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École Normale Supérieure
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Abstract

This thesis is devoted to the experimental study of multi-terminal electronic trans-
port properties of single-wall carbon nanotubes. This implies to find new methods
to measure reliably the intrinsic resistance of the nanotube, and to probe the one-
dimensional nature of the electron behavior in it.

Because the access to the intrinsic resistance of a nanotube is limited by bad con-
tacts in the two-terminal measurement, a new four-terminal measurement technique
using multi-wall carbon nanotubes as non-invasive voltage probes has been devel-
oped. In the linear regime, at room temperature, four-terminal measurements show
that the single-wall nanotube is a classical resistor that obeys Ohm’s law. At very low
temperature, negative four-terminal resistances due to quantum interference effects
are observed, as predicted by Laudauer-Büttiker formula.

At intermediate temperature, the one-dimensional nature of the electron behavior
in single-wall carbon nanotube is described by Luttinger Liquid theory. However,
previous electron tunneling measurements could not provide enough information to
exclude other theoretical explanations, e.g. the dynamical environmental Coulomb
Blockade theory. Following the proposition of theoreticians, crossed metallic single-
wall nanotube structures have been fabricated. We observe a zero-bias anomaly in
one tube which is suppressed by a current flowing through the other nanotube. These
results are compared with a Luttinger-liquid model which takes into account electro-
static tube-tube coupling together with crossing-induced backscattering processes.
Explicit solution of a simplified model is able to describe qualitatively the observed
experimental data with only one adjustable parameter.

Keywords: carbon nanotube, mesoscopic physics, nanotechnology, Luttinger-liquid,
Landauer-Büttiker formula
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Résumé

Cette thèse a pour objet l’étude expérimentale des propriétés du transport électronique
plusieurs contacts dans les nanotubes de carbone monofeuillets. Cela nécessite de
trouver des méthodes nouvelles pour mesurer la résistance intrinsèque du nanotube,
et aussi pour explorer la nature des comportements électroniques unidimensionnels
dans le nanotube monofeuillet.

Comme la mesure électronique deux contacts ne permet pas d’explorer la résistance
intrinsèque du nanotube cause de la résistance de contact, nous avons développé une
nouvelle méthode de mesure quatre contacts en utilisant des nanotubes multifeuillets
comme sondes de tension non-destructives. Les mesures faites sont toujours dans le
régime linéaire. A température ambiante, les mesures quatre contacts montrent que
le nanotube monofeuillet se comporte comme une résistance classique dont le fonc-
tionnement obéit la loi d’Ohm. A basse température, les mesures quatre contacts
montrent des résistances négatives. C’est un effet d’interférence quantique, qui avait
été prédit par la formule de Laudauer-Büttiker.

A température intermédiaire, la nature des comportements électroniques unidi-
mensionnels dans le nanotube monofeuillet est décrite par la théorie du Liquide de
Luttinger. Cependant, les mesures d’effet tunnel obtenues jusqu’ présent ne perme-
ttaient pas d’exclure les autres explications théoriques comme la théorie du Blocage
de Coulomb dynamique. Suivant la proposition faite par des théoriciens, nous avons
fabriqué des structures deux nanotubes monofeuillets croisés. Nous avons observé
une anomalie tension nulle dans un des deux tubes, qui peut tre supprimée quand un
courant est injecté dans l’autre. Nous avons comparé nos résultats avec les prédictions
de la théorie du Liquide de Luttinger, en considérant le couplage électrostatique entre
deux tubes et la rétro-diffusion d’électron provoquée par la déformation des tubes au
point de croisement. La solution explicite du modèle simplifié nous permet de décrire
qualitativement les résultats expérimentaux avec un seul paramètre ajustable.

Mots-clés : nanotube de carbone, physique mésoscopique, nanotechnologies, liq-
uide de Luttinger, formule de Laudauer-Büttiker
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Introduction

One-dimensional electron systems have been a very exciting research field since a

few decades. As prescribed by quantum mechanics, the electron behavior should be

described by its wave function. In case that the size of the system is comparable to

the electron coherence length, quantum interference effects between electron waves

should become important. In a series of work, R. Landauer and M. Büttiker have

established how these interference effects affect electron transport in low-dimensional

systems (a detailed description can be found in Ref.[1]).

Beyond that, as one takes into consideration the long range Coulomb interaction

between electrons, which prevails in a one-dimensional system, so that the electron

behavior will be completely different from that of normal metals. Theoretical in-

vestigations of this problem began about half a century ago by S. Tomonaga and

J. Luttinger [2, 3]. According to their findings, the low-energy excitations in a 1-d

interacting electron system are collective excitations, while the excitations in normal

metal are the well known Laudau-quasi particles. The Coulomb interaction between

electrons in the 1-d case will involve all electrons together, and this system is refereed

to as Tomonaga-Luttinger Liquid (often simplified as Luttinger Liquid).

In order to test these theoretical predictions, an experimental model system is

needed. Recent discovery of single-wall carbon nanotubes (SWNTs) provide us a

nearly perfect model system to study the one-dimensional electrons. A SWNT can

be regardes as a single layer of graphite, also called graphene sheet, rolled into a

seamless hollow cylinder. A high quality metallic SWNT has very little disorder
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along it, giving a long elastic electron mean-free path up to several microns. It is

also easy to manipulate and investigate with existing experimental techniques like

scanning prober microscope (SPM) and lithography.

Indeed, carbon structures similar to carbon nanotubes were observed a long time

ago (see more detailed descriptions in Ref.[4, 5]). However one did not recognize the

importance of these structures until the beginning of 1990s, when since they were

shadowed before by the great success of the silicon technology. In 1991, S. Iijima

reported his finding of multi-walled carbon nanotubes [6], which triggered a new era

of research on carbon nanotubes. Two years later, SWNTs were discovered inde-

pendently by Iijima’s group at NEC and by Bethune’s one at IBM [7, 8]. Then

in 1995-1996, Smalley’s group in Rice University managed to produce high quality

SWNTs in large quantity using laser-vaporation of graphite [9, 10]. From then on,

a lot of experimental electron transport measurements have been carried out on in-

dividual SWNTs and on bundles of SWNTs, which appear to confirm the previous

theoretical predictions [11, 12, 13, 14, 15, 16]. Our knowledge of the one-dimensional

electron system has therefore been greatly enriched.

The present work is in the same spirit. It uses SWNTs as a model system to

understand the one-dimensional electron physics. And more specifically, it focuses

on the experimental study of multi-terminal electronic transport in SWNTs. The

manuscript is structured as follows:

In the first chapter, we review the general properties of single-wall carbon nan-

otubes. We start by a simple introduction to the atomic and electrical band structure

of the graphene. We then give a general description to the atomic structure of a

SWNT. The electronic band structure of a SWNT can be derived from that of the

graphene sheet, using the quantization condition of electron wave vector along the

perimeter of the nanotube.

In the seconde chapter, we present a simple description of sample fabrication and

2



characterization techniques. We show how a mesoscopic object like a SWNT can be

electrically contacted and investigated.

In the third chapter, we discuss the four-terminal resistance measurements on

SWNTs. Indeed, two-terminal measurements are strongly affected by bad contacts

with high resistances, and a new method is needed to measure reliably the intrinsic

SWNT resistance. We have developed a four-terminal measurement technique using

multi-wall carbon nanotubes as non-invasive voltage probes. In the linear regime, at

room temperature, four-terminal measurements show that the SWNT is a classical

resistor that obeys Ohm’s law. At very low temperature, negative four-terminal resis-

tances are observed due to quantum interference effects , as predicted by Laudauer-

Büttiker formula [18].

In the last chapter, we investigate the one-dimensional nature of the electron be-

havior in the SWNT, which is described by Luttinger Liquid theory at intermediate

temperature. Previous electron tunneling measurements could not provide enough

information to exclude other theoretical explanations, e.g. the dynamical environ-

mental Coulomb Blockade theory. Following the proposition of theoreticians, crossed

metallic single-wall nanotube structures have been fabricated. We observe a zero-bias

anomaly in one tube which is suppressed by a current flowing through the other nan-

otube. These results are compared with a Luttinger-liquid model which takes into

account electrostatic tube-tube coupling together with crossing-induced backscatter-

ing processes. Explicit solution of a simplified model is able to describe qualitatively

the observed experimental data with only one adjustable parameter [17].
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Chapter 1

Atomic and Electronic structure of

Single-Wall Carbon Nanotubes

A single-wall carbon nanotube (SWNT) can be described as a monolayer of graphite,

also called as a graphene layer, rolled up into a cylindrical shape. It is a one-

dimensional structure with a variety of chirality, depending on the manner the graphene

layer is rolled up. The electronic structure of a SWNT can therefore be derived from

that of the graphene layer, which in turn can be obtain by a simple tight-binding

calculation.

This chapiter is organized in the following way. In the Sec.1.1, we briefly describe

the atomic structure of a graphene layer. We also present a simple tight-binding

calculation for the π-electrons of carbon atoms in the graphene layer, from which the

electronic structure of π-bands can be found. In the Sec. 1.2, we discuss the atomic

structure of a SWNT. Several characteristic parameters will be defined. At the end of

the section, the band structure of a SWNT will be obtained from that of a graphene

layer.
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1.1 The Two-dimensional Graphene Layer

1.1.1 Atomic Structure

The two-dimensional graphene layer is a very unique carbon material whose electronic

properties have been recently investigated experimentally [19, 20]. However for the

sake of describing the electronic properties of SWNTs, it is sufficient to consider here

a simple model for the electronic structure of the graphene, which is described below.

In the Fig. 1.1 below we show the unit cell and the first Brillouin zone of a

graphene layer. The unit cell is marked by the rhombus in the figure 1.1(a). Both a1

and a2 are unit vectors in real space.

a1 = (

√
3

2
a,

a

2
), a2 = (

√
3

2
a,−a

2
) (1.1.1)

where a = |a1| = |a2| = 0.246nm is the lattice constant of the graphene layer.

Correspondingly, the hexagon in figure 1.1(b) is the first Brillouin zone of the

reciprocal space. b1 and b2 are the unit vectors of the reciprocal lattice,

b1 = (
2π√
3a

,
2π

a
), b2 = (

2π√
3a

,−2π

a
) (1.1.2)

Three high symmetry points, Γ, K and M, can be defined as the center, the corner,

and the center of the edge of the first Brillouin zone.

a1

b1

b2

a2

A B

K

M
G

x

y

ky

kx

(a) (b)

Figure 1.1: (a) The unit cell (dotted rhombus) and (b) Brillouin zone of two-
dimensional graphene sheet are shown. A and B signify two inequivalent carbon
atoms. ai and bi (i=1,2) are the unit vectors in real and reciprocal space, respec-
tively. Γ, K and M are three high symmetry points in reciprocal lattice, Γ is the
center point, K is at the corner and M is at the center of the edge.
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1.1.2 Electronic Structure of π-bands

In the graphene layer, each carbon atom has three σ bands that hybridize in a sp2

configuration, while the left 2px orbital, which is perpendicular to the graphene plane,

make π covalent bands. As the π electrons are the valence electrons which dominate

the electronic transport properties, we focus here only on π-bands. We use a simple

tight-bind method to calculate the π-bands of the graphene layer.

Because there are two inequivalent carbon atomes A and B in the unit cell, one can

construct two Bloch functions from atomic orbitals for the two inequivalent atoms.

Φα(r) =
1√
M

∑

j

eik·Rj,αφα(r − Rj,α) (1.1.3)

where the summation is taken over all the cells, M is the total number of cells. φα

denotes the atomic wave-function of atom A or B in the jth cell, Rj,α is the atom

coordinate.

The eigenfunction of π-electrons in the graphene layer can therefore be written as

Ψ(r) = C1ΦA + C2ΦB (1.1.4)

where C1,2 are two coefficients to be determined.

The eigenvalue of the energy can therefore be obtained by solving the Schrödinger

equation:

Ĥ|Ψ >= E|Ψ > (1.1.5)

Taking only the contribution from the nearest neighbors, and assuming the overlap

of wave-functions between carbon atoms to be zero. The above equation can be

rewritten in the following form:
(

−E tf(k)
tf(k)∗ −E

)(

C1

C2

)

=

(

0
0

)

(1.1.6)

where t is the transfer integral between the nearest neighbors that is around −3eV

[21], and f(k) is defined as

f(k) = e
ikx

a√
3 + 2e

−ikx
a

2
√

3 cos
kya

2
(1.1.7)

where kx,y is the electron wave vector in the x/y direction.

6



On resolving this equation, one finds that the dispersion relations of π-bands in a

graphene layer take the following expression:

E±(kx, ky) = ±t

√

1 + 4 cos

√
3kxa

2
cos

kya

2
+ 4 cos2

kya

2
(1.1.8)

E+(k) and E−(k) are called bonding π and antibonding π∗ energy bands. One can

see that at the corner point K in the first Brillouin zone, both bands take the same

energy E = 0, therefore there is no band gap between two bands (See Fig 1.2). As

there are two inequivalent atoms in the unit cell, the antibonding band π∗ will be

completely filled, the Fermi level will be at E=0. We will see below that this has a

strong influence on the electronic structure of a single-wall carbon nanotube.

-4 -2
0

2
4

kx

-4
-2

0
2 4

ky

-2

0

2

E

-4 -2
0

2

Figure 1.2: The energy dispersion relations for a two-dimensional graphene sheet are
shown. The bonding and antibonding bands cross each other at K points. Therefore
it is a zero gap semiconductor. The plot is in arbitrary unit.

1.2 Single-Wall Carbon Nanotube

1.2.1 Atomic Structure

A single-wall carbon nanotube can be described by rolling up a graphene sheet. The

most important parameter to define the atomic structure of a SWNT is the chiral

vector Ch (the vector in OA the Fig 1.3), which corresponds to the perimeter of the

7



nanotube. The chiral vector can be expressed by the two unit vectors a1 and a2 of

the graphene lattice in the real space:

Ch = na1 + ma2 ≡ (n,m) (1.2.1)

where n and m are integers, satisfying 0 ≤ m ≤ n (because of the hexagonal symmetry

of the graphene lattice, we need to only consider the cases 0 ≤ m ≤ n). For the case

n=m, this is the so-called armchair nanotube; for m=0 it is called zigzag nanotube;

all other (n,m) chiral vectors correspond to a chiral nanotube.

a2

a1

O

B

A

C

x

y

Ch

T

q

Figure 1.3: The unrolled honeycomb lattice of a nanotube. OA is the chiral vector
Ch, OB signifies the translation vector T, the rectangle OACB defines the unit cell of
a nanotube, θ is the chiral angle, and ai, i = (1, 2) is the unit vector of the graphene
lattice in real space.

From the chiral vector, one can easily find that the diameter dt of a nanotube is

dt = |Ch| /π = a
√

n2 + m2 + nm/π (1.2.2)

where a is the lattice constant of the graphene layer defined in the previous section.

One can also define the chiral angle θ between the chiral vector Ch and a1 :

cos θ =
Ch · a1

|Ch| |a1|
=

2n + m

2
√

n2 + m2 + nm
(1.2.3)

where θ is limited by 0 ≤ |θ| ≤ 30◦ because of the hexagonal symmetry of the graphene

lattice.
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Apart from the chiral vector Ch, one can define the translation vector T, which

is the unit vector of the nanotube. The translation vector is parallel to the nanotube

axis and is normal to the chiral vector. As seen in the Fig 1.3, it corresponds to the

first lattice point B of the graphene layer through which the vector passes. One can

find

T = t1a1 + t2a2 ≡ (t1, t2) (1.2.4)

where t1 and t2 are integers, and they do not have a common divisor except the unity.

The precise expression for t1,2 is

t1 =
2m + n

dR

, t2 = −2n + m

dR

(1.2.5)

where dR is the greatest common divisor of (2m + n) and (2n + m).

Since both the chiral vector and the translation vector have been defined, one can

therefore find the unit cell of the one-dimensional nanotube, which is the rectangle

OACB in the Fig 1.3 generated by Ch and T. The number of carbon atoms in a unit

cell is given by 2N, where N is

N =
|Ch × T|
|a1 × a2|

=
2(m2 + n2 + nm)

dR

=
2π2d2

t

a2dR

(1.2.6)

Above we presented briefly the atomic structure the a SWNT in real space, we can

now turn to the reciprocal space. Two reciprocal lattice vectors K1 and K2 can be

defined. K1 is in the circumferential direction and K2 is along the tube axis. Using

the definition relations below

Ch · K1 = 2π, T · K1 = 0

Ch · K2 = 0, T · K2 = 2π
(1.2.7)

one can find that

K1 =
1

N
(−t2b1 + t1b2), K2 =

1

N
(mb1 − nb2) (1.2.8)

As the nanotube is one-dimensional material, only K2 is a real reciprocal unit

vector for a SWNT. The length of the first Brillouin zone is given by |K2| = 2π/ |T|.
For the vector K1, it is not a reciprocal unit vector of the nanotube, however

it gives the discrete k value in the direction of Ch, with k = k K2

|K2| + µK1,− π
|T| ≤

k ≤ π
|T| , µ = 0, 1..., N − 1. This is due to the periodic boundary condition in the
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circumferential direction of the nanotube, wavevectors in this direction become quan-

tized. Since NK1 = (−t2b1 + t1b2) is a reciprocal unit vector of the graphene sheet,

two wave vectors which differ by NK1 are equivalent. Therefore, there are N differ-

ent wave-vectors µK1 that give rise to N discrete k vectors, and N one-dimensional

sub-bands of a nanotube appear.

1.2.2 Electronic Structure

The electronic structure of a SWNT can be deduced from that of a graphene layer.

As we mentioned above, because of the periodic boundary condition in the circumfer-

ential direction of the nanotube, the electron wave-vector in this direction becomes

quantized. On the other hand, the wave-vector along the direction of tube axis re-

mains continuous provided that the length of the nanotube is infinite. Therefore the

energy bands of a SWNT can be obtained from cross sections of those of a graphene

layer.

One may take the example of a armchair nanotube (n,n). Using the definitions

above, one may find the chiral vector Ch is in the direction ex; and the translation

vector T, which is normal to the chiral vector, is in the direction ey :

Ch = n(a1 + a2) = n
√

3aex

T = a1 − a2 = aey

(1.2.9)

Because of the periodic boundary condition in this direction, the electron wave-vector

kx becomes quantized,

n
√

3kx,q = 2πq, (q = 1, 2...2n) (1.2.10)

On the other hand, the electron wave-vector ky along the tube axis, in this case

in the direction ey, remains continuous. On substituting Eq.1.2.10 into Eq.1.1.8, one

finds the following dispersion relation:

E±,q(k) = ±t

√

1 + 4 cos
qπ

n
cos

ka

2
+ 4 cos2

ka

2
(1.2.11)

where ± denotes the bonding π and antibonding π∗ bands, q is the integer between 1

and 2n that denotes the sub-band index, and −π ≤ ka ≤ π signifies the first Brillouin

zone.

For an armchair SWNT (n,n), one can easily find, for both bonding and anti-

bonding bands q=n, E(k = ±2π/3a) = 0, the bonding and antibonding sub-bands
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cross each other. There are in total 2n antibonding sub-bands; as the number of π

electrons is equal to that of the carbon atoms, which is 4n as derived from Eq 1.2.6,

therefore all the antibonding sub-bands are fully occupied. The fermi level is at the

crossing point. This makes the armchair SWNT a metallic nanotube. And there are

four transport channels at the Fermi lever, factor 2 comes from the spin degeneration.

Fig 1.4 shows the dispersion relations calculated from the above equation for an

armchair SWNT (5,5).

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

k

E

Figure 1.4: One dimensional energy dispersion relations for an armchair SWNT (5,5).
Those bands with positive energy are antibonding π∗ sub-bands and those with neg-
ative energy are bonding π sub-bands. The bonding and antibonding sub-bands with
band label q=5 cross each other at k = ±2π/3a. The Fermi level is at the crossing
point. The plot is in arbitrary units.

The electronic band structure of zigzag and chiral nanotubes can also be derived

from that of a graphene sheet. They can be metallic or semiconducting, depending

on the index of nanotube (n,m). The general condition for metallic nanotubes is that

(n-m) is a multiple of 3 [22].

We at last need to mention the Peierls Instability. In general metallic 1-D ma-

terials are unstable under a Peierls distortion, however it has been found that for

metallic SWNT, the energy gap due to the Peierls distortion decreases rapidly to

zero when increasing the diameter of the tube [23, 24]. Therefore both metallic and

semiconducting SWNTs exist.
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Chapter 2

Techniques of Sample Fabrication

and Characterization

We have briefed in the previous chapiter the fundamental properties of carbon nan-

otubes. We are specially interested in electron transport properties of single-wall

carbon nanotubes (SWNT). To probe these properties, metal electrodes need to be

made to carbon nanotubes so that I-V curves can be registered. In this chapiter, we

will present various techniques related to sample fabrications (Sec.2.1) and sample

characterizations (Sec.2.2).

2.1 Sample Fabrication

A single-wall carbon nanotube is a several-µms long cylinder, whose diameter is usu-

ally less than 2nm. Making electrical contacts to such a small object needs tens of

hours work. To ensure the quality of the sample, most of the sample-fabrication work

need to be carried out inside a clean room. The experimental equipments, such as

beakers, flasks and tweezers, should be cleaned before the utilization and kept in a

clean space. The choice on solutions used to clean equipments can be made among

rectapure acetone, rectapure 2-isopropanol and deionized water, depending on the

object to be cleaned. An object may be cleaned several times with different solution

before the use, and the cleaning is mostly made in a ultrasonic tank (100W, 42Khz).

2.1.1 Preparation of the Silicon Wafer

To make a electrical contact to a SWNT, we need first to find an isolator to support

the nanotube. We therefore use a doped silicon wafer with a 500nm thick silicon-oxide
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layer on the top. We usually cut a large silicon wafer into small pieces with a typical

size of 8mm×8mm. We then clean the wafer by dipping it successively in acetone,

deionized water, nitride acid, deionized water again and at last 2-isopropanol. The

cleaning is done in the ultrasonic tank . Each step take one minute except the first

one in acetone, which takes five minuets instead. Cautions need to be taken when

transferring the wafer from one solution to another. One should behaves quickly in

order to not dry the wafer, if not dirties will be left on the wafer surface. The final

drying process is done with a gun of azote gas (that’s why it is important to verify

the pressure in the bottle of azote before cleaning the wafer). The typical roughness

of the wafer surface is around one 1nm.

2.1.2 Alignment Marks

Once the silicon wafer is cleaned, nanotubes can be deposited on it. However, as

nanotubes will be put onto the wafer in a random way, one would need something to

help to determine the position of a nanotube. Therefore alignment marks need to be

evaporated onto the wafer surface before the deposition of tubes (Indeed, alignment

marks can also be fabricated after the deposition of tubes. This is another technique

for contacting nanotubes grown by Chemical-Vapor -deposition method. We will not

go into details here). These metallic marks are fabricated using lithography technique,

which will be discussed in the subsection below. The highness of an alignment mark

is often tens of nms. They can be further classified into two groups: the size of large

one is several hundreds µms, that of small one is about a few µs. The combination of

large and small alignment marks allows us to determine the position of a nanotube

with a precision down to 50nms.

2.1.3 Deposition of Nanotubes

Now we have a silicon wafer with pre-fabricated alignment marks, we can start to

deposit the carbon nanotubes onto the wafer. Carbon nanotubes fabricated by laser-

ablation methods look like black powder, tubes are usually intertwisted into bundles.

In order to get isolated nanotubes, the traditional method involves the use of ultra-

sonic bath. which can help dispersing the nanotubes from bundles. A few pieces of

carbon nanotubes are firstly put into a small bottle, inside which there is 3-5 cm3
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of dichloroethane solution. The bottle is then suspended in the ultrasonic tank. We

usually leave the bottle in the tank for about 45 minuets. One should know that long

time, high ultrasonic intensity will induce disorder inside the nanotube.

Once the ultrasonic bath is done, one needs to begin immediately the deposition

of nanotubes onto the silicon wafer because tubes in the dichloroethane solution tends

to intertwist with each other as time passes. The deposition is made by a technique

called spin-coating. One or two drops of the nanotube solution are put on the wafer so

that at least 2/3 of wafer surface is covered. The wafer is then rotated with relatively

low speed (acceleration: 1000 circle/min2, velocity: 1000 circle/min). About 5

seconds later, when the color of the wafer change (that means the solution on the

surface is almost dried), we increase the velocity to 2000 circle/min. Keeping this

velocity for 25 seconds, the deposition is completed. The above process need to be

repeated several times in order to get a appropriate tube density on the wafer, which

can be checked under the Atomic Force Microscope (AFM).

2.1.4 Locating the Carbon Nanotube

We usually locate the carbon nanotube under an Atomic Force Microscope, which can

give the image of the wafer surface. The position of a nanotube is determined with

respect to the four alignment marks around it (Fig 2.1). The diameter of a nanotube

can also be roughly found from its highness in the AFM image with a precision down

to 1nm. We can therefore select the best nanotube to contact, on considering tube

itself (usually the tube need to be long, strait, with homogenous diameter along the

total length of the tube), its nearby environment (too much dirties/tubes around may

make the contacts bad or cause short-current.)

2.1.5 Making Electrical Contacts to Nanotubes

Once we decide the nanotube to be contacted, we can now put metal electrodes onto

the selected area of the nanotube. This can be down using electronic lithography,

which protected the undesired area from the metal evaporation.

Lithography is the traditional technique for printing on a smooth surface. The

essence of electronic lithography is the same as its ancestor. Fig 2.2 illustrate the

different step of an electronic lithography procedure: firstly, a layer of electro-sensitive
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Figure 2.1: The AFM image shows catbon nanotubes on the surface of a silicon wafer.
Four alignment marks lie at the corners of the image, which serve as the references
to locate a nanotube.

resist (polymer) is deposited on the top surface of the silicon wafer. The wafer is then

selectively exposed to high-energy electron beam (25kev) in a controlled manner.

The high energy electron breaks inter-chains of the polymer molecular, therefore

degrading the resist in those exposed area. The degraded resist can be lifted through

the developing process, while the left resist on the surface still covers the undesired

area. The metal evaporation can now be done and electrodes are attached to the

nanotube. After washing off the rest resistor in hot acetone solution (Lift-Off), the

sample fabrication is completed.

Deposition of the Resist

To facilitate the Lift-Off process, we deposit successively two different electro-sensitive

resist, first MAA (Methacrylic Acid solution) then PMMA (Polymethyl Methacrylate

solution), onto the silicon wafer. The deposition is also done with the spin-coating

method (acceleration: 4000 circle/min2, velocity: 4000 circle/min, time: 30 sec-

onds). After the deposition of the MAA, the wafer need to be heated to 160 Celsius

degrees for at least 5 minuets evaporate the solvent. The wafered need to be cooled

for one minuet before the deposition of the PMMA, in order to not damage the latex

airproof gasket. One can then deposit the PMMA, the wafer is finally reheated to
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(a)

(b) (c)

(d)
(e)

Electron-sensitive Resist

Silicon Oxide Layer

Doped Silicon Layer

Figure 2.2: (a) The electro-sensitive resist deposited on the top surface of the silicon
wafer. (b)High energy electrons attack the selected area on the resist layer, cutting the
interconnections between polymer chains. (c) After the development, the degraded
resist is lifted. (d) Metal evaporation covers a metallic layer on the top of the wafer.
(e) Lift-off process takes away the undesired metal parts.
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160 Celsius degrees for more than 15 minuets to evaporate the solvent.

Electronic Lithography

Electronic lithography is carried out inside a Scanning Electron Microscope (SEM,

model: JEOL 2200). After the wafer is loaded into the chamber, one need first

optimize different parameters of the SEM, in order to get it well focused on the

wafer surface.

Then the alignment procedure to locate nanotubes must be down. This involves

several steps:

1. To locate the position of the wafer by one pre-selected corner, it functions as

the reference point for large structure. The x-y coordinates of the corner are read

from rulers on the SEM with a precision down to 10 µms.

2. Knowing the relative positions of alignment marks with respect to the reference

point, zoom the view-field into the area with the alignment marks.

3. Another alignment process is done to locate several special alignment marks

serving as reference points for small structures. The position of a nanotube can

therefore be determined with a precision down to 50 nms.

One can then expose the selected area of the wafer surface to electron beam. The

geometry of the electrode is thus defined. Parameters like beam intensity, exposing

time can be controlled by the software.

Development

We use a mixed solution of Methylisobutylcetone (MIBK) and 2-Isopropanol (IPA)

to develop the exposed resist. The solution is made with one volume of MIBK

and three volume of IPA. The wafer need to be washed in the solution for 70 sec-

onds, then transferred to the solution of IPA for more than 30 seconds to stop the

developing. The temperature of the mixed solution can dramatically change the ef-

fect of the development. To our experience, 18-20 Celsius degrees is the appropriate

temperature.

Evaporation

The deposition of metal electrodes is done with the metal evaporation. The metal

electrode is mostly fabricated with Cr/Au in our experiments. One layer of Cr (3-5nm
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thick) is first evaporated onto the wafer for that Cr can well adhere to silicon oxide.

Then the second layer of Au (40-100nm thick) can be evaporated. The evaporation

is done in high-vacuum (10−6mbar) by heating the material through Joule Effect. As

large quantity of gas molecules are absorbed on the surface of Cr, a degassing process

is necessary before the evaporation, which can be down by slightly heating the Cr in

the vacuum.

Lift-off

After the evaporation, the wafer is completed covered by a metallic layer. To lift the

undesired metal layer, one need to leave the wafer in hot acetone (54 Celsius degrees)

for 10 minuets. A syringe is used to eject acetone flux onto the wafer surface to help

to remove the metal layer. The wafer is then cleaned in 2-isopropanol.

2.2 Sample Characterization

After the metal electrodes have been successfully attached to a nanotube, the electri-

cal transport measurement can be performed under a probe-station or inside a Helium

4 cryostat.

Measurement under a Probe-Station

Under the probe-station, the nanotube device is contacted by metal tips, which can

be manipulated in x-, y- and z- three directions under a binocular microscope. One

need to take cautions when manipulating the metal tips. As the oxidized silicon

isolation layer of the sample is only 500nm thick, the metal tip must make a stable

however slight contact with the electrode in order to not penetrate the isolation layer,

otherwise a short-circuit with the underground doped silicon layer will totally destroy

the sample. Another caution that needs to be taken by a manipulator is the hazard of

electro-static charge. The electro-static potential carried by a manipulator can be up

to several thousands volts. Such a high voltage can easily induce a large pulse current

through the nanotube and burn it down if a direct contact between the manipulator

and the sample is constructed. Therefore the manipulator need to always keep himself

discharged when doing the measurements under the probe-station. Indeed, once the

metal electrodes have been attached to the nanotube, one need to take the caution
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against the hazard of electro-static charge when handling the sample.

Wire-bonding

We usually perform only preliminary measurements under the probe station to select

some best devices for further investigations. Most of the measurements are afterward

carried out inside a Helium 4 cryostat.

In order to load the sample into the cyostat, it needs to be sticked to a chip carrier

using the silver lacquer. The electrical contacts between electrodes on the sample and

on the chip-carrier are constructed by Au or Al thread with a 25 µm diameter. This

can be down by a specific machine, which joints the metal thread with the electrode

by a ultrasonic shock. This is called the wire-banding, which is one of the most

delicate step in the whole experiment. One should be very patient in this step.

Measurement inside a Helium 4 Cryostat

Once the wire-banding is successfully done, one can load the sample into the cryostat,

which allows us to perform the measurements in a temperature region from 1.4K to

300K, with a magnetic field up to 8 Tesla. The conductance of the sample as a

function of temperature or magnetic field can therefore be registered. The measured

current and voltage signals are amplified and transferred to voltage signals, which

are collected by the computer through a AD-DA card. The whole data collection

process is controlled by a Labview programme. Below is the figure which gives a

simple description to a Helium 4 cryostat.
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Figure 2.3: Schematic view of a Helium 4 Cryostat. The sample is to be loaded at
the lower end of the rod in the middle.
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Chapter 3

Non-invasive Four-terminal

Measurements on Single Wall

Carbon Nanotubes

Transport measurements has so far proven itself as a powerful tool to investigate

the electronic properties of molecular systems [25]. Most often, individual molecular

systems are electrically attached to two nano-fabricated electrodes. However, such

two-terminal experiments do not allow the determination of the intrinsic resistance

that results from the scattering processes involving, e.g. phonons or disorder. Indeed,

the resistance is mainly dominated by poorly defined contacts that lie in series. A

solution to eliminate the contribution of contacts has been found with scanning probe

microscopy techniques [26, 27, 28, 29, 30], which enable the measurement of resistance

variations along long systems such as nanotubes, however so far these techniques

have only been applied at room temperature. The standard method to determine

the intrinsic resistivity of macroscopic systems is the four-terminal measurement.

However, the application of this technique to molecular systems is challenging, , since

the metal electrodes used so far have been invasive. For example, nano-fabricated

electrodes were shown to divide nanotubes into multiple quantum dots [31, 32].

To overcome this difficulty, we have designed a new four-terminal resistance mea-

surements technique on single wall carbon nanotubes(SWNTs), which employs mul-

tiwalled carbon nanotubes(MWNTs) as noninvasive voltage electrodes. With this

technique, we have found that SWNTs are remarkably good one-dimensional con-

ductors with resistances as low as 1.5kΩ for a 95nm long section. The resistance of
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nanotube is shown to linearly increase with length at room temperature, in agree-

ment with Ohm’s law. At low temperature, however, the resistance can become

negative and the amplitude then depends on the transmission coefficients at the dif-

ferent tube-probe interfaces. In this regime, four-terminal resistance measurements

can be described by the Laudauer-Büttiker formalism [33, 34, 1], which takes into

account quantum-interference effects.

This chapiter is organized as follows. In Sec. 3.1, we give a brief review of the

previous efforts to measure the intrinsic resistance of SWNTs. In Sec. 3.2, we discuss

the four-terminal resistance measurement in both the non-coherent and the coherent

transport regime using Laudauer-Büttiker formula. In Sec. 3.3 we give a simple

introduction to Coulomb Blockade (CB) oscillations of conductance, as we will use

CB measurements to investigate the invasiveness of MWNTs as voltage probes. In

Sec. 3.4 we give the details of our device fabrication technique, which mainly consist

in moving MWNTs on the silicon oxide substrate to place them onto a SWNT. In Sec.

3.5 we give the various experimental evidences showing that MWNTs are non-invasive

electrodes. The four-terminal resistance as a function of the tube length measured

at room temperature, and the two-terminal coulomb blockade measurements will be

presented. In Sec. 3.6 we discuss the four-terminal resistance measurements carried

out at liquid Helium temperature. The interesting finding of negative four-terminal

resistance strongly supports the predictions of the Laudauer-Büttiker formalism.

3.1 How to Probe the Intrinsic Resistance of a Sin-

gle Wall Carbon Nanotubes ?

A disorder-free SWNT connected to ideal contacts is expected to display a conduc-

tance equal to 4e2/h, which is called the contact resistance Rc where the factor 4

comes from band and spin degeneracy. However, most often the contact between

metal electrode and SWNT is not perfect, and there might be some disorder along

the tube, the measured two-terminal resistance is a sum of quantum contact resistance

Rc, tube-electrode interface resistance Ri, and the intrinsic resistance of a SWNT Rin

due to static impurities, internal reflections due to tube bending effect and to phonon

scattering, etc. Therefore the usual two-terminal measurements cannot give enough

information to infer the actual intrinsic resistance of a SWNT.
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A solution to eliminate the contribution of contacts has been found with scanning

probe microscopy (SPM) techniques [26, 27, 28, 29, 30]. In these experiments, the

SPM tips are used as movable electrodes, which enable the measurement of resistance

variation along long systems such as nanotubes. However, these techniques have only

been applied at room temperature.

The standard method to determine the intrinsic resistivity of a macroscopic system

is the four-terminal measurement. Fig.3.1 below shows the principle of the measure-

ment: a voltage bias is applied across the sample, maintaining a current I through

the sample. Two voltage probes are attached to middle of the sample, a voltmeter

is used to measure the voltage difference between both voltage probes. As there is

no net current flowing through the voltage probes, the measured resistance R = V/I

does not depend on the contacts. Therefore the intrinsic resistance of the system can

be obtained.

V
+ -

I

1 23 4

V
+ -

I

VV
+ -

I

1 23 4

Figure 3.1: The setup of four-terminal resistance measurement: I is the current in-
jected in 1 and extracted in 2 through the object, and V is the voltage difference
between the two voltage probes 4 and 3. R=V/I gives the intrinsic resistance of the
object.

However, the application of this technique to a SWNT is challenging, since the

metal electrodes used so far have been invasive [31, 32]. The metal electrodes can

damage the SWNT in two different ways.

Firstly, the metal electrodes may induce tunnel barriers into the SWNT. There

are two different approaches to attach metal electrodes to a SWNT. The tube may be

deposited on top of the prefabricated electrodes; or the electrodes may be evaporated

on top of the tubes. In the former case, the mechanical bending within the tube may

create successive quantum-dots inside the tube (as shown in Fig 3.2); in the latter

case, though the origin is not very clear yet, electrodes also introduce barriers into
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Figure 3.2: Mechanical bending within the tube create tunnel barriers near edges of
electrodes inside the tube. The tube is divided into three quantum dots. One lies
between two metal electrodes, and the other two lie on the top of electrodes.

the tube. The possible explanations are the damage by electron beam and the doping

effect on the tube by metal electrodes.

Below is an example taken from Ref.[31]: Fig 3.3 shows a long SWNT deposited

on prefabricated metal electrodes. At low temperature, two-terminal conductance

measurements between non-adjacent electrodes give aperiodic Coulomb peaks, sug-

gesting the existence of multiple quantum-dots along the measured SWNT. Further

investigations suggest the location of the barriers is near the edge of the metal elec-

trodes, where the barriers may be induced by bending of tube at the edge of the

electrodes, as seen in Fig 3.2.

Figure 3.3: (a) AFM image showing a nanotube over prefabricated Pd electrodes. (b)
Two-terminal measurements of the current versus gate voltage between various pairs
of electrodes i-j at 4K. Curves are vertically offset for clarity.
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Even if the electrodes cause no damage, the metal electrodes can be invasive in

a more fundamental way. As seen in the Fig 3.4 below, an electron traveling in the

SWNT can enter the voltage probe. As the voltage probe itself is electrically floating,

no net current flows in or out of it, so another electron must come out. However, this

electron can take either directions, this generates an additional resistance.

Figure 3.4: Additional back-scattering created by a voltage probe placed above a
SWNT. Arrows show the incoming and outgoing electrons.

To investigate in detail this additional backscattering, we can start with the scat-

tering matrix (S-matrix) related to the voltage probe. A S-matrix relates the outgoing

wave amplitudes to the incoming wave amplitudes at different leads. Like the config-

uration in the Fig 3.5 below, the S-matrix which describes locally the voltage probe

can be written as





b1

b2

b3



 =





a
√

ǫ b√
ǫ c

√
ǫ

b
√

ǫ a









a1

a2

a3



 (3.1.1)

Where bi and ai are outgoing and incoming wave fuction amplitudes of the electrode

i, respectively, and c =
√

1 − 2ǫ, a = (1 − c)/2, b = −(1 + c)/2, ǫ is the coupling

parameter between the tube and the voltage probe [35]. Here we suppose there

is no other static scattering center along the tube, and all metal electrodes make

transparent contacts. The analysis below is made in the non-coherent transport

regime.

The transmission probability Tnm between from m to n is obtained by the magni-

tude of the corresponding element of the S-matrix:

Tnm = |Snm|2 (3.1.2)

The transmission probability matrix can be written as




a2 ǫ b2

ǫ c2 ǫ
b2 ǫ a2



 (3.1.3)
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Figure 3.5: A three terminal device with which we calculate the additional resistance
introduced by the probe.

Therefore the total transmission probability between tube and voltage probe Ttube−probe

is 2ǫ.

Using Büttiker formula, Im = 4 e2

h

∑

n[TnmVm − TmnVn], where Vm and Im are the

potential and the current of electrode m, respectively. We therefore have the following

expression





I1

I2

I3



 =
4e2

h





T12 + T13 −T12 −T13

−T21 T21 + T23 −T23

−T31 −T32 T31 + T32









V1

V2

V3



 (3.1.4)

On taking V3 as zero, and using the Kirchoff’s law (I1 + I2 + I3 = 0), we can find the

the following I-V relations:

(

I1

I2

)

=
4e2

h

(

b2 + ǫ −ǫ
−ǫ 2ǫ

)(

V1

V2

)

(3.1.5)

from which we can find that the two-terminal resistance R2pt between lead 1 and 3 is

R2pt =

[

V1

I1

]

I2=0

=
1

b2 + ǫ/2

h

4e2
(3.1.6)

therefore if the transmission probability between tube and voltage probe is around

0.4, we get an additional resistance ≈ 0.1 h
4e2 . In order to get rid of this additional

resistance, the transmission probability Ttube−probe between tube and voltage probe

needs to be weak.
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Experimentally, one can estimate the Ttube−probe by measuring the resistance be-

tween the tube and voltage probe. We have

Rtube−probe =

[

V2

I2

]

I1=0

=
1

ǫ

b2 + ǫ

2b2 + ǫ

h

4e2

≈ 1

2ǫ

h

4e2
=

1

Ttube−probe

h

4e2

(3.1.7)

in the weak coupling limit.

Above we have analyzed the invasiveness of voltage probes. In order to find the

intrinsic resistance of a SWNT with four-terminal measurement technique, one need

to attach some non-invasive voltage probes to a SWNT. We propose to use MWNTs

as voltage probes, since the electrical transmission between two crossed nanotubes is

low [36, 17]. These MWNTs can be attached to the SWNT by AFM manipulations.

We will see in the Sec. 3.4 the details concerning how to place a MWNT onto a

SWNT with the help of the AFM tips.

3.2 Laudauer-Büttiker Formalism

3.2.1 General Description of a Four-Terminal Device by the

Laudauer-Büttiker Formalism

In this section we will give a brief introduction to the Laudauer-Büttiker formalism,

which is the theory mostly employed in the description of multi-terminal electron

transport in mesoscopic systems. Both non-coherent and coherent electron transport

in a four-terminal system will be discussed.

The basic equation that describes the I-V relations in a multi-terminal structure

is:

Im =
∑

n

[GnmVm − GmnVn] (3.2.1)

where Vm and Im are the potential and the current of electrode m, respectively; and

Gnm is the conductance coefficient from the electrode m to the electrode n. We can

express Gnm with the transmission coefficient Tnm:

Gnm = 4
e2

h
Tnm (3.2.2)
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where the factor 4 comes from the fact that there are 2 spin-degenerated transport

channels at the Fermi level of a SWNT.

Therefore the I-V relations in a four-terminal device as described in the Fig 3.6

can be written as




I1

I2

I3



 =
4e2

h





T12 + T13 + T14 −T12 −T13

−T21 T21 + T23 + T24 −T23

−T31 −T32 T31 + T32 + T34









V1

V2

V3





(3.2.3)

We have taken the voltage V4 to be zero, and I1 + I4 = 0.
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Figure 3.6: A four-terminal measurement setup on a SWNT. The current I flowing
from terminal 1 to 4. A voltage drop V is measured between the floating terminal 2
and 3.

We now take the reciprocal of the transmission matrix, then we have




V1

V2

V3



 = R





I1

I2

I3



 (3.2.4)

where the resistance matrix [R] is given by

R =
h

4e2





T12 + T13 + T14 −T12 −T13

−T21 T21 + T23 + T24 −T23

−T31 −T32 T31 + T32 + T34





−1

(3.2.5)

The four-terminal resistance R4p measured in the configuration shown in Fig 3.6 is

given by

R4p =
V

I
=

[

V2 − V3

I

]

I2−I3=0

= R21 − R31 (3.2.6)

Therefore our goal is to calculate the transmission matrix [Tnm].
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3.2.2 Non-coherent Electron Transport Regime

We first treat the electron motion classically, therefore we do not worry about any

interference effect. We will take a simple model shown in the Fig 3.7. This is a SWNT

contacted by four electrodes, among which electrodes 1 and 4 are current probes,

electrodes 2 and 3 are voltage probes. Supposing there are three static scatters along

Probe

1 4

2

SWNT

V

I

3

Tleft Tmiddle Tright

Probe

1 4

22

SWNT

V

I

33

Tleft Tmiddle Tright

Figure 3.7: A four-terminal measurement setup on a SWNT, along which lie three
static scatterers. One to the left of electrode 2 is called Tleft, where Tleft also signifies
its transmission probability. Tright and Tmiddle are defined in the same way.

the tube, each can be characterized by a (2 × 2) scattering matrix
(

i
√

1 − Ti

√
Ti√

Ti i
√

1 − Ti

)

(3.2.7)

where Ti is the transmission probability of the static scattering center i.

The effect of voltage probes, as we have seen in the first section, can be described

by a (3 × 3) scattering matrix




a
√

ǫ b√
ǫ c

√
ǫ

b
√

ǫ a



 (3.2.8)

where c =
√

1 − 2ǫ, a = (1−c)/2, b = −(1+c)/2, ǫ is the coupling parameter between

the tube and the voltage probe.

These scattering matrix relate the outgoing electron wave amplitudes to the in-

coming electron wave amplitudes. What we need to do now is to combine all these
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scattering matrix together to find the total transmission matrix. Because we are

in non-coherent transport regime, we may neglect the phase factor of the electron

wave. Instead of combining successive scattering matrix, we can combine directly the

probability matrix to get the total transmission matrix. The probability matrix is

obtained by taking the squared magnitude of the corresponding element of the scat-

tering matrix, therefore we have the following probability matrix related to the static

scattering center
(

1 − Ti Ti

Ti 1 − Ti

)

(3.2.9)

and to the voltage probe




a2 ǫ b2

ǫ c2 ǫ
b2 ǫ a2



 (3.2.10)

The method to combine different probability matrix into a composite matrix is

described in [1]. We give in the appendix the Mathematica programme for details of

the calculation. We present here the main results of the calculation.

1. The calculated four-terminal resistance R4p does not depend on the trans-

mission probabilities Tleft and Tright as shown in the Fig 3.8 below. The similar

dependence on Tleft can also be obtained.

0.2 0.4 0.6 0.8 1
T-right

0.25

0.5

0.75

1

1.25

1.5

1.75

2
R4p

Figure 3.8: Four-terminal resistance R4p as a function of the transmission Tright, with
Tleft=0.1, Tmiddle = 0.5, ǫ1,2 = 0.01, the R4p is in unit of h

4e2 .

2. The calculated four-terminal resistance R4p does depend on the coupling ǫ1,2

between voltage probes and the SWNT, as seen in Fig 3.9. The four-terminal re-

sistance increases with the coupling strength ǫ, as we have seen in the first section,
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this is due to the additional backscattering caused by the voltage probes. For weak

coupling between the voltage probe and the SWNT, R4p tends to h
4e2

1−Tmiddle

Tmiddle
, which

is the intrinsic resistance of the SWNT as we will see below.

0.1 0.2 0.3 0.4 0.5
e1

1.1

1.2

1.3

1.4

1.5

R4p

Figure 3.9: Four-terminal resistance R4p as a function of the the coupling strength
ǫ1, with Tleft = Tright = 0.1, Tmiddle=0.5, ǫ2 = 0.01, the R4p is in unit of h

4e2 .

3. In case that the coupling between the voltage probes and the SWNT is weak,

the four-terminal resistance R4p is only a function of T2. This means that R4p describes

only the intrinsic resistance between the two voltage probes. Indeed, the above curve

0.2 0.4 0.6 0.8 1
T-middle

1

2

3

4

5
R4p

Figure 3.10: Four-terminal resistance R4p as a function of the transmission Tmiddle,
with Tleft=0.1, Tright = 0.1, ǫ1,2 = 0.01, the R4p is in unit of h

4e2 .

takes a form of (1 − Tmiddle)/Tmiddle, as seen in Fig 3.10. We can understand this

result using the description in [1].
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Supposing there are several static scattering center lying in series along the SWNT

between the two voltage probes. The measured four-terminal resistance should be the

sum of the resistance related to each scatterer. We start by a simple case: two scatter-

ers with transmission probability T1 and T2 are located inside the SWNT. To obtain

the total transmission probability T12 we need to take into account all the multiple

reflections of electron between both scatterers. As we neglect the interference, the

total transmission probability is:

T12 = T1T2 + T1T2R1R2 + T1T2R
2
1R

2
2 + ...

=
T1T2

1 − R1R2

(3.2.11)

with R1,2 = 1 − T1,2 is the reflection probability of both scatterers.

We can rewrite the above result in the following form:

1 − T12

T12

=
1 − T1

T1

+
1 − T2

T2

(3.2.12)

The fact that the quantity (1− Ti)/Ti has an additive property suggests that the

resistance of an individual scatterers is proportional to it. Therefore, if there are N

scatterers lying along the SWNT, each has a transmission probability T, the total

resistance of these scatterers should proportional to (1 − T (N))/T (N), where T (N)

is the total transmission probability satisfying

1 − T (N)

T (N)
= N

1 − T

T
(3.2.13)

This explains the above calculated four-terminal resistance R4p taking a form of 1−T
T

.

We can further relate the four-terminal resistance to the elastic mean-free path of

electron in a SWNT. Rewrite T (N) in the following expression:

T (N) =
T

N(1 − T ) + T
(3.2.14)

Provided the separation between two voltage probes is L, and ρ is the mean linear

density of the scatterers, we can define the elastic mean-free path of electron in SWNT

le ≡ T
ρ(1−T )

, the total transmission T (N) can be written as

T (L) =
le

L + le
(3.2.15)

We can find

R4pt =
h

4e2

1 − T

T
=

h

4e2

L

le
(3.2.16)

The four-terminal resistance in non-coherent transport regime can therefore provide

direct information about the elastic mean-free path of electron in a SWNT.
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Figure 3.11: (a) The four-terminal resistance measurement on a SWNT inside which
there is two static scattering center. (b) The calculated resistance ratio R4pt/R2pt as
a function of the wave vector k of the electron wave inside the SWNT.

3.2.3 Coherent transport regime

Above we discussed the four-terminal measurement in the non-coherent transport

regime. This is valid for high temperature measurements where the electron-phonon

interaction strongly decreases the phase coherence length of electrons. When decreas-

ing the temperature, the phase coherence length increases. At low temperature, the

phase coherence length of electron may become close to even longer than the sam-

ple size [37, 38]. In this case, one cannot neglect the interference effects of electron

waves. Therefore, to calculate the total transmission matrix, one needs to combine

the successive scattering matrix coherently.

We will take a very simple model to get some intuition. We suppose that there

are two static scatterers lying in the SWNT, as seen in Fig 3.11. The electron wave

will also be scattered by both voltage probes. The related scattering matrix are

the same as in Eq.3.2.7 and Eq.3.2.8. We also suppose that the electron propagate

freely between scatterers. Therefore it will acquire a phase factor eikl after traveling

a distance l. The method to combine the scattering matrix coherently is also given

in Ref [1]. We give in the appendix the complete Mathematica programme for the

detailed calculation. The numerical simulations below show clearly the modulations

of R4pt/R2pt as a function of wave vector k. We find the very interesting phenomenon

that the four-terminal resistance can be negative. This can be understood in the

following way.
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We go back to Büttiker formula,

Ip = 4
e

h

∑

q

[Tqpµp − Tpqµq] (3.2.17)

where µq is electro-chemical potential of the electrode q. From this formula, one can

easily find the resistance ratio R4pt/R2pt given by

R4pt

R2pt

=
µ3 − µ4

µ1 − µ2

=
T13T24 − T23T14

(T13 + T23 + T43)(T14 + T24 + T34) − T43T34

(3.2.18)

As we are in coherent transport regime, the incident and reflected electron waves

interfere with each other. Therefore, when varying the electron wave vector k, we

get different interference pattern, which enable the sign reversal of the numerator in

Eq.3.2.18.

3.3 Introduction to Coulomb Blockade Oscillations

of Conductance

As we will use Coulomb Blockade (CB) measurements to determine the invasiveness

of MWNTs as voltage probes, we give a simple introduction to CB in this section to

get some intuition.

Coulomb Blockade oscillations of the conductance are the manifestation of single

electron tunneling through a quantum dot. The conductance oscillates as the voltage

Vg of a nearby gate electrode is varied. We now seek to understand the origin of this

conductance oscillation phenomena.

The Fig 3.12 below is simple model of of a quantum dot contacted to the external

electron reservoir through tunnel junctions. The linear response conductance of a

quantum dot is defined as G ≡ I/V , in the limit V → 0. At low temperature, the

electron tunneling is usually blocked. This is due to the large charging energy of the

quantum dot. The capacitance C of a quantum dot is small, therefore putting an

additional electron into a quantum dot will cost a significant of energy (in the order

of e2/C), the energy. However, in certain situation, adding an electron into the dot

costs no energy, the CB is therefore lifted.
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Figure 3.12: A schematic view of a quantum dot contacted to the external electron
reservoir through tunnel junctions. The capacitance C of the dot is defined as C =
Cgate + Cdot. Because the size of the dot is very small, the charging energy of the dot
Ec = e2/C is rather large, the electron can be only added one by one into the dot.

At equilibrium, the probability P (N) to find N electron in the quantum dot is

given by the following expression [39]:

P (N) = constance × exp(− 1

kBT
[F (N) − NEF ]) (3.3.1)

where N is the number of electrons in the dot, F(N) is the free energy of the dot,

and EF is the Fermi energy of the electron reservoir measured of the bottom of the

conduction band. At zero temperature, P(N) is non-zero only for a single value, which

is the integer that minimize the thermodynamic potential Ω(N) ≡ [F (N)−NEF ]. In

order to get a non-zero linear response conductance, P(N) and P(N+1) must be both

non-zero, so that a very small voltage can induce a current through the dot. In order

that both P(N) and P(N+1) are non-zero, that means both N and N+1 minimize

the thermodynamic potential Ω, the necessary condition is Ω(N + 1) = Ω(N), which

gives

F (N + 1) − F (N) = EF (3.3.2)

At zero temperature, the free energy of the dot can be written as

F (N) ≡ U(N) +
N

∑

p=1

Ep (3.3.3)

where U(N) is the charging energy, and Ep is the single electron energy level in the

dot. Substituting Eq.3.3.3 into Eq.3.3.2, one can find the new condition for the
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conductance peak

EN + U(N) − U(N − 1) = EF (3.3.4)

The charging energy U(N) can be calculated from the orthodox model [40], it

takes the form

U(N) =
(Ne)2

2C
− Neφext

=
(Ne − Qext)

2

2C
+ constant

(3.3.5)

where φext is the potential difference between the dot and the reservoir induced by the

external charge, C = Cgate+Cdot is the capacitance of the dot, and Qext ≡ Cφext is the

so-called ”externally induced charge” on the dot, which can be varied continuously.

Using the explicit expression of U(N), the condition for conductance peak is

EN + (N − 1/2)
e2

C
= EF + eφext (3.3.6)

when sweeping φext, the number of electrons in the dot will be changed one by one.

From the above equation one can determine the periodicity of the conductance

oscillation. As the spin degeneracy of the levels in the dot is lifted by the charging

energy, the oscillation will have a doublet structure in case that the level separation

∆E is on the same order to the charging energy Ec = e2/C. If Ec >> ∆E, the

charging energy will regulate the spacing, and a periodic oscillation can be expected.

To determine the oscillation period as the function of the gate voltage, one can

use the following relation:

∆φext = α∆φgate (3.3.7)

where φgate is the gate voltage and α is the coupling coefficient, which can be roughly

estimated as α = Cgate/C = Cgate/(Cgate + Cdot). Therefore the spacing of the gate

voltage between successive conductance peak will be Ec

αe
and Ec+∆E

αe
, depending on

the number of electrons in the dot. This so-called even-odd effect has been observed

in the transport measurement in the nanotube quantum dot [41].

Indeed for a metallic SWNT, Coulomb Blockade effect can be rather complicated.

When taking into account the spin of electron and the fact that there are two crossing

bands at the Fermi level, the conductance oscillations should be described by a model

with five parameters: the charging energy Ec, the quantum energy-level separation

∆E, the band mismatch δ, the exchange energy J , and the excess Coulomb Energy
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dU . The exchange energy favors spin alignment and the excess Coulomb energy is the

extra charging energy associated with placing two electrons in the same energy level.

Detailed description of this model and the experimental description can be found in

Ref. [42, 43].

3.4 How to Move Carbon Nanotubes with AFM

Tips ?

Above we discussed the theoretical aspect of the four-terminal resistance measure-

ments using the Landauer-Büttiker formalism. We now turn to the experimental

aspect of the measurement. In this section we give a detailed description of the fabri-

cation technique of our samples. In general, the samples are fabricated with standard

nano-fabrication techniques. In our experiments, two types of SWNTS are used. One

is the ≈ 1nm diameter SWNT grown by laser-ablation [10], the other is the SWNT

grown by chemical-vapor deposition [44]. In the former case, nanotubes are dispersed

from a suspension in dichloroethane onto a silicon oxide wafer; while in the latter

case, ≈ 1nm diameter SWNTs are grown directly on the silicon oxide substrate.

After that the SWNTs have been placed onto the wafer, MWNTs are dispersed

onto the same wafer from a suspension in dichloroethane. Cautions need to be taken

while controlling the density of MWNTs. If not, short-circuits may make the anal-

ysis more complicated. We then select the proper SWNTs with atomic force mi-

croscopy(AFM). Sometimes we are lucky enough to find one or more MWNTs al-

ready falling upon a SWNT; more often we need to move the nearby MWNTs and

put them above the selected SWNTs using AFM manipulation. We explain below

in details how to do it.

AFM has different working modes. In order to avoid the nanotubes being dam-

aged by mechanical contacts with AFM tip, we normally choose non-contact working

mode. This is one among several vibrating cantilever techniques in which an AFM

cantilever vibrates near the surface of a sample. The spacing between the tip and the

sample is on the order of tens to hundreds of angstroms.

To move a MWNT with the tip, mechanical contact between tip and tube is

necessary (AFM contact mode operation). We first need to decrease the scanning

area to less than 0.1µm × 0.1µm, then move the tip to the position right above a
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MWNT. We next turn down the feedback control on the scanner. In order to make

less damage to the sample, we decrease the vibrating force applied on the cantilever,

for e.g. to 10% of its original value. Then, by monitoring the signal A−B that indicate

the amplitude of the vibration of the tip, we can manually decrease the separation

between tip and substrate. As the tip touches the surface of the substrate, this signal

decreases to zero. We can then move the tip, which pushes the MWNTs towards the

selected SWNT. The figure below gives a simple illustration to the manipulation of

a MWNT using the AFM tip.

(a) (b) (c)

(d) (e) (f)

(j)(i) (k)

(g)

(l)

(h)

(m)

Figure 3.13: (a) Move the AFM tip to an appropriate place over the MWNT. (b)
Decline the tip until it touches the substrate surface. (c) Move the MWNT with
the AFM tip. The three images are taken from the website of IBM T. J. Watson
research center. Images from (d) to (m) show how we change the separation between
two MWNTs with a tip of AFM, even the MWNTs have been contacted by metal
electrodes.

The above manipulations need to be repeated tens of times before a MWNT is

placed to a good position nearby the selected SWNT. The main difficulty lies in

the fact that the surface of the substrate is often slightly tilted with respect to the

horizontal tip motion. Therefore the tip may lose the contact with the MWNT (we

may find the signal A − B increases), or plunge too much into the substrate causing

grave damage to itself and to the substrate. In such case, we need to go back to
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non-contact mode, retake the image of the area, and repeat the above manipulations.

Sometimes we may manually change the tip-substrate separation to compensate the

orientation of the surface when moving a MWNT, however it may often accelerate

the damaging process of the tip.

Once a MWNT is placed close enough to a SWNT, one have to put it across the

selected SWNT. This may be the most difficult part of the sample fabrication. The

key point is to avoid the mechanical contact between the tip and the SWNT, for

that it will easily create a kink in the SWNT thus damaging it. We have found two

solutions.

The first one needs a long SWNT. We place the MWNT near the end of the

SWNT, make them crossed, then push the MWNT step by step towards the other

end of the SWNT. Though we may damage the end part of the SWNT, it will not be

a problem so far as it is not involved in the future resistance measurement.

The other solution demands a large diameter MWNT, typically larger than 10nm.

Such a MWNT is rigid enough to behavior like a stick. We may place a MWNT close

to a SWNT, pushing its far end to make a rotation, and the MWNT will cross the

SWNT.

We need precise here that this technique is time-consuming. It normally take

several hours to put two MWNTs onto a SWNT. And sometimes the MWNT may be

picked up by the AFM tip. Therefore one needs to restart the work. Also the AFM

tip itself may be damaged because of the frequent contacts with the substrate. One

may need to change the point and it also take time to optimize again all the working

conditions.

Despite of all these difficulties, with the technique presented above, we can put two

or more MWNTs above a SWNT. Using standard nano-fabrication techniques, metal

electrodes can be attached to the nanotubes allowing us to carry out four-terminal

resistance measurements on a SWNT.

3.5 How to Decide the Invasiveness of MWNTs as

voltage Probes ?

In the previous section, we have presented the technique to displace a MWNT with

an AFM tip. With this technique, we can fabricate devices which allow us to realize
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SGS*
SC**
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metal
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R4pt (k )� L (nm) LAu-Au ( m)�le (nm)

CVD
LA
CVD
LA
LA

Table 3.1: Device characteristics at 300 K. L is the separation between the MWNTs
and LAu−Au between the Au electrodes. * Small-gap semiconductor with the current
reduction occurring at Vg >2 V. ** Large-gap semiconductor with the threshold
voltage at ∼ 40 V. LA = laser ablation. CVD = chemical vapor deposition.

a four-terminal resistance measurement on a SWNT using MWNT as voltage probe.

Fig 3.14 describes a typical device.

Figure 3.14: (a) Atomic force microscopy image of a SWNT contacted by 2 MWNTs
and 2 Au electrodes. (b)Atomic force microscopy image of a SWNT contacted by 6
MWNTs and 2 Au electrodes.

In this section, we present our experimental measurements in order to determine

that the MWNTs are non-invasive voltage probes to the SWNT. The table 4.1 below

describes the device characteristics at 300K.

3.5.1 Measurements done at Room Temperature

As we have seen in the previous sections, the voltage probes may perturb significantly

the electron transport in the SWNT. Therefore we need to determine how much

40



invasive are the MWNT probes. All the measurements at room temperature have

been carried out in the linear regime, which means the applied voltage between both

ends of the SWNT is always much less than the kBT ≈ 25meV .

We first measure the junction resistances between SWNTs and MWNTs. We find

these resistances are of the order of several hundreds kΩ, therefore the transmission

probabilities between SWNTs and MWNTs are less than 10−2. As explained in

the first section, such weak coupling between tube and probe will not cause strong

additional back-scattering.

We next need to determine whether MWNT probes create strong barriers along

SWNTs and therefore divide SWNTs into multiple quantum dots. As reported in

previous measurements, nano-fabricated metal electrodes do separate SWNTs into

multiple dots. Are MWNT probes better in this respect?

To answer the question, we first investigate the four-terminal resistance of a func-

tion of the tube length at room temperature. In order to find this length dependence,

two types of measurements are performed (See Fig 3.15).
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Figure 3.15: Length dependence of R4pt at room temperature and Vg = 0. (a) SWNT
contacted by 2 MWNTs. One MWNT is displaced back and forth with an AFM
tip. Points are numbered to describe the measurement sequence. Point 1 has been
acquired one week before in the cryostat. Most points have been recorded while
decreasing L, so that the R enhancement with L is not due to a structural degradation
during the manipulation. (b) SWNT contacted by 6 MWNTs.

The first one is carried out under AFM. The tip of AFM is used to change

the separation L between two MWNTs. One MWNT is moved back and forth with

the tip. We find the R4pt increases linearly with the separation between MWNTs.

Note that most of the data are recorded when decreasing L, therefore one can nearly
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exclude the possibility that the increase of R4pt is due to sequential manipulations of

MWNT that may create some disorder along the studied SWNT. In addition, R4pt

tends to zero as the length is reduced to zero. This suggests also that MWNTs are

mainly noninvasive. If not, a significant resistance contribution from the MWNTs

would give a finite R4pt at zero length, which is in opposition to the measurements.

However, the measurements in Fig 3.15(a) show rather large scatterers. This may

come from the AFM manipulation that stretches the tube, deposits or removes some

molecules absorbed on the SWNT, or modifies the pressure applied by the MWNT

on the SWNT. Thus, we cannot exclude completely a small resistance perturbation

from the MWNTs and/or the AFM manipulation.

The other way to find the length dependence of R4pt is realized upon a very long

SWNT. Six MWNTs are placed on this SWNT, enabling the four-terminal resistance

measurement of multiple portions. We find also the resistance increases linearly

with tube length, and tends to zero as the length is decreased to zero. Here the

measured resistance is large. To date, the origin of the large resistance is not clear. A

possible explanation is related to the sample fabrication processes, which involves the

separation of isolated tubes from bundles with the help of ultrasonic that can induce

disorder inside the tube.

With the measurements presented above, we conclude that SWNTs are classical

resistor at room temperature, which obey Ohm’s law. And more importantly, for

both types of measurements done, R4pt tends to zero as the length is reduced to zero,

which suggests no (or very weak) additional resistance from the voltage probes.

3.5.2 Coulomb Blockade Measurements at cryogenic Tem-

perature

We further use Coulomb Blockade (CB) measurements to investigate the invasive-

ness of MWNT probes. Two types of two-terminal conductance measurement were

performed. We first measured the conductance between two current probes, as seen

in Fig 3.16(a); we then measured the conductance between two voltage probes, as

seen in Fig 3.16(b).

We see in Fig 3.17 that conductance peaks are found at the same Vg for conduc-

tance measurements between different pairs of electrodes. Some devices even show a

series of CB peaks that appear regularly when sweeping the gate voltage Vg of the
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Figure 3.16: Two-terminal conductance measurement as a function of Vg (not shown
in the figure). (a) Au-Au: conductance between two gold current probes. (b) MWNT-
MWNT: conductance between two MWNTs as voltage probes.

back gate. This indicate that gold current electrodes and MWNT voltage electrodes

probe the same quantum dot. Coulomb diamonds measurements give that the charg-

ing energy Ec ≈ 5meV . It has been shown that Ec ≈ 5meV/L[µm] for similarly

prepared samples [11, 32]. The dot length is thus ≈ 1µm, which is consistent with

the actual 600 nm length separation between gold current electrodes. These mea-

surements suggest that MWNTs are sufficiently noninvasive not to divide the SWNT

into multiple quantum dots. In addition, the fact that a single dot extends over the

total length of SWNT suggests also what we have an isolated SWNT, not a bundle

of tubes nor small diameter MWNTs.

There are also some devices showing irregular Coulomb Blockade peaks. This

probably results from the disorder along the SWNT. Interestingly, the Coulomb

Blockade peaks in these devices appear in pairs (see Fig 3.18(a)). This is better seen in

the Fig 3.18(b). The separation between Coulomb Blockade peaks goes up and down

as the gate voltage is swept. The peak separation reflect the energy needed to add

an additional electron into the dot. This even-odd alternation suggests two-electron

shell filling [41]. As we have seen in the Sec.Three, because of Pauli’s principle, the

spin of the ground state alternates by 1/2 as consecutive electrons are added. For an

electron number N in the dot that is odd, the N+1 electron enters the same orbital
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Figure 3.18: (a) Two-terminal conductance measured between the two Au current
probes as a function of the gate voltage at 1.5 K in device 1. The conductance
oscillations show a doublet structure. (b) The addition energy for adding one electron
into the dot as the function of number of electrons in the dot. Measurements show
clearly an even-odd effect corresponding to a two-electron shell filling.
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as the N electron, The resulting separation of CB peaks is Ec/α with α is the cou-

pling efficiency. For even N, the N+1 electron enters the next orbital. The resulting

separation is then (Ec + ∆E)/α. Using α = 1/6 measured from Coulomb diamonds,

we obtain an averaged ∆E = 0.5meV . The level spacing is related to the length Ldot

of the dot through

∆E =
hvF

2Ldot

(3.5.1)

where vF ≈ 8 × 105m/s is the Fermi velocity of the SWNT. We get Ldot ≈ 2.9µm,

which is very close to the 2.7µm separation between the gold current electrodes. This

is in any case much longer than the 95nm separation between the MWNTs.

In general, these CB measurements suggest that MWNTs are sufficiently non-

invasive to not divide the SWNT in multiple quantum dots. This is in agreement

with measurements of the length dependence of the four-terminal resistance at room

temperature.

3.6 Coherent Electron Transport at cryogenic Tem-

perature

In the previous section we have presented the measurements carried out at room

temperature, and we found that the SWNT behaves like a classical resistor at this

temperature. In this last section, we explore the four-terminal electron transport

properties of SWNT at low temperature. Our measurements are still done in linear

regime with a bias voltage smaller than kBT/e.

Upon decreasing the temperature, R4pt does not change for T & 60K, as seen in

Fig 3.19, suggesting that the intrinsic resistance is related to some static disorder and

not to phonons. At lower temperature, R4pt starts to depend on the gate voltage Vg.
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Figure 3.19: Temperature dependence of R4pt measured at Vg = 0.
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Very interestingly, when temperature T . 10K, R4pt can even become significantly

negative. The inset of Fig 3.20(a) shows that R4pt is −29MΩ near zero Vg. Fig 3.20

shows that the absolute value of modulations of R4pt/R2pt can be as high as 0.6.
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Figure 3.20: Negative four-terminal resistance at low temperature. (a,b) R4pt/R2pt

as a function of Vg. Similar results are also obtained for Device 1. R2pt measured
between Au electrodes is checked to be lower than R2pt between MWNT electrodes.
The inset of (a) shows R4pt(Vg) at 1.4 K. R4pt is close to 0 for Vg between -0.1 and
-0.6 V (not shown here). The inset of (b) shows two scattering centers that generate
interference.

We now seek for the possible origin of these negative R4pt. It might come from

some narrow diameter MWNTs or SWNT bundles [45, 46] as we can not ensure that

we have an contacted an isolated SWNT using only AFM imaging. It might also

come from the unexpected short-cut between electrodes by some very long tubes lying

far away. In both case, the complicated current pathway will give rise to the observed

negative R4pt. However, such a classical effect should persist at higher T, which is

not the case since R4pt is always positive at T ≥ 10K. Moreover, complicated current

pathways give a finite non-local resistance at high temperature [46] (Fig 3.21 shows

the setup for non-local resistance measurements). We do not observe this for these

samples.

Finally, we attribute these negative R4pt to quantum-interference effect [47, 48].

We have shown in the Sec.3.2 the numerical simulation based on Laudauer-Büttiker

formula. Here we give a simple physical description to help understanding the nature
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cated current pathways as in the case of an isolated SWNT, the voltage meter would
read zero; while in the case of an MWNT or a bundle of tubes, inter-shell or inter-tube
coupling will introduce a non-zero voltage difference between the two voltage probes.

of this negative resistance.

V

R >04pt

I

m3
m4 m2

m1

m3

m4

m2

(a)

(b)

(c)

m1

R <04pt

SWNT

MWNT

Au
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As shown in Fig 3.22, once there is a positive electro-chemical potential difference

between electrode 1 and 2, in normal case, the electro-chemical potential µ3 will

be larger than µ4. However, at low temperature, the length of electron pathway in

SWNT may become shorter than the electron phase-relaxation length, the electron

transport is said to be coherent. One can no longer treat electrons in SWNT as

classical particles. A quantum description is thus necessary. In some cases, due

to the destructive interference arising from the backscattering at the tube ends or

scattering on impurities, electrode 3 has smaller probability to see electrons from left

electrode 1, its electro-chemical potential µ3 will be closer to that of right electrode 2.

We can therefore find µ3 ≤ µ4 that gives rise to a negative R4pt. Indeed, the potential
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of electrode 3, µ3, can take any value between µ1 and µ2. The same holds also for µ4.

Using R2pt = (µ1 − µ2)/I and R4pt = (µ3 − µ4)/I, we can find that R4pt can take any

value between[34]

−R2pt ≤ R4pt ≤ R2pt (3.6.1)

This remarkable prediction of R4pt < 0 is difficult to observe experimentally. Some

works on ballistic one-dimensional conductors fabricated in semiconductors showed

that R4pt can become slightly negative [49, 50]. However, we believe that our data

show for the first time significant negative R4pt that approaches R2pt.

As temperature increases, the phase coherence may be lost, and thermal phase av-

eraging becomes also stronger. The electron transport is no longer coherent, therefore

R4pt becomes always positive when T ≥ 10K.

Note that the SWNT can eventually enter the regime of strong localization (SL)

[1]. This is expected for SWNTs when the phase-coherence length is longer than a few

times le. This may be the case since le of Device 4 is 143 nm and that negative R4pt

suggests coherence at least over L = 140 nm. However, similar R4pt measurements

are obtained for devices that are less in the SL regime (Fig. 3.20(b), le =358 nm).

Moreover, the two-terminal conductance modulation of Devices 3-5 is quite regular

when Vg is swept (Fig. 3.17), in opposition to SL predictions [51]. Overall, those de-

vices are not enough in the SL regime to give significant deviations from the diffusion

regime. An explanation is that the tube length is too short.

So far, we have not taken into account the electron-electron interaction beyond

the standard Coulomb Blockade approximation. These interactions are responsible

for the the Luttinger liquid phase at intermediate temeperature[17]. Four-terminal

resistance of a Luttinger Liquid has not been calculated yet. However, interference

due to impurities in a Luttinger Liquid should also lead to negative R4pt. In order to

observe the manifestation of the Luttinger Liquid behavior, new experimental setup

is needed. We will discuss it in more details in the next chapiter.

We at last give a conclusion for the last two sections. Our experiments show

that the transition of R4pt between the Ohm’s law at 300 K and its deviation at

low temperature due to quantum-interference effects. The deviation can become so

dramatic that R4pt is negative. Hence it is likely that inclusion of these quantum-

mechanical interference effects will ultimately be required in the design of practical
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multi-terminal intramolecular devices.
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Chapter 4

Luttinger Liquid in Carbon

Nanotubes

Landau’s Fermi liquid theory has acquired great success in describing the conduction

electrons in normal metals [52]. In these conventional metallic systems, the Coulomb

interaction between electrons is strongly screened. One can use perturbation methods

to treat interactions between electrons. There is a one-to-one mapping between the

low energy excitations of noninteracting and interacting electrons systems. In the

one dimensional case, the situation is very different. There is a strong coupling be-

tween electrons, even for arbitrarily weak interactions. The low energy excitations in

one-dimensional electron systems are usually described by the Tomonaga-Luttinger

Liquid theory (often refereed to as simply Luttinger-Liquid theory), which was firstly

proposed by Tomonaga [2], then reformulated by Luttinger [3]. A brief introduc-

tion to properties of Luttinger-Liquid (LL) can be found in [53, 54, 55]. Interacting

quantum wires like single-wall carbon nanotubes (SWNT) are considered as an ideal

system to investigate the LL theory. Theoretical studies based on LL theory have

shown the electron transport properties of a SWNT are qualitatively different from

those predicted by a Fermi liquid [56, 57, 58]. Recent progress in the growth of high

quality single-wall carbon nanotubes has reached the stage where it becomes pos-

sible to study one-dimensional interacting electron systems experimentally [10]. In

this chapiter, I will present our experiments on crossed single-wall nanotubes, which

strongly supports the Luttinger Liquid theory.

This chapter is organized as follows. In Sec. 4.1, I give a brief introduction to

Fermi and Luttinger Liquids. In Sec. 4.2, I review the technique of bosonization to
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describe one dimensional interacting electron systems. In Sec. 4.3, I discuss transport

through a single barrier within a Luttinger Liquid for spinless electrons. It shows that

the electron transport is completed prohibited at low temperature, for an arbitrarily

weak barrier. In Sec. 4.4, I review the previous experiments on tunneling transport

measurements in metallic single-wall carbon nanotubes. In particular I discuss the

two different interpretations based on the Luttinger Liquid theory and on the envi-

ronmental dynamical Coulomb Blockade theory, respectively. In Sec. 4.5, I present

our transport measurements through crossed metallic single-wall carbon nanotubes.

After excluding different explanations like heating effect, an interpretation based on

the Luttinger Liquid model is presented. In conclusion, I present this experiment on

carbon nanotubes as a new signature of the Luttinger Liquid state.

4.1 Fermi and Luttinger Liquids

4.1.1 Fermi Liquid

Landau Fermi Liquid is a well established theory describing the conduction electrons

in conventional metallic systems. It is mainly based on the concept of ”adiabatic

continuity”, stating that quantum numbers associated with eigenstates are more ro-

bust against perturbations than eigenstates themselves. Landau applied this idea

to interacting electron systems, starting from the noninteracting Fermi gas, turning

on the Coulomb interaction between electrons slowly, then observing how the eigen-

states of the system evolve. He assumed that the electron wave vector k remains a

good quantum number in the presence of interactions. As a consequence, one ob-

tains a one-to-one correspondence between the eigenstates of the noninteracting and

the interacting system (adiabatic continuity). The new eigenstate is called a Lan-

dau quasi-particle (See Fig 4.1). The quasi-particle wavefunction and its energy may

differ from those of a free electron. However the eigenstate of the quasi-particle can

still be labeled by its wave vector k. The quasi-particle can be viewed as an electron

added at position k in k-space with |k| > kf (or a hole added at position k in k-

space with |k| < kf ), surrounded by a cloud of electron-hole pairs. Of course, these

quasi-particles are not real particles. The added electron or hole can gradually lose

energy by exciting electron-hole pairs from the Fermi sea. Therefore the lifetime of

a quasi-particle is finite. One can find indeed that, for a quasi-particle of energy εk,
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Figure 4.1: Landau quasi-particles in Fermi liquid. An added electron will excite
electron-hole pairs from the Fermi sea below. This electron and the surrounding
cloud made by electron-hole pair together makes a quasi-particle.

the lifetime τ of a quasi-particle is given by [55]:

τ−1 ∝ m∗3 (πkBT )2 + ε2
k

1 + e−εk/kBT
, (4.1.1)

Where m∗ is the effective mass of the quasi-particle. In the low-temperature, low-

energy limit, the lifetime of a quasi-particle tends to infinity. The quasi-particle

becomes a nearly well-defined eigenstate of the interacting electron system. This is

the regime where one can apply the Landau Fermi Liquid theory.

Since the electron wave vector k remains a good quantum number for interacting

electron systems, the configurational entropy of the system is unchanged. This implies

that the quasi-particle distribution function is unchanged with respect to that of the

free electron case. The quasi-particles obey also the Fermi-Dirac statistics. The

momentum distribution function nk is given by

nk =
1

eεk/kBT + 1
(4.1.2)

It is important to note that εk is the full energy of the quasi-particle, which depends

itself on the distribution function via the particle-particle interaction. The above

equation needs to be solved self-consistently. It is well known that, for the non-

interacting Fermi gas, at zero temperature, the momentum distribution function is
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Figure 4.2: One particule momentum distribution function. (a) the finite discontinu-
ity at the Fermi momentum kF for a system of interacting fermions in more than one
dimension. (b) the absence of discontinuity in an interacting system in one dimension.

discontinuous at the Fermi surface with a discontinuity equal to 1. For a Fermi

liquid, this discontinuity persists (See Fig 4.2a), although reduced to a quasi-particle

renormalization factor zk [52] with

0 < zk < 1 (4.1.3)

Finally in a Fermi liquid, various correlation functions decay at large distances as

power laws. The exponents, which depend on the dimensionality, are independent of

the interaction strength.

4.1.2 Luttinger Liquid

The Fermi Liquid theory beautifully describes the interacting electron systems in 2-D

or 3-D. However when one goes into the 1-D case, the Coulomb interaction is less

screened, and the perturbation methods used above become unreliable. The normal

Fermi Liquid picture fails and a so-called Luttinger Liquid picture is employed.

The Luttinger Liquid has the following general properties. Firstly, it has no quasi-

particle excitations; all the low energy excitations can be thought as an ensemble of

particle-hole pairs (see Fig 4.3). In addition, all these excitations take the form of
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Figure 4.3: Particle-hole excitations from the ground state (Left) to an excited state
(Right) in a Luttinger Liquid.

long wave length sound waves with a linear dispersion relation ǫq = vF q, where vF is

the Fermi velocity, and q is a momentum much smaller than Fermi momentum kF .

Secondly there is no discontinuity in the momentum distribution function at the

Fermi level. Instead it takes the following form [53]: (See Fig 4.2b).

n(k) = n(kF ) + Constant × sign(k − kF ) |k − kF |β (4.1.4)

Here β is a positive number depending on the interaction strength. For a non in-

teracting system, β = 0, and one recovers the full discontinuity in the momentum

distribution function at the Fermi level. At last, various correlation functions decay

at long distance as power laws, with exponents depending now on the interaction

strength. For example, the density-density correlation function decays algebraically

at large distance as

〈n(x)n(0)〉 ≈ sin 2kF x

xg
(4.1.5)

where g is a Luttinger Liquid parameter, which describes the interaction strength

[59]. For non-interacting systems (g = 1), one recovers the Fridel oscillations of a

Fermi Liquid. For very strong Coulomb interactions, g → 0, and a true long range

order can be found. One may rely on the Wigner crystal picture to gain some insight

on the nature of a Luttinger Liquid. In fact there cannot be a true long range order

in these one-dimensional interacting systems, due to quantum fluctuations. Indeed

long wave length phonon modes mentioned above will destroy the long range crystal

order. It is therefore appropriate to describe the system as a Wigner Crystal plus
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fluctuations. This description remains valid even for weak interactions as discussed

below.

4.2 Introduction to the Bosonization Method

In this section I will present briefly the bosonization method to describe the low energy

excitations in Luttinger Liquid. The complete exposition of this method can be found

in the literature [53, 55, 61]. Here the spin of electron is ignored for simplicity.

Electron is of course a fermion. The low energy excitations of electrons can

be described by a fermionic field. However, as we stated in the first section, in

one-dimensional case, all low-energy excitations can be considered as electron-hole

pairs. One can therefore use bosonic fields to describe them. This technique is called

bosonization. We introduce here some important results, details of the calculation

are presented in the appendix.

In order to understand the method, one can start with fermions on a circle of

Length L with periodic boundary condition. One may introduce the second quantized

Fermi field of right- and left-moving components as the following:

ψν(x) =
1√
L

∞
∑

k=−∞
cν,k eiνkx

k =
2π

L
nk

(4.2.1)

with ν=±1, referring to right and left-moving components,denoted as R and L re-

spectivly, where nk = 0,±1,±2.... Fermion operators cν,k respect anticommutation

relations.

The normal ordered fermion number operator N̂ν can be defined in the following

way:

N̂ν =
∞

∑

k=−∞
: c†ν,kcν,k :

=
∑

k>0

c†ν,kcν,k −
∑

k≤0

cν,kc
†
ν,k

(4.2.2)
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The next step is to define bosonic operators:

b†ν,q =
1

√
nq

∞
∑

k=−∞
c†ν,k+qcν,k

bν,q =
1

√
nq

∞
∑

k=−∞
c†ν,k−qcν,k

q =
2π

L
nq, nq = 1, 2, 3...

(4.2.3)

These bosonic operators describe an ensemble of electron-hole pairs.

With these operators one can now define the chiral creation and annihilation

operators:

χν(x) =
iν

2
√

π

∑

q>0

1
√

nq

bν,qe
iνqx−αq/2

χ†
ν(x) = − iν

2
√

π

∑

q>0

1
√

nq

b†ν,qe
−iνqx−αq/2

(4.2.4)

One can then define the right- and left-moving bosonic fields φν(x) as:

φν(x) = χν(x) + χ†
ν(x) −

√
πx

L
N̂ν (4.2.5)

where ν = ±1 corresponds to right- and left-moving fields.

Finally two phonon-like displacement fields which are dual to each other can be

found:

φ(x) = φR(x) + φL(x)

θ(x) = −φR(x) + φL(x)
(4.2.6)

As we will see below, these phonon-like fields will be used to describe the low-

energy excitations in the Luttinger Liquid after adding the interaction. One may

imagine that these fields describe the displacement of a particle from its original

lattice position, the system is just like a Wigner Crystal plus fluctuations.

Once the phonon-like displacement fields have been defined, one can then define

the chiral fermion density operators:

ρν(x) =: ψ†
ν(x)ψν(x) :

=
1

L

∑

q>0

√
nq(bν,qe

iqx + b†ν,qe
−iqx)

+
1

L

∑

k

: c†ν,kcv,k := − 1√
π

∂φν

∂x

(4.2.7)
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Therefore the total density and current operator are given by:

ρ(x) = ρR(x) + ρL(x) = − 1√
π

∂xφ

j(x) = vF (ρR(x) − ρL(x)) =
vF√
π

∂xθ
(4.2.8)

One needs to precise that the density operator ρ(x) here measures only the fluctuation

in the electron density. We have removed in the definition of ρ(x) the mean electron

density N0/L.

If one introduces now a linear dispersion relation ǫν,k = vF k, the Hamiltonian of

non-interacting system can be written in bosonic language as:

H0 = vF

∑

q>0

q(b†R,qbR,q + b†L,qbL,q) +
πvF

L
(N̂2

R + N̂2
L)

=
vF

2

∫ L

0

dx[(∂xφ)2 + (∂xθ)
2]

(4.2.9)

Since the Hamiltonian of the non-interacting system has been found, one can now

add in the following interaction term :

V =
1

2

∫ L

0

dx[2g2ρR(x)ρL(x) + g4(ρR(x)2 + ρ2
L(x))] (4.2.10)

where the g2 term corresponds to a two-particle interaction involving different chiral-

ities; and the g4 term corresponds to an interaction between two particles with the

same chirality.

Once interaction terms have been taken into consideration, one can now write the

total Hamiltonian H = H0 + V . As we will see, it takes a very simple form in the

bosonic language:

H =
∑

q>0

q[vF (b†R,qbR,q + b†L,qbL,q) +
g2

2π
(b†R,qb

†
L,q + bR,qbL,q)

+
g4

2π
(b†R, qbR,q + b†L,qbL,q)] +

πvF

L
(N̂2

R + N̂2
L)

+
g2

L
N̂RN̂L +

g4

2L
(N̂2

R + N̂2
L)

(4.2.11)

One can easily find that the effect of g4 term is to renormalize the Fermi velocity to

vF + g4

2π
. And the g2 term can be diagonalized by a Bogoliubov transformation. One

can define the following two parameters:

v =[(vF +
g4

2π
− g2

2π
)(vF +

g4

2π
+

g2

2π
)]1/2

g =[(vF +
g4

2π
− g2

2π
)/(vF +

g4

2π
+

g2

2π
)]1/2

(4.2.12)
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In the conventional case, one can take g2 = g4 > 0 (repulsive interaction), v is there-

fore the plasmon velocity which is larger than Fermi velocity because the repulsive

interaction reduces the compressibility of the electron gas. And g is the parameter

that we mentioned above, which describes the interaction strength between electrons,

g < 1 for repulsive interaction.

The total Hamiltonian can now be rewritten in the quadratic expression:

H =
v

2

∫ L

0

dx[g(∂xθ)
2 +

1

g
(∂xφ)2]

=
v

2

∫ L

0

dx[(∂xθ̃)
2 + (∂xφ̃)2]

(4.2.13)

The old and new bosonic fields are related as:

φ =
√

gφ̃ , θ =
1√
g
θ̃ (4.2.14)

Above we studied a model system with the bosonization method. In the calculus,

we supposed an infinite number of right- and left-moving modes with the momentum

going from −∞ to ∞; and a linear dissipation relation for all the modes. These

assumptions are generally not true for one dimensional interacting systems. However,

as we are only interested in low-energy excitations in these systems, we will focus

on those modes lying close to the Fermi points ±kF . Around these points, one

can approximate the dispersion relation by a linear one, and Fermi velocity can be

defined as vF = (dǫk/dk)k=kF
. We restrict our attention to the right-moving modes

with momenta lying between kF − Λ and kF + Λ, and the left-moving modes with

momenta lying between −kF −Λ and −kF + Λ, where Λ is much less than kF . Then

the second quantized Fermi field can be written as:

ψ(x, t) = ψR(x, t)eikF x + ψL(x, t)e−ikF x (4.2.15)

One can take an example to see the influence of this change. Let’s calculate the

density operator ρ that is defined as the form below:

ρ =: ψ†ψ :=: ψ†
RψR + ψ†

LψL + e−i2kF xψ†
RψL + ei2kF xψ†

LψR : (4.2.16)

By transforming fermionic fields to bosonic fields, we have

ψR(x, t) =
1√
2πα

ηRe−i2
√

πφR

ψL(x, t) =
1√
2πα

ηLei2
√

πφL

(4.2.17)
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where the unitary Klein operator ην(η
†
ν) are defined to be the operator that raise

(lower) the momentum label k of all the occupied states for right- or left-moving

particles. Therefore the density operator ρ takes the form:

ρ = − 1√
π

∂xφ +
1

2πα
[η†

RηLei(2
√

πφ−2kF x) + η†
LηRe−i(2

√
πφ−2kF x)]

= −
√

g

π
∂xφ̃ +

1

2πα
[iei(2

√
πgφ̃−2kF x) − ie−i(2

√
πgφ̃−2kF x)]

= −
√

g

π
∂xφ̃ − 1

πα
sin (

√

4πgφ̃ − 2kF x)

(4.2.18)

Where α = 1/kF is the short distance cut-off (lattice spacing). One can see the second

term containing 2kF x oscillates quickly on the scale k−1
F , it comes from the mixing

right and left movers; and the first slow term is due to the sum of right- and left-

moving densities.

4.3 Transport Through a Barrier in a Luttinger

Liquid

We have presented in the previous section a simple introduction to Bosonization

method used to describe the Luttinger-Liquid. In this section we will focus on some

general properties of the electron transport through a barrier in a Luttinger Liquid

[59, 60].

4.3.1 Weak Barrier Limit

We first consider the electron transport through a weak barrier. In this limit the

barrier can be treated as a small perturbation on an ideal Luttinger Liquid. For reason

of simplicity, one can choose V (x) = λδ(x) to describe the barrier, with λ ≪ ǫF /kF

as a small perturbation. Therefore the action of the perturbation takes the form

Sint =

∫

dx

∫

dτV (x)ψ†(x)ψ(x) (4.3.1)

As seen in the previous section

ψ†(x)ψ(x) = − 1√
π

∂xφ(x) − 1

πα
sin (2

√
πφ(x) − 2kF x) (4.3.2)
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The first term, which is related to electron scattering between modes of same chirality,

will not affect the conductance. Therefore the full action of the system is

S = S0 + Sint

=
1

2g

∫

dτ

∫

dx[
1

v
(∂τφ)2 + v(∂xφ)2] − λ

πα

∫

dτ sin (2
√

πφ(0))
(4.3.3)

where S0 is the action of the pure LL system without the barrier.

As the perturbation term is fixed at x = 0, one can first integrate out the variable

away from the origin and write down the action purely in terms of φ(x = 0, τ). One

then takes a Fourier transformation, using φ(ω) =
∫

dτφ(x = 0, τ)eiωτ , the new action

takes the following form

S =
1

g

∫

dω

2π
|ω|φ2(ω) − λ

πα

∫

dω

2π
sin 2

√
πφ(ω) (4.3.4)

One can now turn to the standard renormalization group (RG) method to treat the

problem.

The basic idea of the RG method is the following [53, 55, 61]:

I. one starts form a cutoff-dependent action S(Ω), integrates all the frequency

modes lying between |Ω| and |Ω| /s, where s = edl is a factor larger than unity. This

gives rises to a new action S ′(Ω′ = Ω/s).

II. One then rescales the time coordinates ω → sω, so that the new action looks

exactly like the old one. This new action is effective at a larger scale ∝ edl. Since one

has integrated our high frequency modes, the coupling strength will change.

III. One chooses the value of s which is infinitesimally close to unity: s = 1 + ǫ,

and repeats the processes to integrate out high frequency modes. This will give rise

to the flow equation of the coupling strength.

One can then find the flow equation

dλ

dl
= (1 − g)λ (4.3.5)

The flow equation is now easy to analyze. For repulsive interaction, g < 1, λ is relevant

as the scaling parameter el increases. This means that, when one goes into lower and

lower energy/temperature, the effective strength of the barrier increases. One will

then go from the weak barrier limit into the strong barrier limit. At low temperature

or low bias, the electron transport will be completely prohibited, irrespective of the
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barrier strength. Further calculation shows that the electrical conductance G satisfies

:

(G − g
e2

h
) ∝ (T, V )2g−2 (4.3.6)

where g is the parameter for the interaction strength, T is the temperature and V is

the applied voltage [62]. One need to take caution here: a conductance that is equal

to ge2/h can be extracted from the equation above in case that no barrier lies in the

LL; however, this conductance is not the usually measured two-terminal conductance.

Indeed, one does not take into consideration the effect of electrode, which makes the

conductance independent of the interaction strength [63].

4.3.2 Strong Barrier Limit

Above we have briefly discussed the electron transport through a weak barrier in a

Luttinger Liquide, now we will turn to the strong barrier limit. This barrier separates

the system into two semi-infinite Luttinger Liquid wires connected by a very weak

hopping matrix element t at x = 0. One can define ψ1(ψ2) is the electron operator

in the left (right) semi-infinite Luttinger Liquid, the tunneling Hamiltonian can be

written as

Hhop = −t[ψ†
1(x = 0)ψ2(x = 0) + h.c] (4.3.7)

One can also investigate the problem with renormalization group method. One

may find the above hopping matrix element t is indeed irrelevant.

The Euclidean time action of the two semi-infinite Luttinger Liquid is

S0 =
1

2

∫

dτ

∫

dx[
1

gv
(∂τφi)

2 +
v

g
(∂xφi)

2] (4.3.8)

where φi corresponds to left/right semi-infinite Luttinger Liquid. And the action

correspond to electron hopping between two semi-infinite Luttinger Liquid can be

written as

Shop = − t

∫

dτ [η†
L,1ηR,2e

−i2
√

π(φL,1+φR,2) + η†
L,2ηR,1e

−i2
√

π(φL,2+φR,1)

+ η†
R,1ηL,2e

i2
√

π(φL,2+φR,1) + η†
R,2ηL,1e

i2
√

π(φL,1+φR,2)]

(4.3.9)

As there is a barrier at x = 0, that implies the local electron density at x = 0 for left-

and right- semi-infinite Luttinger Liquid is zero. One have

2
√

πφ1 = 2
√

πφ2 = π/2 (4.3.10)

61



Using the definitions made in the Sec. 4.2

φ(0) = φR(0) + φL(0)

θ(0) = −φR(0) + φL(0)
(4.3.11)

one can get the simplified expression of the hopping action

Shop = 4t

∫

dτ cos [
√

π(θ1 − θ2)] (4.3.12)

Using the standard renormalization group method, one finds the following flow equa-

tion for hopping matrix element t

dt

dl
= (1 − 1/g)t (4.3.13)

For repulsive interaction, g < 1, therefore the hopping matrix element t is irrele-

vant. It means that, as the scaling length ael increases, one goes into low energy/long

wavelength limit, and t flows to zero. The transport is forbidden. The explicit ex-

pression of the electrical conductance can be found in Ref.[62].

G(V, T ) ∝ t2 |V, T |(2/g)−2 (4.3.14)

From the above equation, one can find that for repulsive interaction (g < 1), at

low temperature/bias limit, the electron transport will be completed prohibited. This

is the so-called zero bias anomaly (ZBA).

In general, the electron conduction in a Luttinger Liquid with a single barrier is

prohibited at low temperature/bias. Indeed, we may interpret the insulating behavior

of a Luttinger liquid with a single barrier in the following way. The Luttinger liquid

has a tendency towards Charge Density Wave order (CDW), in particular for g ≤ 0.2

in carbon nanotubes [57]. These CDW correlations are long range enough for a single

barrier to pin the incident the low-energy charge density wave.

4.4 Tunneling into a Luttinger Liquid

As stated in the previous sections, theoretical work has shown that one-dimensional

interacting electron systems have very specific properties. It is very interesting to

probe experimentally these intriguing properties to verify the theoretical predictions.

The disorder-free metallic single-wall carbon nanotubes (SWNTs) have an elastic
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mean free path which can be as large as a few micrometers at low temperature.

Furthermore metallic SWNTs have only two transport modes at the Fermi level,

which greatly simplifies the analysis. Therefore the metallic SWNT is often regarded

as a model system for the one-dimensional physics [26, 64, 16].

Pioneering work has been done by Bockrath et al [15], who succeeded in elec-

trically connecting single-wall carbon nanotubes. Using standard lithography tech-

niques, they attached gold electrodes at both ends of SWNT ropes. Preliminary

measurements have shown relatively bad contacts between the gold electrodes and

carbon nanotubes, forming tunnel junctions. Further investigations have shown that

both the conductance and the differential conductance scale as power laws to zero

when decreasing the temperature or the bias.

4.4.1 Interpretation Using Luttinger Liquid Theory

The above experimental findings were first explained in the frame of the Luttinger

Liquid theory as follows. For simplicity, the case of a single barrier at the inferface

between the metal electrode and the nanotube was considered in the zero temperature

limit. From the standard tunneling theory, the following expression for the current

through the junction was obtained:

I =
1

eRT

∫ eV

0

dEρt(E) (4.4.1)

where RT is the tunnel resistance, ρt is the tunneling density of states of the carbon

nanotube [65].

As a result the differential conductance dI/dV is found to be proportional to

ρt(E):

dI/dV ∝ ρt(E), (4.4.2)

and one recovers the classical result that the conductance is proportional to the

density of states.

The energy dependence ρt(E) can be calculated from the Fourrier transform of

the electron Green’s function 〈ψ(x, t)ψ†(x, 0)〉 [66]:

ρ(E) =
1

π
Re

∫ ∞

0

dteiEt〈ψ(x, t)ψ†(x, 0)〉 (4.4.3)
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Detailed calculation shows that ρt(E) vanishes as a power law in the energy of the

tunneling electron:

ρt(E) ∝ EαL (4.4.4)

The exponent αL depends on the electron-electron interaction strength, and also on

the geometry of the tunnel junction. For tunneling into the end of a long nanotube

or into the middle of a tube, one expects to find [67]:

αend = (g−1 − 1)/4

αbulk = (g + g−1 − 2)/8
(4.4.5)

The observed power-law behavior can be understood in the following manner. In the

presence of Coulomb interactions (g ≤ 1), the tunneling density of states vanishes

as E → 0 because the quasi-particle is not a proper excitation of the Luttinger

Liquid. To create an additional electron in the Luttinger liquid, the wavefunctions of

all electrons participating in the collective excitations need to be changed, this gives

rise to the so-called orthogonality catastrophe. This process is very difficult and the

tunneling is suppressed.

4.4.2 Interpretation Using Dynamic Coulomb Blockade The-

ory

This explanation has been the current interpretation for the non-linearities observed

in the Bockrath experiment. However, this experiment can still be explained in an

alternative way. Indeed, further theoretical studies have shown that another model,

the so-called environmental dynamical Coulomb blockade theory [68, 69], can also

explain the observed power-law behavior.

This theory regards both the gold electrode and the carbon nanotube as con-

ventional Fermi Liquid materials. In addition, the theory takes into account the

fluctuations in the electric circuit (the Johnson-Nyquist noise). Due to the exchange

of energy between the electron and the environmental modes, the delta-function in the

usual expression of the tunneling current must be replaced by a function P (E), which

gives the probability that a tunneling electron creates an excitation with an energy

E in the electromagnetic environment [68]. The strict energy conservation prescribed

by the delta function is therefore lifted. The new expression of the tunneling current
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can be written as

I =
1

eRT

∫ +∞

−∞
dE

∫ +∞

−∞
dE ′{f(E)[1 − f(E ′)]P (E + eV − E ′)

− [1 − f(E)]f(E ′)P (E ′ − E − eV )}
(4.4.6)

where f(E) is the Fermi-Dirac function, and RT is the junction resistance . One can

determine the function P (E) from the Fourier transform of the phase correlator:

P (E) =
1

2π~

∫ ∞

−∞
dteiEt/~〈eiφ̂(t)e−iφ̂(0)〉 (4.4.7)

Supposing the temperature is zero, the above equation can be simplified as:

I =
1

eRT

∫ +∞

−∞
dEEP (eV − E) (4.4.8)

At zero temperature the function P (E) determines the second derivative of the

I-V curve:
d2I

dV 2
=

e

RT

P (eV ) (4.4.9)

To determine the explicit expression of the function P (E), one can use the phase-

correlation theory [68, 70]. The essence of the theory is to treat the junction and

its environment as a single quantum system. Indeed the phase difference across the

junction is related to the voltage V across the junction by a Josephson-like relation:

~
dφ

dt
= eV (4.4.10)

One can write the phase correlator 〈eiφ̂(t)eiφ̂(0)〉 in the form:

〈eiφ̂(t)eiφ̂(0)〉 = eJ(t)

J(t) ≈ 〈[φ̂(t) − φ̂(0)]φ̂(0)〉 = 2

∫ ∞

0

dω

ω

ReZ(ω)

RK

(e−iωt − 1)
(4.4.11)

This relation is a direct consequence of the fluctuation-dissipation theorem, here

RK = ~

e2 = 26kΩ and Z(ω) is the impedance of the environment.

In the case of low environmental impedance (ReZ(ω)/RK → 0), one can show

that the function P (E) reduces to the delta-function δ(E). One recovers the normal

tunneling I − V relation. The Coulomb blockade is suppressed because the weak

environmental impedance will not delay the dissipation of the tunneling electron. In

the opposite high-impedance limit (ReZ(ω)/RK → ∞), P (E) becomes δ(E − Ec).

Ec = e2/2CT is the charging energy of the junction, where CT is the capacity of
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the junction . This is the manifestation of dynamical Coulomb blockade. For finite

ReZ(ω)/RK , when E is much smaller than charging energy, P (E) is a power-law

function:

P (E) ∝ τ

~

[

Eτ

~

](αE−1)

(4.4.12)

where

αE =
2ReZ(0)

RK

(4.4.13)

and τ = Re(Z(0))CT is the relaxation time in the electric circuit.

Because the function P (E) determines the second derivative of the I-V curve, the

exponent of the differential conductance dI/dV will be αE. Therefore the environ-

mental dynamical Coulomb Blockade theory gives an alternative explanation for the

observed power-law behaviors.

We have seen that both the Luttinger Liquid theory and the dynamic Coulomb

Blockade theory can give an interpretation to the observed power-law behavior. In

the Luttinger Liquid description, the power-law behavior of differential conductance

originates from the energy dependence of DOS ρ(E), which is defined as a Fourier

transformation of the averaged operator product 〈ψ̂(x, t)ψ̂†(x, 0)〉. In the environmen-

tal dynamical Coulomb Blockade description, the power-law behavior comes from the

energy dependence of the probability function P (E), which is a Fourier transfor-

mation of the correlator 〈eiφ̂(t)e−iφ̂(0)〉. Since both operators e−iφ̂(t) and ψ̂(x.t) are

electron creation operators, similar energy dependence for ρ(E) and P (E) should be

expected. In addition, recent theoretical investigation also shows the coupling to the

Ohmic environment can induce effective repulsive interactions between electrons [71].

The difference between two models is very subtle.

There were efforts to distinguish both models by comparing the absolute value

of the exponents. However, theoretical investigations show that in the case of a

multichannel one dimensional conductor, the difference between exponent αL and

αE is equal to 1/N , where N is number of transport channels [65]. For a metallic

single-wall carbon nanotube, there are four conduction channels (2 from spin and 2

from bands crossing the Fermi level), the difference between αL and αE is only 0.25.

Unfortunately, the experimental precision in Ref. [15] was not high enough to find

which model is the correct one. Further experimental investigations need to be done

to provide more evidence for the Luttinger Liquid description of electron states in
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metallic single wall carbon nanotubes.

4.5 Electron Transport in Crossed Metallic Single

Wall Carbon Nanotubes

In Section 3.4, we have reviewed the tunneling measurement on the ropes of single-

wall carbon nanotubes. Some similar tunneling and resonant tunneling measurements

have also been made on SWNTs. [15, 73, 74, 75] A pronounced suppression in the

tunneling density of states, also called zero-bias anomaly (ZBA), has been observed

in these measurements. It is again considered as a direct evidence for Luttinger Liquid

behavior in carbon nanotubes. However, as we have shown before, two-point transport

measurements cannot give enough evidence for Luttinger Liquid behavior in carbon

nanotubes. Although the measured power-law ZBA can be consistently explained by

the Luttinger Liquid theory, it is difficult to rule out alternative explanations based

on environmental dynamical Coulomb Blockade theory. Furthermore, a very similar

ZBA has been experimentally observed in multi- wall carbon nanotubes [76, 77, 78]

eventhough such systems are known to be disordered multichannel wires [79, 80].

It is therefore important to find new experimental evidence beyond the ZBA for

tunneling into single wall carbon nanotubes [15, 73, 74]. Following the proposal made

by theorists [81, 82], we have fabricated crossed metallic single-wall carbon nanotube

junctions. The electron transport measurements on such structures give some new

Luttinger Liquid signatures in metallic single-wall carbon nanotubes.

Although crossed nanotube junctions have been investigated before by other groups

[36, 83, 84], the richness of configurations allowed in this crossed nanotube experi-

ments was not fully exploited; instead measurements focused on the mere junction

resistance. In our experiments, we focus on the device made by two crossed metallic

SWNTs. The conductance is measured in a broad temperature range (20-100K), and

the device is fully characterized using all possible two-point and four-point measure-

ments so as to extract the relevant contact and junction transmissions.

We find a decrease of the single-tube conductance as the temperature or the bias

is reduced, in a way very similar to ZBA reported in the above mentioned tunneling

measurements. A very interesting new feature is that the ZBA can be suppressed

as we increase the current in the second tube. We will show below the relationship
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between these findings and the Luttinger Liquid picture of metallic SWNTs. We

can give here a simple physical picture to get some intuition. In general, the local

electrostatic interaction at the crossing point creates a barrier in each tube. In a

picture where the Luttinger Liquid can be viewed as a charge density wave, the

latter is pinned by the barrier, explaining the power-law vanishing current. When the

current is fed through the second tube, electrons in the first tube will get additional

energy to overcome the barrier, thus enhancing the conductance of the first tube.

We will give explicit calculation based on Luttinger Liquid theory at the end of this

section, which reproduces well the experimental results.

4.5.1 Sample fabrication

The devices were fabricated with the standard nano-fabrication technics. The laser-

ablation grown SWNTs are dispersed from a suspension in dichloroethane onto an

oxidized Silicon wafer. Atomic-force microscope (AFM) is then used to locate crossed

SWNTs with an apparent diameter of ≈ 1nm. It is difficult to distinguish with AFM

individual SWNT from small-diameter bundle of SWNTs or MWNTs, and we select

the thinnest tubes in the AFM images, which are assumed to be individual SWNTs.

Next, Cr/Au electrodes are attached to the selected tubes using electron-beam lithog-

raphy together with thermal evaporation techniques. An example of device is shown in

Fig 4.4. The separation L between the crossing point and the electrodes is ≈ 300nm.

This value is taken as it is smaller than the elastic mean free path (Le ≈ 1µm in pure

SWNTs), and larger than the thermal length LT = ~vF /KT at our lowest temper-

ature. For shorter L, undesired finite-size effects may come into play, which would

involve the three dimensional physics of the leads. For much longer L, the probabili-

ties is enhanced to find more disorder centers along the SWNTs that complicate the

analysis.

The yield of the sample fabrication has been very low. Out of the 60 fabricated

samples, we have not managed to obtain the ideal device with two metallic nanotubes

and four highly transparent contacts to prevent spurious Coulomb Blockade effects.

Instead, we have found four almost perfect samples, with only one highly resistive

contact. Measurements have been carried out on these four devices, and give similar

results. Below we describe a representative set of measurements performed on one of

these devices.
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Figure 4.4: AFM image of a device made of two crossed SWNTs. The electrode
height is 45 nm.

4.5.2 Preliminary Sample Characterization

At high temperature (T=220K), where Luttinger Liquid effects are negligible, the

linear resistances of the two SWNTs (henceforth called A and B) are measured with

RA = 19kΩ and RB = 524kΩ, corresponding to contact transmission of 0.6 and 0.01

respectively. The four-point resistance of the tube-tube junction at the crossing point

is Rx = 277kΩ (transmission 0.02). As mentioned above, one of the four contact (B1)

is bad, it is identified by comparing different two-point resistances. Note that the

two-point measurements are achieved with the other electrodes left floating. When

the temperature is decreased, the large contact resistance induces Coulomb blockade

(CB) oscillations in tube B as a function of the back gate voltage Vg. In the following

measurements, Vg is fixed at a broad CB peak so as to maximize the current in the

tube B.

The device is further characterized by measuring the Luttinger Liquid interaction

parameter g from the tunneling density of states [72, 67], using the tube-tube tunnel

junction polarized as shown in Fig 4.5. While measuring the current I through the

tube-tube junction and the voltage drop V across the crossing point, the differential

69



V

I

B2

I

B1

A2A1

Figure 4.5: Schematic view of the tunneling measurements across the tube-tube junc-
tion. Current I is applied between electrode A1 and B2, voltage drop on the junction
is measured between electrode A2 and B1.

tunneling conductance GX(VX , T ) = dIX/dVX (X signifies the crossed junction) can

be measured. The geometry corresponds to electron tunneling from the middle of one

tube to the middle of the other tube (bulk-bulk tunneling, see Eq 4.4.5). The double-

logarithmic plots of GX(VX , T ) in the fig 4.6 are described by a power-law scaling with

the slope αbulk−bulk ≈ 1.1. Using αbulk−bulk = (g−1 +g−2)/4 [72, 67], we find g = 0.16.

This value is somewhat lower than the currently reported ones g ≈ 0.2 for tunneling

into a SWNT from a metal electrode[15, 73, 74]. This reflects a slightly stronger

Coulomb interaction which is probably due to the different geometry of our devices;

in particular, concerning the electrode location responsible for screening effects.

4.5.3 Zero-Bias Anomaly and its Suppression

We next measure the conductance of tube A while tube B is left floating. The Fig

4.7 shows the differential conductance dIA/dVA measured on tube A as a function

of VA for different temperatures T . We observe a clear ZBA, which becomes larger

as T is decreased. Such a phenomenon has been observed many times in SWNTs

[15, 73, 74]. It implies the presence of a barrier along the tube A or at the interface

with electrodes. However we can not go further to determine the nature of the barrier

at the moment.

We next impose a current IB flowing through tube B. It is very interesting that the

ZBA in tube A is progressively suppressed when IB is increased (Similar behaviors
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Figure 4.6: Tunnelling measurement on the tube-tube junction in a four-probe con-
figuration. (a) Linear conductance GX(VX = 0, T ) (b) Differential conductance
dIX/dVX(VX , T = 20K).

were also observed in other devices, see Fig 4.10). We note that the ZBA suppression

depends only on the intensity of IB and not on its sign. For these measurements, the

sample is biased symmetrically about the junction so that no current flows from

tube A into tube B through the crossing point. To achieve this, several three-points

measurements are carried out in advance (see Fig 4.8), with the following procedure.

Firstly, a three-point measurement is carried out on tube A to determine the po-

tential V X
A at the crossing point. By adjusting the voltages applied on both electrodes

A1 and A2, which are respectively −aVA and (1− a)VA, we can find the parameter a

as a function of VA, which suppresses the potential at the junction so that no current

flows through the junction into the tube B. Parameter a is nearly 0.5 as both contacts

are almost transparent. The procedure is reproduced for tube B with parameter b.

This time b is far away from 0.5, reflecting the large contact resistance at the B1

electrode. Finally, IA is measured as a function of VA for different VB (and IB) where

voltages VB1 = −bVB + aVA and VB2 = (1− b)VB + aVA applied on electrodes B1 and

B2 are continually adjusted so that V X
A is always equal to V X

B , which is aVA. Since

most of VB drops at the bad contact B1, we give instead of VB the current IB in the
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Figure 4.7: Differential conductance dIA/dVA(VA) measured on SWNT A (a) for
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Fig 4.9 legend, which is measured while tube A is left floating.

4.5.4 Interpretation of Experimental Results

We review now some possible explanations for the IB dependence of the ZBA in

tube A. Let us first consider the effect of joule heating. Note that heating effect

are generally disregarded in tunneling experiments into carbon nanotubes [15, 73,

74, 76, 77, 78]. However, the poor B1 contact releases significant heat when we

increase the current in tube B. Part of the heat flows through tube A, which may then

change the temperature sensitive conductance GA. Unfortunately, the temperature

rise ∆T is difficult to estimate, because little is known about the thermal conductances

of individual SWNTs and tube-tube junctions. Out limited knowledge about the

thermal conductance of SWNTs is that it increases with temperature when T is less

than 100K [85, 86, 83]. Nevertheless, a qualitative statement can be made. The

inset in Fig 4.7 describes the differential conductance GA as a function of current

IB, measured at three different temperatures. Since we observe GA(20K, 0.6µA) ≈
GA(40K, 0A) and GA(40K, 0.6µA) ≈ GA(80K, 0A), this would mean that the same

heat input (360nW) would give rise to different temperature increases, 20 → 40K and

40 → 80K respectively. This would imply that the thermal conductance decreases

with T, which is at odd with our knowledge. Indeed, the temperature increase ∆T of

tube A should be anti-proportional to the thermal conductance, for that the heat will

dissipate faster into the environment. Hence our conclusion is that thermal effects

alone cannot explain our observations. Another explanation might be related to the

direct capacitive coupling between tubes, tube B playing the role of a local gate for

tube A. The conductance can vary with back gate voltage Vg as seen in interference

experiments [64, 16]. We indeed find that GA fluctuates with Vg. One could argue

that tube B acts as a local gate. However, the conductance fluctuation with Vg,

which are lower than 2.1µS, cannot account for the large modulation of GA(IB). We

conclude that another explanation is needed to account for our results.

We now compare the data to LL predictions for two crossed SWNTs with identical

Luttinger Liquid parameter g [81, 82]. We will model our device by two Luttinger

Liquid wires coupled in a pointlike manner. We suppose that both tubes are perpen-

dicular, and that metallic electrodes onto the tubes are symmetric with respect to

the crossing point. Such a structure will cause three different coupling mechanisms:

74



First, there will be a local density-density electrostatic interaction at the crossing

point. Secondly, as both tubes are stacked on top of each other, a crossing-induced

backscattering (CIB) process needs to be taken into consideration. The importance

of CIB processe due to the tube deformation has been stressed in several previous

experimental [84, 88] and theoretical studies [89, 90]. Another possible process is

the single-particle hopping from one tube to the other one. However, as our experi-

ments are carried out at zero tube-tube current, this single-electron tunneling can be

neglected.

Let us first discuss the electrostatic interaction. The electrostatic interaction

is taken as a local coupling acting only at the crossing point, which takes the form

HAB = λ0ρA(0)ρB(0), where ρα(x) is the density operator corresponding to the charge

density wave excitations in tube α = A,B, λ0 is the local density-density coupling

strength. We firstly omit the mean density kF /π which is supposedly neutralized

by positive background charges. Then, as we have found the electron interaction

strength g in our devices is around 0.16, this signifies very strong electron correlations.

Therefore the dominant excitation is a high-order charge density wave whose wave

length is equal to π/4qF [57], and ρα(x) ∝ cos
√

16πgφ(x). ( the wave vector qF

is related to band filling. An average excess density δρ compared to the unbiased

half-filling case gives rise to a non-zero qF = πδρ/4 . One can easily adjust the band

filling by varying the back gate Vg. )

Now we turn to the back scattering induced by the geometrical deformations.

The hamiltonian of CIB part can be described by HCIB = λ1ρA(0) + λ2ρB(0). With

the standard renormalization group method [61], we can find the lowest-order flow

equations

dλ0

dl
= (1 − 8g)λ0 + 2λ1λ2

dλ1,2

dl
= (1 − 4g)λ1,2

(4.5.1)

The initial coupling constants λ0,1,2(0) could be accessed from microscopic consider-

ations but we only need here that they are nonzero. Integration the above equations

yields

λ1,2(l) = λ1,2(0)e(1−4g)l

λ0(l) = [λ0(0) − 2λ1(0)λ2(0)]e(1−8g)l + 2λ1(0)λ2(0)e(2−8g)l
(4.5.2)

75



It is apparent that at low energy (large l), as the interaction parameter g in our

device is about 0.16, the RG flow is completed dominated by λ0(l) due to second

term in its expression. That is to say the density-density coupling is generated from

the crossing induced backscattering coupling. It has an effective scaling dimension

Keff = 4g−1/2. We need to note that for this argument, it is crucial that g < 1/5 (for

having charge density wave as the dominating low energy excitations) and λ1,2(0) 6= 0.

The CIB processes drive the local electrostatic density-density coupling λ0,eff (l) to

be the dominant interaction in this crossed geometry, whose fix point is now not λ0(0)

but 2λ1(0)λ2(0). The strong coupling λ0,eff then generate a ZBA which disappears

when current flows in the second tube. We will show below the exact solution of this

problem.

As the λ1,2(l) terms have a scaling dimension less important than λ0(l) terms,

we keep only the density-density coupling in the total Hamiltonian, and we arrive at

the single-channel model in Ref. [81, 82]. In this model, we consider two spinless

Luttinger liquids. Assuming that the tubes do not contain impurities, Hamiltonian

of the uncoupled system is as we found in Section 4.2.

H0 =
1

2

∫

dx
∑

m=1,2

[(∂xθ̃m)2 + (∂xφ̃m)2] (4.5.3)

where we have put ~ = 1 and the sound velocity v ≡ vF /g = 1. The Hamiltonian

HAB corresponding to electrostatic interactions takes the form

HAB = λ0,effρA(0)ρB(0) (4.5.4)

We can take the following variable transformation

φ±(x) = [φ̃1(x) ± φ̃2(x)]/
√

2

θ±(x) = [θ̃1(x) ± θ̃2(x)]/
√

2
(4.5.5)

The total Hamiltonian H0 + HAB decouples into the sum of H+ + H− with

H± =
1

2

∫

dx[(∂xφ±)2 + (∂xθ±)2] ± λ0,eff cos [
√

8πKeffφ±(0)] (4.5.6)

We get two completely decoupled system, each of which is formally equivalent to

the problem of an elastic scatterer embedded into a spinless Luttinger Liquid [60].

Supposing I+ and I− are the effective current in each system, the current in each tube

is then given by Im = (I+ ± I−)/
√

2.
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Therefore the full nonlinear correlated transport problem of crossed Luttinger

Liquids decouples into two effective single-impurity problems characterized by an

effective interaction parameter Keff = 4g − 1/2. This single impurity problem has

been studied before in detail. For Keff = 1/4, this can be made explicit by a simple

analytical solution of the resulting transport problem [82]. This corresponds to g =

0.1875, which is close to our experimental value g ≈ 0.16. While the exact solution

can be obtained by any Keff as well, away from Keff = 1/4 [91], the solution is less

transparent and shows only slight differences. For Keff = 1/4, the current through

tube A and B is

Im =
4e2

h
[Vα − (U+ ± U−)/

√
2] (4.5.7)

with U± obeying the self-consistency relations

eU± = 2kTBImΨ

[

1

2
+

kTB + i(eV± − eU±)

2πkT

]

(4.5.8)

with the digamma function Ψ, V± = (VA±VB)/
√

2, and an effective coupling strength

TB ∝ λ
1/(1−2Keff )
0 . The solutions employs radiative boundary conditions [91], which

in turn assume ideal tube-electrode contacts. This assumption is, however, only

restrictive here since LT ≪ L (see above). For our devices, where three contacts

are nearly ideal and only one has low transparency, the solutions receive only small

corrections, (see Sec.4 in Ref[82]).

Fig 4.9 shows modified dIA/dVA(VA) curve of Fig 4.7. Indeed, Fig 4.7 shows that

the high-bias differential conductance saturates at (17.9kΩ)−1 instead of 4e2/h, which

is the high-bias conductance predicted by the above equations. We therefore argue

that a resistance Rc = 11.4kΩ lies in series with the IB dependant contribution of the

intertube coupling in order to obtain this dIA/dVA saturation. Rc, presumably located

at the tube-electrode interfaces, is taken constant. This approximation is quite good

since the ZBA tends to disappear for large IB, leaving only a weak 1/Rc conductance

modulation. Moreover, the conductance is known to change only slightly with T or V

in experiments on individual SWNTs that are well contacted with contact resistances

of the order 10kΩ [64, 16]. Fig 4.9 (c) and (d) show the predicted dIA/dVA(VA) curves

calculated from Eq 4.5.7 and 4.5.8. The effective coupling TB is set at TB = 11.6K

to get agreement with the experimental value for GA at 20K; IB = 0 and VA = 0.

After fixing TB, no parameter is turned to calculate the condutance variation with
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VA, T and IB. Despite the above-mentioned approximations, the agreement of theory

and experiment is quite good. We note in passing that Eq 4.5.7 and 4.5.8 predict the

emergence of minima in dIA/dVA(VA) for IB ≥ 1µA, which have not been observed

though. One probable cause could be the inelastic scattering on optical phonons

taking place at such large currents, which are not included in Eq 4.5.7 and 4.5.8.

In conclusion, we have observed on a crossed metallic SWNT junction a ZBA in

one tube which is suppressed by a current flowing through the other. These measure-

ments are in rather good agreement with an analysis based on Luttinger Liquid theory,

which predicts a barrier along each tube generated by the electrostatic tube-tube in-

teraction and controlled by current in other tube. The crossed tube junction thus

provides an interesting system offering external control of the barrier transmission in

a Luttinger Liquid that will be useful, e. g. , in noise measurements.
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Conclusion

As a conclusion, we have realized different multi-terminal electron transport mea-

surements on a single-wall carbon nanotubes, which allow us to investigate the rich

physics inside a carbon nanotube at different temperature scales.

Firstly, in order to investigate the intrinsic resistance of a single-wall carbon nan-

otubes, we developed a new type of four-terminal measurement method using multi-

wall carbon nanotubes as voltage probes. Compared to two-terminal measurement,

four-terminal measurements are not limited by the bad contacts between metal elec-

trode and nanotube. Therefore in can in principle give the information about the

intrinsic electrical properties of a carbon nanotube. Previous efforts to apply directly

this method to a carbon nanotube was failed because metal electrodes can be invasive

to a carbon nanotube. The reason has been clarified in previous chapiters. We have

shown MWNTs are much less invasive to carbon nanotubes than metal electrodes.

We thus realized a first true four-terminal measurement on a SWNT, which allows

us to understand the intrinsic electrical properties of a SWNT at both high and low

temperature. We found that SWNTs behave like classical resistors at room tempera-

ture by respecting the Ohm’s Law. At liquid helium temperature, when varying the

back-gate voltage, four-terminal measurements can read both positive and negative

resistances. We attribute these negative resistances to quantum interference effect

between different electron paths inside the SWNT. The experimental results can be

understood within the frame of Laudauer-Büttiker formalism. Our findings support

the validity of L-B formalism in a molecular system. In addition, with this new

four-terminal measurement technique, we can investigate the effect of disorder along

a carbon nanotube. We have experimentally studied the localization effect inside a

SWNT. Though limited by time, this work was not included in this thesis, a detailed

description can be found in Ref. [93].
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Single-wall carbon nanotube is considered as an ideal model system to study one-

dimensional interacting electron system, so-called Luttinger liquid state. Previous

reports measuring tunneling current from metal elctrodes to a SWNT have shown

a power-law behavior which is considered as a characteristic of LL. However there

are still disputes around these measurements as a dynamical coulomb blockade model

cannot be excluded. We have realized a different type of measurements on two crossed

metallic SWNTs. We found that the conductance dip of one SWNT can be suppressed

by increasing the current through the other tube. After precise analysis of the exper-

imental results, we conclude that we have found new evidence of LL behavior inside

SWNYS beyond the usual tunneling measurements.
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Appendix A

Bosonization Method

We present here a relatively complete description to the Bosonization method. One
can start with fermions on a circle of Length L with periodic boundary condition. One
may introduce the second quantized Fermi field of right- and left-moving components
as the following:

ψν(x) =
1√
L

∞
∑

k=−∞
cν,k eiνkx

k =
2π

L
nk

(A.0.1)

with ν=R and L referring to right and left-moving components respectivly, where
nk = 0,±1,±2.... Fermion operator cν,k respects the following anticommutation rela-
tions.

{cν,k, cν′,k′} = 0

{cν,k, c
†
ν′,k′

} = δνν′ δkk
′

(A.0.2)

One can then define the Fermi sea of the system to be the state |0〉, which satisfies:

cν,k | 0 > = 0 for k > 0

c†ν,k | 0 > = 0 for k ≤ 0
(A.0.3)

The normal ordered fermion number operator N̂ν can be defined in the following
way:

N̂ν =
∞

∑

k=−∞
: c†ν,kcν,k :

=
∑

k>0

c†ν,kcν,k −
∑

k≤0

cν,kc
†
ν,k

(A.0.4)
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One can easily find thatN̂ν |0〉 = 0.
The next step is to define bosonic operators:

b†ν,q =
1

√
nq

∞
∑

k=−∞
c†ν,k+qcν,k

bν,q =
1

√
nq

∞
∑

k=−∞
c†ν,k−qcν,k

q =
2π

L
nq, nq = 1, 2, 3...

(A.0.5)

One can easily check the following commutation relations:

[bν,q, bν′,q′ ] = 0

[bν,q, b
†
ν′,q′ ] = δνν′δqq′

[N̂ν , bν′,q] = [N̂ν , b
†
ν′,q] = 0

(A.0.6)

With these operators one can now define the chiral creation and annihilation
operators:

χν(x) =
iν

2
√

π

∑

q>0

1
√

nq

bν,qe
iνqx−αq/2

χ†
ν(x) = − iν

2
√

π

∑

q>0

1
√

nq

b†ν,qe
−iνqx−αq/2

(A.0.7)

which, in the limit L → ∞, satisfy the following commutation relations:

[χν(x), χν(x
′)] = 0

[χν(x), χ†
ν′(x

′)] = − 1

4π
δνν′ ln[

2π

L
(α − iν(x − x′))]

(A.0.8)

One can then define the right- and left-moving bosonic fields φν(x) as:

φν(x) = χν(x) + χ†
ν(x) −

√
πx

L
N̂ν (A.0.9)

which satisfies:

[φν(x), φν′(x)] = −iν

4
δνν′sign(x − x′) (A.0.10)

Finally one can define two phonon-like displacement fields dual to each other:

φ(x) = φR(x) + φL(x)

θ(x) = −φR(x) + φL(x)
(A.0.11)

which satisfy:

[φ(x), φ(x′)] = [θ(x), θ(x′)] = 0

[φ(x), θ(x′)] =
i

2
sign(x − x′)

(A.0.12)
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As we will see below, these phonon-like fields are to be used to describe the low-
energy excitations in the Luttinger Liquid after adding the interaction. One may
consider these fields as describing the displacement of a particle from its original
lattice position, the system is just like a Wigner Crystal plus fluctuations.

Once the phonon-like displacement fields are defined, one can then define the
chiral fermion density operators:

ρν(x) =: ψ†
ν(x)ψν(x) :

=
1

L

∑

q>0

√
nq(bν,qe

iqx + b†ν,qe
−iqx)

+
1

L

∑

k

: c†ν,kcv,k := − 1√
π

∂ψν

∂x

(A.0.13)

Therefore the total density and current operator are given by:

ρx = ρR(x) + ρL(x) = − 1√
π

∂xψ

j(x) = vF (ρR(x) − ρL(x)) =
vF√
π

∂xθ
(A.0.14)

One need to precise that the density operator ρ(x) here measures only the fluctuation
in the electron density. We have removed in the definition of ρ(x) the mean electron
density N0/L.

If we introduce a linear dispersion relation ǫν,k = vF k, the Hamiltonian of non-
interacting system can be written in fermionic and bosonic language respectively:

H0 = vF

∞
∑

k=−∞
: c†R,kcR,k + c†L,kcL,k : +

πvF

L
(N̂2

R + N̂2
L)

= vF

∑

q>0

q(b†R,qbR,q + b†L,qbL,q) +
πvF

L
(N̂2

R + N̂2
L)

= vF

∫ L

0

dx[(∂xφR)2 + (∂xφL)2]

=
vF

2

∫ L

0

dx[(∂xφ)2 + (∂xθ)
2]

(A.0.15)

Since the Hamiltonian of the non-interacting system has been found, one can now
begin to add in the interaction of the following form:

V =
1

2

∫ L

0

dx[2g2ρR(x)ρL(x) + g4(ρR(x)2 + ρ2
L(x))] (A.0.16)

The interaction can be written in the fermionic language:

V =
1

2L

∞
∑

k1,k2,k3=−∞
[2g2c

†
R,k1+k3

cR,k1
c†L,k2+k3

cL,k2

+ g4(c
†
R,k1+k3

cR,k1
c†R,k2−k3

cR,k2

+ c†L,k1+k3
cL,k1

c†L,k2−k3
cL,k2

]

(A.0.17)
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one can easily find the g2 term corresponds to a two-particle interaction involving dif-
ferent chiralities; and the g4 term corresponds to an interaction between two particles
with the same chirality.

Once the interaction terms have been added, one can now write the total Hamil-
tonian H = H0 + V . As we will see, it takes a very simple form in the bosonic
language:

H =
∑

q>0

q[vF (b†R,qbR,q + b†L,qbL,q) +
g2

2π
(b†R,qb

†
L,q + bR,qbL,q)

+
g4

2π
(b†R, qbR,q + b†L,qbL,q)] +

πvF

L
(N̂2

R + N̂2
L)

+
g2

L
N̂RN̂L +

g4

2L
(N̂2

R + N̂2
L)

(A.0.18)

One can easily see that the effect of g4 term is to renormalize the Fermi velocity to
vF + g4

2π
. And the g2 term can be diagonalized by a Bogoliubov transformation. One

can define the following two parameters:

v =[(vF +
g4

2π
− g2

2π
)(vF +

g4

2π
+

g2

2π
)]1/2

g =[(vF +
g4

2π
− g2

2π
)/(vF +

g4

2π
+

g2

2π
)]1/2

(A.0.19)

In the conventional case case, one can take g2 = g4 > 0 (repulsive interaction), v
is therefore the plasmon velocity which is larger than Fermi velocity because the
repulsive interaction reduces the compressibility of the electron gas. And g is the
parameter that we mentioned above, which describes the interaction strength between
electrons, g < 1 for repulsive interaction.

The Bogoliubov transformation now take the forms:

b̃R,q =
bR,q + γb†L,q
√

1 − γ2

b̃L,q =
bL,q + γb†R,q
√

1 − γ2

γ =
1 − g

1 + g

(A.0.20)

One can now rewrite the total Hamiltonian in the quadratic expression:

H =
∑

q>0

vq[b̃†R,q b̃R,q + b̃†L,q b̃L,q]

+
πv

2L
[
1

g
(N̂R + N̂L)2 + g(N̂R − N̂L)2]

=
v

2

∫ L

0

dx[g(∂xθ)
2 +

1

g
(∂xφ)2]

=
v

2

∫ L

0

dx[(∂xθ̃)
2 + (∂xφ̃)2]

(A.0.21)
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The old and new bosonic fields are related as:

φR =
(1 + g)φ̃R − (1 − g)φ̃L

2
√

g

φL =
(1 + g)φ̃L − (1 − g)φ̃R

2
√

g

φ =
√

gφ̃ and θ =
1√
g
θ̃

(A.0.22)

88



Appendix B

Cotunneling and one-dimensional

localization
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[35] M. Büttiker, Phys. Rev. B 32, R1846 (1985).

[36] M.S. Fuhrer, et al., Science 288, 494 (2000).

[37] H. R. Shea, et al., Phys. Rev. Lett. 84,4441(2000).

91



[38] H. T. Man, et al.,, Phys. Rev. Lett. 95, 026801(2005).

[39] H. Van Houten, et al., in : Singel Charge Tunneling , ed by. H. Grabert and M.

H. Devoret, Plenum Press, New York(1992)

[40] D. V. Averin, et al., in : Mesoscopic Phenomena in Solids , ed by. P. A. Lee and

R. A. Webb, Elsevier Amsterdam(1991)

[41] D.H. Cobden, et al., Phys. Rev. Lett. 89, 046803 (2002)

[42] Y. Oreg, et al., Phys. Rev. Lett. 85, 365(2000)

[43] S. Sapmaz, et al., Phys. Rev. B. 71, 153402(2005)

[44] J.H. Hafner, et al., Phys. Chem. B 105, 743 (2001).

[45] H. Stahl, et al., Phys. Rev. Lett. 85, 5186 (2000).

[46] B. Bourlon, et al., Phys. Rev. Lett. 93, 176806 (2004).

[47] V.A. Gopar, et al., Phys. Rev. B 50, 2502 (1994).
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