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Abstract

The evolution of cerebral imaging technologies combined with specific image processing

algorithms contribute to improving our knowledge of the brain functioning, in particular

regarding visual perception. This thesis contributes to current understanding implied in

visual motion perception in humans, based on complementary information brought by

different Magnetic Resonance Imaging (MRI) modalities.

The first part of this work focuses on functional MRI (fMRI) identification of low-level

visual areas. We detail the fMRI retinotopic mapping procedure we developed, from the

stimulus design to the final anatomo-functional analysis. A specific functional localization

of the hMT/V5+ complex is also obtained with a block design. These methods, optimized

according to some stimulation parameters, allow the extraction of individually defined

and homogeneous Regions Of Interest (ROI).

In the second part, we characterize functionally these previously identified low-level

visual areas. Based on the recent fMR-Adaptation paradigm, which allows to investigate

the sensitivity of a cortical region to quantitative variations of a given feature, we

demonstrate a functional differentiation across areas regarding their relative sensitivity to

visual direction of motion.

Lastly, we combine fMRI and Diffusion Tensor MRI (DTI) to study the anatomical

connectivity within the low-level visual cortex. Based on state of the art white matter

fibers mapping algorithms, this characterization gives insights on the network of areas

implied, among others, in visual motion processing.

Key words: visual cortex, fMRI, retinotopy, motion perception, direction selectivity, adap-

tation, DTI, anatomical connectivity.
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Résumé

L’évolution des technologies d’imagerie cérébrale alliée aux développement d’algorithmes

spécifiques de traitement d’images permettent d’améliorer nos connaissances sur le

fonctionnement du cerveau, en particulier s’agissant de la perception visuelle. L’objectif

de ce travail de thèse est de contribuer à la compréhension des aires corticales impliquées

dans la perception visuelle du mouvement chez l’homme, en analysant l’information des

signaux de différentes modalités complémentaires d’Imagerie par Resonance Magnétique

(IRM).

Une première partie concerne l’identification individuelle des aires visuelles de bas-

niveau. Nous détaillons la méthode de cartographie rétinotopique par IRM fonctionnelle

(IRMf) que nous avons developpée, depuis la conception des stimuli visuels à l’analyse

anatomo-fonctionnelle finale. Par ailleurs, une localisation fonctionnelle du complexe

hMT/V5+ est obtenue par un paradigme en bloc. Ces méthodes, optimisées suivant

certains paramètres de la stimulation, permettent d’extraire pour tout individu des

Régions d’Intérêt homogènes.

Dans un deuxième temps, nous proposons une caractérisation fonctionnelle des

différentes aires visuelles primaires. En se fondant sur le paradigme récent d’IRM

d’adaptation qui permet d’étudier la sensibilité d’une région cérébrale à des variations

quantitatives d’un paramètre de la stimulation, nous démontrons une différenciation de

la sensibilité à la direction du mouvement dans les aires etudiées.

Enfin, nous décrivons une expérience combinant les modalités d’IRMf et d’IRM de

diffusion (IRMd) dans le but d’étudier la connectivité anatomique au sein du cortex visuel

primaire. Cette caractérisation, établie en s’appuyant sur des algorithmes récents de car-

tographie des fibres de matière blanche, donne des indices sur le réseau d’aires notamment

impliquées dans le traitement du mouvement visuel.

Mots clés: cortex visuel, IRMf, rétinotopie, perception du mouvement, selectivité à la

direction, adaptation, IRMd, connectivité anatomique.
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Introduction et contributions

Contexte

Comprendre les processus complexes réalisés par notre cerveau afin d’intéragir avec le

monde est assurément l’un des plus grands défis scientifiques de la recherche contempo-

raine. Au-delà d’apporter des débuts de réponses à des questions philosophiques telles que

la relation entre notre perception individuelle et le monde ”réel”, cette quête peut avoir

de nombreuses retombées dans le domaine de la santé, suggérer de nouvelles architectures

d’ordinateurs, des interfaces homme-machine ou des algorithmes biologiquement inspirés,

etc... Cela concerne tout particulièrement le système visuel, la vision étant indéniablement

notre sens le plus sollicité dans la vie courante.

Jusqu’au milieu du vingtième siècle, la théorie dominante sur le système visuelle ne fai-

sait état que d’une aire visuelle unique. De nombreuses aires visuelles ont été découvertes

depuis chez différents mammifères, en particulier l’homme. Quatre critères principaux sont

couramment utilisés pour identifier ces subdivisions du cortex visuel: (i) l’architecture cel-

lulaire locale du cortex (ii) les motifs de connections entre les différentes zones corticales,

(iii) les propriétés fonctionnelles des neurones et (iv) l’organisation rétinotopique. Les deux

dernières méthodes ont pu être rapidement appliquées à l’homme grâce aux techniques de

neuroimagerie. En revanche, la résolution spatiale limitée de ces techniques non-invasives

restreint l’utilisation des critères d’architecture anatomique in vivo. Par ailleurs, seule une

minorité d’études de neuroimagerie du système visuel combinent plusieurs de ces critères

à ce jour.

La technique d’imagerie par résonance magnétique (IRM) figure comme un outil privilégié

pour aborder ces questions. L’IRM permet en particulier d’obtenir des images anatomiques

de haute résolution, une mesure indirecte de l’activité neuronale via l’IRM fonctionnelle

(IRMf) et l’organisation macroscopique des fibres de matière blanche via l’IRM de dif-

fusion (IRMd). Dans cette thèse, nous avons utilisé ces trois modalités de l’IRM pour

affiner la caractérisation du cortex visuel de bas niveau, avec un accent particulier sur la

perception du mouvement.
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Organisation de la thèse

Cette thèse est organisée en 6 chapitres après cette introduction générale. Le premier

chapitre rappelle les principales connaissances actuelles concernant le système visuel

cortical et présente les différentes modalités d’IRM utilisées dans ce travail. Cette partie

reste relativement générale, un état de l’art plus précis ouvrant les chapitres suivants.

Dans le deuxième chapitre, nous détaillons deux approches de traitement des images

anatomiques que nous avons employées. Nous présentons ensuite les principales méthodes

de traitement et d’analyse des images fonctionnelles, en introduisant notamment une

nouvelle approche de lissage des données fonctionnelles contraint à la surface corticale.

Le chapitre 5 traite de la cartographie de différentes aires visuelles de bas niveau,

suivant le critère de rétinotopie d’une part et la spécificité fonctionnelle du complexe

human MT (noté hMT+) d’autre part. Grâce à un paradigme d’IRM d’adaptation,

nous démontrons dans le chapitre 6 la spécificité fonctionnelle de chacune des aires ainsi

identifiées dans le traitement de la direction du mouvement. Le dernier chapitre présente

quant à lui une étude de la connectivité de matière blanche entre les différentes aires

visuelles en se fondant sur une méthode récente d’analyse des images d’IRMd. Nous

terminons cette thèse par une conclusion générale sur nos contributions puis suggérons

quelques directions futures de ce travail (cette partie est également disponible en français).

Chapitre 2

Ce chapitre propose un survol des connaissances actuelles sur le cerveau humain

(1ère section) avant de détailler plus précisément l’état de l’art sur le système

visuel (2ème section). Nous rappelons ensuite les principes fondamentaux de

l’IRM, en insistant sur les modalités d’IRMf et d’IRMd. La section 4 présente

enfin le dispositif expérimental disponible au centre IRMf où nous avons conduit

nos expériences et les paramètres spécifiques aux différentes séquences permet-

tant respectivement d’acquérir les images anatomiques, fonctionnelles et de diffusion.

Chapitre 3

La segmentation individuelle des différents tissus du cerveau et l’extraction d’un

modèle géométrique de la surface corticale sont grandement profitables à l’analyse

et à la visualisation des images fonctionnelles et de diffusion. Nous détaillons

dans ce chapitre deux algorithmes que nous avons utilisés: la plate-forme logicielle

BrainVISA, développée au sein de l’Institut Fédératif de Recherche n◦49 et une

approche complémentaire, avec le logiciel ABSOLUt recemment développé dans le

laboratoire Odyssée. Ces deux méthodes fournissent une segmentation précise des

différents tissus du cerveau et une reconstruction des surfaces internes et externes du

cortex. Il est important de souligner qu’au delà du réglage de quelques paramètres,

aucune correction manuelle n’est requise. Nous justifions enfin notre choix en
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faveur de l’approche implémentée dans le logiciel ABSOLUt en nous fondant sur

une comparaison qualitative de ses résultats avec ceux de BrainVISA.

Chapitre 4

Une expérience classique en IRMf conduit à l’obtention d’un jeu de données 4D, i.e.

une ou plusieurs séries temporelles d’images 3D. Des traitements spécifiques sont

alors requis pour compenser certains artefacts liés à l’acquisition des images et en

extraire l’information d’intérêt. Cette information peut correspondre à la détection

de zones d’activation ou encore à l’estimation de la forme locale de la réponse

BOLD dans certaines régions du cerveau. La première section se penche sur les

prétraitements couramment appliqués aux données d’IRMf. Nous y introduisons en

particulier une nouvelle approche au problème du lissage des données IRMf contraint

à la surface corticale. Cette technique, reposant sur la méthode des ensembles

de niveaux (level sets), offre des avantages à la fois pratiques et théoriques par

rapport à la technique classique de filtrage 3D isotrope mais aussi par rapport aux

approches de régularisation fondées sur un maillage explicite de la surface corticale.

La seconde section donne une synthèse des principales approches d’analyse statis-

tique des données d’IRMf, en insistant plus particulièrement sur deux méthodes:

la méthode standard implémentée dans le logiciel SPM du Functional Imaging

Laboratory à Londres, et une méthode d’estimation non-paramétrique de la réponse

BOLD développée au sein de l’Institut Fédératif de Recherche n◦49.

Chapitre 5

Ce chapitre est dédié à l’identification de différentes aires du cortex visuel. Il est

divisé en deux sections distinctes, suivant le critère employé pour révéler ces aires.

La première section est ainsi une description de la méthode de cartographie des

aires rétinotopiques par IRMf. Après un état de l’art des différentes approches

décrites dans la littérature, nous détaillons notre procédure depuis la génération

des stimuli visuels jusqu’à l’analyse anatomo-fonctionnelle finale. Nous présentons

différentes configurations de stimuli envisagées pour optimiser la durée d’acquisition

et la qualité des cartes du champs visuel correspondantes, puis nous comparons nos

résultats avec ceux rapportés dans la littérature. Nous détaillons enfin la procédure

retenue pour segmenter différentes aires visuelles retinotopiques et extraire des

regions d’intérêt tri-dimensionnelles pour chacune d’entre elles. La seconde section

de ce chapitre est dédiée à la méthode de cartographie fonctionnelle du complexe

hMT+. À l’instar de la méthode de rétinotopie, différentes configurations de stimuli

sont testées afin d’optimiser la procédure. Les résultats obtenus sont finalement

confrontés à ceux décrits dans la littérature.
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Chapitre 6

Partant de l’identification précise de différentes aires visuelles de bas niveau

décrite précédemment, ce chapitre présente une caractérisation de leur spécificité

fonctionnelle respective par rapport à la direction du mouvement. Cette expérience

repose sur le paradigme d’IRMf d’adaptation. Ce chapitre s’ouvre par une revue de

ce récent paradigme, en insistant sur ses applications à l’étude du système visuel.

Nous détaillons ensuite notre expérience d’IRMf d’adapation événementielle. Une

estimation robuste de la réponse hémodynamique permet d’évaluer pour chaque

aire la sélectivité à la direction du mouvement et d’en déduire les proportions

respectives de deux sous-populations neuronales sensibles à cet attribut visuel. Le

complexe hMT+, directement suivi par l’aire V3A, apparaissent comme les plus

sélectifs à la direction. Une forte sélectivité à la direction est également trouvée

dans les aires V1 et V4v, confirmant ainsi les observations d’une récente étude

d’IRMf menée chez le macaque. En outre, ces résultats valident la capacité du

paradigme d’adaptation à préciser la ségrégation fonctionnelle des aires visuelles

primaires, tout en soulignant l’aspect dynamique de la sélectivité fonctionnelle des

neurones.

Chapitre 7

Nous proposons de raffiner notre connaissance du cortex visuel humain en

étudiant un autre aspect fondamental de l’organisation du cerveau: la connectivité

anatomique. Nous commençons par un état de l’art des méthodes de cartographie

de la connectivité anatomique à partir des images du tenseur de diffusion (DTI), en

mettant l’accent sur leurs applications au cortex visuel. Notre approche, combinant

cartographie des aires visuelles et une méthode géométrique d’analyse des données

de DTI récemment développée au laboratoire est ensuite présentée. Une châıne de

traitement complète permet l’analyse conjointe des informations complémentaires

apportées par chacune des modalités d’IRM dans un espace de référence. Après

une première validation de notre approche sur les radiations optiques, une topologie

des connections interhemisphériques entre aires visuelles au sein du splenium est

mise en évidence. Une évaluation de la connectivité entre le complexe hMT+ et les

différentes aires rétinotopiques est également exposée. Ces résultats, ainsi que leurs

implications théoriques et méthodologiques, sont discutés dans une dernière section.

Nous concluons cette thèse en rappelant nos contributions principales avant

de suggérer quelques directions futures de ce travail.
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Contributions

Les contributions de cette thèse sont à la fois méthodologiques et expérimentales.

D’un point de vue méthodologique, ce travail propose de nouvelles approches à

l’analyse des données d’IRM et constitue une validation de différents algorithmes

récemment développés dans ce domaine:

• Nous introduisons au chapitre 3 une nouvelle approche pour le lissage des

données IRMf contraint à la surface du cortex. Cette démarche s’appuie sur la

méthode des ensembles de niveaux pour lisser directement l’image fonctionnelle

le long de la direction parallèle à la surface corticale. Cette nouvelle technique

est comparée à la méthode classique de filtrage 3D isotrope ainsi qu’à une ap-

proche de régularisation des données fonctionnelles projetées sur un modèle ex-

plicite (maillage) de la surface corticale. Comparativement au classique filtrage

isotrope, les méthodes incorporant l’information de la géométrie propre au cor-

tex de l’individu sont naturellement moins sujettes à un indésirable mélange

d’informations provenant de tissus hétérogènes. En outre, la méthode de lis-

sage des données fonctionnelles fondée sur les ensembles de niveaux présente les

avantages suivants par rapport aux méthodes reposant sur une représentation

explicite de la surface corticale: (i) tout d’abord, aucune projection des données

fonctionnelles sur la surface corticale n’est requise, ce qui évite le choix sou-

vent arbitraire de la méthode de projection; (ii) en conséquence, le choix de la

technique de projection utilisée pour visualiser les résultats finaux d’une anal-

yse peut alors être effectué a posteriori, ce qui confère davantage de souplesse

à la châıne globale des traitements; (iii) enfin, l’implantation de la méthode

de lissage fondée sur les ensembles de niveaux conduit à un traitement plus

efficace des données du point du vue computationnel. Le seul inconvénient

de la méthode par ensemble de niveaux provient de la nécessité de disposer

d’une représentation implicite (i.e. sous forme d’un ensemble de niveaux) de la

surface corticale. Toutefois, cette étape est exécutée efficacement par un algo-

rithme de la librairie ABSOLUt. Nous illustrons les résultats obtenus avec les

différentes approches sur deux jeux de données réelles d’expériences IRMf por-

tant sur des macaques et sur des humains. Cette contribution méthodologique

a été présentée à la conférence Human Brain Mapping en 2004 [251].

• L’optimisation de paramètres fondamentaux des stimuli utilisés pour les

expériences de rétinotopie d’une part et d’identification fonctionnelle du com-

plexe hMT+ d’autre part est décrite dans le chapitre 5. Grâce à ces procédures,

l’identification fiable de nombreuses aires visuelles de bas niveau est obtenue

en environ 30 minutes avec un scanner IRM à 3 Tesla, en incluant l’acquisition

d’une image anatomique de haute résolution. De plus, nous avons implanté une
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méthode d’extraction de régions d’intérêt tri-dimensionnelles correspondant à

chaque aire visuelle rétinotopique.

La procédure de cartographie des aires rétinotopiques a été présentée à la

conférence Human Brain Mapping en 2003 [252].

• La validation de nouveaux algorithmes sur des jeux de données expérimentales

constitue une étape nécessaire en vue de leur intégration à la complexe châıne

de traitement des images IRM. Le présent travail apporte quelques éclairages

en ce sens. Nous comparons tout d’abord dans le chapitre 3 deux outils de

segmentation récents et discutons leurs avantages et inconvénients respectifs.

Par ailleurs, les résultats de l’expérience présentée au chapitre 6 constituent

une validation supplémentaire du paradigme d’IRMf d’adaptation. De plus,

ce même chapitre illustre la sensibilité accrue qu’il est possible d’obtenir avec

des approches alternatives au modèle linéaire généralisé classiquement utilisé

pour l’analyse des données IRMf. C’est en particulier le cas de la méthode

d’estimation non-paramétrique de la réponse hémodynamique que nous avons

adoptée dans cette étude. Enfin, les implications méthodologiques de l’étude

de la connectivité anatomique à partir d’images DTI, détaillée dans le chapitre

7, sont de deux ordres. D’une part, cette étude prouve qu’il est possible

de combiner les informations provenant de différentes modalités d’IRM, dans

notre cas l’information des images anatomique, fonctionnelle et de diffusion.

D’autre part, cette expérience est une première validation de la technique de

résolution par Fast Marching du problème de cartographie de la connectivité

anatomique fondée sur une modélisation Riemannienne des images DTI. Ce

cadre méthodologique est en cours de soumission à la conférence Computer

Vision and Pattern Recognition (CVPR), tandis que les résultats préliminaires

sur le cortex visuel ont été présentés à la conférence Human Brain Mapping en

2005 [250].

D’un point de vue plus expérimental, cette thèse apporte de nouveaux éclairages sur

l’organisation fonctionnelle et anatomique du cortex visuel de bas niveau:

• l’expérience décrite au chapitre 6 conduit à une estimation de la sélectivité à

la direction du mouvement dans différentes aires visuelles de bas niveau. Les

résultats confirment que cette sélectivité dépend de l’aire considérée. Ainsi, le

complexe hMT+ et l’aire V3A sont les plus sélectifs, suivis de V1, V3, V4v puis

V2. Cet ordre étaie l’idée de traitement hierarchique de l’information au sein du

cortex visuel. De plus, les mesures obtenues sont plus précises que les résultats

précédents, bien que le paradigme d’adaptation utilisé soit relativement peu

contraignant. Les indices de sélectivité observés dans l’aire V1 et hMT+

sont singulièrement comparables à ceux rapportés dans une expérience sim-
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ilaire effectuée sur le macaque. Cette observation peut constituer une preuve

supplémentaire de l’homologie de ces zones corticales dans les deux espèces. En-

fin, les sélectivités à la direction particulièrement importantes observées dans

les aires V1 et V4v ravivent la notion d’une séléctivité fonctionnelle dépendante

du contexte. Ce travail est en cours de soumission à la revue Journal of Vision.

• L’expérience combinant les données d’IRMf et d’IRMd exposée dans le

dernier chapitre permet de reconstruire les radiations optiques reliant le Corps

Genouillé Latéral à l’aire V1. De plus, nos résultats confirment la topologie

des connections occipito-callosales dans le splenium. Nous présentons enfin

la première caractérisation de la connectivité anatomique entre le complexe

hMT+ et les aires rétinotopiques occipitales. V1 révèle systématiquement les

plus forts indices de connectivité, ce qui est cohérent avec les données recueil-

lies chez l’animal. D’autre part, les plus faibles indices de connectivité avec

hMT+ se trouvent invariablement dans l’aire V4, ce qui est cohérent avec

l’idée de ségrégation de voies parallèles ventrales et dorsales de traitement de

l’information visuelle. Cette partie est en cours de soumission à NeuroImage.

Autres contributions

Dans un soucis de cohérence, certaines contributions réalisées durant ce travail de

thèse ne sont pas incluses dans le présent manuscrit. Nous les mentionnons rapide-

ment ci-dessous.

• La procédure de cartographie rétinotopique est actuellement appliquée par

l’équipe DyVA1, INCM, CNRS, Marseille pour étudier l’organisation corti-

cale auprès de patients souffrant de dysfonctionnements de la rétine. Ceux-ci

incluent des pathologies telles que les scotomes visuels ou la dégénérescence

maculaire liée à l’âge (DMLA). Deux séries d’expériences ont déjà été menées

sur 8 sujets sains. Les cartes rétinotopiques de ces sujets ont été dans un pre-

mier temps acquises et reconstruites suivant la méthode décrite au chapitre 5.

Dans un second temps, un paradigme en blocs alternant entre un fond gris et

un damier couvrant le champs visuel complet et papillotant a été preśenté aux

mêmes sujets. Dans les deux types d’expérience, des conditions avec 4 scotomes

circulaires peri-fovéaux de différentes tailles et placés à différentes excentricités

ont été ajoutées. Les projections corticales des différents scotomes ont pu être

identifiées et leurs relations confirmées quantitativement, en comparant les po-

sitions corticales et les surfaces des zones corticales inactivées avec les valeurs

connues de rayon, excentricité et surface des scotomes dans le champ visuel.

Au delà du transfert de la technique complète de cartographie rétinotopique,

1www.incm.cnrs-mrs.fr/en equipedyva.php
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j’ai conçu les stimuli ainsi que les programmes d’analyse des données issues

du paradigme en bloc. Ce travail a donné lieu à deux présentations à des

conférences d’ophtalmologie en mai 2005, l’une à la conférence ARVO (Asso-

ciation for Research in Vision and Ophtalmology) [103] et l’autre au Congrès

Annuel de la Société Française d’Ophtalmologie [102]. Suite à cette première

phase de validation, une étude de la représentation corticale auprès de patients

atteints de pathologie rétinienne est actuellement menée par Dr. Louis Hoffart,

ophtalmologue a l’hôpital de la Timone à Marseille et étudiant en thèse dans

l’équipe DyVA.

• J’ai contribué à une expérience d’IRMf menée chez le macaque et conduite par

le Professeur Guy A. Orban et Mr. Koen Nelissen au laboratoire de neuro-

psycho-physiologie de l’université catholique de Louvain2. L’étude porte sur

le traitement de la vitesse du mouvement visuel dans le cortex du macaque.

Cette expérience fut une initiation à l’expérimenation animale ainsi qu’aux

contraintes spécifiques liées à l’environnement hospitalier. Certaines données

de cette expérience sont utilisées dans le chapitre 4 pour valider notre méthode

de lissage des données IRMf contraint à la surface corticale.

• J’ai conçu un programme paramétrique permettant de générer les stimuli vi-

suels d’une expérience IRMf portant sur la perception du mouvement trans-

parent. Cette expérience a été réalisée dans le cadre du réseau de recherche

”Perception for Recognition and Action”3. L’analyse des données fonction-

nelles est en cours de réalisation.

• Enfin, mon travail de thèse inclue une part importante de développement logi-

ciel. J’ai écrit de nombreux scripts Matlab et shells pour automatiser la plupart

des étapes de traitements d’images utilisées dans cette thèse. La plupart com-

prend une interface fondée sur le logiciel SPM pour permettre une interaction

aisée avec l’utilisateur. Certaines de ces méthodes ont été transférées auprès

de l’équipe DyVA, au Centre IRMf de Marseille et au laboratoire de neuro-

psycho-physiologie de Louvain.

2http://134.58.34.1/index.php
3http://pra.psy.gla.ac.uk/
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Chapter 1

Introduction and contributions

1.1 Context

Understanding the complex processes taking place in our brain to interact in the

world is undoubtly one of the greatest scientific challenge of current research. Be-

yond bringing possible answers to some old age philosophical questions, for instance

regarding the relation between individual perception and the ”actual” world, this

quest may provide several outcomes in healthcare, be an inspiration source for en-

hanced computer hardware architecture, computer-human interfaces and biologically

inspired algorithms,etc. It is in particular the case with the visual system since vi-

sion is probably the most called-upon sense in our daily life.

Until the middle of the twentieth century, the main theory of the visual perception

and the brain considered a single visual cortical area. Since then however, various

visual areas have been discovered in mammalians, including humans. Four main

criteria are now commonly used to identified these subdivisions of the visual cor-

tex: (i) local anatomical architecture of cortical cells, (ii) white matter connectivity

patterns across cortical zones, (iii) global functional properties of neurons and (iv)

retinotopic organization. The last two methods were rapidly applied to humans

thanks to neuroimaging techniques. On the other hand, the low spatial resolution

relative to cells dimensions actually reached by these non-invasive techniques limited

the use of the anatomical architecture criteria in vivo. Besides, to date only a small

proportion of visual neuroimaging experiments use more than one of these criteria.

The exciting -and relaxing, since it is not rare that subjects fall asleep while lying

inside the tunnel!- technique of Magnetic Resonance Imaging (MRI) is a particularly

promising tool to tackle these issues. It indeed offers the possibility, among others,

to obtain high resolution anatomical images and, at reasonable spatial resolution, in-

direct measurements of neural activity through functional MRI (fMRI) and of white

matter connections through diffusion weighted MRI (DWI).

In this thesis, we use these three different modalities of MRI to characterize the

human low-level visual cortex, with a particular emphasis on motion direction per-

ception.
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1.2 Thesis outline

This thesis is organized in 6 chapters (following this introduction). The first one is

an introduction to current knowledge about the cortical visual system and the MRI

modalities we used. In the second chapter, we detail the approaches we applied to

the anatomical image processing. We then describe different processing methods to

analyze BOLD signal images, including a new surface-based approach to perform

the spatial smoothing of fMRI data. Chapter 5 deals with visual areas mapping,

for which we developed a complete retinotopic mapping experiment as well as a

specific functional identification of the hMT+ complex. Based on the identification

of these areas, we demonstrate, with an fMRI adaptation paradigm, a functional

characterization of motion direction selectivity for each area (chapter 6). The last

chapter presents a study of white matter connectivity across the same visual areas,

using a recently developed framework to analyze Diffusion Tensor Images (DTI),

a particular model of DWI. We finally close this thesis with a general conclusion

about our contributions and future work.

Chapter 2

We give in this chapter an overview of the human brain (section 1) before detailing

more specifically current knowledge on the visual system (section2). We then

recall the basic principles underlying the Magnetic Resonance Imaging technique,

emphasizing on the modalities of fMRI and DWI we used in this thesis. We finally

present the experimental setup available at the Centre IRMf de Marseille where we

recorded our data and give the parameters of the different scanner sequences we

used for our anatomical, functional and diffusion-weighted images.

Chapter 3

The segmentation of the individual brain tissues and the extraction of a geometrical

model of the cortical surface are of great interest for the analysis and display of

functional and diffusion weighted images. We detail in this chapter two algorithms

we used: the BrainVISA software, developed within the Institute Fédératif de

Recherche n◦49, and a complementary approach, ABSOLUt, recently developed

at the Odyssée Laboratory. The two methods allow an accurate segmentation of

the different brain tissues and a reconstruction of the inner and outer grey matter

surfaces. Importantly, beyond a few parameters tuning, no manual editing is

required. We then justify our choice in favor of the ABSOLUt software approach

based on a comparison of their respective outcomes.

Chapter 4

A typical fMRI experiment results in a 4D dataset. Specific processing is then
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required to correct for some acquisition artifacts and extract the information of

interest. This information can be the detection of activation loci or the estimation

of the local BOLD response shape in specific zones. The first section deals with the

preprocessing usually applied to fMRI datasets. In particular, we introduce a new

approach to address the problem of fMRI data smoothing along the cortical surface.

This method, based on the level set framework, offers theoretical and practical

advantages over the typical 3D-isotropic smoothing technique as well as mesh-based

approaches proposed so far. In the second section, we review the main approaches

proposed for the statistical analysis of fMRI data, with a particular emphasis on two

methods we used: the standard SPM framework and a non-parametric estimation

method of the BOLD response.

Chapter 5

This chapter is divided into two parts, each corresponding to a specific criterium

we used to delineate distinct low-level visual areas. In the first part, we describe

the fMRI retinotopic mapping procedure we employed to segment the early

occipital retinotopic areas. After a review of the different approaches described

in the literature, we detail our procedure, from the stimuli generation to the final

anatomo-functional analysis. We describe different stimulus configurations we

tried to optimize the acquisition process as well as the resulting maps quality and

then compare our results with the literature. We finally detail the procedure to

segment the visual areas and extract 3D Regions Of Interest for each retinotopic

area identified. In the second part, we present the functional mapping we used to

localize the hMT+ complex. Similarly to the retinotopic mapping experiment, we

varied some stimulus parameters to optimize the procedure. We finally confront

our results with the literature.

Chapter 6

Based on the precise identification of the low-level visual areas, we give in this

chapter a characterization of their respective functional selectivity to motion

direction we obtain with an fMR-adaptation paradigm. We start by a review

of fMR-adaptation literature, with an emphasis on its applications to the visual

system. We then detail our event-related fMR-adaptation experiment. A robust

estimation of the hemodynamic response function allows to estimate the direction

tuning and corresponding proportions of two functional sub-populations with

respect to this feature. The human MT complex (hMT+), directly followed by

V3A, appears to be the more direction selective. We also find high direction

selectivity in areas V1 and V4v, thus confirming similar observations reported in

a macaque fMRI study. In addition, these results validate the fMR-adaptation

paradigm ability to assess the functional segregation of early visual areas, while
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stressing the necessity to take into account dynamic aspects of the functional

selectivity to low-level features.

Chapter 7

Finally, we propose to refine our knowledge of the human visual cortex by studying

another fundamental aspect of the brain: the anatomical connectivity. We first

review the state of the art in DTI connectivity mapping approaches and their

applications to the visual cortex. We then present our approach which combines the

functional and retinotopic identification of the visual areas with a recently developed

geometrical framework to analyze DTI data. A complete processing pipeline is

developed to allow the analysis of the complementary information brought by

each MRI modality in a common reference frame. After a first validation of our

approach on the well-known optic radiations, we characterize the possible topology

of interhemispheric connections of the low-level visual cortex areas within the

splenium. An evaluation of the connectivity between the hMT+ complex and the

different retinotopic areas is also given. We finally discuss our results and their

theoretical and methodological implications.

We conclude this thesis by recalling our main contributions before suggesting

various future directions emerging from this work.

1.3 Contributions

The contributions of the current thesis are both methodological and experimental.

From a methodological point of view, our work offers new approaches to MRI data

analysis and provides a validation of various state of the art algorithms developed

in the field:

• We introduce in chapter 3 a new cortical surface based approach for fMRI

data smoothing. This method takes advantage of the level set framework to

directly smooth the functional images along a direction parallel to the cortical

surface. We compare this method with the classical 3D-isotropic technique

and with a mesh-based smoothing approach similar to that already proposed

in the literature. Naturally, cortical surface based methods are less prone to

undesired mixing of voxel information than the classical 3D-isotropic filtering.

Moreover, the level set method appears more adapted to fMRI data smooth-

ing than the mesh-based approaches in many respects: (i) first and foremost,

a projection to assign the functional data onto the cortical surface is not re-

quired, avoiding a somewhat arbitrary choice; (ii) consequently, the choice of

a projection method to visualize the results of the data analysis can be done a

posteriori, which is more flexible; (iii) the implementation is computationally
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more efficient than the mesh-based approaches. The only drawback of our level

set approach over mesh-based approaches is the necessity to compute a level

set function representing the cortical surface. However, this step is efficiently

performed by a dedicated algorithm implemented in the ABSOLUt library. We

illustrate the different approaches on a macaque monkey and a human dataset.

This methodological contribution was presented at the Human Brain Mapping

(HBM) conference in 2004 [251].

• The optimization of fundamental stimuli parameters for the retinotopic map-

ping procedure and the functional identification of hMT+ are described and

discussed in chapter 5. The retinotopic mapping procedure was presented at

the HBM conference in 2003 [252]. Using these procedures, the reliable identi-

fication of various low-level visual areas can be achieved in approximately 30

minutes of scans at 3T, including the obtention of a high resolution anatomi-

cal image. Additionally, we implemented a method to extract 3D Regions Of

Interest corresponding to each retinotopic visual area.

• The validation of newly introduced algorithms on real experimental data is a

necessary step to optimize the MRI processing pipelines. We first compare

in chapter 3 two state of the art anatomical image segmentation tools and

discussed their respective advantages and drawbacks. Second, the results we

obtain in the fMR-adaptation study presented in chapter 6 constitute a further

validation of this experimental paradigm. Besides, this chapter illustrates the

improved sensitivity of alternative statistical approaches to the classical GLM

analysis of fMRI data, such as the non-parametric HRF estimation framework

we applied. Finally, the methodological implications of the DTI-based anatom-

ical connectivity experiment detailed in chapter 7 is twofold. First it proves the

feasibility to combine the different information provided by anatomical, func-

tional and diffusion-weighted MR images. Second, it gives a first validation of

the Fast Marching implementation of the Riemaniann approach to DTI connec-

tivity mapping. The methodological framework is currently submitted to the

Computer Vision and Pattern Recognition (CVPR) conference, and prelimi-

nary results of the experimental validation on the visual cortex were presented

at the HBM conference in 2005 [250].

From a more experimental point of view, our thesis brings new insights regarding

the functional and anatomical organization of the low level visual cortex:

• The experiment reported in chapter 6 gives an estimation of direction selectivity

in various low-level visual areas. It confirms that motion direction selectivity

is area specific in low-level visual cortex. Furthermore, we obtain finer mea-

surements of this particular feature with a minimally constraining adaptation
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paradigm. Our results suggest a global hierarchy among the different visual

areas. hMT+ and V3A are the most direction selective, followed by V1, V3,

V4v and V2. This ordering supports the notion of hierarchical processing in

the visual cortex. The direction indices we observed in V1 and hMT+ are

interestingly similar to those reported in a recent macaque experiment, which

might be another evidence of the homologies between the two species. Ad-

ditionally, the unexpectedly high direction selectivity we observed in V1 and

V4v revives the notion of context-dependent neuronal tuning. This work is

currently submitted to Journal of Vision.

• The combined DTI-fMRI experiment we expose in the last chapter allows to

reconstruct the optic radiations linking the LGN and V1. It confirms the topol-

ogy of occipito-callosal connections in the splenium. We also report the first

preliminary characterization of the anatomical connectivity between hMT+

and the occipital retinotopic areas. As expected from animal studies, V1 ex-

hibits the highest connectivity index values. On the other hand, V4 system-

atically shows the lowest connectivity index values with hMT+. This result is

consistent with the view of segregated ventral and dorsal processing streams.

This part is currently submitted to NeuroImage.

1.4 Other contributions

For sake of coherence and conciseness, some contributions made during this PhD

could not be included in this manuscript. They are shortly mentioned below.

• The retinotopic mapping procedure is currently applied by the DyVA team1,

INCM, CNRS, Marseille to study the cortical organization in patients suffering

from retinal diseases. This includes pathologies such as visual scotomas or age-

related macular degeneration. Two sets of experiments were already ran on

8 healthy subjects. Retinotopic maps were first reconstructed using the map-

ping technique described in chapter 5. Second, a block paradigm consisting of

a grey background alternating with a fullfield, flickering checkerboard was used

to stimulate the complete central visual field. In both experiments, conditions

with 4 peri-foveal scotomas of different sizes and centered at different eccentric-

ities were interleaved. The cortical projections of each artificial scotoma were

identified and confirmed their relations by quantitative analysis: the measured

cortical positions and surfaces of the inactivated cortical zones were compared

with the known values of radius, eccentricity and surface of scotomas in the

visual field.

Beyond the transfer of the whole retinotopic mapping technique, I designed

1www.incm.cnrs-mrs.fr/en equipedyva.php
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the stimuli and the analysis programs for the block design experiment. This

work led to 2 presentations at ophtalmology conferences in may 2005, one at the

ARVO conference (Association for Research in Vision and Ophtalmology) [103]

and the other at the Congrès Annuel de la Société Française d’Ophtalmologie

(French Ophtalmology Society Annual Conference) [102]. Following this first

validation step, the mapping of the cortical representation in patients present-

ing retinal pathology is currently under study by Louis Hoffart, ophthalmologist

at la Timone hospital in Marseille and PhD student at the DyVA team.

• I contributed to perform a macaque monkey fMRI experiment conducted by

Professor Guy A. Orban and Mr Koen Nelissen at the Laboratorium voor

Neuro- en Psychofysiologie2, K.U.Leuven. The goal of this experiment was to

study visual motion velocity processing in the macaque monkey brain. This

was an interesting opportunity to be introduced to animal experiments and

specific constraints related to the work in an hospital environment. Note that

some datasets related to this experiment are used in chapter 4 to validate our

cortical surface based fMRI smoothing method.

• I designed the parametric program to generate the visual stimuli used in an

fMRI experiment related to motion transparency perception. This experiment

was performed within the Perception for Recognition and Action3 Research

Training Network. The functional data analysis is currently under study.

• Last but not least, my PhD work includes software development. I wrote

Matlab and shell scripts to automate several image processing tools used in

this thesis. Most of them include an SPM based interface to allow a user-

friendly interaction with the user. I transfered parts of these methods to the

DyVA team, the Centre IRMf de Marseille and the Laboratorium voor Neuro-

en Psychofysiologie.

2http://134.58.34.1/index.php
3http://pra.psy.gla.ac.uk/
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Chapter 2

Magnetic Resonance Imaging and

the human visual brain
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The human brain is reputable of being the most complex physical object in the

world. Its complexity arises as soon as one considers its anatomical organization and

is further emphasized by its rich functional organization. However, brain imaging

techniques, in particular Magnetic Resonance Imaging (MRI), allow to get various

complementary information about this organ.

We start this chapter by a quick tour from the nervous system to the subdivisions

of the human brain. We more specifically insist on two brain tissues we particularly

targeted in this work: grey matter and white matter. The main part of the grey

matter is found in the cerebral cortex, where most neural processing take place, and

the white matter relays information across different brain locations. We then ac-

count the main facts about the human visual system organization, with a particular

emphasis on imaging contributions. Section 3 introduces the MRI technique and

how it can be used to infer neuronal activity (fMRI) and anatomical connectivity

(Diffusion MRI). We finally detail the experimental setup and imaging sequences

used in this thesis.

2.1 A quick tour in the anatomy of the human brain

The nervous system is the master piece of the organism to retrieve, convey and

process information brought from the inside and the outside of the body. It also

manages the vast majority of functions to react to our environment. The paragraphs

below aim at giving a rough description of the brain anatomy. For a far more

complete and detailed view of the brain structures, various atlases and books are now

available. For instance, we refer the interested reader to the excellent Duvernoy atlas

[58] or, for those keen on web pages, the on-line atlas of Prof. Dominic Hasboun1.

2.1.1 The central nervous system

We begin our journey in the nervous system by dividing it into two major parts

which in turn can be divided into two sub-parts:

• the Peripheral Nervous System. It comprises (i) the Somatic Nervous System,

whose nerves carry the information from and to the sensory organs and the

muscles and (ii) the Automatic Nervous system, involved in the regulation

of vital functions such as breathing, blood circulation, digestion or hormones

secretion;

• the Central Nervous System. The CNS is composed of the spinal chord located

within the vertebral column and the brain housed by the skull. The CNS nerves

lie inside the cerebrospinal fluid (CSF).

1http://www.chups.jussieu.fr/ext/neuranat/index.html
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Figure 2.1: Subdivisions of the nervous system and close up on the brain. From

http://mywebpages.comcast.net/epollak/PSY255 pix/PSY255 pix.htm

Figure 2.1 illustrates the subdivisions of the nervous system with an emphasis on

the brain represented in a mid-sagittal section. This virtual plane, corresponding

to the body’s median plane, splits the brain into two roughly symmetrical parts,

called the two hemispheres. Each hemisphere communicates with the other through

a large bundle of nerve fibers, the corpus callosum, and a smaller fiber bundle called

the anterior commissure.

Pursuing our dissection one step further within the brain yields to distinguish three

parts:

1. the rhombencephalon or hindbrain comprises the cerebellum, the pons and the

medulla oblongata;

2. the mesencephalon or mid-brain made of the tectum, the tegmentum and the

cerebral aqueduct;

3. the prosencephalon, or forebrain, composed of two main units, one known as

the diencephalon containing the thalamus and hypothalamus and the other

called the telencephalon holding the basal ganglia and the cerebral cortex.

We now focus our description on parts of the prosencephalon which was particularly

studied in this thesis. Before describing the main facts about grey and white matter
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Figure 2.2: Schematic structure of a neuron. Adapted from www.infovisual.info

tissues, we temporally have to interrupt our dissection-like description to introduce

the main structural element of the brain: the neuron.

2.1.2 The neuron

The nervous system comprises 100 billion (1011) neurons. One important char-

acteristic of neurons is that they have excitable membranes which allow them to

generate and propagate electrical signals. The primary role of neurons is to process

and transmit this neural information. If neurons exhibit a high diversity both in

shape and size (there are over 200 different kinds of neurons), they nonetheless

share a common structure, as illustrated in figure 2.2. Like all the cells in the

human body, every neuron has a cell body, i.e. a membrane that surrounds its

cytoplasm and a nucleus that contains its genes. This part is also called the soma.

What distinguishes the neurons from other cells is their extensions, which they use

to send and receive information. The dendrites are the extensions that conduct

the electrical stimulation received from other cells to the soma. On the other

hand, the axon carries nerve signals away from the neuron. Each neuron has many

dendrites but only one axon, although it usually undergoes extensive branching

called terminal arborisation. Such a structure enables communication with many

target cells, mostly neurons but also other cells like muscles. Neurons communicate

with one another through synapses, term derived from the Greek ”syn” (together)

and ”haptein” (join). Hence a synapse is found where an axon terminal of one cell

impinges upon a dendrite or the soma of another, or less commonly to another
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axon. Each neuron has on average 1,000 synaptic connections to other neurons,

which yields to a number of 100 trillion (1014) connections (synapses) between

neurons in the brain. The vast majority of the synapses found in the human brain

are chemical synapses, i.e. the information transfer from the axon terminal to the

next neuron is supplied by specific molecules known as neurotransmitters.

From a macroscopical point of view, aggregates of neuron’s soma and den-

drites form the grey matter where the main information processing is thought to be

performed while the neuron’s axons behave as the wiring network within the brain,

which constitutes the white matter.

2.1.3 Structure and organization of the grey matter

Grey matter forms the superficial part of the brain, some nuclei within the brain and

the deep parts of the spinal cord. It is so-called because, in post-mortem sections,

it has a grey color due to all the grey nuclei in the cells that make it up. In fact, in

the living body, grey matter is pink. Grey matter is thus mainly composed of the

bodies of the neurons. But it also comprises the nonmyelinated sections of processes

(axons and dendrites), including processes just emerging from the neurons, and cells

which are thought to mainly support and protect the neurons in various ways.

The cerebral cortex

With 75% of the 1011 neurons found in the brain, the cerebral cortex is the most

important grey matter part. From a macroscopical point of view, the cortex is

roughly a sheet of tissue that makes up the outer layer of the brain. This is actually

the origin of the Latin word cortex, which means outer layer or bark. Along the

evolution, the surface of the cerebral cortex becomes more and more folded to allow

an increase of its surface in the limited volume of the skull. This folding process

creates grooves on the surface of the brain called sulci and bumps or ridges called

gyri. The two hemispheres of the brain are separated by a prominent central fissure.

Each hemisphere is then made up of six lobes. The frontal lobe, located anterior to

the central sulcus, the parietal lobe found dorsally to the same central sulcus, the

temporal lobe on the most lateral part of the cortex and the occipital lobe which

occupies the most occipital part of the cortex (figure 2.3). In addition, neurologists

consider an internal lobe, called the limbic system, which lies along the medial part

of the cortex and the insular cortex buried within the lateral sulcus (also known as

Sylvian fissure).

The thickness of the cerebral cortex varies from 2.5 to 6 mm. Neuroanatomists

have observed that the cortical neurons appear to be organized in various layers
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Figure 2.3: Cortical lobes. From www.bioon.com/book/biology/whole/image/1/1-8.tif.jpg

(usually six) tangentially to the cortical surface. These layers can be distinguished

histologically, functionally and through the connectivity pattern they exhibit with

each other.

Neuroanatomists also noticed that the neurons distribution and size are not

homogeneous across the cortex. This led some of them to propose a parcellation

of the cortex into distinct zones, i.e. cortical ”areas” with coherent cells structure.

The most famous ones are the cytoarchitectonic maps of Brodmann [17] based on

microscopical studies of local cellular and laminar structure (figure 2.4).

Despite this general laminar architecture parallel to the cortical surface, a neuron

may be part of different layers through its dendrites. This communication in

a direction orthogonal to the cortical surface suggested the concept of cortical

columns. Physiological studies confirmed this columnar organization, showing that

neurons in a vertical section of the cortex often share similar functional properties.

We will illustrate this notion below in the visual system.

Other grey matter nuclei

The cortex is not the only grey matter part of the brain. The basal ganglia, such

as the putamen and the caudate nucleus, are as well composed of grey matter. It is

also the case for the thalamus. The latter comprises many different pairs of nuclei,

most of which project to the cortex. Some are sensory relay nuclei, i.e. nuclei

that receive signals from sensory receptors, process them, and then transmit them

to the appropriate areas of sensory cortex. For example, the Lateral Geniculate

Nuclei (LGN), the Medial Geniculate Nuclei (MGN), and the Ventral Posterior

Nuclei (VPN) are important relay stations in the visual, auditory, and somatosensory

systems, respectively.
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Figure 2.4: Brodmann areas and cortical layers cytoarchitecture. Notice the great differ-

entiation in cortical layers thickness, for instance the predominance of the input layers II

and IV in the primary visual cortex or of the output layers III and V in the primary motor

cortex. From www.unige.ch/cyberdocuments/theses2003/RivaraC-B
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2.1.4 White matter connections

White matter is composed of axonal nerve fibers, covered by a myelin sheath giving

its distinctive color. It is found in the inner layer of the cortex, the optic nerves,

the central and lower areas of the brain (notably the brainstem) and surrounding

the central shaft of grey matter in the spinal cord. The white matter axons can be

distributed diffusely or concentrated in bundles, also referred to as tracts or fiber

pathways.

Three main types of neural tracts are found in the white matter:

• The Projection tracts establish connections between the cerebral cortex and

subcortical structures. Two types of projection tracts can be distinguished:

ascending tracts and descending tracts. Ascending tracts carry sensory infor-

mation from different parts of the body to the cerebral cortex. All sensory

information, except olfactory, end up in the primary sensory cortex by the

means of the thalamo-cortical fibers. The thalamus receives the somesthetic,

gustatory, visual and auditory stimuli through these ascending pathways. De-

scending tracts carry motor commands from the motor cortex down to the

muscles and glands through the lower brain structures and the spinal cord.

They reach structures like the thalamus, the red nucleus, the medulla and

serve muscles of the torso, extremities, facial and neck region.

• The Association tracts are the communication paths between different corti-

cal areas within a given hemisphere. They can be divided into two categories:

short and long association tracts. Short association tracts build up connec-

tions between regions of a given lobe. The smallest link adjacent cortical zones

separated by a sulcus, hence their name of U-shaped fibers (see for instance

the short arcuate bundles, identified with the label 1 on bottom part of figure

2.5). Long association fibers establish connections between different cerebral

lobes and often form a bundle macroscopically visible.

• The Commisural tracts are bundles of axons connecting a region in one

hemisphere to another region of the opposite hemisphere. The corpus callosum

(figure 2.5 top) is the most important of the commissural tracts and can be

broken down into four parts: The rostrum (anterior most part) and the genu

(anterior curvature) are made up of fibers connecting the anterior and ventral

parts of the frontal lobes. The corpus (large middle portion) links posterior

portions of the frontal lobes as well as the parietal lobes. Finally, the splenium

(caudal curvature) enables communications between the temporal and occipital

lobes.
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Figure 2.5: Various white matter bundles seen from above after partial re-

moval of the cerebral hemispheres (top) and in a sagittal slice (bottom). From

http://www.vh.org/adult/provider/anatomy/BrainAnatomy/BrainAnatomy.html
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2.2 The visual system

In this section, we start by a brief description of the path conveying the visual

information from the eyes to the visual primary visual cortex. We then present the

organization of the visual cortex. For more precise descriptions, see for instance

[166, 24, 119].

2.2.1 From the eyes to the cortex

In primates (in particular in humans), the visual system includes many anatomical

elements, from the eyes to the cortex. A human eye is approximately 2.5 cm long

and weighs 7 grams. Six bands of muscles allow the control of its displacements

to probe the environment. Light goes successively through the cornea, the aqueous

humor, and the pupil, whose size is controlled by a muscle, the iris (giving the eye

its external color). Next it passes through the lens, whose shape is controlled by

the ciliary muscles, before entering the vitreous humor. It finally strikes the retina,

which is covered with over 125 million photosensitive receptors of two families:

• the cones make a population of around 8 millions cells. Mainly concentrated

in the center of the retina, also known as the fovea, the cones are responsible

for chromatic and normal lighting condition vision (or photopic);

• the rods, which are estimated at around 120 millions. Rods are found ev-

erywhere except in the fovea. They deal with black and white perception and

low-lighting conditions (or scotopic).

These photosensitive receptors translate lighting information into electrical informa-

tion, transmitted to the optical nerves via the ganglion cells. The two optical nerves

cross, forming the optic chiasm, after which information is transmitted separately

for each visual hemifield (separated vertically with respect to the head position): the

information from photons striking the left (respectively right) parts of both retina

and corresponding to the right (left) visual field is brought together to form the left

(right) optical tractus. Nonetheless, visual signals from the two eyes remain segre-

gated in the LGN (and even latter in area V1).

The vast majority of the optical tracts fibers get projected to a part of the thalamic

sensory relay system, the Lateral Geniculate Nucleus (LGN). The LGN approxi-

mately count 1 million cells, corresponding to the number of optical fibers. Finally,

the LGN axons form the optic radiations which vanish in the primary visual cortex,

centered around the calcarine fissure (figure 2.6).
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Figure 2.6: The path of the visual information from the eyes to the primary visual cortex.

This figure is borrowed from:

http://homepage.psy.utexas.edu/homepage/Class/Psy308/Salinas/Vision/Vision.html

2.2.2 The visual cortex

From a single to multiple visual areas

Until the middle of the twentieth century, the major theory about the visual cortex

considered a single area located at the occipital pole [105, 256]. As we mentioned

above, this part of the cortex receives its major inputs from the LGN. Besides,

patients who underwent damage to this zone suffered from severe blindness. Finally,

the cytoarchitecture found there was easily distinguishable from surrounding cortical

tissue (from which came the name ”striate cortex”). Around this single visual area,

a large expanse of the cortical surface extending to the parietal and temporal lobes

was called the association cortex. Its function could be to associate distinct visual

signals together or with complementary information from other sensory systems.

However, an electrophysiology study performed by Hubel and Wiesel in 1965 [110]

demonstrated some areas in the cat association cortex where neurons responded

only to visual stimulations. Several studies further confirmed this finding, revealing

various purely visual areas in the macaque and the owl monkey. To date, over 30

areas could be differentiated in the macaque monkey based on four main criteria

[68]: (i) local cortical cells architecture, (ii) connectivity patterns across areas, (iii)

global functional selectivity and (iv) retinotopy. In humans, the last two criteria

45



were successfully used to unveil several areas. We make below a list of current areas

reported in the literature, grouping them with their anatomical location. Note that

there is no systematic consensus across areas definition and labeling, emphasizing

the technical as well as theoretical difficulties of such a task [254, 238].

Early posterior occipital areas

The purely human visual areas are found mostly in the occipital lobe. All these areas

exhibit a distinctive retinotopic map, although their low eccentricity representations

are difficult to separate at the spatial resolution currently obtained with fMRI.

• V1, also known as striate cortex, primary visual area or Brodmann area 17,

is viewed as the entry of the visual cortex. As already mentioned above, it

receives most outputs of the LGN. V1 contains a complete (mirror) represen-

tation of the contralateral hemifield. Beyond this retinotopy, neurons in V1

are organized into sub-regions, each specialized in the analysis of a given visual

feature. Hence, cortical columns predominantly responding to the information

coming from a single eye and called ocular dominance columns have been shown

in human V1 using fMRI [150, 28] (figure 2.7-A). Within these populations, it

has been shown in animals study that neurons are further functional selective

to local contrast orientation (such as an object border) or direction of motion.

V1 regions also contain neurons that are selective for color. These regions are

called blobs due to their blotchy appearance when the brain is stained with

Cytochrome Oxidase (CO staining). The inter-blob regions contain orientation

columns. Such an organization, which is repeated throughout V1 in an orderly

manner, is referred to as hypercolumn. Figure 2.7-B) shows a model of V1 hy-

percolumn. Human V1 BOLD response to contrast variations has been shown

to be limited for a low contrast (below 6%) and to increase monotonically with

contrast increase [217]. It was shown to contain cells functionally selective to

orientation [217], direction [113], color [61].

• V2, also called prestriate area, is subdivided into two parts: V2v (for ventral)

and V2d (for dorsal). They respectively represent the upper and lower con-

tralateral quarterfield. In non-human primates, area V2 mainly receives its

inputs from V1. The neurons organization of V2 is described by the stripped

pattern that it exhibits after CO-staining. V2 is made up of pale stripes, thin

stripes, and thick stripes. Neurons within the pale stripes of V2 receive in-

put from the V1 inter-blob regions, and exhibit orientation selectivity but not

motion selectivity. Neurons within the thin stripes of V2 receive input from

the color blobs in V1, and exhibit color selectivity but not form or motion

selectivity. Neurons within the thick stripes of V2 receive input from layer 4B
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Figure 2.7: Examples of the functional neuronal organization in V1. A) Human V1

ocular dominance columns demonstrated with fMRI (Reproduced from [28]). B) Hy-

percolumn model with ocular dominance, orientation and color selective columns (from

http://web.psych.ualberta.ca/ iwinship/vision).

of V1 (which contains many motion selective neurons), and exhibit orientation

and some motion selectivity.

• V3, like V2, is subdivided into two parts: V3v ventrally (sometimes also called

VP, in reference to the Ventral Posterior area in monkeys), representing the

upper quadrant and V3d dorsally, representing the lower quadrant. V3 neurons

exhibit a high selectivity to low contrast and reach a saturation level at about

6% [218]. The functional selectivity of human V3 nonetheless appears different

from monkeys: in macaque, V3 is moderately motion and direction selective,

which has not been observed in humans [161, 224].

Dorsal areas

A set of areas has been found dorsally to area V3d. Various reports suggest the

involvement of this region in motion and depth perception.

• V3A, for V3 Accessory, is found at the posterior section of the intraparietal

sulcus, posteriorly to V3d. V3A presents a complete representation of the

contralateral hemifield and a foveal representation distinct to the confluent

V1-V2-V3 central representations. V3A neurons seem to exhibit a similar

contrast response than area V3 [224], i.e. a high sensitivity to low contrast.

Human V3A also presents a strong responsivity to visual motion, contrarily to

macaque V3 [224, 234].

• V3B is located dorsally to V3d and laterally to V3A. At current imaging reso-

lution, V3B foveal representation appears confluent with that of V3A. Recent

field map measurements suggest a complete representation of the contralat-
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eral hemifield [177] and not only a quarterfield mentioned in the first reports

[202, 57].

• KO, for Kinetic Occipital, was discovered by the group of Orban [233] through

its marked responsiveness to moving boundaries (kinetic contours). It is located

anterior and lateral to V3 and V3A and posterior to hMT/V5+. It has been

suggested that KO could partially or totally overlap with V3B [202, 254].

• V7 is located anteriorly and dorsally to V3A and represents the complete con-

tralateral hemifield [177]. However, the eccentricity and polar angle maps seem

to run in parallel [227]. V7 neurons receptive fields differ from those of V3A

and V3B, either in size or in their spatial distribution [177].

Ventral areas

Several evidences demonstrate the strong responsiveness to color stimuli in the ven-

tral occipital cortical surface [148, 95, 15]. There is however no consensus about

the retinotopic organization of the visual cortex located ventrally to V3v. Different

views are currently disputed. The group of Tootell describe an upper quadrant rep-

resentation adjacent to V3v they label V4v. Moving further ventrally, they consider

a complete hemifield representation, named V8, running perpendicular to that of

V4v [95]. The group of Wandell describe a complete hemifield representation ad-

jacent to V3v, labeled hV4 followed laterally by two hemifield maps of the central

5 degrees labeled V0-1 and VO-2 [15]. McKeefry and Zeki refer to a V4 complex

with a complete hemifield named V4 and at least an upper quadrant named V4α.

Tyler and colleagues have yet another view, with a region similar to hV4 and an

upper quarterfield found medially to it named VMO (VentroMedial Occipital), and

a subsequent upper quadrant representation labeled Ventral Occipital Foveal (VOF)

referring to its mostly foveal representation. Subsequent measurements are needed

to clarify this issue and clearly attribute the respective functional role of the delin-

eation obtained.

Lateral areas

• The human MT/V5 complex, or hMT/V5+, is easily defined by its strong

functional selectivity to motion stimuli [257, 218, 233, 202]. It is typically

found at the junction of the ascending limb of the inferior temporal sulcus

(ALITS) and the lateral occipital sulcus (LO) [241, 56]. This zone is referred

to as a complex since it is thought to comprise human equivalent to macaque’s

MT, MST, FST and perhaps adjacent areas. Some efforts have been made to

segment hMT/V5+ into distinct components [55, 112]. In monkeys, MT/V5

and surrounding areas have been extensively studied (for a review, see for
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instance [11]). The main hallmarks regarding MT/V5 is its organization into

direction columns [2], comparable to orientation columns in V1 and the strong

myelinated inputs it receives from V1. Regarding hMT/V5+ cells, it was

shown among others to have a high selectivity to low contrast but a limited

responsivity to equiluminant motion stimuli [218], suggesting a magnocellular

dominated area (see below). Furthermore, it was demonstrated that hMT/V5+

contains pattern motion cells [114]. hMT+ responds both to first and second

order motion [202] and is more generally involved in many aspects of visual

perception implying motion [208, 161, 255].

• The Lateral Occipital zone is, as indicated by its name, a region on the lateral

occipital lobe, more specifically close to the Lateral Occipital Sulcus (LOS),

adjacent to the early retinotopic areas and extending up to hMT+ laterally.

The more dorsal portion was shown to be involved in motion and attention task

[208, 224, 42], while the ventral part is highly responsive to objects recognition

[91]. To date, the retinotopic organization in the Lateral Occipital zone appears

elusive, although some measurements of eccentricity representations were re-

ported [222, 227]. Various subdivisions and labeling have been proposed in the

Lateral Occipital region. For instance, the group of Malach proposed at least

two subregions: LO (Lateral Occipital) located dorsally and pFus (posterior

fusiform) more ventrally along the fusiform gyrus [91]. The group of Orban

refers to LOS and distinguishes a motion-sensitive part, a shape-sensitive part

and a mixed part including area KO [163].

Various subsequent visual areas were functionally identified in the human cortex

further away from areas and zones we have just presented above. These areas were

mostly defined by their functional selectivity to features including motion [209],

biological motion [92, 229], faces [120], places [64], letters [101], etc...The retinotopic

organization in these areas is still unclear and may not follow the same principles as

in the early posterior areas [227].

Parallel processing pathways

From the above list of areas, it is presumed that the visual information is not

processed as a block in a single stream of information. In fact, different visual

features, such as motion or color, are separated and processed in parallel systems.

This separation is found as early as in the LGN, where two2 main types of cells are

found in segregated layers: magno and parvo. Magno and parvo cells differ in many

respects:

2Note that a minoritary third LGN neurons type, known as konio cells, has been reported; konio cells

function is less understood but supposed to play a minor role in visual information processing.
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- magno cells have a higher temporal but lower spatial resolution (with larger

receptive fields) than parvo cells,

- magno cells exhibit a lack of color sensitivity contrarily to parvo cells,

- a high sensitivity at low contrast accompanied with a rapid saturation is found in

magno cells while parvo cells response increases gradually with luminance contrast.

A comparable segregation is found within the visual cortex, which is classi-

cally subdivided into:

• a ventral or occipito-temporal pathway involved in color, patterns and shape

processing; it answers the ”What?” question,

• a dorsal or occipito-parietal pathway involved in spatial relation and objects

motion processing; it answers the ”Where?” question.

This sketchy subdivision of the visual cortex, primarily demonstrated with monkeys

lesion studies [228], seems to hold in humans as suggested by several patients studies

[69]. However, this view was further refined by the british psychologists Milner and

Goodale [152] who distinguish both pathways regarding the cognitive task they serve:

• the dorsal stream is implied in visual guidance of actions toward objects,

• the ventral stream is responsible for the analysis of visual inputs to allow object

recognition and conscious visual perception.

Note also that such a segregation is not perfectly respected and various communi-

cations are established between both pathways, allowing interactions between the

respective visual features they process (see figure 2.8).

Hierarchical organization

Another general and important principle in the visual brain is its hierarchical

organization. According to this principle, the different areas of a given pathway can

be hierarchically ordered, from low-level areas processing simple visual attributes

such as the orientation of an edge or local motion direction to high-level areas

dealing with more complex information such as object identification or complex

motion. This hierarchy principle has emerged from different observations along the

visual pathways: (i) the increasing receptive field size (i.e. the portion of the visual

field ”perceived” by a cell), (ii) an increased complexity in neurons receptive field

properties, (iii) a progressive lost of retinotopy.

In this model, information is processed in a ”bottom-up” fashion from low-order

to higher order areas. The result of the computation performed at level n is

transmitted to level n+ 1 through feedforward connections.

Once again, the hierarchy principle does not account perfectly for the actual visual
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Figure 2.8: Parallel pathways and hierarchical processing in the monkey visual cortex.

Modified from http://lbc.nimh.nih.gov/people/ungerleider/science.jpg
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information processing in the brain. For instance, feedback connections from higher

to lower order visual areas allow ”top-down” information flow involved, among

others, in attentional modulations.

The recent non invasive exploration of the human visual cortex has already

provided extensive information and insight about its anatomical and functional

organization. This research was possible thanks to the discovery and improvements

of neuroimaging techniques, among which MRI has played an important role.
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2.3 Magnetic Resonance Imaging

First demonstrated on small test tube samples in the beginning of the 70’s by

Paul Lauterbur [129], MRI allows to acquire non-invasively 3D images at high

spatial resolution. Various modalities can be obtained with the same device: de-

tailed anatomy (structural MRI), functional activity (fMRI), water-molecules diffu-

sion (DWI), blood flow measurements (perfusion imaging), distribution of various

metabolites (MR Spectroscopy Imaging), blood vessels (MR Angiography).

The first part of this section briefly exposes the basic principles of MR imaging,

before giving the outlines of functional and diffusion-weighted MRI.

2.3.1 MRI principles

Magnetic Resonance Imaging has its foundations on rich and complex theories

including electromagnetism and quantum physics, however it can be understood

with relatively simple physical models. The underlying mathematical model implies

Bloch equation which describes the relation between nuclear magnetization and

magnetic field.

Physical model

An atom is made of electrons, holding a negative charge and rotating around a nu-

cleus. The latter is subdivided in nucleons, specifically protons charged positively

and neutrons with no charge. We distinguish three types of motion in an atom: the

electrons both rotating around their own axis and in orbits around the nucleus, and

the nucleus rotating around itself. MRI is based on the latter motion. Some nuclei

have the property to align in a magnetic field if their mass number is odd, i.e. if the

sum of protons and neutrons is odd. This is named angular moment or spin. Among

others, 1H atoms, which represent 99.89% of naturally found hydrogens atoms and

are widely represented in biological system, have a spin. On the other hand, carbon

atoms mainly found under the 12C configuration are not prone to Nuclear Magnetic

Resonance (NMR). Hence, MRI techniques are mainly considering 1H atoms.

Spin nuclei being positively charged, their motion induces a magnetic field. Con-

versely, the resulting magnetic moment can be oriented by the application of a

magnetic field. This reciprocity is largely used in MRI. From a macroscopical point

of view, no resulting field can be observed directly since each spin has its own, in-

dependent, random orientation (figure 2.9-a). However, when placed in an exterior

magnetic field
−→
B0, the spin directions align parallel to this field (figure 2.9-b). More

precisely, a spin rotates within a cone around
−→
B0: this is the spin precession. The

spin rotation frequency, or Larmor frequency, is related to
−→
B0 through its gyromag-
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−→

B0

a) Random spins directions b) Spins aligned to
−→
B0

Figure 2.9: Random directions of spins in the absence of an external magnetic field (a) and

aligned spins in the presence of an external magnetic field
−→
B0 (b). Note that the actual

spin rotation around
−→
B0 occurs within a cone around

−→
B0.

netic ratio γ:

ω0 = γ‖−→B0‖ (2.1)

γ depends on the atomical nucleus type. We have γ = 4257.43Hz/G3 for 1H atoms,

implying a rotation frequency of f1H = 63.86 MHz in a 1.5 T magnetic field.

Given this type of rotation velocity, we can consider the spin induced field direction

to be aligned with the cone symmetry axis, i.e. parallel to
−→
B0. Some are aligned

in the same direction (parallel or spin up), while the other are in the opposite

direction (antiparallel or spin down).

From a quantum physics point of view, the difference between both spin states

is viewed as a difference in the energy level. Little energy is required to switch

from the lower to the higher energy state. In the presence of an external magnetic

field, the difference between the two populations is increased by an increase of the

magnetic field strength. Applying Boltzmann relation, one can estimate that at

the ambient temperature within a 1.5 T field, there is a difference of 10 in favor of

low energy protons among a total of 1 million protons. Although very small at first

sight, this difference becomes significant considering the huge amount of protons

in a relatively tiny volume. For instance, a single gram of water contains 6, 7.1022

protons! This imbalance between low and high energy protons results in a global

magnetic field oriented in
−→
B0 direction, called the net magnetization vector

−→
M . As

shown on figure 2.10,
−→
M can be splitted into two parts:

- a longitudinal component
−→
Mz, i.e. parallel to

−→
B0;

- a transverse component
−−→
Mxy, orthogonal to

−→
B0. At equilibrium after a sufficient

exposition time to
−→
B0, this component is null. All the individual spins are indeed

precessing, but they are all out of phase with each other.

3G, for Gauss, is the magnetic field strength measure unit. For instance, the earth magnetic field equals

0.5G. More currently used in MRI is the Tesla (T), with the relation: 1 T = 10.000 G.
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Figure 2.10: The net magnetization vector
−→
M , decomposed into a longitudinal component

−→
Mz and a transverse component

−−→
Mxy.

Excitation phase

By applying a transient oscillating electromagnetic field, or electromagnetic radio-

frequency (RF), with a frequency equal to the Larmor frequency of target nuclei,

the difference between both energy spins can be temporally altered. This is a typical

resonance mechanism (giving the ”R” of MRI). The RF pulse duration is related

with a flip angle of
−→
M . A 90 degrees pulse suppresses the longitudinal component

(figure 2.11) while a 180 degrees pulse, or ”inversion pulse”, completely inverts the

longitudinal component through an excess of antiparallel spins.

Resonance may further induce a second effect so the spins magnetic moments may

get synchronized, or in phase, i.e. they may be found at the same location on the

precession trajectory, hence increasing the transversal component of
−→
M . A receiver

coil, which may be the same as that used to apply the RF pulse, allows to record

the small voltage induced by the magnetization rotation in the transverse plane.

Relaxation phase

When the RF is switched off, the spins begin to give off their energy, hence getting

back to the equilibrium state. It results in two processes: an increase of the

longitudinal component to its value before the RF pulse and a progressive decay of

the transverse magnetization to zero.

Spin lattice relaxation (T1)

The spin lattice relaxation is based on the energy exchange between protons and
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Y

X

Z

−→
M

α

RF

Figure 2.11: Excitation phase: the energy given by the RF pulse flips the net magnetization

vector
−→
M of an angle α (here α = 90◦).

surrounding molecules. This energy dissipation is characterized by the restoration

of the longitudinal component to its equilibrium value. This recovery process is

modeled by an exponential function characterized by a time constant T1, the period

for the longitudinal magnetization to recover 63% of its equilibrium value (figure

2.12). For a 90-degree excitation pulse, we have:

Mz = M(1− e
t
T1 )

The recovery process is considered as finished after 5 T1 periods.

T1 Time

63%

100%

Figure 2.12: Spin lattice relaxation describes the longitudinal component recovery as a

function of time and is characterized by the T1 constant.
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Spin-spin relaxation (T2)

Spin-spin relaxation refers to the loss of net magnetization in the transverse plane

related to protons dephasing. Spins do not only give up their energy to surrounding

lattice molecules but also to other neighboring nonexcited spins. This process is

also modeled by an exponential function characterized by another time constant T2,

which corresponds to the period for the transversal component to loose 63% of its

value just after the RF pulse:

Mxy = M0e
− t
T2

This dephasing is actually further increased by local magnetic field inhomogeneities,

since the Larmor frequency will also be nonuniform throughout the region. A time

constant slightly different to T2, T2∗, is therefore used. The transverse component

induces a current in a coil, known as Free Induction Decay (FID). The T2∗ constant

can be evaluated through the convex envelop of the FID curve (figure 2.13).

T2
37%

Signal

Time

Figure 2.13: Spin-spin relaxation describes the exponential decrease of the transversal

component as a function of time and is characterized by the T2 constant.

The different biological tissues are characterized by respective T1 and T2 values, as

shown in table 2.1. The intensities of MR images comes from these values.

Tissue T1 (ms) T2 (ms)

CSF 800-20000 110-2000

Grey matter 1090-2150 61-109

White matter 760-1080 61-100

Fat 200-750 53-94

Table 2.1: T1 and T2 in various brain tissues.
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Repetition Time (TR)
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RF pulse

Figure 2.14: A highly simplified MRI pulse sequence timing diagram.

Image construction through pulse sequence

A pulse sequence is a series of RF pulses and/or magnetic field gradients applied to

a sample to produce a specific form of MR signal. It is indeed possible to encode

and thus recover the MR signal from specific regions in the volume of interest by

means of RF and linear gradients applied along the 3 spatial directions.

Figure 2.14 illustrates a basic pulse sequence. A first gradient Gz in the
−→
B0 magnetic

field direction results in a linear intensity varition of the magnetic field that can

be used to select a slice. In this case, a slice is a plane orthogonal to
−→
B0 with a

typical thickness of 1-10mm. Based on relashionship (2.1), the spins of a given slice

are hence characterized by a specific Larmor frequency. After the RF pulse at the

frequency related to the target slice, two transient gradients are applied to encode

the x and y dimensions in the slice plane. A first gradient Gy in the y direction

induces a phase shift related to the position along the y axis: this is the phase

encoding. A second gradient Gx in the remaining x direction is applied, leading to

a precession frequency variation along the x axis: this is the frequency encoding.

This processus actually performs an acquisition of the plane data in the frequency

space (or k-space). An inverse Fourier transform finally maps these data in the 3D

space.

A pulse sequence is first characterized by the delay between two similar RF pulses,

called the Repetition Time (TR). The other parameters of interest depend on the

actual sequence. Indeed, different pulse sequences were developed to measure the

relaxation times. For instance, Gradient Echo simply repeats the Free Induction
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Decay described above and allows to sample T2∗. Most sequences often comprise

additional RF pulses following the slice selection one, to partially refocus the

transverse magnetization and produce an echo, leading to a more reliable measure.

Spin-Echo is thus the application of a 90 degree pulse followed by a 180 degree pulse

after a time TE/2. This second pulse, which refocuses the transverse magnetization

and results in an echo at time TE (Echo Time), removes local field inhomogeneities

dephasing, hence allowing to directly measure the T2 decay. On the other hand,

Inversion Recovery, which relies on a 180 degree pulse followed after a time TI

(Inversion Time) by a 90 degree pulse, enhances the T1 weighting. The choice of

the specific pulse sequence parameters (TR, TE, TI,...) finally determines the image

contrast. Two distinct tissues may for instance have similar T1 values but dis-

tinct T2 values, so the choice of the sequence depends on the information of interest.

The straightforward application of a given pulse sequence allows to get a

static image contrasting different tissues. However, based on the same principles, it

is possible to indirectly image dynamic processes such as oxygen flow or the motion

of water molecules.

2.3.2 Functional MRI: the B.O.L.D. signal

Although the brain represents 2% of the total body mass, it receives 12-15% of the

blood outgoing from the heart and consumes 20% of the oxygen breathed. Functional

imaging techniques, and in particular BOLD fMRI, build on this high metabolic

demand to derive an indirect measure of neuronal activity.

Hemodynamic coupling

Neuronal activity requires energy, supplied by an increase of the energetic

metabolism. Oxygen and glucose consumption is indeed locally increased during

a neuronal activation. However, the brain is not able to store oxygen, which is ac-

tually brought by the blood (figure 2.15). The first evidence of a coupling between

cerebral blood flow (CBF) and neuronal activity was obtained by Roy and Sher-

rington who, in the end of the 19th century, reported a local change of the cortical

tissue color correlated with stimulation [183]. The brain color changes observed was

related to blood oxygenation. A century later, such effects could be confirmed in

vivo by Positron Emission Topography [181] using radioactive oxygen H2O15.

Magnetic properties of hemoglobin and BOLD signal

The intensity changes we might be able to observe in the MR images is based on

magnetic properties of hemoglobin which change with its oxygenation, as first shown

by [170]. Hemoglobin can indeed be found under two configurations: oxyhemoglobin
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Resting Activated

Figure 2.15: Oxygen extraction is increased during neuronal activation, thereby increas-

ing the level of deoxyhaemoglobin (Hb) in the blood. The latter is nonetheless over-

compensated by a local increase in the blood flow, leading to a net reduction of the ratio

Hb/HbO2 that can be measured with MRI. (From [180])

(HbO2), which carries 4 oxygen molecules and is diamagnetic, and deoxyhemoglobin

(Hb), depleted of oxygen and paramagnetic. Therefore, oxyhemoglobin has no

effect on the local magnetic field while deoxyhemoglobin locally adds magnetic field

gradients, increasing the T2∗ value4. Hence, voxels with high Hb concentration

yield to a lower signal than tissue with high HbO2 concentration. In 1990, Ogawa

et al. [158, 159] first mapped T2∗ variations related to cortical blood oxygenation

changes at the level of capilaries and venules surrounding activated brain areas.

This signal is referred to as BOLD, for Blood Oxygen Level Dependent.

But why do we actually measure the contrary, i.e. a signal increase during local

neural activation? In fact, an activation induces a significant increase in CBF that

occurs without an increase of similar magnitude in oxygen extraction. For instance,

assume that during ”rest” neuronal activity, if arterials supply 100% of oxygenated

blood, 40% are locally consumed. Blood returning to veins is therefore made of

40% of deoxygenated blood and 60% of oxygenated blood. During a neural activity,

blood supply increases more than needed, leading to modified proportions in the

arterials close to 37-63%. This results in a corresponding local reduction in the

ratio Hb/HbO2, leading to a signal increase.

Various models based on different hypotheses have been proposed to explain this

oversupply of oxygenated blood as compared to oxygen extraction, see e.g. [19].

4A similar effect can be obtained with paramagnetic contrast agent such as Gadolinium or MION used

in animal experiments. Note however that the signal is then negatively correlated with neural activity.
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There is thus no simple relation between neural activity and the BOLD sig-

nal since the signal magnitude not only depends on these magnetic properties,

but also on the current blood volume and the local vascular geometry. Various

models of the hemodynamic coupling have been proposed so far (e.g. [6]), but the

precise underlying mechanism is still unknown. Nonetheless, the work of Logothetis

et al. [138] combining electrophysiological recordings and fMRI suggests a high

correlation between local field potentials (thought to reflect more cortical inputs

and local intracortical processing than spiking activity) and the BOLD signal.

Hemodynamic Response Function

From a temporal point of view, electrical and synaptical activity to a transient

cognitive process generally lasts a few milliseconds, while the vascular changes du-

ration are a few seconds. The time course of human BOLD response to a similar

brief neuronal process, seen as a temporal impulse response function, is called the

hemodynamic response function (HRF). The amplitude and precise shape of the

HRF varies significantly not only across subjects but also across brain locations,

experimental tasks or scanning sessions in a given subject. Some examples of this

HRF variability is shown in figure 2.16. Nonetheless, the rough shape systemati-

cally comprises a first delay of the response (≈ 2 s), followed by a ramp of 3-8 s

before slowly returning to baseline. In some cases, an initial dip of 1-2 s and/or a

signal undershoot up to 20 s before the return to the baseline can be observed. Note

that negative BOLD signals, significantly anticorrelated to the positive BOLD have

also be reported (in particular in the visual cortex) and the underlying physiological

and neural substrates are currently under study [204, 199]. Apart from this high

variability of the HRF shape, the response to longer stimuli (>8 s) can hardly be

predicted from a linear prediction based on the HRF.

Echo Planar Imaging

As a complete image acquisition with the sequences mentioned above is relatively

long (a few minutes) with respect to the physiological events of interest in fMRI (a

few seconds), faster acquisition techniques have been developed. Echo Planar Imag-

ing (EPI) is the most famous one. EPI relies on rapidly oscillating gradients to allow

a complete slice acquisition from the signal generated by a single RF pulse. This re-

sults in a dramatic reduced acquisition time (30-100 ms per slice), nonetheless at the

expense of a lower spatial resolution. Alternative sequences, among others SMASH

or SENSE, have been more recently proposed to allow parallel acquisitions with mul-

tiple coils. Such imaging improvements will certainly bring important improvements

in the near future.
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Figure 2.16: Variability of the Hemodynamic Response Function across days (a) and scans

(b) within subject and across subjects (c). The BOLD signal from central sulcus is sinc

interpolated and normalized to maximum. Modified from [1].

Measuring the BOLD signal: activation detection paradigms

It is not possible to localize an activation with a single BOLD image. In fact, the

signal of interest is the variation of the BOLD intensity. Besides there is no prior

absolute signal level that can be used as baseline. A typical fMRI experiment hence

consists of several runs (or sessions) consisting of alternating periods of (various)

stimulus and control tasks. A run usually lasts 5 mns. Throughout each run,

BOLD sensitive images are acquired at a specific temporal frequency, leading to a

time series of images. Using EPI sequences, the typical functional images sampling
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period is around 3 seconds for a complete volume. However, the acquisition can be

restricted to a particular brain region of interest, such as the occipital pole, thus

increasing the sampling period. Regarding spatial localization, the typical voxel

size spans a few mm3.

Different paradigms, called experimental designs, have been introduced to organize

the sequence of tasks the subject undergoes during the scanning session. A given

experiment can generally be labeled within one of the following experimental

designs families:

- Block design: each experimental condition is submitted to the subject in

relatively long presentation periods, or epochs, of typically 20 s. A run is a

succession of alternated conditions presented in a random fashion. This kind of

design is considered as optimal for activation detection purpose [136], since it is

not much dependent on the BOLD response model choice. On the other hand, it

is relatively time consuming since it precludes the use of more than a few different

conditions in a single run.

- Event-related design: a run is in this case a series of brief events of the

different experimental conditions. With an optimal events distribution, this kind of

design is optimal for HRF shape characterization [136]. Besides, they are less prone

to subjects fatigue. On the other hand, their detection power is relatively weak.

Note that most fMR-adaptation experiments (see chapter 6) can be included in this

category.

- Periodic or Fourier design: this design is particularly useful for periodic

parametric stimulations such as used in retinotopic mapping experiments (see

chapter 5). A given stimulus parameter is varied periodically, so that neurons

selective to a given parameter value (or range of values) are activated periodically.

The time series analysis consists of a Fourier transform at the stimulation frequency.

The signals of interest are then the amplitude, indicating the local selectivity of the

underlying neuronal population and the phase, related to a given parameter value

of the stimulation.

We have stressed that the BOLD signal used in human fMRI is a complex

phenomenon still not completely understood and requiring specific paradigms.

However, the major advantage of this imaging method is its ability to noninvasively

allow high spatial resolution cortical activity measures. Hence, fMRI is more and

more used the neuroscience, with an exponential increase of study since its discovery

in the 1990’s.
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2.3.3 Diffusion MRI

Diffusion MRI is the unique non-invasive technique that allows to probe and quantify

the diffusion of water molecules in the body. By modeling the local anisotropy of

this diffusion process, it becomes possible to indirectly infer local tissue architecture

such as white matter fibers.

Physical principles

Above the absolute zero temperature, molecules freely moving in an isotropic

medium are prone to many shocks one against another, implying many random

changes of their motion direction. This phenomenon can be modeled as a Brownian

motion, which from a macroscopical scale can be seen as a diffusion process. In

an isotropic medium, the probability of a molecule to move a distance r during a

time τ follows a Gaussian law N (0,Σ) with Σ = 6Dτ . The constant D, known

as diffusion coefficient, measures the molecules mobility in the isotropic case and

depends on the molecule-type and the medium properties. For example, at normal

brain temperature, 68% of the water molecules diffuse in 50ms in a sphere of 17 µm

diameter.

In anisotropic biological tissues, water molecules mobility is constrained by obstacles

formed by surrounding structures, such as the axonal membranes in the brain. In

this case, the scalar diffusion coefficient D can be replaced by a multilinear operator.

The most popular of them is the rank-2 diffusion tensor proposed by Basser et al.

[8]:

D =




Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz




where D is a real symmetric and definite-positive matrix, therefore related to a

quadratic form modeling intrinsic diffusion properties of the tissue. The diffusion

coefficient d related to any direction −→g ∈ R3 is given by:

d = −→g >D−→g

It then follows that the probability to find a molecule initially at position x0 at x

after a delay τ is given by:

P (x|x0, τ) =
1√

(4πτ)3|D|
exp

(
−(x− x0)>D−1(x− x0)

4τ

)

The problem of Diffusion Tensor Imaging (DTI) is to estimate the 6 independent

parameters of D. This can be achieved with a minimum of 6 diffusion-weighted

images, each measuring a T2 signal attenuation related to the diffusion coefficient

in a specific direction −→gi , plus one unweighted T2 image. The diffusion-weighted
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Figure 2.17: Stejskal-Tanner imaging sequence.

images can be obtained with appropriate imaging sequence using diffusion gradients

in the direction −→gi of different amplitude and strengths.

Imaging sequence

To measure water molecules diffusion in a given direction g (for sake of clarity,

we note g = −→g in the remainder), the Stejskal-Tanner imaging sequence [206] is

used (figure 2.17). This sequence uses two gradient pulses Gg in the direction g,

before and after a 180 degrees refocusing pulse controlling the diffusion weighting.

More specifically, a first 90 degrees RF is applied to flip the magnetization in the

transverse plane. The first gradient pulse then causes a phase shift for all these

spins. Finally, the 180 degrees pulse combined with the second gradient pulse cancels

this phase shift only for static spins. On the other hand, spins under Brownian

motion during the time period ∆ separating the two pulses undergo different phase

shifts by the two gradient pulses, resulting in an increased T2 signal attenuation.

Figure 2.18 shows examples of diffusion-weighted images acquired with two different

directions, illustrating the direction specific attenuation related to white matter

fibers orientation.
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Figure 2.18: Axial slice of diffusion-weighted images (DWI) with two different diffusion

gradient directions (red arrows). MR signal attenuation is found in regions having fibers

mostly aligned with diffusion gradient direction (yellow arrows).

Signal attenuation observed can be modeled by the following equation [206]:

S(g) = S0e
(−bg>Dg) (2.2)

where b is the diffusion weighting factor depending on scanner parameters and pro-

posed by Le Bihan et al. [131]:

b = γ2δ2

(
∆− δ

3

)
|Gg|2

with |Gg|2 the magnitude of the pulse, δ its duration and ∆ the time separating

two pulses (see figure 2.17).

Hence, signal attenuation, i.e. signal sensitivity to water molecules diffusion, is

stronger if the diffusion coefficient d = g>Dg is important. Note also the importance

of the b factor that has to be appropriately tuned compared to d to avoid either

a very low signal attenuation if b is too small or a poor SNR if b is too high. A

typical value filling this trade-off is b = 1000s.mm−2.

For each slice, images are collected with one or more b and at least 6 inde-

pendent gradient directions S(gi) and 1 unweighted T2 image (S0). The diffusion

tensor D can then be estimated at each voxel using the S(gi) and S0. The classical

method to derive the tensors uses least square technique, but various alternative

methods have been proposed. We will come back to this particular point in

chapter 7. We finally end-up with a diffusion tensor image, i.e. a 3D image with 6
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parameters describing the local tensor D. From the eigenvalue decomposition of D,

one can visualize the diffusion in each voxel by a diffusion ellipsoid: the directions of

the main axes are given by the eigenvectors of D and their lengths are proportional

to the respective eigenvalues. If all the eigenvalues are of the same magnitude, the

ellipsoid will be spherical, while if one of the eigenvalues is much greater than the

others, it will have the form of a cigar. Figure 2.19 illustrates the corresponding

ellipsoids field in an axial slice. The blue (respectively red) color refers to elongated

anisotropic (resp. spherical isotropic) ellipsoids.

Figure 2.19: Axial slice of a Diffusion Tensor image. At each voxel, an ellipsoid represents

the estimated diffusion tensor.

Note that to better describe the complexity of water motion, higher order models

have been proposed [74, 226, 165, 21, 48]. The idea is to consider a discrete spherical

function modeling the diffusion coefficient in N directions (N typically between

50 and 300) and measure the MR signal attenuation along each direction at each

voxel. This obviously requires longer acquisition times, as N gradient directions

have to be sampled.
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2.4 Experimental setup

This section describes the experimental environment and scanning sequences used

in this work.

2.4.1 The subject

No constraints are applied to the subjects we recruited for our different experiments,

except those induced by the MR scanner: a complete absence of metal parts in the

body, including vascular clips, neuronal implants, pace-makers, etc...This also ex-

cludes glasses, but lenses could replace them if any correction is needed.

As a rule of thumb, the idea for any global non-pathologic study is to use healthy

right and left-handed men and women. This is the guideline we followed in order to

obtain the results we present in this document.

All subjects gave written informed consent and were retributed for their partic-

ipation. The different experiments were approved by the local ethic committee

(CCPPRB Marseille 02/56).

2.4.2 The scanner and the stimulation device

The MRI scanner we used is located at la Timone fMRI center5 in Marseille, France.

It is a BRUCKER MEDSPEC 30/80 AVANCE, with a 3T magnet and a body coil.

A picture of the scanner is shown in figure 2.20.

The subject lies inside the coil, with an antenna around his head. The visual

Figure 2.20: The 3T MR scanner of la Timone, Marseille and the bird-cage antenna. From

http://irmfmrs.free.fr/

stimuli used in the fMRI experiments are displayed at 72Hz by a SONY video-

projector, placed in a custom-designed Faraday cage inside the scanner room, onto

a large adjustable mirror then onto a translucent screen inside the bore at the back

of subject’s head and finally reflected by a custom designed mirror placed at 5cm

5http://irmfmrs.free.fr
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above subject’s eyes (see figure 2.21). The video projection was synchronized with

the acquisition through a trigger sent by the scanner at the beginning of each scan.

A custom designed keyboard was used when subjects were instructed to report some

special events, such as the fixation control and attentional tasks used in our fMRI

experiments. Both the stimulus presentation and subject’s behavioral responses were

controlled by a PC positioned outside the scanner room thanks to specific LabView6

programs developed by Dr Bruno Nazarian, research engineer at the centre IRMf.

MirrorMirror

PC

Video

Projector

Faraday
Cage

MRI Scanner

Figure 2.21: The visual stimuli projection system of our experimental setup

2.4.3 Visual stimuli

Stimuli were generated under Matlab 6.1 using the Image Processing Toolbox (Mat-

lab, The Mathworks), providing an avi file with eighteen 300x300 pixels frames per

second and lasting 5mn04sec. The video presentation setup leads to a display sub-

tending a visual angle of 20.9◦x20.9◦. This size is for the moment limited by the size

of the coil and the visual stimulation setup. During the first 5 and last 2 scans, a

mid-grey level image with the 0.5◦ red fixation cross was shown to the subjects. The

first volumes are classically discarded from the analysis (typically corresponding to

10 seconds) to allow the magnetization to stabilize to a steady state. The stimula-

tion of interest therefore starts after a few volumes have been acquired. The last 2

scans were acquired to allow slice-timing corrections (see section 4.1).

6Labview web site: www.ni.com/labview
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2.4.4 MR data acquisition

High resolution anatomical images

The acquisition of the cerebral anatomy of a given subject was done through a

3D-gradient echo sequence with inversion-recovery. The technical characteristics of

the latter are the following:

- Echo-Time (TE): 5ms

- Repetition-Time (RT): 25msec

- Inversion-Time (IT): 800ms

- Field of view: 256x192x192 mm3

- Acquisition matrix: 256x192x104 (for a resolution of 1x1x1.5 mm3)

- Reconstruction matrix: 256x256x128 (for a resolution of 1x0.75x1.22 mm3)

This leads to a 15 minutes sequence to get a high resolution anatomical im-

age.

Functional images

The functional images were acquired with a fast-imaging Echo-Planar sequence with

the custom bird-cage head coil. In order to reduce the repetition time (RT) -and

thus the time needed to acquire each functional image- while still preserving a high

spatial resolution, we have restricted our functional scans to the occipital region of

the brain rather than the complete head, since we are interested in the low-level

visual cortex areas located in this region. We first started with 18 3mm thick slices

with an inplane resolution of 3mmx3mm, oriented approximately perpendicular to

the calcarine sulcus. The corresponding TR was 1.5s (18 × 83.33ms). Thanks to

acquisition sequence refinements performed by our colleagues at the Centre IRMf de

Marseille, we then switched to either a 2x2x2mm3 or a 2x2x3mm3 voxel resolution

sequence, using 20 slices to cover a sufficient portion of the brain. The 2mm slice

thickness was sufficient for the retinotopic mapping experiment whereas we used

the 3mm slice thickness sequence when we considered the hMT+ area, i.e. in the

functional localization of the latter (see chapter 5) and for the adaptation experiment

(see chapter 6). Both sequences require 103ms to acquire a single slice, leading to a

RT of 2060ms for 20 slices. This RT was slightly increased to 2111ms artificially for

each image in order to get a good synchronization between the presentation device

(refreshing at 72Hz and showing 18 different images per second) and the volumes

acquisition. Indeed, within a TR of 2111ms, we can present 18×2.111 ≈ 38 different

images (whereas 18*2.060 does not lead to an integer number of images). Acquisition

of the multiple slices is interleaved, meaning that even slices are acquired sequentially

before odd slices.
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Diffusion-weighted images

In a first pilot experiment performed on 3 subjects, we tried different acquisition

parameters to obtain the best diffusion weighted images. We fixed TR=10000ms,

TE=86ms and the voxel size 2x2x2 mm3. 30 gradient directions were used, each

with 3 different b-values: 400, 1000 and 1500 s.mm−2. The SNR was low for b=1500

s.mm−2. Besides, the estimated tensors fields were merely different using both b=400

s.mm−2 and b=1000 s.mm−2 or only the latter b value images. Finally, we used

12 diffusion directions, which is consistent with other studies [99] and allowed us

to increase the number of repetitions to achieve a better SNR. In the subsequent

experiments, we used b=1000 s.mm−2 and 12 gradient directions repeated 6 (first

session) or 12 times (second session).
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The aim of this chapter is to describe the algorithms used to extract a geometric

model of the cortex from an individual high resolution anatomical image. The

general process is twofold: first, segment the tissues of interest in the original image

and second, extract a bidimensional model of the cortical surface. After recalling

some goals of anatomical analysis, we give an overview of the algorithms used at each

step and compare the resulting bidimensional models obtained from two alternative

methods. We finally describe the inflating algorithm used to unfold the latter model.

3.1 Motivation

As mentioned in chapter 2, the brain is composed of various anatomical struc-

tures and tissue types, the functions and relations of which are more and more

investigated in research and clinical studies. Identifying distinct tissues can be a

preliminary step for various image processing such as voxel-based morphometry

or image coregistration, to constrain appropriate computations within a given

anatomically homogeneous part of the brain. For instance, the anatomical con-

nectivity study we present in chapter 7 relies on such a segmentation, in order to

restrict the computation of the estimated fibers within the white matter tissue.

A tissue classification is also a prerequisite to extract geometric models of the

cerebral cortex. These models of the cortical sheet are not only of great interest for

the visualization and interpretation of the brain activity obtained from functional

imaging (shown in chapter 5), but they can also provide a frame to cortically

constrained processing. Two examples of surface based computations are detailed

in our work: fMRI data smoothing following the cortical geometry (see paragraph

4.1.5) and surface based retinotopic area delineation (paragraph 5.1.9).

Firstly, brain structures, such as the white matter tissue or the cortex, differ

greatly in shape and size across subjects, making impossible the use of a single fixed

model. A T1 anatomical image is therefore acquired for each subject to provide the

individual structural information. Furthermore, a manual structure identification

for each subject is particularly inappropriate as awkward and potentially expert

dependent, urging the use of automatic and efficient algorithms. Basically, we could

see the cortex as a strongly folded sheet of tissue. It is thus a 2D surface embedded

in 3D space. Ideally, finding this surface in the MR anatomical image comes down

to determining the grey level value of the voxels corresponding to the cortex in the

brain. A similar approach could be devised for the white matter tissue viewed as

the high grey level value volume included inside the cortical surface. Actually, many

image distortions prevent us from applying these straightforward procedures: (i)

because of its relatively large size, the anatomical voxel often holds different tissues

that are averaged together, phenomenon called partial volume effect; (ii) depending
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on the acquisition sequence used, some tissues do not differentiate clearly in the

image; (iii) heterogeneities in the coil also lead to a non-uniformity of the grey level

in the image (bias), changing the grey level of a given tissue across the volume.

Numerous techniques based on different assumptions and frameworks have been

proposed to perform anatomical image processing. Establishing a comprehensive

list of every available packages is beyond the purpose of this work. Furthermore, an

exhaustive comparison of the different packages is still missing to date.

We detail below two methods we have particularly explored. They provide reli-

able results and successful highly automated computation. The first one, called

BrainVISA, is a free and open source software suit, developed at the CEA-SHFJ,

Orsay, France1 and presented e.g. in [38] (see also more specific references given

below). A recent comparison performed on three commonly used cortical surface

reconstruction softwares, namely INCsurf [207], Freesurfer2 [45] and BrainVISA,

concluded in favor of the latter [122]. The second method, called ABSOLUt for

Automatic Brain Segmentation Odyssée Lab. Utilities, was very recently developed

at the Odyssée laboratory by Jean-Philippe Pons and Florent Ségonne [67, 175] and

generally leads to finer results than BrainVISA with respect to cerebral anatomy

representation accuracy and topological properties of the reconstructed surfaces.

3.2 Method overview

Our anatomical processing can be split into two main sub-procedures. Firstly, start-

ing from the initial whole brain anatomical image, two binary images (or masks)

are computed, corresponding to subsets of voxels from each hemisphere. Secondly,

each hemisphere is labeled with respect to the Cerebro-Spinal Fluid (CSF), the grey

matter and the white matter (noted GM and WM respectively), and the interfaces

between the latter are then tessellated.

The approach used to segment of interest and extract cortical surfaces models for

each hemisphere relies mainly on the BrainVISA software but various steps are al-

ternatively processed using the ABSOLUt software.

3.3 Hemisphere identification

The first step of the hemisphere identification procedure is meant to correct for the

intensity bias mentioned above. It is then followed by a histogram analysis to detect

the range of values for the different tissues of interest, after what morphomathe-

matical operations are applied to the image to remove skin, bone, fat and other

1The BrainVISA package can be found at http://brainvisa.info/index.html
2The Freesurfer package can be found at http://surfer.nmr.mgh.harvard.edu
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non-brain tissues and also to compute a labeled image of both hemispheres and the

cerebellum. To perform these steps, we use the BrainVISA software.

3.3.1 Bias correction

If one observes a standard quality grey-level MR-anatomical brain image, it seems

that each tissue is represented homogeneously. However, taking a closer look reveals

that it is not the case, as we mentioned above: our visual system is used to correct for

this kind of luminance variations. A computer program is not able to compensate for

these inhomogeneities; there is thus the need to correct for this lack of uniformity,

which is unfortunately not only linked to the scanner and the sequence used (in

which case measuring it once with an appropriate phantom would be sufficient to

describe it) but is also subject dependent.

To compute an intensity correction, the BrainVISA algorithm is based on a model

of the observed intensity:

O(x) = I(x)F (x) +N(x)

where : I is the intrinsic intensity of the tissue,

F the spatial bias,

N the acquisition noise,

O the observed intensity.

A B

Figure 3.1: Bias correction of the anatomical image. Axial slice of an anatomical image

before (A) and after (B) the bias correction. The latter provides a more uniform grey-level

value for each tissue. The colormap used here, identical for both images, illustrates the

intensity uniformization induced by the bias correction.

The aim is to best estimate the spatial bias F , supposed to be spatially smooth

which is reasonable with regard to the MR acquisition process. The algorithm relies
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on the minimization of the following energy U:

U(F ) = kSS(O) + kRR(F ) + kMM(O)

where S(O) is the resulting image entropy, R(F ) a function measuring the spatial

smoothness of the correction field F and M(O) a measure of the discrepancy between

the original image global mean and the corrected image global mean. This latter

term prevents the algorithm to converge to a uniform grey level image. The con-

stants kS, kR and kM weight each criterion of the energy. The optimization method

implemented relies on a stochastic scheme. For a more detailed presentation of this

method, see Mangin 2000 [142].

In order to judge the quality of the result after convergence, one compares visu-

ally the two images (original input image and the bias corrected output image) and

especially checks for the homogeneity of the white matter grey level (see figure 3.1).

3.3.2 Grey level histogram analysis

Relying on the bias corrected image, the next step is to automatically compute a

rough grey level evaluation of the different tissues of interest, here to distinguish

mainly three classes: GM, WM and the other brain tissues (including CSF). As

mentioned above, the latter values differ strongly across scanners, MR sequences

and subjects.

The algorithm implemented in BrainVISA performs a grey level histogram analysis

based on the scale-space theory (see for instance Koenderink 84,[123], Witkin 83

[244]) and relies on the two following invariant properties of T1 MR images:

• there are three peaks in this histogram: one for the background, one for the

grey matter and one for the white matter, the order being always the latter;

• these peaks account for the largest amount of voxels.

We give an overview of the algorithm, detailed in [143]. Each tissue class should

produce a specific mode in the image grey level histogram, and the modes order is

constant across images. However, the detection of these modes is not always straight-

forward: as two neighboring modes, e.g. GM and WM modes, can be mixed, grey

level histogram and first derivative extrema analysis are not sufficient. Starting

from the study of scale-space images derived from a mixture of two Gaussian dis-

tributions, one notices a structure linking the trajectories of the order i derivatives

extrema to those of the order i+ 1 derivatives. This structure is always present in-

dependently of the Gaussian parameters, taking a large enough order of derivatives

depending upon the case. With MR images, the first two derivatives of the histogram

are empirically sufficient for the two modes of interest (GM and WM). Assuming

the modes to be relatively symmetric, the means are given by the minima of the
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Figure 3.2: Histogram analysis based on the scale space theory. The grey levels are shown

horizontally and the scales vertically (on a log-scale). The red curve is the grey level

histogram of the image, the trajectories of the minima (m) and the maxima (M) of the

first two derivatives are shown in dark blue, green, light blue and purple respectively. The

diamonds are the results of the analysis used to identify the CSF, GM and WM tissues

modes (mean and variance). Figure borrowed from http://brainvisa.info.

second order derivatives and the standard deviations correspond to the maxima of

the closest first derivatives. The algorithm thus uses that information to group the

trajectories using the notion of cascades and, after an automatic characterization

of the sequence used to acquire the image (Inversion Recovery sequences show very

distinct histograms for instance), the algorithm estimates the CSF, GM and WM

modes. Figure 3.2 illustrates the result of the scale space analysis of the grey-level

histogram for a given anatomical image.

3.3.3 Skull stripping

A first binary image of the brain is computed by thresholding the original image

with the values found in the previous step; this new mask stands for the voxels

corresponding to the white and grey matter (mask=1) and removes the other tissues

voxels (mask=0). This is however insufficient, many other elements being kept (the

eyes, meninx,...). A parameterized erosion process is simulated in order to whittle

down this binary image. This erosion gives rise to different connected components,

from which the largest one is kept as a brain seed. A dilation process is then applied

to this seed to recover the brain. Figure 3.3 illustrates these different steps, referred

as skull stripping.

As for the bias correction, the resulting mask should be checked visually against the
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original image. For our retinotopic mapping studies for instance, we focused on the

occipital lobes (at the back of the brain) where the low-level cortical visual areas

are located.

3.3.4 Brain mask segmentation

Our work mainly focuses on the low-level visual areas mostly located on the medial

parts of the occipital cortex. The latter are facing each other very closely, which

makes impossible the visualization on a single model of the whole cortical surface.

A separation of both hemispheres is therefore required to allow an optimal display

of the medial surfaces. The cerebellum is also included in the mask after the skull

stripping. An algorithm based on Chamfer distances and a Voronoi graph compu-

tation allows to classify the mask into three distinct parts: the cerebellum, the left

hemisphere and the right hemisphere. The final result is shown in figure 3.4.

3.4 Cortical surfaces extraction

The cortical surface of a given hemisphere is modeled using the GM/WM and the

GM/CSF (Cerebro Spinal Fluid) interfaces. To perform the tissue classification and

the cortical surfaces extraction, we have two alternative approaches, both starting

from the above hemisphere separation. We use either the BrainVISA or the ABSO-

LUt software algorithms, which are respectively described and finally compared in

the following paragraphs. Note that, before ABSOLUt software was developed, we

tried another algorithm also designed at the laboratory and described in [85], which

can be seen as a special case of the ABSOLUt method and therefore led to lower

quality results. Moreover, this method did not allow a tissue classification.

3.4.1 Algorithm 1: BrainVISA

Tissue classification

Although not explicitly performed during the surfaces extraction (see below), the

BrainVISA package also implements an algorithm dedicated to the GM and WM

tissues labeling within the mask of each hemisphere. The method relies on the

histogram analysis presented in paragraph 3.3.2, further refined with a Markovian

regularization favoring a voxel to have the same label as its neighbors.

Cortical surfaces extraction

The approach implemented in BrainVISA is based on a combination of the Homo-

topic Deformable Region (HDR) method and mathematical morphology tools. We

give the main steps of the method which is fully described in [144].
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Figure 3.3: Illustration of the different steps for the brain mask computation. A: bias

corrected anatomical image. B: thresholded image; the thresholds were automatically

chosen based on the histogram analysis result. C: result after the first erosion on B. D:

the largest connected component in C. E: final brain mask after dilation.
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Figure 3.4: Brain mask segmentation, separating both hemispheres and the cerebellum

The following cortical surfaces detection is applied separately to both previously

computed masks of each hemisphere. An initial empty parallelepipedic bounding

box (hence homotopic to a sphere) of the hemisphere mask, noted O0, is first

deformed to the hemisphere mask border with a homotopically preserving deforma-

tion. This is performed in two steps:

• O0 is iteratively dilated conditionally to the complement of the mask in O0

inside, leading to O; O stands for a spherical topology outer part of the mask.

• O0 outside is iteratively dilated conditionally to O, subject to the constraint

that no connection between the inside and outside of O is allowed.

At the end of these steps, O corresponds to the estimated subset of voxels repre-

senting the thin layer outside the GM (the brain hull). Note that the conditional

dilations are performed in a pyramid multiscale fashion, allowing faster computa-

tion.

The model O is then homotopically dilated conditionally to its original inside to-

ward the GM/WM interface. The deformation comes down to adding to O each

voxel that decreases the two terms energy E(O) = Ed(O) + Er(O) where:

• Ed is a data driven term, i.e. a sum of potentials for each voxel based on a

K-means classification of GM or WM voxels with respect to their grey levels

• Er is a regularization term based on Ising models, i.e. minimizing the GM/WM

interface length.
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As the evolution of O is homotopically constrained, the GM/WM interface is

therefore constrained to have a spherical topology. A topology-consistent marching

cube algorithm is finally used to compute a mesh of the GM/WM (which holds the

spherical topology) and the GM/CSF interface (which is a priori not topologically

spherical). Finally, a decimation is applied to the meshes, including a smoothing

to avoid artifacts due to the underlying discretization. The decimation strength

depends on the trade-off between the final expected quality of the mesh with respect

to the segmentation and the mesh size.

3.4.2 Algorithm 2: ABSOLUt

In this approach, a statistical classification method is used to provide a good ini-

tialization of deformable models that further evolve to the estimated GM/CSF and

GM/WM interfaces. Constraints on the evolution guarantee topological proper-

ties of both meshes such as spherical topology, absence of self-intersections and

mutual intersections. These two steps are performed on a masked version of the

original anatomical image for each hemisphere. Note that we use dilated versions

of the hemispheres masks computed with BrainVISA to include CSF voxels that

are mandatory for a reliable tissue classification with the default implementation; a

typical value for the dilation radius is 2 voxels.

Tissue classification

The tissue segmentation relies on a hidden Markov Random Field classification,

coupled with an automatic estimation of the tissue distribution parameters and

of the bias field with the expectation-maximization (EM) algorithm. Similarly to

BrainVISA’s tissue segmentation method, the tissue distribution is modeled by a

Markov Random Field (MRF) encouraging neighboring voxels to have the same class

labels, while the observed intensity of each tissue class is modeled by a Gaussian

distribution. The labels L of the voxels are estimated from the observed intensities

I with a maximum a posteriori (MAP) criterion:

L̂ = arg max
L

P (L|I) = arg max
L

P (I|L)P (L).

The parameters of the tissue statistical model are the mean and the standard de-

viation of each tissue class, and a bias field accounting for the inhomogeneities in

the image grey-level values. This bias is taken as affine with respect to intensities,

smooth and non-parametric over space.

A rough initial estimate of CSF, GM and WM mean grey-levels is provided by the

user, for instance using BrainVISA’s automatic histogram analysis (see paragraph
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3.3.2). Then, iteratively, class labels are estimated by MAP and the tissue parame-

ters and the bias field are then updated with the EM algorithm.

The different outputs of this step are:

• a labeling of image voxels,

• the mean and the standard deviation of each tissue class,

• a bias-corrected image.

Note that a bias-corrected image is once again computed in this approach, which

is redundant with the bias field computation previously performed in BrainVISA

during the hemisphere segmentation procedure. However, this bias correction step

is intrinsic to the ABSOLUt software. The latter lacks an automatic hemisphere

separation algorithm that must be performed with BrainVISA’s method.

3.4.3 Cortical surfaces extraction

The hidden Markov Random Field classification is powerful for automatic parameter

estimation but it is not sub-voxel accurate and disregards topology. Extracting

an isosurface of the labeling would give a very coarse reconstruction with a lot

of topological defects. Hence, the labeled image of the previous step is fed into

a deformable model segmentation task with a topology preserving nested level set

method based on [97] and refined as described in [175], section 3.2. More specifically,

in order to obtain a close and topologically consistent initialization, a set of topology

preserving nested level sets are fit to the labeling before starting a surface evolution.

Later in the algorithm, the labels are no more taken into account, and the surfaces

are homotopically evolved according to the intensities of the bias-corrected image.

Since the image inhomogeneities have been removed in the latter, the boundaries

between the different tissues can be found robustly with a Bayesian region-based

evolution. Finally, the meshes can be computed by a topology-consistent marching

cube algorithm.

3.4.4 Algorithms comparison

As we considered two alternative approaches for the final steps of the anatomical

image processing, it is natural to compare their respective outcome, especially for

the GM/WM interface we are mostly interested in.

We have carried out various qualitative comparisons on our normal human brain

dataset images and also on macaque monkey brain MR images from Professor Or-

ban’s group, K.U. Leuven, Belgium. Note that these comparisons are always done

on meshes of comparable size, a parameter that can roughly be tuned in both meth-

ods. The sheet-like parts of the GM/WM interface at the extremities of the gyri are
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better recovered by the ABSOLUt method, which also avoids mis-reconstruction like

splittings of connected parts or unexpected connections through CSF or ventricles,

as illustrated in figures 3.5. Another interesting feature of the ABSOLUt software is

the implicit representation, i.e. through levelset functions, of the surfaces produced

as output. Such a representation is of particular interest for computationally effi-

cient cortical surface based processing, such as the smoothing of fMRI data along

the cortical geometry described in paragraph 4.1.5. Finally, the GM/CSF surface

spherical topology as well as absence of intersections between inner and outer cor-

tex surfaces are guaranteed by the ABSOLUt method, which is not the case with

BrainVISA procedures.

Globally, we use the ABSOLUt software for the WM/GM interface extraction which,

for a given mesh size, provides a finer estimate of the cortical surfaces than Brain-

VISA while guaranteeing better topological properties.

3.5 Cortical surface inflating

The cortical surface has complex geometry, mainly through its highly folded con-

figuration, making the results visualization particularly awkward inside the sulci.

Two different techniques, based on unfolding the cortical surface, are usually used

to facilitate the visualization: flattening and inflating. Figure 3.6 illustrates both

approaches. In both cases, distances and/or angular distortions are unavoidable.

The flattening allows larger cortical surface portion visualization in a single view,

but at the costs of losing spatial relationship at points where the surface is cut and

operator dependent surface positioning of the latter.

In our studies, we used the second method, inflating the cortical surface of each

cerebral hemisphere. The algorithm we used was implemented by Dr Olivier

Coulon3 and is available in the BrainVISA Package. It relies on an energy mini-

mization allowing to compute an inflating force at each vertex of the mesh. This

force is made of three components:

• a strictly speaking inflating component, along the current vertex normal,

• an “elastic” component, trying to maintain the distances between neighboring

nodes,

• a smoothing component, moving each node toward its neighboring vertices.

3Olivier Coulon is currently at the Laboratoire des Sciences de l’ Information et des Systmes, CNRS,

Marseille, France.
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Figure 3.5: Comparison of BrainVISA and ABSOLUt GM/WM surface extraction. The

red and green curves represent the intersection of the GM/WM interface mesh extracted

with BrainVISA and ABSOLUt respectively and image slices of the original anatomical

image. To fulfill an unbiased comparison with respect to the surface models resolutions,

both meshes have a similar size, with 100822 and 99511 nodes respectively (1.3% relative

difference). The meshes are mostly identical, though some important differences plead in

favor of the ABSOLUt procedure: the blue arrows emphasize finer segmentations of sheet-

like parts of the thinnest gyri (1) while avoiding the splitting of a connex white matter

regions (2) and crossings through the ventricules or the CSF (3).
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Figure 3.6: Representations of the fiducial cortical surface (left) either inflated (middle)

or flattened (right). The sulci are represented in red, the light in green. Adapted from

[71].

i=0 i=4 i=15

i=50 i=200 i=500

Figure 3.7: Different stages of the inflating algorithm on a given left cortical hemisphere,

i indicates the iteration step.

The inflating is the result of a trade-off between these three components. Interme-

diate images can be saved during the energy minimization, thus allowing an easy

tracking of the sulci and gyri along the process. The global result is satisfying,

although perfectible notably when the curvature is locally large. Figure 3.7 presents

some views of a left cortical surface at different stages of the inflating process.
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3.6 Volumetric data projection

There are various ways to project volumetric information from a 3D image to a

2D surface. A typical application of such a projection is to overlay the statistical

significance map coming from the functional images analysis on the cortical surface

model. In the Anatomist software, which is the visualization software provided in

the BrainVISA package, various projections methods are proposed. These methods

can be separated in two consecutive steps: first the geometrical sampling, i.e. how

the information to represent on each mesh vertex is searched in the 3D volume, and

second the merging mode of these values, i.e. how to compute a single value per

vertex when each vertex is related to multiple voxels by the geometrical sampling

method chosen.

The geometrical sampling at each vertex can be done in the following ways:

- Point to vertex: only the information coming from the voxel encompassing the

mesh vertex is used.

- Point to vertex with depth offset: only one voxel information is taken into account,

but its position is shifted along the local normal to the mesh; the shift length and

the shift direction, either inside or outside the mesh, can be tuned.

- Segment to vertex: information is taken along the normal line, both inside and

outside the mesh, with a segment length and sampling step specified by appropriate

parameters.

- Inside/outside segment to vertex: similar to the segment to point method but only

one side of the mesh is considered.

- Sphere to vertex: voxels information is taken from voxels within a sphere centered

at the current vertex; the sphere radius and sampling step can be tuned.

When the geometrical sampling method chosen implies multiple voxels for each

vertex, different merging techniques can be applied to assign a single value per

vertex. The most obvious way is to take the mean of the voxel values encountered

at each sampling step. A more suitable mixing implemented in Anatomist discards

the 3D image minimum value in the mean computation to avoid a blurring of the

mapped values with, for instance, under threshold voxels. Finally, the maximum (or

minimum) value of all the voxels within the sampled location can also be chosen.

Changing the geometrical sampling and/or the merging methods can have dramatic

effects on the final result. The choice should therefore depend on the 3D data

considered. To overlay our statistical T maps or the retinotopic angular maps (see

chapter 4), we employed the segment to vertex geometrical sampling, taking into

account the voxels crossed along the local outer normal to the GM/WM interface at

a distance up to 2.5mm from the current vertex and with a spatial step of 0.5mm.
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Regarding the merging technique, we used the corrected mean for the retinotopic

angular maps and the maximum for the statistical T-maps.

Some refinements might be envisaged to assign 3D values to a 2D surface, for instance

taking into account the GM/CSF interface in the segment to vertex approach to

restrict the integration segment in the sub-volume defined by the inner and outer

cortical surfaces. However, regarding the large functional voxel size (2mm3) with

respect to the cortical thickness (ranging between 1 and 4.5mm, with a mean of 2.5

[70]) and the currently imperfect coregistration between anatomical and EPI images,

we speculate a finer approach should not improve dramatically our functional maps

overlays.

***

We have presented in this chapter various algorithms mainly based on image process-

ing and computational geometry methods used to generate efficient segmentations

of brain tissues and extractions of the cortical surface models. The overall process

takes from 30 minutes to 1 hour for a given subject, including some manual editing

of the masks whenever necessary. The results of this analysis of the anatomical

information are further used to visualize fMRI activations over the cortical surface

(chapter 5) but also as a base for anatomically constrained computations such as cor-

tical surface based fMRI data smoothing (section 4.1.5) or DTI based fiber tracking

restricted to the white matter tissue (chapter 7).
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Chapter 4

Functional data analysis
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The indirect measurement of brain activations can be performed with BOLD

signal images. A typical fMRI experiment consists in acquiring a set of consecutive

images while the subject undergoes a stimulation and/or performs a cognitive task.

At each voxel in the functional volume, we therefore record a time series of BOLD

signal variations. In the following, the functional series will be viewed as 4D data

(3 spatial dimensions + time). Each volume acquired within a given repetition time

(RT) is seen as an image, and a set of volumes acquired in a row is called a run or

a session.

A fMRI data analysis typically comprises the following steps:

• the pre-processing, which aims at correcting possible defects in the acquisition

(head motion, acquisitions gaps between slices,...) and performs some spatial

and temporal filtering of the data,

• the statistical analysis: it allows to assess the volume’s elements whose activity

are correlated with the experimental paradigm,

• results interpretation: confront quantitative statistical results to, among oth-

ers, qualitative stimulus or task criteria.

Following this typical analysis process, we first describe various preprocessing meth-

ods common to most fMRI studies. We expose a methodological contribution re-

garding anatomically constrained spatial filtering of fMRI data. The second section

deals with the statistical analysis. After a brief overview of the main approaches

proposed in the literature, we detail a few of them, emphasizing on the methods

we used to analyze our own experiment datasets. Although a specific section is not

dedicated to the results interpretation, this topic is addressed in the description of

each method.

4.1 Preprocessing

To begin the functional data analysis, it is preferable to apply different prepro-

cessing steps; indeed, since only the BOLD signal is of interest to brain activation

characterization, any other signal is thus considered as noise and should, as much

as possible, be removed.

It is first necessary to discard the first images from the temporal series. We

indeed always take a few images (typically 5 RT in our case, i.e. about 10 seconds)

during the MR signal stabilization phase; the latter, depending on the scanner and

the sequence used, is known to give rise to many artifacts in the images, which

are mostly abnormal high level values in the signal. Naturally, no stimulation are

presented during these few scans. We can then apply the following preprocessing

steps to the remaining images.
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4.1.1 Motion correction

The subject’s head motion during a scanning session is unavoidable and may induce

artifacts, leading to a mislocalization or a loss of activation or, worst, to false pos-

itives, i.e. to voxels considered activated by the stimulation or task where they are

actually not. All subsequent analysis or processing on series comprising motion can

be invalid as the signal and the voxels cannot be properly identified.

The images realignment, i.e. an estimation followed by a correction of subject’s

head motion, can be performed using the standard realign tool implemented in the

SPM1 software. A reference image IR is designated by the user and the other images

are registered to it using a rigid transformation T . A 3D rigid displacement can be

described by 6 parameters: 3 for the translations in each direction of the 3D space

and 3 for the rotations around each axis x, y and z (called pitch, roll and yaw re-

spectively). The error E between the reference image IR and the image Ii to realign

is the sum of the squares of the intensity differences at each voxel x:

E2 =
∑

x

(IR(x)− Ii(T (x)))2

E is minimized with respect to T using a classical least squares technique. At the

end of this step, we can visualize the corrections attached to each 3D image, and

thus have an estimation of subject’s motion (see figure 4.1).

Following the work of Freire and Mangin [75] to more appropriately estimate head

motion without creating spurious activations in fMRI time series, we actually used

a different tool implemented in the INRIAlign software2. This toolbox, interfaced

with the SPM software, implements various similarity measures to avoid the differ-

ence of squares drawbacks, as proposed in SPM99 realign technique. We used the

default algorithm relying on the Geman-McClure robust estimator which leads to

the most reliable results in their validation study. See [76] for more details.

Note that many other motion correction softwares have been proposed in the liter-

ature. A very recent study [156] compared the most popular among them, namely

AFNI, AIR, BrainVoyager, FSL, and SPM2, on phantom as well as on typical human

studies data. Their conclusion is threefold: (i) although slight differences could be

observed, no single software outperformed the others (ii) the parameter tuning for

each method has very little impact on the final results (iii) they nonetheless warmly

recommend the inclusion of the motion correction step in fMRI data analysis.

The global estimated motion was generally inferior to 1mm in each translation direc-

tion and to 1 degree around each rotation axis. In case of more important motion,

1We will often refer to the SPM software in the remainder of the thesis. It refers to a set of methods

implemented in a popular software classically used for fMRI signal processing. The core of the SPM

approach will be detailed in the next section.
2INRIAlign, developed in the Épidaure Team, INRIA Sophia-Antipolis, France, is available at

http://www-sop.inria.fr/epidaure/software/INRIAlign/
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Figure 4.1: Typical output file produced by a motion correction of the fMRI time series.

The upper graph shows the estimated values of the 3 coordinates of translation directions

for each image with respect to the first, the lower one shows the 3 estimated coordinates

values of the rotation motion computed. We notice that the motion is larger between each

session of 144 images, corresponding to a single run, which seems consistent with a motion

of the subject waiting between two runs. Note that this was not specified to the algorithm

during the motion correction: the estimation seems reliable.

subject could be removed from the analysis.

4.1.2 Anatomical/Functional image alignment

As we use information from the anatomical image to constraint computations on

functional images such as cortical constrained filtering (see paragraph 4.1.5) or for

the segmentation of retinotopic areas over the cortical surface (see paragraph 5.1.9),

the alignment between functional and anatomical scans is crucial. There are two

main sources for disalignement:
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• the subject moved the head between the anatomical and the functional scans.

Such a coregistration issue should be well corrected by a rigid deformation

computation (rotation and translation).

• as it is often reported in high field Echo Planar Images (EPIs), there could be

distortions in the functional images that might not be appropriately handled

by a rigid deformation alone.

We addressed this coregistration issue using a non-rigid deformation algorithm,

estimating a deformation field to be applied to the functional images. We used a

software developed in the laboratory, MATCH, which is fully detailed in [26, 25].

Briefly, a dense deformation field is computed by composing small displacements

minimizing a local correlation criterion. Such a local similarity measure allows

to cope with nonstatic behaviors in the intensity profiles of images coming from

different modalities. The estimated deformation field is finally regularized by a

low-pass filtering.

Considering the coronal acquisition sequence used for our functional studies, the

estimated dense deformation field was negligible with respect to voxel size, we

therefore decided not to apply the non-rigid correction field. The coregistration was

nonetheless performed by the classical SPM routine and the result was systemati-

cally assessed visually using SPM’s chek reg function.

A complementary solution is to rely on a specific measurement of the known

Echo Planar Imaging (EPI) geometric distortions caused by magnetic field inho-

mogeneity [117]. This can be achieved by acquiring a phase map, i.e. an image

mapping the spatial distribution of field inhomogeneities. A specific method is

for instance proposed in a SPM interfaced toolbox3. However, the phase maps

acquisition was only recently available at the centre IRMf de Marseille where we

performed our experiments, so that we could only apply such a correction to the

experiment described in 7.

4.1.3 Correction of the inter-slice gap or slice-timing

A volume is made of different slices that are not acquired at the same time during

the scanning process. Thus, in the case of the interlaced sequences as used in our

experiments, a time discrepancy of the magnitude of half the RT can be present

between two spatially adjacent slices of the same volume. A temporal analysis of

the raw images should take into account these differences. A simple solution is to

3The Fieldmap toolbox can be freely downloaded at: www.fil.ion.ucl.ac.uk/spm/toolbox/fieldmap
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correct for this discrepancy to be able to apply the same statistical analysis to each

slice and consider them as acquired at the same point in time.

This pre-processing is performed by the Slice-Timing method of the SPM software,

which moves slices in time to get a volume considered to be acquired at the same

time. This correction relies on a temporal interpolation of the time series at each

slice using an interpolation with a sinc function. The algorithm then realigns each

slice by changing the phase of the signal taken in the Fourier space. Note that this

method assumes there is no information of interest beyond the Nyquist frequency, i.e.

the sampling frequency divided by two. The output of the algorithm is a temporal

series of images where each slice would have been acquired at the same reference

time point within the RT.

4.1.4 Isotropic spatial smoothing

Although surprising at first, a spatial smoothing is commonly applied to fMRI images

[79]. The main reason is to increase the signal to noise ratio (SNR), by reducing

the effect of spatially uncorrelated noise. This smoothing also increases the validity

of the assumptions used during the statistical analysis done by the SPM software,

i.e. the residuals of the regression model can be treated as a Gaussian random field

(see paragraph 4.2.3 below). Lastly, this also helps insuring a better spatial overlap

between activations across different subjects in multi-subjects analysis.

The Gaussian kernel we typically use has a Full Width at Half Maximum (FWHM)

equal to 1.5 times the voxel size. The FWHM is linked to the standard deviation σ

of the Gaussian kernel by the formula:

FWHM = σ
√

8ln(2)

In our visual area mapping experiments, this smoothing step highly increases the

quality of the resulting maps. However, such a 3D-smoothing is not optimal as it does

not take into account the geometry of the cortical surface, thus mixing voxels from

different tissues or remote cortical locations. We have therefore implemented another

approach enabling an anisotropic smoothing along the cortical surface, presented in

the following paragraph.

4.1.5 Cortical surface constrained smoothing

As mentioned above, the typical spatial smoothing applied to fMRI data is usually

3D-isotropic, thus mixing voxels from different anatomical tissues (e.g. grey matter,

white matter and CSF). This leads to undesirable averaging of signals at neighboring

voxels, potentially affecting the analysis sensitivity. Furthermore, due to the highly

convoluted geometry of the cortex, the ”tissue-blindness” of this smoothing yields a

mixing of signals across sulci at voxels close to each other in the volume but distant

94



on the cortical surface, reducing further the spatial discrimination power. Taking

into account the cortical geometry in the smoothing process seems to be a natural

way to avoid these drawbacks, as illustrated in figure 4.2.

Original activation 3D isotropic smoothing Surface constrained smoothing

Figure 4.2: Synthetic illustration of the advantage of cortical surface based smoothing

methods. Left: original activation; Middle: 3mm 3D isotropic smoothing, leading to false

activation on the opposite bank of the sulcus; Right: 3mm Laplace-Beltrami smoothing.

We implemented and compared two algorithms for surface-based smoothing, one

based on an explicit mesh scheme and the other on the level set framework. Both

implementations solve the same problem: minimizing the variations of the scalar

values u0 defined along the cortical surface S ⊂ R3; in other words it consists in

finding u that minimizes the energy E:

E =

∫

S

‖∇u‖2dx (4.1)

As shown in [3, 30] for the mesh based approach and by [149] for the level set

based approach, 4.1 is formally equivalent to solving the partial differential equation

(PDE): {
∂
∂t
u(x, t) = ∆Su(x, t)

u(x, 0) = u0(x)
(4.2)

where ∆Su(x, t) is the Laplace-Beltrami operator. The equivalent Gaussian kernel

FWHM is easily linked to the equation running time T :

FWHM = 4
√
T ln(2)

Note that such a formulation could easily lead to a scale-space study of the

smoothing influence over the data. The smoothing process is naturally bounded,

since running equation 4.2 for a sufficiently long time τ leads to a constant solution

uτ = u(1, ..., 1)

The cortical surface models, either represented as a mesh or a level set function, are

obtained with the anatomical image analysis methods described in chapter 3. Note
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that an efficient algorithm implemented in the ABSOLUt package allows to switch

from one representation to the other. Depending on the representation chosen, two

alternative and non-equivalent approaches are performed.

The mesh-based approach

The mesh-based approach, illustrated in figure 4.3-A) starts with a projection of the

cortical voxels values from the functional image onto the GM/WM interface mesh.

More specifically, we assign at each vertex of the mesh the scalar value of the voxel

located at a distance d along the local outer normal to the surface. To insure the

voxel chosen lies within the grey-matter tissue, possible values for d range between

0 and 3.5mm. We typically took d = 1.5mm. The PDE described in equation 4.2 is

then ran on the assigned scalar values, leading to a smoothed scalar field over the

mesh. Finally, a simple ”back projection” replaces each node smoothed value to its

original voxel in the 3D space. Getting back to the original image 3D space enables

the direct use of the classical volumetric functional data analysis tools as SPM.

Note that, considering the projection step from the 3D volume to the 2D surface,

alternative techniques than the d mm-translated nearest neighbor projection can

be used, as detailed previously in paragraph 3.6; nonetheless, assigning information

from different voxels to a given node leads to a non-invertible operation during the

back-projection to the 3D volume step. This method thus implies a compression of

the information originally available in the cortical voxels. The procedure is repeated

for each volume in the time series and the analysis is then performed classically over

the whole time series. Nonetheless, while visualizing the results one has to keep in

mind that only a subset of voxels was concerned by the anisotropic smoothing. Ap-

plying the same projection on the surface to the results images (such as T-contrasts)

avoids any confusion between results coming from filtered and not filtered signals.

The level set approach

The level set approach, illustrated in figure 4.3-B, relies on level set representation

of the GM/WM interface, i.e. a 3D volume which intensities correspond to the

signed Euclidean distance from this surface. The PDE is then solved directly in the

functional volumes, in the vicinity of the zero level (which corresponds by definition

to the GM/WM interface). The diffusion is therefore encouraged in directions par-

allel to this boundary and discouraged otherwise. We repeat the procedure for each

volume, after what the analysis can be performed classically over the whole time

series. Similarly to the mesh based approach, the analysis of the results has to be

performed considering that only a subset of voxels was actually concerned by the

filtering.
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A) Mesh based approach B) Level Set based approach

Figure 4.3: The different steps of the mesh based (A) and the level set based (B) smoothing

approaches. Starting from the GM/WM interface meshes and the original functional data

(A-a), the mesh based approach requires a projection of the functional data on the explicit

cortical surface representations (A-b); the data are then smoothed on the mesh grid (A-c)

before being back-projected to the original image to be further analyzed (A-d). Based

either on GM/WM interface meshes or directly on the anatomical scan (B-a), the level

set based approach first requires the computation of an implicit level set representation

of the cortical surface (B-b). The Laplace-Beltrami anisotropic filtering is then performed

directly in the image 3D space in the vicinity of the GM/WM interface, favoring diffusion

in directions parallel to this boundary (B-c).
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Deriving global thresholds

Since only a subset of brain voxels is concerned by the smoothing procedure, it is

necessary to take this restriction into account in subsequent statistical thresholding

which classically end the activation detection analysis. Based on the framework

of Gaussian Random Field Theory introduced by [248, 247], we derived a formula

to adapt the threshold value for a T-test (see below paragraph 4.2.3) performed

on cortical surface constrained smoothed data. Transforming the T variable to a

Z variable using standard procedures, the corresponding z-map can be considered

as a Gaussian Random Field of dimension 2 on a surface A (the cortical sheet)

with a given smoothness. From the expected Euler-Poincaré characteristic χt of the

2D-field once thresholded at level t, we have:

E(χt) = A|Λ| 12 (2π)−
3
2HD(t)e

−t2
2

where Λ is the covariance matrix of the field (basically, its smoothness) and HD the

Hermite polynomial of degree D. For a high value of t, the significance value (or

p-value) of the z-map is related to the Euler-Poincaré characteristic:

P (zmax ≥ t) ≈ P (χt 1) ≈ 1− e−E(χt) ≈ E(χt)

The smoothness of the field can be expressed as:

A|Λ| 12 = RESELS(4log(2))

where RESELS is the number of resolution elements, a notion also introduced by

Worsley, and given for the cortical surface by:

RESELS =
A

FWHM 2

where FWHM corresponds to the Full Width at Half Maximum of the smoothing

filter we applied. Finally, we thus have:

P (z ≥ t) ≈ A

FWHM 2
(4log(2))(2π)−

3
2
e
−t2

2

t

Note that Bonferroni correction or False Discovery Rate technique can also be ap-

plied to correctly derive appropriate thresholds.

Computing such a correction now allows us to compare the results of both methods

with the standard volumetric SPM-smoothing at equivalent p-value.

Methods comparison

We have performed comparisons on various datasets between the classical 3D-

isotropic smoothing and both methods of cortical surface based anisotropic smooth-

ing. Figure 4.4 illustrates the results on a dataset from a monkey visual speed motion
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experiment. These data are courtesy of Prof. Orban laboratory, KUL, Leuven. Fig-

ure 4.5 show some results on the hMT+ complex localizer experiment described in

5.2. Globally, both anisotropic approaches lead to higher statistical values and

to spatially more coherent activation foci as compared to the classical 3D-isotropic

method. These results confirm the benefits of anatomical information introduction

in fMRI signal pre-processing, as already stressed in [3].

Besides, this work is to our knowledge the first implementation of an fMRI smooth-

ing method based on the level set framework. We find expected differences between

both anisotropic methods that can be attributed to the use of different numerical

schemes and, to a more important degree, to the fact that the mesh-based approach

is restricted to projected voxels only whereas the level set based approach solves

equation 4.2 continuously within a band around the GM/WM interface. This is an

important argument that favors the level set based approach at different steps:

• the approach is independent of a method assigning functional data to the cor-

tical surface,

• consequently, the choice of a projection method to visualize the statistical

results on the cortical mesh can be made a posteriori,

• the implementation is more straightforward, avoiding intermediate surfacical

data files and faster in terms of computation time.

Whenever a smoothing was envisaged to preprocess our data, we therefore systemat-

ically used the level set based anisotropic smoothing to pre-process our fMRI data.

The core program to resolve the PDE was implemented by Jean-Philippe Pons in

C++ within the ABSOLUt software library. We also developed a Matlab interface,

based on SPM functions, to give ergonomic interactions with the user. The input

cortical surface can be either in BrainVISA explicit mesh format (.tri or .mesh ex-

tension files) or directly in the implicit level set format. In the latter case, the level

set image has obviously to be coregistered with functional data. If necessary, an

automatic resampling of the level set image is performed to fit the functional images

space. The desired filter FWHM is then entered and the programs estimates the

appropriate running time T of the equation (more specifically an iteration time step

∆t and a global iteration number n, with T = n∆t).

4.1.6 Temporal filtering

Correction of the scanner trend

Instabilities of some scanner equipments give rise to a trend in the signal baseline.

Furthermore, aliased physiologically induced effects (cardiac, breathing,...) also in-

troduce low frequency components in the signal. These confounds can easily be
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No spatial SPM isotropic mesh based level set based

smoothing approach approach approach

Figure 4.4: Comparison of the different smoothing approaches on a monkey fMRI dataset. Each

column corresponds to a smoothing approach, namely from left to right: non-smoothed data,

SPM 3D-isotropic approach, mesh-based approach and finally levelset based approach. In each

smoothing process, the FWHM of the Gaussian kernel was set to 3mm. The dataset belongs to

a macaque vision study, where the animal passively viewed textures either static or moving at

different velocity (1,2,8,16 deg/sec respectively). The experimental paradigm consists in randomly

alternated presentation of 35.31sec epochs for each condition. The only task the monkey had to

perform was to maintain gaze at the fixation point located at the center of the display. 9 scans of

154 volumes each where analyzed the classical GLM. Thresholded T-test p-values of two different

contrasts between the conditions are shown on the reconstructions of the GM/WM interfaces for

each hemisphere. We restricted the display to partial view of the occipital poles to focus on the

low-level visual system. The first two rows represent p-values of a contrast between low velocities

conditions (1 and 2 deg/sec) and the static condition. The last two rows represent p-values of a

contrast between fast velocities conditions (8 and 16 deg/sec) and the static condition.
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SPM isotropic mesh based level set based

approach approach approach

Figure 4.5: Comparison of the different smoothing approaches on a human fMRI data.

Data were smoothed by a 3mm Gaussian kernel FWHM by the classical 3D isotropic

method (left), the mesh based approach (middle) and the level set based approach (right).

The dataset comes from the hMT+ localizer experiment, detailed in section 5.2.

removed applying a high-pass filter during the statistical analysis of the voxels time

series. The cutting period (the inverse of the cutting frequency) is chosen to depend

on the interval of time separating two equivalent stimulations in a given session.

This interval is classically called the Stimulus Onset Asynchrony (SOA). We typi-

cally used 2.5 times this value (expressed in seconds) to remove every frequencies

lower than 1
2.5SOA

.

Low pass filtering

A temporal smoothing is classically performed on the data to consider as known

the residual time series autocorrelations. This procedure insures better estimates

of the statistical model parameters used in the analysis done at the next step (see

section 4.2). We use a simple Gaussian temporal filtering on the data that will be

taken into account in the statistical analysis.

We have given in the above paragraphs an overview of the main pre-processing

steps that can be envisaged in the context of fMRI signal analysis. The final chain

applied to a given dataset and the parameter tuning involved in each step can

have dramatic impact on the results [47, 128]. Selecting the appropriate procedure

depends strongly on the underlying experimental paradigm and the assumptions of

the analysis method used to assess the data. We mention the assumptions made

in the analysis methods of the next section and precise the specific preprocessing

chain performed for our different experiments in their respective chapters.
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4.2 Statistical analysis of fMRI data

This section summarizes the main approaches that have been proposed to analyze the

pre-processed fMRI data. After a brief statement of the problem and a classification

of the main methods that have been proposed to address this problem, we will

describe the General Linear Model methodology widely used in fMRI literature. We

then present a non-parametric approach we used to analyze our motion adaptation

experiment, and mention frequency domain analysis often used in periodic paradigms

as retinotopic mapping. We end this chapter with a rapid overview of the most

popular multivariates methods.

4.2.1 Problem statement

The goal of fMRI data analysis is to extract relevant information from the spatio-

temporal data recorded during the experiment, linking the experimental protocol to

the presumed brain activity.

The statistical analysis of functional images is a complex task for various reasons.

First, the amount of 4D data to be analyzed can restrict the choice of analysis tech-

nique. Indeed, a typical fMRI session recording generates several hundred megabytes

of data for each subject which may not be computationally tractable by every method

in terms of memory and computational time. Besides, the signal to noise ratio (SNR)

of the BOLD effect is low, as the signal of interest is mixed with various artifacts:

the respiratory and cardiac rhythms of the subject, subject motion which is only

partially corrected by pre-processing methods, EPI spatial distortions created by in-

homogeneities in the magnetic field, scanner artifacts such as signal drift and thermal

noise. Last but not least, the link between the neural response and the BOLD effect

is still not well understood [138, 137], limiting the results interpretation.

Beyond these important technical reasons, a fundamental question raises: what is

the relevant information we want to extract? We generally wish to test between

different hypotheses related to the experimental protocol and to derive statistical

activation maps from them. The information of interest can then be the detec-

tion of response to the experimental protocol, but also the delay or the amplitude

of the response. Another goal can be to build a more synthetic representation of

the dynamics of the dataset. Various analysis methods have been proposed in the

literature which can be classified given the questions they are able to address.

4.2.2 Classification of methods

Figure 4.6 gives an overview of the main existing methods. Following [212, 121], we

will classify the methods in two categories: hypothesis-driven and exploratory.

Hypothesis driven methods rely on an explicit modeling of the response to the exper-
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Figure 4.6: Overview of the main fMRI analysis methods. The main classification separates

univariate and multivariate approaches. The figure is borrowed from [212].

imental paradigm. This leads to an estimation of the model parameters followed by

statistical tests on the latter to assess the presence of an activation and comparisons

between different experimental conditions. Most of these methods are univariate, in

the sense that they consider each voxel as independent. The main weakness of these

approaches is the more or less restrictive assumptions made on the response shape

which may not fit actual responses. Their main advantage is the clear answer, with

an estimated probability of confidence, they can give to particular questions such

as: ”which voxel’s activity is strongly correlated with the stimulation?” or ”what

voxels are more activated in condition A than in condition B?”. The methodological

variations between hypothesis-driven methods can concern the signal modeling, the

parameter estimation method employed or the framework on which statistical tests

rely.

On the other hand, exploratory methods work directly on the functional data, often

ignoring the experimental paradigm. The idea is to extract temporally and/or spa-

tially structured patterns from the dataset. These approaches are called multivariate

because they consider all voxels simultaneously. They try to give a general account of

the data content which is particularly interesting when considering the complex and

mixed sources of the data generation. Yet, the interpretation of the resulting pat-

terns is often difficult. Exploratory methods can therefore be employed to identify

some confounds that could be removed but also to identify possible response shapes

that can further be used in univariate approaches. The methodological variations

come from the way features are discriminated in the data: it can be the decorrela-
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tion between the components (yielding to Principal Component Analysis -or PCA-

methods), the independence (Independent Component Analysis) or a distance in a

feature space (clustering approaches).

Note that this rough classification is not exclusive, as some methods such as the

Multivariate Linear Models [249] are just between both categories.

4.2.3 The General Linear Model

The General Linear Model (GLM) is a standard statistical framework in data

analysis on which is based the most popular analysis software used in the fMRI

community: SPM4. Behind this acronym stands Statistical Parametric Mapping

which is a kind of image from which functional activations are detected. By

extension, the SPM methodology often refers to the processing chain offered by

the SPM software, including some pre-processing tools we already mentioned in

the previous section, SPM estimation and statistical inference tools. For a more

comprehensive presentation of the methods implemented in SPM, one can refer to

[79]5. Here we give a description of the model specification and the inference steps

we relied on to analyze some of our datasets.

Model specification

The GLM is a voxel-based method, i.e. it addresses each voxel individually. In

the following description, we therefore consider a single voxel time course. The

observation at time t of a temporal signal Y = (y(t))t=t1...tT is modeled as the linear

combination of C explicative variables {xi(t)}i=1...C , called the regressors, and a noise

term ε(t):

y(t) = β1x1(t) + β2x2(t) + ...+ βCxC(t) + ε(t) =
C∑

i=1

βixi(t) + ε(t)

The (βc)c=1...C are supposed to be time independent, leading to:





y(t1) = β1x1(t1) + ... + βCxC(t1) + ε(t1)
...

y(tT ) = β1x1(tT ) + ... + βCxC(tT ) + ε(tT )

which can be written in matrix form:

Y = Xβ + ε with E(ε) = 0 and V ar(ε) = σ2I

4SPM was developed at the Wellcome Department of Cognitive Neuroscience, Functional Imaging Lab-

oratory, London, UK and is freely available at: www.fil.ion.ucl.ac.uk/spm
5A comprehensive manual is freely available from the web page:

http://www.fil.ion.ucl.ac.uk/spm/doc/books/hbf2
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Assuming E(ε) = 0 comes down to take a constant regressor x1(t) = 1 ∀t ∈
{t1, ..., tT} or to consider the signal Y centered.

The T × C matrix X is called the design matrix and is formed of each regressor

in its column. The basic regressor corresponds to a convolution of the time Pc of

a given condition c in the experimental paradigm with a canonical model of the

hemodynamic response function (HRF) noted h:

xc(t) = h(t) ∗ Pc(t)

The typical HRF used in SPM is obtained with a difference of two Gamma functions,

but other alternatives have been proposed. Such modeling is the consequence of

the following assumptions:

• the response is linear with respect to the stimulation; in other words, if a stim-

ulation leads to a BOLD response in a given voxel, then the same stimulation

repeated over time will produce as a response the sum of the response at each

stimulation,

• the response is time-invariant; a delay in the stimulation induces the same

delay in the response,

• the response is causal; the output signal does not depend on future events.

The linearity of the BOLD response holds for stimulations sufficiently separated

in time [84] and for block design experiments, but non linear effects were consis-

tently revealed in various event-related studies [236, 84]. Non linearity of stimulus

repetition is also the central assumption of fMR-adaptation experiments as will be

presented in chapter 6.

Other regressors can also be introduced as explicative variables: first or second tem-

poral derivatives of the HRF convoluted by the stimulation to model some variations

in the response such as the delay, head motion estimates [82, 118] or low-frequency

signals that behave as high-pass filters to model low-frequency variations (cardiac

and respiratory effects, signal drift). Figure 4.7 shows two examples of design ma-

trices used either in an event-related or in a block design experiment.

Parameter estimation

The vector of parameters β = (βc)c=1...C can be estimated by the ordinary least

squares method which comes down to minimizing the residual sum-of-squares, i.e.
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Figure 4.7: Examples of design matrices used in an event-related paradigm (left) or a block

design paradigm (right) with two sessions in both case. In each matrix, the columns are

the model regressors and the rows the temporal steps (i.e. the images).

the sum of the square differences between the actual and fitted values, noted E :

E = ε̂>ε̂

= (Y −Xβ̂)T (Y −Xβ̂)

= Y >Y − 2β̂>X>Y + β̂X>Xβ̂

A necessary condition (and also sufficient as we are considering a quadratic posi-

tive definite form) for minimizing the error E leads to the so called normal equations:

∂E
∂β

= 0⇔ X>Y = (X>X)β̂

Thus, (X>X) being invertible (i.e. if the matrix X is of full rank6), the least square

estimation of β is:

β̂ = (X>X)−1X>Y

with the dispersion matrix:

V ar(β̂) = Λβ̂ = σ2(X>X)−1

Note that the least square solution can have a geometric interpretation in which

estimating β comes down to project Y into the sub-space generated by the model

regressors.

Under the assumption of Gaussianity for the residuals and also assuming their in-

dependence, this estimation is the one of maximum likelihood and also, in virtue of

6In cases where the design matrix is not of full rank, which should be avoided in general, pseudo-inverses

such as Moore-Penrose can be used.
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Gauss-Markov theorem, the best linear un-biased estimation of β. In other words,

this means that among all estimators that are linear combinations of the data with a

mean equal to the true value of the parameters (E(β̂) = β), its variance is minimum.

It is however known that fMRI noise is correlated, at least temporally, making the

independence assumption incorrect. In case of colored noise:

ε ∼ N (0,Σ) with Σ = σ2V

we can get the following estimations:

β̂ = (X>V −1X)−1X>V −1Y

Λβ̂ = σ2(X>X)−1X>V X(X>X)−1

This estimator is once again the best linear un-biased estimation of β. However, it

is necessary to have a precise estimation of Σ or V , which is in general unlikely. Two

main solutions can be envisaged: whitening the noise or impose a known covariance

matrix. Both can be seen as a temporal filtering of the data achieved through a

convolution matrix K:

KY = KXβ +Kε

which give the following parameter estimation:

β̂ = (X>K>KX)−1X>K>KY

V ar(β̂) = σ2(X>K>KX)−1X>K>KVK>KX(X>K>KX)−1

Whitening the noise consists in choosing K = V −
1
2 , which also requires an estimation

of the covariance matrix V . This can be done by imposing a certain structure to V ,

such as an auto-regressive model as proposed in [81, 246].

The alternative solution, called precoloring and implemented in SPM, is to impose

a known correlation structure by applying a low-pass filter K so that:

V ar(Kε) = σ2KVK> ≈ σ2KK>

In other words, a ”strong” enough filter is applied in order to neglect the intrinsic

data correlations.

As argued in [81], both techniques are biased but the precoloring appears more

robust for a moderate loss of efficiency.

Statistical inference

Based on the parameter estimation, we can now derive two kinds of statistical maps

to test our hypotheses: T maps and F maps. We define contrasts γ, which are linear

combination of the estimates β̂ related to a null hypothesis we wish to test:

H0 : γ>β̂ = 0
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It allows to test if the effects linked to a given subset A of experimental conditions

led to greater or smaller effects than another subset of conditions B. The significance

of the estimated response to the contrast γ is given by:

γ>β̂

V ar(γ>β̂)
=

γβ̂√
γ>Λβγ

∼ td

where td is the Student distribution with d degrees of freedom, d being derived from

the design matrix X by standard methods detailed in [245]. We indeed find a Student

distribution for the left handed term of the above equation under the null hypothesis

and assuming the Gaussianity of the residual ε. Note that the Student test is signed

which allows to answer if an effect is smaller or greater than another. When the t

scores are computed over all the voxels, we get a statistical t map. The t map can

also be converted to a normal variable z map through standard procedures.

To assess if a given regressor subset ”explains” well the observed signal, one can

consider a set of contrasts Γ = {γ1, ...γg} and derive a statistical score to assess the

square norm of Γβ with respect to its dispersion:

Γβ̂>Γβ̂

Γ>Λ̂βΓ

d2

d1

∼ Fd1,d2

where Fd1,d2 is the Fisher distribution with d1 and d2 degrees of freedom of the

numerator and the denominator respectively. The computation of the F scores

over the brain leads to a statistical F map that can test for a subspace spanned by

contrasts of the design matrix.

Note that in both kind of maps, the covariance matrix Λβ is implied, emphasizing

the importance of its estimation.

The inference finally consists in rejecting the null hypothesis given the statis-

tical map. Knowing the distributions under the null hypothesis H0, one can

analytically derive the related threshold for a given significance value (or P-value).

A voxel showing a higher statistical value than the threshold rejects the null

hypothesis and is therefore declared as responding to the experimental paradigm.

Map-wise threshold

The inference described above leads to a voxel-based threshold, which does not take

into account the global map. A first solution to control the number of false positive

voxels in the whole map is the Bonferroni correction: assuming the independence of

the N voxels considered, the probability q that any voxel in the map has a z score

above the threshold tq under the null hypothesis is related to the same probability

for a given voxel, p, by:

q = pN
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This method is particularly straightforward to apply, but the independence hypoth-

esis simply ignores the spatial correlations within the data, specifically the fact that

the activations we seek are more likely to be a subset of clustered voxels than just

isolated ones. The Gaussian Random Field Theory was therefore introduced to take

into account these spatial correlations and derive more appropriate thresholds. The

general idea was already presented above in paragraph 4.1.5 (although in general,

the map should be considered as a 3D Gaussian Random Field, implying slight mod-

ifications in the above formula). Note that this approach gives another justification

for the spatial smoothing of the data, which makes the stationary Gaussian random

field hypothesis more credible.

Alternative univariate approaches

Various alternatives have been proposed to improve some aspects of the GLM frame-

work in the perspective of univariate fMRI analysis. For instance, [80] have intro-

duced non-linear terms in the GLM to model non-linearities of the BOLD response

such as observed in rapid event-related paradigms; other frameworks have also been

introduced to address the parameter estimation, such as Bayesian inference or Max-

imum Likelihood estimators. Making a detailed account of all these contributions is

far beyond our purpose and we refer the reader to [212, 121] for more comprehensive

reviews.

In the next two paragraphs, we will focus on two univariate approaches that are

of particular interest for the analysis of our experiments data. We first describe a

method allowing non parametric estimation of the BOLD response used to analyze

our motion direction adaptation experiment dataset (chapter 6). We then quickly

mention frequency domain based analysis that is used in most fMRI retinotopic

mapping procedures.

4.2.4 Non-parametric HRF estimation

Parametric approaches such as the GLM may introduce a bias on the Hemodynamic

Response Function (HRF) modeling. However, getting a precise modeling of this

signal can be of interest for various purposes:

• compare its shape variations (regarding for instance the amplitude, delay or

width) between experimental conditions in a given voxel or brain region,

• investigate the spatial variability across brain regions,

• retrieve a finer characterization of the BOLD signal, including its link with

neuronal activity,

• ultimately allow a better understanding of cerebral activations.
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Non-parametric models of the HRF could be achieved by considering each voxel (or

brain region) as a system characterized by a Finite Impulse Response. The general

idea is to introduce physiologically motivated temporal priors in the response

model and, based on the Bayesian framework, to accurately estimate the HRF

given these priors and the observed data. The first methods described in [88, 146]

could only be used to estimate one HRF in response to a single condition of a

periodic or synchronous event-related paradigm. Besides, these methods could only

consider each session separately. A generalization of this approach was achieved in

[35, 34, 147] and further implemented by Dr Philippe Ciuciu in a MATLAB toolbox

interfaced with the SPM software: the HRF toolbox7. We give below an overview

of the different steps and underlying assumptions of this method. It was applied

to the analysis of our motion direction adaptation experiment data described in

chapter 6.

In the following, we consider the observed signal yv at a given brain voxel v.

To lighten the notations, we drop the v index, so that yv = y. For a given session

s ∈ {1, ..., S}, the voxel time course ys = (ys(n))n=1,...,N is modeled as follows:

ys = h ∗Xs + Psls + εs (4.3)

where:

- h ∗ Xs =
C∑

c=1

hc ∗ xcs, with xcs the binary vector with 1 at condition c onsets and

0 elsewhere and hc the unknown HRF time course characterizing the voxel BOLD

response to condition c. Note that it is implicitly assumed here that the different

conditions HRFs add linearly. The method allows an interesting feature regarding

asynchronous paradigms, in which stimulus onsets can occur at any time during the

session: the HRFs can be estimated on a finer temporal grid than that induced by

the scanner sampling period (i.e. the Repetition Time or TR) without oversampling

the original data. Let ∆t ≤ TR be the sampling period of this refined temporal

grid, we have:

hc ∗ xcs(tn) =
K∑

k=0

hc(k∆t)xcs(tn − k∆t)

Such a temporal refinement procedure allows to estimate the HRF model with

a precise temporal resolution, taking advantage of the asynchrony between the

experimental paradigm and the scanning rate.

- Psls is a nuisance term modeling the known low frequency fluctuations of the

fMRI signal. Ps is a N × Qi matrix which consists of Qi functions taken from

an orthonormal basis modeling low frequencies (e.g. low order polynomial or

1-dimension discrete cosine transform). ls ∈ RQi is the weighting coefficients of the

7The HRF toolbox can be freely downloaded at www.madic.org/download/HRFTBx
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basis functionsns that has to be estimated by the method.

- εs is the residual error, assumed to follow a N (0, σi) distribution, further indepen-

dent of h.

The model described in 4.3 is applied to each session of the experiment with

the following hypothesis set:

1) The HRF time course hc for each condition c ∈ {1, ..., C} is assumed to remain

constant across sessions.

2) The noise fluctuations across sessions are assumed to be mainly due to physio-

logical variations, which leads to model the low frequency confounds in a session

specific way while the residual variance σ2
i is taken constant across sessions. Despite

the known temporal correlation of fMRI time series, the authors argue that various

noise correlation structures have little impact on the estimation performances.

3) Finally, based on physiologically plausible assumptions, each HRF temporal

structure is constrained by the following priors: (a) its amplitude is close to zero at

the first and end points. Note however that this constrained can be relaxed.

(b) its variations are smoothed. This is achieved by the introduction of hyperpa-

rameters θ which allow to minimize the discrete approximation of ‖hc”‖.
(c) the different HRFs be estimated show a prior statistical independence.

The estimation is achieved by a two step procedure:

- estimate the drift parameters l = (ls)(s=1,...,S) and the hyperparameters of the prior

model θ. This step is performed by computing the Maximum-Likelihood estimator

with an Expectation Conditional Maximization (ECM), a variant of the classical

Expectation Maximization (EM) algorithm.

- compute the Maximum A Posteriori (MAP) of p(h|y, l, θ) based on Bayes rule.

This results in estimations of each HRF with relative error bars at each time

point. These estimates are a trade-off between the information brought by the raw

data and the prior constraints. The authors have demonstrated the robustness of

the estimated HRFs with respect to various features on realistic simulations as well

as real fMRI datasets. This includes departure from the hypothesis of equal noise

variance across sessions, relevance of the temporal refinement procedure, validity of

the HRF estimates error bars. They nonetheless precise the limits of their method

regarding low signal to noise ratios or the selection of high dimension nuisance

model (which should typically be: Qi ≤ 5).

A useful feature of this method is the possibility to perform region-based HRF

estimation. Considering each ROI as functionally homogeneous, the procedure uses

all the available time series within the ROI to characterize the shape of the HRF
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for each condition. The more straightforward approach is to estimate the HRFs

from the ROI mean signal. Nonetheless, to avoid inaccurate estimation in case

of inhomogeneous ROI (for instance due to partial volume effects), a preliminary

outliers detection step can also be used to remove outlier voxels from the ROI.

It is achieved using the least trimmed squares (LTS) method. Note that a rough

estimation of the outliers proportion has to be given as input to the algorithm.

Finally, statistics can be computed over the estimated HRFs. This includes a

rough activation detection, assessing if the estimated response is significantly

different from a null time course, and, more interestingly, a comparison between

two estimated HRFs. The latter allows to observe significant differences in the

HRFs elicited by different experimental conditions, suggesting differences in the

underlying neural processing. Such an application of this method is demonstrated

in chapter 6.

4.2.5 Frequency domain analysis

Another univariate method that can be used is frequency domain analysis. This

approach allows to easily separate the different frequencies of the signal time course

leading to less biased hypothesis testing due to the approximate independence of

the Fourier coefficients. Although their use of has been limited as they are mainly

restricted to periodic paradigms, this approach has shown to be useful for specific

purposes. First, it is particularly appropriate when a selected feature in the stimulus

is varied periodically. Based on the Fourier transform of the voxel time course, we

analyze the component corresponding to the stimulus frequency. The amplitude is

linked to the voxel neurons sensitivity to the feature while the phase indicates their

preferred value for this feature. This procedure is classically used to analyze retino-

topic mapping data [239], but has also been used to study functional sensibility to

color [63], spatial frequency [216] or orientation [217]. Note however that a classical

GLM approach can equivalently be used to analyze periodic stimulations, as we will

show in section 5.1.

Note that frequency domain analysis can also be used to detect physiological coun-

fonds as shown in [98].

4.2.6 Multivariate analysis methods

We give in the following paragraphs a brief overview of the main multivariate meth-

ods that have been proposed for an exploratory analysis of fMRI data. As opposed

to univariate methods such as those presented above, these methods consider all the

voxels simultaneously and generally do not rely on a specific model of the signal.

If they do not lead to statistical inference, these approaches can help in designing

appropriate regressors to build a model of the signal. Another important applica-
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tion is also functional connectivity studies [78, 96] which aim at finding correlations

between the temporal signals of spatially remote voxels. Multivariate methods are

indeed particularly sensitive to temporal correlation between signals and where suc-

cessfully applied to functional connectivity [5, 171]. Finally, they can be used to

identify counfonds in the raw data.

Principal Components Analysis (PCA)

The Principal Component Analysis method relies on a Singular Value Decomposition

(SVD) of the data matrix. The fMRI spatio-temporal signals are represented as a

N × T matrix Y , N being the number of voxels considered and T the number of

points in the time series. Applying the SVD technique, we get:

Y = UΣV >

with:

- U a N ×N orthogonal matrix of singular images which diagonalizes Y Y >,

- V a T × T orthogonal matrix of singular time series which diagonalizes Y >Y ,

- Σ a N × T a diagonal matrix of the corresponding singular values (σi)(i=1,...,k).

Further constraining the ordering of σi to be decreasing, the decomposition is

unique (up to a sign change between U and V ). Each component, orthogonal to

the others, models a portion of the variability that can be observed in the data,

with σj/

k∑

i=1

σi the percent of total variance carried by the j-th component.

Applying a PCA to the raw data therefore separates different variations of the

signals which can detect, without specifying any hypothesis on the paradigm, a

temporal signal present in the data such as low frequency confounds. The GLM

residuals can also be analyzed through a PCA to reveal variations modes that do

not fulfill the Gaussian distribution hypothesis which are not modeled in the design

matrix.

Various refinements have been proposed to project the data in a space of interest,

such as introducing the design matrix X and performing the SVD of X>Y . These

variations around the PCA are performed by applying distinct normalizations of

the matrices X or Y .

Independent Components Analysis (ICA)

Unlike the PCA which leads to orthogonal components both spatially and tem-

porally, one may be interested in extracting statistically independent components

from the data. This is the purpose of Independent Components Analysis (ICA)
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techniques. However, such a decomposition has to be done separately for the spa-

tial and the temporal domains. Considering spatial ICA for instance, the idea is to

model our N × T matrix Y (the dataset) as the superposition of M independent

sources S plus a residual noise term ε:

Y = AS + ε

where A, called the mixing matrix, models the superposition of the sources. The

problem is now to estimate the unmixing matrix B, S and K such that:

S = B(X − ε) (4.4)

B can be viewed as a generalized inverse of A. Solving equation 4.4 supposes to

define an independence criterion for the sources and to choose the rank of the gen-

erative model K, which can appear to be arbitrary. Finally, the estimated source

terms in S can be interpreted as independent activation maps standing for different

effects present in the dataset [20].

To give an illustration, we have applied a spatial ACI technique to a retinotopic

mapping dataset using the SICA toolbox developed at the U494 INSERM team lab-

oratory, Paris, France. Figure 4.8 shows the two first spatial components extracted

by the algorithm, without giving any prior about the experimental paradigm. It

illustrates the possible advantages of the method to separate components consistent

with the stimulation from confounds such as non-corrected head motion or physio-

logical noise, as shown in [172].

Clustering analysis

Clustering approaches allow to group a collection of objects into subsets (or clusters)

based on a similarity measure between these objects. In the fMRI data analysis

context, the time courses of voxels can be considered as a set of N features (our

objects) belonging to a given feature space F .

Some clustering methods rely on parametric models of the features distribution in

F : classifying the data into different subsets comes down to identifying the main

modes of this distribution.

An important issue is the definition of the feature space F ; this is related to

the choice of the metric used to quantify the similarity between time courses.

The Euclidean distance on the raw time courses has naturally been considered,

but alternatives such as the Mahalanobis metric can also be used. Some authors

proposed to apply clustering methods to various features extracted from the dataset:

the cross-correlation coefficients between the time courses and an ideal response

to the paradigm [87], or t-maps, finite impulse response filter model [86]. Using
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Figure 4.8: Illustration of the spatial ICA method on a retinotopic mapping dataset,

as detailed in 5.1. Without any information regarding the experimental paradigm, the

two first components extracted show a spectrum picked at the stimulation fundamental

frequency (1/38 Hz)
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these features can have several advantages: first it reduces the dimensionality of

the time course to classify, thus improving the computational efficiency. This also

introduces some knowledge about the paradigm in the analysis, leading to an easier

interpretation of the final clusters. Finally, it allows to perform a meta-analysis

that can separate activated voxels into different clusters [86].

Another problematic aspect of clustering is to choose the number of clusters which

leads to a bias/variance trade-off. The main clustering algorithms, such as K-means

or fuzzy C-means have been used to compute the final solution, yielding to similar

results.

Another clustering method applied to fMRI in [29] is self-organizing maps, which

are designed to map the input vectors onto a 1, 2 or 3D maps. This method

has however received less attention since it is quite technical and relies on several

non-interpretable parameters.

We have presented in this chapter the main methods we considered to pre-

process and analyze our datasets. The specific processing chain we used for the

experiments described in the remainder of the thesis will be detailed in their

respective chapters.
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Chapter 5

Visual areas mapping
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The general cortical architecture is globally consistent across subjects of a given

species, that is the same type of area and the same amount are found in any non-

pathological individual. However, the strong physiognomical variations of the cortex

folds implies an important anatomical variability across individuals. Furthermore,

studies of the cortical plasticity suggest that the anatomy-function correspondence

can vary across time for a given subject. An individual identification of distinct

areas can therefore be considered as a prerequisite to any study of the human visual

cortex. This gives more information about the visual system organization over the

cortical sheet, which can be compared to other species in an evolutionary perspective

or between different populations to investigate pathologies or developmental mech-

anisms. Moreover, an objective area delineation can be used to define independent

Regions of Interest (ROIs) that will be further characterized in subsequent experi-

ments.

This chapter is divided into two parts, each one corresponding to a specific criterium

we used to delineate low level visual areas. In the first part, we describe the fMRI

retinotopic mapping procedure employed to delineate the early occipital retinotopic

areas. In the second part, we present the functional mapping used to identify the

hMT+ complex.

5.1 Retinotopic areas mapping

5.1.1 The cortical retinotopic organization

From the retina to the low level visual cortex, a perceptual element such as a

retinal ganglion cell or a cortical neuron is only sensitive to a restricted por-

tion of the visual field called its receptive field. Coarsely, the receptive field is

“what the perceptual element sees”. More precisely, the visual receptive field of

a cell generally corresponds to a small portion of surface in the fixation plane

which, when a stimulation enters it, modifies the response of the cell. In our

experiments, this fixation plane is the screen the subjects look at; the terms classi-

cally used to refer to different portions of the visual field are illustrated in figure 5.1.

Let us now state three fundamental properties of the visual areas that define

their retinotopic organization:

1) The neurons from different layers of a given cortical column share the

same receptive field [109, 111].

2) Two points close to each other in the visual field project closely on the

retina. After various steps and following different paths, these close retinal stimuli
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Figure 5.1: The visual field is split along the vertical meridian into two hemifields, each

again split into two quarterfields along the horizontal meridian. The latter further splits

the vertical meridian into its lower and upper parts.

will be analyzed, inside a given area, in neighboring regions of the cortex. Although

the precise distances and angles are not preserved, the local topology is preserved

from the visual field to the cortical surface of retinotopic areas. Figure 5.2 illustrates

this property, showing the representation of the visual field in macaque monkey

area V1.

Figure 5.2: Retinotopy in macaque visual cortex: a flickering stimulus (left) and its retino-

topic representation in a flattened view of layer 4C of area V1 (right), revealed through a
14C-2-deoxy-d-glucose (DG) autoradiography procedure. Reproduced from Tootell et al.

[220]

.

For instance, the primary visual cortex in humans (V1), anatomically found in the

occipital lobe around the calcarine sulcus, presents a retinotopic organization. The

latter is approximately polar:
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- when one moves along the cortical surface from a posterior to an anterior position

in V1, the representation in the visual field moves smoothly from the center (fovea)

to the surround. We say we vary the eccentricity.

- similarly, a displacement from the inferior limb of the calcarine to the superior

limb results in a smooth variation of the representation from the superior vertical

meridian of the visual field to the inferior part of this vertical meridian. We say we

vary the polar angle.

This type of representation is found in various visual areas, implying that the

visual cortex contains several maps of the visual field. The correspondence with

polar coordinates has naturally led to define polar-coded stimuli as we will see below.

3) Two adjacent areas on the cortical surface (such as V1 and V2) differ

with respect to their representation of the visual field. This is a crucial point for

the differentiation of areas we are looking for. Indeed, some areas present a so

called reverse or mirror representation, the visual field being projected on the

cortical surface as if it was seen through a mirror, whereas others have a normal

representation, consistent with the visual field spatial order. The representations

change chirality1 for two adjacent areas, a useful information we will take into

account to detect the borders between them. We illustrate this property in the

sketch of figure 5.3.

Figure 5.3: Schematic illustration of the retinotopic properties of the visual system in

primates: continuity between the visual field and the cortical surface, inversion of the

chirality between two adjacent areas.

1In geometry, a figure is chiral (and said to have chirality) if it is not identical to its mirror image, or

more specifically can’t be mapped to its mirror images by rotations and translations alone, i.e. both figures

are related like our left and right hands.
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Previous work

The first studies of human cortical retinotopy were based on patients having focal

occipital lesions [104, 105, 107, 106]. Non-human primates visual cortex was

extensively studied over recent decades by invasive studies, mainly electrophysi-

ology [46, 253, 230], resulting in a far more detailed understanding of retinotopic

organization. More recently, the first human functional imaging studies appeared

using TEP [73] and fMRI [190].

The periodic fMRI retinotopic mapping paradigm was introduced in [60], in which

the authors used two expanding rings to measure the eccentricity map within the

calcarine sulcus. The stimulation was subsequently completed with a rotating

wedge to establish the polar angle coordinates [50, 192, 49]. This general procedure

has since then been used in numerous studies, with some variations regarding

various parameters such as:

- the number of simultaneous rings or wedges in the display [62, 233],

- the stimulus pattern which is often a black and white [192] or colored [222, 239]

checkerboard, but also a moving dots pattern [112] or a video [196, 187],

- the stimulus pattern flicker frequency,

- the amount of complete cycles, the cycle duration, the number of averaged runs,

- the task performed by the subject, which can be a passive-viewing, central or

peripheral attentional task.

We will come back to some of these differences below while comparing our choices

to the literature.

Alternative approaches to retinotopic mapping have been proposed to reveal

cortical visual field maps with fMRI. Some groups have used block designs with

static stimulations of a limited spatial positions amount, such as a few eccentricity

bands [95, 100] or the horizontal and vertical meridians only [101, 72]. These

approaches naturally cannot give a detailed account of the visuotopic maps and

may be prone to a poor spatial localization as mentioned in [238]. [83] evaluated

the binary m-sequence paradigm for a retinotopic stimulus presentation which leads

to comparable maps than those obtained with periodic paradigms but without

lowering the acquisition duration. Two different groups recently investigated the

feasibility of mapping a precise sub-region of the visual field using randomized

block designs with spatially restricted localizers [127] or a multifocal mapping

stimulation technique [235]; these approaches have the advantage to be faster and

more precise than the classical procedure when only a task-relevant subsets of

positions is mandatory.

From previous studies of the cortical retinotopy in humans, we can infer the
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retinotopic structure classically found in the human occipital cortex. First, as the

two hemifields (the vertical separation of the visual field) split at the level of the

optical chiasm, each hemisphere is only concerned with the visual information of its

opposite hemifield. Second, as found in animal studies, some areas are split into two

parts at the representation of the horizontal meridian. Hence the limits between

adjacent areas correspond to horizontal or vertical meridians. More specifically,

most studies agree in the visual field representation and labeling as follows:

- V1-also called the “striate” cortex with respect to its markedly laminated anatomy

and its 11 layers (rather than the customary 6 in other areas) and by opposition with

the next “extrastriate” areas- has a complete contralateral hemifield representation,

covering the calcarine sulcus. The horizontal meridian lies in the fundus of the

latter and the representation smoothly changes to the superior vertical meridian in

the ventral lip of the calcarine sulcus and to the lower vertical meridian in the dorsal

lip of the calcarine sulcus respectively. These vertical meridians define the borders

of V1 with the two distinct parts of V2. The representation in V1 is qualified of

mirror, as the visual field is projected on the cortical surface as if seen through a

mirror (see section 5.1.1).

- V2 is divided into two distinct quarter-field representations, the upper contralat-

eral quadrant being located ventrally to V1 (V2v for V2 ventral) and the lower

contralateral quadrant dorsally (V2d for V2dorsal). Unlike V1, the representation

in V2 is non-mirror. In other words, the polar angle gradient along the surface is

reversed with respect to V1. The borders of V2v and V2d with respectively V3v

and V3d are defined along the horizontal meridian representations.

- V3, akin to V2, is split into two quadrants. V3d follows V2d as one moves

dorsally and shows another lower quarter-field representation; V3v, also called VP

for Ventral-Posterior because it was suspected to be distinct from V3d in monkeys

studies, follows ventrally V2v and shows an upper visual field quadrant. We chose

to call this portion of the cortex V3v instead of VP, as this separation between the

two aim at being less and less supported in the monkey literature and as no evidence

was presented to distinguish them in humans (for a more complete discussion, see

Zeki’s paper about “improbable areas” [254]). The representation in both parts of

V3 is reversed with respect to V2, thus mirror like V1.

- V3A, located dorsally to V3d, shows a complete contralateral hemifield non-mirror

representation.

Figure 5.4 illustrates this description. Note however that beyond V3v ventrally

and V3A dorsally, there is still no consensus in the actual visual field maps and

consequently the areas labeling. We will discuss some of these issues when analyzing

our results in paragraph 5.1.8. For now, we see how the knowledge about the visual

field representation over the cortical sheet can be sufficient to delineate the low-level

visual areas.
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Figure 5.4: Polar angle retinotopy of the right hemisphere, i.e. the left visual hemifield.

The left-hand side of the figure illustrates the spatial arrangement of different areas and

their retinotopy, the hemi-circle at the center corresponding to the color code employed

for each angle of the visual field (from Warnking [239]). The right-hand side of the figure

shows results obtained from human fMRI on an unfolded cortical surface by Pr.Wandell’s

team, V3v and V3d respectively corresponding to V3 and VP in the text and on the

left-hand side of the figure.

Applications

fMRI retinotopic mapping is not only the main way to explore the organization of

the visual field maps in humans but has also been applied to study many aspects

of the early visual areas. This technique allowed quantitative estimation of parame-

ters to characterize further the visual maps such as the cortical magnification factor

[60, 192, 62], the receptive field size [203] or the cortical surface area for each vi-

sual area [53]. It can naturally be used in children [39], offering opportunities to

developmental studies. Similarly, retinotopic mapping of patients allow to study

the cortical representation of retinal diseases [210, 7, 103] and the presence or ab-

sence of a related cortical plasticity [201]. The method was also successfully applied

to sub-cortical brain structures like the lateral geniculate nucleus [27, 189] or the

superior colliculus [188] and to other species such as cat [160] and macaque [16],

serving as a useful reference to study homologies and differences along the evolu-

tion [221, 163, 195]. From a methodological point of view, fMRI retinotopic maps

can also be helpful to constraint the source localization in Electro-encephalography

(EEG) or Magneto-encephalography (MEG) studies [51]
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5.1.2 Experimental protocol

Taking into account the retinotopic properties of the visual cortex described above

and building on previously published work on the subject, we now define our ex-

perimental paradigm and our stimuli. Let us recall that the aim is to uncover the

mapping of the visual field over the cortical surface. This can be achieved by stimu-

lating locally and periodically the visual field of the subject whose gaze stays fixated

at the central point. The basic pattern of our stimuli is a radial checkerboard dis-

tributed in the radial and the polar dimensions, similar to those described in the

literature (e.g. [192, 239]). To take into account the cortical magnification, the size

of squares is increasing with the eccentricity.

The stimuli

We finally require two families of stimulus:

- The wedge is a 80 degrees wide conical sector rotating around the central fixation

point. This stimulus moves in discrete 20 degrees steps in the visual field in a

circular clockwise or anti-clockwise fashion, thus leading to 18 different positions

for a complete 360 degrees rotation (see figure 5.5).

Figure 5.5: The “wedge” stimulus seen in different positions. It encodes the polar angle

coordinate θ of the visual field.

- The ring is an annulus centered at the fixation point, its size varying with respect

to the eccentricity. Similarly to the wedge, it has two ”directions of rotation”: either

contraction or expansion; a complete rotation is achieved in 18 distinct steps. When

the annulus reaches its maximal eccentricity (respectively minimal), it is replaced

by an annulus at minimal (resp. maximal) eccentricity, with an intermediate

position of coexistence (cf. the right image of figure 5.6). This wrapping around

allows to have a close to continuous motion of the stimulus.

In terms of polar coordinates, the wedge stimulus encodes the polar angle compo-

nent whereas the ring encodes the radial component. The complete visual field is

then completely covered, and these two families of stimuli carry complementary

information with respect to the simulation of the visual field.
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Figure 5.6: The “ring” stimulus at different positions. It encodes the eccentricity coordi-

nate ρ of the visual field.

For each position of the stimulus, we scan a functional volume, yielding at the end

of each stimulation a temporal series of images (Yt)t=0,...,T−1.

The checkerboard pattern of these stimuli flickers (at 9Hz in our setup, one

cycle consisting of 1/18 sec black and 1/18 sec white) in order to insure a sustained

neuronal response. Indeed, most of the receptive fields cells in the retina and the

Lateral Geniculate Nucleus -the main inputs for the first visual cortical areas-

consist of two antagonistic regions, the best response of the cells being obtained with

a luminance local contrast between their center and surround. This checkerboard

pattern is superimposed on a mid grey-level equiluminant background to let the

cells whose receptive fields do not fall on the checkerboard at rest.

Let us recall that the display size of our videos and the experimental setup provide

a 20.9x20.9 degrees display. The extent of the diameter reached by the stimuli

circular aperture is 19.5 degrees, giving a maximum radial opening in the visual

field of 19.5/2=9.75 degrees.

The stimuli we used were programmed in Matlab to generate a video sequence in

avi format. A number of parameters were adjustable.

Stimulus optimization

Our main goal is to design an experimental setup allowing a fast and reliable retino-

topic mapping to accurately delineate the visual areas. We varied three different

parameters of our stimulus: the number of sectors in the wedge, the number and

the duration of complete rotations (or cycles). The results, presented in [252], are

described below in paragraph 5.1.6.

5.1.3 Functional images preprocessing

Our retinotopic mapping functional datasets are systematically preprocessed as

follows:
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- The motion correction step is run first, taking as reference functional image the

closest to the anatomical scan in the acquisition order.

- We then apply the rigid coregistration step between the anatomical image and the

functional scans.

- The data are then smoothed using either the classical 3D isotropic Gaussian kernel

or the cortical surface based method2 described in paragraph 4.1.5. In both cases,

the filter FWHM is set to 1.5 the inplane voxel size.

- Finally, a temporal filtering is applied to the data. A high-pass filter is used

to remove low-frequency confounds and a low-pass filter to roughly control the

temporal auto-correlations.

5.1.4 Statistical analysis

This stage aims at establishing which functional voxels are correlated to our

stimulation. The method used is based on the General Linear Model (GLM)

framework (see paragraph 4.2.3) and can be qualified as:

- univariate: the analysis is performed independently for each voxel (as opposed to

multivariate analysis which considers all voxels simultaneously),

- differential: the inference answers to a binary question (a voxel is qualified either

as activated or not activated),

- parametric: some assumptions are made about the linearity of the response with

regard to the stimulation and about the structure of image noise.

We describe in this section the model specification followed by the definition

and estimation of statistical tests used to reveal the activated voxels. Practically,

our analysis is performed with the SPM99 software.

Specification of a linear statistical model

As mentioned above, a frequency analysis is classically used to analyze periodic

paradigms such as the retinotopic mapping. However, we show below how this

kind of paradigm can be viewed as a particular case of a linear model and therefore

tackled with classical GLM analysis.

In the following description, we consider a given voxel v and a given session

(e.g. clockwise wedge) of length T . Based on the retinotopic properties (paragraph

5.1.1) and our stimulus paradigm (paragraph 5.1.2), the voxel v should only show

a correlated signal, if any, when the stimulus position overlaps the receptive fields

of the neurons within this voxel. As our stimuli are moving periodically and as

2We have been systematically using the cortical surface based approach since it was validated.
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far as the response is linear (which is reasonable if two consecutive stimulations

are sufficiently separated in time), the observed signal time course (Yv(t))t=0,...,T−1

should also be periodic, with a frequency equal to the stimulation frequency,

denoted f0. It is therefore natural to study the discrete Fourier transform of our

time series:

Yv(t) =
T−1∑

f=0

cv(f)e
2iπft
T ∀t ∈ {0, · · · , T − 1} (5.1)

where cv(k) = 1
T

T−1∑

t=0

Yv(t)e
− 2iπkt

T ∀ k ∈ {0, · · · , T − 1}

A simple relation links the stimulus frequency k0 to ω0, the stimulus pulsa-

tion3:

ω0 =
2k0π

T

We are interested in the part of the signal at the frequency k0. According to the

discrete Fourier transform properties, equation (5.1) can be written:

∀t ∈ {0, · · · , T − 1}, Yv(t) = βv,0 + cv(k0)e
2iπk0t
T + cv(T − k0)e

2iπ(T−k0)t
T + εv(t)

where βv,0 is the mean of the temporal signal and εv(t) the signal components at

frequencies different from k0.

We have the following properties:

Yv(t) ∈ R =⇒ cv(T − k0) = cv(k0)

t ∈ N =⇒ e
2iπTt
T = e2iπt = 1

so that ∀t ∈ {0, · · · , T − 1}:

Yv(t) = βv,0 + cv(k0)e
2iπk0t
T + cv(k0)e

2iπ(−k0)t
T + εv(t)

= βv,0 + 2Re(cv(k0)e
2iπk0t
T ) + εv(t)

= βv,0 + 2Re(cv(k0)) cos(2πk0

T
t)− 2Im(cv(k0)) sin(2πk0

T
t) + εv(t)

= βv,0 + 2Re(cv(k0)) cos(ω0t) + 2Im(cv(k0)) sin(ω0t) + εv(t)

= βv,0 + βv,1 cos(ω0t) + βv,2 sin(ω0t) + εv(t)

Detailing the formulas, it yields:





Yv(0) = βv,0 + βv,1cos(ω0 × 0) + βv,2sin(ω0 × 0) + εv(0)
...

Yv(T − 1) = βv,0 + βv,1cos(ω0 × (T − 1)) + βv,2sin(ω0 × (T − 1)) + εv(T − 1)

3The pulsation ω0, expressed in radian per second, is linked to the stimulation period T0, expressed in

seconds, by the simple relation: ω0 = 2π
T0
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We therefore define two temporal regressors:

X1 =




cos(ω0 × 0)

cos(ω0 × 1)
...

cos(ω0 × (T − 1))




and X2 =




sin(ω0 × 0)

sin(ω0 × 1)
...

sin(ω0 × (T − 1))




(5.2)

so that:

Yv = βv,0X0 + βv,1X1 + βv,2X2 + Ev (5.3)

where : - X0 is the temporally constant regressor, i.e. a unity vector of dimension T

(all coordinates equal to 1)

- Ev ∈ RT is the residual error, i.e the part of the signal not explained by our

model, corresponding to all frequencies different from k0.

Equation (5.3) can be written in matrix form:

Yv = XBv + Ev (5.4)

The (εv(t))t=0,...,T−1 are supposed to be independently and identically distributed

(iid), following a N (0, σ) law. This assumption is justified thanks to the high-pass

temporal filter applied during the preprocessing step, which removes temporal

autocorrelations.

The constant regressor does not play any special role in the remainder, it is just

a way to center each session signal. The vectors X1 and X2 are decorrelated, as

Cov(X1, X2) = 0. Furthermore, the regressors are decorrelated from one session

to the other as they are not applied to the same data. Consequently, our design

matrix X is of full rank.

We can get a graphical description of our model via SPM, as shown in figure 5.7,

in particular with the correlations between the different model regressors Xi.

Lastly, within this model we will look closely at two parameters:

- ‖2cv(k0)‖2 = β2
v,1 + β2

v,2 coding the strength of the frequency k0 in the voxel time

course,

- φ = arctan
(
βv,2
βv,1

)
which is an estimator of the fMRI signal phase.

The same model is applied to each stimulus, so that for each subject we de-

fine 4 models (formally similar) with 2 regressors each (ignoring the constant

regressors).
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Figure 5.7: Graphical description of the statistical model used in retinotopic data analysis.

The upper graph represents the SPM design matrix, in which each column corresponds

to the values of a given regressor across scans. The four right columns are the constant

regressors. The lower graphic shows the orthogonality of the design matrix, i.e. the

correlation between the regressors of our model. They all appear to be decorrelated as

expected (represented by the white color), implying that our design matrix is of full rank.
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The regressors coefficients βv,i estimation is performed with the classical least-square

technique, as detailed in paragraph 4.2.3. Let us recall that under the assumption of

Gaussianity for the residuals and also assuming their independence, this estimation

is the one of maximum likelihood and also the best linear un-biased estimation of

our regressors.

Statistical tests

The next step consists in producing statistical tests on the parameters βv,i in order

to decide whether a given voxel signal variations is explained or not by our model.

It naturally leads to an F-test on these coefficients. We will deduce from this test a

mask of the voxels considered as activated in the final step.

In our study, we defined two slightly different tests that can be applied to every

voxel: the global test can be used when we acquire both polar angle and eccentricity

maps, whereas the specific test is applied to a single stimulation type. To lighten

the notations, we drop the v index in the remainder.

Global test

The first test, allows to answer the question: “is our set of regressors accounting well

for the signal variations at the voxel considered?”. It is called “effect of interest”

in the SPM language. The constant regressors being excluded, we test for the null

hypothesis:

(H0) : βs1 = 0 and βs2 = 0 ∀s ∈ S = {wc,wa, re, rc}

where wc, wa and re, rc are respectively notations for wedge clockwise or anti-

clockwise and ring expansion or contraction. The null hypothesis (H0) is equivalent

to the nullity of ‖cv(k0)‖, implying that no signal contains any significant energy at

the fundamental frequency of the stimulus.

The alternative hypothesis is:

(H0) : ∃ (i, s) ∈ {1, 2} × S / βsi 6= 0

meaning that our model “explains” at least a significant part of the signal, or from

a frequential point of view, that a significant part of the signal contains energy at

the stimulation fundamental frequency.

To be able to perform a statistical test, we need an additional assumption on

the βsi : they are supposed to follow a Gaussian law N (0, σ
′
). They are therefore all

independent (as they come from Fourier decompositions) and Gaussian. Then:

2∑

i=1

∑

s∈S
(βsi )

2  (σ
′
)2χ2(8)
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.

The global model residuals variance is estimated with the sum of the residuals

divided by their degrees of freedom. By assumption, εt  N (0, σ) and are

independent, we then have:

1

T − q
T−1∑

t=0

ε2t =
E>E
T − q  σ2

χ2
T−q

T − q

where T − q is the number of degrees of freedom remaining in ε. Here, q = 12 (the

eight βsi plus the four constant regressors).

The respective variances of the residuals and the βsi are identical (σ = σ
′
), as they

correspond to the global variance of the signal Yv. Moreover, the residuals and the

β are independent thanks to the Fourier decomposition of the signal (equation 5.1).

The statistical test thus relies on:

F̂ =

1
8

2∑

i=1

∑

s∈S
(βsi )

2

ET E
T−12

 F(8, T − 12)

where F(x, y) is the Fisher law with x and y degrees of freedom. This ratio is

estimated and then compared to the p-value f of the corresponding Fisher law4 at

each voxel. We typically take p = 10e−3. Any voxel verifying F̂ > f (unilateral

right test) does not follow (H0), so its signal is partly explained by our model. Such

a voxel will be part of the “effect of interest” mask.

Specific tests

The other contrast we defined can be considered as more specific in the sense that

it is linked to only one family of stimulus (wedge or ring). It allows to test one of

the two assumptions:

(Hw
1 ) : βwc1 = 0 and βwc2 = 0 and βwa1 = 0 and βwa2 = 0

or

(Hr
1) : βre1 = 0 and βre2 = 0 and βrc2 = 0 and βrc2 = 0

The corresponding statistical tests are derived as before, leading to a F(4, T − 6)

law. Specific “wedge” and “ring” masks can thus be derived. This specific test

4It shall be noted that the way SPM computes the degrees of freedom is slightly more complicated

because it takes into account the high-pass and low pass filtering applied by SPM; this leads to non integer

values for these degrees of freedom, but the used here is sufficient, the threshold values computed being

very close to the theoretical values.
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allows to check if the respective model of each type of stimulus explains well the

observed signal, or can also be used when only one stimulus type is used. Figure

5.8 presents typical F̂ values of a specific test for the wedge stimulus.

Figure 5.8: An axial slice of the values of the statistics F̂ for the wedge stimulus. The

values under the theoretical p-value computed for p = 0.001 are discarded. The colored

voxels are those considered as activated and kept in the analysis.

Globally, even when we acquire both polar angle and eccentricity data, we prefer to

analyze our results with each specific mask separately, as the two families of stimuli

can be viewed as independent. We however considered the global mask as neurons

activated by one family of stimulus (e.g. the ”wedge”) should also be activated by

the other (e.g. the ”ring”), the portion of the visual field globally covered by both

stimuli being strictly identical. The difference in the final activated voxel masks

derived either from a global or two specific tests has shown to be negligible in

practice.

We wrote a series of scripts (”batches” in the SPM99 vocabulary) to auto-

mate this computing steps using SPM99, since defining the model by hand is time

consuming and repetitive when analyzing many datasets. Those scripts define the

model and the contrasts leading to our F-test, then call the appropriate SPM99

function used for the regression step and the statistics estimation. Note that the

temporal filtering parameters are also driven with this script and applied before

the model parameters estimation. Various parameters can be easily changed to fit,

among others, with the session’s duration, the stimulus fundamental frequency, the

TR duration, etc.
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5.1.5 Angular values computation

The last step in the analysis of retinotopic data consists in recovering the phase of

the signal for each voxel included in the statistical mask computed previously. The

latter is linked to the stimulus position that induced the voxel’s response.

According to our paradigm and the construction of our model, this would be

relatively straightforward without the hemodynamic filtering. Indeed, as seen

previously, φ = arctan(β2

β1
) is an estimator of the signal phase, corresponding to a

unique stimulus position in the visual field. But the response we are faced with is

filtered and delayed by the hemodynamic response, making the underlying position

estimation more difficult. Taking advantage of the two directions of rotation

for each family of stimulus nonetheless allows to estimate, for each voxel, this

hemodynamic delay.

Let us consider a given supra-threshold voxel v, and define the following no-

tations:

- θ+ (respectively θ−) is the angle coding for the position of the stimulus rotating

positively (resp. negatively) in the visual field.

- φ+ (resp. φ−) is the periodic signal estimated phase for the stimulus in positive

(resp. negative) rotation.

- τ+ (resp. τ−) is the “expected” signal phase, i.e. the delay of the neuronal

response (close to zero at our temporal scale), linked with the position θ+ (resp.

θ−) of the stimulus by the relation θ+ = τ+ω0 (resp. θ− = τ−ω0) where ω0 is the

stimulus pulsation. We have the relation τ+ = 2π − τ−.

- th is a delay in the recorded BOLD response, i.e. the hemodynamic delay at the

voxel v plus the acquisition delay linked to the corresponding slice in the volume.

We assume that this delay is identical for the two directions of rotations of the same

stimulus, which appears to be reasonable5. Similarly, this delay could also comprise

some physiological aspects as lateral propagation effects which could reasonably be

assumed to be identical in both directions of rotation.

5Note that this assumption is valid concerning the slice acquisition delay because our stimulus time

course is precisely synchronized with the volume’s acquisition, making each slice acquired with the same

delay with respect to the stimulus change of position in both directions of rotation.
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0

θ

θ− = θ − ω0th

θ+ = θ + ω0th

signal phase: φ−

signal phase: φ+

Figure 5.9: Description of the stimulus positions in the visual field linked to the periodic

signal measured phases. This sketch refers to the wedge stimulus. The red and green color

correspond to a positive and negative rotation respectively. θ is the angle corresponding

to the stimulus position in the visual field inducing a simulation of the neurons included

in the voxel considered, th is mainly due to the hemodynamic delay of this voxel, ω0 the

stimulus pulsation. The conjunction of the estimated phases in the periodical signals, φ+

and φ−, allows to evaluate the values of θ and th.

We thus have :
φ+ = τ+ + th

= θ+

ω0
+ th

φ− = τ− + th

= 2π − τ+ + th

= 2π − θ+
ω0

+ th

We can remove the term 2π, useless here as our results will in fine be defined modulo

2π. It leads to:

th =
φ+ + φ−

2
(5.5)

θ+ =
ω0(τ+ − τ−)

2
(5.6)

The hemodynamic delay is defined modulo π by equation (5.5), but the ambiguity

is removed by the fact that the stimulus frequency is chosen low enough to allow

the hemodynamic delay value to be, expressed in terms of stimulus position angle,

between 0 and π (modulo 2π).

At the end of this step, we are thus able to evaluate at each voxel concerned by our

stimulus the value of the angle (thus the underlying position) of the stimulus giving

rise to its activity.

As for the statistical model definition and the estimation of parameters, this
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phase estimation step was automated using a Matlab program. It leans on the SPM

interface to select the images (i.e. the β images and the F-values image).

5.1.6 Angle maps analysis

We can now analyze the angular maps obtained through the functional processing

and the statistical analysis described above. In the following paragraphs, after a first

rapid verification of the results, we discuss the qualitative aspects of our visual field

maps and compare our results to the literature. We also study the polar angle maps

we obtained while varying some stimulus parameters, leading to an optimal stimula-

tion paradigm. Finally, we address both the intra- and inter-subject reproducibility

of our approach.

First verification

The first point to address is whether the angle values found are properly located

according to anatomo-functional a priori knowledge. As mentioned in paragraph

5.1.1, the eccentricity maps around the calcarine fissure should show increasing val-

ues from the occipital pole to more anterior brain regions, while polar angle maps

should reveal the visual field splitting, each hemifield projecting on the contralateral

hemisphere. We also check for both angular maps smoothness along the cortical

surface. This rough verification can be performed on 2D slices showing the angular

maps overlaid on the subject anatomical image, as illustrated in figure 5.10.

A more appropriate way to assess the results is to render the eccentricity and the

polar angle maps on the subject’s cortical surfaces, using the construction of cor-

tical geometry models with methods detailed in chapter 3. From these surfacical

maps, we can also address some debated issues regarding the organization of human

occipital visual field maps.

Eccentricity maps

General results The ring stimulus is used to get the phase-encoded eccentricity

map, mapping the cortical responses to a ring located at various eccentricities. Our

stimulus extends radially up to a maximum of 9.75 degrees of visual angle.

As a general qualitative result, we find, for every subject tested, the classical pattern

in which a large foveal representation lies at the occipital poles around the calcarine

fissure and as eccentricity increases, the corresponding representations appear more

anterior and medial.

In [237], Wade and colleagues reported an isolated foveal representation ventrally

and anteriorly to the V1/V2v/V3v areas. We confirm the presence of this foveal

representation in our maps for every hemispheres analyzed. In the dorsal surface,
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Figure 5.10: Eccentricity (left) and polar angle (right) maps obtained for a given subject,

overlaid on an axial slice of the anatomical image. Both maps appear reasonably smooth

along the cortical surface of the occipital lobe. Furthermore, well-known global properties

of human retinotopic maps are verified: the angles corresponding to low eccentricity values

(foveal) are close to the occipital lobe, and we move further anteriorly as the eccentric-

ity increases; in the polar angle map, each visual hemifield projects respectively to the

contralateral hemisphere.
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Figure 5.11: Example of the eccentricity map in a medial view of the left occipital lobe of

subject JK. The left figure shows the original surface and the right one an inflated view.

We can clearly see the isolated ventral foveal activation reported by Wade et al. (lower

arrow) [237], located ventrally beyond the V1-V2v-V3v confluent foveal region. The areas

borders are defined using the subject’s polar angle map (see below). The upper arrow

designate a dorsal foveal representation lying clearly beyond V3d. The color gradient

going to blue at the border of the map does not correspond to an angular representation

but is actually an Open GL interpolation that cannot be removed under the current version

of the Anatomist visualization software.

extending from the posterior portion of the intraparietal sulcus, the same group also

reported two distinct foveal representations [177]. We can observe a clear foveal

activation in some subjects but can not reliably distinguish two distinct represen-

tations. Figure 5.11 shows an eccentricity map overlaid on the subject’s left hemi-

sphere, where both a ventral and a dorsal activations to low eccentricities are found.

Foveal sensitivity The eccentricity maps on the cortical surface are smooth and

qualitatively match what we expected to see from other studies. However, the ex-

treme occipital pole is not fully covered of angular values, whereas we can expect

here a foveal representation. We wondered if the periodic stimulation paradigm used

was sensitive enough to foveal stimulus position. To answer this question, we tested

in one subject a classical block design to contrast a 5 degrees eccentricity stimulation

with a uniform grey field fixation (see figure 5.12). Each condition was presented 10

times, each block lasting 8 TR (or 16,888 s).

137



Figure 5.12: The block design used to map the foveal representations in the occipital

cortex. Between two foveal stimulation blocks, the baseline condition is a uniform mid-

grey field with the red fixation cross.

The analysis was performed classically with a linear regression of the box car function

representing the stimulation (1 during foveal presentation, 0 otherwise) convoluted

with a classical hemodynamic response model from SPM. No spatial smoothing was

performed on the data, to prevent any blurring effect. We show in figure 5.13 the

comparison between the t-map drawn from this block design experiment thresholded

at p < 0.001 uncorrected and the angular values computed from 4 cycles (contracting

and expanding) of the ring stimulus. We compared directly the results in slices of the

3D volume to avoid any mismatch that could arise from the cortical surface extrac-

tion or the projection of the functional data onto it. The comparison is presented

here for a single axial slice, but the result is qualitatively equivalent for any slice

of the volume: there is a strong overlap between any value in the eccentricity map

coding for a foveal ring position and supra-threshold t-values from the block design

foveal stimulation. This is in particular the case in the ventral foveal representation,

located ventrally beyond area V3v, as already mentioned above. At the very pole of

the occipital lobe, we do not find any significant t-value with our block paradigm,

consistent with our eccentricity maps. This lack of signal at this precise anatomical

location is also found in most figures of the literature showing eccentricity maps,

though this point is generally not addressed. It is nonetheless quickly discussed in a

footnote in [192]. One reason could be small eye movements can affect the signal to

noise ratio in the macula, where the receptive fields size is smallest. Another source

for this missing signal may be attributed to echo-planar geometric distortions induc-

ing a compression in the occipital pole. For technical reasons, we could not record

the appropriate field maps to estimate and correct these distortions. Finally, a lack

of power in the measurements and the different analysis processes could also explain

this missing “center of gaze” representation.
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(A) Block foveal (B) Ring (4 cycles)

Figure 5.13: Comparison between (A) the t-map, contrasting foveal stimulation blocks

versus uniform grey field fixation blocks (3.2 is the t-value for p=0.001 uncorrected) and

(B) the eccentricity map derived from the 4 cycles ring stimulus, in an axial slice. The t

values above the statistical threshold in (A) systematically match the low angular values

in (B).

Polar angle maps

General results Stimulating a subject using the wedge stimulus allows to get his

polar angle map, mapping the cortical activity implied by a cone located at different

positions around the center of gaze. From previous neurophysiological studies, it ap-

pears that the boundaries of early retinotopically organized visual areas are defined

by reversals in the representation of the polar angle. This stimulus is thus sufficient

to segment the first retinotopic visual areas.

As for the eccentricity maps, the general pattern of representation of the visual field

on the cortical surface is smooth, accordingly to the basic principles of the retino-

topy. Based on the literature agreements, we can reliably identify areas V1, V2v,

V2d, V3v, V3d and V3A in every subject scanned. Figure 5.14 shows the polar

angle patterns generally found in human fMRI retinotopic mapping reports overlaid

both an the original and an inflated version of the GM/WM interface.

Wedge stimulation optimization We tested different conditions for the wedge

stimulus in order to optimize our stimulation process. Following [239, 200], we tried

a bifield wedge stimulus instead of the unifield wedge, for two main reasons:

- the stimulus being symmetrical with respect to the fixation point, the subject

would be helped maintaining its gaze in the center of the display,

- the stimulation could run up to twice quicker.

The main drawback of n-wedges stimulus (n ≥ 2 being the number of simultaneous
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Figure 5.14: Polar angle map overlaid on subject’s left hemisphere either folded (left) or

inflated (right). We find the general angular values pattern all investigators are agreed

upon in the literature for areas V1, V2v, V2d, V3v, V3d and V3A. The boundaries between

the above mentioned areas are manually drawn.

sectors) stems from the more difficult signal phase interpretation than in the

unifield wedge case. Indeed, with multiple wedges stimuli, the analysis globally

remains the same, but the results show a phase ambiguity: a given value of the

BOLD response phase corresponds to n locations in the visual field. When n = 2,

the prior knowledge about the hemisphere/hemifield specialization implies this

ambiguity only appears for the vertical positions, other positions being uniquely

defined in each hemifield, thus in each hemisphere. The vertical position can

then be disambiguated taking into account the expected local smoothness of the

maps. An alternative was proposed in [200] in which the authors proposed to split

vertically the bifield wedge stimulus while it spans the vertical meridian to avoid

this phase ambiguity (see their figure 1). For n ≥ 3, the phase ambiguity becomes

more problematic and a priori knowledge may not be sufficient to resolve the latter.

We tested a bifield wedge stimulation in comparison to the classical unifield wedge,

also varying the spatial extent of the sectors (see figure 5.15) and the rotation

velocity for the bifield stimulus.

Different velocities

We first compared on 3 subjects the final maps obtained with (i) the classical 80

degree unifield wedge, (ii) a 40 degree bifield wedge and (iii) a 80 degree bifield

wedge, as illustrated in figure 5.15.
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“Unifield” Wedge “bifield” 80◦ Wedge “bifield” 40◦ Wedge

Figure 5.15: The different wedge stimuli tested.

In the 6 hemispheres we analyzed, we observed a lower signal in both bifield

wedges conditions, leading to less supra-threshold voxels (see table 5.1) and

therefore less comprehensive maps than the unifield wedge as illustrated in figure

5.16.

Subject Unifield 80◦ Bifield 40◦ Bifield 80◦

CG 31106 19287 20195

GR 50473 23282 21711

SR 49154 25774 24683

Table 5.1: Number of supra-threshold voxels (p=10e−3 uncorrected) for different stimulus

pattern rotating at different velocities, the bifield wedges stimuli rotating twice quicker

than the unifield wedge.

“Unifield” Wedge “bifield” 80◦ Wedge “bifield” 40◦ Wedge

Figure 5.16: Comparison of polar angle maps projected on the inflated left hemisphere

with respect to different stimulations (subject CG). The unifield stimulus clearly leads to

more signal, thus angular values, than the bifield, rotating at twice the unifield wedge

velocity.
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These results might appear in contradiction with the study of Slotnick and Yantis

[200] at first sight, but having a closer look at their figure 3 suggests a comparable

signal loss with the bifield wedge as compared to the unifield wedge. The rotation

velocity, which for the bifield wedges was twice that of the unifield wedge, might

account for this important signal loss. Indeed, if the stimulation frequency is too

high, the low pass filter of the hemodynamic response affects these high frequencies,

including the fundamental stimulation frequency, in many voxels. Moreover, the

higher quality achieved with the 40 degree bifield wedge than with the 80 degree

also probably comes from the hemodynamic response low-pass filter, preventing the

signal to return to its baseline between two consecutive stimulations with the larger

wedge. This phenomenon is supposed to occur twice as much with the 80 degree

wedge than with the 40 degree.

Same velocity

To strictly isolate the bifield versus the unifield wedge comparison, we performed a

subsequent experiment on 3 different subjects, using the same rotation velocity for

each stimulus. Maps qualitatively look much closer to each other in this comparison

than in the previous one. However, the amount of supra-threshold voxels is still

higher for the unifield stimulus (see table 5.2). Figure 5.17 shows a qualitative

comparison on a representative hemisphere.

Subject Unifield 80◦ Bifield 40◦ Bifield 80◦

LQ 60902 46151 42570

CV 45197 37310 34494

IH 64413 51070 42671

Table 5.2: Number of supra-threshold voxels (p=10e−3 uncorrected) for different stimulus

pattern rotating at the same velocity.

Eye movements could be a reason responsible for this difference between unifield

and bifield wedge maps. Eye movements are indeed twice more likely to lead

to unexpected stimulation with the bifield than with the unifield stimulus. The

resulting signal is thus more likely to be inconsistent with respect to the stimulus

frequency and consequently considered as noise. However, as we were not yet able

to measure eye movements during the experiments, we could not quantitatively

confirm this assumption.

As a result of these multiple comparisons with the wedge stimulus, the uni-

field wedge with a rotation frequency of 1/38 Hz was kept for its higher accuracy.
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“Unifield” Wedge “bifield” 80◦ Wedge “bifield” 40◦ Wedge

Figure 5.17: Comparison of polar angle maps projected on an inflated left hemisphere with

respect to different stimulations. The unifield stimulus leads to more activations than the

bifield, even if rotating at the same velocity (subject LQ).

5.1.7 Mapping reproducibility

Beyond the confrontation of our maps with the results from other labs, one way to

assess the robustness of our retinotopic mapping procedure is to study its repro-

ducibility for different subjects (inter-subjects reproducibility) but also for a single

subject in different scanning sessions (intra-subject reproducibility).

Inter-subjects reproducibility

As already discussed in paragraph 5.1.6, our maps show a high agreement across

subjects, as we globally find the same patterns of angular values representations, at

least in the systematically mapped cortical region comprising V1, V2v, V2d, V3v,

V3d and V3A.

Intra-subject reproducibility

Intra-session The stimulus optimization previously detailed allows us to check

for the reproducibility of the polar angle map in a given subject within the same

scanning session. Figures 5.16 and 5.17 illustrate this intra-session reproducibility

of a given subject, using different stimulus parameters. The red crosses are linked

for each image, showing the high quality alignment of area borders (here the lower

boundary of V1) found in each map. The differences in the maps result mainly in

a lack of significant signal at some voxels. This is to be mainly linked with the

changes in stimulation as discussed in the previous paragraph.
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Figure 5.18: Intra-subject inter-sessions reproducibility (subject LQ). The data from ses-

sion 2 were realigned in session 1 coordinate system using the anatomical images coregistra-

tion transformation. The maps are qualitatively identical, showing the high reproducibility

of the whole procedure. Specifically, the areas borders based on the polar angle map from

session 1, depicted by the black lines in the top images, fit accurately the polar angle map

derived from session 2 data.
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Inter-session The reproducibility of the maps derived from a given subject through

different scanning sessions was also assessed for two different subjects. The results

for one of them are shown in figure 5.18. The different maps are computed inde-

pendently for each session. The realignment between different structural T1 images

acquired at each session is done using the standard SPM2 coregistration algorithm,

registering each session anatomical scan on that of an arbitrary chosen reference

session. The transformations estimated are then applied to the respective func-

tional images and the preprocessing and analysis are applied independently to each

functional dataset. Resulting independent phase maps are finally displayed on the

inflated mesh of the GM/WM interface extracted from the reference session anatom-

ical scan. Both eccentricities and polar angle maps show a strong overlapping as well

as the areas segmentation that can be obtained from these maps. This inter-session

reproducibility was found in both hemispheres of the two subjects analyzed. These

results prove the high intra-subject and inter-session reproducibility of the whole

procedure implemented.

5.1.8 Mapping efficiency

Following the validation of our method, we now compare our approach with the

literature, first in terms of the overall experiment duration and second regarding

cutting edge issues about the cortical visual field representations.

Experiment duration

Our initial goal was to accurately identify the low-level retinotopic areas within

a minimum scanning duration. The experimental and image analysis procedure

we have designed allows to precisely map the occipital visual field representations

consensually reported in the literature based on a 15 minutes functional scanning

experiment. This rapid method compares favorably to the different procedures re-

ported in the literature, as summarized in table 5.3. Note that although Slotnik and

Yantis claim a very low duration of just over 4min, they do not perform eccentric-

ity maps measurements and only use a single rotation direction for the polar angle

stimulus. The latter point, also explicitly notified in [49, 62, 39], implies the use of

a constant hemodynamic response delay over the voxels, which might significantly

bias the resulting phase map. Considering similar limitations, our procedure is ac-

tually comparable to that of Slotnik and Yantis as we require 5mn30s to acquire a

complete set of the wedge rotating in a single direction and globally faster than the

other groups. As we already mentioned above, this rapid acquisition might explain

the lower signal obtained dorsally and ventrally.
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Reference #Cycles Averaging Eccentricity Polar Angle

/run mapping mapping

Sereno et al. [192] n.s. n.s. n.s. n.s.

DeYoe et al. [49] n.s. 2-4 n.s. n.s.

Engel et al. [62] 4-6 n.s. n.s. n.s.

Tootell et al. [222, 95] n.s. 4-12 4-12x8mn32s 4-12x8mn32s

≈20mn-1hr ≈20mn-1hr

Smith et al. [203] 4 2 4x216sec≈14mn 4x216sec≈14mn

Wade et al. [237] 6-8 2-4 n.s. n.s.

Warnking et al. [240] 14 none 2x7mn16≈14mn30s 2x7mn16≈14mn30s

Dumoulin et al. [57] 10 3-4 3-4x6.5mn≈22mn 3-4x6.5mn≈22mn

Slotnik et al. [200] 6 none none 4mn30

Conner et al. [39] 8 2 2x8mn32≈17mn 2x8mn32≈17mn

Brewer et al. [15] 25 n.s. 25x24sec≈10mn 25x24sec≈10mn

Our method 4-8 none 2x2mn32s≈5mn 2x5mn04s≈10mn

Table 5.3: Comparison of the retinotopic mapping methods reported in the literature with

respect to the number of complete cycles by run, the number of identical runs averaged and

the functional images acquisition duration for each phase map type. ”n.s.”=non specified

Beyond the “great agreement zone”

Beyond V3A dorsally and V3v ventrally, maps and conclusions are getting less

consensual in the human fMRI retinotopic mapping literature.

Dorsal maps

In the dorsal occipital region, another quarterfield representation labeled V3B was

reported by Smith et al. [202]. Regarding its location, it was suggested to be

similar to area KO previously identified by Van Oostende et al. [233] on the basis

of strong responses to kinetic boundaries. A complete hemifield representation was

afterwards reported by Wandell’s group in [177] at the same location (following

Smith and colleagues, they labeled it V3B). Tootell’s group also reported in [217]

and [216] another area abutting dorsally the V3A/V3B region, labeled V7 and

supporting an upper quarter-field representation. Yet, Press et al. later reported in

[177] a complete hemifield representation in this area V7.

Our results in this portion of the cortical surface are less reproducible from subject

to subject and often lack signal, probably because we reach the accuracy of our

method which performs retinotopic map acquisitions too fast to provide enough

signal (only 8 complete cycles for each rotation direction of the wedge, without

any additional averaging of runs). These issues should be resolved with a more

146



Figure 5.19: Concurrent scenarii for the ventral occipital visual field maps beyond V3v.

The hV4 model proposed by Wandell’s group assigns a complete hemifield representation

parallel to V3v upper vertical meridian representation. On the other hand, the V8 model

proposed by Tootell’s group suggests a parallel quarterfield representation labeled V4v

followed by perpendicular complete hemifield representation labeled V8. The values from

the white circles show the expected polar angle and eccentricity values close to V3v ventral

border by both models. Figures are adapted and modified from [15].

sensitive data acquisition (for instance using a surface coil), with more cycles in the

stimulus presentation or an averaging of signals across different acquisition sessions

and maybe with further improvements in the data processing.

Ventral maps

Moving ventrally beyond V3v, we also find some retinotopic signal, but the visual

field representation and the labeling is once again not in agreement here. Hadjikhani

et al. reported in [95] a quarterfield representation, labeled V4v, followed by a

complete representation they called V8 (supposed to be a color sensitive area). But

the authors only show one dataset with a V8 fovea, whereas later publications from

this group (see for instance [222]) show retinotopic maps not always consistent

with this interpretation. On the other hand, Brewer et al. recently reported in [15]

three complete hemifield representations located ventrally to the vertical meridian

representation of area V3v. Figure 5.19 summarizes the concurrent labeling in the
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ventral occipital cortex.

According to our data, our conclusions are closer to those from Wandell’s group,

as shown in figure 5.20. In particular, the V8 assumption seems invalidated by the

absence of foveal representation for each polar angle values in this portion of cortex

beyond V3v. But similarly to the dorsal occipital region, more reliable signal is

required in this ventral region of the occipital cortex to draw a solid conclusion

and to confirm or infirm the VO model further suggested by Wandell’s group.

For instance, finer measurements should be obtained using more specific stimuli

patterns such as chromatic contrast, as high selectivity to color stimuli was reported

in this part of the visual cortex [148, 237].

Figure 5.20: Example of hV4 polar angle and eccentricity maps (subject LQ). These results

are consistent with a complete hemifield representation beyond V3v.

148



5.1.9 Area delineation

Beyond the characterization of the visual field representations over the cortical

surface, the retinotopic mapping allows to delineate the different retinotopic areas

revealed. One can then extract the subset of cortical voxels corresponding to

each area identified, thereby building coherent Regions Of Interest (ROIs) that

can be used in subsequent analysis. We first present below the Visual Field Sign

method tested on our data and then quickly describe a manual procedure we can

alternatively use to properly delineate the visual areas.

Visual Field Sign maps

In [193], Sereno et al. introduced an automatic method combining the eccentricity

and polar angle maps to construct the Visual Field Sign (VFS) map, allowing a

direct delineation of the retinotopic cortical areas from electro-physiological data.

The technique was then applied to fMRI retinotopic maps in [192] and [239], and

further implemented in a volumetric fashion in Dumoulin et al. [57].

The Visual Field Sign is built to indicate the orientation of the representa-

tion of the visual field, either mirror or non-mirror, on the cortical surface. It is

given by:

V FS = sign(det(∂ψ))

where ψ : (x, y) ∈ R2 7→ (ρ, θ) ∈ R+ × [−π;π[ is the function mapping, for each

point (x, y) on the cortical surface, its preferred position (ρ, θ) in the visual field, as

illustrated in figure 5.21.

The VFS computation therefore involves the local gradients of the eccentricity (noted−→∇ρ) and the polar angle (noted
−→∇θ) maps, leading to the equivalent formulation:

V FS = sign(det(
−→∇ρ,−→∇θ,−→N ))

where
−→
N is the exterior normal to the cortical surface. According to the retinotopic

properties of the visual cortex, this sign will change between two neighboring areas,

allowing us to easily delineate them.

The gradient directions of both functions
−→∇ρ and

−→∇θ (defined on the cortical

surface) are estimated at each vertex of the underlying mesh with a least square

method, using the current vertex neighborhood information. Formally, we look for

the vector V̂ verifying:

V̂ = Min ‖δF − V δX‖
V
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Figure 5.21: Schematic representation of the ψ function, linking points defined on the

cortical surface to the corresponding preferred position - supposed to be the center of an

ideal voxel’s receptive field - in the visual field.

Where: - F is the function ρ or θ, δF a local variation of F ,

- δX is a local variation of the cortical surface coordinates.

By definition of the gradient:

dF = ∇FdX
⇒ dF T = dXT∇F T

⇒ ∇F T =
(
dXdXT

)−1
dXdF T

This computation is done at each vertex of the mesh, directly on the cortical

surface, modeling it locally as a plane orthogonal to the normal
−→
N . We perform this

computation on the inflated surface, avoiding problems with locally high curvature

values (where the local plane approximation of the surface would not be valid

anymore).

The first problem we encountered with this computation was many gradients

close to zero. The cortical mesh is much more precise than the original volume

of the functional data. Consequently, the original angular maps are oversampled

on the mesh, often giving rise to close to null variations between two neighboring

vertices. To solve this problem, we considered a higher order neighborhood. For

instance, the 2nd order neighborhood of a vertice v is made of the neighbors of the
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neighbors of v, without its first order neighborhood and v itself. Depending on the

degree of the mesh precision (increasing the latter globally decreases the distance

between neighboring vertices), it was found to be useful to use a third or even higher

order neighborhood to have a more reliable estimation of these gradients. This

indeed solves the problem that leads to null gradients at many vertices. However,

an important issue remained: the VFS map obtained was still noisy with respect to

the ideal delineation expected (see figure 5.22-B). Two techniques were envisaged

to improve the VFS maps. We first tried to smooth the ring and wedge phase

maps defined over the cortical surface using an appropriate surface-constrained

smoothing method developed by Rachid Deriche et al. in the laboratory [205]. It

is actually the same algorithm employed in the mesh based smoothing approach

described in 4.1.5. The local gradients estimation followed by the VFS computation

are then performed classically. Although this technique removes most unexpected

VFS reversal while preserving the seeked borders, it actually does not enhance

sufficiently the results to allow a straightforward area segmentation (see figure

5.22-C). In a second attempt, we performed a filtering directly on both surfacical

gradient fields
−→∇ρ and

−→∇θ. Each original vector field is independently smoothed

with an appropriate method also developed by Lucero Lopez and colleagues. Details

about this method can be found in [139, 198]. This 3D vector field smoothing step

is followed by the classical VFS computation. The resulting VFS maps are once

again far less noisy than the classical ones and also better than that obtained with

the phase maps surfacical smoothing, especially preserving better the stripes shape

of V2 and V3 (see figure 5.22-D). Nonetheless, the final maps are not accurate

enough to allow a fully automatic identification of the occipital retinotopic areas.

A closer look at the data over the cortical surface reveals that our angular maps

were not as regular as they are supposed to be with respect to electrophysiological

data, explaining the problems we encounter with this VFS computation. Besides,

personal communications with other laboratories applying the retinotopic mapping

techniques and trying the VFS lead us to the conclusion that this method is not

robust enough for fast retinotopic map acquisition. Let us recall that our technique

allows the acquisition of these maps (eccentricity and polar angle) within 15 minutes

of functional scans, which is significantly less than what is usually reported in

the literature. Last but not least, a closer inspection of the results shown in the

literature using the VFS computation often reveals the same noisiness in their VFS

maps, (e.g. figure 3 in [192], figures 7 and 8 in [57]). This review led us to look for

an alternative way to segment our retinotopic areas.
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A) Polar angle map B) original VFS map

C) VFS map after 1D smoothing D) VFS map after 3D smoothing

Figure 5.22: Visual Field Sign maps (see text). A) Polar angle map overlaid on the

inflated left occipital cortex. The areas boundaries were drawn by hand, based on the

angular variations pattern. The VFS results based on B) the original polar angle and ec-

centricity maps, C) the surface-based smoothing of the angular maps (equivalent Gaussian

kernel with σ =3mm) and D) the surface-based angular gradients field smoothed along

the cortical geometry. Yellow (blue) indicates a locally mirror (non-mirror) visual field

representation.
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Manual area delineation

In order to get a correct delineation of our visual retinotopic areas, we can use a

manual area definition, mainly based on the polar angle map of the subject. As we

already mentioned above, this map gives the information of angle reversion needed

to properly delineate the first retinotopic areas.

This method allows us to correct for the noise found in our VFS maps -which can

nonetheless be used as a starting point. Most importantly, it can also be used to

completely delineate the retinotopic areas solely based on the polar angle values,

allowing faster functional scanning session to identify low-level visual areas.

We adapted the SUMA6 software to our needs, allowing to draw directly on the

inflated cortical surface and to save the 3D vertices coordinates from the original

(non inflated) surface. This adaptation mainly involved data format and coordinate

system conversions between the different softwares we used. Figure 5.23 illustrates

the delineation obtained with this procedure.

Figure 5.23: The subject’s polar angle map projected on a mesh of the GM/WM interface

(left) allows to delineate various occipital retinotopic areas as shown on the original mesh

(top-right) and on the inflated surface (bottom-right).

Using the manual area delineation procedure, we are able to delineate low-level

retinotopic areas of any given subject based on 15 minutes functional scans plus

the anatomical image acquisition time. However, our approach is time consuming

6SUrface MApping software, developed by Saad and Cox at the NIMH, NIH; documentation and binaries

are freely available at http://afni.nimh.nih.gov/sscc/staff/ziad/SUMA/SUMA doc.htm
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and manual editing is somewhat less reproducible than a completely automatic de-

lineation. We might further try other approaches like [53], using a model for each

phase map and warping these models onto the actual measurements, or in [57], al-

lowing a volumetric visual field sign computation (even if the resulting VFS maps

of the latter technique are not as accurate as ideally expected).

Volumetric definition of ROIs

The visual area segmentation technique described above can be used to derive vo-

lumic Regions Of Interest (ROIs) from surface-based defined regions, for instance

the subset of voxels representing V1. Starting from the surfacical area labeling, we

perform a “back-projection” consisting in the attribution, for each labeled vertex, of

a subset of voxels in the original volume, according to the projection technique used

to map the functional values on the cortical surface. We typically use an integration

(averaging) of the values at different voxels from the vertex considered (lying on

the GM/WM interface) to a certain distance along the local normal to the surface;

this distance is supposed to match the cortex thickness, typically 3mm. These ROIs

can then be used for any further experiment characterizing more precisely these

retinotopic visual areas.

5.1.10 Conclusion

The retinotopic maps we obtained are globally in agreement with the related litera-

ture and our results confirm some cutting edge questions, as the presence of a ventral

fovea representation beyond area V3v. Our general procedure is also currently ap-

plied by the INCM team in Marseille in a clinical study of the cortical organization in

patients suffering from retinal diseases such as visual scotomas. Preliminary results

were presented at two ophtalmology conferences [103, 102]. Beyond this mapping

aspects, we can derive within 10 minutes of functional scans surfacic or volumic

ROIs that can be used in other experiments exploring the human cortical visual

system. As our acquisitions are fast, complementary MRI scans such as functional

or diffusion tensor images can be acquired within the same scanning session.

Various aspects may nonetheless be addressed in future work. First, using com-

plementary stimuli patterns, we can expect to clarify visual field representations

beyond what we have called ”the great agreement zone”. Second, the scan duration

required to get retinotopic maps might be further lowered not only with technical

imaging advances but also with judicious stimulation tricks. For instance, it might

be possible to simultaneously map the polar angle and eccentricity coordinates using

two distinct frequencies, each specific to one dimension. Finally, a fully and reli-

able automatic method to delineate the different visual field maps would be of great

interest to facilitate this tedious and expert-dependent task.
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5.2 Functional mapping of hMT+

This section is dedicated to the functional mapping of area hMT+. We first recall

the main contributions in the neuroimaging literature to identify this portion of the

visual cortex before describing our choices and experimental results.

5.2.1 The hMT+ complex

The functional specialization of human cerebral cortex has first been demonstrated

with neuroimaging by Zeki and colleagues [257]. Using PET, they reported two

extrastriate regions, one in the ventral lingual and fusiform gyrus specially activated

by color stimuli, the other in the temporo-parieto-occipital junction activated by

motion stimuli. The latter is classically referred to as hMT/V5+ (i.e. the human

MT/V5 complex, we will refer to as hMT+ in the remainder), because it was orig-

inally thought to be the human equivalent to macaque’s MT, MST and adjacent

areas. Several other evidences later supported and precised this broad homology.

Using both PET and fMRI, [241] reported the consistent localization of hMT+ at

the junction of the ascending limb of the inferior temporal sulcus (ALITS) and the

lateral occipital sulcus (LO). This localization was further refined in [56]. These find-

ings had to be linked with anatomical studies which showed the particularly dense

myelination of this region in humans [37, 223, 4], which is characteristic of macaque

MT/V5 area [232]. Moreover, various studies improved the functional characteriza-

tion of hMT+. Tootell and colleagues precised its functional selectivity, showing its

response to various moving patterns and also incoherent flicker, its high sensitivity

to low contrasts and its lower activity elicited by isoluminant color stimuli [218].

They also suggested in [219], later followed by others [43], the implication of hMT+

in the Motion After-Effect (MAE)7. This result was actually infirmed by Huk and

colleagues who later showed that the activation was only due to attentional effects

[113]. The latter group demonstrated the presence of pattern motion cells in this

complex [114].

Some efforts were finally made to distinguish subregions within the hMT+ complex,

based on putative homologies with non-human (especially macaque) motion sensitive

areas. [55] subdivided hMT+ into area MT responding to contralateral visual field

only, area MSTd showing ipsilateral peripheral selectivity and area MSTl based on

non-visually driven pursuit eye movement. These results were partially confirmed

by [112] who distinguished the putative MT homologue relying on its retinotopic

property and the putative MST homologue based on its functional selectivity to

7The Motion After-Effect refers to a famous optical illusion which involves the apparent motion of a

stationary stimulus in the opposite direction to a previously observed one. It is also called the waterfall

illusion as staring for a few tens of seconds to a waterfall before looking at a fixed object aside produces a

MAE.
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peripheral and ipsilateral stimuli. However, such temptative subdivisions of this

motion selective region require many specific scans and need a more precise char-

acterization, explaining the reference to the hMT+ complex in most neuroimaging

literature.

5.2.2 hMT+ localizer: previous work

We present an overview of the different stimulation paradigms used in fMRI

to functionally identify the hMT+ region. This review does not pretend to be

exhaustive but rather accounts for the main approaches proposed so far.

In most fMRI experiments to localize hMT+, subjects undergo a passive viewing

task with blocks of either a motion condition or a control condition. Beyond

this general and rather natural principle, the methods differ between groups with

respect to different parameters:

• the stimulus pattern: random black and white checkerboard (also called a ran-

dom texture pattern or RTP), random dots pattern (RDP), sinusoidal gratings,

concentric rings,

• the type of motion presented: simple translation (vertical or in any direction),

expansion/contraction (alternating or not), incoherent motion (flicker),

• the control condition: a static or a flickering presentation of the stimulus pat-

tern.

Other less crucial parameters may also differ across studies. For instance, the block

duration and number of blocks used should impact the final t-maps observed, which

is obviously linked to the amount of signal available. Stimulus size has shown to

have little effect on hMT+ activations [209], although increasing the stimulus extent

should naturally lead to larger activation focus since MT has a crude retinotopy.

When a flicker condition is included, it seems that the flickering rate does not have

much influence on the final results in area hMT+ [209]. Similarly, [14] reported a

weak difference in hMT+ activations to different velocities they tested (5 and 20

deg.s−1).

Table 5.4 summarizes the different combinations employed in some representative

studies regarding the main stimulation parameters.

5.2.3 hMT+ optimal mapping

Stimuli

As various stimuli are described in the literature to reveal the hMT+ complex using

neuroimaging, it was not obvious to decide which stimulus configuration would
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Reference Pattern Coherent motion Flicker

Tootell et al. 1995 [218] random dots expansion or contraction

squares/rectangles translation 2-3 Hz

sinusoidal grating translation

Van Oostende et al. 1997 [233] random checkerboard translation 30 Hz

Smith et al. 1998 [202] concentric rings 1.2 Hz -

with various patterns expansion/contraction

Sunaert et al. 1999 [209] random checkerboard translation 6 or 15 Hz

Dumoulin et al. 2000 [56] random checkerboard - 2 Hz

Braddick et al. 2001 [14] random checkerboard vertical translation 50 Hz

Huk et al. 2002 [114] random dots 1Hz alternating -

expansion/contraction

Table 5.4: Overview of the main stimulation configuration used in the literature to reveal

the hMT+ complex.

optimally drive hMT+ activations. We tested the influence of two parameters: the

control condition and the stimulus pattern.

Control condition

We tried a contrast between coherent motion (COH) and non-coherent motion, i.e.

a randomly flickering pattern (FLI). Even if hMT+ was shown to be responsive to

flicker [218, 233], we can expect a significant difference with the coherent motion

condition as shown in [14]. The use of such a contrast is justified by three theoretical

reasons:

- it should only drive “coherent motion” sensitive neurons,

- neurons only sensitive to high spatial frequencies would thus be avoided,

- it could help discriminating local and global motion processing neurons.

We also presented blocks with a static image presentation (STA) of the same

pattern, which allowed us to compare the different contrasts used in the literature:

coherent minus incoherent motion (COH-FLI), coherent motion minus a static

stimulus (COH-STA) and incoherent motion minus a static stimulus (FLI-STA).

Stimulus pattern

We tried two different kinds of stimulus pattern:

(1) a black and white RDP on a mid-grey background with a 10.28 dots.deg−2

density, similar to [114]. For this stimulus, the coherent motion blocks consist in

inward and outward radial motion with a velocity of 7.53 deg.s−1, alternating every

500ms; this alternated motion prevents adaptation effects. In this radial motion,

dots leaving the mask were replaced through a radial wrap-around constrained to
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keep the dots density constant. The flicker condition is randomly drawn patterns

at 18Hz.

(2) a rectangular black and white checkerboard, similar to that used in Orban’s

group [209]. The coherent motion condition is a global translation at 7.53 deg.s−1

in a randomly selected axis changing every second; the translation direction along

the same axis is further reverted every 500ms. The flicker condition is a randomly

drawn pattern at 18Hz.

Both stimuli were presented within a circular aperture, as illustrated in figure 5.24.

Dots pattern Texture pattern

Figure 5.24: The two kinds of pattern tried for our motion localizers. The circular aperture

diameter subtended 19.5 degree.

Imaging

We tested both stimuli patterns (RDP and RTP) and the 3 conditions (COH, FLI

and STA) in 4 subjects. Both patterns were presented in separate runs. We used

a typical block design, in which each of the 3 modes of stimulation was presented

during blocks of 8 RT (16.888sec). A run started with 5 scans with only the fixation

cross (MR signal stabilization), followed by 6 repetitions of each of the 3 block

types shuffled in a pseudo-random fashion and ended with 2 fixation cross scans to

allow slice-timing correction, hence leading to a total of 151 scans (≈ 5mn20sec).

Each functional image spans 20 coronal slices 3mm thick and 2x2mm2 in plane

resolution, approximately orthogonal to the calcarine sulcus covering the occipital

retinotopic areas and extending ventrally to confidently include the expected hMT+

location. A high resolution anatomical image was also acquired from which an

individual model of the cortical surface was extracted with methods described in
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chapter 3, enabling to smooth the functional images along the cortical geometry

and to visualize the activation maps.

Data analysis

The time courses were slice-timing corrected, motion corrected, coregistered to

the anatomical image and smoothed with our cortical surface based method

(FWHM=3mm). For more details about each preprocessing steps, refer to sec-

tion 4.1. Each voxel time courses were then analyzed under the classical GLM

implemented through SPM99 custom designed batches, each stimulation condition

being modeled by a box-car convolved with the standard HRF model, as detailed

in section 4.2. T-maps contrasting two conditions of stimulation were finally

estimated and thresholded at p=10−3 uncorrected to reveal the voxels considered

as significantly more activated in a condition compared to another.

5.2.4 Results

hMT+ activations

Figures 5.25 to 5.28 show the estimated activations for the different contrasts and

pattern we tested in a lateral view of the GM/WM interface. This point of view was

particularly appropriate to show the expected location of area hMT+. We do not

show inflated surfaces to avoid important areal changes that occurred at the highly

folded location of hMT+ activations.

The COH-STA contrast systematically reveals an activation focus in the inferior

temporal sulcus of the 8 hemispheres analyzed, either with the RDP or the RTP

stimuli. We note however that the RTP led to a smaller activation extent in one

hemisphere of subject GG (figure 5.27).

The same result was found with the COH-FLI contrast, also leading to significant

activations at the expected location in the 8 hemispheres considered, with also a

smaller activation extent in one hemisphere of another subject for the RTP stimulus

(subject HR in figure 5.25). Interestingly, within the expected location of hMT+,

the COH-FLI activation patch was systematically included in that of the COH-STA

contrast and the p-values were systematically smaller in the former as compared

to that in the latter, independently of the pattern used. This result confirms the

higher functional selectivity of the COH-FLI contrast with respect to the COH-STA

contrast. Furthermore, when the COH-FLI activation area was strictly smaller,

it was always located in the most dorsal part of the COH-STA activation patch.
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We relate this result with previous fMRI attempts to subdivide hMT+, [55, 112]

which distinguished putative human homologues of macaque MT and MST located

in posterior-ventral and anterior-dorsal parts of hMT+ respectively. We therefore

hypothesize that the subregion revealed by the COH-FLI contrast can be the human

homologue of macaque MST. Further experiments to map complementary informa-

tion such as retinotopic organization, receptive fields size or functional selectivity to

pursuit eye movements in hMT+ would be needed to confirm this hypothesis.

The FLI-STA contrast elicited more erratic activations in the hMT+ region, with

only 3/8 hemispheres showing a clear hMT+ activation with the RDP and 4/8 with

the RTP. This result suggests the sub-optimality of a comparison between incoher-

ent motion and a static condition to reveal the hMT complex. This is to be related

with the report in [56], who found no significant responses in 33% of the cases (5

subjects out of 15 in their study).

We thus discourage the use of an incoherent motion minus a static condition contrast

(FLI-STA) to reveal the human MT complex. On the other hand, choosing the more

appropriate control condition to be compared with coherent motion is less clear for

this identification purpose. At this point, we cannot reliably label the sub-region

revealed by the COH-FLI contrast. We prefer to consider the COH-STA contrast

and label the inferior temporal sulcus differential activation as the hMT+ region.

Regarding the stimulus pattern, our RDP led to higher p-values and larger activa-

tion patches as compared to the RTP. This might be due to the density of stimulus

elements bringing motion information which are lower in the RTP, in which only

the square corners and the edges non parallel to the motion direction carry motion

signal, with respect to our RDP stimulus, in which every dot provides a motion sig-

nal. Further experiments are nonetheless required to study the correlation between

motion signal energy and hMT+ activation.
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COH-STA COH-FLI FLI-STA

Figure 5.25: hMT+ localizer, for different stimulus pattern and contrasts (subject HR)
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COH-STA COH-FLI FLI-STA

Figure 5.26: hMT+ localizer, for different stimulus pattern and contrasts (subject GM)
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COH-STA COH-FLI FLI-STA

Figure 5.27: hMT+ localizer, for different stimulus pattern and contrasts (subject GG)
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COH-STA COH-FLI FLI-STA

Figure 5.28: hMT+ localizer, for different stimulus pattern and contrasts (subject LH)
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Intra-subject reproducibility

We checked the intra-subject reproducibility of the hMT+ functional mapping by

analyzing data from the same subject in distinct scanning sessions. The scans from

both sessions were coregistered on a arbitrary defined reference session through the

high resolution anatomical images using SPM2 coregistration algorithm. We glob-

ally found a good overlap across sessions, as illustrated qualitatively in figure 5.29.

Session1 Session2

Figure 5.29: Intra-subject multi-session reproducibility of hMT+ mapping with the RDP

stimulus and COH-FLI contrast, p = 10−3 uncorrected (subject EC).

Occipital cortex activations

Even if our main goal was to individually localize the hMT+ complex, we could

also observe some significant activations in the occipital cortex depending on the

contrast and pattern considered.

The COH-FLI contrast elicited no activation in the occipital cortex around the cal-

carine sulcus in every hemisphere we analyzed. On the other hand, this region was

significantly more activated by flicker than by a static stimulus (FLI-STA), as il-

lustrated in the first two columns of figure 5.30. This preference for flickering as

compared to static stimuli is not surprising, as recent studies confirmed that hu-

man V1 and surrounding extrastriate areas comprise direction selective cells ([113]

and next chapter in this thesis). More interestingly, we also found that the flicker

condition elicited a greater response than a coherent motion stimulation within the
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FLI-STA FLI-COH

HR

GM

GG

LH

Figure 5.30: Relative activations in the occipital pole when contrasting FLI-STA or FLI-

COH for both stimuli patterns. Each subject’s right hemisphere is presented in a row

corresponding to different contrasts between conditions and stimulus pattern.

occipital pole in various hemispheres (4/8 for the RDP, 5/8 for the RTP), as illus-

trated in both right rows of figure 5.30. This result confirms a previously reported

observation [14]. Such a relative activation in V1 suggests the involvement of more

cells stimulated by incoherent motion than the amount of cells stimulated on their

preferred direction by the coherent stimulus in area V1. This observation should

be linked to the receptive field size: direction selective neurons with small receptive
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Figure 5.31: Dorsal and ventral activations revealed with the RDP stimulus and COH-FLI

contrast and the corresponding polar angle maps (subject LH).

fields should not be disrupted by incoherent direction information that does not fall

inside their receptive fields. On the other hand, direction selective cells with large

receptive fields will respond less to incoherent motion signals. Interestingly, recep-

tive field size was shown to be smallest in V1 as compared to other extrastriate areas

[203].

Further away from the occipital pole, we also systematically found a stronger re-

sponse to coherent motion than flicker (COH-FLI) in regions located both dorsally

and ventrally. Based on retinotopic angular maps also acquired in the same subjects,

the dorsal locations seem to correspond to V3A-V3B and even more dorsal corti-

cal regions which could include V7 [177], while the ventral activations is extends

to ventral regions beyond putative hV4. Figure 5.31 shows these activated areas

and the corresponding polar angle maps observed on the inflated hemisphere of a

representative subject.
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5.2.5 Conclusion

Based on an analysis of the experiments described in the literature, we tested differ-

ent stimulus patterns and contrasts between conditions to decide the most reliable

procedure to identify the hMT+ complex. We finally decided to use a random dot

pattern and a contrast between coherent motion and a static condition which sys-

tematically led to highly significant and reproducible activations at the expected

cortical location.

Our data also opened different perspectives. First and foremost, the systematic

inclusion of the COH-FLI activation within the COH-STA activation suggests a

possible functional subdivision of the hMT+ complex. This assumption should be

confirmed with complementary criteria such as precise visual field mapping or stud-

ies of anatomical connectivity. Addressing these issues is of particular interest to

study the possible homologies with non-human primates and better characterize vi-

sual motion processing taking place in this cortical region [163, 195]. Secondly, we

found distinct activation profiles in the occipital cortex when comparing coherent

or incoherent motion with a stationary stimulation, consistent with previous reports

of similar subdivisions [209, 14]. This characterization of motion responsive regions

needs to be further investigated, for instance with a more continuous variation of

the motion stimulus coherence and performing complementary parametric measure-

ments of functional selectivity as shown in the next chapter.

***

We described in this chapter two techniques developed to accurately identify various

visual areas in any subject within 30 minutes of functional scans. The next two

chapters build on these individual mapping to further characterize the low-level

visual cortex, first functionally by revealing distinct direction selectivity and second

structurally by studying the anatomical connectivity among them.
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Chapter 6

fMR-adaptation of direction

selectivity
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6.1 Introduction

6.1.1 Problem statement

The low-level visual cortex has been extensively studied using invasive techniques

in non-human primates. In each area, functional selectivity was characterized with

respect to various stimulus dimensions such as orientation or direction. Especially,

the tuning bandwidths of visual motion direction selective neurons are known to

be area specific in monkeys, as shown in various electrophysiological and imaging

studies (e.g. [151, 52]). A similar knowledge is missing in humans.

The major goal of our study is to estimate the motion direction selectivity of differ-

ent human visual areas with fMRI. A classical subtraction paradigm, comparing the

BOLD signals recorded in response to different stimulation conditions, is not suffi-

cient to assess neuronal selectivity to a particular stimulus dimension such as motion

direction. Indeed, a single fMRI voxel contains several neuronal sub-populations,

with a priori the same proportions of neurons preferentially tuned for any direction.

The BOLD signals elicited by two different directions would therefore be equal,

leading to a null contrast between both stimulation conditions. Fortunately, a fun-

damental property of neurons, neural adaptation, can be used in fMRI as a tool for

inferring neural sensitivities.

6.1.2 fMR-adaptation: principle and previous work

The firing rate of a stimulated neuron decreases when the same stimulation is re-

peatedly presented: this is neural adaptation. Figure 6.1 illustrates this property in

a typical neuron found in macaque MT.

This general feature can also be observed using fMRI, in which a sustained pre-

sentation of the same stimulus leads to a decrease of the BOLD signal. The fMR-

adaptation paradigm takes advantage of this property to allow inferences about the

functional selectivity of neuronal populations within a voxel [90]. The basic idea is

to proceed in two steps. First, the neural population is adapted using a repeated

presentation of a single stimulus, leading to a significant reduction of the fMRI sig-

nal. Second, a given stimulation parameter (e.g. the direction of motion) is changed

and two situations can appear: either the signal remains at the same adapted level,

suggesting the neuronal invariance to the stimulation change; or the signal recovers

a higher level, suggesting the neurons sensitivity to the stimulus feature varied.

We review here some work that have used fMR-adaptation paradigm in human or

macaque studies, with an emphasis on the experimental designs employed. Table

6.1 summarizes this overview. We distinguish 2 main subsets of fMR-adaptation

paradigm: block and event-related.

The fMR-adaptation block design was first introduced in [89] to study the visual per-
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Figure 6.1: Neural adaptation of a typical macaque MT neuron. The upper part shows the

neuron response to 256 repetitions of the same stimulus. The histogram gives the mean

over the different repetitions. Below is shown the stimulation time course. From [178].

ception of objects and faces under various presentation conditions. Within a block,

a succession of n stimuli (e.g. images of objects) either identical or different with

respect to a given feature of interest (e.g. the object size) is presented. The degree

of dissimilarity between the n stimuli is varied across the blocks, from the block with

a single stimulus presented repeatedly to the block containing n different stimuli.

The analysis then consists in comparing the mean fMRI signal over the block types.

The typical prediction is a lowest mean signal in the identical blocks and a highest

mean signal in the all different blocks. The block design adaptation paradigm was

applied to investigate the presence of pattern-motion cells in hMT+ [114] or the

cortical specialization for inanimate objects and places in the visual cortex [65]. A

similar paradigm to that of Grill-Spector and colleagues was recently used by [184]

to compare human’s and macaque’s object adaptation in shape-sensitive regions.

Event-related fMR-adaptation is more widely used, mainly because it is faster and

allows an estimation of the hemodynamic response function shape. In this paradigm,

a trial is generally a pair of stimuli separated by a blank. Both stimuli in a trial are

either identical or distinct regarding a feature under study. The stimuli presenta-

tion duration and the Inter-Stimulus-Interval (also called the blank period) between
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them are variable across studies but are generally on the order of a few hundreds

milliseconds each. The BOLD response to each trial type (either similar or differ-

ent paired stimulations) are then compared to assess the influence of a stimulation

variation in a given cortical region. This paradigm was applied in various studies to

characterize object priming sensitive regions [18], object shape processing [126], ori-

entation selectivity [13], attentional processes [154], face perception [59], numerosity

[173], form analysis [125].

A few event-related fMR-adaptation experiments were conducted differently, reveal-

ing different assumptions and interpretation of the underlying neural processes. In a

study often misleadingly referred to as a block design fMR-adaptation experiment,

Tootell and colleagues investigated orientation selectivity in human V1 [217]. They

presented black and white gratings with similar orientations within each 40 seconds

block and measured the signal increase occurring at each block transition. Rather

this experiment can be considered as event-related since the signal of interest is

mainly the transients between two blocks.

To prevent possible strategy changes when the subject becomes aware of the repeti-

tion paradigm, Naccache and Dehaene suggested the use of subliminal presentation

of the first stimulus and demonstrated its efficiency in a number representation study

[155].

Reference Purpose Design

Buchner et al. 98 [18] Orientation priming E-R

Tootell et al. 98 [217] V1 orientation selectivity E-R

Grill-Spector et al. 99 [89] Object/Face processing in LOC Block

Kourtzi et al. 00 [126] Object shape E-R

processing in LOC

Huk et al. 01 [113] Direction selectivity E-R

Huk et al. 02 [114] Pattern motion in hMT+ Block

Boynton et al. 03 [13] Orientation selectivity E-R

Murray et al. 04 [154] Attention in LOC E-R

Eger et al. 04 [59] Invariant face perception E-R

Piazza et al. 04 [173] Numerosity E-R

Ewbank et al. 05 [65] Object and places selectivity Block

Kourtzi et al. 05 [125] Form analysis E-R

Sawamura et al. 05 [184] Shape processing Block

Table 6.1: Overview of the human fMR-adaptation literature. E-R:=event-related.
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6.1.3 Direction selectivity and fMR-adaptation

Single-unit electrophysiology experiments of short-term motion adaptation in

macaque area MT have shown that the tuning of the adaptation is similar to the

tuning of the neuron to direction [179, 178]. fMR-adaptation data on visual motion

tuning would therefore help define more accurately the functional properties of dif-

ferent visual areas.

Our study complements a recent work which investigated direction selectivity de-

fined as the imbalance between opposite directions of motion ([113]). The new

aspects introduced in our work are the following: we use an event-related paradigm

to allow more than two opposite directions to be presented within a run, so that

estimates of direction tuning and proportions of functional population types with

respect to this feature can be assessed. We also address the attentional issue raised

by Huk and colleagues in a different way. To control attention, Huk et al. used

a speed-discrimination task which requires highly-trained observers who also have

to perform extensive pilot experiments outside the scanner. This stringent control

is necessary because these authors have shown that the increased activity observed

during a Motion After-Effect or MAE (e.g. [219]) arises because of attention to this

after-effect. This is actually a concern when using block designs where test durations

are long enough to elicit an MAE. We anticipated however that this problem would

be highly minimized by using an event-related paradigm with short test durations

which do not elicit MAEs. We therefore simplified the attentional control task to

allow the inclusion in our study of non psychophysically-trained observers.

6.2 Experimental procedure

6.2.1 Subjects

Four subjects (1 female, age 28-40 years) with normal or corrected-to-normal visual

acuity participated in the study.

6.2.2 MRI data acquisition.

Subjects participated in two separate 1 hour long scanning sessions: one to identify

the retinotopic areas and hMT+, the other to measure motion direction adapta-

tion. A scanning session started with a fast low-resolution anatomical localizer to

appropriately set the subsequent functional scans slices location, followed by 8 func-

tional scans and ended with a T1-weighted image acquisition. These high resolution

anatomical scans were used as references to coregister the different sessions.

During each functional scan, 151 Echo Planar Images were acquired over 5mn19sec

using our coronal sequence (see paragraph 2.4.4). Each functional image spans 20
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coronal slices 3mm thick and 2x2mm2 in plane resolution, approximately orthogonal

to the calcarine sulcus covering the occipital retinotopic areas and extending ven-

trally to hMT+. The first five images (10.555secs) were systematically discarded to

avoid magnetic saturation effects. The following 144 images correspond to the vi-

sual stimulus per se. The last two images were taken to allow slice-timing correction

preprocessing.

6.2.3 Visual stimuli.

Stimuli were generated under Matlab 6.1 using the Image Processing Toolbox (Mat-

lab, The Mathworks), providing an avi file with eighteen 300x300 pixels frames per

second and lasting 5mn04sec. The stimulation was presented through our classical

setup, leading to a display subtending a visual angle of 20.9◦x20.9◦. The stimuli are

all presented within a circular aperture of 19.5◦ in diameter. During the first 5 and

last 2 scans, a mid grey-level image with the 0.5◦ red fixation cross was shown to

the subjects.

6.2.4 Defining the visual areas.

Occipital areas

Low-level retinotopic areas were identified and delineated using the method de-

scribed in the previous chapter. V2v and V2d (respectively V3v and V3d) were

merged as one area V2 (respectively V3). Lacking the eccentricity maps to accu-

rately separate V3A from V3B [202, 177], we considered the most medial hemifield

representation that abuts the dorsal border of V3d, considering it as V3A.

hMT+

The human mid-temporal complex, hMT+, was revealed with the block design

method detailed in the previous chapter. The clusters were found either with the

COH-FLI contrast or with the COH-STA contrast and were always within or close to

the inferior temporal sulcus (cf.[56]). As already noticed in our preliminary mapping

experiments, the (COH-FLI) contrast gave systematically a smaller cluster always

included in the (COH-STA) cluster. We also considered the cluster defined by the

(COH-FLI) contrast as the hMT+ ROI in our adaptation data analysis.

6.2.5 The adaptation stimulus.

We used a black and white random dots pattern (RDP) on a mid-grey background

with a 10.28 dots.deg−2 density, which was similar to the hMT+ localizer stimulus

except for the contrast. In [211], adaptation was indeed reduced for large visual

stimuli while using a high contrast as compared to a low contrast. We therefore
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Figure 6.2: Stimulation design diagram in the adaptation experiment. After a 25.33sec

adaptation epoch (direction chosen for each run between rightward -as in the figure-, left-

ward, downward or upward), 42 test trials lasting 780ms each were presented in a pseudo

random-fashion. A test trial consisted in either no change in the motion direction (∆0 con-

dition) or a motion direction change of 45 or 180 degrees (The ∆45 and ∆180 conditions

respectively). The Inter-Trials Intervals (ITI) between two test trials consisted in a return

to the adaptation direction or top-up adaptation. The duration of each ITI was drawn

from a truncated gamma distribution, mean 5sec, sigma 1sec, min 4sec, max 8sec. The

random dot pattern was systematically redrawn at each condition transition, i.e. at each

test trial onset and each top-up adaptation onset. Subjects made a size discrimination

task at the fixation cross.

175



reduced the contrast to 20%, still centered around the mid-grey level. In each con-

dition, the RDP drifted coherently at 7.53 deg.s−1. The time course of the stimulus

started with a 12 RT (25.33sec) adaptation epoch in the randomly chosen adaptation

direction (either left, down, right or up, fixed for the whole run but randomly

changed across runs to avoid any directionality bias), followed by 42 test trials of

780ms where the direction of motion was changed by an angle delta with respect to

the adaptation direction (∆X = 0, 45 or 180) (see figure 6.2). A run thus contained

14 test trials for each delta value tested; the trials were presented in a pseudo

random fashion to equalize the trials apparition order (two successive trials with

identical delta values were not allowed). Note that the ∆45 test condition evenly

led to a clockwise (+45 degrees) or counterclockwise (−45 degrees) direction change

with respect to the adaptation direction. Between two test trials, the Inter-Trial

Intervals (ITI) consisted of a top-up adaptation in which the dots shifted back to the

adaptation direction. The ITI distribution follows a gamma law Γ(5, 1) truncated

for values outside [4sec,8sec]. This top-up adaptation allowed to keep the adapta-

tion state relatively constant along the run. Note that we did not add any blank

between the trials and the top-up adaptation ITI, in contrast to other event-related

adaptation paradigms. Nonetheless, the random dot pattern was redrawn at each

condition transition, namely at each test event onset and each top-up adaptation

onset. This resetting led to a brief visual transient that could result in a non-specific

alerting effect (see the discussion below). Note that a similar stimulation was used at

the same time in a recently published study investigating orientation selectivity [66].

6.2.6 Attentional measurements.

To control subject’s attention, a simple attentional task was performed during each

functional scan (localizer and adaptation sessions). Subjects were instructed to fix-

ate a central red cross (0.5◦) and to click when the cross size increased to 0.77◦

during 167msec. Concerning the localizers, attentional events followed a uniform

distribution between 2 and 6 sec, mainly used to help and check fixation. For the

adaptation experiment, where the attention is far more crucial for the results inter-

pretation, attentional events were systematically placed within a test trial and also

during the adaptation block starting each run and the inter-trial adaptation periods,

globally following a uniform distribution between 2 and 6 secs. More importantly,

we stressed that this attentional task was always irrelevant with the random dots

pattern motion, either during the adaptation epoch, the inter-trial top-up adapta-

tion or the test trials. This attentional task could not influence the motion direction

perception, nor should it have modified dramatically the tuning properties of motion

direction sensitive neurons (see Discussion). Responses were analyzed off-line. Over
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all the adaptation sessions, we observed a mean hit rate of 81.91% correct (ranging

from 60.61% to 97.53% correct across subjects and runs), thus reliably above chance.

No significant differences were found across the analyzed subjects (respective mean

across runs of 76.99%, 84.12% and 83.99%).

6.3 fMRI data analysis.

6.3.1 Visual areas identification experiment

The functional images for the retinotopic and hMT+ mapping were first realigned

with the INRIAlign toolbox and coregistered with the anatomical image with SPM2,

then smoothed through a method taking into account the cortical geometry, with a

3mm equivalent Gaussian filter FWHM. A high-pass and a low-pass filtering were

also performed on the time-courses to respectively remove low-frequency signal drifts

and high frequency noise. Finally, subsets of connected voxels were extracted for

each area and further used as ROIs for the adaptation experiment (see paragraph

6.2.4).

6.3.2 Adaptation experiment

The datasets were slice-timing corrected, realigned using the SPM INRIAlign tool-

box and coregistered with the reference anatomical scan. No spatial smoothing was

applied. Datasets were then analyzed independently for each ROI using the HRF

approach detailed in paragraph 4.2.4. We used the region-based HRF estimation

method that considers each ROI as functionally homogeneous and then uses all the

available time series within the ROI to characterize the shape of the HRF for each

trial type. A preliminary outlier detection step can be used to remove outlier vox-

els. The underlying model is non-parametric in the sense that no prior shape of the

HRF is assumed in advance, and this technique provides robust HRF estimates since

smoothness constraints are introduced within the Bayesian framework (for more de-

tails, see [35, 34, 147]). Importantly, the subtle though statistically significant effects

we observed using this appropriate analysis framework were totally absent when we

processed our data through a classical General Linear Model analysis.

To compare the results across the different conditions and ROIs considered, we de-

fined an adaptation rebound index as the following ratio:

IX−Y =
hrf(∆X)− hrf(∆Y )

hrf(∆0)− hrf(Adapted)
where (X,Y ) ∈ {(180, 0), (45, 0), (180, 45)}

hrf(∆X) is the estimated HRF mean computed as the mean signal at three time

points centered at the peak of the estimated HRF (mostly observed at t ' 6sec) for

∆X (X =0, 45 or 180) test trials. In other words, if the HRF pick was observed
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at t = t0, then hrf(∆X) = (hrf(∆X)(t0 − 1) + hrf(∆X)(t0) + hrf(∆X)(t0 + 1))/3.

The Adapted response was taken as the HRF mean estimated during the last 10sec

of the 25sec adaptation epoch starting each run, i.e. when the signal was maximally

adapted. The numerator of IX−Y is the difference in the response means to two

trial types (∆X and ∆Y ). The denominator is the difference between the estimated

response mean for ∆0 trials and the estimated adapted signal baseline, therefore rep-

resenting the subject and ROI specific responsitivity. This normalization minimizes

possible differences in the BOLD response gain due to any confound irrelevant with

the motion direction changes such as the stimulus transient occurring at each test

trial onset. Provided the denominator is positive, which was systematically the case

in our data, we have:

- IX−0 (X ∈ {45, 180})) approximately equal to zero indicates that no non-adapted

neurons responded to the direction change, whereas a high value indicates the re-

cruitment of an important proportion of non-adapted neurons

- I180−45 approximatively equal to zero indicates no differences in the BOLD signals

elicited by ∆180 and ∆45 trials, suggesting identical cells proportion recruited by both

direction changes, whereas high value indicates a strong difference in both elicited

signals, suggesting a difference in the proportion of non-adapted cells recruited by

both direction conditions. We assume that this difference is directly related to the

population of broadly tuned neurons, since a similar proportion of narrowly tuned

neurons, though with distinct preferred direction, is involved in the ∆180 and in the

∆45 trials.

We therefore considered the following indices: (A) I180−0, i.e. comparing ∆180 with

∆0, (B) I45−0, i.e. comparing ∆45 with ∆0 and (C) I180−45, i.e. comparing ∆180

with ∆45. We assume that these comparisons are related respectively to (A) the

global population of direction selective cells, irrespective of their directional tuning

bandwidth, (B) a population of relatively narrowly-tuned cells which have a differ-

ential response to a 45 degree change in motion direction and (C) a population of

relatively broadly-tuned cells which have a large differential response to a direction

change of 180 degree but a small (or inexistent) differential response to a 45 degree

change. Consequently, the ratios I180−45

I180−0
and I45−0

I180−0
respectively give a rough estimate

of the proportion of broad-band and narrow-band cells within the motion direction

selective population of each area.

6.4 Results

Out of four subjects scanned, three were kept in our final analysis as one was dis-

carded because of important head motion (>3mm). We analyzed the time course

of the BOLD signal during the motion adaptation stimulation separately in each

retinotopically or functionally defined ROI.
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6.4.1 BOLD signal adaptation

Each run started with a first 25.33s (12 TR) adaptation epoch, where dots all move

coherently in the randomly chosen adaptation direction. This stimulation led to the

expected signal decrease in every subject and area considered, supposed to be cor-

related with neuronal adaptation. Figure 6.3 illustrates the mean signal decrease in

area hMT+ of subject S1 during the adaptation epoch. Similar result were system-

atically observed, though with various degrees, in each area and subject considered.

Figure 6.3: Time course of the adaptation epoch (subject LQ) and fitted exponential decay.

The grey period corresponds to the adaptation epoch, in which the same motion direction

is continuously presented. The black curve shows the averaged time course from hMT+

voxels and over 8 scans acquired within the same session. The red curve is an exponential

fit of the adaptation time course.

6.4.2 Direction selectivity

Following the adaptation block, the runs consisted of several test trials in which

the direction of motion was changed with respect to the adaptation direction for a

duration of 780ms. The angle difference between adaptation and test direction is

noted ∆X , and we tested the values 0 (direction unchanged), 45 and 180 (opposite

directions) degrees. According to the adaptation paradigm, two situations can

appear at any voxel during a test trial:

(1) every neuron in the voxel is insensitive to the motion direction change, therefore

the voxel mean BOLD signal remains adapted,

or

(2) a sub-population of neurons in the voxel is sensitive to the motion direction

change, the responses of which induce a BOLD signal increase (or rebound).
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We also predict that the HRF rebound will increase with the ∆X value. In-

deed, if a rebound occurs for ∆45 trials, this suggests the presence of narrowly

tuned neurons with preferred direction centered around the 45 degrees direction

relatively to the adaptation direction. On the other hand, possible broadly tuned

neurons centered at the relative 45 degree direction should remain adapted, since

the direction difference between the adaptation and 45 degree test trial does

not impact significantly their responsivity. In the case of ∆180 trials, a similar

proportion of narrowly tuned neurons as in the ∆45 condition should also respond,

specifically the narrowly tuned neurons with preferred direction centered around

the relative 180 degrees direction. Additionally, the population of broadly tuned

neurons centered around the relative 180 degrees condition that were not adapted

by the adaptation direction will also be activated by the relative 180 direction,

leading to an additional BOLD signal increase. Hence, the rebound observed for

∆180 trials should be superior (or at least of equal value if no broadly tuned neurons

are involved) as that of the ∆45 trials.

We computed the responses to each ∆X value we tested through the HRF-

toolbox over all ROIs and all runs (see fMRI data analysis). Figure 6.4 shows the

estimated hemodynamic response function (HRF) of each identified areas for one

representative subject (LQ).

First of all, the estimated curves are always ordered as expected, showing higher

rebounds with increasing difference between the adapting and the test directions. In

other words, as we predicted, the bigger ∆X is, the larger the BOLD signal rebound

should be as more neurons respond to the stimulus changes. Every functionally

defined area studied showed this ordered rebound effect, although with varying

degrees.

To further precise this observation, statistical T-test p-values shown in table 6.2

provide evidence for (1) the significance in the activation for each estimated curve,

i.e. a difference between the latter and a null vector signal (first 3 columns) and (2)

a statistical difference in the estimated signals between two test conditions (last 3

columns). The statistical tests are performed on the subset of 4 time points between

2 and 9 sec, thus centered around the maximum of the response typically found at

the fourth time point (t=6.333sec) and take into account the relative variances at

each estimated time point. The differences between each pair of estimated curves

were significant (p<0.0015) for all 3 subjects in areas hMT+, V1 and V2 and

relatively less consensual for areas V3 (though p<10−4 for 2 subjects) and V3A

(p<0.0075 for 2 subjects). V4v curves were statistically not different from one

another (p>0.3) for 2 subjects, revealing a less robust signal than that found in the

other visual areas.
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Figure 6.4: Typical BOLD signal time courses for each condition and area estimated using

the HRF toolbox (subject LQ). BOLD signals increased with increasing angular difference

between adaptation and test direction (∆ value), suggesting sub-populations recruitment

elicited by the direction change. Error bars correspond to ±1 SEM across repeated trials

and voxels in each ROI.

6.4.3 Quantitative comparisons between areas

To further quantitatively characterize the motion direction selectivity, we computed

a normalized adaptation rebound index (see paragraph 6.3). The latter allows to

perform comparisons in the BOLD signal responses elicited by changes in the direc-
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Area ∆0 ∆45 ∆180 ∆45 −∆0 ∆180 −∆0 ∆180 −∆45

HR

hMT+ < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

V1 < 10−4 < 10−4 < 10−4 0.0001 < 10−4 < 10−4

V2 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

V3 0.3614 0.0028 < 10−4 0.8518 0.2893 < 10−4

V3A 0.2810 0.0089 0.0004 0.6494 0.1614 0.0010

V4v 0.0450 0.2223 0.0518 0.4002 0.3782 0.3009

GM

hMT+ 0.0209 0.0009 0.0003 0.0012 < 10−4 < 10−4

V1 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

V2 < 10−4 < 10−4 0.0093 < 10−4 < 10−4 0.0001

V3 < 10−4 < 10−4 0.0001 < 10−4 < 10−4 < 10−4

V3A 0.0015 < 10−4 < 10−4 < 10−4 0.0013 < 10−4

V4v < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

GG

hMT+ 0.0005 0.0011 < 10−4 0.0015 < 10−4 < 10−4

V1 < 10−4 < 10−4 < 10−4 < 10−4 0.0003 < 10−4

V2 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

V3 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

V3A 0.0037 0.0050 0.0064 0.0075 0.0062 0.0021

V4v 0.5761 0.4312 0.0010 0.8939 0.9753 0.9986

Table 6.2: Statistical significance (T-tests) for each estimated BOLD responses and their

differences by pair. The first 3 columns show the p-values for each estimated response to

be different from zero, the last 3 represent the p-values regarding the differences between

the estimated responses.

tion of motion across visual areas. Figure 6.5 shows the mean over the three subjects

of the indices when considering (A) I180−0, i.e. comparing ∆180 with ∆0, (B) I45−0,

i.e. comparing ∆45 with ∆0 and (C) I180−45, i.e. comparing ∆180 with ∆45. We

recall that these indices are related respectively to (see 6.3):

(A) the global population of direction selective cells, irrespective of their directional

tuning bandwidth,

(B) a population of relatively narrowly-tuned cells which have a differential response

to a 45 degree change in motion direction

(C) a population of relatively broadly-tuned cells which have a large differential re-

sponse to a direction change of 180 degree but a small (or inexistent) differential

response to a 45 degree change.

Furthermore, the ratios I180−45

I180−0
and I45−0

I180−0
respectively give a rough estimate of the
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A) I180−0 B) I45−0

C) I180−45

Figure 6.5: Direction selectivity indices averaged across 3 subjects for each visual area. (A)

represents the I180−0 mean, which quantifies the normalized difference between ∆180 and

∆0 estimated BOLD responses, presumably proportionally related to the global population

of direction selective cells; (B) represents I45−0 related to narrowly tuned direction selective

neurons; (C) represents I180−45, related to broadly tuned direction selective neurons. Error

bars correspond to ±1 SEM across subjects.

proportion of broad-band and narrow-band cells within the motion direction selective

population of each area. The estimated sub-population proportions are presented in

figure 6.6.

As shown in figure 6.5, hMT+ clearly appears as the most direction selective

area, having the highest values for each index computed, specifically 0.85 for op-

posite directions (I180−0), 0.55 for a smaller angular difference (I45−0) and 0.30 for

rather high angular difference (i.e. strictly over 45 degree) (I180−45). Our result

clearly confirms the important proportion of direction selective neurons in this re-

gion of the human cortex. We can further derive an estimated proportion of 35%

(0.30/0.85) of broadly-tuned versus 65% of narrowly-tuned neurons within the mo-

tion direction selective population in hMT+. V3A shows the second most important

difference between the estimated responses for ∆180 and ∆0 (I180−0 = 0.6077), also
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suggesting a relatively important proportion of direction selective cells. The esti-

mated proportion of broadly-tuned neurons is 45.4% (0.2756/0.6077) versus 54.6%

(0.3321/0.6077) for narrowly-tuned neurons in V3A. V1 also shows significative pos-

itive values for our three indices, implying the presence of direction selective neurons

as well. However, the index I180−45, standing for the difference between ∆180 and

∆45, is surprisingly high with respect to I180−0 with respective values of 0.1973 and

0.3508, suggesting an unlikely important broadly-tuned cells proportion of 56.2%.

This result is discussed below in the discussion. The I180−0 values of areas V3, V4v

and V2, though lower, also suggest the presence of motion direction selective cells

but with various sub-population proportions. More specifically, V3 indices suggest

a rather equal proportion of narrow and broad neurons (0.1307/0.2655=49.2% and

0.1348/0.2655=50.8% respectively) while V4v direction selective population seems

to be more predominantly broad with an estimated proportion of broadly tuned cells

of 62.2% (0.1258/0.2021). Note that the HRF estimations for ∆0 and ∆45 had impor-

tant variances in area V4v, leading to less reliable index values and sub-population

proportion estimations. This lack of robustness was also mentioned in the macaque

monkey fMRI study of [214]. Nonetheless, the ∆180 estimated response is signifi-

cantly positive in the 3 subjects (p=.0518, p<1e-4 and p=0.001 respectively), clearly

arguing for direction selectivity in V4v. Finally, V2 shows the smallest I180−0 and

I180−45 index values, suggesting a lower proportion of motion selective cells in this

area relative to the other areas considered.

6.4.4 Responses to stimulus transient

At each transition between adaptation and test direction, the random dot pattern

was reset, leading to a brief noticeable transient. Considering the ∆0 estimated

BOLD response allows to assess the sensitivity of each area to such a transient only,

as every other stimulus parameter (especially the direction of motion) remained

constant. The first column of table 6.2. shows the p-value of the T-test comparing

the ∆0 estimated response and the null vector. We found highly significant p-values

(< 10e−4) for areas V1 and V2 in the three subjects. The same observation also

holds in V3 and hMT+, but on two subjects respectively, whereas it is less clear in

V3A and V4v that the estimated response to a stimulus transient statistically differs

from zero. These results reveal the differences of response to a stimulus transient

in the above areas, suggesting a veridical representation of the retinal stimulus in

V1, V2 and a cruder representation in higher level areas such as V3A and V4v [13].

Note that these differences support the way we defined our index to quantitatively

compare the areas sensitivity to motion direction changes.
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Figure 6.6: Estimated proportions of motion direction selective sub-populations computed

from indices ratios. Error bars correspond to ±1 SEM across subjects.

6.5 Discussion

6.5.1 Motion direction selectivity

Our study extends the work of [113]. Regarding hMT+ and V3A, we replicated

their results when comparing opposite test direction with respect to adaptation

direction (our ∆180 condition). But we further added a test condition to a lower

angular difference of 45 degrees (our ∆45 condition), a precise BOLD response

estimation for each test direction and area considered and statistically relevant

comparisons between them, therefore providing a firmer characterization of the

motion direction selectivity.

hMT+, directly followed by V3A, are the two areas showing highest indices about

their direction selectivity. This general result about the involvement of hMT+

and V3A in motion direction processing is consistent with various reports in the

neuroimaging literature [257, 219, 224, 202, 41], see [44] for a review. V3 is also

characterized by a significant, though at least twice smaller than in hMT+ and

V3A, direction selectivity. These results support the difference for areas V3 and

V3A between humans and macaques, as mentioned for instance in [234, 161, 224].

In macaque, V3 is moderately motion and direction selective, but V3A is not. In

humans, however, this relationship is reversed: V3A is much more motion selective
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than V3. We found the same characterization in the present fMR-adaptation

experiment. V2, though direction selective, appears last in our motion direction

selectivity hierarchy with the weakest values for our three indices; this result is in

line with Huk and colleagues study where V2 appears last with V1.

In V1 and V4v however, our results differ from those from Huk and colleagues. On

the one hand, relative to other areas, V4v is weakly direction sensitive in our study,

whereas it stands right after V3A in Huk et al. (their figure 4D, p.167). We have

stressed above that our V4v datasets were not as robust as in the other areas but

also note that the proportion of direction selective cells should not be that different

than in V1 according to single cell studies, namely about 25% ([186, 162, 93]

estimations are 35%, 27% and 23% respectively). Note also that human area V4

definition is still subject to controversy [222, 254, 15], which might explain the

differences observed between both studies.

Regarding our V1 results, the estimated proportion of broad-band cells is at least

as large as the estimated proportion of narrow band cells, which stands in contra-

diction with single cells studies. A possible explanation to this mismatch could be

that proposed by Tolias and colleagues who faced the same inconsistency when

comparing their macaque fMR-adaptation estimations with electro-physiological

data. To explain this discrepancy, they first hypothesized in [214] that V1 and V4

direction selectivity could be increased due to feedback from higher areas such as

MT, leading normally non-selective neurons to acquire direction selectivity after

adaptation. They very recently published in [213] results from an electrophysiology

study that clearly demonstrated this hypothesis in macaque V4, showing classically

nondirectional V4 neurons that developed direction selectivity after adaptation.

We suggest that this high indices we observed in V1, as well as the high estimated

proportion of broad cells in V1 could result from a modulation of selectivity

inherited from adapted neurons in higher areas.

Furthermore, it was recently shown in [124], which presents a macaque MT electro-

physiology study, that adaptation could change the direction tuning of neurons, at

least for sub-populations with preferred direction close to the adaptation direction.

Similarly, considering object processing in the macaque Infero-Temporal (IT)

cortex, Sawamura and colleagues [185] demonstrated a difference between stimulus

selectivity of neuronal adaptation and stimulus selectivity of the neuron.

Taking into account these results from electrophysiological studies, the direction

tuning we can infer from our BOLD signal rebound estimations might not be

quantitatively linked to actual direction tuning curves of underlying neuronal

populations in classical (i.e. non adapted) conditions. We nonetheless claim to

show a reliable hierarchy of low-level visual areas, mostly in agreement with the

literature. Our study extends the results of Huk and colleagues, and allows us to

give a more precise motion direction selectivity hierarchy with hMT+ and V3A
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ahead, followed by V1 then V3, V4v and finally V2.

6.5.2 Macaque/human homologies in V1 and MT

We note that our I180−0 index values shown in figure 6.5 and the directionality index

values from [214] are strikingly comparable in humans and macaques areas MT and

V1 respectively. Even if both indices are calculated in a different manner, they

are both meant to quantify the BOLD signal rebound when presenting opposite

adaptation and test directions. We found 0.85 in hMT+ compared to their 0.84

in macaque MT, and 0.35 in V1 compared to their 0.33 in macaque V1. This

similarity may claim for the functional homology between the two species in these

areas systematically found in all primates. This similarity is however not as marked

in the remaining areas (V2: 0.17 vs 0.35; V3: 0.26 vs 0.37; V3A: 0.61 vs 0.42; V4v:

0.20 vs 1.0). One of the reason might be the specy differences in these areas: various

evidences indeed suggest that V3 and V3A differ functionally between macaque and

humans [161]; similarly, the homology between human V4v region and macaque V4

is still a subject of controversy as recently revived in [15]. Note also the important

difference between the experimental procedure used in both studies: the animals

were anesthetized in the study of Tolias and colleagues [214], while our human

subjects were awake.

6.5.3 Attention, adaptation and direction tuning

The importance of controlling attention in fMRI experiments was clearly demon-

strated in [113], which led them to reconsider previous Motion After-Effect (MAE)

studies. The authors further emphasized the need to ”employ the most similar tasks

possible” across blocks or trials. We therefore implemented a rather simple atten-

tional task at the central fixation cross, systematically present at each trial but also

between trials (top-up adaptation), enabling us to control both the attention and

the fixation of the subject. However, in contrast to Huk et al., our attentional task

was not done on the motion signal itself, which was meant to minimize the atten-

tional effects on direction tuning, as shown in [154]. The latter study indeed suggests

that paying attention to a given feature (in their study the orientation of objects)

increases the functional selectivity of the neural population involved in processing

for this feature (in their study in the LOC -Lateral Occipital Cortex-, a region of the

human brain involved in object shape processing). Our attentional task was thought

to minimize this selectivity changes as it is not linked with any motion estimation

judgment.

On the other hand, a first study [182] on V5/hMT+ further refined by [191] in the

retinotopic areas have shown that performing an attentional task at the central fix-
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ation impacts the peripheral visual field signals, leading to a signal decrease in the

peripheral visual field with increasing attentional load. Our task was a low load

task, thus minimizing this effect and our data nonetheless mostly show statistically

significant differences between the three test conditions. However, how attention

modifies the neuronal signals and consequently the BOLD signal is still poorly un-

derstood [12] and is thought to be a combination of enhancement in the neuronal

response (gain) and a sharpening of the selectivity. We claim that the adaptation

index we computed minimizes this attentional bias thanks to our normalization used

to get rid of the attentional task effects (see paragraph 6.3).

Our simple task at the fixation cross is therefore a trade-off between attentional

control, central visual field fixation control, neural selectivity changes and BOLD

signal decrease in the peripheral visual field. We claim that our attentional control

as such leads to a minimally biased characterization of post-adaptation motion di-

rection selectivity in different low-level visual areas, leading to a reliable hierarchy

among the latter.

6.5.4 fMR-adaptation methodology

fMR-adaptation is a relatively recent paradigm enabling the measurement of

functional neuronal populations properties. It is therefore still necessary to develop

and study the methodological aspects of this tool.

Our study brings another proof of the efficiency of event-related adaptation

paradigms as a tool to examine the functional selectivity of cortical areas to a spe-

cial feature, here the direction of visual motion. Most fMR-adaptation studies have

been performed on high-level processing (objects, face, numbers representation),

our results confirm that low-level processing issues can also be tackled with this

paradigm.

In addition, our paradigm is minimally constraining. We do not use surface coils

which increase the installation time of the subject; our attentional task is easily

understood by the subjects and can reliably be performed; only a single, one

hour acquisition session per subject is needed for the adaptation experiment, as

compared to hours of scanning usually averaged in most adaptation studies. It is

thus a straightforward experimental setup leading to reliable measures as proved

by our error bars, which could be an important point for a use of the adaptation

paradigm in a more constrained environment such as clinical. It is crucial to

stress the contribution of accurate and unconstrained analysis tools such as the

HRF toolbox which, combined with imaging technical improvements will help in

detecting and characterizing subtle signals while alleviating scanning setup and

durations.

Importantly, we want to address a typical aspect of fMR-adaptation paradigms
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not discussed in the literature. To our knowledge, every event-related adaptation

paradigm published so far includes a short blank period between the adaptation

and the test stimuli. This appears rather counter-intuitive as this blank period

may imply a decrease in the adaptation signal, therefore inducing a bias in the

measured rebounds. The only justification for a blank period could come from

[13] who studied the effect of the Stimulus Onset Asynchrony on the adaptation

effect. However, their psychophysical results claim for ≈2sec SOA (their figure 7)

rather than 1.125sec (the smallest they tested); this result does not fit with SOA of

less than 1 sec as mostly found in event-related fMR-adaptation studies. Another

possible explanation for this blank could be to set a stimulus transient at the onset

of the test trial in order to increase the neurons responses. We decided to avoid this

blank period in our paradigm, thus setting the test trials just after the adaptation

stimulation to keep neurons adapted all along the run except during the test trials.

Doing so, we obtained reliable results leading to conclusions mostly in line with

previous characterization of direction processing in human low-level visual areas.

We conclude that this blank period was empirical in the first studies and remained

in the next ones, without justification or discussion, although it actually does not

appear necessary and is rather counter-intuitive.

6.6 Conclusion

Our study has shown that motion direction selectivity is area specific in low-level

visual cortex. We achieved finer measurements of this particular feature with a min-

imally constraining adaptation paradigm. The global hierarchy among the different

visual areas puts hMT+ and V3A as the most direction selective, followed by V1,

V3, V4v and V2. This ordering further supports the classical Ventral-Dorsal classi-

fication. We interestingly found similar direction indices in V1 and hMT+ as Tolias

and colleagues [214] previously showed in macaque V1 and MT, which might further

support homologies in both species. We also found in human V1 and V4 a compa-

rable adaptation induced selectivity effect recently demonstrated in the macaque by

the same group, reviving the notion of context-dependent neuronal tuning. Last but

not least, we have designed a relatively fast and unconstrained adaptation paradigm

that could inspire further studies to characterize normal subjects and patients visual

areas responses to various visual features, nonetheless keeping in mind the modula-

tion of selectivity induced by adaptation and attention.

To confirm the functional segregation we found, future work may imply high resolu-

tion anatomical studies to identify the local cytoarchitectony underlying each area.

A mathematical model of neuronal adaptation in the different neural populations

and visual areas may also help to clarify the origin of the BOLD signal rebound ob-

189



served and its possible link to directionally tuned sub-populations activity. Finally,

revealing the underlying distributed connectivity network among the above areas

may also be achieved using Diffusion weighted MRI. We address this question in the

next chapter.
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Chapter 7

Anatomical connectivity in the

low-level visual cortex
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Understanding the relationship between anatomical structure and function is a

key objective in neuroscience. In the last decades, neuroimaging advances have been

providing ever more promising means to non-invasively address this fundamental is-

sue, thus opening the possibility to investigate in vivo normal and patients cerebral

architecture and activity. This is especially true for MRI, which allows to combine

anatomical (structural MRI), functional (functional MRI) and white matter connec-

tivity (diffusion MRI) information at a spatial resolution of a few millimeters. We

showed in chapters 5 and 6 how anatomical and functional images could be jointly

used to identify various visual areas and functionally characterize them. In this

chapter, we propose to refine our knowledge of the human visual cortex by studying

anatomical connections using a recently developed framework to analyze Diffusion

Tensor Images. Using a Riemanian-geometry based connectivity mapping approach,

we first identified the optic radiations connecting the LGN to area V1. We then stud-

ied interhemispheric connectivity, estimating the white matter connectivity between

low-level visual areas and the splenium. Finally, we investigated intrahemispheric

connectivity between hMT+ and occipital retinotopic areas.

7.1 DTI connectivity mapping and the human visual brain:

state of the art

In this section, we first give an overview of the different approaches used to estimate

the anatomical connectivity of the human brain from DTI. We then review their

main applications to the human visual cortex.

7.1.1 DTI connectivity mapping techniques

Diffusion Tensor Imaging (DTI) models the probability density function of the three-

dimensional water molecules motion, at each voxel of a DT image, by a local Gaus-

sian process whose covariance matrix is given by the diffusion tensor [8]. Among

other applications including the characterization of local tissue anisotropy, DTI can

be used to estimate the anatomical connectivity across remote brain regions. Var-

ious approaches have been proposed to tackle this problem. They can be divided

into three main classes: local, stochastic and geometric approaches.

Local approaches, based on line propagation techniques, rely on the fact that the

eigenvector of the diffusion tensor associated with the major eigenvalue provides a

relatively accurate estimate of the orientation of fiber bundles at each voxel. These

methods may be refined to incorporate some natural constraints such as regularity or

local uncertainty and to avoid being stopped in regions of low anisotropy [153, 130].

All these efforts aim to overcome the intrinsic ambiguity of diffusion tensor data

arising from partial volume effects at locations of fiber merging, kissing or crossing.
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If they can provide relatively accurate models of the main white matter macroscopic

bundles, these methods are sensitive to noise and partial volume effects and cannot

give a quantitative measure to evaluate the degree of connectivity between brain

locations.

Stochastic tractography algorithms were introduced by modeling the uncertainty of

the local fiber orientation [10, 77]. Through uncertainty propagation, they provide

a powerful means to evaluate the probability of connection between remote points

of the white matter. However, the intrinsic drawback of these methods is their com-

putational complexity since it is necessary to resort to Markov Chain Monte Carlo

methods or to evaluate probability density functions at enough locations of the space

of interest.

Geometric methods use either Level Set methods [157, 134, 116], Fast Marching

methods [169] or iterative sweeping techniques [115] to evolve a front on the basis of

the diffusion tensor directional information. Although more naturally able to exploit

the whole tensor information in the connectivity estimation, these approaches are

usually prone to interpolation errors at the boundary of the evolution domain, which

may lead to erroneous connections in highly convoluted areas. Besides, this class

of methods suffers from a high computational complexity like the stochastic algo-

rithms. Finally, most implementations work directly on the whole DT image, which

can lead to anatomically impossible connections across non white matter tissue.

7.1.2 Human visual cortex connectivity: previous work

DTI based connectivity mapping of the human visual cortex has been adressed

by various groups with different protocols and methods. Using a classical stream-

line tractography with smooth interpolation of the tensor field [153], [40] could

reconstruct various bundles including visual pathway fibers. They showed fibers

passing through the splenium, with a specific topology: anterior splenium fibers

head to the parietal lobe while dorsal splenium fibers progress toward the occipital

cortex. However, although the distinction between these two bundles is clear, the

fibers they show fail to reach any precisely defined target on the grey matter and

callosal-occipital fibers seem to rapidly converge to a single path (see figure 1 in

[40]). They could, more convincingly, show a topology within the geniculo-occipital

fibers, where medial (respectively lateral) LGN fibers terminate in a more superior

(resp. inferior) part of the occipital cortex. Using a similar streamline tractography

algorithm, [22] have identified in a single subject different visual fiber bundles

including occipito-frontal and occipito-temporal fibers. In a subsequent study, [23]

have identified different visual fiber bundles: (i) the optic tract from the chiasm

to the LGN; (ii) the optic radiations from the LGN to the occipital cortex, which

can be further divided into a ventro-temporal bundle ending in the lower lip of the
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calcarine sulcus and a dorsal bundle terminating in the upper lip of the calcarine

sulcus; (iii) a splenium bundle connecting both occipital poles; (iv) U-shaped

occipito-temporal fibers; (v) the controversed Inferior Longitudinal Fasciculus (ILF)

directly connecting the extrastriate occipital cortex and temporal lobes. Despite

these interesting findings, no functionally defined areas were used and data were

mainly analyzed on a single mean DT image obtained thru the averaging of different

subjects, hence diminishing the possible interpretations of their findings when one

considers the strong anatomico-functional variance across subjects.

The group of Ciccarelli, Toosy and colleagues used the Fast Marching Tractography

(FMT) technique [167] to investigate 3 fiber bundles: the pyramidal tract, anterior

callosal fibers and, more interestingly for our study, the optic radiations. They

first concentrated on methodological issues, demonstrating the inter-subject repro-

ducibility [33] as well as the inter-observer reproducibility [31] of the reconstructed

tracts. More recently, they applied this technique to study changes in the optic

radiation of patients affected by a specific optic nerve injury optic neuritis [32].

Note that the FMT method has been partly validated in a combined study on

macaques and humans, showing a part of the cortico-spinal tract and the optic

radiations in both species [168]. Note however that the authors aknowledge the

currently limited spatial resolution in DTI which prevents reliable tractography in

macaques and therefore a true validation.

As of today, only a few studies have combined fMRI and DTI to study the visual

cortex. In the above mentioned study, [40] used fMRI activation maps to roughly

identify the LGN and the occipital visual cortex. [242] demonstrated that the

fractional anisotropy was lower in the activated occipital cortex than in the optic

radiations. This is consistent with the known relative isotropy of grey-matter voxels

as compared with white-matter voxels [174]. Using a probabilistic tractography

method, [215] completed this work, showing a correlation between the estimated

optic tracts mean FA values and the degree of fMRI activity within the visual cortex

but, like the former, they did not functionally identify the occipital visual areas

they were considering. To our knowledge, the most complete and precise study in

the literature was done by [54] at Stanford. They combined a classical streamline

tractography method with a functional identification of occipital retinotopic areas

to recover occipital fiber tracts passing through the splenium. They demonstrated

a good spatial matching in the splenium of independently estimated fibers starting

from left and right occipital poles. More specifically, they found a topology in these

tracts in which (i) dorsal (respectively ventral) cortical regions project dorsally

(resp. ventrally) into the splenium, in agreement with a macaque autoradiography

study, (ii) a foveal-periphery gradient can be found in the anterior-posterior

direction of the splenium.
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In the present study, we used a Riemannian geometry based connectivity

mapping technique proposed in [133] and a recently introduced Fast Marching

implementation [176] to assess the anatomical connectivity across individually in-

dentified areas in the low level visual cortex. The method estimates the anatomical

connections of the white matter as geodesics in R3 equipped with a Riemannian

metric derived from the diffusion tensor. Besides its robustness and efficiency, this

approach naturally restricts the estimation within the white matter voxels and

further provides statistics of a local connectivity measure along each estimated

fiber. We first validate this methodology by recovering typically known fiber

tracts before addressing new issues regarding intra-hemisphere connectivity in the

occipital visual cortex.

7.2 Methods

7.2.1 MR data acquisition

Subjects participated in two separate scanning sessions. A scanning session sys-

tematically starts with a fast low-resolution anatomical localizer to appropriatly

set the subsequent scans slices location, followed by the functional and/or diffusion

scans, then the phase map acquisition is done before ending with a T1-weighted

image acquisition. These high resolution anatomical scans were used as references

to coregister the different sessions.

In the first session, the functional scans, later used to identify the retinotopic areas

and the hMT+ complex, and diffusion weighted images were acquired. However,

due to an acquisition problem, the phase map could not be reconstructed which

is particularly problematic considering the important geometric distorsions of the

echo-planar diffusion weighted images (see below). As soon as this problem was

solved, we acquired in a second session new diffusion weighted images and the cor-

responding phase map for the same subjects. As we were not acquiring functional

images, we took advantage of the saved time to increase the number of repetitions

for each direction, thus increasing the diffusion-weighted images signal to noise ratio.

We also acquired a T1-weighted image to coregister data from both sessions.

fMRI

During each functional scan, 151 Echo Planar Images were acquired over 5 mn 19 s

using our coronal sequence (see paragraph 2.4.4). Each functional image spans 20

coronal slices 3mm thick and 2x2mm2 in plane resolution, approximately orthogonal

to the calcarine sulcus covering the occipital retinotopic areas and extending anteri-

orly to confidently include hMT+ region [56]. The first five images (10.555 s) were

systematically discarded to avoid magnetic saturation effects. The 144 following
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images correspond to the visual stimulus per se. The last two images were taken to

allow slice-timing correction preprocessing.

Diffusion Tensor Imaging

As mentioned in paragraph 2.4.4, we first tried different acquisition parameters to

obtain the best diffusion weighted images. We finally used 12 diffusion directions for

b=1000 s.mm−2, which is consistent with other studies [99] and allowed us to increase

the number of repetitions to achieve a better SNR. Each gradient directions was

repeated 6 (first session) or 12 times (second session). The other useful parameters

are TR=10000ms, TE=86ms and the voxel size 2x2x2 mm3.

7.2.2 Processing pipeline

Each dataset was analyzed on a subject basis to avoid undesiderable normalizing

effects such as the strong smoothing implied by this procedure. [242] showed it was

possible to obtain geometrically matched fMRI and DWI with appropriate acqui-

sition sequences, therefore avoiding various distorsions correction steps. However,

these images are not coregistered with the anatomical image and this procedure

supposes to acquire data with the same volume prescriptions. In this study, as we

considered complementary information from 3 different MRI modalities (anatomi-

cal, functional and diffusion-weighted images), acquired two distinct sessions for each

subject and used different slice prescriptions for the different modalities, a reference

space had to be chosen to coregister all these images together. We used the mean

T2-weighted image (i.e. obtained without diffusion sensitization or b=0 s.mm−2)

further corrected for EPI geometric distorsions (see below) as reference image. We

note umean T2 this reference image. This choice minimized the deformations and

interpolations of the diffusion-weighted images acquired within the same run using

a similar sequence. Each type of image received specific processings detailed in the

following paragraphs and the extracted useful information was finally coregistered

to the umean T2 reference image. Figure 7.1 summarizes the overall processing

pipeline used in this study.

Anatomical image.

High resolution anatomical images acquired in both sessions allowed precise inter-

session coregistration using SPM2 algorithm. We note M1 the estimated transfor-

mation mapping anatomical image from session1 to anatomical image from session2.

The latter was further coregistered with the umean T2 reference image by trans-

formation M2. Besides, structural information was extracted from both anatomical

scans. Using the methods described in chapter 3, models of GM/WM interfaces re-

quired to segment the retinotopic areas (see chapter 5) were obtained from session1
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Figure 7.1: The image processings pipeline. See text for details.
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anatomical image. A segmentation of session2 anatomical image was performed to

obtain a white matter tissue mask in which the connectivity mapping computations

were constrained.

Visual areas functional definition.

Functional images for the retinotopic and hMT+ mapping were first realigned with

the INRIalign toolbox [76] and coregistered with the anatomical image with SPM2,

then smoothed through the cortical surface based smoothing method described in

chapter 3, with a 3mm equivalent Gaussian filter FWHM. A high-pass and a low-

pass filtering were also performed on the time-courses to respectively remove low-

frequency signal drifts and high frequency noise. Subsets of connected voxels were

extracted for each area using the method described in chapter 5 and further used as

ROIs in the connectivity analysis. However, diffusion anisotropy is relatively low in

grey matter voxels [174], such as in the visual cortex [242], thus considerably limiting

the directional information provided by DTI to evaluate the anatomical connectivity

between grey matter regions. We therefore defined white matter ROIs, considering

the white matter voxels closest to the cortical ROIs. Specifically, the hMT+ volumic

ROIs were manually drawn based on the activation maps, selecting the white matter

voxels closest to suprathreshold cortical voxels in the expected location of hMT+;

the retinotopic areas volumic ROIs were automatically computed from their identi-

fication on the GM/WM interface by projecting the respective surface-based labels

along the surface normal inside the white matter voxels. Each ROI voxels subset was

then coregistered to the umean T2 reference image by the transformation M1 ◦M2

and further masked to solely lie within the white-matter mask extracted from the

high resolution anatomical image. Possible intersections between each pair of ROIs

were also removed from the analysis.

Diffusion weighted images.

T2 image: the 8 T2-weighted images were motion corrected using INRIAlign

before being averaged. The resulting mean T2 image was then processed to correct

geometric EPI distorsions caused by magnetic susceptibility inhomogeneities,

i.e. magnetic field inhomogeneities particularly found at the interfaces between

different tissues [117]. Based on the phase map acquired during session2, i.e. an

image mapping the spatial distribution of field inhomogeneities, we used the SPM

interfaced toolbox ”Fieldmap” to compute and apply a voxel displacement map

accounting for these susceptibility artefacts. As mentioned above, the resulting

umean T2 image served as reference image for connectivity maps computation.
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Diffusion-weighted images (DWI): DWI data were first preprocessed to

minimize the distorsions induced by eddy-currents and related to the large

diffusion-sensitizing gradients. We used the algorithm proposed by [145] and

implemented within the BrainVisa package. Briefly, this method uses a 2D image

registration technique to realign each DWI slice with its corresponding standard

T2-weighted slice. A scale factor, a translation and a shearing are the parameters

for the slice and image dependent affine transformation searched. The mutual infor-

mation is used as a similarity measure to estimate the transformation parameters.

We then applied to the resulting images the EPI geometric distorsions correction

algorithm used for the mean T2 image.

Diffusion Tensor Image computation: once the DWI are coregistered

with our reference image, we can estimate the diffusion tensor image (DTI), i.e. a

field of 3x3 real symmetric positive-definite tensors along the image domain V . This

is done using the Stejskal-Tanner equation [206] for anisotropic diffusion, which

relates the magnetic resonance signal attenuation to the diffusion tensor D(v) and

the sequence parameters:

Sk(v) = S0(v)exp(−bgTkD(v)gk) ∀v ∈ V, k = 1, ...,M

where (gk)k=1,...,M are the M normalized non-colinear gradient directions correspond-

ing to each DWI (Sk)k=1,...,M and b is the diffusion weighting factor. In our protocol,

M = 12 and b = 1000s.mm−2.

The classical technique usually applied to compute the diffusion tensor field D from

DWI relies on a least square estimations of its coefficients at each voxel v. It boils

down to searching the optimalD ∈ S+, the set of 3x3 real symmetric positive-definite

matrices, minimizing the objective functional:

E(S0, ..., SM ) =
M∑

k=1

ψ(
1

b
ln
Sk
S0

+ gTkDgk)

where ψ : R→ R is the classical squared residual ψ(x) = x2. Although computation-

ally efficient, this approach cannot strictly ensure the expected positive definiteness

of each diffusion tensor. Alternative algorithms have been proposed to overcome this

drawback, e.g. [243, 145, 225]. Here, we used a non-linear robust gradient method

proposed in [135] which naturally evolves in S+, therefore systematically leading to

symmetric and positive definite solutions for D. The Huber’s M-estimator was cho-

sen for the ψ function with the tuning constant k = 1.2107, which allows to achieve

an asymptotic efficiency of 95% on the standard normal distribution:

ψ(x) =

{
x2 for |x| ≤ k

k(|x| − k
2
) for |x| > k
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We have observed particularly significant differences between the two estimation

methods in highly anisotropic regions, such as the corpus callosum, where the least

square method could lead to nonpositive tensors. In such cases, the nonpositive

eigenvalues are artificially set to a very small non-null value, leading to unreliable,

highly planar (with a null eigenvalue) or linear (with a single positive eigenvalue)

anisotropic tensors and possibly to numerical instabilities in subsequent tensor based

computations. This situation, naturally, never occurs with the intrinsic gradient

descent method as the solution necessarily belongs to S+. Figure 7.2 illustrates

these differences with a close up of an axial slice containing the splenium of the

corpus callosum.

Least square method Riemannian method

Figure 7.2: Estimation of Diffusion Tensors: comparison between classical least square

(left) and gradient descent in S+, the set of symmetric positive definite 3x3 matrices

(right). (Blue: low anisotropy; Red: high anisotropy). Notice the difficulty to represent

tensors in the middle of the corpus callosum with the least square approach, suggesting

degenerate cigar-shaped tensors in this region.

7.2.3 Connectivity maps and fiber tracts computation

The Riemannian geometry framework applied to DTI

We used an approach based on a Riemannian geometric framework to compute (i)

a distance function to a given point of interest (or seed point) x0, (ii) the putative

fiber path linking any voxel of a given brain region V to x0 and (iii) a connectivity

map, i.e. a confidence measure associated with each fiber. In this geometrical

formulation of DTI connectivity mapping, the DTI is modeled as a Riemannian

manifold M whose metric is directly related to the diffusion tensor D modeling the
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local diffusion properties of water molecules. As shown in [133, 157], the metric G

of M is given by G = D−1. From this metric, a distance function u(x0, x) between a

given seed point x0 and any other location x of the brain mask V can be evaluated

as the solution of the following initial value problem:
{
‖∇u(x0, x)‖G = 1 ∀x ∈ V \ {x0}
u(x0, x0) = 0

(7.1)

This is the well-known Eikonal equation on the Riemannian manifold (M,D). The

solution u at any voxel x ∈ V can be interpreted as the minimum time t ≥ 0 to

reach x0 starting from x on the manifold M . Considering the low anisotropy in the

grey matter tissue, we consider for V the set of white matter voxels obtained from

a segmentation of the anatomical image (see methods).

The geodesics of M , which can be derived from a continuous gradient descent over u

along the direction given by −∇u, are considered as putative white matter bundles

linking any voxel x ∈ V to x0. As such, a geodesic connecting any voxel x ∈ V

to the seed voxel x0 always exists. If an actual white matter fiber connects x and

x0, the associated geodesic coincides with the fiber. However, for any x ∈ V , the

associated geodesic does not necessarily coincide with an actual white matter fiber.

It is indeed highly unlikely from an anatomical point of view that a given brain locus

could be directly connected to every other brain location. To overcome this issue,

connectivity measures along each geodesic can be estimated, enabling to discriminate

likely and unlikely white matter connections. In this study, we considered for each

estimated geodesic statistics of the following local confidence measure:

C(x) = ‖∇u(x)‖E
We claim that C is a natural local measure of connectivity since, as we will see

shortly, it can also be interpreted as the solution of an optimal control problem

and measures the local ”speed” of water molecules propagation in the white matter

tissue. From this local connectivity index, we compute its first and second order

statistics along the geodesic:

µ(x) = E[C(x)] and σ(x) =
√
E[C(x)2]− E[C(x)]2

An ideal fiber linking x to x0 will typically have a large mean value µ(x) and a small

standard deviation σ(x). This connectivity measure provides a means to distinguish

likely and unlikely fibers. Since each voxel x in V can be assigned a geodesic reaching

x0, we have a couple (µ(x), σ(x)) at each voxel. In the remainder, we note µ-map

and σ-map the respective images of µ and σ values.

Numerical resolution methods

Regarding the numerical resolution of equation (7.1) and the computation of

geodesics and connectivity measures, we used two different methods respectively
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based on the level set framework and a control theory formulation. If both

interpretations are mathematically equivalent, they focus on different aspects of the

problem. In the level set (or dynamic) approach, the emphasis is on the description

of the manifold geometry, while in the optimal control point of view (or static)

approach, the emphasis is on the optimal dynamics, which coincides with the in-

trinsic gradient of the distance function. We give below an overview of both methods.

Level set method

We first used the level set method described in [133, 134] and implemented in C++

by Christophe Lenglet at the Odyssee Laboratory. As shown e.g. in [164, 197],

equation (7.1) can be reformulated in the level set perspective. This is achieved by

introducing a new function ψ such that the evolving function ut is a level set of ψ:

ut = {x ∈ V : u(x) = t} = {x ∈ V : ψ(x, t) = 0}

Then, it can be shown [164] that finding u satisfying equation (7.1) is equivalent to

solving the Partial Differential Equation (PDE):

{
ψt + ‖∇ψ‖G = 0 ∀t > 0

ψ(x, 0) = ψ0(x)
(7.2)

Where ‖∇ψ‖G =
√
Dψ>G−1Dψ).

Starting from x0, the rate at which the front propagates is given by the local

diffusion tensor D. The larger the local tensor eigenvalues are, the faster the local

front propagation will be in the associated eigenvector directions. Hence, evolution

is fastest along white matter paths. The front arrival time at each voxel generates

the distance function to x0. Geodesics are then obtained by back-propagating

along the function u gradient field from any voxel x ∈ V towards the origin x0.

The related connectivity measures µ(x) and σ(x) are finally estimated during the

computation of this optimal pathway linking x to x0, by integration of the local

criterion C along the entire geodesic.

Fast Marching Tractography method

Facing two major limitations of the level set approach, namely the high algorithmic

complexity leading to relatively long computational time and, more importantly,

numerical difficulties to properly deal with the white matter mask boundaries,

we then used a very recently proposed formulation of the problem. By recasting

problem (7.1) into the optimal control theory framework and numerically solving

it with Fast Marching Method (FMM), its authors could propose a considerable

computational improvement to evaluate the quantities of interest. The theoretical

issues as well as the C++ implementation were developed in a collaboration

between the Odyssee laboratory and the UCLA vision Laboratory. We refer the
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reader to [176] for an indepth study of the approach and its contributions.

Briefly, in this formulation, the problem comes down to estimating the optimal

vector field f ∗ (optimal dynamics) corresponding to the field of the geodesics

velocity in M (which also coincides with −∇u). This is achieved using a Fast

Marching based algorithm. Starting the front from an initial seed position x0, the

Fast Marching Method (FMM) systematically marches the front outwards one grid

point at a time, by always locating the proper grid points configuration (the optimal

simplex) yielding the smallest update value of the distance function u, a principle

named causality. FMM thus constructs the optimal dynamics f ∗ by propagating the

information ”one way”, requiring one single pass over the domain V . The distance

function u is now a byproduct of the algorithm, no longer necessary for subsequent

computations. Besides, the connectivity statitics maps µ and σ are computed ”on

the fly”. Indeed, based on the optimal simplex, one only needs to compute the local

value for C and C2 and then build on previous values to derive µ and σ associated

to the geodesic linking x0 to the current voxel. If needed for visualization purposes

for instance, the geodesic paths can be straightforwardly reconstructed by following

the optimal dynamics f ∗.

The Fast Marching Tractography (FMT) approach detailed above offers many

advantages over existing work, including the level set method we first used:

- the method is efficient since it computes simultaneously the optimal dynamics and

the statistics of our local connectivity measure; besides, the explicit computation of

the geodesics is not mandatory to get the connectivity measure maps,

- the computation time is dramatically improved, from 20 minutes to get the dis-

tance function with the level set formulation to 7 seconds with the FM algorithm,

- the method naturally handles the constrained computation within highly convo-

luted regions such as in the occipital cortex white matter (figure 7.3),

- the algorithm exhibits a higher robustness with respect to noise over the level set

implementation, as validated by numerical experiments on synthetic datasets.

The results we present below were systematically obtained with the FMT al-

gorithm. Notice however that the level set method led to qualitatively similar

results, although the computation time was by far higher and the numerical issues

mentioned above could lead to anatomically impossible front propagation (figure

7.3), requiring iterative manual modifications of the white matter mask.

7.2.4 Seed voxels placement

A crucial aspect for any fiber tracking method is the location of the initial seed.

The seeds for the FMT algorithm were selected depending on the considered tracts.
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DTI axial slice White matter segmentation

Level set algorithm FM algorithm

Figure 7.3: Distance function computed from DTI data (a) to an occipital seed voxel, the

blue cross in (b) in a white matter mask (red line in (b)). Yellow lines depict distance

function isovalues in the range [0;1500], computed through the level set (c) or the Fast

Marching (d) algorithms. Front diffusion of the level set method does not necessarily

respect the white matter mask topology, leading to anatomically impossible connections

through CSF voxels (c). This numerical problem is avoided in the Fast Marching method

which naturally respects the mask topology (d).

LGN seed voxels identification

Lacking a precise functional localization of the LGN, we first identified LGN seeds

voxels with a classical streamline technique. To do so, we manually selected in each

hemisphere a rough thalamus sub-region which obviously included the expected
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LGN location. More specifically, based on both anatomical and diffusion tensor

image prior information, the initial region was identified anterior to the lateral

ventricles and only voxels with a relatively high anisotropy (FA ≥ 0.15) were kept.

Diffusion tracts starting from each selected voxel were estimated with a classical

streamline tractography technique [130] and further automatically filtered to keep

the fibers heading to the ipsilateral retinotopically identified area V1. Only fibers

reaching a 3 voxels wide band around the functionally defined V1 region were kept.

This approach is very similar to that of Conturo and colleagues [40], although we

did not oversample the DTI data, thus getting less fibers than the latter work.

The starting voxels of the remaining fibers were finally labeled as the LGN voxels.

We typically found a region of 5 connected voxels in each hemisphere, consistent

with the reported LGN size both in previous anatomical [108] and fMRI studies

[27]. Beyond yielding an anatomical connectivity based delineation of the LGN,

the reproduction of the well-known visual pathway as well as the likely extent and

location of the LGN ROIs validates our diffusion-weighted images quality as well as

our image processing pipeline.

Other tracts

For connectivity mapping starting from the functionally identified visual areas, we

simply used the white-matter ROIs defined with the procedure previously detailed.

7.3 Results

We first validated our protocol and connectivity mapping technique on the previously

characterized optic radiation tracts before investigating callosal connectivity and

intra-cortical connectivity across the functionally identified visual areas.

7.3.1 Optic radiations

As one cannotice from the above literature overview, the optic radiations were often

reconstructed in diffusion tractography studies. We therefore decided to validate

our fiber tracking approach by considering this well characterized fiber bundle,

which links the Lateral Geniculate Nucleus (LGN) to area V1 in the occipital cortex.

Starting from each previously identified LGN voxels (see methods), we com-

puted the connectivity index maps with the FMT technique. As we were not

concerned here with inter-hemispheric connections, the FMT computation was

restricted to the ipsi-lateral hemisphere of the seed voxel. Figure 7.4 shows two

µ-maps, one per hemisphere, in two subjects. As each map is restricted to its

respective hemisphere, we merged them in a single image and overlaid the result on

an axial slice of subjects’ anatomical image. The seed voxel of each µ-map is shown
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Figure 7.4: Connectivity µ-maps obtained in two subjects with the FMT technique esti-

mated from one LGN seed voxel (in black) for each hemisphere. The highest connectivity

index values are found along the putative optic radiations paths, with the maximum value

within area V1.

in black. The highest connectivity index values (dark red) are systematically found

within the typical path of the optic radiations. Besides, highest values were found

in the retinotopically identified V1 region. These results were found for each seed

voxel in all subjects.

Finally, for each connectivity maps, the voxel with maximum connectivity

mapping index (which lay in area V1) was identified and the geodesic linking

that voxel and the seed point was traced. Figure 7.5 shows the reconstructed

fiber bundles obtained with both methods. Although the thalamo-occipital fibers

estimated with streamline and geodesic methods qualitatively match and are

consistent with known anatomy, we noted some differences between reconstructed

tracts.

As can be seen in figure 7.5, most fibers estimated by streamline propagation fail

to reach the V1 white matter ROI, unexpectedly heading in a ventral direction

a few millimeters before reaching the V1 region. We attribute this unexpected

trajectory ending to an improbable connection with another fiber bundle crossing

the thalamo-occipital track. This observation led us to use a relaxed constraint

to filter the fibers passing closely to V1, as mentioned in the above description of

the LGN seed voxel identification procedure. Note that [40] also used a 1cm band

within the white matter, laterally located to the activated occipital cortex to filter

their thalamo-occipital fibers (see [40], figure 3). Besides, other DTI tractography

works showing this bundle do not exhibit an actual connection with a accurately

defined V1 ROI, letting open the question of the fibers termination location.

206



On the other hand, FMT estimated tracts systematically reach our white matter V1

region, which illustrates an important advantage of the geometric front propagation

method over local approaches. However, FMT fibers tend to converge rapidly after

leaving the seed voxels, which denotes the less local characteristic of the method

(see discussion).

Figure 7.5: Optic radiation tracts estimated with a classical streamline method (blue) and

with the FMT technique (red). The LGN seeds voxels (green), Left V1 (yellow), right V1

(purple) and an axial slice of the DTI are also represented.
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7.3.2 Callosal connections

For each hemisphere, the low-level visual areas represent and analyze only one half of

the visual field, i.e. their respective contralateral hemifield. Nonetheless, homologue

areas of both sides, such as left and right V1, have been shown to be connected,

at least for the vertical meridian representations, through the splenium, a portion

of the corpus callosum [37]. Following [54], we studied the FMT estimated con-

nectivity maps of our functionally defined areas. We were interested in looking at

the capability of our FMT method to replicate the broad connection topology that

Dougherty and colleagues reported in the region of the splenium.

We analyzed connectivity maps in the splenium voxels, starting from our retinotopi-

cally (or functionally for hMT+) defined ROIs. Each ROI was considered separatly.

We note X = (xi)i=1,...,n a specific n voxels seed ROI (e.g. left hemisphere V1) and

Y = (yj)j=1,...,m the m splenium voxels identified on a mid-saggital slice. For each

seed voxel xi, the corresponding µ-map and σ-map were computed with the FMT

method. We therefore have the mean and sigma values for each optimal path γi,j

linking xi to yj. We then filter these maps to remove the highest variance paths

and compute a single mean µ-map in the splenium. Specifically, for each splenium

voxel yj0 , we have n putative paths γi,j0 . We discard a given proportion p of these

n connectivity paths, removing paths with highest variance σ. The mean connec-

tivity indices of the remaining putative fibers are then averaged, leading to a single

mean value µ at voxel yj0 . The procedure is repeated for each yj, j = 1, ...,m. The

resulting µ map is interpreted as the mean connectivity between area X and the

splenium.

Figure 7.6 shows the resulting mean µ-maps for visual areas hMT+, V1, V3A and

V4 respectively taken as starting ROIs in a mid-sagittal section of the brain for each

subject. p was arbitrarily set to 10%. We do not represent here the mean µ-maps for

areas V2v, V2d, V3v and V3d, as they do not significantly differ from their clothest

neighboring areas on the cortical surface, i.e. V1v, V1d, V4 and V3A respectively

(see discussion below).

Connectivity values are ordered similarly for each areas, with a smooth gradient

from lowest values in the posterio/dorsal portion of the splenium to highest values

in its antero/ventral portion. Comparing the different origin areas, lowest values

were systematically found for hMT+. Regarding areas V1, V3A and V4, values are

not consistent enough across subjects to infer a systematic topology in the occipito-

callosal connections. However, V3A connectivity is higher than for V4 in 4 out of

6 hemispheres, suggesting a stronger callosal connectivity for dorsal with respect to

ventral areas. Finally, we observed a systematic asymmetry between the maps asso-

ciated to each hemisphere. The highest values were found for putative connections

originating from the left hemisphere. Figure 7.7 represents the most probable fibers
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Figure 7.6: Mean connectivity indices from distinct visual areas to the splenium vox-

els. The mean connectivity values show a smooth gradient from posterio/dorsal to an-

tero/ventral splenium portions. Lowest connectivity values in the splenium are systemat-

ically found for hMT+.

linking each hMT+ voxel from both hemispheres to the splenium. We employed a

similar method to that used to obtain the optic radiations fibers. More specifically,

for each hMT+ voxel considered as a seed, we computed the related connectivity

index maps. We then identified the splenium voxel with highest connectivity in-

dex and constructed the related geodesic. The estimated fiber tracts from the two

hemispheres show a great spatial agreement.

7.3.3 hMT+ intra-hemispheric connectivity

Using a similar approach, we finally studied the FMT-connectivity of the human

MT complex with the ipsilateral occipital retinotopic areas. The most probable

connections were identified as follows. Taking as seeds each hMT+ voxel (xi)i=1,...,n,

209



Figure 7.7: Independently estimated most probable fibers linking left and right hMT+ (in

green) to the splenium (in blue) from two subjects (left CL and right JP).

we compute the µ and σ maps with the FMT method. For each xi, we then identify

a given proportion p of paths with the highest σ values among the m paths linking

target ROI voxels (yj)j=1,...,m to xi. The mean µ value of the remaining paths is then

computed and assigned to voxel xi. We end up with a mean connectivity value at

each hMT+ voxel and for each retinotopically defined target ROI.

Figure 7.8 shows a box plot of the mean connectivity values distribution for the

different seed voxels of hMT+ across areas. The boxes edges depict the values of

the first quartile, the median and the third quartile. Values outside this box are also

shown to completely represent the distribution dispersion.

V1 and V2 systematically showed the highest connectivity values, suggesting highly

probable connections with hMT+. V1 and V2 can hardly be distinguished, which

can be attributed to their very close anatomical locations given our voxel size (see

discussion). On the other hand, V4 systematically showed the lowest connectitivity

values, suggesting a weak direct anatomical connection with hMT+. It is more

difficult to clearly distinguish the remaining areas V3v, V3d and V3A.

Similarly to the splenium data analysis, we clearly found higher connectivity values

for the left hemisphere as compared to the right, regardless of the area considered

(see the values range on the vertical axes).

7.4 Discussion

We have combined informations from 3 different MR modalities to study connectivity

within the human low-level visual brain. To date, only a few studies used functionally

defined ROIs to characterize white matter connectivity in this part of the brain. We
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Figure 7.8: Occipital-hMT+ connectivity

have shown that it is possible to determine various connectivity patterns with our

Riemannian geometric approach. We shall first discuss the results regarding current

knowledge on the human visual brain connectivity and then address methodological

issues regarding DTI based tractography.

7.4.1 Visual cortex connectivity

Thalamo-occipital fibres We first reproduced tracking of the thalamo-occipital fibers

bundle connecting the LGN and V1. This fiber bundle was identified in various
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DTI tractography work, either with a deterministic streamline [40, 23] or a Fast

Marching Tractography [33, 31] method. Although our methodology to identify the

LGN seed voxels might appear biased as it is already based on DTI information,

we stress that the estimated LGN location and extent consistently fits previous

reports and known anatomy. Furthermore, this method is not prone to operator

dependent seed selection. The successful identification of the well-characterized

thalamo-occipital connection therefore validated our Riemannian FMT method.

These results also illustrate the lower local sensitivity than in the case of a classical

streamline approach, since spatially close seeds lead to relatively similar connectivity

maps, hence to close fibers tracks (figure 7.5). This can be an advantage over

classical streamline approaches as it is less prone to noise, but might also mask

local topology across spatially close fibers, such as those shown by Conturo et al.

in the thalamo-occipital fiber bundle [40].

Splenium fibers

We investigated the topology of callosal fibers with respect to their origin in the low

level visual cortex. We could reproduce with our FMT method the antero-ventral

localization of fibers linking occipital retinotopic areas to the corpus callosum

(figure 7.6), as found by Dougherty et al. [54] using a classical streamline approach.

Our results also suggest higher connectivity values for V3A when compared to

V4, which is consistent with [54]. We could not however identify the precise

topological organization of connections within the splenium they observed, neither

with our FMT approach nor with a streamline technique similar to the one they

used. A lower quality in our diffusion-weighted images may be responsible for this

discrepancy.

We found the lowest connectivity values in the splenium for hMT+ when compared

to occipital retinotopic areas (figure 7.6). This result should be related to a

clinical study demonstrating that visual motion perception, strongly correlated

with hMT+ activity, is not affected by posterior callosal destruction [36]. On the

other hand, a weaker activation during bilateral visual field stimulation was found

in the patient left hemisphere calcarine region compared to 20 normal subjects,

correlated with severely impaired reading and colour naming performances. These

findings suggested other, probably parallel, pathways conveying interhemispheric

visual motion information. Possible candidates proposed by the authors for the

alternative routes include anterior part of the corpus callosum, anterior commissure

and subcortical (via the superior colliculus, the intecollicular commissure and the

pulvinar) connections. Future work will shortly assess these alternative interhemi-

spheric connections for hMT+.

hMT+ and occipital areas connectivity
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We studied the connectivity between hMT+ and various low-level retinotopic areas.

To the best of our knowledge, this is the first DTI connectivity study considering

this cornerstone of the visual motion pathway. V1 systematically showed the highest

connectivity index values with hMT+ (figure 7.8), consistent with the known highly

myelinated white matter fiber bundles linking both areas [232]. Besides, lowest

connectivity values between the retinotopic areas and hMT+ were systematically

found for area V4. This result should be related to the previous chapter of the

current thesis and with the work of Tolias and colleagues in macaques [214, 213].

This connectivity mapping result may suggest that acquired direction selectivity in

area V4 might rather be mediated by V1 than by direct connections with hMT+,

further supporting the famous distinction between ventral and dorsal streams [228].

This issue should be addressed in future work, e.g. reproducing the study of [213]

after hMT+ resection or by using cortical cooling techniques in macaque MT

region.

We also found similar hMT+ connectivity values for V3d and V3v, despite their

relatively important distance along the cortical sheet. This observation could be

an other evidence to consider V3d and V3v as the two quarterfields representation

of a single area V3, as also demonstrated with anatomical connectivity studies in

various species of monkeys [140, 141].

Anatomical geometry and sampling constraints

As mentioned above, we could hardly distinguish mean connectivity maps for areas

V1 and V2. Although surprising at first sight, this result can actually find a simple

explanation when considering together the anatomical layout of these areas and the

current spatial resolution of DTI. Areas V1d and V2d (and similarly V1v and V2v)

respectively lie on the opposite banks of the same gyrus1. The white matter tissue

separating the latter is therefore relatively thin, especially with 2mm isotropic

voxels. Thus we cannot expect to easily distinguish the connectivity maps obtained

with two opposite voxels in this gyrus. Improvement of the spatial resolution

appears as the only way to solve this problem. Although still to be considered for

the areas couples V3d/V3A dorsally and V3v/V4 ventrally, this gyral proximity is

less pronounced since these areas borders appear less constrained by the sulco-gyral

pattern than for V1 and V2 borders.

Hemisphere asymmetry

Our results suggested a significant asymmetry in our connectivity maps between the

two hemispheres. The left hemisphere exhibits higher connectivity values than its

right counterpart. A similar result was also reported in [54], where more occipito-

1Note that Van Essen proposed an interesting mechanical tension-based theory to explain this particular

folding pattern [231].
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callosal fibers could be reconstructed in the left than in the right hemisphere by the

employed streamline algorithm. The authors suggested a bias in the hemispheres

respective size may account for this difference. Note that such an asymmetry

between both hemispheres was also reported in the motor system [94] and could

possibly be attributed to handedness. We suggest an alternative hypothesis, based

on a perhaps more straightforward brain observation: hemispheric functional

specialization. Undoubtly, the hemispheres are functionally asymetric and this

sould imply a different, asymetrical wiring within each hemisphere. This may in

particular be the case in the occipital cortex, the right lobe possibly presenting more

fiber crossings than its left counterpart. As a consequence, the local diffusion tensors

would not be equivalently anisotropic in both sides, leading to more difficult fiber

tracking for streamline methods or lower connectivity values for our FMT algorithm.

As future directions, besides those mentioned above, we consider the work of

Behrens and Johansen-Berg as a particularly promising application of DTI informa-

tion to study the visual cortex. Based on remote cortical connectivity patterns, they

could successfully segment the thalamus into anatomically consistent subregions

[9]. A similar approach may be applied to uncover the different compartments of

regions such as hMT+ or the Lateral Occipital Cortex. Cortico-cortical connectiv-

ity information may also be of great interest to clarify cutting-edge visual areas

identification issues, both dorsally (V7, KO, ...) and ventrally (V4v-V8 vs. hV4

models, newly reported Ventral Occipital maps).

These issues will certainly be successfully addressed in the near future, provided nec-

essary methodological advances regarding both data acquisition and tractography

algorithms.

7.4.2 Methodological issues

Riemannian DTI connectivity: validity and limitations

The current study provides a validation of the Riemannian approach to estimate

DTI based connectivity mapping in the visual system. With its other application

to the human motor system [132], this Riemannian geometrical approach, using

the full tensor information, appears very useful to study anatomical connectivity

in various cognitive systems. Geometrical tractography methods, such as the

current Riemannian FMT used in our study, have three main advantages over other

tractography approaches. First they provide a connectivity measure between any

pair of points within the white matter. This information can be used to build

connectivity matrices over the whole brain or to rank putative connections pathways

in the white matter. Then, geometrical approaches can deal with locally isotropic

tensors occuring at fibers kissing or crossing. This is not the case with deterministic
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or probabilistic approaches where a FA threshold condition is often necessary to

avoid unreliable fibers. Finally, these methods are less sensitive to acquisition noise,

since they take advantage of the complete tensor information and of the less local

behavior of the algorithm by comparison with streamline or stochastic approaches.

Although previous implementations turned out to be computationally intensive

[133], the recently developped FM method allows a very fast estimation of connec-

tivity maps and geodesic path construction, as well as an improved robustness to

noise. Besides, this approach naturally deals with the convoluted geometry of the

white matter mask, avoiding anatomically impossible tracts passing through CSF

voxels (figure 7.3).

There are however limitations both due DTI by itself and to the geometrical

connectivity mapping framework. First and foremost, the relatively poor spatial

resolution of DTI (typically a few mm3) when compared to actual white matter

fibers diameter (between 0.2 and 20 µm) has important implications. (i) Only

white matter ”highways” may be properly recovered, which hardly represent every

cortico-cortical connections; false negative connections are thus unavoidable. Im-

provements in image acquisition protocols, such as parallel imaging, may overcome

this limitation, but a precise physical lower bound is still to be estimated. (ii) The

tensor model cannot handle properly fibers crossings or kissings that may occur

within a voxel. Emerging approaches using higher order models based on High

Angular Resolution Diffusion Imaging (HARDI) [74, 226, 165, 21, 48] may provide

an answer to this issue.

An intrinsic problem of the geometrical connectivity mapping approach used

here comes from the absence of absolute threshold to confidently estimate fiber

tracts from the connectivity maps [168]. Depending on the threshold choice

(the p proportion, arbitrarily set to 10% here), false positive or false negative

connections may arise. Combination of complementary connectivity indices asso-

ciated with each geodesics may prove to minimize this limitation. Furthermore,

most tractography methods to date, including ours, are not symmetrical in the

sense that putative paths reaching a position y while starting from x may not

necessarily coincide with those linking x when starting from y. Tracking within

GM, although theoretically possible with geometrical approaches like the one we

employed, still leads to difficult interpretations of the reconstructed connectivity

maps and related tracts as the diffusion signal is poor in the cortical tissue. Last

but not least, a direct validation of DTI based methods is still missing. Although

reconstructed tracts such as the optic radiations in the current study or the

motor pathway found in [132] are consistent with known anatomy, a quantitative

validation could indicate the advantages and weaknesses of DTI based tractography

methods. Ultimately, an animal study comparing the different tractography

approaches with invasively identified connections would be of great interest to
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demonstrate their respective advantages and current DTI based tractography limits.

Combined fMRI and DTI

The fMRI areas identification confidently constrained our analysis into known brain

regions. We thus avoided possible operator-dependent bias in seed placement or

rough anatomically based inference. No obvious false-positive connections were

found in our study.

7.5 Conclusion

We combined anatomical, functional and diffusion-weighted images information and

a newly introduced Riemannian DTI analysis framework to study the anatomical

connectivity in the low-level visual brain. We could successfully reconstruct the

well-known optic radiations connecting the LGN and V1 with our fast connectivity

mapping method. We also showed a plausible topology of occipito-callosal con-

nections in the splenium, consistent with previous works. Finally, we assessed the

anatomical connectivity between hMT+ and occipital retinotopic areas, supporting

the view of parallel ventral and dorsal processing streams. With both image acquisi-

tion and methodological improvements, diffusion MRI should provide a new means

to uncover the architecture of the visual system and further relate it to its functional

characterization.
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Chapter 8

Conclusion and perspectives

8.1 Summary of our contributions

We introduced a new approach to the cortical surface-based smoothing of fMRI

data. We demonstrated its advantages over (i) classical 3D isotropic methods which

ignore the complex cortical surface geometry and (ii) mesh-based implementations

which require a preliminary projection of the functional data on the cortex model.

A Matlab interface was implemented for the smoothing program and to allow the

automatic computation of a level set representation of the cortical surface meshes.

The core programs were implemented in C++ by Jean-Philippe Pons during his

PhD at the Odyssée Laboratory.

We developed a complete procedure of retinotopic mapping allowing the identi-

fication of various low-level visual areas on a subject basis. We tested different

stimuli parameters to optimize the resulting angular maps, yielding to reliable

visual field maps acquired in 20 minutes. Programs to automate the different steps

of the analysis were implemented in Matlab, including anatomical and functional

images processing. Manual segmentation is nonetheless required for the visual areas

delineation based on the angular maps, since the Visual Field Sign computation

ends with unsatisfactory results, even after various attempts of post-processing

corrections. The complete method is routinely used in the laboratory and at the

centre IRMf de la Timone. It was also transfered to the DyVA team and is currently

used for the study of the cortical organization in patients suffering from retinal

diseases.

A functional identification procedure of the human MT complex (hMT+)

was also developed. We identified the optimal stimulus parameters among different

stimulus patterns and contrasts between conditions to obtain reliable activations in

the expected zone.

Building on these visual areas identification procedure, we have characterized
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the low-level areas functional sensitivity to motion direction. Based on an

event-related fMR-adaptation paradigm combined with a powerful non-parametric

hemodynamic response function estimation method, we can estimate the direction

selectivity of each area and infer possible sub-populations proportions with respect

to their tuning bandwidth type. We found the highest direction selectivity in

areas hMT+ followed by V3A, confirming their involvement in motion processing.

Unexpectedly high direction selectivity was also observed in areas V1 and V4v and

a possible explanation in terms of context-dependent neural tuning was proposed.

Finally, we combined the retinotopic mapping method and the functional lo-

calization of the hMT+ with Diffusion Tensor Images to study the anatomical

connectivity across the low-level visual areas. A complete processing pipeline was

developed to analyze the different information in a common reference frame. Based

on a Riemaniann geometry connectivity mapping approach, we could reconstruct

the optic radiations linking the LGN and V1. The topology of connections between

the two hemispheres visual areas was studied in the splenium and confirmed a

previous report. We finally show the estimated anatomical connectivity between

hMT+ and the different occipital retinotopic areas, supporting the existence of two

anatomically segregated pathways.

8.2 Perspectives

Naturally, this work opens more perspectives than it answers questions.

The retinotopic mapping procedure can be further improved in many respects.

First, the acquisition time may be lowered by the use of a simultaneous polar angle

and eccentricity stimulation, each coordinate having its own frequency. Although

already suggested by others (e.g. [239]), this possible stimulation improvement has

not been tested so far. Second, expanding the range of patterns used in the stimuli

as well as the type of task performed by the subjects may broaden the scope of

retinotopic mapping. Beyond providing a higher signal in the regions currently

disputed, it could help unveiling new retinotopic maps as already shown by some

groups (e.g. [194]). Third, the segmentation of the retinotopic areas is still manual

in our procedure. Warping a model of the typical pattern onto a flat representation

of the cortical surface, as proposed by [53], appears an appropriate solution to

automate this last step. We will address this issue shortly in a collaboration with

the DyVA team.

The fMR-adaptation experiment suggests several future works. First, increas-

ing the number of motion direction could lead to tuning curves measurements

218



closer to those typically shown by electrophysiologists, hence yielding to finer func-

tional sub-population characterization. However the non-linear relation between

neural activity and the BOLD signal certainly restricts the sampling resolution

along the stimulus dimension (here the direction of motion) that can ultimately

be obtained. It would nonetheless be interesting to have an estimation of this

limitation. Second, a mathematical model of neuronal adaptation in the different

neural populations and visual areas would be of great interest to clarify the

possible origins of the BOLD signal observed. Third, a similar approach combining

our experimental fMR-adaptation paradigm and appropriate fMRI data analysis

methods as the HRF toolbox can be straightforwardly applied to other stimulus

dimensions such as motion velocity or color contrasts. Such experiments would

bring a better characterization of functional selectivity in the human low-level

visual areas. Finally, the results of this experiment attracted our attention on the

important relations between (visual) perceptions and subject’s state, including

attention (precisely!) and stimulation history but also perhaps more global state

parameters such as the emotional state. Improving our understanding of these

complex inter-dependencies appears to us as an exciting direction for future research.

Exploring non-invasively the white matter connectivity within the visual brain

has an enormous potential. First it could clarify the definition and labeling of

visual areas currently under disputes or help in the segmentation of complex of

areas such as hMT+. Additionally, anatomical connectivity is a complementary

information to allow comparisons across species such as macaque and humans and

better understand the biological evolution. Ultimately, diffusion-weighted imaging

may reveal the anatomical structure of the human visual system that will have

to be further related with its functional architecture. However, we have stressed

some important limitations of inferences based on DTI. More sophisticated water

diffusion models based on High Angular Resolution Diffusion Imaging (HARDI)

and appropriate connectivity mapping methods constitute a promising direction to

overcome these limitations. This issue will be addressed shortly in the laboratory

on the occipital visual cortex using algorithms currently under study [48].
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Conclusion et perspectives

Résumés des contributions

Nous avons introduit une nouvelle approche de lissage des données d’IRMf contraint

à la surface corticale. Nous avons démontré ses avantages sur (i) la méthode

classique de filtrage 3D isotrope qui ignore la géométrie complexe de la surface

corticale et (ii) des procédés de régularisation sur une représentation explicite

de la surface corticale (i.e. un maillage) qui nécessitent une projection préalable

des données fonctionnelles sur un modèle du cortex. Une interface Matlab a été

développée pour ce programme de lissage ainsi que pour calculer automatiquement

une représentation implicite (i.e. par un ensemble de niveaux ou level set), à partir

de maillages des surfaces corticales. Le programme de lissage a été implanté en

C++ par Jean-Philippe Pons durant sa thèse au laboratoire Odyssée.

Une procédure complète de cartographie par rétinotopie permettant l’identification

individuelle de différentes aires visuelles de bas-niveau a été développée. Différentes

configurations des stimuli ont été testées en vue d’optimiser la qualité des cartes du

champs visuel ainsi obtenues. Le paradigme ainsi retenu conduit à des résultats fi-

ables en 20 minutes d’acquisitions fonctionnelles. Des programmes automatisant les

différentes étapes de l’analyse et incluant des traitements des données anatomiques

et fonctionnelles ont été implantés en Matlab. Toutefois, étant donné que le calcul

du signe du champs visuel a conduit à des résultats insatisfaisants, et ce malgré

différentes tentatives de post-traitements des données, une délinéation manuelle se

fondant sur les cartes angulaires obtenues est nécéssaire. La méthode complète

est désormais utilisée en routine au laboratoire Odyssée et au centre IRMf de la

Timone. De plus, elle a fait l’objet d’un transfert auprès de l’équipe DyVA et est

actuellement utilisée pour étudier l’organisation corticale de patients souffrant de

pathologies rétiniennes.

Une procédure d’indentification fonctionnelle du complexe MT chez l’homme

(hMT+) a également été développée. À l’instar de la cartographie rétinotopique,

nous avons identifié la configuration de stimuli optimale parmi différent motifs et
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contrastes entre conditions de stimulation afin d’obtenir des activations robustes

dans la zone corticale présumée. La châıne de traitements des images a également

été automatisée.

En se fondant sur ces procédures d’identification de différentes aires visuelles, nous

avons ensuite caractérisé la sensibilité fonctionnelle de celles-ci par rapport à la di-

rection du mouvement. Une expérience d’IRMf d’adaptation évenementielle couplée

à une méthode non-paramétrique d’estimation de la réponse hémodynamique ont

permis d’estimer la sélectivité à la direction propre à chaque aire et d’en inférer des

proportions relatives de sous-populations cellulaires selon leur profil de sélectivité.

Nous avons trouvé une sélectivité plus forte dans hMT+ suivi par l’aire V3A,

confirmant leur implication forte dans le traitement du mouvement visuel. Une

sélectivité singulièrement élevée a également été observée dans les aires V1 et

V4v. Une explication plausible en terme de sélectivité fonctionnelle dépendant du

contexte a été proposée pour rendre compte de ce phénomène.

Enfin, nous avons combiné les procédures de cartographie des aires visuelles

avec des images du tenseur de diffusion pour étudier la connectivité anatomique

entre les différentes aires visuelles de bas-niveau. Une châıne de traitement

complète a été développée afin d’analyser dans un même référentiel les informations

complémentaires fournies par les différentes modalités d’IRM. En se fondant sur une

approche de géométrie Riemannienne de cartographie de la connectivité anatomique,

nous avons pu reconstruire les radiations optiques reliant le Corps Genouillé Latéral

à l’aire V1. La topologie des connections entre les deux hémisphères des aires

visuelles a également été étudiée au niveau du splenium et confirme des résultats

publiés récemment. Enfin, nous avons estimé la connectivité anatomique entre

hMT+ et les différentes aires rétinotopiques, corroborant l’existence de deux voies

paralleles liées au traitement cortical de l’information visuelle.

Perspectives

Naturellement, ce travail ouvre davantage de perspectives qu’il ne résoud de

questions.

La procédure de cartographie rétinotopique peut être améliorée en différents

points. Tout d’abord, le temps d’acquisition pourrait être réduit en présentant si-

multanément les stimuli codant respectivement pour l’angle polaire et l’excentricité,

chaque coordonnée ayant sa propre fréquence fondamentale. Bien que déjà

suggérée par d’autres auteurs (par exemple [239]), cette amélioration supposée

de la stimulation n’a jusqu’alors jamais été testée directement. Par ailleurs,
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accrôıtre le type de motif utilisé dans les stimuli ainsi que la tâche réalisée par le

sujet durant l’expérience devrait élargir le champ d’application de la cartographie

rétinotopique. En plus de permettre l’enregistrement d’un meilleur signal dans

des régions actuellement débattues, de telles améliorations pourraient révéler de

nouvelles cartes rétinotopiques, comme cela a déjà pu être réalisé auparavant par

d’autres groupes (voir par exemple [194]). Enfin, la segmentation finale des aires

rétinotopiques est une étape manuelle dans notre procédure. Déformer un modèle

des cartes angulaires typiques sur les données expérimentales projetées sur une

représentation plane de la surface corticale, comme proposé récemment dans [53],

semble une approche prometteuse. Nous allons implanter une telle procédure à

court terme, en collaboration avec l’équipe DyVA.

L’expérience d’IRMf d’adaptation ouvre de nombreuses perspectives. Dans un

premier temps, il serait souhaitable d’accrôıtre le nombre de directions différentes

du mouvement afin d’obtenir une mesure plus précise des courbes de sélectivité à cet

attribut. Cependant, les relations non-linéaires entre l’activité neuronale et le signal

BOLD limitent certainement la résolution de l’échantillonnage d’une sélectivité à

une dimension du stimulus (ici la direction du mouvement) que l’on peut obtenir

par cette méthode. Il serait souhaitable d’avoir une estimation quantitative de

cette limitation. Deuxièmement, il serait particulièrement intéressant de développer

un modèle mathématique de l’adaptation neuronale dans les différentes aires et

populations neuronales. Cela pourrait contribuer à mieux cerner l’origine du signal

BOLD mesuré dans les expériences d’adaptation. Troisièmement, une approche

similaire, i.e. combinant notre paradigme d’IRMf d’adaptation et des méthodes

appropriées d’analyse des données IRMf comparables à l’outil HRF utilisé ici,

peut être directement appliquée à d’autres dimensions de stimuli comme la vitesse

du mouvement ou la couleur. De telles expériences conduiraient à une meilleure

caractérisation de la sélectivité fonctionnelle dans le cortex visuel de l’homme.

Enfin, les résultats de cette expérience ont attiré notre attention sur les relations

importantes entre perception (visuelle) et l’état général du sujet, que ce soit les

processus attentionnels sous-jacents, l’historique de la stimulation présentée au sujet

mais peut-être également des paramètres plus globaux comme son état émotionnel.

Accrôıtre notre compréhension de ces inter-dépendances complexes nous apparâıt

comme de passionnantes directions de recherche pour l’avenir.

L’exploration non-invasive des fibres de matière blanche dans le système vi-

suel présente également un potentiel considérable. Tout d’abord, cela permettrait

de clarifier la définition et l’étiquetage d’aires visuelles actuellement sujettes à de

vigoureux débats dans la communauté. Cette information contribuerait aussi à

segmenter des complexes d’aires tel que hMT+ en différentes sous-structures. En
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outre, la connectivité anatomique fournit une information supplémentaire dans

l’optique d’établir des analogies entre espèces telles que le macaque ou l’homme

et ainsi de mieux comprendre l’évolution biologique. Finalement, l’imagerie de

diffusion pourrait révéler l’architecture anatomique du système visuel cortical

de l’homme qui sera alors à relier à son architecture fonctionnelle. Nous avons

néanmoins souligné les limitations inhérentes aux inférences plausibles à partir

d’images du tenseur de diffusion. Des modèles plus sophistiqués de la diffusion des

molécules d’eau, fondées sur des données de diffusion à haute resolution angulaire

assorties de méthodes de cartographie des connectivités appropriées représentent

une direction prometteuse pour dépasser ces limitations. Cette direction sera

prochainement examinée dans le cortex visuel occipital grâce à des algorithmes en

cours de développement au sein du laboratoire Odyssée [48].
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de Cachan, April 2005.

[26] C. Chefd’hotel, G. Hermosillo, and O. Faugeras. Flows of diffeomorphisms

for multimodal image registration. In International Symposium on Biomedical

Imaging. IEEE, 2002.

[27] W. Chen, X. Zhu, et al. Retinotopic mapping of lateral geniculate nucleus in

humans using functional magnetic resonance imaging. Proc. Natl. Acad. Sci.

USA, 96:2430–2434, March 1999.

[28] K. Cheng, R. A. Waggoner, and K. Tanaka. Human ocular dominance columns

as revealed by high-field functional Magnetic Resonance Imaging. Neuron,

32:359–374, 2001.

[29] K.-H. Chuang, M.-J. Chiu, C.-C. Lin, and J.-H. Chen. Model-free functional

MRI analysis using Kohonen clustering neural network and fuzzy C-means.

IEEE Transactions on Medical Imaging, 18(12):1117–1128, 1999.

[30] M.K. Chung and J. Taylor. Diffusion smoothing on brain surface via finite

element method. In Proceedings of ISBI, pages 432–435. IEEE, 2004.

[31] O. Ciccarelli, G.J.M. Parker, A.T. Toosy, C.A.M. Wheeler-Kingshott, G.J.

Barker, P.A. Boulby, D.H. Miller, and A.J. Thompson. From diffusion trac-

tography to quantitative white matter tract measures: a reproducibility study.

NeuroImage, 18(2):348–359, February 2003.

[32] O. Ciccarelli, A.T. Toosy, S.J. Hickman, G.J.M. Parker, C.A.M. Wheeler-

Kingshott, D.H. Miller, and A.J. Thompson. Optic radiation changes after

227



optic neuritis detected by tractography-based group mapping. Human Brain

Mapping, 25(3):308–316, 2005.

[33] O. Ciccarelli, A.T. Toosy, G.J.M. Parker, C.A.M. Wheeler-Kingshott, G.J.

Barker, D.H. Miller, and A.J. Thompson. Diffusion tractography based group

mapping of major white-matter pathways in the human brain. NeuroImage,

19(4):1545–1555, August 2003.

[34] P. Ciuciu, J. Idier, A. Roche, and C. Pallier. Outlier detection for robust

region-based estimation of the hemodynamic response function in event-related

fMRI. In 2th Proc. IEEE ISBI, pages 392–395, Arlington, VA, April 2004.

[35] P. Ciuciu, J-B. Poline, G. Marrelec, J. Idier, C. Pallier, and H. Benali. Un-

supervised robust nonparametric estimation of the hemodynamic response

function for any fMRI experiment. IEEE Transactions on Medical Imaging,

22(10):1235–1251, October 2003.

[36] S. Clarke, P. Maeder, R. Meuli, F. Staub, A. Bellmann, L. Regli, N. de Tribolet,

and Assal G. Interhemispheric transfer of visual motion information after a

posterior callosal lesion: a neuropsychological and fMRI study. Experimental

Brain Research, 132(1):127–133, 2000.

[37] S. Clarke and J. Miklossy. Occipital cortex in man: Organization of callosal

connections, related myelo- and cytoarchitecture, and putative boundaries of

functional visual areas. The Journal of Comparative Neurology, 298(2):188–

214, 1990.

[38] Y. Cointepas, J.-F. Mangin, Line Garnero, J.-B. Poline, and H. Benali. Brain-

VISA: Software platform for visualization and analysis of multi-modality brain

data. In Proc. 7th HBM, page S98, Brighton, United Kingdom, 2001.

[39] I.P. Conner, S. Sharma, S.K. Lemieux, and J.D. Mendola. Retinotopic or-

ganization in children measured with fMRI. Journal of Vision, 4:509–523,

2004.

[40] T.E. Conturo, N.F. Lori, T.S. Cull, E. Akbudak, A.Z. Snyder, J.S. Shimony,

R.C. McKinstry, H. Burton, and M.E. Raichle. Tracking neuronal fiber path-

ways in the living human brain. Proceedings of the National Academy of Sci-

ences, 96:10422–10427, August 1999.

[41] L. Cornette, P. Dupont, A. Rosier, S. Sunaert, P. Van Hecke, J. Michiels,

L. Mortelmans, and Orban G. Human brain regions involved in direction

discrimination. Journal of Neurophysiology, 79:2749–2765, 1998.

228



[42] J.C. Culham, S.A. Brandt, P. Cavanagh, N.G. Kanwisher, A.M. Dale, and

R.B.H. Tootell. Cortical fMRI activation produced by attentive tracking of

moving targets. Journal of Neurophysiology, 80:2657–2670, 1998.

[43] J.C. Culham, S.P. Dukelow, T. Vilis, F.A. Hassard, J.S. Gati, R.S. Menon, and

M.A. Goodale. Recovery of motion area MT following storage of the motion

aftereffect. Journal of Neurophysiology, 81:388–393, 1999.

[44] J.C. Culham, S. He, F.A.J. Verstraten, and S.P. Dukelow. Visual motion

and the human brain: what has neuroimaging told us? Acta Psychologica,

107:69–94, 2001.

[45] A.M. Dale, B. Fischl, and M.I. Sereno. Cortical surface-based analysis I: Seg-

mentation and surface reconstruction. NeuroImage, 9:179–194, 1999.

[46] P.M. Daniel and D. Whitteridge. The representation of the visual field on the

cerebral cortex in monkeys. Journal of Neurophysiology, 159:203–221, 1961.

[47] V. Della-Maggiore, W. Chau, P.R. Peres-Neto, and A.R. McIntosh. An em-

pirical comparison of SPM preprocessing parameters to the analysis of fMRI

data. NeuroImage, 17(1):19–28, 2002.

[48] M. Descoteaux, E. Angelino, S. Fitzgibbons, and R. Deriche. A linear and reg-

ularized odf estimation algorithm to recover multiple fibers in q-ball imaging.

Technical Report 5768, INRIA, November 2005.

[49] E. DeYoe, G. Carman, P. Bandettini, S. Glickman, J. Wieser, R. Cox,

D. Miller, and J. Neitz. Mapping striate and extrastriate visual areas in human

cerebral cortex. Neurobiology, 93:2382–2386, March 1996.

[50] E.A. DeYoe, P. Bandettini, J. Neitz, D. Miller, and P. Winans. Functional

Magnetic Resonance Imaging (fMRI) of the human brain. Journal Neuro-

science Methods, 54(2):171–187, October 1994.

[51] F. Di Russo, F. Martinez, M.I. Sereno, S. Pitzalis, and S.A. Hillyard. Cortical

sources of the early components of the visual evoked potential. Human Brain

Mapping, 15(2):95–111, 2002.

[52] A.C.M. Diogo, J.G.M. Soares, T.D. Albright, and R. Gattass. Two-

dimensional map of direction selectivity in cortical visual area MT of cebus

monkey. Annals of the Brazilian Academy of Sciences, 74(3):463–476, 2002.

[53] R. Dougherty, V. Koch, A. Brewer, B. Fischer, J. Modersitzki, and B. Wandell.

Visual field representations and locations of visual areas v1/2/3 in human

visual cortex. Journal of Vision, 3:586–598, October 2003.

229



[54] R.F. Dougherty, M. Ben-Shachar, R. Bammer, A.A. Brewer, and B.A. Wan-

dell. Functional organization of human occipital-callosal fiber tracts. Proceed-

ings of the National Academy of Science, 102(20):7350–7355, May 2005.

[55] S.P. Dukelow, J.F.X. DeSouza, J.C. Culham, A.V. Van Den Berg, R. Menon,

and T. Vilis. Distinguishing subregions of the human MT+ complex using vi-

sual fields and pursuit eye movements. Journal of Neurophysiology, 86(4):1991–

2000, October 2001.

[56] S. Dumoulin, R. Bittar, N.J. Kabani, C.L. Baker, G. Le Goualher, G.B. Pike,

and A.C. Evans. A new anatomical landmark for reliable identification of

human area V5/MT: a quantitative analysis of sulcal patterning. Cerebral

Cortex, 10:454–463, May 2000.

[57] S. Dumoulin, R. Hoge, C. Baker, R. Hess, R. Achtman, and A. Evans. Auto-

matic volumetric segmentation of human visual retinotopic cortex. NeuroIm-

age, 18(3):576–587, 2003.

[58] H.M. Duvernoy, P. Bourgouin, E.A. Cabanis, E.A. Cattin, J. Guyot, M.T.

Iba-Zizen, P. Maeder, B. Parratte, L. Tatu, and F. Vuillier. The Human

brain: surface, three-dimensional sectional anatomy with MRI, and blood sup-

ply. Springer, 1999.

[59] E. Eger, P. Schyns, and A. Kleinschmidt. Scale invariant adaptation in fusiform

face-responsive regions. NeuroImage, 22:232–242, 2004.

[60] S. Engel, D. Rumelhart, B. Wandell, A. Lee, G. Glober, E-J. Chichilnisky, and

M. Shadlen. fMRI of human visual cortex. Nature, 369:525–529, June 1994.

[61] S. A. Engel and C. S. Furmanski. Selective adaptation to color contrast in

human primary visual cortex. Journal of Neuroscience, 21:3949–3954, 2001.

[62] S.A. Engel, G.H. Glover, and B.A. Wandell. Retinotopic organization in hu-

man visual cortex and the spatial precision of functional MRI. Cerebral Cortex,

7:181–192, 1997.

[63] S.A. Engel, X. Zhang, and B.A. Wandell. Colour tuning in human visual cortex

measured with functional Magnetic Resonance Imaging. Nature, 388:68–71,

1997.

[64] R. Epstein and N. Kanwisher. A cortical representation of the local visual

environment. Nature, 392:598–601, 1998.

[65] M.P. Ewbank, D. Schluppeck, and T.J. Andrews. fMR-adaptation reveals a

distributed representation of inanimate objects and places in human visual

cortex. NeuroImage, 28:268–279, 2005.

230



[66] F. Fang, S.O. Murray, D. Kersten, and S. He. Orientation-tuned fMRI adapta-

tion in human visual cortex. Journal of Neurophysiology, 94:4188–4195, August

2005.

[67] O. Faugeras, G. Adde, G. Charpiat, C. Chefd’Hotel, M. Clerc, T. Deneux,

R. Deriche, G. Hermosillo, R. Keriven, P. Kornprobst, J. Kybic, C. Lenglet,

L. Lopez-Perez, T. Papadopoulo, J.-P. Pons, F. Ségonne, B. Thirion,
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