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Abstract 
 
 
Molecular recognition has become a very important field of research in chemistry during the last 
decades. This chemical phenomenon is responsible for all processes occurring in biology and 
asymmetric synthesis is based upon the capability of molecules or substrates to recognise each 
other in a selective manner. In this thesis, the design, preparation and evaluation of a series of 
new synthetic receptors has been described. The importance of regioselectivity and 
stereoselectivity in molecular recognition has also been underlined with two different biological 
examples. 
 
The capability of host molecules, derived from (+)-tartaric acid, to accommodate various guests 
in a selective manner was demonstrated using 1H-NMR spectroscopy (paper I). These host 
molecules, known as TADDOLs, enantioselectively recognised the valuable chiral alcohols 
glycidol and menthol. Macromolecular receptors, i.e. molecularly imprinted polymers (MIPs), 
were also prepared in order to catalyse the aldol reaction between either (R)- or (S)-camphor and 
benzaldehyde (paper II). With the help of analytical methods, it was demonstrated that the MIPs 
interacted in a selective manner with the enantiomers of camphor. Moreover, these MIPs 
enhanced significantly the rate of the aldol condensation mentioned above. 
 
Regarding biological systems, various regioisomeric analogues of benzoic acid have been tested 
as antifeedants against the pine weevil Hylobius abietis (paper III and IV). The regioisomers 
studied displayed very different antifeedant activities. The significance of stereoisomerism on 
pheromone function has been shown in the preparation of lures for the control of the insect pest 
Argyrotaenia sphaleropa (paper V). It was demonstrated that male leafrollers could be caught by 
a lure containing components of the female sex pheromone gland. 
 
 
 
Keywords: aldol reaction, Argyrotaenia sphaleropa, Hylobius abietis, methyl benzoic esters, 
molecularly imprinted polymer, molecular recognition, NMR, pheromones, regioselectivity, 
stereoselectivity, TADDOL. 
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IC50  Inhibitory concentration 50% 
IR  Infrared spectroscopy 
k’  Retention factor 
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kc  Exchange rate constant 
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Me  Methyl 
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PDC  Pyridinium dichromate 
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TADDOL  α,α,α’,α’-Tetraaryl-1,3-dioxolane-4,5-dimethanol 
Tc  Coalescence temperature 
THF  Tetrahydrofuran 
Ts  Tosylate 
TSA  Transition state analogue 
UV  Ultraviolet 
∆G≠  Gibbs free energy of activation 
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CHAPTER 1. INTRODUCTION 
 
 
1.1 General introduction to molecular recognition 
 
Most of the processes that occur in living organisms are based on molecular recognition, which is 
defined as a process where a molecular structure, often referred to as a host, recognises or 
interacts with one or more molecules, called guest(s). To underline the importance of this 
molecular phenomenon, it should be noted that biological processes are based on the capability of 
molecules to recognise each other and form strong complexes. The molecular structure encoding 
our genetic information, DNA, provides an excellent example of a molecular recognition system. 
The hydrogen bond mediated interactions between thymine and adenine and between cytosine 
and guanine contribute to the typical double helical structure of DNA. 
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Figure 1: Hydrogen bond formation between thymine-adenine and between cytosine-guanine, the four 
constituent bases of DNA. 

 
For many decades, organic chemists (chemists interested in the chemistry of carbon-based 
compounds) were generally focused on the nature of covalent bonds. This period of research in 
chemistry came to be known as the “Golden Age” of the synthesis of natural products. Since 
then, a new area of research in organic chemistry, often denoted as supramolecular chemistry or 
host-guest chemistry, has emerged. Supramolecular chemistry, which was defined by the Nobel 
Laureate Jean-Marie Lehn as “the chemistry beyond the molecule”,1 is based upon non-covalent 
bonds and spatial fit between molecules. Fascinated by Nature’s processes, organic chemists have 
attempted (and sometimes managed) to mimic biological processes using synthetic structures. 
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1.2. Supramolecular chemistry 
 
Supramolecular chemistry corresponds to the study of molecular assemblies, which contain at 
least two molecules. This relatively new field of chemistry aims to understand and mimic the 
structure, function and properties of these complexes. 
 
 
1.2.1. The contributions of Charles J. Pedersen, Jean-Marie Lehn and Donald J. Cram to 
the field of supramolecular chemistry 
 
Several decades of research in the field of supramolecular chemistry resulted in the award of the 
1987 Nobel prize in chemistry to Charles J. Pedersen, Jean-Marie Lehn and Donald J. Cram. 
These efforts are summarised here. 
 
By studying the catalytic activity of vanadium in oxidation and polymerisation reactions, 
Pedersen discovered the first crown ether.2 The structure of this aromatic crown ether 1, which 
contains an 18-membered ring, is shown in figure 2. 
 

O
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O O
O O
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5

O
O

O

O O
O

1  
 

Figure 2: Structure of the dibenzo-18-crown-6 1 and the complex 5 formed by the dibenzo-21-crown-7 
and Cs+.2,3 

 
Commonly referred to as dibenzo-18-crown-6 (the IUPAC name of this crown ether is 2,3,11,12-
dibenzo-1,4,7,10,13,16-hexaoxacyclooctadeca-2,11-diene), this crown ether was first synthesised 
by Pedersen from the mono-protected diphenol catechol 2 and bis(2-choloroethyl) ether 3 in a 
total yield of just 0.4%. Pedersen’s intention was to prepare the bis-phenol 4 from 2 and 3, but the 
mono-protected catechol 2 was slightly contaminated by unprotected catechol and Pedersen could 
isolate a very small amount of the crown ether 1. 
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Scheme 1: Synthesis of the dibenzo-18-crown-6, 1. Adapted from reference 2. 
 

By demonstrating the capacity of 1 to complex the cation Na+, Pedersen described the first 
application of his crown ether. Additional studies performed by Pedersen showed that by varying 
the polyether ring size, it was possible to complex various cations.3 For instance, crown ethers 



 12 

with a polyether ring size containing 21 atoms can form complexes with cesium. The structure of 
the complex 5, formed by the dibenzo-21-crown-7 and cesium, is shown in the figure 2. 
Importantly for later applications in organic synthesis, solubilisation of inorganic salts in aprotic 
solvents (by saturated crown ethers) was also demonstrated. Since the pioneer work carried out 
by Pedersen, thousands of articles dealing with crown ethers have been reported in the literature. 
During the last two decades, it has been shown that the range of application of these crown ethers 
is very wide. They are very useful tools for organic synthesis, for example as phase transfer 
catalysts for use in the generation of so called “naked anions”. In addition, they have been 
employed in the development of cation selective sensors4,5 and transport agents.6 Some chiral 
crown ethers can selectively interact with the metal ion ytterbium(III) leading to the formation of 
chiral NMR discriminating agents, which are used in the analysis of mixtures of enantiomers.7 
Crown ethers have also been extensively used in the development of enzyme mimics and 
stereoselective catalysts. In 1998, Fenichel and co-workers reported the highly enantioselective 
synthesis of the diester 6, catalysed by the complex 7, formed by the ion K+ and a sugar 
derivative chiral crown ether (figure 3).8 Finally, it should be mentioned that crown ethers have 
even found use in medical applications, in particular for the development of diagnostic or 
therapeutic agents.9 
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Figure 3: Structure of the diester 6 and the complex 7,8 and structure of the first cryptand reported in the 
literature.10 

 
Based on the studies on the complexation and transport of alkali metal ions by natural 
ionophores, Jean-Marie Lehn and co-workers rationally designed the synthesis of the first 
cryptand in 1969.10 The structure of this cryptand 8 is shown in figure 3. Commonly referred to 
as [2.2.2] cryptand, the IUPAC nomenclature of 8 corresponds to the more sophisticated name 
4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane. As in the case of the crown ethers, 
numerous studies describing aspects of work with cryptands can be found in the literature.10 An 
excellent overview of the chemistry of cryptands was presented by Lehn during his Nobel 
lecture.11 The cryptands, which are defined as bicyclic (or polycyclic) ligands, were earlier 
synthesised via time-consuming high-dilution techniques. New synthetic methods, including the 
template effect or cyclocondensation reactions, have been applied to the preparation of cryptands. 
Thus, the presence of a metal cation can favour the positioning of the reactants and make 
macrocyclisation more favourable. For instance, the synthesis of the cryptand 9 (figure 4) has 
been performed using the metal cations Na+, K+ or Cs+ as a template.12 Even if this method has 
the advantage of giving good yields, removal of the template is sometimes problematic. With 
their flexible cavity, cryptands are able to complex a large variety of compounds. For this reason, 
cryptands are very useful in the field of green chemistry, where they can be employed as agents 
for the selective removal (detoxification) of heavy metals. Cryptands can selectively form 
complexes with heavy metals with impact on environmental issues, such as Cd2+, Hg2+ or Pb2+, 
while biologically important cations (Na+, K+, Mg2+, Ca2+ or Zn2+) are not recognised by the 
macrocyclic ligands. On account of their capability to form complexes with lanthanides (Eu3+ and 
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Tb3+), several suitable cryptands have been used in the development of homogeneous fluoro-
immunoassays.13 
 
Donald J. Cram, who preferred the term “host-guest chemistry” to the term “supramolecular 
chemistry”, designed and synthesised host molecules that form strong complexes and 
demonstrated very high selectivities. These host molecules can bind organic cations like 
diazonium ions14 or alkylammonium ions15 as well as anions such as phosphate ions and organic 
carboxylates. Another significant contribution by the group of Cram was the development of 
synthetic enzyme mimics, such as the transacylase analogues.16 The 30-step synthesis resulted in 
the mimic 10 (figure 4),17 exhibiting substantial rate enhancements for the transacylation of 
amino ester salts under mild conditions. Other contributions from Cram and colleagues include 
the chiral recognition of various sulfoxides by chiral hemicarcerands,18 e.g. 11, and of �-amino 
acids and ester salts by the chiral cyclic polyether 12 (figure 4).19 
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Figure 4: One example of the cryptand 9 synthesised with the help of templates according Krakowiak and 
co-workers,12 and the structure of the transacylase partial mimic 10,17 the chiral hemicarcerand 1118 and 

the chiral cyclic polyether 12.19 
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1.2.2. Other examples of supramolecular systems 
 
Since the initial work with crown ethers, a number of other molecular systems, both of natural 
and synthetic origin, have been used in studies in supramolecular chemistry, and some of the 
more prominent of these systems are described below. 
 
 

1.2.2.1. Cyclodextrins 
 
The term cyclodextrin (CD) is used to describe a cyclic oligosaccharide with a capacity to 
function as host molecule. The CDs, which are obtained by degradation of starch by the bacterial 
enzyme glucosyltransferase, have been known since 1891.20 The classification of CDs is based 
upon the number of sugar units in the ring structure. A 6 sugar unit containing CD is called α-CD 
(13, figure 5); whereas CDs with 7 and 8 sugar units are denoted as β- and γ-CD, respectively. 
Artificial synthesis of CDs and their derivatives has been the focus of numerous studies, and CDs 
are produced on an industrially scale. At the molecular level, CDs can be considered as empty 
capsules, acting as host molecules for various guests, in particular hydrophobic structures. 
 
One interesting use of CDs is that employing them as enzyme models.21 Modification of the 
hydroxyl groups by chemical reaction allows the incorporation of a variety of guests in the rigid 
scaffold of the CDs. For example, Breslow and Huang reported the hydrolysis of RNA by the 
combination of the modified β-CD 14 with the Eu3+ ion.22 Sternbach and Rossana have 
demonstrated the important role played by β-CDs in intramolecular Diels-Alder reactions.23 
Thus, the diene and the dienophile moieties of the furan derivative 15 are incorporated within the 
cavity of a β-cyclodextrin giving the complex 16 (figure 5), which results in an accelerated rate 
of formation of the desired product and influences the stereochemical outcome of the reaction.24 
CDs have found use in a vast number of application areas such as in biotechnology, in drug 
formulation and in separation methods, to mention but a few.25 
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Figure 5: Structure of the α-cyclodextrin 13, the modified β–cyclodextrin 14,22 the furan derivative 
15,23,24 and the complex 16.23,24 
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1.2.2.2. Siderophores 
 
Siderophores (Gr. iron bearer) are substances which form very stable complexes with the iron(III) 
ion. The siderophore enterobactin 17 (figure 6) is a cyclic triester of 2,3-dihydroxybenzoyl-L-
serine and has been isolated from the bacteria Aerobacter aerogenes, Escherichia coli and 
Salmonella typhimurium in 1970 by Neilands and Gibson.26,27 It has been shown that the L-serine 
derivative 17 is able to complex and transport the iron(III) ion, exhibiting an association constant 
in the magnitude of 1052 between the cyclic trimester 17 and Fe3+. Since regulation of the iron 
levels is vital for the human body, the chemistry of the enterobactin 17 has been the focus for a 
significant number of studies. In 1977, Corey and Bhattacharyya reported the first total synthesis 
of the enterobactin 17.28 More recently, Shanzer et al. synthesised this macrocyclic lactone using 
the distannoxane [Bu2Sn(OCH2CH2O)]2 as a template.29 Numerous studies of a series of synthetic 
enterobactin analogues have been undertaken. In one study, the ligand 18 (figure 6) has been 
proved to mimic 17 by forming a stable complex (association constant of 1030) with Fe3+.28 
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Figure 6: Structure of the siderophore enterobactin 17 and its analogue 18.26-28 

 
 

1.2.2.3. Calixarenes 
 
By treating p-alkyl phenols with formaldehyde and NaOH, Alois Zinke isolated a new family of 
solid compounds with very high melting point and very poor solubility in organic solvents.30 
These solids, which opened the door to the chemistry of calixarenes a couple of years later, were 
named “mehrkernmethylenephenolverbindungen” by Zinke. Because of similarities between the 
shape of these new compounds and the Greek vase “Calix crater”, Gutsche suggested the name 
“calixarenes”.31 Zinke demonstrated very early that calixarenes were capable of forming 
complexes with small organic compounds and metal ions. Since this important discovery, many 
research groups have studied the capability of these cyclic oligomers to mimic various enzymes.32 
 
An elegant example of the use of calixarene as enzyme mimics was shown recently by 
Cacciapaglia and co-workers.33 In this report, they demonstrated the catalytic effect of the 
calix[4]arene Zn2+  19 (figure 7) in the cleavage of the RNA model compound 2-hydroxypropyl 
p-nitrophenyl phosphate (HPNP). In green chemistry, there is a need for suitable ligands for the 
extraction of lanthanide ions from solutions containing nuclear waste. Thus, the calix[4]arene 
based ligand 20 (figure 7), bearing four phosphonic acid groups, prepared by Matulková and 
Rohovec,34 displayed a favourable complexation of three lanthanides ions (La3+, Eu3+ and Yb3+). 
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Arduini and co-workers demonstrated that the introduction of a bridge containing aromatic or 
other π-donor groups at the lower rim of calix[4]arenes resulted in the recognition of neutral 
molecules like esters, aliphatic alcohols, acetonitrile and ethylmethylacetone.35 The general 
structure of these complexes 21 is depicted in the figure 7. 
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Figure 7: Structure of the calix[4]arenes 19,33 2034 and 21.35 
 
 

1.2.2.4. Molecular recognition with peptides and proteins 
 
The design and preparation of functionalised peptides and proteins is of considerable interest.36 
This field of research has been the focus of numerous research groups.37 For instance, the 
capabilities of designed peptides and proteins to recognise small organic compounds and 
macromolecules, have been reviewed last year by Cooper and Waters.38 It has been shown that α-
helical coiled coils, which are the most studied de novo designed structure, were able to recognise 
small molecules. For example, Doerr and co-workers demonstrated recently that a metal-
assembled coiled coil based on the GCN4-p1 sequence (figure 8) could interact with 
hexafluorobenzene and analogues in a noncovalent manner.39 Doerr observed the interactions 
between the host protein and the guest benzene derivatives by 19F-NMR spectroscopy, a very 
powerful tool used to study interactions between molecules. NMR spectroscopy was employed in 
paper I and II to provide evidence of binding between host and guest compounds. Peptides with 
β-sheet system have been shown to form complexes with nucleotides. For instance, Butterfield 
and Waters reported in 2003 the recognition of ATP in H2O by a β-hairpin peptide known as 
WKWK.40 Biomolecules, like DNA, have been selectively recognised by mini-proteins.41 The 
development of molecular recognition with proteins has found applications in different areas, 
such as the production of biosensors, new catalysts and new therapeutic treatments. An excellent 
example of the utility of molecular recognition with proteins has been reported in 2004 by 
Nilsson et al. using capillary electrophoresis technology.42 Two proteins, e.g. the α-acid 
glycoprotein (AGP) and the cellulose Cel 7A, were immobilized on silica gel and used as chiral 
selectors in drug analysis. 
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Figure 8: Model of the three-helix bundle bound to hexafluorobenzene.38 The black models correspond to 

the protein side chains left and right to the binding pocket. The green model corresponds to the bound 
molecule, hexafluorobenzene. Reproduce from reference 38, with permission from Elsevier Copyright 

(2005). 
 
 

1.2.2.5. Molecular imprinting 
 
In some specific biological interactions, it has been discovered that the host is represented by a 
high molecular weight material (biopolymers).43 Organic chemists have been interested in the 
development of polymers as host materials for the recognition of substances of low molecular 
weight. One method for the preparation of high molecular weight material receptors is known as 
molecular imprinting, a technique for the preparation of polymeric receptors with pre-defined 
ligand selectivities. A schematic representation of molecular imprinting is presented in the 
scheme 2. 
 
The template, which is the molecule to be recognised, is allowed to form reversible interactions 
with suitable polymerisable structures: the functional monomers. The nature of the interactions 
between the template and the monomers can be reversible covalent bonds (interaction type A, 
scheme 2), covalently attached polymerisable binding groups activated for non-covalent 
interaction by template cleavage (interaction type B, scheme 2), electrostatic interactions 
(interaction type C, scheme 2), hydrophobic or van der Waals interactions (interaction type D, 
scheme 2) or coordination with a metal centre (interaction type E, scheme 2).44 The resulting 
complex is then polymerised in a suitable solvent in the presence of cross-linking monomers 
which are capable of producing a network polymer. Afterwards, the template is removed by 
disruption of the polymer-template interactions. Consequently, a polymer is obtained containing a 
cavity complementary in size and shape to the template. Thus, the functional groups in the cavity 
are spatially organised for rebinding the template or analogue molecules. 
 
The first example of molecular imprinting in organic polymers was reported by Wulff and Sarhan 
in 1972, and described the synthesis of a copolymer based on DVB and the template-monomer 
(R)-glyceric-(p-vinylanilide)-2,3-O-p-vinylphenylboronate 22 (scheme 3).45 After hydrolysis of 
the amide and the boronic ester moieties, weakly enantioselective rebinding of (R)-glyceric acid 
23 through the reformation of the covalent boronic ester bonds (scheme 3) was demonstrated.46 
 
This approach, today known as covalent molecular imprinting, presents certain limitations, in 
particular the slow nature of the covalent rebinding step. 
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Scheme 2: Highly schematic representation of the molecular imprinting process. Adapted from reference 
44. 
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Scheme 3: Schematic representation of the molecular imprinting process based on (R)-glyceric-(p-
vinylanilide)-2,3-O-p-vinylphenylboronate 22.45,46 
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The most commonly used method for the preparation of molecular imprinting polymers is known 
as non-covalent molecular imprinting. Mosbach and co-workers pioneered this field, when they 
imprinted the organic dyes rhodanile blue 24 and the safranine O 25 using methylmethacrylate 
(26) as functional monomer and the bisamides 27 as cross-linkers (figure 9).47 They subsequently 
reported numerous studies applying the non-covalent molecular imprinting method, including the 
imprinting of various amino acid derivatives,48 and the preparation of highly enantioselective 
polymers.49 Although this version of the technique has found use in a wide range of areas, it is 
also subject to a number of limitations, in particular the relatively low numbers of high affinity 
sites and the heterogeneity of the site population. 
 
A relatively recent development of molecular imprinting, commonly referred to as semi-covalent 
imprinting, involves the use of reversible covalent interactions during the polymerisation process, 
and non-covalent interactions during the rebinding step. This approach was first reported by 
Sellergren and Andersson, when they studied the (S)-2-amino-3-(4-hydroxyphenyl)-1-propanol 
(28) (figure 9) based molecular imprinting.50 This semi-covalent approach has been then the 
focus of a significant number of studies including the development of the so-called sacrificial 
spacer approach developed by Whitcombe et al.51 Importantly, to a certain extent the semi-
covalent approach utilises the advantages of both the covalent and non-covalent approaches while 
avoiding some of the limitations. 
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Figure 9: Structure of the organic dyes rhodanile blue 24, the safranine O 25, the methylmethacrylate 26 
and the bisamides 27 used by Arshady and Mosbach47 and the (S)-phenylalanine 28 use by Sellergren and 

Andersson.50 

 
MIPs have been employed in a broad range of application areas, e.g. biomimetic sensors,52 
membranes,53 chiral stationary phases,54 solid phase extraction55 and antibody mimics.56 Various 
MIP systems have also been shown to be useful as catalytic systems for a wide range of chemical 
reactions, including Aldol condensation,57 Diels-Alder reaction,58 �-elimination,59,60 and 
transamination,61 to mention a few. A more detailed presentation of various aspects of this 
technique is provided in chapter 3, which is based on paper II. 
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1.2.2.6. Host-guest chemistry based on hydrogen bond formations 
 
Several forces are involved in molecular recognition. Coulomb forces, van der Waals forces, π-π 
interactions or hydrogen bonding can contribute to the formation of supramolecular system. 
Hydrogen bond formation is one of the most significant forces involved in molecular recognition. 
The number of biological process that occurs via hydrogen bond formation reflects the 
importance of this force in supramolecular chemistry. Hydrogen bonds occur between a proton 
donor group AH (where A is an electronegative atom such as S, O or N) and a proton acceptor 
group B (which is a lone electron pair or a π-electron orbital of an unsaturated bond). A plethora 
of host molecules based on hydrogen bond formations have been described in the literature. Some 
relevant examples are presented below. 
 
In the late 60’s, Fumio Toda demonstrated the capability of the 1,1,6,6-tetraphenyl-2,4-
hexadiyne-1,6-diol (29) (figure 10) to form 1:2 complexes with different solvents (MeOH, THF, 
MeCN and pyridine), based on hydrogen-bond formation.62 Since the hydroxyl group of phenol 
derivatives is more acidic than the hydroxyl group in alcohols, phenol derivatives should be able 
to form stronger hydrogen bonds with suitable guests and be excellent host compounds. The 
naphthol derivative BINOL 30 (figure 10) is a brilliant example of the capability of aromatic 
alcohols to be used as host compounds.63 Recently, Liao reported the enantioselective recognition 
of the useful synthon tert-butanethiosulfinate by the (R)-BINOL.64 Toda has reported a series of 
diol, and bisphenol related compounds, which can be employed as host molecules.65,66 Amides 
can also form very stable hydrogen bonds and can thus be used as host compounds.66 In 1987, 
Toda showed the molecular recognition of various aliphatic and aromatic alcohols like cresol by 
the amides 31-33 (figure 10).67 
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Figure 10: Structure of the diols 2962 and 30,63 and the amides 31, 32 and 33.67 
 
The hydrogen bond formation between amino groups and aromatic moieties has been shown to 
play an important role in the recognition properties of proteins.68,69 An excellent example of this 
kind of molecular recognition has been reported by Adams and co-workers.70 They synthesised 
the macrocyclic tetraamide 34 (figure 11) capable of forming complexes with several dicarbonyl 
substrates. The macrocyclic molecular receptor 34 is locked into a single fixed conformation by 
intramolecular hydrogen bonds between the pyridine rings and the amide moieties. Incorporation 
of the dicarbonyl guest 35 in the cavity formed by the host 34 gives the supramolecular complex 
36. The complex 36 is stabilized by hydrogen bonding between the π-electrons of the phenyl 
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rings with the NH moieties present in 35, and between the NH groups of 34 and the carbonyl 
groups of 35. 
 

34 36

N
N

O

N

O

N
N

O N

O

HH

H
H

N
N

O

N

O

N
N

O N

O

H
H

HH

HN
NH

O

O

HN

NH

O

O

35

 
 

Figure 11: Structure of the macrocyclic tetraamide 34 and its complex 36 with the dicarbonyl substrate 
35.70 

 
A final example of host-guest compounds involves a class of structures containing one or more 
α,α,α’,α’-tetraaryl-1,3-dioxolane-4,5-dimethanol moieties (figure 12). These compounds, often 
referred to as TADDOLs, are derived from the very cheap naturally chiral source (-)- or (+)-
tartaric acid. 
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Figure 12: General structure of a TADDOL molecule derived from (+)-tartaric acid. 
 
TADDOLs provide a flexible cavity surrounding their hydroxyl groups, which can act as 
hydrogen-bond donors and/or acceptors. For these reasons, TADDOLs can accommodate various 
guests able of making hydrogen bonds with the hydroxyl moieties of the TADDOLs. For 
instance, in 1988, Toda and Tanaka demonstrated the molecular recognition of bicyclic enones 
with TADDOLs.71 TADDOLs and related structures have been extensively used in the field of 
catalysis and as synthetic receptors. A more detailed discussion regarding the chemistry of 
TADDOLs will be presented in chapter 2, to some extent developed from paper I. 
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1.3. The importance of stereoselectivity and regioselectivity in biological 
systems 
 
 
1.3.1. Stereoisomeric discrimination in biological systems 
 
Effects of chirality on human senses have been known for more than 100 years.72 Already at the 
end of the 19th century, Pasteur and Piutti noticed that (S)-asparagine 37 (figure 13) was a 
tasteless compound while (R)-asparagine 38 presented a sweet taste.73,74 Chirality also plays an 
important role in odour perception. A good example is the different odour of the two enantiomers 
of the monoterpene limonene. Thus, the (R)-limonene 39 (figure 12) smells like orange, while the 
smell of its enantiomer, the (S)-limonene 40, corresponds to lemon. 
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Figure 13: Structure of (S)-asparagine 37, (R)-asparagine 38, (R)-limonene 39 and (S)-limonene 40. 
 
The thalidomide tragedy provides a well-known example of the importance of stereochemistry in 
pharmacology. The racemic drug thalidomide was prescribed for women during early pregnancy 
as a sedative and anti-nausea agent. Unfortunately, it was found that the (S)-thalidomide 41 
(figure 14) was responsible for causing foetal abnormalities. In contrast, the (R)-thalidomide 42 
did not cause deformities in animals. As a consequence, the Food and Drug Administration 
(FDA) requires that the biological properties of all stereoisomers of a drug candidate shall be 
investigated.75 Comprehensive reviews concerning the importance of stereoisomerism in 
medicinal chemistry can be found in the literature.76,77 
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Figure 14: Structure of (S)-thalidomide 41, (R)-thalidomide 42, (-)-morphine 43 and (+)-morphine 44. 
 

The work presented by Lehmann and Rodrigues provides an elegant example of the importance 
of chirality to biological activity.78 For instance, the eutomer (-)-morphine 43 (figure 14) is well 
known for its analgesic activities. In contrast, its enantiomer, (+)-morphine 44, doesn’t have 
analgesic activities. 
 
In medicinal chemistry, the activities of leukotriene molecules have been shown to be highly 
dependent of the stereochemistry of double bonds present in these molecules. Corey and co-
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workers studied the pharmacological activities of the leukotrienes LTE 45a, LTC 45b and LTD 
45c (figure 15), which are the constituents of the slow reacting substance of anaphylaxis (SRS-
A).79,80 Corey highlighted the importance of the nature of the double bond between the carbon 
atoms 11 and 12 of 45a, 45b and 45c. They compared the activities of 45a, 45b and 45c with 
their corresponding 11-trans stereoisomers on guinea pig ileum, peripheral airway strips and 
cutaneous microvasculature. The leukotrienes 45a, 45b and 45c, which possess a cis 11,12 
double bond, showed higher activities than their 11-trans stereoisomers. For instance, a 10-25 
fold ratio of activity for the 11-cis LTE/11-trans LTE was demonstrated with the three bioassays 
mentioned above. 
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Figure 15: Structure of the leukotrienes LTE 45a, LTC 45b and LTD 45c.79,80 

 
Furthermore, the isomerism of double bonds is of fundamental importance in pheromone 
chemistry. The meaning of stereoisomerism in pheromone chemistry is presented in the next 
paragraph and in chapter 5, which is to some extent based on the paper V. 
 
 
1.3.2. The role of stereoisomerism on pheromone function 
 
Insects are using the natural substances pheromones to communicate.81 The term pheromone is 
derived from the Greek pherein (to carry or transfer) and hormon (to excite or stimulate). The 
first pheromone was identified by Butenandt and co-workers in the late 1950’s.82 They examined 
the female pheromone gland of the silk moth Bombyx mori and the component of the gland was 
identified as a unsaturated alcohol, the (10E,12Z)-hexadecadien-1-ol (46) (figure 16) which they 
named bombykol. Although this pheromone was discovered almost 50 years ago, the mechanism 
of the interactions between bombykol and the sex pheromone receptor of the silk moth Bombyx 
mori was just reported in 2004.83 
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Figure 16: Structure of the first known pheromone: bombykol.82 

 
The determination of the absolute configuration of the components of pheromone glands is of 
critical importance in pheromone chemistry, in order to establish the relationship between 
structure and biological effect.84 It has been shown that unsaturated straight-chain aliphatic 
alcohols and/or derivatives are the sex pheromone components of numerous moths.85 The 
composition of the sex pheromone can consist of a mixture of Z and E isomers.86 Small changes 
in the composition of pheromone blends generally strongly affect the behaviour of the insect 
species. To illustrate the importance of Z and E selectivity in pheromone chemistry, a few 
examples are given below. 
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It has been found for many Lepidoptera pheromones that the gland pheromone content is a very 
precise mixture of the Z and E isomers.86 For instance, the main component of the sex pheromone 
for the oriental fruit moth Grapholitha molesta is the (Z)-8-dodecen-1-yl acetate (47) (figure 17). 
It has been shown that the Z-isomer 47 by itself is not effective as an attractant for males. 
However, the presence of 7% of the E-isomer 48 in the pheromone gland was found to provoke 
the maximum attraction of the males.87 Cardé and co-workers have also shown that attraction of 
the male lesser apple worm moth Grapholitha prunivora occurred with a mixture of 47 and its E-
isomer 48 in the ratio of 100 to 2.2.87 In 1974, Smith et al. found that the pheromone gland of the 
European pine shoot moth Rhyacionia buoliana consisted of the (E)-9-dodecen-1-yl acetate (49) 
(figure 17), with a small amount of its (Z)-isomer 50 in a percentage of 1.1%. Increasing the 
amount of (Z)-9-dodecen-1-yl acetate (50) up to 2% in the sex pheromone completely inhibited 
the attraction of males.86 
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Figure 17: Structure of the pheromone components 47, 48, 49 and 50.86,87 
 
The examples given above illustrate the importance of Z- and E-isomers of pheromone 
components in biological systems. This crucial point will be re-discussed in chapter 5, which is 
based on the work described in the paper V. It is extremely important to synthesise the olefin or 
double bond(s) containing molecule which is the most biologically active. The Wittig reaction is 
one of the most used methods for the synthesis of olefins.88 Hence, a general description of the 
Wittig reaction is presented in chapter 5. 
 
 
1.3.3. Regioselectivity and pharmacology 
 
Valderrama and co-workers have recently studied the effect of various 1,4-quinone containing 
sesquiterpene derivatives as antiprotozoal agents against infection by Leishmania amazonensis, 
and the activity of the quinones has been proved to be dependent of the position of the hydroxyl 
group in the benzyl ring.89 Thus, the IC50 of the 5-hydroxynaphthalene containing quinone 51 
(figure 18) has been estimated to 24 µM against Leishmania amazonensis while the activity of the 
8-hydroxynaphthalene analogue 52 (figure 18) is only 8 µM. 
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Figure 18: Structure of the sesquiterpenes 51 and 52.89 

 
The cyclin dependent kinases (CDK) are crucial for the processes of cell division and 
proliferation. Accordingly, synthetic CDK inhibitors are under development for the treatment of 
cancer and other proliferative diseases. Results on CDK inhibitors have been recently published 
by Krystof and co-workers.90 They reported the synthesis and inhibitory activities of purine 
derivatives against the enzyme CDK1. Among these purines, the ortho hydroxyl substituted 
benzyl purine 53 (figure 19) showed very strong activity towards the enzyme CDK1 whereas the 
meta and para hydroxyl substituted benzyl purines 54 and 55 (figure 19) presented lower 
activities. 
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Figure 19: Structure of the purine derivatives 53, 54 and 55.90 

 
Another example of the importance of regioselectivity in molecular recognition is highlighted in 
chapter 4 (paper III and IV), where the antifeedant activities of benzoic acid derivatives, against 
the pine weevil, were evaluated. It was demonstrated that the activities of the benzoic acid 
derivatives varied considerably among regioisomers. 
 
 
1.4. Some applications of molecular recognition 
 
 
1.4.1. Preparation of enantiomerically pure compounds 
 
As highlighted in chapter 1.3.1 (pages 22-23), the preparation of enantiomerically pure 
compounds is of crucial importance, especially in the pharmaceutical industry. To satisfy this 
demand, several successful methods have been developed. For instance, a stereoselective 
synthesis can be performed or a racemate can be resolved into its two enantiomers. 
Diastereomeric crystallisation is the most widely used method for the resolution of racemates. By 
mixing a racemic mixture with an optically active reagent (the resolving agent), two 
diastereoisomers are formed, which can be separated. After removal of the resolving agent, the 
stereochemically pure components of the racemic mixture can be isolated. To cite a few 
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examples, the (R)-α-amino-phenylacetic acid (56) (figure 20), which is an important synthon in 
the synthesis of semisynthetic β-lactam antibiotics, and the trans-chrysanthermic acid 57, 
intermediate in the preparation of various insecticides, are respectively resolved using the (+)-
camphorsulfonic acid 58 and the chiral base 59.91,92 
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Figure 20: Structure of the (R)-α-amino-phenylacetic acid (56), the trans-chrysanthermic acid 57, the (+)-
camphorsulfonic acid 58 and the chiral base 59.91,92 

 
Enantiomerically pure compounds can also be obtained with the aid of chiral analytical 
separation methods. In these cases, the selective separations are achieved using chiral supported 
devices.93 For instance, CDs have been extensively used in chiral gas and liquid chromatography. 
In the case of HPLC, CDs have been employed as chiral additives in the mobile phase or grafted 
to silica gel, resulting in chiral stationary phases. In 1992, Rona and Szabo reported the 
successful enantiopurification of an antiepileptic drug using a β-CD as a mobile phase additive.94 
Numerous CD-based HPLC stationary phases have been described and are commercially 
available.95,96 
 
A great number of chiral stationary phases are available. However, there is still a need for new 
phases to improve both efficiency and capacity of chiral chromatographic separations. In the 
paper I, we described the capability of (+)-tartaric acid derivatives to form enantioselective 
complexes with various chiral guests. Based on the observed selectivities, a new TADDOL-
derivatised chiral selector for chromatography was prepared and evaluated with various analytes. 
Details regarding these chromatographic studies can be found by the reader in chapter 2 (pages 
34-38). 
 
 
1.4.2. Supramolecular catalysis 
 
Enzymes have been extensively used as catalysts in chemical transformations and numerous 
examples of synthetic applications of enzymes have been reported in the literature.97,98 For 
instance, enzymes have been found to be very successful catalysts for the aldol reaction.99 For 
example, Espelt et al. showed that the achiral N-cbz-amino aldehydes 60 reacted with the 
dihydroxyacetone phosphate (61) in presence of the enzyme L-fuculose-1-phosphate aldolase 
(FucA) to give the chiral aminocyclitols 62 in high ee (scheme 4).100 
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Scheme 4: Synthesis of the aminocyclitols 62 from the amino aldehydes 60 via an asymmetric aldol 
reaction catalyzed by the enzyme FucA.100 

 
In paper II, the development of an artificial aldolase is described. The aldol reaction between 
(+)- or (-)-camphor and benzaldehyde is catalysed by a MIP. 
 
Various chemical reactions which are difficult to perform in the liquid state can be successfully 
achieved by formation of inclusion crystals. The control of photoreactions in inclusion crystals is 
one elegant example. For instance, 2-pyridone (63) exists in solution as an equilibrium mixture 
with 2-hydroxypyridine (64). Therefore, photoreactions of 63 are not possible in solution. 
However, the diol host compound 29 (figure 10, page 20) forms an inclusion complex with 63. 
Photoreaction of 63 is then feasible by irradiation of the inclusion complex for 6h giving the 
unsaturated carbamate 65 in 76% yield (figure 21).101 Other examples of photoreaction in the 
solid state are presented in chapter 2. 
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Figure 21: Equilibrium between 2-hydroxypyridine (63) and 2-pyridone (64), and structure of the 
carbamate 65.101 

 
 
1.5. Objectives of this thesis 
 
This thesis deals with the design, preparation and evaluation of two types of molecular host, i.e. 
(+)-tartaric acid derivatives and molecularly imprinted polymers. Their capability to interact in a 
selective manner with various guests has been investigated with the help of spectrometric and 
analytical methods. Furthermore, the importance of regioselective and stereoselective molecular 
recognition on the guest-like behaviour of two series of compounds on two types of biological 
processes has been examined. 
 
In paper I, the synthesis of new stereoselective receptors derived from (+)-tartaric acid is 
reported. By 1H-NMR spectroscopy, it was established that these TADDOLs exhibit dynamic 
fluxional behaviour in solution. 1H-NMR was also used to demonstrate the capability of these 
TADDOLs to selectively recognise the useful chiral alcohols glycidol and menthol. The observed 
results provided strong support for the development of new chiral stationary phase based on these 
new TADDOLs. A new stationary phase loaded with a suitable TADDOL molecule for 
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immobilization was then prepared. Evaluation of the performance of the new CSP was evaluated 
with a series of racemates. 
 
Paper II describes the design and preparation of two molecularly imprinted polymers mimicking 
the aldol reaction between camphor and benzaldehyde. The recognition characteristics of the 
polymers were established using a series of chromatographic experiments. These polymeric 
artificial receptors showed enantioselective binding with chiral analogues of camphor. The MIPs 
also enhanced the studied aldol condensation by a factor over 50 in comparison to the reaction 
conducted in solution. 
 
In paper III and IV, various analogues of the benzoic acid, especially disubstituted methyl 
benzoates, have been tested for their antifeedant activity on the pine weevil Hylobius abietis. The 
syntheses of all non-commercial isomers of methyl hydroxyl-methoxybenzoic esters are reported 
in paper III. Importantly, it was shown that among the analogues of the benzoic acid studied, the 
numerous regioisomers displayed very different antifeedant properties. These observations 
allowed us to conclude that the receptors of the pine weevil Hylobius abietis recognised the tested 
substances in a regioselective manner. An attempt to correlate the character and the position of 
the substituents on the phenyl ring, as well as the nature of the ester group, with the 
corresponding antifeedant effects was also presented in paper IV. 
 
The paper V illustrates the significance of stereoisomerism on pheromone function. It has 
previously been shown that the components of the pheromone gland of the leafroller 
Argyrotaenia sphaleropa consist of enantiomerically pure Z monoenes and dienes. The two 
dienic components of the pheromone gland of Argyrotaenia sphaleropa were synthesised in very 
high stereosiomeric purity (>99.9%) and used in the preparation of a pheromone lure to control 
the leafroller. As a result, male leafrollers were caught by the lure, which clearly indicates that 
this biological recognition process is governed by stereoselective molecular recognition. 
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CHAPTER 2. STEREOSELECTIVE MOLECULAR RECOGNITION BY TADDOLS (PAPER I AND 
APPENDIX) 
 
 
2.1. Background 
 
Molecules containing one or several α,α,α’,α’-tetraaryl-1,3-dioxolane-4,5-dimethanol moieties 
(figure 12, chapter 1.2.2.6, page 21) are commonly referred to as TADDOLs. These compounds 
are derived from the naturally occurring (-)- or (+)-tartaric acid and their synthesis follow the 
general synthetic pathway shown in the scheme 5. The methyl or ethyl ester of (-)- or (+)-tartaric 
acid 66 is reacted with a cyclic or acyclic ketone 67 in presence of TsOH or the Lewis acid 
BF3·Et2O to give the ketal 68. Addition of Grignard reagents or aromatic lithium derivatives to 
the ketal 68 yield the corresponding TADDOL 69. 
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Scheme 5: General synthetic pathway for TADDOLs. 
 
By changing the nature of the alkyl groups present in the ketone 67 and the aromatic moieties in 
the Grignard reagent, it is possible to prepare numerous TADDOL molecules. The hydroxyl 
groups of the TADDOLs can also be derivatised or substituted to provide an even larger 
collection of TADDOLs. The hydroxyl groups of the TADDOLs have been subjected to most of 
the usual chemical reactions and a general structure of modified TADDOLs, with a non-
exhaustive list of the possible nature of X and Y, is shown in figure 22. The general structure of 
TADDOLs has been extensively studied by x-ray spectroscopy since TADDOLs usually have the 
tendency to crystallize. At the time of writing, approximately 100 different crystal structures of 
TADDOLs have been reported at the Cambridge Crystallographic Data Centre. Well-understood 
structures, the TADDOLs have been the focus of intense investigation and their area of 
application is very wide.102 
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Figure 22: General structure of a modified TADDOL molecule derived from (+)-tartaric acid. 
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2.2. TADDOLs as host compounds for resolution 
 
TADDOLs have been used extensively as host compounds for optical resolution. For example, by 
keeping the racemate of the enone 70 with the (-)-tartaric acid derivative 71 (figure 23) in a 
mixture of benzene-hexane (4:1) at room temperature for 12h, Toda and Tanaka obtained a 
crystal structure of the inclusion complex formed by 70 and 71.103 Recrystallisation of the 
crystals from benzene, followed by heating in vacuo gave (-)-70 in 100% ee. More recently, Zhu 
and co-workers have resolved the chiral alkyl sulfoxides 72 also with the (-)-tartaric acid 
derivative 71.104 
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Figure 23: Structure the bicyclic enone 70 and the alkyl sulfoxides 72 resolved by the TADDOL 71.103,104 

 
However, the TADDOLs 69 are relatively small host molecules and they can not accommodate 
voluminous guest compounds. In order to solve this problem, Tanaka and co-workers recently 
reported the capability of dimeric derivatives of (+)-tartaric acid to accommodate guests of large 
molecular size.105 The structures of these new TADDOLs 73 and 74a, which are derived from 
1,3- and 1,4-cyclohexanedione, respectively, are shown in figure 24. The unsymmetrical 
TADDOL 73 was used in the optical resolution of the cyanohydrin 75 (figure 25). The TADDOL 
74a showed extremely high recognition capabilities toward the chiral alcohols but-3-yn-2-ol (76), 
2-hexanol (77) and 2-methyl-1-butanol (78) (figure 25). 
 
Chiral alcohols and their derivatives are fundamental compounds in organic chemistry. Chiral 
alcohols and analogues are versatile intermediates for asymmetric synthesis106 and key synthons 
for the preparation of various pharmaceutical intermediates.107 Secondary chiral alcohols are of 
widespread occurrence in natural products,108 including pheromone components.109,110 The 
preparation of chiral alcohols and derivatives is then of critical importance in modern organic 
chemistry. Tanaka reported a very successful enantiomeric separation of chiral alcohols using the 
TADDOLs 73 and 74a.105 These results encouraged us in the development of new (+)-tartaric 
acid derivatives for the preparation of highly enantiomerically pure alcohols. 
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Figure 24: Structures of the TADDOLs 73 and the TADDOLs 74a-74e. Adapted from reference 105 and 
paper I. 
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Figure 25: Structures of the cyanohydrin 75 and the chiral alcohols 76-84. Adapted from reference 105 
and paper I. 

 
For that purpose, a series of new TADDOLs derived from the cyclohexanedione 79 and (+)-
tartaric acid was prepared (paper I). Their capacities to form enantioselective complexes with 
alcohols were demonstrated by 1H-NMR (paper I), a powerful tool for the study of 
intermolecular interactions.111 The synthesis of the new (+)-tartaric acid derivatives was 
performed in a two pot procedure based on the work previously described by Tanaka and co-
workers.105 The 1,4-cyclohexadienone (79) was reacted with the diethyl (2R,3R)-tartaric acid 
ester in presence of the Lewis acid BF3·Et2O to give the tetraester 80 in 55% yield (scheme 6). 
The tetraester 80 was treated with various Grignard reagents giving the TADDOLs 74a-74d 
(scheme 6 and figure 24). The purification of the TADDOLs 74a and 74c was successfully 
achieved by recrystallisation. The crude crystals of 74b and 74d were subjected to MPLC prior to 
recrystallisation. The observed yields (after purification) of the Grignard reactions varied between 
33% for the synthesis of the thiophenyl containing TADDOL 74d and 80% in the case of the 1-
naphthyl TADDOL derivative 74b. 
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Scheme 6: Synthesis of the TADDOLs 74a-74d from the 1,4-cyclohexadienone (79). Adapted from 
paper I. 

 
Paper I describes the enantioselective recognition of the useful chiral alcohols (-)-menthol 81, 
(+)-menthol 82, (-)-glycidol 83 and (+)-glycidol 84 (figure 25) by the TADDOLs 74a-74d. 
According Tanaka and co-workers, the TADDOLs interact with guest alcohols through hydrogen 
bond formation between the hydroxyls of the guest and host.105 Sequential addition of the guest to 
the host resulted in a downfield shift arising from the hydroxyl groups of the TADDOLs. Non-
linear regression analysis of the isotherms was used to estimate the apparent dissociation 
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constants (app. Kd) for the interactions between the TADDOLs 74a, 74c and 74d, and the chiral 
alcohols 81-84. The found apparent dissociation constants are shown in table 1. 
 

Table 1: Dissociation constants [Kd (µM)] for complex formation. Adapted from paper I. 
 

TADDOL Guest Kd (µM) TADDOL Guest Kd (µM) 
74a 81 559 ± 30 74c 83 170 ± 30 
74a 82 100 ± 30 74c 84 170 ± 30 
74a 83 190 ± 60 74d 81 30 ± 0.9 
74a 84 630 ± 20 74d 82 10 ± 4 
74c 81 60 ± 7 74d 83 10 ± 1 
74c 82 1040 ± 30 74d 84 10 ± 1 

 
The apparent dissociation constants indicated enantioselective recognition of the enantiomers of 
menthol by the TADDOLs 74a and 74c. In addition, the phenyl TADDOL derivate 74a was 
found to selectively bind the enantiomers of glycidol. In the case of the thiophenyl analogue 74d, 
strong, unselective binding between the host and the guest was noted. The presence of the sulphur 
atom in the host might explain the small Kds observed. In contrast, no complexations between the 
1-naphthyl derivative 74b and the chosen guests were observed. This absence of complex 
formations between 74b and the alcohols 81, 82, 83 and 84 can be explained by the presence of 
excessively crowding groups around the hydroxyl groups the TADDOL. The hydroxyl groups of 
the alcohols can not interact with the diol functionalities of 74b presumably because of the 
presence of the 1-naphthyl moieties. This hypothesis is reinforced by the dynamic NMR studies 
of the TADDOLs which are presented in the following paragraph. 
 
 
2.3. Dynamic NMR studies of TADDOLs 
 
Contrary to the room temperature 1H-NMR spectra of the TADDOLs 74a, 74c and 74d, which 
exhibited common sharp peaks, the 1H-NMR spectrum of the 1-naphthyl derivative TADDOL 
74b showed broad peaks. By increasing the temperature when recording the 1H-NMR 
experiments of 74b in DMSO-d6, sharpening of the peaks was observed. By decreasing the 
temperature, the broad peaks were resolved in a multitude of sharp peaks. These observations 
clearly indicate the presence of dynamic processes. 
 
1H-NMR spectra of the TADDOLs 74a, 74c and 74d were also recorded at different temperatures 
in acetone-d6. It was then possible to determine the coalescence temperatures TC for the methine 
protons for the TADDOLS 74a-74d (table 2). At low temperatures, the 1H-NMR spectra of the 
TADDOLs 74b and 74d presented an AB system arising from the methine protons. For these 
TADDOLs, it was possible to perform the experiments at a temperature low enough for the 
resolution of the AB system to two apparent doublets. With the determination of the 
corresponding coupling constant, it was then possible to calculate the exchange rate constant (kC) 
and the Gibbs free energies of activation (∆G≠) for 74b and 74d (table 2). By increasing the 
temperatures, the peaks coalesced before sharpening of the peaks. The coalescence temperature 
for the 1-naphthyl containing TADDOL 74b was found to be 334 K. In contrast, the TC’s 
observed for 74a, 74 c and 74d were relatively low. This large difference in the value of TC’s for 
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the TADDOL 74b is presumably due to the presence of the bulky 1-naphthyl moieties, which 
inhibit the rotation of the side chain on the C-C bond of the five-membered rings. 
 

Table 2: Coalescence temperatures, exchange rate constant and Gibbs free energies of activation for the 
TADDOLs 74a-74d. Adapted from paper I. 

 

Entry TADDOL TC (K) kC (s-1) ∆G≠ (kJ.mol-1) 
1 74a 220 - - 
2 74b 334 97 69.6 ± 2 
3 74c 217 - - 
4 74d 229 210 45.4 ± 2 

 
In conclusion, it has been shown that the TADDOLs 74a-74d presented dynamic fluxional 
behaviour in solution. 
 
 
2.4. Potential chiral stationary phase based on a new (+)-tartaric acid 
derivative 
 
The development of suitable TADDOL derivatives for immobilisation onto solid phases has been 
carried out by many research groups. As a consequence, reports on the application of many chiral 
stationary phases based on tartaric acid derivatives can be found in the literature.112,113 Several 
chiral selectors based on ester114 and amide115,116,117 derivatives of tartaric acid have been 
described. In particular, the N,N’-diallyl-L-tartardiamide (85) (DATD) (figure 26) has been 
employed as the starting point for the development of new chiral selectors,118 and the resulting 
chiral stationary phases have been shown to be of high efficiency in the separation of valuable 
chiral benzodiazepinones.119 The two commercially available selectors Kromasil CHI-DMB (3,5-
dimethylbenzoate) 86a and CHI-TBB (4-tert-butylbenzoate) 86b (figure 26) are easily obtained 
by acylation of the hydroxyl groups of DATD,120 which accentuate the importance of this amide 
in chiral chromatography. 
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Figure 26: Structures of the diamide 85 and its ester derivatives 86a and 86b.118,120 

 
 
However, no chiral stationary phases based on dimeric tartaric acid derivatives have been 
reported at the time writing. The enantioselective complexation of small chiral alcohols by the 
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TADDOLs 74a and 74c, reported in the paper I, encouraged us to start the development of a new 
chiral selector based on these dimeric TADDOLs. Thus, the vinyl derivative TADDOL 74e 
(figure 24), which is suitable for immobilisation on solid phase, was prepared in one step from 
the tetraester 80 (scheme 7). The tetraester 80 was reacted with the Grignard reagent of the 4-
bromostyrene, yielded the TADDOL 74e (scheme 7). (The probability of 74e to polymerize was 
very high)The TADDOL 74e was set to polymerise due to the presence of the eight double bonds 
moieties. For that reason, the synthesis, the work-up and the purification process of the TADDOL 
74e had to be conducted at low temperature and in the dark to avoid any formation of radicals, 
which can initiate a polymerisation process. 
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Scheme 7: Synthesis of the TADDOL 74e from the tetraester 80. 
 
For the preparation of the new chiral stationary phase, the silica gel 87 was first reacted with the 
3-(trimethoxysilyl)propane-1-thiol in presence of toluene and pyridine to give the �–
mercaptopropylsilanized silica 88 (scheme 8).121 The TADDOL 74e was then attached to the 
derivatised silica gel 88 under radical conditions (in the presence of AIBN) to afford the silica–
bound derivative 89 (scheme 8). The characterisation of the chiral selectors 89 was made by 
elemental analysis, nitrogen adsorption isotherm measurements (BET), average pore diameter 
evaluation and Raman spectroscopy. The latter was used since it is a more sensitive method for 
the analysis of silica–bound derivatives than FT-IR spectroscopy.122 The Raman spectrum of the 
�–mercaptopropylsilanized silica 88 exhibits a very strong band at 2581 cm-1 due to the SH 
bound. However, this band is very weak in the Raman spectrum of 89 which clearly indicates that 
the SH moieties of 88 have reacted with the double bonds present in the TADDOL 74e. 
Additionally, bands corresponding to a different mode of vibrations of the immobilized 
TADDOL were observed at ca. 3060-3007 (CH arom) and 1630-1608 cm-1 (C=C) on the spectra 
of 89. Collectively, these observations allow us to conclude that the TADDOL 74e had been 
successfully immobilized on the silica gel 88. 
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Scheme 8: Synthesis of the derivatised silica gel 89. 
 
A series of preliminary chromatographic experiments with non chiral analytes (toluene, 2-phenyl 
phenol and 2-methoxy phenol) was conducted. Retention factors (k’) were obtained for toluene, 
2-phenyl phenol and 2-methoxy phenol (table 3). A very small retention factor was observed 
from toluene. This result was probably due to weak π-π interactions between the CSP 89 and 
toluene. The 2-phenyl phenol and 2-methoxy phenol gave longer retention time than toluene. In 
these two cases, the hydroxyl group in the analyte was responsible for the observed higher 
retention factors. It was anticipated that stronger interactions were present due to hydrogen 
bonding interactions between the hydroxyls of the analytes and the remaining free thiols and/or 
the hydroxyls of the CSP 89. A study of the influence of the mobile phase was also performed. 
As expected, the retention factors increase with smaller amount of the polar media isopropanol in 
the mobile phase (table 3). Based on these preliminary but important observations, the chiral 
recognition capability of the chiral stationary phase 89 was evaluated with a series of valuable 
compounds. The racemates chosen for the chromatographic experiments were the 1-phenyl-1-
propanol (90),123,124 the BINOL 91,125 the linalool 92,126,127 the lactic acid derivative 93,128 and 
the cyclic carbamates 94129 and 95 (figure 27).130 Suitable groups (hydrogen bond donors and/or 
acceptors and π electrons) for interaction with the CSP 89 are present in all analytes 90-95. 
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Table 3: Retention factors found for toluene, 2-phenyl phenol and 2-methoxy phenol in various mobile 
phases. 

 

Analyte Retention factor (k’) 
Toluene 0.09a 0.09b 0.11c 

 
2-phenyl phenol 0.32a 0.64b 1.70c 

 
2-methoxy phenol 0.44a 0.89b 2.17c 

 
Mobile phase: a40% 2-propanol in n-hexane, b20% 2-propanol in n-hexane, 
c5% 2-propanol in n-hexane. Flow: 0.8 ml/min. Injection volume: 20 �l. 
Detection: UV 254 nm. 
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Figure 27: Structures of the chiral alcohols 90-92, the hydroxyl ester 93, and the cyclic carbamates 94 and 
95. 

 
In table 4, the retention factors of menthol, glycidol and the racemates 90-95 are presented. The 
1-phenyl-1-propanol (90) was almost not at all retained by the CSP and no chiral recognition was 
apparent. As expected, increasing the amount of n-hexane in the mobile phase resulted in higher 
retention times, but did still not result in chiral separation. Disappointingly, no enantioselective 
recognition was observed with either the bulky alcohol BINOL 91, the linalool 92, the ester 93, 
the oxazolidinones 94 and 95, menthol or glycidol. 
 

Table 4: Retention factors found for the racemates 90-95. 
 

Analyte Retention factor (k’) Analyte Retention factor (k’) 
90 0.10a,f 93 3.42d,f 
90 0.27b,f 94 and 95 3.50b,f 
90 1.63d,f 81 and 82 1.08d,g 

91 1.01a,f 81 and 82 2.62e,g 
91 2.47b,f 83 and 84 2.48c,g 

91 9.53d,f 92 0.88d,g 
Mobile phase: a40% 2-propanol in n-hexane, b20% 2-propanol in n-hexane, c10% 2-propanol 
in n-hexane, d5% 2-propanol in n-hexane, e1% 2-propanol in n-hexane. 
Flow: f0.8 ml/min, g0.5 ml/min. 
Detection: fUV 254 nm, gMS. 
Injection volume: 20 �l. 
 

Taken together, these results clearly showed that the CSP 89 interacts with the analytes. 
Hydrogen bonds are formed between carbonyl, hydroxyl and/or amino groups present in the 
racemates and the hydroxyl and/or thiol groups present in the CSP 89. The reason for the absence 
of chiral recognition is not obvious from the experimental observations available. Possible 
explanations may involve the immobilization process of the TADDOL 74e on the �–
mercaptopropylsilanized silica 88. It is possible that cross-linking reactions between molecules of 
TADDOL 74e have occurred and competed with the desired C-S bond formation with the thiol 
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groups present on the solid phase 88. As a consequence, remaining free SH groups can interact 
non-selectively with analytes resulting in absence of enantioselective recognition. In addition, 
cross-linking might explain more steric crowding around the chiral centres present in the silica 
gel. This limited access of the analytes to the chiral cavities might also result in loss of 
stereoselective recognition. 
 
 
2.5. Use of TADDOLs in catalysis 
 
In the field of supramolecular catalysis, formation of crystal structures between various 
TADDOLs and suitable guests has been found to display enantioselective photoreactions in the 
solid-state, e.g. inter- and intramolecular [2+2] photocycloadditions,131 Norrish type II 
reactions132 and Ninomiya electrocyclic reactions.133 
 
It has also been shown that the TADDOL 74a forms a complex with the 4-isopropyltropolone 
methyl ester 96 and CHCl3 to undergo an enantioselective photoreaction yielding the cyclic 
unsaturated ketones 97 and 98 in excellent ee (scheme 9).134 Tanaka and co-workers also reported 
the formation of a 1:1 inclusion complex of 73 and various 1-alkyl-2-pyridones 99 in the highly 
enantioselective photocyclization of 1-alkyl-2-pyridones to β-lactams 100 (scheme 9).135 
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Scheme 9: Enantioselective photoreaction using the TADDOLs 74a and 73.135,136 

 
TADDOLs are well known for forming strong complexes with various metals, e.g. Ti or Pd, and 
numerous metal-TADDOLs mediated reactions have been reported.102 A non-exhaustive list of 
asymmetric reaction catalyzed by Ti-TADDOLs complexes includes the ring opening of cyclic 
meso-anhydrides,136 the enantioselective fluorination of �-ketoesters,137 the cycloaddition reaction 
of alkenes with nitrones,138 the asymmetric synthesis of α-nitrophosphonic acids,139 the 
enantioselective addition of AlEt3 to various aldehydes,140 the asymmetric ethylation of 
PhCHO,141 and the asymmetric cyclopropanation of allylic alcohols.142 Polymer-bound 
TADDOLs for catalytic purposes have been also developed.143 For instance, Seebach’s group 
prepared the chiral diester 101, which was reacted with styrene giving the polystyrene 102 
(scheme 10).144 Addition of various Grignard reagents to the polymer 102 yielded the 
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polystyrenes-bound TADDOL 103. These polymer-bounds TADDOLs 103 were used in the 
enantioselective addition of Et2Zn to PhCHO and the formation of (S)-1-phenylpropan-1-ol was 
obtained in 94% ee with a rate of conversion close to 100% with the phenyl group as aromatic 
moiety. 
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Scheme 10: Synthesis of the polystyrenes-bound TADDOL 103 according to Seebach.144 
 
 

2.6. Conclusion 
 
To summarise, the synthesis of new artificial receptors base on (+)-tartaric acid has been 
presented in paper I. These new host molecules have been shown to accommodate the 
corresponding guest molecules in a specific manner. Host-guest interactions between the artificial 
receptors and small chiral alcohols have been studied by 1H-NMR. The phenyl containing 
TADDOL 74a was found to form enantioselective complexes with menthol and glycidol, while 
the 2-naphthyl derivative TADDOL 74c showed selective recognition only with menthol. The 
TADDOL 74d showed strong binding to the guests but no enantioselectivity was observed. The 
1-naphthyl containing TADDOL 74b did not form any complexes with menthol or glycidol. It 
was also demonstrated that these host molecules exhibited dynamic fluxional behaviour in 
solution. The observed enantioselective recognition with the TADDOLs 74a and 74c encouraged 
us in the development of a new chiral stationary phase based on (+)-tartaric acid. For that 
purpose, a suitable TADDOL for immobilization was prepared and grafted on silica gel. The 
chromatographic performance of the resulting chiral selector was evaluated with a series of 
racemates. It was shown that the analytes interact with the chiral selector via hydrogen bond 
formation and/or π-π interaction, but no enantioselective separations were observed with the 
chosen racemates. 
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CHAPTER 3. ENANTIOSELECTIVE MOLECULAR RECOGNITION BY A MOLECULARLY 
IMPRINTED POLYMER (PAPER II) 
 
 
3.1. Background 
 
The aldol condensation consists of the reaction between an aldehyde (or a ketone), bearing an α 
hydrogen atom to the carbonyl group, and another carbonyl containing compound, yielding the 
corresponding α,β-unsaturated aldehyde (or ketone), after subsequent dehydration. Although this 
carbon-carbon bond formation reaction can be performed under acidic conditions, it is generally 
conducted in the presence of a base. This reaction, which is of crucial importance in various 
living systems,145,146 has been extensively studied by numerous research teams.147,148 
Consequently, a plethora of catalysts for the aldol reaction have been described in the literature, 
including chiral oxazolidinones,149 chiral Lewis acids,150 and catalytic antibodies,151 to mention 
but a few. 
 
MIPs have been extensively used in organic synthesis152 and as catalysts for an impressive 
number of chemical reactions.153,154,155,156 For instance, MIPs have been shown to enhance the 
reaction rate of hydrolytic reactions,157 transamination,61 and β-elimination.60 Moreover, the 
molecular imprinting technique has been successfully employed in the catalysis of carbon-carbon 
bond formation, e.g. the Diels-Alder158,159 and cross-coupling reactions.160 In 1996, Matsui and 
co-workers demonstrated that a molecularly imprinted polymer could catalyze the aldol 
condensation between acetophenone and benzaldehyde.57 By analogy to the work reported by 
Matsui, paper II presents the design, synthesis and evaluation of an enantioselective molecularly 
imprinted polymer mimic of a class II aldolase, a metalloenzyme found in lower organisms.145,161 
 
 
3.2. Design and preparation of an enantioselective molecularly imprinted 
polymer mimic of a class II aldolase 
 
 
3.2.1. Introduction 
 

The aldol reactions studied in paper II are the condensations between enantiomerically pure 
(R)-camphor 104a or (S)-camphor 104b, and benzaldehyde (105). These aldol reactions yield the 
(1R,4R)-(E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (106a) and the (1S,4S)-(E)-
3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (106b) (scheme 11), respectively. The 
α,β-unsaturated ketones 106a and 106b are the exclusive products obtained during these 
reactions, in part due to the presence of an unique α-hydrogen bearing carbon in the molecule of 
camphor. The double bonds in the ketones 106a and 106b were found to have the (E)-
configuration based on NOESY experiments. In particular, these experiments showed strong 
correlation between the methine H4 and the aromatic protons H3d, and absence of correlation 
between these aromatic protons and the olefinic proton H3b (figure 28). The complete assignment 
of the 1H- and 13C-NMR spectra of 106a and 106b was accomplished by the application of a 
combination of conventional 1D and 2D NMR experiments, i.e. 1H- and 13C{1H}-NMR, DEPT, 
COSY, HSQC and HMBC. 
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Scheme 11: Aldol condensation between (R)-camphor 104a or (S)-camphor 104b with benzaldehyde 
(105), yielding (1R, 4R)-(E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (106a) or (1S, 4S)-

(E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (106b). Adapted from paper II. 
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Figure 28: The dashed lines represent observed selected NOESY correlations of 106a. Identical 
correlations were observed for 106b. Adapted from paper II. 

 
 
3.2.2. The template 
 
The nature of the template is of critical importance for the preparation of a MIP. The resultant 
polymer should exhibit selective recognition in favour of the template. A wide variety of small 
organic compounds have been used as templates, including carbohydrates such as the 
aminophenyl β-galactosides 107 (figure 29),162 biologically active compounds like herbicides,163 
pharmaceuticals,164 and amino acids.165 Preparations of MIPs based on larger molecules, e.g. 
peptides,166 and cells,167,168 have also been reported in the literature. When choosing a template, 
the chemist should take a number of factors into consideration. For instance, the template should 
not interfere with the polymerisation process. On one hand, the template should not contain 
groups, for instance double bonds, which can generate free radicals and result in polymerisation 
of the template itself. On the other hand, templates with chemical groups which can inhibit a 
polymerisation process, e.g. thiols or hydroquinones, should also be avoided. 
 
Previously, Matsui et al. have shown that the dibenzoylmethane (108) can be employed as a 
transition state analogue (TSA) for the cobalt(II) ion-mediated aldol condensation between 
acetophenone (109) (figure 29) and benzaldehyde (105).57 The two oxygen atoms in 108 filled 
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two of the coordination sites of Co2+. The remaining coordination sites of Co2+ were filled by a 
suitable functional monomer, 4-vinylpyridine (110) (figure 29). Further information about the 
role of functional monomers in the preparation of MIP is presented in the next chapter of this 
thesis (chapter 3.2.3). 
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Figure 29: Structure of the aminophenyl β-galactosides 107, dibenzoylmethane (108), acetophenone 
(109) and 4-vinylpyridine (110). 

 
In analogy to the work reported by Matsui, paper II describes the use of the diketones 111a and 
111b (scheme 12) as TSAs for the preparation of aldolase-mimicking polymers. The diketones 
111a and 111b were synthesised from the reaction between ethyl benzoate (112) and the enolates 
of (R)-camphor 104a or (S)-camphor 104b, respectively.169 Based on NOESY experiments, the 
benzoyl group in 111a and 111b was found to be in the exo-configuration. 
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Scheme 12: Synthesis of the TSAs 111a and 111b. Adapted from paper II. 
 
 
3.2.3. The functional monomers 
 
The functional monomer is also of crucial importance in the preparation of MIPs. The capability 
of the imprinted polymer to selectively interact with guest compounds is strongly dependent upon 
the nature and strength of the interactions between the template and the functional monomer. The 
choice of a monomer is based on its functionalities. The most commonly used acidic monomer in 
molecular imprinting technology is methacrylic acid (113), MAA. Other acidic monomers, like 
itaconic acid (114) and acrylamidomethylpropane sulphonic acid (115), basic monomers like 4-
(5)-vinylimidazole (116) and 4-vinylpyridine (110), and neutral monomers including 2-
hydroxyethylmethacrylate (117) and acrylamide (118), have been employed in the preparation of 
MIPs. The structures of the monomers 113-118 are depicted in figure 30. As mentioned in the 
previous chapter, the functional monomer used in paper II is 4-vinylpyridine (110), which can 
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coordinate two sites of the cobalt(II) ion. It has been shown in paper I that 1H-NMR is a very 
powerful tool for studying the interactions between host molecules (TADDOLs) and guest 
compounds (small chiral alcohols). The same technique was used in paper II to study the 
interactions between the template 111b, Co2+ and pyridine (as an analogue for 4-vinyl pyridine). 
By following the downfield shift of the Hα to the carbonyl groups in the diketone 111b, it was 
possible to evaluate an apparent Kd of 2.50 ± 0.39 mM. These data were supported by a series of 
UV titrations. Collectively, these results supported the idea to use 111b and its enantiomer 111a 
as templates for the preparation of MIPs. 
 
 
3.2.4. The cross-linkers, the initiator and the porogen 
 
The purpose of the cross linking monomers is to create a rigid, permanent and macroporous 
molecular scaffold around the template and the functional monomers. The cross-linkers, which 
are the main components of the MIP, should not interact with the template. However, the cross-
linkers should be sensitive to the polymerisation process. A wide variety of cross-linkers have 
been employed in the synthesis of MIPs, including styrene (119), divinylbenzene, DVB (120) and 
ethyleneglycol dimethacrylate, EGDMA (121), 1,4-diacroyl piperazine (122), pentaerythritol 
triacrylate (123a), trimethylpropane trimethylacrylate (123b) and pentaerythritol tetraacrylate 
(124) to mention a few. The structure of these crosslinking agents are shown in the figure 30. 
EGDMA and DVB are the most commonly used cross linking monomers in the preparation of 
molecularly imprinted polymers. It has been shown that physical properties of MIP are dependent 
upon the choice of the cross-linker. For example, Wulff and his colleagues demonstrated that 
polymers prepared with EGDMA presented higher mechanical and thermal stabilities in 
comparison to analogues synthesised from DVB.170 
 
The polymerisation process generally starts when free radicals are present in the solution. The 
radicals are generated by exposing suitable organic substances, the initiators, to UV-irradiation or 
elevated temperature. Azobisnitrile derivatives, e.g. AIBN (125), ADBV (126) and ABCC (127) 
(figure 30), are normally used as initiators in the preparation of MIPs. AIBN decomposes at 
60°C, while ABCC is stable up to 40°C. This different physical property can be of high 
importance since it has been demonstrated that the temperatures used during the synthesis of a 
MIPs can have a dramatical effect on the polymer performance.171,172 Ellwanger and co-workers 
have recently shown that the stabilities of MIPs in supercritical fluid chromatography can also be 
dependent of the choice of the initiation process, i.e. UV versus thermal exposure.173 
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Figure 30: Structure of the functional monomers 113-118, the cross-linkers 119-124 and the initiators 
125-127. 

 
The porogen is the solvent in which the polymerisation process is performed. The choice of the 
porogen is depending on the solubility of the different components (template, functional 
monomers, cross-linkers) used in the synthesis of the polymer. A polar aqueous solvent should be 
avoided in MIP preparation, since the complexation process between the template and the 
functional monomers is based on weak non-covalent interactions. As a consequence, the porogen 
is usually a non-polar and aprotic solvent, like CHCl3, CH3CN or benzene. If the studied template 
is too polar and is very poorly or not soluble in an appropriate non-polar porogen, functional 
group modifications might be needed. For instance, in their study of the chiral recognition of 
amino acids derivatives in non-covalently MIPs, Kempe and Mosbach protected the amino group 
of (R)-phenylalanine anilide to the corresponding NHBoc.174 A detailed study on the nature and 
influence of porogens in MIP technology has been reported in 1993 by Sellergren and Shea.171 
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3.2.5. Preparation of molecularly imprinted polymer mimics of a class II aldolase 
 
In paper II, two molecularly imprinted polymers, defined as P2 and P3, were prepared using the 
diketones 111b and 111a as TSAs. These bidentate ligands filled two coordinated sites of the 
cobalt(II) ion. The two remaining sites of Co2+ were filled by two molecules of the functional 
monomer 4-vinylpyridine (110). The polymerisation was performed in MeOH, suggested by 
preliminary studies on the solubility of the cobalt complex Co(OAc)2·4H2O, using styrene (119) 
and divinylbenzene (120) as cross-linkers and ABCC (127) as initiator. A schematic 
representation of the preparation of the MIP based on the diketone 111a is shown below in 
scheme 13. 
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Scheme 13: Schematic representation of the preparation of the MIP based on the diketone 111a. 
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3.3. Evaluation of the molecularly imprinted polymer: recognition and kinetic 
studies 
 
In addition to the MIPs P2 and P3, two additional copolymers, P0 and P1, were synthesised from 
the functional monomer 110 and the cross-linkers 119 and 120. P0 was prepared lacking both 
template and Co2+, while P1 was synthesised in presence of the cobalt(II) ions, but in the absence 
of the two TSAs. The polymers P0 and P1 were anticipated to provide insights regarding the 
influence of the polymer matrix itself on molecular recognition and the role of sites selective for 
Co2+. 
 
 
3.3.1. Binding studies 
 
Investigation of polymer-template rebinding was performed using well established procedures.175 
The binding experiments were performed in two different solvents, MeOH and DMF. The 
diketones 111a and 111b, as well as PhCHO and the products 106a and 106b of the studied aldol 
condensation were used as ligands. The results of the experiments conducted in MeOH are 
summarised below, figure 31. 
 

 
 

Figure 31: Binding of 0.015 mM ligand:cobalt complex (1:1) in MeOH. Adapted from paper II. 
 
P0 and P1 presented similar results, e.g. favourable binding of the diketones 111a and 111b, in 
comparison to the α,β-unsaturated ketones 106a and 106b. As expected, no enantioselective 
recognition of 106a and 106b by either P0 or P1 was noticed. However, the presence of cobalt(II) 
ions in P1 favored the complexation of the diketones 111a and 111b to the polymer. For the same 
reason, P2 and P3 showed stronger binding to 111a and 111b than to 106a and 106b. 
Importantly, the results reported in figure 31 clearly indicated the presence of enantioselective 
molecular recognition of the TSAs 111a and 111b by the MIP P2 and P3. P2, which was 
prepared from the (S)-TSA 111b, displayed higher affinity to 111b in comparison to the (R)-TSA 
111a. In contrast, P3 enantioselectively recognized the diketones 111a and 111b, in favor of the 
(R)-TSA 111a. A difference in free energy of binding between the two enantiomers was then 
estimated to be 1.6 kJ.mol-1. 
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3.3.2. Kinetic studies 
 
The influence of the polymers P0, P1, P2 and P3 on the rate of the reaction between either (R)-
camphor 104a or (S)-camphor 104b and benzaldehyde (105) was also studied. The reaction 
assays were performed following the work previously reported by Matsui and co-workers, with 
minor modifications.57 The formation of the (S)-product 106b per mol site (Co2+) using the 
reference polymers P0 and P1, and the molecular imprinted polymers P2 and P3 is shown in the 
figure 32. 
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Figure 32: Formation of the (S)-product 106b per mol site (Co2+) using the polymers P0, P1, P2 and P3, 
and solvent reaction. From paper II. 

 
The reference polymer P0 has no influence on the rate of the reaction between PhCHO and (S)-
camphor 104b. In contrast, a clear rate enhancement of the aldol condensation, by a factor of 12 
relative to the solution reaction, was noticed when the reaction was conducted in presence of the 
polymer P1. When the MIP P2 (prepared from the (S)-TSA 111b) was included in the reaction, a 
considerable increase of the reaction rate (∼55-fold) was observed. The polymer P3, which 
possess sites selective for the (R)-camphor 104b, displayed also a clear rate enhancement of the 
reaction between benzaldehyde (105) and the (S)-camphor 104b. It was anticipated that the 
enantioselectivity observed in the binding studies was responsible for the difference in the rate 
enhancement of the aldol reaction. The difference between the binding studies and the results 
shown here, possibly reflect the fact that the former are performed under thermodynamic control 
(equilibrium conditions) with no competition for sites. The latter, however, is a system 
comprising several components and which is not in equilibrium. 
 
 
3.4. Conclusion 
 
The design and preparation of MIPs mimicking the aldol reaction between enantiomerically pure 
(R)-camphor or (S)-camphor and benzaldehyde has been reported in paper II. This study 
presented the first enantioselective carbon-carbon bond formation catalyzed by a MIP. It was 
demonstrated that the polymers P2 and P3 recognised the diketones 111a and 111b in an 
enantioselective manner. Moreover, the synthetic polymers P1, P2 and P3 dramatically increased 
the reaction rate by a factor of up to 55. In respect to the work presented in the chapter 2 of this 
thesis, paper II is also an elegant example of the stereospecific molecular recognition of small 
chiral compounds by artificial receptors. Additional studies on this aldol reaction are underway, 
which include studies on the influence of the solvent and the nature of the metal. Similar 
reactions with different substrates are also planned. 
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CHAPTER 4. REGIOSELECTIVITY IN MOLECULAR RECOGNITION: ILLUSTRATION WITH 
THE PINE WEEVIL HYLOBIUS ABIETIS (PAPER III AND IV) 
 
In chapter 1.3.3 (pages 24-25), the importance of regioselective molecular recognition in 
medicinal chemistry was presented. The pharmacological activities of various quinone and purine 
derivatives were shown to be strongly dependent on the position of the hydroxyl group on the 
benzyl ring. In this chapter, the antifeedant effects of a series of regioisomers of the methyl 
hydroxy-methoxybenzoate, methyl methoxybenzoate and methyl dimethoxybenzoate, against the 
pine weevil Hylobius abietis, are discussed. In analogy to the biological activities exhibited by 
the quinones and purines mentioned above, the deterrent properties of the methyl esters varied 
dramatically among the regioisomers. 
 
4.1. Background 
 
In large parts of Europe, coniferous forests are suffering from the pine weevil Hylobius abietis 
(L.) (Coleoptera: Curculionidae).176 The pine weevils often feed on the bark of coniferous 
seedlings, which result in the death of the planted conifers.177 The chlorinated insecticide 
permethrin has been used for the protection of the seedlings. However, the use of permethrin is 
not allowed anymore, since this insecticide has not been registered according to the new 
European rules. Moreover, it has been shown that this insecticide presents health risks for forestry 
workers178 and caused damage to the environment.179 Antifeedant substances, which are harmless 
for Nature and humans, have been shown to be promising substitutes for insecticides.180 For 
instance, the methyl 4-hydroxybenzoate has been used as a blood sucking mosquito repellent.181 
Potent antifeedants against Hylobius abietis have been already reported in the literature, but these 
substances presented some limitations.182,183,184 In 2000, Unelius and co-workers demonstrated 
that various benzoates can be use as antifeedants in pine weevil pest management.185 Based on 
this preliminary observation, it was then decided to test all regioisomers of the methyl hydroxy-
methoxybenzoate (paper III), and a series of other benzoic acid derivatives and analogues 
(paper IV) for their possible antifeedant effect. The structures of all the possible regioisomers 
128-137 of the hydroxy-methoxybenzoic methyl ester are shown in the figure 33. The structures 
of the methyl dimethoxybenzoates 138a-138d and the methyl methoxybenzoates 139a-139c, 
discussed in this chapter, are also depicted in the figure 33. The methyl hydroxy-methylbenzoates 
133-137, the methyl 2,6-dimethoxybenzoate (138a), the methyl 2,4-dimethoxybenzoate (138c), 
and the methyl methoxybenzoates 139a-139c were commercially available, while the esters 128-
132, 138b and 138d had to be synthesised. 



 49 

OMe

R2

R3

138a: R1 = R2 = R3 = H, R4 = OMe.
138b: R1 = R2 = R4 = H, R3 = OMe.
138c: R1 = R3 = R4 = H, R2 = OMe.
138d: R2 = R3 = R4 = H, R1 = OMe.

O

OMe

O

OMe
O

OMe

O

OMe

O

OMe

OH

OMe

HO

OMe

HO
OMe OMe

HO

OMe

OH

129128 130 131

132

O

OMe

133

O

OMe

134

O

OMe

135

O

OMe

136

O

OMe

137

OH

MeO

HO

MeO

OH
MeO

OH

OMe

MeO

HO

R1

R4

OMe

O

OMe

OR1

H
H

R2

R3

139a: R2 = R3 = H, R1 = OMe.
139b: R1 = R3 = H, R2 = OMe.
139c: R1 = R2 = H, R3 = OMe.  

 
Figure 33: Structure of the benzoic methyl esters 128-139c. Adapted from paper III and paper IV. 

 
 
4.2. Synthesis of the non-commercial methyl hydroxy-methylbenzoates 128-
132 and the non-commerical methyl dimethoxybenzoates 138b and 138d 
 
The synthesis of the two methyl esters 128 and 129 was carried in two steps: esterification and 
mono O-methylation of their corresponding dihydroxybenzoic acids 140 and 142 (scheme 14). 
The reactive COOH moiety in 140 was esterified in MeOH with a catalytic amount of H2SO4. In 
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contrast, the COOH group in 142 was of low reactivity because of the presence of the two 
hydroxyl groups ortho to COOH, which dramatically decreased the electropositive character of 
the carbon atom in COOH. Esterification of 142 was achieved after treatment with DCC and 
DMAP in a solvent mixture of MeOH and CH2Cl2. The O-methylation of 141 and 143 was 
accomplished by use of one equivalent of MeI and the base K2CO3. 
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Scheme 14: Synthesis of the methyl esters 128 and 129. Adapted from paper III. 
 
The synthesis of the methyl hydroxy-methoxybenzoates 130-132 presented in paper III was 
based on a strategic pathway with a regioselective protection as the key step. This strategy has 
been previously described by Dornhagen and Scharf in their synthesis of the dichloroisoeverninic 
acid.186 In the synthesis presented by Dornhagen et al., the methyl ester 144 was reacted with 
benzyl bromide and K2CO3 in (MeOCH2)2, to give respectively the para substituted monoether 
145 and the ortho and para substituted diether 146 in 70% and 5% yield (scheme 15). The 
benzylation occurred predominantly at the para position due to steric hindrance between the 
bulky ortho benzyl group and the ester moiety. The syntheses of the methyl esters 130-132 are 
shown in the scheme 16. After esterification of the benzoic acids 147a-147c, the corresponding 
esters 148a-148c were regioselectively acylated at the hydroxyl groups meta or para to the ester 
group due to steric hindrance effects between the bulky protecting group tBu and the ester group. 
The O-methylation of the hydroxyl group ortho to the carbomethoxy group of the diesters 149a-
149c was performed using MeI and K2CO3 in DMF yielding the etherified esters 150a-150c. The 
methyl benzoates 130-132 were then isolated after deprotection of the hydroxyl group meta or 
para to the ester moiety in 150a-150c, using the weak base K2CO3 and MeOH as the solvent. 
 
The methyl 2,5-dimethoxybenzoate (138b) and the methyl 2,3-dimethoxybenzoate (138d) were 
esterified in one step from their corresponding dimethoxybenzoic acid; in MeOH with H2SO4 as a 
catalyst and in MeOH with DCC and a catalytic amount of DMAP, respectively. 
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Scheme 15: Synthesis of the methyl monobenzylic ether benzoate 145 and the methyl dibenzylic ether 
benzoate 146. Adapted from reference 186. 
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Scheme 16: Synthesis of the hydroxy-methoxybenzoic methyl esters 130-132. Adapted from paper III. 
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4.3. Results of biological analyses 
 
Bioassays were performed on the methyl benzoates 128-139c. Their antifeedant effect was 
measured in term of antifeedant activity index (AFI) for the esters 128-137, and in term of two 
variants of the antifeedant index (AFIa and AFIn) for the esters 138a-139c.187 The results are 
reported in the table 5. Exception made of the methyl 5-hydroxy-2-methoxybenzoate (132), all 
methyl benzoates exhibited antifeedant activity after 24 h. Among the hydroxy-methoxy 
substituted derivatives, the 2-hydroxy ones (esters 129, 133, 135 and 136) presented the highest 
potent antifeedant activities, followed by the 3-hydroxy containing esters (128, 130 and 134). The 
methyl 4-hydroxymethoxybenzoates 131 and 137 presented the lowest antifeedant activities after 
24 h. The antifeedants activities varied considerably among the methyl monomethoxybenzoates 
(139a-139c) and the methyl dimethoxybenzoates (138a-138d). 
 
Table 5: Antifeedant activity found for the esters 128-131 and 133-139c. Adapted from paper III and IV. 
 

Benzoic 
methyl 
ester 

Antifeedant 
activity 
indexa,b 

Benzoic 
methyl 
ester 

Antifeedant 
activity 
indexa,b 

Benzoic 
methyl 
ester 

Antifeedant 
activity 
indexa,b 

Benzoic 
methyl 
ester 

Antifeedant 
activity 
indexa,b 

129 54 133 52 137 22 138a 51c / 10d 

128 26 134 32 138c 99c / 95d 139a 80c / 51d 

130 35 135 85 138b 89c / 77d 139b 89c / 65d 

131 4 136 56 138d 73c / 55d 139c 54c / 44d 

a 0 is no activity, 100 is complete feeding deterrence. 
b After 24h. 
c AFIa 
d AFIn 
 
Few particular mechanisms of molecular recognition in insects are known. The structures of these 
receptors involved in these mechanisms are of very high complexities.188,189 In the literature, the 
reader can find specific reviews on olfactory190 and EGF receptors.191 However, a very limited 
number of studies concerning Hylobius abietis and its receptors have been presented, and only 
preliminary results in relation to the interaction of plant volatiles with the corresponding receptor 
of the pine weevil have been reported.192,193 

 
The mode of action of the methyl benzoates on the pine weevil is unknown, but the position of 
the substituents (hydroxyl and methoxy group) on the phenyl ring is of critical importance. 
Hence, the regioisomers of the methyl hydroxyl-methoxybenzoate with the hydroxyl group on the 
ortho position toward the ester moiety presented very high antifeedant effect against the pine 
weevil. In contrast, the 3-hydroxy and 4-hydroxy derivatives present less activity. This difference 
in activity among regioisomers was also observed with the methyl dimethoxybenzoates. The 
methyl 2,4-dimethoxybenzoate (138c) showed extremely high activity in comparison to its 
regioisomers, the methyl 2,5-dimethoxybenzoate (138b), the methyl 2,3-dimethoxybenzoate 
(138d) and the 2,6-dimethoxybenzoate (138a). The same observation was made with three 
regioisomers of the methyl methoxybenzoate. The antifeedant activity of the esters 139a-139c 
against Hylobius abietis was evaluated and strong disparity of the deterrent effect between the 
regioisomers was noticed. 
 
 
 



 53 

4.4. Conclusion 
 
A number of hydroxy-methoxybenzoic methyl esters have been synthesised from their 
corresponding dihydroxybenzoic acids. The esters 130-132 were prepared in a four steps 
procedure with a regioselective protection as key step. Esterification, followed by O-
monoetherification of the dihydroxybenzoic acids 140 and 142 gave respectively the methyl 
benzoate 128 and 129. In addition, the methyl dimethoxybenzoates 138b-138d were synthesised 
in one step, from their corresponding dimethoxybenzoic acids. 
 
The antifeedant activities of the benzoic methyl esters 128-139c described above, and a number 
of commercially available analogues, were determined on the pine weevil Hylobius abietis. It was 
demonstrated that the antifeedant activities of the esters varied considerably among regioisomers. 
Receptors of the pine weevil Hylobius abietis showed selective molecular recognition between 
the regioisomers of the methyl hydroxy-methoxybenzoates 128-137, the dimethoxybenzoic 
methyl esters 138a-138d and the methyl monomethoxybenzoates 139a-139c. The (unknown) 
active site, responsible for the behavioural response of the pine weevil to the antifeedants, interact 
in a regioselective manner with the methyl esters 128-139c since these regioisomeric esters 
display different deterrent effect. In paper III and IV, the importance of regioselectivity in 
molecular recognition has been highlighted, where numerous regioisomers presented different 
biological activities. 
 
The results obtained from the biological activity studies clearly indicate that some of the benzoic 
acid derivatives can be used as antifeedants against the pine weevil Hylobius abietis. 
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CHAPTER 5. STEREOISOMERY IN MOLECULAR RECOGNITION: ILLUSTRATION WITH THE 
LEAFROLLER ARGYROTAENIA SPHALEROPA (PAPER V) 
 
The role of stereoisomerism, especially Z- and E-isomerism on various biological systems have 
been discussed in the chapters 1.3.1 and 1.3.2. In the coming chapter, a detailed description on 
the importance of E-isomerism on the pheromone function of the leafroller Argyrotaenia 
sphaleropa is presented. 
 
 
5.1. Background 
 
The leafroller Argyrotaenia sphaleropa is an important pest of deciduous fruit crops and grapes 
in Uruguay.194 There is a need for appropriate environmentally safe methods to control this insect 
pest since three to four insecticides have been employed to protect the crops and grapes. The 
development of more environmentally friendly method includes the use of pheromones. For 
instance, pheromones have been successfully used for moth pest management by monitoring,195 
mating disruption196 and mass trapping.197 
 
Recently, Nunez and colleagues found that the components of the sex pheromone of 
Argyrotaenia sphaleropa consist of the (Z)-11-tetradecenal (147), the (Z)-11,13-tetradecadienal 
(148), the (Z)-11-tetradecenyl acetate (149) and the (Z)-11,13-tetradecadienyl acetate (150) 
(figure 34) in the ratio 1:4:10:40.198 Nunez used the gas chromatography-electroantennographic 
detection (GC-EAD) technique199 to determine the absolute configurations of the aldehydes 147 
and 148, and the acetates 149 and 150. By knowing the composition of the pheromone gland, it is 
possible then to prepare and test several trap lures based on one or several of these components. 
 

CHO

147 148

149 150

CHO

OAc OAc

 
 

Figure 34: Structure of the (Z)-11-tetradecenal (147), the (Z)-11,13-tetradecadienal (148), the (Z)-11-
tetradecenyl acetate (149) and the (Z)-11,13-tetradecadienyl acetate (150). Adapted from reference 198. 

 
 
5.2. Synthesis of two pheromone components of ARGYROTAENIA SPHALEROPA: 
(Z)-11,13-tetradecadienal (148) and (Z)-11,13-tetradecadienyl acetate (150) 
 
Numerous synthetic tools have been developed for the preparation of isomerically pure Z- or E-
olefins. One of the most established method is the Wittig reaction200 and analogues like the 
Wadsworth-Emmons reaction201 and the Peterson olefination.202 Generally, in the Wittig reaction 
non-stabilized ylides react with aldehydes or ketones to give predominantly the Z-alkene when 
the base employed is not a lithium derivative. In contrast, under the Schlosser modification,203 the 
reaction between a non-stabilized ylide and an aldehyde will predominantly yield the E-alkene 
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after an extra deprotonation-protonation sequence. An elegant example of this reaction has been 
reported in 1999 by Khiar and co-workers in the synthesis of D-erythro and L-threo spingosine.204 
The chiral aldehyde 151 reacts with the phosphonium salt CH3(CH2)13PPh3

+,Br- in presence of 
PhLi to give exclusively the E-alkene 152 (scheme 17). 
 

CH3(CH2)12CH2PPh3Br

PhLiO
NBoc

CHO

OMOM

O
NBoc

OMOM

12

151 152  
 

Scheme 17: Example of a Wittig reaction under Schlosser modification. Adapted from reference 204. 
 

More recently, Santangelo et al. used the normal and Schlosser modified Wittig reactions in the 
synthesis of the components of the pheromone glands of the sugar cane borer Diatraea 
saccharalis.205 The E-unsaturated aldehyde 153 was treated with pentyltriphenylphosphonium 
bromide in the presence of BuLi to give the corresponding E,E-diene 154a as the major product. 
By contrast, mixing 153 with the same phosphonium salt and the base KHMDS allows the 
formation of the E,Z-diene 154b and the E,E-diene 154a in a ratio 10:1 in favour of 154b 
(scheme 18). The dienes 154a and 154b were respectively purified from each other by MPLC 
using AgNO3-impregnated silica gel.206 
 

154aPPh3Br BuLi:
154a:154b 20:1

KHMDS:
154a:154b 1:10

Base
38 H

O
THPO

8

THPO

154b

8

THPO153

 
 

Scheme 18: Example of a Wittig reaction under normal and Schlosser modification Adapted from 
reference 205. 

 
The reaction between stabilized ylides and aldehydes or ketones is another method employed for 
the preparation of E-alkenes. It should be noted that the E-Z selectivity for stabilized ylides is 
also solvent dependent. In 1979, Tronchet highlighted the importance of the choice of solvent for 
the reaction between stabilized ylides and α-alkoxy aldehydes.207 For instance, in MeOH the 
aldehyde 155 reacts with the phosphonium salt 156 to give the Z-alkene 157a as the major 
product (scheme 19). On the contrary, the main isolated product was the E-alkene 157b when the 
reaction was performed in DMF. 
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Scheme 19: Solvent dependence of the Wittig reaction with stabilized ylides. Adapted from reference 207. 
 

The synthesis of the sex pheromone components 148 and 150 of the leafroller Argyrotaenia 
sphaleropa is presented in the scheme 20. The synthesis started with the 11-bromo-1-undecanol 
(158) which was reacted with acetic anhydride in presence of pyridine to give the acetate 159. 
This acetate was transformed to the phosphonium salt 160 after reaction with PPh3 in CH3CN. 
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PPh3

9
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9
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9
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Scheme 20: Synthesis of the (11Z,13)-tetradecadien-1-yl acetate (150) and the (11Z,13)-tetradecadienal 
(148). Adapted from paper V. 

 
After treatment of 160 with the “salt free” base NaN[SiMe3]2, the resulting non-stabilized ylide 
was treated with acrolein yielding the (11Z,13)-tetradecadien-1-yl acetate (150) as the major 
product. The observed couplings between the olefinic protons in 150 are shown in the figure 35. 
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Figure 35: Observed coupling constants (in Hz) in the dienic system of the acetate 150. 
 
Deacetylation of 150 using KOH and MeOH gave the alcohol 161, which was oxidized to the 
dienic aldehyde 148 with PDC. The Z-isomers of the dienes 150, 161 and 148 were purified from 
traces of their corresponding E-isomers by MPLC using silica gel containing silver nitrate, which 
increased the stereosisomeric purity of 150, 161 and 148 up to 99.9%. 
 
 
5.3. Results of field tests 
 
The preparation of an optimal lure based on the components of the gland pheromone was 
conducted. It was found that a lure containing both the acetate 150 and the aldehyde 148 attracted 
the largest number of Argyrotaenia sphaleropa males. A lure with a mixture of 148 and 150 in 
the ratio 100:10 caught 43 leafroller males, while only 17 males were trapped with the ratio 
10:100 in favour of the acetate 150 (table 6). 
 

Table 6: Field trapping of A. sphaleropa males. Adapted from paper V. 
 

Compound Trap lure compositions (µg/trap) 
A B  

148 100 10  
150 10 100  

Males caught per trap lure 43 17  
 
 
5.4. Conclusion 
 
Two pheromone components of the leafroller Argyrotaenia sphaleropa, i.e. the (Z)-11,13-
tetradecadienal (148) and the (Z)-11,13-tetradecadienyl acetate (150) have been synthesised using 
the 11-bromo-1-undecanol (158) as starting material. After purification by preparative liquid 
chromatography, the aldehyde 148 and the acetate 150 were obtained in high isomeric purity (up 
to 99.9%). These two components were tested together for the preparation of a trap lure. The best 
lure was made with a mixture of 148 and 150 in the ratio 100:10. 
 
The responsible receptor site in the A. sphaleropa males recognised in a stereoisomeric specific 
manner the pheromone components since the Z-stereoisomers of 148 and 150 are effective 
attractants for males. This study is one illustration of the role played by the Z and E isomerism on 
pheromone function. 
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CHAPTER 6. CONCLUSION AND FUTURE OUTLOOK 
 
 
The demand, especially from the pharmaceutical industry, for the production of enantiomerically 
pure compounds, has continued to increase. There are different ways to prepare such substances. 
Asymmetric catalysis is probably the most used method for the synthesis of chiral substances. 
Resolution of a racemate, using a chiral resolving agent, is also very often employed. These two 
techniques are based upon the capability of molecules to recognise each other in an 
enantioselective manner. Thus, a better understanding of the molecular recognition phenomena 
should help in the development of improved resolving reagents and catalytic systems. 
 
For that purpose, a series of new TADDOLs has been prepared and it has been demonstrated by 
1H-NMR spectroscopy that these TADDOLs can selectively recognised valuable chiral alcohols. 
These preliminary results should encourage further research with these new TADDOLs. For 
instance, they can be used as novel chiral selectors in chromatographic separation, or as host 
compounds for the resolution of racemates. 
 
Moreover, the first example of an asymmetric aldol reaction catalyzed by a molecularly imprinted 
polymer has been described in this thesis. MIPs are very useful tools in organic synthesis, 
however, their use in the catalysis of carbon-carbon bonds has been rare. The importance of 
carbon-carbon bond formation both in organic synthesis and biology, most probably assures the 
use of MIPs as catalysts in this kind of chemical reaction. 
 
Stereoselective and regioselective molecular recognition is responsible for most of the processes 
occuring in biological systems. 
 
Benzoic acid derivatives and pheromone components have been proved to be potentially harmless 
substances in the management of pest insects. These studies have underlined the importance of 
regioselectivity and stereoselectivity in molecular recognition in some biological processes. 
Nevertheless, the mechanism of recognition between the receptor of the studied insects and 
chemicals are still unknown, which means that a lot remains to be explored and developed in this 
field of research. 
 
The design, preparation and application of molecular and macromolecular artificial selectors are 
in progress in the group. 
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APPENDIX 
 

General. 1H NMR and 13C NMR spectra were recorded at 400 or 250 MHz and at 100 or 
63 MHz, respectively. CDCl3 was used as a solvent while the signal of the solvent served as 
internal standard. The 13C NMR spectrum of 74e was partially resolved by using DEPT 
experiment (θ  = 135°). High resolution mass spectrum was obtained by electron spray ionization 
(ESI). THF was dried over sodium/benzophenone. The solvents used for chromatography were of 
HPLC grade. 
 

(2R,3R,10R,11R)-tetrakis[hydroxydi(4-styryl)methyl]-1,4,9,12-
tetraoxadispiro[4.2.4.2]tetradecane (74e). A suspension of Mg (0.79 g, 32.77 mmol) in THF 
(20 mL) was cooled to – 40 ºC. A solution of 4-bromostyrene (4 mL, 30.72 mmol) dissolved in 
THF (10 mL) was added drop wise to the suspension and the reaction mixture was stirred at – 40 
ºC for 4h. The tetratester 80 (1.0 g, 2.05 mmol) dissolved in THF (17 mL) was added slowly at – 
40 ºC. The reaction mixture was stirred at this temperature for 1h and was stirred overnight at 10 
ºC. A saturated solution of NH4Cl was added at – 20 ºC. The organic and the water phases were 
separated and the aqueous phase was extracted three times with EtOAc. The combined organic 
phases were dried over MgSO4 and evaporated to give a yellowish solid. Recristallization of the 
crude in EtOH gave 74e as a pale yellow solid (1.165 g, 50%). Mp 107 – 112 ºC; [�]20

D -13 (c 
1.02, CHCl3); 1H NMR (250 MHz, CDCl3, 25 ºC), � 7.42 – 7.25 (m, 32H, H arom), 6.77 – 6.58 
(m, 8H, 4 × CH=CH2), 6.36 (bs, 4H, 4 × OH), 5.80 – 5.64 (m, 8H, 4 × CH=CHH), 5.30 – 5.17 
(m, 8H, 4 × CH=CHH), 4.45 (s, 2H, 4 × CH), 4.27 (s, 2H, 4 × CH), 1.56 – 1.83 (m, 8H, 4 × 
CH2); 13C NMR (66 MHz, CDCl3, 25 ºC) � 145.0, 142.0, 136.9 (all C arom), 136.5, 136.2, 131.3, 
128.6 (all CH arom and/or CH vinyl), 128.5 (C arom), 127.8, 126.2, 126.0, 125.1 (all CH arom 
and/or CH vinyl), 115.4 (C arom), 114.2, 114.0, 113.8 (all CH=CH2), 109.0 (2 × OCO), 80.5 (4 × 
CH), 77.9 (4 × C(C6H4)CHCH2), 33.5 (4 × CH2); HRMS calcd for C78H78O8Na (M + Na)+ 
1159.5125. Found 1159.5149. 
 

Preparation of the silica gel 88. LiChrosorb Si 60 87 (5 �m, 4.8 g) was treated with 20 mL 
of (3-mercaptopropyl)trimethoxysilane in 20 mL of anhydrous pyridine-toluene (1:1). The 
mixture was heated at 90 ºC for 24h. After cooling to room temperature, the mixture was 
centrifuged. The collected solid 88 was washed with toluene, acetone, diethyl ether and pentane 
and dried under vacuum. NIR-FT-Raman 2847 (CH2), 2587 (SH) cm-1. BET surface area: 
487.8129 m2.g-1. Average pore diameter(Å): 67.1932. Elemental analysis. Found: C, 10.25; H, 
2.30; O, 2.00; S, 6.75. 
 

Preparation of the silica gel 89. Under inert atmosphere, the modified silica gel 88 (3 g), 
the TADDOL 74e (2.0 g, 1.76 mmol) and AIBN (0.03 g, 0.176 mmol) were mixed together in 
CHCl3 (60 mL) and the slurry mixture was refluxed for 24h. Then, after cooling to RT, the 
modified silica gel 89 was filtrated, washed with EtOAc, THF, Acetone, Et2O, heptane and dried 
other vacuum. NIR-FT-Raman 3059 (CH arom), 3007 (CH arom), 2577 (SH), 1629 (C=C arom), 
1608 (C=C arom) cm-1. BET surface area: 866.7478 m2.g-1. Average pore diameter (Å): 91.4067. 
Elemental analysis. Found: C, 31.70; H, 3.50; O, 4.70; S, 4.35. 

 
Chromatographic experiments reported in chapter 2.4. The silica gel 89 was suspended 

in CHCl3/CH3CN (85:5, v/v), sonicated (5 min) to disrupt aggregates and slurry packed into 
stainless steel HLPC columns (100 mm × 4.6 mm I.D.) at 290 bars with an air-driven fluid pump 
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(Haskel Engineering Supply Co., USA) with acetone as the packing solvent. The mobile phase 
flow rate was 0.5 or 0.8 ml/min. The injected compounds were dissolved in the studied mobile 
phase and the concentration was < 10 mM (depending of the solubility in the mobile phase). The 
injected volumes were 20 µl. The void volume of the column was found to be 2.09 min by 
injection of cyclohexane. 
 

Methyl 2,3-dimethoxybenzoate (138b). The 2,3-dimethoxybenzoic acid (0.5 g, 2.74 
mmol) was dissolved in MeOH (11 mL) and some drops of H2SO4 were added slowly to the 
reaction mixture. The solution was stirred at the reflux temperature. When the reaction was 
finished (TLC), the solvent was evaporated and the crude product was dissolved in CH2Cl2. The 
organic layer was washed twice with brine and then dried over MgSO4. After evaporation of the 
solvent, the methyl 2,3-dimethoxybenzoate (138b) was isolated as a colorless oil (0.53 g, 98%). 
1H NMR (400 MHz, CDCl3, 25 ºC), � 7.22 – 7.20 (dd, 1H, H arom), 7.00 – 6.86 (m, 2H, H 
arom), 3.80 (s, 3H, OMe), 3.79 (s, 3H, OMe), 3.77 (s, 3H, COOMe). 13C NMR (100 MHz, 
CDCl3, 25 ºC) � 164.9 (C=O), 151.7, 147.3, 124.3 (all C arom), 121.9, 120.4, 114.0 (all CH 
arom), 59.7, 54.3, 50.4 (2 x OMe and COOMe). 
 

Methyl 2,5-dimethoxybenzoate (138d). Same procedure as for the methyl 2,5-
dimethoxybenzoate (138d), but with the 2,5-dimethoxybenzoic acid (0.4 g, 2.19 mmol) as 
starting material The methyl 2,5-dimethoxybenzoate (138d) was isolated as a colorless oil (0.42 
g, 97%). 1H NMR (250 MHz, CDCl3, 25 ºC), � 7.34 – 7.31 (d, 1H, H arom), 7.11 – 6.96 (dd, 1H, 
H arom), 6.97 – 6.92 (d, 1H, H arom), 3.90 (s, 3H, OMe), 3.86 (s, 3H, OMe), 3.78 (s, 3H, 
COOMe). 
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Abstract—A series of dimeric a,a,a 0,a 0-tetraaryl-1,3-dioxolane-4,5-dimethanol TADDOLs has been prepared and host–guest inter-
actions of these structures have been characterized using a series of 1H NMR studies. Enantioselective recognition of the chiral alco-
hols glycidol and menthol was observed for phenyl and 2-naphthyl derivatives. The influence of steric bulk on the dynamic fluxional
behaviour of the TADDOL structures was demonstrated by dynamic NMR.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Resolution is of critical importance for the preparation
of enantiomerically pure structures for use in organic
synthesis, and for the study of chiral compounds with
biological activity. Significant research effort has been
focused upon the development of systems and tech-
niques capable of the selective recognition of one of
the enantiomers.1 The often remarkable molecular com-
plementarity displayed by macromolecular recognition
systems provides opportunities for application in the
resolution of racemates. TADDOLs, molecules contain-
ing the a,a,a 0,a 0-tetraaryl-1,3-dioxolane-4,5-dimethanol
structure (Fig. 1), were first reported by Narasaka in
1986,2 and have been shown to be useful as host mole-
cules for the resolution of non-voluminous racemates.3

These versatile chiral auxiliaries have also been used in
0957-4166/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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a range of other application areas, for example, for
chemical catalysis.4–12

Recently, a new generation of TADDOLs derived from
cyclohexanediones and (+)-tartaric acid has been de-
scribed, which can accommodate relatively voluminous
guests.13 But only a limited number of studies of this
new class of host compounds have been reported.14,15

Herein, a series of TADDOLs 3a–d (Scheme 1) derived
from the bis-ketal of diethyl (+)-tartrate and 1,4-cyclo-
hexanedione have been synthesized and the dynamic
behaviour of these TADDOLs has been studied by 1H
NMR. Recognition of the synthetically useful small chi-
ral alcohols (�)-menthol 4a, (+)-menthol 4b, (�)-gly-
cidol 5a and (+)-glycidol 5b (Fig. 2) by the various
TADDOLs has been examined. Resolution of these par-
ticular chiral alcohols, which are used in various asym-
metric syntheses,16–23 has been the focus of a number
of recent studies.24–28
2. Results and discussion

2.1. Synthesis of the new TADDOLs derived from 1,4-
cyclohexanedione and diethyl (+)-tartrate

The synthesis of a series of octa-aryl substituted TADD-
OLs was achieved using the methodology developed by
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Table 1. Measured coalescence temperatures (TC), exchange rate

constants (kC) and Gibbs free energies of activation (DG5) for the

TADDOLs 3a–d in acetone-d6

Entry TADDOL TC (K) kC (s�1)a DG5 (kJ mol�1)b

1 3a 220 nrd nrd

2 3b 334c 97 69.6 ± 2

3 3c 217 nrd nrd

4 3d 229 210 45.4 ± 2

a kC = 2.22/
p
(DV 2 þ 6J2AB) s

�1.
bDG5 = 19.14TC(10.32 + log(TC/kC)) J mol�1.
cMeasured in DMSO-d6.
d nr = not resolved.
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Tanaka et al.13 The reaction between the 1,4-cyclohex-
anedione 1 and diethyl (2R,3R)-(+)-tartrate in the pres-
ence of BF3ÆEt2O gave the tetraester 2 in moderate yield.
Subsequent reaction of the intermediate 2 with various
aryl Grignard reagents furnished the TADDOLs 3a–d
(Scheme 1).

2.2. Dynamic behaviour of the TADDOLs in solution

The room temperature 1H NMR spectra of the 1-naph-
thyl TADDOL, 3b, demonstrated broad peaks corre-
sponding to the resonances of the aromatic and
methine protons. Spectra recorded at elevated tempera-
ture resulted in a sharpening of these peaks. This indi-
cated the presence of dynamic processes, which take
place within the NMR time frame, and suggested a clo-
ser examination of the temperature dependence of the
spectrum of 3b, and those of the other TADDOL deriv-
atives used in this study.

The TADDOLs all demonstrated temperature depen-
dent dynamic behaviour from which coalescence tem-
perature (TC) could be determined for the methine
protons, Table 1. Exchange rate constants (kC) were cal-
culated for 3b and 3d using the Eyring equation, and
Gibbs free energies of activation (DG5) using kC and
TC.

29 The spectra of the other TADDOLs were not suf-
ficiently resolved at the lowest temperature studied
(207 K) to permit the calculation of these factors.

In the case of the TADDOL 3d, the 1H NMR spectrum
recorded in acetone-d6 at low temperature (210 K) re-
vealed an AB system comprised of two apparent doublets
(3J = 7.02 Hz) arising from the methine hydrogens.
Increasing the temperature resulted in coalescence of
these peaks (TC = 229 K). By increasing the temperature
to 250 K, the resonance arising from the methine protons
was resolved into a sharp singlet (Fig. 3).

In contrast to the relatively high coalescence tempera-
ture of 3b, 334 K, the TCs of the TADDOLs 3a–c were
found between 217 and 229 K. This indicated that the
dynamic behaviour of 3b is markedly different from
the other members of this series. Indeed, the free energy
barrier (DG5) for the dynamic NMR process in 3b is
higher than for 3d, which we attribute to the greater ste-
ric hindrance arising from the bulkier 1-naphthyl moie-
ties, which inhibit rotation of the side chains on the C–C
bond of the five-membered rings. Interestingly, similar
spectral behaviour was observed for the methylene pro-
tons of the cyclohexane ring, (though resolution could
not be achieved within the temperature range studied)
which indicates restricted interconversion between the
two chair conformations of the cyclohexane ring.

Collectively, these observations allow us to conclude
that these TADDOLs exhibit dynamic fluxional behav-
iour in solution.

2.3. Host–guest behaviour of the new TADDOLs

Previous studies have demonstrated that some TAD-
DOL derived systems can function as chiral hosts for



Table 2. Dissociation constants [Kd (lM)] for complex formation

Entry Host (TADDOL) Guest (chiral alcohol) Kd (lM)a

1 3a 4a 550 ± 30

2 3a 4b 100 ± 30

3 3a 5a 190 ± 60

4 3a 5b 630 ± 20

5 3b 4a ncb

6 3b 4b ncb

7 3b 5a ncb

8 3b 5b ncb

9 3c 4a 60 ± 7

10 3c 4b 1040 ± 30

11 3c 5a 170 ± 30

12 3c 5b 170 ± 30

13 3d 4a 30 ± 0.9

14 3d 4b 10 ± 4

15 3d 5a 10 ± 1

16 3d 5b 10 ± 1

a Apparent dissociation constants were calculated with non-linear line

fitting to a one-site model with the software package Prism (version

3.03, GraphPad Software, USA).
b nc = no complexation were observed under these experimental

conditions.

Figure 3. Variable-temperature 1H NMR spectra of the methine

protons 3d in acetone-d6.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.5

1.0

1.5
R

el
at

iv
e 

ch
em

ic
al

 s
hi

ft

Concentration (+)-menthol (mM)

Figure 4. Binding isotherm from a TADDOL 3c/(+)-menthol 4b

titration in CDCl3.
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the resolution of racemic mixture of alcohols.5,13 1H
NMR titration experiments were performed in order
to determine the nature and strength of TADDOL–
guest interactions with the small chiral alcohols (�)-
menthol 4a, (+)-menthol 4b, (�)-glycidol 5a and
(+)-glycidol 5b (Fig. 2). By analogy to the X-ray studies
reported by Tanaka et al.,13 it was anticipated that in
non-polar media the guest alcohols would interact with
the TADDOLs through hydrogen bonding interactions
between the hydroxyls of the host and guest. Moreover,
the nature of the pendant side chains and the inherent
chirality of the TADDOLs themselves were expected
to influence the ligand selectivities of the host structures.

In the case of the TADDOL, 3a, developed by Tanaka
et al.,13 enantioselective recognition of both menthol
and glycidol was observed (Table 2, entries 1–4). In all
cases, the sequential addition of the ligand to the TAD-
DOL led to a concentration dependent downfield shift
of the TADDOL hydroxyl proton resonance. Non-lin-
ear regression analysis of the binding isotherms, Figure
4, afforded apparent dissociation constants (app. Kd) for
the various interactions. The mechanism of interaction
in CDCl3 solution, that is, hydrogen bonding between li-
gand and receptor hydroxyl moieties, is comparable to
that described by Tanaka et al.13 As reflected in the dif-
ferences in the app. Kd for the respective complexes, the
observed enantioselectivity of the TADDOL for men-
thol was superior to that for the small structure glycidol.

In the case of the naphthyl group containing TADDOLs
3b and 3c the steric bulk of the pendant side chains is
greater than in the case of 3a. On account of the nature
of the point of attachment of the naphthyl group to the
TADDOL, the 1-naphthyl derivative, 3b, was perceived
to provide more steric crowding around the hydroxyls
than the 2-naphthyl case, 3c. This is reflected in the re-
sults of the dynamic NMR studies described previously.

Titration studies with the 2-naphthyl derivative, 3c
(Table 2, entries 9 and 10), showed both a reversal in
selectivity for the enantiomers of menthol, as compared
to the phenyl derivative, 3a. However, in the case of gly-
cidol no enantioselectivity was observed. Interestingly,
the affinity of both (�)- and (+)-glycidol for 3c lie be-
tween the affinities of the favoured and unfavoured
enantiomers of menthol, (�) and (+), respectively. The
performance of 3c was found to be in stark contrast to
that of 3b, the 1-naphthyl derivative (Table 2, entries
5–8). In this case, no changes in the 1H NMR spectra
of the TADDOL were observed upon ligand addition
(up to 30 mM). This lack of ligand–TADDOL interac-
tion was attributed to the excessive steric crowding
around the diol units afforded by the 1-naphthyl groups,
thus eliminating the possibility for access of the ligands
to the TADDOL hydroxyls. This observation concurs
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with the inferences drawn from the dynamic NMR stud-
ies described above. The extent to which access is denied
is reflected in the fact that titrations with the small chiral
alcohol, glycidol (C3H6O2), induced no change in the
chemical shift of the TADDOL hydroxyl proton. Job-
plot analysis of the interaction between 3c and the enan-
tiomers of menthol was performed in order to establish
the stoichiometry of the host–guest system. A 1:1 com-
plex was observed for both the TADDOL 3c/(�)-men-
thol 4a (Fig. 5) and for TADDOL 3c/(+)-menthol 4b
systems. This result is in contrast to the 1:2 complex ob-
served by Tanaka et al. in X-ray diffraction studies of
the TADDOL 3a and 2-methyl-1-butanol.13 The reason
for the difference in complex stoichiometry is not obvi-
ous from the experimental information available. Possi-
ble explanations may involve the bulkier nature of the
pendant side chains of 3c and the fact that the stoichio-
metries were obtained in different states (solid and
solution).
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Figure 5. Job-plot curve observed for the system TADDOL 3c/(�)-

menthol 4a.
Tanaka et al. have previously described the importance
of the pendant side chains on the capacity of TADDOL
systems to discriminate selectively between ligand struc-
tures.13 The results presented here provide further sup-
port for this and highlight the delicate balance
between structure and recognition characteristics avail-
able in these systems, for example, the reversal in enantio-
selectivity for menthol observed when comparing the
phenyl 3a and 2-naphthyl 3c derivatives.

Studies using the thiophenyl TADDOL 3d demon-
strated high affinity for both glycidol and menthol,
though no enantioselectivity was observed under these
conditions (Table 2, entries 13–16). We suggest that
the observed binding is non-specific in character, and
most probably involves hydrogen bonding-like interac-
tions between the ligands and the sulfur atoms of the
thiophenyl.
3. Conclusion

A series of new TADDOLs has been prepared and host–
guest interactions of these structures have been charac-
terized using a series of 1H NMR titration studies. The
results highlight the significance TADDOL structure
on ligand selectivity. The effect of steric bulk on the dy-
namic behaviour of the TADDOLs was demonstrated
by NMR. The observed enantioselectivities suggest the
use of TADDOLs as chiral selectors for chromato-
graphic stationary phase development, in particular for
the resolution of low molecular weight chiral alcohols,
which are valuable tools for use in synthetic organic
chemistry.
4. Experimental

4.1. General

Melting points were determined on a Büchi 510 instru-
ment and were not corrected. Optical rotation was mea-
sured on a Perkin–Elmer 141 polarimeter. Flash
chromatography and MPLC (medium pressure liquid
chromatography) were performed on silica gel (Merck
60).30 High resolution mass spectra were obtained by
electronspray ionization (ESI) or fast atom bombard-
ment (FAB). THF was dried over sodium/benzophe-
none. The 1H NMR and the 13C NMR spectra
were recorded at 250/500 MHz and 63/125 MHz, respec-
tively. CDCl3, DMSO-d6 and acetone-d6 were used as
solvents while the signals of the solvents served as inter-
nal standards. Chemical shifts (d) are reported in ppm
and J values given in hertz. 13C NMR spectra were
partially resolved by using DEPT experiment
(h = 135�). The IR absorptions are cited in cm�1.

4.2. (2R,3R,10R,11R)-Tetrakis(ethyl carboxylate)-1,4,9,12-
tetraoxadispiro[4.2.4.2]tetradecane 2

To a solution of diethyl (2R,3R)-(+)-tartrate (27.7 mL,
162 mmol) in AcOEt (170 mL) was added the 1,4-
cyclohexanedione 1 (10 g, 89.2 mmol). The reaction mix-
ture was then cooled to 0 �C and BF3ÆEt2O (25.7 mL,
202.7 mmol) was added dropwise. After stirring for 2 h
at this temperature, the reaction mixture was stirred at
rt overnight. The pH of the reaction mixture was ad-
justed to 7/8 with NaOH (2 M). Then the phases were
separated and the aqueous phase was extracted three
times with EtOAc. The combined organic phases were
dried over MgSO4 and evaporated in vacuo. The crude
product was recrystallized from EtOH to give 2 as a
white powder (24 g, 55%). Mp = 95–96 �C; ½a�20D ¼
�25:6 (c 1.01, CHCl3).

1H NMR (500 MHz, CDCl3,
298 K): d 4.80 (s, 4H, 4 · CH), 4.30–4.25 (dq, 3J = 7.0,
3J = 2.3, 8H, 4 · CH2CH3), 1.96 (s, 8H, 4 · CH2),
1.33–1.30 (t, 3J = 7.0, 12H, 4 · CH2CH3);

13C NMR
(66 MHz, CDCl3, 298 K): d 169.7 (4 · CO), 113.2
(2 · OCO), 77.3 (4 · CH), 61.8 (4 · OCH2CH3), 32.7
(4 · CH2), 14.0 (4 · OCH2CH3); HRMS calcd for
C22H32O12Na (M+Na)+ 511.1791. Found 511.1801.
Calcd for C22H32O12: C, 54.09; H, 6.60. Found: C,
54.45; H, 6.50.

4.3. (2R,3R,10R,11R)-Tetrakis(hydroxydiphenylmethyl)-
1,4,9,12-tetraoxadispiro[4.2.4.2]tetradecane 3a

A solution of 2 (1 g, 2.32 mmol) in THF (4 mL) was
added to a cold solution of PhMgBr in THF (40 mL),
prepared in situ from Mg (0.9 g, 37.02 mmol) and
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bromobenzene (5.45 g, 34.71 mmol). The mixture was
stirred for 2 h at 0 �C and at rt overnight. Then a satu-
rated solution of NH4Cl was added with some water and
the aqueous phase was extracted three times with
EtOAc. The combined organic phases were dried over
MgSO4 and evaporated to dryness. Recrystallization
of the crude solid from EtOH gave pure 3a as a white
powder (1.32 g, 62%). Mp = 267–270 �C; ½a�20D ¼ �29:6
(c 0.98, CHCl3). The spectroscopic data found were in
accordance to the work published by Tanaka et al.13

4.4. (2R,3R,10R,11R)-Tetrakis[hydroxydi(1-naphthyl)-
methyl]-1,4,9,12-tetraoxadispiro[4.2.4.2]tetradecane 3b

Same procedure as for compound 3a with 1-bromo-
naphthalene (15.9 g, 76.81 mmol) instead of bromobenz-
ene. The crude product was purified by MPLC using
cyclohexane/EtOAc (1:4) as the eluent. Recrystallization
from EtOH of the resulting crystals gave 3b as a white
powder (5.44 g, 80%). Mp = 235–240 �C; ½a�20D ¼ �47:5
(c 1.01, CHCl3).

1H NMR (500 MHz, DMSO-d6,
353 K): d 8.00–6.70 (m, 56H, H arom), 5.50–4.90 (2 br
s, 8H, 4 · CH and 4 · OH), 2.20–1.00 (m, 8H,
4 · CH2);

13C NMR (125 MHz, DMSO-d6, 353 K): d
145.0, 134.0, 133.9, 133.4, 132.1, 131.9, 131.0, 128.2,
127.7, 127.6, 127.1, 126.1, 124.7, 124.4, 124.2, 124.0,
123.8, 123.7, 123.2 (all C arom or CH arom, and
OCO), 80.1, 71.1 (4 · CH and 4 · C(C6H5)2), 31.4
(4 · CH2); HRMS calcd for C94H72O8Na (M+Na)+

1351.5125. Found 1351.5104. Anal. Calcd for
C94H72O8: C, 84.91; H, 5.46. Found: C, 84.63; H,
5.67.

4.5. (2R,3R,10R,11R)-Tetrakis[hydroxydi(2-naphthyl)-
methyl]-1,4,9,12-tetraoxadispiro[4.2.4.2]tetradecane 3c

Same procedure as for compound 3a with 2-bromo-
naphthalene (15.9 g, 76.81 mmol) instead of bromobenz-
ene. The crude yellow crystals were recrystallized from
EtOH to give 3c as a white powder (5.1 g, 75%).
Mp = 190–196 �C; ½a�20D ¼ �42:6 (c 1.22, CHCl3).

1H
NMR (500 MHz, CDCl3, 298 K): d 8.16 (s, 4H, H
arom), 7.89–7.86 (m, 12H, H arom), 7.75–7.68 (m,
12H, H arom), 7.58–7.50 (m, 16H, H arom), 7.41–7.37
(m, 8H, H arom), 7.28–7.24 (dd, 3J = 1.7, 3J = 8.7, 4H,
H arom), 4.86 (s, 4H, 4 · CH), 4.55 (br s, 4H,
4 · OH), 1.43–1.33 (m, 8H, 4 · CH2);

13C NMR
(66 MHz, CDCl3, 298 K): d 142.6, 140.2, 132.66,
132.60, 132.56, 128.6, 128.0, 127.5, 127.31, 127.28 (all
C arom), 127.0, 126.6, 126.1, 126.0, 125.7 (all CH arom),
109.4 (2 · OCO), 80.9 (4 · CH), 78.6, 77.2 (both
C(C6H5)2), 33.7 (4 · CH2); HRMS calcd for
C94H72O8Na (M+Na)+ 1351.5125. Found 1351.5129.
Anal. Calcd for C94H72O8: C, 84.91; H, 5.46. Found:
C, 84.65; H, 5.62.

4.6. (2R,3R,10R,11R)-Tetrakis[hydroxydi(2-thienyl)-
methyl]-1,4,9,12-tetraoxadispiro[4.2.4.2]tetradecane 3d

Same procedure as for compound 3a with 2-bromothio-
phene (2.83 g, 17.35 mmol) instead of bromobenzene.
The crude product was purified by MPLC using a con-
tinuous gradient from cyclohexane to EtOAc. Recrystal-
lization of the crude crystals from a mixture
cyclohexane/EtOAc gave 3d as a grey powder (0.38 g,
33%). Mp = 261–264 �C; ½a�20D ¼ þ40:4 (c 1.04, CHCl3).
IR (KBr): 3284. 1H NMR (250 MHz, CDCl3, 298 K):
d 7.31–7.28 (dd, 3J = 5.1, 3J = 1.1, 4H, H arom), 7.26–
7.24 (dd, 3J = 5.1, 3J = 1.1, 4H, H arom), 7.20–7.18
(dd, 3J = 3.6, 3J = 1.2, 4H, H arom), 7.09–
7.07 (dd, 3J = 3.6, 3J = 1.2, 4H, H arom), 7.02–
6.99 (dd, 3J = 5.1, 3J = 3.6, 4H, H arom), 6.95–6.91
(dd, 3J = 5.1, 3J = 3.6, 4H, H arom), 4.70 (br s, 4H,
4 · OH), 4.41 (s, 4H, 4 · CH), 1.59–1.48 (m, 8H,
4 · CH2);

13C NMR (66 MHz, CDCl3, 298 K): 149.7,
145.5 (both C arom), 126.6 (CH arom), 126.55 (CH
arom), 126.52 (C arom), 125.8 (CH arom), 125.7 (CH
arom), 125.5 (CH arom), 109.8 (2 · OCO), 82.5
(4 · CH), 75.7 (4 · C(C6H5)2), 33.4 (4 · CH2);
HRMS calcd for C46H40O8S8Na (M+Na)+ 999.0387.
Found 999.0363. Anal. Calcd for C46H40O8S8: C,
56.53; H, 4.13; S, 26.25. Found: C, 56.80; H, 4.50; S,
25.80.

4.7. Dynamic NMR

1H NMR spectra were recorded at 500 MHz. The sol-
vents used were acetone-d6 (99.8%) and DMSO-d6
(99.8%).

4.8. NMR titrations

A solution of the TADDOL (5 mM) in CDCl3 was
titrated with consecutive addition of a solution, in the
same solvent, containing the host (37.5, 50 or
100 mM) and the TADDOL (5 mM). 1H NMR spectra
were recorded at 250 MHz at 298 K. CDCl3 (99.9%) was
used a solvent. Apparent dissociation constants were
calculated with non-linear line fitting to a one-site model
with the software package Prism (version 3.03, Graph-
Pad Software, USA). Each regression is based on not
less than seven data points and is presented with the
standard error. The goodness of fit (R2) was 0.9182 or
better in all cases.

4.9. Job plot

Samples were prepared in CDCl3 (99.9%) containing dif-
ferent molar fractions of the TADDOL 3c and a chiral
alcohol 4a or 4b from 0 to 1.0, with a constant total con-
centration of 8.3 mM. 1H NMR spectra were recorded
at 250 MHz at 298 K.
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Abstract:  

 

A class II aldolase-mimicking synthetic polymer was prepared by the molecular imprinting of a 

complex of cobalt (II) ion and its complex with either (1S, 3S, 4S)-3-benzoyl-1,7,7-

trimethylbicyclo[2.2.1]heptan-2-one (4a) or (1R, 3R, 4R)-3-benzoyl-1,7,7-

trimethylbicyclo[2.2.1]heptan-2-one (4b) in a 4-vinylpyridine-styrene-divinylbenzene copolymer. 

Evidence for the formation of interactions between the functional monomer and the template complex 

was obtained from NMR and UV titration studies. The polymers imprinted with the template 

demonstrated enantioselective recognition of the template structures, and induced a 55-fold 

enhancement of the rate of reaction of camphor (1) with benzaldehyde (2), relative to the solution 

reactions and were also compared to reactions using a series of reference polymers. Substrate chirality 

was observed to influence reaction rate. Moreover, the reaction could be competitively inhibited by 

dibenzoyl methane (6). Collectively, the results presented provide the first example of the use of 

enantioselective molecularly imprinted polymers for the catalysis of carbon-carbon bond formation. 
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Introduction 

The development of new methodologies for the catalysis of carbon-carbon bond formation remains 

one of the greatest challenges for organic chemistry.1 The desire to produce systems mimicking those 

demonstrated by biological macromolecular catalysts, i.e. enzymes,2 and ribozymes,3 requires not just a 

capacity to enhance the rate of a given reaction, but also that the system can provide some control over 

substrate selectivities and display turnover. These additional goals exacerbate the complexity of the 

task. Nonetheless, a number of quite diverse strategies have been utilized in order to produce 

biomimetic systems capable of catalyzing C-C bond formation,4 including the use of chiral Lewis 

acids,5 catalytic antibody technology6 and molecular imprinting.7 

 

The molecular imprinting technique8 provides a means for the synthesis of functionally and 

stereochemically defined environments in which to perform selective reactions.7,9 The inherent stability 

of these highly cross-linked polymers makes them of particular interest for applications where extremes 

of temperature, solvent regime or pH prohibit the use of catalysts of biological origin.10 The technique 

has been used with success for preparing polymers capable of enhancing the reaction rate of a number 

of types of reactions including various hydrolytic reactions,11 transamination12 and ß-elimination.13 

Previous efforts to develop systems for the catalysis of C-C bond forming reactions have been reported 

by us, aldol condensation,14 and others, Diels-Alder cyclization15 and the Suzuki reaction.16 

 

The aldol condensation is a reaction of central importance to both biology17,18 and synthetic organic 

chemistry.19,20 Accordingly, significant effort has been directed to the development of catalysts for this 

class of reaction, and to the establishment of means for controlling the stereochemistry of the reaction 

outcome, e.g. Evans’ oxazolidinones,21 catalytic antibodies,22 chiral Lewis acids23 and molecular 

imprinting.14  
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In the present study we report the design, synthesis and evaluation of enantioselective molecularly 

imprinted polymers with activity mimicking that of a class II aldolase, a metalloenzyme found in lower 

organisms such as bacteria and yeast.24 The reaction of (S)- or (R)-camphor (1) and benzaldehyde (2) to 

yield the corresponding (E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (3) was chosen for 

use in this study (Scheme 1). The diketones 4 and 5 (Figure 1) were envisaged as putative analogues for 

the transition state for the first step of this Co2+ catalyzed aldol condensation reaction. Furthermore, the 

diketone functionalities, or keto-enol tautomers thereof, should also serve as suitable ligands for 

coordination to the metal ion. Molecularly imprinted polymers synthesized using complexes of 4 with 

Co2+ in a 4-vinylpyridine (4-VP)-styrene-divinylbenzene (DVB) copolymer demonstrated significant 

enhancement of the rate of reaction relative to reference polymers and the solution reaction. Moreover, 

polymers synthesized with either enantiomer of 4 displayed selectivity for substrate structures of the 

corresponding optical antipode. 

 

O

O

H

O

H

1a 2 3a  

 

Scheme 1. Aldol condensation between (S)-camphor (1a) and benzaldehyde (2) results in formation of 

(S)-3-benzylidenecamphor (3a). The same reaction with (R)-camphor (1b) results in formation of (R)-3-

benzylidenecamphor (3b).  
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Figure 1. a) Proposed transition state (TS) for the first step of the aldol condensation reaction. b) 

General structure of the putative (S)-TSAs; exo (4a) and endo (5a). The corresponding (R)-TSAs are 

defined as 4b (exo) and 5b (endo). 
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Results and Discussion 

The enantioselective synthetic aldolase-mimicking polymers presented in this study were designed 

and synthesized using a metal ion mediated molecular imprinting strategy. The reaction chosen for 

investigation involves the condensation of camphor (1) and benzaldehyde (2) in the presence of a mild 

base, pyridine, to yield 3-benzylidenecamphor (3) (Scheme 1). The choice was in part due to the 

inherent chirality present in camphor, and in part due to the presence of a single hydrogen-bearing α-

carbon, which provides a natural limit to the number of possible reaction products. Camphor’s chirality 

has previously been utilized for steering the stereochemical outcome of aldol reactions employing 

titanium enolates of camphorselenoacetone and methyl camphorselenoacetate,25 and for a range of other 

asymmetric syntheses26 involving diols and aminodiols27 and lithium enolates of α-hydroxy ketones.28  

 

Design and Synthesis of Transition State Analogues  

The choice of the putative TSAs (4 and 5) proposed for use in this study was based upon our previous 

experience with a related aldolase mimicking polymer selective for the production of chalcone (6),14 

whereby complexes of the TSA with Co2+ would provide a mimic for the transition state of the aldol 

reaction (Scheme 1, Figure 1). This bidentate ligand was expected to fill two of the coordination sites of 

the Co2+ using its two oxygens, while 4-vinyl pyridine should fill the remaining sites of the square 

planar Co2+ complex (Figure 2). It was envisaged that the keto-enol tautomerism available to the β-

diketones would allow for a planar geometry between the two oxygens, as would also be the case in the 

corresponding enolate and its various tautomers (see supplementary information).  
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Figure 2. Proposed metal (Co2+) ion coordinated complex formation between the enolate of the TSA (4 

or 5), Co2+ and 4-vinylpyridine.  

 

The use of metal ions in molecular imprinting protocols can provide a number of advantages in the 

preparation of synthetic receptors29 and enzyme mimics.14,30 The general strengths of transition metal 

ion – ligand coordination interactions can permit complex formation in polar solvents not normally 

conducive for use in non-covalent molecular imprinting strategies. Furthermore, the possibility for 

forming multiple interactions to a single ion allows for the simultaneous coordination of multiple 

ligands, e.g. reaction substrates. 

 

The synthesis of each of the enantiomers of the diketones 4 and 5 was undertaken in order to obtain 

material for use in the polymer syntheses and for polymer-ligand recognition studies. The exo-products, 

4a and 4b, were obtained in moderate yield, as the exclusive products from the treatment of the 

corresponding enantiomer of camphor (1a or 1b) with NaH and ethyl benzoate (Scheme 2), using an 

adaption of a procedure previously described by Togni.31 
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Scheme 2. Synthesis of diketone 4a from (S)-camphor (1a). Diketone 4b was obtained from (R)-

camphor (1b) using the same reaction conditions. 

 

The benzoyl substituent of 4a was found to be in the exo-configuration on the basis of the observed 

NOESY correlations arising from the Hα positioned between the two carbonyls and the two CHendo 

protons (Figure 3). The 1H NMR spectra of 4a (or 4b) revealed an equilibrium between the diketo form 

and the two keto-enol forms, with a ratio of 3 to 7 in favor to the diketone form. Partial assignment of 

the 1H and 13C NMR spectra was accomplished by the application of a combination of conventional 1D 

and 2D NMR experiments.  
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Figure 3. The dashed lines represent selected observed NOESY correlations of 4a. The same 

correlations were observed for 4b. 

 

Attempts were made to obtain the corresponding endo-isomers, the diketones 5a and 5b (Figure 4), 

using a procedure described by Wei et al.32 in order to provide alternative analytes for use in polymer-
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ligand recognition studies. The 1H NMR spectra of the crude products arising from the treatment of 

bromocamphor, 7a, with SmI2 in the presence of benzoyl chloride under samarium Barbier conditions33 

demonstrated a peak characteristic of the endo Hα (doublet at 2.85 – 2.83 ppm) of 4a. Furthermore, a 

doublet of doublets was observed at 4.25 ppm corresponding to the signal of the exo Hα to the carbonyl 

moieties present in 5a. This was interpreted as being indicative of the presence of a mixture of the exo-

diketone 4a and the endo-diketone 5a (Scheme 3), in a 2:1 ratio in favor of the 4a. Attempts to separate 

5a from 4a by flash chromatography on silica failed to achieve separation, irrespective of matrix 

(neutral, acidic or basic), as shown by the disappearance of the doublet of doublets at 4.25 ppm in the 1H 

NMR spectrum. This implied that the exo-product is the thermodynamically more stable of the two, and 

that the initial mixture reflects the presence of both kinetic (endo) and thermodynamic (exo) products, 

for which keto-enol tautomerism provides a mechanism for interchange between the two (Figure 5, see 

also supplementary information for a proposed mechanism). Identical behaviour was observed in the 

synthesis of 5b from 7b, which resulted in isomerization to the more favored 4b. Collectively, the 

results provide an important insight into the behaviour of the diketones, namely that the keto-enol 

tautomerism demonstrated by the diketones provides evidence that the TSAs can adopt a planar 

geometry, as proposed for a suitable TSA. 

 

5b

O
O

H

5a

O
O

H

 

Figure 4. Structure of the endo diketones 5a and 5b.  
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Scheme 3. Synthesis of the diketones 5a and 4a from 7a.  
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Figure 5. Isomerization of 5a to 4a. 

Synthesis of Aldol Condensation Products.  

The products from the aldol condensation, the α,β-unsaturated ketones 3a and 3b, were synthesized 

for use in the establishment of assays and as standards for polymer-ligand recognition studies, using an 

adaption of the procedure described by Chuiko et al.34. Enantiomerically pure camphor, 1a or 1b, was 
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reacted with benzaldehyde (2) in the presence of n-BuLi in DMSO to furnish the corresponding ketone, 

3a or 3b, though in low yield (Scheme 4).  

 

O

H

n-BuLi
DMSO O

1a 3a

H

O

2

 

Scheme 4. Synthesis of 3a from 1a. Ketone 3b was synthesized from 1b in a same manner. 

NOESY experiments using 3a (or 3b) showed a strong correlation between the H4 methine and the 

H3d aromatic protons (Figure 6), suggesting an (E)-configuration. The lack of any observed correlation 

between H4 and H3b supported this conclusion.  

Me7'Me7''

Me1
O

H3d

H3e

H3f

H3e

H3d

H5'

H5''

H4

H6'

H6''

H3b

 

Figure 6. The dashed lines represent selected NOESY correlations of the unsaturated ketone 3a. 

 

Template-Monomer Complexation Studies  

Initial studies on the solubility of Co(OAc)2 suggested the use of methanol as a suitable solvent for the 

polymerization reactions. This protic solvent is not normally suitable for use in non-covalent molecular 

imprinting protocols, however in this case the significant strength of metal ion coordination surmounts 

the competition from bulk solvent. A series of VIS and NMR titration studies (see supplementary 

materials) were performed in order to establish the presence and strength of complexes between Co2+, 
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TSA (4a or 4b) and pyridine (here used as an analogue for 4-VP). The monitoring of titrations of Co2+ 

with pyridine or TSA at 520 nm (294 ± 1 K) revealed complexes with apparent dissociation constants 

(app. Kdiss) of 228.9 ± 18.3 mM and 4 ± 1.6 mM, respectively. Interestingly, titration of a Co2+ solution 

containing a significant excess of pyridine (2 M) with the TSA demonstrated an app. Kdiss for the 

formation of the mixed complex of 1.6 ± 0.6 mM, which provides support for the superior affinity of 

TSA. Using conditions and concentrations comparable to those used (see later) in the polymerisation 

reaction, namely using 2 equivalents of pyridine per Co2+, an app. Kdiss of 25.6 ± 3.8 mM was 

determined, indicating that the TSA can compete for coordination of the metal ion. These data were 

supported by 1H NMR studies, from which an app. Kdiss of 2.50 ± 0.39 mM was determined by 

following the downfield shift of the Hα. Complementary VIS-studies using Job´s method of continous 

variation26,35 demonstrated a 1:1 stoichiometry for the solution complexes of Co2+ and 4. On account of 

the complex stabilities described above, we interpret the favorable formation of 1:1:2 complexes of 

Co2+/TSA/pyridine, relative to 1:2 complexes of Co2+/TSA on account of the relative bulk of the TSA. 

Importantly, these results collectively demonstrate that complexes of Co2+ by pyridine and TSA are 

formed at the concentrations utilized in subsequent polymerization reactions. The role of Co2+ in the 

complex is two-fold, in the first instance to provide coordination of the template during the molecular 

imprinting process, and secondly to facilitate binding of reaction substrates in the subsequent polymer.  

 

Polymer Synthesis and Characterization. A series of 4-vinylpyridine–styrene–divinylbenzene 

copolymers was synthesized by thermally induced radical polymerization using 

azobis(cyclohexanecarbonitrile) (ABCC) as initiator (Table 1). Two polymers; one prepared in the 

absence of both template (TSA) and Co2+ (P0), and another prepared in the presence of Co2+ but without 

TSA (P1), were synthesized to act as references for polymers prepared using complexes of the (S)- and 

(R)-TSA with Co2+, (P2) and (P3), respectively. The two reference polymers were anticipated to provide 

insight regarding the influence of the polymer material itself on ligand recognition (P0) and the role of 
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sites selective for cobalt ions (P1). In the case of P3, its physical and chemical characteristics were 

effectively identically to those of P2, though with selectivity for the (R)-TSA (4b) and (R)-product (3b). 

Moreover, no evidence of residual template was eveident based upon examination of the carbonyl 

region of FT-IR spectra. 

 

Table 1. Polymerization reaction mixture compositions and polymer physical characterization.  

 P0a P1b P2c P3d 

(S)-TSA 4a (mmol) --- --- 2.0 --- 

(R)-TSA 4b (mmol) --- --- --- 2.0 

Co(OAc)2 (mmol) --- 2.0 2.0 2.0 

4-VP (mmol) 4.0 4.0 4.0 4.0 

Styrene (mmol) 40.0 40.0 40.0 40.0 

DVB (mmol) 40.0 40.0 40.0 40.0 

ABCC (mmol) 1.2 1.2 1.2 1.2 

MeOH (ml) 14.98 14.98 14.98 14.98 

% C Found 91.8 90.0 89.5 89,8 

% H Found 8.1 7.9 7.7 7.7 

% N Found 0.8 0.8 0.8 0.8 

BET surface area (m2 g-1) 1.9 3.4 3.5 3.9 

Micropore volume (cm3 g-1) 0.005 0.009 0.009 0.010 

Average pore diameter (Å) 111.0 104.6 104.4 103.4 

aReference polymer; bCo2+ reference polymer; c(S)-TSA imprinted polymer. 
 
 

Evaluation of Polymer-Ligand Recognition.  

An assay for TSA binding to the polymers was developed based upon a series of polymer titration 

studies performed using established procedures (data not shown).36 A polymer concentration of 20 mg 
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mL-1 was chosen for use in the investigation of polymer-template rebinding in batch binding 

experiments performed in MeOH (Figure 7).  
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Figure 7: Binding of 0.015 mM ligand:cobalt complex (1:1) in MeOH. Each experiment was performed 

in duplicate with duplicate HPLC analyses of each sample. Error bars reflect the SD. (Figures and 

uncertainties underlying the data presented in this graph are presented in the supplementary materials, 

along with results of binding in DMF)  

 
In the case studies performed in MeOH, using P0, a polymer devoid of the influence of both TSA and 

Co2+ on the polymer’s recognition characteristics, some preference for binding of the TSAs was 

observed relative to the single carbonyl containing products (3a and 3b), though not surprisingly 

without any enantioselectivity. The structurally smaller substrate, benzaldehyde (2), demonstrated 

effectively no recognition of the polymer. In the case of the polymer synthesized in the presence of 

Co2+, P1, the presence of sites selective for the cation significantly enhanced recognition of the TSA 

relative to that observed in P0, though no significant effect was seen on the binding of 2 or 3 (a or b). 

This is interpreted as resulting from the presence of sites selective for Co2+, in which the bound ions in 

turn facilitate coordination of the diketone 4.  

 

The (S)-TSA imprinted polymer P2 showed similar affinities to 3 (a or b) as seen in the case of P1, 

though a substantial increase in affinity for benzaldehyde (2). Importantly, an increased preference for 

the (S)-TSA 4a, relative to 4b, was observed which provides strong evidence for the presence of sites 

with selectivity for the (S)-enantiomer of the TSA (4a). Polymer P3, prepared using the (R)-TSA (4b), 
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behaved similarly, though as expected with a reversal in enantioselectivity. Under the conditions 

studied, the enantioselective binding correlates to 0.11 µmole enantioselective sites per gram polymer, 

i.e. the difference between the binding of 4a and 4b to P2, or P3. The ratio of enantiomer binding 

correlates to a difference in free energy of binding between the two enantiomers (∆∆G) of 1.6 kJ mol-

1.12.37 Binding studies were also performed in DMF at 293 ± 2 K (see supplementary information), 

which was the solvent of choice for use in studies on the influence of the polymers on reaction kinetics. 

In DMF the polymers demonstrated greater affinities for the template structure, in particular P0, though 

with no enantioselectivity. Interestingly, and in contrast to the results obtained in MeOH, no significant 

product binding was observed, though benzaldehyde displayed a markedly greater affinity for the 

polymers, especially in the case of P1.  

 

As the metal ion plays a fundamental role in the catalysis of the aldol reaction used in this study, 14,38 

it was crucial to determine the quantity of Co2+ that bound to the polymers. Batch binding studies (Table 

2) showed that the polymer synthesized using Co2+ as template, P1, had a significantly greater capacity 

for rebinding the divalent cation than P2, or P3. This was interpreted as reflecting the presence of sites 

selective for Co2+ rather than for Co2+-TSA complexes where in principle coordinating moieties, the two 

ketones, are lacking in the resultant polymer. Interestingly, P0 showed an even lower capacity than the 

other polymers. This is attributed to the lack of a template, which renders the polymer without 

ensembles of pyridinyl functionalities in suitable spatial arrangements for simultaneous interaction with 

the metal ion. 
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Table 2. Binding of Co2+ to polymers after incubation in MeOH 

Polymer Bounda 
(mM) 

n 
(µmol/g polymer)

P0 0.155±0.149 0.776±0.747 

P1 1.352±0.1495 6.762±0.747 

P2 0.542±0.001 2.710±0.004 

P3 0.543±0.100 2.713±0.498 

aIncubation with Co2+ solution (8 mM) in MeOH (293 K),  
experiments performed in duplicate with duplicate analyses. 

 

 

Reaction Kinetics Studies 

The influence of the various polymers on the rate of condensation of benzaldehyde (2) and (S)- or (R)-

camphor (1a, 1b) was studied using reactions performed in sealed tubes using DMF as solvent and 

elevated temperature (120 °C). Polymers were charged with methanolic Co2+ solutions prior to use 

(Table 2). A solvent reaction containing pyridine and Co(OAc)2 was employed to allow assessments of 

the infliuence of the polymers themselves. Since the binding of cobalt to P0 was quite low, studies using 

this polymer employed Co2+ concentrations identical with those of the solvent reaction. An HPLC-based 

assay was used to monitor the formation of reaction products 3a or 3b (Figure 8). In order to provide a 

clear picture of the role of the polymer on the reaction studied, product yields are presented as yield per 

mole sites, where the number of sites was determined by the Co2+ concentration in the bound polymer. 

As stated earlier, the presence of the metal ion is essential for the reaction to proceed within the time 

frames studied. 

 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 18

0 25 50 75 100 125
0

1

2

3

Solvent

P1

P3

P2

P0

Time [h]

n 
[µ

m
ol

/µ
m

ol
 s

ite
s]

 
Figure 8: Formation of (S)-product (3a) per mol site (Co2+) using (S)- (P2) and (R)-MIPs (P3), Co2+ 

(P1), and non-imprinted (P0) polymers, and solvent reaction and the corresponding solvent reaction. 

Data were obtained from duplicate experiments with each analysis performed in duplicate. Error bars 

(not discernible) reflect SEM < 0.01 µmol/µmol sites. 

 

The time course studies show that the presence of P0 has effectively no influence on the rate of 

reaction, as compared to the solution reaction performed with the same amount of Co2+ present (Figure 

8 and Table 3). This implies that the polymer matrix itself does not induce rate enhancement. However, 

in the case of P1, which possesses sites selective for Co2+, a 12-fold increase in reaction rate was 

obtained. This is attributed to the presence of sites capable of binding complexes of Co2+and substrate, 

i.e. sites with incomplete coordination of the metal ion by the pyridinyl residues of the polymer allowing 

for access by the substrates. This line of reasoning is supported by the results obtained using P2, which 

increases reaction rate by a factor of 55 relative to the solution and P0 reactions. Assays run using P3, 

with sites selective for the (R)-enantiomer of camphor (1b), were slightly slower suggesting either that 

the sites were not as well suited for accommodating the (S)-substrate, or that a small population of the 

sites are inaccessible to 1b because of their high fidelity recognition of the (S)-configuration of the 

template. Importantly, reactions performed using P3 and 1b as substrate demonstrated the same reaction 

rate enhancements as observed with P2 and 1a. Furthermore, differences between the gas accessible 

surface areas of these polymers are minimal, which allows us to exclude non-specific surface effects as 
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a basis for the observed rate enhancements. This is further supported by swelling studies performed in 

DMF (see supplementary information) which demonstrated that no significant difference in the swelling 

charactersitics of the polymers used in this study. 

 

Interestingly, the enantioselectivities observed in the binding studies were not apparant in the studies on 

the influence of the polymers on the outcome of the reaction of 1 and 2.  While the binding studies are 

performed under equilibrium conditions, i.e. thermodynamic control, the studies of the kinetics of the 

reaction are never under true equilibrium conditions as the number and type of potential ligands vying 

for the sites varies over time. The results from the kinetics studies indicate that the sites influencing 

enantioselectivity, perhaps those of highest affinity, are not as effectively utilized during the reaction as 

in binding studies. Comparable results have been from other systems.29(b),30(g) This may reflect either 

that higher levels of inhibition of these sites, or that the higher affinity sites are less accessible and that 

mass transfer becomes a limiting factor. It is argueable that both factors could contribute to the observed 

results.  

Table 3. Turnover per Co2+ for production of 3a 

Polymer Turnover 

(h-1) 

P0 0.38 x 10-3 

P1 4.63 x 10-3 

P2 21.04 x 10-3 

P3 20.30 x 10-3 

a (S)-product (3a) formation based  
on time course experiments 160 h. 
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Studies on the influence of the enantiomers of the TSA itself (4a and 4b) on the reaction were 

performed to examine the role of the imprinting sites on the reaction kinetics. However, the TSA was 

found to rapidly degrade under the conditions employed in the reaction assay. It is noteworthy that 

studies of TSA under polymerization conditions demonstrated it to be stable. Furthermore, the presence 

of the reaction products (3a or 3b) demonstrated no significant influence on reaction rate. An alternative 

strategy was to use dibenzoylmethane (8, DBM) (Figure 9), which we have previously used as a TSA in 

related studies for catalysing production of chalcone (6).14 Reactions performed using methanol as 

solvent yield no product under the conditions employed, other solvent configurations shall be utilized in 

future studies. Although 8 has a benzyl group instead of the chiral camphor moiety, simple molecular 

model studies suggested that it could fit to the volume of 4a and 4b, and therefore should be able to 

access sites selective for the original TSAs. A concentration dependent competitive inhibition of the 

reaction (Vmax= 10.11 ± 0.03 nmol/h; Km=126.26 ± 0.96 mM) by DBM (8) was demonstrated (Figure 

10). In the presence of 20 mM of 8, the reaction rate is reduced to that of the solution reaction. The 

inhibition is indicative of the presence of sites selective for DBM which are necessary for the catalysis 

of the reaction. 

O OO

86  

Figure 9. Structure of chalcone (6) and the inhibitor dibenzoylmethane (DBM) (8). 
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Figure 10. Lineweaver-Burk plot of the formation of (S)-product (3a) with and without the presence of 

an inhibitor (6). 

 

Collectively, the rate enhancing influence of the TSA imprinted polymers, together with the 

concentration inhibitory effect of 6 demonstrates that sites selective for the transition state analogue are 

responsible for the catalysis of this otherwise extremely slow C-C bond forming reaction, with some 

enantioselectivity. Longer studies, 450 h, resulted in a proportional increase in the amount of product 

formed, which highlights the resilience of these materials to harsh environments.  

 

Conclusions 

The development of new methods for the catalysis of carbon-carbon bond formation remains one of 

the great challenges for synthetic organic chemistry. In this study we have demonstrated that 

molecularly imprinted polymers selective for a complex of Co2+ and a transition state analogue (4) for 

the aldol reaction of camphor (1) and benzaldehyde (2) can result in polymeric materials which increase 

reaction rate by a factor of over 50. Importantly, these polymers demonstrate enantioselective 

recognition of substrate and turnover. This study provides the first example of an enantioselective 

molecularly imprinted polymer capable of catalysis of carbon-carbon bond formation. 
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Experimental Section: 

General. All reactions were performed under inert atmosphere. Benzaldehyde was freshly distilled 

before use. Benzoyl chloride was distilled from Ca and THF was dried over Na/benzophenone. MeOH 

was dried over I2/Mg and freshly distilled prior to use. Divinylbenzene (DVB) was extracted three times 

with a solution of NaOH (0.1 M), dried over MgSO4, filtered and passed through basic Al2O3 before 

use. Azobis(cyclohexanecarbonitrile) (ABCC) was recrystallized from MeOH. Anhydrous DMSO 

(99.9%), anhydrous DME (99.5%), (R)-camphor (98%), (S)-camphor (99%), ethyl benzoate (99%), 

sodium hydride (95%), styrene (99%), 4-vinyl pyridine (95%), n-BuLi (2.5 M in toluene) and 

Co(OAc)2·4H2O were used as received.  

1H and 13C NMR spectra were recorded at 500, 400, 270 or 250 MHz and 125, 100, 68, or 63 MHz, 

respectively. CDCl3 and C6D6 were used as solvents, and the signals of the solvents served as internal 

standards. Signals of methyl, methylene and quaternary carbon atoms were distinguished by DEPT 

experiments. Homonuclear 1H connectivities were determined by using COSY experiments. 

Heteronuclear 1H-13C connectivities were determined by using HSQC and HMBC experiments. 

Absolute configurations were resolved by NOESY experiments. Chemical shifts (δ) are reported in ppm 

and J values are presented in Hertz. Mass spectra of positive ions obtained by electron impact (EI, 70 

eV) were measured using an Agilent 6890 GC-system with a Agilent 5973 MS detector. FT-IR spectra 

were recorded using samples dispersed in KBr on a Nicolette Avatar FT-IR spectrophotometer by 

diffuse reflectance IR spectroscopy. VIS studies were performed on a Hitachi U2000 

spectrophotometer. The data analyses were conducted using the software package Prism (version 3.03, 

GraphPad Software, USA). 
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(1S, 4S)-(E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (3a). To a cold (ice bath) 

solution of n-BuLi (2.5 M in toluene, 11 mL, 27.58 mmol) dissolved in DMSO (10 mL), was added 

dropwise a solution of (S)-camphor 1a (3.00 g, 19.70 mmol) and benzaldehyde 2 (2.20 mL, 21.67 

mmol) in DMSO (15 mL). The reaction mixture was stirred at room temperature overnight, then poured 

into ice water (250 mL) containing 10 mL HOAc. The resulting yellow oil was extracted with Et2O. The 

combined organic phases were dried (MgSO4) and evaporated in vacuo. The crude yellow oil was 

recrystallized from EtOH to afford white crystals of 3a (0.42 g, 9%). Mp = 84-87 ºC; [α]20
D -369 (c 

1.07, acetone); λmax= 290.0 (c 40 µM, log ε= 4.38, MeOH); IR (KBr) 3024 (CH arom), 2956 (CH), 1720 

(C=O), 1648 (C=C); 1H NMR (400 MHz, CDCl3, 25 ºC) δ 7.50-7.48 (2H, d, 3J = 7.3, H3d), 7.42-7.40 

(2H, t, 3J = 7.3, H3e), 7.38-7.34 (1H, d, 3J = 7.3, H3f), 7.25 (1H, s, H3b), 3.12-3.10 (1H, d, 3J = 4.2, H4), 

2.22-2.17 (1H, tt, 3J = 4.2, 3J = 11.5, H5’), 1.83-1.76 (1H, dt, 3J = 11.5, 3J = 2.8, H6’), 1.64-1.50 (2H, m, 

H6’’ and H5’’), 1.04 (s, 3H, Me1), 1.01 (s, 3H, Me7’), 0.81 (s, 3H, Me7’’); 13C NMR (63 MHz, CDCl3, 25 

ºC) δ 208.7 (C=O), 142.5 (C3a), 136.1 (C3c), 130.2 (C3dH), 129.1 (C3fH), 129.0 (C3eH), 127.9 (C3bH), 

57.5 (C7), 49.6 (C4H), 47.1 (C1), 31.1 (C6H2), 26.4 (C5’H2), 21.0 (C7’’H3), 18.7 (C7’H3), 9.7 (C1H3); MS 

240 (M+, 100%), 225, 212, 197, 184, 169, 157, 141, 128, 115, 103, 91, 77, 55, 41; Anal. Calcd for 

C17H20O: C, 84.96; H, 8.39. Found: C, 85.27; H, 8.47.  

 

(1R, 4R)-(E)-3-benzylidene-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (3b). The same procedure as 

for 3a was employed, but with 1b as starting material. CH2Cl2 was used for the extraction of 3b, which 

was isolated as white crystals (0.44 g, 9%). Mp = 95-97 ºC; [α]20
D +412 (c 1.00, acetone); λmax= 289.0 

(c 40 µM, log ε 4.30, MeOH); IR (KBr) 3026 (CH arom), 2953 (CH), 1723 (C=O), 1650 (C=C); 1H 

NMR (400 MHz, CDCl3, 25 ºC) δ 7.50-7.48 (2H, d, 3J = 7.3, H3d), 7.42-7.39 (2H, t, 3J = 7.4, H3e), 7.36-

7.34 (1H, d, 3J = 7.2 ,H3f), 7.25 (1H, s, H3b), 3.13-3.12 (1H, d, 3J = 4.2, H4), 2.24-2.16 (1H, tt, 3J = 4.5, 
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3J = 11.5, 5’), 1.83-1.76 (1H, dt, 3J = 12.1, 3J = 3.0, H6’), 1.64-1.50 (2H, m, H6’’ and H5’’), 1.04 (s, 3H, 

Me1), 1.01 (s, 3H, Me7’), 0.81 (s, 3H, Me7’’); 13C NMR (63 MHz, CDCl3, 25 ºC) δ 208.7 (C=O), 142.5 

(C3a), 136.1 (C3c), 130.2 (C3dH), 129.1 (C3fH), 129.0 (C3eH), 127.9 (C3bH), 57.5 (C7), 49.6 (C4H), 47.1 

(C1), 31.1 (C6H2), 26.4 (C5’H2), 21.0 (C7’’H3), 18.7 (C7’H3), 9.7 (C1H3); MS 240 (M+, 100%), 225, 212, 

197, 184, 169, 157, 141, 128, 115, 103, 91, 77, 55, 41; Anal. Calcd for C17H20O: C, 84.96; H, 8.39. 

Found: C, 85.05; H, 8.30. 

 

(1S, 3S, 4S)-3-benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (4a). A solution of (S)-camphor 

1a (2.00 g, 13.1 mmol) dissolved in DME (12 mL) was added to a suspension of NaH (1.13 g, 47.3 

mmol) in DME (18 mL). The mixture was refluxed for 1h, whereupon ethyl benzoate (2.17 g, 14.6 

mmol) dissolved in 12 mL DME was added to the reaction mixture under reflux. After stirring at reflux 

temperature overnight, the reaction was quenched by addition of 10 mL EtOH (95%). The mixture was 

poured onto 60 mL water and acidified with HCl until pH = 1. The aqueous phase was extracted with 

pentane (3 × 75 mL). The combined organic phases were washed with an aqueous solution of NaHCO3 

(5%, 75 mL) and brine (75 mL). After drying of the organic phase over MgSO4 and evaporation of the 

solvents, the yellow crude crystals were recrystallised from pentane to give 4a as pale yellow crystals 

(1.38 g, 42%). Mp = 65-67 ºC; [α]20
D -268 (c 0.99, CH2Cl2); λmax= 309.4 (c 80 µM, log ε 4.38); IR 

(KBr) 3200 - 2600 (br OH), 3051 (CH arom), 2968 (CH), 1663 (C=C), 1617 (C=O, β-diketone/enol); 

1H NMR (250 MHz, CDCl3, 25 ºC) (both diketo and keto-enol forms) δ 8.63 (0.3H, br s, OH-enol), 

7.68-7.64 (2H, m, H arom), 7.43-7.42 (3H, m, H arom), 2.85-2.83 (0.7H, d, 3J = 3.8, OCCHCO), 2.22-

2.11 (1H, m, CH, CHC(CH3)2), 1.83-1.74 (1H, m, CH), 1.67-1.48 (3H, m, CH2 and CH), 1.02 (3H, s, 

CH3), 0.94 (3H, s, CH3), 0.82 (3H, s, CH3); 
13C NMR (66 MHz, CDCl3, 25 ºC) diketo and keto-enol 

forms: δ 213.2, 212.8, 210.6, 197.2, 193.3 (all C=O and C=C(OH)keto-enol 2), 161.8 (C=C(OH)keto-enol 1), 

136.4, 134.1 (both Cq arom), 133.4, 133.1, 130.3, 129.9, 128.7, 128.3, 128.1, 127.8 (all CH arom), 115.4 
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(C=C(OH)keto-enol 2), 63.8, 58.8 (both CH), 57.7, 57.6, 50.0 (both Cq), 48.6, 48.4 (both CH), 46.4, 46.3 

(both Cq), 45.2 (CH), 30.6, 30.2, 28.9, 27.9, 27.1, 22.1 (all CH2), 21.6, 20.3, 19.7, 19.6, 18.9, 18.8, 9.6, 

8.8 (all CH3); MS 256 (M+), 241, 228, 213, 196, 185, 171, 147, 135, 123, 105 (100%), 91, 77, 55, 41; 

Anal. Calcd for C17H20O2: C, 79.65; H, 7.86. Found: C, 80.10; H, 7.96.  

 

(1R, 3R, 4R)-3-benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (4b). The same procedure as for 

4a was employed, with the (R)-camphor 1b as starting material. The product, 4b, was isolated as pale 

yellow crystals (2.91 g 58%). Mp = 84-86 ºC; [α]20
D +277 (c 1.00, CHCl3); λmax 306.0 (c 80 µM, log ε 

4.08, MeOH); IR (KBr) 3200-2600 (br s, OH), 3057 (CH arom), 2959 (CH), 1669 (C=C), 1607 (C=O, 

β-diketone/enol); 1H NMR (250 MHz, CDCl3, 25 ºC) (both diketo and keto-enol forms) δ 8.64 (0.15H, 

br s, OH-enol), 7.69-7.65 (2H, m, H arom), 7.45-7.43 (3H, m, H arom), 2.85-2.84 (0.87H, d, 3J = 3.8, 

OCCHCO), 2.22-2.11 (1H, m, CH, CHC(CH3)2), 1.83-1.74 (1H, m, CH), 1.67-1.49 (3H, m, CH2 and 

CH), 1.03 (3H, s, CH3), 0.94 (3H, s, CH3), 0.83 (3H, s, CH3); 
13C NMR (66 MHz, CDCl3, 25 ºC) diketo 

and keto-enol forms: δ 213.2, 212.9, 210.7, 197.2, 193.3 (all C=O and C=C(OH)keto-enol 2), 161.8 

(C=C(OH)keto-enol 1), 136.5, 134.1 (both Cq arom), 133.4, 133.1, 130.3, 129.9, 128.7, 128.3, 128.1, 127.8 

(all CH arom), 115.4 (C=C(OH)keto-enol 1), 63.8 (Cq), 58.8 (CH), 57.7, 50.1 (both Cq), 48.6, 48.4 (both 

CH), 46.4, 46.3 (both Cq), 45.2 (CH), 30.6, 30.2, 28.9, 27.9, 27.1, 22.1 (all CH2), 21.6, 20.3, 19.7, 19.6, 

19.0, 18.8, 9.7, 8.9 (all CH3); MS 256 (M+), 241, 228, 213, 196, 185, 171, 147, 135, 123, 105 (100%), 

91, 77, 55, 41; Anal. Calcd for C17H20O2: C, 79.65; H, 7.86. Found: C, 79.45; H, 8.00. 

 

Attempted synthesis (1S, 3R, 4S)-3-benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (5a). A 

solution of SmI2 in THF (C=0.1 M) was prepared by adding THF (100 mL) to Sm (1.80 g, 12 mmol) 

and I2 (2.54 g, 10 mmol) and stirring the reaction mixture vigorously at 22ºC overnight. The colour of 

the reaction changed from brown to green and then to Prussian blue. Then, (S)-bromocamphor 7a 

(1.15g, 5 mmol) and benzoyl chloride (0.70 g, 5 mmol) were dissolved in THF (10 mL) and the solution 
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was added slowly at 0ºC to the solution of SmI2 in THF. The resulting brownish mixture was stirred at 

room temperature overnight. The solvent was evaporated and the residue was hydrolyzed with HCl (10 

mL, 15%). The aqueous phase was extracted 3 times with Et2O. The combined organic phases were 

dried over MgSO4 and evaporated to give a brown oil containing 4a and 5a in a ratio of 2:1. Partial 1H 

NMR spectrum of 5a (250 MHz, CDCl3, 25 ºC) δ 4.25 – 4.22 (1H, dd, 3J = 1.3, 3J = 4.3, OCCHCO). 

Purification of the crude product by flash chromatography on silica gel (eluent: Et2O/cyclohexane 1:6, 

triethylamine 1%) gave exclusively 4a.  

 

Attempted synthesis of (1R, 4S, 4R)-3-benzoyl-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (5b). 

The same procedure as for 5a was employed but with the (R)-bromocamphor 7b as starting material. 

The crude product was also isolated as a brown oil containing 4b and 5b. Partial 1H NMR spectrum of 

5b (250 MHz, CDCl3, 25 ºC) δ 4.27 – 4.25 (1H, dd, 3J = 1.2, 3J = 4.8, OCCHCO). The crude product 

was purified by flash chromatography on neutral alumina (eluent: Et2O/cyclohexane 1:6) to exclusively 

give 4b. 

 

NMR Titrations. A solution of 4a (10 mM) and pyridine-d5 (20 mM) in CD3OD was titrated by 

consecutive additions of a solution containing Co(OAc)4·4H2O (40 mM), 4a (10 mM), and pyridine-d5 

(20 mM) in CD3OD. 1H NMR spectra were recorded at 250 MHz at 298 K. CD3OD (99.8%), pyridine-

d5 (99%), CDCl3 (99.9%) were used as solvents. Apparent dissociation constants were calculated with 

non-linear line fitting to a one–site model where each regression was based on no less than 8 data points 

and results are presented with the standard error. The goodness of fit (R2) was 0.9898 or better in all 

cases. 

 

VIS Titrations. Formation of pre-polymerization complexes were studied by titrating a solution of 

Co(OAc)2.4H2O (20 mM) in MeOH containing 40 mM pyridine with a solution of 4b (80 mM) in 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 28

MeOH containing 40 mM pyridine. The effect of the different components on complexation strength 

was elucidated by titrating a solution of Co(OAc)4·4H2O (10 mM or 5mM) in MeOH with a solution of 

4b (40 mM) or pyridine (5000 mM) in MeOH. Job´s method of continuous variation was employed for 

determining the stoichiometric relationship between Co2+ and 4b in MeOH. The change in absorbance 

was recorded at 400-700 nm and apparent dissociation constants (app. Kdiss) were calculated by plotting 

the change in absorbance at 520 nm followed by fitting the data to a one-site binding model. The 

goodness of fit (R2) was 0.9880 or better in all cases. 

 

Polymer Synthesis: 4-Vinylpyridine (430 µL, 4.0 mmol), styrene (4580 µL, 40.0 mmol), and 

divinylbenzene (5690 µL, 40.0 mmol) were mixed with 4a or 4b (512.7 mg, 2.0 mmol), 

azobis(cyclohexanecarbonitrile) (ABCC) (293.2 mg, 1.2 mmol) and Co(OAc)4·4H2O (498.2 mg, 2.0 

mmol) in MeOH (14.98 mL), and briefly sonicated. The mixture was degassed by repeated freeze-thaw 

cycles (three times) and after the last cycle left under vacuum. Polymerization was carried out at 55 ºC 

(36 h) to obtain polymers P2 (4a) and P3 (4b). The bulk polymer was ground and sieved through a 63 

µm sieve and then wet sieved (acetone) through a 25 µm sieve. Particles in the range of 63-25 µm were 

collected. The fine particles were removed by repeated sedimentation from acetone (6 x 400mL). The 

print molecule complex (4a-Co2+ and 4b-Co2+, respectively) was removed by packing the polymer (4 g) 

in an HPLC column and washing with acetic acid/MeOH 7:3 (400 mL), MeOH (100 mL), 45 mM Na2-

EDTA in MeOH/water (400 mL), MeOH (50 mL), and acetone (100 mL). Two reference polymers were 

also synthesized as described above, P0 (absence of 4 and Co2+), and P1 (absence of 4).  

 

Polymer Titrations. To duplicate samples of blank polymer (P0) and (R)-MIP (P3) (1 to 20 ± 0.05 

mg), solutions of 0.1 or 0.015 mM of 4b:Co2+ (1:1) in MeOH were added and the samples incubated at 

r.t. for 19 h. The samples were filtered trough 13 mm syringe filters with 0.2 µm PTFE membranes and 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 29

analyzed on a Kromasil C18 column (5 µm 150 mm x 4.6 mm) at 295 nm on a HP 1050 HPLC with the 

mobile phase MeOH/water (9:1) and the flow 1.0 mL/min.  

 

Batch Binding Studies. Based on the polymer titration results, batch binding studies were performed 

in MeOH or DMF using 20 mg of polymer (P0, P1, P2 and P3) and various ligands (2, 3a, 3b, 4a and 

4b), 0.015 mM. All samples were incubated for 19 h at r.t. Determinations of bound ligand were 

performed as described above. All studies were performed in at least duplicate, with duplicate analysis 

of all points. 

 

Reaction Assays. Polymer assays were performed according to Matsui et al14 with minor 

modifications. Polymer samples (P0, P1, P2 and P3) were incubated at r.t. for 19h with Co(OAc)4·4H2O 

(1 mg/100 mg polymer) in MeOH (0.5 mL). The samples were filtered and the concentration of bound 

Co2+ was established by analysis of the residual Co2+ present in the filtrate by quantitative 

spectrophotometric analysis (520 nm). The polymers were then dried under vacuum over night at r.t. 

Cobalt treated polymer samples (200 mg) were incubated with 1a or 1b (200 µmol) and 2 (200 µmol) in 

dry DMF (1.0 mL). Solution reactions were carried out as above with pyridine (10 µL) and 

Co(OAc)4·4H2O (8 µmol). The reactions were performed in sealed tubes at 100 °C in a thermostated oil 

bath. Samples (10 µL) were taken directly from the reaction mixtures and diluted 100-fold before 

filtration and analysis by HPLC using a Kromasil C18 5 µm 150 mm x 4.6 mm column at 295 nm. 

HPLC analysis were run isocratically using MeOH/water (9:1) as mobile phase at 1.0 mL/min. Standard 

curves of concentration versus peak area were prepared in triplicates over the concentration ranges used 

in the assay for calculation of the product yield. 
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Inhibition Studies. Samples were prepared in triplicate with Co(OAc)4·4H2O treated polymer (P2) 

(200 mg) incubated with 1a (100 µmol) and 2 (50 to 400 µmol) in dry DMF (0.5 mL). As controls, 

solution reactions were carried out as described above. The reactions were performed in sealed tubes at 

100 °C in a thermostated oil bath. Samples (10 µL) were taken directly from the reaction mixtures and 

diluted 100-fold before filtration and analysis by HPLC using a Kromasil C18 5 µm 150 mm x 4.6 mm 

column at 295 nm. HPLC analyses were run isocratically using MeOH/water (9:1) as mobile phase at 

1.0 mL/min. 

 

Supporting Information Available. (1) spectroscopic data (NMR) for synthesis products, (2) proposed 

mechanism for keto-enol tautomerism, (3) additional spectroscopic titration data, (4) additional binding 

study data.  



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 31

References 

                                                 
1  (a) Danishefsky, S. Science 1993, 259, 469-470 (b) Sukumaran, J.; Hanefeld, U. Chem. Soc. Rev. 

2005, 34, 530-42. 

2  (a) Bornsheuer, U. T.; Kazlaukas, R. J. Angew. Chem. Int. Ed. 2004, 43, 6032-6040. (b) Jeager, K-

E.; Eggert, T. Curr. Opin. Biotech. 2004, 15, 305-313. 

3  (a) Lilley, D. M. J. Curr. Opin. Struc. Biol. 2005, 15, 313-323. b) Sigel, R. K. O.; Eur. J. Inorg. 

Chem. 2005, 2281-2292. 

4  Severin, K. Curr. Opin. Chem. Biol. 2000, 4, 710-714. 

5  Mastrorilli, P.; Nobile, C. F. Coord. Chem. Rev. 2004, 248, 377-395.[0] 

6  Schultz, P. G.; Yin, J.; Lerner, R. A. Angew. Chem. Int. Ed. 2002, 41, 4427-4437. 

7  Alexander, C.; Davidson, L.; Hayes, W, Tetrahedron 2003, 59, 2025-2057. 

8  (a) Sellergren, B. (ed.) Molecularly Imprinted Polymers. Man-made Mimics of Antibodies and 

Their Application in Analytical Chemistry: Elsevier, Amsterdam, 2000. (b) Yan, M.; Ramström, 

O. (ed.) Molecularly Imprinted Materials. Science and Technology: Marcel Dekker, New York, 

2004. c) Alexander, C.; Andersson, H. S.; Andersson, L. I.; Ansell, R. J.; Kirsch, N.; Nicholls, I. 

A.; O’Mahony, J.; Whitcombe, M. J. J. Mol. Recognit. 2005, 18, in press. 

9  (a) Whitcombe, M. J.; Alexander, C.; Vulfson, E. N. Synlett 2000, 6, 911-923. (b) Motherwell, W. 

B.; Bingham, M. J.; Six, Y. Tetrahedron 2001, 57, 4663-4686. (c) Bruggemann, O. Anal. Chim. 

Acta 2001, 435, 197-207. (d) Tada, M.; Iwasawa, Y. J. Mol. Catal. A. 2003, 199, 115-137. (e) 

Toorisaka, E.; Uezu, K.; Goto, M.; Furusaki, S. Biochem., Eng. J. 2003, 14, 85-91. (f) Striegler, S. 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 32

                                                                                                                                                                         
J. Chromatogr. B. 2004, 804, 183-195. (g) Cheng, Z.; Zhang, L.; Li, Y. Chem Eur. J. 2004, 10, 

3555-3561. 

10  Svenson, J.; Nicholls, I. A. Anal. Chim. Acta 2001, 435, 19-24. 

11  (a) Strikovsky, A. G.; Kasper, D.; Grün, M.; Green, B.S.; Hradil, J.; Wulff, G. J. Am. Chem. Soc. 

2000, 122, 6295-6296. (b) Wulff, G.; Gross, T.; Schönfeld, R. Angew. Chem. Int. Ed. Engl. 1997, 

36, 1961-1964. (c) Sellergren, B.; Shea, K. J. Tetrahedron: Asymmetry 1994, 5, 1403-1406. (d) 

Sellergren, B.; Karmalkar, R. N.; Shea, K. J. J. Org. Chem. 2000, 65, 4009-4027.] 

12  Svenson, J.; Zheng, N.; Nicholls, I. A. J. Am. Chem. Soc. 2004, 126, 8554-8560. 

13  (a) Müller, R.; Andersson, L. I.; Mosbach, K. Makromol. Chem.-Rapid Commun. 1993, 14, 637-

641. (b) Beach, J. V.; Shea, K. J. J. Am. Chem. Soc. 1994, 116, 379-380. 

14  Matsui, J.; Nicholls, I. A.; Karube, I.; Mosbach, K. J. Org. Chem. 1996, 61, 5414-5417.  

15  (a) Liu, X-C.; Mosbach, K. Macromol. Rapid. Commun. 1997, 18, 609-615. (b) Visnjevski, A.; 

Schomäcker, R.; Yilmaz, E.; Brüggemann, O. Catalysis Commun. 2005, 6, 601-606. (c) Busi, E.; 

Basosi, R.; Ponticelli, F.; Olivucci, M. J. Mol. Catal-A: Chem. 2004, 217, 31-36. 

16  Cammidge, A. N.; Baines, N. J.; Bellingham, R. K. Chem. Comm. 2001, 24, 2588-2589. 

17  Mikami, K.; Yajima, T.; Takasaki, T.; Matsukawa, S.; Terada, M.; Uchimaru, T.; Maruta, M. 

Tetrahedron 1996, 52, 85-98. 

18  Mahrwald, R. (ed.) Modern Aldol Reactions, Vol. 1: Enolates, Organocatalysis, Biocatalysis and 

Natural Product Synthesis. Wiley – VCH Verlag GmbH & Co., KGaA, Weinheim 2004, 

Germany. 

19  Machajewski, T. D.; Wong, C-H. Angew. Chem. Int. Ed. 2000, 39, 1352-1374. 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 33

                                                                                                                                                                         
20  Mahrwald, R. (ed.) Modern Aldol Reactions, Vol. 2: Metal Catalysis. Wiley – VCH Verlag GmbH 

& Co., KGaA, Weinheim 2004, Germany. 

21  (a) Evans, D. A.; Kim, A. S. In Handbook of Reagents for Organic Synthesis: Reagents, 

Auxiliaries and Catalysts for C-C Bonds; Coates, R. M.; Denmark, S.E., Eds.; John Wiley & Sons: 

New York, 1999; pp 91-101. (b) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 

103, 2127-2129. (c) Evans, D. A.; Nelson, J. V.; Taber, T. R. Top. Stereochem. 1982, 13, 1-115. 

22  (a) Hoffmann, T.; Zhong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.; 

Barbas III, C. F. J. Am. Chem. Soc. 1998, 120, 2768-2779. (b) Zhong, G.; Lerner, R. A.; Barbas 

III, C. F. Angew. Chem. Int. Ed. 1999, 38, 3738-3741. 

23  (a) Calter, M. A.; Song, W.; Zhou, J. G. J. Org. Chem. 2004, 69, 1270-1275. (b) Saito, S.; 

Yamamoto, H. Acc. Chem. Res. 2004, 37, 570-579. 

24  Heron, E. J. Caprioli, R. M. Biochim. Biophys. Acta 1975, 403, 563-572. 

25  Tiecco, M.; Testferri, L.; Marini, F.; Sternativo, S.; Santi. C.; Bagnoli, L.; Temperini, A. 

Tetrahedron: Asymmetry 2004, 15, 783-791. 

26  Knollmuller, M.; Ferencic, M.; Gärtner, P.; Mereiter, K.; Noe, C. R. Tetrahedron: Asymmetry 

1998, 9, 4009-4020. 

27  Palomo, C.; Oiarbide, M.; Aizpurua, J.M.; González, A.; García, J. M.; Landa, C. Odriozola, I.; 

Linden, A. J. Org. Chem. 1999, 64, 8193-8200. 

28  Palomo, C.; Oiarbide, M.; Mieglo, A.; González, A.; García, J. M.; Landa, C. Lecumberri, A.; 

Linden, A. Org. Lett. 2001, 3, 3249-3252. 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 34

                                                                                                                                                                         
29  (a) Gupta, S. N.; Neckers, D. C. J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 1609-1622. (b) 

Vidyasankar, S.; Ru, M.; Arnold, F. H. J. Chromatogr. A 1997, 775, 51-63. (c) Hart, B. R.; Shea, 

K. J. J. Am. Chem. Soc. 2001, 123, 2072-2073. (d) Takeuchi, T.; Mukawa, T.; Matsui, J.; Higashi, 

M.; Shimizu, K. D. Anal. Chem. 2001, 73, 3869-3874. (e) Efendiev, A. A. Macromolecular 

Symposia 1994, 80, 289-313. (f) Matsui, J.; Nicholls, I. A.; Takeuchi, T.; Mosbach, K.; Karube, I. 

Anal. Chim. Acta 1996, 335, 71-77. (g) Fujii, Y.; Matsutani, K.; Kikuchi, K. J. Chem. Soc., Chem. 

Commun. 1985, 415-417. (h) Dhal, P. K.; Arnold, F. H.; J. Am. Chem. Soc. 1991, 113, 7417-7418. 

(i) Striegler, S.; Tewes, E. Eur. J. Inorg. Chem. 2002, 487-495. (j) Striegler, S. Anal. Chim. Acta 

2005, 539, 91-95. (k) Striegler, S.; Dittel M. Anal. Chim. Acta 2003, 484, 53-62.  

30  (a) Brunkan, N. M.; Gagné, M. R. J. Am. Chem. Soc. 2000, 122, 6217-6225. (b) Santora, B. P.; 

Larsen, A.O.; Gagné, M. R. Organometallics 1998, 17, 3138-3140. (c) Koh, J. H.; Larsen, A. O.; 

White, P. S.; Gagné, M. R. Organometallics 2002, 21, 7-9. (d) Wulff G. Vietmeier J. Makromol. 

Chem., Macromol. Chem. & Phys. 1989, 190, 1727-1735. (e) Leonhardt, A.; Mosbach, K. 

Reactive Polymers 1987, 6, 285-290. 

31  Togni, A. Organometallics 1990, 9, 3106-3113. 

32  Wei, H-X.; Wang, Z-M.; Shi, M. Chem. Pharm. Bull. 1999, 47, 909-910. 

33  Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1977, 1, 5-7. 

34  Chuiko, V. A.; Vinarskaya, Zh. V.; Izotova, L. V.; Tychinskaya, L. Y. Russian J. Org. Chem. 

2002, 38, 196-199. 

35  (a) Kim, H.; Spivak, D. A. J. Am. Chem. Soc. 2003, 125, 11269-11275. (b) Takeuchi, T.; Dobashi, 

A.; Kimura, K. Anal. Chem. 2000, 72, 2418-2422. (c) Striegler, S. Bioseparation, 2001, 10, 307-

314. (d) Wulff, G.; Knorr, K. Bioseparation, 2001, 10, 257-276. 



Hedin et al. A Synthetic Class II Aldolase Mimic 
 

 35

                                                                                                                                                                         
36  Karlsson, J. G.; Andersson, L. I.; Nicholls, I. A. Anal. Chim. Acta 2001, 435, 57-64. 

37  Adbo, K.; Nicholls, I. A. Anal. Chim. Acta 2001, 435, 115-120. 

38  Watanabe, K.; Imazawa, A. Bull. Chem. Soc. Jpn. 1982, 55, 3208-3211. 

 



 



Paper IIIxx
 
 
 



 



Hydroxy-Methoxybenzoic Methyl Esters: Synthesis and Antifeedant
Activity on the Pine Weevil, Hylobius abietis

Sacha Legranda, Göran Nordlanderb, Henrik Nordenhemb, Anna-Karin Borg-Karlsonc,
and C. Rikard Uneliusa

a Department of Chemistry and Biomedical Sciences, University of Kalmar,
SE-391 82 Kalmar, Sweden

b Department of Entomology, Swedish University of Agricultural Sciences,
P.O. Box 7044, SE-750 07 Uppsala, Sweden

c Department of Chemistry, Organic Chemistry, Royal Institute of Technology,
SE-100 44 Stockholm, Sweden

Reprint requests to Associate Prof. C. Rikard Unelius. Fax: +46 480 44 62 62.
E-mail: rikard.unelius@hik.se

Z. Naturforsch. 59b, 829 – 835 (2004); received December 15, 2003

The pine weevil Hylobius abietis (L.) (Coleoptera: Curculionidae) feeds on the bark of coniferous
seedlings and is the economically most important forestry restocking pest in large parts of Europe.
Substances with an antifeedant effect may offer an environmentally friendly alternative to insecti-
cides for the protection of planted seedlings. Bioassays were performed on commercial and synthetic
methyl hydroxy-methoxybenzoates in order to determine their possible antifeedant activity.

Two methyl hydroxy-methoxybenzoates were synthesized by esterification and mono-O-methyl-
ation of two dihydroxybenzoic acids. A regioselective protection-deprotection strategy was used in
the synthetic pathway of the other non-commercial esters, esterification and selective pivaloylation of
the less-hindered hydroxyl group of other commercial dihydroxybenzoic acids gave diester interme-
diates, which then were O-methylated before methanolysis of the pivaloyl group which yielded the
desired non-commercial methyl hydroxy-methoxybenzoates.

The five synthesized methyl hydroxy-methoxybenzoic esters were complemented with commercial
samples of the five other isomers of methyl hydroxy-methoxybenzoate and spectrometric data were
collected for the complete set of isomers. All ten isomers were tested for their antifeedant effect on
the pine weevil. The effect varied considerably among the hydroxy-methoxybenzoic esters. Methyl
2-hydroxy-3-methoxybenzoate showed the highest effect and may thus be a candidate for practical
use in pine weevil pest management.

Key words: Methyl Hydroxy-methoxybenzoates, Antifeedant Activity, Hylobius abietis

Introduction

Adult pine weevils, Hylobius abietis (L.), frequently
kill planted conifer seedlings by their feeding on the
stem bark. Unprotected seedlings commonly suffer
over 80% mortality in regions with managed conif-
erous forests [1]. To protect the seedlings it is com-
mon practice in many European countries to routinely
treat transplants with an insecticide. Because of envi-
ronmental hazards and health risks for forest workers
the usage of insecticides is seriously questioned today.
Possibly, antifeedant substances applied to transplants
could offer an alternative to insecticides [2].

Recently we have shown that various benzoate
derivatives have strong antifeedant effect on the pine
weevil [3]. This encouraged further studies of com-
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pounds related to benzoic acid. In this study, we
investigated the potential of hydroxy-methoxy acid
methyl esters as antifeedants useful for the protec-
tion of planted seedlings against pine weevil damage.
There are 10 possible isomers of methyl hydroxy–
methoxybenzoate (Scheme 1). The esters 1 – 5 had to
be synthesized while the esters 6 – 10 were commer-
cially available.

The esters 1, 2, 3 and 4 are intermediates in the
total synthesis of compounds with important biolog-
ical effects and their synthesis have been reported
previously [4]. The synthesis of methyl 5-hydroxy-2-
methoxybenzoate (5) was published in 1983 by Har-
wood [5].

The methyl benzoic esters 1 and 2 were synthe-
sized based on the method described by Chakraborty
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Scheme 1. All isomers of methyl hydroxy-methoxybenzoate (1 – 10).

et al. [4b]. The corresponding acids of 1 and 2 were
esterified and mono-O-methylated (Scheme 2). The
regioselective protection presented by Dornhagen and
Scharf in their synthesis of the dichloroisoeverninic
acid [6] was used as a basis for our synthesis of the
methyl benzoates 3, 4 and 5 (Scheme 3). Our synthesis
started by esterification of the benzoic acids 15a, 15b
and 15c. Acylation of the synthesized esters 16a, 16b
and 16c occurred only at the less-hindered hydroxyl
group (OH group meta or para to the ester group). O-
methylation of the ortho-OH group, followed by de-
protection of the diesters gave the desired methyl ben-
zoic esters 3, 4 and 5.

Results and Discussion

Methyl 2-hydroxy-6-methoxybenzoate (1) and
methyl 3-hydroxy-5-methoxybenzoate (2) were syn-
thesized from the commercially available benzoic
acids 11 and 13 (Scheme 2). It was found that the
esterification of the carboxylic acid 11 with MeOH
and H2SO4 as reactants gave the ester 12 in very
low yield. The low reactivity of the COOH group
in 11 is presumably due to the resonance effect of
two hydroxyl groups ortho to COOH. The yield of
this esterification reaction was improved when the
compound 11 was treated with dicyclocarbodiimide
(DCC) and dimethylaminopyridine (DMAP) in a
MeOH/CH2Cl2 mixture. The esterification conditions

Scheme 2. Reaction conditions: (i) DCC, MeOH, DMAP,
CH2Cl2, RT; (ii) MeI, K2CO3, DMF, 35 ◦C; (iii) MeOH,
H2SO4, reflux; (iv) MeI, MeOH, K2CO3, RT.

were more effective in this case since the carboxylic
acid was converted to a compound with a better
leaving group. It was noted that the treatment of the
meta disubstituted benzoic acid 13 with an excess of
MeOH and a catalytic amount of H2SO4 afforded the
ester 14 in good yield, due to the absence of resonance
effects with the COOH group. The products 12 and
14 were then mono-O-methylated by use of methyl
iodide in the presence of a weak base.

A regioselective protection [6] was the key step
in the syntheses of the methyl benzoates 3, 4 and 5
(Scheme 3). After esterification of the commercially
available benzoic acids 15a, 15b or 15c, it was found
that the esters 16a, 16b or 16c when reacted with
trimethylacetyl chloride, selectively yielded the inter-
mediates 17a, 17b or 17c.
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No Compound Index Level of Index Level of
(6 h) significance (24 h) significance

1 Methyl 2-hydroxy-6-methoxybenzoate 94 *** 54 ***
2 Methyl 3-hydroxy-5-methoxybenzoate 35 *** 26 ***
3 Methyl 3-hydroxy-2-methoxybenzoate 77 *** 35 ***
4 Methyl 4-hydroxy-2-methoxybenzoate 69 *** 4 ns
5 Methyl 5-hydroxy-2-methoxybenzoate 4 ns −3 ns
6 Methyl 2-hydroxy-4-methoxybenzoate 100 *** 52 ***
7 Methyl 3-hydroxy-4-methoxybenzoate 69 *** 32 ***
8 Methyl 2-hydroxy-3-methoxybenzoate 100 *** 85 ***
9 Methyl 2-hydroxy-5-methoxybenzoate 93 *** 56 ***
10 Methyl 4-hydroxy-3-methoxybenzoate 56 *** 22 *

Table 1. Effect of the ten ben-
zoates on bark feeding by the
pine weevil Hylobius abietis,
as measured by the antifeedant
index (0 is no activity, 100 is
complete feeding deterrence).

∗ = p < 0.05, ∗∗ = p < 0.01,
∗∗∗ = p < 0.001 (Fisher exact test
of a 2×2 table).

Scheme 3. Reaction conditions: (i) MeOH, H2SO4, reflux;
(ii) trimethylacetyl chloride, pyridine, CH2Cl2, −10 ◦C to
RT; (iii) MeI, K2CO3, DMF, 35 ◦C; (iv) MeOH, K2CO3, RT.

Due to the steric hindrance between the bulky pro-
tecting group, tBu, and the ester moiety, acylation
was predominant at hydroxyl groups meta and para
to the carbomethoxy group and not with the hydroxyl
group ortho. O–methylation of the hydroxyl group or-
tho to the carbomethoxy group gave the compounds
18a, 18b or 18c. Then, the hydroxyl groups meta or
para to the carbomethoxy group were deprotected us-
ing MeOH/K2CO3, yielding the desired methyl ben-
zoates 3, 4 or 5.

In conclusion, the synthesis of all non-commercial
methyl hydroxy-methoxybenzoate was presented.
Starting from the benzoic esters 11 and 13, the methyl
esters 1 and 2 were synthesized in two steps. A regio-
selective protection was the critical step in the synthe-
ses of the other methyl benzoates 3, 4 and 5.

The spectroscopic data of the commercially avail-
able methyl benzoates 6, 7, 8, 9 and 10 were also
recorded. Interestingly, we noted that the mass spec-
tra of all 2-hydroxy-isomers have a strong m/z 150 i.e.
loss of methanol (32), while all other isomers have
a strong 151 fragment. The mechanism for the loss

Scheme 4. Structure – activity relationships (decreasing ac-
tivity from left to right).

of methanol can be explained by a rearrangement be-
tween the methylcarboxylate moiety and a hydroxyl
hydrogen in ortho-position [7].

Bioassays were performed with all esters in order
to determine their possible antifeedant effect against
the pine weevil. Eight of the ten compounds showed
antifeedant activity after 24 h exposure to pine weevils
in the bioassay (Table 1). Only compounds 4 and 5 did
not inhibit feeding over the 24 h period, although 4
showed activity after 6 h. The most potent antifeedant
among these compounds was 8. It was closely followed
in activity by compounds 9, 1, and 6, and thereafter 3
and 7. Compound 2 and, particularly, 10 had only a
weak effect.

Apparently, isomers with a hydroxy group in the
ortho position have a stronger antifeedant effect
(Scheme 4). The most potent compound (8) gave a
somewhat higher index value after 24 h than shown by
the strongest antifeedant compound (ethyl cinnamate)
recently isolated from bark of Pinus contorta [2].

Conclusion

Starting from commercially available hydroxy-
methoxybenzoic acids, all non-commercial methyl
hydroxy-methoxybenzoates were synthesized. Among
the methyl hydroxy-methoxybenzoic esters tested in
the bioassay, methyl 2-hydroxy-3-methoxybenzoate
had the strongest antifeedant effect on adult pine wee-
vils. A comparison with previously discovered an-
tifeedants indicates that methyl 2-hydroxy-3-methoxy-
benzoate has potential for use in practical protection
of conifer transplants. Further synthesis and bioassays
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are needed to predict the optimal structure for maxi-
mal antifeedant activity. More comparisons of similar
compounds are also needed before structure – activity
patterns can be properly discussed.

Experimental Section

Synthesis: General synthetic methodology

Melting points were determined on a Büchi 510 in-
strument and were not corrected. Preparative chromatogra-
phy [8] and flash chromatography were done on silica gel
(Merck 60). NMR spectra were recorded on spectrometers
Bruker AC 250 (250 MHz for 1H and 63 MHz for 13C) and
Bruker AMX 500 (500 MHz for 1H and 125 MHz for 13C).
CDCl3 and DMSO-d6 were used as solvents and the signals
of the solvents served as internal standards. Chemical shifts
were expressed in ppm, followed by multiplicity (s, singlet;
t, triplet; d, doublet; m, multiplet; b, broad) and number of
protons. Mass spectra of positive ions obtained by electron
impact (EI, 70 eV) were measured on Hewlett-Packard or
Varian Saturn ws GC-MS instruments.

Dimethylformamide (DMF) was distilled under N2 before
use. Pyridine and CH2Cl2 were dried over 4 Å molecular
sieves. The starting materials employed were purchased from
commercial suppliers and were used without further purifica-
tion.

Methyl 2,6-dihydroxybenzoate (12): 2,6-Dihydroxybenz-
oic acid (11) (1.00 g, 6.49 mmol) was dissolved in MeOH
(10 ml) and CH2Cl2 (65 ml) was added to the reac-
tion mixture. DCC (1,3-dicyclohexylcarbodiimide) (1.49 g,
7.14 mmol) and DMAP (4-dimethylaminopyridine) (0.158 g,
1.30 mmol) were added and the reaction mixture was stirred
at room temperature (RT) for 72 h. The white precipitate
was then removed by filtration and the solvents were evap-
orated. The crude product was purified by flash chromatog-
raphy on silica gel, using cyclohexane–EtOAc (3:2) as elu-
ent, to give 12 (277 mg, 25%) as a white solid. M.p. 58−
60 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.78 (s,
3 H, COOMe), 6.32− 6.35 (d, 2 H, 2×Har) 7.05− 7.12 (t,
1 H, Har), 9.94 (bs, 2 H, OH). – 13C{1H} NMR (62.9 MHz,
DMSO–d6): δ = 51.76 (COOMe), 106.60 (2×Car), 106.88,
132.27, 157.22, 157.24, 168.17 (all Car and C=O). – MS:
m/z = 168 [M+], 153, 136 (100%), 108, 96, 80, 69, 63, 52,
44, 39.

Methyl 2-hydroxy-6-methoxybenzoate (1): Methyl 2,6-di-
hydroxybenzoate (12) (260 mg, 1.55 mmol) was dissolved
in DMF (2 ml) and K2CO3 (256 mg, 1.86 mmol) was added
in 2 portions, followed by MeI (0.12 ml, 1.94 mmol). The
resulting suspension was vigorously stirred at 35 ◦C for
3 h. The reaction mixture was then cooled to room tem-
perature, the solid was removed by filtration and the sol-
vent was evaporated to give a brown oil. The crude oil
was purified by two flash chromatography procedures using

cyclohexane–ethyl acetate (EtOAc) (2:3) and cyclohexane–
EtOAc (4:1) as eluents. Compound 1 was isolated as a white
solid (55 mg, 20%). M.p. 50 ◦C. – 1H NMR (250 MHz,
DMSO–d6): δ = 3.71 (s, 3 H, OMe), 3.73 (s, 3 H, COOMe),
6.47 – 6.51 (d, 2 H, 2×Har), 7.14 – 7.21 (t, 1 H, Har), 9.98
(bs, 1 H, OH). – 13C{1H} NMR (62.9 MHz, DMSO–d6):
δ = 51.64 (COOMe), 55.54 (OMe) 101.84, 106.59, 108.38,
130.87, 155.32, 157.03, 166.52 (all Car and C=O). – MS:
m/z(%) = 182 (38) [M+], 150 (100), 136 (5.7), 122 (31),
107 (55), 93 (2.9), 79 (5.3), 65 (5.3), 51 (4.3), 39 (4.3).

Methyl 3,5-dihydroxybenzoate (14): 3,5-Dihydroxybenz-
oic acid (13) (1.00 g, 6.49 mmol) was dissolved in MeOH
(40 ml) and some drops of H2SO4 were slowly added to
the reaction mixture, which was stirred at reflux temperature.
The reaction was monitored by TLC. When the reaction was
finished, the solvent was evaporated and the crude product
was dissolved in EtOAc and washed twice with brine. The
organic layer was dried over MgSO4 and the solvent was
evaporated to give 14 as a white powder (871 mg, 80%). M.p.
165 – 168 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.78
(s, 3 H, COOMe), 6.43 (m, 1 H, Har), 6.80 (m, 2 H, 2×Har),
9.64 (s, 2 H, OH). – 13C{1H} NMR (62.9 MHz, DMSO–
d6): δ = 51.85 (COOMe), 106.95 (2×Car), 107.04, 131.16
(all Car), 158.41 (2×Car), 166.12 (C=O). – MS: m/z = 168
[M+], 137 (100%), 109, 95, 81, 69, 53, 44.

Methyl 3-hydroxy-5-methoxybenzoate (2): Methyl 3,5-di-
hydroxybenzoate (14) (300 mg, 1.78 mmol) was dissolved
in MeOH, K2CO3 (296 mg, 2.14 mmol) was added and the
reaction mixture was stirred for a couple of minutes. MeI
(0.11 ml, 1.78 mmol) was then added and the mixture was
stirred at room temperature overnight. Silica gel was then
added and the solvent was evaporated. After drying, the im-
pregnated silica gel was put on top of a chromatography col-
umn and subjected to medium pressure liquid chromatog-
raphy (MPLC, cyclohexane:EtOAc 70:30) to give 2 as a
white powder (70 mg, 21%). M.p. 82 – 84 ◦C. – 1H NMR
(250 MHz, DMSO–d6): δ = 3.75 (s, 3 H, COOMe), 3.82 (s,
3 H, OMe), 6.58 (s, 1 H, Har), 6.91 (s, 1 H, Har), 6.97 (s,
1 H, Har), 9.87 (s, 1 H, OH). – 13C{1H} NMR (62.9 MHz,
DMSO–d6): δ = 52.04 (COOMe), 55.15 (OMe), 104.99,
105.99, 108.54, 131.35, 158.53, 160.35, 165.95 (all Car and
C=O). – MS: m/z(%) = 182 (93) [M+], 167 (1), 151 (100),
136 (2.9), 123 (34), 108 (22), 93 (8.6), 79 (3.3), 69 (16),
63 (4.8), 51 (4.8), 44 (9), 39 (3.8).

Methyl 2,3-dihydroxybenzoate (16a): Prepared by the pro-
cedure used for compound 14 but with 2,3-dihydroxybenzoic
acid (15a) (1.50 g, 9.8 mmol) as starting material. 16a was
isolated as a slightly brown solid (1.27 g, 77%). M.p. 68 –
71 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.88 (s, 3 H,
COOMe), 6.75 (m, 1 H, Har), 7.01 (m, 1 H, Har), 7.22 (m,
1 H, Har), 9.44 (s, 1 H, OH), 10.41 (s, 1 H, OH). – 13C{1H}
NMR (62.9 MHz, DMSO–d6): δ = 52.30 (COOMe), 112.96,
118.81, 119.42, 120.58, 145.97, 149.26, 169.71 (all Car and



S. Legrand et al. · Hydroxy-Methoxybenzoic Methyl Esters 833

C=O). MS: m/z = 168 [M+], 153, 136 (100%), 119, 108,
91, 80, 63, 52, 44, 39.

Methyl 2,4-dihydroxybenzoate (16b): Prepared by the
same procedure as compound 14 but with 2,4-dihydroxy-
benzoic acid 15b (5.00 g, 32.44 mmol) as starting mate-
rial. The crude product was purified by flash chromatogra-
phy on silica gel using cyclohexane–EtOAc (80:20) as elu-
ent. A white solid 16b (1.43 g, 26%) was obtained. M.p.
115 – 118 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.83
(s, 3 H, COOMe), 6.29 – 6.30 (d, 1 H, Har), 6.34 – 6.38 (dd,
1 H, Har), 7.61 – 7.65 (d, 1 H, Har), 10.46 (s, 1 H, OH),
10.71 (s, 1 H, OH). – 13C{1H} NMR (62.9 MHz, DMSO–
d6): δ = 51.90 (COOMe), 102.36, 103.86, 108.24, 131.50,
162.58, 164.11, 169.46 (all Car and C=O). – MS: m/z = 168
[M+], 136 (100%), 125, 108, 95, 80, 69, 63, 53, 44, 39.

Methyl 2,5-dihydroxybenzoate (16c): Prepared by the pro-
cedure used for compound 14 but with 2,5-dihydroxybenzoic
acid 15c (3.00 g, 19.4 mmol) as starting material. 16c
was isolated as a white solid (0.78 g, 24%). M.p. 73 –
76 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.87 (s,
3 H, COOMe), 6.76 – 6.83 (m, 1 H, Har), 6.93 – 6.99 (m,
1 H, Har), 7.14 (m, 1 H, Har), 9.18 (s (apparent d), 1 H,
OH), 9.85 (bs, 1 H, OH). – 13C{1H} NMR (62.9 MHz,
DMSO–d6): δ = 52.32 (COOMe), 114.01, 117.63, 123.74,
149.47, 153.02, 153.97, 171.61 (all Car and C=O). – MS:
m/z = 168 [M+], 136, 108, 80, 69, 53, 44.

Methyl 2-hydroxy-3-pivaloyloxybenzoate (17a): Methyl
benzoate 16a (800 mg, 4.76 mmol) was dissolved in CH2Cl2
(8.4 ml) under inert atmosphere and pyridine (2.6 ml) was
added to the reaction mixture. The reaction mixture was then
cooled to−10 ◦C and a solution of pivaloyl chloride (642 mg,
5.30 mmol) in CH2Cl2 (0.7 ml) was added drop wise to the
reaction mixture, which was allowed to reach RT. After stir-
ring for 48 h, the solvent was evaporated and the crude crys-
tals were purified by two consecutive flash chromatography
treatments using cyclohexane-EtOAc (7:3) and cyclohexane-
Et2O (6:1) as eluents. This procedure yielded 17a as a
white solid (803 mg, 67%). M.p. 64 – 67 ◦C. – 1H NMR
(250 MHz, DMSO–d6): δ = 1.31 (s, 9 H, 3×Me), 3.77 – 3.91
(s (app. d), 3 H, COOMe), 6.97 – 7.71 (m, 3 H, 3×Har), 10.52
(bs, 1 H, OH). – 13C{1H} NMR (62.9 MHz, DMSO–d6):
δ = 26.74 (4×Me), 38.38 (COOMe), 52.61 (Cq), 118.83,
120.49, 125.86, 126.97, 128.62, 139.06, 152.10, 168.96 (all
Car and 2×C=O), 168.96 (C=O). – MS: m/z = 252 [M+],
168, 136 (100%), 107, 85, 69, 57, 41.

Methyl 2-hydroxy-4-pivaloyloxybenzoate (17b): Prepared
by the procedure used for compound 17a but with the methyl
benzoate 15b (500 mg, 2.97 mmol) as starting material.
Compound 17b was isolated as a white solid (245 mg,
33%). M.p. 71 – 73 ◦C. – 1H NMR (250 MHz, DMSO–
d6): δ = 1.30 (s, 9 H, 3×Me), 3.89 (s, 3 H, COOMe),
6.69 – 6.77 (t, 2 H, 2×Har), 7.80 – 7.85 (d, 1 H, Har). –
13C{1H} NMR (62.9 MHz, DMSO–d6): δ = 26.50 (4×Me),

38.52 (COOMe), 52.32 (Cq), 110.32, 110.83, 113.20, 131.19,
155.91, 160.93, 168.36, 175.57 (all Car and 2×C=O). – MS:
m/z = 252 [M+], 221, 168, 136 (100%), 108, 95, 85, 69,
57, 41.

Methyl 2-hydroxy-5-pivaloyloxybenzoate (17c): Prepared
by the procedure used for compound 17a but with the methyl
benzoate 16c (650 mg, 3.87 mmol) as starting material. Com-
pound 17c was isolated as a white solid (98 mg, 10%). –
1H NMR (250 MHz, DMSO–d6): δ = 1.28 (s, 9 H, 3×Me),
3.88 (s, 3 H, COOMe), 6.99 – 7.03 (d, 1 H, Har), 7.25 – 7.29
(m, 1 H, Har), 7.29 – 7.43 (m, 1 H, Har), 10.50 (bs, 1 H,
OH). – MS: m/z = 252 [M+], 221, 205, 193, 177, 168,
136 (100%), 108, 85, 77, 69, 57, 50, 41.

Methyl 2-methoxy-3-pivaloyloxybenzoate (18a): The di-
ester 17a (400 mg, 1.59 mmol) was dissolved in dry DMF
(2 ml) and K2CO3 (242 mg, 1.90 mmol) was added in 2 por-
tions, followed by MeI (0.128 ml, 2.06 mmol). The resulting
suspension was stirred vigorously at 35 ◦C for 90 min. The
reaction mixture was then cooled to RT. The solid was re-
moved by filtration and the solvent was evaporated to give an
oil. The solid was dissolved in water (10 ml) and added to the
oil. The water phase was extracted with Et2O (3×10 ml). The
combined organic layers were washed with water and brine.
The organic layer was then dried over MgSO4 and the sol-
vent was evaporated to give 18a as a pale yellow oil (288 mg,
70%). – 1H NMR (250 MHz, DMSO–d6): δ = 1.31− 1.33
(s (app. d), 9 H, 3×CH3), 3.72 (s, 3 H, OMe), 3.85 (s, 3 H,
COOMe), 7.21 – 7.39 (m, 2 H, 2×Har),7.60 – 7.63 (m, 1 H,
Har). – 13C{1H} NMR (62.9 MHz, DMSO–d6): δ = 26.62
(4×Me), 38.37 (COOMe), 52.19 (Cq), 61.95 (OMe), 124.02,
125.83, 127.35, 127.95, 144.54, 151.01, 165.21, 175.70 (all
Car and 2×C=O). – MS: m/z = 266 [M+], 235, 219, 182,
164, 150, 136, 121, 107, 93, 85, 77, 65, 57 (100%), 41.

Methyl 2-methoxy-4-pivaloyloxybenzoate (18b): Produc-
ed by the procedure employed for compound 18a but with the
diester 17b (200 mg, 0.793 mmol) as starting material. Com-
pound 18b was isolated as a colourless oil (160 mg, 76%). –
1H NMR (250 MHz, DMSO–d6): δ = 1.30 (s, 9 H, 3×Me),
3.78 (s, 3 H, COOMe), 3.82 (s, 3 H, OMe), 6.74 – 6.78 (m,
1 H, Har), 6.91 – 6.92 (m, 1 H, Har), 7.70 – 7.73 (m, 1 H,
Har). – 13C{1H} NMR (62.9 MHz, DMSO–d6): δ = 26.56
(4×Me), 38.52 (COOMe), 51.72 (Cq), 56.06 (OMe), 106.45,
113.35, 117.16, 131.70, 154.65, 159.35, 165.31, 175.71 (all
Car and 2×C=O). – MS: m/z = 266 [M+], 235, 223, 182,
165, 151, 136, 122, 107, 93, 85, 77, 65, 57 (100%), 41.

Methyl 2-methoxy-5-pivaloyloxybenzoate (18c): Synthe-
sized by the procedure used for compound 18a but with the
diester 17c (100 mg, 0.39 mmol) as starting material. Com-
pound 18c was isolated as a colourless oil (74 mg, 70%). –
1H NMR (250 MHz, DMSO–d6): δ = 1.28 (s, 9 H, 3×Me),
3.78 (s, 3 H, COOMe), 3.82 (s, 3 H, OMe), 7.16 – 7.36 (m,
3 H, 3×Har). – 13C{1H} NMR (62.9 MHz, DMSO–d6): δ =
26.65 (4×Me), 38.52 (COOMe), 51.97 (Cq), 56.14 (OMe),
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113.42, 120.28, 123.45, 126.43, 143.12, 155.66, 165.17,
176.45 (all Car and 2×C=O). – MS: m/z = 266 [M+], 235,
182 (100%), 167, 149, 135, 121, 107, 93, 85, 77, 65, 57, 41.

Methyl 3-hydroxy-2-methoxybenzoate (3): The diester 18a
(98 mg, 0.37 mmol) was dissolved in MeOH (3.7 ml) and
K2CO3 (0.108 g, 0.78 mmol) was added to the reaction
mixture that was stirred at room temperature for 3 h. Then
the liquid was decanted from the solid residue and the sol-
vent was evaporated to give crude white crystals. The pre-
vious solid residue was dissolved in water (3 ml) and HCl
(37%) was added until pH=2. Then the aqueous solution
was added to the crude white crystals and the mixture was
extracted with Et2O (3×5 ml). The combined organic lay-
ers were washed (water, brine) and dried (MgSO4). The sol-
vent was evaporated to give 3 as a colourless oil (34 mg,
50%). – 1H NMR (250 MHz, DMSO–d6): δ = 3.74 (s, 3 H,
COOMe), 3.80 (s, 3 H, OMe), 7.03 (m, 3 H, 3×Har), 9.64
(bs, 1 H, OH). – 13C{1H} NMR (62.9 MHz, DMSO–d6):
δ = 51.82 (COOMe), 60.51 (OMe), 119.87, 119.97, 123.79,
125.80, 146.62, 150.83, 166.20 (all Car and C=O). – MS:
m/z(%) = 182 (81) [M+], 164 (24), 151 (80), 136 (43),
121 (100), 107 (62), 93 (12), 79 (12), 65 (16), 59 (2.4),
51 (14), 45 (3.8), 39 (6.7).

Methyl 4-hydroxy-2-methoxybenzoate (4): Prepared by
the procedure used for compound 3 with the diester 18b
(160 mg, 0.60 mmol) as starting material. Compound 4
was isolated as a white solid (51 mg, 46%). M.p. 130 –
135 ◦C. – 1H NMR (250 MHz, DMSO–d6): δ = 3.70
(s, 3 H, COOMe), 3.75 (s, 3 H, OMe), 6.38 – 6.46 (m,
2 H, 2×Har), 7.58 – 7.62 (m, 1 H, Har), 10.36 (bs, 1 H,
OH). – 13C{1H} NMR (62.9 MHz, DMSO–d6): δ = 51.10
(COOMe), 55.38 (OMe), 99.45, 107.10, 109.85, 133.14,
160.84, 162.62, 165.31 (all Car and C=O). – MS: m/z(%) =
182 (32) [M+], 151 (100), 136 (5.2), 121 (12), 108 (12),
93 (5.7), 65 (5.7), 53 (5.3), 44 (0.4), 39 (5.7).

Methyl 5-hydroxy-2-methoxybenzoate (5): Prepared by
the procedure used for compound 3 but with the diester 18c
(288 mg, 1.08 mmol) as starting material. Purification of the
crude product by flash chromatography on silica gel using
cyclohexane–EtOAc (3:1) as eluent yielded 5 as a slightly
yellow oil (93 mg, 50%). – 1H NMR (250 MHz, CDCl3):
δ = 3.83 (s (app. d), 3 H, COOMe), 3.88 (s (app. d), 3 H,
OMe), 6.83 – 6.98 (m, 2 H, 2×Har), 7.24 – 7.34 (m, 1 H,
Har). – 13C{1H} NMR (62.9 MHz, CDCl3): δ = 52.25
(COOMe), 56.63 (OMe), 113.89, 118.12, 120.71, 122.48,
149.22, 153.35, 166.86 (all Car and C=O). – MS: m/z(%) =
182 (75) [M+], 167 (6.7), 151 (100), 136 (17), 121 (15),
108 (21), 93 (20), 80 (9), 65 (18), 52 (15), 44 (5.7).

Characterization of commercially available isomers, all
purchased from Aldrich.

Methyl 2-hydroxy-4-methoxybenzoate (6): M.p. 50 –
53 ◦C. – 1H NMR (500.14 MHz, DMSO–d6): δ = 3.81
(s, 3 H, COOMe), 3.87 (s, 3 H, OMe), 6.52 – 6.54 (m,

2 H, 2×Har), 7.71 – 7.73 (d, 1 H, Har), 10.78 (bs, 1 H,
OH). – 13C{1H} NMR (125.76 MHz, DMSO–d6): δ = 53.06
(COOMe), 56.49 (OMe), 101.84, 106.15, 108.32, 132.21,
163.49, 166.11, 170.25 (all Car and C=O). – MS: m/z(%) =
182 (40) [M+], 168 (2), 150 (100), 139 (3.5), 122 (57),
107 (28), 95 (10), 79 (18), 63 (5), 51 (7.5).

Methyl 3-hydroxy-4-methoxybenzoate (7): M.p. 64 –
67 ◦C. – 1H NMR (500.14 MHz, DMSO–d6): δ = 3.79 (s,
3 H, COOMe), 3.84 (s, 3 H, OMe), 7.01 – 7.04 (d, 1 H, Har),
7.37 – 7.40 (d, 1 H, Har), 7.43 – 7.47 (dd, 1 H, Har), 9.48
(bs, 1 H, OH). – 13C{1H} NMR (125.76 MHz, DMSO–
d6): δ = 52.62 (COOMe), 56.47 (OMe), 112.28, 116.56,
122.35, 122.74, 147.13, 152.78, 166.92 (all Car and C=O). –
MS: m/z(%) = 182 (54) [M+], 167 (5), 151 (100), 139 (4),
123 (13), 108 (7.5), 95 (2), 79 (6), 65 (6), 51 (7), 39 (2.5).

Methyl 2-hydroxy-3-methoxybenzoate (8): M.p. 61.5 –
62.5 ◦C. – 1H NMR (500.14 MHz, DMSO–d6): δ = 3.81
(s, 3 H, COOMe), 3.90 (s, 3 H, OMe), 6.88 – 6.90 (t, 1 H,
Har), 7.22 – 7.24 (d, 1 H, Har), 7.35 – 7.36 (d, 1 H, Har), 10.50
(bs, 1 H, OH). – 13C{1H} NMR (125.76 MHz, DMSO–
d6): δ = 53.40 (COOMe), 56.78 (OMe), 113.89, 117.89,
119.69, 121.63, 149.13, 151.37, 170.50 (all Car and C=O). –
MS: m/z(%) = 182 (58) [M+], 167 (2), 150 (65), 136 (7),
122 (100), 107 (28), 92 (18), 79 (13), 65 (9), 53 (11), 39 (5).

Methyl 2-hydroxy-5-methoxybenzoate (9): B.p. 235 –
240 ◦C. – 1H NMR (500.14 MHz, DMSO–d6): δ = 3.72 (s,
3 H, COOMe), 3.89 (s, 3 H, OMe), 6.91 – 6.93 (dd, 1 H, Har),
7.13 – 7.16 (dd, 1 H, Har), 7.21 – 7.22 (d, 1 H, Har), 10.09
(bs, 1 H, OH). – 13C{1H} NMR (125.76 MHz, DMSO–d6):
δ = 53.30 (COOMe), 56.41 (OMe), 112.97, 113.43, 119.36,
124.26, 152.56, 155.23, 169.90 (all Car and C=O). – MS:
m/z(%) = 182 (43) [M+], 167 (2.5), 150 (100), 135 (15),
122 (20), 107 (30), 93 (7.5), 79 (27), 65 (5), 51 (10), 39 (2.5).

Methyl 4-hydroxy-3-methoxybenzoate (10): M.p. 69 –
70 ◦C. – 1H NMR (500.14 MHz, DMSO–d6): δ = 3.80 (s,
3 H, COOMe), 3.82 (s, 3 H, OMe), 6.86 – 6.88 (d, 1 H, Har),
7.44 – 7.45 (d, 1 H, Har), 7.46 – 7.48 (dd, 1 H, Har), 9.96
(bs, 1 H, OH). – 13C{1H} NMR (125.76 MHz, DMSO–
d6): δ = 52.58 (COOMe), 56.47 (OMe), 113.34, 116.06,
121.31, 124.28, 148.22, 152.38, 166.93 (all Car and C=O). –
MS: m/z(%) = 182 (55) [M+], 167 (5), 151 (100), 140 (5),
124 (11), 108 (6), 93 (2), 79 (5), 65 (5), 51 (6), 39 (2.5).

Bioassay

The various esters were tested for antifeedant effect on
the pine weevil Hylobius abietis (L.) (Coleoptera, Cur-
culionidae). For each test, 40 pine weevils (20 females + 20
males) were used. They were placed in separate Petri dishes
provided with a pine twig prepared with delimited treatment
and control areas. These pine twigs were enveloped in
aluminium foil and two holes with a diameter of 5 mm and
separated by 25 mm were punched in the foil with metal
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rings. After removal of the aluminium foil inside the rings,
one of the two surfaces exposed was treated with 100 µl
of a 50 mM methanol solution of the compound that was
tested, and the other surface was treated with the same
amount of methanol alone (control). The following day, after
the solvent had evaporated, the metal rings were removed
and the test started. After 6 and 24 hours it was recorded
whether the pine weevil had started to feed on the treated and
untreated surfaces. The antifeedant effect was expressed by
means of the following index: (C-T)×100/(C+T), wherein
C is the number of control surfaces with feeding marks and
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Abstract–Aromatic organic compounds present in the feces of the pine weevil 

Hylobius abietis (L.) (Coleoptera: Curculionidae) have been shown to evoke 

antifeedant effects on this species, which is a serious pest of planted conifer seedlings 

in Europe. Here we evaluate 55 benzoic acid derivatives and a few homologues as 

antifeedants for H. abietis. Structure–activity relationships are identified by 

bioassaying related compounds obtained by rational syntheses of functional group 

analogues and structural isomers. Five main criteria of efficiency as antifeedants 

among the benzoic acid derivatives are identified. By predicting optimal structures for 

H. abietis antifeedants we attempt to find a commercial antifeedant to protect conifer 

seedlings against pine weevil damage in forest regenerations. Methyl 2,4-

dimethoxybenzoate and isopropyl 2,4-dimethoxybenzoate are two new candidates for 

practical use among several potent antifeedants identified. 

 

Key Words – benzoate, bioassay, Curculionidae, deterrent, faeces, feces, feeding, 

large pine weevil, phenylacetate, reforestation, seedling protection.  
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INTRODUCTION 

 

The pine weevil Hylobius abietis (L.) is a severe pest of forest regenerations in large 

parts of Europe and Asia (Långström and Day, 2004). The adult weevils girdle and 

kill planted conifer seedlings by feeding on the bark of the stem (Day et al., 2004). 

This commonly results in over 80 % seedling mortality during the first two years after 

planting, if no countermeasures are taken (Örlander and Nilsson, 1999; Petersson and 

Örlander, 2003). The pine weevil problem is generally managed by treatment of 

seedlings in the plant nursery with a relatively persistent insecticide (Långström and 

Day, 2004). However, several European countries currently strive to abandon this 

insecticide usage. Novel ways to handle the pine weevil problem are, therefore, 

urgently needed. 

 

Hylobius abietis appears to avoid feeding on root bark close to where their eggs have 

been laid, thus indicating the presence of a deterrent substance, which may be useful 

in conifer seedling protection against pine weevil damage (Nordlander et al. 2000; 

Bylund et al. 2004). Furthermore, antifeedant activity has been demonstrated in a 

methanol extract of female feces, which is placed over the egg during the oviposition 

(Nordlander et al. 2000; Borg-Karlson et al., in press). For identification of the active 

compounds, the feces extract was fractionated and the fractions were bioassayed 

using pine weevils of both sexes (Borg-Karlson et al., in press). In the most active 

fraction, oxygenated aromatic compounds, presumably originating from lignin, were 

identified. These and a number of structurally related compounds were found to have 

an antifeedant effect when tested separately. 
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Benzoic acid derivatives are the most abundant of the substances in the extract 

fractions found to have antifeedant properties (Borg-Karlson et al., in press). Initial 

work with this group of substances shows that H. abietis responds selectively to 

variations in the chemical structure of the isomers tested and that the biological 

activity is strongly related to the functional groups present and to the positions of the 

substituents on the aromatic ring. Similarly, the 10 isomers of methyl hydroxy-

methoxybenzoate have proved to differ considerably in their antifeedant effects on H. 

abietis (Legrand et al. 2004). This emphasizes the importance of investigating the 

various isomers of potential antifeedants. 

 
Several structure-activity studies of insect antifeedants have previously been reported 

(e.g., Luteijn, and De Groot 1981; Fischer et al., 1990; Ley et al., 1991; Luthria 1993; 

Morimoto et al., 1999). With the practical application that we have in mind 

(protection of conifer seedlings), it is not only of interest to find the most active 

chemical structure. The structure–activity study is also motivated by the aim to find 

the least costly solution for practical application. For example, we may find a 

commercially available analogue having a somewhat lower biological activity than 

the most active substance but available a considerably lower price. Furthermore, 

specific properties of the compounds may turn out to be crucial at the stage applied - 

e.g. the melting point may be of importance for successful fixation to the plant - or it 

may turn out that a lower volatility is necessary for a sufficient endurance of the 

protective effect. It should also be considered that an antifeedant compound might be 

physiologically detrimental to the seedling, either by penetrating through the bark or 

by being taken up by the roots (if the compound is leaking out from the formulation in 

which the compound is attached to the plant). Thus, to avoid a dead-end at the stage 
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applied it is crucial to have more than one antifeedant candidate. It is also possible to 

add two or more antifeedants in hope for a synergistic effect.  

 

The potential of using antifeedants to protect forest regeneration against pine damage 

has previously been demonstrated in field tests with methyl 3,5-dimethoxybenzoate 

(Nordlander et al., 2000) and with ethyl 2,3-dibromo-3-phenyl-propanoate, an 

antifeedant substance identified in the bark of Pinus contorta (Bratt et al., 2001). In 

contrast, some more volatile olfactory repellents, e.g. the monoterpenoid carvone, 

have provided poor protective effects against pine weevil damage in field tests 

(Schlyter et al., 2004), notwithstanding the strong antifeedant effect found in 

laboratory bioassays (Salom et al. 1994; Klepzig and Schlyter, 1999). The latter 

results give an indication of the importance of a suitable dispenser matrix for the 

formulation applied on the seedlings, a complicated issue outside the scope of this 

paper. 

 

This study aimed at an increased understanding of the physico-chemical properties 

responsible for the antifeedant effects of benzoic acid derivatives. We also hoped to 

optimize any such effects in order to facilitate the development of an efficient method 

of protecting conifer seedlings from feeding damage by pine weevils. To these ends, 

we tested 55 compounds of various structural chemistries for antifeedant effects 

against H. abietis in a laboratory bioassay. 

 

 

METHODS AND MATERIALS 

 

Collection and maintenance of weevils 
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Pine weevils of both sexes were collected during spring migration at a sawmill in 

southern Sweden, where they landed in large numbers as a response to massive 

emission of attractive conifer volatiles. After collection, the weevils were stored in 

darkness at 10 oC and provided with fresh Scots pine branches or stems with tender 

bark as food. These storage conditions interrupted the reproductive development of 

the weevils, so that their oviposition did not start until about a week after the weevils 

had been transferred to the experimental conditions, i.e. to 22 °C and the light regime 

L18: D6. This transfer of the weevils was made at least 10 days before their use in the 

following bioassay.  

 

Feeding bioassay 

The compounds were tested for their antifeedant effect on H. abietis by means of a 

two-choice laboratory bioassay (Bratt et al., 2001). Fresh pieces of Scots pine twigs 

(50 mm long, 15 mm diam.) were split, and each half (=test twig) was wrapped in 

aluminium foil. In each test twig, two sharp-edged metal rings (5 mm diam.) were 

punched through the foil and into the bark at 25 mm distance. The rings and the pieces 

of aluminium foil inside them were then removed. The thin outer layers of cork bark 

inside the two circular areas were also carefully removed with a scalpel. Thereafter, 

new rings were fitted into the bark around the two exposed areas and 100 µl of a 50 

mM methanol solution of the compound to be tested was applied on the bark in one of 

the two rings. In the other ring, 100 µl of pure methanol was added for control. When 

the solvent had evaporated, the metal rings were removed. Each test twig was placed 

on moistened filter paper in a 142-mm-diam. Petri dish, with one weevil in each dish 

(Figure 1). Forty replicates were used, 20 with females and 20 with males. The 

weevils were all in the reproductive phase of their life cycle and were starved for 24 h 
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before the test period. Each weevil was used only once. The bioassays were conducted 

at 22 °C and the light regime L18: D6. 

 

The amount of feeding on the treatment and control area of each test twig was 

recorded after 24 hours. There was generally no significant difference in response 

between the sexes, and the data presented were therefore pooled. The effects of the 

various treatments are described by two variants of the antifeedant index, AFI (Blaney 

et al., 1984): 100x(C-T)/(C+T): 

1) In AFIa, C represents the mean area of the control surfaces consumed and T the 

mean area of the treated surfaces consumed. 

2) In AFIn, C is the number of the control surfaces with feeding scars and T the 

number of the treated surfaces with feeding scars. 

Hence, AFIn indicates to what extent feeding was completely inhibited on the treated 

area during 24 h, whereas AFIa included the reduction in feeding where it had been 

initiated. The two indices were fairly well correlated but AFIa tended to be higher 

than AFIn, because the antifeedant substances generally affected both the initiation of 

feeding and the amount of plant material consumed if feeding had started. For both 

indices, an antifeedant effect gave positive values up to a maximum of 100. Statistical 

differences in feeding/no feeding between treatment and control were tested for each 

substance with Fisher´s exact test of a 2x2 table: * = p <0.05, ** = p <0.01, *** = p 

<0.001. 

 

Test compounds 

The origins of the compounds tested are given in Tables 1-4. When needed, the 

compounds were purified by preparative chromatography (Baeckström et al., 1987) or 

flash chromatography on silica gel (Merck 60). An A, a B or a C indicates that the 
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compounds were synthesized from their corresponding carboxylic acids by method A, 

B or C (see synthesis part below). The letter D indicates that the ester was obtained 

via a transesterification using alkaline conditions; in E the synthesis of the compound 

was reported in a previous paper (Legrand et al., 2004); and F means that the 

compound was obtained from previous work by H. Erdtman and T. Norin at the 

Department of Organic Chemistry, KTH, Stockholm, Sweden. The letter G indicates 

that the compounds were bought from commercial suppliers. 

 

Synthesis 

Commercial benzoic acids were either esterified by the use of method A or B or 

converted to amides by method C. 

 

Method A describes the preparations of esters from the corresponding carboxylic 

acids by refluxing in the alcohol with sulphuric acid as a catalyst. A typical procedure: 

methyl 2,3,4-trimethoxybenzoate (Table 4, entry 69). 2,3,4-Trimethoxybenzoic acid 

(500 mg, 2.36 mmol) was dissolved in methanol (20 ml) and some drops of H2SO4 

were slowly added to the reaction mixture, which was stirred at the reflux 

temperature. The reaction was monitored by TLC. When the reaction had finished, the 

solvent was evaporated and the crude product was dissolved in CH2Cl2. The organic 

phase was washed twice with brine. The organic layer was then dried over MgSO4 

and the solvent was evaporated, leaving methyl 2,3,4-trimethoxybenzoate as a 

colourless oil (450 mg, 84 %). 

 

In method B, the esters were prepared from the corresponding carboxylic acids (1.5 

eq.) by reactions with 1.5 eq. DCC (dicyclohexylcarbodiimide) and 0.1 eq. DMAP 

(N,N-dimethylaminopyridine) and the alcohol or thiol in dichloromethane. A typical 
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procedure: (3E)-hexen-1-yl 3,5-dimethoxybenzoate (Table 2, entry 24). 3,5-

Dimethoxybenzoic acid (545 mg, 3.00 mmol) was dissolved in a solution of CH2Cl2 

(5 ml) containing DCC (618 mg, 3.00 mmol) and DMAP (24 mg, 0.2 mmol). (3E)-

Hexen-1-ol (200 mg, 2 mmol) was added to the reaction mixture, which was then 

stirred at RT overnight. The white precipitate was then filtered off and the solvents 

were evaporated. The crude product was purified by liquid chromatography on silica 

gel, using hexane / EtOAc as an eluting gradient, to give (3E)-hexen-1-yl 3,5-

dimethoxybenzoate (262 mg, 50%). 

 

In method C, N-ethyl 3,5-dimethoxybenzamide (Table 1, entry 17) was prepared by 

stirring 3,5-dimethoxybenzoyl chloride (300 mg, 1.50 mmol) in a solution of 70% 

ethylamine in water (10 ml). The yield of amide was 111 mg (35%).   

 

Transesterification procedure, method D; isopropyl 2,4-dimethoxybenzoate (Table 2, 

entry 27). Sodium (0.1 g, 4.3 mmol) was dissolved in 7.5 mL iso-propanol and a 

solution of methyl 2,4-dimethoxybenzoate (403 mg, 2.06 mmol) in 10 mL iso-

propanol was added. The reaction mixture was stirred at room temperature overnight. 

Then 20 mL of ethyl acetate were added and the organic phase obtained was washed 

twice with water and once with a saturated ammonium chloride solution. The organic 

phase was then dried over magnesium sulfate and evaporated to give iso-propyl 2,4-

dimethoxybenzoate (220 mg, 48 %) as a yellow oil. 

 

Syntheses of the hydroxy-methoxybenzoates in entries 53 and 56-59, origin E. Methyl 

2-hydroxy-6-methoxybenzoate (Table 4, entry 53) and methyl 3-hydroxy-5-

methoxybenzoate (Table 4, entry 57) were synthesized from the commercially 

available symmetric 2,6-dihydroxy- and 3,5-dihydroxybenzoic acids (Legrand et al., 
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2004). The acids were esterified and then O-monomethylated by use of methyl iodide 

in the presence of a weak base. The analytical data of these two benzoates were 

identical with the ones reported in the literature (Künhert and Maier, 2002; Hoffmann 

and Pete, 2001). The syntheses of the methyl hydroxy-methoxybenzoates in entries 

56, 58 and 59 (Table 4) were executed by a regioselective protection-deprotection 

synthetic sequence (Legrand et al., 2004). 

 

RESULTS AND DISCUSSION 

 

When interpreting our results we have focused specifically on the importance of four 

types of structural features for antifeedant activities:  

1. The functional groups. 

2. The sizes of the alcohol parts in esters. 

3. The structures of the substituents on the aromatic rings. 

4. The patterns of substituents. 

The effects of each of these four types of features are visualised in Tables 1-4. In each 

table, test results of compounds that vary in one particular structural feature are 

compiled so that the effect of this feature can be seen. In other words, antifeedant 

activities (AFIa and AFIn values) are compared with the aim to demonstrate the effect 

of one structural feature at a time. Accordingly, the results for each structural feature 

are also presented and discussed with reference to the corresponding Table.  

 

Relevance of the functional group to the antifeedant activity (see Table 1). It is 

evident that the functional groups of benzoic acid derivatives are important for the 

antifeedant activity. Benzoic acids per se seem to have weak activity or none at all, 

whereas the corresponding esters generally are highly active (compare entries 1-2, 3-
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4, 5-6, 7-8, and 15-16). As some methyl phenylacetates (entries 9-14) possess 

antifeedant activities, it is evident that the carbonyl moiety does not need to be 

directly attached to the aromatic ring, and these examples again show that aromatic 

carboxylic acids are relatively poor antifeedants in comparison with their ester 

analogs. For example, both 3,5- and 2,5-dimethoxy isomers of methyl phenylacetate 

are good antifeedants (entries 12-13). The test results of the secondary benzamide 

(entry 17), the thioester (entry 18) and the benzyl alcohol (entry 19) show that the 

functional group does not need to be an ester moiety for a compound to exert 

antifeedant activity.  

 

Relevance of the alcohol moieties of benzoic esters to their antifeedant activity (see 

Table 2). Esters with a short alkyl chain in the alcohol parts give high antifeedant 

activities, while the effects decrease as the bulk of the alcohol part increases. 

Illustrative variations in antifeedants´ effects can be seen when the two esters in 

entries 20-21 or the esters in the entries 22-24 are compared with those in the entries 

25-26. Entries 25-28 show that all tested esters with short (3 carbons or less) alcohol 

parts exert very high antifeedant activities.  

 

Relevance of the substituents on the aromatic ring to the antifeedant activity (see Table 

3). Comparisons of monosubstituted benzoates reveal that monomethoxylated 

benzoates are generally better antifeedants than the corresponding monohydroxylated 

benzoates. Good examples are the compounds in entries 29 and 30, compared with 

those in entries 31 and 33. A methyl benzoate, substituted with a long alkyl chain (i.e. 

entry 34), showed no significant antifeedant activity. 

 



2006-01-05    Revised manuscript for J. Chem. Ecol. 

12 

When comparing disubstituted benzoates one can also note that methoxysubstituted 

benzoates generally give better antifeedants than hydroxysubstituted ones; see entries 

36-39, 40-43 or 46-48. For instance, the hydroxy-methoxy analogues 38, 41, 42 and 

47 are relatively good antifeedants, in contrast to the corresponding 

dihydroxybenzoates (entries 36, 40 and 46), which are not significantly active after 24 

hours. Dimethoxysubstituted benzoates possess some of the highest antifeedant 

activities that we have found among the substances tested (e. g. entries 39, 43 and 48). 

The connection of two adjacent oxygen atoms via a methylene group does not give a 

high antifeedant activity (entry 44).  

 

The activities of methyl benzoates are not increased when they are substituted with 

strong electron-withdrawing substituents like the nitro group (compare entry 50 with 

entry 48). Halogen substituents (bromo or chlorine) apparently do not improve the 

antifeedant capacity of methyl benzoates. Good examples are a dibromo derivative 

(entry 49), compared with its dimethoxy analogue (entry 48), or a 

monochlorobenzoate (entry 45), also compared with its dimethoxy analogue (entry 

43). The result with the lipophilic 3,5-dimethylanalogue (entry 51) discouraged us 

from further testing of even more hydrophobic analogues. 

 

Relevance of the pattern of substituents on the aromatic ring to the antifeedant 

activity (see Table 4). As already shown in Table 3, compounds with hydroxy groups 

as sole substituents give low antifeedant activity and are, therefore, not suitable for 

analysis of optimal substitution patterns. Monomethoxylated benzoates are good 

antifeedants when the methoxy group is in meta- or ortho-position but have only a 

moderate antifeedant effect when the methoxy group is in the para-position (Table 3, 

entries 31-33). Hydroxy-methoxybenzoates with hydroxy groups in ortho positions 
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(Table 4, entries 52-55) show moderate to high antifeedant activities and methyl 2-

hydroxy-3-methoxybenzoate shows the highest activity. We assume that this is 

correlated to the hydrogen bonding that exists between the ortho-hydroxy groups and 

the adjacent carbonyl grouping. The other hydroxy-methoxybenzoates (entries 56-61), 

show no, low or moderate antifeedant activities. The results of these compounds do 

not indicate an optimal substitution pattern, although the weevils exhibit a remarkable 

selectivity in their responses to the stereoisomers. For example, compare the absence 

of activity of the 5-hydroxy-2-methoxy analogue (entry 56) with the relatively high 

activity of the 2-hydroxy-5-methoxy analogue (entry 55). Thus, it is apparent that the 

hydrogen bonding between ortho-hydroxy groups and carbonyl groups is of 

importance for antifeedant activities. 

 

The activities of benzoates with two dimethoxy groups (entries 63-67) vary but are 

generally high, with the exception of the 2,6-analogue (entry 67). The somewhat 

higher antifeedant activity of the 2,4-analogue (entry 63), compared with the 3,5-

dimethoxy analogue (entry 62) in the 50 mM concentration was consistent even when 

tested at lower concentrations (25 mM and 5 mM, unpublished results). An attempt to 

find a compound with an even higher activity than that of methyl 2,4-

dimethoxybenzoate (entry 63) by adding a third methoxy substituent in position 6 

failed completely (entry 68). Other derivatives with a third methoxy or hydroxy group 

also showed no significant antifeedant effect (entries 69-71). 

 

Some aromatic compounds related to the ones tested here are known to be emitted by 

sporulating fruiting bodies of tree-decaying fungi, e.g. anisole, benzaldehyde, 

methylanisate, and methyl 4-methoxyphenylacetate (Rösecke et al., 2000; Rösecke 

and König, 2000). The ecological significance of these substances to the pine weevil 
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female may be that they indicate that the host is infested with fungi and in a state of 

decay making it unsuitable for egg-laying (von Sydow 1993). The response to such 

compounds may in the test situation be similar to that of the deterring signal from 

substances in pine weevil feces (Borg-Karlson et al., in press). 

 

Conclusions 

This study indicates the following criteria for benzoic acid derivatives to possess high 

antifeedant activity against H. abietis: 

• The functional group of the benzoic acid derivative is apparently not critical as 

long as it is not a -COOH group. 

• The alcohol part in ester derivatives must be short. 

• The optimal substituents are methoxy groups. Longer alkoxy groups do not 

result in more effective antifeedants. Nitro and hydroxy groups are seemingly 

too polar and halogens and methyl groups are apparently too lipophilic to be 

effective. 

• Two substituents seem to give optimal antifeedant effects. In case of a 

hydroxy-methoxy derivative, the hydroxy group should be situated in the ortho 

position, (entries 52-61, Table 4). All dimethoxy derivatives, except the 2,6-

dimethoxy derivative, posses good antifeedant activities. Inductive or 

resonance effects are apparently not important for the antifeedant effect, as 

both the ortho-para-2,4-dimethoxy analogue (entry 63) and the meta-3,5-

dimethoxy analogue (entry 62) are among the best compounds tested. No 

substituent pattern can be declared to be optimal. 

 

Several benzoic acid derivatives proved to have very strong antifeedant effects against 

H. abietis in the laboratory feeding tests. Five of the compounds tested tended to have 
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at least as high, or even stronger, antifeedant effect than methyl 3,5-

dimethoxybenzoate, which previously had been identified as a potent antifeedant in 

laboratory and field tests (Nordlander et al. 2000). These new, highly effective 

antifeedants are methyl 2,4-dimethoxybenzoate, isopropyl 2,4-dimethoxybenzoate, 

methyl 2-hydroxy-3-methoxybenzoate, methyl (3,5-dimethoxyphenyl)acetate, and 

methyl (2,5-dimethoxyphenyl)acetate. Further tests in lower concentrations are 

needed for evaluation of their relative potentials as pine weevil antifeedants. Field 

assays measuring volatility, stability, and physiological effects on the plants are 

necessary to rigourously assess the usefulness of these five antifeedants for seedling 

protection. 

 

This study presents antifeedant effects of a large number of benzoic acid derivatives. 

We have rationalized our data analyses by arguments used in medicinal chemistry 

(Patrick, 2005). A discrepancy between our study and a medicinal structure-activity 

study is that the antifeedant effects seen in the bioassays are probably the results of a 

number of receptor responses. It may, therefore, be impossible to see the responses of 

individual receptor types, because a new analogue tested may give a positive change 

of the antifeedant effect via one receptor type but hamper the antifeedant effect via 

another receptor type. However, the specificities that we have found in feeding 

responses to some of the structures, indicate that this approach can be used to find 

suitable antifeedants.  
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Legends to tables: 

Table 1. Relationship between the functional groups in benzoic and acetic acid 

derivatives and their antifeedant activity for the pine weevil, Hylobius abietis. 

[Footnote:] 

1 Different origins (A-G) of compounds described in Methods and Materials. 

 

Table 2. Effect of the alcohol moieties of benzoic esters on their antifeedant activities 

on the pine weevil, Hylobius abietis. 

[Footnote:] 

1 Different origins (A-G) of compounds described in Methods and Materials. 

 

Table 3. Effects of the substituents on the aromatic rings of methyl benzoates on their 

antifeedant activities on the pine weevil, Hylobius abietis. 

[Footnote:] 

1 Different origins (A-G) of compounds described in Methods and Materials. 

 

Table 4. Effects of the patterns of substituents on the aromatic rings of methyl 

benzoates on their antifeedant activities of the pine weevil, Hylobius abietis. 

[Footnote:] 

1 Different origins (A-G) of compounds described in Methods and Materials. 
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Legend to figure: 
 
Fig. 1. Pine weevil on test twig with exposed treatment and control areas. 
 



Entry Origin1 Structural formula Compound AFIa
Rank 
AFIa

AFIn
Rank 
AFIn

Fisher 
test

1 G 3,4-Methylenedioxybenzoic acid 14 15 11 12 ns

2 A Methyl 3,4-methylenedioxybenzoate 57 11 25 11 **

3 G 2-Hydroxy-5-methoxybenzoic acid 17 14 2 16 ns

4 G Methyl 2-hydroxy-5-methoxybenzoate 74 10 56 9 ***

5 G 2-Hydroxy-3-methoxybenzoic acid 22 12 3 15 ns

6 G Methyl 2-hydroxy-3-methoxybenzoate 95 3 85 1 ***

7 G 3,4-Dimethoxybenzoic acid 7 17 2 16 ns

8 G Methyl 3,4-dimethoxybenzoate 81 7 66 5 ***

9 F (4-Hydroxy-3-methoxyphenyl)acetic acid 10 16 5 14 ns

10 A Methyl (4-hydroxy-3-methoxyphenyl)acetate 21 13 9 13 ns

11 G 3,5-Dimethoxyphenylacetic acid 1 18 -4 19 ns

12 A Methyl (3,5-dimethoxyphenyl)acetate 96 1 84 2 ***

13 A Methyl (2,5-dimethoxyphenyl)acetate 96 2 77 4 ***

14 A Methyl (2,4-Dimethoxyphenyl)acetate 88 5 65 6 ***

15 G 3,5-Dimethoxybenzoic acid -4 19 2 16 ns

16 G Methyl 3,5-dimethoxybenzoate 94 4 82 3 ***

17 C N- Ethyl 3,5-dimethoxybenzamide 86 6 63 7 ***

18 B S -Ethyl 3,4-dimethoxybenzothioate 74 9 57 8 ***

19 G 3,5-Dimethoxyphenylmethanol 75 8 47 10 ***
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Entry Origin1 Structural formula Compound AFIa
Rank 
AFIa

AFIn
Rank 
AFIn

Fisher 
test

20 A Dodecyl 3,4-dimethoxybenzoate 23 8 14 8 ns

21 G Methyl 3,4-dimethoxybenzoate 81 5 66 5 ***

22 B 2-Methoxy-4-(2-propenyl)phenyl               
3,5-dimethoxybenzoate 17 9 6 9 ns

23 B 3-(3,4-Dimethoxyphenyl)-                      
prop-1-yl  3,5-dimethoxybenzoate 41 7 22 7 **

24 B (3E )-Hexen-1-yl                                      
3,5-dimethoxybenzoate 62 6 37 6 ***

25 B 2,2,2-Trifluoroethyl                                        
3,5-dimethoxybenzoate 86 4 72 4 ***

26 G Methyl 3,5-dimethoxybenzoate 94 3 82 3 ***

27 D Isopropyl 2,4-methoxybenzoate 96 2 95 1 ***

28 G Methyl 2,4-dimethoxybenzoate 99 1 95 1 ***
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Entry Origin1 Structural formula Compound AFIa
Rank 
AFIa

AFIn
Rank 
AFIn

Fisher 
test

29 G Methyl 2-hydroxybenzoate 21 22 13 17 *

30 G Methyl 4-hydroxybenzoate 34 18 26 11 **

31 G Methyl 2-methoxybenzoate 80 5 51 6 ***

32 G Methyl 3-methoxybenzoate 89 3 65 4 ***

33 G Methyl 4-methoxybenzoate 54 10 44 7 ***

34 A Methyl 4-octylbenzoate 35 16 11 19 ns

35 A Methyl 2,4-dihydroxy-3,6-dimethylbenzoate 31 20 3 22 ns

36 G Methyl 2,4-dihydroxybenzoate 46 14 8 20 ns

37 E Methyl 4-hydroxy-2-methoxybenzoate 35 16 4 21 ns

38 G Methyl 2-hydroxy-4-methoxybenzoate 60 8 52 5 ***

39 G Methyl 2,4-dimethoxybenzoate 99 1 95 1 ***

40 A Methyl 3,4-dihydroxybenzoate -7 23 2 23 ns

41 G Methyl 4-hydroxy-3-methoxybenzoate 53 12 22 14 *

42 G Methyl 3-hydroxy-4-methoxybenzoate 65 6 32 9 ***

43 G Methyl 3,4-dimethoxybenzoate 81 4 66 3 ***

44 A Methyl 3,4-methylenedioxybenzoate 57 9 25 13 **

45 A Methyl 3-chloro-4-methoxybenzoate 36 15 16 16 *

46 G Methyl 3,5-dihydroxybenzoate 23 21 13 17 ns

47 E Methyl 3-hydroxy-5-methoxybenzoate 54 10 26 11 ***

48 G Methyl 3,5-dimethoxybenzoate 94 2 82 2 ***

49 A Methyl 3,5-dibromobenzoate 50 13 36 8 ***

50 A Methyl 3,5-dinitrobenzoate 34 18 22 14 **

51 A Methyl 3,5-dimethylbenzoate 61 7 32 9 **
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Entry Origin1 Structural formula Compound AFIa
Rank 
AFIa

AFIn
Rank 
AFIn

Fisher 
test

52 G Methyl 2-hydroxy-3-methoxybenzoate 95 2 85 2 ***

53 E Methyl 2-hydroxy-6-methoxybenzoate 73 8 54 8 ***

54 G Methyl 2-hydroxy-4-methoxybenzoate 60 11 52 9 ***

55 G Methyl 2-hydroxy-5-methoxybenzoate 74 7 56 6 ***

56 E Methyl 5-hydroxy-2-methoxybenzoate -3 20 -3 20 ns

57 E Methyl 3-hydroxy-5-methoxybenzoate 54 13 26 12 ***

58 E Methyl 4-hydroxy-2-methoxybenzoate 35 17 4 19 ns

59 E Methyl 3-hydroxy-2-methoxybenzoate 75 6 35 10 ***

60 G Methyl 3-hydroxy-4-methoxybenzoate 65 10 32 11 ***

61 G Methyl 4-hydroxy-3-methoxybenzoate 53 15 22 13 *

62 G Methyl 3,5-dimethoxybenzoate 94 3 82 3 ***

63 G Methyl 2,4-dimethoxybenzoate 99 1 95 1 ***

64 A Methyl 2,5-dimethoxybenzoate 89 4 77 4 ***

65 G Methyl 3,4-dimethoxybenzoate 81 5 66 5 ***

66 B Methyl 2,3-dimethoxybenzoate 73 8 55 7 ***

67 G Methyl 2,6-dimethoxybenzoate 51 16 10 16 ns

68 G Methyl 2,4,6-trimethoxybenzoate 55 12 21 14 ns

69 A Methyl 2,3,4-trimethoxybenzoate 54 13 21 14 ns

70 A Methyl 3,4,5-trimethoxybenzoate 32 18 8 17 ns

71 A Methyl 4-hydroxy-3,5-dimethoxybenzoate 10 19 5 18 ns
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