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Directeur de th̀ese : Lyndon EMSLEY

Après avis de : Monsieur Geoffrey BODENHAUSEN, Membre/Rapporteur
Monsieur Hartmut OSCHKINAT, Membre/Rapporteur

Devant la Commission d’examen formée de :

Monsieur Geoffrey BODENHAUSEN, Membre/ Rapporteur
Monsieur Yannick CREMILLIEUX, Membre
Monsieur Lyndon EMSLEY, Membre
Monsieur Alain MILON, Membre
Monsieur Hartmut OSCHKINAT, Membre/Rapporteur

Lyon, 2004





Order N◦: 287 Year 2004
N◦ allocated by the library: 04ENSL0 287
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”The principle
of science, the definition, almost,

is the following:The test of all knowledge
is experiment. Experiment is thesole judgeof sci-

entific ”truth”. But what is the source of knowledge?
Where do the laws that are to be tested come from? Exper-

iment, itself, helps to produce these laws, in the sense that it
gives us hints. But also needed isimaginationto create from these

hints the great generalizations - to guess at the wonderful, simple,
but very strange patterns beneath them all, and then to experiment
to check again whether we have made the right guess...Everything
is made of atoms. That is the key hypothesis. The most important hy-
pothesis in all of biology, for example, is thateverything that animals
do, atoms do. In other words,there is nothing that living things do
that cannot be understood from the point of view that they are made
of atoms acting according to the laws of physics. This was not
known from the beginning: it took some experimenting and

theorizing to suggest this hypothesis, but now it is accepted,
and it is the most useful theory for producing new ideas

in the field of biology.” from ”Six easy pieces. Es-
sentials of physics explained by its most

brilliant teacher” by Richard
P. Feynman
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Introduction

The development of the magnetic resonance phenomenon originates in the concept of spin1 as quantum
mechanical property.[3,4] If the discovery of nuclear magnetic resonance (NMR) spectroscopy was identified
with the independent works of the Purcell and Bloch groups in 1945,[5,6] its origin is undoubtedly based on the
experiments which verified the original ideas of nuclear and electron spin. Indeed, developments like the inter-
pretation of hyperfine spectral structures given by Pauli in 1924[7] and the application of atomic and molecular
beams to nuclear magnetic moments and hyperfine structures measurements performed by Rabi[8] and Stern[9]

largely contributed to the discovery of the NMR spectroscopy.

Soon after its discovery, NMR spectroscopy imposed itself as a powerful technique with applications in
numerous fields. The impact of magnetic resonance on physics and chemistry was its ability to give detailed in-
formation about processes at atomic level. In fact, the technique originally developed into an important tool for
chemistry research and became nowadays also a powerful method in biochemistry and biophysics for obtaining
structure elucidation and molecular dynamics of complex systems like for example biomolecules[10] and poly-
mers.[11] NMR is also widely used in medical imaging to diagnose different types of pathologies. Additionally,
NMR has a variety of other applications: searching for oil or water, studying the composition and structure of
various foods, testing wine adulteration, quantum computing, etc.

The exploitation of structural and dynamical properties by NMR requires high resolution and sensitivity
in order to accurately interpret the NMR spectra. Due to the orientation dependence of the anisotropic magnetic
interactions, the anisotropy is the major contribution to the broadening of the lineshapes. In liquid-state NMR,
the spectra show sharp lines because of the averaging of the anisotropic interactions by the molecular tumbling
of the molecules.[2,12,13] On the other hand, in the solid state, the anisotropic interactions are all retained in
addition to the isotropic chemical shifts and indirect spin-spin couplings. For powder samples, the anisotropic
interactions usually dominate the spectrum and depend on the orientation of the crystallites with respect to the
external magnetic field.[11,12,14] Therefore, the spectra of powdered samples show broad lines which overlap
each other whereas sharp lines in a liquid-like fashion can only be obtained for single crystals and oriented
samples.[15,16] Narrow lines can however be obtained for solids by spinning the solid sample about an axis
which forms an angle of 54.74◦ with the direction of the external magnetic field and which is referred to
as the ”magic angle”.[17,18,19] The idea behind the magic-angle spinning is to average out the second-rank
tensor interactions (i.e., chemical shift anisotropy (CSA), dipole-dipole (DD) interactions and a part of the
quadrupole anisotropy). As the sample starts to rotate, the spin Hamiltonian becomes time dependent and
spinning sidebands appear in the resulting spectrum.[20] When the spinning frequency exceeds the magnitude
of the anisotropic interactions, these are averaged out and the intensity of the spinning sidebands is concentrated

1Even though getting a picture about the abstract concept of spin is very difficult, it is worth introducing the idea here. The entity
called spin is a property of any elementary particle which possesses an intrinsic angular momentum (i.e., a spin) and is intimately linked
to the particle itself.[1,2] The spin angular momentum confers a magnetic moment and therefore, for a non-zero spin angular momentum
and in the presence of strong static magnetic field, the associated energy results in an ensemble of discrete values. Basically, the
transitions between these nuclear spin energy levels give rise to the NMR phenomenon.
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on the central line located at the position of the isotropic chemical shift.

The low sensitivity of nuclei with low gyromagnetic ratio like13C or15N, also called rare or insensitive
spins, can be enhanced by using the magnetisation reservoir of the abundant spins (i.e., protons). The tech-
nique is called cross polarisation and consists in transferring magnetisation from sensitive spins to insensitive
ones. In liquid-state NMR, polarisation transfer is driven by theJ-coupling between abundant and rare nuclei.
The polarisation transfer can be performed either by the INEPT (Insensitive Nuclei Enhanced by Polarisation
Transfer) approach,[21,22] or by spin-locking the radio-frequency (rf) fields such that the Hartmann-Hahn[23]

condition is satisfied. In solid-state NMR, the polarisation transfer is driven by the flip-flop terms of the dipo-
lar interaction between sensitive and insensitive spins. Among the existing techniques proposed for increasing
the sensitivity of rare nuclei in solid-state NMR, the most commonly used is Hartmann-Hahn cross polari-
sation in the rotating frame.[23] Further, at high-rotation frequencies, adiabatic-passage Hartmann-Hahn cross
polarisation is expected to efficiently transfer the entire magnetisation of the sensitive spins to the insensitive
ones.[24] It is worth pointing out that polarisation transfer from one spin species to another is an essential tool
for spectral editing, double resonance experiments and multidimensional correlation spectroscopy. The magic-
angle spinning technique is frequently used in combination with cross polarisation and powerful decoupling
sequences[25,26] for improving both resolution and sensitivity of the spectra.

As mentioned above, lines in solid-state NMR spectra are often broad. Two distinct dynamic processes
are responsible for this spectral broadening: first, incoherent processes induced by the stochastically fluctuating
local magnetic fields (i.e., relaxation[27]), and second, coherent processes occuring essentially in rigid solids,
such as chemical-shift dispersion. Since incoherent broadening is due to irreversible processes, it cannot be
reduced by pulses. On the contrary, coherent broadening generated by coherent interactions can be eliminated
by appropriate pulse sequences.[11] Chemical-shift anisotropy, chemical-shift dispersion as well as magnetic
field inhomogeneity are characteristic examples of coherent broadening. The technique allowing to separate the
two types of broadening is the spin-echo experiment.[28]

The present thesis is concerned with both solid-state and solution NMR spectroscopy. However, most
of this work is focused on the investigation by solid-state NMR of fully13C-labelled compounds with the
principal aim of presenting techniques devised for further improving the spectral resolution and sensitivity in
multidimensional NMR of microcrystalline proteins. Resolution enhancement can be obtained by removing the
J-coupling contribution responsible for the broadening of carbon lineshapes in fully13C-labelled biomolecular
systems. Additionally, under high-spinning conditions, sensitivity enhancement can be performed in multidi-
mensional correlation spectroscopy by using adiabatic polarisation transfer techniques.[29,30] The techniques
introduced in the last part of this work are tailored for solution NMR and are the result of the research training
I spent in the CERM Laboratory in Florence, Italy, in the framework of a Marie Curie fellowship.

The first chapter of this thesis presents and analyses in detail the experimental lineshapes of the car-
boxyl and methyl carbon resonances of fully13C-enrichedL-Alanine observed at different sample-spinning
frequencies and decoupling field strengths. Experimental results show that the effect of the decoupling power
on the lineshape is modest while the sample spinning significantly influences the carbon lineshapes. Thus,
for the carboxyl resonance, for example, the asymmetric lineshapes at low spinning frequency have a com-
plex behaviour at intermediate spinning frequency before reaching the expected symmetry at high spinning
frequencies. The complex lineshapes at intermediate spinning speeds were explained by thejoint effectof off
rotational resonance and coherent CSA-DD cross correlation. Whereas off rotational-resonance effects lead
to complex lineshapes due to the splitting of some (i.e.,|αβ〉, |βα〉) energy levels, coherent CSA-DD cross
correlation introduces either a differential intensity or a differential broadening of theJ-multiplet components.
The experimental conditions leading to such effects are explained and experimentally verified. The differential
broadening expected for the two transitions of the methyl resonance was experimentally confirmed by using
the state-selection IPAP approach[31,32] (described in detail in chapter 2). Additionally, we show by means of
computer simulations that these effects are not restricted to the particular case ofL-Alanine and can be present
over a wide range of static magnetic fields.
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The study of carbon lineshapes in fully enriched compounds and the differential broadening of the
methyl doublet components lead us to spin-state-selective experiments. Spin-state selection in solid-state NMR
will be illustrated in the chapter 2 using elements similar to that used in liquid-state NMR (i.e., S3E,[33]

IPAP,[31,32] DIPSAP,[34] INADEQUATE-CR[35,36]). Therefore, using the IPAP selection filter, the transitions
of all three carbon resonances of fully13C-labelledL-Alanine can be separated in different subspectra. The
state-selection approach allows to remove the contribution of theJ-coupling to the linewidth, thus improving
the spectral resolution. The single-transition selection, with the IPAP filter[31,32] element, is illustrated for a
wide range of magic-angle-spinning frequencies going from 6 to 35kHz. The use of state-selection techniques
implies the insertion of an additional block in the pulse sequence. Thus, the step preceding any implementation
of the spin-state selection into a multidimensional experiment is the investigation of those experimental condi-
tions susceptible to affect the sensitivity of state-selection techniques. We analysed the sensitivity losses due to
the introduction of the spin-state-selective filter and found them to be acceptable.

Structural investigation of biomolecules by solid-state NMR spectroscopy demands high resolution and
sensitivity. In uniformly13C-labelled biomolecular compounds, the13C - 13C scalar couplings represent a
significant contribution to the linewidth in magic-angle-spinning spectra. We mentioned previously, that the
use of spin-state-selective techniques allows to remove theJ-coupling contribution in simple 1D experiments.
For large compounds however, multidimensional experiments have to be used in order to accurately assign
the large number of resonances. We illustrate in chapter 3 that single-transition-selection techniques in com-
bination with transition-selective transfer schemes are well suited for removing theJ-induced broadening in
multidimensional solid-state NMR correlation experiments of13C-labelled proteins. First, we show that single-
transition selection removes the line broadening due to the C’ - Cα scalar coupling in both direct and indirect
dimensions of a 2D COCA correlation experiment recorded on a microcrystalline sample of uniformly [13C -
15N]-enriched Crh, a protein of 85 amino acids existing under the form of a dimer in the solid state. State se-
lection and selective transfer can be further combined with homonuclearJ-decoupling techniques[37] in order
to obtain enhanced resolution in a 2D CACB correlation spectrum. Furthermore, the sensitivity of this kind of
13C - 13C correlation experiments can also be increased by using adiabatic polarisation transfer schemes[38] at
fast MAS frequencies where their efficiency is optimised.

In the preceding chapters we show that useful inspiration for new solid-state NMR experiments can
come from liquid-state NMR. New ideas can also come from other disciplines, not really concerned with
magnetic resonance.[39] Solution NMR can equally take advantage from the advances made in solid-state NMR.
To illustrate this, we will show in the chapter 4 that heteronuclear assignment experiments, widely used in solid-
state NMR for protein structure determination because of the low proton resolution, can be successfully applied
in liquid state NMR as well. Therefore, the content of chapter 4 is concerned with two techniques designed for
liquid-state NMR and based on the direct detection of carbon nuclei.

First, we present the CBCACO experiment tailored for intra-residue assignment of Cβ , Cα and C’ nu-
clei. Next, the CANCO experiment will be introduced, as a technique complementary to CBCACO and devised
for sequential correlations. Among the various alternatives which are open for sequential transfer without in-
volving protons, the13C-based approach starting on13Cα, passing through15N, and ending on13C’ takes
advantage of the simultaneous presence of intra- and inter-residueJ-couplings for achieving the optimum
magnetisation transfer. The CANCO experiment provides increased sensitivity for inter-residue correlations
which are privileged with respect to intra-residue ones. The feasibility of CBCACO and CANCO experiments
is demonstrated with uniformly [15N, 13C] - labelled oncomodulin, a protein of 109 residues. These techniques
are very attractive for the systems where the TROSY[40] effects are absent or the broadening due to the fast
1H transverse nuclear spin relaxation cannot be recovered by using the TROSY approach. Additionally, these
13C direct detection approaches could be useful for the investigation of paramagnetic proteins which cannot
be deuterated and for which the contribution of the paramagnetic center to the line broadening renders the1H
signals undetectable in a wide sphere around the metal ion.

Chapter 5 will tackle, from a theoretical point of view, the spin-echoJ-modulation in magic-angle-



6 Introduction

spinning solids. Most of the experiments presented in chapters 1-4 are based on the idea that pureJ-modulation
is present during aτ - π - τ echo sequence. However, theoretically it is not obvious that one can discard the
dipolar and CSA contributions. The theory ofJ-induced spin-echo modulation to be presented in this chapter
allowed us to derive a set of modulation regimes which apply under different experimental conditions. In
most cases, the dominant spin-echo modulation frequency is exactly equal to theJ-coupling. Interestingly, the
chemical-shift anisotropies and dipolar couplings tend to stabilise theJ-modulation, rather than obscuring it.
The theoretical conclusions are supported by numerical simulations and experimental results obtained for three
representative samples containing13C spin pairs.

”... ne fût-ce que pour vous en donner une idée!”

Stephane Mallarmé, Villiers



CHAPTER ONE

Carbon-13 lineshapes in solid-state NMR of labelled compounds. Coherent
CSA-DD cross-correlation effects.

1.1 Introduction

In the past several years, significant advances have been made in multidimensional solid-state nuclear-
magnetic-resonance spectroscopy. Much effort has been focused on developing new techniques to study large
molecular systems like proteins in non-oriented environment.[41,42,43,44,45,46,47] This is mainly the result of
technical improvement in high magnetic field, radio-frequency fields, magic-angle spinning, and sample prepa-
ration techniques. With these tools, in combination with sophisticated pulse sequences for decoupling[25,26,48,49]

and/or recoupling[50,51,52,53,54,55,56,57,58] different interactions, a resonance assignment approach similar to that
done in liquid-state NMR is being developed for the study of non-oriented biomolecules with the solid-state
NMR techniques.[44,46,47] Most of the pulse sequences developed for this purpose are designed, as in solution
NMR, for fully 13C, 15N-labelled molecules. The extensive use of13C labelling leads however to a broadening
of the carbon lines due partly to the presence of the homonuclearJ-couplings.

Apart from line broadening, the presence of theJ-coupling in isotopically enriched biological com-
pounds does not induce the expected multiplet structure, but rather unusual broadened and asymmetric line-
shapes.[43] A simple illustration of this behaviour is provided in FIGURE 1.1which shows expected and measured
carbon resonances ofL-Alanine. Since natural abundance of13C nuclei is only 1%, the appearance of the car-
bon spectrum of natural abundanceL-Alanine is determined by singlet resonances, one for each distinct carbon
nucleus. Uniform enrichment results in increased sensitivity but also, due to the presence of spin-spin coupling,
in more complex spectra. The scalar interaction being symmetric in general, the schematic spectra for fully
13C-enrichedL-Alanine show symmetric multiplet structures. Due to the indirect interaction with the Cα nu-
cleus, both C’ and Cβ resonances are split into symmetric doublets. Furthermore, the four components of the
Cα multiplet, a doublet of doublets, arise from simple combinations of distinctJ-coupling to C’ and Cβ nuclei.
Contrary to what we whould expect to see, intriguing asymmetric lineshapes are experimentally observed for
fully 13C-enrichedL-Alanine under magic-angle spinning. It is therefore important to have a good understand-
ing of the different contributions causing these distorted and broadened lineshapes in solids because this could
enable the development of new techniques for enhancing the resolution in solid-state NMR. In this chapter a
detailed explanation of physical mechanisms leading to these lineshapes will be given.

Several effects, which have been described separately in literature, will be invoked to explain the
observed lineshapes. Broadening of the lineshape in a powder pattern like fashion under MAS was already
predicted in 1979 by Maricq and Waugh for homonuclear coupled spin systems.[20] Rotational-resonance ef-
fects[59,60] where the sample spinning frequency matches the difference of isotropic chemical shift of both
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nuclei must also be considered to explain complex lineshapes, even far from the exact rotational-resonance
condition.[61,62] Finally, the interplay of the dipole-dipole interaction and chemical-shift anisotropy tensors was
shown to introduce an asymmetry in the intensity of the two peaks split by the isotropicJ-coupling constant in
a heteronuclear spin-1/2 pair system under slow sample spinning.[63] This kind of asymmetry was observed as
well by Nakai and McDowell in homonuclear31P spin systems.[64]

200 150 100 0

13CO

13C chemical shift / ppm

50

a)

b)

c)

13CH

13CH
3

FIGURE 1.1: Schematic and experimental spectra ofL-Alanine. a) Appearance of carbon

spectrum of natural abundanceL-Alanine. b) Symmetric multiplet structures induced by

the presence ofJ-coupling in fully13C-enrichedL-Alanine. c) Specific carbon lineshapes

observed experimentally for fully13C-enrichedL-Alanine under MAS. The experimental

spectrum was obtained with a standard CPMAS experiment.

Our interest for carbon lineshapes was originally motivated by the observation of unusual asymmetric
13C doublets in 10 %13C-enrichedL-Alanine by Dimitri Sakellariou. The 10%13C-enrichedL-Alanine sample
was diluted by a factor of 10 into natural abundance alanine. This leads to an attenuation of the intermolecular
13C - 13C interactions while retaining the full intramolecular effects. The results obtained on the 10%13C-
enriched sample show that the carbon resonances present also a non-negligible contribution from the naturale
abundanceL-Alanine. In order to eliminate this effect, we replaced the 10%13C-enriched sample by a fully
13C-labelledL-Alanine. In theory, both intermolecular and intramolecular13C - 13C interactions will give a
contribution to the carbon resonances. However, results which will be presented latter show that, at least for the
carboxyl resonance, the intermolecular contribution is negligible for this sample.

Herein, we will investigate and discuss in detail the specific experimental lineshapes observed for car-
boxyl and methyl carbons of fully13C-enrichedL-Alanine under a range of experimental conditions. By means
of computer simulations, we will show the relative impact of the different parts of the Hamiltonian on the spec-
tral lineshape of a homonuclear coupled spin system. We will show that in the case of a carboxyl resonance,
the observed asymmetric powder lineshape can be explained by thejoint effectof off rotational resonance[61,62]

and a coherent cross-correlation effect between the chemical-shift anisotropy of the carboxyl and the dipole-
dipole interaction between carboxyl and Cα carbons, leading to an asymmetry in intensity between the two
components of the multiplet.[63,64] For the methyl resonance inL-Alanine, a coherent cross-correlation effect
is present as well, but is manifested this time by adifferential broadeningof the doublet components. The
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differential broadening, determined initially by deconvolving the CPMAS carbon lineshapes, was experimen-
tally confirmed using the In-Phase Anti-Phase selection filter,[31,32] which allows for individually probing the
components of the carbon lineshapes. Finally, the conditions leading to such distorted carbon lineshapes in
homonuclear coupled spin systems will be discussed.

In liquid-state NMR, cross correlation is a very well known phenomenon, which manifests itself in
the relaxation behaviour of the spin system. The modulation by molecular motion of two different anisotropic
spin interactions whose orientations are correlated (for example, the magnetic dipole-dipole interaction and the
chemical-shift anisotropy) can give rise to this kind of relaxation process, generally called cross-correlated re-
laxation or cross correlation (for reviews about that subject, see the works of Brutscher[65] and Kumaret al.[66]).
Such relaxation induced (incoherent) cross-correlation effects, which lead to a differential-line broadening of
theJ-multiplets, have also been seen in solids under magic-angle spinning for compounds showing extensive
molecular motion like liquid crystals or highly mobile solid polymers.[67,68,69,70]

1.2 Experimental results for carboxyl and methyl resonances

The experiments shown in this section were all performed on a Bruker 500 Avance spectrometer (proton
and carbon frequencies at 500.13MHz and 125.76MHz) equipped with a 2.5mm double resonance CPMAS
probehead. The 99 %13C-labelledL-Alanine powder sample was purchased from Eurisotop and used without
further purification. The carbon spectrum was measured for different spinning (6, 7, 9, 12, 18, 21, 23, 28, 30,
and 35kHz) and decoupling (60, 100, and 160kHz) frequencies. Attention was paid in choosing the MAS
frequencies that none of the carboxyl and methyl rotational-resonance conditions were matched at the mag-
netic field used. The isotropic chemical-shift differences are 15.9kHz between the COO− (C’) and CH (Cα),
19.8kHz between the C’ and CH3 (Cβ), and 3.9kHz between the Cα and Cβ resonances (see FIGURE 1.2). The
rotational-resonance (R2) conditions are then expected at the following spinning frequencies:

15.9 kHz (n = 1), 8.0 kHz (n = 2), 5.3 kHz (n = 3) for the C’ - Cα spin pair
19.8 kHz (n = 1), 9.9 kHz (n = 2), 6.6 kHz (n = 3) for the C’ - Cβ spin pair
3.9 kHz (n = 1), 1.95 kHz (n = 2), 1.3 kHz (n = 3) for the Cβ - Cα spin pair

(1-1)

200 150 100 0

Cβ

Cα

50

15.9 kHz

19.8 kHz

3.9 kHz

127.2 ppm 31.2 ppm

158.4 ppm

C'

FIGURE 1.2:Isotropic chemical-shift differences of carbon resonances of fully13C-enriched

L-Alanine. The values inHz were calculated for a corresponding static magnetic field of

11.8T (i.e., 125MHz 13C Larmor frequency).

All chosen rotation frequencies are at least 1.2kHz off the n = 1 and 900Hz off the n = 2 R2

conditions. As the C’Cβ dipolar-coupling constant is much smaller than the C’Cα one, off rotational-resonance
effects from dipolar recoupling of the carboxyl spin with the Cβ and vice-versa should be less important. The
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carboxyl and methyl resonances are shown in FIGURE 1.3 and 1.4, respectively, for different sample rotation
frequencies and decoupling field strengths.

Under high spinning speed and decoupling field, and well off rotational-resonance conditions, we expect
the carboxyl and methyl resonances to be split into a symmetric doublet by the homonuclearJ-coupling to
the carbon Cα. Indeed, to zero order, the effect of the heteronuclear C-H dipole-dipole coupling is removed
by both magic-angle spinning and decoupling, the heteronuclear C-HJ-coupling is removed by decoupling,
and the homonuclear carbon-carbon dipolar coupling is removed by MAS, as long as rotational-resonance
conditions are avoided. The effect of the carboxyl CSA should also be removed by MAS. However, the spectra
of FIGURES 1.3and1.4show that the experimental carbon lineshape is far from the expected symmetric doublet,
except for spinning speeds well above 25kHz. The methyl CSA being smaller, the expected symmetric doublet
is already observed at 18kHz spinning frequency for the Cβ resonance.

For the carboxyl resonance, below 9kHz and above 20kHz sample rotation frequency, the lineshape
looks like a more or less asymmetric doublet, with two components of different intensity but same linewidth.
This is especially marked at low spinning speeds. In the lower spinning regime, broadening of the doublet
is observed for the exactn = 3 R2 conditions at 5.3 and 6.6kHz andn = 2 R2 conditions at 8kHz MAS,
respectively. Examples of these broadened lineshapes observed forL-Alanine are given in FIGURE 1.5. Note that
off rotational-resonance effects from those conditions are small and appear negligible at 6 and 7kHz for the
carboxyl resonance. At 9, 12 and 18kHz MAS, we obtain a powder-pattern like line, with a different shape at
each spinning speed. It is difficult to follow more closely the lineshape change between the different spinning
speeds, as rotational-resonance conditions would then be close to match and their effects clearly dominate the
lineshape. It is also noticeable that the center of gravity of the resonance moves slightly between 6 and 35kHz;
this isotropic chemical-shift change, observable in fully labelled compounds, is a known effect of off rotational-
resonance conditions and is due to the interaction between non-secular components of the dipolar and Zeeman
terms.[61,62]

The methyl lineshapes show a different behaviour, principally due to the smaller CSA and different
rotational-resonance conditions. The methyl lineshapes are slightly affected by the off rotational-resonance
effects of then = 3 R2 condition between methyl and carboxyl nuclei. Thus, broad lineshapes are observed
between 5.3 and 8kHz MAS (see FIGURE 1.5). We can see in FIGURE 1.4 that, between 9 and 18kHz rotation
frequency, the lineshapes look like asymmetric doublets. As expected, the isotropic doublets appear at spinning
frequencies smaller than for carboxyl resonance, as the magnitude of the methyl anisotropy is smaller than that
of carboxyl nucleus. The shift of the center of gravity of the methyl resonance is less pronounced due to the
smaller rotational-resonance effects.

The influence of the decoupling power on the lineshape is less drastic for both carboxyl and methyl
resonances. Reduction of the decoupling power introduces a broadening of the lines due to less efficient proton
decoupling, but the shape of the carbon line is not essentially modified. With a proton nutation frequency of
60kHz, the decoupling is not effective any more for spinning speeds higher than 20kHz, reflecting probably the
combined effect of less efficient proton decoupling and the onset of rotary-resonance recoupling effect expected
at 30kHz MAS.[75,76]

The effects on the lineshape that we describe here with the example of the carboxyl and methyl res-
onances ofL-Alanine is a general problem in fully13C-labelled samples. Unexpected lineshapes were indeed
also observed in carbon spectra of fully isotopically enriched proteins.[43]

1.3 Theoretical aspects and simulations

The theory concerning the different aspects considered in this contribution has already been treated
in the literature individually. However, in order to separate the different contributions to the lineshape and
understand the experimental observations, we will recall here a broad outline of the theory.
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FIGURE 1.3: Experimental carboxyl lineshapes for 99 %13C enriched L-Alanine at different spin-

ning speeds and decoupling field strengths. The carbon spectra were obtained using the standard cross-

polarisation technique, with a ramped spin-lock on the proton channel to broaden the Hartmann-Hahn

condition.[23,24,71,72,73] The contact time was set to 1ms. Detection was performed under TPPM decou-

pling.[74] To ensure the best resolution, the acquisition time was set to 60ms at all spinning rates, thus

ensuring complete decay of the free induction decay (FID). No exponential line broadening was applied.

We consider a model of an isolated spin-1/2 pair experiencing anisotropic chemical-shift interactions
and interacting by a through-space dipole-dipole coupling and by a scalarJ-coupling which is assumed to
be isotropic. We also assume that interactions with heteronuclei such as protons are strongly suppressed by
decoupling irradiation. The case of a static sample will be first considered. The nuclear spin Hamiltonian of a
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FIGURE 1.4:Experimental methyl lineshapes for 99 %13C-enrichedL-Alanine at different spinning speeds

and decoupling field strengths. All experimental parameters are similar to those indicated in the legend of

FIGURE 1.3.

static homonuclear two-spin system, in the rotating frame of the Zeeman interaction, is given by the following
expression:

H = Hiso +HCSA +HDD +HJ (1-2)

with Hiso the isotropic chemical shift of both spinsI andS, HCSA the anisotropic part of the chemical shift
considered here only for the spinI, HDD the dipole-dipole interaction between both spins, andHJ the scalar
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coupling. Their explicit expressions are:
Hiso = ω0IIz + ω0SSz

HCSA = ωCSA(Ω)Iz

HDD = ωDD(Ω
′
)(3IzSz − I · S) = ωDD(Ω

′
)(2IzSz − IxSx − IySy)

HJ = πJ2IzSz

(1-3)

whereΩ andΩ
′
represent the two sets of Euler angles connecting the principal axes system (PAS) of the CSA

and DD tensors, respectively, to the crystallite orientation in the laboratory frame (LF). The relation between
Ω andΩ

′
depends on the geometry of the spin system. The matrix representation of the Hamiltonian in the

product basis is given by:

H =

0
BB@

ω0I + ω0S + πJ + ωCSA + ωDD 0 0 0
0 ω0I − ω0S − πJ + ωCSA − ωDD −ωDD 0
0 −ωDD −ω0I + ω0S − πJ − ωCSA − ωDD 0
0 0 0 −ω0I + ω0S + πJ − ωCSA + ωDD

1
CCA

(1-4)

where the elements of the basis are:|1〉 = |α, α〉, |2〉 = |α, β〉, |3〉 = |β, α〉 and|4〉 = |β, β〉 the first symbol
representing the state of theI spin and the second one of theS spin.
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We consider now the case when the isotropic chemical-shift difference is larger than all other interac-
tions (ω∆

iso � ωk; k = CSA, DD, J). This is for example always the case in heteronuclear spin systems in the
high magnetic field approximation. In this case, the off-diagonal elements of this matrix can be considered as
non-secular and can be neglected. The two single-quantum (SQ) transitions for theI spin appear therefore at
the frequencies:

{
ωαα→βα = ω0I + πJ + ωCSA(Ω) + ωDD(Ω

′
)

ωαβ→ββ = ω0I − πJ + ωCSA(Ω)− ωDD(Ω
′
)

(1-5)

The two transitions separated by theJ-coupling have a powder lineshape due to the orientation-de-
pendent contributions of the CSA and DD terms. However, due to the fixed relative orientation of both tensors,
the contribution of the two terms are ”added” for one transition and ”subtracted” for the other one. This leads
to powder patterns of different shapes and widths for the two transitions of theI spin. The difference in width
of the powder patterns depends on the relative size and orientation of the CSA and the DD tensors. A detailed
analysis of the pattern of both transitions was given by Zilm and Grant.[77]

In a homonuclear spin system, the off-diagonal elements of Eq. 1-4 lead to a change in the powder
pattern of the line, but the relative contribution of the CSA and DD terms are still added for one transition and
subtracted for the other, leading once again to components of different widths. This is illustrated in FIGURE 1.6
where simulations of theI spin transitions in the static case are shown. An isolated two-spin system interacting
by direct DD and indirect scalar couplings and with the detected spin experiencing anisotropic chemical-shift
interactions was considered for these simulations.

In FIGURE 1.6a the geometry ofL-Alanine was considered with theI spin representing the carboxyl and
theS spin the Cα. It is clear from this simulation that the first carboxyl transitionαα→ βα, e.g., with the Cα in
α state, is broader than the second transitionαβ → ββ with Cα in β state. Since only theI spin signal is shown
in FIGURE 1.6a for reasons of clarity, a small dispersive signal appears at the chemical shift of theS spin due to
the mixing of the spin states by the off-diagonal elements of Eq. 1-4, which are not completely non-secular in
this homonuclear spin system. In FIGURE 1.6b the I spin represents the Cβ of L-Alanine coupled to the Cα (S
spin). Here again, the difference in width of both components is evident, whereby the relative orientation of the
Cβ CSA and the dipole-dipole coupling lead this time to a broader pattern for the transition with Cα in β state
(αβ → ββ). The geometry of all the tensors with respect to the molecular frame (MF) is given in FIGURE 1.6c
using the SIMMOL package.[80] The exact values considered for the different CSA and DD tensors were taken
or calculated from the works of Naitoet al.,[81] Ye et al.[82] and Levittet al.,[83] and are summarized in TABLE 1.1
(see Appendix A on page101 for details on extracting CSA and DD orientational parameters from direction
cosines).

In the static case, the correlated effect of the CSA and DD tensors appears directly to zero order in the
Hamiltonian, leading for theI spin to two transitions of different shape. The introduction of sample spinning
will affect both transitions. The Hamiltonian of Eq. 1-2becomes in this case time-dependent:

H(t) = Hiso +HCSA(Ω, t) +HDD(Ω
′
, t) +HJ (1-6)

with the time-dependent terms:

{
HCSA(Ω, t) = ωCSA(Ω, t)Iz

HDD(Ω
′
, t) = ωDD(Ω

′
, t)(2IzSz − IxSx − IySy)

(1-7)

In the following sections we will give a detailed analysis of two different cases.
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FIGURE 1.6: Simulated static powder pattern for the (a) C’ and (b) Cβ in L-Alanine. For the carboxyl, the transition

αα → βα, e.g., with Cα in α state, is broader than the transitionαβ → ββ with Cα in β state. Regarding the

methyl, the transitionαα → βα is narrower than the transitionαβ → ββ. For both simulations, the spin system

was reduced to two spins under the Hamiltonian of Eqs.1-2, 1-3, theS spin being in both cases the Cα nucleus. The

different parameters for the CSA and DD tensors, as well as their relative orientation are given in TABLE 1.1. In both

cases, the CSA of theS spin was neglected. The1JC′Cα and 1JCβCα scalar couplings were set to 54 and 34Hz,

respectively. A planar grid powder average over 1000000 different crystal orientations was performed to obtain the

simulated spectra.[78] These simulations were obtained with the Matlab[79] software using standard techniques.[78] (c)

Geometry of the CSA and DD tensors with respect to the molecular frame, for all carbons inL-Alanine. This picture

was obtained with the SIMMOL package.[80]

The inhomogeneous case

If the secular approximation made above is valid, the dipolar contribution in Eq. 1-7 can be reduced to
its 2IzSz component, and the Hamiltonian then commutes with itself at any time during the rotation. In such
a situation, the spin system is considered to behaveinhomogeneouslyin the sense of Maricq and Waugh.[20]

Spinning at the magic angle will lead to a perfect refocusing of the anisotropic part of the Hamiltonian at
integer multiples of the rotor period, thus leading to two well-resolved spinning sideband manifolds, one for
each transition of theI spin. The static powder pattern of these two transitions being however different from
each other, with for instance different widths, the sideband manifolds for each transition will be different. An
asymmetry in intensity between both central transitions will therefore normally be present for spinning speeds
lower than the static transition width, with the most intense line belonging to the transition with the narrowest
static pattern. This was indeed already observed for an heteronuclear spin system by Harriset al.,[63] where
both sideband manifolds corresponding to the two transitions of a carbon coupled to a phosphorus had different
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TABLE 1.1:Parameters for the CSA and DD tensors, andJ-coupling constants ofL-Alanine.

CSA parameters 13C’ 13Cα 13Cβ

δiso
a 176ppm 50ppm 19ppm

δaniso
a - 70ppm - 20ppm - 12ppm

ηa 0.78 0.32 1.0

ΩPM
b {11.7◦, 86.3◦, - 53◦} {81.7◦, 24.5◦, 29.1◦} {52.9◦, 77.4◦, 140.5◦}

DD parameters 13C’ - 13Cα 13C’ - 13Cβ 13Cα - 13Cβ

djk/2πc - 2092.5Hz - 474.76Hz - 2104.8Hz

Ω
′
PM {0◦, 21.5◦, - 154◦} {0◦, 46.6◦, 160.4◦} {0◦, 78.4◦, 144.7◦}

J parameters 13C’ - 13Cα 13C’ - 13Cβ 13Cα - 13Cβ

Jjk
d 54Hz 0Hz 34Hz

a The signs of frequencies are conform to that given by Levitt.[84] The isotropic chemical shift frequencies
and the chemical-shift principal values were taken from the work of Yeet al.[82] with respect to TMS. The
isotropic chemical shift, anisotropic chemical-shift frequency and asymmetry parameter are defined asδiso =
(δxx + δyy + δzz)/3, δaniso = δzz − δiso andη = (δyy − δxx)/δaniso. The chemical-shift principal values
are ordered as|δzz − δiso| ≥ |δxx − δiso| ≥ |δyy − δiso|.
b The set of Euler angles specifies the relative orientations of the interaction principal axes (P) system of the
tensor and the molecular reference frame (M) assumed here to coincide with the crystallographic reference
frame.[83] The set of Euler angles was determined from the atomic parameters given in the work of Naito and
coworkers.[81]

c Dipole-dipole coupling constantdjk = −µ0γ2~
4πr3

jk

, with the internuclear distancesrjk taken from the paper of

Simpson and Marsh.[85]

d The scalar coupling constants were measured on the liquid-state NMR spectrum of13C fully enrichedL-

Alanine.

intensities at slow spinning speeds, resulting directly from the difference in shape of the two transitions in the
static case. It was also observed by Nakai and McDowell[64] in a homonuclear two-spin system with a large
difference in isotropic chemical shifts (i.e., doubly labelled sodium acetate).

We see here in the case of the carboxyl of fully13C-enrichedL-Alanine that this effect of coherent cross
correlation between CSA and DD tensors can be seen in an amino acid as well. Indeed the chemical-shift dif-
ference between C’ and Cα is large enough for this homonuclear two-spin system to behave inhomogeneously
under MAS. FIGURE 1.7 shows a comparison between experimental and simulated carboxyl lineshapes of fully
13C-labelledL-Alanine. The same two-spin C’ - Cα system interacting by through-space dipole-dipole coupling
and by a scalarJ-coupling was considered as for the static simulations including only the C’ CSA. The asym-
metry in the line intensities of the doublet is very clear at 6 and 7kHz MAS, and remarkably well predicted by
the numerical simulations, despite the simple two-spin system approximation and the omission of the Cα CSA.
Only at spinning speeds higher than the width of the static pattern (above 20kHz), are the CSA-DD terms fully
averaged and the whole spectral intensity concentrated in the centerband for each transition, thus leading to a
symmetric doublet for the carboxyl resonance.

At intermediate spinning speeds, the lines are additionally broadened by so called off rotational-reso-
nance effects. This broadening mechanism was extensively discussed by Levittet al.[61] and Nakai and Mc-
Dowell.[62] When the MAS spinning speed comes close to a rotational-resonance condition|ω0I −ω0S| ∼= nωr,
with n a small integer, the non-secular time-dependent off diagonal elements of Eq.1-4 contain a component
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FIGURE 1.7: Comparison of (a) the experimental lineshapes of the carboxyl resonance ofL-Alanine at different spinning

speeds with (b-c) numerical simulations. The experimental spectra are those measured at 160kHz proton nutation frequency

(see legend of FIGURE 1.3 for experimental details). For the simulations, the same spin system was considered as for the static

simulation of FIGURE 1.6. In the simulations of column (c), the CSA part of the Hamiltonian (HCSA = ωCSA(Ω, t)Iz) was

omitted. For the simulated spectra, a line broadening of 24 Hz was applied prior to Fourier Transform. The powder average was

performed using a set of 4180 molecular angles{αMR, βMR} generated by the ZCW algorithm[78,86,87,88] and 15 evenly-spaced

values for the third Euler angleγMR. The simulations were obtained with the NMR package SIMPSON[89] using standard

techniques.[78]

which starts to be resonant with the energy levels|α, β〉 and |β, α〉. This induces a splitting of each of these
two levels into a pair of time-independent virtual states, leading to a splitting of all single-quantum (SQ) reso-
nances.[61] The SQ spectrum of theI spin is no longer made up of two components (see Eq. 1-5) but four for
each crystallite orientation. As the splitting depends upon the dipole-dipole coupling constant and the crystallite
orientation, experimental conditions at or close rotational resonance lead to complex powder lineshapes.

At exact rotational resonance, the broadenings can be several hundred Hertz (see FIGURE 1.5). Although
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the broadening drops off rapidly away from match, it can still be relevant to the lineshapes we observe, where
the dominant interactions are only a few tens of Hertz. Indeed, in the case of the carboxyl resonance inL-
Alanine, this phenomenon dominates the lineshape for spinning speeds between 9 and 20kHz (see FIGURE 1.7).
The different powder shapes are again extremely well predicted by the numerical simulations of the two-spin
system given in the middle column of FIGURE 1.7. The separate simulations of the twoJ-componentsωαα→βα

andωαβ→ββ clearly show the splitting due to broad rotational-resonance effects. It is worth noting that these
two J-components have the same lineshape: the off rotational-resonance effects act in the same way on both
transitions. The intensity of the two broadened transitions may however differ due to the coherent cross cor-
relation between CSA and DD interactions described above. This is particularly noticeable at 9 and 12kHz,
where the simulations including the carboxyl CSA match very well the experimental lineshapes, and clearly
show two resonances of different intensity. The simulations without CSA (right column of FIGURE 1.7) exhibit,
as expected, two identical transitions split by theJ-coupling.

The homogeneous case

If the chemical-shift difference between both spins,I andS, is comparable to the dipole-dipole interac-
tion, the system behaves under MAShomogeneously.[20] In that case, the Hamiltonian does not commute with
itself at all times, and MAS only partly refocuses the anisotropic component at multiples of the rotor period.
The linewidth therefore now depends on the MAS frequency, with the resolution improving with increasing
spinning speed. In that case, we expect coherent CSA-DD cross correlation to lead to adifferential broadening
of both lines in the doublet. Indeed for a given spinning frequency, the narrower static transition will be better
averaged and will be therefore narrower than the broader transition. This effect will of course decrease with
increasing spinning speed.

We have tried to simulate the differential broadening induced by coherent cross correlation using the
tensors’ geometry found inL-Alanine. It was impossible to obtain components of significantly different width
with only two spins (Cβ and Cα), even by considering both CSAs, and modifying the tensor parameters to force
the system to behave as homogeneously as possible. However, a difference in width of the doublet components
was obtained only when dipolar couplings to a third spin (C’) were introduced. This is in agreement with Filip
et al.[90] who claim that the lineshape of homogeneous system is dominated at lower spinning speed by three-
spin (and higher) terms. Only at higher spinning speeds do these terms get smaller, and the lineshape can be
explained using a spin-pair approximation.

Simulations of the Cβ resonance ofL-Alanine are given in FIGURE 1.8. TheJ-coupling between Cβ and
Cα, all the DD couplings between the three spins in one molecule ofL-Alanine, and CSA of Cβ were taken into
account. The simulated spectra which are shown with a small line broadening (3Hz) do not reproduce exactly
the experimental spectra given in first column of FIGURE 1.8. Homogeneous spin systems are very difficult to
simulate accurately, and we assume that more spins need to be added to the simulation to properly reproduce
the experimental spectra but this kind of simulations are very time consuming. However, it is important to note
that, in contrast to the inhomogeneous simulations of FIGURE 1.7, we clearly see that the two simulated transitions
showdifferent lineshapes and widths.

Of course, off rotational-resonance effects will additionally affect the lineshape in the homogeneous
case. For the particular case of the CH3 in L-Alanine shown here, the MAS frequencies were chosen such that
off rotational-resonance effects were negligible.

All simulations under MAS, for carboxyl and methyl resonances ofL-Alanine, were performed with the
NMR simulation package SIMPSON[89] usingγ-compute algorithm.[78,91] The powder average was performed
using a set of 4180 molecular orientational angles{αMR, βMR} generated by the ZCW algorithm[78,86,87,88]

and 15 evenly-spaced values for the third Euler angleγMR. These angles define the relative orientation of the
molecular reference frameM , defined with thez-axis along the internuclear vector, and a rotor reference frame
R, defined with thez-axis along the spinning axis. We verified that increasing further the number of orientations
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FIGURE 1.8: (a) Experimental lineshapes of the Cβ resonance of fully13C-enrichedL-Alanine at different spinning frequencies

at 160kHz proton nutation frequency. Experimental details are given in the legend of FIGURE 1.3. No linebroadening was

applied prior to Fourier transform. Each experimental line was deconvoluted with two Lorentzian functions. The result of the

deconvolution in given in column (b), with the linewidth at half height and integral over each component (I). (c) Simulations

under magic-angle spinning for the Cβ in L-Alanine. To simulate the differential linebroadening for methyl resonance, the

dipolar couplings to a third spin are necessary, here C’ was considered.[90] The powder average was performed using a set

of 4180 molecular angles{αMR, βMR} generated by the ZCW algorithm[78,86,87,88] and 15 evenly-spaced values for the third

Euler angleγMR. The SIMPSON[89] package was used for these simulations. A small line broadening (3Hz) was applied prior

to Fourier transform to smooth down the lines.

did not lead to appreciable changes of the lineshapes. The simulations took no account of the interactions
with protons which are assumed to be strongly suppressed by the decoupling irradiation. The simulated free-
induction decays were multiplied by an exponential functione−λt2 , corresponding to a Lorentzian spectral
broadening with the width at half height ofλ/(2π) being the applied line broadening inHz. The static simulations
as well as the deconvolution of the CH3 resonance (see FIGURE 1.8) were obtained with MATLAB[79] using
standard techniques.[78]

In order to quantify the theoretically predicted differential broadening of the CH3 resonance in fully
13C-enrichedL-Alanine we started by performing a deconvolution of the doublet. The differential broadening
obtained in this way together with the resulting lines are shown in FIGURE 1.8b. Between 7 and 12kHz MAS,
the doublet induced by theJ-coupling to the Cα starts to be resolved and for these conditions particularly the
doublet separation reveals components of different widths, with the downfield component (Cα in theβ state)
being wider (see FIGURE 1.8b). The differential broadening decreases as expected with the MAS frequency, going
in this case from approximately 6Hz at 7kHz MAS (an effect of∼ 15 %) to 3Hz (an effect of∼ 11 %) at
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12kHz MAS. Increasing further the spinning speed leads to a symmetric doublet (within the limit of uncertainty
of the measurement). We should note that the difference in linewidth also leads to a different intensity for the
two components. However, the integrated intensity over both deconvoluted components is the same in almost
all the spectra. This indicates that the inhomogeneous contribution to the lineshapes is very small here. Thus,
the difference in intensity arises only from the differential broadening, and not from differences in spinning
sidebands intensity distribution, as is the case for the carboxyl resonance (whose lineshape is dominated by
inhomogeneous interactions).

Since the methyl lineshapes at 6 and 7kHz are not well resolved to easily identify theJ-coupling and
consequently to precisely determine the linewidths by deconvolution, we looked for a method well adapted for
accurately measuring the differential broadening. The spin-
state-selective techniques originally introduced in liquid-
state NMR for heteronuclear spin systems are well suited for
this purpose. The pulse sequence allowing to separately mea-
sure the doublet components and thus to prove the methyl
differential broadening at low spinning speed, uses the In-
Phase Anti-Phase (IPAP)[31,32] selective filter. The spin-
state-selective approach and the IPAP filter sequence will be
largely described in the next chapter of this thesis. Basically,
the selection of one of the doublet components is based on
the combination of two separately recorded experiments. The
sum and difference of the resulting spectra yield two sub-
spectra, one containing theα and the other theβ transition.
The experimentally measured linewidths forα andβ tran-
sitions are given in TABLE 1.2. The difference in linewidth is
shown as a function of the spinning rate in FIGURE 1.9a. The
largest difference in width betweenα andβ transitions is, as

TABLE 1.2: Full widths at half height (FWHH) of

the two methyl resonance components in fully13C-

enrichedL-Alanine determined with the IPAP ex-

periment at different magic-angle-spinning frequen-

cies.

ωr
2π / kHz ∆α / Hz ∆β / Hz %

6 58 68 15

7 43 50 14

12 24 27 11

18 24 24 0

28 20 20 0

33 19 19 0

expected, obtained at slow spinning frequencies. For example, a difference of 10Hz is obtained at 6kHz MAS.
The measurement of the differential broadening at even lower spinning frequencies would be difficult due
to the presence of off rotational-resonance effects which lead to additional broadening of the resonances. By
increasing the spinning speed, the difference in linewidth of the two components decreases and disappears
at 18kHz MAS. These measured values are in good agreement with the above predicted linewidts from the
deconvolution of the CPMAS lineshapes.
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FIGURE 1.9:Differential linewidth (a) and normalised integral intensity (b) for both components of the CH3 resonance

of fully 13C-labelled L-Alanine measured with the IPAP pulse sequence as a function of the magic-angle-spinning

frequency.

In conclusion, the IPAP experiment allows us to accurately measure the differential broadening induced
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by the coherent CSA-DD correlation effects for the case where the involved spins behave homogeneously.[20]

For the carboxyl lineshape inL-Alanine, only a difference in intensity was found, showing that the chemical-
shift difference to the Cα is big enough for the homonuclear pair spin system to behave inhomogeneously.
A completely opposite situation is found for the CH3 in L-Alanine. The integrals of each doublet component
are the same over the whole range of magic-angle-spinning frequencies (see FIGURE 1.9b). The coherent cross-
correlation effect between the Cβ and Cα is only characterised by a differential broadening of the CH3 doublet,
thus indicating a homogeneous coupled spin pair, as actually expected for a homonuclear spin system. This
kind of effects are refocusable by aπ pulse in a spin-echo type experiment.[92]

1.4 Discussion

These results show that the experimental lineshapes observed for fully13C-labelledL-Alanine can be
explained by the joint effect of off rotational-resonance conditions and cross correlation between CSA and
DD interactions. Such effects are not limited to the special case considered in detail here, but also appearat
other magnetic fields or in other amino acids, and are therefore relevant for all13C-labelled compounds as for
example the proteins.

To show the generality of this effect with respect to the spin system, we have simulated the carboxyl
and methyl lineshapes ofL-Threonine for different MAS spinning speeds. These simulations are drawn in
FIGURE 1.10. The size and geometry of the different interactions considered are summarised in TABLE 1.3. The
broadening of theL-Threonine simulated lines is quite similar to that described above forL-Alanine.
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FIGURE 1.10:Simulated (a) carboxyl and (b) methyl resonances ofL-Threonine at intermediate spinning fre-

quencies and 11.8T (i.e., 500MHz proton frequency). The different parameters for the CSA and DD tensors,

as well as their relative orientations are given in TABLE 1.3. For the simulations of carboxyl lineshape a two-

spin system C’ - Cα was considered. Only the CSA of the carboxyl spin was taken into account. For the methyl

lineshape simulations, a four-spin system C’ - Cα - Cβ - Cγ was chosen. All CSA tensors and dipolar couplings

between all fours spins were considered. The powder average was performed using a set of 376 molecular an-

gles{αMR, βMR} generated by the ZCW algorithm[78,86,87,88] and 15 evenly-spaced values for the third Euler

angleγMR. The SIMPSON[89] package was used for these simulations. A line broadening of 24Hz was applied

prior to Fourier transform.
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The presence of this effect at other magnetic fields is illustrated in FIGURE 1.11 where the simulated
carboxyl lineshapes ofL-Alanine are shown for a series of different static magnetic fields going from 9.4T
(400MHz) to 23.5T (1GHz). In order to keep the size of the off rotational-resonance effects constant, the
magic-angle-spinning frequency was adjusted such that its ratio to the static magnetic field remained the same
for all the simulated spectra. Even if the distortion of the lineshape from the expected symmetric doublet tends
to be smaller at high magnetic fields, it still leads to noticeable effects at 800MHz proton frequency. We predict
therefore that coherent cross-correlation and off rotational-resonance effects can broaden the carbon lineshapes,
even at the highest available magnetic field strengths. The asymmetric lineshapes observed in the work of Pauli
et al. for SH3 domain resonances Cγ of 53Val (17.0ppm) and Cβ of 55Ala (15.9ppm) are good examples of
this.[43]

As was briefly mentioned by Nakai and McDowell,[60] we note that coherent cross-correlation effect
observed for carbon lineshapes could potentially be used to determine the orientation of the CSA tensor in the
molecular frame, if the principle components are known (or vice-versa). This is illustrated in FIGURE 1.12where
the predicted lineshapes of the C’ carbon inL-Alanine are shown as a function of the angleβ between thez-
component of the CSA tensor and the C’ - Cα internuclear vector. The change is clear, and only the previously
determined geometry of the TABLE 1.1agrees with the experimental result.

TABLE 1.3: Parameters for the CSA and DD tensors, andJ-coupling constants inL-Threonine.

CSA parameters 13C’ 13Cα 13Cβ 13Cγ

δiso
a 170ppm 60.2ppm 65.4ppm 18.9ppm

δaniso
a 70.2ppm 8.8ppm - 26.6ppm - 17.5ppm

ηa 0.85 0.71 0.35 0.51

ΩPM
b {83.7◦, 69.4◦, {149◦, 58.3◦, {50◦, 110.4◦, {1.7◦, 147◦,

154.4◦} 88.7◦} 150.9◦} 72.8◦}

DD parameters 13C’- 13Cα 13C’ - 13Cβ 13Cα - 13Cβ 13Cα - 13Cγ 13Cβ - 13Cγ

djk/2πc - 2176.5Hz - 454.5Hz - 2072.3Hz - 467Hz - 2229Hz

Ω
′
PM {0◦, 126.8◦, {0◦, 125.2◦, {0◦, 104.3◦, {0◦, 50.4◦, {0◦, 20.9◦,

147.7◦} 18.6◦} 59.2◦} 64.5◦} ( 73.3◦}

J parameters 13C’ - 13Cα 13C’ - 13Cβ 13Cα - 13Cβ 13Cα - 13Cγ 13Cβ - 13Cγ

Jjk 54Hz 0Hz 34Hz 0Hz 34Hz

a The signs of frequencies are conform that given by Levitt.[84] The isotropic chemical shift frequencies and the chemical
shift principal values were taken from the work of Janeset al.[93] with respect to TMS. The isotropic chemical shift,
anisotropic chemical shift frequency and asymmetry parameter are defined as in the legend of TABLE 1.1.

b The set of Euler angles was determined from the atomic parameters given in the paper of Shoemaker and coworkers.[94]

c Dipole-dipole coupling constant taken from Shoemakeret al..[94]

1.5 Conclusion

We have shown in this chapter that13C spectra of fully labelled compounds can reveal at intermediate
spinning speeds broad and asymmetric lineshapes instead of the expected multiplet structure induced by the
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FIGURE 1.11:Simulations under magic-angle spinning of the carboxyl lineshapes ofL-Alanine at different static mag-

netic fields ranging from 9.4T (i.e., 400MHz proton frequency) to 23.5T (i.e., 1GHz proton frequency). The spinning

frequency was chosen such that its ratio to the magnetic field was kept constant. The same spin system was consid-

ered as for the static simulations of FIGURE 1.6. A ZCW[78,86,87,88] powder average over 376 molecular angles{αMR,

βMR} and 15 evenly-spaced values for the third Euler angleγMR were necessary for obtaining these simulations.

The SIMPSON[89] package was used for these simulations. A line broadening of 24Hz was applied prior to Fourier

transform.

presence of carbon-carbon scalar couplings. Whereas the broadening of the lines originates mainly from well-
known off rotational-resonance effects, coherent CSA-DD cross correlation was shown to induce an asymmetry
in intensity for systems behavinginhomogeneously,[20,62,63] and this will be the case for the vast majority of
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FIGURE 1.12:a) Experimental C’ lineshapes at 7kHz spinning frequency, taken from FIGURE1.3. b) Simulations similar to those shown

in FIGURE 1.7, but varying theβ angle between thez-component of the C’ CSA tensor and the C’ - Cα internuclear vector, showing the

sensitivity of the lineshape to this structurally relevant parameter. The simulations of FIGURE1.7were done for aβ angle equal to 64.8◦,

which is the value inferred from.[85]

carboxyl resonances in proteins for example. On the contrary, the coherent cross-correlation effects produce
a differential broadening for the systems behaving homogeneously under MAS. This will be the case, for ex-
ample, for many aliphatic groups in proteins. The effect we describe here is widespread andis particularly
relevant for solid-state NMR studies of proteins, where current experimental practice favors the use of interme-
diate spinning speeds that appear to maximize these effects, and we show that these effects are still noticeable
at the highest available magnetic fields. In all cases these coherent cross-correlation effects disappear at high
spinning frequencies.

More generally, cross-correlation effects in liquid-state NMR have been successfully used as sensitive
structural probes[95,96] and differential broadening has recently been exploited in the TROSY experiment[40] to
yield resolution enhancement in spectroscopy of proteins. It is conceivable that the exploitation of these effects
in solids could also lead to new, unexpected applications.

Contrary to the liquid state, in solids these effects are small and sensitive to the spinning frequency.
Consequently, since the largest differential broadening is observed at low spinning speeds exploitation of these
effects for solids in a way similar to that used in liquid-state NMR (i.e., selection of the transition associated
with the longer dephasing time) would not provide a major resolution enhancement because, at these spinning
rates, the lineshapes are still dominated by residual second-order dipole-dipole interactions which are only
partly refocused by the magic–angle spinning. Owing to the weakness of these effects, other strategies can be
considered for fully labelled solid systems at low spinning rates. One of them is the removal of the coherent
cross-correlation effects by refocusing the homonuclearJ-coupling in a manner similar to that proposed in 1996
by Straus and coworkers.[37,97] Another possibility is to individually separate each transition of theJ-coupled
multiplets using spin-state-selection filters as those presented in the next chapter.



CHAPTER TWO

Spin-state-selection techniques in solid-state NMR

2.1 Introduction

This chapter focuses on the possibility of using spin-state-selection techniques in solids. It results
in the removal of theJ-coupling broadening by selecting only one component of the multiplet. Spin-state-
selective experiments are well known in liquid-state NMR and are mainly used for the measurement of scalar
and residual dipolar coupling constants,[31,32,33,34,98,99,100] for coherence transfer using single-transition cross-
polarisation,[101,102] or in the context of TROSY, where the selection of the slowly relaxing doublet component
leads to improved resolution and sensitivity in heteronuclear correlation experiments of biomolecules.[40]

Techniques for spin-state selection can essentially be separated into two categories. In the former, a
direct-selective excitation of a single spin state is obtained, either through single-quantum coherences (SQC) in
the S3E (Spin-State-Selective Excitation) experiment,[33] or through zero- or double-quantum coherences (ZQC
or DQC) as in the S3CT (Spin-State-Selective Coherence Transfer) experiment.[100] In the second category, the
spin-state separation is achieved by linear combination of experiments containing in-phase or anti-phase signals.
These sequences are known as IPAP (for In-Phase Anti-Phase)[31,32] and DIPSAP (for Double-In-Phase Single-
Anti-Phase)[34] and were developed in liquid-state NMR for heteronuclear spin pairs using non-selective pulses.

The INADEQUATE-CR (Incredible Natural Abundance DoublE QUAntum Transfer Experiment and
Composite Refocusing) experiment introduced in 1995 by Nielsenet al.[35] has been already applied to solids,
where it was shown to work for two-spin systems.[36] The sequence was originally developed to enhance the
sensitivity of the basic INADEQUATE experiment.[103,104,105,106,92] Tailored for homonuclear spin pairs, the
experiment uses non-selective pulses to excite and efficiently reconvert the double-quantum coherences to
only one component of theJ-doublet. However, the sequence is specifically limited to homonuclear double-
quantum-single-quantum correlation experiment.

In this chapter, we will show that spin-state selection can be achieved in solid-state NMR in a general
manner, even when theJ-coupling is not well resolved in the spectrum. Using semi-selective pulses, we mea-
sured all the different homonuclear spin states of all three carbon resonances in fully13C-labelledL-Alanine
with a pulse sequence based on the IPAP block filter. The resulting resolution and sensitivity obtained with the
IPAP filter will be mainly discussed. In a manner similar to that used for IPAP, the spin-state selection can also
be accomplished by using S3E, DIPSAP or INADEQUATE-CR techniques. The degree of selection of the spin
states of the latter methods was experimentally tested on carboxyl and/or methyl doublets of fully13C-enriched
L-Alanine.
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2.2 Spin-state selection in solid-state NMR

The general pulse sequence used for performing state selection is given in FIGURE 2.1a. All the spin-state-
selective filters are adapted for a homonuclear spin pair by the use of semi-selective pulses. The pulse sequence
including the spin-state-selective filter was adjusted to make it compatible with conventional solid-state NMR
sequences allowing polarisation transfer, magic-angle-spinning, and heteronuclear dipolar decoupling. The car-
bon magnetisation of all spins is first enhanced by conventional cross polarisation from protons, using simulta-
neous radio-frequency fields on both the proton and carbon channels.[23,24,71,73] The carbon polarisation is then
stored along the static magnetic field direction by a non-selective (i.e., broadband or hard)13C π/2 pulse. The
following z filter of durationδ removes any residual transverse coherences and ensures properz magnetisation
for the spin-state-selection element which precedes the acquisition.

2.2.1 Spectral selection using IPAP

Pulse sequence and experimental details

For the particular case of spin-state selection with IPAP, the filter block in FIGURE 2.1ahas to be replaced
by the In-Phase Anti-Phase element (see FIGURE 2.1b).[31,32] We consider a spin system of twoJ-coupled carbon-
13 nuclei, denotedI andS. The IPAP filter is based on a semi-selectiveτ - π - τ element, with2τ = (2JIS)−1.
The selection of one of theI-spin transitions consists in combining two separately recorded experiments, de-
noted (A) and (B). They differ in the position of the twoπ pulses on theS spin and the phaseϕ3 of the
subsequentπ/2 pulse on theI spin.

In the first experiment (A), the homonuclearI - S scalar coupling is removed by theπ pulses on the
S spin applied in the middle of eachτ evolution period. This corresponds to anε value ofτ /2. Thus, no net
evolution occurs during the IPAP filter (except for relaxation) and an in-phase signal, with a splitting due to
the presence of theJ-coupling to theS spin, is observed for theI spin (after an additionalz filter) in the
detection periodt2. All other interactions are removed either by magic-angle spinning (heteronuclear13C - 1H
and homonuclear13C - 13C dipolar couplings, and13C chemical-shift anisotropy), by heteronuclear decoupling
(heteronuclear13C - 13C dipolar and scalar couplings), or by the refocusingπ pulses (isotropic chemical shifts).
In the second experiment (B), theε delay is set to zero. This results in a net evolution under theJ-coupling
during the total delay 2τ = 1/(2JIS) leading therefore, after the finalz filter, to an anti-phase signal of theI
spin with respect to theS one during the detection periodt2. Addition and subtraction of these two experiments
yield spectra containing only one of theI spin doublet components, corresponding to theI magnetisation with
the coupledS spin being either in the|α〉 = |-1/2〉 or |β〉 = |1/2〉 state.

In order to achieve optimum separation of the spin states in the combined spectra, it is essential that
both (A) and (B) experiments have exactly the same duration and the same number and type of semi-selective
pulses. This ensures that ”relaxation effects” will occur in the same way in both experiments. For this reason,
the two ”simultaneous” semi-selectiveπ pulses in the (B) experiment, whereε = 0, are for example applied
sequentially. In the same experiment, the secondπ pulse on theS spin is kept for the same reason. It has
additionally the effect of refocusing the transient Bloch-Siegert phase shifts effects[107] potentially introduced
on theI-spin coherence by the firstπ pulse applied on theS spin. Furthermore, it was experimentally noticed
that a complete phase cycle of theπ pulse on theI spin is required for a good selection of the spin-state
transitions.

The feasibility of spin-state selection using IPAP is shown on the fully13C-enrichedL-Alanine. The
pulse sequence of FIGURE 2.1 with IPAP as spin-state-selective block filter was applied to all three carbon res-
onances ofL-Alanine at different magic-angle-spinning frequencies (6, 7, 12, 18, 28, 35kHz). Since all three
resonances are well separated and only one resonance at one time is concerned by each soft pulse of the se-
quence, we used simple Gaussian[108,109] shapedπ/2 and π pulses as semi-selective pulses. The Gaussian
shape was produced by the ShapeTool extension of the Bruker XWINNMR package,[110] using 200 points with
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FIGURE 2.1: a) Pulse sequence for spin-state selection used for selecting individual state transitions with

selective filters (drawn in grey box). b) IPAP selection filter.π/2 andπ rf pulses are represented by filled

and open bars for hard pulses and shapes for semi-selective pulses, respectively. For optimal performance

of the IPAP state-selection filter, the delay2τ has to be adjusted to(21JIS)−1 (i.e., 9.26ms for C’Cα spin

pair and 14.706ms for CβCα spin system). Two data sets (A) and (B) are recorded using the following

settings: (A)ε = τ /2, ϕ3 = x and (B)ε = 0, ϕ3 = y.[31,32] The resulting spectra are schematically given

next to the pulse sequence. The phase cycle we used is:ϕ1 = x -x; ϕ2 = x x y y -x -x -y -y;ϕrec = x -x -x

x. Addition and subtraction of the (A) and (B) experiments yield two spectra, each of them containing only

one of the doublet components.

a truncation level of 1 %. The amplitude of the Gaussian pulses was calibrated using carbon-13 magnetisation
in the following pulse sequence:

CP -π/2(hard) - delay (5ms) - π/2 (soft) orπ (soft) (2-1)

with simultaneous TPPM[74] decoupling. Due to the symmetry of the Gaussian shape, the refocusing pulse
is identical to that optimised for inversion. In order to minimise the imperfections introduced by theπ pulse
applied on theI spin, the amplitude of the Gaussianπ(I) pulse was further fine tunned directly on the IPAP
pulse sequence. At low spinning frequencies, it was found necessary that Gaussian pulses were selective enough
to not affect the other resonances over their whole range of frequencies, including their chemical-shielding
anisotropy (i.e., spinning sidebands of other resonances were avoided). At higher spinning frequencies, we
found it only necessary to avoid the isotropic chemical-shift resonances of other spins. We therefore used 1ms
Gaussian pulses in the slow spinning regime (i.e., 6 and 7kHz), and 200 and 800µs pulses for C’ and Cα/Cβ

resonances, at higher spinning speeds.

Since the IPAP pulse sequence is based on the spin-echo method which requires sychronisation of the
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e) f)

FIGURE 2.2: 2IySz sin(2πJτ) (a-d) andIy cos(2πJτ) (e, f) modulation curves with respect to theτ delay obtained at

6kHz rotation frequency. The semi-selective pulses were calibrated with the pulse sequence2-1. TheJ-modulated curves

were recorded with (a, c, e) and without (b, d, f) reoptimising theI spinπ pulse directly on the IPAP pulse sequence. In a)

and b) the delayτ was initially set to 1µs and further incremented by 0.5ms (i.e., 3τr). The signal is maximum forτ =

1/(4J) and the first zero crossing is obtained whenτ is equal to 1/(2J). The other curves show theJ-modulation inside a

rotor period around the maximum found here equal to 4.75ms.

τ echo delay with the rotation period, the same constraint has been originally expected for IPAP. Contrary to
our belief, experimental investigations showed that synchronisation with spinning rotation is not essential for
well-calibrated semi-selective pulses. An interference between rotation and semi-selective pulses was only ob-
served at low spinning frequencies when the semi-selective pulses were not completely optimised for the IPAP
sequence. This is illustrated in FIGURE 2.2 with two J-modulated curves recorded at 6kHz rotation frequency
with (c and e) and without (d and f) reoptimisation of theπ pulse on theI spin directly on the IPAP pulse
sequence. A modulation is also observed outside the rotor period when we look at theJ-modulation curve as a
function of theτ delay. This is shown in FIGURE 2.2b where theτ delay was varied from 1µs to 25ms with steps
of 0.5ms (i.e., 3τr). The power level of theπ(I) pulse reoptimised with IPAP is 1.7 dB larger than theπ pulse
optimised with the pulse sequence2-1. This difference in dB corresponds to a difference in frequency of about
240Hz. The nutation frequency on the13C channel used for the reoptimised semi-selective pulse was 1.26kHz.
In conclusion, at low spinning frequencies, problems could arise from the use of shaped pulses, principally due
to interference effects with sample rotation. This kind of effects should be explored further.

Results and discussion

Spin-state selection is illustrated in FIGURE 2.3 for all three carbon resonances with respect to each of
the coupling partners. The pulse sequence of FIGURE 2.1a with IPAP as selective filter was applied to each of
the fourJ-coupled spin pairs in fully13C-enrichedL-Alanine, e.g.,{C’ - Cα}, {Cβ - Cα}, {Cα - C’}, {Cα -
Cβ}. The transitions corresponding to theJ-split components of theI spin, with the coupling partner (S spin)
being inα or β state, are given on the top of each column. The2τ delay was experimentally set to match
(2JIS)−1, e.g., 9.26ms for the C’ - Cα spin pair (J-coupling of 54Hz) and 14.706ms for the Cβ - Cα spin
pair (J-coupling of 34Hz). For all resonances and spin pairs, the spin-state selection is remarkably good. In the
case of the carboxyl resonance, the MAS range covers a slow spinning regime (6 and 7kHz) where the doublet
due to theJ-coupling to the Cα is relatively well resolved in the CPMAS spectrum, an intermediate regime
(12 and 18kHz) where off rotational-resonance effects broaden the transitions leading therefore to unresolved
resonances in the carbon spectrum (see FIGURE 1.3),[51,60,75] and a fast spinning regime (28 and 35kHz), well
above any rotational-resonance conditions, where the doublet is well resolved. For all these conditions, the
separation of the spin states is very good at high spinning frequencies. At the lowest spinning frequencies, a
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small contribution from the other spin state passes through the filter. The largest residual represents∼ 12 %
from the selected spin state. For the methyl resonance, the resolution of the doublet structure in the CPMAS
spectrum starts to be visible at about 9kHz MAS. Independently of the apparent resolution of theJ-coupling
with the Cα, the spin-state selection is again very good at all magic-angle-spinning frequencies used here.
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FIGURE 2.3: Experimentalα and β transitions for C’ (a), Cβ (b), and Cα (c and d) resonances of fully13C-labelled

L-Alanine obtained with the pulse sequence of FIGURE 2.1 with IPAP as selective filter. The sample was purchased from

Eurisotop and used without further purification. The last two columns correspond to the Cα resonance with the C’ (column

c) or the Cβ (column d) being in theα or β state. All the experiments were performed on a Bruker 500 Avance spectrometer

(proton and carbon frequencies at 500.13MHz and 125.76MHz) equipped with a Bruker 2.5mm double CPMAS probe-

head. A ramped spin lock on the proton channel was used to broaden the Hartmann-Hahn condition.[23,24,71,72,73] The CP

contact time was set to 1ms. The proton nutation frequency for the TPPM-15 decoupling sequence[74] was set to 156kHz.

A delayδ of 5ms was chosen to remove any residual transverse magnetisation. The delay2τ was set to 9.26ms for the

C’ - Cα spin pair (which corresponds to aJ-coupling of 54Hz) and 14.706ms for Cα - Cβ spin pair (i.e.,J-coupling

of 34Hz). To ensure the best resolution and to avoid wiggles at high rotation frequencies, the acquisition time was set to

60ms thus giving a complete decay of the signal, which was further processed without any apodisation function.

The Cα spin in fully 13C-labelledL-Alanine has twoJ-coupled partners, C’ and Cβ. When rotational-
resonance conditions are avoided, the CH resonance contains four components corresponding to the carboxyl
and methyl carbons in either theα or theβ state. This multiplet structure (doublet of doublets) is not at all
resolved in the CPMAS spectrum, even at the highest MAS spinning frequency considered here (i.e., 35kHz,
see FIGURE 2.3). A broad (linewidth of more than 100Hz) and featureless lineshape is obtained for this resonance
at all magic-angle-spinning frequencies. Nevertheless, excellent spin-state selection is obtained for the CH
resonance using the IPAP filter. Since the Cα spin has two coupled spins, the experiment of FIGURE 2.1a is
carried out once for the CαC’ spin pair with the2τ delay matched to1JCαC′ = 54Hz and once for the CαCβ

spin pair matched to1J
CβCα = 34Hz. The results for the CαC’ and CαCβ spin pairs are shown in FIGURES 2.3c

and2.3d. Depending on the chosen spin pair, the spin-state selection is performed only with respect to one of the
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scalar coupled spins (i.e., carboxyl or methyl). Thus, each selected CH spin state still contains two transitions
separated by theJ-coupling to the third spin. The doublet structure of the separated spin states of the Cα spin
is very clear at high MAS frequencies in FIGURES 2.3c and2.3d.

2.2.2 ”Double IPAP” filter

A further possibility for an additional simplification of the CH multiplet can be achieved by applying
two successive IPAP filters. This ”double IPAP” filter is implemented in the pulse sequence shown in FIGURE 2.4.
In a homonuclear three-spin systemI - S - K, e.g.,{Cα - C’ - Cβ}, with theI spin being coupled to bothS and
K spins, the first IPAP filter applied to theI - S spin pair, with2τIS matched to(2JIS)−1, delivers theI-spin
states separated with respect to theS spin. Applying a second IPAP filter to theI - K pair system with2τIK

matched to(2JIK)−1, the spin states ofI spin separated with respect to bothS andK spins are then obtained.
In practice, four data sets are recorded using the parameters summarised in TABLE 2.1 for the successive IPAP
filters.
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FIGURE 2.4:Double IPAP pulse sequence to separately measure the four spin states of theI spin coupled

to two other spins, denotedS andK. As for the IPAP pulse sequence, the delays 2τIS and 2τIK of the con-

secutive IPAP blocks are set to(2JIS)−1 and(2JIK)−1 in order to ensure an optimal spin-state selection.

Four experiments are recorded with the parametersεIS , εIK , ϕ3, andϕ5 set as described in TABLE 2.1. The

obtainedI-spin resonances are schematically depicted close to the pulse sequence. The phase cycle was as

follows:ϕ1 = x -x, ϕ2 = x x y y -x -x -y -y,ϕ4 = = x x y y -x -x -y -y,ϕrec = x -x -x x. (See TABLE 2.1for ϕ3

andϕ5.)

TABLE 2.1: Experimental parameters for the successive IPAP filters of the double IPAP experiment (2τIS =
(2JIS)−1 and2τIK = (2JIK)−1).

(A) [in-phase/in-phase] εIS = τIS/2 εIK = τIK/2 ϕ3 = x ϕ5 = x

(B) [in-phase/anti-phase] εIS = τIS/2 εIK = 0 ϕ3 = x ϕ5 = y

(C) [anti-phase/in-phase] εIS = 0 εIK = τIK/2 ϕ3 = y ϕ5 = x

(D) [anti-phase/anti-phase] εIS = 0 εIK = 0 ϕ3 = y ϕ5 = y
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In terms of product operators,[111] these four experiments lead to the following signals:
σ(A) ∝ Iy

σ(B) ∝ 2IyKz

σ(C) ∝ 2IySz

σ(D) ∝ 4IySzKz

(2-2)

Schematic spectra illustrating this outcome are drawn next to the pulse sequence in FIGURE 2.4. The following
linear combinations of these spectra yield each of the four CH resonance components:

(A) + (B) + (C) + (D) : σαα ∝ IyS
αKα

(A) - (B) + (C) - (D) : σαβ ∝ IyS
αKβ

(A) + (B) - (C) - (D) : σβα ∝ IyS
βKα

(A) - (B) - (C) + (D) : σββ ∝ IyS
βKβ

(2-3)

FIGURE 2.5a shows double IPAP spectra for the Cα resonance line of fully13C-labelledL-Alanine at
28kHz magic-angle-spinning frequency. It is interesting to note that all four spin states thus isolated in the
different subspectra of FIGURE 2.5b have the same linewidth at half-height (within the limit of uncertainty of
the experiment), but noticeable different intensities. These intensity differences are not an artifact of the ex-
periment because the sum of the four isolated transitions which corresponds in fact to the (A) experiment in
FIGURE 2.5a, has essentially the same lineshape as the one obtained for a standard CPMAS experiment given in
the FIGURE 2.5c and recorded with the same experimental parameters. These differential intensities could result
from the interference of the14N quadrupole interaction with the13C - 14N dipole-dipole interaction.[81]
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FIGURE 2.5:Double-IPAP13Cα spectra obtained at 28kHz rotation frequency using the pulse se-

quence shown in FIGURE2.4. a) 13Cα signals acquired with the four (A) - (D) experiments necessary

for separating the spin states. Gaussian pulses of 800µs were used for all semi-selective pulses.

The delays 2τIS and 2τIK were set to match 9.26ms and 14.706ms. All other experimental para-

meters are similar to those indicated in the legend of FIGURE 2.3. b) Linear combinations of the four

(A) - (D) spectra which provide the individualαα, αβ, βα, andββ spin states of the13Cα reso-

nance. The exact combinations of the lines are indicated in the text (see Eq. 2-3). c) 13Cα resonance

acquired with a standard CPMAS experiment using the same experimental parameters as for the

double IPAP experiment.

At first sight, it may appear strange that we can separate transitions which are not resolved in the
carbon spectrum. Similar to the case of the refocused INADEQUATE experiment,[92,112] it is in fact not the
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apparent linewidth,∆∗ = 1/(πT ∗
2 ) which is relevant for the state-selection efficiency of the filter, but the non-

refocusable linewidth given by∆
′
= 1/(πT

′
2) and measured in a spin-echo experiment.[92,113] The time constant

T
′
2 contains all non-refocusable interactions in addition to the spin-spin relaxation time constantT2. It was

shown[92,114,115,116] that in most organic solids the carbon-13 apparent dephasing timeT ∗
2 is dominated by

refocusable interactions. In both crystalline and disordered solids, the non-refocusable carbon linewidth was
found to be much narrower than the apparent linewidth, and generally smaller than the one bond homonuclear
J-couplings.[92] Since the spin-state-selective filters we use here are all based onτ - π - τ evolution periods, it
is the non-refocusable linewidth,1/(πT

′
2), which is pertinent for the preparation of the selective spin states.

2.2.3 Selectivity and efficiency of the IPAP filter

It results from the spectra of FIGURE 2.3 that the selection of the spin states should be very useful for
improving the resolution of the spectra. In cases where theJ-coupling is well resolved, like for example the
carboxyl lineshapes of fully13C-enrichedL-Alanine at high spinning speeds, spin-state selection reduces by a
factor of 2 the number of peaks. More importantly, for resonances where a relatively largeJ-coupling is not
resolved, like for example the Cα lineshapes, the
selection of single spin states greatly reduces the
linewidth. In the case of the CH resonance ofL-
Alanine (see FIGURE 2.3c) we obtained a linewitth re-
duction going from 30 to 40 % (depending on the
rotor period) compared to that found in CPMAS
spectra and measured in the same experimental con-
ditions. The linewidths measured for the CH reso-
nance ofL-Alanine are summarised in TABLE 2.2 for
the CPMAS spectra and the two separated spin states
recorded with respect to theα andβ carboxyl spin
states at different magic-angle-spinning frequencies.
Using the double IPAP pulse sequence, a 66 % res-
olution enhancement is achieved for the CH reso-
nance when the linewidth of the isolated state tran-
sition is compared to the CPMAS lineshape.

TABLE 2.2: Full widths at half height (∆) of CH reso-
nance in CPMAS spectra and for both CH selected transi-
tions with respect to the carboxyl spin at different magic-
angle-spinning frequencies.

ωr
2π / kHz ∆CPMAS / Hz ∆α / Hz ∆β / Hz

6 128 90 87

7 124 84 82

12 120 80 79

18 126 86 93

28 110 68 70

35 110 67 68

In order to efficiently implement spin-state selection in solid-state NMR of large and complex systems,
like proteins, it is important that the sensitivity loss introduced by the addition of the selection filter be rea-
sonable. Several factors have to be taken into account for the optimisation of the filter sensitivity, such as the
total length of the pulse sequence or the choice and length of the semi-selective pulses which have to be as
short as possible. Particularly, it was recently noticed that the quality of the decoupling sequence used during
the refocusing period of the selection filter is decisive. In a very recent work, De Paëpe and coworkers have
shown[26,113,116] that decoupling sequences achieving about the same efficiency in the direct dimension can
show very different behaviour during the refocusing period. In FIGURE 2.6 we therefore compare the sensitivity
of the IPAP spin-state selected spectra ofL-Alanine obtained with the pulse sequence of FIGURE 2.1using differ-
ent decoupling schemes (i.e., CW,[117] TPPM-15,[74] and eDROOPY1[26,113]) for the heteronuclear decoupling.
For the carboxyl resonance, the sensitivity loss due to the introduction of the IPAP filter is quite low (0 to
20 %) when eDROOPY is used. Intensity losses range from 30 to 70 % for Cβ and from 15 to 50 % for Cα

depending on the rotation frequency (data not shown). The SPINAL[25] decoupling sequence gave comparable
performance to eDROOPY. For all three resonances, the sensitivity of the spin-state selected spectra improves
with increasing spinning frequency, and compared to the routinely used CW and TPPM decoupling sequences
the sensitivity is significantly improved when eDROOPY or SPINAL are employed.

All these results have been obtained at the same main magnetic field (i.e., B0 = 9.7T). An interesting

1Note that eDROOPY decoupling sequence is currently known under the name of CM forcosine modulation.
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FIGURE 2.6:Sensitivity of the IPAP experiment using different decoupling sequences with respect to the

standard CPMAS experiment recorded with TPPM-15[74] decoupling sequence. The comparison is made

for the13C’ (a) and13Cβ (b) resonances for 6, 18 and 33kHz rotation frequencies. For this comparison,

both IPAP and CPMAS experiments were acquired with the same total number of transients. For each

resonance and spinning rate, the signal intensities were calibrated such to give 100 for the CPMAS

experiment. The different decoupling sequences tested here were continuous wave (CW) decoupling,[117]

TPPM-15[74] and eDROOPY.[26] The other experimental parameters were identical to those indicated

in the legend of FIGURE 2.3.

behaviour to explored is the performance, in terms ofT
′
2, of the different decoupling schemes at low and high

B0 magnetic fields.

2.3 Other spin-state-selection filters

So far, we have considered in detail the IPAP selection filter on fully13C-enrichedL-Alanine. The other
known spin-state-selection filters, S3E[33] and DIPSAP,[34] work with the same type of evolution periods and
will be investigated in this section.

The factors to be considered for the choice of the state-selection filter are the length of the filter sequence
and its sensitivity to variations of theJ-couplings. For example, for systems characterised by a short refocused
relaxation time, the S3E filter[33] would be more appropriate due to its short length (two times shorter than
IPAP). However, the filter sequence can not be abridged without any cost. Thus, the S3E filter has the drawback
of being very sensitive to variations of theJ-coupling. The DIPSAP sequence,[34] is a very efficient solution to
the problem of largeJ-mismatch and for the particular cases where spin-state separation is desired for several
spin pairs with differentJ-couplings. The sensitivity toJ-mismatch of S3E,[33] IPAP[31,32] and DIPSAP[34]

filters has been tackled by Brutscher.[34] The good compromise between the filter length and the tolerance to
theJ-coupling variations expected for IPAP is the reason why we chose to investigate in detail the IPAP filter.

2.3.1 Spin-state-selective excitation (S3E) filter

The principle of the spin-state-selective excitation was first presented by Meissneret al. in 1997.[33]

In combination with E.COSY-type techniques,[118,119,120] S3E was established as a method well suited for the
measurement of homonuclear and heteronuclearJ-couplings of proteins in liquid-state NMR.

The original experiment[33] was adapted for its application to homonuclear systems using semi-selective
pulses instead of the non-selective ones for heteronuclear spin systems. An additionalπ pulse on theS spin
was added in order to refocus the transient Bloch-Siegert phase shifts effects[107] which could appear on the
evolving spin due to the firstπ pulse on theS spin.
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The circled numbers marked on the S3E filter element drawn in FIGURE 2.7 indicate time points which
are used in the discussion below. The main part of the description of the S3E filter element is based on two
works of Meissner and coworkers.[33,99]

We consider a two-spin system with the spins denotedI andS and experiencing scalar coupling. The
function of the S3E filter element can be described using the product operator formalism.[111] Thus, the mag-
netisation at the time point©1 (i.e., after the firstπ/2 pulse on theI spin applied either along a 45◦ or a 5x45◦

axis) is given by: {
(−Iy + Ix)

√
2

2
for ϕ1 = π/4

(+Iy − Ix)
√

2
2

for ϕ1 = 5π/4
(2-4)
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FIGURE 2.7: a) S3E filter element adapted for solids for editingα and β components of theI spin in a

homonuclearI - S pair system. The circled numbers represents time points discussed in the text. Filled and

open shapes represent theπ/2 andπ semi-selective pulses. The delay 2τ was set to 1/(4J) and the following

phase cycle was used in practice:ϕ1 = π/4 π/4 π/4 5π/4, ϕ2 = x, ϕ3 = x y, ϕ4 = x y -x -y,ϕrec = y -y

-y y (A) - for selectingα transition, andϕrec = x -x (B) - for selectingβ transition. b) Vector diagram

illustrating the spectral editing with S3E.

These two in-phase terms, shifted one with respect to the other by 90◦, evolve under the scalar coupling during
theτ - π - τ delay and yield:

{
(+Iy cos(2πJτ)− 2IxSz sin(2πJτ)) + (+Ix cos(2πJτ) + 2IySz sin(2πJτ))

√
2

2
for ϕ1 = π/4

(−Iy cos(2πJτ) + 2IxSz sin(2πJτ)) + (−Ix cos(2πJτ)− 2IySz sin(2πJτ))
√

2
2

for ϕ1 = 5π/4
(2-5)
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at time point©4 . Since the filter delay 2τ is set to match(4JIS)−1, the cosine and sine modulated terms are
equal in intensity. Using the product operators notation (i.e.,Iα = 1

2
1 + Iz andIβ = 1

2
1 − Iz, with 1 the

identity operator), the magnetisation can be written as follows:{
+IyS

α + IxSβ for ϕ1 = π/4
−IyS

α − IxSβ for ϕ1 = 5π/4
(2-6)

In terms of a vector model, the relations of Eq. 2-6can be represented in the rotating frame of theI spin by two
vectors corresponding to theJ-coupled spinS being either in theα or in theβ state. The vector model diagram
is outlined in FIGURE 2.7b only for the first value of theϕ1 phase. At time point©4 , two successiveπ/2 pulses on
theI spin are applied either with opposite or the same phase, in order to preserve or to invert the sign of the one
of the two magnetisation vectors. The two magnetisation vectors can be furthermore added or subtracted, by
an appropriate set up of the phase cycle, thus leading to individual transitions of theJ-split doublet (i.e.,IxSα,
IyS

β).

In the discussion above, bothIxSβ andIyS
α components are kept in the transverse plane during the

filter duration and an appropriate tunning of the phase cycle allows to select either theα or theβ transition.
The same results may be obtained if only oneπ/2 pulse is applied prior to acquisition (see FIGURE 2.8a), such as
to put alongz direction the unwanted component. Since the phase cycle of the first and lastπ/2 pulse on the
I spin is important for canceling out pulse imperfections, the following four-step phase cycle has been used in
practice:

(A) experiment (B) experiment

ϕ1 = π
4

π
4

5π
4

5π
4

π
4

π
4

5π
4

5π
4

ϕ2 = x x
ϕ3 = y -y x -x
ϕrec = y y -y -y x x -x -x

(2-7)

Theα andβ transitions are directly selected by performing the (A) and (B) experiment, respectively. The filter
diagram corresponding to the phase cycle given en Eq. 2-7is outlined in FIGURE 2.8together with the experimental
results obtained for the carboxyl resonance of fully13C-enrichedL-Alanine at 30kHz spinning frequency.

The π/2 andπ semi-selective pulses were all Gaussian of 300µs length and 1 % truncation. The se-
quence was tested at high and low spinning frequencies on the C’ resonance and the selection of the spin state
was found to be satisfactory in both regimes with however almost perfect selection at high spinning speed. As
the filter is very sensitive to theJ-mismatch, we determined experimentally the effective scalar coupling by op-
timising both selection and sensitivity. Thus, we obtained an effective value of 52Hz at 6kHz MAS and 53Hz
at 30kHz MAS by varying the constant associated to the scalar coupling from 50Hz to 55Hz with steps of
0.1Hz (see FIGURE 2.8c andd). The residual on the non-selected transition was about 4 % at 30kHz and 30 % at
6kHz rotation frequency. A modulation of approximatively 1.2Hz frequency was observed at 6kHz MAS on
the signal intensity (FIGURE 2.8c). The modulation is also present at high rotation frequency with the amplitude
highly attenuated (FIGURE 2.8d). These last effects are not yet understood.

An obvious advantage of this filter element is its shortness (two times shorter compared to IPAP) which
makes it very attractive for systems with rapid transverse relaxation. However, if the filter is not exactly matched
to the true coupling value, the observed signal shows residual contribution because the undesired magnetisation
component leaks through the filter. An alternative is the use of DISPAP filter, which was devised to be much
less sensitive toJ-coupling variations.

2.3.2 Double-in-phase single-anti-phase (DIPSAP) filter

The DIPSAP filter was introduced in 2001 by Bernhard Brutscher[34] as an attractive approach for
the accurate measurement of small spin-spin coupling constants in molecules placed in anisotropic media.
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FIGURE 2.8: a) Version of the S3E filter element adapted for homonuclear spin pairs. Filled and open shapes represent theπ/2

andπ semi-selective pulses which were all Gaussian shapes, 300µs length and truncated at 1 %. The delay 2τ was set to 1/(4J).

The phase cycle indicated in Eq. 2-7 was used in practice. SPINAL[25] decoupling sequence was applied on protons during the

whole length of the filter and the acquisition time at a nutation frequency of 160kHz. b) The selectedα andβ transitions of the C’

resonance obtained at 30kHz rotation frequency. Modulation of the C’ signal with respect to the scalar coupling at 6kHz (c) and

30kHz (d). The curves go from 50 to 55Hz, with steps of 0.1Hz.

Compared to the above mentioned spin-state-selective filters, DIPSAP has a significantly reduced sensitivity to
J-mismatch over a wide range of effective coupling constants.

The spin-state selection with DIPSAP consists in recording three separate experiments with the follow-
ing settings: 

(A) ε = τ/2, ϕ = x
(B) ε = 0, ϕ = x
(C) ε = τ/4, ϕ = y

(2-8)

The filter length has to be set to 2τ = 1/J (instead of 2τ = 1/(2J) for IPAP). The scalar coupling evolution
during the filter is refocused for the (A) experiment while the scalar coupling evolves for an effective period
of 2τ andτ for the (B) and (C) experiment, respectively. The subspectra associated to the separated spin states
are obtained by the linear combinationkx(A) + (k − 1)x(B) ± (C) with k = 0.73, the theoretically optimised
scaling factor.

Based on the IPAP approach, the DIPSAP filter achieves theJ-mismatch compensation by recording
two in-phase spectra, one with a higher and one with a lower intensity than the related anti-phase spectrum.
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FIGURE 2.9:a) DIPSAP filter element adapted for homonuclear spin pairs. Filled and open

shapes correspond to the semi-selectiveπ/2 andπ pulses. They were all chosen Gaussian,

800µs long and truncated at 1 %. The delay 2τ was set to 1/J . In practice, three experi-

ments have to be recorded with the experimental parameters set up as summarised in Eq.

2-8. For the whole duration of the DIPSAP filter and acquisition period, SPINAL[25] decou-

pling sequence was used in order to decouple the protons from carbons. The nutation fre-

quency was optimised to 160kHz. The rotation frequency was 23kHz MAS. b) Separately

recorded (A), (B) and (C) experiments and the individually selectedα and β transitions

obtained by the linear combinations (i.e., (A) - 0.37x(B) ± 1.37x(C), which corresponds

to a k factor of 0.73). c) Selectedα andβ transitions of the C’ resonance illustrating the

robustness of DIPSAP sequence with respect to theJ-mismatch.

Thus, the intensity between the in-phase and anti-phase spectra responsible for the detection of the residual
peak at the position of the suppressed doublet component should be the same.

The filter element we used for spectral editing with DIPSAP is drawn in FIGURE 2.9a. The semi-selective
pulses were all Gaussian, 800µs long and truncated at 1 %. The scalar coupling was set to 54Hz for the C’ -
Cα spin pair and 34Hz for the Cβ - Cα pair system. It was applied to all three carbon resonances of uniformly
13C-enrichedL-Alanine at 23kHz rotation frequency. Only the results obtained for C’ resonance are shown
in FIGURE 2.9b. The selection is very good for the carboxyl resonance. The same selection efficiency has been
expected for the methyl resonance as well. However, a residual of about 15 % leaks through the filter despite
setting the effective scalar coupling equal to the value measured in liquid state; it also corresponds to theJ-value
used for setting the IPAP filter. One possible reason could be the sensitivity to pulse imperfections.

Due to its long duration, the DIPSAP filter element is expected to be less sensitive than IPAP. Since the
sequence is highly insensitive to variations of theJ-coupling, a judicious choice of the refocusing 2τ period
would consist in a good compromise betweenJ-mismatch and sensitivity losses. For example, the selection of
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the C’ transitions is still acceptable for effective scalar couplings of 70Hz, which represents aJ-mismatch of
approximatively 27 % and results in a reduction of the filter length of about 4ms. However, the filter duration
is not the only difference between DIPSAP and IPAP filters which contributes to the sensitivity losses. The
additional in-phase spectra recorded for DIPSAP and the unequal numerical weighting of the two in-phase
spectra also reduce the sensitivity of the DIPSAP filter.

Now that the spin-state-selective techniques have been introduced, it may be interesting to compare one
with respect to the other in terms of sensitivity. The transverse relaxation is another important aspect which
must be evaluated. We mentioned previously that the sensitivity of the different spin-state-selective techniques
depends on theJ-mismatch and the total number of experiments. Since the DIPSAP filter consists in the linear
combination of spectra with different numerical weights, it additionally depends on the scaling factork. The
normalised signal amplitude of the spectra recorded for S3E, IPAP and DIPSAP techniques is given by:[34]

(A) cos(π
4 fmis) (B) − sin(π

4 fmis) for S3E
(A) 1 (B) + cos(π

2 fmis) for IPAP
(A) 1 (B) − cos(πfmis) (C) cos(π

2 fmis) for DIPSAP
(2-9)

wherefmis factor is given by the(Jeff−J)/J . J is theJ-coupling used for setting the spin-state-selective filter
whereasJeff is the effectiveJ-coupling which is assumed here to be constant throughout the sample2. In order
to calculate the sensitivity of the selected transition we have to consider the same total number of transients
(NS) for each spin-state-selection filter and to normalise the signal-to-noise ratio for equal noise level. We
obtain therefore the following relations for the normalised signal-to-noise ratio of the selected transition:

[ S
N ]sel = cos(π

4
fmis)

q
NS
2

for S3E

[ S
N ]sel = [1+cos(π

2
fmis)]√

2

√
NS
2 for IPAP

[ S
N ]sel = [0.73+0.27 cos(πfmis)+cos(π

2
fmis)]√

0.732+0.272+1

√
NS
3 for DIPSAP

(2-10)

Since bothx andy components contribute to the starting magentisation in the S3E technique, its sensitivity
is additionally increased by a

√
2 factor relative to IPAP and DIPSAP filters. So, in the case of very small

J-mismatch (i.e.,f -mismatch∼ 0), the normalised sensitivity of S3E and IPAP spin-state-selective filters will
be the same.

2.3.3 INADEQUATE-CR

The original INADEQUATE[103,104,105] experiment is undoubtedly one of the most attractive NMR ex-
periments for tracing out the connectivities between pairs of covalently bound carbon atoms. The sensitivity
enhancement principle of INADEQUATE experiment was introduced in 1995 by Nielsen and coworkers[35] and
consists in concentrating the intensity of the single-quantum doublets to only one of the two lines. Thus, on
an equal experimental time basis, the sensitivity of the new approach based on composite refocusing (CR) was
found 2 times larger than the conventional method. Moreover, a

√
2 factor can also be recovered by merging[121]

the left and right spectra3 obtained with the CR approach (i.e., INADEQUATE-CR). This sensitivity enhance-
ment makes the technique even appealing for the detection of13C - 13C DQC in natural abundance samples.
Adapted also for solid-state NMR, the INADEQUATE experiment[122,123] is a valuable probe for through-bond
connectivity in both inorganic[124,125,126] and organic solids.[106,114] The refocused INADEQUATE experiment
provides enhanced sensitivity as well for the common cases where the refocused linewidth (∆’) is smaller than
the apparent linewidth (∆∗), and has been applied to various spin systems.[92,112,116,127,128,129]

Compared to the previously introduced spin-state-selection filters, the INADEQUATE-CR approach is
limited to homonuclear spin systems and uses non-selective pulses. The pulse sequence we experimentally used

2Note that it may vary from site to site for particular samples.
3Coaddition after shifting byJCC /2 and -JCC /2.
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is drawn in FIGURE 2.10. The INADEQUATE-CR block is identical to the original version introduced in liquid
state by Nielsenet al. and applied to solids by Verelet al..[36] The first part of the INADEQUATE-CR block
converts magnetisation of the13C spins into DQC. An appropriate choice of the phase cycle selects the13C
- 13C DQC and suppresses the magnetisation coming from isolated13C spin systems. As the DQCs are not
directly observable, they have to be converted back into SQCs. To optimise the sensitivity of the experiment,
nothing has to be lost into other coherences during the coherence transfer period. This is done by the composite
refocusing block which concentrates the entire magnetisation into only one of the doublet lines of the13C -
13C two-spin system. It was demonstrated[130,131] that maximum coherence transfer efficiency is performed
whenπ/

√
2 selective rotations are applied to one of the doublet lines of the two spins. Since the non-selective

experiments are more convenient than experiments employing frequency-selective pulses, an important step in
the design of this type of technique is the conversion of the selective rotations into non-selective pulse versions.
For the DQ to SQ coherence transfer, a non-selective version exists and is shown in shaded box in FIGURE 2.10.
In practice, the two experiments are obtained by setting the filter delay 2τ to 1/2JIS which leads to 1.5/JIS as
total length of the experiment (i.e., 3 times longer than IPAP).

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

2τ = 1/(2JIS)
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FIGURE 2.10:The solid-state INADEQUATE-CR pulse sequence. The 2τ was set to 1/(2JCC ) in order

to maximise the degree of conversion into double quantum coherence and the composite refocusing.

The gray box represents the part performing the composite refocusing. The phase cycle was:ϕ1 = x -x,

ϕ2 = y x x y,ϕ3 = 2y 2(-y),ϕ4 = 2x 2(-x) 2(-x) 2x (α state)ϕ3 = 2(-y) 2y,ϕ4 = 2(-x) 2x 2x 2(-x) (β

state),ϕ5 = 2(x x y y) 2(y y x x),ϕ6 = 4(-y) 4y 4y 4(-y),ϕrec = 8x 8(-x). By adding az filter before the

INADEQUATE-CR block, the residual transverse magnetisation is slightly reduced.

The pulse sequence was applied to C’ - Cα and Cβ - Cα spin pairs in uniformly13C-enrichedL-Alanine.
The results obtained for the carboxyl and methyl resonances inL-Alanine are shown in FIGURE 2.11for a vari-
ety of spinning frequency. Owing to its long length, a poor sensitivity is expected with respect to the CPMAS
experiment. At high spinning frequency, satisfactory sensitivity and selectivity are obtained for the carboxyl
resonance. The residual intensity observed at the position of the suppressed line was quantified to∼ 15 %
at 28kHz and∼ 5 % at 33kHz MAS, respectively. On the other hand, the methyl resonance reveals a com-
pletely different behaviour. If the lower sensitivity compared to that obtained for carboxyl can be explained
by relaxation losses during 44ms filter length, which represents 16ms more than the carboxyl filter duration,
no explanation has been found for the completely inefficient state selection over the whole range of spinning
rates used. INADEQUATE-CR experiment has been shown to work only for two spin systems[36] and since
the methyl resonance is dominated at low spinning speed by three-spin terms (see chapter 1), the selection
inefficiency in this regime wouldn’t be such unexpected. However, the experiments recorded at high MAS are
completely astonishing because at these frequencies the methyl resonance is expected to be dominated by two-
spin terms. As for the quite low sensitivity we get at low spinning frequency, it could also be a consequence of
the non-synchronisation of theτ delay with the rotation period.

Due to the various pulses, the pulse sequence is prone to artifacts coming from rf inhomogeneity and
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FIGURE 2.11: INADEQUATE-CR selected spin states for the carboxyl (a) and methyl (c) resonances of

uniformly 13C-enrichedL-Alanine. These individual transitions are compared to the standard CPMAS C’

(b) and Cβ (d) resonances acquired with the same number of transients. Using the INADEQUATE-CR ap-

proach, a good and sensitive state selection is only obtained for the C’ resonance at high spinning frequen-

cies. When off rotational resonance conditions are approached (i.e., at 12 and 18kHz rotation frequency),

the reintroduction of the dipole-dipole carbon interactions results in a broadening of the carbon lines and

consequently decreased efficiency. On the other hand, there is no state selection for the methyl resonance at

any of the rotation frequencies used. The sensitivity is also lower than that obtained for the C’ resonance,

but this is due to relaxation losses during the longer filter (i.e., 44ms for methyl instead of 28ms for car-

boxyl spin). All these results were obtained without synchronysing theτ delay with rotation period. This

could additionally explain the small sensitivity obtained at low MAS.

resonance offset effects. These can however be compensated by using composite pulses[132,133] (i.e., a small
number of successive pulses with different phases which has the same effect as a single rf pulse in the ideal
case where rotations are all perfect). We tested on carboxyl resonance a couple ofπ composite pulses without
remarking significant improvement in the selection of the spin state. For example, the carboxyl resonance
transitions obtained either with a conventional INADEQUATE-CR experiment or with a compensated version
of the experiment in which all theπ pulses were replaced by the composite pulse P =(2π)0(π)120(π)60(π)120

are shown in FIGURE 2.12. The compensated pulse sequence is expected to be less sensitive to both rf field
inhomogeneity and resonance offset effects. The rf amplitude on carbon channel was larger enough (i.e., carbon
nutation frequency set to approximatively 60kHz and the main magnetic field is homogeneous) such as to
neglect the offset resonance effects.
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FIGURE 2.12:C’ transitions selected with INADEQUATE-CR pulse sequence with (a) and without (b)

composite pulses.

2.4 Conclusion

It has been illustrated in the present chapter the possibility of using spin-state selection in solid-state
NMR. Originally introduced in liquid-state NMR for the measurement of scalar and residual dipolar couplings,
the spin-state-selective techniques are found remarkably attractive when applied to homonuclear spin pairs for
improving the resolution in spectra of fully isotopically enriched compounds. In addition, they can be used as
probes for directly investigating the individual transitions of carbon lineshapes of fully13C-enrichedL-Alanine.

By adapting the heteronuclear liquid-state NMR selection filter IPAP,[31,32] all the transitions of the
three carbon resonances in fully13C-labelledL-Alanine can be individually obtained. The separation of the
homonuclear spin-states is very good over a large range of rotation frequencies. Thus, significant resolution
enhancement was obtained in the carbon spectra of fully enriched compounds, even for resonances where the
multiplet structure is not resolved. The different conditions (i.e., type and length of the semi-selective pulse and
choice of the most efficient decoupling scheme) relevant for the sensitivity of the experiment were considered
in detail for the IPAP selection filter. As for the other selection filters, they should be affected in a similar way.
The introduction of the state-selective filter leads to acceptable intensity losses which can be minimised by the
use of appropriate heteronuclear proton decoupling schemes. Therefore, the advances made in optimising spin-
state-selection experiment can be used even further for improving the spectral resolution of multidimensional
spectra, as will be illustrated in the next chapter.





CHAPTER THREE

Application of spin-state-selection techniques to resolution improvement of
multidimensional correlation experiments in solid-state NMR spectroscopy

of proteins

3.1 Introduction

In the preceding chapter, we have shown that single-transition selection can be achieved, by means
of semi-selective pulses, in homonuclear scalar-coupled systems like13C - 13C spin pairs of uniformly13C-
enrichedL-Alanine. The efficiency and the degree of selection of spin-state-selective techniques were found to
be sufficient to apply them to biomolecular systems in multidimensional correlation experiments. In addition, a
major advantage of state-selection techniques when applied to solids is that they are not restricted to lines with
resolvedJ-splitting.

High-resolution spectra can currently be obtained for microcrystalline uniformly isotopically enriched
biomolecules thanks to the important advances made during the last few years in the field of solid-state NMR.
As a confirmation, in 2002, the first protein structure has been solved by solid-state NMR.[46] More recently,
an almost complete sequential assignment has been reported for the dimeric form of the Crh protein containing
2x85 amino acids (i.e., 2x10.4kDa molecular weight) involved in carbon catabolite repression inBacillus sub-
tilis.[47] However, spectral resolution remains one of the principal factors limiting the study of larger biological
systems.

The13C - 13C J-couplings constitute a significant contribution to the linewidth in magic-angle-spinning
spectra of uniformly13C-labelled proteins.J-decoupling techniques[37,97] for solid-state NMR using semi-
selective pulses can be considered for improving the resolution in indirectly detected dimensions. We will show
in this chapter, that resolution enhancement can be achieved in both direct and indirect dimensions if spin-
state selection is combined with transition-selective transfer schemes in multidimensional solid-state NMR
correlation experiments of13C-labelled proteins. The single-transition-selection approach will therefore allow
to remove the line broadening due to the1JCC spin couplings in both dimensions of a two-dimensional13C -
13C correlation experiment.

In order to perform a spin-state-selective multidimensional correlation experiment for anIS spin-1/2
system, the selected transition of the first spin,I, evolving duringt1 period has to be transferred to a single
transition of the coupled spin,S, by means of an appropriate mixing sequence. In liquid-state NMR, the spin-
state-selective coherence transfer is usually obtained through zero-quantum (ZQ) or double-quantum (DQ)π
rotations.[99] A ZQ π rotation ”conserves” the spin state:IxSα → IαSx, and a DQπ rotation ”reverses”
the spin state:IxSα → IβSx. IxSl, with l = α, β, represents the transition of theI spin when theS spin
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is in the statel. In the liquid state, spin-state-selective coherence transfer is obtained using planar mixing,
S3CT building blocks[100] or frequency-switched single-transition cross polarisation.[95,134] Similar J-based
spin-state-selective transfer techniques could be envisaged in the solid state as well. However, since the dipolar
interaction is stronger than the indirect spin-spin coupling, a transfer driven by the dipolar coupling would be
more efficient and therefore more appropriate for many solid-state applications. As most of the various solid-
state dipolar correlation techniques under MAS are based on a ZQ or a DQ average Hamiltonian, they may be
directly used for spin-state-selective polarisation or coherence transfer. Common examples of such sequences
are proton-driven spin diffusion (PDSD),[50] RFDR,[54] and RIL-ZQT[135,136] with a ZQ average Hamiltonian,
and C7,[56] POST-C7,[57] SPC5,[58] and DREAM[29] with a DQ average Hamiltonian.

3.2 Single-transition transfer

Before extending the spin-state-selection techniques to two-dimensional experiments, we first investi-
gated the selective-transfer step. The pulse sequence used for this purpose is drawn in FIGURE 3.1. Throughout
this chapter we restrict to the use of IPAP[31,32] as spin-state-selective filter but S3E[33] or DIPSAP[34] can also
be employed.
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FIGURE 3.1: 1D pulse sequence for checking out the selective transfer step on fully13C-enrichedL-

Alanine.π/2 andπ rf pulses are represented by filled and open bars (hard) or shapes (semi-selective).

All pulses are applied along the x axis unless indicated. An 16-step phase cycle was applied withϕ1 =

4x 4(-x),ϕ2 = x y -x -y,ϕ3 = 8x 8(-x),ϕrec = x -x -x x -x x x -x -x x x -x x -x -x x. The magnetisation

is selectively prepared on C’, transferred to Cα and put in the xy plane for detection. The setup of the

IPAP filter is identical to that used in the previous chapter:ϕ3 = 2x 2(-x), ε = τ /2 – for in phase –

and ϕ3 = 2y 2(-y), ε = 0 – for anti phase. Thus, two experiments are recorded for the in-phase and

anti-phase settings. The prepared in-phase I magnetisation is transferred and detected as in-phase S

magnetisation and anti-phase I magnetisation as anti-phaseS magnetisation, respectively.

In a schematic representation, after cross polarisation, the selective preparation leads to a non-equili-
brium Zeeman polarisation at the beginning of the mixing time. In the rotating frame, the polarisation transfer
during the mixing period is performed by the dipolar part of the spin Hamiltonian. The polarisation at the
end of the mixing period is converted, by the semi-selective pulse applied at the frequency of theS spin, to
single-quantumS coherence which is further detected. The spin Hamiltonian during the mixing time is usually
described by two terms associated to an evolution in either a ZQ or a DQ subspace.[137] For example, for a ZQ
mixing sequence, the evolution occurs only in the ZQ subspace and corresponds to the rotation of a virtual spin-
1/2 vector, originally oriented along thez axis of the coordinate system, around thex axis of the ZQ subspace.
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In a powder, the individual evolution of each crystallite in the ZQ subspace corresponds to an exactπ rotation.
However, when we consider the evolution of the ensemble of crystallites, this evolution does not correspond
any more to an exactπ rotation. Thus, owing to the powder average, the rotation in the ZQ or the DQ subspace
does not correspond to an exactπ rotation.

Among the many existing homonuclear dipolar recoupling methods which can be used for performing
the transfer of polarisation, we chose to use PDSD[50] as ZQ-recoupling sequence and DREAM[29,30] as DQ-
mixing scheme. Since no rf is applied during the mixing time of the PDSD sequence, it is appealing for those
samples requiring limited rf irradiation time. However, when dealing with spin pairs, this scheme suffers from
low transfer efficiency because the polarisation is transferred throughout the sample. This can be optimised by
performing the polarisation transfer with adiabatic homonuclear recoupling schemes.[29] The major advantage
of the adiabatic methods is their enhanced polarisation transfer efficiency: in theory, an efficiency of 100 %
is expected for isolated spin-1/2 pairs. During the last few years, a couple of homonuclear adiabatic polarisa-
tion transfer schemes, exploiting either the ZQ[138] or the DQ[29,30] spin Hamiltonian, have been developed.
We concentrate here on the homonuclear DQ scheme called DREAM[29,30] (Dipolar Recoupling Enhanced by
Amplitude Modulation) which is based on adiabatic amplitude sweep through the DQ-HORROR[139] recou-
pling condition (ωr = 2ω1). Actually, under fast MAS, the time-independent (i.e., secular) part of the dipolar
Hamiltonian, which is usually averaged by the sample spinning, is reintroduced by the irradiating field ampli-
tude modulation. Note that the efficiency of the DREAM mixing sequence increases with increasing spinning
frequency.

Since we use IPAP as selection filter, for any of the transfer schemes introduced earlier, a set of two
experiments has to be acquired. In practice, for a given mixing time, two spectra corresponding to in-phase and
anti-phase IPAP settings are recorded.

In all standard transfer experiments, the efficiency of the polarisation transfer depends on the duration
of the mixing period. Let us now try to find out how the selective transfer behaves with respect to the the mixing
time. For this purpose, the pulse sequence displayed in FIGURE 3.1with PDSD as transfer scheme was applied to
powdered fully13C-enrichedL-Alanine. The Cα buildup curves with respect to the mixing time are reported in
FIGURE 3.2for in-phase and anti-phase spectra.

For simplicity, in the discussion bellow, a twoIS (C’Cα) spin-1/2 system will be first considered. The
results drawn in FIGURE 3.2 show that in-phaseI magnetisation transfers into in-phaseS magnetisation and
anti-phaseI magnetisation transfers into anti-phaseS magnetisation, respectively. We may also remark that
in-phase transfer function is different and that it depends on the mixing time. The in-phaseS signal grows up
with τmix whereas the anti-phaseS signal drops down. This indicates that, during the mixing period, theIz (C’)
selected polarisation is gradually transferred through the dipolar coupling to the spinS (Cα) and, after reaching
a maximum associated to the optimum mixing time, decays under the effect of the longitudinal relaxation. On
the other hand, the anti-phase signal associated with the two-spin order term2IzSz is not affected by the dipolar
coupling and is only decaying under the effect of longitudinal relaxation.

In terms of product operator formalism,[111] these two transfer processes may be expressed as follows:1{
Iz → a Sz in-phase experiment
2IzSz → b 2SzIz anti-phase experiment

(3-1)

The functionsa andb incorporate thee−τmix/T1-term which accounts for the longitudinal relaxation. If now we
would have the same transfer function for both in-phase and anti-phase signals, theS transitions could be then
separated by simply adding and subtracting the transfer-inducedS spectra. We saw that in reality, since only
the in-phasesignal is transferred, an accurate spin-state selection will be obtained, by adding and subtracting
the in-phase and anti-phase spectra, for only oneτ point which actually corresponds to the crossover of the
two transfer curves (see FIGURE 3.2). Despite the different transfer functions, a proper spin-state selection can

1This kind of transfer occurs in a doubly13C-labelled samples or fully13C-enriched Glycine.



46 State-selection for resolution improvement in solid-state NMR of proteins

0
5

10
20

30
50

100
300

13Cα chemical shift / ppm

M
ix
in

g ti
m

e / 
m

s

4546474849505152

FIGURE 3.2:Cα buildup curves for in-phase and anti-phase experiments with PDSD[50] as polarisation transfer sequence. The

spinning frequency was set to 7kHz and τmix was varied from 0 to 300ms. The experiments were performed on a 11.7T

Bruker Avance spectrometer equipped with a double resonance 4mm probehead. The spectra were obtained using standard

cross polarisation, with a ramped spin lock on the proton channel for broadening Hartmann-Hahn condition.[23,24,71,72,73] The

CP contact time was 1ms and the proton and carbon rf frequencies were set to 71 and 60kHz, respectively. The acquisition

time was 50ms and the recycle time 4s. TPPM-15[74] with a proton nutation frequency of 100kHz was used during the IPAP

filter and acquisition period. The semi-selective pulses were all Gaussian of 1ms length and truncated at 1 %. Az filter of

5ms has been applied before the IPAP filter in order to remove any residual transverse magnetisation. The length of the spin-

state-selection filter was experimentally optimised to 2τ = 9.32ms. No exponential broadening was applied prior to Fourier

transform.

be obtained for allτmix values, if the relative amplitude of the anti-phase spectra with respect to the in-phase
spectra is adjusted by an appropriate scaling factork.

So far, we have restricted our discussionto a pair system and have neglected the third spin (i.e., Cβ). This
is a rough approximation for the fully13C-enrichedL-Alanine sample we used for the experiments presented
in FIGURE 3.2. Thus, aISK spin-1/2 system, with spinS being indirectly coupled to the spinsI andK, would
be more adapted for the investigation of the selective polarisation transfer effect from the spinI to the spinS
in fully 13C-labelledL-Alanine. Thus, for both in-phase and anti-phase settings, we expect to have a transfer of
polarisation from the spinI to the spinsS andK. In fact, during the mixing period, theIz (C’) selected polari-
sation would be transferred through the dipolar coupling to the other spinsSz (Cα) andKz (Cβ), respectively.
As for the two-spin order 2IzSz term, it would give rise to two additional terms: 2IzKz and 2SzKz. If only the
spinS is put back into the planxy for detection, then the resultant in-phase and anti-phase magnetisations are
given by: {

σin phase ∝ a Sy

σanti phase ∝ b 2SyIz + c 2SyKz
(3-2)

with a, b andc again functions depending on the mixing time which characterise the in-phase and anti-phase
signals. Thus, the initial in-phaseI magnetisation is transferred into in-phaseS magnetisation and the starting
anti-phaseI signal is assumed to give rise to two anti-phaseS components, one being anti-phase with respect
to the spinI and other being anti-phase with respect to the spinK. The resulting anti-phaseS magnetisation
is therefore a mixing of these two components withb andc two different functions describing the relaxation
decay during theτmix. So, the product operator description presented above proves that even for a three spin
system, theS magnetisation recorded with the anti-phase settings still gives rise to an anti-phase signal. The
pulse sequence outlined in FIGURE 3.1would allow to detect only the anti-phaseS component with respect to the
spinI if the final semi-selective pulse on theS spin is replaced by one acting simultaneously onS andK.

Let us now investigate the effect of the selective transfer of polarisation from the spinI to the spin
K. It can be observed by adapting the pulse sequence in FIGURE 3.1 for detecting theK spin single-quantum
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coherence instead of that of spinS. In practice, this is performed by applying a semi-selectiveπ/2 pulse at the
K-spin frequency. The Cβ buildup curves therefore obtained are drawn in FIGURE 3.3. They show behaviours
similar to that obtained for the Cα resonance. However, the anti-phase Cβ signal is decaying more rapidly than
the anti-phase Cα one. Since the anti-phase Cβ magnetisation contains a single anti-phase component, the rapid
decay of the anti-phase signal is probably due to theT1 methyl relaxation.
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FIGURE 3.3: Cβ buildup curves for in-phase and anti-phase experiments with PDSD[50] as polarisation transfer se-

quence. The spinning frequency was set to 7kHz andτmix was varied from 0 to 300ms. All other experimental para-

meters are similar to those indicated in the legend of FIGURE 3.2.

The DREAM sequence[29] is one of the DQ alternatives to the mixing scheme based on a ZQ spin
Hamiltonian previously presented. The sequence is particularly attractive for spin pairs with the isotropic
chemical-shift difference significantly smaller than the spinning rate, like for example the CαCβ spin pair
in fully 13C-labelledL-Alanine at 30kHz MAS. The DREAM shape corresponds to a tangential variation of
the rf amplitude.[29] It was generated with the ShapeTool package of the XWINNMR Bruker software using
200 points and the following parameters:

ω1
2π = 13.5 kHz

∆rf

2π = 3 kHz

dest
2π = 1 kHz

(3-3)

whereω1/2π represents the nutation frequency of the effective irradiation at the HORROR condition.∆rf/2π
is the deviation of the irradiation frequency from the effective HORROR condition anddest defines the shape
of the DREAM amplitude. The length of the DREAM sweep was experimentally optimised to 4ms using the
pulse sequence outlined in FIGURE 3.4.

The single-transition polarisation transfer with DREAM requires magnetisation to be in the transverse
plane for both in-phase and anti-phase experiments. Then, the simplest way to adapt the sequence outlined in
FIGURE 3.1 is to add aπ/2-hard pulse on carbon channel before and after the DREAM sweep. The use of hard
pulses, instead of semi-selective ones, has the advantage of keeping the same length for both in-phase and anti-
phase sequences and additionally avoids the problem concerned with possible transient Bloch-Siegert phase
shifts effects.[107]

FIGURE 3.5 shows the buildup curves for in-phase and anti-phase Cβ spectra obtained with DREAM as
transfer scheme. Their sum and difference give rise to the buildup curves for theα andβ transitions. These
results reveal that the state selection is optimal for a mixing time very close to that maximising the DREAM
transfer and therefore, for this case here, it is no need for scaling one spectrum with respect the other in order
to obtain proper spin-state selection.

The main conclusion of this section is the feasibility of the single-transition transfer. For an isolated
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FIGURE 3.4:Pulse sequence for DREAM shape optimisation.
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FIGURE 3.5:a) Cβ buildup curves for in-phase and anti-phase experiments at 30kHz MAS using DREAM for transfer-

ring the polarisation from Cα to Cβ . b)α andβ transitions obtained by adding and subtracting the in-phase, anti-phase

buildup curves. Except theτmix which is varied from 0.5 to 12ms with steps of 0.5ms, all experimental parameters are

given in the text. Grey box shows the separatedα andβ transitions corresponding to 3.5ms mixing time with DREAM.

homonuclear spin pair, the dependence of the state selection on the mixing time can be circumvented, if neces-
sary, by using an appropriate scaling factork. For a homonuclearISK spin system, like for example the C’ -
Cα - Cβ of fully 13C-enrichedL-Alanine, the selective transfer from C’ to Cα seems more complicated. There-
fore, more theoretical and experimental work should be devoted for understanding the selective polarisation
transfer mechanism in three spin-1/2 systems.

3.3 2D COCA-IPAP

3.3.1 Product operator description

Now, that the 1D state-selective transfer was shown to work, we can figure out how to extend the
experiment to two dimensions. The simplest way is to add at1 evolution period after the IPAP filter. Since the
t1 evolution creates anti-phase (in-phase) magnetisation in the in-phase (anti-phase) experiment and in-phase
and anti-phase transfer functions depend on the mixing time, the resulting spectra are combinations of the
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transferred in-phase and anti-phase signals with coefficients which depend on the mixing time. Thus, sum and
difference of these spectra will yield proper state selection for only one mixing time. Additionally, the use of
this approach will limit the access to only the diagonalαα andββ peaks. In order to get around the limitation
related to the different transfer function for in-phase and anti-phase signals, thet2 acquisition period has been
preceded by an element devised for separating the in-phase transfer polarisation from the anti-phase one. In
addition, this approach allows to observe all four cross peaks. The length of the pulse sequence can be reduced
by building thet1 evolution into the IPAP block, thus providing a constant-time experiment.[140]

The pulse sequence yielding a spin-state-selective C’ - Cα correlation experiment is drawn in FIGURE 3.6.
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cycle was applied withϕ1 = 4x 4(-x),ϕ2 = x y -x -y,ϕrec = x -x x -x -x x -x x. The constant-time delay2T was adjusted

to (2JC′Cα )−1.

The initial spin state is prepared by1H - 13C cross polarisation. The hardπ/2 13C pulse and thez filter, coming
after the13C polarisation enhancement, is introduced to remove any residual transverse magnetisation thus
ensuring properz magnetisation for the subsequent part. The rest of the pulse sequence can be divided into
three parts:

➟ IPAP filter which separates theI components into different subspectra and leads them evolve during the
t1 period;

➟ Polarisation transfer block for passing on the selected polarisation of theI spin to theS spin;

➟ Signal selectionpart introduced to chose either the in-phase or the anti-phase signal for each setting of
the IPAP block.

In the following paragraphs, the product operator description[111] of the last three parts of the COCA-
IPAP pulse sequence will be given. The time points are marked as circled numbers on the pulse sequence
diagram (see FIGURE 3.6). For sake of simplicity, we consider a two-spinI - S system which interacts through
the scalar coupling. Since the dipolar coupling is restored during the mixing time, it is additionally subjected
to the dipolar coupling during this period. Let us first investigate the setup of the in-phase experiment, which is
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given by the next settings:

ε = 0; ϕ1 = -x. (3-4)

Theπ pulse on theI spin has the effect of refocusing the chemical shift of theI spin and the scalar coupling
between the spinsI andS during the constant time denoted 2T, while conserving their evolution during the
t1 period. Thus, spin-spin coupling evolution during thet1 period creates, in addition to the in-phase magneti-
sation, an anti-phase component. The magnetisation evolution from time point©1 to time point©2 is therefore
given by:

©1 ©2

-Iy ΩIt1−−−−−−→ πJt1−−−−−−→


-Iy cos(ΩIt1) cos(πJt1)
+2IxSz cos(ΩIt1) sin(πJt1)
+Ix sin(ΩIt1) cos(πJt1)
-2IySz sin(ΩIt1) sin(πJt1)

(3-5)

The nextπ/2 pulse with the phaseϕ2 = -x will put alongz axis only the termsIy and 2IySz. The magnetisation
at time point©3 is then given by the following two terms:{

+Iz cos(ΩIt1) cos(πJt1)
+2IzSz sin(ΩIt1) sin(πJt1)

(3-6)

As the transfer functions depend on the mixing time, we discriminate between the in-phase and anti-phase
transfers by introducing two coefficientsa andb, respectively. This allows to write the polarisation transfer as
given below:

{
Iz cos(ΩIt1) cos(πJt1)
2 IzSz sin(ΩIt1) sin(πJt1)

Polarisation Transfer−−−−−−−−−−−−−−→
τmix

{
a(τmix) Sz cos(ΩIt1) cos(πJt1)
b(τmix) 2IzSz sin(ΩIt1) sin(πJt1)

(3-7)

The state selection of the transferredS magnetisation is performed by phasing the lastπ/2 pulse onI spin in
order to select for detection either in-phase or anti-phaseS-spin coherence. In fact, the successiveπ/2 pulse on
I spin have either the effect of aπx pulse ifϕ2 is set tox (see FIGURE 3.6) or are equivalent to doing nothing if
ϕ2 is equal to -x. Therefore, theS magnetisation at time point©5 is given by:{

- a(τmix) Sy cos(ΩIt1) cos(πJt1)
+ b(τmix) 2IzSy sin(ΩIt1) sin(πJt1)

(3-8)

for ϕ2 = x, and by: {
- a(τmix) Sy cos(ΩIt1) cos(πJt1)
- b(τmix) 2IzSy sin(ΩIt1) sin(πJt1)

(3-9)

for ϕ2 = -x. Now, the in-phase and anti-phase single quantumS-spin coherences result from addition or
subtraction of the two previous terms (see Eqs.3-8and3-9). In summary, setting theϕ2 and the receiver phases
equal to: {

ϕ2 = x -x
ϕrec = x x

(3-10)

yields in-phase selection and, anti-phase selection is obtained if:{
ϕ2 = x -x
ϕrec = x -x

(3-11)
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which is equivalent to doing: {
ϕ2 = x x
ϕrec = x x

(3-12)

Finally, theS spin chemical shift (ΩS) and the spin-spin coupling evolutions occur during thet2 period thus
leading to the following signals:{

- a(τmix) Sy cos(ΩIt1) cos(ΩSt2) cos(πJt1) cos(πJt2) in-phase selection
+ b(τmix) 2SyIz sin(ΩIt1) cos(ΩSt2) sin(πJt1) sin(πJt2) anti-phase selection

(3-13)

A schematic representation of the spectra associated to the previous signals is shown in FIGURE 3.7.
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FIGURE 3.7:Schematic 2D COCA-IPAP spectra expected for the different settings. Black and red filled circles represent

positive and negative signals, respectively.

The second step in the product operator description of the COCA-IPAP pulse sequence consists in
considering the settings corresponding to the anti-phase experiment:

ε = T ; ϕ1 = y. (3-14)

So, as a consequence of the shift of the lastπ pulse on theS spin, the spin-spin coupling evolution occurs
this time during a period equal to(t1 + 2T ). TheJ-coupling is thus evolving during the CT period and creates
anti-phase magnetisation which is further evolving duringt1 and additionally generates in-phase magnetisation.
Magnetisation evolution from time point©1 to©5 , for anti-phase settings, is therefore given by the following
expressions: 

©1 → - Iy

©2 → + Iy cos(ΩIt1) sin(πJt1)
- Ix sin(ΩIt1) sin(πJt1)
+ 2IxSz cos(ΩIt1) cos(πJt1)
+ 2IySz sin(ΩIt1) cos(πJt1)

©3 → - Iz sin(ΩIt1) sin(πJt1)
+ 2IzSz sin(ΩIt1) sin(πJt1)

©4 → - a(τmix) Sz sin(ΩIt1) sin(πJt1)
+ b(τmix) 2IzSz cos(ΩIt1) cos(πJt1)

©5 → - a(τmix) Sy sin(ΩIt1) cos(ΩSt2) sin(πJt1) cos(πJt2)
+ b(τmix) 2IzSy cos(ΩIt1) cos(ΩSt2) cos(πJt1) cos(πJt2)

(3-15)

Note that the chemical shift andJ-evolution are both compensated for any length of theπ pulse applied
on theS spin (i.e., no additional evolution occurs during theπ (S) pulse).
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3.3.2 Application to uniformly [ 13C, 15N]-enriched Crh protein

The 2D COCA-IPAP experiment was applied to a microcrystalline sample of fully [13C - 15N]-enriched
Crh protein containing 2x85 amino acids. The PDSD scheme has been used for performing the transfer of
polarisation. Four experiments (A1), (A2), (B1) and (B2) were separately recorded. The next settings were used
for A- and B-type experiments in order to separate theI-spin transitions with IPAP:{

(A) ε = T, ϕ3 = -x in-phase type experiment
(B) ε = 0, ϕ3 = y anti-phase type experiment

(3-16)

Each of the experiments A and B are acquired twice by alternatively setting the phaseϕ2 to x or -x. Addition of
the two data sets yields in-phase spectra inω2 dimension (A1, B1), and their subtraction gives rise to anti-phase
spectra inω2 (A2, B2) dimension. The four different single-transition correlation spectra (αα, αβ, βα, ββ) can
then be obtained by doing the following spectral combinations:

(A1+δB1)± k(A2 + δB2) (3-17)

with δ = +1 or -1 andk a scaling factor depending on the polarisation transfer functions of both in-phase and
anti-phase experiments. If {

Iz PDSD−−−−−−−→ aSz in-phase signal
2IzSz PDSD−−−−−−−→ b2IzSz anti-phase signal

(3-18)

we define thek factor as beingb/a (a andb being both functions ofτmix).

FIGURE 3.8 shows theαα-subspectrum recorded on the Crh protein using the sequence of FIGURE 3.6,
compared to a standard PDSD correlation spectrum. Spin-state selection provides a remarkable increase in
resolution in both dimensions. Specifically, the resolution of the 49Gly cross peak is enhanced by 44% and 17%
for Cα and C’ dimensions, respectively. The resolution enhancement is more pronounced in the Cα dimension
because of the longer acquisition time used for direct detection. Note that because the13C linewidths in solid-
state NMR are dominated by refocusable interactions,[92,115,113] CT experiments do not provide a significant
increase in resolution. However, the insertion oft1 evolution in the IPAP block allows a shortening of the
sequence.

The experiments were all performed on a Bruker Avance spectrometer operating at B0 = 11.7T static
magnetic field equipped with a 4mm double-resonance probehead. The MAS frequency was 11kHz and the
temperature was regulated to keep the sample temperature constant at 13◦C. The CP contact time was 1.8ms in
order to optimise the transfer of polarisation to carbonyls. Decoupling of carbons from protons was performed
with SPINAL sequence atω1/2π = 78kHz nutation frequency. The mixing time was set to 30ms.

The combination of the recorded 2D data sets is illustrated in FIGURE 3.9. The spectral combinations
(A1 +δB1)±k(A2 +δB2) with δ = +1 or -1 andk the adjustable scaling factor, yield all four single-transition-
to-single-transition correlation spectraαα, αβ, βα, andββ. For PDSD mixing times ofτmix = 30ms andτmix

= 15ms, the scaling factor was found to bek = 0.7 andk = 0.5, respectively.

Note that for longer PDSD mixing times some polarisation is transferred from the C’ to other side-chain
carbons (Cβ , Cγ , Cδ). Since there is no direct scalar coupling between the C’ and the side-chain carbons, no
frequency shift is expected along the detection dimension (ω2) between theαα andαβ, orβα andββ subspec-
tra. Thus, the new experiment provides a simple way for distinguishing Cα from other side-chain carbons (e.g.,
Cβ of Thr and Ser residues as 62Thr, 31Ser, 56Ser) by comparison of the different subspectra.

3.3.3 Efficiency of 2D-COCA-IPAP experiment

The 2D-COCA-IPAP and conventional PDSD spectra (see FIGURE 3.8) were acquired with the same
experimental parameters except for the number of transients. Each of the four COCA-IPAP being recorded
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FIGURE 3.8:C’ - Cα region of the standard (a) and theαα-spin-state selective (b) PDSD spectrum of the microcrystalline Crh

protein (containing 2x85 amino acids). The second spectrum was obtained from the linear combinationA1 + B1 + k(A2 + B2),

with k = 0.7. Acquisition timestmax
1 = 9.2ms with States quadrature detection andtmax

2 = 25ms were used. A total of 4x48

transients were recorded for the spin-state-selective experiment and 64 for the standard PDSD experiment. The experimental

time was 26 h and 4x10 h for the standard and the spin-state-selective spectra, respectively. Cosine apodisation was applied in

both dimensions prior to Fourier transformation. For both spectra, the first contour level was set to 15% of the intensity of the

49Gly resonance, with a factor of 1.4 between levels. Cross-peaks discussed in the text are annotated in b).
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FIGURE 3.9: SubspectraA1, A2, B1, and B2 recorded using the spin-state-selective C’ - Cα-PDSD experiment of

FIGURE 3.6. Experimental details are given in the caption of FIGURE 3.8. Separation of the four cross-peak transitions

obtained by linear combination of the subspectraA1, A2, B1, andB2. For clarity, only the 49Gly cross-peak region is

shown. Contours are drawn at the same levels for all spectra.

with 48 scans, the total number of transients for 2D-IPAP is given by 192. On the other hand, the standard
PDSD spectrum was recorded with 64 scans. The two experiments can be directly compared if the number of
scans of the standard PDSD experiment is extrapolated (or vice versa) such as to have the same experimental
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time for both PDSD and COCA-IPAP.

In order to determine the efficiency of 2D COCA-IPAP correlation experiment with respect to the stan-
dard13C - 13C PDSD experiment, we have to estimate the noise of each transition selected by spectral com-
binations of the four recorded 2D-IPAP spectra. Since the noise is a random variable described by a Gaussian
distribution probability, the noise corresponding to the linear combination of two independent (uncorrelated)
NMR experimentsE1, E2, acquired with the same number of transients (NS) follows a power low:

Nλ1E1+λ2E2 =
√

(λ2
1 + λ2

2)NS (3-19)

with λ1, λ2 two numerical coefficients.

Theαα, αβ, βα, andββ cross peaks are obtained by linear combinations of theA1, A2, B1, B2 spectra
with either 1 ork as coefficients: 

αα : A1 + B1 + k(A2 + B2)
αβ : A1 −B1 + k(A2 −B2)
βα : A1 −B1 − k(A2 −B2)
ββ : A1 + B1 − k(A2 + B2)

(3-20)

As a result of these spectral combinations, the noise will be the same for all the selected transitions and will
depend on the scaling factork:

Nαα = Nαβ = Nβα = Nββ =

√
(1 + k2)

NS
2

(3-21)

with NS the total number of scans recorded for the COCA-IPAP experiment. For a scaling factork equal to 0.7
and a total number of scans of 64 and 192 for PDSD and IPAP experiments, the IPAP noise is related to that of
PDSD experiment by the next relation:

NIPAP

NPDSD
≈ 1.5 (3-22)

This theoretical estimation of the noise has been experimentally confirmed by comparison of the traces ex-
tracted from both PDSD and IPAP 2D spectra. We can now determine the signal relation by adjusting the noise
level such as the noise of the PDSD trace be the same as the noise of the IPAP trace (i.e., S). For the same
experimental time and resolution, the relation expressing the efficiency of the IPAP experiment with respect to
the standard PDSD experiment, may therefore be written as:

Efficiency=
[ S
N ]NS1

IPAP

[ S
N ]NS2

PDSD

=
S̃

Ñ

√
NS1

NS2
(3-23)

with S̃ andÑ being the signal and noise ratios of a single IPAP transition compared to the standard PDSD
experiment. NS1 and NS2 represent the total number of transients for IPAP and PDSD experiment, respectively.

Using the Eq. 3-23, with Ñ = 1.5, NS1 = 64, NS2 = 192 andS̃ the signal ratio measured experimentally
for each transition when the noise is put at the same level in both IPAP and PDSD traces, we obtained a mean
efficiency of a single transition of 43 % for the 49Gly residue. Moreover, for the same total experimental time
we get the four transitions separated in different subspectra. Since the C’Cα J-coupling is known and constant
over the protein, the four spin-state-selective subspectra can be shifted in both dimensions such as to bring all
transitions at the same position and then add them. Thus, a factor 2 in signal-to-noise ratio is recovered and
leads to a spin-state experiment with a sensitivity of 86 % compared to the standard experiment.

The origin of sensitivity losses for the 2D-IPAP experiment is two fold. First, the three additional spectra
recorded for the spin-state-selective experiment. Second, the spectral combinations of the four IPAP recorded
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spectra with different numerical coefficients. However, since the IPAP filter has been built into a CT element,
its signal loss during the filter length can be reduced by using high power1H decoupling during the filter and
faster spinning of the sample. This is possible for protein samples if a powerful cooling system is available.[141]

At high spinning frequency the spin diffusion is quenched and techniques like fpRFDR[55] or DREAM[29] have
to be considered for performing the transfer of polarisation.

3.4 2D CACB-IPAP

The 2D-IPAP correlation experiment was first applied to the C’ - Cα region. Another region particularly
important for the carbon assignment is that of the Cα - Cβ carbons. Due to the overlapping of the Cα and Cβ

regions, this kind of experiments present a increased difficulty compared to the C’Cα correlation experiment.
Since the Cβ resonance of Ser and Thr amino acids are both overlapping the Cα region, their correlation
peaks are not expected into the spectrum. For all other residues, very clean band-selective pulses are however
necessary to separately excite the Cα or Cβ region. Apart its scalar coupling to Cβ, the Cα resonance presents
an additional broadening due to the scalar coupling to the C’ resonance. In order to obtain an optimum increase
in resolution with the Cα - Cβ spin-state-selective correlation experiment, we have therefore to remove the Cα

- C’ scalar coupling as well.

The pulse sequence corresponding to the spin-state-selective CACB correlation experiment is drawn
in FIGURE 3.10. Except the C’ decoupling duringt1 evolution, this pulse sequence is the same as that used for
COCA. A series of existing band-selective pulses developed for solution NMR were tested on the Crh protein
(2x85 residues) and all of them give nice results.
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FIGURE 3.10:Pulse sequence suitable for a Cα - Cβ correlation experiment.π/2 andπ rf pulses are represented by

filled and open bars (hard) or shapes (semi-selective). The Cα and Cβ excitation pulses were BURP-2[142] shapes of

1.95 and 1.19ms length. The Cα refocalisation pulse was SNOB[143] shape of 920µs length. The Cα flip-back pulses

were universal Q5[144,145] shapes of 2.25ms length. The Cβ inversion pulse was BURP-1[142] of 1.09 ms length. The

C’ inversion pulse used for the C’ decoupling wassin(x)/x shape of 300µs length. An 8-step phase cycle was applied

with ϕ1 = 4x 4(-x),ϕ2 = x y -x -y,ϕrec = x -x x -x -x x -x x. The constant-time delay2T is adjusted to (2JCαCβ )−1.

A significant gain in resolution with respect to the standard PDPSD experiment is obtained by just ap-
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plying a C’ decoupling in the indirect dimension using the method introduced by Strauset al.[37] The standard
PDSD, C’ homodecoupled PDSD and spin-state-selective CACB correlation spectra recorded on the Crh pro-
tein are given in FIGURE 3.11. An additional gain in resolution obtained this time in both dimensions is again
quite clear, even if the scalar coupling removed by the spin-state-selection filter is smaller than in the COCA
experiment.
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FIGURE 3.11:Cα - Cβ region of the (a) standard, with additional (b) C’ homodecoupling and (c) spin-state-selective

(coaddition of the 4 transitions shifted by±J/2) PDSD spectrum of the microcrystalline Crh protein. The third spectrum

was obtained with a scaling factork = 0.6. Acquisition timestmax
1 = 9.6ms with States quadrature detection andtmax

2

= 15ms were used. A total of 128 transients were recorded for the spin-state-selective experiment and 40 for the

standard and homodecoupled PDSD experiments. The experimental time was 26 h, 26h and 4x16 h for the standard,

homodecoupled and the spin-state-selective spectra, respectively. Cosine apodisation was applied in both dimensions

prior to Fourier transformation. For both spectra, the first contour level was set to 20% from the mean intensity of

44Ala and 54Ala resonances, with a factor of 1.4 between levels.

However, the spin-state CACB experiment performed as described here is not very sensitive. On the
same experimental time and resolution basis, the efficiency of the emerged four transitions of 2D CACB-IPAP
compared to standard C’ homodecoupled PDSD experiment is only 45 %.

It has been already mentioned that the sensitivity of the spin-state-selective correlation experiment could
be enhanced by going to high spinning frequencies. Moreover, high spinning conditions would not only lead
to better performance of the selection filter as shown in the chapter 2 for the 1D IPAP experiment, but would
also allow the use of better techniques for the transfer of polarisation like for example DREAM[29] transfer
sequence.

FIGURE 3.12shows preliminary results obtained on fully13C-enrichedL-Alanine at 30kHz MAS with
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DREAM. Traces of the separated spin states of the CACB correlation experiment recorded onL-Alanine at
30kHz MAS with DREAM are compared to traces extracted from the CACB-PDSD correlation experiment
recorded on the same sample at 11kHz MAS. Except polarisation transfer schemes and spinning rates, all
other experimental parameters were the same for both experiments. These preliminary results show clearly that
the sensitivity of the spin-state-selective correlation experiments can still be significantly improved. This could
also lead to an experiment offering at the same time a very good resolution and a good sensitivity.
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FIGURE 3.12: CACB-IPAP-PDSD (a) and CACB-IPAP-DREAM (b)αα, αβ, βα, andββ of the fully13C-enriched

L-Alanine. The PDSD spectrum has been recorded at 11kHz MAS for a mixing time of 30ms. The DREAM spectra

have been recorded at 30kHz MAS for a mixing time of 4ms. A total of 64 transients was recorded for both PDSD and

DREAM spectra. Each transition was obtained by linear combinations ofA1, A2, B1, andB2 spectra with a scaling

factor k = 1. The sensitivity of the spin-state-selective experiment with DREAM is two times larger than that of IPAP-

PDSD. This sensitivity improvement factor has been corrected for the difference introduced by the cross-polarisation

efficiency.

3.5 Conclusion

In this chapter, we have introduced a new experimental approach which provides significant resolu-
tion enhancement in multidimensional solid-state NMR correlation experiments. Resolution enhancement is
achieved by using transition-selective excitation and transfer techniques. Spin-state-selective polarisation trans-
fer is obtained using standard ZQ or DQ solid-state NMR mixing sequences. The new experiments can be easily
extended to higher-dimensional experiments. In addition, spin-state-selective correlation experiments allow the
distinction of ”direct” transfer peaks, involving covalently-bound nuclei, and ”relayed” transfer peaks.

We have showed that significant resolution enhancement can be obtained in homonuclear multidimen-
sional solid-state NMR correlation experiments by transition selection and spin-state-selective polarisation
transfer techniques. The selection and transfer of single states allows the removal of theJ-coupling contri-
bution from the linewidth in both the direct and indirect spectral dimensions. This was demonstrated with a
new spin-state selective C’ - Cα and Cα - Cβ correlation experiments, applied to a microcrystalline Crh pro-
tein counting 2x85 amino acids. With these new sequences, all four components of the C’ - Cα and Cα - Cβ

cross-peaks were separated into different subspectra, obtained by linear combination of four recorded data sets.





CHAPTER FOUR

Heteronuclear directly detected techniques for protein backbone
assignment by liquid-state NMR

4.1 Introduction

So far, we have dealt with developments in NMR methodology for samples in the solid state. We
have first discussed the asymmetry and differential broadening effects induced by the interference of CSA
and dipolar interactions in fully enriched powdered compounds. Spin-state-selection techniques have proved
to be well adapted to accurately measure theJ-induced differential broadening and, by allowing to select only
one component of theJ-multiplet, to increase the spectral resolution. This interesting feature has been further
exploited in 2D13C - 13C correlation experiments. In order to illustrate that significant increase in resolution
can therefore be obtained, the 2D13C - 13C experiments based on the spin-state-selection scheme have been
applied to the microcrystalline Crh protein.

In comparison to solids NMR, liquid-state NMR takes advantage of the rapid isotropic motion which
averages the magnetic interactions thus leading to high-resolution spectra. It is important to notice that the
interactions are only averaged to their isotropic part and not completely removed. Note also that the fluctua-
tions induced by the molecular tumbling remain and they represent the main contributions of spin-relaxation
rates.[27] For complete motional averaging to occur, the motion has to be isotropic and also rapid enough with
respect to the frequency of the interactions characterising the spin system (i.e., chemical shift, CSA, DD, etc).
In general, for molecular systems with tumbling correlation times ofτc < 50 ns, the motional averaging is effi-
cient enough and high-resolution NMR spectra may be obtained. Since the correlation time is directly related to
molecular weight, the liquid-state NMR spectra are expected to show broad lines for those systems with mole-
cular weights above 50kDa (i.e., τc > 50 ns). However, by using TROSY-based techniques, fast relaxation
may be favourably exploited. Indeed, interference between CSA and DD relaxation mechanisms gives rise to
different relaxation rates for the two components of NH moieties or aromatic CH groups, thus producing an
effect of differential line broadening. TROSY in either partially or uniformly deuterated proteins[40,146,147] in
combination with cross relaxation-induced polarization transfer (CRIPT) and cross relaxation-enhanced polar-
ization transfer (CRINEPT) techniques[148,149] allows NMR studies of even larger proteins. However, uniform
deuteration also imposes severe limitations on the structural information that can be obtained by conventional
triple-resonance experiments. Moreover, even if the1H - 15N correlation spectrum of a protein contains impor-
tant information, the NMR-based tridimensional structure cannot be calculated directly from a single1H - 15N
spectrum.

A valuable alternative to overcome fast1H relaxation is the use of direct13C detection, which takes
advantage of the slowly relaxing13C magnetisation compared to1H. Nowadays, all the liquid-state NMR
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experiments for heteronuclear backbone assignment are commonly performed via1H (i.e., using the so-called
inverse mode). Most of them can in principle be performed using direct heteronuclear excitation and detection
without involving protons at any place in the pulse sequence. However, the design strategy of these experiments
for backbone assignment using heteronuclei only is different from that for1H-based experiments. Indeed, most
of the experiments used nowadays for backbone assignment are based on the HN group, that actively exploits
TROSY effects.[150,151] Passing to direct heteronuclear detection,15N is not the best starting point for sensitivity
reasons. The experiments tailored for backbone sequential assignment without involving protons should rather
start and end on13C nuclei, either on Cα (interesting in Hα-deuterated proteins) or on carbonyls C’ (attractive
at intermediate magnetic fields) atoms, in an ”out-and-back”1 scheme,[154] or should start on one of them and
end on the other in an ”out-and-stay” approach.[155]

The detection method via1H is less favorable in solids, because the1H - 1H dipolar coupling (usually
> 20 kHz) is dominant so that it cannot be averaged by the magic-angle-spinning at spinning frequencies
which are nowadays feasible or tolerable to the sample. Furthermore, since at moderate spinning rates it is
usually possible to satisfactorily average out CSAs as well as13C - 13C and13C - 15N dipolar couplings in
labelled (microcrystalline) compounds, most of the techniques for13C, 15N assignment of solid samples are
based on13C detection.

In this chapter, we will introduce two techniques devised for protein backbone assignment in solution
NMR and based on direct13C detection approach.

4.2 Triple-resonance CBCACO experiment

4.2.1 Pulse sequence description

We first present the CBCACO technique which yields correlations between three carbon nuclei belong-
ing to the same residue (i.e.,intra-residue13CO - 13Cα - 13Cα,β correlations). The pulse sequence for the 3D
CBCACO experiment is illustrated in FIGURE 4.1.

The sequence consists basically in two evolution periods and one block INEPT for performing the
transfer of magnetisation to carbonyls which are further detected. The evolution periods were built into the
experiment in a constant time (CT) manner.[140]

The firstπ/2 pulse excites both Cα and Cβ spins. They are evolving, from time point©1 to©2 under the
influence of their chemical shifts and of Cα - Cβ (and for Cβ also Cγ - Cβ) scalar couplings. Theπ/2 pulse
after time point©2 retains in-phaseCα

y andCβ
y coherences and converts the anti-phase 2Cβ

x Cα
z coherence into

2Cα
x Cβ

z . These are then converted into anti-phase 2Cα
x C ′

z coherence during the interval from time point©3 to
©4 . Up to this time point, the experiment closely looks like the CBCA(CO)NH experiment.[157] However, in
this case the anti-phase 2Cα

z C ′
x coherence is refocused to in-phaseC ′

y coherence and further detected (from
time point©5 to©6 ). This avoids the long delays necessary for the CO - N transfer present in the conventional
CBCA(CO)NH experiment. The C’ - Cα scalar coupling that complicates the spectra during the acquisition
dimension is removed by band-selective homodecoupling. Among the three planes, one contains the same
information like the COCAMQ spectrum,[158] other additionally provides the Cβ frequencies and the third one
shows in a COSY-type spectrum[159,160] the Cα - Cα diagonal peaks together with the Cα - Cβ cross-peaks.

A characteristic feature of direct13C detection is the presence of many homonuclear couplings which
complicate the spectra in the acquisition dimension. These couplings may be useful for coherence transfer
or determination of residual dipolar couplings but are definitely detrimental to achieve good resolution in the

1In general, an experiment is called ”out-and-back” if the initially excited spin is identical to the detected one. As almost all the
conventional triple-resonance schemes published since the introduction of this concept in 1990 by Bax and coworkers[152,153] are1H-
based, for most of them, proton is the excited and detected spin.
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FIGURE 4.1: 3D CBCACO pulse sequence (13C’ - 13Cα,β - 13Cα). Filled and open Gaussian shapes represent selective

π/2 andπ pulses, respectively. Universal Gaussian cascades were used[144,145] 332µs long for theπ/2 pulses and 300µs

long for theπ pulses, except for the first two13Cα,β pulses which were 274µs (π/2) and 220µs (π) long and centered at

35ppm, in order to cover the Cα - Cβ spectral region. The carrier frequencies for pulses applied on13C’, 13Cα, 15N and
1H were of 175, 35, 120 and 3.5ppm, respectively. Before the first pulse, the carrier on the carbon channel is switched

from 175 to 35ppm and it is switched back to 175ppm before the firstπ/2 C’ pulse. The phase cycle was as follows:ϕ1

= 2x 2(-x), ϕ2 = y, ϕ3 = x -x, ϕ4 = 4x 4y, ϕrec = x -x -x x -x x x -x. All the pulses are applied along thex axis unless

indicated. The variations in the phase cycle to obtain the in-phase component wereϕ5 = 8y 8(-y), lastπ/2 pulse = y,ϕrec

= x -x -x x -x x x -x and for the anti-phase componentϕ5 = 8x 8(-x), lastπ/2 pulse = x,ϕrec = x -x -x x -x x x -x -x x -x

x x -x -x x. The pulsed field gradients were 1ms long, sine shaped, with maximum intensities of G1 = 11 G/cm, G2 = 21

G/cm and G3 = 19 G/cm. The delays were T = 3.5ms, ∆ = 4.5ms. Phase-sensitive spectra in the13Cα,β(t1) and13Cα(t2)

dimensions are obtained by incrementingϕ1 andϕ2 in a States-TPPI manner.[156]

acquisition dimension. Band-selective homodecoupling[161,158] is one of methods already proposed to solve
this problem.

The CBCACO experiment offers an additional possibility to remove the scalar coupling during the
acquisition dimension as it is perfectly suited to implement spin-state-selective approaches like IPAP,[31,32]

without including additional building blocks into the experiment. Twoπ/2 carbonyl pulses with the gradient
in between are added to apply the IPAP selection filter. The variant of the experiment shown in the FIGURE 4.1
with ε = ∆/2 is the one to obtain the anti-phase component. By shifting the last two Cα π pulses from right
to left by a 1/(8JC′Cα) delay and changing the phase of the lastπ/2 pulse by 90◦, the last block can be used
to retain the in-phaseC ′

y coherence instead of converting it into the anti-phase 2Cα
z C ′

y coherence. The use of
two π pulses on the Cα nucleus ensures removal of transient Bloch-Siegert effects.[107] Therefore, for each
t1 (andt2) increment, two FIDs are acquired in an interleaved fashion, one for the in-phase signal, other for
the anti-phase one, and stored separately. The complete phase cycle on the last C’π pulse is important for
removing artifacts due to pulse imperfections. The two FIDs separately stored for eacht1 (andt2) increment
can be summed and subtracted to separate the two multiplet components and thus simplify the spectra. The
two spectra obtained in this way can further be shifted one respect to the other byJ /2 in order to superimpose
the two multiplet components that appear in the two spectra. These can then be summed again to increase the
sensitivity of the spectrum. This approach works provided the C’ - Cα scalar coupling is uniform throughout
the sample. We tested this approach on the 2D version of the experiment and compared with the other existing
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methods to eliminate the C’ - Cα indirect coupling (band-selective[161,158] homodecoupling and Maximum
Entropy Reconstruction[162,163]). It can also be implemented in the 3D version of the experiment.

4.2.2 Results and discussion

All the experiments shown in this chapter were carried out on a 16.4T Bruker Avance spectrometer
operating at 700.06MHz for 1H and 176.03MHz for 13C equipped with a prototype TXO probe designed
specifically for carbon directly detected experiments. The inner coil is tuned to13C while the outer coil is
double tuned to1H and15N. The probe, optimised for13C sensitivity (with a signal-to-noise of about 500:1 on
the standard ASTM sample (i.e., 40 % dioxane in benzene-d6 with 0.2 % CrAcAc)), is characterised by a short
13C π/2 pulse (12.5µs) at the expense of longer pulses on1H (23µs) and15N (65µs).

Apart from the 2D IPAP-CBCACO experiments described above, all other carbon experiments were
recorded with the band-selective homodecoupling turned on during 20 % of the total acquisition time, in order
to decouple the C’ from the Cα signals.[158,161] The13C decoupling field strength was set to 1.91kHz. Adiabatic
Chirp[164] pulses of 10ms length, smoothed at 25 % and supercycled in a p5m4 manner[165,166] have been
chosen for composite pulse decoupling. In the decoupled spectra, the13C carrier for acquisition was set in
between the spectral part of interest to avoid possible folding of artifacts into the spectrum. Strip transformation
was then used to process at high resolution only the spectral region of interest. Composite pulse decoupling
on 1H and15N was applied during the whole duration of the experiments with the nutation frequency set to
1.665kHz for 1H (WALTZ-16)[167,168] and 625Hz for 15N (GARP-4),[169] respectively. The carrier frequencies
for pulses applied on15N and1H were of 120 and 3.5ppm, respectively, unless otherwise specified.

In order to check sample integrity,1H - 15N HSQC experiments were acquired with standard parame-
ters.[170] The COCAMQ[158] spectrum was recorded to facilitate and confirm the assignment into the C’ - Cα

plane of the 3D spectrum. A recycle delay of 1s, 256 dummy scans, 96 transients and 58ms acquisition time
were used to acquire the 2D spectrum. The total acquisition time in the indirect dimension wastmax

1 = 28ms.
Spectral windows of 200 and 51.6ppm were acquired in the C’ and Cα dimensions corresponding to a matrix
of 4096x512 complex points. The carrier on the carbon channel was switched from 98 to 50ppm before the
first π/2 Cα pulse and switched back to 98ppm after the secondπ/2 Cα pulse.

Oncomodulin, a calcium binding diamagnetic protein containing 109 residues, has been used to evaluate
the performance of these experiments. The calcium loaded form of the protein has been assigned through the
”standard” approach based on triple resonance experiments and its solution structure is being solved through
standard restraints.[171] The protein concentration in the final NMR sample was about 2.5mM. The sample
was dissolved in 100mM NaCl at pH 6.0 water solution and 10 % D2O was added for the lock signal. All the
spectra detailed below were recorded at 283K.

The 2D spectrum of the CBCACO experiment is drawn in FIGURE 4.2. The spectrum shows the character-
istic C’ - Cβ correlations, in addition to the C’ - Cα ones. Therefore, if compared to the information contained
in a COCAMQ spectrum, the additional cross peaks present in the CBCACO spectrum (for a total of two cross
peaks per residue, except for Glys), provide information to identify the spin systems of all amino acids present
in the protein. Assignment of a spin system to a particular residue type can be done on the basis of the charac-
teristic chemical shift of the Cβ resonance, or on its absence (Gly residues). Moreover, a larger chemical shift
dispersion of Cβ resonances, compared to the Cα ones, contributes to resolution enhancement.

In the present case, except for two spin systems in complete overlap (residues 61Glu and 62Glu, for
which C’, Cα and Cβ are degenerate), all spin systems expected on the basis of the primary sequence of the
protein were identified with the CBCACO experiment. If only the COCAMQ experiment is used, 5 pairs of
residues have their C’ - Cα correlation in overlap which means an uncertainty for 10 residues. Due to their
different Cβ shifts, these residues can be identified in the CBCACO experiment despite the Cα overlap.

Correlations involving side chains of Asp, Asn, Glu and Gln residues are also detected with this exper-
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FIGURE 4.2: 2D spectrum (13C’ - 13Cα,β) of the[U - 13C,15N]-labelled oncomodulin protein at 283K recorded

on a Bruker Avance spectrometer operating at 700.06MHz 1H frequency with a prototype TXO probe. The ex-

periment was acquired with band-selective homodecoupling of Cα during acquisition of the carbonyls. The13C

was decoupled at 1.91kHz with a train of adiabatic Chirp[164] π pulses of 10ms length and smoothed at 25 %.

Acquisition timestmax
1 = 5.45ms, tmax

2 = 58ms, recycle delay 1.3s, 128 transients and 256 dummy scans were

used. Spectral windows of 200 and 100ppm were acquired in the C’ and Cα,β dimensions, respectively. A matrix of

4096x192 complex points in the C’ and Cα,β dimensions was acquired.1H and15N were decoupled at 1.667kHz

with WALTZ-16[167,168] and 625Hz with GARP-4,[169] respectively. The experimental time was 10h. Prior to Fourier

transformation, 8192x512 expansion by linear prediction in the indirect dimension together with zero filling and

squared sine multiplication functions shifted byπ/4 andπ/2 were applied int2 andt1 dimensions, respectively. A

couple of Cα - Cβ connected cross peaks are marked on the figure.

iment in a specific region of the spectrum centered atδ2 = 180ppm, δ1 = 30ppm.

The 2D CBCACO experiment was expanded in a 3D version by evolving the Cα chemical shift in the
third dimension. The 3D version of the experiment was used to separate two spin systems with degenerate
carbonyl shifts. Moreover, the 3D spectrum allowed us to resolve residues that have the C’ - Cα correlation in
overlap. Some examples of cross sections extracted from the 3D CBCACO experiment are reported in FIGURE 4.3
which shows Cα - Cα,β (a), C’ - Cα,β (b), and C’ - Cα (c) planes containing correlations corresponding to 26Glu.

The CBCACO experiment provides information to connect the backbone assignment with side-chain
assignment through identification of the Cβ spin, in addition to Cα and C’. On the basis of the chemical shift of
Cβ it is possible to identify the kind of amino acid associated with a specific spin system and the large spread
in the Cβ chemical shifts also allows to obtain a good resolution in the C’ - Cβ region.
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spectra recorded with band-selective homodecoupling of Cα during acquisition of the carbonyls. In the [Cα,β ,

Cα] plane, the Cα - Cβ correlation of 26Glu is drawn in dotted line. The [Cα,β , C’] plane corresponding to the

backbone chemical shifts in the third dimension is shown in (c) and the correlation is marked on the spectrum.

The experiment was recorded using 16 transients. Spectral windows of 99.3, 80 and 100ppm were acquired in

the C’, Cα and Cα,β dimensions, respectively. The acquisition time was 59ms. The maximumt1 andt2 evolution

periods were 3.46ms and 2.27ms, respectively. All other experimental parameters are the same as those indicated

in caption of FIGURE 4.1. The 3D CBCACO spectrum was processed with the XWINNMR 3.5 software. Prior to

Fourier transformation the raw data were multiplied by squared sine functions shifted byπ/4 andπ/2 in t2 and

t1 and further transformed with 2048x256x256 points using forward linear prediction and zero filling functions.

Contours are drawn at the same levels for all the planes.

4.2.3 Homodecoupling efficiency

All homonuclear experiments and the carbon directly detected experiments, in particular, show struc-
tured signals in the direct dimension due to the presence of the scalar coupling with the covalently bound nuclei.
The scalar coupling in the indirect dimension can be removed by applying a semi-selectiveπ pulse in the mid-
dle of the evolution period on the nucleus to which the evolving spin is coupled or by CT evolution.[140] The
potential of carbon directly detected experiments for sequence specific assignment can be greatly enhanced by
removing C - C couplings in the acquisition dimension. Band-selective homodecoupling (HD) provides a valu-
able solution to this problem.[158] Spin-state-selective filters[31,32,172] can also be implemented for this purpose.
Another alternative is the virtual decoupling approach (based on the Maximum Entropy Reconstruction algo-
rithm) first introduced to NMR by Hoch and Stern.[162,163] This approach has to be used with caution and has
been included in our study for the sake of completeness. Comparison of the three selected decoupling methods
chosen (HD, IPAP and MER) points out that in terms of sensitivity the homonuclear IPAP spectrum is the most
sensitive. Note that IPAP is expected to give optimal results if theJ-coupling is uniform throughout the sample.
This is generally the case for the C’ - Cα scalar coupling. The efficiency of band-selective homodecoupling,
instead, is independent on the value of the coupling constants and only depends on the resonance frequency of
the decoupled nucleus.

The 2D CBCACO spectra used for the comparison of the different decoupling methods were all ac-
quired with the same spectral widths and number of increments and were transformed with 8192x256 complex
points by zero filling and multiplied by squared sine functions shifted byπ/4 andπ/2 in t2 andt1 dimensions.
However they had to be processed with different software packages because none of the existing ones includes
all the features necessary to the present analysis. The NMRPipe software package[173] was used because it al-
lows us to easily shift one spectrum with respect to another one in the frequency domain through a shift function
(C’ - Cα,β non-decoupled, homodecoupled and IPAP spectra). It can also be performed with the XWINNMR
software by doing a first order correction ofshift*360/(sweep width) degrees in the time domain. The NMR
Rowland Toolkit[174] software package was used for applying the maximum entropy reconstruction approach
in order to ”virtually decouple” the spectrum (C’ - Cα,β non-decoupled, homodecoupled and MER spectra).
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Three 2D CBCACO experiments (13C’ - 13Cα,β) were acquired with the same parameters (except for
the spin-state-selective method) in order to compare the efficiency in removing the C’ - Cα coupling in the
direct acquisition dimension. The IPAP experiment was acquired with one half the number of scans compared
to the other two experiments used for the comparison (coupled and band-selective HD CBCACO) since in the
former IPAP case two FIDs are acquired and stored separately and actually correspond to one FID of the other
two experiments. The total measurement time for all kind of experiments was the same, thus allowing the direct
comparison of the different results.

The 2D CBCACO spectra were recorded with 128 transients (64 for each of the two parts of the IPAP)
and 256 dummy scans. On the carbon channel, the irradiation frequency offset was switched from 98 to 35ppm
in the beginning of the sequence and switched back to 98ppm before the firstπ/2 C’ pulse. The maximum
acquisition time in the indirect dimension wastmax

1 = 5.45ms. Spectral windows of 200 and 100ppm were
acquired in the C’ and Cα,β dimensions. A matrix of 4096x192 complex points was recorded.

To avoid possible errors due to any software dependent scaling factors and/or window functions we
chose to compare spectra processed with the same software package. Thus, we first evaluated the C’ - Cα,β

non-decoupled, HD and IPAP spectra processed with the NMRPipe software package and, secondly, the C’ -
Cα,β non-decoupled, HD and MER spectra processed with the NMR Rowland Toolkit software package. For
the first one, the traces were extracted using an appropriate NMRPipe function, while for the second case, the
extraction was performed with the XEASY software package[175] after converting the Rowland data into the
XEASY format. In spite of using the same processing parameters for all the spectra, the resultant traces seem
to highly depend on the software used for processing and/or extraction of the traces.

The maximum entropy reconstruction method was performed along the direct dimension. The following
parameters were found to give the best decoupled and sensitive spectrum: 25 iterations (nloops), 1000 points
(nuse) for the linear sampling of each FID, 900 for the reconstruction scaling factor (def), 5x10-6 (aim) the
difference between the input FID and the reconstructed one and 50 (Jvalue) the size in Hz of the constant
coupling to be deconvoluted.

In order to compare the efficiency of the different approaches to remove the C’ - Cα indirect coupling
in the various spectra, several 1D traces of isolated cross peaks were extracted and compared in terms of signal-
to-noise ratios (S/N). The following definition was used to calculate the S/N ratios:

S
N

=
M

(2noise)
(4-1)

whereM is the highest intensity in the signal region andnoise is the root-mean-square of the noise amplitude.
For the coupled spectrum this implicitly means considering the highest component of the multiplet, which in
most cases is slightly asymmetric. To estimate the noise factor the algorithm described in XWINNMR software
was employed. The signal region was chosen equal to 1.22ppm such as only the peak of interest to be taken
into account. The width of the noise region was selected equal to that of the signal. We verified that increasing
these regions did not lead to appreciable variations in the S/N ratio. All the S/N ratios were calculated with a
home written routine in the Matlab software.[79] The analysis was performed on a subset of well isolated peaks
by extracting a 1D trace from the 2D spectra.

Since the quality of the spectra, both in terms of resolution and sensitivity, depends on the method cho-
sen to eliminate the C’ - Cα J-splitting present in the acquisition dimension, we have analysed the efficiency of
the HD, IPAP and MER decoupling methods. As an example, FIGURE 4.4compares traces from the 2D CBCACO
spectra for four isolated peaks (1Met (Cβ), 34Ser (Cα), 55Gln (Cβ), 108His (Cβ)). The complete S/N analysis
is reported in TABLE 4.1.

The results clearly indicate that the IPAP approach is the one that gives the best S/N ratio. The gain
in S/N ratio compared to the most intense component of the coupled spectrum is close to that theoretically
expected of

√
2. It is worthwhile to note that for band-selective homodecoupling, the low S/N ratio is mainly
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FIGURE 4.4:1D traces of four selected residues (1Met (Cβ), 26Glu (Cα), 55Gln (Cβ), 108His (Cβ)) extracted from the CBCACO

2D spectra processed with a) NMRPipe[173] and b) NMR Rowland toolkit.[174] The three columns report traces extracted from

spectra that only differ in the C’ - Cα decoupling method used in the acquisition dimension: non-decoupled, homodecoupled and

IPAP or MER. The spectra were scaled one with respect to the other by keeping the noise constant in all the traces. The S/N values

determined for a set of well isolated peaks falling in clean areas of the spectra are reported in TABLE 4.1.

determined by the increased noise in the spectrum, intrinsic to this acquisition method, rather than by unsatis-
factory decoupling efficiency. MER apparently gives higher signal than the homodecoupled and non-decoupled
spectra at the expense of a non-uniform noise surrounding the reconstructed peaks, and a certain unreliability
in the presence of the peak itself.

The IPAP filter, which can be implemented in the CBCACO experiment at no cost in terms of extra
relaxation (i.e., it is not necessary to extend the overall duration of the experiment), also yields a measure-
ment of the C’ - Cα coupling. This can be useful to determine C’ - Cα couplings, again when protons are not
detectable or not available because the protein is perdeuterated. Thus, even in the absence of proton assign-
ment, residual dipolar couplings can be measured using this method, provided a sufficient degree of partial
alignment can be induced either through external media or through the presence of heavily anisotropic metal
ions. Residual dipolar coupling restraints, together with paramagnetic constraints such as pseudocontact shifts,
relaxation rate enhancements and cross correlations, can provide effective structural information for structure
refinement.[158,176]

The CBCACO experiment may also be useful for studying large proteins. The experiments commonly
used for the assignment of large proteins make use of the NH TROSY effect to exploit the advantageous
transverse relaxation properties. For this purpose, the higher the magnetic field the larger the effect, up to about
23.4T (1GHz proton Larmor frequency) where the maximum efficiency is expected to be reached. This is in
contrast with optimal conditions for C’ relaxation as this is dominated by the CSA interaction that increases
with the square of the magnetic field (i.e., faster than the increase in the magnitude of the cross-correlation
rate responsible for the TROSY effect, that scales linearly with the external magnetic field). In the CBCACO
experiment the TROSY effect is not used so there is no need to seek very high fields. Moreover, the delay during
which C’ is transverse is significantly shorter than in the CBCA(CO)NH experiment (9ms vs 33ms) and thus
the adverse contribution to relaxation at high fields is reduced by a factor of about 3. The choice of the most
appropriate magnetic field for the CBCACO experiment, should therefore result from a suitable compromise
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TABLE 4.1: Signal-to-noise ratios determined for 17 isolated peaks in the 2D CBCACO processed either with the
NMRPipe software[173] (Ref, HD and IPAP) or NMR Rowland Toolkit software[174] (Ref, HD and MER), where Ref is
the abbreviation of the non-decoupled spectrum. The mean and the standard deviation were calculated over the 17
peaks for all the spectra. The values for the non-decoupled version refer to the highest component of the doublet.

NMRPipe Rowland Toolkit

Amino acid S/N (Ref) S/N (HD) S/N (IPAP) S/N (Ref) S/N (HD) S/N (MER)

75Ala (Cβ) 38.1 27.6 40.8 36.3 23.8 41.5

90Ala (Cβ) 31.4 22.6 42.7 33.3 25.9 44.5

55Gln (Cβ) 14.8 12.9 23.1 15.6 13.4 16.4

19Cys (Cβ) 20.0 15.8 20.3 15.2 14.4 17.7

108His (Cβ) 13.3 12.5 17.0 14.1 10.2 15.2

26Glu (Cβ) 17.5 16.0 22.7 20.2 15.6 20.8

1Met (Cβ) 8.9 8.0 12.5 9.5 6.9 14.1

57Gly (Cα) 17.0 13.2 20.5 17.1 12.8 10.7

96Gly (Cα) 21.8 15.7 34.1 21.5 17.1 21.8

94Gly (Cα) 23.3 17.2 32.9 17.7 20.4 19.6

26Glu (Cα) 16.8 14.6 19.7 17.3 9.7 17.3

1Met (Cα) 18.4 13.0 22.7 16.4 11.9 13.8

25Phe (Cα) 12.6 8.8 16.4 11.5 7.9 13.3

34Ser (Cα) 8.8 6.7 13.2 11.6 7.3 12.6

34Ser (Cβ) 13.5 10.3 16.2 12.5 9.0 13.9

40Ser (Cβ) 19.7 14.3 23.3 20.5 14.2 16.3

4Thr (Cβ) 13.7 8.1 18.0 11.4 8.6 12.5

〈S/N〉 ±∆(S/N) 18.2± 7.5 14.0± 5.3 23.3± 9.0 17.7± 7.3 13.5± 5.6 18.8± 9.7

between a high enoughB0 to obtain the necessary sensitivity and resolution but still maintain C’ relaxation
within acceptable limits.

Another interesting application of the CBCACO experiment is in the assignment of side chains of Asp,
Asn, Glu and Gln. Indeed, this information can be very useful when studying surface properties of proteins,
such as protein-protein interactions, since these residues are often found on protein surfaces and are involved
in inter-molecular recognition.

The CBCACO experiment may be also useful for studying unfolded systems and can complement the
CBCA(CO)NH[177] experiment when the NH exchanges is broadened beyond detection by relaxation effects
that cannot be recovered through the TROSY approach.
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4.3 Triple-resonance CANCO experiment

4.3.1 Alternatives for coherence transfer

Various ways for connecting the backbone heterenuclei are open when the problem of sequential con-
nectivity is approached from a13C-start,13C-detect point of view. The usual starting point of standard 2D and
3D experiments is the HN - N transfer step, which takes advantage of the high sensitivity due to large sepa-
ration in the1H energy levels and the TROSY effect. In contrast to these techniques based on1H detection,
the 13C schemes offer two possibilities for the starting nucleus and a wider range of transfer pathways. The
design of13C-start,13C-detect sequences for backbone sequential connectivities requires a close investigation
of the possible coherence transfer steps. For example, for obtaining sequential correlations of heteronuclei in
an ”out-and-back” scheme, four different coherence transfer steps can be imagined2. Following the transfer
scheme reported in FIGURE 4.5a, they can be represented as follows:

A) Cα
i ∆ ≈ 10ms←−−−−−−−−−→ C

′
i ∆ ≈ 33ms←−−−−−−−−−→ Ni+1

B) C
′
i ∆ ≈ 33ms←−−−−−−−−−→ Ni+1 ∆ ≈ 22ms←−−−−−−−−−→ Cα

i , Cα
i+1

C) Cα
i ∆ ≈ 22ms←−−−−−−−−−→ Ni, Ni+1 ∆ ≈ 33ms←−−−−−−−−−→ C

′
i

D) C
′
i ∆ ≈ 10ms←−−−−−−−−−→ Cα

i ∆ ≈ 22ms←−−−−−−−−−→ Ni, Ni+1

(4-2)

We have aimed at obtaining a transfer pathway which offers, in the same plane, intra- and inter-residue connec-
tivities between13Cα and15N nuclei, minimises the evolution delays and detects the slower-relaxing nucleus.
Among these alternatives, the last one is therefore the most attractive because it reduces the relaxation losses
taking advantage of the largest13C - 13C scalar coupling available and yields both intra- and inter-residue con-
nectivities. The magnetisation transfer, in the sequence displayed in FIGURE 4.5, takes place as follows: in-plane
INEPT-like transfer from C’ to Cα, followed by the evolution of Cα chemical shift (t1), a HMQC transfer to two
neighbouring nitrogens, N chemical shift evolution (t2), and back transfer to Cα and then C’ nucleus, followed
by the detection (t3), with 15N decoupling turned on during acquisition.

The weakness of this approach is resulting from the necessity of keeping the magnetisation of the
aliphatic carbons transverse during the whole duration of the transfer which implies considerable relaxation
losses. Additionally, the choice of an ”out-and-back” approach increases the number of transfer periods. Since
the spectrum recorded with this pulse sequence showed only 65 % from the expected correlations (which
corresponds to all the intra-residue correlations and 31 % sequential correlations), we will further focus on the
”out-and-stay” schemes and analyse in detail the Cα

i → Ni, Ni+1 → C
′
i−1, C

′
i transfer option which is very

attractive for the detection of sequential correlations.

The transfer delays for this pulse sequence were tuned to maximise, at the same time, Cα
i → Ni and Cα

i

→ Ni+1 transfers for the range (i.e., between 7 and 14Hz) of inter-residueJCαN coupling values encountered
in proteins. This property has been exploited in order to produce, in the Cα plane, two peaks of different
intensities. FIGURE 4.6depicts extreme cases of different intra- and inter-residueJ-couplings found in proteins.
The intra-residueJCαN value is constant (11Hz), while the inter-residueJ-coupling value can vary between
7 and 14Hz. If the intra-residue value of theJ-coupling is larger (see blue curves in FIGURE 4.6), the transfer
will be more efficient for the intra-residue correlations and the intensity of the corresponding peak can be up
to 2 times larger than that of the inter-residue one. On the other hand, if the inter-residueJ-coupling is larger

2The nuclear spins of the ith amino-acid residue are specified as Ni for the amide15N spin, Cα
i and C’i for α-carbon and carbonyl

spins. Throughout this section, intra-residue and inter-residue13Cα - 15N scalar coupling constants are namedJ1 (i.e., 1JCα
i Ni

) and

J2 (i.e., 2JCα
i Ni+1

), respectively. Additionally, inter-residue15N - 13C’ and13Cα - 13Cβ scalar coupling constants are designatedJNC

(i.e.,1JNiC’i−1 ) andJAB (i.e.,1J
Cα

i Cβ
i

), respectively.
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FIGURE 4.5: a) Coherence transfer pathway in a protein. b) Pulse sequence corresponding to the CO(CA)N transfer

pathway noted D) in the equation4-2.

(see green curves in FIGURE 4.6), the transfer is then more efficient for the inter-residue connectivities and the
ratio of the peak intensities can be up to 0.5 (i.e., inter/intra). It results from the curves shown in FIGURE 4.6
that a transfer time of 22ms will optimise both intra- and inter-residue connectivities for the whole range of
inter-residueJCαN values encountered in proteins.

The pulse sequence, corresponding to the intra- and inter-residue transfers depicted above, will be
described in the following section.

4.3.2 Pulse sequence description

The 3D CANCO experiment correlates the chemical shifts of Cα nuclei with the shifts of the two
neighbouring nitrogen nuclei and subsequently with those of the carbonyls adjacent to these nitrogen atoms.
This produces patterns in which for each N spin two resonances appear, corresponding to the two nearest Cα

carbons (Cαi ,Ni+1,C
′
i and Cα

i+1,Ni+1,C
′
i)

3 in the (ω1, ω2, ω3) dimensions. The magnetisation transfer pathway

3For ease of presentation, the Cα
i ,Ni+1,C

′
i connectivities are referred to as intra-residue and the Cα

i+1,Ni+1,C
′
i connectivities are

referred to as inter-residue.
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can be represented as: 

1JCα
i Ni−−−−→

15Ni
1JNiC

′
i−1−−−−−→

13C
′
i−1

13Cα
i

(t1)
2JCα

i Ni+1−−−−−−→
15Ni+1

1JNi+1C
′
i−−−−−→

13C
′
i

(t2) (t3)

(4-3)

The pulse sequence developed for obtaining sequential correlation of backbone heteronuclei follows
the transfer scheme reported in FIGURE 4.7a. The description of the actual pulse sequence and the magnetisation
transfer pathway in terms of product operator formalism[111] are detailed below.

The pulse sequence of the CANCO experiment is drawn in FIGURE 4.7b. The time points we evaluate
herein are marked by circled numbers. The first semi-selective pulse on Cα is followed by a CT-evolution
period,[140] optimised to refocus Cα - Cβ scalar couplings, during which magnetisation is labelled with the Cα

chemical shift. The evolution of the two Cα - N J-couplings during part of the CT period allows to transfer the
magnetisation to the two nearest nitrogen spins. At the same time, the C’N scalar coupling is refocused. Thus,
the magnetisation from time point©1 to time point©2 is represented by:

−Cα
iy → −2Cα

ixNiz cos(πJAB(δ + ε))

T1︷ ︸︸ ︷
sin(πJ1δ) cos(πJ2δ) cos(Ω(Cα

i )t1)
−2Cα

ixN(i+1)z cos(πJAB(δ + ε)) cos(πJ1δ) sin(πJ2δ) cos(Ω(Cα
i )t1)︸ ︷︷ ︸

T2

(4-4)

where the terms noted T1 and T2 are introduced for ease of writing. Forδ+ε = 1/JAB , cos(πJAB(δ+ε)) = −1
for all the amino acids having a Cβ . On the contrary, for Gly residues the previous cosine term is equal to
+1, thus ensuring a phase discrimination between Gly and other residues. The following product operator
description is not restricted to the particular case of Gly residues, which can be easily obtained by changing the
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suited for CANCO correlation experiment.

sign of the magnetisation. The Cα - N coherence transfer is performed between©2 and©3 time points and, in
terms of product operators, the magnetisation is as follows:

{
2Cα

ixNizT1 → 2Cα
izNiyT1

2Cα
ixN(i+1)zT2 → 2Cα

izN(i+1)yT1
(4-5)

During the second CT evolution period, the chemical-shift labelling of the nitrogen spins is accom-
plished, the magnetisation is refocused with respect to Cα andJ-coupling transfer to carbonyls takes place. At
the end of thet2 evolution period (i.e.,©4 time point) the observable magnetisation is described by the following
two terms:


−2C

′

(i−1)zNiy sin(πJNC(δ + γ))

T3︷ ︸︸ ︷
sin(πJ1δ) cos(πJ2δ) cos(Ω(Ni)t2) T1

−2C
′
izN(i+1)y sin(πJNC(δ + γ)) cos(πJ1δ) sin(πJ2δ) cos(Ω(Ni)t2)︸ ︷︷ ︸

T4

T2
(4-6)

where again the terms noted T3 and T4 are introduced for ease of writing. By choosingδ + γ = 1/(2JNC),
sin(πJNC(δ + γ)) = 1. The coherence transfer from nitrogens to carbonyls is performed from time point©4 to
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time point©5 and the magnetisation at the time point©5 is given by:{
2C

′

(i−1)yNizT1T3

2C
′
iyN(i+1)zT2T4

(4-7)

The last part of the sequence consists of refocusing of C’ magnetisation with respect to nitrogen and
detection of carbonyls. This yields to the following expression of the magnetisation at time point©6 :{

−C
′

(i−1)x sin(2πJNC∆)T1T3

−C
′
ix sin(2πJNC∆)T2T4

(4-8)

If ∆ = 1/(4JNC), sin(2πJNC∆) = 1 and the observable magnetisation is thus modulated by the next two
terms:  e

iΩ(C
′
i−1)t3eiΩ(Ni)t2eiΩ(Cα

i )t1 [sin(πJ1δ) cos(πJ2δ)]2 (inter-residue term)

eiΩ(C
′
i)t3eiΩ(Ni+1)t2eiΩ(Cα

i )t1 [cos(πJ1δ) sin(πJ2δ)]2 (intra-residue term)
(4-9)

The choice of the ”out-and-stay” transfer approach is not arbitrary because it allows the N - C’ transfer
to be performed at the same time as the refocusing of15N magnetisation with respect to Cα which consider-
ably reduces the duration of the pulse sequence and ensures increase in sensitivity. Additionally, the starting
Cα magnetisation can be enhanced by irradiating protons during part of the recycle delay. This results in a
sensitivity enhancement which depends on the C - H cross-relaxation rate. However, this method is not useful
in 2H-labelled molecules.

The initial CT delay was set to 1/JAB in order to refocus the Cα - Cβ scalar coupling. An alternative
could be using a semi-selectiveπ pulse at the Cα frequency (with respect to the Cβ frequency), which results
however in a decreased sensitivity of amino acids for which the Cα and Cβ chemical shifts are very similar (i.e.,
Thr, Ser) or of amino acids for which the Cα resonances have large deviations from the mean Cα chemical shift
of proteins (i.e., Gly, Pro, Ala, Val).[178]

Phase cycling eliminates artifacts due to imperfections of the associatedπ pulses and coherences result-
ing from incompleteJ-coupling evolution. The pulsed field gradients are complementary to the phase cycling,
eliminating any in-plane magnetisation once the intendedJ-coupling transfers are achieved and the magnetisa-
tion of interest is parallel to the main magnetic field.

4.3.3 Results and discussion

The 3D CANCO experiment was also tested on oncomodulin protein (11.5kDa, 109 amino acids). A
pair of 2D experiments, namely the COCA and CON[158] multiple-quantum experiments, were also acquired to
complement the 3D CANCO data.

Most of the experimental parameters for the 3D CANCO experiment are similar to those used for
CBCACO. Phase cycling ofϕ1, ϕ3, ϕ4 andϕ5 eliminates magnetisation that does not follow the desired Cα -
N - C’ pathway,ϕ2 andϕ6 eliminate artifacts due to imperfections of the associatedπ pulse. Phase-sensitive
spectra in the13Cα (t1) and15N (t2) dimensions are obtained by incrementing the phasesϕ1 andϕ4 in a States-
TPPI manner.[156] For 1H decoupling, the WALTZ-16[167,168] sequence was used, with applied field strength of
1.667kHz. For15N decoupling, the GARP-4[169] sequence was used, with applied field strength of 625Hz.

The 3D CANCO experiment was acquired using 640 transients and a recycle delay of 1.2s. Spectral
windows of 220, 40 and 64ppm were acquired in the13C’, 15N and13Cα dimensions, respectively. The ac-
quisition time was 59ms. A matrix of 4096x16x64 complex points in13C’, 15N and 13Cα dimensions was
acquired and transformed to 4096x128x128 points using linear prediction and zero filling. The maximumt1
andt2 evolution periods were 2.8ms and 4.86ms, respectively.
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planes of the 3D spectrum are displayed, corresponding to the15N frequency of 22Pro and 23Asp.

FIGURE 4.8illustrates the sequential assignment approach for the series of three residues 21Asp - 22Pro -
23Asp. The15N chemical shifts of the two prolines present in oncomodulin (22Pro, at 135.3ppm and 27Pro, at
135.6ppm) were actually assigned using this 3D spectrum. Indeed, all types of residues can be detected with
the 3D CANCO sequence, in contrast with other sequences that, being based on the NH group, do not allow a
direct assignment of proline residues.

The 3D experiment displays the signals of 99 Cα
i+1, Ni+1,C

′
i inter-residue correlations (which represents

92.5 % of the assigned expected correlations) and 85 Cα
i ,Ni+1,C

′
i intra-residue correlations (representing 79.4

% of the assigned expected correlations). All missing Cα
i , C

′
i correlations were identified in the 2D COCAMQ

experiment and were connected to the adjacent residue with the aid of a 2D CON experiment.

The15N resonances of 22Pro (136.5ppm), 27Pro (135.6ppm), 52Asp (118.6ppm), 64Leu (116.6ppm),
65Lys (116.9ppm) and 109Ser (122ppm), the13Cα resonances of 59Leu (58.8ppm), 60Asp (56ppm), 63Glu
(55.48ppm), 64Leu (54ppm) and 109Ser (58.09ppm), as well as the13C’ resonances of 64Leu (175.2ppm)
and 86Leu (174.4ppm) were not assigned by the use of standard proton spectra[171] and could be assigned by
using the13C-detected spectra described herein.

As pointed out earlier, an important feature of this pulse sequence is its increased sensitivity for inter-
residue correlations, which are favoured with respect to intra-residue correlations, as the former originate from
transfer with the higher Cα - N scalar coupling constant (of≈ 14 Hz), while the last originate from coherence
transfer with the smaller Cα - N coupling constant (of≈ 7 Hz). This is a remarkable feature, as in the majority
of the existing proton-based pulse sequences that provide both correlations simultaneously the inter-residue
correlations are unfavourable, making it difficult to establish sequential connectivities when the quality of the
spectra is poor.

Resonances which involve a step in coherence transfer on the proline nitrogen spins (intra- and inter-
correlations for residues preceding prolines) are favoured in terms of sensitivity, as the relaxation rates of
proline nitrogens are lower4. On the other hand, the sensitivity is lower when transfer from Cα of glycines is
involved, as these nuclei are coupled to two protons, but this is a concern also for the classical proton-based

4It has to be noticed that they are coupled to an additional carbon, while all other nitrogens are coupled to a proton.
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pulse sequences. In the 3D spectrum recorded on the oncomodulin sample, out of the twelve overall expected
correlations originating on Gly Cα nuclei only three Cαi+1, Ni+1, C

′
i and two Cα

i , Ni+1, C
′
i correlations were

observed. As previously mentioned, due to the absence of the scalar coupling during the first CT-evolution
period, signals originating from Gly Cα are very easily distinguished, as they have opposite phase with respect
to all other signals that evolve with the cosine period during this step.

As the chemical shifts of Cα and Cβ of alanine are at the extreme ranges of the irradiated region, mag-
netisation originating from Ala Cα nuclei might also result in less sensitive transfers.[178] The remaining three
missing inter-correlations might be accounted for by slightly different values of the inter-residual coupling
between15N and13Cα carbons, for which the transfer delay was not optimal, or by the occurrence of confor-
mational exchange phenomena. The magnetisation transfer pathway hinders the observation of an intra-residue
correlation for the last residue in a protein (as magnetisation would have to be transferred via the nitrogen
nucleus of the next residue), but the inter-residue correlation between the penultimate and the last residue is
expected, as well as both the correlations involving the first residue.

4.4 Conclusion

The experimental approaches described in this chapter are designed for the complete assignment of the
backbone heteronuclei without involving protons. In the absence of TROSY effects, which become operative at
high fields, the present approaches become interesting. In paramagnetic molecules, the TROSY effect may be
ineffective in some parts of the macromolecule because of paramagnetic relaxation, and then the heteronuclear
direct detection sequences are preferable.



CHAPTER FIVE

Principles of spin-echo modulation by J-couplings in magic-angle-spinning
solid-state NMR

5.1 Introduction

The modulation of spin echoes by the indirect scalar coupling (J-coupling) between nuclear spins is
a well-known phenomenon in solution-state NMR. The observation of spin-echo modulation by Hahn and
Maxwell in 1951[28] was one of the first experiments that demonstrated the existence of theJ-coupling and
established its nature as an indirect coupling between the magnetic dipole moments of the nuclei, with the par-
ticipation of the bonding electrons. Since then, theJ-modulation of spin echoes has been the basis of innumer-
able useful methods, including some of the earliest two-dimensional NMR experiments,[13] polarisation transfer
techniques such as INEPT,[21] and double-quantum-filtering experiments such as INADEQUATE.[103,104]

Many solution-state NMR experiments incorporatingJ-modulated spin echoes have been adapted
for solid-state NMR. For homonuclear spin systems, the INADEQUATE experiment[122,123,124] is a valu-
able probe of through-bond connectivities in both inorganic[124,125,126] and organic solids.[106,179] The refo-
cused INADEQUATE experiment, which incorporates two spin echoes, delivers enhanced sensitivity for the
common case where the refocused linewidth is smaller than the normal linewidth, and has been widely ap-
plied.[92,112,127,128,116,129] TheJ-couplings have also been exploited in solids by double-quantum filtered cor-
relation experiments.[180,181,182] It was illustrated in the previous chapters that theJ-modulated spin echoes are
important elements of spin-state-selective experiments, which provide enhanced resolution and sensitivity in
the spectra of13C labelled systems. Two-dimensional spin-echo experiments, utilizing the modulation of spin
echoes by homonuclearJ-couplings, have been widely performed in magic-angle-spinning solids, for exam-
ple in the31P studies of inorganic and organometallic systems.[129,183,184,185,186,187,188,189,190,191,192,193] Spin
echoes modulated by heteronuclearJ-couplings are also widely utilised.[194,195,196,197,198,199,200,201,202,203]

A particularly promising application ofJ-coupling measurements in solids is the study of hydrogen
bonding. Brownet al. showed that15N - 15N hydrogen-bond mediatedJ-couplings can be measured us-
ing 15N spin-echo MAS experiments with a precision sufficient to identify differences in hydrogen bonding
strength.[114] Similarly, the quantitative determination of a13C - 1H J-coupling associated with an H-agostic
bond allowed the calculation of the C - C - H bond angle.[200]

Clearly, such precise experiments depend upon a good understanding of theJ-modulation of spin
echoes in solids. However, many of the experiments described above have been performed without solid the-
oretical support. Instead, the validity of this approach has largely been based on the good agreement of the
extractedJ-couplings with values known from solution-state NMR or with values determined from observ-
able multiplet patterns in magic-angle-spinning spectra. In this chapter, we attempt to give a reasonably com-
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prehensive theory of spin-echo modulation by homonuclearJ-couplings in magic-angle-spinning solids, for
the case of isolated spin-1/2 pairs. We make no attempt here to compare the spin-echo modulation experi-
ment with other methods for estimating theJ-coupling in MAS NMR, such as the TOBSY range of pulse
sequences.[141,204,205,206,207,208,209,210,211,212,213]

The modulation of spin echoes is well-understood for coupled spin-1/2 pairs in isotropic liquids. The
Hahn-Maxwell paper[28] already provided the essential theoretical description, including the well-known disap-
pearance of theJ-modulation when the isotropic shifts of the two coupled spins are the same (case of magnetic
equivalence), and the more complicated modulation patterns in the so-called strong coupling case, where the
isotropic shift difference is comparable to theJ-coupling.

The situation is potentially much more complicated for spin-1/2 pair systems in magic-angle-spinning
solids, since the nuclear spins experience strong anisotropic interactions such as the CSA and direct DD cou-
pling. These interactions are often much larger than theJ-coupling, usually do not commute with it, and are
modulated in time as the sample rotates. It is therefore reasonable to expect a complex spin-echo behaviour for
solids under MAS, compared to isotropic liquids. Any observed modulation would be expected to depend on the
interplay of many factors in addition to theJ-coupling, such as the CSA tensors, the DD interactions, and their
mutual orientation. Although such complications could be rich and informative, they would, if present, be a
practical obstacle to the measurement and exploitation ofJ-couplings in solids, since many of the participating
interactions are hard to characterise by independent measurements.

There have been several theoretical studies of the behaviour of spin-1/2 pairs in solids under MAS,
concentrating especially on the spectral lineshapes.[20,184,185,186,188,189,191,214,215,216,217,218,219,220,221,222,223]

In their classic paper on magic-angle spinning, Maricq and Waugh[20] used average Hamiltonian theory[224] to
analyse the one-dimensional MAS lineshapes of coupled spin-1/2 pairs, in the case that the isotropic chemical
shifts are the same while the CSA tensors have different orientations. This special case, often known as “n = 0
rotational resonance”, has subsequently been investigated by various research groups.Maricq and Waugh[20]

identified the significance of the interference term involving the chemical-shift anisotropy and the dipole-dipole
coupling between the spins, using second-order average Hamiltonian theory. They predicted that the spectral
splitting induced by theJ-coupling, which is absent in solution-state NMR for the case of identical isotropic
shifts, may reappear under certain conditions in MAS solid-state NMR. However, a clear experimental demon-
stration of this was not given. The Maricq and Waugh theory was reformulated and expanded by Kuboet al.[184]

and Challoneret al.,[185] who presented a more thorough comparison with experiment, including an investiga-
tion of J-modulated 2D experiments in systems with coupled31P nuclei. These authors clearly demonstrated
theJ-recoupling phenomenon in two-dimensional spectra.J-recoupling has now been widely studied and ex-
ploited.[185,188,189,190,192,193] It has also been shown that the sign of theJ-coupling can be determined from a
fitting of the one-dimensional MAS lineshapes.[220,225]

Herein, we explore the theory and consequences of theJ-recoupling effect in more detail. In contrast
to Maricq and Waugh,[20] Kubo et al.,[184] Challoneret al.[185] and Kuwaharaet al.,[222,223] we will concen-
trate on theJ-modulation of spin echoes, rather than the one-dimensional and two-dimensional lineshapes,
which are more complicated. We will also generalise the theory and consider important cases which are not
discussed thoroughly in the earlier studies, such as the transitions between the various modulation regimes, and
the influence of rotational resonance on theJ-modulation.

The conclusions of this theoretical study are optimistic with respect to the exploitation ofJ-couplings
in solids. We will show that for a wide range of conditions, rather simpleJ-modulation behaviour is expected,
even in the presence of large CSA and DD interactions, and even for cases which would give rise to relatively
complex behaviour in liquids, such as when the isotropic shifts are slightly different. We also highlight the rare
regimes where a simpleJ-modulation of spin echoes is not expected.
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5.2 Theoretical description

We assume throughout this chapter a model of isolated spin-1/2 pairs experiencing chemical shift
anisotropy and interacting by a through-space DD coupling and by a scalarJ-coupling. Anisotropic contribu-
tions to theJ-coupling are absorbed into the DD term, which transforms in an identical fashion. The spin-1/2
pairs are assumed not to interact with each other. This situation is approximated in practice by, for example,
organic solids in which13C2 pairs have been introduced chemically, and in which the13C2 pairs are dilute. We
assume that interactions with heteronuclei such as protons are strongly suppressed by decoupling irradiation,
and that any residual heteronuclear couplings may be taken into account by imposing an exponential decay
on the theoretical results. Relaxation and other damping processes are taken into account in the same way.
Lineshape effects induced by transverse relaxation, as described in Helmleet al.,[226] are not considered.

The pulse sequence under discussion is sketched in FIGURE 5.1. Transverse magnetisation is generated by
a strongπ/2 pulse (or by cross polarisation) and allowed to evolve for the first half of the spin-echo interval,
denotedτ . In the discussion below, we assume that theπ/2 pulse has phase 90◦. A strongπ pulse is applied,
and the transverse magnetisation is allowed to evolve for a further intervalτ before the NMR signal is detected
and Fourier transformed, to give the NMR spectrum. Theπ pulse is considered here to be ideal, infinitely short,
and to have phase0. The circled numbers in FIGURE 5.1 indicate time points which are used in the discussion
below.

τ τ

(π/2)
y

(π)
x

1 2 3 4

0

-2

1
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2

a)

b)

FIGURE 5.1: a) Spin-echo pulse sequence. The intervalsτ are integer multiples of the

MAS rotation periodτr. b) Coherence transfer pathway[2] showing that the quadrature-

detected NMR signals derive from(+1)-quantum coherences during the first half of the

spin-echo interval and(−1)-quantum coherences during the second half of the spin-

echo interval.

It will be assumed throughout thatτ is an integer multiple of the sample rotation periodτr = |2π/ωr|,
whereωr is the angular rotation frequency of the sample. If this synchronisation condition is not satisfied, the
CSA introduces additional modulation effects, which are described elsewhere.[223,227,228] The form of the NMR
spectrum may vary in a complicated way as the total echo interval is increased. In the discussion below, we
ignore the details of the spectral lineshapes, and concentrate solely on theintegratedspectral amplitude as a
function of the total echo interval. The integrated spectral amplitude is identical to the time-domain signal at
the instant of the echo maximum, denoteds(2τ).

The time-domain echo modulation functions(2τ) may be Fourier transformed to obtain theecho mod-
ulation spectrum. The theory below is mainly concerned with the echo-modulation pattern generated by a
single molecular orientation. In a powder sample, there is a superposition of contributions from many different
molecular orientations, as discussed later.
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5.2.1 Nuclear spin Hamiltonian

The theory of homonuclear spin-1/2 pairs in MAS solids has been discussed many times in the litera-
ture.[61,226] The main results will be now quickly summarized. The nuclear spin Hamiltonian representing the
homonuclear spin-1/2 pair system may be written as follows:

H = Hj +Hk +Hjk (5-1)

where the one-spin Hamiltonians are: {
Hj = ωjSjz

Hk = ωkSkz
(5-2)

and the two-spin Hamiltonian is:

Hjk = ωA2SjzSkz + ωB
1
2
[S+

j S−k + S−j S+
k ] (5-3)

Hereωj andωk are the instantaneous chemical-shift frequencies of the two spins, whileωA andωB depend on
the direct and indirect spin-spin couplings according to the following relation:{

ωA = πJ + d
ωB = 2πJ − d

(5-4)

The termd is the secular part of the DD coupling between the spins, and depends on the instantaneous angle
θjk between the internuclear vector and the magnetic field. The secular DD couplingd is given by:

d = bjk
1
2

(
3 cos2 θjk − 1

)
(5-5)

where the DD coupling constant is defined as follows:

bjk = −µ0

4π
γjγk~

1
r3
jk

(5-6)

andrjk is the internuclear distance.

Since the spin interaction terms varyperiodicallyas the sample rotates, they may be written as Fourier
series. All these terms being derived from spherical tensors of maximum rank 2, the modulated interactions
may be written as follows:

ωQ(t) =
+2∑

m=−2

ω
(m)
Q eimωrt (5-7)

whereω
(−m)
Q is given by:

ω
(−m)
Q = ω

(m)
Q

∗
(5-8)

andQ refers to any of the subscriptsA, B, j or k. A complete description of the Fourier components, including
their orientation and time-dependence, is given in the work of Helmleet al..[226] For our purposes, we need
only note the following properties: 

ω
(0)
j = ωiso

j

ω
(0)
k = ωiso

k

ω
(0)
A = πJ

ω
(0)
B = 2πJ

(5-9)
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where the isotropic chemical-shift frequencies of the two spins are denotedωiso
j andωiso

k . It proves to be con-
venient to represent the spin Hamiltonian using single-transition operators,[229,230] defined by the following
relations: 

Irs
x = 1

2
(|r〉〈s|+ |s〉〈r|)

Irs
y = 1

2i
(|r〉〈s| − |s〉〈r|)

Irs
z = 1

2
(|r〉〈r|+ |s〉〈s|)

1
2
1rs = 1

2
(|r〉〈r|+ |s〉〈s|)

(5-10)

where the kets represent orthonormal spin states. A Zeeman product basis set is defined by:
|1〉 = |+ 1

2
,+ 1

2
〉

|2〉 = |+ 1
2
,− 1

2
〉

|3〉 = | − 1
2
,+ 1

2
〉

|4〉 = | − 1
2
,− 1

2
〉

(5-11)

whereSjz|Mj ,Mk〉 = Mj |Mj ,Mk〉 andSkz|Mj ,Mk〉 = Mk|Mj ,Mk〉. The spin Hamiltonian may be written
using single-transition operators in the Zeeman product basis as follows:

H = ωΣI14
z + ωA114 − ωΣ113 +H23 (5-12)

whereH23 is given by the next expression:

H23 = ω∆I23
z + ωBI23

x (5-13)

with ωΣ andω∆ the instantaneous sum and difference of the chemical shift frequencies, defined as follows:{
ωΣ = ωj + ωk

ω∆ = ωj − ωk
(5-14)

Eq. 5-12 is the starting point for a discussion of the dynamical properties of the spin-1/2 pair. It contains four
mutually commuting terms.

x

y

z

x

y

za) b)

FIGURE 5.2: a) Pseudofield in the subspace of the spin eigenstates|2〉 and |3〉. The z component of the

pseudofield is given by the instantaneous chemical-shift differenceω∆. The x component of the pseudofield is

given by the coupling termωB . Both components are periodically modulated in the case of MAS, so the tip of

the pseudofield vector executes a periodic trajectory in thexz plane (shown by the loop). b) Net rotation in the

{|2〉, |3〉} subspace induced by the pseudofield over one sample rotation period. The rotation is by an angleξ23

about an axis with polar angles{θ23, φ23}. Note that the net rotation axis is not constrained to thexz plane.
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The termH23 in Eq. 5-13is of particular importance. This Hamiltonian represents the interaction of the
fictitious spin-1/2 with a pseudo-field in thexz plane of the{|2〉, |3〉} subspace. The z component of the pseudo-
field is proportional to the instantaneous chemical-shift differenceω∆, while the x component is proportional to
the spin-spin couplingωB, which contains a time-dependent DD coupling contribution as well as the constantJ-
coupling contribution (see Eq. 5-4). This pseudofield is sketched in FIGURE 5.2a. The two pseudofield components
ωB andω∆ are both time-dependent, so the direction and magnitude of the pseudofield vary during the rotor
cycle. The tip of the pseudofield traces out a periodic loop in the xz plane.

5.2.2 Evolution operators

The spin system propagator solves the time-dependent Schrödinger equation:

d
dt

U(t, t0) = −iH(t)U(t, t0) (5-15)

wheret0 is the time origin of the propagation. From Eq. 5-10and5-12, the general form of this propagator is:

U(t, t0) = [e−iΦΣ(t,t0)−iΦA(t,t0)|1〉〈1|+
e−iΦA(t,t0)(|2〉〈2|+ |3〉〈3|)+
e−iΦΣ(t,t0)−iΦA(t,t0)|4〉〈4|]U 23(t, t0)

(5-16)

whereU 23(t, t0) is given by the equation:

d
dt

U 23(t, t0) = −iH23(t)U 23(t, t0) (5-17)

and the integrated phase functions are as follows:{
ΦΣ(tb, ta) =

∫ tb
ta

ωΣ(t)dt

ΦA(tb, ta) =
∫ tb
ta

ωA(t)dt
(5-18)

From Eq. 5-9, the phase functions evaluated over one rotor period are given by the relations:{
ΦΣ(τr + t0, t0) = ωiso

Σ τr

ΦA(τr + t0, t0) = πJτr
(5-19)

The evolution under the HamiltonianH23, over one rotor period, may be written with full generality as:

U 23(τr + t0, t0) = e−iI23·ω23(t0)τr (5-20)

This relation represents a rotation in the{|2〉, |3〉} subspace about a vector operatorω23(t0), whose direction
depends in general upon the time origint0 of the evolution.

If both τ intervals span an integer multiple of the rotation period, and the duration of theπ pulse is
negligible, the position of the sample at the beginning of the twoτ intervals is the same. It is therefore possible
to drop the indexing witht0 in the following discussion. The net rotation in the{|2〉, |3〉} subspace over one
rotor period may be therefore written as follows:

e−iI23·ω23τr = e−iφ23I23
z e−iθ23I23

y e−iξ23I23
z e+iθ23I23

y e+iφ23I23
z (5-21)

with {θ23, φ23} being the polar angles of the rotation axis, and the net rotation angle, over one rotor period,
being given by the next equation:

ξ23 = ω23τr (5-22)
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The three rotation angles in the{|2〉, |3〉} subspace are sketched in FIGURE 5.2b. The theory below describes
how these three angles determine the form of the echo modulation, and how they depend on the spin-system
parameters and experimental conditions.

The infinitesimal rotations induced byH23(t) are always about an axis in thexz plane of the{|2〉, |3〉}
subspace. However, since these infinitesimal rotations do not commute with each other in general, the net
rotation axis represented by the direction of the vector operatorω23 is notconstrained to thexz plane (see FIGURE

5.2b). The eigenstates of the rotation operator in Eq. 5-21are given by the next equations:{
|2′〉 = +e−i 1

2
φ23

cos( 1
2
θ23)|2〉+ e+i 1

2
φ23

sin( 1
2
θ23)|3〉

|3′〉 = −e−i 1
2
φ23

sin( 1
2
θ23)|2〉+ e+i 1

2
φ23

cos( 1
2
θ23)|3〉

(5-23)

and these states are satisfying the next eigenequations:{
e−iI23·ω23τr |2′〉 = e−i 1

2
ξ23 |2′〉

e−iI23·ω23τr |3′〉 = e+i 1
2
ξ23 |3′〉

(5-24)

The eigenstates of the propagator in Eq. 5-16are therefore given by the states|2′〉 and|3′〉, and the two
outer states: {

|1′〉 = |1〉
|4′〉 = |4〉 (5-25)

So, the full propagation operator over each half of the spin echo may be written as follows:

U(τ) =
4∑

s=1

e−iω′sτ |s′〉〈s′| (5-26)

where the four eigenvalues of the evolution operator are given by:
ω′1 = 1

2
ωiso

Σ + 1
2
πJ

ω′2 = − 1
2
πJ + 1

2
ω23

ω′3 = − 1
2
πJ − 1

2
ω23

ω′4 = − 1
2
ωiso

Σ + 1
2
πJ

(5-27)

These four eigenvalues of the evolution operator, given by Eq. 5-27, and the associated eigenstates, given by Eq.

5-23and Eq. 5-25, can be viewed as the “effective energy levels” for the spin-1/2 pair during the echo intervals.
So far, the only assumptions are that each half of the spin echo occupies an integer multiple of rotor periods,
and that theπ pulse duration may be ignored.

5.2.3 Spin-echo modulation

Transverse magnetisation, as generated by the initialπ/2 pulse or cross polarisation, may be described
as a superposition of(±1)-quantum coherences between the Zeeman eigenstates. Since theπ pulse in the
middle of the spin echo inverts the coherence order, and the final quadrature detected signal has coherence order
−1, we need only consider the(+1)-quantum coherences at time point©1 in FIGURE 5.1. The initial transverse
magnetisation may therefore be written as follows:

Ix = a12
©1 |1′〉〈2′|+ a13

©1 |1′〉〈3′|+ a24
©1 |2′〉〈4′|+ a34

©1 |3′〉〈4′| · · · (5-28)
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where the(−1)-quantum coherence operators such as|2′〉〈1| have not been specifically stated, since they even-
tually lead to no observable signal. From Eq. 5-23 and Eq. 5-25, the amplitudes of the four(+1)-quantum
coherences at time point©1 are given by the following relations:

a12
©1

.= 〈1′|Ix|2′〉 ≡ 1
2
[e−i 1

2
φ23

cos( 1
2
θ23) + e+i 1

2
φ23

sin( 1
2
θ23)]

a13
©1

.= 〈1′|Ix|3′〉 ≡ 1
2
[e+i 1

2
φ23

cos( 1
2
θ23)− e−i 1

2
φ23

sin( 1
2
θ23)]

a24
©1

.= 〈2′|Ix|4′〉 ≡ 1
2
[e+i 1

2
φ23

cos( 1
2
θ23) + e−i 1

2
φ23

sin( 1
2
θ23)]

a34
©1

.= 〈3′|Ix|4′〉 ≡ 1
2
[e−i 1

2
φ23

cos( 1
2
θ23)− e+i 1

2
φ23

sin( 1
2
θ23)]

(5-29)

And during the first spin echo interval, the coherences propagate at the following frequencies:
ω12 .= ω′2 − ω′1 ≡ − 1

2
ωiso

Σ − πJ + 1
2
ω23

ω13 .= ω′3 − ω′1 ≡ − 1
2
ωiso

Σ − πJ − 1
2
ω23

ω24 .= ω′4 − ω′2 ≡ − 1
2
ωiso

Σ + πJ − 1
2
ω23

ω34 .= ω′4 − ω′3 ≡ − 1
2
ωiso

Σ + πJ + 1
2
ω23

(5-30)

The coherence amplitudes at the end of the first half of the spin-echo sequence are given by the relation below:

ars
©2 = ars

©1 eiωrsτ (5-31)

Since the evolution eigenstates|2′〉 and|3′〉 are mixed Zeeman product eigenstates (see Eq. 5-23), the effect of
the strong, ideal,π pulse may be relatively complicated. The detailed deduction of theπ-rotation transforma-
tions summarised below can be found in Appendix B (see page102):

Rx(π)|1′〉 = −|4′〉 (5-32)

Rx(π)|2′〉 = − cos φ23 sin θ23|2′〉+ (− cos φ23 cos θ23 + i sinφ23)|3′〉 (5-33)

Rx(π)|3′〉 = (− cos φ23 cos θ23 − i sinφ23)|2′〉+ cos φ23 sin θ23|3′〉 (5-34)

Rx(π)|4′〉 = −|1′〉 (5-35)

where the rotation operator is defined by:

Rx(π) .= e−iπIx (5-36)

Theπ-rotation equations show that rotation operator, when applied to an eigenstate|s′〉, does rotate the eigen-
value ofIx operator around thex axis by an angleπ. From this, one may derive now the following correspon-
dence between coherence amplitudes before and after theπ pulse:

a21
©3

.= 〈2′|Ix|1′〉 ≡ +cos φ23 sin θ23a24
©2 + (cos φ23 cos θ23 + i sinφ23)a34

©2
a31
©3

.= 〈3′|Ix|1′〉 ≡ − cos φ23 sin θ23a34
©2 + (cos φ23 cos θ23 − i sinφ23)a24

©2
a42
©3

.= 〈2′|Ix|4′〉 ≡ +cos φ23 sin θ23a12
©2 + (cos φ23 cos θ23 − i sinφ23)a13

©2
a43
©3

.= 〈3′|Ix|4′〉 ≡ − cos φ23 sin θ23a13
©2 + (cos φ23 cos θ23 + i sinφ23)a12

©2

(5-37)

Notice that every(−1)-quantum coherence derives its amplitude from two(+1)-quantum coherences existing
before theπ pulse. During the second half of the spin echo, the four(−1)-quantum coherences evolve under
their eigenfrequenciesωrs = −ωsr, as given in Eq. 5-30, according to next relation:

ars
©4 = ars

©3 eiωrsτ (5-38)

The echo amplitude is therefore modulated in general by eight frequency components, each derived from one
of the four pairs of coherence transfer processes induced by theπ pulse. The echo amplitude may be estimated
from the following expression:

s(2τ) = a21
©4 〈1′|Ix|2′〉+ a31

©4 〈1′|Ix|3′〉+ a42
©4 〈2′|Ix|4′〉+ a43

©4 〈3′|Ix|4′〉 (5-39)



5.2 Theoretical description 83

This simplifies (see Appendix B for details) to the following expression:

s(2τ) = s−(2τ) + s0(2τ) + s+(2τ) (5-40)

where all three modulation components are given by next expressions:
s−(2τ) = a− cos[(πJ − 1

2
ω23)2τ ]

s0(2τ) = a0 cos[(πJ)2τ ]
s+(2τ) = a+ cos[(πJ + 1

2
ω23)2τ ]

(5-41)

with the amplitudes: 
a− = 1

2
cos φ23 sin θ23(1 + cos φ23 sin θ23)

a0 = (1− cos2 φ23 sin2 θ23)
a+ = 1

2
cos φ23 sin θ23(−1 + cos φ23 sin θ23)

(5-42)

The eight modulation components implied by the Eqs. 5-37 and5-39 condense into the six components ex-
pressed in the Eqs.5-40and5-41, since two pairs of components are degenerate. An echo-modulation spectrum
is generated by taking the Fourier transform of the echo amplitudes(2τ) with respect to the echo interval2τ .
From Eq. 5-41, the “ideal” components0(2τ) generates a doublet with a splitting of2πJ and amplitudea0.
Similarly, the “satellite” componentss±(2τ) contribute doublets with splittings of2πJ ± ω23 and amplitudes
a± to the echo-modulation spectrum.

a) b) c)

FIGURE 5.3: Amplitudesa−, a0 and a+ of the spin-echo modulation components,plotted as functions of

the polar angles of the rotation axis{θ23, φ23}. In each case the distance of the surface from the origin is

proportional to the signal-component amplitude. The small regions of negative amplitude have a dark shade.

a) Amplitudea− of thes−(2τ) satellite component, which contributes a doublet with splitting2πJ − ω23 to

the echo-modulation spectrum. b) Amplitudea0 of the “ideal” s0(2τ) component, which contributes a doublet

with splitting2πJ to the echo-modulation spectrum. c) Amplitudea+ of thes−(2τ) satellite component, which

contributes a doublet with splitting2πJ + ω23 to the echo-modulation spectrum.

The idealJ-modulated components0 originates from the four coherence transfer pathways|3′〉〈4′| ⇒
|2′〉〈1′|, |2′〉〈4′| ⇒ |3′〉〈1′|, |1′〉〈3′| ⇒ |4′〉〈2′|, and|1′〉〈2′| ⇒ |4′〉〈3′| induced by theπ pulse. The remaining
four coherence transfer pathways induced by theπ pulse account for thes+ (|3′〉〈4′| ⇒ |3′〉〈1′|, |1′〉〈3′| ⇒
|4′〉〈3′|) ands− (|2′〉〈4′| ⇒ |2′〉〈1′|, |1′〉〈2′| ⇒ |4′〉〈2′|) ”satellite” components (see Appendix B). The spin
system parameters and experimental conditions determine howprominentthe idealJ-modulated components
are, with respect to the other terms. However,its frequency is always conserved. This conclusion is borne out by
the numerical simulations presented later. By definition, theJ-splitting of the ideal components0 is independent
of the molecular orientation, while the frequencies of the satellite componentss± are orientation-dependent.
In a powder, this property helps to differentiate between the ideal component and the satellites. The satellites
tend to be broad in a powder, while the idealJ-modulated component stays sharp. The presence of satellite
components in the Fourier transforms of spin-echo data was noted previously by Kuwaharaet al..[222,223]
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Modulation components corresponding to the pureJ-coupling were also identified by Kuboet al.[184]

and Challoneret al..[185] However, those analyses were performed by making approximations, while the present
result is completely general for isolated spin-1/2 pairs in a magic-angle-spinning solid.

FIGURE 5.3sketches the dependence of the modulation amplitudesa−, a0 anda+ on the direction of the
net rotation axis in the{|2〉, |3〉} subspace, as described by Eq. 5-42. The amplitude of the idealJ-modulated
component has the form of a doughnut in theyz plane (FIGURE 5.3b), while the satellite amplitudes have the form
of lobes along the± x axis (FIGURE 5.3a andc). PureJ-modulation of the spin echo is therefore observed when
the net rotation axis lies anywhere in theyz plane, while the satellites become prominent when the net rotation
axis is roughly parallel to the positive or negative x axis in the{|2〉, |3〉} subspace.

Maricq and Waugh[20] and Challoneret al.[185] analysed the problem using average Hamiltonian the-
ory[224] applied directly toH23. This approach is only feasible in the fast spinning limit but cannot be reliably
used at spinning frequencies comparable to, or less than, the anisotropic chemical shifts. The problem may
be treated with greater generality using an interaction frame transformation of the type employed in the work
of Levitt et al..[61] In analogy with Eq. 5-7, we define the Fourier components of the chemical shift frequency
difference as follows:

ω∆(t) =
∑

m=−2,+2

ω
(m)
∆ eimωrt (5-43)

The isotropic and anisotropic parts of the chemical shift frequency difference are defined through:{
ωiso

∆ = ω
(0)
∆ = ωiso

j − ωiso
k

ωaniso
∆ (t) =

∑
m6=0 eimωrt (5-44)

The time-dependent rotation operator in{|2〉, |3〉} subspace is defined by:

V(t, 0) = e−i(Φaniso
∆

(t,0)+nωrt)I23
z (5-45)

where the integrated phase angle is:

Φaniso
∆ (tb, ta) =

∫ tb

tb

ωaniso
∆ (t)dt (5-46)

Here n is the closest integer to the ratioωiso
∆ /ωr which is the closest order of rotational resonance

[51,61,226,231,232,233,234,235] .

The interaction frame spin Hamiltonian may be defined through:

H = VH23V − (nωr + ωaniso
∆ )I23

z (5-47)

Since the interaction frame operator defined by Eq. 5-45 is periodic, with periodτr, and most of the large
chemical shift interactions have been removed from the interaction frame Hamiltonian in Eq. 5-47, it is therefore
possible to apply average Hamiltonian theory[224] as long as the spinning frequency is larger than the coupling
terms. Note that any value of the CSA may be tolerated.

From the Fourier theorem, the periodic phase functionΦaniso
∆ may be expressed as an infinite series:

Φaniso
∆ =

+∞∑
k=−∞

a
(k)
∆ eikωrt (5-48)

The complex amplitudesa(k)
∆ may be regarded as spinning sidebands generated by the periodic modulation of

the chemical shift difference. In this frame, the Hamiltonian may be written as follows:

H̃ = ω̃B
1
2
|3〉〈2|+ ω̃∗B

1
2
|2〉〈3|+ ∆ωnI23

z (5-49)
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where∆ωn is the offset from the nearest rotational resonance:

∆ωn = ωiso
∆ − nωr (5-50)

The interaction frame coupling term may be expressed using a Fourier series:

ω̃B =
+∞∑

k=−∞
ω̃

(k)
B eikωrt (5-51)

where the Fourier components are given by:

ω̃
(k)
B =

+2∑
m=−2

ω
(m)
B a

(m−k−n)
∆

∗
(5-52)

andω
(m)
B are defined in Eq. 5-7. This represents a convolution of the dipolar sideband pattern with the sideband

pattern generated by the anisotropic chemical shift difference, shifted by the nearest rotational resonance order
n. If the spinning frequency is fast compared to the coupling terms, Eq. 5-49may be replaced by its time average
over the modulation period, which is:

H̃23(1) = ω̃
(0)
B

1
2
|3〉〈2|+ ω̃B

(0)∗ 1
2
|2〉〈3|+ ∆ωnI23

z (5-53)

and the resonant component of the interaction frame coupling is given by the next relation:

ω̃
(0)
B =

+2∑
m=−2

ω
(m)
B a

(m−n)
∆

∗
(5-54)

It contains products of spin-spin coupling sideband amplitudes and sideband amplitudes generated by the dif-
ference chemical shift. From Eq. 5-53, it is possible to derive the polar angles of the net rotation in{|2〉, |3〉}
subspace: {

tan θ23 = |ω̃(0)
B |∆ωn

φ23 = arg ω̃
(0)
B

(5-55)

These angles govern the amplitudesa0 anda±, according to Eq. 5-42and FIGURE 5.3. The frequency shifts of the
s± satellite components with respect to the ideals0 component are determined by the frequencyω23, which is
given by:

ω23 =
[
|ω̃(0)

B |
2 + |∆ωn|2

]1/2
(5-56)

This set of equations can be used to derive the spin-echo modulation in different experimental regimes.

5.2.4 Echo-modulation regimes

The implications of this theoretical treatment for the measurement ofJ-couplings under different exper-
imental or chemical conditions will be briefly summarised in the next paragraphs. The experimental regimes are
distinguished by the rotation axes and angles in the{|2〉, |3〉} subspace, determined by the 2-level Hamiltonian
H23 in Eq. 5-13, and sketched in FIGURE 5.2b.

Five different regimes may be distinguished, depending on how the spinning frequency is related to the
chemical shift anisotropies and the difference between the isotropic shift frequencies.
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a) Very fast MAS

The very fast MAS regime is reached if the rotation frequency is much larger than chemical shift anisotropies
and isotropic shift difference; conditions which may be expressed as follows:

|ωr| > |
dω∆

2πJ
|, |ωiso

∆ | (5-57)

If the CSA interactions are large, it is difficult to attain the fast MAS regime with current spinning technol-
ogy. For example, consider the following typical parameters for13C-labelled sp2 sites in organic solids: CSA
interactions of the order of10 kHz, J-coupling of 50Hz, and DD coupling of the order of -2kHz. With these
parameters, the condition|ωr| > |dωaniso

∆ /2πJ | is only satisfied for spinning frequencies of around 100kHz
and above.

On the other hand, the separation in isotropic chemical-shift frequencies may be much larger than the
J-coupling, equal to zero or comparable to theJ-coupling. The first case gives rise to a spin-echo modulation
oscillating only at theJ-coupling frequency. For the particular case of degenerated isotropic shifts, no spin-echo
modulation is expected. Indeed, this corresponds to the A2 case of magnetic equivalence in isotropic liquids. If
the MAS frequency is high enough (see Numerical simulations section), the homonuclearJ-coupling has no
spectral effects in spin-1/2 pair systems with identical isotropic chemical shifts. Lastly, at high enough MAS
frequency, more complicated modulation phenomena are expected for systems with isotropic shift difference
comparable to theJ-coupling. These are however exactly analogous to those observed for AB systems in
isotropic liquids and are not usually relevant in solids.

To summarise, in the very fast regime, two cases have to be retained for the spin-echo modulation:

s(2τ) = cos[πJ(2τ)] (very fast MAS;large isotropic shift separation) (5-58)

s(2τ) = 1 (very fast MAS;degenerateisotropic shifts) (5-59)

b) Moderate MAS, small isotropic shift difference

Now, let us consider the situation when the MAS frequency is not sufficiently high with respect to the difference
in chemical-shift anisotropies:

|ωr| < |
dω∆

2πJ
| (5-60)

Additionally, if the CSA tensors of the two homonuclear spins are identical in all respects, then the chemical-
shift difference is equal to zero at all times. This special case is called heretotal magnetic equivalenceand will
be discussed further below. In most cases, the CSA tensors of the two spins have different orientation and/or
principal values, which leads to finite values for the instantaneous chemical-shift difference.

The CSA has therefore the effect of stabilising the spin-echoJ-modulation by ensuring that instanta-
neous chemical shifts are different for most of the time, except in the case of total magnetic equivalence, where
the two CSA tensors are identical in all respects. On the contrary, it is less obvious to find an explanation for
why DD coupling also has a stabilising effect on theJ-modulation.

The moderate regime is thus reached if the next conditions are satisfied:

|ωiso
∆ | . |ωaniso

∆ | < |ωr| < |
dω∆

2πJ
| (5-61)

These conditions are generally satisfied for a wide range of practical spinning frequencies, and even applies
when there is a small isotropic chemical-shift difference, which, in liquids, leads to the relatively complicated
AB case.
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The spin-echo modulation, in the moderate spinning regime, is dominated by the pureJ-coupling com-
ponent:

s(2τ) ≈ cos[πJ(2τ)] (moderate MAS; nearn = 0 rotational resonance) (5-62)

c) Moderate MAS, large isotropic shift difference

In many cases, the difference in isotropic chemical shifts between the two spins is larger than the chemical-shift
anisotropies and this leads to slightly different behaviour.

Consider the case where the spinning frequency is large compared to the chemical-shift anisotropies, at
the same time as being comparable to the isotropic shift frequency difference:

|ωaniso
∆ | < |ωiso

∆ | ∼ |ωr| . |
dω∆

2πJ
| (5-63)

In this regime, the behaviour of the spin system depends on the nearest rotational resonance ordern, i.e., the
closest integer to the ratioωiso

∆ /ωr.

The expected spin-echo modulation behaviour for a powder off and on rotational resonance, is given by
the next relations:

s(2τ) ≈ cos[πJ(2τ)] (moderate MAS; off rotational resonance) (5-64)

s(2τ) ≈ 1
2
cos[πJ(2τ)] + 1

2
g(2τ) (moderate MAS; onn 6= 0 rotational resonance) (5-65)

whereg(2τ) represents the broads± satellites. The functiong(2τ) is a rapidly decaying function of the echo
interval 2τ , and has the propertyg(0) = 1. In determing the off rotational-resonance echo modulation, the
small satellite contributions, considered by Kuwaharaet al.,[222,223] have been ignored.

d) Slow MAS

Now consider the situation where the spinning frequency is smaller than the chemical-shift anisotropies, so that
the one-dimensional spectra contain many spinning sidebands generated by the modulation of the CSA. We
refer to this case as the “slow-spinning” regime. It is defined by the next approximated boundaries:

|d|, |πJ | . |ωr| . |ωaniso
∆ | (5-66)

Far from rotational resonance, the spin-echo modulation in the slow MAS regime is similar to that ob-
served in the moderate-spinning, large chemical-shift-difference regime described in Eq. 5-63. If there is a finite
isotropic shift difference, theJ-modulated components0 dominates, and the expected modulation behaviour is
again dominated by the pureJ-component. If the isotropic shift difference is small or zero, or in the vicinity
of a rotational resonance, there are strong satellite modulation componentss+ ands− for some molecular ori-
entations. However, these are rendered less prominent in a powdered solid since their frequencies are strongly
orientation-dependent. The expected modulation behaviour in the slow MAS regime is therefore:

s(2τ) ∼= cos[πJ(2τ)] (slow MAS, far from rotational resonance) (5-67)

s(2τ) ∼= 1
2
cos[πJ(2τ)] + 1

2
g(2τ) (slow MAS, on rotational resonance, includingn = 0) (5-68)
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where the rapidly decaying functiong(2τ) again takes into account the broad satellitess±(2τ).

The 31P spin systems discussed by Challoneret al.[185] fall within the slow-spinning regime, because
the spectra contain a large number of CSA spinning sidebands. However, the theory of Challoneret al.,[185]

which predicted a pureJ-modulated spin echo, is restricted to the moderate-spinning regime, and appears to be
unsatisfactory in this experimental situation. The discrepancies between experiment and theory may have been
obscured by the orientational broadening of thes± components, as previously described.

e) Very slow MAS

The interaction-frame average Hamiltonian description[224] breaks down if the spinning frequency is less than
or comparable to the spin-spin couplings:

|ωr| . |d|, |πJ | (5-69)

Although it is not possible to derive any rotation parameters, the general conclusions of Eq. 5-41 and Eq. 5-
42 still apply. The echo modulation still contains an idealJ-modulated componentss0, whose frequency is
orientation-independent, and satellite componentss±, whose frequencies are strongly orientation-dependent.
The satellite components are, as usual, expected to become very broad in a powder sample. As for the ideal com-
ponent amplitudes0, it may be estimated by assuming that the rotation axes are quasi-isotropically distributed
in the 2D space.

The expected echo modulation function in this regime is given by:

s(2τ) ∼= 2
3
cos[πJ(2τ)] + 1

3
g(2τ) (very slow MAS) (5-70)

where the rapidly decaying functiong(2τ) again takes into account the broad satellite componentss±(2τ).

Once more we note the astonishing propensity of theJ-modulation to resist, or even be stabilised by,
potentially competing interactions that are orders of magnitude larger in amplitude.

f) Total magnetic equivalence

If the chemical shift frequencies of the coupled sites are identicalat all instants during the sample rotation
period, the termω∆ vanishes identically, and the spin echoes are unmodulated:

s(2τ) = 1 (total magnetic equivalence) (5-71)

This case is encountered when the coupled sites have the same chemical-shift tensors in all respects,
including principal axes orientations. It is referred to here astotal magnetic equivalence. The most easily
envisaged case is when the sites of the participating spins are related by a crystal inversion operation.

In solution NMR, the termmagnetic equivalencerefers to the situation where two or more spins have
the same isotropic shift, and also have identicalJ-couplings to all other spins.[2] The termtotal magnetic
equivalence, as used here, implies a stronger condition, in which the chemical shifts of the coupled spins, both
isotropic and anisotropic, are the same forall molecular orientations, as well as fulfilling the ordinary scalar
coupling conditions for magnetic equivalence. Haeberlen[236] and Mehring[14] employ an alternative definition
of magnetic equivalence in solids, based on crystal symmetry operations. However, as noted by Haeberlen,[236]

this definition is problematic: nuclei which are magnetically equivalent in solids (according to the Haeberlen-
Mehring definition) are not necessarily magnetically equivalent in isotropic solution (according to the accepted
solution-state definition). Here we choose to use the solution-state definition of magnetic equivalence, avoid
the Haeberlen-Mehring definition entirely, and introduce the new termtotal magnetic equivalencewhich is a
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restricted version of solution-state magnetic equivalence, and which is applicable to anisotropic phases. Total
magnetic equivalence should be distinguished from the situation in Eq. 5-59, which applies when only the
isotropic shifts are the same, while the chemical shift anisotropy tensors are different. The Eq. 5-59is only valid
in the very fast spinning regime, while in the case of total magnetic equivalence, the spin-echo modulation is
expected to disappear atall spinning frequencies.

Summary of the modulation regimes

FIGURE 5.4 is intended to summarize and clarify the conclusions of the previous subsections. Three general
regimes of echo modulation are identified, labelled A, B and C. The experimental cases discussed below are
indicated by symbols. The regimes are:

Regime A.
In this regime, the net rotation in the{|2〉, |3〉} subspace occurs around an axis which is close to the x
axis (see FIGURE 5.2b). In this regime, thes− satellite dominates, while theJ-modulated components0 is
small or absent.

Regime B.
In this regime, the net rotation in the{|2〉, |3〉} subspace occurs around an axis which is close to theyz
plane. In this regime, theJ-modulated components0 is dominant. This is the most favourable regime for
accurate determination of theJ-coupling by spin-echo modulation measurements.

Regime C.
In this regime, the phase of the net rotation axes is strongly orientation-dependent, and all three modula-
tion componentss−, s0 ands+ are present. Nevertheless, in a powder, the idealJ-components0 is most
prominent since the others have orientation-dependent frequencies and become broad. It is therefore still
possible to estimate theJ-coupling accurately by spin-echo modulation measurements.

ω
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ω
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ω
∆
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FIGURE 5.4: The three regimes of spin-echo modulation, plotted as a function of spinning frequency (horizontal axis) and

difference in chemical-shift anisotropies (vertical axis). Inregime A, theJ-modulation is absent or weak. Inregime B, the

J-modulation is prominent and relatively pure in form. Inregime C, theJ-modulated component is accompanied by satellites

which are broad in a powder. The symbols indicate the experimental cases presented in FIGURE 5.9/. a) Case of vanishing

isotropic-shift difference. The thick horizontal line represents total magnetic equivalence. b) Finite isotropic-shift difference.

The rotational resonances are shown by vertical lines.Regime Avanishes in this case.

FIGURE 5.4a refers to the case of vanishing isotropic shift difference (ωiso
∆ ). The diagram shows the inci-

dence of the three regimes, as a function of spinning frequency (horizontal axis) and the difference in chemical
shift anisotropies (vertical axis). The bold horizontal line indicates total magnetic equivalence (regime A at all
spinning frequencies). The boundary between regime A and B corresponds to the condition|ωr| ∼ |dω∆|/|2πJ |.
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As one passes from A to B, the low-frequency modulation components− becomes weaker, and the trueJ-
modulation components0 becomes increasingly prominent. The boundary between regime B and C corre-
sponds to the condition|ωr| ∼ |ωaniso

∆ |. As one passes from B to C, the additional modulation componentss±
become stronger. However, these components are generally broad in powder samples.

FIGURE 5.4b shows the regime boundaries in the presence of a substantial isotropic shift difference. The
positions of the rotational resonances are indicated by the vertical dashed lines. The vicinity of the rotational
resonances corresponds to regime C. Regime B is split into “islands” between the rotational resonances, while
regime A vanishes. The width of the rotational resonance regions is proportional to the homonuclear dipole-
dipole coupling.

The main conclusions of this section are that for isolated homonuclear spin-1/2 pairs, a prominentJ-
modulated spin-echo component should be visible in rotating solids, except under the conditions corresponding
to regime A (very fast MAS, or total magnetic equivalence). In regime B, a damped oscillation of the spin
echoes is observed, with an oscillation frequency equal to theJ-coupling. In regime C, the initial part of the
echo modulation is contaminated by the broad componentss±(2τ). Nevertheless,an accurate estimate of the
J-coupling by spin-echo modulation should be possible in the very wide range of cases covered by regimes B
and C.

5.3 Numerical simulations

In this section we present numerical simulations of spin-echo modulations for isolated spin-1/2 pairs in
solids under magic-angle spinning.

All simulations were performed with SIMPSON[89] and correspond to isolated13C2 pairs at a magnetic
field of B0 = 9.34 T, leading to a13C Larmor frequency ofω0/2π = −100 MHz. A π/2−τ−π−τ spin-echo
sequence was simulated, using an ideal and infinitely shortπ pulse and starting with transverse magnetization
for both spins. The integrated signal amplitude was obtained from the intensity of the complex signal at the end
of the secondτ interval, i.e., the first point of the free-induction decay. The powder average was performed using
a a set of 143 molecular orientational angles{αMR, βMR} generated by the ZCW algorithm[86,87,88] and 10
evenly-spaced values for the third Euler angleγMR. These angles define the relative orientation of a molecular
reference frame M, defined so that the z axis is along the internuclear vector, and a rotor reference frame R,
defined so that the z axis is along the spinning axis. We verified that increasing the number of orientations did
not lead to appreciable changes in the integrated signal. The simulations took no account of the interactions
with heteronuclei such as protons. The simulated modulation curvess(2τ) were multiplied by an exponential
function exp{−λ2τ}, corresponding to Lorentzian spectral broadening with a width at half-height ofλ/2π =
10.5 Hz, in order to emulate signal decay through relaxation or other irreversible damping mechanisms.

FIGURE 5.5 shows the dependence of the spin-echo modulation on spinning frequency, with all other
parameters kept fixed. The simulation parameters for the first two columns are specified in TABLE 5.1. Note that
the isotropic chemical shifts of the two sites are identical. The simulation at 1kHz spinning (FIGURE 5.5a) shows
a clearJ-splitting, which persists up to a spinning frequency of 18kHz (FIGURE 5.5c). At a spinning frequency
of 33kHz (FIGURE 5.5d), a central peak appears in the Fourier transform of the echo modulation, shown in the
second column. This peak marks the appearance of a significants− component, and signifies the transition
from regime Bto regime Ain FIGURE 5.4. At higher spinning frequencies, the central peak grows at the expense
of the pureJ-modulated components0. At the highest simulated spinning frequency of 100kHz (FIGURE 5.5f),
theJ-modulation almost vanishes, and the spin system behaves to a good approximation as a system of two
magnetically-equivalent spins-1/2 in an isotropic liquid.

The third column in FIGURE 5.5 shows simulations for the parameters in TABLE 5.1, except that the DD
coupling is set to zero. A similar behaviour is observed as for the second column, except that the transition from
regime Bto regime Aoccurs at a much lower spinning frequency, between 3kHz and 18kHz. This confirms
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FIGURE 5.5: Spin-echo simulations for an ensemble of spin-1/2 pairs showing the effect of increasing spinning

frequency from 1 to 100kHz at a magnetic fieldB0 = 9.34T. The spinning frequencies are given by (a) 1kHz,

(b) 3kHz, (c) 18kHz, (d) 33kHz, (e) 70kHz and (f) 100kHz. The first two columns show the time-domain echo

modulations and their Fourier transforms, employing all the spin-interaction parameters listed in TABLE 5.1. The third

column shows the Fourier transforms of the echo modulations, simulated using the same parameters as in the first

two columns, except that the DD coupling is set to zero. The fourth column shows the Fourier transforms of the echo

modulations, simulated using the same parameters as in the first two columns, except that the CSA is set to zero.

the importance of the CSA-DD interference in maintaining theJ-modulation in systems of spin-1/2 pairs with
identical isotropic shifts.

The fourth column in FIGURE 5.5shows simulations for the parameters in TABLE 5.1, except that the CSA
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tensors of both sites are set to zero. Since the isotropic shifts are identical, this case corresponds to total magnetic
equivalence. As expected, theJ-modulation is quenched at all spinning frequencies (regime Athroughout).

TABLE 5.1: Parameters for the CSA and DD tensors, andJ-coupling constants
used in numerical simulations.a

CSA parameters sitej sitek

δiso 134ppm 134ppm

δaniso 81.7ppm 81.7ppm

η 0.93 0.93

ΩPM {39◦, 77◦, - 53◦} {82◦, 24◦, 29◦}

DD parameters site{j, k}

d/2π - 3166Hz

Ω
′
PM {0◦, 0◦, 0◦}

J parameters site{j, k}

J 70Hz

a The chemical shifts are defined using the deshielding convention. The
isotropic chemical shift, anisotropic chemical shift and asymmetry parameter
are defined throughδiso = 1

3 (δxx + δyy + δzz), δaniso = δzz − δiso and
η = (δyy − δxx)/δaniso, where the chemical-shift principal values are ordered
according to|δzz − δiso| ≥ |δxx − δiso| ≥ |δyy − δiso|. These parameters
resemble those for [11,12-13C2]-all-E-retinal given in the work of Carravettaet
al..[237] The Euler angles specify the relative orientations of the principal axes
systemP of the relevant spin interaction and the molecular axes systemM .
The z axis of theM system is defined to be parallel to the13C-13C internuclear
vector.

FIGURE 5.6 shows the effect of increasing the isotropic shift difference between the two sites, at a slow
spinning frequency ofωr/2π = 3 kHz. In the first two columns, all of the spin system parameters are as in
TABLE 5.1, except for the isotropic shift frequency differenceωiso

∆ /2π which increases from0 in (a) to 400Hz
in (f). As may be seen, the spin-echo modulation is almost unaffected by this increase in the chemical shift
difference.

All simulations in the first two columns of FIGURE 5.6correspond toregime B. In FIGURE 5.6a, the rotation
axis in{|2〉, |3〉} subspace is dominated by the term representing the interference between CSA and DD inter-
actions, and lies close to the y axis. In FIGURE 5.6f, the isotropic-shift difference dominates, so that the rotation
axis is close to the z axis in{|2〉, |3〉} subspace. In the intermediate plots, the net rotation axis is close to the yz
plane.

The third column in FIGURE 5.6shows simulations for the same parameter sets as in the second column,
except that the DD coupling is set to zero. Therefore, the CSA-DD contribution is eliminated. The modulation
is again rather clean at high isotropic-shift differences, but additional modulation peaks are observed for small
isotropic-shift differences. The contrast between the second and third column in FIGURE 5.6again illustrates the
important role of the CSA-DD interference in stabilizing theJ-modulation.

The fourth column in FIGURE 5.6shows simulations for the same parameter sets as in the second column,
except that the CSA is set to zero. Case (a) in column 4 corresponds to total magnetic equivalence, where the
J-modulation is absent (regime A). A cross-over toregime Bis observed in the region ofωiso

∆ /2π = 80 Hz
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FIGURE 5.6: Spin-echo simulations for an ensemble of spin-1/2 pairs showing the effect of increasing isotropic shift

difference at a fixed spinning frequencyωr/2π = 3 kHz and magnetic fieldB0 = 9.34T. The first two columns show

the time-domain echo modulations and their Fourier transforms, with simulation parameters as in TABLE 5.1, except for

the difference in the isotropic shift frequenciesωiso
∆ /2π, which takes the values a) 0Hz, b) 20Hz, c) 40Hz, d) 80Hz,

e) 200Hz and f) 400Hz. The third column shows the Fourier transforms of the echo modulations, simulated using the

same parameters as in the first two columns, except that the dipole-dipole coupling is set to zero. The fourth column

shows the Fourier transforms of the echo modulations, simulated using the same parameters as in the first two columns,

except that the CSA is set to zero.

(FIGURE 5.6d), marked by non-zero frequencies for the inners− satellites and the appearance of theJ-modulated
s0 components. At the moderate isotropic-shift difference ofωiso

∆ /2π = 400Hz (FIGURE 5.6f), theJ-modulation
is clean (regime B). The contrast between columns 2 and 4 illustrates the significance of the CSA in stabilizing
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theJ-coupling modulation in theregime Bfor a range of isotropic shift differences going from 0 to 200Hz.
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FIGURE 5.7: Simulations of spin-echo modulations for an ensemble of spin-1/2 pairs showing the effects of molecu-

lar orientation. The time-domain modulations are shown in the left column and their Fourier transforms in the right

column. The simulated spinning frequency isωr/2π = 3kHz and the magnetic field isB0 = 9.34T. All simulation pa-

rameters are as in TABLE 5.1. The Euler angles{αMR, βMR, γMR} specifying the relative orientation of the molecule-

fixed frameM and the rotor-fixed frameR are a) {0◦, 75◦, 180◦}; b) {0◦,−53◦, 180◦}; c) {38◦, 103◦, 180◦}; d)

{63◦, 210◦, 180◦}; e) {−140◦, 13◦, 180◦}. The powder average modulation is shown in f).

In FIGURE 5.7, the dependence of the spin-echo modulation on the molecular orientation, inregime C, is
explored. All simulations are again for the parameters in TABLE 5.1, at a slow spinning frequency ofωr/2π =
3 kHz. Rows (a)-(e) are for a variety of single molecular orientations, while row (f) is the powder average over
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many orientations. The simulations for a single orientation display modulation peaks from all three components
s−, s0 ands+. The amplitudes and frequencies of thes− ands+ peaks are strongly orientation-dependent, while
only the amplitude of the ideals0 is orientation-independent. For example, theJ-modulated peaks of the single
orientation simulations shown in (a), (c) and (e) all coincide, although they have very different amplitudes.
When a full orientational average is taken (FIGURE 5.7f), theJ-modulated componentss0 interfere constructively,
while thes± peaks are strongly broadened.

The powder-average spin-echo trajectory in FIGURE 5.7f has a deceptive simplicity. Nevertheless, the
peak splitting in the Fourier-transformed echo modulation does provide an accurate estimate of theJ-coupling.

5.4 Experiments

In this section we show experimental results for three13C2-labelled samples, which illustrate the spin-
echo modulation phenomena discussed above.

The three samples used were:

a) Diammonium [2,3-13C2]-fumarate, co-crystallized at a molar ratio of 1:10 with natural abundance diammo-
nium fumarate. The molecular structure of the13C2-fumarate anion is illustrated in FIGURE 5.8a. We refer
to this sample as 10%-13C2-DAF;

b) Ammonium hydrogen [2,3-13C2]-maleate (for the structure of the anion, see FIGURE 5.8b). We refer to this
sample as13C2-AHM;

c) [13C2,15N]-glycine (FIGURE 5.8c).

The fumarate anion in DAF lies on a centre of inversion symmetry in the crystal structure[238] and hence
the two13C sites display total magnetic equivalence. In AHM, on the other hand, the two13C sites are related
by a reflection plane,[239] not an inversion, and have CSA tensors with the same principal values but different
orientations. In the DAF case, the coupled nuclei are magnetically equivalent in general, while in the AHM case,
the coupled nuclei are not magnetically equivalent in general but they can approach the magnetic equivalence
at very high spinning frequency. In glycine, the labelled13C sites have very different chemical shifts.
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FIGURE 5.8: Molecular structures of the13C2-labelled species used for experimental

tests. a) The anion of diammonium[2,3-13C2]-fumarate; b) The anion of ammonium

hydrogen[2,3-13C2]-maleate; c)[13C2,15N]-glycine.
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All experiments were performed using 4mm zirconia magic-angle-spinning rotors on a Varian Infinity+
spectrometer at a magnetic field strength of9.4 T. Ramped cross-polarization[240] was used to generate proton-
enhanced13C transverse magnetization. The echo intervals were performed in the presence of SPINAL-64
proton decoupling[25,241,113] throughout, using a decoupler field corresponding to a proton nutation frequency
of 100kHz for all samples. The SPINAL pulse length, in theory equal to 165◦, was experimentally optimised
for each sample using a spin-echo experiment with a2τ = 31ms to determine the pulse length giving the most
signal. The so-determined values were, 5.3, 5.3 and 4.9µs for DAF, AHM and glycine samples, respectively. In
all cases the13C π pulse had a duration of6 µs, and its centre was always placed so as to coincide with an integer
number of rotation periods after the end of cross-polarization. A MAS spinning frequency of10000±5 Hz was
used in all cases. Sixteen transients were collected for glycine and eight for DAF and AHM samples. The
recycle delay was set to 6, 4 and 25s for glycine, DAF and AHM samples. An eight-step nested phase cycle[2]

was used to select changes of coherence order of±1 and±2 on the1H 90◦ and13C 180◦ pulse, respectively.
Only the−2 (for 13C 180◦) change in coherence order produces detectable signal.

Experimental results for the 10%-13C2-DAF sample are shown in FIGURE 5.9a. A monotonic decrease in
the echo amplitude can be observed (left column). Fourier transformation of the echo trajectory gives a single
zero-frequency peak (right column). The truncation artefacts are due to practical limitations on the maximum
decoupling interval. The lack of echo modulation is consistent with the total magnetic equivalence of the two
13C sites (see Eq. 5-71). The13C pairs in this sample lie on the horizontal axis in FIGURE 5.4a, i.e., well within
regime A(indicated by a circle). For this sample, the echo decay trajectory was very sensitive to minor ex-
perimental perturbations such as probe tuning and temperature. We do not understand fully the origins of this
unstable behaviour but note that total magnetic equivalence requires a delicate balance of many large spin in-
teractions. Experimental results for the13C2-AHM sample are shown in FIGURE 5.9b, left column. A rather weak
oscillation is observed in the echo decay. The echo trajectorys(2τ) fits well to the function:

sfit(2τ) = p e−2τ/T0
2 + (1− p) cos(πJ2τ)e−2τ/T J

2 (5-72)

using fit parameters listed in TABLE 5.2(solid line). The fittedJ-coupling ofJ = 64.9±1.8 Hz agrees reasonably
well with the solution-stateJ-coupling estimate ofJ = 67Hz.[234]

TABLE 5.2: Parameters used in Eq. 5-72 to fit the experimental spin-echo modulation curves shown in
FIGURE 5.9.

sample J /Hz p T 0
2 / ms T J

2 / ms

10%-13C2-DAF indeterminate 1.0 38± 1 indeterminate
13C2-AHM 64.9± 1.8 0.49± 0.08 10.0± 2.0 13.0± 2.0

[13C2,15N]-glycine (CO peak) 54.6± 0.1 0.20± 0.02 13.4± 2.0 36.9± 1.0

[13C2,15N]-glycine (Cα peak) 54.6± 0.1 0.37± 0.01 5.3± 0.1 17.0± 0.2

Fourier transformation ofs(2τ) provides a large central peak flanked by the two components of the
J-split doublet (FIGURE 5.9b, right column). This behaviour is consistent with the different principal axes orien-
tations of the two large CSA tensors, which bring the spin system intoregime Cof FIGURE 5.4a (indicated by a
square). After allowing for decay due to relaxation and other mechanisms, the theoretical model in Eq. 5-68re-
sembles the experimental form of the spin echo trajectory in Eq. 5-72. Note that the fittedp value of0.49±0.08
in TABLE 5.2agrees with the theoretical expectation ofp = 0.5 from Eq. 5-68.

The [13C2,15N]-glycine sample displays prominent oscillations in the spin echo trajectory (FIGURE 5.9c
andd, left column). The carboxyl andα-carbon peak amplitudes may both be fitted to the function in Eq. 5-72,
with the same value of theJ-coupling (J = 54.6 ± 0.1 Hz), which agrees well with the solution-state value
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FIGURE 5.9: Left column, crosses: experimental echo amplitudes, plotted as a function of the full echo interval2τ . Left

column, solid lines: best fits to the function in Eq. 5-72, using the parameters listed in TABLE 5.2. Right column: Fourier

transforms of the echo amplitude function. Some of the plots display truncation artifacts due to practical limitations on

the total decoupling time. The symbols represent the echo modulation regime for each sample, as indicated in FIGURE5.4.

a) diammonium[2,3-13C2]-fumarate; b) Ammonium hydrogen[2,3-13C2]-maleate; c)[13C2,15N]-glycine, amplitude

of the carbonyl13C peak; d)[13C2,15N]-glycine, amplitude of theα-13C peak.

of J = 53.6 Hz.[242] Fourier transformation of the echo trajectories provides well-resolvedJ-split doublets
(FIGURE 5.9c andd, right column). The isotropic chemical shift difference between the13C sites in glycine is
132.5ppm, which corresponds to 13.322kHz at the magnetic field used. It follows that the spinning frequency
of 10kHz is between then = 1 andn = 2 rotational resonances, which places this spin-1/2 pair system in
regime Bof FIGURE 5.4b (indicated by a star). The theoretical modulation of Eq. 5-64is in good agreement with
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the experiment.

5.5 Conclusion

The measurement of homonuclearJ-couplings in solids has the potential for becoming an important
experimental method for studying conformational and structural effects, as well as hydrogen bonding. In this
paper we have examined the principles of spin-echo modulation by homonuclearJ-couplings in systems con-
taining isolated pairs of spins-1/2. We find that the modulation of spin echoes is described by a superposition of
several modulation components, one of which corresponds to a pureJ-modulation. In a wide range of circum-
stances, the pureJ-modulated component is the most prominent one. In some cases, the satellite components
have small amplitude, while in many experimental situations, the satellite components are broadened in a pow-
der due to a spread in modulation frequencies. It is often possible to determine theJ-coupling accurately by
examining the frequency of the dominant modulation component.

Care must nevertheless be used, since there are some situations in which the pureJ-modulated com-
ponents are weak or absent. In the rare case of total magnetic equivalence, the pureJ-modulated component
vanishes entirely, and the spin echoes are completely unmodulated. In summary, the message is one of qualified
optimism for the quantitative exploitation of homonuclearJ-couplings in solids. Except in the unusual case of
total magnetic equivalence, the modulation of spin echoes may be used to estimate these couplings rather easily,
with high accuracy and reliability. Nevertheless, one should be aware that in some regimes the apparently sim-
ple form of the powder-averageJ-modulation is misleading. The detailed spin system evolution is sometimes
complicated and strongly orientation-dependent.

Our optimism as to the use of spin-echo modulations for measuringJ-couplings does not imply thatall
solution-state NMR experiments based onJ-couplings are directly transferable to the solid-state NMR context.
Firstly, the theory presented above is only directly applicable to systems of spin-1/2 pairs. Secondly, further
theoretical work is required on other pulse sequences exploiting homonuclearJ-couplings in MAS solids, such
as INADEQUATE-type experiments,[106,92,116,112,122,123,124,125,126,127,128,129,179] z-filtered spin-echo experi-
ments,[114,129] and double-quantum-filtered experiments.[180,181,182] We also anticipate that this theory may be
used to elucidate the mechanism of RFDR[54,55,243] which involves multiple spin echoes. The strong participa-
tion of theJ-couplings in RFDR has previously been noted by Brinkmannet al.[244]
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Most of the experiments presented in this thesis exploit the presence of theJ-coupling during aτ - π -
τ echo sequence. Scalar couplings have a great potential in both solid-state and solution NMR spectroscopy.
Amongst other interactions like chemical-shift anisotropy, dipole-dipole interaction, etc, the through-bond mag-
netic interactions between nuclei, known as scalar couplings orJ-couplings represent an extremely valuable
source of information appearing encoded in the NMR spectra. The scalar couplings can furnish important chem-
ical and structural information. However, they can be difficult to interpret particularly if signal overlap becomes
a problem. Since they are not averaged by the molecular tumbling in solution, they are also used for performing
the transfer of magnetisation between the nuclei in multidimensional experiments. In solids, the transfer of
magnetisation through the dipolar coupling is commonly used due to its bigger efficiency with respect to that
driven by the scalar coupling.

Recent improvements in NMR technology and the development of powerful sequences for decoupling
and recoupling different interactions under magic-angle spinning, lead to high-resolution spectra in fully13C,
15N-labelled compounds. Due to the carbon-13 labelling, the carbon spectra show however broad lines due
to the presence of the13C - 13C J-couplings. When resolution is good enough to resolve the fine structure
of the 13C-lines induced by theJ-coupling, unusual and asymmetric carbone lineshapes were observed. The
primary aim of this thesis was to understand the different contributions responsible for this broadening and
asymmetry of the carbone lines. A second objective came up with the study of carbon lineshapes in fully
13C-enrichedL-Alanine and consisted in seeking techniques for improving spectral resolution by removing the
broadening induced by the scalar couplings. The ideas of spin-state selection came from solution NMR which
once again proved to be a valuable source of inspiration for new solid-state NMR experiments. Solution NMR
as well can take advantage from the advances made in solid-state NMR spectroscopy, mainly for the design of
experiments for the assignment of heteronuclei. The techniques based on the direct detection of carbon nuclei
are good examples. Finally, many solution NMR experiments incorporatingJ-modulated spin echoes have been
adapted for solid-state NMR. The theoretical investigation of spin-echo modulation byJ-couplings in magic-
angle-spinning solid-state NMR showed that for a wide range of conditions the pureJ-modulation is preserved
during aτ - π - τ echo sequence, even in the presence of large chemical-shift anisotropy and dipole-dipole
interactions.

Many issues remain open for a future work. Namely, the spin-state-selective polarisation transfer mech-
anism for which more experimental work and theoretical investigations need to be devoted. Preliminary results
indicate a possible interference between magic-angle spinning and the semi-selective pulses which in the case
of the homonuclear IPAP experiment may lead less effcient spin-state selection. A more detailed study is needed
to clarify this problem.

Preliminary results obtained on fully13C-labelledL-Alanine show that the sensitivity of spin-state-
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selective correlation experiment can be enhanced by going to fast magic-angle-spinning frequencies. At these
spinning rates, the spin-state-selective correlation experiment may be combined with adiabatic polarisation
transfer techniques, like the DREAM sequence developed by Meier an coworkers, for obtaining at the same time
a very good resolution with additionally a good sensitivity. The feasibility of spinning proteins at such spinning
speeds was demonstrated recently by Ernstet al..[141] In the light of these recent results, the application of
spin-state-selective correlation experiments to the assignment of13C resonances in microcrystalline fully13C,
15N-enriched proteins looks promising.

”I wonder how many people in this city
live in furnished rooms

Late at night when I look out at the buildings
I swear I see a face in every window

looking back at me,
and then I turn away

I wonder how many go back to their desks
and write this down.”

I wonder how many people in this city, Leonard Cohen



Appendices

5.1 Appendix A: Geometric rotations and Eulerian representation

We consider here only rotations conserving one point of the space, which is assumed to be the origin
of the Cartesian coordinate system. One rotation can then be characterised by the set of Euler anglesα, β, γ.
They specify the orientation of a new coordinate frame (Oe

′
1e
′
2e
′
3) with respect to a fixed set of cartesian axes

in tridimensional space.

The Euler angles (α, β, γ) are defined by a sequence of three successive rotations of the space axes (i.e.,
”passive rotations”[1,11]). Using the clockwise rotation convention, the Euler rotation angles can be represented
as shown in FIGURE 5.10. Starting from the right handed trihedrone1, e2, e3, we rotate clockwise (i.e., as viewed
from the positive direction of the axis of rotation) by an angleα about thee3 axis to a first intermediate set of
axesf1, f2, e3. We then rotate clockwise by an angleβ about the axisf1 to a second intermediate set of axesf1,
f
′
2, e

′
3. Finally, we rotate clockwise through an angleγ about the axise3 to obtain the systeme

′
1, e

′
2, e

′
3.

e3

e2

e1

β

e'1

e'2

f1

f'2

f2

γ

α

FIGURE 5.10:The Euler angles
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The rotation matrices for the three steps are:

a(α) =

cos α − sinα 0
sinα cos α 0

0 0 1

 a(β) =

1 0 0
0 cos β − sinβ
0 sinβ cos β

 a(γ) =

cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (5-73)

and the matrix for the resultant transformation is:

(aij) = a(α, β, γ) = a(α)a(β)a(γ)

=

cos α cos γ − sinα cos β sin γ − cos α sin γ + sinα cos β sin γ sinα sinβ
sinα cos γ + cos α cos β sin γ − sinα sin γ + cos α cos β cos γ − cos α sin γ

sinβ sin γ − sinβ cos γ cos β

 (5-74)

with 0 ≤ α ≤ 2π, 0 ≤ α ≤ π, 0 ≤ α ≤ 2π. Note that the elements of the rotation matrix(aij) represents
also the direction cosines, each of the frame axes make with the axes of the new frame and can be written as
follows:

(aij) =

l1 m1 n1

l2 m2 n2

l3 m3 n3

 (5-75)

Let consider a P point, located in the Oe1e2e3 frame at a position given byx, y, andz. In the new frame,
it will be described by the coordinatesx

′
, y

′
, z

′
. Assuming either the Euler angles or the direction cosines are

know, the new coordinates can be calculated using the following relation:

x
′

y
′

z
′

 = (aij)

x
y
z

 (5-76)

To determine the set of Euler angles specify the relative orientations of the interaction principal axes
system of a tensor and the molecular reference frame from direction cosines, the following relations has to be
used:


n3 = cos β ⇒ β = arccos(n3)
n1
n2

= − tanα ⇒ α arctan[−n1
n2

]
l3
m3

= tan γ ⇒ γ arctan[− l3
m3

]
(5-77)

5.2 Appendix B: Rotation transformation and spin-echo amplitude

We prove here (i) theπ-rotation transformations of Eqs. 5-33, 5-34 (see subsection5.2.3) and (ii) the
simplification of thes(2τ) echo amplitude into three modulation components.

(i) The matrix representation of rotation operators in the Zeeman product basis of a two spin-1/2 system,
is given by the direct product of the individual rotation operators:[2]
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Rφ(β) = R1,φ(β)R2,φ(β)

=
(

c −ise−
−ise+ c

)
⊗

(
c −ise−

−ise+ c

)

=


c2 −isce− −isce− −s2e2

−
−isce+ c2 −s2 −isce−
−isce+ −s2 c2 −isce−
−s2e2

+ −isce+ −isce+ c2


where

c = cos( 1
2
β), s = sin( 1

2
β), e± = e±iφ

and withφ being either 0, for a rotation of angleβ around thex axis, orπ/2, for a rotation of angleβ around
they axis. We derive then the following expressions for theπ-rotation operators in the Zeeman product basis:

Rx(π) =


0 0 0 −1
0 0 −1 0
0 −1 0 0
−1 0 0 0



Ry(π) =


0 0 0 i
0 0 −1 0
0 −1 0 0
−i 0 0 0


Therefore aπ rotation around thex axis, when applied on the eigenstate matrix, will have the following effect:

|1〉r
|2〉r
|3〉r
|4〉r

 = Rz(π)


|1〉
|2〉
|3〉
|4〉

 =


−|4〉
−|3〉
−|2〉
−|1〉

 (5-78)

where the subscriptr, design the state after the rotation.

Under aπ rotation around thex axis, the states|2′〉, |3′〉 (see Eq. 5-23on p.81) are becoming as follows:

Rx(π)|2′〉 = [e−i 1
2
φ23

cos( 1
2
θ23)]Rx(π)|2〉︸ ︷︷ ︸

−|3〉

+[ei 1
2
φ23

sin( 1
2
θ23)]Rx(π)|3〉︸ ︷︷ ︸

−|2〉

= −ei 1
2
φ23

sin( 1
2
θ23)|2〉 − e−i 1

2
φ23

cos( 1
2
θ23)|3〉]

Rx(π)|3′〉 = [−e−i 1
2
φ23

sin( 1
2
θ23)]Rx(π)|2〉︸ ︷︷ ︸

−|3〉

+[ei 1
2
φ23

cos( 1
2
θ23)]Rx(π)|3〉︸ ︷︷ ︸

−|2〉

= −ei 1
2
φ23

cos( 1
2
θ23)|2〉+ e−i 1

2
φ23

sin( 1
2
θ23)|3〉

(5-79)

From Eq. 5-23, we can express the eigenstates|2〉, |3〉 in the Zeeman product basis with respect to the evolution
eigenstates|2′〉, |3′〉: {

|2〉 = ei 1
2
φ23

cos( 1
2
θ23)|2′〉 − ei 1

2
φ23

sin( 1
2
θ23)|3′〉

|3〉 = e−i 1
2
φ23

sin( 1
2
θ23)|2′〉+ e−i 1

2
φ23

cos( 1
2
θ23)|3′〉

(5-80)
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The expressions of Eqs.5-33and5-34can then be derived by replacing the relations above in Eq. 5-79:

Rx(π)|2′〉 = − [ei 1
2
φ23

+ e−i 1
2
φ23

]︸ ︷︷ ︸
2 cos φ23

sin( 1
2
θ23) cos( 1

2
θ23)︸ ︷︷ ︸

1
2

sin θ23

|2′〉

+[ei 1
2
φ23

sin2( 1
2
θ23)− e−i 1

2
φ23

cos2( 1
2
θ23)]|3′〉

= − cos φ23 sin θ23|2′〉+ (− cos φ23 cos θ23 + i sinφ23)|3′〉

Rx(π)|3′〉 = −[ei 1
2
φ23

cos2( 1
2
θ23)− e−i 1

2
φ23

] sin2( 1
2
θ23))|2〉

−[ei 1
2
φ23

+ e−i 1
2
φ23

] sin( 1
2
θ23) cos( 1

2
θ23)|3′〉]

= (− cos φ23 sin θ23 − i sinφ23)|2′〉+ cos φ23 sin θ23|3′〉

(5-81)

(ii) The spin-echo modulation is given by the signal expression at the time point©4 :

s(2τ) = a21
©4 〈1′|Ix|2′〉︸ ︷︷ ︸

A

+ a31
©4 〈1′|Ix|3′〉︸ ︷︷ ︸

B

+ a42
©4 〈2′|Ix|4′〉︸ ︷︷ ︸

C

+ a43
©4 〈3′|Ix|4′〉︸ ︷︷ ︸

D

whereA, B, C andD are notations of the different terms of the relation above.

In the Zeeman product basis of the spin-1/2 pair system, the matrix representation of theIx operator is given
by:

Ix
.= I1x ⊗ 1 + 1⊗ I2x

≡ 1
2

0
(

1 0
0 1

)
1

(
1 0
0 1

)
1

(
1 0
0 1

)
0

(
1 0
0 1

)
 + 1

2

1
(

0 1
1 0

)
0

(
0 1
1 0

)
0

(
0 1
1 0

)
1

(
0 1
1 0

)


= 1
2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


For convenience, let make the following notations:



|2′〉 = e−i 1
2
φ23

cos 1
2
θ23︸ ︷︷ ︸

a

|2〉+ e+i 1
2
φ23

sin 1
2
θ23︸ ︷︷ ︸

b

|3〉

|3′〉 = −e−i 1
2
φ23

sin 1
2
θ23︸ ︷︷ ︸

c

|2〉+ e+i 1
2
φ23

cos 1
2
θ23︸ ︷︷ ︸

d

|3〉

Since|1′〉 = |1〉 and4′〉 = |4〉, the expression of the first two terms of the spin-echo modulation can be written
as follows:
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A = a21
©4 〈1|Ix[a|2〉+ b|3〉]

= a21
©4 [a 〈1|Ix|2〉︸ ︷︷ ︸

= 1
2

+b 〈1|Ix|3〉︸ ︷︷ ︸
= 1

2

]

= 1
2
a21
©4 [a + b]

B = a31
©4 〈1|Ix[c|2〉+ d|3〉]

= a31
©4 [c 〈1|Ix|2〉︸ ︷︷ ︸

= 1
2

+d 〈1|Ix|3〉︸ ︷︷ ︸
= 1

2

]

= 1
2
a31
©4 [c + d]

C = a42
©4 [a∗|2〉+ b∗|3〉]|Ix|4〉

= a42
©4 [a∗ 〈2|Ix|4〉︸ ︷︷ ︸

= 1
2

+b∗ 〈3|Ix|4〉︸ ︷︷ ︸
= 1

2

]

= 1
2
a42
©4 [a∗ + b∗]

D = a43
©4 [c∗|2〉+ d∗|3〉]|Ix|4〉

= a43
©4 [c∗ 〈2|Ix|4〉︸ ︷︷ ︸

= 1
2

+d∗ 〈3|Ix|4〉︸ ︷︷ ︸
= 1

2

]

= 1
2
a43
©4 [c∗ + d∗]

where∗ means taking the complex conjugate of the element.
The main steps of thea21

©4 derivation are summarized in the next equation:

a21
©4 = a21

©3 eiω21τ

= [cos φ23 sin θ23a24
©2 + (cos φ23 cos θ23 + i sinφ23)a34

©2 ]eiω21τ

= [cos φ23 sin θ23a24
©1 eiω24τ + (cos φ23 cos θ23 + i sinφ23)a34

©1 eiω34τ ]eiω21τ

= cos φ23 sin θ23 1
2
(ei 1

2
φ23

cos 1
2
θ23 + e−i 1

2
φ23

sin 1
2
θ23)ei(πJ− 1

2
ω23)2τ

+(cos φ23 cos θ23 + i sinφ23) 1
2
(e−i 1

2
φ23

cos 1
2
θ23 − ei 1

2
φ23

sin 1
2
θ23)eiπJ2τ

The other amplitudes may be determined in the same manner. Their final expressions are given below:

a31
©4 = − cos φ23 sin θ23 1

2
(e−i 1

2
φ23

cos 1
2
θ23 − ei 1

2
φ23

sin 1
2
θ23)ei(πJ+ 1

2
ω23)2τ

+(cos φ23 cos θ23 − i sinφ23) 1
2
(ei 1

2
φ23

cos 1
2
θ23 + e−i 1

2
φ23

sin 1
2
θ23)eiπJ2τ

a42
©4 = cos φ23 sin θ23 1

2
(e−i 1

2
φ23

cos 1
2
θ23 + ei 1

2
φ23

sin 1
2
θ23)e−i(πJ− 1

2
ω23)2τ

+(cos φ23 cos θ23 − i sinφ23) 1
2
(ei 1

2
φ23

cos 1
2
θ23 − e−i 1

2
φ23

sin 1
2
θ23)e−iπJ2τ

a43
©4 = − cos φ23 sin θ23 1

2
(ei 1

2
φ23

cos 1
2
θ23 − e−i 1

2
φ23

sin 1
2
θ23)e−i(πJ+ 1

2
ω23)2τ

+(cos φ23 cos θ23 + i sinφ23) 1
2
(e−i 1

2
φ23

cos 1
2
θ23 + ei 1

2
φ23

sin 1
2
θ23)e−iπJ2τ
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Finally, the expressions of the four terms of the spin-echo modulation may be written as:

A = 1
2
a21
©4 [a + b] = 1

2
a21
©4 (e−i 1

2
φ23

cos 1
2
θ23 + ei 1

2
φ23

sin 1
2
θ23)

= 1
4
cos φ23 sin θ23(1 + cos φ23 sin θ23)ei(πJ− 1

2
ω23)2τ

+ 1
4
(cos φ23 cos θ23 + i sinφ23)(e−iφ23

cos2 1
2
θ23 − eiφ23

sin2 1
2
θ23)eiπJ2τ

B = 1
2
a31
©4 [c + d] = 1

2
a31
©4 (ei 1

2
φ23

cos 1
2
θ23 − e−i 1

2
φ23

sin 1
2
θ23)

= − 1
4
cos φ23 sin θ23(1− cos φ23 sin θ23)ei(πJ+ 1

2
ω23)2τ

+ 1
4
(cos φ23 cos θ23 − i sinφ23)(eiφ23

cos2 1
2
θ23 − e−iφ23

sin2 1
2
θ23)eiπJ2τ

C = 1
2
a42
©4 [a∗ + b∗] = 1

2
a42
©4 (ei 1

2
φ23

cos 1
2
θ23 + e−i 1

2
φ23

sin 1
2
θ23)

= 1
4
cos φ23 sin θ23(1 + cos φ23 sin θ23)e−i(πJ− 1

2
ω23)2τ

+ 1
4
(cos φ23 cos θ23 − i sinφ23)(eiφ23

cos2 1
2
θ23 − e−iφ23

sin2 1
2
θ23)e−iπJ2τ

D = 1
2
a43
©4 [c∗ + d∗] = 1

2
a43
©4 (e−i 1

2
φ23

cos 1
2
θ23 − ei 1

2
φ23

sin 1
2
θ23)

= − 1
4
cos φ23 sin θ23(1− cos φ23 sin θ23)e−i(πJ+ 1

2
ω23)2τ

+ 1
4
(cos φ23 cos θ23 + i sinφ23)(e−iφ23

cos2 1
2
θ23 − eiφ23

sin2 1
2
θ23)e−iπJ2τ

Thes−(2τ) component can be obtained by adding thee±i(πJ− 1
2
ω23)2τ -terms in the expressions ofA andC:

s−(2τ) = 1
4
cos φ23 sin θ23(1 + cos φ23 sin θ23)[ei(πJ− 1

2
ω23)2τ + e−i(πJ− 1

2
ω23)2τ ]

= 1
2
cos φ23 sin θ23(1 + cos φ23 sin θ23)︸ ︷︷ ︸

a−

cos[(πJ − 1
2
ω23)2τ ]

Thes+(2τ) component can be obtained by adding thee±i(πJ+ 1
2
ω23)2τ -terms in the expressions ofB andD:

s−(2τ) = − 1
4
cos φ23 sin θ23(1− cos φ23 sin θ23)[ei(πJ+ 1

2
ω23)2τ + e−i(πJ+ 1

2
ω23)2τ ]

= 1
2
cos φ23 sin θ23(−1 + cos φ23 sin θ23)︸ ︷︷ ︸

a+

cos[(πJ + 1
2
ω23)2τ ]
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Adding together all thee±iπJ2τ -terms in the expressions of A, B, C and D, we get the pureJ-modulated
component:

s0(2τ) = 1
2
cos φ23 cos θ23[eiφ23

(cos2 1
2
θ23 − sin2 1

2
θ23)︸ ︷︷ ︸

cos θ23

+e−iφ23
(cos2 1

2
θ23 − sin2 1

2
θ23)︸ ︷︷ ︸

cos θ23

] cos(πJ2τ)

+i 1
2
sinφ23[−eiφ23

(cos2 1
2
θ23 + sin2 1

2
θ23)︸ ︷︷ ︸

1

+e−iφ23
(cos2 1

2
θ23 + sin2 1

2
θ23)︸ ︷︷ ︸

1

] cos(πJ2τ)

= 1
2
[cos φ23 cos θ23 cos θ23 (eiφ23

+ e−iφ23
)︸ ︷︷ ︸

2 cos φ23

−i sinφ23 (eiφ23 − e−iφ23
)︸ ︷︷ ︸

2i sin φ23

] cos(πJ2τ)

= [cos2 φ23 cos2 θ23 + sin2 φ23] cos(πJ2τ)

= (1− cos2 φ23 sin2 θ23)︸ ︷︷ ︸
a0

cos(πJ2τ)
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optimized solid-state NMR spectroscopy.J. Am. Chem. Soc., 125:13938–13939,2003.

[117] F. Bloch. Theory of line narrowing by double-frequency irradiation.Phys. Rev., 111:841–853,1958.

[118] C. Griesinger, O.W. Sørensen, and R.R. Ernst. Two-dimensional correlation of connected NMR transi-
tions. J. Am. Chem. Soc., 107:6394–6395,1985.

[119] C. Griesinger, O.W. Sørensen, and R.R. Ernst. Correlation of connected transitions by two-dimensional
NMR spectroscopy.J. Chem. Phys., 85:6837–6852,1986.

[120] C. Griesinger, O.W. Sørensen, and R.R. Ernst. Aspects of the E.COSY technique. Measurement of scalar
spin-spin coupling constants in peptides.J. Magn. Reson., 75:474–492,1987.

[121] M. Sattler, J. Schleucher, O. Schedletzky, S.J. Glaser, C. Griesinger, N.C. Nielsen, and O.W. Sørensen.
α&β HSQC, an HSQC-type experiment with improved resolution forI2S groups.J. Magn. Reson. Ser. A,
119:171–179,1996.

[122] T.A. Early, B.K. John, and L.F. Johnson. Observation of homonuclear double-quantum correlations in
plastic crystals using cross polarisation and magic-angle spinning.J. Magn. Reson., 75:134–138,1987.

http://www.bruker.de/


116 References

[123] R. Benn, H. Grondey, and L.F. Johnson. The detection of connectivities of rare spin-1/2 nuclei in the
solid-state using natural abundance samples -13C and29Si INADEQUATE and COSY type experiments.
Chem. Commun., pages 102–103,1988.

[124] C.A. Fyfe, Y. Feng, H. Gies, H. Grondey, and G.T. Kokotailo. Natural-abundance 2-dimensional solid-
state29Si NMR investigation of the 3-dimensional bonding connectivities in the zeolite catalyst ZSM-5.
J. Am. Chem. Soc., 112:3264–3270,1990.

[125] C.A. Fyfe, H. Grondey, Y. Feng, and G.T. Kokotailo. Natural-abundance 2-dimensional Si-29 MAS NMR
investigation of the 3-dimensional bonding connectivities in the zeolite catalyst ZSM-5.J. Am. Chem.
Soc., 112:8812–8820,1990.

[126] S.C. Christiansen, D.Y. Zhao, M.T. Janicke, C.C. Landry, G.D. Stucky, and B.F. Chmelka. Molecularly
ordered inorganic frameworks in layered silicate surfactant mesophases.J. Am. Chem. Soc., 123:4519–
4529,2001.

[127] G. Grasso, T.M. De Swiet, and J.J. Titman. Electronic structure of the polymer phase of CsC60: Refocused
INADEQUATE experiments.J. Pys. Chem. B, 106:8676–8680,2002.

[128] F. Fayon, G. Le Saout, L. Emsley, and D. Massiot. Through-bond phosphorus-phosphorus connectivities
in crystalline and disordered phosphates by solid-state NMR.Chem. Commun., pages 1702–1703,2002.

[129] F. Fayon, I.J. King, R.K. Haris, R.K.B. Gover, J.S.O. Evans, and D. Massiot. Characterisation of the room-
temperature structure of SnP2O7 by 31P through-space and through-bond NMR correlation spectroscopy.
Chem. Mat., 15:2234–2239,2003.

[130] N.C. Nielsen, H. Thøgersen, and O.W. Sørensen. A systematic strategy for design of optimum coher-
ent experiments applied to effcient interconversion of double- and single-quantum coherences in nuclear
magnetic resonance.J. Chem. Phys., 105:3962–3968,1996.

[131] A. Meissner and O.W. Sørensen. Exercise in modern NMR pulse sequence design: INADEQUATE CR.
Concepts Magn. Reson., 14:141–154,2002.

[132] M.H. Levitt. Composite pulses. InEncyclopedia of Nuclear Magnetic Resonance, volume 2, pages 1396–
1410. John Wiley and Sons, Chichester, First edition,1996.

[133] M.H. Levitt. Composite pulses.Prog. Nucl. Magn. Reson. Spectrosc., 18:61–122,1986.

[134] F. Ferrage, T.R. Eykyn, and G. Bodenhausen. Frequency-switched single-transition cross-polarization: a
tool for selective experiments in biomolecular NMR.ChemPhysChem, 5:76–84,2004.

[135] M. Baldus, M. Tomaselli, B.H. Meier, and R.R. Ernst. Broadband polarisation transfer experiments for
rotating solids.Chem. Phys. Lett., 230:329–336,1994.

[136] M. Baldus and B.H. Meier. Broadband polarisation transfer under magic-angle spinning: application to
total through-space-correlation nmr spectroscopy.J. Magn. Reson., 128:172–193,1997.

[137] B.H. Meier. Polarization transfer and spin diffusion in solid-state NMR. InAndvances in Magnetic and
Optical Resonance, volume 18, pages 1–116. Academic Press, Berlin, First edition,1994.

[138] R. Verel, M. Baldus, M. Nijman, J.W.M. van Os, and B.H. Meier. Adiabatic homonuclear polarisation
transfer in magic-angle-spinning solid-state nmr.Chem. Phys. Lett., 280:31–39,1997.

[139] N.C. Nielsen, H. Bildsoe, H.J. Jakobsen, and M. H. Levitt. Double-quantum homonuclear rotary reso-
nance - efficient dipolar recovery in magic-angle-spinning nuclear-magnetic-resonance.J. Chem. Phys.,
101:1805–1812,1994.



References 117

[140] A. Bax, A.F. Mehlkopf, and J. Smidt. Homonuclear broadband–decoupled absorption–spectra, with
linewidths which are independent of the transverse relaxation rate.J. Magn. Reson., 35:167–169,1979.

[141] M. Ernst, A. Detken, A. B̈ockmann, and B.H. Meier. Nmr spectra of microcrystalline protein at 30kHz
MAS. J. Am. Chem. Soc., 125:15807–15809,2003.

[142] H. Geen and R. Freeman. Band-selective radiofrequency pulses.J. Magn. Reson., 93:93–141,1991.
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molecular and supramolecular structures.J. Am. Chem. Soc., 124:12144–12153,2002.

[150] K. Pervushin. Impact of transverse relaxation optimised spectroscopy (TROSY) on NMR as a technique
in structural biology.Q. Rev. of Biophys., 33:161–197,2000.

[151] C. Fernandez and G. Wider. TROSY in NMR studies of the structure and function of large biological
macromolecules.Curr. Opin. Struct. Biol., 13:570–580,2003.

[152] M. Ikura, L.E. Kay, and A. Bax. A novel-approach for sequential assignment of1H, 13C, and15N spec-
tra of large proteins - heteronuclear triple-resonance 3-dimensional NMR spectroscopy - application to
oncomodulin.Biochemistry, 29:4659–4667,1990.

[153] L.E. Kay, M. Ikura, R. Tschudin, and A. Bax. 3-dimensional triple-resonance NMR-spectroscopy of
isotopically enriched proteins.J. Magn. Reson., 89:496–514,1990.

[154] S.J. Archer, M. Ikura, D.A. Torchia, and A. Bax. An alternative 3D-NMR technique for correlating
backbone15N with side-chain Hβ-resonances in large proteins.J. Magn. Reson., 95:636–641,1991.

[155] L.E. Kay, M. Ikura, and A. Bax. The design and optimisation of complex NMR experiments. Application
to a triple-resonance scheme correlating Hα, NH , and15N chemical-shifts in15N - 13C-labelled proteins.
J. Magn. Reson., 91:84–92,1991.

[156] D. Marion, M. Ikura, R. Tschudin, and A. Bax. Rapid recording of 2d NMR spectra without phase cycling
- application to the study of hydrogen-exchange in proteins.J. Magn. Reson., 85:393–399,1989.

[157] S. Grzesiek and A. Bax. Correlating backbone amide and side-chain resonances in larger proteins by
multiple relayed triple resonance NMR.J. Am. Chem. Soc., 114:6291–6293,1992.



118 References

[158] W. Bermel, I. Bertini, I.C. Felli, R. Pierattelli, and R. Kümmerle.13C direct detection experiments on the
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Abbreviations

AHT Average Hamiltonian Theory
Asn L-Asparagine
Asp L-Aspartic Acid
CP Cross Polarisation
CPMAS Cross Polarisation Magic-Angle Spinning
Crh Catabolite repression histidine
CR Composite Refocusing
CSA Chemical Shift Anisotropy
CW Continuous Wave
DD Dipole-Dipole
DIPSAP Double In Phase Single Anti Phase
DREAM Dipolar Recoupling Enhanced by Amplitude modulation
DQC Double Quantum
DQC Double-Quantum Coherence
eDROOPY Experimental Decoupling is Robust for Offset Or Power inhomogeneitY
FID Free Induction Decay
FT Fourier Transformation
GARP Globally Optimised Alternating Phase Rectangular Pulse
Gln L-Glutamine
Glu L-Glutamic Acid
Gly Glycine
HHCP Hartmann-Hahn Cross Polarisation
His L-Histidine
HMQC Heteronuclear Multiple Quantum Coherence
HSQC Heteronuclear Single Quantum Coherence
INADEQUATE Incredible Natural Abundance Double Quantum Transfer Experiment
INEPT Insensitive Nuclei Enhanced by Polarisation Transfer
IPAP In Phase Anti Phase
MAS Magic-Angle Spinning
Met Methionine
MQ Multiple Quantum
NMR Nuclear Magnetic Resonance
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PDSD Proton-Driven Spin Diffusion
ppm Parts per million
RAMP-CP Ramped-Amplitude Cross Polarisation
RIL-ZQT Rotating Inverse-Laboratory Zero Quantum Transfer
rf Radio Frequency
SE Spin Echo
Ser L-Serine
SNR or S/N Signal-to-noise ratio
SPINAL Small Phase Incremental Alternation
SQC Single-Quantum Coherence
TPPM Two Pulse Phase Modulation
TXO Triple-Resonance Observe
U Uniformly
Val L-Valine
WALTZ Composite-pulse decoupling sequence containing the elements

R =(β)0(2β)π(3β)0, with β ∼= π/2
z-filter Pulse sandwich for elimination of signal components with dispersive phase

Symbols and constants

Ĥ Hamiltonian Operator
|α, α〉, · · · spin states for a two-spin 1/2 system
η anisotropy parameter
γI , γS gyromagnetic ratio of theI, respectivelyS spins
τr MAS rotor period
τc rotational correlation time
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and Dr. Gäel De Päepe for the wonderful atmosphere they provided inside and outside the ENS. Many thanks
to Sylvian for his patience and disponibility and for all the encouraging words during the difficult period of
working on this manuscript.

A special awardMythanks goes now to Dr. Anne Lesage. I wish to thank Anne for her constant help on
the spectrometer and many stimulating discussions.

A special awardMythanks for Prof. Lyndon Emsley. I wish to thank Lyndon for giving me the great
opportunity to work in his group, for the constant encouragement and inspiration.

I would like to present a special awardMythanks to Dr. Sabine Hediger. I thank Sabine for introducing
me to the fascinating world of solid-state NMR spectroscopy, for inspiration, endless enthusiasm and encour-
agement during all these years I spent in Lyon.

A special awardMythanks goes now to my dear friends and family. I express my greatest thanks to
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