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Introduction

Les objets considérés dans cette these sont les empilements de spheres
égales, principalement de R™, et les beta-entiers. Un empilement de spheres de
R™ est d’abord un ensemble discret A de points de R™ pour lequel ||z —y|| > r
des que z,y € A avec x # y, pour une certaine constante r > 0. Le systéme
de spheres est alors donné par B(A) := {z + B(0,7/2) | x € A} ou B(c,¢€) est
la boule fermée de centre ¢ et de rayon €. On dit que A est un r-code ou un
ensemble uniformément discret, de constante r. On utilisera indifféremment
dans cette these le langage des empilements de spheres ou celui des ensembles
uniformément discrets (ou des quasicristauz mathématiques, terminologie pro-
posée par Lagarias [La3] [Lad]), qui reportent chacun a des littératures dis-
tinctes, qui s’enrichissent mutuellement.

Introduite par Minkowski [Min] la Géométrie des Nombres est aujourd’hui
considérée comme faisant partie de la Théorie des Nombres. Depuis Minkowski
elle s’est arithmétisée et a été développée par de nombreux auteurs ; beaucoup
de questions ouvertes existent sur les empilements de spheres égales, ce qui en
fait un sujet majeur en Geométrie des Nombres [Bdk] [By2] [Bk] [Cal] [CS]
[GL] [Min] [Rol] [Z].

Nous nous sommes concentrés sur les problemes suivants :

(i) aspects métriques et topologiques de l'espace des empilements de sphéres,
(i) les trous profonds, la densité et la structure interne asymptotique des em-
pilements les plus denses, (iii) les empilements autosimilaires de type fini,
(iv) les empilements de sphéres sur beta-entiers et sur beta-réseaut.

L’étude du dernier point (iv) s’est surtout ramenée & ’étude des beta-
entiers pour lesquels de nombreuses questions se posent. En effet, Rényi [Re]
[Fyl] [Fy2] avait montré que la numération en base x est possible pour tout
x > 1des 1957. Les entiers en base x ou z-entiers, notés Z, (notation introduite
par Gazeau [G1] [G2]), jouent alors un réle équivalent a ceux que 'on trouve
en base 10, c’est-a-dire Z. Comme 'usage de la base 10 est arbitraire, mais
historiquement lié & notre écriture et & son usage [If], comme il n’y a aucune
raison mathématique de privilégier la base 10 par rapport a une autre base,
il nous a semblé en soi intéressant sinon universel de continuer de dégager les
propriétés des beta-entiers, pour tout nombre algébrique 5 > 1, & défaut de la
faire pour tout = > 1 le programme étant alors trop ambitieux.

Il se fait que 'usage de numérations non-classiques procede par le systeme
dynamique sur [0, 1] de multiplication par 8 > 1 modulo 1. Nous avons rap-
pelé celui-ci en Section 4 et reconsidéré les liens existant entre Systemes Dy-
namiques Symboliques et Théorie des Nombres, étude initiée par Bertrand-
Mathis [Bel] [Be2] [Be3] [Bed] [Be5]. Cela nous a amené a proposer en Sous-
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section 4.2 une classification des nombres algébriques différente de celle de
Bertrand-Mathis, reportée dans un article de Blanchard [Bl].

Les travaux faisant ’objet de cette thése sont les suivants :

[MVG1] (Section 1) “On a generalization of the Selection Theorem of
Mahler”, J. Théorie Nombres Bordeaux 17 (2005), 237-269,

[MVG2] (Sections 2.1 et 2.2) “On Densest Packings of Equal Spheres
of R™ and Marcinkiewicz Spaces”, dans “Interface between Harmonic
Analyis and Number Theory”, Eds. B. Saffari et al, Birkhatiser (2007),
soumis,

[MVG3] (Section 2.3) “On Lower Bounds of the Density of Delone Sets
and Holes in Sequences of Sphere Packings”, Exp. Math. 14 :1 (2005),
47-57,

[VG1] (Section 2.4) “Covering a Ball with Smaller Equal Balls in R™”,
Discrete Comput. Geom. 33 :1 (2005), 143-155,

[VG2] (Section 3) “On Self-Similar Finitely Generated Uniformly Discrete
(SFU-) Sets and Sphere Packings”, dans “Number Theory and Physics”,
IRMA Lectures in Mathematics and Theoretical Physics, Eds. L. Nyssen
et V. Turaev, E.M.S. Publishing House (2006), accepté,

[GVG1] (Section 4.1) “Geometric Study of the Beta-Integers for a Per-
ron Number and Mathematical Quasicrystals”, J. Théorie Nombres Bor-
deaux 16 (2004), 125-149,

[VG3] (Section 4.2) “On Gaps in Rényi S-expansions of unity for 8 > 1
an algebraic number”, Annales Institut Fourier (2006), accepté,

[E-VG] (Section 4.3) “Symmetry Groups for Beta-Lattices”, Theor. Com-
put. Sci. 319 (2004), 281-305.

Dans la Premiére Partie, chaque Section présente de maniere synthétique
les problémes rencontrés et les résultats apportés en indiquant le chemin général
qui unifie ’ensemble. La Deuxieme Partie de la these contient les différents
articles, c’est-a-dire toute la mathématique nécessaire a la compréhension
détaillée des affirmations de la Premiere partie.

Definitions.— Un nombre de Pisot 8 (ou de Pisot - Vijayaraghavan) est
un entier algébrique réel > 1 dont tous les conjugués 39 sont dans le disque
unité ouvert du plan complexe.

Un nombre de Salem [ est un entier algébrique réel > 1 dont tous les
conjugués £ sont dans le disque unité fermé du plan complexe, I'un deux au
moins étant sur le cercle unité.

Un nombre de Perron [ est un entier algébrique réel > 1 dont tous les
conjugués 3% sont de module strictement plus petit que £3.
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Un nombre de Lind § est un entier algébrique réel > 1 dont tous les
conjugués 3% sont de module plus petit que ou égal & 3, I'un d’entre eux
au moins étant de module égal a .






PREMIERE PARTIE






1 Espace métrique compact des empilements de spheres
égales de R"

1.1 Contexte et Théoreme Principal

En 1946 Mahler [Mal] a obtenu des résultats importants sur les corps étoilés
dans R"™ et leurs réseaux critiques en utilisant le théoreme de compacité sui-
vant, appelé maintenant Théoreme de Sélection de Mahler ou Théoreme de
compacité de Mahler [GL].

Théoréme 1.1. Soit (L,) une suite de réseaux de R™ telle que, pour tout r :
(i) |lz|| > ¢ pour tout © € L.,z # 0, ot c est une constante strictement
positive indépendante de r,
(i) la mesure de Lebesgue |L.| du domaine fondamental de L, satisfait
|L,| < M avec M une constante < +oco indépendante de r.
Alors on peut extraire de la suite (L) une sous-suite (L) convergente; si
L est la limite de cette suite, on a :

Ll= lim [|L.|.
L] = Jlim |L|

Ce théoreme tres efficace en Géométrie des Nombres est aussi important que
le théoreme d’Ascoli-Arzela en Analyse [Cal] [GL]. Lors d’un séminaire & Prin-
ceton [RSD] Mahler a souligné qu’il serait souhaitable de généraliser les grands
théoremes de Géométrie des Nombres, dont ce théoreme, a d’autres espaces
ambiants que R”, par exemple a K™ ot K est un corps de nombres. Plusieurs
auteurs ont établi un théoreme analogue dans cette optique de généralisation :
Chabauty [Cy] en 1950 avec des sous-groupes dans des groupes abéliens loca-
lement compacts, Mumford [Mu] dans des groupes de Lie semi-simples sans
facteur compact et des espaces de modules de surfaces de Riemann compactes
de genre donnée, Macbeath et Swierczkowski [MS] dans des groupes locale-
ment compacts et o-compacts (abéliens ou non) qui sont engendrés par des
compacts, McFeat [Mf] dans des espaces d’adéles de corps de nombres, Rogers
et Swinnerton-Dyer [RSD] dans des corps de nombres algébriques. La preuve
élégante donnée par Groemer [Groe2] de ce théoréme est une conséquence du
Théoreme de Sélection de Blaschke [Cal], et fait intervenir la correspondance
biunivoque qui existe entre un réseau et sa cellule de Voronoi.

La maniére dont Chabauty [Cy] démontre le Théoréme 1.11 est extrémement
riche d’enseignements. En effet, si I'on prend le temps d’observer sa preuve
“élémentaire” on voit que la structure de Z-module des réseaux L, n’est pas
nécessaire pour obtenir la convergence de la sous-suite (L,.). Puis il prouve

1La topologie qu’il utilise est la suivante : soit (F;) une suite d’ensembles de R™. Nous
disons qu’elle converge vers ’ensemble E de R™ : lim; .4« E; = E si, Vt > 0,Ve > 0 et tout
entier ¢ > i(t, €), chaque point = € E tel que ||z|| < ¢ est & distance < e d’au moins un point
de E;, chaque point y € E; tel que |ly|| < ¢ est & distance < ¢ d’au moins un point de E.



que la limite L est bien un réseau mais a posteriori une fois la convergence
démontrée. Cette remarque permet & Chabauty [Cy] une extension du Théoreme
de Sélection de Mahler & des espaces ambiants comme des groupes abéliens
localement compacts dans une version non métrique du théoreme mais to-
pologique. Mumford [Mu] a ensuite amélioré cette approche. Cette remarque
de Chabauty, essentielle mais qui semble insignifiante a premiere vue, ouvre
le chemin vers des espaces d’ensembles de points a priori “sans structure” qui
sont non-périodiques, au lieu d’étre des espaces de réseaux ou de sous-groupes,
sous-ensembles de I’espace ambiant munis de structures algébriques addition-
nelles. Cela suggere que des analogues du Théoreme de Sélection de Mahler
doivent exister dans des situations bien plus générales.

Dans le travail intitulé “On a generalization of the Selection Theorem of
Mahler” [MVG1] nous développons une version du Théoreme 1.1 adaptée aux
“ensembles de points” (pas seulement de réseau ou de sous-groupe) d’un espace
ambiant. Ceci peut étre formulé de la fagon suivante. Nous nous intéressons
aux ensembles d’ensembles de points, disons UD(H, d),, d’un espace métrique
(H,d), qui est “I’espace ambiant”, olt 4 est une métrique sur H, qui présentent
la propriété que leur distance interpoint minimale est plus grande que, ou égale
a, une constante strictement positive donnée, disons r > 0.

Définition 1.2. On appelle ensemble uniformément discret de (H,d), de
constante r, les ensembles de points A C H qui possedent la propriété

r,ye v #y = o(x,y) >

11 s’agit par exemple de ’ensemble vide, des sous-ensembles & un point {z},
avec x € H, ou bien d’'un ensemble A, admettant au moins deux points, pour
lequel cette valeur minimale interpoint r est atteinte au moins pour une paire
de points distincts. Il se peut que A admette au moins deux points et que
cette valeur minimale interpoint r ne soit atteinte pour aucune paire de points
distincts, par exemple si A = {z, =n+1+4++...+1|n>0} CR

Appelons UD(H, ), ¢ le sous- ensemble de UD(H,d), constitué des en-
sembles de points finis. La premiére question qui se pose & partir du (i) du
Théoreme 1.1 est alors la suivante :

Question 1.1. Pour quels espaces métriques (H, ) est-ce que UD(H,J),
peut étre muni d’une topologie telle qu’il soit compact et que la métrique de
Hausdorff A sur UD(H, d), 5 soit compatible avec la restriction de cette topo-
logie 6 UD(H, ), s, et pour quelles valeurs de r ¢

Dans l'objectif de généraliser (ii) dans le Théoréme 1.1 rappelons le concept
de Besicovitch de relative densité [MVG3].

Définition 1.3. Un sous-ensemble A de (H, J) est dit relativement dense dans
H 1l existe R > 0 tel que pour tout z € H il existe A € A tel que §(z,A) < R.



L’ensemble A est dit relativement dense de constante R si R est choisi minimal
pour cette propriété.

En supposant que ’espace ambiant H soit tel que la réponse a la Question
1.1 soit vraie, pour un certain r, on peut formuler la seconde question comme
suit.

Question 1.2. Pour quels espaces métriques (H,d) est-ce que le sous-
ensemble X (H,6), r de UD(H, ), constitués des sous-ensembles relativement
denses de constante donnée R > 0 est compact, et pour quelles valeurs de R ¢

Définition 1.4. Un sous-ensemble A de (H,¢) est un ensemble de Delone s'il
existe 7 > 0 et R > 0 tels que A soit un ensemble uniformément discret de
constante 7 et relativement dense de constante R. Dans ce cas, on dit que A
est un ensemble de Delone de constantes (r, R).

Les valeurs possibles du rapport R/r lorsque H = R™ sont envisagées dans
“On lower Bounds of the Density of Delone Sets and Holes in Sequences of
Sphere Packings” [MVGS3]. Par exemple un réseau de R™ est un ensemble de
Delone. La Question 1.2 prend un sens des que les ensembles de Delone de
I’espace H sont infinis. En effet si H est tel que ceux-ci sont tous finis, alors on
peut répondre a la Question 1.2 par les propriétés de la métrique de Hausdorff
sur ’espace des sous-espaces compacts de H.

Le Théoreme principal 1.5 répond aux Questions 1.1 et 1.2 dans le cas ou
H =TR" et 0 est la métrique Euclidienne standard. On notera UD,. au lieu de
UD(R™,0),, UD, s au lieu de UD(R™,§), ¢, Xr r au lieu de X (R"™,0), r.

Théoréme 1.5. Pour tout r > 0, l’ensemble UD, peut étre muni d’une
métrique d telle que l’espace topologique (UD,,d) soit compact et tel que la
métrique de Hausdorff sur UD,. ¢ soit compatible avec la restriction de la topo-
logie de (UD,.,d) a UD, ;. Pour tout R > 0, le sous-espace X, r de (UD,,d)
des ensembles de Delone de constantes (r, R) est fermé.

Cette topologie sur UD, n’est pas classique [Ke| [M]].

1.2 Construction de métriques sur UD

Il est clair qu’il suffit de prouver le Théoreme 1.5 pour » = 1 pour obtenir
le résultat. Pour simplifier, nous notons alors par UD ’espace UD1, resp. par
Xg lespace X g. La construction de trois classes de métriques sur UD est
faite dans [MVG1].

La premiere métrique est associée a une suite exhaustive de compacts de
R"™ et a la métrique de Hausdorff sur chaque compact.



Les deux autres métriques sont tres différentes : la deuxieme métrique est
inspirée d’une métrique sur I'espace des ensembles de Delone, et est utilisée en
Théorie des Systemes Dynamiques de Pavages (Radin et Wolff [RW], Robinson
[Rn], Solomyak [So2], Gouéré [Go|, Baake et Lenz [BLz]). Cette métrique est
ici adaptée a ’espace des ensembles uniformément discrets.

La troisiéme métrique est obtenue par des systéemes de comptage finis nor-
malisés par des fonctions distance convenables : cette idée a été formulée par
Dworkin [Dw] en 1993 pour la premiere fois, & notre connaissance (pour des
ensembles de Delone), bien que I'auteur n’en ait pas apporté de preuves dans
sa contribution originale. Ce dernier cas de métrique admet une construction
tres éloignée des constructions des deux autres et est “moins classique”. Nous
étudions un peu plus en détail ses propriétés. Elle est plus adaptée a 1’étude
de problemes locaux de cristallographie n-dimensionnelle, comme 1’étude des
clusters locaux de spheéres dans des empilements (apériodiques) tres denses de
R™. On sait en effet que la preuve de la Conjecture de Kepler par Hales [Hal]
[Ha2] [Ha3] [VGO1] (voir aussi la preuve incomplete de Hsiang [Hg]) repose sur
I’étude des majorations des densités locales & moyenne portée, et que Lagarias
a donné des majorations utilisables en dimension n quelconque en généralisant
les criteres de Hales [Lab].

Chaque métrique est représentative d’une classe de métrique : la premiere
en faisant varier la famille exhaustive de compacts, la deuxiéme en faisant
varier le parametre qui la décrit, la troisieme en faisant varier la normalisation
par les fonctions distance.

Nous montrons que ces trois classes de métriques sont topologiquement
équivalentes. Leur point commun, est qu’elles privilégient un point base de
I’espace ambiant.

La précompacité de 'espace UD est alors une conséquence de la convergence
uniforme du processus d’enléevement de points d’un ensemble uniformément
discret (non vide), quelle que soit la maniére dont on lui enléve ses points. Ce
processus de passage & la limite vers I’élément “ensemble vide” () de UD est en
effet uniformément convergent et I’on s’est appliqué a le décrire explicitement.
Le role joué par ’ensemble vide dans UD et la description explicite de ses voi-
sinages dans UD par la troisieme métrique nous a apparu essentiel et fort peu
décrit, sinon inexistant, dans la littérature. L’ Appendice de [MVGI] contient
une démonstration de la continuité uniforme du processus d’enlevement de
points (& l'infini) pour la troisieme métrique; les calculs s’appuient sur la des-
cription et les propriétés des représentations des entiers en sommes de carrés
d’entiers (pour un panorama sur ces questions, voir [Gr]) et sur une inégalité
due & Stolarsky [St]. On procede sur Z™,n > 5, (étape 1) puis sur tout en-
semble uniformément discret de maniére universelle avec n > 5 (étape 2), puis
par descente pour n < 5 (étape 3).

Un phénomene intéressant donné par la troisieme métrique (moins visible
pour les autres métriques) est le phénomene d’appariement local de points :



si A et A’ sont deux ensembles de UD tels que la distance entre eux soit treés
petite (< €), alors leurs points respectifs autour du point base, et sur une
distance d’environ 1/(2¢), sont tous groupés par paires uniques. Cela est donc

adapté a I'étude de toute fonction sur UD qui utilise le comptage local de
points, notamment la fonction densité (Sous-sections 2.1 et 2.2).

1.3 Généralisation du Théoréme de Sélection de Mahler

L’avantage d’avoir des métriques différentes sur UD est de pouvoir choisir,
a partir de celles-ci, la plus adaptée au probleme considéré.

En utilisant la troisieme métrique, nous montrons que le Théoreme 1.5
implique le Théoreme 1.1 de Sélection de Mahler. L’idée pour démontrer cette
implication est tres simple : un réseau est completement caractérisé par une
base constituée de petits vecteurs, situés autour de l'origine choisie comme
point base; d’autre part le phénomene d’appariement de points autour du
point base implique que, pour une famille de réseaux tous proches, tous de
Delone, appartenant tous a un X, r avec r et R fixés, les petits vecteurs de
leurs bases respectives convergent vers un ensemble de vecteurs libres, donc qui
engendre un réseau a la limite. On retrouve alors le cheminement de Chabauty

[Cy].



2 Structure des plus denses empilements de spheres

2.1 Théorémes d’existence

La notion de complete saturation a été introduite par Fejes-Toth, Kuper-
berg and Kuperberg [FT-K].

Nous dirons que A € UD est saturé, ou mazimal, s’il est impossible d’ajou-
ter une nouvelle réplique de la boule B (boule de rayon 1/2; puisque UD est
lespace des ensembles uniforméments discrets de constante 1) & B(A) sans
détruire le fait que c’est un empilement de spheres i.e. sans créer un recou-
vrement quelque part d’au moins deux boules du systéme de boules. L’espace
SS des systemes de boules de rayon 1/2; est partiellement ordonné par la
relation < definie par A1, As € UD, B(A1) < B(A2) <= A; C Ay. Par
le lemme de Zorn, des empilements de boules maximaux existent. L’opération
de saturation d’'un empilement de boules consiste a ajouter des boules pour
obtenir un empilement maximal de boules. Elle est assez arbitraire et peut
étre finie ou infinie.

Plus généralement [FT-K]|, B(A) est dit m-saturé si aucun sous-syteme
fini de m — 1 boules ne peut étre remplacé par m répliques de la boule B.
Evidemment, la 1-saturation signifie saturation, et la m-saturation implique
la  (m — 1)-saturation. Ce n’est pas parce qu'un empilement de boules est
saturé, ou m-saturé, que sa densité est égale a 9, la constante d’empilement.
L’empilement B(A) est complétement saturé s’il est m-saturé pour tout
m > 1. La complete saturation est une version plus fine que le fait d’étre de
densité maximale [Ku].

Nous donnons dans [MVG2] des démonstrations directes et nouvelles de
lexistence d’empilements de sphéres de densité d,, (Théoréme 2.1, théoreme
qui par ailleurs est tres classique), et de 'existence d’empilements de spheres
completement saturés de R™ de densité §,, (Théoreme 2.2).

Rappelons quelques définitions. Soit A € UD. La densité du systeme de
boules B(A) est donnée par

§(B(A)) :=limsup |vol(( | (A + B(0,1/2))) () B(0,T)) /vol(B(0,T))

T—4oc0 AEA

On pose 6, = suppeyp 6(B(A)), dp.n = suPpcr, rup 0(B(A)), ot L, est l'es-
pace des réseaux de R™. Le nombre §,, s’appelle la constante d’empilement.

Fejes-Toth, Kuperberg and Kuperberg ont également donné une preuve
de Vexistence d’empilements complétement saturés (Theorem 1.1 in [FT-K]),
ainsi que Bowen [Bn] en 2003 avec R", puis avec 'espace hyperbolique H",
comme espace ambiant, mais par d’autres techniques.

Les démonstrations données dans [MVG2] des Théorémes 2.1 et 2.2 utilisent
différentes métriques sur UD (Proposition 2.3 et Théoreme 2.4), déduites de
celles construites en Section 1 ainsi que la continuité de la fonction densité



(Théoreme 2.6) sur UD pour une topologie donnée par une métrique D inva-
riante par les isométries (affines) de R™.

Théoréme 2.1. I existe un élément A € UD tel que ’égalité suivante ait
liew :

S(B(A)) = 6. (2.1)

Théoreme 2.2. [l existe un empilement complétement saturé de boules de
R™, toutes étant des répliques de B = B(0,1/2), dont la densité est égale d la
constante d’empilement 0,.

Pour construire une métrique sur UD invariante par les isométries (affines)
de R™ on a procédé comme suit (voir [MVG2]).

Appelons O(n, R) le groupe orthogonal (n-dimensionel). Une isométrie (ou
déplacement FEuclidien) est une paire ordonnée (p,t) avec p € O(n,R) et
t € R [Cp|. La composition de deux isométries est donnée par

() (0" ") = (pp', p(t') + 1)

et le groupe des isométries est Pextension scindée de O(n,R) par R™ (comme
produit semi-direct). Il est muni de la topologie habituelle.

Dans le Théoreme 1.5 la métrique d construite (la troisieme par exemple,
mais il en est de méme pour les autres) n’est pas invariante par translation.
Cela vient du fait que les constructions nécessitent un point base de I’espace
ambiant. A partir de d, en ajoutant a la construction de d quelques contraintes
en plus de maniére & ce que d gagne en propriétés d’invariance (voir le point
(iii) dans la Proposition 2.3), on peut construire une nouvelle métrique D
invariante par translation et par le groupe des déplacements Euclidiens de R™
(Théoréme 2.4). Elle fournit & I’espace YD une nouvelle topologie, qui convient
a I'étude de la continuité de la fonction densité (Théoréme 2.6).

Proposition 2.3. [l existe une métrique d sur UD telle que :
(i) Vespace (UD,d) est compact,
(i1) la métrique de Hausdorff sur UDy est compatible avec la restriction de
la topologie de (UD,d) a UDy,
(i11) d(A,A") =d(p(A), p(A)) pour tout p € O(n,R) et tous A, A" € UD.

Puisque la densité d'un empilement de spheres est invariante par toute
affinité (non-singuliere) de R™ (Théoreme 1.7 dans Rogers [Rol]), il est naturel
de construire des métriques sur UD qui sont au moins invariantes par les
translations et par le groupe orthogonal de R™. Une telle métrique est donnée
par le Théoreme suivant.

Théoréme 2.4. [] existe une métrigue D sur UD telle que :



(i) D(A1,A2) = D(p(A1) +t, p(A2)+t) pour tout t € R™, p € O(n,R™) et
tout Ay,As € UD,

(i) Uespace (UD, D) est complet et localement compact,

(iii) (propriété d’appariement de points) pour tous A,A" € UD non
vides tels que D(A,A’) < e, chaque point X € A est associé & un
unique point N € A’ tel que ||A— M| <¢/2,

(iv) Uaction du groupe d’isométries O(n,R) x R™ sur (UD,D) :

((ps 1), A) = (p,t) - A = p(A) +¢

est telle que son sous-groupe de translations R™ agit continiment sur

uD.

2.2 Espaces de Marcinkiewicz et découpages
asymptotiques

L’existence de plus denses empilements de spheres de R™, n > 2, pose la
question de savoir comment ils peuvent étre construits. Le probleme de don-
ner des constructions d’empilements de spheres tres denses entre les bornes
de Kabatjanskii-Levenstein et de type Minkowski-Hlawka (voir Figure 1 dans
[MVG3]) reste ouvert [Bdk] [Cal] [CS] [GL] [GO] [Rol] [Z].

Il y a deux problemes : le premier est la détermination de la constante
d’empilement §,, comme fonction de n seulement (pour n = 2 et n = 3, il
s'agit de 7/v/12 et de 7/+/18 respectivement ; pour n = 3, voir Hales [Hal]
[Ha2] [Ha3]); le second consiste & caractériser les configurations locales et la
configuration globale dans un empilement de spheres tres dense, en particu-
lier lorsque la densité est §,. En fait il n’y a pas une configuration globale
mais une infinité qui donnent la méme densité, et la relation d’équivalence de
Marcinkiewicz partitionne ’espace des empilements de spheres.

Soit A € UD. Soient B = B(0,1/2) et p > 0. Désignons par L} = Despace
des fonctions a valeurs complexes f définies sur R™ dont la puissance p-ieme
de la valeur absolue |f|? est intégrable sur tout ensemble mesurable borné de
R™ pour la mesure de Lebesgue. Le fait que la densité

S(B(A)) := I;miup vol(({J (A + B(0,1/2))) () B(0,T)) /vol(B(0, T))
e AEA

de B(A) soit égale & la norme (“norme 1”) de Marcinkiewicz de la fonction
caractéristique xg(a) of B(A) [Bs+] [PH] [Mz], c’est-a-dire

S(B(A)) = xson 22)
ot1, pour tout p € R™™ et toute f € LV

loc?

|71l = timsup £l 23)



avec

1/p
|flpt = (m /tB |f(x)|pdx) , fecy., (2.4)

pose la question suivante : que peut dire la Théorie des Espaces de Marcinkie-
wicz au probléeme de la construction des tres denses empilements de spheres ?

Il est clair que le probleme de la détermination de la constante d’empilement
ou plus généralement de la densité est associé a I'espace quotient £) /R ot R
est la relation d’équivalence de Marcinkiewicz : on dit que f € LY et g€ LP

loc loc
sont MP - équivalentes si

If = gllp = 0.

On note R cette relation d’équivalence. La fonction densité est une fonction
de classe, c’est-a-dire est bien définie sur ’espace de Marcinkiewicz MP avec
p = 1. Par exemple tout cluster fini de spheres a la méme densité, égale a
zéro, que I'empilement vide (aucune sphere); la classe de Marcinkiewicz de
I'empilement vide étant beaucoup plus gros que ’ensemble des clusters finis
de spheres. Il suffit donc de comprendre la construction d’un empilement de
spheres particulier dans chaque classe de Marcinkiewicz. L’object de la note
[MVG2] est de préciser les contraintes géométriques données par une telle
construction.

Appelons f la classe dans MP = £} /R d’une fonction f € £} , ou L}
est muni de la MP-topologie et par

v: UD — L}, resp. v: UD — M!
A — xB®) A — Xsn)

1
loc?

le plongement (ensembliste) de UD dans L} ., resp. dans M1

Théoréme 2.5. L’image v(UD) dans L}, . N L>®, resp. v(UD) dans M, est
fermée.

Les deux Théorémes 2.1 et 2.2 reposent sur la continuité de la fonction
densité || - ||1 o v sur 'espace (UD, D) (voir Section 2.1) comme suit.

Théoréme 2.6. La fonction densité A — §(B(A)) = ||x(B(A))||1 est continue
sur (UD, D) et y est localement constante.

Le Théoreme 2.5 est une reformulation du Théoreme 2.7, puisque MP? est
complet [Bs1] [Bs+]. Pour 0 < A <y appelons
COAp) i ={z e R" [ A< =] < pu}

la portion d’espace annulaire fermée entre les spheres centrées a l'origine de
rayons respectifs A et u.
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Théoréme 2.7. Soit (Ay,)m>1 une suite d’ensembles uniformément discrets
de constante 1 telle que la suite (Xp(a,,))m>1 501t une suite de Cauchy pour la
pseudo-métrique || - ||1 sur L},.NL>. Alors, il existe
(i) une suite strictement croissante d’entiers positifs (m;)i>1,
(i1) une suite strictement croissante de nombres réels (X\;)i>1 avec A; > 1
et )‘H—l > 2);,

telle que, avec

A= A0 CO+1/2, 041 — 1/2), (2.5)

i>1
les deux fonctions

XB(A) and Zilgloo XB(Am;)

sont M'-équivalentes. Comme conséquence

S(B(A) = lim_8(B(Am,)) (2.6)

La situation est la suivante pour un empilement de spheéres B(A) de R
pour lequel 6(B(A)) =6, :

x soit il n’existe pas d’empilements de spheres comme dans le Théoreme 2.7
telle que la suite de Cauchy de leurs fonctions caractéristiques respectives
soit non stationnaire, auquel cas il y a un phénomeéne d’isolement,

x ou il existe au moins une suite d’empilements de spheéres comme au
Théoreme 2.7 telle que la suite de Cauchy correspondante de leurs fonc-
tions caractéristiques soit non-stationnaire; il est alors Marcinkiewicz -
équivalent a un empilement de spheres ayant la structure asymptotique
annulaire donnée par le Théoreme 2.7, ou la suite des épaisseurs des
anneaux présente une croissance exponentielle.

Cette opération fait alors apparaitre la densité non plus comme une lim-
sup mais comme une vraie limite (2.6).

Ce partionnement de I'espace en anneaux d’épaisseurs croissantes permet
des constructions couche par couche dans chaque portion annulaire, de maniere
indépendante, puisque les interstices annulaires résiduels intermédiaires C(A; —
1/2, A;+1/2) sont tous d’épaisseur égale & 1 qui est le double du rayon commun
1/2 des répliques de B. Ces régions intermédiaires ne contribuent pas a la den-
sité si bien qu’elles peuvent étre remplies par des sphéres ou non. Cependant,
Pexistence de telles portions sphériques intermédiaires qui seraient laissées la-
cunaires est incompatible avec la construction d’empilements completement
saturés, au moins pour n = 2 [K-K].

Remarquons que la valeur 2 qui contréle la suite exponentielle des rayons
(M\i)i par la relation A;4; > 2\; dans le Théoreme 2.7 (ii) peut étre rem-
placée par n’importe quelle valeur a > 1 Ceci est important pour itérer une
construction depuis un germe en dimension n : en effet, en choisissant a > 1
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suffisamment petit le probleme se ramene a remplir une couche de maniere la
plus dense possible, de maniere équivalente ceci revient a travailler en dimen-
sion n — 1, puis a propager dans la direction orthogonale radialement.

2.3 Trous, rayon de couverture et comportement
asymptotique

Le Théoreme 2.8 relie la densité et le rayon de couverture (constante de
Delone) d’un empilement de spheres. Son contenu est tres simple et, curieuse-
ment, ne semble pas avoir été vu auparavant puisqu’il ne semble pas figurer,
a notre connaissance, dans aucun livre de Géométrie des Nombres. Il s’agirait
d’un résultat de base, élémentaire.

La contribution [MVG3] reporte le Théoréme 2.8 ainsi que ses conséquences
a I'asymptotique de divers empilements de construction connue.

Théoréme 2.8. Soit n > 2. Si A € UD est un ensemble de Delone de
R™ de constante R, alors

2R)™ < §(B(A) < 46 pour tout R > R. = R.(n), (2.7)
ot R, est défini par Xr, # 0 et Xy =0 dés que s < R,.

Appelons p,(R) := (2R)™". La dépendance en R™™ de l'expression
un(R) avec n est trés importante. Cela permet d’étudier les valeurs asymp-
totiques de la constante de Delone R.(n) lorsque n tend vers 'infini.

Théoréme 2.9. Pour tout € >0 il existe ne tel que pour toutn > ne,

Rc(n) Z 2—0.401 —e.

Le Théoréme 2.9 affirme 'existence d’une collection infinie de cellules de
Voronoi de taille moyenne dans tout plus dense empilement de spheres égales
de R™ derayon 1/2 de rayon de sphere circonscrite plus grande que 20401 +
o(1) = 0.757333... 4+ o(1).

Les applications de la formule (2.7) concernent les rayons de couverture
des suites d’empilements de spheres données par des constructions connues. On
obtient en effet des bornes inférieures explicites, en fonction de n, pour le rayon
de couverture des réseaux de Barnes-Wall BW,, Craig Ag), Mordell-Weil
MW, et des empilements de type BCH. On montre que les trous profonds
ont des diametres qui tendent vers l'infini pour plusieurs de ces suites lorsque
n tend vers l'infini, ce qui les empéche d’étre tres denses.

11 est intéressant de comparer la borne inférieure p,(R) , et ”sa continuité
avec R”, avec des bornes asymptotiques connues, notamment dans la zone
entre les bornes supérieures de Rogers ou Kabatjanskﬁ—Levenétein et les bornes
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inférieures de type Minkowski-Hlawka pour la densité d’empilements de réseau.

Les petites valeurs de R entre les bornes ‘/75 47 (Blichfeldt [Bt]) et 1

(Butler [Bu]) correspondent & cette zone, ou les spheres se touchent presque
toutes sans que l'on ait controle sur le nombre de contacts réels de chaque
sphere dans 'empilement. L’intervalle de valeurs possibles pour R est méme
inclus dans [29401 — ¢ 1] par le Théoreme 2.9.

La construction d’ensembles de Delone de tres petite constante de Delone
est un probléme qui n’est pas considéré dans [MVG3].

Le comportement exponentiel dominant du minorant, en (2R)™", donné
par le Théoreme 2.8, s’obtient également simplement a partir de la relation
entre la taille des trous profonds ( R > 1/2 ), d’'un empilement de spheres et
le probleme du recouvrement d’une boule de rayon R par des petites boules
égales de rayon 1/2 (voir Section 2.4) comme suit.

Soit A € UD. La densité de 'empilement B(A) se calcule & partir d’un point
de R™ choisi, mettons «, comme origine et est indépendante de ce point base
[Rol]. Supposons que A soit un ensemble de Delone de constante R = R(A) >
0. On a:

R(A) := sup mf Iz = All-
2€ERM AE

Cela signifie qu’il existe au moins un trou profond (sphérique) dans A qui est
un sommet d’une cellule de Voronoi de boule circonscrite de rayon R(A). Sup-
posons que B(0, R(A)) soit un tel trou profond, par une translation adéquate.
Soient x1, xa,...,x, des points distincts de R™ tels que

LVJ (zj +B(0,1/2)) > B(0,R(A)).

Jj=1

Alors
R" C le+B()1/2)+A)

En effet, tout z € R™ est tel qu'il existe A € A tel que z — A € B(0, R(A)). Par
suite, il existe i € {1,2,...,v} tel que

zex;+B(0,1/2) + A

Ce recouvrement de R™ conduit a

1<) XBan(@) xR
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oll XB(z;+4) () est la fonction caractéristique de I'ensemble B(x; 4+ A). On en
déduit, pour tout ¢t > 0,
1< z": S — / XB(wi+n) (@) d.
P Vol(tB(0,1/2) tB(0,1/2)

Par conséquent

- 1
b= t Vol(tB(0.1/2) ; dx | .
= ; EEEOP (Vol(tB(OJ/Q) /tB(0,1/2) XB(a;+4) (€) :z:)

Il en résulte : 1 < v§(B(A)). De maniere équivalente cela revient & mettre
Porigine (variable) o successivement aux points x1, xa, . . ., x, dans le trou. En
particulier, avec les notations de la Section 2.4 :

Vatnm < (B(A),

ce qui donne le comportement dominant du minorant annoncé, en (2R)™ ",
grace au Théoreme 2.11.

2.4 Recouvrement d’une boule par des petites boules
égales

Soit T' > 1/2. Posons

v, := le nombre minimal de boules (fermées) de rayon 1/2 qui forment

un recouvrement de la boule fermée de rayon T dans R”,n > 2.

Le probleme suivant semble fondamental :

que sont les entiers vr, lorsque T > 1/2, n > 2, et quelles sont les
configurations correspondantes de boules de rayon 1/2 lorsqu’elles forment
le recouvrement le plus économique de la boule fermée B(0,T) (a rotation et
symétrie prés) ?

Nous ne résolvons pas ce probleme dans [VG1] mais nous donnons une
borne supérieure explicite & vr, dans le Théoréme 2.11, qui s’avere meilleure
que celle qui était connue jusqu’a présent : et qui est celle donnée par Rogers
dans [Ro2] il y a plus de 40 ans, reproduite dans le Théoréme 2.10 en corri-
geant les quelques coquilles d’impression de ’article original. Dans la deuxieéme
partie de [VG1] nous donnons lasymptotique des estimations, non-effective,
pour les bornes inférieures et supérieures de vr ,, lorsque T' et n tendent vers
I'infini, grace a des résultats récents de Bordczky Jr. et Wintsche [BW] sur
I’asymptotique du nombre minimal de spheres égales de R™ qui recouvrent
la sphere S"~!. L’optimalité de ces estimations asymptotiques est commentée
et donne lieu a conjectures.

Rogers (pp 163-164 et Théoreme 2 dans [Ro2]) a obtenu le résultat suivant :
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Théoréme 2.10. (i) Si n >3, avec ¥, =nlnn+nln(lnn) + 5n,

ed, (2T)" if T >n/2,

(i) Si n>9,
4e(2T)"n~/n

1< <
VTin = Inn—2

(nlnn +nln(lnn) +nin(2T) + % In(144n)) (2.9)

pour tout 1/2 <T < 5y—.

L’assertion (i) du Théoreme 2.10 peut étre facilement étendue au cas n =
2 en invoquant Rogers [Rol], p 47, de sorte que la borne supérieure stricte
Y, = nlnn + nln(lnn) + 5n  de la densité de recouvrement par des boules
égales dans R™ est encore valide dans ce cas. Ainsi les inégalités (2.8) sont
encore vraies pour n = 2. Dans le cas n = 2, voir aussi Kershner [K]. Par
ailleurs, l’assertion (ii) du Théoréme 2.10 ne semble par avoir été améliorée
depuis; voir par exemple [GO], Fejes-Toth [FT], Schramm [Sm], Raigorodski
[Ri] ou Bourgain et Lindenstrauss [BLs].

Le probleme de la détermination explicite de vr , est relié a l'existence de
bornes explicites de la densité d’empilements de spheres égales de R™ par la
taille de leurs trous profonds [MVG3], Section 2.3, ainsi qu’a des problémes
divers [MR] [IM] [FF] [Mw].

La raison pour laquelle nous avons repris les calculs (justes) de Rogers est
que la formule proposée dans 'article original par Rogers n’est pas symétrique
et fait intervenir des grandeurs non naturelles : un facteur “144”, un dénomina-
teur “Inn — 2”7, pour des valeurs de n supérieures a “9”, ... donc pour laquelle
nous avons supposé d’office que le majorant devrait étre reconsidéré autrement.

Théoréme 2.11. Soit n > 2. Les inégalités suivantes ont lieu :
(1) n<wvp,<

74(In7)/7 \/? nyn {(n —1)In(27n) + (n— 1) In(Inn) + $Inn+In (%@2
2

[ T(1- )1 - 2 (un)?

) oy

T Inn

n
1< T < —— 2.1
st 1<T <5, (2.10)

(’L’L) n <VUrn <

T Vn [(n —1)In(2Tn) + (n — 1)In(Inn) + $Inn +In (Jﬁg)} Ty
2 T(1-m)- &)

si 1/2<T<1. (2.11)
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La deuxieme amélioration du Théoreme 2.10 de Rogers est donnée au
Théoreme 2.12. Elle n’est pas effective et s’appuie sur des résultats récents
de Boroczky Jr. et Wintsche [BW]. Pour synthétiser les résultats (dans une
écriture non-effective), prenons les notations suivantes. Etant données deux
fonctions f et g réelles positives sur ’ensemble des entiers positifs, on écrira
f(n) < g(n) ¢l existe deux constantes positives ng et ¢ telles que, pour tout
n > ng, f(n) < c¢-g(n). Le point de départ est alors la liste suivante des
estimations de Rogers :

vrm < nlon-(2T)"  si T> g (2.12)
2 n . n n
N Inn - (27 <7< 2.13
vr, < nlon - (27) st g ST <3 (2.13)
2 n .1 n
vrn < n2Vn- (2T si = <T < (2.14)

2 2Inn’

Probablement (2.12) ne peut pas étre amélioré par les méthodes développées
ici, et cette estimation est optimale & un facteur Inn pres puisque [BW]
vn

n-(20)" < vr, @ siT > g ousi T =2, (2.15)

Le Théoreme 2.11 améliore le Théoreme 2.10 par les estimations suivantes :

n?y/n n n?y/n
N (2T i 1<T< ) 2.16
YTin K Tlnn (27) . 2Inn o Tlnn > ny/n ( )

1
vra < nynlnn- (27)""1 s s<T<l (2.17)

Les estimations asymptotiques sont les suivantes.

Théoréme 2.12.

vpp < nlnn - (27)"° si T > g, (2.18)
1
Vrm < "@n" @T)" s 1<T< 7" (2.19)
T,n
’ T——--In8(T— = -+ —<T<1 2.2
7)1 < nyn 5 n §( 2)n si 5 +4n . (2.20)
1
vrn < 2n si - <T<—-+ . (2.21)
n
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3 Empilements de spheéres autosimilaires de type fini

L’objet de [VG2] est d’'une part de donner un survol des liens existant
entre Géométrie des Nombres et Cristaux Apériodiques en Physique de la
Matiere Condensée, d’autre part de prouver le Théoreme 3.1 qui fournit ’exis-
tence de schémas de coupe-et-projection canoniques au-dessus d’ensembles
uniformément discrets autosimilaires et de type fini, et d’en déduire quelques
conséquences pour les empilements de spheres que ’on peut construire a ’aide
de ceux-ci (Théoreme 3.3).

La mathématique des ensembles de points uniformément discrets et des en-
sembles de Delone développée récemment a au moins quatre origines différentes :
(i) I’évidence expérimentale d’états de la matiere non périodiques, comme les
quasicristaux [AG] [GM] [HG] [J] [S-C] ou les phases cristallines modulées
incommensurables [JJ] [Ja] et leur modélisation géométrique (Appendice de
[VG2]), (ii) certains travaux de Delone [Del] [De2] [F-S] [Ry] sur la cristallo-
graphie géométrique (comparativement, voir [H] [MM] [Op] [Sg] pour une ap-
proche mathématique classique des cristaux périodiques), (iii) certains travaux
de Meyer sur les ensembles de coupe-et-projection et les ensembles de Meyer
[Mel] [Me2] [Me3] [Pa] (pour un langage plus moderne sur les ensembles de
Meyer dans les groupes abéliens localement compacts : [Mol]), (iv) la théorie
des pavages autosimilaires [B] [L-J] [So2] et I'utilisation de la théorie ergodique
pour étudier la diffraction [BLz] [Sc] [So2] [So3]. En particulier, I'impact sur
les mathématiques de la découverte des quasicristaux en 1984 [S-C|, comme
phases ordonnées & longue-portée, a été soulignée par Lagarias [La3]. Le terme
quasicristaux mathématiques [BM] [Lad] a été proposé pour appeler les en-
sembles de Delone qui sont utilisés comme modeles géométriques discrets de
ces nouveaux états de la matiere ayant des propriétés spectrales ou de dif-
fraction particulieres; en particulier les cristauzr sont ceux pour lesquels le
spectre est essentiellement purement ponctuel (voir [[UCr] [Se] et ’Appendice
pour une nouvelle définition du mot cristal, et [Cw] [Gu] [Ho] pour la théorie
de la diffraction). Les ensembles de Delone sont congus comme généralisation
naturelle des réseaux en cristallographie des cristaux apériodiques.

Une classification des ensembles uniformément discrets, qui étend de mani-
ére immédiate celle des ensembles de Delone [Lal] [La2], est proposée dans
[VG2]. Les ensembles uniformément discrets de type fini de R™ constituent
la classe la plus grande sur laquelle une application adresse peut étre définie
[Lall.

La théorie des ensembles uniformément discrets de type fini autosimilaires
(UTA) généralise celle des empilements de spheres (égales) de réseaux de R™
[By2] [Cal] [CS] [GL] [Mt] [Z] puisqu’un réseau est déja un ensemble UTA
lui-méme (les entiers sont des autosimilarités). Les ensembles de Meyer au-
tosimilaires admettent comme autosimilarités des nombres de Pisot ou de
Salem [Me2] [Me3], alors que les ensembles de Delone de type fini et auto-
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similaires ont pour autosimilarités des nombres de Perron ou de Lind [Lal].
C’est un probleme ouvert de trouver un critére qui assure qu’un ensemble
uniformément discret, de type fini ou non, admet au moins une autosimila-
rité. Pour un ensemble de Delone général on s’attend a ce que son ensemble
d’opérations de symétrie et en particulier ses symétries d’inflation soient rares,
particulierement lorsque la dimension de I’espace ambiant est grande, a fortiori
pour les ensembles UTA ; & titre comparatif Bannai [Ba] et Collinet [Cl] par
exemple ont fait I’étude des symétries des réseaux.

L’existence de schémas de coupe-et-projection au-dessus d’un ensemble de
Delone est utile pour caractériser I’ensemble de ses autosimilarités, centres
d’inflation, amas de spheres locaux, etc [Csl] [Cs2] [GVG] [M-P]. Etant donné
un ensemble uniformément discret arbitraire, c’est un probléme ouvert de sa-
voir si un schéma de coupe-et-projection existe au-dessus de lui. Le Théoreme
3.1 répond & ce probleéme en toute généralité pour un ensemble UTA A C R".
Appelons Kg := K ®g R la R-algebre étale, ¥ : K — Ky 'application cano-
nique.

Théoréme 3.1. Soit A C R",n > 1, un ensemble uniformément discret tel
que m := rang Z[A — A] < 400 avec m > 1. Soit A > 1 une autosimilarité
(affine) de A, i.e. un nombre réel > 1 tel que A\(A—c) C A—c pour un certain
c e R™. Alors

(i) X\ est un entier algébrique réel de degré d > 1 et d divise m,

(i) il existe r = m/d vecteurs wi,wa,...,w, Q-linéairement indépendants
dans le Q(X)-espace vectoriel QA — A] tel que Z[A — A] soit un Z-sous-
module de rang m du Z-module :

Zwy, Mo, . .., XYy we, Awa, o, AN wg, L we, Awy, L, AT,

(iii) pour toute Z-base {v1,va,...,vn} de Z[A — A], une relation matri-
cielle : A\V = MV a lieu, dans laquelle V = t[vq,...,v,] et M est une
matrice inversible entiere m x m dont le polynome caractéristique satis-
fait det(X I—M) = (o(X))™4 ot o(X) désigne le polynéme minimal de
A ; en particulier, detM = NK/Q()\)m/d, ot N g(A) désigne la norme
algébrique de ),

(iv) il existe un schéma de coupe-et-projection au-dessus de A :

i=1
ot le réseau L =T]._, Z(Z[A])”%—?” est tel que pry(L) D Z[A — A], dont
l’espace interne H est le produit de deux espaces :
H=(Rg\R[A]) xG
ot R est Uimage de R[A] dans [];_, KRﬁ par les plongements réels
et complezes de K, et G la cloture dans i, KRH:z—?H de l'image par ¥
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de lespace des relations sur K entre les générateurs wi,...,w,. L’es-
pace Ry \ R[A] est appelé Uespace ombre de A. Ce schéma de coupe-et-
projection est muni d’une structure Fuclidienne donnée par une forme
bilinéaire symétrique de type Trace pour laquelle Ry et G sont orthogo-
NAUL.

Le cluster central de la base (M w;)i=1,.. r j=o0,...d—1 est par définition l'en-
semble {wq, wa, ..., w,}. Certains vecteurs dans un cluster central peuvent étre
R-linéairement dépendants. Il est facile de vérifier que

r = 1 dans le Théoreme 3.1 = le R-espace vectoriel engendré par A
est de dimension 1.

La réciproque est généralement fausse ; les ensembles de beta-entiers Zg [B-L)
(Section 4) sur la droite sont par exemple localement finis et autosimilaires
mais on ne sait pas s’ils sont uniformément discrets ou non, de type fini ou
non en général. Lorsque § est un nombre de Pisot, Zg est un ensemble UTA
puisqu’il est un ensemble de Meyer.

Corollaire 3.2. Si B(A) est un empilement de sphéres de R™ tel que A soit de
type fini, admette A comme autosimilarité et soit tel que r = 1, i.e. pour lequel
le degré d de X est égal au rang m de Z[A — A], alors Z[A — A] est la projection
d’un sous-réseau d’indice fini d’un réseau idéal de K = Q(\) dans le schéma
de coupe-et-projection au-dessus de A. Cet indice est un entier multiple de

(O : Z[N)).

Le Théoréme 3.1 donne un cadre pour construire des empilements de spheres
(égales) B(A) pour lesquels les arrangements locaux peuvent se décrire par des
jeux de coordonnées finies, comme pour les réseaux. Cela permet de transporter
a ces ensembles de spheres les techniques acquises pour les réseaux : t-designs
[BV], etc. Dans le Corollaire 3.2 la terminologie ”diviseur d’Arakelov”, signi-
fiant que le plongement de Z[A — A] dans le schéma de coupe-et-projection
est donné par une structure Euclidienne, peut remplacer ”réseau idéal” par la
correspondence bijective entre ces deux notions [Sf] (voir aussi Neukirch [Ne]).

Le Théoreme 2.8 montre qu’il est important d’obtenir des bornes inférieures
intéressantes de la constante de Delone pour un ensemble de Delone général.
Pour un ensemble de Delone qui est en outre un ensemble UTA, le fait qu’il
existe un corps de nombres engendré par I'autosimilarité fait qu’il est possible
de donner canoniquement une borne inférieure a la constante de Delone lorsque
I’ensemble UTA provient d’un ensemble modele de fenétre €2 positionnée parti-
culierement par rapport au réseau du schéma de coupe-et-projection canonique
associé. Cela donne la notion de k-minceur pour un ensemble UTA.

Dans [VG2] on montre la double origine de la constante de Delone d'un
ensemble UTA : la premiére origine vient d’abord des propriétés géométriques
du cluster central par le Théoreme 3.1, la deuxiéme origine est purement
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arithmétique, étant la conséquence de résultats récents de Cerri [C1] [C2] sur
les minima Euclidien et inhomogene du corps de nombres K et de ceux de
Henk [Hk2] sur lexistence de plans libres dans les empilements de spheres de
réseaux. Ces deux influences procédent par un sous-réseau d’un produit de
réseaur idéauz [By2] en bijection avec Z[A — A] dans le schéma de coupe-et-
projection donné par le Théoreme 3.1 (iv). On ne traite dans [VG2]| que le
cas r = 1, c’est-a-dire le cas d’empilements de spheres alignés (sur une droite
affine dans R™), en ayant en vue le cas général r quelconque.

Théoréme 3.3. Soit A C R, n > 1, un ensemble UTA qui est soit un en-
semble modéle soit un ensemble de Meyer, de fenétre 2, dans le schéma de
coupe-et-projection défini par le Théoréme 3.1 (iv) ot r = 1, et L' est un
réseau tel que pri(L') = Z[A — A].

Supposons que 'autosimilarité X\ soit de degré d > 3, que le rang du groupe
des unités de K = Q(\) soit > 1 et que ce ne soit pas un corps CM. Alors, si
A est k-mince, k > 2, sa constante de Delone R(A) satisfait :

R(A) > vV (M(K)** — My(K)¥)*, (3.1)

ot M(K), resp. My(K), est le minimum Euclidien, resp. le k-iéme minimum
FEuclidien, de K.

La condition de remplissage de l'espace : m/d = r > n pour les couples
de valeurs {(d,m)} (avec les notations du Théoreme 3.1) est nécessaire pour
construire des empilements de spheres denses dans R™.
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4 Beta-entiers et beta-réseaux

Gazeau [G1] a introduit des 1997 la notion d’ensemble de beta-entiers, ou
B-entiers, que I'on note Zg. Ses objectifs étaient liés a I'observation de beta-
réseaux comme supports uniformément discrets pour ’ensemble des positions
atomiques de modeles de quasicristaux en physique de la matiére condensée,
et visaient a établir des systemes d’ondelettes adéquats sur ces objets. L’état
quasicristallin a été découvert en 1984 [S-C] et a donné lieu & de nombreuses
théories pour I'expliquer, dont les ensembles modeles provenant de schémas de
coupe-et-projection, invariants par l'action d’un groupe ponctuel interdit en
cristallographie ” classique”, des 1985 [DK], puis les beta-réseaux [G1] [G2].

Les schémas de coupe-et-projection avaient été introduits auparavant (sous
une terminologie différente) par Meyer [Mel] [Me2] [Me3] dans les années 70,
mais pour des problemes de synthese spectrale. Il s’agissait d’introduire en
Analyse Harmonique les ensembles dits harmonieux dans des groupes abéliens
localement compacts. Les constructions de Meyer ont été redécouvertes par la
suite par Moody et Patera [Mol].

Les valeurs naturelles de 3 envisagées par Gazeau [G1] [G2] pour les beta-
réseaux viennent de celles qui sont observables dans la modélisation des quasi-
cristaux en physique, c’est-a-dire souvent des nombres de Pisot quadratiques.
Le développement de ’étude des beta-entiers, pour § > 1 un nombre de Pisot
général, s’est alors renforcé sous 'impulsion de C. Frougny [B-K1] [B-K2] [Fy1]
[Fy2] par I'usage de techniques de numération en base non-entiere.

Les questions posées par les beta-entiers dépassent en fait de beaucoup les
considérations initiales provenant de la physique et sont pleinement d’ordre
mathématique.

Les beta-entiers sont completement controlés par le développement de Rényi
dg(1) de 1, sur lequel de nombreux problémes sont ouverts. Nous les présentons
dans la suite.

4.1 Etude géométrique des beta-entiers avec 3 un
nombre de Perron

Soit 8 > 1. Un beta-entier (ou B-entier) positif est par définition un nombre
réel positif dont le développement de Rényi en base § n’admet aucune partie
fractionnaire [Re| [Py]. Il s’agit d’un polynéme en [ dont les coefficients sont
dans un alphabet donné, donc bornés, et constituent une suite de coefficients
strictement inférieure lexicographiquement, ainsi que tous ses décalés (Condi-
tions de Parry), & une borne supérieure donnée par le développement de Rényi
dg(1) de 1. L’ensemble des beta-entiers se note Zg et a pour propriétés :

Zﬁ = 725, ﬂZg C Zﬁ.
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L’ensemble Zg est autosimilaire par construction, discret, localement fini. L’en-
semble

B = {8 >1|Zg est uniformément discret}

contient les nombres de Pisot (Thurston [T]). L’ensemble B n’est pas ca-
ractérisé pour le moment.

Nous rappelons dans [GVG1] la numération en base [ et les beta-entiers
d’aprés Rényi, Parry et Frougny [Fyl] [Fy2]. Ensuite, nous montrons qu’il
existe un schéma de coupe-et-projection canonique au-dessus des beta-entiers
pour tout nombre de Perron (degré m > 2). Ce schéma de coupe-et-projection
est plongé naturellement dans la décomposition de Jordan de R™ sur lequel agit
la matrice compagnon de 3. Il s’agit d’un cadre géométrique ou une direction
dilatante et un sous-espace de codimension 1 (dit espace interne) permettent
de réaliser par projection sur une certaine droite ’ensemble Zg. Ces sous-
espaces s’obtiennent en inversant la matrice de Vandermonde associée & 8 (qui
provient de la matrice compagnon de ) par les polynémes d’interpolation de
Lagrange. On n’a pas besoin de savoir que Zg est uniformément discret pour
cette construction ; qui donc est indépendante du fait que 3 appartient a B ou
non.

Cette décomposition géométrique de R™ s’effectue sans invoquer aucun
systeéme de substitution sur un alphabet fini [A-I] [PF] ou la théorie de Perron-
Frobenius [Mc|. Lorsqu’en particulier § est un nombre de Pisot, cela définit
une fenétre d’acceptation minimale dans ’espace interne qui est le fractal de
Rauzy [Ra] [AI]. Nous le montrons sur un exemple (Messaoudi [Mil] [Mi2]).
Nous en déduisons, en utilisant ces constructions, une preuve géométrique du
fait que Zg est un ensemble de Meyer lorsque 3 est un nombre de Pisot.

A ce point, nous indiquons la différence principale avec I'approche substi-
tutive qui est que les matrices en jeu peuvent avoir des coefficients négatifs
(voir Akiyama [Ak1] [Ak2]).

Les propriétés additives de Zg sont étudiées dans la deuxieme partie de
[GVG1] au moyen de ces schémas de coupe-et-projection canoniques lorsque
B est un nombre de Pisot : en A), nous montrons que les éléments de Z7F =
Zg NRT peuvent étre représentés par des combinaisons a coefficients dans
N d’éléments de Zg de petite norme, en nombre fini, en utilisant des cones
tronqués dont ’axe de révolution est la direction dominante de la matrice
compagnon de [ et un Lemme de Lind sur les semi-groupes; en B) nous
donnons une interprétation géométrique de la prépériode du S-développement
du nombre réel qui est la somme de deux beta-entiers, des ensembles finis T et
T’ dans les relations [B-K1] [B-K2]

+ 7t + + _ g+ /
ZE+25 CZy+T | Zh —L5 CZg+T
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et une borne supérieure de ’entier ¢ qui apparait dans la relation
1
ez

lorsque x+vy et = —y ont des [-développements finis.

x,yezgzxiye Zg

4.2 Lacunes dans dg(1) et classification des nombres
algébriques

L’exploration des liens entre Dynamique Symbolique et Théorie des Nom-
bres, relatifs aux (-entiers lorsque 8 > 1 est un nombre algébrique ou plus
généralement un nombre réel, a commencé avec Bertrand-Mathis [Bel] [Be2].
Blanchard [Bl] a proposé une classification possible des nombres réels selon
leur (-shift, par les propriétés du développement de Rényi dg(1) de 1 (en fait
il s’agit d’une classification proposée par Bertrand-Mathis et reportée dans
[Bl]). De nombreuses questions restent ouvertes concernant la distribution des
nombres algébriques 8 > 1 dans cette classification (reportée ci-dessous).

Le développement de Rényi de 1 est important puisqu’il controle le §-shift
[Py] et 'ensemble discret localement fini Zg C R des (-entiers.

L’article [VG3] a pour objectif de donner un nouveau théoréme (Théoréme
4.1) sur les lacunes (plages de zéros) dans dg(1) pour § > 1 un nombre
algébrique, et d’apporter des réponses partielles & certaines questions [Bl],
en particulier pour les nombres de Salem (Corollaire 4.2).

Le Théoréme 4.1 fournit une borne supérieure asymptotique du quotient
de lacune de dg(1). Elle est obtenue par des méthodes classiques “a la Liou-
ville” utilisées par Mahler et Giiting, puis améliorée par une version récente de
I'inégalité de Liouville (Proposition 3.14 dans Waldschmidt [Wa]). Le chemi-
nement de la démonstration du Théoreme 4.1 se révele tres fructueux puisqu’il
conduit & une nouvelle classification des nombres algébriques 8 > 1 fondée sur
lasymptotique des lacunes dans dg(1) et de propriétés caractéristiques, notam-
ment la mesure de Mahler M(3), de § (la définition de M(03) est rappelée dans
[VG3] Section 3). Cette double paramétrisation, symbolique et algébrique, a
été devinée dans [Bl] p 137. Cette nouvelle classification est complémentaire de
celle de Bertrand-Mathis [Bl] pp 137-139, les deux étant rappelées ci-dessous
a titre de comparaison. La question de savoir si un nombre algébrique 8 > 1
est contenu dans une classe ou une autre a déja été étudiée et discutée par de
nombreux auteurs [Bel] [Be2] [Be3] [B]] [Bol] [Bo2] [D-S] [FS] [Lil] [Li2] [Py]
[PF] [Sch] [Sk] et dépend au moins de la distribution des conjugués de § dans
le plan complexe. Seuls les conjugués de § de module strictement plus grand
que 1 interviennent dans le Théoreme 4.1 par la mesure de Mahler de 3. On
déduit immédiatement de cette remarque le Corollaire 4.2. Par suite tous les
nombres de Salem appartiennent a C; U Co U Qg, alors que les nombres de
Pisot sont dans C; U Cg [T].
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Une autre démonstration du Corollaire 4.2 consiste a controler les plages
de zéros de dg(1) par des Théoréemes de Géométrie Diophantienne permettant
de prendre en compte en méme temps des familles convenables de places du
corps de nombres K = Q(() associées aux conjugués de (3 et les propriétés de
lacunarité de dg(1). Cette autre preuve du Corollaire 4.2 est juste esquissée
dans la Section 4 de [VG3], et est obtenue en utilisant le Théoréme de Thue-
Siegel-Roth cité par Corvaja [Cj] [Ad].

Théoréme 4.1. Soient > 1 wun nombre algébrique et M(83) sa mesure de
Mahler. Soit dg(1) := 0.t1tats ..., avec t; € Ag :={0,1,2,...,[8 — 1]}, le
développement de Rényi de 1. Supposons que dg(l) soit infini et lacunaire
dans le sens suivant : il existe deuz suites {mp}ln>1 et {sn}n>0 telles que

1l=50<mp <s1<mg < s <.

--Smn<5n§mn+1<5n+1§...

avec (S8p —My) > 2, ty, #0,ts, #0 et t; =0 si my, <i<s, pour tout
n > 1. Alors

sn_ log(M(5))

limsup — < 4.1
n—+oo Mp 1Og(ﬁ) ( )
En outre, si liminf,, o0 (Mp11 — my) = 400, alors
lim sup SlA < 0g(M(5)) (4.2)
n—+oo Mp41 — My 1Og(ﬁ)

Suivant Ostrowski [Os| le quotient s,/m, > 1 est appelé quotient de
lacune, relativement & la n-ieme lacune (en supposant t; # 0 pour tout s,, <
j < myu41 de maniére a avoir une description unique des lacunes de zéros).
Remarquons que le terme “lacunaire” a souvent d’autres significations dans
la littérature. Appelons £(Sg) le langage du (-shift [Bl] [Fyl] [Fy2] [Lo]. La
classification de Bertrand-Mathis/Blanchard ([Bl] pp 137-139) est la suivante :

Cy : dg(1) est fini.

Cy : dg(1) est ultimement périodique mais non fini.

Cs : dg(1) contient des plages bornées de lacunes de zéros, mais n’est pas
ultimement périodique.

Cy4 : dg(1) ne contient pas certains mots de £(Sg), mais contient des
plages de zéros de longueurs arbitrairement grandes.

Cs : dg(1) contient tous les mots de £(S3).

Classes de nombres algébriques proposée dans le présent travail, avec les no-
tations du Théoreme 4.1 :

1 . S .
(() ) 1= lim = avec (Mpy1 —my) borné.
n—-+4oo My,



QBQ) : 1= lim avec (8, —my) borné et

lim (Mmpg1 —my) = +o0.

n—-+oo
o’ Lm p_— avec ﬁiﬁf(s” My) = +00.
n log(M
Q1 : 1 < limsup S < M.
. Sn log(M(3
Qs limsup — = ———.
2 n——+oco Mnp 10g(6)

Quelles sont les proportions relatives de chaque classe dans I’ensemble @> 1
des nombres algébriques 3 > 17 En comparant Ca, C3 et Qf, quelles sont les
proportions relatives dans QJ entre le sous-ensemble des 3 pour lesquels dg(1)
est ultimement périodique et celui pour lesquels dg(1) n’est pas ultimement
périodique? Schmeling ([Sch] Theorem A) a montré que la classe Cs (des
nombres réels f > 1) admet une dimension de Hausdorff égale a 1. Nous
avons :

- Q.anC < QY

- Q.1 NCs C Q((Jl) U Q((J2), avec Cs N Q((JB) =0,

- @anC < QPUQUQ

Les nombres de Pisot 3 sont contenus dans C;U Qél) puisqu’ils sont tels que
dg(1) est fini ou ultimement périodique (Parry [Py], Bertrand-Mathis [Be3]).
Rappelons qu'un nombre de Perron est un entier algébrique 8 > 1 tel que
tous les conjugués ) de 3 satisfont & \ﬁ(i)| < . Réciproquement, d’apres
Lind [Lil], Denker, Grillenberger, Sigmund [D-S] et Bertrand-Mathis [Be2], si
B > 1 est tel que dg(1) est ultimement périodique (fini ou non), alors 5 est un
nombre de Perron. Tous les nombres de Perron ne sont pas atteints de cette
maniére : un nombre de Perron qui posséde un conjugué réel plus grand que 1
ne peut étre tel que dg(1) soit ultimement périodique ([Bl] p 138). Quant aux

nombres de Parry, ils appartiennent a C;U Csy. Soit Qp = (()1) U ng) U
(3)
o

Corollaire 4.2. Soit 8 > 1 un nombre de Salem qui n’appartient pas a Cy.
Alors 3 appartient a la classe Q.

La répartition des nombres de Salem dans les classes Cy, 81), 82) et Qgg)
est un probléme ouvert, sauf en petit degré. Boyd [Bo] [Bo3] a montré que les
nombres de Salem de degré 4 appartiennent a Cq, par conséquent a Qél). Cest
aussi le cas de certains nombres de Salem de degré 6 et 8 dans le cadre d'un
modele probabiliste [Bo2] [Bo3]. Dans [VG3] nous posons la question de savoir
si les nombres de Perron pourraient vérifier le Corollaire 4.2.

Comme la définition de la classe Q¢ = Qé”u Qé2)U Qés) ne fait pas allusion
a g, c’est-a-dire & M((), aux conjugués de (3, au polynoéme minimal de j3, &
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sa longueur, etc, mais prend en compte uniquement les quotients de lacunes
dans dg(1), la classe Qo, telle qu’elle est définie, peut s’adresser & tout nombre
réel B > 1, en toute généralité, au lieu de se restreindre aux seuls nombres
algébriques > 1. La question de savoir s’il existe des nombres transcendants
B > 1 qui appartiennent & la classe Qg a été posée dans [Bl]; dans quelle
proportion dans chaque sous-classe? On donne dans [VG3] quelques exemples
de nombres transcendants (constante de Komornik-Loreti [AC] [KoL], nombres
Sturmiens [CK]) dans Qo.

4.3 Lois de groupes sur les (3-entiers avec 3 un nombre
de Pisot quadratique unitaire et groupes de symétrie des
beta-réseaux

La contribution [E-VG] est un travail en collaboration et porte sur une
construction de groupe du plan pour les ensembles de points quasipériodiques
de R? que sont les beta-réseaux. Cela est rendu possible par les structures
algébriques que 'on peut mettre sur les beta-entiers Zg et leur asymptotique.
Les beta-réseaux sont une combinaison vectorielle des beta-entiers selon des
directions dans le plan complexe données par des racines de 'unité adéquates.
Les nombres de Pisot envisagés sont ici :

145
+2f, 14v2, 243

Lorsque 3 > 1 est un nombre de Pisot unitaire quadratique, Zg peut en effet
étre muni canoniquement d’une structure de groupe abélien additif et d’une
loi de multiplication interne : la beta-addition et la beta-multiplication. Les
groupes de symétrie du plan qui laissent invariant un beta-réseau sont en-
gendrés par I’équivalent des rotations et des translations, que ’on appelle ici
des beta-rotations et des beta-translations. Avec cette nouvelle arithmétique
liée a ces nouvelles lois internes, un beta-réseau peut étre considéré comme un
réseau. La fonction de comptage pg(n) quasipériodique, définie sur ’ensemble
des beta-entiers comme celle qui dénombre les petites tuiles (S) entre origine
et le n-ieme beta-entier, joue un role central dans ces nouvelles structures de
groupe. En particulier, cette fonction se comporte asymptotiquement comme
une fonction linéaire. Il s’ensuit que 1’on peut considérer les beta-réseaux et
leurs symétries comme des réseaux munis de leurs opérations de symétrie ha-
bituelles.
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RESUME. On montre que l'ensemble UD,. des ensembles de points
de R™,n > 1, qui ont la propriété que leur distance interpoint min-
imale est plus grande qu’une constante strictement positive r > 0
donnée est muni d’'une métrique pour lequel il est compact et tel
que la métrique de Hausdorff sur le sous-ensemble UD,. ; C UD,
des ensembles de points finis est compatible avec la restriction
de cette topologie a UD, y. Nous montrons que ses ensembles
de Delaunay (Delone) de constantes données dans R™,n > 1,
sont compacts. Trois (classes de) métriques, dont 1'une de na-
ture cristallographique, nécessitant un point base dans l’espace
ambiant, sont données avec leurs propriétés, pour lesquelles nous
montrons qu’elles sont topologiquement équivalentes. On prouve
que le processus d’enlevement de points est uniformément continu
a l'infini. Nous montrons que ce Théoreme de compacité implique
le Théoreme classique de Sélection de Mahler. Nous discutons la
généralisation de ce résultat a des espaces ambiants autres que
R™. L’espace UD, est I'espace des empilements de spheres égales
de rayon /2.

ABSTRACT. The set UD, of point sets of R",n > 1, having the
property that their minimal interpoint distance is greater than a
given strictly positive constant r > 0 is shown to be equippable
by a metric for which it is a compact topological space and such
that the Hausdorff metric on the subset UD,. y C UD,. of the finite
point sets is compatible with the restriction of this topology to
UD,. . We show that its subsets of Delone sets of given constants
in R™,n > 1, are compact. Three (classes of) metrics, whose one
of crystallographic nature, requiring a base point in the ambient
space, are given with their corresponding properties, for which
we show topological equivalence. The point-removal process is
proved to be uniformly continuous at infinity. We prove that this
compactness Theorem implies the classical Selection Theorem of
Mahler. We discuss generalizations of this result to ambient spaces
other than R™. The space UD, is the space of equal sphere pack-
ings of radius r/2.
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1. Introduction

In 1946 Mahler [Ma] obtained important results on star bodies and their
critical lattices in R™ using the following fundamental result called now
Mabhler’s Selection Theorem or Mahler’s compactness Theorem.

Theorem 1.1. Let (L,) be a sequence of lattices of R™ such that, for all r:

(i) ||z|| = ¢ for all x € Ly,x # 0, with ¢ a strictly positive constant
independent of r,

(ii) the Lebesque measure |L,| of the fundamental region of L, satisfies
|L,| < M with M a constant < +o0o independent of r.

Then one can extract from the sequence (L,) a subsequence (L,) that con-
verges to a lattice L of R™ such that |L| = lim,/_, o |Ly|.

This Theorem is very efficient in many problems of Geometry of Numbers
[Cal, [GL] and is as important as the Ascoli-Arzela Theorem in Analysis.
The desirability of extending the main Theorems of Geometry of numbers,
whose Mahler’s compactness Theorem, to general algebraic number fields
and more was emphasized by Mahler in a seminar at Princeton [RSD].
Several authors revisited this Theorem, giving generalizations and analogs
for other ambient spaces than R™: Chabauty [Ch| with subgroups in locally
compact abelian groups, Mumford [Mu] in semi-simple Lie groups without
compact factors and moduli spaces of compact Riemann surfaces of given
genus, Macbeath and Swierczkowski [MS] in locally compact and o-compact
topological groups (abelian or not) which are compactly generated, McFeat
[Mf] in adele spaces of number fields, Rogers and Swinnerton-Dyer [RSD]
in algebraic number fields. Groemer [Groe| gave an elegant proof of this
Theorem by showing that it is a consequence of the Selection Theorem
of Blaschke [Ca], by noticing the bicontinuous one-to-one correspondence
between lattices and their Voronoi domains.

The way that Chabauty [Ch] proved Theorem 1.1 is extremely instruc-
tive. A careful attention to his “elementary” proof reveals the very impor-
tant following fact that the Z-additive structure of the lattices L, is not
necessary to obtain the convergence of a subsequence. From this essen-
tial remark, Chabauty proposed in [Ch] a possible extension of Mahler’s
compactness Theorem to locally compact abelian groups as ambient spaces
with a suitable topology, method which was improved by Mumford [Mul].
Furthermore it opens the way to deal with sequences of non-periodic point
sets, that is without any additional algebraic structure, instead of only
lattices or subgroups, suggesting that Mahler’s Selection Theorem should
exist in more general situations.

In the present note we develop a new version of Theorem 1.1 adapted
to point sets (i.e. not only lattice or subgroup point sets) in an “ambient
space”. This can be formulated as follows. We will be interested in sets of
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point sets, say UD(H, ¢),, of a metric space (H,d), which is the “ambient
space”, where § is a metric on H, which have the property that the mini-
mal interpoint distance is greater than or equal to a given strictly positive
constant, say r. Point sets of H having this property are said uniformly
discrete sets of constant r. Denote by UD(H, 0),,; the subset of UD(H, §),
formed by the finite point sets. Concerning assertion (i) in Theorem 1.1,
the fundamental question is now the following:

Question 1.1. For which metric spaces (H,J) can the set UD(H,d), be
endowed with a topology such that it is compact and that the Hausdorff
metric A on UD(H, ), s is compatible with the restriction of this topology
to UD(H, d), ¢ and for which values of 7 7

In the objective of generalizing assertion (ii) of Theorem 1.1, let us recall
the (Besicovitch) concept of relative denseness [MVG]: a subset A of (H, 9)
is said relatively dense (for ) in H if there exists R > 0 such that for all
z € H there exists A € A such that §(z,A) < R. We will say that A is
relatively dense of constant R if R is chosen minimal for that property.
Then, assuming H satisfies Question 1.1 for some r > 0, we can formulate
the second question as follows:

Question 1.2. For which metric spaces (H,J) is the subset X(H,9),r
of UD(H, ), of the relatively dense subsets of H of given constant R > 0
compact, and for which values of R 7

By definition, a subset A of (H,J) is a Delone set if there exist r > 0
and R > 0 such that it is uniformly discrete of constant > r and relatively

dense of constant R > 0. In this case we say that A is a Delone set of
constants (r,R) (see [MVG] for possible values of R/r when H = R").

For instance, a lattice in (R™, || - ||) is already a Delone set, where || - ||
is the standard euclidean metric. Note that Question 1.2 makes sense for
any ambient space (H,d) for which Delone sets are infinite, as (R™, || - ||).

Indeed, if H is such that its Delone sets are all finite, then Question 1.2
can be answered by the classical properties of the Hausdorff metric on the
space of compact subsets of H (see Section 6). The main Theorem of this
note is the following (proved in Section 4). It provides answers to Question
1.1 and Question 1.2 when H = R™ and § = || - ||. For short, in this case,
let us denote by UD,, resp. UD,. ¢, the set UD(R",0),, resp. UD(R™, ), ¢,
and by X, p the set X(R",0), r.

Theorem 1.2. For all v > 0, the set UD, can be endowed with a metric
d such that the topological space (UD,,d) is compact and such that the
Hausdorff metric on UD,. ; is compatible with the restriction of the topology
of UD,,d) to UD, ;. For all R > 0, the subspace X, r of (UD,,d) of the

Delone sets of constants (r, R) is closed.
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Note that UD, is exactly the space of (equal) sphere packings of radius
r/2 of R™ [Cal, [Ro].

In Section 2 a construction of d is given from an averaging sequence of
compact sets (Kj)r>1 of R™ and the corresponding Hausdorff metric on
UD(Ky., |- )1y ke > 0.

Two other constructions of equivalent metrics are given in Section 3; the
first one (Subsection 3.1) is inspired by a metric put on the space of Delone
sets, which is used in tiling dynamical systems arising from Delone sets
(see Radin and Wolff [RW], Robinson [Ro], Solomyak [So], Gouéré [Go],
Baake and Lenz [BL]); this metric is here adapted to uniformly discrete
sets. The second one (Subsection 3.2) is obtained by point-counting sys-
tems normalized by suitable distances: this idea was first formulated by
Dworkin in [Dw] (for Delone sets) though given there without any proof
by the author. In this last case, since its construction is far away from
the Hausdorff metric, we show in final that it implies compatibility with
the Hausdorff metric on UD, s (Corollary 3.2). The construction of this
last metric may seem overly complicated at first sight, but it is of crytal-
lographic nature, with purposes in Geometry of Numbers, while the two
other metrics arise from Analysis. The third metric is adapted to study
local clusters of spheres in dense sphere packings, whose geometrical clas-
sification reveals to be essential, as in Hales’s works on Kepler Conjecture
[Ha|, [La] (see Remark in §3.3). These three metrics require a base point
in the ambient space R™, which will be conveniently taken common and
equal to 0. They give a way to create new metrics on UD,., for instance
invariant by translations and crystallographic operations adapted to study
local and global properties of aperiodic sphere packings [MVG], [MVG1].
In Subsection 3.3 we show that these metrics are topologically equivalent.
This topological equivalence is deeply related to the uniform continuity of
the removal process of points of a UD-set at infinity (Proposition 3.10 and
Proposition A.1 in the Appendix).

In Section 5 we show that Theorem 1.2 implies Mahler’s Selection The-
orem 1.1 and comment in Section 6 on the space H to provide positive an-
swers to Question 1.1 and Question 1.2. In particular we extend a theorem
of Macbeath and Swierczkowski [MS] to the metric case (see Theorem 6.1).

The Appendix contains a proof of the uniform continuity, for the third
metric, of the removal process of points of an arbitrary Up-set A at infinity
(Proposition A.1), given in a self-contained and detailed way in Step 2. The
computations in Step 1, relative to the case A = Z", useful in Step 2, are
treated in the same way as in Step 2, therefore in a detailed way, to help
the reader.

In the sequel we assume r = 1, the general case being identical, and
denote UD1 by UD , resp. X1 g by Xg, and by UD; the space of finite
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uniformly discrete sets of R™ of constant 1. Elements of UD are called
UD-sets: they are, either the subset of R™ which contains no point, i.e.
the empty set, denoted by (), or one-point subsets {z} of R", with z € R™,
or discrete point subsets A of R™ which contain at least two points such
that ||z — y|| > 1 as soon as x,y € A, with © # y. UD-sets of R™, except
the empty set (), may have very different R-spans, with affine dimensions
ranging from 0 to n. We denote by B(c,¢€) the closed ball of R™ of center

[e]
¢ and radius € > 0, by B(c,€) its interior, by diam(A) (resp. R4) the
diameter (resp. the circumscribed radius := sup,c4 [|a|| ) of a nonempty

subset A of R™, and by dist(A, B) the distance inf{||a —b| | a € A,b € B}
between two nonempty subsets A and B of R".

2. Construction of a metric from the Hausdorff metric

Denote by A the Hausdorff metric on the space of nonempty closed sub-
sets of R™ and by the same symbol its restriction to the space of nonempty
closed subsets of any nonempty compact subset of R™:

(2.1) A(F,G):=inf{p>0|F C G+ B(0,p) and G C F + B(0,p)}.

Let (Kj)r>1 be an averaging sequence of compacts sets of R” which contains
the base point ppase := 0: K1 D {ppase = 0} and for all &k > 1, K C Kj1,
with the property Ug>1 K = R™. For all £ > 1 and all A,A’ € YD which
are not simultaneously empty, we put

(2.2) dk(A,A/) = A(AﬂKk,AlﬂKk).

If AN Ky or AN K}, is empty, then di(A, A’) takes the value +o0o. On the
contrary, since we use the convention that for all ¢ € R™ and all € > 0 the
UD-set O+ B(c, €) equals the emptyset (), we have:

(2.3) dp(0,0) =0  for all k> 0.

Then we define the mapping d on UD x UD, valued in [0, 1], associated
with (K)g>1, by

Cdg(AN)
2.4 d(A, A 2k for all A,A" e UD
24 ; T+deh,A)

(with dg (A, A)/(1 + di(A,A)) =1 when di (A, A') = +00).

Proposition 2.1. The mapping d is a metric on UD. The Hausdorff
metric on UDy is compatible with the restriction of the topology of (UD,d)
to UDy.

Proof. Obvious by (2.3), and by construction for the compatibility with A.
O
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Remark. If (K} )r>1 is another averaging sequence of compact sets of
R™ such that K| contains the base point 0, the metric d’ associated with
(K}.)k>1 is topologically equivalent to the above metric d constructed from
(Kk)g>1: indeed, if (Fy,), is a sequence of UD-sets which converges to
a UD-set F for the metric d’, ie. d(F,,F) — 0,n — oo, then, for
all k > 1, (F, N K}), is a Cauchy sequence in (UD(K,,| - |)1,4). If
Jk is the greatest integer ! such that K; C Kj, then (F, N Kj,), is a
Cauchy sequence in (UD(Kj,, | -||)1,A) which converges to F'N Kj,. Since
Ur>1F'N Kli‘ = U1 FNKj, =Ups1 FN K = F, for all k > 1, djk(Fn,F)
tends to 0 when n tends to infinity. We deduce lim, - d(F,, F) = 0
by (2.4) and Lebesgue dominated convergence theorem. Therefore, to ob-
tain a distance d with properties easy to describe, it suffices to consider an
averaging sequence of balls centered at the base point 0 of R™: for instance,
Ky, = B(0,Ry), k > 1, with (Ry)x>1 a strictly increasing sequence satisfying
1imk—>+oo Ry = +o0.

Let us note that if 27% is replaced by a; in (2.4) where 0 < a; and
Y p>1 Gk < +00, we obtain another metric which is also topologically equi-
valent to d. All these possibilities constitute the class of metrics of d.

A discrete subset A of R™ is said locally finite if AN B(c,¢) is finite for
all ¢ € R™ and all ¢ > 0. The distance d can be extended to the space of
locally finite subsets of R™. Denote by D; f(R", || - ||) this space. Note that
0 € UpsoUD, and that U,~oUD, is contained in D; (R", || - ||).

Proposition 2.2. The mapping d associated with an averaging sequence
of compact sets (Ki)p>1 of R™ is a metric on the space Dy ¢(R™, | - ||) of
locally finite discrete subsets of R"™. The Hausdorff metric on U,~oUD, s
is compatible with the restriction of the topology of (D;s(R",[ - ||),d) to
Ur>0 Z/{Dr,f'

Proof. Same construction and arguments as in Proposition 2.1. O

3. Equivalent metrics

3.1. From tiling dynamical systems. Let R, > 0 be defined by the
following property: Xz = 0 if R < Rpy,. It is the smallest possible Delone
constant of any Delone set (with minimal interpoint distance > 1) in R",
and depends only upon n [MVG]. It is linked to packings of equal spheres of
radius 1/2 in R™ exhibiting spherical holes whose radius is always smaller
than or equal to Ry, and therefore to densest sphere packings [MVG],
[CS]. Let A > 2R2. and ppase = 0 the base point of R™. Then, for all

A, N € UD denote:
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(3.1) QAN = {a > 0| AN B(pvases g) C A+ B(0,«)

and A’ 0 B(prace, ) © A+ B(0,0)}
and define
(3.2) §1(A,A) := min {1, mf%&} .
Observe that, if a € Q(A,A’), then [a,+00) C Q(A,A’). We have:
51(0,0) = 0 and, for all A # 0, 61(A,0) = min{1, m}.

Proposition 3.1. The mapping d1 is a metric on UD. The Hausdorff
metric on UDy is compatible with the restriction of the topology of (UD, 61)
to Z/[Df

Proof. Tt is obviously symmetrical. If A = A’ then 6;(A,A’) = 0. Let us
show the converse. Assume 61(A,A’) = 0. If A or A’ is the empty set, then
it is easy to show that both are equal to . Assume now that A # 0, A’ # 0
and that A strictly contains A N A’. Then there exists x € A,z ¢ A’ such
that dist({z},A’) > 0. Since Q(A,A’) equals (0,400) by assumption, it
contains in particular 3 dist({z},A) > 0 and also A/(2||z|) > 0 if z # 0.
Take 8 := 2 min{dist({z}, A’), \/||z||} when z # 0, and 8 := 1 dist({0}, A’)
when z = 0. Then we would have: z € AN B(0, %) but z € A" + B(0, 3).
Contradiction. Therefore, A = A N A’, equivalently A C A’. In a similar
way, by symmetry, we obtain A’ C A, hence the equality A = A’
Let us show the triangle inequality:

01 (A, A”) < (A, AI) + 41 (A/, AH).

If 51(A,A") = 1 or if 61(A';A”) = 1, then it is satisfied. Assume now
(A, A) <1andd(A,A") < 1. Let a € Q(A,A') and b € Q(A',;A”). Then
a < Rpin and b < Rpyin. Let e = a +b. Then

A A
This implies:
A , A
AN B(0, g) c A'n B(0, - +a)+ B(0,a).

But a—|—% < %: indeed, since be < 2Rr2mn, we have: %—%—a = pe(A=be) > 0.
Hence,

AN B, g) c NN B0, %)+B(O,a) C A+ B(0,b)+ B(0,a) = A"+ B(0,e).
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Therefore e € Q(A,A”), that is Q(A,A”) D Q(A,A) + Q(A,A”). This
implies the triangle inequality.

To prove the compatibility of the Hausdorff metric A on 4D with the
topology arising from 0, it suffices to show, given A, A’ € UDy such that
51 (A, A’) is small enough, that the following equality holds:

A(A, N
(3.3) fi(A, A7) = DA

Rmin
Indeed, if 61(A,A’) is small enough, then there exists T € Q(A, A’) such
that A = AN B(0,%) and A’ = A’ N B(0, 3). Thus
inf Q(A,A') =inf{p>0| A C A+ B(0,p)
and
N c A+ B(0,p)} = A(AN).

We deduce (3.3). O

Proposition 3.2. The mapping 61 is a metric on the space Dy (R", | - ||)
of locally finite discrete subsets of R"™. The Hausdorff metric on Up~oUD,. ¢
is compatible with the restriction of the topology of (D;¢(R™, | - 1),61) to
Ur>0 Z/{Dr,f'

Proof. Same construction as in Proposition 3.1. U

- n+1’

A= . Given A € Xp, with R > R, denote by AP the uniformly

discrete set of R™ constituted by the deepest holes of A [CS]. Consider

the class of metrics §; constructed as above when A > 2R12nin varies. The

Remark. After Blichfeldt (see [MVG]) we have: Rpyin > @,/ 2. hence

normalization factor R;liln in the definition of §; comes from the fact that,
for all A € Xi with R > Ry, we have: §; (A,A(dh)) = 1 for all X\ large
enough.

3.2. From point-counting systems with equal spheres. Contrarily
to d and &7 the metric d constructed here on UD has no natural extension
to Dy ¢(R™,||-]]). But it possesses nice properties (Subsection 3.2.2) like the
point pairing property (Proposition 3.6).

3.2.1. Construction. Let € = {(D,E) | D countable point set in R"™, F
countable point set in (0, 1)} and f : R™ — [0, 1] a continuous function with

compact support in B(0,1) which satisfies f(0) = 1 and f(t) < %
for all t € B(0,1) and A € R™ (for technical reasons which will appear
below; it is a weak hypothesis; take for instance f(t) =1 — ||t|| on B(0, 1)

and f(t) = 0 elsewhere). Recall that a pseudo-metric ¢ on a space satisfies
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all the axioms of a distance except that §(u,v) = 0 does not necessarily
imply v = v.

With each element (D, E) € £ and (variable) origin « of the affine eu-
clidean space R" we associate a real-valued function d, p,gy on UDXUD in
the following way. Let Bp g) = {B,,} denote the countable set of all possi-
ble finite collections B,, = {B(c&m) egm)),B(cgm),egm)), . ,B(c(m) e(m))}

Tm ) im

(with 4,, the number of elements #B,, of B,,) of open balls such that

cém) € D and e((}m) € E for all ¢ € {1,2,...,i,}, and such that for all m

(m) (m)
q

and any pair of balls in B,, of respective centers ¢ and ¢, ’, we have

||c((1m) - clgm)\| > 1. Since any UD-set A is countable, we denote by A; its

i-th element. Then we define the following function, with A, A’ € UD, and
base point pp,se = 0:

(3.4)

do(p,E) (A, A')
sup |68, (A) — ¢8,, (A)]
BunBp.5) (1/2 + la—piase]| + a—c™ || + a=c™ ||+ - - +a—c™|))

7

where the real-valued function ¢g,, is given by

o, 0)= Y Yer(RE).

o 7
B(c,e)EBm

By convention we put ¢z, () = 0 for all B, € Bp gy and all (D, FE) € €.

It is clear that, for all m and A € UD, inside each ball B(c,¢€) € B,,, there is
at most one point of A and therefore the summation ), ef (Afc) is reduced
to at most one non-zero term. Therefore the sum ¢pg, (A) is finite.

Lemma 3.1. For all (o, (D, E)) in R" x &, dy (p gy is a pseudo-metric
valued in [0, 1].

Proof. Let a € R" and (D, E) € £. It is easy to check that d, (p ) is a
pseudo-metric on UD. Let us show it is valued in [0,1]. Let us consider
By, € B(p,p) for which the centers of its constitutive balls are denoted by
€1,€2,...,Ci,, . Then we have

1

5 S124lldl + lla—eill + lla —eafl + -+ + lla = e ||
Indeed, if there exists j € {1,2,...,4,,} such that |[c; — o] < 1, then for
all k # j, |lcx — af| > 2. Hence
Im — 1 S im

2 T 2

1 1
5 Tllall+lla—all+lla—cl+--+lla—c,| 2 5 +llal +
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If oy — af > 3 for all k € {1,2,...,i,,}, then

1 1 1 1
=t llall + o —eall 4 lla— ol -+ fla i 2 3+ ol + 2 >
On the other hand, since the radii of the balls B(cj,¢€;) € B, are less than
% by construction, we have 0 < ¢, (A) < 2 for all UD-set A. Therefore
|68, (A) = 65, (A)| < 5+ llo| + [l = ea]| + [l = 2| + - + [l = ci, |, for
all B, € B(p,g) and all UD-sets A, A’. We deduce the claim. d

The uniform topology on UD given by the pseudo-metrics d, (p,g) is
generated by the open sets {A € UD | dy,(p,g)(u,A) < €}, u € UD (Weil
[We]). In order to get rid of a peculiar choice of the (variable) origin o and
of the element (D, E) of £, the supremum over all choices (o, (D, E)) in
R"™ x &£ is taken.

Proposition 3.3. The supremum 02 := Sup,crn (p,E)eg da,(D,E) 1S G
metric on UD, valued in [0, 1].

Proof. The supremum of the family of pseudo-metrics d, (p,g) is a pseudo-
metric which takes its values in [0, 1]. We have to show that d9 is a metric.
Assume A, A" are UD-sets which are not empty such that do(A,A’) = 0
and let us show that A = A’. We will show that A ¢ A’ and A’ ¢ A
are impossible. Assume that A # A’ and that A ¢ A’. Then there exists
A € A such that A € A’. Denote € := 2 min{, min{|[A — u| | u € A'}}.
We have € > 0 since A’ is a UD-set. The ball B(),¢€) contains no point
of A’ and only the point A of A. Take « = A\, D = {\}, E = {e}. We
have dy p g (A, A') = 7aspy > 0o Hence d2(A,A’) would be strictly
positive. Contradiction. Therefore A € A’. Then, exchanging A and A’,

we have A’ C A. We deduce the equality A = A’. If we assume that one of

the UD-sets A or A’ is the empty set, we see that the above proof is still
valid. O

3.2.2. Properties.

Proposition 3.4. For all A,B,C € UD such that AU B € UD and all
(D, E) € € and By, € B(p gy, the following assertions hold:
(i) ¢8,.(AUB)+ ¢85, (AN B) = ¢p,,(A) + ¢5,,(B);
(i1) 02(AUB,C) < 02(A,C) + 02(B, AN B);
(iii) d2(ANB,C) < §2(A,C) + §2(B, AU B).
In particular:

(iv) 62(AU B,0) < d2(A, D) 4 62(B, D) as soon as AN B = (;
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(v) 92(AUB,ANB) <min{d2(A, AN B)+ 02(B,ANB),02(A, AUB) +
52(3, AU B)},

(vi) if B is reduced to one point, say {\}, such that A\ ¢ A, we have:
2(AU{A}, C) <min{d2(A,C) + 52({ 1}, 0), 62 ({1}, C) + d2(A4,0)}.

Proof. Assertion (i) can easily be checked from the definition of ¢, . As-
sertion (ii) is a consequence of (i) and of the inequality

|05, (AU B) = ¢5,,(C)| = [¢5,,(A) + ¢5,,(B) = ¢5,.(AN B) — ¢5,,(C)|
<1¢8,,(A) = ¢5,.(C)| + |95, (B) — ¢5,. (AN B)|.

Assertion (iii) follows from (ii) by exchanging “U” and “N”. Assertions (iv)

to (vi) can be deduced from (i), (ii) and (iii). O

Assertions (iv) and (vi) in Proposition 3.4 show the special role played
by the “empty set” element () in the set-theoretic processes of “point addi-
tion” and “point removal”. The uniform continuity of the “point removal
process” at infinity of the points of a UD-set is proved in Section 3.3 and
in the Appendix.

Proposition 3.5. The following equalities hold:
(i) 92({r},0) = #”A”, for all A € R™ (remarkably this value does not
depend upon f(z)),
(ii) d2(A —{A},A) = 1++|I/\H for all non-empty UD-set A and all X € A.

Proof. (i) First, let us show that d3({\},0) <
52({A},0)

1++||)\||' By definition we have

= sup sup DB (A) ‘
B, BneBoe (3 + [lall + la—c™ | + o= |1+ +lla—c™|)

Whatever (D, E) € &, By, € Bp,g), a maximum of one ball of B,, may

contain A. Denote by B(c,¢€) this variable generic ball and put ¢ = cgm).

The other balls of B, have a zero contribution to the numerator ¢, (A)
in the expression of §3({A\},0). The denominator is such that: 1 + ||a| +
o = ™ + lloc = 7l + -t fla = | > 5+ o] + fla - . Bue
3+ llefl + [l = ¢|| = 5 + ||c]|, this minimum being reached on the segment
[0, ¢]. Therefore, by definition of the function f, we have

A—=c
ef(279) <- € < 1/2 _ 1 ‘
gt lel = g+ I 2+ A T+ 2[A
Conversely, if we take a = A\, D = {A} and E a dense subset in (0, 3),

we see that da({A},0) > da—x (D=(r},5)({A},0) = % We deduce the

da,(D,E’) ({)‘}7 (D) <

equality and assertion (i);
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(ii) The proof is similar as in (i) since A and A — {\} differ by only one
element A which belongs to at most one ball in a collection B, for any
(D,FE) € € and any B,, € B(p,g). The details are left to the reader. O

Corollary 3.1. For allUD-set A # 0 and all X € A, the inequality holds:
1
52(A,0) — da(A — {A},0)] < ———.
Proof. From Proposition 3.4 (ii), we deduce d2(A,0) < da(A — {1}, 0) +
d2({A},0). From (iii) in Proposition 3.4, we obtain
da(A —{A},0) < da(A, @) +02(A — {2}, A)
but d2({\},0) = d2(A — {A\},A) = 1+2”)\” by Proposition 3.5. We deduce
the claim. 0
Proposition 3.6 (Point pairing property). Let A, A’ be two UD-sets as-
sumed to be nonempty. Let | = dist({0},A) < 400 and € € (0, ﬁ)
Assume that 65(A, A') < €. Then, for all X € A such that ||| < L=
(i) there exists a unique \' € A such that |\ — \|| < 3,
(ii) this pairing (X, X') satisfies the inequality: | N — A|| < (3 + [|A])e
Proof. (i) Let us assume that for all A € A, A € A, such that ||| < L=
the inequality [|A’—A|| > 4 holds. This will lead to a contradiction. Assume

the existence of an element A € A such that H)\H < =€ and take D = {\}
and let F be a countable dense subset in (0, ) Each Bm in Bp ) is a set

constituted by only one element: the ball (say) B(\,ep,) with e, € E. We
deduce that ¢g,, (A) = ey, and ¢g,, (A’) = 0. Hence

em 1/2
dy(p.5) (A, A) = SUP < d2(A, A).
oo 2+ 12+~
But ¢ < 1++||>\H is equivalent to |[A| < izf. Since we have assumed

d2(A, A) < ¢, we should obtain € < dy p g)(A,A") < d2(A,A") < e. Con-
tradiction. The uniqueness of A’ comes from the fact that A’ is a UD-set
allowing only one element A’ close to A. (ii) Let us assume that A # \’ for
all A € A such that || A|| < 3¢, with X' € A’ that satisfies ||\ —A|| < 5 (if the
equality A = )\’ holds, there is nothing to prove). Then, for all A € A such
= )\ as base point, D = {\} and E a dense sub-

et in (0, A~ V] € (0, ). Then 65, (4) - 5, () = e (1-r(22)).

€m

The restriction of the function z — z(1 — f()‘/;)‘)) to (0,]]A = N||] is the
identity function and is bounded above by ||\" — A||. Therefore,

p 1980 (A) = 08, (D] _ X = Al
Be 12411 12+ []A]

dyp,p) (A A) =
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Since dy (p,py(A, A') < 02(A, A') <€, we obtain [N = M| < (5 + [A)e. O

In other terms, each time two UD-sets A, A" are sufficiently close to each
other for the metric do, every element of A lying in a large ball centered
at the origin (base point) in R", is automatically associated with a unique
element of A’ which is close to it within distance less than % Such pairings
of elements occur over larger and larger distances from the origin when A’
tends to A. From (ii) the proximity in the pairings (A, \’) is much better
for the elements A € A which are the closest to the base point.

Proposition 3.7. Let e € (0,1) and A € UD,A # (). Then

1—
53(A,0) < e:ACR"\B(O, 2—6)
€
Proof. Let us assume the existence of A € A such that |[A] < 1= and
let us show that this hypothesis implies that the assertion d2(A,0) < € is
wrong. Take D = {A} and E a dense subset in (0, ). Each By, in B(p.E)
is a set constituted by only one ball: say the ball B(\,e,,) with e,, € E.
We deduce that ¢g,, (A) = e,,. Since ¢g, () = 0, the following inequality
holds:
e 1/2
d)\ D,E (A7 @) = Sup - = < 52(A7 @)
o m 124N 172+

But € < 1++|I>\H is equivalent to |[A|| < 1. Hence, € < dxp,e) (A, 0). We
deduce d2(A, D) > € as claimed. O

From Proposition 3.6 and Proposition 3.7 we deduce

Corollary 3.2. For allt > 0 the Hausdorff metric A on UD (B(0,t),] - ||)
is compatible with the restriction of the topology of (UD,d2) to the space

The converse of Proposition 3.7 is much harder (see Appendix).

3.3. Topological equivalence and point-removal. The “point-removal
process” of a subcollection of points of a UD-set is particularly easy to
describe with d and d9. For all A € UD and R > 0, denote by A the new

UD-set AN B(0, R).

Proposition 3.8. Let § = d or 6. Let A,A' € UD and C be an arbitrary
subset of ANA'. Then §(A,A") = 6(A\ C, A"\ C). In particular, for all
R >0,

S(AAN)=6(A\(ANA), AN\ (ANA)) and 5(A\ Ag,0) = 6(Ag,A).
Proof. These results follow readily from the definitions of d and ds. O
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Remark. The distance (for d;3) between two dense (equal) sphere pack-
1

ings (radius 5) differing only by a small cluster of spheres lying about the
point z is exactly the distance between these two clusters, say C; and Cs.
Thus it is very easy to see that it is a ratio (from (3.4) in Section 3.2.1)
roughly given by W f(C1,Cq), when ||z|| is large enough, where m is the
(common) number of spheres of C; (or C2) and f(C1,C2) a function which
depends upon the relative positions of the spheres inside C; and Cy. Such
simple expressions are easy to handle, can be made more precise and can
be differentiated to study optimal positioning of clusters in dense sphere

packings [MVG1].
Let us show that the metrics d, 1, d5 are topologically equivalent on UD.

Proposition 3.9. For any averaging sequence (K;);>1 of compact sets of
R™ which contains the base point 0, the metric d associated with it is such
that:

(i) d and 61 are topologically equivalent,

(i1) d and 9y are topologically equivalent.
Proof. 1t suffices to show that the identity map is bicontinuous in each case.

(i) UD, ) “ (UD,d) is continuous: let € > 0 be small enough and
assume A, A’ € UD with A # (. Let n € (0,1). Let k be the great-
est integer such that K C B(0, ﬁ) The map 1 — 2% takes the
value 0 at zero and is continuous at zero. Then there exists 7y such that
n < mo = 27% < ¢/2. Now, if 6;(A,A’) < n, then Rymn € Q(A,A') and
AAN B0, 725), A N B(0, 52-)) < Ruinn. We deduce:

k
d(AaA/) < Z 27Z'Rmin"7 + Z 27i < Rminn + 27]?-
i=1 i>k+1
Hence, for all n < min{sz—,n} the inequality d;(A,A’) < 7 implies
d(A;N') < €/2 + €/2 = ¢, hence the claim. Assume now A = (). Given
€ > 0 small enough, by the definition of d, there exists R > 0 such that
d(0,A") < € for all A’ C R™\ B(0,R). Take n = z7—. Then the in-
equality 61(0,A") < n implies Rpinn € Q(0,A"), hence A’ N B(0, ﬁ) =
AN N B(0,R) = 0. We deduce: 6:(0,A") < n = d(@,A") < ¢, hence the
continuity at (.
(UD,d) u (UD, 61) is continuous: let € > 0 be small enough and assume
A # (). By Proposition 2.2 there exists 7 such that:
= A(A N B(Ov lein )7A, N B(Oa ﬁ)) < RminE.

€

Since \ \
d(ANB(0, =——),A" N B(0, =——)) < d(A,N)

min€ min €
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and that

A(AN B0, =—),A' n B(0,

Rine min€
is equivalent to 1 (A, A’) < €, we have: d(A,A') <n = 61 (A, A") < ¢, hence
the claim. Assume now A = ). Let € > 0. Let j the smallest integer such
that B(0, ﬁ) C K;. We have d(0,A’) = 27%*! where u is the smallest
integer such that A’'NK, # 0, so that A’NK; = @ fori =1,2,...,u—1. Then
we choose 1 € (0,1) small enough such that d(0,A’) = 2*qul <n < 27Ut
with u > j. Hence A’N K; = 0. Then A" C R"\ B(0, =~ ). We deduce
5 (0,A) <e and the continuity at (.

(ii) (UD,d7) S (Z/{D d) is continuous: let us first assume that the con-
dition >, 27"Rk, < 400 holds. Let € > 0 be small enough. Let

€ (0,1) and assume d3(A,A’) < 7 where A # §. Define k = k(n) by

the conditions: K, C B (0, 12—_7;1) and K1 ¢ B <0, 12_—n"> Since the map

n — 27% takes the value 0 at zero and is continuous at zero, there exists
no such that n < 1y = 27% < ¢/2. On the other hand, for all i such

that K; C B (0, 157") AAN K, N NK;) = di(AN) < (3+Rk,)n by
Proposition 3.6. Then

d(A, ) < 22 < +RKZ.>77+ Z 2i§(%+;2inm>n+2k.

i>k+1

)) < Rpin€

There exists n; such that n < m = ( + ZZ>1 ’R )77 < €/2. Then,
for n < min{ng,n1}, we have d(A,A") < ¢/2 + ¢/2 = e. This proves the
continuity at all A # (). Continuity at () arises readily from the definition
of d and Proposition 3.7. Using the Remark in Section 2, we wee that the
condition Y ;5 27"Ri, < +00 can be removed. Thus we obtain the claim
in full general_ity

UuD,d) S (Z/{D Jd2) is continuous: let € > 0 be small enough and assume
A # (). By Proposition A.1 there exists R such that

52(A,AR) = (52(1\ \ AR,@) < 6/3 and 52(A/,A;3) = (52(/\/ \ A/ ,@) < 6/3
By Corollary 3.2 there exists ng such that
A(Ag,AR) <no = 0&2(Ag,AR) < €/3.
Let j > 1 be the smallest integer such that B(O,R) C Kj. Let us take

€ (0,277) such that z=— 5 <m=n< ’7103;01 Then,
2_idi AN 2_Zdi AN
d(A,A'):Z# (8, )<77f0ralli:1,2,...,]

T (AN ST T d(A )
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We deduce A(Ag,A%) < dj(AA) = A(ANNK;, AN NKj) <
Thus
02(A, A') < 02(A, AR) + 02(AR, AR) + 02(AR, A') < €¢/3+¢€/3+¢/3 =

We deduce the claim for A # (). Assume now A = (). Let € > 0 be small
enough. By Proposition A.1 there exists R such that A’ C R" \ B(0, R)
implies d2(A’,0) < e. Let j be the smallest integer such that A’ N K; # 0.
Then A’ N Kj—l = @ and B(O,R) C Kj—l- Since d(@,A/) = Zi>j 27i =
277+ (with A’ # ) we take  such that 277+! < 5 < 2772 for instance
n=3.277. Then d((),A") < n = d2(A’,}) < ¢, hence the continuity at . O

2_?,,7 < 7o-

The following proposition is fundamental. It shows the uniform continu-
ity of the point-removal process at infinity.

Proposition 3.10. Let A € UD. Denote by § either d or 61. Then
Rlim (A, AR) = Rlim (A \ Ag,0) =0.
Moreover the convergence is uniform in the following sense:
Vee(0,1),3R > 0 such that: A C R™\ B(0, R) = 6(A,0) < e.

Proof. If A is finite, the limit is obviously zero. Assume A infinite. The
claim is obvious when § = d or § = d; by definition of d and d;. O

Remark. A direct (and self-contained) proof of Proposition 3.10 with
d = 02 can be found in the Appendix (Proposition A.1).

Corollary 3.3. The subset UDy is dense in UD.

4. Proof of Theorem 1.2

Let (K)r>1 be an averaging sequence of compact sets which contains
the base point 0 and d the metric associated with it. Let us embedd UD in
the product space

up c [[up (K|l ), =W,
k>1

each UD(K, ||-]|)1 being a compact metric space with the Hausdorff metric
A, equivalently with d,d; or §o by Proposition 2.1, resp. Proposition 3.1,
or resp. Corollary 3.2. Thus the space W is naturally a compact space by
Tychonov’s Theorem, and it is clear that UD is closed inside. Indeed, the
image can be identified with the families (V) € UD(Ky, || - ||)1 such that
Vi N K1 = Vi_1. This is a special case of a projective limit. Therefore it
is compact.

For all R > 0 the subspace Xp of the Delone sets of constant R is closed
in (UD, d), since the relative denseness conditions are closed. Nevertheless,
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let us prove directly this result using do. Let AeUD \ Xi. We will show
that it is contained in an open subset disjoint from X i that will prove that
Xpg is closed. Since A ¢ Xp, there exists z € R™ such that ||[z—\|| > R
for all A € A. Let [ = dist({z},A) > R. Denote A—z := {A—z | \eA}
the translated set. For ¢ > 0 small enough and all I" in the open §o-ball
{QeUD | 52(, A — 2) < €}, all the elements 7 of T" satisfy the inequality:
vl = R+ % > R by the point pairing property (Proposition 3.6); all
these point sets I' are outside X . Since the translation by z is bicontinuous
the UD-set A is contained in the open subset z+{Q2 € UD | §2(Q, A—2) < €}
which is disjoint of Xg.

5. Theorem 1.2 implies Theorem 1.1

Let £,, be the space of lattices in R", identified with the locally compact
homogeneous space GL(n,R)/GL(n,Z) [GL], [Ca] (Recall that a lattice in
R™ is a discrete Z-module of maximal rank of R", equivalently a discrete
subgroup of the group of translations of R™ with compact fundamental
region). The following proposition is a key result for proving Theorem 1.1
from Theorem 1.2, using 5 for the proof and invoking Proposition 3.9 for
the other metrics.

Proposition 5.1. The restriction of the metric d2, resp. d or 01, to
Ly, NUD C UD is compatible with the topology on L, NUD induced by
the quotient topology of L, = GL(n,R)/GL(n,Z).

Proof. This proposition is a reformulation of the following proposition. [

Proposition 5.2. Let L € L, "UD. Denote by {ey,ea,...,e,} a basis
of L. Then
(i) for all e > 0 small enough there exists n > 0 such that any Z-module
L' € UD contained in the open ball {A € UD | d2(L,A) < n} is of
rank n and admits a basis {€], €h, ..., el } which satisfies the property:
max;=12,...n Hez — 6;” < €,
(ii) Vi € (0,1),3€ > 0 such that any lattice L' € UD of R™ admitting a
basis {e], eh, ... e} which satisfies max;—12 ., |le; — €| < € is such
that 6o(L, L") <.

Proof. (i) First let us chose ¢y > 0 small enough such that any n-tuple

{a1,ag,...,a,} of points of R" with a; € B(e;, €), i = 1,2,...,n, is such
that the vectors {Oay,Oay,...,0a,} are Z-linearly independant (as usual
we identify the point a; with the vector Oa;, i = 1,2,...,n). For instance,

let us take eg = % min;—j o {dist ({e;}, Vect;)}, if Vect;,i =1,2,...,n,is
the R-span generated by the vectors Oeq, Oea,...,0¢;_1,0¢;11,...,0Oey,.
Let € € (0,¢€p).
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Assume that A is a UD-set such that d2(L, A) < n with n small enough.
By Proposition 3.6 a pairing between the points of L and A occurs over
1-9

a certain distance, which is TR from the origin. Let us take n; small

1277711 > max;—12, nl|le. From Proposition 3.6
the condition 0 < 7 < 7y implies the existence of n points €}, ¢, ... e, in
A, the respective close-neighbours of the points ey, es,...,¢e, of L, which
satisfy |le} — e;]| < (3 + |les|])n for @ = 1,2,...,n. Take n < m; such that
(% + max;—12..n |l€il)n < €. Since € < €, the vectors O¢e}, O¢s, ..., Oel,
are Z-linearly independant. This means that if A € UD is a Z-module of R™
(necessarily discrete) which satisfies d2(L, A) <7, A is necessarily of rank
n and contains the lattice > . | Ze,. Let us show that there is equality.
Denote by V' = {31 6i¢; | 0 < 6; <1 foralli =1,2,...,n}. The
adherence V' of V' contains only the points >, jie} of A , with j; = 0
or 1, by the property of the pairing (Proposition 3.6). Therefore the free
system {O€],0¢), ... Oel} is a basis of A.

(ii) Conversely, let 0 < n < 1 and L' € UDN L,. For all R > 0
the inequality (52([1,[/) < (52(L,LR) + (52(LR,L9%) + (52([;9%,1/) holds. By
Proposition A.1 let us take R large enough such that 65(L, L) < n/3 and
62(L', L'y) < n/3. Let us now show that, if L’ admits a basis {e],€5,...,€},}
which satisfies max;—12__, ||e; — €}|| < ¢, then € can be taken small enough
to have d2(Lgr, L'y) < n/3 ( R kept fixed). Indeed, Lp and L, are finite
UD-sets. Denote N := #Lp. For all a € R”, all (D,E) € £ and all
By € B(p,E), by continuity of the function f, the mapping

enough in order to have

w

N
(1,9, ..., xN) — &8, {z1,22,...,2N}) = Z wa<x1_6>
1

B(c,w)EBm =

is continuous on B(0, R)" for the standard product topology. Therefore all
the mappings dy,(p,g) (LR, ) :

|¢Bm(LR) B ¢Bm({m1’$2’ s 7'rN})|
(1, 22,...,0N) — Sup —
5. (1ol a1+ lo—es, 1+ +la—cin])

are continuous on B(0, R)". The map
(-lean"' ,fL'N) - d(LR,{ZUl,CITQ,...,{EN})

is then continuous on B(0, R)". Take for {z,z2,...,2x} the point set L.
Consequently the quantity d2(Lg, L’;) is strictly less than 1/3 as soon as €
is small enough. Finally 62(L, L") < 3n/3 = n and we deduce the claim. [

Recall that if L is a lattice in R™ and A a basis of L, then |det(A)]| is
called the determinant of L; we will denote it by |L|. It is the volume of its
fundamental region.
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Proposition 5.3. The subspace {L e UDNL, | 0 < |L| <M} C L,NUD
is compact for all M > 0.

Proof. By Proposition 5.1 and since (UD, d) is a compact topological space,
we have just to show that {L e UDN L, | 0 < |L| < M} is closed. Since
the operations = +y and xy are continuous, the determinant function |- | is
continuous on £,,. Hence {L € UDNL,, | |L| > M} = |-|7}((M,+)) is an
open set as reciprocal image of the open interval (M, +00) by the continuous
application |-|. By taking its complementary subspace in UDNL,, we deduce
the claim. ]

Let us now prove Theorem 1.1. Let us consider a sequence of lattices
(L) of R™ such that: (i) ||z|| > 1 for all x € L,,x # 0, (ii) the determinant
|L,| of L, satisfies |L,| < M with M a constant < 4o independent of r.
Then L, € {L eUDNL, | 0<|L| < M}, for all r, which is compact by
Proposition 5.3. Then, by the Bolzano-Weierstrass property, one can ex-
tract from the sequence (L, ) a subsequence (L,s) that converges to a lattice
L of R™. By continuity of the determinant function |- | and Proposition
5.1, we obtain: |L| = lim,_,{ o | Lyv|. This concludes the proof.

6. Arbitrary metric spaces

The topological space (UD(R™,|| - ||)1,d) is a Polish space [B], but its
topology is not classical. It is routine to compare it with the topologies
reviewed by Kelley [Ke| and Michael [Mi] on spaces of nonempty closed
subsets of R™ and to conclude that it is none of them (see also §4 in [BL],
and [Bo]). The metric space U,soUD(R™, || - ||),,f is dense in Dy ¢(R™, || - ||).
The metric space UpsoUD(R", || - ||), endowed with d or d1, is not compact
and is much bigger than the space of lattices of R”. For instance, if n =1,
it contains all the Meyer sets Zg of (-integers (integers in base ) where
is a Pisot number or a Parry number [GVG] (see [Mo], [MVG] for a modern
language on Meyer sets and Delone sets).

Let (H,d) be a metric space.

Proposition 6.1. Ifdiam(H) = 400, then H only contains infinite Delone
sets.

Proof. Assume that A = {1, \a,..., A}, 1 < I < +00, is a finite Delone
set in H of constants (r, R) and let us show the contradiction. Since, for
all z € H, there exists A\; € A such that A\; € z+ B(0, R), then z € B(\;, R)
and we would have H C U_; B(\;, R) which is of diameter less than 2RI.

Thus we would have diam(H) < 2RI < +oo. Contradiction. O

If H is compact, then diam(H) < +oo and all the Delone sets of H
are finite. For all r > diam(H), the uniformly discrete subsets of H of
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constant r are empty. When r < diam(H) a uniformly discrete subset of
H of constant r is either the empty set () or is finite. Thus the set-theoretic
equality holds:

U UD(Hv 5)7’ \ {Q)} = U X(H7 6)7",R-

O<r<diam(H) 0<r2d<i1:;}1(H)

This space endowed with the Hausdorff metric A is a compact space and
() is an isolated point. This provides positive answers to Question 1.1 and
Question 1.2 with d = A since, for all 0 < r < diam(H) and R > 0,
UD(H,J), is closed in Uy<p<diam(m) UD(H, ), and X (H,6), g is closed in
Uo<R,0<r<diam(i) X (H, 6)r R-

The following Theorem is an improvment of Macbeath and Swierczkow-
ski’s Theorem [MS] in the context of (“ambient”) metric spaces, providing
positive answers to Question 1.1 and Question 1.2.

Theorem 6.1. Let (H, ) be a o-compact and locally compact metric space
for which diam(H) is infinite. Then, for all v > 0, UD(H,J), can be
endowed with a metric d such that the topological space (UD(H,0d),,d) is
compact and such that the Hausdorff metric on UD(H, ), ¢ is compatible
with the restriction of the topology of (UD(H,0),,d) to UD(H,J), ¢. For
all R > 0, its subspace of the Delone sets of constants (r, R) is closed.

Proof. The metric d is the one constructed in Section 2 but now on H
instead of R™. From Section 4 we deduce the compactness of UD(H, J), for
all > 0. Indeed, the proof in Section 4 is valid for all “ambient” metric
spaces which are o-compact and locally compact. O

Appendix A

This Appendix gives a proof of Proposition A.1. Proposition A.l is re-
lated to the rest of the paper by the fact that it implies the topological
equivalence between d, 1 and d2 on UD (see proof of Proposition 3.9) and
is used in the proof of Proposition 5.2. Though fairly long, the present
computations are not necessary for many applications concerning the topo-
logical space UD.

Proposition A.1. Let A € UD. Then
lim 52(A,AR) = lim (52(/\ \ AR,@) =0.
R—o0 R—o0

Moreover the convergence is uniform in the following sense:

Ve e (0,1), 3 R>0 such that: A CR"\ B(0,R) = d2(A,0) <e.
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Proof. We assume that A is infinite in the sequel since, when A is finite, the
limit is obviously zero. To prove this result we use Stolarsky’s inequality
[St] (recalled in Proposition A.2 without proof) which provides an (uniform)
upper bound of d3(A,Ar). Then we explicitely compute this (uniform)
upper bound by means of representations of integers as sums of squares (of
integers) (see Grosswald [Gr] for a survey) (Steps 1 and 2). This type of
computation provides uniform convergence.

Proposition A.2 (Stolarsky [St]). Let uw,v rational integers such that
u > v > 1. Let {x1,x9,...,24} be a finite set of u points of R"™ and
{y1,Y2,...,yv} be another finite set of v points of R™, n > 2. Let us define
h(u,v) =1 if u=v, h(u,v) = =L if u>v. Then

A D> =l > Ny =yl < hu,0) YDz — gl

1<i<j<u 1<i<j<v i=1 j=1
where the constant h(u,v) is best possible.

Let us apply Proposition A.2. Take v = 1 and u = i, + 1 > 2 with
1 =0and ||a;|| > R for all i = 2,3,...,u; then put y; = o € R" arbitrary.
The inequality (A.1) gives

tm+1 tm+1
Sllwll+ > el < Alim+ L) (lall+ Y o= aill).
j=2 2<i<j <im+1 i=2

Consequently, setting ¢;_1 = x; for all i = 2,3,...,4, + 1 for keeping the
notations as close as possible to the definition of d, p g) (see (3.4)), the
following inequality holds:
(A.2)

m im

: < : )
2+ llall + X2 lla—eill = 34 L (Simy Nl + 8 1oy lei—csll)

The supremum of the right-hand side expression, over all possible config-
urations of balls in B(p gy and (D, E) € £ such that their centres c; satisfy
lleill > R, is greater than 202(A \ Ag,0) (see Proposition 3.3 for the defi-
nition of d2 ). We will show that it goes to zero when R tends to infinity.
For this, we will compute explicitely a lower bound of

, 1 1 & 1
MR, im) = 5 + = Dileill+= > lei—gll
im i i

M 1 <i<j<im

as a function of R and 4,,, where n(R,iy,) is the inverse of the right-hand
side term in the inequality (A.2). In order to simplify the notations, we
will study the quantity n(R, m), what amounts merely to replace m by i,
in the rest of the proof for coming back to the inequality (A.2).
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We will proceed as follows, in three steps. The first step (Step 1) will
consist in making this computation explicit when the points c¢; are on the
lattice Z™ with n > 5. In other terms, we will prove:

lim 09(Z",Z";) =0 for all n > 5.
R—+o00

The second step (Step 2) will describe how to provide a lower bound of
na(R,m) (see its definition in Step 2) from n(R, m) when the points ¢; are
in aldD-set A C R"™ which is not Z™ with still n > 5 for which the dimension
of the R-span of A is n or less than n. In other terms, we will prove:

lim 602(A,Ag) =0  forall A €eUD and n > 5.

R—+-o00

The final Step 3 will conclude when n € {1,2,3,4} making use of descent
arguments to lower dimensions. In other terms, we will prove:

RlirJIrl d2(A,AR) =0 for all A e UD and n < 4.

Step 1.— Let us recall the assumptions: R > /2 (for technical reasons)
and ¢; € Z", ||| > R, for all i = 1,2,...,m with i # j = ¢; # ¢;. In
order to find a lower bound of n(R, m), we will compute a lower bound of
m=2 > 1<i<j<m llci — ¢l (A.5) and a lower bound of m =2 > i llejll (A.6)
as a function of R and m. These two bounds will be shown to be dependent
(by (A.7) and (A.8)). The sum of these two lower bounds will present a
minimum and the main difficulty will consist in showing that this minimum
tends to infinity when R tends to infinity.

Let us compute a lower bound of m 2 di<icj<m llei — ¢l Let s be a
positive integer and consider the equation s = >, Cg,z‘ with ¢, ; € Z for all
i=1,2,...,n. Any n-tuple (¢4,1,¢q2,-..,Cqn) which satisfies this equation
is called a solution of this equation. This solution represents the vector
cq = HCq1,Cq2s- > Cqn) in Z" of norm s'/2. Given s, denote by r,(s) the
number of solutions of the above equation; it is the number of elements
of Z™ which lie on the sphere S(0,+/s) of centre the origin and radius /s.
Obviously r,(0) = 1,r,(1) = 2™. Now, for any integer m > 1, there exists
a unique integer k such that

(A3) rp(0)+r,()+-+rp(k) <m < rp(0)+r,(1)+- - -+rp(k)+r,(k+1)

with 7, (k)rn(k + 1) # 0. We know (Grosswald [Gr], Chapters 9, 12 and
13) the behaviour of r,(s) when n > 5: there exists two strictly posi-
tive constants I/(\l(n) and I/(\g(n) such that ,(s) = pn(s) + O (s"/4) with
I/(\l(n)sn/%l < pn(s) < I/(\g(n)sn/%l for any integer s > 0. Therefore, there
exists two strictly positive constants K, K5, which depend upon n, such
that Ko > 1 and K;s™/?71 < rn(s) < K552~ for any integer s > 0. By
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saturating all the spheres S(cy, \/Z) NZ"forl=0,1,2,...,k we deduce

Tn(o)""”n(l)"r“"i"f’n(k?)‘i‘l

m k
= > lej —erll = > (VI
j=2

j=2 =0

Let us consider that m is equal to r,(0) + 7, (1) + -+ + rp (k) + rp(k + 1).

We now proceed with the other sums 7", |lc; — ¢ifl,i > 2. For all

i=1,2,...,r,(k + 1), the difference m — i is greater than 7,(0) 4+ r,(1) +
-+ 4 rp(k) and this implies

A cz|r>2rn

Jj=i+1
Hence
5 3 ey a2 i+ 1 (3 ra0V).
=1 j=i+1 =0
Since
m—1 m rn(k+1) rn(k+1)+rn (k) m
Yo lle—all= > Z lej=cill+ > > lej—al+
i=1 j=i+1 =1 j=i+1 i=rp (k+1)+1 j=i+1

ro(k+1)+rn(k)+...4rn(1)

m
-t > > ey —aill,

i=rn(k+1)+rn(k)+... 4710 (2)+1 j=i+1
by reproducing the same computation term by term, we deduce

k

A9 DY e —al =ralk+ (X m0VI)

i=1 j=i+1 =0
k=1

+1l) (D rm@VI) + - (2)ra(1) + 27

Now make use of the following classical inequalities: for all 8 > 0 and
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integer r > 1,04+ 1% 42 4 .. +(r—16<f0xﬁdx_rﬁ+ <19 420 4
-+ (r — 1)8 + 8. We deduce the following inequalities
m—1 m k+1
2K? ntl
5 3 bz 25 S0
k+1
2K12 n_q n+1
> LN i -
p=1
k+1
2K? _1
> - 1"
ZTrn 200
p=1
“(n+1)(2n+1)
and
+
m =rp(0) +ra(l) + -+ +rp(k) +ra(k +1) < ( Z )
=1
2Ko n
<224 (k+2)3].
- on {2 (k+2)2
Hence
B K2n2k:"+1/2 n -2
2 Z Z llej — eil| > K2(n—|—1;(2n—|—1)(k‘—|—2)" (H 2k + 2 3) '
=1 j=i+1 ( + )
Putting K3 := Kjn?2n 72 we deduce

K2(n+1)(2n+1)37 (n4+27 T1)2’

m—1 m
(A.5) m2Y " N lej — el > K3k

i=1 j=i+1

It is easy to check that the above computation is still valid when m lies
strictly between 7,(0) —|—7"n(1) —|— - +rp(k) and 7, (0)+rp (1) +- - - +rp(k+1).
Therefore lim,, ;o0 — =3 i Z] i+1 llej —cil| = +o00. Let us observe that

this minimal averaged growth to infinity is in “v/k”, which is extremely slow
as compared to the growth of m to infinity.

Let us now compute a lower bound of the sum m =2 > iq llejll. Take
for R the square root of an integer, say R = v/t,t > 2. Let us consider
that m is equal to m = r,(0) +r,(1) + --- + 7, (k + 1) and let us write it
as: m = rp(t) +rp(t+ 1)+ -+ rp(t +u) + w for a certain v > 0 and
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0 <w<ry(t+u+1). Then

t+u t+u

ZHCJH>ZTH \f>Klzl 2.

As above we will make use of the following classical inequalities: for all

positive integers s and r > s+1 and for any real number 8 > 0, s74(s+1)5+
PBH1_gB+1

o (r=1)P < [T alde = gt < (s+ 1)+ (s+2)0 -+ (r=1) 40P
We obtain the following inequalities:

ntl

S o1

[(t +u)"E

and
2K
=1 [(t +u)? - (t— 1)"/2}
<m
<rp(t) +rpt+1)+- - +rpt+u)+rp(t+u+1)
2K,
<= [(t—i— +2)"/2% t"/2] :

From them we deduce

—Zucjn_%f)(m

(o 5-0m)

Dividing the above inequality by m once again and changing ¢ into ¢ — 1
and t into ¢t + 2 in the corresponding factors gives

stz g (057 - (59 )

(622 297)

so that, using first-order developments in (¢ — 1)u~!, resp. in (2 + t)u~!
for u~! close to zero, we obtain
n—1

1 & Ki(t—1)72 1
A6 — || >
a0 el M

This lower bound, as a function of w on [1,+00), goes to zero at infinity.
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Let us now compute a lower bound of the sum m 2 > lleill+
m=2 >i<icj<m ll¢i = ¢jl|. The lower bound given by (A.5) is a function
of k and that given by (A.6) a function of u. In order to study their sum,
we will deduce from the above a relation between u and vk and replace vk
by a lower bound of vk in (A.5) which will only depend upon u. From the
above, with m = r,(0) +7,(1) + - - + r,(k + 1), the following inequalities

hold

2K 2K n
A7) =+ — (- 1)"/2] <m< 224 (k+2)5].

n n L2

Let h(z) = (t + 2)*2. Then h(u) — h(—=1) = (u + 1)’ (€) for a certain
§ € [-1,u]. We deduce h(u) — h(—=1) > Fu(t — 1)z~ since the derivative
h/(zx) is increasing on the interval [—1,u]. This last inequality and (A.7)
imply

(A.8) wl/m [<g<%(7§ )3t 1))2/n —2] - <k

forall k> 1,u>1,t>2.

Define
1
A. = 1/n
(A.9) g(t,u) Cl(t)u(u+ T + Ca(t)u
where »
Ci(t) = KiK;2(t—1) 2
and

n 1 Kq n 2/m 2
Os(t) = K3 <§(E(t—1)21—1)> —2] .

From (A.5) in which vk is replaced by the above lower bound and from
(A.6), we deduce

(A.10) n(\/i,m) > g(t,u).

It is routine to compute the value wpi,(t) at which the function v — g(t, u)
is minimal and the value g(t, umin(t)) of its minimum. The equation sat-
isfied by wumin(t) is nCL(t)(u 4+ 2 + )1 [(n — Du+ 2 +t] = Co(t)ultV/n
and

(A11)  g(t, umin(t)) = Ca(t) % n frf)ﬁ)j;:; +t

Since obviously umin(t) > 1, %(n_“f;% +1> ﬁ +1fort>2u>1
and limy_, 1 o, Co(t) = 400, we obtain: limy o g(t, Umin(t)) = +oo. We
deduce that for any integer m of the form 7,(0) + (1) +--- + 7 (k+ 1)

the limit limp 4o (R, m) = 400 holds. It is easy to check that it is so

+ 1| (wmin(t) ™
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even when m is an arbitrary integer which is not of this form. This implies,
after (A.2), that limp_ 4 62(Z",Z™) = 0, for all n > 5.

Step 2.— We will make use of the results of Step 1 and of the following
three Lemmas. The assumption n > 5 holds. Let us fix the notations:
if I' is a UD-set which contains the origin, then, for all & € N, denote
I'®) .= {2 e | Vk < ||lz|| < vk +1}, rr(Vk) the number of elements
of T® and s(vk) := maxpeyp{rr(vk)} < oco. Since all the functions
I' - rp(Vk), k € N, on UD are valued in N, the maximum s(v/k) is
reached. Since, in particular, rz.(Vk) = r,(k), for any positive integer k,
the following Lemma is obvious.

Lemma A.l. For any positive integer k the inequality s(vE) > rp(k)
holds.

In the following, we will enumerate the elements x; of a UD-set A in such
a way that ||z;]| > ||a;|| as soon as j > i > 1 (with 21 = 0 if A contains the
origin). The following Lemmas show that the sequence {s(v'k) | k € N} is
universal for splitting up any UD-set into layers of points with the objective
of making use of Stolarsky’s inequality (Proposition A.2) in a suitable way.

Lemma A.2. Let A be an infinite UD-set which contains the origin. For
all positive integers M, m € N such that 22/120 s(VEk) <m < 22/[;61 s(Vk),
any point T, € A indexed by such an integer m satisfies ||z, || > VM + 1.

Proof. This fact comes from the way we have enumerated the elements of
A. Obviously, any point x,, € A indexed by such an integer m is such that
leg\/[:() ra(Vk) < 224:0 s(vVk) < m. By definition of the function r, we
obtain the inequality. O

Lemma A.3. Let A be an infinite UD-set which contains the origin. There
exists a subset A* of A, with 0 € A*, and a surjective mapping p : A — Z™
such that:

(1) ¥a(0) =0, [[Ya(@)[ < ]| for all z € A;

(ii) for all integers M,m € N such that Z,{CM:O s(Vk) <m < Z,i\/[;gl s(vVk)
the following equalities hold: ||tp(zm)|| = VM + 1 for x, € A\ A¥,
[¥a(@m)|| = 0 for zm € A*;

(iii) the restriction of p to {0} U A\ A* is a bijection from {0} UA\ A*
to Z";

(iv) when A =7Z", then A* = {0} and ¢, is the identity map up to a re-
enumeration of the elements of the layer (Z”)(k) of Z for all k € N.
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Proof. Let us construct the function ¢5. Denote s() := "M s(v/k) for
all M € N. The following s(v/M + 1)-tuple of points:

(To(M) 415 Tg(M) 5+ -+, ToM) 0 (M41)7 TsM) oy (M41)4+15
$S(M)+Tn(M+1)+25 s 7'r5(M+1))

of A will be splitted up into two parts. Let

*(M) __
A D = {000 o (1) 41> T (M 1)425 -+ Lo }

and A* = UprenA* ™). Let us put ¥a(z) = 0 for all z € A*, and, for
all M € N and for all i = s(M) 4 1,sM) 42 sM) Ly (M + 1), let
us put Ya(z;) € S(0,v/M +1) NZ" such that the restriction of 1 to
A\ A* is injective. In other terms, the first r,(M + 1) points of the above
s(vM + 1)-tuple of points are sent injectively by 1 to the r,(M + 1)
elements of Z™ of norm /M + 1 which lie on the sphere S(0,v/M + 1),
the remaining points T o(M) 4y (M41) 410 T fpp (M41) 42>+ + > L(M+1) going
to the origin of Z™. There is no uniqueness of such a mapping ¥x: given A*,
any re-enumeration e of the elements of Z™ conserving the norm provides
another suitable mapping e o ¢ : A — Z™. Properties (i) to (iv) of ¢ are
easy consequences of its definition. O

Let us now consider an infinite UYD-set A which contains the origin and
let us continue the proof of Proposition A.1 (if A does not contain the origin
we modify slightly a few points close to the origin for having this property).
In a similar way as in Step 1 with (A.2), we are looking for a lower bound
of the quantity (with ¢;,¢; € A and [|¢;|| > R, ||¢;]| > R)

11 & 1
mRm)i= oo+ S gl + s Y g —al
j=1 1<i<j<m
as a function of R and m. Let us observe that the differences c¢; —¢; belong
to the translated UD-sets A — ¢; = {A — ¢; | A € A} of A which all contain
the origin. Let us now compute a lower bound of m 2 Yi<i<j<m g —ill-
For integers M, m € N that satisfy -

M M+1
D s(VE)<m < Y s(VE),
k=0 k=0

we deduce the following inequality:

m m M
oy —eall 2> oa—e ()l = > ra)Vi
7j=2 7j=2 =0

from Lemmas A.1, A.2 and A.3. We now proceed with the other sums
ditiialle —cill, @ > 2. Let us assume that m = 224;61 5(/q). For all
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i=1,2,...,8(vM), the difference m — i is greater than Z(]I\ios(\/ﬁ) and
this implies

S

Z llej — cill > Z e, ()l =3

Jj=i+1 j=i+1 1=0
We deduce the inequality

s(VM+1) m M
S Y e -l = s (VD (Y Vi)
=1 j=i+1 1=0
M
> rp(M + 1)(2 Tn(l)\/Z>
=0
Since for all 4,5 the inequality |lc; — ¢i|| > ||[¥a—¢;(¢;)]| holds and that
s(VM+1) m
Z Z lej — cil = Z Z lej — cill
=1 j=i+1 =1 Jj=i+1

s(WVM+1)+s(vVM) m

+ > > e —cill + -
i=s(vVM+1)+1 J=i+l
s(VMA1)+s(VM)+...45(vV2)+s(vV1) m

+ > > e =il
i=s(VMA1)+s(vVM)+...4+5(v2)+1 J=i+1

by reproducing the same computation term by term, we deduce

> e —cill = (M + 1)(§jrn<zm)

1<i<j<m 1=0
M-1

+ 7 (M) ( > rn(l)\/i> o (2)ra (1) + 27

=0

This leads to the same inequality as in (A.5), with m = 224”51 5(\/q),
except that “k” has to be replaced by “M”. Therefore, we obtain

(A.12) m™? > e —al = KsvM.
1<i<j<m
Let us now compute a lower bound of m =2 >t llell. Take R = Vi

with ¢ > 2 an integer and consider m = 22\/1461 5(y/q). This lower bound
corresponds to a distribution by layers of the points ¢1,¢o,...,¢n on A so
that they are located as close as possible to the sphere S(0, R). Let us write
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m as the following sum: m = s(vt) +s(vt+ 1)+ -+ s(vt +U) + W
for certain integers U > 0 and 0 < W < s(v/Tt+U +1). Then, by
Lemma A.3,

m m t+U

Do llel = eale)l = Y ra()Vi

j=1 j=1 I=t
Hence, by the same type of computation as in Step 1, and by replacing only
“u” by “U”, we deduce

n—1

1 & Ki(t—1)2 1
A3 — | > .
( ) m?2 ; lesll = K2 UU+2+t)n—2

In order to compute a lower bound of the sum m~237, [¢j| +
m=2 Y ciciem ll6j — cill as a function of U only from (A.12) and (A.13),
it remains to give explicitely a relation between M and U. This relation
comes from the computation of a lower bound of m which will be a function
of M only and an upper bound of m which will be a function of U only. Let
us compute these bounds. First, since 22/1:%1 rn(k) < 22/[;61 s(Vk) =m
we deduce, by the same type of computation as in Step 1 (with “U” instead
of “u”),

M+1

(A.14) % (t+U)"? - (t - 1)"/2] <Y s(vg) =m.
q=0

Second, if vol(B(0,z)) denotes the volume of the ball B(0,z), by counting

the maximal possible number of points in {z | vk < ||z|| < vk +1} (in

this annulus any point should be at a distance from another one greater

than unity), we deduce that the term s(v/k), k > 1, is smaller than

1 1 1 -1
(vol(BO, VE+T+3)) —vol (B0, VE - 3)) ) (vol(B(0.3))) -
Therefore
M+1 M+1 " "
m=> s(Vk)<1+2" )" K\/k+1+§> - <f—§> } :
k=0 k=1
By a first-order development of each term, we deduce
M+1 I\n-1
m <1+ n2 ;; VE+T = VE+1] (\/k:+1+§> .

Since vVE+1 — Vk +1 < 2 we obtain that m is certainly exceeded by
n2ntl 224;{1 (\/k:—i—l—{— %)n_l. Now, for all 1 < k < M + 1, we have



Selection Theorem 267

vk % < Vk+3vVM + 1. We deduce

M+1

m < n2"t! Z <k+3\/7)

2n+2

[(M+2+3\/7) (1+3\/M7+1)"TH}.

n—|—1

Denote I(z) = (z + % VJ%H) 5 and w = suple(supme[OJ] I'(x)). Then
it is easy to check, by factorizing (M + 1)(”+1)/ 2 and applying a first-order
development to the factors in the right-hand side term of the last inequality
that this term is smaller than n2"*2w(n + 1)~ (M + 1) . Hence

n+1

(A.15) m < n2"P2w(M 4+ 1) 2

From (A.14) and (A.15) (as for (A.7) and (A.8)) we deduce the following
inequality

1 [1 /K \2/ () na Y2

n - — — n — <
(A.16) U [4(2w) (t — 1) 1] < VM.
Define
(A17) a6, 0) = = oyt

U(U +2 +t)n—2

1/2
where C3(t) := K3 [ (Eiymit = (t— l)nﬁ - 1} . Then (as in Step 1)

(A.18) na(Vt,m) > ga(t, Umin(t)),

for all m = S0 b1 s(v/k), where Upin(t) is the value at which the function
U — ga(t,U) is minimal. The proof of lim; 1o ga (¢, Unin(t)) = 400 is
similar as in Step 1, for any integer m. This implies, after (A.2), that
limp_ 100 02(A, Ar) = 0 for all UD-set A and all n > 5. This convergence is
obviously uniform in the sense stated in Proposition A.1 since the sequence
(s(vk))x is universal and optimal for splitting up any UD-set A.

Step 3.— If A is a UD-set in R™ with n < 4, it can be viewed as a UD-set
in R%. Since Proposition A.1 is true for n = 5 by Step 2, it is also true in
lower dimensions by descent. O
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1 Introduction

The existence of densest sphere packings in R™,n > 2, asked the question
to know how they could be constructed. The problem of constructing very
dense sphere packings between the bounds of Kabatjanskii-Levenstein and
Minkowski-Hlawka type bounds (see Fig. 1 in [MVGI]) remains open [Bz]
[Ca] [CS] [GL] [GOR] [R] [Z]. There are two problems: the first one is the
determination of the supremum ¢,, over all possible densities, d,, being called
the packing constant, as a function of n only (for n = 3 see Hales [H]); the
second one consists in characterizing the (local, global) configuration of balls
in a densest sphere packing, namely for which the density is d,,.

The notion of complete saturation was introduced by Fejes-Toth, Kuper-
berg and Kuperberg [FTKK]. Section 2 gives new direct proofs of the existence
Theorems for completely saturated sphere packings (see Bowen [Bo] for a proof
with R™ and H" as ambient spaces) of maximal density and densest sphere
packings in R™. For this purpose new metrics are introduced (Subsection 2.1)
on the space of uniformly discrete sets (space of equal sphere packings), and
this leads to a continuity Theorem for the density function (Theorem 7.2).

Let A be a uniformly discrete set of R™ of constant r > 0, that is a discrete
point set for which ||z — y|| > r for all z,y € A, with equality at least for
one couple of elements of A, and consider the system of spheres (in fact balls)
B(A) = {A+ B(0,%) | A € A}, where B(c,t) denotes the closed ball of center
¢ and radius t. Let B = B(0,1/2). The fact that the density

§(B(A)) == limsup |vol(( | J (A + B(0,7/2))) () B(0,T))/vol(B(0,T))

T—+oo AEA
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of B(A) is equal to the norm (“norm 1”) of Marcinkiewicz of the characteristic
function x(a) of B(A) [B+] [PH] [M], namely

6(B(A)) = lixsm 1, (1.1)
where, for all p € R** and all f € £}  with £} . the space of complex-

valued functions f defined on R™ whose p-th power of the absolute value | f|?
is integrable over any bounded measurable subset of R™ for the Lebesgue
measure,

[f]lp = Timsup [ fp¢, (1.2)
t—+o0

with

1 p e p
o= (o [ V@Pas) L peth, a3)

asks the following question: what can tell the theory of Marcinkiewicz spaces to
the problem of constructing very dense sphere packings 7 Obviously the prob-
lem of the determination of the packing constant or more generally of the den-
sity is associated with the quotient space L] /R where R is the Marcinkiewicz
equivalence relation (Section 3): the density function is a class function, that
is is well defined on the Marcinkiewicz space MP with p = 1. For instance
any finite cluster of spheres has the same density, equal to zero, as the empty
packing (no sphere); the Marcinkiewicz class of the empty sphere packing be-
ing much larger than the set of finite clusters of spheres. Then it suffices to
understand the construction of one peculiar sphere packing per Marcinkiewicz
class. It is the object of this note to precise the geometrical constraints given
by such a construction.

Since any non-singular affine transformation T' on a system of balls B(A)
leaves its density invariant (Theorem 1.7 in [R]), namely

§(B(A)) = 6(T(B(A))), (1.4)

we will only consider packings of spheres of common radius 1/2 in the sequel.
It amounts to consider the space UD of uniformly discrete subsets of R™ of
constant 1. Its elements will be called UD-sets. Denote by f the class in
MP =LV /R of f € L] . where L]  is endowed with the MP-topology
(Section 3), and by

v: UD — L, resp. v: UD — M!
A — xBn) A — XBn)

the (set-) embedding of UD in L}, resp. in M*.

Theorem 1.1. The image v(UD) in L}

loc

NL>®, resp. D(UD) in M*, is closed.
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Theorem 1.1 is a reformulation of the following more accurate theorem,
since MP is complete [B] [B+]. For 0 < A < u denote

CAp) i=A{z e R" [A < [lz] < p}

the closed annular region of space between the spheres centered at the origin
of respective radii A and pu.

Theorem 1.2. Let (Ay,)m>1 be a sequence of UD-sets such that the sequence
(XB(A,))m>1 is a Cauchy sequence for the pseudo-metric || - ||y on L], N L>®.
Then, there exist

(1) a strictly increasing sequence of positive integers (m;);>1,
(ii) a strictly increasing sequence of real numbers (X\;)i>1 with A; > 1 and
Aig1 > 2X,
such that, with

A= Am, 0 COG+1/2, 041 — 1/2), (1.5)

i>1
the two fUTLCtZ'OTLS
d 1.111 A
XB(A) an i 1 XB( m;)

are M -equivalent. As a consequence

S(B(A) = lim_8(B(Am,)) (L6)

The situation is the following for a (densest) sphere packing B(A) of R™ for
which §(B(A)) = 6, :
x either it cannot be reached by a sequence of sphere packings such as in
Theorem 1.2, in which case there is an isolation phenomenon,

x or there exists at least one sequence of sphere packings such as in The-
orem 1.2, and it is Marcinkiewicz - equivalent to a sphere packing hav-
ing the asymptotic annular structure given by Theorem 1.2, where the
sequence of thicknesses of the annular portions exhibit an exponential
growth.

The sharing of space in annular portions as given by Theorem 1.2 may
allow constructions of very dense packings of spheres layer-by-layer in each
portion independently, since the intermediate regions C(\; —1/2, \; +1/2) are
all of constant thickness 1 which is twice the common ball radius 1/2. These
intermediate regions do not contribute to the density so that they can be filled
up or not by spheres. However the existence of such unfilled spherical gaps are
not likely to provide completely saturated packings, at least for n = 2 [KKK].

Note that the value 2 which controls the exponential sequence of radii (A;);
by Aix1 > 2)\; in Theorem 1.2 (ii) can be replaced by any value a > 1. This is
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important for understanding constructions of sphere packings iteratively on the
dimension n: indeed, chosing a > 1 sufficiently small brings the problem back
to fill up first one layer in a as dense as possible way, therefore in dimension
n — 1, then propagating towards the orthogonal direction exponentially.

The terminology density is usual in the field of lattice sphere packings, while
the terminology asymptotic measure, therefore asymptotic density, is usual in
Harmonic Analysis, both meaning the same in the present context.

2 Densest sphere packings and complete saturation

The set SS of systems of equal spheres of radius 1/2 and the set UD are in
one-to-one correspondence: A = (a;);eny € UD s the set of sphere centres of
B(A) ={a; + B | i€ N} € SS. More conveniently we will use the set UD of
point sets of R™ instead of SS. The subset of UD of finite uniformly discrete
sets of constant 1 of R" is denoted by UDy.

2.1 A metric on UD invariant by the rigid motions of R™

Denote by O(n,R) the n-dimensional orthogonal group of n x n matrices M,
i.e. such that M~1 =*tM. A rigid motion (or an Euclidean displacement) is
an ordered pair (p,t) with p € O(n,R) and ¢t € R™ [Cp]. The composition
of two rigid motions is given by (p,t)(p’,t') = (pp’, p(t') +t) and the group
of rigid motions is the split extension of O(n,R) by R™ (as a semi-direct
product). It is endowed with the usual topology. Theorem 2.1, obtained as a
generalization of the Selection Theorem of Mahler [Cy] [GL] [Ma] [Mt], gives
the existence of a metric d on UD [MVG2] which extends the Hausdorff metric
on the subspace UD;. The metric d is not invariant by translation. From it,
adding to the construction of d some additional constraints so that it gains
in invariant properties (Proposition 2.2 iii) proved in Section 5), a new metric
D, invariant by translation and by the group of rigid motions of R (Theorem
2.3 proved in Section 6), can be constructed, giving a new topology to UD,
suitable for studying the continuity of the density function (Theorem 7.2).

Theorem 2.1. The set UD can be endowed with a metric d such that the
topological space (UD,d) is compact and such that the Hausdorff metric A on
UDy is compatible with the restriction of the topology of (UD,d) to UDy.

Proof. Theorem 1.2 in [MVG2]. O

Proposition 2.2. There exists a metric d on UD such that:
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i) the space (UD,d) is compact,
ii) the Hausdorff metric on UDy is compatible with the restriction of the
topology of (UD,d) to UDy,
iil) d(A,A") =d(p(A), p(A")) for all p € O(n,R) and A, A" € UD.

Since the density of a sphere packing is left invariant by any non-singular
affine transformation ((1.4); Theorem 1.7 in Rogers [R]), it is natural to con-
struct metrics on UD which are at least invariant by the translations and by
the orthogonal group of R™. Such a metric is given by the following theorem.

Theorem 2.3. There exists a metric D on UD such that:

i) D(A1,A2) = D(p(Ay) +t,p(A2) +1t) for all t€R™ pe O(n,R™) and
all Ay, Ay € UD,

i) the space (UD, D) is complete and locally compact,

iii) (pointwise pairing property)  for all non-empty A,AN' € UD such
that D(A,A") < €, each point A € A s associated with a unique point
N eN such that |A—N| <e€/2,

iv) the action of the group of rigid motions O(n,R) x R™ on (UD,D) :
((p,t),A) — (p,t)- A = p(A)+t is such that its subgroup of translations
R™ acts continuously on UD.

2.2 Existence Theorems

The two following Theorems rely upon the continuity of the density function
|| |l1 ov on the space (UD, D) (Theorem 2.3 and Theorem 7.2).

Theorem 2.4. There exists an element A € UD such that the following equal-
ity holds:

§(B(A)) = 0n. (2.1)
Proof. See Groemer [Gr| and Section 7. O

We will say that A € UD is saturated, or mazimal, if it is impossible to
add a replica of the ball B (a ball of radius 1/2) to B(A) without destroying
the fact that it is a packing of balls, i.e. without creating an overlap of balls.
The set SS of systems of balls of radius 1/2, is partially ordered by the
relation < defined by Aq,As e UD, B(A1) < B(A2) < A; C As. By
Zorn’s lemma, maximal packings of balls exist. The saturation operation of a
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packing of balls consists in adding balls to obtain a maximal packing of balls.
It is fairly arbitrary and may be finite or infinite. More generally [FTKK],
B(A) is said to be m-saturated if no finite subsystem of m — 1 balls of it
can be replaced with m replicas of the ball B(0,r/2). The notion of m-
saturation was introduced by Fejes-Toth, Kuperberg and Kuperberg [FTKK].
Obviously, 1-saturation means saturation, and m-saturation implies (m—1)-
saturation. It is not because a packing of balls is saturated, or m-saturated,
that its density is equal to d,,. The packing B(A) is completely saturated if
it is m-saturated for every m > 1. Complete saturation is a sharper version
of maximum density [Ku].

Theorem 2.5. Every ball in R™ admits a completely saturated packing with
replicas of the ball, whose density is equal to the packing constant &,,.

Proof. Theorem 1.1 in [FTKK]. See also Bowen [Bo]. A direct proof is given
in Section 7, where we prove that there always exists a completely saturated
sphere packing in the Marcinkiewicz class of a densest sphere packing. O

3 Marcinkiewicz spaces and norms

Let p € RT*. The Marcinkiewicz p-th space MP is the quotient space of
the subspace {f € L] | |fll, < +oc} of L} . by the equivalence relation

loc

R which identifies f and g assoon as |f — g|l, =0 (Marcinkiewicz [M],
Bertrandias [B], Vo Khac [VK]):
MP = {f | f € L], Ifllp < +o0}. (3.1)

loc?

This equivalence relation is called Marcinkiewicz equivalence relation. It is
usual to introduce, with | f|,; given by (1.3), the two semi-norms

[fllp = limsup | f]p,¢
t——+oo
and

W f Il = sup | flp.e
>0

P
on L.

The vector space MP is then normed with ||f||, = || f|l,-
Theorem 3.1. The space MP is complete.

Proof. Marcinkiewicz [M], [B], [VK]. O
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We call MP-topology the topology induced by this norm on MP or on
L) . itself. Both spaces will be endowed with this topology.
Following Bertrandias [B] we say that a function f € £} is MP-regular if

1

lim ———— / f(@)|Pdz =0 for all real number I.
t—+oo vol(t B) Jip\ (-1 £

Since all functions f € £} . such that ||f]|, = 0 are MP-regular, we consider
classes of MP-regular functions of £} modulo the Marcinkiewicz equivalence
relation. We call MP the set of classes of Marcinkiewicz equivalent MP-regular

functions.
Proposition 3.2. The set M? is a complete vector subspace of MP.

Proof. [B]. O

4 Proof of Theorem 1.2

Theorem 1.2 is the n-dimensional version of the remark of Marcinkiewicz [M]
in the case p = 1. We prove a theorem slightly stronger than Theorem 1.2
(Theorem 4.2), by making the assumption in Lemma 4.1 and in Theorem 4.2
that p is > 1 in full generality.

Lemma 4.1. Let p > 1. Let (A;)i>1 be a sequence of real numbers such that
N> 1, )\i+1 > 2);, > 1.

Let C; := (3()\1-—1—1/27 Ait1— 1/2). Then for all bounded function f € L] . such
that f|ci =0 for all i > 1, we have

Ifllp =0

Proof. Immediate. [l

Lemma 4.1 is the special case of MP-regularity applied to the character-
istic functions of systems of spheres which eventually lie within the spherical
intermediate regions C;. It proves that such spheres do not contribute to the
density anyway.

Theorem 4.2. Let p > 1. Let (Ay)m>1 be a sequence of UD-sets such that
the sequence (XB(a,,))m>1 is a Cauchy sequence for the pseudo-metric || - ||,
on LY N L. Then, there exist

loc
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(1) a strictly increasing sequence of positive integers (m;)i>1,

(i) a strictly increasing sequence of real numbers (A;)i>1 with A\; > 1 and
Aig1 > 2),

such that, with

A= Am, 0 CO +1/2, 041 — 1/2), (4.1)
i>1
the two functions
xsay end ol Xp,,) (4.2)

are MP-equivalent.

Proof. Since the sequence (xg(a,,)) is a Cauchy sequence, let us chose a sub-
sequence of UD-sets (A, )i>1 which satisfies

_ —(i+1)
IXB(A ) = XB(Am ) lp <2 :

Then, denoting

1 1/p
R = su _ x)|Pdx , eL? |
M) /\+1/2§II?<+00 <V01(tB) /tB 7= > / toc

let us chose a sequence of real numbers (\;);>1 for which A; > 1, \ip1 > 2),
and such that

Ry, (xB(Am,) — XB(AmM)) <27
Let us define the function
XB(A,,) (@) A+ 1/2< 2] <A1 —1/2 (i=1,2,...),

H(z):={ 0 oA —1/2< |z <N+1/2 (i=1,2,...),
0 if |zl < A — 1/2.

The function H(z) is exactly the characteristic function of B(A) on J :=
Uj:f C; the portion of space occupied by the closed annuli C;. Let us prove
that the function H(z) satisfies:

Jim (LH = xs) = 0. (4.3)
Let us fix 7 and take ¢ and k£ such that
Ae+1/2 <2t < Apyy — 1/2 (4.4)

holds with & > ¢+ 1. Then

/ H () — xsa, ) (o) Pde = / H(x) — x5, () Pde
tB tBNJ
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+/ XB(Am,i)(z)pd-T-
tBN(R™\J)

By Lemma 4.1,

IX5(A.,) NV xR\l = 0.

Hence, we have just to consider the portion of space occupied by the spheres
B(Anm,) in tBNJ. We have

%

/ H(z) = xsan ) @Pdz = 3 / H(x) — x5, ()P
tBNJ =1 JiBne

k—1

S5 [ @ -~ xsa @+ [ HE) = s, @)
v=i+1 tBNC tBNCg

=A+E+C.

Let us now transform the sum A:
i

Z/B . |H (z) = XB(A,) (T |pd9€*2/ |XB(AmU) T) = XB(An,) ()P dz.
M

y=1"1t
But, for all v € {1,2,...,i— 1},
1/p
(/ IXB(An,) (@) — XB(Ami)(x)|de)
tBNC,

1—1

N 1/p
= XB(Am )\T) = XB(Am x sz>
; ([Bncu' B(hn) (&) = XB(A,,,) (@)]

w=r

<N (vol(Ay +1/2)B)"? Ry, (XB(Amo) = XB(Am,, 1))

< i (vol((A\; + 1/2)B)YP 27 < (vol((\; + 1/2)B))/?.

Hence
A <iivol((A\; +1/2)B). (4.5)

Let us transform the sum E:
k-1

> /B . |H (%)= XB(A,) (@) [Pdz = Z / |XB(AmU) T)=XB(A,) (@) [Pdz.
|l

v=i+1"t v=i+1
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But, for all ve {i+1,i+2,...,k—1},

1/p
( [ @) - xmmi)(xnpdx)
tBNC,

v—1 1/p
< Z (/t IXB(A,,) (@) — XB(AmW+1)(x)|pdx)

BNC,

v—1
< Z (vol((\w +1/2)B))'/" Ry, (XB(Amo,) = XB(Am,, 1))

<> (vol((A +1/2)B)'? 27 < vol(A, +1/2)B)/P 27+,

X
I

S
Il

K2

Hence,

E < 2707DP (vol((Ajy1 4 1/2)B) + vol((Aig2 + 1/2)B) + ...

+vol(A1 +1/2)B))

) 1 1
< 2_(l_l)pV01(()\k +1/2)B) (2—n + 22n + .. )

< 27@=Dpyol(2tB) = 27~ DPHn yol(¢B). (4.6)
Let us transform the sum C:
C < 270=DPHn yol(¢B). (4.7)
From (4.5), (4.6) and (4.7) we deduce

<ﬁtm /tBﬂJ [H (@) - XB(Amn(w)lpdz) N

- ivol((A\; +1/2)B) P 1/p
- vol(tB)

Using (4.4) we deduce, for a certain constant ¢ > 0,
1 = XA lp < €27070.
This implies (4.3). Now, if m; < ¢ < m;41, ¢ > 1, we have

p = o(1) +o(1) = o(1)

1H — xBag)llp < IXBA,) — XBA) lp T 1H — XB(A,)
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when ¢ tends to +o00. The proof of the MP-equivalence (4.2) between H and
lim; .+ o XB(A,) 18 nOW complete.

The thickness of the empty annular intermediate regions C; is equal to 1:
it ensures that the limit point set A is uniformly discrete of constant 1. [l

5 Proof of Proposition 2.2

The metric d on UD was constructed in [MVG2], §3.2.1, as a kind of counting
system normalized by a suitable distance function. In order to make explicit
the statement iii) of Proposition 2.2, we recall the construction of d, adding
the ingredient (5.2) in order to obtain the claim. The metric d is given in
Lemma 5.1.

For all A € UD, we denote by A; its i-th element. Let

E ={(D, E) | D countable point set in R", E' countable point set in (0,1/2)}

and f : R™ — [0,1] a continuous function with compact support in B(0,1)
which satisfies:

£O) =1, (5.1)
flp@®) = f(t) for all t € R™ and all p € O(n,R), (5.2)
1) < % for all t € B(0,1) and A e R™.  (5.3)

It is remarkable that the topology of (UD, d) does not depend upon f once
(5.1) and (5.3) are simultaneously satisfied ([MVG2] Proposition 3.5 and §3.3).
Therefore adding (5.2) does not change the topology of (UD, d) but only the
invariance properties of the metric d.

For f for instance, let us take f(t) = 1 —2||t| for ¢ € B(0,1/2) and
f(t) =0 elsewhere.

With each element (D, E) € £ and origin « of R™ we associate a real-
valued function d, (p gy on UD x UD in the following way (denoting by
B(c,v) the interior of the closed ball B(c,v) of centre ¢ and radius v > 0).
Let B(p,gy = {Bmn} denote the countable set of all possible finite collections

B, = {B(cgm), egm)), B(cém), eém)), ce B(c(m) e(.m))}

tm ) Tlm

of open balls such that cf{’“ € D and Egm) € E forall g€ {1,2,...,im},
and such that for all m and any two distinct balls in Bf,:) of respective centers
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cf{”) and c,(cm), we have

leg™ = ™| = 1.

Then we define the following function, with A, A’ € UD,

da,(D,E) (A, A/) =

s |65, (M) — 65, (A))] 5.4
BuneBio. (1/2+ [laf + la— ™[ + a— ™| + -+ la— ™)
where the function ¢, is given by

o) = X S (M55,

§(c,5)€3m !

putting ¢p,, (0) =0 for all B, € Bp,py and all (D,E) € & by convention.

Lemma 5.1. For all (o, (D, E)) in R" x &, do (p,p) is a pseudo-metric on

UD. The supremum d:= sup do (p,E) 18 a metric on UD, valued in [0,1].
(D.F)ee
Proof. See Muraz and Verger-Gaugry [MVG2]. O

Let us show that d is invariant by the action of the orthogonal group
O(n,R).

Lemma 5.2. For all (D,E) € &,a € R pe On,R) and A, A € UD, the
following equality holds:

do,(D,B) (A AN') = dyiay, (p(D),E) (P(A), p(A)).
Proof. Let (D, E) € £ and B,, € B(p,g) with

By = {B(c™, ™), B(e§™, 5™, ..., B(e™, ™)},

tm ) lm

The following inequalities hold:
Hc,(]m) - c,(Cm)H >1 foralll<gq,k<i, withg # k.

Let p € O(n,R). The collection By, is in one-to-one correspondence with the
collection of open balls

B = {B(p(c\™), ™), B(p(c§™), 5™, ..., B(p(e™), ™)} € Biy(y )

Tm Y T,

where the following inequalities

p(cl™) — p(e™)]| > 1
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are still true for all 1 < ¢,k < i,, with ¢ # k. By (5.2) the following equalities
hold:

05, (A) = B0 (p(A)).

Hence, for a given a € R™, by taking the supremum over all the collections
B € Bp,g) of the following identity:

¢5..(A) — ¢5,.(A)]
Lol + o= ™)+ o4 o=
(ngs) (p(A)) - QSB%) (P(AI)
L4 lp@ll + o) = p(e™) + .. + lp(@) = pleI)]

im

™|

we deduce the claim. O

By taking now the supremum of d, (p g)(A,A’) over all o € R™ and
(D, E) € € we deduce from Lemma 5.2 that

d(A, A) = d(p(A), p(A))
for all A, A’ € UD and p € O(n,R) as claimed.

6 Proof of Theorem 2.3

The metric d on UD (Theorem 2.1) has the advantage to make compact
the metric space (UD,d) but, by the way it is constructed, the disadvantage
to use a base point (the origin) in the ambient space R™. We now remove this
disadvantage but the counterpart is that the precompactness of the metric
space UD will be lost. In order to do this, let us first define the new collection
of metrics (d;) on UD indexed by z € R™ by

dy(A,A') =d(A —x, N — x), A, N eUD.
Let us remark that the metric spaces (UD,d,),z € R™, are all compact (by
Theorem 2.1).
Definition 6.1. Let D be the metric on UD, valued in [0, 1], defined by

D(A,A) := sup di(AA), for A, A" eUD.
zeR™

The metric D is called the metric of the prozimity of points, or pp-metric.

Proof of i): By construction, D is invariant by the translations of R™. Let
us prove its invariance by the orthogonal group O(n,R). Let A, A’ € UD and
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xz € R", p e O(n,R). Since
d(A, A') = d(p(A), p(A'))
by Lemma 5.2, we deduce

dy (A, A') = d(A—z, A —2) = d(p(A) —p(x), p(A") = p()) = dp(a) (p(A), p(A)).
Hence,

sup dI(Aa A/) = sup dp(z) (p(A)a p(A/))
reR™ reR™

This implies
D(A,N') = D(p(A), p(A")).

Proof of ii): any Cauchy sequence for the pp-metric D is in particular a
Cauchy sequence for the metric d, for all = € Q". But Q" is countable.
Therefore, from any Cauchy sequence for D, a subsequence which converges
for all the metrics d,,x € Q", can be extracted by a diagonalisation process
over all z € Q™. Since QU is dense in R", that

sup dp(A,A") = sup d.(A,N) for all A, A" € UD,

zeQn zER™
this subsequence, extracted by diagonalization, also converges for the metric
D. This prove the completeness of the metric space (UD, D).

Proof of iii): we will use the pointwise pairing property of the metrics d,
recalled in the following Lemma.

Lemma 6.2. Let x € R". Let A,A' € UD assumed non-empty and define
lp := infyen [N — z]| < +o0. Let € € (0’1-%;21) and let us assume that

dz(A,N'") < €. Then, for all X € A such that |\ — z|| < 1=

2e ’
(1) there exists a unique N € A" such that ||\ — A|| < 1/2,

(ii) this pairing satisfies the inequality |N — X < (1/2 + || — x| )e.

Proof. See Proposition 3.6 in [MVG2]. O

Let 0 < e <1 and suppose that A, A’ € UD are non-empty and satisfy
D(A, ') < e. This implies

da(A,A') <e  forall A €A
From Lemma 6.2, restricting = to all the elements A\ of A, we deduce
VA e A, 3N € A’ (unique) such that ||X — || < /2.

This proves the existence of unique pointwise pairings of points and the point-
wise pairing property for D.
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Proof of iv): let us show that

UD xR* — UD

(At) — A+t

is continuous. Let Ag € UD and ty € R™. First, by the pointwise pairing
property given by iii), we deduce

}H% D(Ao + t, Ao) =0.
Let 0 < € < 1. Then, there exists n > 0 such that
|t - t0| <n — D(Ao + (t - to),Ao) < 6/2.

Hence, for all A € UD such that D(A,Ag) < €/2 and t € R™ such that
[t —to| < m, we have:

DA+, Ao + o) = D(A + (£ — to), Ao)
< DA+ (t —tg), Ao + (t —t0)) + D(Ao + (t — t0), Ao)

= D(A,Ao) +D(A0 + (t —to),Ao) < 6/2+6/2 =e.

We deduce the claim.

Proof of (i) (continuation): let us prove that (UD, D) is locally compact.
The Hausdorff metric A is defined on the set F(R™) of the non-empty closed
subsets of R™ as follows:

A(A,A) :==max {inf{e | A" C A+ B(0,¢)}, inf{e | A C A"+ B(0,¢)}}

in particular for A, A’ € UD\ {0}. UD \ {0} is closed in the complete space
(F(R™),A). Then UD \ {0} is complete for A. On the space UD \ {0}, the
two metrics D and A are equivalent. The element () (system of spheres with
no sphere) is isolated in UD for D. Hence, it possesses a neighbourhood
(reduced to itself) whose closure is compact. Now, if A € UD \ {0} and

0 < € < 1, the open neighbourhood {A" e UD | A’ C A+ B(0,¢€)} of A admits
{N eUD| N Cc A+ B(0,¢)} as closure which is obviously precompact, hence
compact, for D or A. We deduce the claim.



Densest sphere packings and Marcinkiewicz spaces 17

7 Proofs of Theorem 2.4 and Theorem 2.5

Assume that there does not exist A € UD such that (2.1) holds. Then, by
definition, there exists a sequence (A;);>1 such that A; € UD and
lim 6(B(A;)) = 0,

1—~+00

(as a sequence of real numbers).

Lemma 7.1. There exists a subsequence (A;;)j>1 of the sequence (A;)i>1
which converges for D.

Proof. Indeed, the sequence (A;);>1 may be viewed as a sequence in the com-
pact space (UD, d,;) for any € Q™. Therefore, for all € Q", we can extract
a subsequence from it which converges for the metric d,.. Iterating this extrac-
tion by a diagonalization process over all x € Q™, since Q" is countable, shows
that we obtain a subsequence which converges for all the metrics d,. Since Q"

is dense in R™, we obtain a convergent sequence (A;;);>1 for D since

sup d; = sup d.
TER™ zeQnr

O

Theorem 7.2. The density function A — §(B(A)) = |Ix(B(A))||1 is continu-
ous on (UD, D) and locally constant.

Proof. Let Ay € UD, T > 0 large enough and 0 < ¢ < 1. By Lemma 6.2
and the pointwise pairing property Theorem 2.3 iii), any A € UD such that
D(A, Ap) < € is such that the number of elements #{\ € A | A\ € B(0,T)} of
A within B(0,T") satisfies the following inequalities:

#HAeA | AeB(0,T—¢/2)} <#{NeA|Xe B(0,T)}

<H#{ANEAN | NeB(0,T+¢/2)}.
The density of the system of balls B(A) is equal to
1 n
d(B(A)) =limsup#{r € A | A€ B(0,T)} (—) :
T—+4o00 2T

Since the contribution - to the calculation of the density - of the points of
Ao which lie in the annulus B(0,7 +¢€/2) \ B(0,T—¢/2) tends to zero when
T tends to infinity by Theorem 1.8 in Rogers [R], we deduce that

3(B(A)) = 0(B(Ao)),

hence the claim. O
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Let us now finish the proof of Theorem 2.4. Since the metric space (UD, D) is
complete by Theorem 2.3, the subsequence (A;;);>1 given by Lemma 7.1 is
such that there exists a limit point set

A= lim Aij ceUuUD

j——+o0
which satisfies, by Theorem 7.2,

60 = lim 8(B(A,,)) = 3(B(A)).
j—+oo
Contradiction.

Let us remark that, in this proof, we did not need assume that the elements
A;; are saturated (the same Remark holds for m-saturation).

Let us prove Theorem 2.5. From Theorem 2.4 there exists at least one
element of UD, say A, of density the packing constant d,,. Let us assume that
there is no completely saturated packing of equal balls of density §, and let
us show the contradiction. In particular we assume that A is not completetly
saturated.

Then there would exist an application ¢ — m; from N\ {0} to N\ {0} and
a non-stationary sequence (A;);>1 such that

(i) A; €UD with Ay = A,

(ii) A;41 is obtained from A; by removing m; balls and placing m; + 1 balls
in the holes formed by this removal process,

(iii) 06(B(A;)) = 8y, for all 4 > 1.

This corresponds to a constant adding of new balls by (ii), but since the density
of B(A1) is already maximal, equal to §,,, this process ocurs at constant density
(ii).

As in the proof of Theorem 2.4, we can extract from the sequence (A;);>1
a subsequence (A;;);>1 which is a Cauchy sequence for D. Since (UD, D) is
complete, there exists A € UD such that

Jj—+oo
The contradiction comes from the pointwise pairing property (iii) in Theorem
2.3 and the continuity of the density function (Theorem 7.2). Indeed, for all
J large enough, D(A;;,A) is sufficiently small so that the pointwise pairing
property for D prevents the adding of new balls to A;; whatever their number
by the process (ii). Therefore, the subsequence (A;;);>1 would be stationary,
which is excluded by assumption. This gives the claim.
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We study lower bounds of the packing density of a system of
nonoverlapping equal spheres in R",n > 2, as a function of
the maximal circumradius of its Voronoi cells. Our viewpoint,
using Delone sets, allows us to investigate the gap between
the upper bounds of Rogers or Kabatjanskii-Levenstein and the
Minkowski-Hlawka type lower bounds for the density of lattice-
packings, without entering the fundamental problem of con-
structing Delone sets with Delone constants between 27%:4%
and 1. As a consequence we provide explicit asymptotic lower
bounds of the covering radii (holes) of the Barnes-Wall, Craig,
and Mordell-Weil lattices, respectively B, Sf’, and MW,
and of the Delone constants of the BCH packings, when n goes
to infinity.

1. INTRODUCTION

~The maximal packing density of equal spheres in R"

has received a lot of attention [Rogers 64, Goodman
and O’Rourke 97, Cassels 59, Martinet 96, Conway and
Sloane 88, Oesterlé 90, Gruber and Lekkerkerker 87,
Zong 99]. Similar problems are encountered in coding
theory, data transmission, combinatorial geometry, and
cryptology [Hoffstein et al. 01]. We will consider the
problem through the context of Delone sets. We will
give explicit lower bounds of the density of a Delone set
as a function of n and its so-called Delone constant R
expressing the maximal size of its holes.

Blichfeldt, Rogers, Levenstein, Sidel’nikov, Kabatjan-
skii, and Levenstein [Goodman and O’Rourke 97, Gruber
and Lekkerkerker 87, Conway and Sloane 88] have given
upper bounds of the packing density, while lower bounds
of the latice-packing density were given by Minkowski,
Davenport-Rogers, Ball [Ball 92], etc. (see Section 2).
In between the situation is considered fairly vague. The
present paper contributes to our knowledge of the range
between both types of bounds although the fundamental
problem, far from obvious, of constructing Delone sets of
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very small Delone constant, namely less than 1, is not
considered here.

For this we will recall the language of uniformly dis-
crete sets and Delone sets instead of that of systems of
spheres. A discrete subset A of R™ is said to be uni-
formly discrete if there exists a constant r > 0 such that
z,y € A,z # y implies ||z — y|| > r. Thus a uniformly
discrete set is either the empty set, a subset {z} reduced
to one element, or, if it contains at least two points, they
satisfy such an inequality. If r is equal to the minimal in-
terpoint distance inf{||lz —y|| | z,y € A,z # y}, A is said
to be a uniformly discrete set of constant r of R”®. Uni-
formly discrete sets of constant 1 will be called U/D-sets
and the set of U{D-sets will be denoted by UD (with-
out mentioning the dimension n of the ambient space).
There is a one-to-one correspondence between the set S,
of systems of equal spheres of radius 1/2, and the set
UD: A = (a;)ien € UD is the set of sphere centres of
B(A) = {a; + B | i € N} € SS where B(z,t) generi-
cally denotes the closed ball centred at z € R™ of radius
t > 0, and B := B(0,1/2). We will take 1/2 in the sequel
for the common radius of spheres to be packed and will
consider UD-sets instead of systems of equal spheres of
radius 1/2.

Let A € UD. The density of the system of spheres
B(A) is defined by

6(B(A)) := limsup

R—+4oo

[vol ((Usen(as + B)) N B(0, R))
vol(B(0, R))

Let us denote by L the space of (n-dimensional) lat-
tices of R”. We will denote:

sup 46(B(A))

AELNUD

d:= sup 6(B(4)), 6 :=
AEUD
and will call them respectively the packing density and
the lattice-packing density.

A UD-set A is said to be a Delone set if there exists
a constant R > 0 such that, for all z € R™, there exists
an element A € A such that ||z — A|| < R (property of
relative denseness of Besicovitch). If A is a Delone set,
then R(A) := sup,cgn infiea [|2— A|| is called the Delone
constant of A. Let R, = R.(n) := inf{R(A)|A € UD}.
This lower bound is an invariant of the ambient space
which is only a function of n and the Euclidean metric
on R™. We will call it the Delone covering constant.

In Section 2, we will recall the asymptotic expressions
of the classical upper bounds of the packing density and
the lower bounds of the lattice-packing density, when n
zoes to infinity.

In Section 3, we will recall known lower bounds of the
minimal hole constant, in the case of lattice packings,
and state some results concerning lower bounds of R, in
the general case of arbitrary packings.

The Delone constant of a Delone set A € UD is the
maximal circumradius of the Voronoi cells in the Voronoi
decomposition of space by A (Section 3); if A is a lattice,
it is the covering radius of the lattice, if A is a nonperiodic
UD-set, it is the “maximal size of the holes in A” In
Section 4, we will prove Theorem 1.1.

Theorem 1.1. Let n > 2. If A is a Delone set of R™ of
Delone constant R, then :

(2R)™™ < é(B(A)) < 6 for all R < R. (1-1)

Let us denote u,(R) := (2R)™™. The (2R)™™ depen-
dence of the expression of u,(R) with n is very important
and constitutes a key result. It allows us to study the
minimal asymptotic values of the Delone covering con-
stant Rc(n) when n tends to infinity. Namely, we will
prove Theorem 1.2.

Theorem 1.2. For all € > 0 there exists n(e) such that for
n > n(e), Re(n) > 270401 _ ¢

Remark 1.3, Theorem 1.2 asserts the existence of an infi-
nite collection of middle-sized Voronoi cells in any densest
or saturated packing of equal spheres of R™ of radius 1/2
of circumradii greater than

270401 4 5(1) = 0.757333... + o(1).

The small values of R between the bound

V2 [n

2 Vn+1
and 1 are discussed in Section 3

In Section 5, as an application of Theorem 1.1, we will
obtain explicit lower bounds as a function of n of the
covering radii (holes) of known lattices, namely Barnes-
Wall BW,, Craig AY”, Mordell-Weil MW,,, and of the
Delone constants of BCH packings.

In Section 6, we will show the pertinency of the lower
bound p,(R), and “its continuity with R” by comparing
it to known classical asymptotic bounds. The construc-
tion of Delone sets with very small Delone constants is a
difficult problem which is not considered here. Concern-
ing lattice packings, our results give credit to the con-
Jecture stating that (recall that the space /D depends
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en2™ ™% (¢ a const.)
ng-n/2
25(—0.5096-6-0(1))11
o(=0.523T+0(1))n

o(—0.5990+0(1))n

Blichfeldt [Blichfeldt 29]

Rogers [Rogers 58]

Sidel'nikov [Sidel’nikov 73]

LevensStein [Levenstein 79]

Kabatjanskii and Levenstein [Kabatjanskii and Levenstein 78

TABLE 1. Upper bounds of é as a function of n.

upon n): for all € > 0, there exists ny(e) such that for
n > nr(€) and for all (n-dimensional) lattices L € UD,
R(L)=21~—c

2. ASYMPTOTIC BEHAVIOUR OF THE UPPER
BOUNDS OF § AND OF THE LOWER BOUNDS

OF d,

The upper bounds of §, as a function of n, are recalled in
Table 1, the best one being the one of Kabatjanskﬁ' and
Levenstein ([Rogers 64], [Gruber and Lekkerkerker 87,
Section 19 and Section 38, pages 390-391], [Conway and
Sloane 88, Chapters 1 and 9], [Zong 99, Chapter 3]).

Their asymptotic expressions, when n goes to infinity,
all exhibit a dominant exponential term of the type 274"
where « is close to 1/2. As for lower bounds, non-trivial
lower bounds of the packing constant é do not seem to
exist yet (see Section 6); [Elkies 00a]). The basic re-
sult is concerned with lattice packings: the Conjecture
of Minkowski (1905) proved by Hlawka [Cassels 59, Gru-
ber and Lekkerkerker 87] states

¢(n)

2n—1 S JL

(2-1)

where ((n) = Y po, k™™ denotes the Riemann (-
function. Proofs of this lower bound do not provide ex-
plicit constructions of very dense lattices. This lower
bound was improved by Davenport and Rogers [Dav-
enport and Rogers 47] who gave: (Inv/2 + o(1))n277,
for n sufficiently large, and by Ball [Ball 92] who re-
cently obtained better: 2(n — 1)¢(n)2™™. For details,
see [Goodman and O’Rourke 97], Chapter VI in [Cas-
sels 59], Chapter 9 in [Conway and Sloane 88], [Gruber
and Lekkerkerker 87], or [Zong 99]. One can remark that
these asymptotic expressions all exhibit a dominant ex-
ponential term in 2~™ with o’ = 1, and that there exists
a close similarity between the asymptotic expressions of
the lower and upper bounds and Theorem 1.1. Theorem
1.1 will allow to “go continuously” in some sense from the
first type (“a =~ 1/2” case) to the second type (“a’ =17
case) of bounds; see Section 6

3. LOWER BOUNDS OF THE MINIMAL HOLE
CONSTANT Rp(n) AND OF THE DELONE
COVERING CONSTANT Re(n)

Bounds for the (lattice-)packing density are obviously
linked to holes. Let us recall some definitions. If a lat-
tice A € UD of R™ is a Delone set of Delone constant
R, then classically the quantity R is called the covering
radius of A. Given a UD-set A := {\;}, to each element
A;i € A is associated its local cell C();, A), also denoted
by C(X:, B(A)), defined by the closed subset (not neces-
sarily bounded), called Voronoi cell at A;,

oy ZERM =Xl < flz =
Clnn) = { for all j # i ‘

As soon as A is a Delone set of Delone constant B >
O(R < +4o00), all the Voronoi cells at its points are
bounded closed convex polyhedra. In this case, for all
Ai € A, we have

[ meRY|z— Al < |lz— Al
C(Ai, A) == { for all j # 4 with ||A; — )\ij” <2R }

By definition the circumradius of the Voronoi cell at \; is
pi = max, ||A; — v|| where the supremum (reached) is
taken over all the vertices v of the Voronoi cell C()\;, A)
at A; and the Delone constant R of A is equal to max; p;.
The elements z € R™ lying at a distance R(A) of A will
be called (spherical) deep holes (or deepest holes) of A.
The other vertices of Voronoi cells will be called holes.

In the particular case of a lattice L the covering ra-
dius R(L) is the circumradius of the Voronoi cell of the
lattice L at the origin. Any vertex of this Voronoi cell
at a distance of L less than R(L) from L is called shal-
low hole [Conway and Sloane 88]. All the vertices of the
Voronoi cell of a lattice at the origin may be simulta-
neously deepest holes when this Voronoi cell is highly
symmetrical [Verger-Gaugry 97]. '

Let us define the minimal hole constant by

Ry, =Rp(n):= min R(L)

LeldDNL

over all lattices L of R™ which are U4D-sets. Its deter-
mination is an important problem, already mentioned by
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n=23  Bordczky [Béroczky 86] = /5/(2v/3) =~ 0.645497...

n=4 Horvath [Horvath 82] = (v3-1)84/v/2 =~ 0.68125...

n=>5 Horvath [Horvath 82] = 1/9+13/(2v6) =~ 0.72473...

n>2 Rogers [Rogers 50] <15

n>2 Henk [Henk 95] < \/ﬁ/é ~ 1.1456...

n>>1 Butler [Butler 72] < ploszinnte)/n — 1 4 o(1) (c is a constant)

TABLE 2. Minimal hole constant Rr(n) for lattice-packings of spheres of radius 1/2 in R™.

Fejes-Toth [Fejes-Toth 79]. It corresponds to the small-
est possible holes in lattice packings L + B. Our knowl-
edge about it is comparatively limited and the lattices
for which the covering radius is equal to the minimal
hole constant are unknown as soon as n is large enough.
In Table 2 we summarize some values and known upper
bounds of Ry (n).

The following theorem is fundamental but non-
constructive.

Theorem 3.1. (Butler.) [Butler 72
Rp(n) <14 0(1) when n is sufficiently large.
This leads to the following question:

Question 3.2. For all € > 0, does there exist ng(¢) such
that the inequality Rr(n) > 1—e¢ holds for all n > ng(e)?

If the answer to this fundamental question is yes,
then Butler’s Theorem [Butler 72] would imply that
Ry (n) = 1+0(1). Then thisresult would be a very impor-
tant step towards a proof of the conjecture stating that
the strict’ inequality “0 > 41" holds for n large enough.
The affirmative answer to Question 3.2 is a conjecture
[Conway and Sloane 88]. Consequently, the search for
lower bounds of R (n) is crucial.

The lower bound v/2/2 + o(1) for Rz (n) when n is
large enough was given by Blichfeldt (see [Butler 72,
page 722]). Let us note that the normalized (see Sec-
tion 5) Leech lattice Azq/+/N(A24) [Elkies 00b] has a
small value of its covering radius by the theorem of Con-
way, Parker, and Sloane (in [Conway and Sloane 88,
Chapter 23]): R(A2s/v/N(A24)) = v/2/2. In low dimen-
sion, this value is rarely reached [Conway and Sloane 88].
In general, for lattices, the information about its holes
is limited (see Chapter 22 by Norton in [Conway and
Sloane 88]) because of the difficulty of computing ex-
plicitely the Voronoi cells of a lattice from the lattice
itself when n is large.

Let us now turn to the notion of saturation, linked to
the possible filling of holes. We will say that a U/D-set

A is saturated, or mazimal, if it is impossible to add a
sphere to B(A) without destroying the fact that it is a
packing of spheres, i.e., without creating an overlap of
spheres. The set SS of systems of spheres of radius 1/2,
is partially ordered by the relation <, defined by

A1,Ay eUD, B(A1) <B(Ag) <= A;CAs.

By Zorn’s Lemma, maximal sphere packings exist. The
saturation operation of a sphere packing consists of
adding spheres to obtain a maximal sphere packing. It is
fairly arbitrary and may be finite or infinite. Note that
it is not because a sphere packing is maximal (saturated)
that its density is equal to 4.

Let Xr C UD be the subset of Delone sets of De-
lone constant R > 0 of R™. By saturating a De-
lone set of Delone constant R > 0 we will always ob-
tain a Delone set of constant less than 1, but not a
Delone set of Delone constant = R, in general. Let
R := sup{R(A) | A saturated}. It is obvious that
1/2 < R, < R® < 1, R.(n) < Rp(n) and that the
subset of saturated Delone sets of R™ is included in
Ur.<r<n Xr. More precisely we have the following
facts.

Lemma 3.3.

(i) R® =1;

(ii) Re(n) > —";—E A= %(1 4+ 0(1/n)) for n large.

Proof:

(i) Let us assume R®) < 1 and that R(®) is the Delone
constant of a saturated Delone set A. We will obtain
a contradiction. Then there exists z € R™ such that
infyen ||z — A|| = R). Up to a translation, we may
assume z = 0. Let € > 0 be small enough such that
(14 €)R® < 1. Let € (3,4) such that the system
of spheres
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B (Ans(o, nR(ﬂ)) = {B(c1,1/2),...,B(cm: 1/2)}

(with m > 1) is such that ||hc;| < nR®) for all
i=1,2,...,mandall h€[1,1+¢).

Now let h € (1,1 4+ €) and let us cre-
ate the new Delone set Ap from A as fol-
lows: first, Ap N B(0,nR(®)) is exactly equal
to the set {hey,hes,...,hen} so that, “in-
side” the ball B(0,nR®), B (AxNB(0,nR®)) =
{B(he;,1/2),...,B(hem,1/2)}.  For constructing
B (AnN (R™\ B(0,nR()))), we take any infinite
packing B; of balls of radius 1/2 centred at points
which lie in R™ \ B(0,7R®)) so that: (1)B; U
B (Ax N B(0, nR®))) is a packing of balls of R", and
(2) B, is saturated. We obtain the Delone set Ay, €
UD defined by B(An) := B1 U B (A N B(0,nR™))).

We will take e small enough such that all the
Voronoi cells at the points he;j, with j =1,2,...,m
and h € [1,1 + €), have a circumradius always
strictly less than 1 (this is always possible be-
cause of the continuity of the maps defining the ver-
tices of Voronoi cells as functions of the centres of
balls). Since the restriction of the system of balls
B(An) to the portion of space outside the cluster
{B(he1,1/2), ..., B(hcm,1/2)} U B(0,nR®)), is sat-
urated, all the Voronoi cells at the centres of the
balls of B; have a circumradius < R®) < 1.

Then, on one hand, since the distance between 0
and Ay, is hR(®) > R®) for h > 1, the Delone set
A, has a Delone constant strictly greater than R().
Hence it is not saturated, by definition of R(*). On
the other hand, since all the Voronoi cells of Ay, at
the centres of balls located “outside” and “inside”
B(0,nR), have a circumradius strictly less than
1, it is impossible to add a sphere at any of their
vertices to saturate Ap, and therefore there is no
place in R™ to add a ball of radius 1/2 to saturate
Ay,. Contradiction.

In the case where the supremum R®) =
sup{R(A) | A saturated} is not reached, let us still
assume that R®) < 1 and let us'show the contra-
diction. Then, necessarily [Verger-Gaugry 01], there
exist a sequence of points (z;);>1 and a sequence of
Delone sets (A;)i>1 such that: ||z tends to 400
when i goes to infinity with the property that, for
all € > 0 there exists ig(€) such that i > 4g(e) im-
plies R®®) — e < infyen, ||z — M| < R®). Let R;

be the Delone constant of A;. We now take e small
enough in order to have 1/R(®) > 1/(1 — ¢/R®)).
It corresponds to values of ¢ large enough. Then, as
above, we will consider a new Delone set Ay, ; created
from A; by a local dilation of scalar factor h about
the point z;. When 1/R®) > h > 1/(1 — ¢/R®))
then hR; < hR®) < 1 and hR; > h(R") —¢) >
(R} —¢€)/(1 — ¢/R)) = R(®). As above, we obtain
a Delone set Ay ; which is such that its Delone con-
stant is strictly greater than R(®) and strictly smaller
than 1, thus not saturated and impossible to satu-
rate. Contradiction.

(ii) Let us show that, if A is a Delone set of R™ of con-
stant R, n > 1, then 3? \/7417 < R. This inequal-
ity comes from an inequality of Blichfeldt (Lemma
1 in [Rogers 64, page 79]; or [Blichfeldt 29]) since
the distance from-the centre of a Voronoi cell to
any point of its (n — i)-dimensional plane, in the
Voronoi decomposition of space by A, is at least
3 \/ﬁzl for all 1 < i < n. Taking i = n in the above
inequality gives the result. Note that in the con-
structions of Rogers, packings of equal ball of radius
1, and not 1/2, are considered; this justifies the fac-

tor 1/2 in front of the expression.
O

We will call /2/2 the Blichfeldt bound.

Ifn=1, Xgr, = X/ is not empty since it contains Z.
If n = 2, the set Xp, = X1 is not empty since it con-
tains the lattice generated bysthe points with coordinates
(1,0) and (1/2,v/3/2) in the plane (extreme lattice) in
an orthonormal basis [Kerschner 39]. What happens for
n > 37 The set X N is certainly empty since, as
soon as n > 3, the minimal Voronoi cell is not tiling
the ambient space periodically [Rogers 64]. (McLaugh-
lin’s Theorem is cited in [Hales 00, Oesterlé 99, Verger-
Gaugry 01, Hales 97a], and for n = 3 [Hales 97b].)

Question 3.4. For which values of n and R is Xg not
empty?

This fairly old question (see [Ryshkov 75]) is partially
answered by Theorem 1.2.

4. PROOFS OF THEOREMS 1.1 AND 1.2

Proof of Theorem 1.1: Let R, < Rand T > R be a
real number. If A is a Delone set of constant R of R™,
then (B(0,R) + A)NB(0,T) covers the ball B(0,T — R).



52  Experimental Mathematics, Vol. 14 (2005), No. 1

Hence, the number of elements of A N B(0,T) is at least
((T'— R)/R)". On the other hand, since all the balls
of radius 1/2 centred at the elements of A N B(0,T) lie
within B(0,T+1/2), the proportion of space they occupy
in B(0,T +1/2) is at least

T-R\"
R
When T tends to infinity the above quantity tends to

(2R)~™ which is a lower bound of the density §(B(A)).
O

vol(B(0,1/2)) T—R )“
vol(B(0,T +1/2)) (2R(T+ 1/2))

Proof of Theorem 1.2: Let oxr(n) = 27959 be the
upper bound of Kabatjanskii-Levenstein of the packing
density 6. By Theorem 1.1 we deduce that, with R, <
R<1,

}.Ln(R) < Y < 2—0.599;1..

Raising this equation to the power 1/n gives readily 2R >
20599 4 5(1) that is R > 270401 4 o(1). O

5. ASYMPTOTIC BEHAVIOUR OF HOLES IN
SEQUENCES OF LATTICES AND PACKINGS

The expression of the bound p, (R) will be used to com-
pute a lower bound of the Delone constant of a Delone
set, or a lower bound of the covering radius of a given
lattice L € UD N L, when its density and its minimal
interpoint distance are known.

In the case of a lattice L, the minimal interpoint dis-
tance of L is the square root of the norm N(L) of the
lattice [Martinet 96]. We will consider the normalized

lattice
1

L
N(IL)

instead of the lattice L to apply the preceding con-
siderations with packings of spheres of common radius
1/2. The situation is similar for a Delone set which
will be normalized by its minimal interpoint dista.nce
‘We will denote by dens(L) := §(B(L/+/N (The-
orem 1.7 in [Rogers 64] the density of the system of
spheres L + B(0,1/N(L)/2) if L is a lattice and by
dens(A), := 5(B(A/n( ))) (Theorem 1.7 in [Rogers 64])
the density of the system of spheres A + B(0,n(A)/2) if
A is a Delone set of minimal interpoint distance n(A).

Let us observe that, for all Delone sets A and all non-
negative scalar factors A such that A € 4D and A\ € UD,
the equality R(AA) = AR(A) holds. Then, from Theorem
1.1, we readily obtain the following inequalities:

niA) dens(A)~Y™ < R(A), for all Delone sets A €

UD of minimal interpoint distance n(A), and

VN(L
% dens(L)~Y™ < R(L), for all lattice L &
UD N L of norm N(L).

(i)

(i)

In the sequel the following notations will be used:
tr = y/N(L)ty with ¢z := 1dens(L)~'/"; and t) :=
n(A) ta w1th ta := 1 dens(A)” Ve T, sl A s ARG
Let us now apply these inequalities to some known se-
quences of lattices and packings, as given by [Conway and
Sloane 88, Chapters 5 and 8] and [Martinet 96, Chap-
ter V], to obtain an estimation of the size of the deep
holes.

5.1 Leech Lattice

For the Leech lattice Agy in R?** the density §(Agy) =
712/479001600 = 0.001930... and the covering radius
R(A24/+/N(A24)) = /2/2 are both known [Conway and
Sloane 88, Elkies 00a]. We obtain t4,, = 0.6487.... This
numerical value is within 10% of the true value 0.707....
This estimation of the size of the deep hole in Aoy is fairly
realistic.

5.2  Barnes-Wall Lattices

The density of the Barnes-Wall lattice BW,, ([Leech 64],
[Conway and Sloane 88, page 234 or page 151]), in R™,
n=2M m > 2, is equal to 275"/ 4p"/47"/2 /T(1 + n/2).
The norm N(BW,,) is equal to n ([Leech 64, page 678]).

Proposition 5.1. Let n = 2™ with m > 2. The covering
radius R(BW,) > tgw, of the Barnes-Wall lattice BW,,
is such that the size of its (deepest) hole tends to infinity
as (and better than)

—1/4

tBWn = ?‘LS‘M (1 + O(l))

when n goes to infinity.
Proof: Raising the equation

95 A/ Aan/2 [D(1 + n/2) = S(B(BWn/\/R)) = ()
to the power 1/n and allowing n to tend to infin-
ity leads easily fo the claimed asymptotic expression
of tgw, /= as a function of n. The multiplication of
tpw,/y= = tBw, by the minimal interpoint distance
v/n gives the claimed lower bound tgyw,, of the covering
radius R(BW,,) of BW,,. O
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5.3 BCH Packings

In this section, the reference will be [Conway and
Sloane 88, page 155]. Let n = 2™, m > 4. The packings
of equal spheres considered below are obtained using ex-
tended BCH codes in construction C of length n. They
are not lattices. There are two packings (a and b) which
use two different codes of the Hamming distances. Let
us denote the second one by P,p. Its density dens(Ppp)
satisfies

1
log, dens(Ppp) ~ —Eﬂlog2 logon, asn— 4oo

and its minimal interpoint distance is [Conway and
Sloane 88, page 150] n(Pnp) = /72* with v = 2 and
a = [(m—1)/2]. We deduce the following proposition.

Proposition 5.2. Let n = 2™ with m > 4. The Delone
constant R(Pny) > tp,, of the BCH packing Py tends to
infinity as (and better than)

tp,, = 272 H(ZHE /2 Jlog 7 (14 0(1))

1
~ —log,n(1l+o(1
5 logan (14 0(1)
when n goes to infinity.

The proof can be made with the same arguments as
in the proof of Proposition 5.1.

5.4 Craig Lattices

These lattices are known to be among the densest
ones (see [Martinet 96, pages 163-171], [Conway and
Sloane 88, pages 222-224]). The density dens(&,(f)) of
the Craig lattice AT, n > 1,7 > 1, in R™ is at least

(:r‘ /Q)n/z /2
(n+1)-120(1+n/2)’
with equality if the norm of the lattice is 2r. The norm of
Craig lattices is not known in general and lower bounds of
N (A,(p) were obtained by Craig (see [Martinet 96, Ba-
choc and Batut 92, Craig 78]). The determination of
N( (T)) is equivalent to the so-called Tarry-Escott prob-
lem in combinatorics and does not seem to be solved yet.
However, for some values of n and r this norm is known.

Theorem 5.3. Let n > 2.

(i) [Craig 78] Ifn-!—l is a prime number p and r < n/2,
then N(A\,—. ) =2r.

(it) [Bachoc and Batut 92] If n+1 is a prime number p
with r a strict divisor of n =p — 1, then N(A\fqr)) =
2r.

Bachoc and Batut [Bachoc and Batut 92] made an
exhaustive investigation of Craig lattices for the prime
numbers p < 23. The equality N (A\Sﬂl) = 27 holds for
r=1r =2 r =3 and also for r = (p+ 1)/4 with
p = 3 mod 4. This last case was proved by Elkies (cited
in [Gross 90]), from the general theory of Mordell-Weil
lattices developed by Elkies and Shioda concerning the
groups of rational points of elliptic curves over function
fields [Shioda 92]. The equality N (A 1) = 2r was also
proved to be true for p < 37 and r € [1 2+1] [Martinet 96,
page 169], but wrong for higher values of p.

Using the assertion (ii) in Theorem 5.3 we obtain the
following proposition.

Proposition 5.4. Let n > 2 such that n + 1 is a prime
number and r a strict divisor of n. Then, the covering
radius R(AT)) > t 4y of the Craig lattice A s such
that the size of its ( deepest) hole tends to infinity as (and
better than)

by o= %\/E(l +0(1))

when n goes to infinity.

Let us remark that ¢ A is independent of » when n is
large enough.

As shown by Propositions 5.1 and 5.4 the deep holes of
the Barnes-Wall and Craig lattices, BW,, and A\, have
sizes which goes to infinity with n (r fixed). In order to
allow comparison between them and with Butler’s The-
orem (Theorem 3.1), we have to consider the normalized
lattices i 2y

R BW,, and T A,
assuming that n is such that n+1 is a prime number. In
the first case, the covering radius tends to infinity with n
leaving no hope to obtain very dense packings of spheres
from the lattices BW,, when n is large enough. In the
second case, since

1 n
e = —=/—
A Vo 2\/7re\/:

we see that t NN S 1 if pog %n Let us recall,

from Theorem 3.1, that the existence of very dense lat-
tices (of minimal interpoint distance one) of covering ra-
dius as close as 1 is expected. Therefore we can expect
to find very dense Craig lattices satisfying this condi-
tion when r = r(n) is a su1table function of n and large
enough, namely: 7(n) > zi-n for which the lower bound

tyo /o of R(AY //2r) is then less than unity. On the
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other hand, the density dens(Ag)) reaches its maximum
when r is the integer the closest to W?Hrl) (obtained by

cancelling the derivative of dens(A,(,:)) with respect to r,

with n fixed, assuming that the norm of the lattice Ag)
is exactly 2r).

Since sy < g7e ™ @S Soon as n is large enough
(for n > €27 — 1), a good compromise for the value of r,
assuming that the norm of the lattice AL is exactly 2r,

would be r := the smallest integer > 7&1-&- .

Question 5.5. Do there exist normalized Craig lattices

AP/ NAD)

(for general n and 7) which exhibit a Delone constant
(covering radius) smaller than 17

5.5 Mordell-Weil Lattices

We will refer here to the class of Mordell-Weil lattices
given by the following theorem of Shioda [Shioda 91, The-
orem 1.1].

Theorem 5.6. [Shioda 91] Let p be a prime number such
that p+ 1 = 0(mod 6) and k any field containing Fp.
The Mordell-Weil lattice E(K) of the elliptic curve E

=23 +1+40PH! (5-1)

defined over the rational function field K, where K =
k(u), is a positive-definite even integral lattice with the
following invariants:

rank = 2p—2
det = PPE_S
N(E(K)) = 2
+1\p—1
centre density A = (ﬁgm
kissing number > 6p(p—1)

Recall that the centre density A is the quotient of the
density of the lattice divided by the volume 7™/2/T'(1 +
n,/2) of the unit ball of R™. Such a lattice in R?%~2,
denoted by MW, with n = 2p — 2, has a minimal inter-
point distance equal to 1/(p+ 1)/3 and a density equal
to dens(MW,) = Af%‘ We deduce that
(55)

Fo: 5 1 VT 12
MW, = 3 (T(p))1/(2p=2) p(p-5)/(12(p-1)

&\

e p-1/12 ~ 9—2+1/12 Ve n—1/12
43 . V3

.~

This value goes to zero while

~91/12VTE 512
12v2

goes to infinity when p (or n) tends to infinity. This result
indicates that the deep holes of the normalized Mordell-
Weil lattice MW,/+/N(MW,) are in fact very shallow,
and probably may be bounded above independently of n.
This leads to the following question.

Ly,

Question 5.7. Do there exist normalized Mordell-Weil
lattices MW, /+/N(MW,) which exhibit a Delone con-
stant (covering radius) smaller than 17

6. COMMENTS AND CONJECTURE

The lower bound p,(R) of § is particularly interesting
for saturated Delone sets of Delone constant R of R™,
that is for R < R®). Since R®) = 1 by Lemma 3.3,
we readily obtain a lower bound for § which is 27"
[Elkies 00a, Elkies 00b]. More generally, the lower bound
tn{R) exhibits a dependence with n which is in

(2R)—n = 2—11(1+]og2 R)_

Taking R = R() = 1, gives a 27" dependence typical
of the Minkowski-Hlawka type lower bounds of 6y, while
taking R = +/2/2 (the Blichfeldt bound, Lemma 3.3)
provides a 2~"/2 dependence typical of the Rogers bound
on. In between, all values of R are formally possible but
the range is limited (Theorem 1.2).

Here the viewpoint does not include explicit con-
structions. Working with packings of spheres arising
from Delone sets for which we only control the con-
stant R would seem, a priori, to give more freedom to
the constructions. Very dense packings are likely to
occur with ‘almost-touching’ spheres everywhere, that
is from Delone sets of Delone constants R, as small
as possible, close to R.(n). The corresponding kissing
numbers deduced from all the local clusters of spheres
would lie between the Coxeter-Bordczky/ Kabatjanskii-
Levenstein upper bounds [Bérdezky 78, Kabatjanski? and
Levenstein 78] and the lower bound of Wyner [Wyner 65],
probably closer to the upper bounds. Local arrangements
of spheres in a densest sphere packing can be extremely
diversified (see [Hales 00, Hales 97a, Hales 97b] on Hales-
Ferguson Theorem, for n = 3).

In this sense, Theorem 1.1 gives a partial answer to
old expectations when R lies between R.(n) and 1. In-
deed, recall [Gruber and Lekkerkerker 87, page 391]:
“the best known upper and lower bounds for § differ by
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Rogers
Sidel’nikov

RN Levenstein
-40 Kabatjanskii-Levenstein
-60-

In(density) -80 1 R~ 04!

-100 1 -Rogers Rk=0.80

] Ba R=0.85
120 S R=090

_ Minkowski-Hlawka ‘ R=0.95
_140_' B u) R=1.0 =

60 80 100 120 140 160 180 200
n

FIGURE 1. Upper bounds of the packing density § and lower bounds of the lattice-packing density 6. The R-dependent
lower bounds i (R) are plotted for R = 2794%? 0.8,0.85,0.90,0.95,0.99, 1.5 as a function of the dimension n.

Type Name log, A
constructions Barnes-Wall BWgzssas 180224
855535 290998

n(As2) 205120

Craig A% 297740

(existence) lower bounds Minkowski-Hlawka 324603
of 81, Davenport-Rogers 324616

Ball 324620

es536 (1) R=15 286266
R=1.0 324602

lower bounds R=0.99 325553
from Theorem 1.1 R =095 329452
R =0.90 334564

R=0.85 339968

R=0.80 345700

R=groai 350882

upper bounds Kabatjanskii-Levenstein 350882

: Levenstein 355818

of § Sidel’nikov 356742
Rogers 357385

TABLE 3. Table 1.4 of [Conway and Sloane 88, Chapter 1] to which we have added the lower bounds pessas(R) for
different values of R (the values of the centre density log, A are recomputed from the original references).
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a factor which is approximately 2*/2. This means that
the problem of closest packing of spheres is still far from
its solution (except for low values of n).” Also recall
[Rogers 64, page 9]: we were still, up till now, in the
situation where “There remains a wide gap between the
results of the Minkowski-Hlawka type, ..., and the results
of Blichfeldt type, ....”

In Figure 1 we plot the R-dependent bound pu,(R)
for several values of R, the upper bounds of Rogers,
Sidel’nikov, Levenstein, Kabatjanskii-Levenstein; the
lower bounds of Davenport-Rogers, Ball, and of
Minkowski-Hlawka, as a function of the dimension n. All
values between these two types of bounds can be reached
by pn(R) when R is suitably chosen below 1.

The curve n — pn(R) for R = 1 is slightly below the
Minkowski-Hlawka bound. When R is greater than 1,
the curves n — i, (R) are entirely below the Minkowski-
Hlawka bound. On the contrary, when R < 1 is close to
unity, the curve pu,(R) lies below the Minkowski-Hlawka
bound up till a certain value of n and then, as expected,
dominates it asymptotically. When 270401 « R < 1
lies far enough from 1 the entire curve n — p,(R) lies
strictly between the two types of bounds (Kabatjanskii-
Levenstein and Minkowki-Hlawka).

Theorem 1.2 does not say anything about the fre-
quency and the density of such middle-sized Voronoi cells
of circumradius R approximately equal to 279401 in a
general saturated Delone set of R™ of constant R when
n is sufficiently large, in particular in the densest ones.

To allow comparison with known results in literature
and to follow Conway and Sloane [Conway and Sloane 88]
we have taken n fairly large, namely n = 65536. To ap-
preciate the pertinency of the formula given by Theorem
1.1 we have reproduced in Table 3 the Table 1.4 of [Con-
way and Sloane 88, Chapter 1] and added therein the
values of the centre density A deduced from pgssae(R)
for R = 279401 0.8,0.85,0.90,0.95,0.99,1.0,1.5. The
value of (the logarithm in base 2 of) the centre density
A computed from pgssss(R) now sticks to the Kabat-
jansldT-Leven§tein’s bound when R is at its asymptotic
maximum R = 270401 s this value reached by the De-
lone constant of a Delone set?

When n is large enough, the sensitivity of u,(R) to the
Delone constant R can be perceived by the following com-
parison (see Table 3): the centre density 324602 relative
to the bound pgssa6(1) is slightly below the lower bound
324603 of Minkowski-Hlawka, as expected, whereas the
centre density 325553 relative to pgssss(0.99) is slightly
above the best lower bound 324620 of Ball. This gives
credit to the conjecture (see Question 3.2 for a precise

formulation) that lattices do not exhibit a covering ra-
dius less than 1 when n is sufficiently large.
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Abstract. 'We give an explicit upper bound of the minimal number vz , of balls of radius
1 which form a covering of a ball of radius 7' > £ in R, n > 2. The asymptotic estimates
of vr , we deduce when n is large are improved further by recent results of Boroczky, Jr. and
Wintsche on the asymptotic estimates of the minimal number of equal balls of R” covering
the sphere §*~!. The optimality of the asymptotic estimates is discussed.

1. Introduction

Let T > 1 and let vr,, be the minimal number of (closed) balls of radius 1 which can
cover a (closed) ball of radius T in R*,n > 2. In [R2, pp. 163-164 and Theorem 2]
Rogers has obtained the following result:

Theorem 1.1.
() Ifn = 3, with ¥, = nlnn + nln(lnn) + 5n, we have

MI'-‘-S

e, (2T)" i T=

1< VT n = (1.1)

n QT f ——<T<
n

(i) Ifn = 9 we have

l<vr, < M(n Inn+nlin(lnn) +nln2T) + i—,]n(l44n)) (1.2)

Inn —2

for:ali % < T <n/(21nn).
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Assertion (i) can easily be extended to the case n = 2 by invoking [R3, p. 47] so that
the strict upper bound #%, = nlnn+nIn(Inn)+5n of the covering density of equal balls
in R" is still a valid one in this case. Thus the inequalities (1.1) are still true for n = 2.
In the case n = 2 (see also [K]), on the other hand, the result (ii) does not seem to have
been improved since then, see for instance [GO], [F], [S], [R1] or [BL]. This problem is
linked to the existence of explicit lower bounds of the packing constant of equal spheres
in R* [MVG] and to various problems [MR], [IM], [FF], [M].

In this contribution we give an improvement of the upper bound of vy, given by
assertion (ii), i.e. when the radius T is less than n/(21nn). Namely, we will prove

Theorem 1.2. Let n > 2. The following inequalities hold:

()
4@ [
n < Vra = v \/;
ny/ml(n = DIn@TA) + (2 = 1)Inlnn) + 3 Inn + ()]
. 3
T (1—2/Inn)(1 — 2/+/7 n)(nn)?
x QT)"
i 1<T42;n. (13)
(ii)
- i3
R < Vry,= JE
VAl = 1) In@Tn) + (1 = 1) In(inn) + $Inn + In(Z22)]
X T (1—2/lan)d — 2/ 1)
x QT)"
if $<T=<L (1.4)

The following question seems fundamental: What are the integers vy, when % <
T, 2 < n and the corresponding configurations of balls of radius % when they form the
most economical covering of the closed ball B(0, T') of radius T centred at the origin ?

In Section 3 we recall the recent results of Béréczky, Jr. and Wintsche [BW] on the
asymptotic estimates in the sphere covering problem by smaller equal balls when 7 is
large. These estimates allow us to make further improvements on the upper bounds of
vr» (Theorem 3.1), to appreciate the optimality of these upper bounds with respect to
lnown lower bounds and to state some conjectures.

2. Proof of Theorem 1.2

The idea of the proof is simple: (i) when T is small enough; it amounts to showing
that the sphere S(0, T') can be covered by a collection of N balls of radius % suitably
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placed equidistant from the origin, and that this covering to which we add the central
ball B(0, %) actually covers the ball B(0, T') itself; in subsection 2 an upper bound of the
minimal value of N is calculated from the results given by the lemmas of subsection 1;
(ii) when T is larger, we proceed recursively using (i) to give an upper bound of N. The
configuration of balls of radius % covering B(0, T) is then ordered by layers, the last
layer of balls of radius'} being at an optimal distance from the origin so as to cover the

sphere S(0, T).

1. CapsandSectors. LetT > % andn > 2 in the following. If the closed ball B(0, T)
is covered by N smaller balls of radius %, the smaller balls will intersect the sphere
S(0, T), for a certain proportion of them. The intersection of a closed ball of radius %
and the sphere S(0, T), if it is not empty, is called a (spherical) cap. To fix the notations
we define properly what a cap is and the sector it generates in B(0, 7).

Let h > 0 and let u be a unit vector of R". We denote by Hj, , the affine hyperplane
{z+hu|z € R", z-u = 0} of R". Assume that H; , intersects the ball B(0, T), i.e.
h < T.We denote

zZ-u _ h
s p= | Y
Crou: {z €50, 7)| s T}

The (n — 2)-dimensional sphere Hj, , N Cr ;. , admits x = +/ T2 — k2 for the radius. The
correspondence between x € [0, ] and & € [0, T'] is one-to-one. We say that Cr; , is
the cap of chord 2x and of centre Tu. If a subset ¥ of §(0, T') is such that there exist
h > 0 and a unit vector 4 of R" such that ¥ = Cr,,, then we say that ¥ is a cap of
chord 2x of S(0, 7).

Every cap Cr,p,, of chord 2x of S(0, T) generates a sector in" B(0, T). We denote

it by

AT, by ) = {z € BO,T)| = > 3].
Izl =T
We denote by V(r ;) (indexing with x instead of k) the volume of a sector generated
by acap of chord 2x in §(0, T) with x < T. Let w, := 7"2/T'(1 + n/2) so that the
(n-dimensional) volume of a ball of radius T in R" is w, T".

Lemma 2.1. We have

p1 1 2
> 1- s 2.1
@y 2nﬁ( vnn) el
Proof. The following inequalities are classical [V, p. 1711
1 nynz 1\
Jn (I+ — .__) if n is even,
o = 1 n+1\®H2 g
: 11— — _— if n is odd.
am T (2e ) (m+D/21) ""E°
(2.2)
d

By S!jriing’s formula we deduce the result.



146 J.-L. Verger-Gavgry

Lemma 2.2. LetQ <x <T.Letn beoddand put y = (n —1)/2. The volume V7 s,
of a sector in B(0, T) C R" generated by a cap of chord 2x in §(0, T) is equal to

o [«/TZ—;:’- AT -VTP=2) & yliy+ D)
Wp—1X + Z

(=T g -
T+JT2=x2) | :
It satisfies the relations
(i)
Vs = x"Vizye, 1y 2.4)
(ii)

I 20Bsd-ay@miel . 1 g = ps

nx ~ n(n+1) Wy—1

Proof. Let us show (2.3). The first term w,_x"~1(+/T% — x2/n) is the volume of the
truncated cone {z € AT, h,u) | z-u < h} with h = +/T? — x2, The second term in
(2.3) is the volume of {z € SAT, k, u) | z-u > h}: any point of Cr ST which is at

distance t from Hﬁu is at distance (x — t? — 2t+/T? — x2)!/2 from the line Ru.
Hence, this volume equals '

T—a) T2=x2
f Wn_1[x? — 12 = 2t/ T2 — x2)0-D/2gz,

0
It is obtained by integration by parts,y times, of the integral

o f -1 - pydr 2.6)
0

witha =T —+/T2—x2and 8 =—-T —/T? —x2.
Relation (2.4) is obvious. Let us show (2.5). We deduce it from the fact that the
summation in (2.3) has positive terms and is greater than its first term whichis 1. O

Lemma 2.3. Assume n > 2 even and 0 < x < 1. The volume Vir yy of a sector in
B(0,T) C R* generated by a cap of chord 2x in §(0, T) satisfies the relations:

(63)
Vir,xy = x"Viz/x, 1), 2.7)

(i)

Zn(T/X) -+ (2 . n)\/(T/I)—z'—l < 1 V(T./ 1) (2 SJ

T
= &
nx ~ n(n+2) Wn—1
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Proof. Equality (2.7) is obvious. In order to prove (2.8), observe that the function
t — (@ —t)(¢t — B) defined on the interval [0, &] is valued in the interval [0, 1] since it
lies below the horizontal line of y-coordinate —e8 = x? < 1. We deduce the following
inequalities:

(e — r)(rl-f‘l)ﬂ(t A ﬁ‘.)(n+1)32 < (x-— I}”ﬂ(t e ﬂ)nﬂ < (- r)(ﬂ—l)ﬂ(t o ﬁ}(n—l).fz

forall # € [0, @]. From (2.6) in the proof of Lemma 2.2 we deduce a lower bound of the
volume of the convex hull of C T for n even using the preceding n odd case of
Lemma 2.2: changing n to n 4 1 now odd in the computation of the lower bound of the
summation in (2.3). Note that the computation of the volume of {z € AT, h,u) |z-u <
h} with h = +/T? — x2 still gives @,-1x" 1 (+/T? — x2/n) for n even so that the first
term of Vzx) remains the same as in the n odd case. We deduce inequality (2.8). O

Lemma24. LetQO<x< %.LetDbeapoz'nrofrhecap Cf,m.u CSO,TNCR
at a distance x from the line Ru. Let B denote the unique point which lies in the
intersection of Cr, W=y nH Nic=yri with the plane (0, D, Tu) with the property
that it is the closest to D. If n denotes the distance between D and the line O B, we have
the following relation between x, T and n:

1 n\2 7 1 :
x = 5 Gy (-f) _51/4—5, equivalently
1 xX\2 x 1
=-/1-(=) —=/4—-=. .
n 2\/1 (7) 2‘/ T2 i

Proof. Let ¢ be the angle between lines OB and OD, and let ' be the angle between
lines OD and Ru, so that sin(y) = /T and sin(y) = x/T. Since sin(¥ +¥') = 1/2T

we obtain
1=2xy/1—=(/T)*+2ny1—(x/T)%

This expression is symmetrical in x and n. It is now easy to deduce, from it, the expression
of x as a function of n, as stated by (2.9).

Lemma 2.5. Let us assume that a collection of N balls (B(cj, 3))j=12...v of R" is
such that (i) forall j = 1,2, ..., N, B(cj, 3) N S(0, T) is a cap of chord 1 in S(0, T)
and (ii) these N caps form a covering of S(0, T). Then (i) if T > ~/2/2, the union

N

1
U B(c;, -;-) covers the annulus {z eER"|T—-—= <]zl = T}
P 2T

of the ball B0, T); (ii) if 3 < T < ~/2/2 this union covers B(0, T).

Proof.  Any such ball B(c;, 1) covers the part of the sector

{z € AT, /T* -1, 0¢;/10cl) | aT < |z}
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with o to be determined. To compute «, we consider two adjacent balls, say B(c;, 2)
and B(c,, 2) such that the intersection of the respective caps B(c;, 2} NSO, T) and
B(ca, 2) N §(0, T) is reduced to one point. Then, on the line O((c; + ¢3) /2), it is easy
to check that all points z such that T’ — 1/21" < |lzll = T are covered. This gives
@ = 1—1/2T2. Now, since the caps B(cj, 2} N S0, T') form a covering of S(Q, T,
the balls B(c;, 2) form a covering of the annulus {z € R" | «T < |)z|| < T}. The last
assertion is obvious. O

Let us consider N(> 1) distinct points My, M,, ..., My of S(0,T) C R". We
consider that they are the respective centres of caps of chord 2x of S(0, T). We denote
by ¢ x)(M1, Ma, ..., My) the proportion of S(0, T') occupied by these caps. In other
terms, with u; ;= OM /I1OM;| foralli =1,2,..., N, we have

Vol,.—; (U:il Cr‘../}'“z—x’ .u:)
Vol,-1(S0, 7))

g(T.I)(Mlu MZ; Ve MN) —

Lemma2.6. Let N > landx € (0, 1). The mean EO(N, T, x) of 07 x)(My, Ma, ..., .
My) over all possibilites of collections of N distinct points (My, M, ..., My) of §(0, T)

is equal to

Vo Y
EO(N,T,x)=1— (1—-—(-1))
w, T

Proof. Let My, Ma, ..., My be N points of S(0, T). We define

= VG]“_I(CT,M.M) o 5 At

S R B
the probability that a point M € S(0, T') belongs to the cap of chord 2x of centre M;.
It is the probability, hence independent of , that M/; belongs to the cap of chord 2x of
centre M. We have p; = Vi x)/w, T". Therefore, the probability that M belongs to none
of the caps of chord 2x of centre M; foralli = 1,2, ..., N is, by the independence of
the points, the product of the probabilities that none of the A;’s belongs to the cap of
chord 2x of centre M, that is the product

= Yoo &
w, IT"

This value is independent of the collection of points {M; }. We deduce the mean EA(N, T,
x) by complementarity. O

2. Proof of Theorem 1.2
Propesition 2.7. Let0 <x < % Withn(x) = %JI = (x/T) - (x/2)\/4— 1/1’_’2, if

o b o il
N2 m( f) ) , (2.10)
[ ERTe)
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then there exists a collection of N distinct caps of centres My, M, . .., My of chord 1
of 50, T) C R" satisfying
1 Virx
In > =, 2.11)
(1 =870 (M, M, ... MN)) onT" ’

which covers S(0, T).

Proof. Given x € (0, 1] there exists at least one collection of caps { Cr i, 1=
L,2,..., N}ofcentres My, My, ..., My, where the unit vectors u; := OM; /|| OM;| are
all distinet, such thatrelation (2.11) is true since, after Lemma 2.6, the mean E8(N, T, x)
isequal to 1 — (1 — Viz.y/@, T")" and that

1 Vir.x) Virx
In{——— | ==NIn(1- . N— 2.12
n(l — E8(N, T,x)) ( W T™ ® w, T" =12

Note that the points My, M, ..., M, depend upon x. Keeping the centres M, Ms,
..., My fixed and putting caps of chord 1 instead of 2x around them, we obtain a new
collection of caps. Let us show that this new collection of caps of chords 1 of 5(0, T)
forms a covering. We assume that it does not and will show the contradiction.

Then there exists a point M € S(0, T') such that

N
M &’ LJ CT..,/TQ—I;%.u;'

We write u := OM/||OM || for the unit vector on the line O M. At worse, M lies close
to the boundary of the domain Ufi 1Cr ST’ hence close to the boundary of one
of the caps CT.\/TZ—_IMm of chord 1. We can now apply Lemma 2.4 as if M were on

this boundary: n = n(x) is strictly positive since x < % by (2.9). Therefore the cap

Cr TGy, 1S Ot trivial and is disjoint from the union
N
U =
= el
This means that
1 =6 x)(My, Ma, ..., My) > 07 ey (M) > 0.
Therefore

1 1
In <ln|——|.
(1 _’S(T.x)(MI,ME:---vMNJ) (G(T'nfx))(M))

From (2.12) we deduce the relation

Vi T i
N (7.3) < In ( s ) .
o IT" Vi)

Hence the contradiction,
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By Lemma 2.1 and (2.4), (2.5), (2.7), and (2.8), we deduce

w, T ln( w, T" ) oy nT"  wp_ In( w, nT" ( Wp_1 )
Vi men On-1 X" nVizpny  \@n-1 ()" 12 Virsmey.1

7 RQRT)" (1 =4n() ™"
~ Y2 T(1-2/J/7n)

% l:—(n ~ D)+ @ — DT +1n (%)] :

(2.13)

Vir.x

In Proposition 2.7 we can take any x, hence any 7, in the open interval (0, %) such
that condition (2.11) is satisfied. We chose 1 and x = x(n) as functions of n only with 7
tending monotonically to zero when n goes to infinity, hence x tending to % This gives

a minimal integer
n TH n "
Vs Viz.ai)

for obtaining the covering property of S(0, T') as a function of n and T only.
We now state the central problem (P).

(P) The problem consists now in finding, in the set of strictly positive monotone de-
creasing functions f(x) defined on (%, -+00) such that lim,_, . o, f(x) = 0, one function
for which —(1 — 4 (x))™*21n(f(x)) goes the slowest to +c0 when x tends to +-c0.

We do not solve this problem here. We simply take f(x) = 1/(2xu(x)) with u(x) an
increasing monotone continuous function such that lim,_, .o () = 00, in particular,
u(x) = Inx. By reporting this function in (2.13) we take n = 1/(2nlnn), n > 3. This
gives an expression of x as a function of n from (2.9). This function represents a fairly
good compromise.

The second member of inequality (2.10) appears as a configurational entropy which
has to be exceeded for the existence of a certain configuration (at least one) of equal caps
of chord 1 for covering S(0, T'). However, condition (2.11) is non-constructive.

We now make explicit the second member of inequality (2.13) with n = 1/(2n Inn).
Thus, forall n > 2, since (1 —2/(nlnn))™"? < (1 —2/(Inn))~!, we obtain

Vo T (Geame )
2T \d=2/lan)1 —2//7n)

% = Di@Tatiny+ dnstn] Y20 2.14)
“ JEn =2

ford <T <1

By Lemma 2.5, if % < T < 1, then, in order to cover the ball B(0, T) by balls
of radius %, it suffices to put a ball of radius % centred at the origin (not necessary if
% < T <+/2/2)and to put a collection of N balls (with N chosen minimal) given by
Proposition 2.7 around such that their intersections with S(0, T') are caps of chord 1
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‘which cover § (0, T'). This total number of balls, N + 1, is certainly exceeded by (2.14).

This proves assertion (i) in Theorem 1.2.
Let us prove assertion (ii) in Theorem 1.2. If T > 1, we proceed inductively using

Lemma 2.5, We cover B(0, T) as follows. We put a ball of radius 2 5 centred at the origin.
Then we put balls of radius % in such a way that their m[ersecﬂons with the spheres
§(0, T,) are caps of chord 1 which cover S(0, T,,,), where the decreasing sequence
{Tn}isdefined by Tp = T, 7y = Ty — 1/2Ty,..., T = Tpyey — 1/2Tp—y, ... with
m € {0, 1,..., mo} and m defined by the condition that 7,,, < 1 and T}, mo—1 > 1. Since,
for all integers m € {0, 1,..., mg}, we have

L )
o7 = 'm

the total number of balls of radius % disposed in such a configuration required for covering
B(0, T) is certainly less than

my Jan (1 —=2/lnn)!
;(Z(T 21")) Tj(l—z/ﬁ)
[i-00(e(r - Z)on) + 2 o (22 )]

~an (1 —=2/lnn)! L lnn 7+/2n
= Tﬁ(I_Z/ = [{n—]}ln(.?Tnlnn) T TTID(m)J

<2 e-5)

However,
- m n —nm n e—nm C (‘?'T)n
2 0-g)) s Zer s arr Zemmm =

Since T < n/(21nn), we have
T eHnn)/n n

4(lnn)*/n
VT 1 eAwnin 1 4(Inn)? )

The function # — (In#)?/¢ reaches its maximum on [2, +00) at ¢ = 2. Hence, for all
integers n > 2, we have (Inn)?/n < (In7)?/7. We deduce that

m i 4(In7)%/7 2T
5 ((r-2)) s S nen

with a constant *@®7°/7 /4 — 2.176.. . . . This gives assertion (ii).

As for the strict lower bound 7 in (2.3) and (2.4), it obviously comes from the dimen-
sion of the ambiant space: n balls bemcr placed along the n coordinates axis of any basis
of R” never cover B(0, T) when T > —.
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3. Asymptotic Estimates: Results and Conjectures

1 Rogers [R2] constructed certain economic coverings of a larger Euclidean ball by equal
smaller balls. When T is large (T > n/2) he has computed an upper bound on the
quantity vr,, that is close to being optimal up to a Inn factor. On the other hand, his
upper bounds are of higher order when I' < n/2, and it is the object of Theorem 1.2 to
improve them in the case T’ < n/2In(n).

In this section we reformulate Theorem 1.2 in terms of asymptotic estimates. Then
we state further improved upper bounds on the quantity vr , for T < n/2 that are most
probably close to being optimal up to a Inn factor. In addition lower bounds on the
quantity vr , are discussed. The arguments for further improvements use recent results
of [BW].

What follows only discusses the order of the bounds, hence we introduce correspond-
ing notation: given non-negative functions f and g, if f(n) < c - g(n) for a positive
absolute constant ¢, then we write f(n) < g(n), or g(n) > f(n), or f(n) = 0(g(n)).

The starting point is the following list of estimates by Rogers [R2]:

vra & nlan-QIY i T> %; 3.1)
2 n . n n,
vra & wln-QIF i m—s<T <z (.2)
1 n
2 . n . =
vra & ni/n-@2T) if 5 <T< T (3.3)

Most probably (3.1) cannot be improved with the present methods, and it is actually
optimal up to a Inn factor (see (3.10)). Theorem 1.2 improves (3.3) into the following

estimates:
2

2
v K n oA - 21T ifl<T < " where VA > n+/n;  (34)
5 Tlnn 2lnn Inn

1
Ve &L na/nlnn- QT if 5 % T, (3.5)

Using some bounds of [BW, subsection 3.2] estimates (3.2) and (3.3) of Rogers and the
present estimates (3.4) and (3.5) can be further improved as follows.

Theorem 3.1.  The following asymptotic estimates hold:

'vr,n & nlan-Q2T) if Tz ‘/TE; (3.6)
vra K @-(ETY’ if lsrs%ﬁ: (3.7)

, £ 3
ULh o pfie /T =1 8T - Lin f S+ <T<L (8

(271
I | 1 I
Vr, < 2n if 5 <T< E +I?;' (3.9)

Observe that the estimates in the list change continuously as T increases (up to absolute
constant factors).
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In order to provide a feeling about the optimality of the estimates above, we list the
corresponding known and conjectured lower bounds:

vrn > n-QT)" it T a; or T= %—E; (3.10)
Uy > —— ‘/_ L@ if 1 2TE ? conjectured; (3.11)
Vrn i 1 1 = :
ory > nﬁ-,/r -3 if 5 Pk T <1, conjectured; (3.12)
e 1 1 1
vrp > n if E{TE§+E' (3.13)

It is conjectured [BW] that (3.10) holds for any T > /n. /2 but Bérbezkr, Jr: and
Wintsche only verified that

ny/n o

vra»> == QI if Y<T<Z. (3.14)

The quantity v;- 2/ (2T)" is the minimal densny of a covering of a ball of radius 7 by
balls of raclms . Since vr,, balls of radius 1 5 cover the ball of radius 7', readily

Vrga = (2T)” .

3.1. Covering a Sphere

The arguments for (3.6)-(3.14) depend on estimates on the minimal number of equal
balls covering a sphere. Let 7, (T, ) denote the minimal number of balls of radius pin
R" that cover the sphere S(0, T') of radius T. The number 7,(7, @) corresponds to an
optimal function in problem (P) (in Section 2). A better upper estimate of U, (T, p) is
given by Corollary 1.2 of [BW]:

n—-1
(T, 0) < nﬁlnn-(g) i T (3.15)

v
-2
]

(T, 3) ‘ 1 : e
@T)-t <L nn- T—3-n8(T—3)n if ETEETEI' (3.16)

Concerning lower bounds, Example 6.3 of [BW] says

WT Y >nvm- I i T % (3.17)
It is conjectured [BW] that
W(T,3) > nvn- QT if 1<T< %; (3.18)
Un(T, 3) P i
oyt > nn- JT -1 if S B TS, (3.19)
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3.2. Proofs of the Improved Upper Bounds in Theorem 3.1

IfT > /n/2,thenletp = (1 — 1/?1]%. Given any R > %, we cover (0, R) with
U, (T, o) balls of radius p in a way that each ball intersects S(0, R) in an (n — 2)-sphere

of radius g. Since , !% — 0% > 1/24/n, balls of the same centre and of radius % cover

the annulus between S(0, R) and S(0, R — 1/2./n). Writing m to denote the maximal
integer such that T — m/2./n > %, it follows by (3.15) that

e i
n <1 E | T ——=,
ks +,-=ov"( 27m Q)
m . n=1
1
£ 07" Un/nlnn (T - —)
; 2/n

T+1/2Jn

& 2 n/nlnn. Eﬁf x"ldx
0

& nlnn-(27)".

If1 < T < ./n/2, then the argument is based on Lemma 2.5, which actually holds
for any R > 1: we cover S(0, R) with 1, (T, -%) balls of radius % in a way that each ball
intersects S(0, R) in an (n — 2)-sphere of radius % Then the balls cover the annulus
between S(0, R) and S(0, R — 1/2R). Writing m to denote the maximal integer such
that T — m/2T > %, it follows by (3.15) that

m + oy n=1
n—1 E : I
<4 2 nﬁlﬂniﬂ (T—‘ﬁ)

-1
< 2y /nlnn- s
g

1
n\/r;nn QT

<

using (n — 1)/2T? > 1 in the last step.
If% 4+ 1/4n < T < 1, then it is essentially sufficient to cover S(0, T'), hence (3.16)

yields (3.8).
Finally, if % <T< -% + 1/4n, then the balls centred at the vertices of the inscribed

regular crosspolytope show (3.9) [BW].

3.3. About the Lower Bounds

The lower bound (3.10) for T > n/2 follows essentially directly from the celebrated
lower bound of order n on the covering density of a ball, which bound is due to Coxeter
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et al. [CFR]. In addition, (3.14) is a consequence of (3.17) because the balls covering
B(0, T) cover §(0, T) as well. Now (3.10) for T = /n/2 is a consequence of (3.14).
If conjectures (3.18) and (3.19) hold, then they yield (3.11) and (3.12).
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1 Introduction

The mathematics of uniformly discrete point sets and Delone sets developped
recently has at least four different origins: (i) the experimental evidence of
nonperiodic states of matter in condensed matter physics, so-called aperiodic
crystals, like quasicrystals [4] [55] [62] [68] [103] incommensurate modulated
crystals phases [67] [69] and their geometric modelization (cf Appendix), (ii)
works of Delone (Delone) [36] [37] [42] [97] on geometric crystallography (com-
paratively, see [58] [83] [90] [101] for a classical mathematical approach of
periodic crystals), (iii) works of Meyer on now called cut-and-project sets and
Meyer sets [80] [81] [82] [92] (for a modern language of Meyer sets in locally
compact Abelian groups: [84]), (iv) the theory of self-similar tilings [10] [75]
[109] and the use of ergodic theory to understand diffractivity [5] [98] [109]. In
particular, the impact on mathematics of the discovery of quasicrystals in 1984
[103], as long-range ordered phases, was outlined by Lagarias [71]. The term
mathematical quasicrystals [6] [72] was proposed to name these Delone sets
which are used as discrete geometrical models of these new states of matter
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which have particular spectral or diffraction properties; in particular crystals
those for which the spectrum is essentially pure point (see [66] [102] and the
Appendix for the new definition of what is a crystal, and [34] [57] [63] [64] for
spectral/diffraction theory). Delone sets are conceived as natural generaliza-
tions of lattices in modern crystallography.

In this note we will briefly review these notions (Section 2) and will consider
more generally uniformly discrete sets of R™, in particular (SFU-) self-similar
finitely generated uniformly discrete sets (Definition 2.19). A uniformly dis-
crete set of R™ of constant r > 0 is a packing of (equal) spheres of R™ of
(common) radius r/2. There are several advantages to consider uniformly
discrete sets instead of Delone sets only: their R-spans may take arbitrary
dimensions between 0 and n, while that of a Delone set is only n, they can
be finite sets which is forbidden for Delone sets, they may exhibit (spherical)
holes of arbitrary size at infinity whereas the size of holes in Delone sets is
limited by the Delone constant. For instance, see [7] for a nonclassical exam-
ple. A classification of uniformly discrete sets, hence of Delone sets, which
extends that given in [70], is proposed in Subsection 2.3. Finitely generated
uniformly discrete sets of R™ constitute the largest class on which an address
map (Subsection 2.3) can be defined.

The theory of SFU - sets generalizes that of lattice packings of (equal)
spheres of R™ [22] [25] [29] [56] [77] [113] since a lattice is already a SFU - set
itself (integers are self-similarities: if m € Z and L is a lattice, mL C L), where
lattices are or not Op-lattices for F' an algebraic number field with involution
[15] [33], and makes use of algebraic integers of certain types (Subsection 2.4).
Self-similar Meyer sets only admit self-similarities which are Pisot or Salem
numbers [80], while self-similar finitely generated Delone sets only provide
Perron or Lind numbers as self-similarities [70]. It is an open problem to
find a criterium which ensures that a given uniformly discrete set admits at
least one self-similarity. For a general Delone set symmetries and in particular
inflation symmetries are expected to be rare, especially when the dimension of
the ambient space is large. For lattices, Bannai [11] has shown the existence
of many unimodular Z-lattices with trivial (point) automorphism group in a
given genus of positive definite unimodular Z-lattices of sufficiently large rank
(see also [28]).

The existence of cut-and-project schemes above Delone sets is useful to
characterize the set of its self-similarities, inflation centers, local clustering,
etc [30] [31] [52] [78]. Given an arbitrary uniformly discrete set it is an open
problem whether a cut-and-project scheme lies above it (Subsection 2.1.2).
Theorem 1.1 answers in full generality this problem for a given SFU - set
A C R™ (with A € UDy,, see Subsection 2.3) with self-similarity A. The
constructions use the Archimedean embeddings of the number field K := Q(\)
generated by the self-similarity A (Section 3) in a vectorial way, as a product
of copies of the étale R-algebra Kr := K ®g R. Denote by ¥ : K — Kg
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the canonical map. The structure of the lattice in the cut-and-project scheme
above A arises as a consequence of the Jordan invariants of R™®* as a K[X]-
module (from (ii) in Theorem 1.1).

Theorem 1.1. Let A C R™,n > 1, be a uniformly discrete set such that
m = rk Z[A — A} < 400 with m > 1. Let A > 1 be a (affine) self-similarity
of A, i.e. areal number > 1 such that A\(A —c¢) C A — ¢ for a certain ¢ € R™.
Then

(i) X is a real algebraic integer of degree d > 1 and d divides m,

(i) there exist r = m/d Q-linearly independent vectors wi,wa,...,w, in
the Q(M\)-vector space Q[A — A] such that Z[A — A] is a rank m Z-
submodule of the Z-module:

Zlwy, A, . .., Xy we, Awa, .o, A wg, L we, Ay, L, AT,

(iii) for every Z-basis {v1,va,...,vm} of Z[A — A], a matriz relation: AV =
MYV holds, where V. = t[v1,...,v,] and M is an invertible integral
m x m matriz with characteristic polynomial det(X I— M) = (p(X))™/¢
in which ¢(X) is the minimal polynomial of \; in particular, det M =
Nijg(A\)™4, where Nk o(A) is the algebraic norm of A,

(iv) there exists a cut-and-project scheme above A:
T W
( H Kr—— ~ HxR[A], L, 7, prl)
o il

where the lattice L = [;_, S(Z[N]) Turg is such that pri(L) D Z[A — A],

whose internal space H is the product of two spaces:
H=(Rg\RA])xG

where R is the image of R[A] in [],_, KR”L’j—?” by the real and imaginary

embeddings of K, and G the closure in I, KRﬁ of the image by ¥

of the space of relations over K between the generators wi,...,w,. The

space Ry \ R[A] is called the shadow space of A. This cut-and-project

scheme is endowed with an Euclidean structure given by a real Trace-like
symmetric bilinear form for which R and G are orthogonal.

The central cluster of the basis (Mw;)i—1... rj—0,.. d—1 is by definition the
set {wy,ws,...,w,}. Note that some vectors in a central cluster may be R-
linearly dependent. When wy, ws, ..., w, have identical norms and constitute
orbits (i.e. F-clusters) under the action of a finite group, say F', constructions
in (iv) in Theorem 1.1 can be deduced from [32]. It is easy to check that

r =1 in Theorem 1.1 = the R-span of A is one-dimensional .

The converse to this is not always true: in Subsection 2.5 we give the example
of the sets Zg of beta-integers [12] on the line for which open problems exist.
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Conversely, what is the set of all self-similarities obtained by Theorem 1.1
(i) ? The answer is simple. If 8 > 1 is an algebraic integer there exists at least
one SFU - set S admitting 3 as self-similarity:

S = { L] 7/827 755 717074»1767625 N '}a
on the line, is of finite type and satisfies 35 C S by construction.

Corollary 1.2. If A is a self-similar finitely generated sphere packing in R™,
with self-similarity A, such that r = 1, i.e. for which the degree d of \ equals
the rank m of Z[A — A], then Z[A — A] is the projection of a sublattice of finite
index of an ideal lattice of K = Q(X) in the cut-and-project scheme above A,
of index an integer multiple of (Ok : Z[N]).

Theorem 1.1 gives a framework for constructing aperiodic (equal) sphere
packings B(A) for which local arrangements, for instance like t-designs [9], can
be computed from a lattice in higher dimension above A. In Corollary 1.2
the terminology “Arakelov divisor”, meaning that the embedding of Z[A — A]
into the cut-and-project scheme is given with an Euclidean structure, could be
substituted to “ideal lattice” by the one-to-one correspondance given in [99]
(see also Neukirch [88]).

Dense sphere packings of R™ are of general interest [20] [25] [29] [54]
[56] [86] [113]. For a sphere packing whose set of centers is a Delone set A
which is a uniformly discrete of constant r > 0, of Delone constant R(A) :=
Sup,cpn infea ||z — pf|, the density §(B(A)) of B(A) satisfies [86]: §(B(A)) >
(2R(A)/r)~™. If A is only a uniformly discrete set, no equivalent formula for
bounding from below the density §(B(A)) exists in general. However, it is not
the case for uniformly discrete sets of R™, called pseudo-Delone sets, which
behave in some sense like Delone sets (Subsection 5.1).

Theorem 1.3. Let A be a uniformly discrete set of R™, of constant r > 0,
which is pseudo-Delone of pseudo-Delone constant R(A). Then the density
of the sphere packing B(A) (of common radius r/2) whose set of centers is A
satisfies:

S(B(A)) > <M) (1)

r

Theorem 1.3 shows that it is important to obtain interesting lower bounds
of the Delone constant (or pseudo-Delone constant) R(A) to control dense
sphere packings, in particular, sphere packings whose set of centers is a SFU
- set.

In Section 6 we comment on the two origins of the (pseudo-) Delone con-
stant of a sphere packing whose set of centers is a SFU - set: the first one lies
in the geometrical properties of the central cluster {wy,ws,...,w,} as given
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by Theorem 1.1 (ii), the second one is of purely arithmetical nature; it comes
from the Euclidean and inhomogeneous minima associated with a sublattice
of a product of ideal lattices [14] [26] [27] in bijection with Z[A — A] in the
cut-and-project scheme given by Theorem 1.1 (iv). Only the case r = 1 is
reported in Section 6.

Theorem 1.4. Let A C R",n > 1, be a SFU - set which is either a model set
or a Meyer set in the cut-and-project scheme defined by Theorem 1.1 (i) with
r=1, Q as window and lattice L' such that pri(L') = Z[A — A].

Assume that the self-similarity X is of degree d > 3, that K = Q(X\) has a
unit rank > 1 and is not a CM-field. Then, if A is k-thin, k > 2, its Delone
constant R(A) satisfies:

R(A) > Vd(M(K)*4— My(K)¥%)? >0, (1.2)
where M(K), resp. Mp(K), is the Euclidean minimum, resp. the k-th Eu-
clidean minimum, of K.

The space-filling condition m/d = r > n for couples of values {(d,m)}
(with the notations of Theorem 1.1) is necessary to construct dense sphere
packings of R™.

The 75°¢™° Rencontres between Mathematicians and Physicists held at
IRMA - Strasbourg on the Thema “Number Theory and Physics” have offered
to the author the opportunity of writing this brief note, initially conceived as
a short survey, on the relationships between sphere packings, the mathemat-
ics of aperiodic crystals, algebraic number theory and numeration in base an
algebraic integer > 1.

2 Uniformly discrete sets and Delone sets

2.1 Definitions and Topology

Let us define uniformly discrete sets and Delone sets in two different contexts:
in the metric case when the ambient space is a metric space which is g-compact
and locally compact, like R”, and when the ambient space is R™ with a cut-
and-project scheme that lies above it with a locally compact abelian group as
internal space.

2.1.1 Metric Case Let (H,d) be a o-compact and locally compact metric
space with infinite diameter (for ¢). A discrete subset A of H is said to be



Self-Similar Finitely Generated (SFU-) Sets and Sphere Packings 7

uniformly discrete if there exists a real number r > 0 such that
x,y € A,x #y implies §(z,y) > 7.

A uniformly discrete set is either the empty set, or a subset {z} of H reduced
to one element, or, if it contains at least two points, they satisfy such an
inequality. If r is equal to the minimal interpoint distance

inf{d(z,y) | z,y € H,x # y}

(when Card(A) > 2) A is said to be a uniformly discrete set of constant r.
The space of uniformly discrete sets of constant r > 0 of (H,¢) is denoted by
UD(H,6),. Tt is the space SS(H,J), of systems of equal spheres (or space of
sphere packings) of radius r/2 of (H,0): A = (a;)ien € UD(H, ), is the set of
sphere centers of

B(A) = {B(a;,r/2) | i € N} € SS(H, ),

where B(z,t) denotes generically the closed ball centered at z € H of radius
t>0.
An element A € U,~oUD(H,J), is said to be a Delone set if there exists
R > 0 such that, for all z € H, there exists an element A € A such that
d(z,A) < R (relative denseness property). Then a Delone set is never empty.
If A is a Delone set, then
R(A) = inf 6(z, A 2.1
(A) = sup inf (2, ) (2.1)
is called the Delone constant of A. In [86] the range of values of the ratio
R(A)/r in the case H =R"™,n > 1, is shown to be the continuum

V2 [n
{ . n+1,+oo). (2.2)
In the context of lattices which are Og-modules, with K a number field,
the ”ambient space” is obtained in a canonical way via the real and complex
embeddings of K and the Delone constant is reminicent of the Euclidean min-
imum or inhomogeneous minimum, with possible isolated values instead of the
continuum (2.2) (Section 6).

The Delone constant of A is the maximal circumradius of all its Voronoi
cells. If A € UD(H, ), is a Delone set of Delone constant R, the discrete set A
is also called a (r, R)-system [97]. Let X(H,d), r CUD(H,J), be the subset
of uniformly discrete sets of constant r» which are Delone sets of H of Delone
constant < R.

Theorem 2.1. Let (H,6) be a o-compact and locally compact metric space for
which diam(H) is infinite. Then, for allr > 0, UD(H, ), can be endowed with
a metric d such that the topological space (UD(H,9),,d) is compact and such
that the Hausdorff metric on UD(H,0), s is compatible with the restriction
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of the topology of (UD(H,0),,d) to UD(H, ), ;. For all R > 0 the subspace
X(H,06)p g is closed.

In [87] several (classes of equivalent) metrics on H are constructed. In
such constructions a base point, say a € R™, is required. When H = R",
endowed with the Euclidean norm || - ||, the topology on UD(R™, || - ||)», 7 > 0,
is expressed by “unique local pairings of points in big balls centered at the
base point o, as follows (Proposition 3.6 in [87]). Let = 1, the general case
being the same.

Proposition 2.2. Let A,A" € UDR",|| - ||)1 with A and A" nonempty. Let
l=inf{||t —a| |t € A} < +o00 and € € (0, (1 +21)71). Assume d(A,\') < e.

Then, for all X € A such that | A — o < 1=,

(i) there exists a unique N € A’ such that |A —N|| < 3,
(ii) this pairing (X, X) satisfies the inequality: ||X — N[ < (3 +[|]X — o|)e.

2.1.2 Cut-and-Project Schemes Above Uniformly Discrete Sets A
locally compact abelian (Ica) group is an abelian group G endowed with a
topology for which G is a Hausdorff space, each point admits a compact
neighbourhood, and such that the mapping G x G — G,(x,y) — z —y is
continuous. In the sequel we will denote additively the additive law of G so
that 0 is the neutral element of G.

Definition 2.3. Let G be a lca group.
(i) A subset A of G is uniformly discrete if there exists an open neigh-
bourhood W of 0 sothat (A—A)NW = {0},

(ii) asubset A of G is relatively dense if there exists a compact subset
K of G suchthat G=A+ K,

(iii) a Delone set of G is a subset A of G which is relatively dense and
uniformly discrete.

Definition 2.4. A lattice of R™,n > 1, is a discrete Z-module of rank n.
A lattice in a lca group G is a subgroup L of G such that:
(i) L is discrete, i.e. the topology on L induced by that of G is the
discrete topology,

(ii) L is cocompact, i.e. G/L is compact.

In the sequel we will only define cut-and-project schemes over uniformly
discrete sets A which lie in finitely dimensional Euclidean spaces R"™, leaving
aside the general case where the ambient space of A is a lca group. Such more
general constructions can be found in [80], Chap. II, and in [100]. Denote by
L, the space of (affine) lattices of R™,n > 1.
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Definition 2.5. A cut-and-project scheme (over R™) is given by a 4-tuple
(G x R™ L, m,m2) where:

(i) G xR™ is the direct product of a lca group G and the n-dimensional
Euclidean space R",n > 1,

(ii) L is alattice in G x R™,

such that the natural projections 7 : G x R — G and 7 : G x R" —
R™ satisfy

(1) the restriction ma|;, of ma to L is a bijection from L to ma(L),
(2) the image m(L) is dense in G.

G is called the internal space.

Definition 2.6. Let A be a uniformly discrete set in the n-dimensional
Euclidean space R™,n > 1. A cut-and-project scheme given by the 4-tuple
(G xR™ L,m1,ma) is said to lie above A if there exists t € R™ such that

A—t C 7T2(L).

Remark 2.7. The need to introduce the translation ¢ in the last definition
comes from the fact that the uniformly discrete set A does not necessarily
contain the base point of the cut-and-project scheme, which is the origin of
R™ and at the same time the origin of G. Being a uniformly discrete set,
or a Delone set, is an affine notion in the ambient space R", while cut-and-
project schemes priviledge a base point. For instance the lattice u + Z,u =
1/2, of R admits ({0} xR,Z,0,Id) as cut-and-project scheme above it; the
translation ¢ being 1/2 in this case. If A is a Delone set, the translation
t can be chosen such that: ||¢|] < R(A) the Delone constant of A.

In the last definition, the image mo(L) of the discrete subgroup L C G x R™
is a Z-module in R™ (the classical structure of Z-modules in R™ is given
for instance in [38], Theorem 2.3.7).

Cut-and-project sets, also called model sets, of R™ form a particular class
of Delone sets.

Definition 2.8. A discrete subset A of R™,n > 1, is a cut-and-project set,
or model set, if there exists a cut-and-project scheme (G x R™, L, w1, ) over
A, with G a lca group, and a relatively compact subset 2 of the internal space
G, with nonempty interior, such that:

A—t={mw) | mw)eQ}

for a certain t € R™. The set €1 is called the window of the cut-and-project
set A = A(Q).



10 Jean-Louis Verger-Gaugry

Model sets which arise from cut-and-schemes (G x R™, L, 71, m2) with a lca
group G as internal space do not differ too much from model sets that come
from cut-and-project sets where the internal space is R™, for a certain m, by
the following proposition.

Proposition 2.9. Let A(Q) be a cut-and-project set in the cut-and-project
scheme (GxR™, L, m,ma) where G is a lca group. Then there exists a subgroup
of G isomorphic to R™, for a certain m > 0, and a model set A’ C R™ having
(R™ x R™ L', m,m2) as cut-and-project scheme above it such that A(QY) is
contained in a finite number of translates of A’.

Proof. Proposition 2.7 in [84]. O

Proposition 2.10. Let A = A(Q) be a model set in a cut-and-project scheme
(G x R™, L, m,m2) where G is a lca group. Then

(i) A is Delone set of R™,

(i) if Q C int(2) (adherence of its interior) and Q0 generates G as a group,
the following equality holds:

ZIA — A] = mo(L).
Proof. Proposition 2.6 in [84]. O

Remark 2.11. In [84] and [70], the origin implicitely belongs to the Delone
set A, whereas in the present note we do not assume this minor fact. That is
why we refer to Z[A — A] everywhere instead of Z[A], as in Theorem 1.1 or in
Proposition 2.10 for instance.

2.2 Continuity of sphere packings arising from model sets

Let A be a model set in R™, viewed as set of centers of a sphere packing, and
consider the cut-and-project scheme (R* x R™, L, 71, m2) above A which allows
the construction of A by means of a window Q C R*. Let us fix the direct
product R*¥ x R™. Let us write A = Ar(f2) and consider how the model set
A () varies when Q and L vary continuously.

Let W(RF) be the uniform space of nonempty open relatively compact
subsets of RF (set of acceptance windows in R¥) whose affine hull is R¥,
endowed with the pseudo-metric

AW(Qla QQ) = A(Q_la Q_Q)

where A is the Hausdorff metric on the space of nonempty closed subsets of
R¥. The space of lattices £, 4 in R"** is equipped with the quotient topology
of GL(n+ k,R)/GL(n + k,Z). The metric d built on |J,_, UDR"™ || - ||),

>0
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with 0 as base point [87] is compatible with the quotient topology of GL(n +
k,R)/GL(n+ k,Z). Let UD = |J,-oUD(R", || - ||), be the space of uniformly
discrete subsets of R", endowed with the metric d where here an arbitrary base
point a € R is taken (see [87], Theorem 2.1 and Proposition 2.2). Denote by
d, the metric d in this paragraph only. The two origins, of the cut-and-project
scheme and of R" for the construction of the metric d, on UD, are taken a
priori different.

Theorem 2.12. For any base point a € R™, the mapping
WRF) X Lpix — UD,dy) : (L) — AL(Q) (2.3)

15 continuous.

Proof. Let e > 0. Let Ly € L,,+1 and 9 € W(RF). Let us show the continuity
at (Qo, Lo). Let t = ||af + # Since )y is open, there exists ; > 0 such
that all the sets {x € L | m1(z) € Qo, ||m2(2)|| < t} have the same cardinality
if L belongs to the open set {L | d(L, Ly) < m1}. Since g is continuous and
T2, is assumed to be a bijection from Ly onto m2(Lo), then m is also a
bijection from L onto ma(L) as soon as d(L, Lo) is small enough. Then, using
Proposition 2.2 and invoking the continuity of 7o, there exists ' < n; such
that d(L, Lo) < n’ implies do (AL(Q0), AL, (£20)) < €/2.

The subset {z € L | m1(z) € Q, ||m2(x)]| <t} of L is such that its projection
by 71 is made of a finite collection of points which lie inside © (which is open),
and its projection by s is a finite subset of m3(L) which contains Az () N
B(a, 1%5/2) (see Proposition 2.2). Since the projection mappings 71 and 7y
are continuous and that m ~is a bijection from L onto mo(L), the mapping
L — mo(my, )~1 is continuous on the open set {L | d(L, Lo) < n'}. Then there
exists n”” > 0 such that Ay (2, Qo) < n” implies do (AL (), AL(Q0)) < €/2 (the
value of ¢ is chosen according to this last inequality and Proposition 2.2).

Then, as soon as Aw(Q, Qo) < n” and d(L, Lg) < n’ hold, we have:

da(AL(Q)aALo (QO)) < da(AL(Q);AL(QO))+da(AL(Qo),ALU(QO)) < %4»% = €.

We deduce the continuity of (2.3). O

Note that the assumption “open” for windows in W(RF) is essential to
obtain the continuity in Theorem 2.12. If we consider a collection of model
sets parametrized by a sequence of windows which are not necessarily open,
but with nonempty interiors, then Theorem 2.12 should be applied with the
collections of the interiors of the windows.

For deformations of model sets, see [8] [19].
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2.3 A classification of uniformly discrete sets

Classes of Uniformly Discrete Sets and Delone sets in R™, and their relative
inclusions, are given in Theorem 2.16, following Lagarias [70] for Delone sets.
We first define some classes of uniformly discrete sets intrinsically, i.e. without
any cut-and-project scheme formalism above them. Then we indicate the
definitions of point sets which invoke cut-and-project schemes.

Definition 2.13. Let A be a nonempty uniformly discrete set of R™.
(i) A is finitely generated if the Z-module
ZIA — A = {Z oi(zi —yi) | a; € Zyxi,y; € A}
finite
is finitely generated, i.e. dimg Q ® Z[A — A] < 400,
(il) A is of finite type if, for all ¢ > 0, the intersection
(A= A)N B(0,1)

is a finite set.

If A is a nonempty finitely generated uniformly discrete set, the rank of
A, denoted by rk A, is by definition the dimension of the Q-vector space
Q®Z[A — A] = Q[A — A]. The rank rk A is an invariant of A. Let ¢ € R™.
The rank of Z[A — ¢] varies with ¢ and may be different of that of Z[A — A].
For instance, with ¢ = 0 and A = V2 + 7 in R we have: tk A = 1 while the
rank of Z[A] = Z[A — ¢] equals 2 (the notations rk A and rk Z[A] should not
be confused); moreover A = A — ¢ and Z[A — A] = Z are disjoint.

Theorem 2.14 (Lagarias). Let A be a Delone set of finite type of R™,n > 1.
Then

rk A < Card((A — A)N B(0,2R(A))) < + o0 (2.4)
where R(A) is the Delone constant of A.

Proof. Theorem 2.1 in [70]. O

Definition 2.15. Let A be a relatively dense discrete subset of R™. A is a
Meyer set if one of the following equivalent assertions is satisfied:

(i) A — A is uniformly discrete,
(ii) A is a Delone set and there exists a finite set ' C R™ such that
A—ACA+F, (2.5)

(i) A is a subset of a model set.
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Proof. Theorem 9.1 and Proposition 9.2 in [84]. O

Conditions (i) and (ii) in the definition of Meyer sets are given indepen-
dently of any “cut-and-project scheme above A” consideration while condition
(iii) asserts the existence of such a cut-and-project scheme above it. In a
similar way a (affine) lattice L € £,, in R™ is intrinsically defined in R™, with-
out any help of cut-and-project schemes, admits also ({0} x R™, L,0,73) as
cut-and-project scheme above it and is a model set in this cut-and-project
scheme. The objectives of Theorem 1.1 consist in showing the existence of
general constructions of cut-and-project schemes above SFU - sets in R”.

Let n > 1. Denote:

M®) := { Model sets in R™ arising from cut-and-project schemes
having a m-dimensional Euclidean space R™ as internal space }
Mleag)  .— { Model sets in R™ arising from cut-and-project schemes
having a lca group G as internal space }
M®E) := { Meyer sets in R™ arising from cut-and-project schemes
having a m-dimensional Euclidean space R™ as internal space }
Meag) . — { Meyer sets in R™ arising from cut-and-project schemes
having a lca group G as internal space }
uo := { Uniformly discrete sets in R }
UDy, := { Finitely generated uniformly discrete sets in R” }
C UrsoUDR™, [ - [])r
UDs, := { Uniformly discrete sets of finite type in R™ }
Xig := { Finitely generated Delone sets in R™ }
Xt := { Delone sets of finite type in R™ }

Theorem 2.16. The following inclusions hold:

UDy C UDy,
U U
M) 5 \leas) 5 2 e MB) c MB®) ¢ Xy c Xy, (2.6)
Proof. Theorem 9.1 in [84], Theorem 2.1 and Theorem 3.1 in [70]. O

Definition 2.17. Let A € UDy,. If {e1,e2,...,€e,} is a Z-basis of Z[A], i.e.
Z[A] = Z[e1, e, . .., €], then the address map ¢ : Z[A] — Z" of A associated
to this basis is by definition

v
<p( Z mie; ) = (m1,ma,...,my).
i=1
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In Section 3 we will mainly use address maps of difference sets A — A for
the elements A of UDy,.

2.4 Algebraic integers, inflation centers and
self-similarities

Given A a uniformly discrete set of R™, an (affine) self-similarity of A is by
definition a real number A > 1 such that

AMA—¢) € A—c (2.7)
for a certain point ¢ in R™ (note that ¢ need not belong to A). A point
¢ € R™ for which (2.7) occurs for a certain A > 1 is called an inflation center
of A. The concept of self-similarity is an affine notion and A\ depends upon
c. Denote by

C(A):={c|3x>1 suchthat A\(A—¢) C A—c¢} (2.8)
the set of inflation centers of A and by

Ske)={A>1|AMA-¢) C A—c}, forceC(A), (2.9)

the set of self-similarities associated with the point c.

Proposition 2.18. Let A =t+7Z be a (affine) lattice of R of period 1 with
t€10,1). Then

(i) c(A)=t+Q

N\ {0} if cet+7Z,
(i) S(c)=1¢ (1—gZ)NN\{0} if c€C(A), c=t+E withp,q
relatively prime (p € Z,q > 2).

The set of inflation centers of A of given (point) density 1/(2q) of self-
similarities, with q an integer > 2, is exactly the uniformly discrete set

p
t+ {E | p € Z, ged(p, q) = £1}.

Proof. Routine, with the following definition of the (point) density of self-
similarities of an inflation center ¢ € C(A):

dens(S(c)) = ligrlsotjp 2%# (Sle)n(1,t]). (2.10)

O

In the general case, given a uniformly discrete set, the characterization of
C(A) and S(c) with ¢ € C(A) remains an open problem, even for Delone sets;
see [30], [31] and [78] for Penrose tilings and sets Zg of S-integers [52], with
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B a quadratic Pisot number. At least, C(A) is expected to be far from being
everywhere dense as in Proposition 2.18.

Definition 2.19. A uniformly discrete of R™",n > 1, is a (SFU - set) self-
similar finitely generated uniformly discrete set if it is finitely generated and
admits at least one (affine) self-similarity.

Although a uniformly discrete set of R™, n > 1, may be finite, let us observe
that a nonempty (SFU -) self-similar finitely generated uniformly discrete set
in R™,n > 1, is always infinite.

Definition 2.20. Let A > 1 be a real algebraic integer. Denote by \(?) its
conjugates. We say that A\ is
(i) a Pisot number if all its conjugates A satisfy [A()| < 1,
(ii) a Salem number if all its conjugates A satisfy |\()| < 1, with at least
one on the unit circle,
(iii) a Perron number if all its conjugates A(¥) satisfy |A\(V] < ),
(iv) a Lind number if all its conjugates A satisfy |\(?)| < X, with at least
one on the circle {|z| = A}

Theorem 2.21 (Meyer). Let A C R",n > 1, be a Meyer set. If A is a SFU -
set, then all its self-similarities are Pisot or Salem numbers.

Proof. See Theorem 6 in Meyer [82]. O

If 3 > 1 is a Pisot number or a Parry number, then the sets Zg are Meyer
sets that admit by construction the self-similarity § [52]. However, there exist
many Meyer sets which have no self-similarities at all.

Theorem 2.22 (Lagarias). Let A C R™,n > 1, be a Delone set. If A is a
SFU - set, then all its (affine) self-similarities A are algebraic integers such
that degree(\) divides tk A. Moreover, if A is of finite type, then all the self-
similarities are Perron or Lind numbers.

Proof. See Theorem 4.1 in Lagarias [70]. O

The concept of (affine) self-similarity is extended as follows in a natural
way [84].

Definition 2.23. Let A be a nonempty uniformly discrete set of R™. A self-
similarity of A is given by a triple (¢, A, @) where X is a real number > 1, @
an element of the orthogonal group O(n,R) such that

AMA—-¢c) € A-c (2.11)

for a certain ¢ € R™ (note that ¢ belongs or not to A).
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A point ¢ for which (2.11) occurs for certain couple (A, Q) is called an
inflation center of A, as in the affine case. Problems on self-similar sets are
reported in [93].

2.5 Sets Zg of beta-integers and Rauzy fractals

Meyer sets Zg C R of (-integers with 3 a Pisot number, and their vectorial
extension to R” - so-called g-grids -, are useful tools for modeling quasicrystals
in physics [39] [40] [50] [51]. Indeed, Penrose tilings in the plane and in space
play a fundamental role in this modelling process, with suitable positioning of
atoms in the tiles. Gazeau [51] has observed that Penrose tilings can easily
be deduced from 7-grids, where 7 = %g is the golden mean, quadratic Pisot
number. Therefore it is natural to extend the constructions of Penrose tilings
and [-grids with Pisot numbers 8 (or more generally with algebraic integers)
of higher degree which could be used in the objective of providing possibly
new models of aperiodic crystals in crystallography to physicists.

Let us recall the mathematical construction of Zg on the line and its prop-
erties when 3 > 1 is a real number, in a general way, and some open questions
related to them when § is in particular an algebraic integer. We refer to [47]
[48] [91] [95] and [12] for an overview on recent studies on Numeration and its
applications.

2.5.1 Construction and Properties For a real number z € R, the integer
part of x will be denoted by |x| and its fractional part by {z} =z — |x].
The smallest integer larger than or equal to x will be denoted by [z]. For
B >1 areal number and z € [0,1] we denote by T3(z) = Bz (mod 1) the
B-transform on [0, 1] associated with [, and iteratively, for all integers j > 0,
Té“(z) i= Tp(T3(2)), where by convention Tj = Id.

Let 8> 1 be areal number. A beta-representation (or [-representation,
or representation in base [ ) of a real number z > 0 is given by an infinite
sequence (x;);>0 and an integer k € Z such that z = :;Og x; fTE
where the digits z; belong to a given alphabet (C N). Among all the beta-
representations of a real number x > 0,z # 1, there exists a particular one
called Rényi [-expansion, which is obtained through the greedy algorithm
[47] [48]: in this case, k satisfies % <z < g1 and the digits

) i=0,1,2,... (2.12)

€T; = LﬁTé(ﬂk

belong to the finite canonical alphabet Ag:= {0,1,2,...,[8—1]}. If G is
an integer, then Ag := {0,1,2,...,8 — 1}; if S is not an integer, then
Ag:={0,1,2,...,[8]}. We denote by

()3 = X0T1T2 ... Th - Tkt 1Th42 - - - (2.13)
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the couple formed by the string of digits zoziz2...TkTr41Tk42 ... and the
position of the dot, which is at the kth position (between ) and xp4q1).
By definition the integer part (in base () of x is Zf:o ;7% and its
fractional part (in base () is ;O,j 11 x; 37k If a Rényi [-expansion ends
in infinitely many zeros, it is said to be finite and the ending zeros are omitted.
If it is periodic after a certain rank, it is said to be eventually periodic (the
period is the smallest finite string of digits possible, assumed not to be a string
of zeros).

There is a particular Rényi [-expansion which plays an important role in
the theory, which is the Rényi [-expansion of 1, denoted by dg(1) and
defined as follows: since (3° < 1 < 3, the value Tps(1/3) is here set (by
convention) to 1. Then using (2.12) for all i > 1, we obtain: t; = |3],t2 =
1B{B}].ts = |B{B{B}}], etc. The equality dg(1) = 0.t1tat3... corresponds

to 1=S"Ft,37"

Definition 2.24. A real number 3 > 1 such that dg(1) is finite or eventually
periodic is called a beta-number or more recently a Parry number (this new
name appears in [40]). In particular, it is called a simple beta-number or a
simple Parry number (after [40]) when dg(1) is finite.

Beta-numbers (Parry numbers) are algebraic integers [91] and all their con-
jugates lie within a compact subset which looks like a fractal in the complex
plane [44] [108]. The conjugates of Parry numbers are all bounded above in
modulus by the golden mean (1 + v/5) [44] [108].

Definition 2.25. The set
Zg :={z € R | |z| is equal to its integer part in base 3}

is called set of beta-integers, or set of [-integers, or set of integers in base [.

By construction, the set Zg is discrete, relatively dense and locally finite
(its intersection with any interval of the line is finite), self-similar, with 5 as
self-similarity (with inflation center the origin), and symmetrical with respect
to the origin: 8Zg C Zg, Zg = —Zg. Its complete set of self-similarities
is unknown. Thurston [110] has shown that it is uniformly discrete, hence a
Delone set, when [ is a Pisot number. From [52], for § a Pisot number, the
relatively dense set Zg NR™T is finitely generated over N.

Theorem 2.26. If 3 is a Pisot number, the Delone set Zg is a Meyer set
which is a SFU - set in R.

Proof. [24], [52]. For the definition of a SFU - set, see Definition 2.19. It is a
SFU - set since fZg C Zg. O
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Open problem (P;).— What is the class of real numbers > 1 for which
Zg is uniformly discrete, equivalently a Delone set ?

We know that this class contains Pisot numbers [21] [52] and beta-numbers.
It also contains some Salem numbers [23]. It is unknown whether it contains all
Salem numbers and all Perron [111]. Problem (P1) is linked to the specification
of the B-shift [21] [52] [111].

The set Zg contains {0,£1} and all the polynomials in § for which the
coefficients are given by the equations (2.12). Parry [91] has shown that the
knowledge of dg(1) suffices to exhaust all the possibilities of such polyno-
mials by the so-called “Conditions of Parry (CPg)”. Let us recall them. Let
(ci)i>1 € Ag be the following sequence:

t1t2t3 s if dﬁ(l) = O.tltg ... s inﬁnite,
cieacg - =1 (tita-tymo1(tm —1))° if dg(1) is finite and
equal to O.tito---tm,
(2.14)

where ( )¥ means that the word within ( ) is indefinitely repeated. When
the degree of 3 is > 2, we have ¢; = ¢; = |3] . Then the polynomial
S oy >0, with v > 0,y; € Z arbitrary, belongs to Z; :=ZgNRT if
and only if y; € Ag and the following v+ 1 inequalities are satisfied:

(CPﬁ) (yjayj+17yj+27"'7y71*17y715070707"') < (615025035"')5
for allj =0,1,2,...,v, (2.15)

where “<” means lexicographical smaller. For a negative polynomial, we
consider the above criterium applied to its opposite. Conditions of Parry
(CPg) sieve the elements of the ring Z[5] in the number field Q(5).

The set Zg can be viewed as the set of vertices of the tiling 73 of
the real line for which the tiles are the closed intervals whose extremities are
two successive [-integers. When  is a Pisot number, the number of (non-
congruent) tiles in 7z is finite [110]. If V is a tile of 73 we denote
by (V) its length. If (B is a Pisot number and dg(1) is finite, say
dg(1) = 0.t1t2 .. .tm, then the set of the lengths of the tiles of 73 is exactly
{T51) |0 <i <m =1} = {1, - t1,8> —t18 —ta,..., """ =152 —
tofm 3 — . . —tm_1}. If B is a Pisot number with dg(1) eventually periodic,
say dg(l) = 0.t1ta.. . tm(tmgitms2 - . tmip)?, then the set of the lengths of
the tiles of T is exactly {T4(1) [0<i<m+p—1}={1,6-t,3* -1~
to, ..., 6m71 — t15m72 — t26m73 — .= tmfl,ﬂm — tlﬂmil — t25m72 — .=
by e ooy BMTPTL - gmAP=2 gy gmAP=3 ¢t 1} Hence, when S is
a Pisot number, the set Zg is a Delone set of (sharp) constants (r, R) with
r=min{l(V) |V €73} >0 and R = 1max{{(V)|V €73} = 1. The tiling
73 can be obtained directly from a substitution system on a finite alphabet
which is associated to [ in a canonical way [41] [45] [48].
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2.5.2 Rauzy fractals and Meyer sets of beta-integers for 3 a Pisot
number Rauzy fractals were introduced by Rauzy [1] [2], [45] (Chapter 7),
[79] [94] [104] [105] to provide geometric interpretations and geometric repre-
sentations of symbolic dynamical systems, in the general objective of under-
standing whether substitutive dynamical systems are isomorphic to already
known dynamical systems or if they are new. Rauzy [94] generalized the dy-
namical properties of the Fibonacci substitution [45] to a three-letter alphabet
substitution, called Tribonacci substitution or Rauzy substitution, defined by:
1— 12,2 — 13,3 — 1. The incidence matrix of this substitution is

11 1
100 |,
01 0

its characteristic polynomial is X3 — X2 — X — 1 with 3 > 1 a Pisot number as
dominant root, and two complex conjugates roots o and @ in the unit disc. The
incidence matrix admits as eigenspaces in R? an expanding one-dimensional
direction and a contracting plane [52].

Theorem 2.27 (Rauzy). The Rauzy fractal generates a self-similar periodic
tiling of the plane. The symbolic dynamical system generated by the Tribonacci
substitution is measure-theoretically isomorphic to a toral substitution. The
Tribonacct substitutive dynamical system has a purely discrete spectrum.

Proof. See Rauzy [94]. O

Properties of the Rauzy fractal (connectedness, interiors, boundary, etc)
were obtained in [2] [35] [65] [79] [104] [105] [106] [107]. Gazeau and Verger-
Gaugry [52] proved that the set Zg of integers in base § are in close relation
with the Rauzy fractal, within the framework of a canonical cut-and-project
scheme (R® = G x E,L = 73,7, m) above Zg, where F is a line in R and
G the corresponding internal space (hyperplane): the Rauzy fractal is the
adherence of the image of Zg by the map 7 o (7T2‘L )~1 in the internal space
G. This situation is quite general for Pisot numbers 3 and the Rauzy fractal
appears as a compact canonical window [52]. However, all the points of L are
not selected by this window and only some of them which satisfy the conditions
of Parry are projected on F, Zg being a Meyer set [24] [52].

For all Perron numbers (3, the construction of the cut-and-project scheme
(R = G x E,L = 7% 7, 7)) over Zg, where d is the degree of 3, E a line
in R? and G the corresponding internal space (hyperplane), is canonical, and
does not use the fact that Zg should be uniformly discrete [52]. If 3 is a Pisot
number then the image of L by m o (WQ‘L)’l is relatively compact and its
adherence is the (geometric) Rauzy fractal. Whether this image is relatively
compact for 8 a general Salem number is not known.
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The Z-module Z[Zg — Zg] is finitely generated for § a Pisot number, but it
is not known whether it is the case for Perron numbers in general (which are
not Pisot numbers).

Open problem (P3).— What is the class of real numbers > 1 for which
Zg is uniformly discrete and is not finitely generated, i.e. for which

rank Z[Zg — Zg] = +o0?

3 Proof of Theorem 1.1 - Characterization of SFU - sets

(i) (same proof as [70] Theorem 4.1 (i)) Let s = dimgR[A] be the dimension
of the R-span of A (by R-span of A, we mean the intersection of all the real
affine subspaces of R”™ which contain A). Then 1 < s <n and m:=1k A > s.
By definition the Z-module Z[A — A] := {d apite @i (i — ;) | @i € Z,xy, x5 €
A} admits a set of m generators, say {vi,va,...,v,}, which are Q-linearly
independent (nonzero) vectors of R™. Then

ZIN = A = Zvy,va, ..., U]
If A > 1 is a self-similarity of A then there exists ¢ € R™ such that A\(A —¢) C
A —c. Since A — A=A —c¢— (A —¢), this implies
MZIA — Al C Z[A — A]. (3.1)
We deduce that there exist integers a; ; € Z such that
AU = 1V + Qi 2U2 + .o+ Qo U, i=1,2,...,m
with M = (aivj)i,j € Mat,,,(Z) the space of m x m integral matrices. Hence
U1
AV =MV, with V = ; . (3.2)
U

Equivalently the transposed matrix !M is the matrix associated with the Q-
linear map which sends {v1, va, . .., v, } to the system {Avq, Ava, . .., Av,, } with
respect to the Q-free system {v1,va,..., v, }. Since the polynomial h(X) :=
det(X 1 — M) € Z[X] is monic and cancels at A, the real number X is an
algebraic integer of degree less than m.

Let d be the degree of A\ and

o(X) =X+ a1 X a4 X2+ 4 ag, with a; € Z,aq # 0,
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be the minimal polynomial of . From (3.2) we deduce MV = MV for all
j € N. Hence, since ¢(\) =0,

p(M)V = (M + e M " +aoa M + ...+ ag)V = 0. (3.3)

Since ¢(M) € Mat,,(Z) and that the vectors vy, ve,..., v, are Q-linearly
independent, we deduce ¢(M) = ¢(*M) = 0. Hence the minimal polynomial
(X)) € Z|X] of the matrix * M divides p(X) in Z[X]. Since ¢(X) is irreducible
over Q, there is equality: (X) = (X).

Denote by K the number field Q()). Equation (3.1) implies that Z[A — A]
is a module over the ring Z[\] and that Q[A — A] is a K-vector space. The ring
Z[)] is a subring of finite index of the ring of integers Ok of K. The m x m
integral matrix ‘M corresponds to an endomorphism of R™, say u, expressed
in the canonical basis {e1,ez,...,en}. Since vy,va,..., vy are Q-linearly in-
dependent, the base {e1,ea,..., ey} of R™ and the system {v1,va,..., v} of
R"™ can be identified as well as the two Q- vector spaces @, Qe; and &}, Qu;.
There are two cases: m = 1 and m > 1. When m = 1, then necessarily A is
an integer > 1 and d = 1. When m > 1 and d = 1, then the matrix M is the
diagonal matrix A\l and A is an integer > 1. This case occurs for instance for
(affine) lattices A of R™. Now, if m > 1 and d > 2, then the endomorphism u
induces a Jordan decomposition of R™ as K [X]-module as follows (for instance
[46] pp 295-301). We assume d > 2 in the sequel. Let

0 0 0 —agq
1 0 : 0 1
AY) = 0 1 , resp. Uy := 0 - ,
0 —a 0 0
0 1 —a

be the d x d integral matrix whose terms are 0 except the last column which is
composed of the coefficients of (X) (up to sign) and the diagonal under the
main diagonal, which is composed with 1, respectively the d x d matrix whose
terms are 0 except the term of the first row and the last column, which is 1 (this
makes sense since d > 1). Then there exists a basis of R™, say {€1,¢€2,...,€mn},
in which the matrix of the endomorphism u takes the diagonal form

J, 0 ... 0
0 Ji, :

J =
0
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where iy +i2 + ...+t =m, i1 > 92 > ... > 1 > d,and J; ,1 < g <, is the
1q X 14 integral matrix given by

AW) 0 ... 0
T = Us  A(Y) :
' 0

0 Us A(Y)

with 0 everywhere except A(¢) on the main diagonal and U, on the diagonal
under the main diagonal. Since all the diagonal terms of the matrix J;, are
A(v), they are identical, and therefore d divides i,. Consequently d divides
> =1 g =m.

(ii) Let us pull back this Jordan decomposition to the ambient space R™
of the uniformly discrete set A, block by block. Let us consider the first block
Ji,, the situation being the same for the others. The system {e1,€a,...,¢€;,}
satisfies the following relations:

-for1<p<d 0<a<—1,

u(€ad+8) = €ad+B+1 (3.4)
-for f=d,0<a<i -1,
U(€(at1)d) = €(at1)d+1 — C1€(a+1)d — A2€(a41)d—1 — - - — Ad€ad+1, (3.5)
-for f=d,a=3 -1,
’U,(Gil) = —Q1€;; —a2€;;, -1 — ... — Ad€;; —d+1- (36)

Now the matrices M and J have coefficients in Q and are such that there
exist a m x m invertible matrix C' € GL(m,R) such that ‘M = CJC~!. Then
(Corollary 2 in [73], Chap. XV, §3) there exists a m x m invertible matrix C’
in Q such that:

‘M=CcC'Jc'h
The matrix C” is the matrix associated with the linear map which sends
{e1,ea,...,em} to {e1,€a,...,€en} with respect to the basis {e1,ea,...,em}.
Let
S v1
fa U2
.| =tV with V=1 . |. (3.7)

fm Um
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The Q-free system {f1, fa,..., fm} of nonzero vectors of R"™, identified with

the basis {e1, €z, ..., €n} of R™, admits the following structure: from (3.2)
U1 U1
NV =MV =C'JC'"™") | : |l AI=tDC | 2 | =0; (3.8)
Um Um
hence
bil f1
Im Jm

From (3.9), considering the first block J;,, the situation being the same with
the other blocks J;,,1 < ¢ <, we deduce (see (3.4), (3.5)):

-for1<p<d 0<a<—1,

fadrss1 = Madrs = N fadt1, (3.10)

- forﬁ:d70§a<%— ,
fla+yd+1 = Mias1)d + 01 fla+ya + a2 fa+1ya—1+ - -+ aafaarr. (3.11)
Let us show that the assumption d < i; leads to a contradiction. Assume

d < i1. Then we would have fg41 # 0 from (3.7) since C’ is invertible. But,
from (3.10) and (3.11), with o = 0,

far1 = A+a) fat+asfar1+...+aaf
A+a) A it a2 fi+.. . 4aafi = oNfi= 0.

Contradiction. Hence d = i;. Proceeding now with the other blocks in the
same way leads to the equalities d =11 =2 = ... = 7,.
The matrix C’ belongs to GL(m,Q). If C/ € GL(m,Z) we take

wy = f1,w2 = far1, w3 = fadgr1, - Wr = fr—1)ds1-

Then we deduce from (3.7) and (3.10) (and its analogs for the other blocks)
that @ Zv; and ®g_; ;% ZA'w, are isomorphic as Z-modules. We deduce
the result in this case. If C’ € GL(m,Q) \ GL(m,Z), let us denote by p the
lem of the m? denominators of the coefficients of C’~! and take

wy = fi/u,we = far1/m w3 = faar1/p - wr = fr_1yat1/ 1
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The coefficients of D := 1 tC’~! are in Z and relatively prime so that

SN
>\f1/H

)\d_l-fl/,u :j;

D : = | (3.12)
fr/ﬂ .
Ao/ vm

B

From (3.12), the Z-module &7, Zv; is a Z-submodule of &7_; &) ZA’ w,.
Hence the result.

(iii) Since d = iy = i3 = ... = i, and r = & by (ii), we deduce that J is
the m x m diagonal matrix for which the diagonal terms are all identical and
equal to A(v):

Ap) 0 0
j — 0 A(w) . .
0 . AW

Since det M = det J, we obtain the characteristic polynomial of M:
det(X Ly — M) = det(X Iy — A(¥))™* = (p(X))™%

in particular, det M = (detA(z))™/¢ = N(A\)™/¢, where N(\) = (—1)%aq,
product of the conjugates of A, is the algebraic norm of A\. This formula is
reminiscent of the algebraic norm of an element in a ring extension [73].

(iv) There are two cases: either (iv-1) wi,wsa,...,w, are K-linearly in-
dependent, or (iv-2) they are K-linearly dependent. In the first case the cut-
and-project scheme above A will admit an internal space reduced to its shadow
space (see below and [70]), while, in the second case, the internal space will
come from the shadow space and the space of relations over K between the
vectors w;.

First let us fix some notations. Denote by C the finite set {wy,wa, ..., w,}
and call it the central cluster of the basis ( M w; )i=1,.rj=0,1,.,d-1. For
i=1,2,...,7 let w; = ||w;]| tw;. Let C := {wy,...,w,} the image of C

on the unit sphere S*~1 of R". We have Card(C) < r. We assume that the
signature of the field K = Q()), of degree d, is (r1,r2). Then d = 71 + 2rs.
Denote by 0,1 < j < rqy, the real embeddings of K in R, and by 05, 0,4+ = 05,
where 1 + 1 < j < r; + ro, the imaginary embeddings of K in C. Assume
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o1(\) = \. Let ¥ be the embedding of K in R™ x C?2 defined by

V¢ € K, 2(5) = (0—1(5)70—2(5)""aJT1+2T2(§))'

Let (gj)1<j<a be a Z-basis of the ring of integers Ox of K. We identify the
field K to Q¢ via the mapping ¥ defined by ¥(z) = 2?21 2ig; if z € Q%, resp.
Ok to Z% if z € Z*. The composed mapping ® := ¥ o ¥ is then extended in a
continuous way from Q¢ to R, and denoted in the same way:

d d d
Vz e RY, D(z) := <Z zio1(9i), Z 2:02(gi)y - - -, ZZrLO—T1+2T2 (gz)> )

i=1 i=1 i=1
3 is an injective homorphism for the ring structures while ¥ is Q-vector space

isomorphism. Thus ® is a R-vector space isomorphism from R? onto the étale
R-vector space

Kpi=K®@gR=R" x{z€C¥ |z, =% foral j =1,2,...,7}.

The R-subspace %(Ok) of Kg is a lattice. Let us extend ® to C¢ as a C-
endomorphism, keeping the same notation, by (with I = /—1):

Oz +1y)=d(z)+1®(y), forall z,yc R

Let us construct the cut-and-project scheme above A. Let z € R[A] C R
be in the R-span of A. For i = 1,2,...,r, denote by p;(x) the orthogonal

projection of x onto the line Rw; and w; := ||w;|| " w;. Then p;(x) can be
written
pi(z) = Mw. = (&, W)W
(2 <’LUZ',’LU7;> 2 Y 2 (2

where (-, -) is the standard Euclidean inner product. The point 2 € R™ will be
said K -rational if the r coefficients (z,w;) belongs to K. In this case, for all
i=1,...,r, {z,w;) = 2?21 a; j(x)g; with all coefficients «; j(z) € Q. Let us
define ¥; : K — Kgrw; by X;(§) = X(§)w;, foralli =1,...,7, and &; = X; 0T
the R-vector space isomorphism from R? onto the R-vector space
Kpw; = (Rwy)" x{{zjw;} | z = (2j) € C*,2,4; =Z; forall j = 1,2,...,1m2}.
The R-subspace ;(Ok) of Krw; is a lattice. For any set A, denote by pry, :
A4 — A the k-th projection, so that pry(Kgrw;) = o (K)w; for alli=1,...,r
and k =1,...,d. Since the mapping

RIA] = [T pri (Kewy), @ — ((z,w) ), (3.13)

i=1

is injective, as R-morphism of vector spaces, the R-span R[A] of A is identified

by (3.13) with a s-dimensional R-subspace of the first component [[}_; Kw; =
IT;—, pri(Krw;). Denote by Ry the subspace of [],_, Krw; which is the
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closure of
{(Zi((z,ws))); | =€ R[A]is K- rational}.

It is a product of r1 copies of R[A] and ry copies of C[A], with pri(Rx) = R[A].
The space ]_[::1 Krw; is a K-vector space, the external law being given by

K x H Krw; — H Krw; (3.14)
=1 =1
(1, w) E(u) - u

with componentwise multiplication, where u = (ug) k=1,...,d» SO that the exter-
nal law, on the k-th component, is given by:

K x H pry (Kpw;) — H pry (Krwy;) . (3.15)
(5 uk) on (1) - uk

The actions (3.14) and (3.15) are extended from K to R by continuity. Thus,

by (3.15) and since the conjugate fields o;(K), or,+;(K) are not subfields of

R for j =1,2,...,r2 (if r2 # 0), the usual scalar product (-,-) on R™ should

be considered as the restriction to R™ of the standard hermitian form on C™;

in particular, it is anti-linear for the second variable.

We now construct a real positive definite symmetric bilinear form on [[}_, Kruw;.
Since
d

[T s = T Lo 07

k=1
it suffices to construct it on the k-th component [[;_, ox (K)w;. Let us define
qr : [i=y on(K)w; x [1;_, ox(K)w; — R by

> w k=1,2,...,m,
w(lV) = { Yooy (Wi +uiwy) k=ri+1,...,7r1 + 712 (3.16)

where U = (u;w;); and V' = (v;w;);. Then we define

r T r1+7r2
q: H Krw; x H Krw; = R, q(U,V):= Z @k (pry,(U), pry(V)). (3.17)
i=1 i=1 k=1

Let

G:={peR"| % € K for all w e C, Z llwi|| o (ws) @i =0 ).
i=1

We call G the space of relations over K between the generators wi,...,w,.
The space G can be identified with a subspace of K¢ ~ K", therefore with a
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subspace of [ [;_; Kw;. Denote by G its image by [[;_; ¥; in [[}_; Krw; and
by G, resp. G, the closure of G, resp. of G. For all x € R[A] and all ¢ € G,

Z llw: ||~ o (w;) w;) Zuwzn 2) (@, w;) = 0. (3.18)

(3.18) implies that g1 ( (|Jw:] " e (wi)w; )i, ((x,w;)w; )i) = 0. Then the two
subspaces R[\] and G are orthogonal and complementary in [[/_; Rw; ~ R",
of respective dimensions s and r — s.

Let us prove that Rx and G are orthogonal and complementary, of respec-
tive dimension sd and (r—s)d, in [[;_, Krw;. It suffices to prove ¢ (U, V) =0
with U = (ox(||wil]| " o(wi))w; )i and V = (op({x,w;)) w; )i, for all k =
2,3,...,d, z € R[A] K-rational and ¢ € G. We have

T

Z ok ([Jwil ~te(wi)) ok (<x,@;>)] =
o (Z T o) (e, wz>>

i=1
Ok <<$Z Iwz'll_lsﬂ(wi)ﬁ>>] =0.
i=1
We deduce the claim.

The cut-and-project scheme above A we have constructed is the following;:

1
5 Qk(Uv V) = Re

Re = Re

(]_[ Krw; ~ G x Rg ~ HxR[A],L,w,pr1>

i=1

where L = [[}_, ¥;(Ok) is a lattice in G x Rk and pry such that pri(Rg) =
R[A], pr1(G) = 0. Because of the structure of the Z-module Z[A — A] given by
(ii), it suffices to take L = [;_, X;(Z[A]). The projection mapping  is Id—pr;.
The internal space, say H, is G x (Rx \R[A]). By construction, (L) is dense in
H and pry is one-to-one on L, onto pry (L) = Z[A|[w1, wa, ..., w,] D Z[A — A].
Note that Z[A — A] is not necessarily a free Z[A]-module, but it is of finite
index in pry (L) = Z[A][w1, w2, ..., w,]. The Euclidean structure on the cut-
and-project scheme given by ¢ is such that R[A] and H are orthogonal. The
component Ry \ R[A] of the internal space H is called the shadow space in
[70].

If the vectors wi,ws,. .., w, are K-linearly independent (case (iv-1)) then
G is trivial and the internal space H is Rx \ R[A].

This cut-and-project scheme lies above A since, for all v € A, A — v C
A—ACZ[A—A] Cpry(L). We deduce the claim.
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4 Proof of Corollary 1.2 - Ideal lattices

The objectives of this section are the following: (i) to recall some definitions
concerning ideal lattices, referring to [13] [14] [15] [16] [17], (ii) to show that the
sublattice (L', q) of (L, q) such that pri(L’) = Z[A — A] in the cut-and-project
scheme above the SFU - set A given by Theorem 1.1 (iv) is a sublattice of an
ideal lattice.

It will suffice to show that the canonical bilinear form ¢ defined by (3.17)
has suitable properties.

The canonical involution (or complex conjugation) of the algebraic number
field K generated by the self-similarity A is the involution ~ : Kg — Kg that
is the identity on R™ and complex conjugation on C™. Let P := {« € Kg |
@ = « and all components of a are > 0}. Let us denote by Tr : Kg — R the
trace map, i.e. Tr(z1,z2,...,24) =21+ ...+ Z4.

A generalized ideal will be by definition a sub Og-module of K-rank one
of Kr. As examples, fractional ideals of K are generalized ideals; ideals of the
type ul where [ is an Og-ideal and v € Ky are also generalized ideals.

Proposition 4.1. Let b: Kg x Krg — R be a symmetric bilinear form. The
following statements are equivalent:

(i) there exists @ € Kr with o = @ such that
b(x,y) = Tr(azy)
for all x,y € Kg,
(ii) the identity
b(pw,y) = blx,y)
holds for all x,y, p € Kg.

Proof. [13] Proposition 2.1, [14] Proposition 1. O

An ideal lattice is a lattice (I,b) where I is a generalized ideal, and b :
Kr x Kg — R which satisfies the equivalent conditions of Proposition 4.1
with a € P. Ideal lattices with respect to the canonical involution correspond
bijectively to Arakelov divisors of the number field K [13] [14].

It is easy to check that Proposition 4.1 is satisfied by the real symmetric
bilinear form ¢ defined by (3.16) and (3.17) in Section 3, where a = (;)1<i<d
with a; = 1 for all i. We assume r = 1, i.e. that the degree of the self-similarity
A is equal to the rank rk A. The lattice L’ given by Theorem 1.1 (ii) such that
pri(L’) = Z[A — A] is of finite index in the Ox-module X(Ok)wy, of K-rank
one in Krpwi. We have:

q(pU, V) =q(U,1V) forall U,V € Krw; andall y € K.
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Then, by Proposition 4.1, the bilinear form ¢ has the following expression:
q(U, V) =Tr(aUV) forall U,V € Kgrws. (4.1)

Therefore (L', q) is a sublattice of finite index of an Arakelov divisor of
K in bijection with Z[A — A] by the projection mapping pri,, . We deduce
Corollary 1.2.

The construction of the real bilinear form ¢ in Theorem 1.1 (iv) which
provides the Euclidean structure to the cut-and-project scheme is obtained
with & = (1)1<i<q in Proposition 4.1. Other choices of o are possible and
the parametrization of the set of possible constants o = o(w1) in ¢ in (4.1) is
studied for instance in Schoof ([99] and related works); see also Neukirch [88].

5 Lower bounds of densities and pseudo-Delone
constants

5.1 Pseudo-Delone sphere packings

The following definition is inspired by the “empty sphere” method of Delone
[37]. If A C R™ is any nonempty subset of R™ and A is a uniformly discrete
set of constant r > 0, we define the density of B(A) in A by

. VOI(UzieA,Hzngt B(z,r/2)NA)
94(B(A)) := limsup Vol(B(0,7) N A)

We omit the subscript “R™” when A = R™.

(5.1)

Definition 5.1. A uniformly discrete set A of R™,n > 1, of constant r > 0 is
pseudo-Delone of constant Re > 0 when there exists a sequence § := (z;,15);
where (z;); is a sequence of points of R™ and ( 7)i a sequence of real numbers

such that, with the notation A¢ := R™\ |J; B(xi, T;):
(i) Vi, Tyy1 > Ty, with T; > r/2,

(i) Vi, Bz, T;) N B(A) = 0,
(i) Vo € Ag, 3X € A such that ||z — A|| < Re,
v)

(i

If it is finite, the infimum inf{R¢} over all possibilites of point sets (z;); in
R™ and collections of radii (73);, such that (i) to (iv) are satisfied, is called
the pseudo-Delone constant of A and denoted by R(A). Let us call optimal a
collection ¢ such that Re is equal to R(A).

vol(A:NB(0,T)) __

limp 400 vol(B(0,T))
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By Zorn’s Lemma, optimal collections exist. The portion of space U; B(x;, T;)
defined by an optimal collection is an invariant, independent of the optimal
collection used for defining it. Definition 5.1 means that we can remove the
portion of ambient space which does not intervene at infinity for the compu-
tation of the density of A (in R™). Note that, for a SFU - set of R™, this
portion of space does not contribute to the determination of the generators w;

[e]
in Theorem 1.1 since | J; B(z;,T;) contains no point of A, and it is legitimate
to remove it.

5.2 Proof of Theorem 1.3

Let R. := inf{R(A) | A is uniformly discrete of R™ of constant 1} be the infi-
mum of possible Delone constants over sphere packings of common radius 1/2.
R, is only a function of n. Then, for all » > 0, rR,. is the infimum of Delone
constants of uniformly discrete sets of constant 7.

Let r > 0 and w,, be the volume of the unit ball of R®. Let R > rR,.
and T > R be a real number. Let A be a uniformly discrete set of R™ of
constant r > 0 which is pseudo-Delone of pseudo-Delone constant R. Let
¢ = (z;,T;); be an optimal sequence and A¢ := R™ \ U;B(z;,T;);. For all
e > 0, the pseudo-Delone constant of A in A¢ is smaller than R + €. Then
(B(0,R+¢€)+A)NB(0,T) covers the set B(0,7 — R —¢)N A¢. The number of
elements of ANB(0,T) is equal to the number of elements of ANB(0,T)N Ae.
This number is at least

wn(T'— R—¢€)" —vol(R"\ A¢) N B(0,T — R —¢))
wn(R+ €)™

_(T=R—e" [ vol(R"\ Ac) N B(0,T — R—¢))
 (R+e)m wn(T — R —¢e)” '

On the other hand, since all the balls of radius /2 centered at the elements

of AN B(0,T) lie within B(0,T + r/2) and also within A¢, the proportion of

space they occupy in B(0,T +r/2) N A¢ is at least

T—-R—¢€\" ) vol((R"\ A¢) N B(0,T — R —¢)) vol(B(0,r/2))
( R+e ) ( a wn(T—R —€)" )vol(B(O,T+r/2)ﬂA£)
(5.2)
But, for all € > 0,

vol((R™\ A¢) N B(0,T — R —¢))

li =0
T= oo wp(T—R—e)"
1(B(0,T 2
and vol(B(O, T +1/2)) |

1
o0 vol(B(0, T + r/2) N A¢)
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Hence, if T is large enough, the quantity (5.2) is greater than

(2(]2(16_)(;%;?/2))”'

When T tends to infinity, this quantity tends to (2(R +¢€)/r)~™, for all € > 0,
which is a lower bound of §(B(A)). We deduce the claim.

6 Lower bounds of the Delone constant of a SFU - set

The field K = Q(A) generated by the self-similarity A of the SFU - set A in
Theorem 1.1 has its own Euclidean spectrum [26] [27] which leads to specific
geometric properties of the Voronoi cell of the lattice L’ [33] of the cut-and-
project scheme above A, where L’ such that prq (L") = Z[A — A]. By projection
by pri, in this cut-and-project scheme above A, the Delone (or pseudo-Delone)
constant of A, whatever the occupation of the elements of A — A in Z[A —
A, reflects the arithmetical features of K (Euclidean minimum, Euclidean
spectrum ... [26] [27]) as well as the geometrical characteristics of the central
cluster {wy,...,w,}; in particular if A is a model set (see Proposition 2.10)
or a Meyer set (see Definition 2.15 (iii) ), since, in both cases, a window in
the internal space controls the thickness of the band around the R-span of A
which is used for selecting the points of the lattice L’. Recall that the Delone
(or pseudo-Delone) constant R(A) of the SFU - set A, if finite, “measures”
the maximal size of (spherical) holes in A with respect to the portion of space
where the density is computed (see §2.1.1, §5 and [86]) In the sequel, we recall
these notions and refer to [13] [16] [17] [26] [27] [33] [74].

In the following we will only consider the case r = 1, i.e. the case where
the degree of the self-similarity A is equal to the rank of Z[A — A], leaving
aside the case » > 1. Let us give the name of “spanning self-similarity” to
a self-similarity for which » = 1. Let us observe that Proposition 2.18 gives
answers in the case of a lattice and a spanning self-similarity.

Theorem 6.1, resp. Theorem 6.2, Corollary 6.3 and Theorem 6.4, is a
reformulation in the present context of Theorem 3, resp. Theorem 5, Corollary
6 and Theorem 4 (Remark 2), obtained by Cerri [26]. Recall that, for all
¢ €K, ¥1(¢) = X(&)wr, with wy = |lwy]| " w; the unit vector.
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6.1 Euclidean and inhomogeneous spectra of the number
field generated by the self-similarity

Let Ng/q be the norm defined on K by

d 1 r1+72
vee K, Nio@)=][e@©=]]e© [ le:®.  (61)
=1 =1 i=ri1+1

The field K is said to be norm-Fuclidean if:
V¢ € K, Jdy € Ok such that |NK/Q(§ — y)| < 1.

Following the notations of Section 3 and [26] [27], we extend Ng /g o ¥ from
Q? to R? by the map denoted by N as follows:

d
Ve eRY, N(z) = H Z zjoi(g5) | - (6.2)
i=1 \j=1

Let £ € K. The Euclidean minimum of £ (relatively to the norm N /q) is
the real number mg(§) := inf{ [Ng,o({ —y)| |y € Or}. The Euclidean
minimum of K (for the norm N /) is denoted by M (K) and is by definition:

M(K) := sup mg(§). (6.3)
(EK

The mapping mx o ¥ defined on Q¢ is extended to R? and is denoted by m:
m(z) := inf{ |[N(z —=1)| | 1€z} for z € RY.
The inhomogeneous minimum of K is denoted by M (K) and is defined by

M(K) = s;lﬂgd m(z). (6.4)

The mapping mg o Efl is extended to Krw; and is denoted by my:
mz mf{\HU Z)| | Z = (Z;)sw1 € S(Ox)wr }

for U = (U;);w1 € Krwi. The set of values of my, resp. of m, is called
the Fuclidean spectrum, resp. the inhomogeneous spectrum of K. Successive
minima are enumerated: the second inhomogeneous minimum of K is defined

by

MQ(K) .

= sup  m(z),
zerd o
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and the second Euclidean minimum of K by

My (K) := sup mg(§).
(EK
mg (§)<M(K)

Tteratively we define (p > 2):

Mp(®) = s mia)
z€RE
m(z)<Mp(K)
and
My (K) = sup  mg(§).
£EK
mg (§)<Mp(K)

The inhomogeneous minimum M (K) of K is said to be isolated if

My(K) < M(EK).

This isolation phenomenon has been conjectured for d = 2 and K totally real
by Barnes and Swinnerton-Dyer. Corollary 6.3 below shows that it occurs
frequently.

If the inhomogeneous minimum M (K) of K satisfies the following property:

Ve € RY, 3l € Z% such that |N(z —1)| < M(K), (6.5)

we will say that M(K) is attained. Note that (6.5) is not verified for the
quadratic field K = Q(+/13) [74].

Theorem 6.1. Assume that the degree d of the field K generated by the self-
similarity A of the SFU - sphere packing A is > 3 and is equal to the rank of
Z[A — A). If the unit rank r1 + 12 — 1 of K is > 1, in particular if K is totally
real, then

(i) there exists € € K such that
M(K) = mg(Z1(6)),
(i)
M(K) = M(K) € Q.
Proof. Theorem 3 in [26]. O

The question whether ¢ is unique under some assumptions is not clear [26]
[27].

Theorem 6.2. Assume that the degree d of the field K generated by the self-
similarity A of the SFU - sphere packing A is > 3 and is equal to the rank of
ZIA—A]. If the unit rank r1+ro—1 of K is > 1 and if K is not a CM-field, in
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particular if K is totally real, there exists a strictly decreasing sequence (Yp)p>1
of positive rational integers, which satisfies:

(1) hmpiph)o Yp = 0,
(ii) m(R?) = Up21 {wp}s
(iil) for each p > 1, the set {x+7Z% | m(x) = y,} of classes modulo the lattice
7% is finite and lifts up to points of Q%, i.e. m(z) =0 for all z ¢ Q%.

Proof. Theorem 5 in [26]. O

From the definitions, the inequality M (K) < M(K) holds for an arbi-
trary number field, with equality if d = 2 (Barnes and Swinnerton-Dyer
[74]). Recently Cerri [26] (Corollary 3 of Theorem 3) proved that the equality

M(K) = M(K) does hold true for every number field.

Corollary 6.3. Under the same hypotheses M (K) is attained and

(i) My(K) = My(K)  foralp>1,
(i) My(K) < M(Fl ( M(_?) is isolated),

(iii) Vp > 1, Mp1(K) < Mp(K) and lim,_ 4 My(K) = 0.

What are the possible fundamental regions of the sublattices L’ of L =
SU(ZIN) in Kty ?

Theorem 6.4. Denote, for all t > 0,

d
A= {U = (U1 € Kz | |[] U] <1}

i=1
If (unit rank) r1 +re —1 > 1, then
K is norm-Euclidean <= 3t € (0,1) such that $1(Ok) + A; = Krwy.

Proof. Remark 2 after Theorem 4 in [26]. O

Then, if the unit rank r; + 7o — 1 of K is strictly greater than 1 and K
is norm-Euclidean, there exists ¢t € (0,1) such that the number of copies of
A; to be considered for obtaining the fundamental region of L’ is equal to the
index of L’ in ¥1(Ok)wy, an integer multiple of (O : Z[\]). Recall that ([26]
Proposition 4):

(i) M(K)<1 = K isnorm-Euclidean,

(i) M(K)>1 = K is not norm-Euclidean,
If M(K) = 1, it is not possible to conclude except if there exists £ € K
such that M (K) = mg(£); in this case K is not norm-Euclidean. See [27]
for computations of M,(K),p > 1, with the conventions: M(K) = M;(K),

M(EK) = M (E).
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6.2 Proof of Theorem 1.4

Let us now deduce lower bounds of the Delone constant of the SFU - set
A CR™ n>1. We will assume that A is a Meyer set (i.e. a Delone set that
is a subset of a model set), defined by a window 2 (chosen minimal) in the
internal space Rx \ R[A] of the cut-and-project scheme

(Kruwi = (Rx \R[A]) x R[A], L', 7, pry) (6.6)

given by Theorem 1.1 (iv) with L’ such that pri(L’) = Z[A — A] and the
window 2 nonempty, open and relatively compact such that
ACcv+{p0)|Uel,n(U)e} C v + Ruy with v € A. (6.7)
A is a Delone set. The central cluster is {w;}. Denote by R[A] + £ the band
{P =(U,V) € Kgw; | U = pry(P) € R[A],V = w(P) € Q} parallel to the
one-dimensional R-span R[A] of A. Note that R[A] = v +Rw; in R™

In the sequel we will use the notations of Subsection 6.1 and the assump-
tions of Theorem 6.2.

Definition 6.5. Let £ > 2 be an integer. The self-similar finitely generated
Delone set A defined by (6.6) and (6.7) is called

(i) thin if the following condition on 2 and L’ holds:
0 < [[7(Z1(x—0t)| < dM(K)*?, (6.8)
for all t € Ok such that $1(t) € L'N(R[A]+Q), and all 2 € mj' (M (K)),
(ii) k-thin if
d (Myep1 (K))Y? < |w(E1(e =)l < d(Mu(K)** (6.9)
for all t € Ok such that () € L'N(R[A]+Q) and z € Ulz;i my (My(K)).

This definition is consistent with the following facts:

(a) the values of m constitute a strictly decreasing sequence of positive ra-
tional integers (Theorem 6.2 (ii)) which are reached a finite number of
times modulo L’ (Theorem 6.2 (iii)),

(b) the infinite (band) cylinder R[A] 4+ Q, parallel to the one-dimensional
space R[A], can be made sufficiently narrow in order to avoid the set of
points z of Q7 such that my o ¥(z) € JsZ] M,(K), for all k > 2, which
is a finite union of translates of L',

(c) Assertion (b) is possible since free planes, a fortiori free lines, do ex-

ist in any lattice (equal) sphere packings in R% once d is large enough:
Henk [61] has proved the existence of an 10g2%—dimensional affine plane

(called free plane) which does not meet any of the spheres in their in-
teriors. Hence, provided d is large enough, free lines exist in the lattice
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sphere packing B(L') corresponding to L’ in Krw;. Equivalently narrow
bands, with section a nonempty open set, about free lines, exist in Krw;
which do not intersect L’. By continuity, there exist narrow bands, with
nonempty open cross-sections, about free lines, which do not intersect
any finite union of translates of L.

For all z € K,t € Ok, by the geometric mean inequality, we have:

r1+r2

|Nk/o(@)]* = [Nz —1)] H|Uz$*t IT loi@-n*
1=r1+1

71 T1+72 d d
1 2 1

< (a Sl -0 +2 Y loula - t>|2> ~ (a1 - D31 0))

i=1 i=ri+1

(6.10)

where ¢(31(z — 1), Z1(z — 1)) = [|pry(Z1(z — 1)) || + [|[7(Z1 (z — ¢))||* with the
notations of Section 3. We have:

Ipry (B1 (@ = )II* = [[(w — ) |* = ||(v + awr) — (v + twn)||*.
The set m' (M(K)) = {x € K | mg(z) = M(K) = M(K)} is such that
21 (mpt(M(K))) = {Z1(z) | mi(z) = M(K) = M(K)} is finite modulo L’
by Theorem 6.1 and Theorem 6.2.

Let us take = in my' (M (K)). Then, from (6.10), for all ¢ € Ok,

d

1 N .
MUK < (3 (1 +275) = O @) + (s~ )]
Hence, for all t € Ok such that $1(t) € L' N (R[A] + Q),

(v +awn) — (v + twn)[* = d MK~ |7 (S1(x - 0))].
Since by hypothesis v + xw; does not belong to A and that we consider the
elements t € Oy, for which v+ twy belongs to A (with X (¢) € L' N (R[A]+Q)),
we have:
R(A) = |[(v +2wy) — (v +twi)]].
Hence
R(A? > dM(K)** = sup |m(1(z — t)]|* > (6.11)

where the supremum is taken over all + € my'(M(K)) and all t € Oy for
which v + tw; belongs to A, with ¥(t) € L' N (R[A] + Q)

Let us assume that A is k-thin and take z in U 1 mKl(Mp(K)). Then

the supremum in (6.11) is bounded from above by d My (K)4 which allows to
deduce the claim.
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Using Theorem 1.3 or [86] we deduce a lower bound of the density of the
SFU - set A.

The assumption “d large enough”, from fact (c¢) and [61], can be replaced
by “d > 3” (after Theorem 6.2) since A is a spanning self-similarity and that it
is easy to check that Z2 + B(0,1/2), a fortiori Z" + B(0,1/2), already contains
a free line.

The isolation phenomenon which frequently occurs (Corollary 6.3 (ii) of
Theorem 6.2) in higher dimension is likely to occur in R™ as well by projection
for A.

Appendix.— Crystallography of Aperiodic Crystals and
Delone sets

New aperiodic states of matter call for mathematical idealizations of pack-
ings of atoms. A deep understanding of the mathematics which lies behind
the usual experimental techniques such as: diffraction (X-rays, electrons, neu-
trons, synchrotron radiation, etc) and inverse problems (crystal reconstruction
with satisfying local atom clustering, long-range order and self-similarities,
etc), adapted to this new context, is required. Indeed, the situation is well-
known for (periodic) crystals [34] [57] [58] [68] [102] but fairly unknown, or at
least badly understood for nonperiodic crystals. Quasicrystals and modulated
crystals constitute exceptions since the use of cut-and-project sets allows pe-
riodization in higher dimension [3] [4] [55] [67] [69] [102]. The parts of math-
ematics concerned with the crystallography of aperiodic crystals are mainly
Geometry of Numbers and Discrete Geometry [25] [56] [113], N-dimensional
crystallography when periodization in higher dimension is concerned [83] [90]
[101], Spectral Theory, Ergodic Theory and Fourier Transform of Delone sets
as far as diffraction is concerned [5] [53] [63] [64] [109], Harmonic Analysis as
far as density is concerned (as an asymptotic measure). Atoms are viewed
as hard spheres and aperiodic crystals as Delone sets (sphere centers). Im-
plicitely this means that atoms behave like spheres, that is do have a spherical
potential. This is far from covering the large variety of possibilities of chemical
boundings between atomic species (see [112] for quasicrystalline models of pure
Boron for instance). This provides first-order crystalline models from which
the computation of the electron density is made possible. Then comparison
with experimental data (densities, physical properties, ...) leads to refinement
of the models.

Looking for a detailed hierarchy of Delone sets, from the mathematical side,
either from arithmetics [40] [50] [70] or from tiling theory [6] [10] [85] [108],

leads to interesting and new questions concerning crystals, without knowing
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whether these crystals will exist or not. To finish up let us recall the new
definition of a crystal (in R? ) which was recently chosen by the International
Union of Crystallography [66] and the former one [101].

Definition 6.6 (former definition). Any solid for which the set of atom posi-
tions is a finite union of orbits under the action of a crystallographic group.

Definition 6.7 (new definition). Any solid having an essentially discrete
diffraction diagram.

Definition 6.7 covers all cases of solids defined by Definition 6.6 by Poisson

formula (see [72] for a proof).

(10]
(11]

(12]

(13]
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RESUME. Nous étudions géométriquement les ensembles de points
de R obtenus par la [B-numération que sont les B-entiers Zg C
Z[B] ou B est un nombre de Perron. Nous montrons qu'’il existe
deux schémas de coupe-et-projection canoniques associés a la (-
numération, ou les [-entiers se relevent en certains points du
réseau Z™ (m = degré de ) , situés autour du sous-espace propre
dominant de la matrice compagnon de S . Lorsque [ est en
particulier un nombre de Pisot, nous redonnons une preuve du fait
que Zg est un ensemble de Meyer. Dans les espaces internes les
fenétres d’acceptation canoniques sont des fractals dont ’une est
le fractal de Rauzy (& quasi-homothétie prés). Nous le montrons
sur un exemple. Nous montrons que ZgNR* est de type fini sur
N, faisons le lien avec la classification de Lagarias des ensembles
de Delaunay et donnons une borne supérieure effective de ’entier
g dans la relation : z,y € Zg = z +y (respectivement z —
y ) € B797s lorsque z +y (respectivement z —y )aun [-
développement de Rényi fini.

ABSTRACT. We investigate in a geometrical way the point sets
of R obtained by the J-numeration that are the [-integers
Zp C Z|B] where [ is a Perron number. We show that there
exist two canonical cut-and-project schemes associated with the
B-numeration, allowing to lift up the p-integers to some points
of the lattice Z™ (m = degree of ) lying about the dominant
eigenspace of the companion matrix of S . When f is in par-
ticular a Pisot number, this framework gives another proof of the
fact that Zg is a Meyer set. In the internal spaces, the canoni-
cal acceptance windows are fractals and one of them is the Rauzy
fractal (up to quasi-dilation). We show it on an example. We show
that ZgNR' is finitely generated over N and make a link with
the classification of Delone sets proposed by Lagarias. Finally we
give an effective upper bound for the integer ¢ taking place in
the relation: z,y € Zg = = +y (respectively z —y ) € 8717
if x+y (respectively x —y ) has a finite Rényi (- expansion.

Manuscrit recu le 7 mai 2002.



2 Jean-Pierre GAZEAU, Jean-Louis VERGER-GAUGRY

1. Introduction

Gazeau [Gaz], Burdik et al [Bu] have shown how to construct a discrete
set Zg C Z[B] C R which is a Delone set [Mo], called set of S-integers
(or beta-integers), when 5 > 1 is a Pisot number of degree greater than
2. A beta-integer has by definition no fractional part in its Rényi /-
expansion [Re| [Pa]. As basic feature, this Delone set is self-similar, namely
BZsg C Zp-

Since the general notion of [-expansion of real numbers (see section 2
for definitions) was created by Rényi for any real number S > 1, the set
of beta-integers Zg, defined as the set of real numbers equal to the integer
part of their [-development, is defined without ambiguity in full generality
and is self-similar by construction: 37g C Zg. The main questions we may
address are the following: (Q1) For which 8 > 1 is Zg a Deloneset 7 or
equivalently (Q1’) for which 8> 1 is Zg a uniformly discrete set ? since
the sets Zg of beta-integers are always relatively dense by construction.
Now Delone sets are classified into several types (see the definitions in the
Appendix) so that the following question is also fundamental: (Q2) For
which class of 8 >1 is Zg a Delone set of a given type ?

The uniform discretness property of Zg is a crucial property which is
not obtained for all real number 8, but very few general results are known
nowadays. Thurston has shown that it is the case when g is a Pisot number
[Th]. It is conjectured that it is also the case when f is a Perron number.
Apart from the Pisot case, many open questions remain (Bertrand-Matthis
[Be4], Blanchard [Bl]) and are expressed in terms of the /3 - shift. Schmeling
[Sc] has proved that the class C3 of real numbers B > 1 such that the
Renyi-expansion dg(1) of 1 in base § contains bounded strings of zeros,
but is not eventually periodic, has Hausdorff dimension 1. For all 8 in this
class Cs, the p-shift is specified [Bl]. It is obvious that the specification
of the [-shift is equivalent to the fact that Zg is uniformly discrete. So
that the class C3 would contain all Perron numbers. The idea of exploring
relationships between the [-shift and the algebraic properties of £ in
number theory is due to A. Bertrand-Matthis [Be3]. In this direction, some
results are known (Akiyama [Ak] [Akl]). Parry [Pa] has proved that the
B-shift is sofic when [ is a Pisot number. Lind [Li] conversely has shown
that [ is a Perron number if the p-shift is sofic.

In section 2 we will recall some basic facts about the S-numeration and
the beta-integers. In section 3, we will establish the geometrical framework
which is attached to the algebraic construction of the set of the beta-integers
when [ is a Perron number in general (of degree m > 2). Namely,
by geometric framework, we mean that we will show the existence of two
cut-and-project schemes (see the definitions in the Appendix) embedded
in a canonical way in the Jordan real decomposition of R™ where this
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decomposition is obtained by the action of the companion matrix of g,
respectively of its adjoint, the second cut-and-project scheme being the
dual of the first one. This will be done without invoking any substitution
system on a finite alphabet [AI] or the theory of Perron-Frobenius [Mi.
These cut-and-project schemes will consist of an internal space which will
be an hyperplane of R™ complementary to a one-dimensional line on which
the set of B-integers will be set up in a natural way, together with the
usual lattice Z™ in R™. The constituting irreducible subspaces of the
internal spaces will appear by construction as asymptotic linear invariants.
This will allow us to deduce several results when [ is a Pisot number:
a minimal acceptance window in the internal space closely related to the
Rauzy fractal, a geometrical proof that Zg is a Meyer set, the fact that
Zp is finitely generated over N. We will make a link on an example with
the Rauzy fractal when the beta-integers arise from substitution systems of
Pisot type (for instance Rauzy [Ra], Arnoux and Ito [AlI], Messaoudi [Me]
[Mel], Ito and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). At this point,
we should outline that the main difference with the substitutive approach
is that the matrices involved may have negative coefficients (compare with
the general approach of Akiyama [Ak] [Ak1]).

The additive properties of Zg will be studied in section 4 by means
of the canonical cut-and-project schemes when [ is a Pisot number: in
A), we shall show that the elements of ZgNR' can be generated over
N by elements of Zg of small norm, in finite number, using truncated
cones whose axis of revolution is the dominant eigenspace of the companion
matrix of 8 and a Lemma of Lind [Li] on semigroups; in B), we will provide
a geometrical interpretation of the maximal preperiod of the [B-expansion
of some real numbers coming from the addition of two beta-integers, of the
finite sets 7' and T" in the relations [Bu] z} + 75 C Z; +T , Zj —Z} C
Zp+T' and an upper bound of the integer ¢ taking place in the relation
T,y € ZE = zx+ty € f79%Z3 when z+y and z —y have finite
[-expansions.

2. Beta-numeration and beta-integers

Let B € (1,+00) \N. We will refer in the following to Rényi [Re], Parry
[Pa] and Frougny [Fro] [Frol] [Bu]. For all z € R we will denote by |z],
resp. {z} = z — |z], the usual integer part of =z, resp. its fractional
part. Let us denote by T'(z) = {Bz} the ergodic transformation sending
[0,1] into itself. For all = € [0,1] , the iterates T"(z) := T(T" (z)),n >
1, with T% := Id by convention, provide the sequence (z_;);>1 of digits,
with z_; := |BT""!(z)], in the finite alphabet A = {0,1,---,|3]}. The
element z is then equal to its Rényi [-expansion E;':o? w_jﬁ_j also
denoted by 0.z_1z_9x_3.... The Rényi B-expansion of 1 will be denoted
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by dg(1). The operator T' on [0,1] induces the shift o: (z_1,2_9,...) =
(z_9,7_3,...) on the compact set AN (with the usual product topology).
The closure of the subset of AN invariant under o takes the name of
B-shift. The knowledge of dg(1) suffices to exhaust all the elements in the
B-shift (Parry [Pa]). For this let us define the following sequence (¢;);>1 in
AN:

if the Rényi [ — expansion
dg(1l) = 0.t1to - is infinite,
if dg(1) is finite and equal
to O.tltg e tr,

titots .-
c1CoC3 * +* =
(tito---tr_1(t, — 1))“

where ( )“ means that the word within ( ) is indefinitely repeated. Then
the sequence (y_;)i>1 in AN is exactly the sequence of digits provided
by the iterates of y = ;":olo y—_;f~" by T" if and only if the following
inequalities are satisfied: (y—n,y_(n41),---) < (c1,¢2,¢3,...) forall n >
1 where ” <7 means lexicographical smaller. These inequalities will be
called conditions of Parry. We will now use finite subsets of the [-shift.

Definition 2.1. Let ZE = {mfBF +ap 1 Bt | 3 €
A, k > 0, and (zj,2j-1,...,21,20,0,0,-++) < (c1,¢,-++) for all 4,0 <
j < k } be the discrete subset of R of the real numbers equal to the integer
part of their Rényi [-expansion. The set Zg = Zg U (— Z;) is called the
set of (- integers.

Forall z € RT ,if z =37 _ z;8 with p > 0, is obtained by the
greedy algorithm, then (z;);<, will satisfy the conditions of Parry. We will
denote by int(z) = Y7 _,z;8* the integer part of its Rényi [-expansion,

—1

e oo x;8" its fractional part. The element

respectively by frac(z) = >
1 =% belongs to Z;.

Let us now turn to the case where [ is a positive real algebraic
integer. Then there exists an irreducible polynomial P(X) = X™ —
Zgi_ol a; X% a; € 7 with m = degree(8) such that P(8) = 0. Then
B = Z;':Ol Am_1—if " If aj > 0 for all j and (an,ant1,-..) <
(@m—1,Gm—2,---,00,0,0,...) foralln < m—2, then the Rényi [-expansion
of 8 would be Z?;Bl am—1-i3~* from which we would deduce dg(1) =
Z:T;Ol am—1-if~"" 1 as well. But the coefficients a; do not obey the con-
ditions of Parry in general. More considerations on the relations between
p-expansions and algebraicity can be found in [Be| [Bel] [Be2| [Be3] [Frol]
[Ak] [Ak1] [Sch]. Bertrand-Matthis [Be|] and Schmidt [Sch] have proved
that, when [ is a Pisot number, z € Q(8) if and only if the Rényi S-
expansion of z is eventually periodic; in particular the Rényi [-expansion
of any Pisot number is eventually periodic.
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Let us recall that a Perron number f, resp. a Lind number, resp. a
Salem number, will be a real algebraic integer 8 > 1 whose conjugates 5(*)
are of modulus strictly less than 3, resp. of modulus less than S with at
least one conjugate of modulus S [La], resp. of modulus less than 1 with
at least one conjugate of modulus one. A Pisot number S will be a real
algebraic integer S > 1 for which all the conjugates are in the open unit
disc in the complex plane.

3. Canonical cut-and-project schemes over Zg

Assume that 8 > 1 is a Perron number of degree m > 2, dominant root
of the irreducible polynomial P(X) = X™ — a;, 1 X™ ! — @y 2 X™ 2 —
coo— a1 X —ag, aj € Z,ag # 0. All the elements 8% with k> 1,r €
{1,2,...,[B]} are obviously in Zg. We are looking for asymptotic linear
invariants associated with them, hence, by linearity, associated with the
powers (F. k > 1, of f, when k tends to infinity. By linearity, they
will be also associated to the beta-integers. Let us set up the general
situation. For all k > 0 , write g*F = Zm—1 kB + 2ok BT +

21 kB + 20,5, where all the integers zq x, 21k, , Zm—1,% belong to Z. Denote
Zy = ‘(2o 21k 22 - Zm-1p), B = BO = t(1pp2...pgm7Y),
BU) =t (1 BU) Bl ...ﬂ(j)mfl), where ! means transposition and the
elements 8U), j € {1,2,--- ,m — 1}, are the conjugate roots of § = 8 in
the minimal polynomial of 8 . Set

B 0 1 0 - 0

BL* 0o 0 1 --- 0

By = ﬂ(Q)k and Q = : 0

: 0 0 1

plm-1)*F ap a S Gme1

the m x m matrix with coefficients in 7. The transposed matrix of @ is
denoted by Q. It is the companion matrix of P(X) (and of #). For all
p,k €{0,1,--- ,m — 1}, we have: 2,; = 0, the Kronecker symbol. It
is obvious that, for all k > 0, we have Zp.1 = ‘Q Z;. Denote

1 B ,32 . ﬁm*I
1 BW 100 MUY Ok
C = : : : i
1 pm-1) gm-1* ... gm-1)m}
the Vandermonde matrix of order m. We obtain C Z;, = Bi by the
real and complex embeddings of Q[f] since all the coefficients z; 4,5 €
{0,1,--- ,m — 1}, are integers and remain invariant under the conjugation

operation.
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Theorem 3.1. If V; denotes the vector defined by the first column of C7',
then the limit limg_, o || Zs||" 2 exists and is equal to the unit vector

u = ||V1||~'Vi. Moreover, all the components of Vi are real and belong to
YA

pm=1P(B)’
Proof. Since P(X) is minimal, all the roots of P(X) are distinct. Hence,
the determinant of C is HKj(ﬁ(i) —BY) and is not zero. Let C~' = (&;)-
Then C-C~' = I, that is

(1)

€ri+ 2B + i -+ 6B = S, {

the 7, - module

i=1,2,...,m,
7=0,1,...,m—1

On the other hand, the Lagrange interpolating polynomials associated with

(8,81, 62 ... Bm=1} are given by

m—1 ;
X — W)
LS(X) == Hm 5—0,1,...,m—1.
j=0
J#s
For m arbitrary complex numbers wyi,%y2,--- ,Ym, let us denote by

Or = aT(ylay27"' aym) =

m numbers y1, y2, -+, Ym- The degree of Ly(X) is m — 1 and Lg(X) can
be expressed as

m—1 m—1
Li(X) = (-Dre@xm =t T 8% - )
r=0 r=0
r#£8
where aﬁs) = o.(8,80,..., g6~ gt ... Bm=1)) denotes the r-th
elementary symmetric function of the m — 1 numbers B,80 ... pgl=1),
et ... gm=1) where 5(5) is missing. Since these polynomials satisfy

Ly(B®)) = 65 for all s,k = 0,1,---,m — 1, comparing with (1), we
obtain, by identification of the coefficients

PO G Vil N oVl
JU T m—1 - P'(BG-1)

(B4 = )

r=0
r#i—1

for all 4,5 = 1,2,--- ,m. We have: Ly(X) = Y7 &en X7l s =
0,1,---,m—1. Now C-Z, = By forallk >0, hence Z, = C~'-By.
Each component z;;, 0 <7 <m—1,k > 0 of Z; can be expressed as z;; =
PRy §i+1,jﬂ(j*1)k. Since § is a Perron number, we have |8Y9)| < 8 for all
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. . . . . @\k
Jj, 1 <j<m-—1. Hence, forall j, 1 <j <m—1, limg, (ﬂ—J) = 0,

B
and therefore limk_>+oozé—’,f = &411 ,i=0,1,--- ,m — 1. Moreover,
m—1 1/2
(Z |2i,k|2> 2 —
koo ¥ Jm o 2_; [€i1,1] VAl

hence the result. The fact that all the components of V; are real and belong
to the 7 - module Z[B]/(8™ 1 P'(8)) comes from the following more precise
Proposition. O

Proposition 3.1. The components (£;1)j=1,.m of Vi are given by the
following explicit functions of the coefficients a; of P(X):

1B a2 + .
(g = 4 18 afﬁflf,(ﬂ) aptao g, particular, &na1 = B

Proof. We have Lo(X) = Y70 &X' and P(X) = [ (X -
By = Lo(X)(X — B)P'(B). All the coefficients of Lo(X) satisfy the
following relations: —pBP'(B8)&1,1 = —ag, —BP'(B)é2,1 + &1 P/ (B) = —ay,

—BP'(B)&s1+ &1 P'(B) = —ag, -+, =BP'(B)ém,1 +&ém-1,1P'(B) = —am-1,
ém,1P'(B) = 1. Hence the result recursively from ¢; ; noting that P'(8) €
R —{0}. O
Theorem 3.2. Let up:= B/||B|. Then: (i) w-up = ||B| V1] * >

0, (i) the limit limy_, ;o ”ﬁg:lllH exists and is equal to B, (11i) wu is an

eigenvector of 'Q of eigenvalue B and the eigenspace of R™ associated
with the eigenvalue B of 'Q s Rwu, (iv) wup is an eigenvector of the
adjoint matriz (!Q)* = Q associated with the eigenvalue B and for all
z€C™: limy i B77(Q)F(2) = (z-B) Vi

Proof. (i) and (ii): From the relation C-C~! = Id we deduce the equality
Vi-B =1. Hence v - B = |[V4]|/' > 0. Then, for all k& > 0,
t7Z,-B = pk = ||Zk||t(||—§]1:ﬂ —u+u)-B >0 which tends to infinity
when k tends to +o0o. Since u — Z/||Zk|| tends to zero when k goes
to infinity, ||Zx|| behaves at infinity like B/ (u - B), hence the limit;
(iii): for all k>0, 'Q(u) = '"Q(u— iy + 12by) = "Qu— ) +

— NZdl
z z . .
”” .kZZ|1|” I Z];EH' The first term is converging to zero and the second one to

Bu when k goes to infinity, from Theorem 3.1. Hence, the result since all
the roots of P(X) are distinct and the (real) eigenspace associated with
B is 1 - dimensional; (iv): it is clear that B is an eigenvector of the
adjoint matrix @ . If hg,h1,--- ,hp1 € C, z = Z;-n;()l hjZ;, where
Zo, Z1y+++ y Zm_1 is the canonical basis of C™ , we have: 87% (*Q)*(z) =
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Z;-n:_ol hiB*Z; = Z;":_Ol hiB? (%}), but, from the proof of Theorem

3.1, limy o056 = Vi and Y7 h#7 = z-B . We deduce the
claim. O

Let us denote by Q¢ the automorphism of C™ which is the complexifi-
cation operator of Q) . Its adjoint Q¢ obviously admits {B,B(l),B(2), e
B(m-1)} as a basis of eigenvectors of respective eigenvalues 8, (1), 52, ...
Bm=1)  Let us specify their respective actions on R™. Let s > 1,
resp. t , be the number of real, resp. complex (up to conjugation), em-
beddings of the number field Q(8) . We have m = s+ 2t . Assume
that the conjugates of 8 are §,80),... A= gls) gls+l) ... glm—2)
plst2t=2) glm—1) — g(s+2t-1) where B@ isreal if ¢ < s — 1 and
Bl+2) = pls+2i+1) = |g0+20)|e®i j = 0,1,--- ,¢ — 1, is complex with
non-zero imaginary part. Let us recall that Vi denotes the vector defined
by the first column of C~! (Theorem 3.1).

Corollary 3.3. (i) A basis of eigenvectors of ‘Q¢ is given by the m col-

umn  vectors {Wy }k:1,27... m of  respective components

a;_1 B T g pp=1 7% gy BT g
ﬂ(k—l)jpl(ﬂ(k—l))

m; (ii) a real Jordan form for 'Q is given by

the diagonal matriz Diag(8, 80, --- 86~ Dy, Dy,--- ,Dy_1) in the ba-
sis of eigenvectors {Vj}j=1,..m with Vo = Wo,--- Vs = W, Viqojp1 =
Im(Wsi9j11), Vsrojre = Re(Wsigjt1), 5 = 0,1,--- ,t — 1 and where the
2 x 2 real Jordan blocks D; are

|B65+20) | cos §; —|B0+2)|sin g,

|8G+2)|sing; |82 cos 6,
(iii) a real Jordan form of the adjoint operator ('Q)* = Q s given
by the same diagonal matriz Diag(ﬂ,ﬂ(l), oo, 8671 Dy, Dy, --- ,Di 1) in
the basis of eigenvectors {X;}j—i..m with X; = B, Xy = B, X5 =
B(Q)a"' aXs = B(S_l); Xs+2j—|—1 — Im(B(s+2J))aXs+2j+2 — Re(B(s+2]));
Jj=0,1,---,t—1. The t planes R X;12j41 + R Xs42j42,7 =0,1,...,¢t —
1 are all orthogonal to Vi, and thus also to wu.

ik = with 7 = 1,2,--- ,m; in

particular, &mp =

7

Proof. (i): We apply, componentwise in the equation (!Q)V; = Vi, the
Q - automorphisms of C which are the real and complex embeddings of
the number field Q(B). Since ‘@ has rational entries and Vi has its
components in the Z-module '~ ™(P'(B8)) ! Z[B], we deduce the claim:
tQ)W; = BU—DW; with j = 1,2,--- ,m and where W; = Vi; (ii): the
restrictions of 'Q¢ to the (real) !@Q - invariant subspaces of R™ have
no nilpotent parts since all the roots of P(X) are distinct. Hence, a real
Jordan form of (@ is the one proposed with Jordan blocks which are 2 x 2
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on the diagonal [HS]. (iii): in a similar way the equation @B = B implies
QBY) = gU)BU) with j = 0,1,--- ,m — 1. Obviously Q¢ and *Q¢ have
the same eigenvalues and @ and 'Q the same real 2 x 2 Jordan blocks
on the diagonal. The corresponding basis of eigenvectors is given by the
vectors X; [HS]. The orthogonality between Vi and the vector X, o;1,
resp. Xsioj+2,5 =0,1,...,t—1, arises from the relation C-C~! = Id.
We deduce the claim for the planes. O

The linear invariants associated with the powers of 8 are the invariant

subspaces given by Corollary 3.3. Let us turn to the beta-integers. Beta-
integers are particular Z-linear combinations of powers of 5. We will show
how to construct the set Zg using the above linear invariants, namely, the
set Zg will appear in a natural way on the line Rup as image of a point
set close to the expanding line Ru.
REMARK . — The conditions of Parry, used here in the context of matrices
t@Q without any condition on the signs of the entries, give the same results
as those obtained with the Perron-Frobenius theory (Minc [Mi]), when
this one is applicable, that is when Q) has non-negative entries: first,
the dimensionality one for the dominant eigenspace of 'Q :; second, the
equality limg_, oo B ('Q)*(x) = (z-B) Vi, for £ € C™, in Theorem
3.2 (compare with Ruelle [Ru] p136 when ‘@ has non-negative entries),
and its consequences.

Theorem 3.4. Let wp be the orthogonal projection mapping of R™ onto
RB and define L= {l‘ka ‘T 11+ -+ T121 + 2020 | z, €A k>
0,and (zj,zj—1, " ,%1,20,0,0,---) < (c1,¢2,--+) forall j, 0<j<k}
the 'Q-invariant subset of 7™. Then: (i) the mapping Z?:o z;B —
Z?:o zjZ; : ZE — L (with the same coefficients x;) is a bijection, (ii)
the mapping B, is one-to-one onto its image Z[B)||B| tup: for any

k>0, ap,--- ,a; € Z, we have wp (Zf:o aiZi) = (Z?:o aiﬂi) |B||"tup
and conversely, any polynomial in B on the line generated by ||B|~lup
can be uniquely lifted up to a 7, -linear combination of the vectors Z; with
the same coefficients; in particular, (L) = ZE | Bl tus.

Proof. (i): this mapping ZE — L is obviously surjective. Let us show
that it is injective. Assume there exists a non-zero element Z?:o ZEj,Bj in

Zj suchthat Y¥ 2,7, = 0. Since * (L5 g2,2;) B=0= 5t g,
this would mean that zero could be represented by a non-zero element.
This is impossible by construction; (ii): for all k£ > 0, we have mg(Zy) =
B*||B||~'up, hence the result by linearity. The injectivity of B, Ccomes

from the assertion (i). O
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Proposition 3.2. Let up; = || X;|7'X; if i = 1,2,---,s, up; =
(IXll? + [1X41112) 2 ( Re(|BED(72)X; + Im(|BD|72) Xi11) of i =
s+ 1,---,m withi— (s+1) even, and up; = (|X; 1> + [|X;]|?)/?
(—Im(|BED 7% X; + Re(|BV|72) Xiy1) if i = s+ 1,--- ,m with i —
(s +1) odd. Denote by mp;:R™ — Rup,,t =1,2,---,s the orthogonal
projection mappings to the 1-dimensional eigenspaces of Q , resp. Tp; :
R™ — Rup,; + RuBit1,¢ = s+ 1,--- ,m with i — (s+ 1) even, the
orthogonal projection mappings to the irreducible 2-dimensional eigenspaces

of @ . Then, for allk > 0, ag,--- ,ar € Z, we have WB,i(Z§:0 a;Z;) =
(Z?:o ajﬂ(i_l)j) |1 Xill"tups, i =1,2,--- ,s and, forall i =s+1,---,m

with i — (s+1) even, WB,i(Zfzo a;Z;) =
Re(Y5 oa;B0 V') Im(35_ga;80 1) ( uB;i )
—Im(350ai8") Re(Xjoa;6%) ) \ upin
L 72
( m-l |’8(zfl)|2k)

Proof. Tt suffices to apply the real and complex embeddings of Q(5) to
the relation

k k k
m8(>_a;Z) = (> a;Z)-B)IB| *B={>_a;s | |B|| *B :
Jj=0 j=0

Jj=0

for complex embeddings, [ X;|? + [|Xiv1l? = 27, [BCD* and
|BC—1||72B(~1) means:

Re(|[B*V||"?)  Im(||BUD|7%) Xi ) _
—Im(|BEV[7%)  Re(|BE1||7?) Xit1 )

(1% + 1 X [)1/2 \ Bjit
O

The explicit expressions given above will allow us below to compare
the "geometric” Rauzy fractals deduced from the present study and the
7algebraic” Rauzy fractal. Before stating the main theorem about the
existence of canonical cut-and-projection schemes associated with the beta-
integers when [ is a general (non-integer) Perron number, let us first
consider the case of equality © = up and show that it is rarely occuring.

Proposition 3.3. The equality w =wup holds if and only if [ is a Pisot
number, root > 1 of the polynomial X? —aX —1 , with a>1 .
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Proof. The condition u = up is equivalent to Vi colinear to B , that is
fj,lﬂ_j“ = a non-zero constant, for all j =1,2,--- ,m. The condition is
sufficient: if B is such a Pisot number, such equalities hold. Conversely, if
such equalities hold, this implies in particular that &, 18711 = ¢, 1871,
Thus we obtain aof™ 2 = 1, that is necessarily m = 2 and ay =
1. The Perron number S is then a Pisot number of negative conjugate
—B~! which satisfies 82 —a18—1=0, where a; = f— " is an integer
greater than or equal to 1. This is the only possibility of quadratic Pisot
number of norm —1 ([Frol], Lemma 3). O

Theorem 3.5. Denote by E the line Rup in R™. There exist two
canonical cut-and-project schemes FE &£ (ExD~R™7™) 22, D asso-
ciated with Zg C E (see the definitions in the Appendiz). They are given
by, in case (i): the orthogonal projection mapping g as pi1, BrpF as
internal space D, po = @©f np, where the sums are over all irreducible
tQ-invariant subspaces F of R™ except Ru and where 7p is the
projection mapping to F along its 'Q-invariant complementary space, in
case (ii): as p1 the orthogonal projection mapping np, ®p F as internal
space D where the sum is over all irreducible Q-invariant subspaces F of
R™ except E, as py the sum @;x1 wp; of all the orthogonal projection
mappings except wp1 = wp; in the case (ii), the internal space D is
orthogonal to the line Ru.

Proof. In both cases, the fact that py(Z™) is dense in D arises from
Kronecker’s theorem (Appendix B in [Mey]): since [ 1is an algebraic
integer of degree m, the m real numbers 1 = £% 8L,... ™1 are
linearly independent over QQ . Hence, for all € > 0 and all m-tuple of real
numbers g, 1, ,Tm_1 such that the vector (say) = =*(zgz1 ... Tpm_1)
belongs to D , there exist a real number w and m rational integers
Ug, U1, - ,Um—1 such that | z;—flw—u; | < e/y/mforall j =0,1,...,m—
1. In other terms, there exists a point u = *(ug,u1,-** ,um—1) € Z™ such
that its image pi(u) is wB € Rup and its image p2(u) is close to z up
to €. Hence the result. As for the restriction of the projection mapping
p1 =7 ="pR,; : R™ = E to the lattice Z™, it is injective after Theorem
3.4. The orthogonality between D and u comes directly from Corollary
3.3. O

The mapping p1(Z™) - D: z — z* = pzo(pl‘zm )" (z) will be denoted

by the same symbol (.)* in the cases (i) and (ii), the context making the
difference.

Proposition 3.4. Let B be a Pisot number, root > 1 of the polynomial

2 _ _ ; _  _(1+ap)|8]
X aX — 1, with a > 1. Putc, = Jorafp-1)" Then the two

canonical cut-and-project schemes given by (i) and (ii) in Theorem 3.5 are
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identical and the inclusion of Zg||B||'up in the following model set holds:
Zg | Bl|"'up = mp(LU(- L)) C {v € 7p(Z°%) | v* € [~coup,2, +caunl}
where upo ="'(—B1)|B|~" .

Proof. The two cut-and-project schemes are identical: by Proposition 3.3
the equality « = up holds and the line Rwup2, which is obviously or-
thogonal to the line Rup, is 'Q-invariant. Now, if g denotes an arbi-
trary element of £, it can be written ¢ = 2;(*Q)*Zo + zx_1(*Q)* 12y +
-+ x1('Q)Zy + z0Zy for a certain integer k > 0 with z; € A and
('Tjaxj—l,"' axlaanO,Oa"') < (01562,"') for all j, 0 < .7 < k. We
have Zy = su+ stups with s=|B|| "t and st = —p|B| !. Then
9= 0x;i((Q) % =Yy x; (sBu+ st (~1))BIupy). Thus po(g) =
st 30 0w (=178 upy and |pi(g)*]l = Ip2()ll < s8] ;%5 87
Ist]18] 1_}3,_1 which is equal to ¢, since ||B|| =+/2+ af . This con-
stant is independent of k . Hence we have p;i(g) C {v € 75(Z?) | v* €
[—cauB2, +cqup2]} and the claim. O

Let ¢ = {75 Ya;7Z; | a;j € [0;1] forall j = 0,1,--- ,m —1} be
the m-cube at the origin. For all irreducible ‘Q- invariant subspace F of
R™, put dp = maxgec |[mr(z)||, Ar the absolute value of the eigenvalue of
‘Qon F and cp = |f] %. Denote by Qp the closed interval centred
at 0 in F of length 2cp ideim F =1, resp. the closed disc centred at 0
in F of radius cp if dim F' = 2.

Theorem 3.6. Let B be a Pisot number of degree m > 2 and Q2 = &rQp
where the sum is over all irreducible 'Q- invariant subspace F of R™
except Ru. Then the inclusion of Zg||B||'up in the following model set
defined by Q holds: 73 ||B||"tup = pi(LU(—L)) C {veEp(zZ™)|v*e
Q } in the cut-and-project scheme given by the case (i) in Theorem 3.5.

Proof. If g =% z;7; € £ with k=dm—1,and d>1 an integer,
then

—1m—1 d—1 m—1
g= Z 'Tqm-l-l l Z(tQ)qm (Z 'Tqm-l-lZl) .
q=0 =0 q=0 =0
d—1 m—1
Honce o) =) = @) = 303 |01 (5= )
F ¢=0 =0

with:

d—1
d
Ime (@)l < Y LBIA" e (Z z,) <1 anxlm = Bl = e
q=0
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This constant is independent of d, hence of k = dm — 1. It is easy to check
that it is an upper bound for |[[p2(g)|| if k¥ # —1(modm) and also for all
g € — L. We deduce the claim. O

Corollary 3.7. If B is a Pisot number of degree m > 2 , then Zg is a
Meyer set.

Proof. If B is a Pisot number, the set Zg, viewed as the set of vertices of
an aperiodic tiling, is obtained by concatenation of prototiles on the line,
which are in finite number by Thurston [Th]. And it is relatively dense
by construction. Now, by Theorem 3.6 it is included in a model set. This
proves the claim (see the Appendix). O

In both cases of cut-and-project scheme, as given by Theorem 3.5 where
the duality between the matrices @ and 'Q clearly appears, the internal
space represents the contracting hyperplane, whereas the line Rwu is the
expanding direction, when [ is a Pisot number. The duality between
both cut-and-project schemes is connected to the substitutive approach by
the following (Arnoux and Ito [AI], Chap. 7 in Pytheas Fogg [PF]): the
abelianized Z; of the iterates of the substitution satisfy Z; , = QZ,
and gather now about the line R B. If one takes the projection on R B of
the new set £’ (defined similarly as £) along the other eigenspaces, one
recovers Zg (up to a scalar factor). A striking feature of the internal
spaces is that the numeration in base SU) (conjugates of ) appears as
canonical ingredient to control the distance between a point of £ and its
orthogonal projection to the expanding line R wu, in particular at infinity.

Definition 3.1. Let [ be a Pisot number of degree m > 2 . The

closure (ZE | B||~tu B) of the set po(L) is called the canonical acceptance

window associated with the set of beta-integers Z; in both cases (case (i)
or (ii) in Theorem 3.5) of cut-and-project scheme: in the case (i) it will be
denoted by R; and in the case (ii) by R.

The notations R and R; (R; C by Theorem 3.6) with an” R ”
like Rauzy are used to recall the close similarity between these sets and
the Rauzy fractal (Rauzy [Ra], Arnoux and Ito [AI], Messaoudi [Me], Ito
and Sano [IS], Chap. 7 in Pytheas Fogg [PF]). The fact is that the set
R is exactly the Rauzy fractal up to the multiplication by a non-zero
scalar factor on each irreducible @Q-invariant subspace (by definition we
will speak of quasi-dilation). Let us show it on an example.

"Tribonacci” case [Me]: let us consider the irreducible polynomial
P(X) = X% - X2 — X — 1. Tts dominant root is denoted by 3, and
a and @ are the two other complex conjugates roots of P(X). In this
case, the Rauzy fractal is algebraically” defined by £ := {d} 2 €0’ | ¢; €
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{0,1} and €j€i41€i+2 = O for all integer 7 > 3}. The condition imposed on
the sequence (¢;);>3 is exactly that given by the conditions of Parry.
Indeed ([Frol] and section 2), dg(1) = 0.111 and the lexicographical
maximal sequence is ¢jcacz--- = (110)¥. Now (Proposition 3.2) B®) =
tlaa?) and [|Xo|? + || X3]|2 = 1 + a@ + o?@? = B. We deduce that
R = Y2 = npa(L) with the following (metric) identification of C :
#(C) = Rupz + Rup3 where ¢ is the isometry which sends the vector

1 0 UB2 UB,3
( 0 ),resp. ( 1 ),to ( B3 ), resp. to < —ups )"

Proposition 3.5. The canonical acceptance window R (relative to the
case (ii) of cut-and-project scheme in Theorem 3.5) is compact and con-
nected. Its interior int(R) is simply connected, contains the origin. The
set R is such that: (i) int(R) = R; (i) it induces a tiling of the internal
space D modulo the lattice ¢(Z+Z): D = U,epz47q)(R+2); (i)
(R4+2)Nint(R+2') =0 forall 2,2 € $(Z+7Za), z # 7.

Proof. Since R = Y2 ¢, we deduce the properties of R from those of
£ already established in Rauzy [Ra], Messaoudi [Me] and [Mel]. O

Proposition 3.6. The boundary of R is a fractal Jordan curve. A point
z belongs to the boundary of R if and only if it admits at least 2 distinct
Rényi a-expansions. A point belonging to the boundary of R admits 2
or 8 distinct Rényi «-expansions, never more.

Proof. The properties of the boundary of £ are given in Ito and Kimura
[IK] and Messaoudi [Mel]). Hence the claim. O

The properties of R; follow from the equality: pa(R) = Ri, where
pe refers to the case (i) of cut-and-project scheme in Theorem 3.5, and
from Proposition 3.5 and 3.6: in particular, it has also a fractal boundary.
We will speak of ”geometrical” Rauzy fractals for ® and R; and of
7algebraic” Rauzy fractal for €. They are similar objects as far as they
concentrate all the information about the beta-integers and the comple-
tions of their real and complex embeddings (Rauzy [Ra]). The respective
canonical acceptance windows associated with Zg are RU(—R) and
RiU(—R;) in the two cut-and-project schemes.

4. Additive properties of 7Zg
In this section, B will be a Pisot number of degree m > 2.

A) Cones, generators and semi-groups. -~ We will show that any
element of £ is generated by a finite number of elements of £ of small
norm, over N. By projection to E by mp, the ambiant 1-dimensional
space of the beta-integers (Theorem 3.5), this will imply the same property
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for Zg. This finiteness property, stated in Corollary 4.5, constitutes a
refinement of Theorem 4.12 (i) (Lagarias) for the Meyer sets Zg.

First let us fix the notations and simplify them somehow. Let 7 :R™ —
Ru be the projection mapping along its ‘@Q-invariant complementary space
(instead of denoting it by 7R, ), and po the projection mapping of the cut-
and-project scheme (i) in Theorem 3.5. Let 7!l : R™ — Ru be the orthogo-
nal projection mapping and 7+ = Id—nl (7rJ- is the mapping ®;-17; in
the case (ii) of cut-and-project scheme in Theorem 3.5). The basic ingre-
dient will be the construction of semi-groups of finite type associated with
cones whose axis of revolution is the expanding line R u, following an idea of
Lind [Li] in another context. Truncating them in a suitable way at a certain
distance of the origin will be the key for finding generators of £ over N.
In the first Lemma we will consider the possible angular openings of these
cones around the expanding line Rwu for catching the points of L. For
6 > 0, define the cone Ky := {z € R™ | 0||p2(z)|| < ||7(x)]],0 < 7(z)-u }.
For r,w > 0, define Ky(r) := {z € Ky | ||n(z)| <7}, Kp(r,w) :=
{r € Ky |r<|n(z)]| <w }. If A isan arbitrary subset of R™ , denote
by 59(A) == {D gnite Mi%i | Mmi € N,z; € A} the semigroup generated by
A. Let p be the covering radius of the subset £U(— £) with respect
to the band R; X Ru: p is the smallest positive real number such that
for any z € R™ such that ps(z) € R; the closed ball B(z,p) contains
at least one element of L£U(—£). A lower bound of p is given by the
covering radius /m/2 of the lattice 7Z™. Referring R™ to the basis
{B,V5,V3,-+- ,Vii9} and using Corollary 3.3 and Theorem 3.6 we easily
deduce the following upper bound of p: 3||B||™' + Y. cr, where the
sum )., means there and in the following everywhere it will be used ”the
sum over all irreducible ‘Q-invariant subspaces F of R™ except Ru”.
The notation diam(-) will be put for the diameter of the set (-) in the
following.

Proposition 4.1. (i) For all 8 > 0, there exists an integer jo = jo(0) >
0 such that Z; € Ky for all j > jo; (i) if 'Q is nonnegative,
and min{{;1 | j =1,2,--- ,m } > 2||Vi|(diam(R;)) , then the following
equality jo(6) = 0 holds for all 0 < 0 < Onipn, where Opy = —2 +
(diam(R:))~ |Vl " 'min{&;1 | j = 1,2,-++ ,m }.

Proof. (i) Let € > 0. We have just to prove that =(Z;) u tends
to 400 and not to —oo when j goes to 4oo . Let 7 > 0. Write
Zj = n(Zj) + pa(Zj) = 7l(Z;) + 7(Z)); hence || w(Z;) — =ll(Z) || =

|7 (Z) = pa(Z) | < | e HZ) 11+ | pe(Z) 1| = || o (25— m(Z5) | +
| p2(2;) || < 2Il p2(Z;) || < 2diam(Ry). On the other hand | m5(xl(2;)) -
w5(Z) || = || (2 - w)(up - wus — | B Brup || = | (Z; - u)(us - u) -

IBI=*A7 | = || ma(v(2;)) || < || #(Z)) || < diam(R). Hence, since
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up-u > 0 (Theorem 3.2), | Zj-u—(up-u)~'|B||7'87 | < (up-u)~'diam(R).
Consequently || (Z;)—(up-u) | B]| =87 | = || n(2;)—ll(2;)+x(2;) -
(up-w) MBI |l < || 7(Z;) ~7(Z)) |+ 71(Z5) ~ (up-w) | B]| 7 Aou ||
< 2diam(R;) + (up - u)~')diam(R). The quantity w(Z;)-u tends to
+o00 as (up - u)~!||B||7'8? when j — 4+oc . Then there exists jo such
that Z; - u > 2diam(R;) + ((up - w)~' + 8)diam(R;), for all j > jo. As a
consequence 7(Z;)-u > Zj-u— 2diam(R;) > ((up - u)~! + 0)diam(R;) >
0 for all j > jo. We claim that Z; € Ky for all j > jo . Indeed,
since |[|p2(Z;)|| < diam(R;) , the inequalities hold: 0|p2(Z;)|| < (6 +
(up - u) " llp2(Zj)ll < (0 + (up - u)~")diam(R;) < 7(Z;) - u = ||7(Z;)| for
all j > jo.

(ii) If '@ is nonnegative the coefficients a; in P(X) are nonnegative
with a9 # 0 and at least one of the coefficients ai, k > 1, is non-zero
since [ is assumed to be a Pisot number and not a Salem number. Hence
(Proposition 3.1), since P'(8) > 0, we have |[V1|~'&11 = ||7l(Zo)|| =
Zy-u = gpkgy > 0 and Vil &1 = [I7(Z5)|] = Z; - w, for all j =
1,2,---m —1 with [|[Vi||"'min{¢;, | j = 1,2,---m — 1} > Fag > 0.
Because {Zy, Z1,--+ ,Zm—1} is the canonical basis of R™ , any Z;,j > m,
can be written as a combination of the elements of this basis with positive
coefficients. Hence, Z; - u > ||Vi||"'min{ & | { = 1,2,--- ,m — 1} for all
4 > 0. But the relation Z; = 7(Z;) + p2(Z;) = 7l(Z;) + 7~(Z;) implies
that w(Z;) — 7l(Z;) = 7+(Z;) — pa(Z;). Hence, |7(Z;) - u — Z; - u| <
e (Z)| + lp2(Z)|| < 2[lp2(Z;)|| < 2(diam(R;)) for all j > 0. Therefore
m(Z;) -u > |Vi]| 'min{&, | I = 1,2,--- ,m — 1} — 2diam(R;) which
is > 0 by assumption for all 5 > 0. Hence, by definition of 8, ,
m(Z5) -+ u = [|7(Z))[| = Omin(diam(Ri)) 2 Ominl|p2(Z;)|| = 0lp2(Z;)]] for all
7 >0 and 0 <60 < 0,,,. We deduce that Z; € Ky for all j >0 and
0 < 0 < 0,,,. Let us observe that the conditions of the present assertion
are generally not fulfilled. O

We now turn to the question of generating the elements of £ by a
finite number of them over N. The idea we will follow is simple: let
us consider the set of the semi-groups generated by a finite number of
(arbitrary) elements of £NKjy for all 6 > 0; in this set, we will show
the existence of semi-groups (# > 0 fixed) containing Koy N £, that is
containing £ except a finite number of elements of £ close to the origin.
Then we will minimize this finite number of excluded elements. For this we
will consider the maximal possible values of 6. In final this will provide a
suitable value of # and a control of the norms of the generating elements
of the semi-group which will contain L.
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Lemma 4.1. (Lind [Li]) Let 6 > 0. If § = (20+2)~! and z € Ky with
|m(z)]| = 7(z) - u >4, then [x — Kp(1,3)] N Koy contains a ball of radius
J.

Proof. [Li] Take y = 2u + 3(w(z) - u) 'pa(z) . We will show that the ball
centred at z —y and of radius ¢ satisfies our claim. Suppose ||z|| < ¢ .
Then x —y+ z € Koy . Indeed,

20 ||p2(z —y + 2)| <20 [(1—3(n(x) -w) ") llp2(@)]| + O]
< [1-=3(x(z) - u)™] (n(z)-u) +20(20 +2)~" = (n(z) u) —2—2(20+2)"
but p2(y) = 2. We deduce 20 |pa(z —y + 2)|| < 7(z —y + 2) - u. Let
us show that y — 2z € Ky. We have 20||p2(y)| = 60(m(z) - w)!||p2(z)|| <
3(m(z) - u)~'(m(z) - u) = 3. Therefore O]lp2(y — 2)|| < O(|lp2(y) +9) <
34+6(20+2) ' =2-(20+2)"! <m(y—=z)-u. Now, since § <1, we have
the inequalities 1 < 7(y — 2) - u < 3, establishing the result. O

Theorem 4.2. Let 6 > 0 . If r is such that r > p(20 + 2), then
Koo N £ C 5g(Ko(r) 1 ).

Proof. Lemma 4.1 implies the following assertion: if z € K9y is such that
w(z) - u > 4r with r > p(20 +2) , then [z — Ky(r,3r)] N Kgy contains
a ball of radius rd > p . But p is by definition the covering radius of
LU(— L), hence this ball intersects £ . Now, let A = Ky(4r) N L be
the finite point set of £ and let us show that Ky N £ C sg(A). First
the inclusion Koyy(4r) N L C sg(A) holds. We now proceed inductively.
Suppose Kop(r') N L C sg(A) for some 1’ > 4r . We will show that this
implies Kog(r' +7)N L C sg(A) , which will suffice by induction. For this,
let us take g € LN[Ko9(r' + 1) Kog(r)]. From Lemma 4.1 and the above,
there exists an element, say v, in £, contained in [g— Kpy(r,37)] N Kag(r').
By assumption, y € sg(A) and y =g—x for some z € Ky(r,3r)NL, C
sg(A). Therefore g =z +y € sg(A) +sg(A) C sg(A). This concludes the
induction. O

Lemma 4.3. For all 6 >0, the following set: £(0):={z € L | p2(z) €
Riro & Ko(p(20 +2)),0 ¢ Koo } is finite.

Proof. The proof is clear since all g € £ such that =w(g) -u > 2p(20 +
2) belongs to Koy. O

Define 6 := max{f > 0| #(£(0)) is minimal } (where #(-) denotes the
number of elements of the set (-)). If Q) is nonnegative and the condition
(ii) in Proposition 4.1 satisfied, then the equality #(£(f#)) = 0 holds for
0 < Opnin and therefore 0p > 0p,/2 .

Theorem 4.4. (Minimal decomposition). — Any element g € £\ £(0y)
can be expressed as a finite combination over N of elements of the finite
point set Ky, (p(207 +2)) N L.
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Proof. 1t is a consequence of Theorem 4.2 with 6 = 6; and r = p(20; +
2). O

Corollary 4.5. There exist two disjoint finite subsets F =
{IBllws(g9) - up | g € L(OF))} and  F = {g1,92,--- .99} C
{IIB|l75(g) -un | g € Ko, (p(205 +2)) N L} of ZE such that

(2) ZE cCF U N[glaQQ,"' ag'q]'

The generating elements g; € F' satisfy: |\gi|| < p(20;+2)||B||7 ||Vi]| =+
diam(R;). If the couple (F,F') is such that n = # F' is minimal for the
inclusion relation (2) and F is empty, then the degree m of [ divides
7.

Proof. To obtain the inclusion (2) it suffices to project £ by =p and
to apply Theorem 4.2 and 4.4 and Lemma 4.3. Let us show the upper
bound on the norms of the elements of F'. If g € Ky, (p(20; +2)) N L is
decomposed as g = 7w(g) + t, where t € R;, then, by Theorem 3.2 (i),
we have: [7g(g)ll < [[7() | BII7'[VAll~" + diam(R,). But |[I7(g)] <
p(207 + 2). We deduce the claim. Now if Z; C Nlg1,92,"* , 9y the group
Z[91,92,- - ,9y] contains Zg and the equality Z[Zs| = Z[g1,92, - , 9]
necessarily holds. By Theorem 4.12 we deduce that m divides 7 since
the rank of Z[Zg] = Z[N[Zg]] is 1 when 7 is the smallest integer such
that the set inclusion (2) holds and that F is empty. O

B) Preperiods in the addition of beta-integers. — The Delone set
Zp endowed with the usual addition and multiplication cannot have a ring
structure otherwise it would contain 7 but it is obvious that Zg contains
no subset of the type AZ, A > 0. This absence of ring structure on Zg for
the usual laws can be partially overcome by controlling the fractional parts
of the Rényi [-expansions of z+y and z —y when z,y € Zg. This
is the aim of this paragraph to focus on the geometrical meaning of the
sets T and T’ as stated in Theorem 4.7 and of the exponent ¢ in its
Corollary 4.8.

The projection mappings will be the ones redefined (in a simpler way)
at the beginning of the subsection A). Let R >0 and I be an interval of
R having compact closure. Let us extend the m-cube C for reasons which
will appear below. Let ¢’ = { Z;-":_Ol a;Z; | o € [—1;1] forall j =
0,1,---,m — 1 }. For all irreducible ‘Q- invariant subspace F of R™,
put 6% = maxzee ||7p(z)]], Ar the absolute value of the eigenvalue of

{Q on Fand ¢ = |B] lf—igp Denote by € the closed interval centred

at 0in F of length 2cj if dim F = 1, resp. the closed disc centred at
0in F of radius ¢ if dim F = 2. Let Q = @pQf. We will denote
by Tir:={z € R™ | p2(z) € [B|7'RQY,7p(z) - up € ||B|7'I} the
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slice of the band defined by |3]| 'R in the internal space, extended
by symmetrization with respect to |[3] 'R (compare the definitions of
Q' and Q in Theorem 3.6), of axis the expanding line Ru . Let Fg:=
{frac(2) | z = axB* + ap_18F 1+ + a1B+ag,ai € Z,|a;] < R} C[0,1).

Lemma 4.6. The set {||Bl||lng(g) -up | g € Tjo,1),r+|8) NZ™} is a finite
subset of Z[B]N[0,1) and the following inclusion holds: Fr C {||B||7p(g)-
uB | 9 € To,1),r+(p NZ™}

Proof. The finiteness of the set is obvious: it is a discrete set in a subset of
R™ having compact closure. The inclusion relation is a reformulation of
Lemma 2.1 in [Bu]. Let us briefly recall the proof. Let z = Z?:o ajB’ with

a; € Z,|a;| < R . We have also z = Z?:foo z;B7 as B - expansion of z .
Therefore z—int(z) = Zf:o a;BF — Z?:o z;B7 . Since 0 < z; < |B] and
la;| < R, frac(z) € [0,1) is a polynomial in S , the coefficients of which
have their absolute values bounded by R+ |3]. Here the coefficients may
be negative or positive. This is why we have introduced ¢’ instead of (.
We deduce the result in a similar way as in the proof of Theorem 3.6 for the
computation of the upper bound cp, except that now it is with Q', ¢}, and
the fact that the absolute value of the digits is less than R+ |3]; this obliges
to multiply Q' by the factor (R+|3])/|8]. The set Fg is finite (Lemma

6.6 in [So]), and (Proposition 3.4) is in one-to-one correspondence with a

subset of the finite point set 7,1),r+|5)- We deduce the claim. O
Let
m—1 1/2
L;g:=| min [111(,6(1'—1)_1)]_1 In (Z(ﬁ(i—l))2k> ¢I,R+LﬁJ ]
k=0

where the minimum is taken over the real positive embeddings of Q(f8) (i =
1,2,...,s and B0~ > 0) and where v g := max{||y|| | Yy € Tr,r}- Let us

con31der an element z € Fg . Its [ - expansion: Z 1 2B~ 7 is even-

tually periodic [Be| [Sch] and therefore can be written Zfo(f z_;B7 +

+00 ko(z)+(k+1)r(z)
k=0 Zj:ko(z)-f—k'l‘ Z +1 _-7'3

minimal. We will denote by Jr = max{ko(z) | z € Fr} the maximal
preperiod of the [ - expansions of the elements of Fgr. An upper bound
of Jgr will be computed below.

' where the integers ko(z),r(z) > 1 are

Theorem 4.7. (i) For all z,y € ZZ{ such that = + vy has a fi-
nite [-expansion the following relation holds: =z +1y € L ZE where
L :=min{L 1) 28], J2(p1}; (i) the following inclusions hold: Zg -|—Z/;r C
Z; +T, Z;—Z; C 7Zg+T', where T = {||B|rslg) - up |
9 € To,+1)318) NZ™} and T' = {||Blwp(g) - up | 9 € T(~1,41)2(8) N Z"}-



20 Jean-Pierre GAZEAU, Jean-Louis VERGER-GAUGRY

Proof. (i) Let = = zxB% +---+z¢ and y = yB +--- + Yo denote

two elements of ZE. Then z =z +y is of the form 2z = a;3’ + - +

ap with 0 < a; < 2|8 . Write now the [ - expansion of z as
+o0

z=) 028" T+ i=0%j (7 and assume it is finite. Then it admits only

a ﬁ—expansmn up till the term indexed by its preperiod ko(z) and the
period has necessarily the form given above with 7(z) =1 and z_; =0 as

soon as j > ko(z). Then Efo f) z_;f = (ajﬂj -+ ag) — (05 #i8Y).
This means that the fractional part Z = 1 ) 2 B~ J is a polynomial of the
type Z{:o b;B¢ with —|B| < b; < 2|B] hence with |b;| < 2|3] . The
set Fy ) is finite (Lemma 4.6) and the set of all possible fractional parts

of elements of ZE is exactly in one-to-one correspondence with a subset
of the finite point set Tjp1)3)5 NZ™ of Z™ . Therefore, there exists a

unique g, = Zz 0biZi € Tpo,1),38NZ™ such that ||B|7p(g.) - up =
Z{ b;ft = Eko_(z z_;377 = frac(z) . Let us apply the real and complex
embeddings of the number field Q(5). It gives: Zfoz(f ) z_j(BED)
= Z;;O bj(ﬁ(i_l))j for all i = 2,3,...,m. For the real embeddings in
particular this implies (Proposition 3.2):

f . _ ko(z)
; > (B 2B
i—0 j=1
TR =TB; biZ) =" up,;= UB;
ilae) = mai) i) = T v B i
forall 7 =1,2,---,s withall z ; > 0. The case of real embeddings will

provide a direct computation of the first upper bound Liy,1) 25 of the
preperiod and merits to be isolated. Indeed, since in this case 0 < g—1 <
1 forall 7 €{2,3,---,s}, with s assumed > 2, and that all the digits

z_; are positive, we necessarily have: |/ X;||* (B(ifl))_j > Ppo,1),318] a8

, 1/2
soon as j is large enough. Recall that || X;|| = ( ;Cn:_ol(ﬂ(zfl))%) . With
the definition of Ly;1) 23] , this implies that the sum of the positive terms
Zfoz(f ) z_j(B~D)77 cannot contain any term indexed by —j with j >
Lio;1),28)- Hence, ko(2) < Ljg,1)2/5)- As for the negative real embeddings
and the complex embeddings they will provide the second upper bound of
the preperiod by the computation of Jyg): indeed, its calculation gives
an upper bound of the number of terms ky(z) in the fractional part of
z, hence, after reducing frac(z) to the same denominator, which will be
BFo(2) | we immediately get the result; (ii) (This is reformulation of Theorem
2.4 in [Bu]) First, we have F|g C Fyg , second Zj +Zj C Zj +Fy g ,
Zg — ZE C Zp +(F|gU—F|g)). Since ' is invariant by inversion and that
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Flg)U—F5) C{|Bllma(9)-us | 9 € To,+1)218) NZ"}V{||Bll7B(9)-uB | 9 €
T-1,0.208 NZ™} = {|Bll7p(9)-us | 9 € T(—1,41),218 NZ™} (Lemma 4.6),
we deduce the claim. O

Corollary 4.8. Let ¢ = min{L(_; 41)9(8);J218/}- Then, for all z,y €
7 such that T +vy and x —y have finite B-expansions, the following
relations hold: x +y (resp. z —y) € B9 Zg.

Proof. Indeed, T' C T U (-T) . Hence Zg+7Zs C Zg+(T U (-T)) .
Since TU(-T) = {||B|lrs(9)-uB | g € T(~1,41)38 NZ™} , we deduce the
exponent ¢ from the definition of L; g and from Theorem 4.7. O

Computation of an upper bound of the mazimal preperiod Jr.— We will
use the case (ii) of cut-and-project scheme in Theorem 3.5. Let {Z_;};>0
be the sequence of vectors defined by Zy = (*Q)7Z_; . We denote as usual
the algebraic norm of # by N(B8) = N/ o) = 175" 89 . Recall
that ap = (—=1)""IN(B) .

Lemma 4.9. (i) The following limit holds: lim;_, o || Z_j| = 400 ;
(i) forall j €N, Z_; € N(B) 7 Z™. In particular, if B is a unit of the
number field Q(B) , then all the elements Z_; belong to 7™ .

Proof. (i) Since [B®|' > 1 for all i = 1,2,...,m — 1, the inverse
operator (!Q)~! acts as a dilation by a factor of modulus strictly greater
than one on each !Q-invariant subspace F in R™ except Ru: all the
non-zero components of the vector Z_; (which never belongs to Ru) in
the system {V;}i=23 ..., diverge when j tends to infinity, hence the
claim. (ii) Solving the equation Zy = (!Q)'Z_; shows that Z_; can be
written Z_; = —aal(alZ(ﬁ—ang—l—- -+ am_lzm_Q—Zm_l) € N(ﬁ)fl zZm.
Since by construction we have Z; = (!Q)~1(Z;41) for all j € Z , applying
(tQ)~' to the last equality clearly gives Z 5 € N(8)"2Z™ and, by
induction Z_, € N(B)~"7zZ™ for all h > 0. Now it is classical that j is
a unit of Q(pB) if and only if N(8) = £1 establishing the result. O

Theorem 4.10. Denote by

Plog),r+18) (1= 87D + 18]
m—1 i— 1/2 i ’
(St 186-0p%) ™ (1= g6

Br =z €R™ | [mB,i(x)| <

i=2,3,m

the cylinder (band) of azis the expanding line Ru and Vg = {z €
Br | |Bll7s(z) - up €[0,1)} the slice of the band Br . Then this slice is
such that Jp < #(VrNN(B)~™Z™).
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Proof. Each element a € Fr can be written o = 2?:01 p;3*  with

pi € Zand Y%, YpiZi € To,1),r+(8) NZ™ (Lemma 4.6). Thus, [p;| <
Yo,1),rR+|8] for all @ =0,1,--- ,m — 1. Now ([Sch] and section 2), the
following equality holds for all n > 0:

T"(a) = " - (a -y ek(a)ﬂ—’“) =3 gk
k=1

k=0

where (ex(a))r>0 is the sequence of digits of the Rényi [-expansion of
a and (rgn),rén), e §,’:)) € 7™ . Recall that €(a) = o] =
The real and complex embeddings of the number field Q(5) applied to
T"(a) provide the m equalities, with 7 =1,2,--- ,m:

GO (’"Z_l o (39) - e (5@—1))—’“) _
=0 k=1
S )

We deduce that

m—1 1/2 m
(Zw“—%’“) s (3" ri (897D) 7))
k=0

k=1

in: (n) ﬁ(] 1

k=1

m—1 n .

lpall 89D+ 18] D 18U

=0 k=0
< L 1 (G=1)m
= 1—|pG-D)] [¢[0,1),R+U5J( -8 ™) + IJBJ]

forall n>0,5=2,3,---,m with 0 <>, r,(cn)ﬂ_k < 1. From Proposi-
tion 3.2 and Lemma 4.9 the element ;" , r,(cn) B~* can be uniquely lifted
up to the element y ;" r,(cn)Z,k € N(B)~™z™. Its projections by the pro-
jection mappings 7p;, 1 = 2,3,-+- ,m to the (@-invariant subspaces of
R™ are bounded by constants which are independant of n . The restric-
tion of the lifting of the operator T to VR NN(B) ™ Z™ has self-avoiding
orbits (to have a preperiod) whose length is necessarily smaller than the
number of available points in the volume Vgr. We deduce the upper bound

#(VR nN(,B)im Zm) of JR. O
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Appendix.— Classification of Delone sets. We will say that a subset A
of R™ is (i) uniformly discrete if there exists r > 0 such that ||z—y|| > r for
all z,y € A,z # y, (ii) relatively dense if there exists R > 0 such that, for
all z € R", there exists A € A such that the ball B(z, R) contains A, (iii) a
Delone set if it is relatively dense and uniformly discrete. Delone sets are
basic objects for mathematical quasicrystals [La2] [MVG].

Definition 4.1. A cut-and-project scheme consists of a direct product
E x D, where E and D are Euclidean spaces of finite dimension, and
a lattice L in FE x D so that, with respect to the natural projections
p1 : EXD— E ,ps : ExD — D : (i) p; restricted to L is one-to-one
onto its image p1(L), (ii) po(L) is dense in D. We will denote by x the
following operation: *:=pyo (p1, ) ' :pi(L) = D.

Definition 4.2. A subset A of a finite dimensional Euclidean space FE isa
model set (also called a cut-and-project set) if there exist a cut-and-project
scheme (F x D,L) and a subset © of D with nonempty interior and
compact closure such that A = A(Q) = {p(l) | 1 € L,p2(l) €
Q }equivalently = {wv € pi(L) | v* € Q}. Theset Q is called
acceptance window.

Meyer sets were introduced in [Mey]. By definition, we will say that A,
assumed to be a relatively dense subset of R", is a Meyer set of R™ if
it is a subset of a model set. Other equivalent definitions can be found in
[Mo] or [Mey]. For instance, A is a Meyer set if and only if it is a Delone
set and there exists a finite set F' such that A— A C A+ F’; or if and only if
it is relatively dense and A — A is uniformly discrete. The above definition
shows that the class of Meyer sets of R™ contains the class of model sets
of R".

Theorem 4.11. ( Meyer [Mey]) Let A be a Delone set in R"™ such that
nA C A for a real number n > 1. If A is a Meyer set, then n is a Pisot
or a Salem number.

Definition 4.3. A Delone set A is said to be finitely generated if Z[A — A]
is finitely generated. A Delone set A is said to be of finite type if A — A is
such that its intersection with any closed ball of R™ is a finite set.

The class of finitely generated Delone sets of R"™ is strictly larger than
the class of Delone set of finite type of R”™, which is itself larger than the
class of Meyer sets of R" [La] [Lal].

Theorem 4.12. ( Lagarias [La]) Let A be a Delone set in R™ such that
nA C A for a real number n > 1. The following assertions hold: (i) If A
is finitely generated, then n is an algebraic integer. If the rank of Z[A] is
s, then the degree of n divides s, (i) If A is a Delone set of finite type,
then 1 is a Perron number or is a Lind number.
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Although Zg is associated with two canonical cut-and-project schemes
when £ is a non-integer Perron number, the converse of the assertion (ii) of
Theorem 4.12 seems to be an open problem. It is at least already related
to the question Q1’ of the introduction and to various arithmetical and
dynamical problems [ABEI].

Acknowledgements.— We are indebted to Christiane Frougny, Valérie
Berthé, Pierre Arnoux and a referee for very useful and valuable comments
and discussions.
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Abstract. Let f > 1 be an algebraic number. We study the strings of zeros
(“gaps”) in the Rényi (-expansion dg(1) of unity which controls the set Zg of
[-integers. Using a version of Liouville’s inequality which extends Mahler’s and
Giliting’s approximation theorems, the strings of zeros in dg(1) are shown to exhibit
a lacunarity bounded above by log(M(3))/log(3), where M(3) is the Mahler
measure of (. The proof of this result provides in a natural way a new classification
of algebraic numbers > 1 where classes are called QEJ ) that we compare to Blanchard’s
one with classes C; to Cs. This new classification relies upon the maximal asymptotic
“quotient of the gap” value of the lacunary power series associated with dg(1). As
a corollary, all Salem numbers are in the class C;U le)u Q(()Q)U Q(()S) ; this result
is also directly proved by a recent generalization of the Thue-Siegel-Roth Theorem
given by Corvaja.
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1 Introduction

The exploration of the links between symbolic dynamics and number theory
concerned with [-expansions, when 8 > 1 is an algebraic number or more
generally a real number, has started with Bertrand-Mathis [Bel] [Be2]. Blan-
chard [B]] reported a possible classification of real numbers according to their
(-shift, by the properties of the Rényi 3-expansion dg(1) of 1. A lot of ques-
tions remain open concerning the distribution of the algebraic numbers § > 1
in this classification. The Rényi -expansion of 1 is important since it controls
the (-shift [Pa] and the discrete and locally finite set Zg C R of [S-integers
[B-K] [E-VG] [Ga] [G1]. The objective of this note is to give a new Theo-
rem (Theorem 1.1) on the gaps (strings of 0’s) in dg(1) for algebraic numbers
B > 1, and investigate how it brings (partial) answers to some questions of
[B]], in particular for Salem numbers (Corollary 1.2).

Theorem 1.1 provides an upper bound of the asymptotic quotient of the
gap of dg(1) and is obtained by a version of Liouville’s inequality extending
Mahler’s and Giliting’s approximation theorems. The course of the proof of
Theorem 1.1 reveals to be extremely instructive since it leads to a new possi-
ble classification of the algebraic numbers 3 as a function of the asymptotics of
gaps in dg(1) and “intrinsic features”, namely the Mahler measure M(g3), of 8
(the definition of M(() is recalled in Section 3). This double parametrization,
symbolic and algebraic, was guessed in [Bl] p 137. This new classification
complements Blanchard’s one [Bl] pp 137-139 and both are recalled below
for comparison. The question whether an algebraic number 8 > 1 is con-
tained in one class or another one was already discussed by many authors
[Bel] [Be2] [Be3] [Bl] [Bo] [Bol] [Bo2] [Bo3] [D-S] [FS] [Lil] [Li2] [Pa] [PF]
[Sc] [Sk] and depends at least upon the distribution of the conjugates of 8 in
the complex plane. Only the conjugates of 8 of modulus strictly greater than
unity intervene in Theorem 1.1 via the Mahler measure of 5. Corollary 1.2 is
readily deduced from this remark. We deduce that Salem numbers belong to
C1 U C2U Qp, while Pisot numbers are in C; U Cq [Th].
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Another proof of Corollary 1.2 consists in controlling the gaps of dg(1) by
stronger Theorems of Diophantine Geometry which allow suitable collections
of places of the number field Q(3) associated with the conjugates of § and the
properties of dg(1) to be taken into account simultaneously. This other proof
of Corollary 1.2, just sketched in Section 4, is obtained by using the Theorem
of Thue-Siegel-Roth given by Corvaja [A] [C].

Theorem 1.1. Let > 1 be an algebraic number and M(3) be its Mahler
measure. Denote by dg(1) := 0.81tats ..., with t; € Ag = {0,1,2,...,[5 —
11}, the Rényi [B-expansion of 1. Assume that dg(1) is infinite and lacunary
in the following sense: there exist two sequences {Mmuy }n>1, {Sn}n>0 such that

l=50<my <s1<mg <s2 <.

S My, < Sy K M1 < Spt1 <.

with ($p, —Mmp) > 2, tm, #0,ts, 0 and t; =0 if m, <i<s, for all
n>1. Then
sn_ log(M(5))

limsup — <
n——+oco Mnp 10g(ﬁ)

(1.1)

Moreover, if liminf, o0 (Mpt1 — my) = 400, then

— log(M
lim sup Sn+1 — Sn < og(M(3))
n—+4oo Mp+1 — My 1Og(/8)

(1.2)

Following Ostrowski [Os] the quotient s,/m, > 1 is called quotient of
the gap, relatively to the nth-gap (assuming t; # 0 for all s, < j < my,41 to
describe uniquely the gaps). Note that the term “lacunary’ has often other
meanings in literature. Denote by £(Sg) the language of the §-shift [Bl] [Frl]
[Fr2] [Lo]. Blanchard’s classification ([Bl] pp 137-139) is as follows:

Cy : dg(1) is finite.

dg(1) is ultimately periodic but not finite.

Cs : dg(1) contains bounded strings of (s, but is not ultimately periodic.
: dg(1) does not contain some words of £(Sg), but contains strings of

0’s with unbounded length.

Cs : dg(1) contains all words of L(Sg).

Present classes of algebraic numbers, with the notations of Theorem 1.1:

Q(l) : 1= lim Sn with (my,+4+1 —m,) bounded.
0 m +
n—+00 My,
82) : 1= lim Sn with (s, —m,) bounded and

n—-+oo Moy,
lim (Mmpg1 —my) = +o0.

n—-+oo
s
53) : 1= lim — with limsup(s, — my) = +o0.
n—+oo My n—-+o0
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Q1 1 < limsups—n < M.

T )
) . S_n - og
@ R i

What are the relative proportions of each class in the whole set @>1 of
algebraic numbers § > 1 7 Comparing Cy, C3 and Qél), what are the relative
proportions in le) of those 8 which give ultimate periodicity in dg(1) and
those for which dg(1) is not ultimately periodic ? Schmeling ([Sc] Theorem A)
has shown that the class C3 (of real numbers 8 > 1) has Hausdorff dimension
one. We have:

b @>1 N 02 - Qél)a
e 0., N < QP uQP, with ¢; n QY =0,

e Q. NGy C QE)3) U Q1 U Qa.

Pisot numbers  are contained in C;U le) since they are such that dg(1) is
finite or ultimately periodic (Parry [Pa], Bertrand-Mathis [Be3]). Recall that
a Perron number is an algebraic integer § > 1 such that all the conjugates
B of 3 satisfy |3()| < 3. Conversely, after Lind [Lil], Denker, Grillenberger,
Sigmund [D-S] and Bertrand-Mathis [Be2], if 8 > 1 is such that dg(1) is
ultimately periodic (finite or not), then 3 is a Perron number. Not all Perron
numbers are reached in this way: a Perron number which possesses a real
conjugate greater than 1 cannot be such that dg(1) is ultimately periodic ([Bl]

p 138). Parry numbers belong to C; UCsy. Let Qo = 81) U QSQ) U QE)S).

Corollary 1.2. Let § > 1 be a Salem number which does not belong to Cs.
Then 3 belongs to the class Qq.

The dispatching of Salem numbers in Cy, le), 82) and Qég) is an open
problem in general, except in low degree. Boyd [Bo] [Bo3] has shown that
Salem numbers of degree 4 belong to Csq, hence to le). It is also the case of
some Salem numbers of degree 6 and > 8 in the framework of a probabilistic
model [Bo2] [Bo3]. In Section 5 we ask the question whether Corollary 1.2
could still be true for Perron numbers.

The definition of the class Qg does not make any allusion to 3, i.e. to M(f3),
to the conjugates of 3, to the minimal polynomial of 8 or to its length, etc,
but takes only into account the quotients of the gaps in dg(1). Hence this class
Qo can be addressed to real numbers § > 1 in full generality instead of only
to algebraic numbers > 1. The question whether there exist transcendental
numbers 3 > 1 which belong to the class Qg was asked in [Bl]; in which propor-
tion in each subclass ? Examples of transcendental numbers (Komornik-Loreti
constant [AC] [KL], Sturmian numbers [CK]) in Qg are given in Section 5.
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In the present note, we are dealing with the algebraicity of values of la-
cunary series, deduced from dg(1), at the algebraic point 87! In a related
context, concerning more transcendency, Nishioka [N] and Corvaja Zannier
[CZ] have followed different patterns and applied the Subspace Theorem [Sw]
to deduce different results.

2 Definitions

For z € R the integer part of = is |z] and its fractional part {z} = — |z].
The smallest integer larger than or equal to z is denoted by [z]. For 8 > 1 a
real number and z € [0, 1] we denote by Tg(z) = Sz (mod 1) the [-transform
on [0, 1] associated with § [Pa] [Re], and iteratively, for all integers j > 0,
Té“(z) := Tp(T}3(2)), where by convention T} = Id.

Let 8 > 1 be a real number. A beta-representation (or S-representation,
or representation in base () of a real number x > 0 is given by an infinite
sequence (;);>0 and an integer k € Z such that = = >, % ;7% where
the digits x; belong to a given alphabet (C N) [Fr1] [Fr2] [Lo]. Among all the
beta-representations of a real number x > 0,z # 1, there exists a particular
one called Rényi B-expansion, which is obtained through the greedy algorithm:
in this case, k satisfies 3% < z < ¥+ and the digits

x

X = ng(W)J i=0,1,2,..., (2.1)

belong to the finite canonical alphabet Ag := {0,1,2,...,[8 —1]}. If 8 is
an integer, then Ag := {0,1,2,...,8 — 1}; if 3 is not an integer, then Ag :=
{0,1,2,...,|8]}. We denote by

(x)g = X0T1T2 ... Tk - Thy1Tht2 - - - (2.2)

the couple formed by the string of digits zozi1xs... xxTrr12k42 ... and the
position of the dot, which is at the k-th position (between xy and zy41). By
definition the integer part (in base 3) of x is Zf:o x;871* and its fractional
part (in base 3) is 3/ % L1 @B77F If a Rényi B-expansion ends in infinitely
many zeros, it is said to be finite and the ending zeros are omitted. If it is
periodic after a certain rank, it is said to be eventually periodic (the period
is the smallest finite string of digits possible, assumed not to be a string of
zeros); for the substitutive approach see [F| [PF].

The Rényi [-expansion which plays an important role in the theory is
the Rényi [-expansion of 1, denoted by dg(1) and defined as follows: since
B° < 1 < B, the value Ts(1/f3) is set to 1 by convention. Then using the
formulae (2.1)

tr = [B],ta = |B{B}], ts = [B{B{B}}], - (2.3)
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The writing
dﬁ(l) = O.tltgfg e

corresponds to

+oo
1= 3"
i=1

Links between the set Zg of beta-integers and dg(1) are evoked in [E-VG]
[F-K] [G1] [G2] [V1] [V2]. A real number 3 > 1 such that dg(1) is finite or
eventually periodic is called a beta-number or more recently a Parry number
(this recent terminology appears in [E-VG]). In particular, it is called a simple
beta-number or a simple Parry number when dg(1) is finite. Beta-numbers
(Parry numbers) are algebraic integers [Pa] and all their conjugates lie within
a compact subset which looks like a fractal in the complex plane [So]. The
conjugates of beta-numbers are all bounded above in modulus by the golden

mean (14 /5) [So] [F-P].

3 Proof of Theorem 1.1

Since algebraic numbers (3 > 1 for which the Rényi (-expansion dg(1) of
1 is finite are excluded, we may consider that [ does not belong to N.
Indeed, if 8 =h €N, then dp(1) =0.h is finite (Lothaire [Lo], Chap. 7). If
B &N, then [f—1]=|8] and the alphabet Ag equals {0,1,2,...,|6]},
where |3] denotes the greatest integer smaller than or equal to f.

Let f(z) := :;Of tiz* be the “lacunary” power series deduced from the
representation dg(l) = 0.t1tats ... associated with the B-shift (lacunary in the
sense of Theorem 1.1). Since dg(1) is assumed infinite, its radius of convergence
is 1. By definition, it satisfies

f7hH =1, (3.1)

which means that the function value f(37!) is algebraic, equal to 1, at the real
algebraic number 37! in the open disk of convergence D(0,1) of f(z) in the
complex plane. This fact is a general intrinsic feature of the Rényi expansion
process which leads to the following important consequence by the theory of
admissible power series of Mahler [Ma].

Proposition 3.1.

lim sup Sn e (3.2)

n—+4oo Mp
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Proof. This is a consequence of Theorem 1 in [Ma]. Indeed, if we assume
that there exists a sequence of integers (n;) which tends to infinity such that
lim; sy oo Sn; /Mn,; = +00, then f(z) would be admissible in the sense of [Ma).
Since f(z) is a power series with nonnegative coefficients, which is not a poly-
nomial, the function value f(37!) should not be algebraic. But it equals 1.
Contradiction. O

Let us improve Proposition 3.1. Assume that

sn_ log(M(B))

li —
1m sup — > 1og(ﬁ)

and show the contradiction with (1.1) and (1.2). Recall that, if

d—1
Py(X) =) aiX' = ag [[(X = BD)

i=0 i=0

with d > 1, agag # 0, denotes the minimal polynomial of 3 = p© > 1,
having AW, 33 .. 3= as conjugates, the Mahler measure of 3 is by
definition

d—1
M(B) := |ag| J] max{1,]8%]}.
1=0

Giiting [Gii] has shown that the approximation of algebraic numbers by alge-
braic numbers is fairly difficult to be realized by polynomials. In the present
proof, we use a version of Liouville’s inequality which generalizes approxi-
mation theorems obtained by Giiting [Gii], and apply it to the values of the
“polynomial tails” of the power series f(z) at the algebraic number 37!, to
obtain the contradiction. Let us write

+o0
f(z) =) Qu(2) (3.4)

with
Mnp41

Qn(z) = Y t;z", n=0,1,2,.... (3.5)

=5y

By construction the polynomials @, (z), of degree my,41, are not identically
zero and @, (1) > 0 is an integer for all n > 0.

Denote by S,(z) = —1 + > ;% t;2° the myth-section polynomial of the
power series f(z)—1 for all n > 1. Recall that, for R(X) = > o; X" € Z[X],
L(R) := Y7, || denotes the length of the polynomial R(X). We have:
L(Sp) =1+ Y"1t =1+ Y"23 Q;(1). From Theorem 5 in [Gii] we deduce
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that only one of the following cases (G-i) or (G-ii) holds, for all n > 1:
(G —1) Su(B71) =0, (3.6)

1
(trsmiem) (pep)™

where P3(X) = X4Ps(1/X) is the reciprocal polynomial of the minimal
polynomial of 3, for which L(Ps) = L(Pj) € N\ {0, 1}.

Case (G-i) is impossible for any n. Indeed, if there exists an integer ng >
1 such that (G-i) holds, then, since all the digits ¢; are positive and that
B~ > 0, we would have t; = 0 for all i > s,,. This would mean that the
Rényi expansion of 1 in base ( is finite, which is excluded by assumption.
Contradiction. Therefore, the only possibility is (G-ii), which holds for all
integers n > 1. From Lemma 3.10 and Liouville’s inequality (Proposition
3.14) in Waldschmidt [W] the inequality (G-ii) can be improved to

1
1+ @m) ouEm

This improvement may be important; recall the well-known inequalities:

(G — i) |52 (871)] 2 , (37

(L — i) 1Sn(671)] > (3.8)

M(B) < L(Pg) < 2%5)\(B)

and see [W] p113 for comparison with different heights. On the other hand,

since [S,(671)| = ;;Ojn t;3~% for all integers n > 1, we deduce
-1y < L ges = .
Putting together (3.8) and (3.9), we deduce that
— <= %1 (3.10)
(1+ @) M@y
should be satisfied for n =1,2,3,.... Denote
Uy, 1= p for all n > 1.

(1) M@

Proof of (1.1): from (3.3) assumed to be true there exists a sequence of integers
(n;) which tends to infinity and an integer i such that

s log(M(3))

fi 114> 1.
— log(3) or all 7 > 19
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Now,

My, Sny Mn

1 a1 [ g . S
(W) M(B) : (1 +30t Qj(l))d71 M(B) =t

§=0
(3.11)
For ¢ > iy the inequality
log(M(8)) Sy
(B Toe(®) [Bmni
1= < 3.12
M(3) < M) (312

holds. This implies that the left-hand side member of (3.11) tends exponen-
tially to infinity when ¢ tends to infinity. By (3.11) this forces u,, to tend
to infinity. The contradiction now comes from (3.10) since the sequence (u,,)
should be uniformly bounded.

Proof of (1.2): for n =1,2,..., let us rewrite the n-th quotient

Un+1 BSn+1—8n (1 + 27;01 Qj(l))d_l

= (3.13)
U M Mp1—Mn n d—1
7 (14 S i)
as
ﬁ%m:—;nn Mpt1—M n—1 d-1
unts (i) ) w105 Q)
u - (m 1—m + 1)(d_1) (mn-l-l my + 1) d—1
v (14270 Qi)
(3.14)
and denote
Spt1—n My g1 —My
1 ﬂmn+1*mn
U, = 3.15
(Mpy1 —my +1)0=D M(B) ( )
and

d—1
L+ @i(1)
Wy i= (Mpy1 — mp +1)47D o (3.16)
" L+3770Qi(1)
so that upi1/un = U, W,

Lemma 3.2.

0 < liminf W, (3.17)

n—-+o0o

Proof. Assume the contrary. Then there exists a subsequence (n;) of integers
which tends to infinity such that lim; ,;. Wy, = 0. In other terms, for all
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€ > 0, there exists 4 such that ¢ > ¢; implies W,,, < ¢, equivalently

(Mp 41 — M, + 1) (1 + i Q;(1)) <eTT x (14 i:Qja)). (3.18)
Jj=0 j=0

Since, by hypothesis, t;, > 1 and ¢,,,+1 > 1 for all n > 1, we have: n; <

1+ 27;_01 Q;(1). On the other hand, Qn, (1) < |B](mp,+1 — mn, +1). Then,
from (3.18) with € taken equal to 1, we would have

n;—1
: Qn, (1) Mp,+1 —Mp, +1 3
S <1 (1) < d < : i T <28
"= +J§0QJ( )_(mniJrl*mni‘i»l)*l_LﬁJX Mp;4+1 — Mp; _2|_6J
(3.19)
But the left-hand side member of (3.19) tends to infinity which is impossible.
Contradiction. O

Let us assume that (1.2) does not hold and show the contradiction ; that
is, assume that liminf, o (mpi1 — m,) = +oo and limsup,, ., , (Sn41 —

Sn)/(Mp+1 — my) > log(M(8))/ log(5) hold. Then

log(M(8)) SngtlTong
[ B g (3.20)
= < .
M(5) M(3)

for some sequence of integers (n;) which tends to infinity. This proves that
limsup,, ., Un = 400 since lim; .4 Uy, = +00 exponentially, by (3.15)
and (3.20).

From Lemma 3.2 there exists r > 0 such that W,, > r for all n large
enough. Therefore, un41/u, = U,W,, > rU, for all n large enough. Since
limsup,,_, o Un = 400 we conclude that limsup tn41/u, = 400, hence that
lim sup u,, = +00. This contradicts (3.10) and proves (1.2).

4 A direct proof of Corollary 1.2

Let 8 > 1 be a Salem number such that 8 ¢ C;. Using the notations of
Theorem 1.1 we show that the assumption

lim sup Snos (4.1)
n—+oo Mp
leads to a contradiction.
Denote by K the algebraic number field Q(3), considered as a multivalued
field with the product formula [C] [Sw] (see also [Lg]).
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The present proof is merely an adaptation of that of Theorem 1 in [A],
though the objectives are different, and therefore does not merit to be pub-
lished. We just indicate a few hints for the interested reader.

The main result which is used is Corollary 1 of the Main Theorem in [C],
as in [A]. This is a version of the Thue-Siegel-Roth Theorem given by Corvaja
which is stronger than Roth Theorem for number fields [Le] [Sw] in the extent
it allows to introduce a missing proportion of places of K by considering the
projective approximation of the point at infinity in P*(KK). Since /3 is a Salem
number, it is a unit [B-S]. Hence, this missing proportion has just to be chosen
among the pairwise distinct Archimedean places of K.

5 On the class Qo

5.1 Perron numbers

Let us give, after Solomyak ([So], p 483), the example of a Perron number
which is not a beta-number therefore which is not in the class Cs, without
knowing whether it is in the class Qg. This example allows to estimate the
sharpness of the upper bound log(M(3))/log(5) in (1.1). Recall that a real
number (§ > 1 is a beta-number if the orbit of x = 1 under the transformation
T3 : x — Pz (mod1) is finite [Lo] [PF]. The set of all conjugates of all beta-
numbers is the union of the closed unit disc in the complex plane and the set
of reciprocals of zeros of the function class {f(2) =1+ > a;2z/ | 0 <a; < 1}.
The closure of this domain, say ®, is compact and was studied by Flatto,
Lagarias and Poonen [F-P] and Solomyak [So]. After [So], the Perron number
B = 1(1+V/13), dominant root of P(X) = X?— X —3, is not a beta-number,
though its only conjugate (3’ = (1 —+/13) lies in the interior int(®). We
have M(8) = 3. By Theorem 1.1 the “quotients of the gaps” are asymptotically
bounded above by log(3)/log(8) = 1.3171..., a much better bound than
the degree d = 2 of 3 (see Lemma 5.1). This does not suffice to conclude that
1(14 V13) belongs to Qo.

Do all Perron numbers belong to Qg ? Let 3 > 1 be a Perron number of
degree d > 2 and denote by g, 53) .. 3= the conjugates of 3 = (0,
roots of the minimal polynomial Ps(X) of 3. Let Kz := max{|37]| | i =
1,2,...,d—1}.

Lemma 5.1. Let n = ng (with 2 < ng < d) be the number of conjugates of 3
of modulus strictly greater than unity (including 8). Then
log(M -1
log () (dB3)°% log B
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1
Proof. Obvious since (Lemma 2 in [Li2]): Kz < 6(1 — W). O
The upper bound (5.1) does not allow to give a positive answer to the
question and has probably to be improved.

5.2 Transcendental numbers

Let us show that the Komornik-Loreti constant [KL] [AC] belongs to Qél).

Theorem 5.2. There exists a smallest g € (1,2) for which there exists a
unique expansion of 1 as 1= 8,¢7" , with 8, € {0,1}. Furthermore,
for this smallest q, the coefficient 6, is equal to 0 (respectively, 1) if the
sum of the binary digits of n is even (respectively, odd). This number q can
then be obtained as the unique positive solution of 1 =Y 02 6,q7 ™. It is
equal to 1.787231650. . ..

This constant ¢ is named Komornik-Loreti constant. Allouche and Cosnard
[AC] have shown the following result.

Theorem 5.3. The constant q is a transcendental number, where the se-
quence of coefficients (0n)n>1 s the Prouhet-Thue-Morse sequence on the

alphabet {0,1}.

The uniqueness of the development of 1 in base ¢ given by Theorem 5.2
allows to write

dg(1) = 0616265 . . .,

the coefficients ¢, being the digits of the Rényi ¢-expansion of 1. Since
the strings of zeros and 1’s in the Prouhet-Thue-Morse sequence are known
(Thue, 1906/1912; [AS]) and uniformly bounded, the constant ¢ belongs to
the class le).

As second example, let us show that Sturmian numbers in the interval
(1,2) (in the sense of [CK]) belong to Q((Jl).

A real number > 1 is called a Sturmian number if dg(1) is a Sturmian
word over a binary alphabet {a,b}, with 0 < a < b= |3]. Chi and Kwon
[CK] have shown the following theorem.

Theorem 5.4. Fvery Sturmian number is transcendental.

Let us consider all the Sturmian numbers g € (1,2) for which the two-
letter alphabet is {0,1}. For such numbers lacunarity appears in dg(1) (in
the sense of Theorem 1.1). By Theorem 3.3 in [CK] strings of zeros, resp. of
1’s, cannot be arbitrarily long. This gives the claim.
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1. Introduction

Underlying the notion of a riling there is the notion of a point-set. In this paper, we
assume point-sets to be Delaunay sets [16,17]. There exist infinitely many possibilities
to build a tiling from a Delaunay set, and conversely, there are infinitely many ways to
build a Delaunay set from its associated tiling. A possible method is to consider the set
of vertices of a tiling as an associated Delaunay set [12], which is the correspondence
we will assume in the following. We will indifferently mention a tiling or its associated
Delaunay set, displaying or not the edges in the figures.

In general, there does not exist a symmetry group for a tiling nor for its associated
Delaunay set, except for periodic tilings and Jartices. Historically, the latter merge from
crystallography, and are associated with crystals. Note that in 1991, after the discovery
of modulated phases and of quasicrystals, crystallography have been divided in two
categories: periodic crystallography, and aperiodic crystallography [10]. Let us sketch
the general algebraic frame of periodic crystallography.

Definition 1. A crystallographic group in R?, or a space-group in RY is a discrete
group of isometries whose maximal translation subgroup is of rank @, hence isomorphic_

to Z9.

Definition 2. A periodic crystal is the orbit under the action of a crystallographic group
of a finite number of points of RY.

We can illustrate these definitions with the square lattice A=Z + Ze*?, which is
a classical lattice case. This set presents a 4-fold rotational symmetry. The symmetry
space-group G associated with A is the semi-direct product of the translation-group of

A by its rotation-group
G=A>{]1, L
its internal law being
(ALR)A,R') = (A+RM,RR")

with 4, A’ €4 and R,R' € {1,—1,ei™2 e~}

In the context of the 18th problem of Hilbert, Bieberbach has shown that the num-
ber of isomorphism classes (equivalently of conjugation classes) of crystallographic
groups is finite for all d [25]. Therefore, the number of crystallographic groups leaving
invariant a fixed crystal of R? is finite.

For quasicrystals, as a consequence of aperiodicity, we do not have such a convenient
algebraic structure of symmetry space-groups, as in the periodic case. For quasicrystals
determined by some quadratic Pisot-Vijayaraghavan (PV) unit, generically denoted by
B>1, we can introduce an underlying structure, the so-called beta-lattice [1]. Exper-
imentally observed quasicrystals are related to well-known PV numbers [11], namely

for ﬁ=1‘———]~+—5‘£, B=6=1++2, and f=0=2+3.
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Beta-lattices are based on beta-integers. When f is a PV number, the set of beta-
integers, denoted by Zp, is a self-similar Meyer set, with self-similarity factor . Recalil
that a Delaunay set is a Meyer set A€ R? if A — AC A+ F, where F is a finite set.
We generically define a beta-lattice I'=TI'(f) € R¢ by

d
= Z 2385
i=1
with (e;) a base of R?. Therefore, I" is a self-similar Meyer set with self-similarity
factor . With this respect, beta-lattices are eligible frames in which one could think
of the properties of quasiperiodic point-sets and tilings, thus generalizing the notion of
lattice in periodic cases.

The aim of the present work is to extend the algebraic frame of periodic crystals
to beta-lattices: we construct a space-group matching Definition 1 such that the beta-
lattice is the orbit under the action of this space-group of a finite set of points of R?,
as in Definition 2. In other words, we show that a beta-lattice is at least a “crystal”
for a “space-group” that we determine explicitly.

We consider the cases in which f is one of the “quasicrystallographic” numbers
mentioned above. Since we restrict ourselves to the case d =2, we rather talk of
“plane-groups”. We proceed by first recalling the internal additive and multiplicative
laws on the set of beta-integers Zg C R, which “almost” endow this set with a struc-
ture of ordered ring (order induced by that of R) [6], then by establishing a set of
algebraic operations, acting on the given beta-lattice by leaving it invariant. We report
on the algebraic constructions of such extended plane-groups, leaving aside the deli-
cate questions of compatible metrics and of the number (finite or infinite) of possible
“space-groups” leaving invariant a given beta-lattice. However we show that the internal
transformations defined on beta-lattices are compatible with Euclidean transformations.

Compatibility property is given by the following definition.

Definition 3. Let T be an intefnal law defined on RY, and let ACRY be a set. We
say that an internal operation T defined on A is T-compatible with the operation T
if for all 4, A'€A, AT €A implies ATA'=AT .

The article is organized as follows. In Section 2, we recall some definitions on
Delaunay sets, Meyer sets, and on cyclotomic PV numbers. In Section 3, we recall
results on the arithmetics and the internal laws on Zg. Most of this material can be
found in [6], and is essential for the understanding of the present article. In Section 4,
we give the definition of beta-lattices in the plane, together with their rotational and
translational properties. A general form for beta-lattices is I;(f)=Zp + Zze**V for p
a cyclotomic PV unit of symmetry N. Fig. 1 is a possible tiling of such a beta-lattice
with f =1, the golden mean, namely a t-lattice. Section 5 is the central part of the
article, with its main result: the construction of the plane-groups associated with the
beta-lattices. We use the internal additive and multiplicative laws on Zg to define a
symmetry point-group for Ij(f) in Theorem 1, and the free symmetry plane-group of
Ti(f) in Theorem 2. Then we illustrate the action of the symmetry plane-group of
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Ii(7) on the tiles of a 7-lattice. Section 6 is dedicated to the asymptotic properties of
beta-lattices. The striking feature which is shown there is that asymptotically -the set
of beta-integers behaves like a ring, but with a contraction factor. We touch here the
fundamental question of whether a beta-lattice can be considered as a module over an
ordered ring. If it were the case, the present construction would enter into the realm of
the Artin—Schreier theory ([13, Chapter 6]). Eventually, we make explicit the rotation
actions for the quasicrystallographic numbers 7, 6 and @ in the appendix.

2. Preliminaries

2.1. Delaunay sets and Meyer sets

Delaunay sets were introduced as a mathematical idealization of a solid-state struc-
ture, see [12]. A set AC R? is said to be uniformly discrete if there exists 7>0 such
that ||x — y||=r, for all x, y€A. We can equivalently say that every closed ball of
radius 7 contains at most a point of A. A set A is said to be relatively dense if there
exists R>0 such that for all y € R?, there exists x € 4 such that ||x — y||<R. We can
equivalently say that every open ball of radius R contains at least a point of A. If both
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conditions are satisfied, A is said to be a Delaunay set. The possible range of ratios
R/r is studied in [21] as a function of d. The action of the group of rigid motions
(or Euclidean displacements) of R? on the set of uniformly discrete sets and Delaunay
sets can be found in [22].

The first models of quasicrystal were introduced by Meyer [16-18], and they are
now known as Meyer sets. A set A CRY is said to be a Meyer set if it is a Delaunay
set and if there exists a finite set F such that

A—=—ACA+F

This is equivalent to A — A being a Delaunay set. A review on Meyer sets can be
found in [19,20].

2.2. Crystals and Bravais lattices

Bravais lattices are used as mathematical models for crystals. A Bravais lattice is an
infinite discrete point-set such that the neighborhoods of a point are the same whichever
point of the set is considered. Geometrically, a Bravais lattice is characterized by all
Euclidean transformations (translations and possibly rotations) that transform the lattice
into itself. The condition 2cos2n/N €Z characterizes Bravais lattices which are left
invariant under rotation of 27/N, N-fold Bravais lattices, in R? (and in R?). Let us
put {=eZ"N (N =1 If we consider the Z-module in the plane

2] =Z+Z+20 + + 20 =2 [2%5%] +z [2005%} 8

we get the cyclotomic ring of order N. This N-fold structure is generically dense in
C, except precisely for the crystallographic cases. We indeed check that Z[{]=Z for
N=1or 2, Z[[]=Z + Zi for N =4 (square lattice), and Z[{]=Z + Ze'™> for the
triangular and hexagonal cases N =3 and 6. Note that a Bravais lattice is a Meyer set
such that = {0}.

2.3. Non-crystallographic cases

For a general N, the number 2cos2n/N is an algebraic integer of degree m=
@(N)/2<[(N — 1)/2] where ¢ is the Euler function and |y| denotes the integer part
of a real number y. We shall now recall some definitions on numbers.

A Pisot-Vijayaraghavan number, or PV number in short, is an algebraic integer
B>1 such that all its Galois conjugates (i.e. other roots of the involved algebraic
equation) have their moduli strictly smaller than 1. A cyclotomic PV number with
symmetry of order NV is a PV number f such that

27
Z |2cos — | = Z[f]. 1
[ cos N] [6) (1)
Then Z[{1=Z[B] + Z[B){, with { =€, is a ring invariant under rotation of order
N (see [1]). This ring is the natural framework for two-dimensional structures having
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p as scaling factor, and 2n/N rotational symmetry. In this paper, we will focus on
quadratic PV units. They are of two kinds. The first kind is such that f is solution of

X’=aX+1, a>1
and its conjugate is ' =—1/f. The second kind is such that f§ is solution of
X’=aX-1, a>3

and its conjugate is f’=1/f. Let us give some examples of those numbers, together
with their respective Galois conjugates, related to non-crystallographic cyclotomic struc-
tures in the plane, and minimal polynomials, the following notations being used through-
out the article:

N =35, ﬁ=T=I+2\/5:l+ZCOS-SE,
= —% =1-1, X*—X—1 (pentagonal case),
1++/3 2n
N = — i e — =2 s
10, =1 3 cosm,
7= . =1-1, X?*-X -1 (decagonal case),
1
2n
N =8, B=5=l+'\/5=1+2cos?,
& = —% =2-6, X?*—-2X-1 (octogonal case),

;
N =12, ﬁ=9=2+\/§=2+2cos‘i—;,
1

@= 7= 4—0, X*-4X+1 (dodecagonal case).

Note that in the case N =7, we have =1+ 2cos2n/7 which is solution of the cubic
equation X3 — 2X? — X + 1=0. At this point, we should be aware that finding a
PV number such that the cyclotomic condition (1) is fulfilled for N =16 is an open
problem!

3. Additive and multiplicative properties of beta-integers

3.1. Beta-expansions

When a number > 1 appears as a kind of fundamental invariant in a given structure,
it is tempting to introduce into the procedure of understanding the latter a counting
system based precisely on this f. Let us explain here what we mean by counting

system.
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Among all beta-representations of a real number x>0, i.e. infinite sequences (X; )<z,
such that x= 3, x;f' for a certain integer k, there exists a particular one, called
the beta-expansion, which is obtained through the “greedy algorithm™ (see [23,24]).
Recall that [y| is the integer part of the real number y, and denote by {y} the
fractional part of y. There exists k €Z such that f*<x<pt+l, Let x¢ = |x/B*| and
re={x/p*}. For i<k, put x;=|Bris,), and r;= {Pris1}. Then we get the expansion
x=xf* +x1p + - If x<1 then k<0, and we put xo=x_; = --- =3y =0.
The beta-expansion of x is denoted by

<x>ﬂ = XpXpe—1 X1 Xg Xy X -,

The digits x; obtained by this algorithm are integers from the set 4={0,..., [B] =1},
called the canonical alphabet, where [B] denotes the smallest integer larger than f. If
an expansion ends in infinitely many zeros, it is said to be finite, and the ending zeros
are omitted. For instance, if =1~ 1.618---, then x; € {0, 1}. The t-expansion of, say,
4=12+1+1/7% is (4). = 101.01. There is a representation which plays an important role
in the theory. The beta-expansion of 1, denoted by dg(1), is computed by the following
process [24]. Let the beta-transformation be defined on [0, 1] by Tp(x)=fxmod 1.
Then dp(1)=(4)i>1, where t;=[BT;~'(1)]. Bertrand has proved that if § is a PV
number, then dj(1) is eventually periodic [2]. For instance, di(1)=11, ds(1)=21,
and dp(1)=322--- =3(2)®, where (-)® means that the digit between parenthesis is
repeated an infinite number of times. A number § such that dg(1) is eventually periodic
is traditionally called a beta-number. Since these numbers were introduced by Parry
[23], we propose to call them Parry numbers. When dg(1) is finite, f is said to be a

simple Parry number.

3.2. The set of beta-integers

We now come to the notion of beta-integer. The set of beta-integers is the set of
real numbers whose beta-expansions are polynomial,

Zp={x € R|(|]x|}p =x¢---x0}
=Z; u(—zj,'),

where Z7 is the set of non-negative beta-integers. The set Zp is self-similar and sym-
metrical with respect to the origin

ﬁZ,g C Zﬁ" Zg = —Zﬁ.

It has been shown in [3] that if § is a PV number then Zg is a Meyer set. This
means that there exists a finite set 7' such that Zy—Zy CZg+F. This beta-dependent
set F has to be characterized in order to see to what extent beta-integers differ from
ordinary integers with respect to additive and multiplicative structures. This problem is
solved in [3,4,6] for all quadratic PV units and for a few higher-degree cases (see also
[27]). We now restrict the presentation to quadratic PV units. There are two cases to

consider,
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Case 1 (B is solution of X* =aX+1, a=1): The Galois conjugate is f’=—1/B. The
canonical alphabet is equal to 4 =1{0,...,a}, the beta-expansion of 1 is finite, equal to
dg(1)=al, and every positive number of Z[f] has a finite beta-expansion [7]. Denote
A = {L,S}. Define the substitution gz by

[ L~ L°S,
E {3 — L.
The fixed point of the substitution, denoted by g7°(L), is associated with a tiling of
the positive real line, made with the two tiles L and S, where the lengths of the tiles
are /(L)=1, £(S)=Tj(1)=p — a=1/p, see [26,5]. The nodes of this tiling are the
positive beta-integers.

Case 2 (B is solution of X*=aX —1, a=3): The Galois conjugate is f’=1/f. The
canonical alphabet is equal to 4 ={0,...,a— 1}, the beta-expansion of 1 is eventually
periodic, equal to dg(1)=(a — 1)(a —2)“, and every positive number of Z[f] has an
eventually periodic beta-expansion, which is finite for numbers from N[f], [7]. The
substitution ¢z is defined on A ={L,S} by

s L %715,
BN s 1o

As in Case 1, the fixed point of the substitution is denoted by Gﬁm(L), and is associated
with a tiling of the positive real line, made with the two tiles L and S. The lengths of
the tiles are /(L)=1, £(S)=Ty(1)=p - (a—1)=1~—1/B [26.5]. The nodes of this
tiling are the. positive beta-integers.

In both cases, we shall denote by fag (L)| the number of letters in the word generated

by gf(L), and by |g](L)|z, respectively |o5(L)|s, the number of letters L, respectively
S, in the later word.

3.3. Beta-integers arithmetics
Since Zg is a Meyer set symmetrical with respect to the origin, we have Z; —

Zp=1Zp+ZsCZs+ F. Hence, the set Zy can be qualified as “quasi-additive”. It can
also be qualified as “quasi-multiplicative”. Accordingly, addition and multiplication of

beta-integers are characterized below.
e In Case 1, we have

zﬁ+zﬁczﬁ+{o,i(1-%)}czﬁ/ﬁz, (2)

zﬁxzﬂczﬁ{ ,i%,.‘.,i%}czg/ﬁ% 3)

For instance, for f=1, 1+1=2=1t+(1—=1/7), and (P +1)(P+1)=>+* - I/z.
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e In Case 2, we have

Zg—f—ZﬁCZﬁ-l-{O,ﬂ:%}Ezﬁ, (4)
Z; +Z5 C Z;/p,
ZﬂxZﬁCZg+{0,ié,...,i%}CZg/ﬁ. (3)

For instance, for f=0, 2+2=0+1/0=2x 2.
The set Zp, introduced in Eq. (4), is called the set of decorated beta-integers. This set
plays an important role in the theory of algebraic model sets, and is to be mentioned

in the two-dimensional case (Fig. 4).
3.4. Beta-integers as an additive group
Let by and b, be the mth and nth beta-integer.

Definition 4. We define the beta-addition as the following internal additive law on the
set of beta-integers

b ® by = byp.
The beta-substraction is defined by
bm e b" . bm—n L bl’.ﬂ EB(—'b;,).

The set of beta-integers endowed with the beta-addition has an abelian group struc-
ture [4,6]. Actually, we can endow any countable strictly increasing sequence & =
(8n)nez of real numbers, 5o =0, with such an internal additive law by simple isomor-
phic transport of the additive group structure of the integers, the additive law of &
being defined by

def
Sm D Sy = Sy

Recall that the internal additive law @ defined on &, is said to be compatible with
addition of real numbers if for all (m,n) € 72, sy +s, € & implies $,+5; = Sy, B 5, and
obviously, for an arbitrary sequence &, the law @ is not compatible with the addition
of real numbers. Yet this property holds true for Zj!

Lemma 1. Beta-addition is compatible with addition if B is a quadratic PV unit.

Proof. It has been proven in [4,6] that beta-addition has the following minimal dis-
tortion property with respect to addition: for all (b,,b,) EZE with f a quadratic PV

unit,
) {0, +(1 — %)} in Case 1,
by + by — (bu © by) € { {0, £1/8} in Case 2. W
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Suppose that for a given couple of integers (m,n), there exist ¢ such that by, + b, = by.
Then by— (b, ® b,) verifies (6), and this implies by —(by &b, ) = 0. Indeed the distances
between two non-equal beta-integers are larger than or equal to /(S)=1/f in Case I,
and /(S)=1—1/p in Case 2. So we have b, = by, @ b, = by, Which gives g=m+n.

O

For instance, if =1, then 1@ 1=tand 2—t=1—1/7, and if =0, then 252=106
and 4 — 0=1/6.

3.5. Internal multiplicative law for beta-integers
We could attempt to play the same game with multiplication by defining

oy def
b *x b.u =, bmn

for all o‘(lr_‘;v,,,,l:',,)EZ2 However, we reject this definition of an internal multiplica-
tive law since it is nor compatible with multiplication in R. For instance, for f=r1,

bszg—TXT—TZ b3?éb4

Definition 5. We define the quasi-multiplication as the following internal multiplicative
law on the set of beta-integers:

bn: ® br_. = { g(m"“ﬂps(m)ps("))
(mn—ps(m)ps(n))

in Case 1,
b 'Case 2. )

where, for n>0, ps(n) denotes the number of tiles S between by =0 and b, [6]. For
instance, for 7, ps(5)=2 while for 8, ps(5)=1. Geometrically, for n>0, the nth beta-
integer is the right vertex of the nth tile of the tiling associated with Zz, which can
be expressed as b, =n+ (=1 +£(S))ps(S) and from which we derive the following:

ps(n) = : —11/[3 (n—b5,) Casel,
ps(n) = f(n—b,) Case 2.
For n<0, ps(n)=—ps(—n).

Lemma 2. Quasi-multiplication is compatible with multiplication of real numbers
if B is a quadratic PV unit.

Proof. Quasi-multiplication has minimal distortion property with respect to multiplica-
tion [4,6]: for all (by, b,,]eZ% with 8 quadratic PV unit,

{(O,il, ,xa)(1- )} Case 1,
buby (bm ®b”) i { {(0, | P l)i:"n—(b—“} Case 2. (8)
Suppose that for a given couple of integers (m,n), there exist a g such that buby = by.
Then by —(bn ®by) verifies (8), and this implies by —(bm @b,) =0. Indeed the distances
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between two non-equal beta-integers are larger than or equal to £(S)=1/p in Case 1,
and /(S)=1-1/p in Case 2. We then have b, = by ® by = Byy—aps(m)ps(ny in Case 1 and
by = by @ by = bn—ps(mypsny in Case 2, which gives g=mn — aps(m)ps(n) in Case 1,
and g =mn — ps(m)ps(n) in Case 2. O

An interesting outcome of this multiplicative structure is the following explicit result
concerning self-similarity properties of the set of beta-integers.

Let U=(ug)qen be the linear recurrent sequence of integers associated with f. In
Case 1, the u, are defined by ug» =augy + 1y with up=1, u;=a + 1. In Case 2,
the u, are defined by ug42 =augy) —u, with ug=1, u; =a. The recurrence is possibly
extended to negative indices.

Proposition 1. Let f be a quadratic PV unit, and Zy the corresponding set of beta-
integers. Then for g €N and b, € Zg we have the self-similarity formulas:

»Bq by, = b"qb" = buq ®b, = bu,, n—aps(ug)ps(n) = buq n—(ug—tz—1) psin) (in Case 1),

B? by = bu,by = b, @ by = bu, n—pe(u)pstn) = buyn—(tg—1) pstn) (in Case 2).
The proof is a direct consequence of the definition of the quasi-multiplication and

of the following lemma giving some of the properties of the counting function pg.

Lemma 3. The values assumed by the counting function ps(n) when n=u, €U
are

ps(ug) = =171 (in Case 1),

ps(ttg) = ug—y (in Case 2).

Proof. Case 1: Let w;=ps(uy). By construction, u,= [G’;(L)l and w, = fag(L)[.g.
Therefore, the sequence (wy) satisfies the same linear recurrence as (ug), that is wy =
awg—1+Wy—2, With wo =0, wy = 1. Thus wy, = aw; +w = (u;—u; )/a=a and w3 = aw,+

wy =(u3 —u2)/a =a*+1. The recurrence is proved through wy4; = awy +wy—; = a(u, —

tg1)/a+ (g1 — tig—2)/a= (g1 — tg)a.

Case 2: Let wy = ps(uy). We have wy = aw,_; —w,_,, with wy=0 and w; = 1. Then
wy=aw; —wp=u;=a and w3 =awy — w, =u, =a* — 1. The recurrence is proved
through wy+1 =awy — wy—1 =aug_; —u,y; =u,. O

It should be noticed that quasi-multiplication does not define a group for not being
associative and is not distributive with respect to beta-addition. So it seems hopeless to
obtain a ring structure, like we have with integers, with such an internal multiplicative
law. Note that beta-addition and quasi-multiplication are related to some operations in
numeration systems studied in [9,14,15]. Nevertheless, the set of beta-integers recovers
a ring structure asymptotically, as shall be explained in Section 6.
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4. Beta-lattices in the plane
4.1, General considerations

We have seen that the condition 2cos(2n/N)€ Z, i.e. N=1,2,3,4 and 6, charac-
terizes N-fold Bravais lattices in R? (and in R?). We would like to generalize this
notion when N is quasicrystallographic i.e. N=35,10,8 and 12, respectively, associ-
ated with one of the cyclotomic Pisot units T=2cos(27/10), =1+ 2cos(27/8) and
f=2+2cos(27/12). As a consequence of the results presented above, if (e;) is a basis

of R?, then the point set

d
= z Zﬁei
i=1

is a Meyer set and a lattice for the law &. Moreover Zy ® I' C I'. We shall adopt the
generic name of beta-lattice for such a I'. Examples of beta-lattices in the plane are

point-sets of the form
ry(f)=42p+ zﬁgqs

with {=e?*"V, for 1<g<N — 1. Note that the latter are not rotationally invariant.
Examples of rotationally invariant point-sets based on beta-integers are

defN_l vf
A4,EU Y, 1<g<N-1
j=0

and

oy def Nl i
Zgl{1= > Zpl.
Jj=0

These sets A, and Zg[(] are Meyer sets.
Let us now focus on the simplest case, namely N =35 or 10. It is more convenient
to introduce the root of unity {=e'*>, since T=2cosn/5={+ (°, where [ is the

complex conjugate of {. We obtain the set
Z[{] = Z+ZL+ .3 + 2.0 + T2
Consider now the following t-lattices in the plane:
Fy=Z:+ Zl% g=1,2 3, or4d

The following inclusions were proven in [3]:

T
I, cZdc =

It has been shown that a large class of aperiodic sets can be embedded in beta-lattices
such as Ig(f) (see [3]).
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Fig. 3. The J-lattice [j(d) with points (left), and its trivial tiling obtained by joining points along the
horizontal axis, and along the direction defined by {.

On Figs; 2-4, we displayed the t-lattice Ij(z), the d-lattice I}(5) and the decorated
O-lattice, I1(6) =Zp + Zp{, respectively, both as point-sets, and as tilings.

4.2. Rotational properties of the beta-lattices I;(f)

Although beta-lattices are not rotationally invariant, we can nevertheless study the
action of rotations on them. In this section, and throughout the rest of the article, we
focus on Ij(f). For f=1 and 4, any beta-lattice I;(8) is a subset of the properly
scaled beta-lattice I3(f). Therefore, the rotational properties of I;(B) can always be



Fig. 4. The decorated f-lattice () with points (left), and its trivial tiling obtained by joining points along
the horizontal axis, and along the direction defined by (.

reexpressed in terms of the rotational properties of Ij(f). Note that since @ is a
quadratic PV unit of the second kind, the statement is slightly different, since the
B-lattices I,(6) are not subsets of the properly scaled Ii(f), for g # 1, but of its
decorated version I3(6).

We introduce the algebraic integer associated with {, y={+ [= 2 cos(2n/N'), which
entails (2=—1+ y{, and

P=n+vl, ¢ge€{01,.. ,N—-1} (9)
A rotation by ¢27/N on an arbitrary element by, + b,{ of I;(f) then gives
(b + bul) = (Hgbm — vghn) + (Vobm + (11g + vg )b )L. (10)

This is not an element of I3(f) in general, but belongs to a deflated version of I3(f)
by a certain factor. If we consider the values of the pairs (174, V,) and of 7, +v,x, when
p assumes the specific values 7 and &, we can determine this deflation factor. When
B=0, {9(by + b,{) belongs to the twice decorated O-lattice 11(8), as will be shown
explicitly.

e When f=r, the results are given for { =e?"!?, y=r1.

(ﬂq’ "'q) = (LO) (Os 1) (_I:T) (_T:T} (—Tal)
Ng+ver = 1 T T l 0,

together with (7545, vg+s) = (—1g, —Vg). Hence

rrocrion ({us(1-)}-{os -

Iy(z)
2

=
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Note that since y =1, Ii() is endowed with specific properties which are not en-
countered in other cases, namely when f=4, and f=6. These properties are given
by the following lemma.

Lemma 4. For {=e'™", all elements of the cyclic group {¢%,9€{0,1,2,...,9}} are
elements of the t-lattice Ii(1).

Proof. The demonstration is trivial from the values assumed by 1g and v, in the case
of 1,

{T=ng+vel, withngv, €{0, £, 27}, O
Also note that from the self-similarity property of Z, we have ,b, € Z,, Vby EZ,

and (ng + v, )b, € Z,, for all g and n.
® When =4, {=¢“*® and y=5—1.

g = 0 1 2 3
(113:vg) = (1,0) (0,1) (=1,6 = 1) (=6+1,1)
Ng+ver = 1 6-1 1 0,

together with (#1544, Vg44)=( —1lg, —Vy ). Hence

PTG C i) + ({O,:I: (1 ' g) 0 (1 _ é)}
1 1 :
el a0-9
T'y(4)
53

Note that § — 1=1/2 is not a d-integer. Its d-expansion is (6 — 1)s=1-1. It turns
out that only {, %, {* and 1 are in I;(J).
e When f=0, {=e2¥12 and y=0—2.

g = 0 ] 2 3 4 5
(g:vg) = (1,0) (0,1) (=1,0~2) (=0+2,2) (=2, —2) (=6+2,1)
Ng+ver= 1 6-=2 2 0-2 1 0,

together with (#g+6, Vg+6) = (—1g, —Vy). Note that § — 2=+/3 is not a O-integer.
Moreover, the 6-expansion of § — 2 is infinite: (6 — 2)y=1-(2)®. Then, only {, 8,
{7 and 1 are in I;(0). Let us introduce the decorated 6-lattice (), as we have
done in the one-dimensional case (Eq. (4)),

I'(8) c I (8) =7y + 7.
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Since § —2=2— 1/6, then all (¢ are in [}(6), and

{97(0) € I (0) + ({O,ﬂ:-é-,ig} + {O,i%,i%} c)
c Fi(8) =2y + Zyt,
where Zg=2Z + {0,%1/6,%2/6}.
4.3. Translational properties
They are deduced from Egs. (2) and (4). In Case 1,
T4(B)+ To(B) C Ty(BY/F*

and in Case 2,

Ty(B)+Ty(B) C Fo(B).

5. A plane-group for beta-lattices

an

Since beta-lattices of the type I(f) are not rotationally and translationally invariant,
we shall enforce invariance by replacing the usual additive and multiplicative laws by

the beta-addition and the quasi-multiplication.

5.1. A point-group for beta-lattices in the plane

Explicit calculations of internal rotation actions on Ij(f), referred to as beta-
rotations, are given in the appendix. Note that since the quasi-multiplication is not
distributive with respect to beta-addition, we find several candidates for internal rota-
tional operators on I;(f). The choice for the beta-rotations presented in the following
proposition is driven by compatibility property. Other internal rotational operator are

not compatible with Euclidean rotations!

We formally imitate the expressions of successive rotations given by Eq. (10), by
replacing in the equations, + and — by @ and ©, and x by ®, when necessary.

Proposition 2 below defines the beta-rotations on I3(f).

Proposition 2.

o When B =1, with the notations of (9), the following 10 operators 1;, ¢=0,1,...,9,

leave I3(7) invariant:
I'g © (bm + bng) — I}qu e "qbn =+ (qum @ (’?q + Vg )b )L
o When =6, the following operators leave I3(8) invariant:

1 0] (bm + buc) — ‘_bu + (bm (&) ébn S| bn )C’ = "bn + bm—'r2n—2ps(u);
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# O] (bnr + an) - _(bm & 5bn S, bn) + (5!751 b, ® bﬂ )C
= _'bm+2n—2pg(ﬂ) - bzm+::—2pg{n;)‘:,
o (bm -+ an) = _'(abm S bm 5} bn) = bm": = _b.'!nl—i-n—Zps(m) + bm':

o When B=0, the following operators leave T (8) invariant:

11 © (b + bal) = —b, + (b, @ Ob, & 2b,), = —b, + bm+20—psin)Cs
72 © (b + byl) = —(by & 0b, © 2b,) + (0by © 2By, & 2b,)C
= —but2n—psn) + bom+20—psm) s
73 © (by + byl) = —(6b,, © 2b, & 2b,) + (2b,, @ 0b, © 2b,)C
= —bam+2n—psm) + b2mt2m—psins
74 © (by + bul) = —(2byy @ 6By © 2b,) + (0by, © 2by, & by,
= —bam+2n—ps(m) + Bamtn—ps( s
rs © (by + bul) = —(0by © 2b,, ® b)) + byl = —but2m—pg(m) + bl

For =1, 6 or 8, let the composition rule of these operators on Ii(f) be defined by
") ez=ro( 0z)
and denote by Id the identity and by 1 the space inversion

10z=—z

Then, the composition rule (r,r')— 17" is associative and the Sfollowing identities hold:
ro=1d and ryinp =1y =11 for g=0,1,...,(N/2 )—1, where N is the symmetry order

of B.

Lemma 5. Beta-rotations defined in Proposition 2 on Ii(B) are compatible with
rotations when f assumes one of the specified values 1, 5 and .

Proof. We deduce from Egs. (6) and (8) that beta-rotations have minimal distortion
property with respect to ordinary rotations: let Zmn = by + Byl € I1(B), then

e f=r, ‘:’qzm,n — 53Oz, € {0, H(1~ %)} + {0: == R %)}Z_-

* =9, {:qzm,n — g Ozpy € {0,:]:(1 =2 (I?)s +2(1 - (l?}} + {0’:&(] . %)sﬁ(] - %]}g!

® =0, Uzny— 1O znn €{0, 24,43} + {0, £3, +2}¢.

Proposition 2 shows that beta-rotations can be decomposed in terms of beta-additions
and quasi-multiplications. Compatibility of beta-rotation with euclidian rotation is
thus a consequence of +-compatibility of beta-addition and x-compatibility of quasi-
multiplication, [J

Computing the composition of any two of such beta-rotations 7; yields the following
important result,
Proposition 3. For f=1, 6 and 6 and Sfor N=10, 8 and 12, respectively, let Ry =

R (p) denote the semi-group freely generated by all s 4€4{0,1,...,N — 1}. Among
all beta-rotations, only r, TLINR—1,TNR+1,TN=1, and 1 have their inverse in Ry.
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Proof. The following identities are straightforwardly checked:

IINj2—1 = INj2—171 = TNp+UIN=1 T IN-1IN2—-1 = 1,

FIrN—1 = TN=1T1 = INp=1TN2+1 = TN2+1TN2—-1 = T0-

A case study of all possible combinations of 7; shows that no other such operators are
invertible. 0O

An immediate consequence is the existence of a symmetry group for Ii(f), ie.
a group of planar transformations leaving Ii(f) invariant.

Theorem 1. For f=r, & and 6, the group y =ZRx(p), freely generated by the four
element set {ro,1,11,"'np—1}, is a symmetry group for the beta-lattice L(p). It is

called the symmetry point-group of Ii(f).

Proof. An easy computation shows that the elements of Zy are invertible. Associativity

of the law of internal composition of elements of Zy is a consequence of Proposition 2.
O

5.2. A plane-group for beta-lattices I;(f)

We now introduce into the present formalism the beta-translations acting on I3(f3).

Proposition 4. Let zg = by, + by, { be an element of the beta-lattice L(B). There cor-
responds to it the internal action t., : Li(B) — Ii(f)

I:o(z) =zD2 déf bm @ bmn + (bu & b!ln )i = bm-!-mn + b!l+l!gc-

The set of beta-translations forms an abelian group isomorphic to the beta-lattice
L(B) considered itself as a group for the law . For this reason it will be also

denoted by I (f).

Proof. The beta-translation is a simple two-dimensional generalization of the one-
dimensional beta-addition. O

As a direct generalization of one-dimensional beta-addition, it is obvious that beta-
translation has minimal distortion property with respect to translation, and is compatible
with it. Using Proposition 4, we come to the main result of this article.

Theorem 2. For f=1, 6 and 6, and for N =10, 8 and 12, respectively, the group
Sy =S(P) freely generated by the five-clement set {ro,1,1,1(p)-1, 11} is a symme-
try group for the beta-lattice Ii(B). This group is the semi-direct product of Ii(f)

and .‘%’N

Ly =T(f)>=< 9N
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with the composition rule
(b,R)B',R)=(bSROV,RR).
In the present context, Sy is called the symmetry plane-group of Ii(f).
The action of an element of %, on I}(f) is thus defined as
(b,R)-z=bBROz=1t,(RO®z) € I'(B).

Proof. An easy computation shows that the elements of % are invertible. Associativity
of the law of internal composition of elements of Zy is a consequence of Proposition 2
and of Theorem 1. O

3.3. Tile transformations using internal operations on I;(1)

We would like to illustrate the action of %, on I(f), in the case of 1, by showing
how a tile of Ij(t) is transformed under the action of an element of .
Let z=by + byl € (7). An elementary quadrilateral tile on z is the following:

T@)={zzel,za{z(1+ )}

From the definition of Ij(t), we trivially see that their exist four kinds of elementary
tiles, which we shall denote by LI, LS, SL and SS, as a reference to the length of

their edges (see Fig. 5).
In case of a translation operation by z, t,, the elementary quadrilateral tile T(z) is
transformed into another elementary quadrilateral tile, whether of the same kind or of

another kind, according to
L(TE)=T(z®2)={200228z8 1,209z8{z00z8 (1 + )}

Another interesting transformation arises when one applies the beta-rotation operator r|
on T(z) and around one of the vertex of T(z). For instance, the beta-rotation around

z is given by
(Ot A(T@))={zz80Lz0 (-1 +10)z& (-1 + )}

Examples of such rotation operations are displayed on Fig. 6. This operation not only
rotates, but distorts the tiles, in general. Therefore, the beta-rotated tile is not elementary

anymore.
ZF A L

Fig. 5. Elementary quadrilateral tiles for the t-lattice [j(z). From left to right: LL, LS, SL, 5S. See also
Fig. 2.
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L] - -
- L] L] - -
-
N .
- L]
L
-
.
L L] -
- L] L
- -
L ] L] .
. L - - -
. . . .
-
L] L]
- - - i

Fig. 6. Rotation operator r| applied to elementary tiles of the z-lattice I3(t), T(0), T(1) (up), T({) and
T(1 +{) (down). Note how the tiles are deformed, by this operation, in order for the vertices to remain in
(7). The arrows indicate the vertices of the new tile in which are mapped the vertices of the original tile.

6. Asymptotic properties

An interesting feature of beta-lattices is that they behave like lattices asymptoti-
cally.

Lemma 6. The asymptotic behavior of the counting function ps is given by

I\ n
ps(n) e (1 s E) -~ (Case 1),

n
n ~ -= Case 2).
ps( )Inj_»m ; (
Proof. Case 1: The proof is based on the development of integers in the linear system
U = (ug)qen- We have n= ZLG u;d;. Then pg(n)= ZLO ps(ui)di = Zf.;o(u;/a)(l -
Wiy /u;)d;. When n— oo we know that u_/u;—1/B and ps(n)=(1/a)(1 — 1/8)

Sk o widi = (nja)(1 = 1/B), as n— co.
Case 2: As in the first case, the proof is based on the development of integers in

(ug): n= Sy iy, ps(n) = T ps(ur)d; = S otic1di = S o(ui/a)(1 + i fu)d;.
When 7 — oo we know that ;_a/u; = (tj—a/ti—1 Y1 /u;) = 1/f* = (a/B)— 1. Therefore
ps(n) = (1/B) Sk g uid; =n/p, as n—o0. O

Lemma 6 tells us what is the asymptotic behavior of beta-integers for large n, and
of the multiplication ® for large m and n. From Eq. (7) and Lemma 6 is deduced the

following result.
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Proposition 5. Let f be a quadratic PV unit number. Then the following asymptotic
behaviour of beta-integers holds true

~ oy,

|n|—o0
2

m ®bﬂ' =~ 'J’ mn’

[m]\|n|—co
where
N 1(1 I)2 —ﬁ———~“*2} —4-e=2 (Case 1),
r= a(ﬁ a)+2 (Case 2).

Proof. Case 1: Any beta-integer b, can be written b, =n — ps(n)(1 — 1/f). When n
becomes large, we can replace pg(n) by its asymptotic value. We then have b, ~n(1—
(1/a)(1 = 1/By)=yn.

Case 2: In the same fashion, we have b, =n — ps(n)1/p, and by replacmcr ps(n) by
its asymptotic value for large n we obtain b, =n(1 — 1/§*)=1yn.

The second part of the proposition is a direct consequence of the first part. [

We then almost recover the definition of multiplication we were thinking about
at the beginning of Section 3.5, left alone that in both cases we have a contraction
of the resulting index by a factor y<1. We should notice that the multiplication ®
is asymptotically associative and distributive with respect to the addition &. In this
sense, we can say that Z; is asymptotically a ring

b @ (by © bp) — (b ® by) © (b ® b))

bnl@(bu®bp)_(bm®bn)®bpl y ]T‘] .
ml,|n|,| p| —o0

i By

Note that m, n and p must be such that m=£n and m = p are large numbers, otherwise
the above equations are not true.

Consequently, we compute the asymptotic behavior of rotational internal laws of
beta-lattices, as defined in Section 5.1 in the studied cases.
e When fi=1, we have for invertible operators

r @(brn +bnE) P(—PI-!-(NI—FT?I)C),

m‘
m‘

10 (bm + bué) ]'(—Tm e -’?IZ).

e When =0, we have for invertible operators

71 @ (b + an] jf(—?l +(m+ (0 - 1)n)0),

73 © (bn + an)

%
%

y(—(é — )m—n+ml).
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o When fi =0, we have for invertible operators

r1 © (b + ) 3 y(=n + (m+ (8 = 2)n)0),

|m]|,|n|—o0

rs © (bu + bnf.f)l ] |'~|v W—(60 = 2)m — n + m).
m,|n|—co

At this point one should be aware that these asymptotic beta-rotations are equivalent
to rotations for large |m| and |n|, and an easy computation shows that for zs,, € Ii(f)

Zmn — 11 @ Zma ~ s
|ml,|n|—o0

0

eNJ2—1

& Zmp — TNj2—1 © Zmn

~
|m],|n]—o0

with N =10,8 and 12.

7. Conclusion

The main result of this article is the construction of a symmetry plane-group for
beta-lattices for three quadratic PV units. Though preliminary, this study shows the
richness of the beta-lattices as far as all the operations of the plane-group can be
made arithmetically explicit. Many questions seem to be open, such as the number
of possible plane-groups leaving a beta-lattice invariant. Another important issue is
to determine whether there is or not a metric left invariant under the action of such
groups. It has been shown that a large class of point sets, such as model sets, can be
embedded in beta-lattices [8]. A question related to distortion of distances is the action
of beta-rotations and beta-translations over a point set embedded in a beta-lattice and
over the tiling associated to this point set. The point group Zy(f) also deserves to
be carefully studied. The link between beta-lattices and the class of finitely generated
modules over ordered rings would deserves to be handled nicely in the framework
of the Artin-Schreier theory. The case of PV of higher degree remains open. The
present contribution shows the potentiality offered by a class of beta-lattices to provide
structure models of more general quasiperiodic crystals, and possibly to predict new

crystals.

Appendix A. Explicit internal beta-rotations actions on beta-lattices

In this section, we make the beta-rotation explicit for the quasicrystallographic num-
bers 7, 8, and 0, and for all the corresponding ¢, the remaining beta-rotation being
deduced from them by combining with space inversion. We give the resulting integer
indexes in terms of m,n, and the counting function ps as all involved relations have

been introduced in Egs. (6) and (7).
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A.1. Case of the t-lattice Ii(z)

71 O (b + bul) = by + brsan— sy,
72 © (b + Bal) = b_p—2tpg(n) + bagmen)— ps(m)—ps(n)Cs
73 © (bm + bul) = bstmtnypsimytpstn) + Bamsn pins
¥4 © (b + bul) = b_gm—p+ psmy + b

A.2. Case of the d-lattice I;(5)

s

For the d-rotations we would like to proceed to the formal imitation of Eq. (10) as
in the case of 7. The case of § however is slightly more complicated since Ngby, and
Vgby are not in Zs. When we compute the rotation of an arbitrary element of I (8),
we need to determine the value of (5 — 1)b,, which is of course not a d-integer in
the general case. Recall that ® is not distributive with respect to @. Therefore, we
have to replace (6 — 1)b, either by (5 & 1)@ by =bay or by 0b, © by =byy—p(ny (recall
that from self-similarity of d-integers we have 6 ® b, = b,). We then have to make a
choice about which operation to choose to build the point-group of I3(8). We chose
to replace (6 — 1)b, by b, S b, in Section 5, since this case satisfies the compatibility
property. Other operations may be interesting. For example, the other internal rotation
laws do not satisfy the compatibility property and do not have the same asymptotic

behavior.

‘_bn + bm-i—ln—pg(n]i:

n@(b,,,ernC):{ Byt sl
~Yn m+2nts

~Om+2n—ps(n) + Damen—ps(m)C,
—bms2n + bamin— s
O (bm a5 b"i:) - m+2n 2m+n—ps(m)s
_bm+2n—ps(n} + b!m-f-ﬂga

_bm-i-Zu + b2m+u ‘;:

_b2m+n—-p5(m) + bm é’s
_b2m+n r b,,, C

Y O] (bm + b,.f_,’) = {

A.3. Case of the 6-lattice I;(6)

As in the case of the d-lattice, we have to decide which operation to use to build the
point-group of I3(#) because of the factor (6 —2)b,, introduced in the computation of
rotations of I7(#). Once again, we have replaced (6 — 2)b, by 6b,02®b,=b,,_ ps(n)
in Section 5.2. We give now all possibilities.

_bn g bm+2u— pg(!!){-‘}

rl@(bm‘f'bug):{ b, + b sl
—Un m+2nks
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( _bm+2n—p5(n) + b2m+2ri-—p5(m)Cs
'_bm+2n = bzm+2n—~ps(m)gs
”_bm+2u-—ps(n) + me-i—ZuQa

\ _bm+2n T blm+2n C,

2 ® (by + by() =

_b2m+2n—p_r,-(m) + me+2n—p5(u}‘:s
_b2m+ﬂ + blm-l-zn—ps[ﬂ)f.:a
_bzm-e-ln—ps(m) g me+2n":,
“me+2u + me+2u€,

r3 @ (b + byl) =

b2m+2u-—p_;~{n} = bn+2m—ps(m)£;
Bousion + Brizm—psant:
I'@b'b(:{ ) ntim—pglm ) sy
* ( W ) b2m+?.u—ps{n)+bu+2mCa

blm+2 nt bu+2m§,

\

T'S @ (bm + bnc) = { :gim_—:—_n—-:’gg:)cfl' bm {,
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RESUME

Les objets considérés dans cette these sont les empilements de spheres égales,
principalement de R™ et les beta-entiers, pour lesquels on utilise indifféremment
le langage des empilements de spheres ou celui des ensembles uniformément
discrets pour les décrire. Nous nous sommes concentrés sur les problemes sui-
vants : (i) aspects métriques et topologiques de 'espace des empilements de
spheres pour lequels nous prouvons un théoréeme de compacité qui généralise
le Théoreme de Sélection de Mahler relatif aux réseaux, (ii) les relations entre
trous profonds et la densité par la constante de Delone ainsi que la structure
interne asymptotique, en couches, des empilements les plus denses, (iii) les em-
pilements autosimilaires de type fini pour lesquels nous montrons, pour chacun,
I'existence d'un schéma de coupe-et-projection associé a un entier algébrique
(Pautosimilarité) dont le degré divise le rang de 'empilement, (iv) les empi-
lements de spheres sur beta-réseaux, dont 1’étude a surtout consisté a com-
prendre l’ensemble discret localement fini Zg des (B-entiers et a proposer une
classification des nombres algébriques qui complémente celle de Bertrand-
Mathis reportée dans un article de Blanchard, et ou la mesure de Mahler
de ( intervient naturellement.

MOTS-CLES

Beta-entier, beta-réseau, empilement de spheres, recouvrement de spheres,
beta-numération, nombre de Pisot, nombre de Salem, nombre de Perron, quasi-
cristal mathématique, ensemble de Meyer, ensemble de Delone, autosimilarité,
pavage, groupe cristallographique, norme de Marcinkiewicz, densité, approxi-
mation Diophantienne, mesure de Mahler.
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