emission process in a cold
vacuum. This result was obtained from Eq.~20! assuming a
weak tip-sample coupling, i.e., the experimental field is as-
sumed to be the same with or without the tip.

The same result could be obtained starting from the gen-
eralized Bardeen formula derived in Ref. 11. Using this for-
malism for a dipole probe, one also ends up with Eq.~25!,
which explicitly shows the linear relationship between the
signal andrE(r ,v). This derivation is exactly the same as
that used in the Tersoff-Hamann theory of the STM.8 This
theory showed, in the weak tip-sample coupling limit, that
the electron-tunneling current measured in STM was propor-
tional to the electronic LDOS of the sample, at the tip posi-
tion, and at the Fermi energy. This result, although obtained
under some approximations, was a breakthrough in under-
standing the STM signal. In the case of near-field optics, the
present discussion, together with the use of the generalized
Bardeen formula,11 shows that under similar approximations,
a SNOM using an ideal dipole probe and measuring the field
thermally emitted by the sample is the real optical analog to
the electron STM. We believe that this situation provides for
SNOM a great potential for local solid-surface spectroscopy,
along the directions opened by STM.

D. Could the LDOS be detected by standard SNOM
techniques?

Before concluding, we will discuss the ability of standard
SNOM techniques~by ‘‘standard’’ we mean techniques using
laser-light illumination! to image the electromagnetic LDOS
close to a sample. Recent experiments32 have shown that an
illumination-modeSNOM using metal-coated tips and work-
ing in transmission produce images that reproduce calculated
maps of rE(r ,v) ~which is the adopted definition of the
LDOS in this experimental work; see also Ref. 19!. We shall
now show that this operating mode bears strong similarities
to that corresponding to a SNOM working incollection
mode, and measuring thermally emitted fields. This will ex-
plain why the images reproduce~at least qualitatively! the
electric LDOSrE(r ,v).

Let us first consider a collection-mode technique, in
which the sample~assumed to be transparent! is illuminated
in transmission by a monochromatic laser with frequencyv,
and the near-field light is collected by a local probe. If we
assume the illuminating light to be spatially incoherent and
isotropic in the lower half-space~with all incident directions
included!, then this illumination is similar to that produced
by thermal fluctuations~except that only the modes corre-

sponding to the frequencyv are actually excited!. Note that
this mode of illumination corresponds to that proposed in
Ref. 33. This similarity, together with the discussion in the
preceding paragraph, allows us to conclude that under these
operating conditions, a collection-mode SNOM would pro-
duce images that closely resemble the electric LDOS
rE(r ,v).

We now turn to the discussion of images produced using
an illumination-mode SNOM as used in Ref. 20. The use of
the reciprocity theorem allows us to derive an equivalence
between illumination and collection-mode configurations, as
shown in Ref. 34. Starting from the collection-mode instru-
ment described above, the reciprocal illumination-mode con-
figuration corresponds to a SNOM working in transmission,
the light being collected by an integrating sphere over all
possible transmission directions~including those below and
above the critical angle!. Under such conditions, the
illumination-mode SNOM produces exactly the same image
as the collection-mode SNOM using isotropic, spatially in-
coherent, and monochromatic illumination. This explains
why this instrument is able to produce images that closely
follow the electric LDOSrE(r ,v). Finally, note that in Ref.
20, the transmitted light is collected above the critical angle
only, which in principle should be a drawback regarding the
LDOS imaging. In these experiments, it seems that the inter-
pretation of the images as maps of the electric LDOS re-
mains nevertheless qualitatively correct, which shows that in
this case, the main contribution to the LDOS comes from
modes with wave vector corresponding to propagation direc-
tions above the critical angle.

V. CONCLUSION

In this paper, we have introduced a definition of the elec-
tromagnetic LDOSr(r ,v). We have shown that it is fully
determined by the electric-field Green function, but that in
general it does not reduce to the trace of its imaginary part
rE(r ,v). We have studied the LDOS variations versus the
distance to a material surface and have explicitly shown ex-
amples in which the LDOS deviates fromrE(r ,v). Never-
theless, we have shown that around the material resonances
~surface polaritons!, the near-field LDOS reduces to
rE(r ,v). Measuring the LDOS with an apertureless SNOM
using a point-dipole tip should be feasible. The principle of
the measurement is to record a near-field thermal emission
spectrum. Under such conditions, the instrument behaves as
an optical analog of the STM, in the weak-coupling regime,
which is known to measure the electronic LDOS on a metal
surface. Finally, we have discussed recent standard SNOM
experiments in which the LDOS seems to be qualitatively
measured. Using general arguments, we have discussed the
relevance of such measurements and compared them to mea-
surements based on thermal-emission spectroscopy.
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APPENDIX: CALCULATION OF THE FIELD AT THE
DETECTOR FOR AN IDEAL POINT-DIPOLE PROBE

Let erec(K ) andeexpt(K ) be the two-dimensional Fourier
component ofErec(r ) andEexpt(r ). In the configuration cho-
sen in our problem the reciprocal field propagates to the
negativez whereas the experimental fields propagates to the
positivez. Thus

Erec~r !5E erec~K !exp$ i @K•R2g~K !z#%dK , ~A1!

Eexpt~r !5E eexpt~K !exp$ i @K•R1g~K !z#%dK , ~A2!

whereg(K )5Av2/c22K2. Putting Eqs.~A1! and~A2! into
Eq. ~20! gives

Ed~v!• j rec52
8p2

vm0
E g~K !erec~2K !•eexpt~K !dK .

~A3!

eexpt(K) can be evaluated by calculating the fieldEexpt(r ).
This last field is the field radiated by the reciprocal current
j rec and diffused by the ideal probe. It can also be seen as the
field radiated by the dipole induced at the positionr t
5(Rt ,zt) of the probe. Ifp is the dipole induced at the
position of the ideal probe, the reciprocal field at a position
situated below the probe is written

Erec~r !5m0v2GI~r ,r t!•p

5
im0v2

8p2 E d2Kei [K•(R2Rt)1g(zt2z)]

g F II2
kk

k0
2 G•p,

~A4!

wherek0
25v2/c2. Comparing this expression and Eq.~A1!,

then

erec~K !5
im0v2

8p2g~K !
ei [ 2K•Rt1g(K )zt]hI~k2!•p, ~A5!

wherek25(K ,2g). Furthermore, using the fact thathI(k)

5hI(2k) and definingk15(K ,g),

erec~2K !5
im0v2

8p2g
ei (K•Rt1gzt)hI~k1!•p. ~A6!

Let us denoteE( j rec→r t) the field radiated by the reciprocal
current in r t . The dipole induced is then writtenp
5a(v)e0E( j rec→r t) and

E~ j rec→r t!5
ivm0

4p

ei urd2r tu

urd2r tu
hI~ud!• j rec . ~A7!

Using the fact that for all dyadicAI and for all vectorsa and
b,

@AI•a#•b5a•@AIT
•b# ~A8!

thathI is a symmetric dyadic (hI5hIT), thateexpt(K ) is trans-
verse to the directionk1 and the definition ofEexpt(r ),

j rec•Ed

5a~v!
v2

4pc2

exp~ ikurd2r tu!
urd2r tu

j rec•hI~ud!•Eexpt~r t ,v!.

~A9!
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nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due to surface
resonances~plasmon polaritons or phonon polaritons! that are coupled across the vacuum gap. We demonstrate
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I. INTRODUCTION

Van der Waals and Casimir forces are among the few
macroscopic manifestations of vacuum fluctuations. Since
the seminal paper by Casimir@1# showing the existence of an
attraction between two perfect conductors separated by a
vacuum gap, an abundant literature has been devoted to this
effect. In particular, the relevance of retardation, finite con-
ductivity, and finite temperature have been studied~see, e.g.,
Ref. @2#!. Exhaustive lists of references can be found in sev-
eral review papers such as Refs.@3–5#.

In the last five years, the interest in Casimir forces has
increased due to the existence of new measurements with
improved accuracy@6,7#. This has challenged theoreticians
to quantify the corrections to the ideal case~zero tempera-
ture, perfect conductors, flat interfaces! that must be taken
into account for an accurate comparison with experiments
@8–13#. Furthermore, the developments of microelectrome-
chanical systems~MEMS!, for example, have shown that the
Casimir effect is becoming an issue in nanoengineering
@14,15#. Indeed, these short-range forces could seriously dis-
turb the performances of MEMS@16#.

From a theoretical point of view, different methods exist
to calculate Casimir forces. Casimir himself@1# determined
the electromagnetic eigenfrequencies of the system and
summed them in order to obtain the system’s zero-point en-
ergy. The force is found by a differentiation of this energy
with respect to the geometrical distance separating the bodies
@1,17#. Ingenious subtraction procedures are often required to
obtain a finite value for the Casimir energy, and realistic
dispersive or absorbing materials can be dealt with using
contour integrals over complex frequencies@18#. Another

method, used by Lifshitz@19#, considers fluctuating currents
driven by thermal or vacuum fluctuations in the whole space.
These currents, whose spatial correlations are known through
the fluctuation dissipation theorem, interact via the electro-
magnetic fields they radiate. The force is obtained by calcu-
lating the flux of the Maxwell stress tensor across a surface
separating the bodies. One thus gets an integral over all pos-
sible partial wave contributions. For two parallel plates sepa-
rated by a vacuum gap, for example, the partial waves can be
labeled by their frequency, wave vector parallel to the inter-
face, and polarization. By using clever contour deformation,
Lifshitz greatly simplified the calculation of the Casimir
force integral. The principal drawback of this approach is
that the integrand can no longer be interpreted as a force
spectrum.

In this paper, we use an alternative approach and study the
force integral over real frequencies and wave vectors. We
show for generic materials~semiconductors and real metals!
that in the near-field regime~separation distance small com-
pared to the wavelengths considered!, the frequency spec-
trum of the force exhibits peaks located close to surface-
polariton frequencies. These peaks give the essential
contribution to the Casimir force in this regime. We identify
two types of resonant surface modes, binding and antibind-
ing, that contribute respectively with attractive and repulsive
terms to the force. This substantiates early suggestions
@20,21# that the Casimir force is due to surface modes; also
see the recent papers by Genet and co-workers@13,22#.

We finally focus on materials whose dielectric function is
modeled by a Lorentzian resonance, including a nonzero ab-
sorption. We are able to use the qualitative suggestions men-
tioned above and propose a quantitative estimation of the
Casimir force in terms of coupled surface resonances. The
dominant contribution of these resonances at nanometer dis-
tances allows us to perform exactly the integral over the
mode frequencies, whereas the integral over the wave vector
is computed to first order in the absorption. We show that the
respective contributions of binding/antibinding modes give a
simple and accurate analytical estimate for the short-distance
Casimir force, recovering previous results for nonabsorbing
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Drude materials@10#. In the corresponding Hamaker con-
stant, we include corrections due to material losses. The ac-
curacy of our results is established by comparing to numeri-
cal evaluations of Lifshitz theory, using tabulated data for the
dielectric functions@23#. The paper concludes with a discus-
sion of possibilities to ‘‘tune’’ the Casimir force that are sug-
gested by our approach.

II. SURFACE RESONANCES IN THE FREQUENCY
SPECTRUM

The starting point for our calculation of the Casimir force
is Rytov’s theory of fluctuating electrodynamics in absorbing
media @24# that was used by Lifshitz in his seminal paper
@19#. This scheme applies to dispersive or absorbing materi-
als, as long as their dielectric response is linear. It has also
been shown to provide a suitable framework for a consistent
quantization procedure of the macroscopic Maxwell equa-
tions ~see Refs.@25,26# and references therein!.

In the following, we focus on the standard geometry of
two planar half-spaces made from identical material@of local
complex dielectric constant«~v!# and separated by a vacuum
gap of widthd. In the Rytov-Lifshitz method, the Casimir
force is computed from the expectation value of the Maxwell
stress tensor at an arbitary position in the gap. At zero tem-
perature and after subtraction of divergent contributions, Lif-
shitz gets a force per unit area given by@19#

F5E
0

` dv

2p E
0

` du

2p
F~u,v!, ~1!

F~u,v!5
2\v3u

c3 ImS v (
m5s,p

r m
2 ~u,v!e22vvd

12r m
2 ~u,v!e22vvd/cD ,

~2!

wherev5(u221)1/2(Im v<0), andr m is the Fresnel reflec-
tion coefficient for a plane wave with polarizationm and
wave vectorK5vu/c parallel to the vacuum-medium inter-
face. We use the convention that an attractive force corre-
sponds toF.0. We note that Rytov’s approach allows for an
easy generalization to different media held at different non-
zero temperatures. The radiation force on a small polarizable
sphere above a heated surface has been discussed previously
in Ref. @27#. Results for the nonequilibrium Casimir force
will be reported elsewhere.

Lifshitz evaluated integrals~1! by deforming an integra-
tion contour in the complex plane to arrive at an integral over
imaginary frequenciesv5 i j. The integration then requires
the continuation of the dielectric function from real-
frequency data to«( i j), using analyticity properties as dis-
cussed in Refs.@9,10#. Here we follow a different route and
continue to work with realv andu, taking advantage of the
fact that Lifshitz’s results provides us with an expression for
the frequency spectrumF(v)5*F(u,v)du/2p of the Ca-
simir force. Note that the force spectrum is more difficult to
define in a calculation based on mode summation; see, e.g.,
Refs.@28,29#.

For a polar material like SiC, the spectrum of the force is
dominated by narrow peaks in the ultraviolet~UV! and in the

infrared ~IR! ~Fig. 1! when the distanced is reduced to the
nanometer range. These peaks can be ascribed to the surface
phonon polaritons in the IR and to surface plasmon polari-
tons ~SPPs! in the UV. The largest contribution comes from
the UV surface plasmon polariton even though larger losses
make it broader. The large difference between the UV and IR
contributions in Fig. 1 is due to the factorv3 in Eq. ~2!. In
Fig. 2, we plot the spectrum of the force between two alu-
minum half-spaces, using tabulated data for the dielectric
function @23#. The dominant contribution to the force is
clearly due to the surface plasmon polaritons. Indeed, the
frequency of the peaks corresponds to the frequencyV of the
asymptote of the SPP dispersion relation@30# ~see Fig. 3!,

uSPP5S «~v!

«~v!11D 1/2

, ~3!

where the sign of the square root is chosen such that
ReuSPP.1. It is seen in Eq.~3! that the frequencyV is given
by the condition Re«(V)521. This corresponds to a large
increase of the density of states and therefore to a peak in the

FIG. 1. Contributions ofs- andp-polarized propagating and eva-
nescent modes to the force spectrum@Eq. ~2!, integrated over the
wave vectoru#. Distanced510 nm. Material: SiC, dielectric func-
tion taken from tabulated data@23#. The corresponding surface reso-
nances@Re«(v)521# are located at 1.7831014 s21 in the IR and
2.4531016 s21 in the UV.

FIG. 2. Contributions ofs- andp-polarized propagating and eva-
nescent modes to the force spectrum@Eq. ~2!, integrated over the
wave vectoru#. Distanced510 nm. Material: aluminum, described
by tabulated optical data@23#.
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energy density@31,32#. The polarization dependence of the
force spectrum provides a second argument in favor of a
surface plasmon polariton. In Figs. 1 and 2, we have sepa-
rated the contributions to the spectrum according to the mode
polarization~s or p!. The modes in the cavity can further be
classified into evanescent~surface! modes (u.1) and propa-
gating~guided! modes (0<u<1). Among the four contribu-
tions it is seen that the leading one comes from the
p-polarized surface modes, of which the SPP is a special
case.

It is worthwhile pointing out that for a perfectly conduct-
ing metal, the spectrum of the force would be completely
different because of the lack of SPPs. The usual picture of
the Casimir effect in that case is based on the modified den-
sity of states for propagating waves between the two plates.
This picture includes only what we have called guided
modes and ignores surface~or evanescent! modes.

We observe from Figs. 1 and 2 that the contribution of the
force is either positive or negative depending on the fre-
quency. We analyze this behavior in Sec. III.

III. BINDING AND ANTIBINDING RESONANCES

In order to further analyze the role of SPPs for the Ca-
simir force, in Fig. 4~a! we plot the integrandF(u,v) as
given by Eq.~2! for two aluminum half-spaces separated by
a distance ofd510 nm. Two branches emerge with domi-
nant contributions, the higher-frequency branch yielding a
negative contribution whereas the lower branch gives a posi-
tive ~attractive! contribution. These two branches are remi-
niscent of the dispersion relation of a SPP on a two-interface
system. It is given by the complex poles of the reflection
factor of the two interfaces system in the (u,v) plane:

12r p
2e22vvd/c50. ~4!

In order to illustrate the influence of the SPP dispersion re-
lation on the force, in Fig. 4~b! we plot the quantity 1/u1
2r p

2e22vvd/cu2 in the real (u,v) plane. Comparing Figs. 4~b!
and 4~a!, it is clearly seen that the main contribution to the
force is due to the SPP. In addition, in Fig. 4~b! we observe

a dark line which corresponds to minima of 1/u1
2r p

2e22vvd/cu2. This can be attributed to very large values of
the reflection factorr p . Thus, the dark line is the dispersion
relation of the SPP on a single flat interface. Note that the
Casimir force shows no prominent feature in this region.

In Fig. 5, we plot the force for a spacingd5100 nm: the
two branches tend to merge with the flat interface dispersion
relation. The following interpretation thus emerges: when the
surfaces approach each other, the overlapping of the two SPP
leads to a splitting of the polariton frequencies@33,34#. The
frequency splitting can be found from the solutions of Eq.~4!
which are implicitly defined by~also see Ref.@22#!

r p~u,v!56evvd/c. ~5!

The signs correspond to either symmetric or antisymmetric
mode functions~for the magnetic field!, as shown in the
Appendix and sketched in Fig. 4~b!. The symmetric~anti-
symmetric! branch corresponds to a lower~higher! resonance

FIG. 3. Dispersion relation@Eq. ~3!# of the surface plasmon
polariton on a flat interface vacuum/aluminum. The dielectric func-
tion is taken from the data tabulated in Ref.@23#. We plot the real
part of v vs the real part of the parallel wave vectorK5uv/c.

FIG. 4. ~a! Wave-vector resolved spectrum of the Casimir force
@Eq. ~2!# in the (u,v) plane between two aluminum half spaces
separated by a distance of 10 nm. The frequency of the flat asymp-
tote corresponds to the peaks of the force spectrum~Fig. 2!. Light
~dark! areas: attractive~repulsive! force. ~b! Resonant denominator
1/u12r p

2e22vvd/cu2 in the (u,v) plane, the grayscale giving the
logarithm to base 10. The dispersion relation of the coupled surface
resonance corresponds to the light areas; dark area: dispersion rela-
tion for a single interface@Eq. ~3!#. The dielectric function is ex-
tracted from tabulated data@23#. The inset sketches the magnetic
field of the coupled surface resonances~antisymmetric and symmet-
ric combinations!.
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frequency, respectively, similar to molecular orbitals and tun-
neling doublets@35#. These branches contribute with oppo-
site signs to the Casimir force, due to the identity

2r p
2~v,u!e22vvd

12r p
2~v,u!e22vvd 5

r p~v,u!e2vvd

12r p~v,u!e2vvd

2
r p~v,u!e2vvd

11r p~v,u!e2vvd , ~6!

where the first~second! term is peaked at the symmetric
~antisymmetric! cavity mode. The symmetry of the reso-
nance mode function hence determines the attractive or re-
pulsive character of its contribution to the Casimir force. In
the Appendix, we show by explicitly evaluating the Maxwell
stress tensor, thatsymmetric modes are bindingas in molecu-
lar physics.

We note that the splitting in Eq.~6! of the force spectrum
gives meaningful results also after integration because for
evanescent waves, both terms converge separately. We also
point out that for a complex permittivity«~v! ~as required by
the Kramers-Kronig relations for a dispersive material!, the
SPP dispersion relation necessarily moves into the complex
plane and is never satisfied in the real (u,v) plane, thus
excluding any singularities of integral~1!.

IV. SHORT-DISTANCE LIMIT

The short-distance behavior of the Casimir force between
nonperfect metals was computed in Refs.@9,10# using tabu-

lated data for the dielectric function and integrating over
imaginary frequencies. We show here that these results can
also be recovered with a real frequency calculation. In par-
ticular, we prove that the interaction between SPPs across the
vacuum gap quantitatively accounts for the short-distance
Casimir force derived in Ref.@10#, thus completing qualita-
tive discussions put forward by Gerlach@21# and Genet,
Lambrecht, and Reynaud@22#.

For definiteness, let us adopt a Lorentz-Drude model for
the dielectric function

«~v!511
2~V22v0

2!

v0
22 igv2v2 , ~7!

with resonance frequencyv0 and damping coefficientg. The
corresponding plasma frequency is@2(V22v0

2)#1/2. With
this convention, the largeu asymptote of the SPP dispersion
~3! occurs atv'V. This model can be used to describe
either dielectrics or metals whenv050. In the region of
large wave vectors, thep-polarized reflection coefficient has
a pole atV:

u@1: r p~v,u!'
«~v!21

«~v!11
5

V22v0
2

V22 igv2v2 . ~8!

From Figs. 1 and 2, we know that the force is significant
only in a range around the SPP resonance. It follows that the
model for«~v! is needed only in this limited range. We have
checked that Eq.~8! with v050 is well suited to describe the
reflection data computed from tabulated data for aluminum.
Note that the results of the fitted parameters~V and g are
indicated in the caption of Fig. 4! differ from the usual bulk
plasma frequency and damping rates that we would get from
a fit over the entire spectrum.

We have checked that this formula is well suited to de-
scribe the reflection coefficient computed from tabulated op-
tical data in the frequency region around the SPP resonance.
For aluminum, we get a good agreement with the values
given in the caption of Fig. 6. These values do not corre-
spond, of course, to the usual bulk plasma frequency and
damping rates that enter in the Drude model of the dielectric
function at low frequencies.

With this form of the reflection coefficient, Eq.~5! yields
the following dispersion relation for the~anti!symmetric SPP
resonances, neglecting for the moment the damping coeffi-
cient g:

v6
2 'V27e2v6ud/c~V22v0

2!. ~9!

We have usedv'u for u@1. For largeu, we solve by itera-
tion and find thatv6"V. As announced above, the symmet-
ric mode~upper sign! occurs at a lower resonance frequency.

To derive an analytical estimate for the Casimir force, in
Eq. ~2! we retain only the contribution ofp-polarized, eva-
nescent waves, containing the SPP resonance. Introducing
the new variablex5vvd/c, we get, using identity~6!,

FIG. 5. Same as Fig. 4, but for a separationd5100 nm.
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F5
\

4p2d3 Im E
0

`

dvE
0

`

x2dx

3 (
l561

le2x

r p
21~v,cx/~vd!!2le2x , ~10!

where l561 corresponds to symmetric~antisymmetric!
modes, respectively. The integral is dominated by the range
x;1 andv;V. To leading order inVd/c→0, we can thus
use the asymptotic form ofr p valid for largeu given by Eq.
~8!. Performing the integral overv analytically and including
damping to first order ing/V yields

F5
\V

4pd3 E
0

`

dx x2 (
l561

S lze2x

2A12lze2x

2
glze2x

2pV~12lze2x!D , ~11!

wherez512v0
2/V2. This result shows clearly that symmet-

ric and antisymmetric modes give Casimir forces of opposite
sign. The first term in the parenthesis can be computed by
expanding the square root in a power series inlze2x, lead-
ing to an infinite series given in Refs.@10,22#. The second
term, the correction due to damping, can be integrated in
terms of the polylogarithmic function, so that we finally have

F5
\V

4pd3 S a~z!2
gLi3~z2!

4pV D , ~12!

where

a~z!5
1

4 (
n51

`

z2n
~4n23!!!

n3~4n22!!!
~13!

and

Li3~z2!5 (
n51

`
z2n

n3 . ~14!

For completeness, we give the asymptotic series for small
v0 /V(z→1)

a~z!'0.138820.32~12z!10.4~12z!2 ~15!

Li3~z2!'z~3!2
p2

3
~12z!1F32

p2

6
22 log@2~12z!#G

3~12z!2, ~16!

with z(3)'1.202.~The coefficient of the second order term
in Eq. ~15! is only accurate up to a logarithmic correction.!

Our result@Eq. ~12!# for the short-distance Casimir force
agrees with the formula given in Refs.@10,22# in the special
caseg50, v050 ~lossless Drude model!. A very similar
expression was found in Ref.@26#. We compare Eq.~12! in
Fig. 6 to the full integral@Eq. ~2!# for the case of aluminum:
it turns out to be quite accurate for distancesd<0.1lSPP,
wherelSPP5115 nm is the wavelength of the SPP with the
largest frequency@36#. In the case of aluminum, the first
order correction ing/V is 2.5% of the zeroth order value of
the force. The plot also shows that for the numerical integra-
tion, the tabulated data and the Lorentz-Drude model~7!
with parameters fitted around the surface resonance give very
close results over a large range of distances. This is another
indication that the short-range Casimir force between real
metals is dominated by a narrow frequency range. Differ-
ences of the order of a few percent appear at large distances
where the Casimir force is dominated by the low-frequency
behavior of the reflection coefficient that is not accurately
modeled with the fitted parameters.

We finally note that the correction of orderg/V derived
here introduces the effects of losses and must not be con-
fused with the correction due to a finite real permittivity This
is already taken into account by the finite value of the plasma
frequencyV and is responsible for the emergence of the
short-distance regimed!lSPP where the Casimir force
;1/d3 @19#. At large distances, a finiteV leads to a small
correction to the well-known Casimir force;1/d4 between
perfect conductors@2,9,10#.

V. CONCLUSION

We have pointed out that the Casimir attraction between
realistic materials can be quantitatively understood, at short
distances, in terms of the interaction between electromag-
netic surface plasmon~or phonon! polaritons. The modes
overlap across the vacuum gap and split into symmetric and
antisymmetric combinations which contribute with different
signs to the Maxwell stress tensor and hence to the Casimir
force. We discussed in particular the short-distance regime of

FIG. 6. ~Color online! Comparison of different expressions for
the Casimir force between aluminum surfaces. We plot the ratio
F(d)/FCas(d), whereFCas(d)5\cp2/(240d4) is the Casimir force
for perfect mirrors. Solid line~black!: numerical integration of Eq.
~2!, using tabulated optical data@23,36#. Short-dashed line with
circles~blue!: same, with a model dielectric function of Drude form
@Eq. ~7!# with v050, V51.6631016 s21, andg/V50.036. These
parameters have been obtained from a plot of the reflection coeffi-
cient @«(v)21#/@«(v)11# based on the tabulated data that has
been fitted to the form given in Eq.~8!. Long-dashed line~red!:
short-distance asymptotics~12! with the same values forv0 , V,
andg.
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the Casimir force whereF5H/d3, and have given an ana-
lytical formula for the Hamaker constantH. We recover pre-
vious results for nonabsorbing materials and evaluate a cor-
rection due to absorption. Our results have been validated by
comparing to a numerical calculation based on Lifshitz
theory.

The approach presented here has the advantage of linking
the Casimir force to the actual physical properties of the
material surface in a transparent way. This suggests the pos-
sibility of engineering the surface plasmon polariton disper-
sion relation to modify the Casimir force. Indeed, as has
been shown, the Casimir force at short distances is entirely
due to the interaction between surface polaritons. Magnetic
materials which exhibit Casimir repulsion@37# and support
s-polarized surface waves when Rem,21 @38# are good
candidates. The folding of the dispersion relation in recipro-
cal space by a grating, known to change the surface wave
behavior@39# could also lead to a substantial modification of
the Casimir force.
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APPENDIX: ANGULAR SPECTRUM ANALYSIS

In this appendix, we compute the Casimir force in terms
of an angular spectrum representation of the electromagnetic
fields that is adapted to the planar geometry at hand. Letting
the vacuum gap occupy the region2d,z,0, we can ex-
pand the electric field in the gap as

E~x,v!5 (
m5s,p

E d2K@E2
m ~K !e2 ikzzem

2

1E1
m ~K !eikz~z1d!em

1#eiK•X, ~A1!

whereK5(kx ,ky) is the component of the wavevector par-
allel to the interfaces andkz5A(v/c)22K2 its perpendicular
component.em

6(m5s, p) are unit polarization vectors, and
E6

m (K ) are the amplitudes of upward and downward propa-
gating plane waves. A similar expansion holds for the mag-
netic fieldH(x,v) with amplitudesH6

m (K ). We get the av-
eraged Maxwell stress tensor by integrating incoherently
over the contributionsTzz

m (K ) of individual modes. For the
particular case of ap-polarized evanescent mode (K.v),
we get, by straightforward algebra,

Tzz
p ~K !52m0v2 Re@H1

p* ~K !H2
p ~K !#. ~A2!

The upward and downward propagating amplitudes are of
course related via the reflection coefficient from the upper
interface. Taking the phase references in Eq.~A1! into ac-
count, we have

H2
p 5r peikzdH1

p 5r pe2vvd/cH1
p '6H1

p , ~A3!

where the last equality applies in the vicinity of the coupled
surface resonances defined by Eq.~5!. The condition
r pe2vvd/c511 thus corresponds to a symmetric magnetic
field distribution on both interfaces, becauseH1

p 5H2
p . In

addition, with our sign convention, this mode gives an attrac-
tive contribution proportional to1uH2

p u2 to the stress tensor
~A2!. The opposite is true for antisymmetric modes.

The sign of the Casimir force due to the coupled polariton
modes can also be understood in terms of the zero-point
fluctuations of the charge densities on both surfaces, as
pointed out by Gerlach@21#. The charge densities can be
found from the normal component of the electric field. For a
symmetric mode, we get surface charges with opposite sign,
hence an attractive force, while an antisymmetric mode cor-
responds to equal surface charges.
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@35# A. Messiah,Mécanique Quantique, new ed. ~Dunod, Paris,
1995!, Vol. 1.

@36# The numerical integration uses the Lifshitz formula and pro-
ceeds along the imaginary frequency axisv5 i j. The dielec-
tric function «( i j) is constructed from the tabulated data at
real frequencies using the sum rules given in Refs.@9#, @10#.

@37# O. Kenneth, I. Klich, A. Mann, and M. Revzen, Phys. Rev.
Lett. 89, 033001~2002!.

@38# R. Ruppin, Phys. Lett. A277, 61 ~2000!.
@39# J.-J. Greffet, R. Carminati, K. Joulain, J.-Ph. Mulet, S. Main-

guy, and Y. Chen, Nature~London! 416, 61 ~2002!.

COUPLED SURFACE POLARITONS AND THE CASIMIR FORCE PHYSICAL REVIEW A69, 023808 ~2004!

023808-7





Coherent spontaneous emission of light

by thermal sources

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, J.-J. Gre�et et Y. Chen

Physical Review B, vol 69, pp155412 (2004)

77





Coherent spontaneous emission of light by thermal sources

F. Marquier, K. Joulain, J.-P. Mulet, R. Carminati, and J.-J. Greffet
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The emission of light by a material at temperatureT has been shown recently to be coherent in the near field.
These properties were attributed to the thermal excitation of surface polaritons. We review the origin of this
phenomenon. We analyze the influence of the microstructure and temperature on the coherence properties and
show how to engineer thermoradiative properties of surfaces. We report the design of a quasi-isotropic source
and a very directional source of thermal light. We also report a measurement of the transverse coherence length
of a thermal source of light.
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I. INTRODUCTION

The tungsten filaments of light bulbs are certainly the
most widely used sources of light. The microscopic mecha-
nism of light generation is the spontaneous emission of a
photon when an emitter thermally excited relaxes to a lower
state. Such light sources are called thermal sources. They are
usually almost isotropic sources of light with a broad spec-
trum. This contrasts with a laser that produces very direc-
tional and monochromatic light. The narrow spectrum is a
measure of the temporal coherence of the source, whereas
the directivity is a measure of its spatial transverse coher-
ence. Recently, it has been realized1–3 that a thermal source
of light could be coherent in the near field, i.e., when ana-
lyzing the light at distances of the surface much smaller than
the peak wavelength of the spectrum. Further work has led to
the construction of a coherent thermal source of light.4 It has
thus been shown that a source based on spontaneous emis-
sion may produce light that is partially coherent, both spa-
tially and temporally. In this paper, we shall report a detailed
study of this type of source and discuss the role of surface
waves in building coherent fields. We will report a measure-
ment of the coherence length of the field along the source.
We will also carefully study the role of the temperature on
the emission. We will finally report measurements on a type
of source that produces an isotropic emission of light.

The emission of light by hot bodies is usually discussed in
the context of energy transfer or thermodynamics using phe-
nomenological concepts such as absorptivity, emissivity, and
specific intensity.5,6 However, it is possible to address this
problem in the framework of classical electrodynamics. This
approach was first used by Lorentz7 but, at that time, the
statistical properties of the random currents were not known,
so that it was impossible to obtain the Planck function fol-
lowing this route. This is why this type of approach has been
abandoned in textbooks. Indeed, radiation in a vacuum, i.e.,
blackbody radiation, is usually derived using the Bose-
Einstein statistics for photons. This approach can be used
only if the electromagnetic states of the system are known
and at thermodynamic equilibrium. Nonequilibrium phenom-
ena such as emission by a specific material are usually de-

scribed using a phenomenological theory. None of these
theories allows one to derive the emitted fields starting from
the basic principles of electrodynamics.

The basic idea of an electromagnetic treatment of thermal
radiation is that each volume element of a body at tempera-
ture T can be viewed as a random electric dipole. Indeed,
because of the random thermal motions of electrons and
ions, there are random currents in the material. Therefore,
each volume element can be viewed as an electric dipole that
generates an electric field. Next, we have to derive the field
generated by a dipole below an interface. This is a standard
problem that was first solved by Sommerfeld. A detailed dis-
cussion can be found in the monograph by Banos.8 Although
the solution involves some integrals that may not be easy to
evaluate analytically, the problem can be worked out
numerically.9 It is worthwhile to point out that all the optical
properties of the medium and all the resonances of the inter-
face are taken into account when computing the field emitted
by a dipole below the interface~i.e., the Green tensor of the
problem!. Because the mean value of the current is null, the
mean value of the electric field is also null. The quantity that
is then needed is the correlation function of the current den-
sity which is given by the fluctuation-dissipation theorem
derived in 1951.10 The full treatment was first given by Ry-
tov et al.11 It was applied by these authors mostly to radio
waves emission problems, but the framework is valid for any
frequency. For instance, this approach allows one to derive
rigorously the emissivity for a flat surface and thus to re-
trieve the usual phenomenological result. Furthermore it
yields the field in the vicinity of the interface because surface
modes are fully taken into account. When surface waves can
exist, the field is completely dominated by these thermally
excited surface waves. They produce unexpected results.
First of all, the spectrum of the energy density becomes al-
most monochromatic.2 Its Fourier transform yields the first
order ~i.e., amplitude! correlation function according to the
Wiener-Khinchin theorem. It appears that the field has a long
coherence time. Second, the density of energy increases by
several orders of magnitude.1,2 Third, the field can be shown
to be spatially coherent over distances much larger than the
wavelength along the interface.1,3 These facts contradict the
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widely accepted point of view that a thermal source of light
is incoherent. All these effects cannot be detected in the far
field because they are due to surface waves which decay
exponentially away from the interface. Yet, roughness can
couple surface waves to propagating waves, and thus transfer
the coherence properties into the far field.4 Note that we do
not claim that a thermal source produces a laserlike field.
First of all, the mean occupancy number of each state is still
given by the Bose-Einstein law. Second, the intensity statis-
tics are very different for a laser and a thermal source. How-
ever, surface waves do produce a significant time and spatial
second order coherence of the field in the near-field. This
coherence can be used to modify significantly the radiative
properties of surfaces.

To proceed, one can modify the surface profile. It has
been known for a long time that microroughness modifies
radiative properties. In particular, the influence of a grating
on the absorption properties has been studied in great
detail.12 A spectacular effect was predicted and verified
experimentally13 in 1976: ruling a shallow sinusoidal grating
on a gold surface may lead to a total absorption of visible
light for a particular polarization. This behavior has been
associated with the resonant excitation of a surface mode: a
surface plasmon polariton. Due to its resonant character, this
absorption takes place for a particular angle once the fre-
quency is fixed.

Absorption is not the only radiative property that depends
on the surface profile. According to Kirchhoff’s law, the
emissivity of a surface is equal to the absorptivity for the
same frequency, same direction, and same polarization. Its
validity has been a subject of debate for some time but the
question was finally settled5 when a proof was derived from
the reciprocity theorem that follows from Maxwell’s equa-
tions. Based on this argument, it is thus expected to observe
a manifestation of surface waves on the emission of light by
surfaces. This has indeed been observed recently by Kreiter
et al.14 on a gold surface heated at 700 °C. Because of the
range of temperature needed, it is easier to observe these
effects in the infrared. Although surface plasmon polaritons
may exist for highly doped semiconductors, it is easier to
observe these phenomena by taking advantage of a different
type of surface waves. They are called surface phonon po-
laritons. They can be viewed schematically as phonons in an
ionic crystal. The mechanical vibration of the ions generates
a charge oscillation and therefore an electromagnetic wave.

In the early 1980s, Zhizhinet al.studied thermal emission
of materials supporting surface phonon polaritons.15 They
worked with a ZnSe crystal sample including periodic inho-
mogeneities on its surface. The sample was heated at 150 °C
in order to excite surface waves. Coupling these waves with
the periodic profile, they observed emissivity spectra in thep
polarization changing with the direction of observation. That
observation was a signature of the excitation of a surface
wave. It is worth mentioning that the emission assisted by
the excitation of a surface wave has been used in a different
context. In the late 1980s, Gruhlke, Holland, and Hall ob-
served the luminescence by atoms placed in a film with a
grating on top of it. They observed that the presence of the
grating modified significantly the emission. The interpreta-

tion is that the emission of the atoms excited a surface mode
that was subsequently diffracted by the grating.16 It is inter-
esting to compare the two emission phenomena because they
have the same basic mechanism. The spontaneous emission
of light by a metallic grating can be viewed as follows:~i!
nonradiative decay of a thermally excited electron or phonon
into a surface phonon polariton, and~ii ! diffraction of the
surface phonon polariton by the grating. Other authors have
used this idea more recently. Let us mention the enhanced
fluorescence of emitters (Eu31) located in close proximity to
a metallic grating surface17 and the extraction of light emit-
ted by an active source located inside a modulated
structure.18

Later on, Hesketh and Zemel measured thermal emission
at 400 °C of doped silicon gratings. They observed reso-
nances in the emission amplitude in thep polarization and
different spectra when varying the grating period.19–21As we
will see, the phenomenon reported by Hesketh and Zemel
was related to the presence of surface plasmon polaritons and
not to organ pipe modes, as first thought. Many other authors
have experimentally explored the role of texture on emissiv-
ity. We will not mention here the works done on gratings
with a period larger than the wavelength so that the geomet-
ric optics apply. In 1995, Auslander and Hava studied
anomalous reflectance in doped silicon lamellar gratings due
to the surface profile of a grating. Yet, they worked ins
polarization,22 so that these effects were not related to sur-
face wave excitation. Nevertheless they noticed in 1998 an
antireflective behavior in thep polarization for V-grooved
silicon grating with a SiO2 mask layer.23 Saiet al. also made
calculations and measurements on a three-dimensional
V-grooved silicon grating with an SiO2 mask layer and in-
terpreted their observation in terms of resonance between the
field and the grating.24 Le Gall et al.25 showed that the emis-
sivity of SiC could be increased by ruling a grating. Finally,
let us mention a recent attempt to use a photonic crystal
structure of tungsten to modify the radiative properties.26

In this paper, we will report a detailed study of the ther-
mal emission due to the thermal excitation of surface phonon
polaritons. Recent papers1,2 have shown that the presence of
surface waves on a plane interface enhance the temporal and
spatial coherence close to the interface~at distances smaller
than the typical wavelength given by the Wien displacement
law, 10 mm at 300 K, for example!. This yields insight into
the mechanism of light emission. We will first review these
ideas. We will then study the interplay between the disorder
of the microstructure of a material and the spatial coherence
of the field by comparing amorphous and crystalline silica.
We will then describe an experimental setup designed to en-
hance the angular and spectral resolution of emission mea-
surements. We will report a detailed experimental study of
the emission of a grating. We will, in particular, examine
carefully the role of temperature in the results. We will also
show that it is possible to engineer the radiative properties of
a surface by a proper design of the grating profile using a
rigorous coupled wave analysis~RCWA! algorithm.27 Two
thermal sources have been realized. The first source radiates
almost isotropically but with an emissivity enhanced by
more than an order of magnitude. The second source has an
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emission pattern that displays two narrow lobes like an an-
tenna. Finally, we will show how the coherence length along
the source can be recovered from our far field emission mea-
surements and discuss qualitatively the origin of the spatial
coherence.

II. COHERENCE IN THE NEAR FIELD

A. Temporal coherence in the near field

In this section we consider the emission of light by a half
space containing silica, either amorphous~glass! or cris-
talline ~quartz!. The upper half space is a vacuum. We plot
the density of electromagnetic energy as a function of fre-
quency in the near field in Fig. 1. We see that the spectrum is
no longer a broad spectrum with an envelope given by the
Planck function; instead, the spectrum has a narrow peak.
This is a signature of the temporal coherence of the electro-
magnetic field close to the interface. A striking property is
the numerical value of the density of energy. It is roughly
larger than the density in vacuum by four orders of magni-
tude. Similar results for SiC were first reported in Ref. 2.
These surprising results can be understood as follows. The
energy density is proportional to the local density of electro-
magnetic states. Close to an interface, there are not only
plane waves, which are the solutions of Maxwell equations
in a vacuum, but also surface waves. These additional solu-
tions produce a peak of the density of states at a particular
frequency, as seen in the dispersion relation of Appendix A.
In the case of ionic crystals, the origin of this peak is easy to
understand. It is the frequency of the optical phonons which
is basically the mechanical eigenfrequency of the atoms in a
primitive cell. Since the atoms carry a partial charge, they
produce an electromagnetic field. With this picture in mind,
it is easy to understand why the density of energy increases
when approaching the interface. Each primitive cell is
equivalent to an oscillating dipole. As the distance is re-
duced, the electrostatic contributions in the dipole radiation
become the dominating terms.

When comparing the two curves in Fig. 1, it is seen that
the effect of the desorder of the amorphous glass is to
broaden and to shift the resonance peak. This can be quali-

tatively understood. Indeed,~i! amorphous glass is a more
disordered system so that surface phonon polariton are ex-
pected to be strongly damped, and~ii ! the local environment
of each cell varies from one cell to the other so that a broad-
ening of the spectrum is expected.

B. Spatial coherence

Since we have seen that the electromagnetic field is tem-
porally coherent in the near field, it is natural to revisit its
spatial coherence properties. It is also of interest to investi-
gate the role of the structure of the material on the spatial
coherence. To this end, we show in Fig. 2 the cross-spectral
density of thez-component of the electric field along the
interface at a distance ofl/20 for crystalline and amorphous
silica. It has been calculated following the procedure out-
lined in Ref. 1. At a frequency that coincides with the peaks
of the density of energy, there are many wave vectors excited
so that the spatial spectrum is very broad. Accordingly, the
correlation function has a very small range. In contrast, when
looking at the cross-spectral density for a lower frequency,
we observe a long range correlation of the electromagnetic
field along the interface. Similar results were obtained previ-
ously for SiC and metals.1 Not surprisingly, we observe that
the coherence length of the amorphous glass is smaller than
the coherence length for the crystalline quartz. Yet, it is seen
that there exists a non-zero correlation over distances as
large as four wavelengths~i.e., 88 mm! for the amorphous
glass, indicating that there is still some order on this scale
length. The origin of the long-range coherence of a thermal
source that support a surface wave can be viewed as follows.
The random electric dipole associated with each volume el-
ement of the medium excites a surface wave. Since the sur-
face wave is a delocalized mode, the oscillations produced
along the surface are coherent within a distance which is
given by the decay length of the surface wave. In other
words, each volume element is dressed by a surface wave
that oscillates coherently over an area determined by the de-
cay length of the surface wave along the interface. Thus each
elementary source has an effective spatial extension along

FIG. 1. Energy density above a vacuum-silica interface in the
near field. Note the shift of the peak frequency depending on the
microscopic structure. FIG. 2. Cross-spectral density of thez component of the electric

field above a vacuum-glass interface. Note that the coherence length
of the amorphous silica is smaller than for the crystalline form.
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the planar source which may be much larger than the wave-
length in vacuum. In what follows, we will use these coher-
ence properties to design sources with specific properties.
Depending on the coherence properties, it is possible to de-
sign either a highly directional or a quasi isotropic source. In
Sec. III, we describe the experimental setup that was built in
order to measure the emission with high angular and spectral
resolution.

III. EXPERIMENTAL SETUP

A. Optical system

The optical system is schematically shown in Fig. 3.
PointsA1 andA2 are conjugated.A1 represents the grating or
the blackbody andA2 is the point which is conjugated with
the detector through the spectrometer. Thus, the image of the
detector determines the area of the sample which is observed.
This allows to choose an isothermal area.

A diaphragm ~diameter F! was placed in the Fourier
plane of the spherical mirror. In this position, it makes an
angular selection of the directions of emission which are ob-
served. In other terms, we control the solid angle of obser-
vation by varying the diameter of the diaphragm. In our
setup,f 5300 mm andF53 mm, so that the solid angle of
detection isVdetection'831025 sr. It is smaller than the
solid angle of the natural emission of the grating due to a
surface phonon polariton~SPP! Vemission'p(l/L)2, where
L,1 mm is the typical propagating length of the SPP on the
plane interface. One sees thatVemission.3.1024 sr.

The grating is heated by eight thermal electric resistances
and its temperature is controlled by a regulator WEST4200.
In the experiment, the target temperature for the grating is
773 K with a precision better than 1 K.

We used an infrared Fourier transform spectrometer DA8
BOMEM. The spectral resolution of this spectrometer varies
between 0.01 and 4 cm21. The measurements have been
made with a spectral resolution of 0.5 cm21, which corre-
sponds to a precision of 5 nm atl510mm. The detector is
a HgCdTe detector cooled at 77 K. Each spectrum is an
average of 500 scans: the noise is thus considerably reduced.
The beamsplitter of the spectrometer is made of KBr, which
is a transparent material in the working frequency range.

B. Experimental procedure

For each angle, we took several measurements of the
emission of the sample, of a reference blackbody and of the
ambiant radiation. For frequencies below 1500 cm21, the
ambiant radiation reflected on the sample cannot be ne-
glected. The emissivity spectrumS« is obtained by subtract-
ing the background signal. The details of the procedure are
given in Appendix B.

In order to obtain the emissivity spectrum, we need to
know the exact value of the sample temperature. This is
achieved by taking advantage of the Christiansen wave-
length. At this point, the emissivity«l of the SiC surface is
equal to 1. The Christiansen frequency depends neither on
the temperature nor on the roughness. We have the following
relation:

I l,T5«lI l,T
0 , ~1!

whereI l,T is the specific intensity of the radiation emitted by
the surface at wavelengthl and temperatureT, and I l,T

0 is
the blackbody specific intensity in the same conditions. At
the wavelengthl, we can define a temperatureTl such that
I l,T5I l,Tl

0 . When«l51, we have

I l,T5I l,T
0 5I l,Tl

0 , ~2!

i.e., T5Tl . We can thus determine the exact temperature of
the sample. For SiClChristiansen510.034mm. We found that
the temperature of the sample in our experiment wasTS
5770 K.

IV. A QUASIMONOCHROMATIC AND ISOTROPIC
THERMAL SOURCE

In this section, we show how to enhance the emissivity of
the sample in all directions by taking advantage of the ther-
mal excitation of the surface wave. To this end, we rule a
grating on the surface so that the surface wave can be
coupled to propagating waves. In order to be able to couple
light to any direction, it is necessary to work at a frequency
where the dispersion relation is flat~see Appendix A!. For
fabrication reasons, it is easier to work with a lamellar grat-
ing ~i.e., with a rectangular surface profile!. The characteris-
tics of such a grating are the periodL, the filling factorF,
and the depthh. We optimized the grating parameters in
order to maximise the emissivity using a rigorous coupled
wave algorithm.27 For SiC, we found the following charac-
teristics:L53 mm, F50.4, andh50.35mm.

In Fig. 4~a!, we show two experimental curves, obtained
in the conditions described in Sec. III. We represent emissiv-
ity spectra for the grating and for the plane interface inp
polarization in the normal direction of observation. One can
see that a peak appears in the presence of a grating. This
peak does not exist fors polarization @see Fig. 4~b!#. The
polarization dependence suggests that the grating is not es-
sential but serves to reveal an intrinsic property of the sur-
face. It indicates the role of the SPP in this phenomenon
since the SPP exists only forp polarization as discussed in

FIG. 3. Experimental setup used for measuring emissivity
spectra.
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Appendix A. Further evidence of the role of the SPP will be
given in Sec. V.

When the angle of observation changes, one can see in
Fig. 5 that a peak still exists at the same wavelength. Figure
5~a! presents the theoretical spectra and Fig. 5~b! the experi-
mental one. The experimental peak is lower and wider than
the theoretical peak. It is also seen that the experimental peak
appears at a wavelengthl'11.1mm, instead of 10.9mm in
the calculation. We will explain this spectral shift and the
broadening of the peak in the following sections.

In Fig. 6, we plot the emissivity versus the angleu at a
fixed wavelengthl511.09mm. We see that the emission at
this wavelength is almost isotropic and increases from a
value lower than 0.1 to a value larger than 0.8 at any angle.
One can understand this phenomenon by inspection of the
dispersion relation~see Appendix A!. As a matter of fact the
excited SPP lies on the asymptotic branch, characterized by
v5946 cm21 in the calculation. For a fixed wavelength,
there are many SPPs with different wave vectors, i.e., differ-
ent directionsu of emission. For all these directions the grat-
ing emits a quasimonochromatic radiation. Thus, using a SPP
thermal excitation, we have succeeded in designing a thermal
source which is both isotropic and quasimonochromatic. This
concept can be extended to different materials. Tungsten, for
instance, is a very good emitter in the visible but its emis-

sivity in the infrared is low. The mechanism that we have
described could be used to enhance its emissivity in the in-
frared, taking advantage of the surface plasmon polaritons.

V. A DIRECTIONAL THERMAL SOURCE

In this section, we consider a grating designed to emit
light at a well-defined angle. In order to illustrate the role of
the surface wave, we have calculated the emissivity as a
function of angle of emission and frequency for a grating.
This grating was designed to have a maximum absorption for

FIG. 4. Emissivity spectra of a smooth gratingL53.00mm,
F50.4, andh50.35. ~a! Case ofp polarization.~b! Case ofs po-
larization.

FIG. 5. Emissivity spectra in thep polarization of a smooth
grating; L53.00mm, F50.4, andh50.35 for two direction of
observationu510° and 40°.~a! Theoretical spectra.~b! Experi-
mental spectra.

FIG. 6. Experimental emissivity diagram in polar coordinates of
a smooth grating;L53.00mm, F50.4, andh50.35
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11.36mm. The result is displayed in Fig. 7. It is seen that the
peaks of emissivity closely follow the dispersion relation of
the SPP on a flat surface shown in Fig. 16. In this calculation,
we see that the emissivity takes large values for any angle at
a particular frequency on the order of 946 cm21, as already
discussed. Furthermore, we see that for lower values of the
frequency, the dispersion relation is no longer flat, so that for
a given frequency, emission takes place for a well-defined
angle. In this part of the spectrum, we expect an angle-
dependent spectrum. In other terms, in each direction the
grating emits at a different wavelength. We optimized the
following characteristics for the grating:L56.25mm, F
50.5, andh50.285mm. Such a grating was already studied
by Greffetet al.4 In this work we report measurements of the
emission spectrum and a quantitative analysis of the data. We
will show that we can deduce the coherence length of the
source from the emission data. We will also show that it is
possible to obtain a quantitative agreement of measurement
with theory at high temperature.

We plot the measured emissivity versus the angleu in Fig.
8 for l511.36 and 11.89mm. It is seen that the emission at
a fixed wavelength is very directional: the heated grating
behaves like an infrared antenna. This is a signature of the
spatial coherence of the source. In previously reported mea-
surements, the angular resolution was limited by our signal
to noise ratio. We had to increase the aperture of the detec-

tion system. The spectral resolution was also limited by sig-
nal to noise ratio. In this measurement, we are no longer
limited by the instrument in our measurement of the angular
width. For instance, our measurement shows that the peaks
are narrower when the angleu increases as predicted by the
theory. This will be fully discussed in the following section.

We now show the comparison between three theoretical
and experimental spectra in Figs. 9~a! and 9~b!, respectively,
for the anglesu530°, 46°, and 60°. As we have seen in Sec.
IV, the experimental emissivity is not equal to 1 at the peak
wavelength and the peak wavelength is shifted by about 0.1
mm. As in Sec. IV, the experimental peak is wider than the
theoretical one. However, the agreement between theory and
experiment for reflectivity is excellent as shown in Ref. 4.
Thus, we find that theory agrees with reflectivity data but not
with emissivity data.

We are now going to analyze the origin of this discrep-
ancy. A possible mechanism is that the grating period varies
with the temperatureT due to the thermal expansion of SiC
as its temperature increases. We measured the period of the
grating at 300 and 770 K using a diffraction method. We
obtainedL56.26 and 6.28mm, respectively, with a preci-
sion better than 1%. This variation does not affect signifi-

FIG. 7. Emissivity of a SiC grating as a function of frequency
and angle of emission. It is seen that the peaks of emission coincide
with the dispersion relation of the SPP in the (v,k) plane.

FIG. 8. Experimental emissivity diagram in polar coordinates of
a smooth grating;L56.25mm, F50.5, andh50.285 at two dif-
ferent wavelengthsl511.36 and 11.89mm.

FIG. 9. Emissivity spectra in thep polarization of a smooth
grating,L56.25mm, F50.5, andh50.285 for three directions of
observationu530°, 46°, and 60°.~a! Theoretical spectra.~b! Ex-
perimental spectra. The theoretical curve was calculated with the
dielectric data atT5300 K, and a grating period ofL56.28mm.
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cantly the position of the peak. In Fig. 10 we show the the-
oretical and experimental emissivity versus the angle of
observationu for a SiC grating with a periodL56.28mm at
l511.36mm. One can see that the thermal expansion of the
grating does not explain the experimental result.

Another possible mechanism is the variation of the optical
index with temperature. The position of the peak is mainly
related to the dependence of the real parte8 of the dielectric
constant with the temperatureT; the width and the height are
related to the material absorption, i.e., to the imaginary part
e9.

In order to find the dielectric constant at high temperature,
we measured the emissivity of a flat surface at normal inci-
dence. We then used a model for the dielectric constant with
adjustable parameters. This calculation was made using a
Lorentz model by varyinge` , vL , vT , andG so as to mini-
mize the difference between theoretical and experimental
emissivity « ~or reflectivity! as a function ofv. This is
achieved by minimizing the following quantity:28

S5(
i 51

N

@«exp~v i !2« th~v i !#
2, ~3!

whereN is the number of experimental points. The number
of experimental points wasN559, taken betweenl59 and
13 mm. We obtained e`56.8, vL5959 cm21, vT
5779 cm21, andG511.7 cm21. One can see that the varia-
tions are not very important~lower than 2%! except forG,
which has been multiplied by about 2.5. This is not surpris-
ing. The main source of losses is phonon scattering. It obvi-
ously increases withT. Here we retrieve the increase of the
absorption, which can explain the width and the height of the
experimental peak.

Finally, we have used the new values of the oscillators
parameterse` , vL , vT , andG to derive the emission spec-
trum. In Fig. 11 we show the experimental spectrum atu
546° with the theoretical spectra at both ambiant and high
temperature. It is seen that there is a very good agreement
between the experiment and the calculation when the proper
optical data are used. This confirms that the results depends

on T through the parameterG. We made experiments at dif-
ferent temperatures between 450 and 770 K. In Fig. 12 we
show the dependence of the coefficientG with the tempera-
ture in this range.

VI. MEASUREMENT OF THE COHERENCE LENGTH

We have seen in Sec. V that thermal emission by a SiC
grating may become very directional at certain wavelengths.
This can be interpreted in terms of spatial coherence: when a
source is spatially coherent the radiation emitted by two dif-
ferent points of the source can interfere constructively in a
given direction and destructively in the others producing an-
gular lobes. The goal of this section is to use the far field data
to recover the coherence length of the field in a plane placed
just above the planar source.

We are interested here in thep-polarized emissivity, and
the plane of detection is perpendicular to the grating lines.
Thus the problem can be fully treated in terms of the scalar
magnetic field at a given wavelengthH(r ,l)5Hy(r ,l)ey .
In this case, we can characterize the spatial coherence with a
coherence length calculated via the scalar cross-spectral den-

FIG. 10. Experimental emissivity vs the direction of observation
u (l511.36mm).

FIG. 11. Experimental and theoretical emissivity spectra. Calcu-
lations have been made with two different dielectric constantse~v!
at temperaturesT5300 and 770 K.

FIG. 12. Variation of the coefficientG in the dielectric constant
with the temperature.
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sity function in the near-fieldW(r1 ,r2 ,l) defined by
W(r1 ,r2 ,l)d(l2l8)5^Hỹ* (r1 ,l)Hỹ(r2 ,l8)& whereHỹ is
the spectral Fourier transform ofHy .29

The emissivity diagram yields the radiant intensity in the
far-field J(s,l), wheres5k/k and k is the wave vector of
the incident wave on the detector. It can be shown that29

W~r1 ,r2 ,l!}E J~s,l!expS i2ps•
r22r1

l Dd3s. ~4!

W(r1 ,r2 ,l) appears as a spatial Fourier transform of
J(s,l) with respect to the variable (r22r1)l. One must take
care that the radiant intensity is defined in the far-field so that
we only have access to part of the spectrum of the cross-
spectral density. More precisely, the field near the grating at
a given wavelength can be split into four contributions:

H5Hn2 f1Hsw2nr1Hsw2r1Hpw , ~5!

whereHn2 f is the very near-field~quasistatic! component of
H, Hsw2nr is the field associated with the part of the SPP
which is not radiated~part of the dispersion relation lying
below the light cone!, Hsw2r is the field associated to the
part of the SPP which is radiated by the grating andHpw is
the propagating wave contribution. The latter is the only con-
tribution that is emitted in the far field by a flat surface. Only
the last two components contribute to the signal received by
the detector. These contributions are decorrelated and the
cross-spectral density function can be splitted into four parts
which are associated with the quasistatic near field, the ra-
diative and nonradiative SPPs, and the natural emission of
the sample. The cross-spectral density function reconstructed
from the far-field data is thusWcalculated5Wsw2r1Wpw .
Note that a flat surface would yield essentiallyWpw .

In Fig. 13 we plot the reconstructed cross-spectral density
function at the wavelengthl511.36mm versus the quantity
r/l, wherer5ur22r1u. As discussed above, it contains all
the information on the radiated surface wave. This function
is normalized by its value atr50. Note that this normaliza-
tion amounts to plotting the spectral degree of spatial coher-
ence. One can see that the SPP is correlated in the near field

over distancesr of the order of several wavelengths. It is
possible to show that the cross-spectral density function de-
creases exponentially. We define the coherence length as the
value ofr when the spectral degree of coherence is divided
by e. In Fig. 14 we plot the neperian logarithm of the enve-
lope of the last curve: it is clearly seen that there is a linear
decay betweenr5l and 20l. The slope yields the coher-
ence length: we obtain on this particular caseLcoherence
'7l. To our knowledge, this is the first measurement of the
coherence length of a thermal source. We made the same
analysis for the grating atT5300 K, using numerical simu-
lations for the emissivity data. We obtainedLcoherence'11l.
Another calculation was made in Ref. 1 for a plane interface
of SiC, where the coherence length atl511.36mm was
36l. We see that the presence of the grating reduces the
coherence length by a factor of 3 approximately because of
the introduction of radiative losses. Another mechanism that
reduces the coherence length is the increase of the damping
of the surface phonon polariton due to the increase of the
term G of the dielectric constant, as seen in Sec. V. This is
due to the increase of the phonon-phonon collision as the
temperature is increased.

VII. CONCLUSION

In this paper, the coherence properties of thermal near
fields have been reviewed. The modification of the coherence
properties of the electromagnetic field can be attributed to
the presence of surface waves. We have discussed the influ-
ence of the microstructure of the material on the temporal
and spatial coherence properties. We have shown how the
near-field properties can be used to engineer the emission
and absorption properties of surfaces. Taking advantage of
the flat dispersion relation of the surface wave in a given
spectral range, it is possible to produce a source of high
emissivity which is almost isotropic and quasimonochro-
matic. In contrast, when working in the region where the
coherence length is large, it is possible to realize a very
directional source of light that behaves as an infrared antenna
with well-defined lobes. Experimental and theoretical results
have been reported showing an agreement better than 2%
when proper temperature optical dependent data are used.

FIG. 13. Spectral degree of spatial coherence for a SiC grating;
L56.25mm, F50.5, andh50.285 heated atT5300 K.

FIG. 14. Determination of the spatial coherence length.
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From these measurements, we were able to obtain a quanti-
tative value of the coherence length of the thermal sources.
This study has highlighted the role of surface waves in the
process of light emission by thermal sources. A simple
mechanism can be proposed: the first step is excitation of
surface waves by thermally excited random dipoles, the sec-
ond step is the diffraction of the surface waves by a grating.
This analysis can have a large impact on the design of light
sources. Indeed, the mechanism and the same concepts can
be applied to design novel light sources using any physical
process that excite surface waves. An advantage of this type
of light source is the possibility of engineering the dispersion
relation by modifying the surface profile. This allows one to
produce either directional or isotropic sources. It also allows
one to shift the emission frequency. Finally, we stress that the
modification of the dispersion relation amounts to modify the
local density of electromagnetic states and therefore, to
modify the radiative decay of any type of excitation.
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APPENDIX A: SURFACE PHONON POLARITONS
ON A PLANE INTERFACE

1. Surface waves at an airÕmaterial interface

In this appendix, we briefly review some characteristics of
the surface waves which may propagate on a flat material/air
interface. A surface wave has an exponential decay away
from the interface and propagates along the interface. It is
thus a wave that has the forms

z.0, E~x,z!5E0 exp@ i ~kix1g1z!#, ~A1!

z,0, E~x,z!5E0 exp@ i ~kix2g2z!#. ~A2!

It can be shown30,31 that such a solution exists at a
vacuum/material interface for materials that have a dielectric
constant whose real part is smaller than21. This happens
when the material structure has a resonant behavior. For met-
als, it corresponds to the plasma oscillation which is a col-
lective oscillation of the electrons.30,31 For dielectrics, it oc-
curs for frequencies that are in the range of the optical
phonons. In both cases, the excitations are delocalized
damped modes.

The surface electromagnetic waves are actually charge
density waves. Surface plasmon polaritons are due to an
acoustic type of oscillation of the electron gas. This mechani-
cal wave of charged particles generates an electric field. The
term polariton means that the wave is half an acoustic vibra-
tion and half an electromagnetic vibration. In the case of
polar dielectrics, the surface waves are called surface phonon
polaritons. The underlying microscopic origin is a mechani-
cal vibration of the atoms or phonon. If the phonon takes
place in a medium where the atoms carry a partial charge
~polar material!, the mechanical oscillation is associated with
an electromagnetic vibration. Thus, roughly speaking, the

surface phonon polariton is half a phonon and half a photon.
More precisely, the ratio of mechanical energy to the elec-
tromagnetic energy changes continuously as the frequency
varies. The horizontal part of the dispersion relation is the
phononlike part. In the case of SiC, surface waves are sur-
face phonon polaritons. Other polar materials such as oxydes
~e.g. SiO2! or II-VI and III-V semiconductors for example
can also support SPP’s. An important property to keep in
mind is that surface waves are modes of the interface. There-
fore, they can be excited resonantly. It is also important to
note that these waves exist only forp polarization, namely
for electric fields in the plane~x,z!.

In this paper, we study in detail silicon carbide. This ma-
terial has interesting properties in the infrared range. Besides,
its optical propertiese~v! can be described by a simple Lor-
entz model28

e~v!5e`F11
vL

22vT
2

vT
22v21 iGvG , ~A3!

where e`56.7, vL5969 cm21, vT5793 cm21, and G
54.76 cm21. The dispersion relation of the SPP has the fol-
lowing dispersion relation for a flat air/material interface:25,31

ki5
v

c S e~v!

e~v!11D 1/2

, ~A4!

whereki is the wave vector of the surface mode.
Solving this equation is not trivial. Indeed,e~v! is com-

plex, so in a general caseki and v are also complex. Al-
though at first glance, the general choice is to have both
quantities complex, it turns out that this is of no use for most
cases. The possible choices are either realki and complexv
or vice versa. One can show25 that, for this type of measure-
ment, the dispersion relation is well described by assuming
that the wave vector is real and the frequency is complex. In
Fig. 15 we plot the dispersion relation for 793,Re(v)
,947 cm21 which corresponds to Re@e(v)#,21. It is seen
that there are two different domains: on the one hand, a
linear branchki'v/c, and on the other hand an asymptotic
branch forv'947 cm21 which corresponds toe(v)'21.

FIG. 15. Dispersion relation of a surface-phonon polariton on a
plane surface.
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The curve is under the light line represented byk5v/c. This
means that the solutions are evanescent waves.

2. Role of a smooth grating

As we have seen, the surface wave lies below the light
line. All the propagating waves lie above the light line. Since
the continuity conditions at the interface demand the fre-
quency and the parallel wave vector to be equal, there cannot
be excitation of a surface wave by a propagating plane wave.
A well known solution to couple a propagating wave with a
SPP is to use a periodic surface. The modes are then Bloch
modes whose wave vector is given by

v

c
sinu5ki1m

2p

L
, ~A5!

whereu is the angle of propagation,L is the grating period
and m is the diffraction order. The coupling of an incident
propagating wave with a surface mode through the grating
can produce up to total absorption.12 The reciprocal situation
is also possible. If a given grating can couple very efficiently
the incident light into a surface wave, it can also couple
efficiently a surface wave into a propagating mode. This can

be used to emit light efficiently. This is the basic mechanism
used to produce efficient and coherent thermal sources.

One can interpret Eq.~A5! in terms of dispersion relation.
Here we consider that the grating is a smooth perturbation of
the flat interface: relation~A4! is still valid. Nevertheless, the
dispersion relation can be plotted in a reduced-zone scheme,
limited by zero andp/L. This reduced-zone scheme depends
on the period of the grating. We plot this relation for two
different periodsL53 and 6.25mm in Figs. 16~a! and 16~b!,
respectively. It is seen that some parts of the dispersion rela-
tion lie in the light cone. These parts are leaky modes (ki

5v/c sinu,v) which are radiated in the directionu.
In the first case@Fig. 16~a!#, the upper asymptotic branch

lies in the light cone. For eachki , only one frequency is
possible v'947 cm21. We can expect an emission at a
single wavelength in each direction. In the second case@Fig.
16~b!#, for a greater period, the linear branch of the disper-
sion relation lies in the light cone. We can expect a very
directional emission at each frequency betweenv5793 and
947 cm21.

Here we retrieve a feature of the Wolf effect:32,33the spec-
tral content is linked to the direction of observation. The
observed phenomenon is not only a diffractive effect, but an
effect due to the strong spatial and temporal correlation of
the SPP.

APPENDIX B: EXPERIMENTAL EMISSIVITY SPECTRUM

In this appendix, we describe the procedure used to obtain
the emissivity spectrum from the emission measurements.
We denoteSS

expt(l,TS) the experimental spectrum of the
sample at temperatureTS . It can be cast in the form34

SS
expt~l,TS!5R~l!@«~l!P~l,TS!1B~l!1r~l!P~l,TR!#,

~B1!

where R(l) is the instrument response function,«~l! the
directional emissivity,P(l,TS) the Planck function at the
temperatureTS , B(l) the background radiation reaching the
detector directly, andr(l)P(l,TR) the ambiant radiation at
the temperatureTR reflected by the sample.r(l)51
2«(l) is the directional reflectivity. Using this relation, we
can write

SS
expt~l,TS!5R~l!$«~l!@P~l,TS!2P~l,TR!#1B~l!

1P~l,TR!%. ~B2!

When we remove the sample, we measure the spectrum of
the room radiation denotedSR

expt(l,TR). Eq. ~B2! becomes

SR
expt~l,TR!5R~l!@B~l!1P~l,TR!#. ~B3!

We have

SS
expt~l,TS!2SR

expt~l,TR!5R~l!«~l!@P~l,TS!2P~l,TR!#.
~B4!

FIG. 16. Dispersion relation of a surface-phonon polariton on a
smooth grating.~a! PeriodL53.00mm. ~b! PeriodL56.25mm.
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The same procedure for a blackbody at temperatureTB ,
yields a signal denoted

SB
expt~l,TB!2SR

expt~l,TR!5R~l!@P~l,TB!2P~l,TR!#.
~B5!

Finally, we can obtain the directional emissivity spectrum

«~l!5F SS
expt~l,TS!2SR

expt~l,TR!

SB
expt~l,TB!2SR

expt~l,TR!G FP~l,TB!2P~l,TR!

P~l,TS!2P~l,TR! G .
~B6!
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Abstract

We study numerically the thermal emission of highly doped silicon surfaces. We show that by modifying the doping,

we can tune the frequency of emission. We also show that by taking advantage of the large local density of states due to

surface-plasmon polaritons, radiative properties in the far field can be drastically modified. It is possible to realize a

spatially partially coherent thermal source as well as a quasi-isotropic source. Finally, we study the radiative transfer

between two doped silicon bodies. Surface-plasmon polaritons produce an enhancement of several orders of magnitude

of the radiative energy transfer at nanometric distances.

� 2004 Elsevier B.V. All rights reserved.

PACS: 73.20.Mf; 71.36.+c; 44.40.+a; 78.68.+m

Keywords: Surface plasmon; Surface; Infrared; Near field; Emissivity

1. Introduction

Thermal sources are often considered as the
archetype of incoherent sources as opposed to
coherent sources such as lasers and antennas.
Nevertheless, it has been shown recently [1–3] that
thermal sources can emit coherent radiation in the

near field. The near-field region corresponds to
distances to the interface smaller than a tenth of a
wavelength. We use as a typical wavelength the
peak wavelength given by Wien’s law, 10 lm at
300 K for example. In this distance range, radia-
tion can be quasi-monochromatic [2]. This phe-
nomenon is due to electromagnetic surface waves,
and can be observed only on materials supporting
them. Such surface waves are electromagnetic
modes which propagate along the interface (sepa-
rating, for example, the emitting material from a
vacuum) and decrease exponentially in the per-
pendicular direction (evanescent waves). The
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propagation length of these surface waves is im-
portant (about an hundred wavelengths). It has
been shown that the propagation of these surface
waves is the origin of a long-range correlation of
the electromagnetic field along the interface [1,3].

There are different types of surface waves.
Surface-phonon polaritons are observed for polar
materials such as silicon carbide (SiC), glass, II–VI
and III–V semiconductors. They are mechanical
vibrations (phonons) propagating in a partially
ionic material so that each unit cell becomes an
oscillating electric dipole. Surface-plasmon polar-
itons are longitudinal electron oscillations (acous-
tic type wave in an electron gas) that can be
observed with metals and doped semiconductors.
They obviously generate electromagnetic fields
with a longitudinal component. Surface waves due
to excitons can also be observed. From an elec-
tromagnetic point of view, these surface modes are
identical although the underlying microscopic
mechanisms are very different. Surface polaritons
appear as resonant modes when solving the Max-
well equations for the interface geometry. These
modes have the same structure for polar materials,
metals or semiconductors.

Studies have been reported with SiC which
highlights the fact that a surface-phonon polariton
can be coupled with a propagating wave through a
grating [4]. Through this coupling, the near-field
coherence properties modify the far-field emission.
Spatial coherence leads to a high directionality of
the thermal source that emits in angular lobes like
an antenna. We will show that the same effects can
be produced with a surface-plasmon polariton
excited on doped silicon. Thermal emission medi-
ated by surface plasmon has already been dem-
onstrated with gold [5]. Doped silicon is very
interesting because its permittivity � can be tuned
by modifying the carrier concentration N . This
allows to tune the plasma frequency and therefore
the emission frequency. This material is obviously
very interesting because of the wealth of techno-
logical know-how. Many experiments have been
already reported [6–11] on its radiative properties
(reflectance, transmittance and emittance) by two
active groups in this field. Let us also mention
recent experiments [12] on silicon covered with a
periodic metallic structure aimed at producing an

infrared source. In these experiments, thermal
emission is enhanced due to the excitation of a
surface plasmon in the metallic structure. In the
present work, we show, using numerical simula-
tions, that surface-plasmon polaritons on doped
silicon can be used to modify the radiative prop-
erties of the material in the infrared.

The paper is organized as follows. In Section 2,
we shall present some optical properties of doped
silicon and highlight the existence of evanescent
modes (surface waves) close to the interface. The
design of two types of thermal sources will be
presented in Section 3. We have designed an in-
frared antenna that emits in narrow lobes and also
a source that has a large quasi-isotropic emissivity.
Finally, we will show in Section 4 that radiative
heat transfer between two semi-infinite media of
doped silicon is substantially enhanced due to the
resonant excitation of a surface-plasmon polariton
(SPP). This might have applications for the tem-
perature control of silicon devices.

2. Optical properties of a doped silicon plane surface

In the infrared domain, the permittivity � of a
semiconductor can be described by the following
well-known formula [6,10]:

�ðxÞ ¼ �1 1

 
� x2

p

x xþ i
s

� �!; ð1Þ

where x ¼ 2pc=k, x2
p ¼ Ne2=ðm��0�1Þ, and �1 �

11:7 for doped silicon.
The carrier concentration N , the electron or

hole optical effective mass m� (for n- or p-doped
silicon) and the relaxation time s are characteristic
of the doping. s can be calculated using the for-
mula (2):

s ¼ m�

Ne2q
ð2Þ

where q is the dc resistivity of the material. We
worked with both n- and p-doped silicon with N
varying between 3� 1019 and 5� 1020 cm�3. m�; q
(and thus s) depend on N . We took m� ¼ 0:27m0

(where m0 is the free electron mass) for the n-
doped silicon and m� ¼ 0:34m0 for the p-doped
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silicon. These are certainly not the exact values for
m� at each concentration N , but are good ap-
proximations. We have checked that modifying
these values does not affect significantly our re-
sults. The variation of the dc resistivity q of both
n- and p-doped silicon with the impurity concen-
tration (which is equal to the carrier concentration
N assuming a full impurity ionization) was taken
from the paper by Sze and Irvin [13].

Let us now turn to the near-field radiative
properties of a flat air/doped-silicon interface. We
show that the thermally emitted energy density
drastically changes when approaching the inter-
face. This can be interpreted in terms of enhance-
ment of the local density of states [14]. In fact, at
short distances z, the electromagnetic energy den-
sity u which depends on x and z reads [2,3,14]:

uðx; zÞ / 1

z3
�00ðxÞ

j1þ �ðxÞj2
�hx

exp �hx
kBT

� �
� 1

; ð3Þ

where �00 is the imaginary part of the permittivity �.
The first part of this term exhibits a peak when
Re½�ðxÞ� � �1. This corresponds to the surface-
plasmon polariton resonance. It produces a peak
in the local density of electromagnetic states [2,14].

Under these conditions, we plot in Fig. 1 uðxÞ
at different distances: z ¼ 100 nm (Fig. 1(a)) and
z ¼ 1 nm (Fig. 1(b)) for the n-doped silicon with a
carrier concentration N ¼ 3� 1019 cm�3 at
T ¼ 800 K. At close distance to the surface, a peak
appears at a frequency x0 � 1:5� 1014 rad s�1.
This frequency corresponds to Re½�ðx0Þ� ¼ �1.
Moreover, between z ¼ 100 and z ¼ 1 nm, the
energy density uðxÞ increases by almost six orders
of magnitude (in agreement with the dependence
on 1=z3 of Eq. (3)). Note that this peak is due to
evanescent waves and thus cannot be observed at
distances larger than the typical wavelength of the
radiation. A SPP has the following dispersion re-
lation for a flat air/material interface:

k== ¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðxÞ

�ðxÞ þ 1

s
; ð4Þ

where k== is the wavevector parallel to the inter-
face. Such waves exist for materials having
�0ðxÞ < �1 where �0 is the real part of � [15]. Eq. (4)

implies that jk==j > x=c, i.e., that these are eva-
nescent waves. Nevertheless, following ideas which
have been developed in the case of SiC, it is pos-
sible to couple this evanescent wave with a prop-
agating wave through a grating [4,16] of period K.
The emission angle h is then given by

x
c
sin h ¼ Re½k==� þ m

2p
K

; ð5Þ

where m is the diffraction order. The reciprocal
situation is a propagating plane wave incident on
such a grating. It can be coupled to a surface mode
when the angle of incidence h satisfies Eq. (5). This
is a well-known phenomenon which can lead to
total absorption (absorptivity aðx; hÞ ¼ 1) of the

Fig. 1. Energy density uðxÞ of a semi-infinite medium of n-

doped silicon with N ¼ 3� 1019 cm�3 at T ¼ 800 K, for two

different heights z above the interface: (a) z ¼ 100 nm, (b) z ¼ 1

nm.
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incident energy by the grating [16–18]. An emis-
sivity eðx; hÞ of 1 can thus be expected from Kir-
chhoff’s law eðx; hÞ ¼ aðx; hÞ [19].

3. Silicon infrared sources

In order to characterize the radiative thermal
emission of a grating, we use its directional emis-
sivity e which depends on the frequency x and on
the direction h (our calculations are made in a
plane perpendicular to the grating lines). eðx; hÞ
can be deduced from the absorptivity aðx; hÞ by
Kirchhoff’s law. Note that eðx; hÞ is a directional
and polarized quantity. For example, the absorp-
tivity is the ratio between the total absorbed flux
and the flux transported by a polarized incident
plane wave propagating in direction h. In the same
way, we can define a polarized directional reflec-
tivity. For an opaque body, we have aðx; hÞ ¼
1� qðx; hÞ, where qðx; hÞ is the hemispherical re-
flectivity for a given angle of incidence h of the
bulk [19]. We used an algorithm based on a rig-
orous coupled-wave analysis developed by Cha-
teau and Hugonin [20] to calculate the reflectivity
of lamellar gratings ruled on doped silicon.

To analyse these results, it is useful to derive the
dispersion relation. As explained in [16], we choose
a real wave vector and a complex frequency to

solve the dispersion relation equation. The dis-
persion relation of the SPP on a grating (Re½x�
versus k==) can be plotted in a reduced-zone
scheme (Fig. 2). Some portions of the dispersion
relation are above the light cone (defined by
k== ¼ Re½x=c�), therefore the corresponding SPP
can be radiated by the grating.

We have worked with two types of lamellar
gratings (Fig. 3: period K, filling factor F and
depth h). To show how the radiative properties of
a material can be engineered by taking advantage
of the coherence properties of the SPP, we de-
signed two types of sources. These results were
obtained with both n- and p-doped silicon.

3.1. First type of source: an infrared antenna

Our aim is to design a source that emits thermal
light in narrow angular lobes like an antenna. This
source is analog to the one demonstrated with SiC
in [4] Instead of surface-phonon polaritons, we are
using surface-plasmon polaritons to generate the
spatial coherence along the interface. Note that
Hesketh et al. [10] have already studied the emis-
sion of doped silicon gratings. In this work, we
show how to optimize the grating to have intense
narrow emission peaks. According to Fig. 2, we
must excite a SPP lying on a linear portion of the
dispersion relation above the light cone in order to
produce such a source. This is possible provided
that the grating has a sufficiently large period. We
have optimized numerically a lamellar grating
which has the following characteristics: period
K ¼ 6:3 lm, filling factor F ¼ 0:4 and depth
h ¼ 0:6 lm. We used p-doped silicon with a large
carrier concentration N ¼ 5� 1020 cm�3. We plot
its emissivity spectrum in Fig. 4 as a function of
the angle of observation. Similar curves are ob-
tained with n-doped silicon at the same carrier

Fig. 2. Reduced-zone scheme of the dispersion relation for a

surface wave on a smooth grating.

Fig. 3. Geometry of the grating: period K, filling factor F and

depth h.
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concentration but with a filling factor F ¼ 0:5 for
the grating. One can see that in each direction
there is a strong quasi-monochromatic peak of
emission and that the spectral location of this peak
changes with the observation direction.

In order to show that this phenomenon is due to
the excitation of a SPP, we have compared the
reduced-zone scheme of the dispersion relation of
a SPP on a plane surface and the numerical results
obtained with the grating when varying the angle

of observation h (Fig. 5). Each triangle in the fig-
ure represents a couple ðx=c sin h;x=cÞ corre-
sponding to a peak of emission. For 6 < k <
12 lm, i.e., 830 < x < 1700 cm�1, one can see that
there is a good agreement between the two ap-
proaches. The small difference is due to the pres-
ence of the grating. Note in particular that a gap
appears at the edge of the Brillouin zone. We have
thus shown that a SPP is radiated by the grating.
In other terms, we can build a coherent thermal
source by ruling a grating on a plane surface.

We now study the influence of the doping on
the emission peak. In a given direction of obser-
vation h ¼ 20�, we plot the emissivity spectrum for
different concentrations N in Fig. 6. One can see
that the peak decreases and broadens when N
decreases. In order to interpret this phenomenon,
we can relate it to the evolution of the imaginary
part of the permittivity �00 at the plasma frequency.
Indeed �00 increases when N decreases. Losses in-
crease in the grating so that the coupling between
the SPP and the propagating wave is less effective
and the peak becomes smaller and broader. We
also see that the position of this peak remains
globally the same in comparison with Fig. 4. In-
deed the SPP excited is on a part of the dispersion
relation very close to the light cone which is the
same for every concentration. Therefore, the
emission peak occurs at the same wavelength
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1000

2000

3000

4000

ω
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Dispersion relation
Numerical simulation

Fig. 5. Theoretical dispersion relation for a surface-plasmon

polariton on a smooth grating and numerical simulation with

the real grating (parameters of the grating: K ¼ 6:3 lm, F ¼ 0:4

and h ¼ 0:6 lm).

Fig. 6. Numerical emissivity spectra of a p-doped silicon grat-

ing at h ¼ 20� (parameters of the grating: K ¼ 6:3 lm, F ¼ 0:4

and h ¼ 0:6 lm).

Fig. 4. Numerical emissivity spectrum of a p-doped silicon

grating with N ¼ 5� 1020 cm�3 for different angles of obser-

vation (parameters of the grating: K ¼ 6:3 lm, F ¼ 0:4 and

h ¼ 0:6 lm).
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because the dispersion relation is almost not af-
fected when N varies.

3.2. Second type of source: a quasi-lambertian
source

In Section 3.1, we were interested in the cou-
pling of a SPP lying on a linear branch of the
dispersion relation with a propagating wave. Here,
we excite a surface wave lying on the upper branch
of the dispersion relation, i.e., the horizontal as-
ymptote at the plasma frequency x0, correspond-
ing to �0ðx0Þ ¼ �1. In this case, we expect an
emission at a single wavelength in any direction
(quasi-isotropic emission) because the dispersion
relation is flat. In order to have only this branch
above the light cone, we must design a grating with
a smaller period than in the previous section. The
grating that we have optimized has the following
characteristics: period K ¼ 2:5 lm, filling factor
F ¼ 0:8 and depth h ¼ 0:6 lm in the case of the p-
doped silicon with N ¼ 3� 1020 cm�3. We plot its
emissivity spectrum in Fig. 7 for three directions of
observation. The spectra obtained with the same
grating but with n-doped silicon are remarkably
close. One can see that there is a peak of emission
around 5:5 lm which does not move when the
direction of observation h changes. We can remark
that when h ¼ 50�, a strong variation appears at

k ¼ 4:4 lm. This is a Wood anomaly, well known
in the case of the absorption of an incident beam
by a grating [17,18]. The source designed here is
different from that presented in Section 3.1: it
emits in any direction for a particular wavelength.
However, one can see that the peak has a large
width indicating a low temporal coherence.

In s-polarization, this peak disappears. This
suggests that a SPP, which exists only in p-polar-
ization, is responsible for this effect. In order to
further confirm the role of the SPP, we have
plotted the theoretical and numerical dispersion
relation as in the previous section (Fig. 8). Our
numerical results do not agree with the reduced-
zone scheme of the dispersion relation for the flat
interface. This is not surprising: the grating di-
mensions are close to the typical wavelength and
the grating is now a strong modification of the
plane surface profile. Yet, when the depth h of the
grating is decreased, the actual dispersion relation
gets closer to the dispersion relation for a flat
surface. The mechanism for the thermal emission
is thus clearly due to the excitation of a surface-
plasmon polariton. The thermal motion of the
electrons excites the surface mode. This surface
mode is then radiated by the grating. A slightly but
more correct point of view is to consider that in the
presence of a grating, the surface wave is trans-
formed into a leaky wave with a modified disper-

Fig. 7. Numerical emissivity spectra of a p-doped silicon grat-

ing with N ¼ 3� 1020 cm�3 for different angles of observation

(parameters of the grating: K ¼ 2:5 lm, F ¼ 0:8 and

h ¼ 0:6 lm).
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Fig. 8. Theoretical dispersion relation for a surface-plasmon

polariton on a flat surface and numerical simulations with real

gratings.
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sion relation. This mode is excited by the random
currents due to the thermal motion of the elec-
trons. Since the dispersion relation has a quasi-
horizontal branch at a given frequency, there is
emission for all wave vectors and therefore all
angles at this particular frequency. This frequency
is essentially the plasma frequency divided by

ffiffiffi
2

p
.

A remarkable property is that the emission
frequency can be shifted by modifying the density
of electrons. This can be easily done by changing
the level of doping. As in the previous section, we
plot the emissivity spectrum for different carrier
concentrations N in a given direction of observa-
tion h ¼ 30� in Fig. 9. One can see that the loca-
tion of the peak changes with N . When N
decreases, the emission wavelength increases. This
displacement shows that building an infrared
source which could be tunable in wavelength when
varying N seems to be possible. Note that the peak
frequency x0 depends on the concentration and
increases when N increases.

4. Enhanced radiative heat transfer at nanometric

distances

The current development of nano-technology
creates new challenges. Many macroscopic laws of
physics are no longer valid in the mesoscopic re-

gime. Transport of electrons has been widely
studied and many new effects have been demon-
strated [21]. Similar phenomena appear for the
energy transfer [22,23] at nanoscale. It has been
known for some time that the radiative heat
transfer can be increased significantly at sub-
wavelength distances due to interference effects
and to the contribution of evanescent waves [24].
The first authors to introduce a complete formu-
lation of the problem were Polder and van Hove
[25] who used the type of formulation previously
used to discuss the Casimir force (i.e. a momentum
transfer). This problem has been discussed subse-
quently by many authors [26–30]. We have re-
cently shown [31,32] that the presence of surface
waves enhances by many orders of magnitude the
radiative heat transfer at nanometric distances. In
addition, most of the energy is transfered in a
narrow range of frequencies. Those frequencies
correspond to the resonances of the system, plas-
mons for electron systems, optical phonons for
ionic crystals. In this section, we will examine the
heat transfer through radiation tunelling for sili-
con and doped silicon. The importance of heat
transfer for silicon nanostructures is well known.
It is thus of interest to investigate what new phe-
nomena can be obtained when modifying the
doping.

We consider a simple configuration of two
plane parallel media at temperature T1 and T2
separated by a small gap. In order to simplify the
problem, the media are identical materials. Usu-
ally the conductive heat transfer due to the ballistic
flight of molecules between the two bodies is very
important and much larger than the radiative heat
transfer [33]. Nevertheless, we will see that with
doped silicon and at nanometric distances, the
radiative heat transfer may be enhanced by
the thermal excitation of a SPP. The derivation of
the radiative heat transfer was already given by
Polder and van Hove [25] and discussed exten-
sively in [32]. In essence, one derives the field in the
gap radiated by an ensemble of random currents in
the media. Once, the field is formally known, the
Poynting vector can be derived. Note that the field
is linearly related to the current density. Since the
mean value of the current is null, the mean value of
the field is also null. Yet, the quadratic mean value

Fig. 9. Numerical emissivity spectra of a p-doped silicon grat-

ing for different concentration N at a fixed angle h ¼ 30�. The
characteristics of the grating are: K ¼ 2:5 lm, F ¼ 0:8 and

h ¼ 0:6 lm.

F. Marquier et al. / Optics Communications 237 (2004) 379–388 385



does not vanish. This can be evaluated using the
correlation function of the current density which is
given by the fluctuation-dissipation theorem [34].
By assuming that temperatures of the two media
are close enough, the flux can be linearized and
cast in the form hRðT1 � T2Þ [25]. hR can be split up
in two parts: one due to propagating waves and
the other to evanescent waves [32,35]. We plot
these two contributions versus the distance d sep-
arating the two bodies for the n-doped silicon with
N ¼ 3� 1019 cm�3 (Fig. 10) at T ¼ 300 K. When
d < 1 lm, the contribution of the evanescent
waves becomes very important and larger than the
contribution of the propagating waves by several
orders of magnitude. This is due to the fact that
the exponentially decaying evanescent waves can
tunnel through the gap and transfer energy when
the distance is smaller than the typical wavelength.
This effect has already been observed and ex-
plained in the case of SiC. In particular, the role of
surface-phonon polaritons has been shown [32,35].
In this case, the microscopic mechanism describing
the energy transfer is a phonon–phonon collision.
Indeed, atoms on each side of the gap can interact
through a Coulomb potential if the gap width is
small enough. For the doped silicon, we observe
exactly the same effects with surface-plasmon po-
laritons. Surface plasmons on both sides of the gap
can interact. This results in an enhancement of hR

when decreasing d. We find that hR depends on the
distance between the two media as 1=d2.

We have seen in the previous sections that a
surface wave introduces important spectral effects.
In order to analyse the radiative heat transfer at
small distances, a monochromatic radiative heat
transfer coefficient hRx has been introduced [33,35].
The product of this coefficient (inWm�2 K�1 Hz�1)
by the temperature difference between the materials
yields themonochromatic heat flux per surface unit.
We plot this coefficient in Fig. 11 for a temperature
T ¼ 300Kand twodistances d ¼ 10 lm(Fig. 11(a))
and d ¼ 10 nm (Fig. 11(b)). We have separated the

Fig. 10. Radiative heat transfer coefficient hR versus the dis-

tance d between two bodies of n-doped silicon with

N ¼ 3� 1019 cm�3 at T ¼ 300 K.

Fig. 11. Monochromatic radiative heat transfer coefficient hRx
versus frequency for two bodies of n-doped silicon with

N ¼ 3� 1019 cm�3 at T ¼ 300 K for two different distances d
between the bodies. (a) d ¼ 10 lm, (b) d ¼ 10 nm, in this case

we present only the p-polarized surface waves contribution. SW

and PW stand for surface waves and propagating waves,

respectively.
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different contributions of the p- or s-polarized eva-
nescent and propagating waves. One can see in
Fig. 11(a) that the part due to the propagatingwaves
is larger than the one due to the surface waves. The
SPP is a p-polarized wave, therefore the contribu-
tion of the s-polarized evanescent wave does not
appear in this figure. When d ¼ 10 nm, the contri-
bution of the propagating waves is negligible. The
radiative heat transfer coefficient hRx is enhanced by
five orders of magnitude and becomes quasi-
monochromatic. As mentioned above, we ascribe
this peak to the surface-plasmon polariton. Indeed,
the location x0 of this peak corresponds to
�0ðx0Þ � �1 which is the frequency where the den-
sity of electromagnetic states becomes very large (cf.
Section 2) due to the presence of a SPP.

5. Conclusion

In this paper, we explored the possibility of
using surface-plasmon polaritons to generate in-
tense and spatially coherent thermal fields on
doped silicon. The key feature of doped silicon is
that by controlling its doping, one can shift the
plasma frequency. It is thus possible to shift the
peak of the density of states in the near field. We
have shown how this could be used to design ef-
ficient infrared sources of light. Particularly, the
first type of infrared light source which we design
in this paper is equivalent to the source produced
in [4]. It produces narrow lobes of light, i.e. it is a
spatially partially coherent source. The second
type of source is a quasi-isotropic source of light
with a large emissivity at a given frequency.

We also studied the problem of radiative
transfer between two doped silicon surfaces held at
subwavelength distances. The existence of surface-
plasmon polaritons on the doped silicon enhances
this radiative transfer at a particular wavelength: it
becomes larger by several orders of magnitude and
quasi-monochromatic. These results could be used
to modify the radiative cooling of silicon devices.
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We introduce a thermal conductance by using the fluctuation-dissipation theorem to analyze the heat
transfer between two nanoparticles separated by a submicron distance. Using either a molecular dynamics
technique or a model based on the Coulomb interaction between fluctuating dipoles, we derive the thermal
conductance. Both models agree for distances larger than a few diameters. For separation distances
smaller than the particle diameter, we find a transition regime characterized by a thermal conductance
larger than the contact conductance.
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Understanding and predicting the heat transfer between
two bodies separated by a nanometric distance is a key
issue both from the theoretical and applied points of view.
Most near-field techniques involve bringing a tip close to
an interface. In many cases, the tip and the interface
temperatures are not equal so that a heat transfer is gen-
erated. Superinsulating materials such as aerogels and
highly conductive media such as nanofluids also involve
heat exchanges between neighboring particles. However,
there is a lack of understanding of the physical mechanisms
involved. The heat transfer in quantum wells and at nano-
scale has been analyzed in the context of phonon transport
[1]. The heat transfer, through constrictions [2] or linear
chains [3–5], has been discussed in many papers. The
quantized thermal conductance has been studied both theo-
retically [6,7] and experimentally [8]. Yet all these works
rely on the concept of phonon, which is hardly valid for
small aggregates. Heat transfer between two planes sepa-
rated by subwavelength distances through electromagnetic
interaction has been first investigated by Polder and van
Hove [9] and later by many groups [10,11]. It has been
shown recently that this mechanism has a very large reso-
nance at the optical phonon frequency for polar materials
[12,13]. When the distance is decreased, the heat transfer
increases dramatically.

A still open question is how energy is exchanged be-
tween two objects, a tip and a surface for instance, just
before contact. The mechanisms involved are unclear.
Whereas radiative heat transfer (i.e., emission and absorp-
tion of photons) is negligible, near-field radiation (i.e.,
Coulomb interaction) may become important. Dipole-
dipole energy transfer also known as Forster energy trans-
fer is the dominant energy transfer mechanism between
molecules [14]. In this Letter, we explore the heat transfer
between two nanoparticles (NPs) separated by a distance
on the order of a few nanometers. We introduce a thermal
conductance that can be related to the fluctuations of the
heat flux using the fluctuation-dissipation theorem. We
then implement a molecular dynamics simulation to com-
pute the thermal conductance as a function of the separa-

tion distance. An alternative approach is based on a direct
derivation of the heat flux between the two nanoparticles
modeled by fluctuating dipoles. We find that both models
agree and yield a 1=d6 dependence for distances larger than
a few diameters. Yet when the distance is further de-
creased, we observe a stronger enhancement of the con-
ductance followed by a decay when the NPs are in contact.

Let us first define the linear response susceptibility,
relating the net heat flux Q12 exchanged between the two
NPs to the NPs temperature difference:

Q12�!�

T0

� G�
12�!��T�!�; (1)

where T0 is the mean temperature and ! is the circular
frequency. The fluctuations of �T and Q12 are character-
ized by their power spectral densities P�T and PQ12

. When
combining Eq. (1) with the definition of the power spectral
density of a random stationary process X, PX�!� �

limr!1
1
T hjXT�!�j2i, where XT is the Fourier transform of

the restriction of X�t�, to the finite time interval 
0; T�, we
obtain

P�T�!� �
PQ12

�!�

jG�
12T0j

2 : (2)

We now apply the fluctuation-dissipation theorem consid-
ering �T as the force and G�

12 as the susceptibility. The
power spectral density of the temperature fluctuation is
given by the fluctuation-dissipation theorem [15]:

P�T�!� �
Re�G�

12�

jG�
12�!�j2

��!; T0�; (3)

where ��!; T0� is the mean energy of an oscillator
�h!=�eh!=kBT � 1�, and Re indicates the real part.

Combining Eqs. (2) and (3) yields

Re
G�
12�!�� �

PQ12
�!�

T2
0��!; T0�

: (4)

From Eq. (1), it is obvious that the thermal conductance
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G12 � Q12=�T is given by G12 � T0G
�
12. The static limit

(! � 0) of Eq. (4) indicates that the time integration of the
flux autocorrelation is directly proportional to the static
thermal conductance. From the Wiener-Khinchin theorem,
we have PQ12

�!� �
R

1
�1hQ12�0�Q12�t�ie�i!tdt, so that we

need to compute the temporal fluctuation of the flux be-
tween the two silica NPs. To this aim, we use the molecular
dynamics (MD) technique. It consists of computing all the
atomic positions and velocities as a function of time. Each
atom is modeled by a mass point whose trajectory is
described by the second Newton’s Law [16]:

X
j

fij � mi 
ri; (5)

where mi and 
ri are the atomic mass and acceleration, and
fij represents the force exerted by atoms j on atom i. The
interatomic forces describe the interaction in polar mate-
rials such as silica. They are derived from the van Beest,
Kramer, and van Santen (BKS) interaction potential [17] in
order to provide the full physical picture of the long range
electromagnetic and the repulsive-attractive short range
interactions. Accordingly, the BKS potential can be de-
composed into a Coulomb and a Buckingham potential.
The Buckingham part includes an exponential term to
describe the repulsive forces and a sixth power term that
represents the short range van der Waals attractive forces.
The Coulomb potential takes into account the interatomic
electrostatic forces. Neither a potential cutoff nor a limited
neighbors list are implemented in the force calculation. No
boundary conditions are applied. A fourth order Gear in-
tegration scheme [16] was used to provide the velocities vi

and the positions ri from Eq. (5). The time step of 0.7 fs
that is proposed in the literature [18] appears to be suffi-
ciently small to ensure the total energy conservation. The
simulation starts with two cubes of �-cristobalite crystals
separated by a few nanometers. The two NPs are heated up
during 2000 time steps to the same temperature T0 �
300 K by using a conventional Gaussian thermostat. The
�-cristobalite is not stable at this temperature so that the
NPs lose their crystalline structure to become amorphous,
as illustrated in Fig. 1. Since the NPs positions are not
frozen, the van der Waals forces drive them to stick to-
gether. In order to avoid the artifacts due to the variation of
the inter-NP distance, we stop the simulation when a 10%
variation of the initial distance is reached. The error is
reduced by computing several phase ensembles for the
same macroscopic experiment. We also a posteriori
checked that the heat transfer is characterized by a relaxa-
tion time much smaller than the physical simulation time.
After the NPs have reached equilibrium, the exchanged
power Q12 between the nanoparticle noted NP1 and the
nanoparticle noted NP2 is computed as the net work done
by a particle on the ions of the other particle (see Fig. 2):

Q12 �
X

i2NP1
j2NP2

fij � vj �
X

i2NP1
j2NP2

fji � vi: (6)

To provide a basis for comparison, we also derive the
spectral dissipated power Q1!2 in NP2 due to the electro-
magnetic interaction NP1 in the framework of fluctuational
electrodynamics [11]. The power at a given frequency can
be expressed as a Joule term generated by a monochro-
matic field [11,12]:

FIG. 1 (color online). Snapshots of the NPs at time t � 0 (top)
and 1 ps after (bottom). The crystalline structure rapidly dis-
appears and amorphous NPs are obtained. The color indicates
the work done by the atom under the electrostatic field of the
neighboring particle.

FIG. 2. Explanation schemes of the calculation of the power
dissipated in the NP2 due to the field emitted by the NP1. In the
MD computation (above), the power is computed as the work
produced by the atomic motions of the NP2 atoms in the
potential field generated by the NP1. In the electrostatic calcu-
lation (below), each NP is assimilated to one dipole (vectors p1

and p2) situated at the NP centers.
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Q1!2�!� �
!"0
2

�00
2 jEinc�r2�j2; (7)

where �00
2 is the imaginary part of the NP2 polarizability.

The modulus of the incident electric field is evaluated
simply by using a dipole approximation. Because the
separation distance d is smaller than the wavelength, re-
tardation effects can be neglected so that an electrostatic
approximation is valid. If in addition, d � R, where R
stands for the effective radius of the particle, each particle
is equivalent to a dipole. The incident field then takes the
form Einc � G � p. G is the Green’s dyadic given by G �
1

4�"0
1
r3 
1� 3uu�, where u is the unit vector r=r. Because

of thermal fluctuations, each particle has a random electric
dipole. The fluctuations-dissipation theorem yields the
correlation function:

hpkpli �
"0
�!

�00
1 �!���T1; !���!�!0��kl: (8)

This equation yields �00
1 from a MD calculation of

hpkpli. Using this result, and the form of the incident field
produced by a dipole, we obtain

Q1!2 �
3�00

1�
00
2

4�3d6
��T1; !�: (9)

The power exchanged between the NPs due to the dipole-
dipole coupling can finally be written as [11]

Q12�!� �
3

4�3

�00
1 �!��00

2 �!�

d6

��!; T1� ���!; T2��:

(10)

This is drastically different from the usual radiative heat
transfer flux due to the emission and absorption of photons
in the far field [11]:

QFF
12 �!� �

!4�00
1 �!��00

2 �!�

32�3c4d2

��!; T1� ���!; T2��; (11)

where c is the light velocity. We can linearize Eq. (10) to
obtain the following form of the conductance:

G12�T0� �
3

4�3

Z 1

0
�0�!; T0��

00
1 �!��00

2 �!�d!
1

d6
; (12)

where �0 is the temperature derivative of the function �.
The near-field and far-field contributions have the same
order of magnitude when d � 2�c=!, but the dipole-
dipole heat transfer is 12 orders of magnitude larger
when d � 10 nm. In silica, the main contributions to the
integral in Eq. (11) are the resonant phonon-polariton
modes with frequencies equal to 20 and 33 THz . They
appear as sharp peaks in the polarizability spectrum and
therefore in the spectrum of the exchanged power. The
polarizability is proportional to the NP volume and G12

is proportional to the product �00
1�

00
2 , so that the conduc-

tance should increase as the effective radius R to the power
six. Equation (11) also provides the conductance depen-
dence on the interparticle distance d � jr2 � r1j as a d�6

law. The field produced by a dipole in the near field at a
distance d is proportional to d�3. It follows that the ex-
changed power is linearly dependent to d�6. In Fig. 3, the
thermal conductances are reported as a function of the
internanoparticle distance. In the distance interval (8–
100 nm), the MD (data points) and the dipole-dipole (thick
lines) models are in very good agreement. This constitutes
a validation of the molecular dynamics based near-field
analysis and also shows that the polarizability is relevant
up to nanometric sizes. At distances smaller than 8 nm (4
diameters), a deviation between the MD and the dipole-
dipole model appears. This deviation reaches 4 orders of
magnitude as compared to the dipole-dipole model. In
order to understand the origin of the enhanced heat trans-
fer, we have studied the contribution of the Buckingham
potential which is not taken into account in the dipole-
dipole model. We have evaluated separately the contribu-
tions of the three terms of the potential: repulsive and
attractive parts of the Buckingham potential and
Coulomb potential. The latter always dominate the transfer
in the range of investigation. Thus, the increase of the
conductance cannot be attributed to short range interac-
tions. It appears to be due to the contribution of multipolar
Coulomb interactions. Indeed, the field produced by a
particle cannot be considered as uniform in the neighbor-
ing particle when the separation distance is on the order of
the NP’s diameter. This explanation is supported by Fig. 3.
It is clearly seen that the deviation between both models

FIG. 3. Thermal conductance G12 vs distance d between the
centers of mass. R corresponds to the nanoparticle radius and N
is the number of atoms in each particle. While the MD (data
points) and the analytical (thick lines) predictions agree very
well when the interparticle distance is larger than the nano-
particle diameter, a deviation appears when d < 4R. The far-field
conductance due to emission and absorption is reported for
comparison. The inset highlights the conductance values when
the NPs are in contact ( gray data points). Their abscissa
correspond to 2R. The contact conductance is 2 to 3 orders of
magnitude lower than the conductance just before contact.
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occurs for a distance between particles which is between
4R and 5R for the three cases studied. These results show
that the thermal conductance increases continuously when
the distance between NPs is decreased. It entails that the
strong coupling between the particles is responsible for a
transition regime between far-field radiation and
conduction.

We also have done calculations of the conductance when
the particles are in contact. Surprisingly, we find that the
contact conductance is smaller than the conductance for a
separation distance of the order of the particle radius as
seen in the insert of Fig. 3 for the two smallest particles.
Since the Buckingham contribution is negligible before
contact, the conductance is only due to the autocorrelation
of the Coulomb power hQ12

CQ12
C�t�i. At contact, this last

quantity does not vary much but three other terms appear:
the pure Buckingham contribution hQ12

BQ12
B�t�i and the

cross terms hQ12
CQ12

B�t�i and hQ12
BQ12

C�t�i. The calcu-
lation shows that the cross terms are negative and on the
order of hQ12

BQ12
B�t�i. Therefore the final sum is lower

than hQ12
CQ12

C�t�i. The origin of this decay is still an open
question. It might be possible that the contact produces a
correlation of the positions of the atoms of both particles
that results in a smaller fluctuation of Q12.

One can speculate on the properties of a chain of parti-
cles. It has been shown recently [20] that a chain of
metallic particles can be used as a waveguide of electro-
magnetic energy due to the coupling of surface plasmons
between neighboring particles. We have found that a simi-
lar coupling involving localized polaritons is responsible
for the heat transfer at small distances. These results sug-
gest that the thermal conductance of a chain of particles
might be larger than the conductance of a continuous rod.

In conclusion, we have reported an analysis of heat
transfer between two nanoparticles as a function of their
separation distance. We have used a MD technique and the
fluctuation-dissipation theorem to compute the thermal
conductance between two nanoparticles. We have also
introduced a model based on a dipole-dipole interaction.
Both models agree for distances larger than 2 diameters. In
all cases, the Coulomb potential and the resonant excitation
of the polariton modes are responsible for the large heat
transfer. At separation distances smaller than the diameter,
the heat transfer due to multipolar contributions is en-
hanced by several orders of magnitude. The heat transfer

before mechanical contact is found to be 2 to 3 orders of
magnitude more efficient than when the NPs are in contact.
These results show that the traditional separation between
conduction and radiation is no longer meaningful at these
length scales.
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Abstract

We review in this article the influence of surface waves on the thermally excited electromagnetic field. We study

in particular the field emitted at subwavelength distances of material surfaces. After reviewing the main properties

of surface waves, we introduce the fluctuation–dissipation theorem that allows to model the fluctuating electro-

magnetic fields. We then analyse the contribution of these waves in a variety of phenomena. They give a leading

contribution to the density of electromagnetic states, they produce both temporal coherence and spatial coherence

in the near field of planar thermal sources. They can be used to modify radiative properties of surfaces and to design

partially spatially coherent sources. Finally, we discuss the role of surface waves in the radiative heat transfer and

the theory of dispersion forces at the subwavelength scale.
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1. Introduction

Many condensed matter properties are determined by surface properties. Very often, surface waves,

which are electromagnetic eigenmodes of the surface, play a key role. Let us mention a few examples. It has

been demonstrated [1] that the lifetime of a molecule varies dramatically when a metallic surface is brought

at a distance smaller than a micron. This effect is due to the resonant excitation of surface plasmons. The van

der Waals force between a molecule and an interface is proportional to 1=jeþ 1j2, where e is the dielectric

constant of the medium. There is therefore a resonance for the particular frequency such that e ¼ �1. This

condition coincides with a branch of the dispersion relation of a surface wave. It can be viewed as a resonant

excitation of surface charge oscillations. It was shown in [2] that thevan der Waals force between a molecule

and a surface can become repulsive depending on the relative position of the molecule and the surface

resonances. Enhanced scattering due to the resonant excitation of surface charges has also been demon-

strated for SiC in the infrared: a tip brought close to a surface generates a very strong scattering signal for

some particular frequencies corresponding to the excitation of surface waves [3]. Both experiments can be

understood by replacing the interface by an image whose amplitude is very large owing to the excitation of a

resonance of the surface charges. Surface enhanced Raman scattering (SERS) is partially due to the

enhancement of the electromagnetic field at the interface due to the excitation of a surface wave. The

resonance of the electromagnetic (EM) field at an interface is also responsible for the enhanced transmission

of a metallic film with a periodic array of holes [4,5]. The resonance of the EM field associated with the

surface mode is responsible for the so-called ‘‘perfect lens’’ effect [6]. A key feature of all the above

examples is that they involve the interaction of a surface and an object in the near field of the structure. As it

will be explained in detail in Section 2, surface waves are evanescent waves whose amplitude decreases

away from the interface on a wavelength scale. In the far field, the influence of such modes is therefore

negligible. In the near field on the contrary, their role is essential.

We will see in Section 3 that surface waves can be excited by thermal fluctuations inside a body. The

role of surface waves in the modification of the density of EM states at the interface has a strong influence

on the thermally emitted fields. Their intensity is many orders of magnitude larger in the near field than in

the far field [7]. In addition, they are quasi-monochromatic in the vicinity of the surface. This entails that

their coherence properties are extremely different from those of the blackbody radiation [8]. There have

been recently several experiments that have probed these thermal fields in the near-field regime: heating

of trapped atoms [9], realization of a spatially partially coherent thermal source [10]. After reviewing

these experiments, we will show how an EM approach with random fluctuating thermal sources can be

used to describe and analyse these effects. It is based on the fluctuation–dissipation theorem. We will see

that the knowledge of the electromagnetic energy density gives access to a fundamental concept: the local

density of EM states. In Section 4, we study the EM coherence properties near a material supporting

surface waves and held at a temperature T. We will see that the emitted field has very peculiar spatial

coherent properties in the near field. Indeed, the field can be spatially coherent over a length larger than

several tens of wavelength. We then use this property to design coherent thermal sources. In Sections 5

and 6 we show that the radiative heat transfer is enhanced by several orders of magnitude in the near field

when two material supporting surface waves are put face to face. We will consider three cases: two
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nanoparticles face to face, a nanoparticle near a plane interface and two semi-infinite half-spaces

separated by a narrow gap. In the last section, we will analyse the role played by the surface waves in the

Casimir force, i.e. in the force of interaction between two semi-infinite bodies. We will see that this force

is dominated in the near field by the interaction between surface waves. Finally, we review the work done

to analyse the contribution of fluctuating electromagnetic fields to the friction forces.

2. Introduction to surface electromagnetic waves

In this section, we give a brief introduction to the main properties of electromagnetic surface waves.

This particular type of waves exists at the interface between two different media. An electromagnetic

surface wave propagates along the interface and decreases exponentially in the perpendicular direction.

Surface waves due to a coupling between the electromagnetic field and a resonant polarization oscillation

in the material are called surface polaritons. From a microscopic point of view, the surface waves at the

interface of a metal is a charge density wave or plasmon. It is therefore called surface-plasmon polariton.

At the interface of a dielectric, the surface wave is due to the coupling of an optical phonon with the

electromagnetic field. It is thus called surface-phonon polariton. Plasmon polaritons and phonon

polaritons can also exist in the whole volume of the material. More details about this subject can be

found in textbooks such as Kittel [11], Ashcroft and Mermin [12] and Ziman [13]. In what follows, we

will focus our attention on surface polaritons propagating along a plane interface. Excellent reviews of

the subject can be found in [14–17].

2.1. Surface polaritons

Let us now study the existence and the behaviour of surface polaritons in the case of a plane interface

separating two linear, homogeneous and isotropic media with different dielectric constants. The system

considered is depicted in Fig. 1.
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Fig. 1. A plane interface separating medium 1 (dielectric constant e1, magnetic constant m1) and medium 2 (dielectric constant

e2, magnetic constant m2).



Medium 1 (dielectric constant e1 and magnetic constant m1) fills the upper half-space, z> 0, whereas

medium 2 (dielectric constant e2 and magnetic constant m2) fills the lower half-space, z< 0. The two

media are supposed to be local and dispersive so that their complex dielectric and magnetic constants

only depend on v.

The three directions x; y; z shown in Fig. 1 are characterized by their unit vectors x̂; ŷ; ẑ. A point in

space will be denoted r ¼ ðx; y; zÞ ¼ xx̂þ yŷþ zẑ ¼ ðR; zÞ, where R ¼ xx̂þ yŷ. Similarly, a wavevector

k ¼ ðkx; ky; kzÞ will be denoted by k ¼ ðK; gÞ, where K is the component parallel to the interface and

g ¼ kz the component in the z-direction.

A surface wave is a particular solution of Maxwell’s equations which propagates along the interface

and decreases exponentially in the perpendicular directions. Because of the translational invariance of the

system, it can be cast in the form

E1ðr;vÞ ¼
Ex;1

Ey;1

Ez;1

0@ 1A exp ½iðK � Rþ g1zÞ	 ðmedium 1Þ; (1)

E2ðr;vÞ ¼
Ex;2

Ey;2

Ez;2

0@ 1A exp ½iðK � R� g2zÞ	 ðmedium 2Þ; (2)

where g1 and g2 are given by

g2
1 ¼ e1m1k2

0 � K2 with Imðg1Þ> 0; (3)

g2
2 ¼ e2m2k2

0 � K2 with Imðg2Þ> 0: (4)

Here k0 ¼ v=c, where c is the speed of light in vacuum. We now look for the existence of surface waves

in s (TE) or p (TM) polarization. In what follows, we shall assume that the wave propagates along the

y-axis.

2.1.1. s-Polarization (TE)

In s-polarization, the electric field is perpendicular to the plane ðy; zÞ. The electric field E is thus

parallel to the x-direction

E1ðr;vÞ ¼ Ex;1x̂ exp ½iðK � Rþ g1zÞ	; (5)

E2ðr;vÞ ¼ Ex;2x̂ exp ½iðK � R� g2zÞ	: (6)

The magnetic field is then derived from the Maxwell equation H ¼ �ir� E=ðmðvÞvÞ. The

continuity conditions of the parallel components of the fields across the interface yield the following

equations:

Ex;1 � Ex;2 ¼ 0; (7)

g1

m1

Ex;1 þ g2

m2

Ex;2 ¼ 0: (8)

We search a mode of the system which is a solution of the homogeneous problem. The system has a non-

trivial solution if and only if

m2g1 þ m1g2 ¼ 0: (9)
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Taking into account Eqs. (3) and (4), one obtains from (9) the surface-wave dispersion relation for

s-polarization:

K2 ¼ v2

c2

m1m2½m2e1 � m1e2	
m2

2ðvÞ � m2
1ðvÞ

: (10)

For the particular case where e1 ¼ e2 ¼ e, the dispersion relation takes the simple form:

K2 ¼ v2

c2
e

m1ðvÞm2ðvÞ
m1ðvÞ þ m2ðvÞ

: (11)

2.1.2. p-Polarization (TM)

For p-polarization, the electric field lies in the plane ðy; zÞ and can be cast in the form:

E1ðr;vÞ ¼
0

Ey;1

Ez;1

0@ 1A exp ½iðK � Rþ g1zÞ	; (12)

E2ðr;vÞ ¼
0

Ey;2

Ez;2

0@ 1A exp ½iðK � R� g2zÞ	: (13)

The continuity of the tangential electric field yields

Ey;1 � Ey;2 ¼ 0: (14)

The Maxwell equation r � E ¼ 0 imposes a relation between the two components of the electric

field

KEy;2 � g2Ez;2 ¼ KEy;1 þ g1Ez;1 ¼ 0: (15)

The continuity of the z-component of D yields

e1Ez;1 ¼ e2Ez;2: (16)

Inserting (16) and (14) into (15) yields

e1g2 þ e2g1 ¼ 0: (17)

Taking into account Eqs. (3) and (4), one obtains from (17) the surface-wave dispersion relation for

p-polarization:

K2 ¼ v2

c2

e1e2½e2m1 � e1m2	
e2

2 � e2
1

: (18)

For the particular case where m1 ¼ m2 ¼ m, the dispersion relation takes the simple form

K2 ¼ v2

c2
m

e1ðvÞe2ðvÞ
e1ðvÞ þ e2ðvÞ : (19)

2.1.3. Remarks

� When the media are non-magnetic, there are no surface waves in s-polarization. Indeed, the imaginary

part of the z-components gi is always positive, so that g1 þ g2 cannot be zero.
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� At a material–vacuum interface (e1 ¼ m1 ¼ 1), the dispersion relation reads in p-polarization.

K ¼ v

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðvÞ

e2ðvÞ þ 1

s
: (20)

It follows that the wavevector becomes very large for a frequency such that e2ðvÞ þ 1 ¼ 0.

� The conditions (9) and (17) correspond to the poles of the Fresnel reflection factors. To search these

poles is an alternative and simple way to find the dispersion relation. This is particularly useful when

searching the dispersion relation for multilayers system.

� For non-lossy media, one can find a real K corresponding to a real v. This mode exists only if

e2 < � 1 in the case of an interface separating a vacuum from a material.

� In the presence of losses, the dispersion relation yields two equations but both frequency and

wavevector can be complex so that there are four parameters. Two cases are of practical interest: (i)

a real frequency and a complex wavevector and (ii) a complex frequency and a real wavevector.

These two choices leads to different shapes of the dispersion relation as discussed in [18–21]. The

imaginary part of v describes the finite lifetime of the mode due to losses. Conversely, for a given

real v, the imaginary part of K yields a finite propagation length along the interface.

� The dispersion relation (20) shows that for a real dielectric constant e1 < � 1, K >v=c. This mode

cannot be excited by a plane wave whose wavevector is such that K <v=c. In order to excite this

mode, it is necessary to increase the wavevector. One can use a prism [14,22,23] or a grating [18]. A

scatterer can also generate a wave with the required wavevector.

2.2. Dispersion relation

In this section, we will consider two types of surface waves: surface-plasmon polaritons and surface-

phonon polaritons. Surface-plasmon polaritons are observed at surfaces separating a dielectric from a

medium with a gas of free electrons such as a metal or a doped semiconductor. The dielectric constant of

the latter can be modelled by a Drude model:

eðvÞ ¼ e1 �
v2

p

v2 þ iGv
; (21)

where vp is the plasma frequency and G accounts for the losses. Using this model and neglecting the

losses, we find that the resonance condition eðvÞ þ 1 ¼ 0 yields v ¼ vp=
ffiffiffi
2

p
. For most metals, this

frequency lies in the near UV so that these surface waves are difficult to excite thermally. By contrast,

surface-phonon polaritons can be excited thermally because they exist in the infrared. They have been

studied through measurements of emission and reflectivity spectra by Vinogradov et al. [24]. Let us study

the dispersion relation of surface-phonon polaritons at a vacuum/silicon carbide (SiC) interface. SiC is a

non-magnetic material whose dielectric constant is well described by an oscillator model in the 2–22 mm

range [25]:

eðvÞ ¼ e1 1þ v2
L � v2

T

v2
T � v2 � iGv

 !
(22)

with vL ¼ 969 cm�1, vT ¼ 793 cm�1, G ¼ 4:76 cm�1 and e1 ¼ 6:7. The dispersion relation at a SiC/

vacuum interface is represented in Fig. 2. This dispersion relation has been derived by assuming that the
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Fig. 2. Dispersion relation for surface-phonon polariton at a SiC/vacuum interface. The flat asymptote is situated at

vasym ¼ 1:784� 1014 rad s�1. The slanting dashed line represents the light cone above which a wave is propagating and

below which a wave is evanescent.

Fig. 3. Dispersion relation for surface-phonon polariton at a SiC/vacuum interface. Real v chosen to obtain a complex K. The

real part of K is represented. The horizontal asymptote is situated at vasym ¼ 1:784� 1014 rad s�1. The slanting dashed line

represents the light line above which a wave is propagating and below which a wave is evanescent.



frequency v is complex and the parallel wavevector K is real. This choice is well suited to analyse

experimental measurements of spectra for fixed angles. The width of the resonance peaks observed is

related to the imaginary part of the frequency of the mode. We note that the curve is situated below the

light cone v ¼ cK so that the surface wave is evanescent. We also observe a horizontal asymptote for

vasym ¼ 1:784� 1014 rad s�1 so that there is a peak in the density of electromagnetic states. We will see

in the next sections that the existence of surface modes at a particular frequency plays a key role in many

phenomena.
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Fig. 4. Surface-wave decay length along the z-direction in mediums 1 and 2 vs. the wavelength for a SiC–vacuum

interface.

Fig. 5. Surface-wave propagation length along the interface vs. the wavelength l.



In Fig. 3, we have shown the dispersion relation obtained when choosing a real frequency v and a

complex wavevector K. The real part of the complex wavevector is represented. It is seen that the shape of

the dispersion relation is significantly changed. A backbending of the curve is observed. This type of

behaviour is observed experimentally when performing measurements at a fixed frequency and varying

the angle. Observed resonances in reflection or emission experiments have an angular width which is

related to the imaginary part of the complex wavevector.

We have plotted in Fig. 4 the surface-wave decay length in the direction perpendicular to the interface

versus the wavelength. From Eqs. (1) and (2), it is seen that the amplitude of the electromagnetic field

decreases exponentially in the z-direction with a decay length d1 ¼ 1=Imðg1Þ in medium 1 and d2 ¼
1=Imðg2Þ in medium 2. We note that the smallest penetration depth in SiC is obtained for the frequency

vasym. At this frequency, losses are very large.

We study in Fig. 5 the surface-wave propagation length along a SiC–vacuum interface. It is given by

the inverse of the imaginary part of the parallel wavevector L ¼ 1=ImðKÞ. Around vasym, L is minimum.

It can be as large as several tens of wavelengths.

It will be seen below that the existence of these surface modes is responsible for a long coherence time

and a long coherence length of the electromagnetic field in the near field.

3. Fluctuation–dissipation theorem: cross-spectral density

In this section, we introduce the tools and methods that are useful to derive the field radiated by a body

in thermal equilibrium at temperature T both in the near field and in the far field. Whereas the

phenomenological theory of radiometry based on geometrical optics describes correctly the field emitted

in the far field, it fails to predict the behaviour of the emitted radiation in the near field. Indeed,

geometrical optics does not include evanescent waves. A new framework to describe thermal radiation is

thus needed. Such a framework has been introduced by Rytov [26,27] and is known as fluctuational

electrodynamics. The key idea is that for any material in thermal equilibrium, charges such as electrons in

metals, or ions in polar crystals undergo a random thermal motion. This generates fluctuating currents

which radiate an electromagnetic field. A body at temperature T is thus viewed as a medium with random

currents that radiate the thermal field. The statistical properties of this field can be determined provided

that: (i) the statistical properties of the random currents are known and (ii) the radiation of a volume

element below an interface is known. The first information is given by the fluctuation–dissipation

theorem (FDT), the second is given by the Green’s tensor of the system.

This approach is very similar to the Langevin model for Brownian motion. Langevin [28] introduced a

random force as a source for the dynamical equations of the particles. This allows us to derive the

statistical properties of their random motion. An important feature of the model is that the random force is

not arbitrary. Its correlation function is related to the losses of the system by the FDT. In the case of

random electromagnetic fields, the dynamic equations for the fields are Maxwell equations. We need to

introduce an external random source to model the fluctuations of the field. These external sources are

random currents. The key issue now is to know the statistical properties of these random sources. They

are given by the FDT. The remaining of this section introduces the technical tools needed to derive the

radiated field. The first part is devoted to the statistical properties of the random currents given by the

FDT, the second part deals with the FDT applied to the EM fields. The Green’s tensor are given in

Appendix A.
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3.1. Cross-spectral density

The spectral analysis of a signal is usually done using its Fourier transform. In the case of a

stationary stochastic signal, the Fourier transform cannot be computed in the sense of a function

because the integral is not square integrable. However, it is possible to compute the Fourier transform

of the time-correlation function of the random signal. In what follows, we will be interested in the

space–time-correlation function of the electromagnetic fields hEkðr; tÞElðr0; t0Þi. For a stationary field,

this correlation function depends only on t � t0. Its Fourier transform Eklðr; r0;vÞ is called cross-

spectral density:

Eklðr; r0;vÞ ¼
Z 1

�1
hEkðr; tÞElðr0; t0Þi eivðt�t0Þ dðt � t0Þ: (23)

Note that for r ¼ r0, the above equation reduces to the Wiener–Khinchin theorem that relates the power

spectral density of a random stationary signal to the Fourier transform of its time-correlation function

[29]. It is convenient to introduce a correlation function of the Fourier transforms using generalized

functions:

hEkðr;vÞE�l ðr0;v0Þi ¼ 2pdðv� v0ÞEklðr; r0;vÞ: (24)

3.2. Fluctuation–dissipation theorem for the current density

The FDT derived by Callen and Welton [30] yields a general form of the symmetrised correlation

function of a vector Xðr;vÞ. Whereas for classical quantities, the symmetrization does not change

the results, it plays an important role in quantum mechanics for non-commuting observables. If

the cross-spectral density of X is defined by X kl, we define the symmetrised correlation function

of X by

XðSÞkl ¼ 1
2½X kl þ X lk	: (25)

The symmetrised correlation function of the dipole moment of a particle in thermodynamic equilibrium

with polarizability a defined by pi ¼ e0ai jE j can be written as [30,31]:

h pkðvÞ p�l ðv0ÞiS ¼ 2pdðv� v0ÞPðSÞkl ðvÞ ¼ �hcoth
�hv

2kBT


 �
Im½e0aklðvÞ	2pdðv� v0Þ; (26)

where the brackets denote an ensemble average. In the preceding expression �h is the reduced Planck

constant and kB the Boltzmann’s constant.

For a bulk in thermodynamic equilibrium at temperature T, the symmetrised correlation function of the

polarization density can be written as [30,31]:

hPkðr;vÞP�l ðr0;v0ÞiS ¼ 2pdðv� v0ÞPðSÞkl ðr; r0;vÞ

¼ �hcoth
�hv

2kBT


 �
Im½e0eklðr; r0;vÞ	2pdðv� v0Þ; (27)
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where the spatial dependence of the dielectric constant accounts for a possible non-locality. From this

equation, we can easily derive the correlation function of the current density j ¼ �ivP:

h jkðr;vÞ j�l ðr0;v0ÞiS ¼ �hv2coth
�hv

2kBT


 �
Im½e0eklðr; r0;vÞ	2pdðv� v0Þ: (28)

Note that if the medium is isotropic and local, the quantity Im½eklðr; r0;vÞ	 becomes

Im½eðr;vÞ	dkldðr� r0Þ. We also note that:

�hv

2
coth

�hv

2kBT


 �
¼ �hv

1

2
þ 1

exp ð�hv=kBTÞ � 1

� 

(29)

is the mean energy of a harmonic oscillator in thermal equilibrium. In the following we will also use the

compact notation

Qðv; TÞ ¼ �hv

exp ð�hv=kBTÞ � 1
(30)

for the mean energy of the harmonic oscillator without the zero point energy �hv=2.

3.3. Fluctuation–dissipation for the fields

Another very useful application of the fluctuation–dissipation theorem yields a relation between the

cross-spectral density of the fluctuating fields at equilibrium and the Green’s tensor of the system [31].

The Green’s tensor appears as the linear response coefficient relating the fields to their sources. Note that

these quantities are defined in classical electrodynamics. In what follows, we will use three different

Green’s tensors defined by

Eðr;vÞ ¼ im0v

Z
d3r0 G

$EE

ðr; r0;vÞjðr0;vÞ; (31)

Hðr;vÞ ¼
Z

d3r0 G
$HE

ðr; r0;vÞjðr0;vÞ; (32)

and

Hðr;vÞ ¼
Z

d3r0 G
$HH

ðr; r0;vÞMðr0;vÞ: (33)

In this last equation GHH
kl is the Green tensor relating the magnetic field to the magnetization M. Note that

both G
$HE

and G
$HH

are related to G
$EE

through the Maxwell equations [32].

G
$HE

ðr; r0;vÞ ¼ m0

mðrÞrr � G
$EE

ðr; r0;vÞ; (34)

G
$HH

ðr; r0;vÞ ¼ m0

mðrÞrr � G
$EE

ðr; r0;vÞ � rr0 � : (35)

Explicit forms of the Green’s tensors are given in Appendix A.
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The cross-spectral correlation function of the electromagnetic field at equilibrium or blackbody

radiation then reads [31]:

EðSÞkl ðr; r0;vÞ ¼ m0�hv
2coth

�hv

2kBT

� 

Im½GEE

kl ðr; r0;vÞ	: (36)

This last equation is the FDT for the electric field. The cross-spectral correlation function of the magnetic

field obeys a similar relation

HðSÞkl ðr; r0;vÞ ¼ e0�hv
2coth

�hv

2kBT

� 

Im½GHH

kl ðr; r0;vÞ	: (37)

These relations yield the coherence properties of the equilibrium field provided that the Green’s tensor of

the system are known. Note that the Green’s tensor is a classical object so that the vacuum fluctuations are

already included in the above formalism. It is also important to note that the Green’s tensor can be

computed including the losses of the system.

3.4. Relation between symmetrised correlation function and observables

In what follows, we will use the FDT either with Qðv; TÞ or with ð�hv=2Þcoth ½�hv=2kBT	 ¼
Qðv;TÞ þ �hv=2. The former amounts to drop the vacuum energy �hv=2. This choice can be justified

using a heuristic argument [27]. When it comes to the derivation of fluxes, the vacuum energy cancels when

taking the difference between emission and absorption [27]. Instead, when computing the Casimir force,

one has first to compute the energy variation of the electromagnetic field in the space between two parallel

plates. In that case, the vacuum fluctuation energy �hv=2 plays a fundamental role and cannot be ignored so

that it is kept in the calculation. This procedure may seem arbitrary. A more rigorous approach to the choice

of the relevant form of the FDT can be derived from quantum electrodynamics as discussed by Agarwal

[31]. It can be shown that when the process studied involves an absorption measurement, the relevant

correlation function is the normally ordered correlation function [29]. If the measurement involves a

quantum counter, then one needs to calculate the antinormally ordered correlation function [29]. The

relevant forms of the FDTare given in the paper by Agarwal [31]. We show in Appendix B that one can end

up with an effective cross-spectral density defined for positive frequencies only. This effective cross-

spectral density depends on the type of measurement. The time-correlation function can be written as:

hEkðr; t þ tÞElðr0; tÞi ¼ Re

Z 1

0

dv

2p
exp ðivtÞEeff

kl ðr; r0;vÞ
� 


; (38)

where the effective cross-spectral density Eeff
kl ðr; r0;vÞ that should be used for an absorption measure-

ment is given by:

EðNÞkl ðr; r0;vÞ ¼ 4vm0 Im½GEE
kl ðr; r0;vÞ	Qðv;TÞ; (39)

and the cross-spectral density appropriate for a quantum-counter measurement is given by:

EðAÞkl ðr; r0;vÞ ¼ 4vm0 Im½GEE
kl ðr; r0;vÞ	½Qðv;TÞ þ �hv	: (40)

Only the latter includes the energy of vacuum fluctuations. For the sake of comparison, we also report the

symmetrised form appropriate for positive frequencies only:

EðSÞkl ðr; r0;vÞ ¼ 4vm0 Im½GE
klðr; r0;vÞ	 Qðv; TÞ þ �hv

2

� 

: (41)

K. Joulain et al. / Surface Science Reports 57 (2005) 59–112 71



A simple rule can thus be used when starting with the usual symmetrised FDT as given by (36) in order

to get the relevant correlation function for a process involving absorption: (1) restrict the spectrum to

positive frequencies, (2) multiply the spectrum by 2, (3) remove the energy fluctuation contribution and

(4) take the real part of the Fourier transform.

3.5. Fluctuational electrodynamics out of equilibrium

In the previous section, we have given the form of the cross-spectral densities of the fields and current

densities at equilibrium. However, it is possible to derive the fields radiated by a system out of

equilibrium. The approach is based on the FDT for the current density. Assuming local thermal

equilibrium, we can derive the statistical properties of the currents. We can thus derive the fields

radiated by a system with an inhomogeneous temperature field. Although the mean values of the fields are

zero, their correlations are non-zero. Let us consider for instance the symmetrised cross-spectral

correlation function of the electric field

hEkðr;vÞE�l ðr0;v0ÞiS ¼ m2
0v

2

Z
d3r1 d3r2 GEE

kmðr; r1;vÞGEE�
ln ðr0; r2;vÞ jmðr1;vÞ j�nðr2;v

0Þ
� �

:

(42)

Using the FDT for the fluctuating currents (28), we obtain

hEkðr;vÞE�l ðr0;v0ÞiS ¼
m0v

3

c2

Z
d3r1 Im½eðr1Þ	

� Q½v; Tðr1Þ	 þ �hv

2

� 

GEE

kmðr; r1;vÞGEE�
lm ðr0; r1;v

0Þ2pdðv� v0Þ: (43)

With the help of the FDT, we have seen that it is possible to calculate all kinds of cross-spectral spatial

correlation functions involving the electric and the magnetic fields. With these functions, we are

now able to calculate other quantities such as the energy density, the Poynting vector or the Maxwell

stress tensor. In the case of thermal equilibrium situations, we will use the application of the FDT

for the fields which give simpler expressions. Nevertheless, in non-equilibrium situation such as the

study of heat transfer between materials held at different temperatures, these expressions are no longer

valid. It is however still possible to use the fluctuation–dissipation theorem for the currents by

assuming local thermal equilibrium. It will thus be possible to derive the fluxes for non-equilibrium

situations.

4. Electromagnetic energy density and local density of states (LDOS)

In this section, we will study how the electromagnetic energy density is modified by the presence of

material media. We shall first examine the amount of electromagnetic energy emitted by a half-space at

temperature T. It will be shown that the density of energy is dramatically different in the near field and in

the far field when surface waves are excited. The second point that we address is the general problem of

the definition of the local density of electromagnetic states. Whereas it is possible to derive the density of

electromagnetic states for a non-lossy system by searching the eigenmodes, the lossy case is more
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difficult. An alternative approach was introduced by Agarwal [33] based on the FDT. Using this

approach, we will discuss the role of surface waves.

4.1. Density of emitted electromagnetic energy

Let us return to the configuration described in Fig. 1. We calculate the electromagnetic energy density

in the vacuum above a material (medium 2) at temperature T due to the emission of this material. We do

not take into account the energy incident on the medium. In order to retrieve the density of energy at

equilibrium, we should include the energy incident on the surface. The density of energy in vacuum reads

(see [34, p. 242])

hUi ¼ e0

2
hjEðr; tÞj2i þ m0

2
hjHðr; tÞj2i ¼

Z 1

0

dv

2p
utotðz;vÞ; (44)

where we have introduced a spectral density of energy utot. The details of the derivation are given in

[7,35]. The basic procedure amounts to derive the field radiated by the random currents in the lower half-

space. Adding the electric and magnetic contributions, the total electromagnetic energy above a medium

at temperature T in a vacuum at T ¼ 0 K is

utotðz;vÞ ¼ Qðv; TÞv2

2p2c3

(Z v=c

0

K dK

k0jg1j
ð1� jrs

12j2Þ þ ð1� jrp
12j2Þ

2

þ
Z 1

v=c

4K3 dK

k3
0jg1j

Imðrs
12Þ þ Imðrp

12Þ
2

e�2 Imðg1Þz
)
; (45)

where the Fresnel reflection factors are given in Appendix A.

4.2. Discussion

In order to illustrate this discussion, we study the density of electromagnetic energy above some

specific materials. Let us first consider a material supporting surface waves in the infrared such as SiC. In

Fig. 6, we plot the energy density utotðz;vÞ versus the frequency at different distances of a semi-infinite

interface of SiC. The semi-infinite medium is at temperature T ¼ 300 K whereas the vacuum is at

T ¼ 0 K. Note that at T ¼ 300 K, Wien’s law gives a peak wavelength for thermal radiation

lWien ¼ 10mm. In the far field, i.e. for distances d larger than lWien=2p, the energy density spectrum

resembles that of a blackbody. The difference with a Planck spectrum comes from the fact that SiC is a

very reflecting material around l ¼ 10mm or v ¼ 1:7� 1014 rad s�1. Thus, its emissivity is small in

this frequency interval.

This property is easily recovered from the electromagnetic energy due to propagating waves only (first

term in (45))

u
prop
tot ðz;vÞ ¼ u0ðv; TÞ

Z
dV

4p

1� jrs
12j2 þ 1� jrp

12j2
2

; (46)
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where we have used 2pK dK ¼ k2
0cos ðuÞ dV, u is the angle between the emission direction and the

normal of the surface. The integral is performed over a half-space and

u0ðv;TÞ ¼ �hv3

p2c3

1

exp ð�hv=kTÞ � 1
¼ v2

p2c3
Qðv;TÞ (47)

is the electromagnetic energy density in a cavity at thermal equilibrium T. In the far field, the evanescent

waves do not contribute to the energy density because of the exponential decay (e�2 Imðg1Þz). We note that

if medium 2 is totally absorbing (r
s;p
12 ¼ 0), the energy density due to propagating waves is half the energy

calculated in a vacuum at thermal equilibrium. This is not surprising since we are computing only the

emitted part of the radiation. In the case of equilibrium radiation, there is also the contribution of the

radiation coming from the upper half-space. We note that in (46), the emissivity appears to be

ð1� jrs
12ðv;VÞj2 þ 1� jrp

12ðv;VÞj2Þ=2. It is thus the half sum of the energy transmission factors

for both polarizations. Thermal emission by a half-space can be viewed as a transmission process of a

blackbody radiation in the material medium through an interface. This point of view yields insight in

Kirchhoff’s law. Indeed, the equality between emissivity and absorptivity appears to be a consequence of

the equality of the transmission factor when interchanging source and detector.

At a distance z ¼ 3mm which is slightly larger than lWien=2p, the energy density spectrum changes

drastically and a strong peak emerges. At 100 nm from the interface, one observes that the thermal

emission is almost monochromatic around v ¼ 1:78� 1014 rad s�1. At this frequency the energy

density has increased by more than four orders of magnitude. The peak corresponds to the excitation of a
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surface wave. This distance is in agreement with the decay length of the surface waves as discussed in

Section 2. At distances much smaller than the wavelength, we enter a regime that we call extreme near

field. The leading contribution comes from the very large wavevectors K in the energy density integral. At

large K, it can be shown that g1� iK, so that Imðrs
12Þ tends to zero and Imðrp

12Þ tends to its electrostatic

limit ðe2 � 1Þ=ðe2 þ 1Þ. We finally obtain a very simple asymptotic form of the energy density

utot ¼ v2

4p2c3

Im½e2ðvÞ	
je2ðvÞ þ 1j2

1

ðk0zÞ3 Qðv; TÞ; (48)

showing that the energy density will diverge at the frequencies where e1 ¼ �1. These are the frequencies

where the dispersion relation has horizontal asymptotes. For lossy materials, a resonance will occur at

the frequency where Reðe2Þ ¼ �1 provided that absorption (i.e. Im½e2	) is not too large. Let us mention that

the resonance of the reflection factor in the electrostatic limit has been observed experimentally by

Hillenbrand et al. [3]. A spectrum of the light scattered by a tip very close to a surface shows a peak for

the resonance frequency. This peak is due to the field emitted by the image of the tip. Indeed, its amplitude is

proportional to the reflection factor ðe2 � 1Þ=ðe2 þ 1Þ and is therefore resonant when Reðe2Þ ¼ �1.

In order to prove that this surprising behaviour is not specific to SiC, we plot in Fig. 7, the energy density

spectrum above a flat interface of glass. This material is amorphous so that the optical phonons are poorly

defined. Here again, the energy density spectrum resembles that of a blackbody in the far field whereas peaks

emerge while approaching the surface. The strongest peak is atv ¼ 9:2� 1013 rad s�1 and the weakest one
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Fig. 7. Electromagnetic energy density above a plane interface separating glass at T ¼ 300 K from vacuum at T ¼ 0 K.



at v ¼ 2:2� 1014 rad s�1. These frequencies are solution of Re½e2ðvÞ	 ¼ �1. Yet, the corresponding

surface waves have a very short propagation length.

Not all materials supporting surface waves exhibit strong peaks in their near-field thermal energy density

spectrum. Indeed, as it can be seen in (48), a peak is exhibited if the frequency where e2ðvÞ approaches�1

corresponds to a frequency range where Qðv;TÞ is not too small. For example, metals exhibit surface-

plasmon polariton in the UVor visible range where Qðv;TÞ is exponentially small at ambient temperature.

Thus metals do not exhibit strong peak in their thermal energy density spectrum in the near field.

4.3. Local density of states

The density of states (DOS) is a fundamental quantity from which many macroscopic quantities can be

derived. In statistical physics, the DOS allows to calculate the partition function of a system from which

all the macroscopic properties follow. The local density of states (LDOS) is useful to study a non-uniform

system. The local density of electronic states is widely used in solid state physics. It has been shown [36]

for instance that a scanning tunneling microscope images the electronic LDOS. The local character of the

LDOS clearly describes the spatial distribution of electrons in the solid. A similar spatial dependence is

also relevant for electromagnetic waves. Whereas the intensity is uniform in a vacuum in equilibrium,

this is not the case in a waveguide or above an interface. The distribution of the energy is no longer

uniform. Whereas LDOS is well defined for electrons in solid state physics [37], its electromagnetic

counterpart is not very well defined in the literature. As compared to electronic systems, two differences

must be taken into account: the vectorial nature of the fields and the existence of losses.

In electrodynamics, the LDOS is used in different contexts. From Fermi’s golden rule, it is known that

the DOS determines the radiation rate. It can be shown that the lifetime of an atom with an electric dipole

along a unit vector u is inversely proportional to Im½u � GEE � u	. This is often referred to as the LDOS. To

avoid confusion, we shall refer to this quantity as the projected LDOS. It is the relevant quantity that one

needs to study when designing a microcavity or a photonic crystal to tailor emission properties. Yet, note

that only those states that can be coupled to the dipole are taken into account. Thus it is not a good

definition if one is interested in the total energy of the system. Such a quantity is required when

computing dispersion forces [38,39] or shear forces [40] for instance. Those forces depend on the energy

stored in all available modes. In a vacuum, the LDOS can be shown to be given by the imaginary part of

the trace of the Green’s tensor G
$EE

. This seems to be a straightforward extension of the scalar result

which is proportional to the imaginary part of the Green function. The vacuum form is thus usually

assumed to be valid for any other situations [41–43]. In what follows, we will summarize a recent analysis

of the LDOS [44] that follows the original approach by Agarwal [33]. It will be seen that the LDOS is not

given by the imaginary part of the trace of the Green’s tensor G
$EE

. It will also appear that surface waves

dominate the LDOS close to an interface.

We consider a system in thermal equilibrium at temperature T. In a vacuum, one can define the

electromagnetic energy UðvÞ by the product of the DOS rðvÞ by the mean energy of each state at

temperature T:

UðvÞ ¼ rðvÞ �hv

exp ð�hv=kBTÞ � 1
: (49)
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We can now introduce [7,44] a local density of states by using as a starting point the local density of

electromagnetic energy Uðr;vÞ at a given point r in space, and at a given angular frequency v. This can

be written by definition of the LDOS rðr;vÞ as

Uðr;vÞ ¼ rðr;vÞ �hv

exp ð�hv=kBTÞ � 1
: (50)

The density of electromagnetic energy is the sum of the density of electric energy and of the density of

magnetic energy given in (44). In equilibrium, it can be calculated using the system Green’s function and

the fluctuation–dissipation theorem. We start from the electric and magnetic field correlation functions

for a stationary system

hEkðr; tÞElðr0; t0Þi ¼ Re

Z 1

0

dv

2p
EðNÞkl ðr; r0;vÞ e�ivðt�t0Þ

� 

; (51)

hHkðr; tÞHlðr0; t0Þi ¼ Re

Z 1

0

dv

2p
HðNÞkl ðr; r0;vÞ e�ivðt�t0Þ

� 

; (52)

with t ¼ t0. The cross-spectral density for normally ordered fields is given by (39). It follows that the

energy per unit volume can be cast in the form [33,44]:

Uðr;vÞ ¼ �hv

exp ð�hv=kBTÞ � 1

v

pc2
Im Tr G

$EE

ðr; r;vÞ þ G
$HH

ðr; r;vÞ
� 


: (53)

A comparison of Eqs. (50) and (53) shows that the LDOS is the sum of an electric contribution rE and a

magnetic contribution rH :

rðr;vÞ ¼ v

pc2
Im Tr G

$EE

ðr; r;vÞ þ G
$HH

ðr; r;vÞ
� 


¼ rEðr;vÞ þ rHðr;vÞ: (54)

In what follows, we shall discuss a few examples to illustrate the modification of the LDOS. It will be

seen that in some cases, the LDOS is accurately given by the trace of the electric Green’s dyadic but it can

also be very different.

4.4. Electromagnetic LDOS in simple geometries

4.4.1. Vacuum

In the vacuum, the Green’s tensors G
$EE

and G
$HH

obey the same equation and have the same

boundary conditions. Therefore, their contribution to the electromagnetic energy density are equal:

Im½G
$EE

ðr; r;vÞ	 ¼ Im½G
$HH

ðr; r;vÞ	 ¼ v

6pc
I
$
: (55)

The LDOS is thus obtained by multiplying the electric-field contribution by 2. After taking the trace, the

usual result for a vacuum is retrieved

rvðr;vÞ ¼ rvðvÞ ¼
v2

p2c3
: (56)

As expected, we note that the LDOS is homogeneous and isotropic.
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4.4.2. Plane interface

We now consider a plane interface separating a vacuum (medium 1, in the upper half-space) from a semi-

infinite material (medium 2, in the lower half-space) characterised by its complex dielectric constant e2ðvÞ.
The material is assumed to be homogeneous, linear, isotropic and non-magnetic. The expression of the

LDOS at a given frequency and at a given height z above the interface invacuum is obtained by inserting the

expressions of the electric and magnetic Green’s tensors for this geometry [45] into Eq. (54). Note that in the

presence of an interface, the magnetic and electric Green’s tensors are no longer the same. Indeed, the

boundary conditions at the interface are different for the electric and magnetic fields.

Let us consider some specific examples for real materials like metals and dielectrics. We first calculate

rðz;vÞ for aluminum at different heights. Aluminum is a metal whose dielectric constant is well

described by a Drude model for near-UV, visible and near-IR frequencies [46]:

eðvÞ ¼ 1� v2
p

vðvþ iG Þ ; (57)

with vp ¼ 1:747� 1016 rad s�1 and G ¼ 7:596� 1013 rad s�1. We plotted in Fig. 8 the LDOS rðr;vÞ
in the near UV–near IR frequency domain at four different heights. We first note that the LDOS increases

drastically when the distance to the material is reduced. As discussed in the previous section, at larger

distances from the material, one retrieves the vacuum density of states. Note that at a given distance, it is

always possible to find a sufficiently high frequency for which the corresponding wavelength is small

compared to the distance so that a far-field situation is retrieved. This is clearly seen when looking at the

curve for z ¼ 1mm which coincides with the vacuum LDOS. When the distance to the material is
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Fig. 8. LDOS vs. frequency at different heights above a semi-infinite sample of aluminum. From [44].



decreased, additional modes are present: these are the evanescent modes which are confined close to the

interface and which cannot be seen in the far field. Moreover, aluminum exhibits a resonance around

v ¼ vp=
ffiffiffi
2

p
. Below this frequency, the material supports surface-plasmon polaritons so that these

additional modes are seen in the near field. This produces an increase of the LDOS close to the interface.

The enhancement is particularly important at the resonant frequency which corresponds to

Re½e2ðvÞ	 ¼ �1. This behaviour is analogous to that previously described in Section 4.1 for a glass

surface supporting surface-phonon polaritons. Also note that in the low frequency regime, the LDOS

increases. Finally, Fig. 8 shows that it is possible to have a LDOS smaller than that of vacuum at some
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Fig. 9. Density of states contributions due to the propagating and evanescent waves compared to the total density of states and

the vacuum density of states. These quantities are calculated above an aluminum sample at a distance of 10 nm. From [44].

Fig. 10. LDOS at a distance z ¼ 10 nm above a semi-infinite aluminum sample. Comparison with rEðz;vÞ and rHðz;vÞ. From

[44].



particular distances and frequencies. Fig. 9 shows the propagating and evanescent waves contributions to

the LDOS above an aluminum sample at a distance of 10 nm. The propagating contribution is very

similar to that of the vacuum LDOS. As expected, the evanescent contribution dominates at low

frequency and around the surface-plasmon polariton resonance, where pure near-field contributions

dominate.

Let us now turn to the comparison of rðz;vÞ with the usual definition often encountered in the

literature [41–43], which corresponds to rEðz;vÞ. We plot in Fig. 10, r, rE and rH above an aluminum

surface at a distance z ¼ 10 nm. In this figure, it is possible to identify three different domains for the

LDOS behaviour. We note again that in the far-field situation (corresponding here to high frequencies, i.e.

l=2p� z), the LDOS reduces to the vacuum situation. In this case rðz;vÞ ¼ 2rEðz;vÞ ¼ 2rHðz;vÞ.
Around the resonance, the LDOS is dominated by the electric contribution rE. Conversely, at low

frequencies, rHðz;vÞ dominates. Thus, Fig. 10 shows that we have to be very careful when using the

approximation rðz;vÞ ¼ rEðz;vÞ. Above aluminum and at a distance z ¼ 10 nm, it is only valid in a

narrow range between v ¼ 1016 and 1:5� 1016 rad s�1, i.e. around the frequency where the surface

wave exists.

4.4.3. Asymptotic form of the LDOS in the near-field

In order to get more physical insight, we have calculated the asymptotic LDOS behaviour in the three

regimes mentioned above. As we have already seen, the far-field regime (l=2p� z) corresponds to the

vacuum case. To study the near-field situation (l=2p� z), we focus on the evanescent contribution due to

the large wavevectors K as suggested by the results in Fig. 9. In this (quasi-static) limit, the Fresnel

reflection factors reduce to

lim
K!1 rs

12 ¼
e2 � 1

4ðK=k0Þ2
; (58)

lim
K!1 r

p
12 ¼

e2 � 1

e2 þ 1
: (59)

Asymptotically, the expressions of rEðz;vÞ and rHðz;vÞ are [44]:

rEðz;vÞ ¼ rv

je2 þ 1j2
e002

4k3
0z3

; (60)

rHðz;vÞ ¼ rv

e002
8k0z

þ e002
2je2 þ 1j2k0z

" #
: (61)

At a distance z ¼ 10 nm above an aluminum surface, these asymptotic expressions matches almost

perfectly with the evanescent contributions (K > k0) of rE and rH . These expressions also show that for a

given frequency, one can always find a distance z to the interface below which the dominant contribution

to the LDOS will be the one due to the imaginary part of the electric-field Green function that varies like

ðk0zÞ�3. But for aluminum at a distance z ¼ 10 nm, this is not the case for all frequencies. As we

mentioned before, this is only true around the resonance. For example, at low frequencies, and for

z ¼ 10 nm, the LDOS is actually dominated by rve
00
2=16k0z.
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4.4.4. Spatial oscillations of the LDOS

Let us now focus on the LDOS variations at a given frequency v versus the distance z to the

interface. There are essentially three regimes. First, for distances much larger than the wavelength, the

LDOS is given by the vacuum expression rv. The second regime is observed close to the interface

where oscillations are observed. Indeed, at a given frequency, each incident plane wave on the

interface can interfere with its reflected counterpart. This generates an interference pattern with a

fringe spacing that depends on the angle and the frequency. Upon adding the contributions of all

the plane waves over angles, the oscillating structure disappears except close to the interface. This

leads to oscillations around distances on the order of the wavelength. This phenomenon is the

electromagnetic analog of Friedel oscillations which can be observed in the electronic density of

states near interfaces [12,47]. For a highly reflecting material, the real part of the reflection

coefficients are negative so that the LDOS decreases while approaching the surface. These two

regimes are clearly observed for aluminum in Fig. 11. The third regime is observed at small distances

as seen in Fig. 11. It is due to the contribution of surface waves. Its behaviour is thus dependent on the

frequency. Let us first consider the particular case of the frequency corresponding to the asymptote of

the dispersion relation. It is seen that the evanescent contribution dominates and, ultimately, the

LDOS always increases as 1=z3, following the behaviour found in (60). This is the usual quasi-static

contribution that is always found at short distance [35]. At a frequency slightly lower than

the resonance frequency, surface waves are still excited on the surface. These modes increase the

LDOS according to an exponential law, a behaviour which was already found for thermally emitted

fields [8,35].

4.4.5. Conclusion about the LDOS

The main results of this section can be summarized as follows. The LDOS of the electromagnetic field

can be unambiguously and properly defined from the local density of electromagnetic energy in a vacuum

above a sample at temperature T in equilibrium. The LDOS can still be written as a function of the

electric-field Green’s tensor only, but it is in general not proportional to the trace of its imaginary part.
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Fig. 11. LDOS vs. the distance z from an aluminum–vacuum interface at the aluminum resonant frequency. From [44].



An additional term proportional to the trace of the imaginary part of the magnetic-field Green’s tensor is

present in the far field and at low frequencies. At short distance from the surface of a material supporting

surface modes (plasmon or phonon polaritons), the LDOS has a resonance at frequencies such that

Re½eðvÞ	 ¼ �1. Close to this resonance, the approximation rðz;vÞ ¼ rEðz;vÞ holds. If it is possible to

measure the near-field thermal emission spectrum of a material, the local density of states can be

retrieved [44].

5. Coherence properties of planar thermal sources in the near-field

In this section, we examine the second-order coherence properties of the fields due to thermal

excitation in the presence of surface waves. We have shown that the density of energy is completely

dominated by the contribution of surface waves in the near field. We shall see that they are also

responsible for a deep modification of coherence properties. In what follows, we restrict ourselves to

second-order coherence properties.

5.1. Spatial coherence in the near field

The spatial coherence of the electromagnetic field is characterized by its cross-spectral density

Eklðr; r0;vÞ. Roughly speaking, we study the correlation function of the electromagnetic field at

two different points for a particular frequency. For a system in thermal equilibrium, this quantity is

readily given by the fluctuation–dissipation theorem (36). The spatial dependence is thus included

in the spatial dependence of the imaginary part of the Green’s tensor. For the particular case of a

vacuum, one finds the properties of the blackbody radiation. The vacuum Green’s tensor is given in

Appendix A.

It is more interesting to analyse what happens in the presence of an interface. It turns out that the

coherence length may be either much larger or much smaller than the wavelength. This problem has been

studied in [8,35] for a slightly different case. The authors considered the coherence properties of the field

emitted by a solid. The difference with the above result is that in equilibrium, one has to consider two

contributions: (i) the blackbody radiation illuminating the surface and reflected by the surface and (ii) the

radiation emitted by the surface. In what follows, we focus only on the emitted part of the radiation so that

we do not consider the equilibrium situation. The correlation is given by (43). This equation is valid

inasmuch as the temperature T can be defined everywhere in a half-space. It requires a local thermal

equilibrium. We have represented in Fig. 12 the cross-spectral density of the electric field for different

metallic surfaces at a given distance z ¼ 0:05l to the interface. It is seen that the correlation oscillates and

has an exponentially decaying envelope. The decay length is much larger than the wavelength indicating

that the fields are coherent over large distances. This surprising phenomenon is due to the excitation of

surface waves along the interface. The physical mechanism is based on the fact that a small volume

element contains random currents that excite a surface wave. This surface wave propagates along the

interface over distances larger than the wavelength. It follows that different points may be illuminated by

the same random source so that they are correlated. Accordingly, one does not expect any correlation

between the s-polarized field since no surface wave exists for s-polarization. If one uses a material with a

real part of the dielectric constant larger than �1, no surface wave can propagate so that no correlation

should be observed. We have shown in Fig. 12 the case of tungsten in the visible that does not support
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surface waves. It is seen that the coherence length is smaller than a wavelength so that the radiation field

appears to be more incoherent than blackbody radiation. It has been shown in [35] that in the short-

distance regime, the coherence length is given by z.

A similar behaviour is observed for SiC, a polar material that supports surface-phonon polaritons in a

frequency band. Within this band, at a wavelength 11:36mm the correlation is seen to be a long-range

correlation whereas the correlation decays very rapidly for a wavelength (9:1mm) that is not in the band

where surface waves exist.

Let us discuss in simple terms the physical origin of these unusual coherence properties. The long-

range coherence is unexpected because the fluctuating currents are d-correlated as shown by the FDT.

This is the reason why the fields are usually assumed to be d-correlated in space. However, the fluctuating

currents excite induced currents in the material. In the case of a metal, a surface plasmon can be excited.

In the case of a polar crystal, a surface-phonon polariton can be excited. Both surface waves are extended

modes along the surface. The induced currents associated with these extended modes are therefore

coherent over large distances. More precisely, the coherence length is expected to be given by the decay

length of these surface modes. This has been confirmed by a detailed asymptotic analysis in [35].

The other surprising property shown in Fig. 12 is that the coherence length defined as the FWMH of

the cross-spectral density can be smaller than the wavelength. In other words, a source can be more

spatially incoherent than the blackbody radiation. The key idea is that close to an interface, the field

contains evanescent waves so that features smaller than the wavelength can exist. This is not the case in a

vacuum so that the field has a minimum coherence length. Since the amplitude of evanescent waves of

large wavevector K decays as exp ð�KzÞ, it is clear that the distance z appears as a cutoff frequency. This

explains that the coherence length increases as z in the near-field regime.

5.2. Temporal coherence in the near field

The temporal coherence of the electromagnetic field is characterized by the same-point time-

correlation function of the electromagnetic field:

hEkðr; t þ tÞElðr; tÞi: (62)

K. Joulain et al. / Surface Science Reports 57 (2005) 59–112 83

Fig. 12. Cross-spectral density function Exxðr1; r2;vÞ (denoted as Wxx in the label of the figure) of the thermally emitted x-

component of the electric field vs. r=l, where r ¼ jr1 � r2j for different metals (a) and for SiC at different wavelengths (b). The

long-range correlation is due to surface-plasmon polaritons for metals and to surface-phonon polaritons for SiC. From [8].



This correlation function is a measurement of the memory of the random field. It is useful to introduce a

typical decay time tcoh of the correlation function called coherence time. A Michelson interferometer

with aligned mirrors performs a measurement of the correlation function. Indeed, the interference term of

the signal can be written as Eðr; t þ tÞEðr; tÞ, where t is the flight time corresponding to the optical path

length difference dopt between the two paths dopt ¼ ct. If the path length difference is larger than the

longitudinal coherence length ctcoh, no interferences can be observed.

The temporal coherence of the EM field is related to its power spectral density. This is clearly seen by

using the Wiener–Khinchin theorem [29,48] which shows that the power spectral density is the Fourier

transform of the correlation function. Alternatively, we can start from (36). It follows that:

hEkðr; t þ tÞElðr; tÞi ¼ Re

Z 1

0

4m0vQðv;TÞ Im½GEE
kl ðr; r;vÞ	 eivt dv

2p

� 

: (63)

Let us first consider the temporal coherence of the field in a vacuum. The imaginary part of the Green’s

tensor does not diverge and yields zero for non-diagonal terms and v=6pc for diagonal terms. It follows

that the time-correlation function of the blackbody radiation is given by:

hEkðr; t þ tÞElðr; tÞi ¼ dkl Re

Z 1

0

4m0vQðv; TÞ v

6pc
eivt dv

2p

� 

: (64)

Since the integrand has a large spectral width, it appears that the coherence time is on the order of the

peak radiation period.

If we now consider the case of an interface, we know that the spectrum can be very different in the near

field. We have seen previously that the contribution of the surface wave modifies dramatically the density

of electromagnetic energy. In particular, we have seen that the density of energy becomes quasi-

monochromatic which suggests a large coherence time. More specifically, in the extreme near field, we

have seen in (59) that the Green’s function has a resonant denominator eþ 1. Close to the resonance

where Re½eðv0Þ	 ¼ �1, we can expand the dielectric constant as

eðvÞ ¼ �1þ ie00ðv0Þ þ ðv� v0Þ de
dv

; (65)

where we have used the notation e ¼ e0 þ ie00. The denominator eþ 1 can be cast in the form:

eðvÞ þ 1 ¼ de0

dv


 �
½v� v0 þ iG 	; (66)

where G ¼ e00ðv0Þ=ðde0=dvÞ. It is seen that the Green’s dyadic has a pole at the frequency corresponding

to the asymptote of the dispersion relation of the surface wave. Its contribution to the integral (64) yields

an exponential decay of the form exp ½iv0t � G t	. It follows that in the extreme near field, the thermally

emitted field is partially temporally coherent with a coherence time given by G�1. The origin of the

temporal coherence of the electromagnetic field can thus be assigned to the very large density of states

due to the asymptote of the surface wave. It follows that whereas the plane interface of a hot metallic

surface is a temporally incoherent source for an atom located in the far field, it is a partially temporally

coherent source for an atom located within a nanometric distance from the interface.
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5.3. Polarization coherence in the near field

We have seen that the excitation of surface waves by d-correlated currents produces both a spatial and a

temporal coherence. The correlation of the field is characterized by the decay time and the decay length

of the surface wave that propagates along the interface. There is a further interesting coherence effect that

has been studied by Setälä et al. [49]. The basic idea is that surface waves are p-polarized waves. As

shown in Section 2, a surface wave that propagates along the y-axis has an electric field with two

components along the y- and z-axes. It follows that the y- and z-components of the field are correlated.

The study of correlation of the fields in the near field of the source cannot be performed using the

standard formalism. Indeed, when dealing with a beam, it is usually possible to work with the two

components of the field perpendicular to the propagation axis. This is no longer possible in the near field

of a thermal source. A generalization of the degree of polarization has been introduced in [49]. It was

found that the degree of polarization varies as a function of the distance to the interface. Like the

coherence time, it increases when approaching the interface from the far field because the surface wave

creates a correlation. When reaching the very near-field regime, the degree of polarization decays and

tends to 1/4 for all the materials.

6. Spatially partially coherent thermal sources in the far field

6.1. Introduction

In this section, we will discuss the possibility of designing a source that is spatially partially coherent.

In simple terms, a spatially partially coherent source is a source that radiates a field which has a narrow

angular aperture at a given wavelength. The typical examples of coherent sources are lasers and antennas.

These sources have well-defined emission angular lobes. In what follows, we will show that a narrow

angular emission lobe is a signature of the spatial coherence of the field in the plane of the source.

We first introduce an analog of the Wiener–Khinchin theorem (WKT) (63) to analyse the spatial

coherence of the field. In simple terms, WKT states that a quasi-monochromatic source with bandwidth

Dn has a coherence time roughly equal to 1=Dn. Similarly, a quasi-parallel beam with a spatial frequency

bandwidth Dkx has a transverse coherence length 2p=Dkx. A formal proof is based on two properties: the

relationship between the cross-spectral density of the field in the plane of the source z ¼ 0 and the power

spectral density of the field, the relationship between the power radiated in far field and the power spectral

density. For a translationally invariant system, the Fourier transform of the field does not converge in the

sense of a function. Yet, one can define a field equal to the random field in a square of area A and null

outside. We can now define the Fourier transform of the field in the plane z ¼ 0 as:

EAðrk;vÞ ¼
Z

d2K

4p2
EAðK;vÞ exp ðiK � rkÞ: (67)

It can be shown [48] that the WKT yields a relation between the cross-spectral density and the power

spectral density of the spectrum of the field:

hElðrk;vÞE�l ðrk þ r0k;vÞi ¼
Z

d2K

4p2
lim

A!1
1

A
hEl;AðK;vÞE�l;AðK;vÞiexp ðiK � r0kÞ: (68)
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This relation implies that if the spectrum has a bandwidth smaller than 2p=l, the coherence length is

larger than l. The second step is to show that the bandwidth of the spectrum power density

hEl;AðK;vÞE�l;AðK;vÞi=A is given by the emission pattern in the far field. Indeed, the field can be

written everywhere as [50,29]:

EAðr;vÞ ¼
Z

d2K

4p2
EAðK;vÞ exp ðiK � rk þ igzÞ; (69)

where k ¼ ðK; gÞ and g is given by g2 ¼ k2
0 �K2. This field can be evaluated asymptotically in the far

field using the stationary phase approximation [29]. It can be cast in the form:

EAðr;vÞ ¼ Kexp ðik0rÞ
r

EA K ¼ 2p

l
r̂k;v


 �
; (70)

where K is a constant. The power dP flowing through an element of surface dS ¼ r2 dV is given by the

flux of the Poynting vector. In far field, the Poynting vector has locally a plane wave structure so that its

time averaged amplitude is given by e0cjEj2=2:

dP ¼ e0c

2
jKj2 EA K ¼ 2p

l
r̂k;v


 ����� ����2 dV; (71)

where r̂ is the unit vector r=jrj. This relation completes the discussion of the link between the directivity

of the emitted field and the coherence of the field in the plane of the source. It is clear that a directional

source implies a narrow spectrum and therefore a large correlation length.

6.2. Design of coherent thermal sources

We have seen in the previous section that a source which supports a surface wave is partially spatially

coherent along the surface. However, because these waves cannot propagate in a vacuum, the coherence

remains confined in the vicinity of the surface. The question that we address now is whether it is possible to

export the near-field coherence to the far field. In essence, that amounts to couple the surface waves to the

propagating waves. This can be done in several ways. A practical way is to rule a grating on the surface.

The grating can then diffract the surface wave. By properly choosing the period of the grating, it is possible

to control the angle of propagation of the diffracted light. This was first observed in [51–53] for a very deep

grating ruled on a doped silicon surface. Such a material supports surface-plasmon polaritons in the

infrared. A more effective source was realized using a gold grating by Kreiter et al. [54]. Heinzel et al. [55]

have also realized a source using surface plasmons on tungsten in the near infrared. A source based on the

use of surface-phonon polaritons on SiC was reported by Le Gall et al. [18]. The first discussion of the

spatial coherence of these sources was reported in [10]. An extended discussion of these properties has

been recently reported [56] where transverse coherence lengths have been derived from experimental

measurements of angular widths of emission peaks. Angular peaks as narrow as 1 � can be obtained.

In order to have an efficient source of light, it is necessary to make sure that the coupling of the surface

wave into a propagating wave is optimum. This can be accomplished by designing a surface with total

absorption. From Kirchhoff’s law, it follows that if absorption is unity, then emissivity is also unity.

Another condition must be satisfied: the emission wavelength should lie in a region where Planck’s

function takes large values. The optimum choice of the wavelength thus depends on the temperature of

the source. Fig. 13 shows the angular emission pattern of a SiC grating. It is clearly seen that the angular
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aperture is very narrow indicating a large coherence length [56]. Let us emphasize that the coherence is

not due to the grating but only to the surface wave. The role of the grating is merely to couple the surface

wave into a propagating wave.

Different schemes have been proposed to produce partially coherent thermal sources. They are based on

a filtering of the emission pattern in order to reduce the angular width of the emission pattern. The scheme

that we have described so far is based on the use of a grating that couples a surface wave to propagating

wave. It can be viewed as a device that increases the absorptivity or emissivity to 1 for a narrow set of angles.

It can thus be viewed as a filtering process. A different type of filter can be designed using multilayers

systems. Several authors [57,58] have reported a narrow angular pattern emission obtained by interferences

between several layers. This mechanism leads to angular widths on the order of 10 �.

6.3. Engineering radiative properties of surfaces

For many applications, it is desirable to modify radiative properties of surfaces. An introduction to

radiative properties of surfaces can be found in a review paper by Zhang [59]. Roughness has often been

used to increase the emissivity. An analysis of the different mechanisms involved can be found in [60].

Further references on scattering by rough surfaces can be found in several reviews and monographs

[50,61–65]. Microstructures can be used to design efficient selective absorbers and sources. The decay of

reflectivity of a shallow rough surface due to the excitation of surface plasmons is addressed in [66]. Hava

and coworkers have examined silicon microstructured surfaces [67–70]. Sai et al. [71] have designed

silicon microstructured surfaces for thermophotovoltaics applications. Marquier et al. [72] have studied

the effect of surface plasmon on highly doped silicon showing that the peak absorption frequency can be

tuned by varying the doping. Kusunoki et al. [73] have reported emissivity measurements on tantalum

surfaces with two-dimensional periodic structures. They observed peaks of emission due to the excitation

of surface plasmons. Pralle et al. [74] have designed selective infrared emitters using periodic structures

on silicon wafers coated with gold.

An interesting application of surface waves to the enhancement of light emission has been demonstrated

by Marquier et al. [56,72]. The idea is to emit light in all directions at a given frequency. To this aim, it is
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shape of an antenna. It demonstrates the spatial coherence of the thermal source. Measurements are taken at 800 K. From [56].



necessary to be able to couple light in all directions. When using a grating of period d, the emission angle u is

given by ðv=cÞsin ðuÞ ¼ KðvÞ þ pð2p=dÞ, where p is an integer. The key idea is to work at the resonance

frequency taking advantage that the dispersion relation is flat. At that particular frequency, surface plasmons

exist for a very large set of wavevectors K. It follows that one can design a source emitting in all directions.

This has been demonstrated for a SiC surface on which a grating was ruled. Fig. 14 represents the angular

emission pattern. It is seen that the emissivity is close to its maximum value 1 and almost isotropic. The

mechanism of emission can be again viewed as a two-step process. First, each volume element is equivalent

to a random dipole that can either emit a photon or excite a surface wave. The latter is a very efficient process

so that usually, most of the de-excitation goes into surface waves and eventually into heat. The second step is

the introduction of a grating that converts the surface wave into a propagating wave by diffraction. Thus, the

excitation of a surface wave which usually tends to decrease the emission of light becomes a factor that

enhances the emission of light. A similar mechanism has been proposed recently to use the surface waves in

order to enhance the emission of light by quantum wells placed close to a metallic layer [75,76]. The idea is

that the high density of states due to the surface plasmon enhances the emission. If the conversion of a

surface wave into a propagating wave is efficient, the process enhances the emission.

7. Radiative heat transfer in the near field

We have shown previously that the density of electromagnetic energy increases in the near field due to

the contribution of surface waves. We now address the question of heat transfer between bodies separated

by distances smaller than the wavelength. In that case, contributions of the surface waves to the radiative

heat transfer are expected. This topic has already a long history. Anomalous radiative heat transfer was

observed in the 1960s. Cravalho et al. [77] and Boehm and Tien [78] studied that problem and took into

account waves that are propagative in the materials and evanescent in the vacuum gap. Yet, this correction

does not take into account all the evanescent waves. Waves that are evanescent on both sides of the

interface (i.e. surface modes) were not taken into account in these early works. The first correct derivation

of the flux between two plane parallel plates was reported by Polder and van Hove [79] in 1971. Their
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Fig. 14. Angular emissivity measurements of a SiC grating at the surface-phonon polariton frequency. The emissivity is above

0.9 and quasi-isotropic in the plane of incidence. The sample temperature is 800 K. From [56].



method allowed them to analyse the contributions of different polarizations and to compute separately the

contributions of evanescent and propagating waves. Similar works were reported later on by different

authors [80–85]. It is found in all these works that the flux diverges as the distance decreases. This point

was considered to be unphysical in [86,87] where the increase in the density of states due to surface waves

was not included. It is pointed out in [88,89] that when keeping the contribution of all the wavevectors,

the flux diverges if the temperature difference is assumed to be kept to a constant value. This amounts to

say that the thermal resistance goes to zero which does not violate any physical law. Only a few

experiments [90–92] were reported on measurements of heat transfer due to near-field radiation.

Heat transfer between a plane and a small particle was first discussed by Dorofeyev [93] and later by

Pendry [82] and Volokitin and Persson [83]. Practical results were derived for a metal using a Drude

model and making the additional assumption that jej� 1. Mulet et al. [94] pointed out the resonant

contribution of surface waves to the heat transfer. It was shown that the heat transfer is quasi-

monochromatic at the frequency of the optical phonons for a polar crystal given by

Re½eðvÞ	 þ 1 ¼ 0. A similar effect is observed between metallic parallel surfaces [85] and for doped

semiconductors [72]. For metals, this resonance does not play a significant role because the plasma

frequency is in the UV domain so that the Bose–Einstein factor takes low values at usual temperatures. It

was later suggested [10,95] that a quasi-monochromatic enhanced heat transfer could be used to increase

the efficiency of thermophotovoltaics devices by matching the energy of the emitted photons with the

absorption band gap of the photovoltaics cell. That might reduce the loss of excess energy of ultraviolet

photons. The heat transfer between two small particles has been studied in [83]. It has been shown that the

dipole–dipole interaction yields a large contribution to the heat transfer whereas the contribution of the

photon emission and absorption process is negligible. This near-field heat transfer between nanoparticles

is analogous to the energy transfer between molecules due to the dipole–dipole coupling known as

Forster transfer [96]. It may also be resonant for surface-plasmon resonances. In what follows, we shall

derive explicitly the heat transfer between nanoparticles and the emission by a surface plane.

7.1. Radiative power exchange between two spherical nanoparticles

We now calculate the heat transfer between two spherical nanoparticles held at different temperatures

and separated in the vacuum. Such a calculation was first reported by Volokitin and Persson [83]. Let us

consider two nanoparticles whose dielectric constants are e1 and e2 and whose temperatures are T1 and

T2. We first calculate the power dissipated in particle 2 by the electromagnetic field induced by particle 1

using the dipolar approximation:

P1! 2ðvÞ ¼ e0
v

2
Imða2ÞjEincðr2;vÞj2; (72)

where r2 denotes the position of the particle 2 and a2 is the polarizability of a sphere of radius a [97]:

a2 ¼ 4pa3 e2 � 1

e2 þ 2
: (73)

The field incident on particle 2 created by the thermal fluctuating dipole of particle 1 located at r1 at

temperature T1 is given by:

Eincðr2;vÞ ¼ m0v
2 G
$
ðr2; r1;vÞ � p; (74)
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where G
$
ðr2; r1;vÞ is the vacuum Green’s tensor given in Appendix A. To proceed, we need the

correlation function of the dipole given by the fluctuation–dissipation theorem whose symmetrised form

is given by (26). We finally obtain the heat exchange between two spherical nanoparticles at temperatures

T1 and T2:

P1$ 2 ¼ 3

4p3

Im½a1ðvÞ	 Im½a2ðvÞ	
jr2 � r1j6

Qðv;T1Þ �Qðv;T2Þ½ 	: (75)

Let us note the 1=r6 spatial dependence of the heat transfer. This dependence is typical of the dipole–

dipole interaction. It is actually a van der Waals type interactions that can be interpreted in the following

way: fluctuations (thermal or not) distort the charge distribution of a nanoparticle producing a fluctuating

dipole. This fluctuating dipole induces in turn an electromagnetic field on the other nanoparticle initiating

a second dipole. This dipole interaction causes both an energy transfer and a momentum transfer or force.

For molecules this energy transfer is known as Forster transfer and the force is called van der Waals force.

We find that nanoparticles follow a similar behaviour with a resonance at the surface polariton resonance.

Indeed, in the case of spherical particle with radius a, the polarizability has a resonance when the

dielectric constant approaches �2 provided that the imaginary part of the dielectric constant is not too

high. The particle resonances appear in the visible part of the spectrum for metals and in the infrared for

polar materials. This phenomenon has been confirmed by a recent numerical simulation based on

molecular dynamics [150]. It was also shown that at distances smaller than the diameter, the heat transfer

deviates from the dipole–dipole interaction and increases before decaying at contact.

7.2. Thermal emitted flux by a planar interface

In this section, we analyse the emission by a plane interface. Let us consider the situation of a planar

interface (z ¼ 0) separating a dielectric (z< 0) at temperature T from a vacuum (z> 0). We shall derive

the flux emitted from the interface.

7.2.1. Classical theory of radiation

In the classical theory of radiation, the power d2Q emitted by an elementary opaque surface dS at

temperature T, in a solid angle dV around a direction u making an angle u with the normal to the surface

(Fig. 15), whose monochromatic emissivity is e0ðuÞ is

d2Qðv; uÞ ¼ e0vðuÞI0
vðTÞ dV dS; (76)

K. Joulain et al. / Surface Science Reports 57 (2005) 59–11290

Fig. 15. Solid angle dV around a direction u making an angle u with the normal of an elementary surface dS.



where

I0
vðTÞ ¼

�hv3

4p3c2

1

e�hv=kBT � 1

is the blackbody specific intensity. The power dQ emitted by the elementary surface is thus

dQðvÞ ¼
Z

e0vðuÞI0
vðTÞcos u dV dS ¼ q � n dS; (77)

where the integral is performed over a half-space. We have introduced the radiative vector defined

by

qðvÞ ¼
Z

e0vðuÞI0
vðTÞu dV: (78)

In the case of a blackbody, the integration over the angles is straightforward. The monochromatic

heat flux is thus equal to pL0
vðTÞ and the total heat flux is equal to sT4, where s is the Stefan

constant

s ¼ p2k4
B

60c2�h3
¼ 5:67� 10�8 W m�2 K�4:

7.2.2. Fluctuational electrodynamics method

We will follow Polder and van Hove [79] to show that the phenomenological form of the emitted flux

can be derived in the framework of fluctuational electrodynamics. In the following sections, we use this

approach to derive the expressions valid in the near field. Let us consider the situation of a planar

interface (z ¼ 0) separating a dielectric (z< 0) at temperature T from a vacuum (z> 0). The flux emitted

by the half-space is given by the Poynting vector S ¼ E�H. In the case of monochromatic quantities,

the time average Poynting vector reads Sðr;vÞ ¼ ð1=2ÞReðEðr;vÞ �H�ðr;vÞÞ. This quantity can be

derived using the fluctuation–dissipation theorem. Thus, the electric and magnetic Green’s tensor are

needed. In this geometry, these tensors are given by (A.3) and (A.4). The Poynting vector reduces to its z-

component hSzðr;vÞi ¼ ð1=2ÞRe½hExH�y � EyH�x i	. In order to obtain the Poynting vector, one calculates

quantities like hEiðr;vÞH�j ðr;vÞi. Using (31) and (32)

hEiðr;vÞH�j ðr;vÞi ¼ him0v

Z
GEE

ik ðr; r0ÞGHE�
jl ðr; r00Þ jkðr0Þ j�l ðr00Þ d3r0 d3r00i: (79)

Using the effective FDT for the currents (28) defined for positive frequencies only, the preceding

equation reduces to

hEiðr;vÞH�j ðr;vÞi ¼
iQðv; TÞv2

pc2

Z
e00ðr0ÞGEE

ik ðr; r0ÞGHE�
jk ðr; r0Þ d3r0: (80)

Using the Green functions expressions (A.3) and (A.4) and the identities e00 ¼ 0 in the upper half-space

and that e002v
2=c2 ¼ 2 Reðg2Þ Imðg2Þ, the Poynting vector can be cast in the form

hSzðr;vÞi ¼ vQðv;TÞ
16p3c

Re

Z
d2K e�2 Imðg1Þz g1 Reðg2Þ

k0jg2j2
jts

21j2 þ jtp
21j2

jg2j2 þ K2

jn2j2k2
0

" #( )
: (81)
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Let us note that only g1 may not be real in the preceding expression. In fact, as the upper half-space is

vacuum (medium 1), g1 can only be real (K <v=c) or pure imaginary (K >v=c). Therefore, the

contribution of evanescent waves vanishes in the radiative flux expression. Using the identities (82–85),

Reðe�gÞ ¼ ReðgÞ jgj
2 þ K2

k2
0

; (82)

Imðe�gÞ ¼ ImðgÞ�jgj
2 þ K2

k2
0

; (83)

Reðg2Þjts
21j2

jg1j2
jg2j2

¼ Reðg1Þð1� jrs
21j2Þ � 2 Imðg1Þ Imðrs

21Þ; (84)

jn1j2
jn2j2

jg1j2
jg2j2

Reðe�2g2Þjtp
21j2 ¼ ½Reðe�1g1Þð1� jrp

21j2Þ � 2 Imðe�1g1Þ Imðrp
21Þ	; (85)

one finally obtains:

hSzðr;vÞi ¼ �hv3

2p2c2

1

e�hv=kBT � 1

Z v=c

0

K dK

k2
0

1� jrs
12j2 þ 1� jrp

12j2
2

: (86)

As already mentioned, only propagating waves ðK <v=cÞ contribute to this expression. This is not

surprising because no waves come from the positive z-direction. Moreover, there is a revolution

symmetry around the z-axis. Introducing dV the elementary solid angle, we have the relation

K dK=k2
0 ¼ dVcos u=2p. The Poynting vector is then given by

hSzðr;vÞi ¼ �hv3

2p2c2

1

e�hv=kBT � 1

Z
V¼2p

cos u dV

2p

1� jrs
12j2 þ 1� jrp

12j2
2

: (87)

In the case of a blackbody, i.e. a body for which the reflection factors are null, the usual expression of the

radiative flux pI0
vðTÞ is recovered. When the dielectric situated below the interface does not behave as a

blackbody, the flux takes the usual form

qðvÞ ¼ hSzðr;vÞi ¼
Z

dv e0vðuÞI0
vðTÞcos u dV; (88)

where we have identified the emissivity e0vðuÞ ¼ ð1� jrs
12j2 þ 1� jrp

12j2Þ=2. In presence of a single

interface, we note that the radiation emitted is not different from the usual one. The near field does not

play any role in this situation.

7.3. Heat transfer between two semi-infinite polar materials: interference effects

We now focus on the heat transfer between two semi-infinite half-spaces separated by a vacuum gap

and whose temperature T1 and T2 are uniform (Fig. 16). The main changes that occur at small distance is

the fact that evanescent waves can contribute to the heat transfer through tunneling.
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We summarize in the next sections the results. Detailed derivations can be found in [85] for instance.

The radiative transfer is characterised by the radiative flux. In the phenomenological theory, this flux is

given by

qðvÞ ¼
Z 2p

0

cos u dV

Z 1

0

dv
e01ve

0
2v

1� r01vr
0
2v

½I0
vðT1Þ � I0

vðT2Þ	; (89)

where the e0iv are the directional monochromatic emissivities and the r0iv the directional monochromatic

reflectivities.

Using a fluctuational electrodynamics model, the flux can be written as the sum of two terms

qðvÞ ¼ qpropðvÞ þ qevanðvÞ.
The first term qpropðvÞ is the propagating waves contribution:

qpropðvÞ ¼
X

q¼s;p

Z
dv dVcos u

ð1� jrq
31j2Þð1� jrq

31j2Þ
j1� r

q
31r

q
32 e2ig3dj2

" #
½I0
vðT1Þ � I0

vðT2Þ	: (90)

Let us note that 1� jrs;p
31 j2 and 1� jrs;p

32 j2 are the transmission energy coefficients between media 1 and 3

and 2 and 3 for the s- or p-polarization. These coefficients can be identified as an emissivity in the same

way that it has been defined for a single interface. Let us remark that this expression for the propagating

waves contribution to the radiative flux between two semi-infinite media is very close to the usual one.

Only the denominators are different because interferences are not taken into account in the phenom-

enological model. Nevertheless, if one considers a frequency interval small in comparison with the

frequency but larger than c=d, the variation of eig3d with v is much faster than the Fresnel reflection

coefficient variations. The integration over this interval yields an average value of j1� ri
31ri

32 e2ig3dj2
which is exactly 1� jri

31j2jri
32j2. Matching the reflectivity with the Fresnel reflection energy coefficient,

one can then identify this expression for the radiative flux with the classical one.

7.3.1. Tunneling of evanescent waves

The second term qevanðvÞ is the contribution of the evanescent waves. It reads:

qevanðvÞ ¼
X

q¼s;p

Z
dv

Z 1

v=c

2K dK

k2
0

e�2 Imðg3Þd Imðrq
31Þ Imðrq

32Þ
j1� r

q
31r

q
32 e2ig3dj2

" #
½I0
vðT1Þ � I0

vðT2Þ	: (91)
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Contrary to the single interface case, this contribution does not vanish because of the existence of both

upward and downward evanescent waves in the space between the two media [98]. When the distance

reduces, this term is more and more important due to the presence of the exponential e�2 Imðg3Þd. When

the materials involved are supporting surface waves, the imaginary part of the reflection coefficient in

p-polarization becomes important around the resonant frequency, when the dielectric constant approaches

�1. If the two media are sufficiently close to allow the interaction between the exponentially decaying

surface waves bound to each interface, a transfer occurs due to the tunneling of evanescent waves.

Let us define a radiative heat transfer coefficient as the limit of the ratio of the radiative flux on the

temperature difference between the two media when this temperature tends to zero:

hRðvÞ ¼ lim
ðT1�T2Þ! 0

qðvÞ
T1 � T2

: (92)

In Fig. 17, hRðvÞ is represented versus the distance between two semi-infinite media of glass or SiC. For a

distance larger than the thermal radiation wavelength given by the Wien’s law, i.e. for d > 10mm, the

transfer does not depend on the distance. We are then in the classical regime where the transfer occurs

through the radiation of propagating waves. At shorter distances, the transfer increases as 1=d2. For a

distance of 10 nm, the radiative heat transfer coefficient has increased by four orders of magnitude

compared to its far-field value. If we now focus on the spectral dependence of the heat transfer coefficient

at a 10 nm distance (Fig. 18), we note that the heat transfer is important for the frequencies corresponding

to resonant surface waves. The heat transfer is therefore practically monochromatic in the near field. We

can also expand asymptotically the radiative heat transfer coefficient for short distances:

hRðvÞ� 1

d2

Imðe1Þ Imðe2Þ
j1þ e1j2j1þ e2j2

kB
�hv

kBT


 �2 e�hv=kBT

ðe�hv=kBT � 1Þ2 : (93)

This expression yields the 1=d2 dependence of the transfer coefficient and its strong frequency

dependence. Indeed, when the dielectric constant approaches �1, the radiative heat transfer coefficient

exhibits a peak as well as the Fresnel reflection factor. This is the signature of the presence of a surface

wave. The validity of the 1=d2 dependence has been questioned in [86] on the basis that an infinite flux is

not physical. As a matter of fact, the flux is infinite if one assumes that the temperature difference is kept

constant. This problem is analogous to the problem of an electron flux or intensity that goes to infinity if
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Fig. 17. Radiative heat transfer coefficient vs. distance for semi-infinite media of temperature T ¼ 300 K. From [85].



the resistance goes to zero at fixed voltage. This raises another question: in the case of heat transfer, the

resistance across a vacuum gap on the order of 10 nm usually remains much larger than the bulk

conduction resistance of solids over distances on the order of 100 nm. It is thus safe to assume that the

temperature is uniform in the bulk over a skin depth so that the calculation is valid.

7.4. Calculation of the heat transfer between a dielectric sphere and a half-space

7.4.1. Introduction

We calculate in this part the radiative power exchanged between a small spherical particle and a semi-

infinite medium. To this aim, we first calculate the power absorbed by the dielectric sphere placed above a

heated half-space. We then calculate the power dissipated by the half-space situated below a heated

sphere from reciprocity [94]. The geometry of the problem is presented in Fig. 19: the upper medium,

z> 0, is vacuum. A particle ðPÞ of radius a and dielectric constant ePðvÞ ¼ ePðvÞ0 þ iePðvÞ00 is held at

temperature TP. The lower medium is filled by a homogeneous, isotropic material (bulk) of dielectric

constant eBðvÞ ¼ e0BðvÞ þ ie00BðvÞ and held at temperature TB. The center of the particle is at a distance d

above the interface.

7.4.2. Power absorbed by the bulk: near-field limit

A calculation following the procedures already introduced (see, e.g. [83,94]), yields the power

absorbed by the particle when illuminated by the field radiated by a half-space:

PB!P
abs ðvÞ ¼ 2

p

v4

c4
Im½eBðvÞ	 Im½aðvÞ	Qðv; TBÞ

X
n;m

Z
B

jGnmðrP; r0;vÞj2 d3r0: (94)

If we consider the fluctuating currents inside the particle that radiates into the bulk and dissipates, one can

calculate by the same formalism the power locally dissipated per unit volume at a point r inside the bulk.

It reads

PP!B
abs ðr;vÞ ¼ 2

p

v4

c4
Im½eBðvÞ	 Im½aðvÞ	Qðv; TPÞ

X
n;m

jGnmðr; rP;vÞj2: (95)
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Fig. 18. Monochromatic heat transfer coefficient for a distance d ¼ 10 nm and a temperature T ¼ 300 K. From [85].



From the expression of the one-interface Green’s tensor, it is possible to expand asymptotically the

expression of the power absorbed by the particle. This quantity behaves as 1=d3 and reads

PB!P
abs ðd;vÞ� 1

4p2d3
4pa3 3e00PðvÞ

jePðvÞ þ 2j2
e00BðvÞ

jeBðvÞ þ 1j2 Qðv;TBÞ: (96)

From this expression, we see that there is an enhancement of the power absorbed if the denominators

vanish or approach zero. We have seen that it is the case if the material support resonant surface waves so

that the dielectric constant of the material can take negative values. We study in the next section the case

of SiC.

7.4.3. Example of SiC

As it has been said in the first part of the article, SiC is a polar material that can be described by an

oscillator model (22). In Fig. 20, we plot PB!P
abs ðvÞ for a spherical particle held at temperature

TP ¼ 300 K of radius a ¼ 5 nm at different distances above the surface. We note that the figure

displays two remarkable peaks at frequency v1� 1:756� 1014 rad s�1 and v2� 1:787� 1014 rad s�1.

These two peaks correspond to the resonances of the system. The first one corresponds to a frequency

where ePðvÞ approaches�2: a volume phonon polariton is excited in the particle inducing a large electric

dipole and a large dissipation. The second one is related to the resonant surface wave corresponding to a

large increase of the electromagnetic LDOS. Thus, the radiative heat transfer in the near field can be

considered as monochromatic. The electromagnetic waves associated with the resonant surface waves

are evanescent. The energy transfer, which finds its origin in the presence of these waves, is important

because the particle lies in the region (up to many micrometers) where the evanescent field is large, so
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Fig. 19. Geometry of the system.



that there is an efficient coupling between the field and the particle. In the far field, evanescent waves are

negligible and usual results are retrieved. Fig. 21 shows the integrated power absorbed by the same

particle versus the distance d. The near-field radiative heat transfer increases as 1=d3 (as it was suggested

by the asymptotic behaviour) and is larger at small distances by several orders of magnitude than the far

field one. This enhancement comes from the contribution of evanescent waves. Reciprocity requires that

the same enhanced radiative heat transfer appears when the particle illuminates the surface. This situation

may help to understand the radiative heat exchange between a nano-tip (like those used in near-field

microscopy) and a sample. To answer this question, we calculated from (95) the total power (integrated

over frequencies) dissipated per unit volume for different points in the sample. Fig. 22 displays a map, in

log-scale, of the dissipation rate in the case of a 10 nm diameter sphere of SiC at TP ¼ 300 K situated
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Fig. 20. Mean power radiated by the bulk (at TB ¼ 300 K) and absorbed by the particle (of radius a ¼ 5 nm) vs. frequency: (a)

d ¼ 20 nm; (b) d ¼ 50 nm; (c) d ¼ 100 nm. The insert (log–log-scale) shows the spectrum of the absorbed power between 1012

and 1015 rad s�1; (e) d ¼ 20 nm; (f) d ¼ 1 mm. From [94].

Fig. 21. Total power radiated by the bulk (at TB ¼ 300 K) and absorbed by the particle (of radius a ¼ 5 nm) vs. distance. From

[94].



100 nm above a sample of SiC. It is seen that the energy is dissipated on a scale comparable to the tip–

sample distance. The dissipation per unit volume decreases very fast (1=r6) with the distance r between

the source and the point of the sample where the dissipation is considered (the isocontour labeled with a

‘6’ corresponds to the points where the dissipation per unit volume is 106 W m�3. The amount of energy

locally deposited is as large as 100 MW m�3. We note that the dependence of the heat deposited

follows the same regime as in the two particles exchange in the vacuum. This is not surprising. Here

also the phenomenon is due to an interaction between induced dipoles. This phenomenon is also at

the origin of the force between macroscopic bodies at nanometric distances which is the subject of the

next section.

8. Role of surface electromagnetic waves on the Casimir force

8.1. Introduction

After having considered the energy exchange due to the interaction in the near field between surface

waves, it is natural to wonder what happens in terms of momentum exchange in the near field when two

semi-infinite bodies are approached face to face. This situation is actually well known since 1948, when

Casimir and Polder [99,100] first showed the existence of an attracting force between two parallel perfect

conductors. A large body of literature has been devoted to this effect and several reviews are available

[101–106]. The seminal paper of Lifshitz [107] occupies a special place because it was the first

calculation of this force by means of the FDT for the currents. Agarwal [108] reported a similar

calculation using the FDT for the fields. There has been an increasing interest in the Casimir force since it

has been shown that this force could be measured with high accuracy [109–114] and that it should be

considered in the design of micro-electromechanical systems (MEMS) [115,116]. Various corrections to

this force have been studied such as finite conductivity [117] or temperature corrections [118,119]. In

what follows, we discuss the role of surface waves in the Casimir force. We will show that they play a key

role in the short-distance regime.
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Fig. 22. Deposited power per unit volume inside the bulk. The particle has a radius a ¼ 5 nm and is held at temperature

TP ¼ 300 K. From [94].



To get a simple picture of Casimir force, we recall that a system of two plane parallel reflecting planes

is a waveguide. The number of electromagnetic modes in the waveguide is discrete and depends on the

thickness of the waveguide. From quantum electrodynamics, it is known that each mode with frequency

v has a minimum energy �hv=2 referred to as vacuum fluctuations. If the thickness decreases, the number

of modes decreases so that the electromagnetic energy decreases. Hence, the existence of vacuum

fluctuations entails that there is an attractive force between the two plates. This phenomenon is clearly a

macroscopic manifestation of the electromagnetic energy of the vacuum which is a pure quantum effect.

Yet, its computation amounts to count the number of electromagnetic modes available and this is a pure

classical problem. As has been discussed in the previous sections, the local density of electromagnetic

states is completely dominated by the existence of surface modes. It follows that the role of surface waves

is essential in the physics of the Casimir force in the short-distance regime.

In classical electrodynamics, the momentum transfer is given by the Maxwell stress tensor Ti j[34].

The fields can be derived using the FDT [120]. Using the system Green tensors for the electric and the

magnetic field, it is possible to obtain this quantity. In the case of two semi-infinite bodies separated along

the z-axis by a vacuum gap, the momentum flux reduces to the zz-component Tzz of the Maxwell stress

tensor given by

Tzz ¼ e0

2
½jExj2 þ jEyj2 � jEzj2	 þ m0

2
½jHxj2 þ jHyj2 � jHzj2	: (97)

One has to subtract the infinite contribution to the force in the absence of bodies [121]. The force can be

attractive or repulsive depending on the materials properties [122,123]. One obtains an attractive force in

the case of dielectrics [124] and a force that might be repulsive in some configurations implying magnetic

materials [125,126].

8.2. Spectrum of the force

Lifshitz [107] obtained a force per unit area given by

F ¼
Z 1

0

dv

2p

Z 1

0

du

2p
Fðu;vÞ; (98)

Fðu;vÞ ¼ � 2�hv3

c3
Im uv

X
m¼s;p

r2
mðu;vÞ e�2ðv=cÞvd

1� r2
mðu;vÞ e�2ðv=cÞvd

; (99)

where v ¼ ðu2 � 1Þ1=2 ðIm v � 0Þ, and rm is the Fresnel reflection coefficient for a plane wave with

polarization m and wavevector K ¼ ðv=cÞu parallel to the vacuum–medium interface. We use the

convention that an attractive force corresponds to F < 0. The force appears as the contribution of

elementary plane waves whose angular frequency is v and whose wavevector parallel to the interface is

uv=c. In his paper, Lifshitz used a deformation contour in the complex plane of frequencies to obtain a

final formula where the summation over the wavevector is replaced by an integral over v and the

summation over the frequencies is replaced by an integral over the imaginary frequencies v ¼ ij. This

approach has the advantage to replace the oscillating exponentials with smooth real functions that make

the integral easy to integrate numerically. Nevertheless, by doing such a deformation contour, one is

losing the spectral information contained in the expression (98). What we are going to show in the

following is that the main contribution to the force in the near field is coming from the coupled polaritons

of both interfaces. Therefore, we will see that there is a complete analogy in the interpretation of the
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momentum transfer with the interpretation of the energy transfer in terms of interaction of surface-

polaritons.

Let us study the force spectrum in the case of two real materials. In the case of SiC (Fig. 23), the force

is dominated by the UV and IR contributions. Actually, due to the presence of the v3 in the expression

(98), the UV contribution is much more important than the IR one.
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Fig. 23. Contributions of s- and p-polarized, propagating and evanescent modes to the force spectrum (as given by (98) after

integration over the wavevector u). Distance d ¼ 10 nm. Material: SiC, dielectric function with two resonances. The angular

frequencies of the corresponding surface resonances are 1:78� 1014 s�1 in the IR and 2:45� 1016 s�1 in the UV [46]. From

[120].

Fig. 24. Contributions of s- and p-polarized, propagating and evanescent modes to the force spectrum ((98) integrated on the

wavevector u). Distance d ¼ 10 nm. Material: aluminum, described by tabulated optical data [46]. From [120].



Fig. 24 represents the force spectrum between two aluminum half-spaces. It is seen that all the

contributions are coming from frequencies very close to plasmon-polariton resonances. From expression

(98), it is easy to separate the polarization contributions, the propagative contribution ð0 � u � 1Þ and

the evanescent one ðu> 1Þ. We see in Figs. 23 and 24 that the peaks exist only in p-polarization and for

evanescent waves. This fact is an additional argument in favor of an interpretation of the force being

caused by the interaction between polaritons which are not propagating and only appear in p-polarization.

An interpretation of the phenomenon is the following. At frequencies close to the system resonances, i.e.

close to the surface waves frequencies, the density of electromagnetic states increases. Thus, the amount

of momentum carried in the gap increases too.1 This interpretation is only valid at distances of the order

of the wavelength of the surface wave. At larger distances, the force is dominated by the propagative

contribution as first pointed out by Casimir. We note also that the contribution to the force at such small

distances has a different sign whether the frequency is lower or higher than the resonant frequency.

However, the total Casimir force between dielectrics is always positive and smaller than the one for

perfect conductors.

8.3. Binding and antibinding resonances

The role of SPP can be further analysed by studying the variation of the integrand of the force Fðu;vÞ
in the plane ðu;vÞ. Close to the resonant surface-wave frequency vSW, the contributions to the force

come from evanescent waves. We therefore limit our study to the case u> 1 and close to v�vSW. In

Fig. 25a, we plot the integrand Fðu;vÞ for two aluminum half-spaces separated by a distance d ¼ 10 nm.

Two branches mainly contribute, the higher frequency branch yielding a repulsive contribution whereas

the lower one gives an attractive contribution. These two branches actually follow the two-interface

system dispersion relation given by

1� r2
p e�2ðv=cÞvd ¼ 0: (100)

The influence of the dispersion relation on the force is illustrated in Fig. 25b. In this figure, the quantity

1=j1� r2
p e�2ðv=cÞvdj2 is plotted in the ðu;vÞ plane. Upon comparison between Fig. 25a and b, it is clearly

seen that the main contribution to the force can be attributed to the SPP. In addition, we observe in

Fig. 25b a dark line which corresponds to minima of 1=j1� r2
p e�2ðv=cÞvdj2. The minima can be attributed

to very large values of the reflection factor of a plane interface rp. Thus, the dark line is the dispersion

relation of a single SPP on a flat interface.

In Fig. 26, the integrand is plotted for two aluminum half-spaces separated by a distance d ¼ 100 nm:

the two branches tend to merge with the flat interface dispersion relation. One can thus propose the

following interpretation: when the surfaces approach each other, the overlapping of the two SPP leads to

two coupled modes and to a splitting of the polaritons frequencies [127,128]. The frequency splitting can

be found from the solutions of (100) which are implicitly defined by

rpðu;vÞ ¼  evvd=c:

The signs correspond to either symmetric or antisymmetric mode functions (for the magnetic field), as

sketched in the inset of Fig. 26. The symmetric (antisymmetric) branch corresponds to a lower (higher)
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resonance frequency, respectively, similar to molecular orbitals and tunneling doublets. These branches

contribute with opposite signs to the Casimir force, due to the following identity:

2r2
pðv; uÞ e�2vvd=c

1� r2
pðv; uÞ e�2vvd=c

¼ rpðv; uÞ e�vvd=c

1� rpðv; uÞ e�vvd=c
� rpðv; uÞ e�vvd=c

1þ rpðv; uÞ e�vvd=c
; (101)

where the first (second) term is peaked at the symmetric (antisymmetric) cavity mode. The symmetry of

the resonance mode function hence determines the attractive or repulsive character of its contribution to

the Casimir force.

8.4. Analytical formulation of the short-distance limit

Using a simple Lorentz–Drude model for the dielectric function,

eðvÞ ¼ 1þ 2ðV2 � v2
0Þ

V2 � igv� v2
; (102)
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Fig. 25. (a) Wavevector resolved spectrum of the Casimir force (98) in the ðu;vÞ plane between two aluminum half-spaces

separated by a distance of 10 nm. The frequency of the flat asymptote corresponds to the peaks of the force spectrum (Fig. 24):

light (dark) areas: attractive (repulsive) force; (b) resonant denominator j1=1� r2
p e�2ðv=cÞvdj2 in the ðu;vÞ plane, the gray scale

giving the logarithm to base 10. The dispersion relation of the coupled surface resonance corresponds to light areas; dark area:

dispersion for a single interface (20). The dielectric function is extracted from tabulated data [46]. The inset sketches the

magnetic field of the coupled surface resonances (antisymmetric and symmetric combinations). From [120].



we can derive a simple analytic form of the force in the near-field limit that accounts for the modification

of the local density of states due to the surface waves and that takes into account absorption effects. This

model describes either dielectric or metals depending on the value of v0. The corresponding plasma

frequency is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV2 � v2

0Þ
q

. With this convention, the large u asymptote of the SPP dispersion (20)

occurs at v�V. As the distance d reduces to a quantity small compared to the wavelength, the

evanescent contribution to the force comes from higher and higher parallel wavevector. When u� 1, the

reflection coefficient in p-polarization can be approximated by

u� 1 : rpðv; uÞ� V2 � v2
0

V2 � igv� v2
: (103)

It is seen that the reflection factor has a complex pole. From (100), we thus get the following dispersion

relation for the (anti)symmetric surface-plasmon resonances, neglecting for the moment the damping

coefficient g:

v2
 �V2! e�v ud=cðV2 � v2

0Þ; (104)

where we have used v� u for u� 1. For large u, we solve by iteration and find that v 6V. As

announced above, the symmetric mode thus occurs at a lower resonance frequency.
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Fig. 26. Same as Fig. 25 but for d ¼ 100 nm. From [120].



To derive an analytical estimate for the Casimir force, we retain in (98) only the contribution of p-

polarized, evanescent waves. The final result [120] contains two contributions:

F ¼ �hV

4pd3
aðzÞ � g Li3ðz2Þ

4pV


 �
; (105)

where

aðzÞ ¼ 1

4

X1
n¼1

z2n ð4n� 3Þ!!
n3ð4n� 2Þ!! (106)

and

Li3ðz2Þ ¼
X1
n¼1

z2n

n3
: (107)

When z! 1, we get the following asymptotics:

aðzÞ� 0:1388� 0:32ð1� zÞ þ 0:4ð1� zÞ2; (108)

Li3ðz2Þ� zð3Þ � p2

3
ð1� zÞ þ 3� p2

6
� 2ln ½2ð1� zÞ	

� 

ð1� zÞ2 (109)

with zð3Þ� 1:202. For a metal, the parameter z takes the value 1 so that we have að1Þ� 0:1388 and

Li3� 1:202. We compare (105) in Fig. 27 to the full integral (98) for the case of aluminum: the

asymptotic estimation turns out to be quite accurate for distances d � 0:1lSPP, where lSPP is the

wavelength of the SPP with the largest frequency. In the case of aluminum, the first order correction in

g=V is 2.5% of the zeroth order value of the force. The plot also shows that for numerical integration, the

tabulated data [46] and the Lorentz–Drude model (102) with parameters fitted around the surface

resonance give very close results over a large range of distances. This is another indication that the short

range Casimir force is dominated by a narrow frequency range.

8.5. Friction forces

The Casimir force that has been analysed in the previous section is not the only one that occurs when

two bodies are approached one to each other. A particle moving in a vacuum experiences a friction force

proportional to its velocity as first discussed by Einstein [102,129–132]. Again, the friction force arises

from the fluctuations of the electromagnetic field. A major difference between friction forces and Casimir

force is that the leading contributions come from the low frequencies for friction. By contrast, high

frequencies contribution gives the largest contribution to vacuum energy and therefore gives the leading

contribution to the Casimir force. The friction force has been studied recently for a particle in close

proximity to an interface. This force has been used to develop a near field imagery technique called shear-

force microscopy [133–135]. The exact origin of these forces is still unclear. Recently, experiments on

shear force [136,137] have been conducted in ultra-high vacuum in order to eliminate forces due to a

water monolayer for instance. Different models have been developed to explain the origin of the friction

force between two parallel surfaces [40,138–141] in the framework of fluctuational electrodynamic

fields. The case of a particle moving parallel to a surface has been considered in [142–144]. The friction

force for particles moving perpendicular to the surface has also been considered experimentally [145] and
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theoretically [146]. Volokitin and Persson [147,148] have shown that the friction force is much larger for

the perpendicular case. The problem is still open because the discrepancy between theory and

experiments is very large. Recently, it has been proposed [149] that the friction observed in the

experiment by Stipe et al. could be due to the dielectric located below the gold film. Volokitin and Persson

[147] have suggested that adsorbates might produce a very large enhancement of the friction forces.

Clearly, more experiments are needed to clarify this issue.

9. Concluding remarks

Many years after the discovery of surface polaritons, new discoveries and effects are still being

reported. A major reason is the development of near-field techniques that allows us to probe the

properties of surfaces with a nanometric resolution and motivates further work. Although thermal

excitation of surface waves had been studied in the past, their major role in many phenomena has been

realized only recently. It has been shown that heat transfer is dramatically enhanced in the near field due

to the resonant contribution of surface waves. It has been shown that the electromagnetic field emitted by

a thermal source may be partially temporally coherent and partially spatially coherent in the near field. It

has also been shown that the far-field emission properties of surfaces can be engineered by exciting and

coupling efficiently surface waves. Partially spatially coherent thermal sources have been realized.

Applications to emitting light devices are under study. The role of surface excitations in the Casimir force
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Fig. 27. Comparison of different expressions for the Casimir force between aluminum surfaces. We plot the ratio FðdÞ=FCasðdÞ,
where FCasðdÞ ¼ �hcp2=ð240d4Þ is the Casimir force for perfect mirrors. Solid line: numerical integration of (98), using

tabulated data [46]. Short-dashed line with circles: same, with a model dielectric function of Drude form (102) with v0 ¼ 0,

V ¼ 1:66� 1016 s�1, and g=V ¼ 0:036. These parameters have been derived by fitting the value of the reflectivity. Long-

dashed line: short-distance asymptotics (105) with the same values for v0, V and g. From [120].



has been clarified and the agreement between experiments and models is now satisfactory. The situation

for friction forces is far less clear. There are still large discrepancies between published data and models.
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Appendix A. Green’s tensor

A.1. Green’s tensor in a vacuum

The Green’s tensor in a vacuum is defined by the relation:

EðrÞ ¼ m0v
2 G
$
ðr; r0Þp: (A.1)

Its explicit form expression is given by:

G
$
ðr; r0;vÞ ¼ k eikR

4p

1

kR
þ i

ðkRÞ2 �
1

ðkRÞ3
 !

I
$ þ ðururÞ 3

ðkRÞ3 �
3i

ðkRÞ2 �
1

kR

 !" #
; (A.2)

where R ¼ jr� r0j, I
$

is the identity tensor and urur is a tensor in dyadic notation such that

ðururÞA ¼ urður � AÞ.

A.2. Green’s tensor above an interface

For the plane interface system, it is convenient to use the representation due to Sipe [45] that consists

of a decomposition over elementary plane waves. We use again the dyadic notation for the tensors. For

instance, the s-component of the electric field is given by ŝŝE ¼ ŝðŝ � EÞ. In the case of a Green tensor

relating currents in the lower half-space (r0 in medium 2) to a field in the upper half-space (r in medium

1), one has:

G
$EE

ðr; r0;vÞ ¼ i

2

Z
d2K

4p2

1

g2

ŝts
21ŝþ p̂þ1 t

p
21 p̂þ2

� �
eiK�ðR�R0Þ eig1z�ig2z0 (A.3)

and

G
$HE

ðr; r0;vÞ ¼ k0n1

2

Z
d2K

4p2

1

g2

p̂þ1 ts
21ŝ� ŝt

p
21 p̂þ2

� �
eiK�ðR�R0Þ eig1z�ig2z0 : (A.4)

In the expression ŝ ¼ K� ẑ=jKj and p̂ i ¼ �½giK=jKj !Kẑ	=ðnik0Þ. The transmission factors are

defined by:

t
p
21 ¼

2n1n2g2

e1g2 þ e2g1

; ts
21 ¼

2g2

g1 þ g2

: (A.5)

Note that the transmission factor for p-polarization has a pole that corresponds to the surface wave. Thus

the Green’s tensor contains all the information on surface waves.
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In the case of two points lying above the interface in medium 1, the tensor can be cast in the form:

G
$EE

ðr; r0;vÞ ¼ i

Z
d2K

4p2

ŝrs
12ŝþ p̂þ1 r

p
12 p̂�1

2g1

eig1ðzþz0Þ þ ŝŝþ p̂ p̂

2g1

eig1jz�z0j þ idðz� z0Þ
k2

0e1

ẑẑ

" #
eiK�ðR�R0Þ

(A.6)

G
$HE

ðr; r0;vÞ ¼
Z

d2K

4p2

(
k0n1

2g1

"
ð p̂þ1 rs

12ŝ� ŝr
p
12 p̂�1 Þeig1ðzþz0Þ þ ð p̂ŝ� ŝp̂Þeig1jz�z0j

þ i

k2
0e1

dðz� z0Þðkyx̂ẑ� kxŷẑÞ
#)

eiK�ðR�R0Þ; (A.7)

where the reflection factors are:

r
p
12 ¼

�e1g2 þ e2g1

e1g2 þ e2g1

; rs
12 ¼

g1 � g2

g1 þ g2

: (A.8)

and where we have defined p̂ ¼ ½Kẑ� g3ẑðz� z0Þ=jz� z0j	=k0n3.

A.3. Green’s tensor for a two-interface system

We now consider a two-layer system. The upper medium is denoted as 1 and lies above z ¼ d. The

lower medium (z< 0) is medium 2. Medium 3 is defined by d > z> 0. The Green’s tensor relating the

currents in medium 2 to the field in medium 1 with a film of medium 3 between media 1 and 2 are given

by

G
$EE

ðr; r0;vÞ ¼ i

2

Z
d2K

4p2

1

g2

ðŝts
12ŝþ p̂þ1 t

p
12 p̂þ2 Þ ei½K�ðR�R0Þ	 ei½g1ðz�dÞ�g2z0	 (A.9)

and

G
$HE

ðr; r0;vÞ ¼ k0n2

2

Z
d2K

4p2

1

g2

ð p̂þ1 ts
21ŝ� ŝt

p
21 p̂þ2 Þ ei½K�ðR�R0Þ	 ei½g1ðz�dÞ�ig2z0	; (A.10)

where

t
s;p
21 ¼

t
s;p
31 t

s;p
23 eig3d

1� r
s;p
31 r

s;p
32 ei2g3d

: (A.11)

Note that the two-interface Green’s tensor is very similar to the single interface one, except that the single

interface transmission coefficient has to be replaced by a generalised transmission coefficient taking into

account the multiple reflections.

When r and r0 are in the film (medium 3), the Green’s tensor can be cast in the form:

G
$EE

ðr; r0;vÞ ¼
Z

d2K

4p2
g
$EEðK; z; z0Þ exp ½iKðR� R0Þ	; (A.12)
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where g$ EEðK; z; z0Þ is the sum of three contributions:

g
$EEðK; z; z0Þ ¼ i

2g3

½ŝŝþ p̂p̂	exp ½ig3jz� z0j	 � 1

k2
0e3

dðz� z0Þẑẑþ i

2g3

½ŝrs
32ŝþ p̂þ3 r

p
32 p̂�3 	

� exp ½ig3ðzþ z0Þ	 þ i

2g3

½ŝrs
31ŝþ p̂�3 r

p
31 p̂þ3 	 exp ½ig3ðd � zþ d � z0Þ	; (A.13)

where

r
s;p
31 ¼

r
s;p
31

1� r
s;p
31 r

s;p
32 ei2g3d

; r
s;p
32 ¼

r
s;p
32

1� r
s;p
31 r

s;p
32 ei2g3d

: (A.14)

Appendix B. Fluctuation–dissipation theorem

In this section, we derive the appropriate spectral density for an absorption measurement and for a

quantum-counter measurement. The operator needed to describe the absorption of a photon involves the

normally ordered correlation function of the field operator hEð�Þk E
ðþÞ
l i, where Eðþ=�Þ is defined using

only the positive or negative frequencies of the spectrum. We quote from Agarwal [31] the cross-spectral

density of the normally and antinormally ordered electric fields:

EðNÞkl ðr; r0;vÞ ¼ hð�vÞm0�hv
2 1þ coth

�hv

2kBT


 �� 

Im½GEE

kl ðr; r0;vÞ	; (B.1)

EðAÞkl ðr; r0;vÞ ¼ hðvÞm0�hv
2 1þ coth

�hv

2kBT


 �� 

Im½GEE

kl ðr; r0;vÞ	; (B.2)

where hðvÞ is the Heaviside function. It is seen that the normally ordered cross-spectral density involves

only negative frequencies whereas the antinormally ordered correlation involves only positive frequen-

cies. They can be viewed as an analytic signal. Despite the apparent symmetry of the above equations,

there is a critical difference as will be seen in the next section.

B.1. Absorption measurement

Let us now derive the time-correlation function for the electric field. From Agarwal [31], we have

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re½hEð�Þk ðr; t þ tÞEðþÞl ðr0; tÞi	: (B.3)

Using the cross-spectral density (B.1), we get

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re

Z 0

�1
dv

2p
exp ð�ivtÞm0�hv

2 Im½GE
kl	 1þ coth

�hv

2kBT


 �� 
� 

: (B.4)

We note that

Im½GE
klðr; r0;�vÞ	 ¼ �Im½GE

klðr; r0;vÞ	 (B.5)
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and

1þ coth
�hv

2kBT


 �� 

¼ � 2

exp ð�hjvj=kBTÞ � 1
(B.6)

so that the correlation function can be cast in the form:

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re

Z 1

0

dv

2p
exp ðivtÞ2m0v Im½GEE

kl 	Qðv; TÞ
� 


: (B.7)

B.2. Quantum-counter measurement

We derive now the time-correlation starting from the antinormally ordered correlation function. This

choice is appropriate for a quantum-counter experiment. The Casimir effect that depends on the total

energy of the system pertains to this category. From Agarwal [31], we have

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re½hEðþÞk ðr; t þ tÞEð�Þl ðr0; tÞi	: (B.8)

Using the cross-spectral density (B.1), we get

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re

Z 1

0

dv

2p
exp ð�ivtÞm0�hv

2 Im½GEE
kl 	 1þ coth

�hv

2kBT


 �� 
� 

: (B.9)

We note that

1þ coth
�hv

2kBT


 �� 

¼ 2þ 2

exp ð�hv=kBTÞ � 1
; (B.10)

so that the correlation function can be cast in the form:

hEkðr; t þ tÞElðr0; tÞi ¼ 2 Re

Z 1

0

dv

2p
exp ð�ivtÞ2m0v Im½GEE

kl 	½�hvþQðv;TÞ	
� 


: (B.11)

We conclude by noting that both results have a similar structure and can be described by an effective

spectrum defined for positive frequencies only. This analysis provides a justification for the heuristic

argument often used to drop the vacuum energy fluctuation.
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Heat transport at nanoscales in semiconductors is investigated with a statistical method. The Boltzmann
transport equation �BTE�, which characterizes phonon motion and interaction within the crystal lattice, has
been simulated with a Monte Carlo technique. Our model takes into account media frequency properties
through the dispersion curves for longitudinal and transverse acoustic branches. The BTE collisional term
involving phonon scattering processes is simulated with the relaxation times approximation theory. A new
distribution function accounting for the collisional processes has been developed in order to respect energy
conservation during phonons scattering events. This nondeterministic approach provides satisfactory results in
what concerns phonon transport in both ballistic and diffusion regimes. The simulation code has been tested
with silicon and germanium thin films; temperature propagation within samples is presented and compared to
analytical solutions �in the diffusion regime�. The two-material bulk thermal conductivity is retrieved for
temperature ranging between 100 K and 500 K. Heat transfer within a plane wall with a large thermal gradient
�250 K to 500 K� is proposed in order to expose the model ability to simulate conductivity thermal dependence
on heat exchange at nanoscales. Finally, size effects and validity of heat conduction law are investigated for
several slab thicknesses.
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I. INTRODUCTION

The development of nanotechnologies has led to an un-
precedented size reduction of the electronic and mechanical
devices. For example, transistors of a few nanometer size are
now openly considered.1 The heat that will be dissipated by
joule effect in these semiconductor junctions will reach soon
the levels of the heat dissipated in a light bulb. This high
volumetric heat dissipation in electronic devices will have to
be evacuated very efficiently in order to avoid possible fail-
ures of the systems. This task will not be achieved without a
precise knowledge of the phenomena governing the heat
transfer at nanoscale. Furthermore, new technologies based
on a local heating are being developed in order to enlarge the
computer hard disk capacity. The ultimate limit of storage is
to write a byte at the atomic scale. This goal is already fea-
sible with near-field microscope probes but at a too slow
rate. A way to write bytes at the nanometer scale is the melt-
ing of a polymer by heating it on a very short time scale
��1 ns� by an array of heated near-field probes.2 In this ex-
ample, the heat transfer has to be controlled not only at the
nanometer scale but also at the nanosecond scale.

Through these two examples, one can anticipate that the
foreseeing technological challenges in miniaturization will
have to solve more and more problems of heat transfer at
short time and space scale. However, the physics of heat
transfer usually used �Fourier’s law, radiative transfer equa-
tion� can no longer be applied when some characteristic
length scales are reached.3 In thermal radiation, for example,
wave effects appear as the system characteristic lengths be-
comes lower than the typical wavelength ���10 �m at T
=300 K�.4,5 A substantial increase of the radiative heat trans-
fer can even be reached at nanometric distances.6 On its side,
heat conduction is classically described by the Fourier law
and the heat conduction equation ��T /�t=��T� which is a

diffusion equation. It is well known that this kind of equation
can be interpreted as a random walk of particles.7 In the case
of heat conduction, we are actually dealing with energy car-
riers which are electrons in metals and phonons in crystalline
materials. When these carriers undergo a large number of
collisions, the use of the diffusion equation is valid whereas
a more careful study is required when the number of inter-
actions between carriers lowers.

A way to achieve this goal is to consider the evolution of
a distribution function f�r ,p , t� which describes the number
of particles in a certain elementary volume d3rd3p around
the point �r ,p� in the phase space. The evolution equation of
f , called the Boltzmann transport equation �BTE�, makes f
vary in space and time under the influence of advection,
external force, and collision.8 Note that this approach is not
relevant to treat the wave aspects of the problem such as
interference or tunneling. The understanding and the model-
ing of the collision term is actually the key point in the
resolution of the BTE. It can sometimes be fully expressed as
in radiation transfer. Then the collision term is in that case
the sum of an absorption term, an elastic scattering term, and
an emission term proportional to an equilibrium
distribution.9 Many resolution techniques have been devel-
oped in radiation transfer such as the discrete ordinates
method, the Monte Carlo method, or the ray-tracing
method.10 They can hardly be used when the collision pro-
cesses are inelastic as it is the case for electrons and
phonons.11 For example, the phonons, which are eigenmodes
of the harmonic oscillators constituting the crystal, can only
interact through the anharmonic term of the potential leading
to three or more phonon collisions. These interactions pre-
serve neither the number of phonons nor their frequency in
the collision process. Nevertheless, these three or four pho-
non interactions tend to restore thermal equilibrium, i.e., to
help the phonons to follow an equilibrium distribution func-
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tion which can be easily determined from thermodynamic
equilibrium considerations. Thus, many of the studies ap-
proximate the collision term in the BTE by the so-called
relaxation time approximation: the distribution function
f�r ,p , t� relaxes to an equilibrium function f0�r ,p� on a time
scale ��p�. The BTE resulting from this approximation is
nothing but the radiative transfer equation without
scattering.12 All the numerical tools developed in thermal
radiation can therefore be used in this case. The key point in
this model is to calculate a suitable ��p� in order to charac-
terize the collisions.

In the middle of the 20th century, a great theoretical effort
has been made to determine the relaxation times of the
phonons in a bulk material. At ambient temperature, it has
been shown that the main contribution to the relaxation time
finds its origin in the anharmonic phonon interaction. These
anharmonic interactions can be triadic or quartic. Triadic in-
teractions involve three phonons �for example, two phonons
anihilate to give birth to a third one� whereas quartic inter-
actions involve four phonons �two phonon anihilate to give
birth to two others�. Quartic interactions contribute often less
to the phonon relaxation time, but sometimes have to be
taken into account, especially in the case of high tempera-
tures �T	1000 K� as it has been shown by Ecsedy and
Klemens.13 At ambient and low temperature, semiconductor
�such as Si and Ge, which are treated here� studies are usu-
ally limited to triadic interactions.14 Nevertheless, taking
them into account or not does not change the ways the BTE
can be solved. Among these anharmonic processes, two dif-
ferent kinds can be identified. The so-called normal pro-
cesses �N�, which maintain the momentum in the collision,
and the Umklapp processes �U�, which do not preserve the
momentum. The former do not affect the material thermal
resistance, contrary to the latter. These Umklapp processes
follow selection rules15 and it is an amazing feat to calculate
them.16

In the case of semiconductors such as silicon �Si�, germa-
nium �Ge�,17,18 and gallium arsenide �GaAs�,19,20 the relax-
ation times have allowed us to compute semianalytically
thermal conductivities in good agreement with measure-
ments. Resolution of the BTE have been achieved on these
materials in bulk situations, thin film, or superlattice
configuration.12,21–23 At short time scale, these resolutions
have been compared to classical solutions24,25 and some
modifications of the BTE have been proposed.26 The resolu-
tions based on the discrete ordinates method or on the finite
volumes method converge very quickly numerically but have
a major drawback: they are governed by a single relaxation
time taking into account all the different processes of relax-
ation such as the anharmonic interactions between phonons,
the interactions with impurities and dislocations, or the scat-
tering on the material boundaries. The Matthiesen rule,
which states that the inverse of the total relaxation term is the
sum of the relaxation times due to every different phenom-
ena, is usually used. In the context of the BTE in the relax-
ation time approximation, this means that all the different
interaction or scattering phenomena tend to restore thermal
equilibrium.

An alternative way to solve the BTE is the Monte Carlo
method. This method is quite computer time greedy because

it necessitates to following a large number of energy carriers,
but it becomes competitive when the complexity of the prob-
lem increases, particularly for nontrivial geometries. This
method is therefore useful in order to calculate the heat trans-
fer in electronic devices of any shape. Moreover, in this
method, different scattering phenomena �impurities scatter-
ing, boundary scattering, and inelastic scattering� can be
treated separately. The resolution of the BTE by the Monte
Carlo method has been performed for electrons27–32 but has
been little used in the case of phonons. Peterson33 performed
a Monte Carlo simulation for phonons in the Debye approxi-
mation with a single relaxation time. He presented results
both in the transient regime and in equilibrium situation. Ma-
zumder and Majumdar34 followed Peterson’s approach but
included in their simulation the dispersion and the different
acoustic polarization branches. They retrieved both the bal-
listic and the diffusion situation but did not show any result
in the transient regime. Another limit of this last paper is that
the N processes and the U processes are not treated sepa-
rately although they do not contribute in the same way to the
conductivity.

The starting point in our work is these two contributions.
We follow individual phonons in a space divided into cells.
The phonons, after a drift phase, are able to interact and to be
scattered. The speed and the rate at which phonons scatter
depends on the frequency. We ensure that energy is con-
served after each scattering process. This procedure is differ-
ent whether the phonons interact through an N process or a U
process. This paper is therefore an improvement of existing
phonon Monte Carlo methods and is validated on simple
examples such as a semiconductor film heated at two differ-
ent temperatures.

Section II recalls the basic hypothesis governing the BTE.
Fundamental quantities such as the number of phonons, the
energy, and the density of states are also defined. The phonon
properties are also presented through their dispersion rela-
tions. Section III exposes the Monte Carlo method used in
this paper. Boundary conditions, phonon drift, and scattering
procedures are given in detail. Section IV presents transient
results in the diffusion and ballistic regimes. Thermal con-
ductivities of silicon and germanium between 100 K and 500
K are numerically estimated. The influence of conductivity
thermal dependence on heat conduction within a slab is stud-
ied. Finally, size effects on phonon transport at very short
scales are considered.

II. THEORY

A. Boltzmann transport equation

The Boltzmann transport equation �BTE� is used to model
the phonon behavior in a crystal lattice. This equation is
related to the variation of the distribution function f�t ,r ,K�
which depends on time t, location r, and wave vector K.
f�t ,r ,K� can also be defined as the mean particle number at
time t in the d3r volume around r with K wave vector and
d3K accuracy. In the absence of external force, the BTE
expression is35

� f

�t
+ �K
 · �rf = � � f

�t
�

collision
�1�

with the phonon group velocity vg=�K
.
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Integration of the distribution function over all the wave
vectors of the first Brillouin zone and all the locations leads
to the phonon number N�t� at a given time in the crystal. The
lhs term of Eq. �1� accounts for the phonon drift in the me-
dium and the rhs term for the equilibrium restoration due to
phonon collisions with themselves, impurities, and bound-
aries.

The collisional term modeling is the key point in the BTE
resolution. In the case of photons, it appears as the sum of an
absorption term, of an emission term, and of an elastic scat-
tering term in which a scattering phase function relates a
photon in the incoming and outgoing propagation directions
during a scattering event.9 However, in the case of phonons,
there is no absorption, nor emission, but only scattering
events. Scattering events at the borders can simply be treated
during the drift phase, i.e., when a phonon reaches a border.
Scattering with impurities can be treated similarly to the iso-
tropic scattering of photons when addressing thermal radia-
tion. Scattering of phonons due to the anharmonic terms of
the potential are quite difficult to express. We know never-
theless that these terms are responsible for the thermal con-
ductivity, i.e., tend to restore thermal equilibrium. Therefore,
in this work we use the relaxation time approximation for
three phonon scattering processes. The collision time used in
this formalism comes from normal and Umklapp relaxation
times which are further estimated.

B. Lattice modeling

As it has been exposed previously, the thermal behavior
of the crystal can be considered from the phonon character-
istics �location, velocity, and polarization� within the me-
dium. They might be obtained through the BTE solution
since the distribution function can be easily related to the
energy and therefore to the temperature. Using an integrated
distribution function, one can express the total vibrational
energy of the crystal as36

E = �
p

�
K
��nK,p� +

1

2
	�
 , �2�

where �nK,p� is the local thermodynamic phonon population
with polarization p and wave vector K described by the
Bose-Einstein distribution function

�nK,p� =
1

exp� �


kBT
	 − 1

. �3�

E is the material volumic energy. It is obtained by summa-
tion in Eq. �2� of each quantum �
 over the two polariza-
tions for transverse, longitudinal, and optical modes of pho-
non propagation. Assuming that the phonon wave vectors are
sufficiently dense in the K space, the summation over K can
be replaced by an integral. Moreover, using Dp�
�, the pho-
non density of state, we can achieve the integration in the
frequency domain. This two modifications yield

E = �
p





��n
,p� +

1

2
	�
Dp�
�gpd
 , �4�

with Dp�
�d
 the number of vibrational modes in the fre-
quency range �
 ,
+d
� for polarization p and gp the de-
generacy of the considered branch. In the case of an isotropic
three-dimensional crystal �V=L3� we have36

Dp�
�d
 =
dK

�2�/L�3 =
VK2dK

2�2 . �5�

The 1/2 term in Eq. �2� is the constant zero point energy
which does not participate to the energy transfer in the ma-
terial, therefore it has been suppressed. Using the group ve-
locity definition, Eq. �4� might be rewritten

E = V�
p




 
 �


exp� �


kBT
	 − 1� K2

2�2vg
gpd
 . �6�

The numerical scheme we are going to present is mainly
based upon energy considerations. The previous expression
Eq. �6� will be also used to estimate the material temperature
by means of a numerical inversion.

C. Dispersion curves

Only a few studies on that topic take into account disper-
sion. Indeed, frequency dependence makes calculations
longer, accounting for velocity variation. However, realistic
simulation of phonon propagation through the crystal must
take into account interaction between the different branches.
Here optical phonons are not considered because of their low
group velocity: they do not contribute significantly to the
heat transfer. These modes can actually contribute indirectly
through the interaction with other modes such as the acoustic
modes. By modifying their relaxation times, they can in-
flence the total thermal conductivity of the material. Never-
theless, in this work, we did not consider this phenomenon.
Consequently only transverse and longitudinal branches of
silicon and germanium are presented here �Fig. 1�. We have
made the common isotropic assumption for wave vectors and
consider the �001� direction in K space. For silicon, we used
data obtained from a quadratic fit,31 whereas germanium ex-
perimental curves37 have been fitted by cubic splines. Pho-
non group velocity has then been extracted from this data.
Note that in silicon and germanium, two acoustic branches
have been considered. The transverse branch is degenerated
�gT=2� whereas the longitudinal branch is non-degenerated
�gL=1�.

III. MONTE CARLO METHOD

The Monte Carlo technique has been widely used in order
to solve transport equations. In the heat transfer field, Monte
Carlo solutions of radiative transfer equation are often con-
sidered as reference benchmarks. The method accuracy only
lies on the number of samples used. Among others, the main
advantages of this method are

• the simple treatment of transient problems,
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• the ability to consider complex geometries, and
• the possibility to follow independently each scattering

process �for instance, phonon-phonon, phonon-impurity, and
phonon-boundary processes�.

The main drawback is computational time. However, this
method remains a good choice between deterministic ap-
proaches such as the discrete ordinates method �DOM� or
”exact solutions” such as those provided by molecular dy-
namics which is limited to very small structures.

A. Simulation domain and boundary conditions

As it was said before, the geometry of the studied material
does not matter. Here, a simple cubic cells stack �Fig. 2� is
considered since it can be readily related to the plane wall
geometry commonly used in thermal problems. Cylindrical
cells or multidimensional stacks can also be considered in
order to model nanowires or real semi-conductors.

Concerning boundary conditions, we assume that the lat-
eral walls of the cells �in x and y directions� are specularly
reflecting in most of the simulation cases. This means that
walls are adiabatic and perfectly smooth. Note also that in
that case, the dimension in the x and y directions should not
change the result in the simulation. Indeed, when reflection is
specular on the lateral cells boundaries, the momentum is
preserved in the z direction. The heat flux and the tempera-
ture along z should thus not be affected. At both ends of the

medium, temperature is assumed to be constant. Therefore,
energy in the first and the last cells is calculated from equi-
librium distribution functions. Incoming phonons in these
cells are thermalized at each time step. Consequently theses
cells act as blackbodies.

At this stage, an important point is the choice of the three
discretizations: temporal, spatial, and spectral. Spatial dis-
cretization is directly related to the material geometry: usu-
ally cells length are about Lz�100 nm for micrometric ob-
jects and can be smaller in the case of thin films or
nanowires, for instance. The time step choice depends on
two parameters: the cell size and the group velocity at a
given frequency. In order to consider all scattering events
and to avoid ballistic jump over several cells, we state that
the time step must be lower than �t
Lz /Vg

max.
The spectral discretization is uniform; we used Nb=1000

spectral bins in the range �0,
LA
max�. We have checked that

larger discretizations do not increase the result accuracy.

B. Initialization

The first step of the simulation procedure, once medium,
geometry, and mesh have been chosen, is to initialize the
state of phonons within each cell describing the material.
Hence, the number of phonons present in each cell is re-
quired. It will be obtained considering the local temperature
within the cell and using a modified expression of Eq. �6�. In
this equation, energy is given for all the quanta �
 associ-
ated to a spectral bin. Therefore, it can be rewritten to give
the total number of phonons in a cell as

N = V �
p=TA,LA

�
b=1

Nb


 1

exp��
b,p

kBT
	 − 1� Kb,p

2

2�2vgb,p
gp�
 . �7�

The number of phonons obtained with Eq. �7� is usually very
large, for instance in a 10 nm silicon cube at 300 K, N can be
estimated around 5.45�105. In the case of nanoscale struc-
tures, direct simulations can be achieved if the temperature is
relatively low. In the case of microscale samples or multidi-
mensional cell stacking, a weighting factor shall be used to
achieve Monte Carlo simulations. Hence, Peterson’s33 tech-
nique has been used. The actual number of phonons N is
divided by a constant weight W in order to obtain the number
of simulated phonons N�

N� =
N

W
. �8�

In our simulations W’s value is set around W�104 for mi-
crometric structures, in order to preserve accuracy.

During the initialization process, a temperature step is
prescribed in the medium. The first cell is raised to the hot
temperature Th, the last to the cold one Tc. All the phonons in
the intermediate boxes are also at Tc. Associated theoretical
energy in the whole structure is obtained from Eq. �6�. This
energy should match the calculated energy E� within all the
cells, written into the following form:

FIG. 1. �Color online� Phonon dispersion curves for silicon and
germanium in the first Brillouin zone, Kmax Si=1.1326�1010 m−1

and Kmax Ge=1.1105�1010 m−1.

FIG. 2. �Color online� Studied model. Phonon location, energy,
and velocity are randomly chosen in each cell according to disper-
sion curves and local temperature.
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E� = �
c=1

Ncell

�
n=1

N�

W � �
n,c. �9�

As a consequence, during the initialization, phonons should
be added by packs of W at a given frequency, sampled from
a normalized number density function F. According to Ma-
zumder and Majumdar’s work,34 this function is constructed
doing the cumulative summation of the number of phonons
in the ith spectral bin over the total number of phonons Eq.
�7�:

Fi�T� =

�
j=1

i

Nj�T�

�
j=1

Nb

Nj�T�

. �10�

In this process, a random number R is drawn �all the random
numbers discussed here check 0�R�1� and the correspond-
ing value Fi gives the frequency 
i, knowing that the Fi−1
�R�Fi location is achieved with a bisection algorithm. The
actual frequency of the phonon is randomly chosen in the
spectral interval prescribing


i = 
0,i + �2R − 1�
�


2
, �11�

where 
0,i is the central frequency of the ith interval.
Once the frequency is known, the polarization of the pho-

non has to be determined. It can belong to the TA or LA
branch with respect to the Bose-Einstein distribution and the
density of states. For a given frequency 
i, the number of
phonons on each branch are NLA�
i�= �nLA�
i��DLA�
i� and
NTA�
i�=2� �nTA�
i��DTA�
i�, where the density of states
are calculated with Eq. �5� in which the relation between 

and K are taken from the dispersion curves. The associated
probability to find a LA phonon is expressed as

PLA�
i� =
NLA�
i�

NLA�
i� + NTA�
i�
. �12�

A new random number R is drawn: if R
 PLA�
i�, the pho-
non belongs to the LA branch, otherwise it is a transverse
one.

The knowledge of the frequency and the polarization
leads to the estimation of the phonon group velocity and the
phonon wave vector merely using the dispersion curves and
their derivatives. Assuming isotropy within the crystal, the
direction � is obtained from two random numbers R and R�
randomly distributed between 0 and 1. Indeed, chosing a
direction in 3D consists in chosing two angles �� ,�� which
are the spherical coordinates angles. Moreover, these angles
have to be chosen so that the corresponding directions are
uniformly distributed in the 4� full space solid angle. The
elementary solid angle is d�=sin �d�d�=−d�cos ��d� so
we see that cos � has to be uniformly distributed between −1
and 1 and � beteween 0 and 2�. Hence � is written as

� = �sin � cos �

sin � sin �

cos �
� �13�

where cos �=2R−1 and �=2�R�.
The last operation of the initialization procedure is to give

a random position to the phonon within the cell. In the grid
previously considered, location of the nth phonon in the cell
c, whose lengths are Lx, Ly, and Lz, is

rn,c = rc + LxRi + LyR�j + LzR�k �14�

where rc is the coordinates of the cell and R, R�, and R� are
three random numbers.

C. Drift

Once the initialization stage is achieved, phonons are al-
lowed to drift inside the nanostructure. Considering the time
step �t and their velocities, each phonon position is updated:
rdrift=rold+vg�t. In the case of shifting outside of the lateral
boundaries �in i and j directions�, the phonon is specularly
reflected at the wall. In the case of diffuse reflection with a
particular degree d �0�d�1, d=0 purely specular, d=1
purely diffuse� a random number R is drawn. When R is
lower than d a new phonon propagation direction is calcu-
lated using Eq. �13�.

When a phonon reaches the bottom �zmin� or the top �zmax�
of a cell, it is allowed to carry on its way in the previous or
next cell, respectively. As a result, it is going to modify the
cell energy and by extension its local temperature. At the end

of the drift phase, the actual energy E�̃ is computed in all the

cells using Eq. �9�. Then, the actual temperature T̃ is ob-
tained with Eq. �6� doing a Newton-Raphson inversion.38

Phonons drifting in the first and last boxes are thermalized to
the cold or hot temperature in order to keep boundary cells
acting as blackbody sources.

D. Scattering

In the Monte Carlo simulation, the scattering process has
been treated independently from the drift. The phonon-
phonon scattering aims at restoring local thermal equilibrium
in the crystal since it changes phonon frequency. Collisions
with impurities or crystal defects as well as boundary scat-
tering do not change frequency but solely the direction �.
These last phenomena are significant when low temperatures
are reached and the phonon mean free path becomes large. In
the present study we do not consider impurity and defect
scattering for calculation. Besides, the bulk hypothesis is as-
sumed, there is no boundary scattering. The phonons are
specularly reflected at the side limits. Hence, only three-
phonon interactions have been considered.

As already said before, there are two kinds of three-
phonon processes: normal processes �N� which preserve mo-
mentum and Umklapp processes �U� which do not preserve
momentum by a reciprocal lattice vector. These two mecha-
nisms have consequences on the thermal conductivity of
the crystal. When the temperature is sufficiently high
�T�TDebye�, U processes become significant and directly
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modify heat propagation due to the resistivity effect on en-
ergy transport. On the other hand, normal scattering also af-
fects heat transfer since it modifies frequency distribution of
the phonons. For phonons described by �p ,
 ,K� and
�p� ,
� ,K�� scattering to �p� ,
� ,K��, the following relations
are checked

energy: �
 + �
� ↔ �
�,

N processes: K + K� ↔ K�,

U processes: K + K� ↔ K� + G , �15�

where G is a lattice reciprocal vector. Scattering also in-
volves polarization in the way that acoustic transverse and
longitudinal phonons can interact. According to Srivastava,39

for N and U processes different combinations are possible:

N and U processes:

T + T � L, L + T � L, and T + L � L,

N processes only: T + T � T and L + L � L. �16�

For the N processes only, all the participating phonons must
be collinear to achieve scattering. Usually these interactions
are neglected.

Direct simulation of phonons scattering is an awkward
challenge. With Monte Carlo simulations, it is possible to
estimate phonon collisions with neighbors as in the gas ki-
netic theory calculating a three-particle interaction cross sec-
tion. However, in the present study, the frequency discretiza-
tion might not be sufficiently thin to assess every three-
phonon processes. Thus the collisional process is treated in
the relaxation time approximation. Several studies on that
topic have been carried out since the early work of
Klemens;15 a detailed paper of Han and Klemens14 recalled
them.

Relaxation times � have been proposed for several crys-
tals. They depend on the scattering processes, the tempera-
ture, and the frequency. Holland’s work on silicon18 and the
recent study of Singh for germanium40 provide various �
values. The independence of the scattering processes is used
to consider a global three-phonon inverse relaxation time
accounting for N and U processes �NU. It has been obtained
using the Mathiessen rule ��NU

−1 =�N
−1+�U

−1�.
In order to be implemented in the Monte Carlo simula-

tion, the scattering routine requires an associated collision
probability Pscat. This one is derived saying that the probabil-
ity for a phonon to be scattered between t and t+dt is dt /�.
Thus,

Pscat = 1 − exp�− �t

�NU
	 . �17�

A random number R is drawn; if R
 Pscat, the phonon is
scattered. As a result, new frequency, polarization, wave vec-
tor, group velocity, and direction have to be resampled with
respect of energy and momentum conservation. Relaxation
times are temperature and frequency dependent. For each
simulated phonon considered �NU is calculated at every time
step.

In previous studies on that topic,33,34 the frequency sam-
pling after collision was achieved from the normalized num-

ber density function F at the actual temperature T̃ of the cell
obtained at the end of the drift procedure. In this approach
the actual energy after the scattering stage is usually different

from the “target” one obtained with temperature T̃. Hence a
subsequent “creation/destruction” scheme is necessary to en-
sure energy conservation. In fact, in the preceding procedure
at thermal equilibrium, the probability of destroying a pho-
non of frequency 
 and polarization p is different from the
probability of creating this phonon. This means that the
Kirchhoff law �creation balances destruction� is not re-
spected. In order to create phonons at the same rate they are
destroyed at thermal equilibrium, the distribution function
used to sample the frequencies of the phonons after scatter-
ing has to be modulated by the probability of scatterring. So
we define a new distribution function

Fscat�T̃� =

�
j=1

i

Nj�T̃� � Pscat j

�
j=1

Nb

Nj�T̃� � Pscat j

. �18�

Taking into account the scattering probability in the dis-
tribution function Fscat ensures that a destructed phonon on
both transverse and longitudinal branches can be resampled
with a not too weak energy as it can be seen in Fig. 3.

According to the described simulation procedure after the
initialization step, phonons in cell c are described by
�Tc,F�Tc�,N��Tc�,E��Tc��. They are allowed to drift and the

state of cell c before scattering is �T̃c,F�Tc�,N���T̃c�,E���T̃c��.
Then three-phonons collisions occur and change energy
by frequency resetting of the colliding phonons (using
the distribution function Fscat, leading to the final state

�T̃c, Fscat�T̃c�, N���T̃c�, E���T̃c��). Hence energy can be ex-
pressed as

FIG. 3. �Color online� Normalized number density function in
silicon with and without Pscat correction.
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Furthermore the number of colliding phonons can simply be

expressed as Nscat�� �T̃c�= Pscat�N���T̃c�. One then sees that, if
we want to preserve energy at thermal equilibrium, the new
normalized number density function Fscat must take into ac-
count this collisional probability. Energy conservation during
Monte Carlo simulation might be noticed from frequency
distribution �Fig. 4, which matches the theoretical distribu-
tion given by Eq. �7��.

Concerning momentum conservation, the task is harder to
address since the Monte Carlo process considers phonons
one by one. Consequently triadic N or U interactions cannot
be rigorously treated. In a first approach, we propose the
following procedure to take into account the fact that U pro-
cesses contribute to the thermal resistance whereas the N
processes do not. When the phonons scatter through a U
process, their directions after scattering are randomly chosen
as in the initialization procedure. Therefore, these phonons
are randomly scattered and contribute to the diffusion of
heat. On the contrary, it is assumed that scattering phonons
experiencing an N process do not change their propagation
direction �.

Statistically, for a given temperature and frequency, the
phonons are destroyed by scattering at the same rate they
appear. A phonon which scatters has a great chance to be
replaced in the computation by a phonon of a near frequency.
Therefore, by this treatment, the N processes “approxi-
mately” preserve momentum. Nevertheless, a more accurate
treatment should be done in order to respect exactly the mo-
mentum in the N processes. For a plane-parallel geometry, it
seems possible to guarantee the momentum conservation in a
single direction.

In fact, the relaxation time estimation14 states that there is
a frequency limit 
limit for the transverse acoustic branch.

limit actually corresponds to K=Kmax/2. Below this limit
frequency, there are no U processes. On the other hand, for

	
limit, N processes are no longer considered and the
propagation direction must be resampled in the case of a
collision. In what concerns the longitudinal acoustic branch,
there is no limit frequency. According to Holland18 only N
processes exist. However, applying this assumption implies
that momentum has to be conserved for each scattering event
involving a LA phonon. This leads to thermal conductivity
values higher than the theoretical ones for temperatures be-
tween 100 K and 250 K. In order to ensure a more realistic
momentum conservation we set that half of the colliding
phonons keep their original �, and the others �U processes�
are directionally resampled.

IV. RESULTS AND DISCUSSION

Different kinds of simulations have been performed so as
to check the computational method. Tests in both diffusion
and ballistic regimes are carried out for silicon and germa-
nium. Moreover, if small thermal gradients are considered,
one can estimate the thermal conductivity k from the heat
flux through the structure. This has been realized for Si and
Ge between 100 K and 500 K.

Knowing that the conductivity varies with temperature ac-
cording to a power law in the case of Si and Ge for T greater
than 100 K, it is obvious that a large thermal gradient applied
to our media should not bring a purely linear solution. Hence
simulations in this specific case have been done. We will see
that our model correctly predicts the steady-state regime
when compared to the steady-state analytical solution.

Eventually, we studied size effects on thermal behavior of
nanostructures. It appears that the ballistic regime can be
retrieved at room temperature when the sample size is close
to the nanometer scale.

A. High-temperature transient calculations

Concerning high-temperature transient calculations, the
simulated case is described by the following parameters:

• hot and cold temperatures: Th=310 K and Tc=290 K,
• medium geometry: stack of 40 cellules �Lx=Ly

=5�10−7 m,Lz=5�10−8 m�,
• time step and spectral discretization: �t=5 ps and Nb

=1000 bins, and
• weighting factor: W=3.5�104 for Si and W=8�104

for Ge.
Both materials were tested. Germanium calculation re-

sults are presented here �Fig. 5�. In order to assess the Monte
Carlo solution, transient theoretical comparison exists in the
case of the Fourier limit. Nevertheless, it requires that the
thermal diffusivity � remains constant. In the chosen tem-
perature range, according to the IOFFE database,41 Ge ther-
mal diffusivity is equal to �=0.36�10−4 m2 s−1.

The considered test case has been described in Özișik’s
book42 on the heat conduction equation. Within the described
structure heat transfer is along the z axis and analytical so-

FIG. 4. �Color online� Frequency spectra at 300 K and 500 K for
silicon.
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lution for a one-dimensional medium could be obtained from
an integral transform. Temperature distribution in the slab is
given by an infinite sum that requires enough terms in the
case of short time calculation. However, a simpler analytical
solution might be obtained with Laplace’s transform

T�z,t� − T�L,t�
T�0,t� − T�L,t�

= �erfc� z

2��t
	 − erfc�2L − z

2��t
	

+ erfc�2L + z

2��t
	� , �20�

with erfc the complementary error function. The theoretical
solution is only valid for short time and its accuracy is better
than 1% if the Fourier number �Fo=�t /L2� checks Fo�0.7.
In the case of a 2 �m germanium slab it leads to t�78 ns,
which is large enough to reach steady state.

The calculated values have been obtained from ten simu-
lations being averaged �Fig. 5�, the random number seed
being reset for each computations. The Monte Carlo model’s
ability to predict correctly temperature from the first mo-
ments till steady state is clearly illustrated. The remaining
noise can be reduced with lower values of W weighting fac-
tor. The diffusion regime is obtained after 30 ns. Similar
results are obtained for silicon, however the simulated slab
has to be larger �L=4 �m� because ballistic effects are ob-
served near the cold limit. This point will be discussed later.

B. Low-temperature transient calculations

For low temperatures, heat transport inside the slab is
different since phonon interactions change. In this case U
collisions are negligible and the only resistive processes are
assigned to impurities, defects, and boundary scattering.
These phenomena have to be carefully assessed in the case of
thermal conductivity estimation below 100 K. In fact, for
very low temperatures the phonon mean free path grows and

becomes larger than the structure length. Hence, phonons can
travel from hot to cold extremities without colliding. This is
the ballistic regime similar to the one observed with photons
exchanged between two black plates at different
temperatures.43 In this peculiar case temperature in steady
state is equal to the following constant value:

Tballistic = �Th
4 + Tc

4

2
�1/4

�21�

The simulation case parameters are
• hot and cold temperatures: Th=11.88 K, Tc=3 K, and

Tballistic=10 K;
• medium geometry: stack of 40 cellules �Lx=Ly

=5�10−7 m,Lz=2.5�10−7 m�;
• time step and spectral discretization: �t=5 ps and Nb

=1000 bins; and
• weighting factor: W=20 for Si and W=30 for Ge.
Results for silicon and germanium �Fig. 6� give the ex-

pected results for the ballistic limit. It can be noticed that the
current representation exhibits an artificial link between
black boundaries and the first medium cell due to the spatial
discretization.

It can be seen that hot phonons do not fly straight toward
the cold limit. More than 1 ns is necessary to heat the last
cell in the case of silicon. This is in agreement with veloci-
ties prescribed by dispersion curves. Heat propagation in ger-
manium is slower since phonon group speed is also lower.
Note also that in both materials, the temperature seems to
propagate at two different velocities. For example, the 500 ps
and 1 ns temperature curves exhibit two components. The
fastest one propagates at the longitudinal wave velocity
whereas the slowest is traveling at the transverse wave ve-
locity. Results at low temperatures obtained with our method
have already been predicted by Joshi and Majumdar24 in
similar cases, who applied successfully the equation of pho-
non radiative transfer �EPRT� in the ballistic regime.

FIG. 5. Transient temperature in Fourier’s regime for germa-
nium and comparison with the analytical solution of heat
conduction equation with a constant thermal diffusivity ��Ge

=0.36�10−4 m2 s−1� �dotted curves�.

FIG. 6. �Color online� Transient temperature in the ballistic re-
gime for silicon and germanium.
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C. Si and Ge thermal conductivities

There are several ways to perform the thermal conductiv-
ity calculation of a semiconductor. Among these techniques,
Holland’s method18 based on phonons kinetic theory was
largely employed. Molecular dynamic simulations can also
be used to obtain k. In the present study thermal conductivity
has been determined knowing the heat flux �phonon energy
transport� through the medium for a given thermal gradient
directly applying Fourier’s law. As in Mazumder’s work,34

the temperature difference between hot and cold extremities
is set to 20 K so as to determine average conductivities. The
phonon heat flux is calculated along the z axis according to
the following relation:

� = �
n=1

N�

W�
nvgn · k . �22�

Simulations have been carried out between 100 K and 500
K �Fig. 7� on 2 �m thick samples.

Comparison of the Monte Carlo calculated conductivities
is achieved with bulk data. Solid and dashed curves are lin-
ear power law regression of theoretical data in the considered
thermal range. These values are used in next analytical cal-
culations. We have appraised for 200 K�T�600 K;

kSi�T� =
exp�12.570�

T1.326 ,

kGe�T� =
exp�10.659�

T1.150 . �23�

For germanium a very good agreement is obtained with
bulk values in the whole temperature domain. The maximum
relative error is under 8%. In this case, at 100 K, the phonon
mean free path is lowered to the micrometer according to
Dames.44 Consequently the stucture size is large enough to
assume the acoustic thick limit. Furthermore, this calculation
benefits from recent relaxation time estimation, which has

been fixed with a good accuracy.40 The influence of these
factors on calculated conductivity is usually strong. Silicon
results are also close to the bulk ones until 150 K where the
relative error is equal to 7%. For lower temperatures, dis-
crepancy between theory and simulation increases. This gap
can be assigned to size effects since the phonon mean free
path grows when temperature is falling. Here, it becomes
similar to the slab size. Yet, if we refer to Asheghi’s45 work
on thin films, thermal conductivity, at temperatures below
100 K, significantly decreases in comparison with bulk prop-
erty due to stronger reduction of phonon mean free path by
boundaries. Actually, for pure 3 �m silicon film, thermal
conductivity is close to 600 W m−1 K−1 at 100 K.45 This
value is comparable to the 658 W m−1 K−1 obtained for our
2 �m film by Monte Carlo simulation.

D. Effect of nonlinear conductivity

In this fourth part, transient simulations with samples
heated under a large thermal step have been conducted. The
purpose of such calculations was to underline the model ca-
pacity to correctly predict steady state when medium prop-
erties �k�T�� vary with temperature. In the previous part ther-
mal conductivities of both bulk materials have been
estimated with a power law �Eq. �23��. Hence, the analytic
solution for temperature profile within a slab can be easily
determined in steady state by the resolution of a first-order
differential equation as

T�z�Steady state = �� z

L
	Tc

��+1� + �1 −
z

L
	Th

��+1��1/��+1�

,

�24�

where conductivity can be written as ��T�=C�T�.
In order to avoid boundary effects in the case of silicon, a

4 �m thick sample, with larger cells �Lz=1�10−7 m�, is
used. The initial geometry is kept for the germanium slab.
Temperatures are now Th=500 K and Tc=250 K. The time
step remains equal to 5 ps. In both cases �Fig. 8� Monte
Carlo simulations give a very good estimation of the steady-
state behavior. Results are averaged over five computations
on the last 1000 time steps �i.e., after 45 ns of elapsed time�.
At the cold limit of the germanium sample a weak deviation
exists between simulation and theory. The relative error on
temperature remains smaller than 1.5%, in this area. This
mismatch could be assigned to boundary effects, associating
diffusive and ballistic regimes near the limits as we will de-
tail in the last part. It could also be due to the accuracy of the
bulk thermal conductivity fitting at low temperatures.

Besides, inversion of such curves can theoretically pro-
vide the variation of k on a given thermal range, as long as
the medium is in the acoustic thick limit.

E. Size effect on heat diffusion

From the previous calculations, it is obvious that the pho-
non mean free path modification with the temperature acts as
a major factor in heat conduction. So, if the structure size is
adjusted in order to match the mean free path at any tem-
perature, ballistic phenomena should be observed. In this

FIG. 7. Silicon and germanium thermal conductivities; compari-
son between bulk theoretical values and Monte Carlo calculated
values.
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study only silicon is used and the simulation parameters are
• hot and cold temperatures: Th=310 K and Tc=290 K,
• number of cells: 40, and
• total length and time step �L ,�t�: �2 nm, 5�10−3 ps�,

�20 nm, 5�10−2 ps�, �200 nm,5�10−1 ps�, �2�m, 5 ps�,
and �4�m, 5 ps�.

Weighting parameters and lateral cell lengths are adjusted
in order to keep approximately 18 000 phonons in each cell.

Temperature profiles when steady state is reached have
been plotted for each sample versus adimensional length z /L.
Comparison to diffusive and ballistic regime is displayed in
Fig. 9. With the imposed boundary temperatures the ballistic
limit is equal to Tballistic=300.5 K.

In the case of structure length lower than 200 nm ballistic
trend mixed to phonon diffuse transport is observed. The
temperature profile gets closer to the ballistic limit for
sample size around the nanometer scale. Nevertheless, this
approximately represents ten atom layers and therefore might
encounter the simulation limitation. On the contrary, in a
silicon sample thicker than 4 �m, temperature reaches the
Fourier’s regime and can be similarly obtained with heat
conduction equation at least cost.

V. CONCLUSIONS

An improved Monte Carlo scheme that allows transient
heat transfer calculations at time and space nanoscales, on
the basis of phonon transport, has been presented. This

model accounts for phonon transitions between longitudinal
and transverse acoustic branches and can be simply applied
to several semiconductors if their dispersion relations are
known. A particular attention has been paid to the energy and
momentum conservation during collision process.

Numerical result forecasts have been successfully as-
sessed in different heat transfer modes. In slab configuration,
a good agreement was found for both extreme phonon mo-
tions which are the diffusive and ballistic ones. Bulk thermal
conductivities of silicon and germanium have been numeri-
cally retrieved with a maximal error lower than 8%. Besides,
our Monte Carlo model correctly predicts temperature profile
in more peculiar situations, when strong thermal gradient or
very small sizes are encountered.

Nevertheless some key points need to be refined. Among
them the momentum conservation procedure might be im-
proved, especially for one-dimensional applications. Also, a
treatment of the optical phonons influence would improve
our model. Indeed, according to the recent study of
Narumanchi,25 capacitive properties prediction need the op-
tical phonons to be taken into account. This influence seems
less critical for conductivity predictions in the studied tem-
perature range.13 Moreover, regarding the collision process,
improvements might be expected. Using theoretical values of
� recalled by Han and Klemens,14 direct calculation of pho-
non scattering relaxation time can be realized in each autho-
rized spectral bin. Hence, a more realistic approach of three-
phonon interactions should be achieved.

We are currently working on these improvements but also
on other potential implementations of the method such as
those related to the superlattices and the nanowires.

FIG. 8. �Color online� Steady-state temperature in Fourier’s re-
gime for silicon and germanium in the case of a large thermal
gradient; comparison to the heat conduction equation analytical so-
lution for temperature dependent conductivity.

FIG. 9. �Color online� Steady-state temperature for silicon, in-
fluence of the slab thickness; comparison to the analytical solution
in the diffusive and ballistic limits.
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Abstract. – We establish strict upper limits for the Casimir interaction between multilayered
structures of arbitrary dielectric or diamagnetic materials. We discuss the appearance of differ-
ent power laws due to frequency-dependent material constants. Simple analytical expressions
are in good agreement with numerical calculations based on Lifshitz theory. We discuss the
improvements required for current (meta) materials to achieve a repulsive Casimir force.

Introduction. – The optical properties of materials that show both a dielectric and mag-
netic response, have recently attracted much attention (see [1] for a review). A number of
striking phenomena like perfect lensing and a reversed Doppler effect have been predicted, and
experimenters have begun to explore the large parameter space of structural units that can
be assembled into artificial materials. Breakthroughs have been reported on the way towards
designed susceptibitilies in the near-infrared and visible spectral range [2,3]. Quantum electro-
dynamics in meta materials has recently been explored with particular emphasis on left-handed
or negative-index materials [4,5]. We discuss here to what extent the Casimir interaction be-
tween two meta material plates can be manipulated by engineering their magneto-dielectric
response. Strict limits for the Casimir interaction are proven that apply to all causal and
linear materials, including both bulk and multilayer structures. We illustrate these results
by computations of the Casimir pressure, considering materials with frequency-dispersive re-
sponse functions like those encountered in effective medium theories. We derive power law
exponents and prefactors and find that a strongly modified Casimir interaction is possible in
a range of distances around the resonance wavelength of the response functions. We give esti-
mates for the required temperature range and structure size: it is not unreasonable to expect
that improvements in fabrication and detection will allow for experimental observations.

One of the most striking changes to the Casimir interaction is a crossover to repulsion.
This has been predicted previously for idealized magnetodielectric materials [6–8] and objects
suspended in a liquid [9, 10]. In the latter case, repulsion has been observed experimen-
tally with colloidal particles [11] and is also used in a recent proposal for measuring Casimir
c© EDP Sciences
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torques [12]. Casimir repulsion between mirrors separated by vacuum requires a strong mag-
netic response [7, 13] that hardly occurs in conventional ferromagnets [14, 15]. Indeed, to
manipulate the Casimir force in the micrometer range and below, where it can be conve-
niently measured, the key challenge is to achieve a magnetic susceptibility at high frequen-
cies, approaching the visible range. Now, there is a well-known argument due to Landau,
Lifshitz, and Pitaevskii that µ(ω) = 1 in the visible [16]. This objection, however, only ap-
plies to materials whose magnetization is of atomic origin, where the magnetic susceptibility
is χm ∼ (v/c)2 � 1. An array of split ring resonators with sub-wavelength size typically
gives, on the contrary, χm ∼ (ω/ϑ)2f ∼ 1, where ϑ is the resonance frequency and f the
filling factor [17, 18]. As we illustrate below, artificial materials that are structured on the
sub-micron scale are promising candidates for a strongly modified Casimir interaction.

Lifshitz theory. – For two perfectly conducting plates held at zero temperature and sepa-
rated by a distance d, Casimir derived a force per unit area given by FC = π2h̄c/(240 d4) [19].
We use the convention that FC > 0 corresponds to attraction. For linear media with complex,
frequency-dependent material parameters, the force can be computed from Lifshitz theory [20].
This expression has been re-derived, for plates of arbitrary material and for multilayer mirrors,
using different methods [21–31]. At finite temperature, it can be written in the form

FL = 2kBT ′
∞∑

n=0

∞∫
ξn/c

dκ
2π

κ2
∑

λ

(
e2κd

rλ1rλ2
− 1

)−1

, (1)

where the sum is over the imaginary Matsubara frequencies ωn = iξn ≡ 2πinkBT/h̄ (the n = 0
term being multiplied by 1/2), and κ is related to the wave vector component perpendicular
to the mirrors, kz = (ω2

n/c
2 − k2

x − k2
y)

1/2 ≡ iκ. The rλα (λ = TE, TM, α = 1, 2) are the
reflection coefficients at mirror α for electromagnetic waves with polarization λ [22, 23]. For
homogeneous, thick plates, they are given by

rTM =
ε(iξn)cκ −

√
ξ2
n(ε(iξn)µ(iξn) − 1) + κ2c2

ε(iξn)cκ+
√

ξ2
n(ε(iξn)µ(iξn) − 1) + κ2c2

(2)

(exchange ε and µ for rTE). The zeros of Dλ ≡ e2κd/(rλ1rλ2) − 1 at real frequencies define
the eigenmodes of the cavity formed by the two mirrors.

Strict limits. – To derive upper and lower limits for FL, we use that the Kramers-Kronig
relations [16] imply real and positive material functions at imaginary frequencies, ε(iξ) ≥ 1,
provided the material is passive (non-negative absorption Im ε(ω) ≥ 0). As a consequence,
the Fresnel formulas (2) imply −1 ≤ rλα ≤ 1, and we find

− 1
e2κd + 1

≤ 1
Dλ

≤ 1
e2κd − 1

(3)

with the stronger inequalities 0 ≤ 1/Dλ ≤ 1/(e2κd − 1) holding for identical plates. In the
latter case, the Casimir force is hence necessarily attractive. The inequalities (3) saturate for a
perfectly conducting mirror facing a perfectly permeable one (ε1 = ∞, µ2 = ∞, say), and for
identical, perfectly reflecting mirrors, respectively. The resulting forces at zero temperature
are [6, 20]

T = 0 : −7
8
FC ≤ FL ≤ FC . (4)

In the high-temperature limit, we get similarly [32] − 3
4FT ≤ FL ≤ FT ≡ ζ(3)kBT/(8πd3) by

keeping in eq. (1) only the n = 0 term in the sum.
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Consider now a mirror made from layers of arbitrary passive materials. Reflection coeffi-
cients for such a system can be obtained recursively. For a layer “b” separating a medium “a”
from a substrate “c”, for example,

rabc =
rab + rbc e2ikbw

1 + rabrbc e2ikbw
, (5)

where rab (rbc) describes the reflection from the interface ab (bc), respectively, and w is the
layer thickness [33,34]. If the substrate c is a multilayer system itself, rbc is the corresponding
reflection coefficient. For the imaginary frequencies occurring in the Lifshitz expression (1),
the wave vector in the layer is purely imaginary, kb = iκb, and single-interface coefficients are
real (eq. (2)). From eq. (5), they remain real for multilayer mirrors. In addition, the mapping
rab 
→ rabc is a conformal one, and if rbc e−2κbw is real and ∈ [−1, 1], the interval [−1, 1] is
mapped onto itself. For multilayer mirrors, we thus obtain again the inequalities −1 ≤ rλ ≤ 1.
This generalizes the limits of refs. [31,35] that are obtained only for layered dielectric mirrors,
using transfer matrices.

Casimir interaction between metamaterials. – To illustrate these generally valid results,
we focus on meta materials described by effective medium theory [1,17,18]. We adopt Lorentz-
Drude formulas for ε and µ:

εα(i ξ) = 1 +
Ω2

α

ω2
α + ξ2

, µα(i ξ) = 1 +
Θ2

α

ϑ2
α + ξ2

. (6)

Regarding the permeability, we have taken the limit of weak absorption and computed µ(i ξ)
in terms of Imµ(ω) using the Kramers-Kronig relations. This is necessary to ensure high-
frequency transparency of the medium. We denote in the following by Ω a typical resonance
or plasma frequency occurring in eqs. (6). The corresponding wavelength, Λ = 2πc/Ω, provides
a convenient distance scale. Note that a (magnetic) resonance wavelength as short as ∼ 3µm
has already been achieved with material nanofabrication [3]. The key advantage of meta
materials is that their electric and magnetic “plasma frequencies” Ωα and Θα are fairly large
as well: a value of Θα ≈ ϑα

√
f ≤ (c/a)

√
f is typical for a split-ring resonator array with

period a and filling factor f [17]. This property is also necessary, of course, to achieve a
left-handed medium (εα(ω), µα(ω) < 0 for some real frequencies). The magnetic plasma
frequencies occurring in conventional ferromagnets are much smaller [14], and the impact on
the Casimir interaction is weak, as reported recently [13].

In the plots shown below, the Casimir pressure is normalized to h̄Ω/d3 (see after eq. (7)).
In order of magnitude, this corresponds to 104 pNmm−2/(Λ/µm)4 at a distance d = Λ/2. This
can be measured with sensitive torsion balances [36,37] or cantilevers [38,39]. We plot in fig. 1
the result of a numerical integration of eq. (1), the curves corresponding to different material
pairings. One sees that in all cases, the force satisfies the limits (4) that exclude the shaded
areas. We observe that materials with negative index of refraction around Ω show a strongly
reduced attraction (fig. 1(b)). This can be attributed to the reduced mirror reflectivity due to
impedance matching. Casimir repulsion is achieved for some distances between mirrors made
from different materials (fig. 1(c, d)). At short distance, i.e. d � Λ/2π, even these pairings
show attraction with a power law 1/d3. Coating one mirror with a magnetic layer (fig. 1(c)),
there is a sign change around the layer thickness w: for Λ/2π � d � w, the layer behaves
like a thick plate, and its material parameters lead to repulsion. The layer can be ignored for
w � d, and one recovers the attraction between the (identical) substrates. This is consistent
with asymptotic analysis based on the reflection coefficient (5), as we outline below. Detailed
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Fig. 1 – Casimir force between planar mirrors of different dispersive materials at zero temperature.
Left: plot of the force per unit area, normalized to h̄Ω/d3 vs. the plate separation scaled to Λ ≡ 2πc/Ω.
Here, Ω is a typical plasma or resonance frequency. Shaded areas: excluded by the inequalities (4).
Dashed lines: short-distance asymptotics c3/d3 with coefficient (7), providing another upper limit for
homogeneous mirrors. Right: material response functions along the real and imaginary frequency
axis. Plots labeled (a) (inset): two identical non-magnetic Drude metals (in eq. (6), Ωα ≡ Ω, ωα = 0,
µα(ξ) ≡ 1, α = 1, 2). Label (b): two identical left-handed meta materials with overlapping dielectric
and magnetic resonances (Ωα ≡ 0.3Ω, ωα = Ω, Θα = 0.3Ω, ϑα = Ω). Label (c): two identical
non-magnetic Drude metals one of which is coated with a left-handed meta material (Drude metals
with Ω1 = 3Ω, ω1 = 0, µ1(ξ) ≡ 1; left-handed coating with thickness w = 10 × 2πc/Ω and material
parameters (dominantly magnetic response) Ω2 ≡ 0.1Ω, ω2 = Ω, Θ2 = 0.3Ω, ϑ2 = Ω). Label (d):
two meta materials, one purely dielectric, the other mainly magnetic (Ω1 = 3Ω, ω1 = Ω, µ1(ξ) ≡ 1,
Ω2 = 0.1Ω, ω2 = Ω, Θ2 = 0.3Ω, ϑ2 = Ω).

calculations show that a large resonance frequency is not sufficient to achieve repulsion, the
oscillator strength of the resonances (proportional to Ω1 and Θ2) must be large enough so that
h̄Ω1, h̄Θ2 � max(kBT, h̄c/d). As the temperature is raised, the distance range where repulsion
is observed disappears, see fig. 2. One then finds a 1/d3 power law at large distance as well.

The different regimes of fig. 1 can be understood from an asymptotic analysis of eq. (1). At
short distance (d � Λ/2π), the integral is dominated by a region in the (κ, ξ)-plane where the
Fresnel coefficients (2) take the nonretarded forms rTM → R(ε) ≡ (ε−1)/(ε+1) > 0 assuming
that ε > 1 and similarly rTE → R(µ) > 0 unless µ = 1. Proceeding like Lifshitz [20,40] yields
to leading order a power law FL = c3/d

3 with a positive Hamaker constant given by

c3 =
kBT

4π
′

∞∑
n=0

{Li3[R(ε1(ξn))R(ε2(ξn))] + Li3[R(µ1(ξn))R(µ2(ξn))]} , (7)

where Lin(z) ≡
∑∞

k=1 z
k/kn. It must be noted that for the special case of homogeneous

plates, this asymptotic expression actually provides another, much stricter, upper limit to
the Casimir force, since rTMα ≤ R(εα), rTEα ≤ R(µα) and Li3(z) is a monotonous function
(see fig. 1). In order of magnitude, c3 ∼ h̄Ω at low temperatures (kBT � h̄Ω). Compared
to ideal mirrors, dispersive plates thus show a much weaker Casimir interaction that is in
general attractive (fig. 1 and ref. [35]). At larger distances, Λ/2π � d � ΛT ≡ h̄c/kBT , the
Casimir force follows a 1/d4 power law, and repulsion is found provided one of the materials
is dominantly magnetic. Here, the non-dispersive results of ref. [7] are recovered. Finally, for
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Fig. 2 – Casimir force between two different meta materials as the temperature is raised. The
material parameters are identical to line (d) of fig. 1. The temperature takes the values kBT =
(a) 0.3, (b) 0.1, (c) 0.03, (d) 0 h̄Ω. Same scaling as in fig. 1. Dashed lines correspond to the short- and
long-distance asymptotics discussed in the text.

d � ΛT , the leading order force is the term n = 0 in the sum (1), again an attractive 1/d3

law, with a coefficient given by an expression similar to (7), but involving the static material
constants, see [7].

The impact of temperature is illustrated in fig. 2: at high temperature, kBT � h̄Ω, the
second Matsubara frequency ξ1 falls already into the mirrors’ transparency zone, and the 1/d3

power law is valid at all distances. As T → 0, the intermediate repulsive zone appears in the
range Λ/2π � d � ΛT /2π. A good agreement with the analytical 1/d3 asymptotics is found
outside this zone, as shown by the dashed lines. For the resonance wavelength Λ = 3µm
mentioned above, cooling to a temperature T ≈ 0.1 h̄Ω/kB ∼ 50K is required to “open up”
the repulsive window. This temperature increases, of course, with materials whose response
extends to higher frequencies.

Finally, we would like to illustrate the kind of peculiar asymptotics that becomes possible
with carefully matched material parameters. This follows ref. [21] that computes the Van
der Waals force on a water film coated on both sides by lipid membranes, finding a weak
dependence on the ultraviolet frequency range because both materials have a similar electron
density. Consider thus a liquid-filled gap with a similar electron density as medium 2 so that
ε0 = ε2, and a permeability µ0 = µ1 ≡ 1 matched to medium 1. For simplicity, we assume that
these equalities hold at all frequencies. In this case, we can show that the force is repulsive at
all distances, even at finite temperature. Indeed, both contributions in eq. (7) vanish, and the
leading order term for high temperatures also vanishes. The high-temperature limit is given
by the n = 1 term in (1). This gives a distance dependence proportional to exp[−4πd/ΛT ]
similar to what has been observed in some experiments with colloids (mentioned in [41]). As
the temperature is lowered, this exponential regime still applies for d � ΛT . If kBT � h̄Ω, the
1/d4 regime of ref. [7] exists at intermediate distances Λ/2π � d � ΛT /2π. The short-distance
regime sets in for d � Λ, and an analysis similar to the one leading to eq. (7) gives (T = 0)

FL =
h̄

π

∞∑
n=1

(2nd)2n−3

∞∫
0

dξ
2π

Γ(3 − 2n, 2nξ d/c)
(

−ε1 − ε0

ε1 + ε0

(µ2 − µ1)ξ2

4c2

)n

(8)
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Fig. 3 – Casimir force between two different meta materials as the residual dielectric response of
mirror 2 is changed. Same scaling as in fig. 1, T = 0. Dashed lines: short-distance asymptotics (7).
The dielectric response for mirror 2 is of Lorentz-Drude form with fixed cutoff frequency and variable
oscillator strength. Material functions as in fig. 1(d), except ε2(0) = 1 (a), 1.01 (b), 1.03 (c), 1.1 (d).

with Γ(k, z) ≡
∫ ∞

z
dt tk−1e−t. At short distance, the sum is dominated by the first term, so

that to leading order, we get a repulsive power law FL = −c1/d (fig. 3(a)). In order of mag-
nitude, c1 ∼ h̄Ω3/c2 and therefore again −FL � FC , with a crossover occurring around Λ/2π
(see fig. 3(a)). Due to our assumption of a perfect matching ε2 = ε0, this kind of behaviour
seems quite remote from experimental reality. As shown in fig. 3(b-d), a slight mismatch
between the dielectric functions of liquid and plate leads back to an attractive force, first at
short distances, then suppressing the repulsive window altogether.

Conclusion. – We have generalized strict upper and lower limits for the Casimir force.
We have shown that a strongly modified Casimir force can occur between dispersive and
absorbing mirrors with a sufficiently large magnetic susceptibility, extending results restricted
to non-dispersive materials [7]. The most promising way to achieve this repulsion seems the
use of meta materials engineered at scales between the nanometer and the micron because
they provide a fairly large magnetic oscillator strength. Our results are intrinsically limited
to distances d � a by our use of effective medium theory. Sufficiently small structures and
sufficiently low temperatures then ensure that in the range a � d � ΛT /2π, the Casimir
interaction can be strongly altered: even if repulsion cannot be achieved in a first step, we
expect a significant reduction of the Casimir attraction at distances of a few microns (fig. 1).
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Abstract The coherence length of the thermal electromagnetic field near a planar
surface has a minimum value related to the nonlocal dielectric response of the
material. We perform two model calculations of the electric energy density and the
field’s degree of spatial coherence. Above a polar crystal, the lattice constant gives
the minimum coherence length. It also gives the upper limit to the near field energy
density, cutting off its 1/z3 divergence. Near an electron plasma described by the
semiclassical Lindhard dielectric function, the corresponding length scale is fixed
by plasma screening to the Thomas-Fermi length. The electron mean free path,
however, sets a larger scale where significant deviations from the local description
are visible.
PACS: 42.25.Kb Coherence – 07.79.Fc Near-field scanning optical microscopes
– 44.40.+a Thermal radiation – 78.20.-e Optical properties of bulk materials and
thin films

1 Introduction

Thermal electromagnetic radiation in vacuum, as described by the celebrated black-
dody spectrum discovered by Max Planck [1], is usually taken as a typical example
of incoherent radiation. This is not quite true, however: if the radiation is detected
at a given frequency, it is spatially coherent on a scale set by the wavelength [2,3].
When one approaches a macroscopic object, the radiation spectrum and its coher-
ence is profoundly changed, depending on the properties of the object. For exam-
ple, if the object supports resonant modes like surface plasmon polaritons, the field
is coherent across the propagation length of these modes [4]. The opposite case is
possible as well: the coherence length becomes comparable to the observation dis-
tance, much smaller than the wavelength, close to an absorbing object with a local

? email: Carsten.Henkel@physik.uni-potsdam.de
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dielectric function [5]. It has been suggested already by Rytov and colleagues that
this behaviour is an artefact because at some small scale, nonlocal effects must
come into play [2]. This is what we discuss in this paper in a semi-quantitative
way. We use two models for nonlocal dielectric functions and identify the scale
for the field’s coherence length using explicit asymptotic formulas. A nonlocal di-
electric response is of primary importance for semiconductor quantum wells, see
for example Ref.[6], but the issue of spatial coherence has not been analyzed in
this context, to our knowledge.

We focus on the spatial coherence of the electromagnetic field at nanometer
distance in the vacuum (medium 1) above a solid material (medium 2). We chose a
planar geometry which is sufficiently simple to allow for an essentially analytical
description, thus avoiding the need for extensive numerics. On the other hand,
many effects have been discussed in this setting: the fluorescence rate of molecules
near metals and thin films [7], scanning near-field microscopy of sub-wavelength
objects deposited on a substrate [8], the momentum exchange between a tip and
a sample (related to the Casimir force, see, e.g., [9]) and the energy exchange
between a tip and a sample [10–13].

2 Basic notation

2.1 Field correlations

The spatial coherence of the electric field is determined by the two-point expecta-
tion value [14]

〈Ei(r1, t1)Ej(r2, t2)〉 =

∫

dω

2π
Eij(r1, r2; ω)eiω(t1−t2), (1)

where the average is taken in a stationary statistical ensemble (thermal equilibrium
in the simplest case). We focus in the following on the cross-correlation spectrum
Eij(r1, r2; ω) and a frequency in the infrared to visible range. Far from any sources
and in global equilibrium, the corresponding wavelength λ = 2πc/ω sets the scale
for the field’s spatial coherence length: the cross-correlations tend to zero if the
distance |r1 − r2| exceeds λ. In the vicinity of a source, the coherence length `coh

significantly differs from λ, as Henkel and co-workers have shown previously [5],
and it changes with the observation point.

The spectrally resolved electric energy density is given by the trace

uE(r; ω) =
ε0

2

∑

i

Eii(r, r; ω), (2)

and its value in thermal equilibrium allows to define an electric, local density of
states, as discussed in more detail by Joulain and co-workers [15]. The normalized
tensor

cij(r1, r2; ω) =
1
2ε0Eij(r1, r2; ω)

√

uE(r1; ω)uE(r2; ω)
, (3)
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to be considered below, allows to introduce a spatial degree of coherence. In the
following, we call a “coherence function” both, Eij(r1, r2; ω) and Eq.(3). Defini-
tions for a degree of polarization based on this 3 × 3 matrix (with r1 = r2) have
been put forward as well, see [16,17]. For the sake of simplicity, we suppress the
frequency arguments in the following.

2.2 Planar surface with local response

In a previous paper, Henkel and co-workers have shown that in the vacuum above
a planar dielectric surface at temperature T , described by a local permittivity ε2,
the spatial coherence function is of the form [5] (see also [18,19])

Eij(r1, r2) =
Θ(ω, T )

2πε0ω r̃5
Im

ε2 − 1

ε2 + 1





r̃2 − 3ρ2 0 3ρ(z1 + z2)
0 r̃2 0

−3ρ(z1 + z2) 0 3(z1 + z2)
2 − r̃2



 (4)

where Θ(ω, T ) = h̄ω/(eh̄ω/kT − 1). We assume that the field is observed in
vacuum (relative permittivity ε1 = 1). The surface is given by z = 0. We have
chosen the x-axis such that r1 − r2 lies in the xz-plane and ρ = x1 − x2. The
quantity r̃2 = ρ2 + (z1 + z2)

2 is the (squared) distance between r1 and the image
point of r2 across the interface.

Eq.(4) applies to leading order when both distances z1, z2 are much smaller
than the wavelength λ; for other regimes and higher order corrections, see Ref.[5]
and, at ρ = 0, Ref.[20]. In the following, we focus on the correlation function at a
constant height z = z1 = z2 and discuss its dependence on the lateral separation
ρ; note that ρ can be positive or negative. The normalized coherence function (4)
is qualitatively similar to a Lorentzian: the yy-component, for example, follows
a law ∼ [4z2 + ρ2]−3/2. The spatial coherence length is thus equal to z, and
decreases without apparent limitation as the surface is approached. The electric
energy density derived from (4) diverges like 1/z3:

uE(z) = [Θ(ω, T )/(8π z3)]Im[(ε2 − 1)/(ε2 + 1)]. (5)

Both points have been noted by Rytov and co-workers [2], who have also argued
that this unphysical result is due to the assumption of a local dielectric response
down to the smallest scales. A cutoff would occur naturally in a non-local treat-
ment or taking into account the atomistic structure of the material. This is what
we show here in detail, using two different model calculations. Doing this, we also
provide a basis for the phenomenological cutoff introduced recently by Kittel and
co-workers [13] in the context of heat transfer from a hot, sharp tip into a cold,
planar substrate.

2.3 Overview

We will use two models to calculate the coherence function. In both, we focus,
as mentioned before, on the fields near a planar surface and compute the field
correlations in the vacuum above it, at sub-wavelength distances.
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The first model is based on the fluctuation electrodynamics introduced by Ry-
tov and co-workers [2] where the sources of the field are described by fluctuating
polarization currents below the surface. This approach relies on the fluctuation-
dissipation theorem that links the spectrum of the polarization current to the di-
electric function of the material below the surface. We argue that the currents are
spatially correlated on a scale equal to or larger than the material’s microscopic lat-
tice constant. We then show that the radiation generated outside the surface shows
a minimum coherence length given by this scale; this cuts off the divergences ap-
pearing in a local description of the material, as noted in Refs.[2,13]. This model
can be applied to polar ionic crystals in the frequency domain where the dielec-
tric response is dominated by phonon-polariton resonances. It can also cover a
non-equilibrium situation where the surface is heated to a different temperature or
shows weak temperature gradients [21,22].

The second model describes the dielectric response of an electron plasma and
applies to the plasmon-polariton resonances occurring in metals. We use here di-
rectly the fluctuation-dissipation theorem for the electric field [23,24], restricting
ourselves to a field-matter system in “global equilibrium”. The coherence func-
tion is determined by reflection coefficients from the surface for which we take the
Lindhard form, taking into account the non-local response of the electron plasma.
It is shown that the field’s coherence length is limited by the Thomas-Fermi screen-
ing length, but significant deviations from the local description occur already on
the (typically larger) scale of the electron mean free path.

3 Polar crystal

3.1 Current correlations

We assume here that the fluctuating currents that generate the radiation field, are
correlated below a certain distance l. Above this distance, the medium response
can be considered as local. A lower limit for l is certainly the lattice period a:
at scales smaller than a, the concept of a continuous material characterized by a
dielectric constant does not make sense any more.

In this situation, the cross correlation spectrum of the fluctuating currents,
as given by the fluctuation-dissipation theorem, is no longer delta-correlated in
space. We choose here to smoothen the spatial delta fonction into a gaussian. The
fluctuation-dissipation theorem for the currents thus takes the form

〈j∗k(r1, ω)jl(r2, ω
′)〉 = 2ωε0Im[ε(r̄)]

e−(r1−r2)2/l2

π3/2l3
Θ(ω, T )δklδ(ω − ω′), (6)

where r̄ = 1
2 (r1 + r2). The gaussian form for the spatial smoothing is chosen

for convenience; another functional dependence will lead to qualitatively similar
results.
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3.2 Transmitted field

We then write the cross correlation spectrum for the electric field in terms of Green
functions and the currents. We use the convention

Ei(r, ω) = iµ0ω

∫

d3r′
∑

k

Gik(r, r′; ω)jk(r′, ω). (7)

To proceed further in the calculation, the Green function is written as a Weyl plane
wave expansion ([25] and appendix). In the present case, the Green function relates
the current on one side of an interface to the electric field on the other side of the
interface. It depends on the Fresnel transmission coefficients through this interface.

Using (6) and integrating over the half-space filled with the dielectric, one
obtains

Eij(r1, r2) = 2µ0Θ(ω, T )ω

∫ 2π

0

dθ

2π

∫ ∞

0

K Re(γ2)dK

2π |γ2|2
(8)

×e−iKρ cos θe−2Im(γ1)ze−K2l2/4e−Re(γ2)
2l2/4g∗ik(K)gjk(K)

In the preceding equation, the wavenumber in the medium i = 1, 2 is ki = (K, γi)
where K = K cos θ ex + K sin θ ey and γ2

i = εi(ω/c)2 − k2. The tensor gij(K)
is related to the Green tensor and defined in the Appendix.

The cross-spectral correlation function depends on four characteristic lengths:
the wavelength λ, the distance to the interface z, the locality distance l and the
separation ρ between the field points. The latter is the variable considered in our
problem. At the wavelengths we work with, we always have l � λ. When z is
larger than λ (in the far field), the factor e−2Im(γ1)z actually limits the integration
over K to 0 ≤ K ≤ ω/c, i.e., to propagating waves. The cross-spectral correlation
function, in this regime, drops to 0 when ρ exceeds λ/2, as in the blackbody ra-
diation field. In the intermediate regime l � z � λ, the integral is dominated by
the range ω/c � K � 1/l, where the exponentials containing l are close to unity.
Hence, the results of Ref.[5] are recovered. Finally, when z � l, e−2Im(γ1)z and
e−Re(γ2)

2l2/4 both approach unity in the relevant range |√ε2|ω/c � K < 1/l.
This is the regime we discuss in more detail in the following.

We note in passing that we use our calculation is based on the solution to
the transmission problem valid for a local medium. Actually, this solution applies
when the wave vector K is smaller than 1/l when the medium can be described
as homogeneous. But from (8) one sees that whatever the values of z, there is
anyway a cut-off in the integration over K at approximately 1/l. Therefore, one
might consider that the local expression of the Fresnel coefficients remains valid.
We believe that our model, even if it not rigorously accurate, is useful in view of
the insight one gains from the analytic result.
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Fig. 1 Normalized electric energy density above a surface of silicon carbide vs. the distance
z to the surface. The electric energy density is normalized to the electric energy density in
the far field. The locality scale is taken as l = 1nm. The SiC permittivity is described by an
oscillator model in the visible-infrared part of the spectrum [27].

3.3 Asymptotics and discussion

Using the limit of gij(K) for large K, we obtain from (8) the following asymptotic
expression for the cross spectral correlation tensor

Eij(r1, r2) ≈
8Θ(ω, T )Im(ε2)

ε0πω|ε2 + 1|2l3 (9)

×







√
π

2 [M3/2 − 3
4

ρ2

l2 M5/2] 0 −2 ρ
l e

−ρ2/l2

0
√

π
2 [M3/2 + 3

4
ρ2

l2 M5/2] 0

2ρ
l e

−ρ2/l2 0
√

πM3/2






,

where M3/2 = M( 3
2 , 1,−ρ2

l2 ) and M5/2 = M( 5
2 , 3,−ρ2

l2 ), and M(a, b, z) is the
confluent hypergeometric function [26]. When ρ � l, M3/2 and M5/2 both ap-
proach unity. Putting ρ = 0 in the cross-spectral correlation tensor and taking the
trace, we get the electric energy density versus z:

z � l : uE(z) =
2Θ(ω, T )

π1/2ω l3
Im

ε2 − 1

ε2 + 1
. (10)

It appears (see Fig.1) that it saturates at short z to a quantity that only depends on l
as 1/l3: the non-locality scale l thus sets the ultimate length below which the field
properties are “frozen” to their value for z ≈ l.
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Fig. 2 Normalized spatial coherence function vs. lateral separation ρ in units of the nonlo-
cality scale l. The nonzero components in Eq.(9) are plotted and normalized to the trace of
the coherence tensor.

When ρ � l, all the components of the correlation tensors drop to zero, see
Fig.2. This decrease is exponentially fast for the xz and zx components. For the
other components, the asymptotic behaviour for large ρ simply scales like 1/ρ3 and
does not depend on l anymore. This follows from the large argument asymptotics
M3/2 ≈ −1

2
√

π
l3

ρ3 and M5/2 ≈ 2√
π

l5

ρ5 . Note that in this case, we recover an algebraic
decay similar to the local medium case given in Eq.(4).

To summarize this section, we have shown that when we take into account the
non-local nature of matter by introducing a locality length l for the sources of the
field, the correlation length is about l when the distance to the interface z < l.
In this regime, the energy density saturates to a value given by the electrostatic
energy density expression taken in z = l.

4 Nonlocal plasma

We consider in this section another simple situation where the field correlation
function can be calculated fairly easily. Restricting ourselves to a field in thermal
equilibrium between field and surface, we use directly the fluctuation-dissipation
theorem for the field. The relevant information is thus encoded in the electric Green
tensor (i.e., the field’s response function). The Green tensor contains a part due to
the reflection from the surface that is actually dominating in the sub-wavelength
distance regime we are interested in. We first review the corresponding reflection
coefficients for an electron plasma, taking into account the finite response time
of the electrons and their scattering. These two effects make the plasma behave
like a nonlocal medium and give rise to the so-called anomalous skin effect. We
then discuss the large-wavevector asymptotics of the reflection coefficients and
the corresponding limits on the spatial coherence function. It turns out that the
scattering mean free path is one key quantity that limits the coherence length at
short observation distances.
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4.1 Reflection coefficients

We focus here on the electronic contribution to the dielectric function and describe
the background ions, interband absorption etc. by a local permittivity εb to avoid
unnecessary complications. As is well known [28], the dielectric function of a bulk
plasma is actually a tensor with two distinct spatial Fourier coefficients, a “longi-
tudinal” εl(q) and a “transverse” εt(q) where q is the modulus of the wavevector.
(As before, we suppress the frequency dependence for simplicity.) The fields out-
side the metal surface are characterized by the reflection coefficients rs,p(K) that
depend only on the magnitude K = |K| of the incident wavevector projected onto
the interface. Out of the two polarizations s and p, we need in the following only
rp(K) in the (non-retarded) regime K � ω/c. This coefficient is given, e.g., in
the review paper by Ford and Weber [29]:

rp(K) =
1/Zp(K) − 1

1/Zp(K) + 1
(11)

We use here a dimensionless surface impedance Zp(K) that reads in the non-
retarded limit

Zp(K) = 4K

∞
∫

0

dkz

2π

1

q2εl(q)
, q2 = K2 + k2

z , (12)

it involves the longitudinal dielectric function only for which we take the Lindhard
formula [29,30]

εl(q) = εb +
3Ω2

ω + iν

u2fl(u)

ω + iνfl(u)
(13)

u =
ω + iν

qvF
≡ 1

q`
(14)

fl(u) = 1 − u

2
log

(

u + 1

u − 1

)

. (15)

The plasma frequency is given by Ω2 = ne2/(mε0) with n,−e, m the electron
density, charge, and mass, respectively.

From the nonlocal permittivity (13–15), two characteristic length scales can be
read off: the mean free path lmfp = vF /ν and vF /ω, the maximum distance over
which an electron at the Fermi energy can move ballistically during one period
of the applied electric field. In the following, we use the complex length ` =
vF /(ω + iν) defined in (14) to simplify the notation.

The Fermi wavelength does not explicitly appear in Eqs.(13–15) because the
semiclassical version of the Lindhard dielectric function we take here is based
on a semiclassical description of the electron gas (classical particles with Fermi
statistics). This description is valid as long as q is much smaller than the Fermi
wave vector kF = mvF /h̄. Our model thus applies reasonably well to a “clean
metal” where the mean free path is much longer than the Fermi wavelength, and to
distances above 1/kF (typically a few Å). Ref.[29] gives a more general dielectric
function that covers the regime q ≥ kF as well.
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4.2 Coherence function

The fluctuation-dissipation theorem for the electric field, combined with the Green
tensor describing the reflection from a planar surface, gives the following integral
representation for the field’s coherence function:

Eij(r1, r2) = µ0ωΘ(ω, T )

∞
∫

0

KdK

2π

∑

µ=s,p

C(µ)
ij (Kρ) Re

rµ(K) e2iγ1z

γ1
(16)

with γ1 = (ω2/c2 − K2)1/2 (Im γ1 ≥ 0). For more details, see for example [31,
32]. We have omitted the free-space part of the Green tensor that gives the same
result as for the blackbody field. This part actually becomes negligible compared
to the surface part given here if we focus on the sub-wavelength regime, z1 = z2 =
z � λ: the integration domain ω/c ≤ K < ∞ (which is absent in the free-space
field) then makes the dominant contribution to the integral.

The tensors C(µ)
ij (Kρ) in (18) depend on the lateral (signed) distance ρ =

x1 − x2, as introduced after Eq.(4). In p-polarization, it is given by

C(p)(Kρ) =
K2c2

2ω2





J0 − J2 0 2J1

0 J0 + J2 0
−2J1 0 2J0



 , (17)

involving the Bessel functions Jn = Jn(Kρ), n = 0, 1, 2. A similar expres-
sion applies in s-polarization. We can focus, for short distances, on the range
ω/c � K, expand the reflection coefficients and find that |rs| � |rp|; hence,
the s-polarization is neglected in the following. This also justifies our taking the
non-retarded limit of the reflection coefficient (11). To the same accuracy, we ap-
proximate γ1 ≈ i|K|. Finally, the correlation tensor becomes

Eij(r1, r2) = µ0ωΘ(ω, T )

∞
∫

0

dK

2π
e−2Kz

∑

µ=s,p

C(µ)
ij (Kρ) Im rµ(K). (18)

We anticipate from the integral representation (18) that the wave-vector depen-
dence of Im rp(K) determines the spatial coherence length: if Kc is the scale on
which Im rp(K) → 0, we expect that the divergence of the energy density is
smoothed out for z � 1/Kc and that the lateral coherence length remains finite:
`coh ∼ 1/Kc for z ≤ 1/Kc.

4.3 Local medium

Let us illustrate first how the Lindhard reflection coefficient reduces to its local
form (the Fresnel formula). If the q-dependence of εl(q) can be neglected, writing
εl(q) → εloc, the surface impedance (12) integrates to Zp → 1/εloc. Eq.(11) then
recovers the reflection coefficient for electrostatic images, rp → (εloc−1)/(εloc+
1) which is the large K limit of the Fresnel formula for TM polarization. The
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integration of the Bessel functions and exponentials over K in Eq.(18) can be
carried out, and we get Eq.(4) with its unphysical 1/z3 divergence.

The same divergence would be obtained here from the background permittivity
εb that we assume local. To focus on the nonlocal contribution from the electron
plasma, we consider the regime where εb is real so that the leading-order, local
contribution analogous to Eq.(4) vanishes.

4.4 Nonlocal reflection coefficient

To get a qualitative insight into the impact of nonlocality, we perform an asymp-
totic analysis of the dielectric function (13–15):

εl(q) ≈















εb −
Ω2

ω(ω + iν)

[

1 + (q`)2
(

3

5
+

iν

3ω

)]

, |q`| � 1

εb

(

1 +
1

q2Λ2

)

+
iC

q3
, |q`| � 1

(19)

where Λ =
√

εbv2
F /(3Ω2) is the Thomas-Fermi length that provides another

length scale, and we use the notation C = 3πωΩ2/v3
F . We recall that ` is the

complex characteristic length defined in (14). Note that for small q, we recover the
usual, local Drude expression for an electron plasma

εloc = εb −
Ω2

ω(ω + iν)
. (20)

At large q, one gets the dielectric function for Thomas-Fermi screening [28] with
a screening length on the order of vF /Ω plus an imaginary correction.

From the integral (12) for the surface impedance, we find that the typical
wavenumber is of the order of q ≥ K. Hence the two limits quoted above translate
into the following asymptotics of the reflection coefficient, after performing the
integrations,

Im rp(K) ≈























Im
εloc − 1

εloc + 1
, |K`| � 1,

4

3ε2
b

CKΛ4g(KΛ)
∣

∣

∣1 + K/(εb

√

K2 + 1/Λ2)
∣

∣

∣

2 , |K`| � 1.
(21)

The dimensionless function g(KΛ) is the integral

g(KΛ) =

∞
∫

0

dt
√

(KΛ)2 + t2[(KΛ)2 + 1 + t2]2
. (22)

This can be evaluated in closed, but barely instructive form involving a hypergeo-
metric function; its limiting behaviour is

g(KΛ) ≈ ln(1/KΛ) + ln 2 − 1
2 for KΛ � 1,

g(KΛ) = 2
3 (KΛ)−4 for KΛ � 1.

(23)
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Fig. 3 Reflection coefficient Im rp(K) vs. the normalized wave vector KvF /Ω. Dashed
lines: asymptotical formulas (21). Solid line with symbols: numerical calculation. The ar-
rows mark, from left to right, the characteristic scales ω/c, 1/|`| and 1/Λ. Chosen param-
eters: Ω/ν = 192, c/vF = 148, (vF /Ω = 0.84 Å), taken from the Drude description
of aluminium [28]. We take εb = 2 to model the contribution of bound electrons. Left
panel: ω = 0.8 ν or λ = 19 µm. Right panel: ω = 0.55 Ω (λ = 140 nm), near the
large-K asymptote of the surface plasmon resonance in the local approximation (given by
εloc + 1 = 0).

The first line applies to the intermediate case 1/|`| � K � 1/Λ, the second one to
the regime K � 1/Λ, 1/|`|. In both cases, Eq.(21) implies that |Im rp(K)| � 1.

The reflection coefficient is plotted in Fig.3 where the asymptotic expres-
sions (21) are represented as dashed lines. We find good agreement outside the
crossover range K|`| ∼ 1. In the frequency range of the anomalous skin effect,
ω ∼ ν (left panel, λ = 19 µm in the infrared), the nonlocal plasma shows an in-
creased Im rp(K), with a cutoff occurring beyond Kc ∼ 1/Λ [see Eq.(23)]. This
effect is well known [29] and is related to the enhanced spontaneous emission rate
for a nonlocal metallic surface that was recently pointed out [33]. The reflection
loss remains small in absolute numbers because of the large conductivity of the
material. The opposite behaviour is found near the (local, non-retarded) surface
plasmon resonance (right panel, λ = 140 nm in the far UV): Im rp(K) decreases
from its local value, with a weakly resonant feature emerging around K ∼ 1/|`|.

From these plots, we observe that the characteristic wave vector scale Kc

strongly depends on the frequency range. An upper limit is set by 1/Λ, involv-
ing the Thomas-Fermi screening length, but significant changes already occur on
the scale 1/|`|. The characteristic distance below which non-local effects become
manifest, is thus given by the largest of |`| and Λ. This is typically |`|, since in
order of magnitude, |`|/Λ ∼ Ω/|ω + iν| which is much larger than unity for
good conductors up to the visible domain. At frequencies smaller (larger) than the
damping rate ν, the mean free path lmfp (the “ballistic amplitude” vF /ω): sets the
scale for nonlocal effects, respectively.

We note that for typical metals, the Thomas-Fermi scale Λ does not differ
much from the Fermi wavelength 1/kF . The asymptotics derived above within
the semiclassical Lindhard model (13) is therefore only qualitatively valid at short
distances (large wavevectors).
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Fig. 4 Electric energy density, normalized to its far-field value, vs. normalized distance
Ωz/vF . Dashed line: local dielectric. Solid line: numerical calculation (left: ω = 0.8 ν;
right: ω = 0.55 Ω; other parameters as in Fig.3). The arrows mark, from left to right, the
characteristic distances Λ, |`|, and λ = 2πc/ω.

4.5 Energy density and lateral coherence

The numerical calculation of the correlation function Eq.(18) can be done effi-
ciently using a numerical interpolation of Im rp(K) that we continue for large and
small K using the asymptotics derived above.

We plot in Fig.4 the electric energy density as a function of distance, for the
same two frequencies as in Fig.3. Deviations from the local approximation (dashed
line) occur at distances smaller than |`|: enhancement at low frequencies (ω ∼ ν,
left panel), suppression near the surface plasmon resonance (right panel), which is
consistent with the trends seen in Fig.3. A saturation at small distances is also vis-
ible, although it occurs for fairly small values of Ωz/vF (where the semi-classical
Lindhard function is in practice no longer valid). We note also that for z ≥ λ, the
plots are only qualitative since the calculation does not take into account retarda-
tion.

Finally, we illustrate the finiteness of the coherence length as the distance of
observation enters the nonlocal regime. We plot in Fig.5 the zz-component of the
normalized coherence tensor (3), as a function of the lateral separation ρ/z. In the
local regime, one would get a universal curve independent of the distance. This
is no longer true near a nonlocal metal: when Thomas-Fermi screening sets in
(z ≤ Λ), the form of the coherence function changes and its width (the coherence
length) becomes much larger than z.

5 Concluding remarks

We have discussed in this paper the impact of a nonlocal dielectric response on the
spatial coherence of thermal electromagnetic near fields above a planar surface.
Using two different models to describe the nonlocal response, we have shown that
when the sources of the field have a finite correlation length, this length sets the
minimum scale for the coherence length of the field as well. This behaviour is
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Fig. 5 Normalized degree of spatial coherence for z-polarized fields, probed at a lat-
eral separation ρ. The numbers on the curves (solid lines) give the normalized distance
Ωz/vF = 100, 10, 1, 0.1, with the normalized Thomas-Fermi screening length being
ΩΛ/vF = (εb/3)

1/2 ≈ 0.8. Dashed line: result for a local dielectric in the near-field
limit z � λ, taken from Eq.(4). The chosen parameters are those of Fig.3, right panel.

qualitatively similar to what we found previously when investigating the contribu-
tion of thermally excited surface plasmons where coherence length and plasmon
propagation length coincide [5]. We have thus provided semi-quantitative evidence
for the impact of nonlocality that has been conjectured already by Rytov’s group
[2].

The calculation for an electron plasma model highlights, on the one hand, the
crucial role played by Thomas-Fermi screening, that sets the minimum coherence
length. On the other hand, significant deviations from the local description already
occur at scales below the electron mean free path (Fig.3 and Fig.4), although these
are not accompanied by an increase in spatial coherence.

Our calculations can be improved taking into account quantum effects in the
Lindhard dielectric function [29], which will lead to quantitative changes at short
distance. Indeed, for typical metals, the Thomas-Fermi screening length vF /Ω and
the Fermi wavelength 1/kF are fairly close [28]. A comparison to other models
of nonlocal dielectric functions would be interesting as well. On the experimental
side, it would be interesting to compare the recent data on heat transfer between a
scanning tip and a surface [13] with a microscopic calculation along the lines used
here. We also mention that in the context of the Casimir force, nonlocal surface
impedances have been studied. The nonlocal correction is particularly relevant
at finite temperature and large distances and leads to a behaviour of the Casimir
force that is qualitatively similar, even without absorption, to the local, lossy Drude
model, see for example Refs.[34,35]. Finally, it remains to study the impact of
another property of real metals, the smooth rather than abrupt transition of the
electron density profile at the surface: this can be described by effective surface
displacements that depend on both polarization and wave vector, thus adding to
the nonlocal effects considered here [36].
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A Appendix

Les us consider the Green tensor relating an electric current in a medium 2 (z ′ < 0)
to the electric field in medium 1 (z > 0) that we take as vacuum (ε1 = 1). This
tensor can be written as an expansion in plane waves (Weyl expansion)

Gij(r, r′) =
i

2

∫

d2K
(2π)2 γ2

gij(K)eiK·(R−R
′)eiγ1ze−iγ2z′

, (24)

where K is the wave vector component parallel to the interface. The γi are the
z-components of the wave vector: γ2

i = εi(ω/c)2−K2. In the notation of Ref.[5],

gij(K) =
∑

µ=s,p

e
(t)
µ,ie

(2)
µ,jt

21
µ (25)

The polarization vectors for the s and p polarization are

e(t)
s = e(2)

s = K̂× êz (26)

e(t)
p =

Kẑ− γK̂
ω/c

(27)

e(2)
p =

Kẑ− γ2K̂√
ε2 ω/c

(28)

where K̂ is the unit vector parallel to K. The t21µ are the Fresnel transmission
coefficients between media 2 and 1:

t21s =
2γ2

γ1 + γ2
, t21p =

2γ2
√

ε2

ε2γ1 + γ2
. (29)
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