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"— Vous savez, me dit-il, les Vikings
qui avaient sillonné les mers et décou-
vert I’Ameérique, c’est un mythe allé-
gorique. Les vrais Vikings sont ceux
qui traversent des océans d’angoisse
et découvrent des terres nouvelles.
Vous étes un Viking, Rodolphe.

Il m’appelait Rodolphe parce qu’il me
connaissait déja.

— Qu’est-ce qu’il y a de vrai a décou-
vrir?

— Les seules réponses possibles ce
sont les questions, Maurice. Les vrais
Vikings, ce sont les questions. Les
réponses, c’'est ce que les Vikings se
chantent pendant la traversée pour se
donner du courage.”

PseudoEmile Ajar.



A la mémoire de Laurent.

"Je ne savais pas encore que
incompréhension va toujours plus

loin que tout le savoir, plus loin que

le génie, et que c’est toujours elle qui
a le dernier mot. Le regard de mon
frere est beaucoup plus prés de la
vérité qu’Einstein."

PseudoRomain Gary.
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Chapter 1

Thesis overview

1.1 Geometry of surfaces

Our perception of the physical world around us can be cag@thyethe surfaces of objects. We have intuitive
notions of smoothness or curvature of surfaces. In mathesyaturfaces appear as ideal objects which have
been studied by classical smooth analysis for centuriesa@s are ubiquitous in applications such as scientific
computations and simulations, computer aided design,cakithaging, visualization or computer graphics. For
instance, in virtual reality, a scene is usually modelechvabjects described by their boundary surfaces. In
geometric computer processing, surfaces have to be ded@agbdiscrete objects and many different discretizations
are used. These applications require some knowledge ofitifeeces processed: their topology, as well as local
and global descriptions from differential geometry.

Applied geometry, at the crossroads of mathematics and gtangciences, aims at defining concepts, methods
and algorithms for geometrical problems encountered ireexgental sciences or engineering. On one hand,
mathematics contribute with classical differential taqgpyl and geometry, as well as with combinatorial methods
on discrete objects. On the other hand, computer scienceswvith discrete data structures, algorithms and
complexity analysis.

With the constant improvements of technology, more and rmoreplex shapes can be processed. Real time
simulation and visualization are a great benefit to sciemckiadustry. Acquisition systems now generate huge
rough data sets that need to be structured and processedwesfpl as computer processing can be, it has its
own constraints and limitations : representations arereisand computations are done with limited numerical
precision. Hence the mathematical objects cannot be disedenaively. Interval analysis or computer algebra
are some of the new tools able to certify basic computatidisa higher level, there is a real need to develop
models of shapes rich enough to define equivalents of thetbrpooperties, but with the constraints of a computer
processing. This implies a better understanding betweesriooth and discrete worlds. On one way, how can
one transfer informations from a smooth to a discrete oBj€ut the other way, how can one retrieve information
of a smooth object from a discrete representation? The fimalsathe conception of certified algorithms in the
sense that the results come with approximation guarantees.

As surfaces are the object of our study, we first list seveeglanthey are encoded for theoretical analysis as
well as for computer processing. Second, we introduceelis¢opological and geometrical literature and discuss
the relationship between the smooth and discrete worlds.

1.1.1 Surface representations

Smooth surfaces are described either explicitly by a patemzation f : R2 — RS or implicitly as a level set
{p€R3, F(p) =0} with F : R® — R. The differential quantities are computed straightfolyain both cases,
but each model has its own advantages and drawbacks. Fam@estan implicit representation can model arbitrary
topology whereas a parametric surface always has theltiagalogy of its domain. On the other hand, modeling
a surface with multiple parametric patches offers morelfiés.

Discrete representations related to surfaces such asgoaimplicial complexes are usual objects of com-
binatorial or simplicial topology. In experimental scies¢ discrete data result from measurements. For some
specific processing, a smooth object can be discretizedcdHibiere is a need to develop data structures to encode

13



14 CHAPTER 1. THESIS OVERVIEW

and process these discrete data. For discrete surfacseapagon one can roughly distinguish the three following
cases.

Piecewise linear surfaces or meshes are given by a set ds@oid a list of facets. Such representations are
widely used in the computer graphics community. These ssmrtations are also the basic level for subdivision
surfaces used in graphic modeling.

Point clouds acquired by scanning a real object or by samglity other surface representation can be con-
sidered as a representation of a surface. Methods have lbgetoped to render such data, but most of the time
a reconstruction is further computed. The two major caiegarf such algorithms are Delaunay based methods
providing a mesh, or implicit fitting methods providing anglicit representation. Another reason to switch to an
alternative representation is that point clouds acquirigld scanners come with noise and redundant information.

Volumetric data acquired by tomography are frequent in gedmaging. For these data, an implicit repre-
sentation is computed and sometimes a mesh describing leskvis extracted with a marching cube or related
technique.

1.1.2 Geometry and topology of surfaces : smooth versus diste

In the smooth case, differential geometry and topology kr@hbich description of surfaces from metric properties
(geodesics, area, Gauss curvature) to extrinsic ones @ifigtd, principal curvatures, principal foliations, riek).
Morse theory and more generally singularity theory alsdntne study of functions and vector fields defined on
surfaces.

For discrete objects, these classical differential progeare not defined. On the other hand, discrete objects
have combinatorial properties that allow algorithmic ay@mhes to be applied. The challenges are to take ad-
vantage of this duality smooth/discrete, to study topolaggt geometry with efficient methods. It is not easy to
classify the methods where discrete and differential cptsdaterfere. We propose in the following three main cat-
egories. First, from discrete data a smooth model can bercwmtsd locally or globally, then differential concepts
are obviously defined through the model. Second, a theorysenede objects can be explored with analogs of the
smooth concepts aiming at recovering classical smoothtsdala purely discrete setting. Third, as a converse to
the first point, one can discretize a smooth model for furntinecessing with discrete methods.

From discrete data to a smooth model
For a discrete surface given as a mesh or a point cloud, onétdanally or globally the data with a smooth
surface. Differential quantities are then defined throdwse fits. With a global fitting, the initial discrete data
can even be discarded afterwards. Examples in this categeiynplicit fitting with radial basis functions [LF99],
moving least square surfaces given as stationary pointsrama[Lev03, AK04] or simply local explicit fitting by
bivariate polynomials [Pet01]. For volumetric data on leg@D grids typical in medical imaging, convolution
with Gaussian functions enable to define surfaces as let®lasel compute their derivatives straightforwardly
[MBF92]

Applications include simple visualization of the surfacighway tracing using surface normals, computation
of curvatures or extraction of higher order differentiadtigres. For data acquired with a scan of a real object, the
fit is @ more compact representation avoiding redundancy.

In practice, these methods are applied to data that do noe doom a smooth well defined object. As a
consequence there is no possible theoretical validatidgheofesults. The evaluation of the method is rather in
terms of efficiency of the algorithm. Local fittings are usyédster than global ones requiring large linear systems
to be solved. From a theoretical point a view, a method carvaleiated with synthetic data sampled on a smooth
surface. In this setting, one can compare the differentiahtjties of the original surface against those of the fitted
surface. The numerical accuracy may be expressed with leorords or with order of convergence, if a notion of
convergent sequence of discretizations is defined. Asytiof@stimates for the normal and the Gauss curvature of
a sampled surface for several methods are given in [MWO0O0s&hesults are refined for the second fundamental
form in [CSMO3] or for higher order quantities in [CP05a].

Discrete differential topology and geometry
Discrete objects such as meshes have a combinatorialgtewtd also carry geometric information. The com-
binatorial structure can be represented by a simplicialetlraomplex. The geometrical information given by
the vertex positions enables the definition of a metric arhén a non obvious way discrete notions of normals
or curvatures. Consequently, regarding topology a meshuedisdefined properties and questions on homol-
ogy, homeomorphism or isotopy can be addressed. Regardmyejry, there is no unique theory but several
approaches aiming at defining analogs of the smooth pregerti
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On a mesh viewed as a simplicial complex, homology theoryel defined. For example, the Betti numbers
can be computed and the well known Euler formula holds. Agildimme geometric ingredients such as the lengths
of edges leads to combinatorial optimization problems. &ample, in [CdVL05], an algorithm to compute
shortest loops in a given homotopy class is given. In [Fqr@8imbinatorial differential topologys defined as
the application of the standard concepts of differentigbtogy, such as vector fields and their corresponding
flows to the study of simplicial complexes. A discrete Morsadtion is defined as a real valued function on
simplices of any dimension with constraints between adijgsienplices. Finding a Morse function with the least
number of critical points [LLTO3] is rather a combinatorgalestion. In more geometrical applications, it is not
straightforward to define a Morse function from given valoesvertices or on faces such that the associated
Morse-Smale decomposition respects our geometricaltiotfiCCLO3].

The domain ofdiscrete differential geometrgims at preserving some structure present in the smootiytheo
while defining concepts in a purely discrete setting. Fomgxa, one may define Gaussian curvature in such a
way that the Gauss-Bonnet theorem remains valid. Many iboions have been done in this domain.

Straightest geodesics [PS98] are defined so that there isqaeusolution to the initial value problem for
discrete geodesics. Applications are the parallel trangpoectors and discrete Runge-Kutta integration forgect
fields on meshes. Discrete minimal surfaces and harmonatituns [PP93] are obtained through the discretization
of the Dirichlet energy. Applications are smoothing or dsimg of surfaces with discrete differential operators
[DMSBOQ].

Discrete equivalents of integrability properties of diffatial equations are presented in [BS05] for surfaces
represented by lattices. Surprisingly, this point of vidaoaenables a better understanding of the similarities
present in the smooth setting. An application is discretepdex analysis and circle packings.

Geometric measure theory is also a way to unify the smoothd&wlete aspects [Fed59, Mor]. Based upon
the normal cycle and restricted Delaunay triangulationgstimate for the second fundamental form of a surface
is developed in [CSMO3].

A more geometrical than combinatorial approach of MorsetphfBan67, EHZ01] applies to functions linearly
interpolated from values on vertices. A “simulation of diffntiability paradigm” guides the construction of a
complex with the same structural form as a smooth Morse-Smatomposition. In applications, to deal with
noisy measurements and retain most relevant informaticaiff@rent levels of details, the notion of persistence is
introduced [ELZ0Q].

The development of a coherent discrete theory independehé®smooth one may be the final achievement
and can be evaluated by its effectiveness in applicatidmeay also be desirable to formalize the links between
both settings. When a notion of convergence of a sequencsaktk surfaces to a smooth surface is defined,
one naturally expects also convergence of some propeftibe sequence to the smooth surface ones. The first
problem is to precisely characterize the required topokngy conditions on the discrete sequence. Examples of
non-convergence are the surface area of a mesh which mayne¢rge to that of the discretized surface (for
example thdampion de Schwarin [MTO02]), or the angular defect at a vertex of a triangwdativhich usually
does not provide any information on the Gauss curvaturesiitiderlying smooth surface [BCMO03]. Conditions
for convergence of the surface area of a mesh and its norrectdrviéeld versus those of a smooth surface are
considered in [MT02, HPWO05]. Convergence in a measure safitbe second fundamental form of a surface is
proved [CSMO03].

Discretization : from a smooth model to a discrete one
From a smooth model it is sometimes desirable to derive aatscepresentation for further processing such
as visualization (de Casteljau’s algorithm for Bezier aoefs), simulation with finite element methods (FEM) or
registration. Several properties are required for a dig@ion : it should be a good approximation of the smooth
object for some criterion, optimized for memory and easyaimpute. The discretization conditions are guided by
the properties of the smooth model and the constraints gidkeprocessing.

A basic problem is to mesh a level set of a smooth function thighguaranty that the topology is not modified.
Several methods exist for a non singular surface using saghphd restricted Delaunay triangulation [BOO03],
Morse theory [BCSV04] or interval analysis [PV04]. In thestricted case of a polynomial surface, computer
algebra can also handle singular surfaces [MT05a]. In exdidibther geometrical properties of the surface can be
considered. In [AB99], an error bound is proved on the noreséimate to a smooth surface sampled according
to a criterion involving the skeleton. The approximationtioé area, the normal field and the unfolding with a
triangulation is conducted in [MTO02].

Finding a mesh with the minimum number of elements and mizimgia criterion such as Hausdorff distance
or LP distance is addressed in [D’A91]. To generate a mesh for a,RR#/size and the shape of each element is
optimized according to the PDE problem to be solved [She02a]
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1.2 Estimation geometric properties : local and global aspss

Geometry of smooth or discrete surfaces can be describleel diy local properties or global ones. Local dif-
ferential properties are the tangent plane (at the firstrprtiee principal directions and curvatures (at the second
order, see Fig. 1.3), or higher order coefficients. In theamoase, all this information is encoded in the Taylor
expansion of the function whose graph locally defines thfasarin a given coordinate system. We cagksuch
a Taylor expansion and Fig. 1.1 illustrates this local agpnation. Global differential properties usually refer to
loci of points having a prescribed differential propertyaiples such loci are lines of curvature, parabolic lines
(where the Gauss curvature vanishes Fig. 1.2), ridgess(bhextremal curvature) or the medial axis (centers of
maximal spheres included in the complement of the surfa®JnHence local information is required to be able
to generate global information.

In the present work, we first investigate estimation of latifierential properties of any order. Then we study
a global differential object on surfaces : the set of linesxifemal curvature, called ridges.

Figure 1.1: The graph of jets around some vertices of a meslvaal approximation of the surface (see chap. 4).

2deys prios,, yuepuaoy|

Figure 1.2: The parabolic curves on the Apollo of Belvedeeaah by Felix Klein (from [Koe90]).

1.2.1 Estimation of local differential quantities

While local differential quantities are well defined andye&s compute on smooth surfaces, they are not well
defined for discrete surfaces. When defining a method to asidiifferential quantities on a discrete surface, a
way to evaluate the method is to compare the results obtainesme discretizations of a given smooth surface
and the actual values for this smooth surface. The sengitifithe method with respect to the properties and the
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Figure 1.3: Michelangelo’s David: principal directionsasiated withkmax Scaled bykmin (see chap. 4).

quality of the discretizations can be analyzed. The coremrg of the estimated values to the correct ones can also
be specified for some sequence of discretizations. The a@want of algorithms providing such guarantees has
been subject to intense research [Pet01], and recent aetvanuvide guarantees either point-wise (see chapter 4)
or in the geometric measure theory sense [CSMO03]. It is wooting that some widely used methods such as the
angular defect for the Gauss curvature do not provide cgeveiestimations as demonstrated in [BCMO03].

1.2.2 Estimation of global differential properties, the example of ridges

Estimating global differential loci needs reliable powise estimates, but in addition, imposes to respect (g)obal
topological constraints. These difficulties are tangilterf a practical perspective, and only few algorithms are
able to report global differential patterns with some gasga. For example, reporting the homotopy type of the
medial axis has only been addressed quite recently [CL@f]pitoblems involving homeomorphy or isotopy are
more demanding.

We focused in our work on lines axtremalcurvature on a surface, called ridges. In terms of topokdgic
guarantees, we wish to report isotopic approximations.efagquainted with extrema of curvature, first consider
the case of plane curves. Points where the curvature isneatigre called vertices, the set of centers of osculating
circles is the focal curve and, the centers of circles tahgetwo places to the curve is called the symmetry set.
These objects are related : the border points of the symrsetr{centers of circles for which the two tangent
points coincide) are the singularities of the focal curvel ¢he circles centered at these points touch the curve
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at vertices. For example, Fig. 1.4 shows the focal curve dlipse which has four cusps corresponding to the
four vertices. For surfaces, one can define a focal surfacedch principal curvature and the same properties
hold. The equivalent of vertices of a curve are lines on thiéasa corresponding to contact points with spheres
centered on the singularities of the focal surfaces. Thess kalled ridges of a surface also has an alternative
characterization : they consists of the points where ondefprincipal curvatures has an extremum along its
curvature line. Denotinfy; andk; the principal curvatures —we shall always assumekhat ko, a ridge is called
blue (red) ifk; (k) has an extremum. Moreover, a ridge is calidliptic if it corresponds to a maximum &f or a
minimum ofky, and is callechyperbolicotherwise. Ridges on an ellipsoid are displayed on Fig. ticbla6. Fig.
1.7, displaying a subset of the ridges on the David’s hehrstibites how these lines enhance the sharpest features
of a model. Ridges witness extrema of principal curvatunestheir definition involves derivatives of curvatures,
whence third order differential quantities. Moreover, thassification of ridges as elliptic or hyperbolic involves
fourth order differential quantities, so that the precisérndtion of ridges require€* differentiable surfaces.

Ridges were mentioned in 1904 by A. Gullstrand, Nobel PrazeFhysiology and Medicine, for his work
in optics where fourth order differential quantities weexassary to explain the accommodation of the eye lens
[Por01]. More recently, singularity theory allowed a pescketting to describe ridges and umbilics as special
points on these lines.

\
R
/4/

Figure 1.4: Focal curve (red) of an ellipse

Figure 1.6: Schematic view of the umbilics and the

Figure 1.5: Umbilics, ridges, and principal blue fo-  ridges (see chap. 3).
liation on the ellipsoid (see chap. 3).

1.2.3 Applications

For many applications, estimating first and second orddergiftial quantities, that is the tangent plane and
curvature-related quantities, is sufficient. In computeppics, shading algorithms require the normal vector
field. Gauss and mean curvatures are commonly used for swsé&mentation, the mean curvature vector can be
used for smoothing or denoising of surfaces. However, ligh#er local properties and global ones are also more
and more frequent. The lines of curvature are used for seifameshing with quad elements [ACSOB]. The
topology of vector and tensor fields helps scientific visaslon [DH94]. The medial axis or skeleton is used for
surface reconstruction [AB99, BCO1]. The extraction ofged is applied to the registration of medical images
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7

Figure 1.7: Filtered crest lines on a 380k pts model (see.chap

[MLD94, Fid97, PAT00], surface segmentation [SF04], faeeagnition [HGY"99] or compression of polygonal
surfaces [WBO01].

1.3 Outline and contributions

This thesis addresses topics of surface geometry from &stahation to global extraction of differential charac-
teristics. Discrete surfaces given by point clouds or mesisewvell as smooth parametric surfaces are considered.
We put the stress upon the development of algorithms pnogidstimations whose accuracies are analyzed. We
also provide algorithms for the extraction of global featuiwith guaranteed topology.

Chapter 3 is a survey of smooth surface geometry includihthalnotions needed in the sequel. Chapter 4
addresses the estimation of local differential geometrgampled surfaces. The following chapters are devoted
to the global approximation of ridges on a generic surfa@est,Rhe case of surfaces given by a mesh is analyzed
in chapter 5. Second, the implicit structure of ridges iskedrout for a general parametric surface in chapter 6.
Third, computer algebra methods are developed to compeat®pology of ridges for a polynomial parametric
surface (chapter 7).

1.3.1 Differential Topology and Geometry of Smooth Embedd# Surfaces: Selected Top-
ics

Chapter 3 surveys mathematical notions and results sedttsrer several sources. As a prerequisite for the de-
velopment of algorithms for the manipulation of surfaces,wopose a concise overview of core concepts from
differential geometry applied to smooth embedded surfaBasics of singularity theory and contact between sur-
faces are introduced to enable the definition of ridges. ftiqudar we recall the classification of umbilics and the
geometry of ridges as chapters 5 to 7 are dedicated to digmiextracting these features. The connection between
ridges and the medial axis is analyzed. At last, topologicgions of homeomorphy and isotopy are discussed
for embedded surfaces. This work has been accepted forcptibh in the International Journal of Computational
Geometry and Applications [CP0O5b].

1.3.2 Estimating Differential Quantities using Polynomiafitting of Osculating Jets

Chapter 4 addresses the point-wise estimation of diffexleptoperties of a smooth surface ilD3rom a mesh
or a point cloud. The method consists of fitting the local espntation of the manifold using a jet with either
interpolation or approximation. A jet is a truncated Taydapansion, and the incentive for using jets is that they
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encode all local geometric quantities —such as normal,atures, extrema of curvature. The main contribution
of this chapter is to recast the problem of estimating diffitial properties into a problem of classical numerical
analysis. Since the proposed method consists of perforgafymnomial fitting, connections with the questions of
interpolation and approximation are discussed. Reganimgnomial interpolation fitting of differential proper-
ties for a surface, our results are closely related to [MW@Dnma 4.1]. In that article, a degree two interpolation
is used and analyzed. We generalize this result for arpittagrees, with interpolation and approximation. Ap-
proximation orders of the method are proved for the estinatif any order differential quantity of the surface.
In particular estimations of normal, curvatures and déixea of curvatures are provided and will be used for the
algorithms of the next chapter on ridge extraction. Morecigady, given a parametérmeasuring the sampling
step, the main result is the following (see theorem 12) :

Theorem. 1 A polynomial fitting of degree n estimates aHy-drder differential quantity to accuracy @" k1),
In particular:

o the coefficients of the first fundamental form and the unitmavector are estimated with accuracyt®),
and so is the angle between the normal and the estimated horma

o the coefficients of the second fundamental form and the sbpgmtor are approximated with accuracy
O(h"~1), and so are the principal curvatures and directions (as lasdhey are well defined, i.e. away from
umbilics).

An algorithm to process point clouds or meshes is describddize implementation for meshes confirms the
expected asymptotic convergence results. A conferensewenf this work has been published in the proceedings
of the Symposium on Geometric Processing 2003 and a jousralon in Computer Aided Geometric Design
[CPO5a].

1.3.3 Topology driven algorithms for ridge extraction on mehes

Chapter 5 addresses the problem of ridge extraction forfasigiven as a mesh and we make two contributions.
First, for a generic smooth surface, the aim is the desorigif the topology of ridges from a mesh discretizing the
surface. Surprisingly, no method developed so far to refages from a mesh approximating a smooth surface
comes with a careful analysis, which entails that one doekmmw whether the ridges are reported in a coherent
fashion. We present a careful analysis of the orientatisuds arising when one wishes to report the ridges
associated to the two principal curvatures separately.ahladysis highlights the subtle interplay between ridges,
umbilics, and curvature lines. Finally, sampling condiand a certified algorithm are given to report umbilics
and the correct topology of ridges on the mesh. The sampbnditions require a dense enough mesh such that
(a) umbilics are isolated in patches, and outside thesénesit(h) a local orientation of the principal directions
is possible, and (c) an edge is intersected by a single ridgeghese conditions are not constructive, a heuristic
algorithm is proposed. This algorithm is implemented aresuke estimator of differential quantities provided by
chapter 4. Figures 1.8 and 1.9 prove the correctness ofdloeithim for a Bezier surface whose ridges topology is
known (see chapter 7).

Second, for a mesh which is not the approximation of a smaothse, a filtering method allows the extraction
of a subset of these lines. This subset, which has already t@asidered in medical imaging, can be used
for characterization, registration and matching of swfacFigure 1.10 illustrates the efficiency of our filtering
technique to capture significant features.

1.3.4 The implicit structure of ridges of a smooth parametrc surface

Chapter 6 provides a theoretical contribution to the anmglgé the global structure of ridges. The surface is
given by a parameterization and ridges are sought in themgree domain. As all previous works have to resort
to local orientations of the principal directions of cumvat to define ridges, they were unable to give a global
description of the ridge curve. Using an idea introducedm$6] to turn around these orientation difficulties, and
a fine analysis of the Weingarten endomorphism, we derivéntipécit equation of ridges. We also derive zero
dimensional systems coding the singularities of this cuiwee or three ridge umbilics and purple points (see Fig.
1.11). This classification of singularities is comparedi® tlassical one obtained with contact theory in [Por01].
Finally, similar computations with the second derivatieésurvatures lead to the definition of another implicit
curve whose intersections with the ridge curve identifysbecalled turning points. A turning point is a point on
a ridge where the curvature extremum changes from maximumirionum. In conclusion, we derive both the
global structure of the ridge curve and the local classificedf its singularities.
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Figure 1.8: A (4,4) degree Bezier surface (left), its ridgad umbilics on a triangulated model (60k points), view

from above (right)

4

Figure 1.9: Zoom view on two 3-ridge umbilics

1.3.5 Topologically certified approximation of umbilics ard ridges on polynomial para-
metric surfaces

Chapter 7 uses results of the previous chapter for the dpeasa of a polynomial parametric surface. Indeed,
for a polynomial parametric surface, the above mentionedons are polynomial as well. An algorithm to
compute the topology of the ridge curve is developed. Thigcdify is that even for low degree surfaces, the
polynomial defining the ridges is of rather high degree, ntben 10 times the degree of the surface. Hence
classical methods of computational algebra, based on tiveddgal algebraic decomposition [GVNO02], are not
effective. The contribution is to exploit as far as possibke geometry of the problem to be able to produce an
efficient and still certified algorithm. The method usesamadil univariate representations of zero dimensional
systems to locate the singularities in the parametric dom@ne of the main advantage of this method is that it
only requires roots isolation of univariate polynomiallwiational coefficients.

If the complexity of the surface prevents the computatiotheftopology of ridges, we also provide a plot at
any fixed resolution of the ridge curve. Examples are prayidelemonstrate the efficiency of the methods.

Results of chapters 6 and 7 have been obtained in collabonaith Jean-Charles Faugére and Fabrice Rouillier
of the SALSA project, specialists of computer algebra. Wnisk has been presented at the poster session of the
Symposium on Geometric Processing 2005 and at the workah@wmputational Methods for Algebraic Spline
Surfaces II.
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Figure 1.10: Mechanical part (37k pts): (a) All crest lings, crests filtered with the strength (state of the art) and
(c) crests filtered with our sharpness criterion. Noticé #my point on a flat or cylindrical part lies on two ridges,
so that the noise observed on the top two Figs. is unavoidihtehowever easily filtered out with the sharpness

on the bottom figure.

X N X

3-ridge umbilic 1-ridge umbilic Purple point

Figure 1.11: Singularities of the ridge curve : red and blueves distinguish extrema of the two principal curva-
tures. (left and middle) There are two types of umbilics vatie or three curves passing through and changing
color at the umbilic. (right) A crossing of a blue and a redyads called a purple point.



Chapter 2

Résumé de la these

2.1 Geéométrie des surfaces

La perception de notre environnement peut étre décritegasurfaces des objets qui nous entourent. Nous avons
des notions intuitives de régularité ou de courbure d'uméasa. En mathématiques, les surfaces apparaissent
comme des objets idéalisés qui sont étudiés depuis desssié@s surfaces sont omniprésentes dans les applica-
tions telles que le calcul scientifique et la simulation, da@eption assistée par ordinateur, I'imagerie médicale,
la visualisation ou I'informatique graphique. Par exempleréalité virtuelle, une scene est souvent composée de
surfaces décrivant le bord des objets. Lors du traitemetd géométrie par ordinateur, les surfaces doivent étre
décrites de maniére discréte et il existe différentes éisations possibles. Les applications nécessitent ume co
naissance des surfaces traitées: leur topologie, ainsiegidescriptions locales et globales issues de la géométrie
différentielle.

La géométrie appliquée, a la croisée des mathématiquesl@tfdematique, a pour objectif la définition de
concepts, méthodes et algorithmes pour la résolution dedores géométriques qui se posent en sciences expéri-
mentales ou en ingénierie. D'une part, les mathématiquesragt la géométrie et la topologie différentielles
classiques, ainsi que des méthodes combinatoires sur fis discrets. D’autre part, I'informatique apporte des
structures des données discrétes, des algorithmes ambagalyse de complexité.

Grace aux progres technologiques incessant, des formdsslermpplus complexes peuvent étre traitées. La
simulation et la visualisation en temps réel sont d’'un grismérét pour la science et I'industrie. Les systémes
d’acquisition actuels générent des ensembles de donnétes lgigantesques qui nécessitent d’étre structurés et
analysés. Aussi puissant que puisse étre le traitememiniataue, il faut tenir compte de ses propres contraintes et
limitations: les représentations sont discrétes et lesutsbont faits avec une précision numérique limitée. Ainsi
les objets mathématiques ne peuvent étre discrétisésmeie L'analyse par intervalles ou le calcul algébrique
formel font partie des nouveaux outils capables de certdigopérations de base. A un niveau plus élevé, il y
a un réel besoin de développer des modeéles de formes suffesatnniches pour pouvoir définir des équivalents
des propriétés lisses, mais adaptés aux contraintes tentiit informatique. Tout ceci plaide pour une meilleure
compréhension des interactions entre les mondes lisseagetiD’une part, comment transférer de I'information
d’un objet lisse a un objet discret? D’autre part, commeatyamer les propriétés d’'un objet lisse a partir d'une
représentation discréte? Le but final est la conceptiogdighmes certifiés, au sens ou le résultat vient avec des
garanties d’approximation.

Puisque les surfaces sont les objets de notre étude, pmmaat, nous listons différentes représentations util-
isées pour une analyse théorique ainsi que pour les besaimgrditement informatique. Deuxiémement, nous
proposons une introduction aux travaux en topologie et géaendiscrete, et discutons les relations entre les
mondes lisse et discret.

2.1.1 Représentations de surfaces

Les surfaces lisses sont décrites ou bien explicitementpaparamétrisatioh : R> — R2 ou implicitement par

un ensemble de nivedip € R3, F(p) = 0} avecF : R® — R. Les quantités différentielles sont calculables de
facon directe dans les deux cas, mais chaque modéle posstalastages et inconvénients propres. Par exemple,
une représentation implicite peut avoir une topologietealve. D’un autre point de vue, modéliser une surface
avec plusieurs paramétrisations offre plus de flexibilité.

23
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Des représentations discrétes en lien avec les surfattes gee les graphes ou les complexes simpliciaux sont
des objets usuels en combinatoire ou topologie. En sciemqaimentales, les données discrétes proviennent
de mesure. Pour les besoins d’'un traitement particulieghjet lisse peut étre discrétisé. Ainsi, il est néces-
saire de développer des structures de données pour codeitatd¢es données discrétes. En ce qui concerne les
représentations discrétes de surfaces, nous pouvonsggemssent distinguer les trois cas suivants.

Les surfaces linéaires par morceaux, ou maillages, somédopar un ensemble de points et une liste de
faces. De telles représentations sont largement utilidérs la communauté de 'informatique graphique. Ces
représentations sont également a la base des surfacesdilesabs.

Les nuages de points obtenus en scannant un objet réel ohamtifonnant une autre représentation peuvent
étre considérés comme des modéles de surfaces. Des méspéddimjues ont été développées pour la visualisa-
tion de telles données, mais dans la plus part des cas, wrestagction est calculée. Il existe deux grandes classes
d’algorithmes de reconstruction basés sur la trianguladi® Delaunay, lesquels calculent un maillage, ou basés
sur une approximation implicite lesquels calculent uneésgntation implicite de la surface. Une autre motivation
pour passer a une représentation alternative s’expliquéaparésence de bruit et la redondance d’information
contenue dans les nuages de points acquis avec un scanner.

Les données volumiques acquises par tomographie sontefnézgien imagerie médicale. Dans ce cas, une
représentation implicite est calculée, et parfois un rmgéldécrivant un ensemble de niveau est extrait avec un
algorithme de “marching cube” ou une technique similaire.

2.1.2 Géométrie et topologie des surfaces: lisse versusatet

Dans le cas lisse, la géométrie et la topologie différdrtigbermettent une description riche des surfaces allant
des propriétés métriques (géodésiques, aires, courb@autes) aux propriétés extrinseques (champs des vecteurs
normaux, courbures principales, feuilletage principdigxes d’extrémes de courbure). La théorie de Morse et
plus généralement la théorie des singularités permetiafédent I'étude de fonctions ou de champs de vecteurs
définis sur les surfaces.

Pour des objets discrets, ces propriétés différentieites@tes ne sont pas définies. D’un autre coté, les objets
discrets ont des propriétés combinatoires qui permettemtapproche algorithmique. L'enjeu est donc de tirer
partie de cette dualité lisse versus discret. |l n’est peitefae classifier les méthodes ou interférent des concepts
discrets et différentiels. Nous proposons une analyse sfimguant trois catégories principales. Premierement,
a partir de données discretes, un modéle lisse peut étréraibhascalement ou globalement, ainsi les concepts
différentiels sont bien définis sur le modéle et simplemeanidférés. Deuxiemement, une théorie sur les objets
discrets peut étre explorée avec des analogues des colisggas cherchant a retrouver des résultats de la théorie
lisse tout en restant purement dans le domaine discresigneément, a 'opposé du premier point, nous pouvons
discrétiser un modele lisse pour le traiter ensuite aveorddbodes discretes.

Des données discretes a un modele lisse.

Pour une surface discréte donnée par un maillage ou un nageidts, nous pouvons ajuster localement ou
globalementune surface lisse sur ces données. Les qaatitiégentielles sont alors définies par I'intermédiaiee d
ces ajustements. Lors d’un ajustement global, les donng&®tes initiales pourront méme étre abandonnées pour
ne garder que I'ajustement. Nous trouvons dans cette a@dge représentations implicites avec des fonctions
a base radiale [LF99], les “moving least square surfacefifii@éé par 'ensemble des points fixes d'un fonction
[Lev03, AK04] ou simplement des ajustements locaux exgglicpar des polyndmes bivariés [Pet01]. Pour des
données volumiques sur des grilles régulieres 3d, une daivmoavec des fonctions gaussiennes permet de définir
des surfaces comme ensembles de niveau et de calculer éxivéas directement [MBF92].

Parmi les applications, citons la visualisation de sudgzar lancer de rayons utilisant les normales, le calcul
des courbures ou I'extraction d’éléments caractéristqliféérentiels d’ordre supérieur. Pour des données aeguis
grace a un scanner a partir d’'un objet réel, I'ajustementresteprésentation plus compacte évitant la redondance.

En pratiques, ces méthodes sont appliquées a des donnéesargnt pas d’'un objet lisse bien défini. Ceci
implique qu’il 'y a donc pas de validation possible des hégsi obtenus. L'évaluation de ces méthodes se fait
plutdt en terme d’efficacité de I'algorithme. Les ajustetsdacaux sont en général plus rapides que les globaux
nécessitant la résolution de systémes linéaires de graillde D’'un point de vue théorique, une évaluation est
possible en considérant des données atrtificielles éclemmies sur une surface lisse connue. Dans ce cas, nous
pouvons comparer les quantités différentielles de la sarfaiginale avec celles que nous calculons sur son ajuste-
ment. La précision numérique s’exprime alors avec des Isadierreurs, ou des ordres de convergence si une
notion de convergence d’une suite de discrétisation estidédes estimations asymptotiques de la normale et de
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la courbure de Gauss sont données dans [MWO0O0]. Ces résdtatgénéralisés pour la seconde forme fondamen-
tale dans [CSMO03] ou pour des quantités d’ordre supériens l2P05a].

Topologie et géométrie différentielles discreétes.
Les objets discrets tels que les maillages possedent weéise combinatoire ainsi des informations géométriques.
La structure combinatoire peut étre représentée par unleampimplicial ou cellulaire. L'information géométri-
gue donnée par la position des sommets permet la définitiomedhétrique, ainsi que de facon indirecte et non
canonique des définitions discretes de normales et de amstbiPar conséquent, concernant la topologie, un
maillage a des propriétés bien définies et les problémesigleess d’homologie, d’homéomorphie ou d’isotopie
sont bien posés. Concernant la géométrie, il n'y a pas deithdoique mais différentes approches visant a définir
des analogues des concepts lisses.

Sur un maillage considéré comme un complexe simpliciahdatie de 'homologie est bien définie. Par exem-
ple, les nombres de Betti peuvent étre calculés et la fordilleler qui les relient est valide. En ajoutant un peu de
géométrie, comme la longueur des arétes, des problemesndisgition combinatoire apparaissent. Par exemple,
[CdVLO5] fournit un algorithme de calcul d’'un cycle de lorggur minimal dans un classe d’homotopie donnée.
Dans [For98], laopologie différentielle combinatoirest définie comme I'application des concepts classiques de
topologie différentielle, comme les champs de vecteumsieslflots, pour I'étude des complexes simpliciaux. Une
fonction de Morse discréete est une fonction a valeurs redidinie sur les simplexes avec des contraintes entre les
simplexes adjacents. Trouver une fonction de Morse avergmam de points critiques [LLTO3] est un probleme
combinatoire. Pour des applications dans un cadre plus tigue, il n’est pas aisé de définir une fonction de
Morse a partir de valeurs sur les sommets ou les faces deggaria décomposition de Morse-Smale associée soit
en accord avec notre intuition géométrique [CCLO3].

La géométrie différentielle discretepour but de préserver des structures présentes dansiie tigse tout en
définissant ses concepts dans un cadre purement discregxdé®aple, la courbure de Gauss sera définie de sorte
gu’un équivalent discret du théoréme de Gauss-Bonnetalaiter De nombreuses contributions ont été faites dans
ce domaine relativement récent.

Les "straightest geodesics” [PS98] sont définies de soreelguprobleme a valeur initiale fixée pour les
géodésiques discrétes ait une solution unique. Cette fation permet la définition du transport paralléle de
vecteurs et d’'une méthode discrete d'intégration de Rufiges sur des maillages. Les surfaces minimales et
les fonctions harmoniques discretes [PP93] sont obtenaredigcrétisation de I'énergie de Dirichlet. Parmi les
applications, nous pouvons citer le lissage ou débruitaysutlfaces avec des opérateurs différentiels discrets
[DMSBOQ].

Des équivalents discrets des propriétés d’intégrabiggétjuations différentielles sont présentés dans [BS05]
pour des surfaces représentées par des réseaux. De fapoensumte, ce point de vue permet également une
meilleure compréhension des similarités présentes damaglite lisse. Une des applications est I'analyse complexe
discrete et les pavages circulaires.

La théorie géométrique de la mesure est un moyen d'unifieadpscts lisse et discret [Fed59, Mor]. A partir
du cycle normal et de la triangulation de Delaunay resteeinbhe estimation de la seconde forme fondamentale
d’'une surface est développée dans [CSMO03].

Une approche plus géométrique que combinatoire de la thderViorse [Ban67, EHZ01] s’applique aux fonc-
tions définies par interpolation linéaire de valeurs auxrsets d’un maillage. Un paradigme de “simulation de la
différentiabilité” guide la construction d’un complexeaay les mémes propriétés structurelles qu’une décomposi-
tion de Morse-Smale classique. Dans les applications, géner les imprécisions des mesures et ne retenir que les
informations les plus pertinentes a différents niveauxétaits, une notion de persistance est introduite [ELZ00].

Le développement d'une théorie discréte cohérente et erdiamte de la théorie lisse peut étre considéré
comme un objectif final, et I'évaluation peut étre faite emsidérant son efficacité pour les applications. Il est
aussi satisfaisant de vouloir formaliser les liens entsedieux aspects. Lorsqu’une notion de convergence d’'une
suite de surfaces discrétes vers une surface lisse estedédicbnvergence de certaines propriétés de la suite vers
celles de la surface lisse peut étre espérée. La premidicullé est de caractériser la topologie nécessaire et les
conditions sur la suite de discrétisations. Des exemplasotieconvergence sont I'aire d’'un maillage qui peut
ne pas converger vers l'aire d’une surface lisse (par exeedhmpion de Schwarz dans [MT02]), ou le défaut
angulaire a un sommet d’une triangulation qui ne donne egrgépas d’information sur la courbure de Gauss
de la surface lisse sous-jacente [BCMO03]. Des conditions [@convergence de I'aire ou du champ de vecteur
normal d’un maillage vers ceux d’'une surface lisse sontidénées dans [MT02, HPWO05]. La convergence au
sens de la mesure, c’est a dire par intégration sur un dondgra seconde forme fondamentale est étudiée dans
[CSMO3].
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Discrétisation : d’'un modele lisse vers un modele discret.
A partir d’'un modele lisse il est souhaitable de construire représentation discréte pour un traitement comme la
visualisation (I'algorithme de de Casteljau pour les stefade Bézier), la simulation avec des méthodes d’éléments
finis ou le recalage. Plusieurs propriétés sont attendussedliscrétisation, elle doit approcher I'objet lisse pour
un critere donné, étre optimisée pour la mémoire, et pelecséta calculer. Les conditions de discrétisations sont
guidées par les propriétés du modeéle lisse et les contsadntéraitement envisagé ultérieurement.

Un probléme classique est celui du maillage d’'un ensemhié@au d’'une fonction lisse garantissant de ne pas
modifier la topologie. Différentes méthodes existent pawe surface non singuliére utilisant I'échantillonnage et
la triangulation de Delaunay restreinte [BO03], la thédeeviorse [BCSV04] ou 'analyse par intervalles [PV04].
Dans le cas particulier des surfaces polynomiales, legsyest de calcul algébrique formel permettent aussi de
traiter des surfaces singuliere [MT05a]. En plus de la togi@, des garanties sur la géométrie peuvent aussi étre
fournies. Dans [AB99], une borne d’erreur est donnée pa@stitnation de la normale d’une surface lisse faisant
intervenir le squelette. L'approximation de I'aire, le aff@des normales et du dépliage a partir d'un maillage est
analysée dans [MT02].

Construire un maillage avec le nombre minimum d’élémentsigimisant un critere comme la distance
de Hausdorff ou une distan¢® est considéré dans [D’A91]. Pour générer un maillage adaptée méthode
d’éléments finis, la taille et la forme de chaque élément eptimisées selon I'équation aux dérivées partielles a
résoudre [She02a].

2.2 Estimation des propriétés géométriques: aspects locaet globaux

La géométrie des surfaces lisses ou discrétes peut étieedgznrdes propriétés locales ou globales. Les propriétés
différentielles globales sont le plan tangent (au premidre), les courbures et directions principales (au second
ordre, voir Fig. 2.3), ou des coefficients d’ordres supéseDans le cas lisse, toutes ces informations sont codées
dans le développement de Taylor de la fonction dont le grdgfiai localement la surface dans un repére donné.
Nous appelonget ce développement de Taylor, la figure 2.1 illustre cette pétp d’approximation locale. Une
propriété différentielle globale caractérise le lieu demts ayant une propriété différentielle locale communes D
exemples de tels lieux sont les lignes de courbure, lesdigaeaboliques (ou la courbure de Gauss s'annule, Fig.
2.2), les “ridges” (lignes de courbure extréme) ou I'axe mBdcentres des sphéres maximales incluses dans le
complémentaire de la surface dak¥). Ainsi, la connaissance de l'information locale est unr@géis pour la
génération d’informations globales.

Dans cette thése, nous étudions, dans un premier tempisnb¢isn des propriétés locales d’ordre quelconque.
Puis, dans un deuxieme temps, nous considérons un objetlgl@msemble des lignes de courbure extréme ou
ridges.

Figure 2.1: Le graphe du jet au voisinage d’'un sommet d’urlagg est une approximation locale de la surface
(cf. chap. 4).
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Figure 2.3: Le David de Michel-Ange: directions principai@ssociées a la courbukgax avec une longueur
proportionnelle &mn (cf. chap. 4).
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2.2.1 Estimation des quantités différentielles locales

Alors que les quantités différentielles locales sont biéfinies et simple a calculer sur des surfaces lisses, elles ne
sont pas bien définies sur des surfaces discretes. Pour tinedaéonnée d’estimation des quantités différentielles
a partir d'une surface discréete, une évaluation est p@ssibbomparant les résultats obtenus sur des discrétisation
d’'une méme surface lisse avec les vraies valeurs calculi#da surface lisse. La précision de la méthode peut
étre évaluée selon les propriétés et les qualités des tiéstigns. La convergence des valeurs estimées vers les
vraies valeurs peut étre analysée pour une suite de dsatiétis. Le développement d’algorithmes spécifiant des
garanties d’approximation est un sujet actif de recherBle¢d1], et des travaux récents fournissent des garanties
ou bien locales (cf. chap. 4) ou au sens de la théorie de larmfS8MO03]. Il est utile de souligner que certaines
méthodes communément utilisées comme le défaut angulainegstimer la courbure de Gauss ne donnent pas
des approximations convergentes [BCMO3].

2.2.2 Estimation des propriétés différentielles globale$'exemple des ridges

L'estimation de propriétés différentielles globales resife non seulement des estimations locales fiables, mais de
plus impose de respecter des contraintes topologiquesdiffiesités sont tangibles sur le plan pratique, et rares
sont les algorithmes capables de calculer des lieux gémmégravec des garanties. Par exemple, le calcul du type
d’homotopie de I'axe médian est un probléme qui n’a été daméique récemment [CLO5], mais des problémes
concernant 'homéomorphie ou l'isotopie sont encore pRigdlts.

Nous nous concentrons dans ce travail sur les lignes de waugxtréme sur une surface. En termes de
garanties topologiques, nous souhaitons obtenir des sippations isotopes. Pour se familiariser avec les extrémes
de courbure, considérons dans un premier temps le cas ddmsqlanes. Les points ou la courbure est extréme
sont appelés les sommets, I'ensemble des centres desaescldateurs forment la courbe focale, et les centres des
cercles tangents en deux points a la courbe est appeléiahsee symétrie. Ces différents objets interagissent de
la facon suivante: les points du bord de I'ensemble de syen@&fest a dire les centres des cercles pour lesquels les
deux points de tangence avec la courbe coincident) soninigglarités de la courbe focale, et les cercles centrés
en ces points touchent la courbe en ses sommets. Par exéarffgeare 2.4 montre la courbe focale d’une ellipse
qui a quatre points de rebroussement correspondant aweqoahmets. Dans le cas des surfaces, a chacune des
courbures principales est associée une surface focaldedomtopriétés sont similaires. L'équivalent des sommets
dans le cas d’'une courbe sont des lignes sur la surface fenpaédes points de contacts avec les sphéres centrées
sur les singularités des surfaces focales. Ces lignes)égsprdges de la surface, ont aussi la caractérisation
suivante: elles sont 'ensemble des points pour lesquedsdes courbures principales a un extréme le long de
la ligne de courbure correspondante. Notkngtk, les courbures principales —avec la conventigry kp, un
ridge est qualifié de bleu (rouge)lsi (ko) a un extréme. De plus, un ridge est appsléptiquesi il correspond
a un maximum dég ou un minimum dek, ou hyperboliquedans les autres cas. Les ridges d’un ellipsoide sont
représentés sur la figure 2.5 et 2.6. La figure 2.7, préseatasbus-ensemble des ridges sur la téte du David,
illustre la capacité de ces lignes a souligner les partidlarszs du modeéle. Les ridges révelent les extrémes des
courbures principales et leur définition implique les dées des courbures, par conséquent ce sont des quantités
différentielles de troisieme ordre. De plus, la classifaratles ridges en type elliptique et hyperbolique nécessite
des quantités de quatriéme ordre, donc la définition préiiseidges nécessite des surfaces de clzse

Les ridges sont mentionnés en 1904 par A. Gullstrand, prixdide physiologie et médecine, dans ses travaux
en optique ou des quantités différentielles d’ordre quétaéent indispensables pour expliquer 'accommodation
du cristallin [Por01]. Plus récemment, la théorie des dimggs a permis de dégager un cadre rigoureux pour
décrire les ridges et les ombilics.
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Figure 2.4: La courbe focale (en rouge) d'une ellipse

Figure 2.6: Vue schématique des ombilics et des

Figure 2.5: Ombilics, ridges, et feuilletage princi-  ridges sur un ellipsoide (cf. chap. 3).
pal bleu sur un ellipsoide (cf. chap. 3).

Figure 2.7: Lignes de créte filtrées sur un modele de 380kcptsliiap. 5).
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2.2.3 Applications

Pour de nombreuses applications, estimer les quantitésatitielles de premier et deuxiéme ordre, c’est a dire
la normale et les courbures, est suffisant. En informatigaphlgque, le champ des normales est utilisé pour les
algorithmes d’éclairage. Les courbures de Gauss et moysmidréquentes en segmentation, le vecteur courbure
moyenne est utilisé en lissage et débruitage du surfacesnrhl@ins, des quantités d’ordre supérieur, locales ou
globales apparaissent de plus en plus fréquemment. Lesslid@ courbures servent pour le remaillage avec des
quadrilateres [ACSDO03]. La topologie des champs de vecteurs et directions tldensualisation scientifique
[DH94]. L'axe médian ou squelette est utilisé en reconsimaae surfaces [AB99, BCO1]. L'extraction des ridges
s’applique au recalage d’'images médicales [MLD94, Fid9T0P], a la segmentation [SF04], a la reconnaissance
de visages [HGY99] ou encore a la compression de surfaces polygonales [\WB01

2.3 Plan de la thése et contributions

Cette these aborde des themes de géométrie des surfacestideakion locale a I'extraction de caractéristiques
globales. Des surfaces données par des maillages et dessndegoints aussi bien que des surfaces lisses
paramétrées sont étudiées. Nous nous concentrons surdmpigement d’algorithmes générant des estimations
dont la précision est analysée. Nous proposons égalemeraigi@rithmes pour I'extraction de caractéristiques
globales avec des garanties topologiques.

Le chapitre 3 présente un panorama de la géométrie desesilifsges, couvrant toutes les notions nécessaires
dans la suite. Le chapitre 4 aborde I'estimation de la géoenéifférentielle locale a partir de surfaces échantil-
lonnées. Les chapitres suivants sont consacrés a I'appatioin globale des ridges d’une surface générique. Pre-
miérement, le cas d'une surface donnée par un maillageletigdtans le chapitre 5. Deuxiémement, la structure
implicite des ridges est développée pour une surface paréengans le chapitre 6. Troisiemement, des méthodes
de calcul algébrique formel sont adaptées pour le calcuhdegologie des ridges d'une surface polynomiale
paramétrée (chap. 7).

2.3.1 Topologie et géométrie différentielles des surfacéisses plongées: éléments choisis

Le chapitre 3 rassemble des notions mathématiques et désteslispersés dans la littérature. Comme prérequis
au développementd’algorithmes pour la traitement dessest nous proposons un panorama succinct de concepts
de géométrie différentielle appliqués aux surfaces pleagé&ne introduction a la théorie des singularités et du
contact permet la définition des ridges. En particuliergtappelons la classification des ombilics et la géométrie
des ridges puisque les chapitres 5 a 7 sont consacrés afeatr de ces caractéristiques. La relation entre les
ridges et I'axe médian est analysée. Enfin, les notions ddwonorphie et d’isotopie sont discutées. Ce travail a
donné lieu a une publication dans le journal “Internatialairnal of Computational Geometry and Applications”
[CPO5D].

2.3.2 Estimation des quantités différentielles par ajusteent polynomiale des jets oscu-
lateurs

Le chapitre 4 aborde I'estimation locale des propriétégdhtielles d’une surface erbD3a partir d'un maillage

ou d'un nuage de points. La méthode consiste a ajuster le |kt ibprésentation locale de la variété en utilisant
l'interpolation ou I'approximation. Un jet est une sérieTdgylor tronquée, la motivation pour utiliser les jets résid
dans leur propriété de coder toutes les quantités géomésrigcales —comme la normale, les courbures ou les
extrémes de courbure. La contribution principale de ce ittea@st de replacer le probléme d’estimation des pro-
priétés différentielles dans le cadre de I'analyse nunuérijassique. Le méthode proposée utilisant I'ajustement
polynomial, les relations avec les questions d’interpotaet d’approximation sont discutées. En ce qui concerne
l'interpolation, nos résultats sont reliés a [MWO0O0, Lemm&]4Dans cet article, une interpolation de degré deux
est utilisée et analysée. Nous généralisons ce résultaupalegré arbitraire, ainsi que pour 'interpolation aussi
bien que pour I'approximation. En particulier, des estiora des normales, des courbures et des dérivées des
courbures sont données et seront utilisées dans le chapi#ant sur I'extraction des ridges. Plus précisément,
étant donné un parametnenesurant le pas d’échantillonnage, le résultat princigilieesuivant (voir le théoreme
12):

Theorem. 2 Un ajustement polynomial de degré n approche une quantitérelitielle de K™%ordre avec une
précision en Qh" 1), En particulier:
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e Les coefficients de la premiére forme fondamentale et dewecormal unitaire sont estimés avec une
précision en @h"), et il en est de méme de I'angle entre la normale et la normstienée.

e Les coefficients de la seconde forme fondamentale et derdigng de Weingarten sont approchés en
O(h"1), et il en est de méme des courbures et directions princip@esupposant qu’elles soient bien
définies, c’est a dire loin des ombilics).

Un algorithme pour traiter des nuages de points ou des madlast décrit, et I'implémentation pour le cas des
maillages confirme les résultats de convergence asympéeoditiendus. Ce travail a donné lieu a une publication a
la conférence “Symposium on Geometric Processing 20034 &k journal “Computer Aided Geometric Design”
[CPO5a].

2.3.3 Algorithmes guidés par la topologie pour I'extractian des ridges sur un maillage

Le chapitre 5 aborde le probleme de I'extraction des ridgesuse surface donnée par un maillage, et nous
apportons deux contributions. Premierement, pour uneceiffsse générique, le but est de décrire la topologie
des ridges a partir d’'un maillage discrétisant la surface fdgon surprenante, aucune des méthodes développées
jusqu’a présent pour I'extraction des ridges a partir d'uaillage approchant une surface lisse ne fournit une
analyse précise, ceci implique qu'il n'est pas possible al®is si les ridges extraits ont une structure globale
cohérente. Nous présentons une étude détaillée des pexbtBarientation intervenant lors de I'extraction séparée
des ridges associés a chacune des courbures principalis.aBalyse révéle les relations entre ridges, ombilics
et lignes de courbure. Finalement, des conditions d’édlamtage et un algorithme certifié sont donnés pour
I'extraction des ridges sur le maillage en respectant laltgpe. Les conditions d’échantillonnage mettent en
évidence la nécessité de disposer d’'un maillage suffisarrulease pour que (a) les ombilics soient isolés dans des
régions, et pour qu’en dehors de ces régions, (b) I'oriemtates direction principales soit possible localement, et
(c) une aréte soit intersectée par un seul ridge. Ces congliti'étant pas constructives, un algorithme heuristique
est aussi proposé. Cet algorithme est implémenté et utiisemateur de quantités différentiables exposé au
chapitre 4. Les figures 2.8 et 2.9 prouvent que I'algorithalewde correctement la topologie des ridges pour une
surface de Bézier dont les ridges sont connus (cf. chapjtre 7

Figure 2.8: Une surface de Bézier de bi-degré (4,4) (gausks)ridges et ombilics sur une model triangulé (60k
points), vue de dessus (droite)

Deuxiémement, pour un maillage qui n'est pas I'approxiorati’'une surface lisse, une méthode de filtrage
permet I'extraction d’un sous ensemble de lignes. Ce sossmeble, qui a déja appliqué dans le domaine des
images médicales, peut étre utilisé pour le recalage ettigacaison de surfaces. La figure 2.10 illustre I'efficacité
de notre technique de filtrage pour la mise en évidence detéaistiques saillantes d’'un model.
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Figure 2.9: Gros plans sur deux ombilics 3-ridge de la figue 2

2.3.4 La structure implicite des ridges d’'une surface pararatrée

Le chapitre 6 apporte une contribution théorique a I'aralgs la structure globale des ridges. La surface est
donnée par une paramétrisation et les ridges sont calcatésld domaine paramétrique. Devant faire appel a
I'orientation locale des directions principales de cowesy les approches antérieures ne pouvaient pas définir
une description globale des ridges. Reprenant une idéedinte dans [Thi96] pour contourner ces difficultés
d’orientation, et une analyse précise de 'endomorphisend&/dingarten, nous déduisons I'’équation implicite des
ridges. Nous présentons également des systémes d’éqiatidant les singularités de la courbe: ombilics un ou
trois ridges et pointpurples(cf. Fig. 2.11). Cette classification est comparée a celteroie grace a la théorie

du contact dans [Por01]. Enfin, des calculs similaires agsalkrivées secondes des courbures conduisent a la
définition d’'une autre courbe implicite, dont I'intersextiavec celle des ridges permet I'identification des points
“turning”. Un point “turning” est un point sur un ridge ou X&éme de courbure passe de maximum a minimum.
En conclusion, nous proposons une description globaleidgss ainsi qu’une analyse locale de ses singularités.

2.3.5 Approximation topologique certifiee des ombilics etes ridges d’une surface poly-
nomiale parameétrée

Le chapitre 7 exploite les résultats du chapitre précédans ¢t cas particulier des surfaces polynomiales para-
métrées. En effet, pour une surface polynomiale, les éopumprécédentes sont également polynomiales. Nous
développons un algorithme pour le calcul de la topologieadedurbe des ridges. La difficulté provient de la
complexité de cette courbe méme pour des surfaces relaivesimples: le degré de la courbe est plus de dix
fois plus élevé que celui de la surface. Pour une telle colesenéthodes classiques, basées sur la décomposi-
tion cylindrique algébrique [GVNO02], ne sont pas assezqgrerntes. Notre contribution est d’exploiter le plus
possible la géométrie du probléme pour proposer un algoétperformant et certifié. La méthode repose sur la
représentation univariée rationnelle des systémes poliaméx de dimension zéro afin de localiser les singularités
des ridges dans le domaine paramétrique. Un des principaumtages de la méthode provient du fait qu’elle ne
nécessite que 'isolation des racines de polyndmes uswarcoefficientsationnels

Si néanmoins, la complexité de la surface ne permet pasdala# la topologie des ridges, nous fournissons
également une méthode de tracé a résolution fixée. L'efficdei ces méthodes est démontrée sur des exemples.

Les résultats des chapitres 6 et 7 ont été obtenus en cdlaioavec Jean-Charles Faugére et Fabrice Rouillier
du projet SALSA, spécialistes de calcul algébrique form@é travail a été présenté a la session de posters du
“Symposium on Geometric Processing 2005” et au “workshoomputational Methods for Algebraic Spline
Surfaces II” dont la publication des actes est en cours.

2.4 Conclusion

Dans cette thése, deux aspects de la géométrie des surfacé® @bordés: I'estimation locale des propriétés
différentielles, et le calcul global de la structure degesld’une surface lisse.

Concernant I'estimation des quantités différentiellegrenméthode utilise I'ajustement polynomial et s’appli-
gue aux maillages et aux nuages de points. Les ordres ddppation sont les meilleurs prouvés a ce jour, et la
méthode est testée avec des données échantillonnées surfaess lisses. Bien que notre méthode repose sur le
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Figure 2.10: Piéce mécanique (37k pts): (a) toutes les digiecrétes, (b) lignes de crétes filtrées par leur
“strength” (état de I'art) et (c) lignes de crétes filtrées patre critére “sharpness”. Remarquez que les points
dans les parties plates ou cylindriques appartiennent & iéges, ainsi le bruit présent sur les deux figures du
haut est inévitable. Il est néanmoins aisé d’éliminer cét lbuec le filtrage que nous proposons (figure du bas).

cadre lisse, et donc ne définit pas de concept discret, ellegid’estimation de quantités différentielles d’ordre
arbitraire. Lorsque I'approximation est conduite avec cimésna d’approximation, nous avons expérimentalement
observé un comportement robuste face au bruit.

Une approche alternative au probléme d’estimation a pa#gtdonnées discretes est proposée par la géométrie
différentielle discréte. L'idée consiste a définir des dités différentielles directement sur I'objet lisse et de
développer une théorie discréte par analogie avec la thésse. Le probléme de convergence des quantités dis-
crétes pour une suite de discrétisations peut alors étceéétiDes résultats ont été obtenus pour le champ des
normales, I'aire, les géodésiques [MT02, HPWO05], les cotebde Gauss ou moyenne a I'aide d’'une formulation
variationnelle [PP93], le tenseur de courbure dans le ad&lta théorie de la mesure [CSMO03]. Toutes ces contri-
butions s’appliquent a des maillages, et les nuages despoérgont pas traités. Les théorémes de convergence ne
sont disponibles que pour des quantités différentiellgsrdmier ou du second ordre.

Alors que l'intérét pour les nuages de points s’accroit, 6 derait de comprendre dans quelle mesure la
géomeétrie différentielle et I'analyse statistique peugappliquer. L'irrégularité de la densité d’échantillage,
I'anisotropie et le bruit doivent étre pris en compte. Paragle, I'influence du voisinage d’un point qu’il faut
considérer pour faire une estimation n’est pas bien compiiB05]. Une analyse de I'estimation de la normale
a une surface a partir d'un nuage de points bruité est prepdesgs [MNO3]. Des méthodes de votes propagent
l'information dans des voisinages locaux pour déterminguédrtinence de chaque information individuelle. Le
vote pour la normale et le tenseur de courbure permet diftlrie bruit et le discontinuités, et donc rend possible
la traitement de surfaces lisses par morceaux [TM02].

Concernant le calcul de structures globales sur une sunf@ces avons traité I'approximation topologique et
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3-ridge umbilic 1-ridge umbilic Purple point
Figure 2.11: Singularités de la courbe des ridges: les esurtuges et bleues différentient les extrémes des deux
courbures principales. (a gauche et au milieu) Il y a deuggygiombilics traversés par une ou trois branches de

ridges, chacune changeant de couleur a I'ombilic. (& drbiecroisement d’un ridge bleu et d’un ridge rouge est
appelé poinpurple

géométrique des ridges. Deux types de données ont été éodsidin maillage discrétisant une surface lisse et
une surface paramétrée.

Premiérement, pour un maillage discrétisant une surfase,linous présentons le premier algorithme certi-
fié pour I'extraction des ridges d’'une surface lisse avecgdganties sur la topologie. L'algorithme exploite la
géométrie des ridges et des ombilics d’'une surface gér&rajudissocie le traitement au voisinage des ombilics
du reste de la surface. L'algorithme est générique au seihs calicul des quantités différentielles et I'isolation
des ombilics sont confiés a des routines qui peuvent dépendsge de surface discrétisé par le maillage. Pour
des maillages approchants des surfaces lisses —sans gant avoir accés a aucune information analytique,
nous fournissons des heuristiques. Pour des surfacegtiisaits des surfaces lisses dont les ridges sont connus,
des exemples prouvent que notre algorithme heuristiquewnet la topologie des ridges et des ombilics. Pour des
maillages reconstruits a partir de données scannées, eiepks montrent que notre algorithme retrouve des sous-
ensembles des ridges comparables aux autres méthodesadel&d’art (qui utilisent des ajustements globaux),
tout en améliorant les temps de calculs d’au moins un ordggatedeur et en fournissant une méthode de filtrage
plus performante.

Deuxiemement, pour une surface paramétrée, nous expbcitéquation implicite de la courbe singuliere
codant les ridges dans le domaine paramétrique. Alors qunalyse mathématique classique des ridges était
seulement locale, nous avons maintenant une descriptidralgl. Nous analysons ses singularités et fournissons
des méthodes pour les identifier. Cette formulation du @rolel évite les difficultés d’orientation locale des di-
rections principales de courbure. Elle permet donc unecagrglobale de I'extraction des ridges d’'une surface
paramétrée. Finalement, ces résultats sur la structuradigs sont utilisés dans le cas particulier des surfaces
paramétrées polynomiales. Puisque les outils classigriesldul algébrique formel ne permettent pas de traiter
nos exemples de grande complexité, nous avons tiré partimfemation géométrique fournie par I'analyse de
la structure. Nous développons un algorithme spécifiqué basles représentations univariées rationnelles des
systemes polyndmiaux de dimension zéro, et sur l'isolafienracines de polyndmes univariés a coefficients ra-
tionnels. Cet algorithme est le premier a calculer une appration topologique certifiée de ridges. Une fois
la topologie obtenue, une approximation géométrique plésige peut facilement étre déduite. Nous proposons
également un autre algorithme qui calcule un tracé certifésalution fixée: les calculs sont moins codteux, mais
la topologie n’est plus garantie. Les résultats pour unfasarparamétrée sont directement applicables aux sur-
faces de Bézier incontournable en CAO. Il est a noter que thadé développée pour le calcul de la topologie
des ridges peut étre généralisée pour d’autres courbdsrigigés, a partir du moment ou le nombre de branches
réelles passant par chaque singularité peut étre caldidéafment.

En conclusion, nous donnons plusieurs algorithmes certfigperformants pour I'extraction des ridges. Les
méthodes s’appliquent dans les cadres lisse et discréfféeedts niveaux de certification sont proposés a I'udiis
teur selon ses exigences.

Lintérét pour I'analyse et le calcul de propriétés géoméies globales n’est pas nouveau. Par exemple, de
nombreuses contributions existent pour la visualisatesahamps de vecteurs avec des informations topologiques
[DH94, Tri02]. Néanmoins, la plupart de ces contributioagestreignent a des domaines Euclidiens et ne sont
pas généralisées pour des surfaces. De plus, seulemerguiéstiques sont proposées, et des algorithmes avec
des garanties topologiques font défaut.

Dans le cadre discret, les champs de vecteurs sont analyes®sree décomposition discréte de Hodge [PP03],
ou avec une décomposition de Morse-Smale [EHZ01] via undigmze desimulation de la différentiabilitéLors
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de I'analyse d'une propriété différentielle globale a patiune discrétisation, la premiére étape consiste a com-
prendre sa stabilité et sa généricité. Une telle approchrewvpg sa réussite pour les ridges et I'axe médian. Le
calcul du type d’homotopie de I'axe médian est proposé dah8%] guidé par des résultats de stabilité [eRS04].
Pour les surfaces, les feuilletages des directions prahesde courbure sont particulierement intéressantsils p
vent étre utilisés pour le maillage par des quadrilaterdisnigant I'approximation [ACSD03]. Néanmoins, il
n'existe pas encore de méthode pour calculer la topologiesdéeuilletages.

Dans ce contexte, la collaboration entre les communautésdleématiques et d’informatiques est nécessaire
pour modéliser et résoudre les problemes de géométrieqaigeli
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Chapter 3

Differential Topology and Geometry of
Smooth Embedded Surfaces: Selected
Topics

This chapter surveys mathematical notions and resultsesedtover several sources. As a prerequisite for the
development of algorithms for the manipulation of surfaeespropose a concise overview of core concepts from
differential topology and geometry applied to smooth endeesurfaces.

The understanding of surfaces embedded¥nrequires local and global concepts, which are respectively
evocative of differential geometry and differential topgy. While the local theory has been classical for decades,
global objects such as the foliations defined by the linesuo¥ature, or the medial axis still pose challenging
mathematical problems. This duality is also tangible fropractical perspective, since algorithms manipulating
sampled smooth surfaces (meshes or point clouds) are meetgded in the local than the global category.

We first recall the classification of umbilics, of curvaturel, and describe the corresponding stable foliations.
Next, fundamentals of contact and singularity theory acalted, together with the classification of points induced
by the contact of the surface with a sphere. This classifinasi further used to define ridges and their properties,
and to recall the stratification properties of the mediasakinally, properties of the medial axis are used to present
sufficient conditions ensuring that two embedded surfaceambient isotopic.

3.1 Introduction

3.1.1 Motivations for a geometric and topological analysis

Sampled surfaces represented either by point clouds oremesie ubiquitous in computer graphics, computer
aided design, medical imaging, computational geometrifjefelement methods or geology. Aside from the sit-
uations where a sample surface is of self-interest —e.goinpeaiter graphics, sampled surfaces approximating
(piecewise-)smooth surfaces are essentially found in twiexts which are surface reconstruction and surface
discretization. In the first category, one is given a set offga points acquired from a scanner (medical or laser)
and wishes to reconstruct (by interpolation or approxiomgtthe continuous or (piecewise-)smooth surface which
has been sampled. In the second one, a surface is givenitiymicparametrically, and one wishes to discretize it
for visualization or calculation purposes. In any casegettypes of properties are usually of interest when com-
paring a (piecewise-)smooth surface and its discretimatmpological and geometric properties, local differahti
properties, and global differential properties.

From a topological standpoint, one expects the surfaces tmmeomorphic or even better isotopic. Example
algorithms with such a guarantee are [APR03, ACDLOQ] in timéaxe reconstruction area, and [BCSV04, BOO03]
in the surface meshing context. Apart from these algorittthesinterested reader should consult [SP03, CCS04]
where sufficient conditions on isotopy can be found. It sH@l$o be pointed out that the hypothesis under which
one achieves these properties usually also yield a bourttedAdusdorff distance between the surfaces, a property
of geometric nature.

Local differential properties are of two types, namely iiméic and extrinsic. For extrinsic quantities, one
wishes to guarantee that the tangent plane (at the first)pttierprincipal directions and curvatures (at the sec-
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ond order), or higher order coefficients (e.g. curvatureesmality coefficients) are close. The development of
algorithms providing such guarantees has been subjectdnse research [Pet01], and recent advances provide
guarantees either point-wise [BCM03, CP05a] or in the geadmmeasure theory sense [CSMO03]. Although
extrinsic properties are usually the properties sougimesapplications care for intrinsic faithfulness. Thesdiapp
cations are usually concerned with the question of flatgehjparameterizing a surface, and the reader is referred
to [MTO2] for an example related to geology, together witl #msuing conditions.

At last, global differential properties usually refer tcegantees on loci of points having a prescribed differential
property. Example such loci are lines of curvature, ridgeshe medial axis. Applications involving such patterns
are surface remeshing [ACSD3], scientific visualization [DH94], feature extractid?§Tr00, WB01, HGY 99],
or surface reconstruction [AB99, BC01] and related topizA(2]. Providing such guarantees faces the difficulties
afore-mentioned. Not only point-wise estimates must biakd, but they must also be connected correctly at the
surface level. The difficulties are tangible from a pradtpmrspective, and only few algorithms are able to report
global differential patterns with some guarantee [CLO5].

The lack of such algorithms is partly due to the fact that glahfferential patterns have an involved struc-
ture described in differential topology and singularitgdiny sources. Easing the access to these notions is the
incentive of this concise survey, which deliberately fazien selected topics related to the geometry and topol-
ogy on embedded surfaces. In selecting these topics, weolradke choices and omitted the following themes:
symmetry sets [BGG85]; distance functions used in analy$is94], optimization [Cla97], mathematical mor-
phology [Ser82], and geometric modeling [Lie03]; bifuioas of symmetry sets and medial axis [BG86, GK02];
differential geometry of skeletal structures [DamO04];qtial algorithms to extract medial axis [CLO5].

Our presentation focuses on the geometric intuition rathean the technicalities. From a practical standpoint,
we hope it will be helpful for those aiming at producing glépaoherent approximations of surfaces.

3.1.2 Chapter overview

Following a natural trend, we successively examine difided geometric concepts of the second order (umbilics,
lines of curvatures, foliations) and the third order (ridgmedial axis). To finish up, selected properties of the
medial axis are used to specify the topological equivaléeteeen embedded surfaces.

More precisely, the Monge form of a surface is recalled irtisa3.2. Second order properties are presented
in section 3.3 —umbilics and lines of curvature. The clasaifon of contact points between the surface and
spheres is presented in section 3.4. This classificatiosdd in section 3.5 to recall the stratification properties
of the medial axis. Finally, the topological equivalencen®=n embedded surfaces is recalled in section 3.6, and
sufficient conditions involving the medial axis are alsogemed.

3.2 The Monge form of a surface

3.2.1 Generic surfaces

Our focus is on generic phenomena on surfaces, and the statepresented are valid for generic surfaces only.
Formally if one considers the set of all smooth surfe®&sE? as an infinite dimensional space with a well defined
topology, a property is generic if the surfaces exhibitimig property form an open dense subset. Informally this
notion means that (i) a generic property remains valid ifalf@vs random perturbations, and (ii) that every surface
is arbitrary close to another for which the property holdselo the infinite dimension of the space of surfaces, it
is not straightforward to define a topology on this set. We eghsider theC" topology ¢ € NU {}) on the set of

all smooth oriented surfac&embedded in the Euclidean spde®(cf. [GS91][p.27]). A sequencs, of surfaces
converges t&in theC" sense provided there is a sequence of real functigies S such that§, = (I + faN)(9),
wherel is the identity ofE3, N is the normal vector o8 and f, tends to 0 in th€" sense. That is, for every chart
(u,v) with inverse parameterizatiox, f, o X converges to 0 together with the partial derivatives of orden
compact parts of the domain X

3.2.2 The Monge form of a surface

We consider an oriented surfaBembedded in the Euclidean spd&&e We consideE? given with an orthonormal
basis called the world coordinate system. Another orthmabbasis is calledirectif it is the image of the world
coordinate system by a special orthogonal tranformationamy point of the surface which is not an umbilic,
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principal directions are well defined, and the (non oriehfgihcipal directiond;, d, together with the normal
vectorn define two direct orthonormal frames.\f is a unit vector of directio; then there exists a unique unit
vectorv, so that(vy, Vo, n) is direct; and the other possible framgisvi, —v»,n). In one of these, and as long as
our study is a local differential one, the surface is assutndx given as a Monge patch at the origin [HE9]
—uwith h.o.t standing forhigher order terms

(kx® + koy?) + %(boxe‘ + 3bxPy + 30oxy? + bay?) (3.1)

NI =

Z=
1
+ 54(Cox* +4cCy+ 6ex°y? + dcaxy® + cay) +hoot (3.2)
Occasionally, we shall refer to the cubic p@xt(x,y) as the Monge cubic, that is:

Cwm (%) = bpx® 4 3b1x%y + 3boxy? + bay®. (3.3)

If the origin is not an umbilic, the principal directi@h (resp.dy) associated to the principal curvatdgresp.ky)
is thex (resp.y) axis. We shall always assume ttkat> k, and we consider 'blue’ (resp. red’) something special
happening wittk; (resp.kz). For example the blue focal surface is the set of centerambture associated to the
blue curvaturds;. Note that a change of the normal surface orientation swapsdlors.

Away from umbilics, local analysis of the principal curvega can be done for the Monge coordinate system
and along the curvature lines. The Taylor expansion of theejmal curvaturek; in the Monge coordinate system
is

_ 3k3 2

Co—o b
2 ki — ko
Zbibz ) (Cz — k]_k% I b_%
kl k2 2 kl I(2

k1(X,y) = kg + box + byy + ( )% (3.4)

+(c1+ )y?+h.ot (3.5)

The Taylor expansion ok; (resp. k») along the blue (resp. red) curvature line going throughdtigin and
parameterized by (resp.y) are:

p

ka(X) = kg + box -+ Z(Tikz)x%r h.ot PL = 3b% + (ki — ko) (co — 3K3). (3.6)
P

Ka(y) = ko + bay + Z(Tikl)yz +hot P, = 302+ (ko — ky) (4 — 3K3). (3.7)

Notice also that switching from one of the two coordinateeys mentioned in introduction to the other reverts
the sign of all the odd coefficients on the Monge form of théase.

Some notions about cubics will be useful in the sequel.

Definition. 1 A real cubic Gx,y) is a bivariate homogeneous polynomial of degree three,ih@x,y) = box® +
3b1x2y + 3bpxy? + bay®. Its discriminant is defined b§f(C) = 4(b? — bgby) (b3 — bybz) — (lbgbs — byby)?.

A cubic factories as a product of three polynomials of degmeewith complex coefficients, called its factor
lines. In the(x,y) plane, a real factor line defines a direction along wiickanishes. The number of real factor
lines depends on the discriminant of the cubic and we have

Proposition. 1 Let C be a real cubic and its discriminant. 1fd > 0 then there are 3 distinct real factors,df< 0
there is only one real factor.

In the particular description of surfaces as Monge patcheshave a family of Monge patches with two
degrees of freedom —the dimension of the manifold. A propexquiring 1 (resp. 2) condition(s) on this family
is expected to appear on lines (resp. isolated points) ofuhface —a condition being an equation involving the
Monge coefficients. A property requiring at least three ¢towks is not generic. As an example, ridge points
(characterized by the conditidog = 0 orbz = 0) appears on lines and umbilics (the two conditions aregtimsa
quadric to have egual roots, i.e. the coefficient obthgerm vanishes and thosexdfandy? are equal) are isolated
points. A flat umbilic, requiring the additional conditi&n= 0, is not generic.
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3.3 Umbilics and lines of curvature, principal foliations

This section is devoted to second order properties on acgjréad more precisely to umbilics and lines of curva-
ture. General references are [Mor90, Por01, GS91, HEY MWP96].

3.3.1 Classification of umbilics

To present the classification of umbilics, let us first resaline facts about lines of curvature. On each point of
the setS defined as the surfa&except its umbilics, the two principal directions are wedfided and orthogonal.
They define two direction fields d8, one everywhere orthogonal to the other, so it is sufficiestady only one

of these. Each principal direction field defines lines of etuve. The set of all these lines, called the principal
foliation, will be studied in the next section.

Definition. 2 A line of curvature is an integral curve of the principal figttat is a regular curve on’Svhich is
everywhere tangent to the principal direction and is madifoainclusion (it contains any regular curve with this
property which intersects it).

The index of an umbilic describes the way the lines of cumeaturn around the umbilic. The index of a
direction field at a point ig1/2m) '02"6(r)dr, where6(r) is the angle between the direction of the field and
some fixed direction, and the integral is taken over a smalhtarclockwise circuit around the point. For generic
umbilics this index ist1/2, this implies that the direction field is not orientable omeighborhood of such
points. As illustrated on Fig. 3.1, if one fixes an orientatdd the field at a point on a circuit around an umbilic,
propagating this orientation by continuity along the citgives the reverse orientation after one turn. In other
words, there is no non vanishing continuous vector field anmaythe direction field around the umbilic. The index
can also be computed with the Monge cubic, this computaigoint wise as opposed to the previous one, but
need third order coefficients (hence it is likely to be les®kt in practice). LeS= (by — by)by — by (b1 — bs),

e if S< 0then theindexis-1/2 and the umbilic is called a star,

e if S> 0 then the index ist1/2 and we have to do more calculations to distinguish betwieerst called
lemon and monstar.

A finer classification is required to distinguish betweentiie umbilics of index+1/2. We shall need the
following:

Definition. 3 Consider an umbilic p and denotgd the tangent plane of the surface at pliraiting principal
directionis a direction of S which is tangent to a line of curvature which end at the uimbil

Limiting principal directions are related to the Jacobiabic of the umbilic (cf. [HGY"99]):
Je = Box® + 3B1x?y + 3Boxy? + Bay® = byx3 + (2b, — bo)x?y — (2by — bs)xy? — boy®. (3.8)

The real factor lines of this form are the limiting princightections at the umbilic. As recalled by proposition 1,
the number of such directions depends on the discrimidaottJc:

e If U < 0then there is one limiting principal direction, necedgasi> 0 and the umbilic is called a lemon.

e If U > 0then there are three limiting principal directions, fertimore ifS< 0 the umbilic is a star els&> 0
and it is called a monstar. For a monstar, the three direztioa contained within a right angle and all the
curvature lines in this angle end at the umbilic and form thmpolic sector of the monstar. Note that all
these lines have the same tangent at the umbilic: the lighgiimcipal direction inside the parabolic sector.
For a star, only three lines of curvature end at the umbilat thie limiting directions are not contained in a
right angle.

We summarize the previous discussion as follow:

Theorem. 3 There are three classes of generic umbilics in tiesénse, namely Lemons, Monstar and Stars. They
are distinguished by their index and the number of limitinggpal directions.
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To be an umbilic requires two conditions on the Monge coeffits, this implies that the cas8s- 0 orU =0
are not generic umbilics. From the same argument, a genentidlia is a non flat point: its Gaussian curvature
does not vanish, and generic umbilics are isolated (cf.(qEifp.184]).

Figure 3.1: Impossibility of a global orientation aroundwanbilic

--..“—--
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s

Figure 3.2: Umbilics: Lemon and Monstar of index +1/2, Staindex -1/2.

3.3.2 Principal foliations

Recall that the blue (resp. red) principal foliation is tle¢ af all blue (resp. red) curvature lines definedHS
except its umbilics. The umbilics can be regarded as simguaits for these foliations if one wishes to consider
them onS. The first element required concerns the topology of a curedine. A line of curvature is either
homeomorphic to:

e anopeninterval = (w_, w, ), then it is assumed to be oriented and parameterized byntieisval. Itsa (y)
(resp.w(y)) limit set is the collection of limit points of sequencgs,), convergent ir§, with s, tending to
w_ (resp.wy). The limit set ofy is the uniona (y) U w(y).

e or to a circle, then it is called a cycle. It is hyperbolic iktdifferential of its Poincaré return map differs
from the identity. In other words, if one orients an hypeibalcle, the lines of curvature can be oriented
on a neighborhood of this cycle by continuity and they aratithcted or repelled on both sides of the cycle
(cf. Fig. 3.3).

Figure 3.3: A hyperbolic cycle and two non hyperbolic ones

Special lines divide the set of all curvature lines in thenity of an umbilic into sectors, they are separatrices.

Definition. 4 A separatrix is a line of curvature with an umbilic in its linset and so that there exists arbitrarily
close to that line, another line without this umbilic in itsilt set.
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A sector defined by two consecutive separatrices is
e hyperbolic if none of the lines in the sector have the umliilitheir limit set;

e parabolic if all curvature lines in the sector have the unoliil their a or exclusivew limit set;

The alternative case of an elliptic sector, if all curvatiimes in the sector have the umbilic in theirandw limit

set, is not generic —cf. Nikolaev [Nik01][p.360]. Note trmseparatrix is a line of curvature which ends at an
umbilic, hence its tangent at this point is a limiting pripal direction. But the limiting principal direction inside
the parabolic sector of a monstar is not tangent to a sepapathis umbilic —because all lines in a neighborhood
have the monstar in their limit set. This explains anothasgification of umbilics from Darboux based on the
number of separatrices. This classification rephraseséwigus one: a lemon @4 has one separatrix, a monstar
or D, has two and a star @3 has three.

The next result [GS91][p.27] describes stable configunatibthe principal foliations for smooth compact
oriented surfaces embeddedHA. A surfaceSis said to beC" principal structurally stable if for every sequence
S, converging taSin theC' sense, there is a sequence of homeomorphignfsom S, onto S, which converges
to the identity ofS, such that, fon big enoughH, is a principal equivalence froi®, ontoS. That isH, maps the
umbilical set ofS, onto the umbilical set 08, and maps the lines of the principal foliationsSfonto those of.

Theorem. 4 LetZ be the subset of smooth compact oriented surfaces whidfisatihe following four conditions:
e all the umbilic points are of typeDi=1,...,3;
e all the cycles are hyperbolic;
e the limit sets of every line of curvature are umbilics or egl

¢ all the separatrices are separatrices of a single umbilieft cannot connect two umbilics or twice the same
one being separatrices at both ends).

ThenX is open and each of its elements is principal structuralaps in the G-sensey is dense in the &sense.

This theorem implies that stable principal foliations assctibed with the set of umbilics, cycles and the way
the separatrices connect these elements. The complemiesef features on the surfas¢hen decomposes on
canonical regions of two types parallel and cylindrical. €ath region, the limit sets of all lines are the same:
a cycle or ab, umbilical point (through its parabolic sector). A regionparallel if there are separatrices in its
boundary. If the boundary consists only of cycles then tigéoreis cylindrical.

The topology of the surfacg constrains the number and the type of umbilics. More prégisiee sum of
indices of umbilics must be the Euler characterigti&) —[Spi99b][p.223]. Moreover, the principal foliation
defines a bipartite grapB(Va, V», E) with V; the set of umbilicsy, the set of cycles and parabolic sectors &nd
the set of separatrices. The edges connect elemeXisoflements of/, with the following constraints.

e A Dj umbilic hasi incident edges.
e Since there is no elliptic sector, a separatrix @-aumbilic cannot be connected to its parabolic sector.

e The graph is embedded on the surface without intersectamgeparatrices.

3.4 Contacts of the surface with spheres, Ridges

To classify points of a smooth surface regarding curvatuoperties, we first recall fundamentals from contact and
singularity theory. Following [Por71, Por83, Mor90], weope a point of the surface with a sphere centered along
the normal at that point. Working out the dominant terms efTaylor expansion of the probe function yields the
classification of points desired. General references fersiaction are [BG92], [Por01] or [Arn92].
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3.4.1 Distance function and contact function

A standard way to classify points on a smooth surface canseistising contact theory. Consider a portion of
surface locally parameterized in a ch@t p(x,y)) with U € R?, (xo,Yo) € U and a spher€ of centerc. Denoting
<, >, the standard inner product BF, the contact function at the poiptxo,Yo) € Sis the function defined by:

g:U xR3—R, g((xY),c) =< p(x.y)c, p(X,y)c > — < p(Xo,Yo)C, P(X0,Y0)C > - (3.9)

This function is just the square distance from the surfadbdéaenter of the sphere minus the square of its radius
r’ =< p(Xo,Yo)C, P(Xo,Yo)c >. The intersection points betwe&andC have coordinate,y, p(x,y)) satisfying
g(x,y) = 0. The philosophy of contact theory is the following. Once tenter of the sphere have been chosen,
the contact function is a bivariate function. Then, we wisheport the possibleormal formsof g as a bivariate
function.

Before illustrating this process, let us observe that ifdbeter of the spher€ is not contained in the affine
space defined by the contact point and the normal at the su8fdoere, then the intersection betwegandC is
transverse, which does not reveal much alaitp. Studying the nature of the contact really starts with aeent
aligned with the normal, and we shall see that the cases atered actually yield a decomposition of the normal
bundle! of the surface.

Remark. Note that if one of the principal curvatures vanishes, omeassume the center of the principal sphere is
at infinity. This means that the relevant contact to be carsidiis that of a plane with the surface at such a point.
One can find a precise description of these parabolic pairftsGY +99].

3.4.2 Generic contacts between a sphere and a surface

Before presenting the generic contacts, let us illustiaetocess of finding the first normal form using the Morse
lemma. To ease the calculations, assume that the contattipdhe origin, that the surface is given in Monge
form, and that the center of the sphere has coordir@@®®6,r). Then, the contact function simplifies to:

g(xy) =X +y?+(z—r1)>—r2 =< pc,pc> —r2, (3.10)

Using the Monge form of, one gets the following expansion:
r

g(xy) =x*(1—rka) +y*(1—rko) — 3

Cm(xy)+h.ot (3.11)
The expansion does not contain linear terms and the orighergfore a critical point. Moreover, if£ 1/k; and

r # 1/ko, the critical point is non-degenerate. By the Morse lemima,contact function rewrites @s= +x° +y?

up to a diffeomorphism. If the coefficients of both variabfiese the same sign, then the intersection betvien
andC reduces to point. Otherwise, the intersection consistwofdurves.

The previous discussion is typical from singularity theahgsumingr # 1/k; andr # 1/k,, we worked out
thenormalform of a multivariate function, thus highlighting its domaint terms. In the sequel, we shall just state
and use the classification of generic singularities of thatat function. As illustrated by Morse’s lemma, it is
important to observe that the normal form is exact, i.e. duw#shide any higher order term. We shall need the
following:

Definition. 5 Let f(x,y) be a smooth bivariate function. Function f has ag @ Dy singularity if, up to a
diffeomorphism, it can be written as:

Cf 2 +1
{Ak.f_ix +ykLl k>0, (3.12)

Dy: f=+4y@+y<t k>4

The singularity is further denotequor fo if the product of the coefficients of the monomialsis

As subsumed by this definition, &k singularity precludes ahy .1 singularity, and similarly foDy. An
important characteristic of these normal forms is theipZevel set. Those of th&, sequence are illustrated on
Fig. 3.4, where the (branches of) curves are defined fremty**1/2. More precisely:

1The normal bundle of the surface is the three-dimensionalifold obtained by adding to each point of the surface a dnesdsional
affine space defined by the pair (point, normal).
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Observation. 1 The zero level set of angAingularity consists of a smooth curve, and that of ag gingularity
for p > 1 of one curve having a cusp at the origin. The zero level senofg 1 singularity consists of two
tangential curves or an isolated point depending on the pab@f the signs of the monomials.

For aDy singularity, sincef = y(4x? +y*~?), the liney = 0 is always solution. For the other solutions, the
discussion is identical to th& case.

Observation. 2 The zero level set of an%p (Dgp) singularity consists of one (three) curve(s). The zerelleet
ofan Dy, or D, singularity consists of two curves.

The classification of generic contact points is the follogviRror71, Por83]:
Theorem. 5 The generic singularities of the contact function betweaplaere and a surface are of typg, A\,

Az, Az, A4, Da.

The A contact is just the transverse intersection mentionedeabéginning of this section, and we shall not
discuss it further. The others types of contacts —respalgty andDy— encode properties of the surface away
from umbilics and at umbilics.

Ap1  f= x2 f= x2+y2ID
f=x2—y?p+l f ,X2+y2p+1

ke Sk

Figure 3.4: Zero level sets of thg : f =x2+y**1sin- Figure 3.5: Variation of théy coefficient and turning
gularities point of a ridge

3.4.3 Contact points away from umbilics

We proceed with the discussion of the contacts away from licebi

A; contact. [r # 1/kg,r # 1/ko] The origin is a non degenerate critical point. The locagiséection reduces to
one point ifr is in the connected component Bf\ {1/k;,1/k,} which contains 0, or is two transverse curves
otherwise.

A; contact. [r=1/ks,bg# 0 (orr = 1/kp,bs # 0)] The sphere is a sphere of principal curvature, and theseur
ture is not an extremum by Eg. (3.6) sirfge# 0 . Due to the presence of terms of odd degree in the normal form
the local intersection between the sphere and the surfax®# reduced to a point (cf. Fig. 3.7 and 3.8).

Az contact. [r=1/ky,bp=0,P; #0 (orr = 1/k,bs =0, P, # 0)] The sphere is a sphere of principal curvature,
and the principal curvature has a local extremum shgce 0 andP; # 0 —orbg = 3 andP, # 0. An Az contact
defines aidge point, but not all ridge points ar&; points —see the turning points below. Distinguishing ferth
betweemd; andA] yields the distinction between elliptic and hyperboliayédpoints’:

e Elliptic. If P, < 0, the contact function hak] singularity and its normal form ig = y? 4+ x*. Equivalently,
the blue curvature is maximal along its curvature line. Theelsphere of curvature has a local intersection
with Sreduced tap (cf. Fig. 3.9).

2Elliptic and hyperbolic ridge points are called sterile dadile by Porteous. This refers to the possibility for utitsi to appear near such
ridges.
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e Hyperbolic. IfP; > 0, the contact function has @3 singularity and its normal form ig = y? — x4, Equiv-
alently, the blue curvature is minimal along its line. Thedbintersection of the blue sphere of curvature
with Sis two tangential curves (cf. Fig. 3.10).

Summarizingbg = 0, P, # 0 defines a blue ridge point, either elliptic or hyperbolisnigarly, b = 0 defines
a red ridge point, whose type is specified by the sigP.oflefined by Eq. (3.7). A red ridge is elliptic k is
minimal (P> < 0) along its curve and hyperbolickp is maximal £, > 0). (Notice that in Eq. (3.7) the sign &%
is in accordance with the negative signkef- kj.)

Notice that the type, elliptic or hyperbolic, is indepentlehthe surface orientation. However the signbgf
depends on the orientation of the principal directions. Gtwesponding geometric interpretation when moving
along a curvature line and crossing the ridge is recalledign36.

Figure 3.6: Sign changes bf along an oriented blue curvature line crossing a blue ridgiéptic case (max of
ki, left), and hyperbolic case (min &f, right).

Ridge points are on smooth curves on the surface called lidge and can be colored according to the color
of the points. Away from umbilics, a blue ridge can cross ariége at a ridge point colored blue and red that we
call a purple point. A crossing of ridges of the same colorisgeneric.

Remark. When displaying ridges, we shall adopt the following cortiars:
e blue elliptic (hyperbolic) ridges are painted in blue (grge

e red elliptic (hyperbolic) ridges are painted in red (yeljow

A4 contact. [r=1/ky,bp=0,P, =0 (orr = 1/kp,b3 =0, P, = 0)] The blue curvature has a inflection along its
line (k; = ki =0 butk{” # 0, derivatives shall be understood as along the curvatuee ¢if Eq. (3.6)). As ar
singularity, the local intersection of the blue sphere atvature withSis a curve with a cusp at the contact point.
Such a point is called adge turning point At such a point, the ridge is tangent to the line of curvaufrthe
same color, and the ridge changes from elliptic to hypecbelfrom a maximum to a minimum of the principal
curvature.

The variation of théyy coefficient in the neighborhood of a blue ridge and a turnioigipof such a ridge are
illustrated on Fig. 3.5. Summarizing the previous obséowat we have:

Definition. 6 Let pe S be a non-umbilical point, then p is a blue ridge point if ofi¢he following equivalent
conditions is satisfied:

(i) the blue principal curvature has an extremum along theresponding blue line of curvature,
(ii) bo=0,
(iii) the blue sphere of curvature has at least anddntact with S at p.
Notice again that a contact involves a sphere and the surfidwe contact therefore provides information on
the surface but also on its focal surfaces —the blue/red ssgnaing the sphere in contact is a principal blue/red

sphere of curvature. The reader is referred to [BGGB85] foallonodels of the focal surface at such singularities.
We actually have the following:
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Observation. 3 At a ridge point, the focal surface is not regular —the cemtethe osculating sphere is located
on a cuspidal edge of the focal surface.

Figure 3.7:A, contact with the blue sphere Figure 3.8:A, contact with the red sphere

Figure 3.10A; contact of the blue sphere of curva-
ture at a blue Hyperbolic ridge point (on the green
curve)

Figure 3.9:A] contact of the blue sphere of curva-
ture at a blue elliptic ridge point (on the blue curve)

3.4.4 Contact points at umbilics

Away from umbilic, thex andy coordinates of the Monge coordinate system follow the jpaddirections; at the
umbilic there is no such canonical choice of coordinateschéehe values dfg andbs are not relevant and other
invariants must be considered.

To see which ones, consider the contact function given by(Ed1). Sincea = 1/k; = 1/ko, it is dominated
by the cubic terms. More precisely, the singularity is geradly a D}. The number of ridges passing through
the umbilic is the number of curves in the zero level set ofdbitact function. Hence this number reads on the
normal form, and is equal to one or three as mentioned in gaten 2. This fact is not intuitive and it is neither
obvious that ridges pass through umbilics. A way to expla@sée facts is to study the gradient fi€l,; (the same
holds forky) well defined at non umbilical points. Indeed a non-umbillidae ridge point can be seen as a point
on a blue curvature line whefék; is orthogonal to the curve thatis [k;,d; >= 0, or equivalently the iso-curve
of k; is tangent to the curvature line. Hence one has to study gothality between the two fieldsk; andd;.

In section 3.3.1, it has been shown that the index oftthields distinguishes stars (index -1/2) from lemons or
monstars (index +1/2). The study kf and[k; shows that generically, one has the following:

e k; has a minimum, then the vector fieltk; has index 1; this also implies that the umbilic is a star amad th
there are 3 directions in which COky,d; >=0;

e there is a curve along whidh = k is constant passing through the umbilic, theélq has index 0 and there
is 1 direction in which< Okq,d; >=0.

The distinction between these two cases also reads on thgévmrbicCy, its number of real factor lines is the
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number of ridges, hence it depends on the sign of its disnamD = 6(Cy). One can summarize the previous
discussion as follows [Por01, Chap 11.6, p.191]—see algoF1i2:

Theorem. 6 Generic umbilics are of two types:

e Elliptic. The Monge cubic has three different real factords, or equivalently the contact function has a
D, singularity. Three non-singular ridge branches cross a timbilic. Moreover at the umbilic; khas a
minimum and ka maximum. Such an umbilic is a star.

e Hyperbolic. The Monge cubic has only one real factor linegquivalently the contact function has g D
singularity. Only one non-singular ridge branch passestigh the umbilic. Moreover passing through the
umbilic, there is one curve along which kesp. k) is constant equal to k. Such an umbilic is either a
lemon, a monstar or a star.

The number of ridges is given by the number of real factormssliof the Monge cubic, but these lines are not
the tangent directions to ridge lines going through the limbilowever, these tangent directions can be computed
from the Monge cubic cf. [HGY99].

Definition. 7 An umbilic is called a 1-ridge (resp. 3-ridge) umbilic if teds 1 (resp. 3) non-singular ridge curve
going through it.

Generically, the discriminard(Cy) of Cy does not vanish, so th& is either elliptic or hyperbolic. There-
fore, a generic umbilic is either 1-ridge or 3-ridge.

The intersection between the surface and its osculatingrepit an umbilic is not reduced to a point (cf.
Observation 2). This fact remains true close to the umbilit ia particular on ridges, so we have:

Observation. 4 A ridge passing through an umbilic must be hyperbolic.

It also turns out that ridges are smooth curves crossing atlissiand changing color there —from a minimum
of k; to a maximum ok,. Notice that a ridge may not pass through an umbilic, thes d@fia single color and
changes type at each turning point if any —there is an everbeuof such points.

Remark. A finer distinction of elliptic umbilics concerns the ordegiof ridge colors around the umbilic: it is
called symmetrical if ridges alternate colors RBRBRB (tfien b -+ b3 + 3(bgb, + bibs) < 0) and unsymmetrical
if the ordering is RRRBBBT > 0). Figure 3.11 gives a schematic view of ridges at umbitiosie accurate figures
can be found in [HGY 99].
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Hyperbolic umbilic Symmetric elliptic umbilic Unsymmetric elliptic umbilic

Figure 3.11: Ridges at umbilic

3.4.5 Umbilic classification in the complex plane

The classification of umbilics with respect to the cubic pdithe Monge form of the surface can be illustrated by
a diagram in the plane (Fig. 3.12). With a change of variabigish corresponds to a rotation in the tangent plane
and notingl = x+ iy the cubic formbpx® + 3b1x?y + 3boxy? + bay® becomeReg 23 + wl?Z) for some complex
numberw. Then umbilics are parameterized dmin the complex plane. The zero sets of the four invari&its D
andT give four curves partitioning the plane in sectors. Umbitim the complement of these curves are generic.
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S=0, Index

Lemon
U=0, Number of principal directions

Index +1/2

Monstar

Index ~1/2 ">«

1 limiting
principal direction

,
' 1ridge )3 ridges Hyperbolic Star

3 limiting
principal directions

Elliptic Star Unsymmetric

Ellitic Star Symmetric
D=0, Number of ridges

T=0, Symmetry of ridges

Figure 3.12: Umbilic classification in the complex plane

3.4.6 Summary of the global picture of ridges and umbilics ora generic surface

To summarize, aridge pointis distinguished by its colorigmtype. When displaying ridge curves, we shall adopt
the following conventions:

e blue elliptic (hyperbolic) ridge curves are painted in b{gesen),
e red elliptic (hyperbolic) ridges curves are painted in reellpw).
At last, ridge curves displayed in black refer either to re@lae ridges.

Umbilic points can be considered as ridge points since theyirathe closure of ridge curves. But from a
topological standpoint, excluding umbilics, a ridge cuiva submanifold ofs and one can distinguish the two
cases:

Definition. 8 For a closed and bounded surface, a ridge curve is catlgenif it is homeomaorphic to the real line,
and it is calledclosedif it is homeomorphic to a circle.

An open ridge has one or two points in its frontier which arebilitzs. Hence an open ridge curve “connects
two umbilics or twice the same one.
To finish up this review, let us recall the following generioperties:

e aridge curve contains an even number of turning points athwtiie ridge changes from elliptic to hyper-
bolic.

e Near an umbilic, open ridge curves connected to this umarkchyperbolic.
e The configuration of ridges of the same color at umbilics hesfollowing:

— either only 1 open ridge curve is connected to the umbiliachlis called a 1-ridge umbilic;

— or 3 different open ridges are connected at one end to thelierohil open ridge is connected at both
ends and another open ridge is connected at one end to théiautobi Fig. 3.13). This umbilic is
called a 3-ridge umbilic.

e Ridges of the same color do not cross.
e Two ridges of different colors may cross at a so-cafledple point

e The index of an umbilic ist1/2, this implies that the direction field is not orientable omeégghborhood of
such points.
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These notions are illustrated on the famous example of tipseid on Figs. 3.14 and 3.15.

Figure 3.13: Two cases of 3-ridge umbilics: first with 3 diéfet ridges, second with 2 different ridges connected
to it. Points are umbilics, lines are ridges of the same color

3.4.7 lllustrations

We illustrate the previous global structure theorems onféingous example of an ellipsoid with three different
axes —Fig. 3.14, an implicit blend of two ellipsoids —Fig.18, and a Bezier patch —Fig. 3.17. The figures
are produced by the algorithm described in chapter 5 , whéeaitiges of Fig. 3.17 are certified by the algorithm
presented in chapter 7. The color conventions are: blugtielllhyperbolic) ridges are painted in blue (green), red
elliptic (hyperbolic) ridges are painted in red (yellom)térsections between ridges are the purple points.

On Fig. 3.14, the blue principal direction field is drawn —fravhich one infers that the normal is pointing
outward so that the two principal curvatures are negatibe. tWo elliptic ridges are closed curves without turning
point. The four Lemon umbilics are the black dots, and theylaked by four separatrices —the yellow and
green curves. The separatrices, which are curvature bmeslso ridges in that case. More generally, any line of
symmetry is a line of curvature and a ridge ([PorO1][p.16RPtice also that the lines of curvatures which are not
separatrices are all cycles. For each color, they are paonked cylinder. But this is a non stable configuration
since separatrices are umbilical connections, the cyeckesat hyperbolic. The medial axis of the ellipsoid is a
region homeomorphic to a disk, and is located in the symnaamge of the two largest axes. This region looks
like an ellipsis but is not so [Deg97]. The boundary of the rakdxis projects onto the red ridge curve, and
reciprocally on this example, every elliptic red ridge gainrresponds to a point on the boundary of the medial
axis.

Fig.3.16 is a blend between two ellipsoids defined by th@¥alhg equation:

X2 y? Z

1-exl-07(5 75 + 5oz T o3z~ V) (3.13)
—exp(—0.7( (x _00122 5 + ¥ 5_2'21)2 + (26_2'21)2 —1))=0. (3.14)

This model has six umbilics of index1/2 and two of index—1/2. Notice that this complies with the Euler
characteristic. One can also observe purple points anthtypoints.

Figure 3.17 features ridges of a Bezier patch, one can obd4eamd 3-ridge umbilics. This surface is the graph
of the degree 4 polynomialu,v) for (u,v) € [0,1]?%

h(u,v) = 1160 — 200u™V3 + 10802 — 24u’v — 312°3* 4 592552 — 360U°V? (3.15)
+ 80UV + 25224 — 504UV + 324022 — 72uPv — 56UVt + 112073 — 72uv + 16UV, (3.16)
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Figure 3.15: Schematic view of the umbilics and

Figure 3.14: Umbilics, ridges, and principal blue  the ridges.
foliation on the ellipsoid (10k points)

Figure 3.16: Implicit blending of two ellipsoids Figure 3.17: Ridges and umbilics on a Bezier patch
(40k points) (60K points)

3.5 Medial axis, skeleton, ridges

3.5.1 Medial axis of a smooth surface

The medial axis has an outstanding position in many comnasrand has been rediscovered several times. Exam-
ple relevant citation are [Erd46, Hor83] in analysis, [TRpMIil80] in differential geometry, [Ser82, Ser88, BA91,
BA92] in mathematical morphology. Since we just aim at pnéisg the local and global structure of the medial
axis, we shall follow [BGG85, GK0O0], but the interested reashould also consult [Yom81].

Given a closed manifol embedded ifR3, the medial axidMA(S) consists of the points of the open &4\ S
having two or more nearest points 8nA related notion is the skeleton Bf\ S, which consists of the centers of
maximal spheres included iR3\S—maximal for the inclusion amongst such spheres. For snipethbedded
manifolds, the closure of the medial axis is actually eqohe skeleton, which is why we just refer to the medial
axis in the sequel. (Interestingly, applications such afaea reconstruction, which usually assume the surface to
be reconstructed is smooth [AB99], do not distinguish betwmedial axis and skeleton.)

Having discussed the contact of a sphere with the surfaices leecall the classification of medial axis points
and the correspondingtratifiedstructure. While describing ridges, we actually cared niforghe surface. For
the medial axis, we change the perspective and care for titerseof the maximal spheres. When talking about a
contact, one should therefore keep in mind that the corredipg sphere contributes its center to the medial axis.

Since we care for spheres intersecting the surface in aatésbpoint —otherwise the sphere is not contained
in R3\S, the contact points must correspondAp andA] singularities —refer to Def. 5 for the definition of
the Al types. Notice that aA; singularity corresponds to a simple tangency. We shall tiiepsuperscript and
replace it by themultiplicity of the contact, that iA'{ refers to a sphere havigseparaté\|” contacts. The medial
axis points actually correspond to the following five cases:
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° A‘ll,Af,Af The sphere touches the surface at four, three or two poimdshas a simple tangency at each contact
point. A points are isolated point@;f points lie on curvesA? lie on sheets of the medial axis. Moreover,
one has the following incidences. At &4 point, sixA? sheets and fouk curves meet. Along aA$ curve,
threeA? sheets meet.

e A} The contact point is an elliptic ridge point. The corresgogdnedial axis points bouneu?L sheets.

e AJA; The sphere has two contact points. The center of the splesratlthe intersection between,éﬁmurve
together with arhJ curve. This is where aA? sheet vanishes.

An example consisting of a surface with two sheets is preseon Fig. 3.18. We describe it through a plane
sweep from top to bottom. The top part consists of two shegtptsby two simple curves of roughly triangular and
circular section. Then the inner contour vanishes so thatreéeft with the outer sheet which is roughly speaking
a cylinder of triangular section. Then, section of the ayéinchanges from triangular to elliptic. Eventually, the
cylinder splits into two legs of elliptic sections. Near the, the structure of the medial axis is that of a tetrahedron
with six A sheets and fouh? curves meeting. The boundary of each sheet consists 8§ @urve. When the
section gets rounder, o sheet vanishes at #gA; point.

There is an intuitive way to understand the preceding resiojt counting separately the numbers of degrees of
freedom and the number of constraints attached to a patiowgdial axis point. To see how, recall that a contact
involves one sphere and one or more points on the surfacerrstof degrees of freedom (dof), a sphere yields
four degrees of freedom, choosing a point on a surface ihantto dof, and choosing a point on a curve drawn
on a surface is one dof. In terms of constraints at the coptziots, constraining a sphere to havefancontact
imposes three constraints. (Indeed the tangent plane betrig that of the surface pt we are left with the choice
of the radius —which defines the pencil of spheres througtctimact point.) Similarly, having aAs; contact
imposes four degrees of freedom since the radius of the spfeex to be one of the principal curvatures. Let us
now discuss the different cases:

° A% Having two contacts of order one impose8 2 6 constraints. But choosing two points 8iiogether with
the contact spheres yield22+- 4 = 8 dof. One can expe@tf points to lie on sheets.

e A? ThreeA; contacts define.3 = 9 constraints, and.3+ 4 = 10 dof.A$ points are expected to lie on curves.
° A‘l1 FourA; yield 4.3 = 12 constraints and.2+ 4 = 12 dof. These medial axis points are expected to be isolated.

e Az Such a point yields 4 constraints. In terms of dof, we havedwfofor the choice of the contact point, and
three for the sphere with a radius equal to one of the priheguius of curvatureAz contacts are therefore
expected along curves.

e AsA; The contact points respectively yieldt43 constraints. On the other hand, choosing one point along a
curve, another on the surface, together with the dof of theespyield 2+ 1+ 4 dof. Such contacts are
expected to be isolated.

3.5.2 Medial axis and ridges

Spheres centered on the boundary of the medial axis prajectedliptic ridge points of typé\} on the surface.
But an elliptic ridge point can fail to be the contact of a gahthe boundary of the MA in two cases: (i) if the
limiting bitangent sphere crosses the surface away fronmitlye point or (ii) if the surface is locally inside this
sphere. (This latter case happens in elliptic regions farsitipe minimum ofk, or a negative maximum df). In
the first case, the sphere is not containeRS, and in the second it is not maximal for inclusion.

Fig. 3.19 illustrated case (i), the lowest point is an elliptdge point but its bitangent sphere has a non local
intersection with the curve. Fig. 3.14 illustrates caskg {fiie blue elliptic ridge is the loci of negative maximum
of k;. The MA, which is an ellipsoid in the equatorial plane (spaahiby the two longest principal axis of the
ellipsoid), only gives birth to the red ridge (negative minim ofky).
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Figure 3.18: The stratified structure of the medial axis ahaasth surface

3.6 Topological equivalence between embedded surfaces

Having discussed delicate differential notions in the pmes sections, we finish up with a seemingly simpler
question: what is the right notion of equivalence for emlsetisurfaces oE3, and what are sufficient conditions
for two surfaces two be equivalent? Interestingly, therlgteestion can be related to properties of the medial axis.
We focus on surfaces embeddeddd, orientable and without boundary, and which are either stmeei.e. at
leastC?— or piecewise linear.

3.6.1 Homeomorphy, isotopy, ambient isotopy

A well known Theorem [Mas77][Thm 5.1] states that for suefacthe genus characterizes the topology:

Theorem. 7 Two connected compact orientable surfaces without boyndes homeomorphic iff they have the
same genus.

Nevertheless, homeomorphy is not the relevant notion fooltmical equivalence of embedded surfaces. For
example, a torus and a knotted torus are homeomorphic, wigléwo surfaces are obviously not equivalent as
embedded surfaces &°. Intuitively, two surfaces are equivalent if one can comtinsly deform one into the
other without introducing self-intersection. The naturation is that of isotopy since it is an equivalence between
embeddings. There are two slightly different notions:aggtand ambient isotopy.

Definition. 9 Let S and Sbe two surfaces embedded iA.E

e S and Sare isotopic if there is a continuous map: B x [0,1] — E3 such that K.,0) is the identity of S,
F(S 1) =S, and for each € [0, 1], F(.,t) is a homeomorphism onto its image.

e S and Sare ambient isotopic if there is a continuous mapE® x [0,1] — E2 such that K., 0) is the identity
of E3, F(S,1) = S, and for each & [0,1], F(.,t) is a homeomorphism of &

In our study of compact surfaces embeddeBinthe following theorem [Hir88][p.180] shows the equivaten
of these two definitions, so we will merely speak of isotopy.
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Figure 3.19: An extrema of curvature not image of the medied boundary

Theorem. 8 Let SC M be a compact submanifold of M a manifold without boundany Bn Sx [0,1] — M an
isotopy of S, then F extends to a ambient isotopy of M.

Isotopy between embedded surfaces is a topological cleaistat of their embeddings, hence it does not
interfere with the geometry. F. Chazal et al. [CCS04] givaueefy topological condition for isotopy as well as
applications to the concepts of medial axis and local feadime. They define the notion of topological thickening
of a surface:

Definition. 10 A topological thickening of S is a set M E2 such that there exists a homeomorphigm S x
[0,1] — M satisfying®(Sx {1/2}) =SC M.

The boundary of a topological thickenimg of Sthus is the union of(dSx [0,1]) and two surfacesp(S,0) and
®(S 1), which will be referred to as the sides . Another surfaceS is said to separate the sidesMfif one
cannot go from one side to the other without cros$hgr leavingM. We are then able to state their main theorem
and two corollaries:

Theorem. 9 Suppose that S (resp!)$s included in a topological thickening \of S (resp. M of S), and that S
(resp. 9 separates the sides of'Ntesp. M). Then S and &re isotopic.

3.6.2 Geometric conditions for isotopy

Although isotopy is a topological property, sufficient cdiahs for isotopy can be obtained using geometric argu-
ments, and in particular properties of the medial axis.

If Sis smooth, fors € S, the local feature size afis defined as the Euclidean distance to the medial axis, that
is Ifs(s) = d(s,MA(S)) —see [AB99]. (As observed in section 3.5, since the surfacariooth the medial axis
is closed, so that the Euclidean distance is a minimum an@matfimum.) Moreover, IfS) is defined as the
number infcsd(s,MA(S)). Sbeing at leasC,, one has If§S) > 0 cf. [Fed59, Wol92]. The following is proved in
[CCSO04]:

Corollary. 1 Let S and Sbe compact orientable smooth surfaces without boundary.

e If each connected component of S (resp). eBcloses exactly one connected component ofSViAresp.
MA(S)), then S and ‘Sare isotopic.

e If the Hausdorff distance £85,S) between the two surfaces is such thd&8) < min(Ifs(S),Ifs(S)), then
S and Sare isotopic.

Roughly speaking, one proves thiaiand S are isotopic by first finding a neighborhood 8fin E3 which
containsS and second deforming to Smost of the time with the normal projection orin EZ.
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Using the global bound If§) ande-neighborhoods, Sakkalis et al. [SP03] give a family of aces which are
isotopic toS. Suppose&is smooth and oriented, fare R, S(p) = {s+ pns|s€ S} is the offset surface @ They
show that forp| < Ifs(S) offset surfaces are smooth surfaces embeddEd and are isotopic t& Moreover each
point of the offset has a unique nearest pointon

With the same kind of arguments, Amenta et al. [APR03] shasvislotopy between a smooth surface and
a piecewise linear approximation. More precisely, Amentala[ACDL0O] presented an algorithm to extract a
piecewise linear surfack from the Delaunay triangulation ofeasample ofS. The projection fronT to its nearest
point onSis a homeomorphism which is used to construct the isotopyg aldvantage of this method is that the
approximating surface needs not to stay graeighborhood globally defined.

3.7 Conclusion

We surveyed the notions of umbilics, lines of curvatureBafimns, ridges, medial axis, and topological equiva-
lences for smooth embedded surfaces, with an emphasis bal gloucture theorems.

An important aspect which has been eluded is the dynamic taseis the structure theorems valid if one
replace a surface by say a one-parameter family of surfa@&particular interest in that case are the birth and
death phenomena. These indeed feature transitions bepaitems observed in the static case, and the time events
between them are a measure of persistence of the objeckgadvd he reader is referred to [BG86, GK02, BGT96]
[HGY "99][chap.7] for pointers in that direction concerning Bdgand MA. Note that it does not make sense to
study a single line of curvature dynamically. One has to wmrshe topology of the principal foliation instead,
this is usually referred to as bifurcation theory, see [2}i0

From a practical perspective, we expect this survey to peoincentives to develop certified algorithms for
analysis and approximation of surface topology and gegmktithe following chapters, our algorithms for ridge
extraction benefit from the theoretical results of this ¢bap
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Chapter 4

Estimating Differential Quantities using
Polynomial fitting of Osculating Jets

This chapter addresses the point-wise estimation of @iffigal properties of a smooth manifo—a curve in
the plane or a surface itB3— assuming a point cloud sampled o&is provided. The method consists of fitting
the local representation of the manifold using a jet, arfteeiinterpolation or approximation. A jet is a truncated
Taylor expansion, and the incentive for using jets is thaytancode all local geometric quantities —such as
normal, curvatures, extrema of curvature.

On the way to using jets, the question of estimating difféediproperties is recasted into the more general
framework of multivariate interpolation / approximatiom,well-studied problem in numerical analysis. On a
theoretical perspective, we prove several convergenaéseghen the samples get denser. For curves and surfaces,
these results involve asymptotic estimates with convergeates depending upon the degree of the jet used. For the
particular case of curves, an error bound is also derivedh&@best of our knowledge, these results are among the
first ones providing accurate estimates for differentiamfities of order three and more. On the algorithmic side,
we solve the interpolation/approximation problem usingd&rmonde systems. Experimental results for surfaces
of R® are reported. These experiments illustrate the asymptoticergence results, but also the robustness of the
methods on general Computer Graphics models.

4.1 Introduction

4.1.1 Estimating differential quantities

Several applications from Computer Vision, Computer GrepphtComputer Aided Design or Computational Ge-
ometry require estimating local differential quantitid&sxamples of such applications are surface segmentation,
surface smoothing / denoising, surface reconstructi@pelklesign. In any case, the input consists of a point cloud
or a mesh. Most of the time, estimating first and second orifferential quantities, that is the tangent plane and
curvature-related quantities, is sufficient. However, s@pplications involving shape analysis require estingatin
third order differential quantities [HGY99, Por01].

Given these ubiquitous needs, a wealth of different estirsdtave been proposed in the vast literature of applied
geometry [Pet01, Gl04]. Most of these are adaptations taliferete setting of smooth differential geometry re-
sults. For example, several definitions of normals, prialkifirections and curvatures over a mesh can be found in
[Tau95, CWO0Q]. Ridges of polyhedral surfaces as well asidaspdges of the focal sets are computed in [WBO1].
Geodesics and discrete versions of the Gauss-Bonnet theweeconsidered in [PS98].

Out of all these contributions, few of them address the dgoesif the accuracy of the estimates proposed or
that of their convergence when the mesh or the sample pagttdemser. This lack of sound theoretical analysis
is however a major issue since discrete versions of smoahatgrs may not converge, or may converge to unex-
pected values. Examples of such phenomena are the suréscefaa mesh which may not converge to that of the
discretized surface [MTO02], or the angular defect at a wawfa triangulation which usually does not provide any
information on the Gauss curvature of the underlying smeatface [BCM02].

The estimation methods providing convergence guaranteeallaconcerned with first and second order dif-
ferential quantities. In [AB99], an error bound is provedtbe normal estimate to a smooth surface sampled
according to a criterion involving the skeleton. The suefacea of a mesh and its normal vector field versus those
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of a smooth surface are considered in [MT02]. Asymptoticwstes for the normal and the Gauss curvature of a
sampled surface for several methods are given in [MWO0O]eBagpon the normal cycle and restricted Delaunay
triangulations, an estimate for the second fundamental fifra surface is developed in [CSMO03].

Another striking fact about the estimation of first and setonder differential quantities is that for plane
curves, these quantities are often estimated using thdatisgucircle, while for surfaces, using osculating pa-
raboloids is ubiquitous. Why not osculating parabolas imves and osculating ellipsoids or hyperboloids for
surfaces? Answering this question and developing estimatiethods providing guarantees for third and higher
order estimates motivates the following contributions.

4.1.2 Contributions and chapter overview

The main contribution of this chapter is to recast the pnobdé estimating differential properties to that of fitting
the local representation of the manifold by a jet. A jet isuntated Taylor expansion, and the incentive for
using jets is that they encode all local geometric quastitiesuch as normal, curvatures, extrema of curvature.
Accurate estimates of the coefficients of the jet theref@mesiate immediately to accurate estimates of differentia
guantities. Since the method proposed consists of penfgraipolynomial fitting, connections with the classical
guestions of interpolation and approximation deserve efabdiscussion.

Interpolation is a well studied topics in numerical anaysMost of the time however, the parameterization
domain of interest is a subset &f'. In particular, convergence results on the coefficienthefltagrange inter-
polation polynomial versus the Taylor expansion of a fumttire proved in [Coa66, CR72, QV94]. Our results
differ from these in several concerns. On one hand, we ageedstted in interpolatioand approximation over a
manifold rather than a Euclidean domain. On the other hénedafore-mentioned papers prove error bounds while
we establish asymptotic error estimates. It should howbeenoticed that the dominant terms of these —as a
function of the sampling density— are the same.

Regarding polynomial fitting of differential properties @ surface, our results are closely related to [MWOO,
Lemma 4.1]. In that article, a degree two interpolation isduand analyzed. We generalize this result for jets or
arbitrary degree, under interpolation and approximation.

To complete the description, two comments are in ordert,Rirshould emphasized that our focus is a local
interpolation / approximation problem, that is we a@ concerned with the convergence of the Lagrange inter-
polation polynomial to the height function on a whole giveat. sThis problem requires specific conditions on
the function and the position of the points, as illustratgdi® Runge divergence phenomena [LS86, Chapter 2].
Therefore, our study is not to be confused with global fitteugh as piecewise polynomial fitting encountered
in CAD. Second, our focus is on the estimation of point-wigtetential quantities and not the identification of
loci of points exhibiting prescribed differential propes —examples of such loci are ridges or parabolic lines.
While the former problem is local, the latter is global andréfore faces the issue of reporting loci with a global
topological coherence.

The chapter is organized as follows. Fundamentals abaujed numerical issues are recalled in sections
4.2 and 4.3. The case of surfaces and curves are examinedtionse4.4 and 4.5. Finally, the overall algorithm
together with experimental results are presented in secdd and 4.7.

4.2 Geometric pre-requisites

4.2.1 Curves and surfaces, height functions and jets

It is well known [dC76, Spi99a] that any regular embeddedatimd curve or surface can be locally written as the
graph of a univariate or bivariate function with respectrig adirection that does not belong to the tangent space.
We shall call such a functionlaeight function Taking an orden Taylor expansion of the height function over a
curve yields:

f(X) = Jgn(X) + O™, (4.1)

with
Je.n(X) = Bo+ Bix+ Box® + Bax® + ...+ Bpx". (4.2)

1Regular means that the tangent space has dimension oneftaatirve/surface everywhere. Embedded forbids selfsattions. Smooth
means as many times differentiable as we need, typi€iligr C*.
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Similarly for a surface:
f(xvy) :JB,n(XaY)+O(||(X7Y)||n+1)v (43)
with

n k o
‘]B, (Xa y) - HB,k(Xv y)a HB‘k(Xa y) - ka N inJyJ . (44)
n ké , , ,Zo j

Notice that in Eq. (4.3), the ter@(||(x,y)||"**) stands for the remainder in Taylor's multivariate formula.

Borrowing to the jargon of singularity theory [BG92] , themticated Taylor expansial n(X) or Jg n(X,y) is
called a degrea jet, orn-jet. Since the differential properties ofhgjet match those of its defining curve/surface
up to ordem, the jet is said to havemorder contact with its defining curve or surface. This alsmwaats for the
termosculating jet—although osculating was initially meant for 2-jets. The degraget of a curve involves+ 1
terms. For a surface, since there a#el monomials of degrek then-jet involvesN, =1+2+---+ (n+1) =
(n+1)(n+2)/2terms. Notice that when tizirection used is aligned with the normal vector to the clswdace,
one hasB; =0 orB; o = Bg1 = 0. The osculating-jet encloses differential properties of the curve/swefap to
ordern, that is any differential quantity of ordercan be computed from thejet. In particular, the tangent space
can be computed from the 1-jet, the curvature related inftion can be obtained from the 2-jet, .... To clarify
the presentation, we summarize as follows:

Definition. 11 For a given point on a curve or surface andnl:

e given a coordinate system, tlosculatingn-jet is the Taylor expansion of the height function truncated at
order n.

e the osculating n-jet iprincipalin a given coordinate system if the linear terms vanish (he.z-axis is the
normal direction of the manifold). Note that this is rathep@perty of the coordinate system which reads
on the jet.

e anosculating conic/quadris a conic/quadric whose 2-jet matches that of the curvédser(independently
of a given coordinate system).

e an osculating conic/quadric idegeneratéd the quadratic form this conic/quadric is defined with igda-
erate (that is the form does not have full rank).

e an osculating conic/quadric igrincipalif, in the given coordinate system, its n-jet is principal.

Degenerate osculating conics/quadrics are specific cangsurfaces since:

Theorem. 10 [Ber87, Chapter 15] There are 9 Euclidean conics and 17 Eledn quadrics.

Observation. 5 The degenerate osculating conics to a smooth curve are péaaly lines. The degenerate oscu-
lating quadrics to a smooth surface are either paraboloiltic, hyperbolic), parabolic cylinders, or planes.

Degenerate osculating conics and quadrics are therefgpectvely 2 out of 9 conics and 4 out of 17 quadrics.

The Monge coordinate system of a curve is defined by its taragghnormal vectors. For a surface, the Monge
coordinate system is such that thaxis is aligned with the normal and tley axis are aligned with the principal
directions. Note that the-jet is principal in the Monge coordinate system. The Mongenf of the curve or
surface at one of its points is the local Taylor expansiorhefdurve/surface in the Monge coordinate system.
In this particular system, the height function is called kenge form, and lettind, k. stand for the principal
curvatures, one has

(kax? + kay?) + O(|| (x,y)[[3). (4.5)

NI =

fixy) =

From these observations, the question we ended paragrafitwdth can now be answered. By theorem 10 and
observation 5, using a general conic/quadric or a degemenatto approximate a curve or a surface does not make
any difference. In both cases and up to order two, the lodfrdntial properties of the curve/surface, degenerate
conic/quadric, or full rank conic/quadric are identicall these local differential properties are enclosed is tjet2
of the manifold. Yet, from a practical point of view, findingcanic/quadric requires more constrains than finding

2From the Latin osculare, to kiss.
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a degenerate one since the latter reduces to a degree twwpab/ fitting. Notice also that the normal direction
to the manifold being a priori unknown, this polynomial fiji has to be performed in a coordinate system where
the osculating jet is (in general) not principal.

As an example, consider Figure 4.1(a,b,c,d). Figure 4féélires a curv€ and an osculating confc In (b),
the osculating circle is drawn, in (c), the osculating @rislreplaced by the principal osculating parabola —whose
symmetry axis is the normal ©© and whose curvature matches thaCofAt last, in (d) a general parabola locally
approximate<€ in a coordinate system where the jet is not principal (its sty axis is not aligned with the
normal toC). This last case illustrates the setting we are working witthe sequel.

O

Figure 4.1: A curve and (a) an osculating ellipse, (b) itsuteting circle (special case of osculating conic), (c) its
principal degenerate conic, (d) an degenerate osculatinig:ca parabola.

4.2.2 Interpolation, approximation and related variations

Our methodology to retrieve differential quantities caitsiof fitting the osculating jet of the manifold in a given
coordinate system. The following variations need to bewutised in order to state our contributions precisely. The
case of curves and surfaces being similar, our descriptionses on surfaces. Assume we are given a skit of
pointspi(%,Yi,z),i =1,...,N in the neighborhood of a given poipton the surface processed. Pairitself may

or may not be one of the samples, and one can assume without loss of generalityptisdbcated at the origin

of the coordinate system used.

Interpolation versus approximation. Interpolating consists of finding a polynomial that fits ethaa set of data
points. In our case and following Equation (4.3), Beindex a coefficient of the jet of the surface, afvihdex a
coefficient of the jet sougHt. We aim at finding a degreepolynomialJa n such that

JA,n(Xh)’i) = f(XnM) :\]B,n(xiayi)+O(||(Xiayi)||n+l)a Vi= 1,...,N. (46)

Approximation, on the other hand, gives up on exactnessjshiae graph of the polynomial sought may not
contain the sample points. We shall focusleast-squarepproximation, which consists of minimizing the sum
of the square errors between the value of the polynomiallaaicof the function. The quantity to be minimized is

therefore
N

Z(JA,n(myi) — (%, %1))%. 4.7)

The two problems can actually be written in the same matnimfoTo see why, let us write the jets in the
polynomial basis consisting of monomialg!. Examples of other bases that could be used are the Beziest®a
basis or the Newton basis. We use the monomials since thisiba®nvenient for the asymptotic analysis but also
the design of effective algorithms. Dendteéhe N,-vector of the coefficients of the jet sought, that is

A: (AO,OaAl,OaAO,lv e 7A0,n)t'

3A point worth noticing is the relative position 6f and an osculating curve: the former usually crosses ther lattthe intersection point.
To see why, compare the order three Taylor expansions offtiveoacurves.
4As a mnemonic, the reader may want to remind that indlskands for theéAnswerto the fitting problem.
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DenoteZ the N-vector of the ordinates, i.e. with = f (X, Vi),

Z=(21,2,...,2n)" = (JB.n(%,¥i) + Ol (%, Y1) || ))ize, .-

Equations (4.6) and (4.7) yield the followimgx N, Vandermonde matrix

M= (17Xi7 Vi, Xi27' ey Xiyin717 yin)i:1 ..... N- (48)

For the interpolation case, the number of points matchesuh®er of parameters, so that matvixs square and
Eq. (4.6) can be written adA = Z. For the approximation caskl is a rectangulaN x N, matrix, and Eq. (4.7)
is summarized as miMA — Z||».

Choosing between interpolation and approximation depepos the problem tackled. For noisy datasets,
approximation is the method of choice. Otherwise, the aéttve depends of the relative values of the number
of model parameters versus the number of available poirittheltwo match one-another, a natural choice is
interpolation. In any case, fitting yields a linear systemthat numerical issues arise. Facing these difficulties is
the topic of section 4.3.

Mesh or mesh-less methods. An important difference between local geometry estimagilgorithms is whether

or not they require some topological information —typigdlie connectivity of a mesh. Mesh-based methods are
usually faster. Mesh-less techniques are more generalettef Buited for noisy datasets. A difficulty of the latter
methods, however, is to select the relevant points usedrforpethe estimates. While one can always resort to
heuristics of thek-nearest-neighbors type, user defined parameters shoaleblied. This issue is addressed in
section 4.6.

One or two stages methods. Fitting a 2-jet provides estimates of the tangent plane aedcurvature related
information. These steps can be carried out sequential§noultaneously. Following the guideline of [SZ90],
most of the methods already mentioned proceed sequentidly/ provably good algorithm we propose proceeds
simultaneously. Along its analysis, we also provide thgoaéresults on the accuracy of sequential methods.

4.2.3 Contributions revisited

Equipped with the language of jets, we can now state our ibortions precisely. Consider Eqs. (4.6) and (4.7).
We expectla , andJg n to be equivalent in some sense. To specify this, we shalyshelconvergence properties
of the coefficients ofa , when the pointg; converge tap. More precisely, assume that the coordinates ofphe
are given bypi(xi = aih,y; = bih,z = f(x;,y;)). Parameters; andb; are arbitrary real numbers, whitespecifies
that thep; uniformly tend to the origin. We actually expect

Aj = Bij +0O(r (h)).

Functionr(h) describes the convergence rate or the precision of thegfitand the main contribution of this
chapter is to quantify(h) for interpolation and approximation methods. This is doply@ng classical results of
numerical analysis. These results are then translatecefmmgtric quantities such as normal and curvatures. As
we shall see, interpolation or approximation of the sameakegield the same convergence rate. The difficulties
posed are also similar and are essentially to deal with &ngoatrices. This enables the design of an algorithm
for the estimation of geometric quantities together witmedknowledge about the quality of these estimates.

4.3 Numerical pre-requisites

In this section, we recall the fundamentals of the fitting moels used, namely interpolation and approximation,
together with the numerical issues arising from the resmhst

4.3.1 Interpolation

The interpolation fitting is based upon the Lagrange intlatgm, that is the construction of a polynomial con-
strained to fit a set of data points. Although this problemassical for the univariate case, the multivariate case
is still an active research field from both the theoretical aamputational points of view. We briefly review the
univariate and multivariate basics of Lagrange interpofat
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Univariate Lagrange interpolation. Let X = {xo,...,X:,} be n+ 1 distinct real values, the so-callesbdes
Then, for any real functiorf, there is a unique polynomi& of degreen so thatP(x) = f(x), Vi =0,...,n.
PolynomialP is called theLagrange interpolation polynomiaif f at the nodes<. For any choice of distinct
nodes, this polynomial exists and is unique, and in that tteseagrange interpolation is said to peised

Multivariate Lagrange interpolation.  Consider now the following bivariate problem. L[ét be the subspace of
bivariate polynomials of total degree equal or less thamhose dimension i, = (“:2), and letX = {xq,...,xn}
consist ofN = N, values inR? called nodes. (Notice that is exactly the number of monomials found in the jet of
Equation 4.3.) The Lagrange interpolation problem is saiukt poised foK if for any functionf : R? — R, there
exists a unique polynomid in My so thatP(x;) = f(x;), Vi =1,...,N. Itis intuitive and well known that this
problem is poised iff the set of nod&sis not a subset of any algebraic curve of degree at mast equivalently
the Vandermonde determinant formed by the interpolatiaraggns does not vanish. As noticed in [SX95], the
set of nodes for which the problem is not poised has measuoelzence it is almost always poised.

However let us illustrate non-poised cases or degenerafegooations of nodes, together with almost degen-
erate configurations —a more precise definition will be giwéh the conditioning in section 4.3.3. Consider the
two quadricsy (x,Y,2) = 2x+ X% —y? — zandgp(x,y,2) = X° + y? — z, whose intersection cundeprojects in the
(x,y) plane to the coni€(x,y) = 0 with C(x,y) = x— y? (cf. Fig. 4.2). If one tries to interpolate a height function
using points orl, unigueness of the interpolant is not achieved since angirguian the pencil ofg; andq, goes
throughl. A similar example featuring the four one-ring and one tiv@ymeighbors of a poinp is depicted on
figure 4.3. Notice that being able to figure out such configomatis rather a strength than a weakness of the
method since a surface is sought and, the amount of infoomatiailable does not determine uniquely such a
surface. A first fundamental difference between the urdtarand multivariate cases is therefore the critical issue
of choosing nodes so that the interpolation is poised.

In the particular case where the points lie on a regular sygrad of the plane, the geometry of the configuration
leads to the following remarks. On one hand, a non-poisedeg@eginterpolation occurs if the points lies an
lines, since they define an algebraic curve of degré&@ne the other hand, triangular lattices yield poised pols!
for every degree. These results and further extensionseéouind in [GS00] and references therein.

Figure 4.2: Two quadrics whose intersection cuhygrigure 4.3: The Kite (almost) degenerate configuration
projects onto the parabol@ : x = y2. Interpolatior]| —tangent plane seen from above: the 6 points used|for a
points located on do not uniquely define an interppdegree two interpolation are (almost) located on a conic,

lating height function. that is two intersecting lines.

4.3.2 Least square approximation

It is well known that the minimization problem of Eq. (4.7)dw@ unique solution iff the matrid is of maximum
rankN,. In that case, the minimum valyeis called theresidualof the system, that ip = min||MA— Z||,. The

important issue is again the rank of the matvix In terms of the relative values of versusN,, using too many
points certainly smoothes out geometric features, butrabskes rank deficient matrices less likely.

4.3.3 Numerical Issues
The difficulties of solving linear and least-squares systeonsist of dealing with rank-deficient matrices. We now
discuss these issues in more detail. Distances betweeitesand matrix norms refer to the Euclidean norm.

Singular systems and condition numbers. To quantify degeneracies, we resort to a Singular Value Beos
sition (SVD) [GvL83]. Denoteary, ..., g1 the singular values d¥l sorted in decreasing order. It is well known that
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the least singular value & is the distance frorM to rank deficient matrices. The singular values also charact
izes the sensitivity of the problem, that is the way errorsheninput data induce errors on the computed solution.
Notice that errors refer to the uncertainty attached tonipet data and not to the rounding errors inherent to the
floating point calculations. In our case, input data are #mpe points, so that errors are typically related to the
acquisition system —e.g. a laser range scanner.

To quantify the previous arguments, we resort todbiditioningor condition numbeof the system [GvL83,
Hig96]. The conditioning is defined as a magnification fasttiich relates the afore-mentioned errors by the
following ruleError on solution = Error on input x conditioning. Denote

Kk2(M) =||M|[2||M~ |2 = on/ 01

the condition number of the matriM. The conditioning of the linear probleMX = Z and the least square
problem mirn|MX — Z||, are respectively given by

linear square system: k2(M), (4.9)
least square system: kZM) + % with p = ||[MX — Z||, the residual '
The following theorem provides precise error bounds:
Theorem. 11 ([Hig96] p. 133 and 392) Suppose X addare the solutions of the problems
linear square system: MX Z and(M+AM)X = Z+AZ, (4.10)
least square system: min||MX — Z||, and min||(M +AM)X — (Z+AZ)||2, '
with € a positive real value such thaiAM ||, < g||M||2, ||AZ]|2 < €]|Z]|2, andek2(M) < 1. Then one has:
[1X =Xl .
conditionin 4.11
W = I-ka(M)e 0 @

In practice, if the conditioning is of order 3@nd the relative error on the inputds< 10°° — with gk2(M) < 1,
then the relative error on the solution is of orde? 10

Pre-conditioning the Vandermonde system. As already discussed, a convenient way to solve Eqs. (4d) an
(4.7) consists of using the basis of monomials. One ends tlpthhe Vandermonde matrix of Eq. (4.8), that can be
solved with usual methods of linear algebra. Unfortunatédyndermonde systems are known to be ill-conditioned
due to the change of magnitude of the terms. We thereforeqmdition so as to improve the condition number.
Assuming the{x; }, {yi} are of ordem, the pre-conditioning consists of performing a columniscgby dividing
each monomiakty! by hk+.

The new system is1'Y = MDY = Z with D the diagonal matri® = (1,h,h,h?,...,h",h"), so that the solution
A of the original system i# = DY. The condition number used in the sequel is precigéi’). (Notice it has the
geometric advantage to be invariant under homothetic foamsitions of the input points.) Then the accuracy of
the result can be estimated a posteriori, and almost degengases hight-lighted by large conditioning.

Alternatives for the interpolation case. An alternative to the Vandermonde system consists of usiadpasis
of Newton polynomials. Resolution of the system can be daiegudivided differences [Sau95], a numerically
accurate yet instable method [Hig96].

4.4 Surfaces
441 Problem addressed

Let Sbe a surface ang be a point ofS. Without loss of generality, we assunpeis located at the origin and
we aim at investigating differential quantities@t Consider the height functioh given by Equation (4.3) in any
coordinate system whosgeaxis is not in the tangent plane. We shall interpofatey a bivariaten-jet Jan(X,y)
whose graph is denoteg
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The normal to a surface given by Equation (4.3) is
ns = (—Bio,—Bo1,1)'/1/1+ B2+ B3, (4.12)

In order to characterize curvature properties, we resdhadVeingarten map of the surface also called the shape
operator, that is the tangent map of the Gauss map. (Reaalh first and second fundamental forimid andA
satisfyll (v,v) = | (A(v), V) for any vectow of the tangent space.) The principal curvatures and pradipections

are the eigenvalues (eigenvectorsyofand the reader is referred to [dC76, Section 3.3]. IfZlais is aligned
with the normal, the linear terms of Equation (4.3) vanisig the second fundamental form reduces to the Hessian
of the height function. Further simplifications are obtaime the Monge coordinate system, where 1d,, the
Hessian is a diagonal matrix, and the principal curvaturegaen by B,y and Bg».

4.4.2 Polynomial fitting of the height function

We begin by an approximation result on the coefficients ohkight function. We focus on the convergence rate
given by the value of the exponent of paramdter

Proposition. 2 Let {(x;,yi) }i—1....n be a set of points d&? defining a poised polynomial interpolation or approx-

imation problem of degree n, with 3 O(h),y; = O(h) (N = N, for interpolation and N> N, for approximation).
Let Jan be the degree n polynomial solution of the problem assogi@i¢he function f that is, for interpolation

Jan(xi.yi) = f(xi,y), Vi=1...,N;
and for approximation

N
Jan=arg min{_;(JA,n(Xth) — f(x, %))}

Then the coefficientsB; ; of degree k of the Taylor expansion of f are estimated by thbde, up to accuracy
O(hn*kﬂ'):
A =Bk jj+O(" 1) vk=0,..,nVj=0,.. k

Moreover, if the origin is one of the chosen points and indéaiion is used, thendy = Bgg = 0.

Proof. [Proof of Prop. 2, interpolation case.let K be the convex hull of the s€t(X;,Vi)}i—1..n, dmax be the
diameter oK anddmi, be the supremum of the diameter of disks inscribeld.ilso denoteDX is the differential
of orderk.

The result is a direct consequence of Theorem 2 of [CR72]roark 3.4.2 of [QV94], which states that

sup{|[Df (x,y) = DXIan(x,Y)I[; (x,y) € K} = O(h" 1), (4.13)
Rephrasing it with our notations yields:

1
|kai,j —Akfi,j| = W

< sup{|DX(f — Jan)(00) (1, -, QW] G € RZ, 1|4l < 1}
< |ID*(f — Jan)(0.0)|]
< supf{||D*f (x,y) — DXIan(xy)[]; (x,y) € K}.

IDX(f — Jan)(0,0)(1,0)*1(0,1)]]

For the particular case where the origin is one of the sampteie that the equation involving the po{i6t 0)
is Agp= f(0,00=0.0

As outlined by the proof, the constant hidden in the t€@th" 1) depends upon s§piD™ 1 (x,y)||; (x,y) €
K}, and the geometry df. In particular, the estimates are better when the m@#ig/dmin is small, which intu-
itively means that the sé&t is not too “flat”.

For the approximation case, the result might be a conseguetbe theorem 5 of [CR72] formulated in the
Sobolev setting. But in order to meet its hypothesis, onetmprs/e that the operator of discrete least square
approximation is continuous, which is not straightforwaktternatively, we give the following pedestrian proof.
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Proof. [Proof of Prop. 2, approximation case.]

Using the notations introduced in section 4.2.2, considerléast-square system miMA — Z||2. With the
assumption thalwl is of rankNy, the approximation is equivalent to the invertible linegstsmMTMA = MTZ.
With the notatiorsf = yN ; xky! and the assumptiofi(x;,yi)|| = O(h):

Bo,0Z)+ B10Z3+Bo 129 +... +BonZd+O(h™1)

BQQZ% +... +Bo,n2% + O(hn+2)
MTZ = Bo,ozg +... +O(hn+2)
Bo,ozg +... +O(hn+n+l)
il B -
28 Z(i Z6 .. %n
MIM=| 21 21 2 - Zng
DT A 2
Let D be detM' M), applying the Cramer’s rule gives:
28 .. Bo,ozg + Bl,oz(l) + BO’128 +...+ Boﬁnzg + O(hn+1) e Zg
zé . Bo,0Zg + o +BonZk +n9ghn+2) . %%
Aj,k—j — det Zl Bo!ozl—i-...—i—O(h ) Zn+1 /D
50 . BooZ8+ ...+ O(hmn+l) o 29

Linear combinations of the columns gives:

Zg Bj,k,jZk i+0 hn+l) Zg
53 ... BpgEjtomm?) s

A j =det Z‘f Bj’k,jz"(7]+l+0(h“+2) ZSH /D
SR Bjk Xy, +O(MMh 5

The numerator of this formula splits due to the multi-lingaof the determinant, and noticing thif =
O(h**!) givesA x_j = Bjx_j +O(h" k1), O

With respect to the order of convergence, it is equivaleqteidorming the fitting in any coordinate system.
Nevertheless, as noted above, the error estimates are ibditie convex hull of the sample points is not too flat.
Consequently, it means that for the best estimates onedkaké a coordinate system as close as possible to the
Monge system. Using the previous proposition, the ordecofieacy of a differential quantity is easily related to
the degree of the interpolant and the order of this quariltyre precisely:

Theorem. 12 A polynomial fitting of degree n estimates aHydrder differential quantity to accuracy @ k1),
In particular:

o the coefficients of the first fundamental form and the unibmavector are estimated with accuracyt®),
and so is the angle between the normal and the estimated horma

o the coefficients of the second fundamental form and the sbpgtor are approximated with accuracy
O(h"-1), and so are the principal curvatures and directions (as lasghey are well defined, i.e. away from
umbilics).

Proof. It is easily checked that the formula corresponding to thenggric quantities (as long as they are well
defined) areC? functions of the coefficients. The result follows from prejtion 2 and lemma 1 belowi

Lemma. 1 Define a K'-order differential quantity —for a curve or a surface— as & fanction F of the of

the coefficients of the k-jet of the height function. Alsauassthat a degree n fitting yields a precision A

Bj+O(h"1-)), k=1,...,nforacurve,and & j ; = Bc_j ; + O(h" 1) j=0,....n, k=0,...,n forasurface.
Then, a ponnom|aI flttmg of degree n estimate&adeder differential quant|ty to accuracy((D” ktly,
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Proof. The proof is the same for curves and surfaces, and we use thgong corresponding to a curve.
To begin with, we perform a substitution on the error termthaexpression df:

SinceF ((Bi)i-o,.. k) is aCl function, and denotin®Fy the differential ofF at pointp, an order one Taylor formula
yields:
F((Bi + O(hn7k+1))i:0,.. k) = F((Bi)i:O,...,k) + DF(Bi+uO(h"*k+1))i:

.7 L (O o)t uelo,1]
=F((Bi)i=o,..x) + o(hk+y,

The previous theorem generalizes [MWO0O, Lemma 4.1] wheet @erpolations only are studied. TREh")
bound on the normal should also be compared to the estiméie oformal vector using specific Voronoi centers
called poles considered in [AB99]. The error bound provedelis equivalent to2with € the sampling density
of the surface. Letting Ifs stand féwcal feature sizesettingh = ¢lfs and assuming Ifs is bounded from above,
the estimation stemming from a polynomial fitting therefgiedds more accurate results for the tangent plane, and
also provides information on higher order quantities.

4.4.3 Influence of normal accuracy on higher order estimates

Following the guideline initiated in [SZ90] several algbrns first estimate the normal to the surface and then
proceed with Hessian of the height function. We analyze ttar ncurred by the latter as a function of the accuracy
on the former. We denotthe angle between the nornmgjto the surface and the normg estimated by the two-
stages method. In order to simplify calculations, we assthaig is aligned with thez-axis andnsiis in the(x, z)-
plane, so thaf (x,y) = B1oX+ Boox? + B11xy+ Bozy? + O(||(x,y)||®), with By = —tan@. Expressed in the same
coordinate system, the interpolant —a 2-jet to simplifycodtions— reads ad »(X,y) = ApoX? + Aq1Xy -+ Aoay?.

Proposition. 3 If a small error 8 is done on the estimated normal, a 2-jet interpolation gihesGauss curvature
with a linear error with respect t@:

ko —ks=00(h™1) + O(h) + O(6?).

Proof. The system of equations for the interpolation is:

Ao oxh 4 Ap 1%V -+ Ao 2y? = B1.o% + Ba.oX? + Braxiyi + Boay? + O(|| (6, )| [}) i=1,...,3.

Let D be the determinanDd = det(xiz, XiVi, yiz)i:]_’m’g, Cramer’s rule gives:

Ao = det(Byox + B +Brixiyi +Bo2y? +O(|| (%, Yi)|I), Xi¥i, ¥)i=1...3/D
= B100(h™ 1) +Byo+0(h).

Similar calculations givesA; 1 = B1 0O(h™1) +By.1 + O(h), andAg 2 = By oO(h™1) + By 2 + O(h). The Gaussian
curvature ofQ is then:

4R 0A02 — Ail
1+ Aio
= AAr0Pop— A%
= 4(BroO(h™ 1) +Boo+O(h))(B1oO(h 1) 4+Bo2+O(h)) — (B1oO(h 1) + By1 + O(h))?
= 4BpoBop— Bf+B1oO(h 1) +B%0(h %)+ O(h)
= 4ByoBop— B2, +tanfO(h*) +tar? 6O(h~2) + O(h).

The Gaussian curvature 8fis

 4B20Bo2— Bil  4B20Bo2 - Bil

— 2
ST T (+B2)2  (1+tarfh)? = (4B2,0Bo2 — Bf 1) cos' 6.
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Thus the error on the curvature is:

kg —ks

(4B2,0Bo2 — BZ ;) cod 6 +tanfO(h 1) + tarf 00(h~2) + O(h)
60(h~1) +0O(h) + O(6?).

O

For a fixedh, the curvature error is a linear function of the angle betwése normals. The terrBO(h~1)
shows that iff is fixed, the smalleh the worse the accuracy. Hence estimating the normal desspegific care.

4.5 Plane Curves

All the results proved for surfaces in the previous sectemaliso be proved for curves, and we omit them. Instead,
for the interpolation case, we prove an error bound betwleedefficients of the curve and those of the jet.

451 Problem addressed

Let C be a curve, and consider the height functiofollowing Equation (4.1) in any coordinate system whose
y axis is not tangent to the curve and, whose origin is on theec(this implies thaBy = 0). We shall fitC

by an-jet Jan(x). As already mentioned, there amer 1 unknown coefficientg\, we assumeN data points

R (x =ah,y; = f(x)) are given, wher& = n+ 1 for interpolation fitting. Notice again that parametespecifies
the uniform convergence of these data points to the origie. fitting equations are:

yi = f(x%) = Jan(x) +O(") = Jan(x)-

Since curveC is given by Equation (4.1), the normal and the curvatur€ af the origin are given by

e = (—By,1)1/\/1+ B2, ke = 2By/(1+B2)>. (4.14)

Moreover, in the Monge coordinate systenBr—= 0, these expressions simplify g = (0,1)' andkc = 2B.

4.5.2 Error bounds for the interpolation

The equivalent of Prop. 2 for curves gives the magnitude @fitcuracy of the interpolation. We can actually be
more precise and provide error bounds depending upon tledidarinterpolated and the position of the interpola-
tion points.

Proposition. 4 Consider a degree n (& 1) interpolation problem for a curve ¥ f(x). Let h be a positive
number so that the interpolation point abscissa lie in thteinal [—h, h|, and c= sup¢[_n | (1) (x)|. Then for
k=0,...,n:

n—kJrlC

A B S

Proof. This result is a simple application of the analysis of the iaage interpolation remainder which can be
found in [EK66]. LetRy(x) = f(x) — Ja(x), theorem 1 p.289 states thé& =0,...,nandvx € [—h,h]:

n—k (n+1)
(K) yy oy ")
Rn (X)_J: (X EJ)(n—Fl—k)'
with x,&j,n € [—h,h].
Forx =0, this leads to:
hn—k+1c

IRW(0)] = |kIA— KIBy| <
hn—k+1c

< -

= K(n—k+1)

(n—k+1)!

|Ax — By
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Here is an application of the previous result. IBetlenote the angle between the normal and the estimated
normal. We have si{®) = |[ng Anc|| = |A1— Ba|/4/ (14 A2)(1+ B2) < |A; — By|. Itis found that

n
6 < arcsin l‘:‘]_'C).

4.6 Algorithm

The fitting algorithm to estimate the differential propestiat a poinp consists of (i)collecting th&l points used
for the fitting. (Recall that a-jet involvesN, = (n+ 1)(n+ 2)/2 coefficients, so that when interpolating (approx-
imating) we assumil = N, (N > Np).) (ii)solving the linear system (iii)recovering the difential properties.

We examine in turn the details of these three steps.

4.6.1 CollectingN neighbors

The mesh case. Although no topological information is required by the figimethod, the connectivity infor-
mation of a mesh can be used as follows. We sequentiallytlisibne-ring neighbors, two-ring neighbors, and so
on until N points have been collected. L1, ..., R¢ be thek rings of neighbors necessary to collétheighbors.

All the points of thek — 1 first rings are used. The complement upNt@oints is chosen arbitrarily out of theh
ring.

The point-cloud case. The normal atp is first estimated, and the neighbors pfare further retrieved from

a power diagram in the estimated tangent plane [BF02] —aghgwgood procedure if the samples are dense

enough. If the number of neighbors collected is less thawe recursively collect the neighbors of the neighbors.
Collecting the points therefore boils down to estimating tAngent plane. One solution is to construct the

Voronoi diagram of the point set and use these Voronoi vestitalledpoles[AB99]. Poles yield an accurate

estimate of the normal vector but require a global consouoct

An alternative is to resort to the algorithm of section 4.dd aolve a degree one interpolation problem —which

requires three points and is well poised as soon as the tbhiets@re not collinear. Geometrically, the closer the

three points to being aligned, the more unstable the targane estimate. To see how one can get around this

difficulty, denoteq the nearest neighbor @ Also, letr be the sample point so that the circum-radigg of the

trianglepgris minimum. The estimated normalpts the normal to the plane througlgr. Intuitively, minimizing

the circum-radiusjc prevents two difficulties: on one hand triangles with a laaggle (near tar) exhibit a large

circum-circle and are discarded; on the other hand, tresigivolving a third point which is not docal neighbor

of p cannot minimize . and are also discarded. A more formal argument advocatigtibice of the triangle

with minimumr ;¢ is provided in [She02b], where it is shown that the worst lea the approximation of the

gradient of a bivariate function by a linear interpolantgisely involves girc.

4.6.2 Solving the fitting problem

The next stage consists of choosing fftkrection to work with. Since the tangent plane has not beémated, we
use a principal component analysis to compute a rough estiofisthe normal with the collected points. The poly-
nomial fitting can be done in any coordinate system wlx@ses is not tangent to the surface. Hence at least one of
the three axes of the world coordinate system matches tigregnent. A natural choice is to select the coordinate
axis whose angle with the rough estimated normal is minimémother choice is that of a coordinate system
for which thez axis is the rough estimated normal. This choice may incré@seatiodmay/dmin and improve
the results as explained in section 4.4, but this requiresdhculation of a non trivial coordinate transformation.
The improvement of this latter choice has not been studipémxentally since the first alternative performs well
enough to confirm the theoretical orders of convergence seaftion 4.7.1. For the chosen coordinates, we fill the
Vandermonde matrix. The matrix is further pre-conditioasexplained in section 4.3.3, wittthe average value
of the normg|(x,Vi)||. The corresponding system is solved using a Singular VakmoBposition. Practically,
we use the SVD of the Gnu Scientific Library, available fronplitsources.redhat.com/gsl.

As pointed out in section 4.3.3, the instability of the systs provided by the condition number. Whenever
degenerate configurations are detected, one can proceeitbasf For the approximation strategy, one can either
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keep the same degree and increase the number of points usedse the same points with a lower degree. These
changes are likely to provide a non singular matvix In the worst-case, a degree one fitting must be possible
since then only three linearly independent points are reguiFor the interpolation, things are a bit more involved
since reducing the interpolation degree requires disngrdome points. Selecting the subset yielding the best
conditioning is a challenging problem [Las99, Hig96]. Netalso that for the approximation case, one can always
retrieve a solution from an under-constrained least-sgpesblem by choosing, e.g., the solution vector of least
norm.

4.6.3 Retrieving differential quantities

We have already mentioned how to compute the normal. Foreit@ns! order information, we compute the Wein-
garten map of the surface [dC76, Section 3.3]. Its eigemgafaigenvectors) provide the principal curvatures (di-
rections) of the surface. For a parameterized surface giserheight function, one ends up with the formula given
on Table 4.1. Notice that a basis of the tangent space agsd¢@mthe parameterizatiofi(u,v) = (u,v,h(u,v))
consists of the two vectod§, = (1,0,h,)' andX, = (0,1,h,)t. A Gram-Schmidt orthonormalization of the basis
{Xu, Xv} gives another basigy, Z} of the tangent space. The diagonalization of the symmetaitirrepresenting
the Weingarten map in the badi¥,Z} provides the expression of the principal curvature dicetiwith respect

to the{Y,Z} orthonormal basis. Note that the sign of principal curveseind hence the definition of minimal
and maximal directions rely on the orientation of the norrmed long as our experimental study is performed on
meshes of oriented surfaces, it is straightforward to fintbbaj and coherent orientation of the normals.

| — 2a3

— 2 ——
(]::'— 1+a; /a12+a14+a22
=azay m= ——%%___ -1
—1+a2 Va1?+1+ay? A= _ e f I m
9= 2 n— __ 2% m n
Var?+1+a?

Table 4.1: Computing the matri& of the Weingarten map di(u,v) = aju+ayv+ azu?+asuv+asV2 in the
basis{ Xy, Xv}

4.7 Experimental study

We present results along two lines. First, we illustratedbievergence theorems proved in section 4.4. Second,
we present illustrations on standard computer graphicsetsod

4.7.1 Convergence estimates on a graph

Setup. We illustrate the convergence properties with the smooightéeldsf (u,v) = 0.1€2u+v-V? andg(u,v) =
4u? + 2v2 defined over the parametric domdinv) € [—0.5,0.5]2 —see Figs. 4.4 and 4.5. At selected points on
the graphs off andg, we study the angle between the normals —more preciselingssé(n, fi), and the relative
errors on principal curvatures. The values output by owrdtlym are compared against the exact values computed
analytically with arbitrary precision under Maple, and veport both average and maximum errors over sample
points. More precisely, the graph 6for g are sampled with pointg;(x;, Vi, f(xi,Vi)) where the(x,y;) lies on a
randomly perturbed triangulated square grid of didelThe triangulation is randomly perturbed to avoid simple
degenerate configurations such as points lying on lines.pEnirbation for the poinfu, v) of the regular grid is

the point(x,y) with x=u+ dh, y= v+ d’h andd, d’ random numbers ifD,0.9]. The connectivity of the graph

is that of the triangulated grid. Notice also that since wlaltons are carried out on a surface patch parameterized
over a square grid, the direction chosen for the polynontiiddi is thez direction near the origin, and either the
thex ory directions at the periphery of the domain.

The convergence properties are illustrated (i)with resfmethe discretization stelp of the grid —for a given
fitting degreen (ii)with respect to the fitting degree—for a given discretization step We compare the conver-
gence properties of the interpolation and approximatidwestes, for fitting degrees ranging from one to nine. To
quantify the observations, notice that according to theot&, the errod on aki"-order differential quantity is
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O(h" k1), hence

d~ch 1o log(1/8) ~log(1/c) + (n—k+1)log(1/h) (4.15)

l0g(1/3) _ log(1/c)
log(1/h) ~ fog(1/n)

+(n—k+1). (4.16)

Convergence with respect to td.  To highlight the convergence properties with respect testhe of the neigh-
borhood, we consider sequences of meshes lwith0, more precisely ranges from 22 to 2-°. The results for
f andg being alike, we focus on the exponential

Curves of Figs. 4.6 to 4.11 show the average convergenceioelaa the size of the neighborhood decreases.
For a given degree and following equation (4.15), curvesyuirés 4.6 to 4.11 should be lines of siqpe- k+ 1).
The behavior is more regular for the approximation caseflaméstimate is also better: a gain of about a digit can
be observed betwedqax estimates of figures 4.10 and 4.11.

Convergence with respect to to the interpolation degree. For the convergence with respect to to the interpola-
tion degree —with fixed, we present results for the polynongg(cf. Fig. 4.12 to 4.17). Conclusions are similar
for f (cf. Fig. 4.18 to 4.23), but it should however be noticed giate the graph af is more curvy than that of
f, afiner grid is required. (The higher the degree the moretpo@guired by the fitting ... and we compute local
quantities!) To be precise, we ran experiments wiith 2-° for f andh =27 for g.

Curves of figures 4.12 and 4.13 show the convergence as adumdtthe degree of the fitted polynomial for
a fixed neighborhood size. According to Eq. (4.16), curvethese figures should be lines of unit slope, with
a vertical shift of one unit between normal and curvaturesrsrsince curvature is d'2order quantity whereas
normal is £ order. The gap between the average values and the maxinialsvial greater for interpolation than
for approximation. The other charts provide the conditigrind the least singular value. Interpolation fitting is
always more ill-conditioned than approximation, and ctdsea degenerate problem (the least singular value is the
distance of the matrix system to singular matrices). Théqadar case of a degree 7 approximation reveals to be
badly conditioned due to the regular connectivity of the Imesed to find the neighbors: there is only one more
point than for the degree 7 interpolation fitting.

4.7.2 lllustrations

We depict differential informations on several models. Wipgincipal directions are displayed, blue and red
respectively correspond ghin andkmax—that iskmin < kmax—, @assuming the surface normal points to the outside.
To display patches of osculatimgjets, it is sufficient to select a rectangular domain in peeter space, sample it
with a grid, and plot the corresponding mesh.

Consider the mesh models of the elliptic paraboloid 2x> + y> —16k points, Fig. 4.24—, and the surface
of revolutionz = O.lsin(lO\/(xz—i—yz)) —8k points, Fig. 4.25. The arrangement of curvature linesides
informations on umbilical points —where principal direxts are not defined sin&gin = kmax. On the paraboloid
, it is easy to follow curvature lines and see how they turruacban umbilic. The surface of revolution provides
an example of two parabolic lines (where the principal cturaknax Vanishes), that is a curve along which
the Gauss curvatut€sayssvanishes. This specific line splits the surface into ellifiicauss> 0) and hyperbolic
regions Kgauss< 0). This model also illustrates a line of umbilical pointser minimum and maximum principal
directions swap each over.

For a standard example from Computer Graphics, conside¥itbleelangelo’s David of Fig. 4.26. On this
model of 95922 pts, the principal curvatures provide megfninnformation for shape perception To finish
up, we illustrate the robustness of the method. Figure 4i@dal/s random patches on the Mechanic model, a
12,500 points model reconstructed from the output of a ranganer. In spite of the coarse sampling, patches and
principal directions provide faithful information. In ansilar vein, approximation fitting with large neighborhoods
Fig. 4.28 features a noisy triangulation of a graph. In spftthe severe level of noise, surface patchesrage
the available information. On Fig. 4.29, a noisy triangiglatof an ellipsoid, 15k points, principal directions are
enough precise to recognize an umbilic.

5See also [HCV52, p197] as well as [HG99)].
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Figure 4.25: Surface of revolution

Figure 4.24: Elliptic paraboloid

s David: principal directiorssaciated withkmax scaled bykmin

Figure 4.26: Michelangelo
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Figure 4.27: Mechanic: closeup

Figure 4.28:f (u,v) = u+3v+ e2U+v— \ith noise Figure 4.29: Principal directions on a noisy ellipsoid

4.8 Conclusion

Estimating differential quantities is of prime importarinemany applications from Computer Vision, Computer
Graphics, Computer Aided Design or Computational Geomdtnys importance accounts for the many different
differential estimators one can find in the vast literaturagplied geometry. Unfortunately, few of these have un-
dergone a precise theoretical analysis. Another strikdiegif that estimates of second order differential quastiti
are always computed using degenerate conics/quadricewtidven mentioning the classification of Euclidean
conics/quadrics.

The main contribution of the chapter is to bridge the gap betwthe question of estimating differential prop-
erties of arbitrary order and multivariate interpolatiordaapproximation. In making this connection, the use of
jets —truncated Taylor expansions— is advocated. Presigatotic convergence rates are proved for curves and
surfaces, both for the interpolation and approximatioreseés. To the best of our knowledge, these results are
among the first ones providing accurate estimates for éiffigal quantities of order three and more. Experimental
results for surfaces a2 are reported. These experiments illustrate the asymptoticergence results, but also
the robustness of the methods on general Computer Grapbidsis

Acknowledgments.P. Chenin is acknowledged for pointing out Ref. [EK66].



Chapter 5

Topology driven algorithms for ridge
extraction on meshes

Given a smooth surface, a ridge is a curve along which oneeopthcipal curvatures has an extremum along
its curvature line. Ridges are curveseftremalcurvature and therefore encode important informations urse
segmentation, registration, matching and surface arsalgsirprisingly, no method developed so far to report ridges
from a mesh approximating a smooth surface comes with awdaneélysis, which entails that one does not know
whether the ridges are reported in a coherent fashion. Bgéthis gap, we make the following contributions.

First, we present a careful analysis of the orientationessarising when one wishes to report the ridges
associated to the two principal curvatures separately.afla¢ysis highlights the subtle interplay between ridges,
umbilics, and curvature lines. Second, given a triangohedi approximating a smooth generic surfa8ewe
present sufficient conditions oh together with a generic algorithm reporting an isotopicragpnation of the
ridges. Third, we develop a heuristic algorithm to procesgeah when no information on an underlying smooth
surface is known. Fourth, for coarse models, we provide exifiity mechanism retaining the most stable ridges
only. Fifth, we present experimental results of the heigrgorithm for smooth surfaces as well as coarse models.
Our running times improve of at least one order of magnithdee of state-of-the-art methods.

The common point of these contributions is to exploit theotogical patterns of ridges on smooth generic
surfaces recalled in chapter 3. These contributions alse piee way to the first certified algorithm for ridge
extraction on polynomial parametric surfaces, developdteé next chapters.

5.1 Introduction

5.1.1 Ridges of a smooth surface

Differential properties of surfaces embeddedRrare a fascinating topic per se, and have long been of intienest
artists and mathematicians, as illustrated by the paraboés drawn by Felix Klein on the Apollo of Belvedere
[HCV52], and also by the developments reported in [Koe9@ydhd these noble considerations, the recent de-
velopment of laser range scanners and medical images gjtgdol the importance of being able to analyze
discrete datasets consisting of point cloudsihd@ medical images —grids ofCBvoxels. Whenever the datasets
processed model piecewise smooth surfaces, a precisepdiescof the models naturally calls for differential
properties. In particular, applications such as shapemmgdHGY™99], surface analysis [HGY99], or registra-
tion [TG95, PATOOQ] require the characterization of high@rgroperties and in particular the characterization of
curves ofextremalcurvatures, which are precisely the so-callieldies

Chapter 3 surveys theoretical analysis of ridges, so wer@estll basic definitions below. A ridge consists
of the points where one of the principal curvatures has areewtm along its curvature line. Since each point
which is not an umbilic has two different principal curvagaya point potentially belongs to two different ridges.
Denotingk; andk;, the principal curvatures —we shall always assume khat ko, a ridge is called blue (red) if
ki (ko) has an extremum. Moreover, a ridge is caldiiptic if it corresponds to a maximum &f or a minimum
of kp, and is callechyperbolicotherwise. Ridges witness extrema of principal curvatames their definition
involves derivatives of curvatures, whence third ordéeiedéntial quantities. Moreover, the classification of gdg
as elliptic or hyperbolic involves fourth order differeaitquantities, so that the precise definition of ridges nexgui
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C* differentiable surfaces. Therefore, the calculation dfjiés from a mesh approximating a smooth surface poses
difficult problems, which are of three kinds.

Numerical difficulties. It is well known that parabolic curves of a smooth surfaceespond to points where
the Gauss curvature vanishes. Similarly, ridges are wsgtbby the zero crossings of the so-called extremality
coefficients, denotely (b3) for blue (red) ridges, which are the derivatives of the gipal curvatures along their
respective curvature lines. Algorithms reporting ridgesahto estimatey andbs. Estimating these coefficients
depends on the particular type of surface processed —iithplitefined, parameterized, discretized by a mesh—
and is numerically a difficult task. Notice though, that tistiration of these quantities is independent from the
combinatorial processing of ridges.

Orientation difficulties.  Since coefficient®y andbs are derivatives of principal curvatures, they are thirdeor
coefficients in the Monge form of the surface —the Monge fasrthe Taylor expansion of the surface expressed
as a height function in the particular frame defined by theqgipal directions. But like all odd term of the Monge
form, their sign depends upon the orientation of the prialcipame used. Tracking the sign change of functions
whose sign depends on the particular orientation of the dranwhich they are expressed poses a problem. In
particular, tracking a zero-crossing laf or bs along a line-segmerninposes to find a coherent orientation of the
principal frame at the segment endpoints. Given two prigoigctors at the segment endpoints, one way to find
such an orientation consists of orienting the directionhabthey make an acute angle, whence the narAeufe
Ruleor A.R. for short. The A.R. is implicitly used in [Mor90, MoB9 TG95, OBS04], but surprisingly, none of
these papers addresses the question of specifying camslgicaranteeing the decisions made are correct. As we
shall see, such analysis highlights the interplay betwegations, ridges and umbilics. (A principal foliation is
the collection of lines of curvature associated to eith@rgypal curvature.)

Topological difficulties. The last difficulty is of topological nature and stems frora tomplex patterns made
on generic surfaces by ridges and umbilics. As an illugirattonsider a generic closed surface of genus zero —a
topological sphere. Each such surface has at least fouliemlgach being traversed by either one or three ridges.
For precise relationship between ridges and umbilics, ¢laeler is referred to [Por01] as well as to section 3.4.
Reporting ridges therefore requires reporting and chasgifumbilics, an issue not addressed, to the best of our
knowledge, by any paper tackling the issue of reportingegddrhis issue is illustrated in Figs. 3.14 and 3.15 for
the particular case of the ellipsoid.

Another difficulty of topological nature is the interferenaf red and blue ridges at the so-called purple points.
Given that each point of a smooth surface (which is not an lichlgotentially belongs to two different ridges
—one for each principal curvature, ridges near purple gaimist be handled with care. This difficulty requires
again an orientation procedure such as the A.R. alreadyiomeat.

5.1.2 Previous work

To the best of our knowledge, the only algorithm taking into@unt the topology of ridges at umbilics is described
by Morris [Mor90, Mor96]. This method applies to parameted surfaces and uses heuristics to orient edges and
report umbilics, so that no guarantee is provided. For algjelsurfaces, Bogaevski et al. [BLBK03] use a formal
computation to determine the equation of a surface whoses@ttion with the original surface gives the ridges.
For implicit surfaces, Thirion [Thi96] applies a marchirigd algorithm to the Gaussian extremality. However,
the behavior of the algorithm near umbilics is not specifsed] the Gaussian extremally = bobs used to avoid
orienting with the acute rule disconnects red and blue s@géeheir intersections —5.2(c).

All other methods do not address the problem of topology,fbatis on identifying a subset of the ridges
and filtering methods. The connection between the medialaxd ridges is used by M.Hisada et al. [HBKO02].
(Notice though that the projection of the medial axis boumdaisses all hyperbolic ridges, and may also miss
elliptic ones.) The connection with the focal surfaces issidered in [WBO01] and [LA98]. Methods using only
the estimation of curvatures on meshes are derived by ObtaddOBO01] or Stylianou et al [SF00]. Ohtake et al.
[OBS04] use implicit surface fitting of a mesh to extract gelgalley lines. The curvature tensor and the derivatives
of curvatures of a mesh vertex are defined as the analyticaityputed values of the projection of the vertex on
the fitted surface.
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5.1.3 Contributions and chapter overview

Following the previous discussion, given a mdslproviding an approximation of a smooth compact oriented
generic surfac&, we aim at usingl’ so as to report the ridges 8f (We implicitly assumeSandT are isotopic
[ACDLO0, APR03, CCS04].) We make the following contributf

In section 5.2, we specify the topological difficulties argswhen reporting ridges, and introduce the Acute
Rule. In section 5.3, we defim@mplianttriangulations amenable to an isotopic extraction of ridgad develop a
generic algorithm. The algorithm is generic since two noesiare assumed to compute the Monge coefficients of
the surface at any point, and to report umbilic patches. ¢tti@e 5.4, we develop a heuristic algorithm to process
a mesh when no information on an underlying smooth surfakaasvn. In section 5.5, we develop a filtering
mechanism to report the most stable ridges of a coarse mewtilyfFexperimental results are provided in section
5.6.

5.2 Ridge topology and orientation issues

In this section, we introduce formally the problem addrdssReaders not familiar with ridges are referred to
section 3.4 as well as to [HGN99]. The set of ridges is composed of simple curves eithesecddand free of
umbilic calledclosed ridgesor open curves connecting umbilics callepgen ridges Hence reporting ridges
means reporting umbilics and these ridge curves with theecbconnectivity. As our aim is to report blue and red
ridges separately, we focus on the R@bf blue ridges ofS.

5.2.1 Problem addressed

Assume we are given a triangle meshand an homeomorphis@ from T to S. As indicated in Fig. 5.1, we
aim at reporting th@ull-backof the sele of ridges ofSontoT. More precisely, we aim at reporting a fét of
polygonal curves off corresponding to this pull-back. Given such a polyline hepair of consecutive points is
called aridge segment_et us consider o8 (T) the ridge seRg (R?), together with the topology induced BR?.

Definition. 12 The set R is an isotopic approximation of the blue ridges of S if push-forwardf I% (CD(R-br))
is isotopic to R on S, or equivalently thpull-backof R (®1(RY)) is isotopic to B on T.

As suggested by the previous definition, we shall use theviotlg abuses of terminology. When saying that
“an edge is crossed by a ridge” or “a triangle contains an liaibve shall mean “the push-forward of the edge is
crossed by a ridge” or “the push-forward of the triangle eam an umbilic”. Equivalently, this also means that
“an edge is crossed by the pull-back of a ridge” or “a triargglatains the pull-back of an umbilic”.

Before proceeding, a comment is in order. We do not consideal@ points —intersection between ridges of
different colors— because the topology of the blue and rexicfeidges are processed separately. The incentive for
ignoring purple points is that red and blue ridges are inddpat since functionisy andbs are so. Incidently, this
assumption alleviates the constraint of reporting thessiiopology of ridges around purple points, as depicted in
Fig. 5.2.

Figure 5.1: A ridgeR on a smooth surface, its pull-bafil, ro] on an inscribed triangulated surface, and a straight
ridge segmenity, t,] isotopic to this pull-back in the trianglegs
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() (b)

Figure 5.2: (a)Two ridges of different colors (b)Blue / redges reported independently: the topology of each
ridge is respected, but that of the union is not (c)Ridgesntep simultaneously by the Gaussian extremality:
ridges are disconnected at purple points. No ridge pointisaed when both red and blue ridges cross the same
edge

5.2.2 Orientation and crossings

Consider a mesh approximating of a smooth compact oriented generic surda® explained in the previous
section. The main issue tackled is to understand which ptiesd must have in order for one to report the ridges
of Sfaithfully. We first recall the following:

Observation. 6 At any point of a smooth oriented surface S which is not an lienlmrienting the principal
directions at a vertex is equivalent to choosing a unit maximincipal vector, and there are two such orientations.
(The minimal principal vector is then uniquely defined to be tinit vector so that the basis (maximal vector,
minimal vector, normal) is direct.) Orienting the principdirections of an edge of a triangulation T whose
endpoints lie on S means orienting them at its two verticed there are four possibilities.

Consider now a simple curv@ homeomorphic to the line-segmeit1] drawn onS. If C does not contain
any umbilic one can define alor@two continuous unit vector fields (opposite of one anothdrictv orient the
maximum direction field alon@. Once a unit maximum vector has been chosen at one endp@nia call the
orientation induced by the corresponding vector field abther endpoint therientation by continuityReplacing
C by the push-forward of an edge yields the following:

Definition. 13 The orientation of the principal directions of an edge isledlcorrect(erroneous) if it coincides
with (differs from) one of the two orientations by contigy(if its push-forward on S).

As already noticed, a blue ridge point is witnessed by the zerssing of a bivariate functidw. More precisely,
consider a curve oriented by continuity and crossing trarsaily a blue ridge, then the functibpalong the curve
vanishes at the crossing point and undergoes a sign change e are given a triangulatioh of S, using an
idea reminiscent from Marching Lines and Marching cubeis, iitatural to seek the zero crossings of functign
along the edges df. But in our case however, functidip depends on the orientation of the principal directions
and by the above observation there are four possible otiensffor the edge. Having discussed these orientation
issues, we finally raise the observation used to track thedidige crossings with the sign bg:

Observation. 7 Let C be the push-forward of an edgeq]. Assume that the orientation of the principal directions
of the edge is correct, no ridge crossing occurs at p or g arad &t a crossing point the ridge and the curve C
are transverse. Then the number of blue ridge crossings eo@dd (even) iff §(p)bo(q) < 0 (bo(p)bo(q) > 0). If
moreover, there is at most one blue ridge crossing on C thedgercrosses C only once ifftp)bo(q) < O.

5.2.3 Gaussian extremality

An attempt to avoid the orientation procedure has been dgrdefb Thirion [Thi96] with the introduction of the
Gaussian extremality. This function is defined at non-uimdlipoints byEg = bobs. As bothby andbsz change
sign if the orientation is changed, the Gaussian extreynadinains independent of the orientation. A sign change
of this function along an edge means that an odd number oésidigycrossing the edge, but it does not allow to
know the color of these ridges. If one could find a mesh so thett edge crosses at most one ridge regardless the
color, it would be possible to recover the topology of uncetbridges correctly. Unfortunately, the existence of a
crossing between red and blue ridges in a triangle impliasdhe of its edge is crossed by at least two ridges (cf.
Fig. 5.2(c)). In conclusion, the Gaussian extremality doasspecify the color of the ridge, and consequently is
unable to preserve the topology of ridges near purple points
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5.2.4 Acute rule

Consider an edge of the meshr. In the case of a dense meEhand whenever the vertices efire close o1,
one expects the maximal principal directions at the vestafe to be nearly aligned —at least far from umbilics,
which motivates the following:

Definition. 14 (Acute Rule) Orienting an edge with thacute ruleconsists of choosing maximal principal vectors
at the two vertices so that they make an acute angle in thearhgpaceR®.

Note that this rule is well defined as soon as the maximal jatdirections are not at right angle. The
deviation of the maximal principal direction along a cunratline on the surface has two components which are
extrinsic (the normal curvature) and intrinsic (the geaclesrvature). The denser the mesh, the shorter the edges
of the triangulation and the smaller the extrinsic deviatiBut the situation is different for the geodesic curvature
In particular, the geodesic curvature is arbitrarily larngar umbilics as illustrated on Fig. 5.4, so that the acute
rule is likely to yield erroneous orientations there. Fagdh reasons, in developing a generic algorithm, we shall
process differently the vicinity of umbilics (the so-calembilic patchesand the complement of these patches.

Figure 5.4: The A.R. gives an erroneous orientation

Figure 5.3: The A.R. gives a correct orientation. near an umbilic —of index A2 here.

5.3 A generic algorithm

5.3.1 Compliant triangulations

We aim at designing an algorithm able to report an isotoppr@xmation of ridges as specified by definition 12.
Since ridges are reported on the triangulafigrthis triangulation shall fulfill some conditions. We thusfitie
complianttriangulations, together with a generic algorithm in sualieg that for a compliant traingulation, the
generic algorithm will report an isotopic approximatiorrisfges. Since blue and red ridges are handled separately
by the same process, we focus on blue ones and unless sttitgdrdiy, “ridge” refers to “blue ridge” in the
sequel.

To begin with, and following a well established trend to kéepdescription of the algorithm tractable without
having to consider degenerate situations, we shall regeinericity conditions. Note that these hypothesis are not
restrictive in practice since they can be simulated dutiregdrocessing (see the proof of theorem 13).

Hypothesis. 1 (Genericity hypothesis.)The vertices and edges of T are assumed to meet the foll@egingric
conditions :

S1 no ridge goes through a vertex of T.

S2 ridges intersect edges transversally.

Second, we specify conditions on the density of the triaatgh T. To specify these conditions, we consider
separately regions around umbilics and their complemerthersurface. The rationale for doing so is that to
provide guarantees on ridge crossings, we need correcttatiens. But the A.R. is used for orientation and as
discussed in section 5.2.4, it is not reliable near umbilldserefore, we apply two different strategies to umbilical
regions inside which orientation is not certified, and torit of the surface where a correct orientation of edges
is given.
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Let us first discuss the case of umbilics. First, we requirbiliopatches to be disjoint, which is natural since
umbilics on generic surfaces are isolated. The orientati@iges inside patches is not certified, hence we cannot
seek crossings inside a patch and have to infer the topolbggiges inside the patch from the patch boundary.
This leads to the assumptions that (i) the topology insidatelpis as simple as possible (ii) one can find a correct
orientation for edges on the boundary of the patch and eathlmundary edge is crossed at most once by a given
ridge. To substantiate these hypothesis, recall that geailgr an umbilic is either a one ridge umbilic, or a three
ridges umbilic (cf. section 3.4). Also recall that the thtaegents to ridges connected to a three ridge umbilic are
distinct. For a small enough topological disk around an dimlihe configurations of ridges expected are therefore
those depicted in Fig. 5.5. This formally leads to hypoth&xi.

Let us now consider the complement of the umbilic patcheshenstuirface. Since, we are detecting ridge
crossings along edges by observation 7, we assume eachsatfgesed by at most one ridge. We wish we could
assume that an edge has at most one ridge crossing witnegsedipn change of the extremality coefficient.
However, such an assumption is not realistic —if the ridgalisost tangent to the edge (Fig. 5.6) it crosses it
twice. Hence we require instead that if one counts the nufiipssings modulo 2 on the edge then the topology
of this ridge is not modified. Finally, we require that no wéaidge is included in a triangle.

A triangulation meeting these hypothesis is callecbanplianttriangulation. More formally, we define five
density hypothesis, namely DO for the orientation prop&tyand D2 for umbilics, D3 and D4 for the complement
of umbilic patches:

Hypothesis. 2 (Density hypothesis.)

DO Triangulation T is such that outside umbilic patches, the.Aorrectly orients edges.
D1 Umbilic patches Ware disjoint.

D2 A patch U of an umbilic y is such that (cf. fig. 5.5)

(&) U; does not contain a whole ridge,
(b) ridges not connected tg do not cross the boundary of U
(c) aridge connected to; wnly once crosses exactly one edge of the boundary, of U
(d) aridge connected tg twice crosses exactly two edges of the boundary.of U
D3 All edges outside and on the boundary of the patches crosssttane ridge. If an edge crosses the ridge more
than once, the topology is not modified if the number of cngsis counted modulo 2 (That is, if the number

of crossings is odd the edge is processed as it were crodsingdge once, and if the number of crossings is
even the edge is processed as it were not crossing the ridge).

D4 A triangle of T— U;U; does not contain a whole ridge.

e

Figure 5.5: The only allowed configuration of

ridges near an umbilic: first figure for a 1-ridge um-  Figure 5.6: A double crossing simplifying to no

bilic patch, second and third figures for a 3-ridge  crossing and three crossings simplifying to a single
umbilic patch. one

5.3.2 Generic algorithm

Based upon the previous hypothesis, algoritBemer i cRi dges—Fig. 5.7— processes separately umbilic re-
gions and their complement. The algorithm requires, asrpeessing, (i)estimations of the differential quangitie
at vertices of the mesh and (ii)the identification of umbilic patches. The algonitlis generic in the sense that it
performs combinatorial decisions which are independaemhfthe method of the preprocessing, but only depend
on the result of this preprocessing.

Theorem. 13 For a compliant triangulation, the algorithi@ener i cRi dges reports an isotopic approximation
of ridges as specified by definition 12.
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I nput : A compliant meshr.
Qut put : The set of ridgeR-? consisting of segments reported at stages (b-c).

Algorithm Gener i cRi dges

(a)Process Edges outside umbilic patchesdges outside or on the boundary of umbilic patches are psece
With a correct orientation and the Monge coefficients of itd@oints, one can decide if a ridge crosses the
edge according to observation 7. As the position of the angss not relevant from a topological point pf
view, place it at the mid-point of the edge.

(b)Process triangles outside umbilic patchesTriangles outside umbilic patches are processed. TheyZeaoe
or two edges crossed. In the latter case, the two crossieganected by a segment.

(c)Process umbilic patchesOn the boundary of a patch, there are 1 or 3 crossings for a rioig8 umbilic.
These crossings are connected to a single point inside thle pa polygonal simple lines inside the patch.
The position of the umbilic is not relevant from a topolodipaint of view. For a 3-ridge umbilic, the
polygonal lines are chosen so that they do not cross each othe

Figure 5.7: AlgorithnCGener i cRi dges

Proof. Simulation of genericity hypothesi$.S1 is not satisfied, a ridge goes through a vergef T and then
bo(vp) = 0. To avoid the description of this particular case and aifipgwocessing, one gives tw an arbitrary
value e > 0 with € < min{|bg(V)|, v vertex ofV, bp(v) # 0}. This just shifts the ridge slightly away from the
vertexvp without any modification of the topology. If S2 is not satidfi@ ridge crosses an edge at a pgirgnd
stays on the same side of this edge in a neighborhopd 8ince only the values dify at endpoints of the edge are
checked, the processing ignores such a crossing. Hencedtesging is equivalent to slightly shift the ridge away
from the edge without any modification of the topology. Inastivords, a non-transverse intersection is processed
as if there was no intersection at all.

Topology outside umbilic patcheSirst, for edges outside and on the boundary of umbilic pegctiue to hypoth-
esis S1, S2 and D3, observation 7 gives the number of ridgssioigs modulo 2. Moreover, from a topological
point of view, hypothesis D3 allows one to assume that an éxlgeossed at most once by at most one ridge.
Once these crossings are detected, one processes théegiantside patches. Second, outside patches there is no
umbilic, this means that a ridge cannot end inside a triangknce a triangle has 0 or 2 ridge crossings. If two
crossings occur, then the same ridge is crossing the taaanyl it is correct to represent it topologically by a seg-
ment connecting the mid-points of two crossed edges. A dlagdge cannot be included neither in a triangle (D4)
nor a patch (D2a) and cannot cross the boundary of any pah) (Bny closed ridge is thus crossing some edges
outside patches and hence is completely reported at tlyje stiethe detection. All open ridges are also detected
but not completely reported. Indeed umbilic patches arjeidis(D1) and an open ridge crosses the boundary of
the patch(es) it is connected to (D2c-d). Hence any opereritgsses at least one edge outside patches and two
edges on the patch(es) it is connected to. Any open ridgeiss\litnessed by at least two ridge segments outside
patches.

Topology inside umbilic patche§hird, one has to connect open ridges inside patches. HgpistD2 implies
that the boundary of a patch has either one edge with one ddgsing or three such edges. This distinguishes
patches containing a 1-ridge umbilic or a 3-ridge umbilfahe patch contains a 1-ridge umbilic, the open ridge
connected to this umbilic cross the only edge with a ridgssing of the boundary of the patch (hypothesis D2c).
It is thus correct to represent it topologically by a simpédygonal line connecting the mid-point of the edge to
some interior point standing for the umbilic. If the patcintains a 3-ridge umbilic, the open ridges connected to
this umbilic must cross the boundary of the patch (D2c-d)iardn only happen at the three crossings detected
on the boundary. It is thus correct to represent the ridgeltqy in this patch by three disjoint polygonal simple
lines connecting the mid-points of the edges to a singletpogide the patch standing for the umbilic.

Finally, noteR? the set of all polygonal lines defined inside and outsidehmscThe pull-back of any ridge of
R2is reported o by a simple polygonal curve &®. The seR® is isotopic to the pull-back dr2. [
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5.4 A Heuristic to process a triangle mesh

Assume we are given a triangle meBtproviding a piecewise-linear approximation fas an inscribed mesh
—that is the vertices of belong toS. TriangulationT might have been reconstructed from a point cloud [AB99,
ACDLO00, BC00] or might be the output of a meshing algorithmtsas Chew’s algorithm [Che93, BO03]. Even
though no information on the surface underlying the mestn() is known, one can design an algorithm following
the framework of the generic algorithm of section 5.3.2h# tnesh does comply with hypothesis Hyp. 2, then the
output will be correct. As we shall see, the heuristic aldponi performs satisfactorily on practical examples.
Following this guideline, we instantiate the generic aiton with two heuristic routines to compute the Monge
coefficients, and report umbilic patches. We also develogoagetric rule to tag ridges as elliptic or hyperbolic.

5.4.1 Computing the Monge coefficients using polynomial fithg

We estimate differential quantities using a local polynalfiiting described and analyzed in [CP05a]. The polyno-

mial used is of degree 3 or 4 depending on the method usedrtfidedge types —see section 5.4.4. Convergence
properties and numerical degeneracies of the polynomiiadiare proved and discussed in the aforementioned
article.

5.4.2 Detection of umbilics and patches

We want to detect patches of trianglesfotontaining an umbilic. The method combines a minimizatiod an
index computation on the neighborhood of each triangl€.ofhe size of the neighborhood is the only parameter
of the algorithm. This method is a heuristic without guayanevertheless it gives satisfaction in practice (cf.
section 5.6).

Finding patches around triangles. Given a triangle, we aim at defining a collection of triangles around it so
that this collection defines a topological disk on the triglajion T. To do so, the most natural way consists of
using the successive rings of triangles arourlcet us define the 0-ring neighbors of a triangle as the ttaitself.
Thek-th ring neighbors is defined recursively by adding to tke 1)-th ring neighbors the triangles incident to
one edge of this set. However, theh ring neighbors may not form a topological disk as indéckin Fig. 5.8.

To get around this difficulty and starting from the patch dstirsg of the triangle, we iteratively construct a
patchP by the following algorithm. Each triangle incident to onetwp edges of the boundary 8fis placed into
a priority queue —thgradebeing the distance between the centroid of this triangléab oft. Then, patcHP
is enlarged with the trianglg having the least grade provid&dlt’ remains a topological disk. If triangtéis
stitched to the patch, its neighbors are inserted in the ueifi they are not already in it. The process stops as
soon as the least distance is more than some threshold.

Figure 5.8: The third-ring triangles of the triangldo not form a topological disk.

We aim at identifying disjoint patches of the meBltontaining generic umbilics of index1/2 (cf. section
3.4). Notice that on a smooth surface, the funckpn k; is always positive, and vanishes at umbilics only. To use
this criterion, we define the value &f — k; for a triangle as the arithmetic mean of the values at itScest The
detection proceeds in three steps:

1. Compute a patch around each triangle;
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2. Select the patch of a triandglef the functionk; — ky has its minimum at amongst all the triangles of the
patch;

3. Compute the index of the principal directions on the contd the patches of triangles selected in step 2.

Given a triangld, the first step consists of aggregating the successive oiitgiengles arountl while making
sure that any new addition retains a topological disk. Ttap & parameterized by a positive number defining the
size of the patch, which is defined as a multiple of the greatedecd the one-ring triangles. The second step
is straightforward. The third step requires following thentour of each patch, orienting the maximal principal
directions with the A.R. , and computing the index by addimg angle deviations of the corresponding maximal
principal vectors. Theoretically, the computation of thdex of a direction field at a point on a manifold needs
the use of a chart [BG88, chap.7,p.260]. Here, we assuméhthairojection on the tangent plane of the studied
vertex is a chart, the index is computed for principal vesfmojected on this plane. We then keep only triangle
patches with an index1/2.

From a theoretical perspective, if the triangulated s@fads inscribed in a smooth generic closed surface,
then the sum of indices of umbilics equals the Euler charistieof the surface.

The Monge coefficients of the umbilical triangle (definedhasarithmetic mean of that of its vertices) should
be close to those of the umbilic it is identified to. Hence wa gae them to decide further knowledge of the
umbilic type. For example, the sign 8f= (bp — by)b, — by (b1 — b3) which is a third order quantity should also
give the index of the umbilic. Itis likely to be less accurtdtan our computation of step 3 which uses only second
order quantities. Other invariants of third order decidetifpe 1-ridge or 3-ridge and the symmetry of ridges at
the umbilic —see [Por01] and chapter 3.

5.4.3 Processing edges outside umbilic patches

We use the acute rule as specified by definition 14 in sectid 5.Since umbilics are identified, the A.R. is
expected to give a correct orientation for edges outsidendhe boundary of patches. A blue ridge crossing
along an edgép, q] is detected ifbg(p)bo(q) < 0. The position of along the edge can be computed by linear
interpolation:
. _ [bo(@)lp+ |bo(p)Iq
bo(a)] + [bo(p)|
We associate to the pointhe differential quantities interpolated as above fromvibticesp andq. For example

the type elliptic or hyperbolic of is given by the sign oPy(r) (cf. section 3.4).
Ridge points are reported along edges of the triangulaiod two consecutive points define a ridge segment.

(5.1)

5.4.4 Tagging ridge segments

Once a ridge segment has been reported, one may classifglif@iE or hyperbolic. As recalled in section 3.4
—see Fig. 3.6 for the geometric interpretation of ridge gydhis can be done using the quantydefined by
Eq. (3.6), which involves 4th order differential coefficienlf the signs ofP; agree at both endpoints, the ridge
segment is tagged accordingly. If not, the ridge segmergged as containing a turning point. In this section,
we provide a geometric tagging rule using third order déferal quantities only —a procedure likely to be more
stable than the one using 4th order coefficients. Noticertges connected to umbilics are hyperbolic, so that
our tagging rule is mainly concerned with ridges outside limpatches.

Consider an edge along which the signhbafchanges. As illustrated in Fig. 5.10, the knowledge of the
principal directions at the edge endpoints together withltitation of the ridge point falls short of providing
enough information to state the ridge type.

In [OBSO04] the following heuristic is used. The principalctersu; anduy at the endpoints; andv, are
chosen according to the A.R. . Naig(v) the value ofbg at the vertex and with the principal vecton. The
ridge crossing is tagged as elliptichif* (v1) (us.(v2 — v1)) > 0 andby? (v2) (U.(v1 — V7)) > 0. This rule takes into
account the principal directions at the endpoints of theedulg not local information on the ridge itself. This
method implicitly assumes that orienting the principakdtion with a vector making a acute angle with the edge
leads the curvature line towards the ridge. As an exampdesute fails at vertex, of Fig. 5.9 and vertex; on
Fig. 5.10(a). Such a situation is likely to occur when an ddgdmost parallel to the ridge.
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by <0
Figure 5.9: Tagging a ridge point as elliptic or hyperboiidormation at edge endpoints is not sufficient.

As an alternative, we propose not to tag a ridge point butgersseggment providing more geometric knowledge.
Consider a triangle crossed by a ridge segnrens]. The idea is to use the direction information givenby-] to
distinguish between the two types —see Fig. 5.11. The sidg fifr a maximal principal vector pointing towards
the ridge segmerity,ry] for the triangle is defined as the sign appearing at least@tentices. If this sign is
positive then there is a maximum kf and the ridge is elliptic else it is hyperbolic. Lk, v,,v3) be a triangle,

r; andr, the ridge points on the edg@s, v»] and|vi,vs]. As Sis oriented, assumg, Vo, v3) is direct. Then the
sign ofbp(v1) for an orientation pointing toward the ridge segmentr,] is that of:

S'Qr‘(bgl(vl)) del(ula fo—ry, n)

with u; any of the two orientations af;(v1) and bgl (v1) the value ofbg at the vertexs; with the orientatioru;.
The sign ofbg(v2) (resp.bo(vs) for an orientation pointing toward the ridge segminir»] is that of: *

—sign(bg?(v2)) det(up,ro —r,n)  (resp. —sign(by®(vs)) det(us,ro —ry,n))

with u, (resp.uz) any of the two orientations @ (v») (resp.ds(vs)).

b.> 0 by >0 Blue lines of curvature
o
7 AT
r r
v, ~— >2' R
R ) by <0
(a) (b) Blue elliptic ridge

(Max of Kmax)

Figure 5.10: An elliptic (left), and an hyperbolic Figure 5.11: Determining the type of a ridge seg-
(right) ridge crossing an edge of the triangulation ment using third order properties

5.5 Filtering sharp ridges and crest lines

For real world applications dealing with coarse meshes,@shas featuring degenerate regions or sharp features,
one cannot expect a configuration of umbilics and ridges hiragchat of a smooth generic surface. For example,
if the principal curvatures are constant —which is the casa plane or a cylinder, then all points are ridge points.
In this context, an appealing notion is thatstfarpridge orprominentridge. Since ridges are witnessed by zero
crossings oby andbg, one can expect erroneous detections as long as these iemgdfi@main small. In order to
select the most prominent ridge points, we can focus on geihere the variation of the curvature is fast along
the curvature line.
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Observation. 8 At a ridge point, according to the equation 3.6, the seconive#ve of k along its curvature
line satisfies (((0) =Py /(ky — ko).

Using the previous observation, one can definesth@pness of a ridgas the integral of the absolute value of
P1/ (ki — ko) along the ridge. As the second derivative of the curvatul®imogeneous to the inverse of the cube
of a length, the sharpness is homogeneous to the inverse sfitrare of a length. Multiplying the sharpness by
the square of the model size gives a threshold and an assbsiaarpness-filter which are scale independent. It
should be noticed this filter is different from tistrength of a ridge segmeas defined in [OBS04], which is the
integral of the curvature along the line.

As an alternative to ridges, some applications focus on dhealed crest-lines [PAT00]. A crest line is an
elliptic ridge which is a maximum of mdj|, |k2|), and one may see these lines as the visually most salient
curves on a surface. (Notice that these lines do not cro$saher and avoid umbilics.) Filtering ridge points
using observation 8 retains more information than focusimgrest lines since hyperbolic ridges might be sharp
also.

5.6 lllustration

In this section, we illustrate the algorithm developed iatiem 5.4. We assume the surface is given in discretized
form as a mesh.

Smooth surfaces. The experimental setup faces two difficulties. First, figdammpact generi€* surfaces of
complex geometry and topology is a challenging task byfit€@h one hand, subdivision surfaces do not exhibit
such smoothness properties. On the other hand, algebréacess often exhibit symmetries and or singularities.
A promising class of such surfaces might be the manifolcea®nstruction developed by Ying et al. [YZ04].
We shall report experiments on these surfaces upon audiladdi their code. Second, given such a surface, the
patterns made by umbilics and ridges are usually unknowre-eitity complete descriptions we are aware of can be
found in [Por01]. Consequently, we illustrate the algaritbn two surfaces whose ridges are known (the standard
ellipsoid, and a Bezier patch whose ridges are certified ggtahic methods (see chapter 7), and on the blend
of two ellipsoids. The discretization of the Bezier patclaéhieved by a regular triangular grid on the parameter
space. Implicit surfaces are meshed with the algorithmriesttin Boissonnat et al. [BO03].

The first test surface is the ellipsoid of Fig.3.14, wherealgerithm reports perfectly the well-known patterns
of umbilics and ridges.
The second test surface, Figure 5.13, is a triangulateceBsaiface whose control points are

[0,0,0] [1/4,0,0] [2/4,0,0] [3/4,0,0] [4/4,0,0]
0,1/4,01 [1/4,1/4,1] [2/4,1/4,—-1] [3/4,1/4,—-1] [4/4,1/4,0
0,2/4,01 [1/4,2/4,—-1] [2/4,2/4,]1] [3/4,2/4,1] [4/4,2/4,0

[ [ ]
[ [ ]
0,3/4,0 [1/4,3/4,1] [2/4,3/4,-1] [3/4,3/4,1] [4/4,3/4,0]
0,4/4,0] [1/4,4/4,0]  [2/4,4/4,0]  [3/4,4/4,0] [4/4,4/4,0]

Alternatively, this surface can be expressed as the grafiteafegree 4 polynomialu,v) for (u,v) € [0,1]2:

h(u,v) =1160* — 200UV + 1080 — 24uy — 312°3V* + 5923 — 360U3V2 4 80UV + 2520°V* — 504uPV3
+3240%V% — 720V — 56UV + 11203 — 7200 + 16UV,

The whole configuration of ridges and umbilics matches thieecb topology computed and certified by the algo-
rithm of chapter 7. Zoom views, Figure 5.14, allow one todallridges in the neighborhood of 3-ridge umbilics.
Turning points and different ridge types can also be obskrve

The third test surface is a blend between two ellipsoidslaysal on Fig.5.15 and defined by the following
equation:

x2 N y? N z x—0.25)2+(y—0.1)2+(2—0.1)2
0.1% ' 0.2% ' 0.3% 0.12 0.22 0.32

The umbilic detection algorithm gives good results for & ©fthe patch around a vertex 2 or 3 times the size of
its 1-ring. Indeed, the greater the patch, the fewer the mumipoints collected with the minimization step. More

1—exp(—0.7( 1))—exr(—0.7(( -1))=0



86 CHAPTER 5. RIDGE EXTRACTION ON MESHES

importantly, the boundary of large patches are not too clas®a umbilics, which as explained in section 5.2.4
favors a correct orientation with the A.R. outside patch&san example on this surface, 14 points are detected
by the minimization algorithm —using a patch size 3 timeslhing size, while six umbilics of index1/2 and

two of index—1/2 are reported by the index computation. Notice that thisgl@s with the Euler characteristic.
On this model, apart from isolated ridge segments of erroségpe, the ridges reported look convincing but we
cannot claim the result is correct since the configuratidmglges for this surface is unknown.

The complexity of the algorithm is linear with respect to thanber of vertices. The whole process on a 2GHz
PC takes 7 seconds for the ellipsoid, 25s for the Bezier seidad 20s for the ellipsoid blend.

e

Figure 5.12: Plot of the degree 4 Bezier surface

Figure 5.13: Ridges and umbilics on a triangulated modet@Bezier surface (60k points), view from above
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Figure 5.14: Zoom view on two 3-ridge umbilics

Figure 5.15: Ridges and umbilics on the implicit blendingwed ellipsoids (40k points)

Coarse meshes. Figure 5.16 features a coarse mesh of a mechanical part vattafi crests lines, second crest
lines filtered with their strength and third filtered with theharpness. This example is especially interesting since
it features flat and cylindrical regions. Each point on swegfion has constant thus critical principal curvatures and
is therefore a ridge point. The whole configuration of crest®ry noisy. The strength-filtered crest lines [OBS04]
avoid the planar regions but remains in cylindrical onese $harpness-filter discards these spurious elements in
cylindrical regions too, and retains only the crests apgpgarn salient features of the model. This example also
calls fora comment on methods aiming at reporting ridges afiving performed an interpolation / approximation
of the model. Again, if the model features flat or cylindricagjions, such algorithms report many insignificant
ridges —that would also have to be filtered. The whole prooéHss mesh takes 10 seconds on a 2GHz PC.

Figure 5.17 features the David model (380k pts) process@dciinutes. The sharpness filter is used, but the
strength filter gives similar results on this model more gienthan the mechanical one. Notice that our running
time improves the results of [OBS04] of at least one orderafnitude and that the result is quite similar even for
a smaller model.

5.7 Conclusion

Given a mesh discretizing a smooth surface, this chapteepts the first algorithm for extracting an isotopic

approximation of the ridges of the smooth surface on theéligation. The algorithm exploits the patterns made
by ridges and umbilics on generic surfaces, and dissociageprocessing near umbilics and on the rest of the
surface. The algorithm is generic since the calculationxtrfeenality coefficients and the separation of umbilics

are deferred to routines that may depend from the type of 8mmoface discretized by the mesh.
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Figure 5.16: Mechanical part (37k pts): (a) All crest lingms,crests filtered with the strength and (c) crests filtered
with the sharpness. Notice that any point on a flat or cylzalpart lies on two ridges, so that the noise observed
on the top two Figs. is unavoidable. Itis however easilyri#teout with the sharpness on the bottom figure.

For meshes approximating smooth surfaces —without acceasyt analytical information on the surface,
we provide heuristics. We also present a geometric rulegaitimes as elliptic or hyperbolic —which has the
advantage of using third order properties only, and a filgeprocedure retaining the most stable ridges. For meshes
discretizing smooth surface whose ridges are known, exyeris show that our heuristic algorithm recovers the
correct topology of ridges and umbilics. For meshes contpfiten scans by a surface reconstruction algorithm,
experiments show that our algorithm recovers the ridgesaié-of-the-art methods (which use global fitting),
while improving running times of at least one order of magaé and providing a more efficient filtering method.
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Figure 5.17: Filtered crest lines on a 380k pts model
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Chapter 6

The implicit structure of ridges of a
smooth parametric surface

As seen in the previous chapter, ridge extraction algostim@ed of a local orientation procedure of principal
directions. Consequently, the extraction is conductedllp@and no global equation of ridges is defined.

On the way to developing certified algorithms independearhffocal orientation procedures, we study ridges
of a parametric surface. For this special case, we are aldegoribe ridges as an implicit curve in the para-
metric domain and analyze its singularities. Algorithmpleking the structure oP for polynomial surfaces are
developed in the next chapter.

6.1 Introduction

6.1.1 Contributions and chapter overview

Let d(u,v) be a smooth parameterized surface over a dorain R?. Recall that we qualify blue and red the
ridges associated to the maximal and the minimal principalatures. We make the following two contributions.
First, we exhibit the implicit equatioR = 0 of the singular curve” encoding all ridges of the surface (blue and
red), and show how to recover the colors from factorB.oSecond, we derive a zero dimensional system coding
the so-called turning points, from which elliptic and hylpelic ridge sections of the two colors can be identified.
Both contributions exploit properties of the Weingarterpméthe surface and require computer algebra.

The chapter is organized as follows. Preliminary diffel@iémmas are proved in section 6.2. The implicit
equation for ridges is derived in section 6.3. The systentuiaring points and the determination of ridge types are
stated in section 6.4. Corollaries for polynomial paramesurfaces and an illustration of the effectiveness of the
main theorem on a bidegréé, 4) Bezier surface is given in section 6.5. Symbolic computetiperformed with
Maple are provided in section 6.6.

6.1.2 Notations

Ridges. The derivation of the implicit equatioR = 0 of all ridges of a surface exploits properties of the Wein-
garten map and of the Monge form of the surface. PropertigdkeoMonge form, i.e. of the expression of the
surface as a height function in a coordinate frame assakiatthe principal directions are recalled in chapter 3.4.
We just point out the main notations and some key conventions

At any point of the surface, the maximal (minimal) princigakvature is denotekh (k»), and its associated
directiond; (d2). Anything related to the maximal (minimal) curvature istified blue (red), for example we shall
speak of the blue curvature flay or the red direction fod,. A ridge associated witk; is defined by the equation
by = 0, with by is the directional derivative of the principal curvatigealong its curvature line. Similarly, ridges
associated t&, are defined bys = 0. Since we shall make precise statements about ridgesutdbe recalled
that ridges through umbilics are open i.e. umbilics areuet!.

91
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Differential calculus. Let f(u,v) : 2 C R? — R be a continuously differentiable function. The derivaidfe
f with respect to variable denotedf,, and the gradient of is denoted denotdf = (f,, fy). A pointin Z is
singularif the gradiend f vanishes, else it iregular.

Misc. The inner product of two vectorssy is denoteds x,y >, the norm ofkis ||x|| =< x,x >1/2 and the exterior
product isxAY.

6.2 Manipulations involving the Weingarten map of the surface
Let ® be the parameterization of cla@$for k > 4. Principal directions and curvatures of the surface apeassed

in terms of second order derivatives®f More precisely, the matrices of the first and second fundaahéorms
in the basig®,, d,) of the tangent space are

(¢ f\ (<D, D> <Dy, by >
A\ g) <P dy > <P Dy > )0

I — [ m) <Ny ®@yy> <Ny, Pyy >
“Am n) T \< Ny P> <Ny by >

N
[INIT
To compute the principal directions and curvatures, onerte$o the Weingarten map, whose matrix in the basis
(Py, Dy) is given byW = (wij) = I-111. The Weingarten map is a self-adjoint operatarf the tangent space
[dC76]. The principal directiond; and principal curvaturelg are the eigenvectors and eigenvalues of the matrix
W. Observing that|N||?> = detl, matrix W can also be written as follows —an expression of speciatestefor

polynomial surfaces:
1 A B
W = 7(detl)3/2 (C D) . (6.1)

) 5 W|th N == q)u/\ (DV’ Nn =

Recall that a parameterized surface is cattgllar if the tangent map of the parameterization (the Jacobian)
has rank two everywhere. Since the first fundamental forrasréstriction of the inner product of the ambient
space to the tangent space, one has:

Observation. 9 If ® is a parameterized surface which is regular, the quadratiaf| is positive definite.

In the following, the surface is assumed regular, thuélflet 0.

6.2.1 Principal curvatures.

The characteristic polynomial &Y is
R (k) = K? —tr (W)k + detW) = k% — (W1 + Wap)K+ Wy 1Wop — Wy oWay.
Its discriminant is
A(K) = (tr(W))* — 4defW) = (W1 +Wy2)® — 4(W11Wa2 — WiaWa1) = (W11 — Wo2)? -+ 4W1 oW1,
A simplification of this discriminant leads to the definitiohthe following function, denoteg,:
p2 = (detl)A(k) = (A— D)2+ 4BC
The principal curvaturelg, with the conventioik; > ko, are the eigenvalues @f, that is:

_A+D+R ., A+D— P

Ky — - . 6.2
L7 T2detl)32 P 2(detl )32 6.2

A pointis called an umbilic if the principal curvatures agual. One has:

Lemma. 2 The two following equivalent conditions characterize urobi

1A self-adjoint mapL over a vector spacé with a bilinear form< .,. > is a linear map such that Lu,v >=< u,Lv >, for all u,v € V.
Such a map can be diagonalized in an orthonormal basis of
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1. =0
2. A=DandB=C=0.

Proof. Since detl ) # 0, one hag, = 0< A(k) =0, hence 1. characterizes umbilics. Condition 2. triviafiplies

1. To prove the converse, assume that 0 i.e. the Weingarten map has a single eigenvaluthis linear map

is self-adjoint hence diagonalizable in an orthogonaldasid the diagonal form is a multiple of the identity. It is
easily checked that the matrix remains a multiple of theftitheim any basis of the tangent space, in particular in
the basig®y, ®y), which implies condition 20J

6.2.2 Principal directions.

Let us focus on the maximum principal directidp. A vector of directiond; is an eigenvector oW for the
eigenvaluek;. Denote:
wii—ki o wip
W—kld = . 6.3
! ( W21 Wop— kl) (6-3)

At non umbilic points, the matri¥V — k;1d has rank one, hence eitherwi,, w11 —ky) # (0,0) or (—wao +
ki,wa1) # (0,0). Using the expression &Y given by Eq. 6.1, up to a normalization factor(detl )3/2, anon zero
maximal principal vector can be chosen as either

v1 = 2(detl )¥/2(—wyp,wig — ki) = (—2B,A—D — /p2) orwy = 2(detl )¥/2(—wop+ kg, Wa1) = (A— D+ /P2, 2C).
(6.4)
For the minimal principal directiod, one chooseg, = (—2B,A—D + ,/pz) andw, = (A—D —,/p2,2C).

Lemma. 3 One has the following relations:
vi = (0,0) & (B=0andA > D),
v =(0,0) & (B=0andA < D),
wy = (0,0) & (C=0andA < D),
w; = (0,0) & (C=0andA> D).

Proof. The proofs being equivalent, we focus on the first one. One has

vi—(0,0) & B=0 o B=0 o B=0
T A-D=,/(A-D)2+4BC A-D=./(A-D)? A-D>0
O
A direct consequence of lemma 3 is the following:

Observation. 10 1. The two vector fieldgvand w vanish simultaneously exactly at umbilics. The same holds
for vo and w.

2. The equatiofv; = (0,0) or v» = (0,0)} is equivalent to B=0.

6.3 Implicitly defining ridges

In this section, we prove the implicit expressiBn= 0 of ridges. Before diving into the technicalities, we first
outline the method.

6.3.1 Problem

In characterizing ridges, a first difficulty comes from thetfthat the sign of an extremality coefficietp(or bs)

is not well defined. Away from umbilics, denotirty the principal direction associated kg, there are two unit
opposite vectorg, and—y; orientingd;. That is, one can define two extremality coefficiami/;) =< vk, y1 >
andbg(—y1) =< Vkg,—y1 >= —bo(y1). Therefore, the sign dfy is not well defined. In particular, notice that
tracking the zero crossings bf in-between two points of the surface requires using cohliengantation of the
principal directiond; at these endpoints, a problem usually addressed using tite ade (see chap. 5). Notice
however the equatioby = 0 is not ambiguous. A second difficulty comes from umbiliceevdty is not defined
sincek; is not smooth —that is’k; is not defined.
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6.3.2 Method outline

Principal curvatures and directions read from the Weirggamhap of the surface. At each point which is not an
umbilic, one can define two vector fields or wy which are collinear withd;, with the additional property that
one (at least) of these two vectors is non vanishing zlstand for one of these non vanishing vectors. The nullity
of bp =< Vky,y1 > is equivalent to that ok vk;,z > —that is the normalization of the vector along which the
directional derivative is computed does not matter.

Using vy andw;, the principal maximal vectors defined in the previous sective obtain two independent
equations of blue ridges. Each has the drawback of encoutiragidition to blue ridge points, the points where
v; (or wi) vanishes. As a consequence of observation 10, the comuraitthese two equations defines the set
of blue ridges union the set of umbilics. The same holds fdrridges and the minimal principal vector fields
v, adw,. One has to note the symmetry between the equations for biieea ridges in lemma 4. Eventually,
combining the equation for blue ridges withand the equation for red ridges with gives the set of blue ridges
union the set of red ridges union the set of zerog;0f 0 orv, = 0. This last set is alsB = 0 (observation 10),
hence dividing byB allows to eradicate these spurious points and yields that&P = 0 of blue ridges together
with red ridges. One can think of this equation as an improxedion of the Gaussian extremaliy = bgbs
defined in [Thi96].

Our strategy cumulates several advantages: (i)blue anddgels are processed at once, and the information
is encoded in a single equation (ii)orientation issuesragiszhen one is tracking the zero crossingsgfor bz
disappear. The only drawback is that one looses the colonefitige. But this color is recovered with the
evaluation of the sign of factors of the expression

6.3.3 Precisions of vocabulary

In the statement of the results, we shall use the followimmigology. Umbilic points are points where both
principal curvatures are equal. A ridge point is a point vaigenot an umbilic, and is an extremum of a principal
curvature along its curvature line. A ridge point is furtbalied a blue (red) ridge point is a an extrema of the blue
(red) curvature along its line. A ridge point may be both kdne red, in which case it is called a purple point.

6.3.4 Implicit equation of ridges

Lemma. 4 For a regular surface, there exist differentiable funcsama’, b, b’ which are polynomials with respect
to A B,C,D anddetl, as well as their first derivatives, such that:

1. the set of blue ridges unidiv; = 0} has equation gpz+b =0,
2. the set of blue ridges unidiw; = 0} has equation‘q/pz2+b' =0,

3. the set of blue ridges union the set of umbilics has equ{t%\/m+ b=0

a,/P2+b' =0
. the set of red ridges uniofv, = 0} has equation gp; —b =0,

N

5. the set of red ridges uniojw, = 0} has equation‘a/p; — b’ =0,

6. the set of red ridges union the set of umbilics has equ %/ P2— b/: 0
ayp2—b=0
Moreover, ad’, b, b’ are defined by the equations:
a,/Pz+b=<Numeldky),v; > &/pz+b =< Numeidky),w; > . (6.5)

Proof. The principal curvatures are not differentiable at umbilgince the denominator afk contains,/pz.
But away from umbilics, the equation dkg,v1 >= 0 is equivalent to< Numerdk;),v; >= 0. This equation is
rewritten asa,/pz + b = 0, the explicit expressions afandb being given in section 6.6. This equation describes
the set of blue ridge points union the set wher@anishes. A similar derivation yields the second claim.alin
the third claim follows from observation 10.

Results for red ridges are similar and the reader is reféaredction 6.6 for the detail§]
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Lemma.5 1. Ifpp=0thena=b=a =b =0.

a=b=a=b=0
n

2. The set of purple points has equati
p2 #0

Proof. 1. If pp =0, one ha#\ = D andB = C = 0. Substituting these conditions in the expressions, af b, b’
gives the result, computations are sketched in section 6.6.

2. Let p be a purple point, it is a ridge point and hence not an umbttien p, # 0. The pointp is a blue
and a red ridge point, hence it satisfies all equations of lamMm If a = 0 then equations 1. and 4. imply
/P2 = —b/a=b/ahenceb = 0 and,/pz = 0 which is a contradiction. Consequently= 0 and again equation
1. impliesb = 0. A similar argument with equation 2. and 5. gias- b/ = 0.

The converse is trivial: ihi=b = a = b’ = 0 then equations 3. and 6. imply that the point is a purpletgmin
an umbilic. The additional conditiop, # 0 excludes umbilics]

The following definition is a technical tool to state the néxtorem in a simple way. The meaning of the
functionSigniqge introduced here will be clear from the proof of the theorerssdhtially, this function describes
all the possible sign configurations fabanda’ly at a ridge point.

Definition. 15 The function Siggyqe takes the values

<
1 {ab<0 or {ab_o

ab' <0 ab' <0
. |ab>0 ab>0
+1 if or ,
ab' >0 ab' >0
0 ifab=ab/ =0.

Theorem. 14 The set of blue ridges union the set of red ridges union thefagmnbilics has equation P 0 with
P = (a?p, — b?)/B, and one also has P —(a"?p, — b’?)/C = 2(a’b— aby). For a point of this se&?, one has:

e If po =0, the point is an umbilic.
e If po # Othen:

— if Signigge = —1 then the point is a blue ridge point,
— if Signigge = +1 then the point is a red ridge point,
— if Signigge = 0 then the point is a purple point.

Proof. To form the equation o, following the characterization of red and blue ridges imhea 4, and the
vanishing of the vector fieldg andv; in lemma 3, we take the product of equations 1. and 3. of lemmhé
equivalence between the three equations/is proven with the help ofapl e, see section 6.6.

To qualify points onZ?, first observe that the cage = 0 has already been considered in lemma 5. Therefore,
assumepy # 0, and first notice the following two simple facts:

e The equation(@®p, — b?)/B = 0 for & implies thata=0 < b = 0« ab= 0. Similarly, the equation
—(a?p, — %) /C =0 for & implies thatd =0 b/ =0« ab/ = 0.

e If ab+£ 0 anda’b’ # 0, the equatiomly’ —a’b = 0 for &2 impliesb/a=b'/d, that is the signs adibanda’b’
agree.

These two facts explain the introduction of the functignqqe of definition 15. This function enumerates all
disjoint possible configurations of signs faln anda’b’ for a point on22. One can now study the different cases
with respect to the signs ab anda’b’ or equivalently the values of the functi®ignigge.

AssumeSignigge = —1.

—First case: ab< 0. The equatior{a®p, — b?) /2B = 0 implies that(a,/pz + b)(a,/Pz — b) = 0. Since,/pz > 0,
one must have,/p; + b = 0 which is equation 1 of lemma 4. From the second simple faitteea’b’ < 0 or
ap =o0.
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e For the first sub-cas&b’ < 0, equation(a’?p, —b'?)/C = 0 implies (& /pz + b')(a’\/Pz — b') = 0. Since
/P2 > 0, one must have',/p; + b’ = 0 which is equation 2 of lemma 4.

e For the second sub-caséy’ = 0, one hass’ = b’ = 0 and the equation 2 of lemma 4 is also satisfied.
(Moreover, equation 5 is also satisfied which implies that= 0).

In both cases, equations 1 and 2 or equivalently equatioe Sadisfied. Since one has excluded umbilics, the point
is a blue ridge point.

—Second case: ab 0. One has’'b’ < 0 the study is similar to the abovab= 0 implies equation 1 andb’ < 0
implies equation 2 of lemma 4. The point is a blue ridge point.

AssumeSigngge = 1.
This case is the exact symmetric of the previous, one onlydaschange the roles afb anda’,b'.

AssumeSigngge = 0.
The first simple fact impliea=b=a = b’ = 0 and lemma 5 identifies a purple point.

As shown along the proof, the conjunctions= and=, < in the definition ofSignigge = —1 correspond to
the blue ridge points where the vector fields andv, vanish. The same holds f@ignigge = 1 andw; andv;.
One can also observe that the basic ingredient of the preymof is to transform an equation with a square root
into a system with an inequality. More formally:

Observation. 11 For x,y,z real numbers and z 0, one has:

(6.6)

6.3.5 Singular points of &

Having characterized umbilics, purple points and ridgethendomainZ with implicit equations, an interesting
guestion is to relate the properties of these equationseléssical differential geometric properties of these
points.

In particular, recall that generically (with the descriptiof surfaces with Monge patches and contact theory
recalled is chapter 3.4), umbilics of a surface are eithedde umbilics or 3-ridge umbilics. This means that there
are either 1 or 3 non-singular ridge branches passing thrangimbilic. The latter are obviously singular points
of & since three branches of the curve are crossing at the umbdicthe former ones, it is appealing to believe
they are regular points since the tangent space to the rigiye on the surface at such points is well defined and
can be derived from the cubic of the Monge form [HG39]. Unfortunately, one has:

Proposition. 5 Umbilics are singular points of multiplicity at least 3 ofettiunction P (i.e. the gradient and the
Hessian of P vanish).

Proof. Following the notations of Porteous [Por01], denBtek = 1,...,3 thekth times linear form associated
with P, that isP = [0P/(du*'0V')]i—o_x. Phrased differentlyp; is the gradientP; is the vector whose three
entries encodes the HessiarRyfetc. To show that the multiplicity of an umbilic of coordtea(up, vo) is at least
three, we need to show thBt(up,vo) = [0, 0], P>(up,vo) = [0, 0, 0]. We naturally do not know the coordinates
of umbilics, but lemma 2 provides the umbilical conditionBhe proof consists of computing derivatives and
performing the appropriate substitutions under Maple,iamgiven in section 6.6.]

We can go one step further so as to relate the type of the &ybiethe third derivative oP— to the number
of non-singular ridge branches at the umbilic.

Proposition. 6 The classification of an umbilic as 1-ridge or 3-ridges frogrgBes as follows:

e If P is elliptic, that is the discriminant ofds positive 6(P;) > 0), then the umbilic is a 3-ridge umbilic
and the 3 tangent lines to the ridges at the umbilic are distin

e If P3is hyperbolic §(Ps) < 0) then the umbilic is a 1-ridge umbilic.
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Proof. Since the properties of interest here are local ones, sigdyilges on the surface or in the parametric
domain is equivalent because the parameterization is &ddtsomorphism. More precisely the parameterization
@ maps a curve passing throughy, vo) € 2 to a curve passing through the umbitig = ®(up, Vo) on the surface
S= ®(Z). Moreover, the invertible linear mag®,, ., Mmaps the tangent to the curve i at (uo, Vo) to the
tangent afo to its image curve in the tangent spaggS.

Having observed the multiplicity of umbilics is at leastehr we resort to singularity theory. From [AVGZ82,
Section 11.2, p157], we know that a cubic whose discrimiigambn null is equivalent up to a linear transformation
to the normal forny(x? 4 y?). Moreover, a function having a vanishing second order Tagspansion and its third
derivative of this form is diffeomorphic to the same norn@in. Therefore, whenever the discriminantRafis
non null, up to a diffeomorphism, the umbilic is a so callbﬁ singularity ofP, whose normal form ig(x? 4 y?).

It is then easily seen that the zero level set consists oéthom-singular curves through the umbilic with distinct
tangents which are the factor lines of the cubic. Fa@rasingularity G(Ps) > 0), these 3 curves are real curves
and the umbilic is a 3-ridge. Forj singularityd(Ps) < 0), only one curve is real and the umbilic is a 1-ridge.

Note that the classifications of umbilics with the Monge @ and the cubid; do not coincide. Indeed if
Cw is elliptic, it may occur that two ridges have the same tahg@nsuch a case, the culdg is not elliptic since
o(Ps) =0.

Since purple points correspond to the intersection of tdges, one has:

Proposition. 7 Purple points are singular points of multiplicity at leasb2the function P (i.e. the gradient of P
vanish).

Proof. It follows from the equatiorP = 2(a’b — ab') thatdP = 2(d(a’)b+ a'd(b) — d(a)b—ad(b)). At purple
points one haa=a =b=b'=0hencadP=0.0

6.4 Implicit system for turning points and ridge type

In this section, we define a system of equations that encodeist) points. Once these turning points identified,
we show how to retrieve the type (elliptic or hyperbolic) aidge from a sign evaluation.

6.4.1 Problem

Going one step further in the description of ridges requilisinguishing between ridges which are maxima or
minima of the principal curvatures. Following the claskteaminology recalled in chapter 3.4, a blue (red) ridge
changes from a maxima to a minima at a blue (red) turning polftese turning points are witnessed by the
vanishing of the second derivative of the principal curvatalong its curvature line. As recalled in chapter 3.4
—see [HGY"99] for the details, from the parameterization of a printpavature along its curvature line —Eq.
3.6, a turning point is witnessed by the vanishing of the facieht P, (P,) for blue (red) ridges. Since we are
working from a parameterization, denotibgssthe Hessian matrix of either principal curvature, we have:

Observation. 12 A blue turning point is a blue ridge point where Hégg(d;,d;) = 0. Similarly, a red turning
point is a red ridge point with Hesk;)(d,,d,) = 0.

Generically, turning points are not purple points, howewershall provide conditions identifying these cases.
Even less generic is the existence of a purple point whichsis @ blue and a red turning point, a situation for
which we also provide conditions.

Once turning points have been found, reporting elliptic Bypgderbolic ridge sections is especially easy. For
ridges through umbilics, since ridges at umbilics are higpke, and the two types alternate at turning points, the
task is immediate. For ridges avoiding umbilics, one justtbdest the sign dflesgk; )(d;,d;) or Hesgkz)(dz,dy)
at a ridge points, and then propagate the alternation antypoints.

6.4.2 Method outline

We focus on blue turning points since the method for red hgrpioints is similar. As already pointed out, we do
not have a global expression of the blue directiknbut only the two blue vector fieldg andw; vanishing on
some curves going through umbilics. Consequently, we haeembine equations with these two fields to get a
global expression of turning points. A blue ridge point islaebturning point iffHesgk; )(ds,d;) = 0. This last
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equation is equivalent tNumefHesgk; ))(v1,v1) = 0 when the vector fiela#; does not vanish. The same holds
for the equatioiNumerHesgk; ))(w1,w1) = 0 and the solutions of; = (0,0). As a consequence of observation
10, the conjunction of these two equations defines the sdtieftbrning points.

The drawback of distinguishing the color of the turning pgeis that equations contain a square root. Combin-
ing the equations for blue and red turning points gives aragouQ = 0 without square roots. The intersection
of the corresponding curv& with the ridge curveZ? and sign evaluations allow to retrieve all turning pointd an
their color.

6.4.3 System for turning points

Lemma. 6 For a regular surface, there exist differentiable funcgan, a’, 8, 3’ which are polynomials with re-
spect to AB,C,D anddetl, as well as their first and second derivatives, such that:

1. Nume(Hessky))(vi,v1) = a,/p2+B.
2. NumefHesgky))(wi,wi) = a’\/p2+ B’

3. Ablue ridge point is a blue turning point i 0’/\/@4-[3 /: 0
a'ypz2+p'=0
4. Nume(Hesgkz))(v2,Vv2) = a./p2 — B.
5. NumefHesskz))(w2,w2) = a’\/p2 — B’
6. Ared ridge pointis ared turning pointi a/\/m— P /: 0
a'/pz—B =0

Proof. Calculations for points 1-2-4-5 are performed with Maplesection 6.6. Blue turning points are blue ridge
points onZ” whereHesgk; )(d,d;) = 0. This equation is not defined at umbilics where principaVatures are
not differentiable. Nevertheless, including umbilics auints wherev; vanishes, this equation is equivalent to
NumerHesgk)(v1,v1) = 0. This equation is rewritten as,/pz + 3 = 0 and yields point 1. The same analysis
holds forw; and yields point 2. Point 3. is a consequence of observatiorREsults for red turning points are
similar and the reader is referred to section 6.6 for theildeta

The following definition is a technical tool to state the nisd¢orem in a simple way. As we shall see along the
proof, this function describes all the possible sign corfigions fora 3 anda’’ at a turning point.

Definition. 16 The function Sigqr takes the values

<
-1if ap <0 or ap <0
a'B' <0 a'B' <0

>
+1 if ap >0 or ap =0 ,
a'Bg’' >0 a'B’ >0
0 ifaB=a'f =0.

Theorem. 15 Let Q be the smooth function which is a polynomial with respeé, B,C,D anddetl, as well as
their first and second derivatives defined by

Q= (a’p—B%)/B* = (a"’p,— B?)/C* =2(a'B—ap’)/(D - A). (6.7)

P=0 . o . S :
The systen{Q 0 encodes turning points in the following sense. For a poiolytion of this system, one
has:

e If po =0, the point is an umbilic.

e If po £ Othen:
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— if Signigge = —1 and Sigfum < 0then the point is a blue turning point,
— if Signigge = +1 and Sigkurm > 0 then the point is a red turning point,
— if Signiigge = 0 then the pointis purple point and in addition

x if Signym = —1 then the point is also a blue turning point,

x If Signym = +1 then the point is also a red turning point,

x if Signyurm = 0 then the point is also a blue and a red turning point.

Proof. Following lemma 6, we form the equation @fby taking the products of 1. and 4. in the lemma. Equalities
of equation 6.7 are performed with Maple cf. section 6.6.

The casep, = 0 has already been considered in lemma 5. Assumepth#t0, and first notice the following
two simple facts:

e The equatior{a?p, — B2)/B? = 0 for 2 implies thata = 0 < B =0« af = 0. Similarly, the equation
(a"?py — B'%)/C? = 0 for 2 implies thata’ =0 B’ =0< a'p’ =0.

e If aff # 0 anda’p’ # 0, the equation @’ —ap’)/(D—A) =0 for 2 implies/a = B'/a’, that is the
signs ofa 8 anda’p’ agree.

These two facts explain the introduction of the funct®ignym, of definition 16. This function enumerates all
disjoint possible configurations of signs foB anda’p’ for a point on2. The analysis of the different cases is
similar to that of the proof of theorem 14, the basic ingratieing observation 11]

Observation. 13 Note that in the formulation of equation 6.7 there are solng of the system (P 0 and Q= 0)
which are not turning points nor umbilics. These points draracterized by (Sigfage = —1 and Sigpum = +1)
or (Signigge = +1 and Sigfum = —1). This drawback is unavoidable since equations avoidiregtérm ,/p;
cannot distinguish colors.

Observation. 14 The following holds:
e pp=0impliesa=a’'=pB=p"=0
e a =o' =B =P’ =0are singularities of Q of multiplicity at least 2.

To test if a blue ridge segment between two turning pointshngeaima or a minima requires the evaluation of
the sign ofa . /p2+ B ora’,/pz + ', which cannot vanish simultaneously.

6.5 Polynomial surfaces

A fundamental class of surface used in Computer Aided Gemeriesign consist of Bezier surfaces and splines.
In this section, we state some elementary observations @rolfects studied so far, for the particular case
of polynomial parametric surfaces. Notice that the parenmition can be general, in which ca®¢u,v) =
(X(u,Vv),y(u,v),z(u,v)), or can be a height functioh(u,v) = (u,v,z(u,v)).

6.5.1 AboutW and the vector fields

Using Eqg. 6.1, we first observe thatdfis a polynomial then the coefficienfgs B,C andD are also polynomials
—this explains the factaidetl )3/ in the denominator diV in equation 6.1. For example

A= (det)¥?wy; = (detl)3/2%n = V/detl (g < N/vdetl,®y, > —f < N/Vdetl, Dy >)

:g<N,q)uu>_f <N7(Du\/>.

Thus, in the polynomial case, the equation of ridges is akjeb Hence the set of all ridges and umbilics is
globally described by an algebraic curve. The functis also a polynomial so that turning points are described
by a polynomial system.

An interesting corollary of lemma 3 for the case of polyndmiafaces is the following:

Observation. 15 Given a principal vector v, denotg, Zhe zero set of v i.e. the set of points where v vanishes.
For a polynomial surface, the sets,ZZy,, Zy,, Zw, are semi-algebraic sets.
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6.5.2 Degrees of expressions

As a corollary of Thm. 14 and 15, one can give upper boundshtdtal degrees of expressions with respect to
that of the parameterization. Distinguishing the casesr@tbeas a general parameterization or a height function
(that is®(u,v) = (u,v,h(u,v))) with h(u,v) and denotingl the total degree ob, table 6.1 gives the total degrees
of A,B,C,D,detl,P andQ.

Note that in the case of a height functidhijs divided by its factor déf, andQ is divided by its factor ddt
(cf. section 6.6).

Polynomials| General parameterizatior Height function
A B,C,D dy=5d—-6 dy, =3d—4
detl d=4d—-4 d=4d-4
P 5d; +2d, —2=33d—-40 5d;, —2=15d— 22
Q 10d; +4d, — 4 =66d — 80 10d1h+3d2—4=42d—56

Figure 6.1: Total degrees of polynomials

6.5.3 Anexample

Theorem 14 is effective and allows one to report certifiedemlof polynomial parametric surfaces without resort-
ing to local orientation procedures.

Without engaging into the algebraic developments carrigdihcthe next chapter, we just provide an illustration
of ridges for a degree four Bezier surface defined over theaitog = [0,1] x [0, 1]. This surface, already studied
in the former chapter (see Fig. 5.12), can be expressed agdpé of the total degree 8 polynoml#lu,v) for
(u,v) € [0,1]2

h(u,v) =116u"V* — 200uVv® + 108u'V2 — 24u’v — 312534 4 59233 — 360UV + 80Py + 252" — 504u3®
+ 324032 — 720V — 56uv* 4 11203 — 72uv? 4 16UV,

The computation of the implicit curve has been performedaisilaple 9.5 (see section 6.6). It is a bivariate
polynomialP(u,v) of total degree 84, of degree 43undegree 43 irv with 1907 terms and coefficients with up
to 53 digits. Figure 6.2 displays ridges on the parametriva@a 7, there are 17 purple points (black dots) and
8 umbilics (green dots), 3 of which are 3-ridge and 5 are @igidMore information on this example and other
examples are provided in the next chapter.

6.6 Maple computations

The Maple computations are provided for convenience. Theesponding Maple worksheet is available from the
authors’ web pages.

6.6.1 Principal directions, curvatures and derivatives

vl:=[-2+B(u,Vv), A(u,Vv)-DD(u, Vv)-sart(p2(u,v))];

wl: =[ A(u, v)-DD(u, v)+sqrt(p2(u,v)),2+xC(u, Vv)];

v2:=[-2+B(u,Vv), ACu,Vv)-DD(u, v)+sqrt (p2(u, v))];

wW2: =[ A(u, v)-DD(u, v)-sqrt(p2(u,v)),2xC(u,Vv)];

k1: =(A(u, v) +DD(u, v) +sqrt (p2(u,v)))/ (2xdetl (u,v)"(3/2));

k2:=(A(u, v) +DD(u, v) -sqrt (p2(u,v)))/ (2+detl (u,v)"(3/2));
vl:= [-2B(u,v),A(u,v) —DD (u,v) — /p2(u,V)]
wl:= [A(u,v) — DD (u,v) + /p2(u,v),2C(u,v)]
v2:= [-2B(u,v),A(u,v) —DD (u,Vv) ++/p2(u,V)]
w2 := [A(u,v) — DD (u,v) — \/p2(u,v),2C(u,v)]
Kl:=1/2 A(u,v)+DD(u,v)++/p2(u.v)

) (deti(u,v))®/?

L A(u,v)+DD(u,v)—+/p2(u.v)
k2:=1/2 (deti(u,v))*/?

vV V.V VVYV

First derivatives
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Klu:=1/2 (%A(u,v) +2.DD (u,V) +1/2 d%pz(“”)) (detl(u,v)) 32 -3/4
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Figure 6.2: The certified plot of? (1024x 1024 pixels)

Second derivatives

kluu
kluv
klvv
k2uu
k2uv
k2vv

vV V.V VVYV

c=di ff(k1, u$2):
c=di ff(k1,u,v):
c=di ff(kl, v$2):
c=di ff(k2, u$2):
c=di ff(k2,u,v):
c=di ff(k2,v$2):

6.6.2 Ridges

Blue and red equations with respect to the vector fields viwi2 w2.

klu: =di ff (k1, u); klun: =nuner (klu):
kilv: =di ff(k1, v): klvn: =nuner (klv):
k2u: =di ff (k2, u) : k2un: =nuner (k2u) :
k2v: =di ff(k2, v):k2vn: =nuner (k2v):
:=[ klun, klvn]:
:=[ k2un, k2vn]:

V/P2(u,v)

kluun: =nuner (kluu):
kluvn: =nuner (kluv):
klvvn: =nuner (klvv):
k2uun: =nuner (k2uu) :
k2uvn: =nuner (k2uv) :
k2vvn: =nuner (k2vv):

(A(u.v)+DD(u,v)+ p2(u,v)) 2 detl(u,v)

(detl(u,v))®?
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subs_sqrtp2: =sqrt (p2(u,v)) = sqrtp2, p2(u,v)"(3/2)= p2(u,Vv)=*sqrtp2;

bOv1l: =subs( subs_sqrtp2, expand(linal g[dotprod](dkln,vl, 'orthogonal’) ))
bOwl: =subs( subs_sqrtp2, expand(linal g[ dotprod](dkln,wl, ’'orthogonal’) )):
b3v2: =subs( subs_sqrtp2, expand(linal g[ dotprod] (dk2n,v2, 'orthogonal’) )):
b3w2: =subs( subs_sqrtp2, expand(linal g[ dotprod] (dk2n, w2, 'orthogonal’) ))
bOvla: =coef f (bOvl, sqrtp2, 1):bOvlb:=coeff(bOvl, sqrtp2, 0):
bOwla: =coef f (bOWl, sqrtp2, 1):bOwlb: =coeff(bOwl, sqrtp2, 0):

b3v2a: =coef f (b3v2, sqrtp2, 1):b3v2bh:=coeff(b3v2, sqrtp2, 0):
b3w2a: =coef f (b3w2, sqrtp2, 1):b3w2b: =coeff(b3w2, sqrtp2, 0):

subs sqrtp2:= {(pz(u,v))e’/2 =p2(u,v)sqrtp2 /p2(u,v) = sqrtpz}

Identities between b0 with (v1,wl) and b3 with (v2,w2).

>

[ b3v2a- bOvla, bOv1lb+b3v2b, b3w2a-bOwla, bOwlb+b3w2b];
[0707070]

Definition of a,b,abis,bbis

>

>
>
>
>

subs_p2: = p2(u, v)=(A(u, v)-DD(u, v))"2+4*B(u, v) *C(u, v);
a: =expand(subs( subs_p2, bOvla));

b: =expand(subs( subs_p2, bOvilb));

abi s: =expand(subs( subs_p2, bOwla)):

bbi s: =expand(subs( subs_p2, bOwlb)):

subs p2 := {pz(u,v) = (A(u,v) — DD (u,v))? +4B(U,V)C(U,V)}

a:= —4B(u,v)detl(u,v) iA(u7v) —4B(u,v)detl(u,v)

0
ou %DD(UN)

+6B(u,v) (%detl(um}) A(u,v)+6B(u,v) (%detl(um}) DD (u,v) +4detl (u,v) (%DD(UN)) A(u,v)

—4detl(u,v) (iDD(u,v)> DD (u,v) — 4detl (u,v) (iB(u,v)) C(u,v) —4detl(u,v) B(u,v) ——C(u,v)

ov av av

+6 ((;ivdetl(u,v)) (DD (u,v))?>—6 ((;ivdetl(u,v)) A(u,v)DD (u,v) +12 ((;ivdetl(u,v)) B(u,v)C(u,v)

b :=6B(u,v) (%detl(um}) (DD (u,v))? 4 24 (B(u,v))? (%detl(uw)) C(u,v)

—8(B(u,v))2detl(u,v) %C(UN) — 4detl (u,v) ((%DD(UN)) (A(u,v))?

+6B(u,v) (%detl (u,v)) (A(u,v))?—12 (:—Vdetl (u,v)) (DD (u,v))?A(u,v)

—4detl(u,v) (:—VDD(U,V)) (DD (u,v))*>+6 (‘%detl(u,v)) DD (u,v) (A(u,v))?

—4B(u,v)detl (u,v) A(u,v) %A(u,v)

+4B(u,v)detl(u,v) (%A(um}) DD (u,v) +4B(u,v) detl(u,v) A(u,v) %DD (u,v)

—4B(u,v)detl(u,v) DD (u,v) % DD (u,v) —8B(u,v)detl(u,v) (%B(UN)) C(u,v)

—12B(u,v) (%detl(u,v)) A(u,v)DD (u,v) —8detl (u,v) ((%A(u,v)) B(u,v)C(u,v)

+8detl (u,v) (;—VDD(U,V)) A(u,v) DD (u,v) — 8detl (u,v) (%DD(U,V)) B(u,v)C(u,v)

+4detl (u,v) A(u,v) (%B(um}) C(u,v) +4detl(u,v) A(u,v)B(u,v) j—VC(uN)

—4detl(u,v) DD (u,v) (;—VB(UN)) C(u,v) —4detl(u,v) DD (u,v) B(u,V) 5—\/6 (u,v)

+24 (%detl(um}) DD (u,v) B(u,v)C(u,v) +6 (%detl(mv)) (DD (u,v))3

Ridge equation, identies
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curveb0b3v: =si nplify( subs( subs_p2, (a”2+*p2(u,v)-b”r2)/B(u,v) )):
curveb0b3w: =si nplify( subs( subs_p2, (abis”?2+xp2(u,v)-bbis*2)/(-Clu,v)) )):
curvebOb3vw =si nmplify( 2x(abi s*b-axbbis) ):
[ cur veb0Ob3v- cur veb0b3w, cur veb0b3v- cur veb0Ob3vw] ;

(0,0]
Final result: ridge has 170 terms of the form 5 times a termregabA,B,C,DD and twice detl and derivatives
> ridge: =sinplify(curvebOb3vw content (curvebOb3vw)):

> [whattype(ridge), nops(ridge),op(l,ridge)];
2
[ +,170-36(B(u,v))* ( ,detl(uv))” (C(uv)?
Umbilics are points on P=0 of multiplicity t least 3
> list_diff:= diff(B(u, v), u)y=Blu](u,v), d
f
|

VvV V VvV V

f(B(u, v),

f(Clu, v), u)=Cqu](u,v), diff(B(
u iff(DD(u, v),

A(u, v), u)=Alu](u,v), d
(BB(u, v), v)=DO{v](u,v) :

v)=B[v](u,v), diff(C(u, v), v)=Cv](u,v) ,di

u)=bDDj u] (u,v), diff(A(u, v), v)=Alv](u,v), di
> unb_cond: =A(u, v) =DD(u, v), B(u,v)=0, C(u,V)
> ridge_sub:=subs( list_diff, courbe):

> ridge_gradient:=[diff(ridge_sub, u), diff(ridge_sub, v)]:

> ridge_gradient_sub:=sinplify(subs( list_diff, ridge_gradient)):

> ridge_gradient_unb:=sinplify(subs(unmb_cond, ridge_gradient_sub));
>
v
>
>

if
f(
ff
=0

)

ri dge_hessien:=[ diff(op(1,ri dge gradl ent sub) u), diff(op(1,ridge_gradient_sub),
), diff(op(2,ridge_gradient sub)
ri dge_hessi en_sub: =si npl i fy(subs(l i st_di ff, ridge_hessien)):
ri dge_hessi en_unb: =si npl i f y(subs( unb_cond, ridge_hessien_sub));
umb cond := {A(u,v) = DD(u,v),C(u,v) = 0,B(u,v) =0}
ridge_gradient umb:= [0, 0]

ridge_hessienumb:= [0,0,0]

6.6.3 Turning points

> subs_sqrtp2bis:=sqrt(p2(u,v)) =sqrtp2, p2(u,Vv)”(3/2)= p2(u,v)*sqrtp2, p2(u,v)”(5/2)=

p2(u, v)"2xsqrtp2:

> hessklvl: =subs( subs_sqrtp2bis, expand(kluunxvl[1]*2+kluvn*v1[1]*v1[2]+klvvn*xv1[2]~2)):
hessklwl: =subs( subs_sqrtp2bi s, expand(kluunxwl[ 1] *2+kluvnx*wl[ 1] *wl[ 2] +klvvn*wl[2]"2)):
hessk2v2: =subs( subs_sqrtp2bis, expand(k2uunxv2[ 1] *2+k2uvn*v2[ 1] *v2[ 2] +k2vvn*v2[2]"2)):
hessk2w2: =subs( subs_sqrtp2bi s, expand(k2uun*w2[ 1] *2+k2uvn*w2[ 1] *w2[ 2] +k2vvn*w2[ 2] *2)):

hessklvla: =coef f (hessklvl, sqrtp2, 1):hessklvlb: =coeff(hessklvl, sqrtp2, 0):

hessklwla: =coef f (hesskilwl, sqrtp2, 1):hessklwlb: =coeff(hessklwl, sqrtp2, 0):
hessk2v2a: =coef f (hessk2v2, sqrtp2, 1):hessk2v2b: =coeff( hessk2v2, sqrtp2, 0):
> hessk2w2a: =coef f (hessk2w2, sqrtp2, 1):hessk2w2b: =coef f (hessk2w2, sqrtp2, 0):

VVVVVYV

Identities

> [hessklvla- hessk2v2a, hessklvlb+hessk2v2b, hessklwla- hessk2w2a, hessklwlb+hessk2w2b];

[07 07 07 O]
Definition of alpha, beta, alphabis, betabis: one has hedska*sqrt(p2(u,v)) +b ; hessk2v2= a*sqrt(p2(u,v))

alpha, beta, alphabis, betabis are fct of A,B,C,DD, detlfastiand second derivatives
> al pha: =si mpli fy( subs( subs_p2, hessklvla )):

al phabi s: =si nplify( subs( subs_p2, hessklwla )):

beta: =si nplify( subs( subs_p2, hessklvlb )):

bet abi s: =si mplify( subs( subs_p2, hesskiwlb )):

[ nops(al pha), nops(beta)];

VvV V.V V

(216,371
turn, turn-B and turn-C are fct of A,B,C,D,Detl and first aratend derivatives
> turn_B: =expand( subs( subs_p2, al pha”2x*p2(u,v)-betar2 ) /B(u,v)"2):
> turn_C: =expand( subs( subs_p2, al phabis”*2xp2(u,v)-betabis*2 ) /Clu,v)"2 ):
> turn_AD = sinplify( 2+(al phabi s*bet a-al pha*xbetabis)/(-A(u, v)+DD(u, v)) ):
Equivalence of equations
> [turn_B-turn_C,turn_B-turn_AD|;

(0.0]

Final equation, in each term of turn, there are 10 terms astgha®,C,D and 4 times Detl and 4first derivatives

(2*first derivative=2nd derivative)

> turn:=sinplify( turn_AD/ content(turn_AD) ):
> [whattype(turn), nops(turn), op(1l, turn)];

[+ 1730296 (detl (u,v))* (A(U,V))2 (T%B(UN)) (Cuv)? (%DD(UN)) (g—VB(UN)) (DD (u,v))?]
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6.7 Conclusion

This chapter sets the implicit equati®h= 0 of the singular curve encoding all ridges of a smooth patame
surface. From a mathematical standpoint, a corollary &f thsult shows that ridges of polynomial surfaces are
polynomial objects. From an algorithmic perspective, tesult paves the alley for the development of certified al-
gorithms reporting ridges without resorting to local otaion procedures. For algebraic surfaces, such algosithm
are developed in the next chapter.



Chapter 7

Topologically certified approximation of
umbilics and ridges on polynomial
parametric surfaces

In the context of polynomial parametric surfaces, we mal@dantributions for the computation of ridges. First,
by instantiating to the polynomial setting the global stune theorem of ridge curves proved in the former chap-
ter, we develop the first certified algorithm to produce a togical approximation of the curve? encoding all

the ridges of the surface. The algorithm exploits the siagstructure of%? —umbilics and purple points, and
reduces the problem to solving zero dimensional systenmg @itbner basis. Second, for cases where the zero-
dimensional systems cannot be practically solved, we dewekertified plot algorithm at any fixed resolution.
These contributions are respectively illustrated for Begurfaces of degree four and five.

7.1 Introduction

7.1.1 Previous work

Up to our knowledge, no algorithm reporting ridges in a ¢iedi fashion has been developed as of today. Most
contributions deal with sampled surfaces known through shiyend a complete review of these contributions can
be found in chapter 5. In the following, we focus on contribaos related to parametric surfaces.

Reporting umbilics. Umbilics of a surface are always traversed by ridges, sorgqairting ridges faithfully
requires reporting umbilics. To do so, Morris [Mor90] minmas the functiork; — kp, which vanishes exactly at
umbilics. Meakawa et al. [MWP96] define a polynomial systehoge roots are the umbilics. This system is
solved with therounded interval arithmetic projected polyhedron meth®tis algorithm uses specific properties
of the Bernstein basis of polynomials and interval aritimethe domain is recursively subdivided and a set of
boxes containing the umbilics is output, but neither exiséenor uniqueness of an umbilic in a box is guaranteed.

Reporting ridges. The only method dedicated to parametric surfaces we aresanfas that of Morris [Mor90,
Mor96]. The parametric domain is triangulated and zerosings are sought on edges. Local orientation of
the principal directions are needed but only provided wittearistic. This enables to detect crossings assuming
(there is at most one such crossing on an edge (ii)the t@atiem of the principal directions is correct. As this
simple algorithm fails near umbilics, these points are teddirst and crossings are found on a circle around the
umbilic.

7.1.2 Contributions and chapter overview

Consider a parameterized surfakg@l, v), the parameterization beipglynomialwith rational coefficients. Let”

be the curve encoding the ridges®fu,v). We aim at studying” on the compact box domai# = [a,b] x [c,d].
We know from chapter 6 that curve” is a singular curve defined by a polynomialwith rational coefficients.
Ideally, we would like to produce a topologically certifieppgoximation of&?. Given a real algebraic curve, the
standard way to approximate it consists of resorting to tln@rical Algebraic Decomposition (CAD). Running
the CAD requires computing singular points and criticalnp®iof the curve —points with a horizontal tangent.

105
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Theoretically, these points are defined by zero-dimensgystems. Practically, because of the high degree of the
polynomials involved, the calculations may not go througbaplacing the bottlenecks of the CAD by a resolution
method adapted to the singular structurezdfwe make two contributions:

1. First, we develop an algorithm producing a gr&plembedded in the domai#, which is isotopic to the
curveZ of ridges inZ. The key points are twofold:

(a) no generic assumption is required, i.e. several cliticaingular points may have the same horizontal
projection;
(b) no computation with algebraic numbers is involved.

If singular and critical points can be computed —in a reabt@amount of time, the method is effective.

2. Second, if singular or critical points cannot computed reasonable amount of time, we develop a certified
plot algorithm at any fixed resolution: we subdivigeinto pixels a pixel being lit iff the curve intersects it.

The chapter is organized as follows. Notations are predantesection 7.2. The pre-requisites on ridges are
recalled in section 7.3. Section 7.4 provides a note on nastfar approximating implicit plane curves. Section
7.5 presents the main algebraic tools used by our algorjttimese algebraic methods are further explained in
appendix 7.11. The main difficulties of CAD based algorithares discussed in section 7.6. Certified topological
approximation and the certified plot are developed in sestib7 and 7.8, and illustrated in section 7.9.

7.2 Notations

For a bivariate functiorf (u,v), the partial derivatives are denoted with indices, for eplent,,v = %’. The

quadratic form induced by the second derivatives is denéiéad v) = fuuU? + 2fuv+ fV2. The discrimi-
nant of this form is denoted(f,) = f&v— fuufw. The cubic form induced by the third derivatives in denoted
fa(u,v) = fuuut® + 3fuu?V + 3fuwuV? + fwVe. The discriminant of this form is denotel{ f3) = 4( fuuufuw —
fguv)(fuuvavv— fuzvv) - (fuuufvvv— fuuvfuvv)z-

Let f be a real bivariate polynomial and@ the real algebraic curve defined by A point (u,v) € C? is called

e asingular point of# if f(u,v) =0, fy(u,v) = 0 andfy(u,v) = 0;
e acritical point of.7 if f(u,v) =0 andfy(u,v) = 0 andfy(u,v) # O (such a point has an horizontal tangent);
e aregular point of# if f(u,v) =0 and it is neither singular nor critical.

If the domainZ of study is a subset @2, by fiberwe refer to a cross section of this domain at a given ordinate
or abscissa.

7.3 The implicit structure of ridges, and study points

7.3.1 Implicit structure of the ridge curve

As shown in chapter 6, the ridge cun# is defined by the bivariate polynomiB(u,v). In that chapter, we
also introduce polynomialg, b, @ andlb/, together withSigniqge, P2, Which are functions of the curvatures of
the surface and their first derivatives. These functionsadtarize the singularities and the colors#fin the
following sense

Theorem. 16 Consider a smooth parametric surface whose parameteoiza denotedP(u,v). There exists
polynomial functions P, pand SigRqge SO that the set of blue ridges union the set of red ridges uthierset of
umbilics has equation P 0. In addition, for a point of this set”, one has:

e If po =0, the point is an umbilic.
e If p2 # Othen:

— if Signigge = —1 then the point is a blue ridge point,
— if Signigge = +1 then the point is a red ridge point,
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— if Signigge = 0 then the point is a purple point.

Following the theoretical study performed in chapter 6,dhéy assumption made is that the surface admits
generic ridges in the sense that real singularities?ofatisfy the following conditions:

e Real singularities of” are of multiplicity at most 3.

¢ Real singularities of multiplicity 2 are called purple pwinThey satisfy the systeBy = {a=b=a =b' =
0, 8(P,) > 0, p2 # 0}. In addition, two real branches a? are passing through a purple point.

e Real singularities of multiplicity 3 are called umbilics.h@y satisfy the syster§, = {p, =0} = {p2 =
0,P=0,R,=0,R, = 0}. In addition, if6(Ps) denote the discriminant of the cubic of the third derivatioé
P at an umbilic, one has:

— if 0(Ps) > 0, then the umbilic is called a 3-ridge umbilic and three t@ainches of%” are passing
through the umbilic with three distinct tangents;

— if 8(P3) < 0, then the umbilic is called a 1-ridge umbilic and one reahich of & is passing through
the umbilic.

As we shall see in section 7.7, these conditions are cheakeathe processing of the algorithm.

7.3.2 Study points and zero dimensional systems

As recalled in introduction, the most demanding task toifyett topology of a real algebraic curve consists of
isolating its real singular and critical points. For our Iplem, the singular and critical points oF have a well
known structure which can be exploited. More precisely: wecsssively isolate umbilics, purple points and
critical points. As a system defining one set of these poilsis mclude as solution the points of the previous
system, we use a localization method to simplify the catauta (see theorem 9). The points reported at each
stage are characterized as roots of a zero-dimensionahsysia system with a finite number of complex solutions,
together with the number of half-branches of the curve coteteto each point. In addition, points on the border
of the domain of study need a special care. This setting leattie definition ofstudy points

Definition. 17 Study points are points i which are
o real singularities of%?, denoted U S, , with §, = SirU Sr and

— Sr={p2=P=PR, =R =0,5(P3) < 0} (1-ridge umbilics)
— Sr={p2=P=PR, =R =0,5(P3) > 0} (3-ridges umbilics)
- S={a=b=a=b=0,0(R) >0, pp#£0} ={a=b=a =b =0, 5(R,) >0} \ S, (purple points)

e real critical points of & in the v-direction (i.e. points with a horizontal tangentiafhare not singularities
of &) defined by the system
S = {P=PR,=0,R, # 0} (critical points);

e intersections of” with the left and right sides of the bax satisfying the system
S ={P(a,v)=0, ve [c,d]} U{P(b,v) =0, v € [c,d]}. Such a point may also be critical or singular.

7.4 Note on methods for approximating implicit plane curves

In this section, we review classical methods aiming at caingwan approximatio? of a plane curve”? = {P =
0}. Algorithms providing topological guarantees in the namgslar case use interval analysis or some additional
knowledge on the functioR. The singular case is completely handled only for algetmaiges. Our description of
these algorithms assumes some familiarity with the notfdoaal feature siz§AB99], and isotopic approximation
[APRO3].

Let P: D c R? — R be a continuously differentiable function. Assume the@leet ofP defines a curve
2 = {(u,v) € R%P(u,v) = 0} with potentially some isolated singularities. The purpiss® give a description
of the curveZ?. This description can simply be a subsetbénclosingZ? or a piecewise linear grapfi. From
a topological point of view, one expecisto be isotopic taZ?. From a geometrical point of view, one expegts
and¥ to be close for some distance.
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7.4.1 Marching cubes and relatives

The Marching cube algorithm discretizes the domaiwith a regular square grid. An intersection between the
curveZ and an edge of a cell is detected if the sigriPathanges at the vertices. The approximafis defined
from intersections along edges.

The main advantage of the methods is to require a mere ei@idtP. The drawbacks are that the connection
of intersection points in a grid cell can be ambiguous, amd $ome parts of the curve can be merged or missed
since the sign change test counts the number of intersgmbioits modulo two. If the curve has no singularity and
one has a lower bound on the local feature size of the curesettwo problems can be overcome and a gféph
isotopic toZ? can eventually be found. It is indeed sufficient to incre&seprecision of the grid so as to match
the bound orifs. But then, one faces the question of adaptability since ngaidycells are not intersected by the
curve. Continuation methods, which consist of tracing threnected components from seed points, can overcome
this problem but they need at least one starting point on eachected component.

7.4.2 Interval analysis

Interval analysis consists of using inclusion functionspaiting lower and upper bounds on the functions manip-
ulated. The simplest idea is to recursively subdivide thmaio D in regions and evaluateon these regions with
an inclusion function. Regions where 0 does not belong tanteeval evaluation of the function are certified not
to be intersected by the curve. One the other hand, regioesanhbelongs to the evaluation may or may not be
intersected by the curve, depending on how sharp the ei@iuzds been done.

This method has been improved to certify the topology®f The idea consists of adding the requirement
that on each region intersected by the curve, the curve igridggh of a function [Sny92, PV04]. This requires
controlling the gradient oP on each region with another inclusion function. On such #&rgghe portion of#?
is approximated by polygonal lines and a gralis constructed. The method defines a set of boxes certified to
enclose all parts of the curve, and a quad-tree based reestdbdivision adapts the search to the curve.

If the curve has no singularity, the method provides a staogppriteria for the subdivision process, and certifies
that¥ is isotopic to”?. Moreover, some conditions may be added to the subdivigiberia to provide a better
geometric approximation [LOF02].

Unfortunately, even in the polynomial case, calculatioith mclusion functions are prohibitive for high degree
polynomials. Additionally, singular curves cannot be Haddince the gradient of the function vanishes at singular
points —the curve cannot be locally defined by a graph.

7.4.3 Restricted Delaunay diagrams

These algorithms [Che93, BO03] use properties of Delaundyaronoi diagram. Given samples located on the
curve, the graply is defined as the Delaunay diagram restricted to the cureer@éstricted Delaunay diagram
consists of Delaunay edges whose dual Voronoi edges iotdheecurve??). If a lower bound on the local feature
size is known, these methods guarantee that upon ternmnatie grapti/ is isotopic to#?, and that4 is in a
e—neighborhood of?.

The main advantage of these methods is to use a simple ptedigaporting whether a line-segment intersects
the curve. Moreover, adaptive versions of the algorithnrguize that locally, the sizes of simplices match the
local feature size.

However, curves with singularities are not handled, anddtver bound ori fs is difficult (if not impossible)
to compute in practice. To overcome the computation of flsgan alternative criteria is proposed in [CDRR04]
requiring the computation of the critical points of the cawith respect to a given direction of projection.

7.4.4 Using Morse theory

If the singularities of the functioP are known and non-degenerate, classical and stratifiedeMbeory can be
used [BCSVO04]. A triangulation of the ambient space is cartsed so that the O-level set of the piecewise linear
interpolation ofP is isotopic to#2. Eventually this O-level set is meshed and a bound on the ddafislistance
between the two curves is derived.
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7.5 Some Algebraic tools for our method

In this section, we sketch the two algebraic methods ulagsly called by our algorithms. More details are
provided in appendix 7.11.

7.5.1 Zero dimensional systems

In our algorithms, we will need to represent solutions ofozéimensional systems depending on two or more
variables. We use the so called Rational Univariate Reptasen of the roots [Rou99], which can be viewed as a
univariate equivalent to the studied system.

Given a zero-dimensional systdm-< py,..., ps > where thepI € Q[Xq,.. ,Xn] a Rational Univariate Repre-

sentation of \(1) has the following shapef;(T) =0,X; = g‘xl ooy Xn= g‘X” whereft7gtl7gtxl, S0, €

Q[T] (T is a new variable). It is uniquely defined w.r.t. a glven p«ﬂynalt wh|ch separate¥(l) (injective on

V(I)), the polynomialf; being necessarily the characteristic polynomiafrp{the multiplication operator by the
polynomialt) in Q[Xy,...,Xn]/1 [Rou99]. The RUR defines a bijection between the roots of ystesnl and those
of f; preserving the multiplicities and the real roots :

V(1) (NR) ~ V(fy)(NR)
a=(ay,...,0n) — t(a)
t
0a(a) = ey - Xo(@) = §a) — @)

There exists several ways for computing a RUR. One can ussttagy from [Rou99] which consists of
computing a Grébner basis bfand then to perform linear algebra operations to comput@aragng element as
well as the full expression of the RUR. The Grdbner basis agatpn can also be replaced by the generalized
normal form from [MTO5b]. There exists more or less certif@ternatives such as the Geometrical resolution
[GLSO01] (it is probabilistic since the separating elemantandomly chosen and its validity is not checked, one
also loses the multiplicities of the roots) or resultantdubstrategies such as [KORO05].

7.5.2 Univariate root isolation

This second tool is used to analyze fibers i.e. cross seatibas at a given ordinate or abscissa, and requires
isolating roots of univariate polynomials whose coeffitseare rational numbers or intervals. The method uses
the Descartes rule and is fully explained in [RZ03]. The &lhm is based on a recursive subdivision of the
initial interval. If exact computations with rationals gperformed, the algorithm is proved to terminate —but
such computations may be costly. However, the structure@opmblem is such that certifications can be achieved
using interval arithmetic rather than an exact arithméticsee how, given a polynomil= 31! ,a; u' with rational
coefficients, assume we are given interils;] enclosing the coefficients. Representing a rational number by
an interval amounts to approximating the number, and wé asstime the intervals’ widths can be made arbitrarily
small. The specifications of the algorithm [RZ03] in the caspolynomials with intervals as coefficients are the
following :

e Input:

-P, = z{‘:o[li,ri]ui a univariate polynomial with intervalsi, ri] of width less thare; as coefficients.
Notice thatP;, can be seen as a family of polynomials parameterized by thieelof a(n+ 1)-uple
(a)i=o..n With & € [lj,ri];

— [a,b] an interval for the variable;

— a precisiong, for the interval arithmetic computations. (This is the ps&m used to represent the
intervals’ boundaries.)

e Output:

— alistL; of intervals with rational bounds containing a unique reaitiof P, (that is any polynomial of

the family has a unique real root in each of these intervals);

— a list Le of interval with rational bounds where no decision was gaesi—i.e. the Descartes rule of
sign cannot be applied because signs of interval coeffeimat not defined;

— all the elements df; andL. are intervals contained ija, by;
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— areal root of%, in Ja, bl is represented by an interval bfor Le;
According to [RZ03]Le is not empty only in one of the following situations :
e there exists a polynomial in the family of polynomRa| which has a multiple root ife, b[;

¢ the precisiorg; of the interval arithmetic used for the computation is ndtisient;

In the present chapter, we need to solve two kinds of probleisslating all the solutions of a polynomial
with rational coefficients; and isolating all the simple t®of a polynomial whose coefficients are intervals —of
arbitrary length, knowing intervals which separate thetipl@ roots from the simple ones.

In the first case, the square free part of the polynomial isprged so that it has no multiple root. Hence both
problems become equivalent if we use interval arithmetigsneed to isolate all roots & on the intervala, bj
containing no multiple roots d?. This can straightforwardly be done running the previogeathm forP;,. If
the listLe is empty we are done, otherwise the algorithm is rurFgr, ande, /2. The termination of this process
is proved in [RZ03].

7.5.3 About square-free polynomials

Many computations suppose that the considered polynomialsquare-free, replacing them, when needed, by
their square-free part. In our algorithms, we use intefjfimiabased algorithms (multi-modular, Hensel lifting,
etc.) in the univariate case as well as in the bivariate adesfalt strategy in most computer algebra systems). One
key advantage of such methods is that they detect quicktyathmlynomial is square-free by solving a simpler
problem (univariate problem in the bivariate case, comprianodulo a prime number in the univariate case). In
particular, this first part of the computation can be use@soif a polynomial is square-free or not.

In the univariate case for example, if a polynomial is sqtfege modulo a prime number which does not divide
its leading coefficient, then is is square-free.

Thus, using algorithms based on interpolation stratediiespverall cost of the computations for testing if a
polynomial is square-free (or to compute its square-fre¢ when it is not) is negligible compared to the rest.
(With a standard variant using the Euclidean algorithm,woald perform, in average)(d?) binary operations,

d being the degree of the polynomial.)

In the few cases where the computation of a square-free ann trivial, the computing time for interpo-
lation based methods is, in average, proportional to the aizhe result and polynomial in the size (degree and
coefficients sizes) of the input. For example, in the unatericase, a naive variant will run Euclid’s algorithm
modulo some prime number®(d?) binary operations for a polynomial of degréuntil the product of these
prime numbers exceeds the size of the coefficients in thét msaifinally will recover the result using the Chinese
remainder theorem). Since the non trivial cases are fewetbemputations do not represent a blocking step in the
whole algorithms of the present chapter.

7.6 On the difficulty of approximating algebraic curves

The standard way to approximate algebraic curves is totrestite CAD (Cylindrical Algebraic Decomposition).
In this section, we recall the main steps of such strategiepproximateZ? and discuss the major difficulties of
algorithms like [GVNO2]. In section 7.7 we will show how todtrack of the specific implicit structure of ridges
(see chap. 6) to optimize the process.

The CAD has been introduced in [Col75]. Basically, a CAD addpo a set of multivariate polynomials
is a partition of the ambient spacR"(if the polynomials depends amvariables) into cells (connected subsets
with a trivial topology) where the signs of the consideredypomials are all constant. Such a general method
can be adapted to compute a graph reporting the topologybP3-D curves —see respectively [GVN0O2] and
[GLMTO04]. The following give the basic principles of the rhed.

Given any implicit curveP(u,v) = 0, one considelP as a univariate polynomial ia (or v) and study the values
of v (or u) for which the number of roots d? varies. Wherv varies, a root oP may "go to infinity" or become
singular. The first case corresponds to the valued@fwhich the leading coefficient &f vanishes and the second
case to the values offor which the discriminant with respect tovanishes\-coordinates of singular points and
critical points with respect to the projection on thaxis). Both sets of values can be expressed as the (reéd) roo
of a univariate polynomiat(v) which can be explicitly computed frof. When restricted to a cylinder between
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the fibers over two consecutive real rootx0f), P(u,v) = 0 has the topology of a trivial covering. Using the CAD
to approximate an algebraic curve requires mainly thregesta

In the following, we consider there is no (horizontal) asyates: no roots to the leading coefficient with
respect to the variable A change of coordinate is always able to transform the cimrgeich a configuration and
anyways, as we will see later, one can easily avoid such amge®on when studying the curve in a compact box.

First stage. Produce the-coordinates of the singular points and the critical poivith respect to the projection
on thev-axis. These&-coordinates are the real roats, .., as of the discriminant oP w.r.t. u, denoted bCrit,,.

Second stage. Consists of building the fiber above eagleoordinate of critical and singular points. This calcu-
lation involves polynomials whose coefficients are algebnambers, so as to isolate the solutions in each fiber
and at least discriminate the multiple points from the sergmints. More formally, this requires solving:

e L-la. Report the simple real roots Bfu, a;), i = 1..s;
e L-1b. Report the multiple real roots &f(u, ai), i = 1..sand their multiplicity;

Note that thei-coordinates of the critical and singular points are thetiplel roots of the polynomialB(u, o).

Third stage. Finally, the connection phase consists of connecting pdinm fibers. This requires:

e Finding the real roots oP(u, ), i = 0..s, B being any arbitrary point ifai, a1, with the convention
Op = —o andds;1 = +o.

e Finding the number of half branches which connect to thenatk of P(u, a;), i = 1..sin order to connect
each real root oP(u, 3;), 1 = 0..s, to a real root oP(u, a;), i = 0..sand to a real root oP(u, aj;1),i =0..s.

These three stages face four major difficulties.

Computing the discriminant Crit,. For large polynomials, the first difficulty comes from theadhtion of the
discriminant with respect ta, which may be unpractical. In section 7.7, we shall facedtificulty by sequentially
reporting study points independently and thus decreasinggly the degrees of the involved polynomials.

Isolating the roots of P(u,ai). The second difficulty comes from the isolation of the rootR@f, a;), a; being a
real root ofCrit, and the computation of their multiplicities. Sinagis an algebraic number, there are three main
ways to certify such a computation:

e (i) use an approximated representation of the real algelainbers involved such as floating point num-
bers or intervals. It then becomes possible to isolate sdnteecsimple real roots oP(u, aj). Managing
correctly the precision of the approximations as well asrihenerical errors during the computations, one
can hope being able to isolate all the simple real roo®(ofa;). However, we are not aware of any general
implementation of this strategy.

e (ii) use an exact representation of the real algebraic nusniogolved — for example an interval and a
polynomial to refine it to an arbitrary precision, or Thomdgling of the roots— and apply classical algorithms
with the induced arithmetic such as Sturm-habicht sequeand sub-resultants algorithms for computing
the roots ofP(u, a;) [BPRO3] for details. For large problems, the size of the polyials involved and the
cost of exact arithmetic over real algebraic numbers prsviéis solution from being practical.

e (iii) solve the zero-dimensional systeffu,v) = 0,Crit,(v) = 0. This third strategy computes directly the
2D representation of the singular and critical points. On the lvand, the basic computations may be more
difficult, but in the other hand, the operations using regebftaic numbers are simple to perform (only
evaluates polynomial at real algebraic numbers). In otleeds; one may increase the number of arithmetic
operations but decrease their cost.
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Genericity assumption. In order to avoid difficult computations in the cases wherg itot possible to compute
the multiplicities of the roots at the second stage of theiptes algorithm or to perform computations using the
strategy (ii), most recent algorithms such as [GVNO02] or MBL04] suppose that the curve is generic position
w.r.t. the coordinate system —which means that each fifera;) = 0 contains a unique critical or singular
point. This implies that each polynomiB(u, ;) has one and only one multiple root. In such a situation, goint
of consecutive fibers correspondingag ;. 1 are easily connected through points in an intermediateasgtfiber
[GVNO2]. (One-to-one connections are made between regoiats, and one is left with connections between the
unique critical point of each fibex;, a; 1 with the remaining points of the intermediate fiber.)

The genericity hypothesis can be met through a linear chaingeiables. The algorithm described in [GVNO02]
or [GLMTO04] provides such a generic position for the curvd #ris eases the computation of the root®ad, a;).

In our case, the studied curves are usually in generic positnd, anyways, it is also true that a randomly chosen
linear change of coordinates will put the curve in generisifian with a probability one. But checking deter-
ministically that a curve is in generic position may be maoostly than all the other operations and is required if
we pretend to implement a certified algorithm. For exampl¢GVNO2] such a test requires the computation of
some principal Sturm-Habicht coefficientsPvith respect tas which is mainly as costly as using strategy (ii) for
computing the fibers over thg.

Moreover, one can choose not to fully certify theneric position(by performing a random linear change of
variables) and thus use strategy (i) to compute the fiBarso;) = 0. This is suggest by [GVNO02] but the way it is
done is again not certified since they use a purely numeticaitfon ( f sol ve from MAPLE software), which
can not make the distinction between a cluster of 3 simplésrand a triple point.

In addition, replacing a variable by a linear form in a hugeahiate polynomial may be a difficult task. The
sizes of the coefficients increases so that all the computaéxcept perhaps those involving real algebraic numbers
become more difficult.

All the above problems are illustrated by the example frontisa 7.9 :
e we were not able to perform the generic position test;

e we were not able to compute the roots of soRte, a;) even under the generic position assumption —in
which caseP(u, aj) has exactly one multiple root which allows to use severahupation tricks.

7.7 Certified topological approximation

In this section, we circumvent the difficulties of the CAD ateVelop a certified algorithm to compute the topology
of 2.

7.7.1 Output specification

Definition. 18 Let ¢ be a graph whose vertices are points@fand edges are non-intersecting straight line-
segments between vertices. Let the topologyobe induced by that of7. We say that/ is a topological
approximation of the ridge curv&” on the domair? if ¢ is ambient isotopic ta¥? N Z in 2.

More formally, there exists a function:?7 x [0,1] — 2 such that:

e F is continuous;
e Vt €1[0,1], R =F(.,t) isan homeomorphism & onto itself;
e Rp=IldgandR(¥N2)=9.

Note that homeomorphic approximation is weaker and ourrdhgo using a cylindrical decomposition tech-
nique actually gives isotopy. In addition, our construetadlows to identify singularities of” to a subset of
vertices of¢ while controlling the error on the geometric positions. Ve@ @lso color edges & with the color
of the ridge curve it is isotopic to. Once this topologicagtsh is given, one can easily compute a more accurate
geometrical picture.
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7.7.2 Method outline

Taking the square free part Bf we can assume is square free. We can also assumfehas no part which is a
horizontal segment —parallel to thieaxis. Otherwise this means that a whole horizontal linedgsmponent of
P. In other words, the content & with respect tau is a polynomial inv and we can study this factor separately
and divideP by this factor. Eventually, to get the whole topology of thewe, one has to merge the components.

The algorithm

Our algorithms consists of the following five stages:

1. Isolating study points. Study point are isolated in2with rational univariate representations (RUR). Study
points within a common fiber are identified.

2. Regularization of the study boxes.The boxes of study points are reduced so as to have the righbeu
of intersections between their border agl This number is 6 for 3-ridge umbilic, 2 for 1-ridge umbili,
for a purple, 2 for others. Moreover, boxes are reduced so have crossings on the top and bottom sides
only. Define the number of branches coming from the top antthtem.

3. Computing regular points in study fibers. In each fiber of a study point, thecoordinates of intersection
points with &2 other than study points are computed.

4. Adding intermediate rational fibers. Add rational fibers between study points fibers and isolateuth
coordinates of intersection points with.

5. Performing connections. This information is enough to perform the connections. @ersthe cylinder
between two consecutive fibers, the number of branches ctethom above the lower fiber is the same
than the number of branches connected from below the hidyesr fHence there is only one way to perform
connections with non-intersecting straight segments.

Key points with respect to CAD based algorithms

Our algorithm avoids the difficulties of CAD methods, and fibéowing comments are in order.

Zero-dimensional systems versus the discriminarCrit,. Instead of computing thecoordinates of all critical
and singular points at once, as done by the CAD, study poirtseguentially computed directly iD2 together
with the information required to derive the gragh

Isolating the roots of P(u, ). The isolation of roots of polynomials whose coefficients @agebraic numbers
does not arise since study points are isolateddrir2the first place. We only use the isolation of simple roots of
polynomial whose coefficients are intervals. However, waded to characterize the presence of multiple study
points in the same fibers, an information required by the eotion process.

The connection phase without genericity assumption. Algorithms derived from the CAD have problems to
perform the proper connection between to consecutive fithe¢rese fibers contain more than one critical or
singular point. We alleviate this limitation using the infoation on the number of half-branches connected to
the point. This number is equal to 6 for a 3-ridge umbilic, Ad@urple point and 2 otherwise. These informations
are sufficient to build the approximatich

Complexity-wise. The advantage of the strategy is to iteratively split thébfm into simpler ones, and to solve
the sub-problems directly in2 The main drawback of the method may be the arithmetic asgptictomplexity
upper bounds of some of the tools we use to compute and c#réfgolutions of zero-dimensional systems (see
section 7.11).

LetF be a set of polynomialsnindedF) (resp.maxdegF)) the minimal (resp. maximal) degree of a polyno-
mial which belongs té-. According to [Laz83], in the case of two variables, a Grativasis for a Degree ordering
has at mostindedF) + 1 polynomials of degree less thamaxdegF ) — 1 so that modern strategies like [Fau02]
will compute it in a polynomial time. In short, the algorithmfaster than inverting a matrix whose number of
columns is bounded by the number of possible monomials vité@umber of rows is bounded by the number of
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polynomials. Since all the other algorithms we use are atdpnomial (RUR, isolation, etc.) in their input, the
full strategies we use are still polynomial.

We would like to point out that we need to compute, certify @novide numerical approximations with an
arbitrary precision of the real roots of huge systems. Upublkmowledge, the tools we used are, at least in
practice, the most efficient ones with such specifications.

7.7.3 Step 1. Isolating study points

The method to identify these study points is to compute a RitReosystem defining them. Details of the method
are exposed in section 7.11.

The less the number of solutions of a system, the easier theuwiation of the RUR. Hence, we use a local-
ization method to decompose the computation of the difteyges of study points —see section 7.11.5. More
precisely, we sequentially solve the following systems:

1. The systeng, from which the set§r andSsr are distinguished by evaluating the signdgPs).
2. The systen®, for purple points.

3. The systen%: for critical points.
4

. The systeng, for border points, that is intersections&f with the left and right sides of the bax. Solving
this system together with one of the previous identifies bopiints which are also singular or critical.

Selecting only points belonging t@ reduces to adding inequalities to the systems and is wellageh by
the RUR. According to 7.11.5, solving such systems is edgitao solving zero-dimensional systems without
inequalities when the number of inequations remains smatipared to the number of variables.

The RUR of the study points provides a way to compute a boxrat@ach study poird; which is a product
of two intervals[ul; u?] x [v;v?] (see section 7.11). The intervals can be as small as desired.

The computation of the RUR of one of these systems beginstesting if the polynomiaVl is separating for
the system (see 7.11 for the definition of a separating el@méote that if it is so, the solution points are in
generic position with respect to the projection on Waxis, that is each fiber of a point contains no other point
of this system. In any case, we compute the square-free ptreaninimal or characteristic polynomial of the
multiplication byv modulus the ideal generated by the system (nothing to do wl&separating since it is the
first polynomial of the RUR) : its roots are exactly all treoordinates of the solutions of the system.

Until now, we only have separate informations on the diffiérgystems. In order to identify study points
having the same&-coordinate, we need to cross these informations. Firstamepeite isolation intervals for all
thev-coordinates of all the study points together, dendtas list of intervals. If two study points with the same
v-coordinate are solutions of two different systems, theajqablynomials enable to identify them:

e Initialize the listl with all the isolation intervals of all the-coordinates of the different systems.

e Let A andB be the square free polynomials defining theoordinates of two different systems, aind Ig
the lists of isolation intervals of their roots. L€t= gcd(A,B) andlc the list of isolation intervals of its
roots. One can refine the elementd@until they intersect only one element lpf and one element d.
Then replace these two intervalsliby the single interval which is the intersection of the thirgervals. Do
the same for every pair of systems.

¢ | then contains intervals defining different real numbergie-to-one correspondence with theoordinates
of the study points. It remains to refine these intervald timty are all disjoint.

Second, we compare the intervald @ind those of the 2d boxes of the study points. Let two studytpgi and
q; be represented by'; u?] x [v; V7] and[uf; uf] x [v}; vé] with [V v N [vi; V7] # @. One cannot, a priori, decide
if these two points have the sameoordinate or if a refinement of the boxes will end with disja-intervals. On
the other hand, with the lidt such a decision is straightforward. The boxes of the stuytp are refined until
each[v}; V2] intersects only one intervakd; w?] of the listl. Then two study points intersecting the same interval
[w;w?] are in the same fiber.

Finally, one can refine thecoordinates of the study points with the sant@ordinate until they are represented
with disjoint intervals since, thanks to localizationd,taé computed points are distinct.
Checking genericity conditions of section 7.3.1.

First, real singularities shall be the union of purple andilical points, this reduces to compare the systems
for singular points and for purple and umbilical points. @&t showing thad(Ps) # 0 for umbilics and(P,) > 0
for purple points reduces to sign evaluation of polynoméalhe roots of a system (see section 7.11.5).
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Figure 7.1: Notations for a fiber involving several critisahgular pointsui(j2>

simple points.

are used for study pointﬁ-,’lj(2> for

7.7.4 Step 2. Regularization of the study boxes

At this stage, we have computed all theoordinatesr,, ..., ds of all the study point§q; j,i=1...s j=1...m}
by means of isolating intervalgl;vZ],i = 1..s. We have isolated-coordinates of then study points in each
fiber a; by the intervale‘tullj,u2 |, j = 1..m) and we know (section 7.7.3) the number of branches whichlghze
connected to each of them.

Note that an intersection (i) of &2 with a fiberv = vp which is not a study point is a regular point &7.
Hence, theu-coordinate of this point is a simple root of the univariatdypomial P(u,vp). The first additional
computation we need to do is to ensure that for each fipera;) = 0 the isolating boxes of the study points do
not contain any regular point. It is sufficient to count thentoer of intersection points between and the border
of the isolating box to detect if the box contains or not a tegpoint : such a computation remains to solve 4
univariate polynomials with rational coefficients and cardione efficiently using the algorithm from section 7.5.2.
Precisely, if the study point is a critical point, the isalgtbox contains no regular point if and only if the number
of points in the computed intersection is 2 (2 for a 1-ridg&i6a 3-ridge, 4 for a purple, 2 for a non-critical nor
singular border point ). If the box contains a regular paing use the RUR to refine the isolating box and perform
again the test : after a finite number of steps, each study millbe represented by an isolating box which do not
contain any regular point.

In addition, reducing boxes if necessary, we can also asshenmtersections on the border of the isolation
boxes only occur on the top or the bottom sides of the boxes i&hhe sides parallel to theaxis). This allows to
compute the number of half-branches connected to the topoathe bottom of each study point. For the special
case of border points, one has to compute the number of beareside the domair only.

7.7.5 Step 3. Computing regular points in study fibers

We now compute the regular points in each fiBéu, aj) = 0. Computing the regular points of each fiber is now
equivalent to computing the roots of the polynomid(s, a;) outside the intervals representing treoordinates
of the study points (which contain all the multiple rootsRgti, ai)).

Denote[ullJ ; u2 ] j = 1..m; the intervals representing thiecoordinates of the study points on the fibeopfand
v Ve an mterval of lengtre containing (strictly)a; and no othenj, j # i. Subst|tut|ngv by Vi, V¢ in P(u,v)
gives a univariate polynomial with intervals as coefficgwe denotd®(u, [v},vZ]¢). We apply the algorithm 7.5.2

for the polynomialP(u, [v{,v?]¢) and on the domain/, [uf;;uf;]. We know that for every € [vi,VZ]e the

ponnomlaIP(u vi) has no multiple roots on this domain. Hence the algorithrhneturn mtervals[[iI Nt BI J],J

..lj such that fore sufficiently small and?v; € [ail¢, each root oP(u,vi) belonging to[a, b]\UJ: [ut it ,21] is
contained in a uniqugs’;; B3].
We have isolated, along each fiber, a collection of pasnfsi = 1...s, j =1,...,m +1;, which are either

study points or regular points a?”. Each such pointis isolated in a box i.e. a product of interaad comes with

two integergn;" i ;- ;) denoting the number of branchesdnconnected from above and from below.

7.7.6 Step 4. Adding intermediate rational fibers

Consider now an intermediate fiber, i.e. a fiber associatédwi= & i = 1...s— 1, with & a rational number
in-between the intervals of isolation of two consecutivligaa; anda;, 1. If the fibersv=c orv =d are not
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fibers of study points, then they are added as fibg® Js.
Getting the structure of such fibers amounts to solving aari@te polynomial with rational coefficients, which
is done using the algorithm described in section 7.5.2. Téash such fiber also comes with a collection of points

for which ones knows thaﬁj = n;; = 1. Again, each such point s isolated in a box.

7.7.7 Step 5. Performing connections

We thus obtain a full and certified description of the fibetbkthe intersection points witl#? and their number of
branches connected. We know, by construction, that thechemnof<” between fibers have empty intersection.
The number of branches connected from above a fiber is the t@mehe number of branches connected from
below the next fiber. Hence there is only one way to perforrmeations with non-intersecting straight segments.
More precisely, vertices of the graph are the centers odignl boxes, and edges are line-segments joining them.
Notice that using the intermediate fibers- & is compulsory if one wishes to get a graghsotopic to.#. If
not, whenever two branches have common starting points @ajgoints, the embedding of the graghobtained
is not valid since two arcs are identified.
The algorithm is illustrated on Fig. 7.2. In addition

e Ifa singular point box have width, then the distance between the singular point and the vespegsenting
itis less thard.

e One can compute the sign of the funct®ignqge defined in 7.3.1 for each regular point of each intermediate
fiber. This defines the color of the ridge branch it belong§teen one can assign to each edge of the graph
the color of its end point which is on an intermediate fiber.

Ayl
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Figure 7.2: Performing connections

7.8 Certified plot

In this section, we develop an algorithm to provide inforimabf &2 when some of the calculations required to
certify the topology do not succeed. The information we exconsists of intersections between rational fibers
in the study box and the curve. These intersections are aseefine the so-calledertified plot. Notice that if
some calculations succeed —in particular those of umhdligs purple points, then, the isolation boxes of these
singularities can be superimposed to the certified plot.

For simplicity, we suppose th&tis irreducible, thaP(u,v) = 0 has no isolated points, which is true under our
genericity conditions of section 7.3.1, and that the stidiemain i0, 1] x [0,1]. In addition, we denote by an
integer such that there does not exists a connected compoie(u,v) = 0 which is embedded in a product of
intervals of length less thary'.

Certified plot with n’ known. To specify the plot, we make the following:
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Definition. 19 Given an integer n with n- ', consider the rx n decomposition of the bounded domgint| x
[0,1] into p|xels_|.e. produc_ts of mtervals of lengttyn: {[5; %] x [L; 2] =0...n—1, j=0...n—1}. Also
assume each pixel has a binary attribute: lit or not.

This nx n decomposition is called theertified plot of & at resolution n if a pixel is lit if and only if2?
intersects the pixel. (Note that the intersection may ooty on the border or even on a corner of the pixel).

The method reduces to finding intersections between thesc##and horizontal and vertical fibers defining
the pixels. The algorithm processing horizontal fibers sspnted on Fig. 7.3. The same algorithm is used to
process the vertical lines, i.e. computations are appligebtynomialsP(i/n,v).

Foreach =0...n:
1. Compute the square free partR{i,i/n).

2. Isolate its roots with intervals of length less tham1(As recalled in section 7.5.2, the algorithm terminates
with Le = 0 since the square free part has been taken.)LLet {I; ; j = 1...m} be the set of thege
intervals.

3. Foreach =1...m

(a) If1j does not intersect a fiber in the other direction, there ekist0...n— 1 such that; c [; kt1].
X

n
K. k+1 i—1.i k+1

The pixels containing this segment are lit (ik0i < n these aréy; *=] x [ 1] and [r—f; e
[L; 1] else only one of these is in the studied domain).
(b) If I; intersects the fibaw =k/n (k= 0...n—1) in the other direction then
e if P(k/n,i/n) # 0 then its sign enable to refihgsuch that it does not intersect the fiber and pne
lights pixels as in step 3a —that is, we light the pixel to tightor the left ofu = k/n.
e if P(k/n,i/n) =0 then one lights the pixels containing the pdiktn,i/n) (if this pointis not on
the border of the domain, there are 4 such pixels).

n’n

Figure 7.3: Processing horizontal fibé&tau,i/n)

Certified plot with n” unknown. If n’ is not known, one can choose an arbitragnd apply the same strategy :
only components which are embedded into products of intepfdength< 1/n may not be represented.

7.9 lllustrations

We illustrate our algorithms for Bezier surfaces of degrear fand five respectively. In both cases, the study
domain is the domaiw = [0,1] x [0, 1].

7.9.1 Certified topology for ridges in generic position

Given a parameterized surface, recall that certifying dpokogy of ridges requires going through three stages.
First, the polynomiaP is computed using Maple. Second, the zero-dimensionadsystiefining the study points
are solved, together with the intersections betweeand the fibers of study points and intermediate fibers. Third,
the connections between all these points are performedtegpasduce the embedded graghisotopic to 2.

We illustrate this process on the Bezier surface whose abpints are

[0,0,0] [1/4,0,0] [2/4,0,0] [3/4,0,0] [4/4,0,0]
0,1/4,00 [1/4,1/4,1] [2/4,1/4,—-1] [3/4,1/4,-1] [4/4,1/4,Q]
0,2/4,0] [1/4,2/4,-1] [2/4,2/4,1] [3/4,2/4,1] [4/4,2/4,0]
0,3/4,0 [1/4,3/4,1] [2/4,3/4,—-1] [3/4,3/4,1] [4/4,3/4,0]
0,4/4,0] [1/4,4/4,Q] [2/4,4/4,0] [3/4,4/4,0] [4/4,4/4,0]

Alternatively, this surface can be expressed as the grafitedgbtal degree 8 polynomih(u,v) for (u,v) € [0,1]?:
h(u,v) =116u"V* — 200uV® + 108u'V2 — 24u’y — 3120534 4 59233 — 36032 4 80uPv + 2522* — 504u3®
+324uA? — 720 — 56UV + 1120V — 72uv% + 16uv.
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The computation of the implicit curve has been performedgisilaple 9.5 —see the previous chapter, and
requires less than one minute. It is a bivariate polynoifalv) of total degree 84, of degree 43undegree 43
in v with 1907 terms and coefficients with up to 53 digits.

The study point§,, S, andS; were computed using the softwares@d RSt t p: // fgbrs. 1 i p6. fr).
These systems being in shape position —cf appendix 7.1He3RUR can be computed as shown in [Rou99].
Alternatively, Grobner basis can be computed first usingu@Bh or [Fau02]. We tested both methods and the
computation time for the largest syst&indoes not exceed 5 minutes. Table 7.1 gives the main chasticteof
these systems.

Figure 7.4 displays the topological approximation grapthefridge curve in the parametric domaicom-
puted with the algorithm of section 7.7. The surface andidgas are displayed on Fig. 7.5. To avoid occlusion
problems of lifted ridge segments by the surface, we liftadte surface the points lit by the algorithm from
section 7.8 rather than the ridge segments of Fig. 7.4.

There are 19 critical points (black dots), 17 purple poipisK dots) and 8 umbilics, 3 of which are 3-ridge
(green) and 5 are 1-ridge (yellow). Figure 7.6 displays endfit two close-ups of the bottom left 3-ridge umbilic,
and on the right a more readable sketch. One can recognizasymmetric umbilic, that is a 3-ridge umbilic
where the three blue branches are followed by the three reslrmund the umbilic. The other 3-ridge umbilics are
symmetric, that is branches alternate colors round the liombi

System| # of rootse C | # of rootse R | # of real rootss 2
S 160 16 8

S 749 47 17

S 1432 44 19

Table 7.1: characteristics of zero dimensional systems

On this example, the discriminant with respectiftas degree 3594 inand coefficients with up to 3418 digits.
CAD based strategies require solving polynomials of deg@&wiith coefficients in a field extension defined by
an irreducible polynomial of degree 1431 with coefficientl6f71 digits. Up to our knowledge, none of the best
existing software or libraries can perform such a compoiteéth a reasonable time.

7.9.2 Certified plot
We provide a certified plot of the ridges for the degree 5 Besieface defined by the height function

h (u,v) = — 587uV® — 0.15u — 0.5v — 469.5uV* + 1835033 4 353 3UPV* — 21355u°V° — 1627uV? + 407.5uy
— 1642052 + 1222032 — 304u%v + 0.5U 4 1.8V2 — 1.4u% — 2.5v° + 465u® — 308UV + 76.5uv
+1.5u* 4+ 808uV? — 2055uv — 4015u3V* + 826u2V* + 1.1v* — 309.75uv* — 68.4u°° — 0.511°
40.09v° — 96.9U°V? + 26.11°v + 452 75uV° — 2133uV° — 1019UA° 4 76.2uv° 4 0.05.
The ridge curve has total degree 110 and 3245 terms, it iegjabout 15 minutes to be computed with Maple.
The system for umbilics has been computed and there are S8osilun the domair. The informations to build
a topological approximation cannot be obtained in reasertabe, hence we only provide a certified plot. Figure

7.7 displays this certified plot and umbilics on the dom@inthis 512x 512 resolution plot is computed in less
than one minute. Figure 7.8 displays the certified plotdifbe the surface.
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Figure 7.4: Isotopic approximation of the ridge curve withicdge umbilics (green), 1-ridge umbilics (yellow),
purple points (pink) and critical points (black).

Figure 7.5: Plot of the degree 4 bivariate Bezier surfach vitiges and umbilics
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Figure 7.6: Close-up on the unsymmetrical umbilic of Figl +bottom left umbilic: (a,b)zooms of the isotopic
approximation (c)corresponding arrangement of ridges
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Figure 7.7: Certified plot of the degree 5 Bezier surfaceggdgith umbilics (circles) in the parametric domain.

Figure 7.8: Certified plot of the degree 5 Bezier surfaceagdgith umbilics lifted on the surface.
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7.10 Conclusion

This chapter develops two algorithms to investigate thge®dof parametric algebraic surfaces. The first one
reports a topologically certified approximation of the dg and is the first one to achieve such a guarantee.
For the practical cases where the resolution of the systérasacterizing singular and critical points cannot be
performed, the second one computes a certified plot at any feeolution. These algorithms are computationally
demanding in terms of algebra. They are in a sense complenyentthe heuristic ones developed in chapter 5,
which are working directly on a triangulation of the surfaaed provide a fast way to report non certified results.

The method developed for the computation of the topologhefidges can be generalized for other algebraic
curves. It gives an alternative to usual algorithms baseith@ CAD.

Acknowledgments.Jean-Pierre Merlet is acknowledged for fruitful discuasio
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7.11 Appendix: Algebraic pre-requisites

In this section, we summarize some basic results about @rdteses and their applications to solving zero-
dimensional systems (systems with a finite number of commulets). The reader may refer to [CLO92],[BPRO3].
Lets denote byQ[X,...,Xn] the ring of polynomials with rational coefficients and unkms X, ..., X, and

S={Py,...,Ps} any subset of)[Xy,...,Xy]. A pointxe C"is a zero ofSif R(x) =0 Vi=1...s. The ideal

| =(Py,...,Ps) generated b¥,, ..., Psis the set of polynomials i@[X, ..., Xs] constituted by all the combinations
ZE:1 AUk with Ug € Q[Xy,...,Xy]. Since every element dfvanishes at each zero 8f we denote by VS) =
V()={xeC" | p(x)=0 Vpel} (resp. \k(S) = Vr(l) =V(I)NR") the set of complex (resp. real) zeroes
of S.

7.11.1 Grobner bases

A Grobner basis of is a computable generator setlofvith good algorithmical properties (as described below)
and defined with respect to a monomial ordering. In this paper will use the following orderings:

e lexicographic order. (Lex)

XL X < XPr X s Tig<n , | G =By fori=1lo—1, (7.1)
iy < Big
e degree reverse lexicographic order (DRL)
XL X0 <pRri xlﬁl XN o X (k. —an...—a1) o X (ZkB).—Bn..—B1) (7.2)

Lets define the mathematical object “Groébner”:

Definition. 20 For any n-uplep = (y1,...,Un) € N", let denote by X the monomial *1 cLe XK <is
an admissible (compatible with the multiplication) monahadrdering and P= z{:oaiX““) any polynomial in
Q[X4,...,%n], we definelM (P, <) = maX-o._r . xHY (leading monomial of P w.r.t<), LC(P, <) = & with
LM (P <) = xH (leading coefficient of P w.r.k) andLT (P, <) = LC(P, <) LM (P, <) (leading term of P wrk).

Definition. 21 A set of polynomials G is a Grobner basis of an ideal | wrt to enowoial ordering< if for all
f € I there exists ge G such that LMg, <) divides LM f, <).

Given any admissible monomial orderirgone can easily extend the classical Euclidean divisiaedoicea
polynomialp by another one or, more generally, by a set of polynonkalgerforming the reduction wrt to each
polynomial of F until getting an expression which can not be reduced anymaets denote such a function by
Reduce(p,F, <) (reduction of the polynomigb wrt F). Unlike in the univariate case, the result of such a process
is not canonical except F = G is a Grébner basis:

Theorem. 17 Let G be a Grobner basis of an ideatd Q[Xy, . .., X, for a fixed ordering<.
(i) a polynomial pe Q[Xy,...,Xs] belongs to | if and only if Redu¢p, G, <) = 0,

(i) Reduce(p,Gx) does not depend on the order of the polynomials in the listh@s, this is a canonical
reduced expression modulo I.

Grobner bases are computable objects. The most populanchshcomputing them is Buchberger’s algo-
rithm ([BCL82, Buc85]). It has several variants and it is Ietpented in most of general computer algebra systems
like Maple or Mathematica. The computation of Grébner baséisg Buchberger’s original strategies has to face
to two kind of problems :

e (A) arbitrary choices : the order in which are done the corafpoms has a dramatic influence on the com-
putation time; Precisely, one compuBby increasing the set of initial polynomials, adding so exll
S-polynomials (spal (p,q) = Ccf_ﬁj(p‘;m p— C??(g’;"”q, COF-(p,q) = LCM(LT-(p),LT-(q)) where LCM
stands for “least common multiple”) until all the possil@golynomials of polynomials o6 reduce to 0
moduloG (Reducéspol. (p,q),G, <) = 0).
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e (B) useless computations : the original algorithm spendstmiits time in computing O (at each step, most
of the newS-polynomials do reduce to zero in a naive algorithm).

For problem (A), J.C. Faugére proposed ([Fau99] - algorina new generation of powerful algorithms ([Fau99])
based on the intensive use of linear algebra techniqueshdrt, ghe arbitrary choices are left to computational
strategies related to classical linear algebra problenatrixninversions, linear systems, etc.). For problem (B),
J.C. Faugere proposed ([Fau02]) a new criterion for detgeiseless computations

We pay a particular attention to Grobner bases computedifoination orderings since they provide a way
of "simplifying" the system (an equivalent system with aistured shape). For example, a lexicographic Grébner
basis of a zero dimensional system (when the number of congpleitions is finite) has always the following
shape (if we suppose th¥f < X;... < X,):

f(X4) =0
fa(X1,X%2) =0

fi, (X1, X2) =0
fi,+1(X1,X2,X3) =0

fi, ;41(X1,..., %) =0

fi (X, Xn) = O

(when the system is not zero dimensional some of the polyalsnmiay be identically null). A well known property
is that the zeros of the smallest (w.rt) non null polynomial define the Zariski closure (classidakare in the
case of complex coefficients) of the projection on the cawmtd’'s space associated with the smallest variables.

More generally, an admissible orderirgon the monomials depending on variab¥s ..., X] is an ordering
which eliminatesXg.1,...,X%n if X < Xj Vi=1...d,j =d+1...n. The lexicographic ordering is a particular
elimination ordering.

Definition. 22 Given two monomial orderingsy (w.r.t. the variables i, ... ,Uq) and <x(w.rt. the variables
Xd+1,---,%n) one can define an ordering which “eliminatesyX, . .., X, by setting the so called block ordering
<ux as follows : given two monomials m and,mm <y x m' if and only if My, <x m B or

Xn=1 <u m

Ug=1

(m\ulzl,,,,,udzl = n’(\ulzlwudzl and ”?de:l ,,,,,

Two important applications of elimination theory are thedjections” and “localizations®. In the following,
given any subset’ of CY (d is an arbitrary positive integery, is its Zariski closure, say the smallest subsef®f
containing?” which is the zero set of a system of polynomial equations.

Proposition. 8 Let G be a Grobner basis of an ideatd Q[U, X] w.r.t. any ordering< which eliminates X. Then
GN QU] is a Grobner basis of NQ[U] w.r.t. to the ordering induced by on the variables U; Moreover, if
My : C" — €9 denotes the canonical projection on the coordinates U M\MQ[U]) = V(GNQ[U]) = Ny (V(1)).

Proposition. 9 LetI Cc Q[X], f e Q[X]and T be a new indeterminate, thef )\ V(f) =V((1+(T f—1)) N Q[X]).
If G C Q[X,T] is a Grobner basis of 4 (T f — 1) with respect to<x 1 then GNQ[X] is a Grobner basis of
[:f°:=(1+(Tf-1)NQ[X] w.rt. <x. The varietyV(l)\ V(f) and the ideal I: f* are usually called the
localization of (1) and | by f.

7.11.2 Zero-dimensional systems

Zero-dimensional systems are polynomial systems with gefimimber of complex solutions. This specific case
is fundamental for many engineering applications. Theofeithg theorem shows that we can detect easily that a
system is zero dimensional or not by computing a Grébnesliasany monomial ordering :

Theorem. 18 Let G= {qg1,...,09/} be a Grdbner basis for any ordering of any system S {Py,...,Rs} €
Q[X1,...,%n]% The two following properties are equivalent :

e Forallindexi=1...n, there exists a polynomiaj g G and a positive integerjrsuch that ),2” =LM(gj,<);
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e The systeriP; =0,...,Ps= 0} has a finite number of solutions @

If Sis zero-dimensional, then, according to theorem 18, onlgitefnumber of monomials € Q[X, ..., Xy]
are not reducible modul@, meaning that Reduc®(G,<)= m. Mathematically, a system is zero-dimensional if
and only ifQ[Xy,...,Xn]/l is aQ-vector space of finite dimension. This vector space cay hel characterized
when knowing a Grébner basis:

Theorem. 19 Let S= {py,..., ps} be a set of polynomials withy g Q[X1,...,Xs] ;Vi=1...s, and suppose that
G is a Grdbner basis ofS) with respect to any monomial orderirg. Then :

o Q[Xg,...,%Xn]/I ={Reducép,G,<) , pe Q[Xy,...,Xn]} is a vector space of finite dimension;

o B={t=X'-X& | (en,...,en) €N"| Reducét,G,<)=t}={wi,...,wp}isabasis ofd[Xy,..., X/l
as aQ-vector space;

o D =3Zis exactly the number of complex zeroes of the sy§kem0, VP € S} counted with multiplicities.

Thus, when a polynomial system is known to be zero-dimemsgione can switch to linear algebra methods to
get informations about its roots. Once a Grobner basis isvkna basis of)[X, ..., Xn]/| can easily be computed
(Theorem 19) so that linear algebra methods can be applietbfog several computations.

For any polynomiaf] € Q[Xy, ..., Xn] the decompositioq :Reduceuj,G,<)=ziD:la4wi is unique (theorem 17)
and we denote by = [ay, .. .,ap] the representation @ in the basis”. For example, the matrix w.r.£Z of the
QXg,- -, Xa] /1 — Q[Xy,..., Xl /I
p — P
vectorsgw) and one can then apply the following well-known theorem:

linear mapmy > can explicitly be computed (its columns are the

Theorem. 20 (Stickelberger) The eigenvalues of are exactly the (o) wherea € V¢(S).

According to Theorem 20, the i-th coordinate of alle V(S) can be obtained frormy, eigenvalues but
the issue of finding all the coordinates of all threc Vc(S) from my,...,mx, eigenvalues is not explicit nor
straightforward (see [AS98] for example) and difficult tatdg.

7.11.3 The Rational Univariate Representation

The Rational Univariate Representation [Rou99] is, with émd-user point of view, the simplest way for repre-
senting symbolically the roots of a zero-dimensional systéthout loosing information (multiplicities or real
roots) since one can get all the information on the roots @sifstem by solving univariate polynomials.

Given a zero-dimensional systdr-< pa, ..., ps > where thep; € Q[Xy, ..., %], a Rational Univariate Repre-
sentation of \(I) has the following shapef;(T) =0,X; = %, e Xn= %, whereft, 0 1,0tx;, - -0t x, €
Q[T] (T is a new variable). It is uniquely defined w.r.t. a given palgmalt which separate¥(l) (injective on
V (1)), the polynomialf; being necessarily the characteristic polynomiahpfsee above section) @[X, ..., Xq]/I
[Rou99]. The RUR defines a bijection between the rootsarid those off; preserving the multiplicities and the
real roots :

V(R ~ V(R)(OR)
T
G (Ha 9uxa (@)
(Qt,ll(t(a))’ ’gt,l(t(or))) — t(a)

For computing a RUR one has to solve two problems :
¢ finding a separating element

e given any polynomial, compute a RUR-Candidafe g 1,0t x,,- - -, 0t x, such that ift is a separating poly-
nomial, then the RUR-Candidate is a RUR.

According to [Rou99], a RUR-Candidate can explicitly be gaited when knowing a suitable representation of
Q[Xa,..., %n)/1 :

o fi= ziD:oa;Ti is the characteristic polynomial ak. Lets denote byf; its square-free part.
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o foranyve Q[Xy, ..., Xnl, Gy = Gtw(T) = Y& Tracgmyi )Hy_i_1(T), d = deg ®) andH;(T) = 5)_,a T\

In [Rou99], a strategy is proposed for computing a RUR for apstem (a RUR-Candidate and a separating
element), but there are special cases where it can be codnitfeerently. WhenX; is separating Y1) and when

is a radical ideal, the system is said to belrape positionin such cases, the shape of the lexicographic Grébner
basis is always the following :

f(X) =0
Xo = fa(Xq) 7.3)
Xo = fn(X0)

As shown in [Rou99], if the system is in shape positigg, 1 = f>’(1 and we havefy, = f and fj(Xy) =
9x,.x (X1)/9x,,1(X1) modf. Thus the RUR associated wiky and the lexicographic Groébner basis are equivalent
up to the inversion ofjx, 1 = f>’<1 modulo fx,. In the rest of the paper we call this object a RR-Form of the
corresponding lexicographic Grébner basis. The RUR is Ww@dwn to be much smaller than the lexicographic
Grobner basis in general (this may be explained by the ireof the denominator) and thus will be our privileged
object. Note that it is easy to check that a system is in shapitign once knowing a RUR-Candidate (and so to
check thaX; separates W)): it is necessary and sufficient thig, is square-free.

We thus can multiply the strategies for computing a symisaliation : one can compute the RR-Form Grobner
directly using [Fau99] or [Fau02] for example or by changeuafering like in [FGLM93] or a RUR using the
algorithm from [Rou99].

7.11.4 From formal to numerical solutions

Computing a RUR reduces the resolution of a zero-dimenkgystem to solving one polynomial in one variable
(f;) and to evaluating rational fractions ’T((TT; ,i=1...n) at its roots (note that if one simply want to compute

the number of real roots of the system there is no need todensie rational coordinates). The next task is thus
to compute all the real roots of the system (and only the @k}, providing a numerical approximation with an
arbitrary precision (set by the user) of the coordinates.

The isolation of the real roots df can be done using the algorithm proposed in [RZ03] : the dwiilibe
a listl¢, of intervals with rational bounds such that for each reat maf f;, there exists a unique interval i
which containsa. The second step consists in refining each interval in o@ensure that it does not contain
any real root ofg; 1. Since fy andg; 1 are co-prime this computation is easy and we then can ensatehe
rational functions can be evaluated using interval aritticeevithout any cancellation of the denominator. This
last evaluation is performed using multi-precision arigtits (MPFI package - [RR05]). As we will see in the
experiments, the precision needed for the computationsas @nd, moreover, the rational functions defined by
the RUR are stable under numerical evaluation, even if ttoafficients are huge (rational numbers), and thus this
part of the computation is still efficient. For increasing ftrecision of the result, it is only necessary to decrease
the length of the intervals ify, which can easily be done by bisection or using a certified Neistalgorithm.
Note that it is quite simple to certify the sign of the coomties : one simply have to compute some gcds and split,
when necessary the RUR.

7.11.5 Signs of polynomials at the roots of a system

Computing the sign of given multivariate polynomidkg, ..., q } at the real roots of a zero-dimensional system
may be important for many applications and this problem tsotved by the above method. Instead of "plugging"
straightforwardly the formal coordinates provided by théRfRinto theq;, we better extend the RUR by computing
rational functions which coincide with ttgg at the roots of. This can theoretically simply be done by using the
general formula from [Rou99] by ; = z&ngrace(rrhjti)HD,i,l(T). One can directly compute the a'me(mqjti)
reusing the computations already done if the (classicallR Rwithout additional constraints) has already been
computed and show that as soon &ssmall (at least smaller than the number of variables$, fitat more costly

to compute the extended RUR than the classical one.



Chapter 8

Conclusion

In this thesis, two topics of the geometry of surfaces haventeddressed: the local estimation of differential
properties of a smooth surface from a discretization, aedcttimputation of the global structure of ridges of a
smooth surface.

Regarding the local estimations of differential quansitieur method uses local polynomial fitting and applies
to meshes and points clouds. The method is analyzed withsiatlata, and the asymptotic error estimates proved
are the best known so far. Although our estimation methodiosirthe smooth setting, hence does not define
discrete concepts, it enables the estimation of diffea¢qtiantities of any order. When the fitting is conducted
with an approximation scheme, we have experimentally afeskthat the method has a good behavior with noisy
data.

Another approach to the estimation problem from discreta taproposed by discrete differential geometry.
The idea is to define differential quantities on the discoéiect and develop a purely discrete theory parallel to the
smooth one. Then the problem of convergence of the discoetetijies for a sequence of discretization of a smooth
surface can be addressed. Results have been obtained farthel field, area, geodesics [MT02, HPWO05], mean
and gauss curvature with a variational formulation [PP88]yature tensor with a measure formulation [CSMO03].
All these contributions are based on meshes, and point datalare not considered. Convergence theorems are
only available for first or second order differential quéas.

As the interest for point cloud data is growing, a major issweild be to understand how far differential
geometry and statistical analysis can help. One has to méd@ccount irregular sampling density, anisotropy and
noise. For example, the influence of the neighborhood of atfioibe considered for the estimation is not well
understood [LP05]. An analysis of surface normal estinmationoisy point cloud data is proposed in [MNO3].
Voting techniques propagate informations in local neighbods to determine the reliability of each individual
information. Normal or curvature tensor voting are welligasd to identify noise and discontinuities, hence can
handle piecewise smooth objects [TM02].

Regarding the computation of global structures on surfaee$ocus on reporting the topology and a geometric
approximation of ridges. Two kinds of data have been andlyzemesh discretizing a smooth surface and a
parametric surface.

First, for a mesh discretizing a smooth surface, we presexirst certified algorithm for extracting the ridges
of the smooth surface with guaranteed topology. The algoriéxploits the patterns made by ridges and umbilics
on generic surfaces, and dissociates the processing nddliasnrand on the rest of the surface. The algorithm is
generic since the calculation of local differential quaes and the separation of umbilics are deferred to routines
that may depend from the type of smooth surface discretigeddmesh. For meshes approximating smooth sur-
faces —without access to any analytical information on thiéase, we provide heuristics. For meshes discretizing
smooth surfaces whose ridges are known, experiments skabwihheuristic algorithm recovers the correct topol-
ogy of ridges and umbilics. For meshes computed from scamsdoyface reconstruction algorithm, experiments
show that our algorithm recovers the ridges of state-ofatienethods (which use global fitting), while improving
running times of at least one order of magnitude and progidimore efficient filtering method.

Second, for parametric surfaces, we derive the impliciia¢igu of the singular curve encoding the ridges in
the parametric domain. We also analyze its singularities@ovide methods to identify the different types of
ridges. This formulation of the problem avoids the diffi@gtof the local orientation of the principal directions
of curvature. Hence it enables a global approach to ridgaetkbn on parametric surfaces. Finally, these results
on the structure of ridges are exploited for the special chgolynomial parametric surfaces. As classical com-
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puter algebra tools were unable to process our large eqsatie took advantage of the geometrical information
derived. We develop a specific algorithm based on rationighuiate representation of zero dimensional systems,
and root isolation of univariate polynomials. This strgteyoids the costly computations with algebraic num-
bers. Indeed, our method only requires computations onnpaofyals with rational coefficients. The algorithm
reports a topologically certified approximation of the edgand is the first one to achieve such a guarantee. Once
the topology is computed, a more precise geometrical ajpaiion can easily be obtained. Another algorithm
computes a certified plot at any fixed resolution : it is lesstlgdn terms of computations but does not provide
topological guarantees. The results for parametric sesface directly applicable to Bezier surfaces ubiquitous
in CAD. It is worth noting that the method developed for thenpuitation of the topology of the ridges can be
generalized for other algebraic curves, provided the nurabesal branches going through singularities can be
computed efficiently.

In conclusion, we give several efficient and certified algponis for the extraction of ridges. The methods apply
to discrete as well as smooth data and, different levelsrtification are available to satisfy the user requirements.

The interest for the analysis and the computation of globahgetric properties is not new. For example, many
contributions have been done so far for the visualizatiomeztor fields with topological informations [DH94,
Tri02]. Nevertheless, most of these contributions are eskird in Euclidean domains and not on surfaces. In
addition, only heuristics are proposed, but algorithmsjoling topological guarantees or accuracy analysis are
misssing.

In a discrete setting vector fields on surfaces are analyztddiscrete Hodge decomposition [PPO03], or
Morse-Smale decomposition [EHZ01] via thienulation of differentiability paradigmWhen one wants to study a
global differential property from a discretization, thesfistep is to analyze its stability and understand its generi
patterns. Such a method proved to be successful for the extgaction as well as for the medial axis. Reporting
the homotopy type of the medial axis has been addressed i@5|Gluided by results of stability [eRS04]. For
surfaces, the principal curvature foliations are of sddniarest, they may be used to quadrangulate the surface
and optimize approximation [ACSID3]. However, no certified methods are available to comphéedpology of
such foliations.

Given this panorama, there is an obvious need of cooperatbearch between mathematicians and computer
scientists to set a common framework able to address and podblems of applied geometry.
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Summary

This research work relates to the geometrical aspects dfenaitics and computer sciences.
It is motivated by applications such as computer aided desmgdical imaging, scientific com-
putations and simulations or also virtual reality and nméidia. More precisely, this thesis
proposes an analysis of some local as well as global topiteajeometry of surfaces.

From a local point of view, the problem is the estimation @& tiormal, the curvatures and
guantities of higher order from points sampled on a smoatiase. A method of estimation us-
ing polynomial fitting is studied: the properties of convamge are established and an algorithm

is proposed and implemented.

From a global point of view, we analyze the lines of extremevature on surfaces, called
ridges. For a surface discretized by a mesh, precise sagnptinditions are given, and if
they are fulfilled, an algorithm reporting a certified topgitmal approximation of the ridges
is developed. In the case of a parameterized surface, we stadwhe ridges have a global
implicit structure, and we characterize the singularitéthis curve in the parametric domain
with zero-dimensional systems. For a polynomial paranetion, these equations are also
polynomial, and specific methods of computer algebra areldped to compute the topology
of the singular curve of the ridges.

Résumé

Ce travail de recherche porte sur les aspects géométriggesatheématiques et de I'informa-
tique. Il est fortement motivé par des applications telles @ conception assistée par ordina-
teur, I'imagerie médicale, le calcul scientifique et la siation ou encore la réalité virtuelle et
le multimédia. Plus précisément, cette thése propose walgsende la géométrie des surfaces
tant d’'un point de vue local que global.

Tout d’abord, étant donnée une surface lisse connue viahanétionnage, nous étudions le
probléme de I'estimation des quantités différentiellesles: normale, courbures et quantités
d’ordre supérieur. Une méthode d’estimation utilisant just@ment polynomial est dévelop-
pée: les propriétés de convergence sont établies et unthlgerest proposé et implémente.

D’un point de vue global, nous analysons les lignes d’exér@wa courbure sur une sur-
face, appelées ridges. Pour le cas d'une surface dis@gisméun maillage, des conditions
précises d’échantillonnage sont données, et sous ceshiggast, un algorithme produisant une
approximation topologiquement certifiée des ridges estlogpé. Dans le cas d’'une surface
paramétrée, nous établissons que les ridges ont une s&ruictplicite globale, et étudions les
singularités de la courbe associée dans le domaine de paagaén termes de systemes zero-
dimensionnels. Pour une paramétrisation polynomialeggestions sont aussi polynomiales
et des méthodes spécifiques de calcul formel sont dévelsmués calculer la topologie de la
courbe singuliere des ridges.



