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Resumé

Dans la plupart des domaines de la physique nous rencontrons des solitons, so-
lutions classiques et localisées d’énergie finie des équations du mouvement. Ces
objets donnent naissance à d’autres objets plus complexes comme les particules,
les “domain walls” (murs de séparation entre deux zones). La plupart des soli-
tons résultent d’un défaut topologique, l’état de plus basse énergie défini avec
une multplicité plus grande que 1 (potentiel défini avec un “chapeau mexicain”).
Dans ces types de théories les solitons sont les solutions reliant un “vide” à un
autre. L’autre type de solitons que nous étudierons ici, sont les solitons non-
topologiques. Leur existance et leur stabilité sont assurées cette fois par la con-
servation d’une charge,le nombre fermionique dans notre cas. Il existe un grand
nombre de théories contenant ce type d’objet. Il suffit entre autre qu’il existe
une charge conservée Q, associée à une symétrie interne non brisée [1].

Les solutions de ce type sont stables dans le sens qu’elles ne se désintégrent
pas en particules scalaires, leur masse est plus petite que celle d’un ensemble
de particules. L’ajout d’une interaction entre les Q balls et les fermions a pour
conséquence de les rendre instables vis-à-vis de la désintégration en fermions.
Ce sont ces instabilités que nous proposons d’étudier ici. Nous allons pour ce
faire étudier les intéractions d’un Q ball avec des fermions de masse nulle en
construisant une description quantique exacte d’un Q ball s’évaporant. Cette
construction se base sur une construction inédite pour ce problème, supposant
qu’aucun fermion ne se déplace vers le Q ball. Avec cette nouvelle construction
nous avons prouvé que le Q ball s’évapore et nous avons même calculé la valeur
du taux d’évaporation.

Nous avons ensuite étudié les interactions avec des fermions massifs. Pour
ce faire nous avons utilisé une méthode consistant à calculer les amplitudes de
réflection et de transmission. Cette methode nous a permis en plus de trouver le
taux d’évaporation en fermions massifs et de résoudre le problème de l’intéraction
entre un Q ball et un fermion extérieur.

Comme résultat principal nous pouvons dire que le taux d’évaporation dépend
de la probabilité qu’un anti-fermion devienne un fermion. Car comme nous
l’avons démontré le Q ball change l’énergie des particules qui interagissent avec
lui d’un facteur dépendant de son énergie interne. De ce fait les fermions produits
par le Q ball ont leur énergie contenue dans un intervalle fini. Ce résultat a pour
conséquence le traitement différent des fermions et des anti fermions arrivant sur
le Q ball.
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Abstract

Non topological solitons, Q balls can arise in many particle theories with U(1)
global symmetries. As was shown by Cohen et al. [2], if the corresponding scalar
field couples to massless fermions, large Q-balls are unstable and evaporate, pro-
ducing a fermion flux proportional to the Q ball’s surface. In this work we analyse
Q-ball instabilities as a function of Q-ball size and fermion mass. In particular,
we construct an exact quantum-mechanical description of the evaporating Q-
ball. This new construction provides an alternative method to compute Q-Ball’s
evaporation rates. We shall also find a new expression for the upper bound on
evaporation as a function of the produced fermion mass and study the effects of
the size of the Q ball on particle production.

We also analyse what happens if external fermion is scattered on a Q ball and
demonstrate that it can be converted into antiparticle with a probability of the
order of one. This result has important implications for astrophysical applications
of dark matter Q balls.
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0.1. FOREWORD ix

0.1 Foreword

Before we start with the big work I would like to share with you some of my
feelings about physics. When I was a child my objective in life was to travel
through space in a huge spaceship and live fabulous adventures like Captain Kirk
or Mr. Spock. Obviously my life turned out to be different. Instead of travelling
through space I have not moved a lot but my life still gives me lots of satisfaction.
Especially, when I discovered physics a few years ago, that day I discovered far
more than one universe, I discovered the path I wanted to follow.

More than just a sequence of calculations I discovered that physics was, I
am sorry but I have to cite a famous French singer, “les champs du possible”. A
translation would be “the fields of possibility”, which is, I think, a good definition
of quantum field theory. Of course you will find in this work lots of strange
calculations but I have to invite you to think what ideas can be behind these
strange signs.

Another thing I found with physics is a new “family” of passionate people
that share the will to undersand or to try understanding the world we live in.
In the present work I tried the best I could to answer the mystery of particle
creation. I am sure an enourmous amout of work still has to be done, but I am
proud of the fact that I put my little stone on the building of physics.

Since I cited a famous French singer to describe the way I feel about quantum
field theory, I give here the complete version of his song.

Champs du possible

Devant nous l’an 2000, quelques heures nous séparent.
Quel ordre se profile, quel rapport de pouvoir?
Devant nous l’an 2000. Qui aurait pu prévoir
qu’il ne restait qu’un fil accroché a l’histoire

Les champs magnétiques de ma déraison.
Les voix qui me dictent les cris d’alarme les mots d’amour,
qui me hantent, qui m’entourent, qui me hantent, qui m’entourent.

Devant nous l’an 2000 et le monde en furie,
le grand ordre mondial et les nations unies.
Pas de contre pouvoir aux dollars qui défilent.
Et puis dans les couloirs les banquiers qui se faufilent.
Derriere nous 2000 ans et des années lumiere,
quelque tyrans sanglants, quelques beaux militaires.

Les champs magnétiques de ma déraison.
Les voix qui me dictent les cris d’alarme les mots d’amour,
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qui me hantent, qui m’entourent, qui me hantent, qui m’entourent.

Devant nous l’an 2000 et le champ du possible.
Il faut revisiter en partant du sensible.
Aux artistes il échoit des choses a inventer
et prendre quelque reves pour la réalité.

Les champs magnétiques de ma déraison.
Les voix qui me dictent les cris d’alarme les mots d’amour,
qui me hantent, qui m’entourent, qui me hantent, qui m’entourent.

B. Laviliers



Chapter 1

Introduction

1.1 General Motivation

A scalar field theory with an unbroken continuous global symmetry admits a
remarkable class of solutions, non-topological solitons or Q balls. These solutions
are spherically symmetric non-dissipative solutions to the classical field equations
[1, 2]. In a certain way they can be viewed as a sort of Bose-Einstein condensate
of “classical” scalars. The construction of these solutions uses the fact that they
are absolute minima of the energy for a fixed value of the conserved U(1)-charge
Q. So in the sector of fixed charge, the Q ball solution is the ground state and
all its stability properties are due to charge conservation. An important amount
of work has been done on Q ball dynamics and on their stability versus decay
into scalars [1]. Apart from some existence theorems that depend on the type of
symmetry and the potentials involved, the stability of Q balls is due to the fact
that their mass is smaller than the mass of a collection of scalars.

Stable Q balls appear naturally in supersymmetric theories. Supersymmetry
was introduced to solve the “hierarchy problem”, the problem of the enormous
ratio of the Plank mass to the 300 GeV energy scale of electroweak symmetry
breaking. Supersymmetry unites particles of half-integer with integer spin in
common multiplets. Some of the new scalar fields introduced by supersymmetry
admit Q ball type solutions [3]. These supersymmetric Q balls will have a mass
proportional to Q3/4 and a size proportional to Q1/4 [4, 5]. These supersymmetric
Q balls can have an enormous charge, Q > 1015 [6, 7], this fact makes them good
candidates for dark matter [9, 4, 5].

It is known that the addition of a coupling with fermions leads to Q ball
evaporation [2], so if we still want these supersymmetric Q ball to be dark matter
candidates they will need to live for a sufficiently large time. Therefor we need
to know their evaporation rate giving their life time. This problem has been
considered in [2] for the production of massless fermions by a large Q ball, this
leaves an opened questions : does the mass of produced fermions has an incidence

1



2 CHAPTER 1. INTRODUCTION

on the Q ball’s life time? This leads to another question : can a Q ball produce
any type of fermions? The study of Q ball evaporation into both massless and
massive fermions will answer these questions.

The long living Q balls will start interacting with matter[5], these interactions
might have consequences on their life time. On the other hand if we know the
way Q balls interact with matter we can imagine some experiments to observe
them and measure some of their properties [10]. Once more only the study of
interaction between Q balls and matter will answer these questions.

All these reasons pushed us to study the physics of Q balls, the choice we
made was to use the simplest possible Q ball model. Most of the features will
be the same if we work with large Q balls. In fact only large Q balls have an
incidence on cosmological models. We also know that Q balls have spherical
symmetry so we studied one dimensional Q ball models. Having all this in mind
we constructed a model of fermions interacting with Q balls having the same
features as more complicated models. The study of our model will give us all the
physics concerning Q balls and their properties.

Apart form these cosmological motivations the methods used to study Q balls
properties can be applied to many other problems where we have a scalar field
interacting with a fermion. In order to be able to use the techniques we developed
the scalar field needs to have a classical behaviour, admit large expectation value.
We shall introduce two different methods to solve this problem, so we can be sure
to have the widest application range.

1.2 Problems linked to particle creation

Quantum particle creation in external classical fields (gravitational, electro-magnetic
or scalar) plays an important role in cosmology and particle physics. Examples
include e+e− pair creation in external electric fields [12, 13], black hole evapora-
tion [16], particle creation during early stages of the universe expansion [17, 18],
Q ball evaporation [2], creation of gravitational waves [21] and many more. The
problem we shall study is particle creation from a “lump” of matter ( a “lump”
of scalars producing fermions). This problem includes Q ball evaporation and
many other problems. Before we give a brief review of the different formalisms
we can use to solve the problem of particle creation, let us introduce the concepts
and definitions we need.

One of the problems related to particle production is associated with the very
definition of the particle in time-dependent backgrounds. In the static situation,
the particle state is related to the positive frequency part, e−iωt with ω > 0,
of the solution to the free field equation, and this identification cannot be used
when external fields depend on time. However, in a number of setups commonly
considered in the literature, the problem can be posed and solved in a consistent
way. Namely, one assumes that in the distant past and in the far future the
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classical field is static. This allows us to introduce the asymptotic notions of
particles, which are unique, to define in and out vacua, and to construct the S-
matrix that relates in - and out - states (see, e.g. books [19, 20]). We shall refer
to this method as the S-matrix formalism.

In the present work we consider a different situation, when the particle cre-
ation problem can also be well posed and the notion of particles can be well
defined, whereas the S-matrix formalism in its canonical form is not applicable.
Suppose that we have a finite region of space V near the origin x = 0 filled
by some time and space - dependent classical field (one can call it a “source”)
which is equal to zero outside this region. A distant observer, located at some
point x, has a natural definition of the vacuum state and of the particle states
in the vicinity of x (to identify the vacuum and particle states one can imagine
an experiment where a completely absorbing screen is placed between x and 0.)
Thus, one can address well-defined questions on the particle flux, its time and
space-dependence, the spectrum of emitted particles, etc. Obviously, the in- and
out- states necessary for the S-matrix formalism cannot be defined for an arbi-
trary time dependence of the classical field : after all, the flux of particles is, in
general, time-dependent.

Of course, a slight modification of an S-matrix formalism can be used here.
One can write the total Hamiltonian H as H = H0 + Hint(t) where H0 is the
static part of the Hamiltonian associated with particles outside the volume V and
Hint(t) is the part localised in V . Now, the evolution operator in the interaction
picture S(−∞, t) = T exp (−i ∫ t−∞ dt′Hint(t

′)) can be constructed, and a state of
the system at the moment t can be defined as

|Ψ(t)〉 = S(−∞, t)|0〉 , (1.2.1)

where |0〉 is the vacuum state of the free Hamiltonian H0. Obviously, the state
|Ψ(t)〉 contains all the information about the particle fluxes and any other pa-
rameters a distant observer can measure.

A good example of this modification was provided in the fifties [13] when
studying the interaction of an electron with a time dependent electromagnetic
field. Assumptions where made such as that the electromagnetic field would
vanish on two boundary surfaces. Decomposition of the Dirac field into positive
and negative frequency components is made so that the notion of a particle may
exist. Finally it is shown that the function describing the transformation of the
field between the boundary surface, gives all of the important results.

If the time-dependent part of the classical field can be considered as small,
the solution to the problem can be derived through perturbation theory : sim-
ply expand the evolution operator with respect to Hint(t

′) and compute all the
necessary matrix elements. Our aim is to discuss how to proceed if the classical
field is not weak and an exact result is required.

The main idea is similar to the one used in the exact computation of the
particle production in the S-matrix formalism [19, 20]. Let us use the Heisenberg
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picture of quantum mechanics. The first step is to define “local” vacuum states
|0〉 and “local” particle states, specific to a distant observer. This is possible since
the background classical field is static far away from the source. The next step is
to single out an exact “global” state |Ψ〉 which satisfies the physical requirement
that in every point of space outside the source there are no “local” particles
coming from infinity. Once this state is found in terms of the “local” vacuum and
particle states, the problem of particle creation is completely solved: to find any
required observable O(x1, . . . , xn; t1, . . . , tn) one must simply find an expectation
value 〈Ψ|O(x1, . . . , xn; t1, . . . , tn)|Ψ〉. The actual realisation of this program may
appear to be quite non-trivial. This method should be compared with the problem
of the potential barrier in standard quantum mechanics where we select the waves
outside the barrier.

The problem we shall study is the interaction of a fermion with a time-
dependent localised scalar field. As a first model we shall use a 1⊕1 dimensional
version of a Q ball model [2]. This problem was solved in 3⊕ 1 dimensions using
the S-matrix formalism [2]. The main interest in the study of Q balls is that,
unlike solitons whose properties depend on topological effects, all the properties
of a Q ball are due to the conservation of a global U(1) charge. Q balls are
sometime, referred to in the literature as non-topological solitons. The reason we
shall work in 1⊕1 dimensions is for simplicity: the helicity and spin problems are
reduced to trivial expressions and only the essential properties and effects will be
of interest.The next chapter gives all the standard properties of Q ball particles
and a description of simple models describing them.

To avoid the problems linked to the time dependence of the Q ball we shall pro-
pose an alternative method. Using Heisenberg’s picture of quantum mechanics.
We shall construct the time independent state representing particle production,
by solving the condition that no fluxes are coming from infinity (no particles are
moving towards the Q ball). We can then build the Heisenberg field operator
containing all the relevant information and time dependence. Particle creation
is then computed by using the number operator, but any other operator valued
quantity can also be calculated. The use of this method needs no limit calcula-
tions on the Q ball’s size, so it can be used to study small Q balls as well. The
difficulty now lies in solving the production condition. This condition can be
solved by considering asymptotics of the fields far away from the Q ball.

The work is organised as follows: chapter 2 will describe the properties of
Q balls and review earlier work. Chapters 3 and 4 will give the description of
the two models used to compute the evaporation rate. The last two chapter
will investigate the interactions of Q balls and matter to finally propose the
conclusions.
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1.3 Solving the problem of particle creation

In this section we shall give a quick review of all the methods one can use to
solve the particle production problem. We divide this section into three parts,
each one giving a “different” approach of the solution. All these methods are
well known and widely described in the literature, so this section can be omitted
in a first reading. The example we shall use is that of a fermion field having a
Yukawa interaction with a scalar field. This choice is motivated by the fact that
Q ball evaporation is a problem of fermions coupled with scalars.

1.3.1 Review of the standard S-matrix formalism

A standard method to compute particle production in external classical fields is
based on the S-matrix formalism (see books [19, 20] and references therein) which
is valid if the field is static for t → ±∞. We will briefly review it in order to
introduce notation. For concreteness, we will discuss spin 1/2 fermions, though
the general strategy is applicable to any local fields.

Consider a Dirac fermion field coupled by a Yukawa interaction to the time-
and space-dependent real scalar field φ(x, t). The quantised Heisenberg fermionic
field ψ satisfies the Dirac equation:

[iγµ∂µ −m(t, x)]ψ(t, x) = 0 , (1.3.1)

where m(t, x) = m + fφ(t, x), and f is the Yukawa coupling constant. The field
ψ obeys the equal-time commutation relations

[ψ(t, x), ψ(t, x′)]+ = 0,

[ψ(t, x), ψ†(t, x′)]+ = δ(x− x′).

A general solution to the classical field equations (1.3.1) can be expanded over a
complete set of classical solutions ψ(±)

α (t, x):

ψ(x, t) =
∑

α

[ψ(−)
α (t, x)Aα + ψ(+)

α (t, x)B†α] , (1.3.2)

where the (continuous, in general) index α numerates the solutions. The functions
ψ(±)
α (t, x) obey the equal-time orthogonality conditions

(ψ(+)
α , ψ

(+)
β ) = (ψ−α , ψ

−
β ) = δαβ,

(ψ+
α , ψ

−
β ) = 0 . (1.3.3)

where the scalar product is defined as

(ξ, χ) ≡
∫
d3x[ξ(t, x)]†χ(t, x) . (1.3.4)



6 CHAPTER 1. INTRODUCTION

When we quantise the solution the Aα, Bα coefficients will become operators that
are identified with the creation and annihilation operators (we shall call them
Heisenberg operators since they define a solution to the Heisenberg equation of
motion for ψ) that obey the standard (anti) commutation relations

[Aα, Aβ]+ = [Bα, Bβ]+ = [Aα, Bβ]+ = [Aα, B
†
β]+ = 0,

[Aα, A
†
β]+ = [Bα, B

†
β]+ = δαβ,

which follow from the orthogonality conditions (1.3.3) and the equal time anti-
commutators (1.3.2).

For an arbitrary time-dependent background, the choice of the basis functions
can be made in an arbitrary way, so the notion of particle is not well defined : each
change of basis induces the redefinition of creation and annihilation operators.

Now, if the background scalar field has a well-defined past asymptotic, φ(x, t)|t→−∞ =
φ−(x), the in set of basis functions can be chosen in such a way that their asymp-
totics have exactly positive and negative frequency behaviour,

ψ
(±)
in,α(t, x)|t→−∞ ∝ e±iωαt , (1.3.5)

with ωα > 0. The operators Aα and Bα can then be unambiguously identified
with the annihilation operators of particles ain,α and antiparticles b†out,α, and the
initial vacuum state can be constructed. The reason why we use upper case and
lower case letters to identify the operators is motivated by the fact that upper case
operators are the operators associated with the general solution whereas lower
case operators are the free operators. The use of asymptotic relations identifies
the upper case and the lower case operators.

If the scalar field has a well-defined future asymptotic φ(x, t)|t→+∞ = φ+(x),
another, out set of basis functions can be constructed with the same property as
above,

ψ
(±)
out,α(t, x)|t→+∞ = e±iωαt , (1.3.6)

and the corresponding set of out creation and annihilation operators aout,α, b
†
out,α

can be introduced.
The relation between the in and out sets of operators is given by the Bogolubov

transformation

ain,α =
∑

β

[Aαβaout,β +Bαβb
†
out,β] , b†in,α =

∑

β

[Cαβaout,β +Dαβb
†
out,β] . (1.3.7)

where the Bogolubov coefficients can be found from the orthogonality relations
(1.3.3):

Aαβ = (ψ
(−)
in,α, ψ

(−)
out,β),

Bαβ = (ψ
(−)
in,α, ψ

(+)
out,β), (1.3.8)
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Cαβ = (ψ
(+)
in,α, ψ

(−)
out,β),

Dαβ = (ψ
(+)
in,α, ψ

(+)
out,β). (1.3.9)

The knowledge of these coefficients solves completely the problem of the particle
creation for a future (t→∞) observer.

The S-matrix is defined as the unitary operator that converts in-operators to
out-operators, aout = SainS

† and follows from (1.3.8). Before going any further,
let us take a look at the variety of problems one can solve using S-matrix for-
malism. In two papers of the early fifties [22] the problem of pair production in
bremsstrahlung is studied using the S-Matrix formalism. This problem is well
known, but it gives a very good review of the main techniques one needs to use
when working with the S-matrix. Consider a system defined by the Hamilto-
nian: H = H0 +Hr +H ′, where H0 is the Hamiltonian of the electrons and their
Coulomb interaction, Hr that of the photon field and H ′ that describing the inter-
action of electrons and photons. The solution to the equations of motion is found.
Then defining the S-matrix as the scalar product of in- and -out states the cross
section is calculated. There are two different cases. The first one is for standard
bremsstrahlung where the in-state is an electron and the out-state an electron
and a photon. This case has a matrix element given by :

∫
ψ?2εke

−ikrψ1dτ , where
ψ2 is the out-electron of momentum k, the photon contributes the exponential,
the εk polarisation factor is the out-state, and ψ1 is the in-electron. The other
case is the case of pair production. This time the out state is an electron positron
pair with matrix element:

∫
ψ?−εkψ

?
+eikrdτ , with the ψ± the wave functions of the

electron and positron in the final state, the initial state being just the photon
field. In both relations the integration variable is labelled τ as it is a special space
variable. In these expressions we can recognise a scalar product ( eq. 1.3.4).

Recent work [23] gives a survey of problems linked to pair production in
heavy ion collisions. The approach used here is the link between the S-Matrix
and the evolution operator. In these two problems the method used is the S-
matrix formalism, but in one case it is defined as the scalar product of the in-
and out-states and in the other it is defined as the evolution operator. Both
definitions were shown to be equivalent [24, 25]. In most work done on particle
production the electron positron pair is considered, which epitomises the general
fermion anti-fermion pair.

1.3.2 The Green’s function method

One can find the Bogolubov coefficients for the problem discussed above by an-
other equivalent method, using the retarded and advanced Green’s functions.
This method is more general since it allows us to determine not only the total
number of produced particles and their spectrum, but also the different time and
space correlations of arbitrary operators.
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Let us write the fermion mass in the form

m(t, ~x) = min,out + ∆min,out(t, ~x) , (1.3.10)

where ∆m(t, x)in → 0 for t→ +∞ and ∆m(t, x)out → 0 for t→ −∞.
The basic Dirac equation can be rewritten as

Din,outψ(t, ~x) ≡ [iγµ∂µ −min,out]ψ(t, ~x) = ∆min,out(t, ~x)ψ(t, ~x) , (1.3.11)

or in the form of two equivalent integral equations

ψ(t, ~x) = ψin(t, ~x) +
∫
dt′d3x′SRin(t, ~x; t′, ~x′)∆minψ(t′, ~x′) , (1.3.12)

and

ψ(t, ~x) = ψout(t, ~x) +
∫
dt′d3x′SAout(t, ~x; t′, ~x′)∆moutψ(t′, ~x′) , (1.3.13)

where SRin(t, ~x; t′, ~x′) is the retarded Green’s function of the free Dirac operator
Din and SAout(t, ~x; t′, ~x′) is the advanced Green’s function of the free Dirac operator
Dout. This difference in the Green’s functions come from the different integration
contour we use. The functions ψin,out(t, ~x) satisfy the free Dirac equation and are
nothing but asymptotic free fields: ψ(t, ~x)|t→∓∞ → ψin,out(t, ~x). The Heisenberg
state, time independent and containing no particles at t → −∞, satisfies the
conditions

ψin|0〉 = (ψ+
in)†|0〉 = 0 (1.3.14)

Now, the general solution (1.3.2) can be inserted in (1.3.12) to express ψin through
Aα, Bβ. The inverse transformation gives Aα, Bβ in terms of creation and an-
nihilation operators associated with ψin, and, therefore, any Heisenberg operator
OH can be expressed via ain,α, bin,β in this way. To find physical observables, one
simply computes averages of the type

〈0|OH |0〉 . (1.3.15)

To find the Bogolubov coefficients discussed in the previous section, one can use
(1.3.13) to express ψout through Aα, Bβ, and then use, in turn, the relations
between them and ain,α, bin,β. This method is a variation of the S-matrix since
we also consider transformations between past and future observers.

1.3.3 Localised sources

Assume now that the scalar field depends on ~x and t inside some finite spatial
volume V , while outside this volume φ = φ0 = const. In this case, one should
expect that particle production takes place inside V which results in a flux of



1.3. SOLVING THE PROBLEM OF PARTICLE CREATION 9

fermions coming out of the region V . To define the Heisenberg vacuum state, let
us proceed in exact analogy with the previous section and write

m(t, ~x) = m+ ∆m(t, ~x) , (1.3.16)

where ∆m(t, ~x) = 0 for ~x /∈ V , and rewrite the Dirac equation in the integral
form (1.3.12) :

ψ0(t, ~x) = ψ(t, ~x)−
∫ t

−∞
dt′
∫

V
d3x′SR(t, ~x; t′, ~x′)∆m(t′, ~x′)ψ(t′, ~x′) , (1.3.17)

where ψ0 satisfies the free Dirac equation and SR is the retarded Green’s function
for this equation. The construction of the Heisenberg vacuum state proceeds in
the same way as above, with the replacement ψin → ψ0. If the general solution
of the basic Dirac equation (1.3.1) is known, inverting it into (1.3.17) gives ψ0

in terms of Heisenberg creation and annihilation operators, and through (1.3.14)
singles out the vacuum state. This solves, in principle, the problem of particle
creation.

Now we will show that, in fact, the equations for the vacuum state can be
derived in a simpler way, without performing the integrations in eq. (1.3.17).
Consider the region far outside the volume V . The second term in eq. (1.3.17),
due to the properties of the retarded Green’s function, contains only expanding
waves, ∝ exp(±i(εkt− kr)). Here εk = +

√
k2 +m2, k > 0, r = |~x| > 0, and the

origin of the coordinate system is assumed to be somewhere inside the volume
V . Therefore, the contracting waves ∝ exp(±i(εkt + kr)) are the same for the
Heisenberg field ψ and for the free field ψ0.

The free operator ψ0 = ψA0 (t, x) +ψR0 (t, x) can be expanded over creation and

annihilation operators bσ†(~k), aσ(~k) as usual

ψ0(x, t) =
∫
d3k[aσ(~k)uσ(~k)e−i(εkt−

~k~x) + bσ†(~k)vσ(~k)ei(εkt−
~k~x)] , (1.3.18)

and the vacuum state satisfies the standard conditions

aσ(~k)|0〉 = 0, bσ(~k)|0〉 = 0 (1.3.19)

for all ~k and σ. As these equations must be valid for all ~k, they can be equally
rewritten as

ψ−0 |contracting|0〉 = 0, (ψ+
0 )†|contracting|0〉 = 0 (1.3.20)

or as
ψ−|contracting|0〉 = 0, (ψ+)†|contracting|0〉 = 0 (1.3.21)

directly for the Heisenberg fields (we stress that the separation into negative and
positive frequencies and into contracting and expanding waves is possible since the
time-dependent source term is local in space). Very naturally, this corresponds
to the absence of waves coming from infinity.
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To find the physical observables, it is convenient to introduce the Bogolubov
coefficients, relating the sets of operators Aα, B

†
α and aσ(~k), [bσ(~k)]†. They follow

from eq. (1.3.17).

In order to clarify the use of the formalism, we consider in the following
chapters a simple 1 + 1 dimensional model, exhibiting particle production from
a local source. These considerations will be done using two different methods so
we can easily extend our results to 3⊕ 1 dimensions.

1.4 Summary

We have shown how to compute particle production for a situation when the
background field has an arbitrary time dependence but is localised in some spa-
cial volume. For this case, the S-matrix formalism in its traditional form cannot
be applied as the asymptotic states in the past and the future cannot be defined.
To clarify these ideas, we can say that the S-matrix formalism builds a transfor-
mation between the vacuum in the past and the vacuum in the future. Particle
creation is then linked to the probability of the vacuum remaining a vacuum. The
third formalism does something different : it creates a transformation between
vacua at the same time but at different places in space, using the fact that the
solutions are free solutions far away from the volume. We can link the operators
A, B of the general solution to the free operators a and b. With this third for-
malism we shall obtain “local” current densities. This method might be difficult
to apply (see chap. 3) but it allows us to compute more general results.

This kind of approach was used in the late sixties to solve, without any use
of S-matrix, the problem of particle production in an expanding universe. Here
the interaction is between the fields and the varying metric. An interesting so-
lution was proposed by Parker [17, 18] where no use is made of S-Matrix. The
idea is to work with quantised Heisenberg fields where the operators (that were
before quantisation the coefficients of the Fourier expansion) have equal time
commutation relations [ak(t), a

†
k(t)] = δkk′ . New time independent operators are

introduced by the definition Ak = ak(t1), it is then shown that there is a Bogol-
ubov transformation between the time independent operators and time dependent
ones given by : ak(t) = α(k, t)?Ak + β(k, t)A†−k. The particle production can be
computed directly using the α and β coefficients. This problem gives a second
alternative method to that of S-matrix. With the Bogolubov transformation the
number operator N = a†kak expressed in terms of Ak operators no longer gives
zero when applied on the vacuum. This work gives us a starting point to compute
particle production rates without the use of S-matrix formalism.

We shall use adaptations of these methods to solve the problem of Q ball
evaporation. We shall start first using a very simple model then we will improve
it in order to obtain a full analytical solution for every type of Q ball. In fact
we shall not need to use a complicated Q ball profile, we shall work with either
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very big Q balls or small ones. In these limits the Q ball’s shape has only little
importance.
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Chapter 2

Q Balls

2.1 Non-Topological Solitons.

Unlike topological solitons, non-topological solitons arise from the existence of
locally conserved charges rather than topological effects. The best way to under-
stand their properties is to study a simple model. We provide here two simple
models. The first one is a model with one scalar field, while the other one con-
tains two scalar fields and can be linked to supersymmetry. The common point
of these two models and of all Q-Balls models is that we minimise energy with a
fixed charge constraint.

2.1.1 Introduction and a first simple model

The existence and stability of non-topological solitons or Q-Balls is due to charge
conservation and to dynamics. A scalar field theory with a spontaneously broken
U(1)-symmetry may contain stable non-topological solitons, Q-Balls: the Q-Ball
is a coherent state of a complex scalar field carrying a global U(1) charge (the
leptonic or baryonic number in our case).

We review here the basic properties of a 3-dimensional Q-Ball using the sim-
plest possible model. As we mentioned in the introduction, the Q-Ball is a sort of
ground state of a scalar theory containing a global symmetry. We can now build
the simplest model in 3 ⊕ 1 dimensions having a Q-Ball solution: it is a SO(2)
invariant theory of two real scalar fields (or a is the U(1) theory of one complex
scalar field) [1]. We start by writing down the Lagrangian and the equations
of motion for the scalar field, to obtain the conserved charge and current. The
Lagrangian of the scalar sector is given by :

L = ∂µφ
?∂µφ− U(|φ|). (2.1.1)

The U(1) symmetry is

φ→ eiαφ.

13
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The conserved current is

jµ = i(φ?∂µφ− (∂µφ
?)φ), (2.1.2)

and the conserved charge is

Q =
∫
d3xj0. (2.1.3)

We build a solution with the minimal energy : if U(0) = 0 is the absolute
minimum of the potential, φ = 0 is the ground state and the U(1) symmetry
is unbroken. It was shown in [1] that new particles (Q-Balls) appear in the
spectrum, if the potential is such that the minimum of U

|φ|2 is at some value
φ0 6= 0.

Min[2U/|φ|2] = 2U0/|φ0|2 < µ2 = U ′′(0). (2.1.4)

The charge and energy of a given φ field configuration are :

Q = 1
2i

∫
(−∂tφ?φ+ c.c.)d3x,

E =
∫ [1

2
|φ̇|2 + 1

2
|∇φ|2 + U(φ)

]
d3x.

(2.1.5)

The Q ball solution is a solution with minimum energy for a fixed charge, we
thus introduce the following Lagrange multiplier

εω = E + ω[Q− 1

2i

∫
(φ?∂tφ+ c.c.)d3x]. (2.1.6)

Minimising this functional with the standard Q ball ansatz :

φ = φ(~x)eiωt, (2.1.7)

where φ(r) is a monotonically decreasing function of distance to the origin which
reaches zero at infinity. Inserting the Q ball ansatz in the equations of motion
gives in spherical coordinates

d2φ

dr2
= −2

r

dφ

dr
− ω2φ+ U ′(φ). (2.1.8)

If we interpret φ as a particle position and r as time this equation is similar to
a Newtonian equation of motion for a particle of unit mass subject to viscous
damping moving in the potential 1

2
ω2φ2 − U . We are searching for a solution in

which the particle starts at t = 0 at some position φ(0), at rest, dφ
dr

= 0, and
comes to rest at infinite time at φ = 0. Solving this problem is not difficult (see
[1] for details). One of the solutions can be the localised step function. Although
we can solve exactly the equation of motion, we will not do it in this work.

This construction is the Q ball we where looking for, in the sense that it is
the ground state of the theory with constant charge. We used only one field
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to describe it but it is in fact made of a collection of scalars. Q balls rotate
with constant angular velocity in internal space and are spherically symmetric in
position space. As the charge Q grows to infinity, ω approaches

ω0 =
√

2U0/φ2, (2.1.9)

where U0 is the value of the potential at the minimum. In this limit, φ resembles
a smoothed-out step function. The two regions (r < R and r > R) are separated
by a transition zone of thickness µ−1. This leads to the consideration of two ap-
proximations, namely the thick and thin wall regime (see [32] and [3] for details).
The radius of the Q ball can easily be calculated using the definition of charge:

Q =
4

3
πR3ω0φ

2
0. (2.1.10)

This calculation has been done for φ(r) = 0 if r > R. All the properties of the
Q ball are now known except the exact profile of the Q ball field. We shall now
build up the Q ball solution to our problem. The energy is given by the integral
(2.1.5) and using the previous properties and taking the limit V →∞, where V
is the volume of the Q ball, the energy becomes

E =
1

2
ω2|φ|2V + UV. (2.1.11)

The charge becomes

Q = ω0|φ|2V. (2.1.12)

We wish to minimise the energy with fixed charge. Using eq. (2.1.12) to eliminate
ω, we have in the limit of Q→∞,

E =
1

2

Q

|φ|2V + UV. (2.1.13)

As a function of V it has its minimum at

V =
Q√

2|φ|2U
. (2.1.14)

Here the energy is given now by

E = Q

√
2U

φ2
, (2.1.15)

This model can very easily be adapted to any dimensions since we have spher-
ical symmetry, only one space dimension is relevant and the model of two real
scalar fields is equivalent to models with one complex scalar field. The question
if a Q ball is an absolute minimum of the energy at fixed charge was answered
by S. Coleman [1] it is, as long as EQball < mQ, where m is the mass of the free
scalar particle. The question of Q ball stability and dynamics is a very interesting
question that has occupied many people through the past few years [33], [26], [3]
and [27], but will not be considered here.
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U

φ

Figure 2.1: Sketch of the double well potential

2.1.2 A more complicated model

This type of model is used in a lot of work [43, 40, 41, 42] to show the main
stability properties of Q balls. It can be applied also to most supersymmetric
models where we have lots of scalar fields interacting together. We use now the
theory of one real scalar field φ and one complex field χ in d⊕ 1 dimensions The
action is given by

S =
∫
ddxdt[

1

2
∂µφ∂

µφ− V (φ) + ∂µ(χ?)∂µχ− hφ2|χ|2], (2.1.16)

where the scalar potential is the double well : V (φ) = λ
4
(φ2 − v2)2. The ground

state, a classical vacuum, is given by

φ = v, χ = 0. (2.1.17)

The condition that χ equals zero decouples the equations of motion for the two
scalar fields. There is a global symmetry given by χ → eiαχ and the conserved
current is

jµ =
1

i
(χ?∂µχ− χ∂µχ?), (2.1.18)

with the conserved charge

Q =
∫
ddx(χ?∂tχ− χ∂tχ?) (2.1.19)

A state of charge Q is made out of Q χ-particles far away from each other, and
the energy of such a state is simply E = Qmχ. Another state of charge Q can
be constructed. Consider the φ field to be equal to zero inside a sphere of radius
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r

φ

l

v

Figure 2.2: Sketch of the φ field. The dotted line is the wave function of the
lowest energy state the of χ-field

l, in this sphere χ particles are massless. We now have to discuss Q χ-particles
trapped in a potential of the type hφ2 (Fig 2.2). The energy of such a state is
given by the sum of the classical energy of the φ field Eφ and the energy of Q
χ-bosons Eχ trapped in the potential.

Eφ = V (0)Vd + surface term, (2.1.20)

dropping surface terms at large l

Eφ = SdV (0)ld, (2.1.21)

where Sd is the volume of the unit sphere in d dimensions. It is easy to check
that the energy of χ-bosons inside the potential is proportional to 1

l
. So we have

for Eχ

Eχ = Sd
1

l
Q, (2.1.22)

and the total energy is

Etot = Sd(V (0)ld +
1

l
Q) (2.1.23)

l = Sd(V (0))−
1

1+dQ
1

1+d (2.1.24)

for the second equation we minimise with respect to l. The energy of this state
is now given by

E = Sd(V (0))
1

1+dQ
1

1+d . (2.1.25)
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For large Q this energy is smaller than mχQ so the Q ball is absolutely stable.
With this example we see that at large enough Q, the Q ball is stable against
decay into free χ-bosons. This model has a wide range of applications in various
dimensions.

2.1.3 Q ball creation

As we have seen in the precedent sections Q balls are a type of Bose-Einstein
classical scalar condensate. The minimal condition we need to build up Q ball
solution is the existence of a self interacting scalar field. We can consider two
levels for the existence of a scalar field, the first level would be the quantum phe-
nomena, linked to the very small scale physics, while the second level would be
classical, macroscopic level, of the model. One of the simplest construction that
can be made to obtain classical quantities through quantum fields is the identifi-
cation between the field and its expectation value [28], therefor fields with large
expectation values are good candidates to Q ball creation. These considerations
allows us to take the MSSM as first birth place of Q balls. In this picture the
stability of Q balls is ensured by the condition that energy per charge unit in the
Q ball is smaller than the free scalar field one.

The most popular model allowing “big” scalar field is the Affleck-Dine Baryo-
genesis process [11, 69, 29]. In this picture a large charged scalar condensate will
break up into smaller objects that have Q ball properties. This scalar condensate
is the one required for Affleck-Dine baryogenesis. This scalar field carries baryon
(or lepton) number and has a very flat potential so it can be given a large ex-
pectation value. This breaking up is done through supersymmetry breakdown.
We have two major ways for breaking up supersymmetry, the gauge or gravity
mediated mechanism. Both mechanism will lead to different type of Q balls. The
major difference is that the Q ball’s size might not depend on its charge, while
its charge will be linked to the one of the initial scalar field.

One other way we could create Q balls is by solitosynthesis a process of charge
accretion around a Q ball seed [31]. This model has the advantage not to need
any complicated symmetry breaking. The remaining question is of course, what
is the original Q ball seed? These models are of course not the only ones. We
shall mention to finish this discussion that a very wide range of physical problems
need the presence of scalar field to be solved. So the role played by Q balls can
be very important in various domains of physics.
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2.2 Q balls and Particle production

In this section we give an overview of the method used in [2] and its application
in 1 ⊕ 1 dimensions, we shall not compute any quantity we shall just develop
the standard formalism used in literature. After the introduction of the very
simple model we shall use, we give the general method used to solve the problem
of particle production by a Q ball using an S-matrix based construction. This
section will also point out some important results.

2.2.1 A simple toy model

We consider a very simple Q ball model, and introduce a Yukawa-type interaction
with fermions and scalars. A simple Lagrangian leading to a Q ball solution is
given by (see [1] and [32] for details):

Lscal. = ∂µφ
?∂µφ− U(|φ|). (2.2.1)

The charge and energy of a given φ field configuration are (see section 2.1.1) :

Q =
1

2i

∫
(−∂tφ?φ+ c.c.)d3x

E =
∫ [

1

2
|φ̇|2 +

1

2
|∇φ|2 + U(φ)

]
d3x (2.2.2)

The Q ball solution is a solution with minimum energy for a fixed charge, we
thus introduce the following Lagrange multiplier

εω = E + ω[Q− 1

2i

∫
(φ?∂tφ+ c.c.)d3x]. (2.2.3)

Minimising this functional with the standard static Q ball ansatz :

φ = φ(~x)eiωt, (2.2.4)

will give all the Q ball’s properties. We now add an interaction with fermions [2]
to compute the evaporation of Q balls into fermions. The simplest interaction is
given by the following Lagrangian:

Lferm. = iΨ̄σµ∂µΨ + (gφΨ̄CΨ + h.c), (2.2.5)

where the C superscript indicates the charge conjugated fermion, this means that
the interaction with the Q ball field acts as a kind of Majorana mass coupling. A
little work on this Lagrangian, using the properties of γ-matrices and of charge
conjugation (see [86], [34], [35] for details) leads to the following equations of
motion for the fermion fields:

iσµ∂µψ − gφχ = 0, (2.2.6)

iσ̄µ∂µχ− gφ?ψ = 0. (2.2.7)
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with χ = iσ2ψ? and ψ is a two component spinnor. In (1 ⊕ 1) dimensions we
only have µ = 0, 3 and σ0 = 11. For simplicity we shall use the standard localised
step-function solution for the Q ball.

φ(z, t) = φ0eiω0tθ(l − z)θ(l + z), (2.2.8)

where the l parameter is the size of the Q ball. This solution was fully described
in [2] and [32], in (1 ⊕ 1) dimensions (Fig 1.). This will give a “mass” to the
fermions only in a localised zone in the z-direction. If we want to solve Dirac’s

−l +l
+L

φ

φ0e−iω0t

−L

Figure 2.3: General shape of the Q ball field.

equation in all space, we shall need a continuous solution in the three space zones
(z < −l, z > +l and z ∈ [−l,+l]). After the solutions are built we will compute
the particle production rate of the Q ball.

2.2.2 Particle production from Q balls

Following the same method as [2] we start with the equations of motion given
by (2.2.6) and (2.2.7), where σµ = (σ0, σ3) and σ̄µ = (σ0,−σ3) for our 1 ⊕ 1
dimensional case. Since the Q ball is invariant under simultaneous time transla-
tions and Q rotations we can choose ψ to be proportional to e−i(ε+

ω0
2

)t and χ to
be proportional to e−i(ε−

ω0
2

)t. Pair production will occur in those modes mixing
positive and negative frequencies, that is ε ∈ [−ω0

2
,+ω0

2
] (see chapter 3 for details

and the way we can clearly identify this range). The first thing is to study the
free solutions (at t→ ±∞), they are

−iσ3∂3ψ = (
ω0

2
+ ε)ψ, (2.2.9)

−iσ3∂3χ = (
ω0

2
− ε)χ, (2.2.10)

the solutions are

ψ = u(k+)e−ik+t, (2.2.11)

χ = u(k−)eik−t, (2.2.12)

with k± = ω0

2
± ε and u(k) = 1

4π

(
eikz

e−ikz

)
. The 1

4π
factor ensures us the standard

orthogonality relations for the u’s. Constructing the free quantum fields is very
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simple, the energy range is only ε ∈ [−ω0

2
,+ω0

2
]. Using this energy range ensures

that the ψ field describes a particle while the χ field describes an anti-particle.
In the ψ terms we do the change of variables ε = k+ − ω0

2
and in the χ terms we

do ε = k− + ω0

2
. The free quantum fields can be written as

ψ =
∫ ω0

0
u(k+)e−ik+ta(k+)dk+, (2.2.13)

χ =
∫ 0

−ω0

u(k−)eik−ta†(k−)dk−. (2.2.14)

Using the orthogonality relations for the u’s the a operators have the standard
anti-commutation relations. In order to apply the same method we need to
identify the positive and negative movers. In the u’s it is done by separating
them as

u(k) = u1(k) + u2(k), (2.2.15)

with

u1 =

(
eikz

0

)
, u2 =

(
0

e−ikz

)
. (2.2.16)

Now the u1 are the positive movers and the u2 the negative ones. We can now
construct the general solution outside the Q ball by choosing one of our solutions
to have no incoming χ wave:

ψ = e−ik+t[u1(k+) +R(k+)u2(k+)], (2.2.17)

χ = eik−t[T (k−)u2(k−)]. (2.2.18)

In terms of scattering theory these coefficients mean that in the far past only
the incoming wave will survive while in the far future both out-going waves
will survive. All this construction was made considering an infinite Q ball that
occupies half the space. Using the symmetry of the equations of motion, χ =
iσ2ψ? we can construct another solution using the fact that iσ2u?1 = u2 and
iσ2u?2 = −u1

ψ = −e−ik−t[T ?(k−)u2(k−)], (2.2.19)

χ = eik+t[u2(k+) +R?(k+)u1(k+)]. (2.2.20)

The two solutions we obtained are symmetric and ψ is a fermion while χ is the
anti fermion. The last thing we need to be sure that the solutions are symmetric
is that they need to come with adjoint coefficients, so we can write for the ψ
solution

ψ =
∫ ω0

0
dk+e−ik+t[u1(k+) +R(k+)u2(k+)]ain(k+)

+e−ik+t[T ?(k+)u2(k+)]a†in(k+), (2.2.21)
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where in the second term we resolved the change of variable k± → k∓ = ω0− k±.
The integral in the solution comes from the fact that we consider the quantised
solution and not the solution in terms of modes. The physical meaning of the
ain operators is that in the far past only the incoming wave will survive and
then become identical to the free solution so the ain operator is a standard free
operator. If we go to the far future only the outgoing wave will survive and we
can build the Bogolubov transformation1 between in and out operators:

aout(k+) = R(k+)ain(k+)− T ?(k−)a†in(k−). (2.2.22)

The average number of outgoing massless fermions in the far future is given by

< 0|a†out(k)aout(k
′)|0 >= |T |2δ(k − k′). (2.2.23)

Due to the presence of the delta function this number is infinite, but the idea is
to replace the delta function by a smooth function using

δ(x) = lim
τ→∞

1

2π

∫ τ/2

−τ/2
eitxdt. (2.2.24)

The number of particles created is then

dN

dt
=

1

2π

∫ ω0

0
dk|T |2 ≤ 1

2π

∫ ω0

0
dk =

ω0

2π
. (2.2.25)

The problem is now completely solved, the T coefficient comes from the equations
of motion inside the Q ball. If we have a solution inside the Q ball we just need
to match it with the solution given by (2.2.21) and identify the coefficients we
are searching for. The solution inside the Q ball is given by

ψ = (ε±
√
ε2 − (gφ)2)u(k′±)e−ik+t

+ iσ2[(ε±
√
ε2 − (gφ)2)u(k′±)e−ik+t]?, (2.2.26)

χ = gφu(k′±)eik−t + iσ2[gφu(k′±)eik−t]?, (2.2.27)

with k′± = ω0

2
±
√
ε2 − (gφ)2. The same variable changes and the separation in

positive and negative movers gives the matching rules. This will be done in detail
in the next chapter where we shall also compute the matching rules and the real
evaporation rate.

1The evaporation range is the only range where the Bogolubov transformation are non trivial
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2.3 Conclusions.

As we did for the previous section we shall clarify a bit these ideas. First a Q ball
can be considered as a kind of “classical” Bose Einstein condensate, since it is
made out of bosons that link together to form a stable object. This is the reason
why in practise we only use one scalar field to describe a Q ball. The stability of
Q balls versus decay into scalars depends on their charge, it was shown that the
total mass of a Q ball is lower than the mass of a collection of scalars. The method
we used to compute all the Q ball’s properties is that of Lagrange multipliers.
We minimise the energy with constant charge. This method can be applied to all
possible Q ball models. The only reason why we decided to use a simple model
is for simplicity of the fermion solutions that interact with the Q ball, but all
the constructions we shall do can be applied to more complicated models. As we
shall see in details in the following chapters one of the important computation
that we need to do is matching the fermion solution through the Q ball, this
needs a very good knowledge of the Q ball solution.

The decay of Q balls into scalars can be studied using the S-matrix approach to
compute the value of the reflection and transmission coefficients. The main result
we need to mention is that evaporation only occurs if the fermion energy is in
the range [−ω0

2
; ω0

2
]. This is the only range where the Bogolubov transformations

we can build are non trivial. Only fermions are produced not scalars as long as
the Q ball is in its stable sector. This is the result we shall develop in a very
precise way in the next two chapters. We shall also give in the next chapter a
complete demonstration of the existence of the finite range for energy. We shall
also show that it is really evaporation that occurs. To clearly demonstrate these
results we shall need to construct the exact quantum-mechanical state describing
an evaporating Q-ball.

One of the other important facts we need to mention is the way Q balls are
created, we know they will produce fermions. One possibility to create Q balls
is solitosyntesis, a process of gradual charge accretion, provided some primordial
charge asymmetry and initial “seed” Q balls exist [31]. The other way they can
be created is through breakup of the Affleck-Dine charge condensate. In fact it
has been shown that Q balls exist in the MSSM [36], so we do not really need to
be careful about Q ball creation.

We shall mention to finish this discussion that a large amount of work has
been done on various type of Q balls. Non abelian Q balls [37, 38], or even Q
balls with topological charge [39].
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Chapter 3

Evaporation of Q balls into
massless particles.

The solution to the problem of particle creation by a Q ball can be solved using
two different pictures. The first one is based on the S-matrix formalism, using
the idea that the field is free for t → ±∞. This construction is done by finding
the solution to the equations of motion for a fermion interacting with a Q ball
in terms of a superposition of classical solutions. The quantisation is made by
upgrading expansion coefficients to operators, this will give us the Heisenberg
field operator. The S-matrix will then be constructed by identifying the fields
in the far past and in the far future to fields having exact positive and negative
frequency behaviour. This method was widely used to solve the problem for
particle creation. This method was used to compute the evaporation rate of
Q-balls ([2, 32]) where the expansion was made using rotational eigenfunctions.
Once the total solution is known it is simple to build the transformation from the
far past to the far future. In the far past only the incoming waves will survive
and in the far future only the outgoing ones.

The construction we are going to use here is different, we shall in the first
place solve the equations of motion and obtain the Heisenberg field operator
representing a fermion interacting with a Q-ball. In one space dimension this
solution will be expressed in the form,

ΨQ =
1√
4π

∫
dε
(
ψ+
Q(ε, t, z)A(ε) + ψ−Q(ε, t, z)B(ε)

)
,

where the ψ±Q(ε, t, z) are a basis of the solution to the Dirac equation for fermions
interacting with a Q ball of charge Q. A(ε) and B(ε) are operators depending
on energy, their anti-commutation relations are the standard ones if the ψ solu-
tions satisfy proper orthogonality conditions. The next is to consider the spatial
asymptotics of this solution. Far away from the Q ball (z = ±∞ for one space
dimension) the solution is the standard free field solution. This identification
will give us a relation between the solution operators A(ε), B(ε) and the free

25
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asymptotic ones a(p), b(p). The only difficulty in this identification is that the
quantisation of the solution was made using energy (due to the time dependence
of the interaction) while the asymptotical operators depend on momentum. The
next step will be to define and solve the particle production condition, saying that
no particles are moving towards the Q ball. In terms of asymptotic operators it
is

aL(p)|Ψ >= bL(p)|Ψ >= 0 for p > 0, on the left
aR(p)|Ψ >= bR(p)|Ψ >= 0 for p < 0, on the right.

(3.0.1)

The last step of the resolution will consist in using the total Heisenberg oper-
ator Ψ, and the particle productive state to compute the fermionic flux giving
evaporation rate.

3.1 Solutions to the equations of motion

Writing down the Lagrangian of a massless fermion having a Yukawa interaction
with a scalar field gives in one spatial dimension,

Lferm. = iψ̄σµ∂µψ + (gφψ̄Cψ + h.c), (3.1.1)

where the C superscript indicates the charge conjugated fermion. The equations
of motion and their solutions are fully described in literature on the subject
([1, 2, 32]). Instead of treating separately the fermion and the anti-fermion,
we shall construct the exact global solution to this problem, this solution will
be made of different parts first the solution inside the Q-Ball (for z ∈ [−l, l]).
Equations of motion for the two components of the Ψ field are :

(i∂0 + i∂z)ψ1 − gφψ?2 = 0,
(i∂0 − i∂z)ψ?2 − gφ?ψ1 = 0.

(3.1.2)

and φ = φ0e−iω0t in the zone from −l to +l and zero everywhere else. Using the
ansatz :

(
ψ1

ψ?2

)
=

(
e−i

ω0
2
t 0

0 ei
ω0
2
t

)(
A
B

)
e−iεt+i(k+

ω0
2

), (3.1.3)

the equations of motion are reduced to the following 2× 2 linear system
(
k − ε M
M −(k + ε)

)(
A
B

)
= 0.

The determinant of the system gives k = ±
√
ε2 −M2 ≡ ±kε. Solving for the two

cases k = +kε and k = −kε, we obtain the solution inside the Q ball:

ΨQ =

(
ψ1

ψ?2

)
= A

(
1

kε+ε
M

)
e−ikεz +B

(
kε+ε
M

1

)
eikεz, (3.1.4)
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where M = gφ0, g is the coupling constant and φ0 the value of the scalar field.
The second part is the solution when φ0 = 0 (outside the Q ball) it is,

Ψ =

(
ψ1

ψ?2

)
= e−iεt

(
CL,R

1 eiεz

CL,R
2 e−iεz

)
, (3.1.5)

where superscripts L,R indicate the left and right side of the Q ball. In order to
solve Dirac’s equation everywhere the solution needs to be continuous in space.
Space continuity gives at z = −l :

CL
1 = Aei(kε+ε)l +Bαεe

−i(kε−ε)l,

CL
2 = Aαεe

i(kε−ε)l +Be−i(kε+ε)l,

and at z = +l,

CR
1 = Ae−i(kε+ε)l +Bαεe

+i(kε−ε)l,

CR
2 = Aαεe

−i(kε−ε)l +Be+i(kε+ε)l.

These matching relations are used to express the solution only using the param-
eters coming from the inner part of the solution. This construction will allow
us to build a state where there is no incoming fermion, all the fermions are now
produced inside the Q ball. Putting together all these parts gives the full solution
continuous in space and time :

(
ψ1

ψ?2

)
=

∫
dε




(
eiεl(Aeikεl +Bαεe

−ikεl)e−i(ε+
ω0
2

)tei(ε+
ω0
2

)z

e−iεl(Aαεeikεl +Be−ikεl)e−i(ε−
ω0
2

)te−i(ε−
ω0
2

)z

)
z < −l

(
(Ae−ikεz +Bαεe

ikεz)e−i(ε+
ω0
2

)tei
ω0
2
z

(Aαεe
−ikεz +Beikεz)e−i(ε−

ω0
2

)tei
ω0
2
z

)
− l ≥ z ≥ +l

(
e−iεl(Ae−ikεl +Bαεe

ikεl)e−i(ε+
ω0
2

)tei(ε+
ω0
2

)z

eiεl(Aαεe
−ikεl +Beikεl)e−i(ε−

ω0
2

)te−i(ε−
ω0
2

)z

)
z > +l




,(3.1.6)

where

αε =
kε + ε

M
. (3.1.7)

We would like the Ψ solution to have orthogonality properties, in order to
be able to quantise it. To do this the first possibility is to impose the boundary
condition Ψ(−L) = Ψ(+L). This ensures the self-adjointness of operator iσµ∂µ.
The boundary condition reads as follows:

A sinh[i(kε + ε)l − i(ε+
ω0

2
)L]−B sinh[i(kε − ε)l + i(ε+

ω0

2
)L]αε = 0,

A sinh[i(kε − ε)l + i(ε− ω0

2
)L]αε −B sinh[i(kε + ε)l − i(ε− ω0

2
)L] = 0.
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The determinant of the system gives :

− sinh[i(kε + ε)l − i(ε+ ω0

2
)L] sinh[i(kε + ε)l − i(ε− ω0

2
)L]

+ sinh[i(kε − ε)l + i(ε− ω0

2
)L] sinh[i(kε − ε)l + i(ε+ ω0

2
)L]α2

ε = 0.
(3.1.8)

The real and imaginary parts of this equation will always have the same zeros
giving the energy spectrum of fermions. This relation leads to A = ±B and to
a relation for ω0

2
, that is ω0

2
L = 2πn. Taking the limit L→∞ leads to the same

relation without any condition on ω0

2
and with a continuous spectrum. Finally

the solution can be written in the form :

ΨQ =

(
ψ1

ψ?2

)
=
∫ +∞

−∞
dε
(
ψ+
QA+ ψ−QB

)
, (3.1.9)

with

ψ±Q =




(
eiεl(±eikεl + αεe

−ikεl)e−i(ε+
ω0
2

)tei(ε+
ω0
2

)z

e−iεl(±αεeikεl + e−ikεl)e−i(ε−
ω0
2

)te−i(ε−
ω0
2

)z

)
z < −l

(
(±e−ikεz + αεe

ikεz)e−i(ε+
ω0
2

)tei
ω0
2
z

(±αεe−ikεz + eikεz)e−i(ε−
ω0
2

)tei
ω0
2
z

)
− l ≥ z ≥ +l

(
e−iεl(±e−ikεl + αεe

ikεl)e−i(ε+
ω0
2

)tei(ε+
ω0
2

)z

eiεl(±αεe−ikεl + eikεl)e−i(ε−
ω0
2

)te−i(ε−
ω0
2

)z

)
z > +l




. (3.1.10)

This solution is for the moment a classical solution. We shall now verify the
orthogonality properties of this solution in a more explicit form, to obtain the
normalisation constant and to check the anticommutation relations of operators.

3.1.1 Orthogonality and Quantisation

We would like to check that
∫
dz(ψσ

′
(ε′))

†
ψσ(ε) = δσ′σδ(ε

′ − ε). To do so we
separate the scalar product component by component and zone by zone :

∫
dz (ψσ

′
(ε′))

†
ψσ(ε)

=
∫ −l

−∞
dz(ψσ

′
(ε′))

†
ψσ(ε) +

∫ +∞

+l
dz(ψσ

′
(ε′))

†
ψσ(ε) +

∫ +l

−l
dz(ψσ(ε′))†ψσ(ε) =

= DL1
∫ −l

−∞
e−i(ε

′−ε)zdz +DL2
∫ −l

−∞
e+i(ε′−ε)zdz

+ DR1
∫ +∞

+l
e−i(ε

′−ε)zdz +DR2
∫ +∞

+l
e+i(ε′−ε)zdz

+
∫ +l

−l
dz(ψσ(ε′))†ψσ(ε),
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where the D coefficients are products of the CL,R
1,2 coefficients defined in (3.1.5) :

DL1 = D1(l) = CL
1

?
(ε′)CL

1 (ε)

= e−i(ε
′−ε)l

(
σσ′e−i(k

?
ε′−kε)l + σ′αεe

−i(k?
ε′+kε)l +

σα?ε′e
i(k?

ε′+kε)l + α?ε′αεe
i(k?

ε′−kε)l
)
,

DL2 = D2(l) = CL
2

?
(ε′)CL

2 (ε)

= ei(ε
′−ε)l

(
σ′σα?ε′αεe

−i(k?
ε′−kε)l + σα?ε′e

−i(k?
ε′+kε)l+

σ′αεe
i(k?

ε′+kε)l + e−i(k
?
ε′−kε)l

)
,

DR1 = CR
1

?
(ε′)CR

1 (ε) = D1(−l)
DR2 = CR

2

?
(ε′)CR

2 (ε) = D2(−l)

We have to compute the middle terms, leading to hyperbolic sines:

∫ +l

−l
dzΨ†(ε′)Ψ(ε) = 2

sinh[i(k?ε′ − kε)l]
i(k?ε′ − kε)

((σ′σ + 1)(1 + α?ε′αε))

+ 2
sinh[i(k?ε′ + kε)l]

i(k?ε′ + kε)
((σ′ + σ)(α?ε′ + αε)) . (3.1.11)

Before going any further we introduce the well known formula ([86]),

∫ +∞

+l
e±i(ε

′−ε)zdz = e±i(ε
′−ε)l lim

η→0

(
η

(ε′ − ε)2 + η2
± i (ε′ − ε)

(ε′ − ε)2 + η2

)

= πδ(ε′ − ε)± iP
(

1

(ε′ − ε)

)
, (3.1.12)

and the following relations, (σ′ + σ) = 2σδσ′σ, and (1 + σ′σ) = 2δσ′σ. After the
integrals are done the coefficient in front of the δ-function is

N± = 4π
(
cosh[Im[kε]l](1 + |αε|2)

± cos[Re[kε]l]Re[αε]) , (3.1.13)

and the coefficient in front of the principal value is,

Rσσ′ = 4i
(ε′ − ε)

(ε′ − ε)2 + η2
(sinh[i(k?ε′ − kε)l](α?ε′αε − 1)

+ sinh[i(k?ε′ + kε)l](α
?
ε′ − αε)) . (3.1.14)

This coefficient will combine with the middle terms to give zero.Taking a precise
look at the C coefficient in front of sinh[i(k?ε′ − kε)l] we write,

C =
1 + α?ε′αε
k?ε′ − kε

+
(ε′ − ε)(α?ε′αε − 1)

(ε′ − ε)2 + η2
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if ε 6= ε we can take directly the limit η → 0 and after the simplification of (ε′− ε)
in the numerator and in the denominator we obtain,

C =
−(ε′ − ε)(1 + α?ε′αε) + (k?ε′ − kε)(α?ε′αε − 1)

(k?ε′ − kε)(ε′ − ε)

=
1
M2 (k?ε′ + ε′)(kε + ε)[(k?ε′ − kε)− (ε′ − ε)]− [(ε′ − ε)− (k?ε′ − kε)]

(k?ε′ − kε)(ε′ − ε)
.

We can work a little more on the first term of the numerator to obtain,

1
M2 (k?ε′ + ε′)(kε + ε)[(k?ε′ − kε)− (ε′ − ε)]

=
1

M2
(k?ε′ + ε′)(kε + ε)[(k?ε′ − ε′)− (kε − ε)]

= [(ε′ − ε)− (k?ε′ − kε)]

in the last step we used the fact that (kε + ε)(kε − ε) = M 2, it proves that this
coefficient is zero. The same type of calculations stands for all the other terms, if
ε = ε′ the calculations are a little more complicated because we can not directly
take the limit η → 0. To quantise the solution ΨQ becomes an operator Ψ̂Q, with
the equal time anti-commutation relations and the fact that we have :

A(ε) =
∫ +∞

−∞
dz(ψ+

Q)
†
Ψ̂Q

B(ε) =
∫ +∞

−∞
dz(Ψ−Q)

†
Ψ̂Q. (3.1.15)

We can calculate the anti-commutation relations for A(ε)

{A(ε), A†(ε′)} =
∫
dz
∫
dz′
(
ψ+
Q(z, ε)

)†(
ψ+
Q(z′, ε′)

)
× {Ψ̂Q,

(
Ψ̂′Q

)†}
︸ ︷︷ ︸

δ(z′−z)

= δ(ε′ − ε),

where we have used orthogonality for the last step. The same calculations with
B(ε) lead to the same result so the solution we found is quantised with the
standard anti-commutation relations. The only difference with the solution you
can find in most textbooks, is that in this case the solution is quantised using
energy and not momentum. This is valid only in 1⊕ 1 dimensions where we can
treat separately the left- and right-movers.



3.2. PARTICLE PRODUCTION 31

3.2 Particle production

3.2.1 First calculations

Before going any further, we simplify a little the Q ball solution (3.1.9) by intro-
ducing the following matrix :

Ω =

(
e−i

ω0
2
t 0

0 e+i
ω0
2
t

)
, (3.2.1)

using this matrix the solution (3.1.10) may be written in the form :

ΨQ =
1√
4π

∫
dεe−iεt

(
ψ+
Q(ε)A(ε) + ψ−Q(ε)B(ε)

)
ei
ω0
2
zΩ(t), (3.2.2)

with

ψ± =




(
f±1 (ε, l)eiεz

(f±2 (ε, l))?e−iεz

)
z < −l

1√
N±

(
(±e−ikεz + αεe

ikεz)
(±αεe−ikεz + eikεz)

)
− l ≥ z ≥ +l

(
f±1 (ε,−l)eiεz

(f±2 (ε,−l))?e−iεz
)
z > +l




, (3.2.3)

and the functions f± having the form

f±1 (ε, l) =
1√

4πN±
eiεl(±eikεl + αεe

−ikεl), (3.2.4)

f±2 (ε, l) =
1√

4πN±
eiεl(±α?εe−ik

?
ε l + eikεl), (3.2.5)

(3.2.6)

with αε given by(3.1.7). Obviously this simplification does not modify the orthog-
onality properties of the solution. We would like to build an particle productive
state for the Q ball solution. First we conjugate the second component of the
above solution, in order to compare it with the standard free solution for a mass-
less fermion in 1⊕ 1 dimensions (see [44] for details). We look at the asymptotic
behaviour of the Q ball solution (3.2.2). On the left and right-hand side of the Q
ball, it has to be the standard free solution since the interaction is zero outside
the Q ball’s volume. After elimination of integrals and standard manipulations
and variable changes, we obtain at z → −∞ :



32CHAPTER 3. EVAPORATION OF Q BALLS INTO MASSLESS PARTICLES.

1√
2π

(
θ(p)
θ(−p)

)
a(p) +

(
θ(−p)
θ(p)

)
b†(−p) =




f+
1 (ε, l)A(ε)

∣∣∣∣
ε=p−ω0

2

f+
2 (ε, l)A†(ε)

∣∣∣∣
ε=p+

ω0
2


+

+




f−1 (ε, l)B(ε)

∣∣∣∣
ε=p−ω0

2

f−2 (ε, l)B†(ε)
∣∣∣∣
ε=p+

ω0
2


 . (3.2.7)

The variable change in the right hand side of the above equation was introduced

for elimination of exponentials. Multiplying eq. (3.2.7) by

(
θ(p)
θ(−p)

)†
and by

(
θ(−p)
θ(p)

)†
we obtain the two following equations :

1√
2π
al(p) = [f+

1 (ε, l)A(ε) + f−1 (ε, l)B(ε)]
∣∣∣∣
ε=p−ω0

2

θ(p) +

+ [f+
2 (ε, l)A†(ε) + f−2 (ε, l)B†(ε)]

∣∣∣∣
ε=p+

ω0
2

θ(−p), (3.2.8)

1√
2π
b†l (−p) = [f+

1 (ε, l)A(ε) + f−1 (ε, l)B(ε)]
∣∣∣∣
ε=p−ω0

2

θ(−p) +

+ [f+
2 (ε, l)A†(ε) + f−2 (ε, l)B†(ε)]

∣∣∣∣
ε=p+

ω0
2

θ(p). (3.2.9)

In these two equations the l subscript indicates we are on the left-hand side of
the Q ball, the same manipulations on the right-hand side lead to :

1√
2π
ar(p) = [f+

1 (ε,−l)A(ε) + f−1 (ε,−l)B(ε)]

∣∣∣∣
ε=p−ω0

2

θ(p) +

+ [f+
2 (ε,−l)A†(ε) + f−2 (ε,−l)B†(ε)]

∣∣∣∣
ε=p+

ω0
2

θ(−p), (3.2.10)

1√
2π
b†r(−p) = [f+

1 (ε,−l)A(ε) + f−1 (ε,−l)B(ε)]
∣∣∣∣
ε=p−ω0

2

θ(−p) +

+ [f+
2 (ε,−l)A†(ε) + f−2 (ε,−l)B†(ε)]

∣∣∣∣
ε=p+

ω0
2

θ(p). (3.2.11)

Checking the anticommutation relations of operators al,r and bl,r is a difficult task
but using the different energy ranges and orthogonality properties of the f±1,2 it
can be done. These four equations will the basis of the construction of particle
productive state, since they give a relation between free operators (lower case)
and solution operators (upper case).
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3.2.2 Construction of particle productive state

As mentioned before, the construction of this quantum state Ψ will be done using
the fact that there are no particles moving towards the Q ball. These are negative
momentum particles on the left and positive momentum particles on the right.
In terms of aL,R, and bL,R operators :

aL(p)|Ψ >= bL(p)|Ψ >= 0 for p > 0, on the left
aR(p)|Ψ >= bR(p)|Ψ >= 0 for p < 0, on the right.

(3.2.12)

This construction will lead to the opposite sign of the fermionic current on the
left and on the right hand side of Q ball using eqs. (3.2.8-3.2.11). We then obtain
four equations. For positive p, we have :

(f+
1 (ε, l)A(ε) + f−1 (ε, l)B(ε))

∣∣∣∣
ε=p−ω0

2

|Ψ >= 0,

(f+
1 (ε, l))?A†(ε) + (f−1 (ε, l))?B†(ε)

∣∣∣∣
ε=−p−ω0

2

|Ψ >= 0,
(3.2.13)

and for negative p

(f+
2 (ε,−l)A†(ε) + f−2 (ε,−l)B†(ε))

∣∣∣∣
ε=p+

ω0
2

|Ψ >= 0,

(f+
2 (ε,−l))?A(ε) + (f−2 (ε,−l))?B(ε))

∣∣∣∣
ε=−p+ω0

2

|Ψ >= 0.
(3.2.14)

Due to the relation between ε, p, ω0

2
given in the subindices of eqs. (3.2.13, 3.2.14)

and the fact that p is either positive or negative, we can identify three ranges for
ε :

• For ε > +ω0

2
we only have the following two equations :

(f+
1 (ε, l)A(ε) + f−1 (ε, l)B(ε))|Ψ >= 0,

((f+
2 (ε,−l))?A(ε) + (f−2 (ε,−l))?B(ε))|Ψ >= 0.

(3.2.15)

• For the negative range ε < −ω0

2
we have :

((f+
1 (ε, l))?A†(ε) + (f−1 (ε, l))?B†(ε))|Ψ >= 0,

(f+
2 (ε,−l)A†(ε) + f−2 (ε,−l)B†(ε))|Ψ >= 0.

(3.2.16)

• For the middle range ε ∈ [−ω0

2
,+ω0

2
] we have :

(f+
1 (ε, l)A(ε) + f−1 (ε, l)B(ε))|Ψ >= 0,

(f+
2 (ε,−l)A†(ε) + f−2 (ε,−l)B†(ε))|Ψ >= 0.

(3.2.17)
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The range where |ε| > +ω0

2
is easy to solve, since we expect the solution to be

the vacuum and to lead to no evaporation. The determinant of the matrix :

det[

(
f+

1 (ε, l) f−1 (ε, l)
(f+

2 (ε,−l))? (f−2 (ε,−l))?
)

] = 2(1− α2
ε), (3.2.18)

is always different from zero. The only solution for an evaporating state in this
range is the trivial solution given by :

A(ε)|Ψ >= B(ε)|Ψ >= 0 for ε > ω0

2
,

A†(ε)|Ψ >= B†(ε)|Ψ >= 0 for ε < −ω0

2
.

(3.2.19)

In fact these two equations are the same, because we can always do the transfor-
mation A(ε) = A′(ε)θ(ε) +B′†(ε)θ(−ε), all equations will have vacuum solutions.
Here the anti-commutation relations are trivial to check because of the two dif-
ferent energy ranges. For the middle range ε ∈ [−ω0

2
,+ω0

2
] things are a little more

complicated, this being the range where particle production occurs as first shown
in [2]. Taking a look at solution (3.1.10) in this range, only particles are created
and changing the sign of ω0 changes the particle type. Let us introduce :

η = f+
1 (ε, l), ζ = f−1 (ε, l). (3.2.20)

Using these definitions, the system (3.2.17), (3.2.17) can be written in the form :

(ηA(ε) + ζB(ε))|Ψ >= 0, (3.2.21)

(η?A†(ε)− ζ?B†(ε))|Ψ >= 0. (3.2.22)

These two relations will anti-commute if |η|2 = |ζ|2, using the definitions we can
write the square module :

|η|2 =
1

4πN+

(
α?εe

i(kε+k?ε )l + ei(kε−k
?
ε )l + |αε|2e−i(kε−k

?
ε )l + αεe

−i(kε+k?ε )l
)

= e−2Im(kε)l + |αε|2e2Im(kε)l +Re(αεe2iRe(kε)l)

writing the exponentials in the form, e±x = cosh[x]± sinh[x], we obtain.

|η|2 =
1

4πN+

((1 + |αε|2) cosh[2Im[kε]l] + (|αε|2 − 1) sinh[2Im[kε]l] +

2(Re[αε] cos[2Re[kε]l]− Im[αε]l sin[2Re[kε]l]).

Since kε is either purely real or purely imaginary we always have |η|2 = 1
4π

. We
introduce new evaporation operators in all the energy range defined by

ae(ε) =





A†(ε) ε < −ω0

2√
8π(ηA(ε) + ζB(ε)) ε ∈ [−ω0

2
,+ω0

2
]

A(ε) ε > +ω0

2

, (3.2.23)
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and

be(ε) =





B†(ε) ε < −ω0

2√
8π(η?A†(ε)− ζ?B†(ε)) ε ∈ [−ω0

2
,+ω0

2
]

B(ε) ε > +ω0

2

, (3.2.24)

where the
√

8π factor is the normalisation 1√
|η|2+|ζ|2

. The anticommutation rela-

tions of these operators are easy to check. The particle production state is now
fully characterised by the simple relation :

ae(ε)|Ψ >= be(ε)|Ψ >= 0. (3.2.25)

3.2.3 Particle production rate

The particle production rate is given by the current operator ~jµ(x) = ψ̄γµψ,
which in our case is ψ?1ψ1 − ψ?2ψ2, that we shall apply on the evaporating state
defined by the vacuum for ae and be operators. First we invert the systems 3.2.23
and 3.2.24 to obtain :

• ε < −ω0

2

{
A(ε) = a†e(ε)
B(ε) = b†e(ε)

(3.2.26)

• ε >
ω0

2

{
A(ε) = ae(ε)
B(ε) = be(ε)

(3.2.27)

• ε ∈ [−ω0

2
,+

ω0

2
]




A(ε) = 1√

8π2η
(ae(ε) + b†e(ε))

B(ε) = 1√
8π2ζ

(ae(ε)− b†e(ε))
(3.2.28)

Now we can compute the first term of the current on the left hand side of the Q
ball :

< 0|ψ†1ψ1|0 >=< 0 |
(∫ −ω0

2

−∞
dε[(f+

1 (ε, l))?e−i(ε+
ω0
2

)zA†(ε) + (f−1 (ε, l))?e−i(ε+
ω0
2

)zB†(ε)]

+

∫ +
ω0
2

−ω0
2

dε[(f+
1 (ε, l))?e−i(ε+

ω0
2

)zA†(ε) + (f−1 (ε, l))?e−i(ε+
ω0
2

)zB†(ε)]

+

∫ +∞

+
ω0
2

dε[(f+
1 (ε, l))?e−i(ε+

ω0
2

)zA†(ε) + (f−1 (ε, l))?e−i(ε+
ω0
2

)zB†(ε)]

)

×
(∫ −ω0

2

−∞
dε[f+

1 (ε, l)e+i(ε+
ω0
2

)zA(ε) + f−1 (ε, l)e+i(ε+
ω0
2

)zB(ε)]

+

∫ +
ω0
2

−ω0
2

dε[f+
1 (ε, l)e+i(ε+

ω0
2

)zA(ε) + f−1 (ε, l)e+i(ε+
ω0
2

)zB(ε)]

+

∫ +∞

+
ω0
2

dε[f+
1 (ε, l)e+i(ε+

ω0
2

)zA(ε) + f−1 (ε, l)e+i(ε+
ω0
2

)zB(ε)]

)
|0 >
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Using anti-commutation relations and the separate range of integrals and the
definition of A(ε) and B(ε) in terms of evaporation operators ae(ε), be(ε) we
obtain :

< 0|ψ†1ψ1|0 > =
∫ ω0

2

−∞
dε(|f+

1 (ε, l)|2 < 0|ae(ε)a†e(ε)|0 > +|f−1 (ε, l)|2 < 0|be(ε)b†e(ε)|0 >)

+
1

8π

∫ +
ω0
2

−ω0
2

dε
∣∣∣∣
f+

1 (ε, l)

2η
− f−1 (ε, l)

2ζ

∣∣∣∣
2

< 0|be(ε)b†e(ε)|0 > (3.2.29)

The second term is zero due to the definition of η and ζ The other term of the
current, proportional to ψ?2ψ2, is very similar but we need to be careful with the
fact that ψ2 is proportional to f2(ε, l)A†(ε) + g2(ε, l)B†(ε). Applying the same
method we obtain :

< 0|ψ†2ψ2|0 > =
1

8π

∫ +
ω0
2

−ω0
2

dε
∣∣∣∣
(f+

2 (ε, l))?

2f+
1 (ε, l)

+
(f−2 (ε, l))?

2f−1 (ε, l)

∣∣∣∣
2

< 0|ae(ε)a†e(ε)|0 > (3.2.30)

+
∫ +∞

+
ω0
2

dε
(
|(f+

2 (ε, l))?|2 < 0|ae(ε)a†e(ε)|0 > +|(f−2 (ε, l))?|2 < 0|be(ε)b†e(ε)|0 >
)

It is easy to check that |f2(ε, l)|2 = |f1(ε, l)|2 so the two terms with infinite bounds
will compensate. Finally the expression for the fermionic current on the left is :

~jL(x) =
∫ +

ω0
2

−ω0
2

dε
∣∣∣∣
(f+

2 (ε, l))?

2f+
1 (ε, l)

+
(f−2 (ε, l))?

2f−1 (ε, l)

∣∣∣∣
2

=
∫ +

ω0
2

−ω0
2

dε
∣∣∣∣
αε sinh[2ikεl]

e2ikεl − α2
εe
−2ikεl

∣∣∣∣
2

(3.2.31)

If the real part of kε equals zero (ω0

2
≤M), we use the definitions

kε = i
√
M2 − ε2, αε =

kε + ε

M
, |αε|2 = 1

and the current is then:

jL =
∫ +

ω0
2

−ω0
2

dε
sinh2[−2

√
M2 − ε2l]

|e−2
√
M2−ε2l − α2

εe
2
√
M2−ε2l|2

. (3.2.32)

In the limit Ml →∞ we can neglect the negative exponentials so the integrand
is only one fourth, coming from the hyperbolic sine. On the right hand side the
current is the same except for the sign, so the total current is equal to one half.
Using the continuity equation we can write :

∂j0

∂t
+
∂j1

∂x
= 0⇒ dQ

dt
=
∫
∂xj(x)dx = jL − jR = 2jL. (3.2.33)
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The norm of the current is constant on both sides, so after integration over ε we
obtain :

dQ

dt
=

1

4π
ω0. (3.2.34)

This expression gives the particle production rate as a function of ω0 when ω0 is
smaller than M in the limit of big Ml. It is in fact [2] an evaporation rate since
it does not depend on the Q ball’s size. The case when the imaginary part of kε
is equal to zero is a bit more complicated to solve, this time the current is given
by after a few simple manipulations,

jL =
1

2π
M +

∫ +
ω0
2

M

sin2[2kεl]α
2
ε

1 + α4
ε + 2α2

ε(sin
2[2kεl]− cos2[2kεl])

dε+

+
∫ −M

−ω0
2

sin2[2kεl]α
2
ε

1 + α4
ε + 2α2

ε (sin
2[2kεl]− cos2[2kεl])

=
1

2π
M +

∫ ω0
2

M

sin2[2kεl]α
2
ε

(1− α2
ε)

2 + 4 sin2[2kεl]α2
ε

dε+

+
∫ −M

−ω0
2

sin2[2kεl]α
2
ε

(1− α2
ε )

2 + 4 sin2[2kεl]α2
ε

dε. (3.2.35)

What we shall now do is construct the solutions in terms of dimensionless pa-

rameters starting with kε =
√
ε2 −M2 = M

√
ε2

M2 − 1 = Mk̄ε, we can write,

αε = k̄ε + ε̄, 2ikεl = 2ik̄ε̄l̄, (3.2.36)

with ε̄ = ε
M

and l̄ = Ml. We then obtain for the current

~jL(x) = M
∫ +

ω0
2M

− ω0
2M

dε̄
∣∣∣∣
ᾱε̄ sinh[2ik̄ε̄l̄]

e2ik̄ε̄ l̄ − ᾱ2
ε̄e
−2ik̄ε̄ l̄

∣∣∣∣
2

(3.2.37)

Production rate in function of size

We shall first consider the limit where l is small. In this case we write

sinh2[2
√
M2 − ε2l] = 4(M 2 − ε2)l2 = 4(Ml)2(1− (

ε

M
)2)

∣∣∣∣e
−2
√
M2−ε2l − α2

εe
2
√
M2−ε2l

∣∣∣∣
2

= e−4
√
M2−ε2l + e+4

√
M2−ε2l − 2Re[α2

ε ]

= 2(1− 2ε−M 2

M2
) = 2(1− ε2

M2
). (3.2.38)

These two terms will simplify to give after integration over ε :

jL = l2M2ω0

8π
, (3.2.39)
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Figure 3.1: Particle production rate for small values of Ml and for a fixed value
of ω0

2M
= 0.5.

leading to the particle production rate:

dQ

dt
= l2M2 1

4π
ω0. (3.2.40)

This result ensures us the fact that when Ml = 0, the Q ball does not exist,
the evaporation rate is zero. This behaviour is shown on figure 3.1. The next
limit we shall study is the very large Q ball limit. To do so we take a look
at the production rate for large values of the size parameter, Ml and observe
that the production rate becomes constant for big values of the size parameter
(see fig 3.2). These considerations also stand for all the possible values of the
frequency parameter the only difference is when ω0

2M
gets bigger the stability of

the evaporation rate comes for bigger values of Ml.

Energy flux far away form the Q ball

The next calculation we can do is the calculation of the energy flux far away from
the Q-ball. In the case where we consider the observer very far from the Q-ball
the only relevant coordinate is the distance to the Q-ball, we are in a one spacial
dimension case. The energy flux a distant observer can measure is given after
normalisation by M ,

dE

Mdtdσ
=
∫ +

ω0
2M

− ω0
2M

d(
ε

M
)

∣∣∣∣
α( ε

M
) sinh[2ik̄( ε

M
)l̄]

e
2ik( ε

M
) l̄ − ᾱ2

( ε
M

)e
−2ik( ε

M
) l̄

∣∣∣∣
2

(
ε

M
)2, (3.2.41)

this expression is obtained by computing the energy flux through a sphere con-
taining the Q ball. When the real part of kε equals zero the fraction becomes
equal to one. The result in this range will be proportional to ω3

0 [2, 32].
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Figure 3.2: Particle production rate in function of Ml and for a fixed value of
ω0

2M
= 0.5.

Results of numerical integration

We can now give the evaporation rate of a Q ball into massless fermions in
function of its internal frequency. In the first figure we can observe a limit in the
evaporation rate. The absolute upper bound can be computed using

dN

dt
≤
∫ +−ω0

2

−ω0
2

dε = ω0,

this absolute upper bound will be used to normalise the evaporation rate.

3.3 Using a Scattering-like Formalism

We shall this time use a different method which consists of expressing the whole
solution in function of the parameters on the left, instead of using the middle
ones. This formalism is the one we described in the previous chapter when we
studied the particle production from a Q ball using the formalism described in
[2], but we shall this time compute the value of the transmission and reflection
amplitudes. This time the matching conditions reads at z = −l :

(
CL

1

CL
2

)
=

(
ei(kε+ε)l αεe

−i(kε−ε)l

αεe
i(kε+ε)l e−i(kε−ε)l

)(
A
B

)
,

(
A
B

)
=

1

1− α2

(
e−i(kε−ε)l −αεe−i(kε−ε)l
−αεei(kε+ε)l ei(kε+ε)l

)(
CL

1

CL
2

)
,

(3.3.1)
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Figure 3.3: Particle production rate 2πdN
Mdt

as a function of ω0

2M
in the limit of very

big Ml parameter.
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Figure 3.4: Normalised particle production rate 2πdN
Mdt

1

upper bound as a function

of ω0

2M
in the limit of a very big Ml parameter.
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and at z = +l,
(
CR

1

CR
2

)
=

(
e−i(kε+ε)l αεe

i(kε−ε)l

αεe
−i(kε+ε)l ei(kε−ε)l

)(
A
B

)
.

(3.3.2)

Mixing these three relations gives the coefficients on the right in function of those
on the left,

(
CR

1

CR
2

)
=

1

1− α2

(
e−2ikεl − α2

εe
2ikεl −αεe−2ikεl + αεe

2ikεl

αεe
−2ikεl − αεe2ikεl e2ikεl − α2

εe
−2ikεl

)

The first component corresponds to a particle moving towards the right, while the
second component is a particle moving to the left. This is verified if the energy
is in the particle productive range ε ∈ [−ω0

2
; +− ω0

2
]. We shall now consider two

different cases depending if the particle is incident from the left hand side of the
Q ball or from the right hand side.

For the case where the particle is incident from the left hand side we have :
(
CL

1

CL
2

)
=

(
A
RL

)
,

(
CR

1

CR
2

)
=

(
TL
0

)
, (3.3.3)

leading to the system,

TL =
e−2ikεl − α2

εe
2ikεl

1− α2
A+

−αεe−2ikεl + αεe
2ikεl

1− α2
RL (3.3.4)

0 =
αεe
−2ikεl − αεe2ikεl

1− α2
A+

−α2
εe
−2ikεl + e2ikεl

1− α2
RL (3.3.5)

having for solution :

RL =
αε2 sinh[−2ikεl]

−e2ikεl + α2
εe
−2ikεl

(3.3.6)

TL =
(1− α2

ε)B

e2ikεl − α2
εe
−2ikεl

. (3.3.7)

For the second case where particle is incident from the right hand side we
have :

(
CL

1

CL
2

)
=

(
0
TR

)
,

(
CR

1

CR
2

)
=

(
B
RR

)
, (3.3.8)

leading to the system

RR =
αεe
−2ikεl + αεe

2ikεl

1− α2
TR (3.3.9)

B =
e2ikεl − α2

εe
−2ikεl

1− α2
TR (3.3.10)
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having for solution :

TR =
(1− α2

ε)B

e2ikεl − α2
εe
−2ikεl

(3.3.11)

RL =
αε2 sinh[−2ikεl]

−e2ikεl + α2
εe
−2ikεl

. (3.3.12)

Before we start building the solutions we can remark that the transmission am-
plitudes and the reflection amplitudes are the same for particles incident from
the left and the right hand side of the Q ball. A quick calculation shows that
the transmission amplitudes vanish for big ml, they are proportional to e−ml, all
these properties are quite normal. Let us now take a look at the solutions they
are :

Ψleft =

(
e−i(ε+

ω0
2

)tei(ε+
ω0
2

)zCL
1

ei(ε−
ω0
2

)tei(ε−
ω0
2

)z(CL
1 )?

)
(3.3.13)

Ψright =

(
e−i(ε+

ω0
2

)tei(ε+
ω0
2

)zCR
1

ei(ε−
ω0
2

)tei(ε−
ω0
2

)z(CR
1 )?

)
(3.3.14)

The total solution is a superposition of both cases with operator valued expansion
coefficients, on the left hand side the solution is,

ΨL =

(
e−i(ε+

ω0
2

)tei(ε+
ω0
2

)z

0

)
A

(3.3.15)

+

(
0

ei(ε−
ω0
2

)tei(ε−
ω0
2

)z

)
(RLA+ TRB)?

and on the right hand side,

Ψright =

(
e−i(ε+

ω0
2

)tei(ε+
ω0
2

)z

0

)
(TLA+RRB)

(3.3.16)

+

(
0

ei(ε−
ω0
2

)tei(ε−
ω0
2

)z

)
B?.

Quantisation of these solutions is very simple since they have all the properties
we need, they are continuous orthogonal and normalised. The calculations we
did in the previous section shown that the reflection coefficient was equal to one
in the case where ω0

2
≤M , this case is the total reflection case since the reflected

current is equal to the incident one. In order to have a orthogonal solution we
need to set A = B so the solution becomes continuous trough the Q ball and
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using the relation 3.1.12 we can show the orthogonality of solution, the terms
with principal values will vanish, we can then use equal time anti-commutation
relations for the Ψ-field and set A to be a standard particle operator. We shall
now build a Bogoliubov transformation between the incoming operators, in the
far past and the outgoing operators, in the far future. In the far past only the
incoming wave survives, while in the far future only the outgoing wave survives,
we find :

aout(ε−
ω0

2
) = R?a†in(ε+

ω0

2
) (3.3.17)

We now compute the number of particles produced in the far future it is :

< 0|a†outaout|0 >=
T

2π

∫ +
ω0
2

−ω0
2

|R|2dε. (3.3.18)

The T/2π factor in front of the integral is due to the smoothing out of delta
function (as in [2]), this result is the same as the one obtained in the previous
section. Now we know that we we have two different formalisms leading to the
same results.

3.4 Limit of current when the Q ball’s size is

infinite

In this section we shall compute exactly the limit of the current expression when
the size of Q ball becomes infinite, i.e. liml→∞ jL. Once it is done we can apply
our results to the 3⊕ 1 dimensional case and obtain analytical results.

3.4.1 Direct limit in the current expression

Using the fact that :

1− α2
ε = 1− ε2 −M2 + ε2 + 2kεε

M2

=
2ε(ε+ kε)

M2
=

2ε

M
αε (3.4.1)

we can write for the current expression,

jL =
1

4π
M +

1

2π

∫ ω0
2

M

sin2[2kεl]dε
4ε2

M2 + 4 sin2[2kεl]
, (3.4.2)

the only problem for taking the limit l→∞ is in the integral part. A few simple
manipulations allows us to write the integral term in the form :

sin2[2kεl]dε
4ε2

M2 + 4 sin2[2kεl]
=

1

4
[1− ε2/M2

ε2/M2 + sin2[2kεl]
] =,
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=
1

4
[1− 1

1 + M2

ε2
sin2[2kεl]

]. (3.4.3)

The problem we are left with is the calculation of the average of 1

1+M2

ε2
sin2[2kεl]

in

the limit l→∞. Using the development into Taylor series gives

1

1 + α sin2[xl]
=
∑

(α sin2[xl])n, (3.4.4)

once we expended the sine into exponential we only keep the terms leading to
non zero average that are the terms where the exponentials vanish we have

∑
(sin2[xl])n = . . .+

1

22n
(−1)nC2n

n (eixl)n(e−ixl)n + . . . =

= . . .+
1

22n

2n!

(n!)2
+ . . . (3.4.5)

the dots sand for the terms having zero average. We have then

<
1

1 + α sin2[xl]
>=

∑
αn

1

22n

2n!

(n!)2
=

1√
π

∑
αn

Γ(n+ 1/2)

n!
=

1√
1 + α

. (3.4.6)

Finally the expression for the current is only given by :

jL =
1

4π
ω0 + 2

∫ ω0
2

M

dε√
1 + M2

ε2

=

=
1

4π
ω0 + 2

∫ ω0
2

M

εdε√
ε2 +M2

=
1

4π
ω0 +

1

2

√
ε2 +M2

∣∣∣∣
ω0
2

M
(3.4.7)
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3.5 Summary of results

First of all, we found that particle production could only occur in a certain
range i.e. ε ∈ [−ω0

2
,+ω0

2
]. This range is the only one where we can build a non

trivial Bogolubov transformation between operators. It is also the range where
the ground state of theory is not the vacuum but a state where particles are
produced. This a very important result since it gives us integration bounds and
so we can nearly be sure that all kind of quantities we can compute are finite.
We shall derive another version of this range in the next chapter while working
with massive fermions. The reason for the existence of this range comes from the
Ω Matrix that shifts the energy of some components up while it shifts the energy
of the others down. The energy range is then the intersection of the two shifts
(a kind of level crossing).

The second result we found and that has to be mentioned is that the particle
production is in fact an evaporation since it does not depend on l at least in the
limit where ω0

2
< M and Ml→∞ which is the case since we used a smooth step

function as the Q ball profile. Finally we shall remember that the evaporation
rate is constant and proportional to ω0 for the case of an infinite Q ball in 1 ⊕
1 dimensions. Except for the power this result is in full accordance with the
literature on the subject [2, 32]. The presence of a power three in the current
expression is due to the fact that the computation was done in 3⊕ 1 dimensions.
This is the reason why we computed the energy flux far away from the Q ball.

In the last construction we made the computation of the evaporation rate
using a scattering like formalism. This was done to show the equivalence of both
formalisms. The main idea and difference of those two formalisms is that, in
the first calculation we build the Heisenberg field operator using the fact that no
particles move towards the Q ball. This first construction does not use any notion
of past or future but only of far away from the Q ball and inside the Q ball so the
interacting operators, inside the Q ball, can be linked to the free ones, far away
from the Q ball. The second construction uses a free wave packet superposition
as solution. In this last calculation the expansion coefficients are the matching
coefficients that are identified to reflection and transmission amplitudes.
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Chapter 4

Evaporation of Q balls into
massive fermions.

The evaporation of a Q-ball into massive fermions is more complicated than the
previous case. We can quite easily obtain the Heisenberg field operator but solving
the evaporation condition is a difficult task, even with only one space dimension.
So the method we are going to use is the same S-matrix based method used in
[2, 32]. This picture will need as starting point the expression of the solution as
a superposition of wave packets. It is done by expressing the motion equations in
matrix form and then expanding the solutions over the eigenfunctions. This gives
the separation into left and right movers. Choosing which wave is the incident
one, we can write the solution as

ΨL = [B1eip̄1xup̄1 +B2eip̄2xup̄2 + r1e−ip̄1xu−p̄1 + r2e−ip̄2xu−p̄4 ], (4.0.1)

ΨR = [t1eip̄1xup̄1 + t2eip̄2xup̄2 ], (4.0.2)

where the u’s and p̄’s describe the solution away from the Q-ball and the L, R
subscripts stand for the left- or right-hand side of the Q-ball. This solution has
two incident waves associated with particles or anti-particles moving towards the
Q-ball, giving two solutions. The reflected and transmitted waves are associated
with particles moving away from the Q-ball. The same construction is done on
the other side of the Q-ball, to give four solutions. Finally we obtain the total
solution as a superposition of these four solutions with the expansion coefficients
becoming operators. This canonical quantisation does not introduce any big
problem and can be done in a straightforward way. The next step will be to
consider that in the far past only the incoming wave survives, giving us a relation
between the operators in the far past and in the far future (where only outgoing
waves survive). The last step we shall do is to compute the number operator.

The only difficult task is the computation of reflection and transmission ampli-
tudes appearing in the solutions. Will shall provide two methods for calculating
these amplitudes. One method will consist in calculating all the scalar products

47
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of the motion eigenvectors, while the other one will consist in the diagonalisation
of the motion matrices. The results are fully consistent, and the two methods
serve to illustrate a variety of physical insights.

4.1 Solutions to the equations of motion

The last thing we want to do now is try and compute the particle production from
a Q-Ball into massive fermions. To do so we shall apply a different method as
before since we shall not use a solution in all space but rather use some matching
rules. We shall need both solutions inside and outside of the Q-Ball, we shall this
time quantify the free solutions (out side of Q-Ball) where their wave coefficients
are given by the matching rules. This method seems complicated but it allows us
to use a kind of S-Matrix formalism. The method we are going to use is exactly
the one used in the last section of previous chapter.

4.1.1 Preliminaries

Using the same Lagrangian as for the massless case and adding a Dirac coupling
with massive fermions, gives the Lagrangian :

L = ψ̄iγµ∂µψ + g(ψ̄Cψφ+ h.c.) +MD(x)ψ̄ψ. (4.1.1)

after a few manipulations we find for the equations of motion using two compo-
nent ψ-field, still in 1⊕ 1-dimensions.

(i∂0 + i∂z)ψ1 −Me−i
ω0
2
tψ?2 +MDψ2 = 0, (4.1.2)

(i∂0 − i∂z)ψ2 +Me−i
ω0
2
tψ?1 +MDψ1 = 0. (4.1.3)

We have this time four degrees of freedom because of the double coupling. Solving
this system will give us the solution inside the Q-Ball, which is the first step we
need to do. To solve these equations of motion we use the following ansatz

ψ1 = f1(z)ei(ε−
ω0
2

)t + f2(z)e−i(ε+
ω0
2

)t, (4.1.4)

ψ2 = g1(z)ei(ε−
ω0
2

)t + g2(z)e−i(ε+
ω0
2

)t. (4.1.5)

Leading to the four equations :

(−ε+
ω0

2
+ i∂z)f1(z)−Mg?2(z) +MDg1(z) = 0,

(ε+
ω0

2
+ i∂z)f2(z)−Mg?1(z) +MDg2(z) = 0,

(−ε+
ω0

2
− i∂z)g1(z) +Mf ?2 (z) +MDf1(z) = 0,

(ε+
ω0

2
− i∂z)g2(z) +Mf ?1 (z) +MDf2(z) = 0.
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Conjugating the second and the fourth equation, to only have the complex con-
jugation in f2 and in g2, gives

(−ε+
ω0

2
+ i∂z)f1(z)−Mg?2(z) +MDg1(z) = 0, (4.1.6)

(ε+
ω0

2
− i∂z)f ?2 (z)−Mg1(z) +MDg

?
2(z) = 0, (4.1.7)

(−ε+
ω0

2
− i∂z)g1(z) +Mf ?2 (z) +MDf1(z) = 0, (4.1.8)

(ε+
ω0

2
+ i∂z)g

?
2(z) +Mf1(z) +MDf

?
2 (z) = 0. (4.1.9)

These equations can easily be modified to reduce the numbers of parameters,
we divide all equations by M . We shall now re-write these equations, taking
f1(z) = Aeipz, f ?2 (z) = Beipz, g1(z) = Ceipz and g?2(z) = Deipz. After some
re-arrangement of the equations we obtain :

−ε−f1 −Mg?2 +MDg1 = pf1, (4.1.10)

ε−g1 −M?f ?2 −MDf1 = pg1, (4.1.11)

−ε+f ?2 +Mg1 −MDg
?
2 = pf ?2 , (4.1.12)

ε+g
?
2 +M?f1 +MDf

?
2 = pg?2, (4.1.13)

where ε− = ε− ω0

2
and ε+ = ε+ ω0

2
. This arrangement has the advantage that we

can now write the ψ-field in terms of four component spinnors in the way :

Ψ =




(
f1

g1

)

(
f ?2
g?2

)



. (4.1.14)

The idea of having four component spinnors is that now the fermion field contains
both energy components, just like the solution used in the previous chapter. The
other advantage is that this rearrangement leads to the standard four component
spinnor solution. The equations of motion become in matrix form,




−ε− MD 0 −M
−MD ε− −M 0

0 M −ε+ −MD

M 0 MD ε+




︸ ︷︷ ︸
M1




A
B
C
D


 = p




A
B
C
D


 . (4.1.15)

We shall now reduce the numbers of parameters by dividing by M we then have
:




−ε− MD 0 −1
−MD ε− −1 0

0 1 −ε+ −MD

1 0 MD ε+







A
B
C
D


 = Mp




A
B
C
D


 . (4.1.16)
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The fact that we have the M factor one the right hand side will allows us to
simplify the space components and replace l by Ml. All the parameters we are
left with now are all dimension less, we should read the matrix elements to be
all divided by M and thus dimensionless. Solving this system is finding the four
eigenvalues and eigenvectors of the M1 matrix. We can easily check that this
matrix can be obtained using the standard chiral representation of Dirac matrices
in 1⊕1 dimensions. When the M → 0 limit is taken the spinnors just become the
standard massive spinnors and the M1 matrix gives the standard free solution.

4.1.2 Solution inside the Q ball

Before finding the eigenvectors of the M1 matrix we can reduce the numbers of
parameters by dividing everything by M . We are then left with dimension less
parameters MD = MD/M and so on for all of the parameters. This simplification
is done so that in the end we shall have only two dimension less parameters MD

and ω0. The four eigenvalues of the M1 matrix are

p1,3 = ±
√
ε2 + ω2 − (M 2

D + 1)− 2kε

≡ ±p1 (4.1.17)

p2,4 = ±
√
ε2 + ω2 − (M 2

D + 1) + kε

≡ ±p2 (4.1.18)

with,

kε =
√
M2

D + ω2(ε2 − 1) (4.1.19)

The eigenvector coresponding to the first eigen value +p1 is :

vp1 =




− (1+εω+kε)
ε+p1

εω2−kε(ε+p1)+ω(1+kε−ε(ε+p1))
MD(ε+p1)

−kε+M2
D+ω(−ω+p1)

MD(ε+p1)

1




, (4.1.20)

the second eigenvector corresponding to the second eigen value +p2 is

vp2 =




− (1+εω−kε)
ε+p2

εω2+kε(ε+p2)+ω(1−kε−ε(ε+p2))
MD(ε+p2)

−−kε+M
2
D+ω(−ω+p2)

MD(ε+p2)

1




, (4.1.21)
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with ω = ω0

2
. The two last eigenvectors are given by:

vp3 = v−p1 vp4 = v−p2 . (4.1.22)

Inside the Q ball the static solution can be written in the form:

ΨQ =
4∑

j=1

Cjvje
ipjz, (4.1.23)

For reasons that will become clear later on, the first two terms of this solution
have positive momentum while the two last have negative momentum. This
arrangement does not modify the shape or any properties of the solution. Inside
the Q ball the time dependent solution is :

Ψ =
4∑

j=1

ei(ε−ω)tvuppi eip̄iz + e−i(ε+ω)t(vdownpi
eip̄iz)?, (4.1.24)

where the up superscript stands for the first two components of the eigenvectors,
while the down one indicates we take the two last components.

4.1.3 Solution without Q ball background.

Outside the Q ball the solution is given by the eigenvalues and eigenvectors of
the following matrix :




−ε− MD 0 0
−MD ε− 0 0

0 0 −ε+ −MD

0 0 MD ε+




︸ ︷︷ ︸
M0




A
B
C
D


 = p




A
B
C
D


 . (4.1.25)

The matrix and all its parameters are defined with respect to the division by M ,
so they are all dimension less. The eigenvalues are this time given by :

p̄1,3 = ±
√
ε2− −M2

D ≡ ±p̄1, (4.1.26)

p̄2,3 = ±
√
ε2+ −M2

D ≡ ±p̄2, (4.1.27)

and the eigenvectors are this time,

up̄1 =




ε−−p̄1

MD

1
0
0



, up̄2 =




0
0

−ε++p̄2

MD

1



, (4.1.28)

up̄3 = u−p̄1 , up̄4 = u−p̄2 (4.1.29)
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ε

−ω0
2

+MD

ε

0 0

ω0
2
−MD

ω0
2

+MD

−ω0
2
−MD

Figure 4.1: Sketch of the possible ranges for ε

Once again all the parameters are dimensionless since we have to read them as
being divided by M , the Majorana mass coupling. Here the p̄1,2 momentum can
be complex or real. If we want some particle to propagate outside Q ball we need
both p̄1,2 to be real, it gives for ε

|ε−| ≥MD

to solve this we must identify two cases, the first case is,

ε− ≥ 0⇒ ε ≥ ω0

2

ε− ≥MD ⇒ ε ≥MD +
ω0

2
>
ω0

2

the last inequality is verified if ω0

2
≥MD the second case is,

ε− ≤ 0⇒ ε ≤ ω0

2

−ε− ≥MD ⇒
ω0

2
≥ ω0

2
−MD ≥ ε.

once more the last inequality is valid when ω0

2
≥ MD. A similar calculation for

|ε+| ≥MD gives :

ε ≥MD −
ω0

2
and ε ≤ −MD −

ω0

2
(4.1.30)

The only way to avoid the gaps and have the two waves (both p1 and p2) is for
ε to be in the range :

ε ∈ [MD −
ω0

2
,
ω0

2
−MD]. (4.1.31)

Where we also have :

ω0

2
≥MD (4.1.32)

This range is the equivalent as the range defined for the massless case. The
solution outside the Q ball can also be written in the form

Ψ0 =
4∑

j=1

(Aj, Bj)uje
ip̄jz, (4.1.33)
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this time the Bj coefficients are on the left-hand side of Q ball while the Aj are
on the right hand side. The time dependent solution is once more given by,

Ψ =
4∑

j=1

ei(ε−ω)tuuppi eip̄iz + e−i(ε+ω)t(udownpi
eip̄iz)?, (4.1.34)

4.1.4 Symmetry and Normalisation

In order to have all the properties we need to perform quantisation, these eigen-
vectors need some orthogonality properties to find them we need to take a look
at the symmetry of the matrices M0 and M1, a quick look and a few simple
calculations show that :

τM0,1τ = MT
0,1, (4.1.35)

where

τ =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 , (4.1.36)

τ 2 = 11, (4.1.37)

and the T superscript stands for transposition of matrices. Starting from the
standard relations for the eigenvectors we can write :

MΨi = piΨi

MΨj = pjΨj

Taking the transpose of the first relation gives :

ΨT
i M

T = piΨ
T
i ,

and multiplying on the right by τ we obtain,

ΨT
i M

T τ = piΨ
T
i τ

ΨT
i τM = piΨ

T
i τ

where we used the symmetry relation for the last step. We can now multiply by
ψj on both sides to obtain the orthogonality relation of the eigenvectors we have
:

ΨT
i τ MΨj︸ ︷︷ ︸

pjΨj

= piΨ
T
i τΨj ,
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this final relation leads to the orthogonality relation of the eigenvectors defined
by :

uTi τuj = vTi τvj = τii, (4.1.38)

Orthogonality of vectors is easy to verify, even if the calculations involved might
seem difficult, every thing is straightforward. The normalisation constants needed
to obtain the proper form containing the ones in the diagonal matrix τ are simply
given by :

Ni = τii[v
2
i1 − v2

i2 + v2
i3 − v2

i4]. (4.1.39)

The first subscript stands for the eigenvector while the second one stands for the
component. The same definition stands for the uj eigenvectors:

N̄i = τii[u
2
i1 − u2

i2 + u2
i3 − u2

i4]. (4.1.40)

The solutions are now with the normalised vectors :

ΨQ =
4∑

j=1

Cj
vj√
Nj

eipjz, (4.1.41)

Ψ0 =
4∑

j=1

(Aj, Bj)
uj√
N̄j

eip̄jz. (4.1.42)

To simplify the writing we can redefine the eigenvectors in the way :

ũj =
uj√
N̄j

, (4.1.43)

ṽj =
vj√
Nj

(4.1.44)

so the solutions are

ΨQ =
4∑

j=1

Cj ṽje
ipjz, (4.1.45)

Ψ0 =
4∑

j=1

(Aj, Bj)ũje
i√
2
p̄jz. (4.1.46)

The way we normalised the vectors is just a choice we made, one could easily
imagine other ways to normalise the eigenvectors as long as we keep the orthogo-
nality relations. We shall reconsider later on the choices we can make to normalise
these vectors, the proper choice can be made in order to have orthogonality of the
solutions. At this point with the solution we have we can construct a conserved
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current. Equations of motion 4.1.6-4.1.9 can be written in terms of M1 matrix
and Ψ-field, in the form :

i∂zΨ = −M1Ψ, (4.1.47)

−i∂zΨ† = −Ψ†MT
1 . (4.1.48)

Using these two relations we shall construct the conserved current we write,

∂z[Ψ
†oΨ] = ∂zΨ

†oΨ + Ψ†o∂zΨ,

= −iΨ†MT
1 oΨ + iΨ†oM1Ψ,

= iΨ†[oM1 −MT
1 o]Ψ,

Using now the relation 4.1.35 we can write :

∂z[Ψ
†τΨ] = 0. (4.1.49)

This expression is the conserved current that will give the unitarity conditions for
the S-Matrix. This current can be used to construct a normalisable solution, but
as we shall see later on it is simpler to consider the anti-commutation relations
of the fermionic operators.

4.2 Construction of diffusion matrix

We want to construct the matrix linking the solution at z = −∞ to the solution
at z = +∞. We are searching for the matrix:




B1

B2

B3

B4


 = V




A1

A2

A3

A4


 (4.2.1)

4.2.1 Matching in space

We first start by matching the solutions at z = −l we have:

B1up̄1e−ip̄1l +B2up̄2e−ip̄2l +B3up̄3e−ip̄3l +B4up̄4e−ip̄4l =

C1vp1e−ip1l + C2vp2e−ip2l + C3vp3e−ip3l + C4vp4e−ip4l (4.2.2)

We redefine the Bi and the Ci in the way

B̃i = Bie
−ip̄il, (4.2.3)

C̃i =
Ci√
Ni

(4.2.4)
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Using the redefinition for the B’s and the redefinition of the C’s we can write,
multiplying equation 4.2.11 by ũTi τ :

B̃iu
T
pi
τupi =

4∑

j=1

uTi τvje
−ipj lC̃j, (4.2.5)

Doing the same for all the B’s and writing down all the relations in matrix form
we obtain :

U




B̃1

B̃2

B̃3

B̃4




= SE




C̃1

C̃2

C̃3

C̃4



, (4.2.6)

with,

S =




uT1 τv1 uT1 τv2 uT1 τv3 uT1 τv4

uT2 τv1 uT2 τv2 uT2 τv3 uT2 τv4

uT3 τv1 uT3 τv2 uT3 τv3 uT3 τv4

uT4 τv1 uT4 τv2 uT4 τv3 uT4 τv4


 , (4.2.7)

E =




e−ip1l 0 0 0
0 e−ip2l 0 0
0 0 e−ip3l 0
0 0 0 e−ip4l


 , (4.2.8)

and

U =




uTp̄1
up̄1 0 0 0
0 uTp̄2

up̄2 0 0
0 0 uTp̄3

up̄3 0
0 0 0 uTp̄4

up̄4


 , (4.2.9)

We can then write for the expression we obtain at z =l




B1

B2

B3

B4


 = U−1SE




C1

C2

C3

4


 . (4.2.10)

At z = +l we have:

A1up̄1e−ip̄1l + A2up̄2e−ip̄2l + A3up̄3e−ip̄3l + A4up̄4e−ip̄4l =

C1vp1e−ip1l + C2vp2e−ip2l + C3vp3e−ip3l + C4vp4e−ip4l (4.2.11)
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We use the same redefinition as for the B’s, leads this time to :

U




A1

A2

A3

A4


 = SE ′




C1

C2

C3

C4


 , (4.2.12)

with

E =




eip1l 0 0 0
0 eip2l 0 0
0 0 eip3l 0
0 0 0 eip4l


 , (4.2.13)

Mixing up these two relations we obtain for the total transformation matrix V
the following relation :




B1

B2

B3

B4


 = U−1SEE ′−1

S−1U




A1

A2

A3

A4


 . (4.2.14)

A little more calculation shows that,

EE ′−1
=




e−2ip1l 0 0 0
0 e−2ip2l 0 0
0 0 e−2ip3l 0
0 0 0 e−2ip4l


 ≡ E (4.2.15)

where we can easily show that :

[E, τ ]− = 0. (4.2.16)

As we shall find out later on the last form is a transformation that allows us to
diagonalise the M1 matrix. Using this matrix we shall construct all the reflection
and diffusion coefficients for all the waves moving inside and outside of the Q
ball. Before we continue we need to remember that p3 = −p1 and p4 = −p2 for
both sets of p’s (bared ones and no bar ones). We see here that the choice for
normalisation of eigenvectors will just act on the U matrix that can be either the
identity or the τ matrix or any other choice we can make. Finally the diffusion
matrix V we where looking for is given by :

V = U−1SES−1U. (4.2.17)
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4.2.2 Construction of reflection and transmission ampli-
tudes

We shall first construct the reflection and transmission amplitudes from the left
side to the right hand side of the Q ball. To do so we shall use the definition
of the V matrix given by equation 4.2.1. As we already mentioned the first two
coefficients are linked to positive moving waves while the last two coefficients are
linked to negative moving waves. Due to the shape of the u spinnors and the Ω
matrix in front the first and the third coefficients of the free solution have the
same energy while the second and the fourth coefficients correspond to another
energy wave. We shall identify these two energy ranges to the type one particles
(1) and type two particles (2). Using equation 4.2.1 and separating the matrix
into four two by two blocs we can write :




→
→
r1

r2


 =

(
V11 V12

V21 V22

)



t1
t2
0
0


 , (4.2.18)

where the two arrows stand for the incoming waves, the first two coefficients will
be replaced by one. Using the bloc separation of the matrix we find :

(
→
→

)
= V11

(
t1
t2

)
, (4.2.19)

(
r1

r2

)
= V21

(
t1
t2

)
, (4.2.20)

leading to
(
t1
t2

)
= V−1

11︸︷︷︸
T

(
→
→

)
, (4.2.21)

(
r1

r2

)
= V21V−1

11︸ ︷︷ ︸
R

(
→
→

)
. (4.2.22)

The R and T matrices give the reflection and transmission amplitudes when
they are applied on the incoming wave coefficients. These two matrices are two
by two the first line corresponding to transmission or reflection of particles with
the two different incoming waves, while the second line gives the coefficients for
anti-particles. We shall construct the transmission and reflection coefficients from
the right to the left hand side of Q ball. Using the same method as before we
have this time :




0
0
t̃1
t̃2


 =

(
V11 V12

V21 V22

)



r̃1

r̃2

←
←


 , (4.2.23)
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leading this time to

(
0
0

)
= V11

(
r̃1

r̃2

)
+ V12

(
←
←

)
, (4.2.24)

(
t̃1
t̃2

)
= V21

(
r̃1

r̃2

)
+ V22

(
←
←

)
. (4.2.25)

Solving these two equations gives the reflection and transmission matrices for
incoming particles from the left, they are :

R̃ = −V12V−1
11 , (4.2.26)

T̃ = V22 − V21V−1
11 V12 (4.2.27)

The next thing to do will be to compute the reflection and transmission coeffi-
cients from inside the Q ball.

4.2.3 Reflection and transmission amplitudes on the Q
ball’s surface

Using the results of matching at x = −l we can write




→
→
r1

r2


 = U−1SE︸ ︷︷ ︸

M




t1
t2
0
0


 , (4.2.28)

leading to




→
→
r1

r2


 =

(
M11 M12

M21 M22

)



t1
t2
0
0


 , (4.2.29)

giving for the reflection and transmission matrices :

(
t1
t2

)
=M−1

11

(
→
→

)
= Tl

(
→
→

)
(4.2.30)

(
r1

r2

)
=M21M−1

11

(
→
→

)
= Rl

(
→
→

)
. (4.2.31)

These Rl and Tl matrices represent the reflection and transmission amplitudes on
the left boundary of the Q ball for incident particles coming from the left hand
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side of the Q ball. We shall now compute the amplitudes when incident particles
come from inside the Q ball, we write :




0
0
t̃1
t̃2


 =

(
M11 M12

M21 M22

)



r̃1

r̃2

←
←


 , (4.2.32)

leading to

(
r̃1

r̃2

)
= −M−1

11M12︸ ︷︷ ︸
R̃l

(
←
←

)
, (4.2.33)

and
(
t̃1
t̃2

)
= M21

(
r̃1

r̃2

)
+M22

(
←
←

)

= (−M21M−1
11M12 +M22)︸ ︷︷ ︸
T̃l

(
←
←

)
(4.2.34)

We now have the reflection and transmission amplitudes on the left boundary
for particles coming from inside or outside of the Q ball. We now need these
coefficients on the other boundary if we want to use them for later calculations,
the same construction we stand on the other boundary, we write :




t̃1
t̃2
0
0


 = U−1SE ′︸ ︷︷ ︸

M̄




→
→
r̃1

r̃2


 , (4.2.35)

for particles coming from inside the Q ball, leading to the same development,




t̃1
t̃2
0
0


 =

(
M̄11 M̄12

M̄21 M̄22

)



→
→
r̃1

r̃2


 , (4.2.36)

giving for result

(
t̃1
t̃2

)
= M̄−1

11

(
→
→

)
= T̃r

(
→
→

)
(4.2.37)

(
r̃1

r̃2

)
= M̄−1

11 M̄21

(
→
→

)
= R̃r

(
→
→

)
. (4.2.38)
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The tilde has been used to indicate that we consider the coefficients for particles
travelling form inside to outside of the Q ball. We shall now compute the last
pair of coefficients, those for particles moving towards the Q ball. We have this
time :




0
0
t1
t2


 =

(
M̄11 M̄12

M̄21 M̄22

)



←
←
r1

r2


 , (4.2.39)

finally giving for the last coefficients :

(
r1

r2

)
= M̄−1

12 M̄11︸ ︷︷ ︸
Rr

(
←
←

)

(
t1
t2

)
= (M̄21 − M̄22M̄−1

12 M̄11)︸ ︷︷ ︸
Tr

(
←
←

)
. (4.2.40)

All these calculations need some more explanations. We computed four pairs
of reflection and transmission coefficients, two on the left boundary, with the
l subscript, and two on the right boundary, the r subscript. We also had to
consider the origin of the incident particle, if its origin was outside the Q ball or
inside it, having the tilde expressions. All of these calculations where motivated
the fact that the solution to the equations of motion depend on four parameters,
the four column vectors. As we mentioned in the preceding section it was better
to arrange the eigen-vectors, in the way that the first two correspond to positive
movers.



62CHAPTER 4. EVAPORATION OF Q BALLS INTO MASSIVE FERMIONS.

First case Second case

Figure 4.2: Sketch of both cases used to build the solution : we have each time
two incident particles, two reflected and two transmitted. It is an effect of mas-
sive particles because we can not identify any more the particles with the anit-
particles.

4.3 Construction of solution

4.3.1 Standard solution

Using the transmission and reflection coefficients we can identify two different
cases the first case is when incident particles are on the left hand side of the
Q ball, while the other case stands for incident particles coming from the right
hand side (see fig. 4.2). We shall treat separately the solution on the left and the
solution on the right, the matching coefficients are those found in the previous
section, they link the expansion coefficients on the right to those on the left.
Writing down these two possibilities we have :

ΨL = [B1eip̄1xup̄1 +B2eip̄2xup̄2 + r1e−ip̄1xu−p̄1 + r2e−ip̄2xu−p4 ], (4.3.1)

ΨR = [t1eip̄1xup̄1 + t2eip̄2xup̄2 ], (4.3.2)

for the first case, the two incident particles coming from the left hand side of the
Q ball and

ΨL = [t̃1e−ip̄1xu−p̄1 + t̃2e−ip̄2xu−p̄2 ], (4.3.3)

ΨR = [r̃1eip̄1xup̄1 + r̃2eip̄2xup̄2 + A1e−ip̄1xu−p̄1 + A2e−ip̄2xu−p̄2 ], (4.3.4)

for the second case. In both of these definitions we have :
(
r1

r2

)
= R

(
B1

B2

) (
t1
t2

)
= T

(
B1

B2

)
, (4.3.5)

(
r̃1

r̃2

)
= R̃

(
A1

A2

) (
t̃1
t̃2

)
= T̃

(
A1

A2

)
. (4.3.6)

To clearly understand the construction, the B’s are the incident amplitudes from
the left while the A’s are the amplitudes from the right. The 1 and 2 subscript in-
dicate the type of particle we are dealing with, we have two different exponentials
in Ω(t). We then need to take the complex conjugate of the terms corresponding
to the two last components of spinnors. To continue building the solution we
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still need to separate each of these two cases in two, considering only one type of
incident particle at the time. This construction leads to the four following pieces,
that will be identified to the four degrees of freedom that our solution has :

ΨL = [eip̄1xup̄1 + r11e−ip̄1xu−p̄1 ] + [r12e−ip̄2xu−p̄2 ], (4.3.7)

ΨR = [t11eip̄1xup̄1 ] + [t12eip̄2xup̄2 ], (4.3.8)

for the one incident type one particle from the left and

ΨL = [r21e−ip̄1xu−p̄2 ] + [eip̄2xup̄2 + r22e−ip̄2xu−p̄2 ], (4.3.9)

ΨR = [t21eip̄1xup̄1 ] + [t22e−ip̄2xup̄2 ], (4.3.10)

for an incident type two particle. The coefficients are given by :

(
r11

r12

)
= R

(
1
0

) (
t11

t12

)
= T

(
1
0

)
, (4.3.11)

(
r21

r22

)
= R

(
0
1

) (
t21

t22

)
= T

(
0
1

)
. (4.3.12)

The two other pieces for particles incident from the right we have :

ΨL = [t̃11e−ip̄1xu−p̄1 ] + [t̃12e−ip̄2xu−p̄2 ], (4.3.13)

ΨR = [r̃11eip̄1xup̄1 + e−ip̄1xu3] + [r̃12e−ip̄2xu2], (4.3.14)

for one incident type one particle from the right and

ΨL = [t̃21e−ip̄1xu−p̄1 ] + [t̃22e−ip̄2xu−p̄2 ], (4.3.15)

ΨR = [r̃21eip̄1xup̄1 ] + [r̃22e−ip̄2xup̄2 + e−ip̄2xu−p̄2 ], (4.3.16)

for an incident type two particle and finally the coefficients are given by :

(
r̃11

r̃12

)
= R̃

(
1
0

) (
t̃11

t̃12

)
= T̃

(
1
0

)
, (4.3.17)

(
r̃21

r̃22

)
= R̃

(
0
1

) (
t̃21

t̃22

)
= T̃

(
0
1

)
. (4.3.18)

If we want to easily remember the coefficients there is an easy trick. For the
coefficients without the tilde we read the subscript from the left to the right, r21

is the coefficient for an incident type two particle being reflected as a type one
particle and for the tilde ones the reading is the same except that this time the
particle are incident from the left.
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4.3.2 Quantisation and Bogoliubov transformations

Quantisation of solution is now easy, the total quantised solution will be a linear
combination of all four parts, with expansion coefficients becoming operators
after the normalisation is made. The solution is given by :

Ψ =
4∑

j=1

ei(ε−
ω0
2

)tuuppi eip̄iz + e−i(ε+
ω0
2

)t(udownpi
eip̄iz)?, (4.3.19)

in our case only the eigenvectors corresponding to the p̄1 eigenvalue have up com-
ponents, while only the eigenvectors corresponding to p̄2 have down components.

ΨL = ei(ε−
ω0
2

)t[eip̄1xuupp̄1
+ r11e−ip̄1xuup−p̄1

] + ei(ε+
ω0
2

)t[r12e−ip̄2xup̄2 ], (4.3.20)

incident particle is the wave containing up̄1 , all this superposition must be rep-
resented using the same operator so we are sure to have only four degrees of
freedom. Quantisation will be done using energy, for the incident wave we have :

ei(ε−
ω0
2

)tu1 → ε− ω0

2
≥MD, (4.3.21)

→ ε ≥MD +
ω0

2
, (4.3.22)

leading for this first wave to

ΨL =
∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[eip̄1xuup1 + r11e−ip̄1xuup3 ] +

ei(ε+
ω0
2

)t[r12e−ip̄2x(udown−p̄2
)?]}b†(p̄1), (4.3.23)

after the conjugation of the term proportional to ei(ε+
ω0
2

)t we have,

ΨL =
∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[eip̄1xuupp̄1
+ r11e−ip̄1xuup−p̄1

]b†p̄1
+

e−i(ε+
ω0
2

)t[r?12eip̄
?
2x(udown−p̄2

)?]bp̄1}. (4.3.24)

Applying the same method to all the terms we finally obtain for the total solution
having four degrees of freedom :

Ψ =

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[eip̄1xuupp̄1
+ r11e−ip̄1xuup−p̄1

]b†p̄1
+ e−i(ε+

ω0
2

)t[r?12eip̄
?
2x(udown−p̄2

)?]bp̄1},

+

∫ ∞

MD−ω0
2

dε{ei(ε−
ω0
2

)t[r21e−ip̄1xuup−p̄1
]a†p̄2

+ e−i(ε+
ω0
2

)t[e−ip̄
?
2xu?p̄2

+ r?22eip̄
?
2x(udown−p̄2

)?]ap̄2},

+

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[t̃11e−ip̄1xuup−p̄1
]b†−p̄1

+ e−i(ε+
ω0
2

)t[t̃?12eip̄
?
2x(udown−p̄2

)?]b−p̄1},

+

∫ ∞

MD−ω0
2

dε{ei(ε−
ω0
2

)t[t̃21e−ip̄1xuup−p̄1
]a†−p̄2

+ e−i(ε+
ω0
2

)t[t̃?22eip̄
?
2x(udown−p̄2

)?]a−p̄2}.
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The upper integration bound is ω0

2
− MD so we are only left with the terms

containing the a operators,

ΨL =
∫ ω0

2
−MD

MD−ω0
2

dε{ei(ε−
ω0
2

)t[r21e−ip̄1xuup−p̄1
]a†p̄2

+ e−i(ε+
ω0
2

)t[e−ip̄
?
2x(udownp̄2

)? + r?22eip̄
?
2x(udown−p̄2

)?]ap̄2},

(4.3.25)

+
∫ ω0

2
−MD

MD−ω0
2

dε{ei(ε−
ω0
2

)t[t̃21e−ip̄1xuup−p̄1
]a†−p̄2

+ e−i(ε+
ω0
2

)t[t̃?22eip̄
?
2x(udown−p̄2

)?]a−p̄2}.

One interesting result can be found here is that like in the massless case if we
change the sign of ω0

2
we change the particle type since we change the operator

type. For the moment the a coefficients are only expansion coefficients since we
have not quantised the wave yet. At t = +∞ only the terms without any incident
wave will survive we have then

r?22a(p̄2) + t̃?22a(−p̄2) + r21a
†(p̄2) + t̃12a

†(−p̄2) = aout(p̄2), (4.3.26)

this is the Bogoliubov transformation we where looking for. If we want the aout
coefficient to be a operator we need to check that it satisfies the same anti-
commutation relations as ain. We have :

{(a†out)′, aout} =
(
(r?21)′ap̄′2 + (r?22)′a†p̄′2

+ (t̃?21)′a−p̄′2 + (t̃?22)′a†−p̄′2

)

×
(
(r12)a†p̄2

+ (r22)ap̄2 + (t̃21)a†−p̄2
+ (t̃22)a−p̄2

)

=
(
(r?21)′r21 + (r?22)′r22 + (t̃?21)′t̃21 + (t̃?22)′t̃22

)
{(a†in)′, ain}

This relation can also be obtained if we set that the incident current is equal to
the outgoing one, or even with the normalisation of wave packets. At this stage it
can be important to use some normalised eigenvectors, as will shall show later on
it is always the case if we diagonalise the matrix outside the Q ball. The number
of created particles is now given by

in < 0|a†outaout|0 >in=

(
|r21|2 + |t̃21|2

|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2
)
δ(ε− ε′). (4.3.27)

We need to smooth out this result, to do so we shall use the same argument as
[2] to finally obtain

dN

dt
=

1

2π

∫ ω0
2
−MD

MD−ω0
2

(
|r21|2 + |t̃21|2

|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2
)
dε. (4.3.28)

Since we are dealing with a Bogoliubov transformation we have
(

|r21|2 + |t̃21|2
|r21|2 + |r22|2 + |t̃21|2 + |t̃22|2

)
≤ 1 (4.3.29)

dN

dt
≤ ω0 − 2MD (4.3.30)
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In fact the best thing to do is to consider the solution in all space on the left
and on the right instead of considering only one side. To do so we just need
to consider an incident particle on the left and build the solution without tilde
factors. The rest of the procedure is the same we have,

ΨL =
∫ ω0

2
−MD

MD−ω0
2

dε{ei(ε−
ω0
2

)t[r21e−ip̄1xuup−p̄1
]a†p̄2

+ e−i(ε+
ω0
2

)t[e−ip̄
?
2x(udownp̄2

)? + r?22eip̄
?
2x(udown−p̄2

)?]ap̄2},

(4.3.31)

+
∫ ω0

2
−MD

MD−ω0
2

dε{ei(ε−
ω0
2

)t[t21eip̄1xuupp̄1
]a†−p̄2

+ e−i(ε+
ω0
2

)t[t?22e−ip̄
?
2x(udownp̄2

)?]a−p̄2},

this time leading to

dN

dt
=

1

2π

∫ ω0
2
−MD

MD−ω0
2

(
|r21|2 + |t21|2

|r21|2 + |r22|2 + |t21|2 + |t22|2
)
dε, (4.3.32)

after normalisation of operators. These results seem to be correct because when
the fermions become massless there is identification of both types of produced
particles so the total coefficient becomes equal to one as in the previous chapter
and there is total reflection. What we shall now as a last verification do a few
variable changes1, first we shall do the change ε− ω0

2
= ε′ in the terms containing

ei(ε−
ω0
2

)t and the change ε+ ω0

2
= ε′ in the ones containing ei(ε+

ω0
2

)t we obtain:

Ψ1 =
∫ −ω0+MD

−MD

dε{ei(ε′)t[r21(ε′ +
ω0

2
)e−ip̄1(ε′+ω0

2
)xuup− ¯p1(ε′+ω0

2
)
]a†
p̄2(ε′+ω0

2
)

(4.3.33)

+ ei(ε
′)t[t̃12(ε′ +

ω0

2
)e−ip̄1(ε′+ω0

2
)xuup−p̄1(ε′+ω0

2
)
]a†−p̄2(ε′+ω0

2
)
}

Ψ2 =
∫ ω0−MD

MD

dε{e−i(ε′)t[e−ip̄?2(ε′−ω0
2

)x(udownp̄2(ε′−ω0
2

))
?

+ r?22(ε′ − ω0

2
)eip̄

?
2(ε′−ω0

2
)x(udown−p̄2(ε′−ω0

2
))
?]ap̄2(ε′−ω0

2
)

(4.3.34)

+ e−i(ε
′)t[t̃?22(ε′ − ω0

2
)eip̄

?
2(ε′−ω0

2
)x(udown−p̄2(ε′−ω0

2
))
?]a−p̄2(ε′−ω0

2
)}.

Remembering the expressions for p1,2 we see that this variable change identifies
p1 and p2 so we write,

Ψ1 =
∫ −MD

−ω0+MD

dε{ei(ε′)t[r21(ε′ +
ω0

2
)e−ip̄xuup−p̄]a

†
p̄

(4.3.35)

+ ei(ε
′)t[t̃12(ε′ +

ω0

2
)e−ip̄xuup−p̄]a

†
−p̄}

1These variable changes will help us the next chapter to study particle diffusion on a Q ball.
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Ψ2 =
∫ ω0−MD

MD

dε{e−i(ε′)t[e−ip̄?x(udownp̄ )? + r?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]ap̄

(4.3.36)

+ e−i(ε
′)t[t̃?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]a−p̄},

with p̄ =
√

(ε′)2 −M2
D. We shall now change the sign of ε′ in the first integral to

obtain,

Ψ1 =
∫ +ω0−MD

MD

dε{e−i(ε′)t[r21(−ε′ + ω0

2
)e−ip̄xuup−p̄]a

†
p̄

(4.3.37)

+ e−i(ε
′)t[t̃12(−ε′ + ω0

2
)e−ip̄xuup−p̄]a

†
−p̄}

Ψ2 =
∫ ω0−MD

MD

dε{e−i(ε′)t[e−ip̄?x(udownp̄ )? + r?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]ap̄

(4.3.38)

+ e−i(ε
′)t[t̃?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]a−p̄}.

The last thing we shall do is replace a−p by a†p and a†−p by ap, so we finally obtain,

Ψ1 =
∫ +ω0−MD

MD

dε{e−i(ε′)t[r21(−ε′ + ω0

2
)e−ip̄xuup−p̄ + t̃?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]a†p̄

(4.3.39)

+ e−i(ε
′)t[t̃12(−ε′ + ω0

2
)e−ip̄xuup−p̄ + e−ip̄

?x(udownp̄ )? + r?22(ε′ − ω0

2
)eip̄

?x(udown−p̄ )?]ap̄}.

In most cases after these variable changes are done the up and down components
of eigenvectors identify, so the solution has an even simpler form. This work was
done to link complicated solution we had with a simpler one. We now clearly
see that particle production produces only one type of particles, fermions in our
case, the energy range is bounded and starts on the mass shell. The thing we
notice is that the incoming wave is proportional to u−p while the outgoing one is
proportional to up. These eigenvectors act like projectors on the incoming and
outgoing operators, this the reason why we normalised both states separately,
this orthogonality ensures us also the anticommutation of in and out operators.
The last thing to do would be to pass from ε′ to p for the quantisation. This last
variable change will separate both energy ranges and double the solution, which
means we shall have to find some selection rules to avoid double counting of the
solutions. To keep the solution in a simple shape we shall continue working using
the energy as integration variable, the only interesting component of the momen-
tum will be in the radius direction, so the approximation of a one dimensional
problem will be the most realistic one. When we shall to the extension to 3⊕ 1
dimensions since we will consider the case where we are far away from the Q ball
this approximation will be quite satisfactory.
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4.3.3 Simplifications

The important simplification we wish to make is the limit l → ∞, if this limit
can be done we are in a case where the Q ball becomes a wall. This limit has
also the advantage that the extension to 3⊕1 dimension becomes a simple thing.
The other thing we to need to care about while doing this limit is the place in our
calculations where the l appears, it is only in the inside propagator (E eq. 4.2.8).
Due to the shape of this propagator when the eigenvalues of the momentum
are complex we only have increasing and decreasing exponentials, so the limit
is a trivial thing to take we set the decreasing exponentials to zero and with a
normalisation we eliminate the increasing ones. Taking a look at the definition
of the eigenvalues inside the Q ball p1,2,3,4,

p1,3 = ±
√
ε2 + Ω0 − (M 2

D + 1)− 2kε

≡ ±p1 (4.3.40)

p2,4 = ±
√
ε2 + Ω0 − (M 2

D +M2) + 2kε

≡ ±p2 (4.3.41)

with,

kε =
√
M2

D + Ω2
0(ε2 − 1), (4.3.42)

it is easy to find the range where they are complex. If kε is complex the eigen-
values become complex so the exponential in the propagator will become real and
a part of it will go to zero when we the limit l →∞ is done. We have :

M2
D + Ω2

0(ε2 −M2) ≤ 0 (4.3.43)

|ε| ≤
√√√√1− M2

D

Ω2
0

, (4.3.44)

since we have Ω0 ≥ MD the term on the right is always real, in this range we
shall introduce

kε = i
√

Ω2
0(1− ε2)−M 2

D = ik′ε, (4.3.45)

p1,3 = ±(a− ik′ε)
1
2 a = ε2Ω2 −M2

D − 1, (4.3.46)

with k′ε always positive. We can continue the simplifications by writing

a+ ik′ε = r(cos(φ) + i sin(φ)) (4.3.47)

r = a2 + κ′2ε ; φ = arcsin(k′ε/r). (4.3.48)

where φ ∈ [0;−π] since k′ε is positive (p1,3 are in the lower half complex plane).
We then obtain for p1,3

p1,3 = ±√r(cos(φ/2)− i sin(φ/2)), (4.3.49)
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and for p2,4

p2,4 = ±√r(cos(φ/2) + i sin(φ/2)). (4.3.50)

where sin(φ/2) ∈ [0; 1]. With these simplifications and the limit l → ∞ the
propagator is just :

E =




0 0 0 0
0 e−iγl 0 0
0 0 eiγl 0
0 0 0


 , (4.3.51)

with γ =
√
r cos(φ/2) and the L factor is still here but as we shall see later

on it will disapear, the normalisation is done by multiplying the propagator by
e
√
r sin(φ/2)l was done to eliminate the increasing exponentials. When we shall use

the symmetry of the different matrices this simplification will be of great help to
obtain simple and easy to understand results. In fact we do not explicitly need
l to become infinite but just big enough so the exponentials can be neglected,
since we deal with square exponentials they decrease even faster then we need.

4.4 Direct construction of S Matrix

Using the shape of the different matrices we deal with we think there is a simpler
way to construct the diffusion matrix. In fact all the matrices of motion equations
can be diagonalised using simple transformations that preserve the symmetry
of the problem. If the matrices can be diagonalised the eigenvectors will have
automatic orthogonality and normalisation properties.

4.4.1 Diagonalisation of matrices

Taking a look at the M0 matrix defined in eq. 4.1.25 we can diagonalise it using
the Lorentz boost-transformation :

M ′
0 = τvT1 τM0v1, (4.4.1)

with,

v1 =




cosh(x1) sinh(x1) 0 0
sinh(x1) cosh(x1) 0 0

0 0 cosh(x2) − sinh(x2)
0 0 − sinh(x2) cosh(x2)


 , (4.4.2)

vT1 τv1 = τ. (4.4.3)



70CHAPTER 4. EVAPORATION OF Q BALLS INTO MASSIVE FERMIONS.

The last equation ensures us the fact that τvT τ = v−1 and that the symmetry of
the problem is conserved. Setting x1 and x2 being solutions of :

cosh(2x1) =
ε− sinh(2x1)

MD

, (4.4.4)

cosh(2x2) =
ε+ sinh(2x2)

MD

, (4.4.5)

we find for the M ′
0 matrix the following diagonal form,

M ′
0 =




k1 0 0 0
0 −k1 0 0
0 0 k2 0
0 0 0 −k2


 , (4.4.6)

where

k1 =
(M2

D − ε2−) sinh(x1)

MD

, (4.4.7)

k2 =
(M2

D − ε2+) sinh(x2)

MD

. (4.4.8)

All the parameters we find after this transformation are real, the k’s that we find
represent the momentum of the particles in this new base. The same transfor-
mation applied on the M1 matrix defined by eq. 4.1.15 gives :

M ′
1 =




k1 0 sinh(x) − cosh(x)
0 −k1 − cosh(x) sinh(x)

sinh(x) cosh(x) k2 0
cosh(x) sinh(x) 0 −k2


 , (4.4.9)

with x = x1 + x2. We can check that this new matrix has the same symmetry
properties as M1. This simple transformation allows us to eliminate the Dirac
coupling of our equations but in presence of the Q ball it is replaced by a double
Q ball coupling. Since this transformation is made every where, it will not change
any of the properties. A solution of equations 4.4.4 and 4.4.5 is easy to construct
it is :

cosh(2x1)

sinh(2x1)
= coth(2x1) =

ε−
MD

2x1 = argcoth(
ε−
MD

) (4.4.10)

After this transformation is made inside and outside of the Q ball the eigenvectors
of the solution outside the Q ball become :

uk1 =




1
0
0
0


 , u−k1 =




0
1
0
0


 , uk2 =




0
0
1
0


 , u−k2 =




0
0
0
1


 , (4.4.11)
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the important thing here is that the M ′
0 matrix is now self adjoint so its eigenvec-

tors have the standard orthogonality properties without the τ matrix. The other
important thing is that we do not need anymore to normalise the eigenvectors.
When we do the matching in space eq. 4.2.11 instead of multiplying by uTi τ we
multiply by u†i and the S matrix is made of the components of M ′

1 eigenvectors,
so the only thing we did was to diagonalise the transformed matrix. To continue
the Diagonalisation process we now transform M ′

1 in the way :

M ′′
1 = τ(s1s2)T τM ′

1(s1s2) (4.4.12)

with,

s1 =




cosh[y/2] 0 0 sinh[y/2]
0 cosh[y/2] − sinh[y/2] 0
0 − sinh[y/2] cosh[y/2] 0

sinh[y/2] 0 0 cosh[y/2]


 , (4.4.13)

s2 =




cos[z/2] 0 sin[z/2] 0
0 cos[z/2] 0 − sin[z/2]

− sin[z/2] 0 cos[z/2] 0
0 sin[z/2] 0 cos[z/2]


 . (4.4.14)

As before we have :

(s1s2)T τ(s1s2) = τ, (4.4.15)

to preserve the symmetry of the problem. This set of transformations looks
more complicated then the simple boost we used to start, it is the case for the
parameters we shall need to use but it is of great use for the final simplifications
and results. Setting y and z to be solutions of :

sin(z) =
−2 cos(z) cosh(y) sinh(x)

k1 − k2

, (4.4.16)

sinh(y) =
2 cosh(y) cosh(x)

k1 + k2

, (4.4.17)

⇒ tan(z) =
−2 cosh(y) sinh(x)

k1 − k2

(4.4.18)

⇒ tanh(y) =
−2 cosh(x)

k1 + k2

(4.4.19)

we have

M ′′
1 =




A −M̄ 0 0
M̄ −A 0
0 0 B M̄
0 0 −M̄ −B


 , (4.4.20)



72CHAPTER 4. EVAPORATION OF Q BALLS INTO MASSIVE FERMIONS.

with,

A =
1

2

(
(k1 − k2) cos(z) + (k1 + k2 −

4 cosh(x)2

k1 + k2

) cosh(y)

+
4 cos(z) sinh2(x) cosh2(y)

k1 − k2

)
, (4.4.21)

B =
1

2

(
(−k1 + k2) cos(z) + (k1 + k2 −

4 cosh(x)

k1 + k2

) cosh(y)

−4 cos(z) sinh2(x) cosh2(y)

k1 − k2

)
, (4.4.22)

M̄ =
cosh(y) sinh(2x)

k1 + k2

. (4.4.23)

Taking a look at this M ′′
1 matrix we see it has the same form as the M0 matrix

so we shall diagonalise it using the same boost transformation. This time the
transformation will not be a boost since some parameters can be complex. In
fact before going any further we have to find the solution to equation 4.4.19 that
night be complex, k1 +k2 is small so the fraction on the right hand side is always
bigger than one. We shall have to set y = iπ

2
+ η it gives,

ey − e−y

ey + e−y
= A

ei
π
2
η − e−i

π
2
η

ei
π
2
η + e−i

π
2
η

= A

eη + e−η

eη − e−η
= A

η = argcoth[A] (4.4.24)

Finally to finish the diagonalisation we transform using the v1 matrix :

M ′′′
1 = τvT1 τM

′′
1 v1

= τvT1 ττv
T
2 τM

′
1v2v1

= τvT3 τM
′
1v3, (4.4.25)

with v3 = v2v1. This last transformation can also be done using a slightly different
matrix the v′1 matrix defined by :

v′1 =




cosh(a) sinh(a) 0 0
sinh(a) cosh(a) 0 0

0 0 cosh(b) − sinh(b)
0 0 − sinh(b) cosh(b)


 , (4.4.26)

v′T1 τv
′
1 = τ. (4.4.27)
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We finally have for the M ′′′
1 matrix the form

M ′′′
1 =




ξ1 0 0 0
0 −ξ1 0 0
0 0 ξ2 0
0 0 0 −ξ2


 , (4.4.28)

with

ξ1 =
(A2 − M̄2) sinh(2a)

M̄
, (4.4.29)

ξ2 =
(B2 − M̄2) sinh(2b)

M̄
, (4.4.30)

where

cosh[2a] =
A sinh[2a]

M̄
(4.4.31)

cosh[2b] =
B sinh[2a]

M̄
. (4.4.32)

Using these transformation the diffusion matrix V can be expressed in terms of
the diagonalization matrices in the way :

V = τ(s1s2v
′
1)T τE(s1s2v

′
1) (4.4.33)

This form will be in fact far more simple then all the other possible ones, so
this is the reason why we decided to use it rather then the form with the scalar
products of the eigenvectors. What we do is exactly the same since we work in
a base where the matrix of motion equations (4.1.15) is diagonal. If we keep the
scalar products with the τ matrix we see that the only to vectors having negative
values are the negative moving ones, with a simple calculation we could link the
τ matrix to the helicity operator.

Small sized Q balls

Using the results of previous section we where able to compute all the amplitudes
for small sized Q balls. The method used was to replace the exponentials in the
E matrix by : (1− ip1,2,3,4l). These amplitudes still have complicated expressions
but all of them exept t22 are proportional to the size parameter Ml ≡ l. In
the limit where l goes to zero all the amplitudes fall to zero except t22 going to
one. The t22 amplitude representing the probability of a fermion remaining a
fermion. This probability is obviously one if the Q ball disappears. If the size
parameter is small the amplitudes will become proportional l2 as for massless
particle production. This quadratic behaviour is shown on figure 4.3.
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Figure 4.3: Particle production rate for small values of the size parameter.

4.5 Results

4.5.1 Approximations

A little more calculations shows :

|ε| ≤
√√√√1− M2

D

Ω2
0

,

ε ∈ [0;
ω0

2
−MD]⇒ 0 ≤ ε ≤ ω0

2
−MD ≤

√√√√1− M2
D

Ω2
0

,

ε ∈ [MD −
ω0

2
; 0]⇒ 0 ≥ ε ≥MD −

ω0

2
≥ −

√√√√1− M2
D

Ω2
0

.

With the 4.4.33 matrix and these simplifications we can compute the particle
production coefficients we obtain :

r21 = − 1

cotg(z)
(cos(z) sinh(A−B) + sinh(A+B)) (4.5.1)

r22 = cosh(A−B)cotg(z)− cosh(A+B)

cotg(z)
(4.5.2)

t̃12 = t̃22 = 0 (4.5.3)

This result might seem strange but it is normal. If we remember that the tilde
transmission coefficients where transmission from the left-hand side of Q ball,
to the right-hand side. After the limit l → ∞ is taken there is no more left-
or right-hand side of the Q ball there is only a wall separating space into two
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domains. It was the major interest of taking the limit in the Q ball’s size, the
results are much simpler and we can do the extrapolation to three dimensions.
In the case where we have :

1 ≥ MD − ω0

2√
1− 4M2

D

ω2
0

(4.5.4)

the particle production rate which is an evaporation rate since there is no more
l dependence, is given by :

dN

dt
=

1

4π

∫ ω0
2
−MD

MD−ω0
2

|r21|2
|r21|2 + |r22|2

dε (4.5.5)

This integration has been done numerically with a mathematical software and
the results we obtained are shown in figure 4.4. The result with MD = 0 was
done by replacing the integrand by one, since when the fermions are massless
there is identification of both reflection amplitudes and it simplifies with the
denominator. For the massive case we see that the heavier the fermions get the
less are produced. The fact that heavy fermions are produced in lower quantities
that light ones simply reflects the idea that they need more energy to be created
and therefor appear in fewer number. The other main result is that there is
no creation possible for values of ω0

2
lower than the values of the Dirac mass.

The proportionality of evaporation rate and the Q-ball’s internal frequency ω0,
reflects the fact that the fermions are produced from the desintegration of the
scalar particles making the Q-ball.

4.5.2 Results of numerical integration

We first tested the stability of production rate in function of size to see if like
in the previous case the particle production rate becomes constant and stable
for big values of the size. If the production becomes constant above a certain
size then we do not need to care about complex averaging processes. Figure 4.6
shows the stability of evaporation rate for large Q balls. The little oscillations
are due to numerical instabilities that vanish for very big values of size. We can
now compute the evaporation rate for values of the Dirac mass smaller then the
Majorana mass (the coupling inside the Q ball). The next task we need to do is
test the stability of our computations when the fermion mass parameter is bigger
then the Majorana coupling inside the Q ball, it is the case when MD ≥ 1. This
case shows exactly the same behaviour of the other one except for the fact that
it takes more computer time to obtain the plot of evaporation. The results are
on figure 4.8. A quick analysis of these results shows that there is a superior
limit for all parameter sets, this limit does not depend on the mass parameter.
Is seems to be normal since an infinite Q ball with an infinite internal frequency
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Figure 4.4: Evaporation rate of Q ball for different values of the parameter MD

M

in function of ω0

2M
, the first figure with MD = 0 was obtained using the same

program as the one for chapter three, while the MD = 0.01 value was obtained
using the massive solution.
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Figure 4.6: Particle production rate for small values of the size parameter.

can produce any mass fermions. The last words we shall say about these results
is that the “angle” in the curve correspond to the value of the frequency where
the imaginary part of the impulsion inside the Q ball becomes zero, it is the
point where particles start to propagate inside the Q ball. The normalisation of
evaporation by its upper bound will lead to the same shape as the massless case
but there will be a gap from zero to the value of the fermion mass.

4.6 Energy flux far away from the Q ball

The last step we need to achieve is compute the energy flux far away from the
Q ball it is done by considering the flux through a sphere surrounding the Q
ball. As before if the observer is far away from the Q ball the only important
dimension is the distance to the Q ball. We have2,

dE

Mdtdσ
=
∫ +

ω0
2M
−MD

M

− ω0
2M

+
MD
M

(
|r21|2 + |t21|2

|r21|2 + |r22|2 + |t21|2 + |t22|2
)
ε̄2dε̄, (4.6.1)

the transmission amplitudes disappear when the Q ball’s size is very big. This
integration can be done numerically and we can also introduce the Q ball’s size
to see its influence on the energy flux. The only difference is that a small Q ball
will produce less energy for until the value of the frequency parameter becomes
big. We could normalise these figures with the absolute upper bound. This
normalisation does not introduce any new features since the normalised curve for
very big Q ball would start with a constant part to then fall down. For the small
one we will not find any constant part in the normalised curve.

2We shall discuss more precisely this construction in chapter 5
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Figure 4.7: Evaporation rate, 2πdN
Mdt

for infinite (very big) Q balls in function of
the frequency parameter for different values of the fermion mass parameter.
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Figure 4.8: Evaporation rate, 2πdN
Mdt

for infinite (very big) Q balls in function of
the frequency parameter for different values of the fermion mass parameter bigger
then one.
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Figure 4.9: Energy spectrum far away from the Q ball in function of ω0
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a very big Q ball and once for a small one.
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4.7 Final Remarks

In this range we have the two possibilities for the eigenvalues : either they are
complex which is the same case as before or they are all real. The case where

all four eigen values are real |ε| ≥
√

1− M2
D

Ω2
0

is far more complicated to study

since we are no more in presence of only increasing and decreasing exponentials
but we have to face oscillatory functions. The bigger l gets the more oscillations
we have in a period. When l is big enough we can replace the limit on l in the
integrations by the mean value of the functions. So the calculation of the limit
becomes the computation of a mean value and doing the limit on this mean value
might be much simpler than doing it directly in the exponentials. A first thing
to do is introduce the following relation

lim
l→∞

f(eip1l, eip2l) =
1

2π

∫ 2π

0
dα
∫ 2π

0
dβf(eiα, eiβ) (4.7.1)

Finally using the above lemma the part of the result where all eigen values are real
will become a triple integral of a nasty function, but a part from the ugliness of
the different functions we have to deal with the results are fairly simple. We tied
to compute the value of the different parts of the amplitudes, the results obtained
are quite complicated, we then applied the 4.7.1 relation to eliminate the terms
containing l. We then tried to do the integration, it worked and gave the same
results as before in the range where the imaginary part of the momentum is non
zero but in the other range the results continued to be linear in ω0, but we know
that it is not the case since we just found there was limit for big ω0. This limit
is stable as ω0 grows so we have to investigate a little more this problem to see
why this analytical method does not work.

Before taking the limit on the size we need to solve the problem of waves being
created inside the Q ball Ci 6= 0, these particles then moving and bouncing inside
the Q ball. We would like to compute the total transmission rate, considering all
possible bounces. We start with a wave appearing inside the Q ball and moving
towards the left (C3, C4), when this wave hits the left boundary of the Q ball a
part is transmitted T̃l another part is reflected R̃l. When the reflected part hits
the left boundary a piece is reflected R̃lR̃r and another transmitted R̃lT̃r. The
wave will then continue its bouncing and transmission process inside the Q ball,
writing this we obtain :

(
←
←

)
= T̃l(1 + R̃rR̃l + R̃rR̃lR̃rR̃l + . . .)

(
←
←

)
, (4.7.2)

for the amplitude of particles crossing the left boundary, the amplitude of particles
crossing the right boundary is ,

(
→
→

)
= T̃r(R̃l + R̃lR̃rR̃l + . . .)

(
←
←

)
. (4.7.3)
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The same considerations give for a wave moving towards the right :
(
→
→

)
= T̃r(1 + R̃lR̃r + R̃lR̃rR̃lR̃r + . . .)

(
→
→

)
, (4.7.4)

particles crossing the right boundary and
(
←
←

)
= T̃l(R̃r + R̃rR̃lR̃r + . . .)

(
→
→

)
, (4.7.5)

for particles crossing the left boundary of the Q ball. A rather long but straight
forward calculation gives :

Rr = −Rl. (4.7.6)

The right moving particles correspond to the first two constants while the left
movers are associated with the two last constants. Using this construction the
left movers are on the left hand side of Q ball, while the right movers are the
right hand side of the Q ball. We can then write

(
B3

B4

)
= T̃l{(1− (R̃l)

2 + (R̃l)
4 + . . .)

(
C3

C4

)
+

+ (−R̃l + (R̃l)
3 + . . .)

(
C1

C2

)
}, (4.7.7)

and
(
A1

A2

)
= T̃r{(R̃l − (R̃l)

3 + . . .)

(
C3

C4

)
+

+ (1− (R̃l)
2 + (R̃l)

4 + . . .)

(
C1

C2

)
. (4.7.8)

This construction ensures us the fact that there is no particle moving towards
the Q ball, so we really are in a particle producing state. This result is quite
complicated and is very difficult to use with our other results. The reason of
this incompatibility is due to method we used. We used here a method based
on scattering, that works very well for the ranges where there is total reflection,
waves are absorbed inside the Q ball and normalisation is simple. The other case
is far more complicated because we have to consider all the waves moving inside
the Q ball. We tried also to take the limit l→∞ before, this time the reflection
and transmission coefficients where given by the results found in section 4.2.3,
they gave the same results the other techniques so our problem is deeper than
we suspected it to be. In fact as we shall explain with more detail in the next
chapter the case where the momentum is real always happens for cases where
ω0

2
≥ 1, this case only happens for small Q balls.
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Chapter 5

Further calculations.

5.1 Transmission coefficients

In the previous chapter we studied evaporation of a large Q ball, a good verifica-
tion of our model would be to check if the transmitted waves really fall to zero
when the Q ball’s size gets big. This property seems very natural but it should
be verified, the next two figures show the transmitted amplitudes in function of
Q ball size.

The first figure shows the coefficient for a particle being transmitted into a
particle, this coefficient has a regular decay as function of size. The other one, the
transmission of a particle into an anti-particle shows a maximum which ensures
the fact that the total transmitted amplitudes are equal to one. This explains
why the second figure starts at zero. When the Q ball’s size is equal to zero, no Q
ball, the coefficient describing particle transformation t21 must be equal to zero
and therefor the t22 coefficient equal to one. A small Q ball will only transform
a little amount of particles, this is linked to the fact that a small Q ball has a
small fermionic charge so it can only give or absorb a small fermionic number.

This kind of particle transformation property that Q balls have will be the
starting point for the next investigations. In fact we have already noticed these
transformation amplitudes since they are the coefficients we used to compute Q
ball evaporation. Evaporation is in fact a side effect of particle transformation
by a Q ball. Particle transformation seems to be an important property that we
shall study in the next sections.

Both figures were obtained using the diagonalisation of motion matrix. The
method we used to compute the evaporation rate and energy flux can be applied
to compute any value or coefficient regarding this problem. As we shall see most
calculations have been done in the last chapters.

85



86 CHAPTER 5. FURTHER CALCULATIONS.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Figure 5.1: t22 transmission amplitude in function of Ml, for fixed values of other
parameters.( ε

M
= 0.1, ω0
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= 0.4, MD

M
= 0.15)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 5.2: t21 transmission amplitude in function of Ml, for fixed values of other
parameters.( ε

M
= 0.1, ω0

2M
= 0.4, MD

M
= 0.15)
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5.2 Further study of Q balls properties.

We shall now study more properties of Q balls, because they do not only evap-
orate. They can also be used as particle transformators. This property comes
directly from particle creation, if we look at the particles production coefficient it
is in fact the transformation probability of an anti-particle becoming a particle.
This property needs some development and further study, that will be the object
of next section. The major motivation to this study is that we found out when we
where verifying that the transmitted amplitudes would fall to zero for big values
of the Q ball’s size. Taking a look at the two transmission coefficients shows
clearly that the ratio between them is not constant. This fact can have a lot of
implications since it means that a Q ball can produce more particles then anti
particles. The first thing we need to study is the behaviour of a Q ball when the
fermion energy lies outside the evaporation rate.

5.2.1 Interaction of Q ball and matter, massless case.

The other property of Q balls we should study apart from evaporation, is the
interaction of Q balls with matter. This study will be done by considering all
the diffusion process on a Q ball. This construction will of course have to con-
sider evaporation since we know from the previous chapters that evaporation can
be solved using a scattering formalism. The most simple approach will be to
consider all possible transmission through the Q ball, that is we might have a
transmitted particle or anti-particle due to the energy shift (the ω0

2
factor in the

time dependent solution). For simplicity we shall consider the construction where

p
p

p̄

Figure 5.3: General transmission through a Q ball.

there is no incoming anti-particle.
We start by using the solution outside the Q-Ball for the simple massles case

we have:

Ψ =

(
ψ1

ψ2

)
=

(
CL

1 e−i(ε+
ω0
2

)tei(ε+
ω0
2

)z

(CL
2 )?ei(ε−

ω0
2

)tei(ε−
ω0
2

)z

)
, (5.2.1)

we have also a relation for coefficients on the right and on the left given by,
(
CR

1

CR
2

)
=

1

1− α2

(
e−2ikεl − α2

εe
2ikεl −αεe−2ikεl + αεe

2ikεl

αεe
−2ikεl − αεe2ikεl e2ikεl − α2

εe
−2ikεl

)(
CL

1

CL
2

)
.
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For the calculation of the evaporation rate we considered that both components
were the same particles what we do now is consider both components to be
different particles (doing so we can construct the normal field containing both
particles and anti-particles). We shall consider as a first study :

ε+
ω0

2
≥ 0→ ε ≥ −ω0

2

ε− ω0

2
≥ 0→ ε ≥ ω0

2
,

it means we have the same type of particles on the left hand side moving both of
them towards the Q ball. Since we have chosen the parameters to be the incident
amplitudes we can choose that there is no incident anti-particle, CL

2 = 0. Using
the matrix relations we find,

CR
1 =

e−2ikεl − α2
εe

2ikεl

1− α2
ε

= Tpp,

CR
2 =

αεe
−2ikεl − αεe2ikεl

1− α2
ε

= Tpp̄,

The transformation amplitude we are looking for is the CR
2 coefficient. As long

as kε is complex (see chap three), we can easily see that this amplitude decreases
as the Q ball’s size increases. Here we considered the range where ε ≥ ω0

2
and

the solution is,

ΨL =
∫ ∞
ω0
2

dε

(
A(ε)e−i(ε+

ω0
2

)tei(ε+
ω0
2

)t

0

)

ΨR =
∫ ∞
ω0
2

dε

(
A(ε)Tppe

−i(ε+ω0
2

)tei(ε+
ω0
2

)t

A?(ε)T ?pp̄e
i(ε−ω0

2
)tei(ε−

ω0
2

)t

)
, (5.2.2)

where the L and R subscripts indicate on which side of the Q ball we are. It
is not the only range where transformation occurs we also have the other range
ε ≤ −ω0

2
, with this time incident particles coming from the right hand side of Q

ball, we have
(
CR

1

CR
2

)
=

1

1− α2

(
e−2ikεl − α2

εe
2ikεl −αεe−2ikεl + αεe

2ikεl

αεe
−2ikεl − αεe2ikεl e2ikεl − α2

εe
−2ikεl

)(
CL

1

CL
2

)
.

we have this time C1
R = 0, leading to the same solution for the transmission

amplitudes,

T̃pp =
e−2ikεl − α2

εe
2ikεl

1− α2
ε

= Tpp,

T̃pp̄ =
αεe
−2ikεl − αεe2ikεl

1− α2
ε

= Tpp̄,
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even if the amplitudes are the same, which is a effect of symmetry, we shall use
tilde symbols to distinguish both contributions. In fact we would like to keep
in mind that this second contribution comes from waves having negative energy.
These two contributions will mix together to build the total solution. We have
this time as solution,

ΨL =
∫ −ω0

2

−∞
dε

(
B(ε)T̃pp̄e

−i(ε+ω0
2

)tei(ε+
ω0
2

)z

B?(ε)T̃ ?ppe
i(ε−ω0

2
)tei(ε−

ω0
2

)z

)

ΨR =
∫ −ω0

2

−∞
dε

(
0

B?(ε)ei(ε−
ω0
2

)tei(ε−
ω0
2

)t

)
. (5.2.3)

Let us take a look at the pieces on the left,

ΨL =
∫ ∞
ω0
2

dεu1e−i(ε+
ω0
2

)tei(ε+
ω0
2

)zA(ε) +
∫ −ω0

2

−∞
dεu1e−i(ε+

ω0
2

)tei(ε+
ω0
2

)zT̃pp̄B(ε)

+
∫ −ω0

2

−∞
dεu2ei(ε−

ω0
2

)tei(ε−
ω0
2

)zT̃ppB
?(ε),

where u1 =

(
1
0

)
and u2 =

(
0
1

)
. We change the variable ε → −ε in the

integrals on the negative range to obtain,

ΨL =
∫ ∞
ω0
2

dεu1e−i(ε+
ω0
2

)tei(ε+
ω0
2

)zA(ε) +
∫ ∞
ω0
2

dεu1ei(ε−
ω0
2

)te−i(ε−
ω0
2

)zT̃pp̄(−ε)B(−ε)

+
∫ ∞
ω0
2

dεu2e−i(ε+
ω0
2

)te−i(ε+
ω0
2

)zT̃pp(−ε)B?(−ε).

The next thing to do is change the variable ε+ ω0

2
= ε′ and ε− ω0

2
= ε′ to obtain,

ΨL =
∫ ∞

ω0

dεu1e−iε
′teiε

′zA(ε′ − ω0

2
) +

∫ ∞

0
dεu1eiε

′te−iε
′zT̃pp̄(−

ω0

2
− ε)B(−ω0

2
− ε)

+
∫ ∞

ω0

dεu2e−iε
′te−iε

′zT̃pp(−ε′ +
ω0

2
)B?(−ε′ + ω0

2
).

Due to the energy shift coming from the Q ball we have two different bounds
on the integration ε ∈ [ω0,∞[ and ε ∈ [0,∞[. These two ranges will be of
great interest, since each one can be identified to a different particle. Before we
construct the quantised solution we need to do the same transformations to the
solution on right-hand side.

ΨR =
∫ ∞
ω0
2

dεu1e−i(ε+
ω0
2

)tei(ε+
ω0
2

)zTppA(ε) +
∫ ω0

2

∞
dεu2ei(ε−

ω0
2

)tei(ε−
ω0
2

)zT ?pp̄A
?(ε)

+
∫ −ω0

2

−∞
dεu2ei(ε−

ω0
2

)tei(ε−
ω0
2

)zB?(ε),
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after the variable changes and the sign change we obtain,

ΨR =
∫ ∞

ω0

dεu2e−iε
′teiε

′zB(−ε′ + ω0

2
) +

∫ ∞

0
dεu2eiε

′te−iε
′zT ?pp̄(

ω0

2
+ ε)A(

ω0

2
+ ε)

+
∫ ∞

ω0

dεu1e−iε
′te−iε

′zTpp(ε
′ − ω0

2
)A(ε′ − ω0

2
).

We see here that the B(−ε′+ ω0

2
) and A(ε′− ω0

2
) are in the same integration range

and therefore will correspond to the same particles. We now have both solutions
one on each side of the Q ball, the last step of construction will be quantisation.
Quantisation will be done identifying the parts corresponding to particles and the
parts corresponding to anti-particles. It is easy to identify the particles and the
anti-particles since the integration domain is well known and defined we have,

ΨL =
∫ ∞

ω0

dεe−iεt{eiεzu1 + e−iεzT̃pp(
ω0

2
− ε)u2}al(ε−

ω0

2
)

+
∫ ∞

0
dεeiεt{e−iεzT̃pp̄(

ω0

2
+ ε)u1}b†l (ε+

ω0

2
)

for the solution on the left and

ΨR =
∫ ∞

ω0

dεe−iεt{e−iεzu2ar(
ω0

2
− ε) + eiεzTpp(

ω0

2
− ε)u1a

†
r(
ω0

2
− ε)}

+
∫ ∞

0
dεeiεt{eiεzTpp̄(

ω0

2
+ ε)u1}b†r(ε+

ω0

2
),

for the solution on the right hand side of the Q ball. During the construction we
used,

B(k) = a(k)θ(k) + b†(k)θ(−k).

We keep for the moment the l and r subscript on the operators to identify the
side of the Q ball they correspond.

Now that we have the total solution in terms of creation and annihilation
operators we can compute anything we want, by applying the proper operator
valued observable. We can see that the energy of the transmitted wave is the
same as the energy of the incoming wave, while the energy of the reflected anti-
particle is shifted by a factor of ω0. This shift in energy, one component shifted
downwards and the other one shifted upwards is the reason why we found finite
evaporation ranges. This property is due to the Yukawa coupling inside the Q
ball. We can choose a state where there is no incoming particles on the right
so our transmission coefficients can be identified to reflection ones. In fact this
construction can be used in the full energy range. The difficulty will be to separate
the phenomena linked to diffusion and those linked to evaporation.
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5.2.2 Diffusion on a Q ball

Now that we have the quantised solutions we can try to study diffusion on a Q
ball. We need to use the total solution having no incident wave on the right-hand
side of the Q ball. We write,

ΨL =
∫ ∞

ω0

dεe−iεt{eiεzu1 + e−iεzT̃pp(
ω0

2
− ε)u2}al(ε−

ω0

2
)

+
∫ ∞

0
dεeiεt{e−iεzT̃pp̄(

ω0

2
+ ε)u1}b†l (ε+

ω0

2
)

+
∫ ∞

ω0

dεe−iεt{eiεzTpp(
ω0

2
− ε)u1a

†
r(
ω0

2
− ε)}

+
∫ ∞

0
dεeiεt{eiεzTpp̄(

ω0

2
+ ε)u1}b†r(ε+

ω0

2
),

the construction of the Bogolubov transformation linking the far past, the inci-
dent wave, to the far future reads :

cout = Tpp(
ω0

2
− ε)al(ε−

ω0

2
) + Tpp̄(

ω0

2
+ ε)b†l (ε+

ω0

2
)

+ Tpp(
ω0

2
− ε)a†r(

ω0

2
− ε) + Tpp̄(

ω0

2
+ ε)b†r(ε+

ω0

2
).

We here distinguish two energy ranges, if ε ≥ ω0

2
the a†r(

ω0

2
− ε) operator becomes

ar(ε − ω0

2
), while if ε ≤ ω0

2
it is the al(ε − ω0

2
) becoming a†l (

ω0

2
− ε). As we said

before we had to separate both regimes in order to see what type of diffusion we
have.

First we shall consider an infinite Q ball, so the right-hand side does not exist,
and we have

cout = Tpp(
ω0

2
− ε)al(ε−

ω0

2
) + Tpp̄(

ω0

2
+ ε)b†l (ε+

ω0

2
),

(5.2.4)

when we constructed the solution the incident particle had energy bigger than
ω0. So in this range ε− ω0

2
is always bigger than zero, and the a operator remains

an annihilation operator. We have now in the final state (in the far future),

out < 0|c†c|0 >out= |Tpp̄|2 < p̄|p̄ > . (5.2.5)

This simply is a particle being reflected into an anti-particle to conserve helicity.
To study the rest of the possibilities we shall use a small sized Q ball.

The first possibility stands for ε ≥ ω0/2 we need to change the type of the
second a operator, a†r(

ω0

2
− ε) becomes ar(ε− ω0

2
) :

cout = Tpp(
ω0

2
− ε)al(ε−

ω0

2
) + Tpp̄(

ω0

2
+ ε)b†l (ε+

ω0

2
)

+ Tpp(
ω0

2
− ε)ar(ε−

ω0

2
) + Tpp̄(

ω0

2
+ ε)b†r(ε+

ω0

2
).
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Applying this to the vacuum state in the far future we have,

out < 0|c†c|0 >out= |T̃pp̄|2l < p̄|p̄ >l + |Tpp̄|2r < p̄|p̄ >r. (5.2.6)

p̄

p

p̄

Figure 5.4: Diffusion on a Q ball for an incident particle having energy bigger
than ω0.

The second possibility will be for a particle having energy lower than ω0/2 we
have to change the type of the first a, al(ε− ω0

2
) becomes a†l (

ω0

2
− ε). We write :

cout = Tpp(
ω0

2
− ε)a†l (

ω0

2
− ε) + Tpp̄(

ω0

2
+ ε)b†l (ε+

ω0

2
)

+ Tpp(
ω0

2
− ε)a†r(

ω0

2
− ε) + Tpp̄(

ω0

2
+ ε)b†r(ε+

ω0

2
).

This time we have four particles in the final state, it is the combination of evap-
oration and diffusion.

p

p̄

p

p

p̄

Figure 5.5: Diffusion on a Q ball for an incident particle having energy smaller
than ω0/2.

The third possibility would be for incident fermions having their energy in
the range ε ∈ [ω0/2;ω0], we shall not study this range since we only considered
incident fermions with energy bigger than ω0 or smaller than ω0/2. But this
range does not introduce any new or difficult construction. These construction
can also be used to compute the evaporation rate we just need to separate both
constructions and then identify which contribution is diffusion and which one is
evaporation.
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5.2.3 Diffusion on a Q ball massive case.

Starting with the solution for a Q ball interacting with a fermion we have,

Ψ =

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[eip̄1xuupp̄1
+ r11e−ip̄1xuup−p̄1

]b†p̄1
+ e−i(ε+

ω0
2

)t[r?12eip̄
?
2x(udown−p̄2

)?]bp̄1},

+

∫ ∞

MD−ω0
2

dε{ei(ε−
ω0
2

)t[r21e−ip̄1xuup−p̄1
]a†p̄2

+ e−i(ε+
ω0
2

)t[e−ip̄
?
2xu?p̄2

+ r?22eip̄
?
2x(udown−p̄2

)?]ap̄2},

+

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[t̃11e−ip̄1xuup−p̄1
]b†−p̄1

+ e−i(ε+
ω0
2

)t[t̃?12eip̄
?
2x(udown−p̄2

)?]b−p̄1},

+

∫ ∞

MD−ω0
2

dε{ei(ε−
ω0
2

)t[t̃21e−ip̄1xuup−p̄1
]a†−p̄2

+ e−i(ε+
ω0
2

)t[t̃?22eip̄
?
2x(udown−p̄2

)?]a−p̄2},

as before this solution has two different integration ranges one for each type of
particle. We shall now only consider the range where ε ≥MD + ω0

2
in this range

we only have diffusion and to not need to study the interaction of both, diffusion
and evaporation. We have ,

Ψ =

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[eip̄1xuupp̄1
+ r11e−ip̄1xuup−p̄1

]b†p̄1
+ e−i(ε+

ω0
2

)t[r?12eip̄
?
2x(udown−p̄2

)?]bp̄1},

+

∫ ∞

MD+
ω0
2

dε{ei(ε−
ω0
2

)t[r21e−ip̄1xuup−p̄1
]a†p̄2

+ e−i(ε+
ω0
2

)t[e−ip̄
?
2xu?p̄2

+ r?22eip̄
?
2x(udown−p̄2

)?]ap̄2},

the only reason why we used a very big Q ball is that we have less terms to deal
with. With this solution we can construct a Bogolubov transformation as in the
previous chapter considering that in the far future only out going waves survives.
We have this time :

r11b
†
p̄1

+ r?12bp̄1 + r21a
†
p̄2

+ r?22ap̄2 = cout. (5.2.7)

If we want cout to have the same anti-commutation relations as a and b we need
to normalise the operators with :

a =
a

|r22|2 + |r21|2
, (5.2.8)

b =
b

|r12|2 + |r11|2
, (5.2.9)

There is no obvious reasons why |r12|2 = |r21|2 and |r11|2 = |r22|2. These equalities
will depend on the type of Q ball we study, they depend on the way the Q ball
mixes the particles and anti-particle energies1. We can use this c operator to
compute the number of particles in the final state when the original one was the
vacuum state,

out < 0|c†c|0 >out = |r21|2in < 0|a†a|0 >in +|r11|2in<0|b†b|0 >in,

= |r21|2 < p|p > +|r11|2 < ap|ap > . (5.2.10)

1In our case we have this symmetry since the Q ball shifts both particles and anti particles
the same way. But we could have a Q ball having a different interaction with fermions.
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We have this time, when fermions are massive, a particle and an anti-particle in
the final state.

Verifications.

We shall in this section verify the results for massive fermions by doing all the
variable changes. These variable changes will allow us to check the production
and diffusion ranges.

For simplicity we shall do the variable change ε = ε′ + ω0

2
in the terms con-

taining exponentials wtih ε−+ω0

2
and ε = ε′ − ω0

2
for the others, we have then,

∫ ∞

MD

dε [ ei(ε
′)teip̄1(ε′+ω0

2
)xuupp̄1

(ε′ +
ω0

2
) + r11(ε′ +

ω0

2
)e−ip̄1(ε′+ω0

2
)xuup−p̄1

(ε′ +
ω0

2
)]b†

p̄1(ε′+ω0
2

)

+ ei(ε
′)t[r21(ε′ +

ω0

2
)e−ip̄1(ε′+ω0

2
)xuup−p̄1

(ε′ +
ω0

2
)]a†

p̄2(ε′+ω0
2

)

+

∫ ∞

MD+ω0

dε [ e−i(ε
′)t[r?12(ε′ − ω0

2
)e−ip̄

?
2(ε′−ω0

2
)x(udown−p̄2

(ε′ − ω0

2
))?]bp̄1(ε′−ω0

2
)

+ e−i(ε
′)t[e−ip̄

?
2(ε′−ω0

2
)xu?p̄2

(ε′ − ω0

2
)

+ r?22(ε′ − ω0

2
)eip̄

?
2(ε′−ω0

2
)x(udown−p̄2

)?(ε′ − ω0

2
)]ap̄2(ε′−ω0

2
)

It is easy to check that p̄1(ε′ + ω0

2
) = p̄?2(ε′ − ω0

2
) so we have an identification of

both momentum,
∫ ∞

MD

dε [ ei(ε
′)teip̄xuupp̄ + r11(ε′ +

ω0

2
)e−ip̄xuup−p̄]b

†
p̄

+ ei(ε
′)t[r21(ε′ +

ω0

2
)e−ip̄xuup−p̄]a

†
p̄

+

∫ ∞

MD+ω0

dε [ e−i(ε
′)t[r?12(ε′ − ω0

2
)e−ip̄x(udown−p̄ )?]bp̄

+ e−i(ε
′)t[e−ip̄xu?p̄ + r?22(ε′ − ω0

2
)eip̄x(udown−p̄ )]ap̄

The first part of the integral corresponds to an incoming anti-particle and trans-
formed particle, while the other term corresponds this time to an incoming parti-
cle. To study particle transformation we just need to study one of these to parts.
We decide to study the part with the incoming particle,

Ψ =
∫ ∞

MD+ω0

dε [ e−i(ε
′)t[r?12(ε′ − ω0

2
)e−ip̄x(udown−p̄ )?]bp̄

+ e−i(ε
′)t[e−ip̄xu?p̄ + r?22(ε′ − ω0

2
)eip̄x(udown−p̄ )]ap̄

we can change the sign of the momentum using a(−p) = a†(p).

Ψ =
∫ ∞

MD+ω0

dε [ e−i(ε
′)t[r?12(ε′ − ω0

2
)eip̄x(udownp̄ )?]b†p̄

+ e−i(ε
′)t[e−ip̄xu?p̄ap̄ + r?22(ε′ − ω0

2
)e−ip̄x(udownp̄ )a†p̄]
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These two configurations have different energy ranges so if we need to use them
both the range we consider is the same as in the previous section.

5.2.4 Towards a realistic model.

Before going any further we would like to try and find out what is the most
realistic approximations possible. We know from chapter four that the problem
is fairly simple in the case where the particle momentum inside the Q ball is
complex. In this case the waves propagating inside the Q ball are only increas-
ing or decreasing exponentials that greatly simplify the shape of solution. This
situation mostly happens when ω0

2
≤ 1. If we remember what was done in the

chapter four, we know that all parameters we deal with are dimension less, in fact
we can write : ω0

2
≤M . The other parameter we deal with is the size parameter

given by Ml, and it only appears in exponentials. In the case where the Q ball
produces massive fermions, the most simple case happens when ω0

2
≤M and Ml

very big. As we found out in the previous chapter when the Q ball is very big
it can be considered as infinite, it becomes then a Q-Wall. This property allows
us to reduce scattering of a Q ball to scattering on a domain wall. We know
from most Q balls models that the Majorana mass parameter inside the Q ball
is proportional to its size, so for simplicity we can consider only very big Q balls.

The other thing we need to sort out is the standard value of the Dirac mass
of produced fermions. We know that most type of Q balls are big ones and that
the Majorana coupling inside the Q ball is proportional to its size. This means
that we are in the case where M >> MD so the mass parameter will be small.
This is the case when we are in the limit of section 4.5.1 with small fermion
mass parameter. The most realistic limit is finally quite simple to study and all
its properties can be deduced from simple relations. The result we can use to
have a quick idea of evaporation rate is just using the upper limit that is slightly
bigger then one, so going back to dimensionful units it is bigger then M the
Majorana mass of fermions inside the Q ball. This result is easy to understand,
the Majorana mass of the Q ball is linked to the coupling and the numbers of
scalars inside the Q ball. When the Q ball is infinite (very big) it is normal
that the Dirac mass of fermions has no more role to play in the value of the
evaporation rate. The Dirac mass is only the starting point of evaporation. This
gap we shall observe in the evaporation spectrum can be used as the Q ball’s
signature to identify them.

The other very important simplification we used, was the fact that the Q
ball is “thin walled”. We know that we have two types of Q balls : the thin
walled ones, that are approximated by a step function, and the thick walled ones
where we use a gaussian profile to describe them. The results we obtain are very
accurate only in the case of big Q balls. If we look at the standard Affleck-Dine
mechanism leading to large Q balls we have to distinguish two scenarios. The first
one, gauge mediated symmetry breaking, leading to Q balls having a very large
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charge and radius (R ∝ Q1/4). While for the second scenario, gravity mediated
symmetry breaking, the Q balls are also very large but this time the radius is
independent of charge [6, 7, 8]. Even if the models creating Q balls with very big
charge are well known we still need the knowledge of the radius. The fact that
we need a big sized Q ball will select the type of scenarios we can use for Q ball
formation.

5.3 Extension to 3⊕ 1 dimensions.

5.3.1 Extension to 3⊕ 1 dimensions first considerations.

The first thing we can do is consider an observer situated far away from the
Q ball, at this distance only the radial coordinate can be used, so the problem
reduces to a 1 ⊕ 1 dimensional problem. At a large distance of a source we can
only measure the flux emitted in the radial direction, while at short distances we
have to consider all superpositions of waves. We shall now consider the impulsion
flux through a sphere, this flux will give the energy spectrum of a Q ball for a far
away observer. This can be shown using the fact that when we are far away from
a spherical source all the waves that are not perpendicular to the surface will
vanish, they have in fact only destructive interactions. As we mentioned before
the momentum is perpendicular to the surface element we can write,

Φ =
∫

sphere

~Ed~σ = 4πr2E, (5.3.1)

where E stands for the energy leak from the Q ball that can be computed using
the evaporation rate. This energy flux will give the spectrum we are looking for.
The question one could ask now is what happens if we are very close to the Q
ball. This case is very complicated since we now need to study all the waves
coming from all directions. The other thing we need to be careful with is the
bounces of the wave, figure 5.6 shows a few examples of possible bounces. The
major difficulty with this calculation is the fact that we need to check if there
is a dependence in the angles for the transmitted and reflected coefficients. In
most cases we know that the transmitted coefficients decay in an exponential way
inside the Q ball, this will induce us to think that the corrections we need to use
are of 1

R
order.

All of this was to explain that if we are in presence of a huge Q ball and
situated far away from it, we can use the 1-dimensional results. This finally com-
forts us in thinking that the only important quantity we need to measure is the
energy flux a distant observer will see. The angle dependence in the transmitted
coefficients will only modify the results for average size Q balls, for small ones
the angles have very little influence. Finally the only problem with extension to
three dimension will appear for medium sized Q ball. We guess that for this type
of Q ball we can use interpolation.
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Figure 5.6: Bounces for waves appearing inside the Q ball and for waves incident
from the outside.

5.3.2 Extension to 3⊕ 1 dimensions second method

Apart from computing the energy flux far away from the Q ball we can try to
obtain an analytical solution to the three dimensional field motion equations. We
shall try using the simplest possible construction whose major objective would be
to directly obtain the previous results with maybe different values of parameters.
The total Lagrangian is given by

L = iψ†σµ∂µψ + gMψ̄cψ, (5.3.2)

leading to the following equations of motion

iσµ∂µψ + fMεψ? = 0. (5.3.3)

Component by component we can write for ψ =

(
ψ1

ψ2

)
,

i(∂0 + ∂z)ψ1 + i(∂x − i∂y)ψ2 −Meiω0tψ?2 = 0 (5.3.4)

i(∂0 − ∂z)ψ2 + i(∂x + i∂y)ψ2 +Meiω0tψ?1 = 0. (5.3.5)

The first idea we can have is to do a Lorentz boost with a certain velocity in
order to eliminate the x and y components. We tried to do so but we quickly
saw that due to the coupling in time it was not possible. These two equations of
motion are the same as the two equations for the massive case eqs. 4.1.2, 4.1.3.
We shall solve the 3 ⊕ 1 dimensional case using the massive ansatz eqs. 4.1.4,
4.1.5. We shall introduce also the mass term for the fermions, since it has the
same coupling as the x and y components. The equations of motion are then

(−ε+
ω0

2
+ i∂z)f1 +Meffg1 −Mg?2 = 0,
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(ε+
ω0

2
− i∂z)f ?2 +M?

effg
?
2 −Mg1 = 0,

(−ε+
ω0

2
− i∂z)g1 +M?

efff1 −Mf ?2 = 0,

(ε+
ω0

2
− i∂z)g?2 +M?

efff
?
2 −Mf1 = 0,

where Meff = (MD − kx) + iky. These equations have the same type of solutions
as the simple massive case in 1⊕ 1 dimensions. The interesting part for us is the
solution on the left and on the right of the Q ball, it is in matrix form

(
−ε+ ω0

2
Meff

M?
eff ε− ω0

2

)(
A
B

)
= p

(
A
B

)
. (5.3.6)

The eigenvectors are of the same type except for a few complex parts and the

eigenvalues are ±
√
−|Meff |2 + (ε+ ω0

2
)2. The results will be the same but we re-

place MD by Meff in the integration bounds and we integrate with the d3p mea-

sure instead of the dε measure. We have to set this time ε =
√
p2
x + p2

y + p2
z +MD

and ε ∈ [Meff− ω0

2
, ω0

2
−Meff ]. This method is not the best one we can use, what

we should do is use an expansion into Bessel functions rather then into Fourier
series. The other difficulty using this method is the fact that evaporation occurs
only when ω0

2
≥ MD and here the range will be more difficult to establish. So

this method with Fourier expansion has limits when we wish to study the exact
3-dimensional case.

Even if this method is not the best one we can apply it directly to the three
dimension case, we just need now to integrate over the new components of mo-
mentum. In fact the big difficulty with this method will be variable changes we
need to do in order to identify particles and anti-particles. The last point we have
mention is the fact that using this method the complex part of the momentum
inside the Q ball has no longer a simple limit.
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Conclusions.

In this work we wanted the properties of Q balls and their interactions with
matter in order to determine if they can be good candidates for dark matter .
We did this using different methods and models, and all the important results
are summarised here.

As we have seen the coupling between the scalar field and fermionic field leads
to particle production from the Q ball [2, 88]. To study this particle production
we constructed the exact quantum-mechanical state describing the particle pro-
ducing Q ball. We used Heisenberg’s picture of quantum mechanics, when the
state describing the produced fermions is fully characterised by the fact that no
fluxes are moving towards the Q ball. This condition is solved considering the
asymptotics of the fields far away from the Q ball. Using this state we con-
structed the Heisenberg field operator describing massless fermions produced by
a Q ball. This construction allowed us to prove that for large Q balls in one space
dimension the particle production does not depend on the Q ball’s size. For small
Q balls the particle production rate is proportional to l2. The extension of these
results to three space dimensions is simple. For large Q balls particle production
is an evaporation, whereas for small Q balls it depends on the size. The other
result we need to point out is that we can consider a variety of kinematical con-
structions to compute the evaporation rates. The first one is the standard one
where we compute the reflection and transmission amplitudes for an incoming
wave. The second one is based on the fact that no particles are moving towards
the Q ball. We proved that these two pictures are equivalent.

The fact that fermions acquire a Dirac mass does not introduce many changes.
In 1⊕ 1 dimensions the particle production rate does not depend on the Q ball’s
size once this is sufficiently large. This result is not very surprising, since taking
the limit m→ 0 leads to the same results as the coupling with massless fermions.
In this case the only difference is that evaporation occurs in a different range. The
internal frequency ω0, the energy of one single scalar forming the Q ball, must be
bigger than the produced fermion mass. This result is also quite intuitive, since
the scalars forming the Q ball desintegrate into fermions so their energy must be

99
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bigger than the created fermion mass. The second fact is that particle production
occurs in the range mixing positive and negative frequency terms. In this range
the Bogolubov transformations we build are non trivial. Using these two results
we proved that evaporation can only take place in the range : [MD− ω0

2
; ω0

2
−MD],

with ω0

2
≥MD. This result is in total accordance with the previous work done on

the subject [2, 32], and extends it a significant way. This new definition for the
evaporation range will introduce a new upper bound for the evaporation rate.

When the Q ball’s size becomes small there is no more evaporation since
the production rate depends on the size. For small sized Q balls the particle
production rate is proportional to l2. The size will also reduce the energy flux a
distant observer can measure. Taking the limit l →∞ does not need any complex
averaging processes since the evaporation rate is constant and l-independent for
big values of the size.

We also computed all the transmission and reflection coefficients for a mas-
sive fermion being scattered by a large Q ball. This construction allowed us to
compute the exact profile of the evaporation rate. Using these profiles we proved
that both constructions are equivalent. The last result we have proved is that
evaporation rate is proportional to (ω0

2
−MD)3. These reflection and transmission

amplitudes will be used to study the behaviour of Q balls in matter. In fact we
obtained exact analytical results for the scattering of a massive fermion on a Q
ball. This computation was not done before and allows many more applications.

As expected the interaction of Q balls and fermions can be separated into
two different cases. The first one stands for interaction between the Q ball and
fermions having their energy lying outside the evaporation rate. In this case we
demonstrated that the interaction of Q balls and matter is nothing but standard
diffusion. If we have an incident fermion we have a reflected and transmitted
anti-fermion. The transmitted particles has its energy shifted by a ω0/2 factor
due to interaction with the Q ball.

The second case happens when the fermion interacting with the Q ball has its
energy lying inside the evaporation range. In this case we have a superposition
of two phenomena the first one is diffusion while the second one is evaporation.
It seems that both phenomena to not interfere and may be considered separately.
This fact is important since it provides a new approach to compute Q ball evap-
oration rates. This new approach would be to study the diffusion of a particle
on the Q ball’s surface and find the two ranges where we have diffusion and both
diffusion and evaporation. Then we just need to subtract both amplitudes to
obtain the evaporation range.

The interaction with massive fermions does not introduce any new facts. The
calculations become more complicated but the separation into two ranges remains
the same, except this time the evaporation range is different since it depends on
the fermion mass. In this case the other difference comes from the fact that we
do not use helicity conservation to find the reflected waves.

All these calculations give a complete account of the properties of Q balls
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regarding their interaction with ordinary matter. The only type of interaction
we did not study is the interaction of a Q ball with a scalar field. This type
of interaction has no influence on our calculations since we studied stable Q
balls with respect to decay into scalars. But we need this type of interaction to
study the Q ball’s last seconds, after evaporation into fermions the Q ball has a
small enough charge to burst into scalars. This interaction would accelerate the
destruction of Q balls.

It now seems that we discussed of all possible interactions of Q balls and mat-
ter, we shall mention to finish all discussions that Q ball also interact together
[33]. In a real description of Q balls we should of course consider both interac-
tions, Q balls interact with matter and with other Q balls. Studying these two
interactions together would be a good way to extend this work.

The motivation for this work was the fact that Q balls can play the role of
dark matter as long as they have a sufficiently long life time. Their life time will
depend on their initial charge and on the evaporation rate. The evaporation rate
is bounded so the Q ball’s life time will only depend on its initial charge fixed by
the cosmological model. In fact only the Q ball’s charge fixes its fate.
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