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Introduction - Cancer

• Cancer is a multistage process with at least 3 major steps:
• Initiation,
• Promotion,
• Progression.

• Many mathematical models are dedicated to the study of
cancer development (Komarova, 2005):

• Modeling in the context of epidemiology,
• Modeling of tumor growth,
• Modeling of cancer initiation as somatic evolution.
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Introduction - Objectives

• This work focuses on mathematical models for cancerous
tissues at the initiation and the promotion stage.

• It provides statistical tests for early detection of cancer based
on:

• Gene expression measures within a tissue (promotion step).
• Cell DNA sequences within a tissue (initiation step).
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Introduction - Biological levels
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Introduction - Biological issues

• Cell adhesion in cancer at the promotion step. Lower
expression of Cellular Adhesion Molecules (CAMs) are
correlated with:

• Breast cancer (Berx and Van Roy, 2001).
• Lung cancer (Bremnes et al., 2002).

• Genetic instability at the initiation step.
• Less accuracy in DNA repair.

• Genetic instability
20 years−→ tumor manifestation (Bielas and

Loeb, 2005).
• Hereditary Colon Cancer implicates MSH2, MSH6 and MLH1

genes (Fishel et al., 1993).
• Breast Cancer implicates BRCA1 and BRCA2 genes (Wooster

and Weber, 2003).
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Introduction - Modeling

This thesis contribution

• A model for studying adhesion properties between contiguous
cells using gene expression data.

• Marked Point Processes framework.
• Estimating an adhesion strength parameter characterizing the

tissue.

• A model of genetic instability using DNA sequences.
• Coalescent models of gene genealogies.
• Testing the occurrence of genetic instability by estimating a

raised mutation rate parameter.
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A. Spatial model - Outline

Part A. Gibbsian spatial point process for tissue organization
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A. Spatial model - Biological context

Spatial development of biological tissues

• Cell patterns play a major role in many biological processes:
• Embryogenesis,
• Morphogenesis,
• Tumorigenesis.

• Gene expression data may help to characterize cell patterns
within a tissue:

Checkerboard Cell Sorting Engulfment

(Honda et al., 1986) (Armstrong, 1989) (Armstrong, 1989)
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A. Spatial model - Biological context

Cell adhesion - DAH

• The Differential Adhesion Hypothesis (DAH) is one of the
most robust hypothesis (Steinberg, 1962):

• Adhesion is function of differential expression of Cellular
Adhesion Molecules (CAMs).

• Cell arrangements minimize the adhesion energy,

• Among the CAMs, the Cadherin-Catenin complex is known to
be deeply implicated in tumorigenesis.

β−Catenin gene expression in human hepatocellular carcinoma (Lin, 2003).
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A. Spatial model - Biological context

Cadherin-catenin complex

• A zipper-like structure (Shapiro, 1995):

(a) (b)
Crystal structured model (a) and picture (b) of linear zipper adhesion

between cadherin-catenin complexes of two cells.

• The adhesion energy is function of the membrane separating
contiguous cells.
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A. Spatial model - Mathematical Models

Mathematical models of the Differential Adhesion Hypothesis
(DAH) are classified according their geometry (Brodland, 2004):

• Lattice models (Mochizuki et al. 1996, Takano et al. 2002).

• Centroid models (Honda et al. 1996, Honda et al. 2000).

• Vertex models (Nagai et al. 1998, Honda et al. 2004)

• Sub-cellular lattice model: Graner and Glazier’s model (1992).

Example of Graner and Glazier’s model configuration with two cells
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A. Spatial model - Mathematical Models

Graner and Glazier’s model

• Each cell, denoted by σ, is a set of pixels and each pixel (i , j)
is characterized by a type τ(σij ) (3 different types: ` for light
cells, d for dark cells and M for extracellular matrix).

• The Energy, HGG , is defined as:

HGG = HAdh + Constraint

The adhesion term is an extension of the Potts interaction
function:

HAdh =
∑

(i ,j)∼(i ′,j ′)

J
(
τ(σij), τ(σi ′j ′)

) (
1− δσij ,σi′j′

)

and Constraint =
∑

σ

C (area(σ))
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A. Spatial model - Mathematical Models

Graner and Glazier’s model

` = light, d = dark and M = medium.

Example of GG’s configuration using J`,` = 14, Jd ,d = 14,
J`,d = 29, J`,M = Jd ,M = 16 (Glazier and Graner, 1993).
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A. Spatial model - Mathematical Models

Graner and Glazier’s model

• GG’s model has been extended to cancerous processes:
• Avascular tumor growth (Scott et al., 1999).
• Tumor invasion (Turner and Sherratt, 2002).

• Despite the large success of this model, there exist some
limitations:

• Loss of cell connexity.
• Algorithm sensitive to the lattice discretization.
• No convergence for the algorithm.
• Lack of mathematical framework for estimating parameters.
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A. Spatial model - Modeling

Objectives of our model

• Continuous geometry for cells.

• Simulation algorithm with good convergence properties.

• Statistical framework for estimating the strength of adhesion:
marked point processes theory.

Mathieu Emily Soutenance de thèse 17



A. Spatial model - Modeling

Geometrical modeling

• According to Honda’s studies (Honda 1978, 1983), cells can
be modeled by a Dirichlet tiling based on cell nuclei.

Example of a tissue modeled by a Dirichlet tiling
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A. Spatial model - Modeling

Energy functional

HCC (ϕ) = HAdh + Constraint

with:
HAdh =

∑
i∼j

length(i , j)J(τi , τj)

and: Constraint =
∑

i

C (area(xi ))

and where:

• ϕ = {x1, . . . , xn} and xi = (xi , τi ), xi is the center of the cell i
and τi the type of cell i (xi is marked point).
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A. Spatial model - Modeling

Adhesion strength parameter

• With respect to the Poisson process, the density of a
configuration ϕ can be written as:

f (ϕ) ∝ exp(−θHCC (ϕ))

where θ quantifies the strength of adhesion within a tissue.

• Estimating the strength of adhesion is of particular interest.
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A. Spatial model - Modeling

Mathematical study

Theorem

Let HCC (ϕ) be the energy function of the following form:

HCC (ϕ) =
∑
i∼j

g(length(i , j))J(τi , τj) +
∑

i

C (area(xi ))

Assume that g , J and C are bounded on R. Then, there exists a
Gibssian marked marked point process that satisfies the local speci-
fications derived from HCC .
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A. Spatial model - Modeling

Mathematical study - sketch of the proof

Let E (x , ϕ) = HCC (ϕ ∪ x)−HCC (ϕ) denotes the energy needed to
insert a new point x in a configuration ϕ.

Proposition - Sufficient conditions for existence (Bertin et al., 1999)

• Local Stability. For all x and ϕ, it exists K > 0 such as:

E (x , ϕ) > −K

• Quasilocality. For all x , ϕ and ∆ bounded set:

|E (x , ϕ)− E (x , ϕ∆)| < ε(d(x ,∆c))

where ε(x) → 0 when x →∞.
Then, there exists a Gibssian marked marked point process
that satisfies the local specifications derived from HCC .
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A. Spatial model - Simulation

Algo: Insertion-Deletion Metropolis-Hastings

Algorithm

• If Random < 1/2: Insertion
• Random choice of xn+1 and τn+1.

• else: Deletion
• Uniform choice of a point within the configuration.

• Acceptance probability: p = min[1, exp(−θ(∆H))]

Theorem

Under the same conditions (g , J and C bounded), the Markov chain
generated by the Metropolis-Hastings algorithm is ergodic (Harris-
Recurrent and aperiodic).

Proof: Using local stability and results from Geyer and Møller
(1994).
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A. Spatial model - Simulation

Examples of simulations

(a) (b) (c)
Checkerboard Clustering Engulfment

(Honda et al., 1996) (Armstrong, 1989) (Armstrong, 1989)
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A. Spatial model - Simulation

The algorithm performances

• Fast thanks to local the properties of insertion and deletion in
the Dirichlet tessellation.

• Convergence: 50000 iterates for around 1000 cells starting
from a random configuration (180 sec).
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A. Spatial model - Estimation

Clustering - J(τ1, τ1) = 0, J(τ2, τ2) = 0 and J(τ1, τ2) = 1

θ = 1 θ = 5 θ = 10

Checkerboard - J(τ1, τ1) = 1, J(τ2, τ2) = 1 and J(τ1, τ2) = 0

θ = 1 θ = 5 θ = 10

The characteristic patterns emerge for large θ.
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A. Spatial model - Estimation

Estimation: Conditional Pseudo-Likelihood

Let Λ be a bounded set in R. Conditional to the point locations,
we have:

PLΛ
C(θ) =

∏
i

Prob(τi |ϕ, τ\{τi}, θ)

Definition

An estimator for the adhesion strength parameter (θ) is given by:

θ̂C = argmaxθPLΛ
C(θ)
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A. Spatial model - Estimation

Estimation: Pseudo-Likelihood

According to Jensen and Møller (1991), Pseudo-likelihood
estimation for Gibbsian point processes is defined by:

PLΛ(θ) = exp

(
−

∫
Λ

∫
M

exp(−HCC (x |ϕ))dτxdx

)
∏

x∈ϕΛ

exp
(
−HCC (x |ϕ\x)

)
Definition

An estimator for the adhesion strength parameter (θ) is given by:

θ̂ = argmaxθPLΛ(θ)
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A. Spatial model - Performances for estimators cθC and bθ
Checkerboard Clustering

Mean Variance Mean Variance

θ = 1 0.98 0.70 1.03 0.4
θ = 5 5.01 0.57 4.94 0.94
θ = 10 10.47 1.20 9.80 1.00
θ = 15 14.58 2.22 15.03 1.20

Mean and Variance from 100 replicates for θ̂C

Checkerboard Clustering

Mean Variance Mean Variance

θ = 1 1.01 0.91 0.97 1.3
θ = 5 5.17 1.12 4.93 1.05
θ = 10 10.24 2.24 10.30 1.38
θ = 15 15.43 3.87 15.58 2.55

Mean and Variance from 100 replicates for θ̂
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A. Spatial model - Performances for estimators cθC and bθ
Comments

• Conditional and unconditional estimators seem to be weakly
biased.

• Variances increase with θ.

• The conditional estimator is computationally faster than the
unconditional estimator.

• Theoretically, θ̂ should be better than θ̂C .

• In practice, we observe the reverse (integral approximations
may be a problem).
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A. Spatial model - An application to data

• Data: breast cancer - Two diseased tissues.
• Clustering pattern: J1,1 = 0, J2,2 = 0 and J1,2 = 1

θ̂C = 14.9 and θ̂ = 15.4

θ̂C = 31.9 and θ̂ = 33.7
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A. Spatial model - An application to data

Comments

• Capacity to discriminate between various cell patterns.

• Simulations with estimated parameters provide patterns
consistent with real data.
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B. Coalescent model - Outline

Part B. Conditional coalescent model for genetic instability
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B. Coalescent model - Biological levels
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B. Coalescent model - Biological context

Genetic instability in tumors

• Theory introduced by Loeb et al. in 1974.

• Tumors are characterized by a large number of mutations.

• A loss of genome stability functions occurs early in tumor
development.

• Genetic instability as the initiating event is still a matter of
debate (Loeb et al., 2003). Alternative theories are:

• Aneuploidy (Duesberg et al., 1998).
• Clonal selection (Tomlinson and Bodmer, 1999).

Mathieu Emily Soutenance de thèse 36



B. Coalescent model - Biological context

Loss of MMR (Mismatch Repair)

• More than 130 genes are involved in DNA repair (Anderson et
al., 2001).

• Alteration of genes involved in:
• fidelity of DNA replication.
• efficacity of DNA repair.

• Consequence: increase from 10 to 10000 fold in the mutation
rate (Bhattacharyya et al. 1994, Tomlinson et al., 1996).

• Overall mutation rate in somatic human cells: 1.4× 10−10

nucleotides per cell per division (Loeb, 1991).
• Genetic instability 10−10 → 10−6 shift.
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B. Coalescent model - Biological context

Modeling hypothesis - Loss of MMR

• The sample of genes has two mutation rates. Some cells have
a normal mutation rate and the others have a raised mutation
rate.

• The number of affected cells is unknown.

• Cell genealogy can be modeled by a coalescent process arising
as the limit of a Moran process (Moran 1962, Kingman 1982).

• Neutrality: mutation process is independent on the
genealogical process.

• Our goal: testing the occurrence of the loss of MMR.
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B. Coalescent model - Mathematical background

Neutral coalescent (Kingman 1982, Hein et al. 2005)

• Let Ti for i = 2, . . . , n denote the inter-coalescing times and
assume that Ti ’s are independent and of exponential
distribution of parameter λi = i(i−1)

2 .

Example of a coalescent tree with n = 5
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B. Coalescent model - Mathematical background

Mutations model

• Infinitely-many sites model (Watterson, 1975).

• Mutations occur according to independent Poisson processes
of rate θ/2 along the branches of the tree.

• θ = 4Nµ where µ is the mutation rate per base per mitotic
division and N is the total number of cells.

• Classical unbiased estimators for θ: Watterson’s estimator and
Tajima’s estimator.
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B. Coalescent model - Mathematical background

Watterson’s estimator

• Let S be the number of segregation sites.

• S is equal to the total number of mutations under the
infinitely many sites model.

Sequence ]1 acagttacat
Sequence ]2 agagctacat
Sequence ]3 agagttgcgt

-•--•-•-•-

Example with three DNA sequences where S = 4

• Watterson’s estimator for θ is defined as:

θ̂W =
2S

E[L]
=

S∑n−1
i=1 1/i

,

where L =
∑n

i=2 iTi is the total length of the tree.

Mathieu Emily Soutenance de thèse 41



B. Coalescent model - Mathematical background

Tajima’s estimator

• Let Π(i , j) be the number of pairwise differences between
sequence i and sequence j .

• Tajima’s estimator for θ is defined as:

θ̂T =
2

n(n − 1)

∑
i<j

Π(i , j)

Seq1 vs Seq2 Seq1 vs Seq3 Seq2 vs Seq3
acagttacat acagttacat agagctacat
agagctacat agagttgcgt agagttgcgt

Example with three DNA sequences where θ̂T = 2.67 (θ̂W = 2.67)

Mathieu Emily Soutenance de thèse 42



B. Coalescent model - Conditional coalescent modeling

Back to genetic instability - Modeling constraints

• The event “Loss of MMR”, denoted by ∆, occurs once and
only once in the genealogy of the sample.

⇒ Constraints on mutation rates along the Coalescent tree.

• Our sample is divided into 2 subsamples:
• N in which the mutation rate θ0 is “normal”,
• R in which the mutation rate θ1 is “raised” (θ1 > θ0).

⇒ Topological constraints on the Coalescent tree.

• Our goal: correcting Watterson’s and Tajima’s estimators for
the raised mutation rate knowing the normal mutation rate.
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B. Coalescent model - Conditional coalescent modeling

• Mutations follow Poisson processes of rates:
- θ0/2 along the blue branches.
- θ1/2 along the red branches.
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B. Coalescent model - Conditional coalescent modeling

Frequency spectrum

• The genealogy of the sample is a conditional coalescent tree
(Griffiths and Tavaré 1998, Wiuf and Donnelly 1999).

• The number B of descendants of ∆ has the following
distribution:

P(B = b) =
1

bHn−1
b = 1, . . . , n − 1.

where Hn is the nth harmonic number.
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B. Coalescent model - Results

Correction of Watterson’s estimator

• Sn, the number of segregating
sites, is a random variable equal
to the total number of mutations.

• Two contributions for Sn, S0n and
S1n where:

• E[S0n ] = E[L0]θ0/2
• E[S1n ] = E[L∆]θ1/2

An unbiased estimator of θ1 is:

θ̂1,W =
Sn − E[L0]θ0/2

E[L∆]/2
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B. Coalescent model - Results

Correction of Watterson’s estimator - E[L∆] = E[L1] + E[ηn]

Proposition

Let L1 be the total length of the red sub-genealogy (Griffiths and
Tavaré, 2003):

E[L1|B = b] =
n−b+1∑

j=2

p∆
j

n∑
k=j+1

2

k(k − 1)
cjk ,

Proposition

Let ηn be the time that separates the MRCA of red sub-sample to
∆ (Wiuf and Donnelly, 1999):

E[ηn|B = b] = 2
n−b+1∑
k=2

p∆
k

k
.
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B. Coalescent model - Results

Correction of Watterson’s estimator - L0

• E[L0] and E[L0|B] are unknown in
the litterature.

• L0 = L− L∆ where:
• L is the total length of the tree.
• L∆ is the length of the red

subtree.
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B. Coalescent model - Results

Correction of Watterson’s estimator - L

Proposition

Assume that the mutation ∆ has B = b descendants.
In a conditional coalescent tree we have:

1

2
E[L|B = b] = Hn−1 +

1

Hn−1

n−b+1∑
k=2

p∆
k

b(k − 1)

Sketch of the proof: L =
∑n

i=2 iTi where Ti are the
inter-coalescing times.
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B. Coalescent model - Results

Sketch of the proof

Theorem - Inter-coalescing times in a conditional coalescent tree

Assume that the mutation ∆ has B = b descendants. The joint
probability distribution of (T2, . . . ,Tn) has a density equal to:

f (t2, . . . , tn) =
n−b+1∑
k=2

p∆
k λktk

n∏
`=2

f`(t`)

where f`(t`) is the probability density function of the exponential
distribution of rate λ` and:

p∆
k =

(
n − k
b − 1

) (
n − 1

b

)−1

k = 2, . . . , n − b + 1
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B. Coalescent model - Results

Correction of Tajima’s estimator

• Mean number of pairwise differences between genes: Π.

• An unbiased estimator of θ1 is:

θ̂1,T =
Π− Cnθ0

Dn

• Cn and Dn were founded by
considering 3 average coalescing
times between two sequences:

• within R (in the red subtree),
• within N (in the blue subtree),
• one in each subsample.
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B. Coalescent model - Results

Correction coefficients

n 5 10 15 20 25 30 35 40 45

An 2.171 2.693 3.024 3.265 3.455 3.612 3.747 3.864 3.967
Bn 0.595 0.68 0.713 0.732 0.746 0.756 0.764 0.771 0.776

Tables for An = E[L0]/2 and Bn = E[L∆]/2

n 5 10 15 20 25 30 35 40 45

Cn 0.996 1.019 1.021 1.02 1.02 1.019 1.019 1.018 1.018
Dn 0.253 0.218 0.199 0.187 0.178 0.171 0.166 0.161 0.156

Tables for Cn and Dn
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B. Coalescent model - Results

Algorithm for simulating a conditional coalescent tree

Algorithm

• Draw B according to the frequency spectrum.

• Draw J∆, the number of ancestors at the time ∆ occurs (Cf.
Stephens, 2000).

• Draw the total number of ancestors at the time the subsample
R first has r ancestors (1 < r < b − 1) (Tavaré, 2004).

• Sample T` from the exponential ditribution Gamma(1, λ`), for
` 6= J∆ and TJ∆

from the Gamma distribution Gamma(2, λJ∆
).

Mathieu Emily Soutenance de thèse 53



B. Coalescent model - Results

Statistical errors of θ̂1,W and θ̂1,T for θ0 = 1

(N = 2.5× 109 and µ = 10−10)

θ1 = 10 θ1 = 100 θ1 = 1000
n E SD E SD E SD

10 9.9 12.0 97.4 112.4 947.5 1109.7
30 10.2 12.8 102.9 126.1 1060.3 1286.1
50 10.4 13.5 102.0 131.7 1045.7 1235.9

Expectation and Standard Deviation for θ̂1,W using 1000 replicates.

θ1 = 10 θ1 = 100 θ1 = 1000
n E SD E SD E SD

10 9.9 13.7 107.3 133.9 1006.2 1243.5
30 9.5 15.5 100.9 147.9 1040.0 1589.5
50 10.3 17.6 106.5 164.6 1039.7 1598.1

Expectation and Standard Deviation for θ̂1,T using 1000 replicates.
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B. Coalescent model - Results

Statistical errors of θ̂1,W and θ̂1,T for θ0 = 1

• Watterson and Tajima’s corrected estimators are unbiased.

• They behave like the classical Watterson and Tajima’s
estimator (high variance).

• The corrected estimators may not be consistent.

• Watterson’s corrected estimator seems to has less variance
than Tajima’s corrected estimator.
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B. Coalescent model - Results

Testing the absence of the “Loss of Mismatch Repair”

• H0: Absence of ∆.

• H1: Occurrence of ∆ and θ1 > θ0.

Assume the knowledge of the sample genealogy and that the data
set consists of all intercoalescing times (Tk). The likelihood ratio
can be described as:

r =
L(H1)

L(H0)
=

n−b+1∑
k=2

λkp∆
k tk

Powers for type I error: α = 0.05:

• 1− β = 0.2 when b ≈ n and dropped to 0.1 when b/n ≈ 0.5,
where b is the number of affected cells.
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B. Coalescent model - Results

Testing the absence of ∆ (LMMR) - θ0 = 1

• H0: Absence of ∆.

• H1: Occurrence of ∆ and θ1 > θ0.

n θ1 = 10 θ1 = 100 θ1 = 1000

20 0.44 0.74 0.90
40 0.42 0.73 0.88

Power of tests for θ̂ estimator

n θ1 = 10 θ1 = 100 θ1 = 1000

20 0.44 0.69 0.84
40 0.34 0.64 0.79

Power of tests for Π estimator
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B. Coalescent model - Results

Testing the occurrence of ∆ (LMMR) - θ0 = 1

• H0: Occurrence of ∆ and θ1 > θ0.
• H1: Absence of ∆.

n θ1 = 10 θ1 = 100 θ1 = 1000

20 0.06 0.18 0.70
40 0.11 0.24 0.59

Power of tests for θ̂1,W

n θ1 = 10 θ1 = 100 θ1 = 1000

20 0.12 0.29 0.54
40 0.12 0.19 0.35

Power of tests for θ̂1,T
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B. Coalescent model - Results

Comments

• Watterson’s test statistic is more powerful than Tajima’s test.

• Power is law when the ratio between the normal and the
raised mutation rate is less than 1000 (θ0 < θ1).

• In agreement with biological experiments: detecting
occurrence of the Loss of Mismatch Repair is hard when
θ1/θ0 < 1.000 (Boland et al., 1998).

• Conditional on the occurrence of the loss of MMR, powers are
decreasing as the sample size increases.

• Monitoring several loci to increase power of tests.
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B. Coalescent model - Publications

Publications

• M. Emily, D. Morel, R. Marcelpoil and O.Francois. Spatial
correlation of gene expression measures in Tissue Microarray
core analysis, Journal of theoretical Medicine, Vol. 6, No. 1,
Mars 2005, pages 33-39.
NB: the journal Journal of Theoretical Medicine has been
moved to Computational and Mathematical Methods in
Medicine.

• M. Emily and O.Francois. A continuous stochastic model for
cell sorting, arXiv q-bio.TO/0605035.

• M. Emily and O.Francois. Conditional coalescent trees with
two mutation rates and their application to genomic
instability, Genetics, Vol. 172, Mars 2006, pages 1809-1820.
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C. Conclusion - Outline

Part C. Conclusion
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C. Conclusion - Conclusion

Summary

• Two stochastic models were proposed:
• A Gibbsian spatial model based on gene expression data within

tissues.
• Conditional coalescent model using DNA sequences data.

• Results: new statistical procedures:
• To estimate the differential adhesion between cells in normal

and tumoral tissues.
• To test the occurrence of the Loss of MMR and to detect

genetic instability.
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C. Conclusion -

Future works

• Spatial point process
• Mathematical properties of estimators (Billiot et al., 2006).
• Study the phase transition of our model (Haggström, 2000).
• Include cell division dynamics (Thom’s criterion, 1972).
• Adapt our model to other issues

(interaction between trees - Gourlet-Fleury et al., 2004).

• Coalescent model
• Increase power of tests using a multilocus approach

(Kühner et al., 1995).
• Include clonal selection

(Ancestral Selection Graph - Neuhauser and Krone, 1997).
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C. Conclusion - Future

Impact on early diagnosis of cancer

• In the near future, Polymerase Chain Reaction (PCR) will be
standard routine during medical diagnosis.

• High-throughput data such as Fluorescence In Situ
Hybridation will make tissue DNA contents easier to analyze.

• Goal: Reduce the time of detection by several years in
hereditary cancers (HNPCC, hereditary breast cancer).
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C. Conclusion - Future

Tissue Microarrays

• High-throughput data of gene expression markers is an
important emerging technology (Kononen, 1998).

• Perspective: Model-based statistical procedures.

Tissue Microarrays
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