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Abstract

The essence of the present thesis is to provide characterizations (or show the nonexistence of char-
acterizations) for families of consequence relations and revision operators.

First, we will investigate consequence relations that are both paraconsistent and plausible (some-
times monotonic, sometimes non-monotonic) in a general framework that covers e.g. the ones of
the well-known paraconsistent logics J3 and FOUR. We will lay the focus on preferential and
pivotal consequence relations. The former are defined by binary preference relations on states la-
belled by valuations (in the style of e.g. Kraus, Lehmann, and Magidor). The latter are defined
by pivots (in the style of e.g. Makinson). A pivot is a fixed subset of valuations which are con-
sidered to be the important ones in the absolute sense. We will provide characterizations for these
consequence relations. We will also provide characterizations for preferential-discriminative and
pivotal-discriminative consequence relations. They are defined exactly as the plain versions, except
that among the conclusions, a formula is rejected if its negation is also present. On the other hand,
we will show that the family of all pivotal consequence relations does not admit a characterization
containing only conditions universally quantified and of limited size. Finally, we will put in evidence
a connexion between pivotal relations and X-logics (from Forget, Risch, and Siegel).

Second, we will study in a general framework an approach to belief revision based on distances
between any two valuations (introduced by Lehmann, Magidor, and Schlechta). Suppose we are
given such a distance d. This defines an operator |d, called a distance operator, which transforms
any two sets of valuations V and W into the set V |dW of all those elements of W that are closest
to V . This operator |d defines naturally the revision of K by α as the set of all formulas satisfied in
MK |dMα (i.e. the set of all those models of α that are closest to the models ofK). This constitutes
a distance-based revision operator. Lehmann et al. characterized families of such operators using a
“loop” condition of arbitrarily big size. An interesting question is to know whether this loop condi-
tion can be replaced by a finite one. Extending the results of Schlechta, we will provide elements of
negative answer. In fact, we will show that for families of distance operators, there is no character-
ization containing only finite and universally quantified conditions. We are quite confident that this
can be used to show similar impossibility results for families of distance-based revision operators.
For instance, the families of Lehmann et al. might well be concerned with this, which suggests that
their big loop condition cannot be replaced by a finite and universally quantified condition.

Keywords: common sense reasoning, non-monotonic logics, preferential logics, pivotal logics, para-
consistent logics, many-valued logics, iterated belief revision, distance-based revision.
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Introduction

Plausible and paraconsistent consequence relations

In many situations, an agent is confronted with incomplete and/or inconsistent information and
then the classical consequence relation proves to be insufficient. Indeed, in case of inconsistent
information, it leads to accept every formula as a conclusion, which amounts to loose the whole
information. Therefore, the agent needs another relation leading to non-trivial conclusions in spite
of the presence of contradictions. So, several paraconsistent consequence relations have been devel-
oped, e.g. [Bel77b, Bel77a, Gin88, Sub90a, Sub90b, Pri91, KL92, Loz94, Sub94, BDP95, PH98]. In
the present thesis, we will pay attention in particular to certain many-valued ones [Bel77b, Bel77a,
DdC70, AA94, AA96, AA98, CMdA00, dACM02]. They are defined in frameworks where valua-
tions can assign more than two different truth values to formulas. In fact, they tolerate contradictions
within the conclusions, but reject the principle of explosion according to which a single contradiction
entails the deduction of every formula.

In case of incomplete information, the classical consequence relation also shows its limits. In-
deed, no risk is taken, the conclusions are sure, but too few. The agent often needs to draw con-
clusions which are more daring, not necessarily sure, but still plausible. Eventually, some “hasty”
conclusions will be rejected later, in the presence of additional information. To meet this need,
several non-monotonic systems have been developed, e.g. the default logic of Reiter [Rei80], the
autoepistemic logic of Moore [Moo85], McCarthy’s circumscription [McC80], and Reiter’s closed
word assumption [Rei78]. Then, Gabbay, Makinson, Kraus, Lehmann, and Magidor investigated
extensively properties for plausible non-monotonic consequence relations [Gab85, Mak89, Mak94,
KLM90, LM92]. Central tools to define such relations are choice functions [Che54, Arr59, Sen70,
AM81, Leh02, Leh01, Sch92b, Sch04]. Indeed, suppose we have at our disposal a function µ, called
a choice function, which chooses in any set of valuations V , those elements that are preferred, not
necessarily in the absolute sense, but when the valuations in V are the only ones under consideration.
Then, it is natural to conclude α (a formula) from Γ (a set of formulas) iff every model for Γ chosen
by µ is a model for α. This constitutes a plausible (generally, non-monotonic) consequence relation.

In the present thesis, we will lay the focus on two particular families of choice functions. Let’s
present the first one. Suppose we are given a binary preference relation ≺ on states labelled by
valuations (in the style of e.g. [KLM90, Sch04]). This defines naturally a choice function. Indeed,
choose in any set of valuations V , each element which labels a state which is ≺-preferred among all
the states labelled by an element of V . Those choice functions which can be defined in this manner
constitute the first family. The consequence relations defined by this family are called preferential
consequence relations.

We turn to the second family. Suppose some valuations are considered to be the important ones
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in the absolute sense and collect them in a set I , called a pivot. Again, this defines naturally a
choice function. Indeed, simply choose in any set of valuations, those elements which belong to
I . Those choice functions that can be defined in this way constitute the second family and the
consequence relations defined by it are called pivotal consequence relations. Their importance has
been put in evidence by D. Makinson in [Mak03, Mak05] where it is shown that they constitute
an easy conceptual passage from classical to plausible non-monotonic relations. Indeed, they are
perfectly monotonic but already display some of the distinctive features (i.e. the choice functions)
of plausible non-monotonic relations.

The reader may have noticed that preferential and pivotal consequence relations could have been
introduced directly by binary preference relations and pivots, without speaking of choice functions
(as in fact was done historically). An advantage of the latter is that they provide a unified way to
present those consequence relations, though they are based on very different objects. In addition,
this will enable us to use similar techniques of proof for both kinds of relations (i.e. we will work
with those properties which characterize the first family and then work in a similar manner with
those properties that characterize the second family).

For a long time, research efforts on paraconsistent relations and plausible relations were sep-
arated. However, in many applications, the information is both incomplete and inconsistent. For
instance, the semantic web or big databases inevitably contain inconsistencies. This can be due to
human or material imperfections as well as contradictory sources of information. On the other hand,
neither the web nor big databases can contain “all” information. Indeed, there are rules of which
the exceptions cannot be enumerated. Also, some information might be left voluntarily vague or in
concise form. Consequently, consequence relations that are both paraconsistent and plausible are
useful to reason in such applications.

Such relations first appear in e.g. [Pri91, Bat98, KL92, AA00, KM02]. The idea begins by
taking a many-valued framework to get paraconsistency. Then, only those models that are most
preferred according to some particular binary preference relation on valuations (in the style of
[Sho88, Sho87]) are relevant for making inference, which provides plausibility (and in fact also
non-monotonicity). In [AL01b, AL01a], A. Avron and I. Lev generalized the study to families of
binary preference relations which compare two valuations using, for each of them, this part of a
certain set of formulas it satisfies. The present thesis follows this line of research by combining
many-valued frameworks and choice functions.

More explicitly, we will investigate preferential and pivotal consequence relations in a general
framework. According to the different assumptions which will be made about the latter, it will
cover various kinds of frameworks, including e.g. the classical propositional one as well as some
many-valued ones. Moreover, in the many-valued frameworks, preferential and pivotal relations
lead to rational and non-trivial conclusions is spite of the presence of contradictions and are thus
useful to deal with both incomplete and inconsistent information. However, they will not satisfy the
Disjunctive Syllogism (from α and ¬α ∨ β we can conclude β), whilst they satisfy it in classical
frameworks.

In addition, it is in the many-valued frameworks that new relations, which we will investigate
in detail, are really interesting: preferential-discriminative and pivotal-discriminative consequence
relations. They are defined exactly as the plain versions, except that among the conclusions, a
formula is rejected if its negation is also present. This kind of approach has been investigated for
instance in [BDP95, KM02] (under the name of argumentative approach). In classical frameworks,
these discriminative relations do not bring something really new. Indeed, instead of concluding
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everything in the face of inconsistent information, we will simply conclude nothing. On the other
hand, in many-valued frameworks, where the conclusions are reasonable even from inconsistent
information, the discriminative versions will reject the contradictions among them, rendering them
all the more reasonable.

The main contribution of the present thesis can now be summarized in one sentence: we charac-
terized, in a general framework, several (sub)families of preferential(-discriminative) and pivotal(-
discriminative) consequence relations. When the choice functions under consideration will satisfy a
certain property of definability preservation, our characterizations will involve only purely syntactic
conditions. This has a lot of advantages, let’s quote some important ones. Take some syntactic con-
ditions that characterize a family of those consequence relations. This gives a syntactic point of view
on this family defined semantically, which enables us to compare it to conditions on the “market”,
and thus to other consequence relations. This can also give rise to questions like: if we modified the
conditions in such and such a natural-looking way, what would happen on the semantic side? More
generally, this can open the door to questions that would not easily come to mind otherwise or to
techniques of proof that could not have been employed in the semantic approach. Finally, this can
help to find or improve proof systems based on the family, like a Gentzen proof system for instance.

Several characterizations can be found in the literature for preferential relations (e.g. [KLM90,
LM92, Leh02, Leh01, Sch92b, Sch96, Sch00, Sch04]) and pivotal relations (e.g. [Rot01, Mak03,
Mak05]). We will provide some new ones, though, to do so, we have been inspired by techniques of
K. Schlechta [Sch04]. In fact, our innovation is rather related to the discriminative version. To the
author knowledge, we accomplished the first systematic work of characterization for preferential-
discriminative and pivotal-discriminative relations.

In addition, we will answer negatively a representation problem that was left open by Makinson.
More precisely, suppose F is set of formulas and R a set of relations on P(F) × F . Then, approx-
imatively, a characterization of R will be called normal iff it contains only conditions universally
quantified and of size smaller than |F| (note that |F| may be infinite). We will show, in an infinite
classical propositional framework, that there is no normal characterization for the family of all piv-
otal consequence relations. For that, we will adapt some techniques which have been developed by
Schlechta in [Sch04] to show similar impossibility results for preferential relations. Finally, we will
investigate the X-logics from Forget, Risch, and Siegel [FRS01]. In fact, we will show that those
pivotal consequence relations which satisfy a certain property of universe-codefinability correspond
precisely to those X-logics for which X is closed under the basic inference.

Distance-based revision

Another type of common sense reasoning in the presence of uncertain information is belief revi-
sion. It is the study of how an intelligent agent may replace its current epistemic state by another one
which is non-trivial and incorporates new information (eventually contradicting the previous beliefs
of the agent). This area of research finds applications for instance in multi-agent systems. In short,
belief revision can be used to model the epistemic states of the agents (taken individually).

In [AGM85], Alchourrón, Gärdenfors, and Makinson proposed an approach now well-known as
the AGM approach. An epistemic state is modelled there by a deductively closed set of formulas K
and a new information by a formula α. A revision operator is then a function that transforms K and
α into a new deductively closed set of formulas (intuitively, the revised epistemic state).
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One of the contributions of the AGM approach is that it provides well-known postulates that any
reasonable revision operator should satisfy. These postulates have been defended by their authors.
But, doubts have been expressed as to their “soundness” (e.g. [KM92]) and especially “complete-
ness” (e.g. [FL94, DP94, Leh95, DP97]). In particular, to be accepted, an operator never needs to
put some coherence between the revisions of two different sets K and K′. As a consequence, some
operators are accepted though they are not well-behaved when iterated. For example, take three
sequences of revisions that differ only at some step in which the new information is α in the first
sequence, β in the second, and α∨β in the third. Now, suppose γ is concluded after both the first and
the second sequences. Then, it should intuitively be the case that γ is concluded after third sequence
too. But, one can find in [LMS01] an AGM operator which does not satisfy this intuitive property.

In addition, modelling an epistemic state by just a deductively closed set of formulas has been
rejected by many researchers e.g. [BG93, Bou93, DP97, Wil94, NFPS96]. It is argued in [Leh95,
FH96] that this modelling is not sufficient in many AI applications.

This provides motivations for another approach, based on distances between any two valuations,
introduced by Lehmann, Magidor, and Schlechta in [SLM96, LMS01]. Their approach is in line
with the AGM modelling of an epistemic state, but it defines well-behaved iterated revisions. More
precisely, suppose we have at our disposal a distance d between any two valuations. This defines
an operator |d, called a distance operator, which transforms any ordered pair (V,W ) of sets of
valuations into the set V |dW of all those elements ofW that are closest to V according to d.

This operator |d defines naturally the revision of K by α as the set of all formulas satisfied in
MK |dMα (i.e. the set of all those models of α that are closest to the models ofK). This constitutes a
distance-based revision operator, which is interesting for its natural aspect and for it is well-behaved
when iterated. This is due to the fact that the revisions of the different K’s are all defined by the
same distance, which ensures a strong coherence between them. Note that this is not the case with
other definitions. For instance, with sphere systems [Gro88] and epistemic entrenchment relations
[GM88], the revision of eachK is defined by a different structure, without any “glue” relating them.

In [LMS01], Lehmann et al. characterized families of distance-based revision operators by
the AGM postulates together with new ones that deal with iterated revisions. However, the latter
postulates include a “loop” condition of arbitrarily big size. An interesting question is to know
whether it can be replaced by a finite condition. In [Sch04], Schlechta provided elements of negative
answer. More precisely, suppose V is a set of valuations and O a set of binary operators on P(V).
Then, approximatively, a characterization of O is S-normal (i.e. called normal by Schlechta) iff it
contains only conditions which are finite, universally quantified (like e.g. the AGM postulates), and
simple (i.e. using only elementary operations like e.g. ∪, ∩, \). Schlechta showed that for families
of distance operators, there is no S-normal characterization.

Now, there is a strong connexion between the distance operators (which apply to valuations)
and the distance-based revision operators (which apply to formulas). It is quite reasonable to think
that the work of Schlechta can be continued to show similar impossibility results for families of
distance-based revision operators. For instance, the families investigated in [LMS01] might well be
concerned with this, which suggests that the arbitrarily big loop condition cannot be replaced by a
finite, universally quantified, and simple condition.

We will extend the work of Schlechta in two directions. First, we will use a more general defini-
tion of normality. Approximatively, a characterization ofO will be called normal iff it contains only
conditions which are finite and universally quantified, but not necessarily simple (i.e. the conditions
can involve complex structures or functions, etc., we are not limited to elementary operations). We
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will show that the families which Schlechta investigated do not admit a normal characterization (in
our larger sense). This is therefore a generalization of his negative results. Second, we will extend
the negative results (always in our larger sense) to new families of distance operators, in particular
to some that respect of the Hamming distance. Note that we will show these results in a very general
framework which covers for instance the classical and the many-valued ones.

Though they are negative, these results help to understand more clearly the limits of what is
possible in this area. They have therefore an interest of their own. Now, we are quite confident
that the present work can be continued, like the work of Schlechta, to show similar impossibility
results for families of distance-based revision operators. But, we will cover more families and with
a more general definition of normality. This is the main motivation. Moreover, as we will work in a
general framework, this direction for future work is still valid if we define revision in a non-classical
framework, for instance, a many-valued one. Revision will then benefit from several advantages.
For example, it will be possible to represent and revise inconsistent beliefs. We will discuss it in
detail in the conclusion.

We finish the introduction with links between the two parts of the present thesis. First, both para-
consistent logics and belief revision are useful to deal with inconsistent information. However, each
have adopted a different approach. In particular, belief revision separates new information from old
information, whilst paraconsistent logics consider that all information is current. There are also close
connexions between revision and plausible non-monotonic logics. Indeed, Gärdenfors and Makin-
son showed how to define a family of non-monotonic consequence relations from a revision operator
and vice versa [Mak89, GM88, G8̈8]. The idea is essentially to consider that β is a consequence of
α iff the revision of a given K by α contains β. Postulates for revision on the one hand and that of
non-monotonic reasoning on the other hand have been put in correspondence via this equivalence.
Part I and Part II are therefore connected at the level of outlines. But, there are also links at the level
of the formal machinery. Indeed, both choice functions and distance operators entail a selection of
models and in both parts we will work in a general framework that covers at least the classical and
the many-valued ones.

Structure of the thesis

In Chapter 1 (beginning of Part I), we will recall some early non-monotonic systems conceived
to draw plausible conclusions from incomplete information: the default logic of Reiter, the autoepis-
temic logic of Moore, and McCarthy’s circumscription.

In Chapter 2, we will introduce the fundamental definitions of Part I. More precisely, in Sec-
tion 2.1, we will introduce our general framework. We will see that it covers in particular the many-
valued frameworks of the well-known paraconsistent logics J3 and FOUR. In Section 2.2, we
will present the choice functions. We will see which properties characterize those choice functions
that can be defined by a binary preference relation on states labelled by valuations. We will do
the same work with pivots. In Section 2.3, we will define the preferential(-discriminative) conse-
quence relations and give examples in classical and many-valued frameworks. We will also recall a
characterization which involves the well-known systemP of Kraus, Lehmann, and Magidor. In Sec-
tion 2.4, we will define the pivotal(-discriminative) consequence relations and give again examples
in different frameworks.

In Chapters 3 and 4, we will provide, in our general framework, several characterizations of
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preferential(-discriminative) and pivotal(-discriminative) consequence relations. These results will
be placed into four different categories, depending on the version considered (plain or discriminative)
and the property of definability preservation (satisfied or not).

In Chapter 5, we will define the normal characterizations for a set of consequence relations, i.e.
those that involve only conditions universally quantified and of limited size. Then, we will show in
an infinite classical framework, that there is no normal characterization for the family of all pivotal
consequence relations.

In Chapter 6, we will present the X-logics from Forget, Risch, and Siegel. Then, we will show
that those pivotal consequence relations which satisfy the property of universe-codefinability are
precisely those X-logics for which X is closed under the basic inference.

In Chapter 7 (beginning of Part II), we will recall the AGM approach to belief revision. We will
present the expansion, contraction, and revision postulates as well as the Levi and Harper identi-
ties. We will also recall two important representation theorems, one with epistemic entrenchment
relations from Gärdenfors and Makinson, another with sphere systems from Grove.

In Chapter 8, we will present the pseudo-distances from Lehmann, Magidor, and Schlechta. We
will see how they can be used to define naturally the distance-based revision. And we will recall the
characterizations of Lehmann et al. which contain an arbitrarily big loop condition.

In Chapter 9, we will define the normal characterizations for a set of binary operators, i.e. those
that involve only finite and universally quantified conditions. Then, we will show that for several
families of distance operators (in particular some related to the Hamming distance), there is no nor-
mal characterization.

To finish the introduction, I would like to say that I am the author of all the results shown in the
present thesis. Here is an exhaustive list: Propositions 32, 34, 35, 37, 41, 43, 44, 45, and 47 have
been published in [BN05b]; Propositions 22, 50, 52, 53, 55, 57, 59, 62, and 67 in [BN05a]; Propo-
sitions 84 and 85 in [BN06].
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Chapter 1

Early non-monotonic systems

Among the first non-monotonic systems conceived to draw plausible conclusions from incomplete
information, we can find in particular the default logic of Reiter, the autoepistemic logic of Moore,
and McCarthy’s circumscription. Let’s present them briefly.

1.1 Default logic

Let’s start with the default logic of Reiter [Rei80]. Essentially, it is classical logic augmented by
default rules of the form α:β1,...,βn

γ . Intuitively, such a rule means “if α is true and β1, . . . , βn are
consistent with what is known, then γ can be concluded”. For the needs of this short presentation, it
will be sufficient to deal just with singular rules, i.e. those for which n = 1. Now, suppose Γ is a set
of formulas and D a set of singular default rules. Then, 〈Γ,D〉 is called a default theory. We turn to
the extensions of 〈Γ,D〉. Suppose ∆ is a set of formulas. Then, �(∆) denotes the classical closure
of ∆ and G(∆) denotes the smallest set of formulas such that:

• Γ ⊆ G(∆),

• G(∆) = �(G(∆)), and

• if α:β
γ ∈ D, α ∈ G(∆), and ¬β 
∈ G(∆), then γ ∈ G(∆).

∆ is called an extension of 〈Γ,D〉 iff ∆ = G(∆). Any such extension represents a rational way to
draw plausible conclusions from Γ, according to the default rules of D.

Default logic suffers from some drawbacks. One of them is that the property of cumulativity
[Mak89] is not necessarily satisfied. Another one is that a default theory may have no extension.
For instance, this is the case if Γ = ∅ and D = {:¬β

β }. Reiter put in evidence a particular class of
default theories for which there is always at least one extension. More precisely, a singular ruleα:β

γ
is normal iff β is equivalent to γ. A default theory is normal iff it contains only normal rules, in
which case it has at least one extension.

In addition, the role of the default rules can be given different interpretations, which led to dif-
ferent opinions about properties like e.g. semi-monotonicity [Rei80] or commitment to assumptions
[Poo89]. This remark and the one about drawbacks led to many variants of default logic. Among
them, we can find: constrained default logic [Sch92a, DSJ95], cumulative default logic [Bre91],
justified default logic [Łuk88], and rational default logic [MT95]. However, Delgrande and Schaub
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demonstrated that all of these variants can already been expressed within the original framework of
default logic [DS03, DS05].

Reiter and Criscuolo investigated semi-normal default theories [RC81]. A singular rule α:β
γ is

semi-normal iff β implies γ. A default theory is semi-normal iff it contains only semi-normal rules.
Such theories are interesting for they avoid some counter-intuitive aspects of transitivity. Here is
an example: first (old) pentium computers are rare (at least nowadays) and rare things are usually
expensive. Therefore, by transitivity, first pentiums are expensive, which is of course false.

Touretzky, Poole, Froidevaux, and Kayser developed further default logic in order to take into
account priorities between default rules [Tou87, Poo85, FK88]. We finish with Lin, Shoham, Siegel,
and Schwind who developed modal semantics for default logic [LS90, Sie90, SS91].

1.2 Autoepistemic logic

The autoepistemic logic of Moore [Moo85] aims to formalize reasoning on knowledge about knowl-
edge. While propositional logic can only express facts, autoepistemic logic can express knowledge
and lack of knowledge about facts. Moore developed this logic as a reconstruction of McDermott
and Doyle’s non-monotonic logic [MD80, McD82] to avoid some peculiarities of the latter.

The syntax of autoepistemic logic extends that of propositional logic by a modal (unary) connec-
tive �. Intuitively, �α means: “α is believed to be true”. A typical formula is e.g. (¬�¬α) → α,
which means: “if α is not believed to be false, then α is assumed to be true”. It express therefore a
kind of a closed world assumption. Another example is (�α ∧ ¬�¬β) → β, which means: “if α is
believed to be true and β is not believed to be false, then β is assumed to be true”.

Suppose Γ is a set of formulas like the two above. Moore introduced the stable expansions of Γ.
A set of formulas ∆ is a stable expansion of Γ iff

∆ = {α : Γ ∪ {�β : β ∈ ∆} ∪ {¬�β : β 
∈ ∆} � α}.

Then, intuitively,∆ is a good candidate for the belief set of an ideal introspective agent with premises
Γ. This is all the more true as ∆ satisfies the three following stability conditions:

(S1) if ∆ � α, then α ∈ ∆;

(S2) if α ∈ ∆, then �α ∈ ∆;

(S3) if α 
∈ ∆, then ¬�α ∈ ∆.

Konolige and Truszczyński showed that stable expansions in autoepistemic logic are closely related
to extensions in default logic [Kon88, Tru91].

We finish with an interesting remark about stable theories, i.e. those sets of formulas which
satisfy (S1), (S2), and (S3). Any stable theory T contains the following modal axiom schemata:

K �(α → β) → (�α → �β);

T �α → α;

4 �α → ��α;

5 ¬�α → �¬�α.
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In addition, T contains all tautologies and is closed under the following rules:

Necessity
α

�α
;

Modus Ponens
α → β α

β
.

As a consequence, every theorem of the modal logic S5 belongs to T . And actually, Moore showed
that the intersection of all stable theories is exactly the set of all theorems of S5 [Moo84].

1.3 Circumscription

Circumscription was first proposed by John McCarthy in [McC80, McC86]. It formalizes the com-
mon sense assumption that things are as expected unless otherwise specified. For example, if Tweety
is a bird and nothing is said about the abnormality of Tweety, then it is natural to assume that Tweety
is a normal bird and therefore conclude that it flies (as normal birds fly).

Circumscription formalizes this example as follows. First, the situation is represented by the
following set Φ of first-order formulas:

∀ x, (bird(x) ∧ ¬abnormal(x)) → flies(x);

bird(Tweety).

Then, the idea is to restrict the consideration to those models of Φ where the extension of abnormal
is minimal in some sense. In other words, abnormal is “circumscribed”. But, in these selected mod-
els, abnormal(Tweety) does not hold (which would not have been the case if abnormal(Tweety)
was specified in Φ, of course). This allows us to draw the defeasible conclusion flies(Tweety), as
desired.

More generally, suppose Φ is a set of first-order formulas (representing what is known about the
domain of interest, i.e. facts, rules, etc.), P is a set of predicates (representing the exceptions of
some rules), and Z a set of predicates (representing the conclusions of these rules). To fix ideas, in
the Tweety example, P = {abnormal} and Z = {flies}. It is customary to call the elements of
P the predicates to be minimized and to call the elements of Z the predicates to be varied. Then,
consider the binary preference relation ≺ on the first-order models defined as follows. Suppose σ
and σ′ are two first-order models. Then, σ ≺ σ′ iff

• σ and σ′ have the same domain;

• σ and σ′ do not differ in the interpretation of those constants, function symbols, and predicate
symbols which belong neither to P nor Z;

• ∀ p ∈ P , the extension of p in σ is a subset of the extension of p in σ′;

• ∃ p ∈ P , the extension of p in σ is a proper subset of the extension of p in σ′.

As usual, a model σ of Φ is ≺-minimal iff there is no model σ′ of Φ such that σ′ ≺ σ. Approx-
imatively, in the ≺-minimal models of Φ, the predicates of P will not hold (unless the contrary is
specified in Φ, of course), which entails that the predicates of Z will be more likely to hold. Now,
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only the ≺-minimal models of Φ will be taken into account for drawing conclusions from Φ. Intu-
itively, this amounts to apply rules while ignoring their exceptions (except those that are explicitly
specified) and therefore draw plausible (and defeasible) conclusions.

This form of minimal inference is equivalent to second-order circumscription [Lif85]. The orig-
inal definition of McCarthy was syntactical rather than semantical, i.e. the restriction of models is
enforced by adding a certain second-order formula. For instance, suppose Φ is finite, P = {p},
Z = ∅, and the arity of p is 1. Then, the second-order formula is:

(
∧

Φ) ∧ ∀ p′,¬[(
∧

Φ)[p/p′] ∧ (∀ x, p′(x) → p(x)) ∧ ¬(∀ x, p(x) → p′(x))]

where p′ is a predicate of arity 1,
∧

Φ is the conjunction of the formulas in Φ, and (
∧

Φ)[p/p′] is the
formula obtained by replacing, in this conjunction, p by p′.

In the original version of circumscription, first-order circumscription, the restriction of models
is enforced by adding first-order formulas generated by a certain “circumscription schema”. For
instance, suppose Φ is finite, P = {p}, Z = {q}, and p, q have arity 1. Then, the circumscription
schema is:

¬[(
∧

Φ)[p/p′, q/q′] ∧ (∀ x, p′(x) → p(x)) ∧ ¬(∀ x, p(x) → p′(x))]

where p′ and q′ are new predicates with arity 1. Actually, the ≺-minimal models of Φ are not
the only ones remaining after adding such first-orders formulas. In fact, the remaining models are
exactly those that are ≺′-minimal, where ≺′ is the binary preference relation such that σ ≺′ σ′

iff σ ≺ σ′ and (approximatively) for each predicate r in P ∪ Z , the extension of r in σ can be
syntactically described in σ′ (see e.g. [Bes88, Bra88] for details).
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Chapter 2

Fundamental definitions

The present chapter introduce fundamental definitions for Part I.

2.1 Semantic structures

2.1.1 Definitions and assumptions

We will work with general formulas, valuations, and satisfaction. A similar approach has been taken
in two well-known papers [Mak05, Leh01].

Definition 1 We say that S is a semantic structure iff S = 〈F ,V, |=〉 where F is a set, V is a set,
and |= is a relation on V × F .

Intuitively, F is a set of formulas, V a set of valuations for these formulas, and |= a satisfaction
relation for these objects (i.e. v |= α means the formula α is satisfied in the valuation v, i.e. v is a
model for α).

Notation 2 Let 〈F ,V, |=〉 be a semantic structure, Γ ⊆ F , and V ⊆ V . Then,
MΓ := {v ∈ V : ∀ α ∈ Γ, v |= α},
T (V ) := {α ∈ F : V ⊆ Mα},
D := {V ⊆ V : ∃ Γ ⊆ F ,MΓ = V }.
Suppose L is a language, ¬ a unary connective of L, and F the set of all well-formed formulas (wffs)
of L. Then,
Td(V ) := {α ∈ F : V ⊆ Mα and V 
⊆ M¬α},
Tc(V ) := {α ∈ F : V ⊆ Mα and V ⊆ M¬α},
C := {V ⊆ V : ∀ α ∈ F , V 
⊆ Mα or V 
⊆ M¬α}.

Intuitively, MΓ is the set of all models for Γ and T (V ) the set of all formulas satisfied in V . Every
element of T (V ) belongs either to Td(V ) or Tc(V ), according to whether its negation is also in
T (V ). D is the set of all those sets of valuations that are definable by a set of formulas and C the
set of all those sets of valuations that do not satisfy both a formula and its negation. As usual,MΓ,α,
T (V, v), etc. stand for respectively MΓ∪{α}, T (V ∪ {v}), etc.
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Remark 3 The notations MΓ, T (V ), etc. should contain the semantic structure on which they are
based. To increase readability, we will omit it. There will never be any ambiguity. We will omit
similar things with other notations in the sequel, for the same reason.

A semantic structure defines a basic consequence relation:

Notation 4 We denote by P the power set operator.
Let 〈F ,V, |=〉 be a semantic structure.
We denote by � the relation on P(F) ×F such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ � α iff MΓ ⊆ Mα.

Let |∼ be a relation on P(F) ×F . Then,
|∼(Γ) := {α ∈ F : Γ |∼ α}.
Suppose L is a language, ¬ a unary connective of L, F the set of all wffs of L, and Γ ⊆ F .
Then, we say that Γ is consistent iff ∀ α ∈ F , Γ 
� α or Γ 
� ¬α.
We will sometimes need to speak about the basic consequence relation in the sense of Scott:
� denotes the relation on P(F) × P(F) such that ∀ Γ,∆ ⊆ F ,

Γ � ∆ iff ∀ v ∈ MΓ, ∃ α ∈ ∆, v ∈ Mα.

The following trivial facts hold, we will use them implicitly in the sequel:

Remark 5 Let 〈F ,V, |=〉 be a semantic structure and Γ,∆ ⊆ F . Then:
MΓ,∆ = MΓ ∩ M∆;
�(Γ) = T (MΓ);
MΓ = M�(Γ);
Γ ⊆ �(∆) iff �(Γ) ⊆ �(∆) iffM∆ ⊆ MΓ.

Sometimes, we will need to make some of the following assumptions about a semantic structure:

Definition 6 Let 〈F ,V, |=〉 be a semantic structure.
Then, define the following assumptions:

(A0) MF = ∅;
(A1) V is finite.
Suppose L is a language, ¬ a unary connective of L, and F the set of all wffs of L. Then, define:
(A2) ∀ Γ ⊆ F , ∀ α ∈ F , if α 
∈ T (MΓ) and ¬α 
∈ T (MΓ), then MΓ ∩ Mα 
⊆ M¬α.

Suppose ∨ and ∧ are binary connectives of L. Then, define:
(A3) ∀ α, β ∈ F , we have:

Mα∨β = Mα ∪ Mβ;
Mα∧β = Mα ∩ Mβ;
M¬¬α = Mα;
M¬(α∨β) = M¬α∧¬β ;
M¬(α∧β) = M¬α∨¬β .

Clearly, those assumptions are satisfied by classical semantic structures, i.e. structures where F , V ,
and |= are classical. In addition, we will see, in Sections 2.1.2 and 2.1.3, that they are satisfied also
by certain many-valued semantic structures.
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2.1.2 The semantic structure defined by FOUR
The logic FOUR was introduced by N. Belnap in [Bel77a, Bel77b]. This logic is useful to deal with
inconsistent information. Several presentations are possible, depending on the language under con-
sideration. For the needs of the present thesis, a classical propositional language will be sufficient.
The logic has been investigated intensively in e.g. [AA94, AA96, AA98], where richer languages,
containing an implication connective ⊃ (first introduced by A. Avron [Avr91]), were considered.
Notation 7 We denote by A a set of propositional symbols (or atoms).
We denote by Lc the classical propositional language containing A, the usual constants false and
true, and the usual connectives ¬, ∨, and ∧.
We denote by Fc the set of all wffs of Lc.

We recall one possible intuitive interpretation of the logic FOUR (more details can be found in
[CLM99, Bel77a, Bel77b]). Consider a system in which there are, on the one hand, sources of
information and, on the other hand, a processor that listens to them. The sources provide information
about the atoms only, not about the compound formulas. For each atom p, there are exactly four
possibilities: either the processor is informed (by the sources, taken as a whole) that p is true; or he
is informed that p is false; or he is informed of both; or he has no information about p.

Notation 8 Denote by 0 and 1 the classical truth values and define:
f := {0}; t := {1}; � := {0, 1}; ⊥ := ∅.
The global information given by the sources to the processor can be modelled by a function s fromA
to {f , t,�,⊥}. Intuitively, 1 ∈ s(p) means the processor is informed that p is true, whilst 0 ∈ s(p)
means he is informed that p is false.

Then, the processor naturally builds information about the compound formulas from s. Before
he starts to do so, the situation can be be modelled by a function v from Fc to {f , t,�,⊥} which
agrees with s about the atoms and which assigns ⊥ to all compound formulas. Now, take p and q in
A and suppose 1 ∈ v(p) or 1 ∈ v(q). Then, the processor naturally adds 1 to v(p ∨ q). Similarly, if
0 ∈ v(p) and 0 ∈ v(q), then he adds 0 in v(p ∨ q). Of course, such rules hold for ¬ and ∧ too.

Suppose all those rules are applied recursively to all compound formulas. Then, v represents the
“full” (or developed) information given by the sources to the processor. Now, the valuations of the
logic FOUR can be defined as exactly those functions that can be built in this manner (i.e. like v)
from some of these sources-processor systems. More formally,

Definition 9 We say that v is a four-valued valuation iff v is a function from Fc to {f , t,�,⊥} such
that v(true) = t, v(false) = f , and ∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and 1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote by V4 the set of all four-valued valuations.

The definition may become more accessible if we see the four-valued valuations as those functions
that satisfy Tables 1, 2, and 3 below:
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v(α) v(¬α)
f t
t f
� �
⊥ ⊥
Table 1.

v(β)
f t � ⊥

v(α)

f f t � ⊥
t t t t t
� � t � t
⊥ ⊥ t t ⊥

v(α ∨ β)
Table 2.

v(β)
f t � ⊥

v(α)

f f f f f
t f t � ⊥
� f � � f
⊥ f ⊥ f ⊥

v(α ∧ β)
Table 3.

In the logic FOUR, a formula α is considered to be satisfied iff the processor is informed that it is
true (it does not matter whether he is also informed that α is false).

Notation 10 We denote by |=4 the relation on V4 ×Fc such that ∀ v ∈ V4, ∀ α ∈ Fc, we have
v |=4 α iff 1 ∈ v(α).

Proof systems for the consequence relations � and � based on the semantic structure 〈Fc,V4, |=4〉
(i.e. the semantic structure defined by FOUR) can be found in e.g. [AA94, AA96, AA98]. Here is
one of them:

Axioms:
Γ, α ⇒ ∆, α

Γ,¬true ⇒ ∆ Γ ⇒ ∆, true

Γ, false ⇒ ∆ Γ ⇒ ∆,¬false

Rules: Exchange, Contraction, and the following rules:

Γ, α ⇒ ∆
Γ,¬¬α ⇒ ∆

Γ ⇒ ∆, α

Γ ⇒ ∆,¬¬α

Γ, α, β ⇒ ∆
Γ, α ∧ β ⇒ ∆

Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β

Γ,¬α ⇒ ∆ Γ,¬β ⇒ ∆
Γ,¬(α ∧ β) ⇒ ∆

Γ ⇒ ∆,¬α,¬β

Γ ⇒ ∆,¬(α ∧ β)

Γ, α ⇒ ∆ Γ, β ⇒ ∆
Γ, α ∨ β ⇒ ∆

Γ ⇒ ∆, α, β

Γ ⇒ ∆, α ∨ β

Γ,¬α,¬β ⇒ ∆
Γ,¬(α ∨ β) ⇒ ∆

Γ ⇒ ∆,¬α Γ ⇒ ∆,¬β

Γ ⇒ ∆,¬(α ∨ β)

Note that the FOUR semantic structure satisfies (A0) and (A3). In addition, if A is finite, then
(A1) is also satisfied. However, (A2) is not satisfied by this structure. In Section 2.1.3, we turn to a
many-valued semantic structure which satisfies (A2).
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2.1.3 The semantic structure defined by J3

The logic J3 was introduced in [DdC70] to answer a question posed in 1948 by S. Jaśkowski, who
was interested in systematizing theories capable of containing contradictions, especially if they occur
in dialectical reasoning. The step from informal reasoning under contradictions and formal reasoning
with databases and information was done in [CMdA00] (also specialized for real database models in
[dACM02]), where another formulation of J3 called LFI1was introduced, and its first-order version,
semantics and proof theory were studied in detail. Investigations of J3 have also been made in e.g.
[Avr91], where richer languages than our Lc were considered.

The valuations of the logic J3 can be given the same meaning as those of the logic FOUR,
except that the consideration is restricted to those systems where the sources, taken as a whole,
always give some information about an atom. More formally,

Definition 11 We say that v is a three-valued valuation iff v is a function from Fc to {f , t,�} such
that v(true) = t, v(false) = f , and ∀ α, β ∈ Fc,
1 ∈ v(¬α) iff 0 ∈ v(α);
0 ∈ v(¬α) iff 1 ∈ v(α);
1 ∈ v(α ∨ β) iff 1 ∈ v(α) or 1 ∈ v(β);
0 ∈ v(α ∨ β) iff 0 ∈ v(α) and 0 ∈ v(β);
1 ∈ v(α ∧ β) iff 1 ∈ v(α) and 1 ∈ v(β);
0 ∈ v(α ∧ β) iff 0 ∈ v(α) or 0 ∈ v(β).
We denote by V3 the set of all three-valued valuations.

As previously, the definition may become more accessible if we see the three-valued valuations as
those functions that satisfy Tables 4, 5, and 6 below:

v(α) v(¬α)
f t
t f
� �
Table 4.

v(β)
f t �

v(α)
f f t �
t t t t
� � t �

v(α ∨ β)
Table 5.

v(β)
f t �

v(α)
f f f f
t f t �
� f � �

v(α ∧ β)
Table 6.

We turn to the satisfaction relation.

Notation 12 We denote by |=3 the relation on V3 ×Fc such that ∀ v ∈ V3, ∀ α ∈ Fc, we have
v |=3 α iff 1 ∈ v(α).

Proof systems for the consequence relations � and � based on the semantic structure 〈Fc,V3, |=3〉
(i.e. the semantic structure defined by J3) have been provided in e.g. [Avr91, DdC70] and chapter
IX of [Eps90]. We recall one of them:

Axioms:
Γ, α ⇒ ∆, α Γ ⇒ ∆, α,¬α

Γ,¬true ⇒ ∆ Γ ⇒ ∆, true

Γ, false ⇒ ∆ Γ ⇒ ∆,¬false
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Rules: Exchange, Contraction, and the following rules:

Γ, α ⇒ ∆
Γ,¬¬α ⇒ ∆

Γ ⇒ ∆, α

Γ ⇒ ∆,¬¬α

Γ, α, β ⇒ ∆
Γ, α ∧ β ⇒ ∆

Γ ⇒ ∆, α Γ ⇒ ∆, β

Γ ⇒ ∆, α ∧ β

Γ,¬α ⇒ ∆ Γ,¬β ⇒ ∆
Γ,¬(α ∧ β) ⇒ ∆

Γ ⇒ ∆,¬α,¬β

Γ ⇒ ∆,¬(α ∧ β)

Γ, α ⇒ ∆ Γ, β ⇒ ∆
Γ, α ∨ β ⇒ ∆

Γ ⇒ ∆, α, β

Γ ⇒ ∆, α ∨ β

Γ,¬α,¬β ⇒ ∆
Γ,¬(α ∨ β) ⇒ ∆

Γ ⇒ ∆,¬α Γ ⇒ ∆,¬β

Γ ⇒ ∆,¬(α ∨ β)

The J3 structure satisfies (A0), (A3) and (A2). In addition, if A is finite, then it satisfies (A1) too.

2.2 Choice functions

2.2.1 Definitions and properties

In many situations, an agent has some way to choose in any set of valuations V , those elements that
are preferred (the bests, the more normal, etc.), not necessarily in the absolute sense, but when the
valuations in V are the only ones under consideration. In Social Choice, this is modelled by choice
functions [Che54, Arr59, Sen70, AM81, Leh02, Leh01].

Definition 13 Let V be a set, V ⊆ P(V),W ⊆ P(V), and µ a function fromV toW.
We say that µ is a choice function iff ∀ V ∈ V, µ(V ) ⊆ V .

Several properties for choice functions have been put in evidence by researchers in Social Choice.
Let’s present two important ones. Suppose W is a set of valuations, V is a subset of W , and v ∈ V
is a preferred valuation of W . Then, a natural requirement is that v is a preferred valuation of V .
Indeed, in many situations, the larger a set is, the harder it is to be a preferred element of it, and he
who can do the most can do the least. This property appears in [Che54] and has been given the name
Coherence in [Mou85].

We turn to the second property. Suppose W is a set of valuations, V is a subset of W , and
suppose all the preferred valuations of W belong to V . Then, they are expected to include all the
preferred valuations of V . The importance of this property has been put in evidence by [Aiz85,
AM81] and has been given the name Local Monotonicity in e.g. [Leh01].

Definition 14 Let V be a set, V ⊆ P(V),W ⊆ P(V), and µ a choice function fromV toW.
We say that µ is coherent iff ∀ V,W ∈ V,

if V ⊆ W, then µ(W ) ∩ V ⊆ µ(V ).

We say that µ is locally monotonic (LM) iff ∀ V,W ∈ V,

if µ(W ) ⊆ V ⊆ W, then µ(V ) ⊆ µ(W ).
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In addition to their intuitive meanings, these properties are important because, as was shown by
K. Schlechta in [Sch00], they characterize those choice functions that can be defined by a binary
preference relation on states labelled by valuations (in the style of e.g. [KLM90, Sch04]). We will
take a closer look at this in Section 2.2.2.

When we have a semantic structure and a choice function on the valuations, two new properties
can be defined. Each of them conveys a simple and natural meaning.

Definition 15 Let 〈F ,V, |=〉 be a semantic structure, V ⊆ P(V), W ⊆ P(V), and µ a choice
function fromV toW.
We say that µ is definability preserving (DP) iff

∀ V ∈ V ∩ D, µ(V ) ∈ D.

Suppose L is a language, ¬ a unary connective of L, and F the set of all wffs of L.
We say that µ is coherency preserving (CP) iff

∀ V ∈ V ∩C, µ(V ) ∈ C.

Definability Preservation has been put in evidence first in [Sch92b]. One of its advantages is that
when the choice functions under consideration satisfy it, we will provide characterizations with
purely syntactic conditions.

An advantage of Coherency Preservation is that when the choice functions under consideration
satisfy it, we will not need to assume (A2) to show our characterizations (in the discriminative case).

Now, we provide properties which characterize those choice functions that can be defined by
a pivot (in the style of e.g. D. Makinson [Mak03, Mak05]). A pivot is a fixed subset of valua-
tions which are considered to be the important ones in the absolute sense. Details will be given in
Section 2.2.3.

Definition 16 Let V be a set, V ⊆ P(V),W ⊆ P(V), and µ a choice function fromV toW.
We say that µ is strongly coherent (SC) iff ∀ V,W ∈ V,

µ(W ) ∩ V ⊆ µ(V ).

Suppose 〈F ,V, |=〉 is a semantic structure and V ∈ V.
We say that µ is universe-codefinable (UC) iff

V \ µ(V) ∈ D.

Note that a second advantage of Universe-codefinability (in addition to the connexion with pivots)
is that it provides a link with X-logics [FRS01]. We will see it in Chapter 6.

2.2.2 Preference structures

Binary preference relations on valuations have been investigated by e.g. B. Hansson to give se-
mantics for deontic logics [Han69]. Y. Shoham rediscovered them to give semantics for plausible
non-monotonic logics [Sho88, Sho87]. Then, it seems that Imielinski is one of the first persons to in-
troduce binary preference relations on states labelled by valuations [Imi87]. They have been used to
give more general semantics for plausible non-monotonic logics, see e.g. [KLM90, LM92, Sch92b,
Sch96, Sch00, Sch04]. Let’s present them.
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Definition 17 We say that R is a preference structure on a set V iffR = 〈S, l,≺〉 where S is a set,
l is a function from S to V , and ≺ is a relation on S × S .

In fact, preference structures are essentially Kripke structures. The difference lies in the interpreta-
tion of≺. In a Kripke structure, it is seen as an accessibility relation, whilst, in a preference structure,
it is seen as a preference relation.

We recall a possible meaning for preference structures. Intuitively, V is a set of valuations for
some language L and S a set of valuations for some language L′ richer than L. The elements of S
are called states. l(s) corresponds precisely to this part of s that is about the formulas of L only. We
call l a labelling function. Finally, ≺ is a preference relation, i.e. s ≺ s′ means s is preferred to s′.

We turn to well-known properties for preference structures.

Definition 18 Suppose V is a set, R = 〈S, l,≺〉 is a preference structure on V , T ⊆ S , s ∈ T ,
V ⊆ V , and V ⊆ P(V).
We say that R is transitive (resp. irreflexive) iff ≺ is transitive (resp. irreflexive).
We say that s is preferred in T iff ∀ s′ ∈ T , s′ 
≺ s.
L(V ) := {s ∈ S : l(s) ∈ V }.
We say that R is V-smooth (alias V-stoppered) iff ∀ V ∈ V, ∀ s ∈ L(V ),
either s is preferred in L(V ) or there exists s′ preferred in L(V ) such that s′ ≺ s.

Intuitively, L(V ) is the set of all those states that are labelled by a valuation of V . A preference
structure defines naturally a choice function. The idea is to choose in any set of valuations V , each
element which labels a state which is preferred among all the states labelled by an element of V .
More formally:

Definition 19 Suppose R = 〈S, l,≺〉 is a preference structure on a set V .
We denote by µR the function from P(V) to P(V) such that ∀ V ⊆ V ,

µR(V ) = {v ∈ V : ∃ s ∈ L(v), s is preferred in L(V )}.

In [Sch00], Schlechta showed that Coherence and Local Monotonicity characterize those choice
functions that can be defined by a preference structure. Details are given in the proposition just
below. It is an immediate corollary of Proposition 2.4, Proposition 2.15, and Fact 1.3 of [Sch00].

Proposition 20 [Sch00] Let V be a set, V and W subsets of P(V), and µ a choice function from
V toW. Then,

(0) µ is coherent iff there exists a transitive and irreflexive preference structure R on V such that
∀ V ∈ V, we have µ(V ) = µR(V ).

Suppose ∀ V,W ∈ V, we have V ∪ W ∈ V and V ∩ W ∈ V. Then,

(1) µ is coherent and LM iff there exists aV-smooth, transitive, and irreflexive preference structure
R on V such that ∀ V ∈ V, we have µ(V ) = µR(V ).

In fact, in [Sch00], the codomain of µ is required to be its domain: V. However, this plays no role
in the proofs. Therefore, verbatim the same proofs are valid when the codomain of µ is an arbitrary
subsetW of P(V). Both myself and Schlechta checked it.
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2.2.3 Pivots

Suppose some valuations are considered to be the important ones in the absolute sense. Then, collect
them in a set I , called a pivot. I defines naturally a choice function µI which chooses in any set of
valuations, simply those elements which belong to I . More formally,

Definition 21 Let V be a set.
We say that I is a pivot on V iff I ⊆ V .
Let I be a pivot on V .
We denote by µI the function from P(V) to P(V) such that ∀ V ⊆ V ,

µI(V ) = V ∩ I.

Pivots have been investigated extensively by D. Makinson in [Mak03, Mak05]. In the present sec-
tion, we show that the properties of Strong Coherence, Definability Preservation, and Universe-
codefinability characterize those choice functions that can be defined by a pivot. More precisely:

Proposition 22 Let V be a set, V,W ⊆ P(V), and µ a choice function fromV toW. Then:

(0) µ is SC iff there exists a pivot I on V such that ∀ V ∈ V, µ(V ) = µI(V ).

Suppose 〈F ,V, |=〉 is a semantic structure and V ∈ V. Then:

(1) µ is SC and DP iff there exists a pivot I on V such that I ∈ D and ∀ V ∈ V, µ(V ) = µI(V );

(2) µ is SC and UC iff there exists a pivot I on V such that V\I ∈ D and ∀V ∈ V, µ(V ) = µI(V ).

Proof Proof of (0). Direction: “→”.
Let I = {v ∈ V : ∃ V ∈ V, v ∈ µ(V )} and suppose V ∈ V.
If v ∈ µ(V ), then v ∈ V and, by definition of I , v ∈ I . Consequently, µ(V ) ⊆ V ∩ I .
If v ∈ V ∩ I , then ∃ W ∈ V, v ∈ µ(W ), thus, by SC, v ∈ µ(W ) ∩ V ⊆ µ(V ).
Consequently, V ∩ I ⊆ µ(V ).

Direction: “←”.
There exists I ⊆ V such that ∀ V ∈ V, µ(V ) = V ∩ I .
We show that µ satisfies SC.
Let V,W ∈ V. Then, µ(W ) ∩ V = W ∩ I ∩ V ⊆ I ∩ V = µ(V ).

Proof of (1). Direction: “→”.
Take the same I as for (0). Then, by verbatim the same proof, ∀ V ∈ V, µ(V ) = V ∩ I .
It remains to show that I ∈ D.
AsM∅ = V , V ∈ D. Thus, as µ is DP, µ(V) ∈ D. But, µ(V) = V ∩ I = I .

Direction: “←”.
Verbatim the proof of (0), except that in addition we have I ∈ D.
We show that µ is DP. Let V ∈ V ∩ D.
Then, ∃ Γ ⊆ F ,MΓ = V . Similarly, as I ∈ D, ∃ ∆ ⊆ F ,M∆ = I .
Therefore, µ(V ) = V ∩ I = MΓ ∩ M∆ = MΓ∪∆ ∈ D.

Proof of (2). Direction: “→”.
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Take the same I as for (0). Then, by verbatim the same proof, ∀ V ∈ V, µ(V ) = V ∩ I .
It remains to show V \ I ∈ D. As µ is UC, V \ µ(V) ∈ D. But, V \ µ(V) = V \ (V ∩ I) = V \ I .

Direction: “←”.
Verbatim the proof of (0), except that in addition we have V \ I ∈ D.
We show that µ is UC: V \ µ(V) = V \ (V ∩ I) = V \ I ∈ D.

2.3 Preferential(-discriminative) consequence relations

2.3.1 Definitions

Suppose we are given a semantic structure and a choice function µ on the valuations. Then, it is
natural to conclude a formula α from a set of formulas Γ iff every model for Γ chosen by µ is a
model for α. More formally:

Definition 23 Suppose 〈F ,V, |=〉 is a semantic structure and |∼ a relation on P(F) ×F .
We say that |∼ is a preferential consequence relation iff there exists a coherent choice function µ
fromD to P(V) such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆ Mα.

In addition, if µ is LM, DP, etc., then so is |∼.

These consequence relations are called “preferential” because, in the light of Proposition 20, they
can be defined equivalently with preference structures, instead of coherent choice functions. We
opted for choice functions for two reasons.

First, they give a clearer meaning. Indeed, properties like Coherence have simple intuitive jus-
tifications, whilst preference structures contain “states”. But, it is not perfectly clear what a state is
in daily life. By the way, in [KLM90], Kraus, Lehmann, and Magidor did not consider preference
structures to be ontological justifications for their interest in the formal systems investigated, but to
be technical tools to study those systems and in particular settle questions of interderivability and
find efficient decision procedures (see the end of Section 1.2 of [KLM90]).

Second, thanks to choice functions and their properties, we can present in a unified way prefer-
ential (here) and pivotal (in Section 2.4) consequence relations, though they are initially based on
different tools (i.e. preference structures or pivots). This will enable us to use similar techniques of
proof for both kinds of relations.

Preferential relations lead to plausible conclusions which will eventually be withdrawn later, in
the presence of additional information. Therefore, they are useful to deal with incomplete informa-
tion. We will give an example with a classical semantic structure in Section 2.3.3.

In addition, if a many-valued semantic structure is considered, they lead to rational and non-
trivial conclusions is spite of the presence of contradictions and are thus useful to treat both incom-
plete and inconsistent information. However, they will not satisfy the Disjunctive Syllogism (from
α and ¬α ∨ β we can conclude β). We will give an example with the FOUR semantic structure in
Section 2.3.4.

Now, we turn to a qualified version of preferential consequence. It captures the idea that the
contradictions in the conclusions should be rejected.

30



Definition 24 Suppose L is a language, ¬ a unary connective of L, F the set of all wffs of L,
〈F ,V, |=〉 a semantic structure, and |∼ a relation on P(F) ×F .
We say that |∼ is a preferential-discriminative consequence relation iff there is a coherent choice
function µ fromD to P(V) such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆ Mα and µ(MΓ) 
⊆ M¬α.

In addition, if µ is LM, DP, etc., then so is |∼.
If a classical semantic structure is considered, the discriminative version does not bring something
really new. Indeed, the only difference will be to conclude nothing instead of everything in the
face of inconsistent information. On the other hand, with a many-valued structure, the conclusions
are rational even from inconsistent information. The discriminative version will then reject the
contradictions in the conclusions, rendering the latter all the more rational.

In Definitions 23 and 24, the domain of the choice function is D. This is natural as only the
elements of D play a role in the definition of a preferential(-discriminative) consequence relation.
This point of view has been adopted in e.g. [Leh01] (see Section 6). Now, one might want a definition
with choice functions of which the domain isP(V). In fact, some families of relations can be defined
equivalently withD or P(V). For instance, as is noted in [Leh01], if µ is a coherent choice function
from D to P(V), then the function µ′ from P(V) to P(V) defined by µ′(V ) = V ∩ µ(MT (V )) is a
coherent choice function which agrees with µ onD.

Several characterizations for preferential consequence relations can be found in the literature
(e.g. [KLM90, LM92, Leh02, Leh01, Sch92b, Sch96, Sch00, Sch04]). In particular, we will recall
(in Section 2.3.2) a characterization that involves the well-known system P of [KLM90].

2.3.2 The system P

Gabbay, Makinson, Kraus, Lehmann, and Magidor investigated extensively properties for plausible
non-monotonic consequence relations [Gab85, Mak89, Mak94, KLM90, LM92]. A certain set of
properties, called the system P, plays a central role in this area. It is essentially due to Kraus,
Lehmann, and Magidor [KLM90] and has been investigated further in [LM92]. Let’s present it.

Definition 25 Suppose L is a language containing the usual connectives ¬ and ∨, F the set of all
wffs of L, 〈F ,V, |=〉 a semantic structure, and |∼ a relation on F × F .
Then, the system P is the set of the six following conditions: ∀ α, β, γ ∈ F ,
Reflexivity α |∼ α

Left Logical Equivalence
� α ↔ β α |∼ γ

β |∼ γ

Right Weakening
� α → β γ |∼ α

γ |∼ β

Cut
α ∧ β |∼ γ α |∼ β

α |∼ γ

Cautious Monotonicity
α |∼ β α |∼ γ

α ∧ β |∼ γ
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Or
α |∼ γ β |∼ γ

α ∨ β |∼ γ

Note that α ∧ β is a shorthand for ¬(¬α ∨ ¬β). Similarly, α → β and α ↔ β are shorthands. Note
again that P without Or is called C. The system C is closely related to the cumulative inference
which was investigated by Makinson in [Mak89]. In addition, it seems to correspond to what Gabbay
proposed in [Gab85]. Concerning the rule Or, it corresponds to the axiom CA of conditional logic.

All the properties in P are sound if we read α |∼ β as “β is a plausible consequence of α”.
In addition, P is complete in the sense that it characterizes those consequence relations that can be
defined by a smooth transitive irreflexive preference structure. This is what makes P central. More
formally:

Definition 26 Suppose 〈F ,V, |=〉 is a semantic structure.
Then,Df := {V ⊆ V : ∃ α ∈ F , V = Mα}.
Suppose L is a language containing the usual connectives ¬ and ∨, and F the set of all wffs of L.
Then define the following condition: ∀ v ∈ V , ∀ α, β ∈ F , ∀ Γ ⊆ F ,
(KLM0) v |= ¬α iff v 
|= α;

(KLM1) v |= α ∨ β iff v |= α or v |= β.

(KLM2) if for every finite subset ∆ of Γ,M∆ 
= ∅, then MΓ 
= ∅.

Note that (KLM2) is called “assumption of compactness” in [KLM90].

Proposition 27 [KLM90] Suppose L is a language containing the usual connectives ¬ and ∨, F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (KLM0)–(KLM2), and |∼ a
relation of F × F .
Then, |∼ satisfies all the properties ofP iff there exists aDf -smooth transitive irreflexive preference
structure R on V such that ∀ α, β ∈ F , α |∼ β iff µR(Mα) ⊆ Mβ .

Note that |∼ is a relation on F × F , not P(F) × F . This difference is crucial. Indeed, if we adapt
the conditions of P in the obvious way to relations on P(F) × F and if we replace Df by D in
Proposition 27, then the latter does no longer hold. This negative result was shown by Schlechta in
[Sch92b].

Now, by Propositions 20 and 27, we immediately get the following representation theorem:

Proposition 28 Suppose Definition 23 (of preferential consequence relations) is adapted in the ob-
vious way to relations on F × F (essentially, replace D by Df ). Suppose also L is a language
containing the usual connectives ¬ and ∨, F the set of all wffs of L, |∼ a relation on F × F , and
〈F ,V, |=〉 a semantic structure such that (KLM0)–(KLM2) hold and ∀V,W ∈ Df , V ∪W ∈ Df

and V ∩ W ∈ Df .
Then, LM preferential consequence relations are precisely those relations that satisfy the system P.

Recall that LM choice functions have been defined in Definition 14.
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2.3.3 Example in a classical framework

Let L be a classical propositional language of which the atoms are r, q, and p. They are given
the following meanings: r stands for Nixon is a republican, q stands for Nixon is a quaker, and p
stands for Nixon is a pacifist. Let F be the set of all wffs of L, V the set of all classical two-valued
valuations of L, and |= the classical satisfaction relation for these objects. Then, V is the set of the 8
following valuations: v0, v1, v2, v3, v4, v5, v6, and v7, which are defined in the obvious way by the
following table:

r q p

v0 0 0 0
v1 0 0 1
v2 0 1 0
v3 0 1 1
v4 1 0 0
v5 1 0 1
v6 1 1 0
v7 1 1 1

Now, consider the class of all republicans and the class of all quakers. Consider that a republican
is normal iff he is not a pacifist and that a quaker is normal iff he is a pacifist. And, consider that a
valuation v is more normal than a valuation w from the point of view of a class C iff

• Nixon is an individual of C in both v and w;

• Nixon is normal in v;

• Nixon is not normal in w.

In the following graph, there is an arrow from a valuation v to a valuation w iff v is more normal
than w from the point of view of some class:

Given those considerations a natural preference structure on V is R = 〈V, l,≺〉, where l is identity
and ≺ is the relation such that ∀ v,w ∈ V , we have v ≺ w iff (1) or (2) below holds (i.e. there is an
arrow from v to w):

(1) v |= r and v |= ¬p and w |= r and w 
|= ¬p;

(2) v |= q and v |= p and w |= q and w 
|= p.

Finally, let |∼ be the preferential consequence relation defined by the coherent choice function µR.
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Then, |∼ leads us to “jump” to plausible conclusions from incomplete information and to revise
previous “hasty” conclusions in the face of new and fuller information. For instance, r |∼ ¬p and
{r, p} 
|∼ ¬p and q |∼ p and {q,¬p} 
|∼ p.

However, |∼ is not paraconsistent. In addition, some sets of formulas are rendered useless,
because there is no preferred model for them, though there are models for them. For instance,
{q, r} |∼ α, ∀ α ∈ F .

2.3.4 Example in the FOUR framework

Consider the FOUR semantic structure 〈Fc,V4, |=4〉 and suppose A = {r, q, p} (these objects have
been defined in Section 2.1.2). In addition, make the same considerations about Nixon, the classes,
normality, etc., as in Section 2.3.3, except that this time a valuation v is considered to be more normal
than a valuation w from the point of view of a class C iff

• in both v and w, the processor is informed that Nixon is an individual of C;

• in v, he is informed that Nixon is normal and not informed of the contrary;

• in w, he is not informed that Nixon is normal.

See Section 2.1.2 for recalls about the sources-processor systems. Given those considerations a
natural preference structure on V4 is R = 〈V4, l,≺〉, where l is identity and ≺ is the relation such
that ∀ v,w ∈ V4, we have v ≺ w iff (1) or (2) below holds (i.e. v is more normal than w from the
point of view of some class):

(1) v |=4 r and v |=4 ¬p and v 
|=4 p and w |=4 r and w 
|=4 ¬p;

(2) v |=4 q and v |=4 p and v 
|=4 ¬p and w |=4 q and w 
|=4 p.

Let |∼ be the preferential consequence relation defined by the coherent choice function µR.
Then, again we “jump” to plausible conclusions and revise previous “hasty” conclusions. For

instance, r |∼ ¬p and {r, p} 
|∼ ¬p and q |∼ p and {q,¬p} 
|∼ p.
In addition, |∼ is paraconsistent. For instance, {p,¬p, q} |∼ p and {p,¬p, q} |∼ ¬p and

{p,¬p, q} |∼ q and {p,¬p, q} 
|∼ ¬q. And, it happens less often that a set of formulas is ren-
dered useless because there is no preferred model for it, though there are models for it. For instance,
this time, {q, r} |∼ p and {q, r} |∼ ¬p and {q, r} |∼ q and {q, r} 
|∼ ¬q and {q, r} |∼ r and
{q, r} 
|∼ ¬r.

However, |∼ does not satisfy the Disjunctive Syllogism. Indeed, for instance, {¬r, r ∨ q} 
|∼ q.

2.4 Pivotal(-discriminative) consequence relations

2.4.1 Definitions

We turn to pivotal consequence relations. They model plausible ways to draw conclusions from
incomplete information. Unlike preferential consequence relations, they are monotonic.

34



Definition 29 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F .
We say that |∼ is a pivotal consequence relation iff there exists a SC choice function µ from D to
P(V) such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆ Mα

In addition, if µ is UC, CP, etc., then so is |∼.

We called these relations “pivotal” because, in the light of Proposition 22, they can be defined equiv-
alently with pivots, instead of SC choice functions. Their importance has been put in evidence
by D. Makinson in e.g. [Mak03, Mak05], where he showed that they constitute easy conceptual
passage from basic to plausible non-monotonic consequence relations. Indeed, they are perfectly
monotonic but already display some of the distinctive features (i.e. the choice functions) of plausi-
ble non-monotonic relations. Note that pivotal (resp. DP pivotal) consequence relations correspond
to Makinson’s pivotal-valuation (resp. pivotal-assumption) relations. We will give an example of
how they can be used to draw plausible conclusions from incomplete information in Section 2.4.2.

Moreover, if a many-valued semantic structure is considered, they lead to rational and non-trivial
conclusions is spite of the presence of contradictions and are thus useful to treat both incomplete and
inconsistent information. However, they will not satisfy the Disjunctive Syllogism. We will give an
example with the FOUR semantic structure in Section 2.4.3.

Characterizations of pivotal consequence relations, valid in classical frameworks, can be found
in the literature. For instance, the following result appears to be part of folklore for decades: the DP
pivotal consequence relations correspond precisely to those supraclassical closure operations that are
compact and satisfy Disjunction in the premisses. For more details see e.g. [Rot01, Mak03, Mak05].

Now, we turn to a qualified version of pivotal consequence. It captures the idea that the contra-
dictions in the conclusions should be rejected.

Definition 30 Let L be a language, ¬ a unary connective of L, F the set of all wffs of L, 〈F ,V, |=〉
a semantic structure, and |∼ a relation on P(F) ×F .
We say that |∼ is a pivotal-discriminative consequence relation iff there exists a SC choice function
µ fromD to P(V) such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff µ(MΓ) ⊆ Mα and µ(MΓ) 
⊆ M¬α

In addition, if µ is UC, CP, etc., then so is |∼.

As in the preferential case, this discriminative version brings something new in many-valued seman-
tic structures for it removes, in non-trivial cases, the contradictions in the conclusions.

2.4.2 Example in a classical framework

Let L be a classical propositional language of which the atoms are r, q, and p. Let F be the set of
all wffs of L, V the set of all classical two-valued valuations of L, and |= the classical satisfaction
relation for these objects. Now, make the same considerations about Nixon, the classes, normality,
etc., as previously. In addition, consider that a valuation is negligible iff (in it) Nixon is a non-normal
individual of some class. Then, collect the non-negligible valuations in a pivot I . More formally:

I = {v ∈ V : if v |= r, then v |= ¬p; and if v |= q, then v |= p}.
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Finally, let |∼ be the pivotal consequence relation defined by the SC choice function µI .
Then, |∼ leads to “jump” to plausible conclusions from incomplete information. For instance,

r |∼ ¬p and q |∼ p. But, we fall into triviality if we face new information that contradict previous
“hasty” conclusions. For instance, {r, p} |∼ α, ∀ α ∈ L, and {q,¬p} |∼ α, ∀ α ∈ L. This is, in
some sense, the price to pay for being monotonic, whereas plausible conclusions are accepted.

In addition, |∼ is not paraconsistent and some sets of formulas are rendered useless because
there is no model in the pivot for them, though there are models for them. For instance, {q, r} |∼ α,
∀ α ∈ L.

2.4.3 Example in the FOUR framework

Consider the FOUR semantic structure 〈Fc,V4, |=4〉 and suppose A = {r, q, p}. In addition, make
the same considerations about Nixon, the classes, normality, etc. as previously, except that this time a
valuation is considered to be negligible iff (in it) the processor is informed that Nixon is an individual
of some class, but he is not informed that Nixon is a normal individual of that class. Again, collect
the non-negligible valuations in a pivot I . More formally:

I = {v ∈ V4 : if v |=4 r, then v |=4 ¬p; and if v |=4 q, then v |=4 p}.

Let |∼ be the pivotal consequence relation defined by the SC choice function µI .
Then, again |∼ leads to “jump” to plausible conclusions from incomplete information. For in-

stance, r |∼ ¬p and q |∼ p. Moreover, though “hasty” conclusions are never withdrawn, we do not
fall into triviality when we face new information that contradict them. For instance, {r, p} |∼ p and
{r, p} |∼ ¬p and {r, p} |∼ r and {r, p} 
|∼ ¬r.

In addition, |∼ is paraconsistent. For instance, {p,¬p, q} |∼ p and {p,¬p, q} |∼ ¬p and
{p,¬p, q} |∼ q and {p,¬p, q} 
|∼ ¬q. And, less sets of formulas are rendered useless because
there is no model in the pivot for them, though there are models for them. For instance, this time,
{q, r} |∼ p and {q, r} |∼ ¬p and {q, r} |∼ q and {q, r} 
|∼ ¬q and {q, r} |∼ r and {q, r} 
|∼ ¬r.

However, |∼ does not satisfy the Disjunctive Syllogism. Indeed, for instance, {¬r, r ∨ q} 
|∼ q.
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Chapter 3

Characterizations of preferential
consequence relations

In the present chapter, we will characterize families of preferential and preferential-discriminative
consequence relations. These results have been published in [BN05b]. Sometimes, we will need to
make some assumptions (defined in Section 2.1.1) about the semantic structure under consideration.
However, no assumption will be needed for the three following families:

• the preferential consequence relations (Section 3.2);
• the DP preferential consequence relations (Section 3.1);
• the DP LM preferential consequence relations (Section 3.1).

We will assume (A1) and (A3) for:

• the CP preferential-discriminative consequence relations (Section 3.4);
• the CP DP preferential-discriminative consequence relations (Section 3.3);
• the CP DP LM preferential-discriminative consequence relations (Section 3.3).

And, we will need (A1), (A2), and (A3) for:

• the preferential-discriminative consequence relations (Section 3.4);
• the DP preferential-discriminative consequence relations (Section 3.3);
• the DP LM preferential-discriminative consequence relations (Section 3.3).

3.1 The non-discriminative and DP case

The characterizations in this section have already been given in Proposition 3.1 of [Sch00], under the
assumption that a classical propositional semantic structure is considered. Using the same techniques
as those of Schlechta, we show that his characterizations hold with any semantic structure.
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Notation 31 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F .
Then, consider the following conditions: ∀ Γ,∆ ⊆ F ,
(|∼0) if �(Γ) = �(∆), then |∼(Γ) = |∼(∆);

(|∼1) �(|∼(Γ)) = |∼(Γ);

(|∼2) Γ ⊆ |∼(Γ);

(|∼3) |∼(Γ,∆) ⊆ �(|∼(Γ),∆);

(|∼4) if Γ ⊆ �(∆) ⊆ |∼(Γ), then |∼(Γ) ⊆ |∼(∆).

Note that those conditions are purely syntactic when there is a proof system available for � (which
is the case with e.g. the classical, FOUR, and J3 semantic structures).

Proposition 32 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F . Then,
(0) |∼ is a DP preferential consequence relation iff (|∼0), (|∼1), (|∼2), and (|∼3) hold;

(1) |∼ is a DP LM preferential consequence relation iff (|∼0), (|∼1), (|∼2), (|∼3), and (|∼4) hold.

Proof Proof of (0). Direction: “→”.
By hypothesis, there exists a DP coherent choice function µ fromD to P(V) such that ∀ Γ ⊆ F ,
|∼(Γ) = T (µ(MΓ)). We will show:
(0.0) |∼ satisfies (|∼0);
(0.1) |∼ satisfies (|∼1);
(0.2) |∼ satisfies (|∼2);
(0.3) ∀ Γ ⊆ F , we have µ(MΓ) = M|∼(Γ);
(0.4) |∼ satisfies (|∼3).

Direction: “←”.
Suppose |∼ satisfies (|∼0), (|∼1), (|∼2), and (|∼3).
Let µ be the function fromD to P(V) such that ∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ).
Then, µ is well-defined.
Indeed, if Γ,∆ ⊆ F and MΓ = M∆, then �(Γ) = �(∆), thus, by (|∼0), |∼(Γ) = |∼(∆).
In addition, µ is obviously DP. We show the following which ends the proof:
(0.5) µ is a choice function;
(0.6) µ is coherent;
(0.7) ∀ Γ ⊆ F , we have |∼(Γ) = T (µ(MΓ)).

Proof of (0.0). Let Γ,∆ ⊆ F and suppose �(Γ) = �(∆).
Then,MΓ = M∆. Thus, |∼(Γ) = T (µ(MΓ)) = T (µ(M∆)) = |∼(∆).

Proof of (0.1). Let Γ ⊆ F . Then, �(|∼(Γ)) = �(T (µ(MΓ))) = T (MT (µ(MΓ))) = |∼(Γ).

Proof of (0.2). Let Γ ⊆ F . Then, Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = |∼(Γ).

Proof of (0.3). Let Γ ⊆ F . As µ is DP, µ(MΓ) ∈ D.
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Thus, ∃ Γ′ ⊆ F , µ(MΓ) = MΓ′ . Therefore, µ(MΓ) = MΓ′ = MT (MΓ′) = MT (µ(MΓ)) = M|∼(Γ).

Proof of (0.4). Let Γ,∆ ⊆ F . AsMΓ,∆ ⊆ MΓ and µ is coherent, µ(MΓ) ∩ MΓ,∆ ⊆ µ(MΓ,∆).
Therefore, |∼(Γ,∆) = T (µ(MΓ,∆)) ⊆ T (µ(MΓ) ∩ MΓ,∆) = T (µ(MΓ) ∩ M∆).
Thus, by (0.0), |∼(Γ,∆) ⊆ T (M|∼(Γ) ∩ M∆) = T (M|∼(Γ),∆) = �(|∼(Γ),∆).

Proof of (0.5). Let Γ ⊆ F . Then, µ(MΓ) = M|∼(Γ), which is a subset ofMΓ, by (|∼2).

Proof of (0.6). Let Γ,∆ ⊆ F and suppose MΓ ⊆ M∆.
Then, µ(M∆) ∩ MΓ = M|∼(∆) ∩ MΓ = M|∼(∆),Γ.
But, by (|∼3), M|∼(∆),Γ ⊆ M|∼(∆,Γ) = µ(M∆,Γ) = µ(MΓ).

Proof of (0.7). Let Γ ⊆ F . Then, by (|∼1), |∼(Γ) = �(|∼(Γ)) = T (M|∼(Γ)) = T (µ(MΓ)).

Proof of (1). Direction: “→”.
Verbatim the same proof as for (0), except that in addition we have µ is LM.
We use it to show that |∼ satisfies (|∼4).
Let Γ,∆ ⊆ F and suppose Γ ⊆ �(∆) ⊆ |∼(Γ).
Then, by (0.3), µ(MΓ) = M|∼(Γ) ⊆ M�(∆) = M∆ ⊆ MΓ.
Therefore, as µ is locally monotonic, µ(M∆) ⊆ µ(MΓ).
Thus, |∼(Γ) = T (µ(MΓ)) ⊆ T (µ(M∆)) = |∼(∆).

Direction: “←”.
Verbatim the same proof as for (0), except that in addition we have (|∼4) is satisfied.
We use it to show that µ is locally monotonic.
Let Γ,∆ ⊆ F and suppose µ(MΓ) ⊆ M∆ ⊆ MΓ.
Then,M|∼(Γ) ⊆ M∆ ⊆ MΓ. Therefore, Γ ⊆ T (MΓ) ⊆ T (M∆) = �(∆).
On the other hand, �(∆) = T (M∆) ⊆ T (M|∼(Γ)) = �(|∼(Γ)) which is equal to |∼(Γ), by (|∼1).
Thus, by (|∼4), we have |∼(Γ) ⊆ |∼(∆). Therefore, µ(M∆) = M|∼(∆) ⊆ M|∼(Γ) = µ(MΓ).

3.2 The non-discriminative and not necessarily DP case

In this section, we will characterize the family of all preferential consequence relations. Unlike in
Section 3.1, our conditions will not be purely syntactic (i.e. using only �, |∼, etc.). In fact, we did
not succed in translating properties like Coherence in syntactic terms because the choice functions
under consideration are not necessarily definability preserving. Indeed, we do no longer have at our
disposal the important equality: µ(MΓ) = M|∼(Γ), which is of great help to perform the translation
and which holds precisely because of Definability Preservation.

In Proposition 5.2.11 of [Sch04], K. Schlechta provided a characterization of the family men-
tioned above, under the assumption that a classical propositional semantic structure is considered.
Note that most of his work is done in a very general, in fact algebraic, framework. Only at the end,
he applied his general lemmas in a classical framework to get the characterization.The conditions he
gave, as ours, are not purely syntactic (e.g. they involve the notion of model, etc.).

However, some limits of what can be done in this area have been put in evidence by Schlechta.
Approximatively, he showed in Proposition 5.2.15 of the same book that, in an infinite classical
framework, there does not exist a characterization containing only conditions which are universally
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quantified, of limited size, and using only simple operations (like e.g. ∪, ∩, \).
The purpose of the present section is to provided a new characterization, more elegant than the

one of Schlechta and that hold with any semantic structure. To do so, we have been inspired by
the algebraic part of the work of Schlechta (see Proposition 5.2.5 of [Sch04]). Technically, the idea
begins by building from any function f , a coherent choice function µf such that whenever f “covers”
some coherent choice function, it necessarily covers µf .

Definition 33 Let V be a set, V andW subsets of P(V), and f a function fromV toW.
We denote by µf the function fromV to P(V) such that ∀ V ∈ V,

µf (V ) = {v ∈ V : ∀ W ∈ V, if v ∈ W ⊆ V, then v ∈ f(W )}.

Lemma 34 Let V be a set, V andW subsets of P(V), and f a function fromV toW.
Then, µf is a coherent choice function.

Proof µf is obviously a choice function. It remains to show that it is coherent.
Suppose V,W ∈ V, V ⊆ W , and v ∈ µf (W ) ∩ V . We show v ∈ µf (V ).
To do so, suppose the contrary, i.e. v 
∈ µf (V ).
Then, as v ∈ V , we have ∃ Z ∈ V, Z ⊆ V , v ∈ Z , and v 
∈ f(Z).
But, V ⊆ W , thus Z ⊆ W . Therefore, by definition of µf , v 
∈ µf (W ), which is impossible.

Lemma 35 Let V be a set, V, W, and X subsets of P(V), f a function from V to W, and µ a
coherent choice function from V toX such that ∀ V ∈ V, f(V ) = MT (µ(V )).
Then, ∀ V ∈ V, f(V ) = MT (µf (V )).

Proof Let V ∈ V. We show f(V ) = MT (µf (V )).
Case 1: ∃ v ∈ µ(V ), v 
∈ µf (V ).
As µ(V ) ⊆ V , we have v ∈ V .
Thus, by definition of µf , ∃ W ∈ V,W ⊆ V , v ∈ W , and v 
∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
On the other hand, as µ is coherent, µ(V ) ∩ W ⊆ µ(W ). Thus, v ∈ µ(W ), which is impossible.
Case 2: µ(V ) ⊆ µf (V ).
Case 2.1: ∃ v ∈ µf (V ), v 
∈ f(V ).
Then, ∃ W ∈ V,W ⊆ V , v ∈ W , and v 
∈ f(W ). Indeed, just take V itself for the choice ofW .
Therefore, v 
∈ µf (V ), which is impossible.
Case 2.2: µf (V ) ⊆ f(V ).
Then, f(V ) = MT (µ(V )) ⊆ MT (µf (V )) ⊆ MT (f(V )) = MT (MT (µ(V ))) = MT (µ(V )) = f(V ).

Now, everything is ready to show the representation result.

Notation 36 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F .
Then, consider the following condition: ∀ Γ ⊆ F ,
(|∼5) |∼(Γ) = T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ M|∼(∆)}).

Proposition 37 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F .
Then, |∼ is a preferential consequence relation iff (|∼5) holds.
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Proof Direction: “→”.
There exists a coherent choice function µ fromD to P(V) such that ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Let f be the function fromD toD such that ∀ V ∈ D, we have f(V ) = MT (µ(V )).
By Lemma 35, ∀ V ∈ D, we have f(V ) = MT (µf (V )).
Note that ∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) = M|∼(Γ).
We show that (|∼5) holds. Let Γ ⊆ F .
Then, |∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (f(MΓ)) = T (MT (µf (MΓ))) = T (µf (MΓ)) =
T ({v ∈ MΓ : ∀ W ∈ D, if v ∈ W ⊆ MΓ, then v ∈ f(W )}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ f(M∆)}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ M|∼(∆)}).

Direction: “←”.
Suppose |∼ satisfies (|∼5).
Let f be the function fromD toD such that ∀ Γ ⊆ F , we have f(MΓ) = M|∼(Γ).
Note that f is well-defined. Indeed, if Γ,∆ ⊆ F and MΓ = M∆, then, by (|∼5), |∼(Γ) = |∼(∆).
In addition, by (|∼5), we clearly have ∀ Γ ⊆ F , |∼(Γ) = T (µf (MΓ)).
Finally, by Lemma 34, µf is a coherent choice function.

3.3 The discriminative and DP case

In this section, we will characterize certain families of DP preferential-discriminative consequence
relations. For that, we need first some standard notations and an inductive construction presented in
Definition 39:

Notation 38 N denotes the natural numbers including 0: {0, 1, 2, . . . , }.
N

+ denotes the strictly positive natural numbers: {1, 2, . . . , }.
Z denotes the integers.
Let i, j ∈ Z. Then, [i, j] denotes the set of all k ∈ Z (not in R) such that i ≤ k ≤ j.
Let L be a language, ∨ a binary connective of L, F the set of all wffs of L, and β1, β2, . . . , βr ∈ F .
Whenever we write β1 ∨ β2 ∨ . . . ∨ βr, we mean (. . . ((β1 ∨ β2) ∨ β3) ∨ . . . ∨ βr−1) ∨ βr .

Definition 39 Let L be a language, ¬ a unary connective of L, F the set of all wffs of L, 〈F ,V, |=〉
a semantic structure, |∼ a relation on P(F) ×F , and Γ ⊆ F . Then,

H1(Γ) := {¬β ∈ F : β ∈ �(Γ, |∼(Γ)) \ |∼(Γ) and ¬β 
∈ �(Γ, |∼(Γ))}.
Let i ∈ N with i ≥ 2. Then,

Hi(Γ) := {¬β ∈ F :
{

β ∈ �(Γ, |∼(Γ),H1(Γ), . . . ,Hi−1(Γ)) \ |∼(Γ) and
¬β 
∈ �(Γ, |∼(Γ),H1(Γ), . . . ,Hi−1(Γ))

}.

H(Γ) :=
⋃

i∈N+

Hi(Γ).

Definition 40 Suppose L is a language, ¬ a unary connective of L, ∨ a binary connective of L, F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure, and |∼ a relation on P(F) ×F .
Then, consider the following conditions: ∀ Γ,∆ ⊆ F , ∀ α, β ∈ F ,
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(|∼6) if β ∈ �(Γ, |∼(Γ)) \ |∼(Γ) and ¬α ∈ �(Γ, |∼(Γ),¬β), then α 
∈ |∼(Γ);

(|∼7) if α ∈ �(Γ, |∼(Γ)) \ |∼(Γ) and β ∈ �(Γ, |∼(Γ),¬α) \ |∼(Γ), then α ∨ β 
∈ |∼(Γ);

(|∼8) if α ∈ |∼(Γ), then ¬α 
∈ �(Γ, |∼(Γ));

(|∼9) if ∆ ⊆ �(Γ), then |∼(Γ) ∪ H(Γ) ⊆ �(∆, |∼(∆),H(∆),Γ);

(|∼10) if Γ ⊆ �(∆) ⊆ �(Γ, |∼(Γ),H(Γ)), then |∼(Γ) ∪ H(Γ) ⊆ �(∆, |∼(∆),H(∆));

(|∼11) if Γ is consistent, then |∼(Γ) is consistent, Γ ⊆ |∼(Γ), and �(|∼(Γ)) = |∼(Γ).

Note that those conditions are purely syntactic when there is a proof system available for �.

Proposition 41 Suppose L is a language, ¬ a unary connective of L, ∨ and ∧ binary connectives
of L, F the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1) and (A3), and |∼ a
relation on P(F) ×F . Then,
(0) |∼ is a CP DP preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),

(|∼9), and (|∼11) hold;

(1) |∼ is a CP DP LM preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),
(|∼9), (|∼10), and (|∼11) hold.

Suppose 〈F ,V, |=〉 satisfies (A2) too. Then,

(2) |∼ is a DP preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8), and
(|∼9) hold;

(3) |∼ is a DP LM preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8),
(|∼9), and (|∼10) hold.

The proof of Proposition 41 has been relegated at the end of Section 3.3. We need first Definition 42
and Lemmas 43, 44, and 45 below. Here are some purely technical tools:

Definition 42 Suppose L is a language, ¬ a unary connective of L, ∨ a binary connective of L, F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1), |∼ a relation on P(F) ×F ,
and Γ ⊆ F . Then,

M1
Γ := {v ∈ MΓ,|∼(Γ) : ∃ β ∈ T (MΓ,|∼(Γ)) \ |∼(Γ), v 
∈ M¬β}.

Let i ∈ N with i ≥ 2. Then,

M i
Γ := {v ∈ MΓ,|∼(Γ)\M1

Γ∪. . .∪M i−1
Γ : ∃β ∈ T (MΓ,|∼(Γ)\M1

Γ∪. . .∪M i−1
Γ )\|∼(Γ), v 
∈ M¬β}.

M ′
Γ :=

⋃
i∈N+

M i
Γ

n(Γ) := |{i ∈ N
+ : M i

Γ 
= ∅}|
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Suppose M1
Γ 
= ∅. Then, we denote by β1

Γ an element of F (chosen arbitrarily) such that
∃ r ∈ N

+, ∃ v1, v2, . . . , vr ∈ V , and ∃ β1, β2, . . . , βr ∈ F withM1
Γ = {v1, v2, . . . , vr},

β1
Γ = β1 ∨ β2 ∨ . . . ∨ βr,

and ∀ j ∈ [1, r], βj 
∈ |∼(Γ),MΓ,|∼(Γ) ⊆ Mβj
, and vj 
∈ M¬βj

.
AsM1

Γ 
= ∅ and M1
Γ is finite (thanks to (A1)), such an element exists.

Suppose i ∈ N, i ≥ 2, and Mi
Γ 
= ∅.

Then, we denote by βi
Γ an element of F (chosen arbitrarily) such that

∃ r ∈ N
+, ∃ v1, v2, . . . , vr ∈ V , and ∃ β1, β2, . . . , βr ∈ F withM i

Γ = {v1, v2, . . . , vr},

βi
Γ = β1 ∨ β2 ∨ . . . ∨ βr,

and ∀ j ∈ [1, r], βj 
∈ |∼(Γ),MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i−1

Γ ⊆ Mβj
, and vj 
∈ M¬βj

.
AsM i

Γ 
= ∅ and M i
Γ is finite, such an element exists.

Suppose M ′
Γ 
= ∅. Then,

βΓ := β1
Γ ∨ β2

Γ ∨ . . . ∨ β
n(Γ)
Γ

As M ′
Γ 
= ∅, n(Γ) ≥ 1. In addition, we will show in Lemma 43 below that n(Γ) is finite and

∀ i ∈ N
+ with i ≤ n(Γ),M i

Γ 
= ∅. Thus, βΓ is well-defined.

F (Γ) :=
{ {¬βΓ} if M ′

Γ 
= ∅
∅ otherwise

G(Γ) := {α ∈ F : α 
∈ |∼(Γ), ¬α 
∈ |∼(Γ), and Td(MΓ,|∼(Γ),α) ⊆ |∼(Γ)}

Here are some quick results on the purely technical tools defined just above:

Lemma 43 Suppose L is a language, ¬ a unary connective of L, ∨ a binary connective of L, F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1), |∼ a relation on P(F) ×F ,
Γ ⊆ F , and i, j ∈ N

+. Then,

(0) if i 
= j, then M i
Γ ∩ M j

Γ = ∅;
(1) ifM i

Γ = ∅, then M i+1
Γ = ∅;

(2) Td(MΓ,|∼(Γ)) ⊆ |∼(Γ) iffM1
Γ = ∅;

(3) if i ≥ 2, then Td(MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i−1

Γ ) ⊆ |∼(Γ) iffM i
Γ = ∅;

(4) n(Γ) is finite;

(5) if i ≤ n(Γ), thenM i
Γ 
= ∅;

(6) if i > n(Γ), thenM i
Γ = ∅;

(7) ifM ′
Γ 
= ∅, then M ′

Γ = M1
Γ ∪ . . . ∪ M

n(Γ)
Γ ;

(8) Td(MΓ,|∼(Γ) \ M ′
Γ) ⊆ |∼(Γ).
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Proof Proofs of (0), (1), (2), and (3). Trivial.

Proof of (4). Obvious by (0) and (A1).

Proof of (5). Suppose ∃ i ∈ N
+,M i

Γ = ∅ and i ≤ n(Γ).
Then, by (1), ∀ j ∈ N

+, j ≥ i,M j
Γ = ∅.

Thus, |{j ∈ N
+ : M j

Γ 
= ∅}| ≤ i − 1 < n(Γ), which is impossible.

Proof of (6). Suppose ∃ i ∈ N
+,M i

Γ 
= ∅ and i > n(Γ).
Then, by (1), ∀ j ∈ N

+, j ≤ i,M j
Γ 
= ∅.

Thus, |{j ∈ N
+ : M j

Γ 
= ∅}| ≥ i > n(Γ), which is impossible.

Proof of (7). Obvious by (6).

Proof of (8). Case 1: M ′
Γ = ∅.

Then, Td(MΓ,|∼(Γ) \ M ′
Γ) = Td(MΓ,|∼(Γ)). In addition, M1

Γ = ∅. Thus, by (2), we are done.
Case 2: M ′

Γ 
= ∅.
Then, by (7), Td(MΓ,|∼(Γ) \ M ′

Γ) = Td(MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M

n(Γ)
Γ ).

In addition, n(Γ) + 1 ≥ 2 and, by (6), Mn(Γ)+1
Γ = ∅. Thus, by (3), we are done.

We turn to an important lemma. Its main goal is to show that the conditions (|∼6), (|∼7), and
(|∼8) are sufficient to establish the following important equality: |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)), which
provides a semantic definition of |∼ (in the discriminative manner).

Lemma 44 Suppose L is a language, ¬ a unary connective of L, ∨ and ∧ binary connectives of L,
F the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1) and (A3), |∼ a relation on
P(F) ×F satisfying (|∼6), (|∼7), and (|∼8), and Γ ⊆ F . Then,
(0) ifM ′

Γ 
= ∅, then βΓ 
∈ |∼(Γ);

(1) ifM ′
Γ 
= ∅, then MΓ,|∼(Γ) ⊆ MβΓ

;

(2) ifM ′
Γ 
= ∅, then M ′

Γ ∩ M¬βΓ
= ∅;

(3) ifM ′
Γ 
= ∅, then MΓ,|∼(Γ) \ M ′

Γ ⊆ M¬βΓ
;

(4) MΓ,|∼(Γ) \ M ′
Γ = MΓ,|∼(Γ),F (Γ);

(5) |∼(Γ) = Td(MΓ,|∼(Γ),F (Γ));

(6) MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ);

(7) |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)).

Proof Proofs of (0), (1), and (2). Suppose M′
Γ 
= ∅.

Then, it suffices to show by induction: ∀ i ∈ [1, n(Γ)],
p3(i) (M1

Γ ∪ . . . ∪ M i
Γ) ∩ M¬(β1

Γ∨...∨βi
Γ) = ∅;

p2(i) MΓ,|∼(Γ) ⊆ Mβ1
Γ∨...∨βi

Γ
;
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p1(i) β1
Γ ∨ . . . ∨ βi

Γ 
∈ |∼(Γ).
AsM1

Γ 
= ∅, ∃ r ∈ N
+, ∃ v1, v2, . . . , vr ∈ V , and ∃β1, β2, . . . , βr ∈ F ,M1

Γ = {v1, . . . , vr},
β1

Γ = β1 ∨ . . . ∨ βr, and ∀ j ∈ [1, r], βj 
∈ |∼(Γ),MΓ,|∼(Γ) ⊆ Mβj
, and vj 
∈ M¬βj

.
Then, it can be shown that:
(0.0) p3(1) holds;
(0.1) p2(1) holds;
(0.2) p1(1) holds.
Now, let i ∈ [1, n(Γ) − 1] and suppose p1(i), p2(i), and p3(i) hold.
AsM i+1

Γ 
= ∅, ∃ r ∈ N+, ∃ v1, v2, . . . , vr ∈ V , and ∃ β1, β2, . . . , βr ∈ F ,
M i+1

Γ = {v1, . . . , vr}, βi+1
Γ = β1 ∨ . . . ∨ βr , and

∀ j ∈ [1, r], βj 
∈ |∼(Γ),MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i

Γ ⊆ Mβj
, and vj 
∈ M¬βj

.
Then, it can be shown that:
(0.3) p3(i + 1) holds;
(0.4) p2(i + 1) holds;
(0.5) β1

Γ ∨ . . . ∨ βi
Γ ∨ β1 ∨ β2 ∨ . . . ∨ βr 
∈ |∼(Γ);

(0.6) p1(i + 1) holds.

Proof of (0.0). If vj ∈ M1
Γ, then vj 
∈ M¬βj

. But, by (A3),M¬β1
Γ
⊆ M¬βj

.

Proof of (0.1). We have MΓ,|∼(Γ) ⊆ Mβ1 which is a subset ofMβ1
Γ
, by (A3).

Proof of (0.2). It suffices to show by induction: ∀ j ∈ [1, r],
q(j) β1 ∨ . . . ∨ βj 
∈ |∼(Γ).
Obviously, q(1) holds.
Let j ∈ [1, r − 1]. Suppose q(j). We show q(j + 1).
By (A3), we haveMΓ,|∼(Γ) ⊆ Mβ1∨...∨βj

.
On the other hand,MΓ,|∼(Γ),¬(β1∨...∨βj) ⊆ MΓ,|∼(Γ) ⊆ Mβj+1

.
Thus, by q(j) and (|∼7) (take β1 ∨ . . . ∨ βj for α and βj+1 for β), we get β1 ∨ . . . ∨ βj+1 
∈ |∼(Γ).

Proof of (0.3). Let v ∈ M1
Γ ∪ . . . ∪ M i+1

Γ . We show v 
∈ M¬(β1
Γ∨...∨βi+1

Γ ).

Case 1: v ∈ M1
Γ ∪ . . . ∪ M i

Γ.
Then, by p3(i), we have v 
∈ M¬(β1

Γ∨...∨βi
Γ). But, by (A3), M¬(β1

Γ∨...∨βi+1
Γ ) ⊆ M¬(β1

Γ∨...∨βi
Γ).

Case 2: v ∈ M i+1
Γ .

Then, ∃ j ∈ [1, r], v = vj . Thus, v 
∈ M¬βj
. But, by (A3),M¬(β1

Γ∨...∨βi+1
Γ ) ⊆ M¬βi+1

Γ
⊆ M¬βj

.

Proof of (0.4). By p2(i),MΓ,|∼(Γ) ⊆ Mβ1
Γ∨...∨βi

Γ
which is a subset ofMβ1

Γ∨...∨βi+1
Γ
, by (A3).

Proof of (0.5). It suffices to show by induction ∀ j ∈ [1, r]:
q(j) β1

Γ ∨ . . . ∨ βi
Γ ∨ β1 ∨ . . . ∨ βj 
∈ |∼(Γ).

We will show:
(0.5.0) MΓ,|∼(Γ),¬(β1

Γ∨...∨βi
Γ) ⊆ Mβ1 .

Then, by p1(i), p2(i), (0.5.0), and (|∼7) (take β1
Γ ∨ . . . ∨ βi

Γ for α and β1 for β), q(1) holds.
Now, let j ∈ [1, r − 1] and suppose q(j).
Then, we will show:
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(0.5.1) MΓ,|∼(Γ),¬(β1
Γ∨...∨βi

Γ∨β1∨...∨βj)
⊆ Mβj+1

.
In addition, by p2(i) and (A3), we get:
(0.5.2) MΓ,|∼(Γ) ⊆ Mβ1

Γ∨...∨βi
Γ∨β1∨...∨βj

.

By (0.5.1), (0.5.2), q(j), and (|∼7) (take β1
Γ ∨ . . . ∨ βi

Γ ∨ β1 ∨ . . . ∨ βj for α and βj+1 for β),
we get that q(j + 1) holds.

Proof of (0.5.0). Let v ∈ MΓ,|∼(Γ),¬(β1
Γ∨...∨βi

Γ). Then, v ∈ M¬(β1
Γ∨...∨βi

Γ).

Thus, by p3(i), v 
∈ M1
Γ ∪ . . . ∪ M i

Γ. Therefore, v ∈ MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i

Γ ⊆ Mβ1 .

Proof of (0.5.1). Let v ∈ MΓ,|∼(Γ),¬(β1
Γ∨...∨βi

Γ∨β1∨...∨βj)
. Then, by (A3), v ∈ M¬(β1

Γ∨...∨βi
Γ).

Therefore, by p3(i), v 
∈ M1
Γ ∪ . . . ∪ M i

Γ. Therefore, v ∈ MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i

Γ ⊆ Mβj+1
.

Proof of (0.6). By p2(i) and (A3), we getMΓ,|∼(Γ) ⊆ Mβ1
Γ∨...∨βi

Γ
⊆ Mβ1

Γ∨...∨βi
Γ∨β1∨...∨βr

.
In addition, by (A3), we getM¬(β1

Γ∨...∨βi
Γ∨β1∨...∨βr) = M¬(β1

Γ∨...∨βi+1
Γ ).

Therefore, by (0.5) and (|∼6) (take β1
Γ ∨ . . . ∨ βi+1

Γ for α and β1
Γ ∨ . . . ∨ βi

Γ ∨ β1 ∨ . . . ∨ βr for β),
we get that p1(i + 1) holds.

Proof of (3). Suppose M ′
Γ 
= ∅, v ∈ MΓ,|∼(Γ) \ M ′

Γ, and v 
∈ M¬βΓ
.

Then, by (0), (1), and definition ofMi
Γ, we get v ∈ M

n(Γ)+1
Γ , which is impossible by Lemma 43 (6).

Proof of (4). Case 1: M ′
Γ 
= ∅.

By (3), we get one direction: MΓ,|∼(Γ) \ M ′
Γ ⊆ MΓ,|∼(Γ),¬βΓ

.
By (2), we get the other direction: MΓ,|∼(Γ),¬βΓ

⊆ MΓ,|∼(Γ) \ M ′
Γ.

Case 2: M ′
Γ = ∅.

Then, obviously, MΓ,|∼(Γ) \ M ′
Γ = MΓ,|∼(Γ) = MΓ,|∼(Γ),F (Γ).

Proof of (5). Direction: “⊆”.
Case 1: M ′

Γ 
= ∅.
Suppose the contrary of what we want to show, i.e. ∃ α ∈ |∼(Γ), α 
∈ Td(MΓ,|∼(Γ),¬βΓ

).
Then,MΓ,|∼(Γ),¬βΓ

⊆ M|∼(Γ) ⊆ Mα. Thus,MΓ,|∼(Γ),¬βΓ
⊆ M¬α.

Consequently, by (0), (1), and (|∼6), we get α 
∈ |∼(Γ), which is impossible.
Case 2: M ′

Γ = ∅.
Let α ∈ |∼(Γ). Then,MΓ,|∼(Γ) ⊆ M|∼(Γ) ⊆ Mα. In addition, by (|∼8), MΓ,|∼(Γ) 
⊆ M¬α.
Consequently, α ∈ Td(MΓ,|∼(Γ)) = Td(MΓ,|∼(Γ),F (Γ)).

Direction: “⊇”. Obvious by (4) and Lemma 43 (8).

Proof of (6). Direction: “⊆”.
Case 1: M ′

Γ = ∅.
Case 1.1: H1(Γ) 
= ∅.
Then, ∃ α ∈ F , α 
∈ |∼(Γ), MΓ,|∼(Γ) ⊆ Mα, and MΓ,|∼(Γ) 
⊆ M¬α. Thus, α ∈ Td(MΓ,|∼(Γ)).
Therefore, by (5), α ∈ |∼(Γ), which is impossible.
Case 1.2: H1(Γ) = ∅.
Clearly, ∀ i ∈ N

+, if Hi(Γ) = ∅, then Hi+1(Γ) = ∅. Therefore, H(Γ) = ∅ = F (Γ).
Case 2: M ′

Γ 
= ∅.
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AsM ′
Γ ⊆ MΓ,|∼(Γ), we get, by (2), MΓ,|∼(Γ) 
⊆ M¬βΓ

.
Thus, by (0) and (1), we get ¬βΓ ∈ H1(Γ) ⊆ H(Γ). Therefore, MH(Γ) ⊆ MF (Γ).

Direction: “⊇”.
Case 1: M ′

Γ = ∅.
Verbatim the proof of Case 1 of direction “⊆”.
Case 2: M ′

Γ 
= ∅.
Then, the following holds:
(6.0) ∀i ∈ N

+,MΓ,|∼(Γ),¬βΓ
⊆ MΓ,|∼(Γ),H1(Γ),...,Hi(Γ).

Now, suppose the contrary of what we want to show, i.e.
∃ v ∈ MΓ,|∼(Γ),¬βΓ

, v 
∈ MΓ,|∼(Γ),H(Γ). Then, v 
∈ MH(Γ). But, clearly, MH(Γ) =
⋂

i∈N+ MHi(Γ).
Therefore, ∃ i ∈ N

+, v 
∈ MHi(Γ), which is impossible by (6.0).

Proof of (6.0). We show by induction: ∀i ∈ N
+,

p(i) MΓ,|∼(Γ),¬βΓ
⊆ MΓ,|∼(Γ),H1(Γ),...,Hi(Γ).

We will show
(6.0.0) p(1) holds.
Let i ∈ N

+, suppose p(i) holds, and suppose p(i + 1) does not hold.
Then, ∃ v ∈ MΓ,|∼(Γ),¬βΓ

, v 
∈ MΓ,|∼(Γ),H1(Γ),...,Hi+1(Γ).
Thus, ∃ j ∈ [1, i + 1], v 
∈ MHj(Γ).
Case 1: j = 1.
Then, ∃ β ∈ F ,MΓ,|∼(Γ) ⊆ Mβ , β 
∈ |∼(Γ), and v 
∈ M¬β .
Thus, v ∈ M1

Γ ∩ M¬βΓ
, which is impossible by (2).

Case 2: j ≥ 2.
Then, ∃ β ∈ F ,MΓ,|∼(Γ),H1(Γ),...,Hj−1(Γ) ⊆ Mβ , β 
∈ |∼(Γ), and v 
∈ M¬β .
But, by Lemma 43 (7), by (4), and p(i), we get
MΓ,|∼(Γ) \ M1

Γ ∪ . . . ∪ M
n(Γ)
Γ = MΓ,|∼(Γ) \ M ′

Γ = MΓ,|∼(Γ),¬βΓ
⊆ MΓ,|∼(Γ),H1(Γ),...,Hi(Γ) ⊆

MΓ,|∼(Γ),H1(Γ),...,Hj−1(Γ) ⊆ Mβ .

Therefore, v ∈ M
n(Γ)+1
Γ , which is impossible by Lemma 43 (6).

Proof of (6.0.0). Suppose the contrary of what we want to show, i.e.
suppose ∃ v ∈ MΓ,|∼(Γ),¬βΓ

, v 
∈ MΓ,|∼(Γ),H1(Γ).
Then, v 
∈ MH1(Γ). Thus, ∃ β ∈ F ,MΓ,|∼(Γ) ⊆ Mβ , β 
∈ |∼(Γ), and v 
∈ M¬β .
Thus, v ∈ M1

Γ. Therefore, v ∈ M ′
Γ ∩ M¬βΓ

, which is impossible by (2).

Proof of (7). Obvious by (5) and (6).

We turn to a second important lemma. Its main purpose is to show that any DP choice function µ
representing (in the discriminative manner) a relation |∼ satisfies the following equality: µ(MΓ) =
MΓ,|∼(Γ),H(Γ), which enables us to define µ from |∼.

Lemma 45 Suppose L is a language, ¬ a unary connective of L, ∨ and ∧ binary connectives of L,F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1) and (A3),V ⊆ P(V), µ a DP
choice function fromD toV, |∼ the relation on P(F)×F such that ∀Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)),
and Γ ⊆ F . Then:
(0) µ(MΓ) ⊆ MΓ,|∼(Γ);
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(1) |∼ satisfies (|∼6);

(2) |∼ satisfies (|∼7);

(3) |∼ satisfies (|∼8);

(4) M ′
Γ ∩ µ(MΓ) = ∅;

(5) MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ);

(6) ifM ′
Γ 
= ∅, then MΓ,|∼(Γ),H(Γ) = µ(MΓ).

If 〈F ,V, |=〉 satisfies (A2) too, then:

(7) ifM ′
Γ = ∅, then MG(Γ) = MTc(µ(MΓ));

(8) ifM ′
Γ = ∅, then MΓ,|∼(Γ) ⊆ MG(Γ);

(9) MΓ,|∼(Γ),H(Γ) = µ(MΓ).

If µ is coherency preserving, then again:

(10) MΓ,|∼(Γ),H(Γ) = µ(MΓ).

Proof Proof of (0). We show µ(MΓ) ⊆ M|∼(Γ). Let v ∈ µ(MΓ) and α ∈ |∼(Γ).
Then, α ∈ Td(µ(MΓ)). Thus, µ(MΓ) ⊆ Mα. Thus, v ∈ Mα and we are done.
In addition, obviously, µ(MΓ) ⊆ MΓ. Therefore, µ(MΓ) ⊆ MΓ ∩ M|∼(Γ) = MΓ,|∼(Γ).

Proof of (1). Let α, β ∈ F and suppose β ∈ �(Γ, |∼(Γ)) \ |∼(Γ) and ¬α ∈ �(Γ, |∼(Γ),¬β).
Then, by (0), µ(MΓ) ⊆ MΓ,|∼(Γ) ⊆ Mβ . But, β 
∈ |∼(Γ) = Td(µ(MΓ)). Thus, µ(MΓ) ⊆ M¬β .
Consequently, µ(MΓ) ⊆ MΓ,|∼(Γ),¬β ⊆ M¬α. Therefore, α 
∈ Td(µ(MΓ)) = |∼(Γ).

Proof of (2). Let α, β ∈ F and suppose α ∈ �(Γ, |∼(Γ)) \ |∼(Γ) and β ∈ �(Γ, |∼(Γ),¬α) \ |∼(Γ).
Then, by (0), µ(MΓ) ⊆ MΓ,|∼(Γ) ⊆ Mα. But, α 
∈ Td(µ(MΓ)). Thus, µ(MΓ) ⊆ M¬α.
Thus, µ(MΓ) ⊆ MΓ,|∼(Γ),¬α ⊆ Mβ . But, β 
∈ Td(µ(MΓ)). Therefore µ(MΓ) ⊆ M¬β .
Thus, by (A3), µ(MΓ) ⊆ M¬α ∩ M¬β = M¬(α∨β). Consequently, α ∨ β 
∈ Td(µ(MΓ)) = |∼(Γ).

Proof of (3). Let α ∈ |∼(Γ). Then, α ∈ Td(µ(MΓ)). Thus, µ(MΓ) 
⊆ M¬α.
Thus, by (0),MΓ,|∼(Γ) 
⊆ M¬α.

Proof of (4). Case 1: M ′
Γ = ∅. Obvious.

Case 2: M ′
Γ 
= ∅.

It is sufficient to show by induction: ∀ i ∈ [1, n(Γ)],
p(i) (M1

Γ ∪ . . . ∪ M i
Γ) ∩ µ(MΓ) = ∅.

We will show:
(4.0) p(1) holds.
Let i ∈ [1, n(Γ) − 1]. Suppose p(i). We show p(i + 1).
Case 1: M i+1

Γ ∩ µ(MΓ) = ∅.
Then, by p(i), we obviously get p(i + 1).
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Case 2: ∃ v ∈ M i+1
Γ ∩ µ(MΓ).

Then, ∃ β ∈ F , β 
∈ |∼(Γ),MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M i

Γ ⊆ Mβ , and v 
∈ M¬β .
Therefore, by (0) and p(i), µ(MΓ) ⊆ MΓ,|∼(Γ) \ M1

Γ ∪ . . . ∪ M i
Γ ⊆ Mβ . But, µ(MΓ) 
⊆ M¬β .

Consequently, β ∈ Td(µ(MΓ)) = |∼(Γ), which is impossible.

Proof of (4.0). Suppose the contrary of p(1), i.e. ∃ v ∈ M1
Γ ∩ µ(MΓ).

Then, ∃ β ∈ F , β 
∈ |∼(Γ),MΓ,|∼(Γ) ⊆ Mβ and v 
∈ M¬β .
Therefore, by (0), µ(MΓ) ⊆ Mβ . On the other hand, µ(MΓ) 
⊆ M¬β .
Therefore, β ∈ Td(µ(MΓ)) = |∼(Γ), which is impossible.

Proof of (5). As µ(MΓ) ∈ D, ∃ Γ′ ⊆ F ,MΓ′ = µ(MΓ).
Therefore, MT (µ(MΓ)) = MT (MΓ′) = MΓ′ = µ(MΓ).
Thus,MΓ,|∼(Γ),Tc(µ(MΓ)) = MΓ,Td(µ(MΓ)),Tc(µ(MΓ)) = MΓ,T (µ(MΓ)). But, Γ ⊆ T (µ(MΓ)).
Therefore, MΓ,T (µ(MΓ)) = MT (µ(MΓ)) = µ(MΓ).

Proof of (6). Suppose M ′
Γ 
= ∅. Direction: “⊆”.

Case 1: ∃ v ∈ MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M

n(Γ)
Γ , v 
∈ MTc(µ(MΓ)).

Then, ∃ α ∈ Tc(µ(MΓ)), v 
∈ Mα.

By Lemma 44 (3), Lemma 43 (7), and (A3), MΓ,|∼(Γ) \ M1
Γ ∪ . . . ∪ M

n(Γ)
Γ ⊆ M¬βΓ

⊆ M¬(βΓ∧α).
By (0) and Lemma 44 (1), µ(MΓ) ⊆ MβΓ

∩ Mα = M¬¬(βΓ∧α).
Therefore, ¬(βΓ ∧ α) 
∈ Td(µ(MΓ)) = |∼(Γ).
In addition, v 
∈ Mα ⊇ M¬¬(βΓ∧α).

Consequently, v ∈ M
n(Γ)+1
Γ (take ¬(βΓ ∧ α) for the β of the definition ofMi

Γ).
Therefore, by Lemma 43 (6), we get a contradiction.
Case 2: MΓ,|∼(Γ) \ M1

Γ ∪ . . . ∪ M
n(Γ)
Γ ⊆ MTc(µ(MΓ)).

Then, by Lemma 44 (6), Lemma 44 (4), Lemma 43 (7), and by (5), we get
MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ) \ M1

Γ ∪ . . . ∪ M
n(Γ)
Γ ⊆ MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ).

Direction: “⊇”.
By (0), (4), Lemma 44 (4), and Lemma 44 (6), we get
µ(MΓ) ⊆ MΓ,|∼(Γ) \ M ′

Γ = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ),H(Γ).

Proof of (7). Suppose M ′
Γ = ∅. Direction: “⊇”.

Suppose the contrary of what we want to show, i.e. ∃ v ∈ MTc(µ(MΓ)), v 
∈ MG(Γ).
Then, ∃ α ∈ G(Γ), v 
∈ Mα.
Case 1: α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), α 
∈ |∼(Γ). Thus, by Lemma 44 (5), α 
∈ Td(MΓ,|∼(Γ)).
Therefore, α ∈ Tc(MΓ,|∼(Γ)). Consequently, by (0), α ∈ Tc(µ(MΓ)).
Thus, v ∈ Mα, which is impossible.
Case 2: ¬α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), ¬α 
∈ |∼(Γ). Thus, by Lemma 44 (5), ¬α 
∈ Td(MΓ,|∼(Γ)).
Therefore, ¬α ∈ Tc(MΓ,|∼(Γ)). Consequently, by (A3), α ∈ Tc(MΓ,|∼(Γ)).
Therefore, by (0), α ∈ Tc(µ(MΓ)). Thus, v ∈ Mα, which is impossible.
Case 3: α 
∈ T (MΓ,|∼(Γ)) and ¬α 
∈ T (MΓ,|∼(Γ)).
Then, by (A2), MΓ,|∼(Γ),α 
⊆ M¬α. Therefore, α ∈ Td(MΓ,|∼(Γ),α).
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But, α ∈ G(Γ). Thus, Td(MΓ,|∼(Γ),α) ⊆ |∼(Γ). Thus, α ∈ |∼(Γ). Thus, α 
∈ G(Γ), impossible.
Direction: “⊆”.

Suppose the contrary of what we want to show, i.e. ∃ v ∈ MG(Γ), v 
∈ MTc(µ(MΓ)).
Then, we will show:
(7.0) ∃ α ∈ Tc(µ(MΓ)), |MΓ,|∼(Γ),α| < |µ(MΓ)|
But, µ(MΓ) ⊆ Mα and, by (0), µ(MΓ) ⊆ MΓ,|∼(Γ). Therefore, µ(MΓ) ⊆ MΓ,|∼(Γ),α.
Thus, |µ(MΓ)| ≤ |MΓ,|∼(Γ),α|, which is impossible by (7.0).

Proof of (7.0). We have ∃ δ ∈ Tc(µ(MΓ)), v 
∈ Mδ.
By (A1), |MΓ,|∼(Γ),δ| is finite. To show (7.0), it suffices to show by induction (in the decreasing
direction): ∀ i ∈ Z with i ≤ |MΓ,|∼(Γ),δ|,
p(i) ∃ α ∈ Tc(µ(MΓ)), v 
∈ Mα and |MΓ,|∼(Γ),α| − |µ(MΓ)| ≤ i.
Obviously, p(|MΓ,|∼(Γ),δ|) holds (take δ).
Let i ∈ Z with i ≤ |MΓ,|∼(Γ),δ | and suppose p(i) holds. We show p(i − 1).
We have ∃ α ∈ Tc(µ(MΓ)), v 
∈ Mα and |MΓ,|∼(Γ),α| − |µ(MΓ)| ≤ i.
Case 1: Td(MΓ,|∼(Γ),α) ⊆ |∼(Γ).
As α ∈ Tc(µ(MΓ)) and (A3) holds, we get ¬α ∈ Tc(µ(MΓ)).
But, Tc(µ(MΓ)) ∩ Td(µ(MΓ)) = ∅. Thus, neither α nor ¬α belongs to Td(µ(MΓ)) = |∼(Γ).
Consequently, α ∈ G(Γ). Thus, v ∈ Mα, which is impossible.
Case 2: ∃ β ∈ Td(MΓ,|∼(Γ),α), β 
∈ |∼(Γ).
By (0), µ(MΓ) ⊆ MΓ,|∼(Γ). On the other hand, µ(MΓ) ⊆ Mα. Thus, µ(MΓ) ⊆ MΓ,|∼(Γ),α ⊆ Mβ .
But, β 
∈ |∼(Γ) = Td(µ(MΓ)). Therefore, µ(MΓ) ⊆ M¬β .
Consequently, µ(MΓ) ⊆ Mα ∩ M¬β = Mα∧¬β and µ(MΓ) ⊆ M¬α ⊆ M¬(α∧¬β).
Therefore, α ∧ ¬β ∈ Tc(µ(MΓ)).
Moreover, v 
∈ Mα ⊇ Mα∧¬β .
In addition, MΓ,|∼(Γ),α∧¬β ⊆ MΓ,|∼(Γ),α, whilst MΓ,|∼(Γ),α 
⊆ M¬β ⊇ MΓ,|∼(Γ),α∧¬β .
Thus, |MΓ,|∼(Γ),α∧¬β | ≤ |MΓ,|∼(Γ),α| − 1. Thus, |MΓ,|∼(Γ),α∧¬β | − |µ(MΓ)| ≤ i − 1.
Therefore, p(i − 1) holds (take α ∧ ¬β).

Proof of (8). Suppose M ′
Γ = ∅.

Now, suppose the contrary of what we want to show, i.e. ∃ v ∈ MΓ,|∼(Γ), v 
∈ MG(Γ).
Then, ∃ α ∈ G(Γ), v 
∈ Mα.
Case 1: α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), α 
∈ |∼(Γ). Therefore, by Lemma 44 (5), α 
∈ Td(MΓ,|∼(Γ)).
Thus, α ∈ Tc(MΓ,|∼(Γ)). Therefore, MΓ,|∼(Γ) ⊆ Mα. Consequently, v ∈ Mα, which is impossible.
Case 2: ¬α ∈ T (MΓ,|∼(Γ)).
As α ∈ G(Γ), ¬α 
∈ |∼(Γ). Therefore, by Lemma 44 (5), ¬α 
∈ Td(MΓ,|∼(Γ)).
Thus, ¬α ∈ Tc(MΓ,|∼(Γ)). Therefore, by (A3), MΓ,|∼(Γ) ⊆ M¬¬α = Mα.
Consequently, v ∈ Mα, which is impossible.
Case 3: α 
∈ T (MΓ,|∼(Γ)) and ¬α 
∈ T (MΓ,|∼(Γ)).
Then, by (A2), MΓ,|∼(Γ),α 
⊆ M¬α. Thus, α ∈ Td(MΓ,|∼(Γ),α). But, α ∈ G(Γ). Thus, α 
∈ |∼(Γ).
Therefore, Td(MΓ,|∼(Γ),α) 
⊆ |∼(Γ). Consequently, α 
∈ G(Γ), which is impossible.

Proof of (9). Case 1: M ′
Γ = ∅.

By Lemma 44 (6),MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ).
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But, by (8), (7), and (5),MΓ,|∼(Γ) = MΓ,|∼(Γ),G(Γ) = MΓ,|∼(Γ),Tc(µ(MΓ)) = µ(MΓ).
Case 2: M ′

Γ 
= ∅. Obvious by (6).

Proof of (10).
Case 1: M ′

Γ = ∅.
Case 1.1: ∃ v ∈ MΓ,|∼(Γ), v 
∈ MTc(µ(MΓ)).
Case 1.1.1: Γ is not consistent.
Then, ∃α ∈ Tc(µ(MΓ)), v 
∈ Mα and, as Γ is not consistent, ∃ β ∈ F ,MΓ ⊆ Mβ andMΓ ⊆ M¬β .
We haveMΓ,|∼(Γ) ⊆ MΓ ⊆ Mβ ⊆ Mβ∨¬α.
Moreover, µ(MΓ) ⊆ MΓ ⊆ M¬β . Thus, µ(MΓ) ⊆ M¬β ∩ Mα = M¬(β∨¬α).
Therefore, β ∨ ¬α 
∈ Td(µ(MΓ)) = |∼(Γ).
In addition, v 
∈ Mα ⊇ M¬(β∨¬α).
Consequently, v ∈ M1

Γ (take β ∨ ¬α for the β of the definition ofM1
Γ).

Thus, v ∈ M ′
Γ, which is impossible.

Case 1.1.2: Γ is consistent.
Thus,MΓ ∈ C. Therefore, as µ is coherency preserving, µ(MΓ) ∈ C. Thus, Tc(µ(MΓ)) = ∅.
Therefore, MTc(µ(MΓ)) = V . Thus, v ∈ MTc(µ(MΓ)), which is impossible.
Case 1.2: MΓ,|∼(Γ) ⊆ MTc(µ(MΓ)).
Then, by Lemma 44 (6), MΓ,|∼(Γ),H(Γ) = MΓ,|∼(Γ),F (Γ) = MΓ,|∼(Γ) = MΓ,|∼(Γ),Tc(µ(MΓ)).
Therefore, by (5), MΓ,|∼(Γ),H(Γ) = µ(MΓ).
Case 2: M ′

Γ 
= ∅. Obvious by (6).

Now comes the proof of Proposition 41 (which is stated at the beginning of Section 3.3).

Proof Proof of (0). Direction: “→”.
There exists a CP DP coherent choice function µ fromD to P(V) such that
∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
We will show:
(0.0) |∼ satisfies (|∼0).
By Lemma 45 (1), (2), and (3), |∼ satisfies (|∼6), (|∼7), and (|∼8).
By Lemma 45 (10) and Coherence of µ, |∼ satisfies (|∼9).
We will show:
(0.1) |∼ satisfies (|∼11).

Direction: “←”.
Suppose |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8), (|∼9), and (|∼11).
Then, let µ be the function fromD to P(V) such that ∀ Γ ⊆ F , µ(MΓ) = MΓ,|∼(Γ),H(Γ).
We will show:
(0.2) µ is well-defined.
Clearly, µ is a DP choice function.
In addition, as |∼ satisfies (|∼9), µ is coherent.
We will show:
(0.3) µ is CP.
Finally, by Lemma 44 (7), ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).

Proof of (0.0). Let Γ,∆ ⊆ F and suppose �(Γ) = �(∆). Then,MΓ = M∆.
Therefore, |∼(Γ) = Td(µ(MΓ)) = Td(µ(M∆)) = |∼(∆).
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Proof of (0.1). Let Γ ⊆ F and suppose Γ is consistent.
Then,MΓ ∈ D ∩ C. Thus, as µ is CP, µ(MΓ) ∈ C. Therefore, Td(µ(MΓ)) = T (µ(MΓ)).
Consequently, Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = Td(µ(MΓ)) = |∼(Γ).
In addition, M|∼(Γ) = MTd(µ(MΓ)) = MT (µ(MΓ)). But, µ(MΓ) ∈ C. Thus,MT (µ(MΓ)) ∈ C.
Consequently, |∼(Γ) is consistent.
Finally, |∼(Γ) = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = �(|∼(Γ)).

Proof of (0.2). Let Γ,∆ ⊆ F and suppose MΓ = M∆.
Then, �(Γ) = �(∆). Thus, by (|∼0), |∼(Γ) = |∼(∆).
Consequently, H(Γ) = H(∆). Therefore, MΓ,|∼(Γ),H(Γ) = M∆,|∼(∆),H(∆).

Proof of (0.3). Suppose V ∈ D ∩ C. Then, ∃ Γ ⊆ F , V = MΓ.
Case 1: H1(Γ) 
= ∅.
Thus, ∃ β ∈ F , β 
∈ |∼(Γ) and MΓ,|∼(Γ) ⊆ Mβ .
By (|∼11), Γ ⊆ |∼(Γ) and �(|∼(Γ)) = |∼(Γ). Thus,MΓ,|∼(Γ) = M|∼(Γ). Thus,M|∼(Γ) ⊆ Mβ .
Therefore, β ∈ T (M|∼(Γ)) = �(|∼(Γ)) = |∼(Γ), which is impossible.
Case 2: H1(Γ) = ∅.
Then, H(Γ) = ∅. Thus, µ(V ) = µ(MΓ) = MΓ,|∼(Γ),H(Γ) = M|∼(Γ).
But, by (|∼11), |∼(Γ) is consistent. Therefore, M|∼(Γ) ∈ C.

Proof of (1). Direction: “→”.
Verbatim the proof of (0), except that in addition we have µ is LM.
Then, by Lemma 45 (10) and LM, |∼ satisfies (|∼10).

Direction: “←”.
Verbatim the proof of (0), except that in addition we have |∼ satisfies (|∼10).
Then, by definition of µ and (|∼10), µ is LM.

Proof of (2). Direction: “→”.
Verbatim the proof of (0), except that µ is no longer CP, whilst (A2) now holds.
Note that, in (0), CP was used only to show (|∼11) and (|∼9).
But, (|∼11) is no longer required to hold.
In addition, by Lemma 45 (9) and Coherence of µ, (|∼9) holds.

Direction: “←”.
Verbatim the proof of (0), except that (|∼11) does no longer hold, whilst (A2) now holds.
However, in (0), (|∼11) was used only to show that µ is CP, which is no longer required.
Note that we do not need to use (A2) in this direction.

Proof of (3). Direction “→”.
Verbatim the proof of (0), except that µ is no longer CP, whilst µ is now LM and (A2) now holds.
Note that, in (0), CP was used only to show (|∼11) and (|∼9).
But, (|∼11) is no longer required.
In addition, by Lemma 45 (9) and Coherence of µ, (|∼9) holds.
Similarly, by Lemma 45 (9) and Local Monotonicity of µ, (|∼10) holds.

Direction: “←”.
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Verbatim the proof of (0), except that (|∼11) does no longer hold, whilst (|∼10) and (A2) now holds.
Note that, in (0), (|∼11) was used only to show that µ is CP, which is no longer required.
Now, by definition of µ and by (|∼10), µ is LM.
Note that we do not need to use (A2) in this direction.

3.4 The discriminative and not necessarily DP case

Unlike in Section 3.3, the conditions of this section will not be purely syntactic. The translation of
properties like Coherence in syntactic terms is blocked because we do no longer have the following
useful equality: µ(MΓ) = MΓ,|∼(Γ),H(Γ), which holds when the choice functions under considera-
tion are definability preserving (but this is not the case here). Thanks to Lemmas 34 and 35 (stated
in Section 3.2), we will provide a solution with “semi-syntactic” conditions.

Notation 46 Let L be a language, ¬ a unary connective of L, F the set of all wffs of L, 〈F ,V, |=〉
a semantic structure, and |∼ a relation on P(F) ×F .
Then, consider the following condition: ∀ Γ ⊆ F ,
(|∼12) �(Γ, |∼(Γ),H(Γ)) = T ({v ∈ MΓ : ∀∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ M|∼(∆),H(∆)}).

Proposition 47 Let L be a language, ¬ a unary connective of L, ∨ and ∧ binary connectives of L,
F the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A1) and (A3), and |∼ a relation
on P(F) ×F . Then,
(0) |∼ is a CP preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8), (|∼11)

and (|∼12) hold.

Suppose 〈F ,V, |=〉 satisfies (A2) too. Then,

(1) |∼ is a preferential-discriminative consequence relation iff (|∼0), (|∼6), (|∼7), (|∼8), and (|∼12)
hold.

Proof Proof of (1). Direction: “→”.
There exists a coherent choice function µ fromD to P(V) such that ∀Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
Then, |∼ satisfies obviously (|∼0).
Let f be the function fromD toD such that ∀ V ∈ D, f(V ) = MT (µ(V )).
Then, by Lemma 35, ∀ V ∈ D, f(V ) = MT (µf (V )).
Moreover, ∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) ⊆ MT (MΓ) = MΓ.
Therefore, f is a choice function.
Obviously, f is DP.
In addition, ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)) = Td(MT (µ(MΓ))) = Td(f(MΓ)).
Consequently, by Lemma 45 (1), (2), and (3), |∼ satisfies (|∼6), (|∼7), and (|∼8).
In addition, by Lemma 45 (9), ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
We show that |∼ satisfies (|∼12). Let Γ ⊆ F .
Then, �(Γ, |∼(Γ),H(Γ)) = T (MΓ,|∼(Γ),H(Γ)) = T (f(MΓ)) = T (MT (µf (MΓ))) = T (µf (MΓ)) =
T ({v ∈ MΓ : ∀ W ∈ D, if v ∈ W ⊆ MΓ, then v ∈ f(W )}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ f(M∆)}) =
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T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ M∆,|∼(∆),H(∆)}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆ ⊆ MΓ, then v ∈ M|∼(∆),H(∆)}).

Direction: “←”.
Suppose (|∼0), (|∼6), (|∼7), (|∼8), and (|∼12) hold.
Let f be the function fromD toD such that ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
By (|∼0), f is well-defined.
By Lemma 44 (7), ∀ Γ ⊆ F , |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)).
Therefore, ∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)).
By (|∼12), ∀ Γ ⊆ F , f(MΓ) = MT (µf (MΓ)).
Therefore, ∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)) = Td(MT (µf (MΓ))) = Td(µf (MΓ)).
But, by Lemma 34, µf is a coherent choice function.

Proof of (0). Direction: “→”.
Verbatim the proof of (1), except that (A2) does no longer hold, whilst µ is now CP.
Note that (A2) was used only to apply Lemma 45 (9) to get ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, we will get this equality by another mean.
Indeed, if V ∈ D ∩ C, then, as µ is CP, µ(V ) ∈ C, thus MT (µ(V )) ∈ C, thus f(V ) ∈ C.
Therefore, f is CP.
Consequently, by Lemma 45 (10), we get ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of (0.1) of Proposition 41, |∼ satisfies (|∼11).

Direction: “←”.
Verbatim the proof of (1), except that (A2) does no longer hold, whilst |∼ now satisfies (|∼11).
But, in this direction, (A2) was not used in (0).
It remains to show that µf is CP.
By verbatim the proof of (0.3) of Proposition 41, we get that f is CP.
Let V ∈ D∩C. Then, f(V ) ∈ C. Thus,MT (µf (V )) ∈ C. Thus, µf (V ) ∈ C and we are done.
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Chapter 4

Characterizations of pivotal consequence
relations

Wewill provide in this chapter characterizations for several families of pivotal and pivotal-discriminative
consequence relations. These results have been published in [BN05a].

Remark 48 The work of characterization in the present chapter is very similar to the one of Chap-
ter 3. Sometimes, the proofs will be almost verbatim the same. Note that Chapter 3 is about coherent
choice functions, whilst the present chapter is about strongly coherent choice functions. Beyond the
characterizations, a contribution of the present chapter is to give an example of how the techniques
developed in Chapter 3 (in particular in the discriminative case) can be adapted to new properties
(here Strong Coherence in the place of Coherence).

Sometimes, we will need to make some assumptions (defined in Section 2.1.1) about the seman-
tic structure under consideration. However, no assumption will be needed for the two following
families:

• the pivotal consequence relations (Section 4.2);
• the DP pivotal consequence relations (Section 4.1).

We will assume (A0) for:

• the UC pivotal consequence relations (Section 4.2).
We will need (A3) and (A1) for:

• the CP pivotal-discriminative consequence relations (Section 4.4);
• the CP DP pivotal-discriminative consequence relations (Section 4.3).

We will assume (A3), (A1), and (A2) for:

• the pivotal-discriminative consequence relations (Section 4.4);
• the DP pivotal-discriminative consequence relations (Section 4.3).

We will assume (A0), (A3), and (A1) for:
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• the CP UC pivotal-discriminative consequence relations (Section 4.4).
We will need (A0), (A3), (A1), and (A2) for:

• the UC pivotal-discriminative consequence relations (Section 4.4).

4.1 The non-discriminative and DP case

In the present section, we provide a characterization for the family of all DP pivotal consequence
relations. We will use similar techniques as those in Section 3.1. First, we will establish the equality:
µ(MΓ) = M|∼(Γ). Then, thanks to it, properties like Strong Coherence will be translated in syntactic
terms.

Definition 49 Let 〈F ,V, |=〉 be a semantic structure and |∼ be a relation on P(F) ×F .
Then, consider the following condition: ∀ Γ,∆ ⊆ F ,
(|∼13) |∼(Γ) ⊆ �(|∼(∆),Γ).

Note that this condition is purely syntactic when there is a proof system available for �.

Proposition 50 Let 〈F ,V, |=〉 be a semantic structure and |∼ be a relation on P(F) ×F .
Then, |∼ is an DP pivotal consequence relation iff |∼ satisfies (|∼0), (|∼1), (|∼2), and (|∼13).

Proof Direction: “→”.
There exists an DP SC choice function µ fromD to P(V) such that ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
We will show:
(0) ∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ);
(1) |∼ satisfies (|∼0);
(2) |∼ satisfies (|∼1);
(3) |∼ satisfies (|∼2);
(4) |∼ satisfies (|∼13).

Direction: “←”.
Suppose |∼ satisfies (|∼0), (|∼1), (|∼2), and (|∼13).
Let µ be the function fromD to P(V) such that ∀ Γ ⊆ F , µ(MΓ) = M|∼(Γ).
We will show:
(5) µ is well-defined;
(6) µ is a DP choice function;
(7) µ is SC;
(8) ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).

Proof of (0). Let Γ ⊆ F . As µ is DP, µ(MΓ) ∈ D. Thus, ∃ ∆ ⊆ F , µ(MΓ) = M∆.
Therefore, µ(MΓ) = M∆ = MT (M∆) = MT (µ(MΓ)) = M|∼(Γ).

Proof of (1). Let Γ,∆ ⊆ F and suppose �(Γ) = �(∆).
Then,MΓ = M∆. Thus, |∼(Γ) = T (µ(MΓ)) = T (µ(M∆)) = |∼(∆).

Proof of (2). Let Γ ⊆ F . Then, |∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = �(|∼(Γ)).
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Proof of (3). Let Γ ⊆ F . Then, Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = |∼(Γ).

Proof of (4). Let Γ,∆ ⊆ F . Then, by (0) and SC,
M|∼(∆),Γ = M|∼(∆) ∩ MΓ = µ(M∆) ∩ MΓ ⊆ µ(MΓ) = M|∼(Γ).
Therefore, by (|∼1), we get |∼(Γ) = �(|∼(Γ)) = T (M|∼(Γ)) ⊆ T (M|∼(∆),Γ) = �(|∼(∆),Γ).

Proof of (5). Let Γ,∆ ⊆ F and suppose MΓ = M∆.
Then, �(Γ) = �(∆). Thus, by (|∼0), M|∼(Γ) = M|∼(∆).

Proof of (6). Let Γ ⊆ F . Then, by (|∼2), µ(MΓ) = M|∼(Γ) ⊆ MΓ.
Consequently, µ is a choice function. In addition, µ is obviously DP.

Proof of (7). Let Γ,∆ ⊆ F .
Then, by (|∼13), we get µ(M∆) ∩ MΓ = M|∼(∆) ∩ MΓ = M|∼(∆),Γ ⊆ M|∼(Γ) = µ(MΓ).

Proof of (8). Let Γ ⊆ F . Then, by (|∼1), |∼(Γ) = �(|∼(Γ)) = T (M|∼(Γ)) = T (µ(MΓ)).

4.2 The non-discriminative and not necessarily DP case

In the present section, we will investigate in particular the family of all pivotal consequence rela-
tions. Unlike in Section 4.1, the choice functions considered here are not necessarily definability
preserving. As a consequence, again, we will no longer have the equality: µ(MΓ) = M|∼(Γ). There-
fore, again, we cannot translate properties like Strong Coherence in syntactic terms. Moreover, we
will put in evidence in Chapter 5 some limits of what can be done in this area. Approximatively,
we will show, in an infinite classical framework, that there does not exist a characterization (of the
family mentioned) containing only conditions universally quantified and of limited size.

We provide a solution with semi-syntactic conditions. We will develop similar techniques as
those of Section 3.2. Technically, the idea begins by building from any function f , a SC choice
function νf such that whenever f “covers” some SC choice function, it necessarily covers νf .

Definition 51 Let V be a set, V ⊆ P(V),W ⊆ P(V) and f a function from V toW.
We denote by νf the function fromV to P(V) such that ∀ V ∈ V,

νf (V ) = {v ∈ V : ∀ W ∈ V, if v ∈ W, then v ∈ f(W )}.

Lemma 52 Let V be a set, V ⊆ P(V),W ⊆ P(V) and f a function from V toW.
Then, νf is a SC choice function.

Proof νf is obviously a choice function. We show that it satisfies Strong Coherence.
Suppose the contrary, i.e. ∃ V,W ∈ V and ∃ v ∈ νf (W ) ∩ V such that v 
∈ νf (V ).
Then, as v ∈ V and v 
∈ νf (V ), we have ∃ Z ∈ V, v ∈ Z , and v 
∈ f(Z).
Therefore, simply by definition of νf , v 
∈ νf (W ), which is impossible.

Lemma 53 Let V be a set, V,W, and X subsets of P(V), f a function from V toW, and µ a SC
choice function fromV to X such that ∀ V ∈ V, f(V ) = MT (µ(V )). Then:
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(0) ∀ V ∈ V, f(V ) = MT (νf (V )).

Suppose 〈F ,V, |=〉 is a semantic structure satisfying (A0),D ⊆ V, and µ is UC. Then:

(1) νf (V) = µ(V).

Proof Proof of (0). Suppose V ∈ V. We show f(V ) = MT (νf (V )).
Case 1: ∃ v ∈ µ(V ), v 
∈ νf (V ).
As µ(V ) ⊆ V , we have v ∈ V .
Thus, by definition of νf , ∃ W ∈ V, v ∈ W and v 
∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
On the other hand, as µ is SC, µ(V ) ∩ W ⊆ µ(W ). Thus, v ∈ µ(W ), which is impossible.
Case 2: µ(V ) ⊆ νf (V ).
Case 2.1: ∃ v ∈ νf (V ), v 
∈ f(V ).
Then, ∃ W ∈ V, v ∈ W , and v 
∈ f(W ). Indeed, just take V itself for the choice ofW .
Therefore, by definition of νf , v 
∈ νf (V ), which is impossible.
Case 2.2: νf (V ) ⊆ f(V ).
Then, f(V ) = MT (µ(V )) ⊆ MT (νf (V )) ⊆ MT (f(V )) = MT (MT (µ(V ))) = MT (µ(V )) = f(V ).

Proof of (1). Direction: “⊆”.
Suppose the contrary, i.e. ∃ v ∈ νf (V), v 
∈ µ(V).
Then, v ∈ V \ µ(V). But, as µ is UC, V \ µ(V) ∈ D ⊆ V.
On the other hand, as v ∈ νf (V), we get ∀ W ∈ V, if v ∈ W, then v ∈ f(W ).
Therefore, v ∈ f(V \ µ(V)) = MT (µ(V\µ(V))).
But, we will show:
(1.0) µ(V \ µ(V)) = ∅.
Therefore, MT (µ(V\µ(V))) = MT (∅) = MF .
But, by (A0), MF = ∅. Therefore, v ∈ ∅, which is impossible.

Direction: “⊇”.
Suppose the contrary, i.e. ∃ v ∈ µ(V), v 
∈ νf (V).
As v ∈ V and v 
∈ νf (V), we get ∃ W ∈ V, v ∈ W and v 
∈ f(W ) = MT (µ(W )) ⊇ µ(W ).
But, as µ is SC, µ(V) ∩ W ⊆ µ(W ). Therefore, v ∈ µ(W ), which is impossible.

Proof of (1.0). Suppose the contrary, i.e. ∃ v ∈ µ(V \ µ(V)).
As µ is SC, µ(V \ µ(V)) ∩ V ⊆ µ(V). Thus, v ∈ µ(V). Therefore, v 
∈ V \ µ(V).
But, µ(V \ µ(V)) ⊆ V \ µ(V). Thus, v 
∈ µ(V \ µ(V)), which is impossible.

Definition 54 Let 〈F ,V, |=〉 be a semantic structure and |∼ be a relation on P(F) ×F .
Then, consider the following conditions: ∀ Γ ⊆ F ,
(|∼14) |∼(Γ) = T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆)});
(|∼15) V \ {v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆)} ∈ D.

Proposition 55 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F . Then:
(0) |∼ is a pivotal consequence relation iff |∼ satisfies (|∼14).

Suppose 〈F ,V, |=〉 satisfies (A0). Then:
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(1) |∼ is a UC pivotal consequence relation iff |∼ satisfies (|∼14) and (|∼15).

Proof Proof of (0). Direction: “→”
There exists a SC choice function µ fromD to P(V) such that ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Let f be the function fromD toD such that ∀ V ∈ D, we have f(V ) = MT (µ(V )).
By Lemma 53, ∀ V ∈ D, we have f(V ) = MT (νf (V )).
Note that ∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) = M|∼(Γ).
We show that (|∼14) holds. Let Γ ⊆ F .
Then, |∼(Γ) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (f(MΓ)) = T (MT (νf (MΓ))) = T (νf (MΓ)) =
T ({v ∈ MΓ : ∀ W ∈ D, if v ∈ W , then v ∈ f(W )}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ f(M∆)}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆)}).

Direction: “←”.
Suppose |∼ satisfies (|∼14).
Let f be the function fromD toD such that ∀ Γ ⊆ F , we have f(MΓ) = M|∼(Γ).
Note that f is well-defined. Indeed, if Γ,∆ ⊆ F and MΓ = M∆, then, by (|∼14), |∼(Γ) = |∼(∆).
In addition, by (|∼14), we clearly have ∀ Γ ⊆ F , |∼(Γ) = T (νf (MΓ)).
Finally, by Lemma 52, νf is a SC choice function.

Proof of (1). Direction: “→”.
Verbatim the proof of (0), except that in addition we have (A0) holds and µ is UC.
We show that |∼ satisfies (|∼15). As µ is UC, V \ µ(V) ∈ D. But, by Lemma 53, µ(V) = νf (V) =
{v ∈ V : ∀ W ∈ D, if v ∈ W , then v ∈ f(W )} =
{v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ f(M∆)} =
{v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆)}.

Direction: “←”.
Verbatim the proof of (0), except that in addition we have (A0) holds and |∼ satisfies (|∼15).
But, because of (|∼15), V \ νf (V) ∈ D. Therefore, νf is UC.
Note that in this direction (A0) is not used.

4.3 The discriminative and DP case

In the present section, we will characterize certain families of DP pivotal-discriminative consequence
relations. We will apply Lemmas 44 and 45 (stated in Section 3.3).

Definition 56 Suppose L is a language, ¬ a unary connective of L, ∨ a binary connective of L, F
the set of all wffs of L, 〈F ,V, |=〉 a semantic structure, and |∼ a relation on P(F) ×F .
Then, consider the following condition: ∀ Γ,∆ ⊆ F , ∀ α, β ∈ F ,
(|∼16) |∼(Γ) ∪ H(Γ) ⊆ �(∆, |∼(∆),H(∆),Γ).

Note that this condition is purely syntactic when there is a proof system available for �.

Proposition 57 Suppose L is a language, ¬ a unary connective of L, ∨ and ∧ binary connectives
of L, F the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A3) and (A1), and |∼ a
relation on P(F) ×F . Then:
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(0) |∼ is a CP DP pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7),
(|∼8), (|∼16), and (|∼11).

Suppose 〈F ,V, |=〉 satisfies (A2). Then:

(1) |∼ is a DP pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8)
and (|∼16).

Proof Proof of (0). Direction: “→”.
There exists a CP DP SC choice function µ fromD to P(V) such that
∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
We will show:
(0.0) |∼ satisfies (|∼0).
By Lemma 45 (1), (2), and (3), |∼ satisfies (|∼6), (|∼7), and (|∼8).
By Lemma 45 (10) and Strong Coherence of µ, |∼ satisfies (|∼16).
We will show:
(0.1) |∼ satisfies (|∼11).

Direction: “←”.
Suppose |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8), (|∼16), and (|∼11).
Then, let µ be the function fromD to P(V) such that ∀ Γ ⊆ F , µ(MΓ) = MΓ,|∼(Γ),H(Γ).
We will show:
(0.2) µ is well-defined.
Clearly, µ is a DP choice function.
In addition, as |∼ satisfies (|∼16), µ is strongly coherent.
We will show:
(0.3) µ is CP.
Finally, by Lemma 44 (7), ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).

Proof of (0.0). Let Γ,∆ ⊆ F and suppose �(Γ) = �(∆). Then,MΓ = M∆.
Therefore, |∼(Γ) = Td(µ(MΓ)) = Td(µ(M∆)) = |∼(∆).

Proof of (0.1). Let Γ ⊆ F and suppose Γ is consistent.
Then,MΓ ∈ D ∩ C. Thus, as µ is CP, µ(MΓ) ∈ C. Therefore, Td(µ(MΓ)) = T (µ(MΓ)).
Consequently, Γ ⊆ T (MΓ) ⊆ T (µ(MΓ)) = Td(µ(MΓ)) = |∼(Γ).
In addition, M|∼(Γ) = MTd(µ(MΓ)) = MT (µ(MΓ)). But, µ(MΓ) ∈ C. Thus,MT (µ(MΓ)) ∈ C.
Consequently, |∼(Γ) is consistent.
Finally, |∼(Γ) = Td(µ(MΓ)) = T (µ(MΓ)) = T (MT (µ(MΓ))) = T (M|∼(Γ)) = �(|∼(Γ)).

Proof of (0.2). Let Γ,∆ ⊆ F and suppose MΓ = M∆.
Then, �(Γ) = �(∆). Thus, by (|∼0), |∼(Γ) = |∼(∆).
Consequently, H(Γ) = H(∆). Therefore, MΓ,|∼(Γ),H(Γ) = M∆,|∼(∆),H(∆).

Proof of (0.3). Suppose V ∈ D ∩ C. Then, ∃ Γ ⊆ F , V = MΓ.
Case 1: H1(Γ) 
= ∅.
Thus, ∃ β ∈ F , β 
∈ |∼(Γ) and MΓ,|∼(Γ) ⊆ Mβ .
By (|∼11), Γ ⊆ |∼(Γ) and �(|∼(Γ)) = |∼(Γ). Thus,MΓ,|∼(Γ) = M|∼(Γ). Thus,M|∼(Γ) ⊆ Mβ .
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Therefore, β ∈ T (M|∼(Γ)) = �(|∼(Γ)) = |∼(Γ), which is impossible.
Case 2: H1(Γ) = ∅.
Then, H(Γ) = ∅. Thus, µ(V ) = µ(MΓ) = MΓ,|∼(Γ),H(Γ) = M|∼(Γ).
But, by (|∼11), |∼(Γ) is consistent. Therefore, M|∼(Γ) ∈ C.

Proof of (1). Direction: “→”.
Verbatim the proof of (0), except that µ is no longer CP, whilst (A2) now holds.
Note that, in (0), CP was used only to show (|∼16) and (|∼11).
But, (|∼11) is no longer required to hold and we are going to get (|∼16) by another mean.
Indeed, by Lemma 45 (9) and Strong Coherence of µ, (|∼16) holds.

Direction: “←”.
Verbatim the proof of (0), except that (|∼11) does no longer hold, whilst (A2) now holds.
However, in (0), (|∼11) was used only to show that µ is CP, which is no longer required.
Note that we do not need to use (A2) in this direction.

4.4 The discriminative and not necessarily DP case

Again, as we do not have Definability Preserving, we do not have the useful equality: µ(MΓ) =
MΓ,|∼(Γ),H(Γ). As a consequence, we will provide again characterizations with semi-syntactic con-
ditions, thanks to Lemmas 52 and 53 (stated in Section 4.2).

Definition 58 Let L be a language, ¬ a unary connective of L, F the set of all wffs of L, 〈F ,V, |=〉
a semantic structure, and |∼ a relation on P(F) ×F .
Then, consider the following conditions: ∀ Γ ⊆ F ,
(|∼17) �(Γ, |∼(Γ),H(Γ)) = T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆),H(∆)});
(|∼18) V \ {v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆),H(∆)} ∈ D.

Proposition 59 Suppose L is a language, ¬ a unary connective of L, ∨ and ∧ binary connectives
of L, F the set of all wffs of L, 〈F ,V, |=〉 a semantic structure satisfying (A3) and (A1), and |∼ a
relation on P(F) ×F . Then:
(0) |∼ is a CP pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8),

(|∼11), and (|∼17).

If 〈F ,V, |=〉 satisfies (A0) too, then:

(1) |∼ is a CP UC pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7),
(|∼8), (|∼11), (|∼17), and (|∼18).

If 〈F ,V, |=〉 satisfies (A2) too, then:

(2) |∼ is a pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8), and
(|∼17).

If 〈F ,V, |=〉 satisfies (A0) and (A2) too, then:
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(3) |∼ is a UC pivotal-discriminative consequence relation iff |∼ satisfies (|∼0), (|∼6), (|∼7), (|∼8),
(|∼17), and (|∼18).

Proof Proof of (2). Direction: “→”.
There exists a SC choice function µ fromD to P(V) such that ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)).
Then, |∼ satisfies obviously (|∼0).
Let f be the function fromD toD such that ∀ V ∈ D, f(V ) = MT (µ(V )).
Then, by Lemma 53, ∀ V ∈ D, f(V ) = MT (νf (V )).
Moreover, ∀ Γ ⊆ F , f(MΓ) = MT (µ(MΓ)) ⊆ MT (MΓ) = MΓ.
Therefore, f is a choice function.
Obviously, f is DP.
In addition, ∀ Γ ⊆ F , |∼(Γ) = Td(µ(MΓ)) = Td(MT (µ(MΓ))) = Td(f(MΓ)).
Consequently, by Lemma 45 (1), (2), and (3), |∼ satisfies (|∼6), (|∼7), and (|∼8).
In addition, by Lemma 45 (9), ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
We show that |∼ satisfies (|∼17). Let Γ ⊆ F .
Then, �(Γ, |∼(Γ),H(Γ)) = T (MΓ,|∼(Γ),H(Γ)) = T (f(MΓ)) = T (MT (νf (MΓ))) = T (νf (MΓ)) =
T ({v ∈ MΓ : ∀ W ∈ D, if v ∈ W , then v ∈ f(W )}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ f(M∆)}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M∆,|∼(∆),H(∆)}) =
T ({v ∈ MΓ : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆),H(∆)}).

Direction: “←”.
Suppose (|∼0), (|∼6), (|∼7), (|∼8), and (|∼17) hold.
Let f be the function fromD toD such that ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
By (|∼0), f is well-defined.
By Lemma 44 (7), ∀ Γ ⊆ F , |∼(Γ) = Td(MΓ,|∼(Γ),H(Γ)) = Td(f(MΓ)).
By (|∼17), ∀ Γ ⊆ F , f(MΓ) = MT (νf (MΓ)).
Therefore, ∀ Γ ⊆ F , |∼(Γ) = Td(f(MΓ)) = Td(MT (νf (MΓ))) = Td(νf (MΓ)).
But, by Lemma 52, νf is a SC choice function.

Proof of (3). Direction: “→”.
Verbatim the proof of (2), except that in addition we have (A0) holds and µ is UC.
We show that (|∼18) holds. As µ is UC, V \ µ(V) ∈ D. But, by Lemma 53 (1), µ(V) = νf (V) =
{v ∈ V : ∀ W ∈ D, if v ∈ W , then v ∈ f(W )} =
{v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ f(M∆)} =
{v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M∆,|∼(∆),H(∆)} =
{v ∈ V : ∀ ∆ ⊆ F , if v ∈ M∆, then v ∈ M|∼(∆),H(∆)}.

Direction: “←”.
Verbatim the proof of (2), except that in addition we have (A0) holds and |∼ satisfies (|∼18).
But, because of (|∼18), V \ νf (V) ∈ D. Therefore, νf is UC.
Note that (A0) is not used in this direction.

Proof of (0). Direction: “→”.
Verbatim the proof of (2), except that (A2) does no longer hold, whilst µ is now CP.
Note that (A2)was used, in (2), only to apply Lemma 45 (9) to get ∀Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, we will get this equality by another mean.
Indeed, if V ∈ D ∩ C, then, as µ is CP, µ(V ) ∈ C, thus MT (µ(V )) ∈ C, thus f(V ) ∈ C.
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Therefore, f is CP.
Consequently, by Lemma 45 (10), we get ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of (0.1) of Proposition 57, |∼ satisfies (|∼11).

Direction: “←”.
Verbatim the proof of (2), except that (A2) does no longer hold, whilst |∼ satisfies now (|∼11).
But, in this direction, (A2) was not used in (2).
It remains to show that νf is CP.
By verbatim the proof of (0.3) of Proposition 57, we get that f is CP.
Let V ∈ D ∩C. Then, f(V ) ∈ C. Thus,MT (νf (V )) ∈ C. Thus, νf (V ) ∈ C and we are done.

Proof of (1). Direction: “→”.
Verbatim the proof of (2), except that (A2) does no longer hold, whilst (A0) now holds and µ is
now UC and CP.
Note that (A2)was used, in (2), only to apply Lemma 45 (9) to get ∀Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
But, by verbatim the proof of (0), we get anyway ∀ Γ ⊆ F , f(MΓ) = MΓ,|∼(Γ),H(Γ).
In addition, by verbatim the proof of (0.1) of Proposition 57, |∼ satisfies (|∼11).
And, by verbatim the proof of (3), |∼ satisfies (|∼18).

Direction: “←”.
Verbatim the proof of (2), except that (A2) does no longer hold, whilst (A0) now holds and |∼
satisfies now (|∼11) and (|∼18).
But, in this direction, (A2) was not used in (2).
In addition, by verbatim the proof of (0), νf is CP.
And, because of (|∼18), V \ νf (V) ∈ D. Therefore, νf is UC.
Note that (A0) is not used in this direction.

63





Chapter 5

Nonexistence of normal
characterizations

5.1 Definition

Let F be a set,R a set of relations on P(F) ×F , and |∼ a relation on P(F) ×F .
Approximatively, a characterization of R will be called “normal” iff it contains only conditions
which are universally quantified and “apply” |∼ at most |F| times. More formally,

Definition 60 Let F be a set and R a set of relations on P(F) ×F .
We say that that C is a normal characterization of R iff C = 〈λ,Φ〉, where λ ≤ |F| is a (finite or
infinite) cardinal and Φ is a relation on P(F)2λ such that for every relation |∼ on P(F) ×F ,

|∼ ∈ R iff ∀ Γ1, . . . ,Γλ ⊆ F , (Γ1, . . . ,Γλ, |∼(Γ1), . . . , |∼(Γλ)) ∈ Φ.

Now, suppose there is no normal characterization of R. Here are examples (i.e. (C1), (C2), and
(C3) below) that will give the reader (we hope) a good idea which conditions cannot characterize R.
This will thus make clearer the range of our impossibility result (Proposition 62 below). To begin,
consider the following condition:

(C1) ∀ Γ,∆ ∈ F ⊆ P(F), |∼(Γ ∪ |∼(∆)) = ∅.
Then, (C1) cannot characterize R. Indeed, suppose the contrary, i.e.
suppose |∼ ∈ R iff ∀ Γ,∆ ∈ F, |∼(Γ ∪ |∼(∆)) = ∅.
Then, take λ = 3 and Φ such that (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6) ∈ Φ iff
(Γ1,Γ2 ∈ F and Γ3 = Γ1 ∪ Γ5) entails Γ6 = ∅.
Then, 〈3,Φ〉 is a normal characterization ofR. We give the easy proof of this, so that the reader can
check that a convenient relation Φ can be found quickly for all simple conditions like (C1).

Proof Direction: “→”.
Suppose |∼ ∈ R.
Then, ∀ Γ,∆ ∈ F, |∼(Γ ∪ |∼(∆)) = ∅.
Let Γ1,Γ2,Γ3 ⊆ F .
We show (Γ1,Γ2,Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
Suppose Γ1,Γ2 ∈ F and Γ3 = Γ1 ∪ |∼(Γ2).
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Then, as Γ1,Γ2 ∈ F, we get |∼(Γ1 ∪ |∼(Γ2)) = ∅.
But, |∼(Γ1 ∪ |∼(Γ2)) = |∼(Γ3). Therefore, |∼(Γ3) = ∅.

Direction: “←”.
Suppose ∀ Γ1,Γ2,Γ3 ⊆ F , (Γ1,Γ2,Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
We show |∼ ∈ R. Let Γ,∆ ∈ F.
Take Γ1 = Γ, Γ2 = ∆, Γ3 = Γ1 ∪ |∼(Γ2).
Then, Γ1 ∈ F, Γ2 ∈ F, and Γ3 = Γ1 ∪ |∼(Γ2).
But, we have (Γ1,Γ2,Γ3, |∼(Γ1), |∼(Γ2), |∼(Γ3)) ∈ Φ.
Therefore, by definition of Φ, |∼(Γ3) = ∅.
But, |∼(Γ3) = |∼(Γ1 ∪ |∼(Γ2)) = |∼(Γ ∪ |∼(∆)).

But actually, we are not limited to simple operations (like e.g. ∪, ∩, \). More complex conditions
than (C1) are also excluded. For instance, let f be any function from P(F) to P(F) and consider
the following condition:

(C2) ∀ Γ,∆ ∈ F, |∼(f(Γ) ∪ |∼(∆)) = ∅.
Then, (C2) cannot characterize R. Indeed, suppose it characterizes R.
Then, take λ = 3 and Φ such that (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6) ∈ Φ iff
(Γ1,Γ2 ∈ F and Γ3 = f(Γ1) ∪ Γ5) entails Γ6 = ∅.
It can be checked that 〈3,Φ〉 is a normal characterization ofR. We leave the easy proof to the reader.

We can even go further combining universal (not existential) quantifiers and functions like f .
For instance, let G be a set of functions from P(F) to P(F) and consider the following condition:

(C3) ∀ Γ,∆ ∈ F, ∀ f ∈ G, |∼(f(Γ) ∪ |∼(∆)) = ∅.
Then, (C3) cannot characterize R. Indeed, suppose it characterizes R.
Then, take λ = 3 and Φ such that (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6) ∈ Φ iff
∀ f ∈ G, if (Γ1,Γ2 ∈ F and Γ3 = f(Γ1) ∪ Γ5), then Γ6 = ∅.
It can be checked that 〈3,Φ〉 is a normal characterization of R. The easy proof is left to the reader.

Finally, a good example of a condition which is not excluded is (|∼14). We have seen in Propo-
sition 55 that it characterizes the family of all pivotal consequence relations.

5.2 Impossibility results

We will show, in an infinite classical framework, that there is no normal characterization for the
family of all pivotal consequence relations (in other words, (|∼14) cannot be replaced by a simpler
condition in Proposition 55). This result has been published in [BN05a]. In the same vein, K.
Schlechta showed that there does not exist a normal characterization for the family of all preferential
consequence relations (Proposition 5.2.15 of [Sch04]).

Note that he used the word “normal” in a more restrictive sense (see Section 1.6.2.1 of [Sch04]).
Approximatively, a characterization ofR is called normal by Schlechta iff it contains only conditions
like (C1), i.e. conditions which are universally quantified, “apply” |∼ at most |F| times, and use
only elementary operations like e.g. ∪, ∩, \ (complex structures or functions, etc. are not allowed).
We have been inspired by the techniques of Schlechta. We will need Lemma 5.2.14 of [Sch04]:
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Lemma 61 [Sch04] Suppose A is infinite, 〈Fc,V, |=〉 is a classical propositional semantic struc-
ture, and V ⊆ {V ⊆ V : |V | ≤ |A|} is such that:
if V ∈ V and W ⊆ V , thenW ∈ V;
∀ V,W ∈ V, if |V ∪ W | ≤ |A|, then V ∪ W ∈ V.
Then, ∀ Γ ⊆ Fc, ∃ VΓ ∈ V,

(0) T (
⋂

V ∈V MT (MΓ\V )) = T (MΓ \ VΓ);

(1) ∀ V ∈ V, T (MΓ \ V ) ⊆ T (MΓ \ VΓ).

Recall that A and Fc have been introduced in Section 2.1.2. Note that the subscript in VΓ is written
just to keep in mind that VΓ depends on Γ.

Proposition 62 Suppose A is infinite and 〈Fc,V, |=〉 is a classical propositional semantic structure.
Then, there doesn’t exist a normal characterization for the family of all pivotal consequence relations.

Proof Suppose the contrary, i.e. there exist a cardinal λ ≤ |Fc| and a relation Φ on P(Fc)2λ such
that for every relation |∼ on P(Fc)×Fc, |∼ is a pivotal consequence relation iff ∀Γ1, . . . ,Γλ ⊆ Fc,
(Γ1, . . . ,Γλ, |∼(Γ1), . . . , |∼(Γλ)) ∈ Φ. Then, define:
V := {V ⊆ V : |V | ≤ |A|}.
In addition, let |∼ be the relation on P(Fc) ×Fc such that ∀ Γ ⊆ Fc,
|∼(Γ) = T (

⋂
V ∈V MT (MΓ\V )).

We will show:
(0) ∀ V ⊆ V , if |V | ≤ |A|, then T (V) = T (V \ V );
(1) ∃ Γ1, . . . ,Γλ ⊆ Fc such that (Γ1, . . . ,Γλ, |∼(Γ1), . . . , |∼(Γλ)) 
∈ Φ.
Now, by lemma 61, we get:
(2) ∀ Γ ⊆ Fc, ∃ VΓ ∈ V, |∼(Γ) = T (MΓ \ VΓ) and ∀ V ∈ V, T (MΓ \ V ) ⊆ T (MΓ \ VΓ).
Then, define:
X :=

⋃
Γ∈{Γ1,...,Γλ} VΓ.

Then, we will show:
(3) ∀ Γ ∈ {Γ1, . . . ,Γλ}, |∼(Γ) = T (MΓ \ X ).
Let µ be the function fromD to P(V) such that ∀ V ∈ D, µ(V ) = V \ X .
We will show:
(4) µ is a SC choice function.
Let |∼′ be the pivotal consequence relation defined by µ.
We will show the following, which entails a contradiction:
(5) |∼′ is not a pivotal consequence relation.

Proof of (0). Let V ⊆ V and suppose |V | ≤ |A|.
Obviously, T (V) ⊆ T (V \ V ).
We show T (V \ V ) ⊆ T (V).
Suppose the contrary, i.e. ∃ α ∈ T (V \ V ), α 
∈ T (V).
Then, ∃ v ∈ V , v 
∈ Mα.
Now, define:
W := {w ∈ V : for all atom q occurring in α, w(q) = v(q)}.
Then, ∀ w ∈ W , we have w(α) = v(α) and thus w 
∈ Mα.
As the number of atoms occurring in α is finite and A is infinite, we get |W | = 2|A|.
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Therefore, |V | ≤ |A| < |W |. Thus, ∃ w ∈ W \ V ⊆ V \ V .
Thus, V \ V 
⊆ Mα. Therefore, α 
∈ T (V \ V ), which is impossible.

Proof of (1). It suffices to show that |∼ is not a pivotal consequence relation.
Suppose the contrary, i.e. there exists a SC choice function µ fromD to P(V) such that
∀ Γ ⊆ Fc, |∼(Γ) = T (µ(MΓ)).
As A is infinite, ∃ p ∈ A. We show that all cases are impossible.
Case 1: ∃ v ∈ µ(V), v 
∈ Mp.
Let Γ = T (v). Then,MΓ = {v}.
By SC of µ, we have µ(MΓ) = µ(MΓ) ∩ V ⊆ µ(V). Thus, µ(MΓ) ⊆ µ(V) ∩ MΓ.
On the other hand, again by SC, µ(V) ∩ MΓ ⊆ µ(MΓ). Consequently, µ(V) ∩ MΓ = µ(MΓ).
Therefore, |∼(Γ) = T (µ(MΓ)) = T (µ(V) ∩ MΓ) = T (µ(V) ∩ {v}) = T (v).
But, p 
∈ T (v). Thus, p 
∈ |∼(Γ).
However,MΓ ∈ V. Therefore,

⋂
V ∈V MT (MΓ\V ) ⊆ MT (MΓ\MΓ) = MT (∅) = MFc = ∅.

Therefore, by definition of |∼, we have |∼(Γ) = T (∅) = Fc.
Thus, p ∈ |∼(Γ), which is impossible.
Case 2: µ(V) ⊆ Mp.
Then, by (0), |∼(∅) = T (

⋂
V ∈V MT (V\V )) = T (

⋂
V ∈V MT (V)) = T (MT (V)) = T (V).

But, V 
⊆ Mp. Thus, p 
∈ T (V) = |∼(∅).
On the other hand, |∼(∅) = T (µ(M∅)) = T (µ(V)).
But, µ(V) ⊆ Mp. Thus, p ∈ T (µ(V)) = |∼(∅), which is impossible.

Proof of (3). Let Γ ∈ {Γ1, . . . ,Γλ}. Direction: “⊆”.
We have VΓ ⊆ X . Thus, MΓ \ X ⊆ MΓ \ VΓ.
Therefore, by (2), |∼(Γ) = T (MΓ \ VΓ) ⊆ T (MΓ \ X ).

Direction: “⊇”.
As A is infinite, |A| = |Fc|. Therefore, λ ≤ |A|. Thus, |X | ≤ |A|2 = |A|.
Thus, X ∈ V. Thus, by (2), T (MΓ \ X ) ⊆ T (MΓ \ VΓ) = |∼(Γ).

Proof of (4). µ is clearly a choice function. We show that µ satisfies SC. Let V,W ⊆ V .
Then, µ(W ) ∩ V = (W \ X ) ∩ V = (W ∩ V ) \ X ⊆ V \ X = µ(V ).

Proof of (5). By (3), ∀ Γ ∈ {Γ1, . . . ,Γλ}, |∼′(Γ) = T (µ(MΓ)) = T (MΓ \ X ) = |∼(Γ).
But, (Γ1, . . . ,Γλ, |∼(Γ1), . . . , |∼(Γλ)) 
∈ Φ. Therefore, (Γ1, . . . ,Γλ, |∼′(Γ1), . . . , |∼′(Γλ)) 
∈ Φ.
Consequently, as 〈λ,Φ〉 is a normal characterization, |∼′ is not a pivotal consequence relation.
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Chapter 6

A link with X-logics

In this chapter, we investigate a link (that we published in [BN05a]) between pivotal consequence
relations and pertinence-based consequence relations (alias X-logics) which were first introduced
by Forget, Risch, and Siegel [FRS01]. Suppose some formulas are considered to be the pertinent
ones and collect them in a set E . Then, it is natural to conclude a formula α from a set of formulas Γ
iff every pertinent basic consequence of Γ ∪ {α} is a basic consequence of Γ (i.e. the addition of α
to Γ does not yield more pertinent formulas than with Γ alone). This constitutes a pertinence-based
consequence relation. More formally,

Definition 63 Let 〈F ,V, |=〉 be a semantic structure and |∼ a relation on P(F) ×F .
We say that |∼ is a pertinence-based consequence relation (alias X-logic) iff there exists E ⊆ F
such that ∀ Γ ⊆ F , ∀ α ∈ F ,

Γ |∼ α iff �(Γ, α) ∩ E ⊆ �(Γ).

In addition, if �(E) = E , we say that |∼ is closed.

We introduce a new assumption about semantic structures (in fact, simply a weak version of (A3)):

Definition 64 Suppose L is a language, ∨ a binary connective of L, F the set of all wffs of L, and
〈F ,V, |=〉 a semantic structure. Then, define the following condition:
(A4) ∀ α, β ∈ F ,Mα∨β = Mα ∪ Mβ .

We will show that when (A4) is assumed, UC pivotal consequence relations are precisely closed
pertinence-based consequence relations. For that, we introduce Notation 65 and the very easy Propo-
sition 66 (which we will use implicitly in the sequel).

Notation 65 Suppose L is a language, ∨ a binary connective of L, F the set of all wffs of L, Γ ⊆ F
and ∆ ⊆ F . Then:
Γ ∨ ∆ := {α ∨ β : α ∈ Γ and β ∈ ∆}.

Proposition 66 Suppose L is a language, ∨ a binary connective of L, F the set of all wffs of L,
〈F ,V, |=〉 a semantic structure satisfying (A4), Γ ⊆ F , and ∆ ⊆ F .
Then,MΓ ∪ M∆ = MΓ∨∆.
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Proof Direction: “⊆”.
Suppose the contrary, i.e. ∃ v ∈ MΓ ∪ M∆, v 
∈ MΓ∨∆.
Then, ∃ α ∈ Γ, ∃ β ∈ ∆, v 
∈ Mα∨β .
But, by (A4), v ∈ MΓ ∪ M∆ ⊆ Mα ∪ Mβ = Mα∨β , which is impossible.

Direction: “⊇”.
Suppose the contrary, i.e. ∃ v ∈ MΓ∨∆, v 
∈ MΓ ∪ M∆.
Then, ∃ α ∈ Γ, v 
∈ Mα and ∃ β ∈ ∆, v 
∈ Mβ .
Therefore, by (A4), v 
∈ Mα ∪ Mβ = Mα∨β .
However, α ∨ β ∈ Γ ∨ ∆. Thus, v 
∈ MΓ∨∆, which is impossible.

Proposition 67 Suppose L is a language, ∨ a binary connective of L, F the set of all wffs of L, and
〈F ,V, |=〉 a semantic structure satisfying (A4).
Then, UC pivotal consequence relations are precisely closed pertinence-based consequence rela-
tions.

Proof Direction: “⊆”.
Let |∼ be an UC pivotal consequence relation.
Then, there is an UC SC choice function µ fromD to P(V) such that ∀Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
Thus, by Proposition 22, there exists I ⊆ V such that V \I ∈ D and ∀Γ ⊆ F , |∼(Γ) = T (MΓ∩I).
Define: E := T (V \ I).
Then, �(E) = T (ME) = T (MT (V\I)) = T (V \ I) = E .
In addition, as V \ I ∈ D, we haveME = MT (V\I) = V \ I .
We show:
(0) ∀ Γ ⊆ F , ∀ α ∈ F , Γ |∼ α iff �(Γ, α) ∩ E ⊆ �(Γ).
Consequently, |∼ is a closed pertinence-based consequence relation.

Direction: “⊇”.
Let |∼ be a closed pertinence-based consequence relation.
Then, there is E ⊆ F such that E = �(E) and ∀ Γ ⊆ F , ∀ α ∈ F , Γ |∼ α iff �(Γ, α) ∩ E ⊆ �(Γ).
Define: I := V \ ME .
Then, V \ I = ME ∈ D.
We will show:
(1) ∀ Γ ⊆ F , |∼(Γ) = T (MΓ ∩ I).
Let µ be the choice function fromD to P(V) such that ∀ V ∈ D, µ(V ) = V ∩ I .
Then, ∀ Γ ⊆ F , |∼(Γ) = T (µ(MΓ)).
In addition, by Proposition 22, µ is a UC SC choice function.
Consequently, |∼ is an UC pivotal consequence relation.

Proof of (0). Let Γ ⊆ F and α ∈ F . Then:
Γ |∼ α iff
MΓ ∩ I ⊆ Mα iff
MΓ ⊆ Mα ∪ (V \ I) iff
MΓ ⊆ Mα ∪ ME iff
MΓ ⊆ MΓ∪{α} ∪ ME iff
MΓ ⊆ M(Γ∪{α})∨E iff
T (M(Γ∪{α})∨E ) ⊆ T (MΓ) iff
T (MΓ∪{α} ∪ ME ) ⊆ T (MΓ) iff
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T (MΓ∪{α}) ∩ T (ME) ⊆ T (MΓ) iff
�(Γ, α) ∩ �(E) ⊆ �(Γ) iff
�(Γ, α) ∩ E ⊆ �(Γ).

Proof of (1). Let Γ ⊆ F and α ∈ F . Then:
Γ |∼ α iff
�(Γ, α) ∩ E ⊆ �(Γ) iff
�(Γ, α) ∩ �(E) ⊆ �(Γ) iff
T (MΓ∪{α}) ∩ T (ME) ⊆ T (MΓ) iff
T (MΓ∪{α} ∪ ME ) ⊆ T (MΓ) iff
T (M(Γ∪{α})∨E)) ⊆ T (MΓ) iff
MΓ ⊆ M(Γ∪{α})∨E) iff
MΓ ⊆ MΓ∪{α} ∪ ME iff
MΓ ⊆ Mα ∪ ME iff
MΓ ∩ (V \ ME) ⊆ Mα iff
MΓ ∩ I ⊆ Mα.
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Part II

Lack of Finite Characterizations for the
Distance-based Revision
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Chapter 7

The AGM approach

7.1 Basic operators

Belief revision is the study of how an intelligent agent may replace its current epistemic state by
another one which is non-trivial and incorporates new information. In [AGM85], C. Alchourrón,
P. Gärdenfors, and D. Makinson proposed an approach now well-known as the AGM approach. We
will present it in a very simple classical framework.

Suppose L is a classical propositional language containing the usual connectives ¬, ∧, ∨, →,
and↔, F the set of all wffs of L, � the classical consequence relation on P(F) ×F , and T the set
of all K ⊆ F such that K is �-closed (i.e. K = {α ∈ F : K � α}). Intuitively, each element of T
represents an epistemic state and each element of F new information. Three fundamental operations
were introduced: expansion, contraction, and revision.

An expansion operator + is a function from T × F to P(F). Intuitively, K + α is the result
of adding α to K without checking the non-triviality of K + α. Alchourrón et al. proposed the
following rationality postulates: ∀ K,K′ ∈ T, ∀ α ∈ F ,
(K+1) K + α ∈ T;

(K+2) α ∈ K + α;

(K+3) K ⊆ K + α;

(K+4) if α ∈ K, then K + α = K;

(K+5) ifK ⊆ K ′, then K + α ⊆ K′ + α;

(K+6) if +′ is an expansion operator satisfying (K+1)–(K+5), then K + α ⊆ K +′ α.

The intuitive justifications of (K+1)–(K+4) are obvious. (K+5) ensures monotonicity. (K+6)
ensures that the addition of information is minimal. In fact, these postulates are very constraining.
Indeed, the only operator which satisfies them is the one such that K + α is the �-closure ofK ∪α.
So, from now on, + will denote this operator.

A contraction operator ÷ is a function from T × F to P(F). Intuitively, K ÷ α is the result of
removing α fromK. The following postulates have been proposed: ∀ K ∈ T, ∀ α, β ∈ F ,
(K÷1) K ÷ α ∈ T;
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(K÷2) K ÷ α ⊆ K;

(K÷3) if α 
∈ K, then K ÷ α = K;

(K÷4) if 
� α, then α 
∈ K ÷ α;

(K÷5) if α ∈ K, then K ⊆ (K ÷ α) + α;

(K÷6) if � α ↔ β, then K ÷ α = K ÷ β;

(K÷7) (K ÷ α) ∩ (K ÷ β) ⊆ K ÷ (α ∧ β);

(K÷8) if α 
∈ K ÷ (α ∧ β), then K ÷ (α ∧ β) ⊆ K ÷ α.

The intuitive justifications of (K÷1)–(K÷4) are obvious. (K÷5) has been strongly criticized in
e.g. [Han91, Fuh91, Nie91, LR91] and is also known as the “Principle of recovery”. (K÷6) makes
the contraction independent of the syntactic form of the formulas. (K÷7) and (K÷8) constrain in
a natural way the contraction by a conjunction.

Finally, a revision operator � is a function from T ×F to P(F). Intuitively, K � α is the result
of adding α to K while maintaining the non-triviality of K � α. The well-known AGM postulates
are the following: ∀ K ∈ T, ∀ α, β ∈ F
(K�1) K � α ∈ T;

(K�2) α ∈ K � α;

(K�3) K � α ⊆ K + α;

(K�4) if ¬α 
∈ K, then K + α ⊆ K � α;

(K�5) K � α = F iff � ¬α;

(K�6) if � α ↔ β, then K � α = K � β;

(K�7) K � (α ∧ β) ⊆ (K � α) + β;

(K�8) if ¬β 
∈ K � α, then (K � α) + β ⊆ K � (α ∧ β).

There are obvious motivations for (K�1)–(K�4). Concerning (K�5), it ensures that the revised
set of formulas is non-trivial. (K�6) makes the revision independent of the syntactic form of the
formulas. (K�7) and (K�8) ensure that the loss of information is minimal. Katsuno and Mendelzon
reformulated these postulates in a framework where L is a finite propositional language (see [KM91]
for details).

We can define naturally revision from contraction and vice versa (see e.g. [G̈88]). Indeed,
suppose ÷ is a contraction operator satisfying (K÷1)–(K÷4) and (K÷6) (not necessarily the con-
troversial (K÷5)). Then, the revision operator � defined by the Levi Identity:

K � α = (K ÷ ¬α) + α

satisfies (K�1)–(K�6). In addition, if ÷ satisfies (K÷7) (resp. (K÷8)), then � satisfies (K�7)
(resp. (K�8)).

76



Conversely, suppose � is a revision operator that satisfies (K�1)–(K�6), then the contraction
operator ÷ defined by the Harper Identity:

K ÷ α = K ∩ (K � ¬α)

satisfies (K÷1)–(K÷6). In addition, if � satisfies (K�7) (resp. (K�8)), then ÷ satisfies (K÷7)
(resp. (K÷8)).

7.2 Epistemic entrenchment

Several representation theorems related to the AGM approach have been given. Let’s present a first
one. Suppose we have some way to decide for all α and β, whether β is at least as “epistemically
entrenched” as α. In [GM88], this is modelled by an epistemic entrenchment relation, i.e. a relation
� on F ×F . The following postulates were proposed for a given K: ∀ α, β, γ ∈ F ,
(EE1) if α � β and β � γ, then α � γ;

(EE2) if � α → β, then α � β;

(EE3) α � α ∧ β or β � α ∧ β;

(EE4) ifK 
= F , then α 
∈ K iff ∀ β ∈ F , α � β;

(EE5) if ∀ β ∈ F , β � α, then � α.

Details about the justifications of these postulates can be found in [GM88] as well as the following
representation theorem: a contraction operator ÷ satisfies (K÷1)–(K÷8) iff ∀ K ∈ T, there exists
an epistemic entrenchment relation � satisfying (EE1)–(EE5) for K and such that ∀ α ∈ F ,
K ÷ α = {β ∈ K : either α ≺ α ∨ β or � α}.

Results of this kind put in evidence the importance of the AGM approach. However, a weakness
is that there is no necessary connexion between the different epistemic entrenchment relations. It
would have been better if the contractions of the different K’s were all defined by the same object.

7.3 Sphere systems

In [Gro88], Grove provided an important characterization using sphere systems. Then, Boutilier,
Katsuno, and Mendelzon modified it slightly [Bou94, KM91] using rankings instead of sphere sys-
tems. Let’s present the modified version. Suppose V is the set of all classical valuations of L, α ∈ F ,
and V ⊆ V . Then,Mα denotes the set of all models for α and T (V ) the set of all formulas satisfied
in V . Now, suppose � is a ranking on V , i.e. a total, reflexive, and transitive relation on V × V .
Intuitively, v � w means: “v is at least as important as w”. Then, � defines the most important
elements of V as follows: min	(V ) := {v ∈ V : ∀ w ∈ V , w 
≺ v}.

The following elegant representation theorem holds: a revision operator � satisfies (K�1)–
(K�8) iff ∀K ∈ T \ {F}, there exists a ranking � on V such thatK = T (min	(V)) and ∀α ∈ F ,
K � α = T (min	(Mα)). 1

1We omitted the case whereK = F , which gets special treatments (see [Bou94, KM91] for details).
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This theorem constitutes another evidence of the importance of the AGM approach. However,
there is again no necessary “glue” between the different rankings. This is not surprising because
the AGM postulates do not require an operator to put some coherence between the revisions of
two different sets K and K′. As a consequence, some operators are accepted though they are not
well-behaved when iterated. To remedy this problem, there are at least two (compatible) kinds of
solutions.

First, one could model an epistemic state by something richer than just a set of formulas, for
instance, a ranking or an ordinal conditional function [Spo88]. Approximatively, the idea is to
model not only the current beliefs, but also the strategy of revision, with an aim of constraining them
both to get properties of iterated revisions. Some well-known proposals of this kind are: Boutilier’s
natural revision [Bou93, Bou96]; Freund and Lehmann’s approach [FL94]; Darwiche and Pearl’s
approach [DP94, DP97]; Lehmann’s revised approach [Leh95]. We will not go into detail. In fact,
Part II is essentially related to the other kind of solutions.

Second, one could imagine that a unique object defines all the revisions of the differentK’s. This
will entail a strong coherence between them. Therefore, properties of iterated revisions will natu-
rally emerge (without necessarily considering rich epistemic states). Schlechta proposed a definition
based on measures [Sch91, Sch04]. Approximatively, the idea is to associate (in an independent
way) to each propositional symbol a measurable subset of the real interval [0, 1], and thus a proba-
bility. This probability measure is then extended to arbitrary formulas and gives a “weigh” to each
formula. This ordering results in a “pre-EE relation” (see Definition 7.4.1 of [Sch91]) which does
not mention anyK, and generates epistemic entrenchment relations for arbitraryK’s (see Definition
7.4.2 and Proposition 7.4.2 of [Sch91]). This defines completely a revision operator well-behaved in
case of iteration.

An alternative approach of this second kind is the distance-based revision which is presented in
detail in Chapter 8.
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Chapter 8

Distance-based Revision

The present chapter introduce fundamental definitions for Part II.

8.1 Pseudo-distances

In many circumstances, it is reasonable to assume that an agent can evaluate for any two valuations
v and w, how far is the situation described by w from the situation described by v, or how difficult
or unexpected the transition from v to w is, etc. In [LMS01], this is modelled by pseudo-distances:

Definition 68 Let V be a set.
We say that D is a pseudo-distance on V iff D = 〈C,≺, d〉, where C is a non-empty set, ≺ is a strict
total order on C , and d is a function from V × V to C .

Intuitively, V is a set of valuations. Each element of C represents a “cost”. c ≺ c′ means the cost c is
strictly smaller than the cost c′. And, d(v,w) is the cost of the move from v to w. Natural properties
that come to mind are those of usual distances. Before introducing them, we need standard notations:

Notation 69 Let r ∈ R. Then, abs(r) denotes the absolute value of r.
Let n,m ∈ N. Then, [n,m] denotes the set of every k in N (not in R) such that n ≤ k ≤ m.

Definition 70 Let D = 〈C,≺, d〉 be a pseudo-distance on a set V .
D is symmetric iff ∀ v,w ∈ V , d(v,w) = d(w, v).
D is identity respecting (IR) iff
(1) C = R;
(2) ≺ is the usual strict total order on R;
(3) ∀ v,w ∈ V , d(v,w) = 0 iff v = w.
D is positive iff (1), (2), and
(4) ∀ v,w ∈ V , 0 � d(v,w).
D is triangle-inequality respecting (TIR) iff (1), (2), and
(5) ∀ v,w, x ∈ V , d(v, x) � d(v,w) + d(w, x).

These properties have not been imposed from start because natural circumstances could then no
longer be modelled. For instance, non-symmetric pseudo-distances are useful when moving from
v to w may be “cheaper” than moving from w to v. There are also circumstances where staying
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the same requires effort and then non-IR pseudo-distances will be helpful. We can also imagine
scenarios where some costs can be seen as “benefits”, we will then turn to non-positive pseudo-
distances.

In addition, the costs are not required to be necessarily the real numbers. Indeed, for instance, we
could need |N| to model an “infinite cost” useful when a move is impossible or extremely difficult. If
we add |N| to the reals, then we can define naturally “liberal” versions of identity respect, positivity,
and triangle-inequality respect:

Definition 71 Let D = 〈C,≺, d〉 be a pseudo-distance on a set V .
D is liberally IR iff
(1) C = R ∪ {|N|};
(2) ∀ c, c′ ∈ C , c ≺ c′ iff (c, c′ ∈ R and c < c′) or (c ∈ R and c′ = |N|);
(3) ∀ v,w ∈ V , d(v,w) = 0 iff v = w.
D is liberally positive iff (1), (2), and
(4) ∀ v,w ∈ V , 0 � d(v,w).
D is liberally TIR iff (1), (2), and
(5) ∀ v,w, x ∈ V: if d(v, x), d(v,w), d(w, x) ∈ R, then d(v, x) � d(v,w) + d(w, x);
if d(v, x) = |N|, then d(v,w) = |N| or d(w, x) = |N|.
The Hamming distance between propositional valuations has been considered by M. Dalal [Dal88]
and investigated further by many authors. Respecting this distance is an important property. We
need before to present the matrices for a propositional language [Urq01]:

Definition 72 Let L = 〈A, C〉 be a propositional language (A denotes the atoms and C the connec-
tives), let F be the set of all well-formed formulas of L, and ∀ � ∈ C, let n(�) be the arity of �.
We say that M is a matrix on L iff M = 〈T,D, f〉, where T is a set, D is a non-empty proper
subset of T , and f is a function (whose domain is C) such that ∀ � ∈ C, f
 (i.e. f(�)) is a function
from Tn(
) to T .
We say that v is aM-valuation iff v is a function from F to T such that
∀ � ∈ C, ∀ α1, . . . , αn(
) ∈ F , we have v(�(α1, . . . , αn(
))) = f
(v(α1), . . . , v(αn(
))).

Intuitively, T is a set of truth values and D contains all the designated truth values.

Definition 73 Let L = 〈A, C〉 be a propositional language, M a matrix on L, V the set of all M-
valuations, and D = 〈C,≺, d〉 a pseudo-distance on V .
We use the following notation: ∀ v,w ∈ V , h(v,w) := {p ∈ A : v(p) 
= w(p)}.
We say that D is Hamming-inequality respecting (HIR) iff ∀ v,w, x ∈ V ,

if |h(v,w)| < |h(v, x)|, then d(v,w) ≺ d(v, x).

Recall that h(v,w) may be infinite and thus< has to be understood as the usual order on the cardinal
numbers. We turn to crucial operators introduced in [LMS01]. They are central in the definition of
the distance-based revision. They transform any two sets of valuations V andW into the set of every
element w of W such that a global move from V to w is of minimal cost. Note that concerning this
point, [LMS01] has its roots in [KM92] and especially in [Lew73].

Definition 74 Let D = 〈C,≺, d〉 be a pseudo-distance on a set V .
We denote by |D the binary operator on P(V) such that ∀ V,W ⊆ V ,

V |DW = {w ∈ W : ∃ v ∈ V,∀ v′ ∈ V,∀ w′ ∈ W,d(v,w) � d(v′, w′)}.
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8.2 Distance-based revision operators

The ontological commitments endorsed in [LMS01] are close to the AGM ones: a classical propo-
sitional language is considered and both epistemic states and new information are modelled by con-
sistent sets of formulas (not necessarily deductively closed).

Notation 75 We denote by Lc some classical propositional language and by �c, Vc, |=c, and Fc

respectively the classical consequence relation, valuations, satisfaction relation, and wffs of Lc.
Let Γ,∆ ⊆ Fc and V ⊆ Vc, then standardly:
Γ ∨ ∆ := {α ∨ β : α ∈ Γ, β ∈ ∆};
�c(Γ) := {α ∈ Fc : Γ �c α};
MΓ := {v ∈ Vc : ∀ α ∈ Γ, v |=c α};
T (V ) := {α ∈ Fc : V ⊆ Mα};
C := {Γ ⊆ Fc : �c(Γ) 
= Fc};
D := {V ⊆ Vc : ∃ Γ ⊆ Fc, V = MΓ}.

Remark 76 Some notations in Part II override those of Part I (new notations would have been too
cumbersome).

In this classical framework, two new properties for the pseudo-distances can be defined. They convey
natural meanings. Their importance has been put in evidence in [LMS01].

Definition 77 Let D = 〈C,≺, d〉 be a pseudo-distance on Vc.
D is definability preserving (DP) iff ∀ V,W ∈ D, V |DW ∈ D.
D is consistency preserving (CP) iff ∀ V,W ∈ P(Vc) \ {∅}, V |DW 
= ∅.

Now, suppose we are given a pseudo-distance D on Vc. Then, the revision of a consistent set of
formulas Γ by a second one∆ can be defined naturally as the set of all formulas satisfied inMΓ|DM∆

(i.e. the set of all those models of ∆ that are “closest” to the models of Γ).

Definition 78 Let � be an operator from C × C to P(Fc).
We say that � is a distance-based revision operator iff there exists a pseudo-distance D on Vc such
that ∀ Γ,∆ ∈ C,

Γ � ∆ = T (MΓ|DM∆).

In addition, if D is symmetric, HIR, DP etc., then so is �.

The authors of [LMS01] rewrote the AGM postulates in their framework as follows.
Let � be an operator from C × C to P(Fc) and Γ,Γ′,∆,∆′ ∈ C. Then, define:

(�0) if �c(Γ) = �c(Γ′) and �c(∆) = �c(∆′), then Γ � ∆ = Γ′ � ∆′;

(�1) Γ � ∆ ∈ C and Γ � ∆ = �c(Γ � ∆);

(�2) ∆ ⊆ Γ � ∆;

(�3) if Γ ∪ ∆ ∈ C, then Γ � ∆ = �c(Γ ∪ ∆);

(�4) if (Γ � ∆) ∪ ∆′ ∈ C, then Γ � (∆ ∪ ∆′) = �c((Γ � ∆) ∪ ∆′).
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Then, it can be checked that every positive, IR, CP and DP distance-based revision operator � satis-
fies (�0)-(�4), i.e. the AGM postulates. More importantly, � satisfies also certain properties that deal
with iterated revisions. This is not surprising as the revisions of the different Γ’s are all defined by
a unique pseudo-distance, which ensures a strong coherence between them. For example, � satisfies
two following properties: ∀ Γ,∆, {α}, {β} ∈ C,

• if γ ∈ (Γ � {α}) � ∆ and γ ∈ (Γ � {β}) � ∆, then γ ∈ (Γ � {α ∨ β}) � ∆;

• if γ ∈ (Γ � {α ∨ β}) � ∆, then γ ∈ (Γ � {α}) � ∆ or γ ∈ (Γ � {β}) � ∆.

These properties are not entailed by the AGMpostulates, a counter-example can be found in [LMS01].
But, they seem intuitively justified. Indeed, take three sequences of revisions that differ only at some
step in which the new information is α in the first sequence, β in the second, and α ∨ β in the third.
Now, suppose γ is concluded after both the first and the second sequences. Then, it should intuitively
be the case that γ is concluded after third sequence too.

Similar arguments can be given for the second property. Now, to characterize the full distance-
based revision more is needed. This is discussed in Section 8.3.

8.3 Characterizations with conditions of arbitrarily big size

The authors of [LMS01] provided characterizations for families of distance-based revision operators.
They proceed in two steps. First, they defined the distance operators, in a very general framework.

Definition 79 Let V be a set, V,W,X ⊆ P(V), and | an operator from V × W to X.
We say that | is a distance operator iff there exists a pseudo-distance D on V such that
∀ V ∈ V, ∀ W ∈ W, V |W = V |DW .
In addition, if D is symmetric, HIR, DP, etc., then so is |.

Then, they characterized families of such distance operators (with the least possible assumptions
about V,W, and X). This is the essence of their work. Here is an example:

Proposition 80 [LMS01] Let V be a non-empty set, V ⊆ P(V), and | an operator from V × V to
V. Assume ∅ 
∈ V and ∀ V,W ∈ V, V ∪ W ∈ V and if V ∩ W 
= ∅, then V ∩ W ∈ V too.
Then, | is a symmetric distance operator iff ∀ k ∈ N

+, ∀ V0, V1, . . . , Vk ∈ V, we have
V0|V1 ⊆ V1 and

(|loop) if




(V1|(V0 ∪ V2)) ∩ V0 
= ∅,
(V2|(V1 ∪ V3)) ∩ V1 
= ∅,
. . . ,
(Vk|(Vk−1 ∪ V0)) ∩ Vk−1 
= ∅,

then (V0|(Vk ∪ V1)) ∩ V1 
= ∅.

In a second step only, they applied these results to characterize families of distance-based revision
operators. For instance, they applied Proposition 80 to get Proposition 81 below. We should say
immediately that they chose a classical framework to define the distance-based revision. But, if we
choose now another framework, there are quite good chances that Proposition 80 can be still applied,
thanks to its algebraic nature.
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Proposition 81 [LMS01] Let � be an operator from C × C to P(Fc).
Then, � is a symmetric CP DP distance-based revision operator iff � satisfies (�0), (�1), (�2), and
∀ k ∈ N

+, ∀ Γ0,Γ1, . . . ,Γk ∈ C,

(�loop) if




Γ0 ∪ (Γ1 � (Γ0 ∨ Γ2)) ∈ C,
Γ1 ∪ (Γ2 � (Γ1 ∨ Γ3)) ∈ C,
. . . ,
Γk−1 ∪ (Γk � (Γk−1 ∨ Γ0)) ∈ C,

then Γ1 ∪ (Γ0 � (Γk ∨ Γ1)) ∈ C.
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Chapter 9

Nonexistence of normal
characterizations

9.1 Definition

Let V be a set, O a set of binary operators on P(V), and | a binary operators on P(V).
Approximatively, a characterization of O is S-normal (i.e. called normal in [Sch04]) iff it contains
only conditions which are universally quantified, apply | only a finite number of times, and use
only elementary operations (like e.g. ∪, ∩, \), see Section 1.6.2.1 of [Sch04] for details. Here is an
example of such a condition:

(C1) ∀ V,W ∈ U ⊆ P(V), V |((V ∪ W )|W ) = ∅.
Now, we introduce a new, more general, definition of normality with an aim of providing more
general impossibility results. Approximatively, in the present thesis, a characterization of O will be
called normal iff it contains only conditions which are universally quantified and apply | only a finite
number of times. Then, the conditions can involve complex structures or functions, etc., we are not
limited to elementary operations. More formally:

Definition 82 Let V be a set and O a set of binary operators on P(V).
We say that C is a normal characterization of O iff C = 〈n,Φ〉 where n ∈ N

+ and Φ is a relation on
P(V)3n such that for every binary operator | on P(V),

| ∈ O iff ∀ V1, . . . , Vn,W1, . . . ,Wn ⊆ V, (V1, . . . , Vn,W1, . . . ,Wn, V1|W1, . . . , Vn|Wn) ∈ Φ.

Remark 83 A notion of normal characterization has already been given in Definition 60. Though
Definition 60 and Definition 82 have the same spirit, they are slightly different. In particular, the
former covers both finite and infinite characterizations, whilst the latter covers only finite character-
izations. The reader should not confuse them as Definition 60 is about consequence relations, whilst
Definition 82 is about binary operators.

Now, suppose there is no normal characterization of O. Here are examples (i.e. (C1), (C2), and
(C3) below) that will give the reader (we hope) a good idea which conditions cannot characterize
O. This will therefore make clearer the range of our impossibility results (Propositions 84 and 85
below).
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To begin, (C1) cannot characterize O. Indeed, suppose the contrary, i.e.
suppose | ∈ O iff ∀ V,W ∈ U, V |((V ∪ W )|W ) = ∅.
Then, take n = 4 and Φ such that (V1, . . . , V4,W1, . . . ,W4,X1, . . . ,X4) ∈ Φ iff


V1, V2 ∈ U,
V3 = V1 ∪ V2,
W3 = V2,
V4 = V1,
W4 = X3,

entail X4 = ∅.

Then, 〈4,Φ〉 is a normal characterization of O. We give the easy proof of this, so that the reader can
check that a convenient relation Φ can be found immediately for all simple conditions like (C1).

Proof Direction: “→”.
Suppose | ∈ O.
Then, ∀ V,W ∈ U, V |((V ∪ W )|W ) = ∅.
Let V1, . . . , V4,W1, . . . ,W4 ⊆ V .
We show (V1, . . . , V4,W1, . . . ,W4, V1|W1, . . . , V4|W4) ∈ Φ.
Suppose V1, V2 ∈ U, V3 = V1 ∪ V2,W3 = V2, V4 = V1, and W4 = V3|W3.
Then, as V1, V2 ∈ U, we get V1|((V1 ∪ V2)|V2) = ∅.
But, V1|((V1 ∪ V2)|V2) = V1|(V3|W3) = V4|W4. Therefore, V4|W4 = ∅.

Direction: “←”.
Suppose ∀ V1, . . . , V4,W1, . . . ,W4 ⊆ V, (V1, . . . , V4,W1, . . . ,W4, V1|W1, . . . , V4|W4) ∈ Φ.
We show | ∈ O. Let V,W ∈ U.
Then, take V1 = V , V2 = W , V3 = V1 ∪ V2,W3 = V2, V4 = V1,W4 = V3|W3.
Take any values forW1 and W2.
Then, V1 ∈ U, V2 ∈ U, V3 = V1 ∪ V2,W3 = V2, V4 = V1, and W4 = V3|W3.
But, we have (V1, . . . , V4,W1, . . . ,W4, V1|W1, . . . , V4|W4) ∈ Φ.
Therefore, by definition of Φ, V4|W4 = ∅.
But, V4|W4 = V1|(V3|W3) = V1|((V1 ∪ V2)|V2) = V |((V ∪ W )|W ).

At this point, we excluded all those conditions which are excluded by the nonexistence of a S-normal
characterization of O, i.e. all conditions like (C1). But actually, more complex conditions are also
excluded. For instance, let f be any function from P(V) to P(V). Then, the following condition:

(C2) ∀ V,W ∈ U, f(V )|((V ∪ W )|W ) = ∅.
cannot characterize O. Indeed, suppose it characterizes O.
Then, take n = 4 and Φ such that (V1, . . . , V4,W1, . . . ,W4,X1, . . . ,X4) ∈ Φ iff


V1, V2 ∈ U,
V3 = V1 ∪ V2,
W3 = V2,
V4 = f(V1),
W4 = X3,

entail X4 = ∅.

Then, 〈4,Φ〉 is a normal characterization of O. We leave the easy proof of this to the reader. On
the other hand, (C2) is not excluded by Schlechta, if f cannot be constructed from elementary
operations. But, even if there exists such a construction, showing that it is indeed the case might
well be a difficult problem.
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We can even go further combining universal (not existential) quantifiers and functions like f .
For instance, let G be a set of functions from P(V) to P(V) and consider the following condition:

(C3) ∀ f ∈ G, ∀ V,W ∈ U, f(V )|((V ∪ W )|W ) = ∅.
Then, (C3) cannot characterize O. Indeed, suppose (C3) characterizes O.
Then, take n = 4 and Φ such that (V1, . . . , V4,W1, . . . ,W4,X1, . . . ,X4) ∈ Φ iff

∀ f ∈ G, if




V1, V2 ∈ U,
V3 = V1 ∪ V2,
W3 = V2,
V4 = f(V1),
W4 = X3,

then X4 = ∅.

It can be checked that 〈4,Φ〉 is a normal characterization of O. The easy proof is left to the reader.
On the other hand, (C3) is not excluded by Schlechta.

Finally, a good example of a condition which is not excluded (neither by myself nor Schlechta)
is of course the arbitrarily big loop condition (|loop) of Section 8.3.

9.2 Impossibility results

Given the characterizations of Section 8.3, an interesting question arises: is it possible to replace
(�loop) by a finite condition? Obviously, the presence of (�loop) is due to the presence of (|loop).
So, to solve the problem one might attack its source, i.e. try to replace (|loop) by a finite condi-
tion. But, in the present chapter, we will show that for families of distance operators, there is no
normal characterization (these results have been published in [BN06]). The symmetric family will
be concerned with this and therefore (|loop) cannot be replaced by a finite and universally quantified
condition.

Now, we can go further. Indeed, there is a strong connexion between the distance operators and
the distance-based revision operators. Lehmann et al. used this connexion to get their results on the
latter from their results on the former. It is reasonable to think that the same thing can be done with
our negative results, i.e this thesis can certainly be continued in future work to show that for families
of distance-based revision operators, there is no either normal characterization. For instance, the
family which is symmetric, CP, and DP might well be concerned with this, which suggests that
(�loop) cannot be replaced by a finite and universally quantified condition.

We provide our first impossibility result. It generalizes Proposition 4.2.11 of [Sch04]. Our proof
will be based on a slight adaptation of a particular pseudo-distance invented by Schlechta, called
“Hamster Wheel”.

Proposition 84 Let V be an infinite set, N the set of all symmetric IR positive TIR distance opera-
tors from P(V)2 to P(V), and O a set of distance operators from P(V)2 to P(V) such that N ⊆ O.
Then, there does not exist a normal characterization of O.

Proof Suppose the contrary, i.e. there exist n ∈ N
+ and a relation Φ on P(V)3n such that

(0) for every binary operator | on P(V), we have | ∈ O iff
∀ V1, . . . , Vn,W1, . . . ,Wn ⊆ V , (V1, . . . , Vn,W1, . . . ,Wn, V1|W1, . . . , Vn|Wn) ∈ Φ.
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As V is infinite, there exist distinct v1, . . . , vm, w1, . . . , wm ∈ V , withm = n + 3.
Let X = {v1, . . . , vm, w1, . . . , wm}.
Let D be the pseudo-distance on V such that D = 〈R, <, d〉, where < is the usual order on R and d
is the function defined as follows. Let v,w ∈ V . Consider the cases that follow:
Case 1: v = w.
Case 2: v 
= w.
Case 2.1: {v,w} 
⊆ X.
Case 2.2: {v,w} ⊆ X.
Case 2.2.1: {v,w} ⊆ {v1, . . . , vm}.
Case 2.2.2: {v,w} ⊆ {w1, . . . , wm}.
Case 2.2.3: ∃ i, j ∈ [1,m], {v,w} = {vi, wj}.
Case 2.2.3.1: i = j.
Case 2.2.3.2: abs(i − j) ∈ {1,m − 1}.
Case 2.2.3.3: 1 < abs(i − j) < m − 1.
Then,

d(v,w) =




0 if Case 1 holds;
1 if Case 2.1 holds;
1.1 if Case 2.2.1 holds;
1.1 if Case 2.2.2 holds;
1.4 if Case 2.2.3.1 holds;
2 if Case 2.2.3.2 holds;
1.2 if Case 2.2.3.3 holds.

Note that D is essentially, but not exactly, the Hamster Wheel of [Sch04]. The main difference is
Case 2.1, which was not treated by Schlechta. The reader can find a picture of D in Figure 1.

Figure 1: a slight adaptation of Hamster Wheel.
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Let | be the binary operator on P(V) such that ∀ V,W ⊆ V ,

V |W =




{wm} if V = {vm, v1} and W = {wm, w1};
{vm} if V = {wm, w1} and W = {vm, v1};
V |DW otherwise.

The difference between | and |D is sufficiently big so that
(1) | is not a distance operator.
The proof of this will be given later. Thus, | 
∈ O. Thus, by (0), we get that

(2) ∃ V1, . . . , Vn,W1, . . . ,Wn ⊆ V , (V1, . . . , Vn,W1, . . . ,Wn, V1|W1, . . . , Vn|Wn) 
∈ Φ.

In addition, we tookm sufficiently big so that

(3) ∃ r ∈ [1,m − 1], ∀ i ∈ [1, n], {Vi,Wi} 
= {{vr, vr+1}, {wr, wr+1}}.
Again, we will give the proof of this later, for a better readability.
Let |′ be the binary operator on P(V) such that ∀ V,W ⊆ V ,

V |′W =




{wr+1} if V = {vr, vr+1} and W = {wr, wr+1};
{vr+1} if V = {wr, wr+1} and W = {vr, vr+1};
V |W otherwise.

The difference between |′ and | is “invisible” for Φ.
More formally, by (3), we have that: ∀ i ∈ [1, n], Vi|′Wi = Vi|Wi.
Therefore, by (2), we get that (V1, . . . , Vn,W1, . . . ,Wn, V1|′W1, . . . , Vn|′Wn) 
∈ Φ.
Thus, by (0), we obtain that

(4) |′ 
∈ O.
But, at the same time, there is a convenient pseudo-distance that represents |′.
Indeed, let D′ be the pseudo-distance on V such that D′ = 〈R, <, d′〉, where d′ is the function such
that ∀ v,w ∈ V ,

d′(v,w) =
{

1.3 if ∃ i ∈ [r + 1,m], {v,w} = {vi, wi};
d(v,w) otherwise.

Then, it can be shown that D′ represents |′. More formally,
(5) |′ = |D′ .

The proof will be given later. Now, D′ is obviously symmetric, IR, and positive.
In addition, D′ is TIR, because D′ is IR and ∀ v,w ∈ V , d′(v,w) = 0 or 1 ≤ d′(v,w) ≤ 2.
Therefore, |′ is a symmetric IR positive TIR distance operator.
Consequently, |′ ∈ N and thus

(6) |′ ∈ O.
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So, we get the final contradiction by (4) and (6).

Proof of (1). Suppose the contrary, i.e.
suppose there exists a pseudo-distance S = 〈C,≺, g〉 on V such that | = |S .
Then, the costs of the moves from the vi’s to the wi’s are all equals:
(1.1) ∀ i ∈ [1,m − 1], g(vi, wi) = g(vi+1, wi+1).
On the other hand, there is an inequality among them:
(1.2) g(vm, wm) ≺ g(v1, w1).
But, by (1.1) and (1.2), we get an obvious contradiction.

Proof of (1.1). Let i ∈ [1,m − 1].
Then, {vi, vi+1}|S{wi, wi+1} = {vi, vi+1}|D{wi, wi+1} = {wi, wi+1}.
Case 1: g(vi, wi) ≺ g(vi+1, wi+1).
As {vi}|S{wi, wi+1} = {vi}|D{wi, wi+1} = {wi} 
� wi+1, we get g(vi, wi) ≺ g(vi, wi+1).
Thus, wi+1 
∈ {vi, vi+1}|S{wi, wi+1}, which is impossible.
Case 2: g(vi+1, wi+1) ≺ g(vi, wi).
As {vi+1}|S{wi, wi+1} = {vi+1}|D{wi, wi+1} = {wi+1} 
� wi,
we get g(vi+1, wi+1) ≺ g(vi+1, wi).
Therefore, wi 
∈ {vi, vi+1}|S{wi, wi+1}, which is impossible.
Case 3: g(vi, wi) 
≺ g(vi+1, wi+1) and g(vi+1, wi+1) 
≺ g(vi, wi).
Then, as ≺ is total, g(vi, wi) = g(vi+1, wi+1).

Proof of (1.2). As {vm, v1}|S{wm, w1} = {vm, v1}|{wm, w1} = {wm} 
� w1,
we have ∃ v ∈ {vm, v1}, ∃ w ∈ {wm, w1}, g(v,w) ≺ g(v1, w1).
Case 1: g(vm, wm) ≺ g(v1, w1). We are done.
Case 2: g(vm, w1) ≺ g(v1, w1).
As {vm}|S{wm, w1} = {vm}|D{wm, w1} = {wm} 
� w1, we get g(vm, wm) ≺ g(vm, w1).
Thus, by transitivity of ≺, g(vm, wm) ≺ g(v1, w1).
Case 3: g(v1, wm) ≺ g(v1, w1).
Then, {v1}|S{wm, w1} = {wm}.
However, {v1}|S{wm, w1} = {v1}|D{wm, w1} = {w1}, which is impossible.
Case 4: g(v1, w1) ≺ g(v1, w1). Impossible by irreflexivity of ≺.

Proof of (3). For all s ∈ [1,m − 1], let Is := {i ∈ [1, n] : {Vi,Wi} = {{vs, vs+1}, {ws, ws+1}}}.
Suppose the opposite of what we want to show, i.e. ∀ s ∈ [1,m − 1], Is 
= ∅.
As v1, . . . , vm, w1, . . . , wm are distinct, ∀ s, t ∈ [1,m − 1], if s 
= t, then Is ∩ It = ∅.
Therefore, m − 1 ≤ |I1 ∪ . . . ∪ Im−1|.
On the other hand, ∀ s ∈ [1,m − 1], Is ⊆ [1, n]. Thus, |I1 ∪ . . . ∪ Im−1| ≤ n.
Thus,m − 1 ≤ n, which is impossible asm = n + 3.

Proof of (5). Let V,W ⊆ V .
Case 1: V = {vr, vr+1} and W = {wr, wr+1}.
Then, V |′W = {wr+1} = V |D′W .
Case 2: V = {wr, wr+1} and W = {vr, vr+1}.
Then, V |′W = {vr+1} = V |D′W .
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Case 3: V = {vm, v1} and W = {wm, w1}.
Then, V |′W = V |W = {wm} = V |D′W .
Case 4: V = {wm, w1} and W = {vm, v1}.
Then, V |′W = V |W = {vm} = V |D′W .
Case 5: {V,W} 
∈ {{{vr , vr+1}, {wr , wr+1}}, {{vm, v1}, {wm, w1}}}.
Then, V |′W = V |W = V |DW .
Case 5.1: V = ∅ or W = ∅.
Then, V |DW = ∅ = V |D′W .
Case 5.2: V ∩ W 
= ∅.
Then, V |DW = V ∩ W = V |D′W .
Case 5.3: V 
= ∅,W 
= ∅, and V ∩ W = ∅.
Case 5.3.1: V 
⊆ X.
Then, V |DW = W = V |D′W .
Case 5.3.2: V ⊆ X.
Case 5.3.2.1: W 
⊆ X.
Then, V |DW = W \ X = V |D′W .
Case 5.3.2.2: W ⊆ X.
Case 5.3.2.2.1: V 
⊆ {v1, . . . , vm} and V 
⊆ {w1, . . . , wm}.
Then, V |DW = W = V |D′W .
Case 5.3.2.2.2: V ⊆ {v1, . . . , vm} and W 
⊆ {w1, . . . , wm}.
Then, V |DW = W ∩ {v1, . . . , vm} = V |D′W .
Case 5.3.2.2.3: V ⊆ {v1, . . . , vm} and W ⊆ {w1, . . . , wm}.
Case 5.3.2.2.3.1: ∃ vi ∈ V , ∃ wj ∈ W , 1 < abs(i − j) < m − 1.
Then, V |DW = {wj ∈ W : ∃ vi ∈ V , 1 < abs(i − j) < m − 1} = V |D′W .
Case 5.3.2.2.3.2: ∀ vi ∈ V , ∀ wj ∈ W , abs(i − j) ∈ {0, 1,m − 1}.
Case 5.3.2.2.3.2.1: |V ∪ W | ≥ 5.
Asm ≥ 4, we get ∃ vi ∈ V , ∃ wj ∈ W , 1 < abs(i − j) < m − 1, which is impossible.
Case 5.3.2.2.3.2.2: |V ∪ W | ∈ {2, 3, 4}.
Case 5.3.2.2.3.2.2.1: {k ∈ [1,m] : vk ∈ V and wk ∈ W} = ∅.
Then, V |DW = W = V |D′W .
Case 5.3.2.2.3.2.2.2: ∃ i ∈ [1,m], {k ∈ [1,m] : vk ∈ V and wk ∈ W} = {i}.
Then, V |DW = {wi} = V |D′W .
Case 5.3.2.2.3.2.2.3: ∃ i, j ∈ [1,m], i < j, {k ∈ [1,m] : vk ∈ V and wk ∈ W} = {i, j}.
Then, V = {vi, vj} and W = {wi, wj}.
Case 5.3.2.2.3.2.2.3.1: r < i or j ≤ r.
Then, V |DW = {wi, wj} = V |D′W .
Case 5.3.2.2.3.2.2.3.2: i ≤ r < j.
As abs(i − j) ∈ {1,m − 1}, 〈V, W 〉 ∈ {〈{vr, vr+1}, {wr, wr+1}〉, 〈{v1, vm}, {w1, wm}〉},
which is impossible.
Case 5.3.2.2.3.2.2.4: |{k ∈ [1,m] : vk ∈ V and wk ∈ W}| ≥ 3.
Then, |V ∪ W | ≥ 6, impossible.
Case 5.3.2.2.4: V ⊆ {w1, . . . , wm} and W 
⊆ {v1, . . . , vm}.
Then, V |DW = W ∩ {w1, . . . , wm} = V |D′W .
Case 5.3.2.2.5: V ⊆ {w1, . . . , wm} and W ⊆ {v1, . . . , vm}.
Similar to Case 5.3.2.2.3.
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We extend the negative results to the “liberal” and Hamming properties. The proof will be based on
an adaptation of the Hamster Wheel. Note that the Hamming distance is a realistic distance which
has been investigated by many researchers. This strengthen the importance of Proposition 85 in the
sense that not only abstract but also concrete cases do not admit a normal characterization.

Proposition 85 Let L = 〈A, C〉 be a propositional language with A infinite and countable, M a
matrix on L, V the set of allM-valuations, N the set of all symmetric, HIR, liberally IR, liberally
positive, and liberally TIR distance operators from P(V)2 to P(V), andO a set of distance operators
from P(V)2 to P(V) such that N ⊆ O.
Then, there does not exist a normal characterization of O.

Proof Suppose the contrary, i.e. there are n ∈ N
+ and a relation Φ on P(V)3n such that

(0) for every binary operator | on P(V), we have | ∈ O iff
∀ V1, . . . , Vn,W1, . . . ,Wn ⊆ V , (V1, . . . , Vn,W1, . . . ,Wn, V1|W1, . . . , Vn|Wn) ∈ Φ.

As A is infinite, there are distinct p1, . . . , pm, q1, . . . , qm ∈ A, withm = n + 3.
Let’s poseM = 〈T,D, f〉.
As D 
= ∅ and T \ D 
= ∅, there are distinct 0, 1 ∈ T .
Now, ∀ i ∈ [1,m], let vi be theM-valuation that assigns 1 to pi and 0 to each other atom of A.
Similarly, ∀ i ∈ [1,m], let wi be theM-valuation that assigns 1 to qi and 0 to each other atom of A.
In addition, let X = {v1, . . . , vm, w1 . . . , wm}.
Note that ∀ v,w ∈ X, with v 
= w, we have |h(v,w)| = 2.
Finally, let D be the pseudo-distance on V such that D = 〈R ∪ {|N|},≺, d〉,
where ≺ and d are defined as follows.
Let c, c′ ∈ R ∪ {|N|}.
Then, c ≺ c′ iff (c, c′ ∈ R and c < c′) or (c ∈ R and c′ = |N|).
Let v,w ∈ V and consider the cases which follow:
Case 1: v = w.
Case 2: v 
= w.
Case 2.1: {v,w} 
⊆ X.
Case 2.1.1: |h(v,w)| = 1.
Case 2.1.2: |h(v,w)| ≥ 2.
Case 2.2: {v,w} ⊆ X.
Case 2.2.1: {v,w} ⊆ {v1, . . . , vm}.
Case 2.2.2: {v,w} ⊆ {w1, . . . , wm}.
Case 2.2.3: ∃ i, j ∈ [1,m], {v,w} = {vi, wj}.
Case 2.2.3.1: i = j.
Case 2.2.3.2: abs(i − j) ∈ {1,m − 1}.
Case 2.2.3.3: 1 < abs(i − j) < m − 1.
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Then,

d(v,w) =




0 if Case 1 holds;
1.4 if Case 2.1.1 holds;
|h(v,w)| if Case 2.1.2 holds;
2.1 if Case 2.2.1 holds;
2.1 if Case 2.2.2 holds;
2.4 if Case 2.2.3.1 holds;
2.5 if Case 2.2.3.2 holds;
2.2 if Case 2.2.3.3 holds.

Note that D is an adaptation of the Hamster Wheel of [Sch04].
The reader can find a picture of D in Figure 2.

Figure 2: an adaptation of Hamster Wheel.

Let | be the binary operator on P(V) defined as follows.
Let V,W ⊆ V and consider the cases that follow:
Case 1: ∀v ∈ V , ∀w ∈ W , {v,w} ⊆ X or 3 ≤ |h(v,w)|.
Case 1.1: V ∩ X = {vm, v1} and W ∩ X = {wm, w1}.
Case 1.2: V ∩ X = {wm, w1} and W ∩ X = {vm, v1}.
Case 1.3: {V ∩ X,W ∩ X} 
= {{vm, v1}, {wm, w1}}.
Case 2: ∃ v ∈ V , ∃ w ∈ W , {v,w} 
⊆ X and |h(v,w)| < 3.
Then,

V |W =




{wm} if Case 1.1 holds;
{vm} if Case 1.2 holds;
V |DW if Case 1.3 or Case 2 holds.

The difference between | and |D is sufficiently big so that | is not a distance operator.
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The proof is verbatim the same as for (1) in the proof of Proposition 84.
Consequently, | 
∈ O, thus, by (0), we get that

(1) ∃ V1, . . . , Vn,W1, . . . ,Wn ⊆ V , (V1, . . . , Vn,W1, . . . ,Wn, V1|W1, . . . , Vn|Wn) 
∈ Φ.

Moreover, we chose m big enough so that

(2) ∃ r ∈ [1,m − 1], ∀ i ∈ [1, n], {Vi ∩ X,Wi ∩ X} 
= {{vr, vr+1}, {wr, wr+1}}.
The proof is verbatim the same as for (3) in the proof of Proposition 84, except that Vi is replaced
by Vi ∩ X and Wi is replaced byWi ∩ X.
Let now |′ be the binary operator on P(V) defined as follows.
Let V,W ⊆ V and consider the cases that follow:
Case 1: ∀v ∈ V , ∀w ∈ W , {v,w} ⊆ X or 3 ≤ |h(v,w)|.
Case 1.1: V ∩ X = {vr, vr+1} and W ∩ X = {wr, wr+1}.
Case 1.2: V ∩ X = {wr, wr+1} and W ∩ X = {vr, vr+1}.
Case 1.3: {V ∩ X,W ∩ X} 
= {{vr, vr+1}, {wr, wr+1}}.
Case 2: ∃ v ∈ V , ∃ w ∈ W , {v,w} 
⊆ X and |h(v,w)| < 3.
Then,

V |′W =




{wr+1} if Case 1.1 holds;
{vr+1} if Case 1.2 holds;
V |W if Case 1.3 or Case 2 holds.

The difference between |′ and | is “invisible” for Φ.
More formally, ∀ i ∈ [1, n], Vi|′Wi = Vi|Wi.
The proof is obvious by (2).
Therefore, by (1), we get (V1, . . . , Vn,W1, . . . ,Wn, V1|′W1, . . . , Vn|′Wn) 
∈ Φ, thus, by (0):

(3) |′ 
∈ O.
But, at the same time, there is convenient pseudo-distance that represents |′.
Indeed, letD′ be the pseudo-distance on V such thatD′ = 〈R∪{|N|},≺, d′〉, where d′ is the function
such that ∀ v,w ∈ V ,

d′(v,w) =
{

2.3 if ∃ i ∈ [r + 1,m], {v,w} = {vi, wi};
d(v,w) otherwise.

Note that ∀ v,w ∈ V , |h(v,w)| ∈ N iff d(v,w) ∈ R iff d′(v,w) ∈ R.
Therefore, |h(v,w)| = |N| iff d(v,w) = |N| iff d′(v,w) = |N|.
Note again that ∀ v,w ∈ V , with |h(v,w)| ∈ N, |h(v,w)| ≤ d′(v,w) ≤ d(v,w) ≤ |h(v,w)| + 0.5.
Now, it can be shown that D′ represents |′. More formally,
(4) |′ = |D′ .

Now, clearly, D′ is symmetric, liberally IR, and liberally positive.
In addition, we will show:

(5) D′ is HIR;

(6) D′ is liberally TIR.
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So, |′ is a symmetric, liberally IR, liberally positive, liberally TIR, and HIR distance operator.
Therefore, |′ ∈ N and thus:

(7) |′ ∈ O.
Finally, we get a contradiction by (3) and (7), which ends the proof.

Proof of (4). Let V,W ⊆ V .
Case 1: ∀v ∈ V , ∀w ∈ W , {v,w} ⊆ X or 3 ≤ |h(v,w)|.
Case 1.1: V ∩ X = {vr, vr+1} and W ∩ X = {wr, wr+1}.
Then, V |′W = {wr+1} = V |D′W .
Case 1.2: V ∩ X = {wr, wr+1} and W ∩ X = {vr, vr+1}.
Then, V |′W = {vr+1} = V |D′W .
Case 1.3: V ∩ X = {vm, v1} and W ∩ X = {wm, w1}.
Then, V |′W = {wm} = V |D′W .
Case 1.4: V ∩ X = {wm, w1} and W ∩ X = {vm, v1}.
Then, V |′W = {vm} = V |D′W .
Case 1.5: {V ∩ X,W ∩ X} 
∈ {{{vm, v1}, {wm, w1}}, {{vr, vr+1}, {wr, wr+1}}}.
Then, V |′W = V |W = V |DW .
Case 1.5.1: V ∩ W 
= ∅.
Then, V |DW = V ∩ W = V |D′W .
Case 1.5.2: V ∩ W = ∅.
Case 1.5.2.1: V ∩ X = ∅ orW ∩ X = ∅.
Then, ∀ v ∈ V , ∀ w ∈ W , d′(v,w) = d(v,w). Thus, V |DW = V |D′W .
Case 1.5.2.2: V ∩ X 
= ∅ and W ∩ X 
= ∅.
Then, we will show:

(4.1) V |DW = V ∩ X|DW ∩ X;

(4.2) V |D′W = V ∩ X|D′W ∩ X.

But, we have V ∩ X|DW ∩ X = V ∩ X|D′W ∩ X.
The proof of this is verbatim the same as for Case 5.3.2.2, in the proof of (5), in the proof of Propo-
sition 84, except that V is replaced by V ∩ X and W is replaced byW ∩ X.
Case 2: ∃ v ∈ V , ∃ w ∈ W , ({v,w} 
⊆ X and |h(v,w)| ≤ 2).
Then, V |′W = V |W = V |DW .
Case 2.1. V ∩ W 
= ∅.
Then, V |DW = V ∩ W = V |D′W .
Case 2.2. V ∩ W = ∅.
Case 2.2.1. ∃ v′ ∈ V , ∃ w′ ∈ W , |h(v,w)| = 1.
Then, V |DW = {w ∈ W : ∃ v ∈ V, |h(v,w)| = 1} = V |D′W .
Case 2.2.2. ∀ v′ ∈ V , ∀ w′ ∈ W , |h(v,w)| ≥ 2.
Then, V |DW = {w ∈ W : ∃ v ∈ V, {v,w} 
⊆ X and |h(v,w)| = 2} = V |D′W .

Proof of (4.1). Direction: “⊆”.
Let w ∈ V |DW . Then, ∃ v ∈ V , ∀ v′ ∈ V , ∀ w′ ∈ W , d(v,w) � d(v′, w′).
Case 1: {v,w} ⊆ X.
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Then, w ∈ V ∩ X|DW ∩ X.
Case 2: {v,w} 
⊆ X.
We have ∃ v′ ∈ V ∩ X and ∃ w′ ∈ W ∩ X. In addition, d(v′, w′) ∈ R and d(v′, w′) ≤ 2.5.
Case 2.1: |h(v,w)| = |N|.
Then, d(v,w) = |N|. Therefore, d(v′, w′) ≺ d(v,w), which is impossible.
Case 2.2: |h(v,w)| ∈ N.
Then, d(v,w) ∈ R and 3 ≤ |h(v,w)| ≤ d(v,w). Thus, d(v′, w′) < d(v,w).
Thus, d(v′, w′) ≺ d(v,w), which is impossible.

Direction: “⊇”.
Let w ∈ V ∩ X|DW ∩ X.
Then, ∃ v ∈ V ∩ X, ∀ v′ ∈ V ∩ X, ∀ w′ ∈ W ∩ X, d(v,w) � d(v′, w′).
Let v′ ∈ V , w′ ∈ W .
Case 1: {v′, w′} ⊆ X.
Then, d(v,w) � d(v′, w′).
Case 2: {v′, w′} 
⊆ X.
As v,w ∈ X, we have d(v,w) ∈ R and d(v,w) ≤ 2.5.
Case 2.1: |h(v′, w′)| = |N|.
Then, d(v′, w′) = |N|, thus d(v,w) ≺ d(v′, w′).
Case 2.2: |h(v′, w′)| ∈ N.
Then, d(v′, w′) ∈ R and 3 ≤ |h(v′, w′)| ≤ d(v′, w′). Thus, d(v,w) < d(v′, w′).
Thus, d(v,w) ≺ d(v′, w′).
Consequently, in any case d(v,w) � d(v′, w′). Thus, w ∈ V |DW .

Proof of (4.2). Verbatim the proof of (4.1), except that |D and d are replaced by |D′ and d′.

Proof of (5). Let v,w, x ∈ V with |h(v,w)| < |h(v, x)|.
Case 1: |h(v, x)| = |N|.
Then, |h(v,w)| ∈ N. Thus, d′(v,w) ∈ R and d′(v, x) = |N|. Therefore, d′(v,w) ≺ d′(v, x).
Case 2: |h(v, x)| ∈ N.
Then, |h(v,w)| ∈ N. Therefore, d′(v, x) ∈ R, d′(v,w) ∈ R, and
d′(v,w) ≤ |h(v,w)| + 0.5 < |h(v,w)| + 1 ≤ |h(v, x)| ≤ d′(v, x). Thus, d′(v,w) ≺ d′(v, x).

Proof of (6). Let v,w, x ∈ V .
First, note that h(v, x) ⊆ h(v,w) ∪ h(w, x), thus |h(v, x)| ≤ |h(v,w) ∪ h(w, x)|.
Case 1: d′(v, x) = |N|.
Then, |h(v, x)| = |N|. Now, suppose d′(v,w) ∈ R and d′(w, x) ∈ R.
Then, |h(v,w)|, |h(w, x)| ∈ N. Thus, |h(v,w) ∪ h(w, x)| ∈ N.
Therefore, |h(v, x)| ∈ N, which is impossible.
Thus, d′(v,w) = |N| or d′(w, x) = |N|.
Case 2: d′(v, x), d′(v,w), d′(w, x) ∈ R.
Case 2.1: |h(v,w)| = 0 or |h(w, x)| = 0. Trivial.
Case 2.2: |h(v,w)| ≥ 1 and |h(w, x)| ≥ 1.
Case 2.2.1: |h(v,w)| ≥ 2 or |h(w, x)| ≥ 2.
Case 2.2.1.1: |h(v, x)| ∈ {0, 1, 2}.
Then, d′(v, x) ≤ |h(v, x)| + 0.5 ≤ 2.5 < 3 ≤ |h(v,w)| + |h(w, x)| ≤ d′(v,w) + d′(w, x).
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Case 2.2.1.2: |h(v, x)| ≥ 3.
Then, d′(v, x) = |h(v, x)| ≤ |h(v,w)| + |h(w, x)| ≤ d′(v,w) + d′(w, x).
Case 2.2.2: |h(v,w)| = 1 and |h(w, x)| = 1.
Case 2.2.2.1: |h(v, x)| ∈ {0, 1, 2}.
Then, d′(v, x) ≤ |h(v, x)| + 0.5 ≤ 2.5 < 1.4 + 1.4 = d′(v,w) + d′(w, x).
Case 2.2.2.2: |h(v, x)| ≥ 3.
Then, |h(v, x)| > |h(v,w)| + |h(w, x)|, which is impossible.
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Conclusion

First, let’s summarize what has been achieved in Part I. We provided, in a general framework, charac-
terizations for preferential(-discriminative) and pivotal(-discriminative) consequence relations. We
showed, in an infinite classical framework, that the family of all pivotal consequence relations does
not admit a characterization containing only conditions universally quantified and of limited size.
Finally, we showed that universe-codefinability pivotal consequence relations are precisely those
X-logics for which X is deductively closed. Concerning Part II, our contributions are the follow-
ing: extending the work of Schlechta, we showed in a general framework that for several families
of distance operators, there is no characterization containing only finite and universally quantified
conditions.

Now, we turn to the perspectives. The general idea is to rebuild different kinds of common sense
reasoning in paraconsistent frameworks (just as we investigated preferential and pivotal consequence
relations in many-valued-frameworks). A first thing that comes to mind is belief revision.

Indeed, most of the approaches to belief revision treat in a trivial way inconsistent sets of beliefs
(if they are treated at all). However, people may be rational despite inconsistent beliefs. Indeed, there
may be overwhelming evidence for both something and its contrary. There are also inconsistencies
in principle impossible to eliminate like the “Paradox of the Preface” [Mak65]. The latter says that a
conscientious author has reasons to believe that everything written in his book is true. But, because
of human imperfection, he believes also that his book contains errors, and thus that something must
be false. Consequently, he has (in the absolute sense) both reasons to believe that everything is true
and that something is false. So, principles of rational belief revision must work on inconsistent sets
of beliefs. Standard approaches to belief revision (e.g. AGM) all fail to do this as they are based on
classical logic. Paraconsistent logics (e.g. FOUR) could be the bases of more adequate approaches.

Another advantage of these paraconsistent approaches is that they will not be forced to eliminate
a contradiction even when there is no good way to do it. Contradictions could be tolerated until new
information eventually comes to justify one or another way of elimination. Finally, these approaches
will benefit from an extended field of application which includes multi-agent systems where the
agents can have individually inconsistent beliefs.

More widely, we can investigate in paraconsistent frameworks other kinds of reasoning, for
instance : update, merging, counterfactual conditionals or simply new plausible relations.

Several sub-results of Part I can be useful to provide further characterizations (in particular, for
new plausible relations). More precisely, in the most general cases, i.e. when the choice functions
are not necessarily definability preserving, we obtained results thanks to Lemmas 34 and 35 (for
preferential relations) and Lemmas 52 and 53 (for pivotal relations). An interesting point is that we
used them both in the plain and the discriminative versions. This suggests that they can be used in
yet other versions.
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In addition, when the choice functions under consideration were definability preserving, we ap-
plied Lemmas 44 and 45 both in the preferential-discriminative and the pivotal-discriminative cases
to get characterizations. They can probably be applied again to characterize new families of con-
sequence relations defined in the discriminative manner by definability preserving choice functions
(not necessarily coherent or strongly coherent, unlike all the families investigated in this thesis).

Part II offers also possibilities. First, recall that the negative results on distance operators can
probably be used to show similar impossibility results for distance-based revision operators.

Moreover, this direction of future work can still be followed if we redefine the distance-based
revision in a non-classical framework (as we suggested it in the general idea for perspectives). In-
deed, as Lehmann et al. did, we worked in a general framework. For example, if we redefine the
revision in the FOUR framework, then we can probably use the results of [LMS01] and our re-
sults respectively to demonstrate characterizations of revision operators and show that they cannot
be really improved.

Finally, certain update operators, like that of Winslett [Win88] (or that of Forbus), are based on
the Hamming distance. The question to know whether the negative results of Part II have repercus-
sions on these operators constitutes an interesting direction of future research.
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[MT95] A. Mikitiuk and M. Truszczyński. Constrained and rational default logics. In Four-
teenth International Joint Conference on Artificial Intelligence, pages 1509–1515. Mor-
gan Kaufmann, 1995.

[NFPS96] A. Nayak, N. Y. Foo, M. Pagnucco, and A. Sattar. Changing conditional beliefs uncon-
ditionally. In Y. Shoham, editor, Proceedings of the Sixth International Conference on
Theoretical Aspects of Rationality and Knowledge, pages 119–135. Morgan Kaufmann,
1996.

[Nie91] R. Niederée. Multiple contraction: A further case against Gärdenfors’ principle of re-
covery. The Logic of Theory Change, pages 322–334, 1991.

[PH98] S. Parsons and A. Hunter. A review of uncertainty handling formalisms. Applications
of Uncertainty Formalisms. Lecture Notes in Artificial Intelligence No. 1455 (A. Hunter,
S. Parsons eds.), 1998.

[Poo85] D. L. Poole. On the comparison of theories: Preferring the most specific explanation.
In 9th International Joint Conference on Artificial Intelligence (IJCAI), pages 144–147,
1985.

[Poo89] D. L. Poole. What the lottery paradox tells us about default reasoning (extended ab-
stract). In First International Conference on the Principles of Knowledge Representation
and Reasoning, 1989.

[Pri91] G. Priest. Minimally inconsistent LP. Studia Logica, 50:321–331, 1991.

[RC81] R. Reiter and G. Criscuolo. On interacting defaults. In 7th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 270–276, 1981.

[Rei78] R. Reiter. On closed world databases. Logic and Databases (H. Gallaire, J. Minker,
eds.), pages 55–76, 1978.

[Rei80] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81–132, 1980.

[Rot01] H. Rott. Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic
Reasoning. Clarenton Press, Oxford UK (Oxford Logic Guides 42), 2001.

[Sch91] K. Schlechta. Theory revision and probability. Notre Dame Journal of Formal Logic,
32(2):307–319, 1991.

106



[Sch92a] T. Schaub. Considerations on Default Logic. PhD thesis, Technische Hochschule Darm-
stadt, FB Informatik, FG Intellektik, Alexanderstr., 1992.

[Sch92b] K. Schlechta. Some results on classical preferential models. Journal of Logic and
Computation, 2(6):675–686, 1992.

[Sch96] K. Schlechta. Some completeness results for stoppered and ranked classical preferential
models. Journal of Logic and Computation, 6(4):599–622, 1996.

[Sch00] K. Schlechta. New techniques and completeness results for preferential structures. The
Journal of Symbolic Logic, 65(2):719–746, 2000.

[Sch04] K. Schlechta. Coherent systems. Elsevier, 2004.

[Sen70] A. K. Sen. Collective Choice and Social Welfare. Holden-Day, San Francisco, CA,
1970.

[Sho87] Y. Shoham. A semantical approach to nonmonotonic logics. In Tenth International Joint
Conference on Artificial Intelligence (IJCAI), pages 388–392, 1987.

[Sho88] Y. Shoham. Reasoning About Change. MIT Press, Cambridge USA, 1988.

[Sie90] P. Siegel. A modal logic for non-monotonic logic. In DRUMS Workshop, 1990.

[SLM96] K. Schlechta, D. Lehmann, and M. Magidor. Distance Semantics for Belief Revision.
In Theoretical Aspects of Rationality and Knowledge (TARK), pages 137–145, 1996.

[Spo88] W. Spohn. Ordinal conditional functions: a dynamic theory of epistemic states. Causa-
tion in Decision, Belief Change and Statistics, 2:105–134, 1988.

[SS91] P. Siegel and C. Schwind. Hypothesis theory for nonmonotonic logic. In 1st Interna-
tional Workshop on Nonstandard Queries and Answers, 1991.

[Sub90a] V. S. Subrahmanian. Mechanical proof procedures for many valued lattice-based logic
programming. Journal of Non-Classical Logic, 7:7–41, 1990.

[Sub90b] V. S. Subrahmanian. Paraconsistent disjunctive deductive databases. In 20th Int. Symp.
on Multiple Logic, pages 339–345. IEEE Press, 1990.

[Sub94] V. S. Subrahmanian. Amalgamating knowledge-bases. ACM Transactions on Database
Systems, 19(2):291–331, 1994.

[Tou87] D. S. Touretzky. Implicit ordering of defaults in inheritance systems. In M. L. Ginsberg,
editor, Readings in Nonmonotonic Reasoning, pages 106–109. Kaufmann, Los Altos,
CA, 1987.
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