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Abstract

Specular surface reconstruction from images is a relatively little explored topic, due

to the rareness of such objects and the inherent complexity in the induced geometry

compared to that of matte shading. This is due to the fact that the apparent texture

of the surface is dependant on the viewpoint, or in other words, that the light path

from a feature point to a camera pixel is not a straight line. As such, these surfaces

are ignored or considered as noise in most 3D reconstruction techniques, whereas we

show that the constraints they can provide can be used to compute accurate geometric

information on position and orientation. This thesis presents two methods for obtaining

position and orientation of points of a specular surface from the reflection of known

environning points, without making the usual smoothness or continuity assumptions

of nearly all prior methods. The first of these methods is an extension to the space

carving framework, which computes voxels belonging to a specular surface by relying

on geometric consistency measures rather than photometric ones, which in this case do

not make sense. The second method is based on triangulation, and requires a fixed

camera viewing the reflection of at least 2 environning points for each surface point to

be reconstructed. Finally, we present methods for estimation of the pose of calibration

objects when they are not in direct view of a camera, through the reflection by specular

objects. The first of these methods assumes that the calibration object is seen through 3

or more mirrors known to be planar, while the second presents a theoretical constraint for

the obtention of the pose of such an object placed at two locations, when seen through

the reflection of an arbitrary surface.

Keywords: Specular surfaces, Reconstruction, Pose estimation
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Résumé

La reconstruction de surfaces spéculaires à partir d’images est un domaine relativement

peu exploré, du fait du caractère peu commun de ces objets, et la complexité induite

par rapport aux surfaces mattes. Ceci est du au fait que la texture apparente de telles

surfaces est dépendante du point de vue, ou formulé autrement, que le chemin lu-

mineux entre un point d’intérêt et un pixel n’est une ligne droite. De ce fait, la plupart

des algorithmes de reconstructions ignorent les contributions spéculaires, alors que nous

montrons que le contraintes qu’elles apportent permettent d’obtenir des informations

géométriques de localisation et d’orientation précises, et ce sans les contraintes de con-

tinuité ou de régularité habituellement requises. Cette thèse présente deux méthodes

permettant d’obtenir la position et l’orientation de points d’une surface parfaitement

spéculaire, à partir de la réflection de points environnants connus. La premiére étend les

approches de ”space carving”, et obtient des voxels d’un objet spéculaire en utilisant une

mesure de consistance géométrique putôt que photométrique, qui dans ce cas n’a pas de

sens. La deuxième procède par triangulation, en supposant une caméra fixe observant

la refléction d’au moins 2 points connus par point de la surface à reconstruire. Finale-

ment, nous proposons des méthodes pour obtenir la pose d’objets de calibration alors

qu’ils ne sont pas dans le champ de vue d’une caméra, à travers la reflection d’objets

spéculaires. La première suppose que cet objet est vu à travers la réflection de 3 miroirs

plans inconnus, et obtient par ailleurs la pose de ces miroirs. La seconde présente une

contrainte géométrique permettant théoriquement d’obtenir la pose d’un tel objet placé

à deux endroits différents, vu à travers la reflection d’une surface spéculaire quelconque.

Mots Clés: Surfaces spéculaires, Reconstruction, Estimation de pose

8



Résumé en Français

Contexte de la vision par ordinateur

La plupart des efforts de la communauté de vision par ordinateur tendent à l’obtention

de modèles géométriques d’objets à partir d’images. Bien que le système visuel humain

excelle dans ce domaine, reconnaissant immédiatement de multiples objets, obtenant la

structure tridimensionnelle de n’importe quel environnement, ou estimant la réflectance

de la plupart des types de surfaces, la mise au point d’un système artificiel similaire

reste un domaine de recherche actif et ouvert. Les modèles numériques en eux même

possèdent de nombreux avantages par rapport aux objets concrets qu’ils représentent :

ils peuvent être inspectés à toute résolution, affichés dans des environnements variés,

stockés et indexés dans des bases de données, transmis télématiquement, modifiés dans

des applications de CAO, etc. . . Les domaines d’application pour ces modèles incluent

l’archéologie, la chirurgie, l’aide aux handicapés, la robotique, le divertissement ou le

contrôle qualité. L’obtention de tels modèles numériques est dès à présent possible, mais

requiert à la fois du temps d’acquisition et un matériel onéreux et peu adapté à une

utilisation de masse : un palpeur placé sur un bras robotique permet l’acquisition de

points 3D de manière très précise, avec l’inconvénient majeur de devoir physiquement

interagir avec la surface à mesurer, et de même, un goniomètre permet l’acquisition de la

réflectance complète d’un type de surface donné. L’utilisation d’un scanner laser permet

d’accélérer le processus d’acquisition et d’éviter le contact avec la surface à reconstruire,

mais demeure un appareillage complexe et cher, et ne permet pas, notamment pour le

cadre de cette thèse, la mesure de surfaces hautement spéculaires.

L’obtention de tels modèles en utilisant uniquement des images est une perspective

attrayante, de part le fait que les appareils produisant ces images à partir d’observa-

tions sont à la fois courants, peu coûteux et non invasifs. De plus, le problème semble

résoluble étant donné que c’est une tâche courante du système visuel humain, qui intègre

à chaque instant des informations physiologiques (parallaxe, convergence, parallaxe de

mouvement) et psychologiques (échelle, perspectives, gradients de texture, ombrages...)

afin d’obtenir une représentation précise de son environnement. La complexité inhérente

à toutes ces informations est trop importante pour être à la fois interprétée et traitée
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par un système artificiel, d’où le fait que l’état de l’art de la vision par ordinateur se

limite à des sous classes du problème dans sa globalité. Par exemple, les algorithmes

de reconstruction à partir d’image sont généralement limités aux surfaces parfaitement

mattes, les algorithmes d’estimation de réflectance supposent une géométrie connue et

un nombre restreint de réflectances possibles, et les algorithmes de reconnaissance se

limitent à un petit nombre de classes d’objets reconnaissables.

Dans le sous domaine dans lequel se situe cette thèse, l’obtention de modèles géométriques

à partir d’images, le but est d’obtenir une représentation numérique de l’occupation de

l’espace par un objet, ou en d’autres mots les coordonnées en 3 dimensions des points qui

le constituent. La plupart des méthodes de l’état de l’art font une hypothèse draconienne

sur la réflectance de la surface constituant l’objet, en supposant que l’intensité lumineuse

observée à un point donné est indépendante du lieu d’observation : cette propriété est

vérifiée en partie par le bois brut, le papier, les plâtres et bétons, et certains tissus. Pour

les méthodes utilisant la mise en correspondance, comme la stéréo, le structure from

motion, ou à moindre mesure le space carving, cette hypothèse sert à permettre l’iden-

tification et l’appariement de points correspondants au travers les différentes images

de l’acquisition. L’informaton géométrique apportée par cet appariement permet l’ob-

tention de contraintes sur la structure de la surface correspondante. Dans le cadre des

algorithmes de shape from shading, cette contrainte permet de dériver l’orientation d’une

surface étant donné son intensité et la position de la source lumineuse.

Présentation du problème

La plupart des surfaces qui nous entourent, en revanche, ne vérifient pas cette hy-

pothèse. Les techniques qui supposent des surfaces mattes produisent des résultats aber-

rants si leurs données ne vérifient pas ce modèle, ce qui est le cas avec les surfaces

réfléchissantes :

– les méthodes procédant par appariement reconstruisent en général des points

derrière ou devant la surface véritable selon si la surface est convexe ou concave.

– les méthodes de shape from silhouette peinent lors de l’extraction des silhouettes

aux angles rasants.

– l’énergie transportée par le rayon d’un scanner laser est reflétée dans la direction

miroir et n’atteint pas le capteur associé.

De ce fait, les spécularités sont soit traitées comme du bruit, produisant des résultats

erronés, soit éliminées dans une étape de pré-traitement, soit évitées lors de l’acquisition

en imposant des contraintes fortes sur les positions des objets, sources de lumière et

caméras.
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Pour autant, les techniques ne permettant de traiter que la réflection spéculaire sont

tout autant limitantes dans leur champ d’application. Les objets exhibant une com-

posante spéculaire nette sont rares, et donc des méthodes s’y limitant peuvent parâıtre

surprenantes. Il existe quand même une classe d’applications où un tel problème apparâıt

directement (voir illustrations page 37) :

– Essentiellement pour le contrôle qualité de pièces usinées, notamment dans l’in-

dustrie automobile pour les tôles et les éléments vitrés, où la flexibilité et la rapidité

de mesures à partir d’images pourraient permettre un contrôle en temps réel sur

les châınes de production.

– Pour la création et le contrôle des pièces optiques pour télescopes et appareils

photos.

– Plus anécdotiquement pour la réalité virtuelle ou la digitalisation d’objets culturels.

Le cœur du problème est bien évidemment ailleurs, et les travaux sur la reconstruction de

surfaces réfléchissantes doivent plutôt être vus comme une étape vers des méthodes de

reconstruction génériques, permettant de traiter à la fois des surfaces mattes, spéculaires

et hybrides.

Géométrie inhérente à la réflection spéculaire

Toute la difficulté inhérente aux surfaces réfléchissantes provient du fait que le chemin

emprunté par la lumière lors d’une réflection pour un pixel donné est composé de deux

segments de droite, illustrés sur la figure page 12, et définis par les points de l’espace

que l’on dénommera :

– point du miroir qui est le point en 3 dimensions appartenant à la surface, et où

a lieu la réflection. Ce point n’a pas de texture propre, son apparence dépend du

point d’observation et de l’environnement.

– pixel qui est un point du plan image de la caméra, et la projection du point du

miroir.

– point de la scène qui est le point dont la ”texture” est imagée sur le pixel.

Dans le cas déjà très contraint où une caméra calibrée observe la réflection par

une surface spéculaire d’un point de la scène de coordonnées connues, il y a une famille

unidimensionnelle de positions et d’orientations de surfaces le long du rayon de projection

qui correspondent à cette observation, comme illustré sur la figure page 12.

État de l’art

Les surfaces spéculaires ont été un centre d’intérêt de plusieurs travaux de la commu-

nauté vision par ordinateur depuis le début des années 80, dans la plupart des cas dans

un but de détection et d’élimination pour des algorithmes traitant les surfaces mattes.
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point de la scène

point du miroir

pixel

Chemin emprunté par la lumière formé de deux segments de droite reliant le point de la

scène, le point du miroir et le pixel de la caméra.

p
Oc

Q

P

P
P

P
P

Ambigüıté sur la reconstruction Étant donnée la correspondance entre un pixel p et un

point de la scène Q, il existe une famille unidimensionnelle de surfaces {P} le long du rayon

de projection vérifiant la contrainte de réflection.
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Dans le domaine central à cette thèse, les méthodes de reconstruction peuvent être

catégorisées en deux grandes familles, la première utilisant des contraintes géométriques

pour directement calculer des informations sur la surface, et la deuxième procédant par

intégration autour de points initiaux.

Les approches géométriques Oren and Nayar [ON95b] utilisent le suivi d’un point

de la scène pour retrouver le profile d’une surface lisse, dans le cas où le centre optique

de la caméra, le point de la scène et le point du miroir où a lieu la réflection sont

coplanaires. Le résultat ne s’étend pas au cas 3-dimensionnel sans a priori fort sur la

surface. Zheng et al. [ZM98] observent les reflets produits par deux sources circulaires

dans un objet en rotation sur une table. Les résultats présentés manquent malheureu-

sement de précision pour être exploitables. Dans un contexte stéréoscopique, Knauer et

al. [KLKH05] utilisent une contrainte similaire à celle du chapitre 2 pour entreprendre

à chaque une pixel une optimisation sur la profondeur du point du miroir correspon-

dant. Savarese et al. [SP02],[SCP04] détaillent les contraintes mathématiques lors de

la réflection de plusieurs droites concourantes, en utilisant des mesures de courbure et

d’échelle, ce qui limite le nombre de points qu’il est possible de reconstruire.

Les méthodes présentées dans cette thèse aux chapitres 2 et 3 font partie de cette

classe d’approches.

Les approches par intégration Lorsque des correspondances relativement denses

entre pixels et points de la scène peuvent être établies, une méthode souvent utilisée

est d’intégrer autour de points du miroir initiaux connus, en utilisant soit des modèles

paramétriques de surfaces, soit uniquement des points et normales. Ces méthodes ne

requièrent qu’une correspondance par point à reconstruire, mais ont tendance à accu-

muler les erreurs en s’éloignant des points initiaux. Une implémentation caractéristique

est donnée par Schultz dans [Sch96] appliquée à la reconstruction de la surface de

l’océan. Dans [HBKM96], Halstead et al. présentent un système permettant la recons-

truction de la cornée humaine à partir d’images, en ajustant une surface spline. Dans

ce scénario très contraint la précision obtenue est inférieur au micron. Similairement,

Tarini et al. [TLGS03] obtiennent une reconstruction de surface lisse sans explicitement

recourir à une initialisation, en minimisant une erreur d’autocohérence sur la surface.

Perception par l’humain La perception et l’interprétation par le système visuel hu-

main au travers uniquement la réflection spéculaire (c’est a dire sans contours occultants

ou ombrage) est un sujet ouvert. Blake et al. [BB90] montre que le système visuel hu-

main peut interpréter les informations de profondeur apportées par les spécularités. Dans

[SFFP04], Savarese et al. concluent que le système visuel humain n’est pas meilleur que

le hasard dans le cas de l’observation de la réflection de grilles régulières. Flemming et
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al. in [FTA04] arrivent à la conclusion opposée lorsque les scènes réfléchies sont des

environnements naturels réels. Norman et al. [NTO04] remarquent aussi que le cadre le

plus favorable à la reconnaissance est lors de la présence de spécularités.

Métrologie L’inspection de surfaces est une tâche courante dans les environnements

industriels, en particulier dans l’industrie automobile dans le cadre des surfaces réfléchissantes

pour les tôles et les parebrises. Traditionnellement cette tâche est effectuée soit par pal-

peur, soit par scanner laser après avoir rendu la surface non réfléchissante (par peinture

ou poussière de craie). Des techniques permettant d’obtenir des résultats similaires avec

des techniques uniquement image, et respectant des contraintes de temps d’acquisi-

tion suffisamment faibles, trouveraient probablement des applications sur ces châınes de

production.

Récemment un scanner laser spécifique a été développé par [BOIK01], et consiste en

une tête mobile et un système de plaques permettant de ne capter l’énergie du laser que

dans des directions spécifiques, avec l’inconvénient majeur de temps d’acquisition élevés.

Par ailleurs, dans le cadre de l’inspection de finition (courbures locales uniquement), les

systèmes à base de déflectometrie [KKH04] donnent des résultats probants, mais sans

aller jusqu’à un modèle tridimensionnel de la surface.

Contributions de la thèse

Les contributions et le plan de cette thèse sont les suivants :

– Le chapitre 2 présente une méthode de reconstruction s’incorporant dans le cadre

des méthodes de space carving, en présentant une mesure de consistance géométrique

plutôt que photométrique.

– Le chapitre 3 présente un contrainte géométrique permettant la reconstruction

de surfaces réfléchissantes quelconques par simple intersection, en utilisant une

caméra fixe et des correspondances provenant de deux ou plus positions différentes.

Ces deux méthodes permettent la reconstruction de surfaces spéculaires quelconques,

sans avoir à faire l’hypothèse habituelle de continuité ou de dérivabilité. La précision

obtenue par la deuxième méthode semble être suffisante pour de nombreuses applications.

Un problème récurrent dans le cadre de la reconstruction de surfaces réfléchissantes

est l’obtention de correspondances entre pixels de l’image et points de la scène, que l’on

considère calibrés, c’est à dire ayant des coordonnées connues. L’obtention de la pose de

ces points de la scène est un problème pratique non trivial, étant donné qu’ils ne sont

en général pas dans le champ de vue de la caméra correspondante :

– Le chapitre 4 présente des méthodes d’estimation de pose d’un objet de calibrage,

lorsque cet objet n’est pas dans le champ de vue de la caméra en question.
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Approche volumétrique

Ce chapitre propose une extension aux approches de reconstruction dites volumiques

ou par space carving, initialement présentées par Seitz et Dyer [SD97] et Kutulakos et

Seitz [KS00]. Plutôt que d’utiliser des contraintes obtenues par l’appariement au travers

plusieurs images de points à reconstruire, ces méthodes utilisent une discrétisation de l’es-

pace à reconstruire, et pour chacun des éléments (appelés voxels) de cette discrétisation,

vérifient si leurs observations (i.e. leurs projections dans les images) sont cohérentes entre

elles. Si ces observations sont cohérentes, l’élément est considéré comme appartenant

à la surface à reconstruire, sinon il est rejeté. L’avantage majeur de ces méthodes est

qu’elles ne nécessitent pas de mise en correspondance explicite entre les points image

correspondant aux points de l’objet à reconstruire, mais au dépens de la précision des

résultats obtenus. Pour les surfaces mattes, la cohérence d’un élément est quantifiée par

la disparité des couleurs qui lui sont associées, une mesure inapplicable pour les sur-

faces spéculaires, où la couleur observée dépend de l’environnement et du point de vue.

A la place de cette invariance photométrique, nous proposons d’utiliser une invariance

géométrique, à savoir que l’orientation d’une surface est indépendante du point de vue.

L’information donnée pour une correspondance et un point de vue de caméra est

illustrée dans la figure page 16. Pour chacun des voxels traversés par le rayon de projection

correspondant, la loi de la réflection permet d’associer la normale à une surface passant

par ce voxel et produisant la même observation. Lorsque l’on dispose de plusieurs vues

et de plusieurs correspondances, il est donc possible de différencier un voxel intersectant

la surface spéculaire d’un voxel ”vide” en utilisant une mesure de consistance sur les

normales associées aux voxels de l’espace, comme illustré sur la figure page 17.

Mesures de consistance géométrique

Avec des données exactes et une discrétisation de l’espace infiniment précise, un

voxel peut être rejeté ou conservé en vérifiant si ses normales associées sont égales

entre elles ou non. En réalité, une mesure quantifiant la disparité des normales associées

doit être utilisée. Pratiquement, une mesure triviale de variance n’est pas suffisamment

discriminante, pour le cas où les caméras et les points de la scène sont regroupés dans

une direction générale autour de l’objet à reconstruire, ce qui est généralement le cas

dû aux contraintes d’acquisition et de mise en correspondance. En effet, dans ce cas les

normales associées aux voxels présentent une disparité qui diminue avec l’éloignement aux

caméras, ne permettant donc pas une sélection des voxels corrects par simple seuillage.

Nous présentons donc des mesures de disparité heuristiques permettant de prendre en

compte cette atténuation de la disparité avec la profondeur.
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z

points de la scène

y

x

espace 3D voxelisé

posit
ions possi

bles de la surfac
e

surface spéculaire

n

P

Oc

p

système de référence

Q

Information pour une vue et une correspondance Étant donné la correspondance entre un

pixel p et un point de la scène Q, l’information disponible est la famille {P,n} de surfaces et

d’orientations vérifiant cette correspondance

16



Q

Oc

O′
c

Q′
1

Q′
2 p′

1

p′
2

pP1
P2

Informations pour plusieurs vues Deux positions et orientations possibles P1 et P2 sont

représentées pour le pixel p, obtenues à partir de la correspondance entre Q et p. Étant donné

une deuxième vue de ces deux points, on observe que la normale bleue associée à P2 étant

donnée la correspondance entre p′
2 et Q′

2 n’est pas consistante avec la normale obtenue avec la

première caméra. Pareillement, la normale verte associée à P1 étant donnée la correspondance

entre p′
1 et Q′

1 est identique à la normale obtenue avec la première caméra. La seule solution

possible pour la surface pour le pixel p est donc située au point P1.

Résultats

La validation de cette méthode de reconstruction à été faite en deux parties, premièrement

avec des données synthétiques, puis sur un objet spéculaire réel. La validation synthétique

montre que des résultats quantitativement et qualitativement corrects peuvent être ob-

tenus, avec des voxels extraits proches de la surface d’origine, et sans voxels aberrants

tant que des seuils ”raisonnables” sur la disparité sont appliqués. La validation sur un

objet réel a par ailleurs montré que la méthode est applicable en pratique.

Discussion

Ce chapitre a présenté une extension aux méthodes de space carving pour y incorporer

l’habilité de traiter les surfaces purement spéculaires. Bien que donnant des résultats
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satisfaisants, cette méthode est d’une applicabilité limitée, du fait du nombre d’images

nécessaires et surtout le besoin d’une mise en correspondance explicite entre pixels et

points de la scène, ce qui constituait l’avantage principal des méthodes de space carving.

Triangulation

Pour relâcher certaines des contraintes inhérentes à la méthode précédente, ce cha-

pitre présente une contrainte géométrique simple permettant la reconstruction de points

d’une surface spéculaire, indépendamment les uns des autres. Les pré-requis sont l’uti-

lisation d’une caméra dont le calibrage interne est connu, c’est à dire dont on connâıt

pour un pixel donné, dans un repère attaché à la caméra, le rayon de projection associé.

Le principe, présenté sur la figure page 19, consiste en la triangulation des deux segments

de droite constituant la réflection :

– le premier segment de droite est défini par le calibrage interne de la caméra. En

pratique, le modèle de caméra utilisé est un modèle sténopé, et donc le segment

de droite est défini par la droite passant par le centre optique de la caméra et le

pixel.

– le deuxième segment est défini par les correspondances provenant d’un plan placé

à deux positions distinctes connues.

Pour chaque triplet {p,Q,Q′}, le point du miroir correspondant P est trivialement

obtenu comme l’intersection des deux droites (O,p) et (TQ, T′Q′), et de plus la normale

à la surface en P est définie comme la bissectrice de ces deux droites.

Résultats

La validation des résultats a été faite sur des scènes comportant plusieurs objets

spéculaires, dont un exemple est montré sur la figure 3.3 page 89. Pour quantifier la

précision des résultats, nous avons ajusté un plan aux points correspondants aux parties

planaires de la scène, puis relevé les distances de chaque point extrait au plan ajusté.

Les résultats obtenus se sont révélés d’une précision largement suffisante pour un grand

nombre d’applications, avec 98% des points reconstruits situés a moins de 2 dixièmes de

millimètres du plan ajusté.

Une autre validation sur une pièce de grande taille à été effectuée sans modifications

sur un parebrise de voiture, permettant l’obtention d’un modèle de plusieurs centaines de

milliers de points indépendants, mais qui n’a pas pu être validé quantitativement faute

de vérité terrain.
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Principe de la reconstruction par triangulation La mise en correspondance d’un pixel avec

les points provenant d’un plan placé à deux positions différentes et connues est suffisante pour

uniquement reconstruire le point du miroir correspondant.
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Conclusion

Ce chapitre a présenté une méthode de reconstruction simple permettant la recons-

truction de tout type de surfaces spéculaires avec des contraintes et une précision per-

mettant une application au contrôle qualité industriel. Si la méthode en elle même est

directe, ses pré-requis ne sont pas triviaux en pratique, notamment l’obtention de la pose

des plans aux deux positions différentes, et la mise en correspondance dense entre pixels

et points des plans. La partie suivante propose des solutions allant dans ce sens.

Pose indirecte

Une hypothèse pratique faite par toutes les méthodes de reconstruction de surfaces

réfléchissantes est la connaissance de correspondances entre les pixels de l’image et

leur origine connue dans la scène. Le calibrage de la scène, c’est à dire en pratique

l’obtention des coordonnées dans un repère connu de points caractéristiques d’un objet

de calibrage, est un problème non trivial en dehors de certains cas contraints. En effet,

l’objet de calibrage doit être placé de telle façon que sa réflection soit visible dans

l’objet spéculaire, limitant donc ses positions possibles, et de plus, en général, la caméra

est focalisée sur l’objet spéculaire afin d’obtenir le maximum de résolution. La solution

directe consistant à imposer une vue directe d’un objet de calibrage, comme par exemple

sur la figure 4.2 page 98, est donc peu adaptée à une méthode de reconstruction flexible,

ne serait-ce de part la perte de résolution sur l’objet à reconstruire lui-même. Ne pas

imposer une vue directe de l’objet de calibrage apporte donc les avantages suivants :

– Toute la résolution du capteur est utilisée pour la surface réfléchissante elle même,

ce qui est le cœur du problème.

– La caméra et l’objet de calibrage peuvent être placés au mieux, permettant de

maximiser la surface de l’objet reconstruite à chaque acquisition.

Approches ”directes”

Réflection par un plan connu Une solution évidente est l’utilisation d’un miroir

plan dont on connâıt la pose, placé de telle façon qu’il reflète l’objet de calibrage. Des

solutions pratiques pour obtenir la pose du plan incluent l’utilisation de marqueurs sur

la surface, ou l’utilisation de disques de diamètres connus (plateaux de disque dur par

exemple) puis un calibrage à partir d’ellipses.

Hand-Eye Dans le cas où l’on souhaite obtenir la pose d’un objet rigidement attaché à

une caméra, comme par exemple sur la figure 2.15 page 81, une formulation analogue au
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problème classique du Hand-eye peut être utilisée. Cette méthode nécessite par contre

des acquisitions supplémentaires qui doivent être faites hors ligne.

Utilisation de la réflection par des plans inconnus

Cette partie s’intéresse à la pose d’un objet de calibrage en utilisant directement les

images utilisées pour la reconstruction, lorsque l’objet à reconstruire comporte des parties

que l’on sait planaires. Nous détaillons une méthodologie permettant de déterminer la

pose de ces parties planaires, dès lors que l’on en a trois ou plus à disposition.

Objet de calibrage

(écran avec

lumière structurée)
Caméra

miroir plan

caméra

virtuelle (réflechie)

Pose réfléchie La pose estimée au travers la réflection d’un miroir plan est la pose d’une

caméra virtuelle qui est la réflection au travers du miroir plan de la caméra originale.

Principe Le principe général est le suivant :

– A partir des correspondances réfléchies au travers des parties planaires, utiliser une

méthode classique de pose afin d’obtenir les poses des caméras virtuelles.

– Utiliser la contrainte qu’avec les poses ”correctes” des miroirs plan, les réflections

des caméras virtuelles seront identiques entre elles.

– en utilisant chaque paire de miroirs plans pour chacune des composantes rota-

tionelle.

– puis toutes les composantes translationnelles.

– Utiliser les poses des miroirs plans pour obtenir la pose de l’objet de calibrage

(avec de plus un ajustement de faisceaux).

Résultats La validation a été faite en comparant des poses directes avec les poses

obtenues par la méthode présentée, pour un exemple illustré sur la figure 4.6 page 109.
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Pour un objet placé à environ 70 cm de la caméra, la différence obtenue est de l’ordre

de 1 cm pour la position et 2 degrés dans l’orientation.

Le tenseur spéculaire

Ce chapitre présente une contrainte théorique permettant d’obtenir la pose d’un objet

de calibrage au travers la réflection d’un objet quelconque, et donc après application de

la méthode par reconstruction par triangulation, la reconstruction d’objets spéculaires en

environnement non calibré. On suppose une caméra de type sténopé dont les paramètres

internes sont connus observant la réflection dans l’objet à reconstruire d’un plan placé à

deux positions différentes, c’est à dire un scénario identique à celui de la reconstruction

par triangulation. La contrainte que nous utilisons repose sur le fait qu’avec les poses

correctes pour les deux positions du plan, les droites formées par le rayon de projection

issu de la caméra d’une part, et les correspondances provenant des deux plans d’autre

part, doivent s’intersecter par construction. Cette contrainte peut s’interpréter par la

coplanarité des quatre points en question, ce qui algébriquement correspond à la nullité

du déterminant de ces quatre points. A partir de 26 ou plus des ces correspondances,

on montre qu’il est possible de linéairement extraire les paramètres des poses des deux

plans.

Des expériences par simulation ont malheureusement montré l’extrême instabilité du

système, rendant la méthode inapplicable dans des situations rééles.

Conclusion et perspectives

Cette thèse s’est intéressée au problème de la reconstruction de surfaces réfléchisantes

à partir d’images, un domaine relativement peu exploré dans le monde de la vision par

ordinateur, ce qui implique qu’en général ces surfaces étaient évitées ou considérées

comme du bruit. Nous avons présenté deux méthodes différentes permettant la recons-

truction de ce type de surfaces, dont une permettant d’obtenir une précision suffisante

pour un grand nombre d’applications, et ce sans recourir à la supposition classique de

continuité ou dérivabilité.

La méthode par space carving étend les méthode bien connues appliquées aux sur-

faces mattes. Malheureusement au vu des applications possibles de la reconstruction de

surfaces réfléchissantes, nous pensons qu’elle est peut-être trop complexe à mettre en

œuvre pour une utilisation ”ludique” (réalité virtuelle par exemple), et pas assez précise

pour des utilisations industrielles de type contrôle qualité.

La méthode par triangulation nous a permis d’obtenir des résultats très convaincants,

avec une mise en œuvre simple et peu contraignante. Dans un environnement plus

contraint dans le cadre d’une application industrielle par exemple, la précision peut être
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encore améliorée, en modélisant précisément la caméra et en connaissant exactement la

position des plans utilisés.

Finalement, les méthodes présentées permettant d’obtenir la pose d’un objet hors

du champ de vue d’une caméra répondent à un problème pratique commun à toutes

les méthodes de reconstruction de surfaces réfléchissantes, et peuvent aussi servir pour

l’obtention de pose de systèmes multi-caméras dans le cas ou celles-ci n’ont pas de champ

de vue en commun. Finalement, la partie présentant la contrainte permettant d’obtenir

la pose d’un objet à travers la réflection d’un objet spéculaire quelconque aurait permis

l’élaboration d’une méthode flexible et précise de reconstruction. L’instabilité observée

révèle peut-être la limite en termes de flexibilité des scénarios possibles pour l’obtention

de la géométrie des surfaces réfléchissantes.

Un problème pratique à améliorer reste celui de la mise en correspondance automa-

tique entre points de la scène et pixels de l’image, ayant à la fois la précision suffisante et

la rapidité d’exécution pour des scénarios industriels. Enfin, des méthodes ne requérant

pas un environnement calibré est un point de départ obligatoire avant d’obtenir des

algorithmes de reconstruction génériques flexibles, permettant l’obtention de modèles

de tout type de surfaces. Ceci passera probablement par l’intégration d’autres sources

d’information, notamment des a priori sur la surface ou des contours occultants.
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Notation 31

Introduction 32

1 Specular Surfaces and Computer Vision 43

1.1 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.1.1 Light and Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.1.2 Geometric Constraints . . . . . . . . . . . . . . . . . . . . . . . 48

1.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1.2.1 Geometrical Approaches . . . . . . . . . . . . . . . . . . . . . . 56

1.2.2 Integration-based Methods . . . . . . . . . . . . . . . . . . . . . 57

1.2.3 A Word on Human Perception . . . . . . . . . . . . . . . . . . . 59

1.2.4 Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Volumetric Space Carving Approach 61

2.1 Space Carving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 Comparison with traditional geometric approaches . . . . . . . . 62

2.1.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Application to Specular Surfaces . . . . . . . . . . . . . . . . . . . . . . 67

2.2.1 Geometric Constraints . . . . . . . . . . . . . . . . . . . . . . . 67

2.2.2 Consistency Measures . . . . . . . . . . . . . . . . . . . . . . . 72

2.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.1 Computer generated images . . . . . . . . . . . . . . . . . . . . 75

2.3.2 Real-world setup . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3 General Specular Surface Triangulation 85

3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

27



3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3.1 Results on curved mirrors . . . . . . . . . . . . . . . . . . . . . 88

3.3.2 Results on perfectly planar mirrors . . . . . . . . . . . . . . . . 91

3.3.3 Results on a car windshield . . . . . . . . . . . . . . . . . . . . 93

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Indirect Pose Estimation 95

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Geometric Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Reflections in planes . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Reflection in two planes . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Direct Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 Pose alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Pose Through Reflection by 3 (or more) Unknown Planes . . . . . . . . 103

4.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.2 Pose extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 106

4.5 Pose estimation through the reflection of an unknown specular surface . 111

4.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.5.2 Tensor Formation . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.5.3 Extraction of (R, t) and (R′, t′) . . . . . . . . . . . . . . . . . . 113

4.5.4 Degenerate Configurations . . . . . . . . . . . . . . . . . . . . . 116

4.5.5 (In)Stability with respect to noise . . . . . . . . . . . . . . . . . 117

4.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5 Conclusion and Perspectives 121

A Subpixel matching 123

B Singular Value Decomposition 129

28



List of Figures

1 The human visual system . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Example application domains . . . . . . . . . . . . . . . . . . . . . . . 37

3 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 1-Dimensional family of possible configurations . . . . . . . . . . . . . . 40

1.1 Light reflectance geometry . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.2 Lambertian BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.3 Parametric Reflectance Models. . . . . . . . . . . . . . . . . . . . . . . 47

1.4 The human eye seen as a pinhole camera . . . . . . . . . . . . . . . . . 51

1.5 The camera obscura . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.6 The pinhole model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.7 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

1.8 Thales law for camera projection . . . . . . . . . . . . . . . . . . . . . 54

1.9 Law of reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1 Classical reconstruction technique . . . . . . . . . . . . . . . . . . . . . 62

2.2 Space carving reconstruction technique . . . . . . . . . . . . . . . . . . 63

2.3 Computing surface orientation . . . . . . . . . . . . . . . . . . . . . . . 69

2.4 Required Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5 Information from multiple matches . . . . . . . . . . . . . . . . . . . . 71

2.6 Disparity affected by depth . . . . . . . . . . . . . . . . . . . . . . . . 73

2.7 Reprojection error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.8 Results: raytraced sphere . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.9 Results: sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.10 Results: sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.11 Results: sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.12 Results: sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.13 Results: sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.14 Captured image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.15 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.16 Results: front view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

29



2.17 Results: side view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.1 Reconstruction Approach . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Other applicable configurations . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Point-plane distance histogram . . . . . . . . . . . . . . . . . . . . . . 90

3.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Point-plane distance histogram . . . . . . . . . . . . . . . . . . . . . . 92

3.8 Real World Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.9 Real World Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.1 Reflection in two planes . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Direct view of a calibration pattern . . . . . . . . . . . . . . . . . . . . 98

4.3 Reflection by a known plane . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Setup of the proposed approach . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Reflected pose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.7 Histogram of distances to fitted planes . . . . . . . . . . . . . . . . . . 110

4.8 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.9 Instability with respect to noise . . . . . . . . . . . . . . . . . . . . . . 118

A.1 Binary code capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.2 Effect on reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.3 Texture remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

30



Notation

Throughout this thesis, we will use the following notation to express mathematical and

geometrical entities:

• a scalar is represented by italic letters, for example s.

• a vector or a point in space will be represented by bold letters, for example v. A

null vector will be represented as 0, or 0n when specifying its dimension.

• a matrix will be represented with capital sans-serif letters, for example M. The

identity matrix is represented as I.

• the ∼ sign will represent equality up to scale, when working with projective geom-

etry.

• [v]× is the matrix that represents the cross-product by vector v. We therefore

have ∀u ∈ R3, [v]×u = v × u:

[v]× =





x

y

z





×

=





0 −z y

z 0 −x

−y x 0





• MT is the transpose of matrix M.
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Introduction

For the last 30 years, the computer vision community has striven for an ideal object

reconstruction approach from images. Whereas the human visual system instantly rec-

ognizes objects, computes a 3 dimensional structure of virtually any environment, and

obtains reflectance cues from most types of surfaces, building an artificial system that

mimics this behavior remains a very open problem.

The advantages of such a system would be tremendous. Compared to physical

models, numerical models can be inspected at any resolution, displayed in any envi-

ronment, broadcast over communication wires, indexed in databases, stored efficiently,

manipulated in CAD applications . . . the possibilities are infinite. The fields of applica-

tion concerned that come to mind include archeology, preservation of cultural heritage,

surgery, assistance for the disabled, entertainment, communication, robotics, industrial

design and quality control, e-commerce, virtual sight-seeing, etc. . .

Systems that are able to produce these numerical models exist, but require expensive

and complicated equipment. Contact probes placed on the end of a robotic arm can

produce very precise measurements, at the expense of having to physically interact with

the object, and goniometers can be used to capture a full reflectance function of a

given type of surface. While these techniques are general, they remain time consuming.

Laser scanners also rapidly allow the capture of a complete 3D model, with the notable

exception, especially for the subject of this thesis, of highly reflective surfaces. Obtaining

such models using only images, on the other hand, would be highly appealing, as:

• Appliances that create images from observation are common, cheap and non-

invasive.

• The problem seems tractable, since that is precisely what the human visual system

does.

The human being integrates a large variety of cues provided by physiological and

psychological mechanisms [Oko76]. The physiological cues can be binocular, such as

parallax and convergence, or monocular in the case of movement parallax (i.e. percep-

tion of 3D shape with only one eye by slightly moving the head) or accommodation
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(i.e. muscle tension due to focusing distance). The psychological cues are all monocular,

and include scale (for known objects), linear perspective (intersection point of parallel

lines), texture gradient, and shading and shadows. Another capital source of information

is prior knowledge: having recognized the shape of a human body, we know that we will

find a face and hair towards the top, and two legs down on the ground.

The complexity of the constraints provided by these cues is mind boggling, and in the

mean time is too important to allow them to be fully integrated in an artificial system.

However we can find strong analogies between the development of an artificial vision

system and the human visual system; the newborn baby already possesses a powerful

acquisition system (the eyes), but has not learned to use them. He only recognizes shapes

as the intersection of lines formed by the border between light and dark regions. Ability to

track objects, and estimation of depth, develop after three months of constant training.

Precise distance judgments rarely occur before the age of one. And full coordination

with the muscular system is acquired in the school years. From this, we can infer that

the state of the art of artificial vision is in its first stammerings.

Whereas the human being integrates at each instant all the cues cited above, the

complexity of these cues bind researchers to work on only a subset of the available

information. For example, most stereoscopic algorithms require Lambertian reflectance

and ignore any specular contribution, reflectance estimation techniques assume known

shape and lighting, and are limited to a finite number of possible reflectances, recognition

algorithms are tailored for only a (tiny) number of recognizable classes . . .

Having described what we believe is an ideal system, we now focus on the subset that

concerns this thesis: obtaining object or surface structure from images. Given an object

to reconstruct, we therefore wish to obtain a numerical representation of how it occupies

space, in other words the coordinates in 3 dimensions of the points that constitute it.

Most of the results on the subject have been obtained by making drastic assump-

tions on surface reflectance, by supposing that the brightness observed on a point of a

surface is invariant to the locus of observation. Surfaces that verify this constraint to

some extent include plaster, paper, clothes or unvarnished wood. For methods using

feature matching such as stereo, voxel coloring, or structure from motion, the reason

for this assumption is that surface patches imaged from different viewpoints must be

identified and matched in these images. The geometrical information then given by these

matches allows geometrical constraints to be applied to the structure (namely position)

of the surface patch. For shape from shading algorithms, assuming matte and uniform

reflectance allows surface orientation to be determined using only brightness and the

position of the illuminant.

However, most surfaces surrounding us are far from satisfying this constraint. Tech-

niques that suppose matte shading all produce false if not aberrant results if their input

data does not fit to this model. This is the case for purely specular surfaces:
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• Methods relying on the matching of surface patches will usually reconstruct points

behind or in front of the correct surface, depending upon whether the surface is

convex or concave.

• In shape from silhouette methods, the difficulty is the extraction of the silhouette at

grazing angles, as the texture of the specular surface and background are identical

(see figure 2(d) for an illustration).

• The energy output by a laser scanner will be reflected in the mirror direction and

never reach the associated captor.

As such, most techniques usually discard specularities as noise, therefore producing object

models that contain holes. Another approach is to use a constrained setup where the

positions of light sources, cameras and objects are carefully and manually chosen so that

these specularities do not occur or at least do not occur on important locations.

Motivations

What use is there in reconstructing specular surfaces from images? Apart from the

fact that this was probably the most common reaction when explaining my work to

acquaintances, the question calls for an answer.

It would not be an exageration to say that perfect mirrors or surfaces with a sharp

specular component are very uncommon, therefore algorithms or methods that focus only

on these kinds of surfaces may seem peculiar. However, there is a range of applications

where such a problem directly arises:

• The automobile industry chain produces large quantities of bodyworks and wind-

shields, all of which have a non negligible specular component (figure 2(a)). At

present, the quality control of such parts at the end of the production chain is

obtained by contact probes. This kind of measurement is cumbersome and time

consuming, and therefore can only be performed on a finite number of samples

each day. Of course, a measurement concluding to a faulty part implies that all the

previous production be at the best individually verified, or at the worst discarded.

Non-invasive real-time inspection is becoming widespread for the inspection of the

micro-structure of such parts (i.e. detecting local irregularities in surface curva-

ture), but a near real-time system able to compute a global model that can then

be compared to a reference is highly desirable.

• Industrial metrology is a similarly demanding sector, for the quality control and

inspection of shiny tubes, jewelry, ceramics. . . (figure 2(b)).
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• Optics inspection, as most cameras and telescopes use mirrors as well as lenses to

transport light to the desired location (figure 2(d)).

• In the surgical field, most of the inner tissues of the living body are highly specular.

For computer assisted interventions, methods that are able to treat such specular

surfaces will be required if a 3D model is needed (figure 2(f)).

• Cultural heritage preservation, where some objects tend to be highly specular

(figure 2(e)).

• Virtual reality, where reconstructed models should also incorporate possible mirror

surfaces (figure 2(c)).

But the heart of the problem remains elsewhere. As much as traditional computer

vision algorithms are incomplete as they do not treat specularities, whatever techniques

treating only these specularities are equally as deceptive. However, being more compli-

cated to treat and less widespread, such types of surfaces have received relatively little

attention from the computer vision community. Work on purely specular surfaces must

therefore be seen as a step towards more general algorithms that can incorporate multiple

visual cues, rather than a goal in itself.
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(a) Automobile bodywork inspec-

tion

(b) Industrial inspection

(c) Virtual reality (d) Optics inspection

(e) Cultural heritage (f) Surgery

Figure 2: Applications for highly specular surfaces
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Presentation of the Problem

When working with specular surfaces, we must employ a specific vocabulary, as new

concepts are introduced with respect to more typical geometry. These new concepts

arise from the fact that a specular surface usually has a very rich apparent texture, that

corresponds to the environment it reflects towards the viewer, and not to a texture that

is attached to the surface. This implies that a feature a viewer sees on a specular surface

is carried by a ray of light that hasn’t traveled in a straight line as if it were seen directly,

but by two rays: one from the feature to a point on the specular surface, and one from

that point to the viewer. This point on the specular surface is physically defined by its

3D coordinates, but not by its appearance, as the latter will change depending on from

where it is viewed. To distinguish between these different types of feature points, we

will use the following vocabulary:

• A point on a non-reflecting surface, usually characterized by a specific texture that

describes a feature, will be referred to as a scene point. Such a scene point will

be called calibrated if its 3D location is known, or unknown if not.

• A physical point belonging to a mirror surface will be called a mirror point. This

point has a viewpoint dependent texture, which means that throughout different

views, identical texture patches do not correspond to identical mirror points. A

feature coming from a scene point and reflected by a specular surface at the mirror

point will be called a virtual feature.

• The projection of a point onto the image plane of a camera corresponds to a pixel,

after some kind of quantization is applied due to digitization. A pixel has a physical

3D location, but the relevant information it provides is in fact the projection ray

to which it corresponds.

The typical path that is taken by a ray of light, shown on figure 3 when working on

specular surfaces is therefore:

scene point mirror point pixel

All the difficulty of treating specular rather than traditional objects arises from this path,

as the geometrical information given by a pixel and a scene point corresponds to two

lines (the rays of light) rather than one. Even in the very constrained case were a cali-

brated camera observes the reflection of a known scene point, there is a 1-dimensional

family of surfaces along the corresponding projection ray that could have produced this

observation, as shown on figure 4. The aim of specular surface reconstruction tech-

niques is thus to find additional constraints that make the problem tractable. Note that

additional complexity can be introduced if we consider interreflection: in that case, the
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path followed by a ray of light will consist of 3 or more such rays. We will therefore

always ignore intereflections.

scene point

pixel

mirror point

Figure 3: Vocabulary: mirror points, scene points and pixels
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Q

P

P
P

P
P

Figure 4: 1-Dimensional family of possible configurations. Given the correspon-

dance between a pixel p and a scene point Q, there is a one dimensional family of possible

configurations for the position of the mirror point P along the projection corresponding

to p.
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Contributions and Document Outline

The contributions of this thesis are the following:

• In chapter 2, a specular surface reconstruction method in the spirit of space carving

methods will be presented. Rather than using photometric consistency, we use a

geometrical measure that represents the consistency of surface orientation.

• A method to compute a dense point cloud of a specular surface, using the reflection

of points from two planes is given in chapter 3. The points are all independent

from one another. The foundation of the method is very similar to that of generic

camera calibration.

These two methods allow a dense reconstruction of a specular surface, without assuming

surface continuity or smoothness, as usually the case in the state of the art.

An often overlooked but nevertheless essential practical problem in most specular

surface reconstruction technique is the obtention of calibrated scene points as seen from

the imaging devices (or conversely the pose of these imaging devices in a global reference

frame). The problem resides in the fact that cameras have a field of view in which it

is often difficult to incorporate the specular object and a calibration object or marker

points. The final contributions of this thesis, allowing more flexible setups in this case,

are:

• Practical and theoretical methods for obtaining the pose of a calibration object

when it is not in direct view of a pinhole camera, in chapter 4.
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1.1.
Specular Surfaces and Computer

Vision

Specular Surfaces and Computer

Vision

This chapter introduces the general concepts

of computer vision which will be used in the

rest of this thesis. It includes an introduction

to surface reflectance, projective geometry

and the commonly used model of a camera.

Then follows a state of the art of the most

relevant work concerning specular surfaces.



1.1 Image Formation

1.1.1 Light and Surfaces

The appearance of surfaces varies greatly from one surface to another, from one illumi-

nation condition to another, and from one point of view to another. These variations

must typically be taken into account by any computer vision algorithm, if it aims to

achieve at least some kind of robustness. Algorithms able to treat any kind of surface,

and/or under any illumination, and/or from any viewpoint have yet to be researched, as

for the meanwhile, even the most powerful ones apply to only a subset of all possible

appearances.

Whilst the study of light and the way it interacts with surfaces isn’t the central subject

of this thesis, the mere fact that we are concerned with specular surfaces justifies our

spending a little time exploring the subject. The object of this section is to formalize

the appearance of a surface patch when observed from a specific direction.

The distribution of light in space is called radiance. From [SP94], radiance is

the amount of energy travelling at some point in a specified direction,

per unit time, per unit area perpendicular to the direction of travel,

per unit solid angle.

φo

x

φi
y

n
dω

θi θo

Figure 1.1: Light reflectance geometry We place ourselves in the reference frame

aligned on the surface normal n. The orientation of x and y around n is arbitrary, but

is usually chosen as to be aligned with the world reference frame.

For our study, we are interested in the interaction of light when it hits the surface of

an object. The quantity that interests us is called irradiance, defined as

the amount of incident energy per unit time per unit surface.
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The irradiance at a surface point x originating from radiance Li(x, θi, φi) of differen-

tial solid angle dω is calculated as Li(x, θi, φi) cos(θi)dω, where cos(θi) is a foreshorten-

ing factor. The total energy incident at point x is therefore the integral of the irradiance

over the point’s hemisphere.

Irradiance and radiance are the quantities that we use to describe the interaction of

light with a surface. We first make a few assumptions concerning this surface:

• the surface does not emit any light

• the radiance exiting at point x is due only to the irradiance at point x, i.e. there

is no scattering of light under the surface of the object.

• the wavelength of incident light is not modified when interacting with the surface.

This allows us to ignore wavelengths in the following definitions.

The bidirectional reflectance distribution function, widely referred to as BRDF and noted

ρbrdf , is the most common model describing this interaction, and is defined as

the ratio of the radiance in the outgoing direction to the incoming

radiance.

and as such measures the fraction of light from a given incident direction which is

reflected to a given outgoing direction.

By denoting outgoing radiance as Lo(x, θo, φo), the BRDF at point x is therefore

ρbrdf (x, θi, φi, θo, φo) =
Lo(x, θo, φo)

Li(x, θi, φi) cos(θi)dω

Lambertian Surfaces

Most computer vision algorithms assume a Lambertian reflectance model for the surfaces

they analyse. In the Lambertian model, an incoming ray of light is equally reflected in all

directions by the surface, or in other words, the BRDF is a constant function. This leads

to a viewpoint independent model of appearance of the surface, which is very practical

for automated matching algorithms commonly used in computer vision: any given point

on a fixed Lambertian surface will have the same color and intensity, independently of

where it was seen from.

ρbrdf (φi, θi, φo, θo) =
ρd

π
where ρd is called diffuse reflectance or albedo.

Whereas this is the most commonly used surface appearance model in computer

vision algorithms, examples of surfaces that verify its constraints exactly are very rare,

if not impossible to find. This explains the fact that highlights are usually discarded by

computer vision algorithms, as they correspond to samples of the BRDF that are not

modeled by the Lambertian model.
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Figure 1.2: Lambertian BRDF For a given incident illumination, the observed bright-

ness of the surface is independent of the viewpoint.

Perfect Mirrors

Oppositely to Lambertian surfaces, the perfect mirror is a surface that reflects all in-

coming energy in the corresponding specular direction. Its BRDF is therefore 0 except if

the incoming and outgoing directions are symmetric with respect to the surface normal.

ρbrdf (φi, θi, φo, θo) = δ(cos θi − cos θo)δ(φi − (φo ± π)) (1.1)

where δ() represents a dirac function.

Examples of such surfaces are uncommon in typical setups and environments, but

the understanding of the geometry inherent to specular reflection is a prerequisite to

algorithms able to treat hybrid surfaces.

Hybrid Surfaces

The vast majority of surfaces are neither perfectly Lambertian nor perfect mirrors. Many

parametric models describing such BRDFs exist, some combining Lambertian reflectance

with a specular lobe, others also treating retro-reflection. Figure 1.3 shows some exam-

ples.

Computer vision algorithms able to treat surfaces with arbitrary BRDFs have yet to

be invented. An approach to this can be found in [MKZB01] which exploits Helmholtz

stereopsis in a very constrained setup.
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(a) Cook Torrance Specular Micro-

facet Model [CT82]

(b) He-Torrance Comprehensive

Analytic Model [HTFG91]

(c) Oren-Nayar Diffuse Microfacet

Model [ON95a]

(d) Phong Model [Pho75]

Figure 1.3: Parametric Reflectance Models Different parametric models proposed to

describe the interaction of light with surfaces.
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1.1.2 Geometric Constraints

Most of the concepts used in computer vision derive from the relation between 3D

objects viewed and 2D images we have of them. The nature of such a relation is based

on projective geometry, of which we will present the concepts that are required for this

thesis. This section is by no means exhaustive, as its content is not central to the goal

at hand. For a detailed reference, the reader is invited to refer to [HZ00],[Pol00].

Projective Geometry

A n-dimensional projective space Pn is composed of elements of size (n + 1) ex-

pressed in homogeneous coordinates. For example an element x is represented in Pn as

(x0, x1, . . . , xn), with the constraint that x 6= 0n+1. Two representations x and y of

Pn correspond to the same element if ∃λ 6= 0 ∈ R : x = λy, which we also denote by

x ∼ y.

We make no distinction between objects, points and vectors of Pn, as they are all

represented as a 0-dimensional element. The dual to such points are called hyperplanes,

and are (n−1)-dimensional subspaces of Pn. For example in P2 points and lines are dual,

as a line is defined by the joins of two points and a point is defined by the intersection

of two lines. In P3, points and planes are dual.

In Pn, a point x belongs to a hyperplane π iff.

πTx = 0

of which the dual is

xTπ = 0

An invertible linear mapping of Pn → Pn is called a projective transformation (also

referred to as a colineation or homography). It is represented by a (n + 1) × (n + 1)

matrix.

A point x is transformed by

x← Tx

and a hyperplane π by

π ← TTπ

A linear mapping of Pn → Pm with m < n is called a projection, and is represented

by an (m+1)×(n+1) matrix. For example, the typical task of a pinhole camera, mapping

a 3D scene to an image, is a projection of P3 → P2 which is therefore represented as a

3× 4 matrix.
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Points, lines, and planes

We now place ourselves in P3, the projective space that is used to describe objects in

3D. This section will describe the subsets of transformations inside this space, and the

representations of points, lines and planes. The elements of P3 of the form (x, y, z, 0) are

called points at infinity, and represent directions. As such in P3, parallel lines (i.e. with

same direction) join at infinity.

Projective transformations Projective transformations in P3 are represented by an

4× 4 invertible matrix with 15 degrees of freedom. They preserve colinearity, incidence,

conjugacy, and cross ratio. The cross ratio of four colinear points X1 . . .X4 defined as

Xi = X0 + λiX is

{X1,X2,X3,X4} =

(
λ1−λ3

λ1−λ4

)

(
λ2−λ3

λ2−λ4

)

Affine transformations The affine space A3 is a subspace of P3 defined as P3 minus

the points at infinity, or in other words:

A3 → P3 : (x, y, z)T → (x, y, z, 1)T

A consequence of this is that parallel lines never join in A3.

An affine transformation is a 12-degree of freedom projective transformation that

can be represented by the 4× 4 invertible matrix







a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1







Affine transformations of course also conserve conjugacy, incidence, collinearity and

cross ratio, but also have the property whereby points at infinity stay at infinity.

Euclidean transformations A subset of the affine transformations in P3 is denoted

euclidean transformation. It denotes the composition of a rotation R and a translation

t, and is represented by a 4× 4 invertible matrix with 6 degrees of freedom of the form

T =







R3×3 t3

0 0 0 1






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the inverse of this transformation is expressed as

T−1 =







RT
3×3 −RTt3

0 0 0 1







A euclidean transformation is also called a rigid displacement, and conserves lengths and

angles.

Points A point in 3D is a 3 degree of freedom vector of P3:

x ∼







x

y

z

t







In euclidean space, when x is scaled such that t = 1, ‖(x, y, z)T‖ is the distance from

the point to the origin.

Lines There are different representations of lines used in the computer vision com-

munity. We do not explicitly use lines in this thesis, and hence the subject will not be

discussed.

Planes A plane in 3D is the dual of a point, and is therefore also represented as a 3

degree of freedom vector

Π ∼







a

b

c

d







In euclidean space, when ‖(a, b, c)T‖ = 1, d is the distance from Π to the origin.

Cameras

This paragraph briefly describes the geometrical properties that we assume of a typical

image acquisition device. Unless otherwise stated, we will consider a camera as a very

general imaging system, i.e. as a mapping between a point in 3D and a specific line

passing through it. The task of a camera is to determine the properties of this 3D line

given the observation of the corresponding 3D point. Inversely, the task of a typical
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pinhole

image plane

principal axis

Figure 1.4: The human eye seen as a pinhole camera

geometrical computer vision algorithm is to compute information on the 3D point given

information about its corresponding lines.

While this definition of a camera is very general, it does not resemble any imaging

device we are used to encounter. Actually, the most common camera is the human eye,

modelled on figure 1.4. The vast majority of cameras in the more classical sense mimic

the behaviour of the human eye, in order to produce images that are visually appealing

to a human observer.

pinhole

image plane

Figure 1.5: The camera obscura is a box or a room with a hole in one wall.

Light from the exterior of the box can only enter the box through this hole,

thus hitting the opposite wall at a specific location, forming an upside down

image of the surroundings.

Man-made cameras were popularized during the Renaissance period by Brunelleschi,
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taking the form of the camera obscura (figure 1.5), and several famous painters are

known to have used the device to help their interpretation of objects and light. The

principal point

v0

u0

f

image plane

optical
center

v

z

y

x

u

Figure 1.6: The pinhole model

transposition of the camera obscura to a geometrical entity is described by the pinhole

model, whose representation and parameters are shown on figure 1.6. This type of

camera samples the light rays that pass through a unique point called the optical center,

and then hit the image plane, creating an image of the scene by either photochemically

activating the emulsion at the surface of the film in a traditional camera, or electrically

charging the sensors of a digital camera.

This type of camera can easily be modelled with a handful of parameters, which

greatly reduces the computational complexity of computer vision algorithms. Although

most handheld cameras produce distortions that are not accounted for in this model, it

is sufficiently accurate for most applications.

The pinhole camera performs a projection from P3 to P2. It is therefore defined by

a 3 × 4 projection matrix P such that a 3D point Q is projected onto a pixel of the

image plane q by

q ∼ PQ

While P can be given directly to describe such a projection, it is clearer to decompose

the resulting projection through the transformations between 4 reference frames, shown

on figure 1.7:

1. the world reference frameW, whose center and orientation can be fixed arbitrarily,

and usually corresponds to the reference frame of a calibration object

2. the camera frame C, whose origin is the center of projection of the camera, and

whose axes are aligned with the image plane

3. the image frame I centered on the principal point
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C

W

P

I

Figure 1.7: Reference frames involved in a camera projection

4. the pixel frame P which corresponds to the coordinates in pixels of the points in

the image frame.

The transformations between these frames are the following:

• a euclidean transformation from the world reference coordinate system to the

reference coordinate system where the camera is defined







R3×3 t3

0 0 0 1







• a projection from the camera coordinate system to the image plane coordinate

system




f 0 0 0

0 f 0 0

0 0 1 0





• an affine transformation inside the image plane from image frame to pixel frame

(we deliberately ignore the case of non-orthogonal image axes)





ku 0 u0

0 kv v0

0 0 1




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Z

f Y

y

Figure 1.8: Projection in 2 dimensions. From Thales’ law we have f/Z = y/Y , thus

the projection of point (Y, Z) on the image plane at f is y = fY/Z.

The parameters used in the above transformations are the following:

• the focal length f measures the orthogonal distance from the optical center to

the image plane. As seen in 2 dimensions on figure 1.8, a point with coordinates

(Y, Z) is projected on point y of the image plane with the relation y = fY/Z

• the principal point (u0, v0), which represents the coordinates in the image plane of

the orthogonal projection of the optical center. The principal point also defines the

principal direction which is the half line starting at the optical center and passing

through the principal point.

• ku and kv represent the inverse size of the pixels in the image plane for each of

the principal directions.

The complete projection matrix is therefore:

P =





ku 0 u0

0 kv v0

0 0 1









f 0 0 0

0 f 0 0

0 0 1 0











R3×3 t3

0 0 0 1







The camera projection and affine transform in the image plane are usually concate-

nated in a 3× 4 matrix K called calibration matrix :

K =





kuf 0 u0 0

0 kvf v0 0

0 0 1 0




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A common representation is to represent the focal length f in pixel units, by noting

αu = kuf and αv = kvf :

K =





αu 0 u0 0

0 αv v0 0

0 0 1 0





The calibration matrix K obtained thus represents the 4-degree of freedom projection

function of a camera. However, in most recent cameras, the image plane is composed

of square pixels, therefore reducing the degrees of liberty to 3, as in this case ku = kv

(or αu = αv).

Given a complete projection matrix P obtained by an arbitrary calibration method,

K,R and t can be extracted by QR decomposition [Tsa86].

Law of Reflection

The geometric constraints that we will use to derive geometrical information from ob-

servations are straightforward. To begin, we suppose, without lack of generality, that

light traveling in the air can be modeled as a ray (or ideal narrow beam), and therefore

can be represented by a line segment. Having assumed this, we can apply the classical

laws of optics, more specifically in our case the law of reflection: when an incident ray

of light hits a non-scattering (i.e. specular) surface it is reflected symmetrically to the

normal of the surface. This formulation is equivalent to the BRDF definition of equation

1.1. Inversely, if we know the incident and reflected rays at a point of a specular surface,

we can determine the orientation of the surface at that point as the bisector of these

two rays.

θi θr

rr
ri

n

Figure 1.9: Law of reflection The angle θi between the incident ray ri and the surface

normal n is equal to the angle θr between the surface normal n and the reflected ray rr.

The incident ray, the surface normal, and the reflected ray are coplanar.

Mathematically, these constraints are expressed by the following:
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• Given an incident ray ri reflected by a surface of normal n, the reflected ray rr is

calculated as

rr = ri − 2n(nTri)

• Given an incident ray ri and a reflected ray rr, which we suppose normalized, the

surface normal n that links these two rays by a reflection is

n =
−ri + rr

‖−ri + rr‖

1.2 Previous Work

Specularities have interested researchers in the field of computer vision since the eighties,

in most cases in order to be able to detect and ignore them in general algorithms.

However [KvD89] investigated the geometry induced by highlights by describing their

appearance under viewer motion. [Bla85] and [BB88] study the disparity of specular

highlights in a stereo setup. [ZGB89] proves the existence of a 1-degree family of

surface curves corresponding to a tracked highlight. [Nay88] uses two specular spheres

to emulate a stereo setup requiring less calibration.

In the rest of this section, we will summarize the prior work that focused on the goal

of the reconstruction of purely specular surfaces. Two broad classes of methods exist,

the first one directly extracting geometric properties of the surface from observations,

and the second one using some kind of integration around seed points. Finally, we will

briefly introduce related work where specular surfaces are the main object of the study,

but where the techniques used are far away from the computer vision domain.

1.2.1 Geometrical Approaches

Oren and Nayar [ON95b] investigate surface profile recovery from the tracking of un-

known scene features seen through the reflection by a smooth curved surface. The setup

requires a fully calibrated camera along with matching and tracking of reflected scene

features. They show that in the 2-dimensional case, where camera motion, scene feature

and corresponding virtual feature are coplanar, the 2D profile can be recovered uniquely

from the tracking of 2 correspondences, with the constraint that the paths of the images

of the virtual features overlap to some extent. The concept cannot easily be extended

to the 3 dimensional case, as this requires some additional constraint which is obtained

by using occluding contours, and as such is equivalent to having a strong prior on the

surface itself.

An industrial application of specular surfaces in a very constrained scenario is given

in [NSWS90], where Nayar et al. describe the implementation of a structured highlight
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inspection system, applied to the quality control of soldered joints. It does not use

virtual features, but highlights produced by an array of light emitting diodes. They

assume distant light and observer, and recover surface orientation in the form of extended

gaussian images (EGI), that can then be easily compared to reference ones to determine

the acceptability of the measured joint.

Zheng et al. [ZM98] study the highlights produced by two circular light sources on a

specular object placed on a turntable. In the absence of self-occlusion, this setup ensures

that every surface point produces two specular highlights whose locations are used to

extract surface position and orientation. Unfortunately, the method lacks the preciseness

required and only produces rough models.

In a stereoscopic setup, Knauer et al. [KLKH05] use a similar constraint as in chapter

2 in order to perform, at each pixel, a one dimensional minimization on the depth estimate

of a specular surface.

Finally, Savarese et al. [SP02],[SCP04] detail the mathematical constraints that arise

when viewing the reflection of a calibrated pattern of intersecting lines in a specular

surface that is represented by its special Monge form [CG00]. Although very elegant,

their method requires image measurements such as local curvature and scale, and as

such only allows the reconstruction of a handful of points.

The methods we propose in chapters 2 and 3 both also belong to these geometric

approaches.

1.2.2 Integration-based Methods

When relatively dense correspondences between image features and scene features can

be obtained, an often used technique is to integrate around seed points, using parametric

surface models, or just points and orientations. For a given depth estimate, the corre-

sponding surface normal is easily obtained, therefore giving an estimate of the depth of

neighboring points, when the surface is supposed smooth. The advantage of such meth-

ods is that usually only a single image is required for the reconstruction. Inconveniences

include the need of a-priori initialization, and a tendency of error accumulation over the

iterations.

A characteristic implementation of integration methods can be found in [Sch96], in

a method applied to the reconstruction of the surface of the ocean. Assuming distant

illumination and a known radiance map of the illumination, camera pixels are matched

with their incoming direction by intensity, and points on the surface are reconstructed

by propagating around initial seed points without further assumptions.

In [PC96], Park et al. apply a similar principle but with the use of a laser beam

coupled with a retro-reflective surrounding half dome, for the measurement of smooth

specular surfaces. Starting from a known seed point, the orientation of the laser beam
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and the position on the dome where the reflected beam is retro-reflected, they determine

surrounding surface positions and orientations. The major inconveniences are the need

for initialization, and more importantly the fact that the approximations on the surface

geometry are accumulated over the iterations, which result in very imprecise measures

far away from the seed point.

In [HBKM96], Halstead et al. detail a device used for the sub-micronic reconstruction

of the human cornea, with the ambition of detecting irregularities to be clinically treated.

Starting from a known seed point, they iteratively integrate along the computed surface

normals to fit a spline surface to the cornea’s true shape. The high level of accuracy they

obtain is due to the highly constrained scenario in which they operate, where a spline

surface closely resembles the target surface. The initialization they require is obtained

by other means, but is clearly capital to the method’s correctness. A similar method is

proposed by [SNG03] to assist in the design of generic catadioptric mirrors.

In the same spirit, Tarini et al. [TLGS03] obtain the model of a smooth specular

surface from the dense matching of image points with scene points on a target plane.

The family of possible surfaces leading to the same point correspondences forms a 1

degree of freedom family, dependent on the initial depth chosen for the starting seed

point. They argue that minimizing the auto-coherence of the recovered surface with

respect to this initial depth converges to the true initial depth. The auto-coherence of a

set of points and normals that should belong to a smooth surface represents the fact that

neighboring points should have surface orientations that are coherent with one another.

Given an initial point on the surface, different depths for another non-neighboring point

are obtained by integrating along different possible paths between the two points. The

auto-coherence is then quantified by the variance of the depth of the second point.

Solem et al. [SH04] treat the problem in a variational framework, in the very con-

strained scenario of a smooth surface and known contour. Their method applies for

extending known structure to incorporate specular parts, for example a car window ex-

tended from the model of the bodywork. Supposing known correspondences, they fit a

spline surface that minimizes the integral of the gaussian curvature over the surface. In

[SsH04] they formalize the problem in a level set framework.

In a rather different setup, a reconstruction technique uses images acquired with

polarization filters. Effectively, when an unpolarized ray of light is reflected by a specular

surface, it becomes partially polarized in a direction orthogonal to the plane formed by

the incident ray and the surface normal at the point of reflection. The phase image

that is acquired through a polarization filter therefore encodes this plane of reflection,

from which the true surface normal must be extracted. Rahmann et al. [RC01] use

a second polarization image, therefore uniquely determining surface orientation as the

intersection of two planes. A shape from shading technique is then used to recover the

surface location for a given orientation.
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1.2.3 A Word on Human Perception

The perception and interpretation by the human visual system of shape through specular

reflection only (i.e. without additional cues such as contours or matte shading) is an open

subject. In a founding paper, Blake et al. [BB90] show that the human visual system can

interpret the depth information carried by specular highlights. In [SFFP04], Savarese et

al. conclude that the human visual system is only slightly better than chance at finding

the shape of mirror surface, when using the reflection of a regular grid. Flemming et

al. in [FTA04] arrive to exactly the opposite conclusion, when using the reflection of real

world environments instead of regular grids. Norman et al. [NTO04] also notice that

the most favorable case for shape recognition is in the presence of specular highlights.

They argue that the compression of the apparent texture that occurs in areas of high

curvature is an accurate source of information concerning surface orientation.

1.2.4 Metrology

The inspection of specular surfaces is a common task in industrial environments. The

most common example is found in the automotive industry, for the quality control of

the bodyworks and windshields, but other niche applications could include the inspec-

tion of reflectors in optical instrumentation, or the finish in jewelry. Traditionally, this

inspection is accomplished using contact probes, which is a time consuming task that is

not applicable to mass production. Therefore, optical based techniques are beginning to

emerge, with the objective of rendering the process more automated and rapid, enough

not to slow down the troughput of the manufacturing production lines.

Laser Scanners

Obtaining 3D models of surfaces, sometimes also called reverse-engineering, with a high

level of accuracy and a quantifiable error is traditionally done through the use of a laser

scanner. These systems allow a quick and precise measurement, and are available for

large scale applications such as architectural measurements, to much smaller ones, such

as the inspection of small manufactured objects. Whereas the prices and availability

of such systems tend to make them affordable for businesses and institutions, they are

limited to opaque surfaces, as at least part of the energy released by the laser must be

captured by the associated captor, which is in a fixed position. This is not the case

for surfaces where the Lambertian component of the BRDF is negligible, such as mirror

surfaces, because all the energy is reflected in the mirror direction, instead of leaving a

characteristic dot on the surface. For these types of surfaces, the acquisition of a model

with a laser scanner is only possible by artificially adding a Lambertian component to
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the surface, usually by painting it or sprinkling it with chalk. Obviously, this solution is

not very flexible, and even impossible for certain applications.

Recently, hybrid laser scanners have been constructed and commercialized for the

specific application of specular surface inspection [BOIK01]: several parallel plates are

attached in front of the CCD captor ensuring that the observed incident light arrives

from a known unique direction. The major disadvantage is that an acquisition is much

more time consuming than for traditional surfaces, as the captor must be swept through

multiple positions for a each point. Furthermore, the system requires that the captor be

at known positions at each instant, adding a possible source of error to the measurement.

Deflectometry

Another system, more anecdotal in the field of this thesis, but interesting because specif-

ically tailored for reflective surfaces, is called phase measuring deflectometry [KKH04].

The results obtained are not a 3D model of the specular surface, but the derivative of

a curvature map as seen from a single viewpoint. As such the method is used for the

inspection of the micro-structure of the finish of a surface, as irregularities of the order

of the micron can be detected.
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2.2.
Volumetric Space Carving ApproachVolumetric Space Carving Approach

This chapter presents a specular surface re-

construction technique in the spririt of the

space carving framework of Seitz and Dyer

[SD97] and Kutulakos and Seitz [KS00].

The original framework supposes photomet-

ric invariance of a given surface patch with

respect to observation location, a property

which is not respected by specular surfaces.

The method we propose relies on geometric

invariance, a property which is verified when-

ever the object is static throughout the dif-

ferent images we have of it. Supposing the

same constraints as the original space carv-

ing framework, plus matches between cam-

era pixels and their source scene points, we

show how surface orientation can serve as a

consistency cue.

Work published in [BS03]



2.1 Space Carving Algorithms

A considerable amount of work has been carried out in the computer vision community

over the past years in a reconstruction technique referred to as space carving. In the

spirit of these space carving approaches, we present a novel consistency measure that

extends the field of applicable surfaces to incorporate purely specular objects.

In a first section, we will recall space carving reconstruction techniques in the general

case, and then present our extension to purely specular surfaces, along with results on real

objects. We deliberately omit all the aspects inherent to visibility and self occlusion, as

in our case they are an implementation issue, and can be incorporated straightforwardly.

2.1.1 Comparison with traditional geometric approaches

In some sense, space carving algorithms work in reverse order compared to more tradi-

tional geometric reconstruction techniques. Figure 2.1 illustrates a traditional surface

reconstruction framework, where image primitives are first identified and matched in the

input images, and different geometric constraints are then applied to these extracted

primitives so as to compute geometric properties of the corresponding surface element.

For example, in a stereo-vision setup, pixels onto which an identical surface feature is

projected are extracted, and the location of this feature is computed by intersecting the

3D lines formed by the camera projection centers and the corresponding image pixels.

Acquire Images and Calibration

Extract Corresponding Features in Relevant Images

Constraints

Obtain Geometric Properties

of the Corresponding Surface Feature

Figure 2.1: Workflow of a typical surface reconstruction technique

On the other hand, space carving techniques tackle the problem from the opposite

direction, as illustrated in figure 2.2. Rather than directly identifying surface features

in the images, and using some kind of constraint to determine geometric properties,

space carving algorithms work by elimination, sweeping possible surface configurations
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and verifying if a given configuration is compatible with the information available at

hand, i.e. the corresponding pixel values.

Acquire Images and Calibration

Define and Discretize the Bounding Box of Object Location

Test each location in the Bounding Box

The observations we have

of this location are

consistent with one another

The observations we have

of this location are not

consistent with one another

Keep the location Discard the location

Figure 2.2: Workflow of a space carving reconstruction technique

2.1.2 Summary

As summarized in table 2.1.2, space carving techniques have a different field of applica-

tion than traditional stereo methods. Their flexibility and generality allow artificial and

natural scenes to be easily reconstructed, but their lack of precision in real situations

forbids its use where such accuracy is primordial.
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Algorithm 1 Space carving algorithm. (simplified version, without visibility handling)

1: aquire images from various locations

2: for each camera do

3: compute internal calibration

4: compute pose estimation

5: eventually compute photometric calibration

6: end for

7: Determine bounding box and sampling of the object location

8: for each voxel in bounding box do

9: for each camera seeing the voxel do

10: project the voxel in the camera image plane

11: determine the color of the corresponding pixel(s)

12: end for

13: Keep or discard the voxel depending on the different colors we have of it

14: end for

Requirements

• Camera Calibration There are no supposed constraints concerning the placement

or the internal properties of the cameras used for the acquisition of the object

images. The only requirement is that there must be a known projection function

between a point in 3D space and its corresponding pixels in the input images. As

such, camera calibration (internal and external) is supposed to be known, and must

usually be performed with traditional image based calibration techniques (that

usually require feature matching), or must be fully known a priori, for example by

using a robotic manipulator, or a precalibrated environment.

This calibration constraint is in fact very limiting towards obtaining a flexible recon-

struction method, as all the pose parameters of the cameras must be expressed in a

unique global coordinate system. Obtaining such a global calibration does impose

some positioning constraints, for example by requiring certain features to be visible

by several cameras. Chapter 4 will give insights as to more flexible techniques for

obtaining this calibration.

• Illumination For the moment, we have presented the space carving framework

as a technique that discards object locations that are not photo-consistent with

one another. This very general denomination actually stands for a comparison of

pixel intensities, as this is the primary data that is given by the pixel values of

the different input images. The theoretical framework supposes that given these

observed intensities (along with viewpoint locations), we have a mean of deciding
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if they correspond to a sampling of a possible surface reflectance. In practice, a

given 3D location is discarded or kept depending on the variance of the color of

the corresponding pixels. This in practice imposes that the pixel intensities of a

surface point be constant over the input images, which in turn implies that:

– The illumination of the object must be constant throughout the acquisition.

This constraint is obvious, as it is clear that changing the color, intensity or

incoming direction of the illumination of a point will change the appearance

of that point whatever location it is viewed from.

– Given fixed illumination conditions, the appearance of a surface point must

not depend on where this point is viewed from. This implies in most cases

that specularities must be discarded or ignored, either manually or by im-

posing constraints on the acquisition so that these specularities are mini-

mized. [YPW03] relaxes this constraint in the simplified case where imaged

color is supposed to consist of an intrinsic color (the color of the surface)

added to a varying amount of illuminant color. A voxel then satisfies the

photo-consistency test if its associated colors form a line passing through the

illuminant color.

– The cameras used for the acquisition should also be color calibrated, which is

to say that a ray of light of given intensity and wavelength must be mapped

to the same pixel values by the different sensors. In practice this imposes that

their response function in each color band must be known beforehand, or at

least accounted for, or that all the images be taken by the same acquisition

device.

Accuracy Concerning the results that are obtained, space carving methods are lim-

ited to the configurations that have been tested. Given the discrete nature of these

possible configurations, such algorithms have a trade-off between the accuracy of the

reconstructed model, and the execution time necessary to test all possible configurations.

In practice, the programmer must discretize the volume around the object in finite vol-

ume elements called voxels. The accuracy of the reconstructed model is directly related

to the size chosen for these voxels, and the execution time is directly related to their

number. As such, dense voxelic discretizations will produce sharp results, but at the

cost of a high execution time and memory consumption, and inversely, coarse discretiza-

tions will produce results requiring low execution times, but at the cost of an imprecise

reconstruction.

On the other hand, traditional constraint methods produce results that are not dis-

crete (up to computer precision, which we will here assume as infinite). As the recon-

structed model is obtained from the numerical solutions of the equations that define
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the different constraints, the possible configurations are neither discrete, nor limited in

accuracy.

Initialization In order to compute geometric constraints, traditional reconstruction

algorithms suppose that surface features have been matched in the input images. Given

the image of a particular point in one input image, some technique has to be used to

compare pixel intensities in the other images to determine which pixel corresponds to

the same surface feature.

The easiest way to obtain correct matches is to locate salient features, and manually

identify these features in all input images. In case the input images are calibrated,

epipolar geometry can be applied to reduce the possible matching locations to a specific

line in the image, rather than search the entire image. Usually only a few surface points

are sufficiently salient to be robustly extracted and matched in all input images, which

in turn induces that only a few points of the surface can be easily reconstructed.

Space carving techniques do not require these matches, as they work directly with

the pixel values of the input images, and therefore are better suited for unsupervised

reconstructions. On the other hand, another kind of initialization has to be given: as

these algorithms sweep possible object locations, some bounds to these possible locations

have to be determined, of which the automation is a non trivial problem.

Space Carving Traditional

Obtained Results

- Accuracy limited by sam-

pling the reconstruction

volume

- Location of reconstructed

features fixed inside user

defined bounding box

+ Accurate geometric prop-

erties

+ No limit in object location

Initialization

+ Only pixel information in

input images

- Need to specify a bounding-

box of object location

- Supplied matches of corre-

sponding object features

Table 2.1: Summary of advantages and inconveniences of space carving methods com-

pared to typical geometric ones.

Implications The constraints that have emerged in the previous paragraphs clearly

prohibit the use of space carving with specular surfaces, as the reflection of the sur-
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rounding scene on such a surface clearly violates the photo consistency measure used to

discern real surface features from empty space. In the following sections we will present

an extension to the space carving framework that allows models to be reconstructed from

the reflection of a known environment, and that is based on the geometric consistency

of a surface feature rather than its photometric consistency.

2.2 Application to Specular Surfaces

Can the space carving framework be applied to specular surfaces, and if so, at what

cost?

Clearly photoconsistency at a given object location is not an option, as specular

surfaces violate the basic principle that an object’s appearance is independent of where

it is viewed from: the intensity of this location recorded in the different images depends

on the object’s environment and the point of view, rather than on the object itself.

What we can however assert is that the structure of a rigid object is independent of

where it was viewed from. More specifically a given point on the surface has a specific

orientation and position, and these properties are intrinsic to the object, not to the

conditions of its observation. The method we present in this chapter derives from this

simple fact.

Substituting geometric consistency to photometric consistency has a strong implica-

tion on the ease of use of the space carving approach: whereas obtaining pixel intensities

from the input images is straightforward, given the images, obtaining geometrical infor-

mation for a given pixel brings us back to the problem of feature matching, along with

its inherent complexity.

The primary advantage that remains is the generality of the approach: the problem

of specifically matching features throughout all the input images is a tedious and error

prone task even in the general case, and becomes very arduous when these features are

seen through the reflection by a specular surface, as they are deformed according to the

geometry of that surface. By using a space carving approach, we do not require that

a match be available in every input image, but instead use only the matches we are

able to determine. As such the algorithm treats all available data, without having to

explicitly account for the samples where only a subset of all measures could be used, due

for example to the impossibility of determining a feature match in a very deformed area.

2.2.1 Geometric Constraints

Let us suppose the setup of a typical space carving framework, except that the object

to reconstruct is a mirror rather than Lambertian surface.
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Requirements

Applying the space carving framework to specular surfaces requires different constraints

to those in the Lambertian case. For a given point in space to test, we will be computing

the consistency of its geometric properties rather than its photometric ones. This means

that we must have some way of computing these geometric properties, which in practice

brings us back to some of the constraints of traditional geometric algorithms, namely

feature matching, this time between scene features and their reflection in the images,

rather than between images. On the other hand, the constant illumination constraint is

of course lifted, along with the photometric calibration. In addition to the requirement

of internally and externally calibrated cameras, we therefore also suppose having a means

of knowing the 3D coordinates of the scene points reflected by the specular surface onto

the camera image planes.

We summarize the requirements and setup:

• A set of fully calibrated cameras (internal calibration and pose), looking at the

specular surface.

• Calibrated scene points around the specular surface.

• Matching between camera pixels and their source scene points.

Information given by one view

Let us consider a voxel in the chosen bounding box around the specular surface to

reconstruct. As the cameras are completely calibrated, we are able to project this voxel

onto the a point of the image plane of any input camera, by using this camera’s projection

matrix. Considering one of the input cameras, the pixel this voxel projects onto can be

of three natures:

• the pixel does not belong to the image plane, i.e. the current voxel is not seen by

the camera

• the pixel belongs to the image plane, but we were not able to find a match between

this pixel and its origin in the scene around the specular surface.

• the pixel belongs to the image plane and we were able to compute the 3D location

of the point that was reflected by the specular surface onto this pixel.

Of course, the first two situations do not allow any geometric property to be determined,

and in this case we ignore the contribution of the given camera. On the other hand, the

last case allows us to compute the orientation, i.e. the normal, of the specular surface at

the given voxel, as shown in figure 2.3, as the bisector of the ray going from the voxel to
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the 3D scene point, and the ray going from the voxel to the camera’s projection center.

Oc

p

θr
θi

Q

P

Figure 2.3: Computing surface orientation. P is the voxel currently being tested.

The given match (p,Q) can only be produced if the normal at P is the bisector of the

rays formed by P and Oc on the one hand, and P and Q on the other. The orientation

of the surface associated to the voxel is therefore this bisector.

If we focus our attention camera-wise instead of voxel-wise, the information given

by a match, represented in figure 2.4, is the discretization of the 1-dimensional family

of possible surface configurations.

Multiple views

Let us suppose that the voxelic discretization of the bounding box around the specular

surface is infinitely precise, and that there is no noise either in the projection functions

of the cameras, or the matching of the camera pixels with their corresponding scene

points. It is clear that for a voxel that belongs to the specular surface, all the normals

that will be accumulated for all the input cameras will be identical to each other, as they

will all correspond to the true orientation of the specular surface at that voxel. Figure

2.5 illustrates this property.
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specular surface

z

calibrated scene points

y

x

voxelized 3D space

possi
ble surfac

e posit
ions

n

P

reference coordinate system

Oc

Q

p

Figure 2.4: Required Setup. We here represent one of the input cameras. Given a

match between a scene point Q and a pixel p of this camera, the information obtained

is the one dimensional family of possiblesurface posititions with associated surface ori-

entations, here discretized in a voxelic environment.
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Q

Oc

O′
c

Q′
1

Q′
2 p′

1

p′
2

pP1
P2

Figure 2.5: The information available from multiple matches at a specular point.

Two possible surface positions P1 and P2, and orientations are represented along the

red projection ray, given the match between pixel p and point Q. Given a second

view of these possible surface positions, we obtain the following information: The blue

normal calculated at P2 given the match between p′
2 and Q′

2 in the second camera is

inconsistent to the normal obtained with the first camera. The green normal calculated

at P1 given the match between p′
1 and Q′

1 in the second camera is identical to the

normal obtained with the first camera. As such, the only possible solution for the depth

and orientation of the specular surface at pixel p is given by P1. Note that to ease

representation the scene points Q, Q′
1 and Q′

2 are located in the field of view of the

cameras, but that this need not be the case.
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We have therefore derived a consistency test for a given voxel to test: a voxel is

discarded if the normals we have accumulated for it differ from one another, or marked

as belonging to the specular surface if all its normals are identical.

2.2.2 Consistency Measures

In practice however the voxelic discretization is finite, and the calibration of the cameras,

the estimation of the scene point coordinates, and the matching of camera pixels with

their corresponding scene point are all a source of noise and error. This leads to the fact

that even for a voxel that intersects the specular surface, and as such should be marked

as correct, the normals that we have accumulated will not be strictly identical, which

means that some measure of normal consistency must be elaborated.

Surface Normal Variance

We employ a classical variance measure on the computed surface normals in order to

quantify the disparity of the surface orientation at a given voxel. We first compute the

mean surface normal n as

n =

n∑

i=1

ni

n

with n the number of successfully computed normals for the given voxel. n is then

normalized. The quantified disparity measure is then computed as the variance of the

angles between each computed surface normal ni and the mean normal n. As the surface

normals have a norm of 1, the angle between ni and n is computed as the inverse cosine

of the dot product of ni and n:

(̂ni,n) = arccos(ni.n)

The variance of the normals at a voxel P is therefore finally calculated as

σ2(P) =

n∑

i=1

(̂ni,n)
2

n

Heuristic Disparity Measures

Using only variance as a disparity measure is in practice insufficiently discriminant in

the case where the cameras tend to be placed in the same direction with respect to the

specular surface, as is usually the case due to matching and calibration constraints. As

well as normal disparity, depth information must be taken into account, as also noted
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by [TLGS03], and illustrated in figure 2.6: indeed, whatever the match, at infinity the

corresponding surface normal is equal to the inverse direction of the line of sight.

scene points

camera 2camera 1

specular surface

Figure 2.6: Disparity variation due to camera distance. Two equally incorrect voxels

have an associated normal disparity that depends on their distance to the cameras. A

threshold-based decision will tend to keep incorrect voxels if they are further away from

the camera viewpoints.

This problem of calculated variance decreasing with distance could be overcome

by a special reprojection error, when supposing that the scene points from which the

matches were obtained originate from planar targets. For each voxel, given the mean

surface orientation calculated by equation 2.2.2, the corresponding pixel could be back

projected and reflected, thus computing its intersection with the corresponding target

plane. The disparity of the given voxel would then be some function of the distance

between each reprojected point, as shown on figure 2.7. We did not further investigate

this solution, as it does not fit in the space carving framework.

Instead, we implemented a disparity measure that heuristically privileges voxels as

they get closer to the camera by dividing the disparity obtained in (2.2.2) by the mean

angle formed by the scene points, the voxel, and the different camera viewpoints. As

the distance from the voxel to the cameras increases this mean angle tends to decrease,
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reprojection error

input match

true surface

camera

p

false surface
P′

Q
Q′

target plane

P

Figure 2.7: Reprojection error. Given an input match between p and Q obtained

through the reflection at point P, a point Q′ on the target plane is obtained by ”back-

reflecting” p through P′. The reprojection error for the voxel at P′ can then be obtained

by the distance between Q and Q′.

thus favoring the disparity measure for closer voxels.

disparity(P) =
nσ2(P)

∑n

i=1
Ôci,Qi

Extracting the final voxels

Calculating the disparity measure for each voxel of the discretization around the specular

object results in a probability density function, from which we can extract a probable

specular surface by applying a threshold. Choosing a value for this threshold greatly

influences the quality and quantity of the extracted voxels, and is a task that is difficult

to automatize throughout different setups.

An answer to this problem, which was also proposed in [YPW03], is to traverse

([AW87]) the voxels belonging to a projection ray, and keep the voxel which has the

minimal surface orientation disparity. Of course, we only select a voxel if it satisfies

minimal quality constraints, namely if its variance is obtained from a sufficient number

of matches, and is under a specified tolerance. This optimization ensures that every

match produces one and only one voxel in the final reconstruction (provided minimal

quality is attained).
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2.3 Experiments and Results

We validated the proposed method using two different approaches. Firstly, using com-

puter generated raytraced images, we show results on the reconstruction of a specular

sphere.We do not apply the optimization of the previous paragraph, in order to give a

view of the normal disparity over the whole bounding volume. Secondly, we apply the

method on a real reconstruction of a shiny spoon obtained from images of an off-the-

shelf camera. For both of these experimentations, we only reconstruct a patch of the

entire surface, due to the fact that the cameras and scene points are located on one

”side” of the object.

2.3.1 Computer generated images

The results shown on figures 2.9 to 2.13 were obtained using 40 ray-traced [Pov96]

images of a specular sphere. A black on white checkerboard target was reflected by

the sphere onto the image plane of the cameras (see figure 2.8), and a Harris corner

detector [HS88] was used to extract the corners in the obtained images, thus creating

some noise in the measures. The extracted points were then analytically matched with

their corresponding scene points on the target, using the known geometry of the sphere.

Figure 2.8: Raytraced sphere One of the 40 computer generated images used for the

reconstruction of a specular sphere.

We have tested our reconstruction method with different thresholds, as shown in
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table 2.2, using the heuristic disparity measure seen above. The quality of the output

depends on the minimum number of normals a voxel must be associated with before

the disparity measure can be trusted. With less than 4 normals per voxel, a number of

outliers can appear. With at least 8 normals, the extracted voxels are never further than

two voxel from the original surface.

strict medium laxist

4
363

93.4%

969

95.3%

3103

94.45%

8
161

100%

589

100%

1982

100%

Table 2.2: Results obtained using strict, medium and laxist thresholds on normal dispar-

ity. The rows represent the minimum number of normals associated to a voxel before

this voxel can be considered. The columns represent the threshold that was applied to

normal disparity. For each combination, the first number is the number of accepted

voxels, and the second one is the percentage of these voxels that are either intersecting

the specular surface or less than two voxels away from an intersecting voxel.
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Figure 2.9: synthetic reconstruction. 161 voxels extracted on the sphere’s surface

using a strict tolerance on normal disparity. 158 dark (blue) colored voxels intersect the

specular surface, while 3 light (yellow) colored ones are adjacent to an intersecting voxel.

No further voxels have been extracted.

Figure 2.10: synthetic reconstruction. Cut through a reconstruction of 973 voxels.
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Figure 2.11: synthetic reconstruction. 589 voxels extracted on the sphere’s surface,

using a medium tolerance on normal disparity. 573 dark (blue) colored voxels intersect

the specular surface, while 16 light (yellow) colored ones are adjacent to an intersecting

voxel.No further voxels have been extracted.

Figure 2.12: synthetic reconstruction. 1982 voxels extracted on the sphere’s surface,

using a broad tolerance on normal disparity. 1659 dark (blue) colored voxels intersect

the specular surface, while 323 light (yellow) colored ones are adjacent to an intersecting

voxel. Nearly all intersecting voxels were extracted, while no voxels that were further to

the surface have appeared.
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Figure 2.13: synthetic reconstruction. 4162 extracted voxels, using a very laxist

threshold on normal disparity. 1934 dark (blue) colored voxels intersect the specular

surface, while 1765 light colored ones are adjacent to an intersecting voxel. An additional

463 voxels (in orange and red) were more distant, however never being further than 5

voxels to the correct surface.
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2.3.2 Real-world setup

We tested our method on the reconstruction of a part of a specular spoon made of low

end polished metal, thus exhibiting consequent surface normal variation on some parts

and substantial blurring (see figure 2.14, a little left from the center for example).

Figure 2.14: One of the 56 images used for reconstruction. Around 2 out of 3 colored

circles were automatically extracted for this image.

Experimental Setup

Figure 2.15 shows the experimental setup. A color coded [MNY92] printed target was

attached to an Olympus C2500 digital camera taking images of the specular spoon

from 56 different viewpoints, while a stereo rig was used to obtain the pose of the

target + camera system for every viewpoint. The unique color code allowed us to

automatically match a pixel in the image corresponding to a circle, to the point on the

target that was reflected onto this pixel, by using the color of the circle and of its 4

surrounding neighbours. The pose of the camera and the printed target was recovered

with the method presented in chapter 4 page 100. We then extracted 1890 voxels

corresponding to the specular surface out of a 100x100x100 cube of voxels, each of

these voxels being 1 mm3. The reconstructed patch spans about 10 square centimeters
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of the spoon. The presented reconstruction is almost certainly incorrect to some extent,

as the extracted scene points were not very precise, camera distortion was not modelled,

and the computed poses were probably not perfect. Still, the results do show that the

method is applicable in real setups.

stereo rig

specular spoon

printed target camera

Figure 2.15: Experimental setup. The printed target is reflected by the specular sphere

onto the image plane of the camera. The system’s pose is determined by the stereo rig

(see chapter 4 page 100).

Results

Reconstruction results for a patch of the specular spoon are shown in figures 2.16 and

2.17. What these images do not clearly show but can be noticed in the 3D model is that

there are no holes greater than 1-2 voxels on the patch, and that the extracted thickness

is around 1-3 voxels. The extracted voxels are qualitatively correct, and quantitatively

correct as far as what we could measure.

2.4 Discussion

The method we have presented extends the space carving framework to incorporate

objects with a sharp specular component1. It requires the same setup, with the additional

constraint of having known correspondences between image pixels and corresponding

1This method has since been extended to refractive surfaces, namely the measurement of the surface

of flowing water, in [MN05]
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Figure 2.16: Front view of the reconstructed voxels.

Figure 2.17: Side view of the reconstructed voxels. The spoon’s curvature is clearly

visible in one dimension. Views from other directions show curvature is correct on all

the reconstructed surface.

calibrated scene points. Results on simulated data and experiments on real specular

objects have shown that satisfactory reconstructions can be obtained. Compared to the

state of the art, the primary advantage is that we do not assume surface smoothness2, and

therefore do not deviate from the true surface like integration based mathods tend to do.

However the required setup does leave a rather bitter aftertaste: whatever the elegance

of using geometric rather than photometric invariance, the method can be seen as having

the inconveniences of both traditional and space carving approaches. The inconveniences

of space carving approaches for matte surfaces, namely the need for initializing the

bounding box and the lack of precision due to sampling are largely counterbalanced by

the fact that no explicit matching has to be performed, which is not the case here.

2More precisely, the surface should be smooth but only at the scale of a voxel. Discontinuities and

sharp angles when this is not the case will only cause the corresponding voxels to be eliminated, without

offsetting the complete reconstruction.
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This, coupled with the fact that camera calibration and pose must be known, limits the

applicability of the method to very constrained scenarios, as this information cannot be

trivially obtained due to the constraints imposed by the fields of view and focusing of the

cameras. The consequence is we are left in a rather uncomfortable situation where the

results produced are of insufficient quality for industrial or precise measurements, and

the complexity of the setup prohibits the use of the method in real world applications.

The next chapter will present a triangulation method that relaxes some of these

constraints, by limiting the number of input views to two, and using an immobile camera,

thus requiring internal calibration but not pose.
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3.3.
General Specular Surface

Triangulation

General Specular Surface

Triangulation

This chapter presents a very simple method

for obtaining a dense reconstruction of an

arbitrary specular surface as viewed from a

unique camera viewpoint. The surface is

reconstructed point by point, relaxing the

traditional constraints of surface continuity

and/or smoothness. The geometrical con-

straints that allow this are obtained by view-

ing the reflection in the specular object of a

planar target placed at two distinct but ar-

bitrary locations. The method bares many

ressemblances with the calibration of gen-

eral (i.e. non-central) cameras.

Work published in [BSG06] (also indepen-

dently published in [KS05])



3.1 Approach

We describe a method recovering points of a specular surface, independently from one

another. We assume an internally calibrated pinhole camera viewing the reflection of a

planar target, and a dense matching of the camera pixels with the points on the target.

While the camera is rigidly attached to the specular surface, we acquire images of the

reflection of the target placed at two different locations. The foundation of our method

is closely related to the work on general (i.e. non central) cameras, as the reconstruction

of the specular surface from the images of a calibrated camera is equivalent to the

calibration of a non-central catadioptric system consisting of a central camera and an

arbitrary mirror.

T

T′

Oc

p

Q
Q′

P

Figure 3.1: Reconstruction Approach. Matching of image pixels with their source in

the targets and estimating two plane poses is sufficient to reconstruct the surface.

Suppose a calibrated pinhole camera located at Oc = 03 observing the reflection in

an unknown specular surface of two scene points Qi and Q′
i. This constraint is sufficient

to uniquely determine the depth of the specular surface at pi, namely as the intersection

of the lines formed by the camera’s projection center and pi on the one hand, and Q′
i

and Q′
i on the other.
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If we consider the ( camera + specular surface ) system as a general camera, finding

two points Qi and Q′
i for each pi, and therefore obtaining a reconstruction of the

surface, is equivalent to calibrating this camera, as this is usually done as a one-to-

one mapping of image pixels with lines in 3D space. In [GN01] or [SR04], such a

calibration is achieved by using points on calibration planes: pixels in the image are

matched with their 2D correspondent in the target planes, then the only step necessary

in order to obtain 3D coordinates of these points is to estimate the pose of the planes

in the camera reference coordinate system. Figure 3.1 summarizes our reconstruction

method for 3 point correspondences: reconstructing the specular surface sums down

to matching camera pixels with their source in the target planes, estimating the two

euclidean transformation matrices T and T′ that map points from the target reference

coordinate system to the camera one, and triangulating.

3.2 Discussion

The very simple method described here allows points of a specular surface to be recon-

structed, independently from one another, therefore without having to assume continuity

or smoothness. Actually, whereas the reconstruction in itself is straightforward, the re-

quirements aren’t as obvious. A method for matching pixels with their source in the

target planes can be found in appendix A. Computing the poses of the target planes in

the reference frame of the camera is also a practical problem, of which insights can be

found in chapter 4.

The constraint we use for computing mirror point locations is actually independent

of specular reflection. It is only based on the fact that light arriving at a surface point

is reflected at that point, and not scattered. We could theoretically imagine any surface

that locally modifies the direction of travel of light, as shown on figure 3.2, such as a

surface with off-specular reflection, or more practically with one level of refraction, and

obtain reconstructions by applying the method unmodified. Given the fact that in our

case we know that we are treating specular reflection, the surface normal is at the same

time calculated, as the bisector of the two intersecting lines.

Note that with real setups and thus with noise in the poses of the target planes and

in the matching of the pixels, the lines formed by the projection center and the pixel on

the one hand, and the two target points on the other will not exactly intersect. In this

case the intersection will be defined as the median point of the shortest segment that

connects the two lines.

We could also imagine using additional target planes: in this case, the second line

should be defined as the best fit to all the matches.

In practice, we also perform a global non-linear optimization of the poses T and T′
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Q

Q′

direction of

specular reflection

Figure 3.2: Illustration of other possible and impossible configurations. The green

ray illustrates a theoretical configuration where the method could be applied unmodified,

in the event of a surface with (very) off-specular reflection. In red, a non-applicable

configuration for example if the object is transparent, as the light path consists of three

rays instead of two (this case is formalized in [KS05]).

of the target planes, before the triangulation. The cost function to be minimized is

the distance between matching lines in 3D space which we minimize using a Levenberg

Marquardt algorithm:

cost(T, T′) =
∑

i∈{matches}

dist2((Oc,pi), (TQi, T
′Q′

i))

3.3 Results

We present results when using the method in 3 different scenarios. The first setup

consisted in the reconstruction of curved mirrors, the second of only perfectly planar

mirrors, and the third of a car windshield, in an ”out of lab” environment.

3.3.1 Results on curved mirrors

Our test setup (shown on figure 3.3) consisted of a 3 Megapixel digital camera mounted

on a tripod. In the field of view of this camera we placed two wide angle rear view mirrors

with a cheap coating, an ice-cream cup, and the platter of a computer hard drive. An

LCD flat panel display was used to display structured light codes (see appendix A), and

was placed in two distinct positions in such a manner that the patterns it displayed were

viewed by the camera as reflected by our mirror objects.
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Figure 3.3: Experimental Setup. Two of the images used for the reconstruction. No-

tice the 3 curved mirrors (an ice-cream cup and two small wide-angle rear-view mirrors),

the planar hard drive platter, and a direct view of the target plane (the LCD panel), in

the upper part of the image. The pattern displayed on the LCD panel corresponds to

the structured light approach presented in appendix A.

Having no ground truth results, we evaluated the correctness of the method by fitting

a plane to the part of the reconstruction we knew was planar, i.e. the hard drive platter

(linear least squares fitting, without outlier removal). In the reconstruction shown on

figure 3.4, over 98% of the computed points were less than 0.2 mm away from the surface,

and 64% less than 0.1 mm. The approximate diameter of the reconstructed part of the

platter was 80 mm, resulting in a maximum 0.3% relative error in the reconstruction.

The histogram of these distances is shown in figure 3.5.
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Figure 3.4: Results. Reconstructed surface viewed from two locations. The model

contains over 525 000 independent points. Note the planarity of the reconstructed hard

drive platter in the left image. Only a few points could be computed on the ice-cream

cup, as its surface covered by the exploitable Gray codes was limited. The two small rear-

view mirrors (one with circular, the other with rectangular based shape) were completely

reconstructed (apart from a non specular dent in the circular one).
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Figure 3.5: Point-plane distance. Histogram of the distance in millimeters of each

point to the linear least squares fitted plane, after global optimization. The mean distance

from the points to the plane is 0.086mm.
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3.3.2 Results on perfectly planar mirrors

The accuracy of the reconstruction also depends on the quality of the pixel matching.

Indeed, when experimenting with purely scenes containing only piecewise planar surfaces,

as shown on figure 3.6, where the sub-pixel matching was more accurate because the

structured light was not distorted, the distances to the fitted planes dropped down to

99.9% of the computed points less than 0.1 mm away from the surface, and 88% less

than 0.05 mm. This is becaus the matches contribute to the optimization of the poses

of the target plane, and thus to the overall quality of the surface reconstruction. The

histogram of these distances can be seen in figure 3.7.

Figure 3.6: Experimental setup. This picture shows a view from our experimental

setup. In the field of view of the camera, we see 4 planar mirrors, actually hard drive

platters. At the top of the image, we have a direct view of the actual planar target. The

curved mirror in the center of the image isn’t used in this setup.
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Figure 3.7: Point-plane distance. Histogram of the distance in millimeters of each

point to the linear least squares fitted plane, without globally optimizing plane poses.The

mean distance from the points to the planes is 0.026mm. In this setup the optimization

did not significantly modify the poses of the target planes, producing seemingly identical

results.
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3.3.3 Results on a car windshield

The final experiment we present here was on a large scale object, namely a car windshield.

We wish to thank the Techlab company for having let us use their equipment and

provided us with the windshield for this experiment. The results presented here are

mostly illustrative of the applicability of the method in an industrial environment, as

it was here applied without modification. The setup, shown on figure 3.8, consisted

of a tripod mounted camera, and a video-projector projecting the structured light on a

board placed behind the windshield. Qualitatively, the reconstruction seemed correct,

but quantitative results cannot be given here for the following reasons:

• The distortions produced by the projector were not modelled or taken into account.

• The patterns were projected on a non rigid board, that wasn’t perfectly planar.

• The windshield itself isn’t rigid, therefore its shape depends on its orientation and

the contact points with its support. The CAD model we had of the windshield

corresponded to another configuration.

Figure 3.8: Windshield reconstruction setup. Reconstruction of a car windshield,

which is placed such that we have a view of its concave side, in order to obtain the

reconstruction of the whole part. The target plane we use here consists of a white board

onto which we projected structured light from a video-projector.

3.4 Conclusion

We have presented a novel method that reconstructs a specular surface from two (or

more) views. The proposed setup consists in a single camera, which is not necessarily
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Figure 3.9: Real World Reconstruction. Reconstruction of a car windshield, the color

encoding the distance to the best-fit plane. The method allowed us to easily obtain

a 800 000 + point model using a classical video projector, on a large scale reflective

surface. The hole in the middle is due to a non-specular patch on the surface.

a pinhole, viewing the reflection through the specular surface of known points from two

calibration planes. A point on the specular surface is straightforwardly reconstructed

by noting that the projection ray passing through the corresponding pixel, and the line

formed by the two points on the target planes, must and can only intersect at the surface

location. Compared to other reconstruction methods, we attain a high level of accuracy,

without having the need to suppose surface continuity or regularity. We believe this

method could easily be implemented in an industrial surface inspection application, at

least to provide an accurate initialization for integration based reconstruction methods,

probably the only purely vision based techniques able to detect surface micro-structure.

Results showing the planarity of the reconstructed surfaces on areas we knew were planar

were presented, along with the reconstruction of a large scale object in a real world setup.

Whereas the method in itself is obvious, the setup it supposes does pose practical

problems. A point of the specular surface corresponding to a particular pixel can only

be determined if the pixel was matched in both the target planes, thus supposing that

we have a dense matching between pixels and target points, and not only extract a

finite number of features from a printed target for example. A solution to this, using

an LCD monitor and Gray codes is presented in appendix A, provides sufficient accuracy

at the cost of having to display multiple images on the LCD monitor, thus requiring a

rather long aquisition time. Furthermore, the poses of the target planes is supposed to

be known. One can of course arrange for a setup where the target planes are in direct

view of the camera, and then use classical plane based pose estimation techniques, but

this implies that the camera does not focus only on the specular surface, thus reducing

possible resolution. To this avail, the next chapter presents practical and theoretical

methods for obtaining the pose of an object when it is not in direct view of a camera.
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4.4.
Indirect Pose EstimationIndirect Pose Estimation

In this chapter, we discuss the obtention of

the pose of a camera with respect to a cali-

bration object, in the case where the object

isn’t in the field of view of the camera. We

first give relatively direct approaches, using

either known mirrors or additional imaging

devices, and then present a method using

the reflection of the calibration object in 3

unknown planar mirrors. In this case we re-

cover the pose of these 3 mirrors and the

pose of the calibration object. Finally we

present the theory for recovering the pose of

two of such objects through the reflection of

an arbitrary specular object, in a setup com-

parable to the previous chapter.

Work published in [BS03, BSG06, SB06]



4.1 Introduction

In this chapter, we discuss the obtention of the pose of a camera with respect to an

object, in the case where the object isn’t in the field of view of the camera. In the field

of specular surface reconstruction from images, such situations are extremely common

as:

1. The pose of the camera with respect to the reflected scene points it is viewing is

a prerequisite for most if not all specular surface reconstruction algorithms.

2. The position of the camera with respect to the specular surface is strongly con-

strained by the fact that the reflection of the scene points must be seen on the part

of the surface we wish to reconstruct. It can therefore be impractical or impossible

to place a calibration object in a visible location.

3. In general the camera must be set to full zoom in order to obtain sufficient detail

of the reflected scene points, decreasing the field of view.

All these parameters imply that it is often impractical and sometimes impossible to obtain

a direct view of a calibration pattern at the same time as its reflection in the object to

reconstruct. To overcome these limitations, we present some practical methods for

obtaining the poses of such calibration patterns. We then investigate pose estimation

using reflection of a calibration object in a mirror that we know is planar placed at

different positions. Finally we introduce the geometric constraints that can be used for

planar pose estimation through the reflection of an unknown specular surface.

4.2 Geometric Prerequisites

We will frequently be using the reflection of an object in a planar mirror. The geometry

involved in these types of transformations is outlined here.

4.2.1 Reflections in planes

Consider a plane Π = (nT, d)
T

in 3D space, i.e. consisting of points satisfying the

equation n1X + n2Y + n3Z + d = 0. In the following, we will always suppose that the

plane’s normal vector n is of unit norm. The reflection in Π can be represented by the

following transformation matrix:

X =

(
I− 2nnT −2dn

0T 1

)
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Let us denote the upper left 3× 3 matrix of X by X̄. It is an orthogonal matrix, with

determinant −1 (whereas a rotation matrix has determinant +1). Further, it has +1 as

double eigenvalue and −1 as single eigenvalue. The plane normal n is an eigenvector

of X̄ to the eigenvalue −1. Note also that as a double reflection is the identity, XX = I

and therefore X−1 = X.

4.2.2 Reflection in two planes

Consider successive reflections in two planes, as shown in figure 4.1. This is a fixed-axis

rotation, with the intersection line of the two planes as rotation axis: the transformation

preserves the intersection line of the two planes point-by-point, and thus is a fixed-axis

rotation. Note that the rotation axis is orthogonal to the normals of both planes.

X1

2θ

θ

X2

Π1

Π2

Figure 4.1: Reflection in two planes. Top view (along the axis of intersection of the

two planes) of the reflection through planes Π1 then Π2, forming an angle θ. This is

equivalent to a rotation around the axis of intersection of the two planes, of angle 2θ.

Further, the rotation angle is twice the angle between the two planes. This is also

easy to see: let the transformation be the sequence X2X1 of reflections in two planes.

Let us apply this transformation to the point at infinity (nT
1 , 0)

T
, i.e. the normal direction

of the first plane. This is a fixed point of X1, hence the transformation gives the point’s

reflection in X2. The angle between the original point at infinity, and the transformed

one, i.e. the fixed-axis rotation angle, is thus twice the angle between the original point at

infinity and the second reflection plane. Hence, as said above, the sequence of reflections

in two planes is a fixed-axis rotation, whose angle is twice the angle between the planes.

97



4.3 Direct Methods

The goal at hand is the computation of the coordinates of points we see reflected in an

unknown specular surface. Of course, the ideal and easiest solution is to assure that the

points in question are in direct view of the concerned camera. In this case, any pose

estimation technique can be utilised. A potential setup is shown on figure 4.2.

Figure 4.2: Direct view of a calibration pattern In this setup, the camera has a direct

view of the calibration target (the LCD monitor) and of its reflection in the objects we

wish to reconstruct.

Of course this is an ideal setup, and in most cases the position and orientation of

the camera, which is fixed with respect to the specular object, produces a field of view

that is insufficient to incorporate a calibration object. In fact, even in the setup shown

on figure 4.2, the occupancy in the image of the target plane is close to being too small

to produce stable results. Additionally, without the constraint of having a direct view of

the target, we could have placed the camera in a way allowing better resolution at the

specular objects, which corresponds to the goal at hand.

Another solution is to use a planar mirror that reflects the calibration object onto

the camera, as illustrated in figure 4.3. Once again, using any calibration method, we

obtain the pose of the reflected calibration object. What is left to determine is the pose

of the planar mirror itself, which can be obtained in different ways:

• If there are known markers on the surface of the mirror, the pose of the mirror

itself can be obtained from a plane-based pose estimation technique.
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object
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Figure 4.3: Pose obtained by reflection by a known plane. From the view of

the known markers on the mirror plane, the pose Pp is computed. From the view of

the reflection of the calibration object through the mirror plane, the virtual pose Pi is

computed. The pose P of the camera is then obtained by reflecting Pi through the now

known planar mirror.
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• If the mirror is a disc, such as a hard drive platter, one can extract and parametrize

the two ellipses in the image plane corresponding to the outer and inner rim, and

use the method of [FC02] to compute the pose of the plane containing the platter.

Once the pose of the planar mirror is determined, the pose of the calibration object is

trivially obtained by the method of section 4.2.1.

4.3.1 Pose alignment

In this section, we suppose that a planar target containing known reference points is

rigidly attached to a pinhole camera, and that we wish to obtain the 3D coordinates of

these reference points in the coordinate system of the pinhole camera. This is the setup

that we used in chapter 2, a picture of which can be found on page 81. The solution we

propose is an alternate application of the classical hand-eye problem [HD95], or more

recently [CI01] in the case of cameras with identical projection centers.

Setup

The main device used is the combination of the digital camera and the target plane

attached to it, whose reflection in the specular object is what the camera sees. For each

image acquired using this device, we need to know the (relative) pose of both, camera

and target plane. Since they are rigidly linked, the problem reduces to determining the

pose of either one of them for the current image, and the relative pose between them,

that is fixed.

We thus chose to use a fixed stereo system, placed behind the specular object and

that observes the camera + target device (see figures 2.15 and 4.4). The stereo system

gives us the pose of the target plane for each acquisition position (the method of [Stu00]

was used), and was calibrated (intrinsics and relative pose) using directly the images

of the target plane acquired during the experiments (using the methods described in

[Zha00, SM99, Stu00]).

Extraction of the relative pose

The heart of the problem is the estimation of the relative position of the camera and

the target plane. We solve this problem by letting the camera view a calibration object

from a dozen different positions, while ensuring that the fixed target plane is in the field

of view of the stereo rig. For each of the acquired images, we get:

• the pose Ti of the stereo rig with respect to the target plane fixed to the camera.
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camera

U

Ti
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Figure 4.4: The setup of the proposed approach. A planar target is rigidly fixed to a

camera. By displacing the camera (along with the target), a series of images are taken,

in each one of which the relative pose Ti between the stereo rig and the planar target,

and the relative pose Vi between the camera and the calibration object, are computed

by classical pose estimation techniques. The object of this section is to compute the

relative pose U between the camera and the planar target.
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• the pose Vi of the camera with respect to the calibration object (the position and

orientation of the calibration object is of course unknown in the reference frame

of the stereo rig)

We use a modified hand-eye formulation, that states that the pose of the calibration

object in the reference frame of the stereo rig is fixed and independent of the camera

location:

∀(i, j) , ViUTi = VjUTj (4.1)

We start by estimating the rotational part RU of U from the rotational parts RT and

RV of T and V:

∀(i, j) , RViRURTi = RVjRURTj

which we rewrite as

∀(i, j) , RT
VjRViRU − RURTjR

T
Ti = 03×3

which we solve linearly for the coefficients of RU. Due to noise, the estimated RU is of

course not an exact rotation matrix, so we adjust it using the method of appendix B.

The translational part of U is then also estimated linearly, after reinjecting the estimated

RU in equation 4.1.

4.3.2 Discussion

The approaches proposed so far all allow poses to be estimated. Nevertheless, we would

prefer to obtain such results without the inherent inconveniences:

• need of planar mirror with known (or at least directly computable) pose, such as

the marked mirror or hard drive platter.

• need of an additional acquisition device, namely the stereo rig

The following sections propose two methods for relaxing these constraints.

102



4.4 Pose Through Reflection by 3 (or more) Unknown

Planes

4.4.1 Setup

We suppose a pinhole camera observing a calibration object through the reflection of a

mirror we know is planar, as shown for example in figure 4.6. As the calibration object

is by nature of known structure, we also suppose having a mean of computing the pose

of the camera with respect to this object, when it is in direct view. For the rest of this

section, we suppose without lack of generality that the calibration object is a planar

target, as this is the setup with which we experimented.

We acquire images by holding a planar mirror in front of the camera in different

unknown positions, such that the target plane’s1 reflection is seen by the camera. The

matching approach of appendix A is used to get dense correspondances between the

target plane and each image. The course of the proposed approach is to estimate

the poses of the three mirror planes such that the reflected poses computed from the

(reflected) views of the calibration object all correspond to a unique camera position.

We now describe how to solve the relative pose between camera and target plane,

from three or more such images, or one image of three or more such mirrors.

4.4.2 Pose extraction

In the following, we adopt a global reference frame such that the target plane is at Z = 0,

and first carry out a pose estimation for each image, as if the image were a direct view

of the target plane. To be precise, we modify the method of [Stu00] by exchanging

the pose’s rotation matrix with a reflection matrix (we ensure its determinant equals

−1). This is actually not really necessary, but correctly models that the imaging process

here includes a reflection. Like in the standard case, there are two solutions for the

pose; we choose the one for which the optical center has a positive Z coordinate (which

corresponds to being in front of the target plane).

This procedure gives us the pose of the virtual camera that would be produced by

reflecting the real camera in the planar mirror, cf. figure 4.5. If we knew the pose

of the planar mirror, we could of course immediately recover the camera’s true pose,

as follows. Let the recovered pose of the virtual camera for image i be given via the

projection matrix:

Pv
i ∼ Si

(
I| − ti

)

where Si is a reflection matrix (a rotation matrix multiplied by −1), and let the associated

1actually an LCD monitor
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Target plane

(screen with

coded pattern)
Camera

Planar mirror

Virtual (reflected)

camera

Figure 4.5: Reflected pose. The estimated pose of a reflected plane is equivalent to

its pose viewed from a virtual reflected camera.

pose of the planar mirror be represented by homogeneous coordinates

Πi ∼

(
ni

di

)

where we distinguish the plane’s normal vector ni (of unit norm), and its distance di

from the origin.

The true camera’s pose can be recovered by multiplying Pv
i with the transformation

modeling the reflection in the plane Πi:

Pi ∼ Pv
i

(
I− 2nin

T
i −2dini

0T 1

)

(4.2)

∼ Si

(
I− 2nin

T
i | − ti − 2dini

)

We now have to address the question how to recover the true camera’s pose without

knowing the mirror planes Πi, knowing that with the correct mirror positions Πi, the

camera poses Pi computed according to equation 4.2, have to be equal to one another:

∀(i, j)Pi ∼ Pj

To this avail, we will estimate the mirror positions Πi that satisfy this constraint in two

steps: first by estimating their orientations ni, and then their distances di. From the

estimated Πi, we then recover the pose P of the target plane as the best fit of the Pi

obtained from equation 4.2.
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Due to det
(
I− 2nin

T
i

)
= det Si = −1, we can safely eliminate the scale ambiguity

in the equation Pi ∼ Pj , and obtain element-wise equalities for the rotational and

translational parts of the poses respectively:

∀i, j : Si

(
I− 2nin

T
i

)
= Sj

(
I− 2njn

T
j

)
(4.3)

∀i, j : Si (ti + 2dini) = Sj (tj + 2djnj) (4.4)

Based on these equations, we first show how to compute the mirror plane normals

ni, then their positions di.

Computing mirror plane normals ni.

Let Xi = I− 2nin
T
i , which is of course a symmetric matrix. From (4.3), we get:

Xi = ST
i Sj

︸︷︷︸

Rij

Xj (4.5)

Furthermore, Xj is a reflection, i.e. XjXj = I, therefore:

Rij = XiXj (4.6)

Let aij be a vector orthogonal to ni and nj . We therefore have:

Rijaij = XiXjaij

=
(
I− 2nin

T
i

) (
I− 2njn

T
j

)
aij

=
(
I− 2nin

T
i

)
aij

= aij

which implies that aij is an eigenvector to the eigenvalue 1 of Rij, i.e. that aij corresponds

to the rotation axis of Rij.

We now have the means to compute all mirror normals ni, provided at least 3 mirrors

are used.

1. Compute the pose equation (4.2) of all virtual cameras, as described above.

2. For all pairs of mirrors (i, j), compute Rij , as per equation (4.5). Compute their

eigenvectors to the eigenvalue +1, i.e. vectors aij .

3. For every mirror i, stack all aT
ij (respectively aT

ki) in a matrix Ai of size (n−1)×3

(where n is the number of mirrors). Without noise, ni is orthogonal to all aij . In

the presence of noise, we perform a least squares estimation and compute ni such

that it minimizes ‖Aini‖
2 by computing ni as the unit eigenvector to the smallest

eigenvalue of Ai
TAi.
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Computing mirror positions di.

Whereas the ni are estimated one by one, we can compute the least squares solution

for all the di at once with the linear equation system composed of one equation (4.4)

per pair of mirrors. The system’s design matrix is of size 3n(n− 1)× n and very sparse

(two non-zero coefficients per row).

Computing the true camera’s pose.

We now know all mirror planes Πi, and can compute the camera pose from any one of

them, according to equation (4.2). In practice, we do this computation for every mirror,

and then “average” the resulting rotation matrices and position vectors that represent

camera pose. We then apply a bundle adjustment style procedure for simultaneously

optimizing the pose of the camera and the planar mirrors. The cost function minimized

here is the reprojection error of target points, projected in the camera after reflection in

the mirrors. As for the rotation component, we initialize it by computing

A =
∑

i

Si

(
I− 2nin

T
i

)

then perform an SVD of A: A = UΣVT, and finally compute R = UVT (possibly followed

by multiplying R with −1, to ensure it has a determinant equal to +1).

4.4.3 Experimental results

We used the following setup for the validation. A pinhole camera was fixed on a tripod in

such a manner that its field of view contained a planar target (actually an LCD monitor)

and 4 planar mirrors each reflecting an arbitrary part of the planar mirror. An image

acquired with this setup is shown on figure 4.6.

The experimental validation was conducted by three different means. The first

method was to pick 3 out of the 4 planar mirrors and compare the poses of the planar

target when obtained with different combinations of the 3 mirrors picked. The results of

this method are detailed in table 4.1. The second method was to estimate the pose of

the planar target using all 4 planar mirrors (in a least squares sense), and compare the

obtained pose with the pose obtained using the direct view of the planar target. These

results are shown on table 4.2. Finally, the third method was to reconstruct the mirror

planes with the method of chapter 3 using the indirect poses (in this case, the planar

target was moved to two locations, and its pose was estimated for each case). Figure

4.7 shows the histogram of the distances of the reconstructed points with respect to the

linear least squares fitted planes. Before performing the global optimization of chapter

3, all of the reconstructed points lay well under a millimeter of the fitted planes.
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combination of

planes

computed pose (euclidean transformation

matrix)

1,2,3







−1.6782E
−02 9.8792E

−01 1.5408E
−01 −1.5507E

+02

8.8204E
−01 −5.7945E

−02 4.6759E
−01 −2.8415E

+02

4.7087E
−01 1.4375E

−01 −8.7041E
−01 6.5173E

+02

0 0 0 1







2,3,4







−3.2672E
−02 9.8890E

−01 1.4492E
−01 −1.5316E

+02

8.9348E
−01 −3.6084E

−02 4.4765E
−01 −2.8253E

+02

4.4791E
−01 1.4411E

−01 −8.8239E
−01 6.3801E

+02

0 0 0 1







1,2,4







−1.4064E
−01 9.7812E

−01 1.5328E
−01 −1.1583E

+02

8.8450E
−01 5.4566E

−02 4.6333E
−01 −2.9611E

+02

4.4483E
−01 2.0074E

−01 −8.7283E
−01 6.4607E

+02

0 0 0 1







1,3,4







−5.4342E
−02 9.8685E

−01 1.5221E
−01 −1.4389E

+02

8.7280E
−01 −2.7101E

−02 4.8732E
−01 −2.8732E

+02

4.8504E
−01 1.5933E

−01 −8.5986E
−01 6.6749E

+02

0 0 0 1







Table 4.1: Pose comparisons Matrices of the poses estimated using the proposed

technique, for the same target plane, but obtained using different combinations of 3 out

of the 4 planar mirrors. The translational component is expressed in millimeters. The

maximal deviation from the mean translation is 2.26 centimeters. From the orientation

of the target planes we can extract from the rotational component, we observe that the

maximal deviation from the mean orientation is 1.65 degrees, and the variance of the

orientations is 1.8.
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computed pose (euclidean transformation matrix)

direct view







−6.6965E
−02 9.8568E

−01 1.5479E
−01 −1.3865E

+02

8.8707E
−01 −1.8041E

−02 4.9155E
−01 −2.881E

+02

4.8723E
−01 1.6769E

−01 −8.5698E
−01 6.5771E

+02

0 0 0 1







indirect estima-

tion







−3.6843E
−02 9.8691E

−01 1.5701E
−01 −1.4854E

+02

8.8623E
−01 −4.0335E

−02 4.6149E
−01 −2.8986E

+02

4.6179E
−01 1.5615E

−01 −8.7314E
−01 6.4973E

+02

0 0 0 1







indirect + direct

estimation







−4.4175E
−02 9.9141E

−01 1.2313E
−01 −1.4506E

+02

8.8521E
−01 −1.8285E

−02 4.6482E
−01 −2.9145E

+02

4.6308E
−01 1.2953E

−01 −8.7680E
−01 6.6324E

+02

0 0 0 1







Table 4.2: Pose comparisons Matrices of the poses estimated. The first row shows

the result using the proposed technique with 4 planar mirrors, the second row shows

the pose obtained with the direct view of the planar target, and the third row using

both the planar mirrors and the direct view. The translational component is expressed

in millimeters, therefore representing a relative error of 1.00 centimeters with respect

to the direct pose. From the orientation of the target plane we can extract from the

rotational component, the relative error between both estimation corresponds to 2.07

degrees.
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Figure 4.6: Experimental setup This picture shows a view from our experimental setup.

In the field of view of the camera, we see 4 planar mirrors, actually hard drive platters.

At the top of the image, we have a direct view of the actual planar target. The curved

mirror in the center of the image isn’t used in this setup.
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Figure 4.7: Histogram of distances to fitted planes Distance of the points recon-

structed with the method of chapter 3 with respect to their linear least squared fitted

plane (4 planes in total). Note that in this case we do not perform the global opti-

mization of the proposed method, in order to show the quality of the estimated indirect

poses. The abscissa unit represents millimeters, the ordinate represents the number of

reconstructed points.
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4.5 Pose estimation through the reflection of an un-

known specular surface

We present the geometrical constraints that arise when an internally calibrated camera

observes a target plane through the reflection by an unknown general specular surface.

We show that the pose of such a target plane can be obtained from two views, when

the camera is static and the target planes are placed at two different positions. These

constraints can be expressed in a structure analogous to the trifocal tensor for perspective

cameras, from which we present a method to linearly extract the poses of the target

planes. We then discuss the degenerate configurations and the stability of the linear

extraction with respect to noise.

4.5.1 Setup

Our setup is identical to that of chapter 3. Additionally, we suppose an internally

calibrated central camera, i.e. a camera whose projection rays all pass through a unique

point in space, the optical center. The foundation of the tensor is very simple: it relies

on the fact that the light path from a feature point to the camera sensor, seen through

the reflection of a mirror, is the union of two 3D lines, that intersect on the surface

of the mirror, as seen on figure 4.8. The segment passing through the optical sensor

and the pixel is defined by the internal camera calibration. The segment incident to the

mirror point is defined by the the intersection points on the planar targets. In chapter

3, we saw that given the pose of these two target planes, we are able to reconstruct

points of the specular surface. In this section, by using the known local coordinates of

corresponding points in the target planes, we study the recovery of the two poses of the

target planes with respect to the camera’s optical center. We show that by constraining

the two 3D lines to intersect, there exists a trilinear tensor in terms of the parameters

of the plane poses, and that these terms can be uniquely extracted given 26 matches

between camera pixels and their corresponding feature points in the target planes.

The summary of the requirements follows:

• An internally calibrated central camera.

• A planar target placed at two different unknown locations such that its reflection

in the specular surface is seen by the camera.

• Matching between camera pixels and the coordinates of their origin in the target

plane frames (see appendix A).
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P

Figure 4.8: Image Formation. A pixel in the camera image corresponds to a known 3D

line. Image based techniques allow us to determine the coordinates of its corresponding

features Q and Q′ for both planar targets. The goal at hand is to determine the two

transformations T and T′.

4.5.2 Tensor Formation

We consider a simple central camera with a known projection function, and whose

projection center Oc = (0, 0, 0, 1)T is without loss of generality the origin of our reference

coordinate system. The type of projection of the camera is not relevant, apart from the

fact that it must be central and that we must have a means to compute projection rays

given pixel coordinates.

Let us consider a pixel p = (p1, p2, p3)
T, which can be back projected to a point

d = (d1, d2, d3, d4)
T on the corresponding projection ray by using the camera’s inverse

projection function (any point on the ray can be taken here). As we have supposed a

known matching between pixels and points on the target planes, we know that p is the

image of the reflection of the point Q = (Q1, Q2, 0, Q4)
T in the first target plane, and

of the point Q′ = (Q′
1, Q

′
2, 0, Q

′
4)

T in the second one (expressed in coordinates local to

the planes). Due to the way the image is formed, we know that the specular surface

lies at the intersection of the line spanned by Q on the first target plane and Q′ on the

112



second, and the line passing by the optical center and the corresponding pixel, as shown

on figure 4.8.

Let R and t = (t1, t2, t3)
T (resp. R′ and t′) be the rotation matrix and translation

vector of the transformation T from the first (resp. second, T′) target plane reference

coordinate system to the camera reference coordinate system:

T =

(
R t

0T 1

)

, T′ =

(
R′ t′

0T 1

)

Constraining the 3D lines (Oc,d) and (TQ, T′Q′) to intersect can be expressed as a

coplanarity constraint between Oc, d, TQ, and T′Q′, which algebraically corresponds

to: ∣
∣
∣
∣
∣
∣
∣
∣

0

0

0

1

d1

d2

d3

d4

TQ T′Q′

∣
∣
∣
∣
∣
∣
∣
∣

= 0 (4.7)

after noting

q =





Q1

Q2

Q4



 ,q′ =





Q′
1

Q′
2

Q′
4





this simplifies to (R denotes the first two columns of R):

∣
∣
∣
∣
∣
∣

d1

d2

d3

(
R3×2 t

)
q

(
R′

3×2 t′
)
q′

∣
∣
∣
∣
∣
∣

= 0 (4.8)

We can factor out the terms of d, q and q′ and rewrite equation 4.8 as a trilinear

constraint: ∑

i,j,k=1..3

diqjq
′
kTijk = 0 (4.9)

The trilinear tensor Tijk only depends on the pose parameters R, R′, t and t′ as explained

in the following section. By using 26 or more point correspondences, a linear least squares

solution to the estimation of the Tijk of equation 4.9 can be found up to scale by SVD,

in terms of di, qj and q′k (see table 4.3).

4.5.3 Extraction of (R, t) and (R′, t′)

The tensor does not know about rotations or translations, so they have to be extracted

from the solution. We denote the i-th column of R by ri, the first two columns of R

by R, and the matrix representing the cross product by vector x by [x]×. The following
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constraints are obtained by rearranging the equations of table 4.3, and show that the

parameters of the poses are in terms of cross-products of the computed tensor (up to

scale):





T131 T132
T231 T232
T331 T332



 ∼ [t]×R′





T113 T123
T213 T223
T313 T323



 ∼ −[t′]×R





T111
T211
T311



 ∼ r1 × r′1





T112
T212
T312



 ∼ r1 × r′2





T121
T221
T321



 ∼ r2 × r′1





T122
T222
T322



 ∼ r2 × r′2





T133
T233
T333



 ∼ t× t′
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The Rotational Component From the preceding constraints, we obtain:

r1 ∼





T111
T211
T311



×





T112
T212
T312





r2 ∼





T121
T221
T321



×





T122
T222
T322





r′1 ∼





T111
T211
T311



×





T121
T221
T321





r′2 ∼





T112
T212
T312



×





T122
T222
T322





Here, the columns of R and R′ are obtained up to scale, as we only obtain their direction

given by a cross product. The unknown scale can however be recovered up to sign, as

the columns of R and R′ have to be of norm 1 by construction. r3 (resp. r′3) is then

obtained by cross product of r1 and r2 (resp. r′1 and r′2).

There is only one sign ambiguity, that can be explained geometrically: the symmetric

poses with respect to the camera’s optical center are evidently a correct solution to the

intersection constraint, and can be easily eliminated a priori, for example by supposing

the mirror surface is in front of the camera.

In practice, R and R′ are then adjusted to represent exact rotation matrices (see

appendix B).

The Translational Component We obtain t and t′ with a similar method:

t ∼





T131
T231
T331



×





T132
T232
T332



 t′ ∼





T113
T213
T313



×





T123
T223
T323





The computed values are only the directions of the translation vectors, but their true

scale can be obtained by re-injecting the computed directions in the constraints shown

above, and scaling accordingly. Here we do not have any sign ambiguity, as it was ruled

out in the previous paragraph.
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4.5.4 Degenerate Configurations

We now study the configurations in which Tijk cannot be estimated, and therefore a

solution to the pose estimations can not be extracted.

Planar Mirror

When the mirror surface is a plane there exists an homography between the pixel coor-

dinates and the target coordinates, as this configuration is equivalent to having a direct

view of the target planes, but viewed from the camera reflected by the planar mirror.

Here, the tensor has no geometric background, and as such cannot be estimated.

This case is easy to rule out, as it is sufficient to test whether we have an homography

between camera pixels and target features.

Surfaces of Revolution

If the specular surface is a surface of revolution and if the optical center of the camera

lies on the axis of revolution, then the tensor can not be estimated uniquely using the

system of linear equations 4.9. To explain this, we first give a geometric interpretation

to the column vectors in the determinant of equation 4.8. Let us call them d, s and s′.

These vectors were obtained by eliminating the last homogeneous coordinate of three

3D points of equation 4.7 (one on a projection ray of the camera and two on the target

planes). Since the camera’s optical center is the origin in our formulation, these vectors

d, s and s′ correspond to the points at infinity of the lines joining the optical center with

these three 3D points. The vanishing of the determinant means that the three points at

infinity are collinear.

Let us now consider the case of a surface of revolution and of the camera’s optical

center lying on the axis of revolution. Let a be the three coordinates of the revolution

axis’ point at infinity. Consider any pixel and its associated projection ray. The projection

ray contains the optical center and is thus coplanar with the axis of revolution. Hence,

the ray reflected in the surface of revolution, is also coplanar with the axis of revolution,

and the original projection ray. This implies that the 3D points of equation 4.7 are all

coplanar with the axis of revolution. Consequently, the three points at infinity explained

above, are collinear with the point at infinity a of the axis of revolution.

Based on these observations, we now explain that the tensor does not have a unique

solution, if estimated via a linear equation system. Let T and T′ be the correct solution

of the target planes’ poses, implying that the three points at infinity of d, s and s′ are

collinear. Due to above observations, they are in addition collinear with a. Let M and

M′ be any two 3× 3 projective transformations that preserve all lines through a (there

are three degrees of freedom for such transformations). Obviously, a,d, Ms and M′s′
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will be collinear. Hence, the transformations

M
(
R t

)

M′
(
R′ t′

)

are also a valid solution for all equations 4.8. These transformations do not in general

satisfy orthonormality constraints inherited by R and R′; however, with linear equations

only, orthonormality constraints are not enforced. In conclusion, the linear equation

system on the tensor will provide ambiguous solutions (at least 6 degrees of ambiguity,

for M and M′).

The case of a surface of revolution could actually be solved, by explicitly taking into

account the specific characteristics of it. This is not developed further, as this case is

rather marginal.

4.5.5 (In)Stability with respect to noise

Whereas the specular tensor is an elegant theoretical approach to the pose of a reflected

target plane, our experiments on simulation data show that it is far too unstable to be

used in real world setups. In a simulated typical camera setup, the pose parameters

can only be correctly extracted if the noise in the correspondences in the target plane

are perfect, which is of course not realistic due to image based feature extraction, and

internal camera calibration. Figure 4.9 shows a plot of the condition number given by

the SVD of Tijk, and clearly shows that even with minimal noise, a solution to equation

4.9 cannot be estimated.

4.5.6 Discussion

We have studied the theoretical constraints that arise when a calibrated camera observes

a target plane placed at two different unknown positions, through the reflection by an

unknown general specular surface. We have shown that with perfect data, the poses

of the planes can be recovered linearly, and as such that the specular surface can be

reconstructed. We were very excited when we first discovered the possible constraints, as

a robust pose recovery would have lead to an automatic and practical specular surface

inspection method, but the extreme instability that arose from our simulations was

disappointing.

The tensor we describe is very similar to the dual homography tensor of [SW00], for

the computation of three camera poses observing coplanar points, when the points are

allowed to move on straight lines between views. We can also find many resemblances

with the general camera calibration of [SR04]: in the general case where the camera

rays are unconstrained, pose parameters are extracted using the collinearity of points
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Figure 4.9: Instability with respect to noise Plot of the condition number given

by the SVD of Tijk of equation 4.9 (see appendix B). The setup consisted of a 1000

randomly chosen pixels reflected through an arbitrary specular surface to compute the

correspondances in 2 planes. The abscissa is the variance of the gaussian noise we added

to the correspondances in the planes.
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from 3 planar targets, whereas we work with 2 target planes, but with the additional

constraints that all camera projection rays pass through the optical center and that the

internal parameters of the camera are known.

4.6 Conclusion

We have proposed several methods for obtaining the pose of a calibration object or target

plane when it is not in direct view of a camera. Applications for such a scenario include

most existing specular surface reconstruction methods, and could also encompass wide

baseline multi-camera setups without a common field of view. The first methods require

additional objects or cameras, and as such are not very flexible.

On the other hand the method requiring 3 planar mirrors is trivial to utilize, as it only

requires the view of the calibration object through these mirrors, placed at any convenient

locations. One could imagine a device consisting of 3 or more articulated mirrors that

could be placed in front of a camera to calibrate, in order to obtain its internal and

external calibration without any constraint on its orientation, allowing virtually any setup

for a multi-camera aquisition system.

Finally, we presented what first seemed to be a universal reconstruction technique,

or conversely pose estimation technique through the reflection of an arbitrary mirror.

The extreme instability that arose is of course extremely disappointing, and may re-

veal what seems to be a practical limit in terms of flexible setups for specular surface

reconstruction.
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Tijk tensor term tensor factor

T111 d1q1q
′
1 R21R

′
31 − R31R

′
21

T112 d1q1q
′
2 R21R

′
32 − R31R

′
22

T113 d1q1 R21t
′
3 − R31t

′
2

T121 d1q2q
′
1 R22R

′
31 − R32R

′
21

T122 d1q2q
′
2 R22R

′
32 − R32R

′
22

T123 d1q2 R22t
′
3 − R32t

′
2

T131 d1q
′
1 t2R

′
31 − t3R

′
21

T132 d1q
′
2 t2R

′
32 − t3R

′
22

T133 d1 t2t
′
3 − t3t

′
2

T211 d2q1q
′
1 R31R

′
11 − R11R

′
31

T212 d2q1q
′
2 R31R

′
12 − R11R

′
32

T213 d2q1 R31t
′
1 − R11t

′
3

T221 d2q2q
′
1 R32R

′
11 − R12R

′
31

T222 d2q2q
′
2 R32R

′
12 − R12R

′
32

T223 d2q2 R32t
′
1 − R12t

′
3

T231 d2q
′
1 t3R

′
11 − t1R

′
31

T232 d2q
′
2 t3R

′
12 − t1R

′
32

T233 d2 t3t
′x− t1t

′z

T311 d3q1q
′
1 R11R

′
21 − R21R

′
11

T312 d3q1q
′
2 R11R

′
22 − R21R

′
12

T313 d3q1 R11t
′
2 − R21t

′
1

T321 d3q2q
′
1 R12R

′
21 − R22R

′
11

T322 d3q2q
′
2 R12R

′
22 − R22R

′
12

T323 d3q2 R12t
′
2 − R22t

′
1

T331 d3q
′
1 t1R

′
21 − t2R

′
11

T332 d3q
′
2 t1R

′
22 − t2R

′
12

T333 d3 t1t
′
2 − t2t

′
1

Table 4.3: The Specular Tensor. Each element Tijk of the specular tensor is in terms of

the rotations and translations of the target planes with respect to the camera projection

center. For clarity, we have scaled q and q′ such that q3 = q′3 = 1.
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5.5.
Conclusion and PerspectivesConclusion and Perspectives

In this thesis we have studied the reconstruction of specular surfaces from images. This

subject has received relatively little attention from the computer vision community, which

in turn implies that these types of surfaces are usually discarded as noise. We have

presented two different methods for recovering the shape of an arbitrary specular surface,

from the reflection of known scene features. A ready-to-use implementation of the second

method was tested in a real-world setup. With respect to the state of the art, these

methods do not make the usual assumption of surface smoothness or even continuity.

The method presented first extends the well known framework of space carving [KS00]

to incorporate surfaces with a sharp specular component in their reflectance. Instead of

using photometric invariance with respect to viewpoint, we proposed to use geometric

invariance, namely by observing surface orientation rather than surface color. However

the required setup is quite cumbersome in the sense that the camera must be moved to

several locations, of which the poses must be determined. Furthermore, the requirement

of having known correspondences between pixels and scene points practically requires

either having a large calibrated environment, for example a hemispheric dome over the

object, or moving a target to different locations, thus adding an additional source of

noise.

Concerning the accuracy of the method, a rather deceiving observation should be

made. The field of applications of specular surface reconstruction techniques is very

narrow, objectively only limited to metrology and industrial inspection. In effect, in

domains where accuracy is not primordial, such as virtual reality or computer graphics,

chances are these types of surfaces will rarely occur, and if ever they do, traditional

methods such as contact probing or laser scanning coupled with a means to give a

matte finish to the surface will prevail. As such, the lack of precision of space carving

approaches coupled with the rather complex and constrained setup that is required very

probably imply that this method will have very few practical applications.



The triangulation approach we presented in chapter 3 relaxes a large number of

constraints of the previous method, namely by only requiring two views from a fixed

camera viewpoint. The results we have obtained seem very promising with respect to

the accuracy that was obtained, and the relatively unconstrained setup that is needed.

In a very constrained scenario such as industrial inspection, with precisely known camera

calibration and target planes accurately placed by robotic manipulators, 3D models of

reflecting surfaces could easily be recovered. Work has still to be done concerning

the matching process between camera pixels and points from the target planes, as in

these types of applications the accuracy and speed of such a task are primordial. The

approach we propose in appendix A concerning this problem is satisfactory accuracy-wise,

but maybe too time consuming for real-time inspections on a production chain.

Chapter 4 proposed several methods for the computation of the pose of a plane

(or more generally a calibration object) when this plane is not in the field of view of

the camera. A method close to the classical hand-eye problem was proposed, with the

obvious inconvenience of requiring an additional imaging device.

A method using the reflection of the plane in mirrors we know are planar may allow

more flexible setups, not only in the field of specular surface reconstruction, but also

whenever multiple cameras without a common field of view are required. Additionally,

the fact that the target plane be reflected by 3 planar mirrors actually is equivalent to

having 3 different views of it, which means that the internal calibration of the camera

can be computed without additional intervention.

Finally, geometrical constraints that could have lead to uncalibrated specular surface

reconstruction, or conversely indirect pose estimation through the reflection of an arbi-

trary mirror, were investigated. The extreme instability that occurred was in this sense

very disappointing, and may reveal what seems to be a practical limit in terms of flexible

setups for specular surface reconstruction.

Additional work would probably be welcome in the field of precise matching using

structured light approaches, with a strong constraint on acquisition times. Additionally,

due to diverse compressions and magnifications appearing respectively on convex and

concave parts of specular objects, an automatic approach with varying spatial resolution

would seem interesting.

Concerning specular surface reconstruction, methods that do not require calibrated

scene points would be an obligatory starting point before obtaining flexible reconstruction

algorithms able to treat surfaces with arbitrary reflectances. This can probably only be

done by integrating additional cues such as silhouettes, or having strong priors on the

geometry of the object and/or environment.
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A.A.
Subpixel matchingSubpixel matching

The task of matching camera pixels with either their direct or reflected source in the

surrounding scene is both a vital and arguably uninteresting task. While manually clicking

and associating points is an option when there are only a few images and a few feature

points, in our case we need a solution that finds a correspondence for every pixel in the

region of interest of our image, i.e. in the order of tens or hundreds of thousands. A

typical approach in this situation is to use color coded structured light, in our case using

binary patterns, of which an extensive review can be found in [SPB04].

Our setup uses an LCD monitor whose display is seen reflected by the specular

surfaces onto the image plane of the camera. The goal of the matching is to obtain

correspondences between pixel coordinates in the camera image with their source pixel

on the monitor. A straightforward method, illustrated in table A.1 is to display a series

of binary patterns on the monitor which encode the binary form of the coordinate of

each pixel.

value

bit
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

3

2

1

0

Table A.1: Binary coding - abscissa represents the integer value to encode. For each

of these values, the column corresponds to the series of colors (in our case just black or

white) that must encode it. For example, the value ”7” will be encoded by the following

sequence: ”black - white - white - white”. If there is an error in determining the color

of bit 3, thus reading ”white - white - white - white”, the decoded value will be 15.



These binary codes of course encode a one-dimensional value, so two series of pat-

terns need to be displayed to encode the x and y coordinate of each pixel. The number

of images that need to be displayed for the matching of a 2n by 2n image is therefore 2n.

While these 2n images are the minimum required, making the decision, given an image

pixel intensity, whether the screen source pixel is black or white is actually a difficult

task, as shown on figure A.1:

• in areas where the black and white stripes in the image are contiguous, the imaged

corresponding pixel is seen as different shades of gray

• due to LCD monitor imperfection, white stripes tend to bleed over the black

stripes, again producing shades of gray.

Figure A.1: Typical binary code capture

To overcome the preceding limitations we apply the following method:

• We use Gray coding [Gra53] instead of raw binary codes, as in the latter case the

error in discriminating a black from white pixel of a high order bit in the encoded

value causes a large disparity in this decoded value (see table A.2). Gray codes on

the other hand are designed in such a manner that two adjacent values only differ

by one bit, thus implying that the flip in a single bit will only cause a unit error.

Implementations of the conversion from regular values to Gray codes are widely

found, for example in [PFTV92].

• Instead of using one image for every bit, we use the method proposed by [SS03],

and display two images: the first image is the original Gray code, and the second

one is the inverse. In this setup, for each pixel we only have to compare intensities

locally: if the pixel in the first image is brighter than in the second, then the value

of the pixel is ”white”, and inversely.
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value

bit
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

3

2

1

0

Table A.2: Gray codes.Error in extracting the value for one bit causes only a unit error

The raw decoding of the Gray code images assigns an integer 2D coordinate to each

pixel in the region of interest of the camera. Depending on the resolution of the image

sensor, and/or due to the apparent magnification that occurs at concave locations on

the specular surface, this means that neighboring image pixels can be assigned with

the same screen correspondence. While these raw matches already provide high quality

results, the matching of several image pixels with the same source on the screen induces

some geometric error that causes visible artifacts in the reconstructed surface for example

when using the triangulation method of chapter 3, as can be seen on figure A.2. In order

to obtain high quality matches, we would like to obtain subpixel matches, that is to say

that for every pixel in the camera image, the matched point is the real (i.e. floating

point) coordinate in the screen reference system.

without smoothing with smoothing

Figure A.2: Reconstruction of a planar mirror Side view of the reconstruction of a

planar surface with and without smoothing the raw decoded values from the Gray codes.

We propose an energy minimization method that will allow us to smooth the de-

coded coordinates, but with the additional constraint that the smoothed coordinates

still correspond to the input images.

Let u(x, y) and v(x, y) denote the coordinates of the target point corresponding to

the camera pixel (x, y). Instead of directly smoothing u and v as in [SS03], we use an

125



energy minimization approach to ensure that the smoothed correspondences will still link

camera pixels with their corresponding origin on the target planes.

We minimize the following energy functional with respect to u and v:

E(u, v) =
∑

k

∫

Ω

(Gk(u, v)− Ik(x, y))2 dx dy

+ λ

∫

Ω

|∇u|2 + |∇v|2 dx dy

where Ω is the mirror image region, Gk are the displayed Gray code images and Ik are

the images captured by the camera.

The first energy term is the data term. It penalizes correspondences for which the

color Ik(x, y) captured by the camera and its corresponding Gray code Gk(u, v) are

not the same. We first scale the camera images intensities pixel-wise, so that 0 and

1 intensities correspond to pure black and pure white. This referential is computed by

displaying entirely black and entirely white images on the planar targets. For non-integer

values of u and v, Gk(u, v) is computed using bilinear interpolation.

The second term is a homogeneous regularizer. It penalizes large variations on the

correspondence functions. The λ parameter sets the compromise between data evidence

and smoothing.

The energy functional is minimized by a steepest descent. The descent direction is

given by the Euler-Lagrange equations,

∂ui

∂t
= −

∑

k

2(Gk − Ik)
∂Gk

∂ui

+ λ 2∆ui

for u1 = u and u2 = v.

Note that the Gray code images projected on the screen serve a double purpose: they

are used ”traditionally” to provide an initialization to the energy minimization function,

and they are also used to compute the data term Gk(u, v)−Ik(x, y). However this data

term could be computed from any series of images containing sufficient texture.

A qualitative result showing the effectiveness of the method can be seen on figure

A.3.
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Figure A.3: Texture mapping using the computed correspondences - before and

after the refinement step The computed correspondences are used as a lookup-table

for texturing the camera image from an image defined in the screen coordinate system.

We calculate brightness values for each pixel by using bilinear interpolation around the

computed match.
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B.B.
Singular Value DecompositionSingular Value Decomposition

A general m× n matrix A has a singular value decomposition (SVD) [PFTV92]:









A









m×n

=









U









m×n






σ1

. . .

σn






n×n
︸ ︷︷ ︸

Σ



 VT





n×n

where U is a m × n orthogonal matrix, Σ is a diagonal n × n matrix, and V an n × n

orthogonal square matrix. The values σi = Σii of the diagonal matrix Σ are called

singular values, and we suppose without lack of generality that they are sorted in non-

increasing order:

σ1 ≥ σ2 ≥ . . . σn ≥ 0

This decomposition is unique up to permutations of the columns of U and V and

elements of Σ, and linear combinations of the columns i, j in U and V when σi = σj.

Singular value decomposition has many practical applications:

• The condition number of matrix A can be defined by the ratio of the largest

to smallest singular value σ1

σn
. The matrix A is singular if the condition number is

infinite, and ill-conditioned if the condition number approaches machine floating-

point precision.

• In the case of a linear mapping Rm → Rn defined by matrix A:

Ax = B

with A which is singular, then the subspace of Rm such that Ax = 0n is determined

by the columns of V corresponding to the singular values that are zero. This

property is used extensively in most linear least-squares fitting tasks.



Applications

Closest rotation matrix

Consider a matrix R̄ linearly estimated as a rotation from a set of equations. In general,

this estimation does not enforce the properties of rotation matrices, namely orthonor-

mality. We therefore wish to estimate a proper rotation matrix R, which is closest to

the estimated R̄ in the sense of the Frobenius matrix norm. This is done by computing

the SVD of R̄:

R̄ = UΣVT

and computing, after noting that the singular values of a rotation matrix are all equal

to 1: 

 R



 =



 U









1

1

1







 VT



 = UVT

The final step is to verify that R has a determinant of +1, and if not to multiply it by

−1.

Plane fitting

Assume we want to fit a plane to n 3D points (x1,x2, . . . ,xn). The best fit is defined

as the plane that minimizes the sum of squared orthogonal distances from the points to

the plane. We represent a plane by a point c and a normal n (of unit length), so the

distance from a point xi to the plane is

(xi − c).n

and the best fit plane should therefore minimize

n∑

i=1

((xi − c).n)2

We first solve for c as the centroid of the points

c =

∑n

i=1
xi

n

and form a n× 3 matrix A

An×3 =








p1 − c

p2 − c
...

p2 − c







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which allows to write the minimization as

min
‖n‖=1

∥
∥An

∥
∥2

After computing the SVD of ATA = UΣVT the solution for n is the column of V

that corresponds to the smallest singular value. Note that the other two columns of V

therefore represent the directions spanned by the fitted plane, and more precisely the

column of U corresponding to the largest singular value corresponds to the direction of

the best fitted line to the set of points.
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