Tests d'Électrodynamique Quantique et Étalons de Rayons-X à l'Aide des Atomes Pioniques et des Ions Multichargés

Martino Trassinelli

Groupe de Métrologie des systèmes simples et Tests fondamentaux

Laboratoire Kastler Brossel, École Normale Supérieure et Université Pierre et Marie Curie

sous la direction de <u>Paul Indelicato</u>

Plan de l'exposé

- Introduction
- Atomes pioniques
 - Production des atomes pioniques et détection rayonnement émis
 - Calculs théoriques sur les atomes pioniques
 - Nouvelle mesure de la masse du pion
 - Test de l'équation Klein-Gordon
- Ions multichargés
 - Production des ions multichargés et détection rayonnement émis
 - Tests d'électrodynamique quantique (QED) dans les atomes à peu d'électrons
- Conclusion
- Perspectives

Atomes particuliers

Atome neutre : (nb. électrons = nb. protons)

Atomes particuliers

Ion multichargé :

- L'atome devient très chargé positivement
- On laisse quelques électrons

Atomes particuliers

Le pion et les atomes pioniques

Caractéristiques du pion :

- Découvert en 1947 (Powell et al.)
- Produit artificiellement en 1949 (Lattes et al.)
- Temps de vie = 26 ns
- Masse = 273 $m_e (139 \text{ MeV/c}^2)$
- Formé par un quark et un antiquark
- Spin du pion = 0

Pion (-

Le pion et les atomes pioniques

Caractéristiques du pion :

- Découvert en 1947 (Powell et al.)
- Produit artificiellement en 1949 (Lattes et al.)
- Temps de vie = 26 ns
- Masse = 273 $m_e (139 \text{ MeV/c}^2)$
- Formé par un quark et un antiquark
- Spin du pion = 0

Pion (-

Atomes pioniques :

- Noyau + pion = système lié
- Attraction due à la charge opposée

Le pion et les atomes pioniques

Caractéristiques du pion :

- Découvert en 1947 (Powell et al.)
- Produit artificiellement en 1949 (Lattes et al.)
- Temps de vie = 26 ns
- Masse = 273 $m_e (139 \text{ MeV/c}^2)$
- Formé par un quark et un antiquark
- Spin du pion = 0

Pion (-

Atomes pioniques :

- Noyau + pion = système lié
- Attraction due à la charge opposée
- Interaction forte due à la présence de quarks

Caractéristiques des atomes pioniques et ions multichargés

- Ions multichargés:
 - Z grand (ici Z=16-18)
 - corrélation entre électrons

Atomes pioniques:

9

- m grand (273 m_e)
- interaction forte
- petite durée de vie

Petit rayon

- Sensibilité aux effets de QED
 - polarisation du vide
 - self-énergie
- Influence de la taille du noyau

- Z = nombre atomique,
- m = masse réduite,
- h = constante de Planck,
- c = vitesse de la lumière,
- α = constante de structure fine

Charactéristiques des atomes pioniques 10 et ions multichargés

- Ions multichargés:
 - Z grand (ici Z=16-18)
 - corrélation entre électrons

Atomes pioniques:

- m grand (273 m_{e})
- interaction forte
- petite durée de vie

Petit rayon

- Sensibilité aux effets de QED
 - polarisation du vide
 - self-énergie
- Influence de la taille du noyau

Augmentation de l'énergie des niveaux atomiques

- Effets relativistes visibles
- Photons émis dans la gamme des rayons-X (1-10 keV)

Spectre d'émission de l'argon héliumoïde et lithiumoïde (rayons-X)

Comparaison des spectres X

• Largeur naturelle : ~ 10 meV (pour transitions de 2-4 keV)

11

- Spectres complexes
- Émission X intense par les sources d'ions

Atomes pioniques

- Largeur naturelle : ~ 10 meV (pour transitions de 2-4 keV)
- Atomes hydrogénoïde -> spectres simples
- Émission X faible par les sources d'atomes pioniques

Comparaison des spectres X

- Largeur naturelle : ~ 10 meV (pour transitions de 2-4 keV)
- Spectres complexes
- Émission X intense par les sources d'ions

Atomes pioniques

- Largeur naturelle : ~ 10 meV (pour transitions de 2-4 keV)
- Atomes hydrogénoïde -> spectres simples
- Émission X faible par les sources d'atomes pioniques

Largeur expérimentale des raies << largeur des raies des sources X par fluorescence

Applications : test de QED et étalons X ¹³

Caractérisation des spectromètres X

- Largeur des raies :~ 10 meV (pour transitions de 2-4 keV)
- Émission rayons-X intense par les sources d'ions multichargés

Applications : test de QED et étalons X ¹⁴

Caractérisation des spectromètres X

- Largeur des raies :~ 10 meV (pour transitions de 2-4 keV)
- Émission rayons-X intense par les sources d'ions multichargés

Étalons pour rayons-X de l'ordre de quelques keV

- Énergies prédictibles par la théorie avec une précision de quelques ppm
- Spectres dans un grand domaine d'énergie

Applications : test de QED et étalons X ¹⁵

Caractérisation des spectromètres X

- Largeur des raies :~ 10 meV (pour transitions de 2-4 keV)
- Émission rayons-X intense par les sources d'ions multichargés

Étalons pour rayons-X de l'ordre de quelques keV

- Énergies prédictibles par la théorie avec une précision de quelques ppm
- Spectres dans un grand domaine d'énergie

Tests d'Électrodynamique Quantique (QED)

- Atomes pioniques : test de l'équation de Klein-Gordon
- Ions multichargés : test des méthodes de calcul théoriques pour les ions
- Test des contributions de la polarisation du vide et selfénergie

(Mesure de l'interaction forte à basse énergie -> hydrogène pionique)

Étalons-QED-caractérisation

• Précision des étalons <-> mesure de la masse de la particule liée

Étalons-QED-caractérisation

• Précision des étalons <-> mesure de la masse de la particule liée

Contribution de cet exposé

Nouvelle mesure de la masse du pion Structure hyperfine des atomes pioniques Test de l'équation de Klein-Gordon Développement d'une nouvelle source d'ions Test de QED avec les ions multichargés

Atomes pioniques

Production des atomes pioniques

 \bigotimes

- Pions produits au Paul Scherrer Institut (Villigen, Suisse) (10⁸ pions/sec, E_{kin} =110 Mev/c)
- Piège cyclotronique
- Champ magnétique max. B= 3.5 T
- Cible gazeuse ou liquide : T= de 14°K à température ambiante, pression effective = de \sim 0 à 40 bars
- 1-5% des pions sont capturés

 B_{min}

 $\mathbf{B}_{\mathrm{max}}$

19

Production des atomes pioniques

- Pions produits au Paul Scherrer Institut (Villigen, Suisse) (10⁸ pions/sec, E_{kin} =110 Mev/c)
- Piège cyclotronique
- Champ magnétique max. B= 3.5 T
- Cible gazeuse ou liquide : T= de 14°K à température ambiante, pression effective = de \sim 0 à 40 bars
- 1-5% des pions sont capturés
- Production et recapture des muons

 $\pi^- \rightarrow \mu^- + \nu$

• Formation des atomes muoniques (et pioniques)

Émission des rayons-X par les atomes pioniques

21

• Atomes pioniques formés dans un état **Transitions dans** excité l'azote pionique et l'oxygène pionique $\pi^{-14}N$ μ^{-16} O 0 h Cascade radiative avec émission de S d g h S D a rayons-X -5 n=6 2.19 keV 2.20 keV n=5 DEGRADERS π BEAM -10 4.05 keV 4.02 keV TARGET -15 **8.77 ke**V 8.70 keV •)B -20 n=3 X-rays

Spectromètre de Bragg de type Johann (1)²²

D.Gotta et al.Nucl. Phys. A 660, 283 (1999)

Spectromètre de Bragg de type Johann (2)²³

Détecteur : série de 6 x CCD (610x604 pixels chacun) Résolution en énergie.=150 eV à 3 keV

Cristal

Piège

cyclotronique

Cristal sur son support

Détection (2)

Mesure de Δx -> mesure de $\Delta \Theta$ -> mesure de ΔE

- Résolution du spectromètre = 0.4 eV
- Précision de la mesure des ΔE < 0.005 eV

- Simulation Monte Carlo
- Programmes d'adjustement de profil ad hoc

Mesures de la masse du pion chargé (2) ²⁹

Précision actuelle : 2.5 ppm (moyenne entre deux mesures :Lenz 1998 et solution B de Jeckelmann 1994 [1])

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

Mesures de la masse du pion chargé (2) ³⁰

Précision actuelle : 2.5 ppm (moyenne entre deux mesures :Lenz 1998 et solution B de Jeckelmann 1994 [1])

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

Mesures de la masse du pion chargé (2) ³¹

Précision actuelle : 2.5 ppm (moyenne entre deux mesures :Lenz 1998 et solution B de Jeckelmann 1994 [1])

[1] Particle Data Book, Phys. Lett. B 592, 1+ (2004)

Nouvelle mesure de la masse du pion

32

$$\frac{m_{\pi}}{m_{\mu}} = F(\Delta E, \alpha, m_O, m_N) + \mathcal{O}\left[\left(\frac{m_{\pi}}{m_N}\right)^3\right] + \mathcal{O}\left[\left(\frac{m_{\mu}}{m_O}\right)^3\right]$$

Calcul de F -> prédictions théoriques!!

Calcul des énergies de transition pour les atomes pioniques

- Équation de Klein-Gordon -> pour particules de spin 0
- Corrections de QED : self-énergie, polarisation du vide, ...
- Correction de recul du noyau
- Déplacement dû à la structure hyperfine (HFS)

	5g-4f	5f-4d
Coulomb	4054.1180	4054.7189
Self Energy	-0.0001	-0.0003
Vac. Pol. (Uehling)	1.2485	2.9470
Vac. Pol. Wichman-Kroll	-0.0007	-0.0010
Vac. Pol. Two-loop Uehling	0.0008	0.0038
Vac. Pol. Källén-Sabry	0.0116	0.0225
Relativistic Recoil	0.0028	0.0028
HFS Shift	-0.0008	-0.0022
Total	4055.380	4057.691

Contribution de cette thèse

Structure hyperfine de l'azote pionique Origine de la structure hyperfine

34

- Interaction entre moment magnétique nucléaire et moment orbital
- Absence d'interaction entre le spin de la particule et le moment orbital (spin du pion = 0)

- Écart entre les raies : de l'ordre de 15 meV << résolution du spectromètre
- Déplacement de l'énergie de transition

Déplacement HFS pour 5g->4f = 0.00085 eV -> 0.2 ppm dans la mesure de la masse du pion

Structure hyperfine des atomes pioniques ³⁵ (Calcul relativiste [1])

 Spin du pion=0 -> dynamique relativiste décrite par l'équation de Klein-Gordon

$$\left\{\frac{1}{c^2}\left[E+eV(r)\right]^2 + \frac{\hbar^2}{r}\frac{\partial^2}{\partial r^2}r - \hbar^2\frac{l(l+1)}{r^2} - \mu^2c^2 - \hat{W}(\boldsymbol{r})\right\}\varphi_{nl}(\boldsymbol{r}) = 0$$

Équation de Klein-Gordon (quadratique en E) Terme perturbatif dû à la HFS

$$\hat{W}(\boldsymbol{r}) = +ie\hbar \left[\partial_i A^i(\boldsymbol{r}) + A_i(\boldsymbol{r})\partial^i\right] + e^2 A^i(\boldsymbol{r})A_i(\boldsymbol{r})$$

[1] M. Trassinelli, P. Indelicato, to be published

Structure hyperfine des atomes pioniques ³⁶ (Calcul relativiste [1])

 Spin du pion=0 -> dynamique relativiste décrite par l'équation de Klein-Gordon

$$\left\{\frac{1}{c^2}\left[E+eV(r)\right]^2 + \frac{\hbar^2}{r}\frac{\partial^2}{\partial r^2}r - \hbar^2\frac{l(l+1)}{r^2} - \mu^2c^2 - \hat{W}(\boldsymbol{r})\right\}\varphi_{nl}(\boldsymbol{r}) = 0$$

Équation de Klein-Gordon (quadratique en E)

$$\hat{W}(\boldsymbol{r}) = +ie\hbar \left[\partial_i A^i(\boldsymbol{r}) + A_i(\boldsymbol{r})\partial^i\right] + e^2 A^i(\boldsymbol{r})A_i(\boldsymbol{r})$$

 $E_{(1)} = \frac{c^2 \langle W \rangle}{(m^2 c^4)}$

• Méthode de perturbation $E = E_0 + E_1$...

...mais l'éq. de Klein-Gordon n'est pas linéaire!

$$E_{(1)}^{nlF} = \frac{\mu_I \mu_N e \mu_0 \hbar}{2\pi \mu \left(1 + \frac{\mathcal{E}_0}{\mu c^2}\right) \left[1 + \left(1 + \frac{\mathcal{E}_0}{\mu c^2}\right)^{-2}\right]} \left[\frac{F(F+1) - I(I+1) - l(l+1)}{2I}\right] \langle nl|\hat{r}^{-3}|nl\rangle.$$

I spin nucléaire, l nb. quantique moment angulaire

[1] M. Trassinelli, P. Indelicato, to be published
Structure hyperfine des atomes pioniques (Calcul relativiste [1])

[1] M. Trassinelli, P. Indelicato, to be published

37

Résultat de la masse du pion (1)

400

350 300

250

200

150

100

Counts

uO 5q-4f

- Ajustement des profils de raies en utilisant le modèle de réponse du spectromètre
- Profil adapté pour chaque groupe de raie
- Structure fine différente due au spin des particules

- Temps total d'acquisition des données : 350 heures
- Précision de la mesure de distance entre pixels : ~ 0.11 pixels
- -> 6 meV -> 1.5 ppm sur la masse du pion (erreur statistique)
- Erreurs systématiques....

38

πN 5f-4d

1000

1200

Résultat de la masse du pion (2)

	Correction		Errors		Errors
	µO-piN	error +	error -	error +	error -
	arcsec	arcsec	arcsec	ppm	ppm
Bending correction	0.214	0.004	0.004	0.015	0.015
Penetration depth correction	-0.004	0.001	0.001	0.004	0.004
Strong interaction 45 µeV	-0.003	0.003	0.003	0.011	0.011
1 K electron <0.16%		0.000	0.050	0.000	0.184
Curvature correction		0.040	0.040	0.147	0.147
Off-line CCD height reduction		0.061	0.061	0.225	0.225
Fit region		0.004	0.004	0.015	0.015
Model for the line fit		0.070	0.070	0.258	0.258
Detector-Crystal distance		0.153	0.153	0.564	0.564
Orientation detector + tubes $\leq 0.14^{\circ}$		0.000	0.008	0.000	0.030
Height CCD (out of plane) \leq 20 mm		0.000	0.009	0.000	0.032
Target shape		0.027	0.027	0.099	0.099
CCD alignment ("gap")		0.090	0.090	0.332	0.332
Pixel distance		0.033	0.033	0.122	0.122
πN, μO energies		0.093	0.093	0.343	0.343
Temperature renormalisation of Det-Cry dist.	-0.003	0.005	0.005	0.018	0.018
Corr: sum /Errors: quadratic sum	0.207	0.209	0.215	0.769	0.792

Contribution de cette thèse

Erreur de la masse du pion : $[(0.8)^2_{(systématique)} + (1.5)^2_{(statistique)}]^{1/2} = 1.7 \text{ ppm}$

Distance entre pixels et position des CCDs⁴⁰

Trassinelli, et al., soumis au Review of Scientific Instruments

Distance entre pixels et position des CCDs⁴¹

- Distance entre pixels = $39.9775 \pm 0.0006 \,\mu m$
- \bullet Erreur sur la position des CCDs : 0.05 mrad (orientation)

0.02 pixels (déplacement) ->0.3 ppm

->0.1 ppm

Trassinelli, et al., soumis au Review of Scientific Instruments

Résultat de la masse du pion (3)

 $m_{\pi} = (139.571 \ 04 \pm 0.000 \ 23) \ MeV$

42

• 30% plus précis que la moyenne mondiale

• 2 fois plus précis que Lenz 1998

• Augmentation de la précision des étalons de rayons-X

Résultat de la masse du pion (3)

 $m_{\pi} = (139.571 \ 04 \pm 0.000 \ 23) \ MeV$

43

- 30% plus précis que la moyenne mondiale
- 2 fois plus précis que Lenz 1998
- Augmentation de la précision des étalons de rayons-X

• Cohérence avec la mesure précédente faite avec une cible gazeuse

• Aucune ambiguïté due à la recapture électronique

Trassinelli, et al., en préparation pour Physics Letters B

Masse du neutrino muonique

Masse du neutrino muonique

Masse du neutrino muonique

[2] WMAP collaboration, Astrophys. J. Suppl. Ser. 148, 175 (2003)

Test de l'équation de Klein-Gordon

- Spectroscopie des atomes pioniques -> test de QED pour particules de spin 0
- Structure fine de la transition 5-4 de l'azote pionique
- Test précédent : titane pionique, précision = 2%

- Valeur théorique (QED + interaction forte) : $\Delta E = 2.321 \text{ eV}$

• Nouvelle mesure : $\Delta E = 2.300 + 0.014 = 0.007 eV$ (erreur rel. = 0.6%)

• Limitation : calcul de la contribution des atomes avec un électron restant dans la couche 1s

Ions multichargés

Production des ions ion ou atome • Ionisation par collision électron-atome • Suite de collisions sucessives -> états de charge très élévés électrons éjectés électron accéléré $X^{n+} + e^{-} -> X^{(n+1)+} + 2 e^{-}$

50 Production des ions ion ou atome électron accéléré $X^{n+} + e^{-} ->X^{(n+1)+} + 2 e^{-}$

- Accélération des électrons dans un champ magnétique
- Micro-ondes résonant avec le mouvement cyclotronique des électrons $\omega_{cycl} = e B/m$
- Puissance injectée de 100-800 w -> $E_{cin}(e^{-})$ jusqu'à 1 MeV

Piège des ions et des électrons

Électrons très énergétiques et ions très chargés

Plasma

Surface de résonance

 Champ magnétique non-uniforme -> électrons localement piégés -> accumulation de charge

 \mathbf{B}_{\min}

-> ions piégés

70

В

B_{max}

Source d'ions à résonance cyclotronique 52 des électrons (ECRIS) et émission de rayons-X

Pression typique du plasma : 10⁻⁵-10⁻⁷ mbar

Source d'ions à résonance cyclotronique 53 des électrons (ECRIS) et émission de rayons-X

Pression typique du plasma : 10⁻⁵-10⁻⁷ mbar

Piège cyclotronique -> Trappe d'ions à résonance cyclotronique des électrons (ECRIT) Bobines supraconductrices:

• Utilisé dans le piège cyclotronique pour la production des atomes pioniques

• Courant maximal 55 A

• Champ magnétique longitudinal = jusqu'à 3.5 Tesla

54

Piège cyclotronique -> Trappe d'ions à résonance cyclotronique des électrons (ECRIT) Bobines supraconductrices:

- Utilisé dans le piège cyclotronique pour la production des atomes pioniques
- Courant maximal 55 A

• Champ magnétique longitudinal = jusqu'à 3.5 Tesla

Hexapôle magnétique permanent

- Champ à la surface B=1 Tesla
- Écart entre les pôles pour un pompage efficace

55

Générateur de micro-ondes à 6.4 Ghz HF

Piège cyclotronique -> Trappe d'ions à résonance cyclotronique des électrons (ECRIT) Bobines supraconductrices:

• Utilisées dans le piège cyclotronique pour la production des atomes pioniques

• Courant maximal 55 A

• Champ magnétique longitudinal = jusqu'à 3.5 Tesla

Hexapôle magnétique permanent

• Champ à la surface B=1 Tesla • Ouverture entre les pôles pour un pompage efficace

Générateur de micro-ondes à 6.4 Ghz HF

Rapport miroir $B_{max}/B_{min} = 4.3!$

56

Biri et al, Review of Scientific instruments, 71, 1116 (2000)

Spectres des ions multichargés

Les plus intenses spectres X d'ions multichargés produits!! (mis à part les Tokamaks)

Spectres des ions multichargés

Ar16+ 1s2s ${}^{3}S_{1}$ -> 1s² ${}^{1}S_{0}$ M1:

Largeur naturelle **<< 1 meV**, élargissement Doppler **= 40 meV** Raie idéale pour la mesure de la fonction de réponse du spectromètre [1]

[1]Anagnostopoulos et al, Nuc. Instrum. Meth. A 514, 215 (2005)

Spectres des ions multichargés

- Mesure de position des pics en utilisant la fonction de réponse du spectromètre X
- Mesures préliminaires sur l'argon et le soufre héliumoïdes

Mesure des énergies de transition du soufre héliumoïde [1]

61

Comparaison entre prédictions théoriques et anciennes mesures

Résultats:

- Mesures 10 fois plus précises que l'expérience précédente (Deslattes) : de l'ordre de 20 meV
- Compatibilité avec les prédictions théoriques et les mesures de spectroscopie UV (DeSerio)

[1] Trassinelli et al, proceeding in ECRIS04 International workshop. eprint: physics/04110250

Énergies relatives <-> énergies absoules⁶²

Énergies relatives <-> énergies absoules

63

• Mesures absoule de la transition M1 (spectromètre à double cristal plan)

Conclusion

Atomes pioniques

 Nouvelle mesure de la masse du pion négativement chargé avec une précision de 1.7 ppm (moyenne mondiale : 2.5 ppm) -> reduction de l'incertitude des étalons X à l'aide des atomes pioniques

• Calcul de la structure hyperfine (et des corrections de recul)

• Test de l'équation de Klein-Gordon avec une précision de 0.6% (expérience précéndente : 2%)

Ions multichargés

- Développement d'une nouvelle source d'ions
- Nouvelles mesures des énergies des niveaux 2p et 2s dans l'argon et le soufre héliumoïdes avec une précision de 10-20 mev (expérience précédentes : 100-200 meV)
- Comparaison avec les prédictions théoriques
- Développement d'une nouvelle analyse des spectres

Perspectives

Atomes pioniques

• Mesure de l'interaction forte à l'aide de la spectroscopie X de l'hydrogène et deutérium pionique

• Application de la méthode de perturbation pour l'éq. Klein-Gordon pour le moment quadrupolaire nucléaire et pour le potentiel optique

Ions multichargés

- Nouvelle analyse des spectres X de l'argon, du **chlore** et du soufre multichargés
- Nouvelles mesures avec la source d'ions de Paris (project SIMPA)
- Mesures d'énergies absolues avec le spectromètre à double cristal plan
 - -> définition de nouveaux étalons X à l'aide des ions multichargés
 - -> mesure de la M1 (0.5 ppm) ->mesures les plus précises sur les transition n=2-1 dans les ions héliumoïde (~2-4 ppm)

Membres de la collaboration

- Laboratoire Kastler Brossel (Paris, France)
- <u>P. Indelicato</u>, E.-O. Le Bigot, B. Manil
- Paul Scherrer Insititut (Villigen, Suisse)
- C. David, B. Leoni, L.M. Simons, L. Stingelin, A. Wasser
- Institut für Kernphysik, Forschungzentrum Jülich (Jülich, Allemagne) <u>D. Gotta</u>, M. Hennebach
- Space Research Center, (Leicester, Grande Bretagne) N. Nelms
- Stefan Meyer Institut für subatomare Physik (Vienne, Autriche)
- A. Gruber, A. Hirtl, <u>J. Zmeskal</u>

Université de Coimbra (Coimbra, Portugal) D.S. Covita, J.M.F. dos Santos, J.F.C.A. Veloso

Structure hyperfine des atomes pioniques (Calcul non-relativiste)

- Spin du pion=0 -> absence du terme qui dépend du spin de la particule orbitante
- Présence du terme $L.\mu_N$ due à l'interaction entre moment magnétique nucléaire et moment orbital

$$\begin{bmatrix} -\frac{\hbar^2}{2\mu r} \frac{\partial^2}{\partial r^2} r + \hbar^2 \frac{l(l+1)}{2\mu r^2} - eV(r) + \hat{W}_{NR}(r) \end{bmatrix} \psi_{nl}(r) = E \ \psi_{nl}(r) \qquad \text{angulaire} \\ \text{angulaire} \\ \text{angulaire} \\ \text{formula} \\ \text{for$$

I spin nucléaire, l nb. quantique moment angulaire

Production des pions

Installation de l'ECRIT et du spectromètre X⁶⁹

ECR multicharged ion source in Paris (SIMPA⁷)

Double crystal spectrometer

3p-1s width in pionic hydrogen

Problem: it necessary to know the response function of the spectrometer

72

2892
Mesures de la masse du pion chargé (1) ⁷³

- Mesure de la masse du pion par :
 - spectroscopie des atomes pioniques
 - désintégration des pions (limite inférieure)

$$\pi^{+} -> \mu^{+} + \nu$$

CCD array geometrical characteristics

CCD array geometrical characteristics

of the CCD array for the final pion mass evaluation

CCD array measurement

Measurement of the lines position in the image:

- -> measurement of the distance between pixels
- -> measurement of the relative position between CCDs

CCD measurement results

Pixel distance measurement

- Real line position vs. line distance in the image
 -> pixel distance (pxd)
- \bullet More than 180 independent measurement per CCD $\,$ using different lines
- \bullet Study of the temperature dependency of the pixel distance (between -105°C and -40°C)

 $pxd = 39.9764 \pm 0.0009 \ \mu m$

=> less than 0.3 ppm for the pion mass

CCD measurement results

Pixel distance measurement

- Real line position vs. line distance in the image -> pixel distance (pxd)
- \bullet More than 180 independent measurement per CCD $\,$ using different lines
- \bullet Study of the temperature dependency of the pixel distance (between -105°C and -40°C)

 $pxd = 39.9764 \pm 0.0009 \ \mu m$

=> less than 0.3 ppm in the pion mass

CCD relative position

- 2 pairs of lines to measure position and orientation between 2 CCDs
- Accuracy limited by the systematics errors

CCD number	Theta (rad)	err Theta	Gap x (pxls)	err Gap x	Gap y (pxls)	err Gap y
CCD2-CCD1	-0.000595	0.000055	-1.245	0.020	11.398	0.019
xxx						
CCD2-CCD3	-0.000698	0.000055	0.503	0.020	-11.018	0.019
CCD2-CCD4	0.000801	0.000055	-10.850	0.020	10.279	0.019
CCD2-CCD5	0.002194	0.000055	-11.574	0.020	1.742	0.019
CCD2-CCD6	0.005530	0.000055	-13.967	0.020	-9.432	0.019

less than 0.15 ppm for the pion mass ! M. Trasinelli, et al., to be published

CCD array measurement

Mesure des énergies de transition des ions héliumoïdes

80

Caractéristique de la lumière émise

Atomes "normaux":

• Émission des photon dans le domaine visible

Caractéristique de la lumière émise

Atomes "normaux":

• Émission des photon dans le domaine visible

Atomes pioniques et ions multichargés:

- Plus grand écart entre niveaux atomiques
- Émission dans le domaine X (1-10 keV)