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abstract

Cette thèse s’intéresse à la résolution du problème classique de décodage d’un

mélange linéaire entaché d’un bruit additif gaussien. A partir d’une observation

bruitée: y = Hx+b, d’un signal x ∈ {±1}n mélangé linéairement par une matrice

H connue, b étant un vecteur de bruit, on cherche le vecteur x minimisant la dis-

tance Euclidienne entre y et le vecteur Hx. Ce problème est réputé NP-complet.

Il intervient dans un grand nombre de systèmes de télécommunications (CDMA,

MIMO, MC-CDMA, etc.). Nous proposons dans cette thèse un algorithme de

résolution quasi optimal de ce problème et bien adapté à une implémentation

matérielle.

Notre démarche s’appuie sur l’utilisation des méthodes classiques de recherche

opérationnelle : trouver des points initiaux répartis sur l’espace des solutions

possibles et potentiellement proches de la solution optimale (diversification) et

effectuer une recherche locale au voisinage des ces points (intensification). Dans

ce travail, la diversification est basée sur une approche géométrique utilisant

les axes dominants de concentration du bruit (vecteurs singuliers associés aux

valeurs singulires minimales de la matrice H). Les performances en terme de

taux d’erreur par bit de la méthode proposée sont proches de l’optimum tout en

gardant une complexité constante et un degré de parallélisme important (même

pour des matrices H de taille très importantes, de l’ordre de 100). Nous avons

étendu cette méthode à la constellation MAQ-16 d’une part, et à la génération

d’une décision souple d’autre part.

Nous avons étudié l’algorithme proposé du point de vue implémentation matérielle.

La sensibilité à l’utilisation de la précision finie et des normes sous optimales est

décrite. Une étude de complexité de l’algorithme est présentée ainsi que les effets

d’une mauvaise estimation de la matrice H.

L’algorithme proposé présente d’une part une nouvelle alternative pour le

11



décodage quasi optimal du mélange linéaire bruité et d’autre part un impor-

tant degré de parallélisme permettant une implémentation matérielle efficace et

rapide.
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Notation

Through out this report, small letters are used to denote scaler, complex or real

variables. In order to denote real, complex or integer vectors we use small bold-

face letters and for real or complex matrices we use capital boldface letters. We

use the notation presented in following table throughout this thesis:

Symbol Description

ℜ(.) real part of complex variable or matrix

ℑ(.) imaginary part of complex variable or matrix

In identity matrix of size n

A−1 inverse of matrix A

A+ pseudo inverse of matrix A

AT transpose of matrix A

Ai,j element (i, j) of matrix A

A(i, :) ith row of matrix A

A(:, i) ith column of matrix A

tr(A) trace of matrix A

‖.‖22 Euclidean norm

‖.‖21 Manhattan norm

‖.‖2∞ Maximum norm

⌈a⌉ smallest integer, greater or equal than a ∈ R

⌊a⌋ largest integer, lower or equal than a ∈ R
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Abbreviations

The following list summarizes the acronyms used in this thesis

APP A Posteriori Probability

AWGN Additive White Gaussian Noise

BBD Branch and Bound Detector

BCH Bose-Chaudhuri-Hocquenghem codes

BER Bit Error Rate

BPSK Binary Phase Shift Keying

BLAST Bell Laboratories Layered Space Time

CBIS Canonical Basis Intersection and Selection

CDMA Code division multiple access

CSI Channel State Information

DS-CDMA Direct sequence code division multiple access

FDMA Frequency Division Multiple Access

FIR Finite Impulse Response

GISD Geometrical Intersection and Selection Detector

GALS Globally Asynchronous and Locally Synchronous

HIS Hypercube Intersection and Selection

i.i.d. independent identically distributed

ISI Intersymbol Interference

LOS Line-Of-Sight

MAI Multiple-Access Interference

MC-CDMA Multicarrier Code Division Multiple Access

MIMO Multiple-Input Multiple-Output
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ML Maximum Likelihood

MMSE Minimum Mean Squares Error

MRC Maximum Ratio Combining

PIC Parallel Interference Cancellation

PIS Plane Intersection and Selection

OFDM Orthogonal Frequency Division Multiplex

QAM Quadratic Amplitude Modulation

QPSK Quaternary Phase Shift Keying

SD Sphere Decoder

SDP Semi-Definite Programming

SDR Semi-Definite Relaxation

SIC Successive Interference Cancellation

SNR Signal-to-Noise Ratio

STBC Space Time Block coding

STTC Space Time Trellis Coding

SVD Singular Value Decomposition

TDMA Time-Division Multiple Access

V-BLAST Vertical Bell Labs layered space-time (detection algorithm)

VHDL Very High Speed Integrated Circuit Hardware Description

ZF Zero-forcing
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Chapter 1

Introduction

The use of radio waves to transmit information from one point to another was

discovered over a century ago. While commercial and military radio communi-

cation systems have been deployed for many decades,the last decade has seen an

unprecedented surge in demand for personal wireless devices. Extensive penetra-

tion of the end user market is a direct result of advances in circuit design and

chip manufacturing technologies that have enabled a complete wireless transmit-

ter and receiver to be packaged in a pocket-sized device.

To achieve improved performance at high data rates, we require the implemen-

tation of highly sophisticated detection algorithm. However, existing detection

methods involving in general matrix multiplications and inversions which increase

significantly the computation complexity of the receiver. Moreover, many opti-

mum and suboptimum detection techniques have been published but unfortu-

nately most of these methods have inherent structure disadvantages which make

them difficult to implement, or provide very limited performance improvement in

a ”real world” communications.

1.1 Purpose and Requirements of Research

The problem of finding the least-squares solution to a system of linear equations

y = Hx + w, where y is the received vector, H is a channel matrix, x is the

transmitted vector of data symbols chosen from a finite set, and w is a noise

vector, arises in many communication contexts: the equalization of intersymbol

interference (ISI) channels, the cancellation of multiple-access interference (MAI)

in code-division multiple-access (CDMA) systems, the decoding of multiple-input

17
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multiple-output (MIMO) systems in fading environments, the decoding of multi-

carrier code-division multiple-access (MC-CDMA) systems, to name is more. The

objective at the receiver is to detect the most likely vector x that was transmitted

based on knowledge of y, H, and the statistics of w.

The maximum-likelihood (ML) detector is well known to exhibit better bit-

error-rate (BER) performance than many other existing detectors. Unfortunately,

ML detection (MLD) is a non-deterministic polynomial-time hard (NP-hard)

problem, for which there is no known algorithm that can find the optimal solution

with polynomial-time complexity (in the dimension of the search space).

The purpose of our research is to develop a sophisticated suboptimal ML

detector satisfying the following three requirements:

• A near-maximum likelihood performance.

• A polynomial computational complexity.

• An inherent parallel structure for suitable hardware implementation.

To this end we adopt an approach based on ”real time” operational research

methods. In fact, the developed method is comprised of the following two com-

plementary techniques:

• Intensification: local search method is used to find good solution to the

receiver detection problem. Throughout this work, we use the term local

search as a synonym of neighbourhood search. This technique has a main

weaknesses: it may sometimes be trapped in a very poor local optimum. In

order to overcome this difficulty, an efficient diversification technique has

been required.

• Diversification: the idea is to create a reduced subset of good solutions in

order to reduce risk that the intensification step gives local minimas for all

starting solutions. The main principe of this step is: ”dont put all you eggs

in one basket”.

1.2 Thesis Outline

This section outlines the chapters of this thesis. It should be noted that the

focus of this thesis is not just the introduction of new strategy to solve the ML
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detection problem but also the analysis of methods which have been described in

the literature.

• Chapter 2 : This chapter provides a common framework for the rest of the

thesis. The real model for the linear wireless channel is presented. A few

motivating examples of systems which have previously been studied in the

literature and which may be modeled as linear channels are given. Also,

formal definitions of the concepts of polynomial and exponential complexity

are given.

• Chapter 3 : Based on the given channel model in chapter 2, the mathemat-

ical formulation of the ML detector is derived. Also, this chapter provides

a review of most popular detection methods and discuss their performance

and computational complexity.

• Chapter 4 : Develop a new suboptimal detection algorithm based on an in-

tensification/diversification strategy. The intensification algorithm (greedy

search method) is described and its convergence properties are analyzed.

Moreover, different diversification methods are investigated. The simula-

tions presented in this chapter show that the proposed technique provides

a good approximation to the ML detector with a computational complexity

of O(n3). Finally, we investigate the impact on the performance due to the

channel estimation errors.

• Chapter 5 : An extended of the proposed detection technique to 16-QAM

constellation and a new soft-output detector based on the proposed detec-

tion technique (given in this work) are derived. Based on the recently work

in [SG01], we present a low complex method to reduce the pre-processing

complexity.

• Chapter 6 : An implementation on a FPGAs/DSPs multiprocessor moth-

erboard of the proposed technique is discussed. This discussion is mainly

focussed on using different norm that can reduce the computation complex-

ity and the study of proposed method parameters.

• Chapter 7 : This chapter presents the conclusions and future work that can

be drawn from the research presented in this thesis.



Chapter 2

Background

Wireless devices such as mobile phones have been gaining more and more popular-

ity mainly because of their mobility. Though voice was the only service available

on early phones, text service has now been added, and more recently multime-

dia services, such as pictures and videos have started to emerge. These services

are not widespread, but the demand for them is increasing. At the same time

wireless local area networks still have to compete with their wireline counterparts

mainly because of their high data rates. Wireless local area networks are attrac-

tive for their mobility, but the high data rates available on the wireline network

still seem to be unreachable in wireless networks. A requirement for high data

rates directly imposes a wider bandwidth requirement which is not feasible be-

cause of the limited radio spectrum. Nevertheless, digital wireless systems are

slowly replacing ordinary analog ones. Examples include the new standards for

radio and television broadcast, the digital audio broadcasting and digital video

broadcasting.

The increasing adoption of multimedia and demand for mobility in computer

networks have resulted in a huge wireless research effort in recent years. Given the

limited radio spectrum and unfriendly propagation conditions, designing reliable

high data rate wireless networks requires solving many problems. The maximum

capacity of a radio channel with a given bandwidth is limited by the well known

Shannon [Sha48] formula. The Shannon limit gives the maximum limit on the

capacity of a channel but does not say anything about the way to achieve that

limit. Various techniques have been proposed to counter the problem of prop-

agation conditions, and achieved data rates are now very close to the Shannon

limit. Data transmission at rates higher than the Shannon limit have never been

20
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thought possible until very recently.

This chapter serves the purpose of introducing some central elements of this

work, i.e. the linear wireless channel model and the mathematical formulation of

the corresponding received vector. The definitions given in this chapter will play

a fundamental role in the analysis of the existing detection algorithms in Chapter

2. Additionally, the concept of algorithm complexity will be introduced.

2.1 Wireless channels

The wireless channel in mobile radio poses a great challenge as a medium for

reliable high speed communications. When a radio signal is transmitted through

a wireless channel, the wave propagates through a physical medium and interacts

with physical objects and structures, such as buildings, hills, trees, moving vehi-

cles, etc [Rap96]. The propagation of radio waves through such an environment

is a complicated process that involves diffraction, refraction, and multiple reflec-

tions. Also, the speed of the mobile impacts how rapidly the received signal level

varies as the mobile terminal moves in space. Modeling all these phenomenon

effectively has been one of the most challenging tasks related to wireless sys-

tem design. Typically it is necessary to use statistical models that reasonably

approximate the environment, based on measurements made in the field. A reli-

able communication system tries to overcome or take advantage of these channel

perturbations.

A typical mobile radio communication scenario in an urban area usually in-

volves an elevated fixed base-station antenna (or multiple antennas), a mobile

handest, a line-of-sight (LOS) propagation path followed by many reflected paths

due to the presence of natural and man-made objects between the mobile and

the base station. The figure 2.1 illustrates such an environment. The different

propagation paths (LOS as well as reflected paths) change with the movement of

the mobile unit or the movement of its surroundings [Rap96].

Radio propagation models usually focus on predicting the average signal

strength based upon the separation between the transmitter and the receiver,

and also the rapid fluctuations in the instantaneous signal level that may be

observed over short distances. The variation of the average signal strength over

large distances (typically several hundreds of meters) is called large scale path loss.

The rapid fluctuations over short travel distances (typically a few wavelengths)
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Figure 2.1: The wireless propagation environment.

is called small scale fading.

2.1.1 Large scale path loss

Both theoretical analysis and experimental measurements indicate that the av-

erage large scale path loss (PL(d)) or decrease in signal strength at the receiver

is proportional to some power of the distance between the transmitter and the

receiver

PL(d) ∝= (
d

d0

)a (2.1)

or

PL(d)[dB] = P̄L(d0)[dB] + 10 · a · log(d/d0) d ≥ d0 (2.2)

where d is the separation between the transmitter and receiver, d0 is a reference

distance which is determined from measurements close to the transmitter, and a

is the path loss exponent. The path loss exponent determines the rate at which

the path loss increases with the separation d, and its value depends on the specific

propagation environment.

The path loss model stated above does not consider the fact that the dynamics

of the wireless environment may be quite different at two different locations with

the same transmitter-receiver separation. In order to predict the instantaneous

signal level, the following model is widely used: the path loss PL(d) at a location
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is randomly distributed around the average value:

PL(d)[dB] = P̄L(d0)[dB] + 10 · a · log(d/d0) + X̃σ, d ≥ d0 (2.3)

where X̃ is a zero-mean Gaussian distributed random variable with standard

deviation σ. This effect is known as log-normal shadowing.

2.1.2 Small scale fading

Small-scale fading refers to the rapid variations in the amplitude of the received

signal, in a wireless environment, over short distances or time intervals, such that

the effect of large-scale path loss may be ignored. There are a number of physical

factors causing these rapid fluctuations [Rap96]:

• Multipath propagation: Due to the presence of a number of reflectors

and scatterers between the transmitter and the receiver, in most instances,

there may exist more than one path between the transmitter and receiver.

These paths may add up either constructively or destructively due to the

randomly time varying delays, phases, and attenuation of the various paths.

So the amplitude of the composite received signal consisting of various path

components may vary over time and give rise to the phenomenon of fading.

The parameter of interest when dealing with multiple paths is the delay

spread. The maximum delay spread is defined as the time delay during

which the multipath energy falls to a pre-specified level below the maximum.

• Doppler spread: The relative motion between the base station and mo-

bile as well as the movements of the surrounding objects results in random

frequency modulation due to different Doppler shifts of each multipath com-

ponent. The Doppler shift will be positive or negative depending on the

direction of relative motion between the mobile and the base station. The

parameter of interest here is the Doppler spread or the spectral broadening

caused by this phenomenon. Again, it is defined as the range of frequencies

over which the received Doppler spectrum is non-zero or above a certain

threshold.

Depending upon the relationship between the signal parameters (bandwidth, sym-

bol period) and the channel parameters (delay spread and Doppler spread), dif-

ferent transmitted signals will undergo different types of small scale fading in
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different environments.

2.1.2.1 Flat fading and frequency selective fading

If the mobile radio channel has a constant gain and linear phase response over

a bandwidth which is greater than the signal bandwidth, the received signal

undergoes at fading and in the opposite case it is said to undergo frequency

selective fading [Rap96].

In flat fading, the delay spread is much less than the symbol period and hence

the spectral characteristics of the transmitted signal are preserved at the re-

ceiver. However the strength of the received signal varies with time. In frequency

selective fading, the received signal includes multiple copies of the transmitted

waveforms, attenuated and delayed in time, and hence the received signal is dis-

torted. Modeling frequency selective fading is more difficult as each multipath

signal should be modeled and the channel should be modeled as a linear filter. A

typical model is the Rayleigh fading model which considers the channel impulse

response to be made up of a number of delta functions which independently fade

and have sufficient time delay between them to induce frequency selective fading.

2.1.2.2 Fast and slow fading

Depending upon the relative rate of change of the transmitted signal and the

channel characteristics, a channel may be fast fading or slow fading [Rap96]. In a

fast fading channel the channel impulse response varies rapidly within the symbol

duration, that is, the Doppler spread is large relative to the symbol bandwidth.

In slow fading, the channel may be assumed to be static over several symbol

periods.

2.2 Diversity

The basic idea in diversity techniques is to use several independently fading chan-

nels to transmit the data. Then the receiver would pick up several independent

replicas of the same signal. The probability that all these channels fade simulta-

neously is very low. In other words, there is higher probability that at least one

high quality copy of the signal is present at the receiver. In this way, diversity

reduces the bit error rate substantially by preventing most of the error bursts

that usually happen in deep fades.
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Figure 2.2: Approximate behaviour of a diversity system.

Without diversity, the probability of error Pe, decreases only as SNR(Eb/N0)
−1

but if we have D independent channels, the probability of all of them failing would

be (Pe)
D. Figure 2.2 shows the approximate behaviour of a diversity system. In

this case D is called the diversity order of the system and it decreases when

the channels are correlated or suboptimal detection methods are used. Several

different methods can be used to achieve diversity.

One way is to employ frequency diversity. In this way several copies of the

signal will be sent via different uncorrelated channels. In other words, the sep-

aration between these channels should be higher than coherence bandwidth to

ensure independent fading. Another way is to use time diversity and send the

signal several times over different time frames. Separation between these time

frames also has to be long enough to make sure that they fade independently.

These methods waste the bandwidth and energy because of the repetitive trans-

missions. Another more commonly used method is space diversity that employs

multiple antennas. Different antennas can obtain independent fading if they have

different polarizations or directionality, or if they are far enough spatially. The re-

quired separation can be determined by spatial correlation function and is usually

a few wavelengths. The extra antennas can be either in the receiver or the trans-

mitter. The advantage of antenna diversity is gaining extra quality or capacity

without using extra spectrum.
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Figure 2.3: The received vector model.

2.3 Linear Channel Model

In this thesis, we focus on discrete-time baseband channel models, which ab-

stract the channel impairments and hide the specific implementational details

of the digital communication system. In doing so, we can talk about different

digital communication systems with different kinds of channel interference in one

common signal space framework. Let us now describe the channel model that

we use in this thesis. The N × 1 vector x̃ contains the data to be transported

over the channel, and is chosen from a finite equiprobable set Ã. Depending

on the underlying communication system, the components of x̃ may correspond

either to distinct time instants, distinct carrier frequencies, distinct physical lo-

cations, etc. The channel interference is modeled as linear interference, which

is represented by multiplication of x̃ with a M × N channel matrix H̃. With

channel noise being composed of the superposition of many independent actions,

the central limit theorem suggests that we can model the noise as a zero-mean,

complex-valued, additive white Gaussian noise (AWGN) vector w̃ with circularly

symmetric components of variance N0 per dimension. The M × 1 vector ỹ that

is obtained at the receiver, as illustrated in figure 2.3, is thus

ỹ = H̃x̃ + w̃ (2.4)

In this thesis, we are primarily concerned with detection at the receiver of the

transmit vector x̃ based on knowledge of ỹ, H̃, and the statistics of w̃. The pa-

rameters of H̃ can be learned at the receiver via techniques collectively known as

training, in which H̃ is estimated by sending vectors jointly known to the trans-

mitter and receiver across the channel. If the channel changes with time, then the

estimate of H̃ can be updated using the detection decisions. Sometimes it is also

useful to periodically perform training in case tracking becomes unsuccessful. We
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assume in most of the thesis that H̃ and the statistics of w̃ are explicitly known

at the receiver.

2.3.1 Probability distribution of w̃

A complex random vector w̃ is said to be Gaussian if the real random vector

w =

[

ℜ(w̃)

ℑ(w̃)

]

is Gaussian, where ℜ(w̃) and ℑ(w̃) are the real and imaginary parts of w̃, re-

spectively.

To determine the distribution of vector w, its expectation and covariance

matrix must be specified. Let A† denote the conjugate transpose matrix of A,

and ε[.] denote the expected value. If the covariance matrix of w has the form

ε[(w− ε[w])(w− ε[w])†] =
1

2

[

ℜ(Q) −ℑ(Q)

ℑ(Q) ℜ(Q)

]

where Q ∈ C
M×M is a Hermitian non-negative definite matrix, then w̃ is said to

be circularly symmetric. In this case, the covariance matrix of w̃ is given by Q.

Since each element of w is independent of the others, then its covariance

matrix has the form:

Qw = I2M ·N0

where I2M ∈ R
2M×2M is the identity matrix; in consequence, the noise in an

interference channel model defined above is circularly symmetric. Its mean value

is the same as that of w, and its covariance matrix is given by

Qw̃ = IM · 2N0

2.3.2 Probability distribution of h̃ij

The probability density function of a random complex variable can be specified

as the joint density function of its real and imaginary parts. In the case of the

elements of H̃, h̃ij, 1 ≤ i ≤ M , 1 ≤ j ≤ N , both its real and imaginary parts

are independent Gaussian random variables of zero mean and variance 0.5 per

dimension. Let hR = ℜ(h̃ij) and hI = ℑ(h̃ij). The probability density function
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of h̃ij is then given by

p(h̃ij) = p(hR) · p(hI)

=
exp(−h2

R)√
π

· exp(−h2
I)√

π

=
exp(−|h̃ij|2)

π

Each element ỹ[i], i = 1, 2, ....,M of the received vector ỹ is a different linear

combination of the transmitted vector x̃ plus noise. The coefficients of the linear

combinations are determined by the rows of H̃.

2.3.3 Equivalent Real-Valued Model

For complex-valued channel models it will turn out to be useful to work with

an equivalent real-valued transmission model. Taking the complex-valued model

(4.20) by separating real and imaginary parts we can equivalently write [Tel95].

[

ℜ(ỹ)

ℑ(ỹ)

]

=

[

ℜ(H̃) −ℑH̃

ℑ(H̃) ℜ(H̃)

][

ℜ(x̃)

ℑ(x̃)

]

+

[

ℜ(w̃)

ℑ(w̃)

]

(2.5)

which gives an equivalent n = 2N -dimensional real model of the form

y = Hx + w (2.6)

with the obvious definitions of y, etc. Some useful properties of this mapping

from complex to real matrices and vectors are collected in Appendix A. One

reason to use this description is that, if the components of x are taken from some

set of evenly spaced points on the real line, the noiseless received signal Hx from

(2.6) can be interpreted as points in a lattice described by the basis x, and the

detection problem to be considered as an instance of the lattice decoding problem.

2.4 Signal Constellations

In this work, the signal sets that we consider for the components of the symbols to

be transmitted will be called ã, and the corresponding real-valued vector a. The

channel input vector is denoted as x̃, and x̃ = ã if no transmitter processing is

performed. Traditional communication systems use constellations among which
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Figure 2.4: QAM signal constellations Ã used for transmission: 4,16-QAM (top),
and their projections onto the real axis, A, 2,4-ASK (bottom).

QPSK and M-QAM are popular, illustrated in figure 2.4. A QPSK constellation

uses two quadrature carriers each of which is BPSK modulated. In M-QAM

the phase as well as the amplitudes of a pair of quadrature carriers are varied

according to the binary data. Whereas QPSK can transmit a maximum two bits

per symbol, M-QAM can send log2(M) bits per symbol. However, higher level

constellations have higher probabilities of error thus requiring higher SNRs to

achieve a given bit error rate (BER).

Since in our schemes the dominant errors will be symbols distorted to the

nearest neighbors of the transmit symbol, we use Gray labeling [Pro00] to map

the information bits to the constellation points in order to minimize the effect of

symbol errors on the bit error rate. Since the nearest neighbors in the complex

plane are situated either along a purely real or purely imaginary offset, Gray

labeling can be independently applied to real and imaginary part of the constel-

lation.

2.5 Channel model examples

Though we focus specifically on applications of the vector detection model (4.20)

to digital communication systems, the detection schemes we develop in this the-

sis are applicable to any scenario in which (4.20) applies. We now give some

applications of this model in digital communication.
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Figure 2.5: Multiple Access Communication System.

2.5.1 Synchronous Code Division Multiple Access

The channel model (4.20) can be applied in the uplink scenario of a N -user

discrete-time synchronous code division multiple access (CDMA) system [PSM82].

The term of multiple access communication system is used for a system that uses

a communication channel to enable several transmitters to send information at

the same time. Multiple access communication is used widely in different commu-

nication systems, especially in mobile and satellite communications. The signal

sources in a multiple access channel are referred to as users. The multiple access

communication scenario is depicted in Figure 2.5. Several multiple access tech-

niques have been implemented in current wireless systems, such as frequency-

division multiple access (FDMA), Time-division multiple access (TDMA) and

CDMA.

In a CDMA system, users are assigned distinct signature sequences or spread-

ing codes. Each transmitter sends its data stream by modulating it with its

own scrambling code. Since the scrambling codes have fairly low mutual cross

correlation, a CDMA receiver can detect its own data using the corresponding

scrambling code, although the multiple users’ signals overlap both in frequency

and in time. The cost of this is that the spectrum of the transmitted wave will be

spread by M times, where M is the ”spreading factor”. The scrambling code con-

tains M chips in a data symbol period. The scrambling codes should be carefully

designed to achieve low cross correlations between users. For ease of generation

and synchronization, a scrambling code is pseudo random, meaning that it can be

generated by mathematically precise rules, but statistically it satisfies the require-

ments of a truly random sequence. A CDMA transmitter spreads the data by

multiplying it with a pseudo noise (PN) sequence (scrambling code). The receiver

then despreads the desired signal by multiplying it with a synchronized replica
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Figure 2.6: Multiple Access Communication System.

of the original PN sequence. The baseband model of a direct sequence CDMA

(DS-CDMA) transmitter and receiver is shown in Figure 2.6. The PN sequence

is called a ”short code” if it is the same for every data symbol period (that is,

its repetitive period is equal to the symbol period). Short-code scrambling can

be used to model the uplink CDMA system (it is an option in UMTS uplink).

The well known short codes are Gold and Kasami [DJ98]. However, if the period

of the PN sequence is larger than the symbol period, the data symbols will be

modulated by different portions of the sequence. This kind of PN sequence is

called a ”long sequence”. Most CDMA systems (such as UMTS) employ long-

code scrambling in downlink. Long sequences can support more users than short

sequences. For a synchronous CDMA system operating in Additive White Gaus-

sian Noise (AWGN) channel, the equivalent low-pass received waveform can be

expressed as [Ver98]:

y(t) =
N

∑

k=1

√

Eksk(t)xk + n(t), t = [0, T ] (2.7)

where N is the number of users, Ek, sk(t) and xk ∈ {−1, 1} represent energy per

bit, unit-energy signature waveform and bit value of the kth user, respectively;

T is the bit interval and n(t) is the noise. The receiver consists of a bank of

filters matched to the signature waveforms assigned to the users and a multiuser

detector. The output of the filter matched to the signature waveform of user k

and sampled at T is achieved by the following equation.

yk =

∫ T

0

y(t)sk(t)dt =
√

Ekxk +
N

∑

i=1,i6=k

√

Eiρikxi + nk (2.8)
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where,

nk =

∫ T

0

n(t)sk(t)dt, and ρik =

∫ T

0

si(t)sk(t)dt

where ρik denotes the cross correlation of the signature waveforms of users i and

k and nk denotes the noise at the output of the kth matched filter. The matched

filter outputs are sufficient statistics for optimal multiuser detection and can be

expressed in vector form as follows:

yk = [y1, y2, .., yN ]T = REx + n (2.9)

where R is the normalized cross correlation matrix of the signature waveforms,

Rij = ρij, E = diag(
√

E1,
√

E2, ..,
√

EN), the noise vector is n with autocor-

relation matrix σ2R
2

and σ2 is the one-sided noise power spectral density of a

zero-mean AWGN source.

2.5.2 Multicarrier Code Division Multiple Access

In order to obtain multiple access transmission systems with high bandwidth ef-

ficiency, Multi-Carrier Code Division Multiple Access (MC-CDMA) combines Or-

thogonal Frequency Division Multiplex (OFDM) modulation and CDMA [MCH01,

CBJ93, YLF93]. The OFDM modulation is robust against multipath and en-

sures good spectral efficiency. The CDMA allows simultaneous communications

between different transceivers by allocating to each transmission link a distinct

signature (or spreading sequence) that has good orthogonal properties with the

other used signatures. Instead of spreading the binary information in the time

domain as in the Direct Sequence CDMA technique, the MC-CDMA spread-

ing is performed in the frequency domain. Therefore, the orthogonality among

transceivers signals has to be ensured in the frequency domain.

Let us consider a synchronous MC-CDMA system with Nu users as described

in figure 2.7. At time i and for user k, the transmitted symbol x̃i(k), taken

from a modulation alphabet Ã of cardinality |Ã|, is spread by a signature c̃k =

(c̃k1, .., c̃kLc
), which has good cross-correlation properties with other user signa-

tures. In this thesis, signatures belong to an orthogonal Walsh-Hadamard set

of size Lc. After spreading of x̃i(k), the Lc obtained chips are transmitted with

signal amplitude ã(k) on the Np different sub-carriers of an OFDM modulation

symbol. We assumed that Lc = Np and we denote s̃i(k) the modulated signal
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Figure 2.7: MC-CDMA transmitter and OFDM receiver Lc = Np.

filtered by a frequency selective multipath channel. After addition of interfering

user signals
∑

j 6=k s̃i(j) and Additive White Gaussian Noise (AWGN), OFDM

demodulation is performed. The channel is assumed non frequency selective on

the sub-carrier bandwidth and is thus described by a single complex coefficient

h̃i
kp for each user k and each sub-carrier p. We denote C̃

i
the Nu × Np matrix

combining spreading and channel effects for all users:

C̃
i
=













c̃11h̃
i
11 c̃12h̃

i
12 . . . c̃1Np

h̃i
1Np

c̃21h̃
i
21 c̃22h̃

i
22 . . . c̃2Np

h̃i
1Np

...
...

...
...

c̃Nu1h̃
i
Nu1 c̃Nu2h̃

i
Nu2 . . . c̃NuNp

h̃i
NuNp













At time i, the received vector ỹi = (ỹi(1), , ỹi(Np))
T may be expressed as

ỹi = C̃iÃx̃i + w̃i (2.10)

where vector x̃i = (x̃i(1), ..., x̃i(Nu))
T contains the Nu transmitted symbols,

diagonal matrix Ã = diag(ã(1), ..., ã(Nu)) contains the amplitudes of the different

users and w̃i = (w̃i(1), ..., w̃i(Np))
T is the AWGN vector. In downlink, all users

share the same channel, defined by H̃i = diag(h̃i(1), ..., h̃i(Np)) Thus, C̃i = C̃H̃i
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where all user signatures are placed in the Nu ×Np matrix defined as

C̃ =













c̃11 c̃12 . . . c̃1Np

c̃21 c̃22 . . . c̃2Np

...
...

...
...

c̃Nu1 c̃Nu2 . . . c̃NuNp













2.5.3 Multiple-Input Multiple-Output Arrays

In this section we consider a multiple-input multiple-output (MIMO) scenario

where multiple antenna arrays are at both ends. This configuration has many

degrees of freedom and is expected to provide us with increased capacity and

diversity with no increase in required bandwidth.

Pioneering work by Winters [Win87], Foschini [FG98] and Telatar [Tel95]

has predicted a significant capacity increase associated with the use of multiple

transmit and multiple receive antenna systems. This is under the assumptions

that the channel can be accurately tracked at the receiver and exhibits rich scat-

tering in order to provide independent transmission paths from each transmit

antenna to each receive antenna. A key feature of MIMO systems is the ability

to turn multipath propagation, traditionally seen as a major drawback of wireless

transmission, into a benefit. This discovery resulted in a explosion of research

activity in the realm of MIMO wireless channels for both single user and multi-

ple user communications. In fact, this technology seems to be one of the recent

technical advances with a chance of resolving the traffic capacity bottleneck in

future Internet-intensive wireless networks. It is surprising to see that just a few

years after its invention, MIMO technology already seems poised to be integrated

in large-scale commercial wireless products and applications. A MIMO system

model can be depicted as in Figure 2.8

The MIMO transmitter first demultiplexes the data stream onto the multiple

antennas using an appropriate algorithm, then transmits the substreams through

the antennas in parallel. A suitable algorithm is applied after the receiver antenna

array to multiplex the multiple observations and recover the original data stream.

Assuming the transmitter and receiver antenna arrays have N and M elements

respectively, and the channel model is Rayleigh flat fading, the channel matrix
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Figure 2.8: MIMO System Model.

Figure 2.9: Spatial Multiplexing System.

for a MIMO system can be expressed as

H̃ =













h̃11 h̃21 · · · h̃N1

h̃12 h̃22 · · · h̃N2

...
...

. . .
...

h̃1M h̃2M · · · h̃NM













(2.11)

where h̃mn (n = 1, ..., N m = 1, ...,M) is the fading factor from the nth trans-

mitter to the mth receiver antenna. The received vector is written as:

ỹ = [ỹ1, ỹ1, ..., ỹM ]T = H̃x̃ + w̃ (2.12)

where x̃ = [x̃1, x̃2, ..., x̃N ]T is the N -dimensional transmit signal vector, and w̃

stands for the M -dimensional additive i.i.d. circularly symmetric complex Gaus-

sian noise vector.

MIMO techniques are commonly divided into two classes, space-time codes

(STC) and spatial multiplexing (SM). The former includes space-time trellis codes

[TSC98] and space-time block codes [TSC98], while the best-known example of

the latter is BLAST (Bell labs LAyered Space Time architecture). These two
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approaches have different motivations. The former is derived from earlier transmit

diversity schemes. Hence its main motivation is to increase diversity, and thus

improve the robustness of a communications link. The latter’s main objective is to

increase the capacity of a link. Its multiple transmitter antennas can equivalently

be regarded as multiple users which consists in fact of data from the same user.

The basic principle of SM is to transmit essentially independent data from

each antenna. Then at the receiver the multi-antenna signal is separated with

appropriate detection techniques. A SM system can be illustrated as in Figure

2.9. In its simplest form the demultiplexed data is simply transmitted on the

separate transmit antennas, and received using a multi-antenna detector, which

is similar to a multiuser detector and treats separate streams as separate users of

a multiuser channel.

Much effort has gone into developing space-time codes that posses specific

properties. The first space time code was proposed by Alamouti [Ala98] over two

transmit antenna and two time periods. This code is orthogonal and has linear

decoding complexity. Tarokh et al [TJC99a, TJC99b] proved that orthogonal

codes do not exist for more than two transmit antennas over complex constella-

tions. Orthogonal codes have lower decoding compexity but are rate deficient.

A set of codes called linear dispersion codes were proposed by Hassibi [HH02]

that achieve capacity of the channel. These codes achieve both rate and diversity

and hence give us a handle for design required for an application. Decoding of

space time codes using maximum likelihood rule leads to exponential complexity

in number of antennas making their usage prohibitive.

Among the existing techniques to build Space-Time block codes we can men-

tion a powerful approach using algebraic number theory to construct full diver-

sity ST codes. This theory has been used to construct appropriate modulation

schemes well adapted to Rayleigh Fading channel based on rotated constellations.

This idea has been first proposed by K. Boulle and J.-C. Belfiore in [BB92]. In

this work they have proved that an n-dimensional constellation where all pairs of

distinct symbols have all their coordinates distinct, leads to nth order diversity.

In other words a two-dimensional rotated QAM constellation as shown in figure

2.10 has a diversity order of 2 comparing with a classical QAM constellation with

a transmit diversity of 1.

At the beginning, these constellations were only used to improve the perfor-

mance of SISO system over Fading channels. Damen was the first who applied
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Figure 2.10: The transmission diversity of 2 for the rotated constellation.

these constellations on the context of Multiple-antennas in [Dam98] by impos-

ing design criteria on algebraic codes [TSC98]. This idea was then generalized

in [DAMB02] to propose new block ST practical architecture, where the rotated

constellation are used to code information symbols.

2.5.4 The FIR Channel

Consider a single antenna time-discrete finite impulse response (FIR) channel

where the channel output at time k, ỹk, is given by

ỹk = h̃ks̃k + w̃k =
L

∑

l=0

h̃lx̃k−l + w̃k (2.13)

where s̃k is the transmitted symbol at time k, h̃l is the channel impulse response,

and w̃k is an additive noise term. Assume that the channel impulse response, h̃l

is zero for l 6= [0, L] and that a burst of N symbols, x̃0, ...., x̃N−1, is transmitted.

Then this system may be written on matrix form as













ỹ0

ỹ1
...

ỹN−1













=













h̃0 0 . . . . . . 0

h̃1 h̃0 . . . . . . 0
...

...
...

...

0 . . . h̃L . . . h̃0

























x̃0

x̃1

...

x̃N−1













+













w̃0

w̃1

...

w̃N−1













which is on the form of (4.20).
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2.6 Computational Complexity

When analyzing an algorithm it is useful to establish how the computational

complexity varies with parameters such as the size n, where n is the dimension of

the solution space, or the SNR. Herein, focus will be on the dependence on n. An

investigation into how the complexity depends on n will yield useful information

about when a specific algorithm is well suited. However, a direct study of how

much time an algorithm requires to solve a specific problem of size, n, will gener-

ally depend on the particular hardware on which the algorithm is implemented.

For this reason it is more common to instead study how the complexity varies

with n and to classify the algorithm based on this behavior.

As the concept of algorithm complexity will play a fundamental role in this

work it is useful to give definitions of what is meant by statements such as polyno-

mial and exponential complexity. To this end, consider the following definitions

[NW88].

• Definition 1 A function f(n) is said to be inO(g(n)) if there exist constants

c and K such that f(n) ≤ cg(n) for all n ≥ K.

• Definition 2 A function f(n) is said to be in Ω(g(n)) if there exist constants

c and K such that f(n) ≥ cg(n) for all n ≥ K.

• Definition 3: A function f(n) is said to grow polynomially if there exists

a constant a ≥ 0 such that f(n) ∈ O(na).

• Definition 4: A function f(n) is said to grow exponentially if there exist

constants a > 1 and b > 1 such that f(n) ∈ Ω(an) ∩ O(bn).

The complexity class P (polynomial time) is the set of all problems for which

an algorithm with complexity O(p(n)) exists, with p(n) ∈ Z[n]. The complexity

class NP (non-deterministic polynomial time) is the set of all problems for which

a given solution can be checked for correctness in polynomial time, even if finding

the solution in polynomial time is only possible with a genie-aided algorithm

(hence nondeterministic). A problem is calledNP-hard if an algorithm for solving

it can be translated into one solving any other NP-problem. This notation is

often used to express the number of operations an algorithm takes to solve a

problem as a function of the problem size. As an example, standard matrix

multiplication of two n× n matrices takes O(n3) operations.
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2.7 Chapter Summary

In this chapter, we described the general channel model (2.6) used in this thesis.

We start by discussing the characteristics of the radio channel such as attenuation,

multipath, the Doppler effect and fading. diversity techniques are introduced and

discussed briefly. Some application of the general model y = Hx + w are then

shown.

The strategies to be discussed in next chapter are the so-called detection

strategies, i.e, how the receiving side in the communication system obtains esti-

mates of the transmitted vector. we will present an optimal and a sub-optimal

detection techniques, for which some complexity and performance comparison are

discussed.



Chapter 3

Detection Fundamentals

Given a channel model as described in the previous chapter, the task of the

receiver is to detect the transmitted signal x from y = Hx + w, i.e., construct

an estimate x̂, given y and H. The operation is described by the general block

diagram of Figure 3.1. We assume that the detector, i.e., the receiver in the

transmission system, has perfect knowledge of the channel matrix H, while no

channel knowledge is necessary or exploited at the transmitter side. The data

symbol vector x = [x1, ..,xn]T to be transmitted is selected from the constellation

An.

In this chapter, various optimum and sub-optimum multiuser receivers, in-

spired from the work of Chabbouh [Cha04], are presented, as well as discussions

of their performances and computational complexity.

3.1 Maximum Likelihood Detection

Consider a wireless communication model diagram shown in Figure 3.1. To com-

municate over this channel, we are faced with the task of detecting a set of n

transmitted symbols from a set of m observed signals. Our observations are cor-

rupted by the non-ideal communication channel, typically modelled as a linear

system followed by an additive noise vector. To assist us in achieving our goal,

we draw the transmitted symbols from a known finite alphabet A of size L. The

detector’s role is then to choose one of the Ln possible transmitted symbol vectors

based on the available data. Our intuition correctly suggests that an optimal de-

tector should return x̂, the symbol vector whose (posterior) probability of having

40
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Figure 3.1: General Detection Setup: transmitted symbol vector x ∈ An, channel
matrix H ∈ R

m×n, additive noise vector w ∈ R
m and detected symbol x̂ ∈ R

n.

been sent, given the observed signal vector y, is the largest:

x̂ = arg max
x∈An

p(xwas send|y is observed) (3.1)

= arg max
x∈An

p(y is observed|xwas send)p(xwas send)

p(y is observed)
(3.2)

equation 3.2 is known as the Maximum A posteriori Probability (MAP) detection

rule. Making the standard assumption that the symbol vectors x ∈ An are

equiprobable, i.e., that p(x was send) is constant, the optimal MAP detection

rule can be written as:

x̂ = arg max
x∈An

p(y is observed|xwas send) (3.3)

A detector that always returns an optimal solution satisfying (3.3) is called a

Maximum Likelihood (ML) detector. If we further assume that the additive

noise w is white and Gaussian, then we can express the ML detection problem

of Figure 3.1 as the minimization of the squared Euclidean distance metric to a

target vector y over an n-dimensional finite discrete search set:

x̂ = arg min
x∈An

‖y−Hx‖22 (3.4)

where borrowing terminology from the optimization literature we call the ele-

ments of x optimization variables and f(x) = ‖y−Hx‖2 the objective function.

In the special case of an AWGN channel, the interference channel model be-

comes y = x + w, and so y is a noise-perturbed version of x. The minimum-

distance rule (3.4) simplifies to

x̂ = arg min
x∈An

‖y− x‖22 (3.5)
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(a) (b)

Figure 3.2: (a)Bounded lattice representing the uncoded set of vectors A2.
(b)Corresponding decision regions for the AWGN channel.

Since each component of the uncoded vector x affects only the corresponding

component of y, and since the noise vector is uncorrelated, the ML detector can

be decoupled into a set of symbol-by-symbol optimizations; i.e.,

x̂[i] = arg min
x[i]∈A

‖y[i]− x[i]‖22 i = 1, .., n (3.6)

which can be solved using a symbol-by-symbol minimum-distance decision device

or slicer. The decision regions, corresponding to the values of y for which each

of the possible decisions is made, are depicted in figure 3.2(b). The ability to

decouple the ML detector into component wise minimizations is indicated by the

fact that the boundaries of the decision regions form an orthogonal grid. The

minimization for each of the n components of x requires the comparison of |A|
differences, so complexity is linear in n.

In the general case in which linear interference is present, we have y = Hx +

w, and the ML vector detector generally cannot be decomposed into n smaller

problems. We can see this by first recognizing that the action of H on the set of all

possible uncoded x ∈ An vectors is to map the points of the bounded orthogonal

lattice in figure 3.2(a) to the points of a bounded lattice with generators along

the directions of the columns of H, like the bounded lattice in figure 3.3(a) . The

decision regions of (3.4) are now generally polytopes as shown in figure 3.3(b), and

the decoupling of the problem is no longer possible. The minimization of (3.4)

requires the comparison of |A|n differences, so complexity is exponential in n. In

fact, the least-squares integer program in (3.4) for general H matrices has been

shown to be nondeterministic polynomial-time hard (NP-hard) [Ver89]. The



CHAPTER 3. DETECTION FUNDAMENTALS 43

high complexity of the ML detector has invariably precluded its use in practice,

so lower-complexity detectors that provide exact and approximate solutions to

(3.4) are used, which we review in the next sections.

(a) (b)

Figure 3.3: (a) Bounded lattice representing all possible vectors Hx for an inter-
ference channel. (b)Corresponding decision regions.

3.2 Branch and Bound

Branch and Bound is a general discret search method [LD60]. Suppose we wish

to minimize a function f(x), where x is restricted to some feasible regions (e.g.,

x ∈ An ≡ {+1,−1}n). To apply branch and bound, one must have a means

of computing a lower bound on an instance of the optimization problem and a

means of dividing the feasible region of a problem to create smaller subproblems.

There must also be a way to compute an upper bound (feasible solution) for at

least some instances; for practical purposes, it should be possible to compute

upper bounds for some set of nontrivial feasible regions.

The method starts by considering the original problem with the complete

feasible region, which is called the root problem. The lower-bounding and upper-

bounding procedures are applied to the root problem. If the bounds match, then

an optimal solution has been found and the procedure terminates. Otherwise, the

feasible region is divided into two regions (see figure 3.4), each strict subregions

of the original, which together cover the whole feasible region; ideally, these

subproblems partition the feasible region. These subproblems become children of

the root search node.



CHAPTER 3. DETECTION FUNDAMENTALS 44

Figure 3.4: Example of the Branch and Bound method.

The algorithm is applied recursively to the subproblems, generating a tree of

subproblems. If an optimal solution is found to a subproblem, it is a feasible

solution to the full problem, but not necessarily globally optimal. Since it is

feasible, it can be used to prune the rest of the tree: if the lower bound for a node

exceeds the best known feasible solution, no globally optimal solution can exist in

the subspace of the feasible region represented by the node. Therefore, the node

can be removed from consideration. The search proceeds until all nodes have

been solved or pruned, or until some specified threshold is met between the best

solution found and the lower bounds on all unsolved subproblems. In the system

model presented at the first chapter, when the components of the vector x are in

{−1, 1}, we can use branch and bound method such that in each branching, one

of the variables is fixed to 1 in one branch and −1 in the other.

The received signal at each time is : y = Hx + w, where H is the channel

matrix. The output of the filter matched to H can be written as

r = HTy = Gx + b (3.7)

where G = HTH is the n×n correlation matrix and b is the gaussian noise vector

with zero mean and autocorrelation matrix σ2H
2

. The ML detection criterion

with perfect knowledge of the channel is equivalent to searching the point x̂ ∈
{+1,−1}n such that

x̂ = arg min
x∈{+1,−1}n

‖r−Gx‖22 (3.8)

The optimal solution to (3.8) can be obtained by examining each of the 2n pos-

sible x’s. There are intelligent ways to compute such combinations. In [LPPB03],

an optimal algorithm based on the branch and bound method with an iterative
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lower bound update was proposed. It was shown that the proposed method can

significantly decrease the average computational cost. Suppose G = LTL is the

Cholesky decomposition of G. Then (3.8) is equivalent to

x̂ = arg min
x∈{−1,+1}n

‖Lx− (L−1)T r‖22 (3.9)

Denote r̄ = (L−1)T r, d = Lx, and denote the kth component of d and r̄ by dk

and r̄k, respectively. Consequently, (3.9) becomes [LPPB03]

x̂ = arg min
x∈{−1,+1}n

n
∑

k=1

(dk − r̄k)
2 (3.10)

Since L is a lower triangular matrix, dk depends only on (x1,x2, ....,xk). When

the decisions for the first k coordinates of vector x are fixed, the term

ξk =
k

∑

i=1

(di − r̄i)
2 (3.11)

becomes a lower bound of (3.10). Besides the use of the lower bound, the gen-

eral Branch and Bound Detector (BBD) method [Ber98] has several variations in

searching the nodes, including the depth-first search, breadth first search, best-

first search, etc. Since the observation vector r is generated from a statistical

model (3.7), [LPPB03] proposed an efficient BBD-based algorithm Dthat reduces

the average computational cost significantly, compared with other optimal algo-

rithms.

In the next section, we presented the sphere decoding [FP85] which can be

categorized as a depth-first branch and bound detection algorithm [LPPB03].

3.3 Sphere Decoding

The sphere decoding algorithm is an optimum-ML detection technique. It promises

to find the optimal solution with low computational costs under some conditions.

SD was first introduced by Finke and Pohst [FP85] in the context of the closest

point search in lattices but it has become very popular in digital communication

literature. The Sphere decoder can easily be adapted to decode coded/uncoded

communication system. For example this decoder has been used in the context of
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Figure 3.5: Geometric representation of the sphere decoding algorithm..

space-time block codes [Dam98, DAMB00, DSAM03]. In [Bru02] Sphere Decoder

is also used in the context of multi-carrier CDMA systems.

The Sphere Decoder algorithm has been applied first to the communication

context in [VB93, VB99]. It has been highlighted that the so called Sphere De-

coder algorithm is well adapted to decode multidimensional modulation schemes

in presence of Fading. A Generalized Sphere Decoder specially adapted to Multiple-

antenna system has been proposed in [DBAM00] which makes possible the ML

decoding of Multiple-antenna system with arbitrary number of transmit and re-

ceive antennas. Sphere Decoder was initially proposed for real valued systems.

The generalization of SD to complex valued systems has been made in [DCB00].

The optimal ML detection which leads to solving the combinatorial optimiza-

tion problem (3.4) and finding an exact solution for it, is in general NP-hard.

As entries of x are integer, x spans a rectangular n-dimensional lattice and for

a real matrix H, Hx spans a skewed lattice. Therefore, given the real vector y

and the skewed lattice Hx, the problem (3.4) would be equivalent to finding the

closest lattice point to y in euclidean sense (figure 3.5).

The basic idea of SD is to limit search only to the lattice points Hx that

lie in a sphere of radius r around the given vector y and in this way save on

computations. It is clear that the closest point inside the sphere is also the

closest point in the lattice. Therefore, there is no need to make an exhaustive

search over all lattice points. Moreover, if the radius of sphere is properly chosen

one can limit the number of operations used in order to find the desired point in

sphere. The sphere decoder (or ”sphere detector”, as we may also call it in the

context of MIMO detection) solves

min
x∈{−1,+1}n

(x− ρ)THTH(x− ρ) (3.12)
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where ρ is the center of our search sphere. We observe that

‖y−Hx‖22 = (x− ρ)THTH(x− ρ) + yT (I−H(HTH)−1HT )y (3.13)

where ρ = (HTH)−1HTy is the unconstrained maximum likelihood estimate of

x. The true (constrained) maximum likelihood estimate is therefore

x̂ = arg min
x∈{−1,+1}n

‖y−Hx‖22 = arg min
x∈{−1,+1}n

(x− ρ)THTH(x− ρ) (3.14)

The sphere decoder may thus be used to find x̂.

Solving (3.12) is generally difficult unless H has orthogonal columns, in which

case the n-dimensional search becomes n simple 1-dimensional searches. Other-

wise, an exhaustive search needs to examine 2n different hypotheses. The sphere

decoder avoids an exhaustive search by examining only those points that lie inside

a sphere

(x− ρ)THTH(x− ρ) ≤ r2 (3.15)

with the given radius r large enough to contain the solution. The algorithm is

described and refined in [FP85] and has its origins in finding the shortest vector in

a lattice. Its application as a decoder for fading channels is described in [VB99],

and as a maximum likelihood decoder for multiple antenna channels in [DCB00].

As we show below, sphere decoding uses the same Cholesky factorization of the

channel matrix.

We assume, for the moment, that r ≥ 0 has been chosen so that the sphere

(3.15) contains the solution to (3.12) and possibly some additional points of the

lattice. Let U be an upper triangular n×n matrix chosen such that UTU = HTH

(using, for example, Cholesky factorization). Let the entries of U be denoted uij,

i ≤ j = 1, ..., n, and assume, without loss of generality, that uij > 0. Then (3.15)

may be written

(x− ρ)TUTU(x− ρ) =
n

∑

i=1

u2
ii[xi − ρi +

n
∑

j=i+1

uij

uii

(xj − ρj)]
2 ≤ r2 (3.16)

Each term in the sum over i is nonnegative. The sphere decoder establishes

bounds on x1, ...,xn by examining these terms in subsets.

Starting with i = n, and throwing out the terms i = 1, ..., n − 1, we obtain
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from (3.16)

u2
nn(xn − ρn)2 ≤ r2

or

⌈ρn −
r

unn

⌉ ≤ xn ≤ ⌊ρn +
r

unn

⌋ (3.17)

(The function ⌈.⌉ finds the smallest integer greater than or equal to its argument,

and ⌊.⌋ finds the largest integer less than or equal to its argument; these functions

are used because the constellation is assumed to be set of consecutive integers.)

After computing the lower and upper bounds in (3.17), the sphere decoder chooses

a candidate value for xn and computes the implications of this choice on xn−1.

To find the influence of the choice of xn on xn−1, the sphere decoder looks at the

two terms i = n−1, n in (3.16), throws out the remaining terms, and obtains the

inequality

u2
n−1,n−1[xn−1 − ρn−1 +

un−1,n

unn

(xn − ρn)]2 + u2
nn(xn − ρn)2 ≤ r2

which yields the upper bound

xn−1 ≤ ⌊ρn−1 +

√

r2 − u2
nn(xn − ρn)2

un−1,n−1

− un−1,n

unn

(xn − ρn)⌋ (3.18)

and a corresponding lower bound. The sphere decoder now chooses a candidate

for xn−1 within the range given by the upper and lower bounds, and proceeds to

xn−2, and so on.

Eventually, one of two things happens: 1) the decoder reaches x1 and chooses

a value within the computed range; 2) the decoder finds that no point in the

constellation falls within the upper and lower bounds obtained for some xi. In

the first case, the sphere decoder has a candidate solution for the entire vector x,

computes its radius (which cannot exceed r), and starts the search process over,

using this new smaller radius to find any better candidates. In the second case,

the decoder must have made at least one bad candidate choice for xi+1, ...,xn.

The decoder revises the choice for xi+1 (which immediately preceded the attempt

for xi) by finding another candidate value within its range, and proceeds again

to try xi. If no more candidates are available at xi+1, the decoder backtracks to

xi+2, and so on.

The performance of the algorithm is closely tied to the choice of the initial
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Figure 3.6: Example of the tree search in SD.

radius r. The radius should be chosen large enough so that the sphere contains

the solution to (3.12). However, the larger r is chosen, the longer the search

takes. If r is chosen too small, the algorithm could fail to find any point inside

the sphere, requiring that r be increased. For good choices of r (we have more to

say about how to choose r later), the algorithm appears to be roughly cubic in n.

This is a vast improvement over an exhaustive search, which is exponential in n.

The SD adopts a tree search approach to obtain samples of x. Figure 3.6

presents an example of the tree search adopted in [VH02]. The search starts

from a root node and begins with examining possible choices of xn that may

satisfy (3.12). For each choice of xn, the possible choices of xn−1 are examined.

The procedure continues for the rest of the elements of x similarly. Each choice

of an element of x is indicated by a branch in the tree. Also, for convenience of

demonstration, it is assumed that the elements of x are binary. The search collects

samples of x by running through the branches of the tree from top to bottom

and left to right. It is worth noting that many searches in the tree encounter

nodes where no branches beyond them can lead to a point within the sphere, i.e.,

satisfy (3.12). In Figure 3.6, these are indicated by bold nodes. We refer to these

as terminal nodes.

3.4 Linear detector

The linear detector inverts the channel matrix and right-multiplies it by the re-

ceived vector. This method separates the layered data streams, but also amplifies
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the Gaussian noise. The output of the multiplication is then sliced to the near-

est symbol in the QAM constellation. The linear detector does not exploit the

tree structure. Instead it detects each symbol independently, like n different tree

searches of depth 1. To reduce complexity of ML detector, the constraints im-

posed on a feasible solution x ∈ {−1, +1}n can be relaxed. A simple constraint

to impose is to restrict the solution vector to be contained within a closed convex

set (CCS). Examples of CCSs of dimension n are R
n and ellipsoid of dimen-

sion n. The corresponding optimization problem is known as a CCS constrained

quadratic program (CCSQP) defined as:

CCSQP : arg min
x∈Ωn

f(x) (3.19)

where the cost function is well defined in a convex set Ωn ⊃ {−1, +1}n. In this

work, we will concentrate on cases where the columns of the channel matrix H are

linearly independent hence HTH is positive definite. In this case, the objective

function f(.) is strictly convex in x and has a well-defined unique minimizer over a

convex set. Note that we require the constraint set for each relaxation to contain

the feasible set of the original problem. The solution can then be mapped to the

feasible set of the original problem by taking the sign of each component of the

relaxed solution vector.

3.4.1 Zero Forcing detector

The fully unconstrained ML detector, Ω ≡ R, is denoted the decorrelating de-

tector. Here, a valid solution vector, ρzf is found in R
n as each symbol estimate

can take on any real value, i.e., no constraints are imposed. The case is denoted

an unconstrained quadratic program (UQP). This relaxation effectively removes

the constraints and converts the discrete optimization problem into a continuous

one. The UQP is:

min
x∈Rn

xTHTHx− 2yTHx (3.20)

This relaxation effectively removes the constraints and converts the discrete

optimization problem into a continuous one. Since the cost function is convex in

its variable, this problem has a unique minimum

ρzf = x + H+w (3.21)
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Figure 3.7: Hypotheses and decision quadrants in two dimensional case for decor-
relating (ZF) detector.

Where H+ = (HTH)−1HT is the Moore-Penrose pseudo-inverse of the real chan-

nel matrix H. The discrete feasible solution x̂zf = sign(ρzf ) ∈ An that is closest

in the l2 norm to ρzf is returned.

To illustrate the decorrelating detector we draw the decision regions in the

two dimensional case. In the domain H+y where the noise is spherically sym-

metric and Gaussian the decision regions are given by perpendicular bisections

of the segments between the different hypotheses denoted with A, B, C and D.

In three (or more) dimensional case the decision region are cones with vertices

at origin. The mapping with the decorrelating detector matrix transforms the

channel output to one quadrants. The final selection is performed then with the

sign function.

3.4.2 Generalized MMSE detector

The constraint on each xi ∈ {−1, 1} is equivalent to x2
i = 1 which implies xTx = n

at any feasible point. Although the last constraint is nonconvex, a relaxation of

the form xTx ≤ n results in a convex set. The estimate x̂ is the solution of the

optimization problem

min
xT x≤n

xTHTHx− 2yTHx (3.22)

the convex set ‖x‖2 ≤ n can be thought of as the interior of an n-dimensional

hypersphere of radius
√

n. The solution of the above problem, derived in [YYU99]
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in the context of linear modulation, is the generalized MMSE detector

ρMMSE = (HTH + λ∗I)−1Hy (3.23)

where λ∗ is the optimum Lagrange multiplier corresponding to the global con-

straint (4.4). Note that (4.5) reduces to the MMSE solution [MH94] for λ∗ = σ2.

3.5 Interference cancellation detectors

The idea of interference cancellation has been mainly applied to the cancellation

of MAI in MC-CDMA systems [Bau01]. However, the same principle could be

applied to detect the transmitted signal x from y = Hx + w. This basic ap-

proach generally requires multiple stages to recursively refine the mitigation of

the interference. Detectors based on this approach generally employ one of the

following two main interference cancellation methods.

3.5.1 Successive Interference Canceller

The key idea in a SIC based receiver is serial cancellation of the ISI, where the

individual data streams are successively decoded and stripped away layer-by-

layer. The algorithm starts by detecting the symbol (e.g., using ZF or MMSE) of

an arbitrarily chosen layer, assuming that the other symbols from the remaining

layers are interference. Upon detection of the chosen symbol, its contribution

from the received signal vector is subtracted and the procedure is repeated until

all symbols are detected. In practice, error propagation will be encountered,

especially in the absence of an adequate temporal coding for each layer. The error

rate performance will therefore be dominated by the first stream decoded by the

receiver (which is also the stream experiencing the smallest diversity order). An

improved SIC processor is obtained by selecting the stream with the highest Signal

to Interference plus Noise Ratio (SINR) at each decoding stage. Such receivers

are known as Ordered SIC (OSIC) receivers or in the case of MIMO literature

as V-BLAST detectors [WFGV98], because they have been used successfully for

BLAST architectures. OSIC receivers reduce the probability of error propagation

by realising a selection diversity gain at each decoding step. The OSIC algorithm

requires slightly higher complexity than the SIC algorithm resulting from the

need to compute and compare the SINRs of the remaining streams at each stage.
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A major problem with the SIC or the OSIC methods for ISI cancellation is the

delay inherent in the implementation of the canceller, since it requires one symbol

delay per layer [PH93]. This problem may be alleviated to some extent by devising

methods that perform interference cancellation in parallel [Mos96].

The idea of feeding back decisions to mitigate the effects of interference for

future symbols was first used by Austin [Aus67] in the context of ISI channels.

Duel-Hallen [Hal93] introduced the idea to CDMA systems, while Foschini [Fos96]

brought the idea to multiple antenna systems via the Bell Labs Layered Space-

Time (BLAST) detection algorithm.

3.5.2 Parallel Interference Canceller

In SIC receivers, the interference estimates are created and removed from the

received signal before making decisions on the transmitted symbol estimates. In

detectors based on PICs, the interference estimation and the cancellation process

are executed simultaneously at each stage for all the layers. In [PH94], it was

shown for an asynchronous Direct Sequence CDMA (DS-CDMA) that SIC re-

ceivers are superior to PIC receivers in a Rayleigh fading channel without power

control. PIC based detectors, on the other hand, exhibit better performance un-

der ideal power control. This is not surprising, since the parallel scheme treats

all the users fairly and simultaneously. Therefore, if all the users’ powers at the

receiver are the same, they all experience the same amount of interference. When

dealing with point to point MIMO architectures, it is plausible to assume that the

signal transmitted from different antennas have a similar power at the receiver,

or alternatively power control techniques can be easily employed, since all the

symbols are transmitted by one user only.

The original work on PICs in [PH94] employs standard detection techniques

at each stage, such as MF or ZF detectors, to estimate the MAI. The interference

was then simultaneously removed from all the users for the next stage. Between

two stages, demodulation of the users’ data and hard decision were performed

to regenerate the MAI. Decoding was only performed at the last stage of the

cancellation process, if a channel encoder was used. As previously mentioned,

this might lead to decision errors at each stage, thus decreasing the reliability of

the estimated interference and hence the overall performance of the receiver. If

a channel encoder is employed, at each stage, it is possible to perform hard out-

put decoding or soft output decoding of the codewords to obtain a more reliable
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estimate of the MAI and hence reduce the error propagation. This results in a

greater interference cancellation and better performance [MVU01]. However, if

decoding is required at each stage, not only is a longer processing delay intro-

duced in the system, but also hardware complexity is increased, as it is necessary

to replicate the detector and the decoder as many times as the number of the re-

ceiver’s stages. Therefore, in an iterative implementation of PIC receivers where

the output of the decision device at each iteration is fed back to the PIC for the

following iteration, we would require only one realization of the detection chain

at the expenses of a longer processing delay.

3.6 The Semidefinite Relaxation

The semidefinite relaxation (SDR) approach to detection for the linear channel

was originally introduced to the area of digital communications in [MDW+02].

The underlying philosophy of the SDR algorithm is, instead of solving the com-

putationally complex ML detection problem, to solve a simpler problem. The

value of this is that by carefully selecting the simplified problem its solution will

correspond to the true ML solution with a high degree of accuracy. Although

not as widely adapted by the community as the sphere decoder the SDR algo-

rithm has been successfully applied to various detection problems in a number

of publications. As in [TR01] the algorithm has been further considered in the

CDMA context in [WLA03, MDWC04]. In a few cases the algorithm has also

been investigated in other contexts. In for example [SLW03] the SDR algorithm

is used as an inner decoder in a system employing a concatenated coding scheme

consisting of an inner space-time block-code (STBC) and an outer turbo code.

In this scenario the SDR algorithm is used to obtain soft information from the

inner STBC which is subsequently passed to the outer turbo decoder.

Previously it has been shown that the SDR decoder, where it is applica-

ble, has better performance than a class of commonly used suboptimal detectors

[MDW+02]. This is accomplished by showing that the SDR represents a relax-

ation of the original ML detection problem and that the class of detectors under

consideration represent further relaxations of the SDR.

Consider again the optimization problem of (3.4), i.e.

x̂ = arg min
x∈{−1,+1}n

‖y−Hx‖22 (3.24)
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where H is a m× n real valued channel matrix. Note that the case of a complex

channel with a QPSK constellation can also be written on this form by doubling

the dimension of the original problem. The semidefinite relaxation algorithm

attempts to approximate the solution of (3.4) by forming a convex problem which

has the property that the solution thereof serves as an estimate for the solution

to (3.4).

To form this convex problem note that the criterion function of (3.4) can be

written as

‖y−Hx‖22 = xTHTHx− 2yTHx + yTy

Thus x̂ can equivalently be obtained through

x̂ = arg min
x∈{−1,+1}n

xTHTHx− 2yTHx (3.25)

since yTy does not depend on x. The solution to the above problem (3.25)

requires a search over all possible combinations of the components of the vector

x. It is thus clear that the computational complexity increases exponentially with

n.

The technique of semidefinite programming has a potential to reduce com-

putational complexity without sacrificing performance. Let us start with the

problem in (3.25) which we reformulate as [HR98]

ŝ = arg min
s∈{−1,+1}n+1

sTLs , L =

[

HTH −HTy

−yTH 0

]

(3.26)

For s ∈ {−1, 1}n+1 the matrix ssT is positive semidefinite, its diagonal entries

are equal to 1, and it is a rank one matrix [HR98]. Now let S = ssT be a matrix

which satisfies these three characteristic properties. Then we can restate (3.26)

as

Ŝ = arg min
S

LS , diag(S) = e1 , rank(S) = 1 , S � 0 (3.27)

where e1 is an all ones vector of length n + 1. Dropping the rank one constraint

yields the basic semidefinite relaxation [HR98] of (3.27).

Ŝ1 = arg min
S

tr(LS) , diag(S) = e1 , S � 0 (3.28)

This is known as a semidefinite program in the matrix variable S, because it is a
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linear problem in S with the additional semidefiniteness constraint S � 0.

To tighten the relaxation, we introduce cutting planes which have become

a standard technique for solving combinatorial optimization problems through

semidefinite programs [HR98]. An optimal solution to the relaxed problem in

(3.28) is computed iteratively. If the solution is not feasible for the original

problem in (3.27), the feasible region for (3.28) is reduced so that the current

solution is no longer feasible. This is done by finding inequalities that are valid

for the original problem in (3.27) but exclude the current point from the feasible

region. The goal is to approximate the solution to (3.27) by using a tightest

possible continuous relaxation of the feasible set of integral points. Clearly, we

need to keep the number of valid linear inequalities for the feasible set, also called

the cutting planes, as small as possible to limit the computational complexity.

A semidefinite program (3.28) can be solved by employing the primal-dual

path-following algorithm of [HRVW96] as a basic optimization tool. We solve

(3.28) using this interior-point method and then use the procedures described in

[HR98] for including the cutting planes.

Since Ŝ1 6= ŝŝT , the last thing we have to do is to approximate ŝ from Ŝ1.

One way is to assume that Ŝ1 has rank one and let ŝ to be the sign of the last

column of the Ŝ1. Another way is to select ŝ to be the sign of the eigenvector

corresponding to the largest eigenvalue of Ŝ1.

3.7 Performances and Complexity Evaluation

In this section all optimum or sub-optimal detectors presented in the previous

section are evaluated numerically by simulations. The data is generated according

to a real valued version of the i.i.d. Rayleigh fading channel. Also, by considering

such a simple scenario the result can easily be reproduced. For all algorithms,

the inputs are considered to be H and y and the output is the estimate, x̂.

3.7.1 Data Model

In order to create scenarios where all previously detectors can be compared, we

restrict the study to the case where the constellation is binary, i.e. A = {±1}.
The channel matrix and noise are also real valued and the problem instances are

generated according to

y = Hx + w (3.29)
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where H ∈ R
m×n is referred to as the channel matrix and w ∈ R

m is the additive

noise. The vectors y ∈ R
m and x ∈ {−1, +1}n are the received signals and

transmitted symbols respectively.

The transmitted symbols are modeled as i.i.d. random variables which are

uniformly distributed over the constellation alphabet, A. It is assumed that the

constellation is centered at zero, under the i.i.d assumption on x. Note that this

occurs at no loss of generality since any nonzero mean of x, and consequently

y, may be removed prior to detection without any loss in performance. Also,

designing a communications system with a nonzero mean would in most scenarios

require an increased transmit power and thus, the assumption is usually satisfied

in practice as well.

The noise is modeled as zero mean, circularly symmetric real Gaussian, with

variance σ2 and is assumed uncorrelated between components. The Gaussian

assumption is usually motivated by the notion that the noise is made up of

several contributing components and is thus approximately Gaussian due to the

central limit theorem. The ability to correctly detect the transmitted symbols,

x, is affected by the ratio of the signal strength and the noise power. This ratio

is called the signal to noise ratio (SNR) and is herein defined as

γ ,
ε{‖Hx‖2}

ε{‖ΠHw‖2} (3.30)

where ΠH , H(HTH)−1HT is the projection matrix for the projection onto the

space spanned by the columns of H. The reason for including the projection

of the noise onto the columns of H is that the part of the noise orthogonal to

H does not affect the ability to correctly detect x and is thus irrelevant to the

detection problem. Note that in the special case where m = n and where H is

full rank with probability 1, the equation (3.30) can be reduced to the following

more familiar expression

γ =
ε{‖Hx‖2}
ε{‖w‖2} (3.31)
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where ‖.‖ is the l2-norm. Let s = Hx; then,

ε{‖s‖2} = ε{‖s‖2}

= ε{
m

∑

k=1

‖sk‖2}

= ε{
m

∑

k=1

sumn
j=1‖hkjxj‖2}

=
m

∑

k=1

n
∑

j=1

ε{‖hkj‖2}ε{‖xj‖2}

= Ex · n ·m (3.32)

Recall that the expected value of each element of x is Ex, and that of the elements

of H is 1. Given that ε{‖w‖2} = 2 ·m · σ2/2, substituting (3.32) into (3.31), the

average SNR can be written as

γ =
Es · n

σ2
(3.33)

The factor 2 in the average power of the noise appears because the real and

imaginary parts of w̃ each have variance σ2/2; consequently, the variance of each

component of w is σ2.

3.7.2 Complexity study

In this section we compare the computational complexity of the various detection

schemes that have been considered. We assume that transmission is done in

bursts. For these bursts we assume the channel matrix H to be constant, and

hence the matrices used in receiver processing need only be calculated once per

burst. In high-speed transmission systems burst lengths of several thousands of

symbols are possible.

Consider the linear solutions where the estimate of x̂ is returned as sgn(My).

This process requires the construction of M then the application of M to y. The

sign testing is ignored since its complexity is negligible. The complexity of the

filter M varies slightly depending on the particular linear detector under study.

The determination M has a complexity budget as shown in Table 3.1

The scenario of the ML detector is a little different. The minimization of the
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Table 3.1: Complexity computation of ZF and MMSE

step Procedure ZF flops MMSE flops

pre-processing HTH 2m2n 2m2n

pre-processing (. + σ2I) 0 2n2

pre-processing (.)−1 n3 n3

pre-processing (.)−1HT 2n2m 2n2m

processing (.)−1HTy 2mn 2mn

objective function f : x 7→ ‖y − Hx‖2 over x ∈ {−1, +1}n requires the com-

putation of 2n metrics. The complexity budget for each metric computation is

as shown in Table 3.2. Since the ML detector requires the computation of 2n of

these metrics the total complexity for the detection is 2nm(2n + 3)1. The detec-

tion process is to select the vector x that minimize the objective function. The

complexity of linear detector is polynomial in n, O(n3), whereas the complexity

of the exhaustive search (ML) is exponential in n.

The main computation in using the iterative nulling and cancellation algo-

rithm is the determination of the optimal ordering of the nulling and cancellation

steps, and the computation of the corresponding nulling vectors. These steps

have computational complexity of order O(n4). When the number n is large the

repeated use of the pseudo-inverse to calculate the nulling vectors may lead to

numerical instability. Nevertheless, a square-root algorithm based on QR decom-

position of the channel matrix and unitary transformations is used in [Has00] to

avoid the repeated computation of the nulling vectors. Instead, the QR decompo-

sition is computed only once. Not only is computation complexity reduced O(n3),

but also the numerical robustness is improved by this square-root algorithm.

For Branch And Bound Algorithm and the Sphere Decoder, the number of

iterations of the processing of the search of the optimal point is random. So we

run simulations to estimate the complexity in this step. Both algorithms carry

out some operations that can call pre-processing step, the complexity budget for

this step is shown in Table 3.3 For estimation of the complexity of the processing

step, we compare the efficiencies of the Branch and Bound Detector (BBD) and

1This amount can be reduced by storing computation between different evaluations. For
example, if x1 and x2 differs only from one coordinate, the computation of Hx2 can be reduced
using partial result of the computation of Hx1. Nevertheless, the computation complexity is
still O(2n)
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Table 3.2: Complexity computation of ML

step Procedure ML flops

pre-processing Hx 2mn

processing y−Hx m

processing ‖.‖2 2m

Table 3.3: Complexity computation of pre-processing step for SD and BBD

Procedure SD flops BBD flops

G = HTH n3

2
+ n2

2
n3

2
+ n2

2

G = LLT n3

6
n3

6

compute lij
n2

2
+ n

2
0

(.)−1 n3 n3

2

Total 5n3

3
+ n2

2
+ n

2
7n3

6
+ n2

2

the Sphere Decoding (SD) algorithms in terms of the number of floating-point

operations (Addition / Multiplication) versus the signal to noise ratio in the

worst-case. In fact, for hardware implementation any detector would be designed

for the worst-case complexity rather than the average complexity.

As shown previously in this chapter, the BBD and SD methods provide the

optimum detection performance. Nevertheless, their worst-case complexities grow

exponentially in the number n [JO05]. The result of the comparison of the pro-

cessing complexity of the SD and BB algorithms is given in figure 3.8. We can

see that the Branch and Bound method have a lower complexity compared to the

Sphere Decoder when an uncoded 4-QAM modulation is used .

The complexity of the Semidefinite Relaxation (SDR), called also Semidefinite

programming (SDP), algorithm based on interior-point [HRVW96] methods is

determined by two factors:

• The number of iterations required to achieve the stopping criterion. It

has been shown [HRVW96] that given a solution accuracy ǫ, the worst-case

number of iterations required to satisfy the stopping criterion is of the order

of
√

2nlog(1/ǫ)

• The operational cost at one iteration. It has been shown that the compu-

tational complexity per iteration is O(n3)
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Figure 3.8: Computation complexity comparison of the processing step ( SD and
BBD) with n = m = 10 and 4-QAM modulation in the worst-case, r =

√
αnσ

where α is chosen so that [HV02].

The SD relaxation detector is efficient in that its complexity is of the order of

O(n3.5), where n is the dimension of the ML detection problem.

3.7.3 Performance

In Rayleigh fading, the average error probability Bit Error Rate BER decays

according to BER ∼ 1/SNRν at high SNR, where ν is the diversity order and

reflects the system’s tolerance of and robustness toward channel fading. The bit

error rate performance of the linear detection scheme is shown in figure 3.9. Notes

that the maximum likelihood detector (MLD), the branch and bound detector

(BBD) and the sphere decoding (SD) have the same performances.

We have applied the SDP method to a system sending symbols in {−1, 1} for

different values of the lattice dimension n = m (n = 6 and 10). The results are on

figure 3.10(a). For the same system a comparison of the performance of the four

algorithms is done in the case of a lattice dimension n = 12. The result of this

comparison is on figure 3.10(b). We can see that the SD and BBD algorithms

outperform the SDP and VBLAST methods. Moreover, they have exactly the

same performances.
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Figure 3.9: Average bit error rates achieved for linear zero-forcing (ZF) and linear
minimum-mean-square error (MMSE) N = M = 5, 4−QAM uncoded system.
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3.8 Conclusion

In this chapter, most popular detectors schemes were introduced. We character-

ized the performance and the complexity of these receivers, such as ZF, MMSE,

SDP, SD and BBD for Rayleigh flat fading channels assuming perfect estimation

in the receiver. These results are all well known from the previous literature.

A major problem in obtaining an efficient implementation of any detection al-

gorithm is their inherent sequential structure. Our goal here was to establish a

performance baseline so that these results could be compared with performance

of the proposed detection algorithm in the next chapter.



Chapter 4

Proposed detection method

The detection fundamentals are presented in the previous chapter. The ML de-

tection, which is an NP − hard problem, can be implemented using a ”smart”

efficient search algorithm, e.g., the Sphere Decoding (SD) [VB93, VB99] at a

reasonable average computational cost. Unfortunately, the SD is not well suited

for VLSI implementation. Consequently, there has been much interest in imple-

menting suboptimal detection algorithms. The most fastest suboptimum detec-

tors having in general bad performance are given by the linear receivers (ZF and

MMSE). A class of nonlinear detectors that offer better performance with only

a modest increase in complexity is based on successive cancellation [Bau01]. Re-

cently semidefinite programming (SDP) approach has been shown to be a promis-

ing approach to combinatorial problems [MDW+02]. However, the main problem

concerning the hardware implementation of the existing decoding algorithms is

the lack of parallelism caused by their iterative structure.

This chapter introduces a new detection algorithm based on a geometrical

approach to detect the transmitted signal x ∈ ξ , {−1, +1}n from y = Hx + w,

given the received vector y ∈ R
m and the channel matrix H ∈ R

m×n, m ≥ n.

The proposed detection algorithm can achieve near-optimum performance while

its implementation complexity is O(n3), where n is the dimension of search space.

The new proposed algorithm called Geometrical Intersection and Selection De-

tector (GISD), associates a powerful geometrical treatment to the classical opti-

mization process, i.e., intensification and diversification. The intensification

means that, starting from a given solution x0 ∈ ξ, a local search of the potential

better solutions in the neighborhood of x0 is performed. However, the diversifica-

tion is a method to select efficiently subset ξstart ⊂ ξ, of starting solution, which

64
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allows us to escape from potential local minima.

The strategy to select the subset ξstart is based on a geometrical approach

inspired by the very original work of H Artes and D Seethaler [ASH03]. The

fundamental difference is that computation in the proposed algorithm is applied

to the real domain, instead of the complex domain, and this strongly reduces

the complexity. A patent [NB05] based on our strategy detection, which focuses

on intensification/diversification approach to reduce ML detection complexity,

has been published. After a submission of an IEEE Communications letter of

our study, one of reviewers mentionned that the Canonical Basis intersection

and selection detector CBISD, variant of the proposed method, has been earlier

published in paper [SG01].

In this chapter, the proposed geometrical approach detection method are de-

veloped. Section 4.1 introduces the singular value decomposition properties for

a given matrix A. Also, we present the distribution of the condition number of

real i.i.d random channel matrix, and discuss the effect of this number on the

linear detector methods. The intensification step of the GISD decoder is given

in section 4.2, and exact complexity analysis of this step is done. In section 4.3

different methods of the diversification step are considered including repeated

random start, Bose-ChaudhurI-Hocquenghem (BCH) and geometrical approach

methods. Section 4.4 gives the flow chart of GISD detector including all variants.

Moreover, an example is presented to illustrate the efficacty and simplicity of the

proposed detection method. The computational complexity and the performance

of the GISD are given in sections 4.5 and 4.6. The chapter ends with some simu-

lation results showing the impact of channel estimation errors on the performance

of the proposed GISD detector.

4.1 Singular Value Decomposition

The aim of this section is to collect the basic information needed to understand

the Singular Value Decomposition (SVD) as used throughout this thesis. We start

giving the definition of SVD for a generic, rectangular matrix A and discussing

some related concepts.
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4.1.1 Definition

Any m× n matrix A can be written as the product of three matrices

A = UDVT (4.1)

The columns of the m×m matrix U are mutually orthogonal unit vectors, as are

the columns of the n×n matrix V. The m×n matrix D is diagonal; its diagonal

elements, λi, called singular values, are such that λ1 ≥ λ2 ≥ .... ≥ λn ≥ 0.

Some important properties now follow.

4.1.2 Properties of the SVD

• Property 1 : The singular values give valuable information on the singularity

of a square matrix A. The matrix A is nonsingular if and only if all its

singular values are different from zero. Most importantly, the ratio

Cond(A) =
λ1

λn

(4.2)

called condition number, measures the degree of singularity of A. When

1/Cond(A) is comparable with the arithmetic precision of machine, the

matrix A is ill-conditioned and, for all practical purposes, can be considered

singular.

• Property 2 : If A is a rectangular matrix, the number of nonzero λi, equals

the rank of A.

• Property 3 : If A is a square, nonsingular matrix, its inverse can be written

as

A−1 = VD−1UT

Be A singular or not, the pseudoinverse of A, A+, can be written as

A+ = VD−1
0 UT

with D−1
0 equals to D−1 for all nonzero singular values and zero otherwise.

If A is nonsingular, then D−1
0 = D−1 and A+ = A−1.

• Property 4 : The columns of U are the left singular vectors corresponding
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to the nonzero singular values of A, and form an orthogonal basis for the

range of A. The columns of V are the right singular vectors corresponding

to the nonzero singular values of A, and are each orthogonal to the null

space of A.

• Property 5 : The squares of the nonzero singular values are the nonzero

eigenvalues of the n×n matrix ATA and m×m matrix AAT . The columns

of U are eigenvectors of AAT , the columns of V are eigenvectors of ATA.

Moreover, Auk = λkvk and ATvk = λkuk where uk and vk are the columns

of U and V corresponding to λk.

• Property 6 : One possible distance measure between matrices can use the

Frobenius norm. The Frobenius norm of a matrix A is simply the sum of

the squares of the entries aij of A, or

‖A‖F =

√

∑

i,j

|aij|2 =
∑

i

|λi|2

4.1.3 Detection performances and ill-conditioned channel

occurs

Ill-conditioned components present in the channel effectively increase the linear

dependence of the input streams and makes stream separation and decoding a

difficult task. For example, current schemes like space multiplexing (V-BLAST)

literally break down in the presence of correlation levels close to one or high

Ricean factors. The degradation in performance can be attributed to the sensi-

tivity of the MMSE suppression algorithm to rank and conditioning of the channel

matrix. When the correlation between various paths in the channel increases, the

condition number of the channel matrix also increases. As the matrix becomes

”more singular” (elements in the matrix become more correlated) cond(A) ap-

proaches infinity. The distribution of cond(A) for a random channel is shown in

Figure 4.1. In this plot the distribution of cond(A) is plotted as variation in the

magnitude of cond(A).

The impact of the condition number behavior on the average bit error rate

(BER) performance of optimal and sub-optimal detection depends on the proba-

bility with which Ill-conditioned (λ1 >>> λn) ”bad” channels occur. The figure

4.2 shows the cumulative distribution function (cdf) of cond(A). It is seen that
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Figure 4.1: Distribution of the condition number for a (10× 10) real iid random
channel.

the probability that cond(A) exceeds a value of 10 and 20 is 16% and 5%, respec-

tively. However, the probability that cond(A) is less than or equal to 8 is 77%.

The figure 4.2 suggests that bad channels occur frequently enough to cause

a significant degradation of the average performance of suboptimal detection

schemes. In fact, the noise enhancement of MMSE or ZF algorithms increases

when cond(A) is large, and this degrades the performance of BLAST and dramat-

ically increases computational complexity of the sphere decoding algorithm. Ex-

periments suggest that the performance of suboptimal detection schemes strongly

depends on the channel’s condition number. In figure 4.3, we show the bit error

rate (BER) of various detection schemes versus the condition number of the two

experimental channel realizations (channel C1 : when cond(A) < 8 and channel

C2: when cond(A) > 10). In this simulation, we used a 10 × 10 channel with

independent and identically distributed Gaussian channel matrix entries, 4-QAM

modulation. It can be seen that there is a significant performance gap between

linear detection in the two cases of channel C1 and channel C2. While the per-

formance of ML detection is fairly robust to bad channel realizations, it is note

worthy that the computational complexity of the Sphere Decoding algorithm for

ML detection significantly increase for these channels. Thus, there is a strong de-

mand for computationally efficient suboptimal detectors that are able to achieve

near-ML performance.
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Figure 4.2: Cumulative distribution function of the condition number for (10×10)
real iid random channel.
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Figure 4.3: Performances of detectors in presence of channel C1 or channel C2.
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4.1.4 Geometrical interpretation of ill-conditioned chan-

nel

The starting point for developing the proposed detection methods in this thesis

is a geometrical analysis of the decision regions of zero forcing detection methods

in the case of ill-conditionned channels. In fact, after ZF detection, we obtain

ρzf = H+y = x + H+w (4.3)

Where H+ = (HTH)−1HT is the Moore-Penrose pseudo-inverse of the real chan-

nel matrix H. This is the undistorted data x corrupted by the noise ẅ = H+w

that is correlated with covariance matrix

Rẅ = σ2(HTH)−1

= σ2VD−2VT (4.4)

Hence, the contour surfaces of the probability density function of ẅ are hy-

perellipsoids whose mth principal axis is given by the mth eigenvector vm of Rẅ.

Thus, ZF detection results in a distortion of the noise pdf relative to the spherical

pdf geometry of w.

The ML detection performs the minimization of the objective function f(x)

over a nonconvex set ξ. The optimal ML solution x̂ is given as

x̂ = arg min
x∈ξ

f(x)

= arg min
x∈ξ
‖y−Hx‖22

= arg min
x∈ξ
‖H(x− ρzf )‖22

= arg min
x∈ξ

(x− ρzf )
THTH(x− ρzf )

= arg min
x∈ξ

(x− ρzf )
TVD2VT (x− ρzf ) (4.5)

The cost function f(x) is a quadratic function and assumes the shape of a

hyperparaboloid as illustrated in figure 4.4 and figure 4.5 for a 2-dimensional

case. The sections of the surface f(x) = const, are hyperellipsoids (ellipses in

the 2-dimensional case). The orientation and the shape of these ellipsoids depend

on the eigenvalues of the matrix HTH. It is easy to show that the axes of the

hyperellipsoids are aligned with the eigenvectors of HTH and that their lengths
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are inversely proportional to the square roots of the corresponding eigenvalues.

In the 2-dimensional case, if the two eigenvalues are very different the ellipses

are thin and long, while, if the eigenvalues are equal the ellipses degenerate into

circles. The figures 4.4 and 4.5 show the surface f(x) = const after ZF detection
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Figure 4.4: Sections of the surface f(x) = const and ZF regions in the ZF-
detection domain for good conditioned real (2;2) channel and BPSK modulation,
SNR=0 dB, and cond(H) = 1, 3428.

for a good (cond(H) = 1, 3428) and a bad (cond(H) = 5, 6284) realization of a

real-valued (2, 2) channel and the ZF decision regions (the four quadrants). For

the good channel, the ZF and ML solution are similar. For the bad channel,

they are very different. Experiments indicate that for a bad channel, the largest

ZF-domain noise component whose direction is given by the principal axis v2

tends to dominate all the other noise components. Hence, this dominant noise

component causes the main part of the bad channel effects that are responsible

for the poor performance of linear detection.

4.2 The intensification step

The intensification or the greedy search method can be considered as a local

search. This section describes an overview of basic local search. Essentially,

a local search consists in moving from one feasible solution to another in its

neighborhood. A particular optimization problem can be specified by identifying
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Figure 4.5: Sections of the surface f(x) = const and ZF regions in the ZF-
detection domain for ill-conditioned real (2;2) channel and BPSK modulation,
SNR=0 dB, and cond(H) = 5, 6284.

a set of solutions ξ with a cost function f(x) that assigns a numerical value to

each solution x. When applied to a minimization problem, an optimal solution

is a solution (or a set of solutions) with the minimum possible cost in a feasible

solution space of the problem.

Local search is a generally applicable approach that can be used to find ap-

proximate solutions to difficult optimization problems. A local search strategy

starts from an arbitrary solution x1 ∈ ξ. At each step k, the best solution xk+1 is

chosen in the neighborhood NQ(xk) of the current solution xk. The neighborhood

of xk is a subset of ξ and can be defined in the following way. The Q-neighborhood

of a point x0 ∈ ξ is the set NQ(x0) = {x : dH(x,x0) ≤ Q}, where dH(., .) is the

standard Hamming distance. For all x ∈ NQ(x0), x0 and x differ by at most Q

components. The total number of vectors in NQ(x0) is |NQ(x0)| = ∑Q
i=1(

n
i ). As

illustrated in Figure 4.6, for Q = 1 this defines the points linked to x0 by an edge

of the n-cube, while for Q = 2 it defines the points laying on the same face of the

n-cube as x0. A Q-order greedy search methods finds a solution to

f(xk) ≤ f(x) ∀x ∈ NQ(xk)

To allow for a fast evaluation of moves in the neighborhood, we set Q = 1

so that only a low number of possible moves has to be inspected. In addition,
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Figure 4.6: Three dimensional visualization of a Q = 1 and Q = 2 neighborhood.
In each case, all neighbors of the point x are encircled.

the figure 4.7 show a comparison of the BER performances between the 1st-order

(Q = 1) and 2sd-order (Q = 1) greedy search methods starting from ZF or

MMSE detection solution when n = m = 10. Also, we can show the that the

choice of Q = 1 is sufficient for the greedy search to obtain good performance.

Hence, a move corresponds to changing the value of a single variable (i.e. setting

x(p) = −x(p) for some p). In this study we develop the Q = 1 greedy search

methods, and refer to this as the 1st-order greedy detector. The cardinality of

NQ=1(x
k) is equal to n. For example, assume n = 4. Then, the neighborhood

of (+1, +1, +1, +1) is (−1, +1, +1, +1), (+1,−1, +1, +1), (+1, +1,−1, +1), and

(+1, +1, +1,−1).

The 1st-order (Q = 1) greedy detector starts from a given point x1 and per-

forms iteratively. At each iteration k, we select the best neighbor xk+1 defined

as:

xk+1 = min
x∈NQ(xk)

f(x) (4.6)

If f(xk+1) ≤ f(x) for all x ∈ NQ(xk and f(xk+1) ≤ f(xk) then xk+1 becomes

the new starting point of the iteration k + 1, otherwise, the algorithm stops and

return xk. By convention, xk,p ∈ NQ=1( xk will differ only from xk by the pth

coordinate, xk,p(p) = −xk(p) ).

The exhaustive computation in (4.6), which includes n computations of the

objective function f(xk,p) where p = 1, .., n, can be simplified. In fact, at each

step k, the computation of f(xk,p), where xk,p is the pth neighbor of xk, can be
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Figure 4.7: Performances comparison of 1st-order and 2sd-order greedy search
methods in case of uncoded BPSK modulation and H ∈ R

10×10.

replaced by δ(xk,p,xk) = 1
4
[f(xk,p)− f(xk)]:

δ(xk,p,xk) =
1

4
[‖y−Hxk,p‖22 − ‖y−Hxk‖22]

= G(p, p) + η[(Hxk)TH(:, p)− yTH(:, p)] (4.7)

where G = HTH is the Gram matrix of the channel matrix H, η = −sign(xk(p)),

H(:, p) and G(:, p) represent respectively the pth column of the channel matrix H

and the Gram matrix G.

4.2.1 Intensification step study

The greedy search method partitionned the set of all feasible solutions to K

subsets defined as:

ξ = ∪K
i=1Πi where ∀(u,v) ∈ Πi greedy(u) = greedy(v) (4.8)

where greedy(u) is result of the greedy search starting from the feasible point

u. By convention Π1 will be the subset that leads to the ML solution (global

optimum). Figure 4.8 shows the cumulative distribution function of the number

of subsets K. In the simulation, we used m× n channel matrix H where n = m,

for simplification, and the SNR equal to 10 dB. It is seen that the probability
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Figure 4.8: The cumulative distribution function of local minima (number of
subset K), when SNR=10 dB.

that K exceeds a value of 6, 12, and 18 is 60%, 30%, and 17% respectively in

the case of n = m = 16. This suggests that the number of local minima occur

frequently enough to cause a significant degradation of the average performance

of the greedy search method.

To study the bit error rate (BER) performance of the greedy search methods,

The idea is to start the greedy search algorithm from the suboptimal solution

given by the zero forcing x̂zf or the MMSE detector x̂mmse. The performances

of the greedy − ZF and greedy −MMSE detection schemes are illustrated in

figure 4.7(a). As expected, they are clearly better, in term of bit error rate, than

the linear detection methods. However, the performance of the greedy search

algorithm depends on the starting point of the search. The goal of a good detector

is to search the global minimum of the objective function f(.).

4.2.2 computation complexity of the intensification step

We now compare the computational complexity of the 1st-order and the 2sd-order

greedy search methods. For a given starting point the intensification step can be

subdivided into two parts. The first one, called pre-processing, is the calculation

of the Gram matrix G = HTH. The dominant complexity of this step is O(n3).
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Table 4.1: Complexity computation of processing step of the 1st-order and the
2sd-order greedy search methods when θ is the iteration number

Operation 1st-order 2st-order

add/sub n2(3θ + 1) + 2nθ n2(5θ + 1) + 4nθ

Mult n2(2θ + 1) + nθ n2(3θ + 1) + 2nθ

The second one, called processing, has to be performed for each received data

vector y. The average number of additions and multiplications of the processing

steps is expressed in table 4.1.

The figure 4.9 shows the performances of greedy search method using various

numbers of iterations, θ, on different starting point. The results indicate that,

for MMSE or ZF starting point, this method has approximately achieved conver-

gence after θ = 2 iterations, in the case of MMSE starting point, since the BER

performance has stabilized.
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Figure 4.9: The effect of iteration number θ in BER performance when m = n =
10 and ξ , {−1, +1}n

4.3 The diversification step

Before the search for a locally optimal solution can begin, it has to be decided

how to obtain an initial feasible solution. It is sometimes practical to execute

local search from several different starting points and to choose the best result.



CHAPTER 4. PROPOSED DETECTION METHOD 77

Next, a ”good” neighborhood has to be chosen for the problem at hand and a

method for searching it. The choice is normally guided by intuition because very

little theory is available as a guide. A clear trade-off can be seen between small

and large neighborhoods. A larger neighborhood would seem to hold promise of

providing better local optima but will take longer to search. Design of effective

local search algorithms has been and remains very much an art. The analysis

of the performance of a standard local search algorithm is concerned with the

following:

• Time complexity, i.e. the time required by the algorithm to reach the final

answer.

• Size of the neighborhood to be searched.

• The number of iterations required to reach a locally optimal solution

The intensification step based on greedy search method requires a well suited

diversification, don’t put all you eggs in one basket, to overcome local minima.

Let us assume that the subset Π1 ⊂ ξ contains all starting points leading to the

ML solution (i.e. x ∈ Π1 ⇔ xml = greedy(x)). Our criterion are thus: Firstly,

the diversification step should give a small cardinality subset ξstart that verifies

ξstart ∩ Π1 6= ∅ with a very high probability. Secondly, it should have a small

computational complexity.

The main part of our research concerns the examination of different ways of

diversification. In the following, we suggest some possible methods.

4.3.1 Repeated random start local search

Local search techniques involve iteratively improving upon a solution point by

searching in its neighborhood for better solutions. If better solutions are not

found, the process terminates; the current point is taken as a locally optimal

solution. Since local search performs poorly when there are multiple local op-

tima, a modification of this technique has been suggested in which local search

is repeated several times using randomly selected starting points. This process is

computationally expensive; after each iteration, search starts from a point very

far away from the optimum and no information obtained from previous iterations

is reused. Random start is commonly associated with local search as a means
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of overcoming local optima. More generally, it is a common technique for tak-

ing a statistically unreliable process, one which fails more than it succeeds, and

through repeated trials producing a new reliable process.

4.3.1.1 Definition

In graph theoretic terms, we can represent each feasible point by a node and

each neighbor move by an arc joining the two nodes. Successive neighbor moves

will then correspond to paths in the graph. An ”only-down” path will refer to a

path along which the objective function value is non-increasing. More precisely

x1,x2, ....,xp is an ”only-down” path if f(x1) ≥ f(x2) ≥ .... ≥ f(xp)

Repeated random start local search is an adaptation of the intensification

step which repeatedly starts from a random feasible point and follows an ”only-

down” path toward a local minimal. The algorithm specifies the number of such

repeated starts and chooses the best of the local minimal thus generated. For

visualization the full Repeated Random Start (RRS) local search algorithm is

described compactly in Algorithm 1.

Algorithm 1: RRS local search algorithm

Data: p: The a priori total number of random starts points, G = HTH
is the Gram matrix of the channel matrix H and y is the received
vector.

Result: xRRS ∈ ξ RRS solution.

begin
for (j = 1; j ≤ p; j + +) do

xstart(:, j) = sign(rand(n, 1)− 0.5)
[List(1 : n, j), List(n + 1, j)] = greedysearch(y,G,H,xstart(:, j))

List = (sortrows(ListT , n + 1))T

xRRS ←− List(1 : n, 1)

end

In figure 4.10, we have plotted the performance of the RRS-GS using different

p values in a Rayleigh fading channel when H ∈ R
10×10. We observe that in

this case, the best RRS-GS performances is given in the case of p = 4n. A

simple explanation can be provided by the fact that the probability P (ξstart∩Π1)

increases with the parameter p.
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Figure 4.10: Average BER of RRS-GS based detectors with different values of
parameter p for n = m = 10 system using uncoded BPSK.

4.3.2 BCH diversification

The basic idea behind the diversification is to generate a ”smart” starting subset

ξstart. It is obvious that a starting point xk that has a small hamming distance

to another starting point already in the subset ξstart, will not contribute much to

the diversification. Therefore, a starting point is not added to the starting subset

if its distance to the ξstart is below a certain threshold δ. We call δ the diversity

parameter. A starting point xk can be added to the subset ξstart if the following

holds:

min
xi∈ξstart

dH(xk,xi) ≥ δ (4.9)

Using the diversity parameter δ, the diversity of the starting subset can be

controlled as higher values for δ will increase the diversity of the staring subset

while lower values will decrease it. A high value of δ will allow only starting point

that have a large distance to all starting points in the subset ξstart and will lead

-perhaps after a few iterations of intensification step - to a low number of solution

points. A low value of δ will allow increasing of computation complexity of the

decoder.

In literature, the Bose-Chaudhuri-Hocquenghem (BCH) codes [BRC60, Hoc59]

are a class of cyclic codes that append n− k parity bits to a message of k bits so

that each code word is n bits long. The code parameters (n, k, dmin) are of the
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Figure 4.11: Shift Register Encoding using BCH Codes.

form n = 2m−1, n−k ≤ mt, for positive integers m and t, and the minimum Ham-

ming distance is dmin ≤ 2t + 1. The codes are specified by their generator poly-

nomials in GF (2) which has the general form G(D) = g0 + g1D + ... + gn−kD
n−k.

The parity bits appended to the message in the systematic generation of the code-

word corresponding to the message polynomial M(D) are the coefficients of the

remainder of DkM(D)
G(D)

. This encoding process is usually implemented by a shift

register. The general setup is shown in figure 4.11 in which switches s0 and s1

are closed and s2 open for the first k cycles while the message mk of length k is

input. For the next n − k cycles switch s2 is closed and switches s0 and s1 are

open.

The figure 4.12 shows the BER performance comparison between different

detection algorithms based on repeated random start or extended BCH code in

diversification step. It can be easily observed that the extended BCH code allows

good diversification to the intensification step. Moreover the generation of BCH

code is more adapted to hardware implementation.

4.3.3 Geometrical diversification

A geometrical approach leads us to an efficient method to select ξstart. In what

follows, the singular value decomposition (SVD) of channel matrix H = UΣVT

is used, where the diagonal matrix Σ contains the singular values {λk}nk=1 and

the unitary matrices U and V contain, respectively, the left {uk}mk=1 and right

{vk}nk=1 singular vectors of the matrix H as columns. We assume that the λk are

indexed in increasing order, i.e. λ1 ≤ λ2 ≤ ... ≤ λn.

Let ρzf = H+y be the solution given by the ZF detector, i.e. f(ρzf ) = 0. For

all points x ∈ ξ, x − ρzf is a vector of R
n and can be expressed in the base V

as x− ρzf =
∑n

k=1 αkvk where {αk}nk=1 are real coefficients. We can express the
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Figure 4.12: Performance Comparison between RRS-GS based detectors and GS
using extended BCH code for n = m = 16 system.

value of the objective function at the feasible point x as:

f(x) = ‖y−Hx‖22
= ‖H(x− ρzf )‖22

= ‖
n

∑

k=1

αkλkvk‖22 + c

=
n

∑

k=1

α2
kλ

2
k + c (4.10)

The constant c is independent of the vector symbol x and can hence be ignored

in the metric computation. In the following, for simplicity of description, we set

c = 0.

Let us define △k = {z ∈ R
n/z = ρzf +γvk, γ ∈ R} as a line in R

n originating

from the point ρzf and along a direction vk. Since λ1 ≤ λ2 ≤ ... ≤ λn, we can

note that objective function f(.) increases much slower along the first D lines

△1, ...,△D than along the last n−D lines. The idea of the diversification step is

to choose the feasible points in the ”vicinity” of the lines △1, ...,△D in order to

create a starting subset ξstart which contains a priori good starting point. A first

level of diversity is then obtained by the use of the D independent lines. Then,

for each line △k, k = 1, ..., D a second level of diversity is given by different

algorithm variants as following.
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4.3.3.1 Hypercube Intersection and Selection method

Let us define ξ , {−1, +1}n. Geometrically, this set comprises the vertices of

the unit hypercube of dimension n. The basic idea of this method is to find

the intersection points between △k and the faces of the unit hypercube. Given

a line △k, there are at most 2n feasible points Ik ⊂ {−1, +1}n representing

the projection on {−1, +1}n of all intersection points between △k and the 2n

hyperplanes defined as

PH = {z ∈ R
n/z(i) = s, s = −1, 1 and i = 1...n} (4.11)

Let us study the intersection between a given line△k and the hyperplane P(i, s) =

{z ∈ R
n/z(i) = s}. The problem is to obtain γs,i

k expressed in the form:

ρzf (i) + γs,i
k vk(i) = s (4.12)

This intersection includes two cases:

• If vk(i) 6= 0: γs,i
k =

s−ρzf (i)

vk(i)
then the generated point is βs,i

k = γs,i
k vk + ρzf .

The returned point is β̄s,i
k where the pth coordinate is equal to sign((s −

ρzf (i))vk(p) + vk(i)ρzf (p))× sgn(vk(i)), p = 1, .., n.

• If vk(i) = 0: the returned point β̄s,i
k = x̂zf .

Thus Ik = {β̄s,i
k }s=−1,1

i=1..n contains at most 2n distinct feasible points. The

starting subset for the intensification is defined as:

ξstart = ∪D
k=1ξk (4.13)

where ξk ⊂ Ik contains the C best candidate points of Ik, i.e. the C distinct

feasible points of Ik which minimize the objective function f(.). In figure 4.13

we show all intersections points {βs,i
k }s=−1,1

i=1..n and their corresponding candidate

points {β̄s,i
k }s=−1,1

i=1..n in case n = 2.

4.3.3.2 Canonical Basis Intersection and Selection method

The method of slowest descent is a general method for solving discrete optimiza-

tion problems developed in [SG01]. Here we will only describe its application to

diversification step. The idea of the method of slowest descent is only to con-

sider the discrete solutions x ∈ {+1,−1}n that are closest to the D lines in R
n
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Figure 4.13: Hypercube Intersection and Selection method : One to one mapping
from {βs,i

k }s=−1,1
i=1..n to {β̄s,i

k }s=−1,1
i=1..n for n = 2.

defined by ρzf and the eigenvectors belonging to the D smallest eigenvectors of

G = HTH. The points can be found as follows. Let vk be the kth smallest

eigenvectors of Gram matrix G. The set of intersection points corresponding to

a line defined by ρzf and vk can be expressed as

{βi
k = ρzf + γi

kvk, γi
k =

ρzf (i)

vk(i)
} (4.14)

where ρzf (i) and vk(i) denote the ith elements of the respective vectors ρzf and vk.

Each intersection point has only its ith component equal to zero, i.e., βi
k(i) = 0 .

For simplicity, we do not consider lines that simultaneously intersect more than

one coordinate hyper-plane since this event occurs with probability zero.

Any point on the line except for an intersection point has an unique closest

candidate point in {+1,−1}n. The figure 4.14 shows that an intersection point is

of equal distance from its two neighboring candidate points and two neighboring

intersection points share a unique closest candidate point. By carefully selecting

one of the two candidate points closest to each intersection point to avoid choosing

the same point twice, one can specify n distinct candidate points in {+1,−1}n
that are closest to the line defined by ρzf and vk. To that end, consider the
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Figure 4.14: Canonical basis intersection method : One to one mapping from
{ρzf , β

1
k , .., β

n
k } to {x̂zf , β̄

1
k , .., β̄

n
k } for n = 2. Each intersection point βi

k is of
equal distance from its two neighboring candidate points. β̄i

k is chosen to be one
of these two candidate points that is on the opposite side of the ith coordinate
hyper-plane with respect to x̂zf .

following set Ik:

{β̄i
k ∈ ξ, β̄i

k(p) = sign(βi
k(p)) p 6= i and β̄i

k(i) = −sign(x̂zf (i))} (4.15)

It is seen that (4.15) assigns to each intersection point βi
k a closest candidate

point β̄i
k that is on the opposite side of the ith coordinate hyper-plane from x̂zf .

Then , the starting subset for the intensification is defined as:

ξstart = ∪D
k=1ξk (4.16)

where ξk ⊂ Ik contains the C best candidate points of Ik, i.e. the C distinct

feasible points of Ik which minimize the objective function f(.).

4.3.3.3 Plane Intersection and Selection method

The Plane Intersection and Selection method is based on the study of the inter-

section between the line defined by ρzf and the kth slowest eigenvector vk and

all planes orthogonal to the vector nk = sign(vk), i.e. nk is the normal vector

to all planes. Let l be the number of non-zero coordinates of the normal vector.

There are exactly l + 1 distinct planes, which contain all candidate points belong
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ξ, defined as:

PH = {z ∈ R
n / zTnk = t, t = {−l,−l + 2, ..., l − 2, l}} (4.17)

In n-dimensional, a line △k is either parallel to a plane Pt or intersects it in a

single point. Let △k be given by the parametric equation: ρzf + γi
kvk, and the

plane Pt be given by the parametric equation: zTnk = t when it’s normal vector

nk. We first check if △k is parallel to Pt by testing if nT
k vk = 0 which means that

the line direction vector vk is perpendicular to the plane normal nk. If this is

true, then △k and Pt are parallel and either never intersect or else △k lies totally

in the plane Pt. Disjointness or coincidence can be determined by testing whether

any specific point of △k, say ρ, is contained in Pt, that is whether it satisfies the

implicit line equation: nT
k (ρ− xk,t) = 0, where xk,t ∈ ξ belongs to the plane Pt.

Let us study the intersection between a given line △k and the plane Pt. The

problem is to obtain γt
k expressed in the form:

γt
k =

t− nT
k ρzf

nT
k vk

, where t = {−l,−l + 2, ..., l − 2, l} (4.18)

then the generated point is βt
k = γt

kvk +ρzf . The returned point is β̄t
k = sign(βt

k).

Thus Ik = {β̄t
k}t=−l,−l+2,...,l−2,l contains at most l + 1 distinct feasible points.

The starting subset for the intensification is defined as:

ξstart = ∪D
k=1ξk (4.19)

where ξk ⊂ Ik contains the C best candidate points of Ik, i.e. the C distinct

feasible points of Ik which minimize the objective function f(.). In figure 4.15,

we show all intersections points {βt
k}t=−l,−l+2,...,l−2,l and their corresponding can-

didate points {β̄t
k}t=−l,−l+2,...,l−2,l in case n = 2.

4.4 GISD detector flow chart

The different steps and variants of geometrical intersection and selection detector,

presented in the previous section, are more clearly shown in Figure 4.16. The

GISD algorithm depends from two parameters D (the number of studied slowest

eigenvectors directions) and C (the number of the best candidate points at each

direction).
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Figure 4.15: Plane Intersection and Selection method: One to one mapping from
{βt

k}t=−l,−l+2,...,l−2,l to {β̄t
k}t=−l,−l+2,...,l−2,l for n = 2.

The following example illustrates the procedure: Let us give an 4-dimensional

example to illustrate the algorithms HISD, CBISD and PISD. The parameters

used by the GISD algorithm are n = 4, D = 1 and C = 3:

H =













−1.01 −1.43 0.30 −0.09

−0.12 −1.02 0.72 −0.55

−0.21 −0.92 0.97 −0.32

0.68 1.17 −0.34 −0.72













x =
[

1 1 1 1
]T

w =
[

0.18 0.50 −0.67 0.53
]T

y =
[

−2.05 −0.47 −1.15 1.32
]T

The coordinates of y with respect to the lattice are ρzf = [2.89,−0.90,−1.39, 0.08]T .

The first slowest eigenvector direction v1 can be found using the singular value

decomposition of the Gram matrix G = HTH.

• Detection using the HISD: The algorithm determines the line △1 de-

fined by {z ∈ R
n/z = ρzf + γvk, γ ∈ R} and generates a set I1 of all

intersection points between this line and PH. The generated subset is
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Figure 4.16: Flowchart of the proposed algorithm.
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Table 4.2: This table give all point in sign(I1) when we used the HISD detector.

Point x1 x2 x3 x4

coordinate 1 1 1 −1 1

coordinate 2 1 1 1 −1

coordinate 3 1 −1 1 −1

coordinate 4 −1 1 −1 1

‖y−Hxi‖22 2.90 6.01 7.98 9.46

Table 4.3: Application of greedy search in the case of HISD algorithm.

Point x1 x2 x3

‖y−H ·GS(xi)‖22 1.01 1.01 2.47

I1 = {β̄s,i
1 }s=−1,1

i=1..4 . In general, the subset sign(I1) ⊂ {−1, 1}4 contained at

most 8 distinct feasible points after redundancy suppress. In our exam-

ple, the subset sign(I1) contains only four feasible points. For each point

xi ∈ sign(I1), i = {1, 2, 3, 4}, the HISD algorithm calculates the quan-

tity ‖y −Hxi‖22 and sorts them in ascending order, see table 4.2. Finally,

we used the greedy search method to search the best neighbor solution to

the Maximum likelihood problem starting from just the first three feasible

points x1, x2, and x3 (see table 4.3). The Hypercube Intersection and Se-

lection detector generated solution is xHISD = GS(x1) = [1, 1, 1, 1]T which

has the minimum euclidean distance.

• Detection using the PISD: The algorithm determines the line △1 de-

fined by {z ∈ R
n/z = ρzf + γvk, γ ∈ R} and generates a set I1 of

all intersection points between this line and Pt. The generated subset is

I1 = {β̄t
1}t=−4,−2,0,2,4. In our example, the subset sign(I1) ⊂ {−1, 1}4 con-

tained 5 distinct feasible points after redundancy suppress. For each point

xi ∈ sign(I1), i = {1, 2, .., 5}, the PISD algorithm calculates the quan-

tity ‖y −Hxi‖22 and sorts them in ascending order, see table 4.4. Finally,

we used the greedy search method to search the best neighbor solution to

the Maximum likelihood problem starting from just the first three feasible

points x1, x2, and x3 (see table 4.5). The Plane Intersection and Selection

detector generated solution is xPISD = GS(x1) = [1, 1, 1, 1]T which has the

minimum euclidean distance.
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Table 4.4: This table give all point in sign(I1) when we used the PISD detector.

Point x1 x2 x3 x4 x5

coordinate 1 1 1 1 −1 1

coordinate 2 1 1 1 1 −1

coordinate 3 1 1 −1 1 −1

coordinate 4 1 −1 1 −1 1

‖y−Hxi‖22 1.01 2.90 6.01 7.98 9.46

Table 4.5: Application of greedy search in the case of PISD algorithm.

Point x1 x2 x3

‖y−H ·GS(xi)‖22 1.01 1.01 1.01

• Detection using the CBISD: In our example, this algorithm gives the

same results as the Plane Intersection and Selection detector.

4.5 Computation complexity of the GISD

This section evaluates the computational complexity of the proposed detection

algorithm. We first compute the number of multiplications and additions/sub-

tractions required for each geometrical technique approach in the diversification

step. Assume for simplicity that m = n. In the worst case scenario, the complex-

ity budget for diversification is shown in Table 4.6

GISD’s computation complexity depends on the parameters D and C. The

new algorithm can be subdivided in two parts. The first one is the calculation

of the Gram matrix G = HTH, the Moore-Penrose pseudo-inverse of channel

matrix defined as H+ = (HTH)−1HT , and uses the brute-force singular value

decomposition for the D smallest eigenvectors estimation. Thus, the dominant

complexity of the preparatory steps is O(n3) per data block. The complexity

Table 4.6: Complexity computation of HIS, PIS and CBIS techniques for diver-
sification step.

Op HIS PIS CBIS

Add/sub 2n3 + 9
2
n2 − 5

2
n n3 + 4n2 n3 + 2n2

Mult 2n3 + 3n2 n3 + 5n2 n3 + 3n2
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Table 4.7: Complexity of processing part of Geometrical Intersection and Selec-
tion Detector.
Detector Add / Sub Mult

HISD 2Dn3 + [9
2

+ C(3θ + 1)]Dn2 + (2θ − 5
2
)n 2Dn3 + [3 + C(2θ + 1)]Dn2 + θn

CBISD Dn3 + [2 + C(2θ + 1)]Dn2 + 2θn Dn3 + [3 + C(2θ + 1)]Dn2 + θn

PISD Dn3 + [4 + C(3θ + 1)]Dn2 + 2θn Dn3 + [5 + C(2θ + 1)]Dn2 + θn

of the first part can be shared by several consecutive L received vectors if the

channel variations are slow. The second part of the new algorithm has to be

performed for each received data vector. The worst case number of additions and

multiplications of the second part is expressed in table 4.7. Note that, the greedy

search method is iterated in average θ = 2 times. In the worst case scenario, the

total number of visited feasible points by HISD, PISD, and CBISD algorithm are

(DCnθ + 2Dn), (DCnθ + Dn), and (DCnθ + D(n + 1)) respectively.

The average complexity of well-known SD method has been claimed to be

polynomial time over certain ranges of rate, SNR and dimension, while the worst

case complexity is still exponential. However, recently, Jalden derive an exponen-

tial lower bound on the average complexity of SD [JO04]. The performance of

the proposed GISD is close to the ML performance, while the order of the worst

case complexity is lower as compared to SD (polynomial vs. exponential). Also

the main problem with the hardware implementation of existing decoding algo-

rithms (SD,SDP and VBLAST) is the lack of parallelism caused by its heuristic

structure. The proposed sub-optimal algorithm GISD can overcome this prob-

lem. For example, we can use the greedy search function in parallel way over a C

independent data starting points. Moreover, each slowest eigenvectors direction

can be studied separately.

4.6 Simulations and Discussions

In this section, we carry out some computer simulations to demonstrate the pro-

posed detection approaches. In addition, we will discuss the characteristics of

different variants of the GISD from the simulations results.
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4.6.1 Simulations

All experiments described here are for a 2M×2N real channel matrix system. We

provide simulation results demonstrating the performance of GISD algorithms.

4.6.1.1 Experiment 1 : MIMO

In this experiment, we will compare the performance of HISD, PISD, CBISD, SD

(sphere decoding) and other known detection algorithms. The first three algo-

rithms are implemented according to GISD flowchart in figure 4.16, respectively.

We fix the transmit antennas to N = 5 and change receive antennas M from 5,

up to 6. The constellation 4−QAM is used. According to the simulation model

defined in chapter 2, the received signal in a given symbol interval can be written

as

ỹ = H̃x̃ + w̃ (4.20)

where the entries of the channel matrix H̃ ∈ C
M×N and w̃ ∈ C

M×1 are indepen-

dent and identically distributed zero mean complex Gaussian random variables

with unit and σ2 variance, respectively. The equivalent real model contains 2M

equations and 2N integer unknowns that assume the values from {±1}. The

channel is assumed to be quasi-static. The matrix H̃ maintains constant during

every interval of L = 100 symbols, and then changes randomly. In the figure 4.17,

It can be seen the good performance of the new proposed geometrical approach,

when D = 2 and C = 4 comparing to the SDP detector. In fact, the required

SNR for a BER of 10−4 is 3.8 dB lower than that of SDP detector.

Figure 4.18 shows the bit error rate performance of different variants of the Ge-

ometrical Intersection and Selection detector with 4−QAM uncoded modulation

using N = 5 transmit antennas and M = 6 receive antennas over a quasi-static

Rayleigh fading channel. In this scenario, we notice that for D = 2 and C = 4

The proposed detector can achieve a quasi-ML performance. All GISD variants

outperform the MMSE and the SDP detector.

4.6.1.2 Experiment 2 : MC-CDMA

In this experiment, we will present the performance of HISD, PISD, CBISD, SD

(sphere decoding) and other known detection algorithms for a downlink MC-

CDMA system. The channel coefficients are modified for each transmitted sym-

bol. All users have the same power. We assume the power control being perfect,
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Figure 4.17: BER versus SNR for N = 5 and M = 5 MIMO system, comparison
of GISD variants, SDP and MMSE detectors.
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Figure 4.18: BER versus SNR for N = 5 and M = 6 MIMO system, comparison
of GISD variants, SDP and MMSE detectors.
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Figure 4.19: Comparison between SD detection, GISD variants (D = C = 4) and
others sub-optimum detector in a Rayleigh fading channel (Nu = 16 users)

i.e., at each time i, the received symbol power is equal to the transmitted symbol

power. Each user symbol is spread over Lc = Np = 16 sub-carriers with a real

Walsh-Hadamard sequence. Figure 4.19 shows the performance of GISD variants

in a Rayleigh fading channel for a fully loaded downlink MC-CDMA system with

Nu = 16 users and employing an uncoded 4-QAM modulation. It can be seen the

excellent performance of the proposed detector using D = 4 and C = 4. In fact,

the required SNR for a BER of 10−3 is 0.8 dB lower than that of SDP detector.

4.7 Channel Estimation Errors

In previous study, we always assumed that we have perfect channel knowledge at

the receiver, which allows us to compare the performance of different decoders.

However, the channel information is typically not perfect. A channel estima-

tor extracts from the received signal approximate channel coefficients during the

transmission. One method to accomplish this is to transmit pilot tones prior to

the transmission, by turning off all transmitter antennas except the ith antenna

at some time instance and sending a pilot signal using ith antenna. The fading

coefficients h̃ij are then estimated. Another way to estimate the channel fading

coefficients is to embed the pilot bits inside the signal or send an orthogonal
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sequence.

4.7.1 Error Model

The impact from the channel estimation errors will degrade the performance of the

system. To study the impact of the channel estimation errors on the Geometrical

Hypercube Intersection and Selection detectors algorithm, we introduce the error

model at the receiver [ZO03]

H̃ = γH̃0 +
√

(1− γ2)Ẽ (4.21)

where H̃0 represent the true channel matrix and Ẽ denotes the channel estima-

tion error. The elements of Ẽ are assumed to be zero mean, unit variance and

complex Gaussian. Here,γ ∈ [0, 1] is a measurement of how accurate the channel

estimation is. The value γ = 1 indicates no estimation decreases.

4.7.2 Simulation Results

As shown in Figure 4.20(a) and 4.20(b), the channel estimation errors with differ-

ent γ have given the sphere decoding algorithm with adaptive radius almost the

same bit error probability as the maximum-likelihood decoder. In this simulation,

we compared the performance of the sphere decoding algorithm against GISD and

other decoders including SDP and the MMSE, where codewords are modulated

using 4-QAM modulator, the number of the transmitter antennas N = 5 and

the receiver antennas M = 5. Both the sphere decoders and the GISD decoder

outperform the SDP decoder as well as MMSE decoder. Although we change the

value of γ, it is interesting to note that the performance of the proposed GISD

detector is usually better than SDP detector.

4.8 Conclusion

A method for quasi-maximum likelihood decoding based on intensification and

diversification is introduced. The proposed GISD provides a wealth of trade-off

between the complexity and the performance. The GISD allows a near-ML per-

formance with constant polynomial-time, i.e. O(n3), computational complexity

(unlike the SD that has exponential-time complexity for low SNR). Simulation
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(a) Bit error rate with channel estimation
error, γ = 0.9
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(b) Bit error rate with channel estimation
error, γ = 0.99

Figure 4.20: BER versus SNR. Comparison of different detector methods (SD,
PISD, HISD, SDSID, MMSE and SDP) with the same channel estimation error
for a 5× 5 uncoded MIMO system, iid channel matrix assumption.

results have shown that the GISD detector introduced only a small performance

degradation compared to ML detector. The effect of channel estimation error on

proposed detector performances was evaluated.

The inherent parallelism of GISD detector allows high throughput, low com-

plexity and low latency decoder. The new approach method can be efficiently

employed in the case of CDMA, MC-CDMA, MIMO systems.



Chapter 5

Extended GISD detector

In the previous chapter we have developed a robust detection technique, called

GISD, based on a geometrical approach to resolve the maximum likelihood de-

tection problem. By searching only over two or three smallest singular directions,

this method, provides a good compromise between computational complexity and

BER performances comparing to the sphere decoder.

The most computation complexity of the GISD detector is concentrated in the

pre-processing part. In fact, this step needs calculation of the unconstrained ML

solution given by ρzf = H+y and extraction of the D smallest singular vectors of

the channel matrix H using singular value decomposition. Nevertheless, recently

work in [SG01] gives a simple method, based on the fixed-step gradient descent,

to extimate jointly ρzf and the first smallest singular vector.

In section 5.1, we develop a new method to estimate the uncontrained ML

solution and the D smallest singular vector of channel matrix. This technique is

based on the fixed-step gradient descent, deflation method and Rayleigh quotient

iteration. In section 5.2, motivated by the success of the GISD in demodulat-

ing BPSK signaling, we investigate the application of the geometrical approach

detection for 16 quadrature amplitude modulation (16-QAM). Also, we explain

why the proposed method gives a poor performance. Section 5.3 proposes a new

soft quasi-ML detector that maximizes the log-likelihood function by deploying

the GISD. A list geometrical intersection and selection detector is presented to

yield soft-decision output by storing a list of symbol sequence candidates. How-

ever, the computation complexity of the new soft-output detector is marginally

increased compared to the original GISD algorithm.

96
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5.1 Pre-processing complexity reduced

Motivated by Spasojevic work in [SG01], this section gives an extended method

to reduce the complexity of the GISD pre-processing step which consists of:

• A simple zero-forcing (ZF) detection

ρzf = H+y

where H is an m×n real channel matrix, y is the received signal of length m,

H+ = (HTH)−1HT denotes the Moore-Penrose pseudo-inverse of the matrix

H. The complexity of finding the ZF estimation is essentially determined

by the complexity of finding the H+ matrix. The simplest and direct way

of calculating the pseudo-inverse is by means of QR factorization. The

complexity of ZF detector is of cubic order, O(n3) when m = n.

• Extract the D smallest eigenvectors of Gram matrix G = (HTH) which

corresponded to the D smallest right singular vectors of channel matrix H.

A direct method using the Singular Value Decomposition (SVD) can be

used. However, the brute-force computation complexity of this method is

O(n3) and the required space to store the data structure is O(mn + 2n2).

The complexity of GISD pre-processing step can be reduced using more other

efficient and simple methods. Furthermore, the eigenvectors of G are not func-

tions of the received signal. Both the linear operator required for estimation of

ρzf and the eigenvectors of G can be precomputed. Some classical methods that

can be used for largest eigenvector estimation are the Power’s method, Rayleigh’s

method, the inverse iterations, the Arnoldi method, and the Lanczos method (

see Appendix B for more information on these methods). However, these meth-

ods are not able to directly calculate the unconstrained estimation ρzf and the

D smallest eigenvectors of matrix G needed by the GISD detector.

5.1.1 Fixed-step gradient descent method

In a recent work, [SG01] investigates a simple iterative method based on the fixed-

step gradient descent algorithm to joint by estimate the smallest singular vector

of channel matrix H and the unconstrained minimizer ρzf of the cost function
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f(x) = ‖y −Hx‖22. In the following, we briefly give the overview of the theory

of such method.

The minimization of the cost function f() over R
n is given by an optimal

solution

ρzf = arg min
a∈Rn

f(a)

= arg min
a∈Rn
‖y−Ha‖22

= arg min
a∈Rn

aTHTHa− 2yTHa + yTy (5.1)

The iteration steps of the fixed-step gradient descent algorithm

ak+1 = ak + µg(ak) (5.2)

where g(a) = − ∂
∂a

f(a) denotes the gradient of f(a), a ∈ R
n, and µ > 0 is a design

constant that needs to be set to a sufficiently small value to assure convergence.

Note that, at the stationary point of the gradient algorithm ρzf ; g(ρzf ) = 0 and,

therefore, ρzf is also a stationary point of the cost function.

The fixed step gradient descent method’s iteration mapping function Mg(a)

is

Mg(a) = a + µg(a) (5.3)

then Mg(a) can be approximated with the first two terms of its Taylor expansion

in the neighborhood of ρzf defined as U(ρzf ) ⊂ R
n. That is, for any ak ∈ U(ρzf );

the following approximation holds:

Mg(ak) ≈ ρzf + Jg(ρzf )(a
k − ρzf )

where Jg(a) , ∂
∂a

Mg(a) is the Jacobian matrix of the mapping Mg(a). Or,

equivalently,

(ak+1 − ρzf ) ≈ Jg(ρzf )(a
k − ρzf )

Let defined δak = ak − ρzf . It is now clear that δak+1 = Jg(ρzf )δa
k defines the

iterations of the power method (see Appendix B) for computation of the largest

eigenvector of the Jacobian matrix Jg(ρzf ). Thus, for a sufficiently large k.

ak = ρzf + cpλmax[J
g(ρzf )]
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follows from the properties of the power method for some constant cp. Here

λmax[J
g(ρzf )] denotes the maximum eigenvector of Jg(ρzf ). That is, ak is a point

on the line defined by ρzf and the largest eigenvector of Jg(ρzf ). The Jacobian

of the fixed step gradient descent iteration mapping can be expressed in terms of

the Hessian of the cost function as

Jg(a) = I− µK(a)

where K = ∂2

∂a∂aT f(a) denotes the Hessian matrix of the cost function f(a). It

is clear that K(a) and Jg(a) have equal eigenvectors and that their eigenvalues

have the following relationship:

λi[J
g(a)] = 1− µλi[K(a)]

where λi[K(a)] denotes that ith eigenvalue of matrix K. For convergence it is

required that

|λi[J
g(a)]| = |1− µλi[K(a)]| < 1

The necessary and sufficient condition for the convergence of the fixed-step

gradient descent algorithm is that the step-size parameter µ satisfy the double

inequality [Hay02]

0 < µ <
2

|λmax[J
g(a)]|

A practical requirement for convergence is µ ≤ 2/tr[K(a)] where tr[K] denotes

the trace of matrix K. Furthermore, one can see that the largest eigenvector

of Jg(a) corresponds to the smallest eigenvector of K(a). Finally, the minimum

eigenvector can be obtained based on two successive iterates of the fixed step

gradient descent method as v1 ≈ ak+1 − ak ; for a sufficiently large k and ρzf =

ak+1.

5.1.2 An extended of fixed-step gradient descent method

The previous section shows a method which determines ρzf and the first smallest

eigenvector v2 of matrix K = ∂2

∂a∂aT f(a) = G of the cost function f(a). This

section describe an extended method to determine the D−1 smallest eigenvector

{v2,v3, ...,vD} of matrix G. The basic idea of the proposed method is the used

of deflation and Rayleigh’s methods on the Jacobian matrix J = I − µG of the
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mapping Mg(a). Thus, we found the (D − 1) largest eigenvectors of the matrix

J corresponds to the (D−1) smallest eigenvectors of the Hessian matrix K = G.

5.1.2.1 Deflation method

A well-known technique in eigenvalue methods is the so-called Wielandt deflation

[Saa92]. Suppose that we have computed the eigenvalue α1 of largest modulus

and its corresponding eigenvector z1 of a given matrix A by some algorithm such

as, in the simplest case, the power method. A common problem is to compute the

next dominant eigenvalue α2 of A and its corresponding eigenvector z2. An old

artifice for achieving this is to use a deflation procedure: a rank one modification

of the original matrix is performed so as to displace the eigenvalue α1 to the origin,

while keeping all other eigenvalues unchanged. Thus, the eigenvalue α2 becomes

the dominant eigenvalue of the modified matrix and, therefore, the power method

can subsequently be applied to this matrix to compute the next dominant pair

(α2, z2). The deflated matrix is of the form

B1 = A− α1z1z
T
1

thus, B1 has the same eigenvectors as A, and the same eigenvalues as A except

that the largest one has been replaced by 0. Thus we can use the power method

with Rayleighs coefficient to find the next largest eigenvector of A and so on. In

our case, we applicate the deflation technique on the matrix J = I− µG.

5.1.2.2 Rayleigh method

The Rayleigh quotient iteration (RQI) method presented in Algorithm 2 is the

simplest iterative method to finds the eigenvalue of matrix A which has the largest

absolute value and a corresponding eigenvector. In general, Rayleigh quotient

iteration will need fewer iterations to find an eigenvalue/eigenvector pair than

the power method.

5.1.2.3 Method summary/complexity

In summary, the extended fixed-step gradient descent method requires the fol-

lowing:

1. Estimate ρzf and the first smallest eigenvector v1 of matrix G = HTH
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Algorithm 2: The RQI method

Data: z0 arbitrary, a matrix A, and ε : tolerance.

Result: (αmax, zmax) largest eigenpair of matrix A.

begin
z = z0/‖z0‖2
flag = 1
while flag == 1 do

y = Az
α = zTy
y = y/‖y‖2
err = y− z
if ‖err‖2 < ε then

flag = 0

z = y
αmax = α
zmax = z

end

using the fixed-step gradient descent algorithm appendix C.3. Let’s Jk=1 =

I− µG.

2. Generate Jk+1 = Jk − αkvkv
T
k using the deflation procedure on the matrix

Jk and its largest eigenpair (vk, αk).

3. Use the rayleigh method to finds the largest eigenvector of matrix Jk+1

corresponds to the (k + 1)th smallest eigenvector of the matrix G.

4. Repeted step 2 and 3 until we find the D − 1 smallest eigenvectors of the

matrix G.

Regarding the complexity of the proposed method, the following considera-

tions hold. In every step, we must multiply the n×1 vector z to the n×n matrix,

which is possible with complexity O(n2).

5.1.3 Performances of the extended method

In this section, we compare the performance of HISD detector (using channel

inversion matrix and SVD decomposition to determinate the vector ρzf and the

D smallest eigenvectors of the channel matrix H) and an modified HISD detec-

tor called EHISD (the extended fixed-step gradient descent method is used to
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Figure 5.1: BER versus SNR, comparison between sphere decoder ,EHISD (D = 2
and C = 4), and HISD (D = 2 and C = 4)

estimate jointly ρzf and the D smallest singular vectors of the channel matrix

H) under N = 5 transmit antennas and M = 6 receive antennas MIMO system.

Perfect channel estimation is assumed. The Rayleigh flat fading channel is con-

sidered. The channel coefficients are modeled with an independent zero mean

complex Gaussian random variable with variance 0.5 per dimension. Figure 5.1

shows that the EHISD has the same BER performance as the HISD detector.

However, its computation complexity of pre-processing step is smaller than the

HISD.

5.2 16-QAM GISD detection

Consider the standard linear channel model

ỹ = H̃x̃ + w̃ (5.4)

where ỹ is the received signal of length M , H̃ is an M ×N channel matrix, x̃ is

the length N vector of transmitted symbols,and w̃ is a length M complex normal

zero-mean noise vector with covariance σ2Ĩ. The symbols of x̃ belong to some

known complex constellation (16-QAM), i.e., the real part and the imaginary part
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of x̃i for i = 1, 2, .., N belong to the set {±1,±3}. The real-valued equivalent of

the model (5.4) is given by

y = Hx + w (5.5)

where H is an m × n real valued channel matrix with m = 2M and n = 2N .

Assuming that H is known at the receiver, the optimal detector minimizing the

average error probability of detection is given by the Maximum Likelihood (ML)

detector which solves the following combinatorial optimization problem

x̂ = arg min
x∈{±1,±3}n

‖y−Hx‖22 (5.6)

The problem (5.6) is a combinatorial problem and can be solved in a brute-force

fashion by searching over all of the 42N possibilities. Clearly, as N increases, this

option becomes impractical. Thus, we propose an approximate solution to the

problem via geometrical approach using the GISD detector.

5.2.1 Extended GISD

To further improve the search of the sub-optimal solution in the case of 16-QAM

modulation, The GISD detector based on an intensification stategy (concentrate

the search in a localized region) and a diversification stategy (direct the search

to unexplored regions) can be used as following:

• diversification: As shown in chapter 3, the idea of the diversification step

is to choose the feasible points in the ”vicinity” of the lines △1, ...,△D in

order to create a starting subset ξstart which contains a priori good and

promising starting point. A first level of diversity is then obtained by the

use of the D independent lines. Then, for each line △k, k = 1, ..., D a

second level is obtained by the intersection between △k and the faces of the

hypercube having ξ as vertices in the case of hypercube intersection and

selection detector variant. Given a line △k, there are at most 4n feasible

points Ik ⊂ {±1,±3}n representing the projection on search space of all

intersection points between △k and PH = {z ∈ R
n/z(i) = s}i=1...n

s=−3,−1,1,3.

In figure 5.2, we show all intersections points between PH and the kth line

directed by the kth smallest singular vector of the channel matrix H.
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Figure 5.2: Diversification using hypercube intersection and selection variant for
16-QAM modulation and n=2

Figure 5.3: Two dimensional visualization of a Q = 1 neighborhood in case of
16-QAM modulation

• intensification: Intensification refers to focusing on the search on promis-

ing start solutions. Hence, we choose to apply a simple greedy search proce-

dure as described in chapter 3. In figure 5.3, we illustrate the points linked

to starting point x0 where Q = 1 for 2-dimensional case.

5.2.2 Simulation results

The bit error rate of the modulation 16-QAM is presented in figure 5.4(a) for

five receive antennas and five transmit antennas uncoded MIMO system. We

compare BER performances of the proposed HISD detector where D = 2 and

C = 4, the sphere decoder (optimal detector), and the HISD without the inten-

sification phase. We note that the performance of the HISD is dramatically bad
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as compared to that of the sphere decoding. In fact, the required SNR for a BER

of 10−3 is 3.8 dB higher than that of SD detector. One of the reason of this bad

performance can be explained by the high number of local minima makes any

approach with greedy search methods doomed to failure. The second reason is

that diversification step don’t give a very good promising start points (see figure

5.4(b)).
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Figure 5.4: Performance comparison for M × N uncoded MIMO systems with
N = M = 5, C = 4 and D = 2.

5.3 Soft-output detection

In wireless communications, quite often we wish to estimate the n×1 information

bearing symbol vector s from the m× 1 data vector y in the block coding model

y = Hs + w (5.7)

where s has entries belonging to a finite alphabet Ã, H is a known m × n

real or complex matrix, and w is a m × 1 Gaussian noise vector. This prob-

lem is encountered in many applications including single-antenna block transmis-

sions, space-time (ST) multi-antenna transmissions, or, in multi-user detection of

CDMA, MC-CDMA transmissions. When s is drawn from QPSK or rectangular

QAM constellations, the block coding model (5.7) can be easily transformed to a
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real model where s, y, H and w all belong to the real field. Since in this paper

we only focus on QPSK and rectangular QAM signalling, we assume that (5.7)

is a real model.

When s is uncoded and w is white Gaussian, the optimal solution of (5.7)

in the sense of minimizing the bit error rate (BER) is offered by the maximum

likelihood (ML) decoder. However, when s is coded with some kind of error

control code (ECC), soft iterative detection is capable of approaching the ultimate

performance limit dictated by the capacity of the channel H using maximum

a posteriori (MAP) decoding. Such an approach has been followed in [HB03],

where a soft, so called List Sphere Decoding (LSD) algorithm, has been derived

to compute the extrinsic information based on a list of candidates obtained inside

a preset sphere.

To generate soft information in the case of GISD algorithm, a certain number

of candidates points including GISD solution are required. Thus, GISD can be

modified to be a List Geometrical Intersection and Selection Decoder, which

finds a list of most likely points, and the soft information can then be generated

based on these points [HB03]. Since generating such information increases the

computational complexity for selecting a specific number of candidate points Nc,

we can use efficient architecture of the GISD (pipelining and parallelism) for high

throughput. Suppose that each entry s(m) of the symbol vector s in (5.7) is

obtained by mapping a Q × 1 binary vector x<m> with ±1 entries, and let x =

[(xT
<1>,xT

<2>, .....,xT
<n>]T . The MAP decoder for obtaining x from y minimizes

the bit error rate (BER) by evaluating the log-likelihood ratio (LLR) [HOP96] of

the a posteriori probability of each bit x(k)

LD(x(k)|y) = ln
P [x(k) = +1|y]

P [x(k) = −1|y]
(5.8)

Assume {x(k)} are independent due to the random interleaver, Equation (5.8)

can be further expressed as:

LD(x(k)|y) = LA(x(k)) + ln

∑

x∈Xk,+1
P [y|x] · exp{1

2
xT

[k]LA,[k]}
∑

x∈Xk,−1
P [y|x] · exp{1

2
xT

[k]LA,[k]}
(5.9)

where Xk,+1 := {x| x(k) = +1}, Xk,−1 := {x| x(k) = −1}, LA(x(k)) =
P [x(k)=1]

P [x(k)=−1]
denoting the a priori information of x(k), x[k] is the sub-vector of x
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obtained by omitting its kth element x(k), and likewise LA,[k] is obtained from LA

by omitting its kth element LA(x(k)).

Since w is white Gaussian, using the max-log approximation [RVH95], we can

approximate the extrinsic information of x(k) as [HB03]

LE(x(k)|y) ≈ 1

2
max

x∈Xk,+1

{−1

σ2
‖y−Hs‖22 + xT

[k]LA,[k]}

−1

2
max

x∈Xk,−1

{−1

σ2
‖y−Hs‖22 + xT

[k]LA,[k]} (5.10)

Unfortunately, even with simplification, computing LE(x(k)|y) is exponential

in the length of the bit vector x or the number of symbols in the constellation

Ã: To find the maximizing hypotheses in (5.10) for each x(k), there are 2nQ−1

hypotheses to search over in each of the two terms. For even a moderate block

size n, or bits per symbol Q, this complexity may be overwhelming.

We are interested in computing (5.10). Finding the maximum likelihood esti-

mate ŝ does not necessarily help, because, although it is the estimate that makes

f(s) = ‖y−Hs‖22 smallest, it is not necessarily the estimate that maximizes the

two terms in (5.10).

However, The GISD structure generate a list L of the Nc points s that make

f(s) smallest. In addition, this list contains the maximizer of (5.10) with high

probability. Hence, L contains the GISD estimate and Nc−1 neighbors for which

f(s) is smallest. The ”soft” information about any given bit x(k) is essentially

contained in L because if there are many entries with x(k) = 1 then it can be

concluded that the likely value for x(k) is indeed one, whereas if there are few

entries in L with x(k) = 1, then the likely value is minus one.

Equation (5.10) is approximated using L as

LE(x(k)|y) ≈ 1

2
max

x∈L∩Xk,+1

{−1

σ2
‖y−Hs‖22 + xT

[k]LA,[k]}

−1

2
max

x∈L∩Xk,−1

{−1

σ2
‖y−Hs‖22 + xT

[k]LA,[k]} (5.11)

where s = map(x). For different LGISD variants, the number of candidate points

Nc is alway equal to DCnθ where D denote the number of studied slowest direc-

tion, C define the number of candidate point at each slowest direction, and θ is
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the iteration number of greedy search method.

The LGISD is a generalization of the GISD. Rather than finding only the

best argument, if finds the best Nc ones. It stores each of these arguments xp and

their corresponding value vl in a list L = {xp, vl} for l = 1...Nc. The LGISD is

implemented by modifying the GISD algorithm. Each time a possible argument

is found, the LGISD checks whether it is better than any of the arguments in the

list, and if so it exchanges them. This search requires an order of Nc comparisons,

and is executed for every vector checked in the intensification step.

5.3.1 Simulation results

In this section, we present simulations using a parallel concatenated (turbo) ECC

with rate R = 1/2, as in [BGT93]. Each constituent convolutional code has

memory 2, feedback polynomial Gr(D) = 1+D+D2, and feedforward polynomial

G(D) = 1 + D2.The interleaver size of the turbo code is 512 information bits.

We choose the number of inner iterations for the turbo decoding module to be

10. As in [HB03], we generate independent Rayleigh flat fading channels between

transmit/receive antennas and assume perfect channel estimation at the receiver

end.

Consider a BLAST system with N transmit and M receive antennas as shown

in figure 5.5. Figures 5.6 and 5.7, respectively, show the diagrams of the BLAST

transmitter and receiver. The information bits b are first encoded by an ECC

module to yield c, and then go through a random interleaver. Interleaved bits

c̃ are mapped to 4-QAM symbols. 4-QAM symbol vector x is transmitted using

BLAST scheme. At the receiver end, the soft detector first generates the bit

metrics and then rearranges them.

In the 8 × 8 MIMO system case, figure 5.8(a) compares the performance of

proposed soft output LGISD versus the List sphere decoding (LSD) with can-

didate lists of maximal length Ncand = 1024 as show in [HB03] and the shifted

spherical list APP detector [BGBF03]. It is seen that for the 8× 8 scenario the

shifted spherical list APP detector has a slightly better performance than the

LGISD decoder with parameters (D = 3 and C = 4).

In figure 5.8(b), the BER performance between three soft output detectors

is compared: List sphere decoding, List geometrical intersection and selection

detector, and soft output semidefinite programming. The result presented is for

N = 16 and M = 16 MIMO system. The BER difference is not even noticeable
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Figure 5.5: Diagram of a MIMO system.

Figure 5.6: Diagram of a BLAST transmitter employing error control code (ECC).

Figure 5.7: Diagram of a BLAST receiver employing turbo decoder.
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between the LGISD with parameters D = 3 and C = 4 and the soft output SDP.

At the bit error rate of 10−4, LGISD performance is only less than 0.2 dB from

the LSD with candidate lists length Ncand = 1024.
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Figure 5.8: BER curves as a function of SNR for m × n channel transmitting
4-QAM with R = 1/2 memory 2 turbo code.

5.4 Conclusion

In this chapter, we extended the application of the fixed-step gradient descent

method for joint estimation of D slowest descent directions and the unconstrained

minimizer ρzf . The developed method overcome the high computation of the

SVD decomposition and the matrix inversion suggested in the first version of

the GISD detector. The technique of intensification and diversification has been

applicated to 16-QAM modulation, the result (figure 5.4(a)) have demontrated

that the diversification step don’t give a very good promising start points. This

unresolved problem will be one of the topics for future work. The GISD has been

extended to generate a soft output decision for forward error correcting codes.



Chapter 6

VLSI implementation of GISD

detection

The GISD have potential to be of great use in future wireless communications

systems due to its ability to greatly reduce the size of the exponential search space

that needs to be processed. However, for this to be useful, it must also be practical

for implementation in very large scale integrated (VLSI) circuits. The parallelism

of the algorithm is explored based on the data dependency analysis and an efficient

hardware architectures are developed with two levels of parallelisms:

1. The parallel execution of the D geometrical intersection and selection mod-

ules, where D denotes the number of studied directions.

2. The parallel execution of the C greedy search modules, where C denotes

the number of best starting solutions at each studied directions.

In this chapter, An implementation on a FPGAs/DSPs multiprocessor moth-

erboard of the GISD detection technique is discussed. Section 6.1 is mainly

focussed on a comparative performance/complexity study where other norms are

used in both intensification and diversification steps. The impacts of GISD pa-

rameters on performances and computation complexity are looked in section 6.2.

The rapid prototyping platform, used for hardware implementation, was pre-

sented in section 6.3. Section 6.4 investigates various quantization schemes of the

GISD. Moreover, a finite word length analysis for an uncoded 5× 5 MIMO sys-

tems is given. The GISD detection block diagram corresponding to case where the

parameter D = 1 is presented in section 6.5. Moreover, a globally-asynchronous

111
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locally-synchronous technique, to interconnect different GISD unit’s, are pre-

sented in section 6.6. The chapter ends with a basic VLSI implementation of the

GISD detector where D = 1 and C = 4.

6.1 Simplified norm algorithm

The simplified norm algorithm was first introduced to sphere decoding in [AMM+05]

and can be used to reduce complexity of the GISD algorithm on both the circuit

and the algorithmic levels, at the cost of a minor performance degradation. The

main idea is to approximate the l2−norm by a lp−norm respectively according

to

f(x) = ‖y−Hx‖22
≈ ‖y−Hx‖pp, p 6= 2 (6.1)

The three properties that all norms satisfy are:

1. ‖x‖p =
∑n

i=1(|x(i)|p)1/p ≥ 0, and ‖x‖p = 0 only if x = 0.

2. ‖αx‖p = |α|‖x‖p, where α is a scalar.

3. ‖x + y‖p ≤ ‖x‖p + ‖y‖p (triangle inequality).

Suppose we have two norms, Say the p-norm and the q-norm where p ≤ q, then

the following inequality is satisfied

1 ≤ ‖x‖p‖x‖q
≤ n

q−p

pq

Since the ratio between any two norms length are bounded below and above by

constants, any two norms may be considered equivalent. It can be observed from

the inequality that as q −→ ∞, q−p
pq

approaches 1
p

and ‖x‖p approaches ‖x‖∞.

The most commonly used approximate norms are the l1- and l∞-norms which

are defined as

• l1-norm: The l1-norm is the vector norm defined to be the sum of the

absolute vector components

‖x‖1 =
n

∑

i=1

(|x(i)|)
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where x is a vector of order n. This norm is used most often when looking

for the most robust answer since the l1-norm is not affected greatly by

outliers. An outlier is, given a set of data, an extreme measurement that

stands out from the rest of the data and may be an incorrectly recorded

observation.

• l∞-norm: The l∞-norm is the vector norm defined to be the maximum

value of the absolute component values of the vector.

‖x‖∞ = max(|x(1)|, |x(2)|, ..., |x(n)|)

where x is a vector of order n. This norm is used most often when gross

discrepancies are to be avoided with the data.

In order to fully assess the impact of the above described norm approximations

on throughput, we shall study the influence of the reduced complexity norms on

the different GISD steps.

• Intensification: Approximating the l2-norm by the l1-norm or the l∞-

norm on the intensification step results in a modified GISD algorithm that

no longer implements an ML detector. The impact on BER of using the

l1-norm or the l∞-norm instead of the l2-norm is quantified in figure 6.1(b)

for N = 5 transmit antennas and M = 5 receive antennas MIMO systems

with uncoded 4-QAM modulation. It can be seen that the GISD using the

l1-norm still have a good BER performance comparing to the SDP detector.

In fact, at the bit error rate of 10−5, it is only less than 1 dB from the Sphere

detector; whereas the robust SDP is about 1, 6 dB. In table 6.1, we compare

the amount of arithmetic operations needed to determine the best neighbors

point to a given start feasible point using different norms. Note that θ is

the number of iteration of greedy search method typically equal to 2.

• Diversification: To select best starting candidate points in the geometrical

diversification, we can approximate the l2-norm by the l1-norm or the l∞-

norm. Figure 6.1(a) shows the case of uncoded M × N MIMO system

(M = N = 5). As we seen, the HISD variant still shows a better result than

SDP not only in BER but also in the complexity that it enjoys. The number

of additions/subtractions and multiplications of HISD using different norm

in diversification step is expressed in table 6.2.
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Figure 6.1: Performance comparison for 5 × 5 MIMO systems with uncoded 4-
QAM modulation, C = 4 and D = 2.

Table 6.1: Complexity of greedy search function using different norms when n =
2N , and θ is the iteration number.

Greedy search Add / Sub Mult

l2-norm Appendix C.1.1 θn3 + 2θn2 θn3 + θn2

l1-norm Appendix C.1.2 θn3 + 2θn2 θn3

l∞-norm Appendix C.1.3 θn3 + θn2 θn3

Table 6.2: Complexity of diversification step using different norms when n = 2N .

HISD Evaluation Add / Sub Mult

l2-norm Appendix C.2.1 2n3 + 4n2 2n3 + 2n2

l1-norm Appendix C.2.2 2n3 + 4n2 2n3

l∞-norm Appendix C.2.3 2n3 + 2n2 2n3
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Table 6.3: Relative Cost per Operation.

Addition 1

Multiplication 10

Division 40

Square Root 50

6.2 GISD Parameters Impact

The BER performance and computational complexity of the GISD detector de-

pends heavily on it’s two parameters:

• D: number of smallest right singular vectors of the channel matrix H.

• C: number of best candidates on each smallest direction.

In the following, we looked to parameters impact on the bit error rate (BER) and

the computation complexity. For the estimation of the impact of the parameters

on the HISD complexity. We will study the complexity of the SD and HISD in

their searching process, we assign a relative cost for each operation (addition,

multiplication, division, square-root). Table 6.3 show the relative cost assigned

to each type of operation. Note that the cost of an addition is set to 1 and all

other operation costs are with respect to this baseline value [Net03].

1. BER/complexity versus D

Simulation results comparing the different BER performances when we fix

the number of candidate points C to 4 and increase the number of slowest

eigenvector directions D ∈ {1, 2, 3} are given in figure 6.2(a). This simu-

lation demonstrates that the HISD with only two search direction D = 2

offers a significant performance gain over the SDP detector. Searching one

more direction D = 3 do not results in some additional performance im-

provement. Further increase in the number of search directions only results

in a diminishing improvement in performance. The result of the comparison

of the complexity of the HISD and sphere decoder algorithms is on figure

6.2(b). We can see that the computation complexity of HISD is almost

constant compared to the Sphere Decoder.

2. BER/complexity versus C
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Figure 6.2: BER/Complexity of HISD detector for 5 × 5 MIMO systems with
uncoded 4-QAM modulation, C = 4 and D ∈ {1, 2, 3}.

Here, we consider HISD performance for uncoded 4-QAM modulation. As in

the case of the previous analysis, we assess the impact on BER performance

of various value of parameter C. We fix the number of slowest eigenvector

directions D to 2, the number of transmitting antennas N to 5, the number

of receiving antennas M to 5, and increase the number of candidate points

C ∈ {1, 2, 3, 4}. Figure 6.3(a) compares the BER of the sphere decoding

with that of the HISD variants as a function of the parameter C. As C

increases, the HISD performs close to the SD. The result of the comparison

of the complexity of the SD and BB algorithms is on figure 6.3(b)). We can

see that the GISD method have a lower complexity compared to the Sphere

Decoder.

6.3 Architecture description

Our rapid prototyping platform architecture, named PALMYRE [Bom04], is

based on a peripheral component interconnect (PCI) Sundance Multiprocessor

motherboard where one DSP-based module and one FPGA module are plugged.

As illustrated in Figure 6.4, two different communication formats can be used: a

8-bit bidirectional format, denoted by slow port, allowing 20 Mbps transfer rate,
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Figure 6.3: BER/Complexity of HISD detector for M ×N MIMO systems with
uncoded 4-QAM modulation, N = M = 5, n = 2N , D = 2 and C ∈ {1, 2, 3, 4}.

and a 16-bit bidirectional format, denoted by quick port, allowing 200 Mbps

throughput.

The SW module uses the TMS320C6701 DSP from Texas Instrument. This

component is based on a very long instruction word (VLIW) architecture making

it possible to compute 8 operations per cycle at a 167MHz frequency. The FPGA

is a XC2V2000 Virtex II with 2 Mega system gates. Memory blocks are also avail-

able in the FPGA. Dedicated components are used on the SW module to make

possible data exchanges between the DSP peripherals and the communication

ports. The FPGA is configured using a bitstream sent by a DSP.

6.3.1 Key requirements

• Scalability : Communication systems offer a large variety of new signal pro-

cessing algorithms, in particular new coding and detection strategies. The

complexity of these algorithms can become very large, therefore an extend

able platform is required. A modular approach, where additional processing

power can be added (DSPs and/or FPGAs) is desirable.

• Flexibility : The signal processing load is best spread among different pro-

cessing units. The most common in communications are FPGAs, DSPs.
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Figure 6.4: Sundance architecture description.

High rate data-path dominated operations, e.g. transmit and receive filters,

are best located in FPGAs, whereas more control oriented operations, e.g.

signal detection, are best implemented in DSPs. Due to the possibility to

resort to the C programming language for programming DSPs, e.g. using

TIs Code Composer Studio [Ins]. DSPs are pre-destinate for algorithms

under research. The possibility to partition the processing load in a flexible

way onto DSPs and FPGAs is a key requirement.

In order to account for these constraints a modular based testbed structure is

preferred. The testbed is located in host DSP, containing the modules for trans-

mission, pre-processing step of HISD and reception. The block diagram of the

transmitter and receiver is indicated in figure 6.5.

6.4 Finite word length analysis

While the HISD is developed using floating-point arithmetic, its implementation

using Very-Large-Scale-Implementation (VLSI) requires fixed-point arithmetic for

the sake of hardware cost and speed. The reduction of the bit width almost

linearly reduces the design size, hardware complexity and power consumption.

However, the stability of the algorithm and the performance may suffer from

excessive finite word length effects, due to the overflow and quantization noise,



CHAPTER 6. VLSI IMPLEMENTATION OF GISD DETECTION 119

Figure 6.5: Block diagram of the HISD testbed.

unless all signals are scaled properly and sufficient word length is assigned. So it is

important to find a reduced word-length with negligible performance degradation.

In this section, the finite word length effects is analyzed on the performance

of the proposed VLSI architecture for the HISD algorithm. The possible trade off

between hardware complexity and detecting performance is discussed. It should

be noted that the quantization analysis is specific to the proposed VLSI archi-

tecture, and the quantization results are dependent on the system model stated

earlier. Let q(w, t) denote a quantization scheme in which totally w bits are used,

of which t bits are used for the integer part of the value. With this quantization

scheme, a value has t bits of dynamic range and w−t bits of precision. The quan-

tization schemes of various variables of the HISD have been analyzed in Matlab

and systemC as following:

1. Write floating-point model of GISD in Matlab (floating-point).

2. Convert the Matlab model to C++ model (floating-point).

3. Analyze the dynamic range of different variables (floating-point).

4. Use systemC fixed-point data types (fixed-point).

5. Generate a dynamic link library to be used by Matlab (fixed-point).

6. Simulate the Fixed point model and look to BER performance (fixed-point).
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The least possible finite word length required for each variable is firstly deter-

mined in turn by assuming that other variables are in infinite precision, then the

word length of each variable is further refined with all of variables considered in

finite precision. The simulation is based on the case of uncoded multiple antenna

system with N = 5 transmit antennas and M = 5 receive antennas to simplify

the analysis, but it is straightforward to generalize the results to the case of any

number of antennas.

• Quantization of the channel matrix H: it is crucial to the behavior of

the geometrical intersection and selection detector, as it determines the

computational precision of the objective function values in different feasible

points. A small word length may result in poor performance, though a large

word length may cost more hardware. The maximal absolute value of H is

observed to be smaller than 7. Thus, 4 bits of dynamic range are needed

for the quantization of the channel matrix. Various fractional precisions for

H from 2 bits to 5 bits have been examined in this work (figure 6.6(a)). It

turns out to be no significant when the number of fractional bits is lager

than 4. Thus the q(8, 4) scheme is the optimal choice.

• Quantization of the kth smallest eigenvector vk: the set of vectors {vi}ni=1

is an orthonormal basis of R
n. The maximal absolute value of different

coordinates of each vector is less or equal to one. Thus, 2 bits of dynamic

range are needed for the quantization of the smallest eigenvector. Various

fractional precisions for vk from 2 bits to 4 bits have been examined in

the figure 6.6(b). By our simulation, q(6, 2) scheme is sufficient for the

quantization of the vector vk.

• Quantization of the received vector y: the maximal absolute value of differ-

ent coordinates of the received vector is less or equal to 15. Thus, 5 bits of

dynamic range are needed for the quantization. To determine the number

of bits required to represent fractional precision, we fix t to 5 and compare

the simulated detector performance using varying w bits until the perfor-

mance loss becomes unacceptable. The results are plotted versus BER in

Figure 6.7(a). To meet a requirement of a BER floor below 10−4, we select

3 bits to use for fractional precision.

• Quantization of ρzf : Various quantization schemes for the unconstrained

solution ρzf : q(6, 2), q(6, 3) and q(6, 4), have been investigated for GISD
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Figure 6.6: Performance comparison of various quantization schemes for H and
vk: 5× 5 MIMO system with uncoded 4-QAM modulation, C = 4 and D = 2.

detector where D = 2 and C = 4. Infinite precision and finite word length

simulation results are shown in figure 6.7(b). It can be seen that the quanti-

zation scheme q(6, 3) perform well compared to the sphere decoding infinite

precision scheme.
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Figure 6.7: Performance comparison of various quantization schemes for y and
ρzf : 5× 5 MIMO system with uncoded 4-QAM modulation, C = 4 and D = 2.

The quantization scheme for the geometrical intersection and selection detector

is summarized in table 6.4.
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Table 6.4: Quantization schemes summary.

Variable Quantization Scheme

H q(8, 4)

y q(8, 5)

vk q(6, 2)

ρzf q(6, 3)

Figure 6.8: Block diagram of the GISD detector.

6.5 GISD Architecture

Among various of sub-optimal detectors, the GISD is attractive to hardware im-

plementations due to lower complexity and numerical stability. In this section,

we propose a VLSI architecture for the GISD detector and the correspond imple-

mentation results. The block diagram that illustrates the detector architecture

is shown in Figure 6.8.

The geometrical intersection (GI) module calculate all intersections points

and projected them on set {−1, 1}n where n = 2N . We assumed that the vectors

vk and ρzf have been pre-calculated using a pre-processor, e.g., DSP in our im-

plementation. The evaluation (EVA) module calculate the value of the objective

function f() = ‖y −Hx‖2p for all the feasible points generated by the GI mod-

ule. Then, the SORT module sorts different values of f() in ascending order and
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select the C best feasible points having the minimum values. The GS module

performs a greedy search on C starting feasible points, and finally outputs the

best detected symbols. To interconnect the different modules, we use the globally

asynchronous locally synchronous technique described in next section.

6.6 Globally Asynchronous Locally Synchronous

The inter-module communication is based on Globally Asynchronous - Locally

Synchronous (GALS) principe [Cha84, Bom04]. Usually, a GALS circuit is de-

fined as a set of locally synchronous modules communicating with each other

via asynchronous wrappers. A wrapper generates the clock signal for its mod-

ule and realizes the communication between modules. The idea of the GALS

approach is to combine the advantages of synchronous and asynchronous design

methodologies while avoiding their disadvantages.

Globally-asynchronous locally-synchronous (GALS) operation employs a self-

timed communication scheme on a coarse grained block level and combines the

following features:

• All major modules are designed in accordance to proven synchronous clock-

ing disciplines.

• Data exchange between any two modules strictly follows a full handshake

protocol.

• Each module is allowed to run from its own local clock.

• Any asynchronous circuitry necessary for coordinating the clock-driven with

the self-timed operation is combined to ”self-timed wrappers” arranged

around each clock domain.

Figure 6.9 depicts a block level schematic of a GALS module with its self-timed

wrapper surrounding the locally synchronous module. The wrapper contains an

arbitrary number of GALS ports and a local clock generator.

6.7 Implementation Results

The proposed VLSI architecture of the HISD is modelled in very high speed inte-

grated circuit hardware description language (VHDL) and synthesized in Xilinx
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Figure 6.9: General GALS module.

Table 6.5: Virtex2 synthesis results.

GI unit EVA unit SORT unit GS unit

Maximum Frequency (Mhz) 119.182 54.262 142.798 51.395

Critical Path (ns) 8.391 18.429 7.003 19.457

Required cycles 31 260 44 163

Number of Slices/10752 321 473 282 156

Throughput (Mbps) 39.66 2.09 32.45 3.15

ISE Software. It has been implemented using a Xilinx Virtex2 XC2V2000-6 with

package ff896. The sample data generated in MATLAB, i.e., H, y, vk and ρzf

are inputed as test vectors into the Modelsim to verified the VHDL model of

the HISD. It is observed that the output samples xhisd of the VHDL model cor-

responds to that from MATLAB. For the simulated system of 5 × 5 antennas,

the implementation results for FPGA of different HISD’s unit are summarized in

table 6.5.

6.8 Conclusion

The hardware implementation of the geometrical intersection and selection de-

tector algorithm has been discussed. Firstly, a modified evaluation criterion is

proposed based on the l1-norm and/or l∞-norm instead of the squared l2-norm,

which reduce complexity on the circuit level at only a small SNR penalty. Sec-

ondly, various quantization schemes of the GISD are investigated and the optimal

choice considering the tradeoff between the hardware complexity and the perfor-

mance is discussed. The numerical simulation results show that the quantization
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schemes that have been developed are effective in approximating the infinite pre-

cision schemes. Thirdly, the GISD hardware implementation over the PALMYRE

system platform has been discussed. Finally, an actual VLSI implementation for

a 5 × 5 uncoded MIMO system using 4-QAM modulation was presented. The

GISD decoder, where D = 1 and C = 4, achieves throughput of 2Mbps at all

SNR.



Chapter 7

Conclusions

It is well known that the optimal maximum likelihood detection problem is NP-

hard. Most of the research in detection techniques has focused on developing

new or improved existing suboptimal detection schemes that are more feasible to

implement. In this work, we have presented a new suboptimal detection method

capable to give a good approximation of the optimal solution and reduce the huge

complexity of the ML detection problem.

After outlining the characteristics and the baseband model of the linear wire-

less channel, a few motivating examples of systems which have previously been

studied in the literature and which may be modeled as linear wireless channels

are given. An overview of the most common optimal and suboptimal detection

strategies have been presented in chapter 3. Typically, there is a trade-off be-

tween performances and computation complexity of the given detectors, e.g, The

linear detectors which are also the fastest have in general worse performance than

the semidefinite relaxation and interference cancellation detectors which are com-

putationally more complex caused by their iterative structure. The next section

summarizes the contributions of this thesis.

7.1 Contributions

The main results of the thesis are the following:

• The design of a new suboptimal method for the maximum likelihood de-

tection problem. This method is based on two complementary ”real time”

operational research techniques called intensification and diversification.
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• The intensification step is a simple local search schema, called greedy search

method. Moreover, this step has a good convergence property (two or three

iterations). For a given starting point the computational complexity of the

intensification method is O(n2).

• The diversification step is motivated by the search of all feasible points in

the ”vicinity” of the D lines originating from the uncontrained ML solution

ρzf = H+y and along the D right smallest singular vectors of the matrix

H. Depending on the considered geometrical approach, this step contains

of three distinct variants: Hypercub Intersection and Selection (HIS), Plane

Intersection and Selection (PIS) and Canonical Basis Intersection and Se-

lection (CBIS).

• The proposed method is able to achieve near-ML performance with constant

polynomial-time, i.e. O(n3), computational complexity (unlike the SD that

has exponential-time complexity for low SNR).

• We proposed a new solft output detection method, called List-GISD to

generate a soft input decision for forward error correcting codes.

• The most computation complexity of the GISD detector is concentrated in

the pre-processing part. In fact, This step needs calculation of the uncon-

strained ML solution given by ρzf = H+y and extraction of the D smallest

singular vectors of the channel matrix H using singular value decomposi-

tion. To reduce the complexity of the pre-processing step of the GISD, we

propose an new method based on the basic work in [SG01].

• A basic VLSI implementation of the GISD detection technique is presented

where D = 1 and C = 4. However, the acheived throughput is 2 Mbps.

This poor hardware performance can be very easly increased if we explorate

the parallel structure of proposed schemas.

7.2 Topics for Future Work

While some questions have found their answers in this work there are still many

issues not resolved. A few thoughts about some of these are given below.
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• To improve the receiver performance, the proposed GISD detector and

Turbo decoding technique will be combined. The soft output of the Turbo

decoder is fed back to improve the detection. This improvement then ben-

efits the decoding in return.

• The GISD is suitable for pipeline VLSI implementation which allows fast

data processing. Moreover, the parallel structure will be explored in a future

work.

• Develop a systolic VLSI architecture to GISD pre-processing step. The

main purpose of this work is to give a complet hardware implementation of

the GISD detector.



Appendix A

Properties of the Real-Valued

Model

In this appendix we collect some properties of the mappings

H̃ 7→ H =

[

ℜ(H̃) −ℑH̃

ℑ(H̃) ℜ(H̃)

]

(A.1)

C
M×N → R

2M×2N = R
m×n (A.2)

and

x̃ 7→ x =

[

ℜ(x̃)

ℑ(x̃)

]

(A.3)

C
N → R

2N = R
n (A.4)

from complex-valued matrices and vectors to real-valued matrices and vectors,

also [Tel95]:

H̃
H ⇔ HT (A.5)

‖x̃‖2 =
N

∑

k=1

|x[k]|2 =
N

∑

k=1

(ℜ(x[k])2 + ℑ(x[k])2) = ‖x‖2 (A.6)

From this follows

trace(x̃x̃H) = trace(xxT ) (A.7)

H̃x̃ = ỹ = Hx = y (A.8)

trace(H) = 2ℜ(trace(H̃)) (A.9)
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If ℑ(x̃) and ℜ(x̃) are independent vectors of independent random variables with

variance σ2 = σ̃2

2
each,

ε{x̃x̃†} = σ̃2I⇔ ε{xxT} =
σ̃2

2
I =

σ2

2
I (A.10)



Appendix B

Extraction of smallest singular

vectors

In preprocessing step, we are given an n × n matrix G = HTH and we want to

compute the last D right singular vectors of channel matrix H which correspond

to the last D eigenvectors of the matrix G. Singular vectors are usually computed

via the Singular Value Decomposition of H. There are many algorithms that

either exactly compute the SVD of a matrix in O(mn2 + nm2) time. The GISD

detector needs just the D smallest eigenvectors of the matrix G. thus, it is of

interest to find an approximation B of a specified rank D to the matrix G. In

the following, we give a brief high-level presentation of different faster methods

to extract the D smallest eigenvector of channel matrix.

B.1 The power method

Probably the oldest algorithm for approximating eigenvalues and corresponding

eigenvectors of a matrix is the power method. This method is an important tool

in its own right when conditions are appropriate. It is very simple and only

requires matrix-vector products along with two vectors of storage.

At step five of the power method (i = imax(w)), i is the index of the element

of w with largest absolute value. It is easily seen that the contents of z after
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Algorithm 3: The power method

Data: z0 arbitrary, and the Gram matrix G.

begin
z = z0/‖z0‖∞
for p = 1, 2, 3, ... do

w = Gz
α = wT z

zT z

i = imax(w)
z = z/(eT

i w)

end

k-steps of this iteration will be the vector

zk = (
1

eT
i Gkz0

)Gkz0

= (
βk

eT
i Gkz0

)(
1

βk

Gkz0)

for any nonzero scalar βk and where ei is the ith column of the i×i identity matrix.

In particular, this iteration may be analyzed as if the vectors had been scaled by

βk = λk
1 at each step, with λk

1 an eigenvalue of G with largest magnitude. If G

is diagonalizable with eigenpairs {(vj, λj), 1 ≤ j ≤ n} and z0 has the expansion

z0 =
∑n

j=1 γjvj in this basis then

(
1

λk
1

)Gkz0 =
n

∑

j=1

γj

λk
j

λk
1

vj

If λ1 is a largest and simple eigenvalue then

λk
j

λk
1

→ 0, 2 ≤ j ≤ n

It follows that zk → v1/(e
T
i v1), where i = imax(w), at a linear rate with a

convergence factor of |λ2

λ1
|.

Furthermore, the power method can be extended to search also for other

eigenvalues; for example, the smallest one and the second largest one. First, if

G is nonsingular, we can apply the power method to G−1 to find the smallest

eigenvalue because (1/λn) is the largest eigenvalue of G−1. Second, if we need
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Table B.1: Krylov subspace methods

Av = λv Av = b

A = AT Lanczos CG

A 6= AT Arnoldi GMRES

more eigenvalues and λ1 is already known, we can use a reduction method to

construct a matrix B that has the same eigenvalues and eigenvectors as G except

for λ1, which is replaced by zero eigenvalue. For the power method, the rate of

convergence is dictated by the ratio of absolute values of the second largest and

the largest eigenvalue of the matrix G. Depending on the eigenvalue ratio, this

method can converge very slowly.

B.2 Iterative methods and Krylov space

These methods are dominant in computing large matrices because direct methods

are either impossible or too slow hence infeasible in practice. First, there is no di-

rect method for eigenvalue problems when dimension of the matrix is greater than

4. Any eigenvalue solvers must be iterative. On the other hand, direct methods for

solving linear systems like Gaussian elimination require O(n3) operations, which

is too time-consuming. Iterative methods are approximated methods, which only

require O(n2) operations. They can compute solutions much faster with errors

which can be tolerant. In practice, this is often good enough.

Krylov methods are one important types of iterative methods. These methods

often attempt to generate better approximations from Krylov subspace. Given a

matrix A and a vector b, the associated Krylov sequence is the set of vectors:

b,Ab,A2b,A3b, .... The corresponding Krylov subspaces are the spaces spanned

by successively larger groups of these vectors in the Krylov sequence. Krylov

methods can be summarized in table B.1:

Although these four methods work in different situations, they share some

similar structures. They all tend to construct the orthogonal basis of Krylov

subspace by multiplying matrix A with a vector. The all have one step which

compute the multiplication of a matrix and a vector. See algorithm 4 and al-

gorithm 5. The computation of Av is the most time-consuming part of each

iteration. It costs O(n2) time. Suppose the number of iteration is k, the running

time for Krylov methods totally is O(kn2).
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B.2.1 Lanczos method

For a given real symmetric matrix A of size n×n, the Lanczos method (algorithm

4) starts from a nonzero vector b ∈ R
n and generates two sequences of numbers

(αk) and (βk) as follows. Put β0 = 0, z0 = null, z1 = b/‖b‖2, and for k = 1, 2, ...,

αk =< zk,Azk >, βkzk+1 = Azk − αkzk − βk−1zk−1

where βk is taken such that ‖zk+1‖2 = 1. The vectors {z1, z2, ..., zℓ} are an

orthonormal basis of the ℓth Krylov subspace spanned by b,Ab, ...,Aℓ−1b. The

coefficients αk and βk are collected in the tridiagonal matrices:

Tℓ =



















α1 β1

β1 α2 β2

β2 α3
. . .

. . . . . . βℓ−1

βℓ−1 αℓ



















For ℓ < n The eigenvalues of Tℓ are called Ritz values, and they are easier to

compute because of the tridiagonal nature of Tℓ and because ℓ is smaller than n.

Some of the Ritz values turn out to be accurate approximations of some of the

eigenvalues of A, also when ℓ is much smaller than n. The Lanczos method is

discussed in [Lan50, ABFH00].

Algorithm 4: Lanczos Algorithm

Data: b arbitrary, z1 = b/‖b‖2, β0 = and z0 = null.

begin
for p = 1, 2, 3.... do

q = Azp

αp = zT
p q

q = q− βp−1zp−1 − αpzp

βp = ‖q‖2
zp+1 = q/βp

compute eigenvalues and eigenvectors of Tp

end
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B.2.2 Arnoldi method

Suppose Z is an n× n unitary matrix that reduces A to upper Hessenberg form;

i.e., ZTGZ = T for some upper Hessenberg matrix, T. For any index 1 ≤ ℓ ≤ n,

let Tℓ denote the ℓth principal submatrix of T:

Tℓ =













t11 t12 · · · t1ℓ

β2 t22 · · · t2ℓ

. . . . . .
...

βℓ tℓℓ













The Arnoldi method [Arn51, Saa80] builds up the matrices T and Z one col-

umn at a time starting with the unit vector z1 ∈ R
n, although the process is

typically stopped well before completion, with ℓ ≪ n. The algorithm only ac-

cesses G through matrix-vector products, making this approach attractive when

G is large and sparse.

Different choices for z1 produce distinct outcomes for Tℓ. The defining recur-

rence may be derived from the fundamental relation

AZℓ = ZℓTℓ + βℓ+1zℓ+1e
T
ℓ

where eℓ is the ℓth column of the ℓ × ℓ identity matrix. the ℓth column of

Tℓ is determined so as to force zℓ+1 to be orthogonal to the columns of Zℓ, and

βℓ+1 then is determined so that ‖zℓ+1‖ = 1. Provided Tℓ is unreduced, the

columns of Zℓ constitute an orthonormal basis for the order-ℓ Krylov subspace

κℓ(A, z1) = span{z1,Az1,A
2z1, ...,A

ℓ−1z1}. Since ZT
ℓ ZZℓ = Tℓ, the matrix Tℓ

is a RitzGalerkin approximation of A on this subspace, as described by Saad

[Saa80]. The eigenvalues of Tℓ are called Ritz values and will, in many cir-

cumstances, be reasonable approximations to some of the eigenvalues of A. An

eigenvector of Tℓ associated with a given Ritz value θ can be used to construct

an eigenvector approximation for A. Indeed, if Tℓy = θy, then the Ritz vector

x = Zℓy yields the residual

‖Ax− θu‖2 = ‖AZℓy− θZℓy‖2
= ‖(AZℓ − ZℓTℓ)y‖2
= |βℓ+1||eT

ℓ y|
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where |βℓ+1| ≪ 1, the columns of Zℓ nearly span an invariant subspace of A. It

easily follows that θ is a Ritz value and x a correspond Ritz vector. The central

idea behind the Arnoldi factorization is to construct eigenpairs of the large matrix

A from the eigenpairs of the small matrix T. The explicit steps needed to form

a p-Step Arnoldi factorization are shown in algorithm 5.

Algorithm 5: Arnoldi Algorithm

Data: b arbitrary, z1 = b/‖b‖2.
begin

for j = 1, .., ℓ− 1 do
q = Azj

for i = 1..j do
tij = zT

i q
q = q− tijzi

tj+1j = ‖q‖2
zj+1 = q/tj+1j

end



Appendix C

Algorithms

C.1 Intensification step

In this section, we give the MATLAB source code for the 1st-order greedy detector

for different norms

C.1.1 Greedy Search function using l2-norm

function [ f i n a l , d i s t ]= f i r s t o r d e r g r e e d y l 2 (H, y , s t a r t , d i s t ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . s t a r t : s t a r t i n g v e c t o r b e l o n g s t o { − 1 , + 1 } ˆ n

% 4 . d i s t : | | A ∗ s t a r t − y | | ˆ 2

% o u t p u t a r g u m e n t s :

% 1 . f i n a l : b e s t n e i g h b o r

% 2 . d i s t : | | A ∗ f i n a l − y | | ˆ 2

[m, n ] = s ize (H) ; f lag = 1 ;

while ( f lag == 1)

f lag = 0 ;

for k = 1 : n

x = s t a r t ; x ( k ) = −1 ∗ x (k ) ; Dk = sum( (H ∗ x − y ) . ˆ 2 ) ;

i f Dk < d i s t

d i s t = Dk; index = k ; f lag = 1 ;

end ;

end ;

137



APPENDIX C. ALGORITHMS 138

i f ( f lag == 1)

s t a r t ( index ) = −1 ∗ s t a r t ( index ) ;

end ;

end ;

f i n a l = s t a r t ;

%% e n d o f f i l e

The previous algorithm can be simplified as following:

function [ f i n a l , d i s t ]= Enh f i r s t o r d e r g r e e d y l 2 (H,G, y , s t a r t , d i s t ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . G : G r a m m a t r i x G= t r a n s p o s e ( H ) ∗ H

% 2 . y : r e c e i v e d v e c t o r

% 3 . s t a r t : s t a r t i n g v e c t o r b e l o n g s t o { − 1 , + 1 } ˆ n

% 4 . d i s t : | | A ∗ s t a r t − y | | ˆ 2

% o u t p u t

% 1 . f i n a l : b e s t n e i g h b o r

% 2 . d i s t : | | A ∗ f i n a l − y | | ˆ 2

[m, n ] = s ize (H) ; z = H∗ s t a r t ; f lag = 1 ;

while ( f lag == 1)

f lag = 0 ;

for k = 1 : n

x = s t a r t ; x ( k ) = −1 ∗ x (k ) ; nu=sign ( s t a r t ( k ) ) ;

d e l t a = nu∗(y−z ) ’∗H( : , k)+G(k , k ) ;

i f de l t a > 0

d i s t = d i s t −4∗de l t a ; index = k ; f lag = 1 ;

end ;

end ;

i f ( f lag == 1)

s t a r t ( index ) = −1 ∗ s t a r t ( index ) ; z= H∗ s t a r t ;

end ;

end ;

f i n a l = s t a r t ;

%% e n d o f f i l e

C.1.2 Greedy Search function l1-norm

function [ f i n a l , d i s t ]= f i r s t o r d e r g r e e d y l 1 (H, y , s t a r t ) ;

% I n p u t a r g u m e n t s :
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% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . s t a r t : s t a r t i n g v e c t o r b e l o n g s t o { − 1 , + 1 } ˆ n

% o u t p u t a r g u m e n t s :

% 1 . f i n a l : b e s t n e i g h b o r

% 2 . d i s t : s u m ( a b s ( A ∗ f i n a l − y ) )

[m, n ] = s ize (H) ; f lag = 1 ; d i s t = sum(abs (H∗ s ta r t−y ) ) ;

while ( f lag == 1)

f lag = 0 ;

for k = 1 : n

x = s t a r t ; x ( k ) = −1 ∗ x (k ) ; Dk = sum(abs (H∗x−y ) ) ;

i f Dk < d i s t

d i s t = Dk; index = k ; f lag = 1 ;

end ;

end ;

i f ( f lag == 1)

s t a r t ( index ) = −1 ∗ s t a r t ( index ) ;

end ;

end ;

f i n a l = s t a r t ;

%% e n d o f f i l e

C.1.3 Greedy Search function using l∞-norm

function [ f i n a l , d i s t ]= f i r s t o r d e r g r e e d y l i n f i n i t y (H, y , s t a r t ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . s t a r t : s t a r t i n g v e c t o r b e l o n g s t o { − 1 , + 1 } ˆ n

% o u t p u t a r g u m e n t s :

% 1 . f i n a l : b e s t n e i g h b o r

% 2 . d i s t : m a x ( a b s ( A ∗ f i n a l − y ) )

[m, n ] = s ize (H) ; f lag = 1 ; d i s t = max(abs (H∗ s ta r t−y ) ) ;

while ( f lag == 1)

f lag = 0 ;

for k = 1 : n

x = s t a r t ; x ( k ) = −1 ∗ x (k ) ; Dk = max(abs (H∗x−y ) ) ;

i f Dk < d i s t
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d i s t = Dk; index = k ; f lag = 1 ;

end ;

end ;

i f ( f lag == 1)

s t a r t ( index ) = −1 ∗ s t a r t ( index ) ;

end ;

end ;

f i n a l = s t a r t ;

%% e n d o f f i l e

C.2 Diversification step

In this section, we give the MATLAB source code for the hypercube intesection

and selection (HIS) function for different norms

C.2.1 HIS function using l2-norm

function [ l i s t c a n ]= h i s l 2 (H, y , rho , dir , nbr can ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . r h o : u n c o n s t r a i n e d s o l u t i o n

% 4 . d i r : s t u d i e d d i r e c t i o n

% 5 . n b r c a n : n u m b e r o f c a n d i d a t e s

% o u t p u t a r g u m e n t s :

% 1 . l i s t c a n : C b e s t c a n d i d a t e s p o i n t a n d t h e i r a s s o c i a t e d l 2 n o r m

[m, n ] = s ize (H) ;

% l i s t e d a n d p r o j e c t ( o n { − 1 , + 1 } ˆ n ) a l l i n t e r s e c t i o n p o i n t s

% b e t w e e n t h e l i n e { z i n R ˆ n / z = r h o + a p l h a ∗ d i r , a l p h a i n R }

% a n d a l l u n i t c u b e f a c e s .

l i s t = hype r cube i n t e r s e c t i on ( rho , dir ) ;

% E v a l u a t i o n

for k = 1 : 2∗n
l i s t (n+1,k ) = sum( (H∗ l i s t ( 1 : n , k)−y ) . ˆ 2 ) ;

end ;

% S e l e c t i o n o f t h e b e s t n b r c a n c a n d i d a t e s

l i s t = ( sor t rows ( l i s t ’ , dim in +1)) ’ ;

l i s t = supp red ( l i s t ) ;
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l i s t c a n = se l c and ( l i s t , nbr can ) ;

%% e n d o f f i l e

C.2.2 HIS function using l1-norm

function [ l i s t c a n ]= h i s l 1 (H, y , rho , dir , nbr can ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . r h o : u n c o n s t r a i n e d s o l u t i o n

% 4 . d i r : s t u d i e d d i r e c t i o n

% 5 . n b r c a n : n u m b e r o f c a n d i d a t e s

% o u t p u t a r g u m e n t s :

% 1 . l i s t c a n : C b e s t c a n d i d a t e s p o i n t a n d t h e i r a s s o c i a t e d l 1 n o r m

[m, n ] = s ize (H) ;

% l i s t e d a n d p r o j e c t ( o n { − 1 , + 1 } ˆ n ) a l l i n t e r s e c t i o n p o i n t s

% b e t w e e n t h e l i n e { z i n R ˆ n / z = r h o + a p l h a ∗ d i r , a l p h a i n R }

% a n d a l l u n i t c u b e f a c e s .

l i s t = hype r cube i n t e r s e c t i on ( rho , dir ) ;

% E v a l u a t i o n

for k = 1 : 2∗n
l i s t (n+1,k ) = sum(abs (H∗ l i s t ( 1 : n , k)−y ) ) ;

end ;

% S e l e c t i o n o f t h e b e s t n b r c a n c a n d i d a t e s

l i s t = ( sor t rows ( l i s t ’ , dim in +1)) ’ ;

l i s t = supp red ( l i s t ) ;

l i s t c a n = se l c and ( l i s t , nbr can ) ;

%% e n d o f f i l e

C.2.3 HIS function using l∞-norm

function [ l i s t c a n ]= h i s l i n f i n i t y (H, y , rho , dir , nbr can ) ;

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . r h o : u n c o n s t r a i n e d s o l u t i o n

% 4 . d i r : s t u d i e d d i r e c t i o n

% 5 . n b r c a n : n u m b e r o f c a n d i d a t e s

% o u t p u t a r g u m e n t s :
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% 1 . l i s t c a n : C b e s t c a n d i d a t e s p o i n t a n d t h e i r a s s o c i a t e d l i n f i n i t y n o

[m, n ] = s ize (H) ;

% l i s t e d a n d p r o j e c t ( o n { − 1 , + 1 } ˆ n ) a l l i n t e r s e c t i o n p o i n t s

% b e t w e e n t h e l i n e { z i n R ˆ n / z = r h o + a p l h a ∗ d i r , a l p h a i n R }

% a n d a l l u n i t c u b e f a c e s .

l i s t = hype r cube i n t e r s e c t i on ( rho , dir ) ;

% E v a l u a t i o n

for k = 1 : 2∗n
l i s t (n+1,k ) = max(abs (H∗ l i s t ( 1 : n , k)−y ) ) ;

end ;

% S e l e c t i o n o f t h e b e s t n b r c a n c a n d i d a t e s

l i s t = ( sor t rows ( l i s t ’ , dim in +1)) ’ ;

l i s t = supp red ( l i s t ) ;

l i s t c a n = se l c and ( l i s t , nbr can ) ;

%% e n d o f f i l e

C.3 fixed step gradient descent algorithm

function [ rho , d i r 1 ] = f i x e d s t e p g r a d i e n t d e s c e n t (H, y , s t a r t , t o l )

% I n p u t a r g u m e n t s :

% 1 . H : r a y l e i g h c h a n n e l m a t r i x

% 2 . y : r e c e i v e d v e c t o r

% 3 . s t a r t : r a n d o m s t a r t v e c t o r

% 4 . t o l : r e p r e s e n t s a g i v e n t e r m i n a t i o n c o n d i t i o n

% o u t p u t a r g u m e n t s :

% 1 . r h o : u n c o n s t r a i n e d s o l u t i o n

% 2 . d i r 1 : f i r s t s m a l l e s t s i n g u l a r v e c t o r o f H

G=H’∗H;

mu= 2/ trace (G) ;

f lag =1;

while ( f lag==1)

x i = s t a r t − mu ∗ ( s ta r t ’∗G−2∗Y’∗H) ’ ;

d i f f = xi−s t a r t ;

i f (norm( d i f f )< t o l e r )

f lag =0;

end ;

s t a r t = x i ;

end ;
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rho = s t a r t ;

d i r 1 = d i f f /norm( d i f f ) ;



Appendix D

Branch and Bound detector

The BBD algorithm maintains a node stack called OPEN , and a scalar called

UPPER, which is equal to the minimum feasible cost found so far, i.e., the

”current-best” solution. Define k to be the level of a node (virtual root node has

level 0). Label the branch with dk(x1,x2, ..,xk), which connects the two nodes

(x1, ...,xk) and (x1, ...,xk+1). The node (x1, ..,xk) is labeled with the lower bound

ξk. Also, define zk =
∑k

i=1 xiLi− r̄, where Li denotes the ith column of L. Denote

[zk]j as the jth component of vector zk and lij as the (i, j)th element of L. The

branch and bound algorithm proceeds as follows [Ber98]:

1. Pre-compute r̄ = (L−1)T r;

2. Initialize k = 0, zk = r̄, ξk = 0, UPPER = +∞ and OPEN = NULL;

3. Set k = k +1. Choose the node in level k such that xk = −sign([zk−1]k). if

k < n, append the node with xk = sign([zk−1]k) to the end of the OPEN

list.

4. Compute zk = zk−1 + xkLi.

5. Compute ξk = ξk−1 + [zk]
2
k.

6. If ξk ≥ UPPER and the OPEN list is not empty, drop this node. Pick the

node from the end of the OPEN list, set k equal to the level of this node

and go to step 4.

7. If ξk < UPPER, k = n and the OPEN list is not empty, update the

”Current-Best” solution and UPPER = ξk. Pick the node from the end of

the OPEN list, set k equal to the level of this node and go to step 4.
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8. If ξk < UPPER and k 6= n, go to step 3.

9. If ξk < UPPER, k = n and the OPEN list is empty update the ”Current-

Best” solution and UPPER = ξk.

10. For all other cases, stop and report the ”current-best” solution.
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