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Ingénieur de l’École Nationale Supérieure d’Ingénieurs Électriciens de Grenoble
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Abstract

This Ph.D. thesis deals with condition monitoring of mechanical failures in variable
speed induction motor drives by stator current analysis. Two effects of a mechanical
fault are considered: load torque oscillations and airgap eccentricity. The analyti-
cal modelling using the magnetomotive force and permeance wave approach leads
to two stator current models. The fault provokes amplitude or phase modulation
of the fundamental current component. Suitable detection methods are spectral
analysis and parameter estimation in steady state whereas time-frequency analysis
is required during transients. Instantaneous frequency estimation, the Wigner Dis-
tribution and the spectrogram are studied. Simulation and experimental results
validate the theoretical approach. Automatic extraction of fault indicators is pro-
posed for an unsupervised monitoring system. Moreover, load torque oscillations
and dynamic eccentricity can be discriminated with the proposed methods. The
feasibility of an on-line monitoring system is demonstrated by a DSP implementa-
tion of the time-frequency analysis including indicator extraction.
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Résumé

Ce travail de thèse traite de la détection et du diagnostic de défaillances mécaniques
par analyse du courant statorique dans les entrâınements électriques à base de
machine asynchrone. Deux effets d’un défaut mécanique, des oscillations de cou-
ple et une excentricité d’entrefer, sont supposés. La modélisation par approche
des ondes de forces magnétomotrices et de perméance conduit à deux modèles
analytiques du signal courant. La conséquence des défauts est soit une modu-
lation de phase, soit une modulation d’amplitude du signal courant statorique.
Ces phénomènes sont détectés par une analyse spectrale en régime permanent, ou
des méthodes temps fréquence en régime transitoire. Les méthodes étudiées sont
la fréquence instantanée, le spectrogramme et la représentation de Wigner-Ville.
L’estimation paramétrique d’indices de modulation a également été traitée. Des
résultats de simulation et expérimentaux permettent de valider les signatures et
d’extraire de façon automatique des indicateurs de défaut. De plus, une méthode
permettant la distinction des oscillations de couple d’une excentricité dynamique
est proposée. L’étude est complétée par une implémentation sur DSP des méthodes
temps-fréquence afin de démontrer la faisabilité d’une surveillance en ligne.
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Zusammenfassung

In dieser Arbeit wird die Entdeckung und Diagnose mechanischer Fehler in ge-
schwindigkeitsvariablen Asynchronantrieben mittels Statorstromanalyse untersucht.
Zwei Auswirkungen mechanischer Fehler auf die Asynchronmaschine werden vor-
rausgesetzt: kleine, periodische Drehmomentschwankungen und Luftspaltexzen-
trizität. Das daraus resultierende Luftspaltfeld wird mittels der Durchflutung und
des magnetischen Leitwerts analytisch und qualitativ berechnet. Der entsprechende
Statorstrom zeigt kleine Amplituden- oder Phasenmodulationen infolge der mech-
anischen Fehler. Geeignete Signalverarbeitungsmethoden im stationären Betrieb
sind Spektralanalyse und Parameterschätzung, wohingegen im geschwindigkeits-
variablen Betrieb Zeit-Frequenz-Analyse benötigt wird. Die Analyse der Momen-
tanfrequenz, Wigner-Ville-Verteilung und Spektrogramm werden behandelt. Die
vorgeschlagenen Methoden werden durch Simulationen und Versuchergebnisse va-
lidiert. Die Ergebnisse zeigen, daß dynamische Exzentrizität und Drehmoment-
schwankungen unterschieden werden können. Um eine automatische und per-
manente Überwachung des Antriebes zu realisieren, werden verschiedene Indika-
toren basierend auf Zeit-Frequenz-Analyse und Parameterschätzung vorgestellt.
Die praktische Umsetzbarkeit der Algorithmen wird durch DSP Implementierung
der Zeit-Frequenz-Analyse demonstriert.
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• Mechanische Fehler • Exzentrizität

• Drehmomentschwankungen • Zeit-Frequenz-Analyse

• Parameterschätzung • Wigner-Ville-Verteilung

• Momentanfrequenz

v





Acknowledgement -
Remerciements
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au sein de l’équipe Commande et Diagnostic des Systèmes Electriques (CoDiaSE)
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est à l’origine de mon intérêt pour le diagnostic et le traitement du signal.
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Résumé iii

Zusammenfassung v

Acknowledgement - Remerciements vii

List of Symbols xxv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Methodology and Outline . . . . . . . . . . . . . . . . . . . . . . . 5

2 Harmonic Field Analysis 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 MMF and Permeance Wave Approach . . . . . . . . . . . . . . . . 9

2.2.1 Simplifying Assumptions . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Airgap Flux Density . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Stator Current . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Healthy Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Magnetomotive Force Waves . . . . . . . . . . . . . . . . . . 13

2.3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1.2 MMF of a Single Turn . . . . . . . . . . . . . . . . 14
2.3.1.3 MMF of a Three-Phase Winding . . . . . . . . . . 15
2.3.1.4 Rotor MMF . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Airgap Permeance . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.1 Slotting . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2.2 Saturation . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.3 Airgap Flux Density . . . . . . . . . . . . . . . . . . . . . . 22
2.3.4 Stator Current . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.5 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Load Torque Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4.1 Mechanical Speed . . . . . . . . . . . . . . . . . . . . . . . . 29

xi



xii Contents

2.4.2 Rotor MMF . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Airgap Flux Density . . . . . . . . . . . . . . . . . . . . . . 32
2.4.4 Stator Current . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Airgap Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Airgap Length . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5.2 Airgap Permeance . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.3 Airgap Flux Density . . . . . . . . . . . . . . . . . . . . . . 39
2.5.4 Stator Current . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.5 Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Introduction to the Employed Signal Processing Methods 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Classes of Signals . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2.1.1 Deterministic Signals . . . . . . . . . . . . . . . . . 51
3.2.1.2 Random Signals . . . . . . . . . . . . . . . . . . . 52

3.2.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2.1 Deterministic Signals . . . . . . . . . . . . . . . . . 53
3.2.2.2 Random Signals . . . . . . . . . . . . . . . . . . . 54

3.2.3 Stationarity of Stochastic Processes . . . . . . . . . . . . . . 54
3.2.4 Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.5 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.6 Analytical Signal . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.6.1 Properties . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.6.2 Hilbert Transform . . . . . . . . . . . . . . . . . . 59
3.2.6.3 Hilbert Transform of Modulated Signals . . . . . . 60

3.3 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.2 Periodogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.3 Averaged Periodogram . . . . . . . . . . . . . . . . . . . . . 64
3.3.4 Window Functions . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Heisenberg-Gabor Uncertainty Relation . . . . . . . . . . . . 69
3.4.2 Instantaneous Frequency . . . . . . . . . . . . . . . . . . . . 70
3.4.3 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 71
3.4.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.4 Wigner Distribution . . . . . . . . . . . . . . . . . . . . . . 74
3.4.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . 74
3.4.4.2 Properties . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . 76

3.4.5 Smoothed Wigner Distributions . . . . . . . . . . . . . . . . 78
3.4.5.1 Definitions . . . . . . . . . . . . . . . . . . . . . . 78
3.4.5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . 79



Contents xiii

3.4.6 Discrete Wigner Distribution . . . . . . . . . . . . . . . . . 81

3.4.7 Time-Frequency vs. Time-Scale Analysis . . . . . . . . . . . 82

3.5 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5.2 Estimator Performance and Cramer-Rao Lower Bound . . . 85

3.5.3 Maximum Likelihood Estimation . . . . . . . . . . . . . . . 87

3.5.4 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 Fault Signatures with the Employed Signal Processing Methods 93

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.2.1 Stationary PM Signal . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Stationary AM Signal . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.4 Fault Indicator . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.3 Time-Frequency Analysis . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Instantaneous Frequency . . . . . . . . . . . . . . . . . . . . 103

4.3.1.1 Stationary PM Signal . . . . . . . . . . . . . . . . 103

4.3.1.2 Transient PM Signal . . . . . . . . . . . . . . . . . 104

4.3.1.3 AM Signal . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1.4 Simulation Results . . . . . . . . . . . . . . . . . . 105

4.3.1.5 Fault Indicator . . . . . . . . . . . . . . . . . . . . 108

4.3.2 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.3.2.1 Stationary PM and AM Signals . . . . . . . . . . . 111

4.3.2.2 Transient PM and AM Signals . . . . . . . . . . . 113

4.3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . 113

4.3.3 Wigner Distribution . . . . . . . . . . . . . . . . . . . . . . 114

4.3.3.1 Stationary PM Signal . . . . . . . . . . . . . . . . 114

4.3.3.2 Transient PM Signal . . . . . . . . . . . . . . . . . 119

4.3.3.3 Stationary AM Signal . . . . . . . . . . . . . . . . 120

4.3.3.4 Transient AM Signal . . . . . . . . . . . . . . . . . 121

4.3.3.5 Simulation Results . . . . . . . . . . . . . . . . . . 122

4.3.3.6 Fault Indicator . . . . . . . . . . . . . . . . . . . . 123

4.4 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.4.1 Stationary PM Signal . . . . . . . . . . . . . . . . . . . . . . 131

4.4.1.1 Choice of Signal Model . . . . . . . . . . . . . . . . 131

4.4.1.2 Cramer-Rao Lower Bounds . . . . . . . . . . . . . 132

4.4.1.3 Maximum Likelihood Estimation . . . . . . . . . . 133

4.4.1.4 Numerical Optimization . . . . . . . . . . . . . . . 135

4.4.1.5 Simulation Results . . . . . . . . . . . . . . . . . . 137

4.4.2 Stationary AM Signal . . . . . . . . . . . . . . . . . . . . . 138

4.4.2.1 Simulation Results . . . . . . . . . . . . . . . . . . 139

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



xiv Contents

5 Experimental Results 143
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2 Load Torque Oscillations . . . . . . . . . . . . . . . . . . . . . . . . 145

5.2.1 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . 145
5.2.2 Instantaneous Frequency - Steady State . . . . . . . . . . . 147
5.2.3 Instantaneous Frequency - Transient State . . . . . . . . . . 148
5.2.4 Pseudo Wigner Distribution - Steady State . . . . . . . . . . 153
5.2.5 Pseudo Wigner Distribution - Transient State . . . . . . . . 157
5.2.6 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 161

5.3 Load Unbalance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.1 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . 162
5.3.2 Instantaneous Frequency - Steady State . . . . . . . . . . . 164
5.3.3 Instantaneous Frequency - Transient State . . . . . . . . . . 166
5.3.4 Pseudo Wigner Distribution - Steady State . . . . . . . . . . 169
5.3.5 Pseudo Wigner Distribution - Transient State . . . . . . . . 171
5.3.6 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 173

5.4 Dynamic Eccentricity . . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.4.1 Spectral Estimation . . . . . . . . . . . . . . . . . . . . . . . 174
5.4.2 Instantaneous Frequency - Steady State . . . . . . . . . . . 176
5.4.3 Instantaneous Frequency - Transient State . . . . . . . . . . 177
5.4.4 Pseudo Wigner Distribution - Steady State . . . . . . . . . . 177
5.4.5 Pseudo Wigner Distribution - Transient State . . . . . . . . 180
5.4.6 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 182

5.5 On-line Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.5.1 Load Torque Oscillations - Steady State . . . . . . . . . . . 183
5.5.2 Load Unbalance - Steady State . . . . . . . . . . . . . . . . 185
5.5.3 Load Torque Oscillations - Transient State . . . . . . . . . . 186
5.5.4 Load Unbalance - Transient State . . . . . . . . . . . . . . . 186

5.6 Mechanical Fault Diagnosis . . . . . . . . . . . . . . . . . . . . . . 187
5.6.1 Steady State . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.6.2 Transient State . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6 Conclusions and Suggestions for Further Work 193

A Addition of Coil Voltages for PM and AM Cases 197
A.1 Addition of PM Coil Voltages . . . . . . . . . . . . . . . . . . . . . 197
A.2 Addition of AM Coil Voltages . . . . . . . . . . . . . . . . . . . . . 197

B Elements of the Fisher information matrix 201
B.1 Monocomponent PM signal . . . . . . . . . . . . . . . . . . . . . . 201

C Description of the Experimental Setup 203
C.1 General Description of the Test Rig . . . . . . . . . . . . . . . . . . 203
C.2 DSP Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.2.1 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . 205



Contents xv

C.2.2 Hilbert Filtering . . . . . . . . . . . . . . . . . . . . . . . . 206
C.2.3 Discrete Implementation of the WD . . . . . . . . . . . . . . 207

Bibliography 209





List of Figures

2.1 Calculation of airgap flux density by MMF and permeance wave
approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Illustration of Ampère’s circuital law for the calculation of the airgap
magnetic field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 MMF of a single coil . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Decomposition of an alternating stationary wave into two opposite

revolving waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Example of a two pole, two layer, fractional pitch winding. . . . . . 16
2.6 Two-layer winding equivalent to a squirrel cage rotor. . . . . . . . . 18
2.7 Example of spatial sampling of a space harmonic of order 11 by a

rotor with Nr=12 rotor bars. The resultant rotor wave has a pole
pair number of -1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Illustration of the stationary stator-fixed reference frame (S) and
the rotating rotor-related reference frame (R). . . . . . . . . . . . . 20

2.9 Airgap length gst(θ) and corresponding permeance Λst(θ) in the case
of stator slotting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Fundamental magnetic flux density B(θ), absolute value |B(θ)| of
the fundamental magnetic flux density and first saturation harmonic
of the airgap permeance Λsa(θ) for a given time instant. . . . . . . . 23

2.11 Torque-speed characteristic of an induction motor with asynchro-
nous torque dip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.12 Schematic representation of static, dynamic and mixed eccentricity.
× denotes the rotor geometrical center, ∗ the rotor rotational center. 35

2.13 General case of rotor displacement and nomenclature. . . . . . . . . 36
2.14 Normalized permeance harmonic magnitudes with respect to degree

of eccentricity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Classification of signals. . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Illustration of the effect of sampling on the Fourier transform with

different sampling frequencies. . . . . . . . . . . . . . . . . . . . . . 58
3.3 Illustration relative to the Bedrosian theorem. . . . . . . . . . . . . 61
3.4 Vector representation of an analytical signal z(t) in the complex plane. 62
3.5 Illustration of signal segmentation and calculation of the averaged

periodogram with K = 4. . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Periodogram and averaged periodogram (K = 4) of 256 samples of

a sinusoid (f = 0.2) with additive zero-mean white Gaussian noise. 66

xvii



xviii List of Figures

3.7 Power Spectral Densities of a 128-point sinusoidal signal (f = 0.2)
analyzed with common window functions. . . . . . . . . . . . . . . 67

3.8 Two different chirp signals and the magnitudes of their Fourier trans-
form. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Illustration of the instantaneous frequency of a chirp signal. . . . . 71
3.10 Illustration relative to the calculation of the short-time Fourier trans-

form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.11 Illustration of time and frequency resolution of the spectrogram

with respect to window length: The long window leads to good
frequency resolution and bad time localization whereas the short
window provokes bad frequency resolution but good localization in
time (∆f1 < ∆f2 , ∆t1 > ∆t2 ). . . . . . . . . . . . . . . . . . . . . 73

3.12 Spectrogram of 128 point sinusoidal signal with two different obser-
vation windows of length Nw = 63 and Nw = 7. . . . . . . . . . . . 73

3.13 Spectrogram of 128 point chirp signal with observation windows of
different length Nw where Nw = 23 is the optimal window length. . 74

3.14 Wigner Distribution of sinusoidal signal with constant frequency and
WD of linear chirp signal. . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 Wigner Distribution of sum of two sinusoidal signals with constant
frequency and WD of sinusoidal FM signal. . . . . . . . . . . . . . . 77

3.16 Pseudo Wigner Distribution of sinusoidal FM signal with smoothing
windows of different length Np. . . . . . . . . . . . . . . . . . . . . 79

3.17 Wigner Distribution, Pseudo Wigner Distribution and Smoothed
Pseudo Wigner Distribution of Dirac delta function. . . . . . . . . . 80

3.18 Pseudo Wigner Distribution and Smoothed Pseudo Wigner Distri-
bution of sum of two sinusoidal signals with constant frequency. . . 80

3.19 Illustration relative to the sampling of the Wigner Distribution. . . 82
3.20 Comparison of time and frequency resolution with the spectrogram

and time-scale analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.21 Realization of DC level embedded in white Gaussian noise. . . . . . 85
3.22 Illustration of the probability density function p(x[0];A) for different

parameter values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.23 Illustration of probability density function of biased and unbiased

estimator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.24 Example of likelihood function for parameter A after observation of

one single sample x[0]. . . . . . . . . . . . . . . . . . . . . . . . . . 88
3.25 Probability density functions of x[0] for hypothesis H0 and H1. . . . 89
3.26 Example of receiver operating characteristics (ROC). . . . . . . . . 91

4.1 Illustration of the Fourier transform magnitude of a PM stator cur-
rent signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Illustration of the Fourier transform magnitude of an AM stator
current signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3 Simulated PM and AM test signals. . . . . . . . . . . . . . . . . . . 99
4.4 Power Spectral Densities of simulated stator current PM signal an-

alyzed with common window functions. . . . . . . . . . . . . . . . . 100



List of Figures xix

4.5 Periodogram of PM and AM signal. . . . . . . . . . . . . . . . . . . 101

4.6 Calculation of the spectrum based fault indicator IPSD. . . . . . . . 102

4.7 Instantaneous frequency of simulated signals: signal without modu-
lation, PM and AM signal. . . . . . . . . . . . . . . . . . . . . . . . 105

4.8 Periodogram of instantaneous frequency of simulated PM and AM
signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.9 Instantaneous frequency of simulated transient PM and AM signals. 107

4.10 Spectrogram of instantaneous frequency of simulated transient PM
and AM signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.11 Calculation of the IF based fault indicator IIF1. . . . . . . . . . . . 108

4.12 Spectrogram amplitude A[n] and fault indicator IIF1 with respect
to time for different PM modulation indices β. . . . . . . . . . . . . 109

4.13 Comparison of indicators IIF1 and IIF2 with respect to different
frequency sweep rates βs of the supply frequency, modulation index
β = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.14 Calculation of the IF based fault indicator IIF2. . . . . . . . . . . . 110

4.15 Fault indicator IIF2 with respect to time for different PM modula-
tion indices β. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.16 Illustration relative to the spectrogram of a sinusoidal PM signal
with different window lengths. . . . . . . . . . . . . . . . . . . . . . 112

4.17 Spectrogram of simulated PM and AM signals with low modulation
frequency (fc = 0.02) and higher modulation indices (α = β = 0.5),
window length Nw = 63. . . . . . . . . . . . . . . . . . . . . . . . . 113

4.18 Spectrogram of simulated PM and AM stator current signals, fc =
0.125, α = β = 0.1, different window lengths. . . . . . . . . . . . . . 115

4.19 Spectrogram of simulated transient PM and AM stator current sig-
nals, α = β = 0.1, different window lengths. . . . . . . . . . . . . . 116

4.20 Illustration of the Wigner Distribution of a PM stator current signal
with ϕr = 0 and ϕβ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.21 Illustration of the Wigner Distribution of an AM stator current sig-
nal with ϕα = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.22 Wigner Distribution of simulated PM and AM signals with zoom on
interference structure. . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.23 Pseudo Wigner Distribution of simulated PM and AM signals with
zoom on interference structure. . . . . . . . . . . . . . . . . . . . . 123

4.24 Pseudo Wigner Distribution of simulated transient PM and AM sig-
nals with zoom on interference structure. . . . . . . . . . . . . . . . 124

4.25 Calculation of the WD based fault indicator IWD1. . . . . . . . . . 126

4.26 Fault indicator IWD1 with respect to time for different PM and AM
modulation indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.27 Calculation of the WD based fault indicator IWD2. . . . . . . . . . 128

4.28 Example of extracted sideband signals from the PWD of simulated
transient PM and AM stator current signals. . . . . . . . . . . . . . 129

4.29 Absolute value and phase of complex fault indicator IWD2 for sim-
ulated transient PM and AM stator current signals. . . . . . . . . . 130



xx List of Figures

4.30 Complex representation of fault indicator IWD2 for simulated tran-
sient PM and AM stator current signals with different modulation
indices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.31 Theoretical Cramer-Rao lower bounds for var{θ3} with respect to
data record length N and SNR. . . . . . . . . . . . . . . . . . . . . 133

4.32 Example of function |B(za,θ
′)| in logarithmic scale with θ5, θ6=const.

and typical data record za[n]. . . . . . . . . . . . . . . . . . . . . . 135

4.33 Scheme of the evolutionary optimization algorithm: (µ+λ)-evolution
strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.34 Simulation results: mean estimated PM index vs. N and mean
square estimation error together with CRLB vs. N , optimization
with (40+200)-evolution strategy. . . . . . . . . . . . . . . . . . . . 138

4.35 Simulation results: mean estimated PM index vs. N and mean
square estimation error together with CRLB vs. N , optimization
with fixed grid search. . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.36 Simulation results: mean estimated AM index vs. N and mean
square estimation error vs. N . . . . . . . . . . . . . . . . . . . . . . 140

5.1 Scheme of experimental setup . . . . . . . . . . . . . . . . . . . . . 145

5.2 PSD of stator current with load torque oscillation Γc = 0.14 Nm vs.
healthy case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3 Average fault indicator IPSD vs. load torque oscillation amplitude
Γc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4 Spectrogram of stator current IF with load torque oscillation Γc =
0.14 Nm vs. healthy case, 50% load. . . . . . . . . . . . . . . . . . . 148

5.5 Average fault indicator IIF2 vs. load torque oscillation amplitude Γc. 149

5.6 Example of transient stator current during motor startup and its
PWD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7 PSD of stator current during speed transient with load torque oscil-
lation Γc = 0.22 Nm vs. healthy case. . . . . . . . . . . . . . . . . . 150

5.8 Example of transient stator current IF with strong load torque os-
cillation (Γc = 0.5 Nm) vs. healthy case, 25% load. . . . . . . . . . 151

5.9 Spectrogram of transient stator current IF with load torque oscilla-
tion Γc = 0.22 Nm vs. healthy case, 10% load. . . . . . . . . . . . . 151

5.10 Fault indicator IIF2’(t) during motor startup with load torque os-
cillation Γc = 0.22 Nm vs. healthy case, 10% load. . . . . . . . . . . 152

5.11 Average fault indicator IIF2’ vs. load torque oscillation amplitude
Γc during speed transients. . . . . . . . . . . . . . . . . . . . . . . . 153

5.12 Spectrogram of measured torque and PWD of stator current with
appearing load torque oscillation Γc = 0.05 Nm, 25% load. . . . . . 153

5.13 Fault indicator IWD1(t) for data record with appearing load torque
oscillation Γc = 0.05 Nm, 25% load. . . . . . . . . . . . . . . . . . . 154

5.14 Absolute value and argument of fault indicator IWD2(t) for data
record with appearing load torque oscillation Γc = 0.05 Nm, 25%
load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155



List of Figures xxi

5.15 Average fault indicator IWD1 vs. load torque oscillation amplitude
Γc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.16 Complex representation of fault indicator IWD2 with load torque
oscillations, 10% and 50% load. . . . . . . . . . . . . . . . . . . . . 156

5.17 PWD of transient stator current in healthy case and with load torque
oscillation, 10% load. . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.18 Fault indicator IWD1’(t) during motor startup with load torque
oscillation Γc = 0.22 Nm vs. healthy case, 10% load. . . . . . . . . . 158

5.19 Absolute value and argument of fault indicator IWD2’(t) during
motor startup with load torque oscillation Γc = 0.22 Nm vs. healthy
case, 10% load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.20 Average fault indicator IWD1’ vs. load torque oscillation amplitude
Γc during speed transients. . . . . . . . . . . . . . . . . . . . . . . . 159

5.21 Complex representation of fault indicator IWD2’ with load torque
oscillations during speed transients, 10% and 50% load. . . . . . . . 160

5.22 Average PM and AM modulation indices with respect to load torque
oscillation amplitude Γc, Nb = 64. . . . . . . . . . . . . . . . . . . . 162

5.23 Experimental ROC for threshold based detection of load torque os-
cillations using the estimated PM modulation index, Nb = 64. . . . 163

5.24 PSD of stator current with load unbalance Γc = 0.04 Nm vs. healthy
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.25 Average fault indicator IPSD vs. theoretical load torque oscillation
amplitude Γc with load unbalance . . . . . . . . . . . . . . . . . . 165

5.26 Spectrogram of stator current IF in healthy case and with load un-
balance (Γc = 0.1 Nm), 50% load. . . . . . . . . . . . . . . . . . . . 166

5.27 Average fault indicator IIF2 vs. theoretical load torque oscillation
amplitude Γc with load unbalance. . . . . . . . . . . . . . . . . . . . 167

5.28 Fault indicator IIF2’(t) during motor startup with load unbalance
of theoretical Γc = 0.1 Nm. . . . . . . . . . . . . . . . . . . . . . . . 167

5.29 Average fault indicator IIF2’ vs. theoretical load torque oscillation
amplitude Γc with load unbalance during speed transients. . . . . . 168

5.30 PWD of stator current in healthy case and with load unbalance
(Γc = 0.1 Nm), 50% load. . . . . . . . . . . . . . . . . . . . . . . . 169

5.31 Average fault indicator IWD1 vs. theoretical load torque oscillation
amplitude Γc with load unbalance. . . . . . . . . . . . . . . . . . . . 170

5.32 Complex representation of fault indicator IWD2 with load unbal-
ance, 50% and 80% load. . . . . . . . . . . . . . . . . . . . . . . . . 170

5.33 Fault indicator IWD1’(t) during motor startup with load unbalance
of theoretical Γc = 0.1 Nm. . . . . . . . . . . . . . . . . . . . . . . . 171

5.34 Average fault indicator IWD1’ vs. theoretical load torque oscillation
amplitude Γc with load unbalance during speed transients. . . . . . 172

5.35 Absolute value and argument of fault indicator IWD2’(t) during
motor startup with load unbalance of theoretical Γc = 0.1 Nm. . . . 172

5.36 Complex representation of fault indicator IWD2’ with load unbal-
ance during speed transients, no load and 50% load. . . . . . . . . . 173



xxii List of Figures

5.37 Average PM and AM modulation indices with respect to theoretical
torque oscillation amplitude Γc with unbalance, Nb = 64. . . . . . . 175

5.38 Experimental ROC for threshold based detection of load unbalance
using the estimated PM modulation index, Nb = 64. . . . . . . . . . 175

5.39 PSD of measured torque with 40% dynamic eccentricity vs. healthy
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.40 PSD of stator current with 40% dynamic eccentricity vs. healthy case.176
5.41 Fault indicator IIF2’ with dynamic eccentricity during speed transient.177
5.42 PWD of stator current in healthy case and with dynamic eccentric-

ity, 10% load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.43 Complex representation of fault indicator IWD2 with dynamic ec-

centricity, 10% and 50% load. . . . . . . . . . . . . . . . . . . . . . 179
5.44 Fault indicator IWD1’ with dynamic eccentricity during motor startup,

10% load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.45 Absolute value and argument of fault indicator IWD2’(t) with dy-

namic eccentricity during motor startup. . . . . . . . . . . . . . . . 181
5.46 Fault profile for Γc and indicator IPSD response vs. data record. . . 183
5.47 Comparison of fault indicator IPSD with fs = 25 and 50 Hz. . . . . 184
5.48 PWD based indicators IWD1 and IWD2 vs. data records, fs = 50 Hz.184
5.49 Fault indicator IPSD with load unbalance . . . . . . . . . . . . . . 185
5.50 Fault indicators IWD1 and IWD2 with load unbalance . . . . . . . 185
5.51 Considered speed profile: Supply frequency fs vs. data records and

corresponding torque oscillation amplitude Γc. . . . . . . . . . . . . 187
5.52 Fault indicators IWD1’ and IWD2’ vs. data records during speed

transients with load torque oscillations. . . . . . . . . . . . . . . . . 188
5.53 Fault indicators IWD1’ and IWD2’ vs. data records during speed

transients with load unbalance of theoretical amplitude Γc = 0.1 Nm.188
5.54 Complex representation of fault indicator IWD2 with load unbalance

and 40% dynamic eccentricity, 50% average load. . . . . . . . . . . 189
5.55 Complex representation of fault indicator IWD2’ during speed tran-

sients with load unbalance and 40% dynamic eccentricity, 50% av-
erage load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 Photo of the test rig . . . . . . . . . . . . . . . . . . . . . . . . . . 204
C.2 Photo of induction motor and DC motor . . . . . . . . . . . . . . . 204
C.3 DC/DC converter for DC motor current control . . . . . . . . . . . 205
C.4 Photo of DSP board with ADSP-21161 . . . . . . . . . . . . . . . . 206
C.5 Preprocessing of stator current signal: lowpass filter H(f), decima-

tion and Hilbert filter Hi(f) . . . . . . . . . . . . . . . . . . . . . . 206



List of Tables

2.1 Synopsis of stator current frequency components . . . . . . . . . . . 47

4.1 Summarized performances of the discussed signal processing methods140

5.1 Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for load torque oscillations. . . . . . . . . . . . . . . . . . . 147

5.2 Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for load torque oscillations. . . . . . . . . . . . . . . . . . . 149

5.3 Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for load torque oscillations during speed transients. . . . . 152

5.4 Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for load torque oscillations. . . . . . . . . . . . . . . . . . . 155

5.5 Average fault indicator IWD2 for load torque oscillations. . . . . . . 156

5.6 Average fault indicator IWD1’ and standard deviation σIWD1′ for
load torque oscillations during speed transients. . . . . . . . . . . . 159

5.7 Average fault indicator IWD2’ for load torque oscillations during
speed transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.8 Average estimated PM modulation index E[θ̂3] (×10−3) and stan-
dard deviation σθ̂3

(×10−3) for load torque oscillations, Nb = 64. . . 161

5.9 Average estimated AM modulation index E[κ̂2] (×10−3) and stan-
dard deviation σκ̂2 (×10−3) for load torque oscillations, Nb = 64. . . 161

5.10 Measured oscillating torque with load unbalance under different load
conditions, fs = 50 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . 163

5.11 Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for load unbalance. . . . . . . . . . . . . . . . . . . . . . . 165

5.12 Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for load unbalance. . . . . . . . . . . . . . . . . . . . . . . 166

5.13 Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for load unbalance during speed transients. . . . . . . . . . 168

5.14 Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for load unbalance. . . . . . . . . . . . . . . . . . . . . . . 169

5.15 Average fault indicator IWD2 for load unbalance. . . . . . . . . . . 170

5.16 Average fault indicator IWD1’ and standard deviation σIWD1′ for
load unbalance during speed transients. . . . . . . . . . . . . . . . . 171

5.17 Average fault indicator IWD2’ for load torque oscillations during
speed transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xxiii



xxiv List of Tables

5.18 Average estimated PM modulation index E[θ̂3] (×10−3) and stan-
dard deviation σθ̂3

(×10−3) for load unbalance, Nb = 64. . . . . . . 174
5.19 Average estimated AM modulation index E[κ̂2] (×10−3) and stan-

dard deviation σκ̂2 (×10−3) for load torque oscillations, Nb = 64. . . 174
5.20 Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for 40% dynamic eccentricity. . . . . . . . . . . . . . . . . 176
5.21 Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for 40% dynamic eccentricity. . . . . . . . . . . . . . . . . 177
5.22 Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for dynamic eccentricity during speed transients. . . . . . . 177
5.23 Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for 40% dynamic eccentricity. . . . . . . . . . . . . . . . . 178
5.24 Average fault indicator IWD2 for dynamic eccentricity. . . . . . . . 179
5.25 Average fault indicator IWD1’ (×10−3) and standard deviation σIWD1′

(×10−3) for dynamic eccentricity during speed transients. . . . . . . 180
5.26 Average fault indicator IWD2’ for dynamic eccentricity during speed

transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.27 Average estimated PM modulation index E[θ̂3] (×10−3) and stan-

dard deviation σθ̂3
(×10−3) for dynamic eccentricity, Nb = 64. . . . 182

5.28 Average estimated AM modulation index E[κ̂2] (×10−3) and stan-
dard deviation σκ̂2 (×10−3) for dynamic eccentricity, Nb = 64. . . . 182

5.29 Average estimated PM and AM modulation indices (×10−3) for
some cases of load torque oscillation, load unbalance and dynamic
eccentricity, Nb = 64. . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.1 Characteristics of induction and DC motor . . . . . . . . . . . . . . 204



List of Symbols

Γ torque
Λ airgap permeance
Φ magnetic flux
Ωr pulsation of rotor flux density waves
Ωs pulsation of stator flux density waves

α amplitude modulation index
αs, αc initial frequencies of supply and fault pulsation during linear transients
β, β′ phase modulation index
βs, βc frequency sweep rates of supply and fault pulsation during linear transients
δ(t) Dirac delta function
δd relative degree of dynamic eccentricity
δs relative degree of static eccentricity
θ circumference angle in the stationary reference frame
θ′ circumference angle in the rotating rotor reference frame
θd angle between two adjacent coils of a group of coils or a phase winding
θp coil pitch, angle between two conductors of a coil
θr rotor angular position
µ0 magnetic permeability of free space
µr relative magnetic permeability
µs time harmonic order of stator MMF
νr space harmonic order of rotor MMF
νs space harmonic order of stator MMF
σ2 variance
ϕ a general phase angle
ωc fault characteristic pulsation
ωr rotor rotational angular frequency
ωrt pulsation of rotor currents
ωs pulsation of the fundamental supply voltage

~A magnetic vector potential
B magnetic flux density (or magnetic induction)
Br rotor contribution to the airgap magnetic flux density
Bs stator contribution to the airgap magnetic flux density
E energy
Fr rotor magnetomotive force

xxv



xxvi List of Symbols

Fs stator magnetomotive force
Fw

x (t, f) short time Fourier transform of signal x with window w
H magnetic field (or magnetic field intensity)
I1 fundamental stator current amplitude in AM model
IF(t) instantaneous frequency
IIF instantaneous frequency based fault indicator
IPSD spectrum based fault indicator
IWD Wigner Distribution based fault indicator
Irt amplitude of rotor-related current component in PM model
Ist amplitude of stator-related current component in PM model
J inertia
Jk(x) k-th order Bessel function of the first kind
Kdν winding distribution factor
Kpν pitch factor
Kx(t, τ) Wigner Distribution kernel
Nr number of rotor bars or rotor slots
Ns number of stator slots
P power
PD probability of detection
PF probability of false alarm

P̂per(f) periodogram
Pxx(f) power spectral density
PWx(t, f) Pseudo Wigner Distribution of signal x
R0 mean airgap radius
Rr outer radius of the rotor
Rs inner radius of the stator
Rxy(τ) cross-correlation function
Sw

x (t, f) spectrogram of signal x with window w
SPWx(t, f) Smoothed Pseudo Wigner Distribution of signal x
Vi induced coil voltage
Wmag magnetic field energy
Wx(t, f) Wigner Distribution of signal x

f frequency
fc fault characteristic freqauency
fr rotor rotational frequency
fs supply frequency, sampling frequency in section 3.2.5
g airgap length
g0 mean airgap length
iam amplitude modulated stator current
ipm phase modulated stator current
js current density along the stator periphery
kc Carter factor
lm length of the magnetic circuit of the motor
mr pole pair number of rotor flux density waves
ms pole pair number of stator flux density waves



List of Symbols xxvii

p motor pole pair number
p(x; θ) probability density function of x with respect to parameter vector θ
s slip

<{} real part of a complex
={} imaginary part of a complex
E {} mathematical expectation
F {} Fourier transform
H{} Hilbert transform
var {} variance





Chapter 1

Introduction

1.1 Background

In a wide variety of industrial applications, an increasing demand exists to improve
the reliability and availability of electrical systems. Popular examples include sys-
tems in aircraft, electric railway traction, power plant cooling or industrial pro-
duction lines. A sudden failure of a system in these examples may lead to cost
expensive downtime, damage to surrounding equipment or even danger to humans.

Monitoring and failure detection improves the reliability and availability of an
existing system. Since various failures degrade relatively slowly, there is potential
for fault detection at an early stage. This avoids the sudden, total system failure
which can have serious consequences. It is important in the context of condition
monitoring to distinguish fault detection from fault diagnosis. Fault detection is the
decision if a fault is present or not while fault diagnosis provides more information
about the nature or localization of the failure. This information can be used to
minimize downtime and to schedule adequate maintenance action.

Electric machines are a key element in many electrical systems. Amongst all
types of electric motors, induction motors are a frequent example due to their
simplicity of construction, robustness and high efficiency. A growing number of
induction motors operates in variable speed drives. In this case, the motor is
no more directly connected to the power grid but supplied by an inverter. The
inverter provides voltage of variable amplitude and frequency in order to vary the
mechanical speed.

Common failures occurring in electrical drives can be classified as follows:

Electrical faults: stator winding short circuit, broken rotor bar, broken end-ring,
inverter failure

Mechanical faults: rotor eccentricity, bearing faults, shaft misalignment, load
faults: unbalance, gearbox fault or general failure in the load part of the
drive

A reliability survey on large electric motors (>200 HP) revealed that most failures
are due to bearing (≈ 44%) and winding faults (≈ 26%) [IEE85] [Eng95]. Similar
results were obtained in an EPRI (Electric Power Research Institute) sponsored
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survey [Alb87]. However, these studies concerned only the electric motor and not
the whole drive. The present work investigates the detection of mechanical failures
in the drive such as load unbalance, rotor eccentricity or load failures.

Generally, two approaches to monitoring and fault detection in electrical drives
are distinguished:

Model based approach: A dynamic model is used in parallel to the real process.
Using identical inputs and comparing the model outputs to those of the
real process, residuals for fault detection are generated. Alternatively, the
numerical model parameters can be identified using common inputs and the
process outputs. The parameter values then contain information on possible
faults.

Signal analysis approach: No dynamic model of the real process is required.
The fault detection strategy is entirely based on measured physical quantities.
They are analyzed to extract fault signatures for detection and diagnosis.

Disadvantages of the model based approach are the need for an accurate dynamic
model and continuous simulation of the latter. Simple and fast models such as
space vector models may not be very accurate for monitoring purposes whereas
detailed models e.g. based on finite elements take too much computation time.

1.2 Problem Description

This work addresses the problem of condition monitoring of mechanical faults in
variable speed induction motor drives. A signal based approach is chosen i.e. the
fault detection and diagnosis is only based on processing and analysis of measured
signals.

A common approach for monitoring mechanical failures is vibration monitoring.
Due to the nature of mechanical faults, their effect is most straightforward on the
vibrations of the affected component. Since vibrations lead to acoustic noise, noise
monitoring is also a possible approach. However, these methods are expensive
since they require costly additional transducers. Their use only makes sense in
case of large machines or highly critical applications. A cost effective alternative is
stator current based monitoring since a current measurement is easy to implement.
Moreover, current measurements are already available in many drives for control
or protection purposes. However, the effects of mechanical failures on the motor
stator current are complex to analyze. Therefore, stator current based monitoring
is undoubtedly more difficult than vibration monitoring.

Another advantage of current based monitoring over vibration analysis is the
limited number of necessary sensors. An electrical drive can be a complex and
extended mechanical systems. For complete monitoring, a large number of vibra-
tion transducers must be placed on the different system components that are likely
to fail e.g. bearings, gearboxes, stator frame, load. However, a severe mechani-
cal problem in any component influences necessarily the electric machine through
load torque and shaft speed. This signifies that the motor can be considered as a
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type of intermediate transducer where various fault effects converge together. This
strongly limits the number of necessary sensors. However, since numerous fault
effects come together, fault diagnosis and discrimination becomes more difficult or
is sometimes even impossible.

A literature survey showed a lack of analytical models that account for the
mechanical fault effect on the stator current. Most authors simply give expressions
of additional frequencies but no precise stator current signal model. In various
works, numerical machine models accounting for the fault are used. However, they
do not provide analytical stator current expressions which are important for the
choice of suitable signal analysis and detection strategies.

The most widely used method for stator current processing in this context is
spectrum estimation. In general, the stator current power spectral density is esti-
mated using Fourier transform based techniques such as the periodogram. These
methods require stationary signals i.e. they are inappropriate when frequencies
vary with respect to time such as during speed transients. Advanced methods for
non-stationary signal analysis are needed.

1.3 Literature Survey

In this section, some examples of general literature related to stator current based
condition monitoring are presented. More thorough discussions can be found in
the corresponding sections.

An abundant literature dealing with condition monitoring of electrical machines
exists. Tavner described in a textbook [Tav87] different monitoring strategies re-
lying on the measurement of electrical, vibrational or chemical quantities. Stator
current monitoring is only shortly mentioned. Vas [Vas93] dealt mainly with ma-
chine parameter estimation but included a section on condition monitoring of faults
such as airgap eccentricity, rotor asymmetry, lamination insulation failure, inter-
turn short circuits.

Examples of textbooks dealing with vibration monitoring of electric machines
are [Tim89] [Mor92] [Big94]. They include description of rotating machines, differ-
ent vibration sources, information on vibration measurement and condition moni-
toring.

A general review on condition monitoring of electrical equipment such as gen-
erators, transformers and motors is the work of Han [Han03]. Stator current based
condition monitoring is considered in [Nan99] [Ben00] [Ben03]. Nandi [Nan99] re-
views various motor faults and their stator current signatures. Expressions for
additional frequencies depending on the fault type are given. Benbouzid [Ben00]
[Ben03] also deals with stator current signature analysis but emphasizes on pos-
sible signal processing methods. Instantaneous power FFT, bispectrum analysis,
wavelet analysis and high resolution spectral analysis are discussed in addition to
classical spectral estimation.

Among various failures in induction motors, rotor asymmetry faults such as
broken rotor bars or broken end rings received a lot of attention. Deleroi studied
the influence of broken bars on the airgap magnetic field [Del84]. Kliman used
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stator current spectrum analysis to detect broken rotor bars [Kli88]. A more recent
work on modeling and detection of broken bars was carried out by [Did04].

Airgap eccentricity received also considerable attention. Cameron [Cam86]
modelled the effect of static and dynamic eccentricity on the airgap field. Results
with vibration and stator current measurements are presented. A more detailed
study was conducted by Dorrell [Dor97] who presented experimental results with
varying degrees of static and dynamic eccentricity under different load conditions.
Nandi [Nan01] [Nan02] focused mainly on sidebands of the rotor slot harmonics for
eccentricity detection. An alternative approach is the analysis of the stator current
Park’s vector, proposed by Cardoso in [Car93].

Compared to other failures, bearing faults received relatively little attention.
This is certainly related to the difficulty of detecting them by stator current moni-
toring. Causes for bearing failures were analyzed and classified by Bonnett [Bon93].
A first work to detect bearing damage by current analysis was published by Schoen
[Sch95b]. Characteristic bearing vibration frequencies were detected in the stator
current spectrum as a consequence of single point defects. In contrast to sin-
gle point defects, non-localized bearing faults were produced experimentally in
[Sta04b] and their effect on vibration and current is studied. Stack [Sta04a] pro-
posed a current based bearing fault detection scheme working with autoregressive
models.

Load unbalance and shaft misalignment were extensively studied by Obaid
[Oba03c] [Oba00]. The author used sidebands in the stator current spectrum for
fault detection and studied the influence of fault severity and load on the sideband
amplitudes.

The effect of time-varying load torques on the stator current spectrum was
investigated by Schoen [Sch95a]. These effects were undesirable in the consid-
ered application of rotor fault detection and therefore, a method for removal was
proposed. Legowski [Leg96] also examined the effect of time varying torque on
the motor stator current and the instantaneous power spectrum. The time vary-
ing torque was supposed to result from mechanical abnormalities in the drive.
Salles [Sal97] attempted the use of time-frequency methods such as instantaneous
frequency and the Wigner Distribution for detection of stepped or periodic load
torques. However, no theoretical study was presented and the obtained results do
not encourage further use of the proposed approach.

Previous works in our laboratory were mainly focussed on modeling. Devan-
neaux [Dev02] established a detailed numerical induction motor model for monitor-
ing and diagnosis purposes. The model is based on magnetically coupled electric
circuit and allows the simulation of various failures such as inter-turn stator short
circuits, broken rotor bars and eccentricity. However, the model did not yield sat-
isfactory simulation results for precise signal analysis in the context of mechanical
failures. The model was then adapted by Abdallah Ali [Ali06] for stator short
circuit simulation in permanent magnet synchronous motors. Ben Attia [Att03]
modeled gearbox failures and attempted a detection by stator current spectrum
analysis.
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1.4 Methodology and Outline

The organization of the present work is described in the following. Since there is
a lack of adequate stator current models accounting for mechanical faults, chapter
2 entitled Harmonic Field Analysis proposes two analytical models. They are es-
tablished using the classic magnetomotive force and permeance wave approach for
calculation of the airgap harmonic field in electric machines. First, basic principles
of this approach are discussed followed by a study of the healthy machine. The first
considered fault effect are periodic load torque variations leading to shaft speed
oscillations. The load torque oscillation may result from various mechanical fail-
ures such as load unbalance, shaft misalignment or a general load fault. Secondly,
airgap eccentricity is studied as it may be a consequence of mechanical failures
as well. The last section of this chapter is dedicated to torque oscillations result-
ing from eccentricity. Finally, two analytical stator current models with different
modulations are obtained.

Most people dealing with electric machines and condition monitoring have a
traditional training background as electric power engineers. However, the chosen
condition monitoring approach requires not only a thorough knowledge of the ob-
ject but also of suitable signal processing methods. Therefore, chapter 3 entitled
Introduction to the Employed Signal Processing Methods reviews important con-
cepts of signal processing such as Fourier transform, analytical signal or spectral
estimation. In the following, various time-frequency methods for non-stationary
signal analysis are presented. Since the modeling leads to stator current expres-
sions with two different modulation types, amplitude and phase modulation, signal
parameter estimation is discussed as alternative to non-parametric methods.

The following part of the work, chapter 4 entitled Fault Signatures with the
Employed Signal Processing Methods, relates the two preceding chapters. The
presented signal processing methods are applied to the analytical stator current
models. Theoretical fault signatures with every method are obtained and directly
validated with simulated synthesized signals. The knowledge about the signatures
allows the extraction of suitable fault indicators which are quantities indicating
the presence of a fault and, if possible, its severity. Tests with indicators in steady
state and during transients complete the chapter.

Finally, chapter 5 entitled Experimental Results corroborates the preceding the-
oretical and simulation results. A particular experimental setup with an induction
motor drive is used to study load torque oscillations, load unbalance and dynamic
eccentricity. In a first time, stator current signals are measured and processed
off-line. The theoretically predicted signatures could be observed and the fault
indicators validated. To demonstrate the feasibility of permanent and automatic
on-line monitoring, a time-frequency method is successfully implemented on a DSP
board. The last section deals with mechanical fault diagnosis. Previously obtained
results are compared to evaluate the signal processing method performances for
fault discrimination.

The conclusion in chapter 6 summarizes important aspects of this work and
proposes directions for further research.
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2.1 Introduction

This chapter analyzes theoretically the effects of mechanical faults on the airgap
magnetic field and the stator current of induction machines. The result is an
analytical stator current model that accounts for the mechanical fault. Then,
these analytical expressions allow for suitable choices of signal processing methods
for fault detection and diagnosis.

Mechanical faults are supposed to have two substantial effects on the induction
machine:

Load torque oscillations: Load unbalance, shaft misalignment, gearbox faults
or other failures in the load part of the drive produce periodic variations of
the load torque or the inertia. These variations often relate to the mechanical
rotor position. Load torque oscillations thus give rise to mechanical speed
oscillations.

Airgap eccentricity: Bearing wear, misalignment or a bent shaft may lead to a
non-uniform airgap.

The consequences of these phenomena are studied in theory using the tradi-
tional magnetomotive force (MMF) and permeance wave approach for calculation
of the airgap magnetic flux density [Hel77] [Yan81] [Tim89]. Major advantages of
this analytical approach are the simplicity and the obvious relationship to physical
phenomena. However, this method cannot provide the exact harmonic amplitudes
of the airgap magnetic field. Furthermore, the coupling phenomena between rotor
and stator are difficult to take into account. Nevertheless, since the purpose of
this chapter is to provide a qualitative stator current signal model valid for any
induction motor, the approach is suitable.

Another approach would have been the use of finite element programs for a de-
tailed computation of the airgap magnetic flux density. This numerical approach
has two major drawbacks apart from time-intensive calculations. First, the model
would only be valid for one particular machine with its winding distribution, rotor
geometry, etc. which leads to a loss of generality. Secondly, the finite element sim-
ulation only provides a stator current waveform and not an analytical expression.
The obtained current waveform still has to be analyzed using a particular signal
processing method. The a priori choice of the analysis method may influence the
results. For instance, a simple spectral analysis cannot clearly distinguish ampli-
tude and frequency modulations under particular conditions. The analytical stator
current expression on the other hand can directly provide this information.
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The present chapter is organized as follows: First, a general description of the
MMF and permeance wave approach is given. The method is then applied in 2.3
to the airgap field calculation in case of a healthy machine. This includes the
derivation of the stator current and the electromagnetic output torque. Section
2.4 studies in a similar way the effect of an oscillating load torque on the airgap
field and the stator current. Rotor eccentricity is discussed in 2.5 according to the
same methodology.

2.2 MMF and Permeance Wave Approach

The MMF and permeance wave approach is used to calculate the magnetic flux
density in the airgap of electrical machines. As mentioned previously, this ap-
proach gives only an approximation to the true flux density but it is sufficient in
many cases. Oberretl used the method to calculate harmonic fields in a squirrel
cage induction motor in a detailed way including higher order armature reactions
[Obe65]. It is also commonly used in noise and vibration analysis of electrical
motors [Yan81] [Tim89] or for identifying the consequences of faults that alter the
airgap geometry e.g. airgap eccentricity [Cam86] [Hel77] or bearing faults [Blö04].
A schematic representation of the MMF and permeance wave approach is shown
in Fig. 2.1. In the following, this approach is used to derive the airgap flux density.
Subsequently, other relevant quantities for condition monitoring can be deduced
from the flux density such as the non-supply frequency components in the stator
current, the electromagnetic torque and radial forces acting on the stator frame
which are one source of vibrations.

2.2.1 Simplifying Assumptions

The simplifying assumptions of the MMF and permeance wave approach are the
following:

• The magnetic field calculations are based on the simplified Maxwell equations
used in quasi-stationary conditions [Fey65b]. This means that the time-
varying term ∂E/∂t is neglected. Only the contributions of current densities
to the magnetic field are accounted for, the contributions from the time-
varying electric field are neglected. These general assumptions hold because
the time variations are relatively slow since electric machines are supplied
by alternating currents of low frequencies. Consequently, the studied object
is of small dimensions compared to the corresponding wavelength which is
about 6000 km with 50 Hz.

• The relative permeability of iron is assumed infinite (µr = ∞), saturation
effects are neglected.

• The magnetic fields are only studied in two dimensions i.e. the machine is
supposed to be part of a machine with infinite length. Boundary and end
effects are not accounted for.
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Figure 2.1: Calculation of airgap flux density by MMF and permeance wave
approach.

• Only the radial airgap field is considered and it does not vary with respect
to the radius r1, i.e. the airgap is supposed small compared to the machine
diameter.

These are the traditional assumptions made for the calculation of the airgap
field in steady state i.e. at constant speed and supply frequency [Hel77]. How-
ever, variable speed drives are considered in this work where the supply frequency
varies. Nevertheless, the steady state magnetic field calculations are also valid in
transient state when the speed and supply frequency transients are considered slow
compared to the electrical time constants in the machine. These time constants
concern the relation between applied voltages and resulting currents and they are
generally determined by the ratio of inductance to resistance. If these time con-
stants are small, the current resulting from an applied voltage can be considered
instantaneous.

Similarly, if the supply frequency variations are slow compared to the electrical
time constants, the supply frequency and speed can be considered quasi-stationary
for the magnetic field calculations. Often, the supply frequency variations are
related to the mechanical time constant of the drive i.e. the ratio of inertia to the
friction coefficient. It can therefore be concluded that the following calculations
are valid in transient state if the speed and frequency transients are slow compared
to the electrical transients.

1Consequently, div ~B = 0 is not respected.
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2.2.2 Airgap Flux Density

Assuming that the motor is supplied by a symmetric and sinusoidal three phase
voltage system, sinusoidal currents will flow in the stator windings. Their ampli-
tude depends on the winding impedance if the rotor influence is neglected in a first
approximation. The structure of the three-phase winding leads to a rotating MMF
wave (see following section for exact definitions). The currents are distributed in
discrete slots along the circumference angle θ. Thus, they give rise to a stepped
MMF wave that can be considered as the superposition of a fundamental MMF
wave and its space harmonics.

The airgap geometry influences the magnetic flux density through the airgap
length g. For simplification, it is often considered constant. However, rotor and
stator slotting and eccentricity lead to airgap length variations with respect to θ
and the rotor position θr. The airgap permeance Λ(θ, t), proportional to the inverse
of the airgap length g(θ, t), is therefore a combination of rotating waves.

The airgap magnetic flux density is obtained by multiplying the MMF and
permeance waves. The rotating flux density waves Bs(θ, t) induce voltages in the
squirrel cage rotor that drive the rotor currents. This phenomenon is termed
the primary armature reaction. The rotor currents themselves produce rotating
rotor MMF waves. These interact with the airgap permeance and lead to a new
set of flux density waves Br(θ, t). These rotor-related flux density waves react
on the corresponding stator-related waves of equal order. This is the secondary
armature reaction. Other rotor-related waves can induce voltages of other than
supply frequency in the stator windings. They drive currents of other than supply
frequency for which the stator appears short-circuited. These currents are only
limited by the stator and line impedance. New MMF waves, generated by the
non-supply frequency currents, interact with the airgap permeance and produce
consequently additional flux density waves that induce currents in the rotor, etc.
The process continues until the steady-state flux distribution is established. For
simplification, mostly the primary armature reaction will be considered in the
following.

2.2.3 Stator Current

Stator current components at non-supply frequency are interesting for condition
monitoring purposes. The rotating airgap flux density waves B(θ, t) lead to a time-
varying flux Φ(t) in a phase winding. This flux can either be calculated by surface
integration of the flux density B(θ, t) or by application of Stoke’s theorem and

calculation of the line integral of the magnetic vector potential ~A:

Φ(t) =

∫∫
(S)

~B(θ, t) d~S =

∮
l

~A d~l (2.1)

S denotes the surface limited by the turns of the winding, ~A is the vector potential
defined by ~B = rot ~A and ~l is the closed loop delimiting the surface S i.e. ~l
corresponds to the geometrical location of the conductors in a phase. According
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to the simplifying assumptions, the vector potential has only a component in the
axial z-direction. Hence, the integration can only be performed along each slot
where a conductor of the corresponding winding is present.

The flux derivation yields the induced phase voltage that drives corresponding
currents. If the induced voltage frequency is different from the supply frequencies,
the stator appears short-circuited and the currents are only limited by the stator
winding and line impedance Zs. Then, the corresponding stator current is(t) is

is(t) =
1

Zs

d

dt
Φ(t) (2.2)

The stator current components at non-supply frequency are therefore related to
the airgap flux density by integration with respect to the angle θ, followed by time
derivation. These operations do not modify the frequency of existing components.
Thus, it can be concluded that the stator current contains the same frequencies as
the airgap flux density.

2.2.4 Torque

The torque Γ acting between the rotor and the stator can be calculated according
to the principle of virtual work [Fey65a] by considering the change in magnetic
field energy Wmag with respect to the rotor angular position θr [Hel77]:

Γ = −∂Wmag

∂θr

(2.3)

Note that since Wmag is a function of several variables, all of them except θr are
supposed constant with this approach. With the simplifying assumptions, all the
magnetic energy is concentrated in the airgap. Supposing a smooth airgap, the
magnetic energy Wmag is:

Wmag =
1

2µ0

lmR0g0

2π∫
0

B2(θ, t) dθ (2.4)

where lm denotes the magnetic circuit length, R0 the mean airgap radius and g0

the mean airgap length.
The airgap flux density B(θ, t) can be considered as the sum of a stator and

a rotor related component, denoted Bs(θ, t) and Br(θ, t). Furthermore, the stator
flux density waves do not depend on θr, which leads finally to:

Γ = − 1

µ0

lmR0g0

2π∫
0

[Bs(θ, t) +Br(θ, t)]
∂

∂θr

Br(θ, t) dθ (2.5)

This expression shows that the torque is generated from interactions of the stator
flux density waves and the derivatives of the rotor flux density waves on the one
hand, on the other hand from interactions of rotor flux density waves with the
derivatives of the rotor flux density waves.
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θ
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js(θ)

g0
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Figure 2.2: Illustration of Ampère’s circuital law for the calculation of the airgap
magnetic field.

2.3 Healthy Machine

2.3.1 Magnetomotive Force Waves

2.3.1.1 Definition

The magnetic field intensity ~H in the airgap of the machine can be determined using
Ampère’s circuital law. Considering a current density js(θ) along the periphery of
the airgap, the expression becomes:∮

l

~H d~l =

∫
js(θ) r dθ (2.6)

where l is a closed loop over the stator, airgap and the rotor and r = Rs the inner
radius of the stator (see Fig. 2.2).

Assuming the infinite relative permeability of iron, the stator current density
magnetizes only the airgap. In the first instance, a smooth airgap of length g0 is
supposed. The radial airgap field Hr(θ) is therefore given by [Hel77]:

g0Hr(θ) =

θ∫
0

js(θ) r dθ + g0Hr(0) (2.7)

where g0Hr(0) is an integration constant ensuring that no unipolar flux crosses the
airgap:

2π∫
0

Hr(θ) r dθ = 0 (2.8)

For the purpose of separating the effects of the airgap geometry and the winding
distribution on the airgap magnetic field and flux density, the magnetomotive force
(MMF) distribution F (θ) is commonly used. It is defined as the integral of the
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Figure 2.3: MMF of a single turn carrying a current i.

current distribution js(θ):

F (θ) =

θ∫
0

js(θ) r dθ + F0 (2.9)

where F0 is chosen such that
∫ 2π

0
F (θ) r dθ = 0.

2.3.1.2 MMF of a Single Turn

The MMF F1(θ) of a single turn consisting of two conductors spaced by the angle
θp is displayed in Fig. 2.3 [Alg95] [Hel77]. A direct current i flowing in this turn
provokes a uniform magnetic field over the turn under the assumption of a smooth
airgap. The produced flux returns uniformly over the airgap i.e. the area of the
two rectangles in Fig. 2.3 is the same. Therefore, the MMF has also a rectangular
shape and is directly proportional to the magnetic field. Note that the currents
are supposed to be concentrated in infinitely small slots i.e. they are distributed
as Dirac generalized functions along the circumference.

This rectangular MMF waveform can be decomposed into a Fourier series as
follows:

F1(θ) =
2i

π

∞∑
νs=1

1

νs

sin

(
νsθp

2

)
cos (νsθ) (2.10)

Note that F1(θ) contains space harmonics of all ranks νs. Only if the turn had a full
pitch (θp = π), the even harmonics would disappear. The fact that the harmonic
amplitudes depend on the turn pitch θp leads to the definition of the pitch factor
Kpνs for a space harmonic of rank νs [Hel77]:

Kpνs = sin

(
νs
θp

2

)
(2.11)

If the turn is carrying alternating current instead of direct current, i is sim-
ply replaced in equation (2.10) by i(t). Supposing i(t) = I cos(ωst), a station-
ary alternating wave is obtained. With the trigonometric identity cosα cos β =
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θ

ωst−ωst

cosωst1 cos θcosωst cos θ
for t = 0

1
2
cos(θ − ωst1)

1
2
cos(θ + ωst1)

Figure 2.4: Decomposition of an alternating stationary wave into two opposite
revolving waves.

1
2
[cos(α− β) + cos(α+ β)], (2.10) becomes:

F1(θ, t) =
I

π

∞∑
νs=1

1

νs

Kpνs [cos (νsθ − ωst) + cos (νsθ + ωst)] (2.12)

This relation shows that a stationary alternating MMF wave can be decomposed
into a forward and a backward revolving wave of equal amplitude [Alg95]. This is
graphically illustrated in Fig. 2.4 for a stationary sinusoidal wave cosωst cos θ at
time instants t = 0 and t = t1.

2.3.1.3 MMF of a Three-Phase Winding

First, the MMF of one phase winding is studied. The MMF of a three-phase
winding can then be obtained by addition of the MMFs of the three phases.

Consider a phase winding which is formed by a group of N coils, each of them
of pitch θp and carrying the same current i. The angle between two adjacent coils
is denoted θd. The MMF F1ph(θ) of this group of coils is then obtained by addition
of the MMFs of N single coils [Hel77]:

F1ph(θ) =
2Ni

π

∞∑
νs=1

1

νs

KpνsKdνs cos (νsθ) (2.13)

where Kdνs denotes the winding distribution factor, defined as:

Kdνs =
sin

(
νsN

θd

2

)
N sin

(
νs

θd

2

) (2.14)

Assuming a motor with one pole pair p = 1, a conductor at θ = θi of a
phase winding always has an opposite conductor of the same phase winding at
θ = θi + π carrying the opposite current. Generally, a phase winding can therefore
be considered as a combination of full pitch coils. Actually, the connection of
the different coils is of no importance for the MMF generation as they are all
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θ

Conductors of phase a

Conductors of phase b

Conductors of phase c

Figure 2.5: Example of a two pole, two layer, fractional pitch winding.

carrying the same current. This can be seen in Fig. 2.5 where the conductors of a
fractional pitch two layer winding are shown. In consequence of the full pitch coils,
even harmonics cancel out and only odd space harmonics remain [Kos69]. This also
becomes clear considering the symmetry of the resulting MMF waveform: the MMF
of a phase winding with e.g. p = 1 is symmetric according to F (θ + π) = −F (θ).
Thus, the coefficients of even rank of its Fourier series development are zero [Bro99].

In a three-phase winding with p = 1, the three groups of coils are mutually
displaced in space by the angle 2π/3. Assuming a balanced and sinusoidal supply,
the alternating currents in the three phase windings are of equal amplitude with
a phase shift of 2π/3. Each phase produces forward and backward rotating MMF
waves. The three forward rotating fundamental waves (νs = 1) add up whereas the
corresponding backward rotating waves cancel out. When the third order space
harmonics are added, they completely vanish. This is true for all space harmonics
with ranks being multiples of 3. For νs = 5, 11, 17, . . . the forward rotating waves
cancel out and the backward rotating ones add up whereas the opposite is true for
νs = 1, 7, 13, . . . [Kos69].

After generalization to p pole pairs, the stator MMF Fs(θ, t) of a three phase
machine with sinusoidal supply can be expressed as follows [Hel77]:

Fs(θ, t) =
3

π
NI

∞∑
c=−∞

1

p (6c+ 1)
KpνsKdνs cos [(6c+ 1) pθ − ωst] (2.15)

where N is the number of series coils per phase, I is the current amplitude and ωs

the supply pulsation. The harmonic order is νs = p(6c + 1) = p(. . . ,−5, 1, 7, . . .)
with c ∈ Z. The notation with negative harmonic orders is chosen because the
direction of rotation is directly obvious by the sign of the space harmonic (see e.g.
[LG61] [Ric54]).

The angular velocity of the rotating waves can be determined considering a
point along the periphery where the wave amplitude is constant. This point is
described by the condition:

cos [(6c+ 1) pθ − ωst] = const. ⇔ (6c+ 1) pθ − ωst = const. (2.16)

The angular velocity ωνs of the MMF waves is obtained by differentiation of this
expression:

ωνs =
dθ

dt
=

ωs

p(6c+ 1)
=
ωs

νs

(2.17)
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From (2.17), it can be concluded that waves of order νs = −5p,−11p,−17p, . . .
move 1/(6c+1) times slower than the fundamental in the opposite direction. Waves
with νs = 7p, 13p, 19p, . . . revolve 1/(6c + 1) times slower than the fundamental
in the same direction as the fundamental [Hel77]. The sign of the space harmonic
order therefore indicates the direction of rotation of the corresponding wave.

Up to now, a sinusoidal supply voltage has been supposed that consequently
leads to sinusoidal currents flowing in the windings. If the induction motor is
supplied by a voltage inverter or connected to a grid with a significant level of
voltage harmonics, current time harmonics will consequently be present. These
harmonic currents also generate MMF waves. Their expression is simply obtained
by replacing the fundamental pulsation ωs by the corresponding harmonic pulsation
µsωs where µs denotes the order of the time harmonic. The MMF of a three phase
winding including the effects of time harmonics can be written as [Yan81]:

Fs(θ, t) =
3

π
N

∞∑
µs=1

∞∑
c=−∞

1

p (6c+ 1)
KpνsKdνsIµs cos [(6c+ 1) pθ − (±|µsµsωs) t]

(2.18)
where Iµs denotes the amplitude of the corresponding current time harmonic. The
notation ±|µs is used to distinguish the sign of the pulsation with respect to the
time harmonic order µs of the corresponding wave:

±|µs =

{
+ if µs = 3n+ 1 = 1, 4, 7, 10, . . .
− if µs = 3n− 1 = 2, 5, 8, 11, . . . n ∈ N0

(2.19)

The detailed calculation of the three-phase winding MMF shows that the compo-
nents with µs = 3n+1 = 1, 4, 7, . . . give rise to MMF waves rotating in the positive
direction. Thus, notation ±|µs is used in the following to distinguish the direction
of rotation. If µs = 3n − 1 = 2, 5, 8, . . ., the corresponding MMF waves rotate
in the negative direction [Ség96]. In general, even time harmonics are of smaller
amplitude than odd harmonics. Current time harmonics of order 3n have not been
considered as they cannot circulate in star-connected windings.

The general angular velocity ωνs,µs of a MMF wave is obtained as follows:

ωνs,µs = ±|µs

µsωs

p(6c+ 1)
, c ∈ Z (2.20)

Hence, it can be noted that higher order time harmonics move faster than the
fundamental whereas higher order space harmonics move slower.

2.3.1.4 Rotor MMF

The MMF of a squirrel cage rotor can be derived in two ways. First, the rotor
can be considered equivalent to a m-phase two layer winding according to Fig. 2.6
[Hel77]. A turn is formed by the conductors in the top layer of one slot and the
bottom layer of the adjacent slot. The current Iring flowing in the turn is the
current in the end ring between the two slots. The number of phases in such a
winding would be m = Nr/p where Nr denotes the number of rotor bars. The
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Iring Iring

2π

Nr

Figure 2.6: Two-layer winding equivalent to a squirrel cage rotor.

phase shift between the currents in two adjacent turns is ϕ = 2π/m = 2πp/Nr

since the rotor bars are spaced by the angle 2π/Nr.
On the other hand, the rotor MMF can be calculated from the current flowing

in each bar. Each slot leads thus to a step in the MMF curve. Detailed calculations
with both methods can be found in [Hel77]. Let θ′ denote the circumference angle
θ′ in the rotor reference frame. The final expression of the rotor MMF Fr(θ

′, t) is:

Fr(θ
′, t) =

NrIbar

2π

∞∑
νr=−∞

1

νr

cos (νrθ
′ − ωrtt− ϕνr) (2.21)

where Ibar denotes the amplitude of the rotor bar currents, ωrt their pulsation and
ϕνr the phase angle of the corresponding harmonic.

The pole pair numbers νr of the rotor MMF waves cannot take any integer
value but only the following [LG61] [Ric54]:

νr = cNr + νs , c ∈ Z (2.22)

This signifies that the interaction between the squirrel cage rotor and a stator space
harmonic of order νs results in rotor space harmonics of order cNr + νs. This fact
can be illustrated by considering the effect of the rotor bars as a spatial sampling
[Nan01]. According to signal processing theory, the sampling of a sinusoidal sig-
nal of frequency f0 results in additional frequency components in its spectrum at
cfsample + f0. Similarly, the sampling of an order νs space harmonic by Nr rotor
bars leads to additional space harmonics of order cNr + νs. An example is given
in Fig. 2.7 where a space harmonic of order 11 interacts with Nr=12 rotor bars.
The result is, amongst others, a harmonic of pole pair number -1. Therefore, the
interaction between higher order space harmonics and the squirrel cage rotor may
also produce harmonics of low order.

The origin of the rotor currents are induced voltages, themselves resulting from
the airgap flux density. For simplification, only the flux density waves produced by
the stator MMF waves according to (2.18), i.e. under the assumption of a smooth
airgap, are considered. The relative angular velocity ωrνs,µs of these waves with
respect to the rotor is:

ωrνs,µs = ωνs,µs − ωr = ±|µs

µsωs

νs

− ωr (2.23)
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θ

θ

Figure 2.7: Example of spatial sampling of a space harmonic of order 11 by a
rotor with Nr=12 rotor bars. The resultant rotor wave has a pole pair number of
-1.

where ωr denotes the rotor angular rotational frequency. These waves, having νs

pole pairs, induce currents of pulsation ωrt in the rotor with [Hel77]:

ωrt = νs ωrνs,µs = ±|µsµsωs − νsωr (2.24)

The rotor MMF in equation (2.21) can also be expressed in the stationary
reference frame related to the stator. The transformation between the rotating
rotor related reference frame and the stationary reference frame is illustrated in
Fig. 2.8 and mathematically described by:

θ = θ′ + θr = θ′ + ωrt (2.25)

This leads to:

Fr(θ, t) =
NrIbar

2π

∞∑
νr=−∞

1

νr

cos
[
νr (θ − ωrt)− ωrtt− ϕνr

]
=
NrIbar

2π

∞∑
νs=−∞

∞∑
νr=−∞

∞∑
µs=1

1

νr

cos
[
νrθ − νrωrt− (±|µsµsωst− νsωrt)− ϕνsνr

]
(2.26)

When spatial sampling is neglected, the rotor space harmonic is of the same order
as the stator space harmonic at its origin and νs = νr with c = 0. The rotor MMF
can then be expressed in a more familiar form with the same pulsations as the
stator MMF:

Fr(θ, t) =
NrIbar

2π

∞∑
νr=−∞

1

νr

∞∑
µs=1

cos
[
νrθ − (±|µsµsωst)− ϕνsνr

]
(2.27)
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Figure 2.8: Illustration of the stationary stator-fixed reference frame (S) and the
rotating rotor-related reference frame (R).

2.3.2 Airgap Permeance

The airgap permeance Λ is defined as the inverse of the airgap length g multiplied
with the permeability of free space µ0 [Yan81]:

Λ =
µ0

g
(2.28)

In simplified considerations, the airgap length is supposed constant and the airgap
permeance is therefore also a constant. When slotting, eccentricity or saturation
effects are studied, the airgap varies with respect to time and the circumference
angle θ. In these cases, the permeance also depends on these parameters and may
take the expression of travelling waves similar to the MMF waves.

2.3.2.1 Slotting

In the preceding sections, the airgap has been supposed constant. However, when
the rotor or stator are slotted, the airgap length varies with respect to time and
space which consequently leads to variations in the airgap flux density.

A simple approach to account for slotting is the introduction of the Carter
factor . Let B0 denote the mean flux density without slotting. This mean value
drops to B′

0 when slotting is considered. This flux density variation is equivalent
to a fictional increase of the airgap from g0 to g′0 by a factor kc, called the Carter
factor:

B′
0 =

1

kc

B0 , g′0 = kc g0 with kc > 1 (2.29)

The Carter factor depends on the slot geometry and the airgap length. Various
expression for kc can be found in [Hel77].

The Carter factor globally models the mean airgap flux density but does not
take into account local effects. This can be realized by considering a variable airgap
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Figure 2.9: Airgap length gst(θ) and corresponding permeance Λst(θ) in the case
of stator slotting.

length g(θ). In presence of rectangular stator slots and a smooth rotor, the airgap
length takes a rectangular shape as illustrated in Fig. 2.9. The number of stator
slots is denoted Ns. This representation is simplified because it does not model the
effective length of the magnetic field lines which is different from the considered
rectangular function. However, a different shape only alters the magnitude of the
Fourier series coefficients. These coefficients will not be calculated because our aim
is only a quantitative analysis. Analytical expressions for the Fourier coefficients
and further discussions on this topic can be found in [Hes92].

The airgap permeance Λ(θ) is obtained by inversion of g(θ) and is ilustrated in
Fig. 2.9. This waveform can be developed into a Fourier series:

Λst(θ) =
∞∑

nst=0

Λnst cos (nstNsθ) (2.30)

When the rotor is slotted and the stator is supposed smooth, the permeance
Λrt(θ

′) takes the following expression in the rotor reference frame:

Λrt(θ
′) =

∞∑
nrt=0

Λnrt cos (nrtNrθ
′) (2.31)

This leads to the following equation for the permeance Λrt(θ, t) in the stationary
reference frame:

Λrt(θ, t) =
∞∑

nrt=0

Λnrt cos (nrtNrθ − nrtNrωrt) (2.32)

The permeance due to rotor slotting is therefore a series of rotating waves with
pole pair numbers nrtNr and pulsations nrtNrωr.

The total airgap permeance Λst,rt when the rotor and the stator are slotted is
the inverse of the total airgap length according to [Yan81]:

Λst,rt =

(
1

Λst

+
1

Λrt

− 1

Λ0

)−1

=
ΛstΛrtΛ0

ΛrtΛ0 + ΛstΛ0 − ΛstΛrt

(2.33)

where Λ0 = µ0/g0 denotes the permeance of a smooth airgap. The variable terms
Λst and Λrt are relatively small compared to the constant term Λ0. The preceding
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expression can therefore be approximated by the product of the variable terms and
a constant C [Yan81]:

Λst,rt(θ, t) = CΛstΛrt =
∞∑

nst=0

∞∑
nrt=0

Λnst,nrt cos
[
(nstNs ± nrtNr) θ − nrtNrωrt

]
(2.34)

The airgap permeance in the presence of stator and rotor slotting is therefore a
combination of rotating waves with pole pair numbers nstNs±nrtNr and pulsations
nrtNrωrt. It should be noted that the pole pair numbers of these waves can be
relatively small depending on the number of stator and rotor slots.

2.3.2.2 Saturation

Until now, the permeability of iron was supposed infinite and therefore, saturation
effects were neglected. The permeance wave approach offers a simple possibility to
account for basic saturation phenomena. In regions with iron saturation (especially
the stator teeth), the airgap flux density is no more linear with respect to the MMF.
Increasing the current and therefore the MMF leads to a smaller increase in the flux
density than without saturation. This effect can be modelled by a virtually larger
airgap i.e. a smaller permeance in regions where the iron is saturated [Yan81] or a
larger slot opening [Hel77]. The saturated regions are located where the absolute
value of the flux density is high. This fact is illustrated in Fig. 2.10 where the
fundamental flux density wave B(θ) and its absolute value are displayed for a given
time instant. Supposing a smooth airgap, the corresponding permeance function
Λsa(θ) is shown with its first harmonic. The permeance decreases in regions with
high absolute values of B.

Mathematically, the permeance including saturation effects can be represented
by a Fourier series. The first saturation harmonic has twice the pole pairs of the
fundamental wave. It revolves at the same speed and in the same direction as the
fundamental flux density i.e. its pulsation is 2ωs. Including higher harmonics, the
permeance waves with saturation can be expressed as:

Λsa(θ, t) =
∞∑

nsa=0

Λnsa cos (2nsapθ − 2nsaωst) (2.35)

When saturation effects and slotting are considered together, equations (2.34)
and (2.35) can be combined to yield:

Λrt,st,sa(θ, t) =
∞∑

nst=0

∞∑
nrt=0

∞∑
nsa=0

Λnst,nrt,nsa cos
[
(nstNs ± nrtNr ± 2pnsa) θ − nrtNrωrt± 2nsaωst

]
(2.36)

2.3.3 Airgap Flux Density

It has been demonstrated in [Hel77] that in case of a variable airgap, the airgap
flux density B(θ, t) at a certain point can be determined with good approximation
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Figure 2.10: Fundamental magnetic flux density B(θ), absolute value |B(θ)| of
the fundamental magnetic flux density and first saturation harmonic of the airgap
permeance Λsa(θ) for a given time instant.
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by the product of the instantaneous MMF and the airgap permeance at that point:

B(θ, t) =
µ0

g(θ, t)
F (θ, t) = Λ(θ, t)F (θ, t) (2.37)

If only the stator MMF and the rotor MMF due to the primary armature reac-
tion are considered (higher order armature reactions are neglected), the resulting
stator and rotor related flux densities Bs(θ, t) and Br(θ, t) can be calculated by
separate multiplication of the corresponding MMFs (equations (2.18) and (2.26))
with the permeance waves from (2.36). Then, the stator and rotor MMF Fs(θ, t)
and Fr(θ, t) can be written in a general form:

Fs(θ, t) =
∞∑

νs=−∞

∞∑
µs=1

Fνs,µs cos (νsθ − (±|µsµsωs) t) (2.38)

Fr(θ, t) =
∞∑

νs=−∞

∞∑
νr=−∞

∞∑
µs=1

Fνs,νr,µs cos
[
νrθ − νrωrt− (±|µsµsωst− νsωrt)− ϕνsνr

]
(2.39)

Therefore, the corresponding flux density B(θ, t) is:

B(θ, t) = Bs(θ, t) +Br(θ, t)

= Fs(θ, t)Λrt,st,sa(θ, t) + Fr(θ, t)Λrt,st,sa(θ, t)

=
∑

ms,Ωs

Bms,Ωs cos (msθ − Ωst) +
∑

mr,Ωr

Bmr,Ωr cos (mrθ − Ωrt− ϕmr,Ωr)

(2.40)

where ms and mr denote the possible pole pair numbers of the stator and rotor flux
density waves, Ωs and Ωr are the corresponding pulsations. These are obtained
considering all the possible combinations from the multiplication of the permeance
and the MMF waves:

ms = νs ± nstNs ± nrtNr ± 2pnsa (2.41a)

Ωs = ±|µsµsωs ± nrtNrωr ± 2nsaωs (2.41b)

mr = νr ± nstNs ± nrtNr ± 2pnsa (2.41c)

Ωr = νrωr − νsωr ± |µsµsωs ± nrtNrωr ± 2nsaωs (2.41d)

2.3.4 Stator Current

The non-supply frequency stator current components in a phase winding are ob-
tained through a calculation of the magnetic flux and its derivative as described in
2.2.3. The following calculation consider one particular flux density wave Bi(θ, t)
with pole pair number mi, pulsation Ωi and phase angle ϕi:

Bi(θ, t) = Bi cos (miθ − Ωit− ϕi) (2.42)
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The corresponding flux Φi through a stator coil formed by two conductors at
angular positions θ1 and θ2 is:

Φi(t) = lm

θ2∫
θ1

Bi(θ, t) r dθ

=
Bi

mi

Rslm
[
sin (miθ2 − Ωit− ϕi)− sin (miθ1 − Ωit− ϕi)

] (2.43)

Using sinα− sin β = cos α+β
2

sin α−β
2

, the following flux expression is obtained:

Φi(t) =
Bi

mi

Rslm sin

(
mi
θ2 − θ1

2

)
cos

(
mi
θ1 + θ2

2
− Ωit− ϕi

)
(2.44)

This expression shows that the pitch factor of the considered coil Kpmi
(see (2.11))

affects the flux amplitude. Consequently, the induced voltage Vi(t) in the coil is
obtained as:

Vi(t) =
d

dt
Φi(t) =

Bi

mi

RslmKpmi
Ωi sin

(
mi
θ1 + θ2

2
− Ωit− ϕi

)
(2.45)

The total induced voltage in a phase winding is the sum of the induced voltages
in the coils. The induced voltage of non-supply frequency leads to a circulating
current that is only limited by the winding and line impedance because the stator
appears short-circuited to currents of such frequencies.

The preceding calculations therefore show that the pulsations Ωi of the flux
density waves (see equations (2.41b) and (2.41d)) can also be found in the stator
current. Their amplitude will depend on the winding structure, the pulsation Ωi,
the corresponding space harmonic order mi and of course the amplitude of the
initial flux density wave Bi.

2.3.5 Torque

The electromagnetic torque Γ of the induction motor can be calculated from ex-
pression (2.5) using the previously calculated stator and rotor flux density waves.

Γ = − 1

µ0

lmR0g0

2π∫
0

[Bs(θ, t) +Br(θ, t)]
∂

∂θr

Br(θ, t) dθ (2.46)

However, it should be noted that this expression assumes that the stator flux
density does not depend on the rotor angular position θr because only the rotor
flux density is differentiated. If rotor slotting is taken into account, this assumption
is no longer valid because the permeance waves depend on the rotor position.
Consequently, the stator flux density depends on it as well. This can be seen in
equation (2.41b) where the term nrtNrωr is present.

The derivative of the rotor flux density from (2.40) can be written in a general
form as:

∂

∂θr

Br(θ, t) =
∑

m′
r,Ω′

r

B′
m′

r,Ω′
r
sin

(
m′

rθ − Ω′
rt− ϕm′

r,Ω′
r

)
(2.47)
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Using this expression and supposing a smooth rotor, equation (2.46) becomes with
the general expression from (2.40):

Γ = − 1

µ0

lmR0g0

{ 2π∫
0

∑
ms,Ωs

Bms,Ωs cos (msθ − Ωst)∑
m′

r,Ω′
r

B′
m′

r,Ω′
r
sin

(
m′

rθ − Ω′
rt− ϕm′

r,Ω′
r

)
dθ

+

2π∫
0

∑
mr,Ωr

Bmr,Ωr cos (mrθ − Ωrt− ϕmr,Ωr)

∑
m′

r,Ω′
r

B′
m′

r,Ω′
r
sin

(
m′

rθ − Ω′
rt− ϕm′

r,Ω′
r

)
dθ

}
(2.48)

Using the trigonometric identity cosα sin β = 1
2
[sin (β − α) + sin (α+ β)] , all

the integrals take the following general form with k ∈ Z:

2π∫
0

sin (kθ + ψ) dθ =

{
2π sinψ if k = 0
0 for all other k

(2.49)

k results from addition or subtraction of the pole pair numbers ms±m′
r or mr±m′

r

of the two multiplied waves. A necessary condition for a non-zero value of the
integral is thus k = 0.

It can therefore be concluded that a torque can only arise from a combination
of flux density waves having equal pole pair numbers in terms of the absolute
value. According to equation (2.48), the torque can result on the one hand from
an interaction of a stator flux density wave with a rotor flux density wave of same
pole pair number. On the other hand, two rotor flux density waves with equal pole
pair numbers but different pulsations and phase angles can also produce a non-zero
torque.

Including the condition of equal absolute value of the pole pair numbers, equa-
tion (2.48) can be written in a compact form as:

Γ = − π

µ0

lmR0g0

{ ∑
|ms|=|m′

r|,Ωs,Ω′
r

Bms,ΩsB
′
m′

r,Ω′
r
sin

(
Ωst± Ω′

rt± ϕm′
r,Ω′

r

)
+

∑
|mr|=|m′

r|,Ωr,Ω′
r

Bmr,ΩrB
′
m′

rΩ′
r
sin

(
Ωrt± Ω′

rt+ ϕmr,Ωr ± ϕm′
r,Ω′

r

) }
(2.50)

According to this expression, the electromagnetic torque generally varies sinu-
soidally with time. The torque is independent of time only if the pulsations verify

Ωs = Ω′
r or Ωr = Ω′

r (2.51)
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In order to illustrate the various mechanisms of torque production, several
cases will be discussed in the following. The main part of the electromagnetic
motor torque results from the interaction between the fundamental stator and
rotor MMF. These waves have ms = m′

r = p pole pair number and pulsations
Ωs = Ω′

r = ωs. The calculation yields:

Γ = − 1

µ0

lmR0g0

2π∫
0

B1s cos (pθ − ωst)B
′
1r sin (pθ − ωst− ϕ1) dθ

=
π

µ0

lmR0g0B1sB
′
1r sinϕ1

(2.52)

This equation illustrates the well-known fact that the average motor torque is a
function of the product of stator flux density amplitude B1s, rotor flux density
amplitude B′

1r and the sine of their phase difference ϕ1.

Let us now consider interactions between higher order space harmonics: The
stator MMF contains e.g. a space harmonic of order 7p with the fundamental
pulsation ωs. This space harmonic is also present in the stator-related flux density
wave. It induces rotor currents that lead to a rotor MMF wave with 7p pole pairs
and the same angular velocity as the corresponding stator MMF wave, but with
a different initial phase angle. The flux density waves related to the two MMF
waves interact with each other because of the equal pole pair number. The pole
pair numbers and pulsations of the corresponding waves take the following values
according to (2.41):

ms = m′
r = 7p

Ωs = ωs

Ω′
r = 7pωr − 7pωr + ωs = ωs

As the considered flux density waves have the same pulsations Ωs and Ω′
r, the

resultant torque is independent of time for a given speed. However, if the speed
varies with constant supply frequency e.g. during a motor start-up, the amplitude
of considered torque varies since the corresponding rotor MMF amplitude changes
with the relative speed of the rotor to the stator MMF with 7p pole pairs. The
relative speed of the rotor with respect to this wave is zero if ωr = ωs/7p. In this
case, the rotor MMF with pole pair number 7p will be zero as well as the considered
torque component. The torque-speed curve of this particular component is similar
to the main torque-speed curve but with a zero at ωr = ωs/7p as illustrated on
Fig. 2.11.

Hence, these torques influence the torque-speed characteristic of an induction
motor and cause torque dips at low speeds (see Fig. 2.11). They arise generally
from interactions of stator space harmonics with rotor space harmonics where the
latter has been induced by the stator space harmonic itself. This is similar to
the production of the main torque and characteristic for the induction motor.
Therefore, these torques are called asynchronous torques (see [Hel77] and [Ric54]
for more details).
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Figure 2.11: Torque-speed characteristic of an induction motor with asynchro-
nous torque dip.

Another kind of torque arises if stator space harmonics interact with rotor
space harmonics resulting from a different stator flux density wave. Consider the
following example of a four pole motor with Nr = 28 rotor bars: The stator
fundamental flux density wave with νs = p = 2 pole pairs generates rotor waves
with νr = cNr +p = . . . ,−26, 2, 30, 58, . . .. Another stator space harmonic of order
13p = 26 can therefore interfere with the rotor wave with νr = −26. Consider the
following values:

ms = +26

m′
r = −26

Ωs = ωs

Ω′
r = νrωr − νsωr + ωs = −26ωr − 2ωr + ωs = −28ωr + ωs

In order to calculate the corresponding torque from equation (2.50), the positive
sign must be used to add up the pulsations, because the interacting waves had pole
pair numbers with opposed signs. The resulting torque is:

Γ(t) = − π

µ0

lmR0g0Bms,ΩsB
′
mr,Ω′

r
sin

(
−28ωrt+ 2ωst− ϕm′

r,Ω′
r

)
Therefore, this example demonstrates that a time-varying torque can arise if flux
density wave combinations with different pulsations are considered. Different pul-
sations are obtained for the same pole pair numbers if the rotor flux density wave
has been induced by a stator wave different from the interacting one. The aris-
ing torques are similar to those found in synchronous machines because they are
constant only for a certain rotor speed; for all other speeds, they are sinusoidally
varying with respect to time. Therefore, these torques are designated synchronous
torques in literature (see [Hel77] and [Ric54]).

2.4 Load Torque Oscillations

Some classes of mechanical faults e.g. gearbox faults, shaft misalignment, load
unbalance or bearing faults may generate periodic variations in the load torque
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and consequently speed oscillations.
Thomson mentioned in [Tho94] the potential of stator-current analysis to de-

tect purely mechanical faults. Cases are studied where shaft speed oscillations
caused changes in the current spectrum. In the same way, characteristic gearbox
frequencies could be detected in the stator current spectrum [Tho03].

Schoen et al. studied the effects of time-varying loads on the stator current
using a space phasor model [Sch95a]. It was demonstrated that a periodic load
torque at frequency fc leads to sidebands in the stator current at fs ± fc. A
method to eliminate these effects in a current-based condition monitoring system
was proposed in [Sch97].

An amplitude modulation of the stator current as a consequence of torque os-
cillations was supposed by Legowski et al. in [Leg96]. Simulation and experimental
results confirmed the characteristic sidebands at fs ± fc in the current spectrum.

Salles et. al used a space phasor model of an induction machine and associated
transfer functions for the theoretical study of torque oscillations [Sal97] [Sal00].
In consequence, they supposed an amplitude modulation of the stator current.
Simulation and experimental results for periodic and non-periodic torque variations
were presented [Sal98].

Extensive experimental investigations on stator current based detection of me-
chanical faults such as misalignment and load unbalance were carried out by Obaid
et al. in [Oba00] [Oba03a] [Oba03b] [Oba03c]. The influence of fault severity and
varying load levels on stator current frequencies at fs ± fr was studied. The con-
sequences of shaft misalignment on various quantities such as stator current, axial
flux and airgap torque were studied in [Cab96]. Kral et al. [Kra04] analyzed the
instantaneous motor power for detection of varying levels of eccentricity and load
imbalance. This technique requires three voltage and three current transducers,
though. Angular fluctuations of the current space vector were used for detection
of bearing faults and shaft misalignment in [Ark05].

The following theoretical considerations study the effect of a periodic, time-
varying load torque on the airgap flux density and the stator current using the
previously presented MMF and permeance wave approach. The theoretical devel-
opment has been published in a shortened form in [Blö05b] and has been applied
to bearing fault related torque oscillations in [Blö04].

2.4.1 Mechanical Speed

An arbitrary periodic load torque variation Γ(t) with zero mean can mathematically
be described by a Fourier series:

Γ(t) =
∞∑

k=1

Γk cos (kωct) (2.53)

where ωc denotes the fault characteristic pulsation. Without loss of generality, the
torque oscillation is supposed to be an even function. As the effects of mechanical
faults are often related to the shaft speed ωr or the angular position θr, ωc may
often be equal to ωr or an integer multiple of ωr. More generally, depending on
the presence of a gearbox in the drive, ωc can be any rational multiple of ωr.
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In the following, the effect of the periodic torque variation on the mechanical
speed and the mechanical rotor position is studied. This involves two integration
operations i.e. the amplitudes of higher order terms of the Fourier series with
higher frequencies are considerably attenuated. Therefore, only the first term of
the variable components Fourier series is accounted for in the following, which is
equivalent to considering a sinusoidal load torque variation.

The total load torque Γload including an average torque Γ0 and a sinusoidal
component of amplitude Γc can therefore be expressed as:

Γload(t) = Γ0 + Γc cos (ωct) (2.54)

The following mechanical equation relates the difference between the electro-
magnetic motor torque Γmotor(t) and the load torque Γload(t) to the angular speed
ωr: ∑

Γ(t) = Γmotor(t)− Γload(t) = J
dωr

dt

=⇒ ωr(t) =
1

J

∫
t

[
Γmotor(τ)− Γload(τ)

]
dτ

(2.55)

where J is the total inertia of the machine and the load. It should be noted that
friction torques are neglected.

In steady-state operation without load torque oscillations, the electromagnetic
torque provided by the motor Γmotor is equal to the constant load torque Γload = Γ0.
Since the oscillating term has zero mean, this is also true if the considered periodic
load torque variations are present. The angular speed ωr (t) therefore expresses as:

ωr (t) = − 1

J

t∫
t0

Γc cos (ωcτ) dτ + C

= − Γc

Jωc

sin (ωct) + ωr0

(2.56)

The integration constant is the angular speed in steady state denoted ωr0. The
mechanical speed in presence of load torque oscillations consists therefore of a
constant component ωr0 and an additional sinusoidally varying one.

2.4.2 Rotor MMF

In order to derive the effect of the load torque oscillation on the rotor MMF, the
angular rotor position θr is first calculated by integration of the angular speed.

θr (t) =

∫
t

ωr (τ) dτ =
Γc

Jω2
c

cos (ωct) + ωr0t (2.57)

The integration constant is assumed to be zero. In contrast to the healthy machine
where θr (t) = ωr0t, the angular rotor position consists of an additional oscillating
term at the fault characteristic frequency.
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The oscillations of the mechanical rotor position θr influence the rotor MMF.
Considering only the fundamental, the rotor MMF with respect to the rotor refer-
ence frame is a wave with p pole pairs and pulsation sωs, given by:

Fr(θ
′, t) = Fr cos (pθ′ − sωst− ϕr) (2.58)

where s denotes the slip. This wave can be expressed in the stationary refer-
ence frame using equation (2.25) combined with expression (2.57) which defines
the time-varying rotor angular position θr(t) with load torque oscillations. The
transformation between the reference frames is therefore defined by:

θ′ = θ − ωr0t−
Γc

Jω2
c

cos (ωct) (2.59)

The following relation links slip, supply frequency and mean angular rotor speed:

ωr0 = ωs
(1− s)

p
(2.60)

Thus, the rotor MMF given in (2.58) is described in the stationary reference frame
by:

Fr(θ, t) = Fr cos (pθ − ωst− β′ cos (ωct)− ϕr) (2.61)

with:

β′ = p
Γc

Jω2
c

(2.62)

Equation (2.61) clearly shows that the torque oscillation at frequency fc leads to a
phase modulation (PM) of the rotor MMF in the stationary reference frame. This
phase modulation is characterized by the introduction of the term β′ cos(ωct) in the
phase of the MMF wave. The parameter β′ is generally called the PM modulation
index. In most cases, the modulation index β′ will be small (β′ � 1) considering
reasonable values for J , Γc and ωc.

Until now, only the fundamental rotor MMF wave has been considered. How-
ever, the phase modulation also affects higher order space and time harmonics.
This can easily be deduced from transforming the general rotor MMF in the rotat-
ing reference frame (see equation (2.21)) to the stationary reference frame using
expression (2.59). The general expression for the rotor MMF as a consequence of
torque and speed oscillations is therefore given by:

Fr(θ, t) =
∞∑

νs=−∞

∞∑
νr=−∞

∞∑
µs=1

Fνs,νr,µs cos
[
νrθ − νrωrt− νr

Γc

Jω2
c

cos (ωct)

− (±|µsµsωst− νsωrt)− ϕνsνr

] (2.63)

The fault has no direct effect on the stator MMF if higher order armature
reactions are neglected. Therefore, considering only the fundamental, the stator
MMF takes the following form:

Fs(θ, t) = Fs cos
(
pθ − ωst

)
(2.64)

The general expression for the stator MMF waves taking into account various
harmonics is given in equation (2.38).
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2.4.3 Airgap Flux Density

The airgap flux density B(θ, t) is the product of the sum of stator and rotor MMF
waves and the airgap permeance Λ. If slotting effects and iron saturation are
neglected in a first time, the airgap permeance is supposed constant. Then, the
airgap flux density takes the following expression:

B (θ, t) =
[
Fs(θ, t) + Fr(θ, t)

]
Λ0

= Bs cos
(
pθ − ωst

)
+Br cos

(
pθ − ωst− β′ cos (ωct)− ϕr

) (2.65)

The fundamental airgap flux density is therefore a sum of two components: The
component resulting from the rotor MMF is modulated with a sinusoidal phase
modulation at the fault characteristic frequency fc, the stator MMF related com-
ponent is unchanged.

The general expression for the airgap flux density waves taking into account
higher order space and time harmonics, slotting and saturation is identical to (2.41).
Only the last equation (2.41d), defining the pulsation Ωr of the rotor flux density
waves, has to be replaced by:

Ωr,to = νrωr − νsωr −
d

dt

(
νr

Γc

Jω2
c

cos (ωct)

)
± |µsµsωs ± nrtNrωr ± 2nsaωs (2.66)

where the index in Ωr,to denotes the case with load torque oscillations.

2.4.4 Stator Current

The phase modulation of the flux density B(θ, t) exists for the coil flux Φi(t) itself,
as Φi(t) is obtained by simple integration of B(θ, t) (see 2.3.4). The existence of an
additional time-varying term in the phase of a flux density wave does not change
the result of the integration of B(θ, t) with respect to the circumference angle θ.

Therefore, considering only the fundamental flux density waves according to
(2.65), the flux Φ(t) in an arbitrary coil can be expressed in a general form:

Φ(t) = Φs cos
(
ωst− ϕΦ,s

)
+ Φr cos

(
ωst+ β′ cos (ωct)− ϕΦ,r

)
(2.67)

The induced voltage Vi(t) corresponding to this flux is:

Vi(t) =
d

dt
Φ(t) = −ωsΦs sin

(
ωst− ϕΦ,s

)
− ωsΦr sin

(
ωst+ β′ cos (ωct)− ϕΦ,r

)
+ ωcβ

′ sin(ωct) Φr sin
(
ωst+ β′ cos (ωct)− ϕΦ,r

)
(2.68)

Since relatively small torque oscillation are studied, β′ � 1. The last term can
thus be neglected in the following considerations. The total induced voltage is the
sum of the induced voltages in all coils of the winding. The resulting signal is also
a PM signal with the same modulation index as demonstrated in appendix A.1.

With the stator voltage imposed by the voltage source, the resulting stator
current is linearly related to the induced voltage Vi(t) and has the same frequency
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content. As a consequence, the phase-modulated stator current ito(t) for an arbi-
trary phase in presence of a load torque oscillation expresses as :

ito(t) = ist(t) + irt(t)

= Ist sin (ωst) + Irt sin
(
ωst+ β cos (ωct− ϕβ)− ϕr

) (2.69)

where ϕβ denotes the phase angle of the modulation. The modulation index β is
proportional to β′:

β ∝ β′ = p
Γc

Jω2
c

(2.70)

The fundamental stator current ito(t) can be considered as the sum of two com-
ponents: the term ist(t) results from the stator MMF and it is not modulated.
The term irt(t), which is a direct consequence of the rotor MMF, shows the phase
modulation due to the considered load torque and speed oscillations.

According to the preceding calculations the PM modulation index of the rotor-
related stator current component could be assumed equal to the modulation index
of the rotor MMF. However, considering the simplifying assumptions of the mod-
elling approach such as linearity of the magnetic circuit, neglect of higher order
armature reactions etc., a proportional relationship is a more cautious modeling hy-
pothesis. The healthy operation state without a load torque oscillation is obtained
for β=0.

The generalized expression of the stator current including time harmonics, rotor
slot effects and the phase modulation due to torque oscillations has the following
form:

ito(t) =
∑

µs,nrt,i

Ist,µs,nrt,i sin [µsωst± nrtNrωrt]

+
∑

µs,nrt,i

Irt,µs,nrt,i sin [µsωst± nrtNrωrt+ βi cos (ωct− ϕβ,i)− ϕr,i]

(2.71)

with

βi ∝
Γc

Jω2
c

(2.72)

This expression shows that the phase modulation affects not only the fundamental
component but also stator current components at other frequencies such as time
harmonics and rotor slot harmonics.

2.5 Airgap Eccentricity

The preceding section has considered periodic load torque variations and speed
oscillations as a consequence of mechanical faults. In addition, mechanical faults
may also lead to a displacement of the rotor center with respect to the stator i.e.
rotor eccentricity. The consequence is a non-uniform airgap and therefore a change
in the normal airgap flux density distribution. Consequently, quantities which are
functions of the airgap flux density also change:
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• Unbalanced magnetic pull is created i.e. a radial force that tends to further
increase the rotor eccentricity. In fact, the unbalanced magnetic pull is in the
direction of the smallest airgap because the flux density is highest in these
regions.

• The altered airgap flux density distribution and the unbalanced magnetic
pull intensify stator frame vibrations and noise.

• Particular frequencies in the stator current spectrum appear or show an in-
crease.

• The average and oscillating components of the electromagnetic output torque
change.

Airgap eccentricity and unbalanced magnetic pull in induction machines have been
studied since the beginning of the 20th century. Hence, numerous publications deal
with this topic and they cannot all be cited or reviewed in this work. Literature
reviews can be found e.g. in [Cam86] [Dor93].

Heller and Hamata [Hel77] calculate the airgap magnetic field with an eccen-
tric rotor. Dorrell [Dor93] models unbalanced magnetic pull in cage induction ma-
chines using two approaches, conformal transformations and the permeance wave
approach. The resulting numerical model is validated with different machines. El-
lison and Yang [Ell71] [Yan81], Cameron et al. [Cam86] and Timár [Tim89] study
the effects of eccentricity on the airgap flux density, stator frame vibrations and
acoustic noise. The detection of eccentricity by stator current spectrum analysis
is considered in numerous publications, amongst others [Cam86] [Dor97] [Nan01]
[Gul03]. The stator current components showing an increase with eccentricity are
often written in a compact form as:

fecc = (nrtNr ± iecc,dy) fr ± µsfs (2.73)

This formula shows that dynamic eccentricity (iecc,dy ≥ 1) should lead to sidebands
of the stator current fundamental frequency, but also of its harmonics and the rotor
slot harmonics (nrt ≥ 1). Static eccentricity does theoretically not produce addi-
tional frequencies but experimental investigations have shown an increase of slot
harmonic amplitudes [Cam86]. Different degrees of static and dynamic eccentricity
and their influence on stator current sidebands are investigated in [Dor97] [Kni05].
Industrial case histories investigating machines with eccentricity are reported by
Thomson et al. in [Tho88] [Tho99c] [Tho99a] [Tho99b].

Relatively few works study the influence of eccentricity on the output torque
of the motor. Kučera [Kuč70] calculated the changed mutual reactances with an
eccentric rotor and derived a higher average torque in this case. Abdel-Kader
[AK84] notices through simulations that an increasing level of eccentricity causes a
slight rise in the average torque and a decrease in cogging torques. However, Dorrell
[Dor94] found that the steady torque decreases with a rising level of eccentricity. He
also stated that pulsating torques increase considerably. Rusek [Rus96] simulated
induction motors with static and dynamic eccentricity and remarked increasing
pulsating torques at the rotor rotational frequency compared to the healthy state.
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Figure 2.12: Schematic representation of static, dynamic and mixed eccentricity.
× denotes the rotor geometrical center, ∗ the rotor rotational center.

In all the cited works, the pulsating torques are only observed on simulation results
and no analytical explanation or demonstration is given.

Generally, three different types of eccentricity can be distinguished (see Fig.
2.12):

Static eccentricity: The rotor geometrical center is identical with the rotational
center, but it is displaced with respect to the stator geometrical center. The
point of minimal airgap length is stationary with respect to the stator.

Dynamic eccentricity: The rotor geometrical center is different from the rota-
tional center. The rotational center is identical with the stator geometrical
center. The point of minimal airgap length is moving with respect to the
stator.

Mixed eccentricity: The two effects are combined. The rotor geometrical center,
rotor rotational center and stator geometrical center are different. The point
of minimal airgap length is also moving with respect to the stator.

Static eccentricity is caused when the rotor axis is not aligned within the stator.
Reasons can be manufacturing tolerances, an oval stator core, incorrect bearing
positioning or bearing wear. Dynamic eccentricity can also be caused by manufac-
turing tolerances and bearing wear or furthermore by a bent or flexible shaft. It is
also possible that high levels of static eccentricity produce high unbalanced mag-
netic pull which consequently increases the dynamic eccentricity. The risk of high
levels of static or dynamic eccentricity is a mechanical contact between the rotor
and the stator resulting in considerable damage for the machine [Ver82] [Cam86]
[Dor93].

2.5.1 Airgap Length

The following calculations derive the expression of the airgap length g(θ) in case
of an eccentric rotor [Gul03] [Dor93]. The geometric configuration for a general
rotor displacement and the corresponding nomenclature are displayed in Fig. 2.13.
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Figure 2.13: General case of rotor displacement and nomenclature.

Note that the following considerations suppose a uniform airgap length in axial
direction which allows a two-dimensional problem description analogous to the
preceding calculations of the airgap field. However, this simplifying assumption is
probably not verified in most practical cases.

The stator inner surface rs(θ) with radius Rs is given by the following equation
in polar coordinates (r, θ):

rs(θ) = Rs (2.74)

If the rotor center Cr is at (a, b) in cartesian coordinates, the rotor outer surface
is given in cartesian coordinates (x, y) by the circle equation:

(x− a)2 + (y − b)2 = R2
r (2.75)

With x = rr cos θ and y = rr sin θ, equation (2.75) is transformed into polar coor-
dinates (rr, θ). A quadratic equation is obtained for the radius rr(θ) of the rotor
outer surface. The solution of this equation is:

rr(θ) = a cos θ + b sin θ +

√
R2

r − (a sin θ + b cos θ)2 (2.76)

The exact expression of the airgap length g(θ) is:

g(θ) = rs(θ)− rr(θ)

= Rs − a cos θ − b sin θ −Rr

√
1− 1

R2
r

(a sin θ + b cos θ)2
(2.77)
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In induction machines, the airgap is in general relatively small compared to the
rotor radius Rr. Therefore, the rotor displacement described by a and b is also
small compared to Rr, and g(θ) is commonly approximated by:

g(θ) = g0 − a cos θ − b sin θ (2.78)

where g0 = Rs −Rr is the mean airgap length without eccentricity.
The parameters a and b in the expression of the airgap length take different

expressions with respect to the type of eccentricity. δs and δd denote respectively
the degree of static and dynamic eccentricity with respect to the mean airgap
length g0. Note that δs + δd < 1 in order to avoid a rotor-stator rub.

Static eccentricity: a and b do not depend on the rotor angle θr. Without loss
of generality, b = 0 can be supposed.

a = g0 δs , b = 0 (2.79)

Dynamic eccentricity: a and b depend both on the rotor angle θr, no constant
term is present.

a = g0 δd cos θr , b = g0 δd sin θr (2.80)

Mixed eccentricity: a and b depend both on the rotor angle θr and a constant
term is present. Without loss of generality, the constant term in b can be
supposed zero.

a = g0 (δs + δd cos θr) , b = g0 δd sin θr (2.81)

The exact and approximated expression of the airgap length in case of mixed
eccentricity are:

g(θ) = Rs − g0 (δs cos θ − δd cos (θ − θr))

−Rr

√
1− g2

0

R2
r

(δs sin θ + δd sin (θ + θr))
2

g(θ) ≈ g0 (1− δs cos θ − δd cos (θ − θr)) for g0 � Rr

(2.82)

Note that static and dynamic eccentricity are special cases with δd = 0 or δs = 0
respectively.

2.5.2 Airgap Permeance

Similar to the reflections in 2.3.2, the airgap permeance accounting for rotor ec-
centricity is expressed as a Fourier series. Considering in a first time only static
eccentricity, the approximated airgap length according to (2.82) is :

g(θ) = g0 (1− δs cos θ) (2.83)
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Figure 2.14: Normalized permeance harmonic magnitudes with respect to degree
of eccentricity.

The corresponding airgap permeance is proportional to the inverse of this expres-
sion and it can be developed into a Fourier series [Dor93]:

Λecc,st(θ) =
µ0

g0 (1− δs cos θ)
=

1

2
Λ0 +

∞∑
iecc,st=1

Λiecc,st cos (iecc,stθ) (2.84)

with

Λiecc,st =
2µ0

g0

√
1− δ2

s

[
1−

√
1− δ2

s

δs

]iecc,st

(2.85)

The magnitudes of the Fourier series coefficients are shown in Fig. 2.14 with respect
to the degree of eccentricity δs. It can be noticed that for small levels of eccentricity
(δs < 40%), the coefficients Λk with k ≥ 2 are relatively small. Therefore, they
will be neglected in some of the following considerations.

When only dynamic eccentricity is present, the permeance varies also with
respect to time. The angle θ in equation (2.84) is simply replaced by (θ−ωrt) and
the following expression is obtained:

Λecc,dy(θ, t) =
1

2
Λ0 +

∞∑
iecc,dy=1

Λiecc,dy
cos (iecc,dyθ − iecc,dyωrt) (2.86)

In case of mixed eccentricity, the permeance expressions with static and dynamic
eccentricity are combined and yield [Yan81]:

Λ(θ, t) =
∞∑

iecc,st=0

∞∑
iecc,dy=0

Λiecc,st,iecc,dy
cos ((iecc,st + iecc,dy) θ − iecc,dyωrt) (2.87)
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2.5.3 Airgap Flux Density

For the calculation of the magnetic flux density, only the fundamental rotor and
stator MMF waves will be considered at first. Supposing relatively small levels
of eccentricity, the airgap permeance is approximated by the constant component
and the first harmonic of the Fourier series expansion. With these assumptions,
the fundamental airgap flux density in presence of static eccentricity is:

B(θ, t) = [Fs(θ, t) + Fr(θ, t)]

[
1

2
Λ0 + Λ1 cos θ

]
= Bs

[
1 + 2

Λ1

Λ0

cos θ

]
cos (pθ − ωst)

+Br

[
1 + 2

Λ1

Λ0

cos θ

]
cos (pθ − ωst− ϕr)

= Bs cos (pθ − ωst) + 2Bs
Λ1

Λ0

cos ((p± 1) θ − ωst)

+Br cos (pθ − ωst− ϕr) + 2Br
Λ1

Λ0

cos ((p± 1) θ − ωst− ϕr)

(2.88)

The multiplication of the MMF waves with the modified airgap permeance mod-
ulates the amplitude of the flux density waves with respect to θ and leads to new
waves having p ± 1 pole pairs. However, these waves have the same pulsation as
the fundamental wave which means that no additional pulsations appear.

The relative amplitude of the additional waves with respect to the fundamental
flux density is 2Λ1/Λ0. Using expression (2.85) and a limited series development
of

√
1− δ2

s [Bro99], the following approximation is obtained for small δs:

2
Λ1

Λ0

= 2
1−

√
1− δ2

s

δs
=

2

δs

[
1−

(
1− 1

2
δ2
s −

1

8
δ4
s − . . .

)]
≈ δs (2.89)

The relative amplitude of the additional flux density waves is therefore directly the
degree of eccentricity.

The calculation of the fundamental flux density waves in presence of dynamic
eccentricity yields:

B(θ, t) = [Fs(θ, t) + Fr(θ, t)]

[
1

2
Λ0 + Λ1 cos (θ − ωrt)

]
= Bs [1 + δd cos (θ − ωrt)] cos (pθ − ωst)

+Br [1 + δd cos cos (θ − ωrt)] cos (pθ − ωst− ϕr)

= Bs cos (pθ − ωst) + δdBs cos ((p± 1) θ − (ωs ± ωr) t)

+Br cos (pθ − ωst− ϕr) + δdBr cos ((p± 1) θ − (ωs ± ωr) t− ϕr)

(2.90)

In contrast to the case with static eccentricity, the flux density is amplitude mod-
ulated with respect to time and θ. The resulting additional flux density waves
have pulsations ωs±ωr which means that additional pulsations appear around the
fundamental.
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If a two-pole motor (p = 1) is considered, one of the additional flux density
waves has zero pole pairs i.e. it is equivalent to a homopolar flux. The main path
of this homopolar flux is from the rotor via the shaft, the bearings and the stator
frame back to the stator and the airgap. The permeance corresponding to this
path is dependent on the particular machine and its construction [Dor93]. As the
detailed analysis of these phenomena goes beyond the scope of this work, a motor
with p > 1 will be supposed in the following.

The complete expressions for the airgap flux density in the general case are
obtained by multiplication of the stator and rotor MMF waves according to (2.38)
and (2.39) with the permeance function that includes slotting, saturation and ec-
centricity (see (2.36) and (2.87)). The following pole pair numbers and pulsations
are obtained for the stator and rotor-related flux density waves including the effects
of eccentricity [Cam86]:

ms = νs ± nstNs ± nrtNr ± 2pnsa ± iecc,st ± iecc,dy (2.91a)

Ωs = ±|µsµsωs ± nrtNrωr ± 2nsaωs ± iecc,dyωr (2.91b)

mr = νr ± nstNs ± nrtNr ± 2pnsa ± iecc,st ± iecc,dy (2.91c)

Ωr = νrωr − νsωr ± |µsµsωs ± nrtNrωr ± 2nsaωs ± iecc,dyωr (2.91d)

2.5.4 Stator Current

The stator current in case of an eccentric rotor is calculated similar to the preceding
considerations in 2.3.4. First, the time-variable flux in a phase of the stator winding
is determined. The flux calculation is different from the development in case of
the healthy machine 2.3.4 or with a load torque oscillation, because the amplitude
modulation is a function varying with respect to the circumference angle θ and
with respect to time in the general case. The flux calculation by integration of the
flux density waves yields therefore a different result as it will be demonstrated in
the following.

Consider a general amplitude-modulated flux density wave Bi(θ, t) in case of
dynamic eccentricity:

Bi(θ, t) = Bi [1 + δd cos (θ − ωrt)] cos (miθ − Ωit− ϕi) (2.92)

The special case of static eccentricity can be obtained with ωr = 0 and δd = δs. As
in 2.3.4, the corresponding flux Φi through a stator coil formed by two conductors
at angular positions θ1 and θ2 is calculated:

Φi(t) = lmRs

θ2∫
θ1

Bi(θ, t) dθ

= lmRs

θ2∫
θ1

Bi

{
cos (miθ − Ωit− ϕi) +

1

2
δd cos ((mi − 1) θ − Ωit+ ωrt− ϕi)

+
1

2
δd cos ((mi + 1) θ − Ωit− ωrt− ϕi)

}
dθ

(2.93)
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After integration and simplifications using sinα− sin β = 2 cos α+β
2

sin α−β
2

:

Φi(t) = lmRsBi

{
2

mi

sin

(
mi
θp

2

)
cos

(
mi
θ1 + θ2

2
− Ωit− ϕi

)
+

δd
mi − 1

sin

(
(mi − 1)

θp

2

)
cos

(
(mi − 1)

θ1 + θ2

2
− Ωit+ ωrt− ϕi

)
+

δd
mi + 1

sin

(
(mi + 1)

θp

2

)
cos

(
(mi + 1)

θ1 + θ2

2
− Ωit− ωrt− ϕi

) }
(2.94)

In order to visualize the amplitude modulation of the flux, similar terms are re-
arranged using cos (α+ β) = cosα cos β − sinα sin β:

Φi(t) = lmRsBi cos

(
mi
θ1 + θ2

2
− Ωit− ϕi

)
[

2

mi

sin

(
mi
θp

2

)
+ (C1 + C2) cos

(
ωrt−

θ1 + θ2

2

) ]

+ lmRsBi (C2 − C1) sin

(
mi
θ1 + θ2

2
− Ωit− ϕi

)
sin

(
ωrt−

θ1 + θ2

2

) (2.95)

where C1 and C2 are constant terms defined as:

C1 =
δd

mi − 1
sin

(
(mi − 1)

θp

2

)
(2.96)

C2 =
δd

mi + 1
sin

(
(mi + 1)

θp

2

)
(2.97)

Equation (2.95) shows that the flux is the sum of two amplitude modulated
components: The first term is a carrier frequency at Ωi modulated by a constant
component plus a time-varying term at ωr. This type of amplitude modulation
(AM) is denoted double-sideband AM with residual carrier [Tre01]. The second
term is a carrier in quadrature to the first carrier, modulated by a component
in quadrature to the first modulation term. As the modulation term contains no
constant component, the carrier frequency is not present. This type of AM is
called double-sideband suppressed-carrier AM. The terms C1 + C2 and C2 − C1

are proportional to the modulation indices of the two signals and they depend on
the relative degree of eccentricity. Therefore, an increasing eccentricity leads to
a higher modulation index. It can also be seen that static eccentricity (ωr = 0)
provokes no modulation of the flux at all because the amplitudes of the two carriers
are constant in this case.

The induced voltage Vi(t) in the coil is obtained by differentiating equation
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(2.95) with respect to time:

Vi(t) = lmRsBi sin (ϕ′i − Ωit)

{
2

mi

Ωi sin

(
mi
θp

2

)
+

[
Ωi (C1 + C2) + ωr (C2 − C1)

]
cos

(
ωrt−

θ1 + θ2

2

) }
− lmRsBi cos (ϕ′i − Ωit)

[
Ωi (C2 − C1) + ωr (C1 + C2)

]
sin

(
ωrt−

θ1 + θ2

2

)
(2.98)

with

ϕ′i = mi
θ1 + θ2

2
− ϕi (2.99)

Thus, the induced voltage is also the sum of two amplitude modulated signals,
similar to the phase flux.

Suitable simplifications for the modulation indices can be found by rewriting
C1 + C2 and C2 − C1 using sin (α+ β) = sinα cos β + sin β cosα:

C1 + C2 =
2δd

m2
i − 1

[mi sin (miθm) cos θm − cos (miθm) sin θm] (2.100)

C2 − C1 =
2δd

m2
i − 1

[mi cos (miθm) sin θm − sin (miθm) cos θm] (2.101)

where θm denotes half the coil pitch: θm = θp/2. The pole pair numbers of the
flux density waves are mi = kp. The strongest flux density waves are those with
k = 1, 5, 7, 11, . . . and k = Nr/p±1 for the slot harmonics. In any case, waves with
k being even or a multiple of 3 do not exist theoretically. A phase winding, even if
it is fractional pitch, can be considered as a sum of full pitch coils with θp = π/p
[Kos69, p.113]. The angle θm is therefore θm = π/2p. Under these assumptions:

sin (miθm) = sin
(
k
π

2

)
= ±1 (2.102)

cos (miθm) = cos
(
k
π

2

)
= 0 (2.103)

and consequently:

|C1 + C2| = mi
2δd

m2
i − 1

cos

(
π

2p

)
(2.104)

|C2 − C1| =
2δd

m2
i − 1

cos

(
π

2p

)
(2.105)

Since p > 1 has been supposed (see 2.5.3), it is true that:

|C1 + C2| ≥ 2 |C2 − C1| (2.106)

The equality is obtained for mi = 2 i.e. the fundamental flux density wave of
a motor with p = 2. Hence, the modulation index of the first term in (2.95)
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with the residual carrier is always greater than the one of the second term with
suppressed carrier, especially if higher order space harmonics or higher pole motors
are considered. The same considerations are true for the induced voltage Vi(t) from
equation (2.98) because Ωi ≥ 2ωr since p > 1. In the following, the term with
suppressed carrier is assumed of significantly smaller modulation index compared
to the term with residual carrier. Consequently, it will be neglected in some cases
for the sake of clarity and simplicity.

The total induced voltage in the phase winding is obtained by superposition
of the coil voltages. It can be demonstrated that the sum of several amplitude
modulated coil voltages is also an amplitude modulated signal (see appendix A.2).

The resulting stator current ide(t) is a linear function of the induced voltage and
is written in a general form as the sum of two amplitude modulated components
in quadrature:

ide(t) =
∑

i

Ii [1 + α1,i cos (ωrt− ϕ1)] cos Ωit+ α2,i sin (ωrt− ϕ1) sin Ωit (2.107)

Initial phase angles have been supposed zero. The amplitude modulation indices
α1,i and α2,i are directly proportional to the degree of dynamic eccentricity δd. The
modulation index α2,i of the second term without residual carrier is significantly
smaller than α1,i.

Naturally, the effect of the amplitude modulation will be most significant on
the strongest current components. These are the fundamental supply frequency fs

and in some cases the rotor slot harmonics at nrtNrfr ± fs. A simplified stator
current model for an induction motor with eccentricity taking into account only
the fundamental current component is therefore given by:

ide(t) = I1 [1 + α1 cos (ωrt− ϕ1)] cosωst (2.108)

where I1 is the fundamental stator current amplitude. Note that the amplitude
modulated component without carrier is neglected in this simplified expression.

2.5.5 Torque

This section attempts to explain theoretically how eccentricity leads to an increase
of oscillating components at fr in the output torque of the induction motor. This
has been observed through numerical simulations of induction machines with sta-
tic eccentricity in [Dor94] and both types of eccentricity in [Rus96]. However, a
theoretical demonstration in literature is not known to the author.

According to the considerations in 2.2.4, torque is produced by the interaction
of stator and rotor flux density waves with the derivatives of the rotor flux density
waves. The interacting waves must have equal pole pair numbers; if not, the
resulting torque is zero.

In the following, only the fundamental flux density waves without any higher
order armature reactions are considered. Static eccentricity leads to additional
flux density waves with p± 1 pole pairs and pulsation ωs equal to the fundamental
pulsation. Due to their pole pair number, the interaction of these additional waves
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with the fundamental does not produce any torque. Torque can be produced if
e.g. a stator-related wave with p ± 1 pole pairs (see (2.88)) interacts with the
corresponding rotor-related wave with the same pole pair number. However, as
both waves have the same pulsation, the resulting torque is independent of time
and thus contributes to the average torque. This is identical to the asynchronous
torques discussed in 2.3.5. Rusek [Rus96] also observed no significant changes in
pulsating torques with static eccentricity.

In the case of dynamic eccentricity, the situation is similar to static eccentric-
ity. The only possible interactions that may produce torque takes place between
additional p± 1 pole pair stator-related waves and the corresponding rotor-related
waves (see (2.90)). In contrast to the static eccentricity, these waves have pulsa-
tions ωs ± ωr. However, the waves with equal pole pair numbers have always the
same pulsation and the resulting torque is therefore independent of time. Neverthe-
less, numerical simulations show an increasing oscillating torque at shaft rotational
frequency fr in [Rus96]. Therefore, it can be concluded that the simplified theory
developed in the preceding sections cannot provide an explanation.

Oscillating torques coming along with mixed eccentricity can however be ex-
plained, in contrast to static or dynamic eccentricity only. Mixed eccentricity leads
simultaneously to additional p±1 flux density waves with pulsations ωs and ωs±ωr.
Having equal pole pair numbers but different pulsations they necessarily produce a
time-varying torque. For illustration, consider the following example with stator-
related flux density waves resulting from static eccentricity (see (2.88)) which are
of the following form:

Bs(θ, t) = δsBs cos [(p± 1) θ − ωst] (2.109)

These waves interact with rotor-related waves resulting from dynamic eccentricity
that can be written as (see (2.90)):

Br(θ, t) = δdBr cos [(p± 1) θ − (ωs ± ωr) t− ϕr] (2.110)

According to equation (2.50), the resulting torque Γi from this particular interac-
tion will be:

Γi = −πlmR0g0

µ0

δsδdBsB
′
r sin (∓ωrt− ϕr) (2.111)

The resulting torque is therefore pulsating at ωr and its amplitude is proportional
to the product of the degrees of static and dynamic eccentricity. The torque pro-
ducing mechanisms correspond to those of synchronous torques. Other possible
interactions in the case of mixed eccentricity include:

• Stator-related flux density waves resulting from dynamic eccentricity interact
with rotor-related waves resulting from static eccentricity

• Interactions of rotor-related waves with the derivative of other rotor-related
waves according to the second term in equation (2.50). One of the inter-
acting waves must result from static eccentricity, the other from dynamic
eccentricity.
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These interactions also produce pulsating torques at ωr.
From a practical point of view, every electrical machine has an inherent level

of mixed eccentricity due to manufacturing tolerances. Pure static or dynamic
eccentricity is not very likely to be found in reality. The considered mechanism
for pulsating torque generation can be supposed in nearly all cases. However, it
does not explain the pulsating torques that can be found in numerical simulations
with dynamic eccentricity only. This requires the consideration of higher order
armature reactions in the MMF and permeance wave approach.

Until now, it has been supposed that the fundamental stator and rotor MMFs
combined with the modified airgap permeance produce additional flux density
waves. These flux density waves may induce currents at non supply frequencies in
the stator windings. They may produce oscillating torques in the case of mixed
eccentricity. However, these additional currents flowing in the stator windings also
give rise to other MMF waves and consequently new corresponding flux density
waves. These higher order armature reactions have been neglected up to now, but
they can explain the pulsating torques in case of dynamic eccentricity.

The amplitude-modulated stator current in case of dynamic eccentricity (see
equation (2.108)) can be rewritten and interpreted as the sum of the fundamental
pulsation at ωs and two sidebands at ωs ± ωr:

ide(t) = I1 cosωst

+
1

2
α1I1 cos [(ωs + ωr) t− ϕ1] +

1

2
α1I1 cos [(ωs − ωr) t+ ϕ1]

(2.112)

The additional stator current components at ωs ± ωr are flowing in the phase
windings and therefore give rise to a series of MMF waves with the corresponding
pulsation. The pole pair numbers of these waves will be the same as those of
the fundamental MMF wave and its space harmonics i.e. p(6c ± 1) (see equation
(2.15)). Among these, the waves with pole pair number p will have the strongest
amplitudes and only they will be considered in the following.

The additional MMF waves Fecc,dy(θ, t) due to the secondary armature reaction
in case of dynamic eccentricity are therefore:

Fecc,dy(θ, t) = Fecc,dy cos [pθ − (ωs ± ωr) t− ϕi] (2.113)

with amplitude Fecc,dy proportional to the the relative degree of eccentricity. The
corresponding flux waves Becc,dy(θ, t) are obtained by multiplication of Fecc,dy(θ, t)
with the airgap permeance Λ(θ, t). If only the constant term in the permeance
expression is considered, the flux density waves are:

Becc,dy(θ, t) = Becc,dy cos [pθ − (ωs ± ωr) t− ϕi] (2.114)

The two flux density waves with p pole pairs and pulsations ωs ± ωr can interact
with the fundamental rotor-related flux density wave that has also p pole pairs but
a different pulsation ωs. According to expression (2.50), the produced torque Γi

will be of the following form:

Γi = −πlmR0g0

µ0

Becc,dyB
′
r sin (∓ωrt− ϕi) (2.115)
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Similar to the case with mixed eccentricity, the resulting torque is pulsating at the
angular shaft frequency ωr. Hence, it has been shown that oscillating torques in
case of a pure dynamic eccentricity can be explained by the MMF waves resulting
from additional non-supply frequency currents flowing in the stator winding. These
MMF waves with the same pole pair number as the fundamental can interact
with the fundamental rotor flux density wave to produce an oscillating torque
component. The described mechanism will also contribute to oscillating torques in
case of mixed eccentricity.

The preceding theoretical considerations attempt to explain the apparition of
oscillating torque components in case of dynamic and mixed eccentricity using
the MMF and permeance wave approach. Experimental results obtained with
dynamic eccentricity corroborate this fact and will be presented later in this work.
An important consequence of these oscillating torques is that they lead to speed
oscillations and consequently to a phase modulation of the stator current. The
phenomenon is equivalent to the considered load torque oscillations in 2.4, with
the only difference that the torque oscillations are contained in the electromagnetic
motor output torque instead of the load torque. However, the effect on the drive will
be exactly the same through speed and rotor angle oscillations. Hence, dynamic
and mixed eccentricity are likely to produce not only amplitude modulation of
the induction motor stator current but they may also provoke phase modulation
through the oscillating motor output torque.

2.6 Summary

This chapter presented an analytical approach for the modeling of mechanical fault
related phenomena in induction motor drives. The mechanical faults are supposed
to have two possible major effects on the drive: First, a small additional load torque
oscillation that leads to oscillations of the mechanical speed. Secondly, mechanical
faults may lead to higher levels of static, dynamic or mixed rotor eccentricity.

The chosen modeling method was the classical MMF and permeance wave ap-
proach. The main reasons for this choice are the generality of the approach without
limitations to a particular machine, the physical comprehension of causes and ef-
fects and, above all, the need to obtain analytical expressions for the airgap flux
density and the stator current. Actually, only these analytical expressions can pro-
vide knowledge about the type of modulation occurring as a consequence of the
fault. The emphasis of these considerations was on the determination of the cur-
rent frequency content and the modulation types, not on the calculation of exact
amplitudes of flux density waves and stator current components. This would have
required exact knowledge of the machine construction and would have led to a loss
of generality.

One purpose of this chapter is the presentation of the different stator current
frequency components and their origin without a fault. A healthy induction motor
already contains a great number of spectral components due to its supply voltage,
rotor slotting and possible iron saturation. Their frequencies as well as their pos-
sible variations under different operating conditions must be taken into account.
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Table 2.1: Synopsis of stator current frequency components

Name of the Stator Cur-
rent Component

Frequency Origin Modulation

Fundamental fs Supply Voltage -
Harmonics of supply fre-
quency

nfs Harmonics in supply
voltage

-

Rotor slot harmonics kNrfr ± nfs Modified airgap AM
Saturation harmonics fs ± 2kfs Deformation of flux den-

sity → Modified airgap
AM

Torque/speed oscillation nfs ± fc Modified rotor MMF PM
Dynamic eccentricity nfs ± fr Modified airgap AM

nfs ± fr Torque oscillation PM

This is of great importance for the choice of an appropriate stator current based
condition monitoring approach. The results are resumed in the first part of Ta-
ble 2.1.

Although the MMF and permeance wave approach is used since the begin-
ning of the 20th century, the following new results were obtained for an induction
motor analysis under a mechanical fault: It was shown that torque and speed os-
cillations of the induction motor result in a phase-modulated stator current. In
contrast, airgap eccentricity provokes amplitude modulation of the stator current
in the particular case of dynamic or mixed eccentricity. These different types of
modulations can be distinguished using adequate signal processing methods that
will be discussed in further parts of this work. It should therefore be possible to
obtain valuable information about the type and origin of a mechanical fault by
stator current analysis. This is especially important if a torque oscillation at shaft
rotational frequency occurs, because its spectral current signature is identical to
the one with dynamic eccentricity. The additional stator current frequencies re-
lated to torque oscillations and airgap eccentricity as well as the modulation type
are also shown in Table 2.1.

Furthermore, the reasons for the existence of pulsating torques in case of ec-
centricity have been discussed. So far, only simulation results have been found
in literature and no theoretical explanation was given. Using again the MMF and
permeance wave approach, interactions between stator and rotor flux density waves
were identified that explain the increase in oscillating torques at the rotational fre-
quency in case of dynamic and mixed eccentricity. These oscillating torques and the
associated speed ripple will theoretically provoke an additional phase modulation
of the stator current of an eccentric motor.

In the following parts of this work, different signal processing methods suit-
able for stator current analysis will be presented. Since the mechanical fault may
provoke both amplitude and phase modulations, methods capable of distinguish-
ing these two modulations will be of particular interest. In addition, given that
variable speed drives are considered, transient signals with varying frequencies are
encountered requiring non-stationary signal analysis tools.
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3.1 Introduction

This chapter introduces the signal processing methods used for induction motor
drive monitoring in the following chapters. The signals correspond to measured
physical quantities of the drive. In the context of this work, two types of signals
can be distinguished depending on their origin: mechanical signals such as torque,
shaft speed, shaft angle, stator frame vibrations, and electrical signals e.g. terminal
voltages and particularly the line currents. As the origin of these signals is a
rotating machine, they are generally periodic signals.

The basic analysis method for time-periodic signals is the estimation of the
signal power spectral density with Fourier transform based methods. This will
be referred to as classical spectral analysis in the following. The considered me-
chanical faults often lead to additional periodic phenomena as demonstrated in the
previous chapter. Thus, the fault mechanisms produce additional frequencies or a
rise of existing ones in the stator current, torque, shaft speed or vibration. Spec-
tral analysis for condition monitoring and fault detection is therefore an obvious
approach, used in most existing works.

However, if an induction motor drive operates under variable speed conditions,
the most frequency components are time-varying since they depend almost always
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on shaft speed or supply frequency. If these variations are slow during the observa-
tion interval, quasi-stationarity can be supposed and the classical spectral analysis
techniques may still be applied. However, when variations are faster, more ad-
vanced signal processing methods for non-stationary signal analysis are required.

Two popular approaches to non-stationary signal analysis exist: Time-frequency
and time-scale or wavelet analysis. The principles of both methods will be shortly
presented. However, only time-frequency analysis is used in the following and the
reasons for this will be discussed as well.

In the further course of this work, another original approach to current based
fault detection is studied: signal parameter estimation. This method does not rely
on frequency analysis but identifies model parameters which provide knowledge
about possible faults. This method relies on the stator current models derived in
chapter 2.

The outline of the chapter is the following: First, some basic concepts of sig-
nal processing are reviewed including correlations, the Fourier transform, sampling
and the concept of the analytical signal. Then, classical spectral analysis meth-
ods based on the Fourier transform will be discussed. In the following, the basic
concepts of time-frequency analysis are set forth together with the most impor-
tant representations. The last part of this chapter deals with signal parameter
estimation.

3.2 Basic Concepts

3.2.1 Classes of Signals

Various types of signals may be encountered and it can be useful to classify these
signals according to certain properties. The type of signal and its properties are
important for the choice of an appropriate method to analyze and process the
signal. The reason is that certain signal processing methods will only be effective
for a certain class of signals.

In the following, most definitions will be given for continuous-time and discrete-
time signals. They will be noted x(t) and x[k] respectively, distinguished by round
or square brackets.

3.2.1.1 Deterministic Signals

Signals can first be classified according to their deterministic or random nature.
Deterministic signals are mathematically reproducible. Therefore, deterministic
signals can be described by a mathematical expression. This implies that future
values of the signal can be predicted from past values [Cas03].

Usually, deterministic signals are divided into subclasses: finite energy signals
and finite power signals. The energy E of finite energy signals verifies the following
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Figure 3.1: Classification of signals.

condition:

E =

+∞∫
−∞

|x(t)|2 dt < ∞ (3.1a)

E =
+∞∑

k=−∞

|x[k]|2 < ∞ (3.1b)

Finite energy signals generally have a transient or impulse character. They often
verify |x(t)| → 0 for |t| → ∞.

The power P of finite power signals is:

P = lim
T→∞

1

T

+T
2∫

−T
2

|x(t)|2 dt < ∞ (3.2a)

P = lim
N→∞

1

2N + 1

+N∑
k=−N

|x[k]|2 < ∞ (3.2b)

A typical example of power signals are periodic signals such as sinusoidal signals.
The classification scheme is shown in Fig. 3.1.

3.2.1.2 Random Signals

In contrary to deterministic signals, random or stochastic signals cannot be de-
scribed by a deterministic mathematical expression. They can be considered as
realizations of stochastic processes. A stochastic process x(t) is statistically de-
termined by its probability density function p(x, t) [Pap65]. However, since this
function is not always known, other quantities can be used to describe the process
e.g. the moments or the autocorrelation function.

Consider for example a random signal n(t) which is a Gaussian noise. Gaussian
noise is a stochastic process commonly used to model measurement noise. The
signal amplitude n(t) is distributed according to a normal distribution and the
corresponding probability density function p(n) is:

p(n) =
1√

2πσ2
e−(n−µ)2/2σ2

(3.3)
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where µ denotes the mean and σ2 the variance.
After this introductory example, some fundamentals and definitions about ran-

dom variables and stochastic processes are considered. The moments mk of a
random variable X are defined as follows [Pap65]:

mk = E{Xk} =

+∞∫
−∞

xkp(x) dx (3.4)

The first moment E{X} = µ defined for k = 1 is of particular importance; it is
also called mean or expected value. Another important parameter of a random
variable is its variance or dispersion σ2, defined as the second central moment:

var {x} = σ2 = E{(X − µ)2} =

+∞∫
−∞

(x− µ)2 p(x) dx (3.5)

The positive square root σ of the variance σ2 is called the standard deviation.
For stochastic processes, the mean µ(t) is defined in a similar way as the ex-

pected value of the random variable x(t):

µ(t) = E{x(t)} =

+∞∫
−∞

x p(x, t) dx (3.6)

Note that the mean is in general a function of time.

3.2.2 Correlation

The following sections review the definitions of correlation functions for determin-
istic and random signals. In the general case, a correlation function measures the
similarity between two signals with respect to their mutual time-delay.

3.2.2.1 Deterministic Signals

The cross-correlation of two complex finite energy signals x(t) and y(t) is defined
as [Max00]:

Rxy(τ) =

+∞∫
−∞

x(t) y∗(t− τ) dt (3.7)

where y∗ denotes the complex conjugate of y. For finite power signals:

Rxy(τ) = lim
T→∞

1

T

+T
2∫

−T
2

x(t) y∗(t− τ) dt (3.8)

The autocorrelation function Rxx(τ) is obtained for y(t) = x(t). According to
(3.1a), (3.2a) and (3.8), Rxx(0) is the energy or power of a finite energy or finite
power signal.
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3.2.2.2 Random Signals

The cross-correlation function Rxy(t1, t2) of two complex stochastic processes x(t)
and y(t) is defined as the joint first moment of the random variables x(t1) and
y∗(t2) [Pap65]:

Rxy(t1, t2) = E{x(t1)y∗(t2)} =

+∞∫
−∞

x(t) y∗(t) p(x, y, t1, t2) dx dy (3.9)

3.2.3 Stationarity of Stochastic Processes

Different types of stationarity of stochastic processes are distinguished [Pap65]:

Stationarity in the strict sense: A stochastic process x(t) is stationary in the
strict sense if its statistics are not affected by a time shift. This means that
the two processes x(t) and x(t + τ) have the same statistics. It follows that
the probability density function p(x, t) of the stochastic process is identical
for all t and therefore independent of time: p(x, t) = p(x).

Stationarity in the wide sense: A stochastic process x(t) is stationary in the
wide sense (or weakly stationary) if its mean E{x(t)} is a constant indepen-
dent of time and if its autocorrelation function Rxx(t1, t2) depends only on
τ = t1 − t2 (see 3.2.2)

µ(t) = E{x(t)} = µ , Rxx(t1, t2) = Rxx(τ) (3.10)

All processes that are stationary in the strict sense are also stationary in the
wide sens.

Periodical stationarity (or cyclostationarity): The process x(t) is periodi-
cally stationary with period T in the strict sense if the statistics are periodic
with T . The random variables x(t), x(t + T ), . . . , x(t + nT ), . . . then have
the same probability density function. The wide sense cyclostationarity is
verified if only the mean and the autocorrelation are periodic:

µ(t) = µ(t+ nT ) , Rxx(t1 + kT, t2 +mT ) = Rxx(t1, t2) (3.11)

For illustration and better understanding, consider the following three exam-
ples:

1. The previously mentioned Gaussian noise n(t) in (3.3) could be described by
a normal probability density. The density is independent of time which means
that all the moments are independent of time. This process is stationary in
the strict sense.

2. If a sinusoidal signal with constant and known amplitude A and frequency
f is measured from a source at an arbitrary time instant, its phase ϕ is
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generally unknown. The measured signal can be considered as a stochastic
process x(t) according to:

x(t) = A sin(2πft+ ϕ) (3.12)

where ϕ is a random variable with a uniform density p(ϕ) over the interval
[0, 2π[:

p(ϕ) =

{
1/2π for ϕ ∈ [0, 2π[
0 else

(3.13)

This process is not stationary in the strict sense because its probability den-
sity depends on time. The mean of this process is:

E{x(t)} = AE{sin(2πft+ ϕ)} = 0 (3.14)

because the expected value of sin(c + ϕ) is zero for an arbitrary constant c
with the considered density p(ϕ). The autocorrelation is calculated as follows
with ω = 2πf :

Rxx(t1, t2) = E {A sin(ωt1 + ϕ)A sin(ωt2 + ϕ)}

=
1

2
A2E{cos(ωt1 − ωt2)− cos(ωt1 + ωt2 + 2ϕ)}

=
1

2
A2 cos(ωt1 − ωt2) =

1

2
A2 cos(ωτ) = Rxx(τ)

(3.15)

Thus, it becomes clear that this process is weakly stationary due to the
constant mean and the autocorrelation Rxx depending only on the time delay
τ = t1 − t2.

3. Consider as last example a stochastic process where the amplitude of a sine
is a random variable:

x(t) = A sin(ωt) (3.16)

where ω is a constant and A a normal random variable with zero mean and
variance σ2. This process can already be classified as periodically stationary
in the strict sense because its probability density function is periodic. The
mean of this process is zero because:

E{x(t)} = E{A} sin(2πft) = 0 (3.17)

The second moment of A is the variance: E{A2} = σ2 because A is centred
with µ = 0. The autocorrelation function is then given by:

Rxx(t1, t2) = E
{
A2 sin(ωt1) sin(ωt2)

}
= σ2 sin(ωt1) sin(ωt2)

=
1

2
σ2 [cos(ωt1 − ωt2)− cos(ωt1 + ωt2)] 6= Rxx(τ)

(3.18)

It becomes evident that equation (3.11) is verified i.e. the condition for peri-
odic stationarity in the wide sense. This was already included in the periodic
stationarity in the strict sense. However, the process is not stationary in
the wide sense according to (3.10) because its autocorrelation function also
depends on t1 + t2.
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In the considered application, most signals are cyclostationary when the drive is
operating in steady state i.e at constant speed. However, during speed transients,
signals will be non-stationary due to the variable fundamental supply frequency.

3.2.4 Fourier Transform

In signal processing, the Fourier transform X(f) of a time continuous signal x(t)
is commonly defined as:

X(f) = F{x(t)} =

+∞∫
−∞

x(t) e−j2πft dt (3.19)

Comparing the Fourier transform to a cross-correlation, it becomes clear that X(f)
is a measure of similarity between the signal x(t) and a family of complex mono-
chromatic exponential signals (cisoids) of frequency f . Recall that X(f) is a com-
plex containing information about the similarity in amplitude and the phase, often
omitted in spectral analysis. The inverse Fourier transform is then given by:

x(t) = F−1{X(f)} =

+∞∫
−∞

X(f) ej2πft df (3.20)

The discrete Fourier transform X[m] of a discrete-time signal x[k] of length N
samples is defined as [Max00]:

X[m] =
N−1∑
k=0

x[k]e−j2πmk/N m = 0, 1, . . . , N − 1 (3.21)

where m/N is the discrete normalized frequency with respect to the sampling
frequency fs. The physical frequency f is obtained as:

f =
m

N
fs (3.22)

The inverse of the discrete Fourier transform is:

x[k] =
1

N

N−1∑
m=0

X[m]ej2πmk/N k = 0, 1, . . . , N − 1 (3.23)

If the signal length is 2n, the discrete Fourier transform can be efficiently calculated
using so-called fast Fourier transform (FFT) algorithms.

3.2.5 Sampling

The continuous-time signal is converted into a discrete-time signal by sampling. In
general, sampling consists of taking uniformly spaced samples from the continuous-
time signal x(t). These samples then constitute the discrete-time signal xd[k]. The
sampling period is defined by Ts = 1/fs where fs denotes the sampling frequency.
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Mathematically, the discrete-time signal xd[k] can be described by the multi-
plication of the continuous-time signal x(t) with a series of equally spaced Dirac
delta functions:

xd[k] = x(t)
∞∑

k=−∞

δ (t− kTs) (3.24)

The Fourier transform Xd(f) of xd[k] is then obtained by the convolution product
of X(f) and the Fourier transforms of the series of Dirac delta functions. The
latter is derived using the Poisson formula [Cas03]:

F

{
+∞∑

n=−∞

δ(t− nTs)

}
= F

{
1

Ts

+∞∑
k=−∞

ej2πkt/Ts

}
=

1

Ts

+∞∑
k=−∞

δ (f − kfs) (3.25)

Hence, Xd(f) expresses as:

Xd(f) = X(f) ∗ 1

Ts

+∞∑
k=−∞

δ (f − kfs) =
1

Ts

+∞∑
k=−∞

X (f − kfs) (3.26)

It can be seen that the Fourier transform of the discrete signal is the fs-periodic
repetition of the original Fourier transform X(f). This is illustrated in Fig. 3.2:
The Fourier transform X(f) of the continuous-time signal is shown in Fig. 3.2(a)
where x(t) is supposed limited in bandwidth B. The Fourier transforms of the
corresponding discrete-time signals are depicted in Fig. 3.2(b) and 3.2(c) for two
different sampling frequencies. When fs > 2B the adjacent spectra do not overlap.
On the other hand, if fs < 2B, overlap exists which is called spectral aliasing.

Hence, the Nyquist-Shannon sampling theorem can be deduced. It states that a
continuous bandwidth-limited signal with bandwidth B can be fully reconstructed
after sampling if the condition fs > 2B is verified. The frequency fs/2 is called
the Nyquist frequency. The reconstruction of the continuous-time signal is possible
because no aliasing occurs if fs > 2B is respected. Note that this is true for real
signals where the effective bandwidth is 2B. The situation is slightly different with
complex signals (analytical signals).

The signals in this application are not bandlimited due to high frequency in-
verter switching harmonics. However, all signals are lowpass filtered with adapted
anti-aliasing filters before analog to digital conversion.

3.2.6 Analytical Signal

3.2.6.1 Properties

The real and imaginary parts of X(f), the Fourier transform of a real signal x(t),
can be written as:

<{X(f)} =

+∞∫
−∞

x(t) cos(2πft) dt (3.27a)

={X(f)} = −
+∞∫

−∞

x(t) sin(2πft) dt (3.27b)
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f

X(f)

B−B
(a) Fourier transform X(f) of the continuous-time signal

f

Xd(f)

−2fs −fs fs 2fs

(b) Fourier transform Xd(f) of the discrete-time signal with fs > 2fmax: no spectral
aliasing.

f

Xd(f)

−2fs −fs fs 2fs

(c) Fourier transform Xd(f) of the discrete-time signal with fs < 2fmax: spectral
aliasing.

Figure 3.2: Illustration of the effect of sampling on the Fourier transform with
different sampling frequencies.



3.2. Basic Concepts 59

This implies the following symmetry of X(f) [Max00]:

<{X(−f)} = <{X(f)} (3.28a)

={X(−f)} = −={X(f)} (3.28b)

These relations show that the values of the Fourier transform with respect to
the negative frequencies can be entirely deduced from the values of the positive
frequencies. The negative frequencies of X(f) contain no additional information
if the values for positive frequencies are known. Therefore, a disadvantage of real
valued signals is the large bandwidth that could theoretically be divided by two if
the negative frequencies would be omitted.

This is realized considering analytical signals . A signal z(t) is called an analyt-
ical signal if its Fourier transform is zero for negative frequencies [Boa03]:

Z(f) = 0 for f < 0 (3.29)

In general, z(t) will be a complex-valued signal. Analytical signals are useful to
avoid additional interferences in quadratic time-frequency distributions and they
are important for a univocal phase definition.

3.2.6.2 Hilbert Transform

Consider now how a real signal x(t) is transformed into the corresponding analytical
signal z(t). The Fourier transform Z(f) is zero for negative frequencies which leads
to the following definition of Z(f) in the frequency domain [Max00]:

Z(f) = X(f)+sign(f)X(f) = X(f)+ j(−j)sign(f)X(f) = X(f)+ jY (f) (3.30)

where Y (f) is the imaginary part of Z(f) and

sign(f) =


1 if f > 0
0 if f = 0

−1 if f < 0
(3.31)

which leads to the following relation between Z(f) and X(f):

Z(f) =


2X(f) if f > 0
X(0) if f = 0

0 if f < 0
(3.32)

It can be seen that the energies of x(t) and z(t) are identical since the amplitudes
of the positive frequencies double. Expression (3.30) also shows that the analytical
signal can be obtained by taking x(t) as its real part and a second signal y(t) as
imaginary part. The signal y(t) is obtained from x(t) using a linear filter h(t)
of complex gain H(f) = (−j)sign(f). The gain of this filter is −j for the pos-
itive frequencies (i.e. a phase shift of −π/2) and j for the negative frequencies
corresponding to a phase shift of +π/2. The filter is also called a quadrature filter.
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This filter realizes the so-called Hilbert transform, denoted H{}, and y(t) is
called the Hilbert transform of x(t). Therefore, the analytical signal z(t) can be
written as:

z(t) = x(t) + jy(t) = x(t) + jH{x(t)} (3.33)

The impulse response of the filter is h(t) = 1/(πt) which leads to the following
time-domain expression of the Hilbert transform:

y(t) = H{x(t)} =
1

π
p.v.

+∞∫
−∞

x(τ)

t− τ
dτ (3.34)

where p.v. denotes the Cauchy principal value of the improper integral.
Consider the following simple example for illustration: If the real signal is

supposed to be x(t) = cos(2πf0t), its Hilbert transform is the corresponding sine.
The analytical signal is therefore:

z(t) = cos(2πf0t) + jH{cos(2πf0t)} = cos(2πf0t) + j sin(2πf0t) = ej2πf0t (3.35)

The Fourier transform of the real signal is (δ(f − f0) + δ(f + f0))/2 i.e. two Dirac
delta functions at ±f0 whereas the Fourier transform of the cisoid z(t) is δ(f −f0).
This demonstrates the reduction in bandwidth of the analytical signal compared
to the corresponding real signal. Theoretically, the sampling rate of an analytical
signal could be reduced by the factor two compared to a real signal. However, this
would also induce a complex representation of the signal and therefore an equal
amount of memory for storage.

3.2.6.3 Hilbert Transform of Modulated Signals

An important application of the Hilbert transform is the demodulation of amplitude
and phase modulated signals. Consider the following real-valued modulated signal:

x(t) = a(t) cosφ(t) (3.36)

where a(t) and φ(t) are the time variable amplitude and phase. It is desirable to
obtain through the Hilbert transform an analytical signal z(t) of the form:

z(t) = a(t)ejφ(t) (3.37)

where a(t) is the instantaneous amplitude and φ(t) the instantaneous phase. The
real signal x(t) can be deduced from z(t) without ambiguity by considering x(t) =
<{z(t)}. However, the inverse operation i.e. finding the analytical signal z(t)
corresponding to a real signal x(t) is not well-defined. Actually, the signal x(t)
can be written with an infinite number of pairs [a(t), φ(t)] so that the definition of
instantaneous amplitude and phase of a real signal is ambiguous [Pic97] [Fla98].

The following relation must be true for an unambiguous definition of the ana-
lytical signal of x(t):

H{a(t) cosφ(t)} = a(t) sinφ(t) (3.38)
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f

A(f) Ψ(f)

c

Figure 3.3: Illustration relative to the Bedrosian theorem.

This implies the following two conditions [Fla98]:

H{a(t) cosφ(t)} = a(t)H{cosφ(t)} (3.39)

H{cosφ(t)} = sinφ(t) (3.40)

The first equation (3.39) is true if the Fourier transforms of a(t) and cosφ(t) verify:

A(f) = F {a(t)} = 0 for |f | > c (3.41)

Ψ(f) = F {cosφ(t)} = 0 for |f | < c (3.42)

where c is an arbitrary positive constant. According to equations (3.41) and (3.42),
the two Fourier transforms do not overlap and a(t) has the characteristics of a low-
pass signal whereas cosφ(t) is a high-pass signal (see illustration in Fig. 3.3). This
is the product theorem for Hilbert transforms, also called the Bedrosian theorem
[Bed63].

The second equation (3.40) is verified when the bandwidth of cosφ(t) is rela-
tively small. The error between the theoretical quadrature component and the one
obtained with the Hilbert filter was calculated by Lerner in [Ler60] and found to be
of the order of the percentage bandwidth. Further discussions on this topic can be
found in contributions from Rihaczek, Nuttall and the corresponding replies from
Bedrosian [Rih66] [Nut66].

It can be concluded that a real-valued modulated signal x(t) = a(t) cosφ(t) has
a corresponding unique analytical signal z(t) = a(t)ejφ(t) if the Fourier transforms
of a(t) and cosφ(t) do not overlap and if the bandwidth of cosφ(t) is relatively
small. Then, the analytical signal can be represented as a vector in a complex
plane as depicted in Fig. 3.4. The amplitude of the vector is the instantaneous
amplitude a(t), its phase the instantaneous phase φ(t). It becomes clear that the
amplitude and phase information can now easily be extracted from z(t) by simply
considering the absolute value and the phase of a complex. Applications are for
example amplitude and phase demodulation in communication systems.

3.3 Spectral Estimation

Spectral estimation is widely used for the analysis of stationary signals. The aim is
the estimation of the power spectral density (PSD) of a signal i.e. the distribution
of signal power with respect to frequency. Information about the signal is available
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φ(t)

a(t)

<{z(t)}

={z(t)}

Figure 3.4: Vector representation of an analytical signal z(t) in the complex
plane.

through a data record of finite length. Two main approaches exist: parametric and
non-parametric spectral estimation.

Parametric methods first suppose a particular signal model. Then, the model
parameters are identified from the available data record´. Finally, the correspond-
ing signal spectrum is derived as a function of the model parameters. Advantages
of this approach are high accuracy and good spectral resolution, especially in case
of short data records. However, these methods only perform well for an appropriate
signal model. This means that a priori knowledge of the signal is necessary.

Non-parametric methods are sometimes referred to as classical spectral estima-
tion. They do not require any a priori knowledge of the signal to be analyzed.
Their performance is satisfactory if long data records are available. In contrast to
the parametric approach, these methods rely on the Fourier transform of the signal
or its estimated autocorrelation function. In the following, non-parametric spectral
estimation will be used for signal analysis since long data records are available. In
addition, no a priori assumptions about the signals have to be made that may sig-
nificantly influence the estimated spectrum. Furthermore, these methods are also
more simple to use and can be efficiently computed using Fast Fourier Transform
(FFT) algorithms.

3.3.1 Definitions

The power spectral density Pxx(f) of a complex discrete-time wide sense station-
ary random process x[n] is defined as the Fourier transform of its autocorrelation
function Rxx[k] [Kay88]:

Pxx(f) =
∞∑

k=−∞

Rxx[k]e
−j2πfk (3.43)
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where the discrete autocorrelation function Rxx[k] is:

Rxx[k] = E{x[n]x∗[n+ k]} (3.44)

Equation (3.43) is sometimes referred to as the Wiener-Khintchine theorem.
Another alternative definition of the PSD is the following:

Pxx(f) = lim
M→∞

E

 1

2M + 1

∣∣∣∣∣
M∑

n=−M

x[n]e−j2πfn

∣∣∣∣∣
2
 (3.45)

The PSD is the mathematical expectation of the squared magnitude of the Fourier
transform divided by the data record length. These two definitions of the PSD are
shown to be equal e.g. in [Kay88] [Cas03].

3.3.2 Periodogram

The periodogram spectral estimator P̂per(f) is based on the definition of the PSD
given in equation (3.45). The expectation operator is neglected and the estimator
expresses as:

P̂per(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

x[n]e−j2πfn

∣∣∣∣∣
2

(3.46)

Therefore, the periodogram is simply the squared discrete Fourier transform of the
data record divided by the number of samples N . It can be rapidly calculated even
for long samples using FFT algorithms.

The performance of the periodogram as estimator for the signal PSD can be
studied through the bias and the variance (see section 3.5.2). First, consider the
estimation bias: It can be shown that the periodogram is the convolution of the true
PSD with the Fourier transform of a triangular Bartlett window [Kay88] [Cas03].
The Bartlett window wB[n] is given by:

wB[n] =

{
1− |k|

N
|k| ≤ N

0 |k| > N
(3.47)

and its Fourier transform is:

WB(f) =
1

N

(
sin πfN

sin πf

)2

(3.48)

Therefore, the periodogram is a biased estimator. However, for long data records
with N → ∞, the limit of the Fourier transform of the Bartlett window is the
Dirac delta function δ(f). Thus, the convolution of the true PSD with δ(f) yields
the true PSD. This signifies that the bias tends to zero for long data records:

lim
N→∞

E
{
P̂per(f)

}
= Pxx(f) (3.49)

The variance of the periodogram estimator is difficult to calculate for the general
case but consider for illustration the signal x[n] which is zero-mean white Gaussian
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noise with variance σ2
x. The autocorrelation function is Rxx[k] = σ2

xδ[k] which leads
to the true PSD being Pxx(f) = σ2

x. It is demonstrated in [Kay88] for this special
case that the variance of the periodogram with respect to frequency is:

var
{
P̂per(f)

}
= P 2

xx(f)

[
1 +

(
sin 2πNf

N sin 2πf

)2
]

≈ P 2
xx(f) if f 6= 0,±1

2
(normalized frequency)

(3.50)

First, it can be observed that the variance is approximately independent of the
number of samples N i.e. it does not decrease with growing N . Furthermore, the
variance of the periodogram in this case is approximately as great as the square
of the quantity to be estimated. The standard deviation, thus, is as large as the
mean of the estimated quantity. This demonstrates that the periodogram is an
unreliable estimator in these cases: Although the bias tends to zero for long data
records, the variance does not decrease.

3.3.3 Averaged Periodogram

The fact that the variance of the periodogram does not decrease with increased
data record length is due to the lack of an expectation operator in (3.46) [Kay88].
The latter would be necessary according to the definition of the PSD in (3.45).
This can be overcome if several realizations xm[n] of the same random process x[n]
are available. First, the periodogram of each realization is calculated, followed
by averaging the periodograms. If K realizations are considered, the averaged
periodogram is defined as:

P̂av,per(f) =
1

K

K−1∑
m=0

P̂per,m(f) (3.51)

where P̂per,m(f) is the periodogram of the m-th realization xm[n] of x[n].

If the data records xm[n] can be considered independent, the variance of P̂av,per(f)

decreases by a factor K compared to the variance of P̂per,m(f):

var
{
P̂av,per(f)

}
=

1

K
var

{
P̂per,m(f)

}
(3.52)

In many applications, several independent data records are not available but only
one data record of length N . In this case, the data can be segmented into K non-
overlapping blocks of length L each where N = KL (see illustration in Fig. 3.5).
However, since the blocks are no more uncorrelated the decrease in variance is less
than 1/K [Kay88]. Furthermore, the segmentation reduces the length of the data
records for the calculation of the periodograms to L instead of K. This results
in a decrease in length for the previously mentioned Bartlett window and thus
increases the estimation bias. This is known as the classical bias-variance tradeoff
which states that a reduction in variance goes along with an increase in bias and
vice versa. The shorter data record length also induces a greater distance between
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t

N

L = N
4

P̂per,0(f) P̂per,1(f) P̂per,2(f) P̂per,3(f)

P̂av,per(f) = 1
4

∑3
m=0 P̂per,m(f)

Figure 3.5: Illustration of signal segmentation and calculation of the averaged
periodogram with K = 4.

two points in the frequency domain i.e. a decrease in spectral resolution. Note
that the blocks for calculation of the averaged periodogram can also overlap, but
at the expense of smaller reduction in variance.

For illustration purposes, the periodogram and averaged periodogram of a sinu-
soid of unit amplitude with additive zero-mean white Gaussian noise (σ2 = 1) are
displayed in Fig. 3.6. The data record length is 256 samples and the frequency of
the sinusoid is 0.2 normalized frequency. Fig. 3.6(a) shows the periodogram of the
data record without segmentation whereas Fig. 3.6(b) is the averaged periodogram
with four segments of length 64 samples. The amplitudes are plotted in a logarith-
mic scale. The periodogram has a constant average over all frequencies except 0.2,
but the variance is high. The variance of the noise floor shows a significant decrease
with the averaged periodogram but the spectral resolution is lower and the bias
increased. This is visible considering the peak due to the sinusoidal component
which increased in width with the averaged periodogram as a consequence of the
shorter Bartlett window.

3.3.4 Window Functions

When the spectrum of sinusoidal or narrowband signals is estimated, it is often
advantageous to multiply the data with a window function. The use of no par-
ticular analysis window is equivalent to the use of a rectangular window of data
record length. This leads to relatively high sidelobes of the spectral peaks. The
sidelobes can mask smaller components close in frequency and lead to false con-
clusions [Max00] [Kay88].

The multiplication of the data with a particular window function can reduce
the sidelobe amplitudes but increases the width of the mainlobe. Again, a trade-
off exists between the sidelobe amplitudes and the bandwith of the mainlobe. A
multitude of analysis windows are possible and extensive information on them can
be found in a work of Harris [Har78]. Common window functions are: the rec-
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(a) Periodogram
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(b) Averaged Periodogram (K = 4)

Figure 3.6: Periodogram and averaged periodogram (K = 4) of 256 samples of a
sinusoid (f = 0.2) with additive zero-mean white Gaussian noise.

tangular window or natural window, the triangular or Bartlett window, Hamming
window, Hanning window (note that the correct name would be Hann window) or
the Blackman window.

The effect of window functions in spectral estimation is shown in Fig. 3.7 where
the periodograms of a sinusoidal signal have been calculated with the previously
mentioned windows. The rectangular window leads to a narrow mainlobe but
the highest sidelobes whereas the Blackman window reduces strongly the sidelobe
amplitudes but leads to the largest mainlobe. The other windows are situated
between these two cases.

3.4 Time-Frequency Analysis

The Fourier transform and classical spectral estimation are well adapted to sig-
nals with a stationary frequency content, i.e. frequencies that are not varying
with respect to time. However, this work considers variable speed drives. The
supply voltage and the stator current are consequently signals with time-varying
frequencies.

The Fourier transform of a signal (see (3.19)) is a measure of similarity between
the signal and complex exponentials of constant frequency and infinite support.
Moreover, the Fourier transform involves a time integration which means that all
information concerning time is lost in the absolute value of the Fourier transform
or the spectrum. As a matter of fact, the Fourier transform supposes that the
signal can be represented as a sum of signals with constant frequency and infinite
length which is simply false in some situations.

Consider for example a transient signal which is zero outside a given interval.
The Fourier transform of this signal suggests however that for any time instant
the signal is the sum of cisoids with different frequency and infinite length. For
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(a) Rectangular window
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(b) Triangular or Bartlett window
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(c) Hamming window
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(d) Hanning window
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(e) Blackman window

Figure 3.7: Power Spectral Densities of a 128-point sinusoidal signal (f = 0.2)
analyzed with common window functions.
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(b) Fourier transform of chirp 1
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(d) Fourier transform of chirp 2

Figure 3.8: Two different chirp signals and the magnitudes of their Fourier trans-
form.

the time instants when the signal is zero, these cisoids interfere and yield zero
amplitude i.e. a correct mathematical representation. Nevertheless, in reality, the
signal is not a sum of cisoids at these time instants but it is simply zero [Fla98].
Therefore, signal representations based on the Fourier transform are not suitable
for such signals.

Another class of signals are those with a time-varying frequency content. Con-
sider for example a signal with a linear frequency modulation. These signals are
also called chirp signals and they can be written in complex form as:

z(t) = A exp j2π
(
αzt+ βzt

2/2
)

(3.53)

where A is the amplitude, αz the initial frequency and βz the sweep rate. Two
different chirp signals are displayed in Figs. 3.8(a) and 3.8(c). The signal chirp 1
has a normalized frequency evolving from 0 to 0.1 whereas the normalized frequency
varies from 0.1 to 0 for chirp 2. The Fourier transform magnitude of both signals
is shown in Figs. 3.8(b) and 3.8(d). It can be seen that the two Fourier transform
magnitudes are identical because the frequency content of the two signals is globally
the same. This examples demonstrates that the Fourier transform does not yield
a suitable representation of time-variable frequency content.
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A desirable signal representation would show frequency information with re-
spect to time. This can be realized using time-frequency analysis or time-scale
analysis. Time-frequency analysis is known since the middle of the 20th century
but applications emerged only since the 1980s due to the available computational
power. Time-scale analysis is more recent (about 1983) but since, it has been
of great and increasing popularity in various applications. In the following sec-
tions, basic concepts of time-frequency signal analysis are introduced. Various
time-frequency methods will be presented and illustrated, followed by a compar-
ison between time-frequency and time-scale analysis. Examples for introductory
literature dealing with time-frequency analysis are [Fla98] [Fla99] [Boa03].

3.4.1 Heisenberg-Gabor Uncertainty Relation

The Heisenberg-Gabor uncertainty principle or time-frequency inequality relates
the minimum bandwidth of a signal to its duration and vice versa. It states that
a signal cannot be perfectly located in time and frequency simultaneously.

First, recall measures for signal duration and the bandwidth. Consider the
finite-energy signal x(t) which is supposed to be centred in time and frequency
around zero. Gabor [Gab46] defined the effective duration Te and the effective
bandwidth Be as follows (apart from a different numerical factor):

Te =
1

Ex

+∞∫
−∞

t2|x(t)|2 dt (3.54)

Be =
1

Ex

+∞∫
−∞

f 2|X(f)|2 df (3.55)

where Ex is the signal energy given by:

Ex =

+∞∫
−∞

|x(t)|2 dt =

+∞∫
−∞

|X(f)|2 df (3.56)

These definitions can be interpreted as the second moments of random variables
|x(t)|2 and |X(f)|2 with zero mean.

It can be shown that a minimum bound exists in signal processing for the
product of effective duration with effective bandwidth of a signal (see [Fla98] for
details):

TeBe ≥
1

4π
(3.57)

This inequality is called the Heisenberg-Gabor uncertainty relation and it is similar
to the Heisenberg uncertainty principle in quantum mechanics. Gaussian signals
are special cases because they are the only signals with TeBe = 1/4π.

Consider some examples that illustrate the Heisenberg-Gabor uncertainty rela-
tion: A signal with a perfect localization in time is the Dirac delta function δ(t). In
the frequency domain, it cannot be localized at all because F {δ(t)} = 1∀ f . The
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inverse case is given by a cisoid at frequency f0. The perfect localization in fre-
quency is only obtained if the cisoid is of infinite duration. Limiting its duration is
equivalent to applying a rectangular window function of finite length. This window
function leads to a broader peak in the Fourier transform i.e. a decrease in fre-
quency localization with decreasing window length. This has also been mentioned
in the previous section on spectral estimation where the estimation bias decreases
with longer samples.

3.4.2 Instantaneous Frequency

Consider a monocomponent analytical signal z(t) with instantaneous amplitude
a(t) and instantaneous phase φ(t):

z(t) = a(t)ejφ(t) (3.58)

The instantaneous frequency (IF) of z(t) is defined as [Vil48] [Boa92a]:

IFz(t) =
1

2π

d

dt
φ(t) (3.59)

The IF of a real signal x(t) is unequivocally defined under the following conditions:

• The signal must be a monocomponent signal that can be described by a
single IF law. For example, the chirp signal defined in equation (3.53) is a
monocomponent signal with a single IF law. The sum of two chirp signals
with different sweep rates β would yield a multicomponent signal whose IF
law is not correctly described by (3.59).

• The Bedrosian theorem must hold (see section 3.2.6.3).

Consider some examples for illustration: The IF of a real-valued sinusoidal sig-
nal x(t) = cos (2πf0t) is of course IFx(t) = f0 because the corresponding analytical
signal is z(t) = exp (j2πf0t). The IF of the complex chirp signal z(t) from (3.53)
is given by the linear relation IFz(t) = αz + βzt. This illustrated in Fig. 3.9 for
a chirp signal with a frequency varying from 0 to 0.5 normalized frequency. The
estimated instantaneous frequency is perfectly linear.

Different methods can be used to estimate the IF of a discrete-time analytical
signal z[n] = a[n] exp jφ[n] [Boa92b]. The most simple and computationally effi-
cient solution is the phase derivation of z[n]. The discrete phase derivation can
be implemented using a phase difference estimator. The most advantageous is ob-
tained using the central finite difference between two phases φ[n+ 1] and φ[n− 1].
Consequently, the estimated instantaneous frequency ÎF[n] is:

ÎF[n] =
1

4π
(φ[n+ 1]− φ[n− 1]) (3.60)

Other proposed methods use adaptive filtering or the moments of time-frequency
distributions but they lead to time-intensive calculations.
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(b) Instantaneous frequency

Figure 3.9: Illustration of the instantaneous frequency of a chirp signal.

3.4.3 Spectrogram

The preceding section introduced the IF as a time-frequency representation of a
monocomponent signal. However, this is a very particular class of signals and
the method cannot be applied to multicomponent signals. This strong limitation
is overcome using time-frequency energy distributions. They represent the signal
energy with respect to time and frequency and can be interpreted as a time-varying
power spectral density under some restrictions.

3.4.3.1 Definition

A first obvious approach is the use of the short-time Fourier transform. Instead of
using the total signal length for the calculation of the Fourier transform, a sliding
observation window is employed (see Fig. 3.10). The window position with respect
to the signal depends on time and leads therefore to a time-dependent Fourier
transform. The short-time Fourier transform Fw

x (t, f) of a signal x(t) is defined as
[Boa03]:

Fw
x (t, f) = Fτ→f {x(τ)w(τ − t)} =

∞∫
−∞

x(τ)w(τ − t) e−j2πfτ dτ (3.61)

where w(τ) is the observation window.

The squared modulus of the short-time Fourier transform is an energy distrib-
ution. This energy distribution Sw

x (t, f) is called the spectrogram and it was one
of the first attempts to obtain the equivalent of a time-dependent spectrum. The
definition of the spectrogram is [Fla98]:

Sw
x (t, f) = |Fw

x (t, f)|2 =

∣∣∣∣∣∣
∞∫

−∞

x(τ)w(τ − t) e−j2πfτ dτ

∣∣∣∣∣∣
2

(3.62)
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τ

x(τ)

w(τ − t1) w(τ − t2)

Figure 3.10: Illustration relative to the calculation of the short-time Fourier
transform: signal x(τ) and sliding window w(τ − t) at two time instants t1 and t2.

3.4.3.2 Properties

An important parameter of the spectrogram is the observation window w(t). The
type of window function can be chosen among common windows used in classi-
cal spectral estimation (see 3.3.4) in order to obtain the desired tradeoff between
sidelobe attenuation and bandwidth of the mainlobe. The capability of the spectro-
gram to locate certain phenomena in time and frequency is strongly related to the
chosen window length. A short observation window leads to a good time localiza-
tion but at the expense of frequency resolution. On the contrary, a long observation
window provides a high frequency resolution but an accurate time localization is
no more possible. The windowed signal cannot be perfectly located in time and
frequency simultaneously as a consequence of the Heisenberg-Gabor uncertainty
principle.

In contrast to time-scale analysis, the spectrogram uses an observation win-
dow of constant length for all frequencies. This leads to a constant time and fre-
quency resolution depending only on the window length. An illustration is shown
in Fig. 3.11 for two cases with a short and long observation window. The figure
shows that the spectrogram leads to a uniform rectangular mapping of the time-
frequency plane. Note that the chosen representation is not accurate because the
sliding windows normally overlap.

An important consequence is the fact that the spectrogram is not well adapted
to the analysis of rapidly changing phenomena. The short-time Fourier transform
supposes signal stationarity during the observation window. If this is not guaran-
teed the non-stationarity will not correctly be represented and information can be
lost. Depending on the rate of change of the IF, an optimal window length Nw,opt

can be deduced for the spectrogram [Boa03], given by:

Nw,opt =
√

2

∣∣∣∣ d

dt
IF(t)

∣∣∣∣−1/2

(3.63)

Another important property of the spectrogram concerns interferences in case
of multicomponent signals. A multicomponent signal is the sum of several mono-
component signals e.g two sinusoidal signals at different frequencies. Due to
their quadratic kernel, most quadratic time-frequency distributions show interfer-
ence terms when multicomponent signals are analyzed (see further sections). The
spectrogram is also a nonlinear distribution but the nonlinearity is only introduced
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Figure 3.11: Illustration of time and frequency resolution of the spectrogram with
respect to window length: The long window leads to good frequency resolution and
bad time localization whereas the short window provokes bad frequency resolution
but good localization in time (∆f1 < ∆f2 , ∆t1 > ∆t2 ).
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Figure 3.12: Spectrogram of 128 point sinusoidal signal with two different obser-
vation windows of length Nw = 63 and Nw = 7.

in the last step by squaring the short-time Fourier transform. Hence, the spectro-
gram does not lead to interferences at frequencies or time instants where normally
no signal energy is present. Finally, the spectrogram resembles to the periodogram
which also introduces a squaring operation in the last step.

3.4.3.3 Examples

Some examples are presented in the following section for illustration of the spectro-
gram and some of its properties. All the time-frequency distributions are calculated
with the time-frequency toolbox for Matlab [Aug96]. First, consider the spectro-
gram of a simple complex exponential at constant frequency, displayed in Fig. 3.12.
The signal of length 128 samples is analyzed with a Hamming window of length
Nw. The amplitudes of the spectrogram corresponding to energy density are coded
in greyscale where a darker shade of grey represents a stronger amplitude. The
spectrogram with Nw = 63 is constituted of a relatively thin line at the frequency
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Figure 3.13: Spectrogram of 128 point chirp signal with observation windows of
different length Nw where Nw = 23 is the optimal window length.

of the sinusoidal signal. Border effects due to the sliding window can be observed at
the beginning and the end of the signal where only a part of the signal is analyzed
by the window. With Nw = 7, the line representing the frequency of the sinusoid
is large due to the short window. At the same time, border effects are reduced.
These two cases demonstrates the tradeoff between time and frequency resolution.
However, in case of signals with constant frequency, the optimal window length
would be infinite (see equation (3.63)), i.e. equal to the total signal length in
case of finite duration signals. Actually, this corresponds to the calculation of the
periodogram.

A linear chirp signal with a normalized frequency varying from 0 to 0.5 is
analyzed in Fig. 3.13. The signal length is 128 samples. Three different window
lengths are used. Again, a tradeoff between time and frequency resolution must be
found through the choice of the window length. As it can be seen in Fig. 3.13(a), the
long windowNw = 63 leads to bad localization at the borders and a relatively broad
linear component. The short window Nw = 7 with its poor frequency resolution
leads also to a poor energy localization. The optimal window length for a chirp
signal is Nw,opt =

√
2T/B according to (3.63) with T the signal duration and B the

bandwidth. Nw,opt = 23 is obtained in this case. The corresponding spectrogram is
displayed in Fig. 3.13(b) and demonstrates a good compromise between time and
frequency resolution.

3.4.4 Wigner Distribution

3.4.4.1 Definition

In 1948, J. Ville proposed a different approach to obtain the instantaneous spec-
trum of a signal [Vil48]. He defined a time-frequency energy distribution which is
nowadays commonly called the Wigner Distribution (WD) or Wigner-Ville Distri-
bution. This refers to the physician E. P. Wigner who mentioned the distribution
in the context of quantum mechanics [Wig32]. The Wigner Distribution Wx(t, f)
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of a signal x(t) is defined as:

Wx(t, f) =

+∞∫
−∞

x
(
t+

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτ dτ (3.64)

The WD can be seen as the Fourier transform of a kernel Kx(t, τ) with respect to
the delay variable τ :

Wx(t, f) = Fτ→f {Kx(t, τ)} with Kx(t, τ) = x
(
t+

τ

2

)
x∗

(
t− τ

2

)
(3.65)

The kernel can be interpreted as the instantaneous autocorrelation function of x(t).
Comparing the WD definition to the spectrogram, it becomes clear that the WD
does not depend on any parameter whereas the spectrogram depends on the shape
and length of the observation window. This is an advantage because no a priori
knowledge is necessary to choose this parameter.

3.4.4.2 Properties

Some important properties of the WD are mentioned in the following. More details
can be found in [Mec97] [Fla98] [Boa03].

• The WD is real valued: Wx(t, f) ∈ R ∀ t, f

• The WD was interpreted by Ville as an instantaneous spectrum because
it satisfies the so-called time and frequency marginals: the integration of
Wx(t, f) with respect to frequency yields the instantaneous power, integration
with respect to time gives the energy spectrum [Fla98].

Time marginal:

+∞∫
−∞

Wx(t, f) df = |x(t)|2 (3.66)

Frequency marginal:

+∞∫
−∞

Wx(t, f) dt = |X(f)|2 (3.67)

Consequently, the integration over time and frequency yields the signal en-
ergy.

• If the WD is interpreted as a probability density, the first moment of the WD
with respect to frequency gives the instantaneous frequency [Fla98]:∫ +∞

−∞ f Wz(t, f) df∫ +∞
−∞ Wz(t, f) df

=
1

2π

d

dt
arg [z(t)] = IFz(t) (3.68)

where z(t) is an analytical signal.
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• The WD is time and frequency covariant i.e. a time or frequency shift in the
signal causes the same shift in the WD:

y(t) = x(t− t0) ⇒ Wy(t, f) = Wx(t− t0, f) (3.69)

y(t) = x(t)ej2πf0t ⇒ Wy(t, f) = Wx(t, f − f0) (3.70)

• The WD of a linear complex chirp signal is perfectly concentrated on the IF
law. Consider a linear chirp x(t) according to (3.53) with:

z(t) = A exp j2π
(
αzt+ βzt

2/2
)

(3.71)

Its WD is:

Wz(t, f) = δ [f − (αz + βzt)] = δ [f − IFz(t)] (3.72)

This illustrates that the previously mentioned Heisenberg-Gabor uncertainty
principle does not apply to the WD.

• The WD of the sum of two signals x(t) + y(t) is obtained by the following
quadratic superposition:

Wx+y(t, f) = Wx(t, f) +Wy(t, f) + 2<{Wxy(t, f)} (3.73)

where Wxy(t, f) is the cross Wigner Distribution of x and y:

Wxy(t, f) =

+∞∫
−∞

x
(
t+

τ

2

)
y∗

(
t− τ

2

)
e−j2πfτ dτ (3.74)

This last property has the important consequence that the WD of a multicom-
ponent signal is different from the sum of the WDs of the single signals. Actually,
the WD of a multicomponent signal contains interference terms that appear at
time instants and frequencies where there should not be any signal energy. These
interferences are the result of the quadratic kernel. They considerably complicate
the lecture and interpretation of the WD. Interferences resulting from interactions
between two distinct components are also called outer interferences .

Other interferences, the so-called inner interferences , appear when signals with
a nonlinear frequency modulation (FM) are analyzed. Linear FM signals are per-
fectly located in the WD but nonlinear FM such as quadratic IF laws or sinusoidal
frequency modulations also lead to interference terms.

3.4.4.3 Examples

Some examples illustrating the properties of the WD are presented in the following
section. Since the distribution may take negative values in particular cases, only
the positive values are displayed for visualization. First, the WD of a sinusoidal
signal with constant normalized frequency 0.25 is displayed in Fig. 3.14(a). The
signal energy is perfectly concentrated at 0.25 normalized frequency. The WD
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(a) Sinusoid with constant frequency
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(b) Linear chirp signal

Figure 3.14: Wigner Distribution of sinusoidal signal with constant frequency
and WD of linear chirp signal.
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(b) Sinusoidal FM signal

Figure 3.15: Wigner Distribution of sum of two sinusoidal signals with constant
frequency and WD of sinusoidal FM signal.

amplitude is smaller at the borders due to the finite signal length. Then, a linear
chirp signal is analyzed in Fig. 3.14(b). It can be noticed that the distribution is
perfectly concentrated on the IF law of the chirp signal, especially in comparison
to the spectrogram (see Fig. 3.13). This corresponds to the previously mentioned
properties of the WD.

The apparition of interference is illustrated in two examples. Fig. 3.15(a) shows
the WD of the sum of two sinusoidal signals at 0.1 and 0.4 normalized frequency. In
addition to the two constant frequencies at 0.1 and 0.4, oscillating terms appear in
the distribution at 0.25 normalized frequency. These so-called outer interferences
are of relatively strong amplitude and they oscillate i.e. they take negative and
positive values. The apparition of negative values in the WD signifies that it cannot
be interpreted as an energy distribution in the general case. It has been shown
theoretically that the interference terms are generally of oscillating nature and that
they are located at the geometrical center of two components [Mec97] [Fla98].

The second type of interference, called inner interference terms, are illustrated
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in Fig. 3.15. The signal is a monocomponent FM signal with a sinusoidal frequency
modulation. The numerous interferences in the WD demonstrate the fact that they
are also produced by nonlinear frequency modulations. Again, their oscillating
nature is clearly visible. This example shows that the lecture of the time-frequency
distribution can be difficult with these type of signals. A possible solution is
smoothing of the WD which will be described in the following.

3.4.5 Smoothed Wigner Distributions

3.4.5.1 Definitions

The previous section has shown that the interference terms in the WD can take
strong values which bother the interpretation. Furthermore, the kernel function
Kx(t, τ) exists on an infinite support with respect to τ , leading to problems with
the practical implementation. Hence, it can be advantageous to limit the support
of Kx(t, τ) with respect to τ by introducing a window function p(τ). This leads to
the so-called Pseudo Wigner Distribution (PWD) PWx(t, f), defined as:

PWx(t, f) =

+∞∫
−∞

p (τ)x
(
t+

τ

2

)
x∗

(
t− τ

2

)
e−j2πfτ dτ (3.75)

Some authors also call this distribution the windowed Wigner Distribution [Boa03].

The original WD kernel Kx(t, τ) is therefore multiplied with a window function
with respect to the delay variable τ . The PWD is then the Fourier transform of
this product with respect to τ . The effect on the WD becomes clear considering
that a multiplication in the time domain is equivalent to a convolution product in
the frequency domain. Hence, the PWD is the convolution of the window Fourier
transform P (f) with the original WD Wx(t, f):

PWx(t, f) = Fτ→f {p(τ)Kx(t, τ)} =

+∞∫
−∞

P (f − ξ)Wx(t, ξ) dξ (3.76)

This relation clearly illustrates that the PWD is related to the WD by a smoothing
only in the frequency direction [Fla98]. The time support and time resolution are
therefore not affected, only the frequency resolution decreases. The latter can be
controlled by adjusting the window length. A long temporal window p(τ) has a
compact frequency support and leads only to a slight smoothing. A stronger re-
duction of the interferences is obtained with a shorter window. An infinite window
with constant amplitude p(τ) = 1 leads to the original WD.

In addition to frequency smoothing, the WD can also be smoothed in time by
introducing a smoothing function which depends on t. It is often advantageous to
control time and frequency smoothing separately. This is achieved by a separable
smoothing function which is a product of two functions where each function de-
pends on only τ or t. This leads to the definition of the Smoothed Pseudo Wigner
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(c) Np = 15

Figure 3.16: Pseudo Wigner Distribution of sinusoidal FM signal with smoothing
windows of different length Np.

Distribution (SPWD) SPWx(t, f) [Fla98]:

SPWx(t, f) =

+∞∫
−∞

p (τ)

 +∞∫
−∞

g (s− t)x
(
s+

τ

2

)
x∗

(
s− τ

2

)
ds

 e−j2πfτ dτ (3.77)

where g(t) controls the time smoothing. Note that the special case of the PWD is
obtained with no time smoothing i.e. g(t) = δ(t).

3.4.5.2 Examples

The smoothing properties of the PWD are first illustrated with a sinusoidal FM
signal. The WD of this signal was shown in Fig. 3.15(b). There exist strong inner
interferences due to the nonlinear frequency modulation. The PWD attenuates
these interferences by a smoothing operation in the frequency direction. This is
illustrated in Fig. 3.16 with different window lengths. The Hamming window of
length Np = 63 (see Fig. 3.16(a)) leads already to a noticeable attenuation of
the interferences compared to the WD. A further reduction of the window length
cancels out nearly all the interferences but leads also to a decrease in frequency
resolution. This can be recognized by a loss of energy concentration, particularly
in the regions where the frequency evolution is slow i.e. at the minimum and
maximum instantaneous frequency.

The different time smoothing properties of the WD, PWD and SPWD can be
illustrated with a Dirac delta function which is a signal perfectly located in time.
The three calculated distributions are shown in Fig. 3.17. The WD of the Dirac
delta function is perfectly located (see Fig. 3.17(a)) with all the energy concentrated
at one point in time. Since the PWD smoothes only in the frequency direction,
the perfect time localization is preserved as can be seen in Fig. 3.17(b)). Only the
SPWD (see Fig. 3.17(c)) provides smoothing in the time direction and the energy
of the Dirac delta function is therefore dispersed compared to the two other cases.

In the preceding section, the WD of the sum of two pure sinusoidal signals
was calculated and shown in Fig. 3.15(a). The so-called outer interferences were
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(c) SPWD, Np = 31, Ng = 15

Figure 3.17: Wigner Distribution, Pseudo Wigner Distribution and Smoothed
Pseudo Wigner Distribution of Dirac delta function.
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(c) SPWD, Np=127, Ng=15

Figure 3.18: Pseudo Wigner Distribution and Smoothed Pseudo Wigner Distri-
bution of sum of two sinusoidal signals with constant frequency.

located at the geometrical centre of the two components. The use of the PWD
with the same signal is illustrated in Fig. 3.18(a). Despite the use of a 31 point
Hamming window, the interferences are still present. In addition, the frequency
resolution is degraded which can be seen by the relatively broad component at
0.1 and 0.4 normalized frequency. This is due to the particular structure of the
interferences in this case. Since the interferences oscillate in the time direction,
they are not significantly attenuated because the PWD provides only smoothing in
the frequency direction. Only the smoothing in the time direction by the SPWD
(see Fig. 3.18(b)) improves the readability of the distribution. If a better frequency
resolution is desired, the smoothing in the frequency direction can be reduced by
a longer window p(τ). This is realized in Fig. 3.18(c) with Np = 127. A good
compromise is achieved by using the time smoothing for the suppression of the
interferences between the two components and only a slight frequency smoothing
in order to preserve an acceptable frequency resolution.
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3.4.6 Discrete Wigner Distribution

For practical implementation, a discrete expression for the WD must be derived.
Starting from the definition of the WD in equation (3.64), the delay variable can
be substituted by τ ′ = τ/2. The following equivalent definition is obtained [Fla98]:

Wx(t, f) = 2

+∞∫
−∞

x (t+ τ ′)x∗ (t− τ ′) e−j4πfτ ′
dτ ′ (3.78)

A discrete version of this expression can then be easily obtained by replacing the
integral with a sum. The WD of a discrete-time signal x[n] with n = tfs is [Fla98]:

Wx[n, f ] = 2
+∞∑

m=−∞

x [n+m]x∗ [n−m] e−j4πfm/fs (3.79)

If the signal is time limited with N samples, the summation index m is limited to
m < |N/2| [Boa03].

An important issue when considering the discrete Wigner Distribution (DWD)
is the influence of sampling. It has been demonstrated in section 3.2.5 that the
Fourier transform of a discrete-time signal is periodic in the frequency domain. In
order to avoid overlapping and aliasing, the sampling frequency must be chosen
according to the Nyquist-Shannon sampling theorem. The WD is basically the
Fourier transform of the product of two signals x(t) with a different time shift.
This product, however, has an increased bandwidth compared to the signal x(t).
Actually, if x(t) is of bandwidth B, the kernel will be of bandwidth 2B. When
discrete-time signals are considered, the kernel is also a discrete signal. Therefore,
the Fourier transform of the kernel i.e. the DWD is also periodic. If the original
signal was sampled at the Nyquist frequency, aliasing appears in the DWD due
to the increased bandwidth of the kernel [Fla98]. This is illustrated at the top of
Fig. 3.19.

Two solutions exist to this problem: First, the real signal can be sampled at
twice the Nyquist frequency. The second possibility is the use of the analytical
signal. The negative frequencies of the analytical signal are zero and thus, the
bandwidth is only half the bandwidth of the real signal. Therefore, the DWD of
the analytical signal is free of aliasing as shown at the bottom of Fig. 3.19.

In equation (3.79), the frequencies are not yet discretized. Since the DWD is
periodic in f with frequency fs/2 it is convenient to choose [Boa03]:

f =
kfs

2N
with k = 0, 1, 2, . . . , N − 1 (3.80)

Then, equation (3.79) becomes:

Wx[n, k] = 2
∑

m<|N/2|

x [n+m]x∗ [n−m] e−j2πkm/N (3.81)

This expression is called the discrete Wigner Distribution. It can be considered as
the discrete Fourier transform of the discrete kernel x [n+m]x∗ [n−m]. There-
fore, if an appropriate signal length is chosen, FFT algorithms can be used for fast
computation.
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Figure 3.19: Illustration relative to the sampling of the WD: Spectrum X(f) of
real signal, kernel spectrum Kx(f) and DWDx(f) (top) with aliasing; spectrum
Z(f) of analytical signal, kernel spectrum Kz(f) and DWDz(f) (bottom).

3.4.7 Time-Frequency vs. Time-Scale Analysis

Wavelet transforms or time-scale analysis have recently been very popular and they
have been successfully applied to condition monitoring and fault diagnosis of rotat-
ing machines. Most works employ these methods to mechanical signals. Wavelet
analysis compares the signal with a particular reference function called wavelet.
The wavelet can be shifted in time and scaled to alter its frequency content. The
correlation of the signal to analyze with the shifted and scaled wavelets yields a
two dimensional signal representation Tx(t, a) as a function of time t and scale a.
The continuous wavelet transform Tx(t, a) of a signal x(t) is defined as:

Tx(t, a) =

+∞∫
−∞

x (τ)
1√
a
ψ∗

(
τ − t

a

)
dτ (3.82)

where ψ(t) is the mother wavelet. The scale a is the equivalent to the inverse of a
frequency: small scale corresponds to high frequencies.

The wavelet transform can be compared to the short-time Fourier transform
which is also a so-called atomic decomposition of a signal. The spectrogram can
be interpreted as a projection of the signal on atoms that are windowed complex
exponentials of different frequency, shifted in time through the sliding observation
window. The wavelet transform yields a signal projection on scaled and shifted
versions of the mother wavelet. Therefore, the wavelet transform is also limited in
time-frequency resolution by the Heisenberg-Gabor uncertainty principle since the
wavelet localization in time and frequency is limited. However, due to scaling of
the mother wavelet, the resolution is not uniform with respect to frequency as it
was the case with the spectrogram.

This is illustrated in Fig. 3.20 where the time-frequency resolution of the spectro-
gram is compared to time-scale analysis. Since the window length of the spectro-
gram is constant with respect to frequency, the time-frequency resolution is the
same in the whole time-frequency plane. On the contrary, the scaling leads to
the use of shorter wavelets in the regions of higher frequency. Therefore, when
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Figure 3.20: Comparison of time and frequency resolution with the spectrogram
and time-scale analysis.

the time resolution improves, the frequency resolution is degraded. The product of
time and frequency resolution is constant i.e. the surface of the depicted rectangles
in Fig. 3.20(b) is always the same. Comprehensive literature on time-scale analysis
and the wavelet transform is e.g. [Dau92] [Mal00].

An interesting question is the choice between time-scale or time-frequency
analysis in the considered application of motor condition monitoring. In contrast to
time-scale analysis, time-frequency analysis provides a signal representation with
respect to time and frequency instead of scale. Since the considered mechani-
cal faults lead to phenomena at particular frequencies, the interpretation of the
time-frequency representation is easier in the context of this application than the
time-scale representation. Moreover, the wavelet transform yields a representation
where time and frequency resolution are not constant over all frequencies. The
nature of the considered signals in our application implies linear frequency charac-
teristics e.g. harmonics at nfs and sidebands at nfs ± fr resulting from modula-
tions. Therefore, a constant frequency resolution over the total frequency range is
desirable which provides another argument in favor of time-frequency analysis.

3.5 Parameter Estimation

In the further course of this work, a second approach to fault detection is studied:
signal parameter estimation. This approach does not rely on frequency analysis
but uses knowledge of the temporal signal model to identify its parameters. In
chapter 2, models for the stator current signal in presence of a fault have been
developed. Two models considering torque oscillations and eccentricity were ob-
tained and each of the models shows a different type of modulation, but with equal
modulation frequencies. The idea is to identify the parameters of these two mod-
els from a stator current measurement. The values obtained for the modulation
indices contain directly information about the fault severity and the type of mod-
ulation prevailing in the measured signals. This means that in contrast to the
time-frequency approach, postprocessing and feature extraction is not necessary.
Furthermore, the information about the modulation type indicates the origin of
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the mechanical fault which can be helpful for a more detailed diagnosis.
Another advantage is the shorter required data record length in comparison to

classical, non-parametric spectral estimation. The traditional approach assumes
that the data outside the observation interval is zero. This leads to the well-known
effect of convolution in the frequency domain with the Fourier transform of the
observation window. A model based approach does not assume the signal being
zero outside the observation and it is well adapted identifying the signal parameters
with a limited number of samples [Kay88]. Nevertheless, increasing the number
of samples also increases the estimation accuracy. The use of a priori knowledge,
i.e. the appropriate signal model, improves the estimation performance. On the
contrary, the choice of an incorrect model may lead to completely false results
whereas the non-parametric approach does not require a priori knowledge.

The parameter estimation approach is also interesting with regard to the use
of discrete-time signals. In general, spectra or time-frequency distributions are
theoretically studied using continuous-time signals. In parameter estimation, the
theoretical considerations are conducted from the beginning on with discrete-time
signals and with a finite number of samples which leads therefore to more coherence
between theory and practical implementation.

The following sections describe first some basic concepts related to parameter
estimation and the theoretical Cramer-Rao lower bound for the estimation error.
Then, the maximum likelihood estimator is explained, followed by some issues
about detection.

3.5.1 Basic concepts

Parameter estimation problems can be found in various applications [Kay93]. In
the radar application for instance, the problem is to estimate the distance to a
target, e.g. from an airport to an aircraft, based on a transmitted and received
waveform. In all applications, the measurements correspond to signals embedded
in noise.

The first important step in an estimation problem is the choice of the underlying
mathematical data model. The model describes the observed data x[n] and con-
tains in general several unknown parameters θ that are to be estimated. The model
also includes a stochastic component representing measurement noise. Then, the
a priori knowledge can be summarized by the probability density function p(x; θ)
of the data. The estimator is a function that yields the estimate θ̂ with respect to
an observation x[n].

Let us consider a simple example: A measured signal x[n] is supposed to be a
DC level A plus additive white Gaussian noise w[n]. The sample length is N . The
data is therefore modelled as:

x[n] = A+ w[n] n = 0, 1 . . . , N − 1 (3.83)

A realization of this signal is shown in Fig. 3.21. If the unknown parameter is the
DC level, the parameter vector is a scalar θ = A.

Each sample of w[n] is supposed to have the probability density function (PDF)
N(0, σ2) i.e. a Gaussian distribution with zero mean and variance σ2. The PDF of
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Figure 3.21: Realization of DC level embedded in white Gaussian noise.
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Figure 3.22: Illustration of the probability density function p(x[0];A) for different
parameter values.

the first sample x[0] would therefore be:

p(x[0];A) =
1√

2πσ2
exp

[
− 1

2σ2
(x[0]− A)2

]
(3.84)

where p(x[0];A) denotes a class of PDFs due to several possible values of A. Several
PDFs are illustrated at Fig. 3.22. Considering N samples, the joint PDF is the
product of the PDFs for each sample if the noise samples are uncorrelated i.e. if the
random variables are independent [Pap65]. Hence, the following PDF is obtained:

p(x;A) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A)2

]
(3.85)

In the preceding example, the parameter A was unknown, but determinis-
tic. Estimation methods based on this assumption are termed classical estimation
[Kay93]. If the parameters are assumed being random variables, this information
can be incorporated through a conditional PDF. This approach is called Bayesian
estimation.

3.5.2 Estimator Performance and Cramer-Rao Lower Bound

If the estimator performance is evaluated, an optimality criterion has to be fixed.
Often, the mean square error (MSE) is used as criterion, measuring the average



86 3. Introduction to the Employed Signal Processing Methods

θ̂

p(θ̂)

E(θ̂) θ
(a) Biased estimator

θ̂

p(θ̂)

θ
(b) Unbiased estimator

Figure 3.23: Illustration of probability density function of biased and unbiased
estimator.

mean squared deviation of the estimator values θ̂ from the true value θ [Kay93]:

MSE(θ̂) = E

{(
θ̂ − θ

)2
}

(3.86)

The MSE can be rewritten:

MSE(θ̂) = E

{[
θ̂ − E

(
θ̂
)

+ E
(
θ̂
)
− θ

]2
}

= var
{
θ̂
}

+
[
E

(
θ̂
)
− θ

]2

= var
{
θ̂
}

+ b2(θ)

(3.87)

since the other terms cancel out. This expression demonstrates that the MSE is
composed of the variance of the estimator and the squared bias b(θ).

The estimator bias b(θ) is defined as the difference between the estimator mean
E(θ̂) and the true value θ:

b(θ) = E
{
θ̂
}
− θ (3.88)

An estimator is unbiased if b(θ) = 0 i.e. E(θ̂) = θ. This signifies that on the aver-
age, the estimator yields the true value of the unknown parameter. Unbiasedness
is an important and in general required property of an estimator. The PDFs of an
unbiased and biased estimator are displayed in Fig. 3.23 for illustration. Hence, it
can be concluded that if an estimator is unbiased, the remaining mean square esti-
mation error is the estimator variance. When the performance of several unbiased
estimators is compared, the ideal one would have the minimum variance. Such an
estimator is called minimum variance unbiased (MVU) estimator.

For a given estimation problem, a theoretical lower bound, called the Cramer-
Rao lower bound (CRLB) exists for the estimator variance. It determines the best
theoretical performance an estimator may attain. The evaluation of the CRLB
thus gives valuable information about the minimum achievable estimation error.

A necessary condition for the calculation of the CRLB is that the PDF p(x; θ)
satisfies the so-called regularity condition [Kay93]:

E

{
∂ ln p(x; θ)

∂θi

}
= 0 ∀ θi (3.89)
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The Fisher information matrix I(θ) is defined as:

[I(θ)]ij = −E
{
∂2 ln p(x; θ)

∂θi ∂θj

}
(3.90)

The CRLB is then obtained as the diagonal elements of the inverse Fisher infor-
mation matrix:

var
{
θ̂i

}
≥ [I−1(θ)]ii (3.91)

If an estimator can be found that satisfies the equality condition, it is the MVU
estimator.

For illustration, consider the preceding example of estimating a DC level A in
white Gaussian noise. Straightforward derivations lead to:

var
{
Â

}
≥ σ2

N
(3.92)

Let us now examine one possible estimator for A. A reasonable choice could
be:

Â =
1

N

N−1∑
n=0

x[n] (3.93)

which is the sample mean. This estimator is unbiased because:

E(Â) = E

{
1

N

N−1∑
n=0

x[n]

}
=

1

N

N−1∑
n=0

E(x[n]) = A (3.94)

Its variance can be calculated according to:

var
{
Â

}
= var

{
1

N

N−1∑
n=0

x[n]

}
=

1

N2
var

{
N−1∑
n=0

x[n]

}
=

1

N2
Nσ2 =

σ2

N
(3.95)

The variance of this estimator is N/σ2 and it equals the CRLB. The estimator is
therefore the MVU estimator and thus the best estimator for this problem.

3.5.3 Maximum Likelihood Estimation

In the previous section, it was shown that the optimal estimator for a given prob-
lem is the MVU estimator. This estimator is unbiased and its variance is equal
to the CRLB. However, there is no general method describing how this estima-
tor can be found. Especially in case of complex problems, it may even not exist.
On the contrary, the maximum likelihood estimator (MLE) is provided by a sys-
tematic method. This estimator is approximately the MVU estimator, i.e. for
large data records, it is asymptotically unbiased and its variance approaches the
CRLB [Kay93]. Moreover, this estimator can be easily derived and its practical
implementation is possible.

When the PDF p(x; θ) is considered a function of the unknown parameters with
x fixed, it is termed the likelihood function. This function indicates which values
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A

p(x[0] = 4;A)

4

Figure 3.24: Example of likelihood function for parameter A after observation of
one single sample x[0].

of θ are likely based on the observation of x. Consider for illustration the previous
example of estimating a DC level embedded in white Gaussian noise. If one single
sample x[0] is observed and this sample takes e.g. the value 4, the likelihood
function takes the shape displayed in Fig. 3.24. According to this function, the
parameter A is likely to take values near 4.

This leads to the definition of the MLE: The MLE for a vector parameter θ is
found by maximizing the likelihood function p(x; θ) over the allowable domain for
θ. The location of the maximum yields the estimate θ̂. In the previous example,
this corresponds to the reasonable consideration that A = 4 is more likely than e.g.
A = 6. If A had to be estimated based on this observation, it would be reasonable
to choose Â = 4 according to the maximum of the likelihood function.

In case of the previous example of estimating a DC level in white Gaussian
noise, the MLE is obtained in the following way. The likelihood function is the
PDF of the observed samples with respect to the unknown parameter:

p(x;A) =
1

(2πσ2)
N
2

exp

[
− 1

2σ2

N−1∑
n=0

(x[n]− A)2

]
(3.96)

The value of A that maximizes this function is the maximum likelihood estimate.
Maximizing p(x;A) with respect to A is equivalent to maximizing the exponent
with respect to A. Derivation of the exponent yields:

∂

∂A

[
− 1

2σ2

N−1∑
n=0

(x[n]− A)2

]
=

1

σ2

N−1∑
n=0

(x[n]− A) (3.97)

Setting this expression to zero, the MLE is obtained as:

Â =
1

N

N−1∑
n=0

x[n] (3.98)

The MLE is therefore the sample mean. This result is identical to the previous
MVU estimator, showing that the MLE results in this particular case in the optimal
estimator.

In this example, the maximum of the likelihood function could be calculated
as a closed analytical expression. Generally, this is not possible in more complex
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Figure 3.25: Probability density functions of x[0] for hypothesis H0 and H1.

estimation problems. In these cases, the maximum of the likelihood function can
be found by numerical optimization techniques that may however be time-intensive
to compute.

3.5.4 Detection

When dealing with fault detection in electrical drives, we might want to decide
between two situations: The drive is healthy or a fault is present. The decision
will be based on a signal observation followed by an adequate processing in order
to extract a suitable fault indicator. The indicator calculation can be based on
the previously described parametric or non-parametric methods. The problem is
therefore equivalent to a binary hypothesis test [Kay98].

A relatively simple and general example is the signal detection problem. Based
on an observation x[n], we want to decide between the two hypothesis H0 (noise
only hypothesis) and H1 (signal + noise hypothesis):

H0 : x[n] = w[n]

H1 : x[n] = s[n] + w[n]

where w[n] denotes the noise and s[n] the signal to detect. For simplification,
consider in the following that only one single sample x[0] is observed and that the
signal s[0] = 1. The noise w[n] is supposed to be white and Gaussian with variance
σ2.

The two probability density functions are therefore the following:

p(x[0]|H0) =
1√

2πσ2
exp

[
− 1

2σ2
x[0]2

]
p(x[0]|H1) =

1√
2πσ2

exp

[
− 1

2σ2
(x[0]− 1)2

]
where p(x[0]|H0) denotes a conditional PDF. They are displayed for a given vari-
ance σ2 in Fig. 3.25. For a high variance, the PDFs overlap more which complicates
in consequence the detection problem.

In this binary hypothesis test, the decision between H0 and H1 will be based on
a threshold γ. If x[0] > γ, H1 will be decided, otherwise H0. Thus, four situations
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can be distinguished: two correct decisions i.e. deciding H0 (H1) when H0 (H1) is
true and the two following errors:

• Decide H1 when H0 is true. This error is called Type I error or false alarm.

• Decide H0 when H1 is true. This situation is termed Type II error or miss.

The probabilities for correct or false decisions depend on the choice for the
threshold γ. The detector performance is generally characterised by two probabil-
ities:

Probability of detection PD: It expresses the probability for deciding H1 when
H1 is true. PD equals in the preceding example the surface under the PDF
p(x[0]|H1) with x[0] > γ (see Fig. 3.25):

PD = p(H1;H1) = p(x[0] > γ;H1) =

+∞∫
γ

1√
2πσ2

exp

[
− 1

2σ2
(τ − 1)2

]
dτ

(3.99)

Probability of false alarm PF : The probability for deciding H1 when H0 is
true. PF equals in the preceding example the surface under the PDF p(x[0]|H0)
with x[0] > γ (see Fig. 3.25):

PF = p(H1;H0) = p(x[0] > γ;H0) =

+∞∫
γ

1√
2πσ2

exp

[
− 1

2σ2
τ 2

]
dτ (3.100)

The probability of miss and the probability of deciding correctly H1 are the com-
plementary probabilities of PD and PF respectively.

An ideal detector is characterised by PD = 1 and PF = 0 which signifies that
the probabilities of the two errors is zero. This is only possible if the two PDFs are
completely distinct from each other. In general, this is not the case and PD and
PF depend on the threshold γ. Considering the previous example in Fig. 3.25, it
can be seen that a higher threshold γ reduces the probability of false alarm PF but
leads at the same time to a lower probability of detection PD. On the contrary,
decreasing γ increases PD but also PF . It is therefore obvious that a tradeoff exists
between PD and PF for a given detection problem.

The detector performance can be visualized by plotting PD versus PF for differ-
ent threshold values. The resulting graph is termed receiver operating characteristic
(ROC) [Tre01]. For a desired probability of false alarm PF , the value of PD can
be directly read. Several ROC curves are displayed in Fig. 3.26. The ideal ROC
curve is PD = 1 for all PF . The poorest detector performance is a ROC curve
where PD = PF (dashed line)[Kay98]. Realistic curves are situated between them.
When the threshold γ increases, PF decreases but also PD and the ROC curve
tends versus the point (0, 0).
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Figure 3.26: Example of receiver operating characteristics (ROC).

3.6 Summary

This chapter provided an introduction to the signal processing methods that will
be used in the further course of this work. After some general remarks on classes
of signals, basic tools such as correlation and the Fourier transform were recalled
followed by a presentation of the concept of analytical signals. The next part dealt
with the most widely used method for frequency domain analysis which is classical
spectral estimation. The most popular estimator, the periodogram, was discussed
together with the influence of certain important parameters such as data record
length, windowing and averaging.

After this first part on stationary signal analysis, the concept of time-frequency
analysis was introduced. Several methods were discussed together with their per-
formances. An important criterion is the achievable time-frequency resolution. The
resolution power of the Wigner Distribution was shown to be superior the spectro-
gram but at the expense of interferences. Methods for interference reduction by
different smoothing operations were then mentioned.

An alternative approach for stationary or quasi-stationary signals is parame-
ter estimation. Advantages include shorter data records and the directly obtained
fault indicator. However, a priori knowledge is necessary and the performance of
the method depends considerably on the model accuracy. The maximum likeli-
hood estimator provides a practical estimation method with good asymptotical
performances. At last, some basic concepts of detection theory in case of binary
hypothesis testing were presented.

In the subsequent chapter, these methods will be applied to the signal models
derived in chapter 2 with the aim to determine fault signatures and indicators.
Steady and transient conditions will be considered.
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4.1 Introduction

This chapter studies the fault signatures of the phase-modulated (PM) and amplitude-
modulated (AM) stator current signals derived in chapter 2. The considered signal
processing methods are those presented in chapter 3: classical spectral estimation,
time-frequency analysis and signal parameter estimation.

The simplified real stator current signal models with PM and AM, resulting
from torque oscillations and dynamic eccentricity, are:

ipm,r(t) = ito(t) = Ist cos (ωst) + Irt cos
(
ωst+ β cos (ωct− ϕβ)− ϕr

)
(4.1)

iam,r(t) = ide(t) = I1 [1 + α cos (ωct− ϕα)] cosωst (4.2)

where the AM signal is written in a more general form than in (2.108) with modu-
lation frequency ωc. The theoretical calculations are less complex using analytical
signals. Therefore, consider these signals in their analytical form:

ipm(t) = Ist exp j (ωst) + Irt exp j
(
ωst+ β cos (ωct− ϕβ)− ϕr

)
(4.3)

iam(t) = I1 [1 + α cos (ωct− ϕα)] exp jωst (4.4)

These signal models only take into account the modulations of the fundamental
stator current component and not of higher frequency current harmonics. Since
the fundamental exhibits the highest amplitude of all current components, the
modulation effects will also be strongest in the baseband around the fundamental.
Therefore, the subsequent fault detection schemes will mainly be carried out by
analysis of the stator current fundamental.

In this work, speed and frequency transients are also considered. For simplified
calculations, the speed and frequencies are supposed to vary linearly with respect
to time which is often the case in variable speed drives during acceleration and
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braking. Since the fault characteristic frequency fc is a function of the shaft rota-
tional frequency fr, it will also be time-varying with similar characteristics. The
supply and fault pulsations ωs(t) and ωc(t) are supposed as follows:

ωs(t) = 2πfs(t) = 2π

(
αs +

1

2
βst

)
(4.5)

ωc(t) = 2πfc(t) = 2π

(
αc +

1

2
βct

)
(4.6)

where αs, αc are the initial frequencies and βs, βc the sweep rates. In the study of
the transient signals, these expressions simply replace ωs and ωc in equations (4.3)
and (4.4). The transient signals are denoted ipm,tr(t) and iam,tr(t) in the following.

The fault relevant information in the current signal can be processed in several
ways. A first approach is signal analysis with a specific method e.g. spectrum
analysis. The decision regarding fault occurrence will then be taken based on the
presence of typical fault signatures. A human expert can then take a decision
based on his acquired experience. If an automated monitoring system is desired,
the human expert must be replaced by an appropriate post-processing including
the calculation of a fault indicator or signature classification. Then, the system
can take a decision based on the indicator values or the obtained classification. In
the following, the fault signatures obtained with the different methods as well as
strategies for an indicator extraction will be presented.

The theoretical modeling approach showed that the fault severity is reflected
in the modulation indices of the PM/AM signals i.e. the phase modulation index
β and the amplitude modulation index α. Hence, the modulation indices can
often be used as fault indicators. Signal processing methods will therefore be
used to estimate either these modulation indices or extract proportional quantities.
Furthermore, this approach reveals information about the fault origin since PM and
AM effects can be distinguished.

The following sections are structured similar to chapter 3. With each signal
processing approach, the theoretical fault signatures are first calculated. Then,
they are validated using simulated signals with additive noise. Based on the fault
signatures, methods for the extraction of fault indicators will be described and
tested with simulated signals.

4.2 Spectral Estimation

Stator current based motor condition monitoring is generally based upon spectral
analysis with the periodogram. Therefore, this approach will also be discussed
for reference and comparison. Since this method requires stationary signals and
relatively long data records, speed and frequency transients cannot be analyzed.
Hence, the supply frequency will be supposed stationary.

Since the PSD is obtained through the squared magnitude of the Fourier trans-
form, the latter will first be calculated for the two signals.
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4.2.1 Stationary PM Signal

The Fourier transform (FT) of a PM current signal according to (4.3) is the sum
of the FTs of the two components due to the FT linearity property. The two
components are denoted as follows:

ist(t) = Ist exp j (ωst) (4.7)

irt(t) = Irt exp j
(
ωst+ β cos (ωct− ϕβ)− ϕr

)
(4.8)

The Fourier transform magnitude of the first component is simply:

|Ist(f)| = Ist δ (f − fs) (4.9)

The Fourier transform of a PM signal is more complex to derive but quite
common in communication theory (see e.g. [Cou93]). First, the PM signal has to
be developed into a Fourier series.

Consider the following series development [Abr64, p. 361]:

e
1
2
β(t−1/t) =

+∞∑
k=−∞

tkJk(β) t 6= 0 (4.10)

where Jk(β) denotes the k-th order Bessel function of the first kind. Setting the
parameter t = jejθ, the so-called Jacobi-Anger expansion is obtained:

ejβ cos θ =
+∞∑

k=−∞

jkJk(β)ejkθ (4.11)

Using this expression, the FT of irt(t) is written as the following convolution prod-
uct:

F {irt(t)} = Irt F
{
ej(ωst−ϕr)

}
∗ F

{
+∞∑

k=−∞

jkJk(β)ejk(ωct−ϕβ)

}
(4.12)

Hence, the FT magnitude is:

|Irt(f)| = Irt

+∞∑
k=−∞

Jk(β) δ (f − (fs + kfc)) (4.13)

The FT magnitude of the PM stator current according to (4.3) is then obtained
as:

|Ipm(f)| = Ist δ (f − fs) + Irt

+∞∑
k=−∞

Jk(β) δ (f − (fs + kfc)) (4.14)

Since [Abr64]
J−k(β) = (−1)kJk(β) (4.15)

the lower and upper sidebands of same order have the same FT magnitude. The
FT magnitude of such a signal is shown schematically in Fig. 4.1(a). Theoretically,
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Figure 4.1: Illustration of the Fourier transform magnitude of a PM stator current
signal.

an infinite number of sidebands at fs ± kfc arises in consequence of the phase
modulation. The sideband amplitudes depend on the phase modulation index β.

Considering reasonable physical values for the machine parameters and small
torque oscillations, the phase modulation index β can be supposed relatively small:
β � 1 holds in most cases. Then, the Bessel functions of order |k| ≥ 2 are
of small amplitude and can be neglected. This is a common approximation in
communication theory [Cou93]. The Bessel functions Jk(β) can be approximated
for β → 0 by [Abr64]:

Jk(β) ≈
(

1
2
β
)k

Γ(k + 1)
(k 6= −1,−2,−3, . . .) (4.16)

where Γ(k) denotes the Gamma or factorial function. The following approximations
are consequently obtained for J0(β) and J1(β) with β → 0:

J0(β) ≈ 1

Γ(1)
= 1

J1(β) ≈
1
2
β

Γ(2)
=

1

2
β

With these approximations, equation (4.14) becomes:

|Ipm(f)| = (Ist + Irt) δ (f − fs) +
1

2
βIrt δ (f − (fs ± fc)) (4.17)

which means that there are only two significant sideband components at fs ± fc.
This approximation is also termed narrowband approximation [Cou93]. The FT
magnitude of a PM stator current signal with small modulation index is illustrated
schematically in Fig. 4.1(b).

4.2.2 Stationary AM Signal

The AM stator current signal according to (4.4) can be rewritten as:

iam(t) = I1 exp jωst+ αI1 cos (ωct− ϕα) exp jωst (4.18)
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Figure 4.2: Illustration of the Fourier transform magnitude of an AM stator
current signal.

The FT of the last term is the convolution product of the FT of each factor. This
leads to the following FT magnitude Iam(f):

|Iam(f)| = I1 δ (f − fs) +
1

2
αI1δ (f − (fs ± fc)) (4.19)

The amplitude modulation therefore leads to two sideband components at fs ± fc

with equal amplitude αI1/2. This is illustrated schematically in Fig. 4.2.
It is important to note that the AM and PM signal have the same spectral

signature if the PM modulation index is small. Moreover, measured signals contain
often additive white noise leading to a constant noise floor in the spectrum. Since
the PM signal sideband components with k ≥ 2 are of relatively small amplitude
they are often embedded in the noise floor. Hence, spectral estimation is not an
appropriate tool to distinguish the two modulation types.

4.2.3 Simulation Results

Tests with simulated signals are carried out in order to verify the previous the-
oretical considerations. The real-valued, discrete PM and AM signals used for
simulation are:

ipm,r[n] = Ist cos (2πfsn) + Irt cos
(
2πfsn+ β cos (2πfcn− ϕβ)− ϕr

)
+ w[n]

(4.20)

iam,r[n] = I1 [1 + α cos (2πfcn− ϕα)] cos (2πfsn) + w[n] (4.21)

where w[n] is a white Gaussian noise of variance σ2. The parameters take the
following default values, typical of the considered application:

fs = 0.25 fc = 0.125

α = β = 0.01 ϕβ = ϕα =
π

4

ϕr =
π

8
Ist = Irt =

√
2

2

I1 =
√

2 SNR = 50 dB

In this application, the acquired current signals are all downsampled to 200 Hz
to preserve only frequencies around the fundamental at fs = 50 Hz. Therefore,
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Figure 4.3: Simulated PM and AM test signals.

fs = 0.25 normalized frequency has been chosen for the simulation. The fault
characteristic frequency fc is supposed to be equal to the shaft rotational frequency
fr ≈ fs/2. A realization of each PM and AM test signal with these parameters is
shown in Fig. 4.3. The different modulation types cannot be distinguished due to
the small modulation indices.

For the spectral estimation, the signals of length N = 512 are transformed into
their analytical form before the periodogram computation. For illustration of the
window effects, the periodogram of the stator current PM signal is estimated with
the previously mentioned 5 windows and additional zero padding. The results are
displayed in Fig. 4.4. The rectangular window is not suitable in this case due to high
sidelobe amplitudes that mask the sideband peaks. The Bartlett and Hamming
window lead also to relatively high sidelobes around the main peak. Hanning and
Blackman windows are adequate for this application.

For comparison between the PM and AM signal, the two periodograms com-
puted using a Hanning window of length N are displayed in Fig. 4.5. First, it can
be noted that the two spectral estimates are very similar. The AM or PM modula-
tion cannot be clearly identified since higher order sidebands of the PM signal are
buried in the noise. Secondly, the relative amplitude of the sidebands with respect
to the fundamental is −52 dB (0.0025) in the PM case which corresponds to β/4.
This is correct since the fundamental amplitude is Ist + Irt = 2Irt = I1. With the
AM signal, the relative sideband amplitude is −46 dB (0.005) corresponding to
α/2.

4.2.4 Fault Indicator

With the preceding considerations, a suitable fault indicator based on the stator
current spectrum can be derived. It has been demonstrated that the modulation
indices are reflected in the relative sideband amplitudes. The modulation indices
themselves are theoretically proportional to the fault severity. Therefore, the pro-
posed fault indicator is the sum of the two relative sideband amplitudes.

The proposed fault indicator is obtained as depicted in Fig. 4.6. First, the stator
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(a) Rectangular window

0 0.1 0.2 0.3 0.4 0.5
−80

−60

−40

−20

0

20

Normalized frequency

P
S
D

[d
B

]

(b) Triangular or Bartlett window
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(c) Hamming window
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(d) Hanning window
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(e) Blackman window

Figure 4.4: Power Spectral Densities of simulated stator current PM signal ana-
lyzed with common window functions.



4.2. Spectral Estimation 101

0 0.1 0.2 0.3 0.4 0.5
−80

−60

−40

−20

0

20

Normalized frequency

P
S
D

[d
B

]
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(b) AM signal

Figure 4.5: Periodogram of PM and AM signal.

current PSD is estimated in the frequency range of interest, usually depending on
the fundamental fs and the characteristic fault frequency fc. In case of faults
such as eccentricity, load unbalance or shaft misalignment, fc is equal to the shaft
rotational frequency fr. Then, the supply frequency fs is estimated through the
localization of the maximum of the PSD. The amplitude A of the fundamental is
also retained. Depending on the possible variations of fr, minimum and maximum
values fc,min and fc,max are determined. As an example, if fc = fr and the maximal
motor slip is smax = 5%:

fc,max =
fs

p
fc,min = (1− smax)

fs

p
= 0.95

fs

p
(4.22)

These values limit the frequency range for the sideband location. The lower
sideband is located in the interval Il = [fs − fc,max, fs − fc,min] whereas the upper
sideband is in Iu = [fs + fc,min, fs + fc,max]. The maximum PSD values from these
intervals, Al and Au respectively, characterize the sideband amplitudes. In order
to obtain the relative sideband amplitude, the sum of Al and Au is normalized
with respect to the fundamental amplitude A. The resulting spectrum-based fault
indicator is simply:

IPSD =
Al + Au

A
(4.23)

It should be proportional to the modulation index α or β. The normalization is nec-
essary to provide a load independent indicator. When β is estimated according to
the PM stator current model in equation (4.1), the rotor-related current amplitude
Irt would be required for correct normalization. However, since this quantity is not
available, the current fundamental amplitude Irt + Ist is used instead. It should
also be noted that the PM model according to (4.1) is rather simple and neglects
higher order armature reactions. Actually, the stator-related current component
with amplitude Ist should also be modulated which would reduce the committed
normalization error. If the stator current is amplitude modulated according to
(4.2), the correct value for α is obtained.
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Spectral Estimation
Estimate the stator current spectrum using the real or
analytical current signal

��
Estimation of Supply Frequency and Amplitude
An estimate of fs is obtained by the localization of the
PSD maximum of amplitude A

��
Sideband Amplitudes
Determine the sideband amplitudes A1 and A2 by search-
ing the PSD maximum in the intervals

Il = [fs − fc,max, fs − fc,min]

Iu = [fs + fc,min, fs + fc,max]

��
Normalization and Indicator Calculation
The spectrum-based indicator (IPSD) is the sum of the
normalized sideband amplitudes:

IPSD =
Al + Au

A

Figure 4.6: Calculation of the spectrum based fault indicator IPSD.
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4.3 Time-Frequency Analysis

The following sections study the fault signatures with the previously discussed
time-frequency methods. These signal processing methods, suitable for non-stationary
signal analysis, are applied to signals with time-varying frequencies.

4.3.1 Instantaneous Frequency

The instantaneous frequency (IF) of the PM and AM stator current must be cal-
culated using the analytical signals for a univocal phase definition.

4.3.1.1 Stationary PM Signal

The IF of an analytical signal was defined in (3.59). For simplification, this def-
inition is first applied to a monocomponent PM signal such as the rotor current
component irt(t) in (4.8):

IFirt(t) =
1

2π

d

dt
arg{irt(t)} = fs − βfc sin (2πfct− ϕβ) (4.24)

It can be seen through this expression that the IF of this sinusoidal PM signal is
a constant component at carrier frequency fs plus an oscillating component. The
frequency of the latter is the modulation frequency fc, its amplitude is βfc.

The IF calculation of a PM stator current signal according to (4.3) is more
complex since it is the sum of a modulated and a non-modulated component.
First, ipm(t) can be rewritten as a product:

ipm(t) = exp j (ωst)
[
Ist + Irt exp j

(
β cos (ωct− ϕβ)− ϕr

)]
= b(t) c(t)

(4.25)

For the IF of a product, consider two complex functions z1(t) and z2(t). The
IF of z(t) = z1(t)z2(t) is the sum of the two IF laws:

IFz(t) =
1

2π

d

dt
arg{z(t)} =

1

2π

d

dt
[arg{z1(t)}+ arg{z2(t)}]

= IFz1(t) + IFz2(t)
(4.26)

In equation (4.25), IFb(t) = fs and

IFc(t) =
1

2π

d

dt
arctan

Irt sin (β cos (ωct− ϕβ)− ϕr)

Ist + Irt cos (β cos (ωct− ϕβ)− ϕr)
(4.27)

With (
arctan

u

v

)′
=

1

1 + u2

v2

u′v − v′u

v2
=
u′v − v′u

u2 + v2
(4.28)

IFc(t) can be calculated as:

IFc(t) = −βfc sin (ωct− ϕβ)
I2
rt + IstIrt cos (β cos (ωct− ϕβ)− ϕr)

I2
rt + I2

st + 2IstIrt cos (β cos (ωct− ϕβ)− ϕr)
(4.29)
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In order to evaluate the last term of the product, consider the following series
development [Abr64]:

cos (β cos θ) = J0(β) + 2
∞∑

k=1

(−1)kJ2k(β) cos (2kθ) (4.30)

If β is small enough, the higher order Bessel functions with k ≥ 2 are neglected as
in the previous narrowband approximation and only the constant term J0(β) ≈ 1
remains. This leads to the following approximation for the time-variable terms in
the fraction of (4.29):

cos (β cos (ωct− ϕβ)− ϕr) ≈ 1 if β � 1 (4.31)

Therefore, using this approximation for IFc(t), the IF of the PM stator current
IFipm(t) becomes:

IFipm(t) ≈ fs − βfc sin (ωct− ϕβ)
I2
rt + IstIrt

I2
rt + I2

st + 2IstIrt

= fs − βfc sin (ωct− ϕβ)
Irt

Ist + Irt

= fs − βfcC(Ist, Irt) sin (ωct− ϕβ)

(4.32)

where C(Ist, Irt) is a time independent function of the current component ampli-
tudes Ist and Irt. Furthermore, 0 < C(Ist, Irt) < 1 and C(Ist, Irt) → 1 for Irt � Ist.

It can be concluded that the PM stator current IF shows oscillations at fc

with amplitude proportional to βfc. Thus, the IF can be used to detect phase
modulations. However, the amplitude of the oscillating IF component also varies
with changing load conditions since it depends on Ist and Irt.

4.3.1.2 Transient PM Signal

The transient PM stator current signal in a product form is:

ipm,tr(t) = exp j (ωs(t)t)
[
Ist + Irt exp j

(
β cos (ωc(t)t− ϕβ)− ϕr

)]
= btr(t) btr(t)

(4.33)

The IF of the first term is with ωs(t) = 2π (αs + βst/2):

IFb,tr(t) = αs + βst (4.34)

The IF of the transient PM signal ipm(t) is calculated similar to the stationary
case. It expresses in the approximated form as follows:

IFipm,tr(t) ≈ αs + βst− β (αc + βct) C(Ist, Irt) sin [2π (αc + βct/2) t− ϕβ] (4.35)

This expression is similar to the stationary case. The IF of the PM current signal
is the IF of the unmodulated signal IFb,tr(t) plus oscillations. The oscillations
are at the variable fault pulsation ωc(t) and their amplitude is proportional to β,
C(Ist, Irt) and (αc + βct).
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(b) PM signal
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(c) AM signal

Figure 4.7: Instantaneous frequency of simulated signals: signal without modu-
lation, PM and AM signal.

4.3.1.3 AM Signal

The IF of an AM stator current signal according to (4.4) is simply a constant at
fs:

IFiam(t) = fs (4.36)

In contrast to the PM stator current signal, no time-variable component is present.
The AM modulation index α is not reflected in the IF. Consequently, the IF of this
signal cannot be used for amplitude modulation detection.

The same is true in the transient case where the AM signal IF is equal to the
corresponding unmodulated signal IF:

IFiam,tr(t) = αs + βst (4.37)

4.3.1.4 Simulation Results

Simulations consider the AM and PM signals with the parameter values given in
4.2.3. The data record length is N = 512. First, the analytical signal is calculated
using the Hilbert transform. Then, the instantaneous frequency is estimated using
the function instfreq from the Matlab Time-Frequency Toolbox [Aug96]. This
function employs the previously mentioned phase difference estimation.

The obtained IF estimations are displayed in Fig. 4.7. First, the IF of an
unmodulated signal is calculated (see Fig. 4.7(a)). The mean IF value is the supply
frequency at fs = 0.25 normalized frequency. Since the signal is generated with
additive noise, the noise is also present on the IF estimation. In contrast, the
IF of the PM signal (displayed in Fig. 4.7(b)) shows a deterministic oscillating
component at fc = 0.125 as predicted by equation (4.32). The AM signal IF (see
Fig. 4.7(c)) resembles to the unmodulated case where no deterministic oscillation
is visible.

The amplitude and frequency of the oscillating IF component are then derived
from the estimated IF spectrum. Since the average IF value is relatively high com-
pared to the oscillations, it is removed before the spectral estimation in order to
avoid sidelobe effects. Moreover, the average IF does not contain relevant fault
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(a) PM signal
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(b) AM signal

Figure 4.8: Periodogram of instantaneous frequency of simulated PM and AM
signals.

information. The PSD is estimated using a standard periodogram with rectangu-
lar window function. The PSD estimates for the PM and AM signal are shown in
Fig. 4.8. With the PM signal, the IF spectrum clearly shows a peak at fc = 0.125
which is not visible with the AM signal. The peak amplitude corresponds to a
sinusoidal component amplitude of 5.875 · 10−4 = βfcC(Ist, Irt). With the chosen
values for Ist = Irt, C(Ist, Irt) = 0.5. Therefore, β is estimated as 0.0094 which is
slightly smaller than the chosen value 0.01. The error may result from the spec-
tral estimation or the approximation for the IF oscillating component amplitude.
However, simulations showed that the error depends on fc: a smaller value of fc

decreases this error. Consequently, it can be supposed to be related to the IF esti-
mation procedure through the phase differentiation. A higher sampling frequency
is likely to reduce the estimation error of the IF oscillating component amplitude.

The corresponding simulations are carried out with the transient signals. The
frequency variation is linear with the following parameters:

αs = 0.05 βs = 0.2/N

αc = αs/2 βc = βs/2

The supply frequency fs(t) is therefore varying from 0.05 to 0.25 normalized fre-
quency. The modulation frequency fc(t) is half the supply frequency. In order
to better visualize the modulation effects, the following higher values are chosen
for the modulation indices: α = β = 0.1. The IF of the transient PM and AM
stator current signal is shown in Fig. 4.9. The linear evolution of the supply fre-
quency is clearly visible apart from border effects. With the PM signal, oscillations
at varying fault frequency fc(t) can be recognized. In case of the AM signal, no
oscillations are present.

In order to extract the fault signature from the IF, information about ampli-
tude and frequency of the oscillating component must be obtained. Since the fault
frequency is time-varying, a spectral estimate can no longer be used. Instead, a
time-frequency representation of the stator current IF can reveal the fault signa-
ture. Since the fault signature is a signal component with a linear frequency mod-
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(b) AM signal

Figure 4.9: Instantaneous frequency of simulated transient PM and AM signals.
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Figure 4.10: Spectrogram of instantaneous frequency of simulated transient PM
and AM signals.

ulation and since the sweep rate is relatively slow, the spectrogram can be used.
Another advantage with the spectrogram is the absence of interference terms. The
DC component in the IF is of high amplitude compared to the oscillating terms
which leads to interferences in quadratic time-frequency representations. More-
over, the amplitude of the DC component varies during the considered transient
so that it cannot be simply removed. Thus, the spectrogram is a reasonable choice
in this case.

The spectrogram of the PM and AM signal IF is displayed in Fig. 4.10. Besides
the strong DC component at 0 Hz, the signature of a linear FM signal component
is clearly visible with the PM signal. Its frequency varies from 0.025 to 0.125 which
corresponds to the IF law of a sinusoidal signal with fc(t). As fc increases, the
amplitude of the oscillating component also increases according to equation (4.35).
In contrast, the spectrogram of the AM signal IF shows no oscillating component.
These examples show that the spectrogram is an adapted tool for IF analysis in
this application.
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IF Estimation
Estimate the stator current IF IFi[n] using the analytical
current signal of lengthN and the phase difference method

��
IF Time-Frequency Analysis
Calculate the spectrogram Sw

IF,i[n, k] of the analytical cur-
rent IF with Hanning window of length Nw

��
Extraction of Oscillating Component Amplitude
For n = (Nw/2) to (N −Nw/2):
Calculate square-root A[n] of maximum of Sw

IF,i[n, k] with
k ∈ I[n] = [fc,min[n], fc,max[n]]

��
Indicator Calculation
The indicator is A[n] normalized with respect to a fault

frequency estimate f̂c:

IIF1[n] = A[n]/f̂c[n] (4.39)

Figure 4.11: Calculation of the IF based fault indicator IIF1.

4.3.1.5 Fault Indicator

Following the preceding considerations, two IF based fault indicators are proposed.
If the signals are at constant supply frequency fs, spectral analysis of the IF fol-
lowed by peak detection in a suitable frequency range provides a straightforward
indicator for the PM modulation index. However, since the IF analysis is adapted
for transient signal analysis, only this more general case will be considered.

The calculation of the first IF based fault indicator (IIF1) is schematically
shown in Fig. 4.11 [Blö06b]. First, the IF IFi[n] of the analytical stator current
signal is computed, followed by the spectrogram Sw

IF,i[n, k] of the analytical stator
current IF. The window function is a Hanning window of length Nw. In order
to extract the amplitude of the oscillating component from the spectrogram, a
frequency interval I[n] = [fc,min, fc,max] is defined for each time bin n. Based on
the previously estimated IF value with respect to n, the frequency range can be
determined to account for variations of fr. In this example, fc,min[n] = 0.95 IFi[n]/2
and fc,max[n] = 1.05 IFi[n]/2. The oscillating component amplitude A[n] is the
square root of the maximum of Sw

IF,i[n, k] with k ∈ I[n]. Note that A[n] is only
extracted for n ∈ [Nw/2, (N −Nw/2)] where N denotes the data record length.
This avoids the influence of border effects on the fault indicator.

The oscillating component amplitude A[n] can already be used as a fault indi-
cator (see Fig. 4.12(a)). Several simulations have been carried out with increasing
modulation index β. It becomes clear that A[n] is proportional to the modulation
index β. However, it still depends on the value of the fault characteristic frequency
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Figure 4.12: Spectrogram amplitude A[n] and fault indicator IIF1 with respect
to time for different PM modulation indices β.

fc(t) since A is smaller when fc is smaller. Therefore, in order to obtain an indi-
cator independent of the varying supply and fault frequency, A[n] must be divided
by the fault characteristic frequency fc (see equation (4.35)). Since the exact value
of fc is not known, it has to be estimated. A first approach might be the local-
ization of the oscillating component in the spectrogram. However, the obtained
estimations exhibit a high variance which leads to an unusable fault indicator. A
second method is the use of IFi[n]. The fault frequency fc is approximately fs/p
so that fc is estimated by f̂c[n] = IFi[n]/p. The fault indicator IIF1 is therefore:

IIF1[n] =
A[n]

f̂c[n]
with A[n] =

√
max

{
Sw

IF,i[n, k]
}
, k ∈ [fc,min[n], fc,max[n]]

(4.40)
The obtained results displayed in Fig. 4.12(b) have a lower variance than with the
first method for estimating fc. Since the value of fc is smaller at the beginning,
the variance of IIF1 is higher. For higher n, the average of IIF1 is approximately
constant. Moreover, the indicator value is proportional to the modulation index β
which demonstrates the effectiveness of the indicator.

Indicator IIF1 suffers from the dependence of the spectrogram amplitude on
the frequency sweep rate of the analyzed signal. Assuming a constant window
length Nw, the peak in the spectrogram is larger if the frequency variation is high.
Consequently, since the total energy is constant with respect to the sweep rate, the
larger peak is of smaller amplitude. Therefore, higher sweep rates lead to smaller
peak amplitudes of the linear chirp component. Hence, the fault indicator based
on the maximum of the periodogram can only be used if the sweep rates are always
constant i.e. during the same speed profiles. Indicator values IIF1 with different
sweep rates βs are displayed in Fig. 4.13(a). The indicators drops by approximately
25% if βs = 0.3/N compared to the slow variation βs = 0.1/N .

An alternative is the calculation of the total energy in an interval Sw
IF,i[n, k] with
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Figure 4.13: Comparison of indicators IIF1 and IIF2 with respect to different
frequency sweep rates βs of the supply frequency, modulation index β = 0.1.

IF Estimation
Estimate the stator current IF IFi[n] using the analytical
current signal of lengthN and the phase difference method

��
IF Time-Frequency Analysis
Calculate the spectrogram Sw

IF,i[n, k] of the analytical cur-
rent IF with Hanning window of length Nw

��
Extraction of Oscillating Component Energy
For n = (Nw/2) to (N −Nw/2):
Calculate energy E[n] in Sw

IF,i[n, k] with
k ∈ I[n] = [fc,min[n], fc,max[n]]

��
Indicator Calculation
The indicator is

√
E[n] normalized with respect to a fault

frequency estimate f̂c: IIF2[n] =
√
E[n]/f̂c[n]

Figure 4.14: Calculation of the IF based fault indicator IIF2.
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Figure 4.15: Fault indicator IIF2 with respect to time for different PM modula-
tion indices β.

k ∈ I[n]. Considering the energy square root and an appropriate normalization
with respect to fc, the fault indicator IIF2 is obtained as:

IIF2[n] =

√
E[n]

f̂c[n]
with E[n] =

fc,max[n]∑
k=fc,min[n]

Sw
IF,i[n, k] (4.41)

Its calculation is schematically depicted in Fig. 4.14. Results with simulated signals
are displayed in Fig. 4.15. Besides the indicator value, they are similar to IIF1.
However, tests with different frequency sweep rates showed less indicator variations
compared to IIF1. An exemple can be seen in Fig. 4.13(b) where the final indicator
values are relatively stable with respect to the sweep rate.

4.3.2 Spectrogram

The spectrogram is only shortly discussed because of various disadvantages com-
pared to the other proposed time-frequency methods. Since the spectrogram is the
squared short-time Fourier transform, it is limited in resolution by the Heisenberg-
Gabor uncertainty principle. The choice of the window length is primordial for the
time-frequency resolution and the accuracy of the analysis.

4.3.2.1 Stationary PM and AM Signals

Consider first stationary PM and AM signals. If the analysis window is long
compared to the modulation period, the spectrogram becomes similar to the peri-
odogram. The phase or amplitude modulation will lead to sidebands around the
fundamental frequency at fs±fr. When the PM modulation index is small or when
the SNR is low, the higher order sidebands of the PM signal are small and buried
in the noise floor. In these cases, the PM and AM signature will be identical and
there is no advantage of the spectrogram over the periodogram.
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Figure 4.16: Illustration relative to the spectrogram of a sinusoidal PM signal
with different window lengths.

Since the phase modulation corresponds to a time-varying instantaneous fre-
quency and the amplitude modulation to a time-varying amplitude, a time-frequency
analysis using the spectrogram should reveal the difference. For this purpose, the
window length Nw must be chosen adequately with respect to the modulation pe-
riod Tc. If e.g. the window length is exactly the modulation period Nw = Tc, the
time-variable frequency or amplitude will not be visible in the spectrogram. Actu-
ally, the squared Fourier transform is identical for each window position. This is
illustrated graphically in Fig. 4.16(a) with the time-frequency representation of a
sinusoidal PM signal and three different window positions. The spectrogram yields
the average frequency content of the windowed signal, being the same in each case.
Thus, the window length should ideally be chosen smaller or only slightly higher
than the modulation period so that the changes in frequency or amplitude will be
visible in the spectrogram. Fig. 4.16(b) shows the corresponding case with shorter
observation windows. The average frequencies for each window position are dif-
ferent leading to a variable frequency in the spectrogram. Nevertheless, even a
window length longer than the modulation period can still be adequate since e.g.
with Nw = 1.5Tc the average frequency of the window changes with respect to the
window position.

It should also be recalled that the window length in the preceding considera-
tions strongly influences the frequency resolution. The short observation window,
required to analyse the time-varying frequency or amplitude, degrades the fre-
quency resolution according to the Heisenberg-Gabor uncertainty. In case of a
small modulation frequency compared to the carrier frequency, the observation
window can be chosen long enough for a satisfying frequency resolution. However,
when the modulation frequency is relatively high, the required short window length
may lead to an unacceptable frequency resolution. In the considered application,
the modulation frequency fc is typically half the carrier frequency fs with fs = 0.25
normalized frequency. Choosing e.g. a window length Nw which is half the mod-
ulation period i.e. Nw = 4, it becomes clear that the frequency resolution is too
poor for an effective analysis.

It can be concluded that a spectrogram analysis in this application requires
relatively short windows for discriminating AM and PM signals. The resulting
frequency resolution may be problematic. Long observations windows lead to good
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Figure 4.17: Spectrogram of simulated PM and AM signals with low modulation
frequency (fc = 0.02) and higher modulation indices (α = β = 0.5), window length
Nw = 63.

frequency resolution but the modulation type may be impossible to identify with
small modulation indices.

4.3.2.2 Transient PM and AM Signals

With transient PM and AM signals the same previously discussed problems arise.
Moreover, increasing the window length for better resolution leads to a higher
degree of non-stationarity of the windowed signal. The time-varying frequencies
appear as relatively broad peaks that may mask phenomena of smaller amplitude.
Examples will be given in the following that illustrate the difficulty to analyze the
signals with the spectrogram in our application.

4.3.2.3 Simulation Results

First, stationary signals with relatively low modulation frequencies are considered.
In these cases, the spectrogram can be used to distinguish between PM and AM.
Compared to the initial parameters of the simulated signals given in section 4.2.3,
the modulation frequency fc and the modulation indices are changed: fc = 0.02
and α = β = 0.5. The modulation period is therefore Tc = 50 samples, allowing an
adequate window length for acceptable frequency resolution and the visualization
of the time-varying frequency and amplitude. The obtained time-frequency repre-
sentations are displayed in Fig. 4.17. They have been calculated using a Hanning
window of lengthNw. In the spectrogram of the sinusoidal PM signal (Fig. 4.17(a)),
the sinusoidally varying instantaneous frequency can be recognized through the
mean frequency with respect to time. The period of the sinusoidal variations is
the modulation period Tc = 50 samples. In case of the AM signal (Fig. 4.17(b)),
the instantaneous frequency i.e the frequency average of the spectrogram shows no
variations since it is always 0.25 for all points in time. The signal AM character
becomes visible through the time-varying amplitude of the fundamental frequency.
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The previous example illustrated that the PM or AM character of a signal
can be distinguished through the spectrogram for a small modulation frequency.
If typical values for our application are considered, the modulation frequency is
relatively high with fc = 0.125 = fs/2. For the following simulations, fc takes this
value and the modulation indices are reset to the smaller values with α = β = 0.1.
The obtained spectrograms are displayed for two different window lengths Nw = 11
and Nw = 49 samples in Fig. 4.18. When a relatively short window length is chosen
(Nw = 11), a difference between the PM and AM signal can be seen in a zoom on
the fundamental frequency (Figs. 4.18(c) and 4.18(d)). The PM signal spectrogram
shows a sinusoidally varying instantaneous frequency whereas the time-varying
amplitude can be recognized with the AM signal. The modulation period is in
each case 8 samples which corresponds to Tc = 1/fc. Increasing the window length
yields a spectrogram where the sidebands at fs±fc become visible (see Figs. 4.18(e)
and 4.18(f)). According to the preceding reflections, the PM and AM signatures are
identical and cannot be distinguished. The situation resembles to the periodogram.

After simulations with stationary signals, consider now transient AM and PM
signals. The chosen parameters correspond to those in section 4.3.1.4. Figure 4.19
displays the time-frequency representations with Nw = 11, Nw = 49 and Nw =
149. In contrast to the stationary signal, the PM/AM modulation is difficult to
identify with the short analysis window. With Nw = 49, the sidebands are not yet
visible due to the time-varying modulation frequencies and their small value at the
beginning of the data record. With longer analysis windows, e.g. Nw = 149, the
sidebands become visible. However, the lack of resolution makes it a difficult task
to extract automatically fault indicators, especially at low fundamental frequencies.

4.3.3 Wigner Distribution

4.3.3.1 Stationary PM Signal

First, the WD of a monocomponent PM signal irt(t) according to equation (4.8) is
derived. The WD kernel expresses as:

Kirt(t, τ) = irt

(
t+

τ

2

)
i∗rt

(
t− τ

2

)
= I2

rt exp j {ωsτ} exp j
{
−2β sin (ωct− ϕβ) sin

(ωc

2
τ
)} (4.42)

The FT of Kirt(t, τ) with respect to τ yields the WD. The kernel can be considered
as a product which leads to a convolution of the FTs of the factors. Hence:

Wirt(t, f) = Fτ→f {Kirt(t, τ)}

= I2
rt Fτ→f {exp j (ωsτ)} ∗ Fτ→f

{
exp j

[
−2β sin (ωct− ϕβ) sin

(ωc

2
τ
)]}

(4.43)

For the calculation of the second term, consider (4.10) with t = exp jθ. The
complex notation of the sine function yields:

ejγ sin θ =
+∞∑

k=−∞

Jk(γ)e
jkθ (4.44)
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Figure 4.18: Spectrogram of simulated PM and AM stator current signals, fc =
0.125, α = β = 0.1, different window lengths.
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Figure 4.19: Spectrogram of simulated transient PM and AM stator current
signals, α = β = 0.1, different window lengths.
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Using this relation and γ = −2β sin (ωct− ϕβ), the WD of irt(t) can be rewritten:

Wirt(t, f) = I2
rt δ (f − fs) ∗ Fτ→f

{
+∞∑

k=−∞

Jk(γ)e
jkωcτ/2

}

= I2
rt δ (f − fs) ∗

+∞∑
k=−∞

Jk(γ) δ

(
f − k

fc

2

)

= I2
rt

+∞∑
k=−∞

Jk(γ) δ

(
f − fs − k

fc

2

)
(4.45)

Since only small modulation indices are considered, the higher order Bessel
function with |k| ≥ 2 can be neglected and the following approximation is obtained
(see section 4.2.1):

Wirt(t, f) ≈ J0(γ)I
2
rt δ (f − fs) + J1(γ)I

2
rt δ

(
f − fs −

fc

2

)
− J1(γ)I

2
rt δ

(
f − fs +

fc

2

)
≈ I2

rt δ (f − fs)− β sin (ωct− ϕβ) I2
rt δ

(
f − fs −

fc

2

)
+ β sin (ωct− ϕβ) I2

rt δ

(
f − fs +

fc

2

)
(4.46)

This approximation clearly demonstrates the WD signature of a stationary PM
signal with small modulation index. A strong component of amplitude I2

rt is present
at the carrier or supply frequency fs. The phase modulation leads to oscillating
sidebands at frequencies fs ± fc/2. The amplitudes of the sideband component
are proportional to the modulation index β and I2

rt. The sideband amplitude
oscillates at the fault characteristic frequency fc. The upper and lower sidebands
have opposed amplitudes for a given point in time, i.e. the phase shift between
them is π. The sidebands can be considered as outer interferences since they result
from nonlinear frequency modulation [Mec97].

The WD of the unmodulated stator current component ist(t) (see (4.7)) is
simply:

Wist(t, f) = I2
st δ (f − fs) (4.47)

The WD of the stator current PM signal ipm(t) = ist(t) + irt(t) must be calculated
according to the quadratic addition formula (3.73). For this purpose, the cross
WD between ist(t) and irt(t) is derived:

Wist,irt(t, f) =

+∞∫
−∞

ist

(
t+

τ

2

)
i∗rt

(
t− τ

2

)
e−j2πfτ dτ

= IstIrte
jϕr

∞∑
k=−∞

∞∑
m=−∞

jkJk (γ1) Jm (γ2) δ

(
f − fs − k

fc

2
−m

fc

2

)
(4.48)
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with
γ1 = −β cos (ωct− ϕβ) γ2 = −β sin (ωct− ϕβ) (4.49)

As before, Bessel functions Jk(γi) with order |k| ≥ 2 are neglected since β is
supposed small. Therefore, all products Jk (γ1) Jm (γ2) with |k| ≥ 2 or |m| ≥ 2
will be neglected. Furthermore, using J0(γi) ≈ 1 and J1(γi) ≈ β/2, the following
approximation is obtained:

Wist,irt(t, f) ≈ IstIrte
jϕr δ (f − fs)

− 1

2
βje−j(ωct−ϕβ−ϕr)IstIrt δ

(
f − fs −

fc

2

)
− 1

2
βjej(ωct−ϕβ+ϕr)IstIrt δ

(
f − fs +

fc

2

) (4.50)

In the quadratic addition formula, twice the real part of the cross WD appears:

2<{Wist,irt(t, f)} ≈ 2IstIrt cosϕr δ (f − fs)

− β sin (ωct− ϕβ − ϕr) IstIrt δ

(
f − fs −

fc

2

)
+ β sin (ωct− ϕβ + ϕr) IstIrt δ

(
f − fs +

fc

2

) (4.51)

This expression is similar to the WD of the monocomponent PM signal in equation
(4.46) with an approximately constant component at fs and oscillating sidebands
at fs±fc/2. However, in contrast to (4.46), the phase shift between the upper and
the lower sideband is no longer π but depends on the angle ϕr between rotor and
stator MMF. This angle depends on the motor load condition which signifies that
the average load directly influences the interference structure of the cross WD. The
phase shift in this case is (π − 2ϕr).

The WD of ipm(t) is then obtained as the sum of equations (4.46),(4.47) and
(4.51):

Wipm(t, f) ≈
(
I2
st + I2

rt + 2IstIrt cosϕr

)
δ (f − fs)

− β
[
I2
rt sin (ωct− ϕβ) + IstIrt sin (ωct− ϕβ − ϕr)

]
δ

(
f − fs −

fc

2

)
+ β

[
I2
rt sin (ωct− ϕβ) + IstIrt sin (ωct− ϕβ + ϕr)

]
δ

(
f − fs +

fc

2

)
(4.52)

As in the previous expression of the cross WD, the phase shift between the upper
and lower sideband depends on ϕr and consequently the motor load. However,
approximations are possible: First consider the case of small load. Since the output
torque depends on ϕr, ϕr is small in this case. The phase shift in the cross WD
will then be close to π as well as the phase shift in Wipm(t, f). When the load
becomes higher, ϕr increases and the phase shift in the cross WD becomes different
from π. However, the rotor current Irt will also be greater than Ist in this case.
This leads to a greater amplitude of the sideband components with amplitude I2

rt
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Figure 4.20: Illustration of the Wigner Distribution of a PM stator current signal
with ϕr = 0 and ϕβ = 0 .

compared to the sidebands of amplitude IstIrt resulting from the cross WD. The
influence of the latter on the total phase shift between upper and lower sideband
will therefore become smaller with increasing Irt. Consequently, a value close to π
can be supposed in most cases.

The WD of a PM stator current signal is illustrated in Fig. 4.20 for a cer-
tain point in time. The fundamental and sideband amplitudes are indicated. For
simplification, ϕr = 0 and ϕβ = 0 have been supposed. Note that the sideband
amplitudes vary sinusoidally with respect to time.

4.3.3.2 Transient PM Signal

The exact analytical determination of the WD of a transient PM signal according
to (4.33) is complex and will not be presented here. An approximation is possible
when the fault pulsation ωc(t) is supposed quasi-stationary: ωc(t) ≈ 2πfc. Then,
the transient PM signal can be considered as the product of a stationary PM signal
with ωs = 0 and a linear chirp signal ztr(t):

ipm,tr(t) =
[
Ist + Irt exp j

(
β cos (ωct− ϕβ)− ϕr

)]
exp j (2π (αs + βst/2) t)

= ipm(t)
∣∣
ωs=0

ztr(t)
(4.53)

The WD of the stationary PM signal has been calculated in the previous section.
The WD of ztr(t) is obtained as:

Wztr(t, f) = δ (f − αs − βst) (4.54)

The modulation invariance property of the WD states [Boa03]:

z3(t) = z1(t)z2(t) , Wz3(t, f) = Wz1(t, f) ∗f Wz2(t, f) (4.55)

where ∗f denotes the frequency convolution. This property can be used to obtain
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the approximated WD of equation (4.53):

Wipm,tr(t, f) = Wipm(t, f)
∣∣
ωs=0

∗f Wztr(t, f)

≈
(
I2
st + I2

rt + 2IstIrt

)
δ (f − αs − βst)

− β
[
I2
rt sin (ωct− ϕβ) + IstIrt sin (ωct− ϕβ − ϕr)

]
δ

(
f − αs − βst−

fc

2

)
+ β

[
I2
rt sin (ωct− ϕβ) + IstIrt sin (ωct− ϕβ + ϕr)

]
δ

(
f − αs − βst+

fc

2

)
(4.56)

This expression shows that the fault signature calculated in the stationary case is
preserved. The sidebands with opposed amplitudes appear around the time-varying
supply frequency.

4.3.3.3 Stationary AM Signal

In the following, the WD of a stationary AM signal according to (4.36) is calculated.
The kernel Kiam(t, τ) expresses as:

Kiam(t, τ) = iam

(
t+

τ

2

)
i∗am

(
t− τ

2

)
= I2

1 exp j {ωsτ}
[
1 +

1

2
α2 cos (2ωct− 2ϕα)

+2α cos (ωct− ϕα) cos
(ωc

2
τ
)

+
1

2
α2 cos (ωcτ)

] (4.57)

The Fourier transform of this expression yields the WD:

Wiam(t, f) = Fτ→f {Kiam(t, τ)}

=

[
1 +

1

2
α2 cos (2ωct− 2ϕα)

]
I2
1 δ (f − fs)

+ α cos (ωct− ϕα) I2
1

[
δ

(
f − fs −

fc

2

)
+ δ

(
f − fs +

fc

2

)]
+

1

4
α2I2

1

[
δ (f − fs − fc) + δ (f − fs + fc)

]
(4.58)

An approximation for this expression can be obtained considering that the
terms containing α2 can be neglected for small α:

Wiam(t, f) ≈ I2
1 δ (f − fs) + α cos (ωct− ϕα) I2

1 δ

(
f − fs −

fc

2

)
+ α cos (ωct− ϕα) I2

1 δ

(
f − fs +

fc

2

) (4.59)

This equation clearly shows the AM signature on the WD: The amplitude modu-
lation leads to sidebands at fs ± fc/2. The sidebands oscillate at fault frequency
fc, their amplitude is αI2

1 . It should be noted that the signature is similar to the
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Figure 4.21: Illustration of the Wigner Distribution of an AM stator current
signal with ϕα = 0 .

PM signal but with the important difference that the upper and lower sideband
oscillations have the same amplitudes for a given point in time i.e. their phase
shift is zero.

In Fig. 4.21, the WD of an AM stator current signal is illustrated for a certain
point in time including the fundamental and sideband amplitudes. For simplifica-
tion, ϕα = 0 has been supposed. Note that the sideband amplitudes vary sinu-
soidally with respect to time and that the upper and lower sideband are always in
phase.

4.3.3.4 Transient AM Signal

As in the case of the transient PM signal, the transient AM signal is only calculated
with the quasi-stationary approximation ωc(t) = 2πfc. The transient AM signal is
also considered as a product:

iam,tr(t) = I1 [1 + α cos (ωct− ϕα)] exp j (2π (αs + βst/2) t)

= iam(t)
∣∣
ωs=0

ztr(t)
(4.60)

The WD of iam,tr(t) is then the frequency convolution ofWiam(t, f) andWztr(t, f).
It is approximated as:

Wiam,tr(t, f) = Wipm(t, f)
∣∣
ωs=0

∗f Wztr(t, f)

≈ I2
1 δ (f − αs − βst)

+ α cos (ωct− ϕα) I2
1 δ

(
f − αs − βst−

fc

2

)
+ α cos (ωct− ϕα) I2

1 δ

(
f − αs − βst+

fc

2

) (4.61)

This expression shows that the fault signature calculated in the stationary case
is preserved. The sideband structure appears now around the varying supply fre-
quency.
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Figure 4.22: Wigner Distribution of simulated PM and AM signals with zoom
on interference structure.

4.3.3.5 Simulation Results

First, simulations with stationary signals are presented. The simulated signals are
synthesized with parameters according to 4.2.3 and data record length N = 512.
The modulation indices are α = β = 0.1. Similar to the instantaneous frequency,
the real valued signals are transformed into their corresponding analytical signal
before calculation of the time-frequency distributions. Thereto, algorithms from
the Matlab Time-Frequency Toolbox [Aug96] are used.

The WD of the stator current PM and AM signals is displayed in Fig. 4.22. The
theoretically calculated sidebands reflecting the modulation are clearly visible at
0.25± 0.125/2 normalized frequency. The zoom on the characteristic interferences
in Figs. 4.22(c) and 4.22(d) shows the oscillating nature and the previously men-
tioned phase shift. The period of the oscillations is 8 samples which corresponds
to the fault frequency fc = 0.125. The phase shift between the sidebands is zero
in the AM case and approximately π with the PM signal. However, the lecture of
the WD is disturbed by various other interferences.

In order to reduce these interferences, the PWD is calculated using the same
signals and a Hanning window of length Nw = 127. The resulting distributions are
displayed in Fig. 4.23. Except for interferences at the beginning and end of the
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Figure 4.23: Pseudo Wigner Distribution of simulated PM and AM signals with
zoom on interference structure.

data record, the distribution is nearly free of them. The fault signatures appear
clearly around the fundamental. The zoom on the sidebands illustrates the differ-
ences in the phase shift between the PM and AM signal. Since the characteristic
interference structure requires a good time resolution, no time smoothing should
be used. Hence, the PWD will be preferred in the following to the WD or SPWD.

After the study of stationary signals, results with transient signals are shown.
The synthesized signal parameters correspond to those in section 4.3.1.4. The re-
sults displayed in Fig. 4.24 demonstrate that the characteristic interference struc-
ture due to the modulation is also preserved in the transient case. This justifies
the preceding simplifications in the theoretical calculations of the transient sig-
nal’s WD. The zoom on the signature shows that the sidebands are located at
fs(t)± fc/2. Their oscillation frequency corresponds to fc with fc = fs/2.

4.3.3.6 Fault Indicator

The calculation of fault indicators based on the WD will be developed in the
following for transient signals only since this is the more general case. Bearing in
mind the characteristic fault signatures of AM and PM signals, several indicators
with different performances can be imagined. The most simple indicator is the
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Figure 4.24: Pseudo Wigner Distribution of simulated transient PM and AM
signals with zoom on interference structure.
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energy of the fault-related sidebands. More advanced indicators could use the
phase shift between upper and lower sideband to determine the type of modulation,
i.e. if the sidebands result from PM or AM [Blö06b] [Blö06c].

The first fault indicator IWD1 is simply the sideband energy density. It is
obtained as depicted in Fig. 4.25. After the calculation of the discrete PWD
PW [n, k] of the analytical stator current signal, the time varying supply frequency
fs[n] is estimated. For each time bin n, the maximum value of the PWD yields
the supply frequency fs[n] and its PWD amplitude, denoted A[n]. Depending
on fs[n], the frequency intervals Il[n] and Iu[n] for the sideband locations can be
defined, since the sidebands are located at fs ± fc/2. The value of fc[n] depends
on fs[n] and the relation to fr. In the considered example with fc = fr and p = 2,
fc,min[n] = 0.93 fs[n]/2 and fc,max[n] = 1.02 fs[n]/2 are supposed. The energy in
these intervals is simply the sum of the absolute PWD amplitudes. In order to
obtain energy densities El[n] and Eu[n], the energy is divided by the number of
frequency bins Nl or Nu in the corresponding interval. Tests have shown the better
performance of energy densities in case of variable supply frequency compared to
simply the energy. This can be explained by the fact that the intervals Il,u are larger
for higher supply frequencies, leading to higher energy values. This is related to
the smoothing in the frequency direction which is at the origin for relatively broad
peaks. Simulations showed the superior performance of energy densities compared
to the total energy with quasi-constant indicators at variable supply frequency.

The obtained energy densities are added together and normalized with respect
to the fundamental supply frequency amplitude A[n]. This should provide a cer-
tain indicator independence of the average load level. It should be noted that the
obtained indicator IWD1[n] is oscillating since the sidebands itself are oscillating.
Therefore, an averaging operation is required in a practical implementation. Any-
way, the PWD must be calculated on distinct data records of finite length and thus,
the average indicator value can be derived for the whole data record. Examples for
indicators IWD1 with simulated transient signals are shown in Fig. 4.26. The sig-
nal parameters are the same as before but with varying modulation indices to test
the indicator values. First, it is clearly visible that higher modulation indices lead
to higher indicator values with an approximately linear relationship. The indicator
is of oscillating nature and the oscillation frequency increases due to increasing fs.
The maximum indicator values are relatively independent of fs since the energy
density is used. The values of IWD1 in the PM case are approximately half of the
indicator magnitude in the AM case. This can be explained by the fact that only
the rotor related component of the PM signal is modulated. The normalization
with respect to the total fundamental amplitude leads thus to smaller estimated in-
dices. Since Ist = Irt in the simulation, the values are approximately half the values
with the AM signal which is only composed of one component. These illustrations
also show the major disadvantage of this indicator which is the same signature for
PM and AM signals. Hence, the modulation type cannot be determined with this
approach.

The problem can be overcome using a more sophisticated indicator which takes
advantage of the phase shift between the upper and lower sideband of the fault
signature. Instead of only calculating the total sideband energy or energy density
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PWD Calculation
Calculate the Pseudo WD PW [n, k] of the analytical cur-
rent signal using a Hanning window of length Nw

��
Extraction of Sideband Energy
For n = (Nw/2) to (N −Nw/2):

• Estimate fs[n] by finding the position of the max-
imum in each column of PW [n, k]. The maximum
values are A[n].

• Calculate intervals

Iu[n] = [fs[n] + fc,min[n]/2, fs[n] + fc,max[n]/2]

Il[n] = [fs[n]− fc,max[n]/2, fs[n]− fc,min[n]/2]

• Calculate energy densities

El[n] =
∑
k∈Il

|PW [n, k]|/Nl

Eu[n] =
∑
k∈Iu

|PW [n, k]|/Nu

with Nl, Nu length of intervals Il, Iu

��
Indicator Calculation
The indicator is the sum of the energy densities normalized
with respect to A[n]:

IWD1[n] =
El[n] + Eu[n]

2A[n]

Figure 4.25: Calculation of the WD based fault indicator IWD1.



4.3. Time-Frequency Analysis 127

0 100 200 300 400
0

0.01

0.02

0.03

0.04

0.05

0.06

Time [s]

IW
D

1

β=0 β=0.05 β=0.1

(a) PM signal

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

Time [s]

IW
D

1

α=0 α=0.05 α=0.1

(b) AM signal

Figure 4.26: Fault indicator IWD1 with respect to time for different PM and
AM modulation indices.

in the PWD, two signals containing the upper and lower sideband amplitudes are
extracted and then processed. The scheme for obtaining this indicator, termed
IWD2, is depicted in Fig. 4.27. As with the indicator IWD1, the stator current
PWD is first calculated. After having determined the sideband intervals Il and
Iu, the algorithm searches for the maximum absolute value of the PWD in these
intervals. Since the sidebands are oscillating and take negative values, the sign
is also determined. The signed values of the maxima in Il and Iu constitute the
sideband signals sl[n] and su[n] after normalization with respect to the fundamental
amplitude A[n].

The two sideband signals sl[n] and su[n] contain information on:

• the modulation index through their amplitude which is normally the same
for sl[n] and su[n]

• the modulation type through the phase shift between sl[n] and su[n]

The two sideband signals of transient PM and AM stator current signals are dis-
played in Fig. 4.28 for illustration. Their amplitude is approximately β/2 and α.
In case of the PM signal, the amplitude is β/2 due to the multicomponent charac-
ter with Ist = Irt and the normalization. The different phase shift resulting from
PM and AM is clearly visible in the zoom with a phase shift close to π with the
PM signal and close to zero in the AM case. It should be noted that the sideband
signal frequency is variable.

In order two extract the two pieces of information, amplitude and phase shift,
from the sideband signals, various methods can be imagined. If the signals are
stationary, Fourier transform based techniques perform well. In the general case
though, the sideband signals are non-stationary with variable frequency. A possible
approach is the use of analytical signals for a simple extraction of the amplitudes
and the phase difference. Thereto, the corresponding analytical sideband signals
sla[n] and sua[n] are synthesized. The signal envelopes i.e. their absolute value
provides an estimate for their amplitude. The average amplitude As[n] of both sig-
nals is calculated. The phase difference ϕs[n] is obtained through the difference of
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PWD Calculation
Calculate the Pseudo WD PW [n, k] of the analytical current
signal using a Hanning window of length Nw

��
Extraction of Sideband Signals
For n = (Nw/2) to (N −Nw/2):

• Estimate fs[n] by finding the position of the maximum
in each column of PW [n, k]. The maximum values are
A[n].

• Calculate intervals

Iu[n] = [fs[n] + fc,min[n]/2, fs[n] + fc,max[n]/2]

Il[n] = [fs[n]− fc,max[n]/2, fs[n]− fc,min[n]/2]

• Synthesize sideband signals with signed maximum value
of PW [n, k]:

su[n] = ±max {|PW [n, k]|} /A[n] k ∈ Iu
sl[n] = ±max {|PW [n, k]|} /A[n] k ∈ Il

± corresponds to the sign of PW [n, kmax]

��
Indicator Calculation

• Synthesize corresponding analytical signals sla[n], sua[n]

• Calculate average sideband signal amplitude As[n] and
phase shift ϕs[n]:

As[n] = (|sla[n]|+ |sua[n]|) /2
ϕs[n] = arg {sla[n]} − arg {sua[n]}

• IWD2 is a complex fault indicator with amplitude As

and phase ϕs:

IWD2[n] = As[n] exp jϕs[n]

Figure 4.27: Calculation of the WD based fault indicator IWD2.
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Figure 4.28: Example of extracted sideband signals from the PWD of simulated
transient PM and AM stator current signals.
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Figure 4.29: Absolute value and phase of complex fault indicator IWD2 for
simulated transient PM and AM stator current signals.

the arguments of sla[n] and sua[n]. For simplicity and graphical representation, the
fault indicator IWD2 is then considered in a compact form as a complex quantity
with amplitude As[n] and phase ϕs[n]:

IWD2[n] = As[n] exp jϕs[n] (4.62)

For the previous example of the two sideband signals extracted from simulated
transient PM and AM stator current signals, the amplitude and phase of IWD2
are displayed in Fig. 4.29. Despite the time varying frequency of the sideband
signals, the amplitude As[n] = |IWD2[n]| is approximately constant. The phase in
Fig. 4.29(b) allows a clear discrimination of the modulation type: ϕs[n] close to π
for the PM signal whereas ϕs[n] ≈ 0 with the AM signal.

For an easy distinction of the modulation types and for classification purposes,
the fault indicator IWD2 is represented in the complex plane as in Fig. 4.30 for
different modulation indices α, β = 0.0, 0.025, 0.05, 0.075, 0.1. The average fault
indicator is displayed i.e. the mean amplitude and phase for each data record. The
AM and PM signals can be easily discriminated due to the different phase angle
in the complex plane. An increase in the modulation index leads to an increasing
absolute indicator value. The obtained phase angles are slightly smaller than π
in the PM case due to the phase angle ϕr 6= 0 between rotor and stator current
component (see equation (4.52)).

4.4 Parameter Estimation

The previously presented analysis methods were non-parametric methods that do
not require a priori information about the signal model. An alternative approach
is signal parameter estimation based on the signal models derived in chapter 2.
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Figure 4.30: Complex representation of fault indicator IWD2 for simulated tran-
sient PM and AM stator current signals with different modulation indices.

4.4.1 Stationary PM Signal

4.4.1.1 Choice of Signal Model

The analytical stator current signal representing the effect of load torque oscilla-
tions takes the following expression according to (4.3):

ipm(t) = Ist exp j (ωst) + Irt exp j
(
ωst+ β cos (ωct− ϕβ)− ϕr

)
(4.63)

An estimation of the model parameters is not directly possible since there are
too much degrees of freedom. Consider for illustration the case with β = 0, i.e.
without any oscillating torque. The observed signal is composed of two sinusoidal
components with the same frequency, but unknown phase angle and amplitudes.
An infinite number of solutions exists to this problem. Therefore, the use of this
model for parameter estimation is not a reasonable choice.

A univocal solution can be determined by supposing a monocomponent sinu-
soidal PM signal. This approximation holds under medium to heavy load con-
ditions since Irt is strong compared to Ist. Moreover, recall that the developed
PM stator current model neglects higher order armature reactions that should also
lead to a phase modulation of the stator field related component with amplitude
Ist. Furthermore, the PM modulation index β is the only parameter of interest
for fault detection. Consequently, the estimation accuracy for other parameters is
nonsignificant if it does not influence the estimation of β. The monocomponent
analytical sinusoidal PM signal model expresses in discrete form as:

ipm,a[n, θ] = θ1 exp j [θ2 + θ3 cos (2πθ4n+ θ5) + 2πθ6n] (4.64)

with θ = [θ1 θ2 θ3 θ4 θ5 θ6] the parameter vector. The parameters have the
following signification:

θ1 : signal amplitude

θ2 : initial phase of carrier frequency

θ3 : PM modulation index which is the parameter of interest for fault detection
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θ4 : modulation frequency

θ5 : initial phase of modulation

θ6 : carrier frequency, supposed zero if signal is previously demodulated

By identification, the monocomponent model parameters can be related to the
physical parameters in (4.63):

θ1 =
√
I2
st + I2

rt + 2IstIrt cos (β cos (ωct− ϕβ)− ϕr)

≈
√
I2
st + I2

rt + 2IstIrt cos (ϕr) for β � 1

θ2 ≈
−Irt sinϕr

Ist + Irt cosϕr

(∗)

θ3 ≈ β
Irt cosϕr

Ist + Irt cosϕr

(∗)

θ4 = fc

θ5 = ϕβ

θ6 = fs

Note that the approximations (∗) are only valid for β � 1 and sinϕr � 1, i.e. ϕr

small. It is important to note that the parameter θ3 is directly proportional to the
modulation index β. Therefore, an estimate of θ3 can be used as a fault indicator.

The observed real signal is denoted z[n] and it is supposed being the real part
of ipm,a[n] plus additive zero-mean white Gaussian noise w[n] of variance σ2:

z[n] = <{ipm,a[n]}+ w[n] = ipm[n] + w[n] (4.65)

The analytical signal is obtained through the Hilbert transform as follows:

za[n] = ipm,a[n] + wa[n] = ipm[n] + jH{ipm[n]}+ w[n] + jH{w[n]} (4.66)

Then, the joint PDF of the observed N samples is:

p(za, θ) =
1

(2πσ2)N
exp

[
− 1

2σ2

N−1∑
n=0

|za[n]− ipm,a[n] |2
]

=
1

(2πσ2)N
exp

[
− 1

2σ2

N−1∑
n=0

(z[n]− ipm[n])2 + (H{z[n]} −H{ipm[n]})2

]
(4.67)

4.4.1.2 Cramer-Rao Lower Bounds

The Cramer-Rao Lower Bounds (CRLB) for the parameter estimation of the mono-
component PM signal are calculated. First, the regularity condition (equation
(3.89)) has been verified. The next step is the calculation of the Fisher informa-
tion matrix [I(θ)]. The elements can be calculated according to expression (3.90).
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Figure 4.31: Theoretical Cramer-Rao lower bounds for var{θ3} with respect to
data record length N and SNR.

In the special case of the considered Gaussian PDF, the following formula can also
be used (see [Rif74]):

[I(θ)]ij =
1

σ2

N−1∑
n=0

[
∂ipm[n]

∂θi

∂ipm[n]

∂θj

+
∂H{ipm[n]}

∂θi

∂H{ipm[n]}
∂θj

]
(4.68)

For the considered estimation problem, [I(θ)] is symmetric and takes the fol-
lowing form:

[I(θ)] =


f11 0 0 0 0 0
0 f22 f23 f24 f25 f26

0 f23 f33 f34 f35 f36

0 f24 f34 f44 f45 f46

0 f25 f35 f45 f55 f56

0 f26 f36 f46 f56 f66

 (4.69)

The expressions of the matrix elements are given in appendix B.1 [Blö06a]. They
are in accordance with the more general results in [Gho99].

Due to the complexity of these expressions, their calculation and the following
matrix inversion is realized numerically. The CRLB for the modulation index
θ3 is displayed in Fig. 4.31 with respect to the data record length N and the
SNR. The fixed parameters take the following default values: N = 64, SNR = 50
dB, θ = [1, π, 0.01, 0.125, π/4, 0.25]. Fig. 4.31(a) shows that the CRLB decreases
proportionally to the inverse of the data record length N . The bound is also
inversely proportional to the SNR as can be seen on Fig. 4.31(b).

4.4.1.3 Maximum Likelihood Estimation

The MLE is obtained by maximizing the PDF p(za, θ) of the observed samples with
respect to the parameters θ. Since the noise variance is not to be estimated, the
argument of the exponential function has to be maximized. Note that since the
noise is Gaussian, the MLE is equivalent to least squares estimation. The following
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development (see [Blö06a]) has been inspired by the the single-tone parameter
estimation procedure, described by Rife and Boorstyn in [Rif74].

Maximizing the PDF is equivalent to maximizing the function L0(za, θ) with:

L0(za, θ) = − 1

N

N−1∑
n=0

(z[n]− ipm[n])2 + (H{z[n]} −H{ipm[n]})2

= − 1

N

N−1∑
n=0

z2[n] +H{z[n]}2 − 2z[n]ipm[n]− 2H{z[n]}H{ipm[n]}

+ i2pm[n] +H{ipm[n]}2

(4.70)

Since the terms z2[n] and H{z[n]}2 are independent of the parameters, they are
not considered in the following. Moreover:

i2pm[n] +H{ipm[n]}2 = |ipm,a[n]|2 = θ2
1 (4.71)

This leads to the equivalent problem of maximizing the function L(za, θ):

L(za, θ) = −θ2
1 +

2

N

N−1∑
n=0

z[n]ipm[n] +H{z[n]}H {ipm[n]} (4.72)

In the following, the phase of the PM model is supposed of a general form:

ipm,a[n, θ] = θ1 exp j [θ2 + φ[n]] (4.73)

where φ[n] contains only terms depending on n. Then, L(za, θ) expresses as:

L(za, θ) = −θ2
1 +

2

N
θ1

N−1∑
n=0

z[n] cos (θ2 + φ[n]) +H{z[n]} sin (θ2 + φ[n]) (4.74)

This equation can be simplified since z[n] and H{z[n]} are the real and imaginary
part of za[n]. Consider an arbitrary complex number z1 = x1 + jy1. With a
real-valued angle ϕ, it can be derived that:

<
{
z1e

−jϕ
}

= <{(x1 + jy1) cosϕ− j (x1 + jy1) sinϕ} = x1 cosϕ+ y1 sinϕ (4.75)

Hence:

L(za, θ) = −θ2
1 +

2

N
θ1

N−1∑
n=0

<
{
za[n]e−j(θ2+φ[n])

}
(4.76)

Let define the complex function B(za, θ
′), independent of θ1, θ2 and depending

on θ′ = [θ3 θ4 . . .]:

B(za, θ
′) =

1

N

N−1∑
n=0

za[n]e−jφ[n] (4.77)

Subsequently, L(za, θ) is:

L(za, θ) = −θ2
1 + 2θ1<

{
e−jθ2B(za, θ

′)
}

(4.78)
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Figure 4.32: Example of function |B(za,θ
′)| in logarithmic scale with θ5, θ6=const.

and typical data record za[n].

First, the maximum of this expression with respect to θ2 is considered. The real
part of any complex is maximized at constant absolute value when the complex is
purely real. This means that equation (4.78) is maximized over θ2 for fixed θ1 and
B(za, θ

′) if:
θ2 = arg {B(za, θ

′)} (4.79)

Under this condition, the maximum of L(za, θ) is:

max
θ2

{L(za, θ)} = −θ2
1 + 2θ1|B(za, θ

′)| (4.80)

For a given value of |B(za, θ
′)|, this expression is maximal with respect to θ1 for:

θ1 = |B(za, θ
′)| (4.81)

Then, the maximum of L(za, θ) is:

max
θ1,θ2

{L(za, θ)} = |B(za, θ
′)|2 (4.82)

The MLE can therefore be resumed as follows: First, the function |B(za, θ
′)| is

maximized over θ′ to determine an estimate of these parameters. The remaining
parameters θ1 and θ2 are then obtained by the analytical expressions (4.81) and
(4.79).

4.4.1.4 Numerical Optimization

The maximum of |B(za, θ
′)| cannot be found analytically. Moreover, it is a highly

multimodal function as can be seen in Fig. 4.32 for an example with fixed θ5, θ6.
Numerical optimization techniques adapted to multimodal functions with various
local minima and maxima are required.

The number of optimization parameters has been reduced from 6 to 4 by the
preceding theoretical development. It can further be reduced by demodulation of
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the complex stator current samples with an estimate of the supply frequency fs.
The latter can be rapidly obtained by the maximum of the periodogram using
additional zero-padding. The PM parameter estimation is then carried out on the
complex envelope, obtained by setting the parameter θ6 = 0 in the model.

Since the search space is relatively limited, a fixed grid search has first been
implemented. This method has the advantage of delivering the global maximum
in the search space with respect to the chosen grid. However, its computation is
time-intensive and the discretization of the search space may lead to inaccurate
results.

A popular stochastic algorithm is simulated annealing [Kir83] [Sch95c] that has
been implemented and tested. However, the results could not be exploited due the
poor algorithm convergence in our context.

A fast class of optimization algorithms are evolutionary algorithms. They imi-
tate mechanisms found in natural evolution. Examples are genetic algorithms, evo-
lutionary programming and evolution strategies [Bäc96] [Sch95c]. The latter have
been chosen for our application. They appeared first in the 1960s at the Technical
University of Berlin and were mainly used for design purposes by Rechenberg and
Schwefel. In our case, a (µ+ λ)-evolution strategy with auto-adaptive mutation is
used [Bey02].

The general principle of the algorithm is displayed in Fig. 4.33. Each individual
is represented by the object parameters θ describing its location in the search
space and the strategy parameters σ. The number of object parameters Nθ is
equivalent to the dimension of the search space and the same number of strategy
parameters is used. The algorithm is initialized by generating a population of µ
parents, uniformly distributed in the search space. Then, λ children are created by
mutation, i.e. each parent creates λ/µ children by mutation of its object parameters
according to:

θ̃i = θi + σiN(0, 1) (4.83)

where θ̃i is the i-th object parameter of the child and N(0, 1) a random number
from a normal distribution with zero mean and variance σ2 = 1. Before this step,
the strategy parameters σ are also subject to mutation according to:

σ̃ = exp (τ0N(0, 1)) ·


σ1 exp (τN(0, 1))
σ2 exp (τN(0, 1))

· · ·
σNθ

exp (τN(0, 1))

 (4.84)

with the following learning parameters:

τ0 =
c√
2Nθ

, τ =
c√

2
√
Nθ

(4.85)

In [Bey02], c = 1 is mentioned as a reasonable choice for a (10,100) evolution
strategy. Each strategy parameter σi is initialized at the beginning as the width
of the corresponding dimension of the search space divided by 10.

The mutation is followed by an evaluation and selection process. The cost
function is calculated for each new individual. Depending on its value, the best µ



4.4. Parameter Estimation 137

Initialization
Create µ parents (θ, σ2) uniformly distributed in
search space

��
Mutation of strategy parameters
Mutate the variances σ2 of each individual

��
Mutation of parents
Mutate the object parameters θ to create λ chil-
dren

��
Selection
Select the µ best individuals from (µ+ λ)

BC@A

GF

Repeat
until

termination
criterion

//

Figure 4.33: Scheme of the evolutionary optimization algorithm: (µ+λ)-evolution
strategy.

individuals with respect to the optimization criterion are selected to form the next
parent generation. The loop including mutation and selection is executed until the
termination criterion is reached. This can be e.g a maximum number of generations
or an optimum that did not change during a certain number of generations. In
the present case, a constant optimum during 30 generations or a maximum of 1000
generations is used as stop condition.

4.4.1.5 Simulation Results

The PM estimation procedure is tested through simulations for different data
record lengths N . A monocomponent real PM signal z[n] is generated accord-
ing to:

z[n, θ] = θ1 cos [θ2 + θ3 cos (2πθ4n+ θ5) + 2πθ6n] + w[n] (4.86)

where w[n] is zero-mean white Gaussian noise of variance σ2. The chosen SNR is
50 dB and the parameter vector θ =

[√
2 −π/8 0.01 0.125 π/4 0.25

]
.

Prior to the estimation procedure, the corresponding analytical signal za[n]
is calculated and then demodulated for a faster estimation procedure. The de-
modulation frequency is obtained through a periodogram estimate of za[n] with
zero-padding. The estimation is then carried out using a model with θ6 = 0. The
following optimization problem depends on only 3 parameters.

First, a (40+200) evolution strategy is used. The termination criterion is a
constant optimum during 30 generations or a maximum of 1000 generations. The
estimator performance is studied for different data record lengths from N = 64
to 512 samples. For each data record length, 1000 independent simulations are
carried out.

The results obtained with the evolution strategy are displayed in Fig. 4.34.
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Figure 4.34: Simulation results: mean estimated PM index vs. N and mean
square estimation error together with CRLB vs. N , optimization with (40+200)-
evolution strategy.

Fig. 4.34(a) shows the mean estimated modulation index vs. the data record
length. The estimation bias seems to increase with the data record length. This
could be related to convergence problems due to an increasing number of local
maxima when N increases. However, the relative bias is always inferior to 0.8%.
The MSE is displayed in Fig. 4.34(b) vs. the theoretical CRLB. The MSE decreases
with increasing data record length similar to the CRLB. However, the difference
between the MSE and the CRLB seems to be relatively constant and could be due
to the bias.

The same simulations have been carried out using the fixed grid search for
optimization. The chosen step sizes for the three parameters are:

∆θ3 = 0.001 ∆θ4 = 0.001 ∆θ5 = 0.25 (4.87)

The results in Fig. 4.35 show a decreasing bias with increasing data record length
and the MSE approaching the CRLB. The improved performance of the fixed grid
search is at the expense of computation time since the estimation procedure is
about 4 times faster using the evolution strategy.

4.4.2 Stationary AM Signal

The equivalent estimation procedure as in the PM case can be used for parameter
estimation of the AM signal. The model for the discrete analytical AM signal
corresponding to (4.4) is:

iam,a[n, κ] = κ1 [1 + κ2 cos (2πκ3n− κ4)] exp j (2πκ5n− κ6) (4.88)

with κ = [κ1, . . . , κ6] the parameter vector. The parameter of interest for fault
detection is the AM modulation index κ2.

However, the simplifications for reduction of the number of parameters with the
PM signal cannot be applied in this case. Hence, a time-consuming optimization
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Figure 4.35: Simulation results: mean estimated PM index vs. N and mean
square estimation error together with CRLB vs. N , optimization with fixed grid
search.

must be carried out with respect to 6 parameters or 5 with previous demodula-
tion. An alternative is the use of the instantaneous amplitude aiam,a [n, κ

′] i.e. the
absolute value of the analytical signal which is given by the following expression
in our case:

aiam,a [n, κ
′] = |iam,a[n, κ]| = κ1 [1 + κ2 cos (2πκ3n− κ4)] (4.89)

with κ′ = [κ1 κ2 κ3 κ4].
Using the instantaneous amplitude, the problem of estimating κ2 is now equiv-

alent to estimating the amplitude of a sinusoid with an additional DC component.
κ2 is the relative amplitude of the sinusoidal component with respect to the DC
level κ1. It is well known that the MLE for this problem is the maximum of the
periodogram (see [Kay88]). The estimation procedure is therefore the following:

• Estimation of the DC level κ̂1 = 1
N

∑N−1
n=0 aiam,a [n, κ

′]

• κ̂2 is the maximum of the periodogram of (aiam,a [n, κ
′]− κ̂1), normalized with

respect to κ̂1. Zero-padding can be used for greater accuracy and the search
of the maximum can be limited to an interval [fc,min, fc,max].

4.4.2.1 Simulation Results

In order to test the AM modulation index estimator, numerical simulations are
carried out. The generated real AM signals are of the following form (see (4.88)):

iam[n, κ] = κ1 [1 + κ2 cos (2πκ3n− κ4)] cos (2πκ5n− κ6) + w[n] (4.90)

where w[n] is zero-mean white Gaussian noise of variance σ2. The chosen SNR is
50 dB and the parameters are κ =

[√
2 0.01 0.125 π/4 0.25 0

]
.

The estimator is tested for different values of the data record length N . For
each value of N , 1000 independent realizations of iam[n] are generated and κ̂2 is
calculated. The results are displayed in Fig. 4.36. Fig. 4.36(a) shows the mean
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Figure 4.36: Simulation results: mean estimated AM index vs. N and mean
square estimation error vs. N .

Signal Processing Steady State Transient State
Method PM AM Discr. PM AM Discr.

Spectral Estimation X X - - -
Instantaneous Frequency X - - X - -

Spectrogram X X X X X -
Pseudo WD X X X X X X

Parameter Estimation X X X - - -

Table 4.1: Summarized performances of the discussed signal processing meth-
ods in steady and transient state: Columns PM / AM indicate the capability of
detecting the modulation and Discr. the capability of discriminating PM and AM.

estimated modulation index E[κ̂2] with respect to the data record length where N
varies from 64 to 512. It can be seen that the relative error is always inferior to
0.5% which signifies a low estimation bias. Fig. 4.36(b) shows the obtained MSE
for the AM modulation index. It decreases approximately proportional to 1/N .

4.5 Summary

In this chapter, the previously presented signal processing methods were applied to
the faulty stator current models with PM and AM. The signatures of the faulty cur-
rent signals with the non-parametric analysis methods have been derived through
theoretical calculus and simulations. Hence, the different methods and their per-
formances can be compared. Evaluation criteria for the different methods are the
capability to detect and distinguish AM and PM in steady or transient state. The
performances of the parametric and non-parametric methods are summarized in
Table 4.1.

The first analysis method, spectral estimation, was found to be useful only
for detection purposes in steady state. The two types of modulation cannot be
distinguished under the particular conditions of this application. Since spectral
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estimation supposes stationary signals, it cannot be used during transients.
Instantaneous frequency estimation can effectively be used in steady and tran-

sient state. Since AM has no effect on the IF, only PM can be detected. The
extraction of fault indicators is possible employing e.g. the spectrogram.

The direct use of the spectrogram itself yields acceptable results in steady
state. AM and PM can be detected and discriminated if a priori knowledge about
the modulation frequency is available. Since the performance of the spectrogram
depends heavily on the window length, the latter must be chosen with respect
to the modulation period. During transients, PM and AM can be detected with
an adequate window length but their discrimination is nearly impossible with the
considered signals. In general, the spectrogram suffers from a lack of time and
frequency resolution.

The Wigner Distribution and PWD overcome this problem since they offer good
time-frequency resolution. Certain undesirable interferences can be controlled by
smoothing. It has been shown through theoretical demonstrations and simulations
that PM and AM lead to characteristic outer interferences that can be used for
detection and discrimination. Since the WD perfectly localizes linear chirp signals
it performs well in steady state and during linear transients.

Finally, a parameter estimation approach based on the AM and PM signal
models was presented for use with stationary signals. Maximum likelihood es-
timation leads to a practically realizable estimator. Two methods for numerical
optimization were effectively used. The fixed grid search and the evolution strategy
offer tradeoffs between computation time and accuracy. The estimated PM and
AM modulation indices can be directly used as fault indicators. The estimator
performs well even for short data records. Note that in this work, the parame-
ter estimation approach has only been used for stationary signals. However, the
models can theoretically be extended to take into account transient signals.
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5.1 Introduction

The following chapter presents experimental results to illustrate the previously
derived fault signatures. The experimental setup is detailed in appendix C. The
machine under test is a 400 V, 5.5 kW, three phase induction motor with p = 2
and 36 Nm nominal torque. It is coupled to a DC motor used as load. The
induction motor is supplied by a standard industrial inverter operating in open
loop condition. Thus, the current signals are not influenced by current, torque
or speed control. The DC machine is connected to a resistor through a DC/DC
converter which controls the DC motor armature current.

The armature current reference signal is a DC level plus possible oscillations
generated by a voltage controlled oscillator (VCO) through a speed or position
measurement. Thereto, position or speed dependent torque oscillations are gen-
erated. Measured signals include the three line currents, three stator voltages,
torque and shaft speed. Data acquisition is performed by a 24 bit board at 25.6
kHz sampling frequency. This high sampling frequency is chosen to include several
inverter switching frequency harmonics at k · 3000 Hz. The experimental setup is
schematically depicted in Fig. 5.1.

Each mentioned signal processing method is tested with experimental signals
resulting from different faults. The following faults are studied:

• Load torque oscillations of amplitude Γc, generated through control of the
DC motor armature current

• Load unbalance produced by a mass that is eccentrically fixed on a shaft-
mounted disc. This mass generates torque oscillations Γosc(t) through its
weight with respect to the rotor position i.e. oscillations at shaft rotational
frequency:

Γosc(t) = Γc cos (θr) = Γc cos (2πfrt) (5.1)

where Γc = mgrm with m the mass, g is the acceleration of gravity and rm the
distance of the mass to the rotational centre. A second effect of the unbalance
is a centrifugal force. However, this force does not contribute to torque. If
bearing clearances are important, an additional dynamic eccentricity could
be introduced by the mass. Varying m and rm, four different levels of load
unbalance are studied with Γc = 0.04, 0.06, 0.07, 0.10 Nm.

• Dynamic eccentricity with δd ≈ 40%
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Figure 5.1: Scheme of experimental setup

In general, three different average load conditions are studied: 10%, 50% and
80% load. The full nominal load could not be tested due to current limitations of
the DC motor.

5.2 Load Torque Oscillations

The first studied fault are load torque oscillations at shaft rotational frequency
produced through control of the DC motor armature current. This somehow arti-
ficial fault is chosen for validation of the theoretical considerations from chapter 2.
Moreover, it can be supposed that a number of realistic faults such as shaft mis-
alignment, load unbalance, eccentricity, gearbox or bearing faults produce torque
oscillations. For each average load level, signals with increasing load torque os-
cillation amplitude Γc are recorded in order to test the indicator behavior. The
smallest value Γc = 0.03 Nm corresponds to approximately 0.1% of the nominal
load torque whereas the highest value Γc = 0.22 Nm is about 6% of the nominal
torque. The torque oscillation amplitudes were determined by measurements. The
acquired signal length is N = 507904 samples, corresponding to 19.84 s acquisition
time. For indicator calculations, the three line currents are segmented into blocks
and analyzed independently.

5.2.1 Spectral Estimation

First, classical spectral estimation techniques will be used for analysis of station-
ary signals. This provides results with the method of reference for subsequent
comparison with more advanced techniques. For visualization of the spectra, the
averaged periodogram is calculated using segments of length Nw = 63488 (equiva-
lent 2.48 s) windowed by a Hanning window. The segments overlap by Nw/2. The
obtained stator current spectra with load torque oscillations are shown in Fig. 5.2
compared to spectra from a healthy motor. The load torque oscillation amplitude
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Figure 5.2: PSD of stator current with load torque oscillation Γc = 0.14 Nm vs.
healthy case.

is Γc = 0.14 Nm. Two operating states with average load levels 10% and 80% and
supply frequency fs = 50 Hz are displayed. First, sidebands at fs±fr ≈ 50±25 Hz
can already be recognized with the healthy machine. Inaccurate alignment, a nat-
ural level of eccentricity or torque oscillations due to the coupling can explain this
phenomenon.

Healthy and faulty spectrum comparison shows a rise of sideband components
at fs ± fr ≈ 50 ± 25 Hz in each case. This confirms the preceding theoretical
considerations. The amplitude of these components increases by approximately
10 dB at 10% load and 12 dB at 80% load. The greater increase with higher load
can be explained by a stronger rotor current component Irt.

Apart from the fundamental and the sidebands, other frequencies appear in the
stator current spectrum. With 80% load, sidebands of relatively strong amplitude
appear at fs±18 Hz. Additional experimental verifications with different load levels
showed that the location of these sidebands can be characterized by fs ± 14sfs.
Their exact origin is unknown but they have also been observed with another
induction motor from the same manufacturer in [Blö03]. Therefore, a relation to
the motor design can be supposed. It can also be noted that their amplitude does
not vary with the fault.

The fault indicator IPSD is derived for different torque oscillation amplitudes.
Each data record is first downsampled to 200 Hz and then divided into blocks of
512 samples. IPSD is calculated on each block from each phase current, resulting
in a total of 21 estimations. The average indicator value E[IPSD] and the stan-
dard deviation σIPSD are given in Table 5.1. The average indicator values are also
displayed graphically in Fig. 5.3 versus the measured load torque oscillation am-
plitude Γc. The average indicator values show an approximately linear evolution
with respect to Γc, equivalent to the fault severity. This confirms the theoretical
result that the PM modulation index is proportional to Γc. Note that the indicator
is sensitive to very small values of Γc, e.g. 0.03 Nm corresponds to approximately
0.1% of the nominal torque.
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Table 5.1: Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for load torque oscillations.

10% load 50% load 80% load
E[IPSD] σIPSD E[IPSD] σIPSD E[IPSD] σIPSD

healthy 1.60 0.15 1.83 0.38 1.14 0.17
0.03 Nm 2.60 0.18 3.20 0.22 2.11 0.20
0.07 Nm 3.64 0.23 4.62 0.25 3.13 0.20
0.11 Nm 4.68 0.32 6.12 0.23 4.42 0.22
0.14 Nm 5.68 0.31 7.78 0.48 5.40 0.17
0.18 Nm 6.78 0.27 9.25 0.40 6.49 0.21
0.22 Nm 7.88 0.43 10.64 0.54 7.63 0.13
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Figure 5.3: Average fault indicator IPSD vs. load torque oscillation amplitude
Γc.

The average indicator values also depend on the average load level due to the
indicator normalization with respect to the fundamental amplitude which is Ist+Irt

in the stator current model. A correct normalization would include only the rotor
current amplitude Irt but the value of the latter cannot be extracted from the stator
current signal. Similar observation have been made in [Oba03a]. Nevertheless, the
obtained results show that a simple threshold based decision with IPSD allows an
effective fault detection.

5.2.2 Instantaneous Frequency - Steady State

This subsection presents results obtained with instantaneous frequency (IF) esti-
mation. The stator current signal is a multicomponent signal due to the presence
of numerous supply frequency harmonics. In order to obtain an approximation
of a monocomponent signal, the current is lowpass filtered with cutoff frequency
100 Hz and downsampled to 200 Hz. Then, the corresponding analytical signal is
calculated through the Hilbert transform. The subsequent IF estimation is realized
using the simple and fast phase difference estimator.
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Figure 5.4: Spectrogram of stator current IF with load torque oscillation Γc =
0.14 Nm vs. healthy case, 50% load.

Since the IF oscillations are of small amplitude, an appropriate IF postprocess-
ing must follow. In steady state, the IF power spectral density can be analyzed.
An alternative is the IF spectrogram, suitable for steady state and transients. For
illustration, the IF spectrogram of steady state stator current signals is displayed
in Fig. 5.4 for the healthy case and load torque oscillations with Γc = 0.14 Nm.
A fault-related component at fr ≈ 25 Hz can clearly be noticed when a fault is
present. It should be noted that the IF DC level has been removed prior to the
spectrogram calculation.

For further analysis of the collected data, the fault indicator IIF2 is calculated
for all cases. As before, the analysis is carried out on data records of length 512
samples. For each level of torque oscillation and average load, 21 samples are an-
alyzed. Table 5.2 summarizes the obtained average fault indicator IIF2 and its
standard deviation. The average values are graphically displayed in Fig. 5.2 with
respect to the load torque oscillation amplitude Γc. It can be noticed that these
curves are similar to the spectrum-based indicator IPSD. The average fault indi-
cator evolves approximately linearly with respect to Γc and even the smallest level
of torque oscillation can be detected. As before, the indicator values with 50%
load are higher than with 10% or 80% load. This time, no indicator normalization
with respect to the fundamental is used but recall that the IF oscillation ampli-
tudes depend on C(Ist, Irt) (see equation (4.32)). This could explain the indicator
variations with respect to load.

5.2.3 Instantaneous Frequency - Transient State

In the next and subsequent sections, transient stator current signals are considered.
They are obtained during motor startup and braking between standstill and nomi-
nal supply frequency. The frequency sweep rate is 10 Hz per second i.e. the startup
takes 5 seconds. For the following analysis, the transient between fs = 10 Hz and
48 Hz is extracted. For illustration, a transient stator current signal during motor
startup is displayed in Fig. 5.6 together with its PWD. The original signal has been
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Table 5.2: Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for load torque oscillations.

10% load 50% load 80% load
E[IIF2] σIIF2 E[IIF2] σIIF2 E[IIF2] σIIF2

healthy 13.8 1.5 18.0 2.6 11.3 1.2
0.03 Nm 23.0 1.8 31.2 1.8 20.9 1.7
0.07 Nm 31.7 2.5 45.0 2.2 30.8 1.4
0.11 Nm 41.8 3.1 59.5 1.9 42.4 2.5
0.14 Nm 50.6 2.9 75.0 3.8 51.0 1.4
0.18 Nm 58.8 2.7 89.3 3.6 62.2 2.2
0.22 Nm 67.6 4.0 103.5 4.9 74.0 1.4

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

Amplitude of load torque oscillation Γc [Nm]

E
[
II

F
2

]

10% load
50% load
80% load

Figure 5.5: Average fault indicator IIF2 vs. load torque oscillation amplitude Γc.
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Figure 5.6: Example of transient stator current during motor startup and its
PWD.
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Figure 5.7: PSD of stator current during speed transient with load torque oscil-
lation Γc = 0.22 Nm vs. healthy case.

lowpass filtered and downsampled to 200 Hz.

The PSD of a healthy and faulty transient signal is displayed in Fig. 5.7. This
example illustrates that spectral estimation is not appropriate for transient signal
analysis. The broad peak due to the time-varying supply frequency masks all other
phenomena. The faulty and healthy case cannot be distinguished.

Therefore, IF estimation is tested during the speed transients. For illustration,
a transient stator current IF is shown in Fig. 5.8 for the healthy case and with
a relatively strong load torque oscillation Γc = 0.5 Nm. It can be noted that
the average IF value shows a linear evolution during the motor startup. When
load torque oscillations are present, the IF oscillations increase. The oscillation
frequency is approximately half the supply frequency which corresponds to the
shaft rotational frequency fr [Blö05c] [Blö05a].

Again, the IF spectrogram is used for further analysis. With a smaller load
torque oscillation Γc = 0.22 Nm, the spectrograms depicted in Fig. 5.9 are obtained
during a motor startup. Besides the strong DC level in the spectrogram, time
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Figure 5.8: Example of transient stator current IF with strong load torque oscil-
lation (Γc = 0.5 Nm) vs. healthy case, 25% load.
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Figure 5.9: Spectrogram of transient stator current IF with load torque oscillation
Γc = 0.22 Nm vs. healthy case, 10% load.

varying components can already be noticed in the healthy case (Fig. 5.9(a)). They
correspond to the supply frequency fs(t) and its second harmonic. Comparing the
spectrogram of the healthy IF to the one with load torque oscillations (Fig. 5.9(b)),
a fault-related component at fr(t) becomes visible.

For indicator calculation during transients, modifications must be made to IIF2.
The indicator IIF2 has been designed proportional to the PM modulation index β.
However, since β ∝ Γc/f

2
c , β is not constant during transients. In order to obtain

an indicator IIF2’ proportional to Γc, IIF2 must be multiplied by the squared fault
frequency. The indicator IIF2’ suitable for transient analysis is therefore:

IIF2’[n] = IIF2[n] ·
(
f̂c[n]

)2

f̂c[n] =
IFi[n]

p
(5.2)

The estimate of fc[n] is obtained as the instantaneous frequency of the stator
current IFi[n] divided by the pole pair number i.e. f̂c[n] is the shaft rotational
frequency at no load. The indicators IIF2’(t) corresponding to the previous signals
are shown in Fig. 5.10. The healthy and the faulty case can be clearly distinguished
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Figure 5.10: Fault indicator IIF2’(t) during motor startup with load torque
oscillation Γc = 0.22 Nm vs. healthy case, 10% load.

Table 5.3: Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for load torque oscillations during speed transients.

10% load 50% load 80% load
E[IIF2′] σIIF2′ E[IIF2′] σIIF2′ E[IIF2′] σIIF2′

healthy 0.42 0.07 0.47 0.09 0.45 0.06
0.03 Nm 0.64 0.04 0.61 0.04 0.47 0.10
0.07 Nm 0.84 0.20 0.78 0.06 0.70 0.09
0.11 Nm 1.11 0.23 0.98 0.09 0.79 0.10
0.14 Nm 1.79 0.16 1.23 0.08 1.01 0.11
0.18 Nm 2.16 0.25 1.34 0.05 1.21 0.13
0.22 Nm 2.46 0.31 1.61 0.17 1.32 0.17

during the whole startup. Note that the indicator values are not calculated at the
beginning and the end of the data record in order to avoid border effects in the
spectrogram. The employed normalization with respect to fc leads to indicator
values that are relatively independent from the supply frequency.

Next, transients with different Γc and varying average load are studied. For
each analyzed data record, one fault indicator value IIF2’ is obtained by taking the
mean of IIF2’[n]. In each case, three motor accelerations and three decelerations
are analyzed. The obtained average indicator values and their standard deviations
are given in Table 5.3.

The average indicator values are graphically represented in Fig. 5.11. The
indicator with respect to the average load and Γc behavior is different from steady
state. First, IIF2’ is in general higher with small load. This can be explained by the
experimental setup that produces the load torque oscillations. During the speed
transients, the average load current reference is constant. Since the DC motor
voltage is small at low speed and the resistor value is constant, the current control
saturates at low speed and high loads. Therefore, the small load torque oscillations
cannot be correctly produced at higher load and the indicator values are therefore
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Figure 5.11: Average fault indicator IIF2’ vs. load torque oscillation amplitude
Γc during speed transients.
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Figure 5.12: Spectrogram of measured torque and PWD of stator current with
appearing load torque oscillation Γc = 0.05 Nm, 25% load.

smaller. For Γc = 0.03 Nm and 80% load, no clear change in the indicator value
with respect to the healthy case is visible due to the saturation.

5.2.4 Pseudo Wigner Distribution - Steady State

In this section, the stationary current signals are analyzed using the PWD. For
illustration purposes, the load torque oscillation starts in the middle of one data
record. Fig. 5.12(a) shows the spectrogram of the measured load torque. At t = 1 s,
the torque oscillation at fr ≈ 25 Hz is switched on. The corresponding stator
current PWD is displayed in Fig. 5.12(b). Oscillating sidebands appear around
the fundamental frequency in consequence of the torque oscillation. The sidebands
are located at fs ± fr/2 ≈ 50± 12.5 Hz. They oscillate at fr ≈ 25 Hz and a phase
shift between upper and lower sideband can be recognized. This corroborates the
theoretical considerations from the previous chapters.

The two proposed fault indicators IWD1 and IWD2 are tested on the experi-
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Figure 5.13: Fault indicator IWD1(t) for data record with appearing load torque
oscillation Γc = 0.05 Nm, 25% load.

mental stator current signal with appearing load torque oscillation. IWD1 is shown
with respect to time in Fig. 5.13. The indicator jumps to considerably higher values
when the torque oscillation appears. Note that the time instant of the jump does
not correspond exactly to the previous figures since the indicator is not calculated
for the beginning and the end of the data record. The fault indicator oscillates
since it represents the total sideband energy at each time instant.

The second fault indicator IWD2 is displayed in Fig. 5.14. Recall that it reflects
the oscillating sideband energy and the phase shift between the upper and lower
sideband signal. Since IWD2 is complex valued, the absolute value and phase are
separately displayed. The absolute value of IWD2 (Fig. 5.14(a)) shows a consider-
able jump in consequence of the fault. Before the apparition of the fault, the phase
is close to π but with a high variance. This is related to the small amplitudes of
the sideband signals and therefore a higher noise sensitivity. With the load torque
oscillation, the phase is more stable with a reduced variance. These examples
demonstrate the effectiveness of both PWD based indicators with experimental
stator current signals.

As before, the indicators have been tested on data with different levels of torque
oscillation and average load. For IWD1, Table 5.4 shows the average indicator val-
ues together with their standard deviation. The average values are also graphically
represented in Fig. 5.15 with respect to the load torque oscillation amplitude. The
indicator behaves similar to IPSD or IIF2 in steady state.

The corresponding results with the indicator IWD2 are shown in Table 5.5.
The absolute value and the argument are given separately whereas the standard
deviations have been omitted. Figure 5.16 represents the obtained indicator values
in the complex plane for 10% and 50% average load. With increasing Γc, the
absolute value of the indicators also increases. It can be noticed that the average
load influences on the indicator argument. With 50% load, the argument is closest
to π whereas values around 130◦ are obtained with 10% and 80% load.

Further tests with a modified indicator IWD2 were carried out: Previously, the
amplitudes and the phase shift of the two sideband signals were extracted using
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Figure 5.14: Absolute value and argument of fault indicator IWD2(t) for data
record with appearing load torque oscillation Γc = 0.05 Nm, 25% load.

Table 5.4: Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for load torque oscillations.

10% load 50% load 80% load
E[IWD1] σIWD1 E[IWD1] σIWD1 E[IWD1] σIWD1

healthy 1.88 0.16 2.15 0.32 1.43 0.21
0.03 Nm 2.90 0.19 3.67 0.21 2.68 0.23
0.07 Nm 4.02 0.25 5.30 0.26 3.96 0.23
0.11 Nm 5.17 0.35 7.01 0.23 5.46 0.29
0.14 Nm 6.26 0.32 8.85 0.47 6.65 0.19
0.18 Nm 7.46 0.27 10.51 0.43 8.02 0.27
0.22 Nm 8.63 0.44 12.16 0.60 9.54 0.16
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Figure 5.15: Average fault indicator IWD1 vs. load torque oscillation amplitude
Γc.
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Table 5.5: Average fault indicator IWD2 (absolute value A = E[|IWD2|] and
argument ϕ = E[∠IWD2] in [◦]) for load torque oscillations.

10% load 50% load 80% load
A ϕ A ϕ A ϕ

healthy 30.0 106.3 32.7 146.1 21.3 135.2
0.03 Nm 45.2 124.3 54.2 162.6 39.0 135.8
0.07 Nm 62.4 123.0 78.0 162.9 57.4 135.6
0.11 Nm 79.8 129.4 103.0 164.6 79.0 135.1
0.14 Nm 96.4 128.7 129.9 162.7 96.1 132.0
0.18 Nm 114.7 123.0 154.4 164.6 116.0 135.1
0.22 Nm 132.4 122.2 178.3 164.8 137.8 135.3
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Figure 5.16: Complex representation of fault indicator IWD2 with load torque
oscillations, 10% and 50% load.



5.2. Load Torque Oscillations 157

Time [s]

F
re

q
u
en

cy
[H

z]

0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

(a) healthy

Time [s]

F
re

q
u
en

cy
[H

z]

0.5 1 1.5 2 2.5 3 3.5
0

10

20

30

40

50

60

(b) 0.22 Nm torque oscillation

Figure 5.17: PWD of transient stator current in healthy case and with load
torque oscillation, 10% load.

the Hilbert transform. In steady state, the Fourier transform can provide the same
information. The equivalent tests after implementation showed very similar results
compared to extraction with the Hilbert transform. Theoretically, the Fourier
transform based extraction should show a better insensitivity with respect to noise
or other perturbations since the oscillating energy can be extracted from a well
determined frequency interval.

5.2.5 Pseudo Wigner Distribution - Transient State

The previously considered transient signals are also analyzed with the PWD. Fig-
ure 5.17 shows an example of the stator current PWD during a motor startup.
Comparing the healthy case to 0.22 Nm load torque oscillations, the characteristic
interference signature becomes visible around the time-varying fundamental fre-
quency. Since the fault frequency is also time variable, the sideband location and
their oscillation frequency depend on time [Blö05c] [Blö05a].

For indicator calculation during transients with constant torque oscillation Γc,
the previously used indicators must be modified since the PM modulation index
β depends on the time-varying fault frequency fc. Similar to IIF2’, IWD1’ and
IWD2’ are obtained by multiplication with the squared estimate of fc:

IWD1’[n] = IWD1[n] ·
(
f̂c[n]

)2

IWD2’[n] = IWD2[n] ·
(
f̂c[n]

)2

(5.3)

where f̂c[n] = f̂s[n]/p. The modified indicator IWD1’(t) is displayed in Fig. 5.18
during a motor startup. The healthy and the faulty case can clearly be distin-
guished. The same can be recognized with the fault indicator IWD2’ which is
shown in Fig. 5.19. The change is particularly visible in the absolute indicator
value. The phase shows significant fluctuations in the healthy case due to a low
amplitude of the sideband signals. With the load torque oscillation, the phase
difference is always close to π.

The complete analysis results of load torque oscillations during transients are
given in Table 5.6 for the indicator IWD1’. The average indicator values with
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Figure 5.18: Fault indicator IWD1’(t) during motor startup with load torque
oscillation Γc = 0.22 Nm vs. healthy case, 10% load.
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motor startup with load torque oscillation Γc = 0.22 Nm vs. healthy case, 10%
load.
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Table 5.6: Average fault indicator IWD1’ and standard deviation σIWD1′ for load
torque oscillations during speed transients.

10% load 50% load 80% load
E[IWD1′] σIWD1′ E[IWD1′] σIWD1′ E[IWD1′] σIWD1′

healthy 53.2 6.5 54.4 9.9 57.7 6.5
0.03 Nm 76.4 7.0 68.8 5.0 60.4 9.5
0.07 Nm 105.3 10.3 86.5 4.6 82.5 10.8
0.11 Nm 136.9 12.4 106.8 10.1 94.8 12.1
0.14 Nm 216.5 7.5 132.5 7.2 121.1 10.9
0.18 Nm 266.7 9.3 143.6 6.2 144.8 15.2
0.22 Nm 306.9 7.1 169.3 14.9 155.5 20.7
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Figure 5.20: Average fault indicator IWD1’ vs. load torque oscillation amplitude
Γc during speed transients.

respect to Γc are shown in Fig. 5.20. They are very similar to the indicator values
obtained with IIF2’.

The results with the second PWD based indicator IWD2’ are given in Ta-
ble 5.7. The results are separated into the acceleration and the braking phase.
The evolution of the absolute value A corresponds to the previous results. For
certain load levels, different phase angles ϕ between acceleration and braking can
be noticed. The difference is particularly significant for 10% load. This can also
be seen in Fig. 5.21 where the obtained indicator values are represented in the
complex plane. At 10% load (see Fig. 5.21(a)), the obtained indicators have ap-
proximately the same absolute value but their phase angle differs significantly de-
pending on acceleration or braking. This effect cannot be recognized at 50% load
(see Fig. 5.21(b)). It can be supposed that the angle values close to π/2 during
braking at small load are related to a relatively high motor braking torque. At
high load level, the motor does not need to provide negative torque in contrary
to small load. The negative torque might lead to such indicator values. In any
case, the absolute indicator value clearly reflects the amplitude of the load torque
oscillation during speed transients.
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Table 5.7: Average fault indicator IWD2’ (absolute value A = E[|IWD2′|] and
argument ϕ = E[∠IWD2′] in [◦]) for load torque oscillations during speed tran-
sients.

10% load 50% load 80% load
A ϕ A ϕ A ϕ

acceleration healthy 64.6 108.8 68.3 125.8 57.5 90.7
0.03 Nm 71.8 141.2 75.2 142.1 56.8 106.4
0.07 Nm 106.8 153.6 85.2 136.1 75.8 133.8
0.11 Nm 136.9 150.9 110.0 139.3 86.8 126.5
0.14 Nm 197.7 162.7 127.6 139.3 109.6 127.8
0.18 Nm 241.4 163.2 137.6 141.3 128.0 122.4
0.22 Nm 272.1 163.1 148.9 146.7 131.1 132.6

braking healthy 53.1 94.3 49.9 121.1 69.0 100.4
0.03 Nm 78.7 124.2 68.0 135.6 69.8 112.4
0.07 Nm 91.1 96.4 88.1 144.1 91.2 120.2
0.11 Nm 118.7 103.8 97.5 143.0 103.1 116.3
0.14 Nm 194.0 114.5 125.5 144.8 124.2 118.9
0.18 Nm 236.2 107.6 135.0 136.6 149.7 112.8
0.22 Nm 271.3 103.9 170.1 151.0 164.4 113.2
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Figure 5.21: Complex representation of fault indicator IWD2’ with load torque
oscillations during speed transients, 10% and 50% load.
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Table 5.8: Average estimated PM modulation index E[θ̂3] (×10−3) and standard
deviation σθ̂3

(×10−3) for load torque oscillations, Nb = 64.

10% load 50% load 80% load

E[θ̂3] σθ̂3
E[θ̂3] σθ̂3

E[θ̂3] σθ̂3

healthy 1.83 1.52 2.30 1.63 1.66 1.53
0.03 Nm 2.77 1.48 3.49 1.40 2.55 1.44
0.07 Nm 3.61 1.56 4.86 1.37 3.57 1.43
0.11 Nm 4.50 1.65 6.46 1.68 4.60 1.37
0.14 Nm 5.38 1.38 7.84 1.28 5.50 1.32
0.18 Nm 6.20 1.59 9.19 1.41 6.65 1.47
0.22 Nm 7.16 1.43 10.68 1.41 7.92 1.36

Table 5.9: Average estimated AM modulation index E[κ̂2] (×10−3) and standard
deviation σκ̂2 (×10−3) for load torque oscillations, Nb = 64.

10% load 50% load 80% load
E[κ̂2] σκ̂2 E[κ̂2] σκ̂2 E[κ̂2] σκ̂2

healthy 1.49 2.39 1.33 2.49 1.26 2.31
0.03 Nm 1.74 2.29 1.29 2.47 1.49 2.47
0.07 Nm 2.30 2.45 1.43 2.44 1.89 2.42
0.11 Nm 2.57 2.43 1.62 2.33 2.31 2.23
0.14 Nm 2.95 2.36 1.84 2.30 2.68 2.19
0.18 Nm 3.77 2.51 1.89 2.28 3.07 2.35
0.22 Nm 4.27 2.48 2.03 2.33 3.60 2.14

5.2.6 Parameter Estimation

The last employed method is signal parameter estimation. Using the same signals
as before, the PM and AM modulation are estimated as fault indicators. The
estimates are obtained on blocks of length Nb = 64 samples with the previously
described estimation procedures. The evolution strategy is used for optimization
in the PM case. Table 5.8 shows the obtained average PM modulation indices with
their standard deviation, Table 5.9 gives the same information for the AM indices.
The average indicator values are also graphically displayed in Fig. 5.22.

The PM modulation index shows an approximately linear evolution with respect
to Γc. It resembles to the previously obtained indicators based on non-parametric
methods. On the contrary, the AM modulation index shows only a slight rise.
Moreover, its characteristics are different from the previously obtained indicators
e.g. the indicator values with 50% load are smaller than with 10% or 80%. This
signifies, that the considered load torque oscillations mainly lead to phase modula-
tions of the stator current. The PM modulation index is a suitable fault indicator
in this case.

Since the data record length Nb was only 64 samples in this example, the
standard deviation is higher than with the spectrum based indicator where Nb =
512. Tests with the PM estimator and increased data record length demonstrated



162 5. Experimental Results

0 0.05 0.1 0.15 0.2 0.25
0

0.002

0.004

0.006

0.008

0.01

0.012

Amplitude of load torque oscillation Γc [Nm]

E
[
θ̂
3

]

10% load
50% load
80% load

(a) Average PM index

0 0.05 0.1 0.15 0.2 0.25
0

0.002

0.004

0.006

0.008

0.01

0.012

Amplitude of load torque oscillation Γc [Nm]

E
[
κ̂

2
]

10% load
50% load
80% load

(b) Average AM index

Figure 5.22: Average PM and AM modulation indices with respect to load torque
oscillation amplitude Γc, Nb = 64.

however a significant reduction.
Another optimization procedure, the fixed grid search, was tested with Nb = 64.

The obtained estimates for the PM modulation index showed approximately the
same standard deviation. The relatively high variance is therefore due to noise or
other non-stationary phenomena and not related to the optimization procedure.
Hence, a satisfactory performance of the evolution strategy with experimental sig-
nals can be remarked.

Finally, ROC curves can be calculated in order to demonstrate the detection
performance of a threshold based decision using the PM modulation index. The
ROC are displayed in Fig. 5.23 for 10% and 80% average load. Detection of the
smallest load torque oscillation Γc = 0.03 Nm is difficult whereas the detection
performance approaches the ideal case with higher Γc.

5.3 Load Unbalance

In order to study a more realistic fault producing torque oscillations, a load unbal-
ance is introduced. The same signal processing methods as before are applied in
the following to signals recorded under equivalent conditions.

In order to verify that the load unbalance creates torque oscillations, the mea-
sured load torque is analyzed and the amplitude component amplitude at fr is
determined. The obtained values are given in Table 5.10. It can be noticed that
an increase in unbalance does not necessarily lead to higher measured load torque
oscillations. For example, with theoretical Γc = 0.07 Nm, the measured values are
always lower than with Γc = 0.06 Nm.

5.3.1 Spectral Estimation

First, classical spectral analysis is used to analyze the stator current signals with
load unbalance. Stator current spectra corresponding to the smallest level of unbal-
ance with Γc = 0.04 Nm are shown in Fig. 5.24 in comparison to the healthy case.
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Figure 5.23: Experimental ROC for threshold based detection of load torque
oscillations using the estimated PM modulation index, Nb = 64.

Table 5.10: Measured oscillating torque with load unbalance under different load
conditions, fs = 50 Hz.

Theoretical load torque Measured Γc [Nm]
oscillation [Nm] 10% load 50% load 80% load

healthy 0.012 0.009 0.007
0.04 0.039 0.036 0.043
0.06 0.041 0.062 0.066
0.07 0.033 0.038 0.041
0.10 0.050 0.060 0.053
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Figure 5.24: PSD of stator current with load unbalance Γc = 0.04 Nm vs. healthy
case.

As before, the sidebands at fs ± fr show a considerable increase. Moreover, the
fault seems to provoke a slight increase of the noise floor at small load. However,
this effect disappears with increasing load.

The obtained fault indicators IPSD together with their standard deviations are
given for 4 levels of unbalance in Table 5.11. The average indicator values are
also displayed in Fig. 5.25 with respect to the theoretical load torque oscillation
amplitude Γc. First, it can be noticed that all cases of load unbalance can clearly be
distinguished from the healthy case, independent from the load condition. However,
the fault indicator does not evolve linearly with respect to the theoretical Γc. The
corresponding measured load torque confirmed this tendency: a higher level of
unbalance does not lead to higher values of oscillating torque in this experimental
setup. However, the obtained indicator values correspond approximately to the
measured torque oscillation amplitudes. The nonlinearity between unbalance and
measured Γc could be related to high levels of vibration during the test, resulting
from considerable centrifugal forces at nominal speed.

The obtained indicator values can be compared to those with load torque oscil-
lations generated by the DC motor current control (see Table 5.1). The first three
levels of unbalance lead to higher indicator values compared to the corresponding
load torque oscillations. The indicator values with the highest level of unbalance
Γc = 0.10 Nm correspond relatively well to the equivalent load torque oscillation.

5.3.2 Instantaneous Frequency - Steady State

Using the same procedure as before with load torque oscillations, the stator current
IF is estimated and processed using the spectrogram. For illustration, Fig. 5.26
shows the IF spectrogram of a healthy current signal in comparison to one with
load unbalance of theoretical Γc = 0.1 Nm. The supply frequency is fs = 50 Hz and
the machine is loaded at 50%. Since the average IF value has not been removed
prior to the spectrogram calculation, a DC level can be recognized. Due to its
strong amplitude, even the sidelobes of the DC component are visible. With load
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Table 5.11: Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for load unbalance.

10% load 50% load 80% load
E[IPSD] σIPSD E[IPSD] σIPSD E[IPSD] σIPSD

healthy 1.20 0.11 1.17 0.20 0.68 0.10
0.04 Nm 4.46 0.47 4.79 0.32 3.13 0.15
0.06 Nm 4.81 0.19 5.86 0.31 4.06 0.28
0.07 Nm 4.13 0.32 4.85 0.27 3.26 0.13
0.10 Nm 4.53 0.24 5.25 0.27 3.47 0.09
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Figure 5.25: Average fault indicator IPSD vs. theoretical load torque oscillation
amplitude Γc with load unbalance
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Figure 5.26: Spectrogram of stator current IF in healthy case and with load
unbalance (Γc = 0.1 Nm), 50% load.

Table 5.12: Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for load unbalance.

10% load 50% load 80% load
E[IIF2] σIIF2 E[IIF2] σIIF2 E[IIF2] σIIF2

healthy 10.9 1.1 12.3 1.6 7.5 0.8
0.04 Nm 43.3 3.7 47.0 2.8 31.8 1.4
0.06 Nm 42.8 2.2 56.4 2.8 39.0 2.4
0.07 Nm 38.7 3.3 47.3 2.4 32.7 0.8
0.10 Nm 39.8 2.2 50.5 2.4 33.8 0.8

unbalance, the spectrogram shows a component at shaft rotational frequency fr

which is not visible in the healthy case. This signature is identical to the previously
studied load torque oscillations, therefore suggesting a very similar effect.

The IF based fault indicator IIF2 is then calculated on signals with different
average load and level of unbalance. The obtained results are shown in Table 5.12
and graphically represented in Fig. 5.27. The obtained curves are very similar
to the spectrum based indicator IPSD which again validates the IF analysis as
alternative method for this fault.

5.3.3 Instantaneous Frequency - Transient State

Next, transient signals with load unbalance are analyzed using the instantaneous
frequency. The stator currents during motor startup and braking are extracted
from data records and analyzed using the appropriate indicator. As before, the
frequency varies linearly from 10 to 48 Hz.

The fault indicator IIF2’ is shown with respect to time in Fig. 5.28. With a
load unbalance of theoretical amplitude Γc = 0.1 Nm, the indicator is at a higher
level than in the healthy case. However, two regions with nearly equal indicator
value exist: at the beginning of the data record and around 1.7 s which corresponds
to approximately 30 Hz supply frequency. At low speed and supply frequency, the
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Figure 5.27: Average fault indicator IIF2 vs. theoretical load torque oscillation
amplitude Γc with load unbalance.
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Figure 5.28: Fault indicator IIF2’(t) during motor startup with load unbalance
of theoretical Γc = 0.1 Nm.

interval in the spectrogram from which energy values are considered is relatively
small and close to the DC level. This signifies that noise or the sidelobes of the
DC level may strongly influence the indicator value, especially if the latter is small.
The low indicator value around fs = 30 Hz is probably related to mechanical reso-
nance phenomena. Additional tests in steady state with varying supply frequency
confirmed very low indicator values in a frequency range from 30 to 40 Hz with
this experimental setup [Ped06]. Moreover, abnormal vibrations were recognized
for these supply frequencies.

The obtained average indicator values for different load levels and unbalances
are given in Table 5.13 together with their standard deviation. The average values
are also shown in Fig. 5.29 with respect to the theoretical torque oscillation am-
plitude generated by the unbalance. Again, the evolution of the fault indicator is
not linear with respect to the theoretical value of Γc. The fault detection is more
difficult than in steady state since the relative indicator variations are smaller.
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Table 5.13: Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for load unbalance during speed transients.

no load 50% load 80% load
E[IIF2′] σIIF2′ E[IIF2′] σIIF2′ E[IIF2′] σIIF2′

healthy 0.37 0.08 0.49 0.09 0.47 0.11
0.04 Nm 0.58 0.10 0.70 0.07 0.74 0.03
0.06 Nm 0.56 0.08 0.71 0.16 0.64 0.13
0.10 Nm 0.79 0.12 1.03 0.13 0.97 0.07
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Figure 5.29: Average fault indicator IIF2’ vs. theoretical load torque oscillation
amplitude Γc with load unbalance during speed transients.
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Figure 5.30: PWD of stator current in healthy case and with load unbalance
(Γc = 0.1 Nm), 50% load.

Table 5.14: Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for load unbalance.

10% load 50% load 80% load
E[IWD1] σIWD1 E[IWD1] σIWD1 E[IWD1] σIWD1

healthy 1.44 0.10 1.46 0.18 0.90 0.09
0.04 Nm 4.98 0.40 5.52 0.33 4.08 0.19
0.06 Nm 5.29 0.21 6.69 0.34 5.14 0.32
0.07 Nm 4.61 0.31 5.55 0.31 4.23 0.11
0.10 Nm 4.99 0.24 5.99 0.31 4.41 0.13

5.3.4 Pseudo Wigner Distribution - Steady State

The PWD is first used for stator current analysis in steady state. Figure 5.30
displays a zoom on the stator current PWD in healthy conditions and with load
unbalance. The unbalance leads to sideband components at fs ± fr/2 ≈ 50 ±
12.5 Hz. They oscillate at fault characteristic frequency fr ≈ 25 Hz. The phase
shift between upper and lower sideband component is approximately π. Thus, it
becomes clear that the load unbalance causes the same fault signature in the PWD
as the load torque oscillations.

The PWD based fault indicators are then calculated on all recorded signals.
Table 5.14 displays the average indicator values for IWD1 together with their
standard deviation. Figure 5.31 displays the average indicator value with respect
to the theoretical load torque oscillation amplitude Γc generated by the unbalance.
Again, the general indicator evolution is very similar to IPSD or IIF2 in steady
state.

The results with the second indicator IWD2 are displayed in Table 5.15. The
absolute indicator values correspond to the previously obtained results with the
other indicators. The phase angles with unbalance are between 130◦ and 160◦,
similar to the load torque oscillations. As before, the phase angles are closest to π
with 50% load.



170 5. Experimental Results

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

7
x 10

−3

Theoretical load torque oscillation Γc [Nm] with unbalance

E
[
IW

D
1

]

10% load
50% load
80% load

Figure 5.31: Average fault indicator IWD1 vs. theoretical load torque oscillation
amplitude Γc with load unbalance.

Table 5.15: Average fault indicator IWD2 (absolute value A = E[|IWD2|] and
argument ϕ = E[∠IWD2] in [◦]) for load unbalance.

10% load 50% load 80% load
A ϕ A ϕ A ϕ

healthy 23.7 106.7 23.4 135.7 14.4 124.9
0.04 Nm 81.9 145.7 81.5 162.7 59.1 135.4
0.06 Nm 81.4 129.1 98.5 157.8 74.7 128.9
0.07 Nm 72.6 139.2 82.0 163.1 61.2 132.2
0.10 Nm 76.9 125.8 88.2 158.2 63.9 131.3
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Figure 5.32: Complex representation of fault indicator IWD2 with load unbal-
ance, 50% and 80% load.
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Figure 5.33: Fault indicator IWD1’(t) during motor startup with load unbalance
of theoretical Γc = 0.1 Nm.

Table 5.16: Average fault indicator IWD1’ and standard deviation σIWD1′ for
load unbalance during speed transients.

no load 50% load 80% load
E[IWD1′] σIWD1′ E[IWD1′] σIWD1′ E[IWD1′] σIWD1′

healthy 49.5 5.5 56.7 10.5 54.8 11.7
0.04 Nm 72.6 5.3 76.8 7.7 82.3 2.3
0.06 Nm 67.3 5.0 77.9 18.0 74.7 14.1
0.10 Nm 98.8 6.0 111.3 17.0 108.5 5.2

5.3.5 Pseudo Wigner Distribution - Transient State

Both PWD based indicators are also tested during speed transients. The same sig-
nals as before are used to calculate the indicators. Indicator IWD1’ is shown with
respect to time for a data record with load unbalance Γc = 0.1 Nm in Fig. 5.33.
With load unbalance, the indicator amplitude takes higher values, except at low
speed and around 30 Hz supply frequency. This behavior is identical to the indica-
tor IIF2’(t) (see Fig. 5.28). The average values of IWD1’ are shown in Table 5.16
as well as in Fig.5.34. Again, the obtained results are similar to IIF2’.

For illustration of the transient performance of IWD2’, Fig. 5.35 shows the
absolute value and phase during a motor startup with load unbalance. The absolute
value is similar to the amplitude of IWD1’(t). It is interesting to note that the
phase is stable and relatively close to π with load unbalance, except when the
absolute value is low.

The complete results with the second indicator IWD2’ are displayed in Ta-
ble 5.17. Acceleration and braking phase are separated since the angles at small
load are again significantly different. This can also be recognized in the complex
representation of the indicator in Fig. 5.36. At no load, the obtained indicators
during acceleration and braking are well distinct with phase angles close to π/2
during braking. The tests with load unbalance are in general related to a higher
absolute indicator value compared to the healthy case. Nevertheless, the fault de-
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Figure 5.34: Average fault indicator IWD1’ vs. theoretical load torque oscillation
amplitude Γc with load unbalance during speed transients.
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Figure 5.35: Absolute value and argument of fault indicator IWD2’(t) during
motor startup with load unbalance of theoretical Γc = 0.1 Nm.
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Table 5.17: Average fault indicator IWD2’ (absolute value A = E[|IWD2′|] and
argument ϕ = E[∠IWD2′] in [◦]) for load unbalance during speed transients.

no load 50% load 80% load
A ϕ A ϕ A ϕ

acceleration healthy 58.7 116.8 69.1 135.9 70.4 129.6
0.04 Nm 76.4 132.6 87.0 149.3 85.1 144.7
0.06 Nm 73.9 128.4 95.2 142.1 89.2 139.2
0.10 Nm 101.1 137.7 130.2 151.7 105.9 140.1

braking healthy 48.4 82.4 53.4 124.1 47.6 111.4
0.04 Nm 73.7 91.6 74.4 130.6 78.9 150.8
0.06 Nm 67.9 94.4 64.3 133.5 64.2 120.4
0.10 Nm 97.2 97.9 96.1 142.8 105.7 157.0
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Figure 5.36: Complex representation of fault indicator IWD2’ with load unbal-
ance during speed transients, no load and 50% load.

tection is more difficult during transients since some data records show relative
high absolute values even in the healthy case.

5.3.6 Parameter Estimation

As with load torque oscillations, the PM and AM modulation indices are estimated.
The data record length is Nb = 64 samples. For PM estimation, the evolution
strategy is used for optimization. The obtained results are displayed in Tables 5.18
and 5.19. The average indices are shown with respect to the theoretical torque
oscillation amplitude in Fig. 5.37.

First, it can be noticed that the obtained PM indices reflect the previously
obtained fault indicators with non-parametric methods. This points to a predom-
inance of torque oscillations in the case of load unbalance. The AM indices show
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Table 5.18: Average estimated PM modulation index E[θ̂3] (×10−3) and standard
deviation σθ̂3

(×10−3) for load unbalance, Nb = 64.

10% load 50% load 80% load

E[θ̂3] σθ̂3
E[θ̂3] σθ̂3

E[θ̂3] σθ̂3

healthy 1.63 1.55 1.88 1.58 1.41 1.51
0.04 Nm 4.80 1.54 4.99 1.45 3.59 1.46
0.06 Nm 4.69 1.54 5.96 1.44 4.25 1.44
0.07 Nm 4.24 1.51 5.06 1.49 3.69 1.46
0.10 Nm 4.34 1.46 5.44 1.53 3.74 1.59

Table 5.19: Average estimated AM modulation index E[κ̂2] (×10−3) and standard
deviation σκ̂2 (×10−3) for load torque oscillations, Nb = 64.

10% load 50% load 80% load
E[κ̂2] σκ̂2 E[κ̂2] σκ̂2 E[κ̂2] σκ̂2

healthy 1.36 2.37 1.23 2.34 1.15 2.24
0.04 Nm 2.38 2.50 1.49 2.37 1.78 2.46
0.06 Nm 2.49 2.41 1.73 2.44 2.43 2.49
0.07 Nm 2.14 2.20 1.49 2.10 1.97 2.27
0.10 Nm 2.51 2.30 1.62 2.42 2.07 2.36

a slight rise but no significant evolution. Moreover, the standard deviation of the
AM indices is high and is in some cases equal or higher than the AM index value
itself. It can be concluded that the PM modulation index is an effective fault indi-
cator for detection of load unbalance. This is also confirmed by the corresponding
ROC curves, displayed in Fig. 5.38.

5.4 Dynamic Eccentricity

The healthy induction motor is replaced by a motor with 40% dynamic airgap
eccentricity. First, the measured load torque is analyzed in order to corroborate
experimentally the hypothesis that eccentricity leads to oscillating torque compo-
nents at frequency fr (see section 2.5.5). The obtained torque spectra are displayed
in Fig. 5.39 for three different load levels together with the corresponding healthy
case. It can clearly be seen that the oscillating torque component at fr ≈ 25 Hz
increases when dynamic eccentricity is present.

5.4.1 Spectral Estimation

The corresponding stator current spectra with dynamic eccentricity are shown in
Fig. 5.40 in comparison to the healthy case. The amplitude of sidebands at fs± fr

increases with the fault. It becomes clear that the spectral signature of airgap
eccentricity is identical to load torque oscillations or load unbalance. Therefore,
spectral estimation can be used for fault detection purposes but the discrimination
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Figure 5.37: Average PM and AM modulation indices with respect to theoretical
torque oscillation amplitude Γc with unbalance, Nb = 64.
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Figure 5.38: Experimental ROC for threshold based detection of load unbalance
using the estimated PM modulation index, Nb = 64.
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Figure 5.39: PSD of measured torque with 40% dynamic eccentricity vs. healthy
case.
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Figure 5.40: PSD of stator current with 40% dynamic eccentricity vs. healthy
case.

Table 5.20: Average fault indicator IPSD (×10−3) and standard deviation σIPSD

(×10−3) for 40% dynamic eccentricity.

10% load 50% load 80% load
E[IPSD] σIPSD E[IPSD] σIPSD E[IPSD] σIPSD

healthy 1.20 0.11 1.17 0.20 0.68 0.10
dynamic eccentricity 5.67 0.45 3.70 0.35 3.49 0.16

of eccentricity from torque oscillations is impossible. The obtained fault indicator
values are given in Table 5.20. It is interesting to note that contrary to load
unbalance or torque oscillations, the indicator is highest at small load with dynamic
eccentricity. This confirms similar observations in [Dor97].

5.4.2 Instantaneous Frequency - Steady State

The stator current IF with dynamic eccentricity is analyzed using the fault in-
dicator IIF2. The results are shown in Table 5.21. The indicator IIF2 shows a
significant rise with dynamic eccentricity. This can explained by the eccentricity
related load torque oscillations since a pure AM should not influence the stator
current IF. The fact that IIF2 takes only into account stator current PM can also
be seen by observing the relative indicator variation compared to IPSD. With ec-
centricity, the relative indicator variation with IIF2 between the healthy and faulty
case is smaller than with IPSD. Consider e.g. 80% average load: IPSD shows an
increase by 5.13 with dynamic eccentricity whereas IIF2 increases only by 3.5.
With the previously analyzed load torque oscillations, IPSD and IIF2 increased
approximately in the same proportions (compare Tables 5.1 and 5.2). This points
to the fact that dynamic eccentricity leads to other modulations besides pure PM.
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Table 5.21: Average fault indicator IIF2 (×10−3) and standard deviation σIIF2

(×10−3) for 40% dynamic eccentricity.

10% load 50% load 80% load
E[IIF2] σIIF2 E[IIF2] σIIF2 E[IIF2] σIIF2

healthy 10.9 1.1 12.3 1.6 7.5 0.8
dynamic eccentricity 38.2 4.2 28.1 2.8 26.5 1.3
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Figure 5.41: Fault indicator IIF2’ with dynamic eccentricity during speed tran-
sient.

5.4.3 Instantaneous Frequency - Transient State

The motor with dynamic eccentricity is tested during transients with the same
speed variations as before. The IF based indicator IIF2’ is displayed in Fig. 5.41
during a startup with a healthy motor compared to dynamic eccentricity. The
indicator does not show a significantly higher level during the whole startup.

The calculated indicator values for all load levels are displayed in Table 5.22.
Again, it can be seen that the indicator IIF2’ is not sensitive to dynamic eccentricity
during transients.

5.4.4 Pseudo Wigner Distribution - Steady State

Next, the steady state stator current signals are analyzed with the PWD. The
PWD of the stator current with dynamic eccentricity is displayed in Fig. 5.42 in

Table 5.22: Average fault indicator IIF2’ (×10−3) and standard deviation σIIF2′

(×10−3) for dynamic eccentricity during speed transients.

10% load 50% load 80% load
E[IIF2′] σIIF2′ E[IIF2′] σIIF2′ E[IIF2′] σIIF2′

healthy 0.37 0.08 0.49 0.09 0.47 0.11
dynamic eccentricity 0.47 0.04 0.66 0.05 0.44 0.03
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Figure 5.42: PWD of stator current in healthy case and with dynamic eccentric-
ity, 10% load.

Table 5.23: Average fault indicator IWD1 (×10−3) and standard deviation σIWD1

(×10−3) for 40% dynamic eccentricity.

10% load 50% load 80% load
E[IWD1] σIWD1 E[IWD1] σIWD1 E[IWD1] σIWD1

healthy 1.44 0.10 1.46 0.18 0.90 0.09
dynamic eccentricity 6.32 0.37 4.33 0.36 4.47 0.18

comparison to the healthy case. With dynamic eccentricity, oscillating sidebands
at fs ± fr/2 ≈ 50± 12.5 Hz are visible. The sidebands oscillate approximately at
fr. Moreover, it can be recognized that their phase shift is closer to 0 than with
the previously observed load torque oscillations. Therefore, the observed signature
resembles more to the PWD of AM signals, derived in section 4.3.3.

The PWD based fault indicator IWD1 has been calculated and it is shown in
Table 5.23. The indicator shows a significant rise with dynamic eccentricity. The
relative indicator variation is greater than with IIF2 since IWD1 takes into account
AM and PM. For example, IWD1 increases approximately by 5 with 80% average
load, which is close to the relative variation of IPSD.

The obtained values with indicator IWD2 are displayed in Table 5.24. Again,
the absolute value of IWD2 shows a significant rise with dynamic eccentricity. The
observed phase values are of particular interest since they are close to π/2. This
points to the fact that both AM and PM are present on the stator current. Pure
AM would lead to phase angles close to 0 whereas it should be close to π with pure
PM. These results corroborate the theoretical developments in section 2.5 on the
effects of airgap eccentricity on the stator current.

The results with IWD2 can also be visualized by plotting the indicator in the
complex plane. The obtained indicator estimates are shown in Fig. 5.43 with 10%
and 50% average load. The same observations regarding the angle and absolute
indicator values can be made.
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Table 5.24: Average fault indicator IWD2 (absolute value A = E[|IWD2|] and
argument ϕ = E[∠IWD2] in [◦]) for 40% dynamic eccentricity.

10% load 50% load 80% load
A ϕ A ϕ A ϕ

healthy 23.7 106.7 23.4 135.7 14.4 124.9
dynamic eccentricity 98.5 81.8 64.4 93.8 64.7 86.3
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Figure 5.43: Complex representation of fault indicator IWD2 with dynamic ec-
centricity, 10% and 50% load.
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Figure 5.44: Fault indicator IWD1’ with dynamic eccentricity during motor
startup, 10% load.

Table 5.25: Average fault indicator IWD1’ (×10−3) and standard deviation σIWD1′

(×10−3) for dynamic eccentricity during speed transients.

no load 50% load 80% load
E[IWD1′] σIWD1′ E[IWD1′] σIWD1′ E[IWD1′] σIWD1′

healthy 6.17 0.90 7.33 1.89 6.71 2.43
dynamic eccentricity 7.74 0.47 9.72 1.02 7.18 1.05

5.4.5 Pseudo Wigner Distribution - Transient State

The PWD based indicators are also tested with dynamic eccentricity during speed
transients. Figure 5.44 displays for example IWD1’(t) during a motor startup with
10% load. At the beginning of the data record, the healthy and faulty signals lead
to the same indicator values. Later, a higher amplitude with dynamic eccentricity
can be noticed. It is interesting to compare this result to the indicator IIF2’(t)
in Fig. 5.41. IWD1’(t) shows significantly higher values with eccentricity com-
pared to the healthy case than IIF2’(t). A probable explanation is the presence of
eccentricity related AM which cannot be detected by IF based indicators.

The average indicator values IWD1’ with all tested load levels are shown in
Table 5.25. The relative indicator variations are much smaller compared to load
torque oscillations or load unbalance during transients. This makes detection of
dynamic eccentricity difficult in non-stationary conditions.

The second indicator IWD2’(t) is shown with respect to time for a motor startup
in Fig. 5.45. The absolute values are in general very similar. However, the phase is
in general smaller with dynamic eccentricity and drops to values smaller than π/2
between 1.7 and 2.3 seconds. This is the only sign pointing to the presence of the
fault.

The average absolute values and phase angles for IWD2’ are given in Table 5.26.
The absolute value shows in most cases an increase and the phase angles are gen-
erally smaller with eccentricity. However, the detection of dynamic eccentricity
during transients is significantly harder than in steady state.
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Figure 5.45: Absolute value and argument of fault indicator IWD2’(t) with dy-
namic eccentricity during motor startup.

Table 5.26: Average fault indicator IWD2’ (absolute value A = E[|IWD2′|] and
argument ϕ = E[∠IWD2′] in [◦]) for dynamic eccentricity during speed transients.

10% load 50% load 80% load
A ϕ A ϕ A ϕ

acceleration healthy 58.7 116.8 69.1 135.9 70.4 129.6
dynamic eccentricity 72.5 110.1 91.1 102.3 66.7 86.4

braking healthy 48.4 82.4 53.4 124.1 47.6 111.4
dynamic eccentricity 72.8 57.4 81.7 101.5 65.2 82.4
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Table 5.27: Average estimated PM modulation index E[θ̂3] (×10−3) and standard
deviation σθ̂3

(×10−3) for dynamic eccentricity, Nb = 64.

10% load 50% load 80% load

E[θ̂3] σθ̂3
E[θ̂3] σθ̂3

E[θ̂3] σθ̂3

healthy 1.63 1.55 1.87 1.59 1.41 1.51
dynamic eccentricity 4.30 1.70 3.19 1.60 3.04 1.58

Table 5.28: Average estimated AM modulation index E[κ̂2] (×10−3) and standard
deviation σκ̂2 (×10−3) for dynamic eccentricity, Nb = 64.

10% load 50% load 80% load
E[κ̂2] σκ̂2 E[κ̂2] σκ̂2 E[κ̂2] σκ̂2

healthy 1.36 2.37 1.23 2.34 1.15 2.24
dynamic eccentricity 4.79 2.45 3.00 2.14 3.18 2.29

5.4.6 Parameter Estimation

Finally, parameter estimation techniques are tested in steady state with dynamic
eccentricity. Using data records of length Nb = 64 samples as before, the results
displayed in Tables 5.27 and 5.28 are obtained. As expected, the average PM index
shows a significant rise due to an increased level of torque oscillations. In addition,
the AM index also increases significantly and reaches values approximately equal
to the PM index. This important result confirms that dynamic eccentricity leads
simultaneously to amplitude and phase modulation of the stator current. The pre-
vious parameter estimation results with torque oscillations and load unbalance did
not lead to significantly higher AM indices. Therefore, the parameter estimation
approach is an effective tool not only for fault detection but also discrimination of
eccentricity and torque oscillations.

5.5 On-line Monitoring

Two of the discussed methods, spectral estimation and the PWD, have also been
implemented on a low cost DSP board (ADSP-21161) for on-line monitoring. The
principal reason are often stated concerns about computation time with time-
frequency methods. The DSP implementation demonstrates the feasibility of on-
line monitoring using time-frequency methods on a standard processor. This has
also been shown in [Raj05] for rotor fault detection in brushless DC motors.

One stator current signal is continuously sampled and processed by the DSP.
The three fault indicators IPSD, IWD1 and IWD2 are then calculated on data
records of length 512 samples (≈ 2.7 s). Note that the phase extraction for IWD2
has not been implemented, i.e. IWD2 = |IWD2| in this section. Additional details
on the implementation are given in appendix C and [Blö07]. Load torque oscilla-
tions and load unbalance are first studied in steady state and then during speed
transients.
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Figure 5.46: Fault profile for Γc and indicator IPSD response vs. data record.

5.5.1 Load Torque Oscillations - Steady State

In order to test the indicators with different fault severity in steady state, the load
torque oscillation amplitude Γc successively increases from Γc = 0 to 0.22 Nm.
Each fault level is maintained during 20 data records. The fault profile is shown
in Fig. 5.46(a).

The obtained spectrum based indicator IPSD is displayed in Fig. 5.46(b). Three
load levels are tested at supply frequency fs = 50 Hz. It can be noticed that the
indicator follows the fault profile. Even small torque oscillation can be detected.
The indicator dependence on the average load corresponds to the previous results.

The stator current PM modulation index depends on the frequency of the con-
sidered torque oscillation according to (2.70): β ∝ 1/f2

c . Therefore, the fault
indicator IPSD should depend on fc in the same way. For verification, the same
test are conducted at supply frequency fs = 25 Hz. Theoretically, the fault indi-
cator should be 4 times higher than with fs = 50 Hz. Fig. 5.47 shows IPSD with
fs = 25 Hz compared to (4 IPSD) with fs = 50 Hz, for two different load levels.
With higher torque oscillation amplitudes, the two curves are approximately at the
same level which corroborates the theoretical assumption. At low values for Γc the
indicators differ more due to inherent torque oscillations and/or eccentricity in the
healthy case.

Next, the two PWD based indicators are tested in steady state at constant
supply frequency fs = 50 Hz. The obtained results with the considered fault
profiles are shown in Fig. 5.48. Due to slight differences in normalization, the
amplitudes do not correspond exactly to the previous off-line results. For IWD2, a
Fourier transform based extraction method is used instead of the Hilbert transform.
Both indicators show an approximately linear rise with respect to the amplitude
of the load torque oscillation. The indicator IWD2 seems more sensitive to the
increase of Γc than IWD1. A possible explanation is the more accurate analysis
with respect to the fault frequency in case of IWD2. Recall that IWD1 is based
on the total energy in the PWD in a given frequency interval, whereas IWD2 only
considers the energy of pulsating components at fault frequency. It can also be
noticed that IWD2 depends less on the average load level than IWD1.
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Figure 5.47: Comparison of fault indicator IPSD with fs = 25 and 50 Hz.
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Figure 5.50: Fault indicators IWD1 and IWD2 with load unbalance: data records
1-20 correspond to the healthy case, 21-40 to load unbalance with theoretical Γc =
0.06 Nm.

5.5.2 Load Unbalance - Steady State

Next, the on-line monitoring scheme is also tested with a load unbalance of theo-
retical amplitude Γc = 0.06 Nm. Results with IPSD and three average load levels
at fs = 50 Hz are shown in Fig. 5.49. The data records 1-20 represent the healthy
state whereas 21-40 are with load unbalance. The load unbalance leads to a clear
rise in the indicator. The indicators also depend on the average load level but a
simple threshold could however be used in this case for unbalance detection.

The results with the PWD based indicators IWD1 and IWD2 are shown in
Fig. 5.50. Again, the indicator are sensitive to the unbalance. Due to the nature of
the indicator IWD1, the relative fault sensitivity is higher with IWD2. Actually,
since IWD1 considers all the energy in a certain frequency range in the PWD,
it is more sensitive to noise and other phenomena. IWD2 however takes only
into account the oscillating energy in the sideband signals and is therefore more
accurate.
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5.5.3 Load Torque Oscillations - Transient State

For indicator analysis during transients, the speed profile displayed in Fig. 5.51 is
used in the following tests. During one speed cycle, the supply frequency fs varies
linearly from 20 Hz to 50 Hz during 20 data records and back to 20 Hz in the same
way. At the start and at the end of one cycle, fs is constant during 5 data records.
This speed cycle is repeated three times: first without load torque oscillations,
then with Γc = 0.11 Nm and Γc = 0.22 Nm. The lowest supply frequency is 20 Hz
because of the DC machine voltage drop. Below this value, the DC motor armature
current control is no more possible and therefore, the torque oscillations are not
correctly produced.

The tests with the first fault indicator IWD1’ gave the results displayed in
Fig. 5.52(a) for two constant average load levels corresponding to 10% and 70%
load. During the first speed cycle without any oscillating torque, the indicator
shows variations and is therefore still speed dependent with higher indicator values
at higher motor speed. When the first level of torque oscillation is applied from
data record 50 on, the indicator jumps to a higher value. During the second speed
cycle, the indicator value still depends on the speed but the relative variations
between fs = 20 Hz and fs = 50 Hz are much smaller. The same behavior can
be observed during the third speed cycle with a higher oscillating torque. The
indicator IWD1’ is therefore still speed dependent. A simple threshold cannot
clearly distinguish between the healthy case and Γc = 0.11 Nm (0.3% of nominal
torque). However, for a given speed or supply frequency, the fault indicator is
always higher in the presence of the torque oscillation. With stronger oscillations
(Γc = 0.22 Nm or 0.6% of nominal torque), the discrimination is possible for all
considered speeds.

The results obtained with the second indicator IWD2’ are shown in Fig. 5.52(b)
for the same two load levels. It can be noted that IWD2’ is less varying during
the first speed cycle compared to IWD1’. The behaviour during the following
cycles with torque oscillation shows higher indicator values at low speed whereas
the indicator is approximately constant above a certain minimal supply frequency
(about 30 Hz). It can further be observed that the relative variation of the mean
indicator value between the healthy state and Γc = 0.22 Nm is smaller than with
IWD1’ i.e. IWD1’ is more sensitive to variations of Γc. The opposite behavior
has been observed in steady state but this is probably due to the modifications for
normalization with respect to the varying fault frequency.

5.5.4 Load Unbalance - Transient State

The two fault indicators IWD1’ and IWD2’ are tested with a load unbalance of
theoretical amplitude Γc = 0.1 Nm. In this configuration, the DC motor is directly
connected to the resistor without the DC/DC converter i.e. the load torque is no
longer constant but proportional to speed during the transients. The chosen speed
profile is identical to the preceding cases. At full speed, the load is 10% of the
nominal load in these tests.

The obtained results with the two fault indicators are displayed in Fig. 5.53
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Figure 5.51: Considered speed profile: Supply frequency fs vs. data records and
corresponding torque oscillation amplitude Γc.

for the healthy drive and with a load unbalance. It can be noticed with the two
indicators that the healthy and faulty case can be distinguished at low speed and
full speed. However, at certain supply frequencies around 35 Hz, this is not clearly
possible. This can be related to the previously observed phenomena with unbalance
during transients. In this experimental setup, indicator values with load unbalance
are always close to the healthy case for a certain supply frequency range.

Nevertheless, the mean indicator value increased during one speed cycle by 28%
with IWD1’ and by 52% with IWD2’. This demonstrates that realistic mechanical
faults can be detected during transients using time-frequency methods.

5.6 Mechanical Fault Diagnosis

The last section in this chapter addresses shortly the problem of mechanical fault
diagnosis. When a mechanical fault is detected by a high indicator value, it can be
useful for a monitoring system to provide additional information about the origin of
the fault. In this work, the mechanical faults are assumed to have two effects on the
drive: load torque and speed oscillations and/or airgap eccentricity. Depending on
the nature of the fault, one of the effects may prevail. For example, load unbalance
or shaft misalignment should mainly produce load torque oscillations if bearing
clearances are small.

Since both phenomena lead to different stator current modulations, methods
capable of discriminating PM and AM can provide valuable information for fault
diagnosis. In the following, examples with the previously presented signal process-
ing methods are discussed.

5.6.1 Steady State

In steady state, the reference method for stator current based fault detection is
current spectrum analysis. It has been shown through theoretical developments
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Figure 5.52: Fault indicators IWD1’ and IWD2’ vs. data records during speed
transients with load torque oscillations.
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Figure 5.54: Complex representation of fault indicator IWD2 with load unbalance
and 40% dynamic eccentricity, 50% average load.

and experimental results that PM and AM cannot be distinguished using spectrum
analysis in this application. The reason are very small modulation indices.

However, it was shown that PM and AM have different signatures on the Wigner
Distribution through the phase shift between the upper and lower sideband. Recall
that a phase shift close to π characterizes PM whereas values close to 0 point to
AM. Since the fault indicator IWD2 provides this information, it can be suitable for
distinguishing different mechanical faults. Consider for example IWD2 with load
unbalance and dynamic eccentricity. Figure 5.54 shows the obtained indicator
values in the complex plane. It can be recognized that the healthy and faulty state
differ by the absolute indicator value. Dynamic eccentricity leads to indicator
values with a phase angle close to π/2 whereas load unbalance provokes phase
angles closer to π. The reason is that load unbalance creates torque oscillations
and therefore PM prevails, whereas dynamic eccentricity leads to AM and PM due
to the eccentric airgap and as well as oscillating torques. The nature of the two
mechanical failures can therefore be distinguished [Blö06c].

The second approach capable of providing this information in a more direct
way is signal parameter estimation. This method yields directly the PM and AM
modulation indices. The average indices are given in Table 5.29 for various faults
and three average load conditions. Every fault leads to a considerable rise of
the PM modulation index. With load unbalance and torque oscillations, the AM
modulation index shows only a slight rise and is always significantly smaller than
the PM index. Airgap eccentricity however causes the AM modulation index to
take values approximately equal to the PM index. Hence, both fault types can be
distinguished with the parameter estimation approach.

5.6.2 Transient State

During speed transients, the proposed parameter estimation approach can no longer
be used since stationary signals have been supposed. Thus, the only method capa-
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Table 5.29: Average estimated PM and AM modulation indices (×10−3) for some
cases of load torque oscillation, load unbalance and dynamic eccentricity, Nb = 64.

10% load 50% load 80% load
PM AM PM AM PM AM

healthy 1.63 1.36 1.87 1.23 1.41 1.15

0.03 Nm torque oscillation 2.77 1.74 3.49 1.29 2.55 1.49
0.11 Nm torque oscillation 4.50 2.57 6.46 1.62 4.60 2.31
0.22 Nm torque oscillation 7.16 4.27 10.68 2.03 7.92 3.60

0.04 Nm load unbalance 4.80 2.38 4.99 1.49 3.59 1.78
0.10 Nm load unbalance 4.34 2.51 5.44 1.62 3.74 2.07

40% dynamic eccentricity 4.30 4.79 3.19 3.00 3.04 3.18
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Figure 5.55: Complex representation of fault indicator IWD2’ during speed tran-
sients with load unbalance and 40% dynamic eccentricity, 50% average load.

ble of discriminating PM and AM during transients is the indicator IWD2’. The
latter is displayed in Fig. 5.55 for a motor startup with dynamic eccentricity and
load unbalance. In this case, a discrimination between AM and PM is possible due
to different phase angles. However, the results with dynamic eccentricity during
speed transients have shown that a univocal fault detection is not always possible.
Therefore, the presented results cannot be generalized.

5.7 Summary

This chapter presented experimental results for stator current based monitoring of
mechanical faults. Three fault types were introduced: load torque oscillations gen-
erated by control of the DC motor armature current, load unbalance and dynamic
eccentricity. The employed signal processing methods for stator current analysis
are spectral estimation and signal parameter estimation in steady state whereas
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instantaneous frequency estimation and the Pseudo Wigner Distribution are used
in steady state and during speed transients. In all cases, suitable fault indicators
were automatically extracted from the stator current signal only without using
other information.

The faulty stator current analysis allowed to corroborate several important
theoretical results from chapter 2:

• Load torque oscillations lead to phase modulations of the stator current.
This has been shown through instantaneous frequency analysis, the PWD
and parameter estimation.

• Dynamic eccentricity causes amplitude modulations of the stator current.
The PWD and signal parameter estimation provided this result.

• Torque measurements have shown that dynamic eccentricity leads to an in-
crease of oscillating torque at rotational frequency fr as predicted in 2.5.5.
Consequently, phase modulations were also found on the stator current with
dynamic eccentricity.

• Load unbalance causes also oscillating torques at frequency fr. This effect
was found to be predominant on the stator current in contrast to assumptions
by R. Obaid, T. Habetler et al. in [Oba03b] [Oba03c]. They suppose that load
unbalance mainly leads to increased dynamic airgap eccentricity. However,
experimental results in this chapter showed that load unbalance principally
causes phase modulations of the stator current.

During the study of torque oscillations, the oscillating torque amplitude Γc was
varied to test different fault severities. The proposed fault indicators showed in
general a linear behavior with respect to Γc and they were sensitive to very small
oscillations. Suitable indicator normalization reduced the indicator dependence on
speed and average load level. Therefore, these indicators proved to be appropriate
tools for fault detection. During speed transients, fault detection is more difficult
but nevertheless possible in most cases with the proposed indicators.

The tests with load unbalance revealed a non-linear indicator behavior with
respect to the degree of unbalance. The measured load torque confirmed that
the oscillating torque amplitude is not proportional to the degree of unbalance.
Moreover, the unbalance effect depends on the motor speed. Hence, these results
demonstrate the complexity and difficulty of accurate physical fault effect modeling.

The feasibility of on-line stator current based monitoring using time-frequency
methods was demonstrated through a DSP implementation of the PWD based
algorithms. Fault indicators are continuously calculated and allow an automatic
and permanent monitoring.

For the first time in condition monitoring, the capacity of some signal processing
methods to distinguish PM and AM has been used for diagnosis purposes. Signal
parameter estimation and the PWD show different signatures with the two mod-
ulations. Therefore, the predominance of torque oscillations or airgap eccentricity
can be detected.





Chapter 6

Conclusions and Suggestions for
Further Work

The literature survey on stator current analysis for mechanical fault detection and
diagnosis in electric drives revealed, on the one hand, a lack of adapted analytical
stator current models. On the other hand, the most common monitoring strategies
use stator current spectrum estimation which requires stationary signals. This
requirement is incompatible with variable speed drives where the stator current
frequency varies with respect to time.

The first part of this work concentrated on analytical stator current modeling
in presence of mechanical failures. Two consequences of mechanical faults were
considered: First, periodic load torque and speed oscillations and secondly airgap
eccentricity. Using the magnetomotive force and permeance wave approach, two
models accounting for the two fault effects were obtained. Both show modulations
of the fundamental supply frequency at fault characteristic frequency. However,
the modulation types are different: While load torque and speed oscillations lead
to stator current phase modulation, airgap eccentricity was shown to produce am-
plitude modulation. This important result influences the choice of adapted signal
processing methods. Moreover, the result signifies that fault diagnosis is possible
if the analysis method can distinguish amplitude from phase modulation.

In addition, the effects of airgap eccentricity on the motor output torque were
studied with the analytical approach. Airgap eccentricity was shown to increase
oscillating torque components at shaft rotational frequency. To the author’s knowl-
edge, the stator current models and the theoretical justifications of torque oscilla-
tions resulting from eccentricity have not been mentioned in literature before.

Following a discussion of suitable signal processing methods and their theoret-
ical signatures, tests were carried out on an experimental setup. The theoretical
results from the first part could be validated. Load torque oscillations produced
typical PM signatures on the stator current. The proposed indicators showed to
be very sensitive since even small load torque oscillation amplitudes (0.1% of nom-
inal torque) could be detected under any load condition. Tests with variable load
torque oscillation amplitude demonstrated that the indicators are proportional to
the fault severity. In steady state, the time-frequency methods performed similar
to the spectrum based indicator which is the method of reference. The application
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of time-frequency analysis during speed transients was also successfully tested. A
more realistic fault, load unbalance, produced similar effects as the load torque
oscillations. Detection is possible in steady state and during transients. Only
the fault severity was difficult to evaluate in this case due to nonlinear relations
between theoretical and measured torque oscillations with load unbalance.

Experimental study of dynamic eccentricity first confirmed the increase in oscil-
lating torques as predicted by theory. The measured stator current signals showed
AM and PM modulations at the same time which corroborates again the preceding
theoretical work. Two methods, parameter estimation and the Wigner Distribu-
tion, are capable of distinguishing small AM from PM. They revealed fault signa-
tures with dynamic eccentricity differing from those with load unbalance or torque
oscillations. This additional information allows a more accurate fault diagnosis
which is not possible using the classical spectrum based approach.

The practical feasibility of on-line monitoring by stator current time-frequency
analysis was demonstrated. The algorithms that have previously been tested off-
line only were then implemented on a low cost DSP. One stator current signal is
continuously processed and fault indicators are derived. Tests in steady state and
during speed transients with load unbalance and torque oscillations successfully
confirmed the off-line results.

It can be concluded that this work provides an original contribution to condition
monitoring of mechanical failures in variable speed drives. Significant aspects are
the developed analytical stator current models, choice of adequate signal processing
methods and their successful application.

Future work could further generalize the parameter estimation approach. It
proved to be effective for detection and diagnosis in steady state but the models
and estimators have not been adapted to speed transients. Since the generalization
would necessarily lead to more model parameters, fast and accurate optimization
becomes more important. It would be interesting to test other evolutionary opti-
mization algorithms such as particle swarm optimization or differential evolution
and to compare them to the methods discussed in this work. Moreover, a DSP
implementation of these methods would demonstrate their practical feasibility.

Another aspect is the chosen frequency range for stator current analysis. Since
the fundamental is the strongest component in the current signal, this work fo-
cussed on the low frequency range around the supply frequency. However, other
strong components in higher frequency range such as rotor slot harmonics or har-
monics from pulse width modulation should show similar fault signatures and could
therefore be used for monitoring.

Since the proposed methods were only tested on two realistic faults, more ex-
perimental verifications would be of great interest. The study of other realistic me-
chanical failures such as shaft misalignment, gearbox faults, bearing faults, different
degrees of static and dynamic eccentricity would provide valuable information for
generalized mechanical fault monitoring.

In this work, the electric drive has been considered in open-loop conditions
without current or speed control. However, most variable speed drives in practical
applications operate with speed and current controllers. This has to be considered
in a practical monitoring system. Depending on the bandwidth of the controllers,
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the stator current modulations will be attenuated. However, other quantities such
as voltages could contain the fault relevant information in these cases. More thor-
ough studies are necessary to incorporate condition monitoring in closed-loop drive
systems.





Appendix A

Addition of Coil Voltages for
Phase and Amplitude Modulation
of the Airgap Flux Density

A.1 Addition of PM Coil Voltages

In order to obtain the total induced voltage in a winding phase, the phase modu-
lated induced coil voltages must be added. Consider for example two series con-
nected adjacent coils spaced by an angle θd. The sum x(t) of the two induced
voltages can be written in a general form according to (2.68):

x(t) = Vs cos
(
ωst− ϕΦ,s

)
+ Vr cos

(
ωst+ β′ cos (ωct)− ϕΦ,r

)
+ Vs cos

(
ωst− ϕΦ,s − θd

)
+ Vr cos

(
ωst+ β′ cos (ωct)− ϕΦ,r − θd

) (A.1)

Using simply cosα + cos β = 2 cos α+β
2

cos α−β
2

, the following expression is ob-
tained:

x(t) = 2Vs cos

(
θd

2

)
cos

(
ωst− ϕΦ,s −

θd

2

)
+ 2Vr cos

(
θd

2

)
cos

(
ωst+ β′ cos (ωct)− ϕΦ,r −

θd

2

) (A.2)

This relation demonstrates that the sum of two PM signals is another PM signal
with a different initial phase angle. The sinusoidal phase modulation is preserved.
Therefore, the total induced voltage in phase winding is also a PM signal with the
same modulation term.

A.2 Addition of AM Coil Voltages

Consider two series connected adjacent coils spaced by an angle θd. The total in-
duced voltage is the sum of two amplitude modulated signals according to equation
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(2.98). Without loss of generality, the sum x(t) can be rewritten:

x(t) = [1 + a1 cosωrt] cos Ωit+ [a2 sinωrt] sin Ωit

+ [1 + a1 cos (ωrt− θd)] cos (Ωit−miθd) + [a2 sin (ωrt− θd)] sin (Ωit−miθd)

(A.3)

After multiplication of the sine and cosine terms using:

cosα cos β =
1

2
cos (α+ β) +

1

2
cos (α− β) (A.4)

sinα sin β =
1

2
cos (α− β)− 1

2
cos (α+ β) (A.5)

the following expression is obtained:

x(t) = cos Ωit+ cos (Ωit−miθd)

+
1

2
a1 cos (Ωi + ωr) t+

1

2
a1 cos (Ωi − ωr) t

+
1

2
a1 cos (Ωit+ ωrt−miθd − θd) +

1

2
a1 cos (Ωit− ωrt−miθd + θd)

+
1

2
a2 cos (Ωi − ωr) t−

1

2
a2 cos (Ωi + ωr) t

+
1

2
a2 cos (Ωit− ωrt−miθd + θd)−

1

2
a2 cos (Ωit+ ωrt−miθd − θd)

(A.6)

The terms with equal pulsation are added using cosα+cos β = 2 cos α+β
2

cos α−β
2

:

x(t) = 2 cos

(
Ωit−mi

θd

2

)
cos

(
mi
θd

2

)
+ (a1 − a2) cos

(
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2
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2

)
cos (mi − 1)

θd

2

(A.7)

Then, cos (α+ β) = cosα cos β − sinα sin β is used to isolate the carrier fre-
quency in the modulation terms:

x(t) = 2 cos
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2

)
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2
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(A.8)
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Rewriting this expression using cosα− cos β = −2 sin α+β
2

sin α−β
2

:

x(t) = cos

(
Ωit−mi

θd

2

)
{

2 cos

(
mi
θd

2
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+ cos

(
ωrt−

θd

2

) [
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2
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2
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(A.9)

This expression shows that the sum of the two considered AM signals is another
AM signal with the same structure: the sum of a double-sideband AM signal with
residual carrier and a double-sideband suppressed-carrier AM signal. As in the
original signals, the two carrier components and the two modulating components
are in quadrature.

It has been demonstrated that the suppressed-carrier component in the original
signal is in general of smaller amplitude than the component with residual carrier
i.e. a1 > a2. This is also true for the signal x(t). Consider for simplification a
machine with mi = p = 2: The angle of one phase belt in a single layer winding
is 2π/12 = π/6. The angle θd between adjacent coils is therefore smaller than
π/6. Consequently, the term cos θd cos θd

2
will also be smaller than sin θd sin θd

2
.

Therefore, the first term in square brackets from equation (A.9) will always be
greater than the second term.





Appendix B

Elements of the Fisher
information matrix

B.1 Monocomponent PM signal

The following equations specify the matrix elements in (4.69).

f11 =
N

σ2

f22 =
θ2
1

σ2
N
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n sin (2πθ4n+ θ5)

f25 =
θ2
1
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2
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Appendix C

Description of the Experimental
Setup

This appendix provides more details about the experimental setup and particularly
on the DSP implementation.

C.1 General Description of the Test Rig

A schematic representation of the experimental setup used for off-line analysis is
displayed in Fig. 5.1. A photo of the setup is shown in Fig. C.1 where the supply
rig and the machines can be distinguished.

The motor under test is a standard industrial induction motor whose charac-
teristics are given in Table C.1. The DC motor acts as a load and it is coupled to
the induction machine via a rotating torque transducer. The DC motor nameplate
data can also be found in Table C.1. It should be noted that the rated power of
the DC motor is inferior to the induction motor. Consequently, the experimental
tests were carried out at a maximum of 80% load. Several induction motors of the
same type but with different faults are available in addition to a healthy machine:

• Motors with 1, 2 or 3 broken rotor bars

• Motor with rewound stator for simulation of stator short-circuits

• Motor with 40% dynamic eccentricity

• Motor with damaged bearings

The two machines and the coupling can be observed on Fig. C.2.
The induction machine is supplied by a variable speed drive (Leroy Somer

UMV4301) operating in open loop condition without current or speed control.
The chosen switching frequency is 3 kHz. The DC motor is connected to a resistor
through a DC/DC converter. The latter is obtained by using two legs of a Semi-
kron inverter. A photo of the inverter together with the current control circuit is
displayed in Fig. C.3.

The following physical quantities are measured:
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Figure C.1: Photo of the test rig

Table C.1: Characteristics of induction and DC motor

Induction motor LS132S T
Rated power 5.5 kW
Rated speed 1445 rpm

Voltage 400 V
Frequency 50 Hz
Connection Y

Current 11.2 A
cosϕ 0.8

Number of rotor bars 28

DC motor MS1321 M33
Rated power 3.9 kW
Rated speed 1450 rpm

Voltage 260 V
Current 17.6 A

Figure C.2: Photo of induction motor and DC motor
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Figure C.3: DC/DC converter for DC motor current control

• 3 line currents

• 3 inverter output voltages

• torque

• speed

These signals are acquired through a data acquisition board (NI4472) at 25.6 kHz
with 24 bit resolution. The board has 8 channels with a separate AD-converter
each. Anti-aliasing filters are also included. The following signal processing is done
off-line using Matlab software and the graphical user interface AnsiSud (Analyse
de signaux pour la surveillance et le diagnostic).

The three studied fault types, load torque oscillations, mechanical load unbal-
ance and airgap eccentricity, have already been presented in 5.1.

C.2 DSP Implementation

Two different detection algorithms based on stator current time-frequency analysis
have been implemented on a DSP. The DSP is a low-cost Analog Devices ADSP-
21161 (21161N EZ-Kit lite), mainly designed for audio applications. The inputs
include anti-aliasing filters, followed by 24-bit AD-converters with a minimum sam-
pling rate of 48 kHz. As the fault signatures appear around the fundamental supply
frequency of 50 Hz, a lower sampling rate would be advantageous but cannot be
realized with this hardware. Therefore, a preprocessing stage with filtering and
downsampling is implemented numerically before the calculation of the WD.

C.2.1 Downsampling

The stator current is sampled at 48 kHz. However, relevant fault frequencies with
the two pole pair machine are at a maximum frequency of 1.5 times the supply
frequency fs which leads approximately to 75 Hz for the considered machine in
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Figure C.4: Photo of DSP board with ADSP-21161

i[n]
H(f) ↓ 2 . . . Hi(f) j

ia[n]

8×

Delay

Figure C.5: Preprocessing of stator current signal: lowpass filter H(f), decima-
tion and Hilbert filter Hi(f)

nominal conditions. As a consequence, a real-time downsampling stage is imple-
mented to decrease the sampling frequency by a factor 28 = 256 i.e. the new
sampling frequency is 187.5 Hz. The implementation of a single lowpass filter with
normalized cut-off frequency 1/(2 · 256) followed by a 256-fold decimator (takes
one sample out of 256) would require a high filter order and a significant amount
of memory for storage. It is more efficient to implement a scheme as depicted in
Fig. C.5 with 8 decimation stages in cascade, each including the same filter H(f)
with a normalized cut-off frequency 0.25 followed by a 2-fold decimator. Main
benefits are a low global order, small time delay and computational cost.

More precisely, the implemented lowpass filter H(f) is an elliptic IIR filter of
order 14. Its normalized cut-off frequency at −3 dB is 0.227 so that after the last
downsampling stage, frequencies between 0 and 85.03 Hz can be analyzed without
significant attenuation.

C.2.2 Hilbert Filtering

The Wigner Distribution should be calculated on the complex, analytical current
signal in order to avoid interferences [Fla99]. The analytical current signal ia[n] is
obtained from the real current signal i[n] by means of the Hilbert transform H{.}
according to:

ia[n] = i[n] + jH {i[n]} (C.1)
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The Hilbert transform is realized using a Hilbert filter with the following frequency
response:

Hi(f) =

{
−j for 0 ≤ f ≤ 1

2

j for −1
2
≤ f < 0

(C.2)

Its impulse response hi[n] is:

hi[n] =
2 sin2(πn/2)

πn
=

{
0 if n is even
2

πn
if n is odd

(C.3)

In practice, the Hilbert filter is implemented as a finite impulse response filter of
order Ni=257. In order to respect causality, the symmetric impulse response must
be shifted by (Ni − 1)/2. The filter output is therefore delayed by 128 samples
corresponding to 0.688 s. The analytical signal ia[n] is obtained by multiplication
of the filter output with j and addition of the delayed real signal i[n] (see Fig. C.5).

C.2.3 Discrete Implementation of the WD

The discrete WD DWDx[n,m] of a signal x[n] of length N can be calculated ac-
cording to the following formula [Fla99]:

DWDx[n,m] = 2
N−1∑

k=−(N−1)

p[k]x[n+ k]x∗[n− k]e−j4πmk/N (C.4)

where p[k] is a window function. This expression can be efficiently implemented
using an FFT algorithm (see [Aug96] for a sample algorithm). In this work, the
DWD is calculated on data records of length N = 512. The window function p[k]
is a 127 point Hamming window.

The result of the calculation would be a (512×512) matrix requiring a consid-
erable amount of memory for storage. However, the DWD can be calculated for
each time bin n independently and the fault indicator can be directly derived for
this time bin. This offers the advantage that no storage of the complete DWD is
necessary, only the fault indicator is retained.





Bibliography

[Abr64] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, Dover Publications, New
York, nineth ed., 1964.

[AK84] F. M. Abdel-Kader, “The Characteristic Performance of Induction Motors
with Eccentricity”, Electric Machines and Power Systems, vol. 9, pp. 61–
70, 1984.

[Alb87] P. F. Albrecht, J. C. Appiairius, E. P. Cornell, D. W. Houghtaling, R. M.
McCoy, E. L. Owen, D. K. Sharma,“Assessment of the reliability of motors
in utility applications - Part 1”, IEEE Transactions on Energy Conversion,
vol. EC-2, no. 3, pp. 396–406, Sep. 1987.

[Alg95] P. L. Alger, Induction Machines - Their Behavior and Uses, Gordon and
Breach, Basel, Switzerland, 2nd ed., 1995.

[Ali06] A. A. Ali, Modélisation des machines synchrones à aimants permanents
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chines tournantes, Masson, Paris, 1994.
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