]. S. Wright and H. Kroemer, vapor in molecular beam epitaxy, Journal of Vacuum Science and Technology, vol.20, issue.2, p.143, 1982.
DOI : 10.1116/1.571348

]. R. Farrow, Growth of indium phosphide films from In and P2 beams in ultra-high vacuum, Journal of Physics D: Applied Physics, vol.7, issue.11, p.121, 1974.
DOI : 10.1088/0022-3727/7/11/101

M. J. Mondry, E. J. Caine, and H. Kroemer, A GaP decomposition source for producing a dimer phosphorus molecular beam free of gallium and tetramer phosphorus, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.3, issue.2, p.316, 1985.
DOI : 10.1116/1.573257

]. Y. Chai, Tin phosphide as a phosphorus beam source for molecular beam epitaxy, Applied Physics Letters, vol.45, issue.9, p.985, 1984.
DOI : 10.1063/1.95472

]. T. Shitara and K. , Electronic properties of InGaP grown by solid???source molecular???beam epitaxy with a GaP decomposition source, Applied Physics Letters, vol.65, issue.3, p.356, 1994.
DOI : 10.1063/1.112373

E. Höfling, J. P. Reithmaier, T. Baars, M. Bayer, and A. , Optical and structural properties of GaInAs/InP single quantum wells grown by solid-source MBE with a GaP decomposition source, Journal of Crystal Growth, vol.191, issue.4, p.607, 1998.
DOI : 10.1016/S0022-0248(98)00361-3

]. M. Tmar, A. Gabriel, C. Chatillon, and I. , Critical analysis and optimization of the thermodynamic properties and phase diagrams in the III-V compounds: The In-P and Ga-P systems, Journal of Crystal Growth, vol.68, issue.2, p.557, 1984.
DOI : 10.1016/0022-0248(84)90464-0

]. A. Calawa, in the molecular beam epitaxial growth of GaAs, Applied Physics Letters, vol.38, issue.9, p.701, 1981.
DOI : 10.1063/1.92484

]. L. Kapitan, C. W. Litton, G. C. Clark, and P. C. Colter, On the design and characterization of a novel arsine cracking furnace utilizing catalytic decomposition of AsH3 to yield a purely monomeric source of arsenic for molecular beam epitaxial growth of GaAs, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.2, issue.2, p.280, 1984.
DOI : 10.1116/1.582805

H. Sai, H. Fujikura, A. Hirama, H. Hasegawa, and J. , P on GaAs Using Tertiarybutylphosphine, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 1A, p.151, 1999.
DOI : 10.1143/JJAP.38.151

]. H. Asahi, Y. Kawamura, M. Ikeda, and H. Okamoto, Molecular???beam epitaxial growth of InP homoepitaxial layers and their electrical and optical properties, Journal of Applied Physics, vol.52, issue.4, p.2852, 1981.
DOI : 10.1063/1.329017

]. P. Blood, J. S. Roberts, and J. P. Stagg, GaInP grown by molecular beam epitaxy doped with Be and Sn, Journal of Applied Physics, vol.53, issue.4, p.3145, 1982.
DOI : 10.1063/1.331011

W. T. Tsang, R. C. Miller, R. Capasso, and W. A. Bonner, High quality InP grown by molecular beam epitaxy, Applied Physics Letters, vol.41, issue.5, p.467, 1982.
DOI : 10.1063/1.93534

D. Huet, M. Lambert, D. Bonnevie, D. Dufresne, and J. , Molecular beam epitaxy of In0.53Ga0.47As and InP on InP by using cracker cells and gas cells, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.3, issue.3, p.823, 1985.
DOI : 10.1116/1.583111

D. L. Miller, S. S. Bose, and G. J. Sullivan, Design and operation of a valved solid-source As2 oven for molecular beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.8, issue.2, p.311, 1990.
DOI : 10.1116/1.585060

F. G. Johnson and C. E. Wood, Phosphorus cracking efficiency and flux transients from a valved effusion cell, Journal of Applied Physics, vol.78, issue.3, p.1664, 1995.
DOI : 10.1063/1.360261

M. L. Dotor, D. Golmayo, and F. Briones, (Ga0.22In0.78As)m???(Ga0.22In0.78P)m superlattices grown by atomic-layer molecular beam epitaxy on InP, Journal of Crystal Growth, vol.127, issue.1-4, p.619, 1993.
DOI : 10.1016/0022-0248(93)90696-T

J. N. Baillargeon, A. Y. Cho, and R. J. Fischer, Evaluation of the performance and operating characteristics of a solid phosphorus source valved cracking cell for molecular beam epitaxy growth of III???V compounds, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.13, issue.1, p.64, 1995.
DOI : 10.1116/1.587987

T. Sonoda, M. Ito, K. Segawa, S. Takamiya, S. Mitsui et al., Ultra-High Throughput of GaAs and (AlGa)As Layers Grown by Molecular Beam Epitaxy (MBE) with a Specially Designed MBE System, Japanese Journal of Applied Physics, vol.27, issue.Part 1, No. 3, p.337, 1988.
DOI : 10.1143/JJAP.27.337

]. W. Liu and M. E. Lin, Process control of high volume pseudomorphic high electron mobility transistor and metal???semiconductor field effect transistor molecular beam epitaxy production using temperature-dependent photoluminescence, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.3, p.1663, 2000.
DOI : 10.1116/1.591447

J. M. Fastenau, W. K. Liu, X. M. Fang, D. I. Lubyshev, R. I. Pelzel et al., Commercial production of QWIP wafers by molecular beam epitaxy, Infrared Physics & Technology, vol.42, issue.3-5, p.407, 2001.
DOI : 10.1016/S1350-4495(01)00100-1

]. S. Izumi, Y. Kouji, and N. Hayafuji, Multiwafer gas source molecular beam epitaxial system for production technology, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.17, issue.3, p.1011, 1999.
DOI : 10.1116/1.590685

X. Zhang, I. Moerman, C. Sys, P. Demeester, J. A. Crawley et al., Highly uniform and structures grown in a multiwafer vertical rotating susceptor MOVPE reactor, Journal of Crystal Growth, vol.170, issue.1-4, p.83, 1997.
DOI : 10.1016/S0022-0248(96)00603-3

F. Lelarge, J. J. Sanchez, F. Gaborit, and J. L. Gentner, Multiwafer gas source MBE development for InGaAsP/InP laser production, Journal of Crystal Growth, vol.251, issue.1-4, p.130, 2003.
DOI : 10.1016/S0022-0248(02)02283-2

]. J. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van-rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Physical Review B, vol.40, issue.9, p.6149, 1989.
DOI : 10.1103/PhysRevB.40.6149

J. Massies, F. Turco, A. Salètes, and J. P. , Experimental evidence of difference in surface and bulk compositions of AlxGa1-xAs, AlxIn1-x As and GaxIn1-x As epitaxial layers grown by molecular beam epitaxy, Journal of Crystal Growth, vol.80, issue.2, p.307, 1987.
DOI : 10.1016/0022-0248(87)90076-5

]. O. Dehaese, X. Wallart, and F. Mollot, Kinetic model of element III segregation during molecular beam epitaxy of III???III??????V semiconductor compounds, Applied Physics Letters, vol.66, issue.1, p.52, 1995.
DOI : 10.1063/1.114180

E. H. Wang, H. R. Reilhen, G. B. Len, and . Stringfellow, Systematic studies on the effect of growth interruptions for GaInAs/InP quantum wells grown by atmospheric pressure organometallic vapor???phase epitaxy, Journal of Applied Physics, vol.66, issue.11, p.5376, 1989.
DOI : 10.1063/1.343681

M. J. Lee, G. Y. Hafich, and . Robinson, The effect of growth pause on the composition of InGaP/GaAs Heterointerfaces, Journal of Crystal Growth, vol.105, issue.1-4, p.244, 1990.
DOI : 10.1016/0022-0248(90)90370-Z

]. T. Nittono, S. Sugitani, and F. Hyuga, Photoluminescence characterization of InGaP/GaAs heterostructures grown by metalorganic chemical vapor deposition, Journal of Applied Physics, vol.78, issue.9, p.5387, 1995.
DOI : 10.1063/1.359718

M. Usami, Y. Matsushima, and Y. Takahashi, Gas source molecular beam epitaxy growth of GaAs/InGaP superlattice as optical confinement layers in 0.98 ??m InGaAs/InGaP strained quantum well lasers, Journal of Crystal Growth, vol.150, p.1344, 1995.
DOI : 10.1016/0022-0248(95)80157-8

J. M. Kuo, H. C. Kuo, J. Y. Cheng, Y. C. Wang, Y. Lu et al., Interface optimization of multiple quantum wells grown by gas source molecular beam epitaxy, Journal of Crystal Growth, vol.158, issue.4, p.393, 1996.
DOI : 10.1016/0022-0248(95)00469-6

W. E. Hoke, P. J. Lemonias, R. M. Beaudoin, and A. Torabi, Solid source molecular beam epitaxial growth of In[sub 0.5]Ga[sub 0.5]P pseudomorphic high electron mobility transistor structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.16, issue.3, p.1408, 1998.
DOI : 10.1116/1.590085

]. A. Freundlich, A. Bensaoula, A. H. Bensaoula, and V. Rossignol, Interface and relaxation properties of chemical beam epitaxy grown GaP/GaAs structures, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.11, issue.3, p.843, 1993.
DOI : 10.1116/1.586761

X. Wallart, C. Priester, D. Deresmes, T. Gehin, and F. Mollot, Why do (2??4) GaAs and InAs (001) surfaces exposed to phosphorus have so different behavior? Elastic strain arguments, Applied Physics Letters, vol.81, issue.6, p.1086, 2002.
DOI : 10.1063/1.1499230

]. T. Anan, S. Sugou, K. Nishi, and T. Ichihashi, Improvement of InP/InGaAs heterointerfaces grown by gas source molecular beam epitaxy, Applied Physics Letters, vol.63, issue.8, p.1047, 1993.
DOI : 10.1063/1.110765

]. O. Dehaese, X. Wallart, O. Schuler, and F. Mollot, X-ray photoemission characterization of interface abruptness and band offset of Ga0.5In0.5P grown on GaAs, Journal of Applied Physics, vol.84, issue.4, p.2127, 1998.
DOI : 10.1063/1.368357

]. F. Omnes and M. Razeghi, Optical investigations of GaAs???GaInP quantum wells and superlattices grown by metalorganic chemical vapor deposition, Applied Physics Letters, vol.59, issue.9, p.1034, 1991.
DOI : 10.1063/1.106336

O. Schuler, O. Dehaese, X. Wallart, and F. Mollot, Interface quality and electron transfer at the GaInP on GaAs heterojunction, Journal of Applied Physics, vol.84, issue.2, p.765, 1998.
DOI : 10.1063/1.368135

J. M. Vandenberg, M. B. Panish, H. Temkin, and R. A. Hamm, As/InP interfaces as studied with high???resolution x???ray diffraction, Applied Physics Letters, vol.53, issue.20, p.1920, 1988.
DOI : 10.1063/1.100345

]. T. Nittono and F. Hyuga, X-ray diffraction analysis of InGaP/GaAs heterointerfaces grown by metalorganic chemical vapor deposition, Journal of Applied Physics, vol.81, issue.6, p.2607, 1997.
DOI : 10.1063/1.364297

]. H. Sakaki, T. Noda, K. Hirakawa, M. Tanaka, and T. Matsusue, Interface roughness scattering in GaAs/AlAs quantum wells, Applied Physics Letters, vol.51, issue.23, p.1934, 1987.
DOI : 10.1063/1.98305

]. T. Makimoto, N. Kobayashi, and Y. Horikoshi, Electron conduction in GaAs atomic layer doped with Si, Journal of Applied Physics, vol.63, issue.10, p.5023, 1988.
DOI : 10.1063/1.340449

]. S. Froyen, A. Zunger, and A. Mascarenhas, Polarization fields and band offsets in GaInP/GaAs and ordered/disordered GaInP superlattices, Applied Physics Letters, vol.68, issue.20, p.2852, 1996.
DOI : 10.1063/1.116346

]. C. Cai, M. I. Nathan, and T. H. Lim, Characterization of the inverted Ga0.52In0.48P/GaAs (001) junctions using current???voltage and capacitance???voltage measurements, Applied Physics Letters, vol.74, issue.5, p.720, 1999.
DOI : 10.1063/1.123102

M. S. Feng, K. C. Lin, C. C. Wu, H. D. Chen, and Y. C. Shang, P/GaAs heterostructures grown by low???pressure metalorganic chemical vapor deposition, Journal of Applied Physics, vol.74, issue.1, p.672, 1993.
DOI : 10.1063/1.355229

W. G. Bi and C. W. Tu, Study on interface abruptness of InxGa1???xAs/InyGa1???yAszP1???z heterostructures grown by gas-source molecular beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.14, issue.4, p.2918, 1996.
DOI : 10.1116/1.588935

]. C. Cai and M. I. Nathan, Interface control and band offset at the Ga[sub 0.52]In[sub 0.48]P on GaAs heterojunction, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.18, issue.4, p.2096, 2000.
DOI : 10.1116/1.1305285

H. Q. Hou, B. W. Liang, T. P. Chin, and C. W. Tu, grown by gas???source molecular beam epitaxy, Applied Physics Letters, vol.59, issue.3, p.292, 1991.
DOI : 10.1063/1.105601

H. Q. Hou and C. W. Tu, control of As composition in InAsP and InGaAsP grown by gas???source molecular beam epitaxy, Applied Physics Letters, vol.60, issue.15, p.1872, 1992.
DOI : 10.1063/1.107139

B. W. Liang and C. W. Tu, A kinetic model for As and P incorporation behaviors in GaAsP grown by gas???source molecular beam epitaxy, Journal of Applied Physics, vol.74, issue.1, p.255, 1993.
DOI : 10.1063/1.354155

D. L. Miller and P. M. Asbeck, Be redistribution during growth of GaAs and AlGaAs by molecular beam epitaxy, Journal of Applied Physics, vol.57, issue.6, p.1816, 1985.
DOI : 10.1063/1.334409

]. N. Kobayashi, T. Makimoto, and Y. Horikoshi, ???type doping profile of carbon atomic layer doped GaAs grown by flow???rate modulation epitaxy, Applied Physics Letters, vol.50, issue.20, p.1435, 1986.
DOI : 10.1063/1.97846

S. A. Stockman, A. W. Hanson, and G. E. Stillman, ???0.53) by metalorganic chemical vapor deposition, Applied Physics Letters, vol.60, issue.23, p.2903, 1992.
DOI : 10.1063/1.106814

N. Watanabe, S. Kumar, A. K. , S. Yamahata, and T. Kobayashi, Annealing effect on C-doped InGaAs grown by metalorganic chemical vapor deposition, Journal of Crystal Growth, vol.195, issue.1-4, p.48, 1998.
DOI : 10.1016/S0022-0248(98)00559-4

]. H. Ito, T. Ishibashi, and J. , Carbon Incorporation in (AlGa)As, (AlIn)As and (GaIn)As Ternary Alloys Grown by Molecular Beam Epitaxy, Japanese Journal of Applied Physics, vol.30, issue.Part 2, No. 6A, p.944, 1991.
DOI : 10.1143/JJAP.30.L944

C. R. Abernathy, P. W. Wisk, D. A. Bohling, and G. T. Muhr, Growth of GaAs and AlGaAs by metalorganic molecular beam epitaxy using tris???dimethylaminoarsenic, Applied Physics Letters, vol.60, issue.19, p.2421, 1992.
DOI : 10.1063/1.106992

T. P. Chin, P. D. Kirchner, J. M. Woodall, and C. W. Tu, P by carbon tetrachloride in gas???source molecular beam epitaxy, Applied Physics Letters, vol.59, issue.22, p.2865, 1991.
DOI : 10.1063/1.105835

T. J. De-lyon, N. I. Buchan, P. D. Kirchner, J. M. Woodall, G. J. Scilla et al., High carbon doping efficiency of bromomethanes in gas source molecular beam epitaxial growth of GaAs, Applied Physics Letters, vol.58, issue.5, p.517, 1991.
DOI : 10.1063/1.104600

N. I. Buchan, T. F. Kuech, G. Scilla, and F. Cardone, Carbon incorporation in metalorganic vapor phase epitaxy grown GaAs using CHyX4 ??? y, TMG and AsH3, Journal of Crystal Growth, vol.110, issue.3, p.405, 1991.
DOI : 10.1016/0022-0248(91)90276-B

S. D. Houng, D. E. Lester, J. N. Mars, and . Miller, Growth of high-quality p-type GaAs epitaxial layers using carbon tetrabromide by gas source molecular-beam epitaxy and molecular-beam epitaxy, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.11, issue.3, p.915, 1993.
DOI : 10.1116/1.586738

]. K. Zhang, W. Hwang, D. L. Miller, and L. W. Kapitan, Carbon doping of GaAs and (In,Ga)As in solid source molecular beam epitaxy using carbon tetrabromide, Applied Physics Letters, vol.63, issue.17, p.2399, 1993.
DOI : 10.1063/1.110487

]. Cheong and K. J. Chang, Compensation and diffusion mechanisms of carbon dopants in GaAs, Physical Review B, vol.49, issue.24, p.17436, 1994.
DOI : 10.1103/PhysRevB.49.17436

]. R. Zhang, S. F. Yoon, and K. H. Tan, Effects of carbon tetrabromide flux, substrate temperature and growth rate on carbon-doped GaAs grown by molecular beam epitaxy, Journal of Crystal Growth, vol.262, issue.1-4, p.113, 2004.
DOI : 10.1016/j.jcrysgro.2003.10.087

W. Y. Hwang, D. L. Miller, Y. K. Chen, and D. A. Humphrey, Carbon doping of InGaAs in solid-source molecular beam epitaxy using carbon tetrabromide, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, issue.2, p.1193, 1994.
DOI : 10.1116/1.587041

D. I. Lubyshev, M. Micovic, W. Z. Cai, and D. L. Miller, Molar fraction and substrate orientation effects on carbon doping in InGaAs grown by solid source molecular beam epitaxy using carbon tetrabromide, Journal of Applied Physics, vol.84, issue.8, p.4281, 1998.
DOI : 10.1063/1.368646

E. A. Beam, I. , and H. F. Chau, The use of CBr4 and SiBr4 doping in MOMBE and application to InP-based heterojunction bipolar transistor structures, Journal of Crystal Growth, vol.164, issue.1-4, p.389, 1996.
DOI : 10.1016/0022-0248(95)01068-8

]. T. Yamashita, T. Tomita, and T. Sakurai, Calculations of Molecular Beam Flux from Liquid Source, Japanese Journal of Applied Physics, vol.26, issue.Part 1, No. 7, p.1192, 1987.
DOI : 10.1143/JJAP.26.1192

]. S. Adamson, C. O-'caroll, and J. F. Mcgilp, Monte Carlo calculations of the beam flux distribution from molecular-beam epitaxy sources, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.7, issue.3, p.487, 1989.
DOI : 10.1116/1.584772

K. T. Shiralagi, A. M. Kriman, and G. N. Maracas, Effusion cell orientation dependence of molecular beam epitaxy flux uniformity, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.9, issue.1, p.65, 1991.
DOI : 10.1116/1.577132

Z. R. Wasilewski, G. C. Aers, A. J. Springthorpe, and C. J. Miner, Growth uniformity studies in molecular beam epitaxy, Journal of Crystal Growth, vol.111, issue.1-4, p.70, 1991.
DOI : 10.1016/0022-0248(91)90949-6

]. R. Feres and G. Yablonsky, Knudsen's cosine law and random billiards, Chemical Engineering Science, vol.59, issue.7, p.1541, 2004.
DOI : 10.1016/j.ces.2004.01.016

]. S. Adamson, C. O-'caroll, and J. F. Mcgilp, The angular distribution of thermal molecular beams formed by single capillaries in the molecular flow regime, Vacuum, vol.38, issue.6, p.463, 1988.
DOI : 10.1016/0042-207X(88)90589-1