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Introduction

Importance of tail dependence in risk management.

In insurance, the cost of a claim is the sum of

• the loss amount (paid to the insured), X1

• the allocated expenses (lawyers, expertise...), X2

Consider the following excess-of-loss reinsurance treaty, with payoff

g(x1, x2) =





0, if x1 ≤ d,

x1 − d +
x1 − d

x1
x2, if x1 > d.

The pure premium is then E(g(X1, X2)).
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In life insurance, the payoff for a joint life insurance is

g(x1, x2) =

∞∑

k=1

vkCk1(x1 > k and x2 > k)

(capital is due as long as the spouses are both still alive) and the pure

premium is then E(g(Tx, Ty)), where Tx and Ty denote the survival life

lengths, of the man at age x and his wife y.

In finance, the payoff of quanto derivatives is g(x1, x2) = x2(x1 − K)+ where

X2 is the exchange rate, and X1 some overseas asset.
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Modeling dependence with copulas

Definition 1. A d-dimensional copula is a d-dimensional cumulative

distribution function restricted to [0, 1]d with standard uniform margins,

d = 2, 3, . . ..

Definition 2. Given F1, ..., Fd some univariate distribution functions, the

class of d-dimensional distribution functions F with marginal distributions

F1, ..., Fd respectively, is called a Fréchet class, denoted F(F1, ..., Fd).

Definition 3. If U = (U1, ..., Un) has cdf C then the cdf of

1− U = (1 − U1, ..., 1 − Un) is also a copula, called survival copula of C, and

denoted C∗.
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Copula (cumulative distribution function) Level curves of the copula

Figure 1: Copula, as a cumulative distribution function C(u, v).
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Copula density Level curves of the copula

Figure 2: Density of a copula, c(u, v) = ∂2C(u, v)/∂u∂v.
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Theorem 4. Let C be a d-dimensional copula and F1, ..., Fd be univariate

distribution functions. Then, for x = (x1, ..., xd) ∈ R
d,

F (x1, ..., xn) = C(F1(x1), ..., Fd(xd)) (1)

defines a distribution function with marginal distribution functions

F1, ..., Fd.Conversely, for a d-dimensional distribution function F with

marginal distributions F1, ..., Fd there is a copula C satisfying Equation (1).

This copula is not necessarily unique, but it is if F1, ..., Fd are continuous,

given by

C(u1, ..., ud) = F (F←
1 (u1), ..., F

←
n (xn)), (2)

for any u = (u1, , ..., ud) ∈ [0, 1]d, where F←
1 , ..., F←

d denote the generalized

left continuous inverses of the Fi’s, i.e.

F←
i (t) = inf {x ∈ R, Fi (x) ≥ t} for all 0 ≤ t ≤ 1.
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Given, X with continuous marginals, the copula of X is the distribution of

U = (U1, . . . , Ud) = (F1(X1), . . . , Fd(Xd)).

Hence, it is the distribution of the ranks.

The survival copula of X is the distribution of 1 − U .

Hence,

P(X ≤ x) = C(P(X1 ≤ x1), . . . , P(Xd ≤ xd)),

P(X > x) = C∗(P(X1 > x1), . . . , P(Xd > xd)),
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Figure 3: Scatterplot and densities of (X, Y ) and (U, V ).
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In dimension 2, consider the following family of copulae

Definition 5. Let ψ denote a convex decreasing function (0, 1] → [0,∞] such

that ψ(1) = 0. Define the inverse (or quasi-inverse if ψ(0) < ∞) as

ψ←(t) =





ψ−1(t) for 0 ≤ t ≤ ψ(0)

0 for ψ(0) < t < ∞.

Then

C(u1, u2) = ψ←(ψ(u1) + ψ(u2)), u1, u2 ∈ [0, 1],

is a copula, called an Archimedean copula, with generator ψ.
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In higher dimension, one should add more conditions. Function f is

d-completely monotonic if it is continuous and has derivatives which

alternate in sign, i.e. for all k = 0, 1, ..., d, (−1)kdkf(t)/dtk ≥ 0 for all t.

Definition 6. Assume further that ψ← is d-completely monotonic, then

C(u1, ..., un) = ψ←(ψ(u1) + ... + ψ(ud)), u1, ..., un ∈ [0, 1],

is a copula, called an Archimedean copula, with generator ψ.
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Archimedean copulas can also be characterized through Kendall’s cdf, K,

K(t) = P(C(U1, ..., Ud) ≤ t), t ∈ [0, 1].

where U = (U1, ..., Ud) has cdf C. Note that K(t) = t − λ(t) where

λ(t) = ψ(t)/ψ′(t). And conversely ψ is

ψ(u) = ψ(u0) exp

(∫ u

u0

1

λ(t)
dt

)
pour 0 < u0 < 1.
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The frailty representation: if the Xi’s are E(λiΘ) distributed, and that, given

Θ the Xi’s are independent, then

F (x) = P(X > x) = E(P(X > x|Θ))

= E(P(X1 > x1|Θ) · . . . · P(Xd > xd|Θ))

= E(exp(−Θ · (log P(X1 > x1))) · . . . · exp(−Θ · (log P(Xd > xd))))

= φ(− log P(X1 > x1) − . . . − log P(Xd > xd))

= φ(φ←(F 1(x1)), . . . , φ
←(F d(xd))),

where φ(t) = E(e−tΘ) is the Laplace transform of Θ.
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Figure 4: (Independent) Archimedean copula (C = C⊥, ψ(t) = − log t).
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If Θ is Gamma distributed, one gets Clayton’s copula (Figure 5), with

parameter α ∈ [0,∞) has generator

ψ(x; α) =
x−α − 1

α

if 0 < α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1.

The associated copula is

C(u1, ..., ud;α) = (u−α
1 + ... + u−α

d − (d − 1))−1/α

if 0 < α < ∞, with the limiting case C(u; 0) = C⊥(u), for any u ∈ (0, 1]d.
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Figure 5: Clayton’s copula.
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If Θ is positive, stable, φ(t) = exp(−t−1/α), one gets Gumbel’s copula

(Figure 6), with parameter α ∈ [1,∞) has generator

ψ(x; α) = (− log x)α

if 1 ≤ α < ∞, with the limiting case ψ(x; 0) = − log(x), for any 0 < x ≤ 1.

The associated copula is

C(u1, ..., ud;α) = −
1

α
log

(
1 +

(e−αu1 − 1) ... (e−αud − 1)

e−α − 1

)
,

if 1 ≤ α < ∞, for any u ∈ (0, 1]d.
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Figure 6: Gumbel’s copula.
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Frank’s copula (Figure 7), with parameter α ∈ R has generator

ψ(x; α) = − log
e−αx − 1

e−α − 1

if α 6= 0, for any 0 < x ≤ 1.

The associated copula is

C(u1, ..., ud; α) = exp
(
− [(− log u1)

α + ... + (− log ud)
α]

1/α
)

,

if α 6= 0, with the limiting case C(u; 0) = C⊥(u), for any u ∈ (0, 1]d.
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Figure 7: Frank’s copula.
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Agenda of the talk

• Presentation of conditional copulae,

• Some limiting results, with applications in credit risk,

• Conditional copulae of Archimedean copulae,

• A multivariate version of Pickands-Balkema-de Haan’s theorem,

• Quantifying tail dependence using conditional concordance measures,

• Nonparametric estimation of copula densities,
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Conditional copulae

Let U = (U1, ..., Un) be a random vector with uniform margins, and

distribution funcion C. Let Cr denote the copula of random vector

(U1, ..., Un)|U1 ≤ r1, ..., Ud ≤ rd, (3)

where r1, ..., rd ∈ (0, 1].

If Fi|r(·) denotes the (marginal) distribution function of Ui given

{U1 ≤ r1, ..., Ui ≤ ri, ..., Ud ≤ rd} = {U ≤ r},

Fi|r(xi) =
C(r1, ..., ri−1, xi, ri+1, ..., rd)

C(r1, ..., ri−1, ri, ri+1, ..., rd)
,

and therefore, the conditional copula is

Cr(u) =
C(F←

1|r(u1), ..., F
←
d|r(ud))

C(r1, ..., rd)
. (4)
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Invariance properties

Theorem 7. The application r → Cr is continuous (w.r.t. the ‖ · ‖∞ norm).

Definition 8. A copula is said to be invariant by truncature if Cr = C for

all r ∈ (0, 1]d.

Theorem 9. The only absolutely continuous copulae by truncature are

Clayton’s copulae, including the limiting case of independence.

The comonotonic copula (α → ∞) is also invariant by truncature.
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A weaker condition of invariance can be considered. Set

D = {(r1(t), . . . , rd(t)), t ≥ 0} ,

where ri : [0,∞) → (0, 1] with ri(t) → 0 as t → ∞, and ri(0) = 1.

Definition 10. A copula is said to be invariant by truncature under

direction D if Cr(t) = C for all t ≥ 0.

Marshall & Olkin’s copula is invariant when D is the discontinuity curve,

C(u, v) = min{u1−αv, uv1−β}.
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Regular variation and limiting results

Definition 11. A real valued function r is regularly varying with index

θ ∈ R if r(tx)/r(t) → xθ as t → ∞, and will be denoted r ∈ Rθ.

Proposition 12. A copula C0 is limiting under direction D where the ri’s

are R−αi
for some αi > 0, if and only if C0 is an invariant copula under

direction D = {(t−α1 , . . . , t−αd), t ≥ 0}.

Extension of Juri & Wüthrich (2004) for nonsymmetric copulas: more

general notion of regular variation in dimension 2.

de Haan, Omey & Resnick (1984): f : [0,∞)2 → [0,∞) is regularly varying

under direction (r, s) if there exists λ such that

lim
t→∞

f(r(t)x, s(t)y)

f(r(t), s(t))
= λ(x, y) for all x, y ∈ [0,∞).
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Proposition 13. Assume that r and s are Rα and Rβ respectively, with

α, β > 0, and that f is regularly varying under direction (r, s). Then λ

satisfies functional equation

λ(tαx, tβy) = tθλ(x, y),

for some θ > 0, for any x, y, t > 0, and the general solution is

λ(x, y) =






xθ/ακ(yx−β/α) if x 6= 0

cyθ/β if x = 0 et y 6= 0

0 if x=0 et y = 0,

where c is a positive constant, and κ : [0,∞) → [0,∞).
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Let α, β, θ be positive constant, and P,Q cumulative distribution functions

on [0, 1]. Consider repartition function H defined on [0, 1]2 as

H(x, y) = xθ/αh(yx−β/α), where h(t) =





Q(t) if t ∈ [0, 1]

tθ/βP (t−α/β) if t ∈ (1,∞)

Let ΓP,Q,α,β,θ the associated copula, defined as

ΓP,Q,α,β,θ(u, v) =





Q←(v)θ/βP (P←(u)Q←(v)−α/β), if P←(u)β ≤ Q←(v)α

P←(u)θ/αQ(P←(u)−β/αQ←(v)), if P←(u)β > Q←(v)α

Theorem 14. If survival distributions 1 − FX and 1 − FY are regularly

varying with indices α, β ≥ 0 respectively, so that C∗ is regularly varying at

(0, 0) under direction (1−FX(·), 1−FY (·)) then, there exists θ > 0, P and Q

two cdfs on [0, 1] such that the limiting copula is ΓP,Q,α,β,θ.
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Applications in credit risk models

Default time defined using a cox process with intensity (λs)s≥0 as

τ = inf

{
t > 0,

∫ t

0

λsds ≥ Z

}
,

where Z ∼ E(1), see Lando (1998). Equivalently, τ = inf{t > 0, γt ≤ U}

where γt =
∫ t

0
λsds is called countdown process.

Then P(τ1 ≤ t1, τ2 ≤ t2|G∞) = C∗(γ1(t1), γ2(t2)), where C is the cdf of

(U1, U2).

For stress-scenarios, one needs conditional distributions such as

P(τ1 ≤ t1, τ2 ≤ t2|G∞ ∧ {t1 ≤ T, t2 ≤ T})

the associated copula is (C1−γ(T ))
∗.

29



Arthur CHARPENTIER - PhD Thesis Defense - Dependence structures and limiting results.

There are many perspectives (and work in progress) to go further

• use this conditional copula in the pricing of joint life-insurance and

multiproduct reinsurance,

• more theoretical results on (conditional) dependence orderings

(Colangelo, Shaked & Scarsini (2005)),

• investigate the link between the conditional copula and multivariate

survival analysis (Bassan & Spizzichino (2005)).
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Conditional dependence for Archimedean copulae

Proposition 15. The class of Archimedean copulae is stable by truncature.

More precisely, if U has cdf C, with generator ψ, U given {U ≤ r}, for any

r ∈ (0, 1]d, will also have an Archimedean generator, with generator

ψr(t) = ψ(tc) − ψ(c) where c = C(r1, ..., rd).
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On sequences of Archimedean copulae

Extension of results du to Genest & Rivest (1986),

Proposition The five following statements are equivalent,

(i) lim
n→∞

Cn(u, v) = C(u, v) for all (u, v) ∈ [0, 1]2,

(ii) lim
n→∞

ψn(x)/ψ′
n(y) = ψ(x)/ψ′(y) for all x ∈ (0, 1] and y ∈ (0, 1) such that

ψ′ such that is continuous in y,

(iii) lim
n→∞

λn(x) = λ(x) for all x ∈ (0, 1) such that λ is continuous in x,

(iv) there exists positive constants κn such that limn→∞ κnψn(x) = ψ(x) for

all x ∈ [0, 1],

(v) lim
n→∞

Kn(x) = K(x) for all x ∈ (0, 1) such that K is continuous in x.
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Proposition The four following statements are equivalent

(i) lim
n→∞

Cn(u, v) = C+(u, v) = min(u, v) for all (u, v) ∈ [0, 1]2,

(ii) lim
n→∞

λn(x) = 0 for all x ∈ (0, 1),

(iii) lim
n→∞

ψn(y)/ψn(x) = 0 for all 0 ≤ x < y ≤ 1,

(iv) lim
n→∞

Kn(x) = x for all x ∈ (0, 1).

Note that one can get non Archimedean limits,
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Archimedean copulae in (lower) tails

Proposition 16. Let C be an Archimedean copula with generator ψ, and

0 ≤ α ≤ ∞. If C(·, ·;α) denote Clayton’s copula with parameter α.

(i) limu→0 Cu(x, y) = C(x, y;α) for all (x, y) ∈ [0, 1]2;

(ii) −ψ′ ∈ R−α−1.

(iii) ψ ∈ R−α.

(iv) limu→0 uψ′(u)/ψ(u) = −α.

If α = 0 (tail independence),

(i) ⇐⇒ (ii)=⇒(iii) ⇐⇒ (iv),

and if α ∈ (0,∞] (tail dependence),

(i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv).
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Proposition 17. There exists Archimedean copulae, with generators having

continuous derivatives, slowly varying such that the conditional copula does

not convergence to the independence.

Generator ψ integration of a function piecewise linear, with knots 1/2k,

If −ψ′ ∈ R−1, then ψ ∈ Πg (de Haan class), and not ψ /∈ R0.

This generator is slowly varying, with the limiting copula is not C⊥.
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Lower tails study, in higher dimension

Tail dependence in lower tails

Proposition 18. Let C be an Archimedean copula with generator ψ. If

ψ ∈ R−θ with θ ∈ [−∞, 0), if J is a nonempty set of {1, . . . , d} and if

0 < yj < ∞ for all j ∈ J , then, for all (x1, . . . , xd) ∈ (0,∞)d,

lim
s→0

P(∀i = 1, . . . , d : Ui ≤ sxi | ∀j ∈ J : Uj ≤ syj) (5)

=

[∑
j∈Jc x−θ

j +
∑

j∈J{min(xj , yj)}
−θ

∑
j∈J y−θ

j

]−1/θ

.

Note that the associated copula is Clayton’s.
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Tail independence in lower tails

Lemma 19. Let C denote an Archimedean copula with generator ψ. If ψ is

slowly varying at 0, then C(s, . . . , s) = o(s), and therefore

log{ψ(s)}/ log(s) → 0 as s → 0.

Lemma 20. If further

lim
t→∞

D(log ψ←)(dt)

D(log ψ←)(t)
=

1

dη
,

then s 7→ C(s, . . . , s) is regularly varying at 0, with index 1/η.

Proposition 21. Let C denote an Archimedean copula with generator ψ. If

φ = −1/D(log ψ←) is regularly varying with index −∞ < τ ≤ 1 and if

φ(t) = o(t) as t → ∞, then, for all nonempty subset J of {1, . . . , d} and for

all x ∈ (0,∞)d and (uj)j∈J ∈ (0, 1]|J|,

P(∀j ∈ J : Uj ≤ sujxj ;∀j ∈ Jc : Uj ≤ ψ←{x−1
j φ(ψ(s))} | ∀j ∈ J : Uj ≤ sxj)

→
∏

j∈J

u
|J|−τ

j

∏

j∈Jc

exp
(
−|J |−τx−1

j

)
, as s → 0.
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Upper tails study, in high dimension

Modeling tail independence is difficult (Ledford & Tawn (1997), or

Draisma, Drees, Ferreira & de Haan (2004)).

Recall that ψ(1) = 0, and therefore, using Taylor’s expansion yields

ψ(1 − s) = −sDψ(1) + o(s) as s → 0.

And moreover, since ψ is convex, if ψ(1− ·) is regularly varying with index θ,

then necessarily θ ∈ [1,∞). If if (−D)ψ(1) > 0, then θ = 1 (but the converse

is not true).
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Proposition 22. Let U be a random vector with cdf C, Archimedean with

generator ψ. If s 7→ ψ(1 − s) is regularly varying with index θ ∈ (1,∞] at 0,

then for all nonempty set J of {1, . . . , d}, for all (x1, . . . , xd) ∈ (0,∞)d and

all (yj)j∈J ∈ (0,∞)|J|,

P(∀j = 1, . . . , d : Uj ≥ 1 − sxj | ∀j ∈ J : Uj ≥ 1 − syj) (6)

→
rd(z1, . . . , zd)

r|J| ((yj)j∈J)
as s → 0,

where zj = min(xj , yj) when j ∈ J , and zj = xj when j ∈ Jc, setting finally

rk(u1, . . . , uk) =






∑

I⊂{1,...,k}:|I|≥1

(−1)|I|−1

(
∑

i∈I

uθ
i

)1/θ

si 1 < θ < ∞,

min(u1, . . . , ud) si θ = ∞,

for all integer k and all (u1, . . . , uk) ∈ (0,∞)k. (Note that this copula is

max-stable: it is Gumbel’s copula (the logistic copula)).
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Proposition 23. Let ψ be a d-dimensional generator, such that ψ← is d

times continuously differentiable, and U is a random vector with cdf C, the

Archimedean copula induced by ψ. If (−D)dψ←(0) < ∞ then (−D)ψ(1) > 0.

Let J be a nonempty set of {1, . . . , d} such that Jc is nonempty. For all

v ∈ (0, 1]d,

P(∀j ∈ J : Uj ≥ 1 − svjxj ;∀j ∈ Jc : Uj ≤ vj | ∀j ∈ J : Uj ≥ 1 − sxj)

→
(−D)|J|ψ←

(∑
j∈Jc ψ(vj)

)

(−D)|J|ψ←(0)

∏

j∈J

vj as s ↓ 0.

Note that the conditional copula of (Uj)j∈Jc given Uj ≥ 1 − sxj for all j ∈ J

tends to an Archimedean copula, with generator

ψ|J|(·) =

(
(−D)|J|ψ←( · )

(−D)|J|ψ←(0)

)←

. (7)
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Proposition 24. Let ψ be a d-dimensional generator, such that ψ← is d

times continuously differentiable. Set f(s) = ψ(1 − s). If s−1f(s) → 0 as

s → 0 and if s 7→ L(s) = s(d/ds){s−1f(s)} is positive and slowly varying at

0, then function g(s) = sf ′(s)/f(s) − 1 is also positive and slowly varying,

with g(s) → 0 as s → 0. If J is a set of {1, . . . , d} then, for all x ∈ (0,∞)d

and (yj)j∈J ∈ (0,∞)|J|,

P(∀i = 1, . . . , d : Ui ≥ 1 − sxi | ∀j ∈ J : Uj ≥ 1 − syj) =
r(z1, . . . , zd)

r((yj)j∈J )

as s ↓ 0, where zj = min(xj , yj) for all j ∈ J and zj = xj for j ∈ Jc, and

where

r(x1, . . . , xd) =
∑

I⊂{1,...,d}:|I|≥1

(−1)|I|(
∑

I xi) log (
∑

I xi)

= (d − 2)!

∫ x1

0

· · ·

∫ xd

0

(
d∑

i=1

ti

)−(d−1)

dt1 · · · dtd.
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Multivariate extremes in R
2

The standard approach in multivariate extremes is based on limiting

distribution of maximum componentwise.

In Tiago de Olivera (1958), Geoffroy (1958), Sibuya (1961) or

Resnick (1987) is proposed an extension of Fisher-Tippett’s theorem, i.e. a

nondegenerate distribution for a standardized version of (Xn:n, Yn:n), the

maximum componentwise, as n → ∞ where (X1, Y1), . . . , (Xn, Yn), .. is an iid

sample.

In the univariate case, Pickands-Balkema-de Haan’s theorem obtained

limiting (nondegenerate) distribution for X − u given X > u, when u → ∞.
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Figure 9: Defining multivariate extremes.
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Pickands-Balkema-de Haan in R
2

Two extensions will be considered,

(X, Y ) given {X > F←
X (p) and Y > F←

Y (p)} as p → 1,

a quantile approach, and a level approach,

(X, Y ) given {X > z and Y > z} as z → ∞.

Assume that X and Y are in the Fréchet domain of attraction, with

parameters α and β, i.e. there exists a(·) and b(·) such that

lim
u→∞

1 −
1 − FX (u + xa (u))

1 − FX (u)
= lim

u→∞
P (X ≤ u + a (u) |X > u) = Gα (x) ,

lim
v→∞

1 −
1 − FY (v + yb (v))

1 − FY (v)
= lim

v→∞
P (Y ≤ v + b (v) |Y > v) = Gβ (y) ,

where Gξ (x) =





1 − (1 + ξx)

−1/ξ
ξ 6= 0

1 − exp (−x) ξ = 0,
.
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Pickands-Balkema-de Haan in R
2 for quantiles

Theorem 25. Assume that the survival copula of (X,Y ), C∗, satisfies

lim
u→0

C∗(xu, u)

C∗(u, u)
= h(x) for all x ≥ 0, (8)

for some continuous function h : R
+ → R

+ with h(x) > 0 as x > 0. Then

h(0) = 0, h(1) = 1, and there exists θ ∈ R such that

h(x) = xθh

(
1

x

)
pour tout x > 0,

then, if qX(p) = F←
X (1 − p) and qY (p) = F←

Y (1 − p),

lim
p→0

P

(
X − F←

X (1 − p)

a (qX (p))
> x,

Y − qY (p)

b (qY (p))
> y

∣∣∣∣ X > qX (p) , Y > qY (p)

)

= (1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
, where γ =

θ

β
.
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Since the convergence is uniform, further

lim
p→0

sup
x,y

|P (X − qX (p) > x, Y − qY (p) > y|X > qX (p) , Y > qY (p))

−(1 + y)−γh

(
(1 + x)−1/α

(1 + y)−1/β

)
| = 0.

The associate copula is the survival copula of Ch(x, y) = H(h←(x), h←(y)),

where H(x, y) = yθh(x/y) (cf Juri & Wüthrich (2004)).
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Pickands-Balkema-de Haan in R
2 for levels

Theorem 26. Assume that the survival copula of (X,Y ), C∗, is regularly

varying under direction (1 − FX(·), 1 − FY (·)), such that there exists λ

satisfying

lim
z→∞

C∗((1 − FX(z))x, (1 − FY (z))y)

C∗(1 − FX(z), 1 − FY (z))
= λ(x, y).

From Proposition 13, there exists γ > 0 and function h : [0,∞) → [0,∞)

such that λ(x, y) = xγ/αh(yx−β/α) if x 6= 0 and λ(0, y) = cyγ/β where c is a

positive constant. Further,

lim
z→∞

P

(
X − z

a(z)
> x,

Y − z

b(z)
> y

∣∣∣∣ X > z, Y > z

)
= (1+y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
.

Since the convergence is uniform, we get

lim
z→∞

sup
x,y

|P (X − z > x, Y − z|X > z, Y > z) = (1+y)−γh

(
(1 + x)−1/α

(1 + y)−1/α

)
| = 0.
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There are many perspectives (and work in progress) to go further

• try to get a better understanding of the links between standard

multivariate extremes and the one based on conditional copulae,

• statistical inference for multivariate extremes (e.g. estimate function h),
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Concordance measures

Copula based dependence measure (scale free).

• Spearman’s rho is defined as ρ(X, Y ) = 12

∫ 1

0

∫ 1

0

uvdC(u, v) − 3,

• Kendall’tau is defined as τ(X,Y ) = 4

∫ 1

0

∫ 1

0

C(u, v)dC(u, v) − 1.

Conditional concordance measures

Definition 27. Given X and Y two random variables, define upper tail rank

correlations and Kendall’s tau in upper tails respectively as

ρ(u) = ρ((X, Y )|X > F←
X (u) and Y > F←

Y (u)), u ∈ [0, 1),

τ(u) = τ((X, Y )|X > F←
X (u) and Y > F←

Y (u)), u ∈ [0, 1).
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On statistical inference for ρ(u) and τ(u)

Given a n-sample (X1, Y1), ...(Xn, Yn) consider natural estimates ρ̂(u) and

τ̂(u) based on the pseudo sample (X1, Y1), ...(XN , YN ) such that

Xi > F̂←
X (u) and Yi > F̂←

Y (u).

Note that N is a random variable, B(m, π) where m = [(n + 1)(1 − u)] and

π = C∗(1 − u, 1 − u)/(1 − u).

Under the assumption of independence, given N , ρ̂(u) and τ̂(u) are

asymptotically normally distributed. Hence, as n → ∞, the limiting

distributions of ρ̂(u) and τ̂(u) are mixture of Gaussian distributions.
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Figure 10: Distribution of ρ̂n(u) and τ̂n(u).
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Figure 11: Evolution of ρ̂n(u), n = 10, 000.
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Figure 12: Evolution τ̂n(u), n = 10, 000.
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There are perspectives to go further, since conditional correlations is a hot

topic

• use of this tool in copula selection,

• statistical properties of the estimated correlation in the non-independent

case.
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Estimation of a copula density, motivation

Example 28. consider the following dataset, were the Xi’s are loss amount

(paid to the insured) and the Yi’s are allocated expenses. Denote by Ri and

Si the respective ranks of Xi and Yi. Set Ui = Ri/n = F̂X(Xi) and

Vi = Si/n = F̂Y (Yi).

Figure 13 shows the log-log scatterplot (log Xi, log Yi), and the associate

copula based scatterplot (Ui, Vi).

Figure 14 is simply an histogram of the (Ui, Vi), which is a nonparametric

estimation of the copula density.

Note that the histogram suggests strong dependence in upper tails (the

interesting part in an insurance/reinsurance context).
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Figure 13: Loss-ALAE, scatterplots (log-log and copula type).
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Figure 14: Loss-ALAE, histogram of copula type transformation.
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Why nonparametrics, instead of parametrics ?

In parametric estimation, assume the the copula density cθ belongs to some

given family C = {cθ, θ ∈ Θ}. The tail behavior will crucially depend on the

tail behavior of the copulas in C

Example 29. Table below shows the probability that both X and Y exceed

high thresholds (X > F−1
X (p) and Y > F−1

Y (p)), for standard copula families,

where parameter θ is such that τ = 0.5.

p Clayton Frank Gaussian Gumbel Clayton∗ max/min

0.9 1.935% 2.737% 4.737% 4.826% 5.668% 2.9

0.95 0.510% 0.784% 1.991% 2.300% 2.786% 5.4

0.99 0.021% 0.035% 0.2733% 0.442% 0.551% 25.8

0.999 0.000% 0.000% 0.016% 0.043% 0.054% 261.8
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Basic notions on nonparametric estimation of densities

The basic idea to get an estimator of the density at some point x is to count

how many observation are in the neighborhood of x (e.g. in [x − h, x + h) for

some h > 0).

Therefore, consider the “moving histogram” or “naive estimator” as suggested

by Rosenblatt (1956),

f̂(x) =
1

2nh

n∑

i=1

I(Xi ∈ [x − h, x + h)) = f̂(x) =
1

nh

n∑

i=1

K

(
x − Xi

h

)

when other definitions of the neighborhood of x are considered, where K is a

kernel function (e.g. K(ω) = I(|ω| ≤ 1)/2).

If X is a positive random variable, and K is symmetric,

E(f̂(0, h)) =
1

2
f(0) + O(h)
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Copula density estimation: the boundary problem

Let (U1, V1), ..., (Un, Vn) denote a sample with support [0, 1]2, and with

density c(u, v), which is assumed to be twice continuously differentiable on

(0, 1)2.

If K denotes a symmetric kernel, with support [−1, +1], then for all

(u, v) ∈ [0, 1] × [0, 1], in any corners (e.g. (0, 0))

E(ĉ(0, 0, h)) =
1

4
· c(u, v) −

1

2
[c1(0, 0) + c2(0, 0)]

∫ 1

0

ωK(ω)dω · h + o(h).

on the interior of the borders (e.g. u = 0 and v ∈ (0, 1)),

E(ĉ(0, v, h)) =
1

2
· c(u, v) − [c1(0, v)]

∫ 1

0

ωK(ω)dω · h + o(h).

and in the interior ((u, v) ∈ (0, 1) × (0, 1)),

E(ĉ(u, v, h)) = c(u, v) +
1

2
[c1,1(u, v) + c2,2(u, v)]

∫ 1

−1

ω2K(ω)dω · h2 + o(h2).
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Figure 15: Theoretical density of Frank copula.
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Figure 16: Estimation with standard Gaussian (independent) kernels.
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How to get a proper estimation on the border

Several techniques have been introduce to get a better estimation on the

border, in the univariate case

• boundary kernel (Müller (1991))

• mirror image modification (Deheuvels & Hominal (1989), Schuster

(1985))

• transformed kernel (Devroye & Györfi (1981), Wand, Marron &

Ruppert (1991))

In the particular case of densities on [0, 1],

• Beta kernel (Brown & Chen (1999), Chen (1999, 2000)),
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Transformed kernel technique

Set (Xi, Yi) = (G−1(Ui), G
−1(Vi))’s, where G is a strictly increasing

distribution function, with a differentiable density, and consider a kernel

estimate of the density. Since density f is continuous, twice differentiable,

and bounded above, for all (x, y) ∈ R
2, consider

f̂(x, y) =
1

nh2

n∑

i=1

K

(
x − Xi

h

)
K

(
y − Yi

h

)
.

Since f(x, y) = g(x)g(y)c[G(x), G(y)] can be inverted in

c(u, v) =
f(G−1(u), G−1(v))

g(G−1(u))g(G−1(v))
, (u, v) ∈ [0, 1] × [0, 1], (9)

one gets, substituting f̂ in (9)

ĉ(u, v) =
1

nh · g(G−1(u)) · g(G−1(v))

n∑

i=1

K

�
G−1(u) − G−1(Ui)

h
,
G−1(v) − G−1(Vi)

h

�
,

(10)
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Figure 17: Estimated density with Gaussian normalization.
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Figure 18: Estimated density with t normalization, df = 5.
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Figure 19: Estimated density with t normalization, df = 3.
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Bivariate Beta kernels

The Beta-kernel based estimator of the copula density at point (u, v), is obtained

using product beta kernels, which yields

ĉ(u, v) =
1

n

n∑

i=1

K

�
Xi,

u

b
+ 1,

1 − u

b
+ 1

�
· K
�
Yi,

v

b
+ 1,

1 − v

b
+ 1

�
,

where K(·, α, β) denotes the density of the Beta distribution with parameters α

and β,

K(x, α, β) =
Γ(α + β)

Γ(α)Γ(β)
(1 − x)β−1

x
α−1

1x∈[0,1].
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Beta (independent) bivariate kernel , x=0.0, y=0.0 Beta (independent) bivariate kernel , x=0.2, y=0.0 Beta (independent) bivariate kernel , x=0.5, y=0.0

Beta (independent) bivariate kernel , x=0.0, y=0.2 Beta (independent) bivariate kernel , x=0.2, y=0.2 Beta (independent) bivariate kernel , x=0.5, y=0.2

Beta (independent) bivariate kernel , x=0.0, y=0.5 Beta (independent) bivariate kernel , x=0.2, y=0.5 Beta (independent) bivariate kernel , x=0.5, y=0.5

Figure 20: K(·, x/b + 1, (1 − x)/b + 1) × K(·, y/b + 1, (1 − y)/b + 1).

69



Arthur CHARPENTIER - PhD Thesis Defense - Dependence structures and limiting results.

Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let

(u, v) ∈ [0, 1] × [0, 1]. The bias of ĉ(u, v) is of order b, i.e.

E(ĉ(u, v)) = c(u, v) + Q(u, v) · b + o(b),

where the bias Q(u, v) is

(1 − 2u)c1(u, v) + (1 − 2v)c2(u, v) +
1

2
[u(1 − u)c1,1(u, v) + v(1 − v)c2,2(u, v)] .

The bias here is O(b) (everywhere) while it is O(h2) using standard kernels.
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Assume that the copula density c is twice differentiable on [0, 1] × [0, 1]. Let

(u, v) ∈ [0, 1] × [0, 1]. The variance of ĉ(u, v) is in corners, e.g. (0, 0),

V ar(ĉ(0, 0)) =
1

nb2
[c(0, 0) + o(n−1)],

in the interior of borders, e.g. u = 0 and v ∈ (0, 1)

V ar(ĉ(0, v)) =
1

2nb3/2
√

πv(1 − v)
[c(0, v) + o(n−1)],

and in the interior,(u, v) ∈ (0, 1) × (0, 1)

V ar(ĉ(u, v)) =
1

4nbπ
√

v(1 − v)u(1 − u)
[c(u, v) + o(n−1)].
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Figure 21: Estimated density of Frank copula, Beta kernels, b = 0.1
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Figure 22: Estimated density of Frank copula, Beta kernels, b = 0.05
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Figure 23: Density estimation on the diagonal, standard kernel.
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Figure 24: Density estimation on the diagonal, transformed kernel.
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Figure 25: Density estimation on the diagonal, Beta kernel.
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Copula density estimation

Gijbels & Mielniczuk (1990): given an i.i.d. sample, a natural estimate for the

normed density is obtained using the transformed sample

(F̂X(X1), F̂Y (Y1)), ..., (F̂X(Xn), F̂Y (Yn)), where F̂X and F̂Y are the empirical

distribution function of the marginal distribution. The copula density can be

constructed as some density estimate based on this sample (Behnen, Husková &

Neuhaus (1985) investigated the kernel method).

The natural kernel type estimator ĉ of c is

c(u, v) =
1

nh2

n∑

i=1

K

[
u − F̂X(Xi)

h
,
v − F̂Y (Yi)

h

]
, (u, v) ∈ [0, 1].

“this estimator is not consistent in the points on the boundary of the unit square.”
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Copula density estimation and pseudo-observations

Example: when dealing with copulas, ranks Ui, Vi yield pseudo-observations.

(Ui, Vi) = H(Xi, Yi) = (FX(Xi), FY (Yi))

(Ûi, V̂i) = Ĥn(Xi, Yi) = (F̂X(Xi), F̂Y (Yi))

(see Genest & Rivest (1993)).

More formally, let X1, ..., Xn denote a series of observations of X (∈ X ),

stationary and ergodic.

Let H : X → R
d and set εi = H(X i) (non-observable).

If H is estimated by Ĥn then ε̂i = Ĥn(X i) are called pseudo-observations.

Let K̂n denote the empirical distribution function of those pseudo-observations,

K̂n(t) =
1

n

n∑

i=1

I(ε̂i ≤ t) where t ∈ R
d
.

Further, if K denotes the distribution function of ε = H(X), then define the
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empirical process based on pseudo-observations,

Kn(t) =
√

n
[
K̂n(t) − K(t)

]

As proved in Ghoudi & Rémillard (1998, 2004), this empirical process converges

weakly.

Figure ?? shows scatterplots when margins are known (i.e. (FX(Xi), FY (Yi))’s),

and when margins are estimated (i.e. (F̂X(Xi), F̂Y (Yi)’s). Note that the pseudo

sample is more “uniform”, in the sense of a lower discrepancy (as in Quasi Monte

Carlo techniques, see e.g. Niederreiter, H. (1992)).
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Figure 26: 500 simulated observations (Xi, Yi) and the associate pseudo-

sample (F̂X(Xi), F̂Y (Yi)).
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Figure 27: The impact of estimating from pseudo-observations.

81



Arthur CHARPENTIER - PhD Thesis Defense - Dependence structures and limiting results.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0

1

2

3

4

5

Estimation of Frank copula

0.2 0.4 0.6 0.8

0
.2

0
.4

0
.6

0
.8

Figure 28: n = 1000, b = 0.050 and no-censoring.
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Figure 29: n = 1000, b = 0.050 and 1.7% censored data.
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Figure 30: n = 1000, b = 0.050 and 7.8% censored data.
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Figure 31: n = 1000, b = 0.050 and 24% censored data.

85



Arthur CHARPENTIER - PhD Thesis Defense - Dependence structures and limiting results.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Beta kernel estimator, b=0.01, n=1000, no censoring

Estimation of the density on the diagonal

D
e

n
s
it
y
 o

f 
th

e
 e

s
ti
m

a
to

r

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Beta kernel estimator, b=0.01, n=1000,  5% censoring

Estimation of the density on the diagonal

D
e

n
s
it
y
 o

f 
th

e
 e

s
ti
m

a
to

r

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Beta kernel estimator, b=0.01, n=1000, 25% censoring

Estimation of the density on the diagonal

D
e

n
s
it
y
 o

f 
th

e
 e

s
ti
m

a
to

r

Figure 32: Estimation of the density on the diagonal.
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Stock sampling can be observe as the bias increases as u goes to 1, and as the

proportion of censored data increases.

Idea in Efron & Tibshirani (1993): bootstrap techniques can be used to

estimate the bias. Consider B bootstrap samples drawn independently from the

original censored data, with replacement,
��

X∗

i,b, Y
∗

i,b, δ
∗

i,b

�	
, i = 1, ..., n and

b = 1, ..., B. The bias of the density estimator at point (u, v) can be estimated from

b̂ias (u, v) =
1

B

B∑

i=1

ĉ (u, v)∗,b − ĉ (u, v)

where ĉ (u)∗,b is the density obtained from the bth bootstrap sample.
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Figure 33: ĉ(12/13, 12/13) with 25% censored data.
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Figure 34: Censoring bias correction using bootstrap techniques.
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Figure 35: Loss-ALAE dataset, compared with Gumbel copula.
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There are perspectives to go further,

• better knowledge of properties of the transformed kernel technique (impact of

heavy tails of the transformation ?)

• impact of the biais correction on some risk measure (e.g. exceeding

probabilities)
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