J. M. Sousa, O. G. Okhotnichov15, ]. F. Fontana, L. Bossalini, P. Franco et al., Selft-starting sliding-frequency fibre soliton laser Optical pulse generation with a frequency shifter feedback laser Environmentally stable picoseconde ytterbium fiber laser with a broad tuning range Pulse generation in fiber lasers with frequency shifted feedback, Optic. Comm. Electron. Lett. Appl. Phys. Lett. Optic. Lett, vol.183, issue.23, pp.227-241, 1988.

E. Desurvire, H. Sasamori, K. Isshiki, H. Watanabe, K. Kasahara et al., Multiwavelength erbium-doped ring light source with fiber grating filter " , Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback, II.5 Bibliographie, pp.235-825, 1997.

E. Snitzer, Proposed Fiber Cavities for Optical Masers, Journal of Applied Physics, vol.32, issue.1, pp.36-39, 1961.
DOI : 10.1063/1.1735955

C. J. Koester and E. Snitzer, Amplification in a Fiber Laser, Applied Optics, vol.3, issue.10, pp.1182-1186, 1964.
DOI : 10.1364/AO.3.001182

. Appl, . Phys, S. B. Lett, D. N. Poole, M. E. Payne et al., Fabrication of low-loss optical fibres containing rare earth ions, Electron. Lett, vol.135, issue.21, pp.1256-1258, 1974.

A. E. Siegman, Lasers, 1986.

P. C. Beker, Erbium-doped fiber amplifier: fundamentals and technology, Academic press, 1999.

M. J. Digonnet, J. M. Senior, F. Sanchez, and G. Stephan, Rare-earth-doped fiber lasers and amplifiers Optical fiber communications: Principles and practice Second edition General analysis of instabilities in erbium-doped fiber lasers, Marcel Dekker inc Phys. Rev. E, vol.5310, pp.2110-2123, 1992.

G. Michel-stéphan, M. Bondiou, R. Gabet, G. M. Stéphan, and P. Besnard, Semiclassical study of the laser transition Linewidth of an optically injected semiconductor laser, Phys. Rev. A J of Optics B, vol.5512, issue.2, pp.1371-1384, 1997.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 1991.

D. P. Hand, P. J. Russel15-]-g, W. W. Meltz, W. H. Morey, . Glenn16-]-r et al., Application to reflection filter fabrication Single mode fibre gratings written into a Sagnac loop using photosensitive fibre: transmission filters Formation of Bragg gratings in optical fibres by transverse holographic method All-fibre narrowband reflection gratings at 1550 nm The photorefractive Bragg gratings in the fibers for telecommunications, IOOC, Technical Digest, pp.647-648, 1978.

T. E. Erdogan, Fiber grating spectra, Journal of Lightwave Technology, vol.15, issue.8, pp.1277-1294, 1997.
DOI : 10.1109/50.618322

R. Kashyap, J. Martin, F. Ouellette-cortes, H. Fathallah, S. Larochelle et al., Fiber Bragg gratings Novel writing technique of long and highly reflective in-fibre gratings, Writing of Bragg Gratings with Wavelength Flexibility using a Sagnac Type Interferometer and Application, pp.811-812, 1994.

A. Swanton, D. J. Armes, K. J. Young-smith, and R. Kashuap, CDMA Use of e-beam written, reactive ion etched, phase masks for the generation of novel photorefractive fibre gratings, pp.411-412, 1998.

J. E. Curran, F. Ouellette, R. Slavik, S. Doucet, and S. Larochelle, Production of surface patterns by chemical plasma etching Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides Polarisation selective all-fibre Fabry-Perot filters with superimposed chirped Bragg gratings in high-birefringence fibres, J. Phys. E Opt. Lett. Electron. Lett, vol.1425, issue.39, pp.393-407, 1981.

]. R. Slavik, S. Doucet, and S. Larochelle, High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings, Journal of Lightwave Technology, vol.21, issue.4, pp.1059-1065, 2003.
DOI : 10.1109/JLT.2003.810097

S. Sudo-]-e, J. W. Desurvire, J. L. Sulhoff, J. R. Zyskind, and . Simpson, Study of spectral dependence of gaun saturation and effect of inhomogenous broadenning in erbium-doped aluminosilicate fiber amplifiers Room temperature spectral hole-burning in erbium-doped fiber amplifier Homogeneous linewidth in, Optical Fiber Amplifiers: Materials, Devices, and Applications Optical Fiber Communication Conference, pp.653-655, 1990.

3. I. Er, L. Laming, P. R. Reekie, D. N. Morkel, . J. Payne34-]-w et al., Multichannel crosstalk and pump noise characterisation of Er 3+ -doped fibre amplifier pumped at 980 nm 4 I13/2-4 I15/2 emission and absorption cross section for Er 3+ -doped glasses The effect of glass composition on the performance of ER 3+ fiber amplifiers Amplification of spontaneous emission in erbium-doped single-mode fibers Spectroscopic properties of Er-doped silica fibers and preforms Numerical Analysis of Multifrequency Erbium-Doped Fiber, Fiber laser sources and amplifiers III, Proc. SPIE OSA Proc. Series Fiber laser sources and amplifiers, Proc. SPIE Fiber laser sources and amplifiers, Proc. SPIE, pp.91-100, 1989.

]. H. Sasamori, K. Isshiki, H. Watanabe, and E. K. Kasahara, Multiwavelength erbium-doped ring light source with fiber grating filter " , Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Numerical Analysis of Multifrequency Erbium-Doped Fiber, III.6 Bibliographie, pp.115-119, 1997.

]. S. Kim, M. J. Chu, J. H. Lee, R. Slavík, S. Larochelle et al., Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band C-band multi-wavelength frequency-shifted, IEEE Proc.-Optoelectron. Optic. Comm. Optic. Comm, vol.147, issue.206, pp.115-119, 2000.

L. C. Foster, M. D. Ewy, and C. B. Crumly, Laser mode locking by an external dopper cell, Opt. Comm, vol.218, pp.81-86, 2003.

W. Steifer and J. R. Whinnery, Analysis of a dye laser tuned by acousto-optic filter

. Phys, J. M. Lett, O. G. Sousa, H. Okhotnichov10, E. Sabert et al., Short pulse generation and control in Er-doped frequency-shifted feedback fibre laser Pulse generation in fiber lasers with frequency shifted feedback Dynamics proprieties of an all solid-state frequency-shifted feedback laser Continuous-wave laser without frequency domain mode structure: investigation of emission proprieties and buildup dynamics Numerical recipes in C, Optic. Comm. J. Lightwave Technol. IEEE J. of Quantum Electron. J. Opt. Soc. Am. B, vol.1715, issue.8, pp.335-338, 1970.

A. Chandonnet, G. Larose16, H. Sabert, and E. Brinkmeyer, High power Q-Switching erbium fiber laser Pulse generation in fiber lasers with frequency shifted feedback High-performance adjustable room temperature multiwavelength Erbium-doped fiber ring laser in C-band, Opt. Eng. J. Lightwave Technol. Opt. Comm, vol.32, issue.26, pp.2031-2035, 1993.

R. Slavìk, S. K. Larochelle-]-s, M. J. Kim, J. H. Chu, S. Lee-maran et al., Frequency shift in a fiber laser resonator Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature, Opt. Lett. Optic. Comm. Opt. Lett, vol.272021, issue.28, pp.28-30, 2001.

. M. Abramowitz and I. A. Et-stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, p.928, 1972.

]. R. Slavík, S. Larochelle, M. Karásek-]-j-n, S. Maran, P. Larochelle et al., High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback Analysis of a dye laser tuned by acousto-optic filter Spectral characteristic of an all-solid state frequency-shifted feedback laser Dynamic properties of an all-solid state frequency-shifted feedback laser Pulse generation in fiber lasers with frequency shifted feedback Continuous-wave laser without frequency-domainmode structure: investigation of emission properties and buildup dynamics, V.6 Bibliographie [1] International telecommunication union, pp.40-365, 1970.

F. V. Kowalski, P. D. Hale, J. D. Shattil-]-p, F. V. Hale, and . Kowalski, Broaddand continuous-wave laser Output characterization of a frequency shifted feedback laser : theory and experiment The CW modeless laser : model calculations of an active frequency shifted feedback cavity Lasers, Optic. Lett. J. of Quantum Electron. Optic. Comm, vol.13, issue.87, pp.622-624, 1986.

M. J. Digonnet, Rare-earth-doped fiber lasers and amplifiers, 2001.

J. P. Pérez, Optique, fondements et applications, 1996.

B. E. Saleh, M. C. Wiley-interscience18, ]. A. Bellemare, M. Karasek, M. Rochette et al., Fundamentals of Photonics Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid, J of LightwaveTechnol, vol.18, pp.825-829, 1991.

R. Kashyap, J. Maran, and S. Larochelle, Fiber bragg gratings Academic press Temporal characterization of a multi-wavelength erbiumdoped fiber laser with frequency-shifted feedback, Proc. of SPIE, vol.20, issue.4833, pp.855-861, 1999.

. Damsg, Dispersion Compensating Fibers, Opt. Fiber Technol, vol.6, pp.164-180, 2000.

. Mikkelsen, Integrated tunable fiber gratings for dispersion management in high-bit rate systems, J

L. G. Cohen, S. Ryu, Y. Horiuchi, K. Mochizuki25, ]. L. Thevenaz et al., Comparison of single mode fiber dispersion measurement techniques Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range All-fiber interferometer for chromatic dispersion measurements Group delay analysis of chirped fiber Bragg gratings using photon counting Comparaison of NRZ and RZ modulation format for 40-Gb\s TDM standard-fiber systems Single channel 160, Cavallari, M. Jones, P.Kean D. Watley et A. Hadjifotiou, pp.958-966, 1985.

S. Park, A. H. Gnauck, J. M. Weisenfeld, L. D. Garrett, H. J. Breuer et al., Paper TuA3 40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulsed Unrepeated 40-Gb/s RZ single-channel transmission at 1.55 µm using various fiber types 32 wavelength tunable mode-locked laser with 100 GHz channel spacing using an arrayed waveguide grating Tunable dualwavelength actively mode-locked fiber laser with an F-P semiconductor modulator, GB/s OTDM propagation over 480 km of standard fiber using a 40 GHz semiconductor mode-locked laser pulse source, pp.4-5, 1998.

I. Blondel, J. Photon, M. Vasseur, J. Hanna, J. Dudley et al., Alternate multiwavelength modelocked fiber laser 20X 5Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser 60 channel WDM transmitter using multiwavelength modelocked semiconductor laser Multiwavelength 10GHz picosecond pulse generation from a single-stripe semiconductor diode laser Multiwavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser Multiwavelength mode-locked InGaAsP laser operating at 12 ch x 2 GHz and 16 ch x 10 GHz 10 x 10 GHz simultaneously modelocked multiwavelength fibre ring laser Multiwavelength, actively mode-locked polarization maintaining fiber laser at 10 GHz Actively mode-locked dualwavelength erbium-doped fiber laser Dual-wavelength 10-GHz actively mode-locked erbium fiber laser, Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelength at room temperature, pp.1238-1240, 1995.

A. E. Siegman, Lasers, 1986.

]. Maran, S. Larochelle, P. J. Besnard22-]-d, A. E. Kuisaga, and . Siegman, A 25x10 GHz modelocked Erbium-doped fiber " , paper CWA70 FM and AM locking of the homogeneous laser -part I: theory, IEEE J. of Quant. Electron, vol.2123, issue.6, pp.694-708, 1970.

R. Slavìk and S. Larochelle, Frequency shift in a fiber laser resonator, Optics Letters, vol.27, issue.1, pp.28-30, 2002.
DOI : 10.1364/OL.27.000028

B. A. Saleh and M. C. Teich, Fundamentals of photonics Pulse generation in fiber lasers with frequency shifted feedback

A. E. Siegman, ]. S. Kim, J. Kwon, S. Kim, B. Lee et al., Lasers Multiplexed strain sensor using fiber grating-tuned fiber laser with a semiconductor optical amplifier Multiwavelength fiber laser sources with Bragg-grating sensor multiplexing capability Investigation of a tuneable mode-locked fiber laser for application to multipoint gas spectroscopy, IEEE Photon. Technol. Lett. J. of Light. Technol. J. of Light. Technol, vol.13, issue.22, pp.350-351, 1986.

H. Eggleton, G. A. Shi, J. C. Alphonse, P. J. Connolly, M. Delfyett et al., 20X 5Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser 60 channel WDM transmitter using multiwavelength modelocked semiconductor laser, IEEE Photon. Technol. Lett. Electron. Lett. Electron. Lett, vol.138, issue.38, pp.1286-1288, 1998.

P. C. Beker10-]-n, P. F. Park, and . Wysocki, Multi-wavelength of an erbium-doped fiber ring laserusing a dual-pass Mach-Zehnder comb filter 24-lines multiwavelength operation of erbium-doped fiber ring laser Switchable multiwavelength erbium doped fiber laserwith cascaded fiber Bragg grating cavities Multiwavelength ring lasercomposed of EDFAs and an array-waveguide wavelength multiplexer A multiwavelength fiber ring laser employing a pair of silica-based array-waveguide-gratings, Academic press, pp.159-165, 1994.

G. Das, J. W. Lit, I. Photon, . Technol, . Lett15-]-o et al., A multiwavelength CW source based on longitudinal modecarving of supercontinuum generated in fibers and noise performance 150 channel supercontinuum CW optical source with high SNR and precise 25 GHz spacing for 10 Gbit/s DWDM systems Multiwavelength erbium-doped ring light source with fiber grating filter " , Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band Temporal characterization of a multi-wavelength erbiumdoped fiber laser with frequency-shifted feedback Short pulse generation and control in Er-doped frequency-shifted feedback fibre laser Pulse generation in fiber lasers with frequency shifted feedback Theoretical analysis of the pulsed regime observed with a frequency-shifted-feedback fiber laser C-band multi-wavelength frequency shifted, J. of Light. Technol. Electron. Lett. J of Lightwave Technol. Optic. Comm. Optic. Comm. Proc. of SPIE Optic. Comm. J. Lightwave Technol, vol.1417182125, issue.12, pp.606-608, 1994.

J. Maran, S. Larochelle, P. Besnard-maran, S. Larochelle, and P. Besnard, An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature, Opt. Lett, vol.2827, pp.2082-2084, 2003.

B. E. Saleh, M. C. Teich, D. J. Taylor, S. E. Harris, and S. T. Nieh, Fundamentals of Photonics Electronic tunning of a dye laser using the acousto-optic filtre Electronically tunable acousto-optique filter, nettest.com/Products/Products/Tunics, pp.269-271, 1971.

. Appl, . Phys, . A. Lett5-]-g, K. W. Coquin, . F. Cheung-]-p et al., Electronically tunable external-cavity semiconductor laser Broad-spectrum, wavelength sweep erbium doped fiber laser at 1.55µm Wideband wavelength tunable modelocked fibre laser over 1557-1607 nm Acoustically tuned erbium-doped fiber ring laser, Electron. Lett. Optic. Lett. Electron. Lett. Optic. Lett, vol.15, issue.16, pp.325-326, 1969.

T. Miyata, K. Nakazawa, H. L. Morito, N. G. Offerhaus, D. J. Broderick et al., Widely (90 nm) wavelength tunable laser using a semiconductor optical amplifier and a acousto-optic tunable filter Highenergy single transverse mode Q-switched fiber laser based on a multimode large mode area erbium doped fiber Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelength at room température Laser mode locking by an external dopper cell, Th1, pp.1683-1685, 1998.

. Appl, . Phys, R. L. Lett-hargove, M. A. Fork, J. M. Pollack et al., Locking of He-Ne laser modes induced by synchronous intracavity modulation Short pulse generation and control in Er-doped frequency-shifted feedback fibre laser, Selft-starting sliding-frequency fibre soliton laser, pp.6-8, 1964.

F. V. Kowalski, S. J. Shattil, P. D. Hale15, ]. J. Porta, A. B. Grudinin et al., Optical pulse generation with a frequency shifter feedback laser Environmentally stable picoseconde ytterbium fiber laser with a broad tuning range Pulse generation in fiber lasers with frequency shifted feedback, Appl. Phys. Lett. Optic. Lett. J. Lightwave Technol, vol.5317, issue.12, pp.734-736, 1988.

E. Desurvire, H. Sasamori, K. Isshiki, H. Watanabe, K. Kasahara et al., Multiwavelength erbium-doped ring light source with fiber grating filter Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band, J of Lightwave Technol. Optic. Comm. Optic. Comm, vol.18, issue.206, pp.235-825, 1997.

E. Snitzer, Proposed Fiber Cavities for Optical Masers, Journal of Applied Physics, vol.32, issue.1, pp.36-39, 1961.
DOI : 10.1063/1.1735955

C. J. Koester and E. Snitzer, Amplification in a Fiber Laser, Applied Optics, vol.3, issue.10, pp.1182-1186, 1964.
DOI : 10.1364/AO.3.001182

J. Stone and C. A. Burrus, Neodynium-doped silica lasers in end-pump fiber geometry

. Phys, S. B. Lett, D. N. Poole, M. E. Payne, and . Fermann, Fabrication of low-loss optical fibres containing rare earth ions, Electron. Lett, vol.135, issue.21, pp.1256-1258, 1974.

A. E. Siegman, Lasers, 1986.

P. C. Beker, Erbium-doped fiber amplifier: fundamentals and technology, Academic press, 1999.

M. J. Digonnet, J. M. Senior, F. Sanchez, and G. Stephan, Rare-earth-doped fiber lasers and amplifiers Optical fiber communications: Principles and practice Second edition General analysis of instabilities in erbium-doped fiber lasers, Marcel Dekker inc Phys. Rev. E, vol.5310, pp.2110-2123, 1992.

G. Michel-stéphan, M. Bondiou, R. Gabet, G. M. Stéphan, and P. Besnard, Semiclassical study of the laser transition Linewidth of an optically injected semiconductor laser, Phys. Rev. A J of Optics B, vol.5512, issue.2, pp.1371-1384, 1997.

B. E. Saleh and M. C. Teich, Fundamentals of Photonics, 1991.

D. P. Hand, P. J. Russel15-]-g, W. W. Meltz, W. H. Morey, . Glenn16-]-r et al., Application to reflection filter fabrication Single mode fibre gratings written into a Sagnac loop using photosensitive fibre: transmission filters Formation of Bragg gratings in optical fibres by transverse holographic method All-fibre narrowband reflection gratings at 1550 nm The photorefractive Bragg gratings in the fibers for telecommunications, IOOC, Technical Digest, pp.647-648, 1978.

T. E. Erdogan, Fiber grating spectra, Journal of Lightwave Technology, vol.15, issue.8, pp.1277-1294, 1997.
DOI : 10.1109/50.618322

R. Kashyap, J. Martin, F. Ouellette-cortes, H. Fathallah, S. Larochelle et al., Fiber Bragg gratings Novel writing technique of long and highly reflective in-fibre gratings, Writing of Bragg Gratings with Wavelength Flexibility using a Sagnac Type Interferometer and Application, pp.811-812, 1994.

A. Swanton, D. J. Armes, K. J. Young-smith, and R. Kashuap, CDMA Use of e-beam written, reactive ion etched, phase masks for the generation of novel photorefractive fibre gratings, pp.411-412, 1998.

J. E. Curran, F. Ouellette, R. Slavik, S. Doucet, and S. Larochelle, Production of surface patterns by chemical plasma etching Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides Polarisation selective all-fibre Fabry-Perot filters with superimposed chirped Bragg gratings in high-birefringence fibres, J. Phys. E Opt. Lett. Electron. Lett, vol.1425, issue.39, pp.393-407, 1981.

]. R. Slavik, S. Doucet, S. Larochelle29-]-e, J. W. Desurvire, J. L. Sulhoff et al., High-performance all-fiber Fabry-Perot filters with superimposed chirped Bragg gratings Study of spectral dependence of gaun saturation and effect of inhomogenous broadenning in erbium-doped aluminosilicate fiber amplifiers Room temperature spectral hole-burning in erbium-doped fiber amplifier Homogeneous linewidth in, Optical Fiber Communication Conference, pp.1059-1065, 1990.

3. I. Er, L. Laming, P. R. Reekie, D. N. Morkel, . J. Payne33-]-w et al., Multichannel crosstalk and pump noise characterisation of Er 3+ -doped fibre amplifier pumped at 980 nm 4 I13/2-4 I15/2 emission and absorption cross section for Er 3+ -doped glasses The effect of glass composition on the performance of ER 3+ fiber amplifiers Amplification of spontaneous emission in erbium-doped single-mode fibers Spectroscopic properties of Er-doped silica fibers and preforms Numerical Analysis of Multifrequency Erbium-Doped Fiber, Fiber laser sources and amplifiers III, Proc. SPIE OSA Proc. Series Fiber laser sources and amplifiers, Proc. SPIE Fiber laser sources and amplifiers, Proc. SPIE, pp.91-100, 1989.

H. Sasamori, K. Isshiki, H. Watanabe, K. Kasahara, A. Bellemare et al., Multiwavelength erbium-doped ring light source with fiber grating filter " , Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Numerical Analysis of Multifrequency Erbium-Doped Fiber, CHAPITRE 3, pp.235-825, 1997.

]. S. Kim, M. J. Chu, J. H. Lee, R. Slavík, S. Larochelle et al., Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band C-band multi-wavelength frequency-shifted, IEEE Proc.-Optoelectron. Optic. Comm. Optic. Comm, vol.147, issue.206, pp.115-119, 2000.

O. G. Sousa, H. Okhotnichov, E. Sabert, K. Brinkmeyer, K. Kasahara et al., Short pulse generation and control in Er-doped frequency-shifted feedback fibre laser Pulse generation in fiber lasers with frequency shifted feedback Dynamics proprieties of an all solid-state frequency-shifted feedback laser Continuous-wave laser without frequency domain mode structure: investigation of emission proprieties and buildup dynamics Laser mode locking by an external dopper cell, Optic. Comm. J. Lightwave Technol. IEEE J. of Quantum Electron. J. Opt. Soc. Am. B, vol.218, issue.8, pp.81-86, 1991.

E. L. Desurvire13-]-h, X. Z. An, Y. E. Lin, H. D. Pun, and . Liu, Multi-wavelength operation of an erbiumdoped fiber ring laser using a dual-pass Mach-Zehnder comb filter Lasers, Opt. Comm, vol.169, pp.159-165, 1986.

]. A. Bellemare, Lasers à fibre dopée erbium accordables et multifréquences applicables aux télécommunications par fibre optique " , thèse présentée à la faculté des études supérieures de l, 2000.

W. Steifer and J. R. Whinnery, Analysis of a dye laser tuned by acousto-optic filter

. Phys, J. Lett, S. Maran, and . Larochelle, Temporal characterization of a multi-wavelength erbiumdoped fiber laser with frequency-shifted feedback, Proc. of SPIE, vol.1717, issue.4833, pp.335-338, 1970.

A. E. Siegman-]-m and . Digonnet, Lasers Rare-earth-doped fiber lasers and amplifiers, 1986.

T. P. Lee, R. H. Roldan, F. Sanchez, G. M. Davis, M. J. Digonnet et al., GaAs injection lasers with tandem double-section stripes geometry General analysis of instabilities in erbium-doped fiber lasers Characterization of clusters in rare earthdoped fibers by transmission measurements Rate equations for clusters in rare earthdoped fibers Analysis and optimization of a Q-Switched Erbium doped fiber laser working with a short rise time modulator, IEEE J. of quantum Electronn. Phys. Rev. E J. Lightwave Technol. Opt. Eng. Opt. Fiber Technol, vol.68, issue.2, pp.339-352, 1970.

D. H. Stone9-]-w, L. Chi, M. K. Chao, and . Rao, Effects of axial nonuniformity in modeling Q-Switched lasers Time-domain large signal investigation on nonlinear interactions between an optical pulse and semiconductor waveguide High-power high frequency picosecond pulses generation by passive Qswithed 1.55 m diode lasers, IEEE J. of Quantum Electron. IEEE J. of quantum Electronn. IEEE J. of quantum Electronn, vol.1011, issue.29, pp.1970-1973, 1992.

B. A. Saleh and M. C. Teich, Fundamentals of photonics Numerical Analysis of Multifrequency Erbium-Doped Fiber

J. Maran, S. Larochelle, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Temporal characterization of a multiwavelength Erbiumdoped fiber laser with frequency-shifter feedback Numerical recipes in C, Proc. SPIE, pp.115-119, 1999.

A. Chandonnet, G. Larose16, H. Sabert, and E. Brinkmeyer, High power Q-Switching erbium fiber laser Pulse generation in fiber lasers with frequency shifted feedback High-performance adjustable room temperature multiwavelength Erbium-doped fiber ring laser in C-band, Opt. Eng. J. Lightwave Technol. Opt. Comm, vol.32, issue.26, pp.2031-2035, 1993.

R. Slavìk, S. K. Larochelle-]-s, M. J. Kim, J. H. Chu, S. Lee-maran et al., Frequency shift in a fiber laser resonator Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature, Opt. Lett. Optic. Comm. Opt. Lett, vol.272021, issue.28, pp.28-30, 2001.

. M. Abramowitz and I. A. Et-stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing, p.928, 1972.

]. R. Slavík, S. Larochelle, M. Karásek-]-j-n, S. Maran, P. Larochelle et al., High-performance adjustable room temperature multiwavelength erbium-doped fiber ring laser in the C-band An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback Analysis of a dye laser tuned by acousto-optic filter Spectral characteristic of an all-solid state frequency-shifted feedback laser Dynamic properties of an all-solid state frequency-shifted feedback laser Pulse generation in fiber lasers with frequency shifted feedback Continuous-wave laser without frequency-domainmode structure: investigation of emission properties and buildup dynamics, CHAPITRE 5 _______________________________________ [1] International telecommunication union, pp.40-365, 1970.

F. V. Kowalski, P. D. Hale, J. D. Shattil-]-p, F. V. Hale, and . Kowalski, Broaddand continuous-wave laser Output characterization of a frequency shifted feedback laser : theory and experiment The CW modeless laser : model calculations of an active frequency shifted feedback cavity Lasers, Optic. Lett. J. of Quantum Electron. Optic. Comm, vol.13, issue.87, pp.622-624, 1986.

M. J. Digonnet, Rare-earth-doped fiber lasers and amplifiers, 2001.

J. P. Pérez, Optique, fondements et applications, 1996.

B. E. Saleh, M. C. Wiley-interscience18, ]. A. Bellemare, M. Karasek, M. Rochette et al., Fundamentals of Photonics Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid, J of LightwaveTechnol, vol.18, pp.825-829, 1991.

R. Kashyap, J. Maran, and S. Larochelle, Fiber bragg gratings Academic press Temporal characterization of a multi-wavelength erbiumdoped fiber laser with frequency-shifted feedback, Proc. of SPIE, vol.20, issue.4833, pp.855-861, 1999.

. Damsg, Dispersion Compensating Fibers, Opt. Fiber Technol, vol.6, pp.164-180, 2000.

. Mikkelsen, Integrated tunable fiber gratings for dispersion management in high-bit rate systems, J

L. G. Cohen, S. Ryu, Y. Horiuchi, K. Mochizuki, L. Thevenaz et al., Comparison of single mode fiber dispersion measurement techniques Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range All-fiber interferometer for chromatic dispersion measurements Group delay analysis of chirped fiber Bragg gratings using photon counting, J. of Lightwave Technol. J. Lightwave Technol,. J. of Lightwave Technol. Zbinden et N. Gisin IEEE Photon. Technol. Lett, vol.5, issue.13, pp.958-966, 1985.

]. D. Breur and K. Petermann, Comparaison of NRZ and RZ modulation format for 40-Gb\s TDM standard-fiber systems Single channel 160, CHAPITRE 6, pp.398-400, 1997.

S. Park, A. H. Gnauck, J. M. Weisenfeld, L. D. Garrett, H. J. Breuer et al., Paper TuA3 40-Gb/s transmission over multiple 120-km spans of conventional single-mode fiber using highly dispersed pulsed Unrepeated 40-Gb/s RZ single-channel transmission at 1.55 µm using various fiber types 32 wavelength tunable mode-locked laser with 100 GHz channel spacing using an arrayed waveguide grating Tunable dualwavelength actively mode-locked fiber laser with an F-P semiconductor modulator, GB/s OTDM propagation over 480 km of standard fiber using a 40 GHz semiconductor mode-locked laser pulse source, pp.4-5, 1998.

J. Blondel, M. Vasseur, J. Hanna, J. Dudley, H. Goedgebuer et al., Alternate multiwavelength modelocked fiber laser 20X 5Gbit/s optical WDM transmitter using single-stripe multiwavelength modelocked semiconductor laser 60 channel WDM transmitter using multiwavelength modelocked semiconductor laser Multiwavelength 10GHz picosecond pulse generation from a single-stripe semiconductor diode laser, IEEE Photon. Technol. Lett. . IEEE Photon. Technol. Lett. . Electron. Lett. Electron. Lett. IEEE Photon. Technol, vol.11, issue.38, pp.1238-1240, 1998.

. Lett, I. H. Zhu, . D. White13-]-e, T. J. Park, P. J. Croeze et al., Multiwavelength picosecond optical pulse generation using an actively mode-locked multichannel grating cavity laser Multiwavelength mode-locked InGaAsP laser operating at 12 ch x 2 GHz and 16 ch x 10 GHz 10 x 10 GHz simultaneously modelocked multiwavelength fibre ring laser Multiwavelength, actively mode-locked polarization maintaining fiber laser at 10 GHz Actively mode-locked dualwavelength erbium-doped fiber laser Dual-wavelength 10-GHz actively mode-locked erbium fiber laser Dual-wavelength mode-locked fibre laser with 0.7 nm wavelength spacing, Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelength at room temperature, pp.1439-1441, 1995.

A. E. Siegman, Lasers, 1986.

]. Maran, S. Larochelle, P. J. Besnard22-]-d, A. E. Kuisaga, and . Siegman, A 25x10 GHz modelocked Erbium-doped fiber " , paper CWA70 FM and AM locking of the homogeneous laser -part I: theory, IEEE J. of Quant. Electron, vol.2123, issue.6, pp.694-708, 1970.

R. Slavìk and S. Larochelle, Frequency shift in a fiber laser resonator, Optics Letters, vol.27, issue.1, pp.28-30, 2002.
DOI : 10.1364/OL.27.000028

B. A. Saleh and M. C. Wiley-interscience, Fundamentals of photonics Pulse generation in fiber lasers with frequency shifted feedback, J. Lightwave Technol, vol.12, pp.1360-1368, 1991.

]. R. Slavík, S. Larochelle, M. K. Karásek-]-s, M. J. Kim, J. H. Chu et al., Wideband multiavelength erbium doped fiber ring laser with frequency shifted feedback Multiwavelength erbium-doped ring light source with fiber grating filter " , Technical digest of optical amplifiers and their applications, WC3 Room Temperature Multifrequency erbium-doped fiber lasers anchored on ITU frequency grid Pulse generation in fiber lasers with frequency shifted feedback Short pulse generation and control in Er-doped frequency-shifted feedback fibre laser, CONCLUSION______________________________________ Optic. Comm. Optic. Comm. J of LightwaveTechnol. J. Lightwave Technol. Optic. Comm, vol.206, issue.183, pp.365-371, 1994.

R. Slavìk, S. Larochelle-]-j-n, S. Maran, and . Larochelle, Frequency shift in a fiber laser resonator Temporal characterization of a multi-wavelength erbiumdoped fiber laser with frequency-shifted feedback C-band multi-wavelength frequency-shifted, Opt. Lett. Proc. of SPIE, vol.278, issue.4833, pp.28-30, 2002.

R. Maran, S. Slavik, M. Larochelle, J. Karasek, S. Maran et al., Chromatic Dispersion Measurement Using a Multiwavelength Frequency-Shifted Feedback Fiber Laser An erbium-doped fiber laser simultaneously modelocked on more than 24 wavelengths at room temperature A 25x10 GHz modelocked Erbium-doped fiber An actively Modelocked erbium-doped fiber laser emitting over 30 wavelengths simultaneously with a 5 GHz repetition rate Theoretical analysis of the pulsed regime observed with a frequency-shifted-feedback fiber laser, IEEE Transac. on Instrumentation and Measurement Opt. Lett. LISTE DES PUBLICATIONS Articles, vol.2181112, issue.2803, pp.81-86, 2003.

J. Maran, R. Slavik, S. Larochelle, and M. Karasek, Chromatic Dispersion Measurement Using a Multiwavelength Frequency-Shifted Feedback Fiber Laser, IEEE Transactions on Instrumentation and Measurement, vol.53, issue.1, p.67, 2004.
DOI : 10.1109/TIM.2003.822008

J. Maran, S. Larochelle, and P. Besnard, Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature, Optics Letters, vol.28, issue.21, pp.2082-2084, 2003.
DOI : 10.1364/OL.28.002082

URL : https://hal.archives-ouvertes.fr/hal-00145953

J. Maran, S. Larochelle, and P. Besnard, C-band multi-wavelength frequency-shifted erbium-doped fiber laser, Optics Communications, vol.218, issue.1-3, pp.81-86, 2003.
DOI : 10.1016/S0030-4018(03)01130-1

URL : https://hal.archives-ouvertes.fr/hal-00145926

J. N. Maran and S. Larochelle, Temporal characterization for a multi-frequency erbium-doped fiber laser with frequency shifted feedback, Applications of Photonic Technology 5, pp.855-861, 2002.
DOI : 10.1117/12.473974

J. Articles-publiés-dans-des-conférences-internationnales, S. Maran, P. Larochelle, and . Besnard, A 25x10 GHz modelocked Erbium-doped fiber, 2004.

J. Maran, S. Larochelle, and P. Besnard, Fonctionnement en modes bloqués d'un laser à fibre dopée Erbium : émission simultanée sur plus de 24 longueurs d'onde, 2003.

J. Maran, S. Larochelle, C. Juignet, and P. Besnard, An actively Modelocked erbium-doped fiber laser emitting over 30 wavelengths simultaneously with a 5 GHz repetition rate, p.3, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00159368

J. Maran, R. Slavik, and S. Larochelle, Realization and applications of multiwavelength fiber optic laser using fiber Bragg grating " , Canadian institute for photonic innovation, 2002.

-. Slavik, S. Larochelle, M. Karasek, and J. Maran, Multiwavelength fiber laser for chromatic dispersion measurement, 2001.

. I_s_plus, Sigm a_s_e,Sigma_s_a,Gama_s)+Fct_evol_Is, Ga ma_s))+2*(Fct_evol_Is(Y1_I_s_plus+j,m2+j+1,Sigma_s_e,Sigma_s_a,Gama_s)+Fct_evol_Is

. Nbre_pts_lambda, j-1)*Nbre_pts_lambda; inc2=(j+1)*Nbre_pts_lambda; for(k=0;k<Nbre_pts_lambda

. Ase_plus, A_eff)+Fct_evol_Iase(Y3_ASE_plus+inc+k,m2+j+1, A_eff))+2*(Fct_evol_Iase(Y2_ASE_plus+inc+k,m2+j+1,Sigma_ 12Gama_ase[k],A_eff))+Fct_evol_Iase(Y1_ASE_pl us+inc+k,m2+j+1, pp.12-21

. Ase_moins, Sigma_21[k],h,nu_ASE[k],delta_nu, Gama_ase[k],A_eff)+Fct_evol_Iase(Y3_ASE_moins+inc+k, A_eff))+2*(Fct_evol_Iase(Y2_ASE_moins+inc+kGama_ase[k],A_eff))+Fct_evol_Iase, pp.2-3

. Ase_plus, ASE_moins[inc+k]*=Loss; } } * Calcul de l'inversion **** for(j=0;j<N_slices;j++){ We=((tau*Sigma_s_e)/(h*nu_s))*I_s_plus

. Wa=, *nu_p))*I_p[j]; R13_2=((tau*(Sigma_a_p+Sigma_e_p))/(h*nu_p))*I_p[j]; We_ASE=0.0;Wa_ASE=0.0; inc=j*Nbre_pts_lambda; for(k=0;k<Nbre_pts_lambda;k++)

. Pompe=fopen and . Se_plus=fopen, SIGNAL=fopen("signal.txt, N2.txt

P. Moins=fopen, P_ASE_plus.txt

. Bande-spectrale-définie, Le paramètre Lambda_p et Sigma_p représentent respectivement la longueur d'onde du signal de pompe ainsi que la section efficace d'absorption pour cette longueur d'onde. Cette fonction a aussi besoin du nombre d'échantillons spectraux (Nbre_pts_lambda) utilisé lors de l'échantillonnage des sections efficaces. Enfin, A_eff est l'aire effective du mode de propagation

. La-fonction-est-alors-codée-en-langage-c-de-la-manière-suivante, Fonction d'évolution de la population du niveau supérieur m2 **** double F_m2(double *pointeur_IP,double *pointeur_m2,double *pointeur_Is_plus, double *pointeur_Is_moins, double A_eff,double Sigma_p, double Lambda_p,double *Sigma_s_e,double *Sigma_s_a, int Nbre_pts_lambda,double tau, double *Lambda) { double R13

. I_s_plus_inter, Définition des variables de simulation, *, vol.double delta_nu_milieu

. I_s_moins, *loss*loss_iso*I_s_moins[k]*filtre[k]; } for(k=0;k<Nbre_pts_milieu-1;k++){ pas=k+Nbre_pts_debut; I_s_plus

. I_s_moins, *loss*loss_iso*I_s_moins[pas+1]*filtre[pas]; } for(k=0;k<Nbre_pts_fin;k++) { pas=k+Nbre_pts_debut+Nbre_pts_milieu; I_s_plus

. Saturation_fibre=fopen, saturation_fibre.txt

. Spectre=fopen, spectre.txt

. Inc=nbre_pts_lambda, for(k=0;k<Nbre_pts_debut;k++){ I_s_plus[inc+k]=I_s_plus_inter[k]+dl*F_I_s_plus

}. For, i<N_FFT/2;i++){ freq = (double)(i) * res_spectral; fprintf(FILE_FILTRE,"%f\t%2.14f\n

/. Passage-dans-le-modulateur-Électro-optique and *. If, k==N_slices-5) {CHAMP_LASER[k]*=exp(- Gamma_EO*pow(sin(W_m*i*res_temp),2))