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"– Vous savez, me dit-il, les Vikings
qui avaient sillonné les mers et décou-
vert l’Amérique, c’est un mythe allé-
gorique. Les vrais Vikings sont ceux
qui traversent des océans d’angoisse
et découvrent des terres nouvelles.
Vous êtes un Viking, Rodolphe.
Il m’appelait Rodolphe parce qu’il me
connaissait déjà.
– Qu’est-ce qu’il y a de vrai à décou-
vrir?
– Les seules réponses possibles ce
sont les questions, Maurice. Les vrais
Vikings, ce sont les questions. Les
réponses, c’est ce que les Vikings se
chantent pendant la traversée pour se
donner du courage."

Pseudo, Emile Ajar.
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À la mémoire de Laurent.

"Je ne savais pas encore que
l’incompréhension va toujours plus
loin que tout le savoir, plus loin que
le génie, et que c’est toujours elle qui
a le dernier mot. Le regard de mon
frère est beaucoup plus près de la
vérité qu’Einstein."

Pseudo, Romain Gary.
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Chapter 1

Thesis overview

1.1 Geometry of surfaces

Our perception of the physical world around us can be captured by the surfaces of objects. We have intuitive
notions of smoothness or curvature of surfaces. In mathematics, surfaces appear as ideal objects which have
been studied by classical smooth analysis for centuries. Surfaces are ubiquitous in applications such as scientific
computations and simulations, computer aided design, medical imaging, visualization or computer graphics. For
instance, in virtual reality, a scene is usually modeled with objects described by their boundary surfaces. In
geometric computer processing, surfaces have to be described as discrete objects and many different discretizations
are used. These applications require some knowledge of the surfaces processed: their topology, as well as local
and global descriptions from differential geometry.

Applied geometry, at the crossroads of mathematics and computer sciences, aims at defining concepts, methods
and algorithms for geometrical problems encountered in experimental sciences or engineering. On one hand,
mathematics contribute with classical differential topology and geometry, as well as with combinatorial methods
on discrete objects. On the other hand, computer science comes with discrete data structures, algorithms and
complexity analysis.

With the constant improvements of technology, more and morecomplex shapes can be processed. Real time
simulation and visualization are a great benefit to science and industry. Acquisition systems now generate huge
rough data sets that need to be structured and processed. As powerful as computer processing can be, it has its
own constraints and limitations : representations are discrete and computations are done with limited numerical
precision. Hence the mathematical objects cannot be discretized naively. Interval analysis or computer algebra
are some of the new tools able to certify basic computations.At a higher level, there is a real need to develop
models of shapes rich enough to define equivalents of the smooth properties, but with the constraints of a computer
processing. This implies a better understanding between the smooth and discrete worlds. On one way, how can
one transfer informations from a smooth to a discrete object? On the other way, how can one retrieve information
of a smooth object from a discrete representation? The final aim is the conception of certified algorithms in the
sense that the results come with approximation guarantees.

As surfaces are the object of our study, we first list several ways they are encoded for theoretical analysis as
well as for computer processing. Second, we introduce discrete topological and geometrical literature and discuss
the relationship between the smooth and discrete worlds.

1.1.1 Surface representations

Smooth surfaces are described either explicitly by a parameterization f : R2 −→ R3 or implicitly as a level set
{p∈ R3, F(p) = 0} with F : R3 −→ R. The differential quantities are computed straightforwardly in both cases,
but each model has its own advantages and drawbacks. For instance, an implicit representation can model arbitrary
topology whereas a parametric surface always has the trivial topology of its domain. On the other hand, modeling
a surface with multiple parametric patches offers more flexibility.

Discrete representations related to surfaces such as graphs or simplicial complexes are usual objects of com-
binatorial or simplicial topology. In experimental sciences, discrete data result from measurements. For some
specific processing, a smooth object can be discretized. Hence there is a need to develop data structures to encode
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and process these discrete data. For discrete surface representation one can roughly distinguish the three following
cases.

Piecewise linear surfaces or meshes are given by a set of points and a list of facets. Such representations are
widely used in the computer graphics community. These representations are also the basic level for subdivision
surfaces used in graphic modeling.

Point clouds acquired by scanning a real object or by sampling any other surface representation can be con-
sidered as a representation of a surface. Methods have been developed to render such data, but most of the time
a reconstruction is further computed. The two major categories of such algorithms are Delaunay based methods
providing a mesh, or implicit fitting methods providing an implicit representation. Another reason to switch to an
alternative representation is that point clouds acquired with scanners come with noise and redundant information.

Volumetric data acquired by tomography are frequent in medical imaging. For these data, an implicit repre-
sentation is computed and sometimes a mesh describing a level set is extracted with a marching cube or related
technique.

1.1.2 Geometry and topology of surfaces : smooth versus discrete

In the smooth case, differential geometry and topology enable a rich description of surfaces from metric properties
(geodesics, area, Gauss curvature) to extrinsic ones (normal field, principal curvatures, principal foliations, ridges).
Morse theory and more generally singularity theory also enable the study of functions and vector fields defined on
surfaces.

For discrete objects, these classical differential properties are not defined. On the other hand, discrete objects
have combinatorial properties that allow algorithmic approaches to be applied. The challenges are to take ad-
vantage of this duality smooth/discrete, to study topologyand geometry with efficient methods. It is not easy to
classify the methods where discrete and differential concepts interfere. We propose in the following three main cat-
egories. First, from discrete data a smooth model can be constructed locally or globally, then differential concepts
are obviously defined through the model. Second, a theory on discrete objects can be explored with analogs of the
smooth concepts aiming at recovering classical smooth results in a purely discrete setting. Third, as a converse to
the first point, one can discretize a smooth model for furtherprocessing with discrete methods.

From discrete data to a smooth model
For a discrete surface given as a mesh or a point cloud, one canfit locally or globally the data with a smooth
surface. Differential quantities are then defined through these fits. With a global fitting, the initial discrete data
can even be discarded afterwards. Examples in this categoryare implicit fitting with radial basis functions [LF99],
moving least square surfaces given as stationary points of amap [Lev03, AK04] or simply local explicit fitting by
bivariate polynomials [Pet01]. For volumetric data on regular 3D grids typical in medical imaging, convolution
with Gaussian functions enable to define surfaces as level sets and compute their derivatives straightforwardly
[MBF92]

Applications include simple visualization of the surface with ray tracing using surface normals, computation
of curvatures or extraction of higher order differential features. For data acquired with a scan of a real object, the
fit is a more compact representation avoiding redundancy.

In practice, these methods are applied to data that do not come from a smooth well defined object. As a
consequence there is no possible theoretical validation ofthe results. The evaluation of the method is rather in
terms of efficiency of the algorithm. Local fittings are usually faster than global ones requiring large linear systems
to be solved. From a theoretical point a view, a method can be evaluated with synthetic data sampled on a smooth
surface. In this setting, one can compare the differential quantities of the original surface against those of the fitted
surface. The numerical accuracy may be expressed with errorbounds or with order of convergence, if a notion of
convergent sequence of discretizations is defined. Asymptotic estimates for the normal and the Gauss curvature of
a sampled surface for several methods are given in [MW00]. These results are refined for the second fundamental
form in [CSM03] or for higher order quantities in [CP05a].

Discrete differential topology and geometry
Discrete objects such as meshes have a combinatorial structure and also carry geometric information. The com-
binatorial structure can be represented by a simplicial or cell complex. The geometrical information given by
the vertex positions enables the definition of a metric and even in a non obvious way discrete notions of normals
or curvatures. Consequently, regarding topology a mesh haswell defined properties and questions on homol-
ogy, homeomorphism or isotopy can be addressed. Regarding geometry, there is no unique theory but several
approaches aiming at defining analogs of the smooth properties.



1.1. GEOMETRY OF SURFACES 15

On a mesh viewed as a simplicial complex, homology theory is well defined. For example, the Betti numbers
can be computed and the well known Euler formula holds. Adding some geometric ingredients such as the lengths
of edges leads to combinatorial optimization problems. Forexample, in [CdVL05], an algorithm to compute
shortest loops in a given homotopy class is given. In [For98], combinatorial differential topologyis defined as
the application of the standard concepts of differential topology, such as vector fields and their corresponding
flows to the study of simplicial complexes. A discrete Morse function is defined as a real valued function on
simplices of any dimension with constraints between adjacent simplices. Finding a Morse function with the least
number of critical points [LLT03] is rather a combinatorialquestion. In more geometrical applications, it is not
straightforward to define a Morse function from given valueson vertices or on faces such that the associated
Morse-Smale decomposition respects our geometrical intuition [CCL03].

The domain ofdiscrete differential geometryaims at preserving some structure present in the smooth theory
while defining concepts in a purely discrete setting. For example, one may define Gaussian curvature in such a
way that the Gauss-Bonnet theorem remains valid. Many contributions have been done in this domain.

Straightest geodesics [PS98] are defined so that there is a unique solution to the initial value problem for
discrete geodesics. Applications are the parallel transport of vectors and discrete Runge-Kutta integration for vector
fields on meshes. Discrete minimal surfaces and harmonic functions [PP93] are obtained through the discretization
of the Dirichlet energy. Applications are smoothing or denoising of surfaces with discrete differential operators
[DMSB00].

Discrete equivalents of integrability properties of differential equations are presented in [BS05] for surfaces
represented by lattices. Surprisingly, this point of view also enables a better understanding of the similarities
present in the smooth setting. An application is discrete complex analysis and circle packings.

Geometric measure theory is also a way to unify the smooth anddiscrete aspects [Fed59, Mor]. Based upon
the normal cycle and restricted Delaunay triangulations, an estimate for the second fundamental form of a surface
is developed in [CSM03].

A more geometrical than combinatorial approach of Morse theory [Ban67, EHZ01] applies to functions linearly
interpolated from values on vertices. A “simulation of differentiability paradigm” guides the construction of a
complex with the same structural form as a smooth Morse-Smale decomposition. In applications, to deal with
noisy measurements and retain most relevant informations at different levels of details, the notion of persistence is
introduced [ELZ00].

The development of a coherent discrete theory independent of the smooth one may be the final achievement
and can be evaluated by its effectiveness in applications. It may also be desirable to formalize the links between
both settings. When a notion of convergence of a sequence of discrete surfaces to a smooth surface is defined,
one naturally expects also convergence of some properties of the sequence to the smooth surface ones. The first
problem is to precisely characterize the required topologyand conditions on the discrete sequence. Examples of
non-convergence are the surface area of a mesh which may not converge to that of the discretized surface (for
example thelampion de Schwarzin [MT02]), or the angular defect at a vertex of a triangulation which usually
does not provide any information on the Gauss curvature of the underlying smooth surface [BCM03]. Conditions
for convergence of the surface area of a mesh and its normal vector field versus those of a smooth surface are
considered in [MT02, HPW05]. Convergence in a measure senseof the second fundamental form of a surface is
proved [CSM03].

Discretization : from a smooth model to a discrete one
From a smooth model it is sometimes desirable to derive a discrete representation for further processing such
as visualization (de Casteljau’s algorithm for Bezier surfaces), simulation with finite element methods (FEM) or
registration. Several properties are required for a discretization : it should be a good approximation of the smooth
object for some criterion, optimized for memory and easy to compute. The discretization conditions are guided by
the properties of the smooth model and the constraints of thepost processing.

A basic problem is to mesh a level set of a smooth function withthe guaranty that the topology is not modified.
Several methods exist for a non singular surface using sampling and restricted Delaunay triangulation [BO03],
Morse theory [BCSV04] or interval analysis [PV04]. In the restricted case of a polynomial surface, computer
algebra can also handle singular surfaces [MT05a]. In addition, other geometrical properties of the surface can be
considered. In [AB99], an error bound is proved on the normalestimate to a smooth surface sampled according
to a criterion involving the skeleton. The approximation ofthe area, the normal field and the unfolding with a
triangulation is conducted in [MT02].

Finding a mesh with the minimum number of elements and minimizing a criterion such as Hausdorff distance
or Lp distance is addressed in [D’A91]. To generate a mesh for a FEM, the size and the shape of each element is
optimized according to the PDE problem to be solved [She02a].
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1.2 Estimation geometric properties : local and global aspects

Geometry of smooth or discrete surfaces can be described either by local properties or global ones. Local dif-
ferential properties are the tangent plane (at the first order), the principal directions and curvatures (at the second
order, see Fig. 1.3), or higher order coefficients. In the smooth case, all this information is encoded in the Taylor
expansion of the function whose graph locally defines the surface in a given coordinate system. We call ajet such
a Taylor expansion and Fig. 1.1 illustrates this local approximation. Global differential properties usually refer to
loci of points having a prescribed differential property. Examples such loci are lines of curvature, parabolic lines
(where the Gauss curvature vanishes Fig. 1.2), ridges (lines of extremal curvature) or the medial axis (centers of
maximal spheres included in the complement of the surface inR3). Hence local information is required to be able
to generate global information.

In the present work, we first investigate estimation of localdifferential properties of any order. Then we study
a global differential object on surfaces : the set of lines ofextremal curvature, called ridges.

Figure 1.1: The graph of jets around some vertices of a mesh are local approximation of the surface (see chap. 4).

Figure 1.2: The parabolic curves on the Apollo of Belvedere drawn by Felix Klein (from [Koe90]).

1.2.1 Estimation of local differential quantities

While local differential quantities are well defined and easy to compute on smooth surfaces, they are not well
defined for discrete surfaces. When defining a method to estimate differential quantities on a discrete surface, a
way to evaluate the method is to compare the results obtainedon some discretizations of a given smooth surface
and the actual values for this smooth surface. The sensitivity of the method with respect to the properties and the
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Figure 1.3: Michelangelo’s David: principal directions associated withkmax scaled bykmin (see chap. 4).

quality of the discretizations can be analyzed. The convergence of the estimated values to the correct ones can also
be specified for some sequence of discretizations. The development of algorithms providing such guarantees has
been subject to intense research [Pet01], and recent advances provide guarantees either point-wise (see chapter 4)
or in the geometric measure theory sense [CSM03]. It is worthnoting that some widely used methods such as the
angular defect for the Gauss curvature do not provide convergent estimations as demonstrated in [BCM03].

1.2.2 Estimation of global differential properties, the example of ridges

Estimating global differential loci needs reliable point-wise estimates, but in addition, imposes to respect (global)
topological constraints. These difficulties are tangible from a practical perspective, and only few algorithms are
able to report global differential patterns with some guarantee. For example, reporting the homotopy type of the
medial axis has only been addressed quite recently [CL05], but problems involving homeomorphy or isotopy are
more demanding.

We focused in our work on lines ofextremalcurvature on a surface, called ridges. In terms of topological
guarantees, we wish to report isotopic approximations. To get acquainted with extrema of curvature, first consider
the case of plane curves. Points where the curvature is extremal are called vertices, the set of centers of osculating
circles is the focal curve and, the centers of circles tangent in two places to the curve is called the symmetry set.
These objects are related : the border points of the symmetryset (centers of circles for which the two tangent
points coincide) are the singularities of the focal curve, and the circles centered at these points touch the curve
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at vertices. For example, Fig. 1.4 shows the focal curve of anellipse which has four cusps corresponding to the
four vertices. For surfaces, one can define a focal surface for each principal curvature and the same properties
hold. The equivalent of vertices of a curve are lines on the surface corresponding to contact points with spheres
centered on the singularities of the focal surfaces. These lines called ridges of a surface also has an alternative
characterization : they consists of the points where one of the principal curvatures has an extremum along its
curvature line. Denotingk1 andk2 the principal curvatures —we shall always assume thatk1≥ k2, a ridge is called
blue (red) ifk1 (k2) has an extremum. Moreover, a ridge is calledelliptic if it corresponds to a maximum ofk1 or a
minimum ofk2, and is calledhyperbolicotherwise. Ridges on an ellipsoid are displayed on Fig. 1.5 and 1.6. Fig.
1.7, displaying a subset of the ridges on the David’s head, illustrates how these lines enhance the sharpest features
of a model. Ridges witness extrema of principal curvatures and their definition involves derivatives of curvatures,
whence third order differential quantities. Moreover, theclassification of ridges as elliptic or hyperbolic involves
fourth order differential quantities, so that the precise definition of ridges requiresC4 differentiable surfaces.

Ridges were mentioned in 1904 by A. Gullstrand, Nobel Prize for Physiology and Medicine, for his work
in optics where fourth order differential quantities were necessary to explain the accommodation of the eye lens
[Por01]. More recently, singularity theory allowed a precise setting to describe ridges and umbilics as special
points on these lines.

Figure 1.4: Focal curve (red) of an ellipse

Figure 1.5: Umbilics, ridges, and principal blue fo-
liation on the ellipsoid (see chap. 3).

Figure 1.6: Schematic view of the umbilics and the
ridges (see chap. 3).

1.2.3 Applications

For many applications, estimating first and second order differential quantities, that is the tangent plane and
curvature-related quantities, is sufficient. In computer graphics, shading algorithms require the normal vector
field. Gauss and mean curvatures are commonly used for surface segmentation, the mean curvature vector can be
used for smoothing or denoising of surfaces. However, higher order local properties and global ones are also more
and more frequent. The lines of curvature are used for surface remeshing with quad elements [ACSD+03]. The
topology of vector and tensor fields helps scientific visualization [DH94]. The medial axis or skeleton is used for
surface reconstruction [AB99, BC01]. The extraction of ridges is applied to the registration of medical images
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Figure 1.7: Filtered crest lines on a 380k pts model (see chap. 5).

[MLD94, Fid97, PAT00], surface segmentation [SF04], face recognition [HGY+99] or compression of polygonal
surfaces [WB01].

1.3 Outline and contributions

This thesis addresses topics of surface geometry from localestimation to global extraction of differential charac-
teristics. Discrete surfaces given by point clouds or meshes as well as smooth parametric surfaces are considered.
We put the stress upon the development of algorithms providing estimations whose accuracies are analyzed. We
also provide algorithms for the extraction of global features with guaranteed topology.

Chapter 3 is a survey of smooth surface geometry including all the notions needed in the sequel. Chapter 4
addresses the estimation of local differential geometry onsampled surfaces. The following chapters are devoted
to the global approximation of ridges on a generic surface. First, the case of surfaces given by a mesh is analyzed
in chapter 5. Second, the implicit structure of ridges is worked out for a general parametric surface in chapter 6.
Third, computer algebra methods are developed to compute the topology of ridges for a polynomial parametric
surface (chapter 7).

1.3.1 Differential Topology and Geometry of Smooth Embedded Surfaces: Selected Top-
ics

Chapter 3 surveys mathematical notions and results scattered over several sources. As a prerequisite for the de-
velopment of algorithms for the manipulation of surfaces, we propose a concise overview of core concepts from
differential geometry applied to smooth embedded surfaces. Basics of singularity theory and contact between sur-
faces are introduced to enable the definition of ridges. In particular we recall the classification of umbilics and the
geometry of ridges as chapters 5 to 7 are dedicated to algorithms extracting these features. The connection between
ridges and the medial axis is analyzed. At last, topologicalnotions of homeomorphy and isotopy are discussed
for embedded surfaces. This work has been accepted for publication in the International Journal of Computational
Geometry and Applications [CP05b].

1.3.2 Estimating Differential Quantities using Polynomial fitting of Osculating Jets

Chapter 4 addresses the point-wise estimation of differential properties of a smooth surface in 3D from a mesh
or a point cloud. The method consists of fitting the local representation of the manifold using a jet with either
interpolation or approximation. A jet is a truncated Taylorexpansion, and the incentive for using jets is that they
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encode all local geometric quantities —such as normal, curvatures, extrema of curvature. The main contribution
of this chapter is to recast the problem of estimating differential properties into a problem of classical numerical
analysis. Since the proposed method consists of performingpolynomial fitting, connections with the questions of
interpolation and approximation are discussed. Regardingpolynomial interpolation fitting of differential proper-
ties for a surface, our results are closely related to [MW00,Lemma 4.1]. In that article, a degree two interpolation
is used and analyzed. We generalize this result for arbitrary degrees, with interpolation and approximation. Ap-
proximation orders of the method are proved for the estimation of any order differential quantity of the surface.
In particular estimations of normal, curvatures and derivatives of curvatures are provided and will be used for the
algorithms of the next chapter on ridge extraction. More precisely, given a parameterh measuring the sampling
step, the main result is the following (see theorem 12) :

Theorem. 1 A polynomial fitting of degree n estimates any kth-order differential quantity to accuracy O(hn−k+1).
In particular:

• the coefficients of the first fundamental form and the unit normal vector are estimated with accuracy O(hn),
and so is the angle between the normal and the estimated normal.

• the coefficients of the second fundamental form and the shapeoperator are approximated with accuracy
O(hn−1), and so are the principal curvatures and directions (as longas they are well defined, i.e. away from
umbilics).

An algorithm to process point clouds or meshes is described and the implementation for meshes confirms the
expected asymptotic convergence results. A conference version of this work has been published in the proceedings
of the Symposium on Geometric Processing 2003 and a journal version in Computer Aided Geometric Design
[CP05a].

1.3.3 Topology driven algorithms for ridge extraction on meshes

Chapter 5 addresses the problem of ridge extraction for a surface given as a mesh and we make two contributions.
First, for a generic smooth surface, the aim is the description of the topology of ridges from a mesh discretizing the
surface. Surprisingly, no method developed so far to reportridges from a mesh approximating a smooth surface
comes with a careful analysis, which entails that one does not know whether the ridges are reported in a coherent
fashion. We present a careful analysis of the orientation issues arising when one wishes to report the ridges
associated to the two principal curvatures separately. Theanalysis highlights the subtle interplay between ridges,
umbilics, and curvature lines. Finally, sampling conditions and a certified algorithm are given to report umbilics
and the correct topology of ridges on the mesh. The sampling conditions require a dense enough mesh such that
(a) umbilics are isolated in patches, and outside these patches (b) a local orientation of the principal directions
is possible, and (c) an edge is intersected by a single ridge.As these conditions are not constructive, a heuristic
algorithm is proposed. This algorithm is implemented and uses the estimator of differential quantities provided by
chapter 4. Figures 1.8 and 1.9 prove the correctness of the algorithm for a Bezier surface whose ridges topology is
known (see chapter 7 ).

Second, for a mesh which is not the approximation of a smooth surface, a filtering method allows the extraction
of a subset of these lines. This subset, which has already been considered in medical imaging, can be used
for characterization, registration and matching of surfaces. Figure 1.10 illustrates the efficiency of our filtering
technique to capture significant features.

1.3.4 The implicit structure of ridges of a smooth parametric surface

Chapter 6 provides a theoretical contribution to the analysis of the global structure of ridges. The surface is
given by a parameterization and ridges are sought in the parametric domain. As all previous works have to resort
to local orientations of the principal directions of curvature to define ridges, they were unable to give a global
description of the ridge curve. Using an idea introduced in [Thi96] to turn around these orientation difficulties, and
a fine analysis of the Weingarten endomorphism, we derive theimplicit equation of ridges. We also derive zero
dimensional systems coding the singularities of this curve: one or three ridge umbilics and purple points (see Fig.
1.11). This classification of singularities is compared to the classical one obtained with contact theory in [Por01].
Finally, similar computations with the second derivativesof curvatures lead to the definition of another implicit
curve whose intersections with the ridge curve identify theso-called turning points. A turning point is a point on
a ridge where the curvature extremum changes from maximum tominimum. In conclusion, we derive both the
global structure of the ridge curve and the local classification of its singularities.
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Figure 1.8: A (4,4) degree Bezier surface (left), its ridgesand umbilics on a triangulated model (60k points), view
from above (right)

Figure 1.9: Zoom view on two 3-ridge umbilics

1.3.5 Topologically certified approximation of umbilics and ridges on polynomial para-
metric surfaces

Chapter 7 uses results of the previous chapter for the special case of a polynomial parametric surface. Indeed,
for a polynomial parametric surface, the above mentioned equations are polynomial as well. An algorithm to
compute the topology of the ridge curve is developed. The difficulty is that even for low degree surfaces, the
polynomial defining the ridges is of rather high degree, morethan 10 times the degree of the surface. Hence
classical methods of computational algebra, based on the cylindrical algebraic decomposition [GVN02], are not
effective. The contribution is to exploit as far as possiblethe geometry of the problem to be able to produce an
efficient and still certified algorithm. The method uses rational univariate representations of zero dimensional
systems to locate the singularities in the parametric domain. One of the main advantage of this method is that it
only requires roots isolation of univariate polynomial with rational coefficients.

If the complexity of the surface prevents the computation ofthe topology of ridges, we also provide a plot at
any fixed resolution of the ridge curve. Examples are provided to demonstrate the efficiency of the methods.

Results of chapters 6 and 7 have been obtained in collaboration with Jean-Charles Faugère and Fabrice Rouillier
of the SALSA project, specialists of computer algebra. Thiswork has been presented at the poster session of the
Symposium on Geometric Processing 2005 and at the workshop on Computational Methods for Algebraic Spline
Surfaces II.
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Figure 1.10: Mechanical part (37k pts): (a) All crest lines,(b) crests filtered with the strength (state of the art) and
(c) crests filtered with our sharpness criterion. Notice that any point on a flat or cylindrical part lies on two ridges,
so that the noise observed on the top two Figs. is unavoidable. It is however easily filtered out with the sharpness
on the bottom figure.

3-ridge umbilic 1-ridge umbilic Purple point

Figure 1.11: Singularities of the ridge curve : red and blue curves distinguish extrema of the two principal curva-
tures. (left and middle) There are two types of umbilics withone or three curves passing through and changing
color at the umbilic. (right) A crossing of a blue and a red ridge is called a purple point.



Chapter 2

Résumé de la thèse

2.1 Géométrie des surfaces

La perception de notre environnement peut être décrite par les surfaces des objets qui nous entourent. Nous avons
des notions intuitives de régularité ou de courbure d’une surface. En mathématiques, les surfaces apparaissent
comme des objets idéalisés qui sont étudiés depuis des siècles. Les surfaces sont omniprésentes dans les applica-
tions telles que le calcul scientifique et la simulation, la conception assistée par ordinateur, l’imagerie médicale,
la visualisation ou l’informatique graphique. Par exemple, en réalité virtuelle, une scène est souvent composée de
surfaces décrivant le bord des objets. Lors du traitement dela géométrie par ordinateur, les surfaces doivent être
décrites de manière discrète et il existe différentes discrétisations possibles. Les applications nécessitent une con-
naissance des surfaces traitées: leur topologie, ainsi quedes descriptions locales et globales issues de la géométrie
différentielle.

La géométrie appliquée, à la croisée des mathématiques et del’informatique, a pour objectif la définition de
concepts, méthodes et algorithmes pour la résolution de problèmes géométriques qui se posent en sciences expéri-
mentales ou en ingénierie. D’une part, les mathématiques apportent la géométrie et la topologie différentielles
classiques, ainsi que des méthodes combinatoires sur des objets discrets. D’autre part, l’informatique apporte des
structures des données discrètes, des algorithmes ainsi que l’analyse de complexité.

Grâce aux progrès technologiques incessant, des formes de plus en plus complexes peuvent être traitées. La
simulation et la visualisation en temps réel sont d’un grandintérêt pour la science et l’industrie. Les systèmes
d’acquisition actuels génèrent des ensembles de données brutes gigantesques qui nécessitent d’être structurés et
analysés. Aussi puissant que puisse être le traitement informatique, il faut tenir compte de ses propres contraintes et
limitations: les représentations sont discrètes et les calculs sont faits avec une précision numérique limitée. Ainsi,
les objets mathématiques ne peuvent être discrétisés naïvement. L’analyse par intervalles ou le calcul algébrique
formel font partie des nouveaux outils capables de certifierles opérations de base. A un niveau plus élevé, il y
a un réel besoin de développer des modèles de formes suffisamment riches pour pouvoir définir des équivalents
des propriétés lisses, mais adaptés aux contraintes du traitement informatique. Tout ceci plaide pour une meilleure
compréhension des interactions entre les mondes lisse et discret. D’une part, comment transférer de l’information
d’un objet lisse à un objet discret? D’autre part, comment analyser les propriétés d’un objet lisse à partir d’une
représentation discrète? Le but final est la conception d’algorithmes certifiés, au sens où le résultat vient avec des
garanties d’approximation.

Puisque les surfaces sont les objets de notre étude, premièrement, nous listons différentes représentations util-
isées pour une analyse théorique ainsi que pour les besoins d’un traitement informatique. Deuxièmement, nous
proposons une introduction aux travaux en topologie et géométrie discrète, et discutons les relations entre les
mondes lisse et discret.

2.1.1 Représentations de surfaces

Les surfaces lisses sont décrites ou bien explicitement parune paramétrisationf : R2−→R3 ou implicitement par
un ensemble de niveau{p∈ R3, F(p) = 0} avecF : R3 −→ R. Les quantités différentielles sont calculables de
façon directe dans les deux cas, mais chaque modèle possède ses avantages et inconvénients propres. Par exemple,
une représentation implicite peut avoir une topologie arbitraire. D’un autre point de vue, modéliser une surface
avec plusieurs paramétrisations offre plus de flexibilité.

23
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Des représentations discrètes en lien avec les surfaces, telles que les graphes ou les complexes simpliciaux sont
des objets usuels en combinatoire ou topologie. En sciencesexpérimentales, les données discrètes proviennent
de mesure. Pour les besoins d’un traitement particulier, unobjet lisse peut être discrétisé. Ainsi, il est néces-
saire de développer des structures de données pour coder et traiter ces données discrètes. En ce qui concerne les
représentations discrètes de surfaces, nous pouvons grossièrement distinguer les trois cas suivants.

Les surfaces linéaires par morceaux, ou maillages, sont donnés par un ensemble de points et une liste de
faces. De telles représentations sont largement utiliséesdans la communauté de l’informatique graphique. Ces
représentations sont également à la base des surfaces de subdivisions.

Les nuages de points obtenus en scannant un objet réel ou en échantillonnant une autre représentation peuvent
être considérés comme des modèles de surfaces. Des méthodesspécifiques ont été développées pour la visualisa-
tion de telles données, mais dans la plus part des cas, une reconstruction est calculée. Il existe deux grandes classes
d’algorithmes de reconstruction basés sur la triangulation de Delaunay, lesquels calculent un maillage, ou basés
sur une approximation implicite lesquels calculent une représentation implicite de la surface. Une autre motivation
pour passer à une représentation alternative s’explique par la présence de bruit et la redondance d’information
contenue dans les nuages de points acquis avec un scanner.

Les données volumiques acquises par tomographie sont fréquentes en imagerie médicale. Dans ce cas, une
représentation implicite est calculée, et parfois un maillage décrivant un ensemble de niveau est extrait avec un
algorithme de “marching cube” ou une technique similaire.

2.1.2 Géométrie et topologie des surfaces: lisse versus discret

Dans le cas lisse, la géométrie et la topologie différentielles permettent une description riche des surfaces allant
des propriétés métriques (géodésiques, aires, courbure deGauss) aux propriétés extrinsèques (champs des vecteurs
normaux, courbures principales, feuilletage principaux,lignes d’extrêmes de courbure). La théorie de Morse et
plus généralement la théorie des singularités permettent également l’étude de fonctions ou de champs de vecteurs
définis sur les surfaces.

Pour des objets discrets, ces propriétés différentielles discrètes ne sont pas définies. D’un autre coté, les objets
discrets ont des propriétés combinatoires qui permettent une approche algorithmique. L’enjeu est donc de tirer
partie de cette dualité lisse versus discret. Il n’est pas facile de classifier les méthodes où interfèrent des concepts
discrets et différentiels. Nous proposons une analyse en distinguant trois catégories principales. Premièrement,
à partir de données discrètes, un modèle lisse peut être construit localement ou globalement, ainsi les concepts
différentiels sont bien définis sur le modèle et simplement transférés. Deuxièmement, une théorie sur les objets
discrets peut être explorée avec des analogues des conceptslisses, cherchant à retrouver des résultats de la théorie
lisse tout en restant purement dans le domaine discret. Troisièmement, à l’opposé du premier point, nous pouvons
discrétiser un modèle lisse pour le traiter ensuite avec desméthodes discrètes.

Des données discrètes à un modèle lisse.
Pour une surface discrète donnée par un maillage ou un nuage de points, nous pouvons ajuster localement ou
globalement une surface lisse sur ces données. Les quantités différentielles sont alors définies par l’intermédiaire de
ces ajustements. Lors d’un ajustement global, les données discrètes initiales pourront même être abandonnées pour
ne garder que l’ajustement. Nous trouvons dans cette catégorie les représentations implicites avec des fonctions
à base radiale [LF99], les “moving least square surfaces” définies par l’ensemble des points fixes d’un fonction
[Lev03, AK04] ou simplement des ajustements locaux explicites par des polynômes bivariés [Pet01]. Pour des
données volumiques sur des grilles régulières 3d, une convolution avec des fonctions gaussiennes permet de définir
des surfaces comme ensembles de niveau et de calculer leurs dérivées directement [MBF92].

Parmi les applications, citons la visualisation de surfaces par lancer de rayons utilisant les normales, le calcul
des courbures ou l’extraction d’éléments caractéristiques différentiels d’ordre supérieur. Pour des données acquises
grâce à un scanner à partir d’un objet réel, l’ajustement estune représentation plus compacte évitant la redondance.

En pratiques, ces méthodes sont appliquées à des données ne provenant pas d’un objet lisse bien défini. Ceci
implique qu’il n’y a donc pas de validation possible des résultats obtenus. L’évaluation de ces méthodes se fait
plutôt en terme d’efficacité de l’algorithme. Les ajustements locaux sont en général plus rapides que les globaux
nécessitant la résolution de systèmes linéaires de grande taille. D’un point de vue théorique, une évaluation est
possible en considérant des données artificielles échantillonnées sur une surface lisse connue. Dans ce cas, nous
pouvons comparer les quantités différentielles de la surface originale avec celles que nous calculons sur son ajuste-
ment. La précision numérique s’exprime alors avec des bornes d’erreurs, ou des ordres de convergence si une
notion de convergence d’une suite de discrétisation est définie. Des estimations asymptotiques de la normale et de
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la courbure de Gauss sont données dans [MW00]. Ces résultatssont généralisés pour la seconde forme fondamen-
tale dans [CSM03] ou pour des quantités d’ordre supérieur dans [CP05a].

Topologie et géométrie différentielles discrètes.
Les objets discrets tels que les maillages possèdent une structure combinatoire ainsi des informations géométriques.
La structure combinatoire peut être représentée par un complexe simplicial ou cellulaire. L’information géométri-
que donnée par la position des sommets permet la définition d’une métrique, ainsi que de façon indirecte et non
canonique des définitions discrètes de normales et de courbures. Par conséquent, concernant la topologie, un
maillage a des propriétés bien définies et les problèmes classiques d’homologie, d’homéomorphie ou d’isotopie
sont bien posés. Concernant la géométrie, il n’y a pas de théorie unique mais différentes approches visant à définir
des analogues des concepts lisses.

Sur un maillage considéré comme un complexe simplicial, la théorie de l’homologie est bien définie. Par exem-
ple, les nombres de Betti peuvent être calculés et la formuled’Euler qui les relient est valide. En ajoutant un peu de
géométrie, comme la longueur des arêtes, des problèmes d’optimisation combinatoire apparaissent. Par exemple,
[CdVL05] fournit un algorithme de calcul d’un cycle de longueur minimal dans un classe d’homotopie donnée.
Dans [For98], latopologie différentielle combinatoireest définie comme l’application des concepts classiques de
topologie différentielle, comme les champs de vecteurs et leurs flots, pour l’étude des complexes simpliciaux. Une
fonction de Morse discrète est une fonction à valeurs réelles définie sur les simplexes avec des contraintes entre les
simplexes adjacents. Trouver une fonction de Morse avec le minimum de points critiques [LLT03] est un problème
combinatoire. Pour des applications dans un cadre plus géométrique, il n’est pas aisé de définir une fonction de
Morse à partir de valeurs sur les sommets ou les faces de sorteque la décomposition de Morse-Smale associée soit
en accord avec notre intuition géométrique [CCL03].

La géométrie différentielle discrètea pour but de préserver des structures présentes dans la théorie lisse tout en
définissant ses concepts dans un cadre purement discret. Parexemple, la courbure de Gauss sera définie de sorte
qu’un équivalent discret du théorème de Gauss-Bonnet soit valide. De nombreuses contributions ont été faites dans
ce domaine relativement récent.

Les ”straightest geodesics” [PS98] sont définies de sorte que le problème à valeur initiale fixée pour les
géodésiques discrètes ait une solution unique. Cette formulation permet la définition du transport parallèle de
vecteurs et d’une méthode discrète d’intégration de Runge-Kutta sur des maillages. Les surfaces minimales et
les fonctions harmoniques discrètes [PP93] sont obtenues par discrétisation de l’énergie de Dirichlet. Parmi les
applications, nous pouvons citer le lissage ou débruitage de surfaces avec des opérateurs différentiels discrets
[DMSB00].

Des équivalents discrets des propriétés d’intégrabilité des équations différentielles sont présentés dans [BS05]
pour des surfaces représentées par des réseaux. De façon surprenante, ce point de vue permet également une
meilleure compréhension des similarités présentes dans lecadre lisse. Une des applications est l’analyse complexe
discrète et les pavages circulaires.

La théorie géométrique de la mesure est un moyen d’unifier lesaspects lisse et discret [Fed59, Mor]. A partir
du cycle normal et de la triangulation de Delaunay restreinte, une estimation de la seconde forme fondamentale
d’une surface est développée dans [CSM03].

Une approche plus géométrique que combinatoire de la théorie de Morse [Ban67, EHZ01] s’applique aux fonc-
tions définies par interpolation linéaire de valeurs aux sommets d’un maillage. Un paradigme de “simulation de la
différentiabilité” guide la construction d’un complexe ayant les mêmes propriétés structurelles qu’une décomposi-
tion de Morse-Smale classique. Dans les applications, pourgérer les imprécisions des mesures et ne retenir que les
informations les plus pertinentes à différents niveaux de détails, une notion de persistance est introduite [ELZ00].

Le développement d’une théorie discrète cohérente et indépendante de la théorie lisse peut être considéré
comme un objectif final, et l’évaluation peut être faite en considérant son efficacité pour les applications. Il est
aussi satisfaisant de vouloir formaliser les liens entre les deux aspects. Lorsqu’une notion de convergence d’une
suite de surfaces discrètes vers une surface lisse est définie, la convergence de certaines propriétés de la suite vers
celles de la surface lisse peut être espérée. La première difficulté est de caractériser la topologie nécessaire et les
conditions sur la suite de discrétisations. Des exemples denon convergence sont l’aire d’un maillage qui peut
ne pas converger vers l’aire d’une surface lisse (par exemple le lampion de Schwarz dans [MT02]), ou le défaut
angulaire a un sommet d’une triangulation qui ne donne en général pas d’information sur la courbure de Gauss
de la surface lisse sous-jacente [BCM03]. Des conditions pour la convergence de l’aire ou du champ de vecteur
normal d’un maillage vers ceux d’une surface lisse sont considérées dans [MT02, HPW05]. La convergence au
sens de la mesure, c’est à dire par intégration sur un domaine, de la seconde forme fondamentale est étudiée dans
[CSM03].
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Discrétisation : d’un modèle lisse vers un modèle discret.
A partir d’un modèle lisse il est souhaitable de construire une représentation discrète pour un traitement comme la
visualisation (l’algorithme de de Casteljau pour les surfaces de Bézier), la simulation avec des méthodes d’éléments
finis ou le recalage. Plusieurs propriétés sont attendues d’une discrétisation, elle doit approcher l’objet lisse pour
un critère donné, être optimisée pour la mémoire, et peu coûteuse à calculer. Les conditions de discrétisations sont
guidées par les propriétés du modèle lisse et les contraintes du traitement envisagé ultérieurement.

Un problème classique est celui du maillage d’un ensemble deniveau d’une fonction lisse garantissant de ne pas
modifier la topologie. Différentes méthodes existent pour une surface non singulière utilisant l’échantillonnage et
la triangulation de Delaunay restreinte [BO03], la théoriede Morse [BCSV04] ou l’analyse par intervalles [PV04].
Dans le cas particulier des surfaces polynomiales, les systèmes de calcul algébrique formel permettent aussi de
traiter des surfaces singulière [MT05a]. En plus de la topologie, des garanties sur la géométrie peuvent aussi être
fournies. Dans [AB99], une borne d’erreur est donnée pour l’estimation de la normale d’une surface lisse faisant
intervenir le squelette. L’approximation de l’aire, le champ des normales et du dépliage à partir d’un maillage est
analysée dans [MT02].

Construire un maillage avec le nombre minimum d’éléments etminimisant un critère comme la distance
de Hausdorff ou une distanceLp est considéré dans [D’A91]. Pour générer un maillage adaptéà une méthode
d’éléments finis, la taille et la forme de chaque élément sontoptimisées selon l’équation aux dérivées partielles à
résoudre [She02a].

2.2 Estimation des propriétés géométriques: aspects locaux et globaux

La géométrie des surfaces lisses ou discrètes peut être décrite par des propriétés locales ou globales. Les propriétés
différentielles globales sont le plan tangent (au premier ordre), les courbures et directions principales (au second
ordre, voir Fig. 2.3), ou des coefficients d’ordres supérieurs. Dans le cas lisse, toutes ces informations sont codées
dans le développement de Taylor de la fonction dont le graphedéfini localement la surface dans un repère donné.
Nous appelonsjet ce développement de Taylor, la figure 2.1 illustre cette propriété d’approximation locale. Une
propriété différentielle globale caractérise le lieu des points ayant une propriété différentielle locale commune. Des
exemples de tels lieux sont les lignes de courbure, les lignes paraboliques (où la courbure de Gauss s’annule, Fig.
2.2), les “ridges” (lignes de courbure extrême) ou l’axe médian (centres des sphères maximales incluses dans le
complémentaire de la surface dansR3). Ainsi, la connaissance de l’information locale est un prérequis pour la
génération d’informations globales.

Dans cette thèse, nous étudions, dans un premier temps, l’estimation des propriétés locales d’ordre quelconque.
Puis, dans un deuxième temps, nous considérons un objet global: l’ensemble des lignes de courbure extrême ou
ridges.

Figure 2.1: Le graphe du jet au voisinage d’un sommet d’un maillage est une approximation locale de la surface
(cf. chap. 4).
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Figure 2.2: Les lignes paraboliques sur l’Apollon du Belvedere dessinées par Felix Klein (cf. [Koe90]).

Figure 2.3: Le David de Michel-Ange: directions principales associées à la courburekmax avec une longueur
proportionnelle àkmin (cf. chap. 4).
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2.2.1 Estimation des quantités différentielles locales

Alors que les quantités différentielles locales sont bien définies et simple à calculer sur des surfaces lisses, elles ne
sont pas bien définies sur des surfaces discrètes. Pour une méthode donnée d’estimation des quantités différentielles
à partir d’une surface discrète, une évaluation est possible en comparant les résultats obtenus sur des discrétisations
d’une même surface lisse avec les vraies valeurs calculées sur la surface lisse. La précision de la méthode peut
être évaluée selon les propriétés et les qualités des discrétisations. La convergence des valeurs estimées vers les
vraies valeurs peut être analysée pour une suite de discrétisations. Le développement d’algorithmes spécifiant des
garanties d’approximation est un sujet actif de recherche [Pet01], et des travaux récents fournissent des garanties
ou bien locales (cf. chap. 4) ou au sens de la théorie de la mesure [CSM03]. Il est utile de souligner que certaines
méthodes communément utilisées comme le défaut angulaire pour estimer la courbure de Gauss ne donnent pas
des approximations convergentes [BCM03].

2.2.2 Estimation des propriétés différentielles globales, l’exemple des ridges

L’estimation de propriétés différentielles globales nécessite non seulement des estimations locales fiables, mais de
plus impose de respecter des contraintes topologiques. Cesdifficultés sont tangibles sur le plan pratique, et rares
sont les algorithmes capables de calculer des lieux géométriques avec des garanties. Par exemple, le calcul du type
d’homotopie de l’axe médian est un problème qui n’a été considéré que récemment [CL05], mais des problèmes
concernant l’homéomorphie ou l’isotopie sont encore plus délicats.

Nous nous concentrons dans ce travail sur les lignes de courbure extrême sur une surface. En termes de
garanties topologiques, nous souhaitons obtenir des approximations isotopes. Pour se familiariser avec les extrêmes
de courbure, considérons dans un premier temps le cas des courbes planes. Les points où la courbure est extrême
sont appelés les sommets, l’ensemble des centres des cercles osculateurs forment la courbe focale, et les centres des
cercles tangents en deux points à la courbe est appelé l’ensemble de symétrie. Ces différents objets interagissent de
la façon suivante: les points du bord de l’ensemble de symétrie (c’est à dire les centres des cercles pour lesquels les
deux points de tangence avec la courbe coïncident) sont les singularités de la courbe focale, et les cercles centrés
en ces points touchent la courbe en ses sommets. Par exemple,la figure 2.4 montre la courbe focale d’une ellipse
qui a quatre points de rebroussement correspondant aux quatre sommets. Dans le cas des surfaces, à chacune des
courbures principales est associée une surface focale dontles propriétés sont similaires. L’équivalent des sommets
dans le cas d’une courbe sont des lignes sur la surface formées par les points de contacts avec les sphères centrées
sur les singularités des surfaces focales. Ces lignes, appelées ridges de la surface, ont aussi la caractérisation
suivante: elles sont l’ensemble des points pour lesquels une des courbures principales a un extrême le long de
la ligne de courbure correspondante. Notonsk1 et k2 les courbures principales —avec la conventionk1 ≥ k2, un
ridge est qualifié de bleu (rouge) sik1 (k2) a un extrême. De plus, un ridge est appeléelliptiquesi il correspond
à un maximum dek1 ou un minimum dek2, ouhyperboliquedans les autres cas. Les ridges d’un ellipsoïde sont
représentés sur la figure 2.5 et 2.6. La figure 2.7, présentantun sous-ensemble des ridges sur la tête du David,
illustre la capacité de ces lignes à souligner les parties saillantes du modèle. Les ridges révèlent les extrêmes des
courbures principales et leur définition implique les dérivées des courbures, par conséquent ce sont des quantités
différentielles de troisième ordre. De plus, la classification des ridges en type elliptique et hyperbolique nécessite
des quantités de quatrième ordre, donc la définition précisedes ridges nécessite des surfaces de classeC4.

Les ridges sont mentionnés en 1904 par A. Gullstrand, prix Nobel de physiologie et médecine, dans ses travaux
en optique où des quantités différentielles d’ordre quatreétaient indispensables pour expliquer l’accommodation
du cristallin [Por01]. Plus récemment, la théorie des singularités a permis de dégager un cadre rigoureux pour
décrire les ridges et les ombilics.
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Figure 2.4: La courbe focale (en rouge) d’une ellipse

Figure 2.5: Ombilics, ridges, et feuilletage princi-
pal bleu sur un ellipsoïde (cf. chap. 3).

Figure 2.6: Vue schématique des ombilics et des
ridges sur un ellipsoïde (cf. chap. 3).

Figure 2.7: Lignes de crête filtrées sur un modèle de 380k pts (cf. chap. 5).
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2.2.3 Applications

Pour de nombreuses applications, estimer les quantités différentielles de premier et deuxième ordre, c’est à dire
la normale et les courbures, est suffisant. En informatique graphique, le champ des normales est utilisé pour les
algorithmes d’éclairage. Les courbures de Gauss et moyennesont fréquentes en segmentation, le vecteur courbure
moyenne est utilisé en lissage et débruitage du surfaces. Néanmoins, des quantités d’ordre supérieur, locales ou
globales apparaissent de plus en plus fréquemment. Les lignes de courbures servent pour le remaillage avec des
quadrilatères [ACSD+03]. La topologie des champs de vecteurs et directions aident la visualisation scientifique
[DH94]. L’axe médian ou squelette est utilisé en reconstruction de surfaces [AB99, BC01]. L’extraction des ridges
s’applique au recalage d’images médicales [MLD94, Fid97, PAT00], à la segmentation [SF04], à la reconnaissance
de visages [HGY+99] ou encore à la compression de surfaces polygonales [WB01].

2.3 Plan de la thèse et contributions

Cette thèse aborde des thèmes de géométrie des surfaces, de l’estimation locale à l’extraction de caractéristiques
globales. Des surfaces données par des maillages et des nuages de points aussi bien que des surfaces lisses
paramétrées sont étudiées. Nous nous concentrons sur le développement d’algorithmes générant des estimations
dont la précision est analysée. Nous proposons également des algorithmes pour l’extraction de caractéristiques
globales avec des garanties topologiques.

Le chapitre 3 présente un panorama de la géométrie des surfaces lisses, couvrant toutes les notions nécessaires
dans la suite. Le chapitre 4 aborde l’estimation de la géométrie différentielle locale à partir de surfaces échantil-
lonnées. Les chapitres suivants sont consacrés à l’approximation globale des ridges d’une surface générique. Pre-
mièrement, le cas d’une surface donnée par un maillage est étudié dans le chapitre 5. Deuxièmement, la structure
implicite des ridges est développée pour une surface paramétrée dans le chapitre 6. Troisièmement, des méthodes
de calcul algébrique formel sont adaptées pour le calcul de la topologie des ridges d’une surface polynomiale
paramétrée (chap. 7).

2.3.1 Topologie et géométrie différentielles des surfaceslisses plongées: éléments choisis

Le chapitre 3 rassemble des notions mathématiques et des résultats dispersés dans la littérature. Comme prérequis
au développement d’algorithmes pour la traitement des surfaces, nous proposons un panorama succinct de concepts
de géométrie différentielle appliqués aux surfaces plongées. Une introduction à la théorie des singularités et du
contact permet la définition des ridges. En particulier, nous rappelons la classification des ombilics et la géométrie
des ridges puisque les chapitres 5 à 7 sont consacrés à l’extraction de ces caractéristiques. La relation entre les
ridges et l’axe médian est analysée. Enfin, les notions d’homéomorphie et d’isotopie sont discutées. Ce travail a
donné lieu à une publication dans le journal “InternationalJournal of Computational Geometry and Applications”
[CP05b].

2.3.2 Estimation des quantités différentielles par ajustement polynomiale des jets oscu-
lateurs

Le chapitre 4 aborde l’estimation locale des propriétés différentielles d’une surface en 3D à partir d’un maillage
ou d’un nuage de points. La méthode consiste à ajuster le jet de la représentation locale de la variété en utilisant
l’interpolation ou l’approximation. Un jet est une série deTaylor tronquée, la motivation pour utiliser les jets réside
dans leur propriété de coder toutes les quantités géométriques locales —comme la normale, les courbures ou les
extrêmes de courbure. La contribution principale de ce chapitre est de replacer le problème d’estimation des pro-
priétés différentielles dans le cadre de l’analyse numérique classique. Le méthode proposée utilisant l’ajustement
polynomial, les relations avec les questions d’interpolation et d’approximation sont discutées. En ce qui concerne
l’interpolation, nos résultats sont reliés à [MW00, Lemma 4.1]. Dans cet article, une interpolation de degré deux
est utilisée et analysée. Nous généralisons ce résultat pour un degré arbitraire, ainsi que pour l’interpolation aussi
bien que pour l’approximation. En particulier, des estimations des normales, des courbures et des dérivées des
courbures sont données et seront utilisées dans le chapitresuivant sur l’extraction des ridges. Plus précisément,
étant donné un paramètreh mesurant le pas d’échantillonnage, le résultat principal est le suivant (voir le théorème
12) :

Theorem. 2 Un ajustement polynomial de degré n approche une quantité différentielle de kième-ordre avec une
précision en O(hn−k+1). En particulier:
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• Les coefficients de la première forme fondamentale et du vecteur normal unitaire sont estimés avec une
précision en O(hn), et il en est de même de l’angle entre la normale et la normale estimée.

• Les coefficients de la seconde forme fondamentale et de l’opérateur de Weingarten sont approchés en
O(hn−1), et il en est de même des courbures et directions principales(en supposant qu’elles soient bien
définies, c’est à dire loin des ombilics).

Un algorithme pour traiter des nuages de points ou des maillages est décrit, et l’implémentation pour le cas des
maillages confirme les résultats de convergence asymptotique attendus. Ce travail a donné lieu à une publication à
la conférence “Symposium on Geometric Processing 2003” et dans le journal “Computer Aided Geometric Design”
[CP05a].

2.3.3 Algorithmes guidés par la topologie pour l’extraction des ridges sur un maillage

Le chapitre 5 aborde le problème de l’extraction des ridges sur une surface donnée par un maillage, et nous
apportons deux contributions. Premièrement, pour une surface lisse générique, le but est de décrire la topologie
des ridges à partir d’un maillage discrétisant la surface. De façon surprenante, aucune des méthodes développées
jusqu’à présent pour l’extraction des ridges à partir d’un maillage approchant une surface lisse ne fournit une
analyse précise, ceci implique qu’il n’est pas possible de savoir si les ridges extraits ont une structure globale
cohérente. Nous présentons une étude détaillée des problèmes d’orientation intervenant lors de l’extraction séparée
des ridges associés à chacune des courbures principales. Cette analyse révèle les relations entre ridges, ombilics
et lignes de courbure. Finalement, des conditions d’échantillonnage et un algorithme certifié sont donnés pour
l’extraction des ridges sur le maillage en respectant la topologie. Les conditions d’échantillonnage mettent en
évidence la nécessité de disposer d’un maillage suffisamment dense pour que (a) les ombilics soient isolés dans des
régions, et pour qu’en dehors de ces régions, (b) l’orientation des direction principales soit possible localement, et
(c) une arête soit intersectée par un seul ridge. Ces conditions n’étant pas constructives, un algorithme heuristique
est aussi proposé. Cet algorithme est implémenté et utilisel’estimateur de quantités différentiables exposé au
chapitre 4. Les figures 2.8 et 2.9 prouvent que l’algorithme calcule correctement la topologie des ridges pour une
surface de Bézier dont les ridges sont connus (cf. chapitre 7).
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Figure 2.8: Une surface de Bézier de bi-degré (4,4) (gauche), ses ridges et ombilics sur une model triangulé (60k
points), vue de dessus (droite)

Deuxièmement, pour un maillage qui n’est pas l’approximation d’une surface lisse, une méthode de filtrage
permet l’extraction d’un sous ensemble de lignes. Ce sous ensemble, qui a déjà appliqué dans le domaine des
images médicales, peut être utilisé pour le recalage et la comparaison de surfaces. La figure 2.10 illustre l’efficacité
de notre technique de filtrage pour la mise en évidence de caractéristiques saillantes d’un model.
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Figure 2.9: Gros plans sur deux ombilics 3-ridge de la figure 2.8

2.3.4 La structure implicite des ridges d’une surface paramétrée

Le chapitre 6 apporte une contribution théorique à l’analyse de la structure globale des ridges. La surface est
donnée par une paramétrisation et les ridges sont calculés dans le domaine paramétrique. Devant faire appel à
l’orientation locale des directions principales de courbures, les approches antérieures ne pouvaient pas définir
une description globale des ridges. Reprenant une idée introduite dans [Thi96] pour contourner ces difficultés
d’orientation, et une analyse précise de l’endomorphisme de Weingarten, nous déduisons l’équation implicite des
ridges. Nous présentons également des systèmes d’équations codant les singularités de la courbe: ombilics un ou
trois ridges et pointspurples(cf. Fig. 2.11). Cette classification est comparée à celle obtenue grâce à la théorie
du contact dans [Por01]. Enfin, des calculs similaires avec les dérivées secondes des courbures conduisent à la
définition d’une autre courbe implicite, dont l’intersection avec celle des ridges permet l’identification des points
“turning”. Un point “turning” est un point sur un ridge où l’extrême de courbure passe de maximum à minimum.
En conclusion, nous proposons une description globale des ridges ainsi qu’une analyse locale de ses singularités.

2.3.5 Approximation topologique certifiée des ombilics et des ridges d’une surface poly-
nomiale paramétrée

Le chapitre 7 exploite les résultats du chapitre précédent dans le cas particulier des surfaces polynomiales para-
métrées. En effet, pour une surface polynomiale, les équations précédentes sont également polynomiales. Nous
développons un algorithme pour le calcul de la topologie de la courbe des ridges. La difficulté provient de la
complexité de cette courbe même pour des surfaces relativement simples: le degré de la courbe est plus de dix
fois plus élevé que celui de la surface. Pour une telle courbe, les méthodes classiques, basées sur la décomposi-
tion cylindrique algébrique [GVN02], ne sont pas assez performantes. Notre contribution est d’exploiter le plus
possible la géométrie du problème pour proposer un algorithme performant et certifié. La méthode repose sur la
représentation univariée rationnelle des systèmes polynômiaux de dimension zéro afin de localiser les singularités
des ridges dans le domaine paramétrique. Un des principaux avantages de la méthode provient du fait qu’elle ne
nécessite que l’isolation des racines de polynômes univariés à coefficientsrationnels.

Si néanmoins, la complexité de la surface ne permet pas le calcul de la topologie des ridges, nous fournissons
également une méthode de tracé à résolution fixée. L’efficacité de ces méthodes est démontrée sur des exemples.

Les résultats des chapitres 6 et 7 ont été obtenus en collaboration avec Jean-Charles Faugère et Fabrice Rouillier
du projet SALSA, spécialistes de calcul algébrique formel.Ce travail a été présenté à la session de posters du
“Symposium on Geometric Processing 2005” et au “workshop onComputational Methods for Algebraic Spline
Surfaces II” dont la publication des actes est en cours.

2.4 Conclusion

Dans cette thèse, deux aspects de la géométrie des surfaces ont été abordés: l’estimation locale des propriétés
différentielles, et le calcul global de la structure des ridges d’une surface lisse.

Concernant l’estimation des quantités différentielles, notre méthode utilise l’ajustement polynomial et s’appli-
que aux maillages et aux nuages de points. Les ordres d’approximation sont les meilleurs prouvés à ce jour, et la
méthode est testée avec des données échantillonnées sur dessurfaces lisses. Bien que notre méthode repose sur le
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Figure 2.10: Pièce mécanique (37k pts): (a) toutes les lignes de crêtes, (b) lignes de crêtes filtrées par leur
“strength” (état de l’art) et (c) lignes de crêtes filtrées par notre critère “sharpness”. Remarquez que les points
dans les parties plates ou cylindriques appartiennent à deux ridges, ainsi le bruit présent sur les deux figures du
haut est inévitable. Il est néanmoins aisé d’éliminer ce bruit avec le filtrage que nous proposons (figure du bas).

cadre lisse, et donc ne définit pas de concept discret, elle permet l’estimation de quantités différentielles d’ordre
arbitraire. Lorsque l’approximation est conduite avec un schéma d’approximation, nous avons expérimentalement
observé un comportement robuste face au bruit.

Une approche alternative au problème d’estimation à partirde données discrètes est proposée par la géométrie
différentielle discrète. L’idée consiste à définir des quantités différentielles directement sur l’objet lisse et de
développer une théorie discrète par analogie avec la théorie lisse. Le problème de convergence des quantités dis-
crètes pour une suite de discrétisations peut alors être étudié. Des résultats ont été obtenus pour le champ des
normales, l’aire, les géodésiques [MT02, HPW05], les courbures de Gauss ou moyenne à l’aide d’une formulation
variationnelle [PP93], le tenseur de courbure dans le cadrede la théorie de la mesure [CSM03]. Toutes ces contri-
butions s’appliquent à des maillages, et les nuages de points ne sont pas traités. Les théorèmes de convergence ne
sont disponibles que pour des quantités différentielles dupremier ou du second ordre.

Alors que l’intérêt pour les nuages de points s’accroît, le défi serait de comprendre dans quelle mesure la
géométrie différentielle et l’analyse statistique peuvent s’appliquer. L’irrégularité de la densité d’échantillonnage,
l’anisotropie et le bruit doivent être pris en compte. Par exemple, l’influence du voisinage d’un point qu’il faut
considérer pour faire une estimation n’est pas bien comprise [LP05]. Une analyse de l’estimation de la normale
à une surface à partir d’un nuage de points bruité est proposée dans [MN03]. Des méthodes de votes propagent
l’information dans des voisinages locaux pour déterminer la pertinence de chaque information individuelle. Le
vote pour la normale et le tenseur de courbure permet d’identifier le bruit et le discontinuités, et donc rend possible
la traitement de surfaces lisses par morceaux [TM02].

Concernant le calcul de structures globales sur une surface, nous avons traité l’approximation topologique et
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3-ridge umbilic 1-ridge umbilic Purple point

Figure 2.11: Singularités de la courbe des ridges: les courbes rouges et bleues différentient les extrêmes des deux
courbures principales. (à gauche et au milieu) Il y a deux types d’ombilics traversés par une ou trois branches de
ridges, chacune changeant de couleur à l’ombilic. (à droite) Le croisement d’un ridge bleu et d’un ridge rouge est
appelé pointpurple.

géométrique des ridges. Deux types de données ont été considérés: un maillage discrétisant une surface lisse et
une surface paramétrée.

Premièrement, pour un maillage discrétisant une surface lisse, nous présentons le premier algorithme certi-
fié pour l’extraction des ridges d’une surface lisse avec desgaranties sur la topologie. L’algorithme exploite la
géométrie des ridges et des ombilics d’une surface générique, et dissocie le traitement au voisinage des ombilics
du reste de la surface. L’algorithme est générique au sens oùle calcul des quantités différentielles et l’isolation
des ombilics sont confiés à des routines qui peuvent dépendredu type de surface discrétisé par le maillage. Pour
des maillages approchants des surfaces lisses —sans pour autant avoir accès à aucune information analytique,
nous fournissons des heuristiques. Pour des surfaces discrétisants des surfaces lisses dont les ridges sont connus,
des exemples prouvent que notre algorithme heuristique retrouve la topologie des ridges et des ombilics. Pour des
maillages reconstruits à partir de données scannées, des exemples montrent que notre algorithme retrouve des sous-
ensembles des ridges comparables aux autres méthodes de l’état de l’art (qui utilisent des ajustements globaux),
tout en améliorant les temps de calculs d’au moins un ordre degrandeur et en fournissant une méthode de filtrage
plus performante.

Deuxièmement, pour une surface paramétrée, nous explicitons l’équation implicite de la courbe singulière
codant les ridges dans le domaine paramétrique. Alors que l’analyse mathématique classique des ridges était
seulement locale, nous avons maintenant une description globale. Nous analysons ses singularités et fournissons
des méthodes pour les identifier. Cette formulation du problème évite les difficultés d’orientation locale des di-
rections principales de courbure. Elle permet donc une approche globale de l’extraction des ridges d’une surface
paramétrée. Finalement, ces résultats sur la structure desridges sont utilisés dans le cas particulier des surfaces
paramétrées polynomiales. Puisque les outils classiques de calcul algébrique formel ne permettent pas de traiter
nos exemples de grande complexité, nous avons tiré partie del’information géométrique fournie par l’analyse de
la structure. Nous développons un algorithme spécifique basé sur les représentations univariées rationnelles des
systèmes polynômiaux de dimension zéro, et sur l’isolationdes racines de polynômes univariés à coefficients ra-
tionnels. Cet algorithme est le premier à calculer une approximation topologique certifiée de ridges. Une fois
la topologie obtenue, une approximation géométrique plus précise peut facilement être déduite. Nous proposons
également un autre algorithme qui calcule un tracé certifié àrésolution fixée: les calculs sont moins coûteux, mais
la topologie n’est plus garantie. Les résultats pour une surface paramétrée sont directement applicables aux sur-
faces de Bézier incontournable en CAO. Il est à noter que la méthode développée pour le calcul de la topologie
des ridges peut être généralisée pour d’autres courbes algébriques, à partir du moment où le nombre de branches
réelles passant par chaque singularité peut être calculé efficacement.

En conclusion, nous donnons plusieurs algorithmes certifiés et performants pour l’extraction des ridges. Les
méthodes s’appliquent dans les cadres lisse et discret, et différents niveaux de certification sont proposés à l’utilisa-
teur selon ses exigences.

L’intérêt pour l’analyse et le calcul de propriétés géométriques globales n’est pas nouveau. Par exemple, de
nombreuses contributions existent pour la visualisation des champs de vecteurs avec des informations topologiques
[DH94, Tri02]. Néanmoins, la plupart de ces contributions se restreignent à des domaines Euclidiens et ne sont
pas généralisées pour des surfaces. De plus, seulement des heuristiques sont proposées, et des algorithmes avec
des garanties topologiques font défaut.

Dans le cadre discret, les champs de vecteurs sont analysés avec une décomposition discrète de Hodge [PP03],
ou avec une décomposition de Morse-Smale [EHZ01] via un paradigme desimulation de la différentiabilité. Lors
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de l’analyse d’une propriété différentielle globale à partir d’une discrétisation, la première étape consiste à com-
prendre sa stabilité et sa généricité. Une telle approche a prouvé sa réussite pour les ridges et l’axe médian. Le
calcul du type d’homotopie de l’axe médian est proposé dans [CL05] guidé par des résultats de stabilité [eRS04].
Pour les surfaces, les feuilletages des directions principales de courbure sont particulièrement intéressants, ils peu-
vent être utilisés pour le maillage par des quadrilatères optimisant l’approximation [ACSD+03]. Néanmoins, il
n’existe pas encore de méthode pour calculer la topologie deces feuilletages.

Dans ce contexte, la collaboration entre les communautés demathématiques et d’informatiques est nécessaire
pour modéliser et résoudre les problèmes de géométrie appliquée.
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Chapter 3

Differential Topology and Geometry of
Smooth Embedded Surfaces: Selected
Topics

This chapter surveys mathematical notions and results scattered over several sources. As a prerequisite for the
development of algorithms for the manipulation of surfaces, we propose a concise overview of core concepts from
differential topology and geometry applied to smooth embedded surfaces.

The understanding of surfaces embedded inE3 requires local and global concepts, which are respectively
evocative of differential geometry and differential topology. While the local theory has been classical for decades,
global objects such as the foliations defined by the lines of curvature, or the medial axis still pose challenging
mathematical problems. This duality is also tangible from apractical perspective, since algorithms manipulating
sampled smooth surfaces (meshes or point clouds) are more developed in the local than the global category.

We first recall the classification of umbilics, of curvature lines, and describe the corresponding stable foliations.
Next, fundamentals of contact and singularity theory are recalled, together with the classification of points induced
by the contact of the surface with a sphere. This classification is further used to define ridges and their properties,
and to recall the stratification properties of the medial axis. Finally, properties of the medial axis are used to present
sufficient conditions ensuring that two embedded surfaces are ambient isotopic.

3.1 Introduction

3.1.1 Motivations for a geometric and topological analysis

Sampled surfaces represented either by point clouds or meshes are ubiquitous in computer graphics, computer
aided design, medical imaging, computational geometry, finite element methods or geology. Aside from the sit-
uations where a sample surface is of self-interest —e.g. in computer graphics, sampled surfaces approximating
(piecewise-)smooth surfaces are essentially found in two contexts which are surface reconstruction and surface
discretization. In the first category, one is given a set of sample points acquired from a scanner (medical or laser)
and wishes to reconstruct (by interpolation or approximation) the continuous or (piecewise-)smooth surface which
has been sampled. In the second one, a surface is given implicitly or parametrically, and one wishes to discretize it
for visualization or calculation purposes. In any case, three types of properties are usually of interest when com-
paring a (piecewise-)smooth surface and its discretization: topological and geometric properties, local differential
properties, and global differential properties.

From a topological standpoint, one expects the surfaces to be homeomorphic or even better isotopic. Example
algorithms with such a guarantee are [APR03, ACDL00] in the surface reconstruction area, and [BCSV04, BO03]
in the surface meshing context. Apart from these algorithms, the interested reader should consult [SP03, CCS04]
where sufficient conditions on isotopy can be found. It should also be pointed out that the hypothesis under which
one achieves these properties usually also yield a bound on the Hausdorff distance between the surfaces, a property
of geometric nature.

Local differential properties are of two types, namely intrinsic and extrinsic. For extrinsic quantities, one
wishes to guarantee that the tangent plane (at the first order), the principal directions and curvatures (at the sec-
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ond order), or higher order coefficients (e.g. curvature extremality coefficients) are close. The development of
algorithms providing such guarantees has been subject to intense research [Pet01], and recent advances provide
guarantees either point-wise [BCM03, CP05a] or in the geometric measure theory sense [CSM03]. Although
extrinsic properties are usually the properties sought, some applications care for intrinsic faithfulness. These appli-
cations are usually concerned with the question of flattening / parameterizing a surface, and the reader is referred
to [MT02] for an example related to geology, together with the ensuing conditions.

At last, global differential properties usually refer to guarantees on loci of points having a prescribed differential
property. Example such loci are lines of curvature, ridges,or the medial axis. Applications involving such patterns
are surface remeshing [ACSD+03], scientific visualization [DH94], feature extraction [PAT00, WB01, HGY+99],
or surface reconstruction [AB99, BC01] and related topics [DZ02]. Providing such guarantees faces the difficulties
afore-mentioned. Not only point-wise estimates must be reliable, but they must also be connected correctly at the
surface level. The difficulties are tangible from a practical perspective, and only few algorithms are able to report
global differential patterns with some guarantee [CL05].

The lack of such algorithms is partly due to the fact that global differential patterns have an involved struc-
ture described in differential topology and singularity theory sources. Easing the access to these notions is the
incentive of this concise survey, which deliberately focuses on selected topics related to the geometry and topol-
ogy on embedded surfaces. In selecting these topics, we had to make choices and omitted the following themes:
symmetry sets [BGG85]; distance functions used in analysis[Hor94], optimization [Cla97], mathematical mor-
phology [Ser82], and geometric modeling [Lie03]; bifurcations of symmetry sets and medial axis [BG86, GK02];
differential geometry of skeletal structures [Dam04]; practical algorithms to extract medial axis [CL05].

Our presentation focuses on the geometric intuition ratherthan the technicalities. From a practical standpoint,
we hope it will be helpful for those aiming at producing globally coherent approximations of surfaces.

3.1.2 Chapter overview

Following a natural trend, we successively examine differential geometric concepts of the second order (umbilics,
lines of curvatures, foliations) and the third order (ridges, medial axis). To finish up, selected properties of the
medial axis are used to specify the topological equivalencebetween embedded surfaces.

More precisely, the Monge form of a surface is recalled in section 3.2. Second order properties are presented
in section 3.3 —umbilics and lines of curvature. The classification of contact points between the surface and
spheres is presented in section 3.4. This classification is used in section 3.5 to recall the stratification properties
of the medial axis. Finally, the topological equivalence between embedded surfaces is recalled in section 3.6, and
sufficient conditions involving the medial axis are also presented.

3.2 The Monge form of a surface

3.2.1 Generic surfaces

Our focus is on generic phenomena on surfaces, and the statements presented are valid for generic surfaces only.
Formally if one considers the set of all smooth surfacesS in E3 as an infinite dimensional space with a well defined
topology, a property is generic if the surfaces exhibiting this property form an open dense subset. Informally this
notion means that (i) a generic property remains valid if oneallows random perturbations, and (ii) that every surface
is arbitrary close to another for which the property holds. Due to the infinite dimension of the space of surfaces, it
is not straightforward to define a topology on this set. We will consider theCr topology (r ∈N∪{∞}) on the set of
all smooth oriented surfacesSembedded in the Euclidean spaceE3 (cf. [GS91][p.27]). A sequenceSn of surfaces
converges toS in theCr sense provided there is a sequence of real functionsfn on Ssuch thatSn = (I + fnN)(S),
whereI is the identity ofE3, N is the normal vector ofSand fn tends to 0 in theCr sense. That is, for every chart
(u,v) with inverse parameterizationX, fn ◦X converges to 0 together with the partial derivatives of order r, on
compact parts of the domain ofX.

3.2.2 The Monge form of a surface

We consider an oriented surfaceSembedded in the Euclidean spaceE3. We considerE3 given with an orthonormal
basis called the world coordinate system. Another orthonormal basis is calleddirect if it is the image of the world
coordinate system by a special orthogonal tranformation. At any point of the surface which is not an umbilic,
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principal directions are well defined, and the (non oriented) principal directionsd1, d2 together with the normal
vectorn define two direct orthonormal frames. Ifv1 is a unit vector of directiond1 then there exists a unique unit
vectorv2 so that(v1,v2,n) is direct; and the other possible frame is(−v1,−v2,n). In one of these, and as long as
our study is a local differential one, the surface is assumedto be given as a Monge patch at the origin [HGY+99]
—with h.o.t standing forhigher order terms:

z=
1
2
(k1x2 +k2y2)+

1
6
(b0x3 +3b1x

2y+3b2xy2 +b3y3) (3.1)

+
1
24

(c0x4 +4c1x
3y+6c2x

2y2 +4c3xy3 +c4y4)+h.o.t (3.2)

Occasionally, we shall refer to the cubic partCM(x,y) as the Monge cubic, that is:

CM(x,y) = b0x3 +3b1x
2y+3b2xy2 +b3y

3. (3.3)

If the origin is not an umbilic, the principal directiond1 (resp.d2) associated to the principal curvaturek1 (resp.k2)
is thex (resp.y) axis. We shall always assume thatk1≥ k2 and we consider ’blue’ (resp. ’red’) something special
happening withk1 (resp.k2). For example the blue focal surface is the set of centers of curvature associated to the
blue curvaturek1. Note that a change of the normal surface orientation swaps the colors.

Away from umbilics, local analysis of the principal curvatures can be done for the Monge coordinate system
and along the curvature lines. The Taylor expansion of the principal curvaturek1 in the Monge coordinate system
is
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The Taylor expansion ofk1 (resp. k2) along the blue (resp. red) curvature line going through theorigin and
parameterized byx (resp.y) are:

k1(x) = k1 +b0x+
P1

2(k1−k2)
x2 +h.o.t P1 = 3b2

1 +(k1−k2)(c0−3k3
1). (3.6)

k2(y) = k2 +b3y+
P2

2(k2−k1)
y2 +h.o.t P2 = 3b2

2+(k2−k1)(c4−3k3
2). (3.7)

Notice also that switching from one of the two coordinate systems mentioned in introduction to the other reverts
the sign of all the odd coefficients on the Monge form of the surface.

Some notions about cubics will be useful in the sequel.

Definition. 1 A real cubic C(x,y) is a bivariate homogeneous polynomial of degree three, thatis C(x,y) = b0x3 +
3b1x2y+3b2xy2 +b3y3. Its discriminant is defined byδ (C) = 4(b2

1−b0b2)(b2
2−b1b3)− (b0b3−b1b2)

2.

A cubic factories as a product of three polynomials of degreeone with complex coefficients, called its factor
lines. In the(x,y) plane, a real factor line defines a direction along whichC vanishes. The number of real factor
lines depends on the discriminant of the cubic and we have

Proposition. 1 Let C be a real cubic andδ its discriminant. Ifδ > 0 then there are 3 distinct real factors, ifδ < 0
there is only one real factor.

In the particular description of surfaces as Monge patches,we have a family of Monge patches with two
degrees of freedom —the dimension of the manifold. A property requiring 1 (resp. 2) condition(s) on this family
is expected to appear on lines (resp. isolated points) of thesurface —a condition being an equation involving the
Monge coefficients. A property requiring at least three conditions is not generic. As an example, ridge points
(characterized by the conditionb0 = 0 orb3 = 0) appears on lines and umbilics (the two conditions are those for a
quadric to have egual roots, i.e. the coefficient of thexy term vanishes and those ofx2 andy2 are equal) are isolated
points. A flat umbilic, requiring the additional conditionk1 = 0, is not generic.



40 CHAPTER 3. DIFFERENTIAL TOPOLOGY AND GEOMETRY

3.3 Umbilics and lines of curvature, principal foliations

This section is devoted to second order properties on a surface, and more precisely to umbilics and lines of curva-
ture. General references are [Mor90, Por01, GS91, HGY+99, MWP96].

3.3.1 Classification of umbilics

To present the classification of umbilics, let us first recallsome facts about lines of curvature. On each point of
the setS′ defined as the surfaceSexcept its umbilics, the two principal directions are well defined and orthogonal.
They define two direction fields onS′, one everywhere orthogonal to the other, so it is sufficient to study only one
of these. Each principal direction field defines lines of curvature. The set of all these lines, called the principal
foliation, will be studied in the next section.

Definition. 2 A line of curvature is an integral curve of the principal field, that is a regular curve on S′ which is
everywhere tangent to the principal direction and is maximal for inclusion (it contains any regular curve with this
property which intersects it).

The index of an umbilic describes the way the lines of curvature turn around the umbilic. The index of a
direction field at a point is(1/2π)

∫ 2π
0 θ (r)dr, whereθ (r) is the angle between the direction of the field and

some fixed direction, and the integral is taken over a small counterclockwise circuit around the point. For generic
umbilics this index is±1/2, this implies that the direction field is not orientable on aneighborhood of such
points. As illustrated on Fig. 3.1, if one fixes an orientation of the field at a point on a circuit around an umbilic,
propagating this orientation by continuity along the circuit gives the reverse orientation after one turn. In other
words, there is no non vanishing continuous vector field inducing the direction field around the umbilic. The index
can also be computed with the Monge cubic, this computation is point wise as opposed to the previous one, but
need third order coefficients (hence it is likely to be less stable in practice). LetS= (b0−b2)b2−b1(b1−b3),

• if S< 0 then the index is−1/2 and the umbilic is called a star,

• if S> 0 then the index is+1/2 and we have to do more calculations to distinguish between the so called
lemon and monstar.

A finer classification is required to distinguish between thetwo umbilics of index+1/2. We shall need the
following:

Definition. 3 Consider an umbilic p and denote TpS the tangent plane of the surface at p. Alimiting principal
directionis a direction of TpS which is tangent to a line of curvature which end at the umbilic.

Limiting principal directions are related to the Jacobian cubic of the umbilic (cf. [HGY+99]):

JC = B0x3 +3B1x
2y+3B2xy2 +B3y3 = b1x3 +(2b2−b0)x

2y− (2b1−b3)xy2−b2y
3. (3.8)

The real factor lines of this form are the limiting principaldirections at the umbilic. As recalled by proposition 1,
the number of such directions depends on the discriminantU of JC:

• If U < 0 then there is one limiting principal direction, necessarily S> 0 and the umbilic is called a lemon.

• If U > 0 then there are three limiting principal directions, furthermore ifS< 0 the umbilic is a star elseS> 0
and it is called a monstar. For a monstar, the three directions are contained within a right angle and all the
curvature lines in this angle end at the umbilic and form the parabolic sector of the monstar. Note that all
these lines have the same tangent at the umbilic: the limiting principal direction inside the parabolic sector.
For a star, only three lines of curvature end at the umbilic and the limiting directions are not contained in a
right angle.

We summarize the previous discussion as follow:

Theorem. 3 There are three classes of generic umbilics in the C3 sense, namely Lemons, Monstar and Stars. They
are distinguished by their index and the number of limiting principal directions.
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To be an umbilic requires two conditions on the Monge coefficients, this implies that the casesS= 0 orU = 0
are not generic umbilics. From the same argument, a generic umbilic is a non flat point: its Gaussian curvature
does not vanish, and generic umbilics are isolated (cf. [Por01][p.184]).

Figure 3.1: Impossibility of a global orientation around anumbilic

Figure 3.2: Umbilics: Lemon and Monstar of index +1/2, Star of index -1/2.

3.3.2 Principal foliations

Recall that the blue (resp. red) principal foliation is the set of all blue (resp. red) curvature lines defined onS′–S
except its umbilics. The umbilics can be regarded as singular points for these foliations if one wishes to consider
them onS. The first element required concerns the topology of a curvature line. A line of curvatureγ is either
homeomorphic to:

• an open intervalI = (ω−,ω+), then it is assumed to be oriented and parameterized by this interval. Itsα(γ)
(resp.ω(γ)) limit set is the collection of limit points of sequencesγ(sn), convergent inS, with sn tending to
ω− (resp.ω+). The limit set ofγ is the unionα(γ)∪ω(γ).

• or to a circle, then it is called a cycle. It is hyperbolic if the differential of its Poincaré return map differs
from the identity. In other words, if one orients an hyperbolic cycle, the lines of curvature can be oriented
on a neighborhood of this cycle by continuity and they are allattracted or repelled on both sides of the cycle
(cf. Fig. 3.3).

Figure 3.3: A hyperbolic cycle and two non hyperbolic ones

Special lines divide the set of all curvature lines in the vicinity of an umbilic into sectors, they are separatrices.

Definition. 4 A separatrix is a line of curvature with an umbilic in its limit set and so that there exists arbitrarily
close to that line, another line without this umbilic in its limit set.



42 CHAPTER 3. DIFFERENTIAL TOPOLOGY AND GEOMETRY

A sector defined by two consecutive separatrices is

• hyperbolic if none of the lines in the sector have the umbilicin their limit set;

• parabolic if all curvature lines in the sector have the umbilic in their α or exclusiveω limit set;

The alternative case of an elliptic sector, if all curvaturelines in the sector have the umbilic in theirα andω limit
set, is not generic —cf. Nikolaev [Nik01][p.360]. Note thata separatrix is a line of curvature which ends at an
umbilic, hence its tangent at this point is a limiting principal direction. But the limiting principal direction inside
the parabolic sector of a monstar is not tangent to a separatrix of this umbilic —because all lines in a neighborhood
have the monstar in their limit set. This explains another classification of umbilics from Darboux based on the
number of separatrices. This classification rephrases the previous one: a lemon orD1 has one separatrix, a monstar
or D2 has two and a star orD3 has three.

The next result [GS91][p.27] describes stable configuration of the principal foliations for smooth compact
oriented surfaces embedded inE3. A surfaceS is said to beCr principal structurally stable if for every sequence
Sn converging toS in theCr sense, there is a sequence of homeomorphismsHn from Sn ontoS, which converges
to the identity ofS, such that, forn big enough,Hn is a principal equivalence fromSn ontoS. That isHn maps the
umbilical set ofSn onto the umbilical set ofS, and maps the lines of the principal foliations ofSn onto those ofS.

Theorem. 4 LetΣ be the subset of smooth compact oriented surfaces which satisfies the following four conditions:

• all the umbilic points are of type Di , i = 1, . . . ,3;

• all the cycles are hyperbolic;

• the limit sets of every line of curvature are umbilics or cycles;

• all the separatrices are separatrices of a single umbilic (they cannot connect two umbilics or twice the same
one being separatrices at both ends).

ThenΣ is open and each of its elements is principal structurally stable in the C3-sense,Σ is dense in the C2-sense.

This theorem implies that stable principal foliations are described with the set of umbilics, cycles and the way
the separatrices connect these elements. The complement ofthese features on the surfaceS then decomposes on
canonical regions of two types parallel and cylindrical. Oneach region, the limit sets of all lines are the same:
a cycle or aD2 umbilical point (through its parabolic sector). A region isparallel if there are separatrices in its
boundary. If the boundary consists only of cycles then the region is cylindrical.

The topology of the surfaceS constrains the number and the type of umbilics. More precisely, the sum of
indices of umbilics must be the Euler characteristicχ(S) —[Spi99b][p.223]. Moreover, the principal foliation
defines a bipartite graphG(V1,V2,E) with V1 the set of umbilics,V2 the set of cycles and parabolic sectors andE
the set of separatrices. The edges connect elements ofV1 to elements ofV2 with the following constraints.

• A Di umbilic hasi incident edges.

• Since there is no elliptic sector, a separatrix of aD2 umbilic cannot be connected to its parabolic sector.

• The graph is embedded on the surface without intersecting the separatrices.

3.4 Contacts of the surface with spheres, Ridges

To classify points of a smooth surface regarding curvature properties, we first recall fundamentals from contact and
singularity theory. Following [Por71, Por83, Mor90], we probe a point of the surface with a sphere centered along
the normal at that point. Working out the dominant terms of the Taylor expansion of the probe function yields the
classification of points desired. General references for this section are [BG92], [Por01] or [Arn92].
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3.4.1 Distance function and contact function

A standard way to classify points on a smooth surface consists of using contact theory. Consider a portion of
surface locally parameterized in a chart(U, p(x,y)) with U ⊂R2, (x0,y0) ∈U and a sphereC of centerc. Denoting
<,>, the standard inner product ofE3, the contact function at the pointp(x0,y0) ∈ S is the function defined by:

g : U ×R3 7→R, g((x,y),c) =< p(x,y)c, p(x,y)c >−< p(x0,y0)c, p(x0,y0)c > . (3.9)

This function is just the square distance from the surface tothe center of the sphere minus the square of its radius
r2 =< p(x0,y0)c, p(x0,y0)c >. The intersection points betweenSandC have coordinates(x,y, p(x,y)) satisfying
g(x,y) = 0. The philosophy of contact theory is the following. Once the center of the sphere have been chosen,
the contact function is a bivariate function. Then, we wish to report the possiblenormal formsof g as a bivariate
function.

Before illustrating this process, let us observe that if thecenter of the sphereC is not contained in the affine
space defined by the contact point and the normal at the surface S there, then the intersection betweenSandC is
transverse, which does not reveal much aboutSat p. Studying the nature of the contact really starts with a center
aligned with the normal, and we shall see that the cases encountered actually yield a decomposition of the normal
bundle1 of the surface.
Remark. Note that if one of the principal curvatures vanishes, one can assume the center of the principal sphere is
at infinity. This means that the relevant contact to be considered is that of a plane with the surface at such a point.
One can find a precise description of these parabolic points in [HGY+99].

3.4.2 Generic contacts between a sphere and a surface

Before presenting the generic contacts, let us illustrate the process of finding the first normal form using the Morse
lemma. To ease the calculations, assume that the contact point is the origin, that the surface is given in Monge
form, and that the center of the sphere has coordinatesc(0,0, r). Then, the contact function simplifies to:

g(x,y) = x2 +y2+(z− r)2− r2 =< pc, pc>−r2. (3.10)

Using the Monge form off , one gets the following expansion:

g(x,y) = x2(1− rk1)+y2(1− rk2)−
r
3

CM(x,y)+h.o.t (3.11)

The expansion does not contain linear terms and the origin istherefore a critical point. Moreover, ifr 6= 1/k1 and
r 6= 1/k2, the critical point is non-degenerate. By the Morse lemma, the contact function rewrites asg =±x2±y2

up to a diffeomorphism. If the coefficients of both variableshave the same sign, then the intersection betweenS
andC reduces to point. Otherwise, the intersection consists of two curves.

The previous discussion is typical from singularity theory. Assumingr 6= 1/k1 andr 6= 1/k2, we worked out
thenormal form of a multivariate function, thus highlighting its dominant terms. In the sequel, we shall just state
and use the classification of generic singularities of the contact function. As illustrated by Morse’s lemma, it is
important to observe that the normal form is exact, i.e. doesnot hide any higher order term. We shall need the
following:

Definition. 5 Let f(x,y) be a smooth bivariate function. Function f has an Ak or Dk singularity if, up to a
diffeomorphism, it can be written as:

{
Ak : f =±x2±yk+1, k≥ 0,

Dk : f =±yx2±yk−1, k≥ 4.
(3.12)

The singularity is further denoted A±k or D±k if the product of the coefficients of the monomials is±1.

As subsumed by this definition, anAk singularity precludes anAk+1 singularity, and similarly forDk. An
important characteristic of these normal forms is their zero level set. Those of theAk sequence are illustrated on
Fig. 3.4, where the (branches of) curves are defined fromx =±y(k+1)/2. More precisely:

1The normal bundle of the surface is the three-dimensional manifold obtained by adding to each point of the surface a one-dimensional
affine space defined by the pair (point, normal).
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Observation. 1 The zero level set of an A0 singularity consists of a smooth curve, and that of an A2p singularity
for p≥ 1 of one curve having a cusp at the origin. The zero level set of an A2p−1 singularity consists of two
tangential curves or an isolated point depending on the product of the signs of the monomials.

For a Dk singularity, sincef = y(±x2± yk−2), the liney = 0 is always solution. For the other solutions, the
discussion is identical to theAk case.

Observation. 2 The zero level set of an D+2p (D−2p) singularity consists of one (three) curve(s). The zero level set

of an D+
2p+1 or D−2p+1 singularity consists of two curves.

The classification of generic contact points is the following [Por71, Por83]:

Theorem. 5 The generic singularities of the contact function between asphere and a surface are of type A0, A1,
A2, A3, A4, D4.

TheA0 contact is just the transverse intersection mentioned at the beginning of this section, and we shall not
discuss it further. The others types of contacts —respectively Ak andDk— encode properties of the surface away
from umbilics and at umbilics.

f = x2�y2p+1
f = x2+y2p+1

y y

xx

f = x2�y2p

y

x
f = x2+y2p

y

x

A2p�1

A2p

Figure 3.4: Zero level sets of theAk : f = x2±yk+1 sin-
gularities

Rb0 = 0b0 > 0b0 < 0

Figure 3.5: Variation of theb0 coefficient and turning
point of a ridge

3.4.3 Contact points away from umbilics

We proceed with the discussion of the contacts away from umbilics.

A1 contact. [r 6= 1/k1, r 6= 1/k2] The origin is a non degenerate critical point. The local intersection reduces to
one point if r is in the connected component ofR \ {1/k1,1/k2} which contains 0, or is two transverse curves
otherwise.

A2 contact. [r = 1/k1,b0 6= 0 (or r = 1/k2,b3 6= 0)] The sphere is a sphere of principal curvature, and the curva-
ture is not an extremum by Eq. (3.6) sinceb0 6= 0 . Due to the presence of terms of odd degree in the normal form,
the local intersection between the sphere and the surface isnot reduced to a point (cf. Fig. 3.7 and 3.8).

A3 contact. [r = 1/k1,b0 = 0,P1 6= 0 (or r = 1/k2,b3 = 0, P2 6= 0)] The sphere is a sphere of principal curvature,
and the principal curvature has a local extremum sinceb0 = 0 andP1 6= 0 —or b0 = 3 andP2 6= 0. An A3 contact
defines aridge point, but not all ridge points areA3 points —see the turning points below. Distinguishing further
betweenA−3 andA+

3 yields the distinction between elliptic and hyperbolic ridge points2:

• Elliptic. If P1 < 0, the contact function hasA+
3 singularity and its normal form isg = y2 +x4. Equivalently,

the blue curvature is maximal along its curvature line. The blue sphere of curvature has a local intersection
with Sreduced top (cf. Fig. 3.9).

2Elliptic and hyperbolic ridge points are called sterile andfertile by Porteous. This refers to the possibility for umbilics to appear near such
ridges.
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• Hyperbolic. IfP1 > 0, the contact function has anA−3 singularity and its normal form isg = y2−x4. Equiv-
alently, the blue curvature is minimal along its line. The local intersection of the blue sphere of curvature
with S is two tangential curves (cf. Fig. 3.10).

Summarizing,b0 = 0,P1 6= 0 defines a blue ridge point, either elliptic or hyperbolic. Similarly, b3 = 0 defines
a red ridge point, whose type is specified by the sign ofP2 defined by Eq. (3.7). A red ridge is elliptic ifk2 is
minimal (P2 < 0) along its curve and hyperbolic ifk2 is maximal (P2 > 0). (Notice that in Eq. (3.7) the sign ofP2

is in accordance with the negative sign ofk2−k1.)
Notice that the type, elliptic or hyperbolic, is independent of the surface orientation. However the sign ofb0

depends on the orientation of the principal directions. Thecorresponding geometric interpretation when moving
along a curvature line and crossing the ridge is recalled on Fig. 3.6.

R R

+ -

+
-

-
+

+
-

Figure 3.6: Sign changes ofb0 along an oriented blue curvature line crossing a blue ridge :elliptic case (max of
k1, left), and hyperbolic case (min ofk1, right).

Ridge points are on smooth curves on the surface called ridgelines and can be colored according to the color
of the points. Away from umbilics, a blue ridge can cross a redridge at a ridge point colored blue and red that we
call a purple point. A crossing of ridges of the same color is not generic.

Remark. When displaying ridges, we shall adopt the following conventions:

• blue elliptic (hyperbolic) ridges are painted in blue (green),

• red elliptic (hyperbolic) ridges are painted in red (yellow).

A4 contact. [r = 1/k1,b0 = 0,P1 = 0 (or r = 1/k2,b3 = 0, P2 = 0)] The blue curvature has a inflection along its
line (k′1 = k′′1 = 0 butk′′′1 6= 0, derivatives shall be understood as along the curvature line, cf Eq. (3.6)). As anA4

singularity, the local intersection of the blue sphere of curvature withS is a curve with a cusp at the contact point.
Such a point is called aridge turning point. At such a point, the ridge is tangent to the line of curvatureof the
same color, and the ridge changes from elliptic to hyperbolic —from a maximum to a minimum of the principal
curvature.

The variation of theb0 coefficient in the neighborhood of a blue ridge and a turning point of such a ridge are
illustrated on Fig. 3.5. Summarizing the previous observations, we have:

Definition. 6 Let p∈ S be a non-umbilical point, then p is a blue ridge point if one of the following equivalent
conditions is satisfied:

(i) the blue principal curvature has an extremum along the corresponding blue line of curvature,

(ii) b0 = 0,

(iii) the blue sphere of curvature has at least an A3 contact with S at p.

Notice again that a contact involves a sphere and the surface. The contact therefore provides information on
the surface but also on its focal surfaces —the blue/red one assuming the sphere in contact is a principal blue/red
sphere of curvature. The reader is referred to [BGG85] for local models of the focal surface at such singularities.
We actually have the following:
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Observation. 3 At a ridge point, the focal surface is not regular —the centerof the osculating sphere is located
on a cuspidal edge of the focal surface.

Figure 3.7:A2 contact with the blue sphere Figure 3.8:A2 contact with the red sphere

Figure 3.9:A+
3 contact of the blue sphere of curva-

ture at a blue elliptic ridge point (on the blue curve)

Figure 3.10:A−3 contact of the blue sphere of curva-
ture at a blue Hyperbolic ridge point (on the green
curve)

3.4.4 Contact points at umbilics

Away from umbilic, thex andy coordinates of the Monge coordinate system follow the principal directions; at the
umbilic there is no such canonical choice of coordinates, hence the values ofb0 andb3 are not relevant and other
invariants must be considered.

To see which ones, consider the contact function given by Eq.(3.11). Sincer = 1/k1 = 1/k2, it is dominated
by the cubic terms. More precisely, the singularity is generically a D±4 . The number of ridges passing through
the umbilic is the number of curves in the zero level set of thecontact function. Hence this number reads on the
normal form, and is equal to one or three as mentioned in observation 2. This fact is not intuitive and it is neither
obvious that ridges pass through umbilics. A way to explain these facts is to study the gradient field∇k1 (the same
holds for∇k2) well defined at non umbilical points. Indeed a non-umbilical blue ridge point can be seen as a point
on a blue curvature line where∇k1 is orthogonal to the curve that is< ∇k1,d1 >= 0, or equivalently the iso-curve
of k1 is tangent to the curvature line. Hence one has to study orthogonality between the two fields∇k1 andd1.
In section 3.3.1, it has been shown that the index of thed1 fields distinguishes stars (index -1/2) from lemons or
monstars (index +1/2). The study ofk1 and∇k1 shows that generically, one has the following:

• k1 has a minimum, then the vector field∇k1 has index 1; this also implies that the umbilic is a star and that
there are 3 directions in which< ∇k1,d1 >= 0;

• there is a curve along whichk1 = k is constant passing through the umbilic, then∇k1 has index 0 and there
is 1 direction in which< ∇k1,d1 >= 0.

The distinction between these two cases also reads on the Monge cubicCM, its number of real factor lines is the
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number of ridges, hence it depends on the sign of its discriminantD = δ (CM). One can summarize the previous
discussion as follows [Por01, Chap 11.6, p.191]—see also Fig. 3.12:

Theorem. 6 Generic umbilics are of two types:

• Elliptic. The Monge cubic has three different real factor lines, or equivalently the contact function has a
D−4 singularity. Three non-singular ridge branches cross at the umbilic. Moreover at the umbilic, k1 has a
minimum and k2 a maximum. Such an umbilic is a star.

• Hyperbolic. The Monge cubic has only one real factor line, orequivalently the contact function has a D+
4

singularity. Only one non-singular ridge branch passes through the umbilic. Moreover passing through the
umbilic, there is one curve along which k1 (resp. k2) is constant equal to k. Such an umbilic is either a
lemon, a monstar or a star.

The number of ridges is given by the number of real factors lines of the Monge cubic, but these lines are not
the tangent directions to ridge lines going through the umbilic. However, these tangent directions can be computed
from the Monge cubic cf. [HGY+99].

Definition. 7 An umbilic is called a 1-ridge (resp. 3-ridge) umbilic if there is 1 (resp. 3) non-singular ridge curve
going through it.

Generically, the discriminantδ (CM) of CM does not vanish, so thatCM is either elliptic or hyperbolic. There-
fore, a generic umbilic is either 1-ridge or 3-ridge.

The intersection between the surface and its osculating sphere at an umbilic is not reduced to a point (cf.
Observation 2). This fact remains true close to the umbilic and in particular on ridges, so we have:

Observation. 4 A ridge passing through an umbilic must be hyperbolic.

It also turns out that ridges are smooth curves crossing at umbilics and changing color there —from a minimum
of k1 to a maximum ofk2. Notice that a ridge may not pass through an umbilic, then it is of a single color and
changes type at each turning point if any —there is an even number of such points.

Remark. A finer distinction of elliptic umbilics concerns the ordering of ridge colors around the umbilic: it is
called symmetrical if ridges alternate colors RBRBRB (thenT = b2

0+b2
3+3(b0b2+b1b3) < 0) and unsymmetrical

if the ordering is RRRBBB (T > 0). Figure 3.11 gives a schematic view of ridges at umbilics,more accurate figures
can be found in [HGY+99].

Unsymmetric elliptic umbilicHyperbolic umbilic Symmetric elliptic umbilic

Figure 3.11: Ridges at umbilic

3.4.5 Umbilic classification in the complex plane

The classification of umbilics with respect to the cubic partof the Monge form of the surface can be illustrated by
a diagram in the plane (Fig. 3.12). With a change of variableswhich corresponds to a rotation in the tangent plane
and notingζ = x+ iy the cubic formb0x3 + 3b1x2y+ 3b2xy2 + b3y3 becomesRe(ζ 3 + ωζ 2ζ̄ ) for some complex
numberω . Then umbilics are parameterized byω in the complex plane. The zero sets of the four invariantsS,U,D
andT give four curves partitioning the plane in sectors. Umbilics on the complement of these curves are generic.
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principal direction
1 limiting

3 limiting
principal directions

3 ridges1 ridge

S=0,  Index

U=0,  Number of principal directions

D=0,  Number of ridges

T=0,  Symmetry of ridges

Lemon

Monstar

Elliptic Star Unsymmetric

Ellitic Star Symmetric

Hyperbolic Star

Index −1/2

Index +1/2

Figure 3.12: Umbilic classification in the complex plane

3.4.6 Summary of the global picture of ridges and umbilics ona generic surface

To summarize, a ridge point is distinguished by its color andits type. When displaying ridge curves, we shall adopt
the following conventions:

• blue elliptic (hyperbolic) ridge curves are painted in blue(green),

• red elliptic (hyperbolic) ridges curves are painted in red (yellow).

At last, ridge curves displayed in black refer either to red or blue ridges.

Umbilic points can be considered as ridge points since they are in the closure of ridge curves. But from a
topological standpoint, excluding umbilics, a ridge curveis a submanifold ofS and one can distinguish the two
cases:

Definition. 8 For a closed and bounded surface, a ridge curve is calledopenif it is homeomorphic to the real line,
and it is calledclosedif it is homeomorphic to a circle.

An open ridge has one or two points in its frontier which are umbilics. Hence an open ridge curve “connects”
two umbilics or twice the same one.

To finish up this review, let us recall the following generic properties:

• a ridge curve contains an even number of turning points at which the ridge changes from elliptic to hyper-
bolic.

• Near an umbilic, open ridge curves connected to this umbilicare hyperbolic.

• The configuration of ridges of the same color at umbilics are the following:

– either only 1 open ridge curve is connected to the umbilic which is called a 1-ridge umbilic;

– or 3 different open ridges are connected at one end to the umbilic or, 1 open ridge is connected at both
ends and another open ridge is connected at one end to the umbilic (cf. Fig. 3.13). This umbilic is
called a 3-ridge umbilic.

• Ridges of the same color do not cross.

• Two ridges of different colors may cross at a so-calledpurple point.

• The index of an umbilic is±1/2, this implies that the direction field is not orientable on aneighborhood of
such points.
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These notions are illustrated on the famous example of the ellipsoid on Figs. 3.14 and 3.15.
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Figure 3.13: Two cases of 3-ridge umbilics: first with 3 different ridges, second with 2 different ridges connected
to it. Points are umbilics, lines are ridges of the same color.

3.4.7 Illustrations

We illustrate the previous global structure theorems on thefamous example of an ellipsoid with three different
axes —Fig. 3.14, an implicit blend of two ellipsoids —Fig. 3.16, and a Bezier patch —Fig. 3.17. The figures
are produced by the algorithm described in chapter 5 , while the ridges of Fig. 3.17 are certified by the algorithm
presented in chapter 7. The color conventions are: blue elliptic (hyperbolic) ridges are painted in blue (green), red
elliptic (hyperbolic) ridges are painted in red (yellow). Intersections between ridges are the purple points.

On Fig. 3.14, the blue principal direction field is drawn —from which one infers that the normal is pointing
outward so that the two principal curvatures are negative. The two elliptic ridges are closed curves without turning
point. The four Lemon umbilics are the black dots, and they are linked by four separatrices —the yellow and
green curves. The separatrices, which are curvature lines,are also ridges in that case. More generally, any line of
symmetry is a line of curvature and a ridge ([Por01][p.162]). Notice also that the lines of curvatures which are not
separatrices are all cycles. For each color, they are packedinto a cylinder. But this is a non stable configuration
since separatrices are umbilical connections, the cycles are not hyperbolic. The medial axis of the ellipsoid is a
region homeomorphic to a disk, and is located in the symmetryplane of the two largest axes. This region looks
like an ellipsis but is not so [Deg97]. The boundary of the medial axis projects onto the red ridge curve, and
reciprocally on this example, every elliptic red ridge point corresponds to a point on the boundary of the medial
axis.

Fig.3.16 is a blend between two ellipsoids defined by the following equation:

1−exp(−0.7(
x2

0.152 +
y2

0.252 +
z2

0.352 −1)) (3.13)

−exp(−0.7(
(x−0.25)2

0.12 +
(y−0.1)2

0.22 +
(z−0.1)2

0.32 −1)) = 0. (3.14)

This model has six umbilics of index+1/2 and two of index−1/2. Notice that this complies with the Euler
characteristic. One can also observe purple points and turning points.

Figure 3.17 features ridges of a Bezier patch, one can observe 1 and 3-ridge umbilics. This surface is the graph
of the degree 4 polynomialh(u,v) for (u,v) ∈ [0,1]2:

h(u,v) = 116u4v4−200u4v3 +108u4v2−24u4v−312u3v4 +592u3v3−360u3v2 (3.15)

+80u3v+252u2v4−504u2v3 +324u2v2−72u2v−56uv4+112uv3−72uv2+16uv. (3.16)
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Figure 3.14: Umbilics, ridges, and principal blue
foliation on the ellipsoid (10k points)

Figure 3.15: Schematic view of the umbilics and
the ridges.

Figure 3.16: Implicit blending of two ellipsoids
(40k points)

Figure 3.17: Ridges and umbilics on a Bezier patch
(60k points)

3.5 Medial axis, skeleton, ridges

3.5.1 Medial axis of a smooth surface

The medial axis has an outstanding position in many communities and has been rediscovered several times. Exam-
ple relevant citation are [Erd46, Hor83] in analysis, [Tho72, Mil80] in differential geometry, [Ser82, Ser88, BA91,
BA92] in mathematical morphology. Since we just aim at presenting the local and global structure of the medial
axis, we shall follow [BGG85, GK00], but the interested reader should also consult [Yom81].

Given a closed manifoldSembedded inR3, the medial axisMA(S) consists of the points of the open setR3\S
having two or more nearest points onS. A related notion is the skeleton ofR3\S, which consists of the centers of
maximal spheres included inR3\S —maximal for the inclusion amongst such spheres. For smoothly embedded
manifolds, the closure of the medial axis is actually equal to the skeleton, which is why we just refer to the medial
axis in the sequel. (Interestingly, applications such as surface reconstruction, which usually assume the surface to
be reconstructed is smooth [AB99], do not distinguish between medial axis and skeleton.)

Having discussed the contact of a sphere with the surface, let us recall the classification of medial axis points
and the correspondingstratifiedstructure. While describing ridges, we actually cared morefor the surface. For
the medial axis, we change the perspective and care for the centers of the maximal spheres. When talking about a
contact, one should therefore keep in mind that the corresponding sphere contributes its center to the medial axis.

Since we care for spheres intersecting the surface in an isolated point —otherwise the sphere is not contained
in R3\S, the contact points must correspond toA+

1 andA+
3 singularities —refer to Def. 5 for the definition of

theA+
k types. Notice that anA+

1 singularity corresponds to a simple tangency. We shall dropthe superscript and
replace it by themultiplicity of the contact, that isAk

1 refers to a sphere havingk separateA+
1 contacts. The medial

axis points actually correspond to the following five cases:
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• A4
1,A

3
1,A

2
1 The sphere touches the surface at four, three or two points, and has a simple tangency at each contact

point. A4
1 points are isolated points;A3

1 points lie on curves,A2
1 lie on sheets of the medial axis. Moreover,

one has the following incidences. At anA4
1 point, sixA2

1 sheets and fourA3
1 curves meet. Along anA3

1 curve,
threeA2

1 sheets meet.

• A+
3 The contact point is an elliptic ridge point. The corresponding medial axis points boundA2

1 sheets.

• A+
3 A1 The sphere has two contact points. The center of the sphere lies at the intersection between anA3

1 curve
together with anA+

3 curve. This is where anA2
1 sheet vanishes.

An example consisting of a surface with two sheets is presented on Fig. 3.18. We describe it through a plane
sweep from top to bottom. The top part consists of two sheets swept by two simple curves of roughly triangular and
circular section. Then the inner contour vanishes so that weare left with the outer sheet which is roughly speaking
a cylinder of triangular section. Then, section of the cylinder changes from triangular to elliptic. Eventually, the
cylinder splits into two legs of elliptic sections. Near thetop, the structure of the medial axis is that of a tetrahedron,
with six A2

1 sheets and fourA3
1 curves meeting. The boundary of each sheet consists of anA3 curve. When the

section gets rounder, oneA2 sheet vanishes at anA3A1 point.

There is an intuitive way to understand the preceding results, by counting separately the numbers of degrees of
freedom and the number of constraints attached to a particular medial axis point. To see how, recall that a contact
involves one sphere and one or more points on the surface. In terms of degrees of freedom (dof), a sphere yields
four degrees of freedom, choosing a point on a surface is another two dof, and choosing a point on a curve drawn
on a surface is one dof. In terms of constraints at the contactpoints, constraining a sphere to have anA1 contact
imposes three constraints. (Indeed the tangent plane beingset to that of the surface atp, we are left with the choice
of the radius —which defines the pencil of spheres through thecontact point.) Similarly, having anA3 contact
imposes four degrees of freedom since the radius of the sphere has to be one of the principal curvatures. Let us
now discuss the different cases:

• A2
1 Having two contacts of order one imposes 2.3 = 6 constraints. But choosing two points onS together with

the contact spheres yields 2.2+4= 8 dof. One can expectA2
1 points to lie on sheets.

• A3
1 ThreeA1 contacts define 3.3 = 9 constraints, and 3.2+4= 10 dof.A3

1 points are expected to lie on curves.

• A4
1 FourA1 yield 4.3= 12 constraints and 4.2+4= 12 dof. These medial axis points are expected to be isolated.

• A3 Such a point yields 4 constraints. In terms of dof, we have twodof for the choice of the contact point, and
three for the sphere with a radius equal to one of the principal radius of curvature.A3 contacts are therefore
expected along curves.

• A3A1 The contact points respectively yield 4+ 3 constraints. On the other hand, choosing one point along a
curve, another on the surface, together with the dof of the sphere yield 2+ 1+ 4 dof. Such contacts are
expected to be isolated.

3.5.2 Medial axis and ridges

Spheres centered on the boundary of the medial axis project onto elliptic ridge points of typeA+
3 on the surface.

But an elliptic ridge point can fail to be the contact of a point of the boundary of the MA in two cases: (i) if the
limiting bitangent sphere crosses the surface away from theridge point or (ii) if the surface is locally inside this
sphere. (This latter case happens in elliptic regions for a positive minimum ofk2 or a negative maximum ofk1). In
the first case, the sphere is not contained inR3\S, and in the second it is not maximal for inclusion.

Fig. 3.19 illustrated case (i), the lowest point is an elliptic ridge point but its bitangent sphere has a non local
intersection with the curve. Fig. 3.14 illustrates case (ii), the blue elliptic ridge is the loci of negative maximum
of k1. The MA, which is an ellipsoid in the equatorial plane (spanned by the two longest principal axis of the
ellipsoid), only gives birth to the red ridge (negative minimum ofk2).
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Figure 3.18: The stratified structure of the medial axis of a smooth surface

3.6 Topological equivalence between embedded surfaces

Having discussed delicate differential notions in the previous sections, we finish up with a seemingly simpler
question: what is the right notion of equivalence for embedded surfaces ofE3, and what are sufficient conditions
for two surfaces two be equivalent? Interestingly, the later question can be related to properties of the medial axis.
We focus on surfaces embedded inE3, orientable and without boundary, and which are either smooth —i.e. at
leastC2— or piecewise linear.

3.6.1 Homeomorphy, isotopy, ambient isotopy

A well known Theorem [Mas77][Thm 5.1] states that for surfaces, the genus characterizes the topology:

Theorem. 7 Two connected compact orientable surfaces without boundary are homeomorphic iff they have the
same genus.

Nevertheless, homeomorphy is not the relevant notion for topological equivalence of embedded surfaces. For
example, a torus and a knotted torus are homeomorphic, whilethe two surfaces are obviously not equivalent as
embedded surfaces ofE3. Intuitively, two surfaces are equivalent if one can continuously deform one into the
other without introducing self-intersection. The naturalnotion is that of isotopy since it is an equivalence between
embeddings. There are two slightly different notions: isotopy and ambient isotopy.

Definition. 9 Let S and S′ be two surfaces embedded in E3.

• S and S′ are isotopic if there is a continuous map F: S× [0,1]→ E3 such that F(.,0) is the identity of S,
F(S,1) = S′, and for each t∈ [0,1], F(.,t) is a homeomorphism onto its image.

• S and S′ are ambient isotopic if there is a continuous map F: E3× [0,1]→E3 such that F(.,0) is the identity
of E3, F(S,1) = S′, and for each t∈ [0,1], F(.,t) is a homeomorphism of E3.

In our study of compact surfaces embedded inE3, the following theorem [Hir88][p.180] shows the equivalence
of these two definitions, so we will merely speak of isotopy.
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Figure 3.19: An extrema of curvature not image of the medial axis boundary

Theorem. 8 Let S⊂M be a compact submanifold of M a manifold without boundary and F : S× [0,1]→M an
isotopy of S, then F extends to a ambient isotopy of M.

Isotopy between embedded surfaces is a topological characteristic of their embeddings, hence it does not
interfere with the geometry. F. Chazal et al. [CCS04] give a purely topological condition for isotopy as well as
applications to the concepts of medial axis and local feature size. They define the notion of topological thickening
of a surface:

Definition. 10 A topological thickening of S is a set M⊂ E3 such that there exists a homeomorphismΦ : S×
[0,1]→M satisfyingΦ(S×{1/2}) = S⊂M.

The boundary of a topological thickeningM of S thus is the union ofΦ(∂S× [0,1]) and two surfaces,Φ(S,0) and
Φ(S,1), which will be referred to as the sides ofM. Another surfaceS′ is said to separate the sides ofM if one
cannot go from one side to the other without crossingS′ or leavingM. We are then able to state their main theorem
and two corollaries:

Theorem. 9 Suppose that S (resp. S′) is included in a topological thickening M′ of S′ (resp. M of S), and that S
(resp. S′) separates the sides of M′ (resp. M). Then S and S′ are isotopic.

3.6.2 Geometric conditions for isotopy

Although isotopy is a topological property, sufficient conditions for isotopy can be obtained using geometric argu-
ments, and in particular properties of the medial axis.

If S is smooth, fors∈ S, the local feature size ofs is defined as the Euclidean distance to the medial axis, that
is lfs(s) = d(s,MA(S)) —see [AB99]. (As observed in section 3.5, since the surface is smooth the medial axis
is closed, so that the Euclidean distance is a minimum and notan infimum.) Moreover, lfs(S) is defined as the
number infs∈Sd(s,MA(S)). Sbeing at leastC2, one has lfs(S) > 0 cf. [Fed59, Wol92]. The following is proved in
[CCS04]:

Corollary. 1 Let S and S′ be compact orientable smooth surfaces without boundary.

• If each connected component of S (resp. S′) encloses exactly one connected component of MA(S′) (resp.
MA(S)), then S and S′ are isotopic.

• If the Hausdorff distance H(S,S′) between the two surfaces is such that H(S,S′) < min(lfs(S), lfs(S′)), then
S and S′ are isotopic.

Roughly speaking, one proves thatS and S′ are isotopic by first finding a neighborhood ofS in E3 which
containsS′ and second deformingS′ to Smost of the time with the normal projection ontoS in E3.
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Using the global bound lfs(S) andε-neighborhoods, Sakkalis et al. [SP03] give a family of surfaces which are
isotopic toS. SupposeS is smooth and oriented, forρ ∈R, So(ρ) = {s+ρns|s∈ S} is the offset surface ofS. They
show that for|ρ |< lfs(S) offset surfaces are smooth surfaces embedded inE3 and are isotopic toS. Moreover each
point of the offset has a unique nearest point onS.

With the same kind of arguments, Amenta et al. [APR03] show the isotopy between a smooth surface and
a piecewise linear approximation. More precisely, Amenta at al. [ACDL00] presented an algorithm to extract a
piecewise linear surfaceT from the Delaunay triangulation of aε-sample ofS. The projection fromT to its nearest
point onS is a homeomorphism which is used to construct the isotopy. The advantage of this method is that the
approximating surface needs not to stay in aε-neighborhood globally defined.

3.7 Conclusion

We surveyed the notions of umbilics, lines of curvatures, foliations, ridges, medial axis, and topological equiva-
lences for smooth embedded surfaces, with an emphasis on global structure theorems.

An important aspect which has been eluded is the dynamic case, that is the structure theorems valid if one
replace a surface by say a one-parameter family of surfaces.Of particular interest in that case are the birth and
death phenomena. These indeed feature transitions betweenpatterns observed in the static case, and the time events
between them are a measure of persistence of the objects involved. The reader is referred to [BG86, GK02, BGT96]
[HGY+99][chap.7] for pointers in that direction concerning ridges and MA. Note that it does not make sense to
study a single line of curvature dynamically. One has to consider the topology of the principal foliation instead,
this is usually referred to as bifurcation theory, see [Tri02].

From a practical perspective, we expect this survey to provide incentives to develop certified algorithms for
analysis and approximation of surface topology and geometry. In the following chapters, our algorithms for ridge
extraction benefit from the theoretical results of this chapter.
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Chapter 4

Estimating Differential Quantities using
Polynomial fitting of Osculating Jets

This chapter addresses the point-wise estimation of differential properties of a smooth manifoldS —a curve in
the plane or a surface in 3D— assuming a point cloud sampled overS is provided. The method consists of fitting
the local representation of the manifold using a jet, and either interpolation or approximation. A jet is a truncated
Taylor expansion, and the incentive for using jets is that they encode all local geometric quantities —such as
normal, curvatures, extrema of curvature.

On the way to using jets, the question of estimating differential properties is recasted into the more general
framework of multivariate interpolation / approximation,a well-studied problem in numerical analysis. On a
theoretical perspective, we prove several convergence results when the samples get denser. For curves and surfaces,
these results involve asymptotic estimates with convergence rates depending upon the degree of the jet used. For the
particular case of curves, an error bound is also derived. Tothe best of our knowledge, these results are among the
first ones providing accurate estimates for differential quantities of order three and more. On the algorithmic side,
we solve the interpolation/approximation problem using Vandermonde systems. Experimental results for surfaces
of R3 are reported. These experiments illustrate the asymptoticconvergence results, but also the robustness of the
methods on general Computer Graphics models.

4.1 Introduction

4.1.1 Estimating differential quantities

Several applications from Computer Vision, Computer Graphics, Computer Aided Design or Computational Ge-
ometry require estimating local differential quantities.Examples of such applications are surface segmentation,
surface smoothing / denoising, surface reconstruction, shape design. In any case, the input consists of a point cloud
or a mesh. Most of the time, estimating first and second order differential quantities, that is the tangent plane and
curvature-related quantities, is sufficient. However, some applications involving shape analysis require estimating
third order differential quantities [HGY+99, Por01].
Given these ubiquitous needs, a wealth of different estimators have been proposed in the vast literature of applied
geometry [Pet01, GI04]. Most of these are adaptations to thediscrete setting of smooth differential geometry re-
sults. For example, several definitions of normals, principal directions and curvatures over a mesh can be found in
[Tau95, CW00]. Ridges of polyhedral surfaces as well as cuspidal edges of the focal sets are computed in [WB01].
Geodesics and discrete versions of the Gauss-Bonnet theorem are considered in [PS98].

Out of all these contributions, few of them address the question of the accuracy of the estimates proposed or
that of their convergence when the mesh or the sample points get denser. This lack of sound theoretical analysis
is however a major issue since discrete versions of smooth operators may not converge, or may converge to unex-
pected values. Examples of such phenomena are the surface area of a mesh which may not converge to that of the
discretized surface [MT02], or the angular defect at a vertex of a triangulation which usually does not provide any
information on the Gauss curvature of the underlying smoothsurface [BCM02].

The estimation methods providing convergence guarantees are all concerned with first and second order dif-
ferential quantities. In [AB99], an error bound is proved onthe normal estimate to a smooth surface sampled
according to a criterion involving the skeleton. The surface area of a mesh and its normal vector field versus those

55
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of a smooth surface are considered in [MT02]. Asymptotic estimates for the normal and the Gauss curvature of a
sampled surface for several methods are given in [MW00]. Based upon the normal cycle and restricted Delaunay
triangulations, an estimate for the second fundamental form of a surface is developed in [CSM03].

Another striking fact about the estimation of first and second order differential quantities is that for plane
curves, these quantities are often estimated using the osculating circle, while for surfaces, using osculating pa-
raboloids is ubiquitous. Why not osculating parabolas for curves and osculating ellipsoids or hyperboloids for
surfaces? Answering this question and developing estimation methods providing guarantees for third and higher
order estimates motivates the following contributions.

4.1.2 Contributions and chapter overview

The main contribution of this chapter is to recast the problem of estimating differential properties to that of fitting
the local representation of the manifold by a jet. A jet is a truncated Taylor expansion, and the incentive for
using jets is that they encode all local geometric quantities —such as normal, curvatures, extrema of curvature.
Accurate estimates of the coefficients of the jet therefore translate immediately to accurate estimates of differential
quantities. Since the method proposed consists of performing a polynomial fitting, connections with the classical
questions of interpolation and approximation deserve a careful discussion.

Interpolation is a well studied topics in numerical analysis. Most of the time however, the parameterization
domain of interest is a subset ofRn. In particular, convergence results on the coefficients of the Lagrange inter-
polation polynomial versus the Taylor expansion of a function are proved in [Coa66, CR72, QV94]. Our results
differ from these in several concerns. On one hand, we are interested in interpolationandapproximation over a
manifold rather than a Euclidean domain. On the other hand, the afore-mentioned papers prove error bounds while
we establish asymptotic error estimates. It should howeverbe noticed that the dominant terms of these —as a
function of the sampling density— are the same.

Regarding polynomial fitting of differential properties for a surface, our results are closely related to [MW00,
Lemma 4.1]. In that article, a degree two interpolation is used and analyzed. We generalize this result for jets or
arbitrary degree, under interpolation and approximation.

To complete the description, two comments are in order. First, it should emphasized that our focus is a local
interpolation / approximation problem, that is we arenot concerned with the convergence of the Lagrange inter-
polation polynomial to the height function on a whole given set. This problem requires specific conditions on
the function and the position of the points, as illustrated by the Runge divergence phenomena [LS86, Chapter 2].
Therefore, our study is not to be confused with global fittingsuch as piecewise polynomial fitting encountered
in CAD. Second, our focus is on the estimation of point-wise differential quantities and not the identification of
loci of points exhibiting prescribed differential properties —examples of such loci are ridges or parabolic lines.
While the former problem is local, the latter is global and therefore faces the issue of reporting loci with a global
topological coherence.

The chapter is organized as follows. Fundamentals about jets and numerical issues are recalled in sections
4.2 and 4.3. The case of surfaces and curves are examined in sections 4.4 and 4.5. Finally, the overall algorithm
together with experimental results are presented in sections 4.6 and 4.7.

4.2 Geometric pre-requisites

4.2.1 Curves and surfaces, height functions and jets

It is well known [dC76, Spi99a] that any regular embedded smooth 1 curve or surface can be locally written as the
graph of a univariate or bivariate function with respect to any zdirection that does not belong to the tangent space.
We shall call such a function aheight function. Taking an ordern Taylor expansion of the height function over a
curve yields:

f (x) = JB,n(x)+O(xn+1), (4.1)

with
JB,n(x) = B0 +B1x+B2x2 +B3x3 + . . .+Bnxn. (4.2)

1Regular means that the tangent space has dimension one/two for a curve/surface everywhere. Embedded forbids self-intersections. Smooth
means as many times differentiable as we need, typicallyC3 or C4.
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Similarly for a surface:
f (x,y) = JB,n(x,y)+O(||(x,y)||n+1), (4.3)

with

JB,n(x,y) =
n

∑
k=0

HB,k(x,y), HB,k(x,y) =
k

∑
j=0

Bk− j , jx
k− jy j . (4.4)

Notice that in Eq. (4.3), the termO(||(x,y)||n+1) stands for the remainder in Taylor’s multivariate formula.

Borrowing to the jargon of singularity theory [BG92] , the truncated Taylor expansionJB,n(x) or JB,n(x,y) is
called a degreen jet, orn-jet. Since the differential properties of an-jet match those of its defining curve/surface
up to ordern, the jet is said to have an order contact with its defining curve or surface. This also accounts for the
termosculating jet—although osculating2 was initially meant for 2-jets. The degreen-jet of a curve involvesn+1
terms. For a surface, since there arei + 1 monomials of degreei, then-jet involvesNn = 1+ 2+ · · ·+(n+ 1) =
(n+1)(n+2)/2 terms. Notice that when thezdirection used is aligned with the normal vector to the curve/surface,
one hasB1 = 0 or B1,0 = B0,1 = 0. The osculatingn-jet encloses differential properties of the curve/surface up to
ordern, that is any differential quantity of ordern can be computed from then-jet. In particular, the tangent space
can be computed from the 1-jet, the curvature related information can be obtained from the 2-jet, . . . . To clarify
the presentation, we summarize as follows:

Definition. 11 For a given point on a curve or surface and n≥ 1:

• given a coordinate system, theosculatingn-jet is the Taylor expansion of the height function truncated at
order n.

• the osculating n-jet isprincipal in a given coordinate system if the linear terms vanish (i.e.the z-axis is the
normal direction of the manifold). Note that this is rather aproperty of the coordinate system which reads
on the jet.

• anosculating conic/quadricis a conic/quadric whose 2-jet matches that of the curve/surface (independently
of a given coordinate system).

• an osculating conic/quadric isdegenerateif the quadratic form this conic/quadric is defined with is degen-
erate (that is the form does not have full rank).

• an osculating conic/quadric isprincipalif, in the given coordinate system, its n-jet is principal.

Degenerate osculating conics/quadrics are specific curvesand surfaces since:

Theorem. 10 [Ber87, Chapter 15] There are 9 Euclidean conics and 17 Euclidean quadrics.

Observation. 5 The degenerate osculating conics to a smooth curve are parabola or lines. The degenerate oscu-
lating quadrics to a smooth surface are either paraboloids (elliptic, hyperbolic), parabolic cylinders, or planes.

Degenerate osculating conics and quadrics are therefore respectively 2 out of 9 conics and 4 out of 17 quadrics.

The Monge coordinate system of a curve is defined by its tangent and normal vectors. For a surface, the Monge
coordinate system is such that thez axis is aligned with the normal and thex,y axis are aligned with the principal
directions. Note that then-jet is principal in the Monge coordinate system. The Monge form of the curve or
surface at one of its points is the local Taylor expansion of the curve/surface in the Monge coordinate system.
In this particular system, the height function is called theMonge form, and lettingk1,k2 stand for the principal
curvatures, one has

f (x,y) =
1
2
(k1x2 +k2y2)+O(||(x,y)||3). (4.5)

From these observations, the question we ended paragraph 4.1.1 with can now be answered. By theorem 10 and
observation 5, using a general conic/quadric or a degenerate one to approximate a curve or a surface does not make
any difference. In both cases and up to order two, the local differential properties of the curve/surface, degenerate
conic/quadric, or full rank conic/quadric are identical. All these local differential properties are enclosed is the 2-jet
of the manifold. Yet, from a practical point of view, finding aconic/quadric requires more constrains than finding

2From the Latin osculare, to kiss.
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a degenerate one since the latter reduces to a degree two polynomial fitting. Notice also that the normal direction
to the manifold being a priori unknown, this polynomial fitting has to be performed in a coordinate system where
the osculating jet is (in general) not principal.

As an example, consider Figure 4.1(a,b,c,d). Figure 4.1(a)features a curveC and an osculating conic3. In (b),
the osculating circle is drawn, in (c), the osculating circle is replaced by the principal osculating parabola —whose
symmetry axis is the normal toC and whose curvature matches that ofC. At last, in (d) a general parabola locally
approximatesC in a coordinate system where the jet is not principal (its symmetry axis is not aligned with the
normal toC). This last case illustrates the setting we are working within the sequel.

Figure 4.1: A curve and (a) an osculating ellipse, (b) its osculating circle (special case of osculating conic), (c) its
principal degenerate conic, (d) an degenerate osculating conic: a parabola.

4.2.2 Interpolation, approximation and related variations

Our methodology to retrieve differential quantities consists of fitting the osculating jet of the manifold in a given
coordinate system. The following variations need to be discussed in order to state our contributions precisely. The
case of curves and surfaces being similar, our description focuses on surfaces. Assume we are given a set ofN
pointspi(xi ,yi ,zi), i = 1, . . . ,N in the neighborhood of a given pointp on the surface processed. Pointp itself may
or may not be one of theN samples, and one can assume without loss of generality thatp is located at the origin
of the coordinate system used.

Interpolation versus approximation. Interpolating consists of finding a polynomial that fits exactly a set of data
points. In our case and following Equation (4.3), letB index a coefficient of the jet of the surface, andA index a
coefficient of the jet sought4 . We aim at finding a degreen polynomialJA,n such that

JA,n(xi ,yi) = f (xi ,yi) = JB,n(xi ,yi)+O(||(xi,yi)||n+1), ∀i = 1, . . . ,N. (4.6)

Approximation, on the other hand, gives up on exactness, that is the graph of the polynomial sought may not
contain the sample points. We shall focus onleast-squareapproximation, which consists of minimizing the sum
of the square errors between the value of the polynomial and that of the function. The quantity to be minimized is
therefore

N

∑
i=1

(JA,n(xi ,yi)− f (xi ,yi))
2. (4.7)

The two problems can actually be written in the same matrix form. To see why, let us write the jets in the
polynomial basis consisting of monomialsxiy j . Examples of other bases that could be used are the Bezier-Bernstein
basis or the Newton basis. We use the monomials since this basis is convenient for the asymptotic analysis but also
the design of effective algorithms. DenoteA theNn-vector of the coefficients of the jet sought, that is

A = (A0,0,A1,0,A0,1, . . . ,A0,n)
t .

3A point worth noticing is the relative position ofC and an osculating curve: the former usually crosses the latter at the intersection point.
To see why, compare the order three Taylor expansions of the of two curves.

4As a mnemonic, the reader may want to remind that indexA stands for theAnswerto the fitting problem.
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DenoteZ theN-vector of the ordinates, i.e. withzi = f (xi ,yi),

Z = (z1,z2, . . . ,zN)t = (JB,n(xi ,yi)+O(||(xi,yi)||n+1))i=1,...,N.

Equations (4.6) and (4.7) yield the followingN×Nn Vandermonde matrix

M = (1,xi , yi , x2
i , . . . , xiy

n−1
i , yn

i )i=1,...,N. (4.8)

For the interpolation case, the number of points matches thenumber of parameters, so that matrixM is square and
Eq. (4.6) can be written asMA = Z. For the approximation case,M is a rectangularN×Nn matrix, and Eq. (4.7)
is summarized as min||MA−Z||2.

Choosing between interpolation and approximation dependsupon the problem tackled. For noisy datasets,
approximation is the method of choice. Otherwise, the alternative depends of the relative values of the number
of model parameters versus the number of available points. If the two match one-another, a natural choice is
interpolation. In any case, fitting yields a linear system, so that numerical issues arise. Facing these difficulties is
the topic of section 4.3.

Mesh or mesh-less methods. An important difference between local geometry estimationalgorithms is whether
or not they require some topological information —typically the connectivity of a mesh. Mesh-based methods are
usually faster. Mesh-less techniques are more general and better suited for noisy datasets. A difficulty of the latter
methods, however, is to select the relevant points used to perform the estimates. While one can always resort to
heuristics of thek-nearest-neighbors type, user defined parameters should beavoided. This issue is addressed in
section 4.6.

One or two stages methods. Fitting a 2-jet provides estimates of the tangent plane and the curvature related
information. These steps can be carried out sequentially orsimultaneously. Following the guideline of [SZ90],
most of the methods already mentioned proceed sequentially. The provably good algorithm we propose proceeds
simultaneously. Along its analysis, we also provide theoretical results on the accuracy of sequential methods.

4.2.3 Contributions revisited

Equipped with the language of jets, we can now state our contributions precisely. Consider Eqs. (4.6) and (4.7).
We expectJA,n andJB,n to be equivalent in some sense. To specify this, we shall study the convergence properties
of the coefficients ofJA,n when the pointspi converge top. More precisely, assume that the coordinates of thepi

are given bypi(xi = aih,yi = bih,zi = f (xi ,yi)). Parametersai andbi are arbitrary real numbers, whileh specifies
that thepi uniformly tend to the origin. We actually expect

Ai j = Bi j +O(r(h)).

Functionr(h) describes the convergence rate or the precision of the fitting, and the main contribution of this
chapter is to quantifyr(h) for interpolation and approximation methods. This is done applying classical results of
numerical analysis. These results are then translated for geometric quantities such as normal and curvatures. As
we shall see, interpolation or approximation of the same degree yield the same convergence rate. The difficulties
posed are also similar and are essentially to deal with singular matrices. This enables the design of an algorithm
for the estimation of geometric quantities together with some knowledge about the quality of these estimates.

4.3 Numerical pre-requisites

In this section, we recall the fundamentals of the fitting methods used, namely interpolation and approximation,
together with the numerical issues arising from the resolutions.

4.3.1 Interpolation

The interpolation fitting is based upon the Lagrange interpolation, that is the construction of a polynomial con-
strained to fit a set of data points. Although this problem is classical for the univariate case, the multivariate case
is still an active research field from both the theoretical and computational points of view. We briefly review the
univariate and multivariate basics of Lagrange interpolation.
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Univariate Lagrange interpolation. Let X = {x0, . . . ,xn} be n+ 1 distinct real values, the so-callednodes.
Then, for any real functionf , there is a unique polynomialP of degreen so thatP(xi) = f (xi), ∀i = 0, . . . ,n.
PolynomialP is called theLagrange interpolation polynomialof f at the nodesX. For any choice of distinct
nodes, this polynomial exists and is unique, and in that casethe Lagrange interpolation is said to bepoised.

Multivariate Lagrange interpolation. Consider now the following bivariate problem. LetΠn be the subspace of
bivariate polynomials of total degree equal or less thann, whose dimension isNn =

(n+2
n

)
, and letX = {x1, . . . ,xN}

consist ofN = Nn values inR2 called nodes. (Notice thatN is exactly the number of monomials found in the jet of
Equation 4.3.) The Lagrange interpolation problem is said to be poised forX if for any function f : R2→R , there
exists a unique polynomialP in Πn so thatP(xi) = f (xi), ∀i = 1, . . . ,N. It is intuitive and well known that this
problem is poised iff the set of nodesX is not a subset of any algebraic curve of degree at mostn, or equivalently
the Vandermonde determinant formed by the interpolation equations does not vanish. As noticed in [SX95], the
set of nodes for which the problem is not poised has measure zero, hence it is almost always poised.

However let us illustrate non-poised cases or degenerate configurations of nodes, together with almost degen-
erate configurations —a more precise definition will be givenwith the conditioning in section 4.3.3. Consider the
two quadricsq1(x,y,z) = 2x+ x2− y2− z andq2(x,y,z) = x2 + y2− z, whose intersection curveI projects in the
(x,y) plane to the conicC(x,y) = 0 with C(x,y) = x−y2 (cf. Fig. 4.2). If one tries to interpolate a height function
using points onI , uniqueness of the interpolant is not achieved since any quadric in the pencil ofq1 andq2 goes
throughI . A similar example featuring the four one-ring and one two-ring neighbors of a pointp is depicted on
figure 4.3. Notice that being able to figure out such configurations is rather a strength than a weakness of the
method since a surface is sought and, the amount of information available does not determine uniquely such a
surface. A first fundamental difference between the univariate and multivariate cases is therefore the critical issue
of choosing nodes so that the interpolation is poised.

In the particular case where the points lie on a regular square grid of the plane, the geometry of the configuration
leads to the following remarks. On one hand, a non-poised degreen interpolation occurs if the points lies onn
lines, since they define an algebraic curve of degreen. One the other hand, triangular lattices yield poised problems
for every degree. These results and further extensions can be found in [GS00] and references therein.

Figure 4.2: Two quadrics whose intersection curveI
projects onto the parabolaC : x = y2. Interpolation
points located onI do not uniquely define an interpo-
lating height function.

p

Figure 4.3: The Kite (almost) degenerate configuration
—tangent plane seen from above: the 6 points used for a
degree two interpolation are (almost) located on a conic,
that is two intersecting lines.

4.3.2 Least square approximation

It is well known that the minimization problem of Eq. (4.7) has a unique solution iff the matrixM is of maximum
rankNn. In that case, the minimum valueρ is called theresidualof the system, that isρ = min||MA−Z||2. The
important issue is again the rank of the matrixM. In terms of the relative values ofN versusNn, using too many
points certainly smoothes out geometric features, but alsomakes rank deficient matrices less likely.

4.3.3 Numerical Issues

The difficulties of solving linear and least-squares systems consist of dealing with rank-deficient matrices. We now
discuss these issues in more detail. Distances between matrices and matrix norms refer to the Euclidean norm.

Singular systems and condition numbers. To quantify degeneracies, we resort to a Singular Value Decompo-
sition (SVD) [GvL83]. Denoteσn, . . . ,σ1 the singular values ofM sorted in decreasing order. It is well known that
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the least singular value ofM is the distance fromM to rank deficient matrices. The singular values also character-
izes the sensitivity of the problem, that is the way errors onthe input data induce errors on the computed solution.
Notice that errors refer to the uncertainty attached to the input data and not to the rounding errors inherent to the
floating point calculations. In our case, input data are the sample points, so that errors are typically related to the
acquisition system —e.g. a laser range scanner.

To quantify the previous arguments, we resort to theconditioningor condition numberof the system [GvL83,
Hig96]. The conditioning is defined as a magnification factorwhich relates the afore-mentioned errors by the
following ruleError on solution = Error on input × conditioning. Denote

κ2(M) = ||M||2||M−1||2 = σn/σ1

the condition number of the matrixM. The conditioning of the linear problemMX = Z and the least square
problem min||MX−Z||2 are respectively given by

{
linear square system: 2κ2(M),

least square system: 2κ2(M)+ κ2(M)(κ2(M)+1)ρ
||M||2||X||2 with ρ = ||MX−Z||2 the residual.

(4.9)

The following theorem provides precise error bounds:

Theorem. 11 ([Hig96] p. 133 and 392) Suppose X and̃X are the solutions of the problems
{

linear square system: MX= Z and(M + ∆M)X̃ = Z+ ∆Z,

least square system: min||MX−Z||2 and min||(M + ∆M)X̃− (Z+ ∆Z)||2,
(4.10)

with ε a positive real value such that||∆M||2 ≤ ε||M||2, ||∆Z||2≤ ε||Z||2, andεκ2(M) < 1. Then one has:

||X− X̃||2
||X||2

≤ ε
1−κ2(M)ε

conditioning. (4.11)

In practice, if the conditioning is of order 10a and the relative error on the input isε ≈ 10−b — with εκ2(M) < 1,
then the relative error on the solution is of order 10a−b.

Pre-conditioning the Vandermonde system. As already discussed, a convenient way to solve Eqs. (4.6) and
(4.7) consists of using the basis of monomials. One ends up with the Vandermonde matrix of Eq. (4.8), that can be
solved with usual methods of linear algebra. Unfortunately, Vandermonde systems are known to be ill-conditioned
due to the change of magnitude of the terms. We therefore pre-condition so as to improve the condition number.
Assuming the{xi}, {yi} are of orderh, the pre-conditioning consists of performing a column scaling by dividing
each monomialxk

i y
l
i by hk+l .

The new system isM′Y = MDY = Z with D the diagonal matrixD = (1,h,h,h2, . . . ,hn,hn), so that the solution
A of the original system isA = DY. The condition number used in the sequel is preciselyκ(M′). (Notice it has the
geometric advantage to be invariant under homothetic transformations of the input points.) Then the accuracy of
the result can be estimated a posteriori, and almost degenerate cases hight-lighted by large conditioning.

Alternatives for the interpolation case. An alternative to the Vandermonde system consists of using the basis
of Newton polynomials. Resolution of the system can be done using divided differences [Sau95], a numerically
accurate yet instable method [Hig96].

4.4 Surfaces

4.4.1 Problem addressed

Let S be a surface andp be a point ofS. Without loss of generality, we assumep is located at the origin and
we aim at investigating differential quantities atp. Consider the height functionf given by Equation (4.3) in any
coordinate system whosez axis is not in the tangent plane. We shall interpolateS by a bivariaten-jet JA,n(x,y)
whose graph is denotedQ.
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The normal to a surface given by Equation (4.3) is

nS = (−B10,−B01,1)t/
√

1+B2
10+B2

01. (4.12)

In order to characterize curvature properties, we resort tothe Weingarten mapA of the surface also called the shape
operator, that is the tangent map of the Gauss map. (Recall that the first and second fundamental formsI , II andA
satisfyII (v,v) = I(A(v),v) for any vectorv of the tangent space.) The principal curvatures and principal directions
are the eigenvalues (eigenvectors) ofA, and the reader is referred to [dC76, Section 3.3]. If thez axis is aligned
with the normal, the linear terms of Equation (4.3) vanish, and the second fundamental form reduces to the Hessian
of the height function. Further simplifications are obtained in the Monge coordinate system, whereI = Id2, the
Hessian is a diagonal matrix, and the principal curvatures are given by 2B20 and 2B02.

4.4.2 Polynomial fitting of the height function

We begin by an approximation result on the coefficients of theheight function. We focus on the convergence rate
given by the value of the exponent of parameterh.

Proposition. 2 Let{(xi ,yi)}i=1,...,N be a set of points ofR2 defining a poised polynomial interpolation or approx-
imation problem of degree n, with xi = O(h),yi = O(h) (N = Nn for interpolation and N> Nn for approximation).
Let JA,n be the degree n polynomial solution of the problem associated to the function f that is, for interpolation

JA,n(xi ,yi) = f (xi ,yi), ∀i = 1, . . . ,N;

and for approximation

JA,n = argmin{
N

∑
i=1

(JA,n(xi ,yi)− f (xi ,yi))
2}.

Then the coefficients Bk− j , j of degree k of the Taylor expansion of f are estimated by thoseof JA,n up to accuracy
O(hn−k+1):

Ak− j , j = Bk− j , j +O(hn−k+1) ∀k = 0, . . . ,n ∀ j = 0, . . . ,k.

Moreover, if the origin is one of the chosen points and interpolation is used, then A0,0 = B0,0 = 0.

Proof. [Proof of Prop. 2, interpolation case.]Let K be the convex hull of the set{(xi,yi)}i=1,...,N, dmax be the
diameter ofK anddmin be the supremum of the diameter of disks inscribed inK. Also denoteDk is the differential
of orderk.

The result is a direct consequence of Theorem 2 of [CR72] or remark 3.4.2 of [QV94], which states that

sup{||Dk f (x,y)−DkJA,n(x,y)||;(x,y) ∈ K}= O(hn−k+1). (4.13)

Rephrasing it with our notations yields:

|Bk− j , j −Ak− j , j |=
1

j!(k−J)!
|Dk( f −JA,n)(0,0)(1,0)k− j(0,1) j |

≤ sup{|Dk( f −JA,n)(0,0)(ζ1, . . . ,ζk)|;ζi ∈ R2, ||ζi || ≤ 1}
≤ ||Dk( f −JA,n)(0,0)||
≤ sup{||Dk f (x,y)−DkJA,n(x,y)||;(x,y) ∈ K}.

For the particular case where the origin is one of the samples, notice that the equation involving the point(0,0)
is A0,0 = f (0,0) = 0. �

As outlined by the proof, the constant hidden in the termO(hn−k+1) depends upon sup{||Dn+1 f (x,y)||;(x,y) ∈
K}, and the geometry ofK. In particular, the estimates are better when the ratiodmax/dmin is small, which intu-
itively means that the setK is not too “flat”.

For the approximation case, the result might be a consequence of the theorem 5 of [CR72] formulated in the
Sobolev setting. But in order to meet its hypothesis, one must prove that the operator of discrete least square
approximation is continuous, which is not straightforward. Alternatively, we give the following pedestrian proof.
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Proof. [Proof of Prop. 2, approximation case.]
Using the notations introduced in section 4.2.2, consider the least-square system min||MA−Z||2. With the

assumption thatM is of rankNn, the approximation is equivalent to the invertible linear systemMTMA = MTZ.
With the notationΣk

l = ∑N
i=1xk

i y
l
i and the assumption||(xi ,yi)||= O(h):

MTZ =




B0,0Σ0
0 +B1,0Σ1

0 +B0,1Σ0
1 + . . . +B0,nΣ0

n +O(hn+1)
B0,0Σ1

0 + . . . +B0,nΣ1
n +O(hn+2)

B0,0Σ0
1 + . . . +O(hn+2)

...
...

B0,0Σ0
n + . . . +O(hn+n+1)




MTM =




Σ0
0 Σ1

0 Σ0
1 . . . Σ0

n
Σ1

0 Σ2
0 Σ1

1 . . . Σ1
n

Σ0
1 Σ1

1 Σ0
2 . . . Σ0

n+1
...

...
...

...
...

Σ0
n Σ1

n Σ0
n+1 . . . Σ0

2n




Let D be det(MTM), applying the Cramer’s rule gives:

A j ,k− j = det




Σ0
0 . . . B0,0Σ0

0 +B1,0Σ1
0 +B0,1Σ0

1 + . . .+B0,nΣ0
n +O(hn+1) . . . Σ0

n
Σ1

0 . . . B0,0Σ1
0 + . . .+B0,nΣ1

n +O(hn+2) . . . Σ1
n

Σ0
1 . . . B0,0Σ0

1 + . . .+O(hn+2) . . . Σ0
n+1

...
...

...
...

...
Σ0

n . . . B0,0Σ0
n + . . .+O(hn+n+1) . . . Σ0

2n




/D

Linear combinations of the columns gives:

A j ,k− j = det




Σ0
0 . . . B j ,k− jΣ

j
k− j +O(hn+1) . . . Σ0

n

Σ1
0 . . . B j ,k− jΣ

j+1
k− j +O(hn+2) . . . Σ1

n

Σ0
1 . . . B j ,k− jΣ

j
k− j+1 +O(hn+2) . . . Σ0

n+1
...

...
...

...
...

Σ0
n . . . B j ,k− jΣ

j
k− j+n +O(hn+n+1) . . . Σ0

2n




/D

The numerator of this formula splits due to the multi-linearity of the determinant, and noticing thatΣk
l =

O(hk+l ) givesA j ,k− j = B j ,k− j +O(hn−k+1). �

With respect to the order of convergence, it is equivalent toperforming the fitting in any coordinate system.
Nevertheless, as noted above, the error estimates are better if the convex hull of the sample points is not too flat.
Consequently, it means that for the best estimates one should take a coordinate system as close as possible to the
Monge system. Using the previous proposition, the order of accuracy of a differential quantity is easily related to
the degree of the interpolant and the order of this quantity.More precisely:

Theorem. 12 A polynomial fitting of degree n estimates any kth-order differential quantity to accuracy O(hn−k+1).
In particular:

• the coefficients of the first fundamental form and the unit normal vector are estimated with accuracy O(hn),
and so is the angle between the normal and the estimated normal.

• the coefficients of the second fundamental form and the shapeoperator are approximated with accuracy
O(hn−1), and so are the principal curvatures and directions (as longas they are well defined, i.e. away from
umbilics).

Proof. It is easily checked that the formula corresponding to the geometric quantities (as long as they are well
defined) areC1 functions of the coefficients. The result follows from proposition 2 and lemma 1 below.�

Lemma. 1 Define a kth-order differential quantity —for a curve or a surface— as a C1 function F of the of
the coefficients of the k-jet of the height function. Also assume that a degree n fitting yields a precision Aj =
B j +O(hn+1− j), k = 1, . . . ,n for a curve, and Ak− j , j = Bk− j , j +O(hn−k+1), j = 0, . . . ,n, k = 0, . . . ,n for a surface.

Then, a polynomial fitting of degree n estimates a kth-order differential quantity to accuracy O(hn−k+1).
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Proof. The proof is the same for curves and surfaces, and we use the notations corresponding to a curve.
To begin with, we perform a substitution on the error terms inthe expression ofF :

F((Ai)i=0,...,k) = F((Bi +O(hn−i+1))i=0,...,k) = F((Bi +O(hn−k+1))i=0,...,k).

SinceF((Bi)i=0,...,k) is aC1 function, and denotingDFp the differential ofF at pointp, an order one Taylor formula
yields:

F((Bi +O(hn−k+1))i=0,...,k) = F((Bi)i=0,...,k)+DF(Bi+uO(hn−k+1))i=0,...,k
(O(hn−k+1), . . . ,O(hn−k+1))t , u∈]0,1[

= F((Bi)i=0,...,k)+O(hn−k+1).

�

The previous theorem generalizes [MW00, Lemma 4.1] where 2-jet interpolations only are studied. TheO(hn)
bound on the normal should also be compared to the estimate ofthe normal vector using specific Voronoi centers
called poles considered in [AB99]. The error bound proved there is equivalent to 2ε with ε the sampling density
of the surface. Letting lfs stand forlocal feature size, settingh = ε lfs and assuming lfs is bounded from above,
the estimation stemming from a polynomial fitting thereforeyields more accurate results for the tangent plane, and
also provides information on higher order quantities.

4.4.3 Influence of normal accuracy on higher order estimates

Following the guideline initiated in [SZ90] several algorithms first estimate the normal to the surface and then
proceed with Hessian of the height function. We analyze the error incurred by the latter as a function of the accuracy
on the former. We denoteθ the angle between the normalnS to the surface and the normalnQ estimated by the two-
stages method. In order to simplify calculations, we assumethatnQ is aligned with thez-axis andnS is in the(x,z)-
plane, so thatf (x,y) = B10x+ B20x2 + B11xy+ B02y2 + O(||(x,y)||3), with B10 = − tanθ . Expressed in the same
coordinate system, the interpolant —a 2-jet to simplify calculations— reads asJA,2(x,y) = A20x2 +A11xy+A02y2.

Proposition. 3 If a small errorθ is done on the estimated normal, a 2-jet interpolation givesthe Gauss curvature
with a linear error with respect toθ :

kQ−kS= θO(h−1)+O(h)+O(θ 2).

Proof. The system of equations for the interpolation is:

A2,0x2
i h+A1,1xiyi +A0,2y

2
i = B1,0xi +B2,0x

2
i +B1,1xiyi +B0,2y

2
i +O(||(xi ,yi)||3) i = 1, . . . ,3.

Let D be the determinant:D = det(x2
i , xiyi , y2

i )i=1,...,3, Cramer’s rule gives:

A2,0 = det(B1,0xi +B2,0x2
i +B1,1xiyi +B0,2y

2
i +O(||(xi,yi)||3), xiyi , y2

i )i=1,...,3/D

= B1,0O(h−1)+B2,0+O(h).

Similar calculations gives:A1,1 = B1,0O(h−1)+B1,1+O(h), andA0,2 = B1,0O(h−1)+B0,2 +O(h). The Gaussian
curvature ofQ is then:

kQ =
4A2,0A0,2−A2

1,1

1+A2
1,0

= 4A2,0A0,2−A2
1,1

= 4(B1,0O(h−1)+B2,0+O(h))(B1,0O(h−1)+B0,2+O(h))− (B1,0O(h−1)+B1,1+O(h))2

= 4B2,0B0,2−B2
1,1+B1,0O(h−1)+B2

1,0O(h−2)+O(h)

= 4B2,0B0,2−B2
1,1+ tanθO(h−1)+ tan2 θO(h−2)+O(h).

The Gaussian curvature ofS is

kS =
4B2,0B0,2−B2

1,1

(1+B2
1,0)

2
=

4B2,0B0,2−B2
1,1

(1+ tan2 θ )2 = (4B2,0B0,2−B2
1,1)cos4 θ .
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Thus the error on the curvature is:

kQ−kS = (4B2,0B0,2−B2
1,1)cos4 θ + tanθO(h−1)+ tan2 θO(h−2)+O(h)

= θO(h−1)+O(h)+O(θ 2).

�

For a fixedh, the curvature error is a linear function of the angle between the normals. The termθO(h−1)
shows that ifθ is fixed, the smallerh the worse the accuracy. Hence estimating the normal deserves specific care.

4.5 Plane Curves

All the results proved for surfaces in the previous section can also be proved for curves, and we omit them. Instead,
for the interpolation case, we prove an error bound between the coefficients of the curve and those of the jet.

4.5.1 Problem addressed

Let C be a curve, and consider the height functionf following Equation (4.1) in any coordinate system whose
y axis is not tangent to the curve and, whose origin is on the curve (this implies thatB0 = 0). We shall fitC
by a n-jet JA,n(x). As already mentioned, there aren+ 1 unknown coefficientsAi, we assumeN data points
Pi(xi = aih,yi = f (xi)) are given, whereN = n+1 for interpolation fitting. Notice again that parameterh specifies
the uniform convergence of these data points to the origin. The fitting equations are:

yi = f (xi) = JB,n(xi)+O(xn+1
i ) = JA,n(xi).

Since curveC is given by Equation (4.1), the normal and the curvature ofC at the origin are given by

nC = (−B1,1)t/
√

1+B2
1 , kC = 2B2/(1+B2

1)
3
2 . (4.14)

Moreover, in the Monge coordinate system —B1 = 0, these expressions simplify tonC = (0,1)t andkC = 2B2.

4.5.2 Error bounds for the interpolation

The equivalent of Prop. 2 for curves gives the magnitude of the accuracy of the interpolation. We can actually be
more precise and provide error bounds depending upon the function interpolated and the position of the interpola-
tion points.

Proposition. 4 Consider a degree n (n≥ 1) interpolation problem for a curve y= f (x). Let h be a positive
number so that the interpolation point abscissa lie in the interval [−h,h], and c= supx∈[−h,h] | f (n+1)(x)|. Then for
k = 0, ...,n:

|Ak−Bk| ≤
hn−k+1c

k!(n−k+1)!
.

Proof. This result is a simple application of the analysis of the Lagrange interpolation remainder which can be
found in [EK66]. LetRn(x) = f (x)−JA(x), theorem 1 p.289 states that∀k = 0, . . . ,n and∀x∈ [−h,h]:

R(k)
n (x) =

n−k

∏
j=0

(x− ξ j)
f (n+1)(η)

(n+1−k)!

with x,ξ j ,η ∈ [−h,h].
Forx = 0, this leads to:

|R(k)
n (0)|= |k!Ak−k!Bk| ≤

hn−k+1c
(n−k+1)!

|Ak−Bk| ≤
hn−k+1c

k!(n−k+1)!
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�

Here is an application of the previous result. Letθ denote the angle between the normal and the estimated

normal. We have sin(θ ) = ||nQ∧nC||= |A1−B1|/
√

(1+A2
1)(1+B2

1)≤ |A1−B1|. It is found that

θ ≤ arcsin(
hnc
n!

).

4.6 Algorithm

The fitting algorithm to estimate the differential properties at a pointp consists of (i)collecting theN points used
for the fitting. (Recall that an-jet involvesNn = (n+1)(n+2)/2 coefficients, so that when interpolating (approx-
imating) we assumeN = Nn (N > Nn).) (ii)solving the linear system (iii)recovering the differential properties.

We examine in turn the details of these three steps.

4.6.1 CollectingN neighbors

The mesh case. Although no topological information is required by the fitting method, the connectivity infor-
mation of a mesh can be used as follows. We sequentially visitthe one-ring neighbors, two-ring neighbors, and so
on until N points have been collected. LetR1, . . . ,Rk be thek rings of neighbors necessary to collectN neighbors.
All the points of thek−1 first rings are used. The complement up toN points is chosen arbitrarily out of thekth
ring.

The point-cloud case. The normal atp is first estimated, and the neighbors ofp are further retrieved from
a power diagram in the estimated tangent plane [BF02] —a provably good procedure if the samples are dense
enough. If the number of neighbors collected is less thanN, we recursively collect the neighbors of the neighbors.

Collecting the points therefore boils down to estimating the tangent plane. One solution is to construct the
Voronoi diagram of the point set and use these Voronoi vertices calledpoles[AB99]. Poles yield an accurate
estimate of the normal vector but require a global construction.
An alternative is to resort to the algorithm of section 4.4, and solve a degree one interpolation problem —which
requires three points and is well poised as soon as the three points are not collinear. Geometrically, the closer the
three points to being aligned, the more unstable the tangentplane estimate. To see how one can get around this
difficulty, denoteq the nearest neighbor ofp. Also, letr be the sample point so that the circum-radiusrcirc of the
trianglepqr is minimum. The estimated normal atp is the normal to the plane throughpqr. Intuitively, minimizing
the circum-radiusrcirc prevents two difficulties: on one hand triangles with a largeangle (near toπ) exhibit a large
circum-circle and are discarded; on the other hand, triangles involving a third pointr which is not alocal neighbor
of p cannot minimizercirc and are also discarded. A more formal argument advocating the choice of the triangle
with minimum rcirc is provided in [She02b], where it is shown that the worst error on the approximation of the
gradient of a bivariate function by a linear interpolant precisely involvesrcirc.

4.6.2 Solving the fitting problem

The next stage consists of choosing thezdirection to work with. Since the tangent plane has not been estimated, we
use a principal component analysis to compute a rough estimate of the normal with the collected points. The poly-
nomial fitting can be done in any coordinate system whosezaxis is not tangent to the surface. Hence at least one of
the three axes of the world coordinate system matches this requirement. A natural choice is to select the coordinate
axis whose angle with the rough estimated normal is minimum.Another choice is that of a coordinate system
for which thez axis is the rough estimated normal. This choice may increasethe ratiodmax/dmin and improve
the results as explained in section 4.4, but this requires the calculation of a non trivial coordinate transformation.
The improvement of this latter choice has not been studied experimentally since the first alternative performs well
enough to confirm the theoretical orders of convergence —cf.section 4.7.1. For the chosen coordinates, we fill the
Vandermonde matrix. The matrix is further pre-conditionedas explained in section 4.3.3, withh the average value
of the norms||(xi ,yi)||. The corresponding system is solved using a Singular Value Decomposition. Practically,
we use the SVD of the Gnu Scientific Library, available from http://sources.redhat.com/gsl.

As pointed out in section 4.3.3, the instability of the system is provided by the condition number. Whenever
degenerate configurations are detected, one can proceed as follows. For the approximation strategy, one can either
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keep the same degree and increase the number of points used, or reuse the same points with a lower degree. These
changes are likely to provide a non singular matrixM. In the worst-case, a degree one fitting must be possible
since then only three linearly independent points are required! For the interpolation, things are a bit more involved
since reducing the interpolation degree requires discarding some points. Selecting the subset yielding the best
conditioning is a challenging problem [Las99, Hig96]. Notice also that for the approximation case, one can always
retrieve a solution from an under-constrained least-square problem by choosing, e.g., the solution vector of least
norm.

4.6.3 Retrieving differential quantities

We have already mentioned how to compute the normal. For the second order information, we compute the Wein-
garten map of the surface [dC76, Section 3.3]. Its eigenvalues (eigenvectors) provide the principal curvatures (di-
rections) of the surface. For a parameterized surface givenas a height function, one ends up with the formula given
on Table 4.1. Notice that a basis of the tangent space associated to the parameterizationX(u,v) = (u,v,h(u,v))
consists of the two vectorsXu = (1,0,hu)

t andXv = (0,1,hv)
t . A Gram-Schmidt orthonormalization of the basis

{Xu,Xv} gives another basis{Y,Z} of the tangent space. The diagonalization of the symmetric matrix representing
the Weingarten map in the basis{Y,Z} provides the expression of the principal curvature directions with respect
to the{Y,Z} orthonormal basis. Note that the sign of principal curvatures and hence the definition of minimal
and maximal directions rely on the orientation of the normal. As long as our experimental study is performed on
meshes of oriented surfaces, it is straightforward to find a global and coherent orientation of the normals.

e= 1+a1
2

f = a2a1

g = 1+a2
2

l = 2a3√
a1

2+1+a2
2

m= a4√
a1

2+1+a2
2

n = 2a5√
a1

2+1+a2
2

A =−
(

e f
f g

)−1(
l m
m n

)

Table 4.1: Computing the matrixA of the Weingarten map ofh(u,v) = a1u+ a2v+ a3u2 + a4uv+ a5v2 in the
basis{Xu,Xv}

4.7 Experimental study

We present results along two lines. First, we illustrate theconvergence theorems proved in section 4.4. Second,
we present illustrations on standard computer graphics models.

4.7.1 Convergence estimates on a graph

Setup. We illustrate the convergence properties with the smooth height fields f (u,v) = 0.1e2u+v−v2
andg(u,v) =

4u2 +2v2 defined over the parametric domain(u,v) ∈ [−0.5,0.5]2 —see Figs. 4.4 and 4.5. At selected points on
the graphs off andg, we study the angle between the normals —more precisely its sine sin(n, ñ), and the relative
errors on principal curvatures. The values output by our algorithm are compared against the exact values computed
analytically with arbitrary precision under Maple, and we report both average and maximum errors over sample
points. More precisely, the graph off or g are sampled with pointspi(xi ,yi , f (xi ,yi)) where the(xi ,yi) lies on a
randomly perturbed triangulated square grid of sideh. The triangulation is randomly perturbed to avoid simple
degenerate configurations such as points lying on lines. Theperturbation for the point(u,v) of the regular grid is
the point(x,y) with x = u+ δh, y = v+ δ ′h andδ ,δ ′ random numbers in[0,0.9]. The connectivity of the graph
is that of the triangulated grid. Notice also that since calculations are carried out on a surface patch parameterized
over a square grid, the direction chosen for the polynomial fitting is thez direction near the origin, and either the
thex or y directions at the periphery of the domain.

The convergence properties are illustrated (i)with respect to the discretization steph of the grid —for a given
fitting degreen (ii)with respect to the fitting degreen —for a given discretization steph. We compare the conver-
gence properties of the interpolation and approximation schemes, for fitting degrees ranging from one to nine. To
quantify the observations, notice that according to theorem 12, the errorδ on akth-order differential quantity is
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O(hn−k+1), hence

δ ≈ c hn−k+1⇔ log(1/δ )≈ log(1/c)+ (n−k+1) log(1/h) (4.15)

⇔ log(1/δ )

log(1/h)
≈ log(1/c)

log(1/h)
+ (n−k+1). (4.16)

Convergence with respect to toh. To highlight the convergence properties with respect to thesize of the neigh-
borhood, we consider sequences of meshes withh→ 0, more preciselyh ranges from 2−2 to 2−6. The results for
f andg being alike, we focus on the exponentialf .

Curves of Figs. 4.6 to 4.11 show the average convergence behavior as the size of the neighborhood decreases.
For a given degree and following equation (4.15), curves of figures 4.6 to 4.11 should be lines of slope(n−k+1).
The behavior is more regular for the approximation case, andthe estimate is also better: a gain of about a digit can
be observed betweenkmax estimates of figures 4.10 and 4.11.

Convergence with respect to to the interpolation degree. For the convergence with respect to to the interpola-
tion degree —withh fixed, we present results for the polynomialg (cf. Fig. 4.12 to 4.17). Conclusions are similar
for f (cf. Fig. 4.18 to 4.23), but it should however be noticed thatsince the graph ofg is more curvy than that of
f , a finer grid is required. (The higher the degree the more points required by the fitting ... and we compute local
quantities!) To be precise, we ran experiments withh = 2−5 for f andh = 2−7 for g.

Curves of figures 4.12 and 4.13 show the convergence as a function of the degree of the fitted polynomial for
a fixed neighborhood size. According to Eq. (4.16), curves ofthese figures should be lines of unit slope, with
a vertical shift of one unit between normal and curvatures errors since curvature is a 2nd order quantity whereas
normal is 1st order. The gap between the average values and the maximal values is greater for interpolation than
for approximation. The other charts provide the conditioning and the least singular value. Interpolation fitting is
always more ill-conditioned than approximation, and closer to a degenerate problem (the least singular value is the
distance of the matrix system to singular matrices). The particular case of a degree 7 approximation reveals to be
badly conditioned due to the regular connectivity of the mesh used to find the neighbors: there is only one more
point than for the degree 7 interpolation fitting.

4.7.2 Illustrations

We depict differential informations on several models. When principal directions are displayed, blue and red
respectively correspond tokmin andkmax—that iskmin≤ kmax—, assuming the surface normal points to the outside.
To display patches of osculatingn-jets, it is sufficient to select a rectangular domain in parameter space, sample it
with a grid, and plot the corresponding mesh.

Consider the mesh models of the elliptic paraboloidz= 2x2 + y2 —16k points, Fig. 4.24—, and the surface
of revolutionz = 0.1sin(10

√
(x2 + y2)) —8k points, Fig. 4.25. The arrangement of curvature lines provides

informations on umbilical points —where principal directions are not defined sincekmin = kmax. On the paraboloid
, it is easy to follow curvature lines and see how they turn around an umbilic. The surface of revolution provides
an example of two parabolic lines (where the principal curvature kmax vanishes), that is a curve along which
the Gauss curvatureKGaussvanishes. This specific line splits the surface into elliptic (KGauss> 0) and hyperbolic
regions (KGauss< 0). This model also illustrates a line of umbilical points where minimum and maximum principal
directions swap each over.

For a standard example from Computer Graphics, consider theMichelangelo’s David of Fig. 4.26. On this
model of 95922 pts, the principal curvatures provide meaningful information for shape perception5. To finish
up, we illustrate the robustness of the method. Figure 4.27 displays random patches on the Mechanic model, a
12,500 points model reconstructed from the output of a rangescanner. In spite of the coarse sampling, patches and
principal directions provide faithful information. In a similar vein, approximation fitting with large neighborhoods
Fig. 4.28 features a noisy triangulation of a graph. In spiteof the severe level of noise, surface patchesaverage
the available information. On Fig. 4.29, a noisy triangulation of an ellipsoid, 15k points, principal directions are
enough precise to recognize an umbilic.

5See also [HCV52, p197] as well as [HGY+99].
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Figure 4.4:f (u,v) = 0.1e2u+v−v2
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Figure 4.5:g(u,v) = 4u2+2v2
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Figure 4.6: Exponential model: Convergence of the
normal estimate with respect toh, interpolation fitting
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Figure 4.7: Exponential model: Convergence of the
normal estimate with respect toh, approximation fitting
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Figure 4.8: Exponential model: Convergence of the
kmin estimate with respect toh, interpolation fitting
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Figure 4.9: Exponential model: Convergence of the
kmin estimate with respect toh, approximation fitting
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Figure 4.12: Polynomial model: Convergence of nor-
mal and curvature estimates with respect to the degree
of the interpolation fitting
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Figure 4.13: Polynomial model: Convergence of nor-
mal and curvature estimates with respect to the degree
of the approximation fitting
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Figure 4.14: Polynomial model: Conditioning with re-
spect to the degree of the interpolation fitting
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Figure 4.15: Polynomial model: Conditioning with re-
spect to the degree of the approximation fitting
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Figure 4.16: Polynomial model: Least singular value
with respect to the degree of the interpolation fitting
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Figure 4.17: Polynomial model: Least singular value
with respect to the degree of the approximation fitting
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Figure 4.18: Exponential model: Convergence of nor-
mal and curvature estimates with respect to the degree
of the interpolation fitting
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Figure 4.19: Exponential model: Convergence of nor-
mal and curvature estimates with respect to the degree
of the approximation fitting
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Figure 4.20: Exponential model: Conditioning with re-
spect to the degree of the interpolation fitting
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Figure 4.21: Exponential model: Conditioning with re-
spect to the degree of the approximation fitting
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Figure 4.22: Exponential model: Least singular value
with respect to the degree of the interpolation fitting

 0.0001

 0.001

 0.01

 0.1

 1

 2  3  4  5  6  7  8  9

le
as

t s
in

gu
la

r 
va

lu
e

degree

sv_av
sv_min

Figure 4.23: Exponential model: Least singular value
with respect to the degree of the approximation fitting
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Figure 4.24: Elliptic paraboloid Figure 4.25: Surface of revolution

Figure 4.26: Michelangelo’s David: principal directions associated withkmax scaled bykmin
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Figure 4.27: Mechanic: closeup

Figure 4.28:f (u,v) = u+3v+e2u+v−v2
with noise Figure 4.29: Principal directions on a noisy ellipsoid

4.8 Conclusion

Estimating differential quantities is of prime importancein many applications from Computer Vision, Computer
Graphics, Computer Aided Design or Computational Geometry. This importance accounts for the many different
differential estimators one can find in the vast literature of applied geometry. Unfortunately, few of these have un-
dergone a precise theoretical analysis. Another striking fact is that estimates of second order differential quantities
are always computed using degenerate conics/quadrics without even mentioning the classification of Euclidean
conics/quadrics.

The main contribution of the chapter is to bridge the gap between the question of estimating differential prop-
erties of arbitrary order and multivariate interpolation and approximation. In making this connection, the use of
jets —truncated Taylor expansions— is advocated. Precise asymptotic convergence rates are proved for curves and
surfaces, both for the interpolation and approximation schemes. To the best of our knowledge, these results are
among the first ones providing accurate estimates for differential quantities of order three and more. Experimental
results for surfaces ofR3 are reported. These experiments illustrate the asymptoticconvergence results, but also
the robustness of the methods on general Computer Graphics models.

Acknowledgments.P. Chenin is acknowledged for pointing out Ref. [EK66].



Chapter 5

Topology driven algorithms for ridge
extraction on meshes

Given a smooth surface, a ridge is a curve along which one of the principal curvatures has an extremum along
its curvature line. Ridges are curves ofextremalcurvature and therefore encode important informations used in
segmentation, registration, matching and surface analysis. Surprisingly, no method developed so far to report ridges
from a mesh approximating a smooth surface comes with a careful analysis, which entails that one does not know
whether the ridges are reported in a coherent fashion. To bridge this gap, we make the following contributions.

First, we present a careful analysis of the orientation issues arising when one wishes to report the ridges
associated to the two principal curvatures separately. Theanalysis highlights the subtle interplay between ridges,
umbilics, and curvature lines. Second, given a triangulation T approximating a smooth generic surfaceS, we
present sufficient conditions onT together with a generic algorithm reporting an isotopic approximation of the
ridges. Third, we develop a heuristic algorithm to process amesh when no information on an underlying smooth
surface is known. Fourth, for coarse models, we provide a filtering mechanism retaining the most stable ridges
only. Fifth, we present experimental results of the heuristic algorithm for smooth surfaces as well as coarse models.
Our running times improve of at least one order of magnitude those of state-of-the-art methods.

The common point of these contributions is to exploit the topological patterns of ridges on smooth generic
surfaces recalled in chapter 3. These contributions also pave the way to the first certified algorithm for ridge
extraction on polynomial parametric surfaces, developed in the next chapters.

5.1 Introduction

5.1.1 Ridges of a smooth surface

Differential properties of surfaces embedded inR3 are a fascinating topic per se, and have long been of interestfor
artists and mathematicians, as illustrated by the parabolic lines drawn by Felix Klein on the Apollo of Belvedere
[HCV52], and also by the developments reported in [Koe90]. Beyond these noble considerations, the recent de-
velopment of laser range scanners and medical images shed light on the importance of being able to analyze
discrete datasets consisting of point clouds in 3D or medical images —grids of 3D voxels. Whenever the datasets
processed model piecewise smooth surfaces, a precise description of the models naturally calls for differential
properties. In particular, applications such as shape matching [HGY+99], surface analysis [HGY+99], or registra-
tion [TG95, PAT00] require the characterization of high order properties and in particular the characterization of
curves ofextremalcurvatures, which are precisely the so-calledridges.

Chapter 3 surveys theoretical analysis of ridges, so we justrecall basic definitions below. A ridge consists
of the points where one of the principal curvatures has an extremum along its curvature line. Since each point
which is not an umbilic has two different principal curvatures, a point potentially belongs to two different ridges.
Denotingk1 andk2 the principal curvatures —we shall always assume thatk1 ≥ k2, a ridge is called blue (red) if
k1 (k2) has an extremum. Moreover, a ridge is calledelliptic if it corresponds to a maximum ofk1 or a minimum
of k2, and is calledhyperbolicotherwise. Ridges witness extrema of principal curvaturesand their definition
involves derivatives of curvatures, whence third order differential quantities. Moreover, the classification of ridges
as elliptic or hyperbolic involves fourth order differential quantities, so that the precise definition of ridges requires

75
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C4 differentiable surfaces. Therefore, the calculation of ridges from a mesh approximating a smooth surface poses
difficult problems, which are of three kinds.

Numerical difficulties. It is well known that parabolic curves of a smooth surface correspond to points where
the Gauss curvature vanishes. Similarly, ridges are witnessed by the zero crossings of the so-called extremality
coefficients, denotedb0 (b3) for blue (red) ridges, which are the derivatives of the principal curvatures along their
respective curvature lines. Algorithms reporting ridges need to estimateb0 andb3. Estimating these coefficients
depends on the particular type of surface processed —implicitly defined, parameterized, discretized by a mesh—
and is numerically a difficult task. Notice though, that the estimation of these quantities is independent from the
combinatorial processing of ridges.

Orientation difficulties. Since coefficientsb0 andb3 are derivatives of principal curvatures, they are third-order
coefficients in the Monge form of the surface —the Monge form is the Taylor expansion of the surface expressed
as a height function in the particular frame defined by the principal directions. But like all odd term of the Monge
form, their sign depends upon the orientation of the principal frame used. Tracking the sign change of functions
whose sign depends on the particular orientation of the frame in which they are expressed poses a problem. In
particular, tracking a zero-crossing ofb0 or b3 along a line-segmentimposes to find a coherent orientation of the
principal frame at the segment endpoints. Given two principal vectors at the segment endpoints, one way to find
such an orientation consists of orienting the directions sothat they make an acute angle, whence the name ofAcute
Ruleor A.R. for short. The A.R. is implicitly used in [Mor90, Mor96, TG95, OBS04], but surprisingly, none of
these papers addresses the question of specifying conditions guaranteeing the decisions made are correct. As we
shall see, such analysis highlights the interplay between foliations, ridges and umbilics. (A principal foliation is
the collection of lines of curvature associated to either principal curvature.)

Topological difficulties. The last difficulty is of topological nature and stems from the complex patterns made
on generic surfaces by ridges and umbilics. As an illustration, consider a generic closed surface of genus zero —a
topological sphere. Each such surface has at least four umbilics, each being traversed by either one or three ridges.
For precise relationship between ridges and umbilics, the reader is referred to [Por01] as well as to section 3.4.
Reporting ridges therefore requires reporting and classifying umbilics, an issue not addressed, to the best of our
knowledge, by any paper tackling the issue of reporting ridges. This issue is illustrated in Figs. 3.14 and 3.15 for
the particular case of the ellipsoid.

Another difficulty of topological nature is the interference of red and blue ridges at the so-called purple points.
Given that each point of a smooth surface (which is not an umbilic) potentially belongs to two different ridges
—one for each principal curvature, ridges near purple points must be handled with care. This difficulty requires
again an orientation procedure such as the A.R. already mentioned.

5.1.2 Previous work

To the best of our knowledge, the only algorithm taking into account the topology of ridges at umbilics is described
by Morris [Mor90, Mor96]. This method applies to parameterized surfaces and uses heuristics to orient edges and
report umbilics, so that no guarantee is provided. For algebraic surfaces, Bogaevski et al. [BLBK03] use a formal
computation to determine the equation of a surface whose intersection with the original surface gives the ridges.
For implicit surfaces, Thirion [Thi96] applies a marching line algorithm to the Gaussian extremality. However,
the behavior of the algorithm near umbilics is not specified,and the Gaussian extremalityEg = b0b3 used to avoid
orienting with the acute rule disconnects red and blue ridges at their intersections —5.2(c).

All other methods do not address the problem of topology, butfocus on identifying a subset of the ridges
and filtering methods. The connection between the medial axis and ridges is used by M.Hisada et al. [HBK02].
(Notice though that the projection of the medial axis boundary misses all hyperbolic ridges, and may also miss
elliptic ones.) The connection with the focal surfaces is considered in [WB01] and [LA98]. Methods using only
the estimation of curvatures on meshes are derived by Ohtakeet al [OB01] or Stylianou et al [SF00]. Ohtake et al.
[OBS04] use implicit surface fitting of a mesh to extract ridge-valley lines. The curvature tensor and the derivatives
of curvatures of a mesh vertex are defined as the analyticallycomputed values of the projection of the vertex on
the fitted surface.
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5.1.3 Contributions and chapter overview

Following the previous discussion, given a meshT providing an approximation of a smooth compact oriented
generic surfaceS, we aim at usingT so as to report the ridges ofS. (We implicitly assumeS andT are isotopic
[ACDL00, APR03, CCS04].) We make the following contributions.

In section 5.2, we specify the topological difficulties arising when reporting ridges, and introduce the Acute
Rule. In section 5.3, we definecomplianttriangulations amenable to an isotopic extraction of ridges, and develop a
generic algorithm. The algorithm is generic since two routines are assumed to compute the Monge coefficients of
the surface at any point, and to report umbilic patches. In section 5.4, we develop a heuristic algorithm to process
a mesh when no information on an underlying smooth surface isknown. In section 5.5, we develop a filtering
mechanism to report the most stable ridges of a coarse mesh. Finally, experimental results are provided in section
5.6.

5.2 Ridge topology and orientation issues

In this section, we introduce formally the problem addressed. Readers not familiar with ridges are referred to
section 3.4 as well as to [HGY+99]. The set of ridges is composed of simple curves either closed and free of
umbilic calledclosed ridges, or open curves connecting umbilics calledopen ridges. Hence reporting ridges
means reporting umbilics and these ridge curves with the correct connectivity. As our aim is to report blue and red
ridges separately, we focus on the setRb

S of blue ridges ofS.

5.2.1 Problem addressed

Assume we are given a triangle meshT and an homeomorphismΦ from T to S. As indicated in Fig. 5.1, we
aim at reporting thepull-backof the setRb

S of ridges ofSontoT. More precisely, we aim at reporting a setRb
T of

polygonal curves onT corresponding to this pull-back. Given such a polyline, each pair of consecutive points is
called aridge segment. Let us consider onS(T) the ridge setRb

S (Rb
T ), together with the topology induced byR3.

Definition. 12 The set RbT is an isotopic approximation of the blue ridges of S if thepush-forwardof Rb
T (Φ(Rb

T))
is isotopic to RbS on S, or equivalently thepull-backof Rb

S (Φ−1(Rb
S)) is isotopic to RbT on T .

As suggested by the previous definition, we shall use the following abuses of terminology. When saying that
“an edge is crossed by a ridge” or “a triangle contains an umbilic” we shall mean “the push-forward of the edge is
crossed by a ridge” or “the push-forward of the triangle contains an umbilic”. Equivalently, this also means that
“an edge is crossed by the pull-back of a ridge” or “a trianglecontains the pull-back of an umbilic”.

Before proceeding, a comment is in order. We do not consider purple points —intersection between ridges of
different colors— because the topology of the blue and red sets of ridges are processed separately. The incentive for
ignoring purple points is that red and blue ridges are independent since functionsb0 andb3 are so. Incidently, this
assumption alleviates the constraint of reporting the correct topology of ridges around purple points, as depicted in
Fig. 5.2.

p

q

r2

t2

r1

t1

S

R

Figure 5.1: A ridgeR on a smooth surface, its pull-back[r1, r2] on an inscribed triangulated surface, and a straight
ridge segment[t1,t2] isotopic to this pull-back in the trianglepqs
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(a) (b) (c)

Figure 5.2: (a)Two ridges of different colors (b)Blue / red ridges reported independently: the topology of each
ridge is respected, but that of the union is not (c)Ridges reported simultaneously by the Gaussian extremality:
ridges are disconnected at purple points. No ridge point is detected when both red and blue ridges cross the same
edge

5.2.2 Orientation and crossings

Consider a meshT approximating of a smooth compact oriented generic surfaceS as explained in the previous
section. The main issue tackled is to understand which propertiesT must have in order for one to report the ridges
of S faithfully. We first recall the following:

Observation. 6 At any point of a smooth oriented surface S which is not an umbilic, orienting the principal
directions at a vertex is equivalent to choosing a unit maximal principal vector, and there are two such orientations.
(The minimal principal vector is then uniquely defined to be the unit vector so that the basis (maximal vector,
minimal vector, normal) is direct.) Orienting the principal directions of an edge of a triangulation T whose
endpoints lie on S means orienting them at its two vertices, and there are four possibilities.

Consider now a simple curveC homeomorphic to the line-segment[0,1] drawn onS. If C does not contain
any umbilic one can define alongC two continuous unit vector fields (opposite of one another) which orient the
maximum direction field alongC. Once a unit maximum vector has been chosen at one endpoint ofC, we call the
orientation induced by the corresponding vector field at theother endpoint theorientation by continuity. Replacing
C by the push-forward of an edge yields the following:

Definition. 13 The orientation of the principal directions of an edge is called correct(erroneous) if it coincides
with (differs from) one of the two orientations by continuity (of its push-forward on S).

As already noticed, a blue ridge point is witnessed by the zero crossing of a bivariate functionb0. More precisely,
consider a curve oriented by continuity and crossing transversally a blue ridge, then the functionb0 along the curve
vanishes at the crossing point and undergoes a sign change. Since we are given a triangulationT of S, using an
idea reminiscent from Marching Lines and Marching cubes, itis natural to seek the zero crossings of functionb0

along the edges ofT. But in our case however, functionb0 depends on the orientation of the principal directions
and by the above observation there are four possible orientations for the edge. Having discussed these orientation
issues, we finally raise the observation used to track the blue ridge crossings with the sign ofb0:

Observation. 7 Let C be the push-forward of an edge[p,q]. Assume that the orientation of the principal directions
of the edge is correct, no ridge crossing occurs at p or q and that at a crossing point the ridge and the curve C
are transverse. Then the number of blue ridge crossings on C is odd (even) iff b0(p)b0(q) < 0 (b0(p)b0(q) > 0). If
moreover, there is at most one blue ridge crossing on C then a ridge crosses C only once iff b0(p)b0(q) < 0.

5.2.3 Gaussian extremality

An attempt to avoid the orientation procedure has been done by J.P. Thirion [Thi96] with the introduction of the
Gaussian extremality. This function is defined at non-umbilical points byEg = b0b3. As bothb0 andb3 change
sign if the orientation is changed, the Gaussian extremality remains independent of the orientation. A sign change
of this function along an edge means that an odd number of ridges is crossing the edge, but it does not allow to
know the color of these ridges. If one could find a mesh so that each edge crosses at most one ridge regardless the
color, it would be possible to recover the topology of uncolored ridges correctly. Unfortunately, the existence of a
crossing between red and blue ridges in a triangle implies that one of its edge is crossed by at least two ridges (cf.
Fig. 5.2(c)). In conclusion, the Gaussian extremality doesnot specify the color of the ridge, and consequently is
unable to preserve the topology of ridges near purple points.
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5.2.4 Acute rule

Consider an edgee of the meshT. In the case of a dense meshT, and whenever the vertices ofe are close onS,
one expects the maximal principal directions at the vertices of e to be nearly aligned —at least far from umbilics,
which motivates the following:

Definition. 14 (Acute Rule) Orienting an edge with theacute ruleconsists of choosing maximal principal vectors
at the two vertices so that they make an acute angle in the ambient spaceR3.

Note that this rule is well defined as soon as the maximal principal directions are not at right angle. The
deviation of the maximal principal direction along a curvature line on the surface has two components which are
extrinsic (the normal curvature) and intrinsic (the geodesic curvature). The denser the mesh, the shorter the edges
of the triangulation and the smaller the extrinsic deviation. But the situation is different for the geodesic curvature.
In particular, the geodesic curvature is arbitrarily largenear umbilics as illustrated on Fig. 5.4, so that the acute
rule is likely to yield erroneous orientations there. For these reasons, in developing a generic algorithm, we shall
process differently the vicinity of umbilics (the so-called umbilic patches) and the complement of these patches.

b0(p)< 0
p

q
b0(q)> 0

R

Figure 5.3: The A.R. gives a correct orientation.

b0(p)< 0
p

q

b0(q)> 0

R

b0(q)< 0

Figure 5.4: The A.R. gives an erroneous orientation
near an umbilic —of index 1/2 here.

5.3 A generic algorithm

5.3.1 Compliant triangulations

We aim at designing an algorithm able to report an isotopic approximation of ridges as specified by definition 12.
Since ridges are reported on the triangulationT, this triangulation shall fulfill some conditions. We thus define
complianttriangulations, together with a generic algorithm in such away that for a compliant traingulation, the
generic algorithm will report an isotopic approximation ofridges. Since blue and red ridges are handled separately
by the same process, we focus on blue ones and unless stated differently, “ridge” refers to “blue ridge” in the
sequel.

To begin with, and following a well established trend to keepthe description of the algorithm tractable without
having to consider degenerate situations, we shall requiregenericity conditions. Note that these hypothesis are not
restrictive in practice since they can be simulated during the processing (see the proof of theorem 13).

Hypothesis. 1 (Genericity hypothesis.)The vertices and edges of T are assumed to meet the followinggeneric
conditions :

S1 no ridge goes through a vertex of T .

S2 ridges intersect edges transversally.

Second, we specify conditions on the density of the triangulationT. To specify these conditions, we consider
separately regions around umbilics and their complement onthe surface. The rationale for doing so is that to
provide guarantees on ridge crossings, we need correct orientations. But the A.R. is used for orientation and as
discussed in section 5.2.4, it is not reliable near umbilics. Therefore, we apply two different strategies to umbilical
regions inside which orientation is not certified, and to therest of the surface where a correct orientation of edges
is given.
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Let us first discuss the case of umbilics. First, we require umbilic patches to be disjoint, which is natural since
umbilics on generic surfaces are isolated. The orientationof edges inside patches is not certified, hence we cannot
seek crossings inside a patch and have to infer the topology of ridges inside the patch from the patch boundary.
This leads to the assumptions that (i) the topology inside a patch is as simple as possible (ii) one can find a correct
orientation for edges on the boundary of the patch and each such boundary edge is crossed at most once by a given
ridge. To substantiate these hypothesis, recall that generically, an umbilic is either a one ridge umbilic, or a three
ridges umbilic (cf. section 3.4). Also recall that the threetangents to ridges connected to a three ridge umbilic are
distinct. For a small enough topological disk around an umbilic, the configurations of ridges expected are therefore
those depicted in Fig. 5.5. This formally leads to hypothesis D2.

Let us now consider the complement of the umbilic patches on the surface. Since, we are detecting ridge
crossings along edges by observation 7, we assume each edge is crossed by at most one ridge. We wish we could
assume that an edge has at most one ridge crossing witnessed by a sign change of the extremality coefficient.
However, such an assumption is not realistic —if the ridge isalmost tangent to the edge (Fig. 5.6) it crosses it
twice. Hence we require instead that if one counts the numberof crossings modulo 2 on the edge then the topology
of this ridge is not modified. Finally, we require that no whole ridge is included in a triangle.

A triangulation meeting these hypothesis is called acomplianttriangulation. More formally, we define five
density hypothesis, namely D0 for the orientation property, D1 and D2 for umbilics, D3 and D4 for the complement
of umbilic patches:

Hypothesis. 2 (Density hypothesis.)

D0 Triangulation T is such that outside umbilic patches, the A.R. correctly orients edges.

D1 Umbilic patches Ui are disjoint.

D2 A patch Ui of an umbilic ui is such that (cf. fig. 5.5)

(a) Ui does not contain a whole ridge,

(b) ridges not connected to ui do not cross the boundary of Ui ,

(c) a ridge connected to ui only once crosses exactly one edge of the boundary of Ui ,

(d) a ridge connected to ui twice crosses exactly two edges of the boundary of Ui .

D3 All edges outside and on the boundary of the patches cross at most one ridge. If an edge crosses the ridge more
than once, the topology is not modified if the number of crossing is counted modulo 2 (That is, if the number
of crossings is odd the edge is processed as it were crossing the ridge once, and if the number of crossings is
even the edge is processed as it were not crossing the ridge).

D4 A triangle of T−∪iUi does not contain a whole ridge.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Figure 5.5: The only allowed configuration of
ridges near an umbilic: first figure for a 1-ridge um-
bilic patch, second and third figures for a 3-ridge
umbilic patch.
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Figure 5.6: A double crossing simplifying to no
crossing and three crossings simplifying to a single
one

5.3.2 Generic algorithm

Based upon the previous hypothesis, algorithmGenericRidges—Fig. 5.7— processes separately umbilic re-
gions and their complement. The algorithm requires, as a preprocessing, (i)estimations of the differential quantities
at vertices of the meshT and (ii)the identification of umbilic patches. The algorithm is generic in the sense that it
performs combinatorial decisions which are independent from the method of the preprocessing, but only depend
on the result of this preprocessing.

Theorem. 13 For a compliant triangulation, the algorithmGenericRidges reports an isotopic approximation
of ridges as specified by definition 12.
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Input: A compliant meshT.

Output: The set of ridgesRb
T consisting of segments reported at stages (b-c).

AlgorithmGenericRidges

(a)Process Edges outside umbilic patches.Edges outside or on the boundary of umbilic patches are processed.
With a correct orientation and the Monge coefficients of its endpoints, one can decide if a ridge crosses the
edge according to observation 7. As the position of the crossing is not relevant from a topological point of
view, place it at the mid-point of the edge.

(b)Process triangles outside umbilic patches.Triangles outside umbilic patches are processed. They havezero
or two edges crossed. In the latter case, the two crossings are connected by a segment.

(c)Process umbilic patches.On the boundary of a patch, there are 1 or 3 crossings for a 1 or 3-ridge umbilic.
These crossings are connected to a single point inside the patch by polygonal simple lines inside the patch.
The position of the umbilic is not relevant from a topological point of view. For a 3-ridge umbilic, the
polygonal lines are chosen so that they do not cross each other.

Figure 5.7: AlgorithmGenericRidges

Proof. Simulation of genericity hypothesis.If S1 is not satisfied, a ridge goes through a vertexv0 of T and then
b0(v0) = 0. To avoid the description of this particular case and a specific processing, one gives tob0 an arbitrary
valueε > 0 with ε < min{|b0(v)|, v vertex ofV, b0(v) 6= 0}. This just shifts the ridge slightly away from the
vertexv0 without any modification of the topology. If S2 is not satisfied, a ridge crosses an edge at a pointp and
stays on the same side of this edge in a neighborhood ofp. Since only the values ofb0 at endpoints of the edge are
checked, the processing ignores such a crossing. Hence the processing is equivalent to slightly shift the ridge away
from the edge without any modification of the topology. In other words, a non-transverse intersection is processed
as if there was no intersection at all.

Topology outside umbilic patches.First, for edges outside and on the boundary of umbilic patches, due to hypoth-
esis S1, S2 and D3, observation 7 gives the number of ridge crossings modulo 2. Moreover, from a topological
point of view, hypothesis D3 allows one to assume that an edgeis crossed at most once by at most one ridge.
Once these crossings are detected, one processes the triangles outside patches. Second, outside patches there is no
umbilic, this means that a ridge cannot end inside a triangle. Hence a triangle has 0 or 2 ridge crossings. If two
crossings occur, then the same ridge is crossing the triangle and it is correct to represent it topologically by a seg-
ment connecting the mid-points of two crossed edges. A closed ridge cannot be included neither in a triangle (D4)
nor a patch (D2a) and cannot cross the boundary of any patch (D2b). Any closed ridge is thus crossing some edges
outside patches and hence is completely reported at this stage of the detection. All open ridges are also detected
but not completely reported. Indeed umbilic patches are disjoint (D1) and an open ridge crosses the boundary of
the patch(es) it is connected to (D2c-d). Hence any open ridge crosses at least one edge outside patches and two
edges on the patch(es) it is connected to. Any open ridge is thus witnessed by at least two ridge segments outside
patches.

Topology inside umbilic patches.Third, one has to connect open ridges inside patches. Hypothesis D2 implies
that the boundary of a patch has either one edge with one ridgecrossing or three such edges. This distinguishes
patches containing a 1-ridge umbilic or a 3-ridge umbilic. If the patch contains a 1-ridge umbilic, the open ridge
connected to this umbilic cross the only edge with a ridge crossing of the boundary of the patch (hypothesis D2c).
It is thus correct to represent it topologically by a simple polygonal line connecting the mid-point of the edge to
some interior point standing for the umbilic. If the patch contains a 3-ridge umbilic, the open ridges connected to
this umbilic must cross the boundary of the patch (D2c-d) andit can only happen at the three crossings detected
on the boundary. It is thus correct to represent the ridge topology in this patch by three disjoint polygonal simple
lines connecting the mid-points of the edges to a single point inside the patch standing for the umbilic.

Finally, noteRb
T the set of all polygonal lines defined inside and outside patches. The pull-back of any ridge of

Rb
S is reported onT by a simple polygonal curve ofRb

T . The setRb
T is isotopic to the pull-back ofRb

S. �



82 CHAPTER 5. RIDGE EXTRACTION ON MESHES

5.4 A Heuristic to process a triangle mesh

Assume we are given a triangle meshT providing a piecewise-linear approximation ofS as an inscribed mesh
—that is the vertices ofT belong toS. TriangulationT might have been reconstructed from a point cloud [AB99,
ACDL00, BC00] or might be the output of a meshing algorithm such as Chew’s algorithm [Che93, BO03]. Even
though no information on the surface underlying the mesh (ifany) is known, one can design an algorithm following
the framework of the generic algorithm of section 5.3.2. If the mesh does comply with hypothesis Hyp. 2, then the
output will be correct. As we shall see, the heuristic algorithm performs satisfactorily on practical examples.

Following this guideline, we instantiate the generic algorithm with two heuristic routines to compute the Monge
coefficients, and report umbilic patches. We also develop a geometric rule to tag ridges as elliptic or hyperbolic.

5.4.1 Computing the Monge coefficients using polynomial fitting

We estimate differential quantities using a local polynomial fitting described and analyzed in [CP05a]. The polyno-
mial used is of degree 3 or 4 depending on the method used to identify ridge types —see section 5.4.4. Convergence
properties and numerical degeneracies of the polynomial fitting are proved and discussed in the aforementioned
article.

5.4.2 Detection of umbilics and patches

We want to detect patches of triangles ofT containing an umbilic. The method combines a minimization and an
index computation on the neighborhood of each triangle ofT. The size of the neighborhood is the only parameter
of the algorithm. This method is a heuristic without guaranty, nevertheless it gives satisfaction in practice (cf.
section 5.6).

Finding patches around triangles. Given a trianglet, we aim at defining a collection of triangles around it so
that this collection defines a topological disk on the triangulationT. To do so, the most natural way consists of
using the successive rings of triangles aroundt. Let us define the 0-ring neighbors of a triangle as the triangle itself.
Thek-th ring neighbors is defined recursively by adding to the(k−1)-th ring neighbors the triangles incident to
one edge of this set. However, thek-th ring neighbors may not form a topological disk as indicated in Fig. 5.8.

To get around this difficulty and starting from the patch consisting of the trianglet, we iteratively construct a
patchP by the following algorithm. Each triangle incident to one ortwo edges of the boundary ofP is placed into
a priority queue —thegradebeing the distance between the centroid of this triangle to that of t. Then, patchP
is enlarged with the trianglet ′ having the least grade providedP∪ t ′ remains a topological disk. If trianglet ′ is
stitched to the patch, its neighbors are inserted in the queue —if they are not already in it. The process stops as
soon as the least distance is more than some threshold.

t

Figure 5.8: The third-ring triangles of the trianglet do not form a topological disk.

We aim at identifying disjoint patches of the meshT containing generic umbilics of index±1/2 (cf. section
3.4). Notice that on a smooth surface, the functionk1−k2 is always positive, and vanishes at umbilics only. To use
this criterion, we define the value ofk1−k2 for a triangle as the arithmetic mean of the values at its vertices. The
detection proceeds in three steps:

1. Compute a patch around each triangle;
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2. Select the patch of a trianglet if the functionk1− k2 has its minimum att amongst all the triangles of the
patch;

3. Compute the index of the principal directions on the contour of the patches of triangles selected in step 2.

Given a trianglet, the first step consists of aggregating the successive ringsof triangles aroundt while making
sure that any new addition retains a topological disk. This step is parameterized by a positive number defining the
size of the patch, which is defined as a multiple of the greatest grade of the one-ring triangles. The second step
is straightforward. The third step requires following the contour of each patch, orienting the maximal principal
directions with the A.R. , and computing the index by adding the angle deviations of the corresponding maximal
principal vectors. Theoretically, the computation of the index of a direction field at a point on a manifold needs
the use of a chart [BG88, chap.7,p.260]. Here, we assume thatthe projection on the tangent plane of the studied
vertex is a chart, the index is computed for principal vectors projected on this plane. We then keep only triangle
patches with an index±1/2.

From a theoretical perspective, if the triangulated surface T is inscribed in a smooth generic closed surface,
then the sum of indices of umbilics equals the Euler characteristic of the surface.

The Monge coefficients of the umbilical triangle (defined as the arithmetic mean of that of its vertices) should
be close to those of the umbilic it is identified to. Hence we can use them to decide further knowledge of the
umbilic type. For example, the sign ofS= (b0−b2)b2−b1(b1−b3) which is a third order quantity should also
give the index of the umbilic. It is likely to be less accuratethan our computation of step 3 which uses only second
order quantities. Other invariants of third order decide the type 1-ridge or 3-ridge and the symmetry of ridges at
the umbilic —see [Por01] and chapter 3.

5.4.3 Processing edges outside umbilic patches

We use the acute rule as specified by definition 14 in section 5.2.4. Since umbilics are identified, the A.R. is
expected to give a correct orientation for edges outside or on the boundary of patches. A blue ridge crossingr
along an edge[p,q] is detected ifb0(p)b0(q) < 0. The position ofr along the edge can be computed by linear
interpolation:

r =
|b0(q)|p+ |b0(p)|q
|b0(q)|+ |b0(p)| (5.1)

We associate to the pointr the differential quantities interpolated as above from theverticesp andq. For example
the type elliptic or hyperbolic ofr is given by the sign ofP1(r) (cf. section 3.4).

Ridge points are reported along edges of the triangulation,and two consecutive points define a ridge segment.

5.4.4 Tagging ridge segments

Once a ridge segment has been reported, one may classify it aselliptic or hyperbolic. As recalled in section 3.4
—see Fig. 3.6 for the geometric interpretation of ridge types, this can be done using the quantityP1 defined by
Eq. (3.6), which involves 4th order differential coefficients. If the signs ofP1 agree at both endpoints, the ridge
segment is tagged accordingly. If not, the ridge segment is tagged as containing a turning point. In this section,
we provide a geometric tagging rule using third order differential quantities only —a procedure likely to be more
stable than the one using 4th order coefficients. Notice thatridges connected to umbilics are hyperbolic, so that
our tagging rule is mainly concerned with ridges outside umbilic patches.

Consider an edge along which the sign ofb0 changes. As illustrated in Fig. 5.10, the knowledge of the
principal directions at the edge endpoints together with the location of the ridge pointr falls short of providing
enough information to state the ridge type.

In [OBS04] the following heuristic is used. The principal vectorsu1 andu2 at the endpointsv1 andv2 are
chosen according to the A.R. . Notebu

0(v) the value ofb0 at the vertexv and with the principal vectoru. The
ridge crossing is tagged as elliptic ifbu1

0 (v1)(u1.(v2−v1)) > 0 andbu2
0 (v2)(u2.(v1−v2)) > 0. This rule takes into

account the principal directions at the endpoints of the edge but not local information on the ridge itself. This
method implicitly assumes that orienting the principal direction with a vector making a acute angle with the edge
leads the curvature line towards the ridge. As an example, the rule fails at vertexv2 of Fig. 5.9 and vertexv1 on
Fig. 5.10(a). Such a situation is likely to occur when an edgeis almost parallel to the ridge.
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Rv1

v2

b0> 0

b0< 0

Figure 5.9: Tagging a ridge point as elliptic or hyperbolic:information at edge endpoints is not sufficient.

As an alternative, we propose not to tag a ridge point but a ridge segment providing more geometric knowledge.
Consider a triangle crossed by a ridge segment[r1r2]. The idea is to use the direction information given by[r1r2] to
distinguish between the two types —see Fig. 5.11. The sign ofb0 for a maximal principal vector pointing towards
the ridge segment[r1, r2] for the triangle is defined as the sign appearing at least at two vertices. If this sign is
positive then there is a maximum ofk1 and the ridge is elliptic else it is hyperbolic. Let(v1,v2,v3) be a triangle,
r1 andr2 the ridge points on the edges[v1,v2] and[v1,v3]. As S is oriented, assume(v1,v2,v3) is direct. Then the
sign ofb0(v1) for an orientation pointing toward the ridge segment[r1, r2] is that of:

sign(bu1
0 (v1))det(u1, r2− r1,n)

with u1 any of the two orientations ofd1(v1) andbu1
0 (v1) the value ofb0 at the vertexv1 with the orientationu1.

The sign ofb0(v2) (resp.b0(v3) for an orientation pointing toward the ridge segment[r1, r2] is that of: ‘

−sign(bu2
0 (v2))det(u2, r2− r1,n) (resp.−sign(bu3

0 (v3))det(u3, r2− r1,n))

with u2 (resp.u3) any of the two orientations ofd1(v2) (resp.d1(v3)).
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Figure 5.10: An elliptic (left), and an hyperbolic
(right) ridge crossing an edge of the triangulationT
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Figure 5.11: Determining the type of a ridge seg-
ment using third order properties

5.5 Filtering sharp ridges and crest lines

For real world applications dealing with coarse meshes, or meshes featuring degenerate regions or sharp features,
one cannot expect a configuration of umbilics and ridges matching that of a smooth generic surface. For example,
if the principal curvatures are constant —which is the case on a plane or a cylinder, then all points are ridge points.
In this context, an appealing notion is that ofsharpridge orprominentridge. Since ridges are witnessed by zero
crossings ofb0 andb3, one can expect erroneous detections as long as these coefficients remain small. In order to
select the most prominent ridge points, we can focus on points where the variation of the curvature is fast along
the curvature line.



5.6. ILLUSTRATION 85

Observation. 8 At a ridge point, according to the equation 3.6, the second derivative of k1 along its curvature
line satisfies k

′′
1(0) = P1/(k1−k2).

Using the previous observation, one can define thesharpness of a ridgeas the integral of the absolute value of
P1/(k1−k2) along the ridge. As the second derivative of the curvature ishomogeneous to the inverse of the cube
of a length, the sharpness is homogeneous to the inverse of the square of a length. Multiplying the sharpness by
the square of the model size gives a threshold and an associated sharpness-filter which are scale independent. It
should be noticed this filter is different from thestrength of a ridge segmentas defined in [OBS04], which is the
integral of the curvature along the line.

As an alternative to ridges, some applications focus on the so-called crest-lines [PAT00]. A crest line is an
elliptic ridge which is a maximum of max(|k1|, |k2|), and one may see these lines as the visually most salient
curves on a surface. (Notice that these lines do not cross each other and avoid umbilics.) Filtering ridge points
using observation 8 retains more information than focusingon crest lines since hyperbolic ridges might be sharp
also.

5.6 Illustration

In this section, we illustrate the algorithm developed in section 5.4. We assume the surface is given in discretized
form as a mesh.

Smooth surfaces. The experimental setup faces two difficulties. First, finding compact genericC4 surfaces of
complex geometry and topology is a challenging task by itself. On one hand, subdivision surfaces do not exhibit
such smoothness properties. On the other hand, algebraic surfaces often exhibit symmetries and or singularities.
A promising class of such surfaces might be the manifold-based construction developed by Ying et al. [YZ04].
We shall report experiments on these surfaces upon availability of their code. Second, given such a surface, the
patterns made by umbilics and ridges are usually unknown —the only complete descriptions we are aware of can be
found in [Por01]. Consequently, we illustrate the algorithm on two surfaces whose ridges are known (the standard
ellipsoid, and a Bezier patch whose ridges are certified by algebraic methods (see chapter 7), and on the blend
of two ellipsoids. The discretization of the Bezier patch isachieved by a regular triangular grid on the parameter
space. Implicit surfaces are meshed with the algorithm described in Boissonnat et al. [BO03].

The first test surface is the ellipsoid of Fig.3.14, where thealgorithm reports perfectly the well-known patterns
of umbilics and ridges.

The second test surface, Figure 5.13, is a triangulated Bezier surface whose control points are



[0,0,0] [1/4,0,0] [2/4,0,0] [3/4,0,0] [4/4,0,0]
[0,1/4,0] [1/4,1/4,1] [2/4,1/4,−1] [3/4,1/4,−1] [4/4,1/4,0]
[0,2/4,0] [1/4,2/4,−1] [2/4,2/4,1] [3/4,2/4,1] [4/4,2/4,0]
[0,3/4,0] [1/4,3/4,1] [2/4,3/4,−1] [3/4,3/4,1] [4/4,3/4,0]
[0,4/4,0] [1/4,4/4,0] [2/4,4/4,0] [3/4,4/4,0] [4/4,4/4,0]




Alternatively, this surface can be expressed as the graph ofthe degree 4 polynomialh(u,v) for (u,v) ∈ [0,1]2:

h(u,v) =116u4v4−200u4v3 +108u4v2−24u4v−312u3v4 +592u3v3−360u3v2 +80u3v+252u2v4−504u2v3

+324u2v2−72u2v−56uv4+112uv3−72uv2+16uv.

The whole configuration of ridges and umbilics matches the correct topology computed and certified by the algo-
rithm of chapter 7. Zoom views, Figure 5.14, allow one to follow ridges in the neighborhood of 3-ridge umbilics.
Turning points and different ridge types can also be observed.

The third test surface is a blend between two ellipsoids displayed on Fig.5.15 and defined by the following
equation:

1−exp(−0.7(
x2

0.152 +
y2

0.252 +
z2

0.352 −1))−exp(−0.7(
(x−0.25)2

0.12 +
(y−0.1)2

0.22 +
(z−0.1)2

0.32 −1)) = 0

The umbilic detection algorithm gives good results for a size of the patch around a vertex 2 or 3 times the size of
its 1-ring. Indeed, the greater the patch, the fewer the number of points collected with the minimization step. More
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importantly, the boundary of large patches are not too closefrom umbilics, which as explained in section 5.2.4
favors a correct orientation with the A.R. outside patches.As an example on this surface, 14 points are detected
by the minimization algorithm —using a patch size 3 times the1-ring size, while six umbilics of index+1/2 and
two of index−1/2 are reported by the index computation. Notice that this complies with the Euler characteristic.
On this model, apart from isolated ridge segments of erroneous type, the ridges reported look convincing but we
cannot claim the result is correct since the configurations of ridges for this surface is unknown.

The complexity of the algorithm is linear with respect to thenumber of vertices. The whole process on a 2GHz
PC takes 7 seconds for the ellipsoid, 25s for the Bezier surface and 20s for the ellipsoid blend.
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Figure 5.12: Plot of the degree 4 Bezier surface

Figure 5.13: Ridges and umbilics on a triangulated model of the Bezier surface (60k points), view from above
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Figure 5.14: Zoom view on two 3-ridge umbilics

Figure 5.15: Ridges and umbilics on the implicit blending oftwo ellipsoids (40k points)

Coarse meshes. Figure 5.16 features a coarse mesh of a mechanical part with first all crests lines, second crest
lines filtered with their strength and third filtered with their sharpness. This example is especially interesting since
it features flat and cylindrical regions. Each point on such region has constant thus critical principal curvatures and
is therefore a ridge point. The whole configuration of crestsis very noisy. The strength-filtered crest lines [OBS04]
avoid the planar regions but remains in cylindrical ones. The sharpness-filter discards these spurious elements in
cylindrical regions too, and retains only the crests appearing on salient features of the model. This example also
calls for a comment on methods aiming at reporting ridges after having performed an interpolation / approximation
of the model. Again, if the model features flat or cylindricalregions, such algorithms report many insignificant
ridges —that would also have to be filtered. The whole processof this mesh takes 10 seconds on a 2GHz PC.

Figure 5.17 features the David model (380k pts) processed in2 minutes. The sharpness filter is used, but the
strength filter gives similar results on this model more generic than the mechanical one. Notice that our running
time improves the results of [OBS04] of at least one order of magnitude and that the result is quite similar even for
a smaller model.

5.7 Conclusion

Given a mesh discretizing a smooth surface, this chapter presents the first algorithm for extracting an isotopic
approximation of the ridges of the smooth surface on the discretization. The algorithm exploits the patterns made
by ridges and umbilics on generic surfaces, and dissociatesthe processing near umbilics and on the rest of the
surface. The algorithm is generic since the calculation of extremality coefficients and the separation of umbilics
are deferred to routines that may depend from the type of smooth surface discretized by the mesh.
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Figure 5.16: Mechanical part (37k pts): (a) All crest lines,(b) crests filtered with the strength and (c) crests filtered
with the sharpness. Notice that any point on a flat or cylindrical part lies on two ridges, so that the noise observed
on the top two Figs. is unavoidable. It is however easily filtered out with the sharpness on the bottom figure.

For meshes approximating smooth surfaces —without access to any analytical information on the surface,
we provide heuristics. We also present a geometric rule to tag ridges as elliptic or hyperbolic —which has the
advantage of using third order properties only, and a filtering procedure retaining the most stable ridges. For meshes
discretizing smooth surface whose ridges are known, experiments show that our heuristic algorithm recovers the
correct topology of ridges and umbilics. For meshes computed from scans by a surface reconstruction algorithm,
experiments show that our algorithm recovers the ridges of state-of-the-art methods (which use global fitting),
while improving running times of at least one order of magnitude and providing a more efficient filtering method.
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Figure 5.17: Filtered crest lines on a 380k pts model
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Chapter 6

The implicit structure of ridges of a
smooth parametric surface

As seen in the previous chapter, ridge extraction algorithms need of a local orientation procedure of principal
directions. Consequently, the extraction is conducted locally and no global equation of ridges is defined.

On the way to developing certified algorithms independent from local orientation procedures, we study ridges
of a parametric surface. For this special case, we are able todescribe ridges as an implicit curve in the para-
metric domain and analyze its singularities. Algorithms exploiting the structure ofP for polynomial surfaces are
developed in the next chapter.

6.1 Introduction

6.1.1 Contributions and chapter overview

Let Φ(u,v) be a smooth parameterized surface over a domainD ⊂ R2. Recall that we qualify blue and red the
ridges associated to the maximal and the minimal principal curvatures. We make the following two contributions.
First, we exhibit the implicit equationP = 0 of the singular curveP encoding all ridges of the surface (blue and
red), and show how to recover the colors from factors ofP. Second, we derive a zero dimensional system coding
the so-called turning points, from which elliptic and hyperbolic ridge sections of the two colors can be identified.
Both contributions exploit properties of the Weingarten map of the surface and require computer algebra.

The chapter is organized as follows. Preliminary differential lemmas are proved in section 6.2. The implicit
equation for ridges is derived in section 6.3. The system forturning points and the determination of ridge types are
stated in section 6.4. Corollaries for polynomial parametric surfaces and an illustration of the effectiveness of the
main theorem on a bidegree(4,4) Bezier surface is given in section 6.5. Symbolic computations performed with
Maple are provided in section 6.6.

6.1.2 Notations

Ridges. The derivation of the implicit equationP = 0 of all ridges of a surface exploits properties of the Wein-
garten map and of the Monge form of the surface. Properties ofthe Monge form, i.e. of the expression of the
surface as a height function in a coordinate frame associated to the principal directions are recalled in chapter 3.4.
We just point out the main notations and some key conventions.

At any point of the surface, the maximal (minimal) principalcurvature is denotedk1 (k2), and its associated
directiond1 (d2). Anything related to the maximal (minimal) curvature is qualified blue (red), for example we shall
speak of the blue curvature fork1 or the red direction ford2. A ridge associated withk1 is defined by the equation
b0 = 0, with b0 is the directional derivative of the principal curvaturek1 along its curvature line. Similarly, ridges
associated tok2 are defined byb3 = 0. Since we shall make precise statements about ridges, it should be recalled
that ridges through umbilics are open i.e. umbilics are excluded.

91
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Differential calculus. Let f (u,v) : D ⊂ R2 −→ R be a continuously differentiable function. The derivativeof
f with respect to variableu denotedfu, and the gradient off is denoted denoted f = ( fu, fv). A point in D is
singular if the gradientd f vanishes, else it isregular.

Misc. The inner product of two vectorsx,y is denoted< x,y>, the norm ofx is ||x||=< x,x>1/2 and the exterior
product isx∧y.

6.2 Manipulations involving the Weingarten map of the surface

Let Φ be the parameterization of classCk for k≥ 4. Principal directions and curvatures of the surface are expressed
in terms of second order derivatives ofΦ. More precisely, the matrices of the first and second fundamental forms
in the basis(Φu,Φv) of the tangent space are

I =

(
e f
f g

)
=

(
< Φu,Φu > < Φu,Φv >
< Φu,Φv > < Φv,Φv >

)
,

II =

(
l m
m n

)
=

(
< Nn,Φuu > < Nn,Φuv >
< Nn,Φuv > < Nn,Φvv >

)
, with N = Φu∧Φv, Nn =

N
||N|| .

To compute the principal directions and curvatures, one resorts to the Weingarten map, whose matrix in the basis
(Φu,Φv) is given byW = (wi j ) = I−1II . The Weingarten map is a self-adjoint operator1 of the tangent space
[dC76]. The principal directionsdi and principal curvatureski are the eigenvectors and eigenvalues of the matrix
W. Observing that||N||2 = detI , matrixW can also be written as follows —an expression of special interest for
polynomial surfaces:

W =
1

(detI)3/2

(
A B
C D

)
. (6.1)

Recall that a parameterized surface is calledregular if the tangent map of the parameterization (the Jacobian)
has rank two everywhere. Since the first fundamental form is the restriction of the inner product of the ambient
space to the tangent space, one has:

Observation. 9 If Φ is a parameterized surface which is regular, the quadratic form I is positive definite.

In the following, the surface is assumed regular, thus det(I) 6= 0.

6.2.1 Principal curvatures.

The characteristic polynomial ofW is

PW(k) = k2− tr(W)k+det(W) = k2− (w11+w22)k+w11w22−w12w21.

Its discriminant is

∆(k) = (tr(W))2−4det(W) = (w11+w22)
2−4(w11w22−w12w21) = (w11−w22)

2 +4w12w21.

A simplification of this discriminant leads to the definitionof the following function, denotedp2:

p2 = (detI)3∆(k) = (A−D)2+4BC

The principal curvatureski , with the conventionk1≥ k2, are the eigenvalues ofW, that is:

k1 =
A+D+

√
p2

2(detI)3/2
k2 =

A+D−√p2

2(detI)3/2
. (6.2)

A point is called an umbilic if the principal curvatures are equal. One has:

Lemma. 2 The two following equivalent conditions characterize umbilics:

1A self-adjoint mapL over a vector spaceV with a bilinear form< .,. > is a linear map such that< Lu,v >=< u,Lv >, for all u,v ∈V.
Such a map can be diagonalized in an orthonormal basis ofV.
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1. p2 = 0

2. A= D and B= C = 0.

Proof. Since det(I) 6= 0, one hasp2 = 0⇔ ∆(k) = 0, hence 1. characterizes umbilics. Condition 2. triviallyimplies
1. To prove the converse, assume thatp2 = 0 i.e. the Weingarten map has a single eigenvaluek. This linear map
is self-adjoint hence diagonalizable in an orthogonal basis, and the diagonal form is a multiple of the identity. It is
easily checked that the matrix remains a multiple of the identity in any basis of the tangent space, in particular in
the basis(Φu,Φv), which implies condition 2.�

6.2.2 Principal directions.

Let us focus on the maximum principal directiond1. A vector of directiond1 is an eigenvector ofW for the
eigenvaluek1. Denote:

W−k1Id =

(
w11−k1 w12

w21 w22−k1

)
. (6.3)

At non umbilic points, the matrixW− k1Id has rank one, hence either(−w12,w11− k1) 6= (0,0) or (−w22 +
k1,w21) 6= (0,0). Using the expression ofW given by Eq. 6.1, up to a normalization factor of(detI)3/2, a non zero
maximal principal vector can be chosen as either

v1 = 2(detI)3/2(−w12,w11−k1) = (−2B,A−D−√p2) or w1 = 2(detI)3/2(−w22+k1,w21) = (A−D+
√

p2,2C).
(6.4)

For the minimal principal directiond2 one choosesv2 = (−2B,A−D+
√

p2) andw2 = (A−D−√p2,2C).

Lemma. 3 One has the following relations:
v1 = (0,0)⇔ (B = 0 andA≥ D),
v2 = (0,0)⇔ (B = 0 andA≤ D),
w1 = (0,0)⇔ (C = 0 andA≤ D),
w2 = (0,0)⇔ (C = 0 andA≥ D).

Proof. The proofs being equivalent, we focus on the first one. One has:

v1 = (0,0)⇔
{

B = 0

A−D =
√

(A−D)2+4BC
⇔

{
B = 0

A−D =
√

(A−D)2
⇔

{
B = 0

A−D≥ 0

�

A direct consequence of lemma 3 is the following:

Observation. 10 1. The two vector fields v1 and w1 vanish simultaneously exactly at umbilics. The same holds
for v2 and w2.

2. The equation{v1 = (0,0) or v2 = (0,0)} is equivalent to B= 0.

6.3 Implicitly defining ridges

In this section, we prove the implicit expressionP = 0 of ridges. Before diving into the technicalities, we first
outline the method.

6.3.1 Problem

In characterizing ridges, a first difficulty comes from the fact that the sign of an extremality coefficient (b0 or b3)
is not well defined. Away from umbilics, denotingd1 the principal direction associated tok1, there are two unit
opposite vectorsy1 and−y1 orientingd1. That is, one can define two extremality coefficientsb0(y1) =< ▽k1,y1 >
andb0(−y1) =< ▽k1,−y1 >= −b0(y1). Therefore, the sign ofb0 is not well defined. In particular, notice that
tracking the zero crossings ofb0 in-between two points of the surface requires using coherent orientation of the
principal directiond1 at these endpoints, a problem usually addressed using the acute rule (see chap. 5). Notice
however the equationb0 = 0 is not ambiguous. A second difficulty comes from umbilics whereb0 is not defined
sincek1 is not smooth —that is▽k1 is not defined.
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6.3.2 Method outline

Principal curvatures and directions read from the Weingarten map of the surface. At each point which is not an
umbilic, one can define two vector fieldsv1 or w1 which are collinear withd1, with the additional property that
one (at least) of these two vectors is non vanishing. Letzstand for one of these non vanishing vectors. The nullity
of b0 =< ▽k1,y1 > is equivalent to that of< ▽k1,z> —that is the normalization of the vector along which the
directional derivative is computed does not matter.

Using v1 andw1, the principal maximal vectors defined in the previous section, we obtain two independent
equations of blue ridges. Each has the drawback of encoding,in addition to blue ridge points, the points where
v1 (or w1) vanishes. As a consequence of observation 10, the conjunction of these two equations defines the set
of blue ridges union the set of umbilics. The same holds for red ridges and the minimal principal vector fields
v2 adw2. One has to note the symmetry between the equations for blue and red ridges in lemma 4. Eventually,
combining the equation for blue ridges withv1 and the equation for red ridges withv2 gives the set of blue ridges
union the set of red ridges union the set of zeros ofv1 = 0 or v2 = 0. This last set is alsoB = 0 (observation 10),
hence dividing byB allows to eradicate these spurious points and yields the equationP= 0 of blue ridges together
with red ridges. One can think of this equation as an improvedversion of the Gaussian extremalityEg = b0b3

defined in [Thi96].
Our strategy cumulates several advantages: (i)blue and redridges are processed at once, and the information

is encoded in a single equation (ii)orientation issues arising when one is tracking the zero crossings ofb0 or b3

disappear. The only drawback is that one looses the color of the ridge. But this color is recovered with the
evaluation of the sign of factors of the expressionP.

6.3.3 Precisions of vocabulary

In the statement of the results, we shall use the following terminology. Umbilic points are points where both
principal curvatures are equal. A ridge point is a point which is not an umbilic, and is an extremum of a principal
curvature along its curvature line. A ridge point is furthercalled a blue (red) ridge point is a an extrema of the blue
(red) curvature along its line. A ridge point may be both blueand red, in which case it is called a purple point.

6.3.4 Implicit equation of ridges

Lemma. 4 For a regular surface, there exist differentiable functions a,a′,b,b′ which are polynomials with respect
to A,B,C,D anddetI, as well as their first derivatives, such that:

1. the set of blue ridges union{v1 = 0} has equation a
√

p2 +b = 0,

2. the set of blue ridges union{w1 = 0} has equation a′
√

p2 +b′ = 0,

3. the set of blue ridges union the set of umbilics has equation

{
a
√

p2 +b = 0

a′
√

p2 +b′ = 0

4. the set of red ridges union{v2 = 0} has equation a
√

p2−b = 0,

5. the set of red ridges union{w2 = 0} has equation a′
√

p2−b′ = 0,

6. the set of red ridges union the set of umbilics has equation

{
a
√

p2−b= 0

a′
√

p2−b′ = 0

Moreover, a,a′,b,b′ are defined by the equations:

a
√

p2 +b =< Numer(dk1),v1 > a′
√

p2 +b′ =< Numer(dk1),w1 > . (6.5)

Proof. The principal curvatures are not differentiable at umbilics since the denominator ofdki contains
√

p2.
But away from umbilics, the equation< dk1,v1 >= 0 is equivalent to< Numer(dk1),v1 >= 0. This equation is
rewritten asa

√
p2 +b = 0, the explicit expressions ofa andb being given in section 6.6. This equation describes

the set of blue ridge points union the set wherev1 vanishes. A similar derivation yields the second claim. Finally,
the third claim follows from observation 10.

Results for red ridges are similar and the reader is referredto section 6.6 for the details.�
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Lemma. 5 1. If p2 = 0 then a= b = a′ = b′ = 0.

2. The set of purple points has equation

{
a = b = a′ = b′ = 0

p2 6= 0

Proof. 1. If p2 = 0, one hasA = D andB = C = 0. Substituting these conditions in the expressions ofa,a′,b,b′

gives the result, computations are sketched in section 6.6.
2. Let p be a purple point, it is a ridge point and hence not an umbilic,then p2 6= 0. The pointp is a blue

and a red ridge point, hence it satisfies all equations of lemma 4. If a 6= 0 then equations 1. and 4. imply√
p2 = −b/a = b/a henceb = 0 and

√
p2 = 0 which is a contradiction. Consequently,a = 0 and again equation

1. impliesb = 0. A similar argument with equation 2. and 5. givesa′ = b′ = 0.
The converse is trivial: ifa = b = a′ = b′ = 0 then equations 3. and 6. imply that the point is a purple point or

an umbilic. The additional conditionp2 6= 0 excludes umbilics.�

The following definition is a technical tool to state the nexttheorem in a simple way. The meaning of the
functionSignridge introduced here will be clear from the proof of the theorem. Essentially, this function describes
all the possible sign configurations forabanda′b′ at a ridge point.

Definition. 15 The function Signridge takes the values

-1 if

{
ab< 0

a′b′ ≤ 0
or

{
ab≤ 0

a′b′ < 0
,

+1 if

{
ab> 0

a′b′ ≥ 0
or

{
ab≥ 0

a′b′ > 0
,

0 if ab= a′b′ = 0.

Theorem. 14 The set of blue ridges union the set of red ridges union the setof umbilics has equation P= 0 with
P = (a2p2−b2)/B, and one also has P=−(a′2p2−b′2)/C = 2(a′b−ab′). For a point of this setP, one has:

• If p2 = 0, the point is an umbilic.

• If p2 6= 0 then:

– if Signridge =−1 then the point is a blue ridge point,

– if Signridge = +1 then the point is a red ridge point,

– if Signridge = 0 then the point is a purple point.

Proof. To form the equation ofP, following the characterization of red and blue ridges in lemma 4, and the
vanishing of the vector fieldsv1 andv2 in lemma 3, we take the product of equations 1. and 3. of lemma 4. The
equivalence between the three equations ofP is proven with the help ofMaple, see section 6.6.

To qualify points onP, first observe that the casep2 = 0 has already been considered in lemma 5. Therefore,
assumep2 6= 0, and first notice the following two simple facts:

• The equation(a2p2− b2)/B = 0 for P implies thata = 0⇔ b = 0⇔ ab = 0. Similarly, the equation
−(a′2p2−b′2)/C = 0 for P implies thata′ = 0⇔ b′ = 0⇔ a′b′ = 0.

• If ab 6= 0 anda′b′ 6= 0, the equationab′−a′b = 0 for P impliesb/a = b′/a′, that is the signs ofabanda′b′

agree.

These two facts explain the introduction of the functionSignridge of definition 15. This function enumerates all
disjoint possible configurations of signs forab anda′b′ for a point onP. One can now study the different cases
with respect to the signs ofabanda′b′ or equivalently the values of the functionSignridge.

AssumeSignridge =−1.
–First case: ab< 0. The equation(a2p2−b2)/2B = 0 implies that(a

√
p2 +b)(a

√
p2−b) = 0. Since

√
p2 > 0,

one must havea
√

p2 + b = 0 which is equation 1 of lemma 4. From the second simple fact, either a′b′ < 0 or
a′b′ = 0.
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• For the first sub-casea′b′ < 0, equation(a′2p2−b′2)/C = 0 implies(a′
√

p2 + b′)(a′
√

p2−b′) = 0. Since√
p2 > 0, one must havea′

√
p2 +b′ = 0 which is equation 2 of lemma 4.

• For the second sub-casea′b′ = 0, one hasa′ = b′ = 0 and the equation 2 of lemma 4 is also satisfied.
(Moreover, equation 5 is also satisfied which implies thatw2 = 0).

In both cases, equations 1 and 2 or equivalently equation 3 are satisfied. Since one has excluded umbilics, the point
is a blue ridge point.
–Second case: ab= 0. One hasa′b′ < 0 the study is similar to the above.ab= 0 implies equation 1 anda′b′ < 0
implies equation 2 of lemma 4. The point is a blue ridge point.

AssumeSignridge = 1.
This case is the exact symmetric of the previous, one only hasto exchange the roles ofa,b anda′,b′.

AssumeSignridge = 0.
The first simple fact impliesa = b = a′ = b′ = 0 and lemma 5 identifies a purple point.�

As shown along the proof, the conjunctions<,= and=,< in the definition ofSignridge = −1 correspond to
the blue ridge points where the vector fieldsw2 andv2 vanish. The same holds forSignridge = 1 andw1 andv1.
One can also observe that the basic ingredient of the previous proof is to transform an equation with a square root
into a system with an inequality. More formally:

Observation. 11 For x,y,z real numbers and z≥ 0, one has:

x
√

z+y = 0⇐⇒
{

x2z−y2 = 0

xy≤ 0
(6.6)

6.3.5 Singular points ofP

Having characterized umbilics, purple points and ridges inthe domainD with implicit equations, an interesting
question is to relate the properties of these equations to the classical differential geometric properties of these
points.

In particular, recall that generically (with the description of surfaces with Monge patches and contact theory
recalled is chapter 3.4), umbilics of a surface are either 1-ridge umbilics or 3-ridge umbilics. This means that there
are either 1 or 3 non-singular ridge branches passing through an umbilic. The latter are obviously singular points
of P since three branches of the curve are crossing at the umbilic. For the former ones, it is appealing to believe
they are regular points since the tangent space to the ridge curve on the surface at such points is well defined and
can be derived from the cubic of the Monge form [HGY+99]. Unfortunately, one has:

Proposition. 5 Umbilics are singular points of multiplicity at least 3 of the function P (i.e. the gradient and the
Hessian of P vanish).

Proof. Following the notations of Porteous [Por01], denotePk, k = 1, . . . ,3 thekth times linear form associated
with P, that isPk = [∂P/(∂uk−i∂vi)]i=0,...,k. Phrased differently,P1 is the gradient,P2 is the vector whose three
entries encodes the Hessian ofP, etc. To show that the multiplicity of an umbilic of coordinates(u0,v0) is at least
three, we need to show thatP1(u0,v0) = [0, 0], P2(u0,v0) = [0, 0, 0]. We naturally do not know the coordinates
of umbilics, but lemma 2 provides the umbilical conditions.The proof consists of computing derivatives and
performing the appropriate substitutions under Maple, andis given in section 6.6.�

We can go one step further so as to relate the type of the cubicP3 —the third derivative ofP— to the number
of non-singular ridge branches at the umbilic.

Proposition. 6 The classification of an umbilic as 1-ridge or 3-ridges from P3 goes as follows:

• If P3 is elliptic, that is the discriminant of P3 is positive (δ (P3) > 0), then the umbilic is a 3-ridge umbilic
and the 3 tangent lines to the ridges at the umbilic are distinct.

• If P3 is hyperbolic (δ (P3) < 0) then the umbilic is a 1-ridge umbilic.
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Proof. Since the properties of interest here are local ones, studying ridges on the surface or in the parametric
domain is equivalent because the parameterization is a local diffeomorphism. More precisely the parameterization
Φ maps a curve passing through(u0,v0) ∈D to a curve passing through the umbilicp0 = Φ(u0,v0) on the surface
S= Φ(D). Moreover, the invertible linear mapdΦ(u0,v0) maps the tangent to the curve inD at (u0,v0) to the
tangent atp0 to its image curve in the tangent spaceTp0S.

Having observed the multiplicity of umbilics is at least three, we resort to singularity theory. From [AVGZ82,
Section 11.2, p157], we know that a cubic whose discriminantis non null is equivalent up to a linear transformation
to the normal formy(x2±y2). Moreover, a function having a vanishing second order Taylor expansion and its third
derivative of this form is diffeomorphic to the same normal form. Therefore, whenever the discriminant ofP3 is
non null, up to a diffeomorphism, the umbilic is a so calledD±4 singularity ofP, whose normal form isy(x2±y2).
It is then easily seen that the zero level set consists of three non-singular curves through the umbilic with distinct
tangents which are the factor lines of the cubic. For aD−4 singularity (δ (P3) > 0), these 3 curves are real curves
and the umbilic is a 3-ridge. For aD+

4 singularityδ (P3) < 0), only one curve is real and the umbilic is a 1-ridge.�

Note that the classifications of umbilics with the Monge cubic CM and the cubicP3 do not coincide. Indeed if
CM is elliptic, it may occur that two ridges have the same tangent. In such a case, the cubicP3 is not elliptic since
δ (P3) = 0.

Since purple points correspond to the intersection of two ridges, one has:

Proposition. 7 Purple points are singular points of multiplicity at least 2of the function P (i.e. the gradient of P
vanish).

Proof. It follows from the equationP = 2(a′b− ab′) that dP = 2(d(a′)b+ a′d(b)− d(a)b− ad(b)). At purple
points one hasa = a′ = b = b′ = 0 hencedP= 0. �

6.4 Implicit system for turning points and ridge type

In this section, we define a system of equations that encodes turning points. Once these turning points identified,
we show how to retrieve the type (elliptic or hyperbolic) of aridge from a sign evaluation.

6.4.1 Problem

Going one step further in the description of ridges requiresdistinguishing between ridges which are maxima or
minima of the principal curvatures. Following the classical terminology recalled in chapter 3.4, a blue (red) ridge
changes from a maxima to a minima at a blue (red) turning point. These turning points are witnessed by the
vanishing of the second derivative of the principal curvature along its curvature line. As recalled in chapter 3.4
—see [HGY+99] for the details, from the parameterization of a principal curvature along its curvature line —Eq.
3.6, a turning point is witnessed by the vanishing of the coefficient P1 (P2) for blue (red) ridges. Since we are
working from a parameterization, denotingHessthe Hessian matrix of either principal curvature, we have:

Observation. 12 A blue turning point is a blue ridge point where Hess(k1)(d1,d1) = 0. Similarly, a red turning
point is a red ridge point with Hess(k2)(d2,d2) = 0.

Generically, turning points are not purple points, howeverwe shall provide conditions identifying these cases.
Even less generic is the existence of a purple point which is also a blue and a red turning point, a situation for
which we also provide conditions.

Once turning points have been found, reporting elliptic andhyperbolic ridge sections is especially easy. For
ridges through umbilics, since ridges at umbilics are hyperbolic, and the two types alternate at turning points, the
task is immediate. For ridges avoiding umbilics, one just has to test the sign ofHess(k1)(d1,d1) or Hess(k2)(d2,d2)
at a ridge points, and then propagate the alternation at turning points.

6.4.2 Method outline

We focus on blue turning points since the method for red turning points is similar. As already pointed out, we do
not have a global expression of the blue directiond1, but only the two blue vector fieldsv1 andw1 vanishing on
some curves going through umbilics. Consequently, we have to combine equations with these two fields to get a
global expression of turning points. A blue ridge point is a blue turning point iffHess(k1)(d1,d1) = 0. This last
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equation is equivalent toNumer(Hess(k1))(v1,v1) = 0 when the vector fieldv1 does not vanish. The same holds
for the equationNumer(Hess(k1))(w1,w1) = 0 and the solutions ofw1 = (0,0). As a consequence of observation
10, the conjunction of these two equations defines the set of blue turning points.

The drawback of distinguishing the color of the turning points is that equations contain a square root. Combin-
ing the equations for blue and red turning points gives an equationQ = 0 without square roots. The intersection
of the corresponding curveQ with the ridge curveP and sign evaluations allow to retrieve all turning points and
their color.

6.4.3 System for turning points

Lemma. 6 For a regular surface, there exist differentiable functions α,α ′,β ,β ′ which are polynomials with re-
spect to A,B,C,D anddetI, as well as their first and second derivatives, such that:

1. Numer(Hess(k1))(v1,v1) = α√p2 + β .

2. Numer(Hess(k1))(w1,w1) = α ′√p2 + β ′.

3. A blue ridge point is a blue turning point iff

{
α√p2 + β = 0

α ′√p2 + β ′ = 0

4. Numer(Hess(k2))(v2,v2) = α√p2−β .

5. Numer(Hess(k2))(w2,w2) = α ′√p2−β ′.

6. A red ridge point is a red turning point iff

{
α√p2−β = 0

α ′√p2−β ′ = 0

Proof. Calculations for points 1-2-4-5 are performed with Maple cf. section 6.6. Blue turning points are blue ridge
points onP whereHess(k1)(d1,d1) = 0. This equation is not defined at umbilics where principal curvatures are
not differentiable. Nevertheless, including umbilics andpoints wherev1 vanishes, this equation is equivalent to
Numer(Hess(k1)(v1,v1) = 0. This equation is rewritten asα√p2 + β = 0 and yields point 1. The same analysis
holds forw1 and yields point 2. Point 3. is a consequence of observation 10. Results for red turning points are
similar and the reader is referred to section 6.6 for the details. �

The following definition is a technical tool to state the nexttheorem in a simple way. As we shall see along the
proof, this function describes all the possible sign configurations forαβ andα ′β ′ at a turning point.

Definition. 16 The function Signturn takes the values

-1 if

{
αβ < 0

α ′β ′ ≤ 0
or

{
αβ ≤ 0

α ′β ′ < 0
,

+1 if

{
αβ > 0

α ′β ′ ≥ 0
or

{
αβ ≥ 0

α ′β ′ > 0
,

0 if αβ = α ′β ′ = 0.

Theorem. 15 Let Q be the smooth function which is a polynomial with respect to A,B,C,D anddetI, as well as
their first and second derivatives defined by

Q = (α2p2−β 2)/B2 = (α ′2p2−β ′2)/C2 = 2(α ′β −αβ ′)/(D−A). (6.7)

The system

{
P = 0

Q = 0
encodes turning points in the following sense. For a point, solution of this system, one

has:

• If p2 = 0, the point is an umbilic.

• If p2 6= 0 then:
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– if Signridge =−1 and Signturn≤ 0 then the point is a blue turning point,

– if Signridge = +1 and Signturn≥ 0 then the point is a red turning point,

– if Signridge = 0 then the point is purple point and in addition

∗ if Signturn =−1 then the point is also a blue turning point,
∗ if Signturn = +1 then the point is also a red turning point,
∗ if Signturn = 0 then the point is also a blue and a red turning point.

Proof. Following lemma 6, we form the equation ofQ by taking the products of 1. and 4. in the lemma. Equalities
of equation 6.7 are performed with Maple cf. section 6.6.

The casep2 = 0 has already been considered in lemma 5. Assume thatp2 6= 0, and first notice the following
two simple facts:

• The equation(α2p2−β 2)/B2 = 0 for Q implies thatα = 0⇔ β = 0⇔ αβ = 0. Similarly, the equation
(α ′2p2−β ′2)/C2 = 0 for Q implies thatα ′ = 0⇔ β ′ = 0⇔ α ′β ′ = 0.

• If αβ 6= 0 andα ′β ′ 6= 0, the equation 2(α ′β −αβ ′)/(D−A) = 0 for Q impliesβ/α = β ′/α ′, that is the
signs ofαβ andα ′β ′ agree.

These two facts explain the introduction of the functionSignturn of definition 16. This function enumerates all
disjoint possible configurations of signs forαβ andα ′β ′ for a point onQ. The analysis of the different cases is
similar to that of the proof of theorem 14, the basic ingredient being observation 11.�

Observation. 13 Note that in the formulation of equation 6.7 there are solutions of the system (P= 0 and Q= 0)
which are not turning points nor umbilics. These points are characterized by (Signridge = −1 and Signturn = +1)
or (Signridge = +1 and Signturn = −1). This drawback is unavoidable since equations avoiding the term

√
p2

cannot distinguish colors.

Observation. 14 The following holds:

• p2 = 0 impliesα = α ′ = β = β ′ = 0

• α = α ′ = β = β ′ = 0 are singularities of Q of multiplicity at least 2.

To test if a blue ridge segment between two turning points is amaxima or a minima requires the evaluation of
the sign ofα√p2 + β or α ′√p2 + β ′, which cannot vanish simultaneously.

6.5 Polynomial surfaces

A fundamental class of surface used in Computer Aided Geometric Design consist of Bezier surfaces and splines.
In this section, we state some elementary observations on the objects studied so far, for the particular case
of polynomial parametric surfaces. Notice that the parameterization can be general, in which caseΦ(u,v) =
(x(u,v),y(u,v),z(u,v)), or can be a height functionΦ(u,v) = (u,v,z(u,v)).

6.5.1 AboutW and the vector fields

Using Eq. 6.1, we first observe that ifΦ is a polynomial then the coefficientsA,B,C andD are also polynomials
—this explains the factor(detI)3/2 in the denominator ofW in equation 6.1. For example

A = (detI)3/2w11 = (detI)3/2gl− f m
detI

=
√

detI(g < N/
√

detI ,Φuu >− f < N/
√

detI ,Φuv >)

= g < N,Φuu >− f < N,Φuv > .

Thus, in the polynomial case, the equation of ridges is algebraic. Hence the set of all ridges and umbilics is
globally described by an algebraic curve. The functionQ is also a polynomial so that turning points are described
by a polynomial system.

An interesting corollary of lemma 3 for the case of polynomial surfaces is the following:

Observation. 15 Given a principal vector v, denote Zv the zero set of v i.e. the set of points where v vanishes.
For a polynomial surface, the sets Zv1,Zw1,Zv2,Zw2 are semi-algebraic sets.
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6.5.2 Degrees of expressions

As a corollary of Thm. 14 and 15, one can give upper bounds for the total degrees of expressions with respect to
that of the parameterization. Distinguishing the cases where Φ is a general parameterization or a height function
(that isΦ(u,v) = (u,v,h(u,v))) with h(u,v) and denotingd the total degree ofΦ, table 6.1 gives the total degrees
of A,B,C,D,detI ,P andQ.

Note that in the case of a height function,P is divided by its factor detI2, andQ is divided by its factor detI
(cf. section 6.6).

Polynomials General parameterization Height function
A,B,C,D d1 = 5d−6 d1h = 3d−4

detI d2 = 4d−4 d2 = 4d−4
P 5d1 +2d2−2 = 33d−40 5d1h−2 = 15d−22
Q 10d1+4d2−4 = 66d−80 10d1h +3d2−4 = 42d−56

Figure 6.1: Total degrees of polynomials

6.5.3 An example

Theorem 14 is effective and allows one to report certified ridges of polynomial parametric surfaces without resort-
ing to local orientation procedures.

Without engaging into the algebraic developments carried out in the next chapter, we just provide an illustration
of ridges for a degree four Bezier surface defined over the domainD = [0,1]× [0,1]. This surface, already studied
in the former chapter (see Fig. 5.12), can be expressed as thegraph of the total degree 8 polynomialh(u,v) for
(u,v) ∈ [0,1]2:

h(u,v) =116u4v4−200u4v3 +108u4v2−24u4v−312u3v4 +592u3v3−360u3v2 +80u3v+252u2v4−504u2v3

+324u2v2−72u2v−56uv4+112uv3−72uv2+16uv.

The computation of the implicit curve has been performed using Maple 9.5 (see section 6.6). It is a bivariate
polynomialP(u,v) of total degree 84, of degree 43 inu, degree 43 inv with 1907 terms and coefficients with up
to 53 digits. Figure 6.2 displays ridges on the parametric domainD , there are 17 purple points (black dots) and
8 umbilics (green dots), 3 of which are 3-ridge and 5 are 1-ridge. More information on this example and other
examples are provided in the next chapter.

6.6 Maple computations

The Maple computations are provided for convenience. The corresponding Maple worksheet is available from the
authors’ web pages.

6.6.1 Principal directions, curvatures and derivatives
> v1:=[-2*B(u,v),A(u,v)-DD(u,v)-sqrt(p2(u,v))];
> w1:=[A(u,v)-DD(u,v)+sqrt(p2(u,v)),2*C(u,v)];
> v2:=[-2*B(u,v),A(u,v)-DD(u,v)+sqrt(p2(u,v))];
> w2:=[A(u,v)-DD(u,v)-sqrt(p2(u,v)),2*C(u,v)];
> k1:=(A(u,v)+DD(u,v)+sqrt(p2(u,v)))/(2*detI(u,v)^(3/2));
> k2:=(A(u,v)+DD(u,v)-sqrt(p2(u,v)))/(2*detI(u,v)^(3/2));

v1 := [−2B(u,v) ,A(u,v)−DD (u,v)−
√

p2(u,v)]
w1 := [A(u,v)−DD (u,v)+

√
p2(u,v),2C(u,v)]

v2 := [−2B(u,v) ,A(u,v)−DD (u,v)+
√

p2(u,v)]
w2 := [A(u,v)−DD (u,v)−

√
p2(u,v),2C(u,v)]

k1 := 1/2
A(u,v)+DD(u,v)+

√
p2(u,v)

(detI(u,v))3/2

k2 := 1/2
A(u,v)+DD(u,v)−

√
p2(u,v)

(detI(u,v))3/2

First derivatives
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Figure 6.2: The certified plot ofP (1024×1024 pixels)

> k1u:=diff(k1,u);k1un:=numer(k1u):
> k1v:=diff(k1,v):k1vn:=numer(k1v):
> k2u:=diff(k2,u):k2un:=numer(k2u):
> k2v:=diff(k2,v):k2vn:=numer(k2v):
> dk1n:=[k1un, k1vn]:
> dk2n:=[k2un, k2vn]:

k1u := 1/2

(
∂

∂uA(u,v)+ ∂
∂uDD (u,v)+1/2

∂
∂ u p2(u,v)√

p2(u,v)

)
(detI(u,v))−3/2−3/4

(
A(u,v)+DD(u,v)+

√
p2(u,v)

)
∂
∂ udetI(u,v)

(detI(u,v))5/2

Second derivatives

> k1uu:=diff(k1,u$2):k1uun:=numer(k1uu):
> k1uv:=diff(k1,u,v):k1uvn:=numer(k1uv):
> k1vv:=diff(k1,v$2):k1vvn:=numer(k1vv):
> k2uu:=diff(k2,u$2):k2uun:=numer(k2uu):
> k2uv:=diff(k2,u,v):k2uvn:=numer(k2uv):
> k2vv:=diff(k2,v$2):k2vvn:=numer(k2vv):

6.6.2 Ridges

Blue and red equations with respect to the vector fields v1, v2, w1, w2.
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> subs_sqrtp2:=sqrt(p2(u,v)) = sqrtp2, p2(u,v)^(3/2)= p2(u,v)*sqrtp2;
> b0v1:=subs( subs_sqrtp2, expand(linalg[dotprod](dk1n,v1, ’orthogonal’) )):
> b0w1:=subs( subs_sqrtp2, expand(linalg[dotprod](dk1n,w1, ’orthogonal’) )):
> b3v2:=subs( subs_sqrtp2, expand(linalg[dotprod](dk2n,v2, ’orthogonal’) )):
> b3w2:=subs( subs_sqrtp2, expand(linalg[dotprod](dk2n,w2, ’orthogonal’) )):
> b0v1a:=coeff(b0v1, sqrtp2, 1):b0v1b:=coeff(b0v1, sqrtp2, 0):
> b0w1a:=coeff(b0w1, sqrtp2, 1):b0w1b:=coeff(b0w1, sqrtp2, 0):
> b3v2a:=coeff(b3v2, sqrtp2, 1):b3v2b:=coeff(b3v2, sqrtp2, 0):
> b3w2a:=coeff(b3w2, sqrtp2, 1):b3w2b:=coeff(b3w2, sqrtp2, 0):

subs_sqrtp2 :=
{

(p2(u,v))3/2 = p2(u,v)sqrtp2,
√

p2(u,v) = sqrtp2
}

Identities between b0 with (v1,w1) and b3 with (v2,w2).

> [b3v2a-b0v1a, b0v1b+b3v2b, b3w2a-b0w1a, b0w1b+b3w2b];

[0,0,0,0]

Definition of a,b,abis,bbis
> subs_p2:= p2(u,v)=(A(u,v)-DD(u,v))^2+4*B(u,v)*C(u,v);
> a:=expand(subs( subs_p2, b0v1a));
> b:=expand(subs( subs_p2, b0v1b));
> abis:=expand(subs( subs_p2, b0w1a)):
> bbis:=expand(subs( subs_p2, b0w1b)):

subs_p2 :=
{

p2(u,v) = (A(u,v)−DD (u,v))2 +4B(u,v)C(u,v)
}

a := −4B(u,v)detI(u,v)
∂

∂u
A(u,v)−4B(u,v)detI(u,v)

∂
∂u

DD(u,v)

+6B(u,v)

(
∂

∂u
detI(u,v)

)
A(u,v)+6B(u,v)

(
∂
∂u

detI(u,v)

)
DD (u,v)+4detI(u,v)

(
∂
∂v

DD(u,v)

)
A(u,v)

−4detI(u,v)

(
∂
∂v

DD(u,v)

)
DD(u,v)−4detI(u,v)

(
∂
∂v

B(u,v)

)
C(u,v)−4detI(u,v)B(u,v)

∂
∂v

C(u,v)

+6

(
∂
∂v

detI(u,v)

)
(DD (u,v))2−6

(
∂
∂v

detI(u,v)

)
A(u,v)DD(u,v)+12

(
∂
∂v

detI(u,v)

)
B(u,v)C(u,v)

b :=6B(u,v)

(
∂
∂u

detI(u,v)

)
(DD (u,v))2 +24(B(u,v))2

(
∂

∂u
detI(u,v)

)
C(u,v)

−8 (B(u,v))2 detI(u,v)
∂

∂u
C(u,v)−4detI(u,v)

(
∂
∂v

DD(u,v)

)
(A(u,v))2

+6B(u,v)

(
∂

∂u
detI(u,v)

)
(A(u,v))2−12

(
∂
∂v

detI(u,v)

)
(DD(u,v))2A(u,v)

−4detI(u,v)

(
∂
∂v

DD(u,v)

)
(DD(u,v))2 +6

(
∂
∂v

detI(u,v)

)
DD(u,v) (A(u,v))2

−4B(u,v)detI(u,v)A(u,v)
∂

∂u
A(u,v)

+4B(u,v)detI(u,v)

(
∂

∂u
A(u,v)

)
DD(u,v)+4B(u,v)detI(u,v)A(u,v)

∂
∂u

DD(u,v)

−4B(u,v)detI(u,v)DD (u,v)
∂

∂u
DD(u,v)−8B(u,v)detI(u,v)

(
∂

∂u
B(u,v)

)
C(u,v)

−12B(u,v)

(
∂
∂u

detI(u,v)

)
A(u,v)DD(u,v)−8detI(u,v)

(
∂
∂v

A(u,v)

)
B(u,v)C(u,v)

+8detI(u,v)

(
∂
∂v

DD(u,v)

)
A(u,v)DD(u,v)−8detI(u,v)

(
∂
∂v

DD(u,v)

)
B(u,v)C(u,v)

+4detI(u,v)A(u,v)

(
∂
∂v

B(u,v)

)
C(u,v)+4detI(u,v)A(u,v)B(u,v)

∂
∂v

C(u,v)

−4detI(u,v)DD(u,v)

(
∂
∂v

B(u,v)

)
C(u,v)−4detI(u,v)DD(u,v)B(u,v)

∂
∂v

C(u,v)

+24

(
∂
∂v

detI(u,v)

)
DD(u,v)B(u,v)C(u,v)+6

(
∂
∂v

detI(u,v)

)
(DD(u,v))3

Ridge equation, identies



6.6. MAPLE COMPUTATIONS 103

> curveb0b3v:=simplify( subs( subs_p2, (a^2*p2(u,v)-b^2)/B(u,v) )):
> curveb0b3w:=simplify( subs( subs_p2, (abis^2*p2(u,v)-bbis^2)/(-C(u,v)) )):
> curveb0b3vw:=simplify( 2*(abis*b-a*bbis) ):
> [curveb0b3v-curveb0b3w,curveb0b3v-curveb0b3vw];

[0,0]

Final result: ridge has 170 terms of the form 5 times a term amongst A,B,C,DD and twice detI and derivatives
> ridge:=simplify(curveb0b3vw/content(curveb0b3vw)):
> [whattype(ridge),nops(ridge),op(1,ridge)];

[‘+‘,170,−36 (B(u,v))3
(

∂
∂udetI(u,v)

)2
(C(u,v))2]

Umbilics are points on P=0 of multiplicity t least 3
> list_diff:= diff(B(u, v), u)=B[u](u,v), diff(C(u, v), u)=C[u](u,v), diff(B(u, v),
v)=B[v](u,v), diff(C(u, v), v)=C[v](u,v) ,diff(A(u, v), u)=A[u](u,v), diff(DD(u, v),
u)=DD[u](u,v), diff(A(u, v), v)=A[v](u,v), diff(DD(u, v), v)=DD[v](u,v) :
> umb_cond:=A(u,v)=DD(u,v), B(u,v)=0, C(u,v)=0 ;
> ridge_sub:=subs( list_diff, courbe):
> ridge_gradient:=[diff(ridge_sub, u), diff(ridge_sub, v)]:
> ridge_gradient_sub:=simplify(subs( list_diff, ridge_gradient)):
> ridge_gradient_umb:=simplify(subs(umb_cond, ridge_gradient_sub));
> ridge_hessien:=[ diff(op(1,ridge_gradient_sub), u), diff(op(1,ridge_gradient_sub),
v), diff(op(2,ridge_gradient_sub), v)]:
> ridge_hessien_sub:=simplify(subs(list_diff, ridge_hessien)):
> ridge_hessien_umb:=simplify(subs( umb_cond, ridge_hessien_sub));

umb_cond := {A(u,v) = DD(u,v) ,C(u,v) = 0,B(u,v) = 0}
ridge_gradient_umb := [0,0]

ridge_hessien_umb := [0,0,0]

6.6.3 Turning points
> subs_sqrtp2bis:=sqrt(p2(u,v)) =sqrtp2, p2(u,v)^(3/2)= p2(u,v)*sqrtp2,p2(u,v)^(5/2)=
p2(u,v)^2*sqrtp2:
> hessk1v1:=subs( subs_sqrtp2bis, expand(k1uun*v1[1]^2+k1uvn*v1[1]*v1[2]+k1vvn*v1[2]^2)):
> hessk1w1:=subs( subs_sqrtp2bis, expand(k1uun*w1[1]^2+k1uvn*w1[1]*w1[2]+k1vvn*w1[2]^2)):
> hessk2v2:=subs( subs_sqrtp2bis, expand(k2uun*v2[1]^2+k2uvn*v2[1]*v2[2]+k2vvn*v2[2]^2)):
> hessk2w2:=subs( subs_sqrtp2bis, expand(k2uun*w2[1]^2+k2uvn*w2[1]*w2[2]+k2vvn*w2[2]^2)):
> hessk1v1a:=coeff(hessk1v1, sqrtp2, 1):hessk1v1b:=coeff(hessk1v1, sqrtp2, 0):
> hessk1w1a:=coeff(hessk1w1, sqrtp2, 1):hessk1w1b:=coeff(hessk1w1, sqrtp2, 0):
> hessk2v2a:=coeff(hessk2v2, sqrtp2, 1):hessk2v2b:=coeff(hessk2v2, sqrtp2, 0):
> hessk2w2a:=coeff(hessk2w2, sqrtp2, 1):hessk2w2b:=coeff(hessk2w2, sqrtp2, 0):

Identities
> [hessk1v1a-hessk2v2a, hessk1v1b+hessk2v2b, hessk1w1a-hessk2w2a, hessk1w1b+hessk2w2b];

[0,0,0,0]

Definition of alpha, beta, alphabis, betabis: one has hessk1v1= a*sqrt(p2(u,v)) +b ; hessk2v2= a*sqrt(p2(u,v))
-b

alpha, beta, alphabis, betabis are fct of A,B,C,DD, detI andfirst and second derivatives
> alpha:=simplify( subs( subs_p2, hessk1v1a )):
> alphabis:=simplify( subs( subs_p2, hessk1w1a )):
> beta:=simplify( subs( subs_p2, hessk1v1b )):
> betabis:=simplify( subs( subs_p2, hessk1w1b )):
> [nops(alpha),nops(beta)];

[216,371]
turn , turn-B and turn-C are fct of A,B,C,D,DetI and first and second derivatives
> turn_B:=expand( subs( subs_p2, alpha^2*p2(u,v)-beta^2 ) /B(u,v)^2 ):
> turn_C:=expand( subs( subs_p2, alphabis^2*p2(u,v)-betabis^2 ) /C(u,v)^2 ):
> turn_AD:= simplify( 2*(alphabis*beta-alpha*betabis)/(-A(u, v)+DD(u, v)) ):

Equivalence of equations
> [turn_B-turn_C,turn_B-turn_AD];

[0,0]

Final equation, in each term of turn, there are 10 terms amongst A,B,C,D and 4 times DetI and 4first derivatives
(2*first derivative=2nd derivative)

> turn:=simplify( turn_AD/ content(turn_AD) ):
> [whattype(turn), nops(turn), op(1, turn)];

[‘+‘,17302,−96 (detI(u,v))4 (A(u,v))2
(

∂
∂‘$‘(v,2)

B(u,v)
)

(C(u,v))3
(

∂
∂uDD (u,v)

)(
∂
∂vB(u,v)

)
(DD(u,v))2]
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6.7 Conclusion

This chapter sets the implicit equationP = 0 of the singular curve encoding all ridges of a smooth parametric
surface. From a mathematical standpoint, a corollary of this result shows that ridges of polynomial surfaces are
polynomial objects. From an algorithmic perspective, thisresult paves the alley for the development of certified al-
gorithms reporting ridges without resorting to local orientation procedures. For algebraic surfaces, such algorithms
are developed in the next chapter.



Chapter 7

Topologically certified approximation of
umbilics and ridges on polynomial
parametric surfaces

In the context of polynomial parametric surfaces, we make two contributions for the computation of ridges. First,
by instantiating to the polynomial setting the global structure theorem of ridge curves proved in the former chap-
ter, we develop the first certified algorithm to produce a topological approximation of the curveP encoding all
the ridges of the surface. The algorithm exploits the singular structure ofP —umbilics and purple points, and
reduces the problem to solving zero dimensional systems using Gröbner basis. Second, for cases where the zero-
dimensional systems cannot be practically solved, we develop a certified plot algorithm at any fixed resolution.
These contributions are respectively illustrated for Bezier surfaces of degree four and five.

7.1 Introduction

7.1.1 Previous work

Up to our knowledge, no algorithm reporting ridges in a certified fashion has been developed as of today. Most
contributions deal with sampled surfaces known through a mesh, and a complete review of these contributions can
be found in chapter 5. In the following, we focus on contributions related to parametric surfaces.

Reporting umbilics. Umbilics of a surface are always traversed by ridges, so thatreporting ridges faithfully
requires reporting umbilics. To do so, Morris [Mor90] minimizes the functionk1− k2, which vanishes exactly at
umbilics. Meakawa et al. [MWP96] define a polynomial system whose roots are the umbilics. This system is
solved with therounded interval arithmetic projected polyhedron method. This algorithm uses specific properties
of the Bernstein basis of polynomials and interval arithmetic. The domain is recursively subdivided and a set of
boxes containing the umbilics is output, but neither existence nor uniqueness of an umbilic in a box is guaranteed.

Reporting ridges. The only method dedicated to parametric surfaces we are aware of is that of Morris [Mor90,
Mor96]. The parametric domain is triangulated and zero crossings are sought on edges. Local orientation of
the principal directions are needed but only provided with aheuristic. This enables to detect crossings assuming
(i)there is at most one such crossing on an edge (ii)the orientation of the principal directions is correct. As this
simple algorithm fails near umbilics, these points are located first and crossings are found on a circle around the
umbilic.

7.1.2 Contributions and chapter overview

Consider a parameterized surfaceΦ(u,v), the parameterization beingpolynomialwith rational coefficients. LetP
be the curve encoding the ridges ofΦ(u,v). We aim at studyingP on the compact box domainD = [a,b]× [c,d].
We know from chapter 6 that curveP is a singular curve defined by a polynomialP with rational coefficients.
Ideally, we would like to produce a topologically certified approximation ofP. Given a real algebraic curve, the
standard way to approximate it consists of resorting to the Cylindrical Algebraic Decomposition (CAD). Running
the CAD requires computing singular points and critical points of the curve —points with a horizontal tangent.
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Theoretically, these points are defined by zero-dimensional systems. Practically, because of the high degree of the
polynomials involved, the calculations may not go through.Replacing the bottlenecks of the CAD by a resolution
method adapted to the singular structure ofP, we make two contributions:

1. First, we develop an algorithm producing a graphG embedded in the domainD , which is isotopic to the
curveP of ridges inD . The key points are twofold:

(a) no generic assumption is required, i.e. several critical or singular points may have the same horizontal
projection;

(b) no computation with algebraic numbers is involved.

If singular and critical points can be computed —in a reasonable amount of time, the method is effective.

2. Second, if singular or critical points cannot computed ina reasonable amount of time, we develop a certified
plot algorithm at any fixed resolution: we subdivideD into pixels, a pixel being lit iff the curve intersects it.

The chapter is organized as follows. Notations are presented in section 7.2. The pre-requisites on ridges are
recalled in section 7.3. Section 7.4 provides a note on methods for approximating implicit plane curves. Section
7.5 presents the main algebraic tools used by our algorithms, these algebraic methods are further explained in
appendix 7.11. The main difficulties of CAD based algorithmsare discussed in section 7.6. Certified topological
approximation and the certified plot are developed in sections 7.7 and 7.8, and illustrated in section 7.9.

7.2 Notations

For a bivariate functionf (u,v), the partial derivatives are denoted with indices, for example fuuv = ∂ 3 f
∂ 2u∂v

. The

quadratic form induced by the second derivatives is denotedf2(u,v) = fuuu2 + 2 fuvuv+ fvvv2. The discrimi-
nant of this form is denotedδ ( f2) = f 2

uv− fuu fvv. The cubic form induced by the third derivatives in denoted
f3(u,v) = fuuuu3 + 3 fuuvu2v+ 3 fuvvuv2 + fvvvv3. The discriminant of this form is denotedδ ( f3) = 4( fuuufuvv−
f 2
uuv)( fuuvfvvv− f 2

uvv)− ( fuuufvvv− fuuvfuvv)
2.

Let f be a real bivariate polynomial andF the real algebraic curve defined byf . A point (u,v) ∈ C2 is called

• a singular point ofF if f (u,v) = 0, fu(u,v) = 0 and fv(u,v) = 0;

• a critical point ofF if f (u,v) = 0 and fu(u,v) = 0 and fv(u,v) 6= 0 (such a point has an horizontal tangent);

• a regular point ofF if f (u,v) = 0 and it is neither singular nor critical.

If the domainD of study is a subset ofR2, byfiberwe refer to a cross section of this domain at a given ordinate
or abscissa.

7.3 The implicit structure of ridges, and study points

7.3.1 Implicit structure of the ridge curve

As shown in chapter 6, the ridge curveP is defined by the bivariate polynomialP(u,v). In that chapter, we
also introduce polynomialsa, b, a′ andb′, together withSignridge, p2, which are functions of the curvatures of
the surface and their first derivatives. These functions characterize the singularities and the colors ofP in the
following sense

Theorem. 16 Consider a smooth parametric surface whose parameterization is denotedΦ(u,v). There exists
polynomial functions P, p2 and Signridge so that the set of blue ridges union the set of red ridges unionthe set of
umbilics has equation P= 0. In addition, for a point of this setP, one has:

• If p2 = 0, the point is an umbilic.

• If p2 6= 0 then:

– if Signridge =−1 then the point is a blue ridge point,

– if Signridge = +1 then the point is a red ridge point,
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– if Signridge = 0 then the point is a purple point.

Following the theoretical study performed in chapter 6, theonly assumption made is that the surface admits
generic ridges in the sense that real singularities ofP satisfy the following conditions:

• Real singularities ofP are of multiplicity at most 3.

• Real singularities of multiplicity 2 are called purple points. They satisfy the systemSp = {a= b = a′ = b′ =
0, δ (P2) > 0, p2 6= 0}. In addition, two real branches ofP are passing through a purple point.

• Real singularities of multiplicity 3 are called umbilics. They satisfy the systemSu = {p2 = 0} = {p2 =
0,P= 0,Pu = 0,Pv = 0}. In addition, ifδ (P3) denote the discriminant of the cubic of the third derivatives of
P at an umbilic, one has:

– if δ (P3) > 0, then the umbilic is called a 3-ridge umbilic and three realbranches ofP are passing
through the umbilic with three distinct tangents;

– if δ (P3) < 0, then the umbilic is called a 1-ridge umbilic and one real branch ofP is passing through
the umbilic.

As we shall see in section 7.7, these conditions are checked during the processing of the algorithm.

7.3.2 Study points and zero dimensional systems

As recalled in introduction, the most demanding task to certify to topology of a real algebraic curve consists of
isolating its real singular and critical points. For our problem, the singular and critical points ofP have a well
known structure which can be exploited. More precisely: we successively isolate umbilics, purple points and
critical points. As a system defining one set of these points also include as solution the points of the previous
system, we use a localization method to simplify the calculations (see theorem 9). The points reported at each
stage are characterized as roots of a zero-dimensional system —a system with a finite number of complex solutions,
together with the number of half-branches of the curve connected to each point. In addition, points on the border
of the domain of study need a special care. This setting leadsto the definition ofstudy points:

Definition. 17 Study points are points inD which are

• real singularities ofP, denoted Su∪Sp , with Su = S1R∪S3R and

– S1R = {p2 = P = Pu = Pv = 0,δ (P3) < 0} (1-ridge umbilics)

– S3R = {p2 = P = Pu = Pv = 0,δ (P3) > 0} (3-ridges umbilics)

– Sp = {a= b= a′= b′= 0, δ (P2) > 0, p2 6= 0}= {a= b= a′= b′= 0, δ (P2) > 0}\Su (purple points)

• real critical points ofP in the v-direction (i.e. points with a horizontal tangent which are not singularities
of P) defined by the system
Sc = {P = Pu = 0,Pv 6= 0} (critical points);

• intersections ofP with the left and right sides of the boxD satisfying the system

Sb = {P(a,v) = 0, v∈ [c,d]}∪{P(b,v) = 0, v∈ [c,d]}. Such a point may also be critical or singular.

7.4 Note on methods for approximating implicit plane curves

In this section, we review classical methods aiming at computing an approximationG of a plane curveP = {P=
0}. Algorithms providing topological guarantees in the non-singular case use interval analysis or some additional
knowledge on the functionP. The singular case is completely handled only for algebraiccurves. Our description of
these algorithms assumes some familiarity with the notion of local feature size[AB99], and isotopic approximation
[APR03].

Let P : D ⊂ R2 −→ R be a continuously differentiable function. Assume the 0-level set ofP defines a curve
P = {(u,v) ∈ R2;P(u,v) = 0} with potentially some isolated singularities. The purposeis to give a description
of the curveP. This description can simply be a subset ofD enclosingP or a piecewise linear graphG . From
a topological point of view, one expectsG to be isotopic toP. From a geometrical point of view, one expectsP

andG to be close for some distance.
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7.4.1 Marching cubes and relatives

The Marching cube algorithm discretizes the domainD with a regular square grid. An intersection between the
curveP and an edge of a cell is detected if the sign ofP changes at the vertices. The approximationG is defined
from intersections along edges.

The main advantage of the methods is to require a mere evaluation of P. The drawbacks are that the connection
of intersection points in a grid cell can be ambiguous, and that some parts of the curve can be merged or missed
since the sign change test counts the number of intersectionpoints modulo two. If the curve has no singularity and
one has a lower bound on the local feature size of the curve, these two problems can be overcome and a graphG

isotopic toP can eventually be found. It is indeed sufficient to increase the precision of the grid so as to match
the bound onlfs. But then, one faces the question of adaptability since manygrid cells are not intersected by the
curve. Continuation methods, which consist of tracing the connected components from seed points, can overcome
this problem but they need at least one starting point on eachconnected component.

7.4.2 Interval analysis

Interval analysis consists of using inclusion functions computing lower and upper bounds on the functions manip-
ulated. The simplest idea is to recursively subdivide the domainD in regions and evaluatef on these regions with
an inclusion function. Regions where 0 does not belong to theinterval evaluation of the function are certified not
to be intersected by the curve. One the other hand, regions where 0 belongs to the evaluation may or may not be
intersected by the curve, depending on how sharp the evaluation has been done.

This method has been improved to certify the topology ofP. The idea consists of adding the requirement
that on each region intersected by the curve, the curve is thegraph of a function [Sny92, PV04]. This requires
controlling the gradient ofP on each region with another inclusion function. On such a region, the portion ofP
is approximated by polygonal lines and a graphG is constructed. The method defines a set of boxes certified to
enclose all parts of the curve, and a quad-tree based recursive subdivision adapts the search to the curve.

If the curve has no singularity, the method provides a stopping criteria for the subdivision process, and certifies
thatG is isotopic toP. Moreover, some conditions may be added to the subdivision criteria to provide a better
geometric approximation [LOF02].

Unfortunately, even in the polynomial case, calculations with inclusion functions are prohibitive for high degree
polynomials. Additionally, singular curves cannot be handled since the gradient of the function vanishes at singular
points —the curve cannot be locally defined by a graph.

7.4.3 Restricted Delaunay diagrams

These algorithms [Che93, BO03] use properties of Delaunay and Voronoi diagram. Given samples located on the
curve, the graphG is defined as the Delaunay diagram restricted to the curve (the restricted Delaunay diagram
consists of Delaunay edges whose dual Voronoi edges intersect the curveP). If a lower bound on the local feature
size is known, these methods guarantee that upon termination, the graphG is isotopic toP, and thatG is in a
ε−neighborhood ofP.

The main advantage of these methods is to use a simple predicate —reporting whether a line-segment intersects
the curve. Moreover, adaptive versions of the algorithm guarantee that locally, the sizes of simplices match the
local feature size.

However, curves with singularities are not handled, and thelower bound onl f s is difficult (if not impossible)
to compute in practice. To overcome the computation of thel f s, an alternative criteria is proposed in [CDRR04]
requiring the computation of the critical points of the curve with respect to a given direction of projection.

7.4.4 Using Morse theory

If the singularities of the functionP are known and non-degenerate, classical and stratified Morse theory can be
used [BCSV04]. A triangulation of the ambient space is constructed so that the 0-level set of the piecewise linear
interpolation ofP is isotopic toP. Eventually this 0-level set is meshed and a bound on the Hausdorff distance
between the two curves is derived.
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7.5 Some Algebraic tools for our method

In this section, we sketch the two algebraic methods ubiquitously called by our algorithms. More details are
provided in appendix 7.11.

7.5.1 Zero dimensional systems

In our algorithms, we will need to represent solutions of zero-dimensional systems depending on two or more
variables. We use the so called Rational Univariate Representation of the roots [Rou99], which can be viewed as a
univariate equivalent to the studied system.

Given a zero-dimensional systemI =< p1, . . . , ps > where thepi ∈Q[X1, . . . ,Xn], a Rational Univariate Repre-

sentation of V(I) has the following shape :ft(T) = 0,X1 =
gt,X1(T)

gt,1(T) , . . . ,Xn =
gt,Xn(T)

gt,1(T) , whereft ,gt,1,gt,X1, . . . ,gt,Xn ∈
Q[T] (T is a new variable). It is uniquely defined w.r.t. a given polynomial t which separatesV(I) (injective on
V(I)), the polynomialft being necessarily the characteristic polynomial ofmt (the multiplication operator by the
polynomialt) in Q[X1, . . . ,Xn]/I [Rou99]. The RUR defines a bijection between the roots of the systemI and those
of ft preserving the multiplicities and the real roots :

V(I)(∩R) ≈ V( ft )(∩R)
α = (α1, . . . ,αn) → t(α)

(X1(α) =
gt,X1(t(α))

gt,1(t(α)) , . . . ,Xn(α) =
gt,Xn(t(α))

gt,1(t(α)) ) ← t(α)

There exists several ways for computing a RUR. One can use thestrategy from [Rou99] which consists of
computing a Gröbner basis ofI and then to perform linear algebra operations to compute a separating element as
well as the full expression of the RUR. The Gröbner basis computation can also be replaced by the generalized
normal form from [MT05b]. There exists more or less certifiedalternatives such as the Geometrical resolution
[GLS01] (it is probabilistic since the separating element is randomly chosen and its validity is not checked, one
also loses the multiplicities of the roots) or resultant based strategies such as [KOR05].

7.5.2 Univariate root isolation

This second tool is used to analyze fibers i.e. cross sectionsof D at a given ordinate or abscissa, and requires
isolating roots of univariate polynomials whose coefficients are rational numbers or intervals. The method uses
the Descartes rule and is fully explained in [RZ03]. The algorithm is based on a recursive subdivision of the
initial interval. If exact computations with rationals areperformed, the algorithm is proved to terminate —but
such computations may be costly. However, the structure of our problem is such that certifications can be achieved
using interval arithmetic rather than an exact arithmetic.To see how, given a polynomialP= ∑n

i=0aiui with rational
coefficients, assume we are given intervals[l i , r i ] enclosing the coefficientsai . Representing a rational number by
an interval amounts to approximating the number, and we shall assume the intervals’ widths can be made arbitrarily
small. The specifications of the algorithm [RZ03] in the caseof polynomials with intervals as coefficients are the
following :

• Input :

– Pε1 = ∑n
i=0[l i , r i ]ui a univariate polynomial with intervals[l i , r i ] of width less thanε1 as coefficients.

Notice thatPε1 can be seen as a family of polynomials parameterized by the choice of a(n+ 1)-uple
(ai)i=0...n with ai ∈ [l i , r i ];

– [a,b] an interval for the variableu;

– a precisionε2 for the interval arithmetic computations. (This is the precision used to represent the
intervals’ boundaries.)

• Output :

– a listLi of intervals with rational bounds containing a unique real root ofPε1 (that is any polynomial of
the family has a unique real root in each of these intervals);

– a list Le of interval with rational bounds where no decision was possible —i.e. the Descartes rule of
sign cannot be applied because signs of interval coefficients are not defined;

– all the elements ofLi andLe are intervals contained in]a,b[;
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– a real root ofPε1 in ]a,b[ is represented by an interval ofLi or Le;

According to [RZ03],Le is not empty only in one of the following situations :

• there exists a polynomial in the family of polynomialPε1 which has a multiple root in]a,b[;

• the precisionε2 of the interval arithmetic used for the computation is not sufficient;

In the present chapter, we need to solve two kinds of problems: isolating all the solutions of a polynomial
with rational coefficients; and isolating all the simple roots of a polynomial whose coefficients are intervals —of
arbitrary length, knowing intervals which separate the multiple roots from the simple ones.

In the first case, the square free part of the polynomial is computed so that it has no multiple root. Hence both
problems become equivalent if we use interval arithmetics:we need to isolate all roots ofP on the interval[a,b]
containing no multiple roots ofP. This can straightforwardly be done running the previous algorithm forPε1. If
the listLe is empty we are done, otherwise the algorithm is run forPε1/2 andε2/2. The termination of this process
is proved in [RZ03].

7.5.3 About square-free polynomials

Many computations suppose that the considered polynomialsare square-free, replacing them, when needed, by
their square-free part. In our algorithms, we use interpolation based algorithms (multi-modular, Hensel lifting,
etc.) in the univariate case as well as in the bivariate case (default strategy in most computer algebra systems). One
key advantage of such methods is that they detect quickly that a polynomial is square-free by solving a simpler
problem (univariate problem in the bivariate case, computation modulo a prime number in the univariate case). In
particular, this first part of the computation can be used to test if a polynomial is square-free or not.

In the univariate case for example, if a polynomial is square-free modulo a prime number which does not divide
its leading coefficient, then is is square-free.

Thus, using algorithms based on interpolation strategies,the overall cost of the computations for testing if a
polynomial is square-free (or to compute its square-free part when it is not) is negligible compared to the rest.
(With a standard variant using the Euclidean algorithm, onewould perform, in average,O(d2) binary operations,
d being the degree of the polynomial.)

In the few cases where the computation of a square-free part is non trivial, the computing time for interpo-
lation based methods is, in average, proportional to the size of the result and polynomial in the size (degree and
coefficients sizes) of the input. For example, in the univariate case, a naive variant will run Euclid’s algorithm
modulo some prime numbers (O(d2) binary operations for a polynomial of degreed) until the product of these
prime numbers exceeds the size of the coefficients in the result and finally will recover the result using the Chinese
remainder theorem). Since the non trivial cases are few, these computations do not represent a blocking step in the
whole algorithms of the present chapter.

7.6 On the difficulty of approximating algebraic curves

The standard way to approximate algebraic curves is to resort to the CAD (Cylindrical Algebraic Decomposition).
In this section, we recall the main steps of such strategies to approximateP and discuss the major difficulties of
algorithms like [GVN02]. In section 7.7 we will show how to keep track of the specific implicit structure of ridges
(see chap. 6) to optimize the process.

The CAD has been introduced in [Col75]. Basically, a CAD adapted to a set of multivariate polynomials
is a partition of the ambient space (Rn if the polynomials depends onn variables) into cells (connected subsets
with a trivial topology) where the signs of the considered polynomials are all constant. Such a general method
can be adapted to compute a graph reporting the topology of 2-D or 3-D curves —see respectively [GVN02] and
[GLMT04]. The following give the basic principles of the method.

Given any implicit curveP(u,v) = 0, one considerP as a univariate polynomial inu (or v) and study the values
of v (or u) for which the number of roots ofP varies. Whenv varies, a root ofP may "go to infinity" or become
singular. The first case corresponds to the values ofv for which the leading coefficient ofP vanishes and the second
case to the values ofv for which the discriminant with respect tou vanishes (v-coordinates of singular points and
critical points with respect to the projection on thev-axis). Both sets of values can be expressed as the (real) roots
of a univariate polynomialc(v) which can be explicitly computed fromP. When restricted to a cylinder between
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the fibers over two consecutive real roots ofc(v), P(u,v) = 0 has the topology of a trivial covering. Using the CAD
to approximate an algebraic curve requires mainly three stages.

In the following, we consider there is no (horizontal) asymptotes: no roots to the leading coefficient with
respect to the variableu. A change of coordinate is always able to transform the curvein such a configuration and
anyways, as we will see later, one can easily avoid such an assumption when studying the curve in a compact box.

First stage. Produce thev-coordinates of the singular points and the critical pointswith respect to the projection
on thev-axis. Thesev-coordinates are the real rootsα1, ..,αs of the discriminant ofP w.r.t. u, denoted byCritu.

Second stage. Consists of building the fiber above eachv-coordinate of critical and singular points. This calcu-
lation involves polynomials whose coefficients are algebraic numbers, so as to isolate the solutions in each fiber
and at least discriminate the multiple points from the simple points. More formally, this requires solving:

• L-1a. Report the simple real roots ofP(u,αi), i = 1..s;

• L-1b. Report the multiple real roots ofP(u,αi), i = 1..sand their multiplicity;

Note that theu-coordinates of the critical and singular points are the multiple roots of the polynomialsP(u,αi).

Third stage. Finally, the connection phase consists of connecting points from fibers. This requires:

• Finding the real roots ofP(u,βi), i = 0..s, βi being any arbitrary point in]αi ,αi+1[, with the convention
α0 =−∞ andαs+1 = +∞.

• Finding the number of half branches which connect to the realroots ofP(u,αi), i = 1..s in order to connect
each real root ofP(u,βi), i = 0..s, to a real root ofP(u,αi), i = 0..sand to a real root ofP(u,αi+1), i = 0..s.

These three stages face four major difficulties.

Computing the discriminant Critu. For large polynomials, the first difficulty comes from the calculation of the
discriminant with respect tou, which may be unpractical. In section 7.7, we shall face thisdifficulty by sequentially
reporting study points independently and thus decreasing strongly the degrees of the involved polynomials.

Isolating the roots ofP(u,αi). The second difficulty comes from the isolation of the roots ofP(u,αi), αi being a
real root ofCritu and the computation of their multiplicities. Sinceαi is an algebraic number, there are three main
ways to certify such a computation:

• (i) use an approximated representation of the real algebraic numbers involved such as floating point num-
bers or intervals. It then becomes possible to isolate some of the simple real roots ofP(u,αi). Managing
correctly the precision of the approximations as well as thenumerical errors during the computations, one
can hope being able to isolate all the simple real roots ofP(u,αi). However, we are not aware of any general
implementation of this strategy.

• (ii) use an exact representation of the real algebraic numbers involved – for example an interval and a
polynomial to refine it to an arbitrary precision, or Thom’s coding of the roots– and apply classical algorithms
with the induced arithmetic such as Sturm-habicht sequences and sub-resultants algorithms for computing
the roots ofP(u,αi) [BPR03] for details. For large problems, the size of the polynomials involved and the
cost of exact arithmetic over real algebraic numbers prevents this solution from being practical.

• (iii) solve the zero-dimensional systemP(u,v) = 0,Critu(v) = 0. This third strategy computes directly the
2D representation of the singular and critical points. On the one hand, the basic computations may be more
difficult, but in the other hand, the operations using real algebraic numbers are simple to perform (only
evaluates polynomial at real algebraic numbers). In other words, one may increase the number of arithmetic
operations but decrease their cost.
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Genericity assumption. In order to avoid difficult computations in the cases where itis not possible to compute
the multiplicities of the roots at the second stage of the previous algorithm or to perform computations using the
strategy (ii), most recent algorithms such as [GVN02] or [GLMT04] suppose that the curve is ingeneric position
w.r.t. the coordinate system —which means that each fiberP(u,αi) = 0 contains a unique critical or singular
point. This implies that each polynomialP(u,αi) has one and only one multiple root. In such a situation, points
of consecutive fibers corresponding toαi ,αi+1 are easily connected through points in an intermediate witness fiber
[GVN02]. (One-to-one connections are made between regularpoints, and one is left with connections between the
unique critical point of each fiberαi ,αi+1 with the remaining points of the intermediate fiber.)

The genericity hypothesis can be met through a linear changeof variables. The algorithm described in [GVN02]
or [GLMT04] provides such a generic position for the curve and this eases the computation of the roots ofP(u,αi).
In our case, the studied curves are usually in generic position and, anyways, it is also true that a randomly chosen
linear change of coordinates will put the curve in generic position with a probability one. But checking deter-
ministically that a curve is in generic position may be more costly than all the other operations and is required if
we pretend to implement a certified algorithm. For example, in [GVN02] such a test requires the computation of
some principal Sturm-Habicht coefficients ofP with respect tou which is mainly as costly as using strategy (ii) for
computing the fibers over theαi .

Moreover, one can choose not to fully certify thegeneric position(by performing a random linear change of
variables) and thus use strategy (i) to compute the fibersP(u,αi) = 0. This is suggest by [GVN02] but the way it is
done is again not certified since they use a purely numerical function ( fsolve from MAPLE software), which
can not make the distinction between a cluster of 3 simple roots and a triple point.

In addition, replacing a variable by a linear form in a huge bivariate polynomial may be a difficult task. The
sizes of the coefficients increases so that all the computations except perhaps those involving real algebraic numbers
become more difficult.

All the above problems are illustrated by the example from section 7.9 :

• we were not able to perform the generic position test;

• we were not able to compute the roots of someP(u,αi) even under the generic position assumption —in
which caseP(u,αi) has exactly one multiple root which allows to use several optimization tricks.

7.7 Certified topological approximation

In this section, we circumvent the difficulties of the CAD anddevelop a certified algorithm to compute the topology
of P.

7.7.1 Output specification

Definition. 18 Let G be a graph whose vertices are points ofD and edges are non-intersecting straight line-
segments between vertices. Let the topology onG be induced by that ofD . We say thatG is a topological
approximation of the ridge curveP on the domainD if G is ambient isotopic toP ∩D in D .

More formally, there exists a function F: D × [0,1]−→D such that:

• F is continuous;

• ∀t ∈ [0,1], Ft = F(.,t) is an homeomorphism ofD onto itself;

• F0 = IdD and F1(P ∩D) = G .

Note that homeomorphic approximation is weaker and our algorithm using a cylindrical decomposition tech-
nique actually gives isotopy. In addition, our construction allows to identify singularities ofP to a subset of
vertices ofG while controlling the error on the geometric positions. We can also color edges ofG with the color
of the ridge curve it is isotopic to. Once this topological sketch is given, one can easily compute a more accurate
geometrical picture.
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7.7.2 Method outline

Taking the square free part ofP, we can assumeP is square free. We can also assumeP has no part which is a
horizontal segment —parallel to theu-axis. Otherwise this means that a whole horizontal line is acomponent of
P. In other words, the content ofP with respect tou is a polynomial inv and we can study this factor separately
and divideP by this factor. Eventually, to get the whole topology of the curve, one has to merge the components.

The algorithm

Our algorithms consists of the following five stages:

1. Isolating study points. Study point are isolated in 2D with rational univariate representations (RUR). Study
points within a common fiber are identified.

2. Regularization of the study boxes.The boxes of study points are reduced so as to have the right number
of intersections between their border andP. This number is 6 for 3-ridge umbilic, 2 for 1-ridge umbilic,4
for a purple, 2 for others. Moreover, boxes are reduced so as to have crossings on the top and bottom sides
only. Define the number of branches coming from the top and thebottom.

3. Computing regular points in study fibers. In each fiber of a study point, theu-coordinates of intersection
points withP other than study points are computed.

4. Adding intermediate rational fibers. Add rational fibers between study points fibers and isolate the u-
coordinates of intersection points withP.

5. Performing connections. This information is enough to perform the connections. Consider the cylinder
between two consecutive fibers, the number of branches connected from above the lower fiber is the same
than the number of branches connected from below the higher fiber. Hence there is only one way to perform
connections with non-intersecting straight segments.

Key points with respect to CAD based algorithms

Our algorithm avoids the difficulties of CAD methods, and thefollowing comments are in order.

Zero-dimensional systems versus the discriminantCritu. Instead of computing thev-coordinates of all critical
and singular points at once, as done by the CAD, study points are sequentially computed directly in 2D, together
with the information required to derive the graphG .

Isolating the roots of P(u,αi). The isolation of roots of polynomials whose coefficients arealgebraic numbers
does not arise since study points are isolated in 2D in the first place. We only use the isolation of simple roots of
polynomial whose coefficients are intervals. However, we doneed to characterize the presence of multiple study
points in the same fibers, an information required by the connection process.

The connection phase without genericity assumption. Algorithms derived from the CAD have problems to
perform the proper connection between to consecutive fibersif these fibers contain more than one critical or
singular point. We alleviate this limitation using the information on the number of half-branches connected to
the point. This number is equal to 6 for a 3-ridge umbilic, 4 for a purple point and 2 otherwise. These informations
are sufficient to build the approximationG .

Complexity-wise. The advantage of the strategy is to iteratively split the problem into simpler ones, and to solve
the sub-problems directly in 2D. The main drawback of the method may be the arithmetic asymptotic complexity
upper bounds of some of the tools we use to compute and certifythe solutions of zero-dimensional systems (see
section 7.11).

Let F be a set of polynomials,mindeg(F) (resp.maxdeg(F)) the minimal (resp. maximal) degree of a polyno-
mial which belongs toF . According to [Laz83], in the case of two variables, a Gröbner basis for a Degree ordering
has at mostmindeg(F)+1 polynomials of degree less than 2maxdeg(F)−1 so that modern strategies like [Fau02]
will compute it in a polynomial time. In short, the algorithmis faster than inverting a matrix whose number of
columns is bounded by the number of possible monomials whilethe number of rows is bounded by the number of
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polynomials. Since all the other algorithms we use are also polynomial (RUR, isolation, etc.) in their input, the
full strategies we use are still polynomial.

We would like to point out that we need to compute, certify andprovide numerical approximations with an
arbitrary precision of the real roots of huge systems. Up to our knowledge, the tools we used are, at least in
practice, the most efficient ones with such specifications.

7.7.3 Step 1. Isolating study points

The method to identify these study points is to compute a RUR of the system defining them. Details of the method
are exposed in section 7.11.

The less the number of solutions of a system, the easier the computation of the RUR. Hence, we use a local-
ization method to decompose the computation of the different types of study points —see section 7.11.5. More
precisely, we sequentially solve the following systems:

1. The systemSu from which the setsS1R andS3R are distinguished by evaluating the sign ofδ (P3).

2. The systemSp for purple points.

3. The systemSc for critical points.

4. The systemSb for border points, that is intersections ofP with the left and right sides of the boxD . Solving
this system together with one of the previous identifies border points which are also singular or critical.

Selecting only points belonging toD reduces to adding inequalities to the systems and is well managed by
the RUR. According to 7.11.5, solving such systems is equivalent to solving zero-dimensional systems without
inequalities when the number of inequations remains small compared to the number of variables.

The RUR of the study points provides a way to compute a box around each study pointqi which is a product
of two intervals[u1

i ;u2
i ]× [v1

i ;v
2
i ] (see section 7.11). The intervals can be as small as desired.

The computation of the RUR of one of these systems begins withtesting if the polynomialv is separating for
the system (see 7.11 for the definition of a separating element). Note that if it is so, the solution points are in
generic position with respect to the projection on thev-axis, that is each fiber of a point contains no other point
of this system. In any case, we compute the square-free part of the minimal or characteristic polynomial of the
multiplication byv modulus the ideal generated by the system (nothing to do whenv is separating since it is the
first polynomial of the RUR) : its roots are exactly all thev-coordinates of the solutions of the system.

Until now, we only have separate informations on the different systems. In order to identify study points
having the samev-coordinate, we need to cross these informations. First we compute isolation intervals for all
thev-coordinates of all the study points together, denoteI this list of intervals. If two study points with the same
v-coordinate are solutions of two different systems, the gcdof polynomials enable to identify them:

• Initialize the listI with all the isolation intervals of all thev-coordinates of the different systems.

• Let A andB be the square free polynomials defining thev-coordinates of two different systems, andIA, IB
the lists of isolation intervals of their roots. LetC = gcd(A,B) and IC the list of isolation intervals of its
roots. One can refine the elements ofIC until they intersect only one element ofIA and one element ofIB.
Then replace these two intervals inI by the single interval which is the intersection of the threeintervals. Do
the same for every pair of systems.

• I then contains intervals defining different real numbers in one-to-one correspondence with thev-coordinates
of the study points. It remains to refine these intervals until they are all disjoint.

Second, we compare the intervals ofI and those of the 2d boxes of the study points. Let two study pointsqi and
q j be represented by[u1

i ;u2
i ]× [v1

i ;v2
i ] and[u1

j ;u
2
j ]× [v1

j ;v
2
j ] with [v1

i ;v2
i ]∩ [v1

j ;v
2
j ] 6= ∅. One cannot, a priori, decide

if these two points have the samev-coordinate or if a refinement of the boxes will end with disjoint v-intervals. On
the other hand, with the listI , such a decision is straightforward. The boxes of the study points are refined until
each[v1

i ;v2
i ] intersects only one interval[w1

i ;w2
i ] of the list I . Then two study points intersecting the same interval

[w1
i ;w2

i ] are in the same fiber.
Finally, one can refine theu-coordinates of the study points with the samevcoordinate until they are represented

with disjoint intervals since, thanks to localizations, all the computed points are distinct.
Checking genericity conditions of section 7.3.1.

First, real singularities shall be the union of purple and umbilical points, this reduces to compare the systems
for singular points and for purple and umbilical points. Second, showing thatδ (P3) 6= 0 for umbilics andδ (P2) > 0
for purple points reduces to sign evaluation of polynomialsat the roots of a system (see section 7.11.5).
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Figure 7.1: Notations for a fiber involving several critical/singular points:u1(2)
i, j are used for study points,β 1(2)

i, j for
simple points.

7.7.4 Step 2. Regularization of the study boxes

At this stage, we have computed all thev-coordinatesα1, ...,αs of all the study points{qi, j , i = 1. . .s, j = 1. . .mi}
by means of isolating intervals[v1

i ;v2
i ], i = 1..s. We have isolatedu-coordinates of themi study points in each

fiber αi by the intervals[u1
i, j ;u

2
i, j ], j = 1..mi) and we know (section 7.7.3) the number of branches which should be

connected to each of them.
Note that an intersection (inD) of P with a fiberv = v0 which is not a study point is a regular point ofP.

Hence, theu-coordinate of this point is a simple root of the univariate polynomialP(u,v0). The first additional
computation we need to do is to ensure that for each fiberP(u,αi) = 0 the isolating boxes of the study points do
not contain any regular point. It is sufficient to count the number of intersection points betweenP and the border
of the isolating box to detect if the box contains or not a regular point : such a computation remains to solve 4
univariate polynomials with rational coefficients and can be done efficiently using the algorithm from section 7.5.2.
Precisely, if the study point is a critical point, the isolating box contains no regular point if and only if the number
of points in the computed intersection is 2 (2 for a 1-ridge, 6for a 3-ridge, 4 for a purple, 2 for a non-critical nor
singular border point ). If the box contains a regular point,one use the RUR to refine the isolating box and perform
again the test : after a finite number of steps, each study point will be represented by an isolating box which do not
contain any regular point.

In addition, reducing boxes if necessary, we can also assumethe intersections on the border of the isolation
boxes only occur on the top or the bottom sides of the boxes (that is the sides parallel to theu-axis). This allows to
compute the number of half-branches connected to the top andto the bottom of each study point. For the special
case of border points, one has to compute the number of branches inside the domainD only.

7.7.5 Step 3. Computing regular points in study fibers

We now compute the regular points in each fiberP(u,αi) = 0. Computing the regular points of each fiber is now
equivalent to computing the roots of the polynomialsP(u,αi) outside the intervals representing theu-coordinates
of the study points (which contain all the multiple roots ofP(u,αi)).

Denote[u1
i, j ;u

2
i, j ], j = 1..mi the intervals representing theu-coordinates of the study points on the fiber ofαi and

[v1
i ,v

2
i ]ε an interval of lengthε containing (strictly)αi and no otherα j , j 6= i. Substitutingv by [v1

i ,v
2
i ]ε in P(u,v)

gives a univariate polynomial with intervals as coefficients we denoteP(u, [v1
i ,v

2
i ]ε). We apply the algorithm 7.5.2

for the polynomialP(u, [v1
i ,v

2
i ]ε) and on the domain∪mi

j=1[u
1
i, j ;u

2
i, j ]. We know that for everyvi ∈ [v1

i ,v
2
i ]ε the

polynomialP(u,vi) has no multiple roots on this domain. Hence the algorithm will return intervals[β 1
i, j ;β 2

i, j ], j =

1. . . l i such that forε sufficiently small and∀vi ∈ [αi ]ε , each root ofP(u,vi) belonging to[a,b] \∪mi
j=1[u

1
i, j ;u

2
i, j ] is

contained in a unique[β 1
i, j ;β 2

i, j ].
We have isolated, along each fiber, a collection of pointssi, j , i = 1. . .s, j = 1, . . . ,mi + l i , which are either

study points or regular points ofP. Each such point is isolated in a box i.e. a product of intervals and comes with
two integers(n+

i, j ,n
−
i, j) denoting the number of branches inD connected from above and from below.

7.7.6 Step 4. Adding intermediate rational fibers

Consider now an intermediate fiber, i.e. a fiber associated with v = δi i = 1. . .s− 1, with δi a rational number
in-between the intervals of isolation of two consecutive valuesαi andαi+1. If the fibersv = c or v = d are not
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fibers of study points, then they are added as fibersδ0 or δs.
Getting the structure of such fibers amounts to solving a univariate polynomial with rational coefficients, which

is done using the algorithm described in section 7.5.2. Thus, each such fiber also comes with a collection of points
for which ones knows thatn+

i, j = n−i, j = 1. Again, each such point is isolated in a box.

7.7.7 Step 5. Performing connections

We thus obtain a full and certified description of the fibers: all the intersection points withP and their number of
branches connected. We know, by construction, that the branches ofP between fibers have empty intersection.
The number of branches connected from above a fiber is the samethan the number of branches connected from
below the next fiber. Hence there is only one way to perform connections with non-intersecting straight segments.
More precisely, vertices of the graph are the centers of isolation boxes, and edges are line-segments joining them.

Notice that using the intermediate fibersv = δi is compulsory if one wishes to get a graphG isotopic toP. If
not, whenever two branches have common starting points and endpoints, the embedding of the graphG obtained
is not valid since two arcs are identified.

The algorithm is illustrated on Fig. 7.2. In addition

• If a singular point box have widthδ , then the distance between the singular point and the vertexrepresenting
it is less thanδ .

• One can compute the sign of the functionSignridge defined in 7.3.1 for each regular point of each intermediate
fiber. This defines the color of the ridge branch it belongs to.Then one can assign to each edge of the graph
the color of its end point which is on an intermediate fiber.

u

v

αi+1

αi

δi

v
2

i

v
1

i

Figure 7.2: Performing connections

7.8 Certified plot

In this section, we develop an algorithm to provide information of P when some of the calculations required to
certify the topology do not succeed. The information we provide consists of intersections between rational fibers
in the study box and the curve. These intersections are used to define the so-calledcertified plot. Notice that if
some calculations succeed –in particular those of umbilicsand purple points, then, the isolation boxes of these
singularities can be superimposed to the certified plot.

For simplicity, we suppose thatP is irreducible, thatP(u,v) = 0 has no isolated points, which is true under our
genericity conditions of section 7.3.1, and that the studied domain is[0,1]× [0,1]. In addition, we denote byn′ an
integer such that there does not exists a connected component of P(u,v) = 0 which is embedded in a product of
intervals of length less than 1/n′.

Certified plot with n′ known. To specify the plot, we make the following:
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Definition. 19 Given an integer n with n> n′, consider the n×n decomposition of the bounded domain[0,1]×
[0,1] into pixels, i.e. products of intervals of length1/n: {[ i

n; i+1
n ]× [ j

n; j+1
n ] i = 0. . .n−1, j = 0. . .n−1}. Also

assume each pixel has a binary attribute: lit or not.
This n× n decomposition is called thecertified plot ofP at resolution n if a pixel is lit if and only ifP

intersects the pixel. (Note that the intersection may occuronly on the border or even on a corner of the pixel).

The method reduces to finding intersections between the curve P and horizontal and vertical fibers defining
the pixels. The algorithm processing horizontal fibers is presented on Fig. 7.3. The same algorithm is used to
process the vertical lines, i.e. computations are applied to polynomialsP(i/n,v).

For eachi = 0. . .n:

1. Compute the square free part ofP(u, i/n).

2. Isolate its roots with intervals of length less than 1/n. (As recalled in section 7.5.2, the algorithm terminates
with Le = /0 since the square free part has been taken.) LetLi = {I j ; j = 1. . .mi} be the set of these
intervals.

3. For eachj = 1. . .mi

(a) If I j does not intersect a fiber in the other direction, there existsk = 0. . .n−1 such thatI j ⊂ [ k
n; k+1

n ].
The pixels containing this segment are lit (if 0< i < n these are[ k

n; k+1
n ]× [ i−1

n ; i
n] and [ k

n; k+1
n ]×

[ i
n; i+1

n ], else only one of these is in the studied domain).

(b) If I j intersects the fiberu = k/n (k = 0. . .n−1) in the other direction then

• if P(k/n, i/n) 6= 0 then its sign enable to refineI j such that it does not intersect the fiber and one
lights pixels as in step 3a —that is, we light the pixel to the right or the left ofu = k/n.

• if P(k/n, i/n) = 0 then one lights the pixels containing the point(k/n, i/n) (if this point is not on
the border of the domain, there are 4 such pixels).

Figure 7.3: Processing horizontal fibersP(u, i/n)

Certified plot with n′ unknown. If n′ is not known, one can choose an arbitraryn and apply the same strategy :
only components which are embedded into products of intervals of length< 1/n may not be represented.

7.9 Illustrations

We illustrate our algorithms for Bezier surfaces of degree four and five respectively. In both cases, the study
domain is the domainD = [0,1]× [0,1].

7.9.1 Certified topology for ridges in generic position

Given a parameterized surface, recall that certifying the topology of ridges requires going through three stages.
First, the polynomialP is computed using Maple. Second, the zero-dimensional systems defining the study points
are solved, together with the intersections betweenP and the fibers of study points and intermediate fibers. Third,
the connections between all these points are performed so asto produce the embedded graphG isotopic toP.

We illustrate this process on the Bezier surface whose control points are



[0,0,0] [1/4,0,0] [2/4,0,0] [3/4,0,0] [4/4,0,0]
[0,1/4,0] [1/4,1/4,1] [2/4,1/4,−1] [3/4,1/4,−1] [4/4,1/4,0]
[0,2/4,0] [1/4,2/4,−1] [2/4,2/4,1] [3/4,2/4,1] [4/4,2/4,0]
[0,3/4,0] [1/4,3/4,1] [2/4,3/4,−1] [3/4,3/4,1] [4/4,3/4,0]
[0,4/4,0] [1/4,4/4,0] [2/4,4/4,0] [3/4,4/4,0] [4/4,4/4,0]




Alternatively, this surface can be expressed as the graph ofthe total degree 8 polynomialh(u,v) for (u,v) ∈ [0,1]2:

h(u,v) =116u4v4−200u4v3 +108u4v2−24u4v−312u3v4 +592u3v3−360u3v2 +80u3v+252u2v4−504u2v3

+324u2v2−72u2v−56uv4+112uv3−72uv2+16uv.
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The computation of the implicit curve has been performed using Maple 9.5 —see the previous chapter, and
requires less than one minute. It is a bivariate polynomialP(u,v) of total degree 84, of degree 43 inu, degree 43
in v with 1907 terms and coefficients with up to 53 digits.

The study pointsSu, Sp andSc were computed using the softwares FGB and RS (http://fgbrs.lip6.fr).
These systems being in shape position —cf appendix 7.11.3, the RUR can be computed as shown in [Rou99].
Alternatively, Gröbner basis can be computed first using [Fau99] or [Fau02]. We tested both methods and the
computation time for the largest systemSc does not exceed 5 minutes. Table 7.1 gives the main characteristics of
these systems.

Figure 7.4 displays the topological approximation graph ofthe ridge curve in the parametric domainD com-
puted with the algorithm of section 7.7. The surface and its ridges are displayed on Fig. 7.5. To avoid occlusion
problems of lifted ridge segments by the surface, we lifted on the surface the points lit by the algorithm from
section 7.8 rather than the ridge segments of Fig. 7.4.

There are 19 critical points (black dots), 17 purple points (pink dots) and 8 umbilics, 3 of which are 3-ridge
(green) and 5 are 1-ridge (yellow). Figure 7.6 displays on the left two close-ups of the bottom left 3-ridge umbilic,
and on the right a more readable sketch. One can recognize an unsymmetric umbilic, that is a 3-ridge umbilic
where the three blue branches are followed by the three red ones round the umbilic. The other 3-ridge umbilics are
symmetric, that is branches alternate colors round the umbilic.

System # of roots∈C # of roots∈ R # of real roots∈D

Su 160 16 8
Sp 749 47 17
Sc 1432 44 19

Table 7.1: characteristics of zero dimensional systems

On this example, the discriminant with respect tou has degree 3594 inv and coefficients with up to 3418 digits.
CAD based strategies require solving polynomials of degree43 with coefficients in a field extension defined by
an irreducible polynomial of degree 1431 with coefficient of1071 digits. Up to our knowledge, none of the best
existing software or libraries can perform such a computation in a reasonable time.

7.9.2 Certified plot

We provide a certified plot of the ridges for the degree 5 Bezier surface defined by the height function

h′(u,v) =−587u4v3−0.15u−0.5v−469.5u4v4 +1835u3v3 +353.3u5v4−213.55u5v5−1627u3v2 +407.5u3v

−1642u2v3 +1222u2v2−304u2v+0.5u2+1.8v2−1.4u3−2.5v3+465uv3−308uv2+76.5uv

+1.5u4+808u4v2−205.5u4v−401.5u3v4 +826u2v4 +1.1v4−309.75uv4−68.4u5v3−0.51u5

+0.09v5−96.9u5v2 +26.1u5v+452.75u4v5−213.3u3v5−101.9u2v5 +76.2uv5+0.05.

The ridge curve has total degree 110 and 3245 terms, it requires about 15 minutes to be computed with Maple.
The system for umbilics has been computed and there are 9 solutions in the domainD . The informations to build
a topological approximation cannot be obtained in reasonable time, hence we only provide a certified plot. Figure
7.7 displays this certified plot and umbilics on the domainD , this 512×512 resolution plot is computed in less
than one minute. Figure 7.8 displays the certified plot lifted on the surface.
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Figure 7.4: Isotopic approximation of the ridge curve with 3-ridge umbilics (green), 1-ridge umbilics (yellow),
purple points (pink) and critical points (black).

Figure 7.5: Plot of the degree 4 bivariate Bezier surface with ridges and umbilics
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(a)

(b)

(c)

Figure 7.6: Close-up on the unsymmetrical umbilic of Fig. 7.4 —bottom left umbilic: (a,b)zooms of the isotopic
approximation (c)corresponding arrangement of ridges
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Figure 7.7: Certified plot of the degree 5 Bezier surface ridges with umbilics (circles) in the parametric domain.

Figure 7.8: Certified plot of the degree 5 Bezier surface ridges with umbilics lifted on the surface.
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7.10 Conclusion

This chapter develops two algorithms to investigate the ridges of parametric algebraic surfaces. The first one
reports a topologically certified approximation of the ridges, and is the first one to achieve such a guarantee.
For the practical cases where the resolution of the systems characterizing singular and critical points cannot be
performed, the second one computes a certified plot at any fixed resolution. These algorithms are computationally
demanding in terms of algebra. They are in a sense complementary to the heuristic ones developed in chapter 5,
which are working directly on a triangulation of the surface, and provide a fast way to report non certified results.

The method developed for the computation of the topology of the ridges can be generalized for other algebraic
curves. It gives an alternative to usual algorithms based onthe CAD.

Acknowledgments.Jean-Pierre Merlet is acknowledged for fruitful discussions.
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7.11 Appendix: Algebraic pre-requisites

In this section, we summarize some basic results about Gröbner bases and their applications to solving zero-
dimensional systems (systems with a finite number of complexroots). The reader may refer to [CLO92],[BPR03].

Lets denote byQ[X1, . . . ,Xn] the ring of polynomials with rational coefficients and unknownsX1, . . . ,Xn and
S= {P1, . . . ,Ps} any subset ofQ[X1, . . . ,Xn]. A point x∈ Cn is a zero ofS if Pi(x) = 0 ∀i = 1. . .s. The ideal
I = 〈P1, . . . ,Ps〉 generated byP1, . . . ,Ps is the set of polynomials inQ[X1, . . . ,Xn] constituted by all the combinations
∑R

k=1PkUk with Uk ∈ Q[X1, . . . ,Xn]. Since every element ofI vanishes at each zero ofS, we denote by V(S) =
V(I) = {x∈ Cn | p(x) = 0 ∀p∈ I} (resp. VR(S) = VR(I) = V(I)

⋂
Rn) the set of complex (resp. real) zeroes

of S.

7.11.1 Gröbner bases

A Gröbner basis ofI is a computable generator set ofI with good algorithmical properties (as described below)
and defined with respect to a monomial ordering. In this paper, one will use the following orderings:

• lexicographic order: (Lex)

Xα1
1 · . . . ·Xαn

n <Lex Xβ1
1 · . . . ·Xβn

n ⇔∃i0≤ n ,

{
αi = βi , for i = 1, . . . , i0−1,
αi0 < βi0

(7.1)

• degree reverse lexicographic order (DRL):

Xα1
1 · . . . ·Xαn

n <DRL Xβ1
1 · . . . ·XβN

n ⇔ X((∑k αk),−αn,...,−α1) <Lex X((∑k βk),−βn,...,−β1) (7.2)

Lets define the mathematical object “Gröbner”:

Definition. 20 For any n-upleµ = (µ1, . . . ,µn) ∈ Nn, let denote by Xµ the monomial Xµ1
1 · . . . ·X

µn
n . If < is

an admissible (compatible with the multiplication) monomial ordering and P= ∑r
i=0aiXµ(i)

any polynomial in

Q[X1, . . . ,Xn], we define:LM(P,<) = maxi=0...r , < Xµ(i)
(leading monomial of P w.r.t.<), LC(P,<) = ai with

LM(P,<) = Xµ(i)
(leading coefficient of P w.r.t.<) andLT(P,<) = LC(P,<)LM(P,<) (leading term of P wrt<).

Definition. 21 A set of polynomials G is a Gröbner basis of an ideal I wrt to a monomial ordering< if for all
f ∈ I there exists g∈G such that LM(g,<) divides LM( f ,<).

Given any admissible monomial ordering< one can easily extend the classical Euclidean division toreducea
polynomialp by another one or, more generally, by a set of polynomialsF , performing the reduction wrt to each
polynomial ofF until getting an expression which can not be reduced anymore. Lets denote such a function by
Reduce(p,F,<) (reduction of the polynomialp wrt F). Unlike in the univariate case, the result of such a process
is not canonical except ifF = G is a Gröbner basis:

Theorem. 17 Let G be a Gröbner basis of an ideal I⊂Q[X1, . . . ,Xn] for a fixed ordering<.

(i) a polynomial p∈Q[X1, . . . ,Xn] belongs to I if and only if Reduce(p,G,<) = 0,

(ii) Reduce(p,G,<) does not depend on the order of the polynomials in the list G,thus, this is a canonical
reduced expression modulo I.

Gröbner bases are computable objects. The most popular method for computing them is Buchberger’s algo-
rithm ([BCL82, Buc85]). It has several variants and it is implemented in most of general computer algebra systems
like Maple or Mathematica. The computation of Gröbner basesusing Buchberger’s original strategies has to face
to two kind of problems :

• (A) arbitrary choices : the order in which are done the computations has a dramatic influence on the com-
putation time; Precisely, one computeG by increasing the set of initial polynomials, adding so called
S-polynomials (spol<(p,q) = COF<(p,q)

LT(p) p− COF<(p,q)
LT(q) q,COF<(p,q) = LCM(LT<(p),LT<(q)) where LCM

stands for “least common multiple”) until all the possibleS-polynomials of polynomials ofG reduce to 0
moduloG (Reduce(spol<(p,q),G,<) = 0).
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• (B) useless computations : the original algorithm spends most of its time in computing 0 (at each step, most
of the newS-polynomials do reduce to zero in a naive algorithm).

For problem (A), J.C. Faugère proposed ([Fau99] - algorithmF4) a new generation of powerful algorithms ([Fau99])
based on the intensive use of linear algebra techniques. In short, the arbitrary choices are left to computational
strategies related to classical linear algebra problems (matrix inversions, linear systems, etc.). For problem (B),
J.C. Faugère proposed ([Fau02]) a new criterion for detecting useless computations

We pay a particular attention to Gröbner bases computed for elimination orderings since they provide a way
of "simplifying" the system (an equivalent system with a structured shape). For example, a lexicographic Gröbner
basis of a zero dimensional system (when the number of complex solutions is finite) has always the following
shape (if we suppose thatX1 < X2 . . . < Xn):






f (X1) = 0
f2(X1,X2) = 0
...
fk2(X1,X2) = 0
fk2+1(X1,X2,X3) = 0
...
fkn−1+1(X1, . . . ,Xn) = 0
...
fkn(X1, . . . ,Xn) = 0

.

(when the system is not zero dimensional some of the polynomials may be identically null). A well known property
is that the zeros of the smallest (w.r.t.<) non null polynomial define the Zariski closure (classical closure in the
case of complex coefficients) of the projection on the coordinate’s space associated with the smallest variables.

More generally, an admissible ordering< on the monomials depending on variables[X1, . . . ,Xn] is an ordering
which eliminatesXd+1, . . . ,Xn if Xi < Xj ∀i = 1. . .d, j = d + 1. . .n. The lexicographic ordering is a particular
elimination ordering.

Definition. 22 Given two monomial orderings<U (w.r.t. the variables U1, . . . ,Ud) and <X(w.r.t. the variables
Xd+1, . . . ,Xn) one can define an ordering which “eliminates“ Xd+1, . . . ,Xn by setting the so called block ordering
<U,X as follows : given two monomials m and m′, m <U,X m′ if and only if m|U1=1,...,Ud=1

<X m′|U1=1,...,Ud=1
or

(m|U1=1,...,Ud=1
= m′|U1=1,...,Ud=1

and m|Xd+1=1,...,Xn=1
<U m′|Xd+1=1,...,Xn=1

).

Two important applications of elimination theory are the “projections” and “localizations“. In the following,
given any subsetV of Cd (d is an arbitrary positive integer),V is its Zariski closure, say the smallest subset ofCd

containingV which is the zero set of a system of polynomial equations.

Proposition. 8 Let G be a Gröbner basis of an ideal I⊂Q[U,X] w.r.t. any ordering< which eliminates X. Then
G

⋂
Q[U ] is a Gröbner basis of I

⋂
Q[U ] w.r.t. to the ordering induced by< on the variables U; Moreover, if

ΠU : Cn−→Cd denotes the canonical projection on the coordinates U, V(I ∩Q[U ]) = V(G∩Q[U ]) = ΠU(V(I)).

Proposition. 9 Let I⊂Q[X], f ∈Q[X] and T be a new indeterminate, thenV(I)\V( f ) = V((I +〈T f−1〉)⋂
Q[X]).

If G′ ⊂ Q[X,T] is a Gröbner basis of I+ 〈T f − 1〉 with respect to<X,T then G′
⋂

Q[X] is a Gröbner basis of
I : f ∞ := (I + 〈T f − 1〉)⋂

Q[X] w.r.t. <X. The varietyV(I)\V( f ) and the ideal I: f ∞ are usually called the
localization of V(I) and I by f .

7.11.2 Zero-dimensional systems

Zero-dimensional systems are polynomial systems with a finite number of complex solutions. This specific case
is fundamental for many engineering applications. The following theorem shows that we can detect easily that a
system is zero dimensional or not by computing a Gröbner basis for any monomial ordering :

Theorem. 18 Let G= {g1, . . . ,gl} be a Gröbner basis for any ordering< of any system S= {P1, . . . ,Ps} ∈
Q[X1, . . . ,Xn]

s. The two following properties are equivalent :

• For all index i= 1. . .n, there exists a polynomial gj ∈G and a positive integer nj such that X
n j
i = LM(g j ,<);
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• The system{P1 = 0, . . . ,Ps = 0} has a finite number of solutions inCn.

If S is zero-dimensional, then, according to theorem 18, only a finite number of monomialsm∈ Q[X1, . . . ,Xn]
are not reducible moduloG, meaning that Reduce(m,G,<)= m. Mathematically, a system is zero-dimensional if
and only ifQ[X1, . . . ,Xn]/I is aQ-vector space of finite dimension. This vector space can fully be characterized
when knowing a Gröbner basis:

Theorem. 19 Let S= {p1, . . . , ps} be a set of polynomials with pi ∈Q[X1, . . . ,Xn] ;∀i = 1. . .s, and suppose that
G is a Gröbner basis of〈S〉 with respect to any monomial ordering<. Then :

• Q[X1, . . . ,Xn]/I = {Reduce(p,G,<) , p∈Q[X1, . . . ,Xn]} is a vector space of finite dimension;

• B = {t = Xe1
1 · · ·Xen

n , (e1, . . . ,en)∈Nn| Reduce(t,G,<)= t}= {w1, . . . ,wD} is a basis ofQ[X1, . . . ,Xn]/I
as aQ-vector space;

• D = ♯B is exactly the number of complex zeroes of the system{P= 0, ∀P∈ S} counted with multiplicities.

Thus, when a polynomial system is known to be zero-dimensional, one can switch to linear algebra methods to
get informations about its roots. Once a Gröbner basis is known, a basis ofQ[X1, . . . ,Xn]/I can easily be computed
(Theorem 19) so that linear algebra methods can be applied for doing several computations.

For any polynomialq∈Q[X1, . . . ,Xn] the decompositionq =Reduce(q,G,<)=∑D
i=1aiwi is unique (theorem 17)

and we denote by~q = [a1, . . . ,aD] the representation ofq in the basisB. For example, the matrix w.r.t.B of the

linear mapmq:

(
Q[X1, . . . ,Xn]/I −→ Q[X1, . . . ,Xn]/I
~p 7−→ −→pq

)
can explicitly be computed (its columns are the

vectors−→qwi ) and one can then apply the following well-known theorem:

Theorem. 20 (Stickelberger) The eigenvalues of mq are exactly the q(α) whereα ∈VC(S).

According to Theorem 20, the i-th coordinate of allα ∈ VC(S) can be obtained frommXi eigenvalues but
the issue of finding all the coordinates of all theα ∈ VC(S) from mX1, . . . ,mXn eigenvalues is not explicit nor
straightforward (see [AS98] for example) and difficult to certify.

7.11.3 The Rational Univariate Representation

The Rational Univariate Representation [Rou99] is, with the end-user point of view, the simplest way for repre-
senting symbolically the roots of a zero-dimensional system without loosing information (multiplicities or real
roots) since one can get all the information on the roots of the system by solving univariate polynomials.

Given a zero-dimensional systemI =< p1, . . . , ps > where thepi ∈Q[X1, . . . ,Xn], a Rational Univariate Repre-

sentation of V(I) has the following shape :ft(T) = 0,X1 =
gt,X1(T)

gt,1(T) , . . . ,Xn =
gt,Xn(T)

gt,1(T) , whereft ,gt,1,gt,X1, . . . ,gt,Xn ∈
Q[T] (T is a new variable). It is uniquely defined w.r.t. a given polynomial t which separatesV(I) (injective on
V(I)), the polynomialft being necessarily the characteristic polynomial ofmt (see above section) inQ[X1, . . . ,Xn]/I
[Rou99]. The RUR defines a bijection between the roots ofI and those offt preserving the multiplicities and the
real roots :

V(I)(∩R) ≈ V( ft)(∩R)
α = (α1, . . . ,αn) → t(α)

(
gt,X1

(t(α))

gt,1(t(α))
, . . . ,

gt,Xn(t(α))

gt,1(t(α))
) ← t(α)

For computing a RUR one has to solve two problems :

• finding a separating elementt;

• given any polynomialt, compute a RUR-Candidateft ,gt,1,gt,X1, . . . ,gt,Xn such that ift is a separating poly-
nomial, then the RUR-Candidate is a RUR.

According to [Rou99], a RUR-Candidate can explicitly be computed when knowing a suitable representation of
Q[X1, . . . ,Xn]/I :

• ft = ∑D
i=0aiT i is the characteristic polynomial ofmt . Lets denote byft its square-free part.
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• for anyv∈Q[X1, . . . ,Xn], gt,v = gt,v(T) = ∑d−1
i=0 Trace(mvti )Hd−i−1(T), d = deg( ft ) andH j(T) = ∑ j

i=0aiT i− j

In [Rou99], a strategy is proposed for computing a RUR for anysystem (a RUR-Candidate and a separating
element), but there are special cases where it can be computed differently. WhenX1 is separating V(I) and whenI
is a radical ideal, the system is said to be inshape position. In such cases, the shape of the lexicographic Gröbner
basis is always the following : 




f (X1) = 0
X2 = f2(X1)
...
Xn = fn(X1)

. (7.3)

As shown in [Rou99], if the system is in shape position,gX1,1 = f ′X1
and we havefX1 = f and fi(X1) =

gX1,Xi (X1)/gX1,1(X1)mod f . Thus the RUR associated withX1 and the lexicographic Gröbner basis are equivalent
up to the inversion ofgX1,1 = f ′X1

modulo fX1. In the rest of the paper we call this object a RR-Form of the
corresponding lexicographic Gröbner basis. The RUR is wellknown to be much smaller than the lexicographic
Gröbner basis in general (this may be explained by the inversion of the denominator) and thus will be our privileged
object. Note that it is easy to check that a system is in shape position once knowing a RUR-Candidate (and so to
check thatX1 separates V(I)): it is necessary and sufficient thatfX1 is square-free.

We thus can multiply the strategies for computing a symbolicsolution : one can compute the RR-Form Gröbner
directly using [Fau99] or [Fau02] for example or by change ofordering like in [FGLM93] or a RUR using the
algorithm from [Rou99].

7.11.4 From formal to numerical solutions

Computing a RUR reduces the resolution of a zero-dimensional system to solving one polynomial in one variable

( ft ) and to evaluatingn rational fractions (
gt,Xi (T)

gt,1(T) , i = 1. . .n) at its roots (note that if one simply want to compute

the number of real roots of the system there is no need to consider the rational coordinates). The next task is thus
to compute all the real roots of the system (and only the real roots), providing a numerical approximation with an
arbitrary precision (set by the user) of the coordinates.

The isolation of the real roots offt can be done using the algorithm proposed in [RZ03] : the output will be
a list l ft of intervals with rational bounds such that for each real root α of ft , there exists a unique interval inl ft
which containsα. The second step consists in refining each interval in order to ensure that it does not contain
any real root ofgt,1. Since ft and gt,1 are co-prime this computation is easy and we then can ensure that the
rational functions can be evaluated using interval arithmetics without any cancellation of the denominator. This
last evaluation is performed using multi-precision arithmetics (MPFI package - [RR05]). As we will see in the
experiments, the precision needed for the computations is poor and, moreover, the rational functions defined by
the RUR are stable under numerical evaluation, even if theircoefficients are huge (rational numbers), and thus this
part of the computation is still efficient. For increasing the precision of the result, it is only necessary to decrease
the length of the intervals inl ft which can easily be done by bisection or using a certified Newton’s algorithm.
Note that it is quite simple to certify the sign of the coordinates : one simply have to compute some gcds and split,
when necessary the RUR.

7.11.5 Signs of polynomials at the roots of a system

Computing the sign of given multivariate polynomials{q1, . . . ,ql} at the real roots of a zero-dimensional system
may be important for many applications and this problem is not solved by the above method. Instead of "plugging"
straightforwardly the formal coordinates provided by the RUR into theqi , we better extend the RUR by computing
rational functions which coincide with theqi at the roots ofI . This can theoretically simply be done by using the
general formula from [Rou99] :ht, j = ∑D−1

i=0 Trace(mq j t i )HD−i−1(T). One can directly compute the Trace(mq jt i )
reusing the computations already done if the (classical) RUR (without additional constraints) has already been
computed and show that as soon asl is small (at least smaller than the number of variables), it is not more costly
to compute the extended RUR than the classical one.
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Conclusion

In this thesis, two topics of the geometry of surfaces have been addressed: the local estimation of differential
properties of a smooth surface from a discretization, and the computation of the global structure of ridges of a
smooth surface.

Regarding the local estimations of differential quantities, our method uses local polynomial fitting and applies
to meshes and points clouds. The method is analyzed with synthetic data, and the asymptotic error estimates proved
are the best known so far. Although our estimation method mimics the smooth setting, hence does not define
discrete concepts, it enables the estimation of differential quantities of any order. When the fitting is conducted
with an approximation scheme, we have experimentally observed that the method has a good behavior with noisy
data.

Another approach to the estimation problem from discrete data is proposed by discrete differential geometry.
The idea is to define differential quantities on the discreteobject and develop a purely discrete theory parallel to the
smooth one. Then the problem of convergence of the discrete quantities for a sequence of discretization of a smooth
surface can be addressed. Results have been obtained for thenormal field, area, geodesics [MT02, HPW05], mean
and gauss curvature with a variational formulation [PP93],curvature tensor with a measure formulation [CSM03].
All these contributions are based on meshes, and point clouddata are not considered. Convergence theorems are
only available for first or second order differential quantities.

As the interest for point cloud data is growing, a major issuewould be to understand how far differential
geometry and statistical analysis can help. One has to take into account irregular sampling density, anisotropy and
noise. For example, the influence of the neighborhood of a point to be considered for the estimation is not well
understood [LP05]. An analysis of surface normal estimation in noisy point cloud data is proposed in [MN03].
Voting techniques propagate informations in local neighborhoods to determine the reliability of each individual
information. Normal or curvature tensor voting are well designed to identify noise and discontinuities, hence can
handle piecewise smooth objects [TM02].

Regarding the computation of global structures on surfaces, we focus on reporting the topology and a geometric
approximation of ridges. Two kinds of data have been analyzed: a mesh discretizing a smooth surface and a
parametric surface.

First, for a mesh discretizing a smooth surface, we present the first certified algorithm for extracting the ridges
of the smooth surface with guaranteed topology. The algorithm exploits the patterns made by ridges and umbilics
on generic surfaces, and dissociates the processing near umbilics and on the rest of the surface. The algorithm is
generic since the calculation of local differential quantities and the separation of umbilics are deferred to routines
that may depend from the type of smooth surface discretized by the mesh. For meshes approximating smooth sur-
faces —without access to any analytical information on the surface, we provide heuristics. For meshes discretizing
smooth surfaces whose ridges are known, experiments show that our heuristic algorithm recovers the correct topol-
ogy of ridges and umbilics. For meshes computed from scans bya surface reconstruction algorithm, experiments
show that our algorithm recovers the ridges of state-of-the-art methods (which use global fitting), while improving
running times of at least one order of magnitude and providing a more efficient filtering method.

Second, for parametric surfaces, we derive the implicit equation of the singular curve encoding the ridges in
the parametric domain. We also analyze its singularities and provide methods to identify the different types of
ridges. This formulation of the problem avoids the difficulties of the local orientation of the principal directions
of curvature. Hence it enables a global approach to ridge extraction on parametric surfaces. Finally, these results
on the structure of ridges are exploited for the special caseof polynomial parametric surfaces. As classical com-
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puter algebra tools were unable to process our large equations, we took advantage of the geometrical information
derived. We develop a specific algorithm based on rational univariate representation of zero dimensional systems,
and root isolation of univariate polynomials. This strategy avoids the costly computations with algebraic num-
bers. Indeed, our method only requires computations on polynomials with rational coefficients. The algorithm
reports a topologically certified approximation of the ridges, and is the first one to achieve such a guarantee. Once
the topology is computed, a more precise geometrical approximation can easily be obtained. Another algorithm
computes a certified plot at any fixed resolution : it is less costly in terms of computations but does not provide
topological guarantees. The results for parametric surfaces are directly applicable to Bezier surfaces ubiquitous
in CAD. It is worth noting that the method developed for the computation of the topology of the ridges can be
generalized for other algebraic curves, provided the number of real branches going through singularities can be
computed efficiently.

In conclusion, we give several efficient and certified algorithms for the extraction of ridges. The methods apply
to discrete as well as smooth data and, different levels of certification are available to satisfy the user requirements.

The interest for the analysis and the computation of global geometric properties is not new. For example, many
contributions have been done so far for the visualization ofvector fields with topological informations [DH94,
Tri02]. Nevertheless, most of these contributions are addressed in Euclidean domains and not on surfaces. In
addition, only heuristics are proposed, but algorithms providing topological guarantees or accuracy analysis are
misssing.

In a discrete setting vector fields on surfaces are analyzed with discrete Hodge decomposition [PP03], or
Morse-Smale decomposition [EHZ01] via thesimulation of differentiability paradigm. When one wants to study a
global differential property from a discretization, the first step is to analyze its stability and understand its generic
patterns. Such a method proved to be successful for the ridgeextraction as well as for the medial axis. Reporting
the homotopy type of the medial axis has been addressed in [CL05] guided by results of stability [eRS04]. For
surfaces, the principal curvature foliations are of special interest, they may be used to quadrangulate the surface
and optimize approximation [ACSD+03]. However, no certified methods are available to compute the topology of
such foliations.

Given this panorama, there is an obvious need of cooperativeresearch between mathematicians and computer
scientists to set a common framework able to address and solve problems of applied geometry.
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Summary
This research work relates to the geometrical aspects of mathematics and computer sciences.

It is motivated by applications such as computer aided design, medical imaging, scientific com-
putations and simulations or also virtual reality and multimedia. More precisely, this thesis
proposes an analysis of some local as well as global topics ofthe geometry of surfaces.

From a local point of view, the problem is the estimation of the normal, the curvatures and
quantities of higher order from points sampled on a smooth surface. A method of estimation us-
ing polynomial fitting is studied: the properties of convergence are established and an algorithm
is proposed and implemented.

From a global point of view, we analyze the lines of extreme curvature on surfaces, called
ridges. For a surface discretized by a mesh, precise sampling conditions are given, and if
they are fulfilled, an algorithm reporting a certified topological approximation of the ridges
is developed. In the case of a parameterized surface, we showthat the ridges have a global
implicit structure, and we characterize the singularitiesof this curve in the parametric domain
with zero-dimensional systems. For a polynomial parameterization, these equations are also
polynomial, and specific methods of computer algebra are developed to compute the topology
of the singular curve of the ridges.

Résumé
Ce travail de recherche porte sur les aspects géométriques des mathématiques et de l’informa-

tique. Il est fortement motivé par des applications telles que la conception assistée par ordina-
teur, l’imagerie médicale, le calcul scientifique et la simulation ou encore la réalité virtuelle et
le multimédia. Plus précisément, cette thèse propose une analyse de la géométrie des surfaces
tant d’un point de vue local que global.

Tout d’abord, étant donnée une surface lisse connue via un échantillonnage, nous étudions le
problème de l’estimation des quantités différentielles locales: normale, courbures et quantités
d’ordre supérieur. Une méthode d’estimation utilisant un ajustement polynomial est dévelop-
pée: les propriétés de convergence sont établies et un algorithme est proposé et implémenté.

D’un point de vue global, nous analysons les lignes d’extrême de courbure sur une sur-
face, appelées ridges. Pour le cas d’une surface discrétisée par un maillage, des conditions
précises d’échantillonnage sont données, et sous ces hypothèses, un algorithme produisant une
approximation topologiquement certifiée des ridges est développé. Dans le cas d’une surface
paramétrée, nous établissons que les ridges ont une structure implicite globale, et étudions les
singularités de la courbe associée dans le domaine de paramétrage en termes de systèmes zero-
dimensionnels. Pour une paramétrisation polynomiale, ceséquations sont aussi polynomiales
et des méthodes spécifiques de calcul formel sont développées pour calculer la topologie de la
courbe singulière des ridges.


