
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS - UFR Sciences

École Doctorale de Sciences et Technologies de l’Information et de la Communication

THESE

pour obtenir le titre de

Docteur en Sciences
de l’UNIVERSITE de Nice-Sophia Antipolis

Discipline : Informatique

présentée et soutenue par

Tomás BARROS

FORMAL SPECIFICATION AND VERIFICATION OF

DISTRIBUTED COMPONENT SYSTEMS

Thèse dirigée par Isabelle ATTALI

soutenue le 25 novembre 2005

Jury:

Président du Jury Laurence Pierre Université de Nice - Sophia Antipolis
Rapporteurs Ana Rosa Cavalli Institut National des Telecommunications, France

Frantǐsek Plasil Charles University, Prague
Examinateurs Fréderic Lang INRIA - Grenoble

Luis Mateu Universidad de Chile, Chili
Co-directeur de thèse Eric Madelaine INRIA - Sophia Antipolis

ii

iii

à Isabelle

iv

Contents

List of Figures ix

Acknowledgements xi

I Résumé étendu en français (Extended french abstract) xiii

1 Introduction . xv

1.1 Les méthodes formelles . xvi

1.2 Les mythes autour des méthodes formelles xvii

1.3 Les systèmes distribués . xviii

1.4 La programmation par composants xix

1.5 Les hypothèses initiales de notre travail et ses buts xix

2 Spécification de comportements . xxi

2.1 Réseaux paramétrés d’automates communicants xxii

2.2 Instanciation . xxiv

3 Composants hiérarchiques distribués xxiv

3.1 Introduction . xxiv

3.2 Contexte . xxv

3.3 Modèles de Comportement . xxvii

3.4 Le point de vue de l’utilisateur xxxi

3.5 Propriétés . xxxii

4 Conclusions et Travaux Futurs . xxxiv

4.1 Travaux futures . xxxvi

II Thesis 1

1 Introduction 3

1.1 The need for reliable systems . 4

1.2 Formal Methods . 6

1.3 The myths of formal methods . 8

1.4 The distributed systems . 9

1.5 Components programming . 9

1.6 Thesis structure, initial assumptions and goals 10

1.6.1 Thesis structure . 11

v

vi CONTENTS

2 State of the Art 13

2.1 Process Algebras . 13

2.1.1 Calculus of Communicating Systems (CCS) 14

2.1.2 The π-calculus . 18

2.1.3 Networks of Communicating Automata 21

2.1.4 The transformations Lotomaton 22

2.1.5 Symbolic Transition Graphs . 23

2.1.6 Symbolic Transition Graph with Assignment 24

2.2 Languages . 26

2.2.1 FC2 . 27

2.2.2 Promela . 27

2.2.3 LOTOS . 30

2.2.4 Unified Modelling Language . 33

2.3 Verification tools . 35

2.3.1 FC2Tools . 35

2.3.2 SPIN . 36

2.3.3 CADP . 37

2.4 Components Related Work . 40

2.4.1 Wright . 40

2.4.2 Darwin (Tracta) . 43

2.4.3 SOFA . 45

3 Behaviour Specifications 53

3.1 Introduction . 53

3.2 Parameterized Networks of Communicating Automata 54

3.2.1 Theoretical Model . 55

3.2.2 Graphical Language . 57

3.2.3 Instantiation . 58

3.3 Case study: The Chilean Electronic Invoices System 59

3.3.1 System description . 60

3.3.2 System properties . 61

3.3.3 Formalisation . 61

3.3.4 Properties Verification . 64

3.3.5 Avoiding the state explosion . 68

3.3.6 Related Work . 75

3.4 Conclusions . 75

4 Hierarchical Components Behaviour 77

4.1 The Fractal Component Model . 79

4.1.1 Guidelines to Fractal Components 79

4.1.2 Component System Example . 81

4.2 Defining Correct Behaviour . 82

4.2.1 Components behaviour specification 83

4.3 Building the component’s model behaviour 83

4.3.1 Primitive components . 84

CONTENTS vii

4.3.2 Composites . 86

4.3.3 Detecting Errors . 88

4.3.4 General purpose Controller . 88

4.3.5 Deployment and Static Automaton 90

4.4 Properties . 91

4.4.1 Species of Temporal Properties 91

4.4.2 Proving Properties . 93

4.5 Tools . 97

4.6 Conclusions . 98

5 Distributed Hierarchical Components Behaviour 101

5.1 Introduction . 101

5.2 ProActive . 102

5.3 Fractive . 103

5.3.1 Primitive Components . 103

5.3.2 Composites . 104

5.3.3 Choices Made With Respect to Fractal 105

5.4 Building the component’s model behaviour 105

5.4.1 Building models for Fractive components 106

5.4.2 Adding Interceptors . 108

5.4.3 Modelling the Primitives . 108

5.4.4 Modelling the Composites . 110

5.4.5 Building the Global Behaviour 111

5.5 The User View . 111

5.5.1 Looking at one Example . 111

5.5.2 Automatic Construction . 113

5.6 Properties . 114

5.6.1 Deployment . 114

5.6.2 Pure-Functional Properties . 115

5.6.3 Functional Properties Under Reconfigurations 115

5.6.4 Asynchronous Behaviour Properties 116

5.7 Conclusion . 116

6 Tools 119

6.1 Bandera/ProActive . 120

6.2 PAX . 120

6.3 JFC2Editor . 120

6.4 ADL2N . 121

6.5 FC2Instantiate . 121

6.5.1 FC2 Format . 121

6.5.2 Specification of Parameterized System 127

6.5.3 Instantiation File . 138

6.5.4 Using the tool . 138

6.5.5 FC2Parameterized reference manual 139

6.6 FC2EXP . 141

viii CONTENTS

7 Conclusions and future works 143
7.1 Future work . 145

7.1.1 Preorder relation . 145
7.1.2 Properties specification . 145
7.1.3 New Fractive’s features . 146

List of Figures

i Système paramétré consommateur-producteur xxiii

ii Un exemple d’un système à composant avec Fractal xxv

iii Un composite de Fractive . xxvii

iv Modèle de comportement de composants xxviii

v Détail de l’interface interne d’une bôıte xxix

vi Communication entre deux activités . xxix

vii Modèle de comportement d’un composant primitif de Fractive xxx

viii Modèle de comportement de la membrane de un composite de Fractive xxxi

ix System ADL . xxxii

x Synchronisation product supporting further reconfigurations xxxiv

2.1 Example of a process definition in LOTOS 31

2.2 A simple client-server system description in Wright 40

2.3 Darwin example . 44

2.4 Example of a SOFA specification in CDL 46

2.5 Behaviour protocol of frame DatabaseBody 48

3.1 Parameterized consumer-producer system 57

3.2 Instantiated consumer-producer system 59

3.3 Normal Scenario . 60

3.4 The Vendor system . 62

3.5 The reception and verification process 63

3.6 The global SII system . 64

3.7 Instantiation of data domains . 65

3.8 Abstraction automaton encoding Property 2 66

3.9 Property 2 verification result . 67

3.10 Abstraction automaton encoding Property 1 70

3.11 Vendor with structural hiding . 71

3.12 First composition for the global system 72

3.13 Global system results when grouping by variables and using structural
hiding . 74

4.1 A simple component system . 81

4.2 Behaviour of the base components of A, B and Logger 84

4.3 Controller for A . 85

4.4 Controller of C . 87

ix

x LIST OF FIGURES

4.5 Zoom into the A controller detecting errors 88
4.6 General purpose Controller . 89
4.7 Deployment automaton for C . 90
4.8 Static automaton for C . 91
4.9 Diagnostic path . 94
4.10 S\OC for System . 95
4.11 Property (4) diagnostic for System . 95
4.12 Property (4.6) diagnostic for System 96
4.13 B2 behaviour . 97
4.14 Formula (4.3) diagnostic when using B2 97
4.15 System ADL . 98
4.16 Example of automata sizes (states/transitions) of the example 98

5.1 An example consisting of two activities 103
5.2 Primitive life-cycle . 104
5.3 Fractive composite component . 105
5.4 Component behaviour model . 106
5.5 Examples of Internal Required Interface and Life-Cycle automata . . . 107
5.6 Communication Between two Activities 108
5.7 Behaviour model for a Fractive primitive 109
5.8 Behaviour of a composite membrane 110
5.9 Consumer-Producer sample . 111
5.10 System ADL . 112
5.11 Buffer behaviour (provided by user) . 112
5.12 Synchronisation product supporting further reconfigurations 116

6.1 The VERCORS toolset . 119
6.2 Consumer-Producer system interaction 128
6.3 Parameterized consumer-producer system 128
6.4 Parameterized Consumer . 130
6.5 Parameterized Producer . 130
6.6 Parameterized Buffer . 134

Acknowledgements

I would like to thank both the French Embassy at Chile and the Chilean Commission
in Research and Technology (Conicyt) who granted me with a scholarship for doing my
studies in France.

I’m specially thankful to my advisor Eric Madelaine, who demonstrated an amazing
dedication guiding me through my studies. His advises were incommensurable helpful.

To the reviewers and the juries, I would like to thank their efforts. Hopefully it did
not turn out to be extremely boring.

I’m fully grateful to INRIA, the Oasis team, and its former members. Not only did
they welcome me, but for doing it in a very kind manner.

It is also my privilege to thank all those who shared their friendship along these
last three years. My dear friends, your support has been far beyond professional, and
absolutely indispensable.

Finally, I would like to remember Isabelle Attali who unfortunately passed away last
year. She welcomed me from the very beginning and supported me enormously on this
adventure. Her exemplary kindness will always be with me.

xi

xii ACKNOWLEDGEMENTS

Part I

Résumé étendu en français
(Extended french abstract)

xiii

1. INTRODUCTION xv

1 Introduction

Je suis certain que de nombreuses personnes, les lecteurs de cette thèse compris, ju-
reraient derrière l’écran comme l’a fait Richard Sharpe dans [150] quand Windows
s’écrase.

S’ils faisaient des routes, des ponts, des voitures, des avions et des bateaux
comme ce logiciel, la race humaine serait condamnée

Pourtant, des logiciels sont maintenant au coeur de ces produits. Pourquoi les avions
Airbus ne s’écrasent pas aussi souvent que le logiciel Windows? Pourquoi les voitures
du métro de Paris ne s’écrasent pas entre elles tous les jours?

La réponse est en partie parce que ces logiciels critiques sont développés en utilisant
des méthodes formelles. Les concepteurs des avions utilisent des mathématiques pour
modéliser les systèmes complexes nécessaires pour maintenir un avion Airbus en vol.
Les concepteurs de ponts utilisent des mathématiques pour estimer la charge sur les
matériaux utilisés dans leurs constructions.

Les Méthodes Formelles forment la base mathématique du logiciel. Une méthode
est formelle si elle a une base mathématique solide, normalement donnée à l’aide d’un
langage de spécification formel. Cette base fournit des moyens pour définir précisément
des notions comme la cohérence et la complétude et, plus important, la spécification,
l’implantation et la correction. Elle fournit aussi des moyens pour démontrer qu’une
spécification est réalisable, qu’un système a été correctement implanté et pour prouver
des propriétés d’un système sans nécessairement le faire tourner.

C’est l’utilisation de mathématiques pour la spécification, la modélisation, le déve-
loppement et le raisonnement sur les logiciels qui est à la fois la force et la faib-
lesse des approches formelles. Une faiblesse parcequ’il n’y a pas aujourd’hui assez de
développeurs avec une base solide en mathématiques pour se sentir confortables avec
les notations des méthodes formelles. Pire encore parceque la vérification formelle d’un
système est une tâche difficile. Prouver qu’un système à une certaine propriété est
souvent un problème indécidable. Çela est inévitable puisque les systèmes sont con cus
pour exécuter des cycles infinis et qu’ils manipulent des ensembles de données non
bornées (e.g. des nombres réels, des entièrs non bornés ou des mesures de temps). Il est
alors nécessaire, en utilisent des techniques complexes d’abstraction [57], d’approcher
les systèmes à l’aide de modèles discrêts et finis, sur lesquels on peut utiliser les algo-
rithmes existants, efficaces pour la vérification [68].

Voici la motivation de cette thèse : nous voulons fournir des méthodes et des outils
pour que les développeurs, qui ne sont pas nécessairement des experts dans le domaine
des méthodes formelles, puissent vérifier la correction des systèmes d’une façon simple
et directe sans entrer dans les détails complexes des techniques de modélisation et de
preuve.

Les méthodes formelles bénéficient d’une littérature très riche, et le choix d’une
méthode spécifique varie beaucoup selon le système cible ou le type de leur application.
Notre travail est focalisé en particulier sur les systèmes construits avec des composants
distribués.

xvi

Les méthodes formelles ont été appliquées avec succès dans plusieurs domaines, dont
la conception des circuits, des systèmes embarqués, des logiciels synchrones ou dans
certaines applications de temps réel entre autres. Dans le domaine des systèmes dis-
tribués les problèmes sont plus difficiles, la complexité introduite par le calcul parallèle
et les communications asynchrones peuvent produire des comportements non désirés et
rendre l’analyse et la vérification beaucoup plus difficiles.

L’auteur de cette thèse appartient à l’équipe OASIS [3] à l’INRIA Sophia-Antipolis.
L’équipe OASIS concentre beaucoup de ressources pour le développement d’un intergi-
ciel nommé ProActive [28, 46] qui permet la construction des applications en utilisant
des objets Java distribués. Dernièrement, ProActive fourni aussi des moyens pour
développer des applications en utilisent des composants [29].

La programmation par composants aide considérablement la conception, l’implanta-
tion et la maintenance des logiciels complexes. L’implantation des composants de
ProActive, nommé Fractive [29], est basé sur le modèle proposé par Fractal [43] en
y ajoutant les caractéristiques propres à ProActive (i.e. les composants distribuées et
les communications asynchrones). Nos méthodes et outils pour la vérification formelles
sont focalisés particulièrement sur des applications construites en utilisant Fractive,
mais elles peuvent être utilisées également dans d’autres systèmes distribués comme
vous pouvez le constater à la lecture du manuscrit complète de cette thèse.

1.1 Les méthodes formelles

Comment nous avons dit précédemment, une méthode formelle utilise les mathématiques
pour spécifier, développer et raisonner sur les systèmes logiciels. Une méthode formelle
adresse aussi des questions pragmatiques : qui l’utilise, sur quoi elle est utilisée, quand
et comment elle est utilisée.

Les méthodes formelles peuvent être utilisées dans toutes les étapes du développement.
Elles peuvent êtres utilisées de la définition des besoins du client, à travers la con-
ception du système, l’implantation, le débogage, l’entretien, la vérification et jusqu’à
l’évaluation.

Les méthodes formelles permettent de révéler des ambigüıtés, des problèmes de non-
complétude et d’inconsistance. Quand elles sont utilisées tôt dans le processus de
développement, elles peuvent découvrir des failles de conception qui autrement seront,
peut-être, découvertes seulement avec de couteuses étapes de preuve et de débogage.
Quand elles sont utilisées plus tard dans le cycle, elles peuvent aider à déterminer la cor-
rection de l’implantation d’un système et l’équivalence entre implantations différentes.

Les aspects particuliers qui peuvent êtres décrits par les méthodes formelles peuvent
varier considérablement pour chaque méthode [20]. Grosso modo, nous pouvons dis-
tinguer deux familles de méthodes formelles : les méthodes déductives et les méthodes
basées sur des modèles.

Dans les méthodes déductives, la correction des systèmes est définie par des propriétés
dans une théorie mathématique. Le problème de la vérification est exprimé comme un
théorème de la forme : spécification du système ⇒ propriété cherchée. Établir ce
résultat est connu comme le theorem proving.

Les méthodes basées sur des modèles, comme ce nom le suggère, sont basées sur

1. INTRODUCTION xvii

des modèles décrivant le comportement du système d’une façon mathématique précise
et non-ambigüe. Ces modèles sont accompagnés par des algorithmes qui explorent
systématiquement tous les états (tous les scénarios possibles du système) du modèle.
De cette façon on montre qu’une certaine propriété est vraie dans le système, technique
connue sous le nom de model-checking.

Vérification de modèles (Model Checking) La vérification de modèles est une tech-
nique qui consiste à construire un modèle fini d’un système et vérifier qu’une propriété
cherchée est vraie dans ce modèle. Il y a deux façons générales de vérification dans
le model-checking : vérifier qu’une propriété exprimée dans une logique temporelle est
vraie dans le système, ou comparer (en utilisant une relation d’équivalence ou de pré-
ordre) le système avec une spécification pour vérifier si le système correspond à la
spécification ou non.

Au contraire du theorem proving, le model-checking est complètement automatique
et rapide. Il produit aussi des contre-exemples qui représentent des erreurs subtiles
dans la conception et ainsi il peut être utilisé pour aider le débogage.

Preuve de théorm̀es (Theorem proving) La preuve de théorèmes est une technique où
le système et les propriétés recherchées sont exprimés comme des formules dans une
logique mathématique. Cette logique est décrite par un système formel qui défini un
ensemble d’axiomes et de règles de déduction. La preuve de théoreme est le processus
de recherche de la preuve d’une propriété à partir des axiomes du système. Les étapes
pendant la preuve font appel aux axiomes et aux règles, ainsi qu’aux définitions et
lemmes qui ont été possiblement dérivés.

Au contraire du model-checking, le theorem proving peut s’utiliser avec des espaces
d’états infinis, à l’aide de techniques comme l’induction structurelle. Son principal in-
convénient est que le processus de vérification est normalement lent, sujet à l’erreur, de-
mande beaucoup de travail et des utilisateurs très spécialisés avec beaucoup d’expertise.

Au cause de cet inconvénient et parce que notre travail cible des outils automatiques
et faciles à utiliser, nous préférons naturellement nous baser sur des techniques de
model-checking.

1.2 Les mythes autour des méthodes formelles

L’utilisation des méthodes formelles a une longue histoire. Bien qu’il y ait eu une
utilisation significative des méthodes formelles dans les industries critiques [94], elles
n’ont pas été très bien accueillies en général par la communauté de développement de
logiciels [35].

Cette situation ne doit pas surprendre puisque les méthodes formelles sont largement
perçues comme une collection de notations souvent à l’état de prototype, des outils qui
sont difficiles à utiliser, et qui ne passent pas à l’échelle facilement. Il y a eu plein
d’idées fausses à propos des méthodes formelles ; Anthony Hall a écrit un article en
citant sept mythes à leur sujet [90], nous reprenons deux d’entre eux :

1. Les méthodes formelles peuvent garantir qu’un logiciel est parfait. Rien peut garan-
tir la perfection. Les méthodes formelles ne sont pas la panacée pour la fiabilité des

xviii

systèmes, mais elles peuvent considérablement l’améliorer. Elles doivent êtres vues
comme des méthodes puissantes et complémentaires aux autres techniques déjà
connues et utilisées comme le test et le débogage. En particulier, pour l’approche
basée sur des modèles, nous ne devons jamais oublier le fait que :

Toute vérification basée sur le modèle d’un système est au mieux aussi
précise que le modèle lui-même

En conséquence cette thèse est principalement centrée sur la modélisation des
systèmes. Sa première partie cherche à trouver le meilleur format pour décrire
le comportement de systèmes, et sa deuxième partie profite de la sémantique et
de la structure des composants pour construire, de la façon la plus automatique
possible, les modèles des ces systèmes.

2. Les méthodes formelles demandent des spécialistes mathématiques très entrâınés

Il y a eu beaucoup d’efforts pour rendre l’utilisation des méthodes formelles plus
faciles (au moins pour certains systèmes spécifiques), et nous ne sommes pas
d’accord avec A. Hall. La méthode formelle choisie peut requérir de fortes con-
naissances mathématiques, dépendant du formalisme, le système cible ou la pro-
priété à prouver. Simplement choisir la méthode formelle la plus adéquate peut
déjà demander une connaissance de base des méthodes formelles. Mais le but est
de fournir des outils automatiques qui cachent la complexité des algorithmes de
vérification de modèles, et qui évitent totalement la difficulté d’intèraction requise
par un prouveur de théorèmes.

Pour nos systèmes cibles, en addition à l’automatisation, nous voulons cacher les
notations, les logiques et les algorithmes complexes derrière des interfaces con-
viviales pour l’utilisateur. En général nous essayons d’adapter les approches déjà
connues et utilisées pour la description de systèmes (par exemple le langage de
description d’architecture (ADL) comme nous le montrons dans les chapitres 4 et
5 du manuscrit complet) pour la modélisation et vérification.

1.3 Les systèmes distribués

Le model-checking est une technique puissante, largement utilisée pour vérifier le maté-
riel, les systèmes embarqués et les logiciels séquentiels ou à mémoire partagée. En
général les spécifications sont exprimées dans une logique temporelle propositionnelle
(comme CTL [68]) et le système est représenté comme un graphe de transitions d’états
(connu sur le nom de structure de Kripke)

Cependant, quand on travaille avec des systèmes distribués, i.e. des processus con-
currents et communicants, les modèles basés sur les états ne sont pas bien adéquats. En
l’absence d’une mémoire partagé, où les états peuvent êtres facilement identifiés par les
états des variables du système, il est difficile (sinon impossible) d’identifier l’état actuelle
d’un système distribué et partant de son modèle. Par ailleurs, la concurrence ajoute au
modèle de l’entrelacement et de l’indéterminisme, ce qui augmente exponentiellement
la taille des modèles basés sur les états.

D’un autre coté, dans les systèmes concurrents et communicants, il est plus facile
de distinguer les actions que chaque processus peut exécuter à un moment donné, en

1. INTRODUCTION xix

particulier des actions qui peuvent représenter des communications entre processus. Les
actions communicantes devront être éxécutées au même temps (synchronisées) dans tout
le processus qui participe à la communication. La forme pour modéliser un processus
où nous observons les actions possibles à exécuter mais pas les états, est connu comme
les systèmes de transitions étiquetés (Labelled Transition Systems = LTSs).

Notez que l’approche LTS n’observe pas la nature des processus (comme les états de
ses variables) mais plutôt ce qu’ils peuvent exécuter. Cette vision a mené, à partir des
travaux séminaux de Milner sur CCS [130] et d’Hoare sur CSP [96], vers une famille riche
de calculs qui permettent de raisonner sur le comportement des systèmes concurrents
et communicants, connue comme les algèbres de processus.

Nous voulons utiliser les algèbres de processus pour modéliser le comportement de
nos systèmes. Être basés sur ce cadre nous permet de profiter de notions comme les
relations d’équivalences et de congruences, permettant une conception modulaire, ansi
que des abstractions menant à des modèles plus petits en préservant leur sémantique.

1.4 La programmation par composants

La programmation par composants a émergé comme une méthodologie de programma-
tion pour des systèmes complexes qui garanti la ré-utilisabilité et la compositionalité.
De façon général, un composant est une entité autonome qui interagit avec son en-
vironnement à travers des interfaces bien définies. En dehors de ces interactions, un
composant ne révèle pas sa structure interne.

Plusieurs modèles de composant ont été proposés [145, 43, 64, 8] dont quelques-uns
sont actuellement utilisés dans l’industrie. Ils partagent tous des caractéristiques en
commun, comme l’encapsulation, et quelques uns ont des caractéristiques complémen-
taires comme la composition hiérarchique et la distribution.

Dans les modèles hiérarchiques comme Fractal [43], des composants différents peu-
vent être assemblés pour devenir eux-mêmes un nouveau composant utilisable dans le
prochain niveau de la hiérarchie. Les composants fournissent aussi une séparation entre
des aspects fonctionnels et non-fonctionnels. Parmis les aspects non-fonctionnels les
plus intéressants citons le cycle de vie et les capacités de reconfiguration, qui permet-
tent le contrôle de l’exécution d’un composant aussi comme son évolution dynamique.
Les composant hiérarchiques cachent, à chaque niveau, la complexité de leur structure
interne.

Le but principal de ce travail de thèse est de construire un cadre formel pour garan-
tir que les compositions sont bien faites quand le système est déployé. Nous nous
concentrons sur Fractive [29], une implantation distribuée du modèle de composants
Fractal [43] utilisant l’intergiciel ProActive [28].

1.5 Les hypothèses initiales de notre travail et ses buts

Nous avons précisé précédemment la nécessité de fiabilité dans les logiciels et nous avons
introduit les méthodes formelles comme une technique puissante pour répondre à cette
nécessité. Nous avons mentionné quelques causes pour lesquelles les méthodes formelles
n’ont pas été tout à fait adoptées dans la production de logiciel et, en même temps, nous
avons décrit les caractéristiques qu’une solution devrait avoir pour attaquer ces causes

xx

(automatisation et convivialité). Nous avons aussi définit nos systèmes cibles, étant
les systèmes construits avec des composants distribués, et nous avons pris quelques
décisions initiales sur la meilleure méthode formelle à utiliser (algèbres de processus et
systèmes de transitions étiquetés).

Notre but est de garantir qu’une application, construite avec des composants dis-
tribués, soit sûr au sens que ses parties s’assemblent correctement, et fonctionnent en
harmonie. Chacun des composants doit correspondre au rôle que le reste du système
attend de lui, et la mise à jour ou le remplacement d’un composant ne doit pas causer
le blocage ou l’échec pour les autres.

La notion habituelle de compatibilité de types des interfaces n’est pas suffisante pour
cela; nous devons exprimer l’interaction dynamique entre les composants pour éviter
les blocages ou les comportements incorrects du système.

Le défi est de construire un cadre formel avec des méthodes et outils pour garantir
non seulement que l’assemblage est sûr quand il est déployé, mais aussi en présence
de changements dynamiques et reconfigurations ultérieures. Ce cadre devrait être en
même temps assez formel pour qu’il soit utilisable par des outils formels, mais assez
simple pour qu’il soit utilisable par des non-spécialistes; les outils devront être le plus
automatique possible et elles devront cacher les logiques et algorithmes complexes.

Structure de la thèse

Le manuscrit complet de cette thèse est écrit globalement dans l’espoir d’être auto-
contenu et nous recommandons de la lire dans l’ordre. Ceci parce que plusieurs idées
et concepts dans ses parties dépendent fortement des chapitres précèdants pour avoir
une meilleure compréhension.

Dans le chapitre 2 nous révisons les travaux principaux sur les algèbres de processus
qui sont important pour notre sujet. Ensuite nous révisons les langages et outils de
description de comportement les plus connus nés de ces algèbres. A la fin du chapitre
2 nous faisons une révision des travaux actuelles sur la vérification de composants.

Dans le chapitre 3 nous introduisons un nouveau format intermédiaire qui est une
adaptation du travail de Lin, nommé symbolic transition graphs with assignment [111],
et du travail d’Arnold, nommé synchronisation automata networks [15] : Nous étendons
la notion générale de systèmes de transitions étiquetées (LTS) et des réseaux hiérarchi-
ques de processus communicants (synchronisation networks) pour ajouter des paramètres
dans les évènements de communication. Ces évènements peuvent avoir des conditions
sur ses paramètres. Les processus peuvent être aussi paramétrés pour représenter des
ensembles de processus équivalents qui s’exécutent en parallèle. Les résultats de ce
travail ont été présentés dans [21, 26, 25, 17].

Dans le chapitre 4 nous utilisons notre format intermédiaire pour spécifier le com-
portement de composants hiérarchiques. Le comportement fonctionnel de composants
primitives peut être obtenu en utilisant des outils d’analyse de code source, ou exprimé
par le développeur dans un langage de spécification. Ensuite, nous incorporons automa-
tiquement les comportements non-fonctionnels dans un contrôleur construit à partir de
la description du composant. La sémantique d’un composant est donc obtenu comme
le produit des LTSs de ses sous-composants avec le contrôleur. Le système résultant est

2. SPÉCIFICATION DE COMPORTEMENTS xxi

vérifié contre des propriétés exprimées dans des logiques temporelles ou par des LTSs.
Les résultats de ce travail ont été présentés dans [22, 23].

Dans le chapitre 5 nous avons fait un grand pas en avant en passant aux composants
distribués de Fractive : ces membranes ont un unique fil d’exécution non-préemtif qui
sert, basé sur différentes politiques, les appels de méthodes de sa queue de requètes. Les
appels vers des autres composants sont fait en utilisant une phase de rendez-vous qui
garanti la délivrance et l’ordre des appels. Les réponses sont toujours asynchrones avec
des références futures; la synchronisation est fait à l’aide d’un mécanisme d’attente-par-
nécessite.

De façon similaire aux composants synchrones, nous ajoutons automatiquement le
comportement non-fonctionnel des composants dans ses contrôleurs obtenus à partir
de la description du composant. En addition, nous ajoutons les caractéristiques de
Fractive en incorporant des automates qui représentent les queues, les réponses futures
et les politiques de service des appels (en particulier les politiques par défaut en charge
de servir les appels fonctionnels versus non-fonctionnels en fonction du cycle de vie
du composant). Finalement nous montrons comment notre approche nous permet de
vérifier des propriétés pendant toutes les étapes de la vie d’un composant en incluant les
interactions entre évènements fonctionnels et non-fonctionnels : par exemple la réponse
inévitable des appels des méthodes asynchrones même si le composant est dans une
phase de reconfiguration. Les résultats de ce travail ont été publiés dans [24].

Dans le chapitre 6 nous introduisons les outils que nous avons développés pour tra-
vailler avec notre approche et finalement le chapitre 7 introduit les conclusions de nos
travaux ainsi que des pistes de travaux futurs.

2 Spécification de comportements

Dans les systèmes de vérification comportementaux, la première question naturelle qui
se pose est de savoir quel est le langage/format le plus adapté pour modeler son com-
portement.

Nos systèmes cibles sont des applications réelles, concurrentes, distribuées asyn-
chrones construites en utilisant des composants. Nous recherchons le langage le plus
adéquat pour décrire le comportement de tels systèmes.

Nous voulons aussi que ce langage soit basé sur les théories des algèbres de processus
[130, 96, 33] qui nous permettront de tirer profit de leur principales caractéristiques :
sémantiques opérationnelles pour décrire sans ambigüıté le comportement du système
et vérifier ses propriétés, équivalences et pré-ordres qui donnent des relations comporte-
mentales entre des systèmes différents et conception compositionnelle pour modeler des
systèmes plus larges à partir de petites pièces. Le dernier aspect est important, lorsque
qu’on s’attache à la capacité de passage à l’échelle.

De plus, nous souhaitons que ce langage soit à la fois assez intuitif et expressif pour
spécifier le comportement de notre système cible, ainsi que le langage cible d’outils
d’analyse statique (ensuite, l’implantation pourra être validée par les spécifications
formelles). Il faut aussi qu’il soit assez formel, en tant que langage d’entrée pour des
outils de model-checking.

Comme nous discutons dans le manuscrit complet, les langages existants ne sont

xxii

pas très adéquats pour nos besoins. Parmi les plus connus, Promela [85] (le langage
d’entrée de l’outil SPIN [98, 97]) ne supporte pas les descriptions compositionnelles, ou
LOTOS [104] qui est riche en expressivité, mais, en effet, trop riche pour se soumettre
à des procédures des décision automatiques essentielles à notre approche.

Notre approche est une adaptation de symbolic transition graphs with assignment
de [111] avec les synchronisation automata networks de [15] : nous étendons la notion
générale de systèmes de transitions étiquetées (LTS) et de réseaux hiérarchiques de
processus communicants (synchronisation networks) pour ajouter des paramètres dans
les évènements de communication, à la manière de [111]. Nous avons nommé le langage
résultant Réseaux paramétrés d’automates communicants.

2.1 Réseaux paramétrés d’automates communicants

Nous modélisons le comportement d’un processus comme un système de transitions
étiquetées paramétré (Parameterized Labelled Transition System, pLTS). Nous utilisons
des paramètres à la foiswaussi bien pour l’encodage de données de messages que pour
manipuler des familles indexées de processus.

Nous utilisons alors un réseau paramétré pour synchroniser un nombre fini de proces-
sus. Un réseau synchronisé paramétré (Parameterized Synchronisation Network, pNet)
est une forme d’opérateur parallèle généralisé, où chacun de ses arguments est typé par
l’ensemble de ses actions possibles observables.

Les actions à synchroniser entre les arguments du réseau sont encodées dans un
automate nommé transducer. Un état dans le transducer défini un ensemble particulier
de synchronisations, et un changement d’état dans le transducer introduit un nouvel
ensemble de synchronisations, i.e. il modélise une reconfiguration dynamique. Un
réseau avec un état unique est appelé un réseau statique.

Syntaxe Concrète

Nous avons développé une syntaxe concrète pour nos réseaux paramétrés d’automates
communicants basé sur le format FC2 [36, 118], qui nous appelons FC2Parameterized.

Le format FC2 permet la description de systèmes de transitions étiquetés (LTSs).
Les LTSs sont des tableaux des états et les états eux-mêmes deviennent des tableaux des
transitions avec états cibles indexés. Les réseaux sont des vecteurs avec des références
aux autres sous-processus (autres tableaux) plus des vecteurs de synchronisation qui
dénotent une combinaison des actions des différents processus qui devront se synchro-
nisés. Les sous-processus sont eux-mêmes aussi des réseaux permettant ainsi la descrip-
tion hiérarchique.

Le format FC2 permet aussi d’être étendu avec des nouveaux opérateurs et d’ajouter
des informations complémentaires dans les états et transitions avec le label hook. Nous
avons défini la syntaxe de FC2Parameterized, étant toujours dans la syntaxe FC2, en
utilisant ces extensions et labels hook pour introduire des paramètres dans les états et
transitions, ainsi que de nouveaux opérateurs pour gérer ces paramétres.

La syntaxe de FC2 et de sa version étendu FC2Parameterized sont introduites dans
le chapitre 6 du manuscrit complet.

2. SPÉCIFICATION DE COMPORTEMENTS xxiii

Syntaxe graphique

Nous introduisons aussi une syntaxe graphique pour représenter les réseaux statiques
paramétrés, qui est un compromis entre l’expressivité et la convivialité. Le but princi-
pale de cette syntaxe graphique est de mieux introduire notre approche aux lecteurs.

Nous utilisons une syntaxe graphique similaire à celle de l’éditeur Autographe [10],
augmenté par des éléments pour les paramètres et les variables : un pLTS est dessiné
comme un ensemble de cercles et de flèches, représentant respectivement les états et les
transitions. Les états sont étiquetés par l’ensemble des variables associées (−→vs), et les
transitions par [b] α(−→x) → −→e .

Un pNet statique est représenté par un ensemble de bôıtes nommées, chacune enco-
dant un argument du pNet, plus une bôıte englobante. Ces bôıtes (arguments) peuvent
être remplies par un pLTS satisfaisant la condition d’inclusion. Chaque bôıte a un nom-
bre fini de ports sur ses arêtes, représentés par des bulles nommées, chacune encodant
une action paramétrée particulière de l’argument.

Consumer
c

?R get()

!Q get()

!Q get()

?R get()
p : producers

c : consumers

Q get(c)

!R get(c)?Q get(c)

R get(c)

Q put(p, x)

R get(c)Q get(c)

?Q put(x)

Q put(p, x)

Producer
p(Max)

!Q put(x)

!Q put(x)

x : [1,Max]Buffer(Max, consumers)

c : consumers
x : [1,Max]

Figure i: Système paramétré consommateur-producteur

La figure i montre un exemple d’un tel système paramétré. Il est composé d’un
unique buffer borné (avec une capacité Max) et une quantité bornée de consommateurs
(#consumerss) et de producteurs (#producers). Chaque producteur rempli le buffer
avec une quantité (x) d’éléments à la fois. Chaque consommateur ne réclame qu’un
seul élément du buffer à la fois (!Q get()) et attend la réponse (?R get()).

La figure i introduit aussi la notation pour encoder l’ensemble des processus; par
exemple, Consumerc encode un ensemble composé d’un processus Consumer pour
chaque valeur du domaine c. Ainsi, chaque élément du domaine de c est associé (iden-
tifié) à un unique Consumer de l’ensemble.

Les lignes entre les ports de la figure i sont appelées des liens. Les liens d’un réseau
expriment la synchronisation entre des bôıtes internes ou à des processus externes.
Ils peuvent aussi être entre des ports de différentes instances de la même bôıte. Une
synchronisation peut être requise entre plus de deux actions (i.e entre plus de deux
ports). Ceci est représenté par une ellipse avec de multiples liens entrant/sortant vers
les ports de bôıtes (processus) dont les actions doivent être réalisées simultanément (un

xxiv

exemple est montré dans la figure 3.5 du manuscrit complet). Chaque lien encode une
transition entre le transducer LTS du pNet.

Quand l’état initial est paramétré par une expression, il peut lui être indiqué quelle
évaluation de l’expression (valeurs des variables) doit être considérée comme l’état ini-
tial.

2.2 Instanciation

Étant donnée une abstraction finie des paramètres du modèle, nous avons introduit
dans [21] une procédure automatique qui produit un instanciation finie (hiérarchique)
des pLTS et pNet. Une fois l’instanciation réalisée, nous pouvons générer le produit de
synchronisation, qui est un LTS encodant le comportement complet du réseau lorsque
l’on synchronise les actions de ses processus, comme défini dans le transducer. Comme le
résultat du produit de synchronisation est un LTS lui-même, il peut être utilisé comme
un argument de la définition d’un Net supérieur. En d’autres mots, nous offrons la
possibilité de composer hiérarchiquement des processus.

Nous avons développé un outil, FC2Instantiate, pour instancier automatiquement
nos systèmes paramétrés.

3 Composants hiérarchiques distribués

3.1 Introduction

La programmation par composants hérite d’une longe expertise sur les modèles, les
objets et les interfaces. Le modèle de composants Fractal [43] fournit des compositions
hiérarchiques pour une meilleure structure, et des spécifications d’interfaces de contrôle
pour l’entretien dynamique. Les différentes interfaces de contrôle permettent le contrôle
de l’exécution d’un composant et de son évolution dynamique : ajouter et enlever des
composants dynamiquement permet l’adaptabilité et l’entretien. En particulier, les
composants distribués doivent s’adapter à leur environnement.

Fractive [29] est une implantation du modèle Fractal utilisant l’intergiciel
ProActive [47]. Nous ciblons la spécification et vérification de composants construits
avec Fractive qui sont distribués, hiérarchiques, asynchrones et capables de se recon-
figurer dynamiquement. Le défit est de construire un cadre formel qui garantisse la
composition initial d’un système (conception et implantation) et son évolution (entre-
tien et adaptation). Notre utilisateur cible est donc le développeur en charge de ces
tâches. Ce cadre doit cacher le plus possible la complexité du processus de vérification
et il devrait fonctionner en sa majoritéle plus automatiquement possible.

Quelques travaux sur la spécification de comportement de composants, comme
Wright [13], Darwin [120] ou Sofa [146] ont été proposés. Ils sont tous basés sur des rela-
tions d’équivalences ou de raffinement des aspects fonctionnel du système pour garantir
la composition correcte. Au contraire de notre approche (que nous détaillons ensuite),
ils ne prennent pas en compte les aspects non-fonctionnels des composants qui peuvent
affecter considérablement le comportement du système, par exemple en l’arrêtant ou en
redéfinissant les liens entre ses composants.

3. COMPOSANTS HIÉRARCHIQUES DISTRIBUÉS xxv

Notre approche est d’exprimer le comportements des composants sous forme de
réseaux hiérarchiques d’automates communicants. Le comportement fonctionnel des
composants de base (primitives) peuvent être dérivés, comme nous avons décrit dans [21],
avec des outils d’analyse de code source, ou bien exprimés avec un langage de spécifica-
tion. Ensuite, nous incorporons automatiquement le comportement non-fonctionnels
dans un contrôleur construit à partir de la description du composant. La sémantique
d’un composant est obtenu comme le produit synchronisé des LTSs de ses sous-compo-
sants avec le contrôleur. Le système résultant peut être vérifié contre des propriétés
exprimées avec des logiques temporelles ou avec des LTSs.

3.2 Contexte

Nous traitons ici de systèmes de composants construits avec Fractive. Fractive est une
implantation de Fractal basée sur l’intergiciel ProActive [47]. Elle présente donc un
modèle de composants ayant les mêmes fonctionnalités que ProActive, les principaux
étant les appels de méthodes asynchrones, l’absence de mémoire partagée, une politique
de service configurable par l’utilisateur, et la transparence de la distribution et de la
migration.

Fractal

Un composant Fractal est formé de deux parties : un contrôleur (ou membrane) en un
contenu. Fig. ii présente un exemple d’un système de composants Fractal.

Controller

Controller

Composite

Composite

Alarm

BufferSystem

Producer

Consumer

Buffer

System

Ebc

Elf Ebc

Ilf
EbcElf

Ilf

Elf

Ealarm : A EbcElf

EbcElf

EbcElf

Ebuffer : P

Eput : C

Ebuffer : C

Eget : C

Ialalrm : A Ealarm : A

Ealarm : A

Figure ii: Un exemple d’un système à composant avec Fractal

La membrane d’un composant peut avoir des interfaces externes (e.g., E in Fig. ii)
et internes (e.g., I in Fig. ii). Un composant peut interagir avec son environnement
par l’intermédiaire d’’opérations avec ses interfaces externes, alors que les interfaces
internes ne sont accessibles que par les sous-composants.

Les interfaces peuvent avoir deux rôles : client ou serveur. Une interface serveur
reçoit des invocations de méthodes alors qu’une interface cliente émet des appels de

xxvi

méthodes. Une interface fonctionnelle propose ou requiert les fonctionnalités d’un
composant, alors qu’une interface de contrôle correspond à une fonctionnalité de ges-
tion pour l’architecture du composant. Fractal définit 4 types d’interfaces de contrôle :
contrôle de liaison, pour lier/délier les interfaces clientes (e.g. Ebc dans Fig. ii) ; contrôle
de cycle de vie, pour arrêter et démarrer le composant (e.g. Elf dans Fig. ii) ; contrôle de
contenu pour ajouter/ enlever/mettre à jour des sous-composants, et contrôle d’attribut
pour définir/récupérer la valeur d’attributs internes.

ProActive

ProActive est une implantation en Java d’objets actifs distribués avec appels de métho-
des asynchrones et retours de résultats par références futures. Une application dis-
tribuée construite avec ProActive est composée de plusieurs activités, chacune ayant un
point d’entrée différent, l’objet actif, accessible depuis n’importe où. Les autres objets
d’une activité (appelés objets passifs) ne peuvent être référencés directement depuis
l’extérieur. Chaque activité possède son propre et unique fil d’exécution de service et le
programmeur décide de l’ordre dans lequel les requêtes sont servies en redéfinissant la
méthode runActive (point d’entrée de l’activité). Les appels de méthodes à des objets
actifs se comportent de la manière suivante :

1. Lorsqu’un objet effectue un appel de méthode vers un objet actif (e.g., y =
OB.m(~x)), l’appel est déposé dans la queue de requêtes de l’objet appelé et une
référence future est créée et retournée (y référence f). Une référence future contient
la promesse du retour d’un appel de méthode asynchrone.

2. A un moment donné, l’activité appelée décide de servir la requête. La requête est
extraite de la queue et la méthode est exécutée.

3. Une fois la méthode terminée, son résultat est mis à jour, i.e. la référence future
f) est remplacée par le résultat concret de l’appel de méthode (la valeur de y).

Lorsqu’un fil d’exécution tente d’accéder à un futur avant qu’il ait été mis à jour, il
est bloqué jusqu’à ce que la mise à jour ait lieu (attente par nécessité). Le calcul ASP
[46] a été défini afin de fournir une sémantique formelle pour ProActive.

Fractive

Fractive est l’implantation de Fractal basée sur ProActive. Certains aspects sont ouverts
dans la spécification de Fractal, et peuvent donc être redéfinis dans une implantation
donnée de Fractal, ou bien peuvent être laissés à redéfinir par l’utilisateur. Fractive
fait le choix d’actions démarrer/arrêter récursives, i.e. elles agissent sur le composant
et chacun de ses sous-composants, depuis le haut vers le bas.

Composants Primitifs Un composant primitif dans Fractive est constitué d’une activité
dont l’objet actif implante les interfaces proposées. Les requêtes fonctionnelles tout
comme les requêtes de contrôle sont déposées dans la queue de requêtes de l’objet actif.
Un composant primitif Fractive se comporte de la manière suivante :

1. Lorsqu’il est arrêté, seules les requêtes de contrôle sont servies.

3. COMPOSANTS HIÉRARCHIQUES DISTRIBUÉS xxvii

2. Démarrer un composant primitif signifie démarrer la méthode runActive de son
objet actif

3. Arrêter un objet actif signifie sortir de la méthode runActive Puisque les objets
actifs sont non-préemptifs, la sortie de la méthode runActive ne peut être forcée :
les requêtes d’arrêt sont signalées en attribuant la valeur faux à la variable locale
isActive ; ensuite, la méthode runActive devrait se terminer.

Composites Fractive implante la membrane d’un composite comme étant un objet
actif, par conséquent il contient une queue de requêtes unique et un seul fil d’exécution
de service. Les requêtes vers ses interfaces serveuses externes (y compris les requêtes
de contrôle) et depuis ses interfaces clientes internes sont déposées dans sa queue de
requêtes. Une vue graphique de n’importe quel composite Fractive est présentée dans
la Figure iii.

Active
Object
Membrane

Sub−components

Elf Ebc

C Ep

S Ep

QC

RunActive

C

C Er

EbcElf

C IpC Ir

S Er

Figure iii: Un composite de Fractive

Le fil d’exécution de service sert les requêtes dans un ordre FIFO mais ne sert que
les requêtes de contrôle lorsque le composant est arrêté. Par conséquent, un composite
arrêté n’émettra pas d’appels fonctionnels sur ses interfaces clientes, même si ses sous-
composants sont actifs et envoient des requêtes sur ses interfaces internes. Servir une
requête fonctionnelle sur une interface serveuse interne signifie transférer l’appel vers
l’interface cliente externe correspondante du composite. Servir une requête fonctionnelle
sur une interface serveuse externe consiste à transférer l’appel vers l’interface interne
cliente correspondante du composite.

3.3 Modèles de Comportement

Le coeur de notre travail consiste en la synthèse d’un modèle comportemental de
chaque composant, sous la forme d’un ensemble de LTSs qui utilisent notre formal-
isme paramétré. Dans [21] nous avons montré comment construire le comportement
des activités ProActive ; cela correspond exactement à la partie fonctionnelle du com-
portement de composants primitifs de Fractive.

Étant donné le comportement fonctionnel d’un composant primitif, ou d’un sous-
composant d’un composite, nous extrayons de sa description architecturale les informa-
tions requises pour générer les LTSs qui encodent ses fonctionnalités de contrôle (cycle
de vie et attachement). La sémantique d’un composant est alors calculée comme le

xxviii

produit synchrone de toutes ses parties, et est nommé l’automate contrôleur du com-
posant.

La construction est faite depuis le bas et vers le haut de la hiérarchie. A chaque
niveau, c’est à dire pour chaque composite, une phase de déploiement est appliquée. Le
déploiement est une séquence d’opérations de contrôle, exprimé par un automate, qui
se termine par une action de réussie

√
. Un déploiement réussi est vérifié par l’analyse

d’accessibilité de l’action
√

sur l’automate obtenu par le produit de synchronisation du
contrôleur de composant et de ses déploiements.

Nous définissons l’automate statique d’un composant comme étant le produit syn-
chronisé de l’automate contrôleur avec l’automate de déploiement, en cachant les ac-
tions de contrôle, en oubliant toute autre reconfiguration, et réduit par équivalence
faible (weak bisimulation). Lorsque l’on n’est pas intéressé par les reconfigurations,
l’automate statique devient le LTS encodant le comportement de ce sous-composant au
niveau suivant de la hiérarchie.

La figure iv montre la structure générique du contrôleur pour un composant Fractive
à n’importe quel niveau de la hiérarchie.

errors & visibles

?start/stop

Interceptor
!start/stop

methods M(~x)
(visible ∨ τ)

methods M(~x)
(visible ∨ τ)

(1) !bind/unbind(I RInp, SubCk.E PIscnp)

(3) !bind/unbind(SubCk.E RIscnr, I PInr)

(2) !bind/unbind(SubCk.E RIscnr, SubCj.I PIscnr), k 6= j

SubC
k

E1

M(~x)
M(~x)

?bind/unbind(I RInp, SubCk.E PIscnp)
?bind/unbind(E RInr, Iext) ∨

(1)

(3)

(2)

E PIscnp

I RInp

M(~x) M(~x)

I PInr

E PInp

E RInr

!bind/unbind(E RInr, Iext)

E2

M(~x)
M(~x)

E RIscnr

B

Figure iv: Modèle de comportement de composants

Dans la figure, le comportement des sous-composants (c’est à dire leur LTSs sta-
tiques) est représenté par la bôıte appelée SubCk. Pour chaque interface fonctionnelle
définie dans la description ADL du composant, une bôıte encodant le comportement de
ses vues internes (I PI et I RI) et externes (E PI et E RI) est incorporée. Le traite-
ment d’un appel de méthode dans Fractive est encodé dans la bôıte appelée Interceptor
que nous détaillerons plus tard. Les pointillés dans les bôıtes indiquent une relation de
causalité induite par le flot des données au travers de la bôıte.

Le comportement des interfaces inclut les aspects fonctionnels (appel de méthodes
M(−→x)) et non-fonctionnels (contrôle), et la détection des erreurs (E1 et E2) comme

3. COMPOSANTS HIÉRARCHIQUES DISTRIBUÉS xxix

bound(C[i].IS[ns])

I RInp

EC[i].IS[ns].M(~x)

?unbind(C[i].IS[ns])?bind(C[i].IS[ns])

?bind(C[i].IS[ns]) ?unbind(C[i].IS[ns])

unbound bound(C[i].IS[ns])

?bind(C[i].IS[ns])
→ C[i].IS[ns]

unbound

M(~x)

?unbind(C[i].IS[ns])
C[i].IS[ns]

Figure v: Détail de l’interface interne d’une bôıte

l’usage d’une interface non liée. Ces erreurs devient visibles dans les prochaines niveaux
de la hiérarchie. Par exemple dans la figure v nous montrons le détail de I RInp qui
inclut la création d’une erreur lorsque une méthode est appelée sur une interface non
attachée.

Notez que nous avons choisi de mettre les automates des interfaces extérieures dans
le prochain niveau de la hiérarchie. Çela nous permet de calculer l’automate contrôleur
d’un composant avant même de connâıtre son environnement. Ainsi, toutes les pro-
priétés qui ne concernent pas les interfaces extérieures peuvent être vérifiées d’une
manière complètement oppositionnelles.

Modéliser les Primitives

La figure vi montre le principe de communication asynchrone être deux objets actifs.

Body
reQuest

M,so,args
Serve

M,co,fut,so,args,modereQuest
M,co,fut,so,args

Proxy
M,co,fut,so,val

Response

M,fut,so,valUse

Queue

Client role

Queue

Server Role

Body

Proxy
RunActive M()s

Figure vi: Communication entre deux activités

Dans le modèle (figure vi), un appel distant vers une activité traverse un subrogé
(proxy), qui crée localement un objet futur, pendant que l’appel va vers la queue distante
des appels. Les arguments de l’appel incluent une référence vers le futur avec une copie
profonde des arguments de la méthode parce que il n’y a pas de partage de donnés entre
activités distantes. Plus tard, l’appel peut éventuellement être servi et la valeur de son
résultat sera envoyée pour remplacer la référence future.

Pour construire le modèle d’un composant primitif (figure vii) nous ajoutons au
modèle d’un objet actif deux bôıtes additionnelles : LF et NewServe (qui correspon-
dent à l’Interceptor dans la figure iv.

xxx

Body
LF

Queue

M,fut,args
!Reponse

M,fut2,args
?Reponse

M,fut2,args
!Request

M or NF,fut,args
?Request

?Serve
start/stop

?Serve
bind/unbind, args

(1) !Serve*
M,fut,args

NF,args
(2) !ServeFirst

NF,args
(3) !ServeFirstNF

Proxy!start
!return

!stop

!started

!stopped

started

!bind/unbind,args

! start/stop

NewServe

! bind/unbind (args)

Figure vii: Modèle de comportement d’un composant primitif de Fractive

La bôıte NewServe implante le traitement des appels de contrôle. L’action “start”
déclenche la méthode RunActive de body. L’action “stop” déclenche la synchroni-
sation “!stop” avec body (Fig.vii). Cette synchronisation doit finalement produire la
terminaison de la méthode RunActive (!return synchronisation). Dans l’implantation
de Fractive, cette terminaison est faite par l’affectation de la valeur faux à la variable
isActive, qui doit causer la terminaison de la méthode RunActive. Seulement quand
la méthode a terminé le composant est considéré comme arrêté.

La bôıte Queue peut servir trois actions : (1) servir le premiér appel fonctionnel
qui correspond à la primitive Serve de l’API ProActive utilisée dans le code de body,
(2) servir une méthode de contrôle seulement s’il est en tête de la queue, et (3) servir
seulement les méthodes de contrôle dans la queue en ordre FIFO, en ignorant les appels
fonctionnels.

Modeler les Composites

La membrane d’un composant Fractive est elle-même un objet actif. Quand elle est
démarré, elle sert les méthodes fonctionnelles et non-fonctionnelles en ordre FIFO, en
réexpédiant les méthodes entre des interfaces intérieures et extérieures. Quand elle est
stoppée, elle ne sert que des méthodes de contrôle.

L’objet actif d’une membrane est construit à partir de la description du composite
(donné par l’ADL). Cette membrane correspond à la bôıte Interceptor de la figure iv.
Notez que les références futures (la bôıte proxy dans la figure viii) sont mises à jour
en suivant une châıne du composant primitif qui sert la méthode jusqu’au composant
primitif qui a fait l’appel. Comme les appels de méthodes incluent une référence au
futur, la mise à jour de futurs peuvent être adressés directement à l’appelant juste avant
dans la châıne. Par conséquent, comme dans l’implantation, la mise à jour du futur
n’est pas influencé par des actions de re-attachement ou par l’état du cycle de vie du
composant.

3. COMPOSANTS HIÉRARCHIQUES DISTRIBUÉS xxxi

Queue

LF

?Serve
start/stop

?Serve
M,fut,args

?Serve
bind/unbind, args

!ServeFirstNF
NF,args

!ServeFirst
M or NF,fut,args

!Request
M,fut2,args

?Response
M,fut2,args

!Response
M,fut,args

?Response
M,fut2,args

!Request
M,fut2,args

!Response
M,fut,args

?Request
M or NF,fut,args

ProxyBody

!bind/unbind,args

Composite

! start/stop

RunActive

!fut.call(M,args)
! bind/unbind (args)

Membrane (Interceptors + LF)!started

!start/stop

!stopped

fut

?call(M,args)

Figure viii: Modèle de comportement de la membrane de un composite de Fractive

Générer le comportement global

La prochaine étape est de générer le comportement global du composant. Cette con-
struction comportementale est compositionnelle dans le sens où chaque niveau de la
hiérarchie (chaque composite) peut être étudié indépendamment.

Similaire à nos travaux précèdents [22, 21], avant de générer le produit synchronisé,
nous construisons des abstractions finies de nos modèles avec des abstractions finies
des valeurs des paramètres. Quand l’outil (model-checker) le permet, l’instanciation
est faite à la volé pendant la vérification. Cette abstraction des données est interprété
comme une partition des domaines de donnés et induit une interprétation abstraite du
LTS paramétré. L’instanciation sera aussi choisie à partir des valeurs qui sont présentes
dans la propriété à vérifier.

3.4 Le point de vue de l’utilisateur

Les modèles pour les aspects non-fonctionnels décrits ici sont construits automatique-
ment. L’utilisateur n’a qu’à fournir l’architecture sous forme d’ADL Fractal et le com-
portement fonctionnel des composants primitifs.

Étude d’un exemple

Nous revenons à l’exemple de la figure ii. Celui-ci montre, sous forme de système de
composants hiérarchiques, le problème classique d’un buffer borné avec un producteur
et un consommateur. Le consommateur consomme un élément à la fois alors que le
producteur peut remplir le buffer avec un nombre arbitraire d’éléments en une seule
action. De plus, le buffer émet une alarme sur son interface Ialarm, quand il est plein.

L’utilisateur peut décrire la topologie du système en utilisant l’ADL (langage de
définition d’architecture) Fractal. Fractive utilise la syntaxe par défaut de cette ADL
basée sur XML. Le fichier XML décrivant System est montré sur la figure ix.

La description XML de la figure ix spécifie que le système est composé du composite
BufferSystem (ligne 6) lui-même décrit dans un fichier séparé

xxxii

System.fractal
1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <!DOCTYPE >

3

4 <definition name="components.System">

5

6 <component name="BufferSystem"

7 definition="components.BufferSystem(3)">

8 <interface name="alarm" role="client"

9 signature="components.AlarmInterface"/>

10 </component>

11

12 <component name="Alarm">

13 <interface name="alarm" role="server"

14 signature="components.AlarmInterface"/>

15 <content class="components.Alarm">

16 <behaviour file="AlarmBehav"

17 format="FC2Param"/>

18 </content>

19 </component>

20

21 <binding client="BufferSystem.alarm"

22 server="Alarm.alarm"/>

23 </definition>

Figure ix: System ADL

components/BufferSystem.fractal et du primitif Alarm dont l’implantation est la
classe Java components.Alarm (ligne 15). BufferSystem reçoit comme paramètre de
construction la taille maximale du buffer (3 dans notre exemple, ligne 7) et requiert
une interface nommée alarm de type components.AlarmInterface (lignes 8,9). Alarm
fournit une interface alarm de type components.AlarmInterface (lignes 13,14). Le tag
behaviour (ligne 16) pointe vers un fichier qui contient la description du comportement
de alarm sous forme d’un fichier FC2Parameterized.

Enfin, aux lignes 21 et 22 l’ADL définit que, lors du déploiement, l’interface alarm

de BufferSystem doit être branchée à l’interface alarm de Alarm.

3.5 Propriétés

Les sections précédentes étaient focalisées sur la construction de modèles corrects, et non
pas sur l’expression de propriétés. Cette section présente des propriétés temporelles exp-
rimant des comportements désirés de l’exemple, afin d’illustrer la capacité de vérification
de notre approche.

Déploiement

Dans la section 3.3 nous avons défini l’automate de déploiement, qui décrit les étapes
de contrôle nécessaires pour mettre en place les éléments et branchements du système,
et démarrer tous les composants.

En Fractive, les appels de méthodes sont asynchrones, et il peut y avoir un délai entre
l’appel d’une méthode de contrôle et son traitement. Donc, la vérification de l’exécution
d’une opération de contrôle doit être basée sur l’observation de son application au
composant, plutôt que sur l’arrivée de la requête.

3. COMPOSANTS HIÉRARCHIQUES DISTRIBUÉS xxxiii

• Les actions Sig(bind(intf1,intf2)) et Sig(unbind(intf1,intf2)) représen-
tent le fait qu’un branchement entre les interfaces intf1 et intf2 est effectif.
Il correspond par exemple aux synchronisations !bind/unbind(E RInr, Iext) ou
!bind/unbind(I RInp, SubCk.E PIscnp) de la figure iv.

• Les actions Sig(start(name)) et Sig(stop(name)) représentent le fait que le
composant name est effectivement démarré/arrêté. Il correspond à la synchronisa-
tion !start/stop de la figure iv.

Une des propriétés intéressantes est que le démarrage hiérarchique a effectivement
lieu durant le déploiement; c’est à dire que le composant et tous ses sous-composants
sont démarrés à un certain moment. Cette propriété peut être exprimée comme
l’atteignabilité (inévitable) de Sig(start(name)) dans l’automate statique de System,
pour toutes les exécutions possibles, où name = {System, BufferSystem, Alarm,

Buffer, Consumer, Producer}. Nous laissons les actions Sig(start(name)) observ-
ables dans l’automate statique et nous exprimons cette propriété d’atteignabilité comme
la formule de µ-calcul régulier sans alternance [129] ci-dessous, vérifiée par notre ex-
emple :

µ X. (< true > true ∧ [¬ Sig(start(System))] X) ∧
µ X. (< true > true ∧ [¬ Sig(start(BufferSystem))] X) ∧
µ X. (< true > true ∧ [¬ Sig(start(Alarm))] X) ∧
µ X. (< true > true ∧ [¬ Sig(start(Buffer))] X) ∧
µ X. (< true > true ∧ [¬ Sig(start(Consumer))] X) ∧

µ X. (< true > true ∧ [¬ Sig(start(Producer))] X) (1)

Propriétés purement fonctionnelles

La plupart des propriétés intéressantes concernent le comportement du système après
son déploiement, au moins lorsqu’il n’y a pas de reconfiguration. Sur l’exemple, nous
voudrions prouver que toute demande d’un élément dans la queue est finalement servie,
c’est à dire que l’élément est finalement obtenu. Si l’action consistant à demander un
élément est étiquetée get req() et la réponse à cette requête get rep(), alors cette
propriété d’inévitabilité est exprimée sous la forme de la formule µ-calcul régulier ci-
dessous, également vérifiée par l’automate statique de l’exemple :

[true*.get req()] µ X. (< true > true ∧ [¬ get rep()] X) (3)

Propriétés fonctionnelles en présence de reconfigurations

L’approche décrite ici permet de vérifier des propriétés, non seulement après un dé-
ploiement correct, mais aussi après et pendant les reconfigurations. Par exemple, la
propriété (3) devient fausse si nous arrêtons le producteur car au bout d’un certain
temps, le buffer sera vide, et le consommateur sera bloqué en attente d’un élément.
Cependant, si le producteur est redémarré, le consommateur recevra, finalement, un
élément et la propriété est à nouveau vérifiée. Autrement dit, nous pouvons vérifier que,
si le consommateur demande un élément, et le producteur est stoppé, si en définitive le
producteur est démarré à nouveau, le consommateur obtiendra l’élément demandé.

Pour prouver ce genre de propriétés, l’automate statique n’est pas suffisant, nous
avons besoin d’un modèle comportemental contenant l’opération de reconfiguration de-
mandée. Nous ajoutons au composant un contrôleur de reconfiguration (figure x) : son

xxxiv

état de départ correspond à la phase de déploiement, et l’état suivant correspond au
restant de la vie du composant, où les opérations de reconfiguration requises sont ac-
tivées mais ne sont plus synchronisées avec le déploiement. Ce changement d’état est
déclenché par la terminaison réussie du déploiement (

√
).

√

C
′

tCt|D

Figure x: Synchronisation product supporting further reconfigurations

En ce qui concerne la propriété énoncée ci-dessus, les reconfigurations
?stop(Producer) et ?start(Producer) sont laissées visibles, et cette propriété est
exprimée par la formule en µ-calcul, qui est aussi vérifiée dans notre exemple :

(* If a request from the consumer is done before reconfiguration *)

[(¬ (?stop(Producer) ∨ ?start(Producer))*.get req()] (

(* a response is given before stopping the producer *)

µ X . (

< ¬ ?stop(Producer) > true ∧ [¬ (get rep() ∨ ?stop(Producer))] X)

∨
(* or given after restart the producer and without stopping it again *)

[true* . ?start(Producer)] µ X . (

<¬ ?stop(Producer)> true ∧ [¬ (get rep() ∨ ?stop(Producer))] X)) (4)

Propriétés de comportement asynchrone

Nous nous intéressons maintenant à une propriété spécifique à l’aspect asynchrone du
modèle de composants. Le mécanisme de communication en Fractive permet à tout fu-
tur, une fois obtenu, d’être mis à jour par la valeur associée, à condition que la méthode
correspondante soit servie et ait terminé correctement; les opérations de branchement,
débranchement ou d’arrêt ne permettent pas d’empêcher cela. Par exemple, si le con-
sommateur est débranché après une requête, il obtient, de toutes façons la réponse,
même si le lien est alors débranché ou le composant arrêté. En utilisant l’approche pour
la reconfiguration présentée ci-dessus : en activant ?unbind(buffer,Buffer.get) et
?stop(Consumer), la propriété peut être exprimée comme suit. Cette propriété est
vérifiée dans le cadre de l’exemple :

[true*.get req()] µ X. (< true > true ∧ [¬ get rep()] X) (5)

4 Conclusions et Travaux Futurs

Cette thèse a traité de la vérification des propriétés comportementales des systèmes
répartis à base de composants. Une importance particulière a été accordée à l’applica-
bilité de la vérification, à l’aide d’outils automatiques, à des systèmes réels.

Nous avons tout d’abord mis en avant la nécessité de la fiabilité des systèmes informa-
tiques, et introduit l’utilisation de méthodes formelles comme une puissante technique
pour atteindre cet objectif. Nous avons ensuite établi les difficultés particulières as-
sociées à la vérification des systèmes répartis à l’aide de méthodes formelles, et nous
avons dressé un état de l’art de ce domaine de recherche.

4. CONCLUSIONS ET TRAVAUX FUTURS xxxv

Nous avons discuté les raisons pour lesquelles les formalismes et langages de descrip-
tions existants ne sont pas adaptés pour les systèmes que nous envisageons et pour nos
objectifs. Suite à cette discussion, nous avons proposé une nouvelle approche pour la
modélisation des systèmes répartis. Nous avons validé notre approche par une étude
de cas, et l’avons appliquée à la modélisation automatique et à l’analyse des systèmes
répartis à base de composants.

Les contributions principales de nos travaux incluent :

• Une nouvelle approche pour la modélisation du comportement des systèmes répartis
à base de composants. Cette approche combine le meilleur de deux approches
existantes : les réseaux d’automates communiquants [16, 15], et les graphes sym-
boliques avec affectations [111, 93]. Nous avons nommé les modèles comporte-
mentaux de notre approche ”réseaux paramétrés d’automates communiquants”.
Nos modèles paramétrés jouent trois rôles; ils décrivent : les systèmes infinis de
manière naturelle et finie (en considérant des domaines de variables non- bornés),
une famille de systèmes (en considérant divers domaines de variables), et les grands
systèmes de manière compacte (en considérant des grands domaines de variables).
Dans [21], nous avons montré que ces modèles sont particulièrement adaptés
comme langage cible pour les outils d’analyse statique.

• La définition de FC2Parameterized, une syntaxe concrète pour l’écriture des spéci-
fications de systèmes à l’aide de nos modèles paramétrés. Le format FC2Parame-
terized a été développé comme une extension du format FC2 [36, 118] incluant
des paramètres. Nous avons aussi introduit une notation graphique pour un sous-
ensemble du format FC2Parameterized.

• Une étude de cas de notre approche sur un système réparti réel : le système chilien
de factures électroniques [65] (actuellement opérationnel).

• L’implantation de FC2Instantiate, un outil pour obtenir (étant donnés les do-
maines de variables) des systèmes finis non-paramétrés à partir de réseaux paramé-
tré d’automates communiquants. Cet outil a également été appliqué profitable-
ment pour : comparer différentes instanciations, instancier à partir de critères
”per-formula”, ainsi que pour la recherche de meilleures minimisations. En par-
ticulier, les capacités de débogage de l’outil ont aidé aussi bien pour la détection
d’erreurs au plus tôt que pour l’analyse de ”backtrack”.

• L’utilisation de réseaux paramétrés d’automates communiquants pour les spécifica-
tions comportementales de composants hiérarchiques. Partant du comportement
de composants (primitifs) basiques, nous avons développé un mécanisme perme-
ttant l’incorporation du comportement non-fonctionnel au sein d’un contrôleur
construit à partir de la description d’un composant. La sémantique d’un compos-
ite est calculée comme le produit des LTSs de ses sous-composants et du contrôleur
du composite.

• L’utilisation du mécanisme décrit précédemment pour la modélisation de systèmes
basés sur Fractal [43]. Fractive est la réalisation d’un système de composants
répartis avec le intergiciel ProActive [28, 18, 47] suivant le modèle de composants

xxxvi

Fractal. Notre mécanisme supporte l’incorporation automatique des caractéristi-
ques de Fractive, telles que les queues de requêtes, les subrogés (proxies) de futurs,
et les stratégies de service d’appels de méthodes.

• La base pour un outil actuellement en développement, nommé ADL2NET, pour la
lecture des descriptions d’un système, données sous la forme d’un ensemble d’ADL
Fractal [43], ainsi que pour la génération de modèles comportementaux à l’aide de
notre mécanisme.

• L’implantation de FC2EXP, un outil et divers scripts, pour l’incorporation de nos
formats au sein des bôıtes à outils FC2Tools [36] et CADP [81].

• Une classification temporelle des propriétés à vérifier sur les systèmes à base de
composants. La plupart de ces propriétés, telles que le déploiement correct et
la détection d’erreurs, peuvent être appliquées de manière systématique à tout
système à base de composants.

• L’illustration de la vérification de propriétés à l’aide de trois formalismes différents
pour les exprimer : les automates abstraits [36, 10], les formules ACTL [60],
et les formules régulières µ-calcul [129]. L’illustration inclue des propriétés de
chaque classification temporelle et considère les aspects asynchrones des com-
posants répartis.

Par ailleurs, lorsque cela s’est avéré nécessaire, nous avons proposé et analysé divers
mécanismes pour éviter autant que possible le fameux problème d’explosion d’états dans
la construction du comportement d’un système.

Finalement, diverses approches ont été développées pour couvrir la bonne composi-
tion de composants en considérant leurs aspects fonctionnels. Un des avantages prin-
cipaux de l’utilisation de composants est la séparation des préoccupations du point de
vue de l’utilisateur. Cependant, lors de l’application de la vérification comportementale,
il est toujours nécessaire de prendre en compte les interdépendances entre les aspects
fonctionnels et non-fonctionnels, du moins pour les modèles de composants existants.
La principale originalité de nos travaux est de considérer le déploiement et les recon-
figurations comme faisant partie du comportement du système, et ainsi de vérifier le
comportement de tout un système à base de composants.

Cette thèse représente un pas vers la réalisation d’une bôıte à outils de vérification
comportementale concrètement utilisable. Cette bôıte à outils est capable de con-
struire des modèles de manière automatique, et fourni du retour sur des propriétés
génériques et la détection d’erreurs. Les modèles ainsi générés permettent la définition
et la vérification de nouvelles propriétés, qu’il est alors possible de comparer à une
spécification.

4.1 Travaux futures

À court terme nous sommes dédiés à développer les outils, puis les utiliser avec des
cas d’étude plus grands, qui sûrement nous donneront des retours pour améliorer notre
approche.

4. CONCLUSIONS ET TRAVAUX FUTURS xxxvii

À moyen et long terme, quelques directions de recherche qui peuvent être explorées
sont :

Relation de pré-ordre

Une des questions qu’on laissé ouverte dans ce travail est de répondre à la question si un
composant est fidèle avec sa spécification. Répondre à cette question nous permettra,
sans devoir générer à nouveau le modèle du composant, déterminer si un composant
peut remplacer un autre d’un manière sûr.

Il y quelques méthodes pour répondre a cette question; des équivalences par bisim-
ulation permettraient de garantir que les propriétés de comportement sont préservées,
mais sont des relations trop fortes dans le sens que plusieurs composants qui peuvent
remplacer des autres d’une manière sûre dans le système seront refusés.

Une solution peut être l’utilisation de la relation de compliance définit dans Sofa [146].
Mais dans Sofa les comportements sont exprimés comme des expressions régulières, et la
relation de compliance est basée sur l’inclusion des traces. Il n’est pas clair d’appliquer
une approche similaire à nos sémantiques basées sur les équivalences de bisimulation.

De toute façon nous pensons que les idées qui sont inspiré la relation compliance
dans Sofa, basées sur des obligations qu’un processus doit remplir, sont bien énoncées
et nous voulons explorer leur applicabilité à notre approche. Cette exploration nous
doit conduire vers une relation de pré-ordre, qui permettra à l’implantation de faire
quelques choix entre les possibilités laissées ouvertes par la spécification, mais aussi
compatible avec la composition en utilisant les réseaux de synchronisation.

Exprimer les propriétés

Dans le manuscrit complet, nous avons montré trois façons d’exprimer des propriétés :
les automates abstraits [36, 10], ACTL [60], et le µ-calcul régulièr [129]. Les automates
abstraits peuvent être vus comme une façon plus facile d’exprimer propriétés ; d’autre
part, le µ-calcul régulière est le formalisme le plus expressif. ACTL peut se placer entre
les deux.

Les trois façons demandent un utilisateur assez qualifié et elles sont loin de ne pas être
sujet à l’erreur. Un travail intéressant pour approcher la distance entre la spécification
des propriétés et les utilisateurs inexperts a été fait par Dwyer et al. [67]. Ils ont défini,
en classifiant dans un espace temporel, plusieurs patrons (patterns) qui permettent
d’exprimer la plus part des propriétés avec une syntaxe proche de langage naturelle.

Nous voulons proposer des extensions aux patrons de Dwyer pour exprimer des
propriétés spécifiques aux composants. Par exemple, nous pouvons définir le patron
AfterDeployment pour exprimer l’espace temporel après une réussite du déploiement.
D’autres patrons peuvent êtres NoErrors, ControlActions et FutureUpdate, tous ex-
priment des ensembles spécifiques d’actions.

Néanmoins, avant de définir ces patrons d’une manière précise, nous avons besoin de
plus d’expérience et des résultats de cas réels d’études avec des systèmes distribués.

xxxviii

Nouvelles caractéristiques de Fractive

Fractive est développé en continu, avec des nouvelles caractéristiques comme les derniè-
res : interfaces collectives avec des communications à tous (broadcast) ou à certains
(multicast) composants; et aussi il y a toujours des discussions ouvertes comme : est-ce
qu’un composant doit préserver sa queue des appels quand il est remplacé, ou même à
quel moment peut-il être remplacé.

Notre approche doit évoluer avec les nouvelles caractéristiques de Fractive.

Part II

Thesis

1

Chapter 1

Introduction

I am pretty sure that many people, including the readers of this thesis, would swear at
the screen and mumble the same advocated by Richard Sharpe in [150] when Windows
crash:

If they built roads, bridges, cars, planes and ships like this software, the human
race would be doomed

Yet software is now at the heart of many of these products. Why are Airbus planes,
with their fly-by-wire technology, not falling out of the sky as regularly as Windows
crashes? Why do not the unmanned Paris Metro trains crash into each other every
day?

Part of the reason is that such safety-critical software is developed using formal
methods. Aircraft designers use mathematics to model the complex systems of lift and
thrust needed to keep an Airbus in the sky. Bridge designers use mathematics to assess
the stresses on the materials from which they can build bridges.

Formal methods are the mathematical foundation for software. A method is formal
if it has a sound mathematical basis, typically given by a formal specification language.
This basis provides means of precisely defining notions like consistency and complete-
ness and, more relevant, specification, implementation and correctness. It provides the
means of proving that a specification is realisable, proving that a system has been im-
plemented correctly, and proving properties of a system without necessarily running it
to determinate its behaviour.

It is the use of mathematics to specify, model, develop and reason about computing
systems that is both its strength and its weakness. One weakness is because there are
far too few programmers with a background in mathematics who are comfortable with
the notation at the heart of formal methods and they are not enough to provide the
code needed to exploit the success delivered by Moore’s Law in hardware.

Moreover, to formally verify a system, i.e. using a mathematical-based approach, is a
difficult task. To prove that a system holds a certain property is usually an undecidable
problem. This happens because systems are designed to execute infinite cycles, and
manipulate uncountable or infinite data sets (e.g. real numbers, non bounded integers or
time). The system needs, using complex abstraction techniques [57], to be approximated
to finite discrete models, where efficient algorithms of verification exists [68].

3

4 CHAPTER 1. INTRODUCTION

This is what this thesis is about. We want to provide methods and tools which enable
people, not necessarily experts in formal methods, to verify the correctness of systems
in a simple and straightforward way, hiding away as much as possible the complexity.

Formal methods are rich in literature and considerably varies depending on the
system’s target or even the development’s phase. Pretend to develop an approach
suitable for all of them would be to build a castle in the air. We focus, as the thesis
title says, on systems built from distributed components.

Many works have been pretty successful in applying formal methods in various do-
mains, including circuit design, embedded and synchronous software, or some classes of
real-time systems. However, on distributed systems, the hard problems stem from par-
allel processing and asynchronous communication may lead to undesirable behaviours
(e.g. deadlocks, starvation) on addition to increase the verification task complexity.

The author’s thesis belongs to the project OASIS [3] at INRIA Sophia-Antipolis
which assigns several resources in the development of a middle-ware for building dis-
tributed applications, named ProActive [28, 46]. Within this framework, we develop
methods and tools for the formal analysis and verification of systems built using
ProActive.

In addition, ProActive recently features components programing [29]. Components
have shown as a gaining programing paradigm which considerable helps the imple-
mentation and maintenance of every day growing complex software systems. Indeed,
components programming have shown as a solution to deal with the complexity in the
design and coding of such systems. The components implementation made by the team
OASIS features the same distributed nature of ProActive.

Hence the focus and motivation of this work. Our particular target are distributed
components built using ProActive, but as we show along this thesis, our ideas can be
applied to other kinds of distributed applications and component systems as well.

1.1 The need for reliable systems

On June 19th 2003, the prestigious magazine “The Economist” published an article
about software development titled “Building a better bug-trap” [9]. It begins by
stating:

People who write software are human first and programmers only second - in
short, they make mistakes, lots of them. Can software help them write better
software?

The article continues

Our civilisation runs on software, Bjarne Stroustrup, a programming guru,
once observed. Software is everywhere, not just in computers but in house-
hold appliances, cars, aeroplanes, lifts, telephones, toys and countless other
pieces of machinery. In a society dependent on software, the consequences
of programming errors (“bugs”) are becoming increasingly significant. Bugs
can make a rocket crash, a telephone network collapse or an air-traffic-control
system stop working. A study published in 2002 [151] by America’s National

1.1. THE NEED FOR RELIABLE SYSTEMS 5

Institute of Standards and Technology (NIST) estimated that software bugs
are so common that their cost to the American economy alone is $60 billion
a year or about 0.6% of gross domestic product...

There are many cases [101] where, besides political impact, errors in system devel-
opment and design has lead not only to huge financial consequences, but also to lost of
human lives. Among the most known:

• On June 4, 1996 an unmanned Ariane 5 rocket launched by the European Space
Agency exploded just forty seconds after its lift-off from Kourou, French Guiana.
The rocket was on its first voyage, after a decade of development costing $7 billion.
The destroyed rocket and its cargo were valued at $500 million. A board of enquiry
investigated the causes of the explosion and in two weeks issued a report [48]. It
turned out that the cause of the failure was a software error in the inertial reference
system. Specifically a 64 bit floating point number relating to the horizontal
velocity of the rocket with respect to the platform was converted to a 16 bit signed
integer. The number was larger than 32,767, the largest integer storeable in a 16
bit signed integer, and thus the conversion failed.

• The bug in Intel’s Pentium-II floating-point division unit [71] in the second semester
of 1994 caused a loss of about US$475 million to replace faulty processors [7], and
severely damaged Intel’s reputation as a reliable chip manufacture.

• On February 25, 1991, during the Gulf War, an American Patriot Missile battery
in Dharan, Saudi Arabia, failed to track and intercept an incoming Iraqi Scud
missile. The Scud struck an American Army barracks, killing 28 soldiers and
injuring around 100 other people. A report of the General Accounting office [34]
reported on the cause of the failure. It turned out that the cause was an inaccurate
calculation of the time since boot due to computer arithmetic errors. The error
was about 0.34 seconds, a Scud travels at about 1,676 meters per second, and so
it travels more than half a kilometre in this time. This was far enough that the
incoming Scud was outside the ”range gate” that the Patriot tracked.

• A software flaw in the control part of the radiation therapy machine Therac-25 [110]
caused the death of 6 cancer patients and others were seriously injured between
1985 and 1987 as they were exposed to an overdose of radiation.

• The automated system of the Denver’s new international airport [59] was supposed
to improve baggage handling by using a computer tracking system to direct bag-
gage contained in unmanned carts that run on a track. Originally scheduled for
completion in March 1994, the unfinished $234 million project helped to postpone
the opening of the airport until February 1995. The delay reportedly cost the
city roughly $1 million per day in operations costs and interest on bond issues,
more than the direct cost of the project. Significant mechanical and software prob-
lems plagued the automated baggage handling system. In system tests, bags were
misloaded, were misrouted, or fell out of telecarts, causing the system to jam.

The article from The Economist continues:

6 CHAPTER 1. INTRODUCTION

To make matters worse, as software-based systems become more pervasive and
interconnected, their behaviour becomes more complex. Tracking down bugs
the old-fashioned way: writing a piece of code, running it on a computer, see-
ing if it does what you want, then fixing any problems that arise; becomes less
and less effective. “People have hit a wall,” says Blake Stone, chief scientist
at Borland, a company that makes software-development tools. Programmers
spend far longer fixing bugs in existing code than they do writing new code.
According to NIST, 80% of the software-development costs of a typical project
are spent on identifying and fixing defects.

Hence the growing interest in software tools that can analyse code as it is being
written, and automate the testing and quality-assurance procedures. The goal,
says Amitabh Srivastava, a distinguished engineer at Microsoft Research, is
to achieve predictable quality in software-making, just as in carmaking. “The
more you automate the process, the more reliable it is,” he says. In short, use
software to make software better.

As Clarke stated in [52], hardware and software systems will inevitably grow in scale
and functionality. Because of this increase in complexity, the likelihood of subtle errors
is much greater. Moreover, as we mention in real cases above, some of these errors
may cause catastrophic loss of money, time, or even human life. Then a major goal of
software engineering is to enable developers to construct systems that operate reliably
despite this complexity.

One way of achieving this goal is by using Formal Methods, which are mathematically
based languages, techniques, and tools for specifying and verifying such systems. Use
of formal methods does not a priori guarantee correctness. However, they can greatly
increase our understanding of a system by revealing inconsistencies, ambiguities, and
incompletenesses that might otherwise go undetected.

1.2 Formal Methods

An excellent introduction and overview about formal methods can be found in [155].
Formal methods provide frameworks in which people can specify, develop, and verify
systems in a systematic, rather than ad hoc, manner.

Robert Floyd, in his seminal 1967 paper, ”Assigning Meanings to Programs” [75]
opened the field of program verification and formal methods. His basic idea was to at-
tach so-called ”tags” in the form of logical assertions to individual program statements
or branches that would define the effects of the program based on a formal semantic
definition of the programming language. Many researchers in formal methods of com-
puting worldwide adopted this method. One of the most important influences was on
C. A. R. Hoare, who in 1969, starting from Floyd’s work, developed his calculus of pre
and postcondition semantics for computer programs [95].

As we mention before, a formal method uses mathematics to specify, model, develop
and reason about computing systems. A formal method also addresses a number of
pragmatic considerations: who uses it, what it is used for, when it is used, and how

1.2. FORMAL METHODS 7

it is used. Most commonly, system designers use formal methods to specify a system’s
desired behavioural and structural properties.

Anyone involved in any stage of system development can make use of formal methods.
They can be used in the initial statement of a customer’s requirements, through system
design, implementation, testing, debugging, maintenance, verification, and evaluation.

Formal methods are used to reveal ambiguity, incompleteness, and inconsistency.
When used early in the system development process, they can reveal design flaws that
otherwise might be discovered only during costly testing and debugging phases. When
used later, they can help determine the correctness of a system implementation and the
equivalence of different implementations.

The particular characteristics which can be described by different formal methods
may vary considerably [20]. Roughly speaking, two brands of formal verification ap-
proaches can be distinguished: deductive and model-based methods.

With deductive methods, the correctness of systems is determined by properties in a
mathematical theory. The verification problem is expressed as a theorem that has the
form: system specification ⇒ desired property. Trying to establish this result is referred
to as theorem proving.

Model-based techniques are based on models describing the possible system behaviour
in a mathematical precise and unambiguous manner. The system models are accom-
panied with algorithms that systematically explore all states (all possibles system sce-
narios) of the system model. In this way, it can be shown that a given system truly
satisfies a certain property, referred to as model-checking.

Model Checking

Model checking is a technique that relies on building a finite model of a system and
checking that a desired property holds in that model. Two general approaches to
model checking are used today: by verifying if temporal logic formulas (expressing
the property) hold on the system or by comparing (using a pre-order relation) the
system with a specification for determining whether or not its behaviour conforms to
the specification.

In contrast to theorem proving, model checking is completely automatic and fast.
It also produces counterexamples, which usually represent subtle errors in design, and
thus can be used as a debugging aid.

Theorem proving

Theorem proving is a technique where both the system and its desired properties are
expressed as formulas in some mathematical logic. This logic is given by a formal
system, which defines a set of axioms and a set of inference rules. Theorem proving is
the process of finding a proof of a property from the axioms of the system. Steps in the
proof appeal to the axioms and rules, and possibly derived definitions and intermediate
lemmas.

In contrast to model checking, theorem proving can deal directly with infinite state
spaces. It relies on techniques like structural induction to prove over infinite domains.

8 CHAPTER 1. INTRODUCTION

Its main drawback is that the verification process is usually slow, error-prone, labour-
intensive to apply and requires a rather high degree of user experience.

Because of this drawback and since this work focuses on automatic and friendly tools
for verification, we rather rely on model-based techniques.

1.3 The myths of formal methods

Research in formal methods has led to the development of powerful software tools
that can be used for automating various verification steps. Investigations have shown
that formal verification procedures would have revealed the exposed defects in e.g.,
the Ariane 5 missile, Intel’s Pentium II processor and the Therac-25 therapy radiation
machine.

The application of formal methods has a long history. There is a significant take
up of formal methods in critical industries [94], however it has not been substantially
adopted by the software engineering community at large [35].

This situation is hardly surprising since formal methods technology is largely per-
ceived to consist of a collection of prototype notations and tools which are difficult to
use and do not scale up easily; there are many widely held misconceptions about the
use of formal techniques. Anthony Hall mention seven myths of formal methods [90],
we recall two of them:

1. Formal method can guarantee that software is perfect

Nothing can achieve perfection. Formal methods are not the panacea for system
reliability, but it can considerably improve it. They should be seen as comple-
mentary and powerful methods to other well establish verification techniques such
as debugging and testing. In particular for model-based approaches, we should
remember the fact that:

Any verification using model-based techniques is only as good as the model
of the system

Hence why this work is mainly concentrated in system modelling. Its first half is
concentrated in finding the most suitable format for modelling the system’s be-
haviours, while the second half profits from the component semantics and structure
for building models of such system as much automatic as possible.

2. Formal methods require highly trained mathematicians

It is real that it has been a lot of work on the formal specification of systems
which make formal methods easier to use (at least to some target systems), but
we disagree at some level with A. Hall. Depending on the formalism, on the target
system and on the properties being proved, the chosen formal method may require
strong mathematical basis. In fact, just to chose the most suitable formal method
approach for the target system would require at least a basic knowledge on the
field.

For the systems we want to address in this work, in addition to automation, we
want to hide away the complex notations, logics and algorithms for formal verifica-
tion behind friendly interfaces. In general we try to adapt established approaches

1.4. THE DISTRIBUTED SYSTEMS 9

of system specifications (such as Architecture Description Languages (ADL) as we
show in chapters 4 and 5) for the formal verification proposes.

1.4 The distributed systems

Model-checking has been shown as a powerful technique for verifying hardware, embed-
ded systems and sequential or concurrent memory shared systems. This technique has
several important advantages over mechanical theorem provers or proof checkers. The
most important being that the procedure is highly automatic. Typically, specifications
are expressed in a propositional temporal logic (such as CTL [68]) and the system is
modelled as a state-transition graph (named Kripke structure). The successful use of
model checking relies on efficient algorithms to check properties and a symbolic rep-
resentation of the state graph using ordered binary decision diagrams (OBDDs) [44]
which enables representation of realistic large systems.

However, when moving to distributed systems, i.e. communicating concurrent pro-
cesses, the state-based modelling is not well suited. In the absents of shared memory,
where the sates may be easily characterised by the state of the system’s variables, it is
difficult (if not impossible) to identify the state of the system, and therefore its mod-
elling. In addition, the concurrency introduces interleaving and non-determinism which
increase exponentially the size of the state-based model.

On the other hand, in communicating concurrent processes it is easier to distinguish
the actions that each of the processes may do at a given moment, including actions that
may represent communications between processes. Communicating actions should be
done at the same time (synchronised) in all the processes involved in the communica-
tion. The formalism for modelling processes where we distinguish the actions that can
be executed instead of its internal structure is known as Labelled Transition Systems
(LTSs).

Note that the LTS approach does not see the nature of the processes (such as their
state of variables) but rather observes what a process may execute. This view has lead,
starting from the seminal works of Milner on CCS [130] and Hoare on CSP [96], to a rich
family of algebras which enables reasoning about communicating concurrent processes
behaviour, known as Process Algebras.

We do use process algebras for modelling the behaviour of our systems. Being in
an algebraic framework enables us to profit from equivalence relations, modular design
and abstractions leading to smaller systems size while preserving their semantics. In
chapter 2 we take a deeper view on the main work on process algebras and their features.

Thanks to later work which have taken the best from both approaches (state-based
and process algebras), today we can profit in process algebras of symbolic representa-
tions using OBDDs [74] and model-checking using several temporal logics [125, 129, 127].

1.5 Components programming

Component programming has emerged as a programming methodology ensuring both
re-usability and composability. In general words, a component is a self contained en-

10 CHAPTER 1. INTRODUCTION

tity that interacts with its environment through well-defined interfaces. Besides these
interactions, a component does not reveal its internal structure.

Several component models have been proposed [145, 43, 64, 8] and some of them
are currently being used in the industry. All of them have common features, such as
encapsulation, and some of them have advanced features such as nested (hierarchical)
composition and distribution.

In hierarchical component frameworks like Fractal, different components can be as-
sembled together creating a new self contained component, which can be itself assembled
to other components in a upper level of the hierarchy. Hierarchical components hide,
at each level, the complexity of the sub-entities. The compositional aspect, together
with the separation between functional and non-functional aspects, help the implemen-
tation and maintenance of complex software systems. Among the most interesting of
those non-functional aspects are life-cycle and reconfiguration capabilities, allowing the
control of the execution of a component, but also its dynamic evolution.

The main goal of this thesis is to build a formal framework to ensure that those com-
positions are correct when deploying component systems. We focus on Fractive [29], an
implementation of the Fractal component model [43] using the middle-ware
ProActive [28].

1.6 Thesis structure, initial assumptions and goals

We have discussed in the previous sections the need for computer systems reliability
and we have introduced formal methods as a powerful technique to achieve this goal.
We have identified some reasons why formal methods are not widely applied on software
production and, at the same time, we have described some features that a solution must
have to go over them (e.g. automation and friendly-use). We have stated as well our
focus on distributed component systems and we have justified some initial decisions
about which would be the better formal method approach to such systems.

Our aim is to ensure that an application built from distributed components is safe, in
the sense that its parts fit together appropriately and behave together smoothly. Each
component must be adequate to its assigned role within the system, and the update or
replacement of a component should not cause deadlocks or failures to the system.

The usual notion of type compatibility of interfaces, in the spirit of OO method
typing, is not sufficient; it does not prevent assembled components from having non
compatible behaviours, that could lead to deadlocks, live-locks, or other kinds of safety
problems.

The challenge is to build a formal framework of methods and tools for ensuring not
only that compositions are correct when deploying those component system, but also
further dynamic changes or reconfigurations. This framework should be at the same
time formal enough to be used by the tools, and simple enough to be used by non-
specialists; the tools should be as much automatic as possible, hiding away their logical
and algorithmic complexity.

1.6. THESIS STRUCTURE, INITIAL ASSUMPTIONS AND GOALS 11

1.6.1 Thesis structure

This thesis is written to be as much self-contained as possible and it should be read
in order. The latter because many concepts and ideas strongly depend on previous
chapters and sections to be better understood.

In the next chapter we review the main works on the theory of process algebras that
are relevant to our subject. We also review the description languages and tools that
have been developed from such algebras. At the end of the chapter we take an overview
of current works featuring behaviour’s verification of component systems.

In section 3 we introduce a new intermediate format which is an adaptation of the
symbolic transition graphs with assignment into the synchronisation networks: we ex-
tend the general notion of Labelled Transition Systems (LTS) and hierarchical networks
of communicating systems (synchronisation networks) adding parameters to the com-
munication events. Events can be guarded with conditions on their parameters. Our
processes can also be parameterized to encode sets of equivalent processes running in
parallel. The results of this work have been presented in [21, 26, 25, 17].

In section 4 we use this intermediate format to give behavioural specifications of
hierarchical components. We assumed the models of the primitive components as
known (given by the user or via static analysis). Using the component description,
we built a controller describing the component’s non-functional behaviour. The se-
mantics of a component is then generated as the synchronisation product of : its LTSs
sub-components and the controller. The resulting system can be checked against re-
quirements expressed in a set of temporal logic formulas, or again as a LTS. The results
of this works have been presented in [22, 23].

In section 5 we do a big step forward by moving to distributed components built
using Fractive. Components become active in the same way than active objects: their
membrane have a single non-preemptive control thread which serves, based on different
serving policies, method requests from its unique pending queue. The requests to other
components are done via a rendez-vous phase so there is delivery guarantee and order
conservation of incoming calls. The responses (when relevant) are always asynchronous
with replies by means of future references; their synchronisation is done by a wait-by-
necessity mechanism.

Similar to synchronous components, we automatically incorporate the non-functional
behaviour of the components within its controller, based on the component’s defini-
tion. In addition, we incorporate the Fractive component features by automatically
adding automata encoding the queues, future responses and serving policies (in partic-
ular default policies of serving functional versus non-functional requests based on the
component life cycle status). Finally we show how our approach enables us to verify
properties in all the component’s phases, including the interplay between functional
and non-functional events: for instance the (inevitable) reachability of responses from
asynchronous method calls even during a reconfiguration phase. The results of this
work have been presented in [24].

In section 6 we introduce the tools we have developed which implement the ap-
proaches proposed by this thesis. Finally, section 7 concludes our work and states
future directions of research.

12 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

This thesis has two main axes. First, it proposes models and methods to verify the
behaviour of distributed systems using process algebras theories. Second, it analyses
how to best apply those models and methods to the specific distributed systems built
using components. Both axes are focussed on the main target of this thesis: to ease
the verification process to the user, non specialist on formal verification, by providing
automatic tools for verification.

On this context, we analyse the most important state of the art works that have
influenced the ideas and decisions in the contribution of the thesis.

We start by introducing the process algebra theories which give the formal basis of
our approach. Then we analyse the main description languages and tools that have
been developed to verify systems based on such algebras. Finally we review the main
works on verification of components-like systems.

2.1 Process Algebras: a semantics for concurrent (distributed)
systems

Process Algebras allow a rather high level view on interacting systems. They regard
all such systems as processes (objects in some mathematical domain) describing all
the potential behaviours a program or system can execute using operators within an
algebraic theory.

A family of different process algebras have been developed, which can be charac-
terised by the use of equations and inequalities among processes expressions, and by an
acceptance of synchronised communication as the primitive means of interaction among
system components. Among the best-known are: Milner’s CCS [131, 130], developed
with the help of Hennessy and Park; Hoare’s CSP [96, 42], developed in conjunction with
Brookes and Roscoe; Hennessy’s ATP [92, 91, 137], developed with Nicola; ACP [32, 14]
developed by Bergstra, Klop and Baeten; Meije [62, 19], developed by Berry, Boudol
and de Simone; and Milner’s π-calculus [134, 133, 132, 149, 143], based on CCS but
with mobile processes support.

The main distinctions between them are the constructions by which processes are
assembled, the method by which processes expressions are endowed with meaning,
and the notion of equivalence among process expressions. However, they all share the

13

14 CHAPTER 2. STATE OF THE ART

following key ingredients:

• Compositional Modelling. Process algebras provide a small number of con-
structors for building up larger systems from smaller ones.

• Operational Semantics. Process algebras are typically equipped with structural
operational semantics (SOS) that describe the single-step execution capabilities of
systems. Using SOS, systems represented as terms in the algebra can be “com-
piled” into labelled transition systems.

• Behavioural reasoning via equivalences and preorders. Process algebras
feature the use of behavioural relations as a mean for relating different systems
given in the algebra. By means of this equational reasoning a system can be
verified, i.e. establish that it satisfies a certain property.

On this section we concentrate on two process algebras: the Calculus of Communi-
cation Systems (CCS) and the π-calculus, developed by Milner who is without a doubt
the central person on the process algebra history. In CCS the behaviour of interacting
systems is described using a small set of 6 operators, and reasoning about such sys-
tems is possible through equivalence relations named bisimilarity. The π-calculus can
be seen as an extension of CCS to support mobility, i.e. processes are mobile and the
configuration of communications links may dynamically change.

2.1.1 Calculus of Communicating Systems (CCS)

CCS defines a small language whose constructors reflect simple operational ideas. The
meaning of those constructors is given through operational semantics. The core of CCS
is a congruence relation between closed terms, where the terms represent processes. A
semantic process is understood to be a congruent class of terms.

This congruence relation is therefore interpreted as equality of processes. It is built
upon the idea of observing a process: processes are equal iff they are indistinguishable
in any experiment based upon observation.

Basic Language

CCS starts defining the expressions of the process language. Having this done, the
operational semantics is presented as Labelled Transition Systems. This leads to the
notion of derivation tree, which records the successive transitions or actions which may
be performed by a given process.

CCS presupposes an infinite set A of names a, b, c, Then Ā is the set of co-names
ā, b̄, c̄, . . .; A and Ā are disjoint and are in bijection via (̄), ¯̄a = a.
L = A ∪ Ā is the set of labels ranged over by l, l′. Labels will identify the actions

which may be performed by a process. CCS also introduces the silent action τ 6∈ L;
this special action is considered to be unobservable. Let Act = L∪{τ}, ranged over by
α, β.

A function f : L → L is called a relabelling function provided f(l̄) = f(l), and
is extended to Act by decreeing that f(τ) = τ . Finally a countable set X of process
variables X, Y, . . . is presupposed. Then the set E of processes expressions E, F, . . . (also

2.1. PROCESS ALGEBRAS 15

called terms) is the smallest set including X and the following expressions - when E, Ei

are already in E .

α.E, a Prefix (α ∈ Act),∑
i∈I , a Summation (I an indexing set),

E0|E1, a Composition,
E\L, a Restriction (L ⊆ L),
E[f], a Relabelling (f a relabelling function),
fixj{Xi = Ei : i ∈ I}, a Recursion (j ∈ I).

In the final form (Recursion) the variables Xi are bound variables. For any expression
E, its free variables fv(E) are those which occur unbound in E. E is closed if fv(E) = ∅;
in this case E is a process. P, Q,R are used to range over the process P .

Roughly, the meaning of the process constructions is as follows. α.P is the process
which performs α and then behaves as P ;

∑
i∈I Pi is the process which may behave

as any (but only one) of Pi; P0|P1 represents P0 and P1 performing concurrently, with
possible communication; P\L behaves like P but with actions in L ∪ L̄ prohibited;
P [f] behaves like P but with the actions relabelled by f ; finally, fix{Xi = Ei : i ∈ I}
is the jth component of a distinguished “solution” of the recursive process equations
Xi = Ei(i ∈ I).

Ẽ stands for {Ei : i ∈ I} when I is understood, and it is written X̃ = Ẽ for an
I-indexed set of equations. Other abbreviations are

∑
Ẽ for a Summation and fixjX̃Ẽ

for a Recursion. Also fixX̃Ẽ means {fixjX̃Ẽ : j ∈ I}. The simultaneous substitution

of Ei for free occurrences of Xi in E is written E{Ẽ/X̃}, assuming that bound variables
are changed where necessary to avoid clashes.

Operational Semantics

A Labelled Transition System (LTS) is of the form (S, A, { a−→: a ∈ A}) where S is a set
of states, A is a set of actions and each

a−→ is a subset of S×S, called an action relation
over S.

The semantics for E consist in the definition of the action relation
α−→ over E in the

LTS (E , Act, { α−→: α ∈ Act}). The action relations
α−→ are defined to be the smallest set

which obey the following rules, in which the action below the line is to be inferred from
those above the line:

ACT:
α.E

α−→E
SUMj:

Ej
α−→E′

jP
i∈I Ei

α−→E′
j

(j ∈ I)

COM0:
E0

α−→E′
0

E0|E1
α−→E′

o|E1

COM1:
E1

α−→E′
1

E0|E1
α−→E0|E′

1

COM2:
E0

l−→E′
0 E1

l̄−→E′
1

E0|E1
τ−→E′

0|E′
1

RES: E
α−→E′

E\L
α−→E′\L

(α /∈ L ∪ L̄)

REL: E
α−→E′

E[f]
f(α)−−→E′[f]

RECj:
Ej{fix eX eE/ eX}

α−→E′
j

fix eX eE α−→E′
j

16 CHAPTER 2. STATE OF THE ART

For Summation (SUMj), note that the first action of
∑

i∈I Ei determines which al-
ternative Ej is selected, the others being discarded. For Composition, the rules COM0

and COM1 permit the interleaved performance of E0 and E1; the rule COM2 permits a
synchronising communication between E0 and E1 whenever they may perform comple-
mentary actions. The rule RECj states that the actions of (the jth component of) the

distinguished “solution” of X̃ = Ẽ are just those inferable by unwinding the recursion.

Extended Language

For many applications it is important to represent the passage of data values between
processes. Let’s assume that V is the set of data values, and that there are value
variables x, y, . . . and value expressions e built from constants and standard functions
(e.g. arithmetic or boolean operations) over V .

The construction ax.E represents the input of an arbitrary value at a port with
name a, in which x is a bound value variable, and the construction āe.E represents the
output of the value e at the port co-named ā. Finally, it is convenient to introduce the
conditional construction if e then E1 else E2.

The extended language is translated to the basic language by induction upon the
structure of expressions. For each expression E without free value variables, its trans-
lated form Ê is given as follows:

E Ê

ax.F
∑

v∈V av.F̂{v/x}

āe.F āe.F̂

if e then E1 else E2

{
Ê1 if e = true

Ê2 if e = false

A(e) Ae

Congruence of processes

As Milner states in [131], the most obvious equivalence of processes would be one that
requires merely that they should possess the same transitions, but when considering
deadlocks this proposal is rejected because it is too large, as he shows in an example
where in two equivalent processes (using this congruence), one may lead to a deadlock
while the other does not.

On the other hand, the equivalence should not be too restrictive, such as considering
two processes P and Q equivalent just when their derivation trees are isomorphic. This
would deny the equivalence of two processes even though, at each stage, the same
actions are possible (which Milner shows as well through an example).

Then a well-suited equivalence for processes should be an intermediate notion, with
the following property:

P and Q are equivalent iff, for all α ∈ Act each α-success of P is equivalent
to some α-successor of Q, and conversely.

2.1. PROCESS ALGEBRAS 17

This equivalence can be formally written as follows, using ∼ for the equivalence
relation:

P ∼ Q iff, ∀α ∈ Act,

(i) Whenever P
α−→ P ′ then, for some Q′, Q

α−→ Q′ and P ′ ∼ Q′

(ii) Whenever Q
α−→ Q′ then, for some P ′, P

α−→ P ′ and P ′ ∼ Q′

(2.1)

However, there are many equivalence relations ∼ that satisfy (2.1). What is really
wanted is the largest (or weakest, or most generous) relation ∼ which satisfies (2.1).

Definition 1 Let F be the function over binary relations R ⊆ P × P (i.e. binary
relations over processes) defined as follows: 〈P, Q〉 ∈ F iff, for all α ∈ Act,

(i) Whenever P
α−→ P ′ then, for some Q′, Q

α−→ Q′ and 〈P ′, Q′〉 ∈ R
(ii) Whenever Q

α−→ Q′ then, for some P ′, P
α−→ P ′ and 〈P ′, Q′〉 ∈ R

Definition 2 R ⊆ P × P is a strong bisimulation if R ⊆ F(R).

Is easy to demonstrate that F is monotone (R ⊆ R′ ⇒ F(R) ⊆ F(R′))

Definition 3 P and Q are strongly equivalent or strongly bisimilar, written P ∼ Q, if
〈P, Q〉 ∈ R for some strong bisimulation R:

∼ =
⋃
{R : R is a strong bisimulation}

Milner proves in [131] that ∼ is the largest strong bisimulation and that it is an
equivalence relation (reflexive, symmetric and transitive). In particular he shows that
∼ is the largest fixed point of F ; that is ∼ = F(∼).

Strong congruence provides a tractable notion of equality of processes, and allows
many nontrivial equalities to be derived. Milner introduces several equational laws for
∼ grouped as:

1. monoid laws: simple properties of Summation (commutative, associative, idempo-
tent and identity under Summation),

2. static laws: for Composition, Restriction and Relabelling; named static construc-
tors because they are preserved by the transition; for example if (P |Q)\L α−→ R
then R must be of the form (P ′|Q′)\L, and

3. expansion law: it relates the static constructors (Composition, Restriction and
Relabelling) with the dynamic constructors (Prefix and Summation).

The strong bisimulation treats the unobservable action (τ) on the same basis as all
other actions. Some properties which would be expected to hold if τ is unobservable,
such as α.τ.P = α.P do not hold if ∼ is taken to mean equivalence.

Next, we introduce another equivalence congruence defined by Milner that relaxes
the strong bisimulation by requiring that each τ action be matched by zero or more τ

actions. This yields to a weaker notion of bisimulation named weak (or observation)
equivalence.

18 CHAPTER 2. STATE OF THE ART

Definition 4 Let t = α1 . . . αn ∈ Act∗. Then

1.
t−→def

=
α1−→ . . .

αn−→;

2. t̂ ∈ Act∗ is the result of removing all τ ’s from t;

3.
t

=⇒def
= (

τ−→)∗ α1−→ (
τ−→) ∗ . . . (

τ−→)∗ αn−→ (
τ−→)∗.

t̂
=⇒ represents all sequences of actions with the same visible content as

t−→. The
Definition 1 is modified for weak equivalence as:

Definition 5 Let G be the function over binary relations R ⊆ P × P (i.e. binary
relations over processes) defined as follows: 〈P, Q〉 ∈ G iff, for all α ∈ Act,

(i) Whenever P
α
=⇒ P ′ then, for some Q′, Q

α̂
=⇒ Q′ and 〈P ′, Q′〉 ∈ R

(ii) Whenever Q
α
=⇒ Q′ then, for some P ′, P

α̂
=⇒ P ′ and 〈P ′, Q′〉 ∈ R

Definition 6 R ⊆ P × P is a weak bisimulation if R ⊆ G(R).

Definition 7 P and Q are observation-equivalent or weakly bisimilar, written P ≈ Q,
if 〈P, Q〉 ∈ R for some weak bisimulation R:

≈ =
⋃
{R : R is a weak bisimulation}

Again, Milner proves in [131] that ≈ is the largest weak bisimulation and that is an
equivalence relation (reflexive, symmetric and transitive). In particular he shows that
≈ is the largest fixed point of G; that is ≈ = G(≈).

Note that P ∼ Q ⇒ P ≈ Q.

2.1.2 The π-calculus

The π-calculus [134, 133, 132, 149, 143] is a process algebra in which processes may
change their configuration (structure) dynamically. Not only may the component agents
(processes) of a system be arbitrarily linked, but a communication between neighbours
may carry information which changes this linkage.

The π-calculus was introduced by Milner based on the work done by U. Engberg
and M. Nielsen [72], who successfully extended CCS [130, 131] to include mobility
while preserving its algebraic properties.

Basic definitions and syntax

π-calculus assumes a potentially infinite set N of names, ranged over by x, y, z, w, u, v.
It also assumes a set of agent identifiers ranged over by C, where each agent identifier
C has a nonnegative arity r(C).

Names indistinctly encode all: links names (or communication ports), variables and
ordinary data values.

Agents or process expressions, ranged over by P, Q,R, . . ., are defined as follows:

2.1. PROCESS ALGEBRAS 19

P ::= 0 (inaction)
| x̄y.P (output prefix)
| x(y).P (input prefix)
| τ.P (silent prefix)
| (y)P (restriction)
| [x = y]P (match)
| P |Q (composition)
| P + Q (summation)
| C(y1, . . . , yn) (defined agent, n = r(C))

inaction: the agent that cannot perform any action,

output prefix: the name y is sent along the name x, and thereafter the agent behaves
like P ,

input prefix: a name is received along the name x, and y is a placeholder for the
received name. After the input the agent behaves like P but with the newly
received name replacing y,

silent prefix: the agent performs the silent action τ and then behaves like P ,

restriction: the agent behaves like P except that the actions at port ȳ and y are
prohibited (but communications between components within P are allowed),

match: the agent behaves like P if the names x and y are identical, and otherwise like
0,

composition: the agents P and Q execute in parallel. They can act independently,
and may also communicate if one performs an output and the other an input along
the same port,

summation: the agent can behave either like P or Q,

defined agent: Every agent has a definition C(y1, . . . , yn)
def
= P , where the names

y1, . . . , yn are distinct and are the only names that may occur freely in P . Then
C(x1, . . . , xn) behaves like P with xi replacing yi for each i. Recursion is provided
in the equation definition, since P may contain any agent identifier, even C itself.

Operational Semantics

As in CCS, the semantics for π-calculus are given in terms of Labelled Transition
Systems. However, in π-calculus there are two ways to treat input actions named early
instantiation and late instantiation.

In the early approach, input transitions are in the form x(y).P
xu−→ P{u/y} meaning

that the agent receives the name u and then behaves like P with the variable y instan-
tiated to a value u, i.e. the variables are instantiated at the time of inferring the input
action.

In the late approach, input transitions are in the form x(y).P
x(u)−−→ P{u/y} meaning

that the agent can receive a name u and then behave like P{u/y}. In that action u does
not represent the value received, but rather it is a reference to the places in P where

20 CHAPTER 2. STATE OF THE ART

the received name will appear. The name becomes instantiated only when inferring an
internal communication.

The π-calculus semantics for the late approach is given through the following set of
rules LATE for inferring transitions:

ACT:
α.P

α−→P
SUM: P

α−→P ′

P+Q
α−→P ′

PAR: P
α−→P ′

P |Q
α−→P ′|Q

, bn(α) ∩ fn(Q) = ∅

L-COM: P
x̄y−→P ′ Q

x(z)−−→Q′

P |Q
τ−→P ′|Q′{y/z}

CLOSE: P
x̄(y)−−→P ′ Q

x(y)−−→Q′

P |Q
τ−→(y)(P ′|Q′)

RES: P
α−→P ′

(y)P
α−→(y)P ′

, y /∈ bn(α) ∪ fn(α) OPEN: P
x̄y−→P ′

(y)P
x̄(y)−−→P ′

, y 6= x

P
α−→L Q is written to mean that the transition P

α−→ Q can be inferred from LATE.
The set of rules EARLY is obtained from LATE by replacing the rule L-COM with

the following two rules:

E-INPUT:
x(y).P

xw−→P{w/y}
E-COM: P

x̄y−→P ′ Q
xy−→Q′

P |Q
τ−→P ′|Q′

P
α−→E Q is written to mean that the transition P

α−→ Q can be inferred from EARLY.

Congruences of processes

Milner applies the same ideas of bisimulation from CCS to π-calculus. As he states
in [133], several considerations about bound variables (in particular when they encode
links in input transitions) lead to the following definition of simulation:

Definition 8 A binary relation R on agents is a late (strong) simulation if PRQ
implies that:

(i) if P
α−→ P ′ and α is τ , x̄z, or x̄(y) with y 6∈ fn(P, Q) ⇒ ∃Q′ : Q

α−→ Q′ ∧ P ′RQ′

(ii) P
x(y)−−→ P ′ and y 6∈ fn(P, Q) ⇒ ∃Q′ : Q

x(y)−−→ Q′ ∧ ∀w : P ′{w/y}RQ′{w/y}

The relation R is late (strong) bisimulation if both R and R−1 are late (strong)
simulations. P ∼̇LQ means that PRQ for some late (strong) bisimulation R.

Note that the late simulation does not require anything from free-input actions.
Instead, there is a strong requirement on bound-input actions: the resulting agents P ′

and Q′ must continue simulating all instances w of the bound name. The term “late”
refers to the fact that these w are introduced after the simulating derivate Q′ has been
chosen. The algebraic theory of ∼̇L is explored in [133].

In the early input transition, the object represents the received value (therefore there
is no need for clause (ii) in Definition 8). The natural bisimulation equivalence for early
instantiation will use the actions rather than the extra requirement on bound-input
actions:

2.1. PROCESS ALGEBRAS 21

Definition 9 A binary relation R on agents is a early (strong) simulation if PRQ

implies that:

(i) if P
α−→ P ′ : bn(α) ∩ fn(P, Q) = ∅ ⇒ ∃Q′ : Q

α−→ Q′ ∧ P ′RQ′

The relation R is early (strong) bisimulation if both R and R−1 are early (strong)
simulations. P ∼̇EQ means that PRQ for some early (strong) bisimulation R.

As for CCS, Milner gives in [133] several properties and algebraic laws for strong
bisimilarity. He also briefly outlines a late weak bisimilarity analogous to CCS. Both
late and early weak bisimulation equivalences, as well as several variants of π-calculus
and bisimulation relations, are discussed in [143].

2.1.3 Networks of Communicating Automata

The main concept of communicating automata is to define the interactions between
concurrent processes (communications, synchronisations) at a very high level of ab-
straction.

It was first introduced by Maurice Nivat in [138] as the result of a joint seminar
in parallel and concurrent system semantics in the French company Thomsom-CSF. A
complete version of this work was introduced by Maurice Nivat and André Arnold in
[139]. An overview of the evolution can be found in [16] and a complete recompilation
with examples can be found in [15].

In the work proposed by Arnold & Nivat, a system can be fully described as a set
of interacting processes. At the base, a process is represented by a transition system
which consists of a set of possible states for the process and a set of transitions, or state
changes, which the system can execute.

Definition 10 Transition System A transition system is a quadruple
A =< S, T, α, β > where:

• S is a finite or infinite set of states,

• T is a finite or infinite set of transitions, α and β are two mappings from t to S
which take each transition t in T to the two states α(t) and β(t), respectively the
source and the target of the transition t.

A transition system is finite if S and T are finite. Unless explicitly stated otherwise,
it is assumed that only finite transition systems are considered.

In particular, each process in the Arnold & Nivat’s approach is described using a
Labelled Transition System (LTS) formally defined by Arnold [15] as:

Definition 11 Labelled Transition System (by Arnold & Nivat) A transition
system labelled by an alphabet A is a 5-tuple A =< S, T, α, β, λ > where

• < S, T, α, β > is a transition system,

• λ is a mapping from T to A taking each transition t to its label λ(t)

22 CHAPTER 2. STATE OF THE ART

Intuitively, the label of a transition indicates the action or the event which triggers
the transition.

The allowed interactions between the processes forming a system are given through
a synchronisation constraint defined as:

Definition 12 Synchronisation constraint Let A1, . . . , An be alphabets representing
actions or events, a synchronisation constraint is a subset of the Cartesian product
A1 × . . .× An.

Each element of the Cartesian product is a synchronisation vector representing a
global action of the system of processes. This synchronisation constraint in the Arnold
& Nivat proposal is constant. It does not vary during the evolution of the system, in
particular it does not depend on the state of the system or in one of its processes.

A transition system encoding the behaviour of a system itself is obtained through
the synchronous product. The synchronous product combines the LTSs of the processes
forming the system taking into account the synchronisation constraints. Before giv-
ing a formal definition of the synchronous product, Arnold defines the free product of
transition systems, where there is no interaction between the processes as:

Definition 13 Free Product of Transition Systems Consider n transitions systems
Ai =< Si, Ti, αi, βi >, i = 1, . . . , n. The free product A1× . . .×An of those n transition
systems is the transition system A =< S, T, α, β > defined by:

S = S1 × . . .× Sn,
T = T1 × . . .× Tn,

α(t1, . . . , tn) = < α1(t1), . . . , αn(tn) >,
β(t1, . . . , tn) = < β1(t1), . . . , βn(tn) >,

Then the synchronous product is defined as:

Definition 14 Synchronous Product If Ai, i = 1, . . . , n, are n transition systems
labelled by alphabets Ai, and if I ⊆ A1 × . . .×An is a synchronisation constraint, the
synchronous product of the Ai under I, written < A1, . . . ,An; I >, is the transition sub-
system of the free product of the Ai containing only the global transitions < T1, . . . , tn >

whose vectors of labels < λ1(t1), . . . , λn(tn) > are elements of I.

In other words, the synchronous product allows only those global transitions corre-
sponding to action vectors included in the synchronisation constraint.

2.1.4 The transformations Lotomaton

Lotomaton [107, 135] is an extension to LOTOS to express contexts. LOTOS [104] is a
specification language to describe systems strongly based on Process Algebra concepts
and operators (we give an overview of LOTOS in section 2.2.3). Because of this strong
relation and since we have not introduced LOTOS yet, we introduce here the main
concepts of Lotomaton using process algebras even if it was developed specifically to
LOTOS.

A context represents an environment where a system, specified using process algebras,
will execute. A context itself is specified with process algebras operators but leaving

2.1. PROCESS ALGEBRAS 23

some “holes” in the specification. Those holes will be eventually filled with the processes
that will execute on this context (environment).

A context can be simply viewed as a process expression (the context) interacting
with a set of undefined sub-expressions (the processes). By consequence, the behaviour
of contexts cannot be given as a simple LTS acting over actions, but as a LTS acting
over other LTSs. The LTS defining the behaviour of a context is called a transducer.

A transducer may act as a controller of LTSs by “consuming” their actions, i.e. the
transducer transitions are fired by the actions executed on its argument LTSs. In this
case the transducer is a controller automaton and the LTSs its argument automata.
Informally:

Definition 15 A transducer P = 〈A,R = {B1, . . . , BN}〉 is an automaton A that
may consume the actions executed by a set of behaviours R = {B1, . . . , Bn}. Note that
R can be empty.

The transducers allow expressing the behaviour of systems in changing (dynamic)
contexts. The semantics of transducers and its application to LOTOS can be found in
[107].

2.1.5 Symbolic Transition Graphs

M. Hennessy and H. Lin [93] extend the standard notion of transition graphs to symbolic
transition graphs which are a more abstract description of processes in terms of symbolic
actions

Symbolic transition graphs are parameterized on a number of syntactic categories.
The first two are a countable set of variables, V ar = {x0, x1, . . .}, and a set of values V .
Eval, ranged over by ρ, represents the set of evaluations, i.e. the set of total functions
from V ar to V . A substitution is a partial injective mapping from V ar to V ar whose
domain is finite. Sub represents the set of substitutions and this set is ranged over by
σ.

They also presume a set of expressions, Exp, ranged over by e, which includes
V ar and V . Each e has an associated set of free variables, fv(e), and it is assumed
that both evaluations and substitutions behave in a reasonable manner when applied
to expressions; the applications of ρ to e, denoted ρ(e), yields to a value while the
application of a substitution, denoted eσ, yields another expression with the property
that fv(eσ) = σ(fv(e)) where the latter is defined in the obvious manner. BExp is a
set of boolean expressions, ranged over by b, with similar properties.

Essentially the symbolic transition graphs are arbitrary directed graphs in which
nodes are labelled by a set of variables, intuitively the set of free variables of that node.
The branches are labelled by guarded actions, pair of boolean expressions and actions.
An action may be an input action of the form c?x, where c is from a set of channels,
Chan; an output action of the form c!e; or a neutral action such as τ . So let SyAct,
ranged over by α, represent the set of symbolic actions; it has the form:

SyAct = {c?x, c!e|c ∈ Chan} ∪ τ

24 CHAPTER 2. STATE OF THE ART

The set of free and bound variables of these actions are defined in the obvious manner:
fv(c!e) = fv(e), bv(c?x) = {x}, otherwise both fv(α) and bv(α) are empty. The set of
guarded actions is given by:

GuAct = {(b, α)|b ∈ BExp, α ∈ SyAct}

Definition 16 Symbolic Transition Graphs. A symbolic transition graph is a di-
rected graph in which each node n is labelled by a set of variables fv(n) and every branch
is labelled by a guarded action such that if a branch labelled by (b, α) goes from node m to

n, which we write as m
b,α−→ n, then fv(b)∪fv(α) ⊆ fv(m), and fv(n) ⊆ fv(m)∪bv(α).

A symbolic transition graph may be looked upon as a particular austere representa-
tion of the abstract syntax of a value-passing process algebra. Central to the approach
of Hennessy and Lin is the development of both late and early symbolic operational
semantics where symbolic actions such as c?x, c!e and their associated residual are
associated with open terms.

If these terms are interpreted by assigning values to the free variables, then concrete
operational semantics can be given in terms of the concrete actions c?v and c!v and
this leads to a concrete bisimulation equivalence between terms (late and early version).
Indeed, Hennessy and Lin give late and early concrete operational semantics of CCS -
closed terms. If ρ is used to range over assignments of values to free variables, Hennessy
and Lin obtain relations of the form:

ρ |= t ∼E u and ρ |=∼L u

Intuitively these mean that with respect to the assignment ρ, t is early/late bisimu-
lation equivalent to u.

Hennessy and Lin define two symbolic bisimulation equivalences, a late and early
version. These are parameterized in boolean expressions having relations of the form
'b

E and 'b
L between open terms. For example, t 'b

E u indicates that regarding to the
early version of the symbolic operational semantics, t and u are bisimulation equivalent
relative to the boolean expression b (i.e. in every interpretation which satisfies b, the
processes t and u are bisimulation equivalent). They show that:

t 'b
i u if and only if for every assignment ρ which satisfies

the boolean b ρ |= t ∼i u, where i is either E or L.

Finally they provide algorithms for both late and early symbolic bisimulations. In
particular the algorithms return the weakest boolean for which t 'b

i u, i.e. reducing
bisimulation equivalence to the logical equivalence of boolean expressions.

2.1.6 Symbolic Transition Graph with Assignment

H. Lin [111] extends the notion of Symbolic Transition Graph (STG for short) by al-
lowing assignments to be carried in transitions. Lin postulates that many intuitively
simple processes can not be pictured as finite STG.

For example, given the following definition:

2.1. PROCESS ALGEBRAS 25

P (x)
def
= c!x.P (x + 1)

the process P (0) first output, along the channel c, the integer 0, then 1, 2, 3,
The STG for P (x) has countably many states representing P (x+1), P (x+2), P (x+3),

. . ., with edges P (x + n)
true,c!x+n−−−−−−→ P (x + n + 1) for n ≥ 0, which is clearly an infinite

graph if we let x range over all the Integers.

The main purpose of Lin in his work is to generalise the notion of symbolic transition
graph so that processes like P (x) above can be associated with finite state graphs.
This is achieved by introducing assignments into labels. An edge now takes the form

n
b,x:=e,α−−−−→ n′, where, besides a boolean condition b and an abstract action α, there is

also an assignment x := e. Roughly it means if b is evaluated to true at node n then
the action α can be fired, and, after the transition, the free variable x at node n′ will
have the values of e evaluated at n. With such extension the graph for P (x) has only
one node.

Lin calls such a graph symbolic transition graph with assignment (STGA for short).
Note that a STG becomes a special case of STGA with trivial assignment (identity
mapping).

Let ι range over a set of base types. Lin presupposes the following syntactic categories:

v, . . . ∈ V alι: a set of data values
x, . . . ∈ DV arι: a countable set of data variables
e, . . . ∈ DExpι: a set of data expressions
b, . . . ∈ BExp: a set of boolean expressions
c, . . . ∈ Chan: a set of channel names

It is assumed that both V alι and DV arι are included in DExpι, and that e = e′ ∈
BExp for any e, e′ ∈ DExpι. BExp is equipped with the usual operators ∧,∨,¬,⇒
and ∀.

An evaluation ρ ∈ Eval is a type-respecting mapping from V ar to V al. An appli-
cation of ρ to a data expression e , denoted ρ(e), always yields a value from V al and
similarly for boolean expressions; ρ(b) is either true or false.

A substitution σ is a type-respecting mapping from data variables to expressions and
eσ denotes the result of applying σ to the expression e.

An assignment θ has the form x := e, with x and e having the same length and type.

An action is either a silent action τ , an input action c?x, or an output action c!e,
where c ∈ Chan. Actions are ranged over by α. The set of free and bound variables
of actions are given by fv(c!e) = fv(e), bv(c?x) = {x}, and empty otherwise. The set
of channel names used in an action is defined by chan(c?x) = chan(c!x) = {c} and
chan(τ) = ∅. A guarded action with assignment is a triple (b, θ, α) where b is a boolean
expression, θ an assignment, and α an action.

Definition 17 Symbolic Transition Graph with Assignments A symbolic tran-
sition graph with assignments (STGA for short) is a rooted directed graph where each
node n has an associated finite set of free variables fn(n) and each edge is labelled by a
guarded action with assignment. A STGA is well-formed if whenever (b, x := e, α) is the

26 CHAPTER 2. STATE OF THE ART

label of an edge from n to m, written n
b,x:=e,α−−−−→ m, then fv(b, e) ⊆ fv(n), fv(α) ⊆ {x},

and fv(m) ⊆ {x} ∪ bv(α).

The transition n
true,θ,α−−−−→ m is written simply as n

θ,α−→ m, and θ is omitted when it
is the identity assignment on fv(n).

Lin distinguishes an eager approach to build a STGA from a process description
language in which substitutions are performed when moves are inferred. In a recursively
defined process term P (e) with definition clause P (x)

def
= t the way to infer moves is

to substitute e for x in t and look for moves from the result term. A disadvantage
with this approach is that very often it results in infinite state graphs. An example is
the process P (0) where P (x)

def
= c!x.P (x + 1). Though simple, using this approach for

the symbolic graph P (0) will have infinite number of nodes representing P (0), P (0 +
1), P (0 + 1 + 1),

Lin prefers a lazy approach: the substitutions necessary in inferring moves from
recursively defined terms are postponed. They are carried in the transitions and will
be performed later when processes are compared for bisimulations. For regular value-
passing CCS [130], it is not difficult to see that graphs generated with this new approach
are always finitely, because any process term involves only finite recursive definition
clauses and each such clause rises a finite subgraph.

Then he introduces a late ground operational semantics rules with respect to an
evaluation ρ supplying values for free node variables, and he defines a late ground
bisimulation symmetric relation between two graphs with respect to two evaluations
(one for each graph).

Lin also introduces a more abstract operational semantics to STGAs without re-
ferring to evaluations, called symbolic operational semantics and defined in terms. It
is called “symbolic” because boolean and data operations do not get evaluated, in-
stead they are symbolically carried in transitions. Having this symbolic operational
semantics, Lin defines (late) symbolic bisimulation as in the case of STG [93].

Finally Lin provides an algorithm for late symbolic bisimulation of STGAs which
returns a predicate equation system. The problem of deciding bisimulation of two
STGAs is reduced to the problem of checking validity for the greatest solution of a
closed equation system.

2.2 Languages

Together with the development of process algebra theories during the eighties and
nineties, appears some tools that allow automatic or semi-automatic reasoning about
concurrent systems based on those algebras (we review some of such tools in section
2.3).

These tools need input languages describing the system’s behaviour to analyse. For
this propose several languages where developed, some of them in a general approach and
others for some specific domain areas such as telecommunications or real-time. They are
also present in different levels of abstractions, usually classified in low-level models such
as format FC2 [36, 118], Kripke structures [68] and Petri nets [6]; intermediate formats
such as Input/Output automata [113], Symbolic Transition Systems [93], IF v2.0 [114]

2.2. LANGUAGES 27

and NTIF [80]; and high-level languages such as Promela [98, 85], LOTOS [104] and
E-LOTOS [105].

In this section we overview three of them which we believe are the most powerful
and/or most used description languages.

2.2.1 FC2

The FC2 format [36, 118] was originally designed to interface several preexisting veri-
fication tools [117]. In this way these heterogeneous tools could be further developed
independently, while being used in cooperation with their complementary features.

The format allows description of labelled transition systems and networks of commu-
nicating automata. While the format is not ”syntax-friendly” (as it represent objects
which are supposedly obtained by translation or compilation), it is still reasonably
natural: automata are tables of states, states being each in turn a table of outgoing
transitions with target indexes; networks are vectors of references to subcomponents
(i.e., to other tables), together with synchronisation vectors (legible combinations of
subcomponent behaviours acting in synchronised fashion). Subcomponents can be net-
works themselves, allowing hierarchical descriptions.

In addition a permissive labelling discipline allows a variety of annotations on all
distinct elements: states, transitions, automata and networks as a whole. It is through
this labelling that behavioural action labels are provided of course, but also structural
information for source code retrieval, logical model-checking annotation and even pri-
vate hooked informations. Annotative labels are dealt as regularly as possible in the
syntax, in simple form at predictable location, so that they can be treated smoothly by
any tool at parsing time, often by simply disregarding them if they do not address the
tool’s specific functionalities. The actual labelling contents are stored in tables forming
the objects headers, so that only integers referencing to table entries are actually present
in object bodies themselves (automata or networks). Finally, labels can be structured
by simple operators (sum, product and several others) to allow richer information. We
introduce the syntax of FC2 in section 6.5.1.

FC2 simple example
nets 1

hook "main">0

net 0

struct "t1" logic "initial">0

hook"automaton"

vertice 2

vertex0 struct"v0" edges2

behav"a" result 0

behav"b" result 1

v1s"v1"E2

b"a"r0

b"b"r1

For example, this FC2 object contains a sin-
gle net (indeed an automaton, as indicated in
the net hook). The automaton has two vertices
with two edges each. All information attached
appears here directly in place, though it could
have been tabulated. The text for the first ver-
tex appears in long form (more readable), while
the second vertex is in a short, compact, form.

2.2.2 Promela

Promela (Process Meta Language) [98, 85] is a language designed to describe dis-
tributed systems, specifically data communication protocols ones. The language allows

28 CHAPTER 2. STATE OF THE ART

dynamic creation of concurrent processes. Communication via message channels can
be defined to be synchronous (i.e., rendezvous), or asynchronous (i.e., buffered).

Promela is a verification modelling language. It provides means for making abstrac-
tions of protocols (or distributed systems in general) that suppress details that are
unrelated to process interaction.

Promela programs consist of processes, message channels, and variables. Processes
specify behaviour, channels and global variables define the environment in which the
processes run.

Processes and variables must be declared before they can be used. Variables can
be declared either locally, within a process type, or globally. A process can only be
declared globally in a proctype declaration. Proctype declarations cannot be nested.

A processes declaration in Promela has the form:

proctype pname (chan In, Out; byte id)

{ statements }

The body of a process declaration, statements, defines the behaviour of the process.
In Promela there is no difference between conditions and statements, even isolated
boolean conditions can be used as statements. The execution of every statement is
conditional on its executability. Statements are either executable or blocked. The
executability is the basic means of synchronisation. A process can wait for an event
to happen by waiting for a statement to become executable. For instance, instead of
writing a busy wait loop:

while (a != b)

skip /* wait for a==b */

one can achieve the same effect in Promela with the statement

(a == b)

A condition can only be executed (passed) when it holds. If the condition does not
hold, execution blocks until it does.

There are sixteen types of statements:

assert assignment atomic break

declaration d_step else expression

goto receive selection skip

repetition send timeout unless

The execution of a statement is conditional on its enabledness (or “executability”).
Statements are either enabled or blocked. Of the above listed statements, assignments,
declarations, assert, skip, goto and break are always enabled. If a statement is blocked,
execution at that point halts until the statement becomes enabled.

assert(expression) aborts the program if the expression returns a zero result;
otherwise it is just passed.

atomic { statements } attempts to execute the statements in one indivisible step;
i.e., without interleaved execution of other processes. An atomic statement is enabled
if its first statement is. dstep { statements } has the same effect as atomic.

2.2. LANGUAGES 29

A selection statement begins with the keyword if, followed by a list of one or
more options, and ends with the keyword fi. Every option begins with the flag ::

followed by any sequence of statements. An option can be selected if its first statement
(the guard) is enabled. A selection blocks until there is at least one selectable branch.
If more than one option is selectable, one will be selected at random. The special
guard else can be used (once) in selection and repetition statements and it is enabled
precisely if all other guards are blocked.

A repetition statement is similar to a selection statement, but is executed re-
peatedly until either a break statement is executed or a goto jump transfer control
outside the cycle. The keywords of repetition statement are do and od.

goto label transfers control to the statement labelled by label which has to occur
in the same procedure as the goto.

skip has no effect and is mainly used to satisfy syntactic requirements.

A timeout statement becomes enabled precisely when every other statement in the
system is blocked.

{ statements-1 } unless { statements-2 } starts execution in statements-1.
Before each statement in statements-1 (including the first one) is executed, enabled-
ness of statements-2 is checked and if it is, execution of statements-1 is aborted and
control is transfered to statements-2; otherwise, control remains in statements-1. If
statements-1 terminates, statements-2 is ignored.

Communication between processes

send and receive statements are used to communicate processes. Message channels
are used to model the transfer of data from one process to another. They are declared
either locally or globally, for instance:

chan qname = [16] of { short }

This declares a channel that can store up to 16 messages of type short. Channel
names can be passed from one process to another via channels or as parameters in
process instantiations. A channel behaves as a FIFO queue

The statement qname!expr sends the value of the expression expr to the channel
qname, that is: it appends the value to the tail of the channel. The statement blocks if
the channel is full.

The statement qname?msg retrieves a message from the head of the channel qname
and stores it in a variable msg.

Note that a channel size can be set to 0 to define a rendez-vous communication. A
channel with size 0 can pass single messages, but cannot store them.

Processes in Promela are instantiated through a run operation of the form:

run pname(Transfer, Device[0], 0)

It first assigns the actual parameters to the formal ones and then executes the state-
ments in the body. Each process instance has a unique, positive instantiation number.
A process-instance remains active until the process’ body terminates (if ever).

30 CHAPTER 2. STATE OF THE ART

A process declaration prefixed with the active [N] modifier causes N instances of
the process to be active in the initial system state. Formal parameters of instances
activated through the active modifier are initialised to 0.

init { statements }

The process init, if present, is instantiated once, and is often used to prepare
the true initial state of a system by initialising variables and running the appropriate
process-instances.

2.2.3 LOTOS

LOTOS (Language of Temporal Ordering Specification) is one of the two Formal De-
scription Techniques (FDT) [104, 103] developed within ISO (International Standards
Organisation) for the formal specification of open distributed systems, and in particular
for those related to the Open Systems Interconnection (OSI) computer network archi-
tecture [102]. It was developed by FDT experts from ISO/TC97/SC21/WG1 ad-hoc
group on FDT/Subgroup C during the years 1981-86. The basic idea that LOTOS
developed from was that systems can be specified by defining the temporal relation
among the interactions that constitute the externally observable behaviour of a system.
Contrary to what the name seems to suggest, this description technique is not related
to temporal logic, but is based on process algebraic methods. Such methods were first
introduced by Milner’s work on CCS [130, 131], soon to be followed by many closely
related theories that are often collectively referred to as process algebras, e.g. [31, 96].
More specifically, the component of LOTOS that deals with the description of process
behaviours and interactions has borrowed many ideas from [130, 96].

LOTOS also includes a second component, which deals with the description of data
structures and value expressions. This part of LOTOS is based on the formal theory of
abstract data types, and in particular the approach of equational specification of data
types, with an initial algebra semantics. Most concepts in this component were inspired
by the abstract data type technique ACT-ONE [69], although there are a number of
differences.

Even when LOTOS has been developed particularly for OSI, it is an FDT generally
applicable to distributed, concurrent, information processing systems.

In LOTOS a distributed, concurrent system is seen as a process, possibly consisting
of several sub-processes. A sub-process is a process in itself, so that in general a LOTOS
specification describes a system via a hierarchy of process definitions. A process is an
entity able to perform internal, unobservable actions, and to interact with other pro-
cesses, which form its environment. Complex interactions between processes are built
up out of elementary units of synchronisation called events, or (atomic) interactions, or
simply actions.

Events imply process synchronisation, because the processes that interact in an event
(they may be two or more) participate in its execution at the same moment in time.
Such synchronisations may involve the exchange of data. Events are atomic in the sense
that they occur instantaneously, without consuming time. An event is thought of as
occurring at an interaction point, or gate, and in the case of synchronisation without
data exchange, the event name and the gate name coincide.

2.2. LANGUAGES 31

The environment of a process P, in a system S, is formed by the set of processes of S
with which P interacts, plus an unspecified, possibly human, observer process, which is
assumed to be always ready to observe anything observable the system may do. And,
to be consistent with the model, observation is nothing but interaction.

Basic LOTOS is a simplified version of the language employing a finite alphabet of
observable actions. This is because observable actions in basic LOTOS are identified
only by the name of the gate where they are offered, and LOTOS processes can only
have a finite number of gates

The structure of actions will be enriched in full LOTOS by allowing the association
of data values to gate names, and thus the expression of a possibly infinite alphabet of
observable actions.

Basic LOTOS only describes process synchronisation, while full LOTOS also de-
scribes interprocess value communication. In spite of this remarkable difference, we
initially concentrate on basic LOTOS because within this proper subset of the language
we can appreciate the expressiveness of all the LOTOS process constructors (operators)
without being distracted by interprocess communication.

The typical structure of a basic LOTOS process definition is given in Figure 2.1.

process
definition

process
definition

behaviour
expression

behaviour
expression

process instantiation

behaviour expression

process Max3[in1, in2, in3, out] :=

hide min in

(Max2[in1, in2, mid] |[mid]| Max2[mid, in3,out])

where

process Max2[a, b, c] :=

a; b; c; stop

[]

b; a; c; stop

endproc

endproc

Figure 2.1: Example of a process definition in LOTOS

An essential component of a process definition is its behaviour expression. A
behaviour expression is built by applying an operator (e.g., []) to other behaviour
expressions. A behaviour expression may also include instantiations of other processes
(e.g. Max2), whose definitions are provided in the where clause following the expression.
Given behaviour expression B, it is also called for convenience “a process”, even when
no process name is explicitly associated with the behaviour expressed by B.

The complete list of basic-LOTOS behaviour expressions is given in Table 2.1, which
includes all basic-LOTOS operators. Symbols B, B1, B2 in the table stand for any
behaviour expression. Any behaviour expression must match one of the formats listed
in column Syntax.

32 CHAPTER 2. STATE OF THE ART

Name Syntax

inaction stop
action prefix
- unobservable (internal) i;B
- observable g;B
choice B1 [] B2
parallel composition
- general case B1 |[g1, . . . , g2]| B2
- pure interleaving B1 ||| B2
- full synchronisation B1 || B2
hiding hide g1, . . . , gn in B
process instantiation p [g1, . . . , gn]
successful termination exit
sequential composition (enabling) B1 >> B2
disabling B1 [> B2

Table 2.1: Syntax of behaviour expressions in LOTOS

By inspecting Table 2.1 we may observe that basic LOTOS includes nullary operators
(e.g. inaction), unary operators (e.g. action prefix) and binary operators (e.g. parallel
composition), that is, operators applicable to, respectively, none, one and two behaviour
expressions.

The completely inactive process is represented by stop. It cannot offer anything to
the environment, nor it can perform internal actions.

The unary prefix operator produces a new behaviour expression out of an existing
one, by prefixing the latter with an action (gate name) followed by a semicolon.

If B1 and B2 are two behaviour expressions then B1 [] B2 denotes a process that
behaves either like B1 or like B2. The choice offered is resolved in the interaction of
the process with its environment. If (another process in) the environment offers an
initial observable action of B1, then B1 may be selected, and if the environment offers
an initial observable action of B2, then B2 may be selected. If an action is offered from
the environment that is initial to both B1 and B2, then the outcome is undetermined.

In B1 |[S]| B2 with S a list of gates common to both B1 and B2, the parallel com-
position expression is able to perform any action that either component expression is
ready to perform at a gate not in S (excluding successful termination), or any action
that both components are ready to perform at a gate in S. This implies that when
process B1 is ready to execute some action at one of the synchronisation gates (in S),
it is forced, in the absence of alternative actions, to wait until its “partner” process B2
offers the same action.

B1 || B2 is similar to B1 |[S]| B2, but S is the set of “all the gates” common to
both processes, i.e. both B1 and B2 should synchronise actions in all their shared gates.
On the contrary, B1 ||| B2 is similar to B1 |[S]| B2, but S is an empty set.

The hiding operator, hide g1, . . . , gn in B, renames all the actions on the gates
g1, . . . , gn of B to the unobservable action i.

Process instantiation instantiates a process with the given parameters. Recursion is
achieved in LOTOS by allowing the instantiation of a process within its own behaviour
expression definition.

2.2. LANGUAGES 33

exit is a nullary operator whose propose is to perform the successful termination of
the process, after which it becomes the dead process stop.

The interpretation of the expression B1 >> B2 is that if B1 terminates successfully,
and not because of a premature deadlock, then the execution of B2 is enabled.

The disabling operator, B1 [> B2 was introduced in LOTOS to encode a disturbing
event in the “normal” course of actions (e.g. disconnection or abortion of a connection).
It means that B1 may be interrupted by the first action of B2, in which case the control is
transfered to B2; or B1 successfully terminates, in which case B2 disappears (is disabled).

The representations of values, value expressions and data structures in LOTOS are
derived from the specification language for abstract data types (ADT) ACT ONE [69].
It does not indicate how data values are actually represented and manipulated in mem-
ory, but only defines the essential properties of data and operations that any correct
implementation (concrete data type) is required to satisfy. The reader interested in
further details about ADT may refer to [69].

While in basic LOTOS an observable action coincides with a gate name, in full
LOTOS (or, simply, LOTOS) it is formed by a gate name followed by a list of zero or
more values offered at that gate: g < v1 . . . vn >. For example:

g <TRUE, "tree", 3>

is the observable action offering the boolean value TRUE, character string “tree”,
and natural number 3 at gate g. Since the offered values may range over infinite sets
(e.g. the natural numbers), an infinite number of observable actions is expressible in
full LOTOS.

Having the facilities for defining and describing values in LOTOS, behaviour ex-
pressions may now depend on conditions on values. Such conditions are expressed as
equations that relate two value expressions: the condition is met if the two expres-
sions evaluate to the same value, in the data type environment of that condition (the
condition can be also an expression of type boolean).

Full LOTOS offers the possibility to parameterise process definitions not only in
terms of formal gates (as is the case with basic LOTOS) but also in terms of a parameter
list, which is a list of variable declarations.

The LOTOS specification [104] defines the its full syntax as well as its semantics on
terms of SOS rules.

E-LOTOS[105] is an enhanced version of LOTOS introducing the notion of time
(needed for instance to model real-time systems).

2.2.4 Unified Modelling Language

In the description of system’s behaviours we cannot leave behind the Unified Modelling
Language (UML) [142], which is a widely adopted language for designing systems in
the industry.

UML provides seven diagrams capturing the variety of interactions and discrete
behaviours of single entities within a model as it “executes” over time:

34 CHAPTER 2. STATE OF THE ART

The use case diagram captures the requirements of a system by means of commu-
nicating with users and other stakeholders about what the system is intended to
do.

An activity diagram is used to display the sequence of activities. Activity Diagrams
show the workflow from a start point to the finish point detailing the many decision
paths that exist in the progression of events contained in the activity.

A state machine diagram models the behaviour of a single object, specifying the
sequence of events that an object goes through during its lifetime in response to
events.

A sequence diagram is a form of interaction diagram which shows objects as life-
lines running down the page and with their interactions over time represented as
messages drawn as arrows from the source lifeline to the target lifeline. Sequence
diagrams are good at showing which objects communicate with which other ob-
jects and what messages trigger those communications. Sequence diagrams are not
intended for showing complex procedural logic.

A communication diagram , formerly called a collaboration diagram, it is an in-
teraction diagram that shows similar information to sequence diagrams but its
primary focus in on object relationships.

Timing diagrams are used to display the change in state or value of one or more
elements over time. It can also show the interaction between timed events and the
time and duration constraints that govern them.

An interaction overview diagram is a form of activity diagram in which the nodes
represent interaction diagrams. Interaction diagrams can include sequence, com-
munication, interaction overview and timing diagrams.

All those diagrams are accompanied in the UML specification [142] with an informal
semantics given in natural language.

UML is a language for the specification of systems at design time and, in the experi-
ence of the author, an excellent language for documentation as well. It provides means
for describing both the structure of an application and a high level view of how this
application should behave.

However, despite its success as being an unified and visual notation in the industry,
it is recognised that UML still lacks from formal semantics [41, 73]. The Object Con-
straint Language (OCL [140]) completes the syntactic rules of the UML metamodel and
improves the precision of the notation, but it is not enough to check and to validate
UML models [147]. Although, since the apparition of UML 2.0, many works address
this lack of formal semantics like in [66] where the authors propose a formalisation of
sequence diagrams and the verification of their coherence with the state machines using
π-calculus.

2.3. VERIFICATION TOOLS 35

2.3 Verification tools

As we mention early in the section above, several tools for the reasoning of system’s
behaviour have been developed. Some of the most know are FC2Tools [36, 10], Labelled
Transition System Analyzer [122], SPIN [98, 97], dSPIN [63] and CADP [81].

In this section we review three of them which we believe are the best suited to verify
distributed systems.

2.3.1 FC2Tools

FC2Tools [36, 10] is a set of construction, reduction, analysis and diagnostics tools for
communicating systems described using the FC2 format.

The verification tools comprise a number of stand-alone tools, each implementing
some well-defined functionalities. Tools may be used in succession through the common
FC2 file description format.

The set of tools is made of: Autograph editor, for the graphical edition and display
of automata and networks of communicating automata; fc2explicit, for manipulation
of enumerated finite state machines; fc2implicit, for manipulation of symbolic finite
state machines; and fc2link to merge systems (usually large hierarchical systems)
described in separated FC2 files.

The main functional modules of the toolset are:

graphical description of the network and behaviour of communicating agents
The graphical editor Autograph allows to draw such descriptions much in the usual
fashion of process algebraic terms, and then produces FC2 format representations.

linking of multifile descriptions Large hierarchical system descriptions can be split
between different files (for instance as different Autograph windows). The tabu-
lated naming informations in resulting FC2 files need not be consistent across files,
and so merging these partial descriptions into a single file for later analysis takes
some bookkeeping care.

construction of ”some form of ” global model Model-based automatic verification
relies on expansion of network into a global state-transition model (synchronisa-
tion product of section 2.1.3). Two main implementation techniques can be used
here: the extensional approach with a classical representation of expanded au-
tomata with enumerated states and transitions; the symbolic approach, based on
implicit representation by Binary Decision Diagrams of state sets(only), while rep-
resentation of the full transition relation is avoided, and remain parted by possible
events.

reduction of the model FC2Tools supports reduction by weak, branching and strong
bisimulation equivalence.

specification of properties and model-checking FC2Tools finds the existence of
deadlock, livelock or divergent states. More refined properties are expressed in
FC2Tools as abstraction automata. They are labelled transition systems with
logical predicates in their labels, and with acceptance states. Each acceptance

36 CHAPTER 2. STATE OF THE ART

state defines one abstract action, representing a set of traces (a regular language)
from the actions of the model being checked. Note that abstraction automata can
be specified graphically using the Autograph editor.

diagnostics FC2Tools provides a diagnostic (or counterexample) when analysing dead-
locks, livelocks or reachability properties expressed as abstraction automata.

toplevel object management Successive object transformations can be applied while
intermediate representations are kept and gathered on demand in a graphical en-
vironment, for later reuse.

In section 3.3 we analysis a distributed system using FC2Tools. Other case studies
using FC2Tools can be found in [38, 119, 87, 135].

2.3.2 SPIN

SPIN [98, 97] is a generic model-checking tool that supports the design and verifica-
tion of asynchronous process systems. Given a set of correctness claims and a system
description, SPIN verifies whether or not those claims hold in the system.

SPIN accepts design specifications written in the verification language Promela [85,
98], and it accepts correctness claims specified in the syntax of standard Linear Tem-
poral Logic (LTL) [123].

SPIN translates each process template into a finite automaton. The global behaviour
of the concurrent system is obtained by computing an asynchronous interleaving prod-
uct of automata, one automaton per asynchronous process behaviour. The resulting
global system behaviour is itself again represented by an automaton. This interleaving
product is often referred to as the state space of the system, and, because it can easily
be represented as a graph, it is also commonly referred to as the global reachability
graph.

To perform verification, SPIN takes a correctness claim that is specified as a LTL
formula, converts that formula into a Büchi automaton (as showed by Vardi and Wolper
in [153]), and computes the synchronous product of this claim and the automaton
representing the global state space. The result is again a Büchi automaton. If the
language accepted by this automaton is empty, this means that the original claim is
not satisfied for the given system. If the language is nonempty, it contains precisely
those behaviours that satisfy the original temporal logic formula.

SPIN uses the correctness claims to formalise erroneous system behaviours, i.e. be-
haviours that are undesirable. A positive claim requires to prove that the language of
the system (i.e. all its executions) is included in the language of the claim. A negative
claim, on the other hand, requires to prove that the intersection of the language of the
system and of the claim is empty. The size of the state space for a language inclusion
proof is at most the size of the Cartesian product of the (automata representing) sys-
tem and claim, and at least the size of their sum. The worst-case state space size to
prove emptiness of a language intersection is still the size of the Cartesian product of
system and claim, but, in the best case, it is zero. Note that if no initial portion of
the invalid behaviour represented by the claim appears in the system, the intersection

2.3. VERIFICATION TOOLS 37

contains no states. SPIN, therefore, works with negative correctness claims and solves
the verification problem by language intersection.

The entire computation, starting from the individual concurrent components and
a single Büchi automaton representing the correctness claim, is done by SPIN in one
single procedure, using a nested depth-first search algorithm [55, 99]. The algorithm
terminates when an acceptance cycle is found (which then constitutes a counterexample
to a correctness requirement), or, when no counterexample exists, when the complete
intersection product has been computed.

The nested depth-first search algorithm does not preserve the capability to detect all
possible acceptance cycles that may appear in the reachability graph. It can, however,
be proved to detect at least one such cycle if one or more cycles exists. Because ac-
ceptance cycles in SPIN constitute counterexamples to correctness claims, establishing
either their absence or their presence always suffices for the purposes of verification.

To avoid the state explosion problem, SPIN uses a partial order reduction method [144]
to reduce (per formula) the number of reachable states that must be explored to com-
plete a verification. The reduction is based on the observation that the validity of
an LTL formula is often insensitive to the order in which concurrent and indepen-
dently executed events are interleaved in the depth-first search. Instead of generating
an exhaustive state space that includes all execution sequences as paths, the verifier
can generate a reduced state space, with only representatives of classes of execution
sequences that are indistinguishable for a given correctness property.

In addition, SPIN uses state compression and hashing techniques to reduce the use
of the memory.

SPIN is considered to be one of the most efficient and most widely used LTL model
checking systems.

2.3.3 CADP

CADP [81] is a toolbox for protocol engineering. It offers a wide range of functionalities,
ranging from interactive simulation to the most recent formal verification techniques.

The CADP toolbox contains several closely interconnected components: Aldébaran,
BCG, Caesar, Caesar.adt, Open/Caesar and XTL. All these components are accessible
through a unified graphical user-interface named Eucalyptus. It accepts three different
input formalisms:

• high-level protocol descriptions written in LOTOS [104]. The toolbox contains
two compilers Caesar and Caesar.adt. They translate LOTOS descriptions into C
code which can be used for simulation, verification and testing purpose.

• low-level protocol descriptions specified as Labelled Transition Systems (LTS), i.e.,
finite state machines with transitions labelled by action names.

• As an intermediate step, the CADP toolbox accepts networks of communicating
automata [16], i.e. finite state machines running in parallel and connected together
using many operators including LOTOS parallel composition, synchronisation vec-
tors, label renaming and hiding operators.

38 CHAPTER 2. STATE OF THE ART

The CADP toolbox allows to cover most of the development cycle of a protocol
by offering an integrated set of functionalities. These functionalities are interactive or
random simulation, partial and exhaustive deadlock detection, test sequences genera-
tion, verification of behavioural specifications with respect to a bisimulation relation,
verification of branching-time temporal logic specifications.

All the validation and verification tools are based on a same principle consisting in
the exploration of an LTS describing the exhaustive behaviour of the protocol under
analysis. This LTS can be accessed through several representations: The explicit rep-
resentation consists in the exhaustive list of the states and transitions of the LTS. A
compact format (BCG) is available to encode explicit representations efficiently. The
implicit representation consists in a C library providing a set of functions allowing a
dynamic exploration of the LTS. It is well adapted to perform “on-the-fly” verification,
avoiding the generation of the whole LTS.

The main components of the CADP toolset are:

bcg min & bisimulator [128, 126, 30] allow the comparison and the reduction of
LTSs modulo various equivalence relations (such as strong bisimulation, observa-
tional equivalence, delay bisimulation, or τ ∗a bisimulation, branching bisimulation,
and safety equivalence) and preorder relations (such as simulation preorder and
safety preorder).

BCG (Binary-Coded Graphs) is both a format for the representation of explicit
LTSs and a collection of libraries and programs dealing with this format. Com-
pared to ASCII-based formats for LTSs, the BCG format uses a binary represen-
tation with compression techniques resulting in much smaller (up to 20 times)
files. BCG is independent from any source language but keeps track of the ob-
jects (types, functions, variables) defined in the source programs. The following
tools are currently available for this format: bcg io performs conversions between
the BCG format and a dozen of other formats (among them FC2 files describing
a single automaton); bcg open establishes a gateway between the BCG format
and the Open/Caesar environment; bcg draw provides a bi-dimensional graphical
representation of BCG graphs with an automatic layout of states and transitions;
and bcg edit which is an interactive editor which allows to modify manually the
display generated by bcg draw.

Caesar [83] is a compiler which translates LOTOS descriptions into LTSs. Caesar
proceeds in several steps, first translating the LOTOS description to compile into
an intermediate Petri Net model, which provides a compact representation of the
control and data flows. Then, the LTS is produced by performing reachability
analysis on this Petri net. Caesar only handles LOTOS specifications with static
control features, which is usually sufficient for most applications. The current
version of Caesar allows the generation of large LTSs (some million states) within
a reasonable lapse of time. The efficient compiling algorithms of Caesar can also
be exploited in the framework of the Open/Caesar environment.

Caesar.adt [78] is a compiler that translates the data part of LOTOS descriptions
into libraries of C types and functions. Each LOTOS sort or operation is trans-

2.3. VERIFICATION TOOLS 39

lated into an equivalent C type or function. One must indicate to Caesar.adt
which LOTOS operations are ”constructors” and which are not (fairly obvious,
in practise). Caesar.adt does not allow non-free constructors (”equations between
constructors”). Translation of large programs (several hundreds of lines) is usually
achieved in a few seconds. Caesar.adt can be used in conjunction with Caesar,
but it can also be used separately to compile and execute efficiently large abstract
data types descriptions.

Open/Caesar [77] is an extensible programming environment for the design of applica-
tions working with the implicit representation of LTSs. It provides a front-end with
functions and types defined in the Open/Caesar’s API. The API allows the use,
among others, of the back-end tools including: the caesar and caesar.adt com-
pilers, bisimulator, the bcg open gateway for explicit graphs, the exp.open [109]
gateway for networks of communicating automata, distributor [82] for generating
the state space on a distributed environment, and evaluator [129] for checking
temporal formulas.

XTL (eXecutable Temporal Language) is a functional-like programming language
designed to allow an easy, compact implementation of various temporal logic op-
erators. These operators are evaluated over an LTS encoded in the BCG format.
Besides the usual predefined types (booleans, integers, etc.) The XTL language
defines special types, such as sets of states, transitions, and labels of the LTS.
It offers primitives to access the informations contained in states and labels, to
obtain the initial state, and to compute the successors and predecessors of states
and transitions. The temporal operators can be easily implemented using these
functions together with recursive user-defined functions working with sets of states
and/or transitions of the LTS.

Evaluator performs an on-the-fly verification of temporal properties on given Labelled
Transition Systems. The result of this verification (TRUE or FALSE) is displayed
on the standard output, possibly accompanied by a diagnostic.

The temporal logic used as input language for evaluator is called regular alternation-
free µ-calculus. It is an extension of the alternation-free fragment of the modal
µ-calculus [106, 70] with action predicates and regular expressions over action se-
quences. It allows direct encodings of ”pure” branching-time logics like CTL [68]
or ACTL [60], as well as of regular logics like PDL [116]. Moreover, it has an
efficient model checking algorithm, linear in the size of the formula and the size
of the LTS model. CADP provides macros to translate action-based CTL for-
mulas (ACTL [60]) and Temporal Logic Patterns [67] to regular alternation-free
µ-calculus. A more elaborate version of this logic, able to express temporal prop-
erties involving data values, has been defined and studied in [125]; however, the
current version of evaluator does not handle the data-based version of the logic.

Several case studies on verification of system using CADP has been published, the
most recent are [27, 152, 115, 84].

40 CHAPTER 2. STATE OF THE ART

2.4 Components Related Work

Most component frameworks available today only have tools for checking the static type
compatibility of interfaces. Work on behaviour compatibility is quite recent, and not
yet available on industrial platforms. We review here the most known research works
and tools on verification of components-like systems.

2.4.1 Wright

Wight [13] provides a formal basis for specifying the interactions among architectural
components. Wright is built around the basic architectural abstractions of components,
connectors and configurations. Figure 2.2 shows a simple client-server system as would
be described using Wright specifications.

System SimpleExample
component Server =

port provide [provide protocol]
spec [Server specification]

component Client =
port request [request protocol]
spec [Client specification]

connector C-S-connector =
role client [client protocol]
role server [server protocol]
glue [glue protocol]

Instances
s: Server
c: Client
cs: C-S-connector

Attachments
s.provide as cs.server
c.request as cs.client

end SimpleExample

Figure 2.2: A simple client-server system description in Wright

A Wright component describes a localised, independent computation. It has two
parts, the interface and the component-spec. An interface consists of a finite number of
ports. Each port represents an interaction in which the component may participate. It
also indicates both the properties that the component must have if it is viewed through
the lens of that particular port, and the expectations of the component about the system
with which it interacts.

The component-spec describe what the component actually does. It carries out the
interactions described by the ports and shows how they are tied together to form a
coherent whole.

A connector represents an interaction among a collection of components. It is defined
by a set of roles and a glue specification. Each role specifies the behaviour of a single
participant in the interaction. The glue of a connector describe how the participants
work together to create an interaction, this is, how the computations of the components
are composed to form a larger computation.

2.4. COMPONENTS RELATED WORK 41

Finally a configuration is defined by two parts: instances and attachments. The in-
stances define the actual entities that will appears in the configuration. The attachments
define the topology of the configuration, by showing which components participate in
which interactions. The last is done by associating a (instantiated) component’s port
with a (instantiated) connector’s role.

Behaviours in Wright are described using interacting protocols. The protocols of
the roles, ports and glues are defined using a variant (sub-set) of CSP [96], including
processes and communication events (e?x and e!x), prefixing (e → P), alternative
(P @ Q, external choice: the choice is made by the environment), decision (P u Q,
internal choice: the choice is made by the process itself) and parallel (P ||Q) operators.
The alphabet of a process P , i.e. the set of events it can communicates, is written as
αP .

In addition to the standard notation of CSP, Wright introduces three notational
conventions:

• A successfully terminating process, noted by “§” (§ ≡
√
→ STOP , where

√
is

the success event)

• Scope of processes, noted by “let Q = process-exp in R”. This defines process Q
to be process-expr within the scope of process R.

• An operator “:” to label as l all the events in a process P (except the event
√

),
noted by “l : P”. Additionally Σ is the set of all unlabelled events.

For instance, the connector C-S-connector in Figure 2.2 might be written as:

connector C-S-connector =
role Client = (request!x → result?y → Client) u §
role Server = (invoke?x → return!y → Server) @ §
glue = (Client.request?x → Server.invoke!x → Server.return?y

→ Client.result!y → glue) @ §

Note that the choice operators allow to distinguish between obligations (@) to provide
some services (such as Server) or choices (u) to use some services (such as Client).

The semantics of a connector is then given as the parallel interaction of the glue
and the roles, where the alphabets of the roles and glue are arrange so that the desired
coordination occurs. Wright defines this parallel composition as the meaning of a
connector description:

Definition 18 The meaning of a connector description with roles R1, R2, . . . , Rn,
and glue Glue is the process:

Glue||(R1 : R1||R2 : R2|| . . . ||Rn : Rn)

where Ri is the (distinct) name of role Ri, and

αGlue = R1 : Σ ∪ R2 : Σ ∪ . . . ∪ Rn : Σ ∪ {
√
}

42 CHAPTER 2. STATE OF THE ART

The behaviour of a port is given as an interacting protocol as well, for instance:

component DataUser =
port DataRead = get → u §
other ports. . .

When associated with the roles, the port protocol takes the place of the role protocol
in the resulting system. The semantics of an attached connector is the protocol resulting
from this replacement, formally:

Definition 19 The meaning of attaching ports P1 . . . Pn as roles R1 . . . Rn of a
connector with glue Glue is the process:

Glue||(R1 : P1||R2 : P2|| . . . ||Rn : Pn)

The main motivation of Wright to do this separation between roles and ports is to
enable the reuse of connectors.

Since connectors define interaction between components, the question that naturally
arises is whether a given port of a component can be used in a given role of a connector
such that the components safely communicate.

This “compatibility” notion between ports and roles is captured in Wright by means
of a “refinement relationship”. In CSP a refinement is based on the characterisation
of a process as the triple (A, F,D) of alphabet, failures and divergences. A process P
is refined by process Q, written P v Q, if their alphabets are the same, the failures of
P are a superset of the failures of Q, and the divergences of P are a superset of the
divergences of Q.

Wright defines compatibility between a port and a role based on the behaviour of the
port over the traces described by the role. They start by defining a deterministic version
of a role R, by replacing all the non-deterministic choices from R by deterministic
choices, formally defined in terms of the traces of R as follow:

Definition 20 deterministic version of R

det(R) = (αR, {(t, s)|t ∈ traces(R) ∧ ∀e : s • t^〈e〉 6∈ traces(R)}, {})

where ^ is the catenation CSP operator and {declarations|predicate • expression}
denotes the set of values defined by expression ranging over the values of variables
defined in declarations that also satisfy predicate.

Then compatibility is defined (using “\” as set difference) by:

Definition 21 P compat R (“P is compatible with R”) if:

R+(αP\αQ) v (P+(αR\αP)||det(R)+(αP\αR)).

where P+B = (P ||STOPB) is the augmented alphabet of process P by the set B
(STOPB is the STOP process over alphabet B).

Informally, a port P is compatible with the role R, both with matched augmented
alphabets, if R refines the process resulting form of the parallel composition of the port

2.4. COMPONENTS RELATED WORK 43

P and the deterministic version of the role det(R). Since det(R) is deterministic, any
internal choice made by P is still present in the parallel composition, except those that
would have resulted in a trace that is prevented by R, and no internal choice is induced
as a result of the interaction with R.

Compatibility ensures absence of deadlock if the connector is deadlock free and
conservative as demonstrated in [13]. A connector is conservative if the glue traces are
a subset of the possible interleaving of role traces.

Given the finite specification of processes (ports, roles and glues), Wright uses FDR
[76] to automatically check the compatibility relations and conservatism, and therefore
to conclude about deadlock-freedom. They have develop a tool [5] to translate the
Wright specifications (written in either an ASCII or Latex representation) into a CSP
specification directly used as the FDR input language. The use of model-checking tools
[68] to verify temporal properties of the processes and to check relationships between
processes is straight-forward in a per-connector basis (global properties can not be verify
since global constructor behaviours are not given).

As [13] states, hierarchy in Wright would be easily addressed by defining that a
subsystem must be a refinement of the element it represents (in the architecture), once
events internal to the subsystem have been hidden. However, this issue has not been
deeply studied in Wright.

Finally, Wright inherits the CSP limitation to systems with static process structure.
That is, the set of possible processes must be known at system definition time: new
processes cannot be created or passed as parameters in a running system. However, we
believe that dynamic update of a component is supported by checking that the ports
definition of the new component is compatible with the role to be attached. The roles
anyway keep being static.

2.4.2 Darwin (Tracta)

Darwin [120] allows distributed programs to be specified as a hierarchical construction
of components. Composite component types are constructed from the primitive compu-
tational components and these in turn can be configured into more complex composite
types.

Components interact by accessing services. Each inter-component interaction is
represented by a binding a required service and a provided service. Darwin has both a
graphical and textual representation. An example of a Darwin specification is shown
in Figure 2.3 in both representations.

Darwin views components in terms of both the services they provide to allow other
components to interact with them and the services they require to interact with other
components. In Figure 2.3 the convention is that filled-in circles represent services
provided by a component and empty circles represent services required by a component.

The purpose of Darwin is to construct composite component types from both in-
stances of basic computational components and other composite components, resulting
in a hierarchical structured system. Composite components are formed in Darwin by
declaring instances of components and binding the services required by one component
to the services provided in another as shown in Figure 2.3.

44 CHAPTER 2. STATE OF THE ART

B:Server
p

A:Client
r s

component Server { component System {
require s; inst
provide p; A:Client;

} B:Server;
component Client { bind

require r; A.r -- B.p;
} }

Figure 2.3: Darwin example

The Darwin specification of a system architecture is used as a framework for struc-
turing behavioural specifications during design and analysis; and it can be used to drive
system building during construction. A component does not need to know the global
names of external services or where they are to be found in the distributed environ-
ment. Components may thus be specified, implemented and tested independently form
the system they are part.

Behavioural descriptions are given to Darwin components using the Tracta [86] ap-
proach. Tracta uses Labelled Transition Systems (LTSs) as the underlying formalism,
with behavioural specifications given in FSP [122] (Finite State Processes), a process
algebra. Specifically, behaviour is attached to the software architecture in Darwin by
giving a behavioural specification for each primitive component in the hierarchy.

The behaviour of composite components is computed from that of their constituent
parts. For this process, all the necessary information related to the structure and
interconnections of components is extracted from the architectural description of the
system. In terms of LTSs, the behaviour of a composite is the parallel composition
of its sub-components LTS. Formally, Tracta defines the parallel composition between
processes P and Q, noted P ||Q, by the following transactional semantics:

P
a−→ P ′

P ||Q a−→ P ′||Q
a 6∈ αQ

Q
a−→ Q′

P ||Q a−→ P ||Q′
a 6∈ αP

P
a−→ P ′ Q

a−→ Q′

P ||Q a−→ P ′||Q′
a 6= τ

where αP denotes the set of action names (alphabet) of process P . This parallel
composition is both commutative and associative, therefore the order in which processes
are composed is insignificant.

Informally, processes communicate by synchronisation on actions common to their
alphabets with interleaving of the remaining actions.

Binding services in Darwin correspond to relabelling with common names the cor-
responding actions in LTSs. Additionally, Darwin encapsulates (hide) all interactions
among its sub-components that do not form part of the interactions with the environ-
ment. In order to do that, Tracta defines two operators relabelling and hiding similar
to the same operators in CCS [130].

2.4. COMPONENTS RELATED WORK 45

For each composite, Tracta applies relabelling based on the bindings between the sub-
components defined in the Darwin specification. Then a LTS is obtained by applying the
parallel composition rules among its sub-components. The resulting LTS is minimised
with respect to weak semantic equivalence [130], where the internal interactions of the
sub-components have been hidden. Finally the minimised LTS can checked against
local properties and it is used when computing the parallel composition at the next
level of hierarchy.

Tracta distinguishes between safety and liveness properties.
Safety properties are checked using the approach introduced by Cheung and Kramer

in [49]. They are specified by describing expected scenarios as deterministic LTSs
without τ transitions. Then a system Sys satisfies a property P if Sys can only generate
traces which, when restricted to the alphabet of P , are acceptable to P .

Liveness properties are specified as Büchi automata. Since Tracta works with LTS
(no specific information is stored on states), it distinguishes accepting states of Büchi
automata by means of special transitions that are added to the automata. In particular
for a property expressed as a Büchi automaton B, the following conditions should hold
in order to be verified:

1. B is deterministic

2. A transition is defined at each state of B for each action in its alphabet

3. The choices in the system analysed are assumed to be fair.

A system satisfies a property expressed as a Büchi automaton if the automaton
accepts all infinite executions of the system.

Tracta is supported by the tool “Labelled Transition Systems Analyser” (LTSA)
[122]. Darwin specifications are supported by the tool “Software Architect’s Assistant
(SAA)” [136]. The Tracta team, at the time of this thesis, is working on developing a
tool to automatically translate the Darwin description of a system architecture as the
input to the LTSA tool.

2.4.3 SOFA

SOFA [145] is a distributed component model and implementation. In the SOFA com-
ponent model, an application is viewed as a hierarchy of nested software components.

Components in SOFA are instantiated from a template, which can be interpreted
as a component type. A template T is a pair < F,A > where F is a template frame
and A is a template architecture. SOFA components interact with the environment
through typed interfaces. The frame F defines the set of individual interfaces that any
component which is an instance of T will posses. An interface can be instantiated as
a provides-interface or a requires-interface, the first encoding services the component
provides and the second services the component requires.

One or more architectures can be associated to a frame. Basically, for a template
T =< F, A > its frame F describes the template’s specification by providing a black-box
view on T , and the architecture A describes a particular template’s implementation by
providing a particular grey-box view on T .

An architecture A describes the structure of an implementation of a frame F by:

46 CHAPTER 2. STATE OF THE ART

1. instantiating direct subcomponents of A and

2. specifying the subcomponents interconnections via interface ties

There are four kinds of interfaces ties within a template T =< F, A >:

1. binding a requires-interface to a provides-interface between two subcomponents,

2. delegating a provides-interface of F to a subcomponent’s provides-interfaces,

3. subsuming a subcomponent’s requires-interface to a requires-interface of F , and

4. exempting an interface of a subcomponent from any ties (the interface is not em-
ployed in A).

An architecture can also be specified as primitive, which means the there are no
subcomponents and its structure/implementation will be provided in an underlying
implementation language.

interface IDBServer {
void Insert(in string key, in string data);
void Delete(in string key);
void Query(in string key, out string data);

};

frame DatabaseBody {
provides:

IDBServer d;
ICfgDatabase ds;

requires:
IDatabaseAccess da;
ILogging lg;
ITransaction tr;

};

frame Database {
provides:

IDBServer dbSrv;
requires:

IDatabaseAccess dbAcc;
ILogging dbLog;

};

architecture Database version v2 {
inst TransactionManager Transm;
inst DatabaseBody Local;
bind Local:tr to Transm:trans;
exempt Local:ds
subsume Local:lg to dbLog;
subsume Local:da to dbAcc;
delegate dbSrv to Local:d;

};

Figure 2.4: Example of a SOFA specification in CDL

The Component Definition Language (CDL) is used to describe interfaces, frames
and architectures of SOFA components. It is based on OMG IDL [141]: the language
extends the features of IDL to allow specification of software components. An example
of SOFA specification in CDL is shown in Figure 2.4, the full CDL syntax is provided
in [4]

The behaviour of SOFA components is modelled via event sequences (traces) on
the component’s interfaces (connections). The event sequences are approximated and
represented by regular expressions called behaviour protocols.

Every event is syntactically written as

< event prefix >< connection name > . < local event name >< event suffix >

The pair <connection name>.<local event name> encodes the event
“local event name” in the interface “connection name”. The event prefix (!, ? or τ)

2.4. COMPONENTS RELATED WORK 47

expresses whether an event is emitted (requirement), absorbed (provides) or is an in-
ternal event. The event suffix expresses whether an event is a request (↑) or a response
(↓) to an event request. The abbreviation “?m{α}” stands for “?m↑; α; !m↓”, “?m”
stands for “?m↑; !m↓” and “!m” stands for “!m↑; ?m↓”.

Definition 22 A behaviour protocol (protocol for short) P over an alphabet S, is
a regular-like expression which (syntactically) generates a set of traces over S, the lan-
guage L(P).

A behaviour protocol may contain the basic operators of regular expressions [100] as
well as the enhanced and composed operators listed bellow (A, B denotes a protocol):

• Basic operators

sequencing A; B the set of traced formed by concatenation of a trace generated
by A and a trace generated by B,

alternative A + B the set of traces which are generated either by A or by B,

repetition A∗ zero or more concatenation of a trace generated by A.

• Enhanced operators

and-parallel A|B an arbitrary interleaving of event tokens from traces gener-
ated by A and B,

or-parallel A||B stands for A + B + (A|B),

restriction A/G the events NOT in the set G are omitted from the traces of
L(A) 1

• Composed operators

composition A ΠX B the set of traces each formed as an arbitrary interleaving
of event tokens from a pair of traces (α, β), (where α ∈ L(A) and β ∈ L(B)),
such that, for every event x ∈ X, if x is prefixed by ? in α and by ! in β (or vice
versa), any occurrence of ?x, !x resp. !x, ?x as the result of the interleaving is
merged into τx in the resulting trace (the pair of events becomes an internal
event),

adjustment A|T |B the set of traces each formed as an arbitrary interleaving
of event tokens from a pair of traces (α, β), where α ∈ L(A) and β ∈ L(B),
with the exception of event tokens from T which have to appears in α and β

in the same order (representing “synchronisation points”). If the interleaving
produces . . . x, x . . . for an x ∈ T , then x, x is merged into . . . x . . . in the
resulting trace (the pair becomes a single event).

In Principe, the semantics of the adjustment operator |T | is inspired by the gen-
eralised parallel operator defined in CSP [96], while the semantics of the composition
operator ΠX by the parallel composition in CCS [130]. The formal definition of both
operators is given in [146].

1please do not confuse the restriction operator of SOFA with the restriction operator E\L of CCS, where the actions
in the set L are forbidden (omitted) from E

48 CHAPTER 2. STATE OF THE ART

The composition operator is suitable for expressing joint behaviour of components
communicating via bound interfaces. The adjustment operator is suitable for the com-
parison of the behaviour of components in the following way: If the protocol B in A|T |B
comprises only events tokens from T , it can be seen as an obligation for the protocol A
in the sense that A should handle the event tokens from T in the same way that B does.
Since a trace β ∈ L(B) comprises event tokens from T only, either α|T |β generates α
(if α ∈ L(A) contains all the tokens of β in the same order that appears in β), or it
does not yield any trace. As consequence, L(A|T |B) ⊆ L(A).

Behaviour protocols are integrated in the CDL and associated to the SOFA natural
abstraction units (interface, frame and architecture) as indicated in Table 2.2.

CDL
concept

behaviour
protocol

alphabet S (the event tokens on:)
Sext SintSprov Sreq

frame F frame proto-
col

F ’s provides
interfaces

F ’s requires
interfaces

∅

architecture A
(of frame F)

architecture
protocol

F ’s provides
interfaces

F ’s requires
interfaces

interfaces
bound in A

provides inter-
face Ip

interface
protocol

Ip ∅ ∅

requires inter-
face Ir

interface
protocol

∅ Ir ∅

Table 2.2: Behaviour protocols and CDL association

Frame protocol is a behaviour specifying the acceptable interplay of method invoca-
tions on the provides-interfaces and reactions on the requires-interfaces of the frame.
The frame protocol is given by the system’s designer in the CDL as the example shown
in Figure 2.5.

frame Database {
provides:

IDBServer dbSrv;
requires:

IDatabaseAccess dbAcc;
ILogging dbLog;

protocol:
!dbAcc.Open ;

(?dbSrv.Insert { (!dbAcc.Insert ;
!dbLog.LogEvent)* }

+
?dbSrv.Delete { (!dbAcc.Delete ;

!dbLog.LogEvent)* }
+
?dbSrv.Query { !dbAcc.Query* }

)*;
!dbAcc.Close

};

Figure 2.5: Behaviour protocol of frame DatabaseBody

For a template T =< F, A >, architecture protocol is a behaviour protocol describ-
ing the interplay on the method invocations on the interfaces of F and the outermost

2.4. COMPONENTS RELATED WORK 49

interfaces of the subcomponents in A. The architecture protocol is generated automati-
cally combining the frame protocols of the subcomponents via the composition operator
ΠX . In a architecture protocol, the set X of ΠX is composed of all the events on the
interfaces appearing in the bind clauses of the corresponding architecture and can be
inferred from the architecture specification.

Interface protocol is a behaviour specifying the acceptable order of method invoca-
tions on an interface. It is intended to simplify a component design as it represents the
behaviour of a component on a single interface only. The interface protocol is given in
the CDL specification.

SOFA propose a top-down design. It starts by substituting the primitive top compo-
nent by another refined composite, whose architecture behaviour is defined by combin-
ing the frame protocols of its subcomponents. This refinement is recursively repeated
through the hierarchy until the inner-most primitive component whose architecture be-
haviour protocol is determined by its implementation. In this refinement process, at
each level the hierarchy defined by a template T =< F, A >, arises the question whether
the architecture protocol A fits in the frame protocol F , i.e. whether the architecture
A implements the frame specification F .

In SOFA, this relation is called protocol conformance [146, 11]. An architecture
protocol PA refines a frame protocol PF if PA conforms PF . The conformance relation
is given bellow:

Definition 23 Harmonious alphabets two alphabets SA and SB are harmonious if
for all event e such that e ∈ SA and e ∈ SB, e is a provides (resp. requirement, resp.
internal) in both alphabets SA and SB.

Definition 24 Protocol compliance Let LA and LB be protocols with harmonious
alphabets SA and SB respectively. Let S be another protocol harmonious with SA and
SB such that:

Sprov ⊆ SA,prov ∪ SB,prov ∧ Sreq ⊆ SA,req ∪ SB,req ∧ Sint ⊆ SA,int ∪ SB,int

The behaviour LA is compliant with the behaviour LB on S if:

LB/Sprov ⊆ LA/Sprov ∧ (LB/Sprov)|Sprov|(LA/S) ⊆ LB/S

Behaviour protocols associated with a CDL incorporate connections at different lev-
els of abstraction and name unification may be required for reasoning about the pro-
tocols. SOFA introduce the notion of qualification of a protocol PX with respect to
a CDL abstraction Y (denoted as YPX), which means that any name of an interface
instance/connection in PX associated with the CDL abstraction X is modified (unified)
to that used in Y for the same interface instance/connection.

Definition 25 Protocol Conformance Let T =< A, F > be a template with the
frame protocol PF and the architecture protocol PA. The protocol PA conforms to the
protocol PF if PA is compliant with APF on S, where S is the alphabet associated with
F .

Informally, the definition expresses that the architecture protocol of A cannot gen-
erate traces not allowed by the frame protocol of F (under the assumption that the

50 CHAPTER 2. STATE OF THE ART

provides-interfaces known in F are used in A in a way allowed by the frame proto-
cols). At the same time, the architecture protocol can be “less demanding” on the
requires-interfaces.

The CDL compiler provided in the SOFA implementation [4], automatically gener-
ates the architecture protocols and tests the interface, frame, and architecture protocol
conformance.

Errors detection

In [12] SOFA extends the behaviour protocols to capture faulty computations caused by
a “bad” component composition. SOFA splits faulty computations in two categories: 1)
At some point the computation cannot continue - no continuation error which includes
two specific error types: bad activity and no activity; 2) A computation is infinite
(divergency error).

To capture errors, SOFA introduces error tokens: εn↑, εn↓, ε� and ε∝ (where n is
an event name); and erroneous traces of the form w < e >, where w is a trace formed of
non-error event tokens and e stands for the error token reflecting the type of the error
occurred: εn↑, εn↓ for bad activity, ε� for no activity and ε∝ for divergency.

1. bad activity is produced when a component tries to emit !n↑ or !n↓ (where n is an
event name), but the component at the other side of the respective binding is not
ready to accept (to issue ?n?↑ resp. ?n↓), i.e. no suitable trace is defined in B’s
behaviour.

2. non activity is produced when neither A or B is able to emit an event, and at least
one of A and B cannot stop.

3. divergence is produced when A and B can emit events, but after each event, at
least one of the components cannot stop.

The set of erroneous traces induced when composing two components A and B,
noted ER(LA, LB, X), is formally defined in [12]. SOFA defines a consent operator
∇X for languages LA, LB, where X consists of all the events from connections between
components A and B. Formally:

LA ∇X LB = (LA ΠX LB) ∪ ER(LA, LB, X)

Dynamic update

An important feature of SOFA is to allow the update of a component during runtime,
i.e it can dynamically change the implementation of a component by a new one. The
architecture protocol of the new component should conforms to the frame protocol.
Besides this conformance relation, SOFA states in [12] that during the update of a
component C, it has to be ensured: 1) component passivity: no thread is executing a
method of an interface of C; 2) update atomicity: no other component (external to C)
in the system calls a method of an interface of C.

To ensure 1) and 2), SOFA allows the system’s designer to use a special update token
π, defining when an update can take place. An update of a component C is possible

2.4. COMPONENTS RELATED WORK 51

after a given trace prefix tp, if tp <?π↑> is also a prefix of a trace generated by the
frame protocol of C.

Component passivity is ensured by the SOFA implementation at runtime (still, this
can take place only if the update is possible). Atomic update is ensured by static
analysis of the behaviour protocols.

Because atomically update is a matter of communication among the components
on a particular level of nesting (the components from an architecture Z), it is not a
property of a single component, but a property of Z. Let Z consist of frames F1, . . . , Fn

with frame protocols PF1 , . . . , PFn . The atomicity is verified in two steps:

1. Local atomicity is tested for every frame protocol. A protocol is locally atomic if in
all the traces generated by the protocol between the pair of corresponding update
tokens (?π↑ and !π↓), no other tokens occurs.

2. If (1) succeeds, the protocols PF1 , . . . , PFn are composed using the consent operator
which yields the language of the architecture protocol PZ

If (1) succeeds, there cannot be an accepting token of the form ?e between a pair of
update tokens. Thus any attempt to call a method on an interface of a frame during
an update results in a bad activity captured by a trace of the form w <?π↑; εn↑> in
(2).

Summarising, SOFA provides a concrete formal framework of component behaviours.
The conformance operator, the detections of errors (via the consent operator) and the
explicit introduction of update tokens, provide a formal means for capturing component
(dynamic) substitutability as well as adherence of a component implementation to the
behaviour specification.

52 CHAPTER 2. STATE OF THE ART

Chapter 3

Behaviour Specifications

3.1 Introduction

In behavioural verification of systems, the first natural question that arises is which
would be the best suitable language/format to model its behaviour.

Our target systems are real concurrent and distributed asynchronous processes built
within a component framework (we go deeper on the analysis of such systems in chapters
4 and 5). Then we want a well suited language for describing the behaviour of such
systems.

We want as well this language to be based on process algebra theories [130, 96, 33]
that would enable us to profit from its main features: operational semantics to describe
unambiguously the system behaviour and check their properties, equivalences and pre-
orders to provide a behavioural relation between different systems and compositional
modelling to model larger systems up from their smaller pieces that compose them. The
latter is specially important when looking for scalability.

Moreover, we want this language to be both intuitive and expressive enough for
specifying the behaviour of our target system, as well as the target language for static
analysis tools (then implementations can be checked against formal specifications). In
addition it should be formal enough as the input language for state of the art automatic
model-checking tools.

Several languages featuring process algebras have been proposed, besides the seminal
work of Milner [130] and Hoare [96] we can mention TCSP [42], ACP [32], Meije [61],
µCRL [88] or LOTOS [104] among many others (some of them reviewed in section 2.2).

A good candidate as a behavioural language would be a process algebra with at
least value-passing features, or even encoding dynamic process and channel creation
and reconfiguration.

Promela [98, 97] fits well on these requirements except that it does not support
nested (hierarchical) process. This restriction does not allow us to directly describe our
hierarchical systems using Promela.

Another excellent candidate is LOTOS [104], however LOTOS is just too expressive
to be subject to automatic decision procedures (taken by our automatic tools), and
would not give us models and algorithms usable in practical tools. The data part
specification, based on abstract data types (ADT) [69], is complex and error-prone.

53

54 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

It requires the intervention of a qualified user, drastically reducing its usability and
automatic reasoning.

Our approach is to extend the general notion of labelled transition systems (LTS) and
hierarchical networks of communicating systems (synchronisation networks) by adding
parameters to the communication events. Rather than a “language”, we prefer speak
of an “intermediate format”, for avoiding confusions due to the wide use of the term in
the computer field.

The labelled transition systems of Arnold & Nivat can be naturally associated with
the CCS process algebras as introduced by Milner [130]. In CCS a process p is something
that can execute some action a, or react to an event a, and transform itself to a new
process p′, which is indeed a labelled transition p

a−→ p′.

The synchronisation product introduced by Nivat is both simple and powerful, be-
cause it directly addresses the core of the problem. One of the main advantage of using
its high abstraction level is that almost all parallel operators (or interaction mechanism)
encountered so far in the process algebra literature become particular cases of a very
general concept: synchronisation vectors.

We will take benefits of both approaches: the simplicity and universality of synchro-
nised LTSs, and the conciseness of symbolic graphs.

We start by slightly simplifying the Arnold & Nivat’s definition of labelled transition
systems. Then we introduce the synchronisation constraint as part of a synchronisation
network. Contrary to synchronisation constraints, the network allows dynamic changes
between different sets of synchronisation vectors through a transducer LTS. We give a
synchronisation product definition semantically equivalent to the one given by Arnold
& Nivat.

At a next step, we use the Hennessy and Lin’s approach for adding parameters in
the communications events of both transition systems and synchronisation networks.
These communication events can be guarded with conditions on their parameters. Our
agents can also be parameterized to encode sets of equivalent agents running in parallel.

We shall see later that the format we obtained here is too powerful to be used
directly in existing verification tools. We shall restrict the domain of parameters to be
simple enumerable types: booleans, integers, intervals, finite enumerations or structured
objects; and define instantiations of the system based on finite abstraction of such
parameters in a spirit similar to value-passing CCS [130].

Following we give the formal definition of our intermediate language that we call
Parameterized Networks of Communicating Automata. In section 3.3 we describe a case
study we use to validate our intermediate format as a specification language. Finally,
section 3.4 concludes with the main results of our approach.

3.2 Parameterized Networks of Communicating Automata

We aim at combining the value-passing and the synchronisation product approaches.
We define an intermediate format featuring parameterized processes, value-passing com-
munication, behaviours expressed as symbolic labelled transition systems, and data-
values of simple countable types.

3.2. PARAMETERIZED NETWORKS OF COMMUNICATING AUTOMATA 55

3.2.1 Theoretical Model

We start with an unspecified set of communications actions Act, that will be refined
later. We give as well a definition of labelled transition systems which is simpler, but
semantically equivalent to Arnold & Nivat’s (section 2.1.3, Definition 10)

Definition 26 LTS. A labelled transition system is a tuple (S, s0, L,→) where S is the
set of states, s0 ∈ S is the initial state, L ⊆ Act is the set of labels, → is the set of
transitions : → ⊆ S × L× S. We write s

α−→ s′ for (s, α, s′) ∈ →.

Then we define Nets in a form inspired by [15], that are used to synchronise a finite
number of processes. A Net is a form of generalised parallel operator, and each of its
arguments are typed by a Sort that is the set of its possible observable actions.

Definition 27 Sort. A Sort is a set I ⊆ Act of actions.

A LTS (S, s0, L,→) can be used as an argument in a Net only if it agrees with the
corresponding Sort (L ⊆ Ii). In this respect, a Sort characterises a family of LTSs
which satisfy this inclusion condition.

Our definition of Nets has the same expressive power than the synchronisation con-
straints of section 2.1.3 (Definition 12), though you can consider it has more “syntax
oriented”.

Nets describe dynamic configurations of processes, in which the possible synchroni-
sations change with the state of the Net. They are Transducers, in a sense similar to the
Lotomaton expressions [107, 135]. Each state of the transducer corresponds to a given
configuration of the network in which a given set of synchronisations is possible; some
of those synchronised actions can trigger a change of the transducer’s state. Transduc-
ers are encoded as LTSs which labels are synchronisation vectors, each describing one
particular synchronisation of the process actions:

Definition 28 Net. A Net is a tuple < AG, I, T > where AG is a set of global actions, I

is a finite set of Sorts I = {Ii}i=1,...,n, and T (the transducer) is a LTS (TT , s0t , LT ,→T),
such that ∀−→v ∈ LT ,−→v =< lt, α1, . . . , αn > where lt ∈ AG and ∀i ∈ [1, n], αi ∈ Ii ∪
{idle}.

We say that a Net is static when its transducer contains only one state. Note that a
synchronisation vector can define a synchronisation between one, two or more actions
from different arguments of the Net. When the synchronisation vector involves only
one argument, its action can occur freely.

The semantics of the Net is given by the synchronisation product:

Definition 29 Synchronisation Product. Given a set of LTS {LTSi = (Si, s0i
,

Li,→i)}i=1...n and a Net < AG, {Ii}i=1...n, (ST , s0T
, LT ,→T) >, such that ∀i ∈ [1, n], Li ⊆

Ii, we construct the product LTS (S, s0, L, →) where S = ST ×
∏n

i=1(Si), s0 =
s0T

×
∏n

i=1(s0i
), L = AG, and the transition relation is defined as:

→, {s lt−→ s′| s =< st, s1, . . . , sn >, s′ =< s′t, s
′
1, . . . , s

′
n >,

∃ st

−→v−→ s′t ∈→T ,−→v =< lt, α1, . . . , αn >, ∀i ∈ [1, n], (αi 6= idle ∧ si
αi−→ s′i ∈→i) ∨ (αi =

idle ∧ si = s′i)

56 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

Note that the result of the product is a LTS, which in turn can be synchronised with
other LTSs in a Net. This property enables us to have different levels of synchronisa-
tions, i.e. a hierarchical definition for a system.

Next we enrich the format with parameters at the level of LTS and of Nets.

Definition 30 Parameterized Actions are actions having parameters in the form
α(−→x), where α is an action and −→x a vector of parameter terms; or the non-observable
action τ .

A parameterized LTS is a LTS with parameterized actions, with a set of parameters
(defining a family of similar LTSs) and variables attached to each state. Addition-
ally, the transitions can be guarded and have a resulting expression which assigns the
variables associated to the target state:

Definition 31 pLTS. A parameterized labelled transition system is a tuple pLTS =
(K, S, s0, L,→) where:

K = {ki} is a finite set of parameters,
S is the set of states, and each state s ∈ S is associated with a finite vector of

variables −→vs ,
s0 ∈ S is the initial state,
→ ⊆ S × L× S is the set of transitions and
L = (b, α(−→x),−→e) is the set of labels (parameterized actions), where b is a boolean

expression, α(−→x) is a parameterized action, and −→e is a finite set of expressions.

In the label l = (b, α(−→x),−→e) of a transition s
l−→ s′, the free variables of b, −→x and

−→e are a sub set of the free variables of −→vs (source state) union the global variables; and
the dimension of the vector −→e should be the same than −→vs′ (target state). The latter
because, as we will see in section 3.2.3, −→e infers to the variables of the target state
(−→vs′ = −→e).

Definition 32 Parameterized Sort. A Parameterized Sort is a set pI of parameter-
ized actions.

Definition 33 A pNet is a tuple < pAG, H, T > where : pAG is the set of global param-
eterized actions, H = {pIi, Ki}i=1..n is a finite set of holes (arguments). The transducer
T is a pLTS (KG, ST , s0T

, LT ,→T), such that ∀−→v ∈ LT ,−→v =< lt, α
k1
1 , . . . , αkn

n > where
lt ∈ pAG , αi ∈ pIi ∪ {idle} and ki ∈ Ki.

The KG of the transducer is the set of global parameters of the pNet. Each hole
in the pNet has a sort constraint pIi and a parameter set Ki, expressing that this
”parameterized hole” corresponds to as many actual arguments as necessary in a given
instantiation. In a synchronisation vector−→v =< lt, α

k1
1 , . . . , αkn

n >, each αki
i corresponds

to the αi action of the ki-nth corresponding argument LTS.
We do not define a product of pLTS that would give some kind of “late” or “sym-

bolic” semantics of our generalised pNets. Instead, we define instantiations of the
parameterized LTS.

Before this, we give a definition of a subset of our intermediate format, which cor-
responds to a graphical language for static pNets. This language will be used for all
graphical examples in this thesis.

3.2. PARAMETERIZED NETWORKS OF COMMUNICATING AUTOMATA 57

3.2.2 Graphical Language

We provide a graphical syntax for representing static Parameterized Networks, that
is a compromise between expressiveness and user-friendliness. This graphical syntax
principally aims to better explain our approach by visualising the behaviours described
using our formalism. Although the graphical syntax can be used as a behavioural design
language, it does not claim to be better than existing approaches which can be more
adequate depending on the aims (such as textual LOTOS or graphical UML).

We use a graphical syntax similar to the Autograph editor [10], augmented by el-
ements for parameters and variables : a pLTS is drawn as a set of circles and states
respectively representing states and transitions. The states are labelled with the set
of variables associated with it (−→vs) and the edges are labelled by [b] α(−→x) → −→e (see
Definition 31).

An static pNet is represented by a set of named boxes, each one encoding a particular
Sort of the pNet, and an enclosing box. These boxes can be filled with a pLTS satis-
fying the Sort inclusion condition. Each box has a finite number of ports on its edge,
represented as labelled bullets, each one encoding a particular parameterized action of
the Sort.

Consumer
c

?R get()

!Q get()

!Q get()

?R get()
p : producers

c : consumers

Q get(c)

!R get(c)?Q get(c)

R get(c)

Q put(p, x)

R get(c)Q get(c)

?Q put(x)

Q put(p, x)

Producer
p(Max)

!Q put(x)

!Q put(x)

x : [1,Max]Buffer(Max, consumers)

c : consumers
x : [1,Max]

Figure 3.1: Parameterized consumer-producer system

Figure 3.1 shows an example of such a parameterized system. It is composed of a
single bounded buffer (with a capacity of Max) and a bounded quantity of consumers
(#consumer) and producers (#producer). Each producer feeds the buffer with a quan-
tity (x) of elements at once. Each consumer requests a single element from the buffer
(!Q get()) and waits for the response (?R get()).

Figure 3.1 also introduces the notation to encode sets of processes; for example,
Consumerc encodes a set composed of a Consumer process for each value in the
domain of c. Therefore, each element in the domain of c is related (identifies) to an
individual Consumer of the set.

The edges between ports in Figure 3.1 are called links. Links in a Net express
synchronisation between internal boxes or with external processes. They also can be
between ports of different instantiations of the same box. A synchronisation may be
required between more than two actions (i.e. involving more than two ports), this is

58 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

represented by an ellipse with multiple arriving/outgoing links from/to the ports of the
boxes (processes) whose actions must be done simultaneously (an example of such is
shown later in Figure 3.5). Each link encodes a transition in the Transducer LTS of the
pNet.

When the initial state is parameterized with an expression, it can be indicated which
evaluation of the expression (for which value of the variables) is to be considered as the
initial state.

The various elements of the graphical language described here are naturally trans-
lated into pLTSs and pNets. A drawing in our language may contain an arbitrary
composition of pNets and pLTSs. The ports in the outer box in Figure 3.1 are actions
we choose to be visible. The Buffer box in the figure represents a hole in the pNet to
be filled, we left it unspecified on this section for clarity but we go deeper in the pLTS
describing its behaviour in section 6.5.2.

Our graphical approach is valid only for static pNets: their transducers have only
one state. If we had to represent dynamic pNets, we would have to add the transducer
LTS in the drawing of the Net.

3.2.3 Instantiation

In this work’s framework, we do not give a more precise definition of the language of
parameterized actions, and we shall not try to give a direct definition of the synchroni-
sation product of pNets/pLTSs. Instead, we shall instantiate separately a pNet and its
argument pLTSs (abstracting the domains of their parameters and variables to finite
domains, before instantiating with all possible values of those abstract domains), then
use the non-parameterized synchronisation product (Definition 29). This is known as
the early approach to value-passing systems [130, 133].

The abstraction of the parameter domains should be sound in the sense that every
universal property that can be proved using the abstraction will also hold true for the
original system.

Several work has been done in the abstraction domain derived from the abstract
interpretation theories introduced by Cousot [57, 56, 58], but most of them, for instance
in [51, 89, 112], are based on state-transformer languages and Kripke structures [68].
We rather prefer the approach proposed by Riely and Cleaveland [53, 148] based on
abstraction of value-passing transition systems.

Riely and Cleveland take the notions and notations from abstract interpretation and
introduce an abstraction function α between two value sets applicable to process terms
and LTSs. They also devise a corresponding concretization function γ with the property
that α and γ form a Galois insertion on the preordered domains. They define an abstract
semantics to be sound if the set of values that it assigns to an expression includes every
value that the concrete semantics might assign to that expression. Then they prove
that sound value interpretations induce sound process semantics, and sound process
semantics, in their setting, implies preservation of a large family of both safety and
liveness temporal properties (assuming reasonable hypothesis on the values of variables
occurring in the formulas). This theorem licenses the use of sound abstract value
interpretations for verifying system properties, using both preorder checking and model

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 59

checking.

For instance, we can abstract the system described in Figure 3.1 to have 2 consumers
and 2 producers. In both cases, one encodes every consumer/producer as an individual
entity, and the second encodes the remaining consumers/producers. We also set buffer
capacity to 3. An instantiation using these parameter domains is shown in Figure 3.2.

Consumer

?R get()!Q get()

?R get()

!Q get()

?Q put(1)

?Q put(3)

?Q put(2)

!Q put(1)

!Q put(2)

!Q put(1)

!Q put(2)

!Q put(3)

!Q put(1)
!Q put(2)
!Q put(3)

Producer

Q put(1, 1)

Q put(1, 2)

Q put(1, 3)

Q get(1) R get(1)

!R get(1)?Q get(1)

Q get(2)

Consumer

!Q get()

?R get()

!Q get()

?R get()

?Q get(2)

!R get(2)

R get(2)

Q put(2, 2)

Q put(2, 3)

Q put(2, 1)

!Q put(1)
!Q put(2)
!Q put(3)

!Q put(3)

Producer

Q put(1, 1)

Q put(1, 2)

Q put(1, 3)

R get(2)

R get(1)

Q get(2)

Q get(1)

Q put(2, 1)

Q put(2, 2)

Q put(2, 3)

Buffer

Figure 3.2: Instantiated consumer-producer system

We have developed a tool, described in section 6.5 for automatically generating finite
systems from parameterized ones given their finite abstract domains.

3.3 Case study: The Chilean Electronic Invoices System

As an early work before tackling component behaviours, we have used our intermediate
format to build a formal specification of the electronic invoices system used in Chile [17].
We used this case study to illustrate and validate our approach for the specification and
verification of distributed applications. In this respect, this example has a number of
interesting features: first it is a real-world application, whose (informal) requirements
have been published on the Chilean tax agency web server [65]. It is a large example,
that fits well with the idea of parameterized models: it has a complex component
structure (17 automata in 4 levels of hierarchy), it will run with thousands of instances
of the components and the smallest instantiation, with two actors of each type, already
has a pretty large state space (over 1012). Last, even if not a standard “critical system”,
it is naturally the kind of distributed applications for which both security and safety
have a very strong economical impact.

60 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

3.3.1 System description

In this section, we informally describe the electronic invoice system recently realised in
Chile, as published in September 2002; for a detailed explanation, please look at [65].

The Chilean law requires any commercial transaction done in Chile to be supported
by a legal document previously authorised by the tax agency (Servicio de Impuestos
Internos, from now on SII). There are several types of documents depending on the
transaction such as the invoice for sales, or the forms for the transportation of goods.
For a specific taxpayer and document type, each emitted document is assigned a unique
number named id. Before emitting a document, it must be authorised by SII: this is
done through an authorisation stamp specific to: (1) a set of documents, (2) a document
type and (3) a taxpayer. The taxpayer obtains authorisation stamps via the SII Web
site. We call the emitter of an invoice a “vendor” and its receptor a “buyer”, even if
those may be simply two different roles of the same taxpayer.

Every generated document must be sent to SII before sending it to the buyer and
before the transport of goods (if relevant). All documents must include a digital seal,
generated from the document data and the authorisation stamp.

SII has created a Web site where the buyer can verify if an invoice has been authorised
and verify whether the emitter has sent the same invoice to SII than the buyer has
received.

SII

Vendor

Buyer

1. authorisation
stamps?

4. invoice

3. purchase

5. invoice

6. accept

2. stamp set

7. verify

Figure 3.3: Normal Scenario

The most common scenario is shown in Figure 3.3. In step 1 the vendor asks for
authorisation stamps. SII responds with a stamp set (step 2). Once a buyer has made
a purchase (step 3), the vendor generates an invoice, sends it first to SII (step 4), then
sends it to the buyer (step 5). In this scenario, the buyer will accept the invoice (step
6) and later it will verify the validity of the invoice with SII (step 7).

An electronic invoice is well emitted if it respects the format specifications defined by
SII; if this is not the case, SII will refuse it and the invoice will be considered as never
emitted. On the buyer’s side, if the transaction has never been realised or if there are
errors in the invoice information, the buyer may refuse the invoice and consider it as
never received. Then it is the duty of the emitter to send a cancellation of the invoice
to SII.

Note that Figure 3.3 is just a drawing meant to explain the application, not a part
of the specification. In fact the available specification is informal, and consists in a
natural language (Spanish) description of the protocols and of document formats. Our

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 61

first task then was to identify within this informal specification the parts relative to the
communication between the various subsystems, and to extract a list of semi-formal
requirements.

3.3.2 System properties

Some of the behavioural properties that the system should respect are listed below. The
published requirements [65] focus more on the format and contents of the electronic
invoices than on the system’s behaviour. Properties 1, 3, 4, and 6 appear explicitly
in the requirements. Properties 2, 5 and 7 do not, but they appeared as natural and
useful extensions of the specification.

1. A taxpayer cannot emit invoices if it has not received stamps from SII. More
specifically, a taxpayer can emit as many invoices as the quantity of stamps received
from SII.

2. SII gives the right answers to the invoice status request: not present when it has
not been sent to SII, present when it has been sent, and cancelled when it has been
cancelled by the vendor.

3. Every invoice refused by a buyer must be cancelled by the vendor.

4. An invoice id can be used only once.

5. It is not possible to cancel an invoice which has not been emitted before.

6. Every invoice sent to a buyer, should be sent to SII first.

7. Every emitted invoice finishes being accepted by the buyer or cancelled in SII.

3.3.3 Formalisation

The intention here is not to describe all aspects of the system specification. We rather
concentrate on the behaviour of the system, the communications between the dis-
tributed processes and their temporal properties.

• We assume that the communication channels are reliable.

• Security aspects (authentication, integrity) and document format verification are
supposed to be treated elsewhere. All the processes in the system are trusted.

• There are only two types of documents, invoices and cancellations and only two
types of authorisation stamps, one for invoices and another for cancellations. The
only specific value to be considered for a document is its identification number
(id).

In this section we concentrate in only two pNets describing the system, the interested
reader will find the complete system formalisation in [26].

62 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

The Vendor system

Figure 3.4 shows the network that defines the behaviour of the Vendor. We use a richer
language in the labels than those introduced in section 3.2.2 such as prefixing the com-
munication actions with the process to whom/from where is done (Ex: !Stock.stamp()),
having the identifier of processes between square parenthesis (Ex: !AI[id].cancelSii())
or setting the domain of variables (Ex: x : int or b : buyerSet). This is for a better
understanding but does not involve any extra semantics when instantiating.

?SII.getNewStamps(x : int)

?SII.getNewCancelStamps(x : int)!SII.reqNewCancelStamps()

Vendor(maxIdInv,maxIdCancel,

pcrs,buyerSet)
maxStockInvoice, maxStockCancel,

?Id.stamp()

Stock(“invoices′′,maxStockInvoice)

Id(“invoices′′,pcrs,maxIdInv)

?PP [Pn].reqNewId()

!PP [Pn].giveNewId(id : [1,maxIdInv])

!Stock.stamp()

!SII.reqNewStamps()

?getNewStamps(x)

!SII.reqNewStamps()

?PP [Pn].cancelSii()

!Id.reqNewId()

?Id.giveNewId(cancelId)
?SII.okCancellation()

CIinv()

?Id.giveNewId(id)

!Id.reqNewId()

!SII.send(id)

PPPn(buyerSet)

?BV.emit(b)

?SII.ok(id)

!SII.send(id)

?SII.ok(id)

?SII.okCancellation(inv)

!Stock.stamp()

BV(pcrs,buyerSet)

!PP [Pn].emit(b : buyerSet)

!AI[id].cancelSii()

Pn : [1, pcrs]
inv : [1,maxIdInv]

?Buyer[b].refuse(id)

?Buyer[b].accept(id)

!Buyer[b].send(id)

!SII.reqNewStamps()

?Id.stamp()

Stock(“cancellations′′,maxStockCancel)

?SII.getNewStamps(x)

!Buyer[b].send(id)

?Buyer[b].accept(id)

?Buyer[b].refuse(id)

Id(“cancellations′′,maxIdInv,maxIdCancel)

!AI[inv].giveNewId(cancelId : [1,maxIdCancel])

!SII.sendCancellation(inv)
!SII.sendCancellation()?AI[inv].reqNewId()

Figure 3.4: The Vendor system

The vendor has two pairs of Stock and Id processes: one pair for invoices and
the other for cancellations. The Stock process manipulates a stock of stamps. It
provides stamps for the generation of documents and requests new stamps to SII. The
Id process assigns a unique sequential number to each new document (once a stamp
has been provided by the Stock process). There is one single BV process that initiates
new purchases. The purchase process (PP) takes care of the main life’s cycle of a
purchase. It is parameterized with the variable pcrs, which encodes the number of
purchases that can be treated simultaneously (section 3.2.2 explains the notation P n

for processes). There is a cancellation process (CI) for each invoice id (which can
possibly be cancelled). The PP process sends requests to the Id invoices process for
new invoices ids while the CI process does so with the Id cancellations process. Note
that even when the Id and Stock processes seem to be the same for invoices and
cancellations, they could be instantiated with different domain of variables, resulting
in different finite non-parameterized processes.

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 63

The reception and verification process at SII

The network Reception in Figure 3.5 specifies the part of the SII process in charge
of receiving the documents (invoices and cancellations), and answering requests about
the status of an invoice.

���
���
���
������

���
���
���

?B.verify() !B[id].notIn()
!B[id].in()

!B[id].cancelled()

?Recp1[id].okCancellation() ?Recp2[id].ok()

?Recp1.okCancellation()

?B[id].verify()

?B.verify()

?B.verify()

!B.cancelled(id)

!B[id].cancelled()

!B.in(id)

!B[id].in()

!B.notIn(id)?B.verify(id)

!B[id].notIn()

?Recp2.ok()

!Recp3[id].okCancellation()

?Recp2.ok()

id : [1,maxId]

?V [id].sendCancellation()

Recp1id()

!Recp3[id].okCancellation()

?V.send(id)

!Recp3[id].ok()

Recp2id()

Reception(maxId)

!Recp3[id].ok()?V.send()

!V.ok(id)

Recp3id()

?V [id].send()

?Recp2[id].ok()

!V.okCancellation(id)

?V.sendCancellation(id)

?V.sendCancellation()

Figure 3.5: The reception and verification process

The process in Figure 3.5 is parameterized by the id of the invoice and is composed
by three automata sets whose elements take care of one specific document id (of a given
vendor). The top right automaton (Recp2) takes care of receiving an invoice, the
top left automaton (Recp1) takes care of receiving a cancellation document and the
bottom automaton (Recp3) gives the status of an invoice when requested. All three
processes are parameterized by id.

The responses to an invoice status for a given id are or-exclusive: the invoice is not
present at SII (!B.notIn(id)), the invoice has been sent to SII (!B.in(id)), or the invoice
has been cancelled by the vendor(!B.cancelled(id)).

In Recp3, initially an invoice is considered as not received. Upon reception, its sta-
tus is changed to be present through a message sent by the Recp2 (!Recp3[id].okIn()).
Then, if a cancellation arrives for an invoice, its status is changed to be cancelled
through a message sent by Recp1 (!Recp3[id].okCancellation()). Note that the recep-
tion of a cancellation is only possible after the reception of the invoice to be cancelled
(only after the transition ?Recp2.ok() is made).

64 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

The Global System

The global behaviour of the system is formed by an arbitrary number of vendors, buyers
and a single SII as shown in Figure 3.6.

Vendorv(
idMaxInv, idMaxCancel,
maxStockInv,maxStockCancel,
pchPrcs,buyerSet)

!B[b].send(id) ?B[b].accept(id)

?V [v].send(id) !V [v].accept(id)

!V [v].refuse(id)

Buyerb(vendorSet, idMaxInv)

?B[b].refuse(b, id)

!V [v].okCancellation(id)

?V [v].sendCancellation(id)

!V [v].ok(id)

?V [v].send(id)

?V [v].reqNewStamps()

!B.cancelled(v, id)

?B.verify(v, id)

!B.in(v, id)

!B.notIn(v, id)

SII(vendors, idMaxInv,maxStockInv,
maxStockAnnul)

?V [v].reqNewCancelStamps()

!V [v].getNewStamps(x : [0,maxStockInv])

v : [vendorSet]

b : [buyerSet]

Global(vendorSet,buyerSet,

idMaxInv, idMaxCancel,maxStockInv

maxStockCancel,pchPrs)

?SII.getNewCancelStamps(x)

!SII.reqNewStamps()

?SII.getNewStamps(x)

?SII.ok(id)

!V [v].getNewCancelStamps(x : [0,maxStockAnnul])

?SII.in(v, id)

?SII.cancelled(v, id)

!SII.send(id : [1, idMaxInv])

!SII.reqNewCancelStamps()

!SII.verify(v, id)

?SII.notIn(v, id)

reqNewStamps(v)

getNewStamps(v, x)

sendSii(v, id)

okSii(v, id)

refuseBuyer(v, b, id)

reqNewCancelStamps(v)

getNewCancelStamps(v, x)

sendBuyer(v, b, id)

acceptBuyer(v, b, id)

notIn(b, v, id)

in(b, v, id)

cancelled(b, v, id)

verify(b, v, id)

!SII.sendCancellation(id)

?SII.okCancellation(id)

sendCancellation(v, id)

okCancellation(v, id)

Figure 3.6: The global SII system

The synchronisation links are labelled so they become visible. Those links reflect
the possible communications events, such as: requesting new stamps from the vendor v
(reqNewStamps(v)), sending the invoice id from the vendor v to SII (sendSii(v, id))
or refusing the invoice id sent from the vendor v to the buyer b. The global system is
fully described using 17 pLTSs structured by 7 pNets in 4 levels of hierarchy.

3.3.4 Properties Verification

The verification was done over the global synchronisation product of the instantiated
processes and networks which form the system. The instantiation is made with the
variable domains as described below.

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 65

Data domains

As we introduce in section 3.2.3, a finite instantiation of a parameterized model is an
abstraction in the sense of [53, 148]. Starting with first order (countable) data domains,
we define abstractions in which the abstract domain has values corresponding to a finite
number of distinguished concrete values, plus one or more extra values representing the
rest of the concrete domain. These abstractions define Galois insertions [53]. Such an
abstraction will preserve a given formula if it has enough abstract values in the abstract
domain of each parameter in the formula, to represent each distinguished value of the
parameter in the formula.

We observe that all the properties listed in section 3.3.2 involve at most one buyer
and/or one vendor. This does not mean that the property should be valid for only
one specific vendor/buyer in the set of all the possible vendors/buyers, but for every
possible combination of vendors and buyers as individual entities. Therefore, to verify
the properties, it is sufficient to instantiate the system with two vendors and two buyers.
In both cases, one encodes every vendor/buyer as an individual entity, and the second
encodes the remaining vendors/buyers.

To have many invoices, as Property 1 states, we instantiate the maximal number
of invoices to three (invoice id ∈ [1..3]): two encoding two particular invoices and the
third encoding the rest of them. The stamps for invoices in the model are unbounded,
only the stamp’s stock capacity needs to be bound to get an instantiation. Since SII
gives infinitely often authorisation stamps, the system can work with a minimal stock
capacity of 1. However, we choose to set its capacity to 3 (the vendor can get as much as
3 stamps from SII at once) for having the scenario, among others, in which the vendor
spends all the ids received from SII in a single request for authorisation stamps.

Since all the invoices can be potentially cancelled, we need at least the same quantity
of cancellation ids as the quantity of invoices, therefore we instantiate the maximum
number of cancellations to three. Following the same reasoning than the stamps for
invoices, we also set the capacity of the cancellation stamp stock to 3.

Finally, we instantiate the purchase processes that a vendor can manipulate simul-
taneously to two: one encoding an individual process and the other encoding all the
remaining processes that may be running during the life’s cycle of the system.

Summarising, for verifying our 7 properties it is sufficient to instantiate the system
with the variables values shown in Figure 3.7.

M
a
x
.

In
v
o
ic

e
s

M
a
x
.

C
a
n
c
e
ll
a
ti

o
n
s

In
v
o
ic

e
st

a
m

p
s

st
o
ck

C
a
n
c
e
ll
a
ti

o
n

st
a
m

p
s

st
o
ck

P
u
rc

h
a
se

p
ro

c
e
ss

e
s

Buyers Vendors
3 3 3 3 2 {V endor1, V endor2} {Buyer1, Buyer2}

Figure 3.7: Instantiation of data domains

66 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

Verification methodology

We have chosen in this case study to specify reachability properties, expressing scenarios
that are desirable or not, by abstraction automata, a form of pLTSs with terminal states
in which labels are predicates over parameterized actions. We believe this is simpler
for non-specialists than having different formalisms for models and for properties. Alas
this is not enough, and there are properties that cannot be checked this way, typically
fairness or inevitability properties. For those we use directly the action-based temporal
logic ACTL [60].

Reachability properties The use of abstraction automata for expressing and verifying
reachability properties was advocated in the framework of the FC2Tools [36]. They are
labelled transition systems with logical predicates in their labels, and with acceptance
states. Each acceptance state defines one abstract action, representing a set of traces
(a regular language) from the actions of the model we want to check.

From the original (concrete) system and the abstraction automaton (expressing the
property), FC2tools builds a product LTS, whose actions are the labels in the acceptance
states of the abstraction automaton encoding the property. If an action is present in the
product LTS, then one of the corresponding concrete sequence is possible in the concrete
system. The presence of an abstract action in the product system naturally proves the
satisfiability of the corresponding formula, while its absence proves the negation of this
formula.

For instance, Property 2 says: “SII gives the right answers to the invoice status
request, i.e.: non present when it has not been sent to SII, present when it has been
sent, and cancelled when it has been cancelled by the vendor”.

This is a reachability property since it can be reformulated as SII does not give wrong
answers, i.e. a scenario that should not be possible.

OK2

otherwise

notIn(b, v, id)

OK1

okSii(v, id)

otherwise

okCancellation(v, id)

otherwise

in(b, v, id)

notIn(b, v, id) + cancelled(b, v, id)

Wrong

in(b, v, id) + cancelled(b, v, id) cancelled(b, v, id)

OK3

in(b, v, id) + notIn(b, v, id)

Figure 3.8: Abstraction automaton encoding Property 2

The abstraction automaton expressing this property is shown in Figure 3.8. In this
automaton, the otherwise action means any other action different from the actions in
the outgoing edges of the same state. In addition, the automaton not only expresses

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 67

that the responses are right (otherwise the state Wrong is reached) but also that they
are possible (states OK1, OK2 and OK3 are reachable).

OK2

OK1 OK3 Wrong

Figure 3.9: Property 2 verification result

We have used the FC2Tools to check this property : from the instantiated Net of the
system, the tools build a global system minimised by weak bisimulation, then build its
product with the property automaton, resulting in the LTS in Figure 3.9. In the LTS,
the actions OK1, OK2 and OK3 are possible from the initial state, which means that
the paths from the initial state to those acceptance states in the abstraction automaton
(see Figure 3.8) are possible from the initial state in the instantiated system. Therefore
we have proved that all the responses from SII to an invoice status request are possible.
Additionally, since there are no Wrong actions possible in the initial state in the result,
we conclude that the path from the initial state to the state labelled as Wrong in the
abstraction automaton is not possible from the initial state of the instantiated system.
The accurate reading of this Wrong action in Figure 3.8 is: a non-desired behaviour
can happen if, in the system, we start from a state different from the initial one. Since
we want to verify the property in the initial state, we have proved that SII does not
give wrong answers to invoice status requests.

Temporal logic formulas The abstract automaton method of the FC2Tools is only
usable for reachability properties. For other kinds of formulas, including fairness and
inevitability properties, we use the Evaluator tool from the CADP tool-set [81].
Evaluator performs an on-the-fly verification of properties expressed as temporal
logic formulas on a given Labelled Transition System (LTS). The used temporal logic
is called regular alternation-free µ-calculus [129]. It allows direct encodings of ”pure”
branching-time logics including the action-based version of CTL, called ACTL [60].

For our case study we prefer to use the macros provided in CADP to express prop-
erties in ACTL, that may be more familiar to the reader, and we use Evaluator
to verify the formula. The result of this verification is a true or false answer, and a
diagnostics.

For instance, Property 3 is an inevitability property since it requests a scenario that
must happen in a finite time, in all possible futures, under a condition. We reformulate
it in a more precise way :

“If an invoice id, emitted by a vendor v to a buyer b is refused by the buyer

it will eventually be cancelled by the vendor ”

in which the boxed actions correspond respectively to the refuseBuyer(v, b, id) and
sendCancellation(v, id) actions in the model.

We express this property using the following ACTL formula:

68 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

AG(refuseBuyer(V endor1, Buyer1, 1)

⇒ AF sendCancellation(V endor1, 1))
(3.1)

To check this property, we have used our instantiation tool to produce a hierarchical
Net, instantiated with the values of Figure 3.7, then the FC2Tools to compute a flat,
minimised LTS for this system (in the FC2 format). This system was passed to the
Evaluator model-checker, together with the formula. The result was positive: this
formula holds from the initial state of the system.

The seven properties listed in section 3.3.2 have been successfully verified using
this methodology. Two of them were specified using ACTL formulas. For a complete
description see [26].

Improving the model through properties verification

The model we have introduced in section 3.3.3 was not the initial model we designed,
but was improved after the verification of the properties listed in section 3.3.2. Some
of the properties were not valid in this initial model and we had to review our for-
malisation to correct some parts. This verification and review not only improved the
model but also the informal requirements defined by SII. For instance Property 5 says
“ It is not possible to cancel an invoice which has not been emitted before”. Though
it sounds obvious, we have not included this condition in the initial model since it is
not explicitly written in the informal requirements. When verifying Property 2, we
got undesired behaviours which exposed this lack in the initial model and so in the
informal requirements. In fact, because of this experience, Property 5 was added to the
verification list for having a more reliable formalisation. Without a formal verification
as described in this paper, a programmer can easily overlook this condition during the
implementation phase resulting in an application with potential and difficult to discover
errors.

During this reviewing process, the instantiation tool proved very useful as a debug-
ging tool of the system specification. We have done instantiations for small domains of
variables to search the reasons why the properties were not valid in the system. Due
to the size of the global LTS, those smaller instantiations were much easier to analyse
than the complete instantiations.

3.3.5 Avoiding the state explosion

Once the system is instantiated, we should avoid generating directly the global LTS by
brute force, i.e. without any pre-processing before calculating the global synchronisation
product. This would lead us directly to the well-know state explosion problem. Some
techniques that we exploit are the following: compositional hierarchy, parameterized
representation and per-formula basis are shown during this section to limit the state
explosion.

Nevertheless, we have produced small instantiations of the system by brute force.
The idea is to have experiments showing how the variable domains affect the system size,
to make an initial analysis, and to compare these results later with various techniques.

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 69

The results of this brute force instantiations are shown in Table 3.1. In the table,
the numbers are the states/transtitions of the LTS (reduced by weak bisimulation)
generated by the synchronisation product of the synchronisation networks describing
the behaviour of the main actors (Vendor, Buyer, SII and the global system).

Nr id
M

a
x
I
n
v

id
M

a
x
C

a
n
ce

l

m
a
x
S

to
ck

I
n
v

m
a
x
S

to
ck

C
a
n
ce

l

p
ch

P
r
cs

bu
y
e
r
S

e
t

v
e
n
d
o
r
S

e
t

Vendor Buyer SII Global

1 1 1 1 1 1 1 1 140/860 6/9 64/348 752/2,816
2 3 1 1 1 1 1 1 5,404/37,162 216/972 16,384/168,960 58,960/290,208
3 1 3 1 1 1 1 1 140/860 6/9 64/348 752/2,816
4 1 1 5 1 1 1 1 420/3,456 6/9 64/476 2,256/10,896
5 1 1 1 5 1 1 1 420/3,432 6/9 64/476 2,256/10,752
6 1 1 1 1 5 1 1 51,428/347,944 6/9 64/348 278,256/1,199,648
7 1 1 1 1 1 3 1 404/2,500 6/9 64/348 3,088/11,824
8 1 1 1 1 1 1 2 140/860 36/108 4,096/44,544 565,504/4,235,264
9 3 3 1 1 1 1 1 8,812/63,710 216/972 16,384/168,960 90,064/462,208
10 1 1 1 1 1 1 3 140/860 216/972 262,144/4,276,224 unknown

11 2 2 2 2 2 2 2 4,950/38,697 1,296/7,776 unknown unknown

Table 3.1: Brute force instantiations

An analysis of the values in Table 3.1 allows us to verify some aspects of the spec-
ification and potentially discover errors in it. In fact, there are some suspicious val-
ues observed in the instantiations 1 and 3: as we can observe, they share the same
states/transitions numbers even when they are instantiated by different variable do-
mains for the cancellation ids. However, as we explain in section 3.3.3, for each emitted
invoice id, there is a process, and only one, in charge of the potential cancellation of it.
Since this process, named CI, is the only one that requests ids for cancellation docu-
ments, and because this process is instantiated only once (invoices id = 1), there will be
only one request for each cancellation id (independent of the number of cancellation ids
available) and so the first and third instantiations are equivalent. Following the same
reasoning, it is natural to observe different values for the instantiation number 9.

We also see in Table 3.1 how the variables impact the size of the instantiated pro-
cesses. For example, the number of purchase processes strongly affect the size of the
Vendor process (and so the global product), which is expected since it defines concur-
rent processes; but it does not affect at all the other process sizes since the purchase
processes parameter is only relative to the Vendor. We also observe that the number
of Vendors is the parameter that most drastically affects the size of the global system.

Note, that up to this point of the discussion, the tool to instantiate parameterized
systems can be useful as an early debugging tool. The unknown values are due to
memory constraints in the production machine, that did not enable us to generate the
brute force product.

70 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

Structural actions hiding

When verifying properties, usually we do not need to observe all the events in the
system. At each synchronisation product, we can hide the actions that are not involved
in a specific property and which are not required to synchronise at upper levels of the
system. This technique, in conjunction with minimisation, gives promising results.

We propose, on a per-property basis, to hide all the actions that are not explicitly
in the property we want to prove.

For instance, let us recall Property 1: A taxpayer could not emit invoices if it has
not received stamps from SII. More specifically, a taxpayer can emit as many invoices
as the quantity of stamps received from SII. This property is shown formalised as an
abstraction automaton in Figure 3.10.

getNewStamps(V endor, 1)

getNewStamps(V endor, 1)

getNewStamps(V endor, 2)

getNewStamps(V endor, 3)

getNewStamps(V endor, 1) getNewStamps(V endor, 1)

otherwiseotherwiseotherwiseotherwise

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

getNewStamps(V endor, 1) getNewStamps(V endor, 1)

getNewStamps(V endor, 2)

otherwise otherwise otherwise

otherwiseotherwise

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

OK2

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

otherwise

OK3

OK1

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

sendSii(V endor1, 1) + sendSii(V endor1, 2) + sendSii(V endor1, 3)

Wrong

Figure 3.10: Abstraction automaton encoding Property 1

When minimising a system with hidden actions, the more actions you hide, the
stronger reductions you obtain. For a given domain of variables, we can know how
many links will exist in between two agents when instantiated.

Figure 3.10 has two groups of explicit actions: getNewStamps(v, id), with v =
{V endor1} and id = {1, 2, 3}; and sendSii(v, id), with v = {V endor1} and id =
{1, 2, 3}. The idea is to hide any other action that is not concerned by the property
in the system. To hide the other actions means to consider any other action as the
non-observable action τ .

Together with hiding, we successively generate the synchronisation product and we
minimise it using weak bisimulation equivalence. We build the products by incremen-
tally choosing at each level the pair of processes that share the most actions to be
synchronised.

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 71

For a given domain of variables, we can know how many links will exist in be-
tween two agents when instantiated. For instance in the Vendor the communication
!PP [Pn].giveNewId(id) from the Id process to the PP process will be instantiated
to a number of domain(id) × domain(p) communication links. Given the domain of
variables, we propose to synchronise first, at each level, the pair of processes whose syn-
chronisation product will have more hidden actions (i.e. there is no other pair where
we can hide more communications than in this one).

τ

τ Sub5

Sub4

τ

Vendor

τ ?SII.getNewStamps(x)

Sub3

τ

!Id.reqNewId()

!AI[id].cancelSii()

?SII.ok(id)

!SII.send(id)

τ

Sub1

!SII.send(id)

Stock(“invoices”...)
?Id.stamp()

!SII.reqNewStamps()

τ
!PP [Pn].emit(b)

BV
!Stock.stamp()

Id(“invoices”...)

τ

τ

τ
?BV.emit(b)?Id.giveNewId(id)

τ

?Buyer[b].refuse(id)

!Buyer[b].send(id)

τ τ

τ

Sub2

PPPn

?PP [Pn].cancelSii() τ

!Stock.stamp()Id(“cancellations”...)

!SII.reqNewStamps()

Stock(“cancellations”...)
?Id.stamp

τ

?SII.getNewStamps(x)

τ

?PP [Pn].reqNewId() !PP [Pn].giveNewId(id)

?Id.giveNewId(cancelId)

!SII.sentCancellation()

!CI[id].giveNewId(cancelId) ?CI[id].reqNewId()

?SII.getNewStamps(x)

!Id.reqNewId()
CIid

?SII.okCancellation()

?Buyer[b].accept(id)

Figure 3.11: Vendor with structural hiding

Figure 3.11 graphically shows the composition using this technique for the Vendor
and for the variable domains in Table 3.2 (significantly larger than those on Table
3.1). In Table 3.2, the numbers are the states/transtitions of the LTS generated by the
synchronisation product of the synchronisation networks of each composition defined
by the dashed lines in Figure 3.11 and using strong and weak bisimulation.

Note that the synchronisation product order depends on the variable domains. A
different variable domain, such as in Table 3.1, will require a different order. We observe
that this method enables us to scale up in the size of variable domains, compared to
brute force instantiations (Table 3.1).

72 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

Nr id
M

a
x
I
n
v

id
M

a
x
C

a
n
ce

l

m
a
x
S

to
ck

I
n
v

m
a
x
S

to
ck

C
a
n
ce

l

p
ch

P
r
cs

bu
y
e
r
S

e
t

Sub1 Sub2

Strong Branch Strong Weak
before after before after before after before after

1 3 3 3 3 2 2 1,832/4,036 492/1,139 1,652/3,688 189/484 494/1,119 140/302 383/900 20/36
2 3 3 5 5 2 5 10,754/24,415 492/1,433 9,674/22,285 189/664 494/1,119 140/302 383/900 20/36
3 3 3 5 5 3 5 518,704/1,712,810 4,810/21,414 469,009/1,572,215 1,165/6,319 494/1,119 140/302 383/900 20/36

Sub3 Sub4

Strong Weak Strong Weak
before after before after before after before after

1 3 3 3 3 2 2 34/40 34/36 21/27 14/16 560/3,130 8/20 80/412 8/12
2 3 3 5 5 2 5 34/52 34/36 21/39 14/16 840/5,554 8/20 120/744 8/12
3 3 3 5 5 3 5 6,709/22,976 3,962/11,748 1,614/6,144 274/836 840/5,554 8/20 120/744 8/12

Sub5 Vendor

Strong Weak Strong Weak
before after before after before after before after

1 3 3 3 3 2 2 95/189 31/61 44/43 8/7 124/674 124/550 32/136 20/68
2 3 3 5 5 2 5 95/189 31/61 44/43 8/7 186/1,119 186/1,013 48/254 28/126
3 3 3 5 5 3 5 6,178/23,771 605/2,166 406/1,131 67/156 3,630/29,187 3,630/25,557 402/2,710 227/1,388

Table 3.2: Vendor minimisation with structural hiding

Grouping by variables

The technique of structural actions hiding, described above, looks very promising when
applied to the Vendor, as shown by the results in Table 3.2. If we try to apply the
same reasoning to the global system as a whole, the first synchronisation product that
we should make is the one shown in Figure 3.12.

τ
τ τ τ

?V.sendCancellation(id)”

!V.ok(id)Receptionv

!V.okCancellation(id) ?V.send(id)

!V [v].refuse(id)

?V [v].send(id)

!V [v].accept(id)

!SII.verify(v, id) ?SII.notIn(v, id) ?SII.in(v, id)

Buyerb

?SII.cancelled(v, id)

?V [v].sendCancellation(id)”

!V [v].okCancellation(id)

!V [v].refuse(b, id)

?V [v].send(b, id)

!V [v].accept(b, id)

!V [v].ok(id)?V [v].send(id)

Sub1
?B.verify(id) !B.notIn(id) !B.in(id) !B.cancelled(id)

Figure 3.12: First composition for the global system

However, for any of the variable domains in Table 3.2, we run out of memory when
generating the synchronisation product in Figure 3.12.

We propose a new method that benefits from the parameterized structure of the
system. The idea is to group processes that share a common parameter. For instance,
in Figure 3.5 is shown the structure of the Reception process. It is defined by a pNet
that synchronises three processes (Recp1, Recp2 and Recp3), each one parameterized
by id. However, when instantiated, those synchronisations are made only between
the three processes with the same value of id. So an instantiation of the Reception
process is the interleaving of the synchronisation product of the three processes for each
value of id in the instantiation. Therefore, for any instantiation we have the following
equivalence:

3.3. CASE STUDY: THE CHILEAN ELECTRONIC INVOICES SYSTEM 73

Recp1id|Recp2id|Recp3id ∼ (Recp1|Recp2|Recp3)id (3.2)

Thus we apply hiding and minimisation to (Recp1|Recp2|Recp3) before instanti-
ating the id parameter. Naming the synchronisation product Recp1|Recp2|Recp3 as
SimpleReception, and following the same reasoning, we can conclude the following
strong equivalence:

System ∼ ((IntBuyerb|SimpleReception|CI)id|PPPn|
BaseV endor|Id(invoices)|Stock(cancellations)

|GiveStamps(cancellations)|Id(cancellations)

|Stock(invoices)|GiveStamps(invoices))v

(3.3)

Mixing methods

Remember Property 1, which we are using to show our approach to generate the global
LTS limiting as much as possible the state explosion problem: A taxpayer could not
emit invoices if it has not received stamps from SII. More specifically, a taxpayer can
emit as many invoices as the quantity of stamps received from SII.

Applying first a grouping by variables and then the structural actions hiding (for
this property and the variable domains in Table 3.3), the global system is arranged as
in Figure 3.13. The sizes of the intermediary synchronisation product and the global
LTS, are shown in Table 3.3.

Nr id
M

a
x
I
n
v

id
M

a
x
C

a
n
ce

l

m
a
x
S

to
ck

I
n
v

m
a
x
S

to
ck

C
a
n
ce

l

p
ch

P
r
cs

bu
y
e
r
S

e
t

v
e
n
d
o
r
S

e
t

Sub1 Sub2

Strong Weak Strong Weak
before after before after before after before after

1 2 2 2 2 2 2 2 280/1,065 280/1,065 280/1,065 80/328 595/2,490 595/2,490 176/792 128/576
2 3 3 3 3 2 2 2 280/1,065 280/1,065 280/1,065 80/328 595/2,595 595/2,595 176/824 128/608

Sub3 Sub4

Strong Weak Strong Weak
before after before after before after before after

1 2 2 2 2 2 2 2 18,521/59,992 1,360/4,947 4,757/13,392 375/1,448 228/573 216/536 71/178 57/150
2 3 3 3 3 2 2 2 384,835/1,630,516 10,545/51,650 47,385/178,932 1,861/10,246 1,488/5,669 1,389/5,305 325/1,328 251/1,048

Sub5 Sub6

Strong Weak Strong Weak
before after before after before after before after

1 2 2 2 2 2 2 2 167/423 167/389 47/124 30/70 6/13 6/13 6/13 1/1
2 3 3 3 3 2 2 2 725/3,035 725/2,751 146/676 93/379 8/20 8/20 8/20 1/1

Sub7 Sub8

Strong Weak Strong Weak
before after before after before after before after

1 2 2 2 2 2 2 2 312/996 204/661 42/86 25/55 2,061/7,253 24/47 51/84 6/5
2 3 3 3 3 2 2 2 2,776/10,564 1,977/7,544 278/687 169/449 19,304/81,931 34/67 253/538 8/7

Sub9 Sub10

Strong Weak Strong Weak
before after before after before after before after

1 2 2 2 2 2 2 2 72/354 72/354 18/66 12/45 144/492 144/492 24/51 12/33
2 3 3 3 3 2 2 2 136/740 136/740 32/136 20/88 272/1,004 272/1,004 40/100 20/68

Global

Strong Weak
before after before after

1 2 2 2 2 2 2 2 20,736/141,696 20,736/120,960 144/792 144/792
2 3 3 3 3 2 2 2 73,984/546,176 73,984/472,192 400/2,720 400/2,720

Table 3.3: Global system grouped by variables and structural hiding

This combination of techniques has enabled us to scale up to a variable domains size
that we could not handle before due to the state explosion problem. All the verification

74 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

of properties, described in section 3.3.4, were done in the global LTS generated using
this methodology.

?Id.giveNewId(anulId)

?SII.okCancellation()

?SII.notIn() ?SII.in()!SII.verify()

IntBuyerb

?V.send() !V.accept() !V.refuse()

!V.ok() ?V.send()?V.sendCancellation()”

!V.okCancellation() SimpleReception

?sentSii

Sub1

Sub2id

!Id.reqNewId() ?Id.giveNewId(id)

!CI[id].cancelSii()

PPp

!Buyer[b].send(id)

!SII.send(id)

?SII.ok(id)

?BV.emit(b)

Sub3

τ

Sub4

Stock(“cancellations”...)
?Id.stamp()

Sub6

sendSii(id)

Sub9
getNewStamps(x)

Sub10v

sendSii(v, id)

sendSii(id)

Global getNewStamps(v, x)

Sub8

?SII.getNewStamps(x)

!SII.reqNewStamps()
GiveStamps(“cancellations”...)
!V.getNewStamps(x)

?V.reqNewStamps()

!Stock.stamp() ?CI[id].reqNewId()
Sub7Id(“cancellations”...)

!CI[id].giveNewId(idCancel)

!Id.reqNewId()

CI

?PP [p].cancelSii()

?SII.cancelled()

!emit(buyer, p)

BaseVendor

Sub5

!PP [p].giveNewId(id) ?PP [p].reqNewId()

!Stock.stamp()

Id(“invoices”...)

?Id.stamp() ?SII.getNewStamps(x)

!SII.reqNewStamps()
Stock(“invoices...”) GiveStamps(“invoices”...)

!V.getNewStamps(x)

?V.reqNewStamps()

?B.verify() !B.in()!B.notIn() !B.cancelled()

!SII.sendCancellation()

?Buyer[b]accept(id)

?Buyer[b].refuse(id)

Figure 3.13: Global system results when grouping by variables and using structural hiding

3.4. CONCLUSIONS 75

3.3.6 Related Work

A similar case study is done by Tronel and all in [152] for the ScalAgent deploy-
ment protocol. ScalAgent is a platform for embedded systems, written in Java, to
configure, deploy, and reconfigure distributed software. In [152] they make a fully au-
tomatic verification for a Ups (Uninterruptible Power Supply) management system for
large scale sites, deployed in ScalAgent. Similar to us, they model the system as
networks of communicating LTSs, which exchange messages by rendez-vous communi-
cations. In contrast with us, they start from a formal description of the system thanks
to the infrastructure of ScalAgent, which describes its configuration in XML. We
use a graphical approach to formalise the system from the informal description, and we
translate the informal requirements to formal properties to be checked. In [152] they
have chosen to make an automatic translator from the XML description to LOTOS
[104]; the proofs are done by reachability analysis of ERROR states, which are defined
into those XML descriptions.

The main advantages of [152] are: they use a fully automatic approach, and they di-
rectly use the tools from CADP which already includes hiding mechanisms and the use
of interfaces constraints [50]. They also use parameters but included in the translation
to LOTOS and not directly in the formal models as we do. This does not allow them
to profit from the parameterized structure of the system to get better minimisations.
They determine the variables domains by static analysis. Similar to us, they make
finite instantiations for different parameters domains, and they use this instantiation
capacity to do debugging and analysis. They find the minimal required instantiations
to check the properties by empirical analysis.

Finally, even when we use the same theories and methods to check properties, our
aims are different. In [152] they have developed a fully automatic verification method-
ology specific to ScalAgent. For us, our study case was analysed with the aim to
address any kind of distributed application with asynchronous communications, and
also to include the verification of implementations. As we said before, our models are
suitable also as models generated from source code.

3.4 Conclusions

We have introduced a method and a formalism to formally describe distributed systems
and verify their properties, and we have validated our approach through a case study
of a real system, the Chilean electronic invoices. We argue that this method is suitable
to a developer, not necessarily with expertise in formal methods, by following the
methodology used on this case study.

We focus in the behaviour properties. Other analysis such as the data flow or
data security require other specialised analysis and/or tools. The contributions of this
chapter relies in the following points:

• We have defined a framework to describe in a natural manner the behaviour of
distributed systems (with parameters) via network of processes. This language is
a combination and an extension of works from [15] and [111]. We have introduced
as well a graphical syntax to describe those networks.

76 CHAPTER 3. BEHAVIOUR SPECIFICATIONS

• Our parameterized models achieve three different roles: they describe in a natural
and finite manner infinite systems (when considering unbounded variable domains),
they describe a family of systems (when considering various variable domains) and
they describe in a compact way large systems (when considering large variable
domains)

• We have developed a tool for obtaining finite non-parameterized systems from our
language given the variable domains. This tool called FC2Instantiate is deeply
introduced in chapter 6.

• Using the graphical syntax, we have shown how to model the Chilean electronic
invoices system from its informal specifications. The system is fully described using
11 pLTS that synchronise in 7 pNets through 4 levels of hierarchy. In total, the
model contains 27 parameterized synchronisations.

• Once instantiated, we generate the LTS describing the whole system behaviour
by incremental synchronisation of processes. We group by parameters and we
use hiding with minimisation at each level of synchronisation to limit as much as
possible the state explosion problem. Before, we were limited to generate a global
LTS with around 5, 6×105 states (see Table 3.1), using this methodology, we were
able to produce a global LTS equivalent to one having approx 1, 2× 1012 states if
generated by brute force with the variable values in Table 3.7.

• Finally, we have shown how to verify safety and liveness properties of the system,
using our instantiation tool and classical finite-state model-checking tools.

Additionally, the instantiation tool is suitable (given small instantiations) for com-
paring different instantiations, instantiating based on per-formula criteria and searching
for better minimisations. Especially this debugging capacity provides early detection
of errors or backtrack analysis.

Chapter 4

Hierarchical Components Behaviour

As we state in the introduction (section 1.5), components have emerged as a new pro-
gramming paradigm in software development. Beyond structuring concepts inherited
from modules and objects, component frameworks provide means for architecture and
deployment description. Some frameworks define a number of non-functional features
for controlling the life-cycle of the components and the application, or allow the con-
struction of distributed components. In general words, a component is a self contained
entity that interacts with its environment through well-defined interfaces: provided ser-
vices and required functionalities (to be provided by other components). Besides these
interactions, a component does not reveal its internal structure.

Note that we use the term “non-functional” in the sense of “component management
or control”, and not in the sense of “quality of service” which can be used in other
contexts, for example in time-sensitive models

In hierarchical component frameworks like Fractal [43], different components can be
assembled together creating a new self contained component, which can be itself assem-
bled to other components in a higher hierarchical level. Hierarchical components make
visible the hierarchy of the system and hide, at each level, the complexity of the sub-
entities. The compositional aspect together with the separation between functional and
non-functional aspects helps the implementation and maintenance of complex software
systems.

The challenge that we want to address is to build a formal framework which ensures
that applications built from existing components are safe, in the sense that their parts
fit together appropriately and behave together smoothly. Each component must be
adequate for its assigned role within the system, and the update or replacement of a
component should not cause the rest of the system deadlock or fail.

Standard components systems have typed interfaces, ensuring some level of static
compatibility between the components: interfaces are bounded only if their operations
have compatible types in the classical sense (OO method typing). This does not pre-
vent assembled components from having non compatible behaviours, that could lead to
deadlocks, live-locks, or other kinds of safety problems.

Several recent works try to address better dynamic guaranties, e.g. research on
behavioural typing or contracts [45], as well as frameworks like Tracta [86], Wright [13]
or Sofa [146].

Those approaches were developed to cover the correct component’s composition,

77

78 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

considering their functional aspects. However, components programing allows, through
the non-functional capabilities, to control the execution of a component and its dynamic
evolution: plugging and unplugging components dynamically provides adaptability and
maintenance. Therefore this inter-play between functional and non-functional aspects
influences the behaviour of the system, even if we look at the components from a pure
functional point of view.

Moreover, those approaches start from a strong assumption: the system has been
correctly deployed in its initial construction, in particular all the necessary paths be-
tween functional interfaces have been established and the system has been started in a
coherent state.

We aim to provide the final user with tools for verifying the behaviour at the design
phase (definition), the assembly phase (implementation), as well as the dynamic recon-
figuration (maintenance) of the component system. Therefore, the intended user of our
framework is the application developer in charge of those tasks.

All those phases, usually defined by our target user, through some architectural
definition language or graphical interface, are error-prone. Hence the need to provide
tools not only for verifying a given composition’s correctness, but also that the steps for
building such composition (or a further reconfiguration) have been correctly applied.

Wrigth does not support nested components, necessary for the hierarchical compo-
nent model we target. On the contrary, Tracta (Darwin) does support nested compo-
nents but does not support dynamic changes on the software architecture. An inter-
esting approach for modelling main description’s mechanism of dynamic structures in
Darwin (lazy instantiation and direct dynamic instantiation) is given by J. Magee and
J. Kramer in [121]. They show how to model the system’s behaviour using π-calculus
[133], but neither property checking nor tools are provided.

SOFA supports both nested components and some level of dynamism by checking
whether a particular component can dynamically replace (or not) an existing one. In
particular, its consent operator allows checking the absence of errors in the interaction
of the new component with its environment. However, it is not clear to us how a
dynamic change on the paths between interfaces can be done without replacing the full
architecture where it occurs. In addition, whether a component can be replaced at a
given moment or not should be explicitly set in its behaviour through the update token
π of SOFA.

We propose an approach orthogonal and probably complementary to SOFA (we
analyse this point in section 7.1, future work). Our approach is to give the com-
ponents behavioural specifications in the form of hierarchical synchronised transition
systems. Similar to the other approaches we have reviewed, we assume that the models
for the functional behaviour of basic (primitive) components is known. They may be
derived from automatic analysis of source code or expressed by the developer in a ded-
icated specification language, e.g. the graphical language for synchronised automata
introduced in chapter 3, section 3.2.2. Then, we automatically incorporate the non-
functional behaviour within a controller built from the component description. The
composite’s semantic is computed as a product of the its sub-components LTSs with
the controller of the composite. This system can be checked against requirements ex-
pressed as a set of temporal logic formulas, or again as an LTS (defining an abstract

4.1. THE FRACTAL COMPONENT MODEL 79

specification).

In this chapter we start with synchronous components allowing us to introduce the
main ideas of our approach in a simpler form (which we extend in chapter 5 to asyn-
chronous components). In particular in this chapter we give:

• a methodology for building behavioural models of hierarchical components, includ-
ing non-structural reconfiguration operations,

• the full behaviour modelling of the application as a hierarchy of parameterized
LTSs,

• a structural reconfiguration description as transformations of the LTS expressing
the component behaviour,

• a correctness properties classification for a component system, together with tools
for their verification.

In section 4.1 we shortly overview our target component model: Fractal, and intro-
duce a small example that will serve as an illustration for the rest of the chapter. Section
4.2 discusses the notion of correct behaviour and shows how our formalism (chapter 3)
fits nicely with the components scenario. Section 4.3 develops, step by step, the formal-
isation and the behaviour computation of the example, starting with the specification of
base components, then building the composite controllers, specifying errors, computing
the composite behaviour and building specific abstract models useful for representing
deployment and reconfiguration phases. In section 4.4.2 we give examples of proofs for
some system properties and in section 4.6 we conclude.

4.1 The Fractal Component Model

The Fractal component model [43] provides an homogeneous vision of software systems
architecture using few well defined concepts such as: component, controller, content,
interface and binding. It is recursive in the sense that components structure is auto-
similar at any arbitrary level, hence the name “Fractal”.

4.1.1 Guidelines to Fractal Components

A Fractal component is formed out of two parts: a controller and a content. The content
of a component is composed of (a finite number of) other components, called sub-
components, which are under the control of the controller. A component that exposes
its content is called a composite component. A component that does not expose its
content, but at least one control interface, is called a primitive component.

The controller of a component can have external and internal interfaces. A com-
ponent can interact with its environment through operations on its external interfaces,
while internal interfaces are accessible only from the component’s sub-components.

Interfaces can be of two sorts: client and server. A server interface can receive
method invocations while a client interface emits methods calls. A functional inter-
face provides or requires functionalities of a component, while a control interface is a

80 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

server interface that corresponds to a “non functional aspect”, such as introspection,
configuration or reconfiguration.

A binding is a connection path between a component client interfaces. A binding
between a client interface c and a server interface s of two components C and S must
verify one of the following constrains:

• c and s are external interfaces, and C and S have a direct common enclosing
component. Such bindings are called normal bindings.

• c is an internal interface, s is an external interface, and S is a sub component of
C. Such bindings are called export bindings.

• c is an external interface, s is an internal interface, and C is a sub component of
S. Such bindings are called import bindings

Additionally, a primitive binding can be established only if the server interface ac-
cepts at least all the operations invocations that the client interface can emit, and
a client interface can be bound to at most one server interface, while several client
interfaces can be bound to the same server interface.

A component controller encodes the control behaviour associated with a particular
component. In particular, a component controller can intercept oncoming and outgoing
operation invocations and operation returns targeting or originating from the compo-
nent’s subcomponents; and it can superimpose a control behaviour to the behaviour of
the components in its content, including suspending and resuming activities of these
components. Each controller can thus be seen as implementing a particular compo-
sition operator for the components in its content. The Fractal model does not place
a priori restrictions on the forms of control and composition a component controller
can realise: it can be mainly interception-based as in industrial component frameworks
containers for instance; it can be limited to provide a common execution context for
the components in its content; or it can realise intrusive forms of superimposition.

Fractal defines three basic (optional) levels of control capabilities for a component:
no control at all, introspection, and configuration. Only the latter is of interest to us.
At the configuration control level, Fractal proposes four control interfaces:

• Attribute control: provides operations to get and set attribute values of the com-
ponent.

• Binding control: provides operations to bind and unbind the component client
interfaces to other component server interfaces.

• Content control: provides operations to add and remove sub-components into/from
the component.

• Life cycle control: provides operations for starting and stopping the component,
as well as to get its current status (started/stopped).

The Fractal specification defines a number of constraints on the interplay between
functional and non-functional operations. In particular :

4.1. THE FRACTAL COMPONENT MODEL 81

• Content and binding control operations are only possible when the component is
stopped.

• When started, a component can emit or accept invocations. Note that this does
not prevent control operations to throw an error (exception) because of an unstable
state.

• When stopped, a component does not emit invocations and must accept invo-
cations through control interfaces ; whether or not an invocation to a functional
interface is possible is undefined.

Other features are left unspecified in the Fractal definition, and may be set by a
particular Fractal implementation, or left to be specified at user level. We assume the
following choices:

1. the start/stop operations are recursive, i.e. they affect the component and each
one of its sub-components simultaneously;

2. functional operations cannot fire control operations.

3. the controller (membrane) of composites is only a forwarder between external and
internal functional interfaces without any other control capability;

The last feature (3) implies that there is exactly one internal interface for each
external interface of a composite.

4.1.2 Component System Example

In this section we introduce a simple component system as an example, which we will
use later to better explain our work. Figure 4.1 is a graphical view of it.

Controller

Controller

Composite

Composite

C

System

Logger

A

BIbcIlf

Ilf Ibc

IbcIlf

Ilf Ibc

I1 : I

Ilog : L

Ic : I
I1 : I

Ilog : L

Ilf Ibc
Ilog : L

Irst : R
I2 : R

I1 : I

I1 : I

Ilog : L

Ilog : L

I2 : R

I1 : I

Ip : I

Figure 4.1: A simple component system

The example is built from three primitive components (A, B and Logger), which
are composed in two levels of hierarchy defined by two composite components (C and

82 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

System). Each component exposes the interfaces for the control operations they sup-
port (in our example all the components support life-cycle control operation through
the interface Ilf and binding control operations through the interface Ibc).

All the functional interfaces in the example are typed either by the type I, the type
L, or the type R. We define the type I having the operation foo(), the type L having
the operation log() and the type R having the operation reset().

The system is deployed in a bottom-up fashion from the innermost components to
the outer component (System in our example). At each level of hierarchy a specific
deployment is applied. For instance, at the C level of hierarchy in Figure 4.1 the
deployment includes, among others, the binding between the interface Ic of A and the
interface Ip of B.

4.2 Defining Correct Behaviour

Control (i.e., non-functional) operations can introduce changes on the component be-
haviour. For instance, adding or replacing a sub-component may add features (new
actions) to the system. A sequence of control operations is called a transformation
phase.

We make the assumption (this is a restriction with respect to the Fractal specifica-
tion) that no functional operation can fire control operations but those are fired by our
target user during deployment or in a further reconfiguration (transformation phase).

Then we are interested in three phases in the components behaviour:

1. Deployment: this is the building phase of a component. In this phase the compo-
nent’s content (its sub-components) is defined as well as the initial transformation
phase (sequence of control operations), as usually described in the application
ADL. The application deployment typically ends with a recursive start operation.

2. Running phase: only functional operations occur here.

3. Reconfiguration: we distinguish between non-structural reconfigurations (life cycle
and binding controls) and structural transformations (adding, removing or updat-
ing components).

From these definitions, we discuss the correctness of the component system:

1. Deployment: “Is the deployment possible, does it finish?”, if so, “has it been
correctly applied?” in the sense that unexpected behaviours have not been raised
during this phase.

2. Running phase: “Is the deployed system behaving correctly?”. The concept of
“correct behaviour” covers the absence of dead-locks and in general safety and
liveness properties (common sense properties like not using an unbound required
interface, or any user-requirement expressed as a temporal logic property). Ul-
timately, “Does this implementation respect a pre-defined specification? (with
respect to some implementation pre-order)”.

4.3. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 83

3. Reconfiguration : “After a transformation phase, does the system behave cor-
rectly?”. This covers both preservation of some properties valid before the trans-
formation, and the satisfaction of a new set of properties, corresponding to features
added by the transformation. These proofs must take into account the intricate in-
terplay between functional and non-functional actions during transformation, like
the management of the internal state of subcomponents. For example, one can
expect to be able to prove the safety and transparency (from the user point of
view) of the replacement of a component by another one.

We want to provide the user with tools that help answering those questions before
deploying the application or applying a transformation, so he can be confident about
the reconfigurations he will apply and therefore, be sure he has a reliable system.

4.2.1 Components behaviour specification

Our formalism fits nicely with the components model. The behaviour of a primitive
component is a pLTS, that can be specified by the developer, or derived from code
analysis. For a given composite, its content is the arguments of the pNet and its
initial bindings are encoded in the initial state of the transducer. The global pLTS of
a composite encodes the functional behaviour of the component but also the control
operations that do not change the geometry of the composite, namely start/stop, and
bind/unbind operations. On this model, we can check all properties during and after
the “initial composition”, and involving reconfigurations only relying on start, stop,
bind, and unbind.

We deal with reconfigurations that change the dimension of the pNet or the structure
of the application (add/remove/update of components) as transformers of the model:
starting with a hierarchical model in a given state, we build a new model after a sequence
of basic reconfigurations, in which we maintain the state of the components that were
unchanged. We can then check for the properties (preserved or new) of the reconfigured
system.

4.3 Building the component’s model behaviour

In this section we introduce our way to build the behaviour of a component system
for the example introduced in 4.1.2. In section 4.3.4 we generalise this method for any
component system.

Since reconfiguration phases change the behaviour of a component, we need to build
the set of all the behaviours after applying those transformation phases. For non-
structural transformations, this means in our formalism to build the component’s trans-
ducer, where the transition between different states are fired by control operations. For
instance, in the composite C the communication between A and B is not possible until
the interface Ic in A is bound to the interface Ip in B. Then the control operation that
binds those interfaces corresponds to a transition to a state where the communication
becomes possible.

We build the transducers of our models using several small controller pieces that are
composed with the sub-components using a synchronous parallel operator (no event is

84 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

possible if it is not possible in the current state of the controller parts). The result of
this building is an automaton which we named as Controller.

4.3.1 Primitive components

We suppose the functional behaviours of the primitive components are known, as we
stated before they can be obtained by source analysis or given by the user. The func-
tional behaviour of a primitive component is expressed as an automaton with labels
encoding methods calls and receptions in its interfaces as well as internal actions.

The primitive components can be implemented as basic runtime entities (such as Java
objects) to which control operation capabilities are added (for instance by the developer
in the source code, by reflection, using a Fractal Factory or such as in FracTalk [1] by
a variable names convention).

The functional behaviours of the primitive components A, B and Logger are shown
in Figure 4.2 in the form of pLTS.

?Ilf.start
?Ilf.stop

!Ic.foo()

!Ilog.log()

?I1.foo()

?I1.foo()

A

?
Ilf.stop

?Ip.foo()

?
Ilf.start

B

n

?Ilf.stop n

?Ilog.log()

 n + 1

?Ilf.start n
0

?Irst.reset
 0

Logger

Figure 4.2: Behaviour of the base components of A, B and Logger

Logger provides a logging functionality through its provided interface Ilog up to
n calls. If a call is done to the method reset() of its interface Irst, Logger restart
the count of logging calls to 0. We intentionally do not include value passing in the
communications to keep the notations simple.

We start by adding the control capabilities (life-cycle and binding) to A, i.e. building
its controller. A provides one interface (I1) and requires two interfaces (Ic and Ilog).
Since A is a primitive component, only the external views of its interfaces are needed
(there is no internal interface since there is no internal binding in A). Then we build
the controller for A as the synchronisation product of the 5 LTSs composing the Net in
Figure 4.3. In the figure, we have drawn in the upper right hand the Fractal specification
for an easy reference. The orientation of the links in the figure are used to help the
visual view and understanding of the system, but they do not have any semantical
meaning.

In Figure 4.3 we can see the automata encoding the control operations for the ex-
ternal requires interfaces Ic (E RIc) and Ilog (E RIlog), and for the external provides
interface I1 (E PI1). We also see the automaton encoding the life-cycle control opera-

4.3. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 85

?Ibc.bind(Ic,Iext1)

LF

?start

?stop

stopped started

?stop ?start

stopped

started

?Ibc.unbind(Iext3,I1)

?Ilf.start

?Ilf.stop

?I1.foo
()

!Ic.foo()

!Ilog.log()

A

?Ibc.unbind(Ic,Iext1)?Ibc.bind(Ilog,Iext2)

?Ibc.bind(Iext3,I1)

?Ilf.start

?Ilf.stop

!Iext2.log()

?Iext3.foo()

!Iext1.foo()

?Ibc.bind(Ilog,Iext2)

E_PI1

L

?bind(Iext)
 push(L,Iext)

[in(L,Iext)] ?unbind(Iext)
 delete(L,Iext)

[in(L,Iext)]
 bound(Iext)

[empty(L)]
 unbound

empty(L)

?bind(Iext) ?unbind(Iext)

bound(Iext)unbound

unbound

Iext

?bind(Iext) Iext

?unbind(Iext)

bound(Iext)
unbound

?unbind(Iext)

E_RIc

bound(Iext)

?bind(Iext)

unbound

Iext

?bind(Iext) Iext

?unbind(Iext)

bound(Iext)
unbound

?unbind(Iext)

E_RIlog
bound(Iext)?bind(Iext)

ERROR_UNBOUND_ERI(A.Ic)

?Ilf.start

?Ilf.stop

!Ic.foo()

!Ilog.log()

?I1.foo()

?I1.foo()

A

IbcIlf

I1 : I

Ilog : L

Ic : I

Figure 4.3: Controller for A

tion (LF) and the functional behaviour of A. Synchronised actions are encoded by links
between processes.

Figure 4.3 includes some constraints (of common sense or from the Fractal SPEC)
e.g. that the bindings of requires interfaces are only possible when the component is
stopped or that calls to requires interfaces are only possible when these interfaces are
bound.

In the graphics we use an ellipse when more than two actions are synchronised.
E.g. a reception of a start action on the non-functional interface Ilf is propagated
synchronously to the LF automaton and to the A behaviour automaton; on the reception
of a unbind action on the Ibc interface will be transmitted to the corresponding E RI
control automaton only if the LF is in stopped state.

In the functional behaviour of A (Figure 4.2) we observe the presence of the non-
functional actions ?Ilf .start and ?Ilf .stop. We do not want to break the separation of
concerns reached by Fractal but only to keep both simplicity and some generality dur-
ing this chapter. Our main target is distributed component systems communicating

86 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

asynchronously (which we develop in chapter 5). Specifically we target the Fractive
implementation of Fractal [29]. Momentarily we assume for our example that the func-
tional part of the primitives are conscious of the life-cycle control interface.

The Fractal specification does not define all details of the controller constraints and
semantics; some features will only be defined by specific implementations. For instance,
in the Fractal implementation Julia [2], the primitive components are enriched with
interceptors whose role is to suspend the incoming method calls while the component
is stopped. If we were modelling for the Julia implementation, we could express this
constraint in our approach by linking the started port of the LF controller part to the
reception of methods calls.

In Figure 4.3, Iext∗ are variables encoding the set of external interfaces to which the
interfaces of A can potentially be bound. This set is instantiated at the next level of
hierarchy by type matching analysis (i.e. once its environment is defined). For instance
when building the controller of C, the variable Iext1 in the figure becomes the set {B.IP}.

The Controller of A is the automaton resulting from the synchronisation product of
Figure 4.3. This controller encodes both, the functional and non-functional behaviours
of A. We use the controller to compute the behaviour of the component after deployment
as shown later.

Using the same methodology, we build the controllers for the other primitive com-
ponents B and Logger.

4.3.2 Composites

This section describes the method we use to build the Controller of a given compos-
ite. The model of the composite is a parameterized Network, which arguments are the
models of its subcomponents. As for primitives, this model includes both the functional
aspects of the behaviour (coming eventually from the user specifications of basic com-
ponents), and the non-functional management aspects (that we automatically generate
from the ADL specification of the composite).

The global behaviour of the application will be computed later, building the syn-
chronous product for each composite component in a bottom-up fashion, after instan-
tiation of the parameters. At each level, only a selected set of actions (functional or
non-functional) will be observable. This allows for a grey-box construct, in which an
reduced model can be constructed for proving a given formula or set of formulas.

The controller for the composite C is the synchronisation product of the 7 LTSs
composing the Net in Figure 4.4. We use a syntax C.I to designate an interface I
belonging to a component C. When C is absent, the interface belongs to the component
itself, i.e. to the component of the controller. The arguments for the bind and unbind
operations are always a client interface in the first argument and a server interface in
the second.

We distinguish in the figure the internal control operations, which are labelled in-
side the controller Net (e.g. ?bind(A.Ilog, Ilog)), from the external control operations,
which are in the edge of the Net (e.g. ?Ibc.bind(Iext2, I1)). The internal control oper-
ations are those used during the component’s deployment, while the external control
operation are used during the deployment of the next level of hierarchy. Since the

4.3. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 87

?Ibc.bind(Ilog,Iext1)

?Ibc.bind(Iext2,I1)

?Ibc.bind(C.I1,Ip)
?Ibc.unbind(C.I1,Ip)

?Ibc.bind(A.Ic,Ip)
?Ibc.unbind(A.Ic,Ip)

?Ibc.bind(Ilog,C.Ilog) ?Ibc.unbind(Ilog,C.Ilog)

?A.Ic.foo()

?C.I1.foo()

B
?bind(I1,A.I1)

?bind(A.I1)

?unbind(A.I1)

?bind(B.Ip)

?unbind(B.Ip)

unbound

bound(I1)

bound(B.Ip)

?bind(A.I1) ?unbind(A.I1)

?bind(B.Ip)
?unbind(B.Ip)

I_PI1

bound(A.I1)

bound(B.Ip)
unbound

?Ilf.start ?Ilf.stop

?Ilf.start

?bind(B.Ilog,Ilog) ?unbind(B.Ilog,Ilog)

?unbind(I1,A.I1)

?bind(A.I c,B
.I p)

?unbind(A.I c,B
.I p)

?bind(A.I log,I log)

?unbind(A.Ilog,Ilog)

?bind(I1 ,B.Ip)

?Ilf.start

?Ilf.stop

?Ibc.unbind(Ilog,Iext1)

!Iext1.log()

?Ibc.unbind(Iext2,I1)?Iext2.foo()

?bind(A.Ilog)

?unbind(A.Ilog)

?bind(B.Ilog)

?unbind(B.Ilog)

unbound

bound(A.Ilog)

bound(B.Ilog)

I_RIlog

?bind(B.Ilog)

?unbind(B.Ilog)

?bind(A.Ilog)

?unbind(A.Ilog)

bound(A.Ilog)

bound(B.Ilog)

?bind(A.Ilog)?unbind(A.Ilog) ?bind(B.Ilog) ?unbind(B.Ilog)

bound(B.Ilog) bound(A.Ilog)unbound

!C.Ilog.log()
?C.I1.foo()

A
?Ibc.bind(C.I1,I1)

?Ibc.unbind(C.I1,I1)

?Ibc.bind(Ic,B.Ip)

?Ibc.unbind(Ic,B.Ip)
?Ibc.bind(Ilog,C.Ilog)

?Ibc.unbind(Ilog,C.Ilog)

?Ilf.stop
!B.Ip.foo()
?Ilf.start

?Ilf.stop

LF

?start

?stop

stopped started

?stop

?start

stopped started

unbound
Iext

?bind(Iext) Iext

?unbind(Iext)

bound(Iext)

unbound

?unbind(Iext)

E_RIlog

bound(Iext)

?bind(Iext)

foo(A.Ic,B
.Ip)

?unbind(I1 ,B.Ip)

E_PI1

L

?bind(Iext)
 push(L,Iext)

[in(L,Iext)] ?unbind(Iext)
 delete(L,Iext)

[in(L,Iext)]
 bound(Iext)

[empty(L)]
 unbound

empty(L)

?bind(Iext) ?unbind(Iext)

bound(Iext) unbound

Controller
Composite

A
B

C

IbcIlf

Ilf Ibc

IbcIlf

I1 : I I1 : I

Ilog : L

Ic : I

I1 : I Ilog : L

Ip : I Ilog : L

Ilog : L

Figure 4.4: Controller of C

start/stop operations are hierarchical, they appear twice, both as internal and as ex-

88 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

ternal control operations. In Figure 4.4 the boxes A and B correspond to the grey box
behaviour of A and B respectively.

Similarly to the primitive components, we can see in the figure some constraints in
the control operations, such as that the binding between the internal interface I1 of C
and the external provides interface I1 of A, encoded by ?bind(I1, A.I1) is possible only
when the composite C is stopped. We also see in the figure an edge for the functional
calls between the sub-components A and B named as foo(A.Ic, B.Ip); by default this call
is hidden to the upper levels of hierarchy since it is an internal action of C, but we
chose to keep it visible. Remember that the final user can specify the internal actions
he wants to observe, which will remain visible to the upper levels of hierarchy. Thus
allowing the user to prove temporal properties involving those actions.

4.3.3 Detecting Errors

We can introduce in our model the detection of common sense errors (unde-
sired behaviours) introduced in section 4.2. For instance, by triggering an
ERROR UNBOUND ERI(A.Ic) message upon a call to the operations of the interface
Ic when it is unbound, we can detect the erroneous uses of the Ic interface. This is
shown in Figure 4.5.

!Ic.foo()

A

!Iext2.log()

!Iext1.foo()

unbound

Iext

?bind(Iext) Iext

?unbind(Iext)

bound(Iext)

?unbind(Iext) bound(Iext)

ERROR_UNBOUND_ERI(A.Ic)

?Ilf.start

?Ilf.stop

!Ic.foo()

!Ilog.log()

?I1.foo()

?I1.foo()Figure 4.5: Zoom into the A controller detecting errors

In addition to common sense errors, others undesired behaviours are directly or
intrinsically defined in the Fractal specification. In order to keep simplicity and clarity
during our guided example, we will consider only the error consisting in calling an
operation on an unbound interface.

4.3.4 General purpose Controller

The principles exposed for the example in the previous section are applied here in a
systematic way: we have defined a general purpose Controller, that will be instantiated
for each component in each level of hierarchy in the system, using the information
available in the components ADL specification. Then the LTSs will be computed in a
bottom-up fashion. The general purpose controller is shown in Figure 4.6.

To benefit from the compositional properties of our models, we define this construc-
tion in the context of a given temporal logic formula, or more generally for a given

4.3. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 89

LF

?start

?stop

stopped started

?stop ?start

stopped

started

E_PInp

L

?bind(Iext)
 push(L,Iext)

[in(L,Iext)] ?unbind(Iext)
 delete(L,Iext)

[in(L,Iext)]
 bound(Iext)

[empty(L)]
 unbound

empty(L)

?bind(Iext) ?unbind(Iext)

bound(Iext)unbound

unbound
Iext

?bind(Iext) Iext

?unbind(Iext)

bound(Iext)

unbound

?unbind(Iext)

E_RInr

bound(Iext)

?bind(Iext)

unbound

Iext

?bind(SubC[i].PIscnp)
 SubC[i].PIscnp
?unbind(SubC[i].ISns)

bound(SubC[i].PIscnp)
unbound

?unbind(SubC[i].PIscnp)

I_PInpbound(SubC[i].PIscnp)

?bind(SubC[i].PIscnp)

I_RInr
L

?bind(SubC[i]. RIscnr)
 push(L,SubC[i]. RIscnr)

[in(L,SubC[i]. RIscnr)]
?unbind(SubC[i]. RIscnr)

 delete(L,SubC[i]. RIscnr)

[in(L,SubC[i]. RIscnr)]
 bound(SubC[i]. RIscnr)

[empty(L)]
 unbound

empty(L)

?bind(SubC[i]. RIscnr)

?unbind(SubC[i]. RIscnr)

bound(SubC[i]. RIscnr)

unbound

[cond2]?bind(I_PInp,SubC[i].PIscnp)

?Ibc.bind(SubC[i].RIscnr,Isext1)

?Ilf.start()

SubCk

?Ibc.unbind(SubC[i].RIscnr,Isext1)

?Ibc.bind(Isext2,SubC[j].PIscnp)

?Ibc.unbind(Isext2,SubC[j].PIscnp)

!Isext1.m()

?Isext2.m()

?Ilf.stop
()

[cond3]?unbind(SubC[i]. RIscnr, I_RInr)

[cond3]?bind(SubC[i]. RIscnr, I_RInr)

[cond2]?unbind(I_PInp,SubC[i].PIscnp)

?Ibc.unbind(RInr,Iext1) ?Ibc.bind(RInr,Iext1)!Iext1.m()

?Ilf.stop
()

?Ilf.start()

?Ibc.bind(Iext2,PInp) ?Iext2.m()

cond1: i≠j & SubC[i]. RIscnr:type = SubC[j].PIscnp:type
cond2: I_PInp:type = SubC[i].PIscnp:type (= E_PInp:type)
cond3: SubC[i]. RIscnr:type = I_RInr:type (= E_RInr:type)

?Ibc.unbind(Iext2,PInp)

SubCk RIscnr

Ilf Ibc

PIscnp

E_PInp I_PInp
E_RInrI_RInr

Ilf Ibc

!visiblesn

[cond4]m(Isext1,Isext2)

[cond1]?bind(SubC[i].RIscnr,SubC[j].PIscnp)

[cond1]?unbind(SubC[i].RIscnr,SubC[j].PIscnp)

cond4: Isext1:owner ≠ Isext2:owner & Isext1:type = Isext2:type

Figure 4.6: General purpose Controller

set of actions that the user wants to observe. Then we shall consider automata for a
given family of hidden actions (renamed as τ actions), or conversely for a given family
of visible actions (all others are hidden), minimised by weak bisimulation at each step
of the construction. Note that the size of the system at a given level only depends on
the complexity of this level of hierarchy (and of the actions the user wants to observe),
not on the complexity of the lower levels.

In particular, specific models can be constructed to focus on the detection of some
classes of errors (common sense or user defined).

In the general purpose Controller shown in Figure 4.6, we have a finite number k of
sub-component automata (SubCk), a life-cycle automaton (LF), a finite number np of
external (E PInp) and internal (I PInp) provides interface automata, and a finite number
nr of external (E RInr) and internal (I RInr) requires interface automata.

To obtain the Controller for a component (primitive or composite), we specialise the
general controller, using the sub-components and interfaces that the component ADL
defines. For instance, for the composite component C, the set {SubCk} will be replaced
by the networks representing the sub-components A and B. Please remark that this

90 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

specialisation only fixes the set of sub-components and internal/external interfaces, so
the resulting pNet is still parameterized, and its actions contain variables for value-
passing and for reference-passing.

For a primitive component, the set {SubCk} is reduced to a single automaton which
encodes its functional behaviour; its set of internal interfaces ({I PInp} and {I RInr}) is
empty. The functional behaviour automaton encodes calls and receptions of methods
on the component interfaces (in addition to internal actions).

4.3.5 Deployment and Static Automaton

Now we want to compute the full behavioural model at each level, but taking into
account the deployment phase defined earlier.

The deployment is defined by the user ; e.g. in Fractal, the bindings for the sub-
components of a composite, can be given using its ADL. The deployment automaton
is build from a sequence of internal control operations of the composite, possibly inter-
leaved with functional, visible and errors actions, and terminated with a distinguished
successful action

√
(where in addition we interleave the external control operations).

For a component C (including the full application itself), let us call OI the set of
its internal control operations and OE the set of its external control operations. Then
we define the set OD = OI ∪OE. The deployment of C in our example (Figure 4.1) is
shown in Figure 4.7.

!bind(A.Ic,B.Ip) !bind(A.Ilog,Ilog) !bind(I1,A.I1)

¬OD ¬OD
¬OD ¬OD

√

¬OI

Figure 4.7: Deployment automaton for C

We compute the synchronisation product of the deployment automaton with the
component’s controller (once instantiated). We name the resulting automaton of this
product (modulo minimisation by weak bisimulation) as the static automaton of the
component. The static automaton of a component intuitively corresponds to its black-
box behaviour after successful deployment, hiding the internal operations (except those
chosen to be visible) and forbidding any further internal reconfiguration actions. The
static automaton encodes as well the behaviour of this sub-component when computing
the behaviour at the next level of hierarchy.

Since the deployment automata of the primitive components are reduced to a single
(
√

) action, their static automata are equivalent to their controller automata.

As an example, Figure 4.8 is the Static automaton of component C. It in-
cludes only external binding operations (between C, System, and Logger) such as
?Ibc.bind(Ilog, Logger.Ilog), functional actions of C such as !Logger.Ilog.log(), and errors
relative to the external bindings of C (ERROR UNBOUND ERI(C.Ilog)).

4.4. PROPERTIES 91

?I
bc
.b
in
d(
Sy
st
em
.I 1
,I 1
)

?I
bc
.u
nb
in
d(
Sy
st
em
.I 1
,I 1
)

?I bc
.bind

(I log
,Logg

er.I log
)

?I bc
.unbi

nd(I log
,Logg

er.I log
)

?Ilf.start

?Ilf.stop

?I
bc
.b
in
d(
Sy
st
em
.I 1
,I 1
)

?I
bc
.u
nb
in
d(
Sy
st
em
.I 1
,I 1
)

?Ilf .start?Ilf .stop

foo(A.Ic ,B.Ip)

ERROR_UNBOUND_ERI(C.Ilog)

?I b
c.
bin
d(
Sy
ste
m
.I 1
,I 1
)

?I b
c.
un
bi
nd
(S
ys
te
m
.I 1
,I 1
) foo(A.Ic ,B.Ip)

ERROR_UNBOUND_ERI(C.Ilog)

?I bc
.bin
d(I log

,Log
ger.
I log
)

?I bc
.unb

ind(
I log
,Log

ger.
I log
)

?Ibc .bind(System
.I1 ,I1)

?Ibc .unbind(System
.I1 ,I1)

?I lf
.sta
rt

?I lf.
stop

?I lf
.st
art?I lf

.sto
p

?Ibc .bind(System
.I1 ,I1)

?Ibc .unbind(System
.I1 ,I1)

foo(
A.I c

,B.I p
)

!Lo
gg
er.
I log
.log
()

?Ibc .bind(System
.I1 ,I1)

?Ibc .unbind(System
.I1 ,I1)

!Log
ger.

I log
.log
()

foo(
A.I c

,B.I p
)

?System.I1.foo()

?System.I1.foo()

?System.I1.foo()

?System.I1.foo()

Figure 4.8: Static automaton for C

4.4 Properties

Having a behavioural model for a component system enables to prove temporal prop-
erties about its behaviour. Since we introduce both functional and non-functional
behaviours in our model, those temporal properties can be applied to the different
phases of the component’s life time. Bellow we introduce a temporal classification of
the properties as well as some verifications involving our example.

4.4.1 Species of Temporal Properties

All the temporal properties (that do not involve a structural reconfiguration) can be
expressed and verified directly on the controller automaton of a component, or from
the whole application. Yet, it is possible to define classes of properties that can be
checked on smaller systems, avoiding to build the global state-space. Here we identify
abstractions and tools allowing to verify some specific categories of properties.

Deployment

The interplay between the building of all components of the application, and their start
operations (that are usually applied recursively after building) may be quite complex
and error-prone. So it may be useful for the developer to check, independently, that
deployment (possibly without start such as in Figure 4.7) of a component succeeds,
and that the global deployment, including start operations, is also successful. This

92 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

will be checked on the synchronisation of the component controllers with their respec-
tive deployment automata, but leaving the successful synchronisations of the control
operations visible.

Functional behaviour

A functional property is a property concerning only functional actions, or more precisely
properties of a system after correct deployment, on a system in which we forbid any
subsequent control action. This kind of formulas can be model-checked on a controller
automaton for which we already have proved correct deployment, and in which we build
only the relevant part of the behaviour, either by an ad-hoc construction algorithm (this
is the static automaton with the external control operations pruned), or using on-the-fly
techniques.

Functional behaviour properties are useful for component systems that do not per-
form any reconfiguration or for which non-functional actions have a transparent be-
haviour regarding functional aspects, i.e. non-functional actions commute with func-
tional ones.

Non-structural Reconfiguration

Non-structural reconfiguration, i.e. involving only bind, unbind, start and stop oper-
ations, can be dealt directly on the controller automaton. However, the interleaving
between functional and non-functional actions may have consequences on the state of
the system ; we cannot provide any general abstraction fitting with this case that could
reduce the complexity of the model construction for this class of properties.

Formulas involving non-structural reconfiguration are verified on the synchronisation
product of the controller automaton with the deployment, but where we allow after the√

action, the interleaving of both internal and external further control operations.

Structural Transformations

Remove, add and update are the main control operations that modify the content of
a composite. The first remark is that there is no hope to encode all possible future
transformations in the model. Thus the method we propose address the problem of
checking the safety of a structural transformation “before” applying it; typically before
insertion, in an already running application, of a new component whose behavioural
specification is known.

Technically, add and remove operations change the dimension of the enclosing Net,
so they cannot be modelled as transducer transitions. Instead we model the structural
reconfiguration operations as functions transforming the whole hierarchical model of
the application ; each elementary structural change affects a single Net or LTS in the
model.

Update could be expressed as a sequence unbind*;remove;add;bind*, but this would
lead both to less efficient implementations and to more complex model constructions
and proofs: we are interested in expressing full sequences of reconfigurations, that
preserve properties of the system, while elementary reconfigurations usually don’t.

4.4. PROPERTIES 93

The main difficulty with structural reconfigurations is that one wants to keep the
rest of the system in the same state. A large application should not be stopped when
updating or adding a specific sub-component, and the state of a replaced component
itself should be preserved whenever possible. The framework ensures minimum condi-
tions before replacements (in terms of stopped/unbound state), but we have to assume
that the developer will specify which data from the replaced components are to be
saved, and how this data will be mapped in the new component.

A way to deal with this tree transformation and state transfer using our formalism
can be the following sequence of steps :

• build a new controller with the replacement of the transformed part in the com-
ponent; call S ′ this new controller;

• define a mapping between actions in the original and the new controller, based on
a user-defined mapping between the action names and parameters in the replaced
component;

• identify the set T of states on the initial controller where the transformation is
possible;

• build the synchronised product of both old and new controller, using the mapping

of old to new actions, and adding in each state of T a transition
t−→ encoding the

transformation with target states in S ′.

• The automaton resulting from this synchronisation product (containing the trans-
formation actions) becomes the component’s controller which can be composed
with the automaton, encoding the structural reconfiguration, to generate the static
automaton and prove properties.

This approach, at the time of this thesis, is a work in progress. It needs more analysis
and testing to better know it limits, features and drawbacks. Nonetheless, we have used
it in our example for replacing the component B as described in the proving properties
section (section 4.4.2).

4.4.2 Proving Properties

In this section we introduce how temporal properties can be verified using our approach.
In this chapter we chose to use the Action-based Computation Tree Logics (ACTL, see
e.g. [60]), while in the next chapter we will use a more expressive temporal logics named
regular alternation free µ-calculus [129].

The choice to use abstract automaton in the previous chapter, ACTL in this chapter
and regular µ-calculus in the next chapter to encode temporal properties, is for showing
empirically that different temporal logics may be used to verify properties within our
models (in some cases, as in chapter 3, because expressiveness needs too)

Deployment

The properties concerning deployment are verified in the automaton defined for de-
ployment in section 4.4.1, i.e. on the synchronisation of the component controller with

94 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

its deployment automata, but leaving the successful synchronisations of the control
operations (deployment operations) visible.

We want at first to verify that the deployment for a component is always successful.
This is done by proving the ACTL formula (all paths lead to success):

A(truetrueU√ true) (4.1)

This formula is true for the deployment of C (Figure 4.7).
A second property we would like to verify is the absence of errors during the deploy-

ment. This is done by proving the formula (for a given set of errors OE):

AGtrue[OE] false (4.2)

This property is also true for the C’s deployment. However, in a very reasonable
scenario, let’s suppose the user starts the component C at the end of the deployment.
Under this scenario the property is not true any more (even though the deployment is
possible), and the model-checking tool gives us the counter-example shown in Figure
4.9 (Note that we label successful synchronisations between the actions ?α and !α as α)

bind(A.Ic,B.Ip) bind(A.Ilog,Ilog) bind(I1,A.I1) start

ERROR_UNBOUND_ERI(C.Ilog)

ERROR_UNBOUND_ERI(C.Ilog)

√

Figure 4.9: Diagnostic path

The error is because the required interface C.Ilog may be used before it is bound,
which in fact is true since the interface Ilog of C will be bound at the next level of
hierarchy (when deploying System). This example also shows us the importance of the
hierarchical behaviour of start and stop in the right order.

Functional behaviour

The properties concerning pure functional behaviour are verified in the automaton
defined for functional behaviour in section 4.4.1, i.e. in the static automaton with the
external control operations pruned.

We would like to verify the absence of errors during a running phase, i.e. the absence
of errors between the deployment and a new reconfiguration phase. We can verify the
property by proving the ACTL formula for a given set of error actions OE:

AGtrue[OE] false (4.3)

For instance, the proof is successful for System.
Another property we would like to prove (extracted for example from the user re-

quirements) can be that every call to the function foo() in the interface Ic of A to the
interface Ip of B is eventually logged in Logger.

4.4. PROPERTIES 95

This inevitability property is checked by verifying the ACTL formula:

AG¬foo(A.Ic,B.Ip)[foo(A.Ic, B.Ip)] A(truetrue Ulog(C.Ilog,Logger.Ilog) true) (4.4)

In Figure 4.10 we show the static automaton for System when forbidding external
control operations. We consider an instantiation where Logger has a logging capacity
of 2 (n = 2 in Figure 4.2).

log(C.Ilog,Logger.Ilog)

foo(A.Ic,B.Ip)

log(C.Ilog,Logger.Ilog)foo(A.Ic,B.Ip)

foo(A.Ic,B.Ip)

?Iext1.foo() ?Iext1.foo()

?Iext1.foo()

?Iext2.reset()

?Iext2.reset()

?Iext2.reset()

?Iext2.reset()

?Iext2.reset()

?Iext2.reset()

Figure 4.10: S\OC for System

Formula (4.4) is false in System and the model-checking tool gives us the diagnostic
shown in Figure 4.11.

foo(A.Ic,B.Ip) ?Iext.reset()

Figure 4.11: Property (4) diagnostic for System

This diagnostic is showing us one case where the Formula (4.4) is false because
the behaviour of System can fall in an infinite loop of the action ?Iext.reset() after
the action foo(A.Ic, B.Ip). Then the computation tree contains traces where the action
log(C.Ilog, Logger.Ilog) never happen, this is known as an unfair path.

We need to add a constraint to avoid the infinitely loop shown in Figure 4.11 by con-
sidering only fair paths (i.e where the constraint happen infinitely often) when proving
the property. In practise, this is expressed in the logical formula itself. Then Formula
(4.4) becomes the formula:

AG¬foo(A.Ic,B.Ip)[foo(A.Ic, B.Ip)] AG¬log(C.Ilog,Logger.Ilog)EFtrue

< log(C.Ilog, Logger.Ilog) > true
(4.5)

This formula express that after a foo(A.Ic, B.Ip) and while log(C.Ilog, Logger.Ilog) is
not reached, log(C.Ilog, Logger.Ilog) is reachable in a finite number of transitions (which
avoid the unfair paths).

96 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

However, we are considering the assumption that System is in an environment where
the method reset() of its provided interface I1 is infinitely often invoked. We should be
careful about those assumption, for instance suppose that this interface is binding to a
button of a graphical interface for the user: if we want to prove the correct autonomous
behaviour of our system, i.e. without user intervention, then we should consider that
the reset button is never pressed. We express that by adding the restriction of non-reset
action (¬?Iext.reset()), then Formula (4.5) becomes:

AG¬foo(A.Ic,B.Ip)[foo(A.Ic, B.Ip)] AG¬log(C.Ilog,Logger.Ilog)EF¬?Iext.reset()

< log(C.Ilog, Logger.Ilog) > true
(4.6)

Formula (4.6) is false for System and the tool gives us the diagnostic shown in Figure
4.12. The figure shows us the presence of a deadlock because Logger is full. To empty
Logger it should be reset through the method call reset() in its I1 interface, and in
conclusion, System can not autonomously behave correctly, it needs the user to take
part.

foo(A.Ic,B.Ip) log(C.Ilog,Logger.Ilog)

foo(A.Ic,B.Ip)

log(C.Ilog,Logger.Ilog)foo(A.Ic,B.Ip)

Figure 4.12: Property (4.6) diagnostic for System

We have shown in this section how we prove behavioural properties of a component or
an application, where properties range from reachability of an error action to intricate
temporal ordering of actions, including fairness properties. More research is needed
for giving to final users a more accessible language for expressing those properties, for
example an extension of so-called ”specification patterns” [67] with specific constructs
for component management.

Non-structural Reconfiguration

As we state in section 4.4.1, properties concerning non-structural reconfiguration are
verified on the synchronisation product of the controller automaton and the deployment,
in which we allow the interleaving of both internal and external control operations after
the successful deployment.

We would like to prove some preservation of properties when doing non-
structural reconfigurations. For instance, we can prove that Property (4.5) is pre-
served for any non-structural reconfiguration that does not involve the interface
Ilog in System. Let Olog be the binding operations involving Ilog, i.e. Olog =
{?bind(C.Ilog, Logger.Ilog), ?unbind(C.Ilog, Logger.Ilog)}. Then this property of preserva-
tion is successful verified on System by checking the ACTL formula:

4.5. TOOLS 97

[
√

]AG¬OC
[foo(A.Ic, B.Ip)] AG¬log(C.Ilog,Logger.Ilog)EF¬Olog

< log(C.Ilog, Logger.Ilog) > true
(4.7)

Structural Transformation

Suppose we do, during the application running-phase, an update of the sub-component
B in C by a component B2. B2 has a similar behaviour than B, but in addition it logs
the calls to its Ip interface using its Ilog interface; its automaton is shown in Figure 4.13.
If we build this new system (using the method described in section 4.4.1), and try to
prove again Formula (4.3), it appears to be false. Tool gives us a path, shown in Figure
4.14, containing the action ERROR UNBOUND ERI(B2.log).

?Ilf.stop
?Ip.foo()

?Ilf.start

!Ilog.log()

Figure 4.13: B2 behaviour

log(C.Ilog,Logger.Ilog)

foo(A.Ic,B2.Ip)
ERROR_UNBOUND_ERI(B2.Ilog)

Figure 4.14: Formula (4.3) diagnostic when using
B2

This is because in the initial deployment of the system, we did not bind the interface
Ilog of B. Since B did not use its interface Ilog, the composition did not produce an
undesired behaviour. However, the new B2 uses its Ilog interface, and so it produces
the error. Therefore the update of B by B2 should be followed by a binding of its Ilog
interface. This example, likely to happen in real systems, shows the necessity of formal
verification tools for checking reconfiguration requirements.

If we bind the interface Ilog of B2 to the internal interface Ilog of C, after the update
and before starting the system, then the property is preserved.

4.5 Tools

The user may describe the system topology using the Fractal Architecture Definition
Language (ADL). The Fractal ADL is an open and extensible language to define compo-
nent architectures for the Fractal component model, which is itself open and extensible.
Fractive uses the default concrete syntax, based on XML, provided by Fractal. The
XML file describing the example’s System is shown in Figure 4.15.

The XML description shown in the figure specifies that the system is composed of the
composite C (line 6), itself described in a separate file (components/C.fractal), and
the primitive Logger, which implementation is the Java class components.LoggerImpl
(line 17). C requires an interface named log of type components.LogInterface (lines
8,9) and provides an interface named I1 of type components.I1Interface (lines 10,11).
Logger provides an interface named log of type components.LogInterface (lines
15,16)

98 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

System.fractal
1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <!DOCTYPE >

3

4 <definition name="components.System">

5

6 <component name="C"

7 definition="components.C">

8 <interface name="log" role="client"

9 signature="components.LogInterface"/>

10 <interface name="l1" role="server"

11 signature="components.I1Interface"/>

12 </component>

13

14 <component name="Logger">

15 <interface name="log" role="server"

16 signature="components.LogInterface"/>

17 <content class="components.LoggerImpl">

18 <behaviour file="LoggerBehav"

19 format="Aldebaran"/>

20 </content>

21 </component>

22

23 <binding client="C.log"

24 server="Logger.log"/>

25 </definition>

Figure 4.15: System ADL

Component Controller Static Aut.
A 24/99 24/91
B 16/98 16/90

Logger 4/16 4/14
C 432/2168 12/39

System 36/151 6/19
B2 24/107 24/99

C {update(B,B2)} 1786/7082 20/58

Figure 4.16: Example of automata sizes
(states/transitions) of the example

We propose to extend the content tag of primitives to include their functional be-
havioural specification. For instance in Figure 4.15 we set that the behaviour of the
class components.LoggerImpl is defined in a file named LoggerBehav with format FC2
Parameterized (lines 18, 19).

Finally, at lines 23, 24 in Figure 4.15, the ADL defines that at the initial deployment,
the interface log of C should be bound to the interface log of Logger.

We developed a prototype tool in Java which takes the system ADL as input, and
the functional behaviour of primitives to automatically generate the models described
in this chapter. We use the CADP [81] tool-set to do the synchronisation product
and the model-checking of formulas. From the ADL description, our prototype tool
generates, once instanced, the synchronisation product in Exp-V2 format (and ASCII
list of synchronisation vectors). The automaton describing the functional behaviour of
primitives is taken directly from its file (line 18 in Figure 4.15). Our tool also generates
a script to build the system (SVL [108, 79] script from CADP). Finally, the proofs are
verified using evaluator, an on-the-fly model checking tool included in CADP. Table
4.16 shows some results for the generated automata in our example; the CADP tool-set
allows us to handle systems with as much as 100 millions states at each construction
level.

4.6 Conclusions

In this chapter we have provided methods and tools allowing the user to prove the
correctness of the behaviour of synchronous hierarchical components. One of our main
contributions is the specification of non-functional aspects behaviour, and the hierar-
chical building of LTSs modelling the system of components behaviour. Our approach

4.6. CONCLUSIONS 99

relies on the definition of a generic controller allowing (once instantiated) to encode
the whole behaviour of any component except non-structural reconfiguration. Then
a component behaviour is obtained by synchronisation product of the LTSs express-
ing the behaviour of its content and the control behaviour associated to its interfaces.
Structural (dynamic) reconfiguration is handled by a LTS transformation. The tools
provided to the user include:

• a controller automaton allowing to prove general properties on the behaviour of a
component provided no structural reconfiguration is considered;

• error detection: firing of error messages upon common sense errors can automati-
cally be added; then, for example, the user may prove the absence of such messages
in order to assert the correctness of the application;

• modelling of structural reconfigurations as transformations of the application
model.

We have developed a tool in Java that automatically and incrementally generates
the synchronisation files for a component system from its description, and we use the
CADP[81] tool set to calculate the synchronisation product, minimise the systems, and
finally model-check the formulas.

100 CHAPTER 4. HIERARCHICAL COMPONENTS BEHAVIOUR

Chapter 5

Distributed Hierarchical
Components Behaviour

5.1 Introduction

In the preceding chapter we have introduced our approach for modelling the behaviour
of (synchronous) hierarchical component systems built using the Fractal component
model, and we have shown how several properties may be verified on such models.

The approach we proposed is to give the components behavioural specifications in
the form of hierarchical synchronised transition systems. We assumed that the mod-
els for the functional behaviour of basic (primitive) components is known. Then, we
automatically incorporate the non-functional behaviour within a controller built from
the component description. The composite’s semantic is computed as a product of the
its sub-components LTSs with the composite’s controller. This system can be checked
against requirements expressed as a set of temporal logic formulas, or again as an LTS
(defining an abstract specification).

In this chapter we extend our approach to support distributed (asynchronous) com-
ponents. Dynamic aspects, e.g. reconfiguration, are particularly important when con-
sidering distributed components. In here, we propose to provide a framework for the
behavioural specification and verification of distributed, hierarchical, asynchronous, and
dynamically reconfigurable components.

Specifically, we focus on Fractive [29], a Fractal component model [43] implemen-
tation using the middle-ware ProActive [47, 28, 46]. In Fractive, components become
active in the same way than ProActive’s active objects: their membrane has a single
non-preemptive control thread which serves, based on different serving policies, method
requests from its unique pending queue. The requests to other components are done via
a rendez-vous phase so there is a delivery guarantee and a order conservation of incom-
ing calls. The responses (when relevant) are always asynchronous with replies by means
of future references; their synchronisation is done by a wait-by-necessity mechanism.

Similar to synchronous components, we automatically incorporate the non-functional
behaviour of the components, based on the component’s definition, as automata being
part of the synchronisation network defining the component’s controller. In addition to
chapter 4, we incorporate the Fractive component features by automatically adding au-
tomata encoding the queues, future responses and serving policies (in particular default

101

102 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

policies of serving functional versus non-functional requests based on the component
life cycle status).

Once more our aim is to provide the final user with a framework for verifying the
behaviour at different component phases (now distributed components) and our target
user is always the application developer in charge of the component’s life-time mainte-
nance. Again, this framework should hide as much as possible the verification process
complexity, and be automatic if possible.

Sections 5.2 and 5.3 present ProActive and Fractive respectively. In section 5.4
we introduce the behaviour model for Fractive components. Section 5.5 shows the
automatic construction of the model based on an example. In section 5.6 we prove
some properties of our example involving asynchronous features, and finally section 5.7
concludes about this chapter.

5.2 ProActive

ProActive [47, 28, 46] is a pure Java implementation of distributed ac-
tive objects with asynchronous remote method calls and replies by
means of future references. A distributed application built using
ProActive is composed of several activities, each one having a distinguished en-
try point, the active object, accessible from anywhere. All the other objects of an
activity (called passive objects) can not be referenced directly from outside. Each
activity owns its own and unique service thread and the programmer decides the order
in which requests are served (or not). Each activity has a pending queue where the
incoming requests are dropped. Requests are asynchronous method calls addressed
to the active object, and should be served by the service thread. The requests are
sent using a rendez-vous phase so there is a guaranty of delivery and of order between
incoming calls. During the rendez-vous a future (reference to the future result)
is created on the sender side thus allowing asynchrony. The responses are always
asynchronous; their synchronisation is done by a mechanism called wait-by-necessity.

Figure 5.1 shows an example consisting of two activities, each one having a single
active object (entry point) and a set of passive objects.

The method calls to active objects behave as follow:

1. When an object makes a method call to an active object (y = OB.m(~x)), the call
is stored in the request queue of the called object (QB) and a future reference is
created and returned (y references f). A future reference encodes the future return
value, i.e. not yet available, of a method call to an active object.

2. At some point, the called activity (its unique thread) decides to serve the method
call (serve(m(~x))). The request is taken from the queue and the method executed.

3. Once the method finishes, its result is updated, i.e. the future reference (f) is
replaced with the concrete method result (value of y).

When a thread tries to access a future reference before it has been updated to
the concrete real value, it is blocked until the update takes place (wait-by-necessity
mechanism).

5.3. FRACTIVE 103

Passive object ActivityActive object

Object referenceRequest Queue Future

y = OB.m(~x)

serve(m(~x))

value of y

OA

OB

A
B

QA

QB

f
2

3

1

Figure 5.1: An example consisting of two activities

A developer can specify a policy for serving the requests from the active object’s
queue. In practise this is done by implementing the runActive method which is ex-
ecuted as soon as the activity starts. The ProActive API provides several versions
of serve methods (such as blocking/unblocking serve, FIFO/LIFO order or based on
queue filters among others). When runActive is not provided, the ProActive middle-
ware implements a default FIFO policy.

The ASP calculus [46] has been defined to provide an operational semantics for the
ProActive library and the aspects presented above.

5.3 Fractive

Fractive [29] is a Fractal implementation using the ProActive middle-ware. Fractive
provides a component implementation having the same features than ProActive, in-
cluding asynchronous calls, absence of shared memory, distribution transparency and
serving request control.

As proposed in the Fractal specification, a Fractive application is made of a set
of primitive components that are composed at different levels of hierarchy, each one
defined by a specific composite.

5.3.1 Primitive Components

A primitive component in Fractive is made from one active object (and a set of passive
ones) whose methods implement the provided interfaces operations. The client bindings
mechanism are specified within the code (usually they affect the reference of a local field
of the objects), i.e. the client bindings are defined by the developer.

Note that this approach allows primitive components made of several activities but
only for simplicity, we can consider here that primitive components are formed of a

104 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

single active object and thus can be associated a single request queue. This directly
generalises to primitives having several activities, with only one exporting interfaces.

Both, functional and non-functional requests are dropped to the request queue of the
component. Fractive transmits the treatment of non-functional request to the active
object. This is for separation of concerns: we do not expect the developer to take care
of non-functional aspects (even if he could) but to focus on the functionality implemen-
tation of the component. In practise, a developer codes a primitive component as if
were just a normal active object. This provides a re-usability feature of already coded
active objects as primitive components.

The life-cycle of a primitive in Fractive behaves as follows:

1. When stopped, only non-functional requests are served.

2. Starting a primitive component means running the RunActive method of its active
object

3. Stopping a primitive component means exiting from the RunActive method of its
active object.

Since active objects are non-

stopped

started & stopping

started

stopFc

startFc

RunActive.return

RunActive

RunActive

Figure 5.2: Primitive life-cycle

preemptive, the exit from the RunActive

method can not be forced. The approach
to implement 3 is to signal the component
that it has been requested to stop. Then
the component eventually terminates the
execution of RunActive. This is shown in
Figure 5.2.

In practise, stop requests are signalled
by setting the local variable isActive to

false. Then, the RunActive method should eventually end its execution.

5.3.2 Composites

A membrane and a finite set of sub-components form a composite. The membrane
contains the set of external interfaces which can be bound to other components. It
also contains internal interfaces which can be bound to its immediately inner sub-
components external interfaces.

In Fractive the membrane of a composite is implemented as an active object, there-
fore a membrane contains an unique request queue and a single service thread. Each
interface of the composite defines an internal and an external interface in the membrane.
A Fractive composite is shown in Figure 5.3.

Method calls to external and internal interfaces are both dropped to the request
queue of the composite (including functional and non-functional request). The service
thread (RunActive) serves the methods from the queue in FIFO order but bypass
functional requests whenever the composite is stopped (i.e. it serves only non-functional
ones). As a consequence, a composite will not emit functional calls on its required
interfaces while stopped, even when its sub-components may be active and sending
requests to its internal interfaces.

5.4. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 105

Active
Object
Membrane

Sub−components

Elf Ebc

C Ep

S Ep

QC

RunActive

C

C Er

EbcElf

C IpC Ir

S Er

Figure 5.3: Fractive composite component

Note that we have named ”required” the internal interface corresponding the an
external ”provided” and vice versa. This is the membrane point of view. Serving
a functional request (when the composite is started) on an internal provided inter-
face means forwarding the call to the corresponding external required interface of the
composite. Serving a functional request on an external provided interface consists in
forwarding the call to the corresponding internal required interface of the composite.

5.3.3 Choices Made With Respect to Fractal

Some features are left unspecified in the Fractal definition, and may be set by a partic-
ular Fractal implementation, or left to be specified at user level. Similar to the previous
chapter, Fractive makes the following choices:

1. the start/stop operations are recursive, i.e. they affect the component and each
one of its sub-components, in a top-down order, and

2. functional operations cannot fire control operations.

5.4 Building the component’s model behaviour

In chapter 4, we have described our approach to construct behavioural models for
Fractal hierarchical components, in a synchronous context. We suppose that the func-
tional behaviour of primitive components can be derived from automatic analysis of
source code or expressed by the developer. Then we automatically incorporate the
non-functional behaviour: for each internal and external interface of the component,
we define a LTS encoding the interface’s behaviour (its binding operations) plus a
LTS encoding the life-cycle behaviour of the component (start/stop operations). The
semantics of a component was then computed as the synchronisation product of the
non-functional LTSs and the LTSs of its sub-components (or the functional LTS in case
of a primitive component). We named this synchronisation product the component’s
controller

106 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

The construction was done automatically in a bottom-up hierarchical fashion from
the component system description (given through an ADL). At each level of hierarchy,
i.e. for each composite, its deployment phase was applied. The deployment is a sequence
of non-functional operations, expressed by an automaton, ending with a distinguished
successful action

√
. Then, a successful deployment may be verified by the reachability

analysis of the
√

action on the synchronisation product of the component’s controller
and its deployment.

We also defined the static automaton of a component as being the synchronisation
product of the controller automaton with the deployment automaton, hiding internal
actions, forbidding any further reconfiguration (internal control actions), and minimised
modulo weak bisimulation. This static automaton encodes the behaviour of this sub-
component when computing the controller at the next level in the hierarchy.

We use a similar approach for Fractive components, but extended to include its
features introduced by ProActive. In the following we detail the models for Fractive
components.

5.4.1 Building models for Fractive components

A graphical view of the model for Fractive at a given level of the hierarchy is shown is
Figure 5.4. The doted box in the figure visually separates what belongs to the content
of the component (inside the box) and what belongs to the controller of the component.

errors & visibles

?start/stop

Interceptor
!start/stop

methods M(~x)
(visible ∨ τ)

methods M(~x)
(visible ∨ τ)

(1) !bind/unbind(I RInp, SubCk.E PIscnp)

(3) !bind/unbind(SubCk.E RIscnr, I PInr)

(2) !bind/unbind(SubCk.E RIscnr, SubCj.I PIscnr), k 6= j

SubC
k

E1

M(~x)
M(~x)

?bind/unbind(I RInp, SubCk.E PIscnp)
?bind/unbind(E RInr, Iext) ∨

(1)

(3)

(2)

E PIscnp

I RInp

M(~x) M(~x)

I PInr

E PInp

E RInr

!bind/unbind(E RInr, Iext)

E2

M(~x)
M(~x)

E RIscnr

B

Figure 5.4: Component behaviour model

In the same spirit as in chapter 4, we observe in Figure 5.4 a box encoding the
behaviour of each internal (I PI and I RI) and external (E PI and E RI) interface.
The behaviour of the interfaces includes functional actions (method calls M(−→x)), non-
functional actions and the detection of errors (E1 and E2) such as the use of an un-

5.4. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 107

bounded interface. These errors are made visible at the higher level of hierarchy. The
doted edges inside the boxes indicate a causality relation induced by the data flow
through the box.

Figure 5.5 shows the detail for I RInp and LF . We observe in I RInp that method
calls to this required interface are only possible when it is bound; if not, an error is
signalled. We do not go deeper in the detail of the interfaces and life-cycle boxes, which
have similar structure as in chapter 4.

bound(C[i].IS[ns])

I RInp

EC[i].IS[ns].M(~x)

?unbind(C[i].IS[ns])?bind(C[i].IS[ns])

?bind(C[i].IS[ns]) ?unbind(C[i].IS[ns])

unbound bound(C[i].IS[ns])

?bind(C[i].IS[ns])
→ C[i].IS[ns]

unbound

M(~x)

?unbind(C[i].IS[ns])
C[i].IS[ns]

Interface

LF
stopped started

?start

stopped

started
?start

?stop

?stop

Life-cycle

Figure 5.5: Examples of Internal Required Interface and Life-Cycle automata

One technical choice we have made with respect to chapter 4, is to bring the be-
haviour of external interfaces outside the controller definition of a component. In Figure
5.4 they are attached at the next level of hierarchy as we can see in both sides of SubCk.
Indeed we only know the possible bindings of external interfaces of a component at the
next level of the hierarchy: for a given interface, the set of interfaces which can be
bound to it depends on the environment of the component to which it belongs. In
chapter 4, we made the opposite choice, including the external interfaces behaviour
inside the composite controller; as a consequence, we had to reach one level up in the
hierarchy to be able to instantiate the controller automaton, and therefore to calculate
the synchronisation product.

By adding the external interface automaton of a component in the next level of
hierarchy, we can now calculate the controller automaton of a component before knowing
its environment (the controller does not have actions of the external interfaces). Thus,
all the properties not involving external interfaces can be verified in a fully compositional
manner. Additionally, the internal control actions, which are used when doing the
deployment, can now easily be characterised as the set of control actions in the alphabet
of the controller automaton.

108 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

5.4.2 Adding Interceptors

In chapter 4 the controller of a component is limited to reconfiguration. In order
to introduce more control capabilities, (e.g., interception and treatment of functional
requests) we introduce an interceptor in the membrane of the composites that can
intercept method calls between the composite environment and its subcomponents.
This is shown graphically in Figure 5.4.

5.4.3 Modelling the Primitives

In [21] we have shown how to build the behavioural model of an active object by analysis
of its source code. We also modelled the ProActive mechanisms for asynchronous
requests management. Figure 5.6 shows the topology of the part of this synchronisation
network corresponding to a request addressed to a remote activity, its processing and
the return of its result.

As a Fractive primitive component contains a single active object, we shall use the
same structure for their modelling, adding only the features necessary for managing
non-functional aspects.

Body
reQuest

M,so,args
Serve

M,co,fut,so,args,modereQuest
M,co,fut,so,args

Proxy
M,co,fut,so,val

Response

M,fut,so,valUse

Queue

Client role

Queue

Server Role

Body

Proxy
RunActive M()s

Figure 5.6: Communication Between two Activities

In the model (Figure 5.6), a method call to a remote activity goes through a proxy,
that locally creates a ”future” object (it creates a future for each call), while the request
goes to the remote request queue. The request arguments include a reference to the
future. It also contains a deep copy of the method’s arguments, because there is no
sharing between remote activities. Later, the request may eventually be served, and its
result value will be sent back to the future reference.

The Body box in the figure is itself a synchronisation network made from the
synchronisation product of the RunActive method’s LTS with the behaviour of each
method as described in [21]. The Queue box, additionally to methods reception,
encodes the different primitives to serve the methods in the queue provided in the
ProActive API, and used in its interactions with the body.

The case of Fractive primitive components is similar to the model shown in Figure
5.6. Each method call on each interface is encoded by the action of making the call
(reQuest in the figure) and its response by the update of the future value (Response
in the figure). The use of a future, which blocks the execution until the future value is
available, is encoded by the action Use in the figure.

5.4. BUILDING THE COMPONENT’S MODEL BEHAVIOUR 109

Our approach is to enrich the behaviour of the active object by adding two extra
boxes, LF and NewServe as shown in Figure 5.7.

Body
LF

Queue

M,fut,args
!Reponse

M,fut2,args
?Reponse

M,fut2,args
!Request

M or NF,fut,args
?Request

?Serve
start/stop

?Serve
bind/unbind, args

(1) !Serve*
M,fut,args

NF,args
(2) !ServeFirst

NF,args
(3) !ServeFirstNF

Proxy!start
!return

!stop

!started

!stopped

started

!bind/unbind,args

! start/stop

NewServe

! bind/unbind (args)

Figure 5.7: Behaviour model for a Fractive primitive

Similar to chapter 4, we assume that the functional behaviour of the component,
i.e. the body in the figure, is known. Everything else, including the behaviour of the
composite, is generated automatically based on the component’s definition.

NewServe implements the treatment of non-functional requests. “start” fires the
RunActive method (transition) in body. “stop” triggers the !stop synchronisation
with body (Figure5.7). This synchronisation should eventually lead to the termination
of the RunActive method (!return synchronisation). In the Fractive implementation,
this is done through setting the state variable isActive to false, which should eventually
cause the RunActive method to finish. The component is assumed to be stopped only
once the RunActive method has finished.

In Figure 5.7 the action (1) will serve the first functional method that agree with
the Serve API primitive utilised (for instance FIFO, LIFO, FIFO with a method name
match condition, etc.), (2) will serve a non-functional method only if it is in the head
of the queue and (3) will serve only non-functional methods in FIFO order bypassing
the functional methods present in the queue.

When a functional request is ready to be taken from the queue and the component is
started, it is served by the body of the active object. A primitive component does not
contain internal interfaces, thus the binding operations are possible only on its external
interfaces (which now are not included in the controller). In Figure 5.7 the binding
operation signals are exported (B in the subcomponent of Figure 5.4) to the next level
of hierarchy.

110 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

5.4.4 Modelling the Composites

As we mention in section 5.3, a composite membrane in Fractive is an active object.
When started, it forwards method calls between internal and external functional inter-
faces. When stopped it serves only non-functional requests.

The behaviour of a composite membrane is the synchronisation network shown in
Figure 5.8.

Queue

LF

?Serve
start/stop

?Serve
M,fut,args

?Serve
bind/unbind, args

!ServeFirstNF
NF,args

!ServeFirst
M or NF,fut,args

!Request
M,fut2,args

?Response
M,fut2,args

!Response
M,fut,args

?Response
M,fut2,args

!Request
M,fut2,args

!Response
M,fut,args

?Request
M or NF,fut,args

ProxyBody

!bind/unbind,args

Composite

! start/stop

RunActive

!fut.call(M,args)
! bind/unbind (args)

Membrane (Interceptors + LF)!started

!start/stop

!stopped

fut

?call(M,args)

Figure 5.8: Behaviour of a composite membrane

The membrane active object is created based on the composite description (usually
given by the ADL). This membrane takes the role of the interceptor introduced in the
general model (Figure 5.4). Both functional and non-functional calls are drop in the
queue of the composite (5). When started, the membrane indifferently serves functional
or non-functional methods in FIFO order (1). When stopped, similar to primitives, it
serves non-functional methods in FIFO order bypassing the functional methods present
in the queue (2).

When serving a functional call (3), a method call is done to the corresponding
interface and a future object is created (4). Note that the future references (proxy
box in Fig. 5.8) are updated in a chain following the membranes from the primitive
serving the method to the caller primitive. Since the method calls include the reference
of the future in the arguments, future updates can be addressed directly to the caller
immediately before in the chain. Consequently, like in the implementation, the future
update is not affected because of rebinding or the life-cycle status of the components.

5.5. THE USER VIEW 111

5.4.5 Building the Global Behaviour

The next step is to build a global model for the component, for the various pieces
presented in the previous sections. This ”global” behaviour construction is composi-
tional in the sense that we only need study one level of hierarchy at a time, relying on
some abstraction of the subcomponents behaviours in this process. In practise, the ab-
stract model of a subcomponent can be defined by its formal specification, or computed
recursively from analysis of its ADL and its code.

As in chapters 3 and 4, before computing any synchronous product, we build finite
abstraction of our models using finite instantiations of the data values of parameters.
Whenever the checking tools allow it, this instantiation and the corresponding state
space generation is done on-the-fly during the proof. This data instantiation is inter-
preted as a partition of the data domains and induces an abstract interpretation of the
parameterized LTS. The instantiation also will be chosen with respect to the values
occurring in the properties we interested in.

5.5 The User View

The models for the non-functional aspects described in this chapter are built automat-
ically. The user only has to provide the architecture through the Fractal ADL and the
functional behaviour of the primitive components (corresponding to the Body part in
Figure 5.7).

5.5.1 Looking at one Example

Figure 5.9 shows a simple example of a hierarchical component system in Fractive. This
is the classical problem of a bound buffer with one consumer and one producer. Both
the consumer and the producer consumes/produces one element at a time. Additionally
the buffer emits an alarm through its interface Ialarm, when the buffer is full.

Controller

Controller

Composite

Composite

Alarm

BufferSystem

Producer

Consumer

Buffer

System

Ebc

Elf Ebc

Ilf
EbcElf

Ilf

Elf

Ealarm : A EbcElf

EbcElf

EbcElf

Ebuffer : P

Eput : C

Ebuffer : C

Eget : C

Ialalrm : A Ealarm : A

Ealarm : A

Figure 5.9: Consumer-Producer sample

112 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

As we show in chapter 4, the user describes the system’s topology using the Fractal
Architecture Definition Language (ADL). Fractive uses as well the ADL’s XML syntax
provided by Fractal. The ADL file describing System for the example on this chapter,
is shown in Figure 5.10.

System.fractal
1 <?xml version="1.0" encoding="ISO-8859-1" ?>

2 <!DOCTYPE >

3

4 <definition name="components.System">

5

6 <component name="BufferSystem"

7 definition="components.BufferSystem(3)">

8 <interface name="alarm" role="client"

9 signature="components.AlarmInterface"/>

10 </component>

11

12 <component name="Alarm">

13 <interface name="alarm" role="server"

14 signature="components.AlarmInterface"/>

15 <content class="components.Alarm">

16 <behaviour file=’’AlarmBehav’’

17 format=’’FC2Param’’/>

18 </content>

19 </component>

20

21 <binding client="BufferSystem.alarm"

22 server="Alarm.alarm"/>

23 </definition>

Figure 5.10: System ADL

!fut.Rep get())
→ N − 1

?Serve(put())?Serve(get(fut))

[N < Max]?Serve(put())
→ N + 1

N

N

N

N

!fut.Rep get())
Buffer(Max : int)

[N > 0]?Serve(get(fut))

[N = Max]!Ialarm.alarm()

!Ialarm.alarm()

?RunActive

!return
?stop

0

Figure 5.11: Buffer behaviour (provided by user)

The XML description shown in Figure 5.10 specifies that the system is com-
posed of the composite BufferSystem (line 6), itself described in a separate file
(components/BufferSystem.fractal), and the primitive Alarm, which implementa-
tion is the Java class components.Alarm (line 15). BufferSystem receives a construc-
tion parameter the maximal size of the buffer (3 in our example, line 7) and requires
an interface named alarm of type components.AlarmInterface (lines 8,9). Alarm
provides an interface named alarm of type components.AlarmInterface (lines 13,14).

Again, we extends the content tag of primitives to include their functional be-
havioural specification. For instance in Figure 5.10 we set that the behaviour of the
class components.Alarm is defined in a file named AlarmBehav with format FC2 Pa-
rameterized (lines 16, 17).

As already mentioned, we assume that the functional behaviour of primitive com-
ponents, i.e the body part in Figure 5.7, is known. It can be provided by the user or
extracted from source by static analysis. For instance the behaviour of Buffer is given
through an FC2 Parameterized file format, which is shown graphically in Figure 5.11.
This parameterized automaton is instantiated with Max = 3 as set in line 7, Figure
5.10.

Finally, at lines 21, 22 in Figure 5.11, the ADL defines that at the initial deployment,
the interface alarm of BufferSystem should be bound to the interface alarm of Alarm.

5.5. THE USER VIEW 113

5.5.2 Automatic Construction

In chapter 4 we introduced a tool that hierarchically builds the behaviour of a compo-
nent system. This tool automatically generates at each hierarchy level (each component)
the binding-related behaviour for each interface as well as the life-cycle automaton of
the component.

In the framework of Fractive the tool-set includes:

• A tool that hierarchically builds the behaviour model of a component system by
analysing its ADL description. At each level of the component hierarchy, it builds
the automata describing life-cycle, binding behaviour and the Fractive new ele-
ments, namely the automata encoding the request queue, the proxies for future
responses, the NewServe policy for primitives and the RunActive policy for com-
posites. This tool produces networks of parameterized automata in Parameterized
FC2 format.

• A tool named FC2Instantiate, described in chapter 6.5, producing a finite instanti-
ation of the system from a finite abstract domain for each parameter. These values
may be in some cases taken from the system description, as the buffer capacity set
to 3 in the ADL, or deduced from the significant values occurring in the properties.
For parameters which types are simple (see [21]) these abstractions are abstract
interpretations in the sense of [53, 148].

• Interface tools with the CADP tool-set [81], at the level of LTSs and of synchroni-
sation networks. We then make a heavy use of the CADP tools (distributed state
space generator, bisimulation minimiser, on-the-fly model-checker).

The length of Fractive request queues are unbound, and their abstraction must be
chosen carefully. To generate a finite model of the system, we need to define a concrete
value for the queue depths as an abstraction in the sense of [53, 148]. We do not go
deeper on analysing the concrete value that best abstracts our example, although some
basic facts can be taken in consideration:

• The consumer in our example never requests a element from the buffer simulta-
neously (it waits for the response before emitting a new request). Therefore the
queue depth of the buffer should be at least 2. If is not the case, a request from
the consumer, when the buffer is empty, would fill the buffer’s request queue leav-
ing no space for a call from the producer filling the buffer. As consequence the
consumer’s request will never be served (since the buffer is empty) leading to a
deadlock situation. We can generalise this reasoning to n consumers, where the
depth of the request queue of the buffer should be at least n + 1.

• More complex is the analysis for the queue depths when considering life-cycle
aspects of the components. As we introduced in this work functional calls are not
served meanwhile the component is stopped. Then a scenario to avoid would be a
stopped component with a queue full of functional requests. As the queue is full,
the reception of a start request will never success, the component will never be
started and the functional requests in the queue will never be served, leading again
to a deadlock situation.

114 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

Moreover, the choice of the queue depth is critical w.r.t. size of the generated state
space: considering request queues of size 3, we were only able to generate the state space
of BufferSystem (approx. 191M states and 1,498M transitions) on a cluster composed
of 24 bi-processor nodes using the distributed model generation tool distributor from the
CADP tool-set. For the complete system we did not even try to generate the complete
automaton.

Staying in the context of explicit-state tools, we use a better approach : we define
the set of non functional actions (whether in deployment or reconfigurations) involved
in each specific property we want to prove. Then we forbid any other non-functional
actions for the model and we use this set to determine an approximation for the queue’s
length. Given those parameters, we build all the basic automata, hiding any action not
involved in the properties, and reducing the basic automata w.r.t. weak bisimulation.
Last, we compute the products of the reduced automata, using the on-the-fly verification
feature of CADP. This approach has enabled us to verify all properties listed in the next
section using a simple desktop machine (CPU Pentium 3GHz, RAM 1.5 GB).

5.6 Properties

The preceding sections focused on building the correct models. This section presents
some properties to illustrate the verification power of our approach. On this chapter,
we choose to use regular alternation-free µ-calculus [129].

As we have introduced in chapter 2, regular alternation-free µ-calculus is an exten-
sion of the alternation-free fragment of the modal µ-calculus with action predicates
and regular expressions over action sequences. It allows direct encodings of ”pure”
branching-time logics like CTL or ACTL among others. Moreover, it has an efficient
model checking algorithm, linear in the size of the formula and the size of the LTS
model.

5.6.1 Deployment

For synchronous components (chapter 4), the static automaton represents the normal
behaviour of the component after deployment. In Fractive, method calls are asyn-
chronous, and there may be delays between the request for a non-functional method
and its treatment. So checking the execution of a control operation must be based
on the observation of its application on the component, rather than the arrival of the
request. In the syntax of our tools:

• The actions Sig(bind(intf1,intf2)) and Sig(unbind(intf1,intf2)) encodes when a binding
between the interfaces intf1 and intf2 is effective. It corresponds for instance
to the synchronisations !bind/unbind(E RInr, Iext) or !bind/unbind(I RInp, SubCk.E PIscnp) in
Fig. 5.4.

• The actions Sig(start(name)) and Sig(stop(name)) encodes when the component name is
effectively started/stopped. It corresponds to the synchronisations !start/stop in
Fig. 5.4.

5.6. PROPERTIES 115

One of the interesting properties is that the hierarchical start operation effectively
occurs during the deployment; i.e. that the component and all its sub-components are
at some point started. This property can be expressed as the (inevitable) reachability of
Sig(start(name)) in the static automaton of System, for all the possibles executions, where name

= {System, BufferSystem, Alarm, Buffer, Consumer, Producer}. We leave the actions Sig(start(name))

observable in the static automaton and we express this reachability property as the
following regular µ-calculus formula, verified in our example:

µX.(< true > true ∧ [¬ Sig(start(System))] X) ∧
µX.(< true > true ∧ [¬ Sig(start(BufferSystem))] X) ∧

µX.(< true > true ∧ [¬ Sig(start(Alarm))] X) ∧
µX.(< true > true ∧ [¬ Sig(start(Buffer))] X) ∧

µX.(< true > true ∧ [¬ Sig(start(Consumer))] X) ∧
µX.(< true > true ∧ [¬ Sig(start(Producer))] X)

(5.1)

5.6.2 Pure-Functional Properties

Most of the interesting properties concern the behaviour of the system after its deploy-
ment, at least while there are no reconfigurations. For instance, in the example, we
would like to prove that a request for an element from the queue is eventually served,
i.e. that the element is eventually obtained. If the action of requesting an element is la-
belled as get req() and the answer to this request as get rep(), then this inevitability
property is expressed as the following µ-calculus formula, as well verified by the static
automaton of the example:

[true ∗ .get req()]µX.(< true > true ∧ [¬get rep()]X) (5.2)

5.6.3 Functional Properties Under Reconfigurations

Our approach enables to verify properties not only after a correct deployment, but also
after and during reconfigurations. For instance, property (5.2) becomes false if we stop
the producer since at some point the buffer will be empty, and the consumer will be
blocked waiting for an element. However, if the producer is restarted, the consumer
will receive eventually an element and the property should become true again. In other
words, we can check that, if the consumer requests an element, and then the producer is
stopped, if eventually the producer is started again, the consumer will get the element
requested.

For proving this kind of properties the static automaton is not sufficient, we need a
behavioural model containing the required reconfiguration operations. We add to the
component network a reconfiguration controller (Figure 5.12): its start state corresponds
to the deployment phase, and the next state corresponds to the rest of the life of the
component, where reconfigurations operations are enabled but are no more synchronised
with the deployment. This state change is fired by the successful termination of the
deployment (

√
).

116 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

√

C
′

tCt|D

Figure 5.12: Synchronisation product supporting further reconfigurations

For the property stated above, the reconfigurations ?stop(Producer) and
?start(Producer) are left visible. This property is expressed by the µ-calculus for-
mula, which is also insured in our example :

(* If a request from the consumer is done before reconfiguration *)

[(¬(?stop(Producer) ∨ ?start(Producer)) ∗ .get req()](

(* a response is given before stopping the producer *)

µX.(< ¬?stop(Producer) > true ∧ [¬(get rep() ∨ ?stop(Producer))]X)

(* or given after restart the producer and without stopping it again *)

∨ [true ∗ .?start(Producer)]

µX.(< ¬?stop(Producer) > true ∧ [¬(get rep() ∨ ?stop(Producer))]X))

(5.3)

5.6.4 Asynchronous Behaviour Properties

Let us now focus on a property specific to the asynchronous aspect of the component
model. The communication mechanism in Fractive allows any future, once obtained, to
be updated with the associated value, provided that the corresponding method is served
and terminates correctly; binds, unbinds or stops operation cannot prevent this. For
example, if the consumer is unbound after a request, it gets anyway the response, even if
the link is then unbound or the component stopped. Using the approach for reconfigura-
tions described above: enabling ?unbind(buffer,Buffer.get) and ?stop(Consumer),
the property can be expressed as follows. This property is verified in the example:

[true ∗ .get req()]µX.(< true > true ∧ [¬get rep()]X) (5.4)

Note that since we enabled the unbind and stop operations for the consumer, those
actions occur in the automaton on which we prove the property.

5.7 Conclusion

On this chapter we have provided methods and tools for building the specification of
distributed hierarchical components, in a hierarchical bottom-up fashion.

As in chapter 4, our approach relies on defining a synchronisation network of LTSs,
each LTS expressing a different aspect of the component behaviour. The functional
behaviour of primitive components are given by the user either with an specification
language or obtained by data source analysis. The non-functional behaviours are auto-
matically incorporated based on the component description. Then a set of properties

5.7. CONCLUSION 117

is described and proved on a component system example. Some of those properties,
e.g. dealing with deployment, concern any component system and can be verified in a
systematic way.

The main contributions of this chapter are:

• We define a general synchronisation network modelling the functional and non-
functional behaviour at any hierarchical level of a distributed component system.

• We adapt the work done in [21] for modelling the behaviour of active (primitive
and composite) components.

• In both primitives and composites we focus on the Fractive implementation of
distributed components. We have incorporated the Fractive component features by
automatically adding automata encoding the queues, future responses and serving
policies depending on the life-cycle status

• Finally we prove a set of properties classified upon the component life phase, and
considering the asynchronous aspects of Fractive components.

The model is automatically built from the functional behaviour of primitives and
the component system description (as a XML file). We have illustrated our approach
with a guided example: we described step by step the automatic construction of the
model, and we discussed techniques to avoid the state explosion problem.

Again, as in chapter 4, the main originality of this chapter is to encode the deploy-
ment and reconfigurations as part of the behaviour, and thus verify the behaviour of
the whole system of components.

118 CHAPTER 5. DISTRIBUTED HIERARCHICAL COMPONENTS BEHAVIOUR

Chapter 6

Tools

The work done during this thesis has involved the development of some automatic tools
for the analysis and verification of distributed systems. Those tools are part of a inte-
grated platform for verifying distributed system behaviours, named VERCORS [154].

Bandera/ProActive

PAX

FC2EXP

ADL2N

JFC2Editor

Finite AbstractionsSpecifications ADL Source Code
User’s input

External tools

FC2Tools CADP

FC2Instantiate

EXP

Property as
mu−calculus formulas

Results

Property as
abstract automata

XMCG

pNet + pLTS

Net + LTS

Figure 6.1: The VERCORS toolset

VERCORS is a set of integrated tools (being developed in this thesis author’s team)
for the formal verification of distributed systems. Figure 6.1 shows the current com-
ponents being part of VERCORS and how they are related. In the upper part are the

119

120 CHAPTER 6. TOOLS

input data sets given by the user to the toolset (specification (informal), ADL, source
code and finite domain’s abstractions). The tools are drawn in ellipses, CADP [81]
and FC2Tools [36] are external tools (i.e. developed for another teams) which we have
review in section 2.3.

The author of this thesis has developed the input syntax (FC2Parameterized) and
software implementation of the tool FC2Instantiate, He also did the implementation of
FC2EXP and set-up the basis for the tool ADL2N currently being developed by the
team engineers.

6.1 Bandera/ProActive

The Bandera Project [54] aims to develop techniques and tools for automated reasoning
about software system behaviour, and to apply these tools to construct high-confidence
mission-critical software. Automated reasoning is achieved by (1) mechanically creating
high-level models of software systems using abstract interpretation and partial evalua-
tion technologies, and then (2) employing model-checking techniques to automatically
verify that software specifications are satisfied by the model.

The Bandera tools includes a model generator from Java source code. We have
adapted this tool to generate models for distributed Java programs built using the
ProActive [28] middleware. The main function of our adapted tool is the identification,
using complex static analysis techniques, of the various distributed entities in the Java
source code (active objects references, futures, remote calls, parameters, etc.). The
output of this tool is an Extended Method Call Graph (EMCG) [21] for each Java
object and a set of pNets describing the topology of those objects. This work, done by
Christophe Massol, is described in [124].

6.2 PAX

PAX [21, 40, 39] instead for Parametrized Automatic eXtractor. Given a Extended
Method Call Graph (for an object), PAX construct a pLTS, using Structured Opera-
tional Semantic (SOS) rules, describing its behaviour. PAX is not yet complete imple-
mented. Its formal basis where proposed by Rabea Boulifa during her thesis work [37].

6.3 JFC2Editor

JFC2Editor is a reimplementation in Java of Autograph [10] extended to support the
FC2Parameterized format. As Autograph, JFC2Editor aims to become a tool for the
modelling of both process behaviours and properties as abstract automaton.

The development of JFC2Editor is currently stopped and it is not clear if it would
be retaken soon due to priorities and available resources.

6.4. ADL2N 121

6.4 ADL2N

The ADL to Network translator is a tool being developed. It takes a component system
described in one or several ADL files and generates the pNets describing its topology.
It also generates the additional pLTSs (such as queues and interceptors) described in
section 5.

A prototype of this tool (with minimal functionalities) was developed by the thesis
author to validate his work. In the current stage, the tool is being implemented by
software engineers and running against several medium size example. In addition,
supporting other output formats (such as LOTOS [104]) is being analysed.

6.5 FC2Instantiate

In order to work with our parameterized formalism, we have developed a tool, named
FC2Instantiate, to get instantiations from the parameterized descriptions given the
finite abstract domain of their unbounded parameters. Both description and domains
inputs are in FC2Parameterized format, the output of the tool is standard FC2 format.

In this section we describe the syntax of the FC2Parameterized format and the use
of the tool FC2Instantiate through a guided example.

Given a system of communicating automata with parameters and the domain of its
unbounded parameters, FC2Instantiate is a tool, 100% written in Java, that generates
a finite system of communicating automata by translating each of the parameters to all
the values in its domain.

We start by reviewing the FC2 format, necessary to a better understanding of its
extension, FC2Parameterized.

6.5.1 FC2 Format

As we mention in Section 2.2.1, the FC2 format allows for description of labelled tran-
sition systems and networks of such. Automata are tables of states, states being each
in turn a table of outgoing transitions with target indexes; networks are vectors of
references to subcomponents (i.e., to other tables), together with synchronisation vec-
tors (legible combinations of subcomponent behaviours acting in synchronised fashion).
Subcomponents can be networks themselves, allowing hierarchical description.

It is important to note that this format was created as a mean of communication
between several software tools in the process algebra area [117]. The format specification
defines only the syntax, and it is up to the tools to define a compatible semantics for
the different format’s entities. Indeed, it has been used with success in tools dealing
with quite different flavours of process algebras, included timed ones.

In the following we introduce the syntax of FC2 format.

Structure of an FC2 file

An FC2 object (usually found in a file) consists of:

[optional] Declarations of expression operators,

122 CHAPTER 6. TOOLS

A table of nets, containing:
the number of nets,
global semantic tables,
a global label,
the nets.
Each net (or graph) containing:

[optional] its number,
local semantic tables,
the net label,
The vertice table [optional], composed of:

the number of vertices,
the vertices.
Each vertex contains:

[optional] its number,
the vertex label,
The edges table [optional], composed of:

the number of edges,
the edges.
Each edge contains:

[optional] its number,
the edge label,
the index(es) of the resulting state(s).

FC2 simple example
nets 1

hook "main">0

net 0

struct "t1" logic "initial">0

hook"automaton"

vertice 2

vertex0 struct"v0" edges2

behav"a" result 0

behav"b" result 1

v1s"v1"E2

b"a"r0

b"b"r1

For example, this FC2 object contains a sin-
gle net (indeed an automaton, as indicated in
the net hook). The automaton has two vertices
with two edges each. All information attached
appears here directly in place, though it could
have been tabulated. The text for the first ver-
tex appears in long form (more readable), while
the second vertex is in short, compact, form.

FC2 Objects

Expressions

exp : CONSTANT ref : INT

| UNARY exp | GLOBAL INT

| exp INFIX exp | BQUOTE INT

| PREFIX OP exp CP ;

| OP exp CP

| STRING

| STAR

| ref

;

6.5. FC2INSTANTIATE 123

An expression represents an algebraic term. Some of the operators are predefined,
some are user-defined, and declared in the file header. The basic bricks are the constant
operators, the strings, and integers used as references in the semantic tables.

The “*” character has a special syntax (token STAR), used for specifying idle argu-
ments in synchronisation vectors:

* is the constant expression “idle”

*i with i a positive integer, is equivalent to the sequence of i idle constants,
“*,*,...,*”.

Types Operators are typed, and the types are used to determine in which table a
reference is to be searched. Possible types are: behav, struct, logic, hook, int,

any. The type any is used as a type variable.

The following table lists the predefined operators. There is no predefined PREFIX.

Constant: "t" : behav (long form "tau") Binary: "^" : any * int -> any

"q" : behav (long form "quit") "+" : any * any -> any

"_" : any "<" : any * any -> any

Unary: "!" : any -> any ">" : any * any -> any

"?" : any -> any "," : any * any -> any

"~" : any -> any ";" : any * any -> any

"#" : any -> any "." : any * any -> any

All infix operators have priorities and they are left associative (e.g. x.y.z means
(x.y).z). User-defined operators will be assigned a priority in the declarations as
shown later.

In the following we list the priorities of predefined operators. The priorities range
from 0 to 50, the lower the number, the strongest the priority.

Operator Priority
+ 50
> < 40
, 30
; 20
. ^ 10

Example of expressions
tau % the constant "tau", usually interpreted as the internal action

q % the special action "quit" (or the "delta" of Lotos)

3 % a reference to the entry number 3 in the corresponding semantic table

!"s" % the application of the unary operator "!" to the string "s",

% e.g. the emission of signal "s"

1+2 % the sum of the expressions referenced 1 and 2

(t<1,!(3,?(11,1)))+(t<2,!(10,?(0)))

% a big expression

Labels

Labels are used to store all kind of information attached to FC2 objects (nets, vertice,
edges). They are records with 3 specific fields: struct, behav, logic, plus an additional

124 CHAPTER 6. TOOLS

field, hook, gathering all kind of extra information. All fields are optional. When a
field is present, it contains a single expression.

Hooks will usually contain information private to a tool, or to a small set of tools.
In addition, some of the conventions defined in this document also make use of hooks.
Hook information need not be defined by the format, so it will not be parsed: it
appears as mere strings in the hook value. Each tool will decide whether or not to
decode this value, depending on the name of the hook. On the other hand, some tools
may agglomerate hooks when building new objects, so hook values (with same name)
will be composed from string with the usual expression operators.

Example of labels
struct "name0"

behav "act1"+"act2"

% value can be explicite expressions

logic "initial"

logic (~0 + 1).2 % or use references

% To give a hook a name, one usually use the ">" operator

hook "colour">"red"

hook "coord">"x=134,y=24"+"x=35,y=124"

Convention : In a given label, the Struct, Behav, and Logic fields should appear
at most once. There can be several Hook fields, though, and multiple hooks will be
interpreted as conjunctions (as if connected by a ”.” operator).

Semantic Tables

Expressions may appear at many places in the file, but usually their values are tab-
ulated, both for compact and semantic reasons. Thus, expressions are gathered in
tables, sorted by type; there are four semantic table types, corresponding to the four
label fields:

behavs, structs, logics, hooks

A semantic table has a type, a size, and a number of entries. Each entry has an
optional index, and contains an expression. The size is a positive integer, bigger than
all entry indexes. An entry without an index gets its index from the preceding entry,
plus one.

Example of Semantic Table
behavs 3

:0 tau

:1 "a1"

:2 !1

logics 2

:0 "initial">0

:1 may (1) % refers to behav :1, if "may" is behav -> logic

:2 diverge . must (2)

Tables can be found either inside a net (local table), or attached to the top level
FC2 object (global table, shared by all nets)

6.5. FC2INSTANTIATE 125

Semantic interpretation: The size indication is intended to ease the creation/filling of
tables at parse time: the ”size” specified is the effective size of the table, and not the
number of entries. Indexes start at 0. Indexes appearing explicitly in entries are –real–
indexes; this implies that there can be holes in a table.

Nets

The nets table is the top level structure of an FC2 file.

net table : /* EMPTY */

| NETS INT tables labels net list

;

The integer following the nets (or N) keyword is the number of nets in the file
(mandatory). The ”table” and ”labels” non-terminals contain the global tables, and
the global label (information concerning the whole network).

Convention: When needed, the root of the nets tree is indicated by a conventional
hook of the form: hook "main">0, in which the right hand side argument of > is of
type net

Each individual net contains local tables, a label, and a vertice table:

net : NET opt index tables labels vertice table

The index of the net (integer immediately following the net keyword) is optional.

Convention: The hook of the net usually contains an indication of its kind.
The kinds currently foreseen are: "transducer", "synch vector", "partition",

"automaton" The kind of a net carries information needed to resolve some ambigu-
ities. The default kind is ”automaton”.

Convention: The initial vertex (or vertice) of an automaton or of a transducer may
be indicated either in the logic field of the net label, or in the logic field of the vertex
(resp. vertice) itself. Some tools (e.g. FC2Tools) require a single initial vertex to be
defined.

Initial indication
...

net 0 hook "automaton" struct "foo"

logic "initial">1

vertice 3

v s"st_0" edges 1

b"a" r1

v s"st_1" edges 1

b"b" l"initial" r2

v s"stop"

The struct field of the net label is used to encode the structure of the network
(which net contains which other nets), using a ”<” operator, with the name of the node
as first argument, and a comma-separated list of net references as second argument:

126 CHAPTER 6. TOOLS

Example of Structured Net
nets 2

hook "main" "0"

net 0 hook "transducer" struct "system"<1,1,1

vertices ...

% the main net is called "system", and has

% three identical sons, copies of net 1.

net 1 hook "automaton" struct "cell"

% this one is a simple automaton named "cell"

% (a net with no argument)

Vertice and Edges

A vertice table is the main component of a net. The number of vertice in the table is
mandatory.

vertice table : /* Empty */

| VERTICE INT vertex_list

;

...

vertex : VERTEX opt index label edge_table

A Vertex contains an optional index, a label, and an edges table. The number of
edges in the edges table is mandatory.

edge_table : /* Empty */

| EDGES INT edges

;

...

edge : EDGE opt index label target_vertice

| label target_vertice

;

target_vertice : result

| result exp

;

result : ARROW | RESULT /* -> or r */

;

In each edge entry:

• The edge (or e) keyword is optional.

• The edge index is optional.

• The result keyword is mandatory (either r, result, or ->), and is followed by an
expression of type vertex, usually a single vertex index, or a ”+”-separated list of
vertex indexes (e.g. “1+2+5+6”).

• When a net has only one vertex (usual for synchronisation vectors) this index (but
not the preceding result keyword) can be omitted.

Example of Edges
v s"state1" E2 % vertex with 2 edges

e0 b?0 r1 % edge 0 has behaviour ?0 and one target vertex (number 1)

e1 b?1 r 1+2+3 % edge 1 has 3 target vertice, number 1, 2, and 3

%

vertex 2 struct "state2" edges 2 % another vertex, in expanded syntax

edge 0 behav ?0 -> 1

edge 1 behav !1 result 1+2+3

6.5. FC2INSTANTIATE 127

Declarations

The declaration section allows a specific tool to use more operators than those predefined
in FC2. The syntactic class, the lexical representation, and the type of the operator
must be specified.

The syntax class is one of constant, unary, prefix, infix. The difference between
unary and prefix is that the latter requires parenthesis surrounding its arguments.
Locally-declared infix operators should be assigned to a priority between 0 and 50.

The lexical representation must be a legal token for the FC2 scanner, that is either
a SYMBOL (single character symbol) or an IDENT (fully alphabetic identifier).

The type must be coherent with the syntactic class.

declaration : decl_class decl_token decl_type

;

decl_class : PREFIX_DECL | UNARY_DECL | INFIX_DECL priority INT | CONSTANT_DECL

;

decl_token : IDENT | SYMBOL

;

decl_type : OP types CP ARROW type

;

Example of Declarations
constant diverge () -> logic

infix $ (logic logic) -> logic priority 45

prefix & (struct behav behav) -> struct

6.5.2 Specification of Parameterized System

The FC2Parameterized format allows the systems specification using parameterized
networks of communicating automata. It is an extension of the standard FC2 format
with additional operators (introduced in detail in section 6.5.5) and user defined vari-
ables. This extension is done using the declarations section of FC2 format. We use the
graphical syntax introduced in section 3.2.2 for a better understanding.

Example description

We use the Consumer-Producer example introduced in section 3.2.2 and section 3.2.3.
The example is shown in Fig. 6.2, it is composed of a single bounded buffer, with a
maximal capacity of Max elements, and a bounded quantity of consumers (#consumer)
and producers (#producer) running in parallel.

Both producers and consumers have a single functionality. The producers keep
feeding the buffer with an arbitrary quantity (x) of elements without waiting for a
response, while the consumers request an element from the buffer and wait for its
response.

On the contrary, the buffer has two functionalities. On one side it keeps a bounded
stock where elements are added and taken, but it also manages a queue where the
request from the consumers are enqueued until elements become available.

We model each functionality of the system as a pLTS, and the hierarchical com-
position of this functionalities (pLTS) as pNets. We chose to describe the example
behaviour in two FC2 files: SystemParameterized.fc2 describes the synchronisation
network (i.e. the composition) between the producers, consumers and the buffer; both

128 CHAPTER 6. TOOLS

Buffer

ProducerConsumer

get an element
if buffer is not empty

ask for an element
feed with x elements

[1 . . . #producer]

[1 . . . #consumer]

[0 . . . Max]

Figure 6.2: Consumer-Producer system interaction

the behaviour of a consumer and the behaviour of a producer is included in the same file,
while the behaviour of the buffer is described in the file BufferParameterized.fc2.

The System

Let’s take a look back to the system, it is shown in Figure 6.3. The arbitrary numbers
of consumers and producers are respectively represented by the exponents c and p in
the figure.

Consumer
c

?R get()

!Q get()

!Q get()

?R get()
p : producers

c : consumers

Q get(c)

!R get(c)?Q get(c)

R get(c)

Q put(p, x)

R get(c)Q get(c)

?Q put(x)

Q put(p, x)

Producer
p(Max)

!Q put(x)

!Q put(x)

x : [1,Max]Buffer(Max, consumers)

c : consumers
x : [1,Max]

Figure 6.3: Parameterized consumer-producer system

In the FC2Parameterized format, the system is described by three nets (consumer,
producer and buffer) and a fourth net defining the synchronisation between them (hav-
ing the synchronisation vectors) as follows:

6.5. FC2INSTANTIATE 129

SystemParameterized.fc2
declarations

constant consumers() ->any

constant producers() ->any

infix & (any any) -> any priority 8

... % other necessary declarations

nets 4

hook"main" > 0

struct"Consumer-Producer"

net 1

struct "Buffer"

... % the rest of the net definition (semantic table)

net 2

struct "Consumer"

... % the rest of the net definition (semantic table & vertices table)

net 3

struct "Producer"

... % the rest of the net definition (semantic table & vertices table)

net 0

hook "synch_vector"

struct _< 1,2&consumers,3&producers

... % the rest of the net definition (including synchronisation vectors)

When writing a parameterized system, all the variables and operators not predefined
in the standard FC2 format should be declared in the declarations section of the
file. In our example, the file begins declaring the variables consumers and producers,
encoding respectively the set of consumers and producers. The keyword to declare a
variable in FC2Parameterized is constant. The type of the variables (after the arrow)
can be any of the FC2 Types. However, the FC2Instantiate tool does not make type
checking yet, meanwhile we mainly use the type “any”.

The operator & declared as infix in the file, when is used within the struct label
of a net instantiates the referenced net (its left argument) to the size of the given set
(its right argument). Then struct < 1,2&consumers,3&producers indicates that
the network is composed by one single instance of the network 1, #consumers in-
stances of the network 2 and #producers instances of the network 3. For instance
if consumers = {"cons1", "cons2"} and producers = [2, 4], then using the tool
struct < 1,2&consumers,3&producers is expanded to struct < 1,2,2,3,3,3.

Before given the complete SystemParameterized.fc2 file contents, we analyse each
one of its networks.

130 CHAPTER 6. TOOLS

Consumer

The parameterized automaton modelling the Consumer behaviour is shown in Figure
6.4.

Consumer

?R get()

!Q get()

!Q get()

?R get()

Figure 6.4: Parameterized Con-
sumer

SystemParameterized.fc2
...

net 2

struct "Consumer"

behavs 2

:0 "Q_get()"

:1 "R_get()"

logic "initial">0

behav !0+?1

hook "automaton"

vertice 2

vertex 0

edges 1

edge0

behav !0 -> 1

vertex 1

edges 1

edge0

behav ?1 -> 0

...

Since the consumer does not use parameters, its definition is done using the standard
FC2 format as shown next to the figure.

Producer

The parameterized automaton modelling a Producer behaviour is shown in Figure 6.5.
The transition’s alphabet is specified in the behaviour’s semantic table of the net. The
semantic table for the Producer is shown next to the figure.

Producer(Max)

!Q put(x)

!Q put(x)

x : [1,Max]

Figure 6.5: Parameterized Pro-
ducer

SystemParameterized.fc2
declarations

...

infix & (any any) -> any priority 8

prefix in (any any) -> any

...

net 3

behavs 1

:0 "Q_put"&in(1,Max)

...

The & operator, when inside a semantic table, takes a FC2 Expression in its left side
and a list of sets (each set separate by “,”) in its right side (in our example there is
only one set). This operator generates, during instantiation, an entry in the semantic
table for each member of the Cartesian product of the sets in its right side.

The in operator takes two integers and generates the set of all the integers be-
tween those integers inclusive (in(1, 3) = {1, 2, 3}). For instance, when running the
FC2Instantiate tool with Max = 3, the semantic table above is extended to:

6.5. FC2INSTANTIATE 131

SystemInstantiatied.fc2
...

net 3

behavs 3

:0 "Q_put(1)"

:1 "Q_put(2)"

:2 "Q_put(3)"

...

Within states (vertices) and transitions (edges), their local variables should be as-
signed using a hook label (one per variable). The variables are assigned with the infix
operator =, which takes a variable name in its left side and a set in its right side. When
using the tool, the variable is assigned to each element of the set.

In the producer the state has no variables. On the contrary, the only transition
contains the variable x which will range in the set [1, Max]. Then the vertices table of
the Producer is:

SystemParameterized.fc2
declarations

...

infix = (any any) -> any priority 8

infix & (any any) -> any priority 8

...

vertice 1

vertex 0

edges 1

edge0

hook x=in(1,Max)

behav !(0&x) -> 0

The left parameter of the operator &, when used inside an automaton’s edge (which is
not a synchronisation vector), is a reference to an action in the corresponding semantic
table of the net; and the right parameter is an expression. When using the tool, an
expression of the form 0&x (inside an automaton edge) will be replaced by a reference
to the entry 0 of the semantic table (note that the corresponding entry in the table
must be also parameterized by x or equivalent) for each instantiation of x.

The complete parameterized description of a producer and its instantiation when
Max = 3 are:

SystemParameterized.fc2
declarations

constant Max() -> int

constant x() -> int

infix & (any any) -> any priority 8

infix = (any any) -> any priority 8

prefix in (any int) -> any

...

net 3

behavs 1

:0 "Q_put"&in(1,Max)

logic "initial">0

hook "automaton"

vertice 1

vertex 0

edges 1

edge0

hook x=in(1,Max)

behav !(0&x) -> 0

...

SystemInstantiated.fc2
...

net 3

behavs 3

:0 "Q_put(1)"

:1 "Q_put(2)"

:2 "Q_put(3)"

logic "initial">0

hook "automaton"

vertice 1

vertex 0

edges 3

edge0

behav !0 -> 0

edge1

behav !1 -> 0

edge2

behav !2 -> 0

...

132 CHAPTER 6. TOOLS

Buffer

The buffer communicates with consumers and producers through three actions: Q get
to receive a request for element from a consumer, R get to give the answer to the
consumer and Q put to receive feeds from producers. Since the behaviour of the buffer
is given in a separate file, in the file SystemParameterized.fc2 only is specified its
behaviour semantic table (i.e. its alphabet of actions) as follows:

SystemParameterized.fc2
declarations

...

constant Max() -> int

infix & (any any) -> any priority 8

...

net 1

struct "Buffer"

behavs 3

:0 "Q_get"&consumer

:1 "R_get"&consumer

:2 "Q_put"&in(1,Max)

behav ?0+!1+?2

hook "synch_vector"

Synchronisation vectors and complete SystemParameterized.fc2 file

Finally in the net 0 we give the synchronisation vectors that define the actions from
the producers, consumers and the buffer which should be synchronised.

In the synchronisation vector we use the $ operator to indicate which of the instances
of a network is being to be referenced.

In a synchronisation vector a reference such as behav 0&c < ?(0&c)$1, !0$(2&c)

-> 0 indicates that the action labelled with the entry 0 (for an instantiation of c) in
the net 1, is synchronised with the entry 0 of the net 2 (where the net 2 is instantiated
for an evaluation of c). This synchronisation is observable and produces a global action
labelled with the entry 0 (for an instantiation of c) in the behaviour semantic table of
the net having the synchronisation vector.

6.5. FC2INSTANTIATE 133

The complete SystemParameterized.fc2 file is shown bellow:
SystemParameterized.fc2

declarations net 3

constant Max() -> int struct "Producer"

constant x() -> int behavs 1

constant consumers() ->any :0 "Q_put"&in(1,Max)

constant producers() ->any logic "initial">0

constant c() ->any behav !0

constant p() ->any hook "automaton"

constant queue() ->any vertice 1

infix & (any any) -> any priority 8 vertex 0

infix $ (any any) -> any priority 8 edges 1

infix = (any any) -> any priority 8 edge0

prefix in (any int) -> any hook x=in(1,Max)

nets 4 behav !(0&x) -> 0

hook"main" > 0 net 0

struct"Consumer-Producer" struct _< 1,2&consumers,3&producers

net 1 hook "synch_vector"

struct "Buffer" behavs 3

behavs 3 :0 "Q_get"&consumers

:0 "Q_get"&consumers :1 "R_get"&consumers

:1 "R_get"&consumers :2 "Q_put"&(producers,in(1,Max))

:2 "Q_put"&in(1,Max) behav 0+1+2

behav ?0+!1+?2 vertice 1

hook "synch_vector" vertex 0

net 2 edges 3

struct "Consumer" edge 0

behavs 2 hook c=consumers

:0 "Q_get()" behav 0&c < ?(0&c)$1, !0$(2&c) -> 0

:1 "R_get()" edge 1

logic "initial">0 hook c=consumers

behav !0+?1 behav 1&c < !(1&c)$1, ?1$(2&c) -> 0

hook "automaton" edge 2

vertice 2 hook p=producers

vertex 0 hook x=in(1,Max)

edges 1 behav 2&(p,x) < ?(2&x)$1, !(0&x)$(3&p) -> 0

edge0

behav !0 -> 1 vertex 1

vertex 1

edges 1

edge0

behav ?1 -> 0

As we mention before, if consumers = {"cons1", "cons2"} and producers = [2,

4], then using the tool the expression struct < 1,2&consumers,3&producers is
expanded to struct < 1,2,2,3,3,3. Then when c="cons2" and p=3, the vector
behav 0&c < ?(0&c)$1, !0$(2&c) -> 0 becomes behav 1 < ?1,*, !0, *,*, * ->

0.

Buffer’s behaviour

The buffer’s behaviour is described through a synchronisation network between two
components: stock and queue. stock takes care of keeping the actual number of
elements (up to Max) in the buffer’s stock and receive the feeds from the producers.
queue receives the requests from the consumers and put them in a queue. The answers
to the consumers are given in FIFO order from the request queue until elements are
available in the buffer’s stock.

134 CHAPTER 6. TOOLS

The network describing the buffer behaviour is shown in Figure 6.6.

queue queue

stock

[!empty(queue)]?getElement → queue

!R get(getF irst(queue)) → removeF irst(queue)

[stock > 0]!getElement → stock − 1

[0 ≤ x ≤ Max− stock]?Q put(x) → stock + x

!getElement

τ

0

?Q put(x)

?Q put(vx)

!R get(c)

!R get(c)

x : [1,Max]
stock : [0,Max]

newQueue(0, ∅)

?Q get(c)

?Q get(c)

Queue(consumers)

?getElement

[!full(queue)]?Q get(c)
→ put(queue, c)

queue : newQueue(#consumers, consumers)
c : consumers

Buffer(Max,consumers)

c : consumers

stock(Max)

Figure 6.6: Parameterized Buffer

The behaviour of the buffer is specified in a separate file because FC2Instantiate
does not support nested synchronisation networks in a single file.

In the stock, its only state is parameterized with the variable stock. The variable
stock encodes the quantity of elements actually available in stock. When an element
is taken, this variable is decreased by 1, which is expressed by a transition to the state
encoding the stock having one element less, in the figure correspond to the transition
labelled [stock > 0]!getElement → stock − 1. When feeding the stock (action Q put)
this variable is incremented by the quantity of elements received, transition labelled as
?Q put(x) ([0 ≤ x ≤ Max− stock]?Q put(x) → stock +x in the figure. Note that both
transitions are guarded to avoid taken an element from an empty stock or to overfill it.

6.5. FC2INSTANTIATE 135

The FC2 file describing the stock is:

BufferParameterized.fc2
declarations

constant Max() ->any

constant stock() ->any

constant x() ->any

infix & (any any) -> any priority 8

infix = (any any) -> any priority 8

infix - (any any) -> any priority 8

prefix in (any int) -> any

prefix greaterThan (any any) -> any

prefix when (any) -> any

...

net 2

struct "stock"

behavs 2

:0 "Q_put"&in(0,Max)

:1 "getElement"

logic "initial">0

behav ?0+!1

hook "automaton"

vertice 1

vertex 0

hook stock=in(0,Max)

edges 2

edge0

hook x=in(1,(Max-stock))

behav ?(0&x) -> 0&(stock+x)

edge1

hook when(greaterThan(stock,0))

behav !1 -> 0&(stock-1)

As you can see, new operators supported by the tool are introduced: the conditional
operator when, the comparison operator greaterThan, and the arithmetic operators -

and +.

In the queue, the states are parameterized by the state variable queue which encodes
the states of a queue. A queue is characterised by its contents.

When a request for one element is received (?Q get(c)), the caller id (c) is appended
to the end of the queue put(queue, c). As soon as an element is available in the stock
(?getElement), the first caller from the queue is taken (getF irst(queue)) and a response
to it is given (!R get(c)). At the same time the caller is removed from the queue
(removeF irst(queue)).

Figure 6.6 introduces several operators supported by the FC2Instantiate tool to
manipulate queues. Their complete descriptions are given in section 6.5.5.

The FC2 file describing the Queue is:
BufferParameterized.fc2

declarations

constant consumers() ->any

constant c() ->any

constant queue() ->any

infix & (any any) -> any priority 8

infix = (any any) -> any priority 8

prefix when (any) -> any

prefix instantiateQueue (any) -> any

prefix getFirst (any) -> any

prefix removeFirst (any) -> any

136 CHAPTER 6. TOOLS

prefix fullQueue (any) -> any

prefix emptyQueue (any) -> any

prefix putQueue (any) -> any

prefix size (any) -> any

...

net 1

struct "queue"

behavs 3

:0 "Q_get"&consumers

:1 "R_get"&consumers

:2 "getElement"

logic "initial">0

behav ?0+!1+?2

hook "automaton"

vertice 2

vertex 0

hook queue=instantiateQueue(size(consumers),consumers)

edges 2

edge0

hook c=consumers

hook when(!fullQueue(queue))

behav ?(0&c) -> 0&putQueue(queue,c)

edge1

hook when(!emptyQueue(queue))

behav ?2 -> 1&queue

vertex 1

hook queue=instantiateQueue(size(consumers),consumers)

edges 1

edge0

hook when(!emptyQueue(queue))

behav !(1&getFirst(queue)) -> 0&removeFirst(queue)

...

As specified in Figure 6.6, the complete Buffer behaviour is done by synchronising
the getElement action of stock and of queue (the queue request elements from the
stock). The full FC2 file describing this synchronisation is following:

BufferParameterized.fc2
declarations

constant Max() ->any

constant consumers() ->any

constant stock() ->any

constant x() ->any

constant c() ->any

constant queue() ->any

infix & (any any) -> any priority 8

infix $ (any any) -> any priority 8

infix = (any any) -> any priority 8

infix - (any any) -> any priority 8

prefix in (any int) -> any

prefix greaterThan (any any) -> any

prefix when (any) -> any

prefix instantiateQueue (any) -> any

prefix getFirst (any) -> any

prefix removeFirst (any) -> any

prefix fullQueue (any) -> any

prefix emptyQueue (any) -> any

prefix putQueue (any) -> any

prefix size (any) -> any

nets 3

hook"main" > 0

6.5. FC2INSTANTIATE 137

struct"Buffer"

net 1

struct "queue"

behavs 3

:0 "Q_get"&consumers

:1 "R_get"&consumers

:2 "getElement"

logic "initial">0

behav ?0+!1+?2

hook "automaton"

vertice 2

vertex 0

hook queue=instantiateQueue(size(consumers),consumers)

edges 2

edge0

hook c=consumers

hook when(!fullQueue(queue))

behav ?(0&c) -> 0&putQueue(queue,c)

edge1

hook when(!emptyQueue(queue))

behav ?2 -> 1&queue

vertex 1

hook queue=instantiateQueue(size(consumers),consumers)

edges 1

edge0

hook when(!emptyQueue(queue))

behav !(1&getFirst(queue)) -> 0&removeFirst(queue)

net 2

struct "stock"

behavs 2

:0 "Q_put"&in(0,Max)

:1 "getElement"

logic "initial">0

behav ?0+!1

hook "automaton"

vertice 1

vertex 0

hook stock=in(0,Max)

edges 2

edge0

hook x=in(1,(Max-stock))

behav ?(0&x) -> 0&(stock+x)

edge1

hook when(greaterThan(stock,0))

behav !1 -> 0&(stock-1)

net 0

behavs 3

:0 "Q_get"&consumers

:1 "R_get"&consumers

:2 "Q_put"&in(1,Max)

struct _< 1,2

behav ?0+!1+?2

hook "synch_vector"

vertice 1

vertex 0

edges 4

edge 0

hook c=consumers

behav ?(0&c) < ?(0&c)$1 -> 0

edge 1

hook c=consumers

138 CHAPTER 6. TOOLS

behav !(1&c) < !(1&c)$1 -> 0

edge 2

hook x=in(1,Max)

behav ?(2&x) < ?(0&x)$2 -> 0

edge 3

behav tau < ?2$1, !1$2 -> 0

6.5.3 Instantiation File

The domain of the global variables, i.e. the variables visible all over the parameterized
system definition, is defined in a instantiation file. The instantiation file is given in
FC2 format having a single net. The variables are assigned using the operator = in
the hooks of that net (they can be assigned equally to a set or a value). For our
consumer-producer example, we instantiate the system with 2 producers, 2 consumers
and a maximal buffer capacity of 3. The instantiation file is:

InstantiationDomains.fc2
declarations

constant Max() ->any

constant consumers() ->any

constant producers() ->any

infix = (any any) -> any priority 8

prefix in (any int) -> any

prefix set (any) -> any

nets 1

net 0

hook Max=3

hook consumers=set("cons1","cons2")

hook producers=in(1,2)

6.5.4 Using the tool

The command to run FC2Instantiate is:

JAVA_CMD -cp FC2Instantiate.jar:FC2Parser.jar:jargs.jar\

fr.inria.oasis.fc2.FC2Instantiate [-o <net_file_output>]\

-d <definition.fc2> [-v] <instantiations.fc2>+

where JAVA CMD is the Java runtime command and

• <net file output> is an optional file to print the result. If it is not given the
result will be print to the standard output.

• <definition.fc2> is the file describing the parameterized system (in FC2 pa-
rameterized format)

• <instantiations.fc2>+ is a list of files defining the domain of the global vari-
ables. If a variable is defined in more than one file, it takes the value defined in
the last file where it is defined.

• -v for extra information (debugging)

6.5. FC2INSTANTIATE 139

6.5.5 FC2Parameterized reference manual

While the FC2Parameterized format is not “human-friendly”, it is a powerful language
to describe behaviour of systems. Even when humans may directly use this language
to model distributed system, its main target is to be the intermediate format produced
by our automatic tools in order to do verification.

This section contains a preliminary version of the FC2Parameterized reference man-
ual. It is expected that the tool (FC2Instantiate) and the format will evolve quickly in
the short term, and a separate reference manual document will follow.

Additionally to the predefined operators in the FC2 format, the FC2Parameterized
defines the following (all of them supported in the FC2Instantiate):

General Operators

• & : Exp×Exp → Exp, where Exp is an FC2 expression. Its semantic depends on
the context where is used:

– In a semantic table. The & operator, when inside a semantic table, takes a
FC2 Expression in its left side and a list of sets (each set separate by ,) in
its right side. This operator generates an entry in the semantic table for each
member of the Cartesian product of the sets in its right side.

– In an automaton’s edge. The left parameter of the operator &, when used
inside an automaton’s edge (which is not a synchronisation vector), is a ref-
erence to an action in the corresponding semantic table (for instance, the
behaviour label in the edge/vertex, reference the behaviour table of the net).
The right side contains an expression. When using the tool, an expression of
the form 0&x (inside an automaton edge) will be replaced by a reference to
the entry 0 of the semantic table (note that the entry in the table should be
also parameterized by x or equivalent) for each instantiation of x.

– In a synchronisation vector. When it is present at the left side of the $ opera-
tor, it semantic is the same that when is inside an automaton’s edge (defined
above). When is in the right side of the $ operator is analogous to the edge
case, but it references to an evaluation of a net instead of a semantic table.

– In the struct label of a net. In this case the & operator indicates the num-
ber of instantiations to be done for a net. In its left side is the referenced
net, and in its right side a set. The number of instantiations of the nets will
be the same as the number of elements of the set. For instance struct <

1,2&consumers,3&producers indicates that the network is composed by one
single instance of the network 1, #consumers instances of the network 2 (con-
sumers is a variable encoding a set) and #producers instances of the network
3.

• $: Exp × Exp → Exp, where Exp is an FC2 expression. In the synchronisation
vectors, the $ operator is used to indicate which of the instances of a network is
being referenced.

140 CHAPTER 6. TOOLS

• when : boolean is used in a hook to indicate a condition. When the condition is
not true, the instantiation stops for the vertex/edge holding the hook.

• =: varName× Set is for assignment of values to a variable. When instantiating,
the variable on the left side will be assigned to each element in the set of the right
side.

Set operators

• set : List(any) → Set. This operator receives a list of elements and con-
structs an ordered set containing them. Ex: var=set("a",3,"b","other")

(var = {”a”, 3, ”b”, ”other”}).

• in : int × int → Set. The operator receives two integers and generates the set of
all the integers between them inclusive. Ex: var=in(2,5) (var = {2, 3, 4, 5}).

• size : Set → int. The size operator receives a set and returns the number of
elements in it. Ex: size(var)=4 (var = {”a”, 3, ”b”, ”other”}).

• merge : Set × Set → Set. The merge operator receives two sets and re-
turns an unique set with the disjoint union of elements in both sets. Ex:
merge(set("a","b"),merge(in(1,2),set("b"))) (= {”a”, ”b”, 1, 2, ”b”}).

Queue Operators

Often in distributed systems, because their asynchronous communication nature, it is
needed to model queues, sometimes named channels. FC2Parameterized provides the
following set of queue manipulation:

• instantiateQueue : Set× int → queue. This operator receives a set of the poten-
tially elements that could be added to the queue, and a maximal capacity of the
queue. It generates the queue (queue is an internal type for FC2Parameterized).
Ex: queue=instantiateQueue(var,6) (var = {”a”, 3, ”b”, ”other”}).

• putQueue : queue× any → queue. This operator receive a queue and an element
to be added at the end of the queue. It returns the queue with the element already
added. Ex: queue=putQueue(queue,"newElement").

• getF irst : queue → any. This operator returns the first element of a queue. Ex:
var=getFirst(queue).

• getF irstF ilter : queue× Set → any. This operator returns the first element of a
queue that is in the set Set. Ex: var=getFirstFilter(queue,set("a",2)).

• removeF irst : queue → queue. This operator returns the queue queue without it
first element. Ex: queue=removeFirst(queue).

• removeF irstF ilter : queue × Set → queue. This operator returns the queue
queue without the first element in the queue which is also in the set Set. Ex:
queue=removeFirstFilter(queue,set("a",2)).

6.6. FC2EXP 141

• fullQueue : queue → boolean. This operator checks whether the queue has reach
the maximal capacity. Ex: fullQueue(queue).

• emptyQueue : queue → boolean. This operator checks whether the queue is empty.
Ex: emptyQueue(queue).

• emptyQueueF ilter : queue × Set → boolean. This operator returns true if
the queue has no elements from the set Set. It returns false otherwise. Ex:
emptyQueueFilter(queue,set("a",1)).

• hasElement : queue × any → boolean. This operator returns true if the element
any is in the queue queue. It returns false otherwise.

Arithmetic operators

• + : int× int → int. Addition between integers. Ex: var=3+var.

• ^: int× int → int. Power. Ex: var^3 (= var3).

• − : int× int → int. Subtraction between integers.

• × : int× int → int. Multiplication between integers.

• / : int × int → int. Integer division between integers. The result is the integer
part of the division.

• mod : int× int → int. It gives the common residue of the arguments.

• greaterThan : int× int → boolean. It returns true if the first argument is greater
than the second one, false otherwise.

• lessThan : int × int → boolean. It returns true if the first argument is less than
the second one, false otherwise.

• equal : int× int → boolean. It returns true if the first argument is equal than the
second one, false otherwise.

6.6 FC2EXP

FC2EXP is a small tool that translate the set of synchronisation vectors in standard
FC2 format (i.e. not parameterized), into a synchronisation vector list in the EXP
format of the CADP [81] tool.

The FC2 file should not contain any automata, i.e. the nets in the file have only the
behaviour semantic tables (alphabet) and the synchronisation vectors defined in the net
0. The behaviour of each net (excluding the net 0) is supposed to be in separate files.

The command to run FC2EXP is:

JAVA_CMD -cp FC2EXP.jar:FC2Parser.jar:jargs.jar:JCup.jar\

fr.inria.oasis.fc2exp.FC2EXP <file.fc2>

142 CHAPTER 6. TOOLS

The result are given in the standard output.
For example, in the Consumer-Producer example analysed in section 6.5.2, the FC2

file describing the synchronisation between the Buffer and the producers/consumers
(once instantiated1) is following:

SystemInstantiated.fc2
version "1.0" net 0

nets 4 behavs 10

hook "main" > 0 :0 "Q_get(cons1)"

struct "Consumer-Producer" :1 "Q_get(cons2)"

net 3 :2 "R_get(cons1)"

behavs 3 :3 "R_get(cons2)"

:0 "Q_put(1)" :4 "Q_put(1,1)"

:1 "Q_put(2)" :5 "Q_put(1,2)"

:2 "Q_put(3)" :6 "Q_put(1,3)"

struct "Producer" :7 "Q_put(2,1)"

behav !0+!1+!2 :8 "Q_put(2,2)"

net 2 :9 "Q_put(2,3)"

behavs 2 hook "synch_vector"

:0 "Q_get()" struct _<1,2,2,3,3

:1 "R_get()" behav 0+1+2+3+4+5+6+7+8+9

hook "synch_vector" vertice 1

struct "Consumer" vertex0

behav !0+?1 edges 10

net 1 edge0 behav 0<?0,!0,*,*,* -> 0

behavs 7 edge1 behav 1<?1,*,!0,*,* -> 0

:0 "Q_get(cons1)" edge2 behav 2<!2,?1,*,*,* -> 0

:1 "Q_get(cons2)" edge3 behav 3<!3,*,?1,*,* -> 0

:2 "R_get(cons1)" edge4 behav 4<?4,*,*,!0,* -> 0

:3 "R_get(cons2)" edge5 behav 5<?5,*,*,!1,* -> 0

:4 "Q_put(1)" edge6 behav 6<?6,*,*,!2,* -> 0

:5 "Q_put(2)" edge7 behav 7<?4,*,*,*,!0 -> 0

:6 "Q_put(3)" edge8 behav 8<?5,*,*,*,!1 -> 0

hook "synch_vector" edge9 behav 9<?6,*,*,*,!2 -> 0

struct "Buffer"

behav ?0+?1+!2+!3+?4+?5+?6

FC2EXP would translate this file to the following:
SystemInstantiated.exp

label par

"?’Q_get(cons1)’" * " !’Q_get()’" * _ * _ * _ -> "Q_get(cons1)",

"?’Q_get(cons2)’" * _ * " !’Q_get()’" * _ * _ -> "Q_get(cons2)",

" !’R_get(cons1)’" * "?’R_get()’" * _ * _ * _ -> "R_get(cons1)",

" !’R_get(cons2)’" * _ * "?’R_get()’" * _ * _ -> "R_get(cons2)",

"?’Q_put(1)’" * _ * _ * " !’Q_put(1)’" * _ -> "Q_put(1,1)",

"?’Q_put(2)’" * _ * _ * " !’Q_put(2)’" * _ -> "Q_put(1,2)",

"?’Q_put(3)’" * _ * _ * " !’Q_put(3)’" * _ -> "Q_put(1,3)",

"?’Q_put(1)’" * _ * _ * _ * " !’Q_put(1)’" -> "Q_put(2,1)",

"?’Q_put(2)’" * _ * _ * _ * " !’Q_put(2)’" -> "Q_put(2,2)",

"?’Q_put(3)’" * _ * _ * _ * " !’Q_put(3)’" -> "Q_put(2,3)"

in

"Buffer" || "Consumer" || "Consumer" || "Producer" || "Producer"

end par

1instantiation values: producers=[1, 2], consumers={cons1, cons2}

Chapter 7

Conclusions and future works

This thesis focused on behavioural properties verification of distributed component
systems, that would be applicable in automatic tools, on a real system.

We began discussing the need for computer systems reliability and introduced the
use of formal methods as a powerful technique to achieve this goal. Then we stated
the particular difficulties for verifying distributed systems using such methods and,
reviewed the current state of the art on the field.

We discussed the reasons why existing formalisms and description languages are not
suitable for our target systems and goals. Based on this discussion, we proposed a
new approach for modelling distributed systems. We validated our approach with a
case study, and applied it for the automatic modelling and reasoning of distributed
component systems.

The main contributions of this thesis include:

• A new approach for modelling the behaviour of distributed components systems.
This approach takes the best from two relevant work: networks of communicating
automata [16, 15] and symbolic graphs with assignments [111, 93]. We named the
behavioural models in our approach “parameterized networks of communicating
automata”. Our parameterized models achieve three different roles, they describe:
infinite systems in a natural and finite manner (when considering unbounded vari-
able domains), a family of systems (when considering various variable domains),
and in a compact way large systems (when considering large variable domains). In
[21] we have shown that the models are suitable as the target language for static
analysis tools.

• The definition of FC2Parameterized, a concrete syntax for writing system specifi-
cations using our parameterized models. The FC2Parameterized format was devel-
oped as an extension of the FC2 format [36, 118] capable of including parameters.
We have also introduced a graphical notation for a sub-set of the FC2Parameterized
format.

• A case study, using our approach, of a real distributed system: the Chilean elec-
tronic invoices system [65] (currently operational).

• The implementation of FC2Instantiate, a tool for obtaining (given the variable
domains) finite non-parameterized systems from parameterized networks of com-

143

144 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

municating automata. This tool has proved itself useful for: comparing different
instantiations, instantiating based on per-formula criteria and searching for bet-
ter minimisations. Especially the tool’s debugging capacity has provided early
detection of errors or backtrack analysis.

• The use of parameterized networks of communicating automata for the behavioural
specifications of hierarchical components. Having the behaviour of basic (primi-
tive) components, we have developed a mechanism for automatically incorporating
the non-functional behaviour within a controller built from the component descrip-
tion. The semantics of a composite is computed as a product of its sub-components
LTSs and the controller of the composite.

• The use of the mechanism described above for the modelling of Fractive based
systems. Fractive is a distributed components implementation using the middle-
ware ProActive [28, 18, 47] of the Fractal [43] component model. Our mechanism
includes the automatically incorporation of Fractive’s features, such as request
queues, future proxies and policies for serving method calls.

• The basis for a tool currently in development, named ADL2NET, for reading the
system’s descriptions, given as a set of Fractal ADL [43] files, and for generating
the behavioural models using our mechanism.

• The implementation of FC2EXP, a tool and various small scripts for the incorpo-
ration of our formats into the verification toolsets FC2Tools [36] and CADP [81].

• A temporal classification of properties (section 4.4.1) to verify on component sys-
tems. Many of these properties, such as successful deployment and error detection,
can be applied in a systematic way to any component system.

• The illustration of properties verification using three different formalisms to ex-
press properties: abstract automata [36, 10] (section 3.3.4), ACTL [60] formulas
(section 4.4.2) and regular µ-calculus [129] formulas (section 5.6). The illustration
includes properties on each temporal classification and considers asynchronous as-
pects of distributed components.

Additionally when it was pertinent during the development of this thesis, we pro-
posed and analysed several mechanisms to avoid as much as possible the well-known
state explosion in the construction of the system’s behaviour.

Finally, many approaches have been developed to cover the right composition of
components considering their functional aspects. One of the strongest advantage of
using components is the separation of concerns from the user point of view. However,
when applying behavioural verification, one still needs to take into account the inter-
play between functional and non-functional aspects, at least for existing component
models. The main originality of our work is to encode the deployment and reconfigura-
tions as part of the behaviour of the system, and thus verify the behaviour of the whole
component system.

This thesis provides a step towards a concrete and strongly usable behavioural verifi-
cation tool-set. This tool-set is capable of building the models automatically, and gives

7.1. FUTURE WORK 145

feedback about generic properties and errors detection. The generated models allow
defining and verifying further properties and to check them against a specification.

7.1 Future work

In the short term we are concentrating on finishing the implementation of the tools,
and apply them on bigger case studies. This surely will provide feedback to improve
our approach.

In the medium and the long term some axes of research that should be explored are:

7.1.1 Preorder relation

One of the question we left open on this thesis is whether a component is faithful with
its specification. Answering this question would allow, without having to rebuild the
complete behavioural model, to determinate if a specific component may safely replace
another one.

There are a number of methods that can be used to address this issue; bisimulation
equivalences (modulo renaming and hiding) would guaranty that all behavioural prop-
erties are preserved, but is too strong and many components that would fit safely in
the system when replacing another one, will be refused.

One suitable approach could be to use the Sofa’s compliance relation, but in Sofa
the behaviours are expressed as regular expressions, and the compliance relation is
based on trace language inclusion, though it is yet unclear how to compare with our
bisimulation-based semantics.

Besides this issue, we believe the ideas which inspired the Sofa’s consent relation,
based on “obligations” that a process should accomplish, are well stated and we want
to explore their applicability to our bisimulation-based semantics. This would lead to
a refinement preorder, that allows the implementation to make some choices amongst
the possibilities left by the specification, and compatible with the composition by syn-
chronisation networks.

7.1.2 Properties specification

We have shown three different formalisms to express properties: abstract automata,
ACTL and regular µ-calculus. Abstract automata can be viewed as more easy to use
while regular µ-calculus is the most expressive formalism. ACTL can be located in
between both.

The three of them require a qualified user and are far from being error-prone free.
A very promising work for narrowing the gap between properties specification and the
non-expert user has been done by Dwyer et al. [67], where they define, classified by
temporal scope, various patterns (or macros) that allow to express many properties in
a natural language-like syntax.

We want to propose extensions for Dwyer’s patterns to cover component specific
properties. For instance, we can define the macro AfterDeployment for meaning the
temporal scope after a successful deployment. Others patterns could be NoErrors,
ControlActions and FutureUpdate, all of the encoding specific set of actions.

146 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

Nevertheless, Before defining this patterns in a confident manner, further results
from real case studies on distributed components are required.

7.1.3 New Fractive’s features

Since Fractive is continuously being developed, with new features being added, like the
latest: collective interfaces having broadcast, or selective multicast communications;
or currently discussed issues such as: whether a component should preserve or not its
request queue when updated, or even when it can be updated, are still in development
within the team.

Therefore, our approach must evolve, as much as possible with Fractive’s features.

Bibliography

[1] FracTalk: Fractal components in SmallTalk. http://csl.ensm-douai.fr/FracTalk.

[2] JULIA framework (fractal implementation). http://fractal.objectweb.org.

[3] OASIS project. http://www-sop.inria.fr/oasis.

[4] SOFA: Software appliances web site. http://nenya.ms.mff.cuni.cz/.

[5] Wright web site. http://www-2.cs.cmu.edu/ able/wright/.

[6] Application and theory of petri nets. In Claude Girault and Wolfgang Reisig, edi-
tors, Selected Papers from the First and the Second European Workshop on Appli-
cation and Theory of Petri Nets, volume 52 of Informatik-Fachberichte. Springer,
1982.

[7] Statistical analysis of floating point flaw. Technical re-
port, Intel Corporation, November 1994. available at
http://support.intel.com/support/processors/pentium/fdiv/wp/.

[8] Distributed Component Object Model (DCOM). Technical report, Microsoft Cor-
poration, November 1996.

[9] Building a better bug-trap. The Economist, June 2003.

[10] R. de Simone A. Ressouche, A. Bouali, and V. Roy. The FC2Tool user manuel.
http://www-sop.inria.fr/meije/verification/, 1994.

[11] J. Adamek. Static analysis of component systems using behavior protocols. In
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 116–117. ACM Press,
2003.

[12] J. Adamek and F. Plasil. Component composition errors and update atomicity:
Static analysis, 2004.

[13] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[14] J.C.M. Baeten andW. P. Weijland. Process Algebra. Cambridge University Press,
1990.

[15] A. Arnold. Finite transition systems: semantics of communicating systems. Pren-
tice Hall International (UK) Ltd., Hertfordshire, UK, 1994.

147

148 BIBLIOGRAPHY

[16] A. Arnold. Nivat’s processes and their synchronization. Theor. Comput. Sci.,
281(1-2):31–36, 2002.

[17] I. Attali, T. Barros, and E. Madelaine. Formalisation and proofs of the Chilean
electronic invoices system. In XXIV International Conference of the Chilean Com-
puter Science Society (SCCC 2004), pages 14–25, Arica, Chili, November 2004.
IEEE Computer Society.

[18] I. Attali, D. Caromel, and R. Guider. A step towards automatic distribution of
java programs. In FMOODS 2000, Stanford University.

[19] Austry and Boudol. Algebre de processus et synchronisation. Theoretical Com-
puter Science, 30, 1984.

[20] L. M. Barroca and J. A. McDermid. Formal methods: Use and relevance for the
development of safety-critical systems. Comput. J., 35(6):579–599, 1992.

[21] T. Barros, R. Boulifa, and E. Madelaine. Parameterized models for distributed
java objects. In FORTE’04 conference, Madrid, 2004. LNCS 3235, Spinger Verlag.

[22] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical
components. In Patrice Godefroid, editor, Model Checking Software, 12th Inter-
national SPIN Workshop, volume LNCS 3639, pages 154–168, San Francisco, CA,
USA, August 2005. Springer.

[23] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical
components. Technical Report RR-5591, INRIA, June 2005.

[24] T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical
components. In International Workshop on Formal Aspects of Component Soft-
ware (FACS’05), Macao, October 2005. Electronic Notes in Theoretical Computer
Science (ENTCS).

[25] T. Barros and E. Madelaine. Formal description and analysis for distributed
systems. Technical Report 4-04, University of Kent, Computing Laboratory, April
2004. Doctoral Symposium at IFM’04, Canterbury, Kent, England.

[26] T. Barros and E. Madelaine. Formalisation and proofs of the Chilean electronic
invoices system. Technical Report RR-5217, INRIA, June 2004.

[27] G. Batt, D. Bergamini, H. Jong, H. Garavel, and R. Mateescu. Model checking
genetic regulatory networks using GNA and CADP. In SPIN, pages 158–163,
2004.

[28] F. Baude, D. Caromel, F. Huet, and J. Vayssière. Objets actifs mobiles et com-
municants. Technique et science informatiques, 21(6–2002):1–26, 2000.

[29] F. Baude, D. Caromel, and M. Morel. From distributed objects to hierarchical grid
components. In International Symposium on Distributed Objects and Applications
(DOA), Catania, Sicily, Italy, 3-7 November, Springer Verlag, 2003. LNCS.

BIBLIOGRAPHY 149

[30] D. Bergamini, N. Descoubes, C. Joubert, and R. Mateescu. BISIMULATOR:
A modular tool for on-the-fly equivalence checking. In N. Halbwachs and L. D.
Zuck, editors, TACAS, volume 3440 of Lecture Notes in Computer Science, pages
581–585. Springer, 2005.

[31] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Control, 60(1):109–137, 1984.

[32] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 1(37):77–121, 1985.

[33] J.A. Bergstra, A. Pose, and S.A. Smolka. Handbook of Process Algebra. North-
Holland, 2001.

[34] M. Blair, S. Obenski, and P. Bridickas. Patriot missile defense: Software problem
led to system failure at dhahran. Technical Report GAO/IMTEC-92-26, United
States - General Accounting Office - Information Management and Technology
Division, February 1992.

[35] R. E. Bloomfield and D. Craigen. Formal methods diffusion: Past lessons and
future prospects. Technical Report D/167/6101/1, Bundesamt für Sicherheit in
der Informationstechnik, Bonn, Germany, December 1999.

[36] A. Bouali, A. Ressouche, V. Roy, and R. de Simone. The FC2Tools set. In
D. Dill, editor, Computer Aided Verification (CAV’94), Standford, June 1994.
Springer-Verlag, LNCS.

[37] R. Boulifa. Génération de Modèles Comportementaux des Applications Réparties.
PhD thesis, Université de Nice - INRIA Sophia Antipolis, 2004.

[38] R. Boulifa and E. Madelaine. Preuve de propriétés de comportement de pro-
grammes proactive. Technical Report RR-4460, INRIA, May 2002. in french.

[39] R. Boulifa and E. Madelaine. Finite model generation for distributed Java pro-
grams. In Workshop on Model-Checking for Dependable Software-Intensive Sys-
tems, San-Francisco, June 2003. North-Holland.

[40] R. Boulifa and E. Madelaine. Model generation for distributed Java programs. In
E. Astesiano N. Guelfi and G. Reggio, editors, Workshop on Scientific Engineering
of Distributed Java ApplIcations, Luxembourg, November 2003. Springer-Verlag,
LNCS 2952.

[41] R. Breu, U. Hinkel, C. Hofmann, C. Klein, B. Paech, B. Rumpe, and V. Thurner.
Towards a formalization of the Unified Modeling Language. In Mehmet Aksit
and Satoshi Matsuoka, editors, ECOOP’97 – Object-Oriented Programming, 11th
European Conference, volume 1241 of LNCS, pages 344–366. Springer, 1997.

[42] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes. J. ACM, 31(3):560–599, 1984.

150 BIBLIOGRAPHY

[43] E. Bruneton, T. Coupaye, and J. Stefani. Recursive and dynamic software com-
position with sharing. Proceedings of the 7th ECOOP International Workshop
on Component-Oriented Programming (WCOP’02), June 2002.

[44] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput., 35(8):677–691, 1986.

[45] A. Fantechi C. Carrez and E. Najm. Behavioural contracts for a sound assembly
of components. In Springer-Verlag, editor, in proceedings of FORTE’03, volume
LNCS 2767, November 2003.

[46] D. Caromel, L. Henrio, and B. Serpette. Asynchronous and deterministic objects.
In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 123–134. ACM Press, 2004.

[47] D. Caromel, W. Klauser, and J. Vayssière. Towards seamless computing and
metacomputing in Java. Concurrency Practice and Experience, 10(11–13):1043–
1061, November 1998.

[48] J. L. Lions (Chairman). Ariane 5 flight 105 inquiry board report. Technical report,
European Space Agency, July 1996. available at http://ravel.esrin.esa.it/docs/esa-
x-1819eng.pdf.

[49] S. C. Cheung and J. Kramer. Checking subsystem safety properties in composi-
tional reachability analysis. In ICSE ’96: Proceedings of the 18th International
Conference on Software Engineering, pages 144–154, Washington, DC, USA, 1996.
IEEE Computer Society.

[50] S. C. Cheung and J. Kramer. Context constraints for compositional reachability
analysis. ACM Transactions on Software Engineering and Methodology, 5:334–
377, October 1996.

[51] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542,
September 1994.

[52] E. M. Clarke, J. M. Wing, R. Alur, R. Cleaveland, D. Dill, A. Emerson, S. Gar-
land, S. German, J. Guttag, A. Hall, T. Henzinger, G. Holzmann, C. Jones,
R. Kurshan, N. Leveson, K. McMillan, J. Moore, D. Peled, A. Pnueli, J. Rushby,
N. Shankar, J. Sifakis, P. Sistla, B. Steffen, P. Wolper, J. Woodcock, and P. Zave.
Formal methods: state of the art and future directions. ACM Computing Surveys,
28(4):626–643, 1996.

[53] R. Cleaveland and J. Riely. Testing-based abstractions for value-passing systems.
In International Conference on Concurrency Theory (CONCUR), volume 836 of
Lecture Notes in Computer Science, pages 417–432. Springer, 1994.

[54] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, S. Laubach, and H. Zheng.
Bandera: Extracting finite-state models from java source code. Int. Conference
on Software Engineering (ICSE), 2000.

BIBLIOGRAPHY 151

[55] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient
algorithms for the verification of temporal properties. Form. Methods Syst. Des.,
1(2-3):275–288, 1992.

[56] P. Cousot. Automatic verification by abstract interpretation, invited tutorial. In
L.D. Zuck, P.C. Attie, A. Cortesi, and S. Mukhopadhyay, editors, Proceedings of
the Fourth International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2003), pages 20–24, Courant Institute, NYU, New York,
N.Y., USA, January 2003. LNCS 2575, Springer, Berlin.

[57] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL
’77: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pages 238–252, New York, NY, USA, 1977. ACM
Press.

[58] P. Cousot and R. Cousot. Software analysis and model checking. In E. Brinksma
and K.G. Larsen, editors, Proceedings of the 14th International Conference on
Computer Aided Verification, CAV 2002, Copenhagen, Denmark, LNCS 2404,
pages 37–56. Springer-Verlag Berlin Heidelberg, July 2002.

[59] R. de Neufville. The baggage system at Denver: prospects and lessons. Journal
of Air Transport Management, I(4):229–236, December 1994.

[60] R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition
systems. In I. Guessarian, editor, Semantics of Systems of Concurrent Processes,
LITP Spring School on Theoretical Computer Science, volume 469 of LNCS, La
Roche Posay, France, 1990. Springer.

[61] R. de Simone. High level devices in Meije-SCCS. Theoretical Computer Science,
40, 1985.

[62] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical
Computer Science, 37:245–267, 1985.

[63] C. Demartini, R. Losif, and R. Sisto. dSPIN: A dynamic extension of SPIN. In
Proceedings of the 5th and 6th International SPIN Workshops on Theoretical and
Practical Aspects of SPIN Model Checking, pages 261–276, London, UK, 1999.
Springer-Verlag.

[64] L. G. DeMichiel. Enterprise JavaBeans Specification, version 2.1. Technical report,
Sun Microsystems, November 2003.

[65] Gobierno de Chile, Servicio de Impuestos Internos, Factura Electrónica.
https://palena.sii.cl/cvc/dte/menu.html.

[66] Y. Dumond, D. Girardet, and F. Oquendo. A relationship between sequence and
statechart diagrams, 2000.

[67] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proc. 21st International Conference on Software
Engineering, pages 411–420. IEEE Computer Society Press, ACM Press, 1999.

152 BIBLIOGRAPHY

[68] Jr. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. MIT Press,
Cambridge, MA, USA, 1999.

[69] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1985. ISBN 0387137181.

[70] E. A. Emerson and C. L. Lei. Efficient model checking in fragments of the propo-
sitional µ–calculus. In Symposion on Logic in Computer Science, pages 267–278,
Washington, D.C., USA, June 1986. IEEE Computer Society Press.

[71] V. Emery. The pentium chip story: A learning experience. Technical report, Vince
Emery Productions, 1996. available at http://www.emery.com/1e/pentium.htm.

[72] U. Engberg and M. Nielsen. A calculus of communicating systems with label-
passing. Technical Report DAIMI PB-208, University of Aarhus, 1986.

[73] A. Evans, R. B. France, K. Lano, and B. Rumpe. Developing the UML as a
formal modelling notation. In The Unified Modeling Language, UML’98 - Beyond
the Notation. First International Workshop, Mulhouse, France, pages 297–307.

[74] J. C. Fernandez, A. Kerbrat, and L. Mounier. Symbolic equivalence checking.
In CAV ’93: Proceedings of the 5th International Conference on Computer Aided
Verification, pages 85–96, London, UK, 1993. Springer-Verlag.

[75] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathe-
matical Aspects of Computer Science, Proceedings of Symposia in Applied Math-
ematics 19, pages 19–32, Providence, 1967. American Mathematical Society.

[76] Formal Systems (Europe) Ltd., Oxford, England. Failures Divergence Refinement:
User Manual and Tutorial, 1.2β edition, October 1992.

[77] H. Garavel. OPEN/CAESAR: An open software architecture for verification,
simulation, and testing. Technical Report RR-3352, INRIA, Institut National de
Recherche en Informatique et en Automatique.

[78] H. Garavel. Compilation of LOTOS abstract data types. In Son T. Vuong,
editor, Proc. 2nd International Conference on Formal Description Techniques
(FORTE’89), Amsterdam, December 1989. Elsevier (North-Holland).

[79] H. Garavel and F. Lang. SVL: a scripting language for compositional verifica-
tion. In M. Kim, B. Chin, S. Kang, and D. Lee, editors, Proceedings of the 21st
IFIP WG 6.1 International Conference on Formal Techniques for Networked and
Distributed Systems FORTE’2001 (Cheju Island, Korea), pages 377–392. IFIP,
Kluwer Academic Publishers, August 2001. Full version available as INRIA Re-
search Report RR-4223.

[80] H. Garavel and F. Lang. NTIF: A general symbolic model for communicating
sequential processes with data. In Proceedings of FORTE’02 (Houston). LNCS
2529, November 2002.

BIBLIOGRAPHY 153

[81] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology (EASST) Newsletter, 4:13–24,
August 2002.

[82] H. Garavel, R. Mateescu, and I. M. Smarandache. Parallel state space construction
for model-checking. In Matthew B. Dwyer, editor, SPIN, volume 2057 of Lecture
Notes in Computer Science, pages 217–234. Springer, 2001.

[83] H. Garavel and J. Sifakis. Compilation and verification of LOTOS specifications.
In Logrippo, R. L. Probert, and H. Ural, editors, Proc. 10th International Sympo-
sium on Protocol Specification, Testing and Verification, Amsterdam, June 1990.
IFIP, Elsevier (North-Holland).

[84] H. Garavel, C. Viho, and M. Zendri. System design of a CC-NUMA multipro-
cessor architecture using formal specification, model-checking, co-simulation, and
test generation. International Journal on Software Tools for Technology Transfer
(STTT), 3(3):314–331, August 2001.

[85] R. Gerth. Concise PROMELA reference, 1997. available at
http://spinroot.com/spin/Man/Quick.html.

[86] D. Giannakopoulou, J. Kramer, and S. Chi Cheung. Behaviour analysis of dis-
tributed systems using the tracta approach. Automated Software Engg., 6(1):7–35,
1999.

[87] S. Gnesi, E. Madelaine, and G. Ristori. An exercise in protocol verification. In
T. Bolognesi, E. Brinksma, and C. Vissers, editors, Third Lotosphere Workshop
and Seminar, Pisa, September 1992.

[88] J.F. Groote and A. Ponse. Proof theory for µCRL: a language for processes
with data. In Andrews et al., editors, Proceedings of the International Workshop
on Semantics of Specification Languages, Workshops in Computing Series, pages
231–250. Springer Verlag, 1994.

[89] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Trans. Program. Lang. Syst., 16(3):843–871, 1994.

[90] A. Hall. Seven myths of formal methods. IEEE Softw., 7(5):11–19, 1990.

[91] M. Hennessy. Acceptance trees. Journal of the ACM, 32(4):896–928, October
1985.

[92] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[93] M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science,
138(2):353–389, February 1995.

[94] M. G. Hinchey and J. Bowen, editors. Applications of Formal Methods. Prentice
Hall International, 1995. isbn 0-13-366949-1.

154 BIBLIOGRAPHY

[95] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[96] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[97] G. Holzmann. The model checker spin. IEEE Trans. Softw. Eng., 23(5):279–295,
1997.

[98] G. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-
Wesley, 2003. ISBN 0-321-22862-6.

[99] G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search. 1996.
American Mathematical Society, DIMACS/39, August 1996.

[100] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, second edition, 2001. ISBN: 0-
201-44124-1.

[101] T. Huckle. Collection of software bugs. Technical report, Institut für Informatik,
2004.

[102] ISO: Information Processing Systems. Basic reference model for open systems
interconnection. ISO 7498, 1983.

[103] ISO: Information Processing Systems - Open Systems Interconection. Estelle - a
formal description technique based on an extended state transition model. ISO
9074, 1987.

[104] ISO: Information Processing Systems - Open Systems Interconection. LOTOS -
a formal description technique based on the temporal ordering of observational
behaviour. ISO 8807, August 1989.

[105] ISO/IEC: Information Processing Systems - Open Systems Interconection. En-
hancements to LOTOS (E-LOTOS). ISO 15437, 2001.

[106] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 40, 1985.

[107] A. Lakas. Les Transformations Lotomaton : une contribution à la pré-
implémentation des systèmes LOTOS. PhD thesis, Univ. Paris VI, June 1996.

[108] F. Lang. Compositional verification using SVL scripts. In J. Katoen and
P. Stevens, editors, Proceedings of the 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems TACAS’2002 (Grenoble,
France), volume 2280, pages 465–469, April 2002.

[109] F. Lang. EXP.OPEN 2.0: A flexible tool integrating partial order, composi-
tional, and on-the-fly verification methods. In J. van de Pol, J. Romijn, and
G. Smith, editors, Proceedings of the 5th International Conference on Integrated
Formal Methods IFM’2005 (Eindhoven, The Netherlands), November 2005. Full
version available as INRIA Research Report RR-5673.

BIBLIOGRAPHY 155

[110] N. G. Leveson and C. S. Turner. An investigation of the therac-25 accidents.
Computer, 26(7):18–41, 1993.

[111] H. Lin. Symbolic transition graph with assignment. In U. Montanari and V. Sas-
sone, editors, CONCUR ’96, Pisa, Italy, August 1996. LNCS 1119.

[112] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property preserv-
ing abstractions for the verification of concurrent systems. Form. Methods Syst.
Des., 6(1):11–44, 1995.

[113] N. Lynch and M. Tuttle. An introduction to Input/Output Automata. Technical
Report MIT/LCS/TM-373, MIT, Cambridge, Massachusetts, November 1988.

[114] S. Graf M. Bozga and L. Mounier. IF2.0: A validation environment for
component-based real-time systems. In proceedings of CAV’02, volume 2404 of
LNCS, Copenhagen, July 2002.

[115] R. Mateescu M. Cornejo, H. Garavel and N. De Palma. Specification and ver-
ification of a dynamic reconfiguration protocol for agent-based applications. In
Z. Mossurska A. Laurentowski, J. Kosinski and R. Ruchala, editors, Proceedings
of the 3rd IFIP WG 6.1 International Working Conference on Distributed Appli-
cations and Interoperable Systems DAIS’2001 (Krakow, Poland), pages 229–242.
IFIP, Kluwer Academic Publishers, September 2001. Full version available as
INRIA Research Report RR-4222.

[116] M. Fisher and R. Ladner. Propositional dynamic logic of regular programs. Jour-
nal of Computer and System Sciences, 18(2):194–211, 1979.

[117] E. Madelaine. Verification tools from the CONCUR project. EATCS Bull., 47,
1992.

[118] E. Madelaine and R. de Simone. The FC2 reference manual, 1993. available by
ftp from ftp-sop.inria.fr/meije/verif/fc2.userman.ps.

[119] E. Madelaine and D. Vergamini. Specification and verification of a sliding window
protocol. In FORTE’91 conference, Sydney, 1991. North-Holland.

[120] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of the 5th European Software Engineering Confer-
ence, pages 137–153, London, UK, 1995. Springer-Verlag.

[121] J. Magee and J. Kramer. Dynamic structure in software architectures. In SIG-
SOFT ’96: Proceedings of the 4th ACM SIGSOFT symposium on Foundations of
software engineering, pages 3–14, New York, NY, USA, 1996. ACM Press.

[122] J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
1999. ISBN: 0-471-98710-7.

[123] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems.
Springer-Verlag New York, Inc., New York, NY, USA, 1992.

156 BIBLIOGRAPHY

[124] C. Massols. Outils d’analyse statique et de vérification pour les applications java
distribuées. Technical Report rapport de stage MIAGE, UNSA, September 2003.
in french.

[125] R. Mateescu. Vérification des propriétés temporelles des programmes parallèles.
PhD thesis, Institut National Polytechnique de Grenoble - INPG, April 1998.
Thèses d’informatique; Thèses de mathématiques.

[126] R. Mateescu. A generic on-the-fly solver for alternation-free boolean equation
systems. In H. Garavel and J. Hatcliff, editors, TACAS, volume 2619 of Lecture
Notes in Computer Science, pages 81–96. Springer, 2003.

[127] R. Mateescu. Logiques temporelles basées sur actions pour la vérification des
systèmes asynchrones. Technical Report RR-5032, INRIA, December 2003. in
french.

[128] R. Mateescu. On-the-fly verification using cadp. Electr. Notes Theor. Comput.
Sci., 80, 2003.

[129] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. In S. Gnesi, I. Schieferdecker, and A. Rennoch,
editors, Proceedings of the 5th Int. Workshop on Formal Methods for Industrial
Critical Systems FMICS’2000 (Berlin, Germany), GMD Report 91, pages 65–86,
Berlin, April 2000.

[130] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN 0-13-
114984-9.

[131] R. Milner. Operational and algebraic semantics of concurrent processes. pages
1201–1242, 1990.

[132] R. Milner. Communications and mobile systems: the π-calculus. Cambridge
University Press, 1999. ISBN 0 521 64320 1 (hc.) 0 521 65869 1 (pbk.).

[133] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Inf. Comput.,
100(1):1–77, 1992.

[134] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theo-
retical Computer Science, 114(1):149–171, 1993.

[135] E. Najm, A. Lakas, A. Serouchni, E. Madelaine, and R. de Simone. ALTO: an
interactive transformation tool for LOTOS and LOTOMATON. In T. Bolognesi,
E. Brinksma, and C. Vissers, editors, Third Lotosphere Workshop and Seminar,
Pisa, September 1992.

[136] K. Ng, J. Kramer, J. Magee, and N. Dulay. A visual approach to distributed
programming. In Tools and Environments for Parallel and Distributed Systems,
pages 7–31. Kluwer Academic Publishers, February 1996.

[137] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theo-
retical Computer Science, 34(1–2):83–133, November 1984.

BIBLIOGRAPHY 157

[138] M. Nivat. Sur la synchronisation des processus. Rev. Techn. Thomson-CSF,
(11):899–919, 1979.

[139] M. Nivat and A. Arnold. Comportements de processus. In AFCET Les
Mathématiques de l’Informatique, pages 35–68, 1982.

[140] Object Management Group. UML 2.0 Object Constraint Language (OCL) Speci-
fication, formal/03-10-14 edition, 2003. version 2.0.

[141] Object Management Group. The Common Object Request Broker Architecture
(CORBA): Core Specification, March 2004. version 3.0.3.

[142] Object Management Group. Unified Modeling Language: Superstructure,
formal/05-07-04 edition, August 2005. version 2.0.

[143] J. Parrow. Handbook of Process Algebra, chapter 8, pages 479–543. Elsevier, 2001.

[144] D. Peled. Combining partial order reductions with on-the-fly model-checking. In
CAV ’94: Proceedings of the 6th International Conference on Computer Aided
Verification, pages 377–390, London, UK, 1994. Springer-Verlag.

[145] F. Plasil, D. Balek, and R. Janecek. SOFA/DCUP: Architecture for component
trading and dynamic updating. In Proc. Fourth International Conf. Configurable
Distributed Systems (ICCDS’98), pages 42–52. IEEE CS Press, May 1998.

[146] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Transactions on Software Engineering, 28(11), November 2002.

[147] A. Rausch. Towards a software architecture specification language based on UML
and OCL. In Workshop on Describing Software Architecture with UML, 23rd
International Conference on Software Engineering, Toronto, Canada, 2001.

[148] J. Riely. Applications of Abstraction for Concurrent Programs. PhD thesis, Uni-
versity of North Carolina at Chapel Hill, 1999.

[149] D. Sangiorgi and D. Walker. Π-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, New York, NY, USA, 2001.

[150] Ri. Sharpe. Formal methods start to add up once again. Technical report, Com-
puting, vnu bussiness publications, January 2004.

[151] G. Tassey. The economic impacts of inadequate infrastructure for software test-
ing. Technical Report 7007.011, National Institute of Standards and Technology
(NIST), May 2002.

[152] F. Tronel, F. Lang, and H. Garavel. Compositional verification using CADP of
the ScalAgent deployment protocol for software components. In 6th IFIP Interna-
tional Conference on Formal Methods for Open Object-based Distributed Systems
FMOODS’2003, Paris, France, November 2003.

[153] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994.

158 BIBLIOGRAPHY

[154] Verification of models for distributed communicating components, with safety and
security (VERCORS). http://www-sop.inria.fr/oasis/Vercors.

[155] J. M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–23,
1990.

Formal specification and verification of distributed component systems

Abstract

A component is a self contained entity that interacts with its environment through well-defined
interfaces. The component library Fractive provides high level primitives and semantics for program-
ming Java applications with distributed, asynchronous and hierarchical components. It also provides
a separation between functional and non-functional aspects, the latter allows the execution control of
a component and its dynamic evolution.

In this thesis, we provided a formal framework to ensure that the applications built from Fractive
components are safe. Safe, in the sense that each component must be adequate to its assigned role
within the system, and the update or replacement of a component should not cause deadlocks or failures
to the system. We introduced a new intermediate format extending the networks of communicating
automata, by adding parameters to their communication events and processes.

Then, we used this intermediate format to give behavioural specifications of Fractive applications.
We assumed the models of the primitive components as known (given by the user or via static analysis).
Using the component description, we built a controller describing the component’s non-functional
behaviour. The semantics of a component is then generated as the synchronisation product of: its
LTSs sub-components and the controller. The resulting system can be checked against requirements
expressed in a set of temporal logic formulas, as illustrated in the thesis report.

Spécification et Vérification formelles des Systèmes de Composants Répartis

Résumé

Un composant est une entité autonome qui interagit avec son environnement par des interfaces
correctement spécifiées. Fractive est une implantation du modèle de composants Fractal qui propose
des primitives de haut niveau et une sémantique pour la programmation à base de composants Java
distribués, asynchrones et hiérarchiques. Fractive propose également une séparation entre aspects
fonctionnels et non-fonctionnels, ces derniers permettant un contrôle de l’exécution d’un composant et
de son évolution dynamique.

Dans cette thèse, nous proposons un outillage formel pour la vérification d’applications construites
avec Fractive. Cela permet de vérifier que chaque composant remplit correctement le rôle qui lui a été
assigné au sein du système, et que la mise à jour ou le remplacement d’un composant n’engendre pas
d’interblocage ou de panne du système. Nous avons défini un nouveau format intermédiaire qui étend
les réseaux d’automates communicants, en paramétrisant leurs événements de communication et de
traitement.

Nous avons ensuite utilisé ce format intermédiaire pour définir les spécifications comportemen-
tales d’applications Fractive. Nous considérons que les modèles des composants primitifs sont connus
(donnés par l’utilisateur ou par analyse statique). En utilisant la description des composants, nous con-
struisons un contrôleur décrivant le comportement non fonctionnel du composant. La sémantique d’un
composant est ensuite générée comme le produit de synchronisation des LTSs de ses sous-composants
et du contrôleur. Le système résultant peut être vérifié par rapport aux besoins exprimés dans un
ensemble de formules de logique temporelle, comme illustré dans le manuscrit.

