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Chapter 1

Introduction

1.1 A networked description of Nature and Society

The recent interest of a wide interdisciplinary scientific community for the study of complex networks

is justified primary by the fact that a network description of complex systems allows to get relevant

information by means of purely statistical coarse-grained analyses, without taking into account the

detailed characterization of the system. Moreover, using an abstract networked representation, it is

possible to compare, in the same framework, systems that are originally very different, so that the

identification of some universal properties becomes much easier. Simplicity and universality are two

fundamental principles of the physical research, in particular of statistical physics, that is traditionally

interested in the study of the emergence of collective phenomena in many interacting particles systems,

even outside its classical fields of research such as condensed matter theory.

Along the last century, statistical physicists have developed a suite of analytical and numerical

techniques by means of which it has been possible to understand the origin of phase transitions

and critical phenomena in many particle systems, and that have been successfully applied also in

other fields, from informatics (e.g. optimization problems) to biology (e.g. protein folding) and social

sciences (e.g. opinion formation models). The presence of disorder, randomness and heterogeneity

is the other important ingredient that justifies the use of statistical physics approaches in so many

different fields and in particular in the study of complex networks, that present non-trivial irregular

topological structures.

From a mathematical point of view, complex networks are sets of many interacting components, the

nodes, whose collective behavior is complex in the sense that it cannot be directly predicted and

characterized in terms of the behavior of the individual components. The links connecting pairs of

components correspond to the interactions that are responsible of the global behavior of the system.

It is clear that a large number of systems can be described in this manner, thus it is not difficult

to find disparate examples of networks both in nature and society. The most evident application of

networks theory is the study of the Internet [203], whose detailed characterization is not possible, but

that can be investigated using the statistical analysis of its topological and functional properties. In

general, all infrastructures fit very well the framework of networks theory, so that most of the real

networks studied are communication or transportation networks (such as the Internet, the Web, the

air-transportation network, power-grids, telephone and roads networks, etc) [102]. A second class is

represented by those networks related to social interactions [245], such as sexual-contact networks,

networks of acquaintances or collaboration networks. Finally, another large class concerns biological

1



2 CHAPTER 1. INTRODUCTION

networks [153, 102] (e.g. protein interaction networks, cellular networks, neural networks, food-webs,

etc.).

The massive use of statistical techniques in the characterization of complex networks is, however,

closely related with the recent improvement of computers, that allow to easily retrieve, collect and

handle large amounts of data. In the last decade, indeed, the analysis of the topological structure

of large real networks such as the Internet and the Web pointed out that many real networks have

unexpected topological properties, characterized by heterogeneous connectivity patterns [120]. These

surprising results were in contrast with the common belief that real networks could be modeled using

either regular networks (e.g. grids or fully connected networks) or random graphs (i.e. networks

in which nodes are randomly connected in such a way that all them have approximately the same

number of connections [77]). These models have been studied for a long time without the necessity

of a relevant statistical analysis, since in such networks all nodes are approximately equivalent, and

the overall behavior of the network is well represented by monitoring that of a single node. On the

contrary, the recent discoveries immediately revealed a completely different scenario.

A large number of data about various networks have been gradually collected, ranging from social

sciences to biology, all of them presenting the same type of heterogeneity in the connectivity patterns.

The necessity of a more mathematical analysis of networks excited a large number of physicists, who

recognized the possibility to apply the powerful methods of statistical physics. Without going into

a detailed description of the statistical framework that physicists have built introducing statistical

physics methods into the ideas inherited from graph theory (see Chapter 2 for an introduction), the

main achievement in the characterization of networks topology is the identification of few universal

features that are common to many networks and allow to divide them into different classes.

A first relevant property regards the degree of a node (i.e. the number of connections to other nodes).

In real networks, the probability of finding a node with a given degree (i.e. the degree distribution)

significantly deviates from the peaked distributions expected for random graphs and, in many cases,

exhibits a broadly skewed shape, with power law tails with an exponent between 2 and 3. In this

range of values for the exponent, the distribution presents diverging second moments, meaning that

we can find very large fluctuations in the values of nodes connectivity (scale-free property).

Moreover, real networks are characterized by relatively short paths between any two nodes (small-world

property [177, 247]), a very important property in determining networks behavior at both structural

and functional levels. The small world property, while intriguing, was already present in random

graphs models, in which the average intervertex distance scales as the logarithm of the number of

nodes. However, the novelty is due to the fact that real networks present this property together with

a high density of triangles and other small cycles or motifs, that are completely absent in traditional

random graphs, whose local structure is tree-like.

These unexpected results have initiated a revival of network modeling, resulting in the introduction

and study of new classes of modeling paradigms [102, 191, 203, 4]. Many efforts have been spent

to conceive models that are able to reproduce and predict the statistical properties of real networks,

but researchers have soon realized that the characterization of real networks is not exhausted by its

topological properties and that in real networks topology and dynamics are intrinsically related.
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1.2 Relation between Topology and Dynamics: a question of

timescales

The dynamical phenomena related to complex networks can be summarized in three different categories:

the dynamical evolution of networks, the dynamics on networks, and the dynamical interplay between

the networks topology and processes evolving on them.

The topology of real networks is indeed far from being fixed, the number of nodes and links changing

together with local and global properties of the system. In particular, evolutionary principles are often

necessary ingredients in order to explain some peculiar topological properties of networks (e.g. the

preferential attachment principle is necessary to understand the emergence of degree heterogeneity in

networks such as the Internet or the Web).

On the other hand, networks are structures on which dynamical processes take place, thus it is

interesting to study the behavior of dynamical systems models evolving on networks. Many of

them, such as routing algorithms, oscillators, epidemic spreading, or searching processes, have direct

applications in the study of the dynamical phenomena observed on real networks, others such as

random walks, statistical mechanics models, opinion formation, percolation, and strategic games

provide more general information that can be used to build a common theoretical framework by

means of which the different properties of dynamical processes on networks can be analyzed and

explained.

The third situation, characterized by the interplay of the dynamics “of networks” with the dynamics

“on networks” is more complicated and such kind of problems has been only recently considered by the

complex networks community. Moreover, this case has been usually neglected because of the different

temporal scales of the two types of dynamics. We can indeed assume that the structural properties of a

network evolve with a time-scale τT , while a particular dynamical process taking place on the network

evolves with time-scale τD, the above mentioned situation corresponding to the case τT ≃ τD. When

τT ≫ τD, we can study the evolution of dynamical processes on networks with quenched topological

structure; while the case τD ≫ τT means that the temporal evolution of processes on the network is

neglected compared to that of the network structure itself. The latter case holds not only when these

dynamical processes are slow compared to the changes in the topology, but also in the situation in

which these processes are fast but they do not influence the structure of the network.

While the evolution of networks topology has been largely investigated in the past, the present thesis

is devoted to study some aspects of dynamical processes on networks, i.e. the case in which τT ≫ τD.

Actually, the scenario is much more complicated since real networks are usually characterized by a

large number of dynamical processes evolving at the same time, so that in addition to the mentioned

topological and dynamical temporal scales, we have to distinguish the temporal scale governing the

evolution of a single process τs
D from that governing the evolution of the overall average properties of

that class of processes τo
D. This is simple to understand if we think at the functioning of the Internet.

Billions of data-packets are continuously transferred between the routers, each one performing a sort

of (random) walk on the network from a source to a destination. But looking at the global average

properties of the traffic, we observe sufficiently stable quantities, so that we can encode the average

traffic between two neighboring routers (in terms of transferred bytes) using a single value, a weight,

by means of which we can label the corresponding link.

Therefore, a first way to take into account of the dynamics is that of endowing the links with weights,

representing the flow of information or the traffic among the constituent units of the system. More

generally, a weighted network representation allows to take into account the functional properties of



4 CHAPTER 1. INTRODUCTION

networks.

On the other hand, it is also important to focus on the dynamical behavior of single dynamical

processes, such as the spreading of information or viruses on social and infrastructure networks, or

the processes of networks exploration from a given source node. One of the striking results of this

scales separation is that it is also possible to study single dynamical processes, such as spreading and

percolation, in a weighted network, with quenched structural and functional properties (i.e. τs
D ≪ τT

and τs
D ≪ τo

D).

As a final remark, we note that also the general motivation with which we have studied dynamical

phenomena on networks is twofold. On the one hand, we wanted to study the effects of inhomogeneous

topological and functional properties on the behavior of some classes of dynamical models; on the

other hand, we have exploited some of these dynamical phenomena in order to investigate unknown

topological properties of real networks. This twofold role held by dynamical processes is maybe the

most important idea that statistical physicists should learn from the new interdisciplinary field of

complex networks. Physicists have been used for many year to study a variety of interactions on very

well defined topologies, now we have to face a more complex scenario, in which the role of topology

and dynamical rules may be even inverted, i.e. well-defined dynamical phenomena can be used to

uncover topological properties of the system.

1.3 Summary of the thesis

The work developed in this thesis concerns the study of various aspects of dynamical processes on

networks: each chapter is devoted to a particular issue, but apparently different problems are related

by the general scenario that we have mentioned in the previous paragraph.

Chapter 2 provides an introduction to the science of complex networks: in the first part we

recall the main statistical measures used to analyze networks; then we give some examples of real

complex networks, focusing on the Internet and the World-wide Air-transportation Network; the final

section is devoted to review the most important theoretical models of complex networks. This is not

an exhaustive introduction, but it is conceived to give the most relevant notions that are used or

mentioned in the rest of the work.

Chapter 3 concerns the theoretical characterization of the processes of exploration of complex

networks. The relevance of this topic resides in the fact that the topology of real networks is often

only partially known, and the methods used to acquire information on such topological properties

may present biases affecting the reliability of the phenomenological observations. We consider several

different types of networks sampling methods, discussing their advantages and limits with respect to

their natural fields of application. We focus in particular on a tree-like exploration method used in

real mapping processes of the Internet and referred as traceroute exploration. In order to verify the

reliability of the experimental data, and consequently of the main properties, such as the existence

of a broad degree distribution, that have been derived from their analysis, we propose a theoretical

model of traceroute exploration of networks. This model allows an analytical study by means of a

mean-field approximation, providing a deeper understanding of the relation between the topological

properties of the original network and those of the sampled network. Moreover, massive numerical

simulations on computer-generated networks with various topologies allows to have also a clearer

quantitative description of the mapping processes. The general picture acquired from this study is

finally exploited to introduce a statistical technique by means of which some of the biased quantities

can be opportunely corrected.
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This topic is also a clear example of the possible use of dynamical processes for the characterization

of unknown topological properties of real networks.

In Chapter 4, we take into account the weighted network representation and its relation with the

functional properties of the network. In the first part of the chapter, we investigate the role of weights

in determining the functional robustness of the system, and we compare the results with those based

on purely topological measures. We use the case study of the airports network. The main idea is

that of measuring the vulnerability of the network using global observables based on both topological

and traffic centrality measures: we remove the most central nodes according to different centrality

measures, monitoring the effects on the structural and functional integrity of the system.

This study gives an example of the different roles played by topology and weights, at the same time

pointing out the validity of a static representation of networks functionality (i.e. encoding average

flows and traffic into weights on the edges). The second part of the chapter is instead devoted to study

weighted networks from a purely dynamical point of view. Exploiting some remarkable properties of

percolation theory, we build a general theoretical framework in which spreading processes on weighted

networks can be analyzed.

Using an analogy with the scenario proposed in the previous paragraph, passing from the first to the

second part of the chapter, we pass from a situation in which we are interested only in the structural

and functional properties determined by the average dynamical behavior of the system, to the study

of the effects of such (structural and functional) properties on the evolution of a particular dynamical

process on the network.

Chapter 5 is completely devoted to the analysis of the recently proposed Naming Game model,

that was conceived as a model for the emergence of a communication system or a shared vocabulary

in a population of agents. The rules governing the pairwise interactions between the individuals are

simple but present several new features such as negotiation, feedback and memory, that are typical

properties of human social dynamics. For this reason the model can be usefully applied also in different

contexts, such as problems of opinion formation.

The dynamical evolution of the model is studied considering populations with different topologies,

from regular lattices to complex networks, showing that the dynamical phenomena generated by the

model depend strongly on the topological properties of the system. In the last section of the chapter,

the attention is focused on the activity patterns of single agents, that display rather unexpected

properties due to the non-trivial relation between memory and degree heterogeneity.

General conclusions on the work done and possible future developments of the ideas exposed in

the thesis are reported in Chapter 6.
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Chapter 2

Structure of complex networks: an

Overview

2.1 Introduction

The first step toward a complete characterization of complex networks consists in a reliable description

of their topological properties. As we will see in the following chapters, topological quantities play a

relevant role in determining the functionality of real networks as well as the dynamical patterns of

processes taking place on them. Consequently, we devote Section 2.2 to introduce a set of mathematical

tools, some of them borrowed from Graph Theory, that will be useful in the statistical investigation

of complex networks. In Section 2.3, several examples of real complex networks are reported, together

with the analysis of their most important topological properties. Special care is reserved to the Internet

and the World-wide Air-transportation Network, whose topological and dynamical properties will be

further investigated in Chapters 3-4. Finally, in Section 2.4, we present a brief overview of the main

models of complex networks, that are commonly used in order to reproduce topological and dynamical

properties observed in real networks. The present chapter is not supposed to be an exhaustive review

of all recent developments in the Science of Complex Networks, for which we refer to some very good

books [203, 102], and review articles [103, 4, 191]. Similarly, for a simple introduction to Graph Theory

we refer to Ref. [77], while a more rigorous approach is provided by the book of Bollobás [48].

Our purpose is more properly that of providing a brief description of the measures used in networks

analysis, focusing only on those concepts that are useful for a better comprehension of the work

developed in the thesis.

7
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2.2 Statistical Measures of Networks Topology

Graph theory is a fundamental field of mathematics whose modern formulation can be ascribed to P.

Erdös and A. Rényi, for a series of papers appeared in the early ’60s in which they laid the groundwork

for the study of random graphs [115, 116]. In the following, we go through the basic notions of graph

theory, enriching them with the definition of other more recently introduced quantities, that are

commoly used for the statistical characterization of networks structure.

2.2.1 Basic notions of Graph Theory

An undirected graph G is a mathematical structure defined as the pair G = (V , E), in which V is a

non-empty set of elements, called vertices, and E is the set of edges, i.e. unordered pairs of vertices.

More generally, each system whose elementary units are connected in pairs can be represented as

a graph. In the interdisciplinary context the nomenclature used is not equally clear. Vertices are

usually called nodes by computer scientists, sites by physicists and actors by sociologists. Edges are

also addressed as links, bonds, or ties. We will use indifferently these terms, without any reference

to a particular field of research. The cardinality of the sets V and E are denoted by N and E. The

number of vertices is also referred to as the size of the graph. The simplest generalization of the

definition of graph is that of directed graph, obtained considering oriented edges (arcs), i.e. ordered

pairs of vertices. A graphical representation of a graph consists in drawing a dot for every vertex, and

a line between two vertices if they are connected by an edge (see Fig. 2.1). If the graph is directed,

the direction is indicated by drawing an arrow.

A convenient mathematical notation to define a graph is the adjacency matrix A = {aij}, a N × N

matrix such that

aij =

{

1 if (i, j) ∈ E
0 otherwise .

(2.1)

The adjacency matrix of undirected graphs is symmetric. Two vertices joined by an edge are called

adjacent or neighbors; the neighborhood of a node i is the set V(i) of all neighbors of the node i. The

number of neighbors of a node i is called the degree ki =
∑

j aij of i. In case of directed edges, we have

to distinguish between incoming and outcoming edges, thus we define an in-degree (kin
i =

∑

j aji)

and an out-degree (kout
i =

∑

j aij). We do not go deeper into the definition of properties for directed

graphs, since in this thesis only undirected networks will be explicitly studied.

Moreover, we consider graphs in which vertices do not present self-links (i.e. edges from a vertex

to itself), or multi-links (i.e. more than one edge connecting two vertices). Such objects, whose

properties are rather unusual in real networks, are known in graph theory as multigraphs. If we

exclude self-links and multiple links, the maximum possible number of edges is N(N − 1)/2. Those

graphs, whose number of edges is close to such a value, are called dense graphs, while the graphs in

which the number of edges is bounded by a linear function of N are sparse graphs.

A generalization of the notion of graph, that will be repeatedly taken into account in the following

chapters, is that of weighted graph. In weighted (directed or undirected) graphs, each edge (i, j)

carries a weight, that is a variable wij assuming real (or integer) values. However, also the nodes

can be differentiated, introducing classes of nodes with the same set of internal variables. Graphs

with distinct classes of nodes will be denoted as multi-type graphs. Graphs in which there are two or

more distinct sets of nodes with no edges connecting vertices in the same set are commonly referred

as multipartite graphs. Real networks are actually weighted and multi-type, though in many situations

it is more convenient to study their properties by means of single-type, unipartite and/or unweighted
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Figure 2.1: Basic elements of graph theory and their typical graphic representations: (A) vertices and

edges in an undirected graph, (B) directed edges indicated by arrows in a directed graph, (C) the

degree of a node, and (D) weighted edges.

representations.

2.2.2 Degree distribution

A natural way to collect nodes in classes is that of considering nodes with the same degree k. This

is a convenient strategy to analyze large graphs, since the connectivity properties of the nodes are

statistically represented by the histogram P (k) = Nk/N , in which Nk is the number of vertices

of degree equal to k. In the infinite size limit (N → ∞), P (k) is called degree distribution, since it

represents the probability distribution that a node has degree k. The degree distribution P (k) satisfies

a normalization condition
∑∞

k=0 P (k) = 1. The average degree of an undirected graph is defined as

the average value of k over all the vertices in the graph,

〈k〉 =
∑

k

kP (k) ≡ 2E

N
. (2.2)

The condition of sparseness for a graph can be translated into 〈k〉 ≃ O(1).

However, in order to study topological properties of networks, the knowledge of higher moments of the

degree distribution is also important. For instance, the second moment 〈k2〉 measures the fluctuations

of the degree distribution, and governs the percolation properties [80]; while higher moments determine

conditions for the mean-field behavior of the Ising model on general networks [104].

For a long time, Graph Theory has been interested in random graphs with homogeneous connectivity,

i.e. with a degree distribution that is very peaked around a characteristic average degree and decays

exponentially fast for k ≫ 〈k〉. On the contrary, recent phenomenological findings have shown that a
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large number of real networks present heavy-tailed distributions, some of them close to a power-law

behavior. In these networks, there is a non-negligible probability of finding “hubs”, i.e. nodes of

degree k ≫ 〈k〉.

2.2.3 Two and three points degree correlations

The degree distribution does not exhaust the topological characterization of a network, since it has

been shown that many real networks present degree correlations between nodes, i.e. the probability

that a node of degree k is connected to another node of degree k′ depends on k and k′ themselves. More

rigorously, we can introduce a conditional probability P (k′|k) that a vertex of degree k is connected to

a vertex of degree k′. This quantity satisfies a normalization
∑

k′ P (k′|k) = 1 and a detailed balance

condition [43]

kP (k′|k)P (k) = k′P (k|k′)P (k′) , (2.3)

corresponding to the absence of dangling bonds. In uncorrelated graphs, P (k′|k) does not depend on

k and it can be easily obtained from the normalization condition and Eq. 2.3,

P (k′|k) =
k′P (k′)

〈k〉 . (2.4)

Similarly, it is possible to define a three-points correlation function P (k′, k′′|k), i.e. the probability

that a vertex of degree k is simultaneously connected to vertices of degree k′ and k′′.

In general, the direct measurement of these two conditional probabilities is quite cumbersome and

gives very noisy results on any kind of network. For this reason one usually prefers more practical

estimates by means of indirect quantities, that are averaged over the neighborhood of a node.

In a given network with adjacency matrix {aij}, a good estimation of the degree correlations of a

vertex i is provided by the average degree of the nearest neighbors of i

knn,i =
1

ki

N
∑

j=1

aijkj . (2.5)

Defining the network using its degree distribution, the average degree of the nearest neighbors of a

vertex of degree k is

knn(k) =
∑

k′

k′P (k′|k) . (2.6)

If the network is uncorrelated, the degree of the neighbors can assume any possible value, and the

average turns out to be approximately independent of k, i.e. knn(k) ≃ const. On the contrary,

correlated networks can be schematically divided in two large classes. The first class is that of those

presenting assortative mixing, i.e. nodes of high (small) degree are more likely to be connected

with nodes of high (small) degree (knn(k) grows with k). This seems to be a general property of

social networks. When vertices of high degree are preferentially linked with vertices of smaller degree

(and viceversa), i.e. knn(k) is a decreasing function of k, the network has disassortative mixing.

Many critical infrastructures such as transportation and communication networks present a clearly

disassortative behavior.

Analogously, for three-points correlations, we can define a quantity called clustering coefficient that

measures the tendency of a graph to form cliques in the neighborhood of a given node. As depicted in

Fig. 2.2-A, the clustering coefficient of a node i is defined as the ratio of the actual number of edges

ni between the neighbors of i, and the maximum possible number of such edges ki(ki − 1)/2, i.e.

c(i) =
2ni

ki(ki − 1)
=

∑

jh aijajhahi

ki(ki − 1)
. (2.7)
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Figure 2.2: (A) The clustering coefficient gives a measure of the local cohesiveness in the neighborhood

of a vertex: the central node in the example has clustering coefficient c = 1 if all pairs of neighbors

of the vertex are connected, c = 0.5 if only half of the possible pairs are connected, and c = 0 if no

triangles are formed. (B) The dashed path represents the shortest path (of length ℓij = 4) between

nodes i and j.

The study of the clustering spectrum c(k),

c(k) =
1

Nk

∑

i/ki=k

c(i) , (2.8)

provides interesting insights on the local cohesiveness of the network. In particular, a clustering

coefficient decreasing with the degree k has been put in relation with the existence of hierarchical

structures (e.g. in biological networks [210]).

2.2.4 Shortest path length and distance

Many non-local properties of graphs are related to the reachability of a vertex starting from another.

A walk from a vertex i to a vertex j consists in a sequence of edges and vertices joining i with j. The

length l of the walk coincides with the number of edges in the sequence. A path is a walk in which no

node is visited more than once. A graph is connected if for any pair of vertices i and j, there is a path

from i to j. The number of walks of length l between two nodes i and j can be expressed by the l-th

power of the adjacency matrix

(

Al
)

ij
=

∑

i1,i2,...,il−1

aii1ai1i2 · · ·ail−1j . (2.9)

In particular, this definition is related to the behavior of a random walker on the graph. A closed

walk, in which initial and final vertices coincide, is called a cycle; a k-cycle is a cycle of length k.
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The walk of minimum length between two nodes is called shortest path, and its length corresponds to

the hop distance ℓij between the nodes i and j (see Fig. 2.2-B). The diameter ℓmax is the maximum

distance between pairs of nodes in the graph, while the average distance 〈ℓ〉 between nodes is given

by

〈ℓ〉 =
1

N(N − 1)

∑

i6=j

ℓij (2.10)

A complete characterization of the metric properties of a graph corresponds to know the full probability

distribution Pℓ(ℓ) of finding two vertices separated by a distance ℓ. In fact, many real networks

present a symmetric distribution peaked around the average value 〈ℓ〉, that can be safely considered

representative of the typical distance between nodes in the network.

From this point of view, complex networks seem to share a striking property, called small-world effect

[247, 246], meaning that the average intervertex distance 〈ℓ〉 is very small compared to the size N

of the network, scaling logarithmically or slower with it. While this property can be found also in

generic random graphs, where 〈ℓ〉 ∝ log N , the result is in contrast with the behavior of the distance

on regular d-dimensional lattices, in which 〈ℓ〉 ∝ N1/d.

The practical implication of the small-world property is that it is possible to go from a vertex to any

other in the network passing through a very small number of intermediate vertices. In this regard,

the concept of small-world was firstly popularized by the sociologist S. Milgram in 1967 by means of a

famous experiment [177], in which he showed that a low number of acquaintances, on average only six,

is actually sufficient to connect (by letter) any two individuals in the United States. The experiment

was recently reproduced using the world-wide e-mail network and provided results consistent with the

small-world hypothesis [100].

Note that the presence of the small-world property is relevant not only at a topological level, but it

has also strong effects on all dynamical processes taking place on the network.

A plethora of different statistical measures is based on the notions of distance and shortest path,

some of them are used in the topological characterization of networks, others in the study of the

relation between functional properties and dynamics (see Chapter 4); we concentrate our attention

on centrality measures that will be extensively used in the following chapters.

The metric properties of a graph are, indeed, very appropriate to define several different measures

of centrality, that are used in social sciences to estimate the importance of nodes and edges. The

most local of these measures is the degree centrality, that is proportional to the degree of a node and

does not account for any metric feature of the graph. All other centrality measures involve non-local

properties in the form of the intervertex distance. For instance, the closeness centrality of a node i is

defined as the inverse of the sum of the distances of all nodes from i.

The most famous measure of centrality is the betweenness centrality, defined in Ref. [123] and recently

adopted in network science as the basic definition of centrality of nodes and edges. The node

betweenness centrality bi computes the relative number of all shortest paths between pairs of vertices

that pass through the vertex i, i.e.

bi =
∑

s6=i6=t

σst(i)

σst
, (2.11)

where σst = σts is the number of shortest paths between the vertices s and t, and σst(i) = σts(i) is the

number of them going through the node i. Similarly, the edge betweenness centrality bij is defined as

the fraction of all shortest paths from any pair of vertices in the network that pass through the edge
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Figure 2.3: (A) Star-like network, the node v (in red) has maximum betweenness because all shortest

paths have to pass through the central node. (B) A fully connected clique is characterized by a zero

betweenness value for all nodes. (C) The node v (in red) connects two highly connected groups of

nodes: its betweenness is very high even if its degree is very low.

(i, j),

bi,j =
∑

s6=i6=j 6=t

σst(i, j)

σst
, (2.12)

in which σst(i, j) is the number of shortest paths going through the edge (i, j). It is worthy to

remark that in the literature there are several slightly different definitions of betweenness centrality:

in particular, a prefactor 1/2 can be considered in order not to count twice the paths, while the paths

containing the interested nodes (i.e. i and/or j) as initial or ending points can be accepted or discarded

(the two cases differing just by a constant contribution). The computational cost of determining the

betweenness centrality for all vertices (or edges) in a graph is very high, since one has to discover

all existing shortest paths between pairs of vertices. An optimized algorithm, proposed by Brandes

[53], allows to reduce the computational complexity from O(N2E) to O(NE). For sparse graphs the

algorithm performs in O(N2) steps, that is still a high complexity when the size of the network is

very large (e.g. N ∼ O(106)), or when the computation has to be repeated many times, as for the

measures exposed in Chapter 4.

Figuring out the meaning underlying the notion of betweenness centrality is simple by means of few

examples dealing with extreme topological conditions. Let us consider a star network with a unique

central vertex v and N−1 leaves at a distance 1 from the center (see Fig. 2.3-A). The node betweenness

centrality of v is simple to compute because v belongs to all shortest paths between pairs of leaf nodes,

therefore the sum in Eq. 2.11 becomes a sum of unit contributions and we get bv = (N − 1)(N − 2).

The opposite situation is the complete graph, in which all vertices, according to the definition in

Eq. 2.11, have zero betweenness centrality (Fig. 2.3-B). Another interesting case is that of a node
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or an edge joining, as a bridge, two otherwise disconnected portions of a network (Fig. 2.3-C): all

paths connecting pairs of nodes belonging to different regions have to pass through that particular

node (edge), that turns out to have very high betweenness even if it may have very low degree. This

property shows that in many networks, as we will see, betweenness centrality is non-trivially correlated

with the other topological properties.

2.2.5 Subgraph structures

In this paragraph, we discuss a series of topological properties dealing with the structure of subsets of

a graph. Firstly, a graph G′ = (V ′, E ′) is a subgraph of the graph G = (V , E) if V ′ ⊂ V and E ′ ⊂ E . A

maximal subgraph with respect to a given property is a subset of the graph that cannot be extended

without loosing that property. Given a subset of nodes V ′ ⊆ V , we call G′ = (V ′, E|V ′) ⊆ G the

subgraph of G induced by V ′. A component of a graph G is a maximally connected subgraph of G; it

is called giant component if its size is O(N).

We have already seen that the clustering coefficient is a measure of the cohesiveness of a graph;

however, the maximal cohesiveness corresponds to sets of nodes with all-to-all connections, called

cliques. Formally, a clique is a maximally complete subgraph of three or more nodes. Though there

are several other quantities involving the subgraph’s definition, such as the n-cliques, or the k-plexes,

for the purposes of this work, we are only interested in two of them: k-cores and k-shells.

The k-core of a graph G is the maximal induced subgraph of G whose vertices have the property of

having degree at least k [47, 221]. (Note that it means that they must have degree at least k inside

the subgraph!). Such a subgraph can be obtained by recursively removing all the vertices of degree

lower than k, using a procedure called k-core decomposition.

Let us call Nk the number of nodes in the graph with degree not larger than k and Ck the set of nodes

belonging to the k-core, the algorithm reads

(1) Set k = 0 (Ck is empty ∀k > 0, C0 ≡ G);

(2) k → k + 1;

(3) Prune all nodes with degree lower than k (and the corresponding edges);

(4) Update Nl, ∀l ≥ 0 according to the pruned network;

(5) Repeat point (3) until Nl<k = 0;

(6) Put all remaining nodes (and edges) in Ck and go back to point (2).

A node has shell index k if it belongs to the k-core but not to the k + 1-core; the k-shell is the set of

all vertices of shell index k, i.e. the difference between two consecutively nested cores. The algorithm

is very clear if we look at simple cases similar to that sketched in Fig. 2.4, in which k-cores and k-shell

are highlighted using different colors.

Finally, we usually refer to communities when the graph can be reduced to a certain number of

subgraphs characterized by the property that, for each of them, the number of edges connecting the

subgraph with the rest of the graph is very small compared to the number of edges linking different

vertices within the same subgraph. In such a case each subgraph is a community, as depicted in

Fig. 2.5. The definition of community is not rigorous, thus the community structure of a network

depends strongly on the practical method used to detect the subgraphs. Several algorithms have

been proposed in order to find the community structure of networks. Some of them reduce iteratively
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Figure 2.4: Illustration of the k-core structure of a simple graph. The blue circle contains the 1-core,

i.e. the giant connected component of the graph. The two smaller contours draw the boundaries of

the 2-core (red) and 3-core (black). Blue nodes belong to the 1-shell, the red and black ones to the

2-shell and 3-shell respectively. The internal sets can be obtained from the larger ones by iterative

pruning of nodes as explained in the text.

the size of the different subgraphs, while others are based on the opposite principle of clustering

algorithms, but all them suffer of the same incapacity of detecting the correct level at which the

iterative procedure should be stopped. This is probably an intrinsic problem due to the absence of a

rigorous definition able to fix the correct resolution at which the community structure is more visible.

Some of the algorithms used to detect communities are based on topological properties, such as the

betweenness [128], others exploit the properties of some dynamical systems, e.g. synchronizability of

oscillators [12]. In Chapter 5, we will show that also non-equilibrium models of coarsening dynamics

can be used to put forward alternative methods to detect communities.

2.2.6 Further metrics for weighted networks

In many real networks, edges are not identical, they can have different intensities, that are related to

some physical properties and are taken into account assigning them a weight. For instance, in the

Internet the edges represent physical connections, cables, thus weights could be introduced to account

for their bandwidth, or the traffic between routers. In the air-transportation network, the weights are

proportional to the traffic on the airline connections. Hence, in the technological and infrastructure

networks, weights usually correspond to some physical quantities (energy, information, goods, . . . )

that are transferred between two nodes. On the other hand, in biological networks weights account

for the strength of the interactions between genes or proteins; whereas in social networks they specify

the intensity of interactions between the actors.
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Figure 2.5: An example of network with a very strong community structure. The number of edges

connecting nodes belonging to the same community (black full links) is much larger than the number

of edges between nodes in different communities (red dashed links).

Many statistical quantities that have been introduced for unweighted networks can be easily generalized

to weighted networks. The degree is generalized introducing the node strength; the strength si of a

node i is

si =
∑

j∈V

wij , (2.13)

where wij is the weight on the edge (i, j) [23, 252] (see Fig. 2.6-A).

If the weights are distributed uniformly at random, the node strength turns out to be linearly correlated

with the degree, i.e. s(k) ∼ 〈w〉 k. In fact, the actual degree-strength correlations observed in many

real networks suggest rather a super-linear relation s(k) ∼ Akβ , with β > 1 and A 6= 〈w〉 (see

Chapter 4).

A standard measure in the analysis of weighted graphs is the strength distribution Ps(s), that

says which is the probability that a randomly chosen node has strength equal to s. Many weighted

networks with broad degree distribution, such as the World-wide Air-transportation Network, also

present broad weight and strength distributions.

Other quantities are readily extended in order to account for weights, in particular two- and three-

points correlations. For each vertex i one can define a weighted average nearest neighbors degree,

kW
nn,i =

1

si

∑

j∈V

wijkj , (2.14)

and a weighted clustering coefficient

cW
i =

1

si(ki − 1)

∑

j,m

wij + wim

2
aijajmami . (2.15)
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Figure 2.6: (A) Strength si of the node i computed as the sum of the weights along the edges

connecting i with its neighbors. (B) The weighted clustering coefficient cW gives a measure of local

cohesiveness in presence of weights. Larger weights are responsible for larger weighted clustering. (C)

The weighted shortest path (red dashed links) can be topologically (number of links) longer than the

unweighted shortest path (grey dashed links). The weighted shortest path depends on the definition

of edge length, that in this case is ℓij = 1/wij .

The degree dependent functions, kW
nn(k) and cW (k) can be directly compared with the unweighted

measures knn(k) and c(k), providing interesting information on the role of the weights. For the

clustering coefficient, the interpretation is particularly easy (Fig. 2.6-B): when the weighted clustering

coefficient is larger than the topological one, it means that triples are more likely formed by edges

with larger weights. A similar interpretation holds for the relation between kW
nn(k) and knn(k).

With respect to unweighted networks, when edges are weighted the neighborhood of a node is not

homogeneous, namely the edges outgoing from a given vertex can in principle carry very different

weights. In order to quantify the homogeneity of the neighborhood of a node i, we consider the

disparity measure [97, 34],

Yi =
∑

j∈V(i)

(

wij

si

)2

. (2.16)

This quantity depends on the degree, in such a way that, when the weights are comparable, Y (k) ∼
1/k, while when an edge dominates on the others Y (k) ∼ 1.

Many other weighted quantities have been defined, but the most important for the topics discussed in

the rest of this thesis are the weighted centrality measures and, in particular, the weighted betweenness

centrality.

Actually, it is sufficient to define the weighted shortest path and all centrality quantities can be directly

constructed from it (Fig. 2.6-C). To each edge (i, j) in the network, we associate a distance that is a
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function of the weight, i.e. ℓW
ij = ℓW (wij), whose explicit form depends on the nature of the weights.

For instance, in the airports network weights are proportional to the traffic capacity, and a larger

traffic capacity leads to a better transmission along an edge, that from a “functional” point of view

corresponds to decrease the distances. Hence, we expect that the weighted distance along the edge

(i, j) is inversely proportional to the weight, i.e. ℓW
ij ∝ 1/wij .

The definition of the node weighted betweenness centrality bW
i consists in replacing all shortest paths

with their weighted versions. For any two nodes h and j, the weighted shortest path between h and

j is the one for which the total sum of the lengths of the edges forming the path from h to j is

minimum, independently from the number of traversed edges. We denote by σW
hj the total number of

weighted shortest paths from h to j and σW
hj (i) the number of them that pass through the vertex i

(with h, j 6= i); the weighted betweenness centrality (WBC) of the vertex i is then defined as

bW
i =

∑

h,j 6=i

σW
hj (i)

σW
hj

, (2.17)

where the sum is over all the pairs with j 6= h 6= i. Similarly, we can define a weighted edge

betweenness. The algorithm proposed by Brandes in Ref. [53] can be easily extended to weighted

graphs, with no further increase in complexity.
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Figure 2.7: Different granularity representations of the Internet: routers level (left) and autonomous

systems level (right). Routers are represented by blues nodes grouped in autonomous systems (circles).

2.3 Examples of real networks

In this section, we review of the phenomenological properties of two important real networks: the

Internet (in Section 2.3.1) and the World-wide Air-transportation Network (in Section 2.3.2). At the

same time it is an opportunity to show the practical use of the statistical measures defined in the

previous section. Some of these properties are reliably considered quite universal in complex networks,

such as heavy-tailed degree distributions or the small-world property, others are typical features of

the particular network under study. Though a detailed discussion is reserved only for those networks

that have been objects of direct investigation in this thesis, for the sake of completeness we provide

in Section 2.3.3 a brief overview on the phenomenology of some other real networks.

2.3.1 The Internet

The Internet is a communication network in which the vertices are computers and the edges are the

physical connections among them. The existence of various types of vertices reflects the high level

of complexity and heterogeneity of the system: the hosts correspond to single-user’s computers; the

servers are computers or programs providing network services; the routers are computers devoted

to arrange traffic and data exchange across the Internet. Similarly, hosts and routers are linked by

various types of connections, that are undirected and have different traffic capacity depending on their

bandwidth.

The structure of the Internet is the result of a complex interplay between growth and self-organization,

involving processes of cooperation and competition, without central administration or external control.

A good knowledge of the topological structure of the Internet is necessary to improve its functionality,

and prevent the system from faults and traffic congestions. This is the main reason for the great

interest of researchers in studying the structure of the Internet.

An exhaustive introduction to the network properties of the Internet is provided by Refs. [203, 16];

we give here only some necessary information on its structure.

The first important observation is that it is impossible to keep track of all single hosts, that are

hundreds of millions all around the world, organized in complex hierarchically structures, whose

smaller units are Local Area Networks, connected to the main net by means of routers. Monitoring

the structure of single local networks is thus too difficult, and partly useless since these networks



20 CHAPTER 2. STRUCTURE OF COMPLEX NETWORKS: AN OVERVIEW

Figure 2.8: Graphs representations of the Internet at the autonomous systems level (left) and the

router level (right). Both graphs are based on data collected by the Internet’s mapping projects at

CAIDA [62].

are created just to connect hosts inside buildings, university departments, corporate networks, city

areas etc, and their properties depend on very local administrative policies. Hence, the lowest level of

granularity at which we can analyze the Internet topology is the so-called router level (IR), that is a

graph with routers as vertices and the physical connections among them as edges.

At a higher granularity level, the Internet can be partitioned into autonomously administered domains,

called Autonomous Systems (AS). Within each autonomous system, whose structure is not defined

on the basis of geographical proximity but more frequently on commercial agreements and policies,

the traffic is handled following proper internal control strategies and restrictions, that can vary

considerably from AS to AS. In order to better understand routing problems, it is very convenient to

study the Internet topology at the level of the autonomous systems, considering each AS as a node

and connections between different ASs as the links.

The mapping projects of the Internet deal mainly with these two scales of description: the autonomous

systems level (AS), and the router level (IR). Fig. 2.7 reports a scheme of the structure of the

Internet at both levels. For many years, the structure of the Internet has been considered similar

to that of a random graph, with a homogeneous degree distribution peaked around a characteristic

degree value. In the last decade, on the contrary, massive Internet measurements provided evidences

against such kind of modeling and in favor of topologies with heterogeneous degree distributions.

Historically, the first experimental evidence of a power-law degree distribution at the AS level is

contained in a famous paper by Faloutsos et al. [120], who analyzed the data collected during the

period 1997 − 1998 by the National Laboratory for Applied Network Research (NLANR) [196]. In

the following years many other studies, both at the AS and the router levels, always confirmed this

important discovery [196, 62, 147, 216, 135, 219, 167, 241, 76]. Though the qualitative picture coming

from these two different scales is the same, the two graphs show relevant quantitative differences, that

can be examined in depth using the statistical tools introduced in the previous section. Note that,

the size of the Internet is exponentially growing, but the major statistical measures do not change
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Figure 2.9: Two examples of the degree distributions obtained from Internet mapping projects. P (k)

is clearly power-law at the AS level (left), while it is broad but slightly bended at the IR level (right).

Both graphs are based on data collected by the Internet’s mapping projects at CAIDA [62].

in time, suggesting the idea that the Internet, as a physical system, is in a sort of non-equilibrium

stationary state. Two typical pictures of the Internet’s AS and IR levels, obtained from the data of

the CAIDA’s mapping project [62], are displayed in Fig. 2.8.

Apart from the quantitative estimation of the exponent, that can be possibly affected by measurement

biases, the existence of heavy-tails seems to be a solid feature of the Internet (see Chapter 3 for a

complete statistical analysis of the Internet exploration’s technique). In Fig. 2.9, we report the degree

distributions for the AS (left) and IR (right) levels, that are clearly power-laws P (k) ∼ k−γ (with

γ ≃ 2.1).

In both cases, the distribution of the shortest path length is peaked around the average distance 〈ℓ〉,
whose very small value is signature of the occurrence of the small-world property.

Differences in the two levels of descriptions can be found looking at the degree correlations. The

degree dependent spectrum of the average degree of nearest neighbors knn(k) is roughly flat or slightly

increasing with k for IR maps, while it shows a very clear disassortative behavior at the AS level. The

reason for disassortative correlations can be found in the strong hierarchical structure of the Internet

at the autonomous system level, that is absent at the router level. This hierarchical organization of the

Internet at the AS level is reflected also in other measurements, as for instance its k-core structure,

that is discussed in Refs. [66, 67, 8, 9, 7, 165] (see also Section 3.2.5).

Both levels show similar average clustering coefficient, that is considerably higher than in standard

random graphs, reinforcing the idea that the Internet is far from being locally tree-like. The spectrum

of the clustering coefficient is almost constant at the router level and clearly decreasing at the AS level.

The power-law functional dependence of c(k) on the degree k has been interpreted as a signature of

the presence of modular structures at different scales [210].

Finally, the distribution of the node betweenness centrality Pb(b) is clearly power-law for the AS

(Pb(b) ∼ b−γb , with γb ≃ 2.0), while it shows a very broad distribution with a more bended shape



22 CHAPTER 2. STRUCTURE OF COMPLEX NETWORKS: AN OVERVIEW

name date N 〈k〉 kmax 〈k2〉/〈k〉 〈ℓ〉 〈c〉
AS RV 2005/04 18119 3.54771 1382 2369.82 3.92 0.083

AS CAIDA 2005/04 8542 5.96851 1171 521.751 3.18 0.222

AS Dimes 2005/04 20455 6.03862 2800 1556.24 3.35 0.236

IR Mercator 2001 228297 2.79635 1314 36838.6 11.5 0.013

IR CAIDA 2003 192243 6.33085 841 8884.23 6.1 0.08

IP Dimes 2005 328011 8.2142 1453 10954 6.7 0.066

Table 2.1: Main characteristics of the Internet obtained by various mapping projects: number N of

vertices, average (〈k〉) and maximal (kmax) degree, ratio 〈k2〉/〈k〉, average shortest path 〈ℓ〉 between

pairs of vertices, and average clustering coefficient 〈c〉. For the Autonomous Systems level we consider

maps of the Oregon route-views (RV) project [216], the skitter project at CAIDA [62], and the DIMES

project [98]; at the router level, data about recent maps by CAIDA and DIMES, together with older

results from the Mercator project [135], are reported.

at the IR level. The correlation between betweenness and degree is almost linear [203] (but large

fluctuations emerge using scatterplots instead of average values).

This picture of the Internet, however, is correct only at a qualitative level, whereas quantitatively,

different mapping projects provide slightly different results for the average properties of the network,

in relation to the unequal node and edge coverage of the measurements. An idea of such a variety of

results is given by the list reported in Table 2.1.

The validation of Internet’s large scale measurements is of primary interest to understand correctly

topological and functional properties of the real Internet, and will be the subject of the next chapter.

In summary, while the topological structure of the Internet at the router level is still hard to detect

probably because of the unreliability of mapping processes, at higher granularity level, for the ASs,

the Internet structure is much clearer and appears as a mixture of hierarchical modular structures with

degree heterogeneity and small-world property.

2.3.2 The World-wide Air-transportation Network

The World-wide Air-transportation Network (WAN) is the network of airplane connections all around

the world, in which the vertices are the airports and the edges are non-stop direct flight connections

among them. As for the Internet, this is a physical network, in the sense that both the nodes and the

edges are well-defined objects. We can easily as well define weights on the edges, since different flights

are characterized by a different number of passengers and by the geographical distance they have to

cover.

For the moment we do not consider geographical properties, that will be taken into account in

Chapter 4, and define the weight wij of the link (i, j) as the total number of available seats per

year in flights between airports i and j.

The analyzed dataset was collected by the International Air Transportation Association (IATA) for

the year 2002. It contains N = 3880 interconnected airports (vertices) and E = 18810 direct flight

connections (edges). This corresponds to an average degree 〈k〉 = 9.7, with maximal value kc = 318.

Degrees are strongly heterogeneously distributed, as confirmed by the shape of the degree distribution,

that can be described by the functional form P (k) ∼ k−γf(k/kc), where γ ≃ 2.0 and f(k/kc)

is an exponential cut-off which finds its origin in physical constraints on the maximum number of
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Figure 2.10: The strength distribution Ps(s) (left) and the diagram strength vs. degree (right) for the

World-wide Airport Network. The diagram s(k) shows the non-linear correlation between strength

and degree (black circles), whereas the same quantity grows linearly after weights randomization (red

squares). The inset reports the behavior of the degree distribution.

connections that can be handled by a single airport [141, 140].

Moreover, the WAN shows small-world property, since the average distance is 〈ℓ〉 = 4.4. It is worthy

noting that weights from IATA database are symmetrical, that is probably a consequence of the

traffic properties and allows to consider the network as a symmetric undirected graph. The analysis

of weighted quantities reveals that both weights and strength are broadly distributed, and that they

are non-trivially correlated with the degree, since the average weight 〈wij〉 ∼ (kikj)
θ

with θ ≃ 0.5 and

s(k) ∝ kβ with β ≃ 1.5 [23]. The sets of data in Figure 2.10, representing the strength distribution

P (s) and the strength-degree diagram s(k), are borrowed from Ref. [23]. Such super-linear relation

points out that highly connected airports tend to collect more and more traffic, that could in principle

yield to a condensation process of the traffic on the hubs (i.e. a finite fraction of traffic handled by a

small number of airports).

The non-trivial role of the weights is witnessed also by degree-degree correlations and clustering

that show a slightly different behavior if weights are considered [23] (not shown). The topological

average nearest neighbors degree knn(k), indeed, reaches a plateau for high degrees, while the weighted

quantity kW
nn(k) still increases, showing that even if the degree of neighboring nodes is various, the

hubs are preferentially connected with high traffic nodes. A similar interpretation holds also for

the observed values of the weighted clustering coefficient cW (k) for high degree nodes, that is larger

compared to the topological one.

2.3.3 Other Examples

It is possible to distinguish three main types of real complex networks:

• artificial infrastructures and technological networks;

• social networks generated by interactions between individuals;

• networks existing in nature, such as food webs or biological networks.

The Internet and the WAN are the most popular examples of the first class, that contains many other

communication and transportation networks [30, 127, 247, 2, 55, 222]. Not all of them show a broad
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degree distribution, but a considerable amount of heterogeneity can be recovered at a traffic level, as

recently shown by De Montis et al. [95] in the case of the Sardinian transportation network.

The panorama of biological networks is very wide, and its analysis goes beyond the purposes of this

thesis. For instance, in cellular networks, the nodes are genes or proteins and the links are metabolic

fluxes regulating cellular activity. In a seminal work [152], Kauffman showed that chemical processes

can be conveniently represented by chemical reactions networks. The vertices are substrates, connected

by the chemical reactions in which they take part. The orientation of the corresponding edge says

if a substrate is involved in the reaction as product or “educt”. The average size of these networks

is quite small (N ∼ O(103)), but despite of the small size, the degree distribution is fairly broadly

shaped. These networks are small-worlds and their structure seems to be rather robust under random

defects, errors and mutations.

Another class of biological networks are protein-protein interaction networks (PIN) (see for instance

Refs. [153, 239, 204, 148]), in which the edges identify the existence of interactions between two

proteins. They present heterogeneous degree distribution and low average distance, but also non-

trivial pair correlations, that are related with the proteins functions. Indeed, by means of modularity

analyses [210, 178], it is possible to uncover the relation between some small topological structures

(like triangles or small cliques) corresponding to some functional modules of proteins.

Other interesting natural networks are food webs [251, 109, 206], i.e. networks of animals in a given

ecosystem, in which directed arrows establish “who eats who” in the food chain. In this case also

self-links must be considered, as consequence of the presence of cannibalism in many animal species.

However, as we will show in another context in Chapter 3, the problem of counting all species of an

ecosystem makes the definition of these networks quite difficult. Similar difficulties are faced in the

definition of trophic links between species. In addition, these networks are very small (N ∼ O(102))

and their degree distributions are not clearly fat-tailed [110]. The clustering coefficient is, instead,

very large showing that they are far from being random graphs, even if they present features that

are typical of small-world models. Another large field of application of the network description are

social sciences. Social networks are used to represent social interactions among individuals (called

actors), such as acquaintances, collaborations, sexual relations, etc. The typical structure of social

networks is that of multi-partite networks, with a set of nodes representing actors and other sets

of nodes representing affiliations they belong to (Fig. 2.11). Actors are indirectly linked together

by means of common affiliations, i.e. the places they frequent, the office in which they work, etc. A

standard technique to study social networks consists of projecting multi-partite networks on unipartite

representations, in which nodes of a unique type (the actors) are linked by an edge if they have at

least one common affiliation. Interesting examples of such networks are co-authorship networks, the

most popular one being the network of collaborations among physicists submitting manuscripts on the

well-known archive called “cond-mat” [187] 1. This database of condensed-matter physics contains

N = 12722 scientists who authored e-prints during the period from 1995 to 1998. According to

the unipartite description, the presence of an edge between two authors means that they have co-

authored at least one paper. Obviously, the link between authors who have co-authored many works

together should be stronger, and we can assign weights to the edges following the definition proposed

by Newman [192],

wij =
∑

p

δp
i δp

j

np − 1
, (2.18)

1It is a public archive of condensed matter preprints and e-prints, see ‘http://www.arxiv.org/archive/cond-mat ’.
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Figure 2.11: (Top) Example of bipartite representation of a social network: blue nodes with numbers

are the affiliations, and white nodes with letters are the actors. (Bottom) The figure represents the

unipartite projection of the network, in which pairs of actors are connected by links if in the original

network they have at least one common affiliation.

where δp
i is 1 if the author i has contributed to the paper p and 0 otherwise, and np is the number

of authors of the paper p. Both the degree distribution and the strength distribution are broad, but

the weights are linearly correlated with the degree, revealing that their distribution is independent of

the topology. The network of “cond-mat” shows, moreover, an interesting community structure, with

many induced subgraphs of different sizes, corresponding to different research fields [198, 11].

A further level of information that sometimes is available in many co-authorship networks is the

number of citations gained by a paper. In such a case the weights are defined á la Newman but

including the number of citations [49]. A very interesting issue is the study of the temporal evolution

of co-authorship networks, identifying those topological and weighted structures that reinforced during

the years and those which got lost. This kind of analysis has been carried out in Ref. [49], focusing

on the study of the temporal evolution of the impact of co-authors groups in a particular scientific

community (the database analyzed was the InfoVis Contest dataset, a network of 614 papers by 1036

authors, published between 1974 and 2004).
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2.4 Networks modeling

In the previous section, we have reviewed some examples of real networks, from which we conclude

that a networked description can be applied to a variety of systems with a large number of interacting

units, independently of their functions and role in nature or society. This makes evident the lack

of a unique underlying theoretical framework in which all networks properties may be analyzed and

interpreted.

In order to build such a theoretical framework starting from phenomenological data, the first step

consists of networks modeling. We can roughly divide networks in two classes: static networks and

evolving networks. In the first class, the overall statistical properties are fixed and single networks are

generated using static algorithms. A typical example of this class is the static random graphs ensemble

defined by Erdös and Rényi [115, 116]. Classical random graph models are generated drawing edges

uniformly at random between pairs of vertices with a fixed probability. The resulting graphs have

poissonian degree distributions (Erdös-Rényi Model). Recently, this ensemble of graphs has been

extended in order to include graphs with any possible form of the degree distribution (Configuration

Model) [180, 181, 35, 2, 71]. In this section, we introduce these two models together with another

static model, that was proposed by Watts and Strogatz as a toy-model able to reproduce the main

properties of real small-world networks (Watts-Strogatz Model) [247].

Evolving networks, on the contrary, are a very recent topic, that has attracted most attention after

the discovery of broad degree distributions in real growing networks such as the Internet, and the

possibility of producing power-law degree distributions by means of very simple evolution rules. In

this case, the generation algorithm of the network implies a non-equilibrium process in which the

statistical quantities evolve in time. However, all these growing models are built in such a way that

the infinite size (and thus time) limit gives well-defined statistical properties. In the following, we

will describe only two models of growing networks with power-law degree distribution, the famous

Barabási-Albert Model [17] and its clustered version proposed by Dorogovtsev, Mendes, and Samukhin

(DMS Model) [106].

Though from the point of view of the application to the description of real networks the division

in static and evolving networks is important, for the purposes of this thesis, i.e. for the study of

dynamical processes taking place on networks, a better classification is that of considering the two

following classes: homogeneous networks, with degree distribution peaked around the average value;

and heterogeneous networks, in which the degree distribution is skewed and may present heavy-tails,

or more generally, large fluctuations around the average value.

Many real networks evolve in time, but, in fact, the temporal scale of their topological rearrangements

is usually much longer than the time-scale of the dynamical processes occurring on the network. This

property allows to study dynamical processes on networks that have been obtained with a growing

mechanism as if they were static models.

2.4.1 Homogeneous Networks

Erdös-Rényi Model (ER) - As already mentioned the theory of random graphs was founded

by P. Erdös and A. Rényi [115, 116], who defined two random graphs ensembles GN,E and GN,p, in

which the fixed quantities are, respectively, the number of nodes and edges in the former case and the

number of nodes and the linking probability in the latter. In GN,E, the graphs are defined choosing

uniformly at random pairs of nodes and connecting them with an edge, until the number of edges

equals E. The second case is practically more convenient, and is defined as follows. Starting from N
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Figure 2.12: Typical degree distribution (left) for a homogeneous poissonian random graph (right).

nodes, one connects with probability p each pair of nodes. At the end of the procedure, the average

number of edges is E = pN(N − 1)/2 and the average degree is 2E/N = p(N − 1) ≃ pN , if N is

sufficiently large. For a finite number of nodes, the probability that a node has degree k is given by a

binomial law

P (k) = Ck
N−1p

k(1 − p)
N−1−k

, (2.19)

where pk(1 − p)
N−1−k

is the probability of having exactly k edges and Ck
N−1 = (N−1)!

k!(N−1−k)! is the

number of possible ways these edges can be selected. Taking the limit N → ∞ and p → 0, in such a

way that pN → 〈k〉 = const, the binomial law tends to a Poissonian distribution

P (k) ≃ 〈k〉k
k!

e−〈k〉 . (2.20)

Poissonian distributions are very peaked around the average value, with bounded fluctuations; indeed,

the second moment is finite, 〈k2〉 = 〈k〉2 + 〈k〉. An example of such degree distribution is displayed in

Fig. 2.12 (left), while the right panel in the same figure displays a sketch of its graphical representation.

Since the probability of finding nodes of degree much larger than 〈k〉 decreases exponentially, these

graphs are prototypes for homogeneous networks.

However, ER random graphs show a giant component only for p > pc with pc = 1/N , that corresponds

to the critical average connectivity 〈k〉 = 1. Erdös and Rényi ([115, 116]) proved the existence of a

transition between a phase, for p < pc, in which with probability 1 the graph has no component of

size larger of O(log N), and a phase, for p > pc, in which the graph has a giant component or order

O(N). In the marginal case p = pc, the largest component has size O(N2/3). This second order phase

transition belongs to the same universality class of the mean-field percolation transitions [48].

The ER random graphs are completely uncorrelated, thus the average degree of the nearest neighbors

is a constant independent of k. The clustering coefficient is simply the probability that any two
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neighbors of a given vertex are also connected to each others, i.e.

〈c〉 = p =
〈k〉

N − 1
. (2.21)

The fact that in random graphs the clustering coefficient vanishes in the limit of large size N justifies

the local tree-like approximation (Bethe Tree) used to obtain many relevant results.

For instance, the tree-like approximation allows to compute how the diameter of the graph scales

with N . Indeed, since each node has typically 〈k〉 neighbors, at distance ℓ in a tree-like topology, the

number of visited nodes scales as 〈k〉ℓ. The diameter is reached when the number of visited nodes is

equal to N , but the shortest path distribution is very peaked, thus we can approximate the diameter

with the average distance, 〈ℓ〉, obtaining

〈ℓ〉 ∼ log N

log〈k〉 . (2.22)

Watts-Strogatz Model (WS) - In Section 2.3, we have shown experimental data from which

it emerges that the average hop distance between two vertices in real complex networks is very small,

and it is possible to reach every vertex in a small number of steps. Nevertheless, random graphs are

not optimal models for the study of real networks, since the most of them are clustered, i.e. they

contain a lot of triangles, whereas random graphs are locally tree-like. In order to overcome this

problem, Watts and Strogatz proposed a simple model interpolating between a regular lattice with

large average distance but strong clustering and the random graph with small diameter and small

clustering [247].

The initial network is a one dimensional m-banded graph, i.e. a ring of N sites in which each vertex

is connected to its 2m nearest neighbors. The vertices are then visited one after the other: each

link connecting a vertex to one of its m nearest neighbors in the clockwise sense is left in place with

probability 1 − p, and with probability p is rewired to a randomly chosen other vertex. The long-

range connections introduced play the role of shortcuts connecting regions that are very distant in the

original network. Figure 2.13 displays a sketch of the rewiring mechanism.

For p = 1, the network is completely randomized but, since it has at least degree 2m, it is not

equivalent to a random graph. The interesting regime is for 1/N ≪ p ≪ 1, in which a still rather

large clustering coefficient coexists with a logarithmically scaling average distance. In the limit p → 0,

the small-world property disappears and the metric structure of the lattice is restored. It has been

shown ([29, 32, 195, 194]) that the transition occurs precisely at p = 0, and in the infinite size limit the

average distance diverges as 〈ℓ〉 ∼ 1/p. This cross-over phenomenon for increasing rewiring probability

plays an important role in determining the behavior of dynamical processes defined on this type of

network (see Chapter 5 for the case of Naming Game on Watts-Strogatz small-world networks). The

degree distribution of this model in the regime 1/N ≪ p ≪ 1 has the form [29]

P (k) =

min(k−m,m)
∑

i=0

(

m

i

)

(1 − p)
i
pm−i (pm)

k−m−i

(k − m − i)!
e−pm , (2.23)

for k ≥ m, and is equal to zero for k < m.

The clustering coefficient can be easily computed recalling that two neighbors that are linked together

in the original model remain connected with probability (1 − p)
3
,

〈c〉(p) ∼ 3(m − 1)

2(2m − 1)
(1 − p)

3
. (2.24)
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Figure 2.13: Rewiring process in the Watts-Strogatz model of smallworld network. Increasing the

rewiring probability p, the network passes from a regular 2-banded network (left) to a smallworld

network (center) and finally to a random graph (right).

2.4.2 Heterogeneous Networks

In the last years, a huge amount of experimental data yielded undoubtful evidences that real networks

present a strong degree heterogeneity, expressed by a broad degree distribution. In order to reproduce

the main features of this new class of heterogeneous networks, a big effort has been devoted to network

modeling, and a large number of models with degree heterogeneity has been put forward. The main

feature of these networks is that the average degree is not representative of the distribution, and the

second moment 〈k2〉 is very large, possibly diverging in the infinite size limit. A characterization of the

heterogeneity level of a degree distribution is given by the parameter 〈k2〉/〈k〉, that is strictly related

with the expression of the normalized fluctuations and enters in the description of many dynamical

phenomena on networks, such as percolation and epidemic spreading.

When the degree distribution is a power law P (k) ∼ k−γ (2 < γ ≤ 3), the fluctuations diverge with

N (the average remaining finite), and nodes with very large degree appear in the network. However,

not all heterogeneous networks are power-law, many of them possess bended degree distributions that

cannot be classified as power-laws. A broad distribution, that is not scale-free, but has been used

to fit a number of data coming from the Internet’s measurements ([57]) is the Weibull (WEI), whose

form is P (k) = (a/c)(k/c)
a−1

exp(−(k/c)
a
), with a, c real positive constants. Weibull distributions

are good candidates as degree distributions also for networks of scientific collaborations, wordwebs

and biological networks, where the existence of a neat power-law is still under debate.

Now, we introduce the most relevant models of heterogeneous networks, that will be used in the

numerical simulations related to the investigations reported in the next chapters.

Configuration Model (CM) - This is a static model of scale-free graphs that generalizes the

random graph ensemble of Erdös and Rényi to generic degree distributions. It is particularly useful

to study dynamics on network models with a given degree distribution and controlled correlations. A

famous algorithm to generate generalized random graphs was proposed by Molloy and Reed [180, 181].

A degree sequence {ki} (i = 1, . . . , N) is drawn randomly from the desired degree distribution P (k)

and assigned to the N nodes of the network, with the additional constraint that the sum
∑

i ki must

be even. At this point, the vertices are connected by
∑

i ki/2 edges, respecting the assigned degrees

and avoiding self- and multiple-connections. Figure 2.14 reports a sketch of the generation procedure.

The last condition introduces unexpected correlations, producing a slightly disassortative behavior.

In order to eliminate correlations, Catanzaro et al. [71] have proposed a variation of the model

characterized by a cut-off at
√

N for the possible degree values. In the rest of this work, when talking
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Figure 2.14: Illustration of the Molloy-Reed algorithm used to generate a generalized random graph

starting from a degree sequence. The stubs (left) are linked in such a way that self-links and multi-links

are avoided.

of configuration model we will always refer to this particular model, that is known as Uncorrelated

Configuration Model (UCM) and presents flat knn(k) and c(k).

Barabási-Albert Model (BA) - The first attempt to model real growing networks such as

the Web was provided by Barabási and Albert, who proposed the idea of preferential attachment

as the central ingredient in order to get a power-law degree distribution [17]. The preferential

attachment is based on the simple idea that, during the network’s evolution, new coming nodes

become preferentially connected with nodes that already have a large number of connections. It was

proposed as a “construction recipe” for the Web, in which new pages acquire more visibility if they

link to very important webpages, but it can be assumed as a valuable principle for a large number of

technological and social networks, in which nodes want to optimize their conditions connecting with

very important and central nodes. During the growth, the “rich gets richer” effect is produced: large

degree nodes more easily increase their degree compared to low degree nodes.

The algorithm starts from a small fully connected core of m0 nodes (their precise properties do

not change the statistical properties of the model in the large size limit). At each time step t =

1, 2, . . . , N − m0, a new node j enters the network and forms m ≤ m0 edges with distinct existing

nodes: the probability that an edge is created between j and the node i is

Πj→i =
ki
∑

l kl
. (2.25)

Every new node has m links and the network size at time t is N(t) = t+m0; since the number of links

is E = mt, in the large time limit the average degree is simply 〈k〉 = 2m. The degree distribution

of the BA model can be obtained by means of different methods (mean-field approximation [17, 18],

rate equation [162], or master equation [105]), and shows, in the limit t → ∞, a power law behavior
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Figure 2.15: Typical degree distribution (left) for a heterogeneous BA model (right).

P (k) ∼ k−γ with γ = 3. Figure 2.15 displays the degree distribution and a graphical representation

of a BA network.

Apart from the very interesting idea of preferential attachment, the Barabási-Albert model is a very

peculiar network, with flat degree correlations and almost vanishing clustering. Many variations of

the model have been proposed, including node aging [157], fitness [40, 117], edge rewiring [3], limited

information [186], etc; in particular, the addition of a constant A representing the initial attractivity

(ki → ki + A in the kernel of Eq. 2.25) allows to generate power law networks with desired exponent

2 ≤ γ ≤ ∞ [105]. Note that the linearity (in k) of the attaching kernel in Eq. 2.25 is a necessary

condition to get a power-law distribution. It has been indeed proved ([162, 160]) that using generalized

kernels of the type Πj→i =
kβ

i
P

l kβ

l

the degrees of the emerging network are power-law distributed only

for β = 1. When β < 1, the degree distribution is exponentially shaped; when β > 1 the evolution

produces edge-condensation on few vertices.

Dorogovtsev-Mendes-Samukhin Model (DMS) - Another interesting variation of BA

model is the growing clustered network proposed by Dorogovtsev, Mendes and Samukhin (DMS)

[106], in which the evolving rule consists in attaching new vertices to the extremities of a randomly

chosen edge. The probability to choose a given vertex is thus proportional to the number of edges of

which it is an extremity, i.e. to its degree. While the DMS model generates a power law distribution

(γ = 3), the growing rule does not explicitely need any a priori knowledge of node’s degrees. The only

real difference between this model and the BA model is in the clustering coefficient, that in the DMS

model is very high (〈c〉 ≃ 0.739 for m = 1). The general behavior of the clustering spectrum c(k)

and the average value 〈c〉 for the DMS model has been computed using the rate equation formalism

in Ref. [28].

2.4.3 Weighted Networks

In this last paragraph, we discuss a model of growing weighted network that is particularly appropriate

for the description of the World-wide Air-transportation Network.
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Figure 2.16: Weights redistribution rule in the BBV model. When a new node j enters the network

attaching to a node i, it carries new traffic that is redistributed to the neighbors of i by means of a

contribution to their weights. The edge (j, i) assumes a fixed weight w0.

In real weighted networks, the weights are not fixed but evolve in time together with the topology,

so that the characteristics of the networks depend on the interplay of these two types of dynamics

(topological and weighted) and on the relation between their time-scales. As for the purely topological

models, also for weighted evolving networks there is a variety of slightly different models, each one

pinpointing a particular aspect of the evolution. We are interested in the situation in which the

evolutions of links and weights are coupled and have the same temporal scale, that is similar to what

happens in the real network of airports.

In the case of the WAN, in fact, each new airport j that enters the existing network brings new flights,

and new passengers are introduced into the system. A fraction of these passengers will not stop at the

destinations of the direct flights they have taken from j (e.g. a new airport is connected only to New

York but part of the passengers would like to go to other cities, such as Philadelphia or Chicago);

hence, part of the traffic is immediately locally redirected on the network. Moreover, new airports try

to connect themselves to the most connected hubs, in order to guarantee many correspondences to the

passengers. Consequently, a good way to naively model the growth of a network like the WAN is that

of considering 1) a preferential attachment procedure based on the strength and 2) a redistribution

rule for the local traffic brought by the new node. More precisely, the Barrat-Barthélemy-Vespignani

(BBV) model [24, 25, 26] starts from an initial clique of m0 nodes with a fixed weight w0. At each

time step, a new vertex j is added to the network with m edges (of weight w0) that are randomly

attached to a previously existing vertex i according to the probability

Πj→i =
si
∑

l sl
. (2.26)
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Immediately after the creation of the new link (i, j), the weight of links (i, l) connecting i with each

other neighbor l is locally redistributed according to the rule (see Fig. 2.16)

wil → wil + δ
wil

si
∀l ∈ V(i) , (2.27)

i.e. the increase of the traffic δ is locally distributed among the neighboring connections, each link

receiving a fraction of traffic that is proportional to the amount of traffic already handled by that

connection.

This network model displays power law distributions of degree, strength and weights. An interesting

feature of the model is the presence of non-linear correlations between degree and strength. However,

it is worthy noting that the model fails in reproducing the large fluctuations that characterize the

quantity s(k) in the case of the WAN (and other growing weighted networks), and that are clearly

visible in the scatter-plot degree vs. strength.

In a recent publication [27], the authors of the model have shown that large fluctuations may be due

to the existence of spatial constraints coming from the embedding of the nodes in a two-dimensional

euclidean space. This modified model consists in considering the nodes deployed on a two-dimensional

euclidean space: each new node is situated in a randomly chosen point of the lattice, and the

preferential attachment kernel is modified in order to account for the fact that a node prefers to

connect to nodes that are well-connected but also spatially close to itself,

Πj→i ∝ si exp(−ηdij) , (2.28)

where dij is the euclidean distance between nodes i and j, and η is related to a characteristic length

scale. When η is small enough that spatial effects cannot be avoided, the relation between degree

and strength is still non-linear but now presents very large fluctuations (around the average value

expressed by s(k)).

This model will be furtherly investigated in the analysis of the vulnerability of weighted networks

(Chapter 4), in order to explain some results obtained for the real airport network.
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Chapter 3

Exploration of complex networks

3.1 Introduction

The present chapter is devoted to describe and study the exploration techniques of complex networks.

Motivations of this research and a general introduction to the problem, in which we highlight several

different sampling methods, are provided in Sections 3.1.1-3.1.2. Then, in Section 3.2, we focus on

a theoretical model for the exploration of the Internet, that is analyzed using a typical mean-field

statistical physics approach. A variety of different measures are introduced to investigate the main

properties of the exploration process and its biases. Finally, exploiting an interesting application of

non-parametric statistics, we propose an approach to compensate the biases (Section 3.3).

3.1.1 Motivations

Network modeling is undoubtedly the favorite tool used by researchers to understand the origins of

the ubiquity of complex networks in the real world. In particular, the presence, in biological as well as

technological systems, of the same peculiar topological properties, such as a broad degree distribution

and very small average inter-vertex distances, is very intriguing. By means of network models, some

of the phenomenological results have been reproduced, and possible explanations for many observed

properties have been put forward. An aspect, on the contrary, that has been relatively disregarded is

the validation of phenomenological data, and the identification of possible errors or biases occurred

during the process of data collection and analysis. The importance of this issue resides in the fact

that “systematic” errors in the statistics, due to sampling biases, could compromise the reliability of

the data and of the observed properties of real networks.

The idea that the sampling of networks may introduce biases is far from being unrealistic, as proved

by several examples reported in the Section 3.1.2 and coming from different fields of complex networks

research.

In social and biological networks, the limited information about the exact mechanisms generating the

original network and the amount of arbitrariness in the definition of the edges (e.g. relations among

individuals, interactions between proteins, etc), makes sampling processes extremely problematic,

since we do not have a real control on the origins of possible biases.

Completely different is the case of the physical Internet, in which nodes and edges are well-defined,

but the dynamical nature of its structure and the lack of any centralized control have favored a self-

organized evolution of the system, without any information on its topological properties. In practice,

35
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we do not have a complete knowledge of router’s neighbors, since routing decisions depend on optimized

traffic protocols by means of which data packets should be sent along the shortest path available to the

destination. This means that routers only know which are the neighbors belonging to the shortest

paths; i.e., they could ignore the existence of other neighbors. Actually, traffic congestions and local

policies can force routers to deliver packets through some preferential neighbors, causing small path

inflations with respect to the shortest one.

Internet’s explorations, obtained by means of tree-like probes based on traceroute processes, exploit

the routing protocols in order to trace a path between different nodes of the network. In this way,

they suffer of important biases due to the loss of lateral connectivity, i.e. of those nodes or links which

do not lay on the shortest path between two nodes (or on its small perturbations). We will see that

traceroute explorations can seriously misrepresent the degree distribution of the original network.

On the other hand, a good knowledge of the Internet topology is fundamental in order to improve

its performances, minimize traffic congestions and protect the system against malicious attacks. For

this reason, the study of Internet’s sampling biases is of primary interest, not only for the scientific

community but also for practitioners and common users.

The investigation has to be carried on at different levels; our theoretical formulation of the problem

is aimed at

• understanding what is the origin of the exploration biases and at what stage they affect the

observed properties,

• identifying which kind of topologies yield the most accurate sampling,

• providing some “rules of thumb” for the optimization of mapping strategies,

• obtaining alternative approaches able to correct the biases, at least in some simple cases.

In the next section, we introduce the issue of sampling biases in complex networks, highlighting which

dramatic effects of distortion of the shape of the degree distribution can be produced by a bad sampling

of the network.

3.1.2 Networks sampling methods and their biases

There are many possible sources of sampling biases in complex networks, depending on the field

of research and the type of sampling method used in the experiments. Here we provide a short

survey of examples, focusing in particular on the mechanisms of homogeneous sampling and tree-like

explorations and on the dramatic effects they can have in misrepresenting the degree distribution of

the underlying network.

Sampling biological and social networks - In the context of social and biological networks,

practitioners have developed many types of experiments in order to gain information on the topology

of the networks of interest. Apart from the complexity of the experimental set up necessary for such

experiments, a deep conceptual problem emerges: ties between nodes are usually associated with

relations or interactions, thus they can have different nature or intensity, that are difficult to evaluate

and take into account correctly. In social networks, this is due to the level of arbitrariness in defining

relations between actors, and in biological networks to the fact that measures are usually indirect

and may be influenced by the effects of external unknown variables. Nevertheless, many authors

have modeled the collection of data in social as well as in biological experiments by means of node-

or edge-picking sampling algorithms. The two algorithms give similar results, thus let us focus on
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Figure 3.1: Illustration of a node-picking sampling algorithm used to model sampling of biological

and social networks. The original network (top) is sampled picking up nodes at random and retaining

common links (red nodes in the bottom figure).

the node-picking case. Fig. 3.1 illustrates a node-picking sampling process. In absence of further

information on the way a node is selected, we can assume a homogeneous sampling, i.e. a node is

included in the sampled subnet with fixed probability p, and left out with probability 1 − p; only

edges between sampled nodes are retained. Then, if P (k) and P̃ (k) are respectively the original and

sampled degree distributions, they are related by a “poissonian filter”,

P̃ (k) =

∞
∑

i≥k

P (i)

(

i

k

)

pk(1 − p)
i−k

. (3.1)

Using generating functions formalism [233, 168], it is easy to show that, when p ≃ 1, the deviation from

the original distribution is negligible both for homogeneous and heterogeneous degree distributions.

When the sampling probability is low (p ≪ 1), homogeneous distributions are conserved, even if

the average connectivity is reduced by a factor p, whereas in the case of power-law distributions the

observed exponent may be different from the real one. Subnets have more nodes with relatively few

connections, due to the sampling process, but very large degree nodes are usually well-represented,

so that the original power-law behavior is recovered for k ≫ 1. Consequently, the degree distribution

appears slightly concave in the middle (in log-log scale), introducing biases in the measurement of the

exponent (it is systematically reduced). Actually, a good strategy is that of looking at the tail of the

distribution in which the sampling is systematically more accurate.

Unfortunately, sampling by means of real experiments is far from being uniform, since external factors

can be correlated to the properties of some nodes, favoring their sampling. For instance, social

networks are usually bipartite, i.e. actors (individuals) are linked together via multiple interaction

contexts or affiliations. Following Refs. [158], together with the random exclusion of actors or

affiliations, there are other two principal mechanisms causing data missing: actors unpredictable

decision of non-responding to a particular survey, and of providing fixed or preferential choices in the

answer. A whole field of social network analysis is involved in studying how to predict the correlations
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among such data missing events (see Refs. [136, 215] and in particular Ref. [245] and references

therein). We prefer to consider a simpler example coming from biology and reported in Ref. [205],

that shows how hidden variables influencing the sampling process can have dramatic effects on the

results.

Let us consider a protein-protein interaction network (PIN), in which the nodes are proteins and

the edges are the interactions between them. The standard methods to detect interactions are two-

hybrid assays and mass spectrometry [205]. Both of them are sensitive to the physical conditions in

which the experiment is performed (e.g. the temperature, the solubility degree of proteins, etc). The

detectability of an interaction can be affected by these external variables, whose effect on the process

is not completely known. Similarly, in neural networks, and cell regulatory networks, some nodes or

edges may be ignored in the experiments only because their functions are temporarily inhibited by

the activation of other functions.

In order to model the sampling, let us consider a network with a homogeneous degree distribution,

for instance an Erdös-Rényi random graph, and for each node i assign a variable xi, taken from

a probability distribution p(x). Such a hidden variable is also known in literature as “fitness”

[63, 130, 40, 117]. Now we prune the graph leaving the edge (i, j) with a probability q(xi, xj).

In a biological framework, xi is for instance the free energy gain of a protein from being solved

during the experiment. The interaction takes place only if the free energy loss xc in breaking a

bond is compensated by the gain xi + xj of staying together in the solution. On the other hand, it

is reasonable to assume an exponential distribution for the free energy, i.e. p(x) ∝ exp(−x). The

average degree k(x) of a sampled node as a function of its free energy is readily computed as

k(x) ∼ pN

∫

S

q(x, x′)p(x′)dx′ , (3.2)

where pN comes from the approximation that all nodes have about pN neighbors, and q(x, x′) =

θ(x + x′ − xc). The integral in Eq. 3.2 yields k(x) ∝ Np exp(x), that inserted into the probability

relation P (k)dk = p(x)dx, provides a power-law expression for the degree distribution of the sampled

network, P (k) ∼ k−2. This striking result shows that, as a consequence of sampling biases, one may

observe heterogeneous degree distributions even when the underlying network is homogeneous. In

their work [205], Petermann and De Los Rios show as well that even when the original network has

power-law distributed connectivity, the exponent can be considerably underestimated.

Sampling technological networks - As already stressed in this section, the case of technological

networks is completely different, since we do not have any idea of the topology of the real graph, but

the sampling methods are based on very well-defined probing processes, that can be modeled using

tree-like explorations.

The first example of this class of networks is the World Wide Web, that is usually efficiently explored

using so-called “crawling processes” [200]. The WWW, indeed, possesses the remarkable property that

the links outgoing from a page are directly visible, thus we can apply snowball sampling methods, that

are related to well-known processes like epidemic spreading and percolation (see Chapter 4). A single

node is firstly chosen together with its outcoming links and the nodes connected to them. Then, new

nodes connected to those picked in the last step are selected. The process continues recursively until

the desired number of nodes are gathered. The main limitation of using this method on the Web is

the huge size of the network itself, that makes difficult to reach all remote regions. In general, in each

layer only a fraction of the nodes is sampled and this may introduce some inaccuracies [236].

Snowball-like samplings do not work on the Internet, since routing protocols redirect probes along

preferential (shortest) paths, thus preventing exploration algorithms from getting a complete knowledge
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Figure 3.2: Illustration of the snowball sampling technique. The original graph (left) is sampled using

a snowball algorithm starting from a root vertex (black node on the right part of the figure). The

first layer is composed of a fraction its neighboring nodes (dark grey nodes), that are used as starting

nodes to explore the second layer (bright grey nodes), etc.

of nodes neighborhood. The common sampling strategy consists in acquiring local views of the

network from several vantage points, merging these views in order to get a presumably accurate global

map. Local views are obtained by evaluating a certain number of paths to different destinations by

using specific tools such as traceroute-like commands or by the analysis of BGP tables. At first

approximation these processes amount to the collection of shortest paths from a source node to a set of

target nodes, obtaining a partial spanning tree of the network. The merging of several of these views

provides the map of the Internet from which the statistical properties of the network are evaluated.

According to this description, discovering the Internet topology is more than a simple network sampling

problem, it consists in a real dynamical exploration process.

The first contribution to the problem of sampling biases in the Internet was given by Lakhina et

al. [163], who showed that traceroute-like explorations can seriously affect the estimation of degree

distributions. In particular, when the number of sources and destinations is small, one can observe

power-law like distributions even in the sampling of Erdös-Rényi random graphs, whose original degree

distribution is poissonian. Since the first data showing heavy-tailed distributions for the Internet

topology have been collected gathering traceroute paths from a very limited number of sources and

destinations [199], they concluded that the Internet maps could be wrong, or at least the node degree

distribution is not a sufficiently robust metric to characterize Internet’s topology. Nevertheless, the

same exploration performed on a network with a power-law degree distribution behaves very differently,

since a handful number of sources are sufficient to yield a sampled graph with degree distribution that

looks very similar to the original one. The authors of Ref. [139] have moreover monitored numerically

the observed degree of sampled nodes as a function of their real degree, finding that it is systematically

underestimated.

The analytical foundation to the numerical work of Lakhina et al. [163] was provided in Refs. [78, 1],
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in which the authors modeled traceroute explorations as single-source, all-destinations, shortest-

path trees. Using breadth-first search spanning trees, they rigorously proved that, for an Erdös-Rényi

random graph with average degree 〈k〉, the connectivity distribution of the obtained spanning tree

displays a power-law behavior k−1, with an exponential cut-off setting in at a characteristic degree

kc ∼ 〈k〉. We give here a non-rigorous derivation of this result using differential equations.

A typical breadth-first search algorithm is the following. There are three types of nodes: explored,

untouched, and pending. All edges are labeled invisible. The final observed network will be composed

only of explored vertices and visible edges. The process starts with the root vertex labeled pending

into a queue, all the others are untouched. Vertices are chosen from the queue in the first-in-first-

out order, thus at the beginning the root is popped out. All the untouched neighbors of the vertex

chosen from the queue (i.e. explored) are appended to the queue as pending vertices. The edges going

from the explored vertex to these appended neighbors are made visible. Let now be u(t) and s(t) the

densities of untouched and pending vertices respectively, the process can be described by the following

system of differential equations [78],

du(t)

dt
= −〈k〉u(t)

ds(t)

dt
= 〈k〉u(t) − 1 . (3.3)

Using the initial conditions u(0) = 1 and s(0) = 0, we get a solution of the form u(t) = e−〈k〉t and

s(t) = 1 − t − e−〈k〉t. If a node is chosen at time t, its observed degree is the number of previously

untouched neighbors plus one given by the edge we used to reach it. Since a node can be discovered

at any time from t = 0 to t = t0 (the smallest root of s(t) = 0), we get the degree distribution by

means of the following temporal average, i.e.

P̃ (k + 1) ∼ 1

t0

∫ t0

0

e−〈k〉u(t) [〈k〉u(t)]
k

k!
dt , (3.4)

where we used the fact that the real distribution is poissonian and the untouched nodes at time t are

homogeneously sampled from it with density u(t). After computing the integral and making some

approximations it is easy to show that the observed degree distribution P̃ (k) ∝ 1/k up to a degree

k ∼ 〈k〉 where a cut-off sets in.

From such analysis one could conclude that the observation of heavy-tails in Internet’s degree distribution

is a fake effect due to the use of tree-like explorations; nonetheless, this result is strictly correct only

in the case of single-source probing, as will be clearer in the following.

All these results stress on the relevance of determining up to which extent the topological properties

observed in sampled graphs are representative of that of the real networks. We have tried to answer

this issue in the case of traceroute-like explorations using methods of statistical physics. The main

results of this study, that led to the publications in Refs. [87, 86, 85, 88], are illustrated in the next

sections.
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Figure 3.3: Illustration of the traceroute-like procedure. Shortest paths between the set of sources

and the set of destination targets are discovered (red full lines) while other edges are not found (dashed

black lines). Note that not all shortest paths are found since the “Unique Shortest Path” procedure

is used.

3.2 Statistical physics approach to traceroute explorations

This section gives a formal statistical description of traceroute-like processes in terms of a simple

model that provides a qualitative and quantitative understanding of the properties observed in real

experiments.

3.2.1 The model

In a typical exploration, a set of active sources deployed in the network sends traceroute probes

to a set of destination nodes. Each probe collects information on all the nodes and edges traversed

along the path connecting the source to the destination [61]. By merging the information collected on

each path it is then possible to reconstruct a partial map of the network (Fig. 3.3). More precisely,

the set of edges and nodes discovered by each probe depend on the “path selection criterion” (p.s.c)

used to choose the path between a pair of nodes. In the real Internet, many factors, including

commercial agreement, traffic congestion and administrative routing policies, contribute to determine

the actual path, causing it to differ even considerably from the shortest path. Despite these local, often

unpredictable path distortions or inflations, a reasonable first approximation of the route traversed

by traceroute-like probes is the shortest path between the two nodes. This assumption, however, is

not sufficient for a proper definition of a traceroute model in that equivalent shortest paths between

two nodes may exist. In the presence of a degeneracy of shortest paths we must therefore specify the

path selection criterion by providing a resolution algorithm for the selection of shortest paths.

For the sake of simplicity we can define three selection mechanisms among equivalent paths that may

account for some of the features encountered in the Internet discovery:

• Unique Shortest Path (USP) probe. In this case the shortest path route selected between a node
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i and the destination target T is always the same independently of the source S (the path being

initially chosen at random among all the equivalent ones).

• Random Shortest Path (RSP) probe. The shortest path between any source-destination pair is

chosen randomly among the set of equivalent shortest paths. This might mimic different peering

agreements that make independent the paths among couples of nodes.

• All Shortest Paths (ASP) probe. The selection criterion discovers all the equivalent shortest

paths between source-destination pairs. This might happen in the case of probing repeated

in time (long time exploration), so that back-up paths and equivalent paths are discovered in

different runs.

We will generically call M-path the path found using one of these “metrics” or path selection criteria.

Actual traceroute probes contain a mixture of the three mechanisms defined above, even if many

effective heuristic strategies are commonly applied to improve the reliability and the performances of

the sampling. An example of such heuristic tricks is the interface resolution algorithm called iffinder,

proposed by Broido and Claffy [57]. In fact, a router can have more than one interface with the

external world, thus different paths passing through different interfaces might erroneously consider

two interfaces as two independent routers. Algorithms such as iffinder allow to avoid these type of

errors.

As remarked by Guillaume and Latapy [139], the different path selection criteria may have influence

on the general picture emerging from the theoretical model, but the USP procedure clearly represents

the worst scenario among the three different methods, yielding the minimum number of discoveries.

For this reason, we will focus only on the USP data. The interest of this analysis resides properly in

the choice of working in the most pessimistic case, being aware that path inflations should actually

provide a more pervasive sampling of the real network.

Formally, the traceroute model is the following. Let G = (V , E) be a sparse undirected graph

with vertices (nodes) V = {1, 2, · · · , N} and edges (links) E . Then let us define the sets of vertices

S = {i1, i2, · · · , iNS
} and T = {j1, j2, · · · , jNT

} specifying the random placement of NS sources and

NT destination targets. For each ensemble of source-target pairs Ω = {S, T }, we compute with our

p.s.c. the paths connecting each source-target pair. The sampled graph G = (V∗, E∗) is defined as the

set of vertices V∗ (with N∗ = |V∗|) and edges E∗ (E∗ = |E∗|) induced by considering the union of all

the M-paths connecting the source-target pairs. The sampled graph should thus be analogous to the

maps obtained from real traceroute sampling of the Internet.

In the next section, we provide a mean-field analysis of the discovery process as function of the density

ρT = NT /N and ρS = NS/N of targets and sources. In general, traceroute-driven studies run from

a relatively small number of sources to a much larger set of destinations. For this reason, in many

cases it is appropriate to work with the density of targets ρT while still considering NS instead of the

corresponding density. This combination of the parameters allows us to compare mapping processes

on networks with different sizes. An appropriate quantity representing the level of sampling of the

networks is the probing effort ǫ = NSNT

N , that measures the density of probes imposed to the system.

In real situations it represents the density of traceroute probes in the network and therefore a

measure of the load provided to the network by the measuring infrastructure.

3.2.2 Mean-field analysis

Here, we provide a statistical estimate for the probability of edge and node detection as a function

of NS , NT and the topology of the underlying graph. The method is based on a simple mean-field
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statistical analysis of the simulated traceroute mapping.

For each set Ω = {S, T } we define the quantities

NT
∑

t=1

δi,jt
=

{

1 if vertex i is a target;

0 otherwise,
(3.5)

NS
∑

s=1

δi,is
=

{

1 if vertex i is a source;

0 otherwise,
(3.6)

where δi,j is the Kronecker symbol. These quantities tell us if any given node i belongs to the set of

sources or targets, and obey the sum rules
∑

i

∑NT

t=1 δi,jt
= NT and

∑

i

∑NS

s=1 δi,is
= NS . Analogously,

we define the quantity σ
(l,m)
i,j that takes the value 1 if the edge (i, j) belongs to the selected path

between nodes l and m, and 0 otherwise.

For a given set of sources and targets Ω, the indicator function that a given edge (i, j) will be discovered

and belongs to the sampled graph is simply πi,j = 1 if the edge (i, j) belongs to at least one of the

M-paths connecting the source-target pairs, and 0 otherwise. We can obtain an exact expression for

πi,j by noting that 1−πi,j is 1 if and only if (i, j) does not belong to any of the paths between sources

and targets, i.e. if and only if σ
(l,m)
i,j = 0 for all (l, m) ∈ Ω. This leads to

πi,j = 1 −
∏

l 6=m

(

1 −
NS
∑

s=1

δl,is

NT
∑

t=1

δm,jt
σ

(l,m)
i,j

)

. (3.7)

For a given set Ω = {S, T }, this function is simply πi,j = 1 if the edge (i, j) belongs to at least one

of the M-paths connecting the source-target pairs, and 0 otherwise. Since we are looking at a purely

statistical level, in order to get more useful expressions, we perform the average over all possible

realizations of the set Ω = {S, T }. By definition we have that

〈

NT
∑

t=1

δi,jt

〉

Ω

= ρT and

〈

NS
∑

s=1

δi,is

〉

Ω

= ρS , (3.8)

where 〈· · · 〉Ω identifies the average over all possible deployment of sources and targets Ω. These

equalities simply state that each node i has, on average, a probability to be a source or a target

that is proportional to their respective densities. In real processes there are correlations among the

paths, due to the relative position of sources and targets, thus in general the average is a complicate

quantity, that we cannot easily compute analytically. A first approximation can be obtained making

an uncorrelation assumption that yields an explicit expression for the discovery probability. The

assumption consists in computing the discovery probability neglecting the correlations among different

paths originated by the position of sources and targets. While this assumption does not provide an

exact treatment for the problem it generally conveys a qualitative understanding of the statistical

properties of the system. In this approximation, the average discovery probability of an edge is

〈πi,j〉Ω = 1 −
〈

∏

l 6=m

(

1 −
NS
∑

s=1

δl,is

NT
∑

t=1

δm,jt
σ

(l,m)
i,j

)〉

Ω

≃ 1 −
∏

l 6=m

(

1 − ρT ρS

〈

σ
(l,m)
i,j

〉

Ω

)

, (3.9)

where in the last term we take advantage of neglecting correlations by replacing the average of the

product of variables with the product of the averages and using Eq. 3.8. This expression simply states
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that each possible source-target pair weights in the average with the product of the probability that

the end nodes are a source and a target. The discovery probability is thus obtained by considering the

edge in an average effective media (mean-field) of sources and targets homogeneously distributed in the

network. The realization average of
〈

σ
(l,m)
i,j

〉

Ω
is very simple in the uncorrelated picture, depending

only of the kind of the probing model. In the case of the ASP probing,
〈

σ
(l,m)
i,j

〉

Ω
is just 1 if (i, j)

belongs to one of the shortest paths between l and m, and 0 otherwise. In the case of the USP

and the RSP, on the contrary, only one path among all the equivalent ones is selected. If we denote

by σ(l,m) the number of shortest paths between vertices l and m, and by x
(l,m)
i,j the number of these

paths passing through the edge (i, j), the probability that the traceroute model chooses a path going

through the edge (i, j) between l and m is
〈

σ
(l,m)
i,j

〉

Ω
= x

(l,m)
i,j /σ(l,m).

The standard situation we consider is the one in which ρT ρS ≪ 1 and since
〈

σ
(l,m)
i,j

〉

Ω
≤ 1, we have

∏

l 6=m

(

1 − ρT ρS

〈

σ
(l,m)
i,j

〉

Ω

)

≃
∏

l 6=m

exp
(

−ρT ρS

〈

σ
(l,m)
i,j

〉

Ω

)

, (3.10)

that inserted in Eq. 3.9 yields

〈πi,j〉Ω ≃ 1 −
∏

l 6=m

(

exp
(

−ρT ρS

〈

σ
(l,m)
i,j

〉

Ω

))

= 1 − exp (−ρT ρSbij) , (3.11)

where bij =
∑

l 6=m

〈

σ
(l,m)
i,j

〉

Ω
. In the case of the USP and RSP probing, the quantity bij is by

definition the edge betweenness centrality
∑

l 6=m x
(l,m)
i,j /σ(l,m) [123, 53]. For the ASP probing, it is a

closely related quantity. Indeed, if the shortest path is used as the metric defining the optimal path

between pairs of vertices, the betweenness gives a measure of the amount of all-to-all traffic that goes

through an edge or a vertex. We also recall, that the betweeness can be considered as a non-local

measure of the centrality of an edge or vertex in the graph (see Section 2.2.4).

Since the edge betweenness assumes values between 2 and N(N − 1), the discovery probability of

an edge will therefore depend strongly on its betweenness. For instance, for edges with minimum

betweenness bij = 2, we have 〈πi,j〉Ω ≃ 2ρT ρS , that recovers the probability that the two end vertices

of the edge are chosen as source and target. This implies that if the densities of sources and targets

are small but finite in the limit of very large N , all the edges of the underlying graph have a finite

probability to be discovered. On the other hand, the discovery probability approaches one for edges

with high betweenness, thus predicting a fair sampling of the network.

In most of the current realistic samplings, the situation is different. While it is reasonable to consider

ρT a small but finite value, the number of sources is not extensive (NS ∼ O(1)) and their density

tends to zero as N−1. In this case it is more convenient to express the edge discovery probability as

〈πi,j〉Ω ≃ 1 − exp
(

−ǫb̂ij

)

, (3.12)

where ǫ = ρT NS is the density of probes imposed to the system and the rescaled betweenness b̂ij =

N−1bij is now limited in the interval [2N−1, N −1]. In the limit of large networks (N → ∞), it is clear

that edges with low betweenness have 〈πi,j〉Ω ∼ O(N−1), for any finite value of ǫ. This readily implies

that in real situations the discovery process is generally not complete, a large part of low betweenness

edges not being discovered, and that the network sampling is made progressively more accurate by

increasing the density of probes ǫ.

A similar analysis can be performed for the discovery probability πi of a vertex i. For each source-



3.2. STATISTICAL PHYSICS APPROACH TO TRACEROUTE EXPLORATIONS 45

target set Ω we have that

πi = 1 −
(

1 −
NS
∑

s=1

δi,is
−

NT
∑

t=1

δi,jt

)

∏

l 6=m 6=i

(

1 −
NS
∑

s=1

δl,is

NT
∑

t=1

δm,jt
σ

(l,m)
i

)

. (3.13)

where σ
(l,m)
i = 1 if the vertex i belongs to the M-path between nodes l and m, and 0 otherwise. Note

that it has been considered that a vertex belonging to the set of sources and targets is discovered with

probability one. The second term on the right hand side therefore expresses the fact that the vertex

i does not belong to the set of sources and targets and it is not discovered by any M-path between

source-target pairs. By using the same mean-field approximation as previously, the average vertex

discovery probability reads as

〈πi〉Ω ≃ 1 − (1 − ρS − ρT )
∏

l 6=m 6=i

(

1 − ρT ρS

〈

σ
(l,m)
i

〉

Ω

)

. (3.14)

As for the case of the edge discovery probability, the average considers all possible source-target pairs

weighted with probability ρT ρS . In the ASP model, the average
〈

σ
(l,m)
i

〉

Ω
is 1 if i belongs to one

of the shortest paths between l and m, and 0 otherwise. For the USP and RSP models,
〈

σ
(l,m)
i

〉

Ω

= x
(l,m)
i /σ(l,m) where x

(l,m)
i is the number of shortest paths between l and m going through i. If

ρT ρS ≪ 1, by using the same approximations used for Eq. 3.11 we obtain

〈πi〉Ω ≃ 1 − (1 − ρS − ρT ) exp (−ρT ρSbi) , (3.15)

where bi =
∑

l 6=m 6=i

〈

σ
(l,m)
i

〉

Ω
. For the USP and RSP cases, bi =

∑

l 6=m 6=i x
(l,m)
i /σ(l,m) is the vertex

betweenness centrality, that is limited in the interval [0, N(N − 1)] [123, 53, 130]. The betweenness

value bi = 0 holds for the leaves of the graph, i.e. vertices with a single edge, for which we recover

〈πi〉Ω ≃ ρS + ρT . Indeed, this kind of vertices are dangling ends, that can be discovered only if they

are either sources or targets.

As discussed before, the most usual setup corresponds to a density ρS ∼ O(N−1) and in the large N

limit we can conveniently write

〈πi〉Ω ≃ 1 − (1 − ρT ) exp
(

−ǫb̂i

)

, (3.16)

where we have neglected terms of order O(N−1) and the rescaled betweenness b̂i = N−1bi is now

defined in the interval [0, N − 1]. This expression points out that the probability of vertex discovery

is favored by the deployment of a finite density of targets that defines its lower bound.

We can also provide a simple approximation for the effective average degree 〈k∗
i 〉Ω of the node i

discovered by our sampling process. Each edge departing from the vertex will contribute proportionally

to its discovery probability, yielding

〈k∗
i 〉Ω =

∑

j

(

1 − exp
(

−ǫb̂ij

))

≃ ǫ
∑

j

b̂ij . (3.17)

The final expression is obtained for edges with ǫb̂ij ≪ 1. Since the sum over all neighbors of the edge

betweenness is simply related to the vertex betweenness as
∑

j bij = 2(bi + N − 1), where the factor

2 considers that each vertex path traverses two edges and the term N − 1 accounts for all the edge

paths for which the vertex is an endpoint, this finally yields

〈k∗
i 〉Ω ≃ 2ǫ + 2ǫb̂i. (3.18)
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ER ER RSF Weibull

N 104 104 104 104

E 105 5.105 22000 55000

〈k〉 20 100 4.4 11

kc 40 140 3500 2000

Table 3.1: Main characteristics of the graphs used in the numerical exploration.

The present analysis shows that the measured quantities and statistical properties of the sampled graph

strongly depend on the parameters of the experimental setup and the topology of the underlying graph.

The latter dependence is exploited by the key role played by edge and vertex betweenness in the

expressions characterizing the graph discovery. The betweenness is a nonlocal topological quantity

whose properties change considerably depending on the kind of graph considered. This allows an

intuitive understanding of the fact that graphs with diverse topological properties deliver different

answer to sampling experiments.

3.2.3 Numerical simulations on computer generated networks

The previous theoretical results have provided some interesting insights on the topological properties

that are responsible of the efficiency and the accuracy of the sampling. In this section, we present the

results of extensive numerical simulations in which the sampling algorithm has been reproduced on

computer generated graphs with different topological properties. In particular, we consider the two

separated classes of homogeneous and heterogeneous networks. We use degree dependent quantities to

monitor the efficiency of the sampling process as a function of the probing effort. The results are then

exploited to understand the properties of the degree distributions of the sampled networks.

Our data report the various measures for three different graphs: the Erdös-Rényi (ER) random graph

as representative of the homogeneous class, and two heterogeneous random graphs, one with power-

law distribution of the form P (k) ∼ k−γ (random scale free - RSF), and the other with Weibull

distribution (WEI) P (k) = (a/c)(k/c)a−1 exp(−(k/c)a). Both forms have been in fact proposed as

representing the topological properties of the Internet [57]. In both cases, we have generated random

graphs using the comfiguration model (see Section 2.4.2). The parameter choice is a = 0.25 and

c = 0.6 for the Weibull distribution, and γ = 2.3 for the RSF case. Two different average degree

values 〈k〉 = 20, 100 have been used for the ER model. In all cases networks are of N = 104 nodes.

The main properties of the various graphs are summarized in Table 3.1.

Efficiency in the numerical sampling of graphs - The first case we consider is that of

homogeneous graphs (ER model). As shown in Ref. [85], vertex and edge betweenness are homogeneous

quantities and their distributions are peaked around their average values 〈b〉 and 〈be〉, respectively,

spanning only a small range of variation. These typical values can be inserted into Eqs. 3.12 and 3.16

to estimate the order of magnitude of probes that allows a fair sampling of the graph. Both 〈πi,j〉Ω and

〈πi〉Ω tend to 1 if ǫ ≫ max
[

〈b〉−1
, 〈be〉−1

]

. In this limit all edges and vertices will have probability to

be discovered very close to one. At lower values of ǫ, obtained by varying ρT and NS, the underlying

graph is only partially discovered. Fig. 3.4 shows the behavior of the fraction N∗
k/Nk of discovered

vertices of degree k, where Nk is the total number of vertices of degree k in the underlying graph,

and the fraction of discovered edges 〈k∗〉Ω /k in vertices of degree k. N∗
k/Nk naturally increases with
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Figure 3.4: Frequency N∗
k/Nk of detecting a vertex of degree k (left) and proportion of discovered

edges 〈k∗〉Ω /k (right) as a function of the degree in the RSF, WEI, and ER graph models. The

exploration setup considers NS = 5 and increasing probing level ǫ obtained by progressively higher

density of targets ρT . The axis of ordinates is in log scale.

the density of targets and sources, and it is slightly increasing with k. The latter behavior can be

easily understood by noticing that vertices with larger degree have on average a larger betweenness.

On the other hand, the range of variation of k in homogeneous graphs is very narrow and only a large

level of probing may guarantee large discovery probabilities. Similarly, the behavior of the effective

discovered degree can be understood by looking at Eq. 3.18. Indeed the initial decrease of 〈k∗〉Ω /k

is finally compensated by the increase of 〈b〉(k). The situation is different in graphs with heavy-

tailed connectivity distributions (RSF and WEI models), for which the betweenness spans various

orders of magnitude and the fraction of vertices with very high betweenness is not negligible. In

such a situation, even in the case of small ǫ, vertices whose betweenness is large enough (biǫ ≫ 1)

have 〈πi〉Ω ≃ 1. Therefore all vertices with degree k ≫ ǫ−1/β will be detected with probability one.

This is clearly visible in Fig. 3.4 where the discovery probability N∗
k/Nk of vertices with degree k

saturates to one for large degree values. Consistently, the degree value at which the curve saturates

decreases with increasing ǫ. A similar effect occurs in the measurements concerning 〈k∗〉Ω /k. After

an initial decay (Fig. 3.4) the effective discovered degree increases with the degree of the vertices.

This qualitative feature is captured by Eq. 3.18 that gives 〈k∗〉Ω /k ≃ ǫk−1(1 + 〈b〉(k)). At large k

the term k−1〈b〉(k) ∼ kβ−1 takes over and the effective discovered degree approaches the real degree

k. Moreover, the broader the distribution of betweenness or connectivity, the better the sampling

obtained.

Degree distributions - We now get a clearer picture of the relation between the exploration

process and the underlying graph, and we can tackle the important issue of determining the origin of

sampling biases in the observed degree distributions. Fig. 3.5 shows the cumulative degree distribution
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Figure 3.5: Cumulative degree distribution of the sampled ER graph for USP probes. Figures (A)

and (B) correspond to 〈k〉 = 20, and (C) and (D) to 〈k〉 = 100. Figures (A) and (C) show sampled

distributions obtained with NS = 2 and varying density target ρT . In the insets we report the

peculiar case NS = 1 that provides an apparent power-law behavior with exponent −1 at all values of

ρT , with a cut-off depending on 〈k〉. The insets are in lin-log scale to show the logarithmic behavior

of the corresponding cumulative distribution. Figures (B) and (D) correspond to ρT = 0.1 and

varying number of sources NS . The solid lines are the degree distributions of the underlying graph.

For 〈k〉 = 100, the sampled cumulative distributions display plateaus corresponding to peaks in the

degree distributions, induced by the sampling process.

Pc(k) ≡
∑

k′≥k P (k′) of the sampled graph defined by the ER model for increasing density of targets

and sources. Sampled distributions look only approximately like the genuine distribution; however,

for NS ≥ 2 they are far from true heavy-tail distributions at any appreciable level of probing. Indeed,

the distribution runs generally over a small range of degrees, with a cut-off that sets in at the average

degree 〈k〉 of the underlying graph. In order to stretch the distribution range, homogeneous graphs

with very large average degree 〈k〉 must be considered, that emerges also from the rigorous proof in

Ref. [1] provided for single-source explorations.

However, other distinctive spurious effects appear in this case. In particular, since the best sampling

occurs around the high degree values, the distributions develop peaks appearing as plateaus in the

cumulative distribution (see Fig.3.5). The inset of Fig.3.5 displays the single-source case, in which we

recover the apparent scale-free behavior with slope −1. It is worth noting that the experimental setup

with a single source corresponds to a highly asymmetric probing process, in which the mean-field

approach, and consequently our theoretical predictions, are not valid.

The present analysis shows that in order to obtain a sampled graph with apparent scale-free behavior

on a degree range varying over n orders of magnitude we would need the very peculiar sampling of a

homogeneous underlying graph with an average degree 〈k〉 ≃ 10n, that is a rather unrealistic situation

in the Internet and many other information systems, where the observed cut-off sets in at least at

k ∼ O(102) (i.e. n ≥ 2). Indeed, it would mean that on average Internet’s autonomous systems should

have at least O(102) connections, that is a completely unrealistic huge number. On the contrary, in

the case of RSP and ASP model, we observe that the obtained distributions are closer to the real one,

almost independently of the probing effort. On graphs with heavy-tailed distributions (see Fig. 3.6),

we observe completely different results, due to the fact that the distribution tail is fairly reproduced
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Figure 3.6: Cumulative degree distributions of the sampled RSF and WEI graphs for USP probes.

The top figures show sampled distributions obtained with NS = 2 and varying density target ρT . The

figures on the bottom correspond to ρT = 0.1 and varying number of sources NS . The solid lines are

the degree distributions of the underlying graph.

even at rather small values of ǫ. Despite both underlying graphs (WEI and RSF) have a small average

degree, the degree distribution spans more than two orders of magnitude, and the whole range is

sufficiently well sampled by the exploration process.

Some distortions occur for low and average degree nodes, that are under-sampled. This undersampling

can either yield an apparent change in the exponent of the degree distribution (as also noticed by

Petterman and De Los Rios in Ref. [205] for single source experiments), or, if NS is small, yield a

power-law like distribution for an underlying Weibull distribution. As shown in Fig. 3.6, a small

increase in the number of sources allows to discriminate between both forms even at small ρT .

The disparity in the quality of the results for homogeneous and heterogenous networks is due to

the different discovery efficiency reached by the process. In heterogeneous graphs, vertices with

high degree are efficiently sampled with an effective measured degree that is rather close to the

real one. This means that the degree distribution tail is fairly well sampled while deviations should

be expected at lower degree values. In conclusion, graphs with heavy-tailed degree distribution allow a

better qualitative representation of their statistical features in sampling experiments. Indeed, the most

important properties of these graphs are related to the heavy-tail part of the statistical distributions

that are indeed well discriminated by the traceroute-like exploration.

3.2.4 Accuracy of the mapping process

Up to now, we have focused on the efficiency of the sampling process, indicating which is the density

of probes we have to deploy throughout the network in order to get reasonably good maps of the
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network. Another important aspect is related to the level of accuracy that the exploration is able

to achieve in the description of the local topology. The most common biases affecting the mapping

process concern 1) the miss of lateral connectivity, and 2) the multiple sampling of central nodes (and

edges), which may affect the efficiency of the whole process.

While the first problem might be solved by an optimization in the deployment of probes, actually

relying on a criterion of decentralization of sources and targets, multiple sampling can be studied

through some general concepts like redundancy and dissymmetry of the discovery process. A sampling

is redundant when nodes (edges) are discovered many times during the traceroute; it is locally

symmetric when the neighborhood of the nodes is equally sampled, i.e. there are no preferential paths

by which a node is traversed. In the following, we give quantitative measures of the level of redundancy

and dissymmetry of a traceroute mapping process, revealing their relation with the topology of the

sampled graph.

Redundancy - On the one side, the node discovery process requires a certain level of redundancy,

since each new passage might, in principle, contribute to a more detailed exploration of the neighborhood.

When, however, the discovery frequency is too large, it can seriously affect the efficiency of the whole

process. Let us define the edge redundancy re(i, j) of an edge (i, j) in a traceroute-sampling as the

number of probes passing through the edge (i, j). Using the notations of Section 3.2.2, this quantity

is written for a given set of probes and targets as

re(i, j) =
∑

l 6=m

(

NS
∑

s=1

δl,is

NT
∑

t=1

δm,it
σ

(l,m)
i,j

)

. (3.19)

Averaging over all possible realizations and assuming the uncorrelation hypothesis, we obtain

〈re(i, j)〉Ω ≃
∑

l 6=m

ρT ρS

〈

σ
(l,m)
i,j

〉

Ω
= ρT ρSbij . (3.20)

This result implies that the average redundancy of an edge is related to the density of sources and

targets, but also to the edge betweenness. For example, an edge of minimum betweenness bij = 2

can be discovered at most twice in the extreme limit of an all-to-all probing. On the contrary, a very

central edge of betweenness bij close to the maximum N(N − 1), would be discovered approximately

O(N) times by a traceroute-probing from a single source to all the possible destinations.

Similarly, the redundancy rn(i) of a node i, intended as the number of times the probes cross the node

i, can be obtained:

rn(i) =
∑

l 6=m

σ
(l,m)
i

NS
∑

s=1

δl,is

NT
∑

t=1

δm,it
. (3.21)

After separating the cases l = i and m = i in the sum, the averaging over the positions of sources and

targets yields in the mean-field approximation:

〈rn(i)〉Ω =
∑

l 6=m 6=i

ρSρT 〈σ(l,m)
i 〉Ω + 2ρSρT N ≃ 2ǫ + ρSρT bi . (3.22)

In this case, a term related to the number of traceroute probes ǫ appears, showing that unavoidably

a part of the mapping effort goes to generate node redundancy. 1 In Fig. 3.7 we report the behavior of

the average node redundancy as a function of the degree k for both homogeneous and heterogeneous

graphs. For both models, the behaviors are in good agreement with the mean-field prediction, showing

1By simple manipulation of formulas 3.20 and 3.22, an equivalent of the identity
P

j bi,j = 2(bi + N − 1) for

redundancies is
P

j 〈re(i, j)〉Ω ≃ 2 〈rn(i)〉Ω − 2ǫ .
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Figure 3.7: Average node redundancy as a function of the degree k for RSF (top) and ER (bottom)

model (N = 104). For the ER model, two blocks of data are plotted, for 〈k〉 = 20 (left) and for

〈k〉 = 100 (right) The target density is fixed (ρT = 0.1), and NS = 2 (circles), 10 (squares), 20

(triangles). The dashed lines represent the analytical prediction 2ǫ + ρSρT 〈b〉(k) in perfect agreement

with the simulations.

the tight relation between redundancy and betweenness centrality.

In the case of heavy-tailed underlying networks, the node redundancy typically grows as a power-law

of the degree, while the values for random graphs vary on a smaller scale. This behavior points out

that the intrinsic hierarchical structure of scale-free networks plays a fundamental role even in the

process of path routing, resulting in a huge number of probes iteratively passing through the same

set of few hubs. On the other hand, for homogeneous graphs the total number of node visits is quite

uniformly distributed on the whole range of connectivity, independently of the relative importance of

the nodes. This is a further element in favor of the argument that homogeneous graphs with large

mean connectivity are pretty badly sampled. Indeed, the local topology of well-connected vertices is

analyzed with the same level of accuracy as for low degree nodes, yielding to generally dissatisfying

results.

Dissymmetry: Participation Ratio - The high rate of redundancy found in the numerical

data does not necessarily imply that the local topology close to a node is well discovered: preferential

paths could indeed carry most of the probing effort. Let us consider the relative number of occurrences

of a given edge (i, j) during the traceroute, with respect to the total occurrence for the edges in the

neighborhood of i. For each discovered node i, we can thus define a set of frequencies {f (i)
j }j∈V(i) for
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(bottom) models (N = 104). The target density is fixed (ρT = 0.1) and three value of NS are

presented: 2 (circles), 10 (squares), 20 (triangles). The dashed lines correspond to the 1/k∗ bound.

the edges (i, j) of its neighborhood; in terms of redundancy, the edge frequency f
(i)
j is defined by

f
(i)
j =

re(i, j)
∑

j∈V(i) re(i, j)
, 0 ≤ f

(i)
j ≤ 1 ∀(i, j) ∈ E . (3.23)

Neglecting the correlations, we can write an approximation for the average edge frequency as

〈

f
(i)
j

〉

Ω
=

〈

re(i, j)
∑

j∈V(i) re(i, j)

〉

Ω

≃ 〈re(i, j)〉Ω
〈

∑

j∈V(i) re(i, j)
〉

Ω

≃ ρSρT bij

2ρSρT (bi + N − 1)
=

bij

2(bi + N − 1)
, (3.24)

where we have used the identity
∑

j bij = 2(bi + N − 1). The calculation reveals that, at a first

approximation, the edge frequencies are topological quantities, independent of the probing effort, in

agreement with the fact that frequencies are relative quantities. The dissymmetry of the discovery

of the neighborhood of a node may be quantified through the participation ratio of these frequencies

[97, 34]:

Y2(i) =
∑

j∈V(i)

(

f
(i)
j

)2

. (3.25)

If all the edge frequencies of i are of the same order ∼ 1/k∗
i (only discovered links give a finite

contribution), the participation ratio should decrease as 1/k∗
i with increasing discovered connectivity

k∗
i . Hence, in the limit of an optimally symmetric sampling, it should yield a power law behavior
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Y2(k
∗) ∼ k∗−1. When only few links are preferred, for instance because more central in the shortest

path routing, the sum is dominated by these terms, leading to a value closer to the upper bound 1.

Numerical data for Y2 as a function of the discovered (k∗) connectivity for different probing efforts,

are displayed in Fig. 3.8. For heterogeneous graphs, the values of Y2 tend towards the curve k∗−1 for

increasing ǫ. The average local topology of low degree nodes seems to be sampled more homogeneously

than the larger degree nodes. On the contrary, in the homogeneous case (ER), the figures show a

general high level of dissymmetry persistent at all degree values, only slightly dependent on the actual

connectivity.

Dissymmetry: Entropy Measure - The edge frequency is influenced by the presence of

sources and targets, thus we introduce a more refined frequency, f
(i)
kj defined as the number of probes

passing through the pair (k, i)−(i, j) of edges centered on the node i, with respect to the total number

of transits through any of the possible couples of edges in the neighborhood of i. This frequency does

not take into account single edges, but the path traversing each vertex and the dissymmetry of the flow.

A simple qualitative estimation for the average frequency is obtained using the usual first approximation

for the edge redundancy 2

〈

f
(i)
kj

〉

Ω
≃ ρSρT bkibij(1 − ci)

2(bi + N − 1)

1

ρSρT bi

≃ 1 − ci

2

bkibij

bi(bi + N − 1)
.

Even in this more complex situation, the approximated expression for the frequencies depends only on

topological properties of the underlying graph (such as the betweenness centrality and the clustering

coefficient ci).

By means of this frequency, we define an entropy measure providing supplementary evidence of

the tight relation between local accuracy, homogeneous sampling and topological characterization

of graphs. Indeed, a traceroute that discovers nodes crossing a larger variety of their links, and with

different paths, is expected to be more accurate (and likely efficient) than the one always selecting the

same path.

In the same spirit of the Shannon entropy [41], which is a good indicator of homogeneity, we define

the local traceroute entropy of a node i by

hi = − 1

log k∗
i

∑

k 6=j∈V(i)

f
(i)
kj log f

(i)
kj , (3.26)

where log k∗
i is simply a normalization factor. As usual, we define H(k) as the entropy averaged over

the nodes of degree k. The numerical data of H(k) for RSF and ER models and for different levels of

probing are reported in Fig. 3.9. The values for ER are slightly increasing both for increasing degree k

and number of sources NS , with no qualitative difference in the behavior at low or high degree regions.

On the other hand, the case of heterogeneous networks agrees with the previous observations. The

curve for H(k), indeed, shows a saturation phenomenon to values very close to the maximum 1 at

large enough degree, indicating a very homogeneous sampling of these nodes.

2In this case the redundancy appearing in the fraction defining the frequency f
(i)
kj

is the contribution

ρSρT

P

l6=m6=i

D

σ
(l,m)
ki

σ
(l,m)
ij

E

Ω
by the edges-pair (k, i) − (i, j). Considering separately the portion of shortest path

from l to i through k and from i to m through j, we replace the sum of average products with the approximation

(1 − ci)bki

*

P

m 6=i σ
(i,m)
ij

P

h∈V(i)

P

m 6=i σ
(i,m)
ih

+

Ω

. Up to a factor the last averaged term is the redundancy
bij

2(bi+N−1)
of the edge

(i, j). Since the sum of edge-pairs redundancies over the neighborhood gives essentially the redundancy of the central

node i, the final expression follows easily.
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Figure 3.9: Entropy vs. k: a saturation effect is clear at medium-high degree nodes for scale free

topologies (RSF), instead of a more regular increase for homogeneous graphs (ER). In the figure there

are different curves for NS = 2 (circles), 10 (squares), 20 (triangles) and ρT = 0.1.

Summarizing, in the case of heterogeneous networks, the nodes with high degree and betweenness are

in general redundantly sampled, but present a rather symmetrical discovery of their neighborhood.

On the contrary, in homogeneous networks vertices suffer a less redundant sampling, showing a higher

dissymmetry of the local exploration process. This result should be taken into account in deciding

source-target deployment strategies, in order to minimize both dissymmetry and redundancy.

3.2.5 Optimization

In the previous sections we have provided a general qualitative understanding of the efficiency of

traceroute-like exploration and the induced biases on the statistical properties. The quantitative

analysis of the sampling strategies, however, is a much harder task that calls for a detailed study of the

discovered proportion of the underlying graph and the precise deployment of sources and targets. In

this perspective, Guillaume and Latapy have shown in Ref. [139] that the fraction N∗/N and E∗/E of

vertices and edges discovered in the sampled graph depend on the probing effort. Unfortunately, the

mean-field approximation breaks down when we aim at a quantitative representation of the results,

since the neglected correlations are necessary for a precise estimate of the various quantities of interest.

For this reason we performed an exhaustive set of numerical explorations aimed at a fine determination

of the level of sampling achieved for different experimental setups.

In Fig. 3.10 we report the proportion of discovered edges in the numerical exploration of homogeneous

(ER model) and heterogeneous (RSF and WEI models) graphs for increasing level of probing effort ǫ.
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Figure 3.10: Behavior of the fraction of discovered edges in explorations with increasing ǫ. For each

underlying graph studied we report two curves corresponding to larger ǫ achieved by increasing the

target density ρT at constant NS = 5 (squares) or the number of sources NS at constant ρT = 0.1

(circles).

The level of probing is increased either by raising the number of sources at fixed target density or by

raising the target density at fixed number of sources. As expected, both strategies are progressively

more efficient with increasing levels of probing.

In heterogeneous graphs, it is also possible to see that when the number of sources is NS ∼ O(1)

the increase of the number of targets achieves better sampling than increasing the deployed sources.

On the other hand, our model of shortest path exploration is symmetric if we exchange sources with

targets; therefore in the numerical experiments we can easily verify that if the number of sources is

very large and ρT ∼ O(1/N), then the increase of the number of sources achieves better sampling

than increasing the deployed targets.

This finding hints toward a behavior that is determined by the number of sources and targets, NS

and NT (or equivalently of NS and ρT ). This point is clearly illustrated in Fig. 3.11, where we report

the behavior of E∗/E and N∗/N at fixed ǫ and varying NS and ρT . The curves exhibit a non-

trivial behavior and since we work at fixed ǫ = ρT NS , any measured quantity can then be written as

f(ρT , ǫ/ρT ) = gǫ(ρT ). It is worthy noting that the curves show a structure allowing for local minima

and maxima in the discovered portion of the underlying graph.

This feature is a consequence of the symmetry by the exchange of sources and targets of the model,

i.e. an exploration with (NT , NS) = (N1, N2) is equivalent to one with (NT , NS) = (N2, N1). In other

words, at fixed ǫ = N1N2/N , a density of targets ρT = N1/N is equivalent to a density ρ′T = N2/N .

Since N2 = ǫ/ρT , we get that at constant ǫ, experiments with ρT and ρ′T = ǫ/(NρT ) are equivalent,

obtaining by symmetry that any measured quantity obeys the equality

gǫ(ρT ) = gǫ

(

ǫ

NρT

)

. (3.27)

This relation implies a symmetry point signaling the presence of a maximum or a minimum at ρT =
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Figure 3.11: Behavior as a function of ρT of the fraction of discovered edges and nodes in explorations

with fixed ǫ (here ǫ = 2). Since ǫ = ρT NS, the increase of ρT corresponds to a lowering of the number

of sources NS.

ǫ/(NρT ). We therefore expect the occurrence of a symmetry in the graphs of Fig. 3.11 at ρT ≃
√

ǫ/N .

Indeed, the symmetry point is clearly visible and in quantitative good agreement with the previous

estimate in the case of heterogeneous graphs. For homogeneous topology the curves have a smooth

behavior that makes difficult the clear identification of the symmetry point. Moreover, USP probes

create a certain level of correlations in the exploration that tends to hide the complete symmetry of

the curves. The previous results imply that at fixed levels of probing ǫ different proportions of sources

and targets may achieve different levels of sampling. This hints to the search for optimal strategies in

the relative deployment of sources and targets. The picture, however, is more complicate if we look at

other quantities in the sampled graph. In Fig. 3.12 we show the behavior at fixed ǫ of the measured

average degree 〈k〉∗ normalized by the actual average degree 〈k〉 of the underlying graph as a function

of ρT . The plot shows also in this case a symmetric structure. By comparing Fig. 3.12 with Fig. 3.11

we notice that the symmetry point is of a different nature for different quantities: the minimum in the

fraction of discovered edges corresponds to the best estimate of the average degree. A similar result

is obtained for the behavior of the ratio 〈c〉∗/〈c〉 between the clustering coefficient of the sampled and

the underlying graph: as shown in Fig. 3.12, the best level of sampling is achieved at particular values

of ǫ and NS that are conflicting with the best sampling of other quantities.

The numerical data obtained with different source and target densities hint to a possible optimization

of the sampling strategy. The optimal solution, however, appears as a trade-off strategy between the

different levels of efficiency achieved in competing ranges of the experimental setup. In this respect,

a detailed and quantitative investigation of the various quantities of interest in different experimental

setups is needed to pinpoint the most efficient deployment of source-target pairs depending on the

underlying graph topology.
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Figure 3.12: Behavior as a function of ρT of the fraction of the normalized average degree 〈k〉∗/〈k〉
and of the fraction of the normalized average clustering coefficient 〈c〉∗/〈c〉 for a fixed probing level ǫ

(here ǫ = 2).

3.2.6 Non-local measures under sampling: the case of k-core structures

Up to now, all statistical quantities studied on sampled networks are related to local properties and

local correlations; but real networks may present non-locally correlated structures, whose integrity

under sampling is even more questionable. For this reason, we have investigated the effects of

traceroute-like sampling on the k-core organization of networks.

The k-core analysis of a network is based on a non-trivial decomposition in subgraphs, that has

recently attracted the interest of physicists working in this field for its relation with box counting

methods in the study of self-similarity of natural systems [225, 226, 132].

The k-core of a network, defined in Section 2.2.5, is the maximal subset induced by all nodes having

at least k neighbors in it, and the k-shell is the set of nodes belonging to the k-core but not to the

(k + 1)-core.

The k-core decomposition of a network, going from k = 1 (i.e. the whole network without isolated

nodes) up to the maximum available value kmax, provides a hierarchical structure in which most

internal k-shells contain high degree nodes belonging to the very fundamental backbone of the network,

whereas the external ones are formed by low-degree and more peripheral nodes. In Ref. [7, 8, 9] (see

also the web-site of the visualization tool Lanet-VI [165]), we have used the k-core decomposition as

a tool for analyzing networks, discovering hierarchical structures, and studying the main statistical

properties at the different scales (i.e. in the different k-cores).

Almost all complex networks (real and synthetic) seem to share a common “scale-invariance” property

with respect to the k-core organization: indeed, after a simple rescaling the curves corresponding to

quantities like the degree distribution P (k), the average nearest neighbor degree knn(k) and the

clustering coefficient c(k), computed in the different k-cores show a nice data collapse. It is thus
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interesting to test the behavior of the k-core decomposition in sampled networks, in order to check

the robustness of these properties with respect to possible sampling biases. 3

Note that a single source traceroute-like probing yields essentially a tree, then the k-core decomposition

is by definition trivial (with maximum core kmax = 1). Yet, a sampling cannot discover paths or

edges that do not exist, so that the maximal shell index of a network, kmax, is not increased by partial

sampling (as the maximal degree observed), and reversely, the actual kmax is at least equal to the one

found by a sampling of the true network.

Internal cores are more connected and are traversed by a larger number of paths, therefore we expect

that a path-based sampling should intuitively discover and sample better the central cores, introducing

stronger biases in the structure of the peripheral shells. Moreover, the shell index of a node is directly

related to its routing capacity, since two nodes belonging to the same shell of index k have exactly

k “distinct” paths between them, where distinct means that no node and no edge are used more

than once. The abundance of paths between nodes corresponds also to a higher level of structural

and functional robustness of the system. Hence, nodes with high shell index are expected to perform

better in routing processes.

We have checked such ideas performing a traceroute-like probing of various networks, and comparing

their k-core decomposition before and after sampling. We have used NS = 50 sources, and various

values of probing efforts from ǫ = 0.1 to ǫ = 5.

Figure 3.13 reports the curves of the k-shell size as a function of the index for various network models

and various sampling efforts. The numerical measures have been performed on four types of networks:

the ER and RSF models, and two network obtained using the generators BRITE [176] and INET

[149], that are based on optimization strategies and are commonly used by computer scientist in order

to reproduce some specific features of the Internet, such as power-laws and hierarchy. Both yield

broad degree distributions and general properties similar to RSF graphs. For ER networks, shells are

almost uniformly populated and concentrated in a range of index values around 〈k〉. Such networks,

whose k-core structure is very different from that observed for AS maps (see Ref. [8]), show a rather

peculiar behavior also after sampling.

On the contrary, the power-law shapes obtained for RSF or BRITE networks, are comparable to

the one observed in the AS maps and look very robust under sampling; even if the slope is affected.

Indeed, shells of smaller indices are less well sampled. In particular, the size of the first shell is

strongly decreased by the sampling procedure; in some cases in fact, the first shell is larger than the

second in the original network, but becomes smaller in the sampled network. We note that in the

available AS maps, the first shell is indeed typically smaller than the second, and that the true AS

network thus very probably exhibits a much larger shell of index k = 1. This is consistent with the

idea that the proportion of leaves is extremely underestimated in current Internet mapping data. A

similar argument should hold for the value of the exponent in the power-law behavior of the shell size

vs. its index (see Ref. [8, 9]).

Figure 3.14 reports the behavior of other typical quantities of the network: the average degree of

the nearest neighbors of a node of degree k, and the clustering coefficient of nodes of degree k.

These properties show self-similar features in the k-core decomposition that seem to be preserved by

the sampling process. Although the precise form of the degree distribution of the whole network is

slightly altered, the basic correlation properties are conserved in the sampling.

3We will refer to cores and degrees using the same index k, the distinction between the two cases being evident from

the different context. When the context is not clear, we will however specify the meaning of k (if it indicates the degree

or the k-core index).
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Figure 3.13: Plot of the size of the k-shells vs. k for various models, before and after traceroute-

like sampling, with different probing efforts ǫ. We used an Erdös-Rényi (ER) random graph with

〈k〉 = 20, a random scale-free network (RSF) with exponent γ = 2.3, and two networks obtained by

the generators BRITE and INET, popularly used in the computer scientist community to reproduce

some features of the Internet topology. All networks have size N = 105, except for INET (N = 104).

Note that the k index on the x-axis indicates the k-shell index, not the degree.

While on a qualitative level, it seems possible to distinguish between networks with different

topological structures, important quantitative biases appear, that are related with the arguments

exposed in Section 3.2.3 about the efficiency of nodes discovery. For a network obtained with BRITE,

Fig. 3.15 displays the probability that the original shell index k of a vertex has changed in k′ due to

the sampling process. At low sampling effort, many vertices remain completely undiscovered, and in

general shell index properties are strongly affected in a seemingly erratic way (see the plot for ǫ = 0.1).

For larger values of sampling effort a strong correlation appears between the two shell indices, even if

a systematic downwards trend is observed.

A naive explanation for such persistence of the k-core structure under traceroute-like sampling

is given looking at the process of path merging by which we get the maps. Let us consider three

traceroute paths between three different pairs of vertices: if these paths meet two-by-two in some

nodes, such three nodes result to be connected by a cycle, that is a 2-core. Increasing the number

of paths, it is possible that strongly connected sets of nodes emerge (in the sense of a large number

of existing paths between them). This picture is likely to be true in scale-free networks, in which

the central nodes are redundantly sampled by traceroute (as seen in Section 3.2.4). Hence, the

presence of a genuine k-core structure in sampled graphs is due to the fact that nodes are sampled

by means of paths. On the contrary, since node-picking algorithms do not guarantee that nodes are

fairly connected, in many biological networks the k-core structure might be strongly biased by sampling

methods.

In summary, the results presented here indicate that the sampling biases do in fact affect only slightly
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Figure 3.14: Nearest neighbors degree distribution (left) and clustering spectrum (right) of some k-

cores, rescaled by the corresponding average values, for some network models after sampling through

a traceroute-like process with NS = 50 sources and target density NT /N = 0.1. Here, the index k

refers to the degree.

the measure of the statistical properties of the k-core organization in heterogeneous graphs, even at

relatively low levels of sampling. This corroborates the idea that the k-core properties observed for

the Internet are genuine. Quantitative analysis is more problematic, due to the incomplete sampling

of the edges. In fact, the routing properties of a network are related with the multiplicity of paths

between nodes, and thus with k-core properties. Hence, we conclude that “measured” routing capacity

of nodes, if limited to the analysis of Internet maps, are certainly rather underestimated compared to

real performances.
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Figure 3.15: The grayscale code gives the probability of a change in shell index due to the traceroute-

like sampling, from a certain index before sampling (x axis) to another one after sampling (y axis).

The line at y = 0 represents the probability of vertices of shell index x to be absent from the sampled

graph. The initial network is obtained by the BRITE generator. Here NS = 50 sources and a fraction

NT /N = 2.10−3 (left) and NT /N = 2.10−2 (right) of targets are used.

3.3 Network Species Problem: a statistical method to correct

biases

An unexpected application of the traceroute model of Internet explorations is that of providing a

theoretical framework in which it is possible to define and test statistical estimators for important

unknown properties of the networks and study which is the best estimator for a given underlying

topology. In fact, in Ref. [242], we have shown that the inference from traceroute-like measurements

of many of the most basic topological quantities, including network’s size and degree characteristics, is

a version of the so-called ‘species problem’ in statistics. This observation has important implications,

since the species problem is known to be of a particularly challenging nature.

A basic example of a traceroute-based species problem is the estimate of the number of nodes in

a network (Section 3.3.1). Using statistical subsampling principles we have derived two estimators

for this quantity (Section 3.3.2), the performances of which will be illustrated by means of numerical

simulations on networks with various topological characteristics (Section 3.3.3).

According to the results exposed in the previous section, one can conclude that at a qualitative level

traceroute-like samplings are reliable. On the other hand, at a quantitative level real networks (e.g.

the Internet at different levels) can considerably differ from sampled maps. The species approach

seems to be valuable to estimate quantities, such as the size, the number of links, the average degree,

and the precise analytic form of the heavy-tailed degree distribution, that cannot be estimated using

previously exposed techniques.

3.3.1 The Species Problem in Networks

Let us call η ≡ η(G) a generic global quantity characterizing a graph G. In general, the real value

of η is not known, thus it is natural to wish to produce an estimate, say η̂, based on the network

sampling, i.e. on the traceroute-sampled graph G∗. However, for quantities like the size N , the

number of edges E, the average degree 〈k〉, the problem of their inference is closely related to the

species problem in statistics. In general, the species problem refers to the situation in which, having
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observed n members of a (finite or infinite) population, each of whom falls into one of C distinct

classes (or ‘species’), an estimate Ĉ of C is desired. This problem arises in numerous contexts, such

as numismatics (e.g., how many of an ancient coin were minted [119]), linguistics (e.g., what was the

size of an author’s apparent vocabulary [174, 113]), and biology (e.g., how many species of animals

inhabit a given region).

The species problem has received a good deal of attention in statistics (see, for instance, Ref. [60]),

but it is, in general, a difficult problem, since we need to estimate the number of species not observed.

In practice, the species expected to be missed are those that are present in relatively low proportions

in the population, and there could be an arbitrarily large number of such species in arbitrarily low

proportions. The methods proposed for its solution differ in the assumptions regarding the nature of

the population, the type of sampling involved, and the statistical machinery used. We have shown

that it can also be associated with the inference of graph characteristics η(G) in traceroute-like

samplings.

For example, the problem of estimating the number of vertices and edges in a network G i.e., N and

E may be mapped on the species problem by considering each separate vertex i (or edge e) as a

‘species’ and declaring a ‘member’ of the species i (or e) to have been observed each time that i (or

e) is encountered on one of the NS × NT traceroute paths.

Again, the problem of inferring the degree ki of a vertex i from traceroute measurements can also be

mapped on the species problem, by letting all edges incident to i constitute a species and declaring a

member of that species to have been observed every time one of those edges is encountered. Because

the values N , E, and {ki}i∈V serve as basic components of many of the other standard quantities

listed above, obtaining an accurate inference of the former could directly impact our ability to make

accurate inferences on the latter. In the following, we will consider only the inference of the network

size N , but we are now developing a similar formalism in order to extend our analysis to the number

of edges E.

3.3.2 Inferring N : Estimators of Networks Size

Before proceeding to the construction of estimators for N , it is useful to first better understand the

relation between this quantity and known characteristics of the Internet topology.

Since the main property affecting the exploration process is the betweenness centrality, one could

argue that N should be estimated using quantities derived from the betweenness. In particular, the

network’s size is related to the betweenness centrality by the following simple expression [131],

∑

i

bi = N(N − 1)(〈ℓ〉 − 1) , (3.28)

in which 〈ℓ〉 is the average distance between pairs of nodes. This may be rewritten in the form

N = 1 +
E[b]

〈ℓ〉 − 1
, (3.29)

where the expectation E[·] is with respect to the distribution of betweenness across nodes in the

network.

In general, the average shortest path length 〈ℓ〉 can be estimated quite accurately, since traceroute

probes lay on the shortest paths and the corresponding distribution is very peaked. Therefore,

the problem of estimating N is essentially equivalent to that of estimating the average betweenness

centrality. From the theoretical analysis in previous sections, we know that traceroute experiments

give a good estimate of degree and betweenness distributions tails, thus we can assume that the
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form P (b) ∼ b−β for b >> 1 is sufficiently accurate, but low betweenness nodes are considerably

undersampled, preventing us from having a correct quantitative knowledge of the full distribution.

Hence, the undersampling of low-betweenness nodes does affect the average value of the betweenness.

Additionally, even if we neglect this problem and divide the expectation in two contributions for low

and high betweenness nodes (E[b] = E1[b] + E2[b]), in order to compute the average betweenness, we

should perform an integral of the type

E2[b] ≃
1

K

∫ bmax

bmin

b1−βdb , (3.30)

that has to be handled carefully since the experimental values of β are very close to 2 [131, 31], thus

the integral diverges with the upper cut-off.

These simple arguments give an idea of the difficulty of estimating N from traceroute measurements

and suggest the futility of attempting a parametric approach with current measurement tools and

information. There is still the alternative of a nonparametric approach, in which assumed parametric

distributions are eschewed. We have proposed two estimators for N , using subsampling principles: one

is based on the resampling of the network, the other is a refined estimator based on the “leave-one-out”

principle [112, 208, 238].

Resampling Estimator - Let us call discovery ratio θ = E[N∗]/N the average fraction of

nodes discovered. From the mean-field theory we have learned that the quantity varies smoothly as

a function of the fraction ρT = NT /N of targets sampled, for a given number NS of sources. We use

this fact, paired with the assumption of a type of scaling relation on G, to construct an estimator for

N .

Specifically, let H be an arbitrary subgraph, of size N(H), of the network graph G. We will

assume that, for roughly similar numbers NS(H) and NS(G) of sources used, the discovery ratios

for traceroute sampling on H and G are such that

(i) they vary as smooth functions θ(H ; ρT (H)) and θ(G; ρT (G)) of ρT (H) and ρT (G), respectively;

(ii) if ρT (H) = ρT (G), then θ(H ; ρT (H)) = θ(G; ρT (G)).

In other words, we expect similar proportions of targets to yield similar proportions of discovered

nodes. Our choice to use NS(H) = NS(G) stems from the fact that typical traceroute-driven

studies run from a relatively small number of sources to a much larger set of destinations. Rewriting

the expression θ(H ; ρT (H)) = θ(G; ρT (G)) yields the equation

N(G) = N(H) ρ(G, H) , where ρ(G, H) =
E[N∗(G)]

E[N∗(H)]
. (3.31)

Now if H is a known subgraph, N(H) is known as well, and the problem of inferring N = N(G) can

be reduced to one of inferring ρ(G, H). A natural candidate for such a subgraph is the choice H = G∗

i.e., the graph produced by an initial traceroute sampling on G. In this case, N(H) = N∗.

It remains then to estimate ρ(G, G∗), which must be defined conditional on G∗. In that case, the

expectation in the numerator is simply E[N∗(G) |G∗] = N∗. To estimate the other expectation,

E[N∗(G∗) |G∗], we use a strategy based on the resampling of paths in G∗. In particular, for a given

sampling rate ρ∗T = ρT (G∗), we sample N∗
T = ρ∗T N∗ targets on G∗ and create a resampled graph, say

G∗∗, from the corresponding traceroute paths. Let N∗∗ = N(G∗∗). We do this some number of

times, say B, forming the collection N∗∗
1 , . . . , N∗∗

B . Then, we estimate E[N∗(G∗)|G∗] by the average

N̄∗∗
B = (1/B)

∑

r N∗∗
r .
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Plugging these quantities into the expression for N in Eq. 3.31 we get

N̂RS = N∗ · N∗

N̄∗∗
B

(3.32)

as a resampling-based estimator for N .

Note, however, that its derivation is based upon the premise that ρ∗T = ρT , and ρT is unknown (i.e.,

since N is unknown). This issue may be addressed by noting that the equations ρT (H) = ρT (G)

and θ(H ; ρT (H)) = θ(G; ρT (G)) together imply the equation NT (G)/NT (H) = E[N∗(G)]/E[N∗(H)].

With respect to the calculation of N̂RS , this fact suggests the strategy of iteratively adjusting N∗
T =

NT (G∗) until the relation NT /N∗
T ≈ N∗/N̄∗∗

B holds (Robbins-Monroe algorithm [213]). The value of

N̄∗∗
B for the appropriate N∗

T is then substituted into Eq. 3.32 to produce N̂RS . In practice, one may

increase B as the algorithm approaches the condition N∗
T /NT ≈ N̄∗∗/N∗.

Leave-One-Out Estimator - Various other subsampling paradigms might be used to construct

an estimator. A popular one is the ‘leave-one-out’ strategy, which amounts to subsampling G∗ with

N∗
T = NT − 1. We apply such a principle to the problem of estimating N , in a way that does not

require the subsampling assumptions in Eq. 3.31.

Recall that V∗ is the set of all vertices discovered by a traceroute study, including the NS sources

S = {s1, . . . , sNS
} and the NT targets T = {t1, . . . , tNT

}. Our approach will be to connect N to the

frequency with which individual targets tj are included in traces from the sources in S to the other

targets in T \ {tj}. Accordingly, let V∗
i,j be the set of vertices discovered on the path from source si

to target tj , inclusive of si and tj . Then the set of vertices discovered as a result of targets other

than a given tj can be represented as V∗
(−j) = ∪i ∪j′ 6=j V∗

i,j′ . Next define δj = I
{

tj /∈ V∗
(−j)

}

to be

the indicator of the event that target tj is not ‘discovered’ by traces to any other target. The total

number of such targets is X =
∑

j δj .

We derive a relation between X and N . Assuming a random sampling model for selection of source

and target nodes from V , we have

Pr
(

δj = 1 | V∗
(−j)

)

=
N − N∗

(−j)

N − NS − NT + 1
, (3.33)

where N∗
(−j) =

∣

∣

∣V∗
(−j)

∣

∣

∣. Note that, by symmetry, the expectation E

[

N∗
(−j)

]

is the same for all j: we

denote this quantity by E

[

N∗
(−)

]

. As a result, we may write

E[X ] =
∑

j

N − E

[

N∗
(−j)

]

N − NS − NT + 1
=

NT

(

N − E

[

N∗
(−)

])

N − NS − NT + 1
, (3.34)

which may be rewritten as

N =
NT E

[

N∗
(−)

]

− (NS + NT − 1)E[X ]

NT − E[X ]
. (3.35)

To obtain an estimator for N from this expression it is necessary to estimate E

[

N∗
(−)

]

and E[X ], for

which it is natural to use the unbiased estimators N̄∗
(−) = (1/NT )

∑

j N∗
(−j) and X itself, measured

during the traceroute study. However, while substitution of these quantities in the numerator of

Eq. 3.35 is fine, substitution of X for E[X ] in the denominator can be problematic in the event that

X = NT . Indeed, the estimator of N diverges when none of the targets tj are discovered by traces to

other targets, that is possible if ρT = NT /N is small. A better strategy is to estimate the quantity
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1/(NT − X) directly. We assume that the overlap between different sampled set of vertices is very

high. Using this condition, it is possible to derive an approximately unbiased estimator of 1/(NT −X).

(Note that empirical data on the Internet collected by the Skitter project at CAIDA [62] show that

the discovery rate is rather uniform, validating our assumption.) The same overlapping argument

implies that N∗
(−j) ≈ N∗, for all j, which suggests replacement of N̄∗

(−) by N∗. Putting together all

these quantities in Eq. 3.35, and with a bit of algebra (see Ref. [242] for a detailed derivation) we get

N̂L1O ≈ (NS + NT ) +
N∗ − (NS + NT )

1 − w∗
, (3.36)

where w∗ = X/(NT + 1), X being the number of targets not discovered by traces to any other target.

In other words, N̂L1O can be seen as counting the NS + NT vertices in S ∪ T separately, and then

taking the remaining N∗−(NS+NT ) nodes that were ‘discovered’ by traces and adjusting that number

upward by a factor of (1 − w∗)−1. This form is in fact analogous to that of a classical method in the

literature on species problems, due to Good [134], in which the observed number of species is adjusted

upwards by a similar factor that attempts to estimate the proportion of the overall population for

which no members of species were observed.

3.3.3 Numerical Results

We have tested the performances of the estimators on three different types of networks, two computer-

generated networks, with homogeneous (ER model) and heterogeneous (BA model) degree distribution,

and a network based on measurements of the real Internet (Mercator mapping project [135]). For the

synthetic networks, we have considered average degree 6, and sizes ranging from 103 to 106 nodes. The

Mercator network (N = 228263 nodes and E = 320149 edges) has been used to see if more realistic

topologies give results in agreement with that from the models.

We plot in Fig. 3.16 the ratio of the estimators to the true size, N̂RS/N , and N̂L1O/N , together with

N∗/N , for the various investigated graphs, number of sources NS = 1, 10, and 100, as a function of

the target density ρT . The improvement with respect to the “trivial” estimation by the size N∗ of

the sampled graph is impressive, the optimal value being 1 for all these curves. Increasing either the

number of sources NS or density of targets ρT yields better results, even for N∗, but the estimators

we have introduced converge much faster than N∗ towards values close to the true size N . In fact,

a relatively small number of sources and targets is sufficient for these estimators to perform very

accurately, in particular, in the case of the “leave-one-out” estimator. Note, however, that the “leave-

one-out” estimator has a larger variability at small values of ρT , while that of the resampling estimator

is fairly constant throughout. This is because in calculating N̂RS the uncertainty scales in the same

way both in the sampling and in resampling, whereas for N̂L1O the uncertainty scales with ρT that

changes passing from sampling to resampling.

In terms of topology, the estimation of N appears to be easiest for the ER model. Even N∗ is

more accurate, i.e. the discovery rate is higher. The estimation for the Mercator graph seems to be

the hardest, possibly because it is the graph with the largest fraction of low degree (and thus low

betweenness) nodes among the three studied. It is worthy noting that the “leave-one-out” estimation

seems to depend only on N∗/N and NT , thus being quite stable in the three graphs.

Interestingly, the estimators perform better for larger sizes, as shown by Fig. 3.17, in which we

investigate, at fixed NS and ρT , the effect of the real size of the graph N . On the contrary, N∗/N

decreases. This is due to the fact that the sample graph G∗ gets bigger providing more and richer

information, even if the discovery ratio does not grow. The odd nature of the results for the BA
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Figure 3.16: Comparison of the various estimators for the BA (top), ER (middle) and Mercator

(bottom) networks. The curves show the ratios of the various estimators to the true network size, as

a function of the target density ρT . Full circles: N̂L1O/N ; Empty squares: N̂RS/N ; Stars: N∗/N .

The errorbars go from the 10% to the 90% percentiles. Left figures: NS = 1 source; Middle: NS = 10

sources; Right: NS = 100 sources

graph comes from the peak associated with the resampling estimator, see Fig. 3.16. At fixed number

of targets however, N̂RS/N and N̂L1O/N decrease as N increases (not shown, see Ref. [242]).

The comparison of the two estimators show that the resampling estimator, although yielding a clear

improvement with respect to N∗, systematically performs less well. This is probably due to the fact

that the basic hypothesis of scaling (Eq. 3.31) is only approximately satisfied, while for N̂L1O the

underlying hypotheses are well satisfied. Nonetheless, the resampling estimator needs less information

on the graph than N̂L1O, since the “leave-one-out” estimator uses the knowledge that some targets

are not discovered by the paths to other targets.

Of course, in order to apply this inference model to the Internet one should take into account

further issues, as the effects of non-random deployment of sources or the relation with more realistic

models of traceroute exploration. However, the “leave-one-out” estimator should not suffer much in

performance, since its derivation assumes only uniform random choice of targets, not that of sources

and does not make any assumption on the routing strategy.

Finally, we provide a phenomenological validation of our technique. The Internet size can also be

estimated using other techniques, for instance with ping probes in order to test the response of some

sufficient number of randomly chosen IP addresses (the total number of possible IP addresses is 232).

Computing the fraction â of ‘alive’ addresses, we get the estimator N̂ping = 232â for the size of the

Internet.

In order to check if the “leave-one-out” estimator gives results in agreement with the latter one, we

performed about 3.7 · 106 ping’s probing of the net, obtaining 61246 valid responses and, in parallel,

a traceroute study from the same source towards the same number of unique IP addresses. The
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Figure 3.17: Effect of the size N of the graph G for BA and ER graphs at constant number of sources

and density of targets. The curves show the ratios of the various estimators to the true network size,

as a function of the graph size N . Full circles: N̂L1O/N ; Empty squares: N̂RS/N ; Stars: N∗/N .

The errorbars go from the 10% to the 90% percentiles. NS = 10. Left figures: ρT = 10−3; Middle:

ρT = 10−2; Right: ρT = 10−1.

estimated size was N̂ping = 7, 06 · 107 using the ping estimator, and N̂ping = 7, 23 · 107 using the

“leave-one-out” estimator, confirming a good agreement between the two. Note that the numbers are

not intended to taken too seriously (we used only one source, toward a small number of targets), but

it is important that they give consistent results.
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3.4 Conclusions

In contrast with usual physical disciplines, the science of complex networks is characterized by the

absence of first principles from which a theoretical framework can be deduced; for this reason, a very

actual and urgent problem is that of testing the reliability of phenomenological data, on which the

whole theoretical analysis and modeling of networks is based. The first step in this direction is that of

assessing the validity of the peculiar topological properties observed in so many real networks, from

biological to social and technological ones. This means that we need an accurate description of the

sampling processes by which data are collected.

In this chapter, we have highlighted the main features of different mechanisms of sampling that are

involved in the experimental analysis of networks. In some cases, such as for biological and social

networks, sampling methods may suffer of strong biases that are often unpredictable, because of

the incomplete knowledge of all (hidden) processes involved in the experiments. In the case of the

Internet, instead, there exists a well-known and very useful practical method to extract information

from the network, that consists in the dynamical exploration by means of traceroute-like probes.

Unfortunately, also this method suffers of biases that could in principle cause a misrepresentation of

the topological properties of the network, in particular of the degree distribution.

By means of a mean-field statistical approach, we have provided an insight into the relation between

sampling biases and topological properties of the network, showing that the efficiency and accuracy

of the exploration process depend mainly on the betweenness centrality distribution of the underlying

network. The other important parameters are the densities of sources and targets deployed in the

system, or more simply, the probing effort, i.e. the number of probes used in the exploration. In

particular, we have explained how the observed distortions of the degree distribution are actually

possible only when the underlying network is homogeneous and the traceroute process is performed

using very few sources. Moreover, in order to observe power-laws starting from homogeneous networks,

the average degree of the original network must be of the same order as the power-law cut-off, a rather

unlikely situation for any real technological network (in particular for the Internet at the AS level).

Our results provide a strong evidence that in order to observe a power-law distribution, we need at

the origin a broad distribution, but show as well that networks with other heterogeneous distributions,

different from power-laws, can be seen as scale-free networks under sampling. With a low number of

sources and targets, as that involved in outdated Internet mapping projects, we cannot completely

exclude the possibility that the degree distribution of the real network has the shape of a Weibull

distribution rather than of a stretched exponential. According to our analysis, in case of heterogeneous

networks with a non power-law degree distribution, an increase of both source and target densities

should make visible departures from it.

In agreement with our conclusion on the necessity of increasing the number of sources used in the

Internet mapping projects in order to get more accurate data, it has been recently developed a

distributed mapping project called DIMES (Distributed Internet MEasurements & Simulations) [98,

224], with the aim of studying the structure and topology of the Internet using a very large number

of sources. The idea is that of involving in the measurements common Internet users, creating a

volunteer community that sends traceroute-like probes throughout the Net. Preliminary results

from the DIMES project confirm the power-law shape for the degree distribution. The fact that

DIMES is observing power-laws seems to be the ultimate evidence of the genuine nature of scale-free

topologies in the Internet. Nonetheless, it is still very likely that the real exponent is different from

(i.e. larger than) the observed one.

In conclusion, the main improvement upon this field due to the results obtained in this thesis are
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summarized in the following points:

• We have identified, at a mean-field level, the relations between observed properties of the sampled

networks and the topological properties of the underlying network.

• The origin of sampling biases in the Internet measurements has been uncovered. These properties,

together with a minimal set of external parameters (the density of sources and targets) govern

the efficiency and accuracy of the sampling process.

• Tuning the external parameters we have provided some results that should serve as a guidance

for more realistic optimization strategies.

• The effects of traceroute explorations on local and non-local structures have been analyzed.

• The traceroute-like explorations can be translated in the framework of statistical species

problems, leading to the formulation of non-parametric statistical approaches for the inference

of Internet’s global properties. As an example of the validity of this method to correct the biases

introduced by the sampling process, we have introduced unbiased estimators of the number of

nodes in the network, that can be applied to the case of the Internet, the real size of which is

still unknown.



70 CHAPTER 3. EXPLORATION OF COMPLEX NETWORKS



Chapter 4

Spreading and Vulnerability in

Complex Networks

4.1 Introduction

A second topic that has been object of investigation in this thesis concerns the role played by

some topological and dynamical properties in determining the functionality of weighted networks.

In particular, we focus on the analysis of vulnerability and spreading properties. The motivations for

this type of analysis, coming from the observation of the functional properties of real infrastructure

networks, are exposed in Section 4.1.1; while in Section 4.1.2, we introduce the main idea of the

chapter, consisting in the possibility of linking two apparently different subjects as vulnerability and

spreading by means of percolation-like approaches. Then, in Section 4.2, we focus on the vulnerability

of weighted networks, taking into account the case study of the airports network. In Section 4.3, we

propose a theoretical framework for the study of spreading phenomena in weighted networks, using

the methods of percolation theory.

4.1.1 Motivations

From a practical point of view, an accurate knowledge of structural and dynamical properties of

networks is of primary interest, particularly in the case of technological networks, that form the

backbone of world-wide communication and transportation infrastructures. On the other hand,

such networks are intrinsically weighted networks, so that neglecting weights could lead to wrong

conclusions about these properties. As mentioned in Chapter 1, weights are usually related to

dynamics: in some cases they give just a measure of the traffic on the edges, in other cases they

pinpoint the different attitude of the edges in exchanging physical quantities (energy, information,

goods, etc).

From the point of view of a single dynamical process evolving on a network (e.g. a spreading process),

the introduction of weights on the edges corresponds, using a pictorial representation, to add an

energy-like variable to the system and look at it as it was in an energy landscape. In this scenario,

some paths with larger weights (or smaller, it depends on weight’s definition) will be dynamically more

convenient than others, and thus they will be preferentially chosen in the spreading. In addition, as

the trajectory of a particle in a potential is deformed when we change the shape of the potential, fluxes

on weighted networks adjust themselves in order to follow variations of both topology and weights.

71
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In other words, the presence of weights on the edges tunes the functionality of the system towards an

optimal point. This picture suggests us the idea of technological networks as critical infrastructures,

whose topological, dynamical and functional properties are intimately related.

The motivations of our research in the field of weighted networks can be summarized in the following

issues:

• Which are the levels of structural and functional stability of such critical structures if we perturb

it in different ways?

• Which are the conditions for a macroscopic spreading? Which is the relation with the functional

properties of the network?

Both our queries are concerned with the prediction of extreme events such as that of a global collapse

triggered by the spreading of a virus, a cascade failure or malicious attacks, and with the necessity

to protect real networks, ensuring their functioning. Nevertheless, the two arguments are developed

separately.

We will first study the vulnerability properties of weighted graphs, showing that structural robustness

does not coincide with functional robustness if traffic is taken into account. The analysis is carried out

by means of a relevant case study, where practical implications are visible: the airports network. The

weighted representation is, furthermore, general enough to include other contributions, not strictly

due to the traffic. For instance, infrastructure networks are embedded in the real space, with euclidean

distances between nodes, and longer connections have higher costs. It is thus possible to verify the

role played by all these quantities in determining the functional integrity of the system.

We will then turn to consider the conditions for observing macroscopic spreading phenomena in the

context of weighted networks, keeping in mind the previous results about the functional properties of

infrastructure networks. We provide a general theory for spreading phenomena in weighted networks.

Some analytical results are presented in the case of (correlated) generalized random graphs, for which

we derive a very general criterion for the percolation threshold, that governs the spreading properties

of many dynamical phenomena (see Appendix B).

In order to have a unitary view of these two topics, we can actually consider the idea of the existence of

different scales for the dynamics that we have mentioned as an introductory argument in Chapter 1:

a slower timescale governs the evolution of the average traffic (i.e. the weights), and a faster one

characterizes single spreading processes (and thus also the perturbations to the average quantities).

When a cascade failure, a congestion phenomenon, or a disease pops out producing a perturbation of

the normal functioning of the network, the underlying weighted structure appears as a fixed landscape,

whose (weighted) properties can decisively influence the global effect of such a perturbation (e.g. the

occurrence of a traffic collapse, a pandemic state, etc). The advantage of using quenched weighted

networks is related to the possibility of describing dynamical phenomena as well as vulnerability easily

using percolation-like approaches.

4.1.2 Relation between percolation, vulnerability and spreading

Percolation theory has been largely used in statistical mechanics in order to describe topological phase

transitions in lattice systems, such as the emergence of global properties when some physical parameter

(temperature, concentration, etc) exceeds a critical value [228, 118, 59, 156]. More precisely, a site

percolation process can be sketched as follows. Each site of the lattice is occupied with a uniform

probability q, called occupation probability, and empty with probability 1− q. A cluster is a connected
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Figure 4.1: Illustration of the relation between percolation, vulnerability and spreading processes. As

a result of percolation (left), the nodes of the original graph are divided into occupied (blue) and

unoccupied (red) nodes. On the right: the correspondence between node removal (top) or spreading

(bottom). On average, the subgraph induced by occupied nodes (black nodes in the top figure)

coincides with that covered by spreading (blue nodes in the bottom figure).

set of occupied sites. When the value q of the occupation probability is larger than a critical value

qc, the percolation threshold, a cluster with size of the same order of the system, i.e. infinite in

the thermodynamic limit, appears. Analogously, the process can be defined on the bonds joining

neighboring sites, with the only difference that the site occupation probability q is replaced by a bond

occupation probability. The bond percolation corresponds to the site percolation on the conjugate

lattice (obtained exchanging bonds with sites and viceversa), and gives similar results.

Recently, percolation theory has been successfully introduced in the field of complex networks, with

some seminal works on undirected uncorrelated random graphs [65, 80, 79]. A number of other works

followed, studying the cases of correlated [189, 190, 240, 64] and directed [108, 220, 46] random graphs.

Percolation is intrinsically related to vulnerability. The process of random removal of a fraction g of

nodes can be seen as a percolation process in which the occupation probability of the nodes is reduced

to 1−g. Actually, we can exactly map a random removal of nodes on a site percolation problem, with

g = 1 − q and the same order parameter (i.e. the relative size of the giant component, or topological

integrity). Percolation theory predicts the presence of a threshold value gc = 1 − qc above which the

giant component Gc disappears, i.e. the network is fragmented in many disconnected components of

very small sizes (Ng ∼ O(log N)) with respect to the total number N of vertices in the graph.

The notion of percolation has then found applications in the context of spreading phenomena on

networks, such as epidemic models [182, 183, 188]: for some of them, the connection with the

percolation is a longtime topic (see for example [124, 138, 244, 217]), while for other models, more

rigorous descriptions, based on the analysis of population equations of epidemiology, are required
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[173, 201, 202, 44, 184, 185, 201, 202, 45, 43]. The models of epidemic spreading solved using

percolation theory identify vertices with individuals and edges as pairwise contacts between them [188].

In this context, the existence of a giant component means that we can reach a large (infinite) number

of other nodes of the same graph starting by one of them and moving along the edges. The spreading

process takes place on the edges, that have a fixed probability to be disease-causing contacts, called

transmissibility. The model’s behavior is easily determined using edge percolation, that establishes

the presence of a giant component as function of the value of transmissibility, and states the possibility

for global epidemic outbreaks. Figure 4.1 illustrates the relation between percolation, vulnerability

and spreading processes. In Ref. [84], we have extended the analogy between spreading processes and

percolation to a very general situation in which node and edge inhomogeneity is considered. Part of

the analysis is reported in Appendices A-B. As a special case of such inhomogeneous percolation, in

Section 4.3, we expose some results that are useful to study spreading processes on weighted networks.
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4.2 Vulnerability of Weighted Networks: a case study

Recent studies on phenomenological data of real weighted networks (communication and infrastructure

networks, scientific collaboration networks, metabolic networks, etc) have given much attention to the

relation between weighted properties and topological quantities [23, 6, 171]. The most striking result

concerns the existence of non-trivial correlation between weights and topology, corroborating the idea

that topological and weighted properties are mutually influenced, and both take part into the evolution

process of real weighted networks.

Several groups have proposed models of evolving weighted networks [24, 26, 27, 39, 107, 243]; we will

consider only one of them, the spatial BBV model, that has been described in Section 2.4.3.

In the present section, we face the issue of defining and determining the vulnerability of weighted

networks. It is firstly a problem of definition, since in many real networks, together with the topological

connectivity there are also weighted properties, that are usually related with the functionality of the

network.

From a topological point of view, the only relevant measure of the vulnerability of a network is the

size Ng of the giant component after the removal of a fraction g of the nodes. If we compare this size

with the original size N0 of the network’s giant component, we have an estimate of the vulnerability

of the network under node (or edge) removal.

Using the already mentioned analogy with percolation, it has been shown that, in contrast with

regular lattices and homogeneous random graphs, heavy-tailed networks can tolerate very high levels

of random failure, without falling into pieces [80, 65]. On the other hand, malicious attacks to the

hubs can easily break the entire network into small components, providing a clear identification of the

elements which need the highest level of protection against such attacks [5, 201].

In order to extend the vulnerability analysis to weighted complex networks, we have investigated how

the introduction of traffic and spatial properties may alter or confirm the above findings. In particular,

in Ref. [89], we address three main questions:

(i) on the basis of which measures a weighted network is most efficiently protected from damage;

(ii) how traffic and spatial constraints influence the system’s robustness;

(iii) how to measure the damage (different integrity measures).

The first step in order to face these issues consists in proposing a series of topological and weight-

dependent centrality measures that can be used to identify the most important vertices of a weighted

network. The functional integrity of the whole network depends on the protection of these central

nodes, as we will show applying these considerations to the World-wide Air-transportation Network.

The main result is that under malicious attacks, weighted networks turn out to be more vulnerable

than expected, in that the traffic integrity is destroyed when the topological integrity of the network is

still very high.

4.2.1 Weighted centrality measures

We introduce a series of weighted centrality measures, that will be used to define attack strategies

of node removal on the network. Since we consider the case of technological networks, such as the

airport network, we focus on weighted centrality measures based on traffic and spatial properties. The

presence of non-trivial correlations between the different centrality measures reveals that all of them

should be considered in order to give an exhaustive description of weighted network’s structural and
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functional properties.

Measures definition - The centrality of nodes can be quantified by various measures, the most

intuitive of which is certainly the degree. The natural generalization of the degree to a weighted graph

is given by the strength of vertices si (see Section 2.2.6 for definitions), that in the case of the air-

transportation network quantifies the traffic of passengers handled by the airport i. The corresponding

geographical notion is the distance strength Di, that we defined as

Di =
∑

j∈V(i)

dij , (4.1)

where dij is the Euclidean distance between i and j, and quantifies how long are the connections

supported by an airport. Another interesting definition is given by mixing the two ingredients; the

outreach

Oi =
∑

j∈V(i)

wijdij , (4.2)

measures the total distance traveled by passengers from the airport i and is possibly related to the

total cost of connections.

In general, non-local effects are taken into account introducing the betweenness centrality (see Section 2.2.4),

that identifies crucial nodes which may have small degree or strength but act as bridges between

different parts of the network. In weighted networks, it seems natural to generalize the notion of

betweenness centrality through a weighted betweenness centrality in which shortest paths are replaced

with their weighted versions. As already anticipated in Section 2.2.6, a straightforward way to

generalize the hop distance in a weighted graph consists in assigning to each edge (i, j) a length lij

that is a function of the characteristics of the link. In our case, both the weight wij and the Euclidean

distance dij between airports i and j are reasonable quantities. A quite natural assumption is that the

effective distance between two linked nodes should be a decreasing function of the weight of the link.

Indeed, larger flows (traffic) correspond to more frequent and faster exchange of physical quantities

(e.g. information, people, goods, energy, etc). Moreover, when spatial embedding is considered, the

edge length must be directly proportional to the geographical distance. In other words, we define the

length lij of an edge (i, j) as

lij =
dij

wij
. (4.3)

The definition of weighted betweenness centrality follows straightforwardly.

According to this definition, the centrality of a node provides a trade-off between the idea of the

topological “bridge” connecting different parts of a network, and the requirement of carrying a

sufficient level of traffic.

Centrality Measures Correlation - On the World-wide Air-transportation Network, all the

proposed measures of centrality are broadly distributed, and they are on average non-trivially correlated

one with the other, and in particular with the degree (e.g. D(k) ∼ kβD with βD ≈ 1.5 [27], and

O(k) ∼ kβO , with βO ≈ 1.8 [89]).

Vertices with large degree have also typically large strength and betweenness, but under a detailed

analysis, we observe that deviations are possible. This fact has been already noted in Refs.[141, 27],

where it is stressed that the most connected airports do not necessarily have the largest betweenness

centrality.

Here, we observe a similar effect about the relation between topological and weighted measures. For



4.2. VULNERABILITY OF WEIGHTED NETWORKS: A CASE STUDY 77

Rank Degree Betweenness Strength Outreach W. Betweenness

1 Frankfurt Frankfurt Atlanta London-LHR London-LHR

2 Paris-CDG Paris-CDG Chicago-ORD L.Angeles-LAX L.Angeles-LAX

3 Munich Anchorage London-LHR Tokyo-HND Singapore

4 Amsterdam Tokyo-HND Tokyo-HND Frankfurt New-York-JFK

5 Atlanta Port Moresby L.Angeles-LAX Paris-CDG Miami-MIA

6 London-LHR London-LHR Dallas-DFW Chicago-ORD Tokyo-HND

7 Chicago-ORD L.Angeles-LAX Paris-CDG New-York-JFK Hong-Kong

8 Duesseldorf Singapore Frankfurt Singapore Sydney

9 Vienna Vancouver Phoenix San Francisco Chicago-ORD

10 Brussels Bangkok Denver Atlanta Paris-CDG

11 Dallas-DFW Johannesburg Hong Kong Hong-Kong Seattle

12 Houston-IAH Toronto-YYZ Detroit-DTW Bangkok Atlanta

13 Rome-FCO Amsterdam Minneapolis-MSP Amsterdam Dubai

14 Minneapolis Seoul-ICN Madrid Dallas-DFW Frankfurt

15 Zurich Hong Kong Houston New-York-EWR Brisbane

Table 4.1: Ranking of the fifteen world’s top airports for different centrality measures: degree,

topological betweenness, strength, outreach and weighted betweenness. Note that the lists report

different single airports, not just the total data relative to the cities; for cities with more than one

airport, the acronym of the corresponding one is indicated.

instance, the scatter plot of the weighted betweenness vs. topological betweenness (not shown) shows

that departures from a perfect correlation are not that rare. Let us consider the list of Top 15 airports

according to different measures of centrality (Table 4.1): strikingly, each definition provides a different

ranking. In addition, some airports which are very central according to a given definition, become

peripheral according to another criteria. For example, Anchorage has a large betweenness centrality

but ranks only 138th and 147th in terms of degree and strength, respectively. Similarly, Phoenix or

Detroit have large strength but low ranks (> 40) in terms of degree and betweenness.

A quantitative analysis of the correlations between two rankings of n objects can be done using rank

correlations such as Kendall’s τ [154, 207]

τ =
nc − nd

n(n − 1)/2
(4.4)

where nc is the number of pairs whose order does not change in the two different lists and nd is

the number of pairs whose order is inverted. This quantity is normalized between −1 and 1: τ = 1

corresponds to identical ranking while τ = 0 is the average for two uncorrelated rankings and τ = −1

is a perfect anticorrelation. Table 4.2 gives the values of τ for all possible pairs of centrality rankings.

For N = 3, 880, two random rankings yield a typical value of ±10−2 so that even the smallest observed

τ = 0.21 is the sign of a strong correlation (All the values in this table were already attained for a

sublist of only the first n most central nodes, with n ≈ 500). Remarkably enough, there is a strong

correlation even between local and non-local quantities (degree vs. betweenness), but the weighted

quantities seem to have a lower level of correlation with the topological ones.

Another important aspect concerns the geographical relation between centrality measures. Indeed,
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Figure 4.2: Geographical distribution of the world’s 15 most central airports ranked according to

different centrality measures.

they are non homogeneously distributed in different geographical regions, providing a further precious

hint to understand the functioning of infrastructure networks such as the WAN. Figure 4.2 displays

the geographical distribution of the world’s fifteen most central airports ranked according to different

centrality measures. On the one hand, it is clear that topological measures miss the economic

dimension of the WAN, while weighted measures reflect traffic and economic realities.

European airports are very well connected but the core of the traffic is North America, where we

find the peaks of strength and outreach. Betweenness based measures on the other hand pinpoint the

most important nodes in each geographical zone. In particular, the weighted betweenness appears as

a balanced measure which combines traffic importance with topological centrality, leading to a more

uniform geographical distribution of the most important nodes.

4.2.2 Vulnerability of the WAN

The analysis of complex networks robustness has been largely investigated in the case of unweighted

networks [5, 80, 65, 144], focusing on the topological integrity of the network Ng/N0. When, increasing

g, we reach Ng ≃ O(1), the entire network has been destroyed. We say that the attack strategy is

“driven” by a property of the network, if the order in which the nodes are one-by-one removed

corresponds to the ranking list according to that property. On heterogeneous networks, a degree-

k D s O BC WBC

Degree k 1 0.7 0.58 0.584 0.63 0.39

Distance strength D 0.7 1 0.56 0.68 0.48 0.23

Strength s 0.58 0.56 1 0.83 0.404 0.24

Outreach O 0.584 0.68 0.83 1 0.404 0.21

Betweenness BC 0.63 0.48 0.404 0.404 1 0.566

Weighted BC 0.39 0.23 0.24 0.21 0.566 1

Table 4.2: Similarity between the various rankings as measured by Kendall’s τ . For random rankings

of N values, the typical τ is of order 10−2.



4.2. VULNERABILITY OF WEIGHTED NETWORKS: A CASE STUDY 79

0 0.04 0.08 0.12
0

0.2

0.4

0.6

0.8

1

N
g/N

0

k
s
O
D
BC
WBC

0 0.04 0.08
g

0

0.2

0.4

0.6

0.8

1

I O
(g

)

Figure 4.3: Effect of different attack strategies on the size of the connected giant component (top) and

the outreach integrity (bottom). The attack strategies consist in removing nodes in order of: degree

(black circles), strength (red squares), outreach (green diamonds), distance strength (blue triangles),

betweenness (magenta crosses) and weighted betweenness (orange stars).

driven damage strategy (i.e. nodes are removed in order of degree, starting from the maximum one) is

extremely effective, leading to the total fragmentation of the network at very low values of g [80, 65, 5],

but the removal of the nodes with largest betweenness typically leads to an even faster destruction of

the network [144].

In the case of weighted networks, we consider additional quantities related to the functionality of the

network, such as the largest traffic or strength still carried by a connected component of the network.

In Ref. [89], we have defined three new measures of network’s damage

Is(g) =
Sg

S0
, IO(g) =

Og

O0
, ID(g) =

Dg

D0
, (4.5)

where S0 =
∑

i Si, O0 =
∑

i Oi and D0 =
∑

i Di are the total strength, outreach and distance strength

in the undamaged network and Sg = maxH

∑

i∈H Si, Og = maxH

∑

i∈H Oi and Dg = maxH

∑

i∈H Di

correspond to the largest strength, outreach or distance strength carried by any connected component

H in the network, after the removal of a density g of nodes. These quantities measure the integrity

of the network with respect to either strength, outreach or distance strength, since they refer to the

relative traffic or flow that is still handled in the largest operating component of the network.

Under random damage, all the integrity measures behave similarly to the simple topological case, i.e.

weighted networks are inherently resilient to random damages. This result is in agreement with the

theoretical prediction of the absence of a percolation threshold in highly heterogeneous graphs [80, 65],

but it is not completely expected in weighted graphs. The scenario corresponding to the damage of

the most central nodes in the network is very different and depends on the strategy considered. We

have eliminated nodes (and corresponding links) according to their rank in terms of degree, strength,

outreach, distance strength, topological betweenness, and weighted betweenness. In Fig. 4.3 we report

the behavior of Ng/N0 and of the outreach integrity IO(g) for all cases (the other integrities giving

similar results). As expected, all strategies lead to a rapid breakdown of the network with a very
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Figure 4.4: Geographical effect of the removal of nodes with largest strength. The integrity decreases

strongly in regions such as North-America, while a “delay” is observed for the zones with smaller

initial outreach or strength.

small fraction of removed nodes. The structural integrity of a network is principally due to strategic

points such as bridges and bottle-neck structures; as evidenced by the fact that the size of the giant

component decreases faster using non-local measures of centrality (i.e. betweenness) instead of local

ones (i.e. degree, strength). In Ref. [144], it was already shown that the betweenness is the most

effective quantity in order to pinpoint such nodes.

However, the effects are reduced if we take into account weights: some of the important topological

bridges carry a small amount of traffic and are therefore part of more shortest paths than weighted

shortest paths. These bridges have therefore a lower rank according to the weighted betweenness.

Note that, among the local quantities, the distance strength is rather effective since it targets nodes

which connect very distant parts of the network.

The picture changes when the attention is shifted to the weighted integrity measures. In this case,

all strategies achieve the same level of damage, and their decrease is even faster than for topological

quantities. In other words, the functionality of the network can be temporarily jeopardized in terms

of traffic even if the physical structure is still globally well-connected. This implies that weighted

networks appear more fragile than expected by considering only topological properties. All targeted

strategies are very effective in dramatically damaging the network, reaching the complete destruction

at a very small threshold value of the fraction of removed nodes.

Finally, we consider the role of the spatial constraints. As shown in Fig. 4.2, various geographical

zones contain different numbers of central airports. The immediate consequence is that the different

strategies for node removal have different impacts in different geographical areas. Figure 4.4 displays

the case of a removal of nodes according to their strength (other removal strategies lead to similar

data), monitoring topological and outreach integrity. Each geographical zones is more sensitive to

a particular removal strategy, leading to the idea that large weighted networks can be composed by

different subgraphs with very different traffic structure and thus different responses to attacks.
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Figure 4.5: Vulnerability of a network obtained using the growing model with spatial constraints

exposed in Section 2.4.3 for two values of the parameter controlling the spatial constraints η = 0.5

(left) and η = 0.005 (right). The targeted damage is driven removing nodes in order of: degree

(circles), strength (squares), and topological (crosses) and weighted (triangles) betweenness. The

behaviors of the topological (Ng/N0) and functional (Is(g)) integrities are shown.

4.2.3 Comparison with the spatial BBV model

In Section 2.4.3, we have presented a model of growing weighted networks, proposed in Refs. [24, 25]

and based on the preferential attachment. By means of a strength-driven preferential attachment

(i.e. a sort of “busy-get-busier” principle), the model generates networks with properties that are

observed in many real growing weighted networks, such as the small-world property and power-law

distributed degree, strength and weights. We have already observed that the BBV model pinpoints the

basic mechanisms governing the evolution of the airport network, even if it fails in the existing large

fluctuations between topological and weighted quantities (such as degree vs. strength or topological

betweenness vs. weighted betweenness).

A possible reason for the existence of these non-trivial correlations is the presence of spatial constraints,

i.e. the node of the real networks are embedded in a two-dimensional space. The authors of Ref. [24]

have thus put forward a modified model, in which spatial constraints are taken into account [27]. The

spatial model shows more realistic correlations, but it does not explain all the features observed in

the real airport network.

In this section, we present some preliminary results on the study of the vulnerability properties of

the model, pointing out the relation with the effects observed for the WAN. In particular, we look at

the role played by spatial constraints, fixing the parameter δ = 1 and varying the typical length scale

of the connections governed by the parameter η. The system is embedded in a square of linear size

L = 1, endowed with euclidean metric structure, so that small values of η (η ≪ 1) favor the creation of

”regional” structures with hubs of smaller connectivity than the global hubs obtained in the original

BBV model or in the present model when η assumes larger values. We have considered the two cases

η = 0.5 and η = 0.005.

Figure 4.5 displays the behaviors of the topological and functional integrities under different damage

strategies. We have focused only on the main attack strategies, i.e. those driven by removing nodes
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in order to degree, strength, betweenness and weighted betweenness. In this figure the weighted

betweenness has been computed using the weighted distance ℓij = 1/wij instead of ℓij = dij/wij ,

but the qualitative differences in the resulting vulnerability properties are negligible. (Note that this

is true also for the WAN). Comparing the two figures for η = 0.5 (left) and η = 0.005 (right), it is

clear that, increasing the spatial constraints, the network becomes more vulnerable to betweenness-

driven attacks. This is due to the fact that the system develops a structure composed of many

regional networks connected by a limited number of links. The links or the nodes that play as bridges

connecting different regional networks are very important for the global structural properties of the

system. They are the most central nodes in terms of both topological and weighted betweenness, so

that damaging the network removing high-betweenness nodes reveals the fragility of such a regional

structure. This feature is in agreement with the behavior of Ng/N0 in the real airports network.

In the model, the picture does not change if we look at the functional level, monitoring the decrease of

the functional integrity (in this case we have considered Is(g) = Sg/S0, the other functional integrity

measures show similar behaviors). The two non-local damage strategies are indeed more effective

in destroying the network functionality. This feature is different from what we observe in the real

airports network, that shows the same rapid decrease for all the strategies. The difference is possibly

due to the fact that, in the model, the relation between topology and traffic is still too strong, while in

the real WAN, other variables play an important role in separating the traffic and economic dimension

from the purely topological one.

In summary, the introduction of spatial constraints in a model of growing weighted networks produces

some structural properties that are in agreement with those observed in a real network such as the

WAN; but an improvement is required in order to pinpoint the correct mechanisms that are at the

origins of those functional properties of real weighted networks that are still not completely understood.

4.2.4 Conclusions

In this study (see Ref. [89]), we have identified a set of centrality measures for technological weighted

networks, in which two further ingredients, traffic and spatial constraints, are included. The main

achievements are summarized in the following points:

• the various definitions of centrality are correlated, but lead to different descriptions of the

importance of the nodes;

• the level of vulnerability of a network depends on the global property we have decided to monitor;

in general, the attack strategies that are based on the same property (or similar properties to)

that we are monitoring at a global scale are trivially more effective;

• spatial heterogeneity has to be considered, weighted regional properties are different;

• weighted networks are, at a functional level, much more fragile than we would expect looking at

a purely topological level.

It is worth noting that, even if the the vulnerability analysis seems to be completely static, the previous

strategies are based on a recursive re-calculation of the centrality measures on the network after each

damage. As noted by Holme et al. [144], each node removal leads to a change in the properties of the

other nodes. Only the neighboring nodes of the removed one suffer a change in the degree and strength,

but the structure and number of shortest paths are modified for the whole graph and therefore the

betweennesses of all nodes may potentially be altered. It is therefore quite natural that, after each
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node removal, the choice of the next discarded node should be made according to recalculated degree,

strengths and betweennesses, and not according to the original ranking. Such procedure is somehow

akin to a cascade failure mechanism in which each failure triggers a redistribution on the network and

changes the next most vulnerable node.

Actually, we have found [89] that recalculated rankings do not differ considerably from the original

ones, even for non-local quantities like the betweenness. This result has two important consequences.

First, it points out the validity of considering static analysis, such as that of vulnerability (and

indirectly percolation), in order to study dynamical property of networks, such as spreading and

cascade failures or congestions. The other observation concerns the protection of large scale infrastructures.

On the one hand, the planning of an effective targeted attack does need only to gather information

on the initial state of the network. On the other hand, the identification of crucial nodes to protect is

an easier task, since it is only weakly dependent on the attack sequence.
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4.3 Spreading processes on Weighted Random Graphs

This second part of the chapter is devoted to study spreading phenomena on weighted networks.

According to the static analysis made in the previous section, at a functional level, weighted networks

look much more vulnerable. In other words, network’s functionality suffers of the disconnection of

some high-traffic portions of the system. For the same reasons, we could expect to observe the same

features in the behavior of spreading processes on weighted networks. More precisely, we want to model

a process that exploits the traffic to spread throughout the network, the efficiency of the spreading

depending on the weights properties.

In Section 4.1.2, we have explained the relation between spreading processes and percolation, stressing

that there is a correspondence between the existence of a giant component in the percolation process

and the possibility of a macroscopic spreading. Of course, the analogy becomes evident if we think

to simple examples, like the outburst of epidemics in a population of individuals, or the diffusion of a

virus on the Internet, but also the spreading of information or other physical quantities on a generic

network.

Nevertheless, the standard percolation cannot encode all the features of such spreading processes, in

which the spreading rates depend on the properties of the nodes and the edges, and on the details of

the process. For instance, in the Internet, the connections between computers are real cables, thus the

transmission along them depends on their bandwidth; in the air-transportation network, the edges

are weighted with the number of available seats, that is a measure of the their capacity; in social and

contact networks as well, the importance of links is related to the type of relationships between the

individuals. It is clear that real processes are influenced by these factors.

According to this remark, we develop a general theory of spreading on networks, in which nodes and

edges are endowed with different spreading properties. In order to express the ability of an edge

(i, j) to transfer some physical quantities (information, energy, diseases, etc), we introduce an edge

transition probability Tij , that depends on the properties of the vertices i, j and of the edge (i, j) itself.

In addition, in real processes the nodes have different ability to spread, thus they should be supplied

with a node traversing probability qi. In this manner, the actual size of the giant component can be

affected by the non-optimal or non-homogeneous flow through the nodes and edges, the most general

model performing an inhomogeneous joint site-bond percolation. On the other hand, information about

simpler processes such as site percolation with inhomogeneous bonds (edges) or bond percolation with

inhomogeneous sites (nodes) can be easily obtained assuming, in turn, qi or Tij as uniform. In these

particular cases, we will specify them as node (q) or edge (T ) occupation probability (in agreement

with standard percolation processes).

This formalism fits very well the description of spreading phenomena on weighted networks, since we

can choose the transition probabilities to be functions of the weights (Tij = T (wij)). We can also define

a weighted giant component as the part of the giant component that is reached in the spreading process

and gives a measure of the functionality of the network. For instance, for the spreading of information,

it corresponds to the maximal subgraph that can bear and handle a large flow of information, ensuring

the global well-functioning of the network. In contrast, if we are dealing with epidemic spreading,

the weighted giant component corresponds to the maximal infected region reachable in the pandemic

regime. In both cases, topological giant component is reduced by introducing weights.

For the sake of simplicity, the rest of this section is devoted to discuss spreading phenomena in weighted

random networks, and the possible applications in the description of real processes. This is done fixing

qi = q and studying a site-percolation problem. On the other hand, the model of generalized spreading

phenomena on networks goes beyond the description in term of weighted networks and can be analyzed
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Figure 4.6: (A) Graphical representation of the Eq. 4.6. Fat lines indicate the contribution coming

from the unknown probability ρij that an edge (i, j) does not belong to the infinite cluster. The first

term on the right-hand side represents the contribution coming from the probability 1 − Tij that a

flow does not traverse the edge (i, j); the second term accounts for the probability that the edge (i, j)

is traversed times the unknown contribution ρjh of other edges attached to j. (B) Diagrammatic

representation of the self-consistent Eq. 4.7. Fat lines correspond to the unknown uniform probability

ρ({T }) that an edge does not lead to the giant component. Full lines mean that edges can be crossed,

with probability T , while the dashed edge corresponds to the contribution 1− T that an edge cannot

be crossed.

in a very general and abstract form. The general theory [84], by means of which the most relevant

results have been derived, is reported in the Appendix B, while a brief introduction to generating

functions in graph theory is reported in the Appendix A.

4.3.1 Generalized Molloy-Reed Criterion in Weighted Random Graphs

The idea of a percolation process in which the basic elements (nodes and edges) present inhomogeneous

properties goes back to the physical studies of conduction in resistor network models (see Ref. [156]

and references therein). A typical way to introduce disorder on the edges (or on the nodes) is that of

assigning to each of them a random number between 0 and 1, then removing all edges (nodes) in a

selected interval of values. Percolation properties are studied as functions of the fraction of remaining

edges (nodes) in the strong disorder regime [58, 164].

However, the percolation processes we want to describe is more general than the theory of random

resistor networks. The latter, indeed, corresponds to the case in which the edge transition probability

is a step function (the Heaviside θ(Tij−T0) for a reasonable value T0), so that transmission occurs only

along a fraction of the edges (with sufficiently high conductance) and, for those edges, it is optimal.

In other words, it corresponds to a bond percolation, as already noted in Ref. [188]. Here, we are

interested in a site percolation process in which, additionally, there is a quenched variable expressing

the probability of passing through an edge. This quenched probability rate is a function of the weights

along the edges, i.e. Tij = T (wij).

We use an intuitive derivation of the percolation criterion, that generalizes the (Bethe Approximation)

approach introduced by Cohen et al. in Ref. [80] for uncorrelated sparse random graphs. Let us call

ρij the probability that an edge in the network does not lead to a vertex connected via the remaining
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edges to the giant component (infinite cluster) and Tij the probability that a flow leaving the node i

passes trough the edge (i, j), reaching the node j. Both ρij and Tij are defined in the interval [0, 1].

In general, ρij depends on the transition probability Tij of the edge (i, j), through a term 1 − Tij ,

and on the probability that the node j, if reached, does not belong to the infinite cluster. This

contribution can be computed as the joint probability that each one of the remaining edges emerging

from j does not belong to the giant component. Assembling the different contributions, we get the

recursive expression (Fig. 4.6-A)

ρij = 1 − Tij + Tij

∏

h ∈ V(j)

h 6= i

ρjh , (4.6)

that contains a product of kj − 1 terms ρjh if kj is the degree of the node j and V(j) is its set of

neighbors. This recursive procedure is not closed, but the introduction of some hypotheses on the set

of transition probabilities {T } allows a statistical reformulation of Eq. 4.6.

Let us suppose that the transition probabilities are random variables with a given distribution pT , and

the average overall probability ρ that a randomly chosen edge does not belong to the giant component

depends only on some general properties of that distribution such as the mean, the variance, etc (i.e.

ρ = ρ({T })).
Note that in this section (as well as in Appendices A-B) we change notation with respect to Chapter 3,

in which the degree distribution is indicated as P (k); here, we use instead pk for the degree distribution.

By picking up an edge at random in a random graph, the probability that it is connected to an edge

of degree k is kpk

〈k〉 , where pk is the degree distribution of the graph. We can now write a self-consistent

equation for ρ({T }) (Fig. 4.6-B),

ρ({T }) = 1 − T + T
∑

k

kpk

〈k〉 ρ({T })k−1
, (4.7)

in which T is a realization of the independent and identically distributed (i.i.d.) random variables {T }
in the interval [0, 1]. Averaging both the members of the Eq. 4.7 on pT , we obtain that the probability

ρ depends only on the average value 〈T 〉, i.e. ρ({T }) = ρ(〈T 〉), and the equation becomes

ρ(〈T 〉) = 1 − 〈T 〉 + 〈T 〉
∑

k

kpk

〈k〉 ρ(〈T 〉)k−1
= I[ρ(〈T 〉)] . (4.8)

Apart from the trivial solution ρ = 1, another solution ρ = ρ∗ < 1 exists if and only if dI
dρ |ρ=1 ≥ 1.

The curve I[ρ], indeed, is positive in ρ = 0 (I[0] = 1 − 〈T 〉 + 〈T 〉p1/〈k〉 > 0), therefore dI
dρ |ρ=1 ≥ 1

means that it crosses the line f(ρ) = ρ in a point 0 < ρ∗ < 1. The condition on the derivative of the

r.h.s. of Eq. 4.8 corresponds to

〈T 〉 〈k
2〉 − 〈k〉
〈k〉 ≥ 1 . (4.9)

A generalization of the Molloy-Reed criterion [180] for the existence of a giant component in presence

of random weights on the edges immediately follows,

〈k2〉
〈k〉 ≥ 1 +

1

〈T 〉 , (4.10)

meaning that, when the transition probabilities are i.i.d. random variables, a giant component exists

if and only if the inequality is satisfied. The case of uniform transition probabilities is exactly the
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same, with uniform value T instead of the average value 〈T 〉. Note that, while in the case of perfect

transmission (Tij = 1) the usual formulation of the Molloy-Reed criterion is recovered [180], when

〈T 〉 < 1 the r.h.s. of Eq. 4.10 can grow considerably, affecting the possibility of observing percolation:

the smaller is the average transition probability, and the larger are degree fluctuations 〈k2〉 needed to

ensure the presence of a giant component.

For a random graph with poissonian degree distribution (i.e. pk = e−〈k〉〈k〉k/k!), the criterion in

Eq. 4.10 corresponds exactly to have 〈k〉 ≥ 1/〈T 〉. We show in Fig. 4.7-A the results of numerical

simulations for the giant component’s computation on an Erdös-Rényi random graph with N = 104

nodes and with random transition probabilities uniformly distributed in [a, b] with 0 ≤ a < b ≤ 1.

A giant component clearly appears when the mean connectivity 〈k〉 exceeds the inverse of mean

transmissibility value (b − a)/2. Considering different distributions (e.g. binomial distributions) for

the i.i.d. random variable T does not affect the results.

For heterogeneous graphs with broad degree distribution, the inequality in Eq. 4.10 is satisfied thanks

to the huge fluctuations of the node degrees ensuring the l.h.s. to be larger than 1 + 1/〈T 〉. In

particular, when the graph has power-law degree distribution pk ∼ mk−γ (2 < γ < 3, m is the

minimum degree), the fluctuations diverge in the limit N → ∞. In this case, the giant component

always exists if N is large enough. If γ > 3, the second moment is finite, and Eq. 4.10 provides the

following bound for the average transition probability necessary to have a giant component (computed

using the continuum approximation for the degree),

〈T 〉 ≥ γ − 3

γ(m − 1) + 3 − 2m
. (4.11)

The inequality is always satisfied for m ≥ 1 + 1/〈T 〉, while for m < 1 + 1/〈T 〉 it is satisfied when

γ ≤ 3+ m〈T 〉
1−(m−1)〈T 〉 . For m = 1, an infinite (uncorrelated) scale-free graph presents a giant component

of order O(N) only when γ ≤ 3 + 〈T 〉 ≤ 4. At γ = 3, logarithmic corrections should be taken into

account [80].

Actually, real networks are large but finite, and the second moment cannot diverge, thus we expect

that the condition is not always satisfied. This is clearly shown in Fig. 4.7-B, where we have reported

the size of the giant component for power-law random graphs as a function of the exponent γ for

different values of the average edge transition probability 〈T 〉. The size of the giant component is

dramatically affected by low transition probabilities. Now, the argument of Cohen et al. [80] can

be used to compute the threshold of site percolation with random disorder on the edges. If q is the

(uniform) node occupation probability in an uncorrelated random graph, then a randomly chosen

node, whose natural degree in case of q = 1 is k′, will assume a degree k ≤ k′ with probability

(

k′

k

)

qk(1 − q)
k′−k

, (4.12)

that means that the corresponding degree distribution pk(q) is related to the degree distribution

pk′(q = 1) by

pk(q) =

∞
∑

k′=k

pk′(q = 1)

(

k′

k

)

qk(1 − q)
k′−k

. (4.13)

It follows that 〈k〉q = q〈k〉q=1 and 〈k2〉q = q〈k2〉q=1+q(1−q)〈k〉q=1, that introduced into the expression

Eq. 4.10 for the Molloy-Reed criterion gives the expression of the threshold value for site percolation,

qc =
1

〈T 〉
〈k〉

〈k2〉 − 〈k〉 . (4.14)
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Figure 4.7: (A) Relative size of the giant component Gc vs. average degree 〈k〉 in an Erdös-Rényi

random graph in which the edge transition probabilities are uniformly random distributed with mean

value 〈T 〉. Simulations are performed on a sample of 100 graphs with N = 104 nodes. The different

curves refer to different values of average transition probability: 〈T 〉 = 1 (circles), 0.75 (squares), 0.5

(up triangles) and 0.25 (down triangles). (B) Relative size of the giant component Gc vs. the exponent

γ in an power-law graph in which the edge transition probabilities are uniformly random distributed

with mean value 〈T 〉. Simulations are performed on a sample of 100 graphs with N = 104 nodes, and

minimum degree m = 1. The different curves refer to different values of average transition probability:

〈T 〉 = 1 (circles), 0.75 (squares), 0.5 (up triangles) and 0.25 (down triangles).

Eq. 4.14 shows that decreasing the average transmission capacity of the edges (i.e. the edge transition

probability), the value of node occupation probability necessary to ensure percolation increases.

The expression of the percolation threshold in Eq. 4.14 is not very general, since it is correct only

for randomly distributed weights (and thus transition probabilities). On the contrary, in many real

networks (e.g. the WAN) the weights are correlated with the degree, wij = w(ki, kj).

Consequently, a natural generalization is that of considering T = Tkikj
. Of course, in this case the

previous derivation breaks down, since two types of correlations have to be considered: correlations

between edge transition probabilities and degree, and degree-degree correlations. The correct approach,

reported in the Appendix B, is that of using the generating functions formalism in the framework of

Markovian correlated random graphs (i.e. with only degree-degree correlations) [43].

We consider here the simpler case in which the transition probability depends only on the degree of the

departure node (i.e. Tij = Tki
). The self-consistent equation 4.7 can be straightforwardly generalized

to consider the case T = Tk, obtaining the following expression for the percolation threshold,

qc =
〈k〉

〈k2Tk〉 − 〈kTk〉
. (4.15)

The striking property is that, for particular forms of the transition probability, a finite value for the

percolation threshold can be restored also in infinite scale-free networks. We will investigate this case

and other possible situations in the following section.

4.3.2 Examples and Numerical Simulations

The functional dependence of the transition probabilities {T } is strongly related to the details of

the system and to the type of spreading process. Therefore, in absence of hints from studies of
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Figure 4.8: Size Nq/N of the giant component Gg as function of the fraction q of occupied vertices for

〈T 〉 = 0.25, 0.5, 0.75, 1 for an Erdös-Rényi random graph (A) with N = 105 vertices and 〈k〉 = 10 and

a power-law random graphs (B) with same size, exponent γ = 2.3. All curves have been averaged over

100 realizations. The predicted values of qc = 0.4, 0.2, 0.133, 0.1 are well verified in the Erdös-Rényi

graph by the values of q at which Nq ∼ O(log N). The power-law graph gives slightly worse results,

but still in agreement with the theoretical values qc = 0.387, 0.20, 0.19, 0.1 (that are indicated by

arrows on the curves).

real data about spreading processes on networks, the present section is devoted to highlight some

simple examples of reasonable functional forms for the transition probability, and to illustrate their

effects on the percolation condition. We perform our analysis on two main classes of random graphs:

homogeneous graphs, in which the connectivity distribution is peaked around a characteristic degree

value, and heterogeneous graphs, whose degree distribution is broad, with very large fluctuations in

the degree values.

Random Transition Probabilities - Taking randomly distributed transition probabilities

Tij (and weights) can appear unrealistic in technological networks, but it may be interesting to model

spreading processes on some very disordered network. We have checked the validity of Eq. 4.14

performing simulations on an Erdös-Rényi random graph with 〈k〉 = 10 and on a power-law random

graph with exponent γ = 2.3. Both graphs have N = 105 nodes and the transition probabilities

are assigned randomly between 0 and 1. Fig. 4.8-A reports the size of the giant component of the

Erdös-Rényi graph as function of the fraction q of occupied vertices for 〈T 〉 = 0.25, 0.5, 0.75, 1; the

predicted values qc = 0.4, 0.2, 0.133, 0.1 are well reproduced by simulations. The same measures for a

power-law graph are shown in Fig. 4.8-B. The curves of the simulations are in good agreement with

the theoretical values of the percolation threshold qc ≃ 0.387 (for 〈T 〉 = 0.25), 0.20 (for 〈T 〉 = 0.5),

0.19 (for 〈T 〉 = 0.75), 0.1 (for 〈T 〉 = 1.0). 1

Single-vertex dependent transition probability - The assumption of transition probabilities

T = Tk yields different results depending on the exact functional dependence on the degree of the

initial vertex. A first example is that of a monotonously increasing function of the degree, that

1The estimation of the threshold value, as explicitly shown in Ref. [84], is a very difficult task in power-law graphs,

given that the shape of the curves decreases with constant convexity, converging very smoothly to zero. Indeed, the

probability of nodes with maximum degree is O(1/N), thus in a finite graph their frequency depends on the size of the

system. Since the flows are clearly unbalanced in favor of large degree nodes, finite size effects are more relevant on

these types of processes.
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Figure 4.9: (A) Critical density qc of nodes ensuring the existence of a giant component Gg as a

function of the exponent γ for a power-law graph in which the transition probability function is

single-vertex depending with the form Tk ∼ 1 − exp(− ak
〈k〉 ). The figure reports the theoretical curve.

The parameter a controls the saturation to 1 for highly connected nodes: the cases a = 0.2 (circles)

and a = 1 (squares) are shown. For large values of the parameter a, the curves rapidly converge to

the limit behavior of homogeneous percolation (limit a → ∞). For a < 1, the curves shift from this

limit, but in the range 2 < γ < 3 diverging fluctuations ensure the percolation. (B)-(C) The curves

Nq/N obtained by numerical simulations on power-law random graphs of size N = 105 and exponent

γ = 2.4 and γ = 2.8 for the two values of a = 0.2, 1. The arrows indicate the positions of the threshold

predicted using the theoretical calculation of Ref. [84].

saturates to 1 at large k values: we consider Tij = Tki
∼ 1 − exp(− ak

〈k〉 ), that can be applied also to

infinite graphs. The parameter a controls the convergence to 1. For large scale-free networks, however,

the mere presence of a saturation, rather than its rapidity, is sufficient for the system to behave as in

the standard percolation, showing that graph’s heterogeneity ensures a zero percolation threshold. In

general, from Eq. 4.15 simple calculations lead to the expression of the threshold for site percolation

(see Ref. [84]). Its behavior is sketched in Fig. 4.9-A as a function of γ and for some values of the

parameter a. It shows that the critical fraction of occupied nodes qc is exactly 0 for 2 < γ < 3. Also

for γ ≥ 3, the behavior is qualitatively the same as for standard percolation on scale-free networks.

The reason is essentially that a transition probability converging to 1 for highly connected nodes does

not affect the network’s properties if the network is infinite, because there is always a considerable

fraction of nodes with optimal transmission.

This condition is not trivially satisfied by finite graphs, and the presence of a cut-off in the degree

can have a strong influence on the network’s functional robustness. Two kinds of cut-offs on power-

laws have been largely studied in the literature: an abrupt truncation of the degree distribution at a

maximum value κ ≈ N
1

γ−1 , or a natural exponential cut-off, i.e. pk ∼ k−γe−k/κ. Without entering in

the details of the analytic and numerical investigation, the main result is that the introduction of a

cut-off actually reduces the effects of degree fluctuations, producing finite percolation threshold also

in the range 2 < γ < 3.

However, this choice of edge inhomogeneity does not seem to enrich the scenario obtained by standard

percolation, though the case of slow convergence (a < 1) produces non negligible effects on finite

systems (panels B and C in Fig. 4.9). The structural properties of homogeneous graphs, on the

contrary, are always deeply affected by this type of transition probability, expecially when perfect
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Figure 4.10: (A) Fraction qc of occupied nodes required to have a giant component as a function of

the exponent γ for a power-law graph in which the transition probability is the single-vertex function

Tk ∼ k−α, with exponent 0 < α < 1. The curves report the values of qc computed by Eq. 4.16. All

curves for α = 0.25 (circles), 0.5 (squares) and 0.75 (triangles) show that the percolation threshold is

increased compared to the homogeneous result (dashed line), also for an infinite graph. In particular, a

finite threshold larger than 0 appears also in the range 2 < γ < 3. (B) Threshold value qc of occupied

nodes as a function of the parameter α for power-law graphs with cut-off κ = 102 and exponent

γ = 2.3 (full line and circles) and γ = 2.6 (dashed line and crosses). The symbols (circles and crosses)

are results from simulations on random graphs of size N = 105 (average over 100 realizations); the

lines are the corresponding theoretical predictions.

transmission is reached beyond the peak of the degree distribution (a < 1) [84]. Another wide class

of transition probabilities contains those converging to zero with increasing degree. At a first glance,

it seems a very unphysical condition, but the problem can be inverted asking which is the maximal

decay in the degree dependence still ensuring site percolation.

For single-vertex transition probability Tk, Eq. 4.15 implies that, independently of the degree distribution,

a graph does not admit percolation if Tk decays as T1/kα with α ≥ 1. Indeed, by substitution,

qc = 〈k〉/[T1(〈k2−α〉 − 〈k1−α〉)], that is larger than 1 because 〈k〉 > 〈k2−α〉 ≥ 〈k1−α〉, and T1 < 1

(assuming 〈k〉 ≥ 1). This is actually equivalent to the result presented in Ref. [188].

Since α = 0 corresponds to standard percolation, we are interested in the intermediate case 0 < α < 1.

In scale-free networks the percolation threshold is computed by series summation,

qc =
ζ(γ − 1)

ζ(γ + α − 2) − ζ(γ + α − 1)
, (4.16)

that has been plotted in Fig. 4.10-A as a function of γ for different values of α between 0 and 1. The

curves show that a transition probability moderately decreasing with the degree can induce power-

law graphs with 2 < γ < 3 to present a finite percolation threshold. However, many real networks

(Internet, WWW, etc) have a power-law degree distribution with exponent lower than 2.5, for which

the giant component persists even for relatively large α (at least in the approximation of infinite

systems). Nevertheless, the giant component is reduced in finite systems or in presence of a cut-off

on the degree as shown by the results of simulations reported in Fig. 4.10-B. The figure displays

the behavior of the threshold value qc as a function of the parameter α for two different exponents

γ = 2.3, 2.6. The lines are the theoretical predictions for (infinite) systems with cut-off κ = 102, the

points are numerical results on finite systems with N = 105 and same cut-off. The threshold values qc
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for finite sizes are reasonably smaller compared to the theoretical predictions for infinite graphs with

the same cut-off on the degree distribution.

4.3.3 Discussion and Conclusions

This collection of examples is far from being complete, it should rather represent a way to better

understand potential applications of calculations and formulae we have presented. Among other

possible expressions for the transition probability, we mention non-monotonous or peaked degree-

dependent transition probabilities, with an optimum of transmissibility for (not necessarily large)

characteristic values of the degree. The actual spreading of a virus on the Internet might have such

a behavior. Highly connected nodes have large exchanges of data with their neighbors, for that they

should be potentially the nodes with highest transmission capability. On the other hand, there is a

common awareness of their importance, thus they are better protected and controlled, so that the

effective transition probability for the spreading of viruses from these nodes is strongly reduced. Very

low-degree nodes are less protected but also less exposed to the transmission (their data exchanges

are limited). Such scenario suggests that also non-monotonous transition probabilities are actually

interesting in the study of dynamical processes on networks.

In conclusion, this section has been devoted to the definition of a generalized percolation with edge

transition probabilities that can be used to describe spreading processes. In the case of weighted

networks, the edge transition probabilities should depend on the weights. We have obtained two

important results:

• When weights and degree are not correlated, it is reasonable to assume that also the edge

transition probabilities are randomly distributed (not strictly uniformly random). It follows

that when the percolation threshold is present in the topological description, it is increased; but

it cannot be restored when it is topologically absent.

• Real systems present correlations between weights and degree, thus it is reasonable to include

correlations also in the expression for the edge transition probability. In this case, it is possible

to restore a finite percolation threshold, even when it is topologically absent.



Chapter 5

Naming Game: a model of social

dynamics on networks

5.1 Introduction

In Chapters 3-4, we have studied the structural and functional properties of complex networks,

supporting the phenomenological analysis of real infrastructure networks with a numerical and analytical

investigation of theoretical models. In such a framework, dynamical processes on networks, like

exploration and spreading models, have been principally conceived as tools, by means of which a

better characterization of the underlying networks properties can be achieved.

We turn now our attention to a more direct investigation of dynamical phenomena on complex

networks, focusing on the field of social networks, and in particular on models of social interactions

between individuals.

A theoretical description of social interactions at the individual level is a very complicated task, that

is studied by sociologists and goes beyond the purpose of any statistical physics approach. Though

it is not possible to reproduce or predict human decisions and actions, when looking at a global

scale, social interactions are much simpler to describe. In this case, we do not need to understand

all details of single individual behaviors, but only few collective aspects and their relation with the

other global properties of the population under study. In particular, the large scale observation of

social interactions reveals the existence of striking collective phenomena, i.e. the mechanism, based

on individual decision processes, leading to the appearance of an overall homogeneous behavior or

some other global property in a population of agents.

The standard methods of statistical physics are very appropriate to study such collective behaviors,

neglecting details and retaining only few general ingredients observed in real social interactions. For

this reason, physicists have put forward a large number of theoretical models of social dynamics,

borrowing a suite of statistical methods from the theory of interacting particles systems [172, 96, 111,

42]. The largest part of these models deals with the study of opinion formation and strategic games.

For instance, the Ising majority rule has found an unexpected field of application in problems of

opinion formation [75, 179, 125, 126]. On the same subject, many other models have been proposed,

such as the Voter model [172, 159, 161, 36, 227, 122], the Sznajd-Weron model [235], the Axelrod

model for the dissemination of culture [13], and their variants (e.g. the models proposed by Deffuant

et al. [94] and by Krause and Hegselmann [142]). Other types of social dynamics involve diffusion or

93
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spreading processes (e.g. the diffusion of knowledge [81], rumors [83], innovations [214] or ideas [37],

etc), and the wide field of strategic games (e.g. the minority game [73], the prisoner’s dilemma [209],

etc).

The behavior of these models was usually studied on regular topologies, even though it is clearly

inappropriate for representing the topology of social interactions. For this reason, for a long time

models of social dynamics have been regarded more as academic exercises than as systems with real

potential applications. The growing interest for networks science has recently led to a better knowledge

of the topological properties of real social groups (Section 2.3), and to the formulation of network

models reproducing such properties (Section 2.4). Consequently, many traditional models of social

dynamics have been reconsidered, in order to be studied in the new, more appropriate, framework of

complex networks.

In this chapter, we report the main results of a series of publications [20, 90, 91, 92, 21], in which

we have studied a recently proposed model of social dynamics, called Naming Game, investigating

its dynamical behavior on both regular topologies and complex networks. As we will see in the

next section, this model is conceived to grasp the self-organized mechanisms leading to the onset of a

communication system in groups of individuals and, more in general, to describe decision processes

involving pairwise interactions and negotiation, like those underlying the opinion spreading. In addition,

with respect to other models of social dynamics, the evolution rules of the Naming Game present new

ingredients, whose role will be elucidated along the chapter. They can be summarized in the following

points:

• the introduction of memory in the individual dynamics;

• the presence of a feedback interaction with an asymmetric interaction rule;

• an a priori unlimited number of states (or words, opinions, etc) that is dynamically determined

during the system’s evolution.

The resulting dynamics is rich of interesting properties, some of them strongly depending on the

underlying topological properties of the system. Hence, the main motivation of the work is that

of studying the impact of different topological properties on the local and global dynamical patterns

generated by the Naming Game and on the process leading to the emergence of collective phenomena.

The present chapter is organized as follows. Section 5.2 contains the definition of the model and

the analysis of the mean-field case. A topology in which agents are allowed to interact with all the

others is not realistic; social environments are, on the contrary, more reliably modeled by means of

networked structures, that can better account for the disparity of social relations. Thus, in Section 5.3,

we provide an exhaustive analysis of the Naming Game dynamics on various network models. We

start with low-dimensional lattices and small-world networks, on which some analytical results are

available. Then we turn our attention to general complex networks, looking in particular at the effects

of the node heterogeneity. The last part of the Section 5.3 is devoted to study real complex networks,

whose dynamics is often surprisingly different to those observed on computer generated networks.

The internal activity of the agents governing the decision process is described in Section 5.4, while

the conclusions are exposed in Section 5.5. We refer to the Appendices C-D for the analysis of some

more technical issues that are omitted in the main text.
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5.2 Naming Game: General features

Social interactions are based on the existence of a communication system among the agents, who are

able to understand each other by means of common linguistic patterns or, more generally, by means

of a common vocabulary of symbols.

Such a communication system is the result of a self-organized process in which individuals select

specific symbols (words) and associate them to concepts and ideas (objects). The emergence of a

shared lexicon inside social groups and communities of people is very likely to be driven by simple

criteria, like popularity, imitation, negotiation, and agreement. When a new concept is introduced,

people refer to it using several different names or words. These words start spreading among the

population, competing one against the other, until the choice of one of them is taken (with a sudden

transition or with a long process) and everyone uses the same word (or symbol, etc) [166, 56, 145].

This kind of dynamics has recently become of broad interest after the diffusion of a new generation

of web-tools which enable human users to self-organize a system of tags in such a way to ensure

a shared classification of information about different arguments (see, for instance, del.icio.us or

www.flickr.com and Refs. [72, 133]). Another application concerns global coordination problems in

artificial intelligence, where a group of artificial embodied agents moving in an unknown environment

have to exchange informations about the objects they gradually discover. The emergence of consensus

about the objects names allows to establish a communication system. A practical example of this type

of dynamics is provided by the well-known Talking Heads experiment [230, 231], in which embodied

software agents develop their vocabulary observing objects through digital cameras, assigning them

randomly chosen names and negotiating these names with other agents.

In other words, the process leading to the emergence of a communication system in a population

of agents (e.g. a social network) is an example of social collective phenomenon with polarization of

individual opinions or ideas. On the base of these observations, a new field of research called Semiotic

Dynamics has been developed [232], that investigates by means of simple models how (linguistic)

conventions originate, spread and evolve over time in a population of agents endowed with simple

internal states and local pairwise negotiation interactions.

The fundamental model of Semiotic Dynamics is the so-called Naming Game [229], in which a

population of agents, interacting by pairwise negotiation rules, try to assign a common name to

an object. Moreover, this model can be studied as an alternative model of opinion formation, since in

place of names to be assigned to an object we can think to the competition of different opinions on a

given topic.

The next section is devoted to the description of the Naming Game model, while the subsequent one

discusses the mean-field case.

5.2.1 The Model

A minimal model of Naming Game has been put forward by Baronchelli et al. in Ref. [22] to reproduce

the main features of Semiotic Dynamics and the fundamental results of adaptive coordination observed

in the Talking Heads experiment. The minimal Naming Game model consists of a population of N

agents observing a single object, for which they invent names that they try to communicate to one

another through pairwise interactions, in order to reach a global agreement. The agents are identical

and dispose on an internal inventory, in which they can store an a priori unlimited number of names

(or opinions). All agents start with empty inventories. At each time step, a pair of neighboring agents

is chosen randomly, one playing as “speaker”, the other as “hearer”, and negotiate according to the
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Figure 5.1: Agents interaction rules. Each agent is described by its inventory, i.e. the repertoire of

known words. The speaker picks up at random a name in its inventory and transmits it to the hearer.

If the hearer does not know the selected word the interaction is a failure (top), and it adds the new

name to its inventory. Otherwise (bottom), the interaction is a success and both agents delete all

their words but the winning one. Note that if the speaker has an empty inventory (as it happens at

the beginning of the game), it invents a new name and the interaction is a failure.

following rules (see also Fig. 5.1):

• the speaker selects randomly one of its words and conveys it to the hearer;

• if the hearer’s inventory contains such a word, the two agents update their inventories in order

to keep only the word involved in the interaction (success);

• if the hearer does not possess the uttered word, the latter is added to those already stored in

the hearer’s inventory (failure), i.e. it learns the word.

Note that the time unit corresponds to the pairwise interaction, in contrast to usual statistical

mechanics models in which it corresponds to N interactions. However, in order to compare the

results for the present dynamical rule with well-known results of other models, in many cases, we will

use a rescaled time t/N .

Before entering in the detailed description of the dynamics, it is worthy to specify some visible

differences of the Naming Game with other commonly studied models of social dynamics and, in

particular, of opinion formation [235, 94, 13, 75, 179, 172].

• Each agent can potentially be in an infinite number of possible discrete states (words, names,

opinions), and the maximum number of states depends on the dynamical evolution itself. This is

in contrast with traditional models (Voter, Potts, etc) in which the number of states is a fixed

external parameter taking finite (and usually small) values.

• The two-steps decision process is realistic: an agent can accumulate in its memory different

possible names for the object, waiting before reaching a decision. This feature is probably at
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the origin of the surface tension that emerges from the dynamics in low-dimensional lattices (see

sec. 5.3) and of the non-poissonian behavior at the agents level, a property that will be discussed

in Section 5.4.

• Each dynamical step can be seen as a negotiation between speaker and hearer, with a certain

degree of stochasticity, that is absent in deterministic models such as the Voter model. The

stochastic component is however of a different nature compared to that of standard Glauber

dynamics used in majority rule models [129], since here it comes from an internal selection

criterion, and involves only the speaker, without affecting the (deterministic) decision process

of the hearer.

A second important remark concerns the random extraction of the word in the speaker’s inventory.

Most previously proposed models of semiotic dynamics attempted to give a more detailed representation

of the negotiation interaction assigning weights to the words in the inventories. In such models, the

word with largest weight is automatically chosen by the speaker and communicated to the hearer.

Success and failures are translated into updates of the weights: the weight of a word involved in a

successful interaction is increased to the detriment of those of the others (with no deletion of words);

a failure leads to the decrease of the weight of the word not understood by the hearer. An example of

a model including weights dynamics can be found in Ref. [170] (and references therein). For the sake

of simplicity the minimal Naming Game avoids the use of weights, that are apparently more realistic,

but their presence is not essential for the emergence of a global collective behavior of the system.

An important point needs to be stressed: while in the original experiments the embodied agents could

observe a set of different objects, in the minimal Naming Game all agents refer to the same single

object. This is actually possible only if we assume that homonymy is excluded, i.e. two distinct objects

cannot have the same name. Consequently, in this model, all objects are independent and the general

problem reduces to a set of independently evolving systems, each one described by the minimal model.

In more realistic situations, however, the occurrence of homonymy cannot be neglected.

5.2.2 Mean-field case

In the original work on the minimal Naming Game model [22], Baronchelli et al. have focused on the

mean-field case, in which the agents are placed on the vertices of a complete graph, corresponding to

study a population in which all pairwise interactions are allowed. By means of numerical simulations,

they investigated the overall dynamics of the model, monitoring along the evolution three main global

quantities:

• the total number Nw(t) of words in the system at the time t (i.e. the total size of the memory);

• the number of different words Nd(t) in the system at the time t;

• the average success rate S(t) as function of the time, i.e. the probability, computed averaging

over many simulation runs, that the chosen agent gets involved in a successful interaction at a

given time t.

Note that all these quantities are zero at the beginning of the evolution, when all inventories are empty,

while they reach a stable value when the system enters the absorbing state corresponding to a global

agreement. In fact, it is possible to show, using a sort of Liapunov functional, that the mean-field

model always converges to the absorbing state (consensus) [22]. The consensus state is defined by

observing Nd = 1 and Nw = N (moreover it implies S = 1).
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Figure 5.2: Evolution of the total number of words Nw (top), of the number of different words Nd

(center), and of the average success rate S(t) (bottom), for a mean-field system (black circles) and

low-dimensional lattices (1D, red squares and 2D, blue triangles) with N = 1024 agents, averaged

over 103 realizations. The inset in the top graph shows the very slow convergence in low-dimensional

lattices.

The temporal evolution of the three main quantities is depicted in Fig. 5.2 (circles). At the beginning,

many disjoint pairs of agents interact, with empty initial inventories: they invent a large number

of different words, that start spreading throughout the system, through failure events. Indeed, the

number of words decreases only by means of successful interactions. In the early stages of the dynamics,

the overlap between the inventories is very low, and successful interactions are limited to those pairs

which have been chosen at least twice. Since the number of possible partners of an agent is of order

N , it rarely interacts twice with the same partner, the probability of such an event growing as t/N2.

Note that this remark is in good agreement with the initial behavior of the success rate S(t) depicted

in Fig. 5.2. The initial trend of S(t) (black circles) is linear with a slope of order 1/N2 (whose correct

value has been computed in Ref. [22]).

In this phase of uncorrelated proliferation of words, the number of different words Nd invented by

the agents grows, rapidly reaching a maximum that scales as O(N). Then Nd saturates, displaying

a plateau, during which no new word is invented anymore (since every inventory contains at least

one word). The total number Nw of words stored in the system has a similar behavior, but it keeps

growing after Nd has saturated, since the words continue to propagate throughout the system even if

no new one is introduced.

The peak of Nw has been shown to scale as O(N1.5) [22], meaning that each agent stores O(N0.5)

words. This peak occurs after the system has evolved for a time tmax ∼ O(N1.5). In the subsequent

dynamics, strong correlations between words and agents develop, driving the system to a rather fast

convergence to the absorbing state in a time tconv ∼ O(N1.5).

The S-shaped curve of the success rate in Fig. 5.2 summarizes the dynamics: initially, agents hardly

understand each others (S(t) is very low); then the inventories start to present significant overlaps, so
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Figure 5.3: Graphical representation of the four possible terms contributing to the rate equation for

the number of undecided agents and the order of magnitude of the term. Note that, around tmax,

the fraction nu(t)/N ≃ 1, and then it decreases to zero; therefore, in principle, all terms play a role

during the evolution.

that S(t) increases until it reaches 1, and the communication system is completely set in. Despite the

apparent simplicity of the dynamics, it is very difficult to study this model analytically, because the

interaction rule is not totally stochastic (the hearer’s moves are deterministic) and the update of the

inventories after a success is highly non-linear. Nevertheless, the authors of Ref. [22] provided several

qualitative theoretical arguments in order to explain the main properties of the population’s global

behavior. We consider here only the argument for the scaling behavior of the maximum number of

words in the system.

From the simulations, we know that the maximum number of words scales as a power of the population

size N , therefore let us assume that, at the maximum, the number of words per agent scales as cNα,

for a certain positive value of the exponent α, and a constant c ∼ O(1). Note that α ≤ 1, since the

number of different words is at most O(N).

In order to determine the value of α, we use the fact that, at the maximum, the first temporal

derivative of the total number of words vanishes, i.e. dNw(t)
dt ≃ 0. On the other hand, the probability

that a word chosen by the speaker is present in the inventory of the hearer is approximately cNα

N in

absence of correlations. We get the following rate equation [22],

dNw(t)

dt
∝
(

1 − cNα

N

)

− cNα

N
2cNα . (5.1)

The first term at the r.h.s. of Eq. 5.1 is the gain term (in case of a failure), while the second term

represents the loss of 2cNα words in case of successful interaction.

At the higher order in powers of N , i.e. neglecting terms decreasing as α − 1, the balance condition
dNw(t)

dt ≃ 0 is satisfied if α = 1/2. This results proves that the maximum number of words in the

system scales as N3/2. From the same argument we can as well obtain the scaling of the time at which

the peak occurs, tmax ∼ N3/2.

The study of the convergence time is much more difficult, and no theoretical arguments have been

proposed yet (except for some results on the limit of infinite dimensional lattices reported in Section 5.3.1).
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Figure 5.4: A naive representation (left) of the mean-field approximation of pairwise interactions:

we focus on the speaker’s behavior, substituting single hearer’s dynamics with a mean-field average

quantity. Therefore, only speakers contributions to the rate equation for nu(t) have to be considered,

that is provided by only two possible interactions (right). We can neglect the first term, in which the

speaker has only one word, because it does not change the number of undecided nodes. The second

term, that diminishes of one unit nu(t), is the only contribution to Eq. 5.2 in this rough approximation.

It is however possible to write down a very naive argument for the scaling (with the size N) of

the convergence time, i.e. tconv ∼ O(N3/2). This argument does not want to be rigorous, but its

importance is principally that of showing which kind processes lead the system to a consensus state,

justifying the observed behaviors.

Let us consider the number nu(t) of agents with more than one word in the inventory (we denote

them as undecided agents), around the peak in the number of words nu ≃ N , while at the convergence

nu ≃ 0. We can now study the way the system approaches the consensus writing a rate equation for

this quantity.

According to the actual pairwise interaction rule of the Naming Game, there are many different

contributions that should be taken into account (see Fig. 5.3). Moreover, the negotiation process

introduces correlations related to the feedback mechanism in case of success (i.e. both the speaker and

the hearer update the inventory). On the other hand, in a mean-field system, the set of words stored

in the inventories should be approximately the same for all agents, suggesting to neglect correlations

and focus on the behavior of a single node subjected to the average effect of the rest of the system.

Since the hearer’s interaction rule is strictly deterministic, while the speaker chooses randomly in its

inventory, it seems more reasonable to consider the (mean-field) average on the hearer’s term.

We can now write down an equation for the number of undecided speakers nu(t). First, each node is

chosen as speaker or hearer with the same probability, thus along the temporal evolution all nodes will

play as speakers and the equation can be considered to give a rough but correct approximation of the

real dynamics. Then, the four types of interactions depicted in Fig. 5.3 can be grouped in only two

terms (see Fig. 5.4): one in which the speaker is an undecided node, the other in which the speaker

has only one word into the inventory. The latter case do not contribute to the rate equation for nu(t),

because in case of both success and failure the number of undecided speakers does not change. The

only significant contribution is the second term in Fig. 5.4, in which nu(t) is decreased by 1 with a

fixed probability.
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The naive rate equation for the number of undecided agents reads

dnu(t)

dt
∝ −nu(t)

N
S(t) , (5.2)

in which nu(t)
N is the probability of choosing an undecided agent as speaker, and S(t) is the success

rate, i.e. the average probability of having a successfull interaction. The functional form of the success

rate is not theoretically known, but we see from Fig. 5.2 that it varies very slowly after the peak until

the convergence process sets in, then it shows a super-exponential saturation to 1, being enhanced by

the decrease of the number of redundant words. Using numerical results for S(t) and nu(t) we have

checked that the relation in Eq. 5.2 is in fact approximately satisfied.

According to this picture, Eq. 5.2 sheds light on the type of self-accelerating cascade process leading the

system to the absorbing state. Just before the peak of Nw(t), the success rate increases only linearly

as t/N2, then it slows down before the sudden acceleration leading to the convergence; therefore after

the peak S(t) ∼ O(1/
√

N). This result can be obtained also recalling that the average probability of

success (i.e. the success rate) is given by the ratio between the average inventory size and the number

of different words present in the system. At the beginning of the convergence process, just after the

peak, Nd(t) is almost constant while the average inventory size is slightly decreasing (starting from

O(
√

N)), i.e. S(t) ∼ O(1/
√

N). Then both these quantities start to decrease until they reach 1 (at

the convergence).

Solving Eq. 5.2 in the temporal range just after tmax, where S(t) ∼ O(1/
√

N) varies very slowly, we

realize that the system has already entered the convergence process, that is approximately exponential

with characteristic time of order N3/2 (justifying the observed scaling). However, this exponential

decrease immediately triggers the growth of the success rate, so that the global convergence becomes

a self-enhancing process that results into a super-exponential approach to the absorbing state.
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5.3 The Role of the Topology

The mean-field case is, from many points of view, rather unrealistic. The agreement process described

by the Naming Game model is, indeed, an example of social dynamics, that is likely to take place on

more realistic topological structures like those characterizing social networks. We expect the topology

to have an effect on the dynamics, in particular on the time required to reach the absorbing state and

on the process of words propagation. It is thus interesting to study the Naming Game on different

topologies, expecially on complex networks, whose structure presents properties that are typically

observed in social environments.

Studies of dynamical processes on complex networks showed that the main properties governing the

overall dynamics are the small-world property and the presence of the hubs in heterogenous networks;

it is thus important to understand which is the impact of these properties on the dynamics. For this

reason, we start analyzing, in Section 5.3.1, the behavior of the Naming Game on low-dimensional

lattices, which we prove to be governed by coarsening dynamics; then we show that the presence

of topological shortcuts (i.e. the smallworld property) is responsible for a crossover from a slowly

converging process to a faster one (Section 5.3.2). Finally, in Section 5.3.3, a survey of the behavior

of the Naming Game on complex networks is considered, giving special attention to the role played

by the hubs in heterogeneous topologies.

The behavior of the Naming Game on different topologies has recently attracted the attention of

researchers in the field of A.I., who are interested in knowing which topology ensures the best trade-off

between a fast convergence to consensus and an optimization of the required memory per agent. For

this reason our work is expected to be relevant for the application of similar models to the description

and/or modeling of learning processes of robots [155, 151].

5.3.1 Coarsening dynamics on low-dimensional lattices

When the Naming Game is embedded in a regular d-dimensional lattice, the agents interact only with

their 2d neighbors, and the overall dynamical properties turn out to be very different compared to the

mean-field case. In particular, the time required by the system to reach the global consensus displays

a different scaling with the size N , and the effective size of the inventories is considerably diminished.

Actually, the existence of different dynamical patterns are clearly visible in Fig. 5.2, where we have

reported the curves for the total number of words Nw(t), the number of different words Nd(t) and the

success rate S(t) in the cases of mean-field topology (circles), one-dimensional lattice (squares) and

two-dimensional lattice (triangles).

At the early stages of the dynamics, we observe a sharp growth of the success rate, meaning that

agents easily find a local agreement with their neighbors; then, the dynamics seem to slow down and

the convergence is reached in a much larger time with respect to the mean-field. We know that, in the

initial phase, the success rate is equal to the probability that two agents that have already played are

chosen again, and is proportional to t/E, where E is the number of possible interacting pairs (i.e. the

edges). In the mean-field, E ∝ N2, while in finite d-dimensional systems E ∝ Nd, explaining for the

observed slopes of S(t) (Fig. 5.2): this quantity grows N times faster in finite dimensions. At larger

times, the eventual convergence is much slower in finite dimensions than in mean-field.

The curves for Nw(t) and Nd(t) display in all cases a sharp increase at short times, a maximum for

a given time tmax and then a decay towards the consensus state in which all agents share the same

unique word, reached at tconv. The short time regime corresponds to the creation of many different

words by the agents. After a time of order N , each agent has played typically once, and therefore
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Figure 5.5: Scaling of the time at which the number of words is maximal, and of the time needed to

obtain convergence, in 1 and 2 dimensions.

O(N) different words have been invented (typically N/2). In mean-field, each agent can interact with

all the others, so that it can learn many different words; in contrast, in finite dimensions words can

spread only locally, and each agent has access only to a finite number of different words. The total

memory used scales as N , and the time tmax to reach the maximum number of words in the system

scales as Nαd , with α1 = α2 = 1 (Fig. 5.5). No plateau is observed in the total number of distinct

words since coarsening of clusters of agents soon starts to eliminate words. Furthermore, the system

reaches the consensus in a time tconv that grows as Nβb with β1 ≃ 3 in one dimension and β2 ≃ 2 in

two dimensions (while in the mean-field case βMF ≃ 1.5).

In Fig. 5.6, we have represented a typical evolution of agents on a one-dimensional lattice, by displaying

one below the others a certain number of (linear) configurations corresponding to successive equally

separated temporal steps. Each agent with a unique word in memory is presented by a colored point,

while agents with more than one word in memory are shown in black. The figure clearly shows the

growth of clusters of agents with a unique word by diffusion of interfaces made of agents with more

than one word in the inventory. The fact that the interfaces remain small is however not obvious a

priori, and requires a deep analytical investigation that is presented in Appendix C.

The results exposed in Appendix C are confirmed by numerical simulations as illustrated in Fig. 5.7:

we have found that the probability P(x, t) to find an interface in position x at time t is a Gaussian

around the initial position, while the mean-square distance reached by the interface at time t follows

the diffusion law 〈x2〉 = 2Dexpt/N , with experimental diffusion coefficient Dexp ≃ 0.224.

The dynamical evolution of clusters in the Naming Game on a one-dimensional lattice can be described

as follows: at short times, pairwise interactions create O(N) small clusters, divided by O(N) thin

interfaces (see the first lines in Fig. 5.6). The interfaces then start diffusing. When two interfaces

meet, the cluster situated in between the interfaces disappears, and the two interfaces coalesce. Such

a coarsening leads to the well-known growth of the typical size ξ of the clusters as t1/2. The density

of interfaces, at which unsuccessful interactions can take place, decays as 1/
√

t, so that 1 − S(t) also

decays in the same way. Moreover, starting from an initial configuration in which agents have no

words, a time N is required to reach an average cluster size of order 1, so that ξ grows as
√

t/N (as

also shown in the Appendix C by the fact that the diffusion coefficient is D/N). This remark explains
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Figure 5.6: Typical evolution of a one-dimensional system (N = 1000). Black color corresponds to

interfaces (sites with more than one word). The other colors identify different single state clusters. The

vertical axis represents the time (from top to bottom, 1000×N sequential steps), the one-dimensional

snapshots are reported on the horizontal axis.

the time tconv ∼ O(N3) needed to reach the global agreement, i.e. ξ = N .

This framework can be extended to the case of higher dimensions, starting from the case d = 2.

Fig. 5.8 shows four different snapshots of the system during the evolution. The interfaces of two-

dimensional clusters, although quite rough, are well defined and their width does not grow in time,

which points to the existence of an effective surface tension. We have substantiated this picture with

two types of measures: following Dornic et al. [101], one is the measure of the time dependence in

the implosion of a cluster of a given radius; the other is the numerical computation of the equal-time

pair correlation function.

Let us consider the time dependent behavior of the linear size of a droplet, i.e. a cluster with the

form of a bubble in a sea of sites with a different word. As predicted by the theory of coarsening

phenomena [54], the radius R(t) of the bubble decreases as
√

R2
0 − σt, where σ is a coefficient related

to the surface tension (see Fig. 5.9). The equal-time pair correlation function C(r, t) in dimension

d = 2 (not shown) can be rescaled using the scaling function C(r, t) ∼ f(r/t1/2), where r is the linear

length, indicating that the characteristic length scale ξ grows as
√

t/N (a time O(N) is needed to

initialize the agents to at least one word and therefore to reach a cluster size of order 1). This result

is in agreement with coarsening dynamics for non-conserved fields [54]. In terms of linear length scale

ξ, the convergence time tconv corresponds to the time necessary to reach ξ = N1/d, thus we expect

tconv ∼ N1+2/d. This scaling has been verified by numerical simulations in d = 2 and d = 3 (not

shown).

Note that the obtained scaling law is the same of coarsening dynamics in non-equilibrium Ising

models, but an additional N factor comes from the different timescale used (here, it corresponds to a

single interaction instead of N interactions). For the presence of surface tension and the evolution rule

with many possible states, the Naming Game model is similar to Potts-like models, but in the Naming
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Figure 5.7: Evolution of the position x of an interface · · ·AAABBB · · · . (Top) Evolution of the

distribution P(x, t). (Bottom) Evolution of the mean square displacement, showing a clear diffusive

behavior 〈x2〉 = 2Dexpt/N with a coefficient Dexp ≈ 0.224 in agreement with the theoretical

prediction.

Game the number of states (words, opinions, etc) is determined by the dynamics, not fixed a priori.

This feature is determinant in the overall behavior of the system, the convergence time depending

both on the ordering process and the initial words spreading.

In low-dimensional lattices, the time of the peak in the number of words scales as tmax ∼ O(N),

thus it is dominated by the second part of the dynamics, that is considerably slower. Increasing the

dimension, the peak height and time increases, approximately as N
√

d, while the coarsening time

decreases as N1+2/d. For d = 4, the global consensus is reached in a time that scales as for the mean-

field, but the mean-field behavior is dominated by the scaling of the time of the peak (O(N3/2)),

that is smaller (O(N)) in all finite dimensions. Hence, the general non-equilibrium dynamics of the

Naming Game model in finite dimensional lattices is the result of the interplay between two different

dynamical regimes (i.e. of creation and elimination of words).

5.3.2 Crossover to a fast-converging process in small-world networks

The precise knowledge of the dynamical behavior of the Naming Game model on low-dimensional

lattices, and in particular on the one-dimensional ring, makes possible to understand, by means of

simple arguments and numerical simulations, the effect of the small-world property, that is a relevant

feature of real complex networks.

In the following, indeed, we investigate the effect of introducing long-range connections which link

agents that are far from each other on the regular lattice. In other words, we study the Naming

Game on the small-world model proposed by Watts and Strogatz [247]. The detailed description of

the model is reported in Section 2.4.1, however we recall that starting from a quasi-one-dimensional

banded network in which each node has 2m neighbors, the edges are rewired with probability p, i.e.

p represents the density of long-range connections introduced in the network. For p = 0 the network
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Figure 5.8: Four snapshots at different times (lexicographic order from the top-left corner) for a two-

dimensional system. The form of the clusters (composed of agents with a unique word) clearly show

the presence of an effective surface tension, associated with coarsening dynamics. The width of the

interfaces (in black) is very small as already seen for the one-dimensional model.

retains an essentially one-dimensional topology, while the random network structure is approached

as p goes to 1. At small but finite p (1/N ≪ p ≪ 1), a small-world structure with short distances

between nodes, together with a large clustering, is obtained.

When p = 0, the system is one-dimensional and the dynamics proceeds by slow coarsening. At

small p, the typical distance between shortcuts is O(1/p), so that the early dynamics is not affected

and proceeds as in one-dimensional systems. In particular, at very short times many new words are

invented since the success rate is small. The maximum number of different words scales as O(N), as in

the other cases, while the average used memory per agent remains finite, since the number of neighbors

of each site is bounded (the degree distribution decreases exponentially [29], see Section 2.4.1).

The typical cluster dynamics on a small-world network is graphically represented in Fig. 5.10.1 As

long as the typical cluster size is smaller than 1/p, the clusters are typically one-dimensional, and

the system evolves by means of the usual coarsening dynamics. However, as the average cluster

size reaches the typical distance between two shortcuts ∼ 1/p, a crossover phenomena toward an

accelerated dynamics takes place. Since the cluster size grows as
√

t/N , this corresponds to a crossover

time tcross = O(N/p2). For times much larger than this crossover, one expects that the dynamics is

dominated by the existence of shortcuts, entering a mean-field like behavior. The convergence time is

thus expected to scale as N3/2 and not as N3. The condition in order for this picture to be possible is

exactly the small-world condition; indeed, the crossover time N/p2 has to be much larger than 1, and

much smaller than the consensus time for the one-dimensional case N3, that together imply p ≫ 1/N .

1Following the analysis of Section 5.3.1, we call “cluster” a set of neighboring nodes (agents) with the same unique

word.
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Figure 5.9: A measure of the surface tension in the two-dimensional Naming Game. The initial

condition is a configuration (N = L2 = 4002) with only two clusters, an internal droplet (a bubble)

of radius R0 = 100 and a surrounding sea with a different word. Initially all agent already possess

one word, thus no new words are created, but the presence of surface tension at the interface between

the two clusters provokes the decrease of the bubble’s size. We have monitored the normalized area

πR2(t)/L2 as a function of the time. According to a coarsening dynamics, the radius R(t) decreases

as
√

t. Note that the linear trend is very clear even if the data refer to a single realization.

In summary, the small-world topology allows to combine advantages from both finite dimensional

lattices and mean-field networks: on the one hand, only a finite memory per node is needed, in

opposition to the O(N1/2) in mean-field; on the other hand the convergence time is expected to be

much shorter than in finite dimensions. The theoretical predictions have been verified monitoring the

behavior of the usual global quantities. Figure 5.11 displays the evolution of the average number of

words per agent as a function of time, for a small-world network with average degree 〈k〉 = 8, and

various values of the rewiring probability p. While Nw(t) in all cases decays to N , after an initial

peak whose height is proportional to N , the way in which this convergence is obtained depends on

the parameters. At fixed N , for p = 0 a power-law behavior Nw/N − 1 ∝ 1/
√

t is observed due to

the one-dimensional coarsening process. As soon as p ≫ 1/N however, we observe deviations getting

stronger as p is increased: the decrease of Nw is first slowed down after the peak, but leads in the end

to an very fast convergence. The effect is more evident for larger p. Moreover, increasing the size of

the system the convergence gets slower.

As previously mentioned, a crossover phenomenon is expected when the one-dimensional clusters

reach sizes of order 1/p, i.e. at a time of order N/p2. Since the agents with more than one word

in memory are localized at the interfaces between clusters, their number is O(Np). The average

excess memory per site (with respect to global consensus) is thus of order p, so that one expects

Nw/N −1 = pG(tp2/N). Figure 5.12-A indeed shows that the data of (Nw/N −1)/p for various values

of p and N collapse when tp2/N is of order 1. On the other hand, Fig. 5.12-B indicates that the

convergence towards consensus is reached on a timescale of order NβSW , with βSW ≈ 1.4 ± 0.1, close

to the mean-field case N3/2 and in strong contrast with the N3 behavior of purely one-dimensional

systems. Note that the time to converge scales as p−1.4±.1, that is consistent with the fact that for
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Figure 5.10: A naive representation of clusters growth in the small-world model of Watts and Strogatz.

A cluster (in red) starts to expand locally by coarsening dynamics like in dimension one. When the

size of the cluster is of the order of the average distance between shortcuts, long-range interactions

take place. The effect of these long-range interactions is that of boosting up the dynamics.

p of order 1/N one should recover an essentially one-dimensional behavior with convergence times of

order N3.

In the small-world regime, the system develops a plateau in the total number of words (after the peak

and before the convergence), whose duration increases with the size N . However, during this plateau

the system evolves continuously towards consensus by elimination of redundant words, as evidenced

by the continuous decrease in the number of distinct words displayed in Fig. 5.13-A. It shows that

curves for various system sizes and values of p collapse when correctly rescaled around the crossover

time N/p2.

The combination of the results concerning average used memory and number of distinct words

corresponds to a picture in which clusters of agents sharing a common unique word compete during

the time lapse between the peak and the final consensus. It is thus interesting to measure how the

average cluster size evolves with time and how it depends on the rewiring probability p. Figure 5.13-B

allows to compare the cluster size 〈s〉 evolution for the one-dimensional case and for finite p. At

p = 0, a pure coarsening law 〈s〉 ∝
√

t is observed. As p increases, deviations are observed when time

reaches the crossover p2/N , at a cluster size 1/p, as was expected from the intuitive picture previously

developed. As expected, the collapse of the curves of 〈s〉p vs. tp2/N takes place for tp2/N of order 1.

Another interesting remark concerns the slowing down of the curves after the peak and before the

convergence. This is possibly related to the first interactions between clusters and shortcuts. When

a cluster touches a shortcut, the presence of a branching point slows down the interface movement.

Thus, the clusters are locally more stable, due to the presence of an effective ’pinning’ of interfaces near

a shortcut. This effect is reminiscent of what happens for the Ising model on small-world networks [52]

where, at low temperature, the local field transmitted by the shortcuts delays the passage of interfaces.

Unlike Ising’s zero temperature limit, however, the present dynamics only slows down and is never

blocked into disordered configurations. The idea of interfaces pinning at nodes playing as branching

points is discussed in more detail for tree structures in the next section.
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Figure 5.11: Average number of words per agent in the system, Nw/N as a function of the rescaled

time t/N , for small-world networks with 〈k〉 = 8 and N = 103 nodes, for various values of p. The

curve for p = 0 is shown for reference, as well as p = 5.10−3, p = 10−2, p = 2.10−2, p = 4.10−2,

p = 8.10−2, from bottom to top on the left part of the curves.

5.3.3 Naming Game on complex networks

In this section we expose the main results on the dynamics of the minimal Naming Game model on

complex networks. Before entering into the details of the analysis, it is worth noting that the minimal

Naming Game model itself, as described in Section 5.2.1, is not well-defined on general networks. On

regular topologies, the number of neighbors of a node is fixed, thus any possible method used to choose

at random a pair of neighboring agents to interact is completely equivalent. In a general network,

on the contrary, different nodes possess a variable number of neighbors, therefore it is important to

take notice of the strategy used to draw the pairs of agents in interaction, since it can produce a

different dynamical behavior. When choosing a pair, one should specify which player is chosen first,

the speaker or the hearer.

On a generic network with degree distribution P (k), the degree of the first chosen node and of its

chosen neighbor are distributed respectively according to P (k) and to kP (k)/〈k〉. The second node will

therefore have typically a larger degree, and the asymmetry between speaker and hearer can couple to

the asymmetry between a randomly chosen node and its randomly chosen neighbor, leading to different

dynamical properties. This aspect of the dynamical processes evolving on irregular topologies and

networks has been first noticed by Suchecki et al. [234] and Castellano et al. [68, 69] in the case of

the Voter model. This is particularly relevant in heterogeneous networks, in which the neighbor of a

randomly chosen node is likely to be a hub.

This remark on the asymmetry of dynamical processes on networks suggests to define three different

pair selection strategies for the Naming Game:

• A randomly chosen speaker selects randomly a hearer among its neighbors. This is probably the

most natural generalization of the original rule. We call this strategy direct Naming Game. In

this case, larger degree nodes will preferentially act as hearers.

• The opposite strategy, called reverse Naming Game, can also be carried out: we choose the

hearer at random and one of its neighbors as speaker. In this case the hubs are preferentially

selected as speakers.
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Figure 5.12: (A) Rescaled curves of the average number of words per agent in the system, in order

to show the collapse around the crossover time N/p2. For each value of p, two values of the system

size (N = 104 and N = 105) are displayed. The curves for different sizes are perfectly superimposed

before the convergence. (B) Convergence at large times, shown by the drop of Nw/N − 1 to 0: the

time is rescaled by N1.4. For each p, three different sizes (N1 = 103 for the left peak, curves in black,

N2 = 104 for the middle peak, curves in blue, and N3 = 105, right peak, curves in red) are shown. On

the N1.4 scale, the convergence becomes more and more abrupt as N increases. The inset displays the

convergence time as a function of size for p = 0 (bullets), p = 0.01 (squares), p = 0.02 (diamonds),

p = 0.04 (triangles), p = 0.08 (crosses); the dashed lines are proportional to N3 and N1.4.

• A neutral strategy to pick up pairs of nodes is that of considering the extremities of an edge

taken uniformly at random. The roles of speaker and hearer are then assigned randomly with

equal probability among the two nodes.

Figure 5.14 allows to compare the evolution of the direct and the reverse Naming Game for a

heterogeneous network, a Barabási-Albert (BA) network with N = 104 agents and 〈k〉 = 4. In

the case of the reverse rule, a larger memory is used although the number of different words created

is smaller, and a faster convergence is obtained. This corresponds to the fact that the hubs, playing

principally as speakers, can spread their words to a larger fraction of the agents, and remain more

stable than when playing as hearers, enhancing the possibility of convergence. Similarly to the case of

the Voter model [68, 69], the scaling laws of the convergence time for direct and reverse strategies seem

to be the same only in some very special cases (power-law degree distribution with exponent γ = 3);

however, we do not dispose of an accurate study of the reverse NG properties. This is due to the

fact that from the point of view of a realistic interaction among individuals or computer-based agents,

the direct Naming Game, in which the speaker chooses a hearer among its neighbors, seems somehow

more natural than the other ones. For this reason we have focused on the direct Naming Game. In

future work we will study more in detail the similarities and differences of the three strategies.

Global quantities - As already done for the other topologies, we study the global behavior

of the system looking at the temporal evolution of three main quantities: the total number Nw(t) of

words in the system, the number of different words Nd(t), and the rate of success S(t). In Fig. 5.15,

we report the curves of the number of words (Nw(t) and Nd(t)) for homogeneous ER networks (left)

and heterogeneous BA networks (right) with N = 103, 104, 5 · 104 nodes and average degree 〈k〉 = 4.

The corresponding data for the mean-field case (with N = 103) are displayed as well for reference.
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Figure 5.13: (A) Number of different words in the system as a function of time for 〈k〉 = 8, p =

10−2, 2.10−2, 4.10−2, 8.10−2 and increasing sizes. Data have been rescaled in order to collapse the

curves around the crossover time N/p2. Two values of the system size (N = 104 and N = 105) are

displayed for each p. (B) Evolution of the cluster size for N = 104 and various values of p. The curves

are rescaled around the crossover region.

The curves for the average use of memory Nw(t) show a rapid growth at short times, a peak and then

a plateau whose length increases as the size of the system is increased (even when time is rescaled by

the system size, as in Fig. 5.15). The time and the height of the peak, and the height of the plateau,

are proportional to N . A systematic study of the scaling behavior with the size of the system for these

quantities is reported in Fig. 5.16, which shows that the convergence time tconv scales as Nβ with

β ≃ 1.4 for both ER and BA. The apparent plateau of Nw does however not correspond to a steady

state, as revealed by the continuous decrease of the number of different words Nd in the system: in

this re-organization phase, the system keeps evolving by elimination of words, although the total used

memory does not change significantly.

Note that observed scaling laws for the convergence time is a general robust feature that is not

affected by other topological details (average degree, clustering, etc), and more surprisingly it seems

to be independent of the particular form of the degree distribution. We have indeed checked the value

of the exponent β ≃ 1.4 ± 0.1 for various 〈k〉, clustering, and exponents γ of the degree distribution

P (k) ∼ k−γ for scale-free networks constructed with the uncorrelated configuration model. These

parameters have instead an effect on other quantities such as the time and the value of the maximum

of memory (that will be analyzed later).

The ubiquity of the scaling exponent β ≃ 1.4 could be related to the fact that all these networks

present the small-world property. In many equilibrium and non-equilibrium statistical physics models

defined on general networks, the small-world property is sufficient to ensure a mean-field like behavior

of the system. In the present case, the discrepancy with the mean-field exponent (βMF ≃ 1.5) may

be due to logarithmic corrections that are unlikely to be captured using numerical scaling techniques.

Comparing Figures 5.15-5.16 with those for the mean-field (MF) topology and the regular lattices

reported in Sections 5.3.1-5.3.2, some important analogies and differences emerge. Thanks to the

finite average connectivity, the memory peak scales only linearly with the system size N , and is

reached after a time O(N), in contrast with MF (O(N1.5) for peak height and time) but similarly to

the finite dimensional case. The MF plateau observed in the number of different words, is replaced

here by a slow continuous decrease of Nd with an almost constant memory used. With respect to
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reverse NG rule (black full line) converges much faster than the direct rule (red dashed line). Note

that the two strategies do not lead to the same scaling laws with the system size for the convergence

time (not shown).

the slow coarsening process observed in finite dimensional lattices on the other hand, the existence

of short paths among the nodes speeds up the convergence towards the global consensus. Therefore,

complex networks exhibiting small-world properties constitute an interesting trade-off between mean-

field ”temporal efficiency” and regular lattice ”storage optimization”.

The success rate S(t) is displayed in Figure 5.17-A for ER (top) and BA (bottom) networks with

N = 103 (red full line), and 104 (blue dashed line) agents and 〈k〉 = 4. The success rate for the

mean-field (N = 103) is also reported (black dotted lines). In both networks the success rate increases

linearly at very short times (see also Fig. 5.17-B) then, after a plateau similar to the one observed for

Nw, it increases on a fast timescale towards 1. At short times most inventories are empty, so that the

success rate is equal to the probability that two agents interact twice, i.e. t/E, where E = N〈k〉/2

is the number of possible interacting pairs. The curves, for BA networks in Fig. 5.17-B, give slopes

in agreement with the theoretical prediction 2/〈k〉N . Compared to the mean-field case, in which

E = O(N2), the initial success rate grows faster. When t ∼ O(N), no inventory is empty anymore,

words start spreading through unsuccessful interactions and S(t) displays a bending.

Clusters statistics - Without entering the detailed analysis of the behavior of clusters of

words, for which we refer to Ref. [91], it is worthy to spend some words on this aspect of the Naming

Game dynamics. We have called ”cluster” any set of neighboring agents sharing a common unique

word. In Section 5.3.1, we have shown that, in low-dimensional lattices, the dynamics of the Naming

Game proceeds by formation of such clusters, that grow through a coarsening phenomenon: the

average cluster size (resp. the number of clusters) increases (resp. decreases) algebraically with time.

As shown instead in Fig. 5.18, for both models (ER and BA) the normalized average cluster size

remains very close to zero (in fact, of order 1/N) during the re-organization phase that follows the

peak in the number of words, and converges to one with a sudden transition. The same behavior is

shown also by the number of clusters Ncl(t), that decreases to one very sharply.

The emerging picture is not that of a coarsening or growth of clusters, but that of a slow process of



5.3. THE ROLE OF THE TOPOLOGY 113

10
0

10
1

10
2

10
3

10
0

10
1

N
w
(t

)/
N

ER, 10
3

ER, 10
4

ER, 5.10
4

MF, 10
3

10
0

10
1

10
2

10
3

10
0

10
1

BA, 10
3

BA, 10
4

BA, 5.10
4

MF, 10
3

10
0

10
1

10
2

10
3

t/N
10

-4

10
-3

10
-2

10
-1

10
0

(N
d(t

)-
1)

/N
ER, 10

3

ER, 10
4

ER, 5.10
4

MF, 10
3

10
0

10
1

10
2

10
3

t/N
10

-4

10
-3

10
-2

10
-1

10
0

BA, 10
3

BA, 10
4

BA, 5.10
4

MF, 10
3

Figure 5.15: ER random graph (left) and BA scale-free network (right) with 〈k〉 = 4 and sizes

N = 103, 104, 5.104. Top: evolution of the average memory per agent Nw/N versus rescaled time t/N .

For increasing sizes a plateau develops in the re-organization phase preceding the convergence. The

height of the peak and of the plateau collapse in this plot, showing that the total memory used scales

with N . Bottom: evolution of the number of different words Nd in the system. (Nd − 1)/N is plotted

in order to emphasize the convergence to the consensus with Nd = 1. A steady decrease is observed

even if the memory Nw displays a plateau. The mean-field (MF) case is also shown (for N = 103) for

comparison.

correlations between inventories, followed by a multiplicative process of cluster growth triggered by

a sort of symmetry breaking event in the success probability of the words (in favor of the word that

will ultimately survive).

Effect of the degree heterogeneity - Global properties of dynamical processes are often

affected by the heterogeneous character of the network topology [203, 102]. We have shown however

that the global dynamics of the Naming Game is similar on heterogeneous and homogeneous networks.

Nonetheless, a more detailed analysis reveals that agents with different degrees present very different

activity patterns, whose characterization is necessary to get additional insights on the Naming Game

dynamics [91, 92].

Let us first consider the average success rate Sk(t) of nodes of degree k; at the early stages of the

dynamics it can be computed using simple arguments. The probability of choosing twice the edge

(i, j) is
t

N

(

1

ki
+

1

kj

)

, (5.3)

i.e. the probability of choosing first i (1/N) then j (1/ki) or viceversa. Neglecting the correlations

between ki and kj , one can average over all nodes i of fixed ki = k, obtaining

Sk(t) ≃ t

N

(

1

k
+

〈

1

k

〉)

. (5.4)

Eq. 5.4 show that, at the very beginning, the success rate grows linearly but the effect of the degree

heterogeneity is partially screened by the presence of the constant term 〈1/k〉. The same argument
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Figure 5.16: (Top) Scaling behavior with the system size N for the time of the memory peak (tmax)

and the convergence time (tconv) for ER random graphs (left) and BA scale-free networks (right) with

average degree 〈k〉 = 4. In both cases, the maximal memory is needed after a time proportional to

the system size, while the time needed for convergence grows as Nβ with β ≃ 1.4. (Bottom) In both

networks the necessary memory capacity (i.e. the maximal value reached by Nw) scales linearly with

the size of the network.

can be used to predict that the success rate should be essentially degree independent for larger times.

S(t) is indeed always given by two terms, of which only that referring to the node playing as speaker

contains an explicit dependence on 1/k.

Another interesting point concerns the memory peak. In Fig. 5.19 we have computed the height of

the memory peak reached by different classes of nodes, depending on the degree, and we have found

that it is larger for nodes of larger degree. More precisely, the maximal memory used by a node

of degree k is proportional to
√

k (see bottom panel in Fig. 5.19). This is in agreement with what

already observed for the mean-field case, in which all agents have degree k = N − 1 and the maximal

value of the total memory Nw scales indeed as N
√

k = N3/2. Note however that in the general case,

the estimation of the peak of Nw is not as straightforward. This peak is indeed a convolution of the

peaks of the inventory sizes of single agents, that have distinct activity patterns and may reach their

maximum in memory at different temporal steps.

The knowledge of the average maximal memory of a node of degree k is not sufficient to understand

which degree classes play a major role in driving the dynamics towards the consensus. More insights

on this issue can be obtained observing the behavior of the total number of different words in each

degree class. A detailed analysis is reported in Ref. [91], in which we show that low degree classes

have a larger overall number of different words. This is due to the fact that during the initial phase,

in which words are invented, low degree nodes are more often chosen as speakers and invent many

different words. The hubs need individually a larger memory, but as classes they retain a smaller

number of different words. Then, words are progressively eliminated among low-k nodes while the

hubs, which act as intermediaries and are in contact with many agents, still have typically many words

in their inventories. In this sense, the ”super-spreader” role of the hubs allows a faster diffusion of

words throughout the network and their property of connecting agents with originally different words

helps the system to converge. The very final phase consists in the late adoption of the consensus by

the lowest degree nodes, in a sort of final cascade from the large to the small degrees.
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Figure 5.17: (Left) Temporal evolution of the success rate for ER random graphs (red continuous

line) and BA scale-free networks (blue dashed line) with 〈k〉 = 4 and sizes N = 103 and 104. The

dotted black line refers to the mean-field case (N = 103). (Right) BA network, N = 103. The short

time behavior of the success rate S(t) is shown for 〈k〉 = 4 (circles), 〈k〉 = 8 (squares), and 〈k〉 = 16

(triangles). The curves are linear, with a slope that is in agreement to the predicted value 2/〈k〉N .

Effect of the average degree and clustering - Social networks are generally sparse graphs,

but their structure is often characterized by high local cohesiveness, that is the result of a very natural

transitive property of social interactions [137]. The simplest way to take into account these features

on the dynamics of Naming Game is that of studying the effects of changing the average degree and

the clustering coefficient of the network. Fig. 5.20 displays the effects of increasing the average degree

on the behavior of the main global quantities. In both ER (left) and BA (right) models, increasing

the average degree provokes an increase in the memory used, while the global convergence time is

decreased. More precisely, the dependence of the height Nmax
w and the time tmax of the memory

peak as function of 〈k〉 with fixed population is approximately power-law, with sub-linear behavior

[91]. This remark suggests that the linear scaling for the memory peak properties (Nmax
w ∝ Nα and

tmax ∝ Nα with α = 1) are altered by an increase in the average degree (not shown), as expected

by the fact that increasing 〈k〉 brings the system closer to the mean-field behavior where the scaling

of these quantities is non-linear (αMF = 1.5). It is remarkable that the behavior of the convergence

time with N (i.e. a power-law Nβ with β ≈ 1.4) is instead very robust. This is possibly due to the

fact that, in contrast with the power-law dependence of the peak, the convergence time depends only

logarithmically on the average degree.

Note also that the average memory used by a node of fixed degree is larger for larger average degree

(not shown), therefore such a global argument can also be extended to a degree based analysis. The

curves of the success rate (not shown) are consistent with the previous analysis.

We are now interested to the effects due to the variation of the clustering coefficient. First, the

clustering is slightly changing when changing the average degree, but its variation is small enough for

the two effects to be studied separately. Here we use some other mechanisms to enhance clustering,

summarized in the following two models with tunable clustering: the clustered Erdös-Rényi (CER)

random graphs, and mixed BA-DMS model. These networks have been compared to ER and BA

networks with the same size and average degree. The mixed BA-DMS model is obtained as a

generalization of the preferential attachment procedure, in the spirit of the Holme-Kim model [143]:

starting from m connected nodes (with m even), a new node is added at each time step; with
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networks (right) and BA networks (left) with N = 104, 〈k〉 = 4 (circles), 〈k〉 = 8 (squares), 〈k〉 = 16

(crosses).

probability q it is connected to m nodes chosen with the preferential attachment rule (BA step),

and with probability 1−q it is connected to the extremities of m/2 edges chosen at random (DMS-like

step). Only the clustering spectrum is different with respect to BA and DMS, it can be computed as

c(k) = 2(1 − q)(k − m)/[k(k − 1)] + O(1/N) [28]. Changing m and q allows to tune the value of the

clustering coefficient.

Since the ER model also displays a low clustering, we consider moreover a purposely modified version

of this random graph model (Clustered ER, or CER model) with tunable clustering. Given N nodes,

each pair of nodes is considered with probability p; the two nodes are then linked with probability

1 − Q while, with probability Q, a third node (which is not already linked with either) is chosen

and a triangle is formed. The clustering is thus proportional to Q (with p ∼ O(1/N) we can

neglect the original clustering of the ER network) while the average degree is approximately given by

〈k〉 ≃ [3Q + (1 − Q)] pN ≃ (2Q + 1)pN Note that, in order to compare an ER and a CER network

with the same 〈k〉, we therefore tune p for the construction of the corresponding CER.

Figure 5.21 shows the effect of increasing the clustering at fixed average degree and degree distributions:

the number of different words is not changed, but the average memory used is smaller and the

convergence takes more time. Moreover, the memory peak at fixed k is smaller for larger clustering

(not shown): it is more probable for a node to speak to 2 neighbors that share common words because

they are themselves connected and have already interacted, so that it is less probable to learn new

words. At fixed average degree, i.e. global number of links, less connections are available to transmit

words from one side of the network to the other since many links are used in “local” triangles. The

local cohesiveness is therefore in the long run an obstacle to the global convergence. This effect is

similar to the observation of an increase in the percolation threshold in clustered networks, due to the

fact that many links are “wasted” in redundant local connections [223].

Effect of hierarchical structures - In the previous sections we have argued that networks

with small-world property have fast (mean-field like) convergence after a re-organization phase whose

duration depends on other properties of the system. The small-world property holds when the

diameter of the network grows slowly, i.e. logarithmically or slower, with the size N . However,

another requirement is necessary: the small-world must be generated by shortcuts connecting regions
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Figure 5.19: BA model with m = 2 (i.e. 〈k〉 = 4), N = 5.104. (Bottom) Maximum memory used

by a node as a function of its degree. The dashed line is ∝
√

k. (Top) Average memory used by

nodes of degree k, for various values of k. The lines show the total memory Nw(k, t) used by nodes

of degree k at time t, normalized by the number Nk of nodes of degree k. The circles correspond to

the bottom curve (k0 = 5) rescaled by
√

k/k0 showing the scaling of the peaks. Note that the values

of Nw(k, t)/Nk are averages over many runs that wash out fluctuations and therefore correspond to

smaller values than the extremal values observed for Nmax
w (k).

of the network that are otherwise far away one from the other. From this point of view, shortcuts

correspond to the existence of long loops (see Fig. 5.22-A). When shortcuts, and corresponding long

loops, are absent the topological structure of the network possess an intrinsic metric ordering. In such

a situation, regular structures like d-dimensional lattices admit a real geometric distance, whereas

disordered topologies are more generally associated to hierarchical structures.

On a hierarchical network, each node belongs in fact to a given sub-hierarchical unit and for going

from one node to another node in another sub-unit, it is necessary to follow a hierarchical path. In

the Naming Game, each sub-unit can converge towards a local consensus, which makes the global

consensus more difficult to achieve (see Fig. 5.22-B). In other words, the dynamics slows down in the

passage between different levels of hierarchy, with a behavior that resembles that observed in models

of glassy dynamics with traps [50] or in “hierarchical islands models” of diffusion in turbulent flows

[253]. Note however that, unlike the Naming Game, in these models there are real energy barriers

obstructing the dynamics. The results of numerical simulations on network models with a strong

hierarchical structure are striking: the Naming Game converges very slowly, the number of different

words decreasing as a power law of the time (in Fig. 5.25 we have reported Nw(t)/N − 1 for several

hierarchical networks). The presence of hierarchy in a network is usually hard to quantify, but in

some cases, such as those of the networks represented in Fig. 5.23, it is implicitly introduced in the

generating procedure:

A. Regular or scale-free trees are clearly hierarchical structures (we have checked the behavior

of Cayley trees and BA scale-free trees obtained, as sketched in Fig. 5.23-A, by means of a

preferential attachment rule with m = 1 [17]);

B. For the DMS model with m = 2 [106], one adds at each step a new node which is connected

to the extremities of a randomly chosen edge, thus the causal structure of the tree introduces a

hierarchy (see Fig. 5.23-B);
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Figure 5.20: ER networks (left) and BA networks (right) with N = 104 agents and average degree

〈k〉 = 4, 8, 16. The increase of average degree leads to a larger memory used (Nw, top) but a faster

convergence. The maximum in the number of different words is not affected by the change in the

average degree (bottom).

C. The deterministic scale-free networks are built starting with two nodes connected to a root. At

each temporal step n, two units (of 3n−1 nodes) identical to the network formed at the previous

step are added, and each of the bottom 2n nodes are connected to the root [19] (Fig. 5.23-C);

D. The Random Apollonian Networks (RAN) [10, 254] are embedded in a two-dimensional plane.

One starts with a triangle; a node is added and connected to the three previous nodes; at each

step a new node is added in one of the existing triangles (chosen at random) and connected to

its three edges, replacing the chosen triangle by three new smaller triangles (Fig. 5.23-D).

In the particular case of tree structures, the power-law decay can be justified with a more precise

qualitative argument. In general, from the viewpoint of the Naming Game dynamics, a tree is

formed by two ingredients: linear structures on which the interfaces between clusters diffuse as in one-

dimensional systems and branching points at which the motion of interfaces slows down. Following the

arguments used in Section 5.3.1 and in Appendix C, on a linear structure we can model the motion of

the interfaces between clusters of words as random walks. At branching points, however, the interfaces

can in principle interact with more than one cluster, thus the effective hopping probability is decreased

or, in other terms, the mean waiting time between two successive steps increases. The average waiting

time can be computed as the inverse of the stationary probability for the local configurations of the

interface (as for a classic escape-over-a-barrier problem [74]). In principle, such probabilities can be

obtained by solving a truncated Markov chain for the transition rates for all possible moves of the

interface at the branching point (as we have done for one-dimensional systems in Appendix C). The

computation is actually very demanding even in simple situations such as that of an interface going

across a node of degree 3 (we have reported in Fig. 5.24 an example containing some of the transitions

one should take into account). However, from simple examples, we expect that increasing the degree

corresponds to a stronger effective pinning of the interfaces and larger waiting times.

The above qualitative argument explains the diffusive behavior observed on regular trees, such as the
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Figure 5.21: Effect of clustering on the behavior of the total number of words Nw(t) and of the number

of different words Nd(t) on random graphs (left) and scale-free networks (right) with N = 104. The

considered clustered random graphs (CER model, with clustering coefficient proportional to Q) have

been compared to standard ER graphs with equal average degree (〈k〉 = 6 and 10). Scale-free networks

have been generated using the mixed BA-DMS model, in which the clustering coefficient is proportional

to 1 − q. In both networks higher clustering leads to smaller memory capacity required but a larger

convergence time.

Cayley tree; on the other hand, on scale-free trees, such as the BA networks with m = 1, the behavior

is even slower, with a clearly subdiffusive exponent.

In the theory of random walks, subdiffusion can be associated with an anomalously long waiting time

between successive walks [51, 146, 248, 253]. According to our picture, this is exactly what happens

in a scale-free tree, where the degree of the nodes is broadly distributed. The interfaces make random

walks but they may be suddenly pinned at some branching points with waiting times that depend on

the degree of the nodes they try to by-pass. Consequently, the heterogeneity in the degree induces

that of the waiting times and the corresponding subdiffusive behavior.

Note that this argument holds only for trees, not for general hierarchical structures, whose local

dynamics is more complicated preventing us from a detailed analysis.

Community structures - In contrast with other non-equilibrium models, as those based

on zero-temperature Glauber dynamics or the Voter model [101, 52, 234, 70, 69], we do not find

any signature of the occurrence of metastable blocked states in any relevant topology with quenched

disorder. Even when in several cases the total number of words displays a plateau whose length

increases with the system size, the number of different words is continuously decreasing, revealing

that the convergence is not triggered by fluctuations due to finite-size effects, but it is the result of

an evolving self-organizing process. Such behavior makes the Naming Game a robust model of self-

coordinated communication in any structured population of agents.

Finding topological properties ensuring the existence of metastable states or blocked configurations

seems to be a non-trivial and intriguing task, that we try to investigate starting from the following

main remarks:
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Figure 5.22: (A) Sketch of a shortcut connecting two distant regions and reinterpretation as a long

loop. (B) Naive representation of a typical clusters organization in a hierarchical structure.

• the model displays slow coarsening dynamics whenever there is the possibility of cluster formation,

i.e. when topological constraints are strong enough to prevent words propagation;

• highly clustered regions and cliques of nodes rapidly find a local consensus;

• at the interfaces between clusters, an effective surface tension is generated;

• close to bottlenecks the surface tension may increase, causing the ordering process to slow down.

According to this analysis, reasonable candidates for observing metastable states are networks with

strong community structures, i.e. networks composed of a certain number of internally highly connected

groups interconnected by few links working as bridges. An example of network with strong community

structure is represented in Fig. 5.26 (left): fully connected cliques composed of c = 4 agents are

interconnected by single edges. Figure 5.26 (right) reports the behavior of the Naming Game on such

a network, for different clique’s size c. From simulations it turns out that, not only the total number

of words, but even the number of different words has a plateau whose duration increases with the

size of the system. The number of different words in the plateau equals the number of communities,

while the corresponding total number of words per node is about one, proving the existence of a real

metastable state in which the system reaches a long-lasting multi-vocabulary configuration. Indeed,

each community reaches internal consensus but the weak connections between communities are not

sufficient for words to propagate from one community to the other. The chosen network certainly

has an extremely strong community structure, but preliminary studies on real networks of scientific

collaborations give results that are in qualitative agreement with our results (i.e. plateaus are

observed).

More precisely, when a network contains communities of different sizes and the community structure

is not very strong, the corresponding curves Nw(t) and Nd(t) display a series of plateaus, with sharp

transitions in between. Several groups have recently put forward methods to distinguish different levels

of community structures in real and computer generated networks exploiting dynamical processes

evolving on them (see the review articles in Refs. [193, 93]). For instance, Diaz-Guilera et al. [12]

have used synchronization properties of non-linear oscillators (deployed on the nodes of a network) in

order to determine community structures at different levels of resolution. Communities or groups of

highly interconnected nodes are more likely to synchronize, thus looking at the temporal evolution of

synchronization properties it is possible to identify communities at different scales. Similar analyses
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Figure 5.23: Sketch of various generation procedures for models of hierarchical networks: (A) the

Barabási-Albert tree (BA model with m = 1); (B) DMS model with m = 2, i.e. only a new triangle

enter the system each time; (C) deterministic hierarchical network proposed in Ref. [19]; (D) random

apollonian network [10, 254].

have been carried out by Bornholdt et al. [211, 212] using Potts dynamics. In this case, the process

leading to the community detection is the same as for the Naming Game, i.e. a coarsening dynamics

of clusters with surface tension at the interfaces. Compared to Potts-based methods, the Naming

Game has the relevant property that we do not have to fix the number of states in advance and the

strength of the effective surface tension depends on the local topological constraints. Future studies

could be addressed to modify the Naming Game model in order to have a more appropriate tool for

community detection.
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Figure 5.24: A typical branching point at which clusters interfaces may be pinned down. The

increasing number of possible transitions for larger degree causes the effective transition probability

to decrease.

5.4 Agents activity in heterogeneous populations

The aim of this section, based on the material presented in Ref. [92], is that of providing a detailed

statistical description of the internal dynamics of single agents, and its relation with the collective

behavior of the Naming Game model.

The analysis of simulations results points out that the internal dynamics of an agent depends strongly

on its degree, highly connected agents being much more active than low-degree nodes. The existence

of different activity patterns is reflected in the shape of the distribution of the number of words stored

in the inventory of a node, that turns out to depend on the level of heterogeneity of the network. In

homogeneous networks such distribution is exponential for all agents, while highly-connected agents in

heterogeneous networks present a distribution with a clearly gaussian tail (half-normal distribution).

From the point of view of the evolution rule, this result shows that the role of the memory is different

depending on the connectivity properties of single agents. The effect on the dynamics are clearer if

we consider a closely related quantity, the cumulative distribution of the waiting times (or survival

probability) between two consecutive successful interactions, i.e. between two decisions taken by

the same agent. Indeed, an exponential waiting time distribution is the signature of a poissonian

dynamics, while our results point out that the decision process associated with the internal activity

of the agents is intrinsically non-poissonian, and it turns out to be poissonian only in the special

case of a homogeneous network. This feature is completely new in non-equilibrium models of social

interactions, in which the interaction rules are usually defined in such a way that the agents take

decisions at approximately constant rate.

Apart from the intrinsic interest for non-poissonian individual dynamics, our findings are interpreted

in order to understand the property of strong convergence towards the absorbing state that the model

exhibits in all small-world structures, independently of the degree heterogeneity.
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Figure 5.25: Power-law decrease in the total number of words Nw(t) for the Naming Game on several

hierarchical networks: the Barabási-Albert scale-free tree (full line), the DMS model with m = 2

(dotted line), the deterministic scale-free network of Barabási, Ravasz and Vicsek (dot-dashed line),

the Random Apollonian Network (dot-dot-dashed line). The behavior of hierarchical networks are

compared with the mean-field like behavior of a Barabási-Albert network with m = 4 (dashed line).

Note that all hierarchical networks show diffusive coarsening except for the scale-free tree, whose

behavior is subdiffusive.

5.4.1 Numerical results on agents activity

By means of numerical simulations, we characterize the activity patterns of an agent, focusing on

the dynamics of its inventory size, i.e. the number of words (opinions, states, etc) of an agent.

In particular, our analysis is conceived for those topologies which present mean-field like dynamics

(e.g. complete graph, homogeneous and heterogeneous random graphs, high-dimensional lattices, etc),

where we cannot clearly identify a coarsening process leading to the nucleation and growth of clusters

containing quiescent agents. In other topologies, as in low-dimensional lattices, the agents internal

activity is biased by the limited number of words locally available (Section 5.3.1). An example of the

different activity patterns in different topologies is reported in Fig. 5.27. In homogeneous networks

(e.g. ER random graphs), the nodes have similar topological properties, thus their activity patterns

are very similar as well. For heterogeneous networks, instead, highly connected nodes (hubs) play a

different role in the dynamics compared to low degree nodes. The hubs are much more active, and

their activity is determinant to drive the system to a rapid collective agreement.

More precisely, they show opposite behaviors depending on the pairs selection strategy. As already

pointed out in Section 5.3.3, the asymmetry of the NG interaction rules becomes relevant in the case of

heterogeneous networks. In the direct Naming Game, that most naturally describes realistic speaker-

hearer interactions, the speaker is chosen with probability pk (where pk is the degree distribution of

the network), while the hearer is chosen with probability qk = kpk/〈k〉. According to this selection

criterion, the high-degree nodes are preferentially chosen as hearers. Using the opposite strategy, called

reverse Naming Game, the hubs are preferentially selected as speakers; whereas the neutral strategy

ensures that the roles of speaker and hearer are assigned with equal probability. Figure 5.28 shows that

the reverse strategy produces completely different activity patterns compared to the direct one, with a
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Figure 5.26: (Left) A network with strong community structure. (Right) Metastable states in networks

with strong community structure. Each community is composed of c nodes so that there are N/c

communities.

rather low variability and the absence of high spikes in the number of words. No significant difference

between hubs and low-degree nodes is visible. The reason is that the inventory size increases because

of a failure only if the node is playing as hearer. The speakers never add states to their inventories.

Hence, agents that preferentially play as hearers tend to be more unstable, amplifying the number of

states in the system. Using the direct strategy in heterogeneous networks favors the choice of the hubs

as hearers, the degree of the hubs being orders of magnitude larger than the average degree. This is

the reason of the large number of states stored in the inventory of the hubs for the direct strategy.

A first quantity that clearly points out differences in the activity of nodes depending both on

their degree and on the topological structure of the network is the probability distribution Pn(k|t) of

the number n of states stored in the inventory of nodes of degree k at time t. This means that the

distribution is averaged over the class of nodes of given degree. Actually, as it is shown in Appendix D,

this quantity depends only parametrically on the time t. Fig. 5.29 (top) reports Pn(k|t) for the case

of highly connected nodes in a heterogeneous network (the Barabási-Albert network), whereas the

same data for nodes of typical degree in a homogeneous network (the Erdös-Rényi random graph)

are displayed in the bottom panel. In homogeneous networks the shape of the distribution does not

actually depend on the degree of the node, since all nodes have degree approximately equal to the

average degree 〈k〉. In heterogeneous networks, instead, a deep difference exists between the behavior

of low and high degree nodes. Low degree nodes have no room to reach high values of n, thus their

distribution has a very rapid decay (data not shown); for high degree nodes, on the contrary, the

distributions extend for more than one decade and their form is much clearer.

Apart from the behavior of low degree nodes, it is clear that the functional form of the distribution

Pn(k|t) is different in homogeneous and heterogeneous networks. In homogeneous networks the

distribution is exponential, while in heterogeneous networks it decays faster, and is well approximated

by a half-normal distribution.

Another interesting quantity is the probability distribution Qn(k|t) that an agent of degree k gets a

success in an interaction occurring when it has n states into the inventory, i.e. the value at which the

inventory is abruptly reset to 1. This quantity has an exponential shape in homogeneous networks

(Fig. 5.30-bottom) for sufficiently high average degree, and a Weibull-like shape (Fig. 5.30-top) for

the case of heterogeneous networks (high-degree nodes). The existing relation between Qn(k|t) and
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Figure 5.27: Examples of temporal series of the number of states at a given node. (Top) Series from

a BA network with N = 104 nodes and 〈k〉 = 10, for nodes of high degree (e.g. k = 414) and low

degree (e.g. k = 10). (Bottom) Series for nodes in ER random graph (N = 104, 〈k〉 = 50) and in a

one-dimensional ring (k = 2).

Pn(k|t) is straightforward: the probability distribution Qn(k|t) of the level n at which a successful

interaction occurs is the product of the probability of having n states and the conditional probability

Wk(n → 1|t) that an agent (of degree k) finds at time t a (temporary) agreement when it has n states;

i.e. Qn(k|t)=Wk(n → 1|t) Pn(k|t).

5.4.2 Theoretical interpretation and future work

In Appendix D, we discuss a master equation approach for the jump process associated to the dynamics

of single agents, by means of which it is possible to derive the correct expression for the distribution

Pn(k|t) and, consequently, that of Qn(k|t). We recover here the same result using a naive argument,

based on the concept of survival probability in renewal processes, that is useful to clarify the role of

non-poissonian dynamics in relation with other types of non-equilibrium statistical models.

A renewal process [82] is a stochastic process characterized by a series of recurrent events that are

separated by waiting times {τi}. The waiting times are mutually independent random variables with

a common distribution T (τ). We call survival probability T>(τ) the probability that the renewal event

occurs after a waiting time at least equal to τ .

In physics, stochastic processes are usually coarse-grained models for some natural phenomenon,

since the observed waiting times statistics is the result of some peculiar properties of the underlying

phenomena. For instance, we observe power-law waiting time distributions in many natural phenomena

and in the models used to study or reproduce these phenomena (e.g in solar flames [249, 14], financial

markets [218, 169], anomalous transport [253], earthquakes [197, 15], etc). Distributions with Weibull

(and gaussian) tails are frequent in more general problems of queuing theory [121] and survival analysis

[114]. On the contrary, models of statistical mechanics traditionally used in opinion dynamics show

exponentially shaped waiting time distributions (signature of a poissonian dynamics).

All these different statistics are based on the factorization property of the corresponding stochastic

(renewal) processes. Let us denote h(τ) the hazard function of the process, i.e. the rate of occurrence
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Figure 5.28: Example of temporal series for nodes activity in a Reverse Naming Game on a BA

network with 〈k〉 = 10. The activity of the hubs (left) is very low (they are preferentially chosen as

speakers) while that of low degree nodes (right) is the same as in the direct NG.
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Figure 5.29: Distribution of the number of words for a class of high-degree nodes in a BA network

(top) with 〈k〉 = 10 and for average degree nodes in a ER (bottom) with 〈k〉 = 50. Both networks

have N = 104 nodes. The distributions have been computed during the re-organizational phase after

the peak in the number of words.

of the renewal event at a (waiting) time τ . The survival probability, i.e. the probability that the event

occurs at time at least τ satisfies the following recursion equation,

T>(τ + 1) = T>(τ) [1 − h(τ)] , (5.5)

whose general solution is

T>(τ) =

∏τ
i=1 [1 − h(i)]

∑∞
τ=1

[

∏τ
j=1 [1 − h(j)]

] . (5.6)

In the particular case of the Naming Game, a renewal event is identified with a successful interaction,

bringing back to 1 the inventory size of the node. The pair selection mechanism is purely poissonian,

thus an agent interacts with a precise constant rate (that is pk or qk depending on whether it plays

as speaker or as hearer). This poissonian external signal can be regarded as a discrete timing for

the internal activity of the nodes. Hence, apart from a time rescaling, the dynamics of the inventory
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Figure 5.30: Probability distribution Qn(k|t) of the number of states n at which an agent gets a

success, i.e. the inventory is reset to 1 state. For highly connected nodes in heterogeneous (top) and

nodes of typical degree in homogeneous networks (bottom). Same parameters as in Fig. 5.29.

size, described in the previous section and in App. D, gives a good approximation of the waiting time

statistics related to the renewal events. The distributions Pn(k|t) and Qn(k|t) correspond respectively

to T>(τ) and T (τ). The hazard function has thus the same functional form of the success probability

Wk(n → 1|t), with the waiting time τ instead of the number of words n.

In the Appendix D (and in Ref. [92]), we show that the success probability Wk(n → 1|t) assumes

different forms depending on the underlying topology. In homogeneous networks, it turns out to be

almost independent of the number n of words stored in the inventory of the node; in heterogeneous

networks it is instead linearly proportional to n (for nodes of sufficiently high degree k). Inserting in

Eq. 5.6 hazard functions with these functional forms, we can compute the corresponding expression

for T>(τ), obtaining an approximate expression also for Pn(k|t).
Let us consider a constant hazard function, from Eq. 5.6 the corresponding survival probability

distribution is exponential, and consequently also Pn(k|t) decreases exponentially with n. On the

other hand, when the hazard function grows linearly with the waiting time, with normalization

constant C, we get T>(τ) ∝ exp(− τ2

2C ). This simple argument provides an explanation of the gaussian

decrease of the distribution Pn(k|t) observed for highly-connected nodes of heterogeneous networks

(See Appendix D for a more rigorous approach.)

A further remark concerns the relation between waiting times and poissonian processes. In general,

the agent-based models studied in statistical physics are spin-like models, in which an individual is

endowed with a variable, assuming a given set of values, each one corresponding to a different state.

In such systems, single agent dynamics is intrinsically poissonian. For instance, in systems evolving

by means of Glauber dynamics, spin flips at a site occur independently one of the other, i.e. they are

poissonian events with (Boltzmann) rate λ ∝ e−β∆H . The corresponding waiting time distribution

(and survival probability) is exponential (as λ exp(−λt)). In the present model, on the contrary,

the internal activity of an agent is modeled in order to reproduce a sort of decision process based on

information storage, and the waiting time between successive decisions turns out to depend strongly
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on the underlying topology. From the point of view of the global behavior it seems to be important: in

the direct strategy, the hubs drive the system to a fast convergence to the absorbing state, as a result

of the trade-off between their larger activity and their stronger inclination to reach an agreement (due

to their internal memory patterns).

The first step toward a better comprehension of the role of non-poissonian dynamics is that of

comparing these results and the scaling properties of the convergence time with those for the reverse

Naming Game, in which the hubs have exponential waiting time distributions.

Finally, waiting time statistics is also used as a measure of the criticality in the behavior of

physical systems, individuals and natural phenomena; in particular, in relation with extreme events

[15]. Waiting time distributions with heavy-tails are signature of the absence of a characteristic scale on

which the events occur. For example, the theory that justifies the observation of power-law distributed

waiting times between aftershocks in earthwakes is based on the Omori law [197], corresponding to a

hazard function inversely proportional to the waiting time. Actually, a success rate decreasing with

the time is necessary to get a broad waiting time distribution.

It should be interesting to modify the interaction rules of the Naming Game model (and thus the

hazard function) in order to change the shape of the waiting time distribution and in particular to

get a power-law one. Such a situation would correspond to a critical decision process, in which agents

might store a very large number of words, with an a priori unlimited memory requirement.
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5.5 Conclusions

In the last part of this thesis, we have investigated a model of social dynamics, the Naming Game,

that can be considered an example of a new interesting class of dynamical processes, conceived to

describe the onset of global agreement in a population of individuals by means of pairwise negotiation

interactions and memory-driven decision processes. With respect to well-known models of social

dynamics that have been borrowed from statistical mechanics (e.g. majority rules models, Voter

model, etc), the Naming Game takes into account more realistic characteristics of social interactions,

conserving a sufficient level of simplicity that was a good quality of the former ones.

Thanks to this mixture of ingredients, the Naming Game (and possible variants of the model) seems

to be more appropriate than previous models for the study of heterogeneous populations of agents,

such as social networks, since the dynamics is the result of a strong interplay between topological

features and the internal properties of the agents. We have focused our attention on two aspects:

• the dynamical features of the Naming Game on different topologies;

• single agents internal activity and its relation with the global behavior.

In order to understand the behavior of the model on complex networks, we have analyzed the impact

of the different topological structures, starting from the rather unrealistic cases of the complete

graph (mean-field) and the one-dimensional system. However, they turn out to be precious for the

conprehension of more complex topologies. They are, indeed, almost completely analytically solvable,

providing two opposite behaviors:

• the mean-field model is characterized by an initial super-spreading of words throughout the

system, whose maximum is reached in a time tmax ∼ O(N3/2) and corresponds to a state in

which each single agent possesses O(
√

N) words; then, a very fast convergence (i.e. more than

exponential) takes place leading the system to the global consensus in a time tconv ∼ O(N3/2);

• in the one-dimensional model, agents find immediately a local consensus, many clusters of

neighboring agents with a common unique word start to grow, competing in a coarsening process

driven by the diffusion-coalescence process of the interfaces. Consequently, the maximum total

number of words, reached very quickly in O(N) steps, scales as O(N) as well, but the global

agreement requires a time tconv ∼ O(N3).

The second step towards the comprehension of the Naming Game dynamics has been provided by the

study of the Watts-Strogatz model [247]. The networks generated by this model are characterized by

a tunable parameter (the rewiring probability) that allows to interpolate between a one-dimensional

regular lattice and a homogeneous random graph. For non-zero rewiring probability, the model has

the small-world property, i.e. different regions of the network are connected by shortcuts, so that the

average distance between nodes scales logarithmically with the network size. After an initial phase

during which words are created and small local clusters appear, the small-world property ensures their

propagation out of the local scale, boosting up the spreading process (contrarily to what happens in

low dimensional lattices where words spreading is purely diffusive).

The same acceleration of the dynamics is then observed in many other networks sharing the small-

world property, suggesting that it is sufficient to recover the high temporal efficiency observed in the

mean-field system. For both the homogeneous and heterogeneous network models, we get a scaling law

for the convergence time tconv with the size N of the system of the type tconv ∼ NβSW , with exponent

approximately βSW ≃ 1.4. The discrepancy with the mean-field exponent (βMF ≃ 1.5) may be due
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to logarithmic corrections. Moreover, small-world networks have higher memory efficiency than the

mean-field model, since the peak in the total number of words scales only linearly with the size N .

This is due to the fact that these networks are sparse (their average degree 〈k〉 is small compared to

N).

Nonetheless, a detailed analysis allows to point out distinct dynamical patterns on homogeneous and

heterogeneous networks. In homogeneous networks all nodes have a similar neighborhood and therefore

similar dynamical evolution, while in heterogeneous networks classes of nodes with different degree

play different roles in the evolution of the Game. High degree nodes, indeed, are more likely chosen as

hearers (in the direct Naming Game). At the beginning, low degree nodes are much more involved in

the process of word generation than the hubs; local consensus is easily reached and a large amount of

locally stable different words gets in touch with higher degree nodes. The latter start to accumulate

a large number of words in their inventories, playing as “super-spreaders” of names towards less

connected agents and finally driving the convergence. From this viewpoint, the convergence dynamical

pattern of the Naming Game on heterogeneous complex networks presents some similarities with more

studied epidemic spreading phenomena [33].

The shape of the degree distribution and the scaling of the average distance are not the only topological

properties that determine the Naming Game dynamics; for this reason, we have investigated the effects

of a number of other quantities.

On both homogeneous and heterogeneous networks, an increase in the average degree induces a larger

memory peak and a faster convergence, while the growth of the clustering coefficient has a completely

opposite effect. This is particularly important in social networks that are usually characterized by a

large level of cohesiveness.

A very striking result concerns the convergence of the Naming Game on networks with well-defined

hierarchical organization or community structures. On generic hierarchical networks, and particularly

on trees, the process leading to the final agreement is very slow, governed by a diffusive or even

subdiffusive coarsening. We have identified the origin of this behavior in the existence of a non

negligible surface tension between different hierarchical levels. A similar behavior is due to the

presence of a community structure: each community finds quickly an internal agreement, but a cluster

cannot easily expand outside its own community since the interfaces get pinned on the few bridges

interconnecting different communities. Therefore, in this case the curve of the number of different

words Nd(t) is not characterized by a power-law decay, but by a series of plateaus of different size

corresponding to different levels of refinement in the community organization of the network. When

the duration of a plateau (in Nd(t)) increases with the size of the network, we say that the system is

in a metastable state.

Even in presence of metastable states, if we wait sufficiently long, the system will converge to the

absorbing state, meaning that the Naming Game model is a strongly converging dynamical rule. The

origin of this behavior resides in the memory-based decision rule. We have investigated its implications

both at a local and global level.

At a local level we have focused on the internal activity of the agents in different topologies, getting

deeper insights in the mechanisms governing the decision processes (see Section 5.4). In particular,

we have found that the single agents dynamics is intrinsically non-poissonian, resulting in a stronger

tendency to take a decision (and then to converge) for the high-degree nodes. This attitude balances

the instability due to the fact that high-degree nodes, being in contact with many different words, are

more exposed to perturbations in the dynamics.

The role of the memory in the global behavior of the system is that of generating an effective surface
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tension (see Section 5.3.1), that is responsible for the coarsening of clusters. In fact, the surface

tension associated with the coarsening process of clusters of agents with a unique word is strong

enough to ensure the convergence of the Naming Game in any dimension, but sufficiently weak to

prevent the system to block in metastable states. From this point of view, the Naming Game is similar

to a low-temperature Potts model, but without the typical bulk noise due to an externally imposed

temperature-like parameter.

Note that this form of surface tension does not have an energetic microscopic nature, as for the Ising

model, but it is due to the introduction of temporal correlations in the decision process (i.e. the

introduction of memory) similar to what happens in diffusion-limited aggregation when a mechanism

of noise-reduction is taken into account. Some preliminary results on the comparison between clusters

dynamics in models with memory (like the Naming Game) and other lattice spin models seem to

corroborate this picture, that will be developed in a future work.

In summary, as other models of opinion formation, the Naming Game shows a non-equilibrium

dynamical evolution from a disordered state to a state of global agreement. However, with respect

to most opinion models, in which the agents may accept or refuse to conform to the opinion of

someone else, the Naming Game gives more importance to the bilateral negotiation process between

pairs of agents. For this reason, the Naming Game should be regarded as a model for the emergence

of a globally accepted linguistic convention or, in other terms, the establishment of a self-organized

communication system; but it can be also reasonably used to describe opinion formation and other

social polarization phenomena. The main novelty resides certainly in the introduction of pairwise

interactions endowed with memory and feedback, that make the Naming Game phenomenology closer

to that observed in real systems, in particular when we consider the system embedded in a complex

network topology.
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Chapter 6

General Conclusions and Outlook

In this thesis, I have studied both numerically and analytically some structural and dynamical

aspects of complex networks. From the point of view of a theoretical physicist, the problems that

phenomenological observations on complex networks are raising are undoubtedly exciting, because of

the possibility of getting striking results applying rather simple statistical physics approaches. As a

consequence of the small-world property, indeed, the general behavior of complex networks and of the

dynamical processes taking place on them can be fairly described using mean-field arguments. On the

other hand, when mean-field like methods are not applicable, or the picture we obtain from them is

not satisfactory, in most of the cases the only possible approach is that of numerical simulations.

This picture corresponds in general to the approach of research followed in this thesis. For example,

in the case of the exploration of networks, we have provided a mean-field analysis that gives very good

results at a qualitative level, but for any quantitative characterization of networks sampling the use of

numerical simulations cannot be avoided. In the interdisciplinary field of complex networks, however,

the quantitative aspect is very important, since the original problems are usually closely related with

applications and theoretical results have to be compared with the abundance of phenomenological

data. Thus, future works will be addressed to improve separately these two approaches. First, from

the numerical side, it is worthy to extend the investigations of this thesis to more realistic models

of Internet mapping, in order to verify the reliability of our results when the condition of shortest

path probes is relaxed. Preliminary results have been obtained following two different approaches: one

corresponds to use a model in which local path inflations are introduced (i.e. distortions of the shortest

path that should reproduce the effect of traffic and policies [99]); the other considers traceroute

probing by means of weighted shortest paths, in which the weights are randomly distributed on

the edges (we have only studied low disorder regimes, but also the strong disorder limit should

provide interesting results [150]). In both cases, the quantitative estimation of the relevant topological

quantities seems not to change considerably from the results here exposed.

From an analytical point of view, I am currently interested in understanding the origins of the

biases introduced by tree-like explorations in relations with the causal structure of the spanning

trees generated in the sampling or more generally the framework of hidden variable models. It has

been shown [38, 237] that scale-free topological properties emerge naturally when the networks are

endowed with a causal structure; according to this picture, sampling biases could be the natural result

of the systematic introduction of causality in the network’s topology.

Of course, theoretical improvements of the mean-field approach are possible, for instance taking into

account correlations in the expressions for the node and edge discovery probability.

133
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The most promising possible application of the work exposed in Chapter 3 is however the definition

of statistical estimators able to correct the biases due to the sampling process. We have successfully

introduced estimators for the number of nodes in the Internet, but the present work is aimed to define

unbiased estimators also for other quantities (e.g. the number of edges).

A similar twofold approach holds for the subjects discussed in Chapter 4. In order to achieve a more

satisfactory comprehension of which mechanisms are responsible of the non-trivial structural and

functional organization of real complex networks, such as the world-wide airports network, we need

first to refine the analysis of the real data, selecting those quantities better pinpointing the functional

and economic dimension of the system; on the other hand, we have to improve the current models of

weighted growing networks to produce more realistic effects.

For the inhomogeneous spreading on complex networks, whose theory is treated in Chapter 4 and

expecially in Appendix B, the situation is the opposite one: we have a good understanding of the

theoretical description of the process, but we do not dispose of phenomenological data (e.g. those

regarding the rates of infection of a real virus on the Internet if the heterogeneity of the nodes as well

as their functional properties are taken into account). It should be interesting to retrieve real data

on the level of functional inhomogeneity in infrastructure networks and verify if the corresponding

spreading properties can be analyzed within the theoretical framework here provided.

The Naming Game is a rather recent topic of research, thus many aspects of the dynamics of the

model are not completely clear. One of the most interesting phenomena displayed by this model is

the presence of an effective surface tension, that is comparable with that of a low temperature Potts

model, even if the pairwise evolution rule looks more similar to that of the Voter model [159], in which

the surface tension is absent. We have reason to think that the surface tension is a consequence of the

presence of memory in local rule, therefore a future work will be addressed to show, using a simplified

model, that the presence of memory in the nodes is sufficient to produce a coarsening dynamics in

analogy with some techniques of noise reduction studied in the problems of surface growth [175].

Moreover, my personal opinion is that a further simplified model of Naming Game, conceived in such

a way to retain all its relevant properties, could allow to study analytically the dynamics on the whole

class of mean-field like models, maybe elucidating the relation between the small-world property (and

other topological properties) and the scaling of the convergence time. It should be also interesting

to add some external source of noise to the system, maybe coupled with the internal activity of the

agents, in order to study if a phase transition toward a non-trivial state in which agents do not find

a consensus emerges.

In conclusion, the study of dynamical phenomena on complex networks is a fascinating subject

of research that is expected to become more and more popular in the next years, because of the

large amount of data that is still not available on real dynamical processes and for the possibility of

theoretical modeling by means of known statistical physics approach and for the considerable number

of issues in which the analytical and numerical analysis of simple models can be successfully applied.
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Appendix A

Generating Functions in

Percolation Problems

In this appendix, we provide a brief introduction to the formalism of generating functions in the study

of percolation on random graphs. We consider infinite graphs without isolated vertices, self-edge or

multiple edges. The generating function for the degree distribution pk of a randomly chosen vertex is

G0(x) =

∞
∑

k=1

pkxk , (A.1)

with G0(1) = 1, and 〈k〉 =
∑

k kpk = G′
0(1). Similarly, the generating function for the probability

that a randomly chosen edge leads to a vertex of given degree is

∑

k kpkxk−1

∑

k kpk
= G1(x) =

G′
0(x)

G′
0(1)

. (A.2)

A useful property is that the probability distribution and its moments can be computed by simple

derivative of the corresponding generating function.

If we call qk the probability that a vertex of degree k is occupied (or node traversing probability

if regarded as a spreading phenomena), the probability that, choosing randomly a vertex, we pick up

an occupied vertex of degree k is the product of the probabilities of two independent events, i.e. pkqk.

Repeating the same operation with the edges, we need the probability that the randomly chosen edge

is attached to an occupied vertex of degree k. This event happens with probability kpkqk/〈k〉. Hence,

we define the generating functions for both these probabilities that are very important in the site

percolation,

F0(x; {q}) =

∞
∑

k=1

pkqkxk , (A.3a)

F1(x; {q}) =

∑∞
k=1 kpkqkxk−1

∑

k kpk
=

F ′
0(x)

〈k〉 . (A.3b)

The function F0(x; {q}) is the generating function of the probability that a vertex of a given degree

exists and is occupied, while F1(x; {q}) is the generating function for the probability of reaching a

vertex of a given degree starting by a randomly chosen edge and that it is occupied.

The solution of the site percolation problem is the set of values {qk} for which an infinite cluster

(giant component) exists. In order to compute the probability that a randomly chosen vertex belongs
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to the giant component, we start by computing the probability Ps that a randomly chosen vertex

belongs to a connected cluster of a certain size s. The use of generating functions allows to do it

simultaneously for all the possible sizes. Then, the mean cluster size is obtained as the first derivative

of the generating function of Ps. Finally, the condition for the divergence of the mean cluster size

gives the condition for the existence of the giant component as a function of the parameters of the

system, that are the degree distribution and the node occupation probability.

Figure A.1: (A) A full dotted bullet with dashed contour line corresponds to the probability that

a vertex is unoccupied. This is given by a particular series of diagrams, in which we sum the

contributions of unoccupied vertices of all possible degrees. A striped bullet with full contour line

represents the generating function F0(x; {q}), whose diagrammatical expansion contains all possible

combinations of occupied vertices reachable by an occupied vertex with a certain degree. The x

accounts for the occupation of a vertex. The contributions of the isolated vertices (p0q0) have been

deleted in agreement with our convention of considering only graphs with non isolated vertices. (B)

Diagrammatical representation of the generating function H0(x). The first terms of the infinite series

correspond to the summation of the Eqs. A.5 as presented in Eq. A.6. These contributions can be

expressed in a compact form using Eq. A.7, that contains the generating functions F0(x; {q}) and

H1(x).

Firstly, we consider the probability Ps that a randomly chosen vertex in the network belongs to a

connected cluster of a certain size s. We call H0(x; {q}) its generating function,

H0(x; {q}) =

∞
∑

s=0

Psx
s , (A.4)

in which we have conventionally grouped in the term for s = 0 the probability 1 −∑k qkpk that a

vertex is not occupied. Similarly, let P̂s be the probability that a randomly chosen edge leads to a

cluster of a given size s, and H1(x; {q}) its generating function.

Since we choose the starting vertex at random, each possible degree k gives a different contribution

to each possible cluster size probability Ps, meaning that each term Psx
s is itself given by an infinite
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sum of terms labeled by the degree k. For instance, the first terms of H0(x; {q}) are:

P0 = 1 −
∑

k

pkqk , (A.5a)

P1x =
∞
∑

l=1

plqlx P̂0
l
, (A.5b)

P2x
2 =

∞
∑

l=1

lplqlx (P̂1x) P̂0
l−1

, (A.5c)

P3x
3 =

∞
∑

l=1

lplqlx (P̂2x
2) P̂0

l−1
+
∑

l≥2

plqlx

(

l

2

)

(P̂1x)
2

P̂0
l−2

, (A.5d)

P4x
4 =

∞
∑

l=1

lplqlx (P̂3x
3) P̂0

l−1
+
∑

l≥2

plqlx 2

(

l

2

)

(P̂2x
2) (P̂1x) P̂0

l−2
(A.5e)

+
∑

l≥3

plqlx

(

l

3

)

(P̂1x)
3

P̂0
l−3

, (A.5f)

...

Now, summing these terms and grouping similar contributions we get

H0(x; {q}) = 1 −
∑

k

pkqk + p1q1x
[

P̂0 + P̂1x + P̂2x
2 + . . .

]

+ p2q2x
[

P̂0
2

+ 2P̂0 P̂1x + (P̂1x)
2

+ 2P̂0 P̂2x
2

+2P̂1x P̂2x
2 + (P̂2x

2)
2
+ . . .

]

+ . . .

= 1 −
∑

k

pkqk + p1q1x
[

P̂0 + P̂1x + P̂2x
2 + . . .

]

+ p2q2x
[

P̂0 + P̂1x + P̂2x
2 + . . .

]2

+ . . .

= 1 −
∑

k

pkqk + xp1q1H1(x; {q}) + xp2q2[H1(x; {q})]2 + . . . .

(A.6)

Note that no term contains p0q0 according with the convention of considering only non isolated nodes.

A compact form for this expression is written using Eq. A.3a,

H0(x; {q}) = 1 − F0(1; {q}) + xF0(H1(x; {q}); {q}) . (A.7)

The structure of Eq. A.7 can be represented diagrammatically as shown in Fig. A.1, associating the

variable x to each “bare” vertex and a variable H(x; {q}) to each “dressed” vertex, while the function

F0 weights the contributions over all possible degrees.

Moreover, the generating function H1(x; {q}) satisfies a similar self-consistent equation,

H1(x; {q}) = 1 − F1(1; {q}) + xF1(H1(x; {q}); {q}) , (A.8)

that is obtained following completely similar arguments starting from picking up an edge at random.

Taking the first derivative of H0 in Eq. A.7 with respect to x computed in x = 1, we get the

mean cluster size 〈s〉. Then, imposing the divergence of the latter allows to find the condition for

the existence of a giant component, that corresponds to the Molloy-Reed criterion as presented in

Ref. [65]. Finally, considering a uniform occupation probability qk = q (or uniform node traversing

probability), the expression for the site percolation threshold qc can be computed.
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Appendix B

A General Percolation Theory for

Spreading Processes

It is possible to develop a general theory for inhomogeneous joint site-bond percolation exploiting the

method of generating functions [65, 103, 250], that is briefly introduced in Appendix B. The theory

holds for Markovian networks, i.e. random graphs with two-point degree correlations [43], therefore

the edge transition probabilities are at least dependent on the degree of the two extremities. Since real

spreading rates may depend on many other features, we account for these properties introducing multi-

type nodes, and assigning to each edge transition probability a pair of additional labels indicating the

types of the nodes at the extremities.

The main result of this appendix is a general version of the Molloy-Reed criterion for the existence

of a giant component in the case of joint site-bond percolation and, consequently, the expressions of

the critical threshold for the two separate cases of site percolation and bond percolation.

B.1 Markovian Networks with Multi-Type Nodes

As already mentioned in Chapter 2, vertex-vertex correlations are usually expressed using the degree

conditional probability p(k′|k), i.e. the probability that a vertex of degree k is connected to a vertex

of degree k′. This has led to the definition of a class of correlated networks, called Markovian random

networks [43] and defined only by their degree distribution pk and by the degree conditional probability

p(k′|k). The function p(k′|k) satisfies the normalization constraint and a detailed balance condition

(see Chapter 2 for details).

In this context, the edge transition probability Tij must depend on the degrees ki and kj of the

extremities. Note that, while the analysis of the standard site (bond) percolation is based on the

relation between the degree distribution pk and the degree-dependent node occupation probability

qk, in the inhomogeneous joint site-bond percolation the relation is between the pair of distributions

{pk, p(k′|k)} and the pair of probability functions {qk, Tkk′}.
The multi-type classification of the nodes consists in dividing the nodes of a graph into n classes,

each one specified by a particular quality or “type”. The meaning is generic, it can be a distinctive

feature of the node (e.g. the gender or the age in a population of individuals) or it can be associated

to some quantity that have been measured on the network (e.g. the strength or the betweenness of the

node). Then, we consider the degree distribution p
(h)
k of nodes of class h = 1, . . . , n, conventionally
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normalized on the relative set of nodes, i.e.
∑

k p
(h)
k = 1. This condition ensures the normalization to 1

for the generating functions. Inside the classes there are no restrictions on the transition probabilities

and they might be very different.

Summarizing, our approach considers a Markovian correlated graph with multi-type vertices, in which

each vertex is given an occupation probability depending on its degree and type, and each edge is

endowed with a transition probability depending on the degrees and the types of the extremities.

The fundamental brick for the construction of generating functions in correlated graphs is the

rooted edge composed of a starting vertex i and the pending edge (i, j) connecting it to a second

vertex j, without explicitly considering this second extremity. For this reason we will always average

on the degree of the second extremity of the edge. Let us consider a vertex i chosen at random,

it will be characterized by a class h and by a degree ki. In principle, the ki edges departing from

that node are connected to ki other nodes belonging to different classes. Actually, only mi of them

are really reached by a flow because of the presence of transition probabilities on the edges (we call

such transmitting edges open). Therefore, they identify a partition of {m(1)
i , m

(2)
i , . . . , m

(n)
i }, with

∑

l m
(l)
i = mi ≤ ki, in which m

(l)
i is the number of these neighbouring nodes belonging to the class l

and linked to i by an open edge.

Suppose that m
(l)
i of the ki edges emerging from a node of class h and degree ki are successfully

connected to nodes of a same class l and (possibly different) degrees kj . The average probability

that an edge among them allows the flow to pass is
∑

kj
T

(h→l)
kikj

p(h→l)(kj |ki), where p(h→l)(kj |ki) is

the degree conditional probability between vertices of states h and l and T
(h→l)
kikj

is the transition

probability along an edge from a node of degree ki in the class h to a node of degree kj in the

class l. The origin of this term is trivial: the probability to pass along the edge is the product of

two independent events, i.e the edge exists and it is open; then, being interested in rooted edges,

we have to average over all possible degrees kj . The probability that there are m
(l)
i of these edges

produces a term [
∑

kl
T

(h→l)
kikj

p(h→l)(kj |ki)]
m

(l)
i

. Positive events give n contributions of this kind, while

the ki − mi negative events contribute to a single term
[

1 −
∑n

l=1

∑

kjl
T

(h→l)
kikjl

p(h→l)(kjl
|ki)
]ki−mi

,

that is the probability that ki − mi edges do not admit the flow’s passage whichever class they

belong to. Computing the probability of the whole event associated with the partition {m(0)
i =

ki − mi, m
(1)
i , m

(2)
i , . . . , m

(n)
i } of the neighbours of the node with degree ki, we get the multinomial

distribution

P (h)(ki, {m(l)
i }) = ki!

1

m
(0)
i !



1 −
n
∑

jl=1

∑

kjl

T
(h→l)
kikjl

p(h→l)(kjl
|ki)





m
(0)
i

×
n
∏

l=1

1

m
(l)
i !





∑

kjl

T
(h→l)
kikjl

p(h→l)(kjl
|ki)





m
(l)
i

.

(B.1)

A simpler version of this multinomial distribution appears in Ref. [190].

The following step consists in using the expression of the multinomial distribution to obtain the

generating function of the probability that a physical quantity spreading from a vertex of class h

successfully flows through {m(l)} of its edges that point to vertices in the class {l} (l = 1, 2, . . . , n).

Summing over all possible values of ki and over all possible partitions of ki in n + 1 values {m(l)}, we
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obtain the generating function

F
(h)
0 (x1, x2, . . . , xn; {q, T }) =

∞
∑

ki=1

p
(h)
ki

q
(h)
ki

∑

{m
(l)
i }

δ(ki,

n
∑

l=0

m
(l)
i )P (h)(ki, {m(l)

i })
n
∏

l=1

x
m

(l)
i

l , (B.2)

in which q
(h)
ki

is the occupation (traversing) probability of a vertex belonging to the class h with degree

ki, δ(·, ·) is a Kronecker’s symbol and the x1, . . . , xn variables represent the average contributions of

the rooted edges of the different classes. Introducing Eq. B.1 in Eq. B.2, the sum over the partitions

{m(l)
i } corresponds to the extended form of a multinomial term, providing the following expression

for the generating function

F
(h)
0 (x1, x2, . . . , xn; {q, T }) = F

(h)
0 (x; {q, T })

=

∞
∑

ki=1

p
(h)
ki

q
(h)
ki



1 +

n
∑

l=1

(xl − 1)
∑

kjl

T
(h→l)
kikjl

p(h→l)(kjl
|ki)





ki

.
(B.3)

With a completely similar argument, we compute the generating function F
(h)
1 (x; {q, T }) of the

probability that a randomly chosen edge leads to a vertex of class h from which the spread toward

its neighbours successfully flows through {ml} edges pointing to nodes of class {l} (l = 1, 2, . . . , n).

Hence, observing that now the number of emerging edges available to the spreading process reduces

to ki − 1 and that the probability to reach the starting vertex (from an edge pointing to a generic

vertex of class h) is
kip

(h)
ki

P

k kp
(h)
k

, the generating function F
(h)
1 (x; {q, T }) reads

F
(h)
1 (x1, x2, . . . , xn; {q, T }) = F

(h)
1 (x; {q, T })

=

∞
∑

ki=1

kip
(h)
ki

∑

k kp
(h)
k

q
(h)
ki



1 +

n
∑

l=1

(xl − 1)
∑

kjl

T
(h→l)
kikjl

p(h→l)(kjl
|ki)





ki−1

.

(B.4)

As recalled in the Appendix A, the two generating functions are useful in the computation of

a system of self-consistent equations (similar to those in Eqs. A.7-A.8) from which the expression

of the average cluster size 〈s〉 should be derived. The main difference concerns the form of the

generating functions F
(h)
0 (x; {q, T }) and F

(h)
1 (x; {q, T }), that are partitioned in classes (of nodes in

different states) and contain the contributions of the transition probabilities. Firstly, we consider the

probability P
(h)
s that a randomly chosen edge leads to a vertex of class h belonging to a connected

component of a given size s. Its generating function H
(h)
1 (x; {q, T }) =

∑

s P̂
(h)
s xs satisfies the self-

consistent equation

H
(h)
1 (x; {q, T }) = 1 − F

(h)
1 (1; {q, T }) + x F

(h)
1 [H

(1)
1 (x; {q, T }), . . . , H(n)

1 (x; {q, T }); {q, T }] , (B.5)

where the presence of H
(h)
1 (x; {q, T }) for all h = 1, . . . , n on the r.h.s. means that the constraint on

the value of h is required only on the starting node, not on the others reachable from it. Moreover, x

refers to the cluster distribution and does not need any label.

The first term in the r.h.s. of Eq. B.5 is due to the probability that the node of class h to which

a chosen edge leads is not occupied, therefore it should not depend on the transmissibility of any

outgoing edge. As required, the term 1 − F
(h)
1 (1; {q, T }) computed in x = 1 does not depend on

{T }. This corresponds exactly to the term P̂
(h)
0 in the cluster expansion. The second term of Eq. B.5

refers to the contribution of an occupied vertex. Let us suppose that its degree is ki and consider one



144 APPENDIX B. A GENERAL PERCOLATION THEORY FOR SPREADING PROCESSES

of its outgoing edges leading to a vertex in the class l: its contribution is given by the probability

1 −∑kjl

T
(h→l)
kikjl

p(h→l)(kjl
|ki) that the flow does not reach the second extremity of the edge, and by

the probability that it passes (
∑

kj
T

(h→l)
kikj

p(h→l)(kj |ki)). The latter has to be multiplied by the vertex

function associated to the probability that this second vertex (of class l) belongs to a cluster of a

given size. This probability is generated by the function H
(l)
1 (x; {q, T }) that is the correct vertex term

for this contribution. Then, all these quantities have to be averaged over the set of degrees ki, with

weights p
(h)
ki

and q
(h)
ki

, easily recovering the second term on the r.h.s.. Since the spirit of the derivation

is completely the same, we refer again to Fig. A.1 for a diagrammatical representation of the Eq. B.5

(details are different).

The other equation, for the generating function H
(h)
0 (x; {q, T }) of the probability that a randomly

chosen vertex of class h belongs to a cluster of fixed size s, reads

H
(h)
0 (x; {q, T }) = 1 − F

(h)
0 (1; {q, T }) + x F

(h)
0 [H

(1)
1 (x; {q, T }), . . . , H(n)

1 (x; {q, T }); {q, T }] , (B.6)

Note that, by definition, both H
(h)
0 (x; {q, T }) and H

(h)
1 (x; {q, T }) are 1 in x = 1 for all h.

Now, taking the derivative of Eq. B.6 with respect to x in x = 1, we obtain the average number of

vertices reachable starting from a vertex in the class h,

〈sh〉 =
dH

(h)
0

dx

∣

∣

∣

∣

x=1

= F
(h)
0 (H1(1) = 1; {q, T }) +

∑

l

∂F
(h)
0

∂xl

∣

∣

∣

∣

x=1

H
(l)
1

′
(1; {q, T }) .

(B.7)

The second term in the r.h.s. contains linear contributions from other classes of vertices, therefore

Eq. B.7 can be written in a matrix form (in the n× n product space generated by pairs of classes) as

〈s〉 = ∇xH0(x; {q, T })
∣

∣

∣

∣

x=1

= F0[1; {q, T }] + ∇xF0[x; {q, T }]
∣

∣

∣

∣

x=1

· ∇xH1(x; {q, T })
∣

∣

∣

∣

x=1

, (B.8)

with s = (s1, s2, . . . , sn). Taking the derivative of Eq. B.5 with respect to x in x = 1, we obtain an

implicit expression for H
(h)
1

′
(1; {q, T })

H
(h)
1

′
(1; {q, T }) = F

(h)
1 [1; {q, T }] +

∑

l

∂

∂xl
F

(h)
1 [1; {q, T }]H(l)

1

′
(1; {q, T }) , (B.9)

and putting together the contributions in a matrix formulation, we get

∇xH1(x; {q, T })
∣

∣

∣

∣

x=1

= F1[1; {q, T }] + ∇xF1[x; {q, T }]
∣

∣

∣

∣

x=1

· ∇xH1(x; {q, T })
∣

∣

∣

∣

x=1

. (B.10)

Explicitly, Eq. B.10 becomes

∇xH1(x; {q, T })
∣

∣

∣

∣

x=1

= [I −∇xF1[x = 1; {q, T }]]−1 ·F1[1; {q, T }] = [I −F ]
−1 ·F1[1; {q, T }] , (B.11)

with F = ∇xF1[x = 1; {q, T }]. Introducing the expression in Eq. B.8, we obtain

〈s〉 = F0[1; {q, T }] + ∇xF0[x = 1; {q, T }] · [I −F ]
−1 ·F1[1; {q, T }] . (B.12)

The condition for a giant component to emerge consists in the divergence of the mean cluster size,

i.e. of at least one of the components of 〈s〉. It corresponds to the following generalized Molloy-Reed
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criterion for inhomogeneous joint site-bond percolation in multi-type Markovian correlated random

graphs:

det [I −F ] ≤ 0 , (B.13)

where F = ∇xF1[x = 1; {q, T }] (whose elements are of the type ∂
∂xl

F
(h)
1 [1; {q, T }]).

It is evident that such a general result strongly depends on which kind of node partition we are

considering. Two examples of partitions are particularly relevant: i) a single class collecting all the

nodes and ii) a degree-based classification of the nodes.

B.2 Degree-based Multi-type Solution

In this situation the types correspond to the different degrees, thus each class gathers all vertices with

a given degree and there is in principle an infinite number n of types (in finite networks there are as

many types as the number of different degrees). Using the relation p
(ki)
ki

= 1 and
kip

(ki)

ki
P

k kp
(ki)

k

= 1, the

Eqs. B.3-B.4 become

F
(ki)
0 (x1, . . . , xn; {q, T }) = qki



1 +
∑

kj

(xkj
− 1)Tkikj

p(kj |ki)





ki

, (B.14a)

F
(ki)
1 (x1, . . . , xn; {q, T }) = qki



1 +
∑

kj

(xkj
− 1)Tkikj

p(kj |ki)





ki−1

. (B.14b)

The self-consistent system of equations for the generating functions of clusters size probability looks

like in Eqs. B.5-B.6, and the condition for the existence of a giant component is still the divergence

of the mean cluster size, but now the elements of the matrix F are

Fij = (∇xF1[x = 1; {q, T }])ij = (ki − 1)qki
Tkikj

p(kj |ki) . (B.15)

The generalized Molloy-Reed criterion becomes

det
[

(ki − 1)qki
Tkikj

p(kj |ki) − δij

]

≥ 0 . (B.16)

This expression corresponds to the criterion of Ref. [240] for the existence of percolation in correlated

random graphs (apart from a matrix transposition), but with the difference that in this case we

are dealing with inhomogeneous joint site-bond percolation, then both the degree-dependent node

traversing probability and edge transition probability appear in the expression. The condition that

percolation threshold is related to the largest eigenvalue (see Ref. [240]) is recovered if we assume that

all nodes have equal traversing probability qki
= q = const. In other words, we are switching from

a joint site-bond percolation to a simple site percolation with an occupation probability q. If q 6= 0

(otherwise the percolation condition cannot be satisfied), we can write the condition as

q det
[

(ki − 1)Tkikj
p(kj |ki) − Λδij

]

≥ 0 , (B.17)

with Λ = 1/q. Since in q = 0 the determinant is negative, the smallest positive value of q ensuring

Eq. B.17 to be satisfied corresponds to the largest eigenvalue Λmax of the matrix (ki −1)Tkikj
p(kj |ki).

It follows that the critical value of site occupation probability is q = 1/Λmax. In the case Tkikj
= 1,

the condition gives exactly the results obtained by Vázquez et al. [240].

However, the complete knowledge of the correlation matrix p(kj |ki) is very unlikely for real

networks, and the analytical solution of Eq. B.16 can be problematic also for simple artificial networks.
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B.3 Local Homogeneity Approximation

When all nodes belong to a unique class, the single-state network is recovered and the analytical

treatment becomes easier. We recover indeed a sort of local homogeneity approximation for the

probability that an edge emerging from a vertex of degree ki is traversed by the flow. When n = 1,

the terms on the r.h.s. of Eqs. B.3-B.4 reduces to the average over the contributions of all the

second extremities of the edges emerging from a node, obtaining a degree-dependent effective average

transmission coefficient τki
=
∑

kj
Tkikj

p(kj |ki) (0 ≤ τki
≤ 1). The advantage of this approximation

is that of providing analytically solvable equations for the percolation condition. Moreover, even if the

sum on kj introduces an approximation, the effective term τki
does not neglect the contributions due

to the edge transition probabilities, weighting them with the correct degree conditional probability as

required for Markovian networks. If these contributions are similar the approximation is very good,

while when the edge transition probabilities or the nodes correlations are highly heterogeneous the

local effective medium approximation breaks down, and we have to use the general approach.

Derivation of the Molloy-Reed Criterion - According to this approximation, the generating

function F0(x; {q, T }) of the probability that a spreading process emerging from an occupied node flows

through exactly m nodes (whatever their degrees are) is written as

F0(x; {q, T }) =

∞
∑

ki=1

pki
qki



1 + (x − 1)

∞
∑

kj=1

Tkikj
p(kj |ki)





ki

. (B.18)

This expression can be alternatively derived using simple arguments (see Ref. [84]). The value

F0(1; {q, T }) assumed by this function in x = 1 is the average occupation probability 〈q〉 =
∑

k pkqk,

that is consistent with the fact that summing over the contributions of all the possible amounts of

emerging edges traversed by the flow means that we are simply considering the number of starting

nodes, i.e. the average number of occupied nodes. The first derivative with respect to x computed in

x = 1
∂

∂x
F0(x; {q, T })

∣

∣

∣

∣

x=1

=

∞
∑

ki=1

kipki
qki

∞
∑

kj=1

Tkikj
p(kj |ki) , (B.19)

is the average number of open edges emerging from an occupied vertex.

Using similar arguments, we get the generating function F1(x; {q, T }) of the probability that the flow

spreading from a vertex, reached as an extremity of an edge picked up at random, passes through a

given number of the remaining edges,

F1(x; {q, T }) =
∞
∑

ki=1

kipki
∑

k kpk
qki



1 + (x − 1)
∞
∑

kj=1

Tkikj
p(kj |ki)





ki−1

. (B.20)

The next step consists in considering the self-consistent equations,

H0(x; {q, T }) = 1 − F0(1; {q, T }) + xF0 [H1(x; {q, T }); {q, T }] , (B.21a)

H1(x; {q, T }) = 1 − F1(1; {q, T }) + xF1 [H1(x; {q, T }); {q, T }] . (B.21b)

Now the two quantity H0(x; {q, T }) (and H1(x; {q, T })) is scalar, and represents the generating

function of the probability that a randomly chosen vertex (and, respectively, vertex reached by a
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randomly chosen edge) belongs to a cluster of given size. Since using scalar quantities allows to

explain some passages, we derive also the expression for the mean cluster size 〈s〉,

〈s〉 =
d

dx
H0(x; {q, T })

∣

∣

∣

∣

x=1

= H ′
0(1; {q, T }) , (B.22)

where x = 1 implies the average over all possible degrees ki. From Eq. B.21a-B.21b, using the relation

H1(1; {q, T }) = 1, we get

〈s〉 = F0(1; {q, T }) + F ′
0(1; {q, T })H ′

1(1; {q, T }) , (B.23)

where the expression for H ′
1(1; {q, T }) comes directly from deriving Eq. B.21b with respect to x in

x = 1,

H ′
1(1; {q, T }) =

F1(1; {q, T })
1 − F ′

1(1; {q, T }) . (B.24)

Inserted into Eq. B.23 it leads to the well-known expression ([65])

〈s〉 = F0(1; {q, T }) +
F ′

0(1; {q, T })
1 − F ′

1(1; {q, T }) ; (B.25)

hence, the giant component exists if and only if F ′
1(1; {q, T }) ≥ 1. Explicitly, it means that, in the

local effective medium approximation, the generalized Molloy-Reed criterion for the inhomogeneous

joint site-bond percolation on Markovian random graphs takes the following form,

∞
∑

ki=1

pki
ki



(ki − 1)qki

∞
∑

kj=1

Tkikj
p(kj |ki) − 1



 ≥ 0 . (B.26)

The threshold for the site percolation with inhomogeneous edges occurs when the equality holds.

Inserting uniform occupation probability qk ≡ q, its critical value is

qc =
〈k〉

∑∞
ki=1 ki(ki − 1)pki

∑∞
kj=1 Tkikj

p(kj |ki)
. (B.27)

Transition probability factorization - Note that, all the expression for the site-percolation

threshold reported in Section 4.3.1 have been derived starting from Eq. B.26. Henceforth, we will

rapidly derive them, making explicit assumptions on the form of the edge transition probabilities.

The most natural assumption consists of their factorization in two single-vertex contributions, i.e.

Tkikj
= Θi(ki)Θf(kj) , (B.28)

where subscripts i and f indicate an initial and a final term respectively, in order to stress the fact that

first and second vertices of an edge can give different contributions in the inhomogeneous percolation

process.

Inserting Eq. B.28 in Eq. B.26, the condition for the existence of a giant component becomes

∞
∑

ki,kj=1

pki
ki [(ki − 1)Θi(ki)Θf (kj)qki

− 1] p(kj |ki) ≥ 0 . (B.29)

In the case of uncorrelated graphs, the conditional probability also factorizes in p(k′|k) = k′pk′

〈k〉 ,

and Eq. B.29 gets simpler, leading to an interesting expression for the site percolation threshold,

qc =
〈k〉2

[〈k2Θi(k)〉 − 〈kΘi(k)〉]〈kΘf (k)〉 . (B.30)
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As an alternative, it seems interesting to study situations in which the transition probability is a

function of only one of the two extremities of an edge. When it depends only on final nodes means

that Θi(k) = const. = 1 and Tkikj
= Θf(kj) and the site percolation threshold takes the form

qc =
〈k〉2

[〈k2〉 − 〈k〉]〈kΘf (k)〉 = qhom
c

〈k〉
〈kΘf(k)〉 , (B.31)

where qhom
c is the value of the critical occupation probability for the correspondent standard homogeneous

site percolation. The opposite situation, Θf(k) = const. = 1 and Θi(k) = Tk, leads to the following

form for the Molloy-Reed criterion

∞
∑

k=1

k [(k − 1)qkTk − 1] pk ≥ 0 . (B.32)

The inhomogeneous site percolation threshold qc follows directly imposing uniform occupation probability

qk = q,

qc =
〈k〉

〈k2Tk〉 − 〈kTk〉
. (B.33)

From Eq. B.32, also the threshold’s value for the inhomogeneous bond percolation is immediately

recovered. If we suppose uniform transition probabilities Tk = T , indeed, we can explicit T in

Eq. B.32 as a function of the set of {qk} and compute the value of the threshold as

Tc =
〈k〉

〈k2qk〉 − 〈kqk〉
, (B.34)

that represents the case in which percolation on the edges is affected by refractory nodes.

The last case we consider is that of uniform transition probabilities Tkikj
= T , with 0 < T ≤ 1.

In the limit T = 1, the original Molloy-Reed criterion is recovered, otherwise, introducing Tkikj
= T

in Eq. B.27, we find the same expression for the threshold of site percolation with noisy edges (as in

Eq. 4.14 with 〈T 〉 = T )

qc =
1

(〈k2〉/〈k〉 − 1)T
. (B.35)



Appendix C

Solution of the Naming Game on

one-dimensional lattices

In Section 5.3.1, we have discussed the behavior of the Naming Game model on low-dimensional

regular lattices by means of numerical simulations. Local consensus is easy to reach, thus clusters

composed of adjacent agents with the same unique word start to grow, developing a sort of effective

surface tension at the interfaces. This effective surface tension, whose origins are partially investigated

in Section 5.3.1 is responsible for the slow coarsening dynamics leading the system to the consensus

state.

In one-dimensional lattices, it is possible to solve almost exactly the dynamics mapping the Naming

Game on a problem of diffusion and coalescence of interfaces. Let us consider a single interface between

two linear clusters of agents: in each cluster, all agents share the same unique word, say A in the

left-hand cluster and B in the other. The interface is a string of length m composed of sites in which

both states A and B are present. We call Cm this state (A + B)
m

. A C0 corresponds to two directly

neighboring clusters (· · ·AAABBB · · · ), while Cm means that the interface is composed by m sites

in the state C = A + B (· · ·AAAC · · ·CBBB · · · ). Note that, in the actual dynamics, two clusters of

states A and B can be separated by a more complex interface. For instance a Cm interface can break

down into two (or more) smaller sets of C-states spaced out by A or B clusters, causing the number

of interfaces to grow. Numerical investigation shows that such configurations are however eliminated

in the early times of the dynamics. A sketch representing the evolution of the interface between two

different clusters of words is reported in Fig. C.1.

Since the local dynamics is much faster than the global one, the probability that two neighboring

clusters are separated by an interface of a given width is well approximated by the stationary solution

of a Markov process governing the transitions between interfaces of different width. The Markov chain

is easily generated by means of an iterative method.

Let us consider a one-dimensional line composed of N sites, initially divided into two clusters of A and

B, with an interface of zero width. The probability to select for interaction exactly the link associated

with this C0 interface is 1/N . Moreover, the outcome of such an interaction is the appearance of a C1

interface, since one of the two agents (that chosen as hearer) learns the word (A or B) uttered by the

other. Thus, there is a probability p0,1 = 1/N that a C0 interface becomes a C1 interface in a single

time step, otherwise it stays in C0.

We can now compute all possible evolutions, and relative probabilities, for a C1 interface. From C1 the

interface can evolve into a C0 or a C2 interface with probabilities p1,0 = 3
2N and p1,2 = 1

2N respectively.

149
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Figure C.1: Sketch of the evolution of an interface in a one-dimensional Naming Game. At the

interface between two clusters (red and blue sites), one or more sites can assume more than one word.

This procedure is easily extended to higher values of m, even if the number of the possible cases grows

considerably and the enumeration becomes harder. In principle there is no limit to the growth of

the interface’s width; in practice, we can safely truncate this enumeration at m ≤ 3, as suggested by

numerical experiments in which we have counted the number of times an interface of a given width

appears during the evolution of one-dimensional models.

In this approximation, the problem corresponds to determine the stationary probabilities of the

truncated Markov chain reported in Fig. C.2 and defined by the transition matrix

M =











N−1
N

1
N 0 0

3
2N

N−2
N

1
2N 0

1
N

3
2N

N−3
N

1
2N

1
N

1
N

3
2N

N−4
N + 1

2N











, (C.1)

in which the basis is {C0, C1, C2, C3} and the contribution 1
2N from C3 to C4 has been neglected (see

Fig. C.2).

The stationary probability vector P = {P0, P1, P2, P3} is computed by imposing P(t+1)−P(t) = 0,

i.e. (MT − I)P = 0. This condition gives

P0 =
133

227
≈ 0.586, P1 =

78

227
≈ 0.344, P2 =

14

227
≈ 0.062, P3 =

2

227
≈ 0.0088 . (C.2)

Direct numerical simulations of the evolution of a line · · ·AAABBB · · · (of the type reported in

Fig. C.1) yields P0 ≃ 0.581, P1 = 0.344, P2 = 0.063, P3 = 0.01, that are plotted in Fig. C.3 together

with the theoretical prediction, confirming that our approximation is correct.

Having shown that the width of the interfaces remains small, we assume that they are punctual

objects localized around their central position x. For instance, in the previously mentioned example

with A and B clusters, we denote by xl the position of the right-most site of cluster A and by xr the

position of the left-most site of cluster B: the position of the interface is x = xl+xr

2 . An interaction

involving sites at the interface, i.e. an interface transition Cm → Cm′ , corresponds to a set of possible



151

Figure C.2: Truncated Markov process associated with interface width dynamics - schematic evolution

of a C0 interface · · ·AAABBB · · · , cut at the maximal width m = 3.

movements for the central position x. Our purpose is that of writing down a master equation for the

movement of the interfaces.

The transition rates W (x → x± δ) of an interface (its center) from a position x to a position x± δ are

obtained by enumeration of all possible cases. Using the above approximation only three symmetric

contributions are present, corresponding to displacements of ±1/2, ±1 and ±3/2. These transition

probabilities receive contributions from interfaces with different width. For instance, the Markov

matrix in Eq. C.1 says that the C1 interface AACBB evolves into the following configurations

AACBB =⇒































AAABB 3
2N x → x + 1

2 ,

AABBB 3
2N x → x − 1

2 ,

ACCBB 1
2N x → x − 1

2 ,

AACCB 1
2N x → x + 1

2 ,

AACBB otherwise x → x .

(C.3)

in which we have put also the corresponding displacement of the center’s position x.

Computing all possible transitions and grouping them according to the displacement δ, we obtain

W (x → x ± 1

2
) = 1

2N P0 + 1
N P1 + 1

N P2 + 1
2N P3 , (C.4)

W (x → x ± 1) = 1
2N P2 + 1

2N P3 , (C.5)

W (x → x ± 3

2
) = 1

2N P3 . (C.6)

Using the expressions for the stationary probability P0, . . . , P3, we finally get

W (x → x ± 1

2
) =

319

454N
, W (x → x ± 1) =

8

227N
, W (x → x ± 3

2
) =

1

227N
. (C.7)
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Figure C.3: Numerical values of the probability of the interface’s width (circles) and corresponding

theoretical predictions (crosses) obtained as solution of the truncated Markov chain. The two sets of

values are in excellent agreement.

The knowledge of these transition probabilities allows us to write the master equation for the

probability P(x, t) to find the interface in position x at time t. In the limit of continuous time and

space, expanding the single terms

P(x, t + 1) − P(x, t) ≈ δt
∂P
∂t

(x, t), (C.8)

P(x + δx, t) ≈ P(x, t) + δx
∂P
∂x

(x, t) +
(δx)

2

2

∂2P
∂x2 (x, t) , (C.9)

the master equation reduces to a standard diffusion equation

∂P(x, t)

∂t
=

D

N

∂2P(x, t)

∂x2 , (C.10)

where D = 401/1816 ≃ 0.221 is the theoretical value of the diffusion coefficient (in the appropriate

dimensional units (δx)2/δt).

These results are confirmed by numerical simulations as illustrated in the Section 5.3.1 by Fig. 5.7,

where the numerical probability P(x, t) is reported. The latter is a Gaussian centered around the

initial position, with diffusion coefficient Dexp ≃ 0.224 ≈ D.

The diffusion of interfaces and the consequent coarsening dynamics governing clusters growth are the

causes of the slow convergence of one-dimensional Naming Game model, that reaches the consensus

absorbing state in tconv ∼ O(N3) steps (O(N2) if we rescale the time step by N as in statistical

mechanics models).



Appendix D

Master equation approach to agents

internal dynamics

In this appendix, we discuss a more rigorous derivation of the probability distribution Pn(k|t) that

an agent of degree k has n words stored in its inventory (at time t) (see also Ref. [92]). Formally, the

master equation associated to the jump process observed in the numerical simulations for the number

of words (opinions, etc.) n in the inventory of a fixed agent of degree k can be written as

Pn(k, t + 1) − Pn(k, t) = Wk(n − 1 → n|t)Pn−1(k, t) −Wk(n → n + 1|t)Pn(k, t) (D.1)

−Wk(n → 1|t)Pn(k, t) Nd(t) ≥ n > 1

P1(k, t + 1) − P1(k, t) =
∑Nd(t)

j=2 Wk(j → 1|t)Pj(k, t) −Wk(1 → 2|t)P1(k, t) ,

where Nd(t) is the maximum number of different words at a time t and Pn(k, t + 1) depends a priori

explicitly on the time.

In order to get an expression for the transition rates, we call Ct(k) the number of different words

that are accessible to a node (of degree k) at time t, i.e. that are present in the neighborhood of the

node. This number is not known, so that we consider it as a parameter to be estimated a posteriori.

Nevertheless, the mean-field type of dynamics that characterizes all small-world topologies, ensures

that the quantity Ct(k) depends mildly on k, so that in the following analysis we will often consider

it as function only of the time Ct. In small-world topologies, indeed, there is an initial spreading of

words throughout the network that destroys local correlations. The case of low-dimensional lattices

is different since states can spread only locally, causing strong correlations between the inventories.

We define also the inverse quantity, ρt(k) = 1/Ct(k), that will be used in the following formulae for

notation’s convenience.

The probability of a successful negotiation is nρt(k), where n is the number of words in the inventory

of an hearer of degree k. Considering both the probabilities of the agent playing as hearer and speaker,

the transition rate Wk(n → 1|t) reads

Wk(n → 1|t) ≃ pk〈ρt〉〈n〉 + qkρt(k)n . (D.2)

Analogously, using the failure probability 1 − nρt(k),

Wk(n → n + 1|t) ≃ pk(1 − 〈ρt〉〈n〉) + qk(1 − ρt(k)n) . (D.3)

where the average terms 〈ρt〉 and 〈n〉 comes from an uncorrelated mean-field hypothesis for the

neighboring sites of the node playing as speaker.
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Figure D.1: Parametric dependence on time of the distribution of the number of words: the time has

the effect of deforming the shape of the distribution, but does not change the functional form. (Top)

BA graph with N = 104 nodes with 〈k〉 = 10. Only the set of nodes with large k (hubs) is monitored.

Histograms come from measurements at different times t1 and t2 with t2 − t1 = 5 · 105 time steps.

(Bottom) ER graph of N = 104 nodes and 〈k〉 = 10. Measures refer to a set of high-degree nodes

with t2 − t1 = 5 · 105 time steps.

An important remark concerns the temporal evolution of the master equation. From Eqs. D.2-D.3,

we note that the timescale of the internal dynamics is fast, of order 1/pk ∝ N . On the other hand,

the only time-dependent parameter is ρt(k) (or Ct(k)), that depends on the global behavior of the

system, whose dynamics is slower. Unfortunately, we do not know the exact behavior of this global

quantity, thus the only possible approach consists of considering it as an external modulation to the

internal dynamics. According to this argument, we study the stationary condition of Eq. D.2, and

compute the solution Pn(k|t), in which we assume a parametric dependence of the distribution on the

time, governing its relaxation dynamics. We have verified this assumption measuring the distribution

at different times. As displayed in Fig. D.1, the solution depends on the time, but the dependence has

the only effect of deforming the shape during the evolution, without changing the functional form.

Plugging the expressions of the transition rates into the stationary master equation, we get the

following recursion relation,

Pn(k|t) =
qk [1 − ρt(k)(n − 1)]

qk [1 − nρt(k)] + qkρt(k)n + pk〈ρt〉〈n〉
Pn−1(k|t) . (D.4)

Then, introducing qk = kpk/〈k〉 = b(k)pk and replacing ρt(k)(n − 1) with ρt(k)n (that is true for

n ≫ 1), Eq. D.4 can be rewritten as

Pn(k|t) =
b(k)[1 − ρt(k)n]

b(k) + 〈ρt〉〈n〉
Pn−1(k|t) . (D.5)
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Figure D.2: Probability of Wk(n → 1|t) and Wk(n → n + 1|t) for BA and ER models. Both with

N = 5000 nodes and k ≃ 200 (for a BA with 〈k〉 = 10) and k ≃ 70 (for a ER with 〈k〉 = 50).

Since nρt(k) ≪ 1, we can write 1 − ρt(k)n ≃ e−ρt(k)n, thus solving the recurrence relation,

Pn(k|t) ≃
[

b(k)

b(k) + 〈ρt〉〈n〉

]n−1

e−ρt(k) (n+2)(n−1)
2 P1(k|t) . (D.6)

The normalization relation gives the constant P1(k|t). The controlling parameter of the curve is

st(k) = b(k)/(b(k)+ 〈ρt〉〈n〉), that allows to tune the decay of the distribution between an exponential

and a gaussian-like tail.

In the next two paragraphs, we focus on these two cases separately, showing that the two different

results derive from different forms of the transition rates, that can be also inferred from simulations.

The case of homogeneous networks - Exploiting the remark coming from simulations, in

homogeneous networks, we can safely put qk ≃ bpk, with b ≃ O(1) and ρt(k) ≃ 〈ρt〉 (i.e. Ct(k) ≃ Ct),

since the nodes are almost equivalent. The number of states as well is almost the same for every node

that implies n ≃ 〈n〉. The approximated expressions of the success and failure probabilities are

Wk(n → 1|t) ≈ pk〈n〉(1 + b)/Ct ≈ 2pk〈n〉/Ct (D.7)

Wk(n → n + 1|t) ≈ pk(1 − 〈ρt〉〈n〉)(1 + b) ≈ 2pk. (D.8)

We have verified numerically the validity of these approximated expressions for the quantities Wk(n →
n + 1|t) and Wk(n → 1|t) (just the term for nodes playing as hearers, since the term for speakers is

almost constant). The data reported in Fig. D.2 (right) show that for an ER model with N = 5 · 103

nodes and 〈k〉 = 50, both quantities are almost constant with respect to n.

The equilibrium condition for the master equation becomes

0 = 2pkPn−1(k|t) − 2pkPn(k|t) − pk〈n〉 2
Ct

Pn(k|t) n > 1

0 =
∑∞

j=2
2

Ct
〈n〉pkPj(k|t) − 2pkP1(k|t) . (D.9)

We can neglect the dependence on k, since pk is canceled, in agreement with the approximation done

for the homogeneity of the network. The solution by recursion is very simple,

Pn(t) ≈ (1 − θt)θt
n−1 , θt =

1

1 + 〈n〉
Ct

. (D.10)
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Using the expansion of logarithm log(1 − ǫt) ≃ −ǫt, with ǫt = 1 − θt ≃ 〈n〉/Ct, the previous formula

gives the following exponential decay for the distribution of the number of words,

Pn(t) ≃ 〈n〉
Ct

e−
〈n〉n

Ct . (D.11)

The exponential decay is in agreement with the numerical data, providing a value ≃ 0.16 for 〈n〉/Ct.

High-degree nodes in heterogeneous networks - The other important case is that of the

hubs in heterogeneous networks. In a direct NG a hub is preferentially chosen as hearer, by a factor

k/〈k〉 ≫ 1, then we can neglect the first terms in both success and failure probability. We consider

the following approximated expressions

Wk(n → 1|t) ≃ qkρt(k)n , (D.12)

Wk(n → n + 1|t) ≃ qk(1 − ρt(k)n) ≃ qk , (D.13)

in which the last approximation is justified by the fact that the number of words accessible to a hub is

large, thus ρt(k) is expected to be small. For heterogeneous networks, the numerical data in Fig. D.2

(left) for Wk(n → 1|t) show a clear linear growth of the quantity with n, in agreement with Eq. D.2,

while the almost constant behavior of Wk(n → n +1|t) with n can be fitted with an expression of the

form Eq. D.3 only for very small values of the product ρt(k)n. On the other hand, Fig. D.2 (bottom)

points out that in the case of homogeneous networks both the quantities are almost constant with

respect to n. We prove now that these different behaviors of the transition rates are responsible of

the different shape of the probability distribution Pn(k|t).
We can easily compute the quasi-stationary distribution {Pn(k|t)}, from the first equation in Eq. D.2

0 = qkPn−1(k|t) − qkPn(k|t) − (qk + qk
n

Ct(k)
)Pn(k|t) , (D.14)

and we find recursively

Pn(k|t) = Ct(k)
Ct(k)+nPn−1(k|t) = Ct(k)2

(Ct(k)+n)(Ct(k)+n−1)Pn−2(k|t) (D.15)

≈ Ct(k)n−1Γ(Ct(k)+2)
Γ(Ct(k)+n+1) P1(k|t) . (D.16)

Now, from the closure relation
∑∞

n=1 Pn(k|t) = 1 we get the expression of P1(k|t), and the final form

for Pn(k|t) becomes

Pn(k|t) =
Ct(k)

n−1

Γ(Ct(k) + n + 1)
Ct(k)

Ct(k)+1
e−Ct(k)

[

Γ(Ct(k) + 1)

γ(Ct(k) + 1, Ct(k))

]

, (D.17)

where γ(a, x) is the lower incomplete Gamma function. The functional form of the quasi-stationary

distribution is complicated, but exploiting some approximations for Gamma functions, it is possible

to write it in a simpler form (see Ref. [92] for details),

Pn(k|t) ≃
√

2

πCt(k)
e

−(n+1)2

2Ct(k) . (D.18)

This expresssion, corresponding to a Half-Normal distribution, is in very good agreement with the

result of simulations. It is remarkable that fitting numerical results in Fig. 5.29 (top) with this

expression gives a consistent value for Ct(k). Indeed, from simulations the constant prefactor is

≃ 0.0046 and Ct(k) ≃ 357, that plugged into
√

2
πCt(k) gives the very close value 0.0042.
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[25] Barrat, A., Barthélemy, M., and Vespignani, A., ‘Modeling the evolution of weighted networks,’

Phys. Rev. E 70, 066149 (2004).
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[71] Catanzaro, M., Boguñá, M., and Pastor-Satorras, R., Phys. Rev. E 71, 027103 (2005).

[72] Cattuto, C., Loreto, V., and Pietronero, L., ‘Semiotic dynamics and collaborative tagging,’

preprint (2006).

[73] Challet, D., Marsili, M., Zhang, Y.-C., Minority Games : Interacting Agents in Financial

Markets, Oxford Finance Series (2005).

[74] Chandrasekhar, S., ‘Stochastic problems in physics and astronomy,’ Rev. Mod. Phys. 15, 1-89

(1943).

[75] Chen, P., and Redner, S., ‘Majority rule dynamics in finite dimensions,’ Phys. Rev. E 71, 036101

(2005).

[76] Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S. J., and Willinger, W., ‘The Origin

of Power Laws in Internet Topologies Revisited,’ Proceedings of IEEE Infocom ’02, New York,

USA (2002).

[77] Clark, J., and Holton, D. A., A first look at graph theory, World Scientific (1991).

[78] Clauset, A., and Moore, C., ‘Accuracy and Scaling Phenomena in Internet Mapping,’ Phys. Rev.

Lett. 94, 018701 (2005).

[79] Cohen, R., ben-Avraham, D., and Havlin, S., ‘Percolation critical exponents in scale-free

networks,’ Phys. Rev. E 66, 036113 (2002).

[80] Cohen, R., Erez, K., ben-Avraham, D., and Havlin, S., ‘Resilience of the Internet to random

breakdown,’ Phys. Rev. Lett. 85, 4626-4628 (2000).

[81] Cowan, R., and Jonard, N., ‘Network structure and the diffusion of knowledge,’ Journal of

Economic Dynamics and Control, 28(8), 1557-1575 (2004).

[82] Cox, D. R., Renewal Theory, Methuen and Co. Ltd., London (1962).

[83] Daley, D. J.,and Kendall, D. G., ‘Epidemics and rumors,’ Nature 204, 1118 (1964).

[84] Dall’Asta, L., ‘Inhomogeneous percolation models for spreading phenomena in random graphs,’

J. Stat. Mech. P08011 (2005).

[85] Dall’Asta, L., Alvarez-Hamelin, J. I., Barrat, A., Vázquez, A., and Vespignani, A. ‘Traceroute-

like exploration of unknown networks: A statistical analysis,’ Lect. Notes Comp. Sci. 3405,

140-153 (2005).

[86] Dall’Asta, L., Alvarez-Hamelin, J. I., Barrat, A., Vázquez, A., and Vespignani, A., ‘Exploring

networks with traceroute-like probes: theory and simulations, Theor. Comp. Sci. 355, 6-24

(2006).



162 BIBLIOGRAPHY

[87] Dall’Asta, L., Alvarez-Hamelin, J. I., Barrat, A., Vázquez, A., and Vespignani, A., ‘Statistical

theory of Internet exploration,’ Phys. Rev. E 71 036135 (2005).

[88] Dall’Asta, L., Alvarez-Hamelin, J. I., Barrat, A., Vázquez, A., and Vespignani, A., ‘How accurate

are traceroute-like Internet mappings?,’ Comference Proc. AlgoTel ’05, INRIA, 31-34 (2005).
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