Soutenance de Thèse

Recherche de matière étrange (exotique) dans les expériences STAR et ALICE auprès des collisionneurs d'ions lourds ultra-relativistes RHIC et LHC

par Renaud VERNET

Soutenue le 9 février 2006 à Strasbourg

Plan

- <u>PARTIE I</u> :
- <u>PARTIE II</u> :
- PARTIE III:
- PARTIE IV :
- PARTIE V :
- <u>Conclusions</u>

- PQG et particules étranges
- Identification des hypérons dans l'expérience ALICE
 - Matière étrange exotique
 - Recherche de dibaryons avec l'expérience STAR
- Identification de dibaryons dans l'expérience ALICE

2

Π

-III

Plasma de Quarks et de Gluons et particules étranges

s matière hadronique et PQG

Π

III

- *importance des particules étranges*
- quelques résultats du SPS et du RHIC

Confinement / déconfinement

Sonder le PQG

- sondes dures (directes) : premiers instants
 processus dure phénomènes à haut p
 - *processus durs, phénomènes à haut p*_T
- sondes molles (indirectes)
 - état du système au freeze-out
 - composition chimique
 - effets collectifs

Degré d'équilibration chimique

- description des rapports de particules
- les modèles statistiques (T, $\mu_{\rm B}$) reproduisent les ٩ abondances relatives mesurées au RHIC \checkmark facteurs de saturation $\gamma_{u,d,s} \sim 1$ (coll. centrales)
 - ✤ fort degré d'équilibre chimique atteint au RHIC

importance de la mesure des particules étranges !!
LHC ?
nouveaux phénomènes ? induce-piper étranges
mesures essentielles \Rightarrow importance de la mesure des particules étranges !!

LHC?

Π

III

IV

200 GeV ¹⁹⁷Au + ¹⁹⁷Au central collision

Augmentation de l'étrangeté

- création de paires $s \overline{s}$ favorisée dans un PQG
- augmentation mesurée au SPS et RHIC :

effets de suppression canonique – volume de corrélation ?

- comportement au LHC ?!
 - ➡ + processus durs :

Π

III

- mécanismes hors équilibre, sursaturation de l'étrangeté ?
- dépendance avec N_{bin} ...

Expansion et hadronisation

- Flow elliptique (v_2) :
 - \checkmark faibles sections eff. de Ξ et Ω
 - loi d'échelle en nb de quarks constituants à p_T intermédiaire
- R_{CP} : suppression des hauts p_T
 différent mésons / baryons

- création de hadrons de p_T intermédiaires
 - ✤ coalescence

Π

·III

IV

- fragmentation
- ✤ comportement au LHC ?

particules étranges !! large gamme de p_T + nature méson/baryon

Les particules étranges au LHC

- la mesure des particules étranges a contribué à des résultats parmi les plus marquants du RHIC
 - 🖫 ces études devront être effectuées au LHC aussi
- + nouvelles opportunités au LHC :
 - ✤ PQG plus prononcé :

Π

III

- temps de vie, volume...
- \Rightarrow + *de particules* (dN_{ch}/dy) :
 - analyses par classes d'événements, fluctuations d'observables...
- + de processus durs :
 - suppression hauts p_T, jets (étranges)...
 - domaines en \mathbf{p}_{T} de compétition entre mécanismes de coalescence et fragmentation

Identification des hypérons avec l'expérience ALICE

 \checkmark identification de Λ

 $`\bullet$ identification de cascades : Ξ et Ω

Π

Ш

L'expérience ALICE

<u>ITS</u> :

6 couches de détecteurs Si : 2 pixel + 2 dérive + 2 μ -pistes haute granularité (pixel) \Rightarrow vertex primaire complémentaire au tracking TPC + tracking autonome

Identification des V^o

$$K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$$
$$\Lambda \rightarrow p \pi^{-}$$

- c*τ* ~ 3 et 8 *cm*
 - *Sone de reconstruction*
- 6 coupures :
 - 4 géométriques
 - b⁺, b⁻, DCA, cosΘ
 - ✤ 2 cinématiques :
 - p_T^+ et p_T^-

 \Rightarrow *limiter la contamination des traces primaires*

Π

·III

Choix de la zone de reconstruction

- ✤ restreinte
 - $r_{\perp} < 2.9 \ cm$
 - 1 *cluster*/couche ITS
- étendue
 - $r_{\perp} < 100 \ cm$
 - pas de condition ITS

+ de précision

- de bruit

LI

Π

·III

Acceptance du Λ

- Trace trouvable :
 - $|\eta| < 1.05$
 - ✤ 70 clusters TPC
 - ne se désintègre pas
 - ♥ X clusters dans l'ITS

nb Λ *trouvables* ACC_{Λ} nb A générés

⇒ limitée par BR = 63.9 %

 Λ trouvable :
 2 traces-fille sont trouvables
 se désintègre dans la zone de reconstruction

14

Π

III

Choix des événements à simuler

- particules primaires :
 - ♥ HIJING
 - $dN_{ch}/dy = 4000$
- III particules étranges :
 - $|\eta| < 1$
 - Λ: 100
 - **Ξ**: 15
 - Ω: 3
 - + anti-particules
 - ⇒ 300 événements générés

collision Pb-Pb @ 5.5 TeV

Π

Choix des coupures pour Λ

• comment rejeter beaucoup de bruit tout en gardant une quantité substantielle de signal ?

Reconstruction du Λ

• performances quantifiées par :

IV

17

- efficacité de reconstruction : probabilité de trouver un Λ trouvable
- taux de reconstruction : efficacité globale

 $Eff_{\Lambda} = \frac{nb \Lambda trouv\acute{es}}{nb \Lambda trouvables}$

 $\epsilon_{\Lambda} = Acc_{\Lambda} * Eff_{\Lambda} = \frac{nb \Lambda trouv\acute{es}}{nb \Lambda g\acute{en\acute{eres}}}$

Choix de coupures dépendantes du p_T

- coupures de référence sévères pour les hauts p_{T}
 - $b^+et \ b^- h \ lorsque \ p_T \neq$

Π

 \checkmark moins bonne résolution sur traces \rightarrow DCA

Résultats : performances sur Λ améliorées

100 🧟

AC

70 60

- amélioration de *Eff* et ε
 - \checkmark Eff reste constante avec p_{τ}
 - ♥ gain de 20% en moyenne
- S/B identique aux coupures de référence

 $Eff(p_{\tau})$ (%)

E(p

· II

·III

Que peut-on attendre des Λ au LHC ?

- 1^{ère} année de données Pb-Pb : <u>10⁷ evts centraux</u>
- convolution des profils dN/dp_T et $\varepsilon(p_T)$:
 - \Rightarrow spectre en p_T des Λ reconstruits
 - \Rightarrow hypothèses : 500 < T_A < 800 MeV

• gamme de p_T atteinte : $\rightarrow \sim 12 \ GeV/c$

Π

·III

Identification des cascades

• $\Xi(\Omega)$ trouvable $\Leftrightarrow \Lambda$ et $\pi(K)$ trouvables

Performances pour les Ξ

•
$$= 9\% (BR \sim 100\%)$$

- coupures dep. du p_T
- 300 evts simulés

$$<\epsilon_{\Xi}> = 0.5\%$$

S/B = 1.5
 $\sigma_{m}=2.4 \text{ MeV/c}^{2}$

• extrapolation 10⁷ evts : • *identification* $\rightarrow p_T = 10 \text{ GeV}/c$

- II

III

Performances pour les Ω

$$<\varepsilon_{\Omega}>=0.2\%$$

S/B = 1.5
 $\sigma_{\rm m}=2.4~{\rm MeV/c^2}$

- extrapolation 10⁷ evts :
 - \Rightarrow identification $\rightarrow p_T = 8 \ GeV/c$

Π

III

Conclusions sur la PARTIE II

- Identification des hypérons avec ALICE
 - *large zone de reconstruction adéquate*
 - *taux de reconstruction :*
 - $\Lambda: 11\%$ $\Xi: 0.5\%$ $\Omega: 0.2\%$
 - \checkmark rapports S/B

Π

III

- ~ 1.5 pour Λ , Ξ , Ω
- \checkmark large gamme de p_T atteinte :
 - jusqu'à 12 (Λ), 10 (Ξ) et 8 GeV/c (Ω) pour 10⁷ evts
- *bonnes conditions d'étude :*
 - composition chimique, dynamique d'expansion, phénomènes à haut \mathbf{p}_{T} ...

Perspectives

- Analyser davantage d'événements
 - ♥ grille de calcul du LHC
 - coupures corrélées
 - affiner par ADL, réseau de neurones
 - efficacité vs $p_T \operatorname{ET} y$...
- Se préparer aux données *p-p*
- Dès les premières données
 - embedding
 - meilleure estimation des efficacités
 - influence de la centralité

Π

III

PARTIE III

Particules étranges exotiques

- stabilité de la matière nucléaire
- dibaryons étranges
- recherche de dibaryons dans les accélerateurs d'ions lourds

٠II

III

Stabilité de la matière nucléaire

- quark s : degré de liberté supplémentaire
 - matière de quarks étranges
 - plus stable que la matière nucléonique ?
 - strangelets
 - "sac" de quarks *u,d,*s (Bag Model)
 - $6 \rightarrow 10^{57}$ quarks
 - MEMO (Metastable Exotic Multihypernuclear Object)
 - extension des hypernoyaux
 - hadroniques et métastables
 - agglomérats hypérons+nucléons
 - les plus légers : <u>dibaryons</u>

- II

III

Dibaryons : le strangelet H^o

- \checkmark mais possibilité de forme résonante : $au \sim 10^{-23}$ s
- formation
 - PQG : distillation de l'étrangeté
 - ✤ sans PQG : via MEMO

Dibaryons : états liés hadroniques

- J. Schaffner-Bielich *et al*.
 - objets métastables composés de 2 baryons
 - $(\Lambda\Lambda)_{b}, (\Sigma^{+}p)_{b}, (\Xi^{0}p)_{b}, (\Xi^{0}\Lambda)_{b}...$
 - formés par coalescence
- (ΛΛ)_b et (Ξ⁰p)_b : désintégrations chargées
 - topologie (cf. hypérons) :
 - $(\Lambda\Lambda)_{b} \rightarrow \Lambda p\pi^{-} (\Leftrightarrow H^{0})$
 - $(\Xi^0 p)_b \rightarrow \Lambda p$
 - *taux de production :*
 - 10⁻³-10⁻²/evt RHIC (Au-Au) 200 GeV

LT

- II

-III

Recherche de dibaryons

- les collisions d'ions lourds sont propices à la formation de dibaryons
 - ♥ PQG, coalescence de baryons
- déjà recherchés auprès de l'AGS (notamment)
 - 🌤 pas de signal significatif
- expériences STAR et ALICE
 - \checkmark faible μ_{B} mais large acceptance dans la partie centrale
 - trajectographie de haute précision
 - *identification topologique possible des modes :*
 - métastables : H^0 , $(\Lambda\Lambda)_b \rightarrow \Lambda p\pi^- / (\Xi^0 p)_b \rightarrow \Lambda p$
 - résonants : $H^0 \rightarrow \Lambda \Lambda / H^0 \rightarrow \Xi^- p$

- II

-III

PARTIE IV

Recherche de dibaryons avec l'expérience STAR

W mode métastable $H^0, (\Lambda\Lambda)_b \rightarrow \Lambda p \pi^-$

- simulation
- recherche dans Au-Au à $\sqrt{s_{_{NN}}}$ =62.4 et 200 GeV
- ` recherche du mode résonant $H^0 \rightarrow \Xi^- p$

31

- II

·III

L'expérience STAR

Recherche du H⁰/(AA)_b métastable

- $H^0 \rightarrow \Lambda \pi^- p$
 - recherche de "cascades"
- association avec 2^{eme} "bachelor"
- reconstruction :
 - \rightarrow TPC (+ SVT)
- coupures :
 - $v topologiques + p_T^{min} = 2GeV$
 - $43 \sigma dE/dX$
 - ✤ 25 hits TPC
 - $|z_{PV}| < 25 \ cm$

33

- II

-III

Simulation de H^o à $\sqrt{s_{NN}}$ =62.4 GeV

- "embedding" :
 - injection de H⁰ MC dans les données à 62.4 GeV
 - m=2.21 GeV/c²
 - τ=1.3 10⁻² s
 - T=400 MeV
- soustraction masse du V⁰
 - concentre le signal
- calcul de sensibilité à 3 σ
 - ✤ 6.10⁶ événements MinBias
 - différentes centralités

- II

-III

Hº dans les données Au-Au /1

reconstruction

- II

- \Rightarrow données Au-Au à $\sqrt{s_{_{NN}}} = 62.4 \ GeV$
- estimation du bruit de fond par "rotating"

Hº dans les données Au-Au /2

. I • données Au-Au à $\sqrt{s_{_{NN}}}=200 \text{ GeV} - trig. "central"$

Sentralité : 0→8 %

Mode résonant H⁰→Ξ⁻p

pas de signal

significatif

corrélations entre Ξ⁻ et p primaires

bruit de fond très important

• estimation par ''event mixing''

• données Au-Au à 62.4 GeV

- II

Performances d'identification de dibaryons dans l'expérience ALICE

modes métastables

mode résonant

- II

-III

·IV

ALICE : simulation de H⁰, $(\Lambda\Lambda)_{b} \rightarrow \Lambda p\pi^{-}$

- paramètres physiques choisis :
 - $m=2.21 \ GeV/c^2$

 - \Rightarrow T = 300 MeV
 - recherche de couples de V°
 coupures topologiques zone de reconstr. restreinte
 - équivalent de 135 000 evts
 - sensibilité à 3 σ pour 10⁷ evts :

 $dN_{_{H0}}/dy = 2.5 \ 10^{-2}$

- II

-III

·IV

ALICE : simulation de $(\Xi^{0}p)_{b} \rightarrow \Lambda p$

- données physiques :
 - $m=2.225 \ GeV/c^{2}$
 - ✤ τ~2.6 10⁻¹⁰ s
 - \Rightarrow T = 300 MeV
- géométrie ~ cascade
 - $\checkmark \pi$ remplacé par p

- *Sone de reconstruction restreinte*
- équivalent de 60 000 evts
- sensibilité à 3 σ pour 10⁷ evts :

 $dN_{\pm 0p}/dy = 1.7 \ 10^{-2}$

- II

-III

·IV

ALICE : simulation de $H^0 \rightarrow \Lambda \Lambda$

- paramètres physiques choisis :
 - $= 2.252 \ GeV/c^2 (> 2m_{\Lambda})$
 - Γ=15 MeV (résonance)

- II

-III

IV

- corrélations entre V° primaires
 coupures sévères sur les V°
 - pureté ~ 85%
 - 10⁴ evts simulés
 - sensibilité à 3 σ pour 10⁷ evts :

 $4 M_{H0}/dy = 0.37$

Conclusion sur les PARTIES IV et V

- Recherche de dibaryons dans STAR
 4 données Au-Au à 62 GeV minBias
 - pas de signal dans les modes $\Lambda p\pi^-$ et Ξ^-p
 - 🛰 données Au-Au à 200 GeV central
 - pic de significance 4.85 dans le mode $\Lambda p\pi^-$
 - analyse dans des données + récentes Au-Au@200GeV
 - confirmer ou non ce résultat Au-Au à 200 GeV central
- Sensibilité d'ALICE aux dibaryons pour 10⁷ evts
 - modes métastables
 - $\Lambda p\pi^{-}: \underline{2.5 \ 10^{-2}}$ et $\Lambda p: \underline{1.7 \ 10^{-2}}$
 - mode résonant
 - ΛΛ : <u>0.37</u>

- II

-III

-IV

L L

- - II

-III

-IV

-

43

I L

- - II

-III

-IV

 \mathbf{V}

44

 \blacklozenge

Collisions d'ions lourds

- Recréer le PQG dans le laboratoire
- Analyse des différentes phases

Π

·III

Recherche d'étrangeté dans STAR

- Trajectographie de particules chargées
 - ***** *TPC* : *Time Projection Chamber*
 - ionisation du gaz par les particules chargées
 - L=4m et R=2 m : couverture totale en $|\eta| < 0.89$
 - couverture azimutale complète
 - SVT : Silicon Vertex Tracker
 - detecteur au Si à dérive (SDD)
 - SSD : Silicon Strip Detector
 - µ-pistes double-face

Π

III

IV

 \bullet Identification par dE/dX

Recherche d'étrangeté dans ALICE

- Trajectographie de particules chargées
 - ***** *TPC* : *Time Projection Chamber*
 - ionisation du gaz par les particules chargées
 - L=5m et R=2.5 m : couverture totale en $|\eta| < 0.89$
 - couverture azimutale complète
 - 500.000 cellules de lecture
 - ITS : Inner Tracking System
 - 3*2 couches de detecteurs au Si : pixel (SPD), dérive (SDD) et μpistes (SSD)
 - très haute granularité ⇒ vertex primaire
 - complementaire TPC + tracking autonome (bas p_T)
 - \bullet PId possible : dE/dX, TRD, TOF, HMPID

Π

III

Les accélérateurs jusqu'à maintenant

- SPS : proche de la transition
- RHIC : vraisemblablement dans la phase PQG
- ALICE : T \gg T_c

Π

·III

Reconstruction hypérons

- $\epsilon_{\Lambda} = 10.7 \pm 0.18 \%$
- $\epsilon_{\Xi} = 0.56 \pm 0.11 \%$
- $\varepsilon_{\Omega} = 0.23 \pm 0.04 \%$

П

Π

-III

Wrobleski

creation de H^o sans PQG

recherche de strangelets lourds

- \bullet Pb-Pb 158 AGeV
- STAR (RHIC)
 - $\sim m>30~GeV/c^2$

taux de production < 10⁻⁻ à grande rapidité
</p>

Π

·III

rapports d'embranchement

53

distillation de l'étrangeté

 $\mu_{\rm B}$ >0 : exces de quarks / anti-quarks

Π

III

IV

54

