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Abstract

This thesis presents a study of electrons, holes and excitons confined in self-assembled
InAs/GaAs quantum dots. The interaction of these confined carriers with the lon-
gitudinal optical (LO) phonons of the surrounding crystal lattice is investigated. It
is found that this interaction leads to the formation of the so-called quantum dot
polarons; hybrid carrier phonon states which are the true excitations of a charged
dot.

The first part of this thesis describes the results of far infrared (50 - 700 cm−1)
magnetospectroscopy experiments performed on n- and p-doped samples. The intra-
band energy levels of these systems are probed. The magnetic field is an important
experimental parameter, as it allows for the evolution of the energy levels, necessary
for the observation of electronic and hole polaron levels. Using the Fröhlich Hamil-
tonian, which couples the phonon and purely electronic states, the energy levels and
oscillator strengths of the system are determined. For both the investigation of elec-
trons and holes confined in dots, a good agreement is found between the calculations
and the experimental results.

The second part of this thesis is dedicated to the study of the interaction between
electron-hole pairs or excitons and the phonons of the lattice. The interband en-
ergy transitions of the dots are investigated using photoluminescence excitation and
resonant photoluminescence spectroscopy under strong magnetic fields up to 28 T.
These techniques allow for the circumvention of the inhomogeneous broadening of
the resonances that arise from size and composition fluctuations in the quantum dot
ensembles. The magnetic field dependence of the resonance energies allows for an
unambiguous assignment of the interband transitions. The excitonic polaron energies
as well as the oscillator strengths of the interband transitions are determined. The
calculations account well for the experimental data.
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at the bottom of the GaAs conduction for the electrons and the top of

the GaAs valence band for the holes. . . . . . . . . . . . . . . . . . . 17

1.8 FIR transmission spectra at B = 0 T for radiation linearly polarized

along the [110] (solid curve) and the [110] (dashed curve) directions

for sample N1 (a) and sample P1 (b). The observed absorptions cor-

respond to the s-p intraband transitions. The curves in (a) have been

vertically offset for clarity. . . . . . . . . . . . . . . . . . . . . . . . . 19

1.9 Schematic of the experimental setup, found at ENS in Paris, which

measures the FIR transmission of a sample in polarized light and an

applied magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . 21

xi



1.10 Schematic of the experimental setup, found at the High Magnetic Field

Laboratory in Grenoble, which measures the RPL or NRPL signal in

a high magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.11 s and p state energies as a function of the B field, for an electron (a)

of mass me = 0.07mo and a hole (b) of mass mh = 0.22mo, confined in
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the Fröhlich interaction. The energies were found using Eq. 1.16 with

me = 0.07mo, 2δa = 11 meV and Ep(0) −Es(0) = 55 meV. The origin

is taken at Es(B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Experimental magnetic field dispersion in solid symbols compared with

the calculated magnetic field dispersion in solid lines. A Fröhlich con-
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Introduction

This thesis is a report on the carrier phonon interaction in semiconductor quantum
dots. A quantum dot is a nanoscale object that, similar to an atom, presents the
unique ability to confine electrons in the three dimensions of space. For this reason,
quantum dots are commonly known as “artificial atoms.” Such systems are interesting
as much for the study of their fundamental physical properties as for their possible
device applications. Many applications of quantum dots have been predicted, such
as single quantum dot transistors or quantum dot lasers [1, 2, 3, 4]. Keeping in mind
these possible applications, the work presented in this thesis attempts to investigate
and explain some of the fundamental physical properties of these nanostructures. In
particular, the coupling between a carrier confined in a dot and the vibrations of the
semiconductor lattice in which the quantum dot resides, is studied. Understanding
this interaction mechanism is essential for the general understanding of the electronic
properties of quantum dot systems. In essence, it is found that electronic and lat-
tice excitations strongly mix to form the so-called polaron states of quantum dots.
From the theoretical point of view, the quantum dot polaron state reflects a complex
entanglement of electronic and phonon states. This study evidences the existence of
polaron states in quantum dots, whether the confined carrier be an electron, hole or
exciton.

Chapter 1

The first chapter will be dedicated to both the calculation of the discrete energy levels
of a quantum dot structure, as well as to the experimental means of investigating these
levels.

The InAs/GaAs quantum dot samples studied in this thesis were grown using
the Stranski-Krastanov mode, which, in particular, exploits the lattice mismatch of
the two materials to create nanoscale islands. The confining potential in a quantum
dot structure, that induces the quantization of the carrier energy levels, depends on
the size, shape, and composition of these islands. In addition, for dots grown using
this mode, the strain, created as a result of the lattice mismatch between InAs and
GaAs, also has a large influence on the confining potential. The calculation of the
discrete energy levels of a quantum dot therefore depends on these, for the most
part unknown and difficult to control, growth parameters. However, the essential
ingredient of the dot potential is its ability to confine carriers in the three directions
of space. The remaining parameters (strain, inhomogeneous InAs/GaAs content,
piezoelectric effects) are secondary [5]. For this reason, a simple model, that takes
the confining potential and effective mass of the carrier as adjustable parameters,
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has been used to calculate the energy levels of a quantum dot system. The values of
the parameters are chosen to obtain results in good agreement with the experimental
results. The energy levels calculated in the first chapter will be of use throughout the
thesis.

The intraband energy transitions of a carrier confined in a quantum dot can range
from 20 meV for holes to 60 meV for electrons. Far infrared magnetospectroscopy is
therefore employed to probe these energy levels. The magnetic field is an important
experimental parameter, as it allows for the evolution of the energy levels, necessary
for the observation of electronic and hole polaron levels.

The interband ground state energies of the quantum dot samples studied in this
thesis are found in the mid infrared energy range. Magnetophotoluminescence exper-
iments are therefore conducted to investigate the interband energy transitions and in
turn the excitonic polaron energy levels.

Chapter 2

In Chapter 2, the polaron states of quantum dots systems will be calculated and their
existence experimentally evidenced in n-doped samples.

In bulk, quantum well and quantum wire structures, the interaction between a
charged carrier and longitudinal optical phonons allows for the rapid relaxation of
an excited carrier to its ground state. In these cases, the relaxation process is well
described by Fermi’s Golden rule. Longitudinal optical phonons play a very different
role in quantum dot systems which, unlike the structures alluded to above, possess
discrete electronic energy levels. Fermi’s Golden rule no longer applicable, it is found
that the carrier and phonons in quantum dot structures are strongly coupled to one
another. This coupling leads to the formation of polaron states, the true excitations
of a charged dot. The calculation of these polaron states, presented in Chapter 2,
will be used throughout the thesis as it can be applied to dots containing electrons,
holes or excitons.

In order to verify the above polaron model, magnetotransmission results for n-
doped samples reported in the thesis of J.N. Isaia [6] and S. Hameau [7] will be
presented. In addition, new experimental results in magnet field using polarized light
will be presented as complementary support of the polaron model, as applied to n-
doped dots.

Chapter 3

Chapter 3 will be dedicated to the investigation of p-doped samples and the hole
polaron state.

To date, there have been few investigations of the valence band magneto-optical
transitions in quantum dots and therefore no direct evidence for the formation of
hole magnetopolarons. The hole excitations of p-doped samples in polarization and
in intense magnetic fields will be investigated here. The results will be interpreted
using the polaron model for the case of a positively charged hole.

The differences between hole polaron states and their electron counterparts will
be highlighted. In particular, as the intraband transitions energies of holes (∼ 20
meV) are found below that of electrons (∼ 60 meV), holes are found to primarily
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interact with an InAs-like phonon mode, as compared to the GaAs-like phonon found
in interaction with electrons.

Chapter 4

The understanding of the behavior of an electron-hole pair (exciton) confined in a
quantum dot, is of utmost importance if these systems are to be used for application
purposes (lasers, unique photon sources, . . . . ). Chapter 4 investigates such systems
using the technique of photoluminescence excitation under strong magnetic fields.

Effects, such as the Coulomb interaction felt between the two carriers, differenti-
ate the situation of an exciton trapped in a quantum dot from the case of a single
charged particle. In addition, as the coupling between a carrier and optical phonons is
basically electrical (Fröhlich interaction), one could expect a rather small coupling be-
tween phonons and the neutral exciton. The calculation presented in Chapter 4, will
reveal that, in spite of their electrical neutrality, exciton and phonons are in a strong
coupling regime and the formation of excitonic polaron states is indeed predicted.
The simulated magnetoabsorption spectra will be compared to the experimentally
obtained magnetophotoluminescence excitation spectra.

Chapter 5

The self-assembled InAs/GaAs samples investigated in this thesis contain not one
unique quantum dot, but a large population of dots (dot density per layer ∼ 1010cm−2).
In Chapter 5, the consequences that arise from the size inhomogeneity among dots of a
single sample will be demonstrated through the study of resonant photoluminescence
experiments in intense magnetic fields.

The photoluminescence peak of a quantum well structure can be homogeneously
broadened due to, e.g., thermal spreading and slight non-uniformity of the interfaces.
In self-assembled quantum dot samples, a large number of dots with different sizes,
shapes and compositions and therefore electronic levels, are present. The inhomo-
geneous broadening observed in the photoluminescence spectra of such samples is in
part a consequence of the distribution of different dots in a single sample. The effect
of this distribution on the behavior of resonant photoluminescence spectra will be
studied.

Finally, these same results will be compared to the excitonic polaron energy level
and oscillator strength calculations of Chapter 4.





Bibliography

[1] L. Guo, E. Leobandung and S.Y. Chou, A Silicon Single-Electron Transistor
Memory Operating at Room Temperature, Science 275, 649 (1997).

[2] N. Kirstaedter, N.N. Ledentsov, M. Grundmann, D. Bimberg, V.M. Ustinov, S.S.
Ruvimov, M.V. Maximov, P.S. Kop’ev, Zh.I. Alferov, U. Richter, P. Werner, U.
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Chapter 1

Presentation of Quantum Dots

In this chapter, a general presentation of quantum dots (QDs) and how they are
investigated is given. First, a brief history of these systems along with the motivation
behind their study is presented. Then a description of the fabrication of the QD
samples used in this thesis is given. Finally, a description of how the energy levels of
these systems are calculated is presented followed by the means of investigating these
energy levels experimentally.

1.1 History and Motivation

As early as the 1950s, the idea of using ultra-thin layers of certain materials for the
study of size quantification existed. This presumption became a working reality a few
decades later with the development of new growth methods such as molecular beam
epitaxy. In the early 1970s, the first low dimensional heterostructures, known as
quantum wells (QWs), were developed. A heterostructure consists of a layered stack
of semiconductors with different energy band gaps. The movement of electrons in one
of these layers is restricted to only two dimensions. Such structures, that form the
basis of most of the optoelectronic devices available today, were rather well understood
by the end of the 1980s. This led physicists to investigate the possibility of further
reducing the dimensionality to create 1D (quantum wire) and 0D (quantum dot)
structures. Figure 1.1 shows schematically the evolution of the energy of an electron
and the density of states as the dimensionality of the system is reduced. For QDs, the
energy spectrum of an electron is discrete like in atomic physics, hence the adoption
of the term “artificial atom.” The study of these artificial atoms has proven useful to
explore a wide range of physical phenomena. Moreover, these nanostructures have a
great potential for technological applications. Many applications in optoelectronics
have been predicted, such as lasers, FIR detectors and quantum computing [1, 2, 3].
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Figure 1.1: Evolution of the energy E of an electron and of the density of states as
the dimensionality of the structure is reduced from 3D (bulk) (a) to 0D (quantum
dot) (d).
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1.2 Fabrication

One popular and practical method to grow QDs is the Stranski-Krastanov (SK)
growth mode. This growth process, which consists in utilizing the lattice mismatch
between two semiconductor materials to create nanometer-scale islands that can trap
carriers, was first proposed by I.N. Stranski and L. Krastanov in 1937. All the sam-
ples used in this work (InAs QDs in GaAs) were grown using the SK method. Using
molecular beam epitaxy (MBE), InAs is deposited on a GaAs substrate. The lattice
mismatch between the two materials (7%∗) introduces strain. The first few layers of
InAs form a 2D layer which is called the wetting layer (WL) [Fig. 1.2(a)]. After a
critical thickness is reached, there is a relaxation of the strain and 3D growth becomes
energetically favorable. Subsequently, small islands of InAs are spontaneously formed
on the WL [Fig. 1.2(b)] [4]. This transition from 2D to 3D growth, called the SK
Transition, occurs in InAs/GaAs systems for a critical thickness of 1.7 to 1.8 mono-
layers [5]. The islands that form as a result of this transition are called self-organized
or self-assembled quantum dots. The island structures are then covered with a GaAs
epitaxial layer [Fig. 1.2(c)]. A 3D array of QDs can then be created by repeating
the growth process described above. If the distance between successive InAs layers is
less than 20-30 nm (depending on the dot size) , the QDs in successive layers tend
to be aligned in order to minimize the elastic strain energy of the InAs layers. For
thicker GaAs spacer layers, no vertical coupling is observed [6]. The size and den-
sity of the islands strongly depend on the growth parameters: temperature during
growth, growth rate, thickness of the epitaxy layers [7, 8]. The typical dimensions
of QD islands range from 12 to 25 nm laterally and from 2 to 5 nm in height. An
InAs island therefore is made up of about 104 atoms. The size dispersion of the dots
in a given sample can range from 10 to 15%. The average density of dots per layer
can range between 108 and 1011 cm−2 [9]. Images taken using AFM (atomic force
microscopy) help one to visualize the form and organization of the islands in a layer,
as shown in Fig. 1.3.

∗a(InAs) = 6.0583 Å, a(GaAs) = 5.6532 Å for T = 300 K
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Figure 1.2: Different stages of the SK growth process of InAs dots on a GaAs sub-
strate.
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Figure 1.3: AFM image of a layer of InAs/GaAs self-assembled quantum dots (J.M.
Moison CNET-Bagneux).
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Figure 1.4: Representation of the placement of Be layers 2 nm under each dot layer
(δ-doping).

1.3 Characteristics of Samples

The samples investigated in this thesis were made at the Laboratoire de Photonique
et Nanostructures by Aristide Lemâıtre. Samples containing a multistack of 20 layers
of InAs QDs were prepared using MBE. The presence of a multistack of layers, as a
opposed to a single layer, is necessary when conducting far infrared (FIR) absorption
measurements as a resonant absorption associated with a single dot layer is weak (a
few 0.1%) [10]. It is therefore important to point out that we present a study of QD
ensembles and not single dots. This has for consequence, for example, the broadening
of a PL peak due to size dispersion of the dots in a sample.† However, as each dot
layer is separated by a 50-nm-thick GaAs barrier and has a density of dots per layer
of ∼ 4 × 1010 cm−2 (interdot distance of ∼ 50 nm), no coupling between dots is
expected and the QDs can be considered as isolated [6]. Cross sectional transmission
electron spectroscopy in samples grown in similar conditions have shown that the
QDs resemble flat truncated cones with an ∼ 20 nm basis diameter and an ∼ 3 nm
height [11]. This thesis presents experiments performed on n-doped, p-doped and
undoped samples. For the n-doped (p-doped) samples the dot filling was realized by
a Si (Be) δ-doping of each GaAs barrier at 2 nm under each dot layer (see Fig. 1.4).
The doping concentration was adjusted to transfer on average one to two carriers per
dot. The characteristics of each sample used in this work is presented in Table 1.1.

†see section 4.1.1
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Sample Name δ-doping
Doping

concentration
(cm−2)

N1 Si 6 · 1010

P1 Be 5 · 1010

P2 Be 10 · 1010

U1 undoped -

N2 Si 4 · 1010

P3 Be 4 · 1010

Table 1.1: Names and doping concentrations of samples presented in thesis. Samples
P1 and P2 were grown during the same MBE run. Samples U1, N2 and P3 were
grown during the same MBE run.
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Figure 1.5: Schematic of conduction band (CB) and valence band (VB) states of
an InAs/GaAs system: 3D continuum states of the GaAs substrate in black, 2D
continuum states of the InAs WL in grey and the discrete energy levels of the InAs
QD in solid lines.

1.4 Electronic States

1.4.1 Electronic Structure of an InAs/GaAs System

A sample of InAs/GaAs self-assembled QDs possesses three different kinds of elec-
tronic states: the 3D continuum states of the thick GaAs layers, the 2D continuum
states of the InAs WL, and finally the 0D discrete states of the InAs QD. Figure 1.5
represents schematically the density of states of the conduction and valence bands of
an InAs/GaAs structure.

In order to calculate the energy levels in QDs, one needs to consider the size, shape
and composition of the dot, as well as the strain effects. This is a difficult task since
all these parameters can not be controlled during the growth process and most of the
time are not known with great precision. Different methods have been proposed to
model QDs: the 8-band k ·p method [12], the empirical pseudo-potential method [13],
the tight binding method [14], the effective mass method [15]. We have chosen a one
band (parabolic) effective mass method to calculate the QD energy levels. The results
found using this method are consistent with those obtained using the more complex
methods mentioned above [16]. Such a model also gives an accurate description of
the coupling between electrons and phonon modes in n-doped samples [17, 18].

However, a large focus of this thesis also concerns valence states and the use of such
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Figure 1.6: Truncated cone of height h and radius R used to model the QD. The
z-axis is the growth direction of the sample.

a simple model is less evident for the valence levels of semiconductor nanostructures,
as discussed in many works (see e.g. Ref. [12] and [19] and references there in). For
instance, non-parabolicity and mass anisotropy should play an important role in the
description of the hole states. In order to account for these effects in a simplified
and efficient way, we consider an anisotropic dispersion for heavy holes, with an in-
plane mass chosen to best fit the experimental results. The light hole is left out of
our calculations as its confinement energy is close to the top of the GaAs valence
band [15, 16].‡ This model suffices to provide a good description of our experimental
results using reasonable fitting parameters [20].

1.4.2 Calculation of Energy Levels

Here we will summarize the calculation developed in the thesis of O. Verzelen [21]. In
order to calculate the energy levels of a carrier (hole or electron) in a QD, the shape
of the dot is modeled by a truncated cone of height h and with a circular basis of
radius R and basis angle of 30◦, as shown in Fig. 1.6. Using the envelope function
approximation, the wave function of a carrier in such a dot can be described by the
product of a Bloch function and a function that varies slowly (called the envelope
function) over a distance on the scale of an elementary unit cell of the lattice. The
Hamiltonian for the envelope function is written:

H = Ez + Eρ,θ + V(ρ, z), (1.1)

where Ez and Eρ,θ are the z-direction (growth direction) and in-plane kinetic energies
respectively and V(ρ, z) corresponds to the confinement potential that is equal to
0 outside the dot and −V0 inside the dot. V e

0 (V h
0 ) is defined as the conduction

(valence) band offset between InAs and GaAs. The band gap of strained (due to the

‡See Appendix A



16 Chapter 1. Presentation of Quantum Dots

surrounding GaAs) InAs is ∼ 0.53 eV at T = 4 K as compared to 0.41 eV for bulk
InAs at the same temperature [22]. For pure InAs islands, taking into account that
the energy band gap of GaAs at 4 K is 1.52 eV, V e

0 = 572 meV for an electron and V h
0

= 418 meV for a hole [23]. During the growth process, GaAs interfuses into the QDs
so that the islands are not pure InAs, but contain a certain percentage (∼ 30− 50%)
of GaAs [24]. The conduction and valence band offsets depend on this percentage,
which in turn depends on the growth parameters. As the growth parameters can
change from sample to sample, we choose the interdiffusion percentage (and therefore
offsets) to best fit the data of a sample.

Given that the confinement potential has a cylindrical symmetry, the eigenstates
of the QD system are also eigenstates of Lz, the projection of the angular momentum
in the z-direction. Using the same nomenclature as in atomic physics the QD states
can be denoted as follows:

Lz = 0 ↔ |s〉, ground state
Lz = ±1 ↔ |p〉, first excited state
Lz = ±2 ↔ |d〉, second excited state
. . . . . . . . ↔ . . . . . . . . . . . . . . . . . . . . . . . .

The ground state possesses an s-like symmetry and therefore has a wavefunction that
is independent of θ. The first excited state is p-like and has a 2-fold degeneracy.§ The
number of excited states in the dot depends on its size.

To calculate the s and p states of the system, a variational method has been
employed [21]. Gaussian functions that respect the symmetry of the s and p states
are taken as trial wavefunctions:

ψs(~r) = ψs(ρ, θ, z) =
1

√

σsβ2
sπ

3/2
exp

(

− ρ2

2β2
s

− (z − z0s)
2

2σ2
s

)

(1.2)

ψp±(~r) = ψp(ρ, θ, z) =
ρ

√

σpβ4
pπ

3/2
exp

(

− ρ2

2β2
p

− (z − z0p)
2

2σ2
p

± iθ

)

(1.3)

For each wavefunction we have three adjustable parameters: β the in-plane width
of the wavefunction, σ the z-direction width, and z0 the center of the gaussian along
the z-axis. By minimizing the energy associated with these functions, the energy
eigenvalues of the s and p states can be found. In Fig. 1.7, these energies are presented
as a function of the height h of the QD and its radius R. An in-plane electron (heavy
hole) mass of me = 0.07mo (mh = 0.22mo) was used in this calculation as well as a
conduction (valence) band offset of V e

0 = 290 meV (V h
0 = 212 meV) which corresponds

to an average homogeneous gallium content of ∼ 50%.
We find that the height has more of an influence on the confinement of the carrier

in the dot, whereas the radius more affects the intraband energy differences (Ep−Es).
For a dot size typical of our samples, i.e. R = 115 Å, h = 28 Å, an s − p intraband
energy difference of 47 meV for electrons and 19 meV for holes is found.

§See Appendix A
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Figure 1.7: The energies of the s and p states for an electron (top) and a hole (bottom)
confined in a quantum dot as a function of the height h of the dot (left, with a fixed
radius R = 115 Å) and as a function of the radius R (right, with a fixed height h = 28
Å). The zero energy is taken at the bottom of the GaAs conduction for the electrons
and the top of the GaAs valence band for the holes.
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Anisotropy of Dots

In the above model, a 2-fold degeneracy is found in the p states. Experimentally, we
find that this degeneracy is lifted. This is due to the fact that self-assembled quantum
dots display a slight in-plane anisotropy, along the [110] and [11̄0] directions of the
sample. Different effects have been considered in literature to explain this anisotropy.
In the pseudopotential model this anisotropy arises from the C2v atomistic symmetry
of zinc blende crystals which distinguishes between these two directions [19]. In
the framework of the one-band envelope function formalism the anisotropy has been
attributed to the phenomenological shape anisotropy of the dots [10, 25]. In any
case, the main effect of the anisotropy is to split the two degenerate lz = ±1 levels of
the QDs. The splitting of the two levels at B = 0 T is clearly observed in the FIR
absorption spectra of doped dots, as seen in Figure 1.8. The absorptions correspond
to the intraband transitions between the s and p states. The spectra for light linearly
polarized along the [110] and [11̄0] directions of sample N1 [Fig. 1.8(a)] and P1 sample
[Fig. 1.8(b)] are presented. The anisotropy related energy splitting is found to be ∼
10 meV for the n-doped sample and ∼ 1 meV for the p-doped. To account for
this splitting in our cylindrical basis, we have treated the in-plane anisotropy in
perturbation by introducing a coupling term, Va, whose matrix element, between the
p+ and p− states, is equal to half of the observed splitting:

2〈p+
e |Ve

a|p−e 〉 = 2δe
a = 10 meV

2〈p+
h |Vh

a|p−h 〉 = 2δh
a = 1 meV

(1.4)
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Figure 1.8: FIR transmission spectra at B = 0 T for radiation linearly polarized along
the [110] (solid curve) and the [110] (dashed curve) directions for sample N1 (a) and
sample P1 (b). The observed absorptions correspond to the s-p intraband transitions.
The curves in (a) have been vertically offset for clarity.
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1.5 Investigation of Energy Levels

In order to investigate the energy levels of a carrier in a QD, the system needs to
be excited. As shown in the preceding section, the intraband energy differences of
holes (electrons) are ∼ 20 meV (50 meV), which are found in the the far infrared
energy range. A magnetic field is applied in order to further the investigation, as it
can be used to tune the energy separation between different states in the dots. FIR
magnetospectroscopy experiments have been performed to investigate the intraband
energy transitions of the systems. In addition, magneto-photoluminescence experi-
ments were conducted in order to study the interband transitions of the dots. In this
section, a detailed description of these two experimental methods is given, followed
by a discussion of the coupling between a charged carrier with light and a magnetic
field.

1.5.1 FIR Magnetospectroscopy: Intraband Transitions

A schematic for the setup of a FIR magnetospectroscopy experiment is shown in
Fig. 1.9. The light source is a mercury vapor lamp. The FIR light is directed through
a Michelson interferometer, which consists of a mylar beamsplitter and two mirrors.
The light first hits the beamsplitter where half the beam is reflected to a stationary
mirror and the other half passes through to a moving mirror. When the two halves of
the beam recombine again on the beamsplitter they exhibit a path length difference
x due to the mobile mirror. The recombined beam leaves the interferometer and is
directed into the cryostat through the sample and is finally focused on the detector.
The detector measures the intensity Itr(x) of the combined FIR beams as a function
of the moving mirror displacement x, the so-called interferogram. Finally, the com-
puter calculates the Fourier transform of the interferogram to obtain a transmittance
spectrum, Itr(σ), where σ is the wavenumber [26].

A particular beamsplitter can have a thickness ranging from 3.5 to 12 µm. The
3.5 and 6 µm beamsplitters are both good candidates to use for investigating the
intraband transitions for p- or n-doped samples, as they both possess good intensity
spectrum in the range of 100-700 cm−1 (∼10-90 meV).

The experimental setup at ENS in Paris uses a superconducting magnet, found
inside the cryostat, which can produce magnetic fields up to 17 T. For the FIR experi-
ments conducted at the High Magnetic Field Laboratory in Grenoble, in collaboration
with Marcin Sadowski and Marek Potemski, a resistive magnet, which can reach 28
T, is used.

The applied magnetic field, as well as the propagation direction of the light are
parallel to the growth axis of the sample. The sample is placed in a cryostat in a
liquid helium bath that is pumped to a temperature of 2 K. Finally, the detector is a
Si-composite bolometer that works at liquid helium temperatures.

It is possible, in the experimental set-up in Paris, for a linear polarizer to be placed
directly underneath the sample in the cryostat. The linear polarizer can be rotated to
polarize the EM field in a certain direction in the plane perpendicular to the growth
direction. In this way, we are able to measure the transmission spectra of different
polarizations of light with an applied magnetic field.
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Figure 1.9: Schematic of the experimental setup, found at ENS in Paris, which mea-
sures the FIR transmission of a sample in polarized light and an applied magnetic
field.
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In order to obtain a transmission spectra containing only the features interesting
to our study, we divide the transmission spectra of a sample by that of its substrate
[T (σ) = Isample(σ)/Isubstrate(σ)]. The substrate is obtained by cutting a small rectan-
gle from the sample wafer and sanding off the QD layers until we are left with just
the GaAs substrate. The sample and substrate are mounted to the end of a pivoting
rod. The rod can be rotated from outside the cryostat and therefore two spectra,
Isample(σ) and Isubstrate(σ), can be measured in the same conditions, i.e. temperature,
polarization, and incident light.

1.5.2 Magneto-Photoluminescence: Interband Transitions

During a photoluminescence (PL) experiment, electron-hole pairs are created by shin-
ing a laser on a sample. In the case of our QD samples, the pairs are trapped in the
InAs islands and will relax to the ground state of the system (se − sh). Finally, the
pair recombines by emitting a photon, which we are able to detect with either a
photomultiplier or a CCD (charge coupled device) camera.

In this thesis, three different types of PL measurements are used: non-resonant
photoluminescence (NRPL), resonant photoluminescence (RPL) and photolumines-
cence excitation (PLE).

In both NRPL and RPL measurements, the excitation energy of the laser is fixed,
while detection is possible in a certain energy range. For NRPL, the excitation energy
is fixed to be superior or equal to the GaAs energy gap. Initially, electron hole pairs
are created in the GaAs lattice which eventually relax down into the quantum dot
states. In this way, we are assured the creation of an electron hole pair in all the dots.
The resulting NRPL spectrum is therefore the sum of the contribution of all the dots.
In the case of RPL, the excitation energy is lower than the GaAs gap and the InAs
WL (see Fig. 1.5). As a result, electron hole pairs will only be created in QDs with
discrete excited energy transitions that correspond to the given excitation energy.

Finally, unlike the two methods described above, in a PLE measurement the
detection energy is fixed while the excitation energy is varied. The detection energy is
chosen to correspond to the luminescence of certain dots in the sample. The excitation
energy is then varied through a certain energy range. When an excitation energy
coincides with an excited state transition in a QD, an electron hole pair is created.
The pair relaxes to the ground state and finally the electron and hole recombine
and emit a photon. A signal is detected, at the chosen fixed detection energy, each
time the excitation energy corresponds to an excited state transition of a dot. PLE,
therefore, measures a signal from a subensemble of dots in the sample whose ground
state energy corresponds to the chosen detection energy. A summary of the three PL
methods is presented in Table 1.2.

All the PL data presented in this thesis was collected at the High Magnetic Field
Laboratory in Grenoble, in collaboration with Francis Teran and Marek Potemski. A
schematic of the setup for a magneto-RPL or NRPL experiment is shown in Fig. 1.10.
An Ar+ laser is used for non-resonant excitation and a Ti:sapphire laser for resonant
excitation. A chopper coupled to a lock-in amplifier allows the elimination of any
optical noise. A system of optical fibers is used for the sample excitation and the
collection of the PL signal. The sample is immersed in a liquid helium bath which
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is pumped to 4 K. A resistive magnet surrounds the cryostat such that a magnetic
field up to 28 T can be applied along the sample growth axis. The emitted light
from the sample is dispersed through a Jobin Yvon spectrometer and detected by a
photomultiplier.

The PLE experiment has the same set-up described above but uses a Ti:sapphire
laser and a CCD camera for the detection.

Method
Detection
Energy

Excitation
Energy

Select

Resonant Photoluminescence
(RPL)

Varies Fixed
QDs with excited

energy
transitions=Eexcitation

Non-Resonant Photoluminescence
(NRPL)

Varies Fixed All QDs

Photoluminescence Excitation
(PLE)

Fixed Varies
QDs with ground

state energy
=Edetection

Table 1.2: Summary of different PL methods used in this thesis.
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Figure 1.10: Schematic of the experimental setup, found at the High Magnetic Field
Laboratory in Grenoble, which measures the RPL or NRPL signal in a high magnetic
field.
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1.5.3 Coupling to Light

The processes of both FIR spectroscopy and photoluminescence involve the inter-
action between electrons and light. It is therefore necessary to study the coupling
between a charged carrier and an electromagnetic field in a QD.

In the general case, the Hamiltonian of an electron of charge −e in the presence
of an electric or magnetic field is written:

H =
1

2m0

(

~p − e~A(~r, t)
)2

− eφ(~r, t) + V (~r) (1.5)

where ~A is the potential vector and φ the electrostatic potential. V represents the
potential of the crystal lattice. The Hamiltonian H = H0 + Hi can be written in the
the Coulomb gauge (~∇ · ~A = 0, φ=0) as follows:

H0 =
p2

2m∗
; Hi = −e~A · ~p

m∗
+

e2A2

2m∗
(1.6)

Neglecting the term in A2 and applying the electric dipole approximation the inter-
action Hamiltonian becomes [27, 28]:

Hi = ~ε · ~p eE

m∗ω
sin ωt (1.7)

where E is the amplitude of the electric field, ~ε the polarization of the EM wave,
and ω its angular frequency. This term of the Hamiltonian is responsible for the
provocation of the inter and intraband transitions of electrons. Indeed, the transition
probability of an electron initially in the state |φi〉 being excited to a final state |φf〉
is proportional to:

Pi→f ∝ |〈φf |~ε · ~p|φi〉|2 (1.8)

The wavefunction of a carrier in a quantum dot can be separated into two parts:
the envelope function times a plane wave, which we will label fl (with l = s or p), on
the one hand and the periodic part of the Bloch function un on the other, where n is
either the conduction or valence band. We therefore have the initial and final wave-
functions: φf = flf unf

and φi = fliuni
. Expressing the wavefunctions as such, allows

for the separation of the matrix element in Eq. 1.8 into two terms: one responsible
for intraband transitions and one for interband transitions [29].

Intraband Transitions

We first examine the intraband term. This term is important when interpreting FIR
measurements, where intraband transitions of a QD system are directly probed. The
oscillator strength (OS) of these transitions is proportional to:

OSi→f ∝ |〈fli|~ε · ~p|flf 〉|2 (1.9)

We notice that only the envelope part of the wavefunction plays a role in the OS
of intraband transitions. Since the initial and final Bloch states are identical for
intraband transitions (ni = nf = conduction or valence band), and these functions
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oscillate rapidly compared to the envelope functions, their contribution to the OS can
be neglected [29].

As a result of the symmetry of the states, for an EM wave polarized in the xy
plane, only transitions between states whose orbital angular momentum differ by one
(∆l = ±1) are permitted. For our QD systems, in which only the ground state |s〉 is
populated, we find two allowed optical transitions, |s〉 ↔ |p+〉 and |s〉 ↔ |p−〉.
Interband Transitions

We now look at the interband term, important for interpreting PL results. The
polarization selection rules depend on the Bloch function part of this term,
〈uni

|~ε · ~p|unf
〉. We notice that the rules are the same as those of the bulk material.

However, because of the broadening of the PL peak due to size inhomogeneity in self-
assembled dot samples, our experiments are not sensitive to the effects of the above
term.¶ We are therefore only concerned by the envelope function contribution:

OSi→f ∝ |〈fli|flf 〉|2 (1.10)

This term is non-zero only when the initial and final states have the same l. The
allowed optical interband transitions are therefore of the type: s → s, p → p . . .

1.5.4 Coupling to a Constant Magnetic Field

The applied magnetic field is an important parameter in our experiments. Here, we
will study the effect of a constant magnetic field on the electronic states of a QD. We
consider the situation of our experiments, i.e. a magnetic field B applied along the
growth axis of the sample. The potential vector ~A can therefore be written in the
Coulomb gauge:

~A =
1

2
(−By,Bx, 0) (1.11)

In these conditions and neglecting the term in A2, Eq. 1.6 becomes

H = H0 +
eB

2m∗
Lz (1.12)

The presence of a magnetic field introduces a term in the Hamiltonian proportional
to the z-component of the angular momentum; the Zeemen effect.

Let us now look at the effect this new term has on the quantum dot energy states
calculated in the previous section; s and p. As mentioned before, due to the cylindrical
symmetry of the confinement potential, these states are eigenstates of Lz. Therefore,
the magnetic field does not couple the states between themselves. On the other hand,
the magnetic field will affect the energies of these states:

Es(B) = Es(0)

Ep+
(B) = Ep(0) +

h̄eB

2m∗

Ep−(B) = Ep(0) − h̄eB

2m∗

(1.13)

¶see section 4.1.1 and Appendix A
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Figure 1.11: s and p state energies as a function of the B field, for an electron (a) of
mass me = 0.07mo and a hole (b) of mass mh = 0.22mo, confined in a QD with R=
115 Å and h = 28 Å.



28 Chapter 1. Presentation of Quantum Dots

These equations suffice when dealing with small magnetic fields. However, for
stronger magnetic fields (≈20 T), the term in A2 of Eq. 1.6 can no longer be neglected.
Taking this into account, we find the diamagnetic term:

Hdia =
e2A2

2m∗
=

e2ρ2

8m∗
B2 (1.14)

The total effect of the magnetic field on the QD energy states is therefore the addition
of a Zeeman term and a diamagnetic term:

Es(B) = Es(0) +
e2β2

sB
2

8m∗

Ep+
(B) = Ep(0) +

h̄eB

2m∗
+

e2β2
pB

2

4m∗

Ep−(B) = Ep(0) − h̄eB

2m∗
+

e2β2
pB

2

4m∗

(1.15)

Figure 1.11 shows the evolution of the ground state, s, and two excited states, p+ and
p−, of an electron (a) and a hole (b) confined in a QD as a function of the magnetic
field. The zero energy is taken at the ground state energy at 0T, Es(0). The m∗s
in Eq. 1.15 are replaced by me for an electron and mh for a hole. In the calculation
leading up to Eq. 1.15, we considered an electron in the presence of an EM field.
With a simple change of charge sign (−e → +e), this same calculation can be applied
to a hole. As a result, for a hole, the p+ (l = +1) energy level decreases in energy
with the magnetic field while the p− (l = −1) energy level increases, contrary to the
case of an electron. The mass of a hole being heavier than that of an electron (mh =
0.22mo compared to me = 0.07mo), we find that the energy dispersion for an electron
in a magnetic field is greater than that of a hole. Indeed, as shown in Fig. 1.11, the
higher energy branch increases by 36 meV in 30 T for an electron compared to a 10
meV energy increase for the same variation in magnetic field for a hole. For both
carriers, the diamagnetic effect becomes apparent for intense magnetic fields.

If we take into account the anisotropy discussed in the previous section, the p-state
energies are now written:

Ep+
(B) = Ep(0) +

√

(

h̄ωc

2

)2

+ (δa)2 +
e2β2

pB
2

4m∗

Ep−(B) = Ep(0) −
√

(

h̄ωc

2

)2

+ (δa)2 +
e2β2

pB
2

4m∗

(1.16)

with ωc = eB
m∗ . These energies, for a hole and for an electron, are shown in Fig. 1.12.

We find that the p+ and p− energy levels are no longer degenerate at 0 T, but are
separated by an energy equal to 2δa. The effect of the anisotropy on the p-states is
most noticeable for low magnetic fields. For more intense B fields, the p-states with
anisotropy (in solid lines in Fig. 1.12) are very close to those without anisotropy (in
dashed lines in Fig. 1.12). In what follows p̃± will denote the two electronic levels
that result from the excited states admixed by the anisotropy term, i.e. the solid lines
in Fig. 1.12.
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Figure 1.12: Energies of the p-states for an electron (a) and for a hole (b) as a function
of magnetic field with anisotropy term included in the calculation (in solid lines) and
without this term (dashed lines).The anisotropy term is 2δe

a = 10 meV for electrons
and 2δe

a = 1 meV for holes. The other parameters can be found in Fig. 1.11.
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1.6 Conclusion

A general background of QDs was presented in this chapter. It was shown that, using
the Stranski Krastanov growth mode, it is possible to grow samples containing an
ensemble of QDs in which carriers can be confined in all three directions of space. All
the samples studied in this thesis were fabricated using this method.

A presentation of the calculation of the confined states was then given, where we
found that a carrier possesses discrete energy levels labeled by its z-direction angular
momentum.

We have given a detailed description of the two experimental methods used to
study these QD states. Far-infrared magnetospectroscopy and near-infrared magne-
tophotoluminescence are employed to probe respectively the intraband and interband
transitions of the system.

Finally, we have examined the interaction between a carrier trapped in a QD with
light as well as with a magnetic field: situation which arises in the experiments. The
QD intra and interband selection rules were established along with the evolution of
the QD energy levels as a function of magnetic field.

Although we have found that QDs present many of the same attributes as atoms,
we have already begun to discover the deficiency of the artificial atom model i.e.
dots display an in-plane anisotropy. In the following chapters, we will further show
that, because QDs are embedded in a semiconductor lattice, this simple image does
not hold true. Indeed, the interaction between a charged carrier in a dot and its
semiconductor environment, in particular the crystal lattice vibrations, differentiates
dots from the isolated atom.
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Chapter 2

Electronic Polarons

Various theoretical and experimental results have demonstrated that carriers confined
in QDs are strongly coupled to the longitudinal optical vibrations of the underlying
semiconductor lattice [1]-[7]. For conduction electrons, this coupling leads to the for-
mation of the so-called electronic polaron. The electronic polaron has been extensively
studied by intraband magneto-optical transitions in n-doped dots, most notably in the
thesis of J.N. Isaia and S. Hameau [8, 9]. In this thesis, new results that study these
electronic polarons in polarization and a magnetic field simultaneously are presented.
The first section will present a description of the calculation of polaron states.∗ This
calculation will be useful throughout the thesis, as it can be applied, with minor ad-
justments, to hole polaron states (Chapter 3) and excitonic polaron states (Chapters
4 & 5). Next, an overview of the experimental evidence of electron polarons in high
magnetic field will be given. Finally, new magnetotransmission results in polarization
will be presented. The oscillator strength of the polaron states will be calculated in
order to understand these results.

2.1 Calculation of Polaron States

2.1.1 The Fröhlich Hamiltonian

Both GaAs and InAs are crystals that contain two atoms per elementary unit cell.
In such crystals, there exists 6 phonon modes for each wave vector ~q: three acoustic
modes, which, for ~q → 0, correspond to the in phase vibrations of the two atoms in
the elementary cell, and three optical modes, which correspond to the out of phase
vibrations of the two atoms. The out of phase vibrations of the two atoms in the
longitudinal optical (LO) mode create a dipole. A charged carrier in such a material
is affected by the electric potential created by this dipole.

In bulk materials, the Fröhlich Hamiltonian describes the Coulomb interaction be-
tween a moving charge and these dipole vibrations. This Hamiltonian is expressed [11]

VF =
∑

~q

iAF

q
√

V
(ei~q·~ra+

~q − c.c.) (2.1)

∗A more detailed explanation of this calculation can be found in the thesis of O. Verzelen [10].
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where a+
~q is the phonon creation operator, ~r is the position operator of the carrier, V

is the volume of the crystal and the coefficient AF is given by

AF = e

√

h̄ωLO

2ǫo

(

1

κ∞

− 1

κo

)

(2.2)

where ǫo is the permittivity of free space. We notice that the Fröhlich interaction
depends on the high frequency permittivity constant κ∞ (10.9 for GaAs and 12.3 for
InAs) and the static permittivity constant κo (12.9 for GaAs and 15.6 for InAs) of
the material as well as the energy h̄ωLO of the LO phonons (≈ 36 meV for GaAs and
≈ 29 meV for InAs)[12].

The strength of this interaction can be gauged by the value of the dimension-
less Fröhlich constant αF of a crystal, which characterizes its ionicity. We have the
following relation between αF and AF :

αF =

√
2m∗

4πh̄(h̄ωLO)3/2
A2

F (2.3)

where m∗ is the effective electron mass of the material. For GaAs and InAs, we find
αF (GaAs) ≈ 0.06 and αF (InAs) ≈ 0.05.†

The above description of the Fröhlich Hamiltonian is valid for bulk materials. In
QDs, the phonon spectra are not known accurately as a result of the uncertainties
of the shape and composition of the dots. But since an actual InAs island consists
of several thousand unit cells, we can expect the dot to have a quasibulk phonon
spectra. In addition, as in III-V bulk, each anion is surrounded by four cations
with a slightly polar bond between them. The basic ingredients of the Fröhlich
Hamiltonian are maintained in actual dots. In our calculations, we will therefore
use the Fröhlich Hamiltonian taking the dimensionless Fröhlich constant αF as an
adjustable parameter and use the same phonon energies as in the bulk material.

The states of the QD system, which now include LO phonons, are labeled |υ, n~q〉
where |υ〉 = |s〉, |p±〉 are the purely electronic states calculated in the previous chapter
and |n~q〉 denotes the number n of LO phonons with wavevector ~q. Taking into account
this new interaction the Hamiltonian of our QD system can now be written:

H = H(B) + Va + Hph + VF (2.4)

where H(B) = Ho + HZeeman + Hdia, Hph is the LO phonon Hamiltonian and Va is
the anisotropy term.

2.1.2 Strong or Weak Coupling

In bulk, 2D and 1D systems, the Fröhlich Hamiltonian introduces an interaction be-
tween two continuums of states: the broad continuum of the electronic states (several
eVs) and the narrow continuum of the phonon states (several meVs). In this case,
Fermi’s Golden rule can be applied and the irreversible relaxation of a carrier in a
particular state, to a state of lower energy accompanied by the emission of one or

†See Appendix B
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Figure 2.1: Phonon dispersion curve in GaAs along the high symmetry axis Γ−∆−X
found in reference [15].

several LO phonons is expected. The probability of finding the carrier in its initial
state decays exponentially over time. This is called a weak coupling [13].

Now let’s consider a system of two discrete levels, whose energies without coupling
cross. In the presence of a coupling term, the two levels “repel each other” and an
anti-crossing is observed. The probability of finding the system, which was initially
in the first state, in the second state oscillates over time. This is called a strong
coupling [14].

In QD systems, the Fröhlich Hamiltonian provokes an interaction between a dis-
crete state (the electronic state of the QD) and a narrow continuum of phonon states.
It can be shown that this interaction can result in either a weak coupling (as in the
case of bulk materials) or a strong coupling (as in the case of a two discrete level
system) [14, 10]. The type of coupling depends on the relationship between the width
of the continuum, δ, and the strength of the coupling term, Veff (to be defined). If
δ ≪ Veff a strong coupling takes place and if, on the contrary, δ ≫ Veff , a weak
coupling is expected.

In the next section it will be demonstrated that for our samples, Veff is on the
order of 4 meV. The coupling regime of the QD system can therefore be determined
by comparing this Veff with the width of the phonon continuum in interaction with
the carrier. The width of the phonon continuum of GaAs (InAs) spanning the first
Brillouin zone is approximatively 6 meV (3 meV), as seen in Fig. 2.1. The extension
of the continuum in interaction with the electronic states can be approximated by
calculating the matrix element of the Fröhlich Hamiltonian between two discrete
QD states, 〈υi, n

i
~q|VF |υf , n

f
~q〉. The Fröhlich Hamiltonian only directly couples states
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whose phonon occupation number differ by one (nf − ni = ∆n = ±1). We find‡

|Vif (~q)| = |〈υi, n
i
~q|VF |υf , n

f
~q〉|

= |ÃF

q
〈υi|e±i~q·~r|υf〉|

∝ exp(−
q2
ρβ

2
if

4
−

q2
zσ

2
if

4
)

(2.5)

where β2
if and σ2

if are constants which depend on the parameters of the wavefunctions

of the two quantum dot states.§ For a dot size typical of our samples, βif ≈ 45 Å and
σif ≈ 20 Å. Consequently, the coupling term will go to zero for q >> 1

45Å
≈ 0.022

Å−1. We find that the coupling is negligible for phonons far from the center of the
Brillouin zone. More precisely, it can be demonstrated [10] that the coupling term is
significant only for phonons with a wavevector q < qmax ≈ 0.2 Å−1, resulting in an
effective width of the phonon continuum of around 0.1 meV. This value being small
compared to our Veff , we conclude that the QD system (carrier plus LO phonons) is
in a strong coupling regime. In addition, as we have shown that the dispersion of the
LO phonons in the concerned region is very small, we will from now on consider the
phonons as monochromatic.

2.1.3 The Effective Potential

In the above discussion, we established that a carrier in a dot is strongly coupled
to the LO phonons of the surrounding lattice. We are now interested in calculating
the resulting eigenstates and energies of this coupling. In essence, the carrier is
coupled to all phonons that possess a wavevector close to the center of the Brillouin
zone. This means that one would have to calculate, for example in the case where
∆n=1, the coupling between the discrete electronic levels of the carrier, |υi, 0〉, and
the one phonon states |υj, 1~q〉 for every wavevector in the concerned region. To avoid
this laborious calculation, we will exploit the fact that the phonons can be treated as
dispersionless and therefore all have the same energy, h̄ωLO. Within this dispersionless
phonon approximation, any linear combination of the degenerate one phonon states
|1~q〉 will also have the energy, h̄ωLO. We introduce a particular linear combination

|1α〉 =
∑

~q

Vα(~q)|1~q〉
Veff

, (2.6)

where we now define Veff , the effective coupling term introduced above,

〈υ1, 1α|VF |υ2, 0〉 =

√

∑

~q

|Vα(~q)|2 = Veff (2.7)

‡ÃF = iAF√
V

§β2
if =

2β2

i β2

f

β2

i
+β2

f

, σ2
if =

2σ2

i σ2

f

σ2

i
+σ2

f
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with Vα(~q) the matrix element of the Fröhlich Hamiltonian defined in Eq. 2.5. We
label

|1{β}〉 =
∑

~q

U{β}(~q)|1~q〉 (2.8)

the remaining set of one-phonon combinations orthogonal to |1α〉. Thus, we have

〈1{β}|1α〉 =
∑

~q,~q′

U∗
{β}(~q

′)Vα(~q)

Veff

〈1~q′ |1~q〉 =
∑

~q

U∗
{β}(~q)Vα(~q)

Veff

= 0 (2.9)

It follows that

〈υ1, 1{β}|VF |υ2, 0〉 =
∑

~q

U∗
{β}(~q)

ÃF

q
〈υ1|ei~q·~r|υ2〉 =

∑

~q

U∗
{β}(~q)Vα(~q) = 0 (2.10)

We have demonstrated that the remaining orthogonal space |υ1, 1{β}〉 is left uncoupled
to the discrete level |υ2, 0〉. We now see how creating these linear combinations greatly
simplifies the calculation. A discrete energy level coupled to a phonon continuum of
N different modes is equivalent to N − 1 uncoupled modes plus a two level system
coupled by a potential Veff .

2.1.4 A Simple Example: one discrete state coupled to one

continuum state

To concretize the ideas detailed above, let’s take the example of the coupling between
the discrete electron state |p−, 0〉 and the one phonon continuum |s, 1{~q}〉. Using
the effective potential method, we find that |p−, 0〉 is coupled to one discrete state
|s, 1α(sp−)〉 where

|1α(sp−)〉 =
∑

~q

Vsp−(~q)|1~q〉
Veff (sp−)

, (2.11)

Using Eq. 2.4, we find the Hamiltonian for this two level system

H =

(

Ep−(B) Veff (sp−)
Veff (sp−) Es(B) + h̄ωLO

)

(2.12)

By diagonalizing this matrix, the eigenvalues of the Hamiltonian are easily found:

E =
Es(B) + h̄ωLO + Ep−(B) ±

√

[Es(B) + h̄ωLO − Ep−(B)]2 + 4V 2
eff (sp−)

2
(2.13)

The new eigenvalues of the coupled system are traced in Fig. 2.2, along with the
uncoupled state energies as a function of the magnetic field. The zero energy is taken
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at the ground state, Es(B). We have used the same dot parameters as in Fig. 1.11
and the LO phonon energy of GaAs. With these values, using Eq. 2.7, we find a
Veff = 3.6 meV.

The coupling of the two states results in two new states, labeled (U) and (L) in
Fig. 2.2, that display an anti-crossing of magnitude 2Veff . These two states, called
polaron states, are the result of the strong coupling that takes place between the
lattice and electronic excitations. In the general case, we find that for a system of M
continuum states and m discrete states, we obtain m(M + 1) polaron states.
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Figure 2.2: Anti-crossing of two polaron states (U) and (L) coupled by a potential
Veff = 3.6 meV. In dashed lines the uncoupled states for dot parameters me = 0.07mo,
R= 115 Å, h = 28 Å and phonon energy h̄ωLO = 36 meV. The origin is taken to be
the ground state energy, Es(B).
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Figure 2.3: Magnetic field dispersion of the FIR resonances for sample N1.

2.2 Evidence of Electronic Polarons

In this section, the results of FIR magnetotransmission experiments measured on sam-
ple N1 and conducted in the conditions described in Section 1.5.1 will be presented.
Sample N1 was doped in order to obtain, on average, one electron per dot. The single
electron will initially be found in the ground state of the QD system, |s, 0〉. The
allowed intraband energy transitions are therefore to the |p+, 0〉 and |p−, 0〉 states, as
demonstrated in Section 1.5.3.

2.2.1 High Magnetic Fields Experiments

The validity of the above polaron model has been demonstrated in the thesis of J.N.
Isaia and S. Hameau. We will present here results reported in these thesis. Figure 2.3
displays the magnetic dispersion results measured for sample N1 up to B = 28 T in
unpolarized light. Four branches are observed with three incidences of anti-crossings:
at 70 meV for a a magnetic field of 16 T, at 80 meV for B = 25 T and the top branch
of an anti-crossing at 40 meV. We therefore find the signature behavior of a strong
coupling regime.

Let us now attempt to theoretically reproduce the experimentally observed anti-
crossings. We start by finding all the uncoupled QD states in the energy region of
the experimental results, i.e. 30 - 90 meV above the ground state energy Es. Taking
a dot with R=106 Å and h=23 Å, we find the five states shown in Fig. 2.4, whose
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Figure 2.4: Energies versus B field of the electron-phonon states in the absence of
the Fröhlich interaction. The energies were found using Eq. 1.16 with me = 0.07mo,
2δa = 11 meV and Ep(0) − Es(0) = 55 meV. The origin is taken at Es(B).

energies are plotted as a function of magnetic field. The other parameters used are
listed in the figure caption. There are three occasions for a strong coupling interaction
to occur in such a system:

• The crossing at 24 T between the discrete energy state |p−, 0〉 and the one
phonon continuum state |s, 1{~q}〉

• The crossing at 21 T between the discrete energy state |p+, 0〉 and the one
phonon continuum state |p−, 1{~q}〉

• The crossing at 24 T between the one phonon continuum state |p−, 1{~q}〉 and
the two phonon continuum state |s, 2{~q},{~q′}〉

The first crossing is exactly the situation treated in the previous section: one discrete
state coupled to one continuum state. The coupling results in the appearance of two
new polaron states that display an anti-crossing of magnitude 2Veff (sp−) ≈ 9.2 meV.
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Figure 2.5: Experimental magnetic field dispersion in solid symbols compared with
the calculated magnetic field dispersion in solid lines. A Fröhlich constant αF = 0.075
(AF = 0.00224 meV·m−1) was used. The rest of the parameters for the fit are given
in Fig. 2.4 and the text.
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The two final crossings present a more complicated situation. Using the effective
potential method, we find that |p+, 0〉 is coupled to one discrete state |p−, 1β〉 by a
potential Veff (p+p−) ≈ 3.6 meV. In turn, |p−, 1β〉 is coupled to the discrete state
|s, 1β, 1α〉 by a coupling potential Veff (sp−) ≈ 4.6 meV. We therefore find ourselves
with a three level system that will result in 3 new polaron states.

This three level system is coupled to the two level system by the anisotropy term,
which couples |p+, 0〉 with |p−, 0〉. To find the polaron states of the system, it is
therefore necessary to solve a 5 × 5 matrix problem.

In Fig. 2.5, the results of the polaron calculation, in solid lines, are presented with
the experimental results in symbols. A very good agreement is observed between
theory and experiment. The lowest polaron branch is not observed because its energy
coincides with that of the restrahlen band of the GaAs substrate. Between 31 and 37
meV, light penetrating the sample is completely absorbed by the transverse optical
(TO) phonons of the substrate.

We can conclude that these experimental results provide evidence that an electron
trapped in a QD is in a strong coupling regime with the LO phonons of the surround-
ing lattice. In addition, we find that the polaron model described in the previous
section is able to successfully reproduce our experimental results.

2.2.2 Study of Electronic Polarons in Polarization

Above, we recalled previous experimental and theoretical works which showed the
effectiveness of the polaron model in predicting the magnetic dispersion curves of
our sample. We present here new experimental and theoretical studies of electronic
polarons in polarization. We will focus on the intensity of the polaron absorptions
which, we will observe, also vary greatly with an applied magnetic field. New mag-
netotransmission results performed in polarization are used for this study.

Figure 2.6 displays the magnetotransmission spectra for radiation polarized along
the [110] direction of sample N1 and recorded at 2 K from B = 0 to 15 T every tesla.
At 0 T, one strong absorption in observed at 60 meV. As the magnetic field increases,
the absorption increases in energy all the while decreasing in intensity. At around
12 T, the beginning of an anti-crossing is observed and a small absorption starts to
be detected at 72 meV, slightly above the main absorption. At lower energies, an
absorption appears at a field of 3 T and at an energy of 51 meV. This absorption gets
stronger with the magnetic field and decreases in energy. Finally, between 31 and
37 meV, we observe the restrahlen band alluded to above, where light is completely
absorbed by the TO phonons of the GaAs substrate.

Let us now compare this behavior with the magnetotransmission spectra for ra-
diation polarized along the [110] direction, as seen in Fig. 2.7. The main absorption
at 0 T is now found at 50 meV. This absorption decreases in energy with the mag-
netic field, while its intensity decreases only slightly. At around 5 T, the high energy
absorption appears. Its intensity stays weak in increasing magnetic field.

We saw before that the variation in energy of these absorptions as a function of
magnetic field can be predicted with the polaron model. The low energy absorption,
more prevalent in Fig. 2.7, corresponds to the polaron state that results mainly from
the interaction between the states |p−, 0〉 and |s, 1α〉, labeled (1) in Fig. 2.5.
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Figure 2.6: Magnetotransmission spectra measured in sample N1 for radiation linearly
polarized along the [110] direction and recorded at 2 K from B = 0 to 15 T every
tesla. Traces have been vertically offset for clarity.
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Figure 2.7: Magnetotransmission spectra measured in sample N1 for radiation linearly
polarized along the [110] direction and recorded at 2 K from B = 0 to 15 T every
tesla. Traces have been vertically offset for clarity.



2.2. Evidence of Electronic Polarons 47

On the other hand, the high energy absorption, more prevalent in Fig. 2.6, corresponds
to the polaron state that results mainly from the interaction between the states |p+, 0〉,
|p−, 1β〉 and |s, 1β, 1α〉, labeled (2) in Fig. 2.5. In order to explain the variation in
intensity of the two main absorptions in these spectra, we will calculate their oscillator
strength as a function of magnetic field.

Oscillator Strength Calculation

The optical transitions detected in our measurements involve the excitation of an elec-
tron in the QD from the ground state |s, 0〉 towards the set of five polaron states,Ψn.
As seen in Section 1.5.3, the oscillator strength (OS) of these intraband transitions is
proportional to the matrix element:

OSΨn
∝ |〈s, 0|~ε · ~p|Ψn〉|2 (2.14)

The polaron wave function, in the basis presented in Fig. 2.4, is written

|Ψn〉 = Cn
p+
|p+, 0〉 + Cn

p−
|p−, 0〉 + Cn

s1|s, 1α〉 + Cn
s2|s, 1α, 1β〉 + Cn

p−1|p−, 1α〉 (2.15)

Taking into account the intraband selection rules established in Section 1.5.3 and the
fact that the interaction term of Eq. 2.14 does not act on the phonon part of the
wavefucntion, we find that the only allowed transitions are towards the states |p+, 0〉
and |p−, 0〉. The OS of a particular polaron state will therefore depend on the weight
of these two optically active states, i.e. Cn

p+
and Cn

p−
. More precisely, we find that for

light polarized in the QD layer plane, Eq. 2.14 becomes

OSΨn
∝ |(Cn

p+
+ Cn

p−
)ε[110] + (Cn

p+
− Cn

p−
)ε[110]|2 (2.16)

We are interested in the OS strengths of two out of the five polaron states, Ψ1 and Ψ2,
visible in our experimental results (see Figures 2.6 and 2.7). Figure 2.8 presents the
calculated OS of these two states as a function of magnetic field. The dashed curves
represent the evolution of the oscillator strength of the lower energy branch (Ψ1)
whereas the solid curves represents the evolution of the higher energy branch (Ψ2).
In addition, the full circles correspond to light polarized along the [110] direction and
the open circles to a polarization along the [110] direction.
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Figure 2.8: Calculated magnetic field dependence of the oscillator strength for the
high energy polaron (solid lines) and the low energy polaron (dashed lines) for light
polarized along the [110] (full circles) and [110](open circles) directions.
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Comparison with Experimental Results

Before comparing our results, we point out that we do not measure an OS in our ex-
periments. More precisely, the area of the measured absorptions are equivalent to the
absorption probability of the s-p resonances in the QDs, as seen in references [16], [17]
and [4]. But as this probability is proportional to the OS, we will use our calculated
OS to make an approximative comparison with our experimental results.

To best compare our polarization results with our calculations, we present the
magnetotransmission spectra of each polarization with its corresponding OS calcula-
tion (Fig. 2.10 and Fig. 2.11). We take note that the main absorption at 0 T of both
polarizations have an ∼ 7% absorption, which we will associate with an OS of 0.5.¶

At low magnetic fields for both polarizations, we predict a symmetric change in
the OS of the two branches: for the polarization [110] ([110]), the OS of polaron 1
(2) increases to the detriment of the OS of polaron 2 (1). As seen in Chapter 1,
the p-states are coupled by an anisotropy term. The exchange in OS is an effect
of this coupling, which is strong for low magnetic fields (see Fig. 1.12). At high
magnetic fields, the anisotropy term becomes negligible as compared to the effect of
the magnetic field. Therefore, if solely the anisotropy term was taken into account
(i.e. no polaron coupling), the OS of the two branches in both polarizations would
eventually, with the increasing magnetic field, become equal. This is shown in Fig. 2.9,
where the calculated OS of the two branches as a function of magnetic field, in absence
of polaron coupling and for a polarization direction [110], is displayed. We will show
that the fact that we do not observe such a convergence in our experiments, provides
further support for our polaron model.
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Figure 2.9: Calculated (in absence of polaron coupling) magnetic field dependence
of the oscillator strength for the low energy state (dashed lines) and the high energy
state (solid line) for light polarized along the [110] direction.

¶As the FWHM of the absorptions does not significantly change with the magnetic field, we
compare here the OS with the intensity and not the area of the absorptions.
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Figure 2.10: Comparison of the magnetotransmission spectra with the calculated OS
for light polarized along the [110] direction.
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Figure 2.11: Comparison of the magnetotransmission spectra with the calculated OS
for light polarized along the [110].
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We will first comment on the OS of the high energy branch (Ψ2). We notice in the
experimental results for both polarization, that the OS of this branch is weak at 15
T; absorption ∼ 3% for [110] and absorption ∼ 1.5% for [110]. In our calculations, we
are able to predict this diminution in OS at high magnetic fields. For [110], the OS
starts strong and quickly decreases in magnetic field. On the other hand, for [110],
the OS increases slowly, only to peak at ∼ 11 T before decreasing. The tendency of
this absorption to decrease for both polarization at high magnetic fields, stems from
the fact that an anti-crossing is taking place. This polaron state looses part of its OS
to the advantage of a higher energy polaron state that can be detected at ∼ 12 T.

This behavior is in contrast with that of the lower energy branch. At 15 T,
the polaron state Ψ1 has an absorption of ∼ 2.5% for [110], whereas for the [110]
polarization a strong absorption of ∼ 6% is observed. As the anti-crossing for this
branch does not take place until higher magnetic fields, we do not observe the same
decrease in OS in high magnetic field as we did for the polaron state Ψ2. The variation
in the OS therefore originates, for the most part, from the anisotropy of the p-states.

We see that by using the calculated intraband OS, we are able to predict the
general behavior of the variation as a function of magnetic field of the transmis-
sion absorption intensities. A deviation from a model taking into account only an
anisotropy term is observed, most notable for the upper energy branch. This gives us
additional evidence of the validity of our polaron model.
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2.3 Conclusion

In this chapter, we began by demonstrating that a carrier confined in a QD is strongly
coupled to the LO phonons of the semiconductor lattice. New states, called polaron
states, form as a result of this interaction.

We then presented previously obtained results that compare the polaron model
with FIR transmission experiments performed on n-doped samples in high magnetic
fields. The good agreement between the model and the experimental results, evi-
denced the existence of these polaron states.

Finally, we presented magnetotransmission results in polarization and compared
them to the calculated OS of the polaron states. The magnetic field dependent
behavior of the absorption intensities was predicted with the polaron model. The
effect of the anti-crossing of the polaron states was most notably observed in the high
energy polaron state (2), where a weak absorption was observed in high magnetic
fields for both polarizations.

The polarization experiments, along with providing complementary prove of the
existence of electronic polarons, were important in testing the new magnetic polar-
ization experimental set-up put in place during this thesis. We will see, in the next
chapter, that the ability to simultaneously apply a magnetic field and polarize light
in our experiments is crucial to the study of hole polarons.
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Chapter 3

Hole-LO Phonon Interaction

In this chapter, the hole excitations of p-doped self-assembled dots are studied. We
will see that the experimental demonstration of a hole LO-phonon interaction presents
certain challenges as compared to the electron LO-phonon interaction, seen in the pre-
vious chapter. Factors unique to p-doped samples, such as the confined energies of
holes, which are found below the restrahlen band, the heavy mass of a hole, and
the Be impurities levels, complicate the study. In the first section, the FIR magne-
totransmission experiments of two p-doped samples are presented. The calculation
of hole polaron states is then described. The comparison between these calculations
and the experimental results is presented, where we will see the importance of the
polarization parameter of our experiments. Finally, results from the High Magnetic
Field Laboratory in Grenoble are presented to further support the evidence of the
existence of hole polaron states.

3.1 Experimental Results

3.1.1 Study at 0 T

As mentioned in Chapter 1, intraband transitions in InAs/GaAs self-assembled QDs
usually display anisotropic behavior when the FIR radiation is polarized along either
the [110] or the [110] direction [1, 2]. We have therefore performed magnetotransmis-
sion spectra for FIR radiation, linearly polarized along the [110] and [110] directions
of the sample. Figure 3.1 displays the FIR absorption spectra at zero magnetic field
recorded for the two polarization directions in sample P1 [Fig. 3.1(a)] and sample
P2 [Fig. 3.1(b)]. A main absorption is observed at an energy of ∼ 26 meV in both
samples for the [110] polarization. For the [110] polarization, the main absorption
occurs at a slightly lower energy. The anisotropy related energy splitting is found to
be ∼ 1.2 meV in sample P1 and ∼ 0.8 meV in sample P2. The sharpness of the lines
[the full width at half maximum (FWHM) is ∼ 3 meV] is good evidence of the high
quality of these samples. The main line intensity is ∼ 2% for sample P1 and ∼ 4%
for sample P2. Such a difference in intensity can be explained by the different doping
levels of the two samples, as described in the Appendix of reference [2].

Note, as well, that a smaller absorption is observed in both samples and for both
polarizations at around 29 meV (indicated by the arrows in Fig. 3.1). We have verified
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that this absorption is also measured in undoped samples grown in similar conditions,
while the other absorptions associated with the doped dots are not observed. In
addition, when a magnetic field is applied, we find that the absorption stays constant
in energy. We thus associate this ∼ 1% sharp absorption with the InAs phonon. This
absorption is understandably smaller than the GaAs phonon associated absorption
as a sample of self-assembled InAs/GaAs QDs contains much more GaAs (substrate
plus spacers) than InAs (wetting layers plus dots).

Finally, we note the sharp features observed between 21 and 22.5 meV in both
samples for both polarizations. We will see, with the application of a magnetic field,
that these small absorptions can be associated with the Be impurity levels present in
our p-doped samples.
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Figure 3.1: Transmission spectra at B = 0 T for radiation linearly polarized along
the [110] (solid curve) and the [110] (dashed curve) directions for sample P1 (a) and
sample P2 (b). The arrows indicate the absorption associated with the phonon of
InAs.
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Figure 3.2: In open symbols, the sharp magnetic resonances measured in our two
p-doped samples, P1 and P2. In solid symbols, FIR absorption measurements of the
Be acceptor levels in bulk GaAs from reference [3].

3.1.2 Be Impurities

Proof that the low energy features in Fig. 3.1 are indeed Be impurities is important
to the study of hole polarons states. As the energy transitions of Be impurity levels
in GaAs are on the order of 20 meV, it is important to verify that the absorptions
observed at 26 meV are indeed associated with QD levels and not impurities levels.
In Fig. 3.2, the resonances of the two low energy absorptions observed in Fig. 3.1
are plotted as a function of magnetic field in open symbols. On the same figure, in
solid symbols, we have plotted results found in reference [3], in which FIR absorption
measurements of the Be acceptor levels in bulk GaAs were studied in a magnetic field.
We find that the sharp absorptions observed in our measurements correspond exactly
to the impurities levels measured in bulk GaAs. The impurities now accounted for,
we can conclude that the strong absorptions observed at 26 meV in our samples are
indeed absorptions related to holes trapped in the QDs of our sample.

We point out that we observe simultaneously absorptions associated with holes in
QDs and with holes in Be impurity levels. This is an indicator that the transfer of
holes, from the doping level 2 nm under the dot layer (see Fig. 1.4), to the QDs is
not 100% efficient. We explain this by the fact that a perfect δ-doping is difficult to
accomplish for light elements such as Be. On the contrary, the Be migrates throughout
the GaAs spacer layer. A transfer of holes into the QDs is possible for Be found close
to the dot layers, while for Be far from the layers a transfer is not possible. We
therefore find bulk like impurity levels that correspond to these untransferred holes.
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Figure 3.3: Magnetotransmission spectra measured in sample P2 for radiation linearly
polarized along the [110] direction and recorded at 2 K from B = 0 to 15 T every 3
T. Traces have been vertically offset for clarity.
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3.1.3 Magnetotransmission Spectra

Figure 3.3 displays the magnetotransmission spectra for radiation along the [110]
direction of sample P2 and recorded at 2 K from B = 0 to 15 T every 3 T. As the
magnetic field increases, the main absorption observed at zero magnetic field at ∼ 26
meV stays nearly constant in energy all the while decreasing in intensity. At around
6 T, a second lower energy absorption appears at 23 meV. This second absorption
decreases in energy as the magnetic field is increased. The zero transmission region
from 31 to 37 meV corresponds to the restrahlen band of the GaAs substrate.

Let us now compare this behavior with the magnetotransmission spectra for radi-
ation polarized along the [110] direction. Fig. 3.4 displays the magnetotransmission
spectra for radiation polarized along the [110] direction with an applied magnetic
field. The absorption minimum decreases in energy as the magnetic field increases
while its intensity stays strong for all magnetic fields.

The different behavior between these two polarizations is clearly demonstrated in
Fig. 3.5(a), where we have plotted the energy absorption minima of the two polariza-
tions as a function of magnetic field. We see that one polarization contains one unique
absorption that decreases in energy while the other polarization has two absorptions:
a high energy branch observable at low magnetic field and low energy branch observ-
able at high magnetic fields. We observe quite similar magnetotransmission results
for sample P1, as seen in Fig. 3.5(b).

In the magnetotransmission results for p-doped samples, we remark that we do
not observe the signature anti-crossings of a strong coupling situation, as we did for
the n-doped samples. Nonetheless, it is clear that the transition energies observed
experimentally cannot be accounted for by a simple Zeeman splitting effect that we
would expect in a purely electronic, non-interacting model. Indeed, the lower and
upper branches would be symmetric in that case with similar oscillator strengths.
We will show that because of the respective energies of the phonon and confined hole
states, no observable anti-crossings take place. In the case of holes trapped in QDs,
it is therefore the oscillator strength of the transitions along with the asymmetry of
the transition evolution in a B field that will provide the conclusive evidence of a hole
LO-phonon interaction.
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Figure 3.4: Magnetotransmission spectra measured in sample P2 for radiation linearly
polarized along the [110] direction and recorded at 2 K from B = 0 to 15 T every 3
T.
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Figure 3.5: Magnetic field dispersion of the resonances in sample P2 (a) and P1 (b)
for the two polarization directions; [110] in full circles and [110] in open circles.



64 Chapter 3. Hole-LO Phonon Interaction

0 5 10 15 20
22
24
26
28
30
32
34
36
38

 1,s

 0,~p

 0,~p

 

 

E
 (m

eV
)

B (T)

Figure 3.6: Energies versus B field of hole-phonon states in absence of the Fröhlich
interaction. The energies were found using Eq. 1.16 with mh = 0.22mo, 2δa = 1.8
meV and Ep(0) − Es(0) = 29.3 meV. The origin is taken at Es(B).

3.2 Hole Polaron Calculation

Analogous to the calculation of electronic polarons, we start the calculation of hole
polarons by finding all the uncoupled QD states in the energy region of the experimen-
tal results, i.e. 20 - 30 meV above the ground state energy Es. As mentioned above,
a significant absorption, that is independent of the magnetic field, is observed around
29 meV in the FIR spectra of all our samples, that we attribute to the InAs phonon
absorption. As confined hole states are energetically close to the InAs phonon, the
contribution of the InAs phonon can not be neglected as in the case of electronic
polarons. Taking this into account, we find the three states shown in Fig. 3.6, whose
energies are plotted as a function of magnetic field. A dot with a height h = 25.4
Å and radius R = 91 Å was used. As shown in Section 1.5.4, because of its positive
charge, the hole state |p+

h 〉 (|p−h 〉) counterintuitively decreases (increases) in energy
with an increasing magnetic field. Between these three states, we recognize two pos-
sible strong coupling situations:

• coupling between |p+, 0〉 and |s, 1{~q}〉

• coupling between |p−, 0〉 and |s, 1{~q}〉
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In an approach similar to the one used in Chapter 2, we will divide the problem into
two 2-level systems.

As demonstrated in Sections 2.1.4 and 2.2.1, the interaction between a discrete
state with a dispersionless continuum of states can be simplified to the interaction
between two discrete states coupled by an effective potential. In the present case, the
discrete state |p+, 0〉 is therefore coupled to the discrete state |s, 1α〉 with

|1α〉 =
∑

~q

Vsp+
(~q)|1~q〉

Veff (sp+)
. (3.1)

Similarly, |p−, 0〉 is coupled to the discrete state, |s, 1β〉 with

|1β〉 =
∑

~q

Vsp−(~q)|1~q〉
Veff (sp−)

. (3.2)

We notice that for each interaction, a particular phonon mode has been introduced.
According to the effective potential method, the outcome of an interacting system of
two discrete states (m = 2) and one continuum state (M = 1) is four [m(M +1) = 4]
new polaron states. However, unlike the case of electrons, we do not expect to see
any anti-crossings as the uncoupled states do not cross. Instead, we anticipate only
a modification of the uncoupled states dispersion curves and oscillator strengths as a
function of the magnetic field.

The situation is complicated by the introduction of the anisotropy term, which
couples |p+, 0〉 with |p−, 0〉. Consequently, |p+, 0〉 is indirectly coupled to the phonon
state |s, 1β〉, and at the same time |p−, 0〉 becomes indirectly coupled to |s, 1α〉.

Finally, we will treat in perturbation the interaction between states not found in
resonance with one another. We introduce the states |p±, 1〉 and |s, n〉 (n = 0 or 2),
that interact with the states |p±, 0〉 and |s, 1〉, respectively.

Now that we have considered all the possible coupling situations (direct, indirect
and in perturbation), we can proceed with the calculation of the polaron states. The
polaron wave functions in our four space basis are written

|Ψn〉 = Cn
α |s, 1α〉 + Cn

p+
|p+, 0〉 + Cn

β |s, 1β〉 + Cn
p−
|p−, 0〉 (3.3)

The corresponding eigenvalue equations are
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Figure 3.7: Energies versus B field of the polaron states calculated from the diag-
onalization of Eq. 3.4. The origin is taken at Es(B). The parameters are given in
Section 3.3.
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where δa is the anisotropy term and

Es1α,β
= Es(B) + h̄ωLO −

∑

~q |Vss(~q)|2
h̄ωLO

, (3.5)

Ep±0 = Ep±0(B) −
∑

~q |Vpp(~q)|2
h̄ωLO

, (3.6)

Veff (sp+) = Veff (sp−) =

√

∑

~q

|Vsp±(~q)|2, (3.7)

Ej(B) is the B-dependent energy of the 0-phonon electronic level |j〉, which contains
both the diamagnetic (∼ B2) and Zeeman (∼ B) terms. The last term in E is the
second order perturbation correction resulting from the interaction of |s, 0〉 and |s, 2〉
with |s, 1〉 and |p±, 0〉 with |p±, 1〉. The two coupling terms, Veff (sp+) and Veff (sp−),
were calculated and found to be 4.26 meV. The numerical diagonalization of Eq. 3.4
gives us the four polaron states presented in Fig. 3.7.

Note that a dot with cylindrical symmetry (δa = 0) has two independent sets of
polaron levels, whose field dispersions are obtained by solving

(Es1α
− E)(Ep+0 − E) = Veff (sp+)2 (3.8)

or
(Es1β − E)(Ep−0 − E) = Veff (sp−)2. (3.9)

Also note that in the absence of Fröhlich coupling (Veff = 0), Eq. 3.4 leads to two
dispersion curves, |p̃±, 0〉, solutions of

[Ep+0(B) − E][Ep−0(B) − E] = |δa|2 (3.10)

which we see in Fig. 3.6 in dashed lines.
In the general case, the discrete states are at the same time coupled to each other

and to the continuum states. However, since the anisotropy term is weak in our p-
doped samples (δa ≈ 0.9 meV), the resulting polarons states are roughly described
in terms of the coupling of |s, 1α〉 with |p+, 0〉 (the two states represented in solid
lines in Fig. 3.7) and |p−, 0〉 with |s, 1β〉 (the two states represented in dashed lines
in Fig. 3.7). The parameters for this calculation are given in the next section, where
we compare the experimental results with the above calculation.
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3.3 Comparison Theory/Experiment

3.3.1 Comparison of Magnetic Dispersion Curves in Polar-
ization

In Fig. 3.8, we compare our FIR magnetotransmission results, in two polarization
directions and in a magnetic field up to 15 T, with our calculations. The size of
the QD, the mass of the heavy hole and the Fröhlich constant of InAs were taken
as adjustable parameters to best fit our data. A dot with a height h = 25.4 Å and
radius R = 91 Å was used. The mass of the in-plane heavy hole in a QD was found
to be mh = 0.22m0, which is similar to values found in recent theoretically and
experimental studies [4, 5].

We find a Fröhlich constant αF = 0.07 (AF = 0.00186 meV·m−1), which is ∼ 30%
larger than that of bulk InAs.∗ An increase in the Fröhlich constant has been predicted
theoretically for quantum dot systems [8], and observed for electronic polarons in
QDs [2, 7, 9].

The energy positions versus field are very well described by our model. The two
higher energy polarons branches, predicted in Fig. 3.8, are not observed experimen-
tally in this field range because their energies coincide with that of the restrahlen
band of the GaAs substrate, (grey area in Fig. 3.8).

As noted earlier, we do not observe an anti-crossing, which is the signature ev-
idence of a strong coupling regime. Instead, the results in the two polarization di-
rections permit the observation of the disappearance and appearance of certain ab-
sorptions. In order to explain the variation in intensity we observe experimentally,
we have calculated the oscillator strengths of the optical transitions between polaron
levels as a function of magnetic field.

∗See Appendix B
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Figure 3.8: Magnetic field dispersion of the resonances observed for sample P2 for
the two polarization directions; [110] in full circles and [110] in open circles, with the
calculated energy transitions in bold and dashed curves. The grey area between 31
and 36 meV represented the zero transmission region of the substrate.
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3.3.2 Oscillator Strength

The optical absorptions detected in our measurements involve the excitation of the
hole in the quantum dot from the ground state |s, 0〉, towards the set of four polaron
levels |Ψn〉 resulting from the diagonalization of the 4 × 4 matrix in Eq. 3.4. Similar
to the OS formula for electronic polarons (Eq. 2.14), we find for a hole and for light
polarized in the QD layer plane, an oscillator strength for each transition proportional
to

OSΨn
∝ |(Cn

p+
+ Cn

p−
)ǫ[110] + (Cn

p+
− Cn

p−
)ǫ[110]|2, (3.11)

where ǫ is the in-plane polarization direction of the electromagnetic wave. We show
in Fig. 3.9 the field dependence of the oscillator strength for the two low-lying polaron
levels for both [110] [Fig. 3.9(a)] and [110] [Fig. 3.9(b)] polarizations.

The solid curves represent the evolution of the oscillator strength of the lower
energy branch [labeled (1) in Fig. 3.8], whereas the dashed curves represents the
evolution of the higher energy branch [labeled (2) in Fig. 3.8]. Note that, at zero
magnetic field, the ∼ 4% absorption measured in sample P2 for light polarized along
the [110] direction (Fig. 3.4), corresponds to an oscillator strength of ∼ 0.6. This
is corroborated by the ∼ 3% absorption for light polarized along the [110] direction
(Fig. 3.3), which corresponds to an oscillator strength of ∼ 0.45. Taking into account
the signal to noise ratio, which allows the detection of ∼ 1% transmission variation,
our experimental sensitivity corresponds roughly to an oscillator strength of ∼ 0.15.
At zero tesla, our model predicts the existence of the higher energy branch for the [110]
polarization and the lower energy branch for the [110] polarization. As the magnetic
field is increased, the oscillator strength of the high energy branch decreases towards
the experimental limit 0.15, while the oscillator strength of the lower energy branch
increases above the experimentally observable intensity at around 6 T.

For the other polarization [110], our model predicts one unique observable absorp-
tion with an oscillator strength that stays nearly constant with the changing magnetic
field. This is a good description of the oscillator strength behavior we observe in the
magnetotransmission spectra of our samples. In addition, we note that a purely elec-
tronic model cannot predict the variation in oscillator strength with the magnetic
field that we observe experimentally. The good agreement obtained for the energy
transitions as well as for the evolution of oscillator strengths demonstrates that the
magneto-optical transitions occur between polaron states.
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Figure 3.9: Calculated magnetic field dependence of the oscillator strength for the
high energy polaron (dashed line) and the low energy polaron (solid line) for light
polarized along the [110] (a) and [110] (b) directions.
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Figure 3.10: High magnetic field dispersion of the resonances (full squares) in unpo-
larized light for sample P2. The lines are the resonance dispersions calculated using
the parameters listed in the text.
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3.3.3 Comparison of Magnetic Dispersion Curves in High
Fields

Finally, we present the results of magnetotransmission measurements done on sample
P2 at the High Magnetic Field Laboratory in Grenoble. In Fig. 3.10, we display the
magnetic field dispersion of resonances between 15 and 28 T for unpolarized radiation.
The lines are the calculated dispersions using the same parameters as above, but now
calculated up to B = 30 T. We observe only one branch below the restrahlen band,
which is consistent with our OS strength calculation. Indeed, as branch (2) approaches
the energy of the InAs phonon, its OS becomes weaker and weaker.

But the most important result from these additional high magnetic field experi-
ments is that they have permitted us to experimentally observe the polaron transition
at energies above the restrahlen band of the substrate. At 20 T, we start to see an
absorption at ∼40 meV. This is a significant result because this energy transition
cannot be predicted using a purely electronic model. In an uncoupled system the p
branches of a hole move very little with the magnetic field (see Fig. 1.11 of Chapter
1). The |p−〉 state will not increase enough in energy to reach our experimentally ob-
served absorption if solely the Zeeman and diamagnetic effects are taken into account.
In the polaron model, the upper branch is pushed up in energy due to the interaction
with the InAs phonon. We therefore have additional experimental support that the
energy transitions occur between polaron states.

Note that in Fig. 3.10 the calculated upper branch is found to be ∼ 2 meV below
the experimental points. Such a discrepancy could arise from an interaction involving
the LO-phonon of GaAs (∼ 36 meV) which is not included in our calculations, where
only the InAs like LO-phonon is taken into account. It has been demonstrated that
in certain mixed crystals, such as the alloy semiconductor In1−xGaxAs, there are two
distinct sets of optical phonons [10, 11]. As our dots are not made up of pure InAs,
but are in fact a mixture GaAs and InAs, we should expect the same two phonon
mode behavior.

Let’s investigate the consequences of considering the two LO phonon modes: InAs
and GaAs. We limit our study to a three level system involving the |p−, 0〉 state,
whose energy increases with increasing magnetic field. Due to its evolution with
the magnetic field, this discrete state finds itself in proximity to the two continuum
states, |s, 1{~q}〉InAs and |s, 1{~q}〉GaAs, as seen in Fig. 3.11. We introduce two linear
combination phonon states in interaction with |p−, 0〉, where β will be used to denote
the case of the InAs phonon interaction and γ the GaAs phonon interaction,

|1β〉 =
∑

~q

Vβ(~q)|1~q〉
Veff (β)

.

|1γ〉 =
∑

~q

Vγ(~q)|1~q〉
Veff (γ)

.

(3.12)
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Figure 3.11: Energies versus B field of the non-interacting hole-phonon states in-
cluding the GaAs LO phonon mode, for the parameters used in Fig. 3.6 and a GaAs
phonon energy of 36 meV.

The Hamiltonian of this reduced system is written

H =









Es(B) + h̄ωβ Veff (β) 0

Veff (β) Ep−(B) Veff (γ)

0 Veff (γ) Es(B) + h̄ωγ









(3.13)

where the InAs and GaAs phonon energies are noted respectively by h̄ωβ and h̄ωγ.
The same value for the InAs coupling term, Veff (γ) = 4.26 meV, was employed and the
value of Veff (β) was found to be 3.95 meV. After diagonalization of the Hamiltonian,
we find three polaron states. The two high energy polaron states are displayed in
Fig. 3.12, in solid lines. We compare them to the one high energy polaron branch, in
dashed lines, found when taking into account solely the InAs phonon.

Firstly, we remark that the addition of the GaAs mode results in two high energy
branches, where we once had one. However, one of these branches is found in the
restrahlen band, and therefore cannot be observed experimentally. A second result of
this calculation, is an upshift in energy of the highest energy polaron state. Therefore,
by adding the GaAs phonon, with this simple three level model, we are able to
demonstrate the tendency of the upper branch to be pushed higher in energy: behavior
observed in our experimental results.
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Figure 3.12: In solid lines, the two high energy polaron states resulting from a two
phonon mode model (Eq. 3.13) and in dashed lines, the high energy polaron state
resulting from the one phonon mode model (Eq. 3.4). The squares are the high
magnetic field dispersion of the resonances in unpolarized light for sample P2.
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3.4 Conclusion

In summary, we have investigated the valence intraband transitions in p-doped self-
assembled InAs QDs by using FIR magneto-optical techniques with linearly polarized
radiation. We have shown that a purely electronic model is unable to account for
the experimental data, neither for the energy dispersion of the magneto absorption
resonance, nor for the intensity dependence versus magnetic field.

As the transition energies are close to that of the LO-phonon in InAs, we have
shown that a model taking into account the hole LO-phonon coupling is able to predict
well the experimental data. We have calculated the coupling between the relevant
mixed hole-lattice states and determined the polaron states as well the oscillator
strength of the polaron transitions as a function of magnetic field.

The fact that our model successfully fits the experimental data constitutes the
first evidence for the existence of hole polarons in InAs QDs and demonstrates that
the intraband magneto-optical transitions occur between hole polaron states.
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Chapter 4

Exciton-LO Phonon Interaction:
PLE Experiments

In this chapter, the interaction between LO phonons and an electron-hole pair or
exciton will be studied. The interband transitions in several ensembles of QDs are
investigated by using photoluminescence excitation (PLE) under strong magnetic
fields. The first section will be dedicated to the presentation of these experimental
results. A study of the PLE spectra, first as a function of detection energy, then as
a function of magnetic field will be presented. The second section will focus on the
calculation of excitonic polaron states. Finally, it will be shown that the PLE results
are in good agreement with the excitonic polaron model.

4.1 Experimental Results

4.1.1 PLE Spectroscopy

Interband transitions of a QD ensemble are inhomogeneously broadened because of
fluctuations of the confining potential which arise from size and composition disper-
sion. In a non-resonant photoluminescence (NRPL) measurement (see Section 1.5.2),
the excitation energy is fixed to be superior to the energy gap of GaAs such that
all dots, regardless of their size, can be selected. The broad bell-like form of a PL
peak is therefore a measure of size inhomogeneity. In Fig. 4.1, the NRPL peaks of
three samples, U1, N2 and P3, are displayed. We observe, for the three different sam-
ples, a broad peak centered at ∼ 1.2 eV with a FWHM of ∼ 50 meV. The study of
the interband transitions in QDs, therefore requires overcoming this inhomogeneous
broadening of the optical spectra. This can be accomplished by using single QD spec-
troscopy, where the sharp spectral lines enable the study of, e.g., the fine structure
of the system [1] and discrete-continuum state coupling [2]. For an ensemble of QDs,
such as our samples, PLE spectroscopy serves as an important tool, as it allows for
the circumvention of part of the inhomogeneous broadening.
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Figure 4.1: The normalized NRPL peaks for three differently doped samples excited
by an Ar+ laser and recorded at 4 K (a). A schematic of the NRPL process in a QD
system (b).
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Figure 4.2: PLE spectra for different detection energies at 4 K for sample P3 (a).
The spectra are vertically offset. A schematic of the PLE process in a QD system
(b).
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As seen in Section 1.5.2 of Chapter 1, in a PLE measurement, we fix a detection
energy while the optical excitation energy is varied. For a dot to be detected, its
ground state energy must be equal to the chosen detection energy [see Fig. 4.2(b)].
Only dots with the same ground state energy, and therefore similar size and composi-
tion, contribute to the PLE signal. PLE spectroscopy therefore enables the selection
of a subensemble of similar sized dots, from a sample containing a range of dot sizes [3].

In Fig. 4.2, the PLE spectra for a range of detection energies is presented. The
spectra were recorded at 4 K on sample P3. We take note that each spectrum corre-
sponds to a different subensemble of QDs in our self-assembled sample. We expect to
have a large population of dots with ground state energy near the peak energy of the
NRPL spectra. The energy detection window, that was taken in the case of Fig. 4.2
from 1194 - 1217 meV, is therefore centered at ∼ 1200 meV. Using the experimental
set-up described in Section 1.5.2, the acquisition time for the PLE spectra in Fig. 4.2
is approximately 350 seconds (1 second per spectrum). With this set-up, we are able
to collect a wealth of data, for a reasonably short acquisition time.

Finally in Fig. 4.3, we display a zoom of the PLE spectrum for a detection energy,
Edet = 1215 meV. We find a peak with a FWHM of ∼ 15 meV, which is about
a third of what was found in Fig. 4.1. We conclude that although such spectra are
still inhomogeneously broadened due to shape and composition variation, well-defined
features are still observed, making low-temperature PLE spectroscopy an appropriate
probe of the energy states of quantum dots in our study. However, for the study of
the spin contribution to the QD levels, a 15 meV FWHM is still too broad, and single
QD spectroscopy remains the appropriate method of investigation.∗

∗See Appendix A
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Figure 4.3: PLE spectra of sample P3 taken at 4 K for Edet = 1215 meV.
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Figure 4.4: Normalized PLE spectra of sample P3 taken at 4 K for Edet=1194, 1206
and 1215 meV, where ∆E = Eexc − Edet.
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4.1.2 Study as a Function of Detection Energy

We will now take a closer look at the PLE spectra for three different detection energies.
Figure 4.4 depicts the spectra of sample P3 for detection energies Edet=1194, 1206 and
1215 meV at 4 K. The x-axis shows the excess excitation energy ∆E = Eexc − Edet.
The same four features, indicated by arrows in Fig. 4.4, are observed for all three
detection energies. A low-energy peak is observed at ∼50 meV, a second peak is
found at ∼75 meV, a third peak is found at ∼110 meV and finally a strong peak is
observed at ∼220 meV.

We attribute this last high-energy peak to the excitation resonance of the wet-
ting layer (WL). The energy, ∆E, of this peak decreases as the detection energy is
increased, however the transition energy, ∆E + Edet(=Eexc), stays at the nearly con-
stant energy of ∼1420 meV. Such an energy is typical given the growth conditions
used for our samples and corresponds to few monolayer thick InAs WL [4].

The remaining three peaks, found at lower energies, are associated with transitions
between bound levels in the QDs. As reported in Section 1.4.2, the ground and first
excited state in both the conduction and valence band are s- and p-like respectively.
In order to associate the excitation peaks with transitions in the QDs, a magnetic
field B is applied along the sample’s growth axis, as the effect of a magnetic field is
different for s and p states (see Eq. 1.15).
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4.1.3 Study as a Function of Magnetic Field

Figure 4.5 displays the magneto-PLE spectra of sample P3 recorded at 4 K from
B = 0 to 28 T every 4 T and for a detection energy of 1215 meV. Similar results
were observed for the undoped sample U1 and the n-doped sample N2, as shown in
Fig. 4.6 where their magneto-PLE spectra are depicted on a magnified scale.

The energy of the PLE peaks as a function of magnetic field is plotted in Fig. 4.7
for sample P3. For all three samples, as the magnetic field increases, the peak that
was initially at ∼75 meV splits into two separate peaks: one peak that increases in
energy and a second peak that decreases in energy. These peaks can be associated
with p-like transitions. This association is made because firstly the peaks move with
the magnetic field, which is characteristic of p-states, and secondly the energy at 0
T of these peaks roughly corresponds to the addition of the experimentally obtained
s-p energy transitions of holes and electrons. The remaining two peaks at ∼50 and
∼110 meV stay nearly constant with the the increasing magnetic field. We therefore
associate these peaks with transitions involving states whose energies move very little
with an applied magnetic field, for instance s-states or eventually ph-states.† Finally,
the peak at 220 meV increases in energy with the increasing magnetic field. This is
the expected behavior for a WL transition in a magnetic field. Indeed, using a WL
electron mass me =0.07mo and a heavy hole mass mh =0.22mo, a slope of

1

2
h̄e(m−1

e + m−1
h ) = 1.1 meV T−1 (4.1)

is expected for the WL absorption, which approximately corresponds to the PLE
spectra where we measure a slope of 0.8 meV T−1. This reinforces our earlier as-
sumption that this peak is associated with a WL conduction band-WL valence band
transition.

Let us now take a closer look at the intensites of the lower energy peaks, as shown
in Fig. 4.6. At 0 T, the intensity of the low-energy peak at 50 meV is about 20% of
that of the 75 meV peak. As the magnetic field increases, an exchange of strength
between these two peaks is observed. For samples U1 and P3, at 20 T the two peaks
have the same intensity and by 24 T the strength of the low-energy peak has surpassed
that of its neighbor. For sample N2, the energy difference between the two peaks at
0 T is smaller and therefore the anticrossing is observed at a lower magnetic field.
Such a behavior can not be explained using a purely electronic model. It is necessary
to use a model that takes into account the coupling between the optical phonons and
the photo-created electron-hole pair in the QD. Such a model is presented in the next
section.

†An explanation of the 110 meV peak is given in Chapter 5
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Figure 4.5: Magneto-PLE spectra of the P3 sample recorded at 4 K from B=0 to 28
T every 4 T and for Edect=1215 meV. Traces have been vertically offset for clarity.
The dashed lines are guides for the eyes (∆E = Eexc − Edet).
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Figure 4.6: Magneto-PLE spectra of samples U1 (a), N2 (b) and P3 (c) at 4 K from
B=0 to 28 T every 4 T and for a Edet=1215 meV. The dashed lines are guides for
the eyes.
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Figure 4.7: Magnetic field dispersion of measured PLE resonances in sample P3 for
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4.2 Calculation of Excitonic Polarons

In Chapters 2 (3), it was demonstrated that the interaction between an electron
(hole) confined in a QD with the LO phonons of the crystal lattice leads to the
formation of polaron states. In PL experiments, we create electron-hole pairs in our
dots, which are electrically neutral. Since the coupling between carriers and optical
phonons is basically electrical (Fröhlich interaction), one could expect a rather small
coupling between LO phonons and excitons. However, recent theoretical works have
shown that excitons in QDs strongly couple to LO phonons, in spite of their electrical
neutrality [5, 6]. In this section, we will summarize the calculation of the excitonic
polaron, as developed by T. Grange [7, 8].

4.2.1 Fröhlich Interaction

The non-interacting exciton-phonon states are labeled |υe, υh, n~q〉, where |υe〉 is the
electronic state, |υh〉 the hole state, and as before, |n~q〉 denotes the number n of LO
phonons with wavevector ~q. The Fröhlich Hamiltonian that describes the coupling
between these states is simply the sum of the electron Fröhlich Hamiltonian and the
hole Fröhlich Hamiltonian:‡

VF = Ve
F + Vh

F

=
iAF

q
√

V

∑

q

[

(ei~q·~rea+
~q − c.c.) + (−ei~q·~rha+

~q + c.c.)
]

=
iAF

q
√

V

∑

q

[

(ei~q·~re − ei~q·~rh)a+
~q − c.c.

]

(4.2)

We find that this Hamiltonian has the same form as Ve
F and Vh

F . We shall therefore
proceed as we did in Section 2.1 (see Eq. 2.5), and calculate the matrix element of
the exciton Fröhlich Hamiltonian between two exciton-phonon states.

〈υ′
e, υ

′
h, n

′
~q|VF |υe, υh, n~q〉 ∝ δn′,n±1[δυ′

h
,υh

〈υ′
e|e±i~q·~re |υe〉 − δυ′

e,υe
〈υ′

h|e±i~q·~rh |υh〉] (4.3)

Firstly, the delta function, δn′,n±1, tells us that the exciton Fröhlich term only couples
states that differ by one phonon. This is analogous to the electron and hole coupling
terms. However, unlike its electron and hole counterparts, the exciton-phonon states
contain both an electron and a hole part. As a result, we find that Eq. 4.3 can be
grouped into three categories (assuming that the phonon occupation numbers differ
by one):

‡As VF depends on the charge of the carrier, e, we have simply V
h
F = −V

e
F .
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• the coupling between two exciton-phonon states who possess neither an electron
nor a hole part in common ( υ′

e 6= υe and υ′
h 6= υh). It follows that δυ′

h
,υh

=
δυ′

e,υe
= 0. In this case, the term vanishes:

〈υ′
e, υ

′
h, 1~q|VF |υe, υh, 0〉 = 0 (4.4)

• the coupling between two exciton-phonon states who possess both an electron
and a hole part in common ( υ′

e = υe and υ′
h = υh). It follows that δυ′

e,υe
=

δυ′
h
,υh

= 1. In this case, Eq. 4.3 yields

〈υe, υh, 1~q|VF |υe, υh, 0〉 ∝ 〈υe|ei~q·~re |υe〉 − 〈υh|ei~q·~re |υe〉
= Vυeυe

(~q) − Vυhυh
(~q)

(4.5)

• the coupling between two exciton-phonon states who possess either an electron
part or a hole part in common (υ′

e = υe and υ′
h 6= υh or υ′

e 6= υe and υ′
h = υh). It

follows that either δυe,υe
= 1 and δυ′

h
,υh

= 0 or δυ′
e,υe

= 0 and δυh,υh
= 1. Taking

the example where the two states have solely the hole part in common,§ we find

〈υ′
e, υh, 1~q|VF |υe, υh, 0〉 ∝ 〈υ′

e|ei~q·~re |υe〉
= Vυ′

eυe
(~q)

(4.6)

Eq. 4.5 gives us the coupling term between two identical exciton states. Due to the
minus sign that differentiates the hole and electron Fröhlich Hamiltonians, we find
that, if the wavefunctions of the two particles are similar, this term will be weak.
This is in agreement with the initial intuition that an exciton, being a neutral entity,
will be little affected by the the presence of an electric field.

However, according to Eq. 4.6, we find that a strong exciton LO-phonon inter-
action is possible if the coupling occurs between exciton states that differ by either
an electron or hole part. Let’s take the example used above, where only the electron
part of the state changes. In this case, the hole remains a spectator and we find the
same expression found for the coupling between electron states (see Eq. 2.5). This
term is at the origin of the formation of excitonic polarons.

§Find similar result with the difference of a minus sign if we take the opposite case. But as it is
only the square of this term that enters into our calculations the minus sign is not important.
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Figure 4.8: Different exciton states classified by their z-direction angular momentum,
Lz.
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4.2.2 Coulomb Interaction

The electron and hole created in the PL experiments are coupled to one another by
the Coulomb Hamiltonian

Hc = − e2

4πǫoǫr|~re −~rh|
(4.7)

As this Hamiltonian commutes with Lz, it will only couple states that possess the
same Lz.

We need only find the Lz of the exciton part of the exciton-phonon states, as
the Hamiltonian does not act on the phonon parts. In Fig. 4.8, a schematic of
the z-direction angular momentum of possible exciton states is given. As seen in
Section 1.5.3, the dipole matrix element is non-zero for interband transitions when
the initial and final states are equal. Therefore, only the states with Lz = 0 are
optically active.

All identical exciton states will be coupled by Hc. The matrix elements of these
terms, using the wavefunctions for the carriers found in Chapter 1, is found to be ∼
−20 meV [9]. The exciton levels undergo a down shift in energy due to the Coulomb
interaction. In addition, we find

• three states with Lz = 0: |se, sh〉, |p−e , p+
h 〉, |p+

e , p−h 〉

• two states with Lz = +1: |se, p
+
h 〉, |sh, p

+
h 〉

• two states with Lz = −1: |se, p
−
h 〉, |sh, p

−
h 〉

The matrix elements of the coupling between the states within the groups defined
above is found to be on the order of ∼ −5 meV [9]. It is only the states with Lz =
±2 that do not have coupling partners.

It is important to point out that the above discussion describes the Coulomb
interaction in a neutrally charged dot (one electron and one hole), while our experi-
mental results are from both neutrally charged dots (U1) and charged dots (N2 and
P3). When dealing with negatively (positively) charged QDs, one has to consider
trions, i.e. two electrons (holes) and one hole (electron). If we study the low-energy
excitation spectrum of charged QDs neglecting spin-dependent effects, the additional
charge remains a spectator and the excitation spectrum resembles that of neutral
QDs [10]. This could explain why samples N2 and P3 display PLE spectra which are
quite similar to those recorded in sample U1.
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4.2.3 Calculation of Polaron States

Aside from the Coulomb interaction and difference in Fröhlich term treated above,
the calculation of exciton polaron states is quite similar to that of electron and hole
polarons. We start by finding the uncoupled states of the system in the experimental
energy region (40 - 150 meV). Taking into account all possible electron-hole state
combinations, 13 different uncoupled states can be found in the concerned energy
region:

• 4 purely excitonic states |p±e , p±h , 0〉

• 8 excitonic state with one phonon continuum state |se, p
±
h , 1{~q}〉, |p±e , sh, 1{~q}〉

and |p±e , p±h , 1{~q}〉

• the fundamental excitonic state with two phonon continuum states |se, sh, 2{~q},{~q′}〉

These states were determined using the LO phonon energy of GaAs. To simplify the
calculation, we have limited ourselves to a one-phonon mode calculation. Taking into
account solely the GaAs phonon mode is sufficient to our study, as the experimental
observed anti-crossing (Fig. 4.6) that we are attempting to explain, takes place in an
energy region where only states that include a GaAs phonon are found.

As the calculation involving all 13 states in quite cumbersome, we limit our pre-
sentation to the six uncoupled states that most affect the experimentally observed
anti-crossing. A schematic of these states as a function of magnetic field is presented
in Fig. 4.9.¶

Taking into account the information extracted earlier from Eq. 4.3, we find four
separate occasions for a strong coupling interaction to occur.

• a coupling between the discrete state |p−e , p+
h , 0〉 and the one phonon continuum

|se, p
+
h , 1{~q}〉

• a coupling between the discrete state |p−e , p−h , 0〉 and the one phonon continuum
|se, p

−
h , 1{~q}〉

• a coupling between the discrete state |p+
e , p−h , 0〉 and the one phonon continuum

|se, p
−
h , 1{~q}〉

• a coupling between the discrete state |p+
e , p+

h , 0〉 and the one phonon continuum
|se, p

+
h , 1{~q}〉

¶This drawing is not to scale. In addition, we note that in the magnetic field range of our
experiments, some of these states cross.
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Figure 4.9: Schematic of the energy evolution in a magnetic field of the six non-
interacting exciton-phonon states.
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Using the effective potential method presented in Chapter 2, each of the above
coupling situation can be reduced to a two-level system. We remark that, for all four
occasions, it is the electron part of the exciton-phonon state that changes. It follows
from Eq. 4.6, that the coupling term will depend solely on the electron part of the
state while the hole remains a spectator. The first two situations involve a coupling
between |p−e 〉 and |se〉 while the last two situations involve a coupling between |p+

e 〉
and |se〉. For the calculation of the polaron states, it therefore suffices to introduce
two linear combination phonon modes with two effective potentials.

|1α(sep−e )〉 =
∑

~q

Vsep−e
(~q)|1~q〉

Veff (sep−e )

|1α(sep+
e )〉 =

∑

~q

Vsep+
e
(~q)|1~q〉

Veff (sep+
e )

(4.8)

A Hamiltonian of the form

H =

(

Ep±e p±
h
(B) Veff

Veff Esep±
h
(B) + h̄ωLO

)

(4.9)

is found for each two-level system.‖ By solving the Hamiltonian for each system, we
find four independent pairs of polaron states.

Up until now, we have been concerned solely with the Fröhlich Hamiltonian. If
we take into account other coupling terms, we find that these four systems are, in
fact, not independent of one another.

Firstly, we must add the electron and hole anisotropy terms that couple respec-
tively |p+

e 〉 with |p−e 〉 and |p+
h 〉 with |p−h 〉. These terms are the same as the ones used

for the electron and hole polaron calculations in previous chapters. Secondly, the
Coulomb Hamiltonian is added, whose effects were studied in the previous section.
The addition of the Coulomb term will add diagonal elements on the order of −20
meV associated with the coupling between identical exciton states. In addition, we
find two exciton states that possess the same Lz: |p−e , p+

h 〉 and |p+
e , p−h 〉. The Coulomb

coupling between these states will produce a non-diagonal element of −3.6 meV.
Fig. 4.10 gives a summary of the all the interactions that take place between the
eight discrete states that make up our system.

The Hamiltonian of the system is now written

H = He(B) + Hh(B) + Ve
a + Vh

a + VF + Hc + Hph (4.10)

‖As the states |p+〉 and |p−〉 are identical except for their dependence in θ,
Veff (sep

+
e )=Veff (sep

−
e ), which we will note for short Veff .
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In our eight state basis, Eq. 4.10 becomes































Ẽp−e p+

h
Veff δh

a 0 Vcoul 0 δe
a 0

Veff Ẽsep+

h
+ h̄ωLO 0 δh

a 0 0 0 0

δh
a 0 Ẽp−e p−

h
Veff δe

a 0 0 0

0 δh
a Veff Ẽsep−

h
+ h̄ωLO 0 0 0 0

Vcoul 0 δh
a 0 Ẽp+

e p−
h

Veff δh
a 0

0 0 0 0 Veff Ẽsep−
h

+ h̄ωLO 0 δh
a

δe
a 0 0 0 δh

a 0 Ẽp+
e p+

h
Veff

0 0 0 0 0 δh
a Veff Ẽsep+

h
+ h̄ωLO































(4.11)
where δh

a and δe
a are respectively the hole and electron anisotropy terms, Vcoul the

non-diagonal Coulomb term, h̄ωLO = 36 meV the GaAs LO phonon energy, and

Eij = Ei(B) + Ej(B) + V ij
c (4.12)

Ei(B) [Ej(B)] is the B-dependent energy of the electronic (hole) level |i〉 (|j〉), which
contains both the diamagnetic (∼ B2) and Zeeman (∼ B) terms and V ij

c is the
diagonal Coulomb element.

We remark that Eq. 4.11 is the reduced Hamiltonian of the system. If we include
all 13 original exciton-phonon states, we end up with a 21× 21 matrix equation. The
polaron states that result from the diagonalization of the full 21 × 21 Hamiltonian
of the system are presented in Fig. 4.11. The area of the circles in the figure is
proportional to the oscillator strength of the transitions, which will be calculated in
Section 4.3.2. We predict several anti-crossings, the strongest observed at ∼ 50 meV
for a B field of ∼ 20 T. This anti-crossing will be examined in detail in the next
section where we will compare the calculated polaron states with the experimental
PLE results. The parameters used in Fig. 4.11 will also be given in the next section.
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Figure 4.11: Calculated excitonic polaron energies and intensities as a function of the
magnetic field. The area of the circles is proportional to the oscillator strength of the
transitions. The parameters for this calculation are given in Section 4.3.
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4.3. Comparison Theory/Experiment 101

4.3 Comparison Theory/Experiment

4.3.1 Comparison of Magnetic Dispersion Curves

In Fig. 4.13, we compare the magnetic field dispersion of the PLE resonances of
sample P3 in symbols, with the calculated polaron states in solid lines. The energy
positions as a function of magnetic field of the calculated levels are found to be in
good agreement with our data. Many of the calculation parameters have been fixed to
corroborate with our intraband magnetotransmission results (see Chapters 2 and 3).
Figure 4.12 displays a schematic of the values of the different parameters used in our
fit, i.e. se−pe and sh−ph intraband energy transitions, the two anisotropy terms and
the interband ground state energy. In addition, the values of the in-plane effective
mass of the electron, me = 0.07mo, and the hole, mh = 0.22mo, were imposed to agree
with previous results (see respectively Section 2.2.1 and Section 3.3). The rest of the
dot parameters, i.e. the size and the Fröhlich constant, were chosen to best fit the
experimental results. The parameters resulting from the fit are the following: cone
with a radius R = 115 Å, and height h = 28 Å, and conduction (valence) band offset
of 290 meV (212meV). The dot size is consistent with direct size measurement[11]
and the band offsets are compatible with an average gallium content of x ≃ 0.5 in
the QDs (In1−xGaxAs). The Fröhlich constant was found to be αF = 0.105 (AF =
0.00270 meV·m−1).∗∗

In Fig. 4.14, we take a closer look at the two low-lying calculated polaron states,
labeled (1) and (2). We present on the same graph, the uncoupled exciton-phonon
states primarily responsible for the anti-crossing, |p−e , p+

h , 0〉 and |se, p
+
h , 1α(sep−e )〉. The

|p−e , p+
h , 0〉 state displays a strong negative Zeeman slope with the magnetic field and

crosses the one phonon state |se, p
+
h , 1α(sep−e )〉 for a magnetic field of around 20 T.

These two states differ by one phonon and have different electronic wavefunctions.
They are therefore directly coupled by the Fröhlich Hamiltonian. The coupling term
between these two states, Veff , was calculated and found to be 6 meV. A strong
anti-crossing of 2Veff is therefore predicted and observed in our experimental results.
The next section will be dedicated to the study of the effects of this anti-crossing on
the intensities of the PLE peaks as a function of magnetic field.

∗∗See Appendix B
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Figure 4.13: Magnetic field dispersion of PLE resonances in sample P3 in open figures
with the calculated energy transitions in solid lines (a) and a zoom (b) of the polaron
states (1), (2), and (3), as labeled in Fig. 4.14. Parameters used in this calculation
are given in the text.
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4.3.2 Oscillator Strength

In Section 1.5.3, we found that the oscillator strength associated with interband
transitions in our experiments was proportional to the square of the dot product of
the hole envelope function with the electron envelope function (see Eq. 1.10). Written
in terms of exciton-phonon states, Eq. 1.10 becomes:

OSi→f ∝ |〈∅|Ψ〉|2 (4.13)

Initially, assuming we have neutrally charged dots, there are no carriers in the dots.
The initial state is therefore composed of the empty set, |∅〉. The final state is the
polaron state which, in the 21 state basis, is written

|Ψ〉 =
21

∑

i=1

Ci|i〉 (4.14)

with
Ci = 〈i|Ψ〉 (4.15)

In the relevant energy spectra, the only optically active states are |p−e , p+
h , 0〉 and

|p+
e , p−h , 0〉. We therefore have

OSΨ ∝ |〈p−e , p+
h , 0|Ψ〉|2 + |〈p+

e , p−h , 0|Ψ〉|2 (4.16)

For the anticrossing represented in Fig. 4.14, the oscillator strengths of polarons (1)
and (2) are roughly proportional to their weight on the |p−e , p+

h 〉 state. Hence we
observe an exchange of oscillator strength between the two polarons as the magnetic
field is increased.

Using Eq. 4.16, we calculate the interband absorptions. The solid lines in Fig. 4.15
represent the calculated absorption spectra at different magnetic fields. Each discrete
level is replaced by a Gaussian peak with a FWHM of 12 meV in order to account for
inhomogeneous broadening. We compare our calculated interband absorption spectra
with the PLE experimental data. The full squares are data points taken for sample
P3 for Edet = 1215 meV. The evolution of the peak intensities with the magnetic field
is very well described by our model. We are able to predict the exchange of oscillator
strength observed in our results demonstrating the validity of our analysis and the
existence of excitonic polarons. Similar agreement is found for results obtained for
sample U1 and N2.

We point out that, in general, a PLE signal is not necessarily equivalent to an
absorption spectrum. The very good agreement obtained here, between the two is
due to the short polaron relaxation time compared to interband radiative decay time.
Far-infrared pump-probe spectroscopy experiments have demonstrated that intraband
polaron decay time in InAs/GaAs QDs varies between 20 and 70 ps depending on the
polaron energy [12, 13]. Excitonic polaron relaxation times are expected to be on the
same order of magnitude, the relaxation mechanism (due to phonon anharmonicity)
being similar. Since interband radiative decay time is on the order of 1 ns, the
relaxation process will always go through the ground exciton state. Hence the PLE
is proportional to the absorption.
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for sample P3. The parameters used in the calculation are given in the text.
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4.4 Conclusion

In summary, we have investigated the interband transitions in several ensembles of
self-assembled InAs/GaAs QDs by using PLE spectroscopy under a strong magnetic
field. The magnetic field dependence of the interband transitions allows for their
unambiguous assignment, as the effect of a magnetic field is significantly different for
s or p states.

We have calculated the coupling between the mixed exciton-LO phonon states
using the Fröhlich Hamiltonian and we have determined the energies and oscillator
strengths of the interband transitions. When two exciton-LO phonon states have close
enough energies with phonon occupations which differ by one, a large anticrossing is
theoretically predicted. Such a situation is experimentally induced in our samples by
the applied magnetic field for the two interband transitions (|p−e , p+

h , 0〉, |se, p
+
h , 1α(sep−e )〉)

and a strong anticrossing is actually observed in all the investigated samples.
Our model accounts well for the experimental data, evidencing that the excitons

and LO-phonons are in a strong coupling regime in QDs and that the interband
transitions occur between excitonic polaron states. This conclusion will be supported
in the next chapter, where we will present evidence of excitonic polarons through
resonant photoluminescence (RPL) measurements.
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Chapter 5

Exciton-LO Phonon Interaction:
RPL Experiments

In this chapter, resonant photoluminescence (RPL) experimental results are investi-
gated. First, RPL spectra as a function of magnetic field and excitation energy are
studied. A qualitative explanation of how these results are affected by the size inho-
mogeneity of dots in a self-assembled sample will be given. Then, the magneto-RPL
spectra will be compared to the excitonic polaron calculation of the previous chapter.

5.1 RPL Spectroscopy

In RPL spectroscopy, the fixed excitation energy is less than the GaAs gap and
the InAs wetting layer, as seen in Fig. 5.1(a). Only subensembles of similar sized
QDs are resonantly excited and contribute to the PL signal. Dots that possess an
excited state in resonance with the fixed excitation energy, Eexc, are excited. The
system relaxes to its ground state and gives off a photon of energy equal to its ground
state energy. The detection energy, Edet, is varied such that several resonances are
observed, each one corresponding to the signal of a subensemble of similar dots. Es-
sentially, we are measuring the same quantities as in a PLE measurement. However,
in a PLE measurement, one spectrum corresponds to one detection energy and there-
fore one subensemble of similarly sized dots in the sample. This is different from a
RPL measurement, where one spectrum corresponds to a range of detection energies
and therefore each peak in the spectrum corresponds to a different subensemble of
similarly sized dots [see Figure 5.1(b)].

109



110 Chapter 5. Exciton-LO Phonon Interaction: RPL Experiments

  
InAs WL GaAs E 

ωh  
EdetEexc

(a)

1100 1150 1200 1250 1300
1200

1250

1300

1350

1400

1450

1500

 

 

RPL

E
ex

c

Edet

PLE

(b)

Figure 5.1: A schematic of the RPL process in a QD (a). Energy domains for a
PLE measurement with a fixed detection energy, Edet = 1215 meV and for a RPL
measurement with a fixed excitation energy, Eexc = 1293 meV (b).
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Figure 5.2: Zero field comparison of an RPL spectrum (a) taken for a fixed Eexc =
1293 meV and PLE spectrum (b) measured for a fixed Edet = 1215 meV. Both spectra
were recorded on sample P3 at 4 K.

In addition, as the detector in RPL measurement is a photomultiplier, the quality of a
RPL spectrum, in terms of signal versus noise, is superior to that of a PLE spectrum.
This is demonstrated in Fig. 5.2, where a RPL and PLE spectra, taken for sample P3
at zero tesla, are displayed side by side. The x-axis for both graphs corresponds to the
excess excitation energy ∆E = Eexc − Edet. The RPL measurement was taken for a
fixed excitation energy, Eexc = 1293 meV, while Edet was varied. For the PLE spectra,
it was the excitation energy that was varied and the detection energy that was fixed
at Edet = 1215 meV. We recognize the same three features, indicated by arrows in
the figure, in both spectra. The peaks in the RPL spectra are well pronounced and
more easily identifiable than those of the PLE measurement. In particular, the tail
of the wetting layer (WL) peak perturbs the observation of the lower energy, weaker
intensity peaks. This is most notable for the peak at ∼ 110 meV. The increasing
background slope observed in Fig. 5.2(b) due to the WL is a common phenomena in
PLE measurements [1, 2]. As the excitation energy in RPL measurements is below
the WL bandedge, this slope is not observed for such an experiment. We shall see that
the quality of the RPL spectra will enable the clear observation of the anti-crossing
between the low lying polaron levels calculated in the previous chapter.
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5.2 Experimental Results

In this section, magneto-RPL measurements as well as zero field RPL spectra for
different excitation energies will be presented. We will focus on the results obtained
for sample P3, but similar results were acquired for our undoped (U1) and n-doped
(N2) samples. Effects of the dot size distribution of our samples on these results will
be discussed. We will then reexamine the magneto-RPL measurements of sample
P3, this time comparing them with the excitonic polaron energy levels and oscillator
strengths calculated in Chapter 4.

5.2.1 Magneto-RPL Measurements

Figure 5.3 depicts the RPL spectra for an excitation energy Eexc = 1293 meV recorded
at 4 K on sample P3 from B = 0 to 28 T every 4 T. At 0 T, three distinct features
are observed: a low energy peak at ∼ 59 meV, a high energy peak at ∼ 116 meV
and a more pronounced peak at ∼ 80 meV. The low energy peak decreases slightly in
energy and increases in intensity as the magnetic field is increased. The peak initially
at 80 meV splits into two separate peaks: one peak that increases in energy with
the magnetic field and one that decreases. In addition, we observe an exchange in
intensity between this descending peak and the low energy one. The high energy
peak is observed to stay nearly constant in energy with the magnetic field, until it
disappears for magnetic fields greater than 16 T. Finally, we note the appearance of
a small feature at 8 T between the two high energy peaks at ∼ 101 meV. This peak
increases in energy until a magnetic field of 24 T, after which it disappears.

We compare this behavior with the same experiment conducted for an excitation
at lower energy, Eexc = 1260 meV as seen in Fig. 5.4. At this excitation energy, only
two features are observed at 0 T: a peak at ∼ 55 meV and a peak of higher energy at
∼ 75 meV. The two peaks undergo an obvious exchange in intensity as the magnetic
field is increased. No features above an energy of 100 meV are observed.

The existence of a distribution of different sized dots in our samples is at the origin
of the different results discussed above. As noted in Chapter 4, the broad bell-like
peak of an NRPL spectrum is a good indication of the size inhomogeneity among
the dots in a single sample. We can conclude, from the NRPL peak in Fig. 4.1, that
our samples contain a large population of dots with interband ground state energy,
E(sesh) = 1200 meV. Progressively less dots are found the further the distance from
1200 meV. Finally no dots exist for an E(sesh) greater than (less than) ∼ 1280 meV
(∼ 1140 meV). Taking this into account, we will illustrate, with the help of Figures 5.5
and 5.6, the origin of the differences in the spectra obtained for Eexc = 1293 meV as
compared to Eexc = 1260 meV.
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Figure 5.3: Magneto-RPL spectra recorded on sample P3 at 4 K from B = 0 to 28
T every 4 T and for Eexc = 1293 meV. Traces have been vertically offset for clarity.
The dashed lines are guides for the eyes.
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Figure 5.4: Magneto-RPL spectra recorded on sample P3 at 4 K from B = 0 to 28
T every 4 T and for Eexc = 1260 meV. Traces have been vertically offset for clarity.
The dashed lines are guides for the eyes.
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Figures 5.5 and 5.6 display a schematic of the evolution of 3 different electron-
hole pair QD states (X1, X2 and X3) as a function of the parameters of the dot, i.e.
height, radius, interdiffusion, etc. We assume that the range of dots presented on the
x-axis of the figures corresponds to the distribution of dot sizes in our sample. The
state labeled X1 corresponds to the low energy peaks observed in both Fig. 5.3 and
Fig. 5.4. The two peaks observed in Fig. 5.3, that decrease and increase in energy,
can be associated with the exciton states |p−e , p+

h 〉 and |p+
e , p−h 〉 and are noted X−

2 and
X+

2 respectively. At zero tesla, these two peaks merge into one peak which is labeled
X0

2 . Finally, the high energy peak, observed in Fig. 5.3, that hardly moves with the
magnetic field is noted X3. The origin of X1 and X3 will be discussed later.

In Fig. 5.5(a), the situation of a RPL measurement at 0 T and for an excitation
energy of 1293 meV is illustrated. This excitation energy coincides with the excited
state energy of three different subensembles of similarly sized dots. It excites the X1

level of a certain subensemble of dots, the X0
2 level of another subensemble of dots and

finally the X3 level of a third subensemble of dots. The electron-hole pair excited in
these levels relaxes to the ground state. The pair then recombines emitting a photon
which we detect. We predict the detection of three peaks, which corresponds to the
0 T spectrum in Fig. 5.3. When a magnetic field is applied four peaks are detected,
as illustrated in Fig. 5.5(b) and observed in Fig. 5.3 for a magnetic field of 12 T, for
example.

We note that the subensemble of dots whose X0
2 level coincides with Eexc = 1293

meV will be detected at zero field at

Edet = Eexc − ∆E

= 1293 − 80 meV

= 1213 meV

(5.1)

We know, from NRPL measurements, that a large population of dots exists at this
detection energy. There will also be a good population of dots for the X1 energy level
(Edet = 1234 meV) and X3 energy level (Edet = 1183 meV).

This is not the case for Eexc = 1260 meV (Fig. 5.6). At this excitation energy,
QD states with ∆E ≥ 100 meV will have detection energies Edet ≤ 1160 meV. These
energies are found in the tail of the NRPL peak. It follows that the population of
QDs possessing such detection energies is very small or non-existent. The result of
the above is illustrated in Fig. 5.6. In the case of B = 0 (B > 0), the excitation
energy coincides with only two energy levels: X1 and X0

2 (X−
2 ). There are no dots

in our samples with a X+
2 or X3 energy level that coincide with Eexc = 1260 meV.

This is observed in Fig. 5.4, where only two peaks are detected for a RPL experiment
conducted for Eexc = 1260 meV.

We make the remark that the energy evolution of QD states as a function of the
dot parameters are not necessarily the parallel lines represented in Figures 5.5 and
5.6. As discussed in Chapter 1, these functions, which can be calculated using several
different methods, depend on the parameters taken into account in the calculation
(shape, composition, strain effects...) [3, 4, 5]. In Fig. 1.7 of Chapter 1, the results
of a calculation using the effective mass method were presented. The QD levels as
a function of height and radius independently were displayed. We found that the
evolution of states is not quite parallel, in particular, when there exists a variation
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in the radius of the islands. The variation in height has less of an impact on the
intraband energy transitions. We have chosen to schematically represent the energy
levels evolving in parallel lines in order to facilitate the discussion.
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Figure 5.5: Schematic of the exciton energy levels displayed as a function of dot
parameters. The dashed arrows represent the relaxation process during a RPL mea-
surement with Eexc = 1293 meV at B = 0 T (a) and when a magnetic field is applied
(b).
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Figure 5.6: Schematic of the exciton energy levels displayed as a function of dot
parameters. The dashed arrows represent the relaxation process during a RPL mea-
surement with Eexc = 1260 meV at B = 0 T (a) and when a magnetic field is applied
(b).
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Finally, in Figures 5.7(a) and 5.7(b), we display several selected magneto-RPL
spectra for our undoped sample and n-doped sample respectively. The spectra of
the undoped sample were taken at the high excitation energy, Eexc = 1281 meV
[Fig. 5.7(a)]. The results are therefore similar to those obtained in Fig. 5.3. We are
able to observed the low energy peak (X1) and the peak that splits into two separate
peaks with the applied magnetic field (X2). The high energy peak (X3) is not detected
at this excitation energy for this sample.

The selected RPL spectra of the n-doped sample was taken at a lower excitation
energy, Eexc = 1259 meV [Fig. 5.7(b)]. These results are therefore comparable to
those of Fig. 5.4 where only two peaks are observed: the low energy peak (X1) and
the lower branch (X−

2 ) of the peak that splits into two with the magnetic field.
We observe the same excitation energy dependent behavior in the spectra of all

of our differently doped samples.
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Figure 5.7: Magneto-RPL spectra recorded on sample U1 at 4 K from B = 0 to 25 T
for Eexc = 1281 meV (a). Magneto-RPL spectra recorded on sample N2 at 4 K from
B = 0 to 28 T for Eexc = 1259 meV (b). Traces have been vertically offset for clarity.
The dashed lines are guides for the eyes.



120 Chapter 5. Exciton-LO Phonon Interaction: RPL Experiments

0 20 40 60 80 100 120 140 160 180

 

 

In
te

ns
ity

 (a
rb

. u
ni

ts
)

E (meV)

 1260 meV
 1273 meV
 1287 meV
 1293 meV

Figure 5.8: RPL spectra of sample P3 taken at 4 K for Eexc = 1260, 1273, 1287 and
1293 meV at 0T.
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5.2.2 Study as a Function of Excitation Energy

To further support the above analysis, we present, in Fig. 5.8, the RPL spectra at 0
T for four different excitation energies: Eexc = 1293, 1287, 1273 and 1260 meV. The
spectra for Eexc = 1293 meV and Eexc = 1260 meV, are the same 0 T results studied
in the previous section. All four spectra were collected in identical experimental
conditions, i.e. laser intensity and temperature. The peak observed for Eexc = 1293
meV at ∼ 116 meV decreases in intensity as the excitation energy is decreased. The
peak is no longer detected for an excitation energy, Eexc = 1260 meV. After an initial
slight increase in intensity between the 1293 meV spectrum and 1287 meV spectrum,
the same tendency is observed for the peak at an energy of ∼ 80 meV. However,
this peak does not completely disappear at the lowest excitation energy, Eexc = 1260
meV. In addition, we observe that the peak at ∼ 59 meV increases in intensity as the
excitation energy is decreased. This behavior can be explained by the fact that as the
excitation energy is decreased, the population of dots whose X3 energy level (116 meV
peak) coincide with Eexc decreases. We therefore observe the diminution of the high
energy peak in Fig. 5.8. Conversely, the population of dots whose X1 level (59 meV
peak) coincide with Eexc increases with an increasing Eexc. This corresponds to the
observed increase in intensity of the low energy peak. Finally, the situation of the ∼
80 meV peak is a little more complicated. For this peak changing from an excitation
energy of Eexc = 1293 meV to Eexc = 1287 meV corresponds to changing from a
detection energy of Edet = 1213 meV to Edet = 1207 meV. Both these energies being
close to 1200 meV, we do not initially observe a great change in the intensity of the
∼ 80 meV peak. For the two remaining lower excitation energies, the corresponding
detection energies are found farther from the NRPL peak energy of 1200 meV, and a
decrease in intensity is therefore observed.
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Figure 5.9: Magnetic field dispersion of RPL resonances for Eexc = 1293 meV (a)
and Eexc = 1260 meV (b) of sample P3 in symbols. The solid lines are the polaron
energy levels, calculated in Chapter 4, shifted to fit the RPL experimental results, as
explained in the text.

5.3 Comparison with Polaron Model

5.3.1 Magnetic Field Dispersion Comparison

In Fig. 5.9(a), we compare the magnetic field dispersion of the RPL resonances of
sample P3 in symbols, for an excitation energy Eexc = 1293 meV , with the calcu-
lated polaron states in solid lines. Figure 5.9(b) displays the equivalent graph for
a RPL experiment measured at an excitation energy Eexc = 1260 meV. The energy
positions as a function of magnetic field of the calculated levels are found to be in
good agreement with our data.
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As stated earlier, a RPL experiment essentially measures the same quantities as
those measured in an PLE measurement. In addition, the same sample, P3, was used
for both the RPL and PLE studies. The calculation and fitting parameters used for
the PLE comparison, were therefore also used for the RPL fit. As before, an in-
plane effective mass of the electron, me = 0.07mo, and the hole, mh = 0.22mo, were
imposed. A cone with a radius R = 115 Å, and height h = 28 Å, and conduction
(valence) band offset of 290 meV (212meV) were chosen to best fit the data. The rest
of the parameters can be found in Chapter 4, Figure 4.12.
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Figure 5.10: Calculated excitonic polaron energies and intensities as a function of the
magnetic field. The area of the circles is proportional to the oscillator strength of the
transitions. The parameters for this calculation are given in Section 4.3 of Chapter
4.
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In Fig. 5.10, the three low-lying calculated polaron states are presented. We
are reminded that the experimentally observed anti-crossing is primarily the result
of the Fröhlich interaction between the two exciton-phonon states: |p−e , p+

h , 0〉 and
|se, p

+
h , 1α(sep−e )〉. The two polaron states, (1) and (2), are experimentally observed for

both excitation energies. The third polaron level, (3), is only observed in Fig. 5.9(a).
As discussed in the previous section, there are very few dots in our sample whose
polaron (3) energy level (labeled X+

2 in the last section) coincide with the excita-
tion energy, Eexc = 1260 meV. Therefore, only two polaron states are detected in
Fig. 5.9(b).

Finally, we note that we have performed a rigid upshift on the calculated polaron
levels in order to fit the experimental results. The calculation was shifted up by 10
meV in Fig. 5.9(a)(Eexc = 1293 meV) and by 5 meV in Fig. 5.9(b) (Eexc = 1260 meV).
This shift was necessary because, as mentioned above, the dot dimensions used in the
PLE fit were equally employed for the fits of Fig. 5.9. By using the same parameters,
we assume that the same sized dots were selected for both experimental methods,
which is not necessarily the case as we will demonstrate with the help of Fig. 5.11.

The x-axis of Fig. 5.11 corresponds to the detection energy of our experiments,
which is equivalent to the interband ground state energy, E(sesh). The y-axis corre-
sponds to the sum of the electron and hole intraband energy differences at 0 T,

Ee
p − Ee

s + Eh
p − Eh

s = ∆E (5.2)

which in turn roughly corresponds to the p-like energy peak of both RPL and PLE
experimental results at 0 T (labeled X0

2 in the previous section). The dashed and
solid lines were extracted from the calculation presented in Chapter 1, Section 1.4.2.
In dashed lines, we find the variation of the interband ground state energy and ∆E
for a changing island height and fixed radius, R = 115 Å. In solid lines, we have the
same evolution, but this time for a changing radius and fixed height, h = 28 Å. The
open symbols are data taken from RPL experiments and the solid symbols from PLE
measurements. The solid symbol that is found at the intersection between the two
lines corresponds to the PLE measurement taken for a detection energy, Edet = 1215
meV. As this was the original measurement used for the fit, the detection energy and
∆E of this experiment correspond to a dot with a radius, R = 115 Å and height h
= 28 Å. The fit for the same PLE measurement with a detection energy of either
Edet = 1206 or 1194 meV (the two remaining solid symbols) would require a dot with
a slightly larger radius and a larger height.∗ We also notice that the 10 meV shift
performed in Fig. 5.9(a), is the equivalent of using a dot with a smaller radius and
larger height (open circle). The 5 meV shift performed in Fig. 5.9(b), corresponds
to using a dot with a smaller radius and greater height (open triangle) than the one
used in the original fit. By performing the necessary shifts, we are able to use the
same dot parameters for measurements that select different sized dots.

∗The variation of the composition of the dot x, (In1−xGaxAs), that we did not include in Fig. 5.11,
is an additional parameter that contributes to the shifts.
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Figure 5.11: In dashed lines, the evolution of the detection energy and intraband
energy transition for QDs of fixed radius R = 115 Å and varying height. In solid line,
the same evolution for dots of fixed height h = 28 Å and varying radius. Symbols
are the experimental results obtained from RPL and PLE experiments, as described
in the text.
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Figure 5.12: Experimental (full symbols) and calculated (solid lines) spectra for dif-
ferent magnetic fields. The experimental data was taken for Eexc=1260 meV (a) and
Eexc=1293 meV (b), for sample P3. The parameters used in the calculation are given
in the text.
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5.3.2 Oscillator Strength

The exchange in oscillator strength between the two low-lying polaron states in clearly
observed in the magneto-RPL spectra presented in Section 5.2.1. We shall now com-
pare these spectra with the interband absorptions calculated in Section 4.3.2. In
Fig. 5.12, we present the calculated absorptions in solid lines at different magnetic
fields. The symbols are data points taken for sample P3 for Eexc = 1260 meV (a)
and Eexc = 1293 meV (b). The calculated spectra have been shifted 5 meV (10 meV)
to fit the data in Fig. 5.12(a) [Fig. 5.12(b)] (see previous discussion with respect to
Fig. 5.11).

We remark slight differences in the experimental spectra of Fig. 5.12(a) as com-
pared to the calculations. Firstly, at 0 T, we experimentally observe very similar
intensities for the two peaks, whereas the calculated spectrum predicts a stronger OS
for the high energy branch. In addition, at 20 T, where we predict equal OS’s for
both peaks, the experimental data displays a lower energy peak more intense than
its high energy neighbor. The tendency for the high energy peak to be weaker than
what is theoretically predicted can be explained using the reasoning presented in the
previous section. Indeed, in Fig. 5.8, where the RPL spectra at different excitation
energies at 0 T is presented, a diminution of the peak at ∼ 80 meV is observed as
the excitation energy is decreased. As explained in the previous section, this is due
to the dot size inhomogeneity present in our samples. Our calculated spectra were
found using one particular dot size and therefore do not take into account any size
inhomogeneity. This could therefore be an explanation of the discrepancy observed
between the experimental and theoretical results in Fig. 5.12(a).

On the other hand, the spectra of Fig. 5.12(b) was measured at an excitation
energy, Eexc = 1293 meV. There exists a large population of dots with excited states
equal to this excitation energy. The difference in intensity of the two observed peaks,
can therefore be attributed fully to a polaron anti-crossing effect and not the dot
population distribution. We find here, as we found in Chapter 4 for the PLE results,
that the evolution of the peak intensities with the magnetic field is very well described
by our model. We are able to predict the exchange of oscillator strength observed
in both our RPL and PLE results, demonstrating the validity of our analysis. The
unequivocal anti-crossing observed in the RPL spectra provide additional evidence of
the existence of excitonic polaron states.
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Figure 5.13: All calculated polaron energies and intensities as a function of magnetic
field. No polaron level with significant OS is predicted in the vicinity of 110 meV.

5.3.3 High Energy Peak

Up until now, we have not attempted to explain the high energy peak at ∼ 110 meV,
consistently observed in our experimental results. This high energy peak, that is
detected in both PLE [Fig. 4.13(a)] and RPL [Fig. 5.3] experiments, stays at a nearly
constant energy as the magnetic field is increased. As seen in Fig. 5.13, our excitonic
polaron calculation does not predict such a peak with a strong oscillator strength in
this energy range. The evolution of this peak in a magnetic field is reminiscent of
the behavior of transitions that involve s-like states, whose energy moves very little
(diamagnetic effect) with an applied B field.†

As noted in Chapter 1 and Appendix A, the QD energy level calculation used in
this thesis does not include the light hole states. We assume, due to the strong strain
in a self-assembled QD system, that these states are very close in energy to the GaAs
valence band edge [4] and therefore will not be pertinent to the description of our
experimental results.

†When calculated, the optically allowed transition 2se-2sh is found to be ∼160 meV above the
ground state excitonic level, and therefore too high to account for this peak [8].
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Figure 5.14: Strain-modified valence band offsets calculated along the z-direction [9].
Both heavy hole states and a light hole state are found. Figure taken from refer-
ence [9].

However, recent theoretical studies, in particular conducted by Gustavo Narvaez
of the National Renewable Energy Laboratory in Colorado, have revealed the impor-
tance of the light hole states. Using an atomistic pseudopotential approach [7], the
strain-modified valence band offset, shown in Fig. 5.14, of dots similar to those of our
samples‡ were calculated [9]. A confined light hole state is found below that of the
heavy hole. In addition, the excitonic absorption spectra of the QDs were calculated
where a significant peak approximatively 100 meV above the ground state energy,
E(seshh), is predicted. The peak corresponds to an interband transition between the
electronic state of s symmetry |se〉 and the light hole state of s symmetry |slh〉. This
transition is a possible explanation for the high energy peak observed in our experi-
mental results. In order to predict this peak with the effective mass method used in
this thesis, the addition of the light hole band would be necessary.

‡lens-shaped In0.6Ga0.4As dots with R = 126 Å and h = 20 Å.
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5.4 Conclusion

In this chapter, the RPL spectra of a p-doped self-assembled InAs/GaAs QD sample
have been investigated as a function of magnetic field and excitation energy .

The number of peaks as well as their intensities are observed to vary depending
on the excitation energy used in the experiment. These differences were found to
be a consequence of the dot size distribution, intrinsic to our self-assembled samples.
By exploiting results obtained in NRPL, we were able to qualitatively explain the
variation of peak intensity as a function of magnetic field and excitation energy.

We then compared the magneto-RPL results with the excitonic polaron energy
levels and oscillator strengths originally calculated for the magneto-PLE measure-
ments of Chapter 4. To account for the different sized dots probed during the two
different PL techniques, an energy shift of the calculated polaron states was effectu-
ated. With this shift, a good agreement was found between the calculations and the
RPL experimental data, giving further evidence to the existence of excitonic polarons.
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Conclusion

Semiconductor quantum dots have the potential to be the essential ingredient for
quantum devices. In order to exploit the potential of quantum dot systems, a good
understanding of their energy levels is needed. This thesis has explored the interaction
of carriers and phonons in several differently doped quantum dot structures. This
subject has attracted considerable attention recently, as the comprehension of such an
interaction is essential for the understanding of the electronic properties of quantum
dot systems, for instance, the carrier relaxation which is of particular interest.

In Chapter 2, it was shown that a charged carrier is in a strong coupling regime
with the longitudinal optical phonons of the surrounding crystal lattice. A detailed
calculation was given to show that this coupling results in the formation of polarons;
a hybrid carrier phonon state, which are the true excitations of a charged dot. We
then demonstrated, through far infrared magnetotransmission experiments performed
on n-doped dots in polarization, the existence of such states. Indeed, the magnetic
dispersions as well as the intensities of the absorption spectra obtained in our experi-
mental results cannot be explained using a purely electronic model. The introduction
of a Fröhlich coupling term into the calculations is necessary to reproduce the exper-
imental observed anti-crossings. This study exposed the shortcomings of the simple
“artificial atom” image, often used to describe a quantum dot system. One can no
longer consider the transitions in quantum dots as being between purely electronic
states. These transitions, instead, occur between hybrid electron phonon states, called
polarons.

The existence of electronic polarons having been established, in Chapter 3, we set
out to explore p-doped systems and the interaction between holes and longitudinal
optical phonons. Depending on the far infrared polarization direction, two different
hole transitions were excited, whose intensity and dispersion versus magnetic field
showed strong deviation with respect to the predictions of a purely electronic picture.
Once again using the Fröhlich Hamiltonian, the coupling between low lying confined
hole states and the lattice modes were calculated and the energies and oscillator
strengths of the intraband transitions were determined. We showed that our model
fits the experimental data very well and thusly provides the first evidence of hole
polaron states in InAs quantum dots and demonstrates that, analogous to electrons,
the intraband magneto-optical transitions occur between hole polaron states.

In addition, in this chapter, the observation of an InAs-like phonon mode in the
far infrared transmission spectra of our experimental results was exposed. As the
confined hole states are found energetically close to this mode, it was this phonon
mode, and not the GaAs mode, that was used in our calculations. However, the
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GaAs phonon mode can no longer be neglected for experiments in intense magnetic
field, where the hole state is pushed up in energy. In this case, the hole state is
found in proximity to both the InAs and GaAs phonon modes and a two phonon
model is necessary to predict our data. To better understand the nature of the
two phonon modes in InAs/GaAs quantum dots, found in interaction with the hole
state, additional experimental data needs to be obtained. It would be interesting, for
example, to study annealed n-doped dots. The confined electron energy in such dots
will be decreased, as a result of the annealing process, making the investigation of
the interaction between electron states and the lower energy InAs-like phonon state
possible. Such a study could, in particular, give valuable information concerning
the composition of InAs and GaAs in the dots, as the composition is related to the
Fröhlich coupling strength of the two respective phonon modes.

In Chapter 4, we moved on to the investigation of interband transitions of self-
assembled quantum dots. Using photoluminescence excitation spectroscopy under
strong magnetic fields up to 28 T, the energy levels of several ensembles of differ-
ently doped samples were probed. As only dots with ground state energy equal
to the detection energy are detected, this technique allows one to circumvent part
of the inhomogeneous broadening observed in the non-resonant photoluminescence
spectra of self-assembled samples. Several well-defined resonances were observed in
all samples. The magnetic field dependence of the resonance energies allowed for
the unambiguous assignment of the interband transitions, which involve both dis-
crete states of the quantum dots and wetting layer states. A strong anti-crossing
between two transitions was observed in all samples, which cannot be accounted for
in a purely electronic model. Similar to the case of electrons and holes confined in
dots, the use of the Fröhlich Hamiltonian was necessary to explain our experimental
results. We revealed that excitons, in spite of their electric neutrality, are found to
be strongly coupled to the longitudinal optical phonons of the surrounding lattice.
Excitonic polarons are predicted to give significant modifications of the energy levels
and large anti-crossings when two exciton-phonon states have close enough energies
with phonon occupations which differ by one. Such effects are experimentally ob-
served in all of our samples, thusly evidencing the strong coupling that takes place
between excitons and phonons as well as the fact that the interband transitions occur
between excitonic polaron states. These excitonic polaron states present important
consequences to the understanding of the behavior of an excited quantum dot. In
particular, a reexamination of the energy relaxation paths of excited quantum dots
and of the decoherence effects is needed.

Finally in Chapter 5, a complementary study of the interband transitions using
resonant photoluminescence experiments in strong magnetic fields was presented. The
study of these spectra, as a function of varying excitation energy, highlighted the
consequences of the dot size dispersion, present in our samples. The variation of peak
energy and intensity between spectra of different excitation energy was qualitatively
explained in terms this size dispersion.

In addition, the resonant magneto-photoluminescence spectra were compared with
the excitonic polaron calculations of Chapter 4. Once again, a very good agreement
was found between theoretical and experimental results, when comparing both the
magnetic dispersion curves and the absorption spectra. This comparison provides
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further proof of the existence of excitonic polarons in quantum dots.
A discussion of the existence of a light hole state in quantum dots was also pre-

sented in this chapter. The consistent observation of a high energy peak in all our
photoluminescence results calls for the reexamination of the supposition that quan-
tum dots do not contain light hole states. A calculation including these states is most
probably necessary for the explanation of the peak observed at ∼ 110 meV, that stays
constant with an increasing magnetic field.

In conclusion, the effects of the interaction between carriers confined in quantum
dots and the longitudinal optical phonons were exposed. Far infrared and photo-
luminescence investigations of quantum dot systems containing electrons, holes and
excitons all lead to the same conclusion; the existence of polaron states in quantum
dot systems and the fact that transitions occur between these states and not purely
electronic states.





Appendix A

Atomic Wavefunctions

In the parabolic effective mass approximation, the wavefunction of a carrier (electron
or hole) in a quantum dot can be separated into (i) a Bloch part which oscillates with
the periodicity of the crystal lattice and (ii) a slowly varying envelope function:

φ(~r) = un~k=0(~r)ψl(~r) (A.1)

where n refers to the band under consideration. The envelope functions, ψl(~r), are
calculated in Chapter 1. The Bloch functions are comparable to those found in
bulk GaAs and InAs. The band structure of a III-V crystal in the vicinity of the
Brillouin zone center is schematically presented in Fig. A.1. The atomic states of the
conduction band possess an orbital angular momentum l = 0 (s-like) and spin, S =
1
2
. The degeneracy of the conduction band states is therefore two-fold, with a total

angular momentum J = l + S = 1
2
.

 
E 
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1/ 2, 1/ 2jJ m= = ±  3/ 2, 3 / 2jJ m= = ±  3/ 2, 1/ 2jJ m= = ±  1/ 2, 1/ 2jJ m= = ±  ∆  gE  
Figure A.1: Band structure of bulk InAs and GaAs near the BZ center, including the
conduction band Γ6 and valence bands Γ7 and Γ8.
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Figure A.2: Schematic of QD energy levels. Each level has a corresponding envelope
function and atomic part.

The valence band states possess a p-like symmetry (l = 1). Adding the spin part,
we find that the total angular momentum of the valence band states is either J = 3

2

or J = 1
2
. Due to a spin-orbit coupling term, the J = 1

2
states are energetically split

from the J = 3
2

states (energy separation noted ∆ in Fig. A.1).
The quadruplet J = 3

2
states are degenerate at the zone center. In a system under

strong strain, this four-fold degeneracy is lifted [2]. In the case of a quantum dot
system, the energy of the light holes (mJ = ±1

2
) is pushed down towards the GaAs

valence band [3, 4, 5]. The light holes along with the J = 1
2

states are therefore not
included in our calculations. We are left with the two-fold degenerate heavy hole
states, |J = 3

2
,mJ = ±3

2
〉 and the two-fold degenerate electron states, |J = 1

2
,mJ =

±1
2
〉.
A carrier confined in a QD can be associated with one of the above atomic states

plus an envelope function, as represented in Fig. A.2. The aim of this Appendix is
to show that the analysis of the experimental results of this thesis requires solely the
consideration of the envelope part of Eq. A.1.

In the PLE and RPL results of Chapters 4 and 5, we find peaks with a FWHM ∼
15 meV, for magnetic fields of up to 28 T. The Zeeman splitting of the atomic states
in the presence of a magnetic field is written [3]

E = ±1

2
gµBB = ±Ez (A.2)

where µB is the Bohr magneton. Experimentally obtained values of the g-factor for
InAs QDs range from 2.6 [6] to 2.9 [3]. Ignoring the diamagnetic term, the interaction
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Figure A.3: Schematic comparison between the magnetic field induced spin splitting
energy, assuming a magnetic field of 28 T, and the FWHM of a PL peak.
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Figure A.4: Possible intraband transitions in dashed lines. The magnetic field induced
spin splitting does not change the intraband energy transition Ep − Es.

between the magnetic field and the spin of an electron-hole pair in a QD will therefore
produce a splitting of approximatively 5 meV for a magnetic field of 28 T. Given the
broadness of our PL peaks (∼ 15 meV), such a splitting cannot be detected, as
schematically shown in Fig. A.3. Thus, we find that PL measurements conducted on
self-assembled samples, do not have the precision necessary to study the spin effects
of a QD system.

The FIR magnetotransmission results of Chapter 2 and 3 permit the investigation
of the intraband transitions of the QD system. As seen in Section 1.5.3 of Chapter
1, the polarization selection rules for such transitions involve solely the envelope
function. The initial and final atomic states in intraband transitions are identical. As
such, the spin splitting does not affect the intraband energies, as shown in Fig. A.4
where two possible intraband transitions are represented in dashed lines. Moreover,
in thermal equilibrium (most probably the situation in weak absorption experiments
at low temperature), only the lowest energy level is populated.

In conclusion, we find that for both our intraband and interband investigations
the atomic part of the wavefunction does not come into play. The envelope function
is the important element to consider in the analysis of our experimental results. This
thesis therefore only contains discussions that include the envelope function.
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Appendix B

Fröhlich Constant

The definition of the Fröhlich constant in a bulk material is

αF =
e2

h̄

√

m∗

2h̄ωLO

(

1

κ∞

− 1

κo

)

(B.1)

where h̄ωLO is the LO phonon energy of the crystal and m∗ is the effective elec-
tron mass. The value of this dimensionless constant is related to the macroscopic
polarization field induced by the ion displacements in a unit cell. As the value of
this constant is well known for certain materials, it is commonly used in literature
to describe the coupling strength between carriers and LO phonons. However, it is
important to discuss exactly how the Fröhlich constant is related to this coupling
strength, as misconceptions can easily follow from this conventional association.

The Fröhlich Hamiltonian used in our calculation is proportional to the constant
AF . In turn, AF has the following relationship with the Fröhlich constant,

αF =

√
2m∗

4πh̄(h̄ωLO)3/2
A2

F (B.2)

We therefore find that the Fröhlich constant is related to the Fröhlich Hamiltonian
by

VF ∝ (h̄ωLO)3/4

2(m∗)1/4

√
αF (B.3)

We first note that the effective electron mass, present in the definition of αF , will
cancel out of Eq. B.3. In other words, the Fröhlich constant depends on the mass
of the carrier whereas the Fröhlich Hamiltonian does not. This is expected, as the
Fröhlich Hamiltonian, which describes the interaction between dipole moments and
a charged carrier, should not depend on the mass of the carrier.

Secondly, we remark that VF is proportional to the square root of αF . Therefore,
a change in αF is not directly proportional to a change in coupling strength. For
example, three different values of αF are used in this work: αF = 0.075 for electrons
interacting with a GaAs phonon, αF = 0.070 for holes interacting with a InAs phonon,
αF = 0.105 for excitons interacting with a GaAs phonon. This variation represents
only an approximately 15% change in the constant AF .

143



144 Appendix B. Fröhlich Constant

Indeed, the constant AF , which is directly proportional to the Fröhlich Hamlito-
nian, and does not depend on the mass of the carrier, is a more appropriate measure
of the carrier LO phonon coupling strength. We include the values of both AF and
αF , for convention’s sake, when discussing the fitting parameters of the calculations
in this thesis.


