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1 Introduction 

1.1 General introduction (English and French) 

Français 

La résonance magnétique nucléaire (RMN) constitue de nos jours l’un des outils les 

plus importants pour l’étude de systèmes biologiques. Utilisée in vitro, les applications 

les plus courantes concernent les analyses biochimiques et la détermination de la 

structure et du dynamique de grandes molécules biologiques comme les protéines. Au 

cours des dernières vingt années, l’imagerie par résonance magnétique est devenue un 

outil de routine, tant dans la pratique clinique que dans la recherche médicale et 

biomédicale, offrant un contraste supérieur entre différents tissus mols sans recours aux 

radiations ionisantes. La spectroscopie par résonance magnétique a été appliquée in vivo 

dès les premiers jours, mais ce n’est que depuis les années 1980 avec la mise en place 

des bobines de surface que des techniques optimisées pour une pareille utilisation ont 

été développées. La mise en place de techniques de localisation du signal et des progrès 

concernant la suppression du signal de l’eau en spectroscopie du proton (
1
H) ont permis 

d’obtenir une multitude d’informations spectroscopiques, par exemple, concernant le 

métabolisme énergétique du cerveau ou concernant les acides aminées. 

Les signaux de lactate, n-acetylaspartate, créatine et choline sont facilement observés 

dans des spectres du proton acquis sur le cerveau. La mesure de la plupart des autres 

molécules présentes dans le cerveau est rendue difficile du fait de leur signature 

spectrale compliquée, par l’importante largeur des raies habituellement observée in vivo 

et par la présence d’un grand nombre de raies dans une petite largeur spectrale. Ainsi, 

l’observation du neurotransmetteur glutamate dans des spectres RMN reste difficile 

malgré sa concentration relativement élevée qui est de l’ordre de 10 mM dans le 

cerveau humain. La détection de glutamate, l’un des neurotransmetteurs les plus 

importants du cerveau humain, présente pourtant un grand intérêt, d’autant de plus qu’il 

est impliqué dans certaines maladies neurodégénératives, comme la maladie de 

Parkinson. 

Le but du présent travail était la mise en place de techniques de spectroscopie RMN 

permettant la détection de glutamate chez l’homme et le petit animal et l’évaluation de 

leur potentiel dans le cadre de la recherche sur la maladie de Parkinson. 

La suite de ce premier chapitre situe la mesure du glutamate dans le contexte de la 

méthodologie RMN et dans celui de la recherche sur la maladie de Parkinson. Pour des 

applications chez l’homme à 3 Tesla, une technique de filtrage à double quanta ainsi 

qu’une méthode liée à la spectroscopie bidimensionnelle ont été mises en place. 

L’évaluation de ces techniques est décrite dans les chapitres 2 et 3. La méthode basée 
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sur la spectroscopie bidimensionnelle a ensuite été comparée à des techniques PRESS 

conventionnelles à 7 Tesla pour des applications sur le petit animal, voir chapitre 4. Les 

chapitres 5 et 6 présentent les résultats de deux études faites chez le patient 

Parkinsonien et sur le modèle animal de cette maladie pour évaluer la possibilité de 

mesurer des changements pathologiques des concentrations de glutamate. 

 

English 

Nuclear magnetic resonance techniques present today one of the most important tools 

for studies of biological systems. In vitro, common applications of magnetic resonance 

spectroscopy (MRS) concern biochemical analysis as well as the determination of 

structure and dynamics of large biomolecules such as proteins. During the last two 

decades, magnetic resonance imaging has developed to a routine tool for medical 

diagnosis and fundamental research, providing high soft tissue contrast without 

requiring ionizing radiation. Magnetic resonance spectroscopy has been applied in vivo 

from the early beginning of NMR, but dedicated techniques for in vivo MRS were not 

developed until the 1980s after surface coils had been set up. Especially mono- or multi-

voxel localization techniques, using magnetic field gradients, as well as advancements 

concerning water suppression in proton (
1
H) spectroscopy, have permitted in vivo MRS 

to provide a wealth of non-invasive spectroscopic information on, for example, energy 

metabolism and amino acids. 

Signals of lactate, n-acetylaspartate, creatine and choline containing compounds are 

easily observed in in vivo 
1
H spectra of brain structures. Detection of other brain 

metabolites presents difficulties, mainly due to complicated spectral signatures and 

large linewidths in vivo. The neurotransmitter glutamate is present at relatively high 

concentration in the human brain (about 10 mM) but figures among the metabolites that 

are not readily observable. As one of the principal neurotransmitters in the brain, its 

detection in vivo is however of high interest in many pathologies, such as Parkinson’s 

disease (PD). Abnormal activation of glutamate systems in the basal ganglia has been 

recognized to play a central role in the pathophysiology of this disease. 

In the present work, we aimed at evaluating the potential of in vivo magnetic resonance 

spectroscopy for the detection of brain glutamate and examine the utility of such 

measurements for research on Parkinson’s disease. The following sections of this first 

chapter situate the detection of brain glutamate within the methodological context of 

magnetic resonance spectroscopy and within the medical context of Parkinson’s disease. 

For application in a clinical context, a double quantum filter technique and a technique 

related to two dimensional MRS were evaluated for glutamate detection at three Tesla 

field strengths. Results of this methodological evaluation are presented in chapters 2 and 

3. The method based on two-dimensional spectroscopy was then examined for use at 

higher field strengths (7 Tesla) for research applications in a biomedical context and 

compared to a standard (PRESS) technique (chapter 4). To investigate the possibility to 

detect pathological abnormalities of glutamate concentrations in Parkinson’s disease, 
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MRS was applied to measurements on patients affected by Parkinson’s disease (chapter 

5) and to a rat animal model (chapter 6) of PD. 

1.2 Brain glutamate measurement using proton magnetic 
resonance spectroscopy 

Proton NMR spectra of the mammalian brain present high information content, as 
1
H 

atoms, of which the magnetic resonance signal is used, are present in almost every brain 

metabolite. At the same time, because of the small chemical shift range of the proton, 

the abundance of signals leads to strong overlap between peaks of different molecules 

and thereby to serious problems of analytical discrimination. At least 35 different brain 

metabolites give rise to multiple resonances in a spectral range of only 2.4 ppm 

(Govindaraju, Young et al. 2000). Standard techniques as PRESS or STEAM readily 

allow the identification of resonances of n-acetylaspartate (NAA) and of choline (cho) 

and creatine (cr) containing compounds at field strengths of 1.5 T. The identification 

and quantification of other metabolite resonances often requires a more sophisticated 

approach. When trying to obtain information about the less concentrated metabolites, 

which very often present strongly coupled spins giving rise to complicated multiplett 

structures, three broad options are available in vivo: 

The most straightforward method to reduce or even eliminate spectral overlap is to 

increase the magnetic field strength. Higher frequency dispersions due to chemical shift 

together with higher sensitivity and reduced strong coupling effects increase 

significantly the number of identifiable metabolites. In combination with very short 

echo times of about 2 ms, up to 18 molecules can be identified in vivo (Pfeuffer, Tkac et 

al. 1999). High field magnets (7 to 9.4 Tesla) for in vivo NMR applications are however 

very expensive and only very few machines for human applications exist to this day. 

Full gain in spectral quality may only be obtained if increased susceptibility differences, 

caused by increased field strengths, are compensated by optimized shimming, as can be 

achieved for example using the FASTMAP procedure (Gruetter 1993). Strong 

shimming coil systems, allowing adjustment of at least second order terms, are needed, 

which until recently were only available as custom made fabrications. Implementation 

and use of short echo time techniques furthermore demands effective water and 

macromolecule suppression and precise calibration of the gradient coil system to 

prevent contamination by eddy currents. In summary, next to high field strengths this 

approach demands strong gradient coil systems and extensive machine calibrations. 

Another approach consists in the acquisition of more information by way of a two-

dimensional spectrum (Ziegler, Izquierdo et al. 1995). Some signals of coupled spins 

overlapping in normal one dimensional spectra become resolved in the second 

dimension of a 2D spectrum. The acquisition of a two dimensional spectrum is however 

time consuming, as the second spectral dimension, comparable to the second spatial 

dimension of an image, is obtained following repeated acquisitions with a parameter 

varied within the sequence. 
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Spectral editing techniques that utilize differences in scalar coupling present a third 

approach. The information content of the one dimensional spectrum is reduced so as to 

observe only a single spectral shape from a single metabolite ((Shen, Rothman et al. 

2002) for example). As usually only one metabolite is targeted, phasing and 

quantification of an edited spectrum is difficult due to lack of a reference signal. 

Quantification may for example be achieved using the (singlet-) signal of an unedited 

reference spectrum acquired from the same region. Phasing problems may be 

circumvented by evaluating the spectrum in magnitude mode or by comparison to a 

simulated spectrum. The major drawback of many editing approaches is however their 

overall signal loss. As a part of this work concerns double quantum filtered editing, 

further details are discussed in the next chapter. 

Together with all approaches of signal acquisition, identification of overlapping 

resonances is further improved by use of adapted quantification methods. 

In some cases, resonance lines may be approximated by Lorentzian peakshapes; these 

can be fitted directly to the spectrum. Related approaches, instead of working in the 

spectral domain, rely on adjusting exponentially decaying functions in the time domain 

(Vanhamme, van den Boogaart et al. 1997). Prior knowledge, such as peak positions 

and frequency spacing between peaks, may be incorporated in the fitting routine and 

improve its reliability. 

Instead of fitting Lorentzian peakshapes to each resonance line observed, it is also 

possible to adjust complete spectra of individual metabolites to the in vivo spectrum 

(Provencher 1993). The model spectra may be obtained from simulations or from in 

vitro solutions. Complicated, non-Lorentzian spectral shapes can be evaluated and it is 

possible to resolve complex spectral pattern (Pfeuffer, Tkac et al. 1999). This approach 

is laborious, as model spectra using exactly the same parameters as for the acquisition in 

vivo have to be produced for all metabolites. 

The task of glutamate measurement is part of the general challenge to gain information 

about coupled brain metabolites. Glutamate presents five coupled 
1
H spins, resonating 

at 3.7 ppm and in a small region near 2.3 ppm. The molecule and its chemical shifts are 

displayed in Fig. 1.1, together with the molecules of glutamine, NAA and GABA. In 

usual in vivo spectra, the glutamate signal overlaps strongly with the signals of 

glutamine, γ-aminobutyric acid (GABA) and the aspartate moiety of NAA 

(Govindaraju, Young et al. 2000). Fig. 1.2 shows a high resolution spectrum acquired 

from a PCA extract of a rat brain to demonstrate the proximity of resonances in the 

spectral area at 2.3 ppm (reproduced from (Govindaraju, Young et al. 2000)). 
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Fig. 1.1:  Molecular structure of n-acetylaspartate (NAA), gamma aminobutyric acid (GABA), 

glutamate and glutamine. In the targeted chemical shift range for in vivo glutamate 
measurement, near 2.3 ppm, the resonance lines of these four molecules overlap. 
Chemical shifts were taken from (Govindaraju, Young et al. 2000). Protons marked by an 
asterix are in rapid exchange with water. 

 
Fig. 1.2:  High resolution 

1
H spectrum of a PCA extract from a rat brain obtained at 600 MHz 

(dashed line) and results of spectral analysis (solid line). The vertical scale has been 
increased, resulting in truncation of the NAA singlet resonance. Figure reproduced from 
(Govindaraju, Young et al. 2000). 
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Efforts to measure glutamate unobstructed from contributions of other metabolites 

usually target the chemical shift range near 2.3 ppm, because glutamate overlaps 

inseparably with glutamine at 3.7 ppm. The challenge of glutamate measurement stems 

from four principal difficulties. 

First, the spectral pattern of glutamate in the 2.3 ppm region is highly complicated and 

analytically difficult to predict because of strong coupling effects at most field strengths 

that are available for in vivo experiments. At 3 Tesla, all spin groups resonating in the 

2.3 ppm region have to be considered as strongly coupled, as can be seen in Table 8.1, 

annex. At 7 T, most spin groups are at the limit where strong coupling effects may be 

neglected. 

A second difficulty is the low intensity of glutamate pattern in vivo. As the signal 

intensity is split on a multitude of peaks (see (Govindaraju, Basus et al. 1998), the 

signal amplitude of each peak remains low in spite of the relatively high glutamate 

concentration in the human brain (6 mmol/kgww to 12 mmol/kgww). The spectrum shown 

in Fig. 1.2 has been acquired at a field strength, where glutamate, glutamine, NAA and 

GABA may be described as weakly coupled system. At 2.15 ppm and 2.35 ppm, the 

numerous peaks of glutamate are well visible. The maximal amplitude of glutamate 

remains far below the amplitude of the (cropped) NAA singlet at 2.0 ppm. NAA is 

present in the rat brain in concentrations of about 9 mmol/kgww. 

Glutamate and glutamine present a highly similar molecular structure, leading to almost 

equal chemical shifts and coupling constants in the proton spin groups of both 

metabolites. Separating glutamate from glutamine presents a third major difficulty. The 

spin groups of glutamine, NAA and GABA giving rise to resonances in the targeted 

chemical shift range for glutamate measurements, near 2.3 ppm, present strong coupling 

features themselves, complicating further all approaches for glutamate measurement. At 

3 Tesla field strength the respective spin groups have to be considered strongly coupled, 

as for glutamate. At 7 Tesla, glutamine (as glutamate) is at the limit to weak coupling 

behavior for most of its spins. GABA may be considered weakly coupled, but the two 

spins of NAA present in the targeted chemical shift range, resonating at 2.5 ppm and 2.7 

ppm, remain strongly coupled. 

Several studies concerning glutamate measurement may be found in the literature. A 

very successful approach combines high fields (7 T, 9.4 T), short echo time (2 ms to 6 

ms) and high performance shimming (FASTMAP, (Gruetter 1993)) and uses a fit of 

model spectra (LC model, (Provencher 1993)) for quantification (Pfeuffer, Tkac et al. 

1999; Tkac, Andersen et al. 2001). Glutamate and glutamine may be resolved from each 

other and from the resonances of NAA and GABA and can be quantified by this 

technically and instrumentally highly demanding technique. 

At lower field strengths, at 3 Tesla, short echo time spectra do not display a visually 

distinguishable glutamate signal (Zhong and Ernst 2004). In this case, some authors 

propose to rely on fitting procedures, fitting model spectra to the in vivo spectrum, in 
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order to obtain information about glutamate concentrations (Boumezbeur, Besret et al. 

2005; Jang, Lee et al. 2005). 

At these field strengths, editing techniques present another promising approach. Double 

quantum filter sequences and J-refocused (Lee, Yaman et al. 1995) spectral editing 

techniques have been applied to in vivo glutamate measurement at 3 Tesla (Thompson 

and Allen 1998; Schubert F 2001) and 4.1 Tesla (Pan, Mason et al. 1996) field 

strengths. Double quantum filtering will be further detailed in the following chapter. J-

refocused editing relies on suppression of J-coupling evolution, assuring that spectra 

acquired at different echo times present similar spectral shapes for coupled spin systems 

(for details, see (Lee, Yaman et al. 1995; Pan, Mason et al. 1996)). Glutamate and 

glutamine have shorter transverse relaxation times than the other metabolites as NAA, 

creatine and GABA. Glutamate (glu) and glutamine (gln) can therefore be differentiated 

from the other metabolites using their T2 relaxation rate: Two measurements with 

different TE values are performed and subtracted in the J-refocused editing technique. 

The difference spectrum contains mainly glutamate and glutamine, whereas other 

metabolites are reduced by subtraction. 

Only recently, two-dimensional spectroscopy techniques have been successfully applied 

to glutamate measurement at 3 Tesla field strengths. These techniques rely on J-

resolved acquisitions (Hurd, Sailasuta et al. 2004) or constant time PRESS (CT-PRESS) 

(Mayer and Spielman 2005; Schulte, Trabesinger et al. 2005) sequences, that have been 

optimized for glutamate detection. Not the whole two dimensional spectrum is used for 

evaluation but only one dimensional cuts, fixing one of the two frequency dimensions. 

For example, TE averaged PRESS uses the central trace of a 2D spectrum (f1 = 0). J-

resolved acquisitions of this type will be described in a later chapter. CT-PRESS uses 

signal preparation as PRESS. Spectra with different echo times are acquired; the 

acquisition window starts however always at a fixed delay after the first PRESS 

excitation pulse. The different spectra display identical J coupling evolutions but 

differing chemical shift evolutions. A Fourier transformation as a function of the echo 

time therefore gives a two dimensional spectrum where the usual frequency domain 

contains J and chemical shift information, the additional dimension, corresponding to 

the echo time, however displays only chemical shift information. After optimization of 

the sequence parameters, spectra displaying a glutamate signal almost free of 

contamination by other metabolites can be acquired (Mayer and Spielman 2005).  

The present work concerns glutamate measurement at low field (3 T) in a clinical 

environment and at high field (7 T) for biomedical research. In the clinical environment, 

we have first followed an editing and later a 2D approach for glutamate measurement. 

At high field, satisfactory results for biomedical research were obtained with a standard 

point resolved spectroscopy (PRESS) method. 



14 

1.3 Brain glutamate measurement in research on 
Parkinson’s disease 

Parkinson’s disease (PD) was first described by James Parkinson in the year 1817 as a 

single disease entity. PD is a chronic, progressive neurodegenerative brain disease, 

afflicting about 1 in 1000 persons of the population and about 1 in 100 persons older 

than 60 years. Principal clinical symptoms are tremor, rigidity and akinesia (loss or 

impairment of voluntary activity, as of a muscle). Between 15 and 30 % of the patients 

develop psychological problems as depression or dementia in an advanced disease state. 

Eighty percent of all patients suffer from idiopathic Parkinson’s disease for which no 

cause is known. 

Degeneration of the melanized neurons in the substantia nigra pars compacta (SNc), 

which contain the chemical dopamine as neurotransmitter, is one of the most important 

neuropathological features of Parkinson’s disease. The reduction of dopamine affects 

functioning of the basal ganglia, implied in the control of movement. A model of the 

functional organization of the basal ganglia and alterations in the case of Parkinson’s 

disease is shown in Fig. 1.3 (Obeso, Rodriguez-Oroz et al. 2000). Fig. 1.4 and Fig. 1.5 

situate the implied brain structures in the human and in the rat brain. In this (simplified) 

model, the putamen is the “input” structure, receiving inhibitory projections (blue) from 

the cortical areas implied in movement control. In a more developed model of the same 

reference (Obeso, Rodriguez-Oroz et al. 2000), these projections are assumed as 

excitatory. The “output” structure are the internal segment of the globus pallidus (GPi) 

and the reticular part of the substantia nigra (SNr). These send inhibitory projections to 

the ventral anterior – ventral lateral thalamus (VL), which send back excitatory (red) 

projections to the cortical motor areas. Input and output structures are connected via two 

pathways, the direct pathway, projecting from putamen to GPi and SNr and the indirect 

pathway. The indirect pathway links the putamen with the “output structure” via 

projections to the external part of the globus pallidus (GPe) and from there to the 

subthalamic nucleus (STN). The arrangement of excitatory and inhibitory projections is 

such that stimulation of the direct pathway facilitates thalamocortical excitatory activity 

and stimulation of the indirect pathway exerts an inhibition. The role of nigrostriatal 

dopamine is to balance these two functionally opposing systems. Different dopamine 

receptors, D1 and D2, of the neurons projecting to GPe (D2) and GPi (D1) from the 

putamen make that dopamine enhances the activity of the direct pathway and inhibits 

the indirect pathway. 

In the case of Parkinson’s disease, the degeneration of the melanized neurons in the 

substantia nigra pars compacta (SNc) leads to reduction of dopamine concentration in 

the putamen and thereby to a reduction of the balancing dopamine influence on the two 

pathways. The end result of this misbalance is a reduction of the thalamocortical 

excitatory projection and thereby an inhibition of the cortically initiated movement. 

As can be seen in Fig. 1.3, right, dopamine reduction stimulates the inhibitory 

projection of the external part of the globus pallidus (GPe) and thereby releases the 
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subthalamic nucleus (STN) from its inhibition. This release leads to hyperactivity of the 

glutamatergic (excitatory) projections from the subthalamic nucleus to the internal part 

of the globus pallidus and the reticular part of the substantia nigra (SNr). Inhibition of 

the thalamus is thereby increased and feedback to the cortical motor areas decreased. 

Most current treatments of the symptoms of Parkinson’s disease rely on replacement of 

dopamine by administration of its precursor, L-DOPA (levodopa), which is transformed 

to dopamine in the striatum. About 90% of patients respond to levodopa treatment. 

Whereas in the first years of treatment, levodopa administration strongly reduces 

Parkinson symptoms, side effects appear after several years. Probably because of loss of 

storage capacity of the formed dopamine, action duration of an administered levodopa 

dose becomes shortened. Dyskinesias (impairment of voluntary movements resulting in 

fragmented motions) may appear at any time during chronic levodopa treatment. They 

may be due to relative overdosage or development of supersensivity of dopamine 

receptors. 

 
Fig. 1.3:  Schematic of the classic model of the basal ganglia, reproduced from (Obeso, Rodriguez-

Oroz et al. 2000). The left figure displays the normal state, the right figure the case of 
Parkinson’s disease. Blue arrows indicate inhibitory projections and red arrows 
excitatory projections. In the parkinsonian state (right figure), thick arrows indicate 
hyperactivity of the representative projection and double lines hypoactivity. For further 
descriptions please refer to the text, for a placement of the anatomical structures in 
human and rat brain to Fig. 1.4 and Fig. 1.5. Abbreviations: GPe: globus pallidus pars 
externa, GPi: globus pallidus pars interna, SNc: substantia nigra pars compacta, STN: 
subthalamic nucleus, SNr: substantia nigra pars reticularis, VL: ventralis lateralis (of 
thalamus), PPN: pedunculopontine nuclei. 

The existence of animal models allows the study of specific aspects of Parkinson’s 

disease, as functional organization of the basal ganglia and its alteration following 

dopamine depletion. A widely used model, in the rat, relies on administration of the 

neurotoxin 6-hydroxydopamine (6-OHDA). Injection of 6-OHDA in the substantia 
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nigra of the rat brain leads to degeneration of the dopaminergic neurons and thereby to 

lesion of the nigrostriatal pathway. The mechanisms of toxicity of 6-OHDA rely on 

introduction of oxidative stress via inhibition of mitochondrial respiration. 

Functional organization and interaction of different brain structures as the basal ganglia 

are far from being understood and remain a field of intensive research. The model 

shown in Fig. 1.3 certainly represents a strong simplification and may only explain 

specific facts. It demonstrates however how the loss of striatal dopamine via the 

interaction between different structures may give rise to changes in other basal ganglia 

neurotransmitter systems. 

Several results demonstrate increase of striatal glutamatergic activity in case of 

Parkinson’s disease or in the animal model. Increased glutamate concentrations as 

compared to a control group have been measured post-mortem in the putamen of PD 

patients (subgroup of three from nine patients) (Kish, Rajput et al. 1986) using high 

performance liquid chromatography (HPLC). Anatomical studies in the 6-OHDA rat 

model have demonstrated an increase in the density of synapses associated with 

glutamatergic activity one month following the lesion of the nigrostriatal pathway 

(Meshul, Emre et al. 1999; Meshul, Cogen et al. 2000). In vivo microdialysis allows the 

direct assessment of extracellular glutamate levels. In the same animal model, increases 

of striatal extracellular glutamate as compared to control rats have been demonstrated 

by several groups. Measured increases vary from 45% (Jonkers, Sarre et al. 2002) and 

56% (Bruet, Windels et al. 2003) up to 146% (Meshul, Emre et al. 1999). However, also 

contradictory results have been found by other groups (Robelet, Melon et al. 2004). 

Changes in striatal glutamatergic activity caused by dopamine depletion present a 

central point in Parkinson’s disease. It has been hypothesized that agents acting to 

restore normal glutamatergic function may provide therapeutic interventions improving 

current levodopa therapies (Chase, Oh et al. 2000; Marino, Valenti et al. 2003). The 

ability to measure glutamate in the framework of research on Parkinson’s disease is 

therefore of strong interest. 

Most studies concerning glutamate measurement in Parkinson’s disease have been 

performed post-mortem or using invasive techniques as microdialysis. Magnetic 

resonance spectroscopy (MRS) is non invasive, permitting the measurement of principal 

brain metabolites. Clinical studies involving patients are possible without major 

problems. Animal studies may profit from the possibility to follow long term disease 

developments on the same animal (Brownell, Jenkins et al. 1998). Compared to 

microdialysis techniques, MRS brings in a complementary point of view. Microdialysis 

assesses extracellular glutamate concentrations, which are on the scale of nanomol 

(Fillenz 2005). Glutamate concentrations measured by MRS are on the order of 

millimol and stem mainly from an intracellular origin (see Table 8.3). 

In the clinical environment, Parkinson’s disease has been extensively studied using 

MRS (Bowen, Block et al. 1995; Davie, Wenning et al. 1995; Holshouser, Komu et al. 

1995; Clarke, Lowry et al. 1997; Cruz, Aminoff et al. 1997; Ellis, Lemmens et al. 1997; 
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Federico, Simone et al. 1997; Tedeschi, Litvan et al. 1997; Hoang, Bluml et al. 1998; 

Hu, Taylor-Robinson et al. 1999; Ross, Hoang et al. 1999; Taylor-Robinson, Turjanski 

et al. 1999; Abe, Terakawa et al. 2000; Clarke and Lowry 2000; Lucetti, Del Dotto et al. 

2001; O'Neill, Schuff et al. 2002; Baik, Choe et al. 2003; Camicioli, Korzan et al. 

2004). The strong peaks of choline, creatine and n-acetylaspartate have been 

investigated to detect differences between healthy subjects and PD patients or to 

distinguish between forms of Parkinsonism. Because of different experimental 

protocols, results are difficult to compare (Clarke and Lowry 2001; Firbank, Harrison et 

al. 2002) and are contradictory. For the NAA to creatine or NAA to choline ratios for 

example, some groups find decreased values in PD whereas others state no difference 

between healthy subjects and PD patients (Clarke and Lowry 2001). 

Only very few investigators have so far addressed the problem of glutamate 

measurement (Clarke, Lowry et al. 1997; Taylor-Robinson, Turjanski et al. 1999; 

Clarke and Lowry 2000). Alterations of the glutamate level in patients affected by PD 

could not be demonstrated in these studies, using however MRS techniques not 

optimized for glutamate measurement. 

Magnetic resonance spectroscopy has as well been used for studies on the animal model 

(Brownell, Jenkins et al. 1998; Podell, Hadjiconstantinou et al. 2003). Only a recent 

study addresses the specific problem of glutamate measurement, using carbon-13 MRS 

at 4.7 Tesla field strengths (Chassain, Bielicki et al. 2005). Using the carbon-13 nucleus 

for MR spectroscopy facilitates resolution of glutamate from other metabolites. 

However, it is dependant on the infusion of an agent enriched in 
13

C, such as [2-
13

C] 

sodium acetate in the study of Chassain et al. The authors demonstrate that significant 

increase of 
13

C label incorporation into glutamate occur in the rat Parkinson model. 

These changes are normalized by L-DOPA administration. The information obtained 

from 
13

C experiments is different from the one obtained with proton spectroscopy, as 

the incorporation of the marker in the molecule to be studied is observed, not solely the 

(static) molecule content. 

It was therefore interesting to address the problem of glutamate measurement in 

Parkinson’s disease using proton magnetic resonance spectroscopy. Proton MRS was 

chosen for its high sensitivity and as the equipment, as opposed to the one necessary for 

carbon spectroscopy, is usually available with any MR machine. Furthermore, proton-

MR spectroscopy techniques present higher potential for transfer to the clinical 

environment. 

With this work, we would like to add a study addressing the problem of glutamate 

measurement in human PD, using a new MRS technique (TE averaged PRESS (Hurd, 

Sailasuta et al. 2004)) optimized for glutamate detection. Complementary to the study 

on the patient, we have performed MRS experiments on the 6-OHDA rat model of PD. 
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Fig. 1.4:  Schematic picture of the basal ganglia (striatum (putamen and caudate nucleus), globus 

pallidus (internal and external segment), subthalamic nucleus and subastantia nigra) and 
other structures in the human brain. The combined structure of putamen and globus 
pallidus is sometimes called lentiform nucleus. 

 
Fig. 1.5:  Map of the rat brain (single hemisphere) as taken from (Swanson 1998/1999). Structures 

implied in the basal ganglia motor cycle as described in Fig. 1.3 have been indicated. The 
small insert on the top-right of each picture situates the position of the cut in the rat 
brain. The caudoputamen in the rat brain corresponds to the striatum in the human brain, 
as caudate nucleus and putamen are not distinguished in the rat. 



2 A localized double quantum filter (dqf) 
sequence for brain glutamate detection at 3 
Tesla 

Les séquences de filtrage à plusieurs quanta offrent des propriétés intéressantes pour 

les applications in vivo. Une bonne suppression du signal de l’eau indépendamment de 

sa fréquence de résonance est autant un facteur clé que la possibilité de filtrer un signal 

sans la nécessité d’additionner plusieurs acquisitions. Le filtrage à deux quanta avec 

localisation spatiale du signal a été proposé pour la mesure de glutamate cérébral 

(Thompson and Allen 1998). 

Ce chapitre présente une introduction aux principes de filtrage à deux quanta. Ensuite, 

une séquence optimisée pour la détection de glutamate cérébral est présentée 

(Thompson and Allen 1998). Son implémentation sur un imageur corps entier à 3 Tesla 

est décrite en détail. 

 

Double and multiple quantum coherence editing sequences present properties 

interesting for in vivo applications. Of advantage are good, frequency independent water 

suppression and single-scan editing capability. Localized double quantum filtering (dqf) 

has for example been proposed for the in vivo detection of cerebral glutamate at field 

strengths of 3 Tesla (Thompson and Allen 1998). 

This chapter begins with an introduction to the principles of double quantum editing. 

Then, a sequence optimized for brain glutamate detection (Thompson and Allen 1998) 

is described. Its implementation and test on a 3 Tesla whole body MRI is in the 

following reported in detail. 

2.1 Introduction to double quantum filtering 

Multiple quantum coherence editing sequences use selective preparation of multiple 

quantum coherences (mqc) on a targeted molecule to distinguish it from the overlapping 

signals of its vicinity. Subgroups of this type of sequences are double quantum filters 

using magnetic field gradients. This sequence type, as used for homonuclear spectral 

editing, will be described in this section. 

Double and multi quantum coherence editing has been applied targeting different brain 

metabolites such as GABA (Du, Chu et al. 2004), glucose (Keltner, Wald et al. 1997), 

taurine (Lei and Peeling 1999) or glutathione (Trabesinger, Weber et al. 1999). But also 

other regions of the body (Jouvensal, Carlier et al. 1996) have been examined using this 

type of sequence. The scheme of a double quantum filter sequence is shown in Fig. 2.1. 
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Fig. 2.1:  Radiofrequency and gradient pulse scheme of a double quantum filter (dqf) sequence. 

Double quantum coherences are created by the second 90° pulse and converted back to 
observable single quantum coherences by the third 90° pulse. 

For a weakly coupled two spin system (I-S), the delay τ is ideally chosen to 1/(4J), with 

J the coupling constant between I and S. At the end of the first evolution period (2 τ) 

and before the second 90x pulse, the state of the spin system can then be written as 

(Ernst, Bodenhausen et al. 1987; de Graaf 1998) 

 ZX SI2)2( =−τσ  (2.1) 

In this description we only look at the I part of the spin system. The symbol σ 

designates the systems density operator and I and S are the product operators of the 

respective spins. Application of the second 90x pulse, called “double quantum 

coherence” (dqc) pulse, generates double and zero quantum coherences: 
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A corresponding contribution arises from the S spin. In the gradient field of G1 each 

product operator accumulates a phase shift Φ proportional to its coherence order. The 

delay ∆t in this example is considered short enough to neglect chemical shift and 

coupling evolution. At the time tt ∆+= τ2 , before the third 90x pulse, the system state 

is characterized by 
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The third 90x pulse, called “read pulse”, converts double quantum coherences back to 

observable single quantum coherences (sqc), and only those will be written in the 
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following. This is justified because dqc present in the system after the third 90x pulse 

will not -in the weak coupling approximation and assuming ideal rf pulses- develop into 

observable coherences. Other single quantum coherences produced will be dephased by 

the second gradient G2. At the beginning of the signal detection period, the chemical 

shift evolution has been refocused by the second 180° pulse and the spins have acquired 

an additional phase shift due to the second gradient pulse G2. The system state is written 

as 
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For double quantum filtering, as in our case, k2 equals 2k1 and therefore Φ2 becomes 

equal to 2Φ1. Integrated over the sample volume, only operators without phase term 

give a resulting signal. The resulting signal is therefore determined by 
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The same contribution arises from the S spin, which has not been observed since the 

beginning of this calculation. 

Uncoupled spin groups, giving rise to strong singlet signals in NMR spectra, are unable 

to produce double quantum coherences that follow the process described above. 

Transverse magnetization produced on these spin groups by the first pulse of the 

sequence is still present as observable transverse magnetization after the second 180° 

pulse, but then dispersed by the second gradient pulse G2. This is not only useful for 

effective water suppression, but also for the elimination of singlet resonances that may 

cover the signal of coupled spins in in vivo NMR spectra. An example is the detection 

of GABA at 3 ppm which is covered by the singlet peaks of creatine / phosphocreatine 

and choline in unedited spectra (McLean, Busza et al. 2002). Also the unwanted 

contribution of coupled spin groups other than the one targeted can be attenuated. 

Differentiation is done by the differing J couplings constants of the different molecules. 

The sequence timing assures optimal production of double quantum coherences only for 

molecules with a coupling constant of J = 1/(2t). In the example of our sequence t 

equals 2τ, see Fig. 2.1. The magnetization of molecules with differing J values will 

remain partially in a single quantum state and be suppressed, leading to an attenuation 

of the signal from this molecule. 

The disadvantage of the filtering approach presented in this section is an overall signal 

reduction of about (exactly only in our example) 75% for the signal coming from the 

targeted molecule. This signal loss is caused by the only partial transformation of single 



22 

quantum coherence to double quantum coherence, as can be seen in equation (2.2), and 

the fact that, using gradient filtering, only one coherence transfer pathway is refocused. 

Designing and using double quantum filter sequences for in vivo applications presents 

several difficulties. 

The strong reduction of the signal from the targeted molecule is an important drawback, 

as the concentration of brain metabolites is low, around 8 mMol / kg w.wt in vivo. 

Reliable signal quantification using dqf sequences therefore needs large acquisition 

volumes or long acquisition durations. 

The dqf sequence shown in this chapter is a very strong simplification of a sequence 

useable for in vivo spectroscopy. Efficient in vivo spectroscopy needs spatial 

localization of the acquisition volume, demanding either a preparation module before 

the dqf sequence or volume selective pulses within the dqf sequence. It has been shown 

that the use of shaped pulses and the process of volume selection has an important 

influence on the evolution of coupled spin systems (Slotboom and Mehlkopf 1994; 

Thompson and Allen 2001). Optimization of sequences incorporating spatial 

localization is therefore more difficult as described in the preceding paragraph. 

Molecules that present an interest in medical or biomedical research have more than two 

observable spins, as it was the case in the calculation of an I-S system. An example is 

glutamate or GABA, having five and six observable spins. At the currently available 

field strengths for medical research (up to 3 T), most molecules of interest can not be 

considered in the weak coupling approximation, as has been done for the calculation 

presented in this section. Optimal timing parameters are therefore difficult to determine. 

Several authors show the optimization of localized dqf sequences, adjusting the 

sequence timing (Wilman and Allen 1995; Trabesinger, Weber et al. 1999), the read 

pulse flip angle (Wilman and Allen 1993; Lei and Peeling 1999) or even the dqc pulse 

phase (Kim and Allen 2003) and using an experimental approach or simulations. A 

major improvement can be achieved using read pulses that are selective only on the 

coupling partner of the spin to be observed. In our example such a read pulse would be 

frequency selective on the S spin, if we wanted to observe signal from the I spin. A 

recovery of 50% of the signal amplitude instead of only 25% can be achieved. The 

suppression of contributions from other coupled spins than the one targeted may be 

improved as the double quantum coherences of these spins are not transformed back 

into single quantum coherences by the read pulse. In the literature binomial pulses 

(Trabesinger, Weber et al. 1999), shaped pulseforms (Lei and Peeling 1999), block 

pulses (Keltner, Wald et al. 1998) or even composite pulses (DANTE pulse train) 

(Trabesinger and Boesiger 2001) can be found for the realization of frequency selective 

read pulses. More recently developed filter sequences use refocusing pulses pulses that 

are selective on certain resonances of the targeted molecule (Shen, Rothman et al. 2002; 

Choi, Lee et al. 2004; Choi, Lee et al. 2005). These sequences thereby achieve a further 

improvement in resolving the targeted molecule from its overlapping background. 
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2.2 Sequence design of a double quantum filter for in vivo 
applications 

The pulse sequence evaluated in this work is based on a proposition of Thompson et al 

(Thompson and Allen 1998). The rf and gradient pulse scheme is reproduced in Fig. 

2.2. 

 
Fig. 2.2:  Sequence design of a localized double quantum filter (Thompson and Allen 1998). 

Sequence timings and the flip angle of the fourth pulse (called “read” pulse) have been 
determined numerically to optimize glutamate detection at 2.3 ppm at a field strength of 3 
Tesla. 

The sequence design incorporates spectral editing into a PRESS localization module by 

making the excitation pulse and the two refocusing pulses slice selective. A self 

refocusing BURP pulse (Geen and Freeman 1991) of 4 ms length is used for excitation 

in order to begin the evolution period with completely refocused magnetization. 

Optimized sinus cardinal pulses of 4 ms length are used for refocusing and slice 

selection in the two directions perpendicular to the excitation slice. The authors 

emphasize to use optimized pulses, as the slice profile is not only important for proper 

localization, but also plays a role in coherence transfer (Thompson and Allen 1999). 

The second 90° pulse, which has the function of producing multiple quantum coherence 

orders is realized as a rectangular shaped pulse of 250 µs length. Its length is kept short 

in order to achieve as well as possible the behavior of an ideal pulse that would be 

infinitely short. The read pulse is a sinus cardinal shape multiplied with a Gaussian 

function. This apodization renders its frequency profile stable to a range of flip angles 

differing from 90° at the cost of a larger transition band. The pulse is applied with a flip 

angle of 72°. Filtering gradients of 2 ms and 4 ms length are used, oriented at the 

“magic angle” (see section 2.3.2). 
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The target of this dqf sequence is the glutamate resonance in the 2.3 ppm region. While 

a maximum of glutamate signal should be produced, the close and underlyig resonances 

of glutamine, NAA and GABA should be suppressed. Furthermore, the aim is to keep 

only one single peak from the complicated glutamate lineshape (Govindaraju, Basus et 

al. 1998). 

Optimal sequence parameters are difficult to determine. Glutamate, glutamine, NAA 

and GABA present strong coupling behavior at  field strengths of 3 Tesla. The evolution 

of the spin systems can therefore not be described easily. Furthermore, the influence of 

shaped pulses has to be taken into account. Depending on their length and shape, 

coherences in the spin systems are produced and redistributed (Thompson and Allen 

1999). As already mentioned, some dqf sequences use pulses that are selective on 

certain resonances of the targeted molecule. Multiple quantum coherences are prepared 

only on the targeted molecule (for example GABA or glutathione (Trabesinger and 

Boesiger 2001; Shen, Rothman et al. 2002)). This way to proceed is not possible for 

targeting glutamate while suppressing glutamine, NAA and GABA. Coupled resonances 

of glutamate, glutamine, NAA and GABA overlap in a small spectral area of only 0.2 

ppm. Separating glutamate from its background with double quantum filtering therefore 

relies on an adapted timing of the sequence. The coherence transfer properties of the 

pulses used for slice selection and the read pulse may be used. 

In the dqf sequence proposed by Thompson et al (Fig. 2.2), several sequence parameters 

have been optimized numerically. A density matrix description of the spin system has 

been used to predict the spectral shape in dependence of the sequence delays, the read 

pulse length and the read pulse flip angle. Optimal parameters are derived for these 

parameters from the simulations. 

2.3 Implementation of a dqf sequence on a 3 T whole body 
imager 

In this section the implementation and parameterization of the dqf sequence, especially 

with respect to water suppression and rf pulses, will be detailed. A procedure assuring 

optimal results from freely positioned voxels will further be described. 

2.3.1 Radiofrequency pulses 

All radiofrequency pulses are applied with the carrier frequency set to the glutamate 

resonance at 2.3 ppm. The position of the volume selected for the spins resonating at 2.3 

ppm thereby coincides exactly with the chosen position. Voxels for differing resonance 

frequencies will be slightly displaced. 

2.3.1.1 Excitation and refocusing pulses 

For excitation and refocusing, 3-lobe sinus cardinal (sinc) pulses have been chosen. The 

excitation profile of a BURP pulse (Geen and Freeman 1991) is very sensible to small rf 
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power maladjustments. During in vivo tests, time consuming fine adjustments were 

necessary to achieve an acceptable slice selection. Still, the profile stayed improper 

compared to that of a normal sinc pulse. In simulations (Smith, Levante et al. 1994), no 

difference in the lineshape of a glutamate and glutamine dqf spectrum using a BURP or 

a sinc pulse could be found. The refocusing profile quality as produced by a normal sinc 

pulse was estimated to be sufficient. 

An improvement of the glutamate peak intensity could be achieved shortening the 

excitation and refocusing pulse lengths from 4 ms to 2 ms. Experiments on phantoms 

containing only glutamate in solution show an increase of the 2.3 ppm glutamate 

resonance of about 15%. The excitation and refocusing pulses that are used for spatial 

localization interfere with the coherence transfer (Thompson and Allen 1999). Shorter 

pulses approximate better the behavior of ideal pulses. Shorter pulses used for voxel 

localization therefore interfere less with the double quantum filtering and lead to 

improved performance. Also, the relative displacement of the volumes selected for the 

glutamate resonances near 2.3 ppm and 3.7 ppm is reduced, increasing the volume in 

which double quantum coherence between these two spin groups can be produced. Even 

shorter pulses could possibly further improve the performance. Due to rf power 

limitations a duration of 2 ms is although the experimental limit for the moment on our 

system. 

2.3.1.2 DQC pulse 

The dqc pulse (second 90° rf pulse of the sequence) is realized as block shaped pulse. 

The length of this pulse was kept as short as possible to approximate the behavior of an 

ideal pulse. A duration of 250 µs presents the minimum length with respect to rf power 

limitations of our system. First in vivo and in vitro tests on centered voxels were 

conducted with dqc pulse lengths of 250 µs. In later experiments on freely positioned 

voxels, it was necessary to match the length of the dqc pulse with the length of a 180° 

block shaped pulse. This pulse was used in a complementary sequence necessary for 

calibration purposes, see section 2.3.3. As minimal common pulse duration, we chose a 

length of 350 µs. 

2.3.1.3 Read pulse 

A sinus cardinal shape with two lobes (two zero passages to each side) was used for the 

read pulse. This sinc shape has been multiplied with a Gaussian profile cut off at 25% of 

its maximal amplitude. Fig. 2.3 shows the calculated excitation profile of this pulse to 

illustrate its characteristics. A flip angle of 72° and a length of 5 ms, as used in the dqf 

sequence, have been simulated. A solid line indicates the real part, a dotted line the 

imaginary part of the magnetization. The Gaussian apodization of the sinc shape allows 

the pulse to have a flat excitation band for flip angles differing from 90°. The spectral 

region, near 2.3 ppm, is homogenously excited. The water resonance is situated slightly 

next to the excitation band; its content in the spectrum is only slightly reduced in this 

way. 
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2.3.2 Water suppression 

Double quantum filtered spectroscopy sequences have intrinsic water suppression, as 

the water molecule presents only uncoupled resonances. Under certain circumstances it 

is however possible to create multiple quantum coherences between separate water 

molecules. These can pass the filter and give rise to relatively strong water signals in the 

spectrum. A qualitative description of this circumstance known as “intermolecular 

multiple quantum coherences (iMQC)” will be given in the following. In this work, the 

objective was to circumvent this effect in order to completely eliminate the water signal 

from the spectrum. 

Multiple quantum coherences between water molecules are created by the dqc and read 

pulse together with the two filter gradients. This sequence part is shown in Fig. 2.4. A 

review of the fundamental principles of how multiple quantum coherences are formed 

by this sequence has been given Richter et al (Richter and Warren 2000). 

 
Fig. 2.3:  Excitation profile of the read pulse as used in our sequence implementation. Frequency 

positions of the glutamate and water resonances are indicated, assuming the pulse 
carrier frequency centered on the glutamate 2.3 ppm multiplet. The simulated pulse is a 
two lobe sinc shape (two zero crossings to each side) multiplied with a Gauss form. The 
Gauss shape has a cutoff factor of 25%, the simulated flip angle was 72° and the pulse 
length 5 ms. The solid line indicates the real part, a dotted line the imaginary part of the 
magnetization. The Gaussian apodization assures a flat excitation band at a flip angle 
below 90°. All glutamate resonances are homogeneusly excited. 
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Fig. 2.4:  Radiofrequency and gradient pulse scheme for the generation of intermolecular multiple 

quantum coherences (“CRAZED” (Richter and Warren 2000)). The dqc pulse, read pulse 
and the filter gradients of a double quantum filter sequence correspond to the “CRAZED” 
scheme. Intermolecular multiple quantum coherences can be created on the water 
molecules and lead to a strong water signal in the spectrum. 

Two generally made assumptions have to be revised to explain the formation of iMQC. 

The first assumption is the “high temperature approximation” for the density operator. 

This assumption says that the general density operator given by 

 
))/(exp(

))/exp((

kTHtr

IkT
i Zi

−

−
=

∑ω
ρ

h
 (2.6) 

may be approximated by a Taylor series that is cut after the linear term, giving  
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This simplification is not justified for macroscopic samples, as, because of an important 

number of spins, higher order terms in the Taylor series are not small compared to one 

and therefore not negligible. A valid description has to consider higher order terms, that 

make appear two spin operators as Iz1Iz2 not present in (2.7). 

The second assumption concerns dipolar couplings between spins. The dipolar coupling 

Hamiltonian for the spin system may be written in polar coordinates as 
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with the “dipolar coupling constant” D that evaluates to  
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In the equation for D, θkl indicates the angle between the internuclear vector and the 

main magnetic field. 

In liquid samples, dipolar couplings add to zero. To demonstrate this, equation (2.8) and 

(2.9) are evaluated looking at two limits, the interaction of a two spins at a close 

distance (short range dipolar interactions) and the interaction of a spin with a great 

number of other spins situated at a fixed, large radial distance (long range dipolar 
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interactions). For the formation of iMQC, long range dipolar couplings are of 

importance. Integrating (2.8) for a fixed distance r we obtain the following expression: 
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If the sample is homogeneously magnetized, the term in the first parenthesis of (2.10) is 

independent of θ and φ. In the vector model, one can imagine that all magnetization 

vectors are parallel. Hd is therefore proportional to 
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which is zero. If magnetic field gradients have been present at a time during the 

sequence (after excitation of the spin system), the sample is not homogeneously 

magnetized. The magnetic moments of the spins in the sample are no longer aligned but 

wound up in a helix characterized by the gradient strength. The expression in the first 

parenthesis of (2.10) becomes a function of of θ and φ and Hd no longer adds to zero. 

The spins evolve under the influence of spin-spin dipolar coupling between distinct 

molecules. 

Longitudinal two spin terms in the equilibrium density matrix and the presence of 

dipolar couplings together explain the production of a signal from the sequence 

displayed in Fig. 2.4. The first pulse transforms longitudinal two spin operators as Iz1Iz2 

to transverse spin operators as Ix1Ix2 for example. These represent a mixture of zero and 

double quantum coherence. Chemical shift evolution makes appear terms as Ix1Iy2, 

which are being transformed to Iz1Iy2 by the second pulse. The first and the second 

gradient have introduced inhomogeneous magnetization in the sample; terms of the 

form Iz1Iy2 evolve under dipolar couplings to Ix1, which is measurable magnetization. It 

can be shown that the strength of the signal S is proportional to 

 1cos3~ 2 −ΘS  (2.12) 

where θ is the angle between the B0 field axis and the magnetic field gradient axis. 

Alone the dqc and read pulse of the double quantum filter sequence together with the 

two filter gradients produce detectable signal. These pulses are non selective, they act 

on the whole sample volume. Intramolecular multiple quantum coherence signal from 

the water is therefore produced from almost the whole volume. The last refocussing 

pulse of the dqc sequence however reduces the contributing volume, as a slice is 

selected. At the start of the acquisition, two major signal contributions are present: A 

double quantum filtered signal from the voxel, which is the signal of interest, and water 

iMQC signal originating from the whole slice that has been selected by the last rf pulse. 

As the volume of the voxel is much smaller than the slice volume, and as the water 

concentration is much higher than the metabolite concentration in vivo, iMQC signal 

from the water strongly contaminates the spectrum. 
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To suppress the formation of water iMQC signals, the orientation of the filter gradients 

in the dqc sequence has to be set to the magic angle of θ = 54.7°. At this gradient angle, 

as can be verified in equation (2.11), the dipolar interaction vanishes and no iMQC 

signal is produced. The water signal reacts very sensitively to the gradient orientation 

and careful fine adjustment was necessary to minimize the water contamination in the 

dqf spectrum. Additionally it was necessary to use long filter gradient durations of 4 ms 

for the first and 8 ms for the second filter filter gradient. Further improvement of the 

water suppression was necessary and could be achieved by phase cycling and a water 

suppression module preceding the dqf sequence. As phase cycle, an eight step cylce 

(Henning 1992) has been used. The dqc and read pulse are cycled as the excitation 

pulse. The cycling assures that only signal excited by the first and refocused by the two 

180° pulses remains in the spectrum, whereas signal procuced by the dqc and read pulse 

is efficiently eliminated. Further reduction of the water signal is achieved by a VAPOR 

water suppression module (Tkac, Starcuk et al. 1999; Tkac, Andersen et al. 2001). A 

hermitian pulse shape of 160 Hz bandwidth has been used for selective excitation of the 

water resonance. 

Magic angle filter gradient orientation together with phase cycling and water 

suppression by VAPOR assure that in the dqf spectra acquired in vivo no residual water 

signal is visible. 

2.3.3 Voxel positioning and phase calibration 

Free positioning of the volume of interest is necessary for in vivo applications of NMR 

spectroscopy and can be achieved by adding offsets to the excitation and refocusing 

pulses. To obtain optimal filtering results, it is however necessary to adjust the relative 

pulse phases of dqc and read pulse in the dqf sequence. In this section we will first 

demonstrate the necessity of this phase adjustment and then describe a procedure for the 

determination of the optimal pulse phases. 

2.3.3.1 The necessity of phase calibration and phase calibration procedures 

As may be deduced from the introduction to double quantum filtering, a maximum of 

double quantum coherence is produced if the dqc pulse and the magnetization on which 

it acts have a phase difference of 90°. The read pulse needs to be applied with the same 

phase as the dqc pulse. For non-localized dqf sequences, as treated in the introduction to 

double quantum filtering, the phase relation between dqc pulse and magnetization is 

assured by application of the same phase for the excitation and dqc pulse. In the case of 

localized dqf sequences, the excitation and refocusing pulses are applied with a 

frequency offset to position the voxel in the region of interest. The magnetization phase 

at the first echo time, the time of the application of the dqc pulse, depends on the phase 

of the excitation and refocusing pulses and on their frequency offsets. Fig. 2.5 illustrates 

this effect. 
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Fig. 2.5:  Glutamate signal at 2.3 ppm (magnitude mode) in dependence of the read and dqc pulse 

phase angle to demonstrate the necessity of phase calibration for acquisition volumes 
positioned off-center. The first signal to the left has been acquired from a voxel shifted in 
x by 3.2 cm, in y by 3 cm and in z by 1.8 cm and with the excitation pulse, dqc pulse and 
read pulse applied with the same phases. The following signals to the right were 
acquired with the read and dqc pulse phase set to the value indicated in the legend. 
Optimal signal intensity at this voxel position is obtained for a dqc and read pulse phase 
of about 70°. 

The peaks in Fig. 2.5 are the glutamate peak at 2.3 ppm acquired in vitro with the 

localized dqf sequence in different acquisitions, as will be described at once. All signals 

are shown in the magnitude mode; a phantom containing a high concentrated glutamate 

solution (100 mM) has been used to achieve good SNR. A (25 mm)
3
 voxel, shifted in x 

by 3.2 cm, in y by 3 cm and in z by 1.8 cm was selected by application of the necessary 

frequency offsets to the excitation and refocusing pulses. The pulse phases of the slice 

selective pulses were set to x for the excitation and to y for the refocusing pulses. The 

first signal in Fig. 2.5 has been obtained with the dqc and read pulse phase set to x, as 

the excitation pulse. With this phase setting, the dqf sequence should produce optimal 

signal, if the magnetization at the first echo time, when the dqc pulse is applied, had 

really y-phase, as supposed by the excitation pulse phase. For the acquisition of the 

second peak from the left and the following peaks, the dqc and read pulse phase have 

been increased in steps of 10 degrees without changing any other sequence parameter. 

Maximal signal intensity is obtained if the dqc read and pulse are applied with a phase 

of about 70 degrees. To achieve maximal signal intensity, an adjustment of the dqc and 

read pulse phase is therefore necessary. This phase adjustment has to be performed for 

every position of the volume of interest, as the optimal dqc and read pulse phase 

depends on the phase of the magnetization at the first echo time, when the dqc pulse is 
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applied. The magnetization phase changes with the frequency offsets used for the 

excitation and first refocusing pulse. 

Different approaches to obtain optimal filter performance for freely chosen voxel 

positions have been described in the literature. Some authors (Jouvensal, Carlier et al. 

1996) restrain the voxel placement to certain positions, where maximum filter output is 

achieved. This procedure restricts voxel placements to positions where the correct phase 

relation between magnetization and dqc pulse is fulfilled. Other authors (Keltner, Wald 

et al. 1997; Keltner, Wald et al. 1998; Trabesinger, Weber et al. 1999; McLean, Busza 

et al. 2002) adjust the dqc and read pulse phase. Mc Lean et al calibrate the phase in 

phantom experiments for different voxel positions and use this calibration in vivo. 

Trabesinger et al and Keltner et al perform phase calibration in vivo before starting the 

dqf sequence. 

2.3.3.2 Implementation of a phase calibration procedure 

For the double quantum filter implementation in this work we chose to perform phase 

calibration of the dqc and read pulse before each experiment, as proposed in (Keltner, 

Wald et al. 1997; Keltner, Wald et al. 1998; Trabesinger and Boesiger 2001). This 

approach allows maintaining the free choice of voxel positioning, as compared to 

(Jouvensal, Carlier et al. 1996), and direct control of successful phase adjustment, as 

compared to (McLean, Busza et al. 2002). Function and use of this procedure will be 

detailed in the following. 

 
Fig. 2.6:  Radiofrequency pulse scheme used for determination of the optimal dqc and read pulse 

phase for acquisition from volumes positioned off-center (Keltner, Wald et al. 1997). The 
phase angle φ of the second 180° pulse in B is adjusted to obtain a signal phase 
difference of 180° comparing the signals acquired with sequence A and B. 

The calibration procedure is based on comparison of the two signals acquired with the 

sequences shown in Fig. 2.6. Slice selection and crusher gradients have not been drawn 
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for simplicity. The additional 180° block pulse in sequence B, Fig. 2.6, is as well 

surrounded by spoiler gradients. The aim of the calibration procedure is the 

determination of the block pulse phase angle correction φ. This correction should be 

determined to apply the blockpulse with a phase difference of 90° to the magnetization 

phase at the end of the first echo time, TE1. The correction φ will then be used for the 

dqc and read pulse phase in the dqf sequence to achieve optimal signal intensity. The 

calibration procedure starts with signal acquisition using sequence A and B, with φ set 

to zero in B. The correction angle φ is then determined from the signal phases as 

follows: 

 
Fig. 2.7:  Calculation of the phase correction angle φ from the signals acquired with the phase 

calibration sequence A and B of Fig. 2.6. MA corresponds to the signal phase produced 
by sequence A, MB to the phase produced by the sequence B. The pulse phase of the 
second 180° pulse of sequence B, which should present a phase difference of 90° with 
respect to MA for correct adjustment of φ, is indicated by a dash-dotted line. 

Consider the magnetization produced with sequence A, Fig. 2.6., at t = TE1, denoted MA 

in Fig. 2.7. As the excitation and first refocusing pulse were applied with a frequency 

offset determined by the voxel position, MA has an unknown phase α within the rotating 

frame reference system (x-y coordinate sytem). In Sequence B, a 180°X block pulse is 

applied at exactly this point of time. As this pulse is applied without any frequency 

offset, its phase is reliably situated on the x-axis of the rotating frame. After the 

application of this blockpulse, MB will be the mirror image of MA with respect to the x-

axis at t = TE1. The second refocusing pulse acts in the same way on MA and MB in 

sequence A and B. The phase difference of the signal acquired with sequence A and 

sequence B is ∆, as indicated in Fig. 2.7. Our aim is to add an angle φ to the phase of 
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the 180°X block pulse in order to apply this pulse with 90° phase difference to the 

magnetization phase MA. The phase desired for the blockpulse is indicated by a dash-

dotted line in Fig. 2.7. To calculate φ we pose 90° = α + φ. With the measured phase 

difference ∆ and knowing that 360° = ∆ + 2α we can determine the phase correction 

angle φ to 

 )180(
2

1
°−∆=ϕ  (2.13) 

In the experiment, MA and MB are acquired with a common phase error of 0
th

 order. 

Therefore, calculating the difference of the phases of MA and MB may give ∆ as 

indicated in Fig. 2.7 or ∆’ = – (360° - ∆), depending on this global phase error. For 

simplicity we use the absolute value of the phase difference ∆ in equation (2.13). It has 

to be determined experimentally if φ needs to be added or subtracted from the phase of 

the 180°X block pulse. If the phase correction angle of the block pulse has been 

correctly set, the phase difference ∆ of the signals acquired with sequence A and B is 

determined to 180°. 

2.3.4 Sequence design – Summary  

This section summarizes and complements the sequence parameters discussed in the 

preceding sections to give an overview of the dqf implementation used in this work. 

 
Fig. 2.8:  Radiofrequency and gradient pulse scheme of the double quantum filter sequence used 

for glutamate detection in this work. Compared to the original design (Thompson and 
Allen 1998) VAPOR water suppression was added. The excitation pulse is a usual sinus-
cardinal shape, the phase correction angle φ for dqc and read pulse is determined with 
the phase calibration procedure detailed above. 
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The sequence starts with a VAPOR module for water suppression, shown in Fig. 2.8. 

VAPOR uses hermitian pulses of 160 Hz bandwidth and gradients on the x, y and z axis 

of 16 mT/m strength and 1.5 ms length. As excitation and refocusing pulses 3 lobe sinc 

shaped pulses are used. Pulse lengths of 4 ms and 2 ms have been tested. The pulse 

phase of the excitation pulse is set to x, whereas the refocusing pulses are applied with y 

phase. For the dqc pulse a length of 250 µs and 350 µs has been tested, depending on 

whether or not phase calibration for the dqc and read pulse had been performed. This 

point will be further detailed in section 2.4.1. A two lobe sinc shaped pulse multiplied 

with a Gaussian shape cut off at 25% of its main amplitude is used for the read pulse, 

calibrated to a flip angle of 72°.This pulse has a length of 5 ms. DQC and read pulse 

have x phase with a phase correction angle φ added for off-center positions, determined 

with the phase calibration procedure. During accumulations an eight step phase cycling 

is applied to all pulses. DQC and read pulse are cycled as the excitation pulse. The 

carrier frequency for all pulses is set to the glutamate resonance frequency at 2.3 ppm. 

For voxels shifted from the magnet isocenter, offsets are applied to the excitation and 

refocusing pulses. No changes were made to the sequence timing with respect to the 

proposition of the original sequence design. Spoiler- and filter gradients use rectangular 

shapes. For the spoiler gradients, a length of 3 ms / amplitude of 24 mT/m is sufficient. 

Good water suppression was obtained only with relatively strong filter gradients of 4 ms 

length for the first pair of gradients (G1x ,G1z) and 8 ms for the second pair of gradients 

(G2x ,G2z) together with amplitudes of 34 mT/m for G1x and G12x and 22.4 mT/m for G1z 

and G12z. The filter gradient amplitudes are calibrated to orient the resulting gradient at 

the magic angle. 

2.4 Experimental validation of a dqf sequence on a 3 T whole 
body imager 

First tests in vitro are shown to validate the phase calibration procedure and the ability 

to distinguish glutamate from its background signal. Further tests evaluate the dqf 

sequence for glutamate detection in vivo. 

2.4.1 Validation of the phase calibration procedure 

Experiments to verify the accuracy of the phase correction angle determined with the 

phase calibration procedure are described in this section. First, the phase correction 

angle φ is determined for a voxel positioned at an off-center position. By systematic 

variations of φ around the determined value, as seen in section 2.3.3.1, its accuracy is 

then verified. 

2.4.1.1 Materials and methods 

The experiments have been performed on a 3 T whole body imager (Medspec, Bruker, 

Ettlingen, Germany), equipped with a gradient system allowing gradients of up to 40 

mT/m. An 8 kW rf amplifier was used for rf pulse generation. Signal excitation and 
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reception were performed using a birdcage head coil. A solution of 100 mM glutamate 

in 2.2 liter PBS buffer served as sample, its pH value adjusted to the physiological value 

of 7.3 ppm. In order to circumvent the problem of partial signal saturation when short 

repetition times are used, a contrast agent (chelated gadolinium complex, Dotarem, 

Guerbet, France, 0.5 mMol/ml) was added at a concentration of 0.5 ml per liter sample 

volume. Sodium azide (NaN3) was added to the sample to prevent bacterial growth. The 

sample solution was contained in a glass sphere, placed at the center of the birdcage 

resonator. 

The phase calibration sequence was realized as shown in Fig. 2.6. For the selective 

pulses, the same pulseshapes and lengths as later in the dqf sequence have been used 

(sinus cardinal shaped pulses of 2 ms length). As in the dqf sequence, the excitation 

pulse is applied with x-phase and the two selective refocusing pulses with y-phase. A 

pulse length of 350 µs was used for the rectangular shaped 180° pulse of sequence B. 

Due to rf power limitations, a shorter pulselength was not possible. Care was taken with 

respect to the placement of the frequency switch command before each pulse in the 

pulse program (Jouvensal, Carlier et al. 1996). The delay between the issue of the 

switch command and the middle of the following rf pulse was strictly the same for the 

corresponding pulses of the phase calibration sequence and the dqf sequence (excitation 

pulse, first refocusing pulse and block shaped pulse). As has been shown in (Jouvensal, 

Carlier et al. 1996), this delay determines the effective pulsephase of the shaped pulses. 

TE1 was set to 36 ms and TE2 to 48 ms. Data acquisition started directly at the end of 

TE2. A voxel of (2.5 x 2.5 x 2.5) cm
3
, shifted from the magnet isocenter (x-shift = 1.5 

cm, y-shift = 2.8 cm and z-shift = 2.1 cm), but well contained within the sample 

volume, was chosen. A spectral width of 4960 kHz on 4096 points was acquired, 

performing 8 dummy scans before the start of the acquisition and accumulating the 

signal from the 8 following scans. All pulses were phase cycled during these 

accumulations following the same phase cycling scheme used for the dqf sequence (see 

section 2.3.2). The rectangular shaped pulse of sequence B was cycled as the excitation 

pulse. 

Using these parameters, the water signal was acquired from the voxel, using sequence A 

and sequence B with the phase angle φ of the added 180° block pulse in B set to zero. 

Both signals were Fourier transformed and phased to absorption, performing 0
th

 order 

phase correction. We used the Bruker supplied software “XWINNMR” for this purpose, 

determining always positive angles to phase to absorption mode. The phase correction 

PH0A determined from the signal acquired with sequence A corresponds to the phase of 

MA, displayed in Fig. 2.7, the phase correction PH0B determined from the signal 

acquired with sequence B to the phase of MB.  

From PH0A and PH0B, the phase difference ∆ is determined to ∆ = PH0A – PH0B. Using 

the absolute value of ∆ and equation (2.13), φ was calculated. With the phase correction 

angle φ added to the phase of the rectangular shaped 180° pulse of sequence B, Fig. 2.6, 

the water signal was acquired a third time. After Fourier transformation, as for the 
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preceding acquisitions, the 0
th

 order phase correction for an absorption mode peak was 

determined, called PH0’B in the following. The phase difference ∆ was calculated from 

PH0A and PH0’B. For a correctly adjusted φ, ∆ should be determined to ∆ = 180°. If this 

is not the case, the value of φ has to be subtracted. 

In order to verify the accuracy of the result found for φ, a dqf spectrum was acquired 

from the same voxel. As for the phase calibration sequence Fig. 2.6 B, φ was adjusted 

for the phase of the dqc and read pulse (see section 2.3.1.2, 2.3.1.3). DQC and read 

pulse need to have the same phase. The dqf sequence was realized as described in 2.3.4, 

using 2 ms pulselengths for the selective excitation and refocusing pulses and a length 

of 350 µs for the dqc pulse. A spectral width of 4960 kHz on 4096 points was acquired, 

performing 8 dummy scans before the start of the acquisition and accumulating the 

signal from the 64 following scans. 

Twelve further dqf spectra were acquired from the same voxel position, using the 

parameterization described above, but varying the phase added to the dqc and read pulse 

from one spectrum to the next. Six spectra were acquired using a phase varying from (φ 

+ 10°) to (φ + 60°), six further spectra using a phase from (φ - 10°) to (φ - 60°), where φ 

is still the value determined by the phase calibration procedure described above. 

Line broadening of 8 Hz was applied to all dqf spectra before zero-filling and Fourier 

transformation. No further posttreatment as phase correction was used, as the spectra 

were evaluated in magnitude mode. All posttreatment was performed using the IDL 

programming language (RSI, Boulder). 

Further tests were performed in order to investigate the influence of different 

parameters of the phase calibration sequence on the calibrated phase φ. For a given 

voxel position, the phase angle φ was determined once using a 500 µs block pulse and 

once using a 300 µs block pulse with all other parameters left unchanged. Furthermore, 

φ was determined once setting the spoiler gradients surrounding the block pulse to 16 

mT/m (40% of the maximum value of the gradient system), once doubling them to 32 

mT/m (80%). Also, φ was determined applying the gradients of the VAPOR water 

suppression module at the beginning of the sequence, without using the VAPOR rf 

pulses. 

2.4.1.2 Results 

Fig. 2.9 shows the voxel position inside the spherical phantom. From the signals 

acquired with the two sequences used for phase calibration (Fig. 2.6, A, B) as described 

above, PH0A and PH0B were determined, showing a phase difference of ∆ = -2°. With 

the absolute value of ∆, the phase correction angle φ was determined to φ = -89°. This 

phase correction angle subtracted from the phase of the rectangular shaped 180° pulse 

of sequence B, the acquisition of the signal with sequence B, Fig. 2.6, was repeated. As 

expected, ∆ determined from PH0A and PH0’B (see above, methods section) was now 

close to 180°, being ∆ = 179° (spectra not shown). 
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Fig. 2.10 shows the glutamate peak at 2.3 ppm as acquired with the localized dqf 

sequence in different acquisitions. The signal marked by an arrow has been acquired 

with φ set to the value determined with the phase calibration procedure. The signals to 

the left and to the right of this peak have been acquired changing the phase correction φ 

from the determined value in steps of 10°. All signals are shown in the magnitude mode. 

It can be seen in Fig. 2.10 that maximal signal amplitude is acquired with φ set to the 

calibrated value (signal marked by an arrow). Acceptable signal strengths can still be 

acquired for φ values varying up to 15° from the calibrated value. 

Altering the length of the block pulse of the calibration sequence from 500 µs to 300 µs 

changed the determined value for φ by 21°. Doubling the amplitude of the spoiler 

gradients that surround this pulse changed φ by 15°. The same value was determined for 

φ with the gradients of the VAPOR module preceding the calibration sequence set or 

switched off. 

 
Fig. 2.9:  Voxel position inside a spherical phantom used for acquisitions to verify the phase 

calibration procedure. A voxel of (2.5 x 2.5 x 2.5) cm
3
, shifted from the magnet isocenter 

in x, y and z direction (x-shift = 1.5 cm, y-shift = 2.8 cm and z-shift = 2.1 cm) was chosen. 
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Fig. 2.10:  Glutamate signal at 2.3 ppm (magnitude mode) as acquired with the localized dqf 

sequence in different acquisitions from the voxel position shown in Fig. 2.9. The signal 
marked by an arrow has been acquired with the dqc and read pulse phase corrected by φ 
as determined with the phase calibration procedure. The signals to the left and to the 
right of the peak marked by the arrow have been acquired changing φ from the 
determined value in steps of 10°. As demonstrated, the implemented phase calibration 
procedure allows determination of φ to obtain optimal signal intensity from off-center 
voxel positions. 

2.4.1.3 Discussion 

Using the phase calibration sequence described in this chapter, the phase correction of 

dqc and read pulse, as it is necessary for acquisitions from off-center voxel positions, 

can be reliably determined. Fig. 2.10 demonstrates that the calibrated φ value is optimal.  

We observed that the length of the 180° block pulse of the phase calibration sequence 

had an influence on the value determined for φ. The blockpulses in calibration- and 

filter sequence should therefore have the same duration. We choose a duration of 350 µs 

as this is the shortest pulse length with which a flip angle of 180° can be realized on our 

system. As well, the amplitude of the spoiler gradients surrounding the blockpulse in the 

phase calibration sequence has an influence on the value determined for φ. Not 

completely refocused magnetization due to gradient imperfections, depending on the 

gradient amplitude, may explain this shift in phase. As these gradients do not exist in 

the dqf sequence, their amplitude should be kept as small as possible. The same 

influence on the signal phase could have residual gradients of the VAPOR module used 

in the dqf sequence. It might be necessary, in order to assess this influence, to use these 

gradients at the beginning of the phase calibration sequence, in the same way as they 
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precede the dqf sequence. In our case, the influence of these gradients was however 

negligible. 

2.4.2 Experiments on metabolites in solution 

In order to asses the ability to acquire spectra containing mainly glutamate signal with 

the double quantum filter sequence, experiments on samples, each containing only one 

metabolite, were performed. Samples contained either glu, gln, NAA or GABA, as these 

present resonances in the chemical shift range targeted by spectral editing, near 2.3 

ppm. The superposition of the individual metabolite spectra gives an indication about 

the composition of the signal observed in vivo. 

2.4.2.1  Materials and methods 

The same spectrometer configuration as described in 2.4.1.1 has been used. Samples 

containing glu, gln, NAA and GABA at 50 mM in a phosphate buffer were prepared. 

The samples contained about 0.25 mmol/l chelated gadolinium complex (0.5 ml/l 

Dotarem, Guerbet, France) as relaxant. The pH value of each sample was adjusted to a 

value typical for the brain, about 7.3, after having added all components. A sample 

volume of 270 ml, enclosed in spherical glass containments, was used for the 

experiments. The sample was placed in the middle of the birdcage resonator, 

surrounded by four 500 ml plastic bags containing physiological serum, in order to 

ensure correct loading of the resonator. The dqf sequence was realized as summarized 

in 2.3.4, using 4 ms pulses for voxel localization and a dqc pulse of 250 µs length. No 

phase calibration for the dqc and read pulse phase was performed as the voxel was 

chosen in the magnet isocenter; the phase correction angle φ was set to zero. A spectral 

width of 4960 Hz was acquired on 4096 points. For referencing purposes, the 

unsuppressed water signal was acquired from the same voxel as the dqf spectrum for the 

different samples. 

A line broadening giving a linewidth of about 7 Hz on the water signal was determined 

for each reference spectrum. This broadening was then applied to the corresponding dqf 

spectrum, in order to account for differing field homogeneities in the different 

experiments. A common line broadening was then applied to all spectra, giving a 

linewidth of about 12 Hz on the water signal. This is the linewidth typically found after 

posttreatment for the in vivo experiments presented in this work. All dqf spectra were 

normalized with respect to the water peak amplitude in order to account for further 

differences in signal intensity. The spectra were then multiplied with the typical 

concentration for the respective metabolite in the brain, as taken from the literature 

(Govindaraju, Young et al. 2000). We assume a concentration of 9.25 mmol/kg w.wt. 

for glutamate, 4.4 mmol/kg w.wt. for glutamine, 12.25 mmol/kg w.wt. for NAA and 1.6 

mmol/kg w.wt. for GABA. Phasing of the spectra is difficult as there is no singlet signal 

present that could serve as reference. The water signal originating from the same 

volume was therefore used: The same 0
th

 order phase correction as for the water peak 

was applied to the dqf spectra. The sum of the different metabolite signals was then 
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phased to present a signal in absorption mode. This global phase correction was then 

applied to each individual metabolite dqf spectrum in order to plot the peak 

decomposition. A common frequency shift was applied to all individual spectra together 

in order to position the sum peak at 2.3 ppm. 

2.4.2.2 Results 

Fig. 2.11 shows the dqf spectra acquired on the samples containing either glutamate, 

glutamine, NAA or GABA. The spectra have been superposed and their sum has been 

calculated. The sum is displayed as solid line, glutamate as dotted-, glutamine as 

dashed- and NAA as dash-dotted line. GABA is printed as dash-dot-dot-dot line. 

 
Fig. 2.11:  Superposition of dqf spectra acquired on a solution containing either glutamate (dotted), 

glutamine (dashed), NAA (dash dot) or GABA (dash dot dot dot). The sum of the different 
signals has been drawn as solid line. For the plot, assumed concentrations were: 
glutamate 9.25 mmol/kg w.wt., glutamine 4.4 mmol/kg w.wt., NAA 12.25 mmol/kg w.wt. 
and GABA 1.6 mmol/kg w.wt. About 72% of the sum signal amplitude is due to glutamate, 
16% due to glutamine. 

The sum of glu, gln, NAA and GABA, as they are acquired with the dqf sequence, 

displays one preeminent peak that is dominated by glutamate. The second strongest 

component in the peak is glutamine. From Fig. 2.11 it can be estimated that about 72% 

of the sum signal amplitude is due to glutamate, 16% due to glutamine. NAA and 

GABA contribute less than gln to the main peak. Singlet signals, as they would be 

visible in a non edited spectrum from NAA at 2 ppm and from water at 4.7 ppm, are not 

present. 
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2.4.2.3 Discussion 

The aim of spectral editing is to acquire a well formed signal from glutamate with as 

few as possible contamination from other metabolites. As can be seen in Fig. 2.11, the 

signal contains principally glutamate but also a non negligible amount of glutamine. 

Contributions of NAA and GABA are less important. The glutamate signal that can 

present a highly complicated lineshape (Govindaraju, Basus et al. 1998) has been 

simplified by spectral editing to a single peak. How much the content of other 

metabolites than glutamate in the measured signal is disturbing depends on the intended 

application. If strong glutamate changes are to be measured and if it can be assured that 

the levels of gln, NAA and GABA remain constant, changes of glu will be well 

reflected by changes of the peak acquired with the dqf sequence. Small changes may 

however become masked. As the roles of glutamate and glutamine are connected in 

brain metabolism, a rise of one of the components may in some cases bring along a 

decrease in the other. In this case, the combined glutamate+glutamine signal observed 

with dqf filtering may remain unchanged. 

2.4.3 In vivo application 

The double quantum filter sequence is used for acquisitions on the human brain to show 

the validity of this approach. First, a spectrum from a centered voxel position is 

presented. Then, to demonstrate the feasibility of in vivo phase calibration, acquisitions 

from a voxel in an off-center position are shown. 

2.4.3.1 Materials and methods, acquisition from a voxel in the magnet isocenter 

The same spectrometer configuration as described in 2.4.1.1 has been used. The dqf 

sequence was realized as summarized in 2.3.4, using 4 ms pulses for voxel localization 

and a dqc pulse length of 250 µs. 

Acquisitions start with scout images of the head, acquiring an axial, frontal and 

transverse view (machine coordinate system). We used an imaging protocol based on a 

FLASH method preinstalled on our spectrometer. According to the scout images, the 

patient bed is moved in z-direction to position the upper half of the patient’s brain in the 

magnet isocenter. Local adjustments of the resonance frequency and the rf power (via 

BRUKER reference gain) are performed in a (39 mm)
3
 voxel in the isocenter, using 

procedures implemented with the BRUKER supplied PRESS sequence. Preliminary 

tests showed that no further fine adjustment of the rf power is necessary, the 

implemented automatic adjustment performs well. A larger voxel size than the one 

chosen for later acquisitions is used for calibrations to account for voxel displacements 

due to differing chemical shifts of the brain metabolites. Automatic first and second 

order localized shimming is performed using FASTMAP (Gruetter 1993). The voxel 

size is then reduced to a (25 mm)
3
 voxel. For referencing purposes, the unsuppressed 

water signal is acquired from this voxel, using PRESS. Before starting dqf acquisitions, 

the rf power of the VAPOR pulses is fine adjusted by hand. Spectra using the dqf 

sequence were acquired with the resonance frequency set to the glutamate peak at 2.3 
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ppm. The voxel position for this chemical shift is exactly at the specified position in this 

way. A spectral width of 4960 Hz on 4096 points was acquired. Acquisitions used 256 

accumulations with a repetition time of 3 seconds and started with dummy scans in 

order to establish equilibrium magnetization. Total acquisition time for one spectrum 

was about 14 minutes. Posttreatment was performed with the IDL programming 

language (RSI, Boulder). Six Hertz exponential broadening was applied to improve the 

signal to noise ratio, the spectra were zerofilled to 8192 points to smooth the lineshape. 

Necessary zero order phase correction was determined to phase the signal visible near 

2.3 ppm to absorption mode. 

2.4.3.2 Results, acquisition from a voxel in the magnet isocenter 

Fig. 2.12 shows the voxel from which the double quantum filtered spectrum has been 

acquired, positioned on the axial, frontal and transverse scout images. The two black 

lines on each image, intersecting in the middle of the voxel, are due to saturation effects 

that originate from the acquisition of the images. Their intersection point indicates the 

magnet isocenter. The image contrast does not allow for gray matter / white matter 

distinction, but is sufficient to recognize the major brain structures. The brain region 

where the voxel is positioned is unproblematic with respect to shimming, resulting in a 

linewidth of about 7 Hz for the water signal of this voxel size.  

 
Fig. 2.12:  Voxel of (25 mm)

3
 size, positioned on the parietal lobe of a volunteer for acquisition of a 

dqf spectrum. The volume is situated in the magnet isocenter, as indicated by the 
intersection of the two black lines on each image (originating from saturation effects 
during acquisition of the two perpendicular images). The dqf spectrum acquired from 
this position is shown in Fig. 2.13. 
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Fig. 2.13:  DQF spectrum acquired from a (25 mm)

3
 voxel positioned on the parietal lobe of a 

volunteer, indicated in Fig. 2.12. The peak at 2.3 ppm originates mainly from glutamate, 
as demonstrated in vitro. No water signal is visible in the spectrum and the baseline is 
essentially flat. DQF spectra of good quality can be acquired in vivo. 

Fig. 2.13 shows the dqf spectrum acquired from the (25 mm)
3
 voxel, positioned as 

indicated in Fig. 2.12. One single peak is visible at about 2.25 ppm, a further less 

important signal near 3.7 ppm. Referencing of the ppm scale has been performed setting 

the middle of the spectrum, corresponding to the water peak position, to 4.7 ppm. The 

baseline is essentially flat; no water signal contaminates the spectrum. The signal to 

noise ratio of the peak at 2.25 ppm is about nine. Singlet signals from metabolites 

present in the human brain, as for example creatine or choline, are efficiently 

suppressed. In this acquisition, distortions appeared below 1.6 ppm. They are excluded 

from the picture of this spectrum. 

2.4.3.3 Materials and methods, acquisition from a voxel not positioned in the magnet 
isocenter 

The spectrometer configuration as described in 2.4.1.1 has been used. The dqf sequence 

was realized as summarized in 2.3.4, using 2 ms pulses for voxel localization and a dqc 

pulse of 350 µs length. A 100 µs longer dqc pulse was necessary to match the pulse 

length of the blockpulse in the phase calibration sequence, as has been explained before. 

As for the experiments described above, acquisitions start with scout images of the 

head, acquiring an axial, frontal and transverse view (machine coordinate system). The 

voxel position is then freely chosen on the images. For the present experiments we 

chose a position in the right parietal lobe. In this region good field homogeneity via 

shimming can be achieved. Local adjustments of the resonance frequency and the rf 

power (via the BRUKER reference gain) were performed in a (39 mm)
3
 voxel. As for 

the former experiments automatic first and second order localized shimming was done. 
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The voxel size is then reduced to (25 mm)
3
 and the unsuppressed water signal is 

acquired. As the voxel is not positioned in the magnet isocenter, the phase of the dqc 

and read pulse have to be calibrated. The procedure described in section 2.4.1.1 has 

been performed in vivo, with the pulse carrier frequency adjusted to the glutamate 

resonance at 2.3 ppm. Running the dqf sequence in setup mode, VAPOR pulse gains 

were fine adjusted. The same acquisition parameters for the dqf sequence as described 

in 2.4.3.1 and the same posttreatment, using 6 Hz exponential broadening, have been 

used.  

2.4.3.4 Results, acquisition from a voxel not positioned in the magnet isocenter 

Fig. 2.14 shows the voxel position chosen for the acquisition of the dqf spectrum. The 

two black lines on each image indicate the magnet isocenter. The (25 mm)
3
 voxel is 

approximately shifted 1.6 cm to the right, 1.3 cm upwards and 1.9 cm in the anterior 

direction. As can be seen on the images, the voxel is distant from problematic regions as 

the ventricles or the scalp. A linewidth of about 6Hz has been achieved for the water 

peak after automatic 1
st
 and 2

nd
 order shimming. 

  
Fig. 2.14:  Voxel of (25 mm)

3
 size, positioned on the parietal lobe of a volunteer for acquisition of a 

dqf spectrum. The voxel is approximately shifted 1.6 cm to the right, 1.3 cm upwards and 
1.9 cm in the anterior direction with respect to the magnet isocenter ( situated at the 
intersection of the two black lines on each image). The dqf spectrum acquired from this 
position is shown in Fig. 2.15. 
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Fig. 2.15:  DQF spectrum acquired from a (25 mm)

3
 voxel positioned in the parietal lobe of a 

volunteer, as shown in Fig. 2.14. The voxel was not situated in the magnet isocenter and 
phase calibration of dqf and read pulse was performed prior to acquisition of the 
spectrum. The signal at 2.3 ppm contains principally glutamate, the signal at 3.7 ppm 
glutamate and glutamine. No water is visible in the spectrum and the baseline is 
essentially flat. Spectra of good quality can be obtained from off-center positions. 

Fig. 2.15 shows the dqf spectrum acquired from the voxel position indicated in Fig. 

2.14. A phase correction of φ = 83° for the read and dqc pulse was necessary. The 

spectrum essentially displays one peak at 2.4 ppm. Referencing of the ppm scale has 

been performed setting the middle of the spectrum, corresponding to the water peak 

frequency, to 4.7 ppm. The signal at 2.4 ppm has a signal to noise ratio a bit better than 

nine. A further strong signal is visible at near 3.7 ppm. This signal can not be phased to 

absorption mode. No water peak is visible in the spectrum, resulting in a flat baseline. 

At lower or higher frequencies near the spectral range displayed, no line distortions or 

signals are visible. The total duration of the measurement protocol was about 45 

minutes. 

2.4.3.5 Discussion 

Double quantum filtered spectra can be acquired in vivo from the human brain, as is 

demonstrated by Fig. 2.13. and Fig. 2.15. The editing approach is successful as one 

single peak remains in the spectrum. The suppression of uncoupled singlet signals, as 

for example of total creatine or total choline, leads to a highly simplified spectrum with 

a single well visible peak remaining. The very strong in vivo water signal was 

completely eliminated, using VAPOR and taking advantage of implicit water 

suppression of double quantum filter sequences. A completely flat baseline was 

achieved. The signal to noise ratio of the peak of interest in both spectra, about nine, is 

quite low considering voxel size and acquisition duration. Uncomplicated spectral 

pattern and flat baseline simplify signal quantification; integration between fixed 
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frequency limits for example could readily furnish acceptable results. Normalization of 

the measured peak although has to be done via an external signal, as there is only one 

peak of known origin in the edited spectrum. The water signal, acquired in a separate 

acquisition, could be used. Calculating ratios between distinct acquisitions may 

although add variability to quantification. The low signal to noise ratio, in spite of the 

relatively big voxel size (about 16 ml) and in spite of the good field homogeneity (about 

6 Hz for the water peak) achieved at this voxel position, is a very strong drawback. 

Compared to brain structures, the voxel volume is very large. Precise measurements are 

thereby difficult to perform. 

Further signals in both spectra are present near 3.7 ppm. These signals originate 

partially from the glu and gln 
2
CH resonances, as can be determined by comparison 

with the in vitro acquisitions, Fig. 2.11. The size of these signals in the shown spectra is 

although stronger than predicted. Coupled resonances of other molecules present in this 

spectral area, as myo-inositol, may contribute. In the spectrum shown in Fig. 2.15 

signals appear near 1.6 ppm. In spectra from comparable voxel positions, these signals 

are not always present. Their origin could be residual lipid signals, whose suppression 

partially depends on the use of phase cycling. Accidental head movement could lead to 

small signal alterations, reducing efficiency of the phase cycling. The presence of lipid 

signals indicates contamination from areas external to the voxel volume. Outer volume 

suppression (OVS) could be used to reduce this contribution. The residual signal near 

3.7 ppm and the one near 1.6 ppm are however distant enough to not disturb the signal 

of interest, situated at 2.3 ppm. 

The composition of the peak at 2.3 ppm may be assessed by comparison with the in 

vitro acquisitions shown in Fig. 2.11. In vitro acquisitions used the same sequence 

configuration as for the spectrum shown in Fig. 2.13. The spectrum from an off-center 

voxel in Fig. 2.15 used 2 ms shorter excitation / refocusing pulses and a 100 µs longer 

dqc pulse than the in vitro acquisitions. The peak composition shown in Fig. 2.11 

should still however be a very good approximation. As stated before, the major 

contribution to the peak of interest at 2.3 ppm is given by glutamate. A further more 

precise comparison of the peakform obtained in vitro and in vivo is difficult because of 

the low signal to noise ratio in vivo. 

Double quantum filtered spectra can be acquired in vivo from freely positioned voxel 

positions. Phase calibration of the dqc and read pulse is indispensable. For the 

acquisitions shown in Fig. 2.15 a phase correction of more than 80° was necessary. 

Omitting this correction would have led to almost complete signal extinction, as may be 

estimated looking at the influence of the phase on the signal amplitude, Fig. 2.5. 
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2.5 Conclusion and perspectives 

In this chapter we have demonstrated the feasibility of using double quantum filtering 

for detection of glutamate in the human brain at field strengths of 3 Tesla. The double 

quantum filtered spectrum contains foremost glutamate. Residual signals of other 

metabolites, mainly glutamine, persist however (comparing Fig. 2.11 and Fig. 2.15). 

The spectra are easily interpretable, presenting mainly one signal peak, a flat baseline 

and no water signal. Normalization of the spectrum for comparison between different 

exams and quantification has to be done with the signal from another acquisition. The 

water peak or easily measured singlet signals as those of NAA or creatine may be used, 

or even model spectra (Provencher 1993). The glutamate content in the dqf spectrum as 

well as the in vivo signal to noise ratio achieved in this work is comparable to that of 

earlier studies (Thompson and Allen 1998; Schubert F 2001). It would be interesting to 

continue the process of numerical optimization, as proposed by (Thompson and Allen 

1998), to examine whether improvements in glutamate/glutamine distinction are 

possible simulating the exact pulseshapes and the exact magnetic fieldstrength of our 

system. For positions outside the magnet isocenter, calibration of the relative pulse 

phases has to be performed. The calibration procedure is complicated and increases 

significantly the protocol duration. Acquiring only low quality images for voxel 

positioning, the protocol duration was about 45 minutes. For medical studies, this 

duration is lengthened by the necessary acquisition of more precise images for exact 

voxel placement. The application of a protocol with this duration for clinical research 

could be difficult. Most spectrometers offer however the possibility to program 

automations of complex processes. Programming of a macro for phase calibration 

would significantly reduce user interaction and time consumption, so that the use on 

patients could be possible. During in vitro experiments, using larger voxel 

displacements than in section 2.4.3, strong variations in the signal intensity have been 

observed, leading in some cases to strong signal reduction. The acquisition sensitivity of 

a birdcage resonator is best in its coil center and reduced in the surrounding area. This 

may account for reduced signal to noise ratios. Furthermore, less well formed slice 

profiles procuced by the excitation and the refocusing pulses have been observed in 

these spatial regions. Given the complexity of signal preparation in the filter sequence, 

asymmetric voxel shapes may have a negative influence on the filtering efficiency. Of 

strong concern is the low signal to noise ratio, achieved in spite of the large voxel size 

and the good field homogeneity. The higher the variability, the more exams are needed 

in clinical studies to verify or dismiss the hypothesis to be tested. Large variability of 

the measuring method therefore leads to long, expensive studies. In brain regions 

difficult to shim, as the profound structures of basal ganglia (an area of interest for 

research on Parkinson’s disease), the signal to noise ratio will be still lower. The 

possibility to achieve exact results from small brain structures is limited by the large 

voxel size. The double quantum filter method should therefore preferably be used when 

important concentration changes of glutamate are to be expected in relatively large 

structures. 
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Only few methods allowing glu detection at field strengths of 3 Tesla or below have 

been proposed so far. Among these the double quantum filter method presented in this 

work offers a technically demanding but interesting approach. The performance of this 

technique will be compared to another method for glutamate detection in the following 

chapter. 

 



3 TE averaged PRESS for brain glutamate 
detection at 3 Tesla 

Ce chapitre décrit l’évaluation de la méthode « TE averaged PRESS » (Hurd, Sailasuta 

et al. 2004) pour la mesure de glutamate cérébral à 3 Tesla. Des expériences en amont 

sur des métabolites en solution permettent d’estimer la contribution du glutamate par 

rapport à d’autres métabolites. La méthode est ensuite évaluée pour des acquisitions in 

vivo. Les résultats obtenus sont comparés à des spectres PRESS acquis à des temps 

d’écho de 80 ms et de 136 ms. 

3.1 Introduction 

In J-resolved spectra, the multiplet structure of coupled molecules is resolved in two 

frequency dimensions, called f1 and f2. The dimension f2 is related to the acquisition 

time, called t2. To introduce an additional dimension, several PRESS spectra with 

linearly increased echo times are acquired, providing a second time dimension t1. By 

Fourier transformation with respect to t1, one obtains the second spectral dimension f1. 

A TE averaged PRESS spectrum (Hurd, Sailasuta et al. 2004) is the f1 = 0 trace of such 

a two dimensional J-resolved spectrum. 

As certain resonance lines from coupled molecules appear at frequencies of f1 ≠ 0, 

signal overlap is reduced in a TE averaged spectrum as compared to normal PRESS 

spectra. In the case of glutamate, resonance lines of glutamine, NAA and GABA 

overlap with glutamate in usual PRESS spectra. In two dimensional J-resolved spectra, 

some of these overlapping signals are moved in the f1 direction and glutamate may 

thereby be observed almost unobstructed (Hurd, Sailasuta et al. 2004) on the central 

trace. 

An important influence on the overlap of the glutamate signal with the other resonances 

has the f1 resolution. If the resolution is not sufficient, the t1 acquisition window too 

small, contributions of gln, NAA and GABA become increased. At three Tesla field 

strengths, a glutamate signal with only minor contributions of other resonances may be 

acquired using a t1 acquisition window length of 165 ms. The f1 resolution of about 6 

Hz per point is however not sufficient to use the information content of the whole two 

dimensional spectrum. It is advantageous to be able to work with relatively small t1 

acquisition windows. For a given number of total scans, determining the experiment 

duration, more time per t1 step can be used for signal acquisition as compared to larger 

t1 windows. The signal to noise ratio of the individual PRESS spectra is improved, 

allowing individual shift and phasing corrections. 

A TE averaged spectrum is easily obtained by adding all individual spectra of the 2D 

acquisition. The following notation will be used from now on: A scan corresponds to a 
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single acquisition with a fixed echo time. The accumulation of several scans will be 

called experiment. All experiments with their individual echo times together are called 

J-resolved acquisition. 

3.2 Experiments on metabolites in solution 

As for the double quantum filter sequence, in vitro acquisitions on samples containing a 

single metabolite were performed. Samples contained one of the metabolites of glu, gln, 

NAA or GABA. These metabolites present resonances in the region of interest, near 2.3 

ppm. The superposition of the single metabolite spectra gives information about the 

composition of the signal observed in vivo and allows to assess possibilities of 

glutamate detection. 

3.2.1 Materials and methods 

The same spectrometer and configuration as for the double quantum filter experiments, 

described in the preceding chapter, has been used (3 T whole body imager, 8 kW rf 

amplifier, birdcage head coil for signal excitation and reception). As well, the same 

samples containing glu, gln, NAA or GABA have been used (50 mM metabolite 

solution in phosphate buffer, 0.25 mmol/l chelated Gadolinium (0.5 ml/l Dotarem, 

Guerbet) as relaxant, pH adjusted to 7.3, 270 ml sample volume enclosed in spherical 

glass containments). TSP (3-(Trimethylsilyl)- Propionic acid), was added to each 

sample as frequency and phase reference. For the experiments, the sample was placed in 

the middle of the birdcage resonator, surrounded by four 500 ml plastic bags containing 

physiological serum, in order to ensure correct coil loading. A PRESS and a TE 

averaged PRESS spectrum were acquired from each sample. 

The BRUKER supplied source code of a PRESS implementation on our machine was 

modified to allow acquisitions of 2D J-resolved spectra. Half of the echo time 

augmentation from one scan to the next was added to the first echo time, half to the 

second echo time. Hermitian pulseshapes of 2 ms length were used for PRESS, water 

suppression was achieved by VAPOR (Tkac, Starcuk et al. 1999). VAPOR used 

hermitian pulses for selective water excitation. A (25 mm)
3
 volume, well contained 

within the sample, was chosen for acquisition. After local adjustments of resonance 

frequency and rf gain and after local shimming, the unsuppressed water signal was 

acquired for referencing purposes. For comparison with TE averaged PRESS, a PRESS 

spectrum with an echo time of TE = 136 ms was performed, accumulating 128 scans. 

The total echo time was divided symmetrically between the first and the second echo 

time. An echo time of 136 ms is usually used in clinical applications as lactate presents 

a fully inversed doublet at this evolution time. Lactate presence can thereby be 

discriminated from lipid signals. For TE averaged PRESS, 17 experiments starting at 

TE = 35 ms were acquired and stored in a 2D data matrix. TE was increased in steps of 

10 ms, 8 scans per experiment were accumulated. PRESS and TE averaged PRESS 

acquisitions started with eight dummy scans to achieve steady state. A spectral width of 
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5000 Hz on 4096 points was acquired using repetition time of 3 seconds. Eight step 

phase cycling (Henning 1992) was used during accumulations. 

Posttreatment used the IDL programming language (RSI, Boulder). Each single 

experiment of the TE averaged PRESS acquisition was corrected for frequency shift and 

0
th

 order phase using the TSP signal as reference. Differences in field homogeneity 

(shim) achieved on the different samples were assessed via the frequency width of half 

max of the water reference scan. The water linewidths were similar for the acquisitions 

on the different samples. Exponential broadening was applied to achieve a linewidth of 

about 7 Hz on the NAA singlet signal. This is the linewidth we usually find for good in 

vivo spectra after posttreatment. The same broadening was then applied to the spectra of 

glu, gln and GABA. To simulate signal decay caused by T2 relaxation over different 

experiments in TE averaged PRESS acquisitions, a decaying exponential was applied in 

t1. A decay characterized by a T2 of 200 ms (Traber, Block et al. 2004) was adjusted on 

the singlet signal of NAA and then applied to the spectra of glu, gln and GABA. 

Finally, TE averaged spectra were calculated by summing up the experiments of the 2D 

J-resolved acquisition. 

PRESS spectra acquired at TE = 136 ms were as well phased and frequency shift 

corrected using the TSP reference signal. The same line broadening as determined for 

the TE averaged PRESS acquisitions was applied.  

The spectra of the different metabolites were multiplied with the typical concentration 

for the respective metabolite in the brain, as taken from the literature (Govindaraju, 

Young et al. 2000). We assume a concentration of 9.25 mmol/kg w.wt. for glutamate, 

4.4 mmol/kg w.wt. for glutamine, 12.25 mmol/kg w.wt. for NAA and 1.6 mmol/kg 

w.wt. for GABA. 

3.2.2 Results 

Fig. 3.1 shows the TE averaged spectra acquired on the samples containing glutamate, 

glutamine, NAA or GABA. The spectra have been superposed and their sum has been 

calculated. The sum is displayed as solid line, glutamate as dotted-, glutamine as 

dashed- and NAA as dash-dotted line. GABA is printed as dash-dot-dot-dot line. 
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Fig. 3.1:  TE averaged spectra acquired on samples containing in solution either glutamate, 

glutamine, NAA or GABA. The sum of the individual metabolite spectra is displayed as 
solid line, glutamate as dotted-, glutamine as dashed- and NAA as dash-dotted line. 
GABA is printed as dash-dot-dot-dot line. TE averaged PRESS allows the acquisition of a 
signal at 2.3 ppm containing almost exclusively glutamate. 

Fig. 3.2 shows the PRESS spectra acquired on the samples containing glutamate, 

glutamine, NAA or GABA, using an echo time of 136 ms. The same linestyles as in 

Fig. 3.1 have been used to trace the spectra of the different metabolites and their sum. 

 
Fig. 3.2:  PRESS spectrum using an echo time of 136 ms acquired on solutions containing either 

glutamate, glutamine, NAA or GABA. The sum of the individual metabolite spectra is 
displayed as solid line, glutamate as dotted-, glutamine as dashed- and NAA as dash-
dotted line. GABA is printed as dash-dot-dot-dot line. The signal situated at 2.3 ppm is a 
mixture of glu, gln, NAA and GABA, with the glu part being the strongest component. 
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The PRESS as well as the TE averaged PRESS spectrum show a strong singlet signal of 

NAA at 2 ppm. The spectral shape in the region of interest, near 2.3 ppm, is strongly 

simplified in TE averaged PRESS. TE averaged PRESS spectra show a single peak 

containing almost exclusively glutamate left of NAA. The PRESS spectrum displays as 

well a marked signal at 2.3 ppm, that is however a mixture of glutamate, glutamine, 

NAA and GABA. The glutamate content of the signal in the PRESS spectrum may be 

estimated to be about 70% of the total peak area. At 3.7 ppm, as well in the PRESS as in 

the TE averaged PRESS spectrum, a single peak representing the sum of glutamate and 

glutamine is visible. 

3.2.3 Discussion 

TE averaged PRESS allows improved glutamate observation as compared to PRESS 

using an echo time of 136 ms. In PRESS spectra, the region near 2.3 ppm is 

characterized by overlapping multiplet signals. In the TE averaged PRESS spectrum, 

the glutamate signal dominates the sum of all metabolites (solid line of Fig. 3.1, Fig. 

3.2) near 2.3 ppm. This improvement is not only achieved because contributions of gln, 

NAA and GABA are reduced, but also because the spectral shape of glutamate is 

simplified to a single line. As the TE averaged PRESS spectrum is the sum of PRESS 

spectra at different echo times, one can imagine how positive and negative signal 

contributions present at different echo times, add to zero and provide as sum a 

simplified spectrum. The signal at 2.3 ppm representing almost only glutamate in TE 

averaged PRESS may be easily quantified by peak integration or by fit of a Lorentzian 

lineshape. 

Our results obtained in vitro concerning the resonances visible at 2.3 ppm in TE 

averaged PRESS are comparable to the ones published in the literature (Hurd, Sailasuta 

et al. 2004). Hurd et al find however equal glutamate peak amplitudes at 2.3 and 3.7 

ppm, whereas in our experiments the 3.7 ppm resonance line is less intense. We have 

chosen to compare TE averaged PRESS to PRESS using an echo time of 136 ms 

because this echo time is usually used in clinical application, as it corresponds to 

complete inversion of the lactate doublet. Other groups (Schubert F 2001) use an echo 

time of 80 ms for glutamate detection, which they determined to be optimal. In vivo 

acquisitions at 80 ms will be presented later in this chapter and compared with TE 

averaged PRESS. 
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3.3 In vivo application 

Experiments have been performed to assess the performance of TE averaged PRESS in 

vivo. PRESS spectra with an echo time of 136 ms and 80 ms have been acquired for 

comparison with TE averaged PRESS. 

3.3.1 Materials and methods 

The same spectrometer and configuration as used before, described in the preceding 

chapter, has been used (3 T whole body imager, 8 kW rf amplifier, birdcage head coil 

for signal excitation and reception). PRESS and TE averaged PRESS were 

parameterized as for the in vitro experiments in section 3.2.1 (2 ms hermitian 

pulseshapes for PRESS, VAPOR using hermitian pulses). For PRESS at 136 ms and TE 

averaged PRESS, longer pulses were used for VAPOR to improve selectivity of water 

suppression. 

Experiments started with the acquisition of scout images in the frontal, axial and 

saggital planes (machine coordinate system), using a FLASH based method. Slice 

packages oriented according to patient position were then acquired using an MDEFT 

sequence. Saggital images were oriented parallel to the inter-hemispherical plane, 

transverse images perpendicular to the saggital images and parallel to the axis defined 

by anterior and posterior commissures (ac and pc). Orientation of frontal images was 

thereby defined as orthogonal to the saggital and transverse images. A voxel measuring 

20 mm x 20 mm in the left-right and head-foot direction and 30 mm in the anterior-

posterior direction was placed in the parietal lobe. This region was chosen as very good 

shim results may be achieved. The voxel axes were oriented parallel to the patient 

coordinate system. The voxel dimensions were chosen as for later studies in research on 

Parkinson’s disease (see following chapter). Resonance frequency, rf gain and shim 

were adjusted locally in a voxel measuring (35 mm)
3
. This larger voxel was chosen to 

account for chemical shift displacements of the acquisition volume. Localized 

shimming used FASTMAP, localized rf gain and resonance frequency adjustments used 

procedures implemented in the BRUKER PRESS method of our machine. Before the 

start of acquisitions, the VAPOR pulsegains were fine adjusted by hand to obtain 

optimal water suppression. All acquisitions started with eight dummy scans to achieve 

equilibrium magnetization and used a repetition time of 3 seconds. A TE averaged 

PRESS spectrum using echotimes from 35 ms to 195 ms and steps widths of 10 ms was 

acquired. Eight scans per echo time were averaged, we used a spectral width of 5000 Hz 

and 4096 points for acquisition. A PRESS spectrum with an echo time of 136 ms was 

then acquired from the same voxel, accumulating 128 scans, using a spectral width of 

2500 Hz and 2048 points for acquisition. Acquisition time for PRESS and TE averaged 

PRESS was about seven minutes per spectrum. The unsuppressed water signal was as 

well acquired from the same volume for referencing purposes. Posttreatment used the 

IDL programming language (RSI, Boulder). Two Hertz linebroadening was applied to 

improve the signal to noise ratio. Each single experiment of the TE averaged PRESS 
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acquisition was corrected for frequency shift and 0
th

 order phase using the NAA signal 

as reference. The TE averaged PRESS spectrum was then calculated by adding the 

different experiments of the 2D acquisition. 

Further experiments, performed on another volunteer, are presented to demonstrate 

PRESS at 80 ms (Schubert F 2001). The experimental protocol and posttreatment were 

the same as described above for PRESS using 136 ms echo time. For voxel positioning, 

an axial, frontal and transverse view (machine coordinate system) were acquired, using 

a FLASH based imaging method. A voxel of (25 mm)
3
 was positioned in the right 

parietal lobe. A repetition time of 3 seconds was used, accumulating 128 scans after 

having performed 8 dummy scans. A spectral width of 5000 Hz was acquired on 4096 

points. 

3.3.2 Results 

Fig. 3.3 shows the voxel from which the 136 ms PRESS and the TE averaged PRESS 

spectrum have been acquired. The voxel has been positioned on the axial and frontal 

MDEFT images, it extends equally to both sides of the shown image slice. White and 

gray matter are present in the acquisition volume. 

 
Fig. 3.3:  Voxel measuring 20 mm x 20 mm in the left-right and head-foot direction and 30 mm in 

the anterior-posterior direction positioned on the left parietal lobe of a volunteer. The 
volume extends equally to both sides of the image. This volume was used for acquisition 
of the PRESS and TE averaged PRESS spectra of Fig. 3.4 and Fig. 3.5. 

Fig. 3.4 shows the PRESS spectrum, acquired using an echo time of 136 ms from the 

position indicated in Fig. 3.3. A linewidth of about 6 Hz in the acquisition volume for 

the water peak was achieved by shimming. Fig. 3.5 shows the TE averaged PRESS 

spectrum, acquired from the same voxel as the PRESS spectrum of Fig. 3.4. 
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Fig. 3.4:  PRESS spectrum, acquired from a (20x20x30) mm

3
 volume positioned the parietal lobe of 

a volunteer, as shown in Fig. 3.3. An echo time of 136 ms was used. NAA, total creatine 
and total choline are well visible at 2.0 ppm, 3.0 ppm and 3.2 ppm. Another resonance of 
total creatine is visible at 3.9 ppm. At 2.3 ppm, no clear signal shape can be 
distinguished. 

 
Fig. 3.5:  TE averaged PRESS spectrum, acquired from from a (20x20x30) mm

3
 volume positioned 

the parietal lobe of a volunteer, as shown in Fig. 3.3. The same signals as described for 
Fig. 3.4 can be identified. Additionally, a well formed peak is visible at 2.35 ppm and at 
3.75 ppm. These can be identified as almost exclusively glutamate signal (2.3 ppm) and 
combined glutamate+glutamine (3.75 ppm). 
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Fig. 3.6 shows the images used for positioning of a (25 mm)
3
 voxel in another 

experiment. This voxel was used for acquisition of a PRESS spectrum at 80 ms echo 

time. The two black lines on each image are due to saturation effects that originate from 

the image acquisition. The image contrast does not allow for gray matter / white matter 

distinction, but was sufficient for voxel positioning in these experiments. 

 
Fig. 3.6:  Voxel of (25 mm)

3
 situated in the right parietal lobe of a volunteer. This volume was used 

for acquisition of a PRESS spectrum using an echo time of 80 ms. 

Fig. 3.7 shows the PRESS spectrum acquired using an echo time of 80 ms from the 

volume indicated in Fig. 3.6. Linewidths in this spectrum are comparable to the 

preceding spectra. 

In all three spectra, signals of NAA, total creatine and total choline are well visible at 

2.0 ppm, 3.0 ppm and 3.2 ppm. In the spectra of the first session, Fig. 3.4 and Fig. 3.5, 

another resonance of total creatine appears at 3.9 ppm. In the spectrum of the second 

session, Fig. 3.7, no signal is visible left of choline due to less well parameterized water 

suppression. The most interesting differences between PRESS at 80 ms, at 136 ms and 

TE averaged PRESS take place in the spectral region where coupled spins have their 

resonances, near 2.3 ppm and left of choline, between 3.3 and 3.8 ppm. Using an echo 

time of 136 ms, no clear signal shape is visible in a simple PRESS spectrum in the 

region of 2.3 ppm. At an echo time of 80 ms, a signal corresponding more or less to a 

peakshape appears at 2.3 ppm. To the left and to the right, other signals are present, 

although not as well formed peak shape. In TE averaged PRESS, a well formed peak 
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with a linewidth comparable to NAA is visible at 2.3 ppm. To the left and to the right of 

this signal, the baseline is essentially flat. 

The PRESS spectrum at 136 ms shows no clearly visible signal in the spectral region 

from 3.3 to 3.8 ppm. In TE averaged PRESS, a well formed peak appears at 3.75 ppm 

and a further, smaller signal contribution is visible near 3.6 ppm. These can be 

associated with combined glutamate+glutamine (3.75 ppm) and myoInositol (3.6 ppm).  

The brain regions chosen for the demonstrations of PRESS and TE averaged PRESS are 

very homogeneous compared to other parts of the brain and allow obtaining very small 

linewidths. The NAA signal, after having applied exponential filtering of 2 Hz, displays 

a frequency width at half max of about seven Hertz in all spectra (Fig. 3.4, Fig. 3.5, Fig. 

3.7, compare to Fig. 3.1, Fig. 3.2). The high field homogeneity achieved after shimming 

can be seen by the very good resolution of total choline and total creatine. 

 
Fig. 3.7:  PRESS spectrum, acquired from the volume shown in Fig. 3.6 using an echo time of 80 

ms. NAA, total creatine and total choline are well visible at 2.0 ppm, 3.0 ppm and 3.2 ppm. 
Signals above 3.4 ppm were attenuated by water suppression (compare to Fig. 3.4). At 
2.3 ppm, a relatively large peak may be distinguished, which is dominated by glutamate 
(Schubert, Gallinat et al. 2004). 
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3.3.3 Discussion 

Among the three approaches presented (PRESS at 80 ms, at 136 ms and TE averaged 

PRESS), TE averaged PRESS shows the most clear signal shape near 2.3 ppm, where 

glutamate resonances are situated. The metabolite contributions to this signal may be 

estimated by comparison with the in vitro TE averaged PRESS spectrum of Fig. 3.1. 

The signal at 2.3 ppm is almost exclusively glutamate with very low contributions of 

glutamine, GABA and NAA. PRESS at 136 ms shows no clearly distinguishable peak 

in the spectral area of 2.3 ppm in vivo. Signals of glutamate, glutamine, NAA and 

GABA strongly overlap, as may be assessed comparing to Fig. 3.2. 

No in vitro experiments have been performed with PRESS using an echo time of 80 ms. 

Comparing the in vivo acquisitions of Fig. 3.5 (TE averaged PRESS) and Fig. 3.7 

(PRESS 80 ms), TE averaged PRESS spectra seem the preferable approach because of a 

flatter baseline and a more clearly distinguishable signal at 2.3 ppm. The results 

achieved with PRESS at 80 ms and TE averaged PRESS are comparable to the ones 

published by Schubert et al (Schubert, Gallinat et al. 2004) and Hurd et al (Hurd, 

Sailasuta et al. 2004). 

We compare spectra acquired from not exactly the same brain region and using not 

exactly the same acquisition volume and duration. Because of different voxel sizes, the 

overall signal to noise ratios of the spectra is certainly not comparable. Because of 

different voxel placements, glutamate concentration in the volume may differ slightly 

because of different gray matter and white matter contents. The linewidths of the signals 

of NAA, tCr and tCho are comparable for all spectra, and we may therefore compare the 

spectral shape of the signal near 2.3 ppm used for glutamate measurement, as has been 

done above. The signal saturation to the left of 3.5 ppm in the PRESS spectrum at 80 

ms, caused by water suppression, could possibly influence the spectral shape of the 

glutamate signal at 2.3 ppm because of coupling effects. As our spectra compare well to 

those of Schubert et al, this influence seems negligible. 

3.4 Conclusion and perspectives 

TE averaged PRESS is an easy to use and easy to implement technique allowing almost 

unobstructed glutamate detection at field strengths of 3 Tesla. Concerning the 

acquisition of a glutamate signal, better results than with standard PRESS acquisitions, 

using a fixed echo time of 136 ms or 80 ms, can be achieved. The glutamate signal of 

TE averaged spectra may be quantified using simple peak integration or fit of a 

Lorentzian lineshape. TE averaged PRESS spectra with good signal to noise ratio can 

be acquired in durations of about 7 minutes. 

Better results for the detection of glutamate have been achieved using TE averaged 

PRESS than using the double quantum filter sequence, presented in the preceding 

chapter. In the double quantum filtered spectra, relatively strong glutamine 

contributions remained in the signal. This is not the case in TE averaged spectra. A 
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much higher signal to noise ratio for glutamate can be achieved with TE averaged 

PRESS in a shorter acquisition time. Handling of this sequence is much easier, as no 

phase calibration procedure is necessary. Quantification of glutamate may be done 

referring to other signals from the same spectrum as for example the peak of NAA, total 

creatine or total choline. This is an advantage compared to the use of an external 

reference signal as referencing between different spectra may add variability. 

For future developments it would be interesting to compare TE averaged PRESS to 

other recently proposed 2D techniques for glutamate detection (Mayer and Spielman 

2005; Schulte, Trabesinger et al. 2005). These techniques rely as well on the PRESS 

sequence and on the acquisition of spectra with different echo times. Different as in TE 

averaged PRESS however, the acquisition window in these approaches begins at a fixed 

delay after the first excitation pulse. Traces at f1 ≠ 0 of the two dimensional spectrum 

are evaluated. TE averaged PRESS spectra, CSSF (Schulte, Trabesinger et al. 2005) 

spectra and CT PRESS (Mayer and Spielman 2005) spectra could possibly be 

reconstructed from the same data set. 



4 TE averaged PRESS and PRESS for brain 
glutamate detection at 7 Tesla 

Ce chapitre décrit l’évaluation de la séquence « TE averaged PRESS » à un champ de 7 

Tesla pour la mesure de glutamate cérébral chez le petit animal. Les paramétrages des 

séquences « TE averaged PRESS » et « PRESS » sont optimisées utilisant des mesures 

sur des métabolites en solution. Les performances respectives des deux méthodes 

optimisées sont ensuite comparées in vivo, à 7 Tesla. 

4.1 Introduction 

Numerical simulations suggest that TE averaged PRESS could be a useful technique for 

glutamate detection at seven Tesla field strength (Hurd, Sailasuta et al. 2004). J-

coupling evolution of glutamate, glutamine, NAA and GABA at seven Tesla is different 

than at three Tesla, as well as relaxation times and linewidths. The acquisition 

parameters of TE averaged PRESS therefore have to be examined. In this chapter, TE 

averaged PRESS will be examined at 7 Tesla field strength and be compared a standard 

PRESS sequence. As TE averaged PRESS is the sum of PRESS spectra acquired at 

different echo times, PRESS and TE averaged PRESS can be compared using the same 

data set. 

For the terms of “scan”, “experiment” and “J-resolved acquisition” please refer to 

chapter 3. The principal parameters to be chosen for TE averaged PRESS are the echo 

time to start the J-resolved acquisition with (TEinit), the number of experiments, the echo 

time increment (∆t) and the number of scans to be accumulated per experiment.  

TEinit is determined by the mid-position of the t1 acquisition window and its length. The 

position of the acquisition window should be chosen to contain a maximum of 

glutamate signal to assure optimal signal to noise ratio. T2 relaxation and J-coupling 

evolution determine this optimal position (Ziegler, Izquierdo et al. 1995). 

In a first step, the echo time for which the glutamate signal is maximal will be 

determined experimentally. The t1 acquisition window for TE averaged PRESS 

experiments will then be centered on this echo time to achieve maximal signal intensity 

for glutamate. Increasing t1 acquisition windows will be tested. Long t1 acquisition 

windows assure good TE averaged PRESS spectra because of high spectral resolution in 

f1. At the same time, for a fixed number of total scans (a fixed experiment duration), 

longer t1 acquisition windows lead to reduced signal to noise ratio because of T2 

relaxation and coupling effects. T2 relaxation limits as well the achievable resolution in 

f1. For a given total number of scans and a given t1 acquisition window length, ∆t 

should be chosen short enough to assure correct sampling of the glutamate signal 

evolution in dependence of the echo times within the acquisition window. The number 
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of scans accumulated per experiment should however assure a sufficient signal to noise 

ratio in each experiment to apply individual shift and phasing corrections. 

4.2 Experiments on metabolites in solution and in vivo 

PRESS and TE averaged PRESS experiments have been performed in vitro on samples 

of glutamate, glutamine, NAA and GABA. The results give an impression of the 

precision of glutamate measurement to be expected in vivo. Further experiments have 

been conducted to assess the signal quality of PRESS and TE averaged PRESS spectra 

in vivo. 

4.2.1 Materials and methods in vitro experiments 

Acquisitions 

Experiments were performed using a 7 Tesla horizontal bore magnet (Magnex 

Scientific, Abington, UK) dedicated to biomedical research. The bore diameter of the 

magnet is 20 cm, of which 12 cm are usable inside the gradient coil tube. The system is 

interfaced to a SMIS console (MRRS, UK). A house made surface coil of 2.5 cm in 

diameter was used for signal excitation and acquisition. Samples containing glu, gln, 

NAA or GABA at 100 mM were prepared in a phosphate buffer. The samples contained 

about 0.2 mmol/l chelated Gadolinium complex (0.4 ml/l Dotarem, Guerbet) as 

relaxant. As reference, TSP (3-(Trimethylsilyl)- Propionic acid) in a constant quantity 

of 37 mmol/l was added to all samples. Added at this quantity, the preeminent TSP 

signal has roughly twice the amplitude of the glutamate signal at 2.3 ppm. To prevent 

bacterial growth, 0.5 ml (1% of the sample volume) of penicillin streptomycin (5000 

units/ml, Gibco) was added. The sample pH was adjusted to the typical brain value of 

7.3 after having added all components. Glass cylinders of about 2 cm in diameter and 

1.5 cm in height were used as containments; correct coil loading was assured with this 

sample volume. The sample was placed directly under the surface coil. 

Acquisitions used a standard PRESS sequence, modified to automate J-resolved 2D 

acquisitions (for the notations of scan and experiment and J-resolved acquisition refer to 

chapter 3). Only the second echo time was increased, the first echo time is kept to a 

minimal value of 12 ms. Gradient commutations for the crusher gradients surrounding 

the second refocusing pulse can thereby be kept far from the acquisition window, 

minimizing the influence of residual eddy currents on the spectrum. PRESS used 3 lobe 

sinc pulses of 6.6 kHz bandwidth for volume localization, water suppression was 

performed by a preceding VAPOR module (Tkac, Starcuk et al. 1999). Our VAPOR 

implementation used 2 lobe sinc pulses of 500 Hz bandwidth for selective water 

excitation. A (4 mm)
3
 volume was chosen for acquisition, resonance frequency, rf gain 

and shim were adjusted locally in this voxel. Forty PRESS experiments with linearly 

increased echo time were acquired from each sample and stored independently in a 2D 

data matrix for later signal processing. Acquisitions started at an echo time of 35 ms, 
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divided into 12 ms for the first and 23 ms for the second echo time. An echo time of 35 

ms is the actual minimum echo time achievable on our system. Eight scans with a fixed 

echo time were accumulated, using exorcycle phase cycling. The second echo time was 

increased by 10 ms from one experiment to the next. Acquisitions started with eight 

dummy scans to achieve steady state, repetition time was 3 seconds. A spectral width of 

5000 Hz was acquired on 4096 points. 

Postprocessing 

Postprocessing was performed using the IDL programming language (RSI, Boulder). 

Spectra were zero-filled to 8192 points to smooth the lineshape and to facilitate 

treatments such as frequency shift correction in the spectral domain. Each single 

experiment of the TE averaged PRESS acquisition was corrected for frequency shift and 

0
th

 order phase using the TSP signal as reference. Individual amplitude scaling and 

exponential broadening was applied to the spectra acquired from the different samples 

to produce always the same linewidth and amplitude for the TSP signal. Differing 

linewidths due to shimming and differing signal intensities (due to rf calibration for 

example) have thereby been accounted for, as well as T2 decays in the t1 acquisition 

dimension differing from one sample to another. The same additional linebroadening 

was then applied to all spectra, giving a frequency width of 19 Hz on the NAA signal at 

2.0 ppm. This is a typical value found in vivo under our experimental conditions. In the 

t1 acquisition dimension, spectra were apodized to produce an exponential decay 

corresponding to a T2 of 170 ms on the NAA signal (de Graaf 1998). The spectra of the 

different metabolites were multiplied with the typical concentration of the respective 

metabolite in the rat brain, as taken from the literature (see annex Table 8.2). We 

assume a concentration of 11.3 mmol/kg w.wt for glutamate, 5.5 mmol/kg w.wt for 

glutamine, 8.9 mmol/kg w.wt for NAA and 1.7 mmol/kg w.wt for GABA. 

The result of acquisitions and postprocessing so far is a 2D data matrix for each sample 

of glu, gln, NAA or GABA, containing PRESS spectra acquired with an echo time 

ranging from 35 ms to 425 ms. Linewidths, concentrations and T2 decay have been 

adapted as well as possible to simulate in vivo conditions. These experiments now allow 

the comparison of PRESS at different echo times and TE averaged PRESS for 

glutamate measurements at 7 Tesla. 

To determine the echo time for which maximal glutamate signal can be acquired, the 

glutamate peak intensity at 2.3 ppm was determined in all spectra acquired from the 

glutamate sample. TE averaged spectra for different t1 acquisition window lengths, 

always centered on the echo time yielding maximal glutamate intensity, were calculated 

from the data sets acquired on the different samples. To be able to compare signal 

intensities between PRESS and TE averaged PRESS with respect to the same 

acquisition duration, TE averaged spectra have been normalized with the number of 

experiments contained in their sum. The signal intensity displayed in the TE averaged 

spectra is therefore an intensity “per unit time”. 
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4.2.2 Results of in vitro experiments 

Fig. 4.1 shows the evolution of the glutamate peak amplitude at 2.3 ppm in PRESS 

acquisitions as a function of the echo time. For better visualization, the connecting line 

in Fig. 4.1 has been traced “smoothed” as offered by MS Excel. Only the results of the 

first 27 experiments have been displayed. The sinusoidal oscillations are due to J-

coupling effects, the overall intensity decrease is caused by simulated T2 relaxation. 

Indicated by a dashed line at 115 ms is the maximum of the glutamate signal at 2.3 ppm, 

by dashed lines at 65 ms and 165 ms the minimal and maximal echo time for the longest 

t1 acquisition window used for TE averaged PRESS (compare to Fig. 4.3 right). 
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Fig. 4.1:  Evolution of the glutamate peak amplitude at 2.3 ppm in PRESS spectra as a function of 

the echo time at seven Tesla field strength. Acquisitions were performed on a phantom 
containing glutamate in solution, a T2 of 170 ms was simulated during posttreatment. 
Indicated by a dashed vertical line at 115 ms is the maximum of the glutamate signal, by 
dashed lines at 65 ms and 165 ms the minimal and maximal echo time for the longest t1 
acquisition window used for TE averaged PRESS acquisitions. For visualization, the 
connecting line in has been traced “smoothed” as offered by MS Excel. 

In order to choose optimal parameters for PRESS and TE averaged PRESS, singular 

spectra have been plotted for both methods additionally to Fig. 4.1. 

Fig. 4.2 shows PRESS spectra acquired on the samples containing glutamate, glutamine, 

NAA or GABA at echo times ranging from 95 ms to 135 ms. These echo times have 

been chosen symmetrically around the echo time of 115 ms, where the glutamate signal 

found at 2.3 ppm is maximal. Glutamate has been plotted as dotted, glutamine as dashed 

and NAA as dash-dotted line. GABA has been printed as dash-dot-dot line and the sum 

of all metabolites as solid line. The same linestyles have been used for the TE averaged 

PRESS spectra of Fig. 4.3. Different TE averaged PRESS spectra have been calculated 

using t1 acquisition windows lengths from 20 ms to 100 ms, always centered on an echo 
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time of 115 ms. Parameters are as indicated on top of the spectra. PRESS and TE 

averaged PRESS spectra have been plotted using the same y-scale.  

PRESS at an echo time of 115 ms shows the highest glutamate peak intensity at 2.3 

ppm. The signal expected in vivo (solid line, sum of all metabolites) contains mostly 

glutamate with small contaminations of gln, NAA and GABA. At longer or shorter echo 

times, the signal intensity is reduced but the content of gln, NAA or GABA in the sum 

peak is not much higher than at 115 ms. 

The TE averaged PRESS spectra displayed in Fig. 4.3, using different t1 acquisition 

window lengths, show all approximately the same composition of the sum peak (solid 

line). No significant improvements for glutamate measurement can be achieved by 

further increasing the t1 acquisition window length. The signal intensity acquired per 

unit time is largely reduced using a t1 window of 100 ms (spectrum to the right) as 

compared to using a window of 20 ms (spectrum to the left). 
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Fig. 4.2:  PRESS spectra acquired on samples containing either glutamate, glutamine, NAA or GABA in solution at seven Tesla field strength. Echo 
times ranging from 95 ms to 135 ms were used. Glutamate has been plotted as dotted, glutamine as dashed and NAA as dash-dotted line. 
GABA has been printed as dash-dot-dot line and the sum of all spectra of as solid line. All spectra use the same y-scale. The highest 
glutamate content in the sum signal can be obtained using an echo time of 115 ms. 

TE = 95 ms TE = 105 ms TE = 115 ms TE = 125 ms TE = 135 ms 
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Fig. 4.3:  TE averaged PRESS spectra using t1 acquisition windows lengths ranging from 20 ms to 100 ms, centered on an echo time of 115 ms. 
Samples containing in solution either glutamate, glutamine, NAA or GABA have been used. Glutamate has been plotted as dotted, 
glutamine as dashed and NAA as dash-dotted line. GABA has been printed as dash-dot-dot line and the sum of all metabolites as solid 
line. All spectra use the same y-scale. The sum signal contains almost exclusively glutamate, independent of the acquisition window 
length. At longer acquisition window lengths, less signal per unit time is acquired and the signal at 2.3 ppm is reduced. 
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to 125 ms 

TE = 95 ms  
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4.2.3 Materials and methods in vivo experiments 

The same spectrometer and configuration as described in section 4.2.3 has been used for 

the in vivo experiments, employing a surface coil for signal excitation and reception. A 

Sprague-Dawley rat was anesthetized by a gas mixture of air, O2 and isoflurane. The 

animal was held in place by a stereotactic frame, the gas mixture was administered by a 

mask. The animal’s temperature was maintained at 37°C by warm water circulation and 

verified by rectal temperature sensor. PRESS, TE averaged PRESS and VAPOR used 

the same pulseshapes and lengths as for the in vitro experiments described above. 

Experiments started with the acquisition of scout images in the coronal, axial and 

saggital planes. A volume of (4x4x4) mm
3
 was chosen well contained within the rat’s 

brain structure. RF gain and shim adjustments were performed locally; shimming used 

an in-house developed routine based on FASTMAP (Gruetter 1993). All acquisitions 

started with eight dummy scans to achieve equilibrium magnetization and used a 

repetition time of 3 seconds. A spectral width of 5000 Hz was acquired on 4096 points. 

TE averaged PRESS used echotimes from 65 ms to 165 ms and step widths of 10 ms. 

These parameters correspond to the ones used for the in vitro spectrum of Fig. 4.3, right. 

Per echo time, 24 scans were averaged. PRESS used an echo time of 115 ms. Eleven 

spectra, averaging 24 scans per spectrum, were acquired. In both methods, the first echo 

time of the pulse sequence was kept at the smallest possible value of 12 ms as described 

for the in vitro experiments before. The acquisition duration for PRESS and TE 

averaged PRESS was about 14 minutes. PRESS and TE averaged PRESS used the same 

total number of scans. The PRESS spectra were acquired in packages of 24 scans to be 

able to apply individual frequency shift and phasing corrections as for TE averaged 

PRESS. Posttreatment used the IDL programming language. Seven Hertz exponential 

broadening and zerofilling to 8192 points was applied to all spectra. Each single 

spectrum of the PRESS and TE averaged PRESS experiment was corrected for 0
th

 order 

phase and frequency shift using the NAA signal as reference. TE averaged PRESS and 

PRESS spectra were then calculated by adding the spectra of the respective acquisitions. 

4.2.4 Results of in vivo experiments 

Fig. 4.4 shows the PRESS and TE averaged PRESS spectrum acquired from a voxel 

situated in the rat brain (position not shown). Both spectra have been plotted at the same 

y-scale. Compared to the PRESS at 115 ms the TE averaged PRESS spectrum does not 

display an improved signal shape at 2.3 ppm. Peakshape and baseline near 2.3 ppm are 

comparable in both spectra. For the same acquisition duration however, TE averaged 

PRESS displays a reduced glutamate signal. Intensities for NAA at 2.0 ppm, total 

creatine at 3.0 ppm and total choline at 3.2 ppm are of comparable size in both spectra. 

Signals left of total choline are attenuated by water suppression. 
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Fig. 4.4:  PRESS spectrum (left) using an echo time of 115 ms and TE averaged PRESS spectrum 

(right) using a t1 acquisition window length of 100 ms, centered on an echo time of 115 
ms. Both spectra were acquired from a (4x4x4) mm

3
 voxel situated in the rat brain 

(position not shown), using the same total acquisition duration and are plotted with the 
same y-scale. NAA, total creatine and total choline are visible at 2.0 ppm, 3.0 ppm and 3.2 
ppm, signals above 3.4 ppm are attenuated by water suppression. The signal at 2.3 ppm 
is dominated by glutamate, as demonstrated by the in vitro spectra shown before. The TE 
averaged PRESS spectrum displays no improved spectral shape in the 2.3 ppm region as 
compared to the PRESS spectrum, but a reduced signal intensity of the 2.3 ppm peak. 

4.2.5 Discussion in vitro and in vivo experiments 

The optimal echo time for glutamate measurements at 7 Tesla using PRESS is 115 ms. 

At this echo time, the highest signal to noise ratio for a given total acquisition duration 

can be achieved. With respect to the linewidths simulated in vitro, corresponding to the 

linewidths typically observed in vivo, it is not possible to resolve glutamate from 

glutamine. Taking into account the physiological concentrations of the different 

metabolites, the contribution of gln, NAA and GABA to the total signal measured is 

although very small.  

In TE averaged PRESS, the evolution of the glutamate signal in dependence of the echo 

time is well sampled using an echo time increment of 10 ms. As for PRESS, the 

contribution of gln, NAA and GABA to the total signal measured at 2.3 ppm is very 

small. 

Using TE averaged PRESS, glutamate measurement can however not be significantly 

improved as compared to PRESS. The signal composition in a PRESS spectrum, 

acquired at an echo time of 115 ms and in a TE averaged PRESS spectrum, using a t1 

acquisition window from 65 ms to 165 ms, show no important difference. The ratio of 

glutamate to glutamine amplitude is only slightly higher for TE averaged PRESS with 



70 

an acquisition window from 65 to 165 ms than for PRESS at 115 ms. Still further 

increased t1 acquisition windows for TE averaged PRESS lead to small reductions in the 

gln, NAA and GABA contributions but at the same time to important reductions in the 

signal intensity acquired per unit time for the peak at 2.3 ppm (data not shown). 

Because of T2 relaxation, the spectra acquired at longer echo times do not add much 

information to the TE averaged PRESS spectrum, but add significantly less signal. 

According to our in vitro results, TE averaged PRESS does not seem to be a favorable 

technique for in vivo applications at seven Tesla. Using very long t1 acquisition 

windows, only a slight reduction of background underlying the glutamate signal can be 

achieved as compared to PRESS. The signal to noise ratio of such a TE averaged 

PRESS spectrum spectrum is however greatly reduced compared PRESS using the same 

acquisition duration. The precision gained in distinction of glutamate is then 

counterbalanced by the loss of precision in signal quantification due to noise. 

Accordingly, spectra acquired in vivo from the rat’s brain show no advantageous 

spectral shape using TE averaged PRESS as compared to PRESS. However, as 

predicted by in vitro experiments, the signal at 2.3 ppm is of reduced intensity in the TE 

averaged PRESS spectrum, using the same acquisition duration as for the PRESS 

spectrum. 

4.3 Conclusion 

According to our in vivo and in vitro experiences, TE averaged PRESS does not 

improve brain glutamate detection at seven Tesla field strength compared to a standard 

PRESS sequence. With respect to baseline definition and the possibility to acquire an 

unobstructed glutamate signal, no major improvements could be achieved as compared 

to PRESS using an optimized echo time. At the same time, PRESS permits the 

acquisition of more signal intensity per unit time. For a given experiment duration, this 

advantage can be used to achieve higher signal to noise ratio allowing improved peak 

quantification or higher localization precision by using a smaller acquisition volume. 

Annex 8.3 describes numerical simulations performed to examine the influence of T2 

relaxation and shaped pulses on distinction of glutamate and glutamine with TE 

averaged PRESS at seven Tesla. 



5 Study of glutamate levels in human 
Parkinson’s disease 

Ce chapitre décrit une étude sur la mesure de glutamate chez le patient Parkinsonien. 

La séquence « TE averaged PRESS » a été utilisée pour mesurer le glutamate dans le 

nucleus lentiforme des patients avant et après administration d’un traitement (L-

DOPA). Les résultats sont comparés avec ceux obtenus chez le sujet sain. 

5.1 Introduction 

Glutamate is of high interest for research on Parkinson’s disease (PD) as, according to 

current understanding, alteration of the glutamatergic transmission, is directly linked to 

striatal dopamine depletion (Morari, Marti et al. 1998; Schmidt 1998) and motor 

symptoms (Obeso, Rodriguez-Oroz et al. 2000) (introductory review of Parkinson’s 

disease: (Hornykiewicz 2001)).  

Dopamine denervation induces an increase in corticostriatal glutamate transmission 

(Meshul, Emre et al. 1999; Bruet, Windels et al. 2003). Several studies have suggested 

that dopamine lesion may also increase glutamate transmission in the basal ganglia 

output structures, especially the pallidum, presumably as a result of the abnormal 

activation of the subthalamic nucleus (Hirsch, Perier et al. 2000). Moreover, glutamate 

mediated mechanisms are also thought to play a role in the development of L-DOPA 

induced dyskinesias (Robelet, Melon et al. 2004). An increase of extracellular glutamate 

levels has been observed in the striatum of dopamine lesioned rats following either 

acute (Jonkers, Sarre et al. 2002) or repeated (Robelet, Melon et al. 2004) L-DOPA 

injections. On the other hand, as levodopa treatment significantly reduces motor 

symptoms in non dyskinetic patients, one could as well expect decreased glutamate 

levels following levodopa administration in these patients. 

Only few MRS investigations have been conducted so far to assess glutamate on PD 

patients (Clarke, Lowry et al. 1997; Taylor-Robinson, Turjanski et al. 1999; Clarke and 

Lowry 2000) and only one of them included administration of an anti-Parkinsonian 

treatment (apomorphine, (Clarke, Lowry et al. 1997)). None of these studies could show 

alterations in the glutamate region of the spectrum at 2.3 ppm. However the sequences 

used were not optimized for glutamate detection i.e. the 2.3 ppm peak of the proton 

spectrum results from the overlap of resonance lines due to protons from glutamate but 

also from glutamine, n-acetylaspartate (NAA) and GABA. Any change in the glutamate 

levels might be masked by concomitant changes in the other metabolite contents. 

In the present study, we have evaluated the potential of TE averaged PRESS (Hurd, 

Sailasuta et al. 2004) for the assessment of glutamate level changes in Parkinson’s 

disease. TE averaged PRESS was preferred to double quantum filtering (Thompson and 
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Allen 1998) because of its relatively high signal yield and robustness (see chapter 3). 

We aimed at assessing glutamate level alterations in the lentiform nucleus of Parkinson 

patients in relation to administration of levodopa treatment and compared to healthy 

controls. 

5.2 Patients and methods 

Ten patients with Parkinson’s disease according to the United Kingdom Parkinson’s 

Disease Society Brain Bank criteria (Gibb and Lees 1988) and ten healthy volunteers 

have participated in this study and underwent two MRS exams each. All participants 

gave written consent before participation; the study was approved by the local ethic’s 

committee (CCPPRB of the Grenoble university hospital). Patients participating in this 

study were recruited from the neurology department of the university hospital in 

Grenoble. Patients and healthy control persons underwent medical examination prior to 

acceptation in the protocol to ensure absence of contraindications to MR exams. 

Patients were aged 60 ± 5 years with disease duration of 11 ± 3.5 years (range from 5 to 

16 years). All patients were treated with levodopa at the time of this study and suffered 

from motor fluctuations. For the first exam, patients had not received levodopa for at 

least 12 hours (off-drug condition). The second exam was performed after 

administration of a supra-threshold levodopa dose, defined as the usual levodopa 

morning dose plus 20%, plus the levodopa dose equivalent to dopamine agonist drugs 

taken usually by the patient (Lang, Lozano et al. 1997). This dose corresponded to the 

dose necessary to achieve the best on-drug condition for the individual patient under the 

stressful condition of the exam. On-drug condition was verified by decrease of motor 

symptoms to a state typical for each individual patient. Motor signs in on- and off-drug 

condition had been evaluated in routine exams using the unified Parkinson’s disease 

rating scale, motor section (UPDRS III), and are summarized in Table 5.1. The UPDRS 

in general is a rating tool to follow the longitudinal course of Parkinson’s disease. 

Disease induced impairments affecting behavior, mood, activities of daily living and 

physical movement are evaluated. An increased score presents increased disability, 0 

presents no disability. As well indicated in Table 5.1 are age, disease duration and 

levodopa equivalent daily dose (LEDD) used for chronic treatments.  

The group of volunteers (mean age 56 ± 4 years) was matched in age with the group of 

patients and underwent two MRS exams under comparable conditions. 
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Table 5.1:  Clinical details of the patient group having participated in this study. All patients 
presented motor fluctuations and were treated with levodopa. LEDD: levodopa 
equivalent daily dose, UPDRS: unified Parkinson’s disease rating scale. 

Patient 
ID 

Age at exam 
[years] 

Disease duration 
[years] 

LEDD 
[mg/day] 

UPDRS III 
motor score 
on-condition 

UPDRS III 
motor score 
off-condition 

Levodopa dose 
for exam in  

on-condition [mg] 

1 56 9 700 6 27 275 

2 67 12 600 22 45 200 

3 64 16 1450 9 46 250 

4 61 6 900 28 48 300 

5 58 5 1000 17 33 400 

6 56 10 1650 2 15 300 

7 61 12 1400 15 45 250 

8 50 12 1500 14 34 200 

9 61 14 1650 15 42 200 

10 64 14 1500 10 43 250 

Exams were performed on a three Tesla whole body imager using TE averaged PRESS 

spectroscopy. Further details about the machine configuration and the sequence 

implementation have been presented in chapter 3. A standard quadrature head coil was 

used for signal excitation and reception. 

To improve conditions for shimming, efforts were undertaken to approach the patient’s 

putamen region to the magnet isocenter. In direction of the magnet axis (z-axis, head-

food axis) and in x-direction (left-right axis) this was achieved by positioning the 

patient’s bed and displacement of the resonator. In the y-axis (anterior-posterior axis) 

however, off-center positions between one and four centimeters, depending on the 

patient, had to be accepted and led to reduced shim efficiency. The exam started with 

acquisition of scout images oriented in the three orthogonal planes defined by the 

machine coordinate system. MDEFT images, allowing acceptable gray matter – white 

matter contrast, were acquired from the region of the lentiform nucleus in order to place 

the voxel used for spectroscopy, see Fig. 5.1. Saggital images were oriented parallel to 

the inter-hemispherical plane, transverse images perpendicular to the saggital images 

and parallel to the axis defined by anterior and posterior commissures (ac and pc). 

Orientation of frontal images was thereby defined as orthogonal to the saggital and 

transverse images. The acquisition volume for spectroscopy measured 20 mm x 20 mm 

in the frontal plane and 30 mm in the anterior - posterior direction. Its axes were 

oriented parallel to the frontal, saggital and transverse plane. For reproducible 

positioning, we used always the transverse slice showing anterior (ac) and posterior (pc) 

commissures and the coronal slice showing the anterior commissure. The voxel position 

was defined by its distance to ac and pc, comparing to an anatomical atlas (Atlas 

d'anatomie céphalique dans le plan neuro-oculaire (PNO), Thèse Médecine ,  1983, 

Paris VI, Jean TAMRAZ), as image contrast was not always sufficient to well 

distinguish the lentiform nucleus. For final positioning, the voxel was rotated by 6° 

around its anterior-posterior axis to better fit the lentiform nucleus. 

Calibrations of frequency and rf power were performed locally in a cube of 30 mm side 

length to account for voxel displacements due to differing chemical shifts of the 
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different metabolites. Local shimming used FASTMAP (Gruetter 1993) as implemented 

on our machine. Adjustment of the pulse power for VAPOR (Tkac, Starcuk et al. 1999) 

water suppression was refined manually, directly before start of the acquisitions. All 

acquisitions used a spectral width of 5000 Hz on 4096 points and eight step phase 

cycling (Henning 1992) during accumulations. A repetition time of 3 seconds was used. 

The unsuppressed water signal was acquired from the voxel and used for reference 

purposes, performing 8 dummy scans and accumulating the 8 following scans. The TE 

averaged PRESS spectrum was acquired in the following. TE averaged PRESS used a 

minimal echo time of 35 ms and a t1 increment of 10 ms. Seventeen experiments (TE 

ranging from 35 ms to 195 ms) were acquired, accumulating 8 scans per experiment (for 

the notation of experiment, scan and t1 increment please refer to chapter 3), after having 

performed 8 dummy scans to achieve equilibrium magnetization. 

Data processing used the jMRUI software package (Naressi, Couturier et al. 2001). 

Each spectrum with a fixed echo time (called also experiment above) was corrected for 

0
th

 order phase and frequency shift using the NAA signal as reference. Then, these 

spectra were summed to give a TE averaged PRESS spectrum. 

Total choline at 3.2 ppm (tCho; choline + phosphorylcholine + 

glycerophosphorylcholine with contributions of taurine and myoInositol), total creatine 

at 3.0 ppm (tCr; creatine + phosphocreatine), NAA at 2.0 ppm and the glutamate 

dominated signal at 2.3 ppm (glx; mainly glutamate with contributions of contributions 

of glutamine, NAA, GABA) were quantified in the time domain using AMARES 

(Vanhamme, van den Boogaart et al. 1997) as implemented in jMRUI. Linewidths of all 

peaks were constrained to the linewidth of the NAA signal, no global or individual 

phase adjustments were allowed in the model function. This restriction of adjustable 

parameters may increase the fit residual. Different tests showed however that best inter-

subject reproducibility of glutamate assessment could be achieved for the healthy 

control group with this restricted parameter set. The reference spectrum of the 

unsuppressed water signal was quantified using AMARES as well. For the spectra 

shown in the results section, the fid was reduced to the first 2048 points, as the signal 

had already well decayed. Zero filling to 4096 points and seven Hertz exponential 

broadening were then applied to improve visualization. 

The acquired data were as well evaluated to obtain a rough estimation of metabolite T2 

relaxation times in the basal ganglia region. HLSVD filtering to reduce the water signal, 

as implemented in MRUI, was applied to the individual experiments of the J-resolved 

acquisition. Spectra acquired with an echo time below 65 ms were rejected from further 

processing, as residual water and possible macromolecule contributions led to a 

deformed baseline. The signals of NAA, total creatine and choline were then quantified 

as described above, using AMARES. As data were acquired on a partially saturated spin 

system, signal amplitudes obtained by AMARES were corrected as (Traber, Block et al. 

2004) 
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with S’(TE) the corrected signal amplitudes, S(TE) the data obtained from AMARES, 

TE the echo time used for acquisition of the respective data, TR the repetition time and 

T1 the longitudinal metabolite relaxation time. Values for T1 in the basal ganglia region 

were taken from the literature (Traber, Block et al. 2004). The plot of the corrected 

metabolite amplitudes S’(TE) versus the echo time TE was then used to adjust a 

monoexponentially decaying function to obtain the transverse relaxation time T2. 

5.3 Results 

Fig. 5.1 shows a typical picture of the placement of the voxel used for spectroscopy in 

this study, centered on the lentiform nucleus. 

 
Fig. 5.1:  Voxel size and position used for spectroscopy in this study. A volume measuring 20 mm 

x 20 mm in the frontal plane and 30 mm in the anterior-posterior direction was centered 
on the left lentiform nucleus, using anterior and posterior commissure as landmarks. 

Linewidths obtained for the water signal in this study, ranged from 8 to 14 Hertz. For 

NAA, about the same values were obtained. Optimal shim settings as calculated by 

FASTMAP systematically surpassed limitations of our system and would have been 

from 120 up to 400% of the available currents. Examples for TE averaged spectra are 

shown in Fig. 5.2 for a healthy control person (bottom), a patient in off-drug condition 

(top) and for the same patient in on-drug condition (middle). The peaks were identified 

as: 2 ppm, NAA; 2.3 ppm, glx; 3 ppm, total creatine; 3.2 ppm, total choline. Only these 

peaks were used for quantification in AMARES, as signals above 3.2 ppm were affected 

by water suppression in some spectra. The signals at 3.7 ppm represent combined 

glutamate and glutamine and total creatine at 3.9 ppm. 
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The following figures display the quantification results for the glutamate dominated 

signal (Fig. 5.3), NAA (Fig. 5.4), total creatine (Fig. 5.5) and total choline (Fig. 5.6). 

The water amplitude from the same voxel has been used for normalization. Repeated 

measurements on the same subject (control or patient) are shown linked by a line to 

visualize evolution between exams. 

Non parametric matched pairs tests (Wilcoxon) have been used for statistical evaluation 

of repeated exams on the same subject, unpaired Mann Whitney tests for comparison 

between the patient and control group. No correction for multiple comparisons was 

applied. Quality of the spectra in terms of metabolite quantification is given by the 

Cramer Rao lower boundaries (CRB) as calculated by jMRUI. These boundaries supply 

the minimal standard deviation one may obtain for peak quantification using an ideal 

model function. 
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Fig. 5.2:  TE averaged PRESS spectra obtained from a patient in off-condition (top), on-condition 

(middle) and a healthy control subject (bottom). Peaks are identified as indicated in the 
spectrum on top. As compared to spectra from the parietal lobe shown beforehand, the 
glutamate signal at 2.3 ppm is of less good visibility due to difficult shimming conditions. 
Signals at 2.0 ppm, 2.3 ppm, 3.0 ppm and 3.2 ppm were quantified using AMARES 
(Vanhamme, van den Boogaart et al. 1997). 
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Fig. 5.3:  Results obtained from quantification of the glx signal. The metabolite amplitude has been 

normalized with the water signal from the same acquisition volume. Repeated 
measurements are linked by a line to visualize evolution between exams. No statistically 
significant difference is found comparing patients in on- and off-drug condition. 1

st
 and 

2
nd

 measurement on the control group have been averaged as statistically not different. 
Mean values of the control group show no statistically significant difference as 
compared to patient’s on- or off-drug condition. 
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Fig. 5.4:  Results obtained from quantification of the NAA signal. The metabolite amplitude has 

been normalized with the water signal from the same acquisition volume. Repeated 
measurements are linked by a line to visualize evolution between exams. No statistically 
significant difference is found comparing patients in on- and off-drug condition. 1

st
 and 

2
nd

 measurement on the control group have been averaged as statistically not different. 
Mean values of the control group show no statistically significant difference as 
compared to patient’s on- or off-drug condition. 
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Fig. 5.5:  Results obtained from quantification of the tCr signal. The metabolite amplitude has been 

normalized with the water signal from the same acquisition volume. Repeated 
measurements are linked by a line to visualize evolution between exams. No statistically 
significant difference is found comparing patients in on- and off-drug condition. 1

st
 and 

2
nd

 measurement on the control group have been averaged as statistically not different. 
Reduction of tCr/water is statistically significant comparing control group to patients in 
on-condition (p < 0.05, Wilcoxon) and nearly significant comparing control group to 
patients in off-condition (p = 0.052). 
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Fig. 5.6:  Results obtained from quantification of the tCho signal. The metabolite amplitude has 

been normalized with the water signal from the same acquisition volume. Repeated 
measurements are linked by a line to visualize evolution between exams. No statistically 
significant difference is found comparing patients in on- and off-drug condition. 1

st
 and 

2
nd

 measurement on the control group have been averaged as statistically not different. 
Mean values of the control group show no statistically significant difference as 
compared to patient’s on- or off-drug condition. 
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Glutamate (glx signal): 

For the glutamate to water ratio in our study, the CRB’s ranged from 10 to 37% for the 

patient group and the control group. Repeated measurements on the control group (see 

Fig. 5.3) display variations in the determined glutamate level ranging from 2 up to 33%. 

For comparison with the patient group, results from the first and second exam of the 

control group were averaged for each subject, as they were not statistically different. 

Comparison between on- and off-drug conditions within the group of Parkinson patients 

revealed no statistical differences, as well as comparison of the means of the control 

group with on- or off-drug condition in the patient group. To compare with former 

studies (Taylor-Robinson, Turjanski et al. 1999), the glx/tCr ratio was as well evaluated, 

yielding the same non significant results as the glx/water ratio. 

N-acetylaspartate: 

As the strongest signal in the spectrum, Cramer Rao boundaries for NAA quantification 

were lower than for glutamate, ranging only between one and two percent. Repeated 

measurements in the control group show good reproducibility with intra subject 

alterations below 4% for all subjects but one. The mean for each subject of the control 

group was used for further comparisons, as exams were not significantly different. 

Differences between on- and off-drug conditions in the patient group were non 

significant, as well as comparing control group to on or off-drug values from patients. 

In Fig. 5.4, three patients, color coded in orange, green and light blue, seem to be 

distinct from the other patients. We could however not find any common criterion to 

form a subgroup of these patients. 

Transverse relaxation times measured on NAA were of 229 ± 7 ms (mean ± SEM) in 

the control group (mean of all exams), 241 ± 15 ms in the patient group in off-drug 

condition and 247 ± 21 ms in the patient group in on-drug condition. 

Creatine (tCr signal): 

Creatine CRB’s are comparable to those obtained during NAA quantification, ranging 

between one and three percent. Intra subject alterations remain below 6% in repeated 

measurements in the control group. For comparison with the patient group, results from 

the first and second exam of the control group were averaged for each subject, as they 

were not statistically different. Differences between on- and off-drug conditions are 

statistically non-significant. Reduced creatine levels, assessed as cr/water, are found in 

the patient group as compared to the control group. Creatine is reduced by about 6%, 

being significant (p < 0.05) for the comparison of on-drug condition to the healthy 

control group and nearly significant for off-drug condition to healthy control group 

comparison (p = 0.052).  

Transverse relaxation times measured on creatine were of 127 ± 3 ms (mean ± SEM) in 

the control group (mean of all exams), 141 ± 6 ms in the patient group in off-drug 

condition and 141 ± 9 ms in the patient group in on-drug condition. 
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Choline (tCho signal): 

Cramer Rao boundaries for choline quantification range between one and three percent 

as for the other singlet signals. Intra subject alterations are slightly higher than for 

creatine, displaying alterations below 10% for the control group measurements. Results 

from the first and second exam of the control group were averaged for each subject as 

they were not statistically different. No significant choline differences between on- and 

off-drug condition or comparing the control group with the patient group were found. 

Transverse relaxation times measured on choline were of 198 ± 8 ms (mean ± SEM) in 

the control group (mean of all exams), 209 ± 17 ms in the patient group in off-drug 

condition and 262 ± 48 ms in the patient group in on-drug condition.  

 

No significant changes of the metabolite relaxation times were found comparing first 

and second exam of the control group, patients in on- and off-drug condition or 

measurements of the control group (averaged values of first and second exam for each 

subject) with patients in on- or off-drug condition. 

5.4 Discussion 

The aim of this study was to measure glutamate levels in patients affected by 

Parkinson’s disease in off- and on-drug condition and to compare to healthy volunteers. 

Even with an MRS sequence optimized for glutamate detection, we could not find 

significant glutamate (glx/water) changes in a voxel centered on the lentiform nucleus 

despite of clear changes in patient’s motor performances following levodopa 

administration. Comparing patients to controls, no glutamate alterations could be found 

either. 

Our study indicates that 1H MRS measurements of glutamate in PD patients do not 

reflect the increase in glutamate transmission implicated in the pathophysiology of PD 

or an alteration related to L-DOPA administration. 

Some (Meshul, Emre et al. 1999; Jonkers, Sarre et al. 2002; Bruet, Windels et al. 2003), 

but not all (Robelet, Melon et al. 2004) microdialysis studies have reported important 

increases (+45 to 146%) of extracellular striatal glutamate after lesion of the 

nigrostriatal pathway in rats. Acute (Jonkers, Sarre et al. 2002) or repeated (Robelet, 

Melon et al. 2004) L-DOPA administrations were also shown to increase extracellular 

glutamate levels in the striatum of this model. 

Fist our study has been not been performed on newly diagnosed patients but on patients 

with a disease duration and treatment ranging between 5 to 16 years. The long term 

treatment might interfere with glutamate measurements even after 12 hours of L-DOPA 

deprivation. 
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The targeted area for this study, the basal ganglia region, is a difficult area for MRS 

exams: Interfaces between brain mass, ventricles and skull base produce important 

magnetic field inhomogeneities. While water peak linewidths of about five to six Hertz 

could be achieved for exams as the one displayed in chapter 3.3, Fig. 3.5, linewidths 

throughout this study with up to 14 Hz were more than twice as large. Overall signal to 

noise ratio was thereby strongly reduced, complicating especially the detection of small 

signals as the glutamate peak. As a result, glutamate quantification yields important 

Cramer Rao boundaries and inter subject variability is high. As mentioned before, shim 

currents determined by FASTMAP could not always be realized in the necessary 

strength due to hardware limitations. 

A further problem of the assessment of glutamate changes in our study is the size of the 

acquisition volume. The acquisition volume contains next to the putamen and the 

pallidum (where glutamate alterations could be expected) as well white matter and 

small portions of cerebral spin fluid. We can estimate that about 47 % of the voxel is 

filled with the putamen and another 11 % with the pallidum (GPi and GPe), assuming a 

volume of 5625 mm
3
 for the putamen, 478 mm

3
 for the internal and 808 mm

3
 for the 

external part of the globus pallidum (Yelnik 2002). 

Most importantly however, MRS measures the total pool of glutamate which is around 

10 mmolar in the brain (Govindaraju, Young et al. 2000) and represents mainly the 

intracellular pool, the extracellular glutamate levels being of the order of 2 to 3 µmol 

(Fillenz 2005). An increase of extracellular glutamate, even of 140% if existent, cannot 

be detected by in vivo MRS because it is far below the detection sensibility of the 

method. In addition alterations of the extracellular glutamate pool are not necessarily 

linked to a significant change in the the total pool of glutamate. The synaptically 

released glutamate is rapidly removed from extracellular space by astrocytes. Glutamate 

paticipates in intermediary metabolism as well as cellular communication and serves as 

precursor for GABA. Therefore extracellular glutamate levels, playing a role in 

neurotransmission, are negligible in comparison with intracellular levels. 

Our data indicate a trend to reduced tCr/water ratios in Parkinson patients (only a trend, 

as the control-patient off comparison is only nearly significant) which is not caused by a 

decrease of tCr transverse relaxation time, as indicate T2 measurements. Concerning 

water relaxation time in putamen and pallidum, some studies suggest a decrease due to 

augmented iron deposition (Antonini, Leenders et al. 1993; Ye, Allen et al. 1996), some 

an increase (Graham, Paley et al. 2000; Kosta, Argyropoulou et al. 2005). Changing 

transverse relaxation due to iron deposition would presumably affect metabolite and 

water peak amplitudes in the same way. Brain edemas are generally not observed in PD, 

tissue water concentration should therefore remain unchanged with respect to healthy 

subjects. Our results may therefore indicate reduction of combined cerebral 

creatine/phosphocreatine concentrations putamen and pallidum of patients affected by 

Parkinson’s disease. 
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Former MRS studies measuring NAA, creatine and choline signals in the lentiform 

nucleus of PD patients show a large variety of results, evaluating NAA/tCr, NAA/tCho 

and tCho/tCr ratios, see Table 5.2 and (Clarke and Lowry 2001). To compare, 

metabolite ratios (glx/tCr, NAA/tCho, NAA/tCr, tCho/tCr) have been calculated from 

the data of this study and have been tested for statistical significance as described 

above. No difference comparing on- to-off state in patients or patients to controls was 

found. Heterogeneity in results might be caused by different methodological approaches 

(field strength, echo time), but as well by differences in recruited patient groups (age, 

disease duration, treatment, disease progression and complications). 

Average transverse relaxation times measured in the basal ganglia region for NAA, total 

creatine and total choline are in agreement with values present in the literature, being 

221 ms for NAA, 143 ms for total creatine and 201 ms for total choline (Traber, Block 

et al. 2004). 

5.5 Conclusion and perspectives 

In the present study we have evaluated a new in vivo NMR spectroscopy sequence 

(Hurd, Sailasuta et al. 2004) optimized for the assessment of brain glutamate for 

research on Parkinson’s disease. Glutamate levels measured on the Parkinson patient do 

not show concentration changes as compared to control values or in relation to levodopa 

administration. 

1
H MRS measures the total pool of glutamate and does not provide a good reflect of the 

role of glutamatergic transmission in Parkinson’s disease.  

An important reason for high variability of measurements in this study was strong 

magnetic field inhomogeneitiy in the basal ganglia region, leading to broad linewidths 

and small peak intensities. Stronger shimming systems and use of higher order shims 

(up to third order) could substantially improve measurement conditions. 



Table 5.2:  Results of MRS studies targeting the striatal region of patients affected by Parkinson’s disease. The symbol ↑ indicates finding of increased 
values; the symbol ↓ indicates finding of reduced values compared to controls. N.S. indicates absence of statistically significant difference. 

Author Controls 

(number, 

mean age) 

PD patients 

(number, 

mean age) 

Method 

(magn. field, 

echo time) 

NAA 

 
tCho 

 
tCr 

 
glx 

/water 

glx 

/tCr 

NAA 

/tCho 

NAA/ 

tCr 

tCho 

/tCr 

This work 10 

56 years 

10 

60 years 

3 T 

TE av.  

PRESS 

n.s. 
(relative to water) 

n.s. 
(relative to water) 

↓ 
(trend, relative to water) 

n.s. n.s. n.s. n.s. n.s. 

Clarke CE 

2000 

6 

61 years 

6 

48 years 

1.5T 

TE 20 ms 

n.s. 
(absolute 

concentration) 

↑ (absolute 

concentration) 

n.s. 
(absolute 

concentration) 

 n.s. ↓ 
 

n.s. ↑ 

Taylor-Robinson SD 

1999 

12 

49 years 

12 

57 years 

1.5T 

TE 130 ms CSI 
    n.s.  n.s. n.s. 

Hoang TQ 

1998 

5 

71 years 

5 

60 years 

1.5T 

TE 30 ms 

n.s. 
(absolute 

concentration) 

 n.s. 
(absolute 

concentration) 

     

Clarke CE 

1997 

5 

53 years 

5 

58 years 

1.5T 

TE 20 ms 

n.s. 
(absolute 

concentration) 

n.s. 
(absolute 

concentration) 

n.s. 
(absolute 

concentration) 

 n.s.  n.s. n.s. 

Federico F 

1997 

10 

63 years 

12 

57 years 

1.5T 

TE 135 ms 
     n.s. n.s. n.s. 

Tedeschi G 

1997 

11 

 
10 

50-72 years 

1.5T 

TE 272 ms 
     n.s. n.s. n.s. 

9, untreated 

59 years 
     ↓ 

 

n.s. n.s. Ellis CM 

1997 

11 

53 years 

7, treated 

59 years 

1.5 T 

TE 136 ms 

     n.s. n.s. n.s. 

Cruz CJ 

1997 

6 

62 years 

10 

65 years 

2 T 

TE 272 ms CSI 
     n.s. n.s. n.s. 

Davie CA 

1995 

9 

53 years 

9 

50 years 

1.5T 

TE 270 ms 
      n.s. n.s. 

89 

62 years 

91, treated 

64 years 
     n.s. n.s. n.s. Holshouser BA 

1995 

96 

59 years 

27, untreated 

64 years 

1.5T 

TE 135 ms 

     ↓ 
 

n.s. n.s. 

 



6 Study of glutamate levels in a 6-OHDA rat 
model of Parkinson’s disease 

Ce chapitre décrit des mesures de glutamate sur le modèle animal de la maladie de 

Parkinson. La séquence « PRESS » à un temps d’écho de 136 ms a été utilisée à 7 Tesla 

pour mesurer le glutamate dans la partie dorsolatérale du striatum chez le rat avant et 

après lésion de la projection nigro-striatale à la 6-OHDA. 

6.1 Introduction 

Particular symptoms of human Parkinson’s disease (PD) can be studied in rat animal 

models. A widely used model relies on the neurotoxin 6-hydroxydopamine (6-OHDA).  

After injection in the brain, this molecule is transported into the cell bodies and fibers of 

dopaminergic neurons and causes degeneration of their nerve terminals and eventually 

cell bodies. Neurotoxicity of 6-OHDA is based on inhibition of mitochondrial 

respiratory enzymes. 

In human Parkinson’s disease, mainly the dopaminergic nigrostriatal pathway is 

affected by neuronal degeneration. The animal model therefore relies on selective 6-

OHDA lesions of this pathway. Selectivity is achieved by direct injection of the toxin 

into distinct parts of the nigrostriatal pathway. In currently used rat models, 6-OHDA is 

either injected in the substantia nigra pars compacta (SNc), the median forebrain bundle 

(MFB) (nerve bundle incorporating the axons of the neurons running from SNc to the 

striatum) or in the caude putamen (CPu). The severity of the lesion, i.e. the percentage 

of dopaminergic neurons surviving after neurotoxin injection, depends strongly on the 

location of the injection. MFB injections produce the most severe reductions in SNc 

dopaminergic neurons and CPu dopamine levels, which may exceed neurodegeneration 

observed in human PD. Injections in SNc or CPu allow for more selectivity, for review 

see (Deumens, Blokland et al. 2002). 

In the animal model as in human Parkinson’s disease, death of the neurons projecting 

from SNc to the striatum is accompanied by striatal dopamine depletion. Lack of 

dopamine in the striatum is at the origin of several anatomical and functional 

modifications. Study of these modifications in the rat model allows thereby obtaining a 

better comprehension of the pathologic processes taking place in human Parkinson’s 

disease. 

Our principal interest in this study concerns the alteration of the striatal glutamate pool, 

which we want to assess in vivo using magnetic resonance spectroscopy. Current studies 

of glutamate in the rat model of PD mostly rely on anatomical exams or in vivo 

microdialysis experiments. 
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In the striatum, dopamine is generally taken to act as inhibitory modulator of glutamate 

release; this opinion is however still point of discussion ((Morari, Marti et al. 1998), 

review). Several research results indicate an increase of glutamatergic activity following 

striatal dopamine depletion. 

Adaptive changes in striatal glutamatergic synapses have been found as a consequence 

of 6-OHDA lesion of the nigrostriatal pathway. Using electron microscopy, alterations 

in the number or length of asymmetric synapses containing a discontinuous or 

perforated postsynaptic density have been reported. An increase in this specific type of 

synapse is associated with increased synaptic activity. Nerve terminals of this synapse 

type were furthermore identified, using immunogold electron microscopy, to contain the 

neurotransmitter glutamate. One month following lesion, glu immunoreactivity within 

these nerve terminals significantly decreased. (Ingham, Hood et al. 1993; Meshul, Emre 

et al. 1999; Meshul, Cogen et al. 2000). These morphological changes suggest an 

increase of striatal glutamatergic activity. 

Consistent with these results, increased concentrations of extracellular glutamate have 

been measured in the rat striatum following nigrostriatal 6-OHDA lesion (Meshul, Emre 

et al. 1999; Jonkers, Sarre et al. 2002; Bruet, Windels et al. 2003). Other studies failed 

however to measure such an increase (Corsi, Pinna et al. 2003; Galeffi, Bianchi et al. 

2003; Robelet, Melon et al. 2004). 

Common treatment of symptoms of Parkinson’s disease relies on restoring striatal 

dopamine levels via administration of levodopa (L-dopa, L-Dihydroxyphenylalanine). 

Levodopa is a precursor of dopamine. In the healthy brain, levodopa is synthesized from 

the amino acid tyrosine by the enzyme tyrosine hydroxylase. In the terminals of the 

dopaminergic neurons innervating the striatum, levodopa is then transformed to 

dopamine by DOPA decarboxylase. In the 6-OHDA treated rat or in human Parkinson’s 

disease, death of dopaminergic neurons therefore leads to inability to produce striatal 

dopamine. For therapy, levodopa is administered orally or via injection together with 

inhibitors to prevent loss by extracerebral decarboxylase (in the gut and other peripheral 

tissues). Inhibitors of extracerebral decarboxylase are for example benserazide or 

carbidopa. In the striatum of the Parkinsonian brain (model or human disease), 

dopamine is formed from the administered L-Dopa in the remaining dopaminergic 

neuron nerve terminals, but also in other sites. Dopamine can also be formed in the 

nerve terminals of neurons producing serotonin and noradenalin, as well as in some 

glial cells. Administration of levodopa therefore restores striatal dopamine levels. In 

most patients affected by Parkinson’s disease, motor symptoms are strongly reduced or 

disappear following levodopa treatment. Levodopa treatment remains effective even in 

patients with severe loss of dopaminergic nerve terminals (for a general introduction to 

Parkinson’s disease, see (Hornykiewicz 2001)). 

By restoring dopamine levels in the striatum of 6-OHDA lesioned rats, restoring of 

normal glutamatergic activity could be expected as well (Morari, Marti et al. 1998). In 

some microdialysis experiments however, increased extracellular glutamate 
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concentrations have been observed after acute (Jonkers, Sarre et al. 2002) or chronic 

levodopa administration (Robelet, Melon et al. 2004) and could be related to 

developments of dyskinesia. 

Only few studies have so far addressed the problem of glutamate measurement in the 6-

OHDA rat model using magnetic resonance spectroscopy. MRS offers however 

interesting perspectives for research on Parkinson’s disease. 

As noninvasive tool, MRS allows long term studies on the same animal. This is 

particularly interesting for the monkey Parkinson model, which allows examining slow 

disease progression, taking usually place in human Parkinson’s disease, as shown in 

(Brownell, Jenkins et al. 1998). Furthermore, MRS methods present great potential for 

transfer to clinical research and applications. As opposed to microdialysis, the combined 

extra- and intracellular glutamate pool is measured. Extracellular glutamate 

concentrations are however only present on a concentration scale of micromole (Fillenz 

2005); intracellular glutamate concentrations are on the scale of millimole, see annex, 

Table 8.3. MRS glutamate signals therefore stem principally from an intracellular 

origin, and observable changes, as long as cells and synaptic activity are intact, must be 

interpreted as changes in intracellular glutamate. 

A recent study measured striatal glutamate in the 6-OHDA lesioned rat using 
13

C NMR 

spectroscopy (Chassain, Bielicki et al. 2005). Incorporation of [2-
13

C] acetate in the 

glutamate pool was significantly higher in lesioned rats than in control rats. Lesioned 

rats having received acute levodopa administration before acetate injection showed 

incorporation of [2-
13

C] acetate similar to intact control rats. 

With the present study, we wanted to evaluate the potential of proton NMR 

spectroscopy for observing striatal glutamate changes in the 6-OHDA rat model of 

Parkinson’s disease. Animals were examined before and after lesion of the nigrostriatal 

pathway and following acute levodopa administration. Non invasiveness of MRS allows 

us to follow up effects on the same animal. 

6.2 Materials and methods 

6.2.1 Experimental procedure 

Twenty male Sprague Dawley rats (150 to 200 g, Janvier, France) were used for this 

study. Eight rats were examined in a first series, 12 rats in a second series. There was no 

essential difference in the experimental procedure of the first and second series, only a 

small change concerning the MRS acquisition parameters, as will be detailed later. 

Animals were housed under standard laboratory conditions (12h light/dark cycle) with 

food and water ad libitum. Protocols conformed to National Institutes of Health Guide 

for the Care and Use of Laboratory Animals (publication 865-23) and French Ministry 

of Agriculture regulations (decree n°87-848 of October 1987; authorization number: 

380321, A3851610004 and B3851610003) 
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First MRS exams were performed on the intact rats (5-6 semaines, 150/200 gr). Animals 

were anesthetized with 5% isoflurane in air enriched with O2 to 35%. Anesthesia was 

then maintained with 1 – 1.5% of isoflurane, administered by a mask. Rectal 

temperature was monitored throughout the experiment and maintained at 37°C with a 

heating pad under the abdomen. In the magnet, the rats were held in place by a 

stereotaxical frame. The exam started with acquisition of spin echo images (slice 

thickness 1mm) for voxel positioning. A 3 x 3 x 3 mm
3
 volume was chosen for MRS. 

The voxels were positioned to contain once the left, once the right dorsolateral striatum 

(see Fig. 6.1, Fig. 6.2), comparing to an in-house anatomical atlas relating MR images 

to anatomical brain cuts (C. Rémy). The dorsolateral part was chosen as the nigrostriatal 

afferents, which are affected by 6-OHDA lesion, primarily end here. The dorsolateral 

part represents the motor area of the striatum which is normally affected in Parkinson’s 

disease. 

To model Parkinson’s disease, a (so called) complete lesion of the substantia nigra pars 

compacta (SNc) was induced unilaterally (Emilie Lacombe, INSERM U704, Grenoble) 

four days after the MR exam. Animals were anaesthetized by intraperitoneal injection of 

chloralhydrate (400 mg/kg body weight) and received desipramine (25 mg/kg, 

subcutaneous injection) to protect noradrenergic neurons. Secured in a stereotaxic 

apparatus, an unilateral lesion of dopaminergic neurons was induced by stereotaxic 

injection of 6-OHDA into the left SNc at the following coordinates: anterior 3mm; left 

2mm; ventral 2.4mm from the midpoint of the interaural line, according to the brain 

atlas of Koenig and Klippel, 1963. Five milligram of 6-OHDA (6-hydroxydopamine 

hydrochloride stabilized with ascorbic acid) were dissolved in 1.67 ml of physiologic 

serum (NaCl 0.9%) to obtain a solution of 3 mg/ml 6-OHDA. Three microliters of this 

solution were injected into the left SNc at 0.5 µl/min using a syringe infusion pump. 

After injection, the canula was left in place for 5 minutes before being withdrawn. 

Lesion according to this protocol leads to nearly complete depletion of dopamine in the 

striatum. We use the complete lesion model because we suppose that severe lack of 

striatal dopamine should lead to the strongest alteration of the glutamate pool and to the 

most marked reaction of the brain to levodopa administration. 

Rats underwent a second MRS exam 4 weeks post lesion. We chose to omit verification 

of the lesion by apomorphine rotation tests in order to elude priming of the animals to 

anti-Parkinsonian treatment. Effectiveness of the lesion was instead verified post-

mortem, at the end of all exams, by antibody labeling of tyrosine hydroxylase (TH) on 

cytosections of the substantia nigra. As for the first experiment, animals were 

anesthetized with 4% isoflurane in air and anesthesia was then maintained with 1 – 

1.5% of isoflurane in air enriched with O2 to 35%. Catheters were introduced 

intraperitoneal (for later injection of benserazide and levodopa) and in the left femoral 

vein (for control of blood pressure and blood samples). Rats were tracheotomized and 

mechanically ventilated to ensure stable conditions during the relatively long period of 

anesthesia. Arterial pressure, ventilation and rectal temperature were monitored 

throughout the experiment to adapt anesthesia and ventilation when necessary, but not 
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recorded. As during the first MRS exam, rectal temperature was maintained at 37°C 

with a heating pad under the abdomen; rats were held in place by a stereotaxic frame in 

the magnet. 

For MRS, a 3x3x3 mm
3
 voxel was positioned first on the right and then on the left 

striatum, reproducing as well as possible the positioning that had been chosen during 

pre-lesion acquisitions. Then, without moving the rat and maintaining all MR relevant 

calibrations (rf, shim, voxel position etc), rats received intraperitoneal injection of 

benserazide (0.5 ml, 12.5 mg/kg body weight) to inhibit extracerebral decarboxylase. 

After a delay of 30 minutes to let the benserazide take effect, levodopa was injected (50 

mg/kg body weight) through the same catheter. MR spectra were acquired from the 

volume positioned on the left striatum during the following 3 hours. Further technical 

details concerning MRS will be given later in this text. 

At the end of the in vivo MRS acquisitions, the anaesthetized rats were sacrificed by 

decapitation, the skull was opened and the brain removed. The brain was separated in an 

anterior and posterior part, the anterior part containing the striatum, the posterior part 

containing the substantia nigra. The anterior part was subsequently separated in left and 

right hemisphere and weighed. All brain parts were frozen as quickly as possible in 

liquid nitrogen. The posterior part was used for verification of the lesion by TH 

immunolabeling. 

Next to the 6-OHDA rats, three intact rats of the same age were used for control 

purposes. Rats were anesthetized with 5% isoflurane in air enriched with O2 to 35%. 

Animals were then sacrificed by decapitation and their brain removed and separated 

following the same protocol as for the Parkinsonian rats.  

Absolute metabolite concentrations were determined from the anterior (left and right) 

brain parts of the 6-OHDA rats and the control rats, parts containing the striatum 

(Carine Chassain, QuaPA-STIM, INRA Clermont-Ferrand), using high resolution MRS. 

Technical details are given in the following text 

 

6.2.2 In vivo MRS 

The rats were placed in a 20 cm horizontal bore, 7 T magnet with actively shielded 

gradients (Magnex ScientificLtd, Abington, UK), interfaced to a SMIS (Surrey medical 

imaging, Guildford, UK) console. A home made 25 mm surface coil was used for 

emission and reception. After voxel positioning, local adjustments of resonance 

frequency, rf power and shim (1
st
 and 2

nd
 order) were performed. Shimming was first 

done with a FASTMAP (Gruetter 1993) based protocol and then refined manually. 

Typical water resonance linewidths after shimming were 16 Hz. For localized 

spectroscopy we used PRESS with an echo time of 136 ms, preceded by a VAPOR 

(Tkac, Starcuk et al. 1999) water suppression module. First echo time was 12 ms to 

maximize the delay between last (180° pulse) crusher gradient and acquisition window. 
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A spectral width of 10 kHz was acquired on 1024 points, half the number of points 

before and the other half after the echo signal maximum. All acquisitions used a 

repetition time of 3 seconds, starting with eight dummy scans to establish steady state 

magnetization. 

First and second series of experiments were slightly different with respect to signal 

accumulation. For the MR spectra of the first series, 128 scans were accumulated in a 

data block during acquisition. For the second series, only 32 scans were accumulated 

per data block. It is advantageous to accumulate as few as possible scans in a data block 

during acquisition, as this allows more precise correction of frequency shift and phase 

during postprocessing. Accumulating 32 scans was found to provide sufficient signal to 

noise ratio to apply correct phasing and frequency shift corrections. 

During the first series of experiments, for the MRS exams “before lesion” and “after 

lesion - before levodopa injection”, a single block of 128 scans was acquired. These 

acquisitions were preceded by acquisition of the unsuppressed water signal for 

referencing purposes, using 8 accumulations after 8 dummy scans. After levodopa 

injection, during 2.5 to 3 hours, blocks of 128 scans were acquired and stored to disk for 

later treatment. 

During the second series of experiments, 16 blocks of 32 scans were acquired for the 

MRS exams “before lesion” and “after lesion - before levodopa injection”. As for the 

first series, these acquisitions were preceded by acquisition of the unsuppressed water 

signal, using 8 accumulations. After levodopa injection, blocks of 32 scans were 

acquired during 3 hours. 

It has been stated before (chapter 4) that the highest glutamate signal amplitude and the 

best estimation of glutamate can be obtained at an echo time of 115 ms. We have 

nevertheless chosen an echo time of 136 ms for several reasons. At 136 ms echo time, 

lactate presents a fully inverted doublet signal at 1.3 ppm which can easily be 

distinguished from neighboring lipid peaks. In healthy rats the lactate signal is barely 

visible. Hypoxic conditions lead to an increase in lactate. Easy visibility of the lactate 

signal is therefore favorable to monitor the rat’s condition in the magnet. 

An echo time of 136 ms allows acquisition of a symmetrical time domain echo signal 

with an acquisition window length allowing still acceptable spectral resolution. An 

acquisition window duration of 102.4 ms (10 kHz, 1024 pts), after two times zerofilling, 

yields a spectral resolution of about 5 Hz per point, which is a minimum with respect to 

the obtained linewidth. At 115 ms the acquisition window would either have to be 

shorter or the echo signal would not be placed in the middle of the acquisition window. 

Symmetry in the time domain simplifies data handling in the spectral domain, for 

example with respect to 0
th

 order phase correction, as the imaginary signal part is zero. 

Experiments on model solutions to study the peak composition of the signal visible in 

vivo near 2.3 ppm have been performed using exactly the in vivo acquisition parameters; 

these are presented in the annex, section 8.4. 
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Furthermore, PRESS at 136 ms with the acquisition of a symmetrical echo, has been 

shown, within another research context present in our laboratory, to be a technique 

allowing the detection of brain glutamate alterations: It is known that excessive brain 

ammonium levels, for example produced artificially by infusion, lead to a decrease in 

brain glutamate (Fitzpatrick, Hetherington et al. 1989). This finding has been confirmed 

by work done in our laboratory (Provent, Kickler et al. 2005) using the above described 

PRESS sequence parameterization. 

 

6.2.3 Postprocessing of in vivo spectra 

Posttreatment used the IDL programming language (RSI, Boulder, CO). Exponential 

broadening of 9 Hz and zero-filling to 4096 points was applied before Fourier 

transformation. First order phase correction determined by the (theoretical) position of 

the spin echo maximum within the acquisition window was applied to all spectra (phase 

correction of π per spectral point). Spectra corresponding to accumulation of 128 scans 

(1
st
 series of experiments) or 32 scans (2

nd
 series of experiments) where then 

individually 0
th

 order phase and frequency shift corrected using the NAA singlet as 

reference. 

It has been described before that for the second series of experiments, for the MRS 

exams ‘before lesion’ and ‘after lesion – before L-DOPA injection’ acquisitions have 

been performed in 16 blocks of 32 scans. All the 16 scans corresponding to one MRS 

exam were in the following summed. Spectra of first and second series were then 

quantified. 

For quantification, a sum of Lorentzian lineshapes was adjusted to the experimental data 

(real part of the spectrum) in the frequency domain. This model function incorporated 

Lorentzian lines to fit the following signals: 2.0 ppm (mainly n-acetylaspartate; referred 

to as NAA), 2.3 ppm (mainly glutamate with contributions of contributions of 

glutamine, NAA, GABA; referred to as glx), 3.0 ppm (creatine + phosphocreatine; 

referred to as total creatine (tCr)), 3.2 ppm (choline + phosphorylcholine + 

glycerophosphorylcholine with contributions of taurine and myoInositol; referred to as 

total choline (tCho)), 3.4 ppm (mainly Taurine, myo-Inositol). Adjustable parameters 

were linewidth, amplitude and position; the parameters were adjusted using IDL’s built 

in function “curvefit”. The signal at 3.4 ppm was included in the model function but not 

used for further statistical tests, as it was affected by water suppression in several 

spectra. 

Alternatively, adjustment of model functions in the time domain using AMARES of 

MRUI has been tried, but was found less reliable, most probably due to difficulties with 

determination of the echo maximum within the acquisition window.  

For a first (visual) evaluation of the MRS exams “after lesion – after L-DOPA 

injection” (spectra acquired during 2.5 to 3 hours post injection), spectra of the second 
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series were summed to blocks of 64 accumulations (sum of two consecutive spectra 

including each 32 accumulated scans) to ensure acceptable signal to noise ratio and then 

quantified as described above. Spectra of the first series, including 128 accumulated 

scans, were quantified directly. 

For statistical evaluations, all post-injection spectra for each rat, omitting some 

particular spectra of poor quality, were summed and then quantified, as visually no 

evolution after levodopa injection was observed (see results section). 

 

6.2.4 In vitro MRS 

(Carine Chassain, QuaPA-STIM, INRA Clermont-Ferrand) 

Solutions of the brain metabolites were obtained by perchloric acid (PCA) extracts: The 

striatal tissues were homogenized in 4% PCA using an ultrasound homogenizer and 

then centrifuged during 15 minutes at 4°C (9600 rotations per minute, rpm). The 

supernatant was retrieved and neutralized with K2CO3. Precipitates of KCL were 

separated by repeated centrifugation (4°C, 9600 rpm, 10 min). The supernatant was then 

lyophilized and resuspended in deuterated water (D2O). The pH was adjusted to 7.4 

ppm and the sample stored at -20°C. For quantification of absolute metabolite 

concentrations, the sample was placed in an NMR tube next to a tube containing a 5 

mM TSP solution. Spectra were obtained at 9.4 Tesla field strength with a standard 

pulse-acquire sequence (number of averages 128, repetition time 9.1 sec). 

 

6.2.5 Postprocessing of in vitro spectra 

Spectra were processed using the MRUI software package (Naressi, Couturier et al. 

2001). Corrupted first points due to digital filtering were removed of each FID. Spectra 

were then phased to 1
st
 and 0

th
 order and baseline corrected. Assignment of the different 

resonances was performed based on values from the literature (Govindaraju, Young et 

al. 2000). The identified peaks were then quantified using AMARES (Vanhamme, van 

den Boogaart et al. 1997). As prior knowledge, only peak positions and a common 

linewidth of 2 Hz were entered. Individual and global phases were kept fixed. Peak 

amplitudes for each metabolite and TSP, as determined by AMARES, were divided by 

the number of resonating protons giving rise to the respective resonance lines. Absolute 

metabolite concentrations were then obtained relating to the known TSP concentration 

and knowing the tissue weight from which the PCA abstract was obtained. For 

visualization in Fig. 6.7, one Hertz exponential broadening was applied. 
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6.2.6 Statistics 

A two way within subjects analysis of variance was conducted to evaluate the effect of 

6-OHDA lesion on the metabolite signals (glx/NAA, tCr/NAA and tCho/NAA) 

measured in vivo in ipsi- and contralateral hemisphere. NAA was used for normalization 

as, supported by results obtained in vitro, we assumed it stable after lesion in these 

experiments (see results section for NAA). The within subjects factors were brain 

hemisphere with two levels (left, right) and time with two levels (before lesion, after 

lesion). Non parametric matched pairs tests (Wilcoxon) were conducted to follow up 

interaction and main effects where significant. 

To evaluate the results obtained after levodopa injection (acquisitions accumulated 

during 2.5h to 3h) non parametric matched pairs tests were used as well. We compare 

the metabolite ratios obtained from the left hemisphere after lesion – before levodopa 

injection with the ones obtained after injection. 

For statistical treatment of the absolute metabolite concentrations obtained in vitro, a 

non parametric (Mann-Whitney) test was used to compare data from ipsi- and 

contralateral hemisphere. 

6.3 Results 

The experiments could be successfully completed on 10 animals, 3 of 8 animals during 

the first series and 7 of 12 animals during the second series of experiments. During the 

first series, 2 animals died after lesion and 2 during the second MRS session; during the 

second series 2 animals died after lesion and 3 during the second MRS session. The 

experimental procedure of repeated anesthesia exerts considerable strain on the animals. 

Premature deaths during the second MR exam occurred mostly directly after 

introduction of anesthesia. The group size for statistical analysis of the in vivo 

experiments was nine, as one rat of the first series had to be excluded due to technical 

problems during acquisition. Group size for statistical analysis of the in vitro 

experiments was ten. 

On all animals which underwent the complete protocol, 6-OHDA lesion was successful 

as verified by TH immunolabeling. 

 

Voxel position in vivo, spectra in vivo and in vitro  

In this paragraph we present images visualizing the voxel position used for in vivo 

spectroscopy and spectra acquired from the respective brain regions, followed by 

spectra acquired in vitro on PCA extracts. 

 

Fig. 6.1 and Fig. 6.2 are representative for placement of the volume used for 

spectroscopy when centered on the left dorsolateral striatum. Fig. 6.1 shows the voxel 



94 

used for the pre-lesion exam, Fig. 6.2 the voxel used for the post-lesion exam on the 

same animal. Due to experimental problems, the voxel position may vary up to 0.8 mm 

in the left-right direction from the depicted position. The volume remains however well 

within the striatal region. 

Fig. 6.3 shows the spectrum acquired before lesion from the left hemisphere, the 

spectrum acquired after lesion from the same hemisphere of the same animal is 

displayed in Fig. 6.4. For quantification, a model function (solid line) has been adjusted 

to the signals at 2.0 ppm, 2.3 ppm, 3.0 ppm, 3.2 ppm and 3.4 ppm (see Methods 

section), as can be seen in Fig. 6.5. The fit residual (solid line) together with the 

spectrum (dotted line) is displayed in Fig. 6.6. The model function fits well to the 

observed peaks, only minor contributions remain (unfitted) in the residual. 

Quantification results and statistics will be described later in this text, together with 

observations concerning changes in the spectral region at 1.3 ppm. 

Fig. 6.7 shows an example of a high resolution in vitro spectrum obtained from a PCA 

extract of the striatal tissue (left hemisphere, ipsilateral, anterior part) of a 6-OHDA 

treated rat. Peak assignments have been performed according to (Govindaraju, Basus et 

al. 1998) and are as indicated in the figure caption. 
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Fig. 6.1:  Placement of the (3x3x3) mm

3
 voxel used for spectroscopy in this study. The acquisition 

volume is centered on the left dorsolateral striatum. All images were acquired before 
lesion with a slice thickness of 1mm. The scale, as indicated, is the same for all images 
in horizontal and vertical dimension. The spectrum acquired from this position is shown 
in Fig. 6.3. 

 
Fig. 6.2:  Placement of the (3x3x3) mm

3
 volume used for spectroscopy, centered on the left 

dorsolateral striatum of the same rat shown in Fig. 6.1 but after 6-OHDA lesion. All 
images were acquired with a slice thickness of 1mm. The scale, as indicated, is the same 
for all images in horizontal and vertical dimension. The spectrum acquired from this 
position is shown in Fig. 6.4. 
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Fig. 6.3:  In vivo PRESS spectrum acquired with an echo time of 136 ms from the voxel shown in 

Fig. 6.1 (left hemisphere, pre-lesion). Signals are identified as (compare to Fig. 6.7): 2.0 
ppm; mainly N-acetylaspartate (NAA), 2.3 ppm; mainly glutamate with contributions of 
glutamine, NAA, GABA (glx), 3.0 ppm; creatine + phosphocreatine (tCr), 3.2 ppm; choline 
+ phosphorylcholine + glycerophosphorylcholine with contributions of taurine and 
myoInositol (tCho), 3.4 ppm; mainly Taurine, myo-Inositol. 

 
Fig. 6.4:  In vivo PRESS spectrum acquired with an echo time of 136 ms from the voxel shown in 

Fig. 6.2. This spectrum has been acquired from the same rat and the same hemisphere 
(left) as the one shown in Fig. 6.3 but after 6-OHDA lesion of the left nigrostriatal 
pathway. Peak identifications are as in Fig. 6.3. Changes are visible in the spectral region 
of 1.3-1-4 ppm as compared to Fig. 6.3 and are associated with an increase in lactate. 

ppm 

a.u. 

ppm 

a.u. 
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Fig. 6.5:  Adjustment of a model function to the spectrum of Fig. 6.3 (solid line). A sum of five 

Lorentzian lineshapes was adjusted in the frequency domain to the peaks visible at 2.0 
ppm, 2.3 ppm, 3.0 ppm, 3.2 ppm and 3.4 ppm. Fitted parameters were position, linewidth 
and peak amplitude. The spectrum is shown as dotted line. 

 
Fig. 6.6:  Residual (spectrum minus fitted model function, solid line) of the fit shown in Fig. 6.5. 

The spectrum is shown as dotted line (compare to Fig. 6.3). 

ppm 

a.u. 

ppm 

a.u. 
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Fig. 6.7:  High resolution in vitro spectrum obtained from a PCA extract of the striatal tissue (left 

hemisphere, anterior part) of a 6-OHDA treated rat. Peak assignments have been 
performed according to (Govindaraju, Basus et al. 1998). Abbreviations used for 
metabolites are: tCr, total creatine (creatine + phosphocreatine); NAA, n-acetylaspartate; 
Lac, lactate; TSP, trimethylsilylpropionic acid (reference); MyoIns, myoinositol; Glx, 
glutamate+glutamine; Tau, taurine; tCho, total choline (choline+phosphorylcholine, 
glycerophosphorylcholine); GABA, gamma-aminobutyric acid; Gln, glutamine; Glu, 
glutamate; Suc, succinate; NAAG, n-acetylaspartylglutamate. Abbreviations used for 
signal structures are: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; q, 
quadruplet; m, multiplet. Indicated between brackets is the number of Lorentzian lines 
used for fitting of the indicated structure with AMARES. For visualization, 1 Hz 
exponential broadening was applied. 
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Statistics and visual evaluation in vivo and in vitro 

In the following we describe the results obtained from statistical analysis. Graphs for 

visualization of the data are shown at the end of this paragraph. 

 

Glutamate (in vivo and in vitro) 

Fig 6.8 (top) shows the values obtained from quantification of the signal visible in vivo 

at 2.3 ppm (about 80% glutamate, next to glutamine, NAA and GABA, see annex 8.4), 

normalized with the NAA signal amplitude. Values were obtained from the exams “left 

hemisphere (ipsilateral) before lesion”, “left hemisphere after lesion”, “left hemisphere 

after lesion and levodopa injection” (from spectra accumulated during 2.5 to 3 hours, 

see results below), “right hemisphere (contralateral) before lesion” and “right 

hemisphere after lesion”. Values obtained from the same animal and the same 

hemisphere are shown linked by a line to visualize evolution. 

Two way ANOVA shows no significant main effect or interaction for the within subject 

factors time (lesion) and hemisphere, evaluating the measurements obtained before 

lesion and after lesion-before levodopa injection. 

Fig. 6.9 (top, left) visualizes the evolution of the 2.3 ppm signal after levodopa 

injection. Shown are the quantification results obtained from 10 rats, three from the first 

(upper three lines) and seven from the second (lower seven lines) series of experiments. 

For the first series, each point corresponds to the peak area obtained from a spectrum 

accumulating 128 scans. For the second series, each point corresponds to 64 scans. The 

points associated with negative time correspond to spectra acquired before any 

injection. These serve as reference. For each rat, all peak areas have been normalized 

with respect to the average peak area determined on all pre-injection spectra. Timepoint 

zero minutes corresponds to injection of levodopa and is preceded by a thirty minutes 

delay, which followed injection of benserazide. For presentation, results obtained from 

the different rats have been separated vertically. Visually, no change or evolution in the 

2.3 ppm peak following levodopa injection may be observed. All post-injection spectra 

(for each rat) have therefore been summed and glx was quantified in this sum spectrum. 

Statistical evaluation used the data obtained from this sum spectrum. 

Wilcoxon matched pairs test between the groups “left hemisphere after lesion” and “left 

hemisphere after lesion and levodopa injection” shows no significant influence of 

levodopa injection on glx/NAA. 

Fig. 6.10 (left) shows absolute glutamate concentrations (mmole/kg wet weight of brain 

tissue) determined using high resolution NMR spectroscopy from extracts of the brain 

parts containing mainly the striatum. The left column shows values obtained from the 

right (contralateral) side, the right column values obtained from the left (ipsilateral) side 

of the 6-OHDA rats. Glutamate concentrations show no significant difference between 

ipsi- and contralateral side. 
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Total creatine (in vivo and in vitro) 

Fig 6.8 (middle) shows the values obtained in vivo from quantification of combined 

creatine and phosphocreatine, normalized with the NAA signal (see description of 

glutamate graphic for details of the presentation).  

Two way ANOVA shows no significant main effect or interaction for the within subject 

factors time (lesion) and hemisphere, evaluating the measurements obtained before 

lesion and after lesion-before levodopa injection.  

In the same way as for the glutamate signal, Fig. 6.9 (top, right) shows the evolution of 

tCr after levodopa injection. Visually, no effect of the injection on the peak area may be 

seen. As for glutamate, all post-injection spectra for each rat have therefore been 

summed and the sum was used for tCr quantification. 

Wilcoxon matched pairs test between the groups “left hemisphere after lesion” and “left 

hemisphere after lesion and levodopa injection” shows no significant influence of 

levodopa injection on tCr/NAA, but a trend to a slight increase (p = 0.055). 

Absolute combined creatine/phosphocreatine concentrations as obtained from high 

resolution NMR are displayed in Fig. 6.10 (right). As for glutamate, ipsi- and 

contralateral side present no statistically significant differences. 

 

Total choline (in vivo and in vitro)  

Fig 6.8 (bottom) visualizes the values measured for total choline (choline + 

phosphorylcholine + glycerophosphorylcholine with contributions of taurine and 

myoInositol) in vivo, normalized with the NAA signal. 

The hemisphere main effect was significant (p = 0.023) as well as the hemisphere * 

time interaction effect (p = 0.044). This means that differences in mean tCho/NAA 

ratios between left and right hemisphere significantly differ between pre- and post-

lesion state. The test associated with the time main effect was not significant (p = 0.34). 

Wilcoxon matched pairs tests were conducted to follow up the significant interaction: 

The contralateral hemisphere does not show significantly different tCho/NAA ratios 

between pre- and post-lesion (Wilcoxon: p = 0.77), whereas the ipsilateral hemisphere 

shows an almost significant decrease (Wilcoxon: p = 0.066) by about 18% (decrease of 

group mean) as compared to its pre-lesion value. 

Fig. 6.9 (bottom, left) shows the evolution of tCho after levodopa injection. Visually, no 

effect of the injection on the peak area may be seen. As described for glx and tCr, all 

post-injection spectra have therefore been summed for each rat and tCho was 

determined from the sum spectrum. Wilcoxon matched pairs test between the groups 

“left hemisphere after lesion” and “left hemisphere after lesion and levodopa injection” 

shows no significant influence of levodopa injection on tCho/NAA. 
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Absolute concentrations of combined choline, phosphorylcholine and 

glycerophosphorylcholine obtained in vitro on extracts are shown in Fig. 6.11 (top, left). 

Values from ipsi- and contralateral hemisphere are not significantly different. 

 

NAA (only in vitro, as used as reference in vivo) 

In vitro, no statistically significant difference (Wilcoxon: p = 0.43) between NAA 

concentrations of ipsi- and contralateral hemisphere of the 6-OHDA trated rats can be 

observed (Fig. 6.11, top, right). For the experiments described in this chapter, we 

assume that NAA levels are not affected by 6-OHDA lesion and use the NAA signal as 

reference for in vivo experiments. This point will be further discussed in the following 

section. 

 

GABA (only in vitro) 

In 5 of the 9 animals GABA was higher on the ipsilateral than on the contralateral side 

(Fig. 6.11, 2
nd

 from top, left). The mean value of all animals was 71% higher after 

lesion, and a Wilcoxon test showed a trend with p = 0.065. 

 

Taurine (only in vitro) 

In 7 of the 9 animals taurine was lower on the ipsilateral than on the contralateral side 

(Fig. 6.11, 2
nd

 from top, right). The mean value of all animals was 14% lower after 

lesion, and a Wilcoxon test showed a trend with p = 0.084 

 

Glutamine, NAAG and myoInositol (only in vitro) 

No statistically significant differences between the ipsilateral and contralateral 

hemisphere of the 6-OHDA rats could be found for glutamine, NAAG and myoInositol, 

see Fig. 6.11. 

 

Lactate region (only in vivo) 

Changes in the region of 1.3 ppm to 1.4 ppm have been observed following lesion. A 

well formed peak as in Fig. 6.3 and Fig. 6.4 is not always visible. Changes will 

therefore be reported only qualitatively. Strong signals in the spectral region 1.3-1.4 

ppm have been observed post-lesion in the left hemisphere of six of the nine animals. 

One of these rats already showed a relatively strong but nevertheless smaller peak 

before lesion. In four of these rats, strong signals in the same spectral region could as 

well be observed post-lesion in the right hemisphere. 
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In summary 

No significant change of glutamate (glx/NAA signal) or total creatine (tCr/NAA) signal 

could be observed in vivo following lesion; the total choline signal (tCho/NAA) shows a 

trend to decrease ipsilateral. No significant influence of levodopa administration on any 

of the measured metabolite signals could be observed. 

In vitro, GABA shows a trend to higher values, whereas taurine shows a trend to lower 

in the ipsilateral hemisphere as compared to the contralateral hemisphere. 

Increased signals were observed in the region of the lactate resonance following lesion. 
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Fig 6.8:  Results obtained for glx, tCr and tCho from quantification of the in vivo spectra, 

normalized with the value obtained for NAA. Values from each animal originate from the 
exams “left hemisphere (ipsilateral) before lesion”, “left hemisphere after lesion”, “left 
hemisphere after lesion and levodopa injection” (from spectra accumulated during 2.5 to 
3 hours), “right hemisphere (contralateral) before lesion” and “right hemisphere after 
lesion”. Results from the same animal and the same hemisphere are linked by a line to 
visualize evolution. For tCho/NAA, two way ANOVA shows a significant hemisphere main 
effect (p = 0.023) and a significant interaction effect (p = 0.044). The contralateral 
hemisphere does not show significantly different tCho/NAA ratios between pre- and post-
lesion (Wilcoxon: p = 0.77), whereas the ipsilateral hemisphere shows a trend to 
decrease (Wilcoxon: p = 0.066) by about 18% as compared to its pre-lesion value. 
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Fig. 6.9:  Evolution of the glx, tCr, tCho and NAA signal after levodopa injection. Shown are the 

quantification results obtained from 10 rats, three from the first (upper three lines) and 
seven from the second (lower seven lines) series of experiments. For the first series, 
each point corresponds to the peak area obtained from a spectrum accumulating 128 
scans. For the second series, each point corresponds to a spectrum accumulating 64 
scans. The points at negative time are associated to spectra acquired before any 
injection. These serve as reference. For each rat, all peak areas have been normalized 
with respect to the average peak area determined on all pre injection spectra. Timepoint 
zero minutes corresponds to injection of levodopa and is preceded by a thirty minutes 
delay, which followed injection of benserazide. For presentation, results obtained from 
the different rats have been separated vertically. No signal change during the 2.5 to 3 
hours following levodopa injection can be observed visually. 
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Fig. 6.10:  Absolute concentrations (mmole/kg wet weight of brain tissue) of metabolite PCA 

extracts from brain tissue of the 6-OHDA treated rats. The anterior left or right brain part, 
divided as described in the method’s section, was used for extracts, which were then 
examined using high resolution NMR spectroscopy. The left column shows values 
obtained from the right (contralateral) side, the right column values obtained from the left 
(ipsilateral to lesion) side. Measurements from the same animal are connected by a line. 
Statistical comparisons show no significant difference between left and right hemisphere 
values (Wilcoxon). 
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Fig. 6.11: Absolute concentrations (mmole/kg wet weight 
of brain tissue) of metabolite PCA extracts from brain 
tissue of the 6-OHDA treated rats. The anterior left or 
right brain part, divided as described in the method’s 
section, was used for extracts, which were then 
examined using high resolution NMR spectroscopy. The 
left column shows values obtained from the right 
(contralateral) side, the right column values obtained 
from the left (ipsilateral to lesion) side. Measurements 
from the same animal are connected by a 
line.Comparisons of ipsi- and contralateral values show 
no significant differences (Wilcoxon). For GABA a trend 
to higher values in the lesioned hemisphere (p = 0.065) 
and for taurine a trend to lower values in the lesioned 
hemisphere (p = 0.084) is observed, comparing to the 
contralateral side. 
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6.4 Discussion 

General aspects 

Premature death of animals during this series of experiments is elevated. Experiments 

could only be pursued successfully on 10 animals from a total of 20 animals. 

Administration of anesthesia by a mask instead of tracheotomy could be considered to 

circumvent stressful surgery and risks. 

Compared to values from the literature (see Table 8.2 annex), absolute metabolite 

concentrations determined in vitro on the controlateral side of the 6-OHDA treated rats 

are low. Low values by about a factor 3.5 as compared to the literature for total creatine, 

total choline, NAA, glutamate and glutamine were measured on control rats as well 

(data not shown). Taurine values from controls are coherent with the literature, but 

GABA concentrations are lower by a factor five. Low values could be explained by 

losses during extract preparation or incomplete integration of multiplets in the spectrum. 

As the same experimental protocol was used for all samples, we may however assume 

that relative differences between hemispheres of the 6-OHDA rats are still valid 

information. 

The NAA signal was used for referencing in vivo. NAA in the brain is located almost 

exclusively within neurons (Hakumäki, Ala-Korpela et al. 1997); decrease is often 

associated with neuronal loss (see for (Sager, Laursen et al. 1999) example). Of the 

nigrostriatal neurons, the striatum incorporates the axons whereas the cell body is 

situated in the substantia nigra. It can be assumed that degeneration of the axons 

following 6-OHDA injection does not lead to an important NAA decrease, as in 

volume, they present only a small part of the striatum. No concentration alterations 

between ipsi- and contralateral hemisphere of the 6-OHDA treated rats could be found 

in vitro. Even though it is difficult to use the contralateral hemisphere as control, as 

cross effects may exist, absence of ipsi-/contralateral impairment may support our 

hypothesis for NAA. Furthermore, absolute NAA concentrations determined on the 

three control animals show values resembling to contra- and ipsilateral side of the 6-

OHDA treated rats (data not shown). In the present study, we could not use the water 

signal for referencing (as done in chapter 5) as it was not unchanged following lesion. 

Determining the water signal intensity within the spectroscopy region on images, 

increased intensities following lesion were found. This increase could be due to inflated 

ventricle volumes, but image quality is not sufficient to pursue exact comparisons. 

 

Influence of unilateral 6-OHDA lesion on glutamate and other metabolites 

Our aim in this study was to determine whether it would be possible to measure 

alterations of striatal glutamate concentrations following 6-OHDA lesion of the 

nigrostriatal pathway and whether it would be possible to measure a change of this 

glutamate concentration following administration of levodopa. 



108 

Statistical evaluation of the data acquired in vivo from the striatum does not allow 

stating a change in the glx/NAA signal ratio following lesion of the nigrostriatal 

pathway in the same hemisphere. As well, no influence of levodopa administration on 

glx can be demonstrated. In vivo 
1
H MRS measurements of glutamate in our study do 

not reflect the increase in glutamatergic activity measured by other studies in this model 

of Parkinson’s disease or an alteration related to levodopa administration. Our results 

suggest that nigrostriatal deafferentiation does not have an important effect on the total 

quantity of glutamate present within cell and synapses. 

According to in vitro experiments (Fig. 8.4), the MRS measured signal should be well 

representative of glutamate, overlapping contributions of other metabolites or opposite 

changes of gln and gaba might however mask subtle alterations of glutamate. 

Changes of increased glutamatergic activity related to nigrostriatal deafferentiation 

and/or levodopa injection reported in the literature rely mostly on measurements of 

extracellular glutamate (Meshul, Emre et al. 1999; Jonkers, Sarre et al. 2002; Bruet, 

Windels et al. 2003) or on vesicular activity (Meshul, Emre et al. 1999) and might 

depend on small changes in the experimental protocol, as increased extracellular 

glutamate was not observed systematically (Corsi, Pinna et al. 2003; Galeffi, Bianchi et 

al. 2003; Robelet, Melon et al. 2004). Increased incorporation of a 13C label to 

glutamate has been reported as well (Chassain, Bielicki et al. 2005). A single study 

reports an increased glx/cr signal in the striatum of the cat ten days following MPTP 

lesion (Podell, Hadjiconstantinou et al. 2003), displaying however spectra difficult to 

interpret. No changes of combined intra- and extracellular glutamate could be shown in 

the lesioned striatum one month following 6-OHDA denervation using chromatographic 

methods (Tanaka, Niijima et al. 1986). 

MRS measures the total pool of glutamate which is around 10 mM in the brain (see 

Table 8.2) and presents mainly the intracellular pool, as extracellular glutamate levels 

are on the order of 2 to 3 µM. Increases of extracellular glutamate between 45% and 

146%, which have been measured in some microdialysis studies (Meshul, Emre et al. 

1999; Jonkers, Sarre et al. 2002; Bruet, Windels et al. 2003) are far below the detection 

sensitivity of in vivo MRS. Furthermore, alterations of the extracellular glutamate pool 

are not necessarily linked to significant changes in the total pool of glutamate. 

The in vitro measurements of glutamate represent metabolite concentrations in animals 

following 6-OHDA lesion, levodopa administration and prolonged anesthesia of 3 

hours. Absence of statistical difference between ipsi- and contralateral hemisphere may 

be due to levodopa administration but may as well indicate that, if concentration 

alterations of total glutamate occur, they are on the order of µM and below detection 

sensitivity of our MRS protocol. 

Our data show a trend of decreased tCho ipsilateral following lesion. Some former 

studies have reported increased tCho/NAA ratios or increased absolute tCho in human 

PD (Holshouser, Komu et al. 1995; Ellis, Lemmens et al. 1997; Clarke and Lowry 

2000) or increased tCho/tCr in the MPTP monkey model (Brownell, Jenkins et al. 
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1998). The peak labeled “tCho” observed in proton MRS is a combined signal of 

choline and choline containing compounds (phosphocholine, glycerophosphocholine) as 

well as taurine and myoInositol. Depending on experimental parameters (field strength, 

TR and TE), the relative contributions of these metabolites to the observed peak 

changes, which may explain different results obtained in our study as compared to 

literature. Furthermore, the observed changes may be a secondary effect to neurotoxin 

administration or disease and not related to striatal dopamine depletion. Therefore, 

changes observed for tCho may well differ between different animal models and human 

PD. Decrease of the tCho signal may be indicative of membrane degradation, as 

glycerophosphocholine and phosphocholine play a central role in membrane 

phospholipid metabolism (Hakumäki, Ala-Korpela et al. 1997). 

In vivo, we found increased striatal lactate levels post-lesion in some of the ipsilateral 

(six animals) and the contralateral (four animals) hemispheres. Similar alterations have 

been described before in the MPTP cat (Podell, Hadjiconstantinou et al. 2003) and 

monkey (Brownell, Jenkins et al. 1998) model. Lactate is an indicator of anaerobic 

oxidation and degenerative changes. Presence in left and right striata might indicate that 

even though 6-OHDA injection was performed unilaterally, both hemispheres react to 

neurotoxin administration. 

A trend to decreased taurine and increased GABA has been observed ipsilateral. 

Decreased taurine may contribute to the trend observed for tCho in vivo, but 

comparisons are difficult, as the in vitro data represent a state of the animals after 

levodopa administration and prolonged anesthesia. 

Increased GABA one month following lesion has been observed before in the 6-OHDA 

model using chromatographic methods (Tanaka, Niijima et al. 1986). In the reported 

study, mean GABA concentrations were found increased to 128% comparing lesioned 

to contralateral side. Increase of 171% measured in our study is slightly higher but still 

well comparable. Sprouting of GABAergic nerve terminals following lesion has been 

suggested as explanation. 

6.5 Conclusion and perspectives 

Glutamate levels measured by MRS in the 6-OHDA rat model do not display alterations 

following lesion of the nigrostriatal pathway. MRS measures the total pool of (extra- 

and intracellular) glutamate and is not a good reflect of increased glutamatergic activity 

demonstrated in the same model by other methods. 

A trend of ipsilateral changes in GABA and taurine has been observed in vitro. It would 

be interesting to perform the same in vitro experiments on 6-OHDA lesioned animals 

omitting levodopa injection and to compare to control animals. If the observed trend can 

be confirmed, it would be interesting to pursue in vivo measurements with methods 

optimized for GABA and/or taurine detection. 
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7 General conclusion and perspectives 
(English and French) 

Français 

L’objectif du travail était l’implémentation de méthodes de spectroscopie RMN in vivo 

pour la mesure du glutamate et l’application de ces méthodes dans le cadre de la 

recherche sur la maladie de Parkinson. 

Dans des spectres acquis dans des champs magnétiques jusqu’à 3 Tesla et utilisant les 

méthodes actuellement disponibles, les raies de glutamate, glutamine, NAA et GABA 

se chevauchent. Utilisant des temps d’écho courts, le chevauchement est marqué mais 

grâce à l’abondance d’information contenu dans les spectres et grâce à des méthodes de 

traitement optimisées, les signaux des différents métabolites peuvent être différencies 

(Boumezbeur, Besret et al. 2005; Jang, Lee et al. 2005). D’autres approches pour la 

mesure de glutamate ciblent la minimisation des signaux résonnant au voisinage de 

glutamate (Pan, Mason et al. 1996; Hurd, Sailasuta et al. 2004; Mayer and Spielman 

2005; Schulte, Trabesinger et al. 2005). Au sein de ce dernier groupe de méthodes et en 

vue d’une application chez le patient, une approche de filtre à double quanta (Thompson 

and Allen 1998) et une approche liée à la spectroscopie bidimensionnelle (TE averaged 

PRESS (Hurd, Sailasuta et al. 2004)) ont été implémentées et évaluées à 3 Tesla. 

Comparé à la méthode de filtrage à double quanta, la méthode de « TE averaged 

PRESS » permettait une meilleure distinction de glutamate des autres métabolites ainsi 

que l’acquisition de spectres présentant un meilleur rapport de signal sur bruit, compte 

tenu des temps d’acquisition utilisés. La mise en place s’est avérée simple et de bons 

résultats ont pu être obtenus immédiatement. Les spectres acquis dans le lobe pariétal de 

volontaires sains présentent un signal bien visible, dominé par glutamate. Dans les 

spectres acquis dans des régions cérébrales plus profondes du nucleus lentiforme le 

signal de glutamate était moins bien mesurable à cause de fortes inhomogénéités 

magnétiques provoquées par les interfaces entre tissu cérébral, os et liquide encéphalo-

rachidien des ventricules. Pour des examens de spectroscopie dans cette région du 

cerveau, des systèmes de shims puissants, permettant éventuellement un ajustement de 

contributions jusqu’au troisième ordre, serait souhaitable. Les méthodes de « TE 

averaged PRESS » (Hurd, Sailasuta et al. 2004), « CSSF » (Schulte, Trabesinger et al. 

2005) et « CT-PRESS » (Mayer and Spielman 2005) sont proches, et la reconstruction 

de spectres selon ces trois techniques devrait être possible à partir d’une seule 

acquisition. Il serait ainsi intéressant de comparer directement ces trois approches et 

éventuellement d’apporter des améliorations en les combinant. 

La méthode « TE averaged PRESS » a aussi été évalué à 7 Tesla, sur un imageur petit 

animal. A cette intensité de champ, « TE averaged PRESS » ne permet pas d’améliorer 

la mesure de glutamate par rapport à une séquence « PRESS » standard utilisant un 
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temps d’écho de 115 ms ou 136 ms. A champ élevé, le comportement des systèmes de 

spins est simplifié et les spectres acquis à un temps d’écho approprié montrent déjà un 

signal largement dominé par glutamate. A des champs de 7 Tesla, les meilleurs résultats 

peuvent sans doute être obtenus utilisant des méthodes de temps d’écho court en 

combinaison avec une procédure de shims optimisées. « PRESS » à temps d’écho long 

permet pourtant déjà une bonne estimation de glutamate si d’autres techniques ne sont 

pas disponibles. Un développement intéressant serait l’évaluation d’une séquence de 

filtrage à double quanta pour l’édition du signal de GABA ou de la taurine à 7 Tesla. 

L’évolution simplifiée de systèmes de spins à 7 Tesla pourrait faciliter l’optimisation du 

paramétrage d’un tel filtre. 

 

Comparant le patient Parkinsonien et le sujet sain, aucun changement de glutamate total 

n’a pu être mis en évidence. De même, les niveaux de glutamate mesurés chez le rat 

avant et après lésion à la 6-OHDA ne présentaient pas de différence significative. 

L’administration de levodopa n’avait aucune influence mesurable sur les taux de 

glutamate, ni chez le malade ni chez le rat lésé. La plupart des études montrant une 

activation des systèmes glutamatergiques dans le cadre de la maladie de Parkinson 

reposent sur la mesure du glutamate extracellulaire (Meshul, Emre et al. 1999; Jonkers, 

Sarre et al. 2002; Bruet, Windels et al. 2003; Robelet, Melon et al. 2004). Les signaux 

mesurés par spectroscopie par résonance magnétique ne permettent pas de distinguer 

entre les contributions extra- et intracellulaire. Ainsi, ils représentent majoritairement la 

concentration intracellulaire de glutamate qui est de l’ordre de 10 millimole 

(Govindaraju, Young et al. 2000), la concentration extracellulaire étant de l’ordre de 2 à 

3 micromole (Fillenz 2005). Nos résultats suggèrent que les altérations de la 

neurotransmission glutamatergique dans le cadre de la maladie de Parkinson, si présent, 

ne sont pas accompagnées d’un changement important du taux combiné de glutamate 

intra- et extracellulaire. 

Chez le patient, une tendance de diminution de la créatine totale a été mesuré, dans le 

modèle animal une tendance de diminution de la choline totale suivant lésion. Les 

résultats d’études chez le patient présentés dans la littérature ne sont pas cohérentes et il 

est difficile de conclure (Clarke and Lowry 2001). D’après nos connaissances, aucune 

étude en spectroscopie RMN chez le rat 6-OHDA n’a encore été publiée. Un plus grand 

nombre de mesures est nécessaire pour confirmer les tendances observées pour créatine 

totale et choline totale chez le patient et le petit animal. Le rôle exact de la choline et de 

la créatine dans le cadre de la maladie de Parkinson n’est pas clair. Une diminution est 

généralement associée à la dégénération neuronale et à la dissociation de membranes. 

Les causes de la mort neuronale dans la maladie de Parkinson et dans le modèle 6-

OHDA chez le rat sont probablement très différentes, ce qui pourrait expliquer la 

différence entre les observations rapportées pour le patient et pour l’animal. Les 

mesures effectuées sur des extraits PCA des rats 6-OHDA montrent des taux réduits de 

taurine et des taux augmentés de GABA du côté de la lésion par rapport au côté non 
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lésé. Des études complémentaires sont nécessaires pour confirmer ces observations et 

pour comparer par rapport à des animaux non lésés. Si une altération des taux de GABA 

et de taurine était confirmée, la mesure de ces métabolites in vivo, utilisant par exemple 

une séquence de filtrage, pourrait offrir une perspective intéressante. 

 

English 

The objective of this work was the implementation of in vivo MRS methods for 

glutamate measurement and their application to research on Parkinson’s disease. 

In spectra acquired at field strengths up to 3 Tesla, glutamate, glutamine, NAA and 

GABA signals overlap using currently available acquisition methods. Overlap in short 

echo time spectra is strong, but high information content allows disentangling of 

metabolite signals during posttreatment (Boumezbeur, Besret et al. 2005; Jang, Lee et 

al. 2005). Other approaches try to minimize the contributions of signals overlapping 

with glutamate (Pan, Mason et al. 1996; Hurd, Sailasuta et al. 2004; Mayer and 

Spielman 2005; Schulte, Trabesinger et al. 2005). Of the latter methods, for applications 

on the patient, we have evaluated a double quantum filter method (Thompson and Allen 

1998) and an approach related to two-dimensional (2D) spectroscopy (TE averaged 

PRESS (Hurd, Sailasuta et al. 2004)) on a 3 T whole body imager. TE averaged PRESS 

showed better distinction of glutamate from its background and allowed acquisition of 

spectra with better signal to noise ratio at comparable acquisition duration. It was easier 

to implement and easier to use than the double quantum filter method. Spectra acquired 

on the parietal lobe of volunteers show a well visible glutamate dominated signal. In 

spectra from deeper brain regions like the lentiform nucleus, glutamate was less well 

measurable due to strong magnetic field inhomogeneities caused by interfaces between 

brain tissue, bone mass and ventricles. In summary, TE averaged PRESS was found to 

be an easy to implement and easy to use, robust technique allowing acquisition of 

spectra with a signal largely dominated by glutamate. For spectroscopy exams on deep 

brain structures, strong shimming systems and maybe shimming of up to third order is 

necessary to obtain satisfactory results. Spectra of several recently proposed approaches 

for glutamate measurement (TE averaged PRESS (Hurd, Sailasuta et al. 2004), CSSF 

(Schulte, Trabesinger et al. 2005), CT-PRESS (Mayer and Spielman 2005)) could be 

obtained by different reconstructions from the same data set, and it would be interesting 

to compare approaches or maybe even to combine the approaches to improve glutamate 

measurement. 

TE averaged PRESS was as well implemented and evaluated on a 7 T MRI dedicated to 

small animal research. At seven Tesla field strengths, TE averaged PRESS does not 

improve glutamate measurement as compared to a standard PRESS sequence using an 

echo time of 115 ms or 136 ms. Because of the higher field strength, coupling evolution 

is simplified as compared to three Tesla and PRESS spectra with an appropriate echo 

time already display a signal largely dominated by glutamate. At these (high) field 

strengths, best results can be obtained with short echo time methods, combined with 
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effective shimming (Tkac, Andersen et al. 2001). Standard PRESS spectra may 

however allow a good estimation of glutamate alterations, if short TE methods are not 

available. It might be interesting to evaluate double quantum filter editing for GABA 

measurement (see below) at 7 T field strengths, as reduced strong coupling behavior 

could facilitate optimization of such sequences. 

 

Changes in combined extra- and intracellular glutamate could not be observed 

comparing patients to healthy volunteers or comparing untreated to 6-OHDA lesioned 

rats. Administration of levodopa did not alter measured glutamate levels in patients or 

in the 6-OHDA treated animals. Most evidence of activation of glutamate systems in the 

basal ganglia refers to extracellular or synaptic glutamate and is interpreted as increased 

glutamatergic transmission (Meshul, Emre et al. 1999; Jonkers, Sarre et al. 2002; Bruet, 

Windels et al. 2003; Robelet, Melon et al. 2004). MRS measures the total pool of 

glutamate which is around 10 mmolar in the brain (Govindaraju, Young et al. 2000) and 

represents mainly the intracellular pool, the extracellular glutamate levels being on the 

order of 2 to 3 µmol (Fillenz 2005). Our results indicate that changes in glutamate 

transmission in the striatum as response to dopamine depletion or to levodopa 

administration are not reflected by important changes of the total glutamate pool. 

In the Parkinson patient a tendency of decreased total creatine has been measured; in the 

animal model a tendency of decreased total choline. Human MRS studies in the 

literature present incoherent results and it is difficult to draw clear conclusions (Clarke 

and Lowry 2001). Proton MRS studies of the 6-OHDA rat model have (to our 

knowledge) not been published before. Creatine decrease in human PD as well as 

choline decrease in the animal model should be confirmed by increasing the number of 

measurements. Implication of the metabolites readily measured by in vivo MRS (total 

choline, total creatine, NAA) in Parkinson’s disease is not clear, but decrease of these 

metabolites is often related to neuronal death and membrane degeneration. Principles 

underlying degeneration of dopaminergic neurons in the animal model and in 

Parkinson’s disease are probably very different, which may explain the above 

mentioned differences found in this work between human PD and animal model. In 

PCA extracts of the 6-OHDA lesioned rats decreased taurine and increased GABA 

levels were found ipsilateral as compared to the contralateral side. Further studies 

should try to confirm this observed tendency and as well compare to untreated control 

animals. Results might offer an interesting perspective for further studies, as GABA and 

taurine could be measured, for example, in vivo using editing sequences. 



8 Annex 

8.1 Chemical shifts and coupling constants of some  brain 
metabolites 

In this section, chemical shifts and coupling constants for glutamate, glutamine, n-

acetylaspartate (NAA) and γ-aminobutyric acid have been summarized, as taken from 

(Govindaraju, Young et al. 2000). Index numbers for the spins are as labeled in the 

graphical representation of the molecules in Fig. 1.1, chapter 1. As can be seen from the 

chemical shift values, the preferable spectral region for glutamate measurement is 

situated near 2.3 ppm. At 3.7 ppm glutamate and glutamine overlap almost inseparably. 

The last two columns to the right in Table 8.1 give information about the coupling 

behavior at 3 Tesla and at 7 Tesla field strengths. Coupling behavior between two spins, 

I and S, may be considered as weak if  

 ISSI J>>−νν  (8.1) 

Here, νI and νS correspond to the resonance frequency of the spin labeled I or S, JIS 

indicates the coupling constant between I and S. In the two columns to the right of 

Table 8.1, the ratio 
IS

SI

J

νν −
 has been calculated for the two spins indicated in the 

corresponding line of the table. In general, the spectral pattern of coupled spins 

corresponds well enough to that of weakly coupled spins if this ratio is bigger than ten. 

Values smaller than or close to ten have been indicated in Table 8.1. At 3 Tesla field 

strength the spin groups of glu, gln, NAA and GABA resonating in the targeted 

chemical shift range near 2.3 ppm have to be considered strongly coupled. At 7 Tesla, 

glutamine (as glutamate) is at the limit to weak coupling behavior for most of its spins. 

GABA may be considered weakly coupled, but the two spins of NAA resonating at 2.5 

ppm and 2.7 ppm remain strongly coupled. 
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Table 8.1:  Chemical shifts and coupling constants for glutamate, glutamine, n-acetylaspartate 
(NAA) and γ-aminobutyric acid (GABA) (Govindaraju, Young et al. 2000). The two 
columns to the right give information about the coupling behavior (strong or weak) at 
3 Tesla and 7 Tesla field strengths. Couplings to be considered as strong or at the 
limit to strong coupling have been distinguished by bold italic digits. 

Metabolite spin I 
index 

spin S 
index 

δ(I) 
[ppm] 

δ(S) 
[ppm] 

J 
[Hz] 

coupling at 
126 MHz ,3 T 

coupling at 
298 MHz,7 T 

2 3 3,7433 2,0375 7,331 29,3 69,3 

2 3' 3,7433 2,12 4,651 44,0 104,0 

3 3' 2,0375 2,12 14,849 0,7 1,7 

3 4' 2,0375 2,352 8,406 4,7 11,1 

3' 4' 2,12 2,352 6,875 4,3 10,1 

3 4 2,0375 2,3378 6,413 5,9 14,0 

3' 4 2,12 2,3378 8,478 3,2 7,7 

glutamate 
  
  
  
  
  
  

  
4 4' 2,3378 2,352 15,915 0,1 0,3 

2 3 3,753 2,129 5,847 35,0 82,8 

2 3' 3,753 2,109 6,5 31,9 75,4 

3 3' 2,129 2,109 14,504 0,2 0,4 

3 4' 2,129 2,454 6,347 6,5 15,3 

3' 4' 2,109 2,454 9,209 4,7 11,2 

3 4 2,129 2,432 9,165 4,2 9,9 

3' 4 2,109 2,432 6,324 6,4 15,2 

glutamine 
  
  
  
  
  
  

  
4 4' 2,432 2,454 15,371 0,2 0,4 

2 3 4,3817 2,6727 3,861 55,8 131,9 

2 3' 4,3817 2,4863 9,821 24,3 57,5 

3 3' 2,6727 2,4863 15,592 1,5 3,6 

NAA  
aspartate 
moiety 

  NH 2 7,8205 4,3817 6,4 67,7 160,1 

2 3 3,0128 1,889 5,372 26,4 62,3 

2 3' 3,0128 1,889 7,127 19,9 47,0 

2' 3 3,0128 1,889 10,578 13,4 31,7 

2' 3' 3,0128 1,889 6,982 20,3 48,0 

3 4 1,889 2,284 7,755 6,4 15,2 

3 4' 1,889 2,284 7,432 6,7 15,8 

3' 4 1,889 2,284 6,173 8,1 19,1 

GABA 
  
  
  
  
  
  

  
3' 4' 1,889 2,284 7,933 6,3 14,8 
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8.2 Metabolite concentrations in the rat brain: Literature 
values 

A literature research was performed to find reference values for the concentration of 

different metabolites in the rat brain. From values published by different authors, 

average values were calculated and used for the evaluation of in vitro experiments and 

simulations. The values of Table 8.3 represent an approximation for average 

concentrations found in the brain, in specific structures concentrations may differ. 

Table 8.2:  Values for concentrations of different metabolites as found in the literature for the rat 
brain, not distinguishing between different brain structures. 

Author (Hawkins, Miller et 
al. 1973) 

(Hindfelt and Siesjo 
1971) 

(Hindfelt, Plum et al. 
1977) 

(Marcucci, Mussini et 
al. 1966) 

Unit mmol/kg w.wt mmol/kg w.wt mmol/kg w.wt mmol/kg w.wt 

Analysis removed brain, 
enzymatic 

removed brain, 
enzymatic 

cranial funnel, 
enzymatic 

removed brain, gas 
chromatography 

[glu] 11.6 ± 0.1 11.82 ± 0.018 10.66 ± 0.28 Not available 

[gln] 6.71 ± 0.2 Not available 5.36 ± 0.67 Not available 

[NAA] Not available Not available Not available 9.48 

[GABA] Not available Not available 1.65+/- 0.13 Not available 

     

Author (Miyake and 
Kakimoto 1981) 

(Perry, Hansen et al. 
1981) 

(Sager, Laursen et 
al. 1999) 

(Remy, Arus et al. 
1994) 

Unit mmol/kg w.wt mmol/kg w.wt mmol/kg w.wt mmol/kg w.wt. 

Analysis removed brain, gas 
chromatography 

removed brain, 
chromatography 

removed brain, 
HPLC 

removed brain, NMR 
PCA extract 

[glu] Not available 11.29 +/-0.37 Not available Not available 

[gln] Not available 4.51 +/- 0.15 Not available Not available 

[NAA] 9.19 Not available 7.96 +/- 1.43 Not available 

[GABA] Not available 1.79 +/- 0.07 Not available Not available 

[tau] Not available 3.92 +/- 0.17 Not available Not available 

[MyoIns] Not available Not available Not available 5.82 +/- 0.27 

[tCho] Not available Not available Not available 1.27 +/- 0.28 

     

Author (Veech, Harris et al. 
1973) 

(Ponten, Ratcheson 
et al. 1973) 

  

Unit mmol/kg w.wt mmol/kg w.wt   

Analysis freeze blowing cranial funnel   

tCr 9.17 +/- 0.12 10.56 +/- 0.18   

 

Table 8.3:  Rat brain metabolite concentrations assumed in this work, as calculated from Table 
8.2. The mean values for each metabolite have been determined. 

Metabolite glu gln NAA GABA tau myoIns tCho tCr 

mmol / kg w.wt. 11.3 5.5 8.9 1.7 3.92 5.82 1.27 9.87 
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8.3 TE averaged PRESS at 7 Tesla: Numerical simulations 

Our in vitro experiments conducted at seven Tesla field strength, as presented in chapter 

4, show that TE averaged PRESS does perform less well than predicted by numerical 

simulations (Hurd, Sailasuta et al. 2004). In this section we use numerical simulations to 

study the influence of different parameters on the quality of TE averaged PRESS 

spectra. 

8.3.1 Materials and Methods 

Simulations were performed using the C++ library Gamma (Smith, Levante et al. 1994) 

under GNU’s gcc in a Linux environment. Simulation of the PRESS sequence used 

shaped pulses and simulated signal acquisition from a volume selected within a larger 

sample. Spoiler gradients are difficult to program because of the limited number of spin 

systems that can be simulated within the sample volume. Our simulator used exorcycle 

phase cycling of the refocusing pulses instead to remove signal originating from not 

refocused magnetization in the spectrum. 

Calculations simulated an acquisition volume of (15 mm)
3
 selected within a cubic 

sample of 6 cm side length and seven Tesla magnetic field strength. The sample 

contained (64)
3
 spin systems, allowing to achieve a spatial resolution of about 1 mm. 

We simulated 3 lobe sinc pulses of 1.18 ms length for excitation and of 0.9 ms for 

refocusing. An acquisition spectral width of 5000 Hz on 4096 points was assumed. TE 

averaged PRESS spectra were calculated by adding 40 PRESS spectra with echo times 

starting at 35 ms and incremented by 10 ms from one PRESS spectrum to the next. The 

echo time increment was equally separated between first and second echo time. TE 

averaged PRESS spectra using these parameters were calculated from the molecules of 

glutamate, glutamine, NAA and GABA. Chemical shift and J-coupling values for glu 

and gln were taken from (Thompson and Allen 1998), for NAA and GABA from 

(Govindaraju, Young et al. 2000). To shorten calculation time, the uncoupled spins of 

NAA resonating at 2.0 ppm were excluded in the calculation of the NAA spectrum. An 

exponential signal decay corresponding to a linewidth of 19 Hz in f2 was simulated by 

multiplication of the signal with the corresponding exponential function. To study the 

influence of T2 relaxation in t1, TE averaged PRESS spectra were calculated from this 

data set once without simulating relaxation in t1, once assuming a T2 of 170 ms (de 

Graaf 1998). 

Further calculations were performed simulating the rf pulses as ideal rotation operators 

instead of simulating shaped pulses. For these spectra, no T2 decay in t1 was assumed. 

The spectra calculated from the different molecules were weighed with the in vivo 

metabolite concentration assumed for the respective molecule (see section 8.2). We 

assume a concentration of 11.3 mmol/kg w.wt for glutamate, 5.5 mmol/kg w.wt for 
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glutamine, 8.9 mmol/kg w.wt for NAA and 1.7 mmol/kg w.wt for GABA. In all spectra, 

the y-scale has been chosen to set the glutamate signal to the intensity of one. 

On a PC with a Pentium 3 GHz processor, calculation of one PRESS spectrum using 

shaped pulses and volume selection took about one hour. 

8.3.2 Results 

In the following figures, glutamate has been plotted as dotted, glutamine as dashed and 

NAA as dash-dotted line. GABA has been printed as dash-dot-dot line and the sum of 

all metabolites as solid line. The preeminent singlet signal of NAA at 2 ppm is missing 

as this spin group was not included in the simulations. 

Fig. 8.1 shows the spectra simulated with ideal rotation operators as rf pulses and no T2 

decay in t1. Almost no glutamine signal is visible in the spectrum; the sum signal (solid 

line) is dominated by contributions of glutamate and GABA. Fig. 8.2 shows the results 

of calculations using shaped pulses and simulating the acquisition from a volume 

selected within a larger sample. No T2 decay in t1 was assumed. As compared to Fig. 

8.1, a well visible glutamine signal is present in the spectrum. Fig. 8.3 uses the same 

data set as Fig. 8.2, but here a T2 of 170 ms in t1 has been simulated. This exponential 

apodization in t1 leads to an even more pronounced glutamine signal, as compared to 

Fig. 8.2. The spectra of glutamate, GABA and NAA exhibit only small changes as 

compared to glutamine. 
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Fig. 8.1:  TE averaged PRESS spectra simulated for glutamate (dotted), glutamine (dashed), NAA 

(dash-dot) and GABA (dash- 3 dots), assuming ideal rotation operators for rf pulses and 
no T2 decay in t1 at seven Tesla field strength. Almost no glutamine signal is visible; the 
sum signal (solid line) contains almost only glutamate with a contribution of GABA. The 
NAA singlet at 2.0 ppm has been excluded from simulations to shorten duration of 
calculations. 

 
Fig. 8.2:  TE averaged PRESS spectra simulated for glutamate (dotted), glutamine (dashed), NAA 

(dash-dot) and GABA (dash- 3 dots). Shaped pulses and acquisition from a cube within a 
larger sample volume at 7 Tesla field strength was simulated. No T2 decay in t1 was 
assumed. A well visible glutamine signal is present in the spectrum between 2.4 and 2.5 
ppm (dashed line), next to the preeminent glutamate signal at 2.35 ppm. The sum of glu, 
gln, NAA and GABA is presented as solid line. Volume selection and possibly coherence 
transfer caused by shaped pulses result in increased glutamine contribution. 

ppm 

a.u. 

ppm 

a.u. 
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Fig. 8.3:  Spectrum using the same data set as for Fig. 8.2, but simulating a T2 of 170 ms in t1. An 

increased glutamine signal as compared to Fig. 8.2 is visible between 2.4 and 2.5 ppm. 
The sum of glu, gln, NAA and GABA is presented as solid line. Increase in T2 relaxation 
increases the glutamine content in the spectrum. 

8.3.3 Discussion 

The results presented in this section help to understand how shaped pulses and T2 

relaxation influence TE averaged PRESS spectra, especially the possibility to measure 

an unobstructed glutamate signal. 

Different authors have described the influence of shaped pulses on the evolution of 

coupled spins (Slotboom and Mehlkopf 1994; Thompson and Allen 1999; Thompson 

and Allen 2001). Shaped pulses alter the coupling evolution because of coherence 

transfer taking place during their application. Of further influence is the volume 

selection. The volumes selected for spin groups presenting different chemical shifts of 

the same molecule do not coincide. Volumes in which only some, but not all spins of 

the molecule, have been excited, experience altered coupling evolution as compared to 

the rest of the voxel. As can be seen comparing Fig. 8.1 and Fig. 8.2, these effects 

diminish the possibility to acquire an unobstructed glutamate signal using the TE 

averaged PRESS sequence. A contingent of magnetization exists for glutamine that 

does not evolve in t1 and remains on the f1 = 0 axis if shaped pulses and volume 

selection are used. Transverse relaxation (T2) reduces resolution in the f1 dimension. A 

part to the glutamine signal getting stronger in the TE averaged spectrum of Fig. 8.3 as 

compared to Fig. 8.2 can be imagined as tail from a glutamine cross peak, extending 

towards the f1 = 0 axis with increased T2 relaxation. 

a.u. 

ppm 
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8.4 Press at 7 Tesla and an echo time of 136 ms: 
Experiments on metabolites in solution 

In this section, results from in vitro experiments at 7 Tesla field strengths performed on 

metabolite solutions of glutamate, glutamine, NAA or GABA are presented. The same 

acquisition parameters as for the study described in chapter 6 have been used. The 

spectrum shown in this section should give information about the peak composition 

observed in vivo during the animal study. 

8.4.1 Materials and methods 

Experiments on samples containing in solution either glutamate, glutamine, NAA or 

GABA (phosphate buffer containing 100 mmol/l metabolite, 0.2 mmol/l chelated 

Gadolinium complex, 37 mmol/l TSP) have been performed as described in further 

detail in section 4.2.1. As for the in vivo experiments of chapter 6, we have used an echo 

time of 136 ms, acquiring the complete echo signal on 1024 points with a bandwidth of 

10 kHz. The signal of 64 scans was accumulated during acquisition. 

Postprocessing used the IDL programming language. Zero filling to a total of 4096 

points was performed on both sides of the echo signal, followed by exponential 

broadening and first and second order phase correction. Differences between the 

metabolite spectra concerning linewidth (for exemple caused by differing shim quality), 

signal intensity (for exemple caused by slightly different coil loading factors) and 

frequency shift were corrected using the TSP signal as reference, see section 4.2.1. To 

compare to in vivo acquisitions, all spectra were then broadened with the same 

exponential function to obtain a linewidth of 22 Hz on the NAA singlet peak. 

The spectra of glu, gln, NAA and GABA and their sum have been plotted assuming an 

in vivo concentration of 11.3 mmol/kg w. wt. for glu, 5.5 mmol/kg w. wt. for gln, 8.9 

mmol/kg w. wt. for NAA and 1.7 mmol/kg w. wt. for GABA. 

8.4.2 Results 

Fig. 8.4 shows the spectra of glutamate, glutamine, NAA and GABA as well as their 

sum. The sum of these metabolites, forming a peak near 2.3 ppm (thin black line), 

should be comparable to the signal peak visible in vivo at the same position, compare to 

chapter 5. This sum signal contains mainly glutamate, but as well small contributions of 

glutamine and GABA. Contribution of NAA is less pronounced. As well visible is a 

contribution of glutamate to the signal measured at 2 ppm, dominated by NAA. 
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Fig. 8.4:  Press spectra acquired at an echo time of 136 ms on samples containing either 

glutamate, glutamine, NAA or GABA. The sum peak (thin solid line) contains almost 
exclusively glutamate. 

8.4.3 Discussion 

The relative contributions of glu, gln, NAA and GABA to the signal visible in in vivo 

spectra may differ from the representation shown in Fig. 8.4. Relative concentrations 

assumed for the plot, as taken from the literature, may be different in vivo and depend 

on the examined brain region. Differences may furthermore be introduced by relaxation 

times T1 and T2 differing between in vivo and in vitro conditions. Acquisitions 

performed in vivo at 7 T field strengths and using a repetition time of 3 seconds work on 

partially saturated systems. Signals from metabolites with long T1 are therefore weaker 

than signals from metabolites with shorter T1, even if present at the same concentration. 

In vivo, at 7 Tesla, T1 values of different metabolites are however similar (de Graaf 

1998). In vitro, because of the contrast agent added to the metabolite solution at high 

concentration, saturation effects should be negligible. 

Relative peak amplitudes between metabolites vary as well due to different transverse 

relaxation times. As for T1, values for T2 of different metabolites in vivo are similar (de 

Graaf 1998). In vitro, as the chemical environment in solution is the same for all 

metabolites, T2 values should be close as well. Fig. 8.4 should therefore provide an 

acceptable approximation of in vivo conditions. 

According to Fig. 8.4, PRESS spectra acquired at an echo time of 136 ms allow good 

estimation of glutamate, although its quantity is overestimated due to contributions of 

glutamine and GABA. About 80% of the peak surface of the signal at 2.3 ppm is due to 

glutamate. 

Ideally, glutamate, glutamine, NAA and GABA should be separated for reliable 

glutamate measurement. PRESS spectra at an echo time of 136 ms allow however a 

good estimation. 
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